## Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

July 25, 2023

#### Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification American School for the Deaf at Hartford 139 North Main Street, West Hartford, Connecticut

#### Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas, remote radio heads and related equipment inside a faux clock tower structure on the Property. The clock tower and Cellco's use of the clock tower were approved by the Council in June of 2013 in Docket No 434. A copy of the Docket No. 434 Decision and Order is included in Attachment 1.

Cellco now intends to modify its facility by removing three (3) antennas and installing three (3) new Samsung MT6413-77A antennas on its existing antenna mounts. A set of project plans showing Cellco's proposed facility modifications and specifications for the new antennas are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to West Hartford's Chief Elected Official and Land Use Officer.

# Robinson+Cole

Melanie A. Bachman, Esq. July 25, 2023 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing clock tower. Cellco's replacement antennas will be installed on Cellco's existing antenna mounts inside the clock tower structure.
- 2. The proposed modifications does not involve a change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A Calculated Radio Frequency Emissions Report for Cellco's modified facility is included in <a href="Attachment 3">Attachment 3</a>. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the clock tower or the Property. All modifications will be located inside the clock tower.
- 6. According to the July 18, 2023, Structural and Mounts Analysis ("SMA") the existing clock tower and internal antenna mounts can support the proposed facility modifications described above. A copy of the SMA is included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

# Robinson+Cole

Melanie A. Bachman, Esq. July 25, 2023 Page 3

Sincerely,

Kenneth C. Baldwin

Enclosures Copy to:

Shari Cantor, Mayor for the Town of West Hartford Todd Dumais, Town Planner American School for the Deaf at Hartford, Property Owner Sharon Horne, Verizon Wireless

# **ATTACHMENT 1**

| <b>DOCKET NO. 434</b> – Cellco Partnership d/b/a Verizon Wireless                                                                 | } | Connecticut   |
|-----------------------------------------------------------------------------------------------------------------------------------|---|---------------|
| Application for a Certificate of Environmental Compatibility and                                                                  | ì | Siting        |
| Public Need for the construction, maintenance, and operation of a relocated telecommunications facility at 139 North Main Street, | } | Council       |
| West Hartford, Connecticut                                                                                                        | } |               |
|                                                                                                                                   |   | June 27, 2011 |

#### **Decision and Order**

Pursuant to Connecticut General Statutes §16-50p and the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Cellco Partnership d/b/a Verizon Wireless, hereinafter referred to as the Certificate Holder, for a telecommunications facility at the proposed site, located at 139 North Main Street, West Hartford, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a stealth clock tower, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of the Certificate Holder and other entities, both public and private, but such tower shall not exceed a height of 90 feet above ground level at the top of the cupola dome.
- 2. All wireless telecommunications carriers' equipment and antennas shall be located inside the tower structure.
- 3. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of (West Hartford) for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
  - a. a final site plan(s) of site development to include specifications for the clock tower, tower foundation, antennas, equipment room configuration, backup generator, radio equipment, access/parking area, garden wall, utility line, and landscaping; and
  - construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the <u>2002 Connecticut Guidelines for Soil Erosion</u> and <u>Sediment Control</u>, as amended.
- 4. The Eastern Box Turtle Protection Program shall be implemented to mitigate any possible impacts to Eastern Box Turtles in the event any are found in the vicinity of the site.

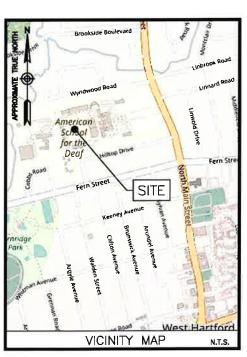
- 5. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 6. Upon the establishment of any new state or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 7. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 8. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 9. Any request for extension of the time period referred to in Condition 8 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of West Hartford. Any proposed modifications to this Decision and Order shall likewise be so served.
- 10. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 11. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 12. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 13. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.

- 14. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 15. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 16. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.

We hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed in the Service List, dated March 7, 2013, and notice of issuance published in The Hartford Courant.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

# **ATTACHMENT 2**




# W HARTFORD W CT RELO

139 NORTH MAIN ST. WEST HARTFORD, CT 06107

**FUZE PROJECT ID: 17082760** 

**PSLC: 472708** 



# ENGINEER DEWBERRY ENGINEERS INC. 98 SUMMER ST. SUITE 700 BOSTON, MA 02110 PHONE \$\frac{1}{2}\left(617\right) 531-0800 CONTACT: BENJAMIN REVETTE, PE CONSTRUCTION VERIZON WIRELESS 98 EAST RIVER DRIVE EAST HARTFORD, CT 06108 LAND OWNER AMERICAN SCHOOL FOR THE DEAF AT HARTFORD 139 NORTH MAIN STREET WEST HARTFORD, CT 06107 COORDINATES\*: LATITUDE: 41' 48' 14.2' (41.770611) N LONGITUDE: 72' 44' 58.8' (72.749611) W \*PER RFDS GROUND FLEVATION\*: 159'\pmu \*PER GOOGLE EARTH PROJECT INFORMATION

| VZW LOCATION CODE (PS   | SLC):  | 472708<br>17082780        |
|-------------------------|--------|---------------------------|
| V                       |        |                           |
| CONTRACTOR              | PMI    | REQUIREMENTS              |
| OOMITOTOR               | 1 1711 | TEGOTTEMENTO              |
| AND ITS SITE CONDITIONS | AND IS | CONDITIONS PERTAIN. REUSE |

FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION

| ٠        | REMOVE (3) EXISTING MT6407-77A ANTENNAS.                           |
|----------|--------------------------------------------------------------------|
| •        | INSTALL (3) MT6413-77A WITH INTEGRATED RRH<br>ANTENNA/RADIO UNITS. |
| ٠        | INSTALL NEW JUMPER CABLING BETWEEN OVPS AND ANTENNAS AS REQUIRED.  |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
|          |                                                                    |
| NO       | <u>IE:</u>                                                         |
| NO<br>1. | _                                                                  |

| SHT.<br>NO. | DESCRIPTION                       |
|-------------|-----------------------------------|
| T-1         | TITLE SHEET                       |
| GN-1        | GENERAL NOTES                     |
| C-1         | SITE PLAN                         |
| C-2         | ELEVATION                         |
| C-3         | EXISTING & PROPOSED ANTENNA PLANS |
| C-4         | CONSTRUCTION DETAILS              |
| C-5         | FINAL EQUIPMENT CONFIGURATION     |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             |                                   |
|             | SHEET INDEX                       |



VERIZON WIRELESS 99 EAST RIVER DRIVE EAST HARTFORD, CT 06108

W HARTFORD W CT RELO

| Г  | ANTMO    | DRA   | WINGS     |
|----|----------|-------|-----------|
|    |          |       |           |
| Н  |          |       |           |
| 3  | 07/20/23 | FOR S | SUBMITTAL |
| 2  | 06/16/23 | FOR S | SUBMITTAL |
| 1. | 05/19/23 | FOR S | SUBMITTAL |
| 0  | 05/12/23 | FOR S | UBMITTAL  |



Dewberry Engineers Inc. 99 SUMMER ST. SUITE 700 BOSTON, MA 02110 PHONE: 617,695,3400 FAX: 617,695,3310



| DRAWN BY: 07/20 | /2023 JG |
|-----------------|----------|
| REVIEWED BY:    | CDH      |
| CHECKED BY:     | BBR      |
| PROJECT NUMBER: | 50121487 |

JOB NUMBER: 50164392

472708

SITE ADDRESS

SITE NUMBER

139 NORTH MAIN ST. WEST HARTFORD, CT 06107

SHEET TITLE

TITLE SHEET

SHEET NUMBER

T-1

#### **GENERAL CONSTRUCTION NOTES:**

- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, AND COMPLY WITH VERIZON WIRELESS SPECIFICATIONS.
- 2. CONTRACTOR SHALL CONTACT "DIG SAFE" (888-344-7233) FOR IDENTIFICATION OF UNDERGROUND UTILITIES PRIOR TO START OF CONSTRUCTION.
- 3. CONTRACTOR IS RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- 5. DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS.
- 6. DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOLTS, ETC.
- 9. CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, DRAIN PIPES, VENTS, ETC. BEFORE COMMENCING
- INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE OWNER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE OWNER'S REPRESENTATIVE PRIOR TO PROCEEDING.
- EACH CONTRACTOR SHALL COOPERATE WITH THE OWNER'S REPRESENTATIVE, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE VERIZON WIRELESS CONSTRUCTION MANAGER.
- 13. ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING INSTALLATION USING A SILICONE SEALANT.
- WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET, CONTRACTOR WILL NOTIFY ENGINEER, VERIZON WIRELESS PROJECT CONSTRUCTION MANAGER, AND LANDLORD IMMEDIATELY.
- CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- 16. ALL ROOF WORK SHALL BE DONE BY A QUALIFIED AND EXPERIENCED ROOFING CONTRACTOR IN COORDINATION WITH ANY CONTRACTOR WARRANTING THE ROOF TO ENSURE THAT THE WARRANTY IS MAINTAINED.
- 17. CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF EACH DAY.
- 18. CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH LANDLORD AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- 19. CONTRACTOR SHALL FURNISH VERIZON WIRELESS WITH THREE AS-BUILT SETS OF DRAWINGS UPON COMPLETION OF WORK.
- 20. ANTENNAS AND CABLES ARE TYPICALLY PROVIDED BY VERIZON WIRELESS. PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH PROJECT MANAGER TO DETERMINE WHAT, IF ANY, TEMS WILL BE PROVIDED BY VERIZON WIRELESS, ALL ITEMS NOT PROVIDED BY VERIZON WIRELESS, SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL ALL ITEMS PROVIDED BY VERIZON WIRELESS.
- 21. PRIOR TO SUBMISSION OF BID, CONTRACTOR WILL COORDINATE WITH VERIZON WIRELESS PROJECT MANAGER TO DETERMINE IF ANY FERMITS WILL BE OBTAINED BY VERIZON WIRELESS. ALL REQUIRED PERMITS NOT OBTAINED BY VERIZON WIRELESS MUST BE OBTAINED, AND PAID FOR, BY THE CONTRACTOR.
- 22. GENERAL CONTRACTOR SHALL HAVE A LICENSED HVAC CONTRACTOR START THE HVAC UNITS, SYNCHRONIZE THE THERMOSTATS, ADJUST ALL SETTINGS ON EACH UNIT ACCORDING TO VERIZON WIRELESS CONSTRUCTION MANAGER'S SPECIFICATIONS, AND THOROUGHLY TEST AND BALANCE EACH UNIT TO ENSURE PROPER OPERATION PRIOR TO TURNING THE SITE OVER TO OWNER.
- 23. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH VERIZON WIRELESS SPECIFICATIONS AND
- 24. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO ENGINEER FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- 25. UNLESS OTHERWISE NOTED VERIZON WIRELESS SHALL PROVIDE ALL REQUIRED RF MATERIAL FOR CONTRACTOR TO INSTALL, INCLUDING ANTENNAS, TIMA'S, BIAS-T'S, COMBINERS, PDU, DC BLOCKS, SURGE ARRESTORS, GPS ANTENNA, GPS SURGE ARRESTOR. COMMAI CARLE.
- 26. PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL VERIFY ALL EQUIPMENT TO BE PROVIDED BY VERIZON WIRELESS FOR INSTALLATION BY CONTRACTOR.
- 27. ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO VERIZON WIRELESS SPECIFICATIONS, AND AS SHOWN IN THESE PLANS.
- 28. DETAILS SHOWN ARE TYPICAL: SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- 29. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- 30. CONTRACTOR SHALL NOTIFY THE ENGINEER A MINIMUM OF 48 HOURS IN ADVANCE PRIOR TO CONSTRUCTION START, MORE SPECIFICALLY BEFORE; SEALING ANY FLOOR, WALL OR ROOF PENETRATION, FINAL UTILITY CONNECTIONS, POURING CONCRETE, BACKFILLING UTILITY TRENCHES AND STRUCTURAL POST OR MOUNTING CONNECTIONS, FOR ENGINEERING REVIEW
- 31. SEAL PENETRATIONS THROUGH FIRE RATED AREAS WITH UL LISTED D FIRE CODE APPROVED MATERIALS.
- 32. REPAIR ANY DAMAGE DURING CONSTRUCTION TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE CONSTRUCTION MANAGER AND LANDLORD.
- 33. ALL DISRUPTIVE WORK AND WORK WITHIN TENANT SPACES TO BE COORDINATED WITH BUILDING REPRESENTATIVE.

#### CODE SPECIFICATIONS:

13TH EDITION (AISC 13TH ED.)

- 1. ALL WORK SHALL COMPLY WITH THE FOLLOWING APPLICABLE CODES:
  - 2022 CONNECTICUT STATE BUILDING CODE WITH THE FOLLOWING APPLICABLE CODES:
  - 2021 INTERNATIONAL RESIDENTIAL CODE (IRC)
    2021 INTERNATIONAL EXISTING BUILDING CODE (IEBC)
    2021 INTERNATIONAL BUILDING CODE (IBC)

  - 2021 INTERNATIONAL MECHANICAL CODE (IMC)
  - 2020 NATIONAL ELECTRICAL CODE (NEC) (NFPA 70) 2021 INTERNATIONAL PLUMBING CODE (IPC)
- 2021 INTERNATIONAL ENERGY CONSERVATION CODE (IECC) NNSI/TIA-222-H STRUCTURAL STANDARD FOR ANTENNA SUPPORTING STRUCTURES (TIA)
- IN THE EVENT OF CONFLICT, THE MOST RESTRICTIVE CODE SHALL PREVAIL.
- 2. ALL STRUCTURAL WORK TO BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL,
- ALL CONCRETE WORK TO BE DONE IN ACCORDANCE WITH THE AMERICAN CONCRETE INSTITUTE (ACI 301) SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS (ACI 318) AND BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE.
- ALL REINFORCING STEEL WORK TO BE DONE IN ACCORDANCE WITH THE (ACI 315) MANUAL OF STANDARD PRACTICE FOR DETAILING REINFORCED CONCRETE STRUCTURES.

#### **GROUNDING NOTES:**

- 1. GROUNDING SHALL COMPLY WITH NEC ART. 250.
- GROUNDING CONDUCTORS SHALL BE #6 COPPER STRANDED WIRE WITH GREEN COLOR INSULATION FOR INDOOR LISE.
- 3. ALL GROUND CONNECTIONS TO BE BURNDY HYGROUND COMPRESSION TYPE CONNECTORS OR CADWELD EXOTHERMIC WELD DO NOT ALLOW BARE COPPER WIRE TO BE IN CONTACT WITH
- 4. ROUTE GROUNDING CONNECTORS ALONG THE SHORTEST AND STRAIGHTEST PATH POSSIBLE, EXCEPT AS OTHERWISE INDICATED. GROUNDING LEADS SHOULD NOT BE BENT AT RIGHT ANGLE. ALWAYS MAKE 12" RADIUS BENDS. #6 WIRE CAN BE BENT AT 6" RADIUS WHEN NECESSARY.
- CONNECTIONS TO GROUNDING BAR SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO ALL LOCATIONS.
- TEST COMPLETED GROUNDING SYSTEM AND RECORD RESISTANCE VALUES FOR PROJECT CLOSE—OUT DOCUMENTATION. GROUND RESISTANCE SHALL NOT EXCEED 5 OHMS.
- GROUNDING CONDUCTORS BETWEEN MGB AND WATERMAIN SHALL BE \$2.0. BONDING JUMPERS FROM METALLIC SURFACES SHALL BE \$2 MINIMUM. ALL GROUND CONDUCTORS AND BONDING JUMPERS SHALL BE SOFT DRAWN ANNEALED, TINNED, BARE STRANDED COPPER WIRE. COAXIAL CABLES SHALL BE GROUNDED AT A MINIMUM OF TWO LOCATIONS USING VERIZON PROVIDED GROUNDING KITS. EXACT LOCATIONS SHALL BE FINALIZED IN THE FIELD BY THE CONSTRUCTION MANAGER.

#### STRUCTURAL STEEL NOTES:

- STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS".
- 2. STRUCTURAL STEEL ROLLED SHAPES, PLATES, AND BARS SHALL CONFORM TO THE FOLLOWING ASTM

DESIGNATIONS: ASTM A-992. GRADE 50 ASTM A-38 ASTM A-3B ASTM A-500, GRADE B ASTM A-325, TYPE SC OR N F1554, GRADE 36 ASTM A-53, GRADE B

ALL W SHAPES, UNLESS NOTED OR AMP2 OTHERWISE.
ALL OTHER ROLLED SHAPES, PLAIES AND BARS UNLESS NOTED OTHERWISE.
HSS SECTION (SQUARE, RECTINACULAR, ROUND)
ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS.
ALL ANCHORS BOLTS, UNLESS NOTED OTHERWISE.
STELL PIPE

- 3. ALL WELDING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND AWS D1.1 WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION", 14TH EDITION. WHERE WELD LENGTH IS NOT INDICATED, USE FULL LENGTH WELD. AT THE COMPLETION OF ALL WELDING, ALL DAMAGE TO GALVANIZED COSTING SHALL BE REPAIRED.
- BOLTED CONNECTIONS SHALL USE BEARING TYPE GALVANIZED ASTM A325 BOLTS (3/4° DIA.) SUPPLIED WITH A NUT AND WASHER UNDER TURNED END AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE.
- DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.
- NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIA. GALVANIZED ASTM A 307 BOLTS UNLESS NOTED OTHERWISE.
- 7. USE PRECAUTIONS & PROCEDURES PER AWS D1.1 WHEN WELDING GALVANIZED METALS.
- ALL EXISTING BEAM AND COLUMN DIMENSIONS SHALL BE FIELD VERIFY BY CONTRACTOR PRIOR TO FABRICATION. ANY DISCREPANCIES BETWEEN EXISTING CONDITIONS AND THOSE SHOWN SHALL BE REPORTED TO DEWBERRY EXCINERE IMMEDIATELY.
- 9. CONNECTION DESIGN BY FABRICATOR WILL BE SUBJECT TO REVIEW AND APPROVAL BY ENGINEER.
- 10. ALL EXTERIOR STEEL WORK SHALL BE GALVANIZED IN ACCORDANCE WITH SPECIFICATION ASTM A123/A123M-00 HOT-DIP GALVANIZED FRISH UNLESS OTHERWISE NOTED. GALVANIZING SHALL BE PERFORMED AFTER SHOP FABRICATION TO THE GREATEST EXTENT POSSIBLE. ALL DINGS, SCRAPES, MARS, AND WELDS IN THE GALVANIZED AREAS SHALL BE REPAIRED. REPAIR DAMAGED GALVANIZED COATINGS ON GALVANIZED ITEMS WITH GALVANIZED REPAIR PAINT ACCORDING TO ASTM A780 AND MANUFACTURER'S WRITTEN INSTRUCTIONS, PRIOR TO COMPLETION OF WORK, TOUCHUP ALL DAMAGED GALVANIZED STEEL WITH APPROVED COLD ZINC, "GALVANOX", "DRY GALV", "ZINC-IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURER'S GUIDELINES. TOUCHUP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD.
- ALL WELDED COMPONENTS TO BE SHOP WELDED PRIOR TO INSTALLATION. NO WELDING ACTIVITIES IS
  PERMITTED DURING INSTALLATION OF PROPOSED EQUIPMENTS AND/OR HARDWARE ON SITE.



99 EAST RIVER DRIVE FAST HARTFORD, CT 06108

W HARTFORD W CT **RELO** 

|   | ANTMO                | DF  | AWINGS    |
|---|----------------------|-----|-----------|
|   |                      |     |           |
| 3 | 07/20/23<br>06/16/23 | FOR | SUBMITTAL |
| 2 | 06/16/23             | FOR | SUBMITTAL |
| 1 | 05/19/23             | FOR | SUBMITTAL |
| 0 | 05/12/23             | FOR | SUBMITTAL |



Dewberry Engineers Inc. 99 SUMMER ST. SUITE 700 BOSTON, MA 02110 PHONE: 617,695,3400 FAX: 617.695.3310



DRAWN BY: 07/20/2023 JG

CDH

REVIEWED BY:

CHECKED BY: BBR

PROJECT NUMBER: 50121487

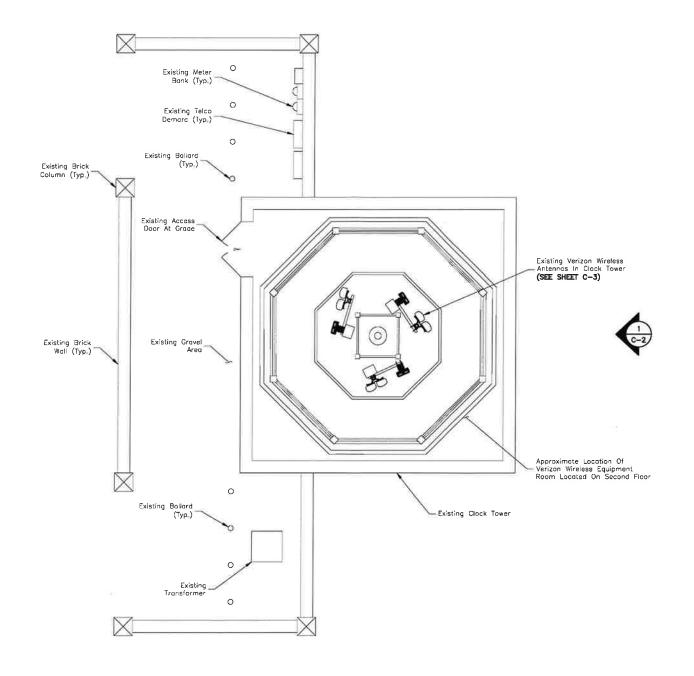
50164392 JOB NUMBER:

SITE NUMBER

472708

SITE ADDRESS

139 NORTH MAIN ST. WEST HARTFORD, CT 06107


SHEET TITLE

**GENERAL NOTES** 

SHEET NUMBER

GN-1





SITE PLAN

SCALE: 1"=10" FOR 11"x17" 1"=5" FOR 22"x34"

#### NOTES:

- 1. NORTH SHOWN AS APPROXIMATE.
- 2. SOME EXISTING AND PROPOSED INFORMATION NOT SHOWN FOR CLARITY.
- SITE PLAN & ELEVATION BASED ON A SITE VISIT BY DEWBERRY ENGINEERS INC. ON 08/05/22.
- Existing antennas shown as approximate. Elevation based on existing information and visual inspection and have not been verified through an antenna mapping.
- INSTALL PROPOSED EQUIPMENT IN ACCORDANCE WITH MANUFACTURER RECOMMENDATIONS & STRUCTURAL ANALYSIS BY DEWBERRY ENGINEERS DATED 07/18/23.
- REUSE EXISTING MOUNTS AND COAX, INSPECT FOR DAMAGE OR DECAY AND REPLACE AS NEEDED PER STRUCTURAL ANALYSIS.



99 EAST RIVER DRIVE EAST HARTFORD, CT 06108

#### W HARTFORD W CT **RELO**

|   | ANTMO                | DR  | AWINGS     |
|---|----------------------|-----|------------|
| - | 07/00/07             | FOR | CUDMITTAL  |
| 2 | 07/20/23<br>06/16/23 | FOR | SLIBMITTAL |
| 1 | 05/19/23             | FOR | SUBMITTAL  |
| 0 | 05/12/23             | FOR | SUBMITTAL  |



Dewberry Engineers Inc. 99 SUMMER ST. SUITE 700 BOSTON, MA 02110 PHONE: 617,695,3400 FAX: 617,695,3310



| DRAWN BY: 07/20/2023 | Г | DRAWN | BY: | 07 | 720 | )/2( | )23 |  |
|----------------------|---|-------|-----|----|-----|------|-----|--|
|----------------------|---|-------|-----|----|-----|------|-----|--|

CDH

50121487

REVIEWED BY:

CHECKED BY: BBR

PROJECT NUMBER:

50164392 JOB NUMBER:

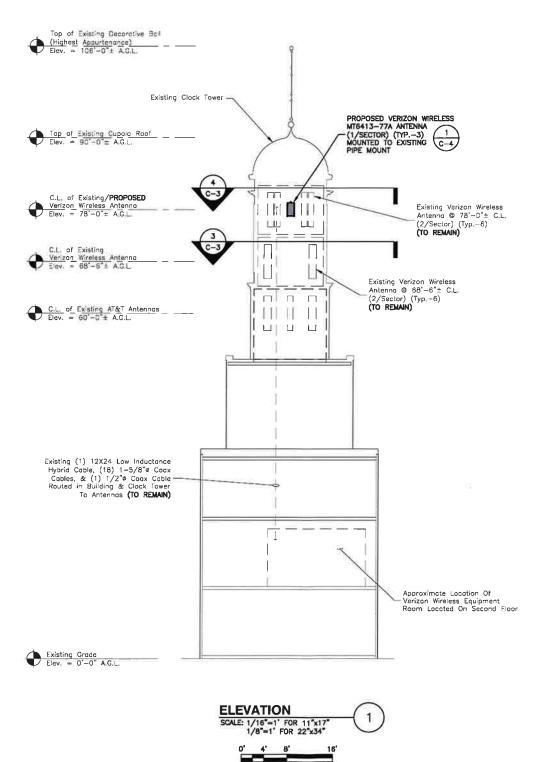
SITE NUMBER

472708

SITE ADDRESS

139 NORTH MAIN ST. WEST HARTFORD, CT 06107

SHEET TITLE


SITE PLAN

SHEET NUMBER

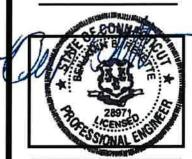
A.G.L = ABOVE GRADE LEVEL
C.L = CENTER LINE
A.R.L = ABOVE ROOF LEVEL

#### NOTES

- 1. ELEVATION SHOWN AS APPROXIMATE.
- 2. SOME EXISTING AND PROPOSED INFORMATION NOT SHOWN FOR CLARITY.
- SITE PLAN & ELEVATION BASED ON A SITE VISIT BY DEWBERRY ENGINEERS INC. ON 08/05/22.
- Existing antennas shown as approximate. Elevation based on existing information and visual inspection and have not been verified through an antenna mapping.
- INSTALL PROPOSED EQUIPMENT IN ACCORDANCE WITH MANUFACTURER RECOMMENDATIONS & STRUCTURAL ANALYSIS BY DEWBERRY ENGINEERS DATED 07/18/23.
- REUSE EXISTING MOUNTS AND COAX. INSPECT FOR DAMAGE OR DÉCAY AND REPLACE AS NEEDED PER STRUCTURAL ANALYSIS.
- CONTRACTOR TO COORDINATE PROPER VENTING WITH FIBERGLASS MANUFACTURER TO MAINTAIN AIR FLOW & THERMAL REQUIREMENTS FOR THE MT6413-77A ANTENNA.






VERIZON WIRELESS 99 EAST RIVER DRIVE EAST HARTFORD, CT 06108

#### W HARTFORD W CT RELO

|   | ANTMO                                        | DR   | AWINGS    |
|---|----------------------------------------------|------|-----------|
| 7 | 07/20/23                                     | EOB. | CHEMITTAL |
| 2 | 07/20/23<br>06/16/23<br>05/19/23<br>05/12/23 | FOR  | SUBMITTAL |
| 1 | 05/19/23                                     | FOR  | SUBMITTAL |
| 0 | 05/12/23                                     | FOR  | SUBMITTAL |



Dewberry Engineers Inc. 99 SUMMER ST. SUITE 700 BOSTON, MA 02110 PHONE: 617.695.3400 FAX: 617.695.3310



| DRAWN BY: | 07/20/2023 | JG |
|-----------|------------|----|
|-----------|------------|----|

CDH

REVIEWED BY:

CHECKED BY: BBR

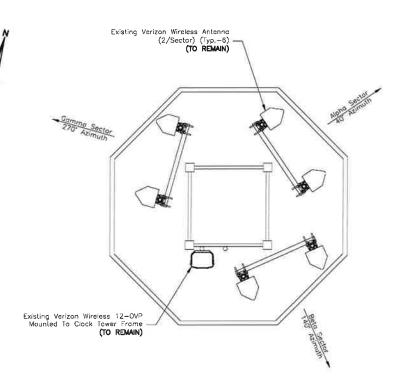
PROJECT NUMBER: 50121487

JOB NUMBER: 50164392

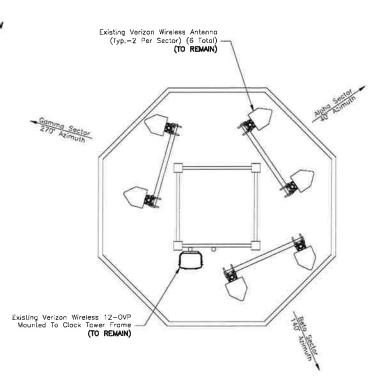
SITE NUMBER

472708

SITE ADDRESS


139 NORTH MAIN STA WEST HARTFORD, CT 06107

SHEET TITLE


ELEVATION

SHEET NUMBER

0-2



#### EXISTING ANTENNA PLAN @ 68'-6" ± C.L.



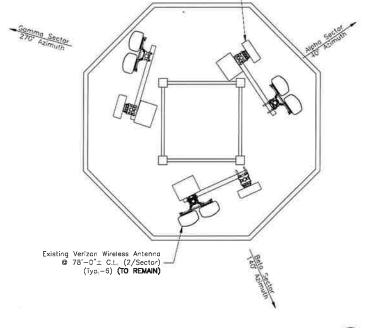
PROPOSED ANTENNA PLAN @ 68'-6" ± C.L.

NOTES:

1. NORTH SHOWN AS APPROXIMATE.

ENGINEERS INC. ON 08/05/22.

DATED 07/18/23.


2. SOME EXISTING AND PROPOSED INFORMATION NOT SHOWN FOR CLARITY-

 EXISTING ANTENNAS SHOWN AS APPROXIMATE. ELEVATION BASED ON EXISTING INFORMATION AND VISUAL INSPECTION AND HAVE NOT BEEN VERIFIED THROUGH AN ANTENNA MAPPING.

5. INSTALL PROPOSED EQUIPMENT IN ACCORDANCE WITH MANUFACTURER RECOMMENDATIONS & STRUCTURAL ANALYSIS BY DEWBERRY ENGINEERS

REUSE EXISTING MOUNTS AND COAX, INSPECT FOR DAMAGE OR DECAY AND REPLACE AS NEEDED PER STRUCTURAL ANALYSIS.

3. SITE PLAN & ELEVATION BASED ON A SITE VISIT BY DEWBERRY



Existing Verizon Wireless MT6407-77A Antenno With Integrated RRH (1/Sector) (Typ.-3)

(TO BE REMOVED)

EXISTING ANTENNA PLAN @ 78'-0" ± C.L. SCALE: N.T.S.

16" MIN.
(TYP. FOR
ALL SECTORS)

PROPOSED VERIZON WIRELESS
MT8413-77A ANTENNA
(1/SECTOR) (TYP.-3)
MOUNTED TO EXISTING
PIPE MOUNT

Existing
Unistrut
(Typ.)

Existing
Tip.-6) (TO REMAIN)

PROPOSED ANTENNA PLAN @ 78'-0"± C.L. SCALE: N.T.S.

verizon<sup>/</sup>

VERIZON WIRELESS 99 EAST RIVER DRIVE EAST HARTFORD, CT 06108

W HARTFORD W CT RELO

| ANTMO DRAWINGS |                      |     |           |  |  |
|----------------|----------------------|-----|-----------|--|--|
|                |                      |     |           |  |  |
| H              |                      |     |           |  |  |
| 3              | 07/20/23             | FOR | SUBMITTAL |  |  |
| 2              | 06/16/23             | FOR | SUBMITTAL |  |  |
| 1              | 06/16/23<br>05/19/23 | FOR | SUBMITTAL |  |  |
| 0              | 05/12/23             | FOR | SUBMITTAL |  |  |



Dewberry Engineers Inc. 99 SUMMER ST. SUITE 700 BOSTON, MA 02110 PHONE: 617,695,3400 FAX: 617,695,3310



DRAWN BY: 07/20/2023 JG

CDH

BBR

50121487

REVIEWED BY:

PROJECT NUMBER:

CHECKED BY:

JOB NUMBER: 50164392

SITE NUMBER 472708

SITE ADDRESS

TO NOTE


139 NORTH MAIN ST. WEST HARTFORD, CT 06107

SHEET TITLE

EXISTING & PROPOSED ANTENNA PLANS

SHEET NUMBER

C - 3





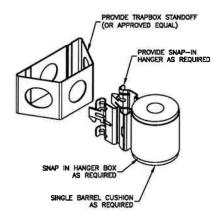
PLAN



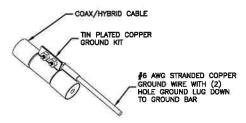
<u>|SOMETRIC</u> (REAR\_FACE)

MODEL: MT6413-77A

DIMENSIONS: 28.9"H X 15.


28.9"H X 15.7"W X 5.5"D (NOT TO EXCEED)

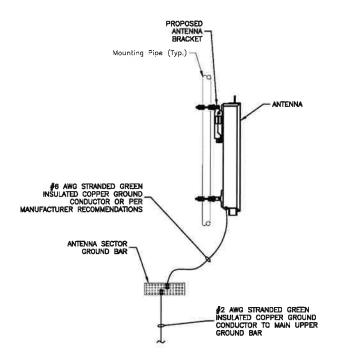
WEIGHT: 57.3 LBS (NOT TO EXCEED)


#### NOTE

INSTALL ALL EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. USE APPROPRIATE MOUNTING HARDWARE FOR CONSTRUCTION TYPE.

#### MT6413-77A ANTENNA DETAILS SCALE: N.T.S.








#### NOTES:

- DO NOT INSTALL CABLE GROUND KIT AT A BEND. ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- GROUNDING KIT SHALL BE TIN PLATED COPPER WITH TWO-HOLE LUG, SIZE PER COAX DIAMETER.
- 3. WEATHER SEAL GROUND KIT PER CARRIER REQUIREMENTS.
- COAX CABLE GROUND KIT LOCATION & QUANTITY SHALL BE PER CARRIER SPECIFICATIONS & STANDARDS.

### COAX/HYBRID GROUNDING DETAIL SCALE: N.T.S. 2



#### NOTES:

- VERIFY EXISTING GROUNDING SYSTEM IS INSTALLED PER VERIZON WIRELESS STANDARDS.
- BOND NEW EQUIPMENT INTO EXISTING GROUND SYSTEM IN ACCORDANCE WITH VERIZON WIRELESS STANDARDS AND MANUFACTURER'S RECOMMENDATIONS.





VERIZON WIRELESS 99 EAST RIVER DRIVE EAST HARTFORD, CT 06108

#### W HARTFORD W CT RELO

| ANTMO DRAWINGS |          |     |           |  |  |  |
|----------------|----------|-----|-----------|--|--|--|
|                |          |     |           |  |  |  |
| 3              | 07/20/23 | FOR | SUBMITTAL |  |  |  |
| 2              | 06/16/23 | FOR | SUBMITTAL |  |  |  |
| 1              | 05/19/23 | FOR | SUBMITTAL |  |  |  |
| 0              | 05/12/23 | FOR | SUBMITTAL |  |  |  |



Dewberry Engineers Inc. 99 SUMMER ST. SUITE 700 BOSTON, MA 02110 PHONE: 617,695,3400 FAX: 617,695,3310



| DRAWN | BY: | 07/20/2023 | JG |
|-------|-----|------------|----|
|       |     |            |    |

CDH

BBR

REVIEWED BY:

PROJECT NUMBER: 50121487

JOB NUMBER: 50164392

SITE NUMBER 472708

SITE ADDRESS

CHECKED BY:

139 NORTH MAIN ST. WEST HARTFORD, CT 06107

SHEET TITLE

CONSTRUCTION DETAILS

SHEET NUMBER

C-4

|        |          |              |                     | FINAL EQUIP | MENT CONFIG                   | URATIO           | N             |                                        |                                                         |                   |
|--------|----------|--------------|---------------------|-------------|-------------------------------|------------------|---------------|----------------------------------------|---------------------------------------------------------|-------------------|
| SECTOR | POSITION | TECHNOLOGY   | ANTENNA MODEL       | VENDOR      | RRH (QTY./MODEL)              | CENTERLINE       | AZIMUTH       | OVP                                    | HYBRID CABLE TYPE                                       | FEED LINE LENGTH* |
|        | A1       | 5G           | (P) MT6413-77A      | SAMSUNG     | (1) (P) MT6413-77A            | 78'-0"±          | 40°           |                                        |                                                         |                   |
|        | A2       | LTE 700/850  | (E) SBNHH-1D65B     | COMMSCOPE   | (1) (E) B5/B13<br>RFV01U-D2A  | 78'-0"±          | 40"           |                                        |                                                         |                   |
| ALPHA  | A3       | LTE 1900/AWS | (E) SBNHH-1D658     | COMMSCOPE   | (1) (E) B5/B66A<br>RFV01U-D1A | 78'-0"±          | 40"           |                                        |                                                         |                   |
|        | A4       | SPARE        | (E) LPA-80063/6CF 2 | ANDREW      | ä                             | 68'-6"±          | 40°           |                                        |                                                         |                   |
|        | A5       | SPARE        | (E) LPA-80083/6CF 2 | ANDREW      | -                             | 68'-6"±          | 40"           |                                        |                                                         |                   |
|        | B1       | 5G           | (P) MT6413-77A      | SAMSUNG     | (1) (P) MT8413-77A            | 78'-0"±          | 140"          |                                        |                                                         |                   |
|        | 82       | LTE 700/850  | (E) SBNHH-1D658     | COMMSCOPE   | (1) (E) 85/813<br>RFV01U-D2A  | 78'-0*±          | 1 <b>40</b> ° |                                        |                                                         |                   |
| BETA   | B3       | LTE 1900/AWS | (E) SBNHH-1D65B     | COMMSCOPE   | (1) (E) B5/B66A<br>RFV01U-D1A | 76'-0"±          | 140"          | (1) (E) 12-0VP BOX<br>REPLACE EXISTING | (1) (E) 12X24 LI HYBRID<br>CABLE TO REPLACE<br>EXISTING | 90'±              |
|        | B4       | SPARE        | (E) LPA-80063/6CF 2 | ANDREW      | *                             | 68'-8"±          | 140*          |                                        |                                                         |                   |
|        | B5       | SPARE        | (E) LPA-80063/8CF 2 | ANDREW      | -                             | 68'-6"±          | 140'          |                                        |                                                         |                   |
|        | G1       | 5G           | (P) MT6413-77A      | SAMSUNG     | (1) (P) MT6413-77A            | 78'-0"±          | 270"          |                                        |                                                         |                   |
|        | G2       | LTE 700/850  | (E) SBNHH-1D65B     | COMMSCOPE   | (1) (E) B5/B13<br>RFV01U-D2A  | 78'-0*±          | 270°          |                                        |                                                         |                   |
| GAMMA  | G3       | LTE 1900/AWS | (E) SBNHH-1D65B     | COMMSCOPE   | (1) (E) B5/B68A<br>RFV01U-D1A | 78'-0 <b>"</b> ± | 270"          |                                        |                                                         |                   |
|        | G4       | SPARE        | (E) LPA-80063/8CF 2 | ANDREW      | :(=                           | 68'-6"±          | 270°          |                                        |                                                         |                   |
|        | G5       | SPARE        | (E) LPA-80063/6CF 2 | ANDREW      | 7                             | 68'-6"±          | 270           |                                        |                                                         |                   |

\*CONTRACTOR TO FIELD VERIFY HYBRID CABLE LENGTHS PRIOR TO CONSTRUCTION, LENGTH IS ESTIMATED FROM THE BASE EQUIPMENT OVP TO SECTOR OVP WITH 15% BUFFER.

(E) = Existing (P) = PROPOSED

FINAL EQUIPMENT CONFIGURATION SCALE: N.T.S.



VERIZON WIRELESS 99 EAST RIVER DRIVE EAST HARTFORD, CT 06108

W HARTFORD W CT **RELO** 

|          | ANTMO                            | DR  | AWINGS     |
|----------|----------------------------------|-----|------------|
|          |                                  |     |            |
| _        | 07 /00 /07                       | COR | CLIDANTTAL |
| <u> </u> | 07/20/23                         | FOR | SUBMITTAL  |
| 2        | 06/16/23                         | FOR | SUBMITTAL  |
| 1        | 06/16/23<br>05/19/23<br>05/12/23 | FOR | SUBMITTAL  |
| 0        | 05/12/23                         | FOR | SUBMITTAL  |



Dewberry Engineers Inc. 99 SUMMER ST. SUITE 700 BOSTON, MA 02110 PHONE: 617.695.3400 FAX: 617.695.3310



DRAWN BY: 07/20/2023 JG

REVIEWED BY: CDH

CHECKED BY: BBR

PROJECT NUMBER: 50121487

JOB NUMBER: 50164392

SITE NUMBER

472708

SITE ADDRESS

139 NORTH MAIN ST. WEST HARTFORD, CT 06107

SHEET TITLE

FINAL EQUIPMENT CONFIGURATION

SHEET NUMBER

# C-band 64T64R

Gen 2

Gen 2 : Higher conducted power radio with reduced size/volume/weight vs Gen 1 and also SOC embedded for flexibility to support new features



※ Preliminary Design: External appearance and mechanical design can be subject to change

|  | Size<br>(WxHxD) | Gen 2. 64T64R C-band MMU Dimensions  Size 400 x 734 x 140 mm (15.75 x 28.90 x 5.51 inch)  Walche 251 inch 251 inch |
|--|-----------------|--------------------------------------------------------------------------------------------------------------------|
|--|-----------------|--------------------------------------------------------------------------------------------------------------------|

|                                                                                                                   |  |  |  |                    | <b>Item</b> Air Technology Frequency |
|-------------------------------------------------------------------------------------------------------------------|--|--|--|--------------------|--------------------------------------|
|                                                                                                                   |  |  |  |                    | IBW                                  |
|                                                                                                                   |  |  |  |                    | OBW<br>Carrier Bandwidth             |
|                                                                                                                   |  |  |  |                    | # of Carriers                        |
|                                                                                                                   |  |  |  |                    | Layer                                |
|                                                                                                                   |  |  |  |                    | RF Chain                             |
|                                                                                                                   |  |  |  |                    | Antenna Configuration                |
|                                                                                                                   |  |  |  |                    | EIRP                                 |
|                                                                                                                   |  |  |  |                    | Conductive Power                     |
|                                                                                                                   |  |  |  |                    | Spectrum Analyzer                    |
| Modulation  DL 256QAM support, (DL 1024QAM with 1~2dB power back-off) Function Split  DL/UL option 7-2x           |  |  |  |                    | RX Sensitivity                       |
|                                                                                                                   |  |  |  |                    | Modulation                           |
|                                                                                                                   |  |  |  |                    | Function Split                       |
|                                                                                                                   |  |  |  |                    | Volume                               |
|                                                                                                                   |  |  |  |                    | perating Temperature                 |
|                                                                                                                   |  |  |  |                    | Cooling                              |
| 1,287W (10 400 x 734 x 140 m 2 2 -40°C - 5 Nat FCC 47 CFR < -50 dBm /M <-60 dBm /M 15km, 4 ports (25Gbps x 4), 5) |  |  |  | NB-IoT Not support | External Alarm                       |
|                                                                                                                   |  |  |  |                    |                                      |

© Samsung Electronics, All Rights Reserved,

# **ATTACHMENT 3**



C Squared Systems, LLC
65 Dartmouth Drive
Auburn, NH 03032
(603) 644-2800
support@csquaredsystems.com

#### Calculated Radio Frequency Emissions Report



West Hartford W Relo
139 North Main Street, West Hartford, CT 06107

#### Table of Contents

| 1. Introduction                                                           |
|---------------------------------------------------------------------------|
| 2. FCC Guidelines for Evaluating RF Radiation Exposure Limits             |
| 3. RF Exposure Prediction Methods                                         |
| 4. Antenna Inventory3                                                     |
| 5. Calculation Results4                                                   |
| 6. Conclusion                                                             |
| 7. Statement of Certification                                             |
| Attachment A: References                                                  |
| Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)           |
| Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns10 |
|                                                                           |
| <u>List of Figures</u>                                                    |
| Figure 1: Graph of General Population % MPE vs. Distance                  |
| Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)9     |
|                                                                           |
|                                                                           |
| <u>List of Tables</u>                                                     |
| Table 1: Proposed Antenna Inventory                                       |
| Table 2: Maximum Percent of General Population Exposure Values            |
| Table 3: ECC Limits for Maximum Permissible Exposure                      |



#### 1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of Verizon's antenna arrays to be mounted at 78' AGL on an existing monopole located at 139 North Main Street in West Hartford, CT. The coordinates of the monopole tower are 41° 46' 14.232" N, 72° 44' 58.56" W.

Verizon is proposing the following:

- 1) Replace three (3) C-band antenna, one (1) per sector.
- 2) Retain six (6) multi-band antennas, two (2) per sector to support its commercial LTE network.

This report considers the planned antenna configuration for Verizon<sup>1</sup> and the existing antennas for AT&T<sup>2</sup> to derive the resulting % MPE of its proposed installation.

#### 2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

West Hartford W Relo CT 1 July 21, 2023

<sup>&</sup>lt;sup>1</sup> As referenced to Verizon's Radio Frequency Design Sheet updated 04/10/2023.

<sup>&</sup>lt;sup>2</sup> As referenced to SAI's Radio Frequency Exposure Theoretical Study, Dated 03/01/2013



#### 3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density = 
$$\left(\frac{GRF^2 \times 1.64 \times ERP}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

R = Radial Distance = 
$$\sqrt{(H^2 + V^2)}$$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor (GRF) of 1.6

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.



#### 4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

| Operator | Sector /<br>Call Sign | TX<br>Freq<br>(MHz) | Power at<br>Antenna<br>(Watts) | Ant<br>Gain<br>(dBi) | Power<br>EIRP<br>(Watts) | Antenna Model  | Beam<br>Width | Mech.<br>Tilt | Length (ft) | Antenna<br>Centerline<br>Height<br>(ft) |    |
|----------|-----------------------|---------------------|--------------------------------|----------------------|--------------------------|----------------|---------------|---------------|-------------|-----------------------------------------|----|
|          |                       | 700                 | 160                            | 14.9                 | 4944                     |                | 68            |               |             |                                         |    |
|          | . 1                   | 850                 | 160                            | 14.7                 | 4722                     | SBNHH-1D65B    | CDNIGHT 1D/CD | 65.5          | 0           | 6.07                                    | 78 |
|          | Alpha /<br>40°        | 1900                | 160                            | 18.2                 | 10571                    | 3D[VIII1-1D03D | 66.2          |               | 0.07        | 10                                      |    |
|          | 40                    | 2100                | 240                            | 18.6                 | 17386                    |                | 63            |               |             |                                         |    |
|          |                       | 3700                | 200                            | 26.5                 | 89937                    | MT6413-77A     | 105           | 0             | 2.46        | 78                                      |    |
|          |                       | 700                 | 160                            | 14.9                 | 4944                     |                | 68            |               |             |                                         |    |
|          |                       | 850 160 14.7 4722   | SBNHH-1D65B                    | 65.5                 | 0                        | 6.07           | 78            |               |             |                                         |    |
| Verizon  | Beta /<br>140°        | 1900                | 160                            | 18.2                 | 10571                    | 2PNHH-ID02P    | 66.2          |               | Olo 1       | 10                                      |    |
|          | 140                   | 2100                | 240                            | 18.6                 | 17386                    |                | 63            |               |             |                                         |    |
|          |                       | 3700                | 320                            | 26.5                 | 89937                    | MT6413-77A     | 105           | 0             | 2.46        | 78                                      |    |
|          |                       | 700                 | 160                            | 14.9                 | 4944                     |                | 68            |               |             |                                         |    |
|          |                       | 850 160 14.7 4722   | SBNHH-1D65B                    | 65.5                 | 0                        | 6.07           | 78            |               |             |                                         |    |
|          | Gamma /<br>270°       | 1900                | 160                            | 18.2                 | 10571                    | 3DN111-1D03D   | 66.2          | 66.2          | 0.07        | 76                                      |    |
|          | 2/0                   | 2100                | 240                            | 18.6                 | 17386                    |                | 63            |               |             |                                         |    |
|          |                       | 3700                | 320                            | 26.5                 | 89937                    | MT6413-77A     | 105           | 00            | 2.46        | 78                                      |    |

Table 1: Proposed Antenna Inventory<sup>34</sup>

West Hartford W Relo CT 3 July 21, 2023

<sup>&</sup>lt;sup>3</sup> Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 04/10/2023.

<sup>&</sup>lt;sup>4</sup> Transmit power assumes 0 dB of cable loss.



#### 5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within  $\pm$  5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

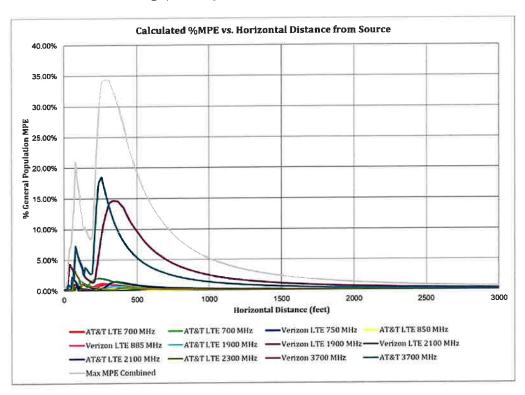



Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (34.38% of the General Population limit) is calculated to occur at a horizontal distance of 288 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1500 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.



Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 288 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

| Carrier              | Number of<br>Transmitters | Power out of<br>Base Station Per<br>Transmitter<br>(Watts) | Antenna<br>Height<br>(Feet) | Distance to<br>the Base of<br>Antennas<br>(Feet) | Power Density (mW/cm²) | Limit<br>(mW/cm²) | %<br>MPE |
|----------------------|---------------------------|------------------------------------------------------------|-----------------------------|--------------------------------------------------|------------------------|-------------------|----------|
| AT&T 3700 MHz        | 1                         | 108.3                                                      | 61.6                        | 288                                              | 0.158410               | 1.000             | 15.84%   |
| AT&T LTE 1900 MHz    | 1                         | 120.0                                                      | 56.3                        | 288                                              | 0.004685               | 1.000             | 0.47%    |
| AT&T LTE 2100 MHz    | 1                         | 160.0                                                      | 56.3                        | 288                                              | 0.006934               | 1.000             | 0.69%    |
| AT&T LTE 2300 MHz    | 1                         | 100.0                                                      | 58.8                        | 288                                              | 0.002611               | 1.000             | 0.26%    |
| AT&T LTE 700 MHz     | 1                         | 80.0                                                       | 58.8                        | 288                                              | 0.004591               | 0.467             | 0.98%    |
| AT&T LTE 700 MHz     | 1                         | 160.0                                                      | 56.3                        | 288                                              | 0.008676               | 0.467             | 1.86%    |
| AT&T LTE 850 MHz     | 1                         | 40.0                                                       | 58.8                        | 288                                              | 0.002200               | 0.590             | 0.37%    |
| Verizon 3700 MHz     | 1                         | 320.0                                                      | 78.0                        | 288                                              | 0.124832               | 1.000             | 12.48%   |
| Verizon LTE 1900 MHz | 1                         | 160.0                                                      | 78.0                        | 288                                              | 0.000329               | 1.000             | 0.03%    |
| Verizon LTE 2100 MHz | 1                         | 240.0                                                      | 78.0                        | 288                                              | 0.000371               | 1.000             | 0.04%    |
| Verizon LTE 750 MHz  | 1                         | 160.0                                                      | 78.0                        | 288                                              | 0.001065               | 0.500             | 0.21%    |
| Verizon LTE 885 MHz  | 1                         | 160.0                                                      | 78.0                        | 288                                              | 0.006418               | 0.567             | 1.13%    |
|                      |                           |                                                            |                             | •                                                |                        | Total             | 34.38%   |

Table 2: Maximum Percent of General Population Exposure Values



#### 6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be 34.38% of the FCC limit (General Population/Uncontrolled). This maximum cumulative percent of MPE value is calculated to occur 288 feet away from the site.

#### 7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By:

Ram Acharya

RF Engineer 1

C Squared Systems, LLC

July 19, 2023

Date

Reviewed/Approved By:

Martin Lavin

Senior RF Engineer
C Squared Systems, LLC

Main & Fam

July 21, 2023 Date



#### Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95,1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Verizon's Radio Frequency Design Sheet updated 10/21/2022

AT&T's filing, Connecticut Siting Council Notice of Exempt Modification – Antenna Add - 139 North Main Street (aka 1 Service Road) West Hartford, CT, dated 9/23/2022

As referenced to Dish Wireless LLC's filing, Connecticut Siting Council Tower Share Application – 139 North Main Street, West Hartford, CT, dated 11/19/2021

T-Mobile's filing, Connecticut Siting Council Notice of Exempt Modification - 139 North Main Street, West Hartford, CT, dated 10/1/2020

West Hartford W Relo CT 7 July 21, 2023



#### Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

#### (A) Limits for Occupational/Controlled Exposure<sup>5</sup>

| Frequency<br>Range<br>(MHz) | Electric Field<br>Strength (E)<br>(V/m) | Magnetic Field<br>Strength (E)<br>(A/m) | Power Density (S)<br>(mW/cm <sup>2</sup> ) | Averaging Time $ E ^2$ , $ H ^2$ or S (minutes) |
|-----------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------------|
| 0.3-3.0                     | 614                                     | 1.63                                    | (100)*                                     | 6                                               |
| 3.0-30                      | 1842/f                                  | 4.89/f                                  | $(900/f^2)*$                               | 6                                               |
| 30-300                      | 61.4                                    | 0.163                                   | 1.0                                        | 6                                               |
| 300-1500                    | *                                       | ice)                                    | f/300                                      | 6                                               |
| 1500-100,000                | N=0                                     | ( <del>-</del>                          | 5                                          | 6                                               |

#### (B) Limits for General Population/Uncontrolled Exposure<sup>6</sup>

| Frequency<br>Range<br>(MHz) | Electric Field<br>Strength (E)<br>(V/m) | Magnetic Field<br>Strength (E)<br>(A/m) | Power Density (S)<br>(mW/cm <sup>2</sup> ) | Averaging Time $ E ^2$ , $ H ^2$ or S (minutes) |
|-----------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------------|
| 0.3-1.34                    | 614                                     | 1.63                                    | (100)*                                     | 30                                              |
| 1.34-30                     | 824/f                                   | 2.19/f                                  | $(180/f^2)*$                               | 30                                              |
| 30-300                      | 27.5                                    | 0.073                                   | 0.2                                        | 30                                              |
| 300-1500                    | ( <u>*</u> 2                            | -                                       | f/1500                                     | 30                                              |
| 1500-100,000                | -                                       | ä                                       | 1.0                                        | 30                                              |

f = frequency in MHz \* Plane-wave equivalent power density

Table 3: FCC Limits for Maximum Permissible Exposure

West Hartford W Relo CT 8 July 21, 2023

<sup>&</sup>lt;sup>5</sup> Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

<sup>&</sup>lt;sup>6</sup> General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.





Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

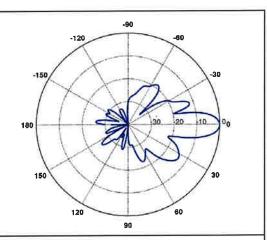


#### Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns

#### 750 MHz

Manufacturer: COMMSCOPE

Model #: SBNHH-1D65B


Frequency Band: 698-806 MHz

Gain: 14.9 dBi

Vertical Beamwidth: 12.1° Horizontal Beamwidth: 68.0°

Polarization: ±45°

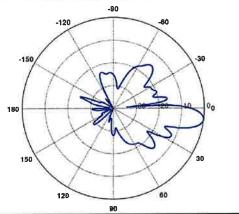
Dimensions (L x W x D): 72.87" x 7.08" x 11.85"



#### 885 MHz

Manufacturer: COMMSCOPE

Model #: SBNHH-1D65B


Frequency Band: 806-896 MHz

Gain: 14.7 dBi

Vertical Beamwidth: 10.7° Horizontal Beamwidth: 65.5°

Polarization: ±45°

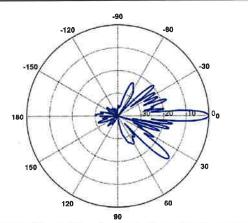
Dimensions (L x W x D): 72.87" x 7.08" x 11.85"



#### 1900 MHz

Manufacturer: COMMSCOPE

Model #: SBNHH-1D65B


Frequency Band: 1850-1990 MHz

Gain: 18.2 dBi

Vertical Beamwidth: 5.2° Horizontal Beamwidth: 66.2°

Polarization: ±45°

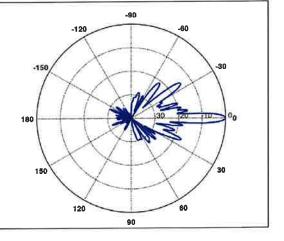
Dimensions (L x W x D): 72.87" x 7.08" x 11.85"





#### 2100 MHz

Manufacturer: COMMSCOPE


Model #: SBNHH-1D65B

Frequency Band: 1920-2200 MHz

Gain: 18.6 dBi

Vertical Beamwidth:  $5^{\circ}$ Horizontal Beamwidth:  $63^{\circ}$ Polarization:  $\pm 45^{\circ}$ 

Dimensions (L x W x D): 72.87" x 7.08" x 11.85"



# **ATTACHMENT 4**



July 18, 2023

Verizon Wireless 99 East River Drive East Hartford, CT 06108

Re:

**West Hartford Relo CT** Site ID: 472708 Fuze #: 17082760 139 North Main Street West Hartford, CT 06107

#### To Whom It May Concern:

Verizon Wireless (VZW) has proposed to install new equipment within the VZW equipment levels within the existing clock tower at the site referenced above. The final equipment configuration according to the antenna design sheets (dated 10/04/23) is as follows:

#### Final (VZW) Equipment Configuration

#### Rad Center 78'-0"

- (3) new MT6413-77A antennas 87.1 lbs ea. (1 per sector)
- (6) SBNHH-1D65B antennas 40.6 lbs ea. (2 per sector)
  - o (3) BSAMNT-SBS-1-2 side by side mounting brackets 25.4 lbs ea. (1 per sector)
- (3) B2/B66A RRH-BR049 97.5 lbs ea. (1 per sector)
- (3) B5/B13 RRH BR04C 82.0 lbs ea. (1 per sector)

#### Rad Center 68'-6"

- (6) LPA-80063/6CF antennas 27.0 lbs ea. (2 per sector)
  - o (6) Mounting brackets 15 lbs ea. (2 per sector)
- (1) 12-OVP junction box -45 lbs ea. (1 total)

#### Cabling

- (12) 1-5/8" COAX cables
- (1) 2" hybrid cable
- (1) 1/2" GPS COAX cable
- (1) 1/4" ground cable
- (1) 12x24 cable
- (1) 6x12 cable

AT&T has proposed to install new equipment within the AT&T equipment levels within the existing clock tower at the site referenced above. The final equipment configuration according to the Revised Structural Analysis Report by TEP Northeast dated 01/24/23 is as follows:

#### Final (AT&T) Equipment Configuration

#### Rad Center 61'-9"

- (3) new AIR6449 antennas 82 lbs ea. (1 per sector)
- (3) new TPA65R-BU6DA-K antennas 69 lbs ea. (1 per sector)
- (3) new OPA65R-BU8DA antennas 77 lbs ea. (1 per sector)
- (3) new 4449 B5/B12 RRHs 73 lbs ea. (1 per sector)
- (3) 4478 B14 RRHs 60 lbs ea. (1 per sector)



617,695,3400 617,695.3310 fax



- (3) 32 B2 RRHs 60 lbs ea. (1 per sector)
- (3) 32 B30 RRHs 60 lbs ea. (1 per sector)
- (3) 32 B66A RRHs 60 lbs ea. (1 per sector)
- (3) DC6-48-60-18-8F surge arrestors 29 lbs ea. (1 per sector)

The proposed configuration as shown above represents a total decrease in load of 89.4 lbs. for Verizon and 73 lbs. for AT&T which is negligible in comparison to the overall structure loading. The analysis concludes the existing clock tower and antenna mounts, as described in the permit drawings provided, has sufficient structural capacity to support the proposed equipment configuration. Under the proposed conditions and existing design loads, the maximum utilization of a single structural member is 63.8%.

Our assessment is based on the assumption that the existing structure is in good condition, constructed according to the drawings provided and were constructed in conformance with all applicable state and local building codes. If, during construction, any damage, deterioration, and/or discrepancies are noticed, Dewberry is to be notified to assess any deviation from the assumed condition. Any alteration in equipment loading described above and on the associated plans will void any conclusions expressed herein and will require further analysis and design.

If you have any questions, please do not hesitate to call me at 617-531-0800.

07/20/2023

Sincerely,

**Dewberry Engineers Inc.** 

Ben Revette, P.E. Associate Vice President

#### Dewberry Engineers, Inc. Structural Analysis Summary Sheet

 Job No.:
 50121487/50164392
 By:
 AMD
 Date:
 07/12/23

 Job Name:
 West Hartford Relo CT
 Checked:
 BGK
 Date:
 07/13/23

Location: 139 North Main Street, West Hartford, CT 06107

Client: Verizon

#### Verizon Scope of Work:

• Proposed installation of (3) new MT6413-77A antennas.

Analysis of the existing clock tower building and existing antenna mounts.

#### AT&T Scope of Work:

Proposed installation of (3) new AIR6449 antennas, (3) new TPA65R-BU6DA-K antennas, (3) new OPA65R-BU8DA antennas, and (3) new 4449 B5/B12 RRHs.

#### Codes / Standards / References:

- IBC 2021
- 2022 Connecticut State Building Code Amendments to IBC 2021
- AISC 15<sup>th</sup> Ed.
- VZW RFDS dated 10/04/23.
- Site visit by Dewberry Engineers on 11/01/19.
- Existing drawings by CENTEK Engineering dated 10/21/13.
- Revised Structural Analysis Report by TEP Northeast dated 01/24/23.

#### Design & Analysis Assumptions:

- Assume antennas are mounted inside the existing clock tower.
- Analysis is limited to the existing clock tower only.
- Design and analysis are based on dead, wind, live, seismic and snow loads. The analysis checks for normal bending and shear stresses.
- Assumes minimum concrete compressive strength of 3000 psi and density of 115 lb/ft<sup>3</sup> and reinforcement strength of 60 ksi for the composite decks
- Assumes minimum concrete compressive strength of 3000 psi and density of 150 lb/ft<sup>3</sup> and reinforcement strength of 60 ksi for the lower level and foundation.
- Assumes composite concrete decks modeled with equivalent shear studs 1/2" dia.
- Assumes FRP panel thickness of ¼".
- Assumed exterior foundation walls to take all soil pressure loads and are designed according to soil parameters of the site.
- Assumed minimum allowable soil bearing capacity of 2500 psf

#### Conclusion / Recommendations:

 The existing structure and antenna mounts have sufficient capacity to support the proposed installation.



 Job Number
 50164392

 Made by:
 AMD

 Date:
 07/11/23

 Checked by:
 BGK

 Date:
 07/12/23

#### (West Hartford Relo CT) - Structure Loading

\\dewberry.dewberryroot.local\Enterprise\DEI\TelecomEV\Projects\VZW\50121487-NE\50164392 - W Hartford W CT Relo\4 Eng\Struct\Rev 2\Calcs\501144

Site Name: West Hartford Relo CT

#### **Existing Building Information**

- Existing Clock Tower drawings by CENTEK Engineering dated 10/21/13
- 2022 Conneticut State Building Code (IBC 2021, ASCE 7-16)
- Assumed 3000 psi concrete
- Assumed equivalent shear studs 1/2" dia. for composite action

#### **Existing Dead Load**

- Estimated building dead load:

Roof Dead Load = 18.5 psf (existing building drawings - slab weight- structural steel)
Floor Dead Load = 14 psf (existing building drawings - slab weight- structural steel)
Grating Platform Dead Load = 20 psf (estimated)

Ext. Stud Walls w/ Brick Veneer = 48 psf (ASCE 7-16, Table C3-1)

Exterior FRP Reinforced Walls = 7.5 psf (0.25" panel with 4x4 tube reinforcements)

#### **Existing Live Load**

- Design building live load:

Floor = 150 psf (existing building drawings)
Stairs/ Landing = 100 psf (existing building drawings)
Mechanical Areas = 150 psf (existing building drawings)
Platforms = 50 psf (assumed)

Roof = 20 psf (existing building drawings)

#### **Snow Load**

#### General Design Criteria

Exposure Factor,  $C_e$  = 1.0 (ASCE 7-16, Table 7-2) Thermal Factor,  $C_t$  = 1.0 (ASCE 7-16, Table 7-3) Importance Factor,  $I_s$  = 1.0 (ASCE 7-16, Table 1.5-2)

Min. Flat Roof Load, p<sub>f min</sub> = 30 psf (Connecticut State Building Code 2022)

Ground Snow Load, pg = 30 psf (ASCE 7-16, Hazard Tool)

Design Snow Load,  $p_f = 0.7C_eC_tl_sp_g$  (ASCE 7-16, Eqn. 7.3-1)

= 21.0 psf (Use 30 psf)



Job Number Made by: Date: Checked by: 50164392 AMD 07/11/23 BGK

Date:

07/12/23

#### (West Hartford Relo CT) - Design Wind Load on the Clock Tower

\\dewberry.dewberryroot.local\Enterprise\DEI\TelecomEV\Projects\VZW\50121487-NE\50164392 - W Hartford W CT Relo\4 Eng\Struct\Rev 2\Calcs\50114615 - Clock To

Site Name: West Hartford Relo CT

#### Wind Load per ASCE 7-16, Chapter 27

- wind load on the upper dome is conservativly applied as if to a flat surface

#### Design Criteria

#### Velocity Pressure

$$q_h = 0.00256 * K_h * K_{zt} * K_d * V^2$$
  
= 32.64 lb/ft²

(Eqn. 27.3-1, ASCE 7-16)

= 32.64 lb/ft<sup>2</sup>

#### Design Wind Force

- Conservatively using qh for all sides

$$p_w = q_h GC_p - q_h (GC_{pi})$$

(Eqn. 27.4-1, ASCE 7-16)

| p <sub>w(+) windward</sub> = | 16.3 psf  | /. I-II                  |
|------------------------------|-----------|--------------------------|
| P <sub>w(+) leeward</sub> =  | -19.7 psf | (+ Internal<br>Pressure) |
| p <sub>w(+) side</sub> =     | -25.3 psf | <i>'</i>                 |
| P <sub>w(-) windward</sub> = | 28.1 psf  |                          |
| P <sub>w(-) leeward</sub> =  | -8.0 psf  | (- Internal<br>Pressure) |
| p <sub>w(-) side</sub> =     | -13.5 psf | Ĺ                        |

| where: | (+) GC <sub>pi</sub> =    | 0.18  | (Table 26.11-1, ASCE 7-16) |
|--------|---------------------------|-------|----------------------------|
|        | (-) GC <sub>pi</sub> =    | -0.18 | (Table 26.11-1, ASCE 7-16) |
|        | C <sub>p windward</sub> = | 0.80  | (Fig. 27.4-1, ASCE 7-16)   |
|        | C <sub>p leeward</sub> =  | -0.50 | (Fig. 27.4-1, ASCE 7-16)   |
|        | C <sub>p side</sub> =     | -0.70 | (Fig. 27.4-1, ASCE 7-16)   |

| Bentley                                                                      | Job No<br><b>50164392</b> | Sheel No                  | Rev 2                |
|------------------------------------------------------------------------------|---------------------------|---------------------------|----------------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                      |                           |                      |
| Job Title West Hartford Relo CT                                              | Ref                       |                           |                      |
|                                                                              | By AMD                    | <sup>Dat∈</sup> 7/10/2023 | <sup>Chd</sup> BGK   |
| Client Verizon                                                               | File Clock Tower (C       | Composite F Date/Tir      | me 12-Jul-2023 12:18 |

## **Job Information**

|       | Engineer  | Checked   | Approved  |
|-------|-----------|-----------|-----------|
| Name: | AMD       | BGK       | BGK       |
| Date: | 7/10/2023 | 7/11/2023 | 7/12/2023 |

| Project ID   |  |
|--------------|--|
| Project Name |  |

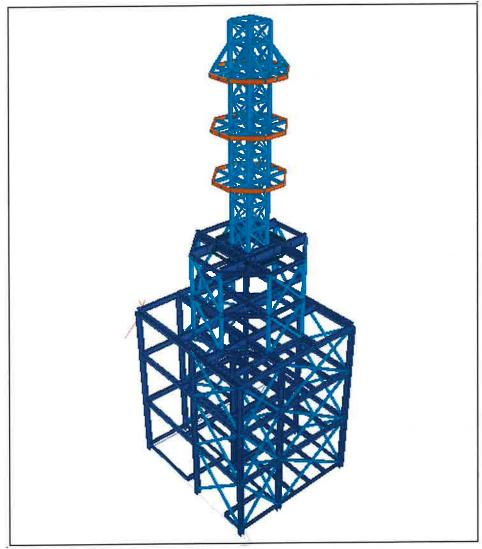
#### Structure Type SPACE FRAME

| Number of Nodes    | 246 | Highest Node  | 275 |
|--------------------|-----|---------------|-----|
| Number of Elements | 567 | Highest Beam  | 674 |
| Number of Plates   | 68  | Highest Plate | 652 |

| Number of Basic Load Cases       | 9  |
|----------------------------------|----|
| Number of Combination Load Cases | 23 |

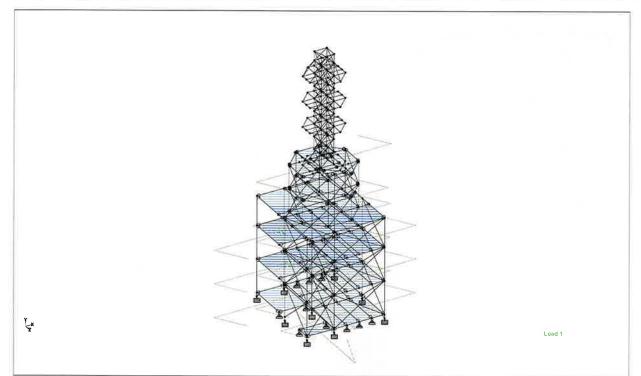
#### Included in this printout are data for:

| All | The Whole Structure |
|-----|---------------------|


Included in this printout are results for load cases:

| Туре        | L/C | Name                 |
|-------------|-----|----------------------|
| Primary     | 1   | EQ(X)                |
| Primary     | 2   | EQ(Z)                |
| Primary     | 3   | DEAD                 |
| Primary     | 4   | LIVE                 |
| Primary     | 5   | SNOW                 |
| Primary     | 6   | LIVE ROOF            |
| Primary     | 7   | WIND(X-)             |
| Primary     | 8   | WIND(Z-)             |
| Combination | 9   | 1.4D                 |
| Combination | 10  | 1.2D+1.6L+0.5LR      |
| Combination | 12  | 1.2D+1.6L+0.5S       |
| Combination | 13  | 1.2D+1.6LR+L         |
| Combination | 14  | 1.2D+1.6LR+0.5W(X)   |
| Combination | 15  | 1.2D+1.6LR+0.5W(Z)   |
| Combination | 19  | 1.2D+1.6S+L          |
| Combination | 20  | 1.2D+1.6S+0.5W(X)    |
| Combination | 21  | 1.2D+1.6S+0.5W(Z)    |
| Combination | 22  | 1.2D+1.0W(X)+L+0.5LR |
| Combination | 23  | 1.2D+1.0W(Z)+L+0.5LR |
| Combination | 26  | 1.2D+1.0W(X)+L+0.5S  |
| Combination | 27  | 1.2D+1.0W(Z)+L+0.5S  |
| Combination | 28  | 1.2D+1.0E(X)+L+0.2S  |
| Combination | 29  | 1.2D+1.0E(Z)+L+0.2S  |
| Combination | 30  | 1.2D-1.0E(X)+L+0.2S  |

| Bentley                                                                      | Job No<br>50164392   | Sheet No <b>2</b>             | Rev<br>2   |
|------------------------------------------------------------------------------|----------------------|-------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                 |                               |            |
| Job Title West Hartford Relo CT                                              | Ref                  |                               |            |
|                                                                              | By AMD               | Date7/10/2023 Chd BG          | SK .       |
| Client Verizon                                                               | File Clock Tower (Co | omposite   Date/Time 12-Jul-2 | 2023 12:18 |


# Job Information Cont...

| Туре        | L/C | Name                |
|-------------|-----|---------------------|
| Combination | 31  | 1.2D-1.0E(Z)+L+0.2S |
| Combination | 32  | 0.9D+1.0W(X)        |
| Combination | 33  | 0.9D+1.0W(Z)        |
| Combination | 34  | 0.9D+1.0E(X)        |
| Combination | 35  | 0.9D+1.0E(Z)        |
| Combination | 36  | 0.9D-1.0E(X)        |
| Combination | 37  | 0.9D-1.0E(Z)        |



3D Rendered View

| Bentley <sup>®</sup>                                                         | Job No<br>50164392  | Sheet No 3                    | Rev<br>2   |
|------------------------------------------------------------------------------|---------------------|-------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                |                               |            |
| Job Title West Hartford Relo CT                                              | Ref                 |                               |            |
|                                                                              | By AMD              | Date7/10/2023 Chd BG          | SK .       |
| Client Verizon                                                               | File Clock Tower (C | omposite F Date/Time 12-Jul-2 | 2023 12:18 |



Composite Slabs

#### <u>Plates</u>

| Plate | Node A | Node B | Node C | Node D | Property |
|-------|--------|--------|--------|--------|----------|
| 543   | 19     | 22     | 13     | 10     | 1        |
| 544   | 22     | 25     | 16     | 13     | 1        |
| 545   | 25     | 26     | 17     | 16     | 1        |
| 546   | 26     | 27     | 18     | 17     | 1        |
| 547   | 27     | 24     | 15     | 18     | 1        |
| 548   | 24     | 21     | 12     | 15     | 1        |
| 549   | 21     | 20     | 11     | 12     | 1        |
| 550   | 20     | 19     | 10     | 11     | 1        |
| 551   | 30     | 29     | 20     | 21     | 1        |
| 552   | 29     | 28     | 19     | 20     | 1        |
| 553   | 39     | 38     | 29     | 30     | 1        |
| 554   | 38     | 37     | 28     | 29     | 1        |
| 555   | 37     | 40     | 31     | 28     | 1        |
| 556   | 28     | 31     | 22     | 19     | 1        |
| 557   | 40     | 43     | 34     | 31     | 1        |
| 558   | 31     | 34     | 25     | 22     | 1        |
| 559   | 43     | 44     | 35     | 34     | 1        |
| 560   | 34     | 35     | 26     | 25     | 1        |
| 561   | 44     | 45     | 36     | 35     | 1        |

| Bentley                                                                      | Job No Sheet No 4 2                                      |
|------------------------------------------------------------------------------|----------------------------------------------------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschie | Part                                                     |
| Job Title West Hartford Relo CT                                              | Ref                                                      |
|                                                                              | By AMD Date7/10/2023 Chd BGK                             |
| Client Verizon                                                               | File Clock Tower (Composite F Date/Time 12-Jul-2023 12:1 |

#### Plates Cont...

| Plate | Node A | Node B | Node C | Node D | Property |
|-------|--------|--------|--------|--------|----------|
| 562   | 35     | 36     | 27     | 26     | 1        |
| 563   | 45     | 42     | 33     | 36     | 1        |
| 564   | 36     | 33     | 24     | 27     | 1        |
| 565   | 33     | 30     | 21     | 24     | 1        |
| 566   | 42     | 39     | 30     | 33     | 1        |
| 567   | 92     | 97     | 89     | 84     | 1        |
| 568   | 97     | 98     | 90     | 89     | 1        |
| 569   | 98     | 94     | 86     | 90     | 1        |
| 570   | 94     | 93     | 85     | 86     | 11       |
| 571   | 93     | 96     | 88     | 85     | 1        |
| 572   | 96     | 95     | 87     | 88     | 1        |
| 573   | 95     | 91     | 83     | 87     | 1        |
| 574   | 91     | 92     | 84     | 83     | 1        |
| 575   | 103    | 99     | 91     | 95     | 1        |
| 576   | 99     | 100    | 92     | 91     | 1        |
| 577   | 100    | 105    | 97     | 92     | 1        |
| 578   | 105    | 106    | 98     | 97     | 1        |
| 579   | 106    | 102    | 94     | 98     | 1        |
| 580   | 102    | 101    | 93     | 94     | 1        |
| 581   | 101    | 104    | 96     | 93     | 1        |
| 582   | 104    | 103    | 95     | 96     | 1        |
| 607   | 175    | 176    | 235    | 243    | 1        |
| 608   | 176    | 177    | 246    | 235    | 1        |
| 609   | 177    | 178    | 237    | 246    | 1        |
| 610   | 178    | 179    | 245    | 237    | 1        |
| 611   | 179    | 180    | 239    | 245    | 1        |
| 612   | 180    | 181    | 244    | 239    | 1        |
| 613   | 181    | 182    | 241    | 244    | 1        |
| 614   | 182    | 175    | 243    | 241    | 1        |
| 615   | 184    | 185    | 175    | 182    | 1        |
| 616   | 185    | 186    | 176    | 175    | 1        |
| 617   | 186    | 187    | 177    | 176    | 1        |
| 618   | 187    | 188    | 178    | 177    | 1        |
| 619   | 188    | 189    | 179    | 178    | 1        |
| 620   | 189    | 190    | 180    | 179    | 1        |
| 621   | 190    | 183    | 181    | 180    | 11       |
| 622   | 183    | 184    | 182    | 181    | 11       |
| 623   | 172    | 171    | 184    | 183    | 1        |
| 624   | 171    | 168    | 185    | 184    | 1        |
| 625   | 168    | 167    | 186    | 185    | 1        |
| 626   | 167    | 173    | 187    | 186    | 1        |
| 627   | 173    | 174    | 188    | 187    | 1        |
| 628   | 174    | 169    | 189    | 188    | 1        |
| 629   | 169    | 170    | 190    | 189    | 1        |
| 630   | 170    | 172    | 183    | 190    | 1        |

| Bentley                                                                      | Job No<br>50164392   | Sheet No 5                    | Rev<br>2   |
|------------------------------------------------------------------------------|----------------------|-------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle |                      |                               |            |
| Job Title West Hartford Relo CT                                              | Ref                  |                               |            |
|                                                                              | By AMD               | Date7/10/2023 Chd BG          | SK .       |
| Client Verizon                                                               | File Clock Tower (Co | omposite F Date/Time 12-Jul-2 | 2023 12:18 |

#### Plates Cont...

| Plate | Node A | Node B | Node C | Node D | Property |
|-------|--------|--------|--------|--------|----------|
| 649   | 141    | 139    | 167    | 168    | 1        |
| 650   | 139    | 140    | 174    | 173    | 1        |
| 651   | 140    | 142    | 170    | 169    | 1        |
| 652   | 142    | 141    | 171    | 172    | 1        |

# **Section Properties**

| Prop | Section       | Area   | l <sub>yy</sub>    | l <sub>zz</sub> | J      | Material |
|------|---------------|--------|--------------------|-----------------|--------|----------|
|      |               | (in²)  | (in <sup>4</sup> ) | (in⁴)           | (in⁴)  |          |
| 2    | W10X54        | 15.800 | 103.000            | 303.000         | 1.820  | STEEL    |
| 3    | W12X22        | 6.480  | 4.660              | 156.000         | 0.293  | STEEL    |
| 4    | W18X50        | 14.700 | 40.100             | 800.000         | 1.240  | STEEL    |
| 5    | W12X30        | 8.790  | 20.300             | 238.000         | 0.457  | STEEL    |
| 6    | W12X26        | 7.650  | 17.300             | 204.000         | 0.300  | STEEL    |
| 7    | W21X50        | 14.700 | 24.900             | 984.000         | 1.140  | STEEL    |
| 8    | W8X35         | 10.300 | 42.600             | 127.000         | 0.769  | STEEL    |
| 9    | HSST6X6X0.25  | 5.240  | 28.600             | 28.600          | 44.690 | STEEL    |
| 10   | W8X18         | 5.260  | 7.970              | 61.900          | 0.172  | STEEL    |
| 11   | C8X11         | 3.370  | 1.310              | 32.500          | 0.130  | STEEL    |
| 12   | HSST6X3X0.25  | 3.840  | 5.700              | 17.000          | 13.904 | STEEL    |
| 13   | HSST2X2X0.125 | 0.840  | 0.486              | 0.486           | 0.776  | STEEL    |
| 14   | HSST4X4X0.25  | 3.370  | 7.800              | 7.800           | 12.455 | STEEL    |
| 15   | L60606        | 4.380  | 24.518             | 6.256           | 0.208  | STEEL    |
| 16   | W8X10         | 2.960  | 2.090              | 30.800          | 0.043  | STEEL    |

## **Plate Thickness**

| Prop Node A |       | Node B Node C |       | Node D<br>(in) | Material |
|-------------|-------|---------------|-------|----------------|----------|
| 1           | 0.250 | 0.250         | 0.250 | 0.250          | STEEL    |

| Bentley                                                                      | Job No<br>50164392  | Sheel No 6           | Rev 2              |    |
|------------------------------------------------------------------------------|---------------------|----------------------|--------------------|----|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                |                      |                    |    |
| Job Title West Hartford Relo CT                                              | Ref                 |                      |                    |    |
|                                                                              | By AMD              | Date7/10/2023        | <sup>Chd</sup> BGK |    |
| Client Verizon                                                               | File Clock Tower (C | omposite   Date/Time | • 12-Jul-2023 12:1 | 18 |

## <u>Materials</u>

| Mat | Name           | E         | ٧     | Density                | α        |
|-----|----------------|-----------|-------|------------------------|----------|
|     |                | (kip/in²) |       | (kip/in <sup>3</sup> ) | (/°F)    |
| 1   | STEEL          | 29E+3     | 0.300 | 0.000                  | 6E -6    |
| 2   | CONCRETE       | 3.15E+3   | 0.170 | 8.7e-05                | 5E -6    |
| 3   | ALUMINUM       | 10E+3     | 0.330 | 9.8e-05                | 13E -6   |
| 4   | STAINLESSSTEEL | 28E+3     | 0.300 | 0.000                  | 9.9E -6  |
| 5   | STEEL_36_KSI   | 29E+3     | 0.300 | 0.000                  | 6.5E -6  |
| 6   | STEEL_50_KSI   | 29E+3     | 0.300 | 0.000                  | 6.5E -6  |
| 7   | STEEL_275_NMM2 | 29.7E+3   | 0.300 | 0.000                  | 6.67E -6 |
| 8   | STEEL_355_NMM2 | 29.7E+3   | 0.300 | 0.000                  | 6.67E -6 |
| 9   | Q235           | 29.9E+3   | 0.300 | 0.000                  | 6.67E -6 |
| 10  | Q345           | 29.9E+3   | 0.300 | 0.000                  | 6.67E -6 |
| 11  | Q355           | 29.9E+3   | 0.300 | 0.000                  | 6.67E -6 |
| 12  | Q390           | 29.9E+3   | 0.300 | 0.000                  | 6.67E -6 |
| 13  | Q420           | 29.9E+3   | 0.300 | 0.000                  | 6.67E -6 |
| 14  | Q460           | 29.9E+3   | 0.300 | 0.000                  | 6.67E -6 |
| 15  | TIMBER         | 1.5E+3    | 0.150 | 0.000                  | 3E -6    |

## **Supports**

| Node | X        | Υ        | Z        | rX           | rΥ           | rZ           |
|------|----------|----------|----------|--------------|--------------|--------------|
|      | (kip/in) | (kip/in) | (kip/in) | (kip ft/deg) | (kip ft/deg) | (kip ft/deg) |
| 1    | Fixed    | Fixed    | Fixed    | Fixed        | Fixed        | Fixed        |
| 2    | Fixed    | Fixed    | Fixed    | Fixed        | Fixed        | Fixed        |
| 3    | Fixed    | Fixed    | Fixed    | Fixed        | Fixed        | Fixed        |
| 4    | Fixed    | Fixed    | Fixed    | Fixed        | Fixed        | Fixed        |
| 5    | Fixed    | Fixed    | Fixed    | Fixed        | Fixed        | Fixed        |
| 6    | Fixed    | Fixed    | Fixed    | Fixed        | Fixed        | Fixed        |
| 7    | Fixed    | Fixed    | Fixed    | Fixed        | Fixed        | Fixed        |
| 8    | Fixed    | Fixed    | Fixed    | Fixed        | Fixed        | Fixed        |
| 9    | Fixed    | Fixed    | Fixed    | Fixed        | Fixed        | Fixed        |

| Bentley                                                                      | Job No<br>50164392   | Sheet No 7                    | Rev<br>2  |
|------------------------------------------------------------------------------|----------------------|-------------------------------|-----------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                 |                               |           |
| Job Title West Hartford Relo CT                                              | Ref                  |                               |           |
|                                                                              | By AMD               | Date7/10/2023 Chd BG          | K         |
| Client Verizon                                                               | File Clock Tower (Co | omposite f Date/Time 12-Jul-2 | 023 12:18 |

#### <u>Releases</u>

Beam ends not shown in this table are fixed in all directions.

| Beam | Node          | х     | is table are f | z     | rx    | гу  | ΓZ  |
|------|---------------|-------|----------------|-------|-------|-----|-----|
| 37   | 19            | Fixed | Fixed          | Fixed | Finad | Die | Di- |
| 38   | 22            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 39   | 25            | Fixed |                | Fixed | Fixed | Pin | Pin |
| 39   |               |       | Fixed          | Fixed | Fixed | Pin | Pin |
| _    | 26            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 40   | 26            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 41   | 27            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 41   | 24            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 42   | 24            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 42   | 21            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 43   | 21            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 44   | 20            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 44   | 19            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 45   | 23            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 46   | 20            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 47   | 23            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 48   | 47            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 48   | 46            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 49   | 23            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 50   | 22            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 53   | 24            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 54   | 20            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 59   | 27            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 60   | 54            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 60   | 48            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 61   | 48            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 61   | 51            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 62   | 55            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 62   | 49            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 63   | 49            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 63   | 52            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 64   | 56            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 64   | 50            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 65   | 50            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 65   | 53            | Fixed | Fixed          | Fixed | Fixed |     |     |
| 66   | 25            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 67   | 26            |       |                |       |       | Pin | Pin |
| 68   | 57            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| _    | $\overline{}$ | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 68   | 58            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 69   | 28            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 70   | 31            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 71   | 34            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 71   | 35            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 72   | 35            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |
| 73   | 36            | Fixed | Fixed          | Fixed | Fixed | Pin | Pin |

| Bentley                                                                      | Job No. Sheet No. 8 Rev. 2                               |
|------------------------------------------------------------------------------|----------------------------------------------------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                                                     |
| Job Title West Hartford Relo CT                                              | Ref                                                      |
|                                                                              | By AMD Dale7/10/2023 Chd BGK                             |
| Client Verizon                                                               | File Clock Tower (Composite F Date/Time 12-Jul-2023 12:1 |

| Beam | Node | х     | У     | Z     | rx    | гy  | ΙZ  |
|------|------|-------|-------|-------|-------|-----|-----|
| 73   | 33   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 74   | 33   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 74   | 30   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 75   | 30   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 76   | 29   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 76   | 28   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 77   | 32   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 78   | 29   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 79   | 32   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 80   | 59   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 80   | 64   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 81   | 32   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 82   | 31   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 85   | 33   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 86   | 29   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 91   | 36   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 92   | 61   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 92   | 63   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 93   | 63   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 93   | 68   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 94   | 70   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 94   | 66   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 95   | 66   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 95   | 69   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 96   | 71   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 96   | 67   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 97   | 67   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 97   | 62   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 98   | 34   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 99   | 35   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 100  | 60   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 100  | 65   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 101  | 37   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 103  | 39   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 105  | 37   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 107  | 43   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 109  | 38   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 111  | 39   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 112  | 72   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 113  | 45   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 119  | 43   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 121  | 45   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 123  | 75   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 126  | 79   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 131  | 77   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |

| Bentley                                                                      | Job No<br>50164392  | Sheet No   | 9                  | Rev<br>2   |
|------------------------------------------------------------------------------|---------------------|------------|--------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Parl                |            |                    |            |
| Job Title West Hartford Relo CT                                              | Ref                 |            |                    |            |
|                                                                              | By AMD              | Dat∈7/10/2 | 2023 Chd BC        | SK .       |
| Client Verizon                                                               | File Clock Tower (C | omposite f | Date/Time 12-Jul-2 | 2023 12:18 |

| _          | Figure 1 |                |                |                | ,              |            |            |
|------------|----------|----------------|----------------|----------------|----------------|------------|------------|
| Beam       | Node     | x              | У              | Z              | ΓX             | гу         | ΓŻ         |
| 132        | 81       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 135        | 44       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 136        | 74       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 137        | 83       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 137        | 84       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 138        | 85       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 138        | 86       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 139        | 89       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 139        | 90       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 140        | 87       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 140        | 88       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 141        | 83       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 141        | 87       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 142        | 88       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 142        | 85       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 143        | 86       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 143        | 90<br>89 | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 144        | 84       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 144<br>161 | 91       | -              | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 162        | 92       | Fixed<br>Fixed | Fixed<br>Fixed | Fixed          | Fixed          | Pin        | Pin        |
| 163        | 95       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 164        | 96       | Fixed          | Fixed          | Fixed<br>Fixed | Fixed          | Pin        | Pin        |
| 165        | 95       | Fixed          | Fixed          | Fixed          | Fixed<br>Fixed | Pin<br>Pin | Pin<br>Pin |
| 165        | 96       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 166        | 96       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 166        | 93       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 167        | 93       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 167        | 94       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 168        | 94       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 168        | 98       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 169        | 98       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 169        | 97       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 170        | 97       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 170        | 92       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 171        | 92       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 171        | 91       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 172        | 91       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 172        | 95       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 173        | 93       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 175        | 94       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 177        | 97       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 179        | 98       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 181        | 99       | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |
| 182        | 100      | Fixed          | Fixed          | Fixed          | Fixed          | Pin        | Pin        |

| Bentley                                                                      | Job No<br>50164392  | Sheel No<br>10                | Rev<br>2   |
|------------------------------------------------------------------------------|---------------------|-------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                |                               |            |
| Job Title West Hartford Relo CT                                              | Ref                 |                               |            |
|                                                                              | By AMD              | Date7/10/2023 Chd BG          | SK .       |
| Client Verizon                                                               | File Clock Tower (C | omposite F Date/Time 12-Jul-2 | 2023 12:18 |

| Beam Node x v z rx ry rz |      |       |       |       |       |     |     |
|--------------------------|------|-------|-------|-------|-------|-----|-----|
| Beam                     | Node | х     | У     | Z     | '^    | . , |     |
| 183                      | 103  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 184                      | 104  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 185                      | 103  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 185                      | 104  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 186                      | 104  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 186                      | 101  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 187                      | 101  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 187                      | 102  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 188                      | 102  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 188                      | 106  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 189                      | 106  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 189                      | 105  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 190                      | 105  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 190                      | 100  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 191                      | 100  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 191                      | 99   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 192                      | 99   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 192                      | 103  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 220                      | 115  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 223                      | 117  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 225                      | 116  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 226                      | 119  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 227                      | 118  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 230                      | 122  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 233                      | 123  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 237                      | 126  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 631                      | 14   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 634                      | 15   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 635                      | 258  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 635                      | 255  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 636                      | 255  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 636                      | 259  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 637                      | 260  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 637                      | 256  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 638                      | 256  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 638                      | 261  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 639                      | 262  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 639                      | 257  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 640                      | 257  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 640                      | 263  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 645                      | 101  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 646                      | 102  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 647                      | 105  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 648                      | 106  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 653                      | 10   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
|                          |      |       |       |       |       |     |     |

| Bentley <sup>a</sup>                                                            | Job No Sheet No 11 Rev 2                                 |
|---------------------------------------------------------------------------------|----------------------------------------------------------|
| Software licensed to Dewberry Engineers Inc.<br>CONNECTED User: Ashley Deuschle | Part                                                     |
| Job Title West Hartford Relo CT                                                 | Ref                                                      |
|                                                                                 | By AMD Dale7/10/2023 Chd BGK                             |
| Client Verizon                                                                  | File Clock Tower (Composite F Date/Time 12-Jul-2023 12:1 |

| Beam | Node | х     | у     | z     | rx    | гу  | ΓZ  |
|------|------|-------|-------|-------|-------|-----|-----|
| 500  |      | _ ^   | ,     | -     | '^    | ''  | 12  |
| 653  | 11   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 654  | 11   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 657  | 12   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 658  | 12   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 658  | 15   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 659  | 15   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 659  | 18   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 660  | 18   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 663  | 17   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 664  | 17   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 664  | 16   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 665  | 10   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 665  | 273  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 667  | 273  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 667  | 272  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 668  | 17   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 669  | 14   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 670  | 11   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 672  | 14   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 673  | 275  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 673  | 16   | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 674  | 274  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |
| 674  | 275  | Fixed | Fixed | Fixed | Fixed | Pin | Pin |

## **Reference Load Cases**

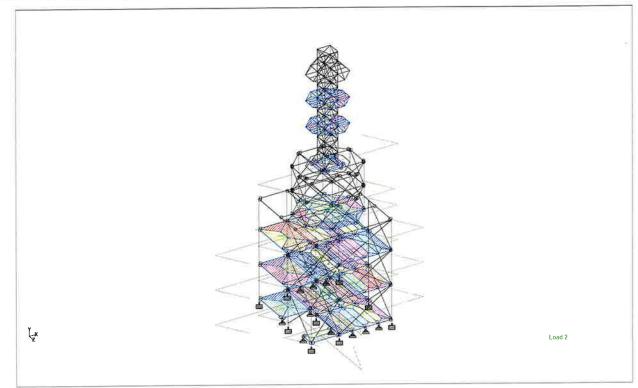
| Number | Name     | Туре |
|--------|----------|------|
| R1     | REF DEAD | Mass |

## **Primary Load Cases**

| Number | Name      | Туре       |
|--------|-----------|------------|
| 1      | EQ(X)     | Colomia II |
| 2      | EQ(Z)     | Seismic-H  |
| 3      | DEAD      | Seismic-H  |
| 3      | LIVE      | Dead       |
| - 4    |           | Live       |
| 5      | SNOW      | Snow       |
| 6      | LIVE ROOF | Roof Live  |
| 7      | WIND(X-)  | Wind       |
| 8      | WIND(Z-)  | Wind       |

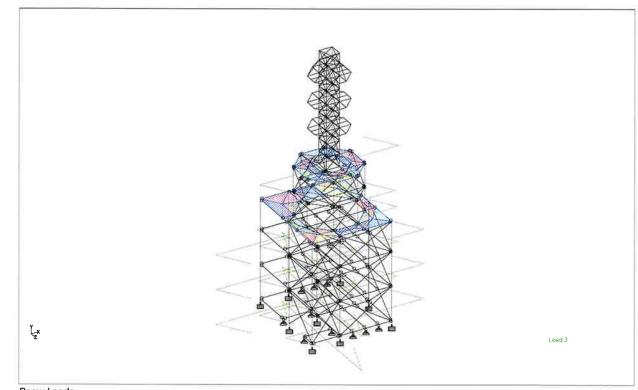
| Bentley                                                                      | Job No<br>50164392  | Sheet No 12                   | Rev<br>2   |
|------------------------------------------------------------------------------|---------------------|-------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                |                               |            |
| Job Title West Hartford Relo CT                                              | Ref                 |                               |            |
|                                                                              | By AMD              | Date7/10/2023 Chd BC          | SK .       |
| Client Verizon                                                               | File Clock Tower (C | omposite F Date/Time 12-Jul-2 | 2023 12:18 |

# **Combination Load Cases**


| Comb. | Combination L/C Name | Primary | Primary L/C Name | Factor |
|-------|----------------------|---------|------------------|--------|
| 9     | 1.4D                 | 3       | DEAD             | 1.40   |
| 10    | 1.2D+1.6L+0.5LR      | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.60   |
|       |                      | 6       | LIVE ROOF        | 0.50   |
| 12    | 1.2D+1.6L+0.5S       | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.60   |
|       |                      | 5       | SNOW             | 0.50   |
| 13    | 1.2D+1.6LR+L         | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.00   |
|       |                      | 6       | LIVE ROOF        | 1.60   |
| 14    | 1.2D+1.6LR+0.5W(X)   | 3       | DEAD             | 1.20   |
|       |                      | 6       | LIVE ROOF        | 1.60   |
|       |                      | 7       | WIND(X-)         | 0.50   |
| 15    | 1.2D+1.6LR+0.5W(Z)   | 3       | DEAD             | 1.20   |
|       |                      | 6       | LIVE ROOF        | 1.60   |
|       |                      | 8       | WIND(Z-)         | 0.50   |
| 19    | 1.2D+1.6S+L          | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.00   |
|       |                      | 5       | SNOW             | 1.60   |
| 20    | 1.2D+1.6S+0.5W(X)    | 3       | DEAD             | 1.20   |
|       |                      | 7       | WIND(X-)         | 0.50   |
|       |                      | 5       | SNOW             | 1.60   |
| 21    | 1.2D+1.6S+0.5W(Z)    | 3       | DEAD             | 1.20   |
|       |                      | 8       | WIND(Z-)         | 0.50   |
|       |                      | 5       | SNOW             | 1.60   |
| 22    | 1.2D+1.0W(X)+L+0.5LR | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.00   |
|       |                      | 6       | LIVE ROOF        | 0.50   |
|       |                      | 7       | WIND(X-)         | 1.00   |
| 23    | 1.2D+1.0W(Z)+L+0.5LR | 3       | DEAD             | 1.20   |
|       | · ·                  | 4       | LIVE             | 1.00   |
|       |                      | 6       | LIVE ROOF        | 0.50   |
|       |                      | 8       | WIND(Z-)         | 1.00   |
| 26    | 1.2D+1.0W(X)+L+0.5S  | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.00   |
|       |                      | 7       | WIND(X-)         | 1.00   |
|       |                      | 5       | SNOW             | 0.50   |
| 27    | 1.2D+1.0W(Z)+L+0.5S  | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.00   |
|       |                      | 8       | WIND(Z-)         | 1.00   |
|       |                      | 5       | SNOW             | 0.50   |
| 28    | 1.2D+1.0E(X)+L+0.2S  | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.00   |
|       |                      | 1       | EQ(X)            | 1.00   |
|       |                      | 5       | SNOW             | 0.20   |

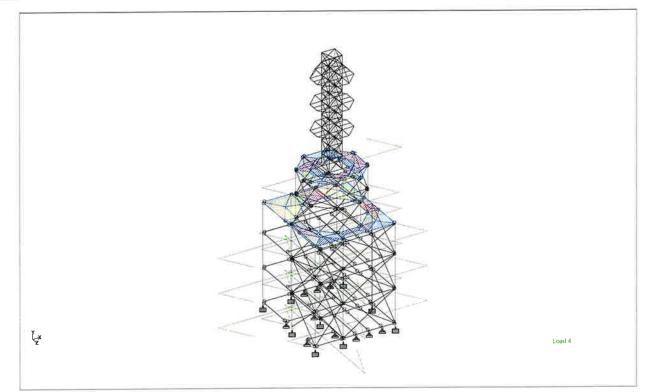
| Bentley                                                                      | Job No<br>50164392   | Sheet No 13                   | Rev<br>2   |
|------------------------------------------------------------------------------|----------------------|-------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                 |                               |            |
| Job Title West Hartford Relo CT                                              | Ref                  |                               |            |
|                                                                              | By AMD               | Date7/10/2023 Chd BC          | SK .       |
| Client Verizon                                                               | File Clock Tower (Co | omposite F Date/Time 12-Jul-2 | 2023 12:18 |

# Combination Load Cases Cont...


| Comb. | Combination L/C Name | Primary | Primary L/C Name | Factor |
|-------|----------------------|---------|------------------|--------|
| 29    | 1.2D+1.0E(Z)+L+0.2S  | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.00   |
|       |                      | 2       | EQ(Z)            | 1.00   |
|       |                      | 5       | SNOW             | 0.20   |
| 30    | 1.2D-1.0E(X)+L+0.2S  | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.00   |
|       |                      | 1       | EQ(X)            | -1.00  |
|       |                      | 5       | SNOW             | 0.20   |
| 31    | 1.2D-1.0E(Z)+L+0.2S  | 3       | DEAD             | 1.20   |
|       |                      | 4       | LIVE             | 1.00   |
|       |                      | 2       | EQ(Z)            | -1.00  |
|       |                      | 5       | SNOW             | 0.20   |
| 32    | 0.9D+1.0W(X)         | 3       | DEAD             | 0.90   |
|       |                      | 7       | WIND(X-)         | 1.00   |
| 33    | 0.9D+1.0W(Z)         | 3       | DEAD             | 0.90   |
|       |                      | 8       | WIND(Z-)         | 1.00   |
| 34    | 0.9D+1.0E(X)         | 3       | DEAD             | 0.90   |
|       |                      | 1       | EQ(X)            | 1.00   |
| 35    | 0.9D+1.0E(Z)         | 3       | DEAD             | 0.90   |
|       |                      | 2       | EQ(Z)            | 1.00   |
| 36    | 0.9D-1.0E(X)         | 3       | DEAD             | 0.90   |
|       | K                    | 1       | EQ(X)            | -1.00  |
| 37    | 0.9D-1.0E(Z)         | 3       | DEAD             | 0.90   |
|       |                      | 2       | EQ(Z)            | -1.00  |

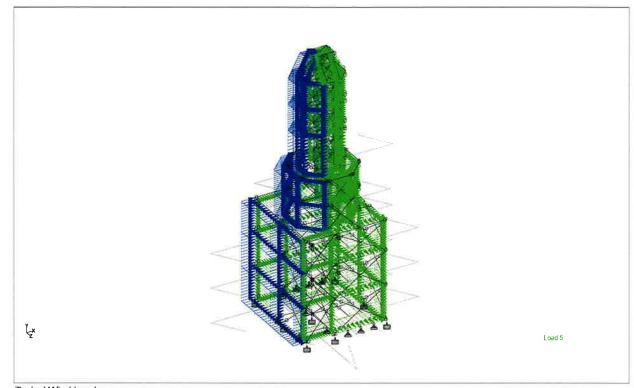
| Bentley                                                                      | Job No Sheet No 14 Rev 2                                  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle |                                                           |  |  |  |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                                                       |  |  |  |  |  |  |
|                                                                              | By AMD Date7/10/2023 Chd BGK                              |  |  |  |  |  |  |
| Client Verizon                                                               | File Clock Tower (Composite   Date/Time 12-Jul-2023 12:18 |  |  |  |  |  |  |




Live Loads

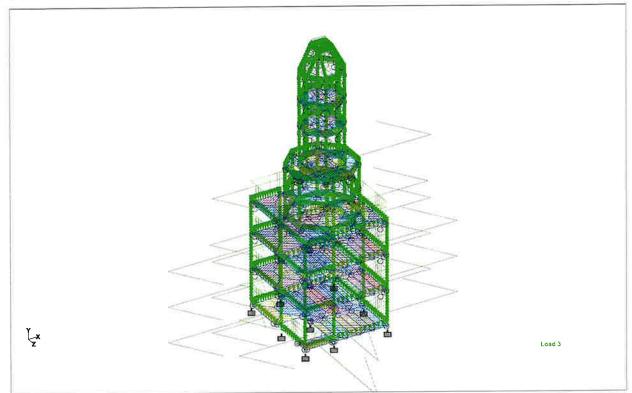
| Bentley <sup>a</sup>                                                         | Job No<br>50164392  | Sheet No 15                  | Rev 2      |
|------------------------------------------------------------------------------|---------------------|------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                |                              |            |
| Job Title West Hartford Relo CT                                              | Ref                 |                              |            |
|                                                                              | By AMD              | Date7/10/2023 Chd Bo         | ЭК         |
| Client Verizon                                                               | File Clock Tower (C | omposite f Date/Time 12-Jul- | 2023 12:18 |




Snow Loads

| Bentley <sup>a</sup>                                                         | <sub>Јов No</sub><br><b>50164392</b> | Sheet No 16                   | Rev<br>2   |  |  |  |  |  |
|------------------------------------------------------------------------------|--------------------------------------|-------------------------------|------------|--|--|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                                 |                               |            |  |  |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                                  |                               |            |  |  |  |  |  |
|                                                                              | By AMD Dal€7/10/2023 Chd BGK         |                               |            |  |  |  |  |  |
| Client Verizon                                                               | File Clock Tower (C                  | omposite F Date/Time 12-Jul-2 | 2023 12:18 |  |  |  |  |  |




Roof Live Load

| Bentley                                                                      | Job No Sheet No Rev 17 |                      |                    |  |  |  |
|------------------------------------------------------------------------------|------------------------|----------------------|--------------------|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                   |                      |                    |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                    |                      |                    |  |  |  |
|                                                                              | By AMD                 | Date7/10/2023        | <sup>Chd</sup> BGK |  |  |  |
| Client Verizon                                                               | File Clock Tower (C    | omposite f Date/Time | 12-Jul-2023 12:18  |  |  |  |



Typical Wind Loads

| Bentley                                                                      | Job No<br>50164392   | Sheet No 18                   | Rev<br>2   |  |  |  |  |  |
|------------------------------------------------------------------------------|----------------------|-------------------------------|------------|--|--|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                 |                               |            |  |  |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                  |                               |            |  |  |  |  |  |
|                                                                              | By AMD               | Dale7/10/2023 Chd BG          | SK .       |  |  |  |  |  |
| Client Verizon                                                               | File Clock Tower (Co | omposite F Date/Time 12-Jul-2 | 2023 12:18 |  |  |  |  |  |



Dead Loads

#### **Utilization Ratio**

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause       | L/C | Ax     | lz      | ly      | lx    |
|------|----------|----------|--------|-----------|---------------|--------------|-----|--------|---------|---------|-------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |              |     | (in²)  | (in⁴)   | (in⁴)   | (in⁴) |
| 1    | W10X54   | W10X54   | 0.305  | 1.000     | 0.305         | Eq.H1-1b     | 12  | 15.800 | 303.000 | 103.000 | 1.820 |
| 2    | W10X54   | W10X54   | 0.089  | 1.000     | 0.089         | Cl.E3        | 12  | 15.800 | 303.000 | 103.000 | 1.820 |
| 3    | W10X54   | W10X54   | 0.061  | 1.000     | 0.061         | Cl.E3        | 12  | 15.800 | 303.000 | 103.000 | 1.820 |
| 4    | W10X54   | W10X54   | 0.033  | 1.000     | 0.033         | Eq.H1-3a(H1- | 26  | 15.800 | 303.000 | 103.000 | 1.820 |
| 5    | W10X54   | W10X54   | 0.160  | 1.000     | 0.160         | CI.E4        | 12  | 15.800 | 303.000 | 103.000 | 1.820 |
| 6    | W10X54   | W10X54   | 0.129  | 1.000     | 0.129         | CI.E3        | 12  | 15.800 | 303.000 | 103.000 | 1.820 |
| 7    | W10X54   | W10X54   | 0.097  | 1.000     | 0.097         | CI.E3        | 12  | 15.800 | 303.000 | 103.000 | 1.820 |
| 8    | W10X54   | W10X54   | 0.068  | 1.000     | 0.068         | Eq.H1-3b     | 19  | 15.800 | 303.000 | 103.000 | 1.820 |
| 9    | W10X54   | W10X54   | 0.481  | 1.000     | 0.481         | Eq.H1-1a     | 26  | 15.800 | 303.000 | 103.000 | 1.820 |
| 10   | W10X54   | W10X54   | 0.167  | 1.000     | 0.167         | CI.E3        | 12  | 15.800 | 303.000 | 103.000 | 1.820 |
| 11   | W10X54   | W10X54   | 0.117  | 1.000     | 0.117         | Cl.E3        | 12  | 15.800 | 303.000 | 103.000 | 1.820 |
| 12   | W10X54   | W10X54   | 0.053  | 1.000     | 0.053         | CI.E3        | 26  | 15.800 | 303.000 | 103.000 | 1.820 |
| 13   | W10X54   | W10X54   | 0.280  | 1.000     | 0.280         | Eq.H1-1a     | 26  | 15.800 | 303.000 | 103.000 | 1.820 |
| 14   | W10X54   | W10X54   | 0.173  | 1.000     | 0.173         | CI.E3        | 12  | 15.800 | 303.000 | 103.000 | 1.820 |
| 15   | W10X54   | W10X54   | 0.150  | 1.000     | 0.150         | CI.E3        | 26  | 15.800 | 303.000 | 103.000 | 1.820 |
| 16   | W10X54   | W10X54   | 0.109  | 1.000     | 0.109         | CI.E3        | 26  | 15.800 | 303.000 | 103.000 | 1.820 |
| 17   | W10X54   | W10X54   | 0.530  | 1.000     | 0.530         | Eq.H1-1a     | 26  | 15.800 | 303.000 | 103.000 | 1.820 |

| Bentley                                                                      | Job No<br>50164392   | Sheet No         | 9                 | Rev<br>2  |
|------------------------------------------------------------------------------|----------------------|------------------|-------------------|-----------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                 |                  |                   |           |
| Job Title West Hartford Relo CT                                              | Ref                  |                  |                   |           |
|                                                                              | By AMD               | Dale7/10/2023    | <sup>Chd</sup> BG | K         |
| Client Verizon                                                               | File Clock Tower (Co | omposite f Date/ | Time 12-Jul-20    | 023 12:18 |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause       | L/C | Ax     | lz      | ly      | lx                 |
|------|----------|----------|--------|-----------|---------------|--------------|-----|--------|---------|---------|--------------------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |              |     | (in²)  | (in⁴)   | (in⁴)   | (in <sup>4</sup> ) |
| 18   | W10X54   | W10X54   | 0.160  | 1.000     | 0.160         | CI.E3        | 26  | 15.800 | 303.000 | 103.000 | 1.820              |
| 19   | W10X54   | W10X54   | 0.113  | 1.000     | 0.113         | CI.E3        | 26  | 15.800 | 303.000 | 103.000 | 1.820              |
| 20   | W10X54   | W10X54   | 0.050  | 1.000     | 0.050         | CI.E3        | 26  | 15.800 | 303.000 | 103.000 | 1.820              |
| 21   | W10X54   | W10X54   | 0.185  | 1.000     | 0.185         | Eq.H1-1b     | 27  | 15.800 | 303.000 | 103.000 | 1.820              |
| 22   | W10X54   | W10X54   | 0.113  | 1.000     | 0.113         | CI.E3        | 27  | 15.800 | 303.000 | 103.000 | 1.820              |
| 23   | W10X54   | W10X54   | 0.093  | 1.000     | 0.093         | CI.E3        | 27  | 15.800 | 303.000 | 103.000 | 1.820              |
| 24   | W10X54   | W10X54   | 0.085  | 1.000     | 0.085         | Eq.H1-1b     | 27  | 15.800 | 303.000 | 103.000 | 1.820              |
| 25   | W10X54   | W10X54   | 0.345  | 1.000     | 0.345         | Eq.H1-1b     | 27  | 15.800 | 303.000 | 103.000 | 1.820              |
| 26   | W10X54   | W10X54   | 0.085  | 1.000     | 0.085         | CI.E3        | 27  | 15.800 | 303.000 | 103.000 | 1.820              |
| 27   | W10X54   | W10X54   | 0.060  | 1.000     | 0.060         | CI.E3        | 27  | 15.800 | 303.000 | 103.000 | 1.820              |
| 28   | W10X54   | W10X54   | 0.034  | 1.000     | 0.034         | Eq.H1-1b     | 7   | 15.800 | 303.000 | 103.000 | 1.820              |
| 29   | W10X54   | W10X54   | 0.148  | 1.000     | 0.148         | Eq.H1-3a(H1- | 26  | 15.800 | 303.000 | 103.000 | 1.820              |
| 30   | W10X54   | W10X54   | 0.111  | 1.000     | 0.111         | Eq.H1-3a(H1- | 26  | 15.800 | 303.000 | 103.000 | 1.820              |
| 31   | W10X54   | W10X54   | 0.076  | 1.000     | 0.076         | CI.E3        | 12  | 15.800 | 303.000 | 103.000 | 1.820              |
| 32   | W10X54   | W10X54   | 0.066  | 1.000     | 0.066         | Eq.H1-1b     | 7   | 15.800 | 303.000 | 103.000 | 1.820              |
| 33   | W10X54   | W10X54   | 0.345  | 1.000     | 0.345         | Eq.H1-1a     | 12  | 15.800 | 303.000 | 103.000 | 1.820              |
| 34   | W10X54   | W10X54   | 0.403  | 1.000     | 0.403         | Eq.H1-1a     | 12  | 15.800 | 303.000 | 103.000 | 1.820              |
| 35   | W10X54   | W10X54   | 0.328  | 1.000     | 0.328         | Eq.H1-1a     | 12  | 15.800 | 303.000 | 103.000 | 1.820              |
| 36   | W10X54   | W10X54   | 0.224  | 1.000     | 0.224         | Eq.H1-1b     | 26  | 15.800 | 303.000 | 103.000 | 1.820              |
| 37   | W12X30   | W12X30   | 0.107  | 1.000     | 0.107         |              |     | 27.522 | 930.617 | 5.27E+3 | 1.75E+3            |
| 38   | W12X30   | W12X30   | 0.171  | 1.000     | 0.171         | LRFD-H1-1B-  | 12  | 8.790  | 238.000 | 20.300  | 0.457              |
| 39   | W12X26   | W12X26   | 0.023  | 1.000     | 0.023         |              |     | 16.693 | 676.427 | 608.128 | 815.956            |
| 40   | W12X30   | W12X30   | 0.419  | 1.000     | 0.419         | LRFD-H1-1B-  | 12  | 8.790  | 238.000 | 20.300  | 0.457              |
| 41   | W12X30   | W12X30   | 0.060  | 1.000     | 0.060         |              |     | 17.510 | 741.043 | 550.048 | 796.981            |
| 42   | W12X30   | W12X30   | 0.095  | 1.000     | 0.095         |              |     | 17.510 | 741.043 | 550.048 | 796.981            |
| 43   | W12X30   | W12X30   | 0.513  | 1.000     | 0.513         | LRFD-H1-1B-  | 12  | 8.790  | 238.000 | 20.300  | 0.457              |
| 44   | W12X26   | W12X26   | 0.096  | 1.000     | 0.096         | LRFD-H1-1B-  | 12  | 7.650  | 204.000 | 17.300  | 0.300              |
| 45   | W18X50   | W18X50   | 0.370  | 1.000     | 0.370         | LRFD-H1-1B-  | 10  | 14.700 | 800.000 | 40.100  | 1.240              |
| 46   | W12X30   | W12X30   | 0.240  | 1.000     | 0.240         |              |     | 46.254 | 1.07E+3 | 42E+3   | 3.74E+3            |
| 47   | W12X30   | W12X30   | 0.138  | 1.000     | 0.138         |              |     | 17.510 | 741.044 | 550.058 | 796.986            |
| 48   | W12X22   | W12X22   | 0.222  | 1.000     | 0.222         | LRFD-H1-1B-  | 10  | 6.480  | 156.000 | 4.660   | 0.293              |
| 49   | W12X30   | W12X30   | 0.166  | 1.000     | 0.166         |              |     | 17.510 | 741.044 | 550.058 | 796.986            |
| 50   | W12X30   | W12X30   | 0.365  | 1.000     | 0.365         | LRFD-H1-1B-  | 26  | 8.790  | 238.000 | 20.300  | 0.457              |
| 51   | W18X50   | W18X50   | 0.557  | 1.000     | 0.557         | LRFD-H1-1B-  | 10  | 14.700 | 800.000 | 40.100  | 1.240              |
| 52   | W18X50   | W18X50   | 0.564  | 1.000     | 0.564         | LRFD-H1-1B-  | 12  | 14.700 | 800.000 | 40.100  | 1.240              |
| 53   | W18X50   | W18X50   | 0.381  | 1.000     | 0.381         | LRFD-H1-1B-  | 12  | 14.700 | 800.000 | 40.100  | 1.240              |
| 54   | W12X30   | W12X30   | 0.516  | 1.000     | 0.516         | LRFD-H1-1B-  | 12  | 8.790  | 238.000 | 20.300  | 0.457              |
| 55   | W12X30   | W12X30   | 0.586  | 1.000     |               | LRFD-H1-1B-  | 12  | 8.790  | 238.000 | 20.300  | 0.457              |
| 56   | W12X30   | W12X30   | 0.578  | 1.000     | 0.578         | LRFD-H1-1B-  | 12  | 8.790  | 238.000 | 20.300  | 0.457              |
| 57   | W12X30   | W12X30   | 0.494  | 1.000     | 0.494         | LRFD-H1-1B-  | 12  | 8.790  | 238.000 | 20.300  | 0.457              |
| 58   | W12X30   | W12X30   | 0.485  | 1.000     | 0.485         | LRFD-H1-1B-  | 12  | 8.790  | 238.000 | 20.300  | 0.457              |
| 59   | W12X30   | W12X30   | 0.412  | 1.000     | 0.412         | LRFD-H1-1B-  | 12  | 8.790  | 238.000 | 20.300  | 0.457              |
| 60   | W12X22   | W12X22   | 0.117  | 1.000     | 0.117         |              |     | 23.920 | 704.953 | 4.24E+3 | 1.66E+3            |
| 61   | W12X22   | W12X22   | 0.186  | 1.000     | 0.186         |              |     | 23.920 | 704.953 | 4.24E+3 | 1.66E+3            |
| 62   | W12X22   | W12X22   | 0.117  | 1.000     | 0.117         |              |     | 23.920 | 704.952 | 4.24E+3 | 1.66E+3            |

| Bentley                                                                      | <sup>Јор No</sup><br><b>50164392</b> | Sheet No 20                   | Rev<br>2   |
|------------------------------------------------------------------------------|--------------------------------------|-------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                                 |                               |            |
| Job Title West Hartford Relo CT                                              | Ref                                  |                               |            |
|                                                                              | By AMD                               | Date7/10/2023 Chd BG          | SK .       |
| Client Verizon                                                               | File Clock Tower (C                  | omposite F Date/Time 12-Jul-2 | 2023 12:18 |

| Beam   | Analysis         | Design   | Actual | Allowable | Ratio         | Clause      | L/C | Ax     | lz       | ly      | lx      |
|--------|------------------|----------|--------|-----------|---------------|-------------|-----|--------|----------|---------|---------|
| Dealli | Property         | Property | Ratio  | Ratio     | (Act./Allow.) |             |     | (in²)  | (in⁴)    | (in⁴)   | (in⁴)   |
| 63     | W12X22           | W12X22   | 0.186  | 1.000     | 0.186         |             |     | 23.920 | 704.952  | 4.24E+3 | 1.66E+3 |
| 64     | W12X22           | W12X22   | 0.117  | 1.000     | 0.117         |             |     | 23.920 | 704.952  | 4.24E+3 | 1.66E+3 |
| 65     | W12X22           | W12X22   | 0.186  | 1.000     | 0,186         |             |     | 23.920 | 704.952  | 4.24E+3 | 1.66E+3 |
| 66     | W12X30           | W12X30   | 0.157  | 1.000     | 0.157         | LRFD-H1-1B- | 12  | 8.790  | 238.000  | 20.300  | 0.457   |
| 67     | W12X30           | W12X30   | 0.131  | 1.000     | 0.131         |             |     | 17.510 | 741.044  | 550.058 | 796.986 |
| 68     | W12X22           | W12X22   | 0.056  | 1.000     | 0.056         |             |     | 15.523 | 590.950  | 595.488 | 824.526 |
| 69     | W12X30           | W12X30   | 0.107  | 1.000     | 0.107         |             |     | 27.522 | 930.617  | 5.27E+3 | 1.75E+3 |
| 70     | W12X30           | W12X30   | 0.167  | 1.000     | 0.167         | LRFD-H1-1B- | 12  | 8.790  | 238.000  | 20.300  | 0.457   |
| 71     | W12X26           | W12X26   | 0.023  | 1.000     | 0.023         |             |     | 16.693 | 676.427  | 608.128 | 815.956 |
| 72     | W12X26           | W12X26   | 0.478  | 1.000     | 0.478         | LRFD-H1-1B- | 12  | 7.650  | 204.000  | 17.300  | 0.300   |
| 73     | W12X30           | W12X30   | 0.060  | 1.000     | 0.060         |             |     | 17.510 | 741.043  | 550.048 | 796.981 |
| 74     | W12X30           | W12X30   | 0.095  | 1.000     | 0.095         |             |     | 17.510 | 741.043  | 550.048 | 796.981 |
| 75     | W12X26           | W12X26   | 0.572  | 1.000     | 0.572         | LRFD-H1-1B- | 12  | 7.650  | 204.000  | 17.300  | 0.300   |
| 76     | W12X26           | W12X26   | 0.082  | 1.000     | 0.082         | LRFD-H1-1B- | 12  | 7.650  | 204.000  | 17.300  | 0.300   |
| 77     | W18X50           | W18X50   | 0.366  | 1.000     | 0.366         | LRFD-H1-1B- | 10  | 14.700 | 800.000  | 40.100  | 1.240   |
| 78     | W12X30           | W12X30   | 0.184  | 1.000     | 0.184         |             |     | 46.254 | 1.07E+3  | 42E+3   | 3.74E+3 |
| 79     | W12X30           | W12X30   | 0.136  | 1.000     | 0.136         |             |     | 17.510 | 741.044  | 550.058 | 796.986 |
| 80     | W12X22           | W12X22   | 0.223  | 1.000     | 0.223         | LRFD-H1-1B- | 10  | 6.480  | 156.000  | 4.660   | 0.293   |
| 81     | W12X30           | W12X30   | 0.166  | 1.000     | 0.166         |             |     | 17.510 | 741.044  | 550.058 | 796.986 |
| 82     | W12X30           | W12X30   | 0.384  | 1.000     | 0.384         | LRFD-H1-1B- | 26  | 8.790  | 238.000  | 20.300  | 0.457   |
| 83     | W18X50           | W18X50   | 0.576  | 1,000     | 0.576         | LRFD-H1-1B- | 10  | 14.700 | 800.000  | 40.100  | 1.240   |
| 84     | W18X50           | W18X50   | 0.587  | 1.000     | 0.587         | LRFD-H1-1B- | 12  | 14.700 | 800.000  | 40.100  | 1.240   |
| 85     | W18X50           | W18X50   | 0.384  | 1.000     | 0.384         | LRFD-H1-1B- | 12  | 14.700 | 800.000  | 40.100  | 1.240   |
| 86     | W12X26           | W12X26   | 0.588  | 1.000     | 0.588         | LRFD-H1-1B- | 12  | 7.650  | 204.000  | 17.300  | 0.300   |
| 87     | W12X26           | W12X26   | 0.638  | 1.000     | 0.638         | LRFD-H1-1B- | 12  | 7.650  | 204.000  | 17.300  | 0.300   |
| 88     | W12X26           | W12X26   | 0.624  | 1.000     | 0.624         | LRFD-H1-1B- | 12  | 7.650  | 204.000  | 17.300  | 0.300   |
| 89     | W12X26           | W12X26   | 0.538  | 1.000     | 0.538         | LRFD-H1-1B- | 12  | 7.650  | 204.000  | 17.300  | 0.300   |
| 90     | W12X26           | W12X26   | 0.521  | 1.000     | 0.521         | LRFD-H1-1B- | 12  | 7.650  | 204.000  | 17.300  | 0.300   |
| 91     | W12X26           | W12X26   | 0.456  | 1.000     | 0.456         | LRFD-H1-1B- | 12  | 7.650  | 204.000  | 17.300  | 0.300   |
| 92     | W12X22           | W12X22   | 0.117  | 1.000     | 0.117         |             |     | 23.920 | 704.953  | 4.24E+3 | 1.66E+3 |
| 93     | W12X22           | W12X22   | 0.186  | 1.000     | 0.186         |             |     | 23.920 | 704.953  | 4.24E+3 | 1.66E+3 |
| 94     | W12X22           | W12X22   | 0.117  | 1.000     | 0.117         |             |     | 23.920 | 704.952  | 4.24E+3 | 1.66E+3 |
| 95     | W12X22           | W12X22   | 0.186  | 1.000     | 0.186         |             |     | 23.920 | 704.952  | 4.24E+3 | 1.66E+3 |
| 96     | W12X22           | W12X22   | 0.117  | 1.000     | 0.117         |             |     | 23.920 | 704.952  | 4.24E+3 | 1.66E+3 |
| 97     | W12X22           | W12X22   | 0.186  | 1.000     | 0.186         |             |     | 23.920 | 704.952  | 4.24E+3 | 1.66E+3 |
| 98     | W12X22           | W12X30   | 0.146  | 1.000     | 0.146         | LRFD-H1-1B- | 12  | 8.790  | 238.000  | 20.300  | 0.457   |
| 99     | W12X30           | W12X30   | 0.132  | 1.000     | 0.132         |             |     | 17.510 | 741.044  | 550.058 | 796.986 |
| 100    | W12X30           | W12X30   | 0.056  | 1.000     | 0.056         |             |     | 15.523 | 590.950  | 595.488 | 824.526 |
| 101    | W12X26           | W12X26   | 0.033  | 1.000     | 0.033         |             |     | 25.249 | 816.318  | 4.37E+3 | 1.64E+3 |
| 102    | W12X26           | W12X26   | 0.053  | 1.000     | 0.151         |             |     | 25.249 | 816.318  | 4.37E+3 | 1.64E+3 |
| 102    | W21X50           | W21X50   | 0.131  | 1.000     | 0.122         |             |     | 32.311 | 2.78E+3  | 4.39E+3 | 3.09E+3 |
| 103    | W21X50           | W21X50   | 0.122  | 1.000     | 0.122         |             |     | 22.007 | 2.07E+3  | 336.621 | 1.37E+3 |
|        | W21X50<br>W21X50 | W21X50   | 0.137  | 1.000     | 0.137         |             |     | 32.311 | 2.78E+3  | 4.39E+3 | 3.09E+3 |
| 105    | W21X50           | W21X50   | 0.071  | 1.000     | 0.055         |             |     | 22.007 | 2.07E+3  | 336.607 | 1.37E+3 |
| 106    | W12X26           | W12X26   | 0.003  | 1.000     | 0.001         |             |     | 25.249 | 816.318  | 4.37E+3 | 1.64E+3 |
| 107    | VV 12X20         | VV 12/20 | 0.001  | 1.000     | 0.001         |             |     |        | 0.11.0.0 |         |         |

| Bentley                                                                      | Job No Sheet No 21 Rev 2 |                               |           |  |  |  |  |
|------------------------------------------------------------------------------|--------------------------|-------------------------------|-----------|--|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Parl                     |                               |           |  |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                      |                               |           |  |  |  |  |
|                                                                              | By AMD                   | Date7/10/2023 Chd BG          | K         |  |  |  |  |
| Client Verizon                                                               | File Clock Tower (Co     | omposite F Date/Time 12-Jul-2 | 023 12:18 |  |  |  |  |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause   | L/C      | Ax     | lz        | ly      | lx                 |
|------|----------|----------|--------|-----------|---------------|----------|----------|--------|-----------|---------|--------------------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |          |          | (in²)  | <br>(in⁴) | (in⁴)   | (in <sup>4</sup> ) |
| 108  | W12X26   | W12X26   | 0.186  | 1.000     | 0.186         |          | 1        | 25.249 | 816.318   | 4.37E+3 | 1.64E+3            |
| 109  | W21X50   | W21X50   | 0.195  | 1.000     | 0.195         |          |          | 30.848 | 2.7E+3    | 3.39E+3 | 2.83E+3            |
| 110  | W21X50   | W21X50   | 0.127  | 1.000     | 0.127         |          | $\vdash$ | 42.273 | 3.13E+3   | 16.8E+3 | 4.91E+3            |
| 111  | W12X26   | W12X26   | 0.130  | 1.000     | 0.130         |          |          | 25.249 | 816.318   | 4.37E+3 | 1.64E+3            |
| 112  | W21X50   | W21X50   | 0.079  | 1.000     | 0.079         |          |          | 30.848 | 2.7E+3    | 3.39E+3 | 2.83E+3            |
| 113  | W12X26   | W12X26   | 0.156  | 1.000     | 0.156         |          |          | 25.249 | 816.318   | 4.37E+3 | 1.64E+3            |
| 114  | W21X50   | W21X50   | 0.083  | 1.000     | 0.083         |          | $\vdash$ | 42.273 | 3.13E+3   | 16.8E+3 | 4.91E+3            |
| 115  | W21X50   | W21X50   | 0.078  | 1.000     | 0.078         |          |          | 22.007 | 2.07E+3   | 336.607 | 1.37E+3            |
| 116  | W21X50   | W21X50   | 0.131  | 1.000     | 0.131         |          |          | 42.273 | 3.13E+3   | 16.8E+3 | 4.91E+3            |
| 117  | W21X50   | W21X50   | 0.156  | 1.000     | 0.156         |          |          | 22.007 | 2.07E+3   | 336.621 | 1.37E+3            |
| 119  | W21X50   | W21X50   | 0.055  | 1.000     | 0.055         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 120  | W21X50   | W21X50   | 0.241  | 1.000     | 0.241         |          |          | 30.848 | 2.7E+3    | 3.39E+3 | 2.83E+3            |
| 121  | W21X50   | W21X50   | 0.107  | 1.000     | 0.107         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 122  | W21X50   | W21X50   | 0.105  | 1.000     | 0.105         |          |          | 30.848 | 2.7E+3    | 3.39E+3 | 2.83E+3            |
| 123  | W21X50   | W21X50   | 0.193  | 1.000     | 0.193         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 124  | W21X50   | W21X50   | 0.194  | 1.000     | 0.194         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 125  | W21X50   | W21X50   | 0.360  | 1.000     | 0.360         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 126  | W21X50   | W21X50   | 0.157  | 1.000     | 0.157         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 127  | W21X50   | W21X50   | 0.191  | 1.000     | 0.191         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 128  | W21X50   | W21X50   | 0.352  | 1.000     | 0.352         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 129  | W21X50   | W21X50   | 0.175  | 1.000     | 0.175         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 130  | W21X50   | W21X50   | 0.148  | 1.000     | 0.148         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 131  | W21X50   | W21X50   | 0.409  | 1.000     | 0.409         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 132  | W21X50   | W21X50   | 0.397  | 1.000     | 0.397         |          |          | 32.311 | 2.78E+3   | 4.39E+3 | 3.09E+3            |
| 133  | W21X50   | W21X50   | 0.188  | 1.000     | 0.188         |          |          | 30.848 | 2.7E+3    | 3.39E+3 | 2.83E+3            |
| 134  | W21X50   | W21X50   | 0.121  | 1.000     | 0.121         |          |          | 30.848 | 2.7E+3    | 3.39E+3 | 2.83E+3            |
| 135  | W21X50   | W21X50   | 0.256  | 1.000     | 0.256         |          |          | 30.848 | 2.7E+3    | 3.39E+3 | 2.83E+3            |
| 136  | W21X50   | W21X50   | 0.057  | 1.000     | 0.057         |          |          | 30.848 | 2.7E+3    | 3.39E+3 | 2.83E+3            |
| 137  | W8X35    | W8X35    | 0.026  | 1.000     | 0.026         |          |          | 29.032 | 628.009   | 5.29E+3 | 1.14E+3            |
| 138  | W8X35    | W8X35    | 0.026  | 1.000     | 0.026         |          |          | 29.032 | 628.009   | 5.29E+3 | 1.14E+3            |
| 139  | W8X35    | W8X35    | 0.037  | 1.000     | 0.037         |          |          | 28.393 | 621.499   | 4.77E+3 | 1.1E+3             |
| 140  | W8X35    | W8X35    | 0.038  | 1.000     | 0.038         |          |          | 28.393 | 621.499   | 4.77E+3 | 1.1E+3             |
| 141  | W8X35    | W8X35    | 0.023  | 1.000     | 0.023         |          |          | 28.393 | 621.499   | 4.77E+3 | 1.1E+3             |
| 142  | W8X35    | W8X35    | 0.023  | 1.000     | 0.023         |          |          | 28.393 | 621.499   | 4.77E+3 | 1.1E+3             |
| 143  | W8X35    | W8X35    | 0.021  | 1.000     | 0.021         |          |          | 28.393 | 621.499   | 4.77E+3 | 1.1E+3             |
| 144  | W8X35    | W8X35    | 0.021  | 1.000     | 0.021         |          |          | 28.393 | 621.499   | 4.77E+3 | 1.1E+3             |
| 145  | HSST6X6  | HSST6X6  | 0.088  | 1.000     | 0.088         | Eq.H1-1b | 12       | 5.240  | 28.600    | 28.600  | 45.600             |
| 146  | HSST6X6  | HSST6X6  | 0.078  | 1.000     | 0.078         | Eq.H1-1b | 12       | 5.240  | 28.600    | 28.600  | 45.600             |
| 147  | HSST6X6  | HSST6X6  | 0.092  | 1.000     | 0.092         | Eq.H1-1b | 12       | 5.240  | 28.600    | 28.600  | 45.600             |
| 148  | HSST6X6  | HSST6X6  | 0.061  | 1.000     | 0.061         | Eq.H1-1b | 12       | 5.240  | 28.600    | 28.600  | 45.600             |
| 149  | HSST6X6  | HSST6X6  | 0.084  | 1.000     | 0.084         | Eq.H1-1b | 12       | 5.240  | 28.600    | 28.600  | 45.600             |
| 150  | HSST6X6  | HSST6X6  | 0.056  | 1.000     | 0.056         | Eq.H1-1b | 12       | 5.240  | 28.600    | 28.600  | 45.600             |
| 151  | HSST6X6  | HSST6X6  | 0.166  | 1.000     | 0.166         | Eq.H1-1b | 26       | 5.240  | 28.600    | 28.600  | 45.600             |
| 152  | HSST6X6  | HSST6X6  | 0.101  | 1.000     | 0.101         | Eq.H1-1b | 26       | 5.240  | 28.600    | 28.600  | 45.600             |
| 153  | HSST6X6  | HSST6X6  | 0.166  | 1.000     | 0.166         | Eq.H1-1b | 26       | 5.240  | 28.600    | 28.600  | 45.600             |

| Bentley                                                                      | Job No<br>50164392   | Sheet No 22                   | Rev<br>2   |
|------------------------------------------------------------------------------|----------------------|-------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                 |                               |            |
| Job Title West Hartford Relo CT                                              | Ref                  |                               |            |
|                                                                              | By AMD               | Date7/10/2023 Chd BC          | 3K         |
| Client Verizon                                                               | File Clock Tower (Co | omposite F Date/Time 12-Jul-2 | 2023 12:18 |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause   | L/C | Ax                 | lz      | ly      | lx     |
|------|----------|----------|--------|-----------|---------------|----------|-----|--------------------|---------|---------|--------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |          |     | (in <sup>2</sup> ) | (in⁴)   | (in⁴)   | (in⁴)  |
| 154  | HSST6X6  | HSST6X6  | 0.100  | 1.000     | 0.100         | Eq.H1-1b | 26  | 5.240              | 28.600  | 28.600  | 45.600 |
| 155  | HSST6X6  | HSST6X6  | 0.075  | 1.000     | 0.075         | Eq.H1-1b | 12  | 5.240              | 28.600  | 28.600  | 45.600 |
| 156  | HSST6X6  | HSST6X6  | 0.071  | 1.000     | 0.071         | Eq.H1-1b | 27  | 5.240              | 28.600  | 28.600  | 45.600 |
| 157  | HSST6X6  | HSST6X6  | 0.127  | 1.000     | 0.127         | Eq.H1-1b | 27  | 5.240              | 28.600  | 28.600  | 45.600 |
| 158  | HSST6X6  | HSST6X6  | 0.084  | 1.000     | 0.084         | Eq.H1-1b | 27  | 5.240              | 28.600  | 28.600  | 45.60  |
| 159  | HSST6X6  | HSST6X6  | 0.086  | 1.000     | 0.086         | Eq.H1-1b | 12  | 5.240              | 28.600  | 28.600  | 45.60  |
| 160  | HSST6X6  | HSST6X6  | 0.078  | 1.000     | 0.078         | Eq.H1-1b | 12  | 5.240              | 28.600  | 28.600  | 45.60  |
| 161  | W12X30   | W12X30   | 0.017  | 1.000     | 0.017         | Eq.H1-1b | 9   | 8.790              | 238.000 | 20.300  | 0.45   |
| 162  | W12X30   | W12X30   | 0.018  | 1.000     | 0.018         | Eq.H1-1b | 9   | 8.790              | 238.000 | 20.300  | 0.45   |
| 163  | W12X30   | W12X30   | 0.018  | 1.000     | 0.018         | Eq.H1-1b | 9   | 8.790              | 238.000 | 20.300  | 0.45   |
| 164  | W12X30   | W12X30   | 0.026  | 1.000     | 0.026         | CI.D2    | 26  | 8.790              | 238.000 | 20.300  | 0.45   |
| 165  | W8X18    | W8X18    | 0.030  | 1.000     | 0.030         | CI.E3    | 8   | 5.260              | 61.900  | 7.970   | 0.17   |
| 166  | W8X18    | W8X18    | 0.020  | 1.000     | 0.020         | CI.D2    | 26  | 5.260              | 61.900  | 7.970   | 0.17   |
| 167  | W8X18    | W8X18    | 0.059  | 1.000     | 0.059         | CI.D2    | 26  | 5.260              | 61.900  | 7.970   | 0.17   |
| 168  | W8X18    | W8X18    | 0.018  | 1.000     | 0.018         | CI.D2    | 26  | 5.260              | 61.900  | 7.970   | 0.17   |
| 169  | W8X18    | W8X18    | 0.028  | 1.000     | 0.028         | Cl.D2    | 33  | 5.260              | 61.900  | 7.970   | 0.17   |
| 170  | W8X18    | W8X18    | 0.034  | 1.000     | 0.034         | Cl.D2    | 27  | 5.260              | 61.900  | 7.970   | 0.17   |
| 171  | W8X18    | W8X18    | 0.037  | 1.000     | 0.037         | CI.E3    | 7   | 5.260              | 61.900  | 7.970   | 0.17   |
| 172  | W8X18    | W8X18    | 0.023  | 1.000     | 0.023         | CI.E3    | 8   | 5.260              | 61.900  | 7.970   | 0.17   |
| 173  | W12X30   | W12X30   | 0.020  | 1.000     | 0.020         | Eq.H1-1b | 27  | 8.790              | 238.000 | 20.300  | 0.45   |
| 174  | W12X30   | W12X30   | 0.021  | 1.000     | 0.021         | Eq.H1-1b | 9   | 8.790              | 238.000 | 20.300  | 0.45   |
| 175  | W12X30   | W12X30   | 0.020  | 1.000     | 0.020         | Eq.H1-1b | 27  | 8.790              | 238.000 | 20.300  | 0.45   |
| 176  | W12X30   | W12X30   | 0.023  | 1.000     | 0.023         | Eq.H1-1b | 27  | 8.790              | 238.000 | 20.300  | 0.45   |
| 177  | W12X30   | W12X30   | 0.019  | 1.000     | 0.019         | Eq.H1-1b | 9   | 8.790              | 238.000 | 20.300  | 0.45   |
| 178  | W12X30   | W12X30   | 0.021  | 1.000     | 0.021         | Eq.H1-1b | 9   | 8.790              | 238.000 | 20.300  | 0.45   |
| 179  | W12X30   | W12X30   | 0.026  | 1.000     | 0.026         | CI.D2    | 26  | 8.790              | 238.000 | 20.300  | 0.45   |
| 180  | W12X30   | W12X30   | 0.026  | 1.000     | 0.026         | CI.D2    | 26  | 8.790              | 238.000 | 20.300  | 0.45   |
| 181  | W21X50   | W21X50   | 0.140  | 1.000     | 0.140         |          |     | 32.311             | 2.78E+3 | 4.39E+3 | 3.09E+ |
| 182  | W21X50   | W21X50   | 0.141  | 1.000     | 0.141         |          |     | 32.311             | 2.78E+3 | 4.39E+3 | 3.09E+ |
| 183  | W21X50   | W21X50   | 0.079  | 1.000     | 0.079         |          |     | 23.121             | 2.18E+3 | 501.996 | 1.55E+ |
| 184  | W21X50   | W21X50   | 0.080  | 1.000     | 0.080         |          |     | 23.121             | 2.18E+3 | 501.994 | 1.55E+ |
| 185  | W8X18    | W8X18    | 0.029  | 1.000     | 0.029         |          |     | 22.458             | 370.637 | 4.07E+3 | 1.1E+  |
| 186  | W8X18    | W8X18    | 0.017  | 1.000     | 0.017         |          |     | 22.458             | 370.637 | 4.07E+3 | 1.1E+  |
| 187  | W8X18    | W8X18    | 0.029  | 1.000     | 0.029         |          |     | 22.458             | 370.637 | 4.07E+3 | 1.1E+  |
| 188  | W8X18    | W8X18    | 0.017  | 1.000     | 0.017         |          |     | 22.458             | 370.637 | 4.07E+3 | 1.1E+  |
| 189  | W8X18    | W8X18    | 0.029  | 1.000     | 0.029         |          |     | 22.458             | 370.637 | 4.07E+3 | 1.1E+  |
| 190  | W8X18    | W8X18    | 0.017  | 1.000     | 0.017         |          |     | 22.458             | 370.637 | 4.07E+3 | 1.1E+  |
| 191  | W8X18    | W8X18    | 0.029  | 1.000     | 0.029         |          |     | 22.458             | 370.637 | 4.07E+3 | 1.1E+  |
| 192  | W8X18    | W8X18    | 0.017  | 1.000     | 0.017         |          | - Y | 22.458             | 370.637 | 4.07E+3 | 1.1E+  |
| 193  | W21X50   | W21X50   | 0.316  | 1.000     | 0.316         |          |     | 32.311             | 2.78E+3 | 4.39E+3 | 3.09E+ |
| 194  | W21X50   | W21X50   | 0.281  | 1.000     | 0.281         |          |     | 32.311             | 2.78E+3 | 4.39E+3 | 3.09E+ |
| 195  | W21X50   | W21X50   | 0.316  | 1.000     | 0.316         |          |     | 32.311             | 2.78E+3 | 4.39E+3 | 3.09E+ |
| 196  | W21X50   | W21X50   | 0.314  | 1.000     | 0.314         |          |     | 32.311             | 2.78E+3 | 4.39E+3 | 3.09E+ |
| 197  | W21X50   | W21X50   | 0.228  | 1.000     | 0.228         |          |     | 32.311             | 2.78E+3 | 4.39E+3 | 3.09E+ |
| 198  | W21X50   | W21X50   | 0.171  | 1.000     | 0.171         |          |     | 18.414             | 1.65E+3 | 65.837  | 761.69 |

| Bentley                                                                      | <sub>Јов No</sub><br><b>50164392</b> | Sheet No 23          |           | Rev 2     |
|------------------------------------------------------------------------------|--------------------------------------|----------------------|-----------|-----------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                                 | *                    |           |           |
| Job Title West Hartford Relo CT                                              | Ref                                  |                      |           |           |
|                                                                              | By AMD                               | Date7/10/2023        | Chd BGI   | K         |
| Client Verizon                                                               | File Clock Tower (Co                 | omposite i Dale/Time | 12-Jul-20 | )23 12:18 |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause   | L/C | Ax     | lz      | Тy                 | lx                 |
|------|----------|----------|--------|-----------|---------------|----------|-----|--------|---------|--------------------|--------------------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |          |     | (in²)  | (in⁴)   | (in <sup>4</sup> ) | (in <sup>4</sup> ) |
| 199  | W21X50   | W21X50   | 0.231  | 1.000     | 0.231         |          |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3            |
| 200  | W21X50   | W21X50   | 0.183  | 1.000     | 0.183         |          |     | 18.414 | 1.65E+3 | 65.835             | 761.689            |
| 201  | HSST4X4  | HSST4X4  | 0.040  | 1.000     | 0.040         | CI.E3    | 27  | 3.370  | 7.800   | 7.800              | 12.800             |
| 202  | HSST4X4  | HSST4X4  | 0.010  | 1.000     | 0.010         | Cl.E3    | 7   | 3.370  | 7.800   | 7.800              | 12.800             |
| 203  | HSST4X4  | HSST4X4  | 0.017  | 1.000     | 0.017         | CI.E3    | 26  | 3.370  | 7.800   | 7.800              | 12.800             |
| 204  | HSST4X4  | HSST4X4  | 0.028  | 1.000     | 0.028         | CI.E3    | 27  | 3.370  | 7.800   | 7.800              | 12.800             |
| 205  | HSST4X4  | HSST4X4  | 0.018  | 1.000     | 0.018         | CI.E3    | 31  | 3.370  | 7.800   | 7.800              | 12.800             |
| 206  | HSST4X4  | HSST4X4  | 0.025  | 1.000     | 0.025         | CI.E3    | 31  | 3.370  | 7.800   | 7.800              | 12.800             |
| 207  | HSST4X4  | HSST4X4  | 0.029  | 1.000     | 0.029         | CI.E3    | 27  | 3.370  | 7.800   | 7.800              | 12.800             |
| 208  | HSST4X4  | HSST4X4  | 0.027  | 1.000     | 0.027         | CI.E3    | 27  | 3.370  | 7.800   | 7.800              | 12.800             |
| 209  | HSST4X4  | HSST4X4  | 0.017  | 1.000     | 0.017         | CI.E3    | 30  | 3.370  | 7.800   | 7.800              | 12.800             |
| 210  | HSST4X4  | HSST4X4  | 0.019  | 1.000     | 0.019         | CI.E3    | 26  | 3.370  | 7.800   | 7.800              | 12.800             |
| 212  | HSST4X4  | HSST4X4  | 0.010  | 1.000     | 0.010         | CI.E3    | 32  | 3.370  | 7.800   | 7.800              | 12.800             |
| 213  | HSST4X4  | HSST4X4  | 0.022  | 1.000     | 0.022         | CI.E3    | 27  | 3.370  | 7.800   | 7.800              | 12.800             |
| 214  | HSST4X4  | HSST4X4  | 0.018  | 1.000     | 0.018         | CI.E3    | 26  | 3.370  | 7.800   | 7.800              | 12.800             |
| 215  | HSST4X4  | HSST4X4  | 0.036  | 1.000     | 0.036         | CI.E3    | 26  | 3.370  | 7.800   | 7.800              | 12.800             |
| 216  | HSST4X4  | HSST4X4  | 0.038  | 1.000     | 0.038         | CI.E3    | 26  | 3.370  | 7.800   | 7.800              | 12.800             |
| 217  | HSST4X4  | HSST4X4  | 0.019  | 1.000     | 0.019         | CI.E3    | 30  | 3.370  | 7.800   | 7.800              | 12.800             |
| 218  | W21X50   | W21X50   | 0.259  | 1.000     | 0.259         |          |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3            |
| 219  | W21X50   | W21X50   | 0.264  | 1.000     | 0.264         |          |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3            |
| 220  | W12X30   | W12X30   | 0.070  | 1.000     | 0.070         |          |     | 21.224 | 831.408 | 1.56E+3            | 1.13E+3            |
| 221  | W21X50   | W21X50   | 0.322  | 1.000     | 0.322         |          |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3            |
| 222  | W21X50   | W21X50   | 0.322  | 1.000     | 0.322         |          |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3            |
| 223  | W12X30   | W12X30   | 0.100  | 1.000     | 0.100         |          |     | 21.224 | 831.407 | 1.56E+3            | 1.13E+3            |
| 224  | W21X50   | W21X50   | 0.214  | 1.000     | 0.214         |          |     | 18.414 | 1.65E+3 | 65.837             | 761.699            |
| 225  | W12X30   | W12X30   | 0.118  | 1.000     | 0.118         |          |     | 21.224 | 831.408 | 1.56E+3            | 1.13E+3            |
| 226  | W12X30   | W12X30   | 0.125  | 1.000     | 0.125         |          |     | 26.398 | 916.217 | 4.38E+3            | 1.64E+3            |
| 227  | W12X30   | W12X30   | 0.118  | 1.000     | 0.118         |          |     | 21.224 | 831.407 | 1.56E+3            | 1.13E+3            |
| 228  | W12X30   | W12X30   | 0.183  | 1.000     | 0.183         |          |     | 26.398 | 916.217 | 4.38E+3            | 1.64E+3            |
| 229  | W21X50   | W21X50   | 0.215  | 1.000     | 0.215         |          |     | 18.414 | 1.65E+3 | 65.835             | 761.689            |
| 230  | W12X30   | W12X30   | 0.164  | 1.000     | 0.164         |          |     | 26.398 | 916.217 | 4.38E+3            | 1.64E+3            |
| 231  | W21X50   | W21X50   | 0.180  | 1.000     | 0.180         |          |     | 18.414 | 1.65E+3 | 65.837             | 761.699            |
| 232  | W12X30   | W12X30   | 0.161  | 1.000     | 0.161         |          |     | 21.224 | 831.408 | 1.56E+3            | 1.13E+3            |
| 233  | W12X30   | W12X30   | 0.092  | 1.000     | 0.092         |          |     | 26.398 | 916.217 | 4.38E+3            | 1.64E+3            |
| 234  | W12X30   | W12X30   | 0.161  | 1.000     | 0.161         |          |     | 21.224 | 831.407 | 1.56E+3            | 1.13E+3            |
| 235  | W12X30   | W12X30   | 0.182  | 1.000     | 0.182         |          |     | 26.398 | 916.217 | 4.38E+3            | 1.64E+3            |
| 236  | W21X50   | W21X50   | 0.181  | 1.000     | 0.181         |          |     | 18.414 | 1.65E+3 | 65.835             | 761.689            |
| 237  | W12X30   | W12X30   | 0.164  | 1.000     | 0.164         |          |     | 26.398 | 916.217 | 4.38E+3            | 1.64E+3            |
| 238  | HSST6X6  | HSST6X6  | 0.136  | 1.000     | 0.136         | Eq.H1-1b | 8   | 5.240  | 28.600  | 28.600             | 45.600             |
| 239  | HSST6X6  | HSST6X6  | 0.047  | 1.000     | 0.047         | Cl.E3    | 30  | 5.240  | 28.600  | 28.600             | 45.600             |
| 240  | HSST6X6  | HSST6X6  | 0.036  | 1.000     | 0.036         | CI.E3    | 9   | 5.240  | 28.600  | 28.600             | 45.600             |
| 241  | HSST6X6  | HSST6X6  | 0.030  | 1.000     | 0.030         | CI.E3    | 9   | 5.240  | 28.600  | 28.600             | 45.600             |
| 242  | HSST6X6  | HSST6X6  | 0.225  | 1.000     | 0.225         | Eq.H1-1b | 26  | 5.240  | 28.600  | 28.600             | 45.600             |
| 243  | HSST6X6  | HSST6X6  | 0.062  | 1.000     | 0.062         | CI.E3    | 22  | 5.240  | 28.600  | 28.600             | 45.600             |
| 244  | HSST6X6  | HSST6X6  | 0.037  | 1.000     | 0.037         | CI.E3    | 22  | 5.240  | 28.600  | 28.600             | 45.600             |

| Bentley                                                                      | Job No<br>50164392  | Sheet No 24                    | Rev<br>2   |
|------------------------------------------------------------------------------|---------------------|--------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                |                                |            |
| Job Title West Hartford Relo CT                                              | Ref                 |                                |            |
|                                                                              | By AMD              | Date7/10/2023 Chd BC           |            |
| Client Verizon                                                               | File Clock Tower (C | composite i Date/Time 12-Jul-2 | 2023 12:18 |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause                  | L/C | Ax    | Ìz                 | ly     | lx                 |
|------|----------|----------|--------|-----------|---------------|-------------------------|-----|-------|--------------------|--------|--------------------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |                         |     | (in²) | (in <sup>4</sup> ) | (in⁴)  | (in <sup>4</sup> ) |
| 245  | HSST6X6  | HSST6X6  | 0.031  | 1.000     | 0.031         | CI.E3                   | 9   | 5.240 | 28.600             | 28.600 | 45.600             |
| 246  | HSST6X6  | HSST6X6  | 0.228  | 1.000     | 0.228         | Eq.H1-1b                | 27  | 5.240 | 28.600             | 28.600 | 45.600             |
| 247  | HSST6X6  | HSST6X6  | 0.062  | 1.000     | 0.062         | CI.E3                   | 22  | 5.240 | 28.600             | 28.600 | 45.600             |
| 248  | HSST6X6  | HSST6X6  | 0.038  | 1.000     | 0.038         | CI.E3                   | 22  | 5.240 | 28.600             | 28.600 | 45.600             |
| 249  | HSST6X6  | HSST6X6  | 0.030  | 1.000     | 0.030         | CI.E3                   | 9   | 5.240 | 28.600             | 28.600 | 45.600             |
| 250  | HSST6X6  | HSST6X6  | 0.230  | 1.000     | 0.230         | Eq.H1-1b                | 27  | 5.240 | 28.600             | 28.600 | 45.600             |
| 251  | HSST6X6  | HSST6X6  | 0.062  | 1.000     | 0.062         | CI.E3                   | 23  | 5.240 | 28.600             | 28.600 | 45.600             |
| 252  | HSST6X6  | HSST6X6  | 0.038  | 1.000     | 0.038         | CI.E3                   | 23  | 5.240 | 28.600             | 28.600 | 45.600             |
| 253  | HSST6X6  | HSST6X6  | 0.030  | 1.000     | 0.030         | CI.E3                   | 9   | 5.240 | 28.600             | 28.600 | 45.600             |
| 267  | HSST6X3  | HSST6X3  | 0.016  | 1.000     | 0.016         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 269  | HSST6X3  | HSST6X3  | 0.016  | 1.000     | 0.016         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 271  | HSST6X3  | HSST6X3  | 0.016  | 1.000     | 0.016         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 273  | HSST6X3  | HSST6X3  | 0.016  | 1.000     | 0.016         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 275  | C8X11    | C8X11    | 0.013  | 1.000     | 0.013         | Eq.H1-1b                | 22  | 3.370 | 32.500             | 1.310  | 0.130              |
| 279  | HSST6X3  | HSST6X3  | 0.016  | 1.000     | 0.016         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 280  | C8X11    | C8X11    | 0.013  | 1.000     | 0.013         | Eq.H1-1b                | 23  | 3.370 | 32.500             | 1.310  | 0.130              |
| 281  | C8X11    | C8X11    | 0.012  | 1.000     | 0.012         | Eq.H1-1b                | 9   | 3.370 | 32.500             | 1.310  | 0.130              |
| 282  | C8X11    | C8X11    | 0.011  | 1.000     | 0.011         | Eq.H1-1b                | 9   | 3.370 | 32.500             | 1.310  | 0.130              |
| 283  | HSST6X3  | HSST6X3  | 0.016  | 1.000     | 0.016         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 284  | HSST6X3  | HSST6X3  | 0.016  | 1.000     | 0.016         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 285  | HSST6X3  | HSST6X3  | 0.016  | 1.000     | 0.016         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 286  | HSST6X3  | HSST6X3  | 0.007  | 1.000     | 0.007         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 287  | HSST6X3  | HSST6X3  | 0.007  | 1.000     | 0.007         | Eq.H1-1b                | 9   | 3.840 | 17.000             | 5.700  | 14.200             |
| 288  | HSST6X3  | HSST6X3  | 0.009  | 1.000     | 0.009         | Eq.H1-1b                | 23  | 3.840 | 17.000             | 5.700  | 14.200             |
| 289  | HSST6X3  | HSST6X3  | 0.010  | 1.000     | 0.010         | Eq.H1-1b                | 22  | 3.840 | 17.000             | 5.700  | 14.200             |
| 290  | HSST6X3  | HSST6X3  | 0.026  | 1.000     | 0.026         | Eq.H1-1b                | 10  | 3.840 | 17.000             | 5.700  | 14.200             |
| 291  | HSST6X3  | HSST6X3  | 0.026  | 1.000     | 0.026         | Eq.H1-1b                | 10  | 3.840 | 17.000             | 5.700  | 14.200             |
| 292  | HSST6X3  | HSST6X3  | 0.029  | 1.000     | 0.029         | Eq.H1-1b                | 23  | 3.840 | 17.000             | 5.700  | 14.200             |
| 293  | HSST6X3  | HSST6X3  | 0.029  | 1.000     | 0.029         | Eq.H1-1b                | 22  | 3.840 | 17.000             | 5.700  | 14.200             |
| 294  | HSST6X3  | HSST6X3  | 0.057  | 1,000     | 0.057         | Eq.H1-1b                | 23  | 3.840 | 17.000             | 5.700  | 14.200             |
| 295  | HSST6X3  | HSST6X3  | 0.057  | 1.000     | 0.057         | Eq.H1-1b                | 22  | 3.840 | 17.000             | 5.700  | 14.200             |
| 296  | HSST6X3  | HSST6X3  | 0.036  | 1.000     | 0.036         | Eq.H1-1b                | 8   | 3.840 | 17.000             | 5.700  | 14.200             |
| 297  | HSST6X3  | HSST6X3  | 0.037  | 1.000     | 0.037         | Eq.H1-1b                | 7   | 3.840 | 17.000             | 5.700  | 14.200             |
| 299  | HSST6X3  | HSST6X3  | 0.050  | 1.000     | 0.050         | Eq.H1-1b                | 22  | 3.840 | 17,000             | 5.700  | 14.200             |
| 300  | C8X11    | C8X11    | 0.028  | 1.000     | 0.028         | Eq.H1-1b                | 23  | 3.370 | 32.500             | 1.310  | 0.130              |
| 301  | HSST6X3  | HSST6X3  | 0.056  | 1.000     | 0.056         | Eq.H1-1b                | 23  | 3.840 | 17.000             | 5.700  | 14.200             |
| 303  | HSST6X3  | HSST6X3  | 0.050  | 1.000     | 0.050         | Eq.H1-1b                | 23  | 3.840 | 17.000             | 5.700  | 14.200             |
|      | C8X11    | C8X11    | 0.029  | 1.000     | 0.029         | Eq.H1-1b                | 22  | 3.370 | 32.500             | 1.310  | 0.130              |
| 304  | HSST6X3  | HSST6X3  | 0.029  | 1.000     | 0.056         | Eq.H1-1b                | 22  | 3.840 | 17.000             | 5.700  | 14.200             |
| 305  | HSST6X3  | HSST6X3  | 0.056  | 1.000     | 0.056         | Eq.H1-1b                | 23  | 3.840 | 17.000             | 5.700  | 14.200             |
| 307  |          | C8X11    | 0.030  | 1.000     | 0.020         | Eq.H1-1b                | 23  | 3.370 | 32.500             | 1.310  | 0.130              |
| 308  | C8X11    | HSST6X3  | 0.020  | 1.000     | 0.050         | Eq.H1-1b                | 22  | 3.840 | 17.000             | 5.700  | 14.200             |
| 309  | HSST6X3  |          | 0.056  | 1.000     | 0.056         | Eq.H1-1b                | 22  | 3.840 | 17.000             | 5.700  | 14.200             |
| 311  | HSST6X3  | HSST6X3  | 0.036  | 1.000     | 0.030         | Eq.H1-1b                | 22  | 3.370 | 32.500             | 1.310  | 0.130              |
| 312  | C8X11    | C8X11    | 0.020  | 1.000     | 0.020         |                         | 23  | 3.840 | 17.000             | 5.700  | 14.200             |
| 313  | HSST6X3  | HSST6X3  | 0.051  | 1.000     | 0.031         | _ <u>_q.i i i i i i</u> |     | 0.040 |                    |        |                    |

| Bentley                                                                      | Job No Sheet No 25 Rev 2                                  |
|------------------------------------------------------------------------------|-----------------------------------------------------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                                                      |
| Job Title West Hartford Relo CT                                              | Ref                                                       |
|                                                                              | By AMD Date7/10/2023 Chd BGK                              |
| Client Verizon                                                               | File Clock Tower (Composite F Date/Time 12-Jul-2023 12:18 |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause   | L/C | Ax                 | lz     | ly     | lx     |
|------|----------|----------|--------|-----------|---------------|----------|-----|--------------------|--------|--------|--------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |          |     | (in <sup>2</sup> ) | (in⁴)  | (in⁴)  | (in⁴)  |
| 315  | HSST6X3  | HSST6X3  | 0.037  | 1.000     | 0.037         | Eq.H1-1b | 10  | 3.840              | 17.000 | 5.700  | 14.200 |
| 316  | C8X11    | C8X11    | 0.015  | 1.000     | 0.015         | Eq.H1-1b | 23  | 3.370              | 32.500 | 1.310  | 0.130  |
| 317  | HSST6X3  | HSST6X3  | 0.036  | 1.000     | 0.036         | Eq.H1-1b | 10  | 3.840              | 17.000 | 5.700  | 14.200 |
| 319  | HSST6X3  | HSST6X3  | 0.036  | 1.000     | 0.036         | Eq.H1-1b | 10  | 3.840              | 17.000 | 5.700  | 14.200 |
| 320  | C8X11    | C8X11    | 0.015  | 1.000     | 0.015         | Eq.H1-1b | 22  | 3.370              | 32.500 | 1.310  | 0.130  |
| 321  | HSST6X3  | HSST6X3  | 0.036  | 1.000     | 0.036         | Eq.H1-1b | 10  | 3.840              | 17.000 | 5.700  | 14.200 |
| 323  | HSST6X3  | HSST6X3  | 0.036  | 1.000     | 0.036         | Eq.H1-1b | 10  | 3.840              | 17.000 | 5.700  | 14.200 |
| 324  | C8X11    | C8X11    | 0.012  | 1.000     | 0.012         | Eq.H1-1b | 22  | 3.370              | 32.500 | 1.310  | 0.130  |
| 325  | HSST6X3  | HSST6X3  | 0.036  | 1.000     | 0.036         | Eq.H1-1b | 10  | 3.840              | 17.000 | 5.700  | 14.200 |
| 327  | HSST6X3  | HSST6X3  | 0.036  | 1.000     | 0.036         | Eq.H1-1b | 10  | 3.840              | 17.000 | 5.700  | 14.200 |
| 328  | C8X11    | C8X11    | 0.012  | 1.000     | 0.012         | Eq.H1-1b | 10  | 3.370              | 32.500 | 1.310  | 0.130  |
| 329  | HSST6X3  | HSST6X3  | 0.036  | 1.000     | 0.036         | Eq.H1-1b | 10  | 3.840              | 17.000 | 5.700  | 14.200 |
| 330  | HSST6X6  | HSST6X6  | 0.073  | 1.000     | 0.073         | CI.D2    | 7   | 5.240              | 28.600 | 28.600 | 45.600 |
| 331  | HSST6X6  | HSST6X6  | 0.061  | 1.000     | 0.061         | CI.E3    | 30  | 5.240              | 28.600 | 28.600 | 45.600 |
| 332  | HSST6X6  | HSST6X6  | 0.125  | 1.000     | 0.125         | CI.E3    | 22  | 5.240              | 28.600 | 28.600 | 45.600 |
| 333  | HSST6X6  | HSST6X6  | 0.092  | 1.000     | 0.092         | CI.E3    | 22  | 5.240              | 28.600 | 28.600 | 45.600 |
| 334  | HSST6X6  | HSST6X6  | 0.126  | 1.000     | 0.126         | CI.E3    | 22  | 5.240              | 28.600 | 28.600 | 45.600 |
| 335  | HSST6X6  | HSST6X6  | 0.093  | 1.000     | 0.093         | Cl.E3    | 22  | 5.240              | 28.600 | 28.600 | 45.600 |
| 336  | HSST6X6  | HSST6X6  | 0.126  | 1.000     | 0.126         | CI.E3    | 23  | 5.240              | 28.600 | 28.600 | 45.600 |
| 337  | HSST6X6  | HSST6X6  | 0.093  | 1.000     | 0.093         | CI.E3    | 23  | 5.240              | 28.600 | 28.600 | 45.600 |
| 338  | HSST6X3  | HSST6X3  | 0.067  | 1.000     | 0.067         | Eq.H1-1b | 27  | 3.840              | 17.000 | 5.700  | 14.200 |
| 339  | HSST6X3  | HSST6X3  | 0.065  | 1.000     | 0.065         | Eq.H1-1b | 26  | 3.840              | 17.000 | 5.700  | 14.200 |
| 340  | HSST6X3  | HSST6X3  | 0.068  | 1.000     | 0.068         | Eq.H1-1b | 27  | 3.840              | 17.000 | 5.700  | 14.200 |
| 341  | HSST6X3  | HSST6X3  | 0.065  | 1.000     | 0.065         | Eq.H1-1b | 26  | 3.840              | 17.000 | 5.700  | 14.200 |
| 342  | HSST6X3  | HSST6X3  | 0.056  | 1.000     | 0.056         | Eq.H1-1b | 27  | 3.840              | 17.000 | 5.700  | 14.200 |
| 343  | HSST6X3  | HSST6X3  | 0.056  | 1.000     | 0.056         | Eq.H1-1b | 22  | 3.840              | 17.000 | 5.700  | 14.200 |
| 344  | HSST6X3  | HSST6X3  | 0.056  | 1.000     | 0.056         | Eq.H1-1b | 27  | 3.840              | 17.000 | 5.700  | 14.200 |
| 345  | HSST6X3  | HSST6X3  | 0.056  | 1.000     | 0.056         | Eq.H1-1b | 22  | 3.840              | 17.000 | 5.700  | 14.200 |
| 346  | HSST2X2  | HSST2X2  | 0.139  | 1.000     | 0.139         | CI.D2    | 8   | 0.840              | 0.486  | 0.486  | 0.796  |
| 347  | HSST2X2  | HSST2X2  | 0.331  | 1.000     | 0.331         | Eq.H1-1a | 23  | 0.840              | 0.486  | 0.486  | 0.796  |
| 348  | HSST2X2  | HSST2X2  | 0.329  | 1.000     | 0.329         | Eq.H1-1a | 22  | 0.840              | 0.486  | 0.486  | 0.796  |
| 349  | HSST2X2  | HSST2X2  | 0.140  | 1.000     | 0.140         | CI.D2    | 7   | 0.840              | 0.486  | 0.486  | 0.796  |
| 350  | HSST2X2  | HSST2X2  | 0.139  | 1.000     | 0.139         | CI.D2    | 8   | 0.840              | 0.486  | 0.486  | 0.796  |
| 351  | HSST2X2  | HSST2X2  | 0.330  | 1.000     | 0.330         | Eq.H1-1a | 23  | 0.840              | 0.486  | 0.486  | 0.796  |
| 352  | HSST2X2  | HSST2X2  | 0.329  | 1.000     | 0.329         | Eq.H1-1a | 22  | 0.840              | 0.486  | 0.486  | 0.796  |
| 353  | HSST2X2  | HSST2X2  | 0.139  | 1.000     | 0.139         | CI.D2    | 7   | 0.840              | 0.486  | 0.486  | 0.796  |
| 354  | HSST2X2  | HSST2X2  | 0.117  | 1.000     | 0.117         | CI.D2    | 8   | 0.840              | 0.486  | 0.486  | 0.796  |
| 355  | HSST2X2  | HSST2X2  | 0.299  | 1.000     | 0.299         | Eq.H1-1a | 27  | 0.840              | 0.486  | 0.486  | 0.796  |
| 356  | HSST2X2  | HSST2X2  | 0.332  | 1.000     | 0.332         | Eq.H1-1a | 26  | 0.840              | 0.486  | 0.486  | 0.796  |
| 357  | HSST2X2  | HSST2X2  | 0.119  | 1.000     | 0.119         | Cl.D2    | 7   | 0.840              | 0.486  | 0.486  | 0.796  |
| 358  | HSST2X2  | HSST2X2  | 0.143  | 1.000     | 0.143         | Cl.E3    | 23  | 0.840              | 0.486  | 0.486  | 0.796  |
| 359  | HSST2X2  | HSST2X2  | 0.299  | 1.000     | 0.299         | Eq.H1-1a | 26  | 0.840              | 0.486  | 0.486  | 0.796  |
| 360  | HSST2X2  | HSST2X2  | 0.141  | 1.000     | 0.141         | CI.E3    | 22  | 0.840              | 0.486  | 0.486  | 0.796  |
| 361  | HSST2X2  | HSST2X2  | 0.296  | 1.000     | 0.296         | Eq.H1-1a | 27  | 0.840              | 0.486  | 0.486  | 0.796  |
| 362  | HSST2X2  | HSST2X2  | 0.308  | 1.000     | 0.308         | Eq.H1-1a | 22  | 0.840              | 0.486  | 0.486  | 0.796  |

| Bentley                                                                      | Job No<br>50164392  | Sheet No 26                   | Rev<br>2   |
|------------------------------------------------------------------------------|---------------------|-------------------------------|------------|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                |                               |            |
| Job Title West Hartford Relo CT                                              | Ref                 |                               |            |
|                                                                              | By AMD              | Date7/10/2023 Chd BG          | K          |
| Client Verizon                                                               | File Clock Tower (C | omposite F Date/Time 12-Jul-2 | 2023 12:18 |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause   | L/C | Ax    | lz                 | ly     | ix                 |
|------|----------|----------|--------|-----------|---------------|----------|-----|-------|--------------------|--------|--------------------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |          |     | (in²) | (in <sup>4</sup> ) | (in⁴)  | (in <sup>4</sup> ) |
| 363  | HSST2X2  | HSST2X2  | 0.132  | 1.000     | 0.132         | CI.D2    | 7   | 0.840 | 0.486              | 0.486  | 0.79               |
| 364  | HSST2X2  | HSST2X2  | 0.131  | 1.000     | 0.131         | Cl.D2    | 8   | 0.840 | 0.486              | 0.486  | 0.79               |
| 365  | HSST2X2  | HSST2X2  | 0.309  | 1.000     | 0.309         | Eq.H1-1a | 23  | 0.840 | 0.486              | 0.486  | 0.79               |
| 366  | HSST2X2  | HSST2X2  | 0.309  | 1.000     | 0.309         | Eq.H1-1a | 22  | 0.840 | 0.486              | 0.486  | 0.79               |
| 367  | HSST2X2  | HSST2X2  | 0.132  | 1.000     | 0.132         | Cl.D2    | 7   | 0.840 | 0.486              | 0.486  | 0.79               |
| 368  | HSST2X2  | HSST2X2  | 0.309  | 1.000     | 0.309         | Eq.H1-1a | 23  | 0.840 | 0.486              | 0.486  | 0.79               |
| 369  | HSST2X2  | HSST2X2  | 0.131  | 1.000     | 0.131         | Cl.D2    | 8   | 0.840 | 0.486              | 0.486  | 0.79               |
| 370  | HSST6X6  | HSST6X6  | 0.043  | 1.000     | 0.043         | CI.E3    | 30  | 5.240 | 28.600             | 28.600 | 45.60              |
| 371  | HSST6X6  | HSST6X6  | 0.032  | 1.000     | 0.032         | CI.E3    | 9   | 5.240 | 28.600             | 28.600 | 45.60              |
| 372  | HSST6X6  | HSST6X6  | 0.052  | 1.000     | 0.052         | CI.E3    | 22  | 5.240 | 28.600             | 28.600 | 45.60              |
| 373  | HSST6X6  | HSST6X6  | 0.034  | 1.000     | 0.034         | CI.E3    | 22  | 5.240 | 28.600             | 28.600 | 45.60              |
| 374  | HSST6X6  | HSST6X6  | 0.052  | 1.000     | 0.052         | CI.E3    | 22  | 5.240 | 28.600             | 28.600 | 45.60              |
| 375  | HSST6X6  | HSST6X6  | 0.033  | 1.000     | 0.033         | CI.E3    | 22  | 5.240 | 28.600             | 28.600 | 45.60              |
| 376  | HSST6X6  | HSST6X6  | 0.052  | 1.000     | 0.052         | Cl.E3    | 23  | 5.240 | 28.600             | 28.600 | 45.60              |
| 377  | HSST6X6  | HSST6X6  | 0.032  | 1.000     | 0.032         | CI.E3    | 23  | 5.240 | 28.600             | 28.600 | 45.60              |
| 378  | HSST6X3  | HSST6X3  | 0.014  | 1.000     | 0.014         | Eq.H1-1b | 23  | 3.840 | 17.000             | 5.700  | 14.20              |
| 379  | HSST6X3  | HSST6X3  | 0.014  | 1.000     | 0.014         | Eq.H1-1b | 22  | 3.840 | 17.000             | 5.700  | 14.20              |
| 380  | HSST6X3  | HSST6X3  | 0.014  | 1.000     | 0.014         | Eq.H1-1b | 23  | 3.840 | 17.000             | 5.700  | 14.2               |
| 381  | HSST6X3  | HSST6X3  | 0.014  | 1.000     | 0.014         | Eq.H1-1b | 22  | 3.840 | 17.000             | 5.700  | 14.2               |
| 382  | HSST2X2  | HSST2X2  | 0.053  | 1.000     | 0.053         | CI.E3    | 31  | 0.840 | 0.486              | 0.486  | 0.7                |
| 383  | HSST2X2  | HSST2X2  | 0.110  | 1.000     | 0.110         | CI.E3    | 23  | 0.840 | 0.486              | 0.486  | 0.7                |
| 384  | HSST2X2  | HSST2X2  | 0.123  | 1.000     | 0.123         | CI.E3    | 22  | 0.840 | 0.486              | 0.486  | 0.7                |
| 385  | HSST2X2  | HSST2X2  | 0.052  | 1.000     | 0.052         | CI.E3    | 30  | 0.840 | 0.486              | 0.486  | 0.7                |
| 386  | HSST2X2  | HSST2X2  | 0.053  | 1.000     | 0.053         | CI.E3    | 30  | 0.840 | 0.486              | 0.486  | 0.7                |
| 387  | HSST2X2  | HSST2X2  | 0.111  | 1.000     | 0.111         | CI.E3    | 22  | 0.840 | 0.486              | 0.486  | 0.7                |
| 388  | HSST2X2  | HSST2X2  | 0.053  | 1.000     | 0.053         | CI.E3    | 31  | 0.840 | 0.486              | 0.486  | 0.7                |
| 389  | HSST2X2  | HSST2X2  | 0.109  | 1.000     | 0.109         | Cl.E3    | 23  | 0.840 | 0.486              | 0.486  | 0.7                |
| 390  | HSST2X2  | HSST2X2  | 0.099  | 1.000     | 0.099         | Cl.E3    | 22  | 0.840 | 0.486              | 0.486  | 0.7                |
| 391  | HSST2X2  | HSST2X2  | 0.050  | 1.000     | 0.050         | CI.E3    | 30  | 0.840 | 0.486              | 0.486  | 0.7                |
| 392  | HSST2X2  | HSST2X2  | 0.097  | 1.000     | 0.097         | CI.E3    | 23  | 0.840 | 0.486              | 0.486  | 0.7                |
| 393  | HSST2X2  | HSST2X2  | 0.050  | 1.000     | 0.050         | CI.E3    | 31  | 0.840 | 0.486              | 0.486  | 0.7                |
| 394  | HSST2X2  | HSST2X2  | 0.049  | 1.000     | 0.049         | CI.E3    | 30  | 0.840 | 0.486              | 0.486  | 0.7                |
| 395  | HSST2X2  | HSST2X2  | 0.100  | 1.000     | 0.100         | CI.E3    | 22  | 0.840 | 0.486              | 0.486  | 0.7                |
| 396  | HSST2X2  | HSST2X2  | 0.098  | 1.000     | 0.098         | CI.E3    | 23  | 0.840 | 0.486              | 0.486  | 0.7                |
| 397  | HSST2X2  | HSST2X2  | 0.050  | 1.000     | 0.050         | CI.E3    | 31  | 0.840 | 0.486              | 0.486  | 0.7                |
| 398  | HSST6X3  | HSST6X3  | 0.006  | 1.000     | 0.006         | Eq.H1-1b | 22  | 3.840 | 17.000             | 5.700  | 14.2               |
| 399  | HSST6X3  | HSST6X3  | 0.005  | 1.000     | 0.005         | Eq.H1-1b | 23  | 3.840 | 17.000             | 5.700  | 14.2               |
| 400  | HSST6X3  | HSST6X3  | 0.006  | 1.000     | 0.006         |          | 22  | 3.840 | 17.000             | 5.700  | 14.2               |
| 400  | HSST6X3  | HSST6X3  | 0.006  | 1.000     | 0.006         | Eq.H1-1b | 23  | 3.840 | 17.000             | 5.700  | 14.2               |
|      | HSST2X2  | HSST2X2  | 0.050  | 1.000     | 0.050         | CI.E3    | 23  | 0.840 | 0.486              | 0.486  | 0.7                |
| 402  | HSST2X2  | HSST2X2  | 0.030  | 1.000     | 0.034         | CI.E3    | 31  | 0.840 | 0.486              | 0.486  | 0.7                |
| 403  |          |          | 0.054  | 1.000     | 0.051         | CI.E3    | 22  | 0.840 | 0.486              | 0.486  | 0.7                |
| 404  | HSST2X2  | HSST2X2  | 0.031  | 1.000     | 0.033         | CI.E3    | 30  | 0.840 | 0.486              | 0.486  | 0.7                |
| 405  | HSST2X2  | HSST2X2  | 0.033  | 1.000     | 0.033         | CI.E3    | 31  | 0.840 | 0.486              | 0.486  | 0.7                |
| 406  | HSST2X2  | HSST2X2  | 0.034  |           | 0.049         | CI.E3    | 23  | 0.840 | 0.486              | 0.486  | 0.7                |
| 407  | HSST2X2  | HSST2X2  | 0.049  | 1.000     | 0.049         | I OILLO  | 20  | 0.040 | 0.700              | 5,400  |                    |

| Bentley                                                                      | Job No Sheet No <b>27</b> Rev 2 |                               |           |  |  |  |
|------------------------------------------------------------------------------|---------------------------------|-------------------------------|-----------|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                            |                               | •         |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                             |                               |           |  |  |  |
|                                                                              | <sup>By</sup> AMD               | Date7/10/2023 Chd BG          | K         |  |  |  |
| Client Verizon                                                               | File Clock Tower (C             | omposite F Date/Time 12-Jul-2 | 023 12:18 |  |  |  |

| Beam | Analysis | Design   | Actual   | Allowabl∉ | Ratio         | Clause   | L/C | Ax    | lz     | ly     | lx    |
|------|----------|----------|----------|-----------|---------------|----------|-----|-------|--------|--------|-------|
|      | Property | Property | Ratio    | Ratio     | (Act./Allow.) |          |     | (in²) | (in⁴)  | (in⁴)  | (in⁴) |
| 408  | HSST2X2  | HSST2X2  | 0.032    | 1.000     | 0.032         | Cl.E3    | 30  | 0.840 | 0.486  | 0.486  | 0.79  |
| 409  | HSST2X2  | HSST2X2  | 0.052    | 1.000     | 0.052         | CI.E3    | 22  | 0.840 | 0.486  | 0.486  | 0.79  |
| 410  | HSST2X2  | HSST2X2  | 0.030    | 1.000     | 0.030         | CI.E3    | 30  | 0.840 | 0.486  | 0.486  | 0.79  |
| 411  | HSST2X2  | HSST2X2  | 0.048    | 1.000     | 0.048         | CI.E3    | 22  | 0.840 | 0.486  | 0.486  | 0.79  |
| 412  | HSST2X2  | HSST2X2  | 0.033    | 1.000     | 0.033         | CI.E3    | 31  | 0.840 | 0.486  | 0.486  | 0.79  |
| 413  | HSST2X2  | HSST2X2  | 0.045    | 1.000     | 0.045         | CI.E3    | 23  | 0.840 | 0.486  | 0.486  | 0.79  |
| 414  | HSST2X2  | HSST2X2  | 0.047    | 1.000     | 0.047         | Ci.E3    | 22  | 0.840 | 0.486  | 0.486  | 0.79  |
| 415  | HSST2X2  | HSST2X2  | 0.031    | 1.000     | 0.031         | Ci.E3    | 30  | 0.840 | 0.486  | 0.486  | 0.79  |
| 416  | HSST2X2  | HSST2X2  | 0.046    | 1.000     | 0.046         | CI.E3    | 23  | 0.840 | 0.486  | 0.486  | 0.79  |
| 418  | HSST2X2  | HSST2X2  | 0.031    | 1.000     | 0.031         | CI.E3    | 31  | 0.840 | 0.486  | 0.486  | 0.79  |
| 419  | HSST6X6  | HSST6X6  | 0.019    | 1.000     | 0.019         | CI.E3    | 9   | 5.240 | 28,600 | 28.600 | 45.60 |
| 421  | HSST6X6  | HSST6X6  | 0.019    | 1.000     | 0.019         | CI.E3    | 9   | 5.240 | 28.600 | 28.600 | 45.60 |
| 423  | HSST6X6  | HSST6X6  | 0.019    | 1.000     | 0.019         | Cl.E3    | 9   | 5.240 | 28.600 | 28.600 | 45.60 |
| 425  | HSST6X6  | HSST6X6  | 0.019    | 1.000     | 0.019         | Cl.E3    | 9   | 5.240 | 28.600 | 28.600 | 45.60 |
| 427  | HSST6X3  | HSST6X3  | 0.009    | 1.000     | 0.009         | CI.D2    | 9   | 3.840 | 17.000 | 5.700  | 14.20 |
| 428  | HSST6X3  | HSST6X3  | 0.010    | 1.000     | 0.010         | CI.D2    | 22  | 3.840 | 17.000 | 5.700  | 14.20 |
| 429  | HSST6X3  | HSST6X3  | 0.009    | 1.000     | 0.009         | CI.D2    | 23  | 3.840 | 17.000 | 5.700  | 14.20 |
| 430  | HSST6X3  | HSST6X3  | 0.009    | 1.000     | 0.009         | CI.D2    | 9   | 3.840 | 17.000 | 5.700  | 14.20 |
| 431  | HSST2X2  | HSST2X2  | 0.030    | 1.000     | 0.030         | CI.E3    | 23  | 0.840 | 0.486  | 0.486  | 0.79  |
| 432  | HSST2X2  | HSST2X2  | 0.026    | 1.000     | 0.026         | CI.E3    | 9   | 0.840 | 0.486  | 0.486  | 0.79  |
| 433  | HSST2X2  | HSST2X2  | 0.030    | 1.000     | 0.030         | CI.E3    | 22  | 0.840 | 0.486  | 0.486  | 0.79  |
| 434  | HSST2X2  | HSST2X2  | 0.026    | 1.000     | 0.026         | CI.E3    | 9   | 0.840 | 0.486  | 0.486  | 0.79  |
| 435  | HSST2X2  | HSST2X2  | 0.027    | 1.000     | 0.027         | CI.E3    | 9   | 0.840 | 0.486  | 0.486  | 0.79  |
| 436  | HSST2X2  | HSST2X2  | 0.029    | 1.000     | 0.029         | CI.E3    | 23  | 0.840 | 0.486  | 0.486  | 0.79  |
| 437  | HSST2X2  | HSST2X2  | 0.025    | 1.000     | 0.025         | CI.E3    | 9   | 0.840 | 0.486  | 0.486  | 0.79  |
| 438  | HSST2X2  | HSST2X2  | 0.031    | 1.000     | 0.031         | CI.E3    | 22  | 0.840 | 0.486  | 0.486  | 0.79  |
| 439  | HSST4X4  | HSST4X4  | 0.012    | 1.000     | 0.012         | Cl.D2    | 9   | 3.370 | 7.800  | 7.800  | 12.80 |
| 440  | HSST4X4  | HSST4X4  | 0.012    | 1.000     | 0.012         | Cl.D2    | 23  | 3.370 | 7.800  | 7.800  | 12.8  |
| 441  | HSST4X4  | HSST4X4  | 0.012    | 1.000     | 0.012         | Cl.D2    | 9   | 3.370 | 7.800  | 7.800  | 12.8  |
| 442  | HSST4X4  | HSST4X4  | 0.012    | 1.000     | 0.012         | CI.D2    | 23  | 3.370 | 7.800  | 7.800  | 12.8  |
| 443  | HSST4X4  | HSST4X4  | 0.012    | 1.000     | 0.012         | CI.D2    | 22  | 3.370 | 7.800  | 7.800  | 12.80 |
| 444  | HSST4X4  | HSST4X4  | 0.012    | 1.000     | 0.012         | CI.D2    | 9   | 3.370 | 7.800  | 7.800  | 12.80 |
| 445  | HSST4X4  | HSST4X4  | 0.012    | 1.000     | 0.012         | Cl.D2    | 9   | 3.370 | 7.800  | 7.800  | 12.80 |
| 446  | HSST4X4  | HSST4X4  | 0.012    | 1.000     | 0.012         | CI.D2    | 22  | 3.370 | 7.800  | 7.800  | 12.8  |
| 447  | HSST6X3  | HSST6X3  | 0.004    | 1.000     | 0.004         | CI.E3    | 23  | 3.840 | 17.000 | 5.700  | 14.20 |
| 448  | HSST6X3  | HSST6X3  | 0.003    | 1.000     | 0.003         | Cl.E3    | 23  | 3.840 | 17.000 | 5.700  | 14.2  |
| 449  | HSST6X3  | HSST6X3  | 0.004    | 1.000     | 0.004         | CI.E3    | 22  | 3.840 | 17.000 | 5.700  | 14.20 |
| 450  | HSST6X3  | HSST6X3  | 0.003    | 1.000     | 0.003         | -        | 22  | 3.840 | 17.000 | 5.700  | 14.20 |
| 451  | HSST2X2  | HSST2X2  | 0.009    | 1.000     | 0.009         | Eq.H1-1b | 22  | 0.840 | 0.486  | 0.486  | 0.79  |
| 452  | HSST2X2  | HSST2X2  | 0.009    | 1.000     | 0.009         | Eq.H1-1b | 9   | 0.840 | 0.486  | 0.486  | 0.79  |
| 453  | HSST2X2  | HSST2X2  | 0.009    | 1.000     | 0.009         | Eq.H1-1b | 22  | 0.840 | 0.486  | 0.486  | 0.79  |
| 454  | HSST2X2  | HSST2X2  | 0.009    | 1.000     | 0.009         | Eq.H1-1b | 9   | 0.840 | 0.486  | 0.486  | 0.79  |
|      | HSST2X2  | HSST2X2  | 0.009    | 1.000     | 0.009         | Eq.H1-1b | 23  | 0.840 | 0.486  | 0.486  | 0.79  |
|      |          |          | 0.009    | 1.000     | 0.009         | Eq.H1-1b | 9   | 0.840 | 0.486  | 0.486  | 0.79  |
| 456  | HSST2X2  | HSST2X2  | (110104) |           |               |          |     |       |        |        |       |

| Bentley                                                                      | Job No<br><b>50164392</b> | Sheet No 28                   | Rev<br>2   |  |  |  |
|------------------------------------------------------------------------------|---------------------------|-------------------------------|------------|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                      |                               |            |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                       |                               |            |  |  |  |
|                                                                              | By AMD                    | Date7/10/2023 Chd Bo          | GK         |  |  |  |
| Client Verizon                                                               | File Clock Tower (0       | Composite F Date/Time 12-Jul- | 2023 12:18 |  |  |  |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause   | L/C | Ax    | lz                 | ly    | lx                 |
|------|----------|----------|--------|-----------|---------------|----------|-----|-------|--------------------|-------|--------------------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |          | 1 1 | (in²) | (in <sup>4</sup> ) | (in⁴) | (in <sup>4</sup> ) |
| 458  | HSST2X2  | HSST2X2  | 0.009  | 1.000     | 0.009         | Eq.H1-1b | 9   | 0.840 | 0.486              | 0.486 | 0.796              |
| 459  | HSST4X4  | HSST4X4  | 0.030  | 1.000     | 0.030         | CI.E3    | 30  | 3.370 | 7.800              | 7.800 | 12.800             |
| 460  | HSST4X4  | HSST4X4  | 0.080  | 1.000     | 0.080         | Cl.E3    | 26  | 3.370 | 7.800              | 7.800 | 12.800             |
| 461  | HSST4X4  | HSST4X4  | 0.065  | 1.000     | 0.065         | CI.E3    | 27  | 3.370 | 7.800              | 7.800 | 12.800             |
| 462  | HSST4X4  | HSST4X4  | 0.053  | 1.000     | 0.053         | CI.E3    | 26  | 3.370 | 7.800              | 7.800 | 12.800             |
| 463  | HSST4X4  | HSST4X4  | 0.008  | 1.000     | 0.008         | CI.E3    | 31  | 3.370 | 7.800              | 7.800 | 12.800             |
| 464  | HSST4X4  | HSST4X4  | 0.051  | 1.000     | 0.051         | CI.E3    | 27  | 3.370 | 7.800              | 7.800 | 12.800             |
| 465  | HSST4X4  | HSST4X4  | 0.340  | 1.000     | 0.340         | CI.E3    | 27  | 3.370 | 7.800              | 7.800 | 12.800             |
| 466  | HSST4X4  | HSST4X4  | 0.165  | 1.000     | 0.165         | CI.E3    | 12  | 3.370 | 7.800              | 7.800 | 12.800             |
| 467  | HSST4X4  | HSST4X4  | 0.066  | 1.000     | 0.066         | CI.E3    | 26  | 3.370 | 7.800              | 7.800 | 12.800             |
| 468  | HSST4X4  | HSST4X4  | 0.032  | 1.000     | 0.032         | CI.E3    | 30  | 3.370 | 7.800              | 7.800 | 12.800             |
| 469  | HSST4X4  | HSST4X4  | 0.011  | 1.000     | 0.011         | CI.E3    | 36  | 3.370 | 7.800              | 7.800 | 12.800             |
| 470  | HSST4X4  | HSST4X4  | 0.049  | 1.000     | 0.049         | CI.E3    | 26  | 3.370 | 7.800              | 7.800 | 12.800             |
| 471  | HSST4X4  | HSST4X4  | 0.009  | 1.000     | 0.009         | CI.D2    | 27  | 3.370 | 7.800              | 7.800 | 12.800             |
| 472  | HSST4X4  | HSST4X4  | 0.047  | 1.000     | 0.047         | CI.E3    | 27  | 3.370 | 7.800              | 7.800 | 12.800             |
| 473  | HSST4X4  | HSST4X4  | 0.018  | 1.000     | 0.018         | CI.E3    | 26  | 3.370 | 7.800              | 7.800 | 12.800             |
| 474  | HSST4X4  | HSST4X4  | 0.045  | 1.000     | 0.045         | CI.E3    | 27  | 3.370 | 7.800              | 7.800 | 12.800             |
| 475  | HSST4X4  | HSST4X4  | 0.013  | 1.000     | 0.013         | CI.E3    | 36  | 3.370 | 7.800              | 7.800 | 12.800             |
| 476  | HSST4X4  | HSST4X4  | 0.070  | 1.000     | 0.070         | CI.E3    | 26  | 3.370 | 7.800              | 7.800 | 12.800             |
| 477  | HSST4X4  | HSST4X4  | 0.094  | 1.000     | 0.094         | CI.E3    | 27  | 3.370 | 7.800              | 7.800 | 12.800             |
| 478  | HSST4X4  | HSST4X4  | 0.041  | 1.000     | 0.041         | CI.E3    | 26  | 3.370 | 7.800              | 7.800 | 12.800             |
| 479  | HSST4X4  | HSST4X4  | 0.075  | 1.000     | 0.075         | Cl.E3    | 27  | 3.370 | 7.800              | 7.800 | 12.800             |
| 480  | HSST4X4  | HSST4X4  | 0.007  | 1.000     | 0.007         | Cl.D2    | 23  | 3.370 | 7.800              | 7.800 | 12.800             |
| 483  | C8X11    | C8X11    | 0.026  | 1.000     | 0.026         | Eq.H1-1b | 10  | 3.370 | 32.500             | 1.310 | 0.130              |
| 484  | C8X11    | C8X11    | 0.028  | 1.000     | 0.028         | Eq.H1-1b | 22  | 3.370 | 32.500             | 1.310 | 0.130              |
| 485  | C8X11    | C8X11    | 0.028  | 1.000     | 0.028         | Eq.H1-1b | 23  | 3.370 | 32.500             | 1.310 | 0.130              |
| 486  | C8X11    | C8X11    | 0.028  | 1.000     | 0.028         | Eq.H1-1b | 23  | 3.370 | 32.500             | 1.310 | 0.130              |
| 487  | HSST6X3  | HSST6X3  | 0.037  | 1.000     | 0.037         | Eq.H1-1b | 8   | 3.840 | 17.000             | 5.700 | 14.200             |
| 488  | HSST6X3  | HSST6X3  | 0.037  | 1.000     | 0.037         | Eq.H1-1b | 7   | 3.840 | 17.000             | 5.700 | 14.200             |
| 489  | HSST6X3  | HSST6X3  | 0.057  | 1.000     | 0.057         | Eq.H1-1b | 23  | 3.840 | 17.000             | 5.700 | 14.200             |
| 490  | HSST6X3  | HSST6X3  | 0.057  | 1.000     | 0.057         | Eq.H1-1b | 22  | 3.840 | 17.000             | 5.700 | 14.200             |
| 491  | C8X11    | C8X11    | 0.020  | 1.000     | 0.020         | Eq.H1-1b | 23  | 3.370 | 32.500             | 1.310 | 0.130              |
| 492  | HSST6X3  | HSST6X3  | 0.014  | 1.000     | 0.014         | Eq.H1-1b | 22  | 3.840 | 17.000             | 5.700 | 14.200             |
| 493  | C8X11    | C8X11    | 0.029  | 1.000     | 0.029         | Eg.H1-1b | 22  | 3.370 | 32.500             | 1.310 | 0.130              |
| 494  | HSST6X3  | HSST6X3  | 0.014  | 1.000     | 0.014         | Eq.H1-1b | 22  | 3.840 | 17.000             | 5.700 | 14,200             |
| 495  | C8X11    | C8X11    | 0.020  | 1.000     | 0.020         | Eq.H1-1b | 23  | 3.370 | 32.500             | 1.310 | 0.130              |
| 496  | HSST6X3  | HSST6X3  | 0.014  | 1.000     | 0.014         | Eq.H1-1b | 23  | 3.840 | 17.000             | 5.700 | 14.200             |
| 497  | C8X11    | C8X11    | 0.029  | 1.000     | 0.029         | Eq.H1-1b | 23  | 3.370 | 32.500             | 1.310 | 0.130              |
| 498  | HSST6X3  | HSST6X3  | 0.014  | 1.000     | 0.014         | Eq.H1-1b | 23  | 3.840 | 17.000             | 5.700 | 14.200             |
| 499  | C8X11    | C8X11    | 0.019  | 1.000     | 0.019         | Eq.H1-1b | 23  | 3.370 | 32.500             | 1.310 | 0.130              |
| 500  | C8X11    | C8X11    | 0.020  | 1.000     | 0.020         | Eq.H1-1b | 23  | 3.370 | 32.500             | 1.310 | 0.130              |
| 501  | C8X11    | C8X11    | 0.018  | 1.000     | 0.018         | Eq.H1-1b | 23  | 3.370 | 32.500             | 1.310 | 0.130              |
| 502  | C8X11    | C8X11    | 0.019  | 1.000     | 0.019         | Eq.H1-1b | 22  | 3.370 | 32.500             | 1.310 | 0.130<br>14.200    |
| 503  | HSST6X3  | HSST6X3  | 0.029  | 1.000     | 0.029         | Eq.H1-1b | 22  | 3.840 | 17.000             | 5.700 | 0.130              |
| 504  | C8X11    | C8X11    | 0.012  | 1.000     | 0.012         | Eq.H1-1b | 23  | 3.370 | 32.500             | 1.310 | 0.130              |

| Bentley                                                                      | Job No Sheet No 29 Rev 2 |                               |           |  |  |  |
|------------------------------------------------------------------------------|--------------------------|-------------------------------|-----------|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                     |                               |           |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                      |                               |           |  |  |  |
|                                                                              | By AMD                   | Date7/10/2023 Chd BG          | К         |  |  |  |
| Client Verizon                                                               | File Clock Tower (Co     | omposite i Date/Time 12-Jul-2 | 023 12:18 |  |  |  |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause   | L/C | Ax    | lz     | ly     | lx     |
|------|----------|----------|--------|-----------|---------------|----------|-----|-------|--------|--------|--------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |          |     | (in²) | (in⁴)  | (in⁴)  | (in⁴)  |
| 505  | HSST6X3  | HSST6X3  | 0.012  | 1.000     | 0.012         | Eq.H1-1b | 12  | 3.840 | 17.000 | 5.700  | 14.200 |
| 506  | HSST6X3  | HSST6X3  | 0.025  | 1.000     | 0.025         | Eq.H1-1b | 10  | 3.840 | 17.000 | 5.700  | 14.200 |
| 507  | C8X11    | C8X11    | 0.015  | 1.000     | 0.015         | Eq.H1-1b | 23  | 3.370 | 32.500 | 1.310  | 0.130  |
| 508  | HSST6X3  | HSST6X3  | 0.012  | 1.000     | 0.012         | Eq.H1-1b | 12  | 3.840 | 17.000 | 5.700  | 14.200 |
| 509  | HSST6X3  | HSST6X3  | 0.029  | 1.000     | 0.029         | Eq.H1-1b | 23  | 3.840 | 17.000 | 5.700  | 14.200 |
| 510  | C8X11    | C8X11    | 0.015  | 1.000     | 0.015         | Eq.H1-1b | 22  | 3.370 | 32.500 | 1.310  | 0.130  |
| 511  | HSST6X3  | HSST6X3  | 0.012  | 1.000     | 0.012         | Eq.H1-1b | 12  | 3.840 | 17.000 | 5.700  | 14.200 |
| 512  | HSST6X3  | HSST6X3  | 0.026  | 1.000     | 0.026         | Eq.H1-1b | 10  | 3.840 | 17.000 | 5.700  | 14.200 |
| 513  | C8X11    | C8X11    | 0.013  | 1.000     | 0.013         | Eq.H1-1b | 23  | 3.370 | 32.500 | 1.310  | 0.130  |
| 514  | HSST6X3  | HSST6X3  | 0.012  | 1.000     | 0.012         | Eq.H1-1b | 12  | 3.840 | 17.000 | 5.700  | 14.200 |
| 515  | C8X11    | C8X11    | 0.020  | 1.000     | 0.020         | CI.E3    | 22  | 3.370 | 32.500 | 1.310  | 0.130  |
| 516  | C8X11    | C8X11    | 0.021  | 1.000     | 0.021         | Cl.E3    | 23  | 3.370 | 32.500 | 1.310  | 0.130  |
| 517  | C8X11    | C8X11    | 0.016  | 1.000     | 0.016         | Cl.E3    | 31  | 3.370 | 32.500 | 1.310  | 0.130  |
| 518  | C8X11    | C8X11    | 0.020  | 1.000     | 0.020         | Cl.E3    | 22  | 3.370 | 32.500 | 1.310  | 0.130  |
| 519  | HSST6X3  | HSST6X3  | 0.009  | 1.000     | 0.009         | Eq.H1-1b | 22  | 3.840 | 17.000 | 5.700  | 14.200 |
| 520  | C8X11    | C8X11    | 0.012  | 1.000     | 0.012         | Eq.H1-1b | 9   | 3.370 | 32.500 | 1.310  | 0.130  |
| 521  | HSST6X3  | HSST6X3  | 0.002  | 1.000     | 0.002         | Eq.H1-1b | 9   | 3.840 | 17.000 | 5.700  | 14.200 |
| 522  | HSST6X3  | HSST6X3  | 0.006  | 1.000     | 0.006         | Eq.H1-1b | 9   | 3.840 | 17.000 | 5.700  | 14.200 |
| 523  | C8X11    | C8X11    | 0.013  | 1.000     | 0.013         | Eq.H1-1b | 23  | 3.370 | 32.500 | 1.310  | 0.130  |
| 524  | HSST6X3  | HSST6X3  | 0.003  | 1.000     | 0.003         | Eq.H1-1b | 9   | 3.840 | 17.000 | 5.700  | 14.200 |
| 525  | HSST6X3  | HSST6X3  | 0.009  | 1.000     | 0.009         | Eq.H1-1b | 23  | 3.840 | 17.000 | 5.700  | 14.200 |
| 526  | C8X11    | C8X11    | 0.013  | 1.000     | 0.013         | Eq.H1-1b | 22  | 3.370 | 32.500 | 1.310  | 0.130  |
| 527  | HSST6X3  | HSST6X3  | 0.002  | 1.000     | 0.002         | Eq.H1-1b | 9   | 3.840 | 17.000 | 5.700  | 14.200 |
| 528  | HSST6X3  | HSST6X3  | 0.007  | 1.000     | 0.007         | Eq.H1-1b | 9   | 3.840 | 17.000 | 5.700  | 14.200 |
| 529  | C8X11    | C8X11    | 0.012  | 1.000     | 0.012         | Eq.H1-1b | 9   | 3.370 | 32.500 | 1.310  | 0.130  |
| 530  | HSST6X3  | HSST6X3  | 0.003  | 1.000     | 0.003         | Eq.H1-1b | 9   | 3.840 | 17.000 | 5.700  | 14.200 |
| 531  | HSST4X4  | HSST4X4  | 0.134  | 1.000     | 0.134         | CI.E3    | 26  | 3.370 | 7.800  | 7.800  | 12.800 |
| 532  | HSST4X4  | HSST4X4  | 0.050  | 1.000     | 0.050         | CI.E3    | 30  | 3.370 | 7.800  | 7.800  | 12.800 |
| 533  | HSST4X4  | HSST4X4  | 0.109  | 1.000     | 0.109         | CI.E3    | 27  | 3.370 | 7.800  | 7.800  | 12.800 |
| 534  | HSST4X4  | HSST4X4  | 0.071  | 1.000     | 0.071         | Cl.E3    | 27  | 3.370 | 7.800  | 7.800  | 12.800 |
| 535  | HSST4X4  | HSST4X4  | 0.030  | 1.000     | 0.030         | Cl.E3    | 31  | 3.370 | 7.800  | 7.800  | 12.800 |
| 536  | HSST4X4  | HSST4X4  | 0.080  | 1.000     | 0.080         | CI.E3    | 27  | 3.370 | 7.800  | 7,800  | 12.800 |
| 537  | HSST4X4  | HSST4X4  | 0.157  | 1.000     | 0.157         | CI.E3    | 27  | 3.370 | 7.800  | 7.800  | 12.800 |
| 538  | HSST4X4  | HSST4X4  | 0.077  | 1.000     | 0.077         | CI.E3    | 26  | 3.370 | 7.800  | 7.800  | 12.800 |
| 539  | HSST4X4  | HSST4X4  | 0.058  | 1.000     | 0.058         | CI.E3    | 30  | 3.370 | 7.800  | 7.800  | 12.800 |
| 540  | HSST4X4  | HSST4X4  | 0.133  | 1.000     | 0.133         | CI.E3    | 26  | 3.370 | 7.800  | 7.800  | 12.800 |
| 541  | HSST4X4  | HSST4X4  | 0.274  | 1.000     | 0.274         | CI.E3    | 12  | 3.370 | 7.800  | 7.800  | 12.800 |
| 542  | HSST4X4  | HSST4X4  | 0.478  | 1.000     | 0.478         | CI.E3    | 27  | 3.370 | 7.800  | 7.800  | 12.800 |
| 583  | L60606   | N/A      |        |           |               |          |     | 4.380 | 6.203  | 24.571 | 0.205  |
| 584  | L60606   | N/A      |        |           |               |          |     | 4.380 | 6.203  | 24.571 | 0.205  |
| 585  | L60606   | N/A      |        |           |               |          |     | 4.380 | 6.203  | 24.571 | 0.205  |
| 586  | L60606   | N/A      |        |           |               |          |     | 4.380 | 6.203  | 24.571 | 0.205  |
| 587  | L60606   | N/A      |        |           |               |          |     | 4.380 | 6.203  | 24.571 | 0.205  |
| 588  | L60606   | N/A      |        |           |               |          |     | 4.380 | 6.203  | 24.571 | 0.205  |
| 589  | L60606   | N/A      |        |           |               |          |     | 4.380 | 6.203  | 24.571 | 0.205  |

| Bentley                                                                      | 50164392 Sheet No 30 |                               |           |  |  |  |
|------------------------------------------------------------------------------|----------------------|-------------------------------|-----------|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                 |                               |           |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                  |                               |           |  |  |  |
|                                                                              | <sup>By</sup> AMD    | Date7/10/2023 Chd BG          | K         |  |  |  |
| Client Verizon                                                               | File Clock Tower (C  | omposite i Date/Time 12-Jul-2 | 023 12:18 |  |  |  |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause      | L/C | Ax     | lz      | ly                 | lx      |
|------|----------|----------|--------|-----------|---------------|-------------|-----|--------|---------|--------------------|---------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |             |     | (in²)  | (in⁴)   | (in <sup>4</sup> ) | (in⁴)   |
| 590  | L60606   | N/A      |        |           |               |             |     | 4.380  | 6.203   | 24.571             | 0.205   |
| 591  | W21X50   | W21X50   | 0.246  | 1.000     | 0.246         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 592  | W21X50   | W21X50   | 0.247  | 1.000     | 0.247         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 593  | W21X50   | W21X50   | 0.159  | 1.000     | 0.159         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 594  | W21X50   | W21X50   | 0.160  | 1.000     | 0.160         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 595  | W21X50   | W21X50   | 0.297  | 1.000     | 0.297         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 596  | W21X50   | W21X50   | 0.297  | 1.000     | 0.297         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 597  | W21X50   | W21X50   | 0.170  | 1.000     | 0.170         |             |     | 23.121 | 2.18E+3 | 501.993            | 1.55E+3 |
| 598  | W21X50   | W21X50   | 0.172  | 1.000     | 0.172         |             |     | 23.121 | 2.18E+3 | 501.990            | 1.55E+3 |
| 599  | L60606   | N/A      |        |           |               |             |     | 4.380  | 6.203   | 24.571             | 0.205   |
| 600  | L60606   | N/A      |        |           |               |             |     | 4.380  | 6.203   | 24.571             | 0.205   |
| 601  | L60606   | N/A      |        |           |               |             |     | 4.380  | 6.203   | 24.571             | 0.205   |
| 602  | L60606   | N/A      |        |           |               |             |     | 4.380  | 6.203   | 24.571             | 0.205   |
| 603  | L60606   | N/A      |        |           |               |             |     | 4.380  | 6.203   | 24.571             | 0.205   |
| 604  | L60606   | N/A      |        |           |               |             |     | 4.380  | 6.203   | 24.571             | 0.205   |
| 605  | L60606   | N/A      |        |           |               |             |     | 4.380  | 6.203   | 24.571             | 0.205   |
| 606  | L60606   | N/A      |        |           |               |             |     | 4.380  | 6.203   | 24.571             | 0.205   |
| 631  | W18X50   | W18X50   | 0.104  | 1.000     | 0.104         | LRFD-H1-1B- | 10  | 14.700 | 800.000 | 40.100             | 1.240   |
| 632  | W18X50   | W18X50   | 0.225  | 1.000     | 0.225         | LRFD-H1-1B- | 10  | 14.700 | 800.000 | 40.100             | 1.240   |
| 633  | W18X50   | W18X50   | 0.225  | 1.000     | 0.225         | LRFD-H1-1B- | 10  | 14.700 | 800.000 | 40.100             | 1.240   |
| 634  | W18X50   | W18X50   | 0.105  | 1.000     | 0.105         | LRFD-H1-1B- | 10  | 14.700 | 800.000 | 40.100             | 1.240   |
| 635  | W12X22   | W12X22   | 0.032  | 1.000     | 0.032         |             |     | 23.920 | 704.953 | 4.24E+3            | 1.66E+3 |
| 636  | W12X22   | W12X22   | 0.050  | 1.000     | 0.050         |             |     | 23.920 | 704.953 | 4.24E+3            | 1.66E+3 |
| 637  | W12X22   | W12X22   | 0.032  | 1.000     | 0.032         |             |     | 23.920 | 704.952 | 4.24E+3            | 1.66E+3 |
| 638  | W12X22   | W12X22   | 0.050  | 1.000     | 0.050         |             |     | 23.920 | 704.952 | 4.24E+3            | 1.66E+3 |
| 639  | W12X22   | W12X22   | 0.032  | 1.000     | 0.032         |             |     | 23.920 | 704.952 | 4.24E+3            | 1.66E+3 |
| 640  | W12X22   | W12X22   | 0.050  | 1.000     | 0.050         |             |     | 23.920 | 704.952 | 4.24E+3            | 1.66E+3 |
| 641  | W21X50   | W21X50   | 0.225  | 1.000     | 0.225         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 642  | W21X50   | W21X50   | 0.226  | 1.000     | 0.226         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 643  | W21X50   | W21X50   | 0.116  | 1.000     | 0.116         |             |     | 23.121 | 2.18E+3 | 501.996            | 1.55E+3 |
| 644  | W21X50   | W21X50   | 0.117  | 1.000     | 0.117         |             |     | 23.121 | 2.18E+3 | 501.994            | 1.55E+3 |
| 645  | W21X50   | W21X50   | 0.184  | 1.000     | 0.184         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 646  | W21X50   | W21X50   | 0.184  | 1.000     | 0.184         |             |     | 32.311 | 2.78E+3 | 4.39E+3            | 3.09E+3 |
| 647  | W21X50   | W21X50   | 0.115  | 1.000     | 0.115         |             |     | 23.121 | 2.18E+3 | 501.993            | 1.55E+3 |
| 648  | W21X50   | W21X50   | 0.116  | 1.000     | 0.116         |             |     | 23.121 | 2.18E+3 | 501.990            | 1.55E+3 |
| 653  | W8X10    | N/A      |        |           |               |             |     | 2.960  | 30.800  | 2.090              | 0.043   |
| 654  | W8X10    | N/A      |        |           |               |             |     | 2.960  | 30.800  | 2.090              | 0.043   |
| 655  | W8X10    | N/A      |        |           |               |             |     | 2.960  | 30.800  | 2.090              | 0.043   |
| 656  | W8X10    | N/A      |        |           |               |             |     | 2.960  | 30.800  | 2.090              | 0.043   |
| 657  | W8X10    | N/A      |        |           |               |             |     | 2.960  | 30.800  | 2.090              | 0.043   |
| 658  | W8X10    | N/A      |        |           |               |             |     | 11.680 | 194.944 | 531.838            | 535.752 |
| 659  | W8X10    | N/A      |        |           |               |             |     | 11.680 | 194.944 | 531.838            | 535.752 |
| 660  | W8X10    | N/A      |        |           |               |             |     | 2.960  | 30.800  | 2.090              | 0.043   |
| 661  | W8X10    | N/A      |        |           |               |             |     | 2.960  | 30.800  | 2.090              | 0.043   |
| 662  | W8X10    | N/A      |        |           |               |             |     | 2.960  | 30.800  | 2.090              | 0.043   |

| Bentley                                                                      | Job No<br>50164392   | 31         | Rev 2             |            |  |
|------------------------------------------------------------------------------|----------------------|------------|-------------------|------------|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                 |            |                   | -          |  |
| Job Title West Hartford Relo CT                                              | Ref                  |            |                   |            |  |
|                                                                              | By AMD               | Dal∈7/10/2 | 2023 Chd B        | GK         |  |
| Client Verizon                                                               | File Clock Tower (Co | omposite F | Date/Time 12-Jul- | 2023 12:18 |  |

| Beam | Analysis | Design   | Actual | Allowable | Ratio         | Clause      | LС | Ax                 | lz      | ly      | lx      |
|------|----------|----------|--------|-----------|---------------|-------------|----|--------------------|---------|---------|---------|
|      | Property | Property | Ratio  | Ratio     | (Act./Allow.) |             |    | (in <sup>2</sup> ) | (in⁴)   | (in⁴)   | (in⁴)   |
| 663  | W8X10    | N/A      |        |           |               |             |    | 2.960              | 30.800  | 2.090   | 0.043   |
| 664  | W8X10    | N/A      |        |           |               |             |    | 12.326             | 198.231 | 658.482 | 579.586 |
| 665  | W8X10    | N/A      |        |           |               |             |    | 21.692             | 227.145 | 5.25E+3 | 1.24E+3 |
| 667  | W12X22   | W12X22   | 0.025  | 1.000     | 0.025         | LRFD-H1-1B- | 10 | 6.480              | 156.000 | 4.660   | 0.293   |
| 668  | W8X10    | N/A      |        |           |               |             |    | 11.680             | 194.944 | 531.848 | 535.756 |
| 669  | W8X10    | N/A      |        |           | ],            |             |    | 11.680             | 194.944 | 531.848 | 535.756 |
| 670  | W8X10    | N/A      |        |           |               |             |    | 40.424             | 254.542 | 42E+3   | 2.62E+3 |
| 672  | W8X10    | N/A      |        |           |               |             |    | 11.680             | 194.944 | 531.848 | 535.756 |
| 673  | W8X10    | N/A      |        |           |               |             |    | 2.960              | 30.800  | 2.090   | 0.043   |
| 674  | W12X22   | W12X22   | 0.009  | 1.000     | 0.009         |             |    | 15.846             | 597.443 | 661.052 | 854.763 |

#### **Failed Members**

There is no data of this type.

| Bentley                                                                      | Job No<br>50164392  | Sheet No                   | Rev<br>2       |  |  |  |
|------------------------------------------------------------------------------|---------------------|----------------------------|----------------|--|--|--|
| Software licensed to Dewberry Engineers Inc. CONNECTED User: Ashley Deuschle | Part                |                            |                |  |  |  |
| Job Title West Hartford Relo CT                                              | Ref                 |                            |                |  |  |  |
|                                                                              | By AMD              | Date7/10/2023 Cho          | BGK            |  |  |  |
| Client Verizon                                                               | File Clock Tower (C | Composite F Date/Time 12-J | lul-2023 12:18 |  |  |  |

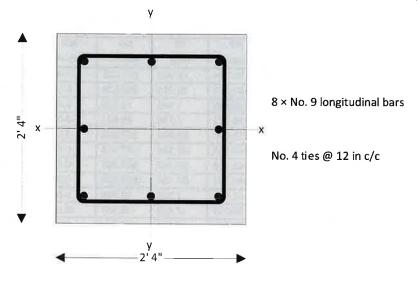
# **Reaction Summary**

|        |      |                | Horizontal | Vertical | Horizontal |          | Moment   |          |
|--------|------|----------------|------------|----------|------------|----------|----------|----------|
|        | Node | L/C            | FX         | FY       | FZ         | MX       | MY       | MZ       |
|        |      |                | (kip)      | (kip)    | (kip)      | (kip in) | (kip⁻in) | (kip in) |
| Max FX | 1    | 12:1.2D+1.6L+  | 21.086     | 96.714   | 15.390     | 201.805  | -0.000   | -279.890 |
| Min FX | 3    | 26:1.2D+1.0W(  | -26.713    | 153.272  | 19.076     | 250.928  | 0.000    | 359.004  |
| Max FY | 5    | 12:1.2D+1.6L+  | 0.012      | 236.669  | 1.105      | 13.852   | 0.000    | -6.664   |
| Min FY | 7    | 7:WIND(X-)     | -11.077    | -36.371  | 4.786      | 58.404   | -0.000   | 155.374  |
| Max FZ | 3    | 12:1.2D+1.6L+  | -19.988    | 150.030  | 20.349     | 267.956  | 0.000    | 266.060  |
| Min FZ | 9    | 27:1.2D+1.0W(  | -16.333    | 148.769  | -27.184    | -357.768 | -0.000   | 217.060  |
| Max MX | 3    | 12:1.2D+1.6L+  | -19.988    | 150.030  | 20.349     | 267.956  | 0.000    | 266.060  |
| Min MX | 9    | 27:1.2D+1.0W(  | -16.333    | 148.769  | -27.184    | -357.768 | -0.000   | 217.060  |
| Max MY | 4    | 26:1.2D+1.0W(  | -5.443     | 49.884   | 1.382      | 18.399   | 0.004    | 338.241  |
| Min MY | 8    | 31:1.2D-1.0E(Z | 1.248      | 86.001   | -2.498     | -36.344  | -0.001   | -15.376  |
| Max MZ | 3    | 26:1.2D+1.0W(  | -26.713    | 153.272  | 19.076     | 250.928  | 0.000    | 359.004  |
| Min MZ | 1    | 12:1.2D+1.6L+  | 21.086     | 96.714   | 15.390     | 201.805  | -0.000   | -279.890 |

29.814 k-ft

29.917 k-ft

Maximum reactions used in column analysis on following pages.




99 Summer St. Boston, MA 02110

| Project<br>West Hartf | ord Relo CT    | Job Ref.<br>50114615 | Job Ref.<br>50114615 |                 |                |
|-----------------------|----------------|----------------------|----------------------|-----------------|----------------|
| Section<br>Concrete 0 | Column         |                      |                      | Sheet no./rev   | <i>i</i> .     |
| Calc. by              | Date 7/10/2023 | Chk'd by<br>BGK      | Date 7/11/2023       | App'd by<br>BGK | Date 7/12/2023 |

#### RC RECTANGULAR COLUMN DESIGN (ACI318-19)

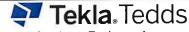
Tedds calculation version 2.2.03



#### **Applied loads**

| Ultimate axial force acting on column | Pu_act = <b>236.669</b> kips                |
|---------------------------------------|---------------------------------------------|
| Ultimate moment about major (X) axis  | M <sub>ux_act</sub> = <b>29.814</b> kips_ft |
| Ultimate moment about minor (Y) axis  | M <sub>uy_act</sub> = <b>29.917</b> kips_ft |
| Contour beta factor                   | $\beta$ = <b>0.650</b>                      |

#### Geometry of column


| •                                             |                            |
|-----------------------------------------------|----------------------------|
| Depth of column (larger dimension of column)  | h = <b>28.0</b> in         |
| Width of column (smaller dimension of column) | b = <b>28.0</b> in         |
| Clear cover to reinforcement (both sides)     | $c_c = 3.0 in$             |
| Unsupported height of column about x axis     | $l_{ux} = 10.5 \text{ ft}$ |
| Effective height factor about x axis          | $k_{x} = 0.65$             |
| Column state about the x axis                 | Unbraced                   |
| Unsupported height of column about y axis     | $I_{uy} = 10.5 \text{ ft}$ |
| Effective height factor about y axis          | $k_y = 1.20$               |
| Column state about the y axis                 | Unbraced                   |

#### Check on overall column dimensions

Column dimensions are OK - h < 4b

#### Reinforcement of column

| Numbers of bars of longitudinal steel      | N = 8                                |
|--------------------------------------------|--------------------------------------|
| Longitudinal steel bar diameter number     | D <sub>bar_num</sub> = <b>9</b>      |
| Diameter of longitudinal bar               | D <sub>long</sub> = <b>1.128</b> in  |
| Stirrup bar diameter number                | $D_{stir\_num} = 4$                  |
| Diameter of stirrup bar                    | $D_{\text{stir}} = 0.500 \text{ in}$ |
| Specified yield strength of reinforcement  | f <sub>y</sub> = <b>60000</b> psi    |
| Specified compressive strength of concrete | f <sub>c</sub> = <b>3000</b> psi     |
|                                            |                                      |



99 Summer St. Boston, MA 02110

| Project<br>West Hartf | ord Relo CT    |                 |                | Job Ref.<br>50114615 |                |
|-----------------------|----------------|-----------------|----------------|----------------------|----------------|
| Section<br>Concrete C | Column         |                 |                | Sheet no./rev        | <i>i</i> .     |
| Calc. by              | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |

Modulus of elasticity of bar reinforcement  $E_s = 29 \times 10^6 \text{ psi}$ 

Modulus of elasticity of concrete  $E_c = 57000 \times f'_c^{1/2} \times (1psi)^{1/2} = 3122019 \text{ psi}$ 

Yield strain  $\epsilon_y = f_y \ / \ E_s = \textbf{0.00207}$  Ultimate design strain  $\epsilon_c = \textbf{0.003} \ \text{in/in}$ 

Check for minimum area of steel - 10.6.1.1

Gross area of column  $A_g = h \times b = 784.000 \text{ in}^2$ 

Area of steel  $A_{st} = N \times (\pi \times D_{long}^2) / 4 = 7.995 \text{ in}^2$ 

Minimum area of steel required  $A_{sl\_min} = 0.01 \times A_g = 7.840 \text{ in}^2$ 

Ast > Ast\_min, PASS- Minimum steel check

Check for maximum area of steel - 10.6.1.1

Permissible maximum area of steel  $A_{st_max} = 0.08 \times A_g = 62.720 \text{ in}^2$ 

Ast < Ast\_max, PASS - Maximum steel check

Slenderness check about x axis

Radius of gyration  $r_x = 0.3 \times h = 8.4$  in Actual slenderness ratio  $s_{rx\_act} = k_x \times l_{ux} / r_x = 9.75$ 

Slenderness ratio is less than 22, slenderness effects may be neglected

Slenderness check about y axis

Radius of gyration  $r_y = 0.3 \times b = 8.4 \text{ in}$ Actual slenderness ratio  $s_{ry\_act} = k_y \times l_{uy} / r_y = 18$ 

Slenderness ratio is less than 22, slenderness effects may be neglected

Axial load capacity of axially loaded column

Strength reduction factor  $\phi = 0.65$ 

Area of steel on compression face  $A'_s = A_{st} / 2 = 3.997 \text{ in}^2$ Area of steel on tension face  $A_s = A_{st} / 2 = 3.997 \text{ in}^2$ 

Net axial load capacity of column  $P_n = 0.8 \times (0.85 \times f_c \times (A_g - A_{st}) + f_y \times A_{st}) = 1966.793 \text{ kips}$ 

Ultimate axial load capacity of column  $P_u = \phi \times P_n = 1278.415$  kips

PASS: Column is safe in axial loading

Net moments for biaxial column

Assuming strength reduction factor  $\phi = 0.65$ 

Net moment about major (X) axis  $M_{nx} = M_{ux\_act} / \phi = 45.87 \text{ kips\_ft}$ Net moment about minor (Y) axis  $M_{ny} = M_{uy\_act} / \phi = 46.03 \text{ kips\_ft}$ 

Axial load capacity with zero moment

Nominal axial load capacity  $P_{n0} = 0.85 \times f_c \times (A_g - A_{st}) + A_{st} \times f_y = 2458 \text{ kips}$ 

Strength reduction factor  $\phi = 0.650$ 

Ultimate axial load capacity  $P_{u0} = \phi \times P_{n0} = \textbf{1598} \text{ kips}$  Maximum nominal axial load capacity  $P_{n,max} = 0.8 \times P_{n0} = \textbf{1967} \text{ kips}$  Maximum ultimate axial load capacity  $P_{u,max} = 0.8 \times P_{u0} = \textbf{1278} \text{ kips}$ 

#### Axial and bending capacity at maximum axial capacity (bending about x axis)

Moment of resistance of concrete

Depth to neutral axis  $c_{x0} = 27.7$  in



99 Summer St. Boston, MA 02110

| Project<br>West Hartf | Project<br>West Hartford Relo CT |                 | Job Ref.<br>50114615 |                 |                |
|-----------------------|----------------------------------|-----------------|----------------------|-----------------|----------------|
| Section Concrete C    | Column                           |                 |                      | Sheet no./rev   | <i>i</i> .     |
| Calc. by<br>AMD       | Date 7/10/2023                   | Chk'd by<br>BGK | Date 7/11/2023       | App'd by<br>BGK | Date 7/12/2023 |

Depth of equivalent rectangular stress block

Concrete compression force

Concrete moment of resistance

 $a_{x0} = min((\beta_1 \times c_{x0}), h) = 24 in$ 

 $P_{xcon0} = 0.85 \times f_c \times b \times a_{x0} = 1678.7 \text{ kips}$ 

 $M_{xcon0} = P_{xcon0} \times (h / 2 - (a_{x0} / 2)) = 314.0 \text{ kip ft}$ 

Moment of resistance of reinforcement

Strain in layer 1

Stress in layer 1

Force carried by layer 1

Moment carried by steel layer 1

Strain in layer 2

Stress in layer 2

Force carried by layer 2

Moment carried by steel layer 2

Strain in layer 3

Force carried by laver 3

Stress in layer 3

Moment carried by steel layer 3

 $\varepsilon_{x10} = \varepsilon_c \times (1 - x_{x1} / c_{x0}) = 0.00256$ 

 $\sigma_{x10} = \min(f_y, E_s \times \epsilon_{x10}) - 0.85 \times f_c = 57450.00 \text{ psi}$ 

 $P_{x10} = N_x \times A_{bar} \times \sigma_{x10} = 172.234 \text{ kips}$ 

 $M_{x10} = P_{x10} \times ((h/2) - x_{x1}) = 142.610$  kip ft

 $\varepsilon_{x20} = \varepsilon_c \times (1 - x_{x2} / c_{x0}) = 0.00148$ 

 $\sigma_{x20} = min(f_y, E_s \times \epsilon_{x20}) - 0.85 \times f_c = 40414.96 psi$ 

 $P_{x20} = 2 \times A_{bar} \times \sigma_{x20} = 80.776 \text{ kips}$ 

 $M_{x20} = P_{x20} \times ((h/2) - x_{x2}) = 0.000 \text{ kip_ft}$ 

 $\varepsilon_{x30} = \varepsilon_{c} \times (1 - x_{x3} / c_{x0}) = 0.00040$ 

 $\sigma_{x30} = min(f_y, E_s \times \epsilon_{x30}) = 11712.67 psi$ 

 $P_{x30} = N_x \times A_{bar} \times \sigma_{x30} = 35.114 \text{ kips}$ 

 $M_{x30} = P_{x30} \times ((h/2) - x_{x3}) = -29.075 \text{ kip\_ft}$ 

Combined axial load and moment resistance

Sum of forces

Sum of moments

Strength reduction factor

Utilmate axial load capacity

Utilmate moment load capacity

 $P_{nx0} = 1966.8 \text{ kips}$ 

 $M_{ox0} = 427.5 \text{ kip}_{ft}$ 

 $\phi_{x} = 0.650$ 

 $P_{ux0} = \phi_x \times P_{nx0} = 1278.4 \text{ kips}$ 

 $M_{uox0} = \phi_x \times M_{ox0} = 277.9 \text{ kip ft}$ 

#### Axial and bending capacity with zero strain in tension face reinforcement (bending about x axis)

#### Moment of resistance of concrete

Depth to neutral axis

 $C_{x1} = 23.9 in$ 

Depth of equivalent rectangular stress block

 $a_{x1} = min((\beta_1 \times c_{x1}), h) = 20 in$ 

Concrete compression force Concrete moment of resistance

 $P_{xcon1} = 0.85 \times f_c \times b \times a_{x1} = 1452.7 \text{ kips}$ 

 $M_{xcon1} = P_{xcon1} \times (h / 2 - (a_{x1} / 2)) = 463.3 \text{ kip\_ft}$ 

Moment of resistance of reinforcement

Strain in layer 1

 $\varepsilon_{x11} = \varepsilon_c \times (1 - x_{x1} / c_{x1}) = 0.00249$ 

Stress in layer 1

 $\sigma_{x11} = min(f_y, E_s \times \epsilon_{x11}) - 0.85 \times f_c = 57450.00 psi$ 

Force carried by layer 1

 $P_{x11} = N_x \times A_{bar} \times \sigma_{x11} = 172.234 \text{ kips}$ 

Moment carried by steel layer 1

 $M_{x11} = P_{x11} \times ((h/2) - x_{x1}) = 142.610 \text{ kip\_ft}$ 

 $\varepsilon_{x21} = \varepsilon_c \times (1 - x_{x2} / c_{x1}) = 0.00125$ 

Strain in layer 2

Stress in layer 2

 $\sigma_{x21} = min(f_y, E_s \times \epsilon_{x21}) - 0.85 \times f_c = 33564.30 psi$ 

Force carried by layer 2

 $P_{x21} = 2 \times A_{bar} \times \sigma_{x21} = 67.084 \text{ kips}$ 

Moment carried by steel layer 2

 $M_{x21} = P_{x21} \times ((h/2) - x_{x2}) = 0.000 \text{ kip\_ft}$ 

Strain in layer 3

 $\varepsilon_{x31} = \varepsilon_{c} \times (1 - x_{x3} / c_{x1}) = 0.00000$ 

Stress in layer 3

Force carried by layer 3

 $\sigma_{x31} = min(f_y, E_s \times \epsilon_{x31}) = 0.00 psi$  $P_{x31} = N_x \times A_{bar} \times \sigma_{x31} = 0.000 \text{ kips}$ 

Moment carried by steel layer 3

 $M_{x31} = P_{x31} \times ((h/2) - x_{x3}) = 0.000 \text{ kip\_ft}$ 



99 Summer St. Boston, MA 02110

| Project<br>West Hartfo  | rd Relo CT     |                 |                | Job Ref.<br>50114615 |                |
|-------------------------|----------------|-----------------|----------------|----------------------|----------------|
| Section Concrete Column |                | Sheet no./rev.  |                |                      |                |
| Calc. by<br>AMD         | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |

#### Combined axial load and moment resistance

 $P_{nx1} = 1692.0 \text{ kips}$ Sum of forces  $M_{ox1} = 605.9 \text{ kip_ft}$ Sum of moments

Strength reduction factor  $\phi_{x} = 0.650$ 

 $P_{ux1} = \phi_x \times P_{nx1} = 1099.8 \text{ kips}$ Utilmate axial load capacity  $M_{uox1} = \phi_x \times M_{ox1} = 393.8 \text{ kip\_ft}$ Utilmate moment load capacity

#### Axial and bending capacity with tension face reinforcement at half yield strain (bending about x axis)

#### Moment of resistance of concrete

 $c_{x2} = 17.8$  in Depth to neutral axis

 $a_{x2} = min((\beta_1 \times c_{x2}), h) = 15 in$ Depth of equivalent rectangular stress block

 $P_{xcon2} = 0.85 \times f_c \times b \times a_{x2} = 1080.2 \text{ kips}$ Concrete compression force  $M_{xcon2} = P_{xcon2} \times (h / 2 - (a_{x2} / 2)) = 579.3 \text{ kip_ft}$ Concrete moment of resistance

Moment of resistance of reinforcement

 $\varepsilon_{x12} = \varepsilon_c \times (1 - x_{x1} / c_{x2}) = 0.00232$ Strain in layer 1

 $\sigma_{x12} = min(f_v, E_s \times \epsilon_{x12}) - 0.85 \times f_c = 57450.00 psi$ Stress in layer 1

 $P_{x12} = N_x \times A_{bar} \times \sigma_{x12} = \textbf{172.234} \text{ kips}$ Force carried by layer 1  $M_{x12} = P_{x12} \times ((h/2) - x_{x1}) = 142.610 \text{ kip\_ft}$ Moment carried by steel layer 1

 $\varepsilon_{x22} = \varepsilon_c \times (1 - x_{x2} / c_{x2}) = 0.00064$ Strain in layer 2

 $\sigma_{x22} = min(f_y, E_s \times \epsilon_{x22}) - 0.85 \times f_c = 16017.51 psi$ Stress in layer 2

 $P_{x22} = 2 \times A_{bar} \times \sigma_{x22} = 32.014 \text{ kips}$ Force carried by layer 2  $M_{x22} = P_{x22} \times ((h / 2) - x_{x2}) = 0.000 \text{ kip\_ft}$ Moment carried by steel layer 2  $\varepsilon_{x32} = \varepsilon_c \times (1 - x_{x3} / c_{x2}) = -0.00103$ 

Strain in layer 3

 $\sigma_{x32} = max(-1 \times f_y, E_s \times \epsilon_{x32}) = -30000.00 \text{ psi}$ Stress in layer 3

 $P_{x32} = N_x \times A_{bar} \times \sigma_{x32} = -89.940 \text{ kips}$ Force carried by layer 3  $M_{x32} = P_{x32} \times ((h/2) - x_{x3}) = 74.470$  kip ft Moment carried by steel layer 3

Combined axial load and moment resistance

 $P_{nx2} = 1194.5 \text{ kips}$ Sum of forces  $M_{ox2} = 796.4 \text{ kip_ft}$ Sum of moments

 $\phi_{x} = 0.650$ Strength reduction factor

 $P_{ux2} = \phi_x \times P_{nx2} = 776.4 \text{ kips}$ Utilmate axial load capacity  $M_{uox2} = \phi_x \times M_{ox2} = 517.7 \text{ kip\_ft}$ Utilmate moment load capacity

#### Axial and bending capacity with tension face reinforcement at yield strain (bending about x axis)

#### Moment of resistance of concrete

 $C_{x3} = 14.2$  in Depth to neutral axis

Depth of equivalent rectangular stress block  $a_{x3} = min((\beta_1 \times c_{x3}), h) = 12 in$ 

 $P_{xcon3} = 0.85 \times f_c \times b \times a_{x3} = 859.7 \text{ kips}$ Concrete compression force

 $M_{xcon3} = P_{xcon3} \times (h / 2 - (a_{x3} / 2)) = 571.7 \text{ kip\_ft}$ Concrete moment of resistance

Moment of resistance of reinforcement

 $\varepsilon_{x13} = \varepsilon_{c} \times (1 - x_{x1} / c_{x3}) = 0.00214$ Strain in layer 1

 $\sigma_{x13} = min(f_y, E_s \times \epsilon_{x13}) - 0.85 \times f_c = 57450.00 psi$ Stress in layer 1



99 Summer St. Boston, MA 02110

| Project<br>West Hartl | ford Relo CT   |                 |                | Job Ref.<br>50114615 |                |  |
|-----------------------|----------------|-----------------|----------------|----------------------|----------------|--|
| Section<br>Concrete ( | Column         |                 |                | Sheet no./rev.       |                |  |
| Calc. by              | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |  |

Force carried by layer 1

Moment carried by steel layer 1

Strain in layer 2 Stress in layer 2

Force carried by layer 2 Moment carried by steel layer 2

Strain in layer 3

Stress in layer 3

Force carried by layer 3

Moment carried by steel layer 3

Combined axial load and moment resistance

Sum of forces Sum of moments

Strength reduction factor

Utilmate axial load capacity

Utilmate moment load capacity

 $P_{x13} = N_x \times A_{bar} \times \sigma_{x13} = 172.234 \text{ kips}$ 

 $M_{x13} = P_{x13} \times ((h/2) - x_{x1}) = 142.610 \text{ kip\_ft}$ 

 $\varepsilon_{x23} = \varepsilon_c \times (1 - x_{x2} / c_{x3}) = 0.00004$ 

 $\sigma_{x23} = min(f_y, E_s \times \epsilon_{x23}) = 1020.72 psi$ 

 $P_{x23} = 2 \times A_{bar} \times \sigma_{x23} = 2.040 \text{ kips}$ 

 $M_{x23} = P_{x23} \times ((h/2) - x_{x2}) = 0.000 \text{ kip_ft}$ 

 $\varepsilon_{x33} = \varepsilon_c \times (1 - x_{x3} / c_{x3}) = -0.00207$ 

 $\sigma_{x33} = max(-1 \times f_{y_1} E_s \times \epsilon_{x33}) = -60000.00 psi$ 

 $P_{x33} = N_x \times A_{bar} \times \sigma_{x33} = -179.879 \text{ kips}$ 

 $M_{x33} = P_{x33} \times ((h/2) - x_{x3}) = 148.940 \text{ kip ft}$ 

 $P_{nx3} = 854.1 \text{ kips}$ 

 $M_{ox3} = 863.2 \text{ kip_ft}$ 

 $\phi_{x} = 0.650$ 

 $P_{ux3} = \phi_x \times P_{nx3} = 555.2 \text{ kips}$ 

 $M_{uox3} = \phi_x \times M_{ox3} = 561.1 \text{ kip_ft}$ 

#### Axial and bending capacity with tension face reinforcement strain of 0.005 (bending about x axis)

#### Moment of resistance of concrete

Depth to neutral axis

 $c_{v_4} = 9.0 in$ 

Depth of equivalent rectangular stress block

 $a_{x4} = min((\beta_1 \times c_{x4}), h) = 8 in$ 

Concrete compression force Concrete moment of resistance  $P_{xcon4} = 0.85 \times f_c \times b \times a_{x4} = 544.8 \text{ kips}$ 

Moment of resistance of reinforcement

Strain in layer 1

 $\varepsilon_{x14} = \varepsilon_c \times (1 - x_{x1} / c_{x4}) = 0.00164$ 

Stress in layer 1

 $\sigma_{x14} = min(f_y, E_s \times \epsilon_{x14}) - 0.85 \times f_c = 45059.63 psi$ 

 $M_{xcon4} = P_{xcon4} \times (h/2 - (a_{x4}/2)) = 462.4 \text{ kip ft}$ 

Force carried by layer 1

 $P_{x14} = N_x \times A_{bar} \times \sigma_{x14} = 135.088 \text{ kips}$ 

Moment carried by steel layer 1

 $M_{x14} = P_{x14} \times ((h/2) - x_{x1}) = 111.853$  kip ft  $\varepsilon_{x24} = \varepsilon_c \times (1 - x_{x2} / c_{x4}) = -0.00168$ 

Strain in layer 2 Stress in layer 2

 $\sigma_{x24} = max(-1 \times f_y, E_s \times \epsilon_{x24}) = -48695.19 psi$ 

Force carried by layer 2

 $P_{x24} = 2 \times A_{bar} \times \sigma_{x24} = -97.325 \text{ kips}$ 

Moment carried by steel layer 2

 $M_{x24} = P_{x24} \times ((h/2) - x_{x2}) = 0.000 \text{ kip\_ft}$ 

Strain in layer 3

 $\varepsilon_{x34} = \varepsilon_{c} \times (1 - x_{x3} / c_{x4}) = -0.00500$ 

Stress in layer 3

 $\sigma_{x34} = max(-1 \times f_y, E_s \times \epsilon_{x34}) = -60000.00 psi$ 

Force carried by layer 3

 $P_{x34} = N_x \times A_{bar} \times \sigma_{x34} = -179.879 \text{ kips}$ 

Moment carried by steel layer 3

 $M_{x34} = P_{x34} \times ((h/2) - x_{x3}) = 148.940 \text{ kip\_ft}$ 

Combined axial load and moment resistance

Sum of forces Sum of moments

 $P_{nx4} = 402.6 \text{ kips}$  $M_{ox4} = 723.2 \text{ kip ft}$ 

Strength reduction factor

 $\phi_{x} = 0.894$ 

Utilmate axial load capacity

 $P_{ux4} = \phi_x \times P_{nx4} = 360.1 \text{ kips}$ 

Utilmate moment load capacity

 $M_{uox4} = \phi_x \times M_{ox4} = 646.7 \text{ kip\_ft}$ 



Dewberry Engineers Inc. 99 Summer St. Boston, MA 02110

| Project<br>West Hartford | l Relo CT      |                 |                | Job Ref.<br>50114615 |                |
|--------------------------|----------------|-----------------|----------------|----------------------|----------------|
| Section<br>Concrete Colu | nmn            |                 |                | Sheet no./rev        | •3)            |
| Calc. by                 | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |

#### Axial and bending capacity with axial capacity of zero (bending about x axis)

#### Moment of resistance of concrete

Depth to neutral axis  $c_{x5} = 4.5$  in

Depth of equivalent rectangular stress block  $a_{x5} = min((\beta_1 \times c_{x5}), h) = 4$  in

Concrete compression force  $P_{xcon5} = 0.85 \times f_c \times b \times a_{x5} = 273.9 \text{ kips}$ 

Concrete moment of resistance  $M_{xcon5} = P_{xcon5} \times (h/2 - (a_{x5}/2)) = 275.7 \text{ kip_ft}$ 

#### Moment of resistance of reinforcement

 $\begin{array}{ll} \text{Strain in layer 1} & \epsilon_{\text{x15}} = \epsilon_{\text{c}} \times (1 - x_{\text{x1}} / c_{\text{x5}}) = \textbf{0.00030} \\ \text{Stress in layer 1} & \sigma_{\text{x15}} = \min(f_{\text{y}}, E_{\text{s}} \times \epsilon_{\text{x15}}) = \textbf{8649.87} \text{ psi} \\ \text{Force carried by layer 1} & P_{\text{x15}} = N_{\text{x}} \times A_{\text{bar}} \times \sigma_{\text{x15}} = \textbf{25.932} \text{ kips} \\ \text{Moment carried by steel layer 1} & M_{\text{x15}} = P_{\text{x15}} \times ((\text{h} / 2) - x_{\text{x1}}) = \textbf{21.472} \text{ kip\_ft} \\ \end{array}$ 

Strain in layer 2  $\epsilon_{x25} = \epsilon_c \times (1 - x_{x2} / c_{x5}) = -0.00631$ 

Stress in layer 2  $\sigma_{x25} = max(-1 \times f_y, E_s \times \epsilon_{x25}) = -60000.00 \text{ psi}$ 

Force carried by layer 2  $P_{x25} = 2 \times A_{bar} \times \sigma_{x25} = -119.919 \text{ kips}$  Moment carried by steel layer 2  $M_{x25} = P_{x25} \times ((h/2) - x_{x2}) = 0.000 \text{ kip_ft}$ 

Strain in layer 3  $\epsilon_{x35} = \epsilon_c \times (1 - x_{x3} / c_{x5}) = -0.01291$ 

Stress in layer 3  $\sigma_{x35} = \max(-1 \times f_y, E_s \times \epsilon_{x35}) = -60000.00 \text{ psi}$  Force carried by layer 3  $P_{x35} = N_x \times A_{bar} \times \sigma_{x35} = -179.879 \text{ kips}$ 

Moment carried by steel layer 3  $M_{x35} = P_{x35} \times ((h/2) - x_{x3}) = 148.940 \text{ kip_ft}$ 

#### Combined axial load and moment resistance

Sum of forces  $P_{nx5} = 0.0 \text{ kips}$ Sum of moments  $M_{0x5} = 446.2 \text{ kip\_ft}$ 

Strength reduction factor  $\phi_x = 0.900$ 

Utilmate axial load capacity  $P_{ux5} = \phi_x \times P_{nx5} = \textbf{0.0 kips}$  Utilmate moment load capacity  $M_{uox5} = \phi_x \times M_{ox5} = \textbf{401.5 kip_ft}$ 

#### Axial and bending capacity at maximum axial capacity (bending about y axis)

#### Moment of resistance of concrete

Depth to neutral axis  $c_{y0} = 27.7$  in

Depth of equivalent rectangular stress block  $a_{y0} = min((\beta_1 \times c_{y0}), b) = 24$  in

Concrete compression force  $P_{ycon0} = 0.85 \times f_c \times h \times a_{y0} = 1678.7 \text{ kips}$ Concrete moment of resistance  $M_{ycon0} = P_{ycon0} \times (b / 2 - (a_{y0} / 2)) = 314.0 \text{ kip\_ft}$ 

#### Moment of resistance of reinforcement

Strain in layer 1  $\epsilon_{y10} = \epsilon_c \times (1 - x_{y1} / c_{y0}) = 0.00256$ 

Stress in layer 1  $\sigma_{y10} = min(f_y, E_s \times \epsilon_{y10}) - 0.85 \times f_c = 57450.00 \text{ psi}$ 

Force carried by layer 1  $P_{y10} = N_y \times A_{bar} \times \sigma_{y10} = 172.234 \text{ kips}$  Moment carried by steel layer 1  $M_{y10} = P_{y10} \times ((b/2) - x_{y1}) = 142.610 \text{ kip\_ft}$ 

Strain in layer 2  $\epsilon_{y20} = \epsilon_c \times (1 - x_{y2} / c_{y0}) = 0.00148$ 

Stress in layer 2  $\sigma_{y20} = min(f_y, E_s \times \epsilon_{y20}) - 0.85 \times f_c = 40414.96 \text{ psi}$ 

Force carried by layer 2  $P_{y20} = 2 \times A_{bar} \times \sigma_{y20} = 80.776 \text{ kips}$ Moment carried by steel layer 2  $M_{y20} = P_{y20} \times ((b/2) - x_{y2}) = 0.000 \text{ kip_ft}$ 



99 Summer St. Boston, MA 02110

| Project<br>West Hartf | ord Relo CT    |                 |                | Job Ref.<br>50114615 |                |
|-----------------------|----------------|-----------------|----------------|----------------------|----------------|
| Section Concrete C    | Column         |                 |                | Sheet no./rev        |                |
| Calc. by              | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |

Strain in layer 3

Stress in layer 3

Force carried by layer 3

Moment carried by steel layer 3

. .

 $\sigma_{y30} = min(f_y, E_s \times \epsilon_{y30}) = 11712.67 \text{ psi}$ 

 $\varepsilon_{y30} = \varepsilon_c \times (1 - x_{y3} / c_{y0}) = 0.00040$ 

 $P_{y30} = N_y \times A_{bar} \times \sigma_{y30} = 35.114 \text{ kips}$ 

y30 - 14y / Abar / Oy30 - 33.114 Kips

 $M_{y30} = P_{y30} \times ((b / 2) - x_{y3}) = -29.075 \text{ kip\_ft}$ 

Combined axial load and moment resistance

Sum of forces

Sum of moments

Strength reduction factor

Utilmate axial load capacity

Utilmate moment load capacity

 $P_{ny0} = 1966.8 \text{ kips}$ 

M<sub>oy0</sub> = **427.5** kip\_ft

 $\varphi_{y}=\textbf{0.650}$ 

 $c_{v1} = 23.9 in$ 

 $P_{uy0} = \varphi_y \times P_{ny0} = \textbf{1278.4 kips}$ 

 $M_{uoy0} = \phi_y \times M_{oy0} = 277.9 \text{ kip\_ft}$ 

#### Axial and bending capacity with zero strain in tension face reinforcement (bending about y axis)

#### Moment of resistance of concrete

Depth to neutral axis

Depth of equivalent rectangular stress block

· · ·

Concrete compression force
Concrete moment of resistance

 $a_{y1} = min((\beta_1 \times c_{y1}), b) = 20 in$  $P_{ycon1} = 0.85 \times f_c \times h \times a_{y1} = 1452.7 kips$ 

 $M_{ycon1} = P_{ycon1} \times (b / 2 - (a_{y1} / 2)) = 463.3 \text{ kip ft}$ 

#### Moment of resistance of reinforcement

Strain in layer 1

 $\varepsilon_{y11} = \varepsilon_c \times (1 - x_{y1} / c_{y1}) = 0.00249$ 

Stress in layer 1

 $\sigma_{y11}$  = min(f<sub>y</sub>, E<sub>s</sub>  $\times$   $\epsilon_{y11})$  -  $0.85 \times$  f'c  $\,$  =  $\,$  57450.00 psi

Force carried by layer 1

 $P_{y11} = N_y \times A_{bar} \times \sigma_{y11} = 172.234 \text{ kips}$  $M_{y11} = P_{y11} \times ((b / 2) - x_{y1}) = 142.610 \text{ kip ft}$ 

Moment carried by steel layer 1 Strain in layer 2

 $\varepsilon_{y21} = \varepsilon_c \times (1 - x_{y2} / c_{y1}) = 0.00125$ 

Stress in layer 2

 $\sigma_{y21}$  = min(f<sub>y</sub>, E<sub>s</sub>  $\times$   $\epsilon_{y21})$  - 0.85  $\times$  f'c = 33564.30 psi

Force carried by layer 2

 $P_{y21} = 2 \times A_{bar} \times \sigma_{y21} = 67.084 \text{ kips}$ 

Moment carried by steel layer 2

 $M_{y21} = P_{y21} \times ((b / 2) - x_{y2}) = 0.000 \text{ kip\_ft}$ 

Strain in layer 3

 $\varepsilon_{y31} = \varepsilon_c \times (1 - x_{y3} / c_{y1}) = 0.00000$ 

Stress in layer 3

 $\sigma_{y31} = \min(f_y, E_s \times \epsilon_{y31}) = 0.00 \text{ psi}$ 

Force carried by layer 3

Toroc carried by layer 5

 $P_{y31} = N_y \times A_{bar} \times \sigma_{y31} = \textbf{0.000 kips}$ 

Moment carried by steel layer 3

\_\_\_

 $M_{y31} = P_{y31} \times ((b/2) - x_{y3}) = 0.000 \text{ kip_ft}$ 

#### Combined axial load and moment resistance

Sum of forces

P<sub>ny1</sub> = **1692.0** kips

Sum of moments

 $M_{oy1} = 605.9 \text{ kip_ft}$ 

Strength reduction factor

 $\phi_{V} = 0.650$ 

Utilmate axial load capacity

 $P_{uy1} = \phi_y \times P_{ny1} = 1099.8 \text{ kips}$ 

Utilmate moment load capacity

 $M_{uoy1} = \phi_v \times M_{oy1} = 393.8 \text{ kip ft}$ 

#### Axial and bending capacity with tension face reinforcement at half yield strain (bending about y axis)

#### Moment of resistance of concrete

Depth to neutral axis

 $c_{y2} = 17.8 in$ 

Depth of equivalent rectangular stress block

 $a_{y2} = min((\beta_1 \times c_{y2}), b) = 15 in$ 

Concrete compression force

 $P_{ycon2} = 0.85 \times f_c \times h \times a_{v2} = 1080.2 \text{ kips}$ 



99 Summer St. Boston, MA 02110

| Project<br>West Hartf | ord Relo CT    |                 |                | Job Ref.<br>50114615 |                |
|-----------------------|----------------|-----------------|----------------|----------------------|----------------|
| Section<br>Concrete C | Column         |                 |                | Sheet no./rev        | <i>i</i> .     |
| Calc. by              | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |

Concrete moment of resistance

Moment carried by steel layer 1

 $M_{vcon2} = P_{vcon2} \times (b / 2 - (a_{y2} / 2)) = 579.3 \text{ kip\_ft}$ 

Moment of resistance of reinforcement

 $\varepsilon_{V12} = \varepsilon_{C} \times (1 - x_{V1} / C_{V2}) = 0.00232$ Strain in layer 1

 $\sigma_{v12} = min(f_v, E_s \times \epsilon_{v12}) - 0.85 \times f_c = 57450.00 psi$ Stress in layer 1

 $P_{v12} = N_v \times A_{bar} \times \sigma_{v12} = 172.234 \text{ kips}$ Force carried by layer 1  $M_{y12} = P_{y12} \times ((b / 2) - x_{y1}) = 142.610 \text{ kip\_ft}$ 

 $\epsilon_{y22} = \epsilon_c \times (1 - x_{y2} / c_{y2}) = 0.00064$ Strain in layer 2

 $\sigma_{V22} = min(f_y, E_s \times \epsilon_{V22}) - 0.85 \times f_c^* = 16017.51 psi$ Stress in layer 2

 $P_{y22} = 2 \times A_{bar} \times \sigma_{y22} = 32.014 \text{ kips}$ Force carried by layer 2  $M_{v22} = P_{v22} \times ((b/2) - x_{v2}) = 0.000 \text{ kip\_ft}$ Moment carried by steel layer 2

 $\varepsilon_{y32} = \varepsilon_c \times (1 - x_{y3} / c_{y2}) = -0.00103$ Strain in layer 3

 $\sigma_{y32} = max(-1 \times f_y, E_s \times \epsilon_{y32}) = -30000.00 \text{ psi}$ Stress in layer 3

 $P_{v32} = N_v \times A_{bar} \times \sigma_{v32} = -89.940 \text{ kips}$ Force carried by layer 3  $M_{y32} = P_{y32} \times ((b/2) - x_{y3}) = 74.470 \text{ kip\_ft}$ Moment carried by steel layer 3

Combined axial load and moment resistance

 $P_{nv2} = 1194.5 \text{ kips}$ Sum of forces  $M_{ov2} = 796.4 \text{ kip ft}$ Sum of moments

 $\phi_{v} = 0.650$ Strength reduction factor

 $P_{uy2} = \phi_y \times P_{ny2} = 776.4 \text{ kips}$ Utilmate axial load capacity  $M_{uov2} = \phi_v \times M_{ov2} = 517.7 \text{ kip ft}$ Utilmate moment load capacity

Axial and bending capacity with tension face reinforcement at yield strain (bending about y axis)

Moment of resistance of concrete

 $c_{y3} = 14.2 in$ Depth to neutral axis

Depth of equivalent rectangular stress block  $a_{y3} = min((\beta_1 \times c_{y3}), b) = 12 in$ 

 $P_{ycon3} = 0.85 \times f_c \times h \times a_{y3} = 859.7 \text{ kips}$ Concrete compression force  $M_{ycon3} = P_{ycon3} \times (b / 2 - (a_{y3} / 2)) = 571.7 \text{ kip_ft}$ Concrete moment of resistance

Moment of resistance of reinforcement

 $\varepsilon_{v13} = \varepsilon_c \times (1 - x_{v1} / c_{v3}) = 0.00214$ Strain in layer 1

 $\sigma_{v13} = min(f_v, E_s \times \epsilon_{v13}) - 0.85 \times f_c^* = 57450.00 psi$ Stress in layer 1

 $P_{y13} = N_y \times A_{bar} \times \sigma_{y13} = 172.234 \text{ kips}$ Force carried by layer 1

 $M_{y13} = P_{y13} \times ((b/2) - x_{y1}) = 142.610 \text{ kip\_ft}$ Moment carried by steel layer 1

 $\varepsilon_{V23} = \varepsilon_{c} \times (1 - x_{y2} / c_{y3}) = 0.00004$ Strain in layer 2  $\sigma_{y23} = min(f_y, E_s \times \epsilon_{y23}) = 1020.72 psi$ Stress in layer 2  $P_{y23} = 2 \times A_{bar} \times \sigma_{y23} = 2.040 \text{ kips}$ Force carried by layer 2  $M_{v23} = P_{v23} \times ((b/2) - x_{v2}) = 0.000 \text{ kip\_ft}$ Moment carried by steel layer 2

 $\varepsilon_{y33} = \varepsilon_c \times (1 - x_{y3} / c_{y3}) = -0.00207$ Strain in layer 3

 $\sigma_{y33} = max(-1 \times f_y, E_s \times \epsilon_{y33}) = -60000.00 psi$ Stress in layer 3  $P_{v33} = N_v \times A_{bar} \times \sigma_{v33} = -179.879 \text{ kips}$ Force carried by layer 3

 $M_{y33} = P_{y33} \times ((b/2) - x_{y3}) = 148.940 \text{ kip\_ft}$ Moment carried by steel layer 3

Combined axial load and moment resistance

 $P_{nv3} = 854.1 \text{ kips}$ Sum of forces



99 Summer St. Boston, MA 02110

| Project<br>West Hartf | ord Relo CT    |                 |                | Job Ref.<br>50114615 |                |
|-----------------------|----------------|-----------------|----------------|----------------------|----------------|
| Section<br>Concrete ( | Column         |                 |                | Sheet no./rev        | <i>i</i> .     |
| Calc. by              | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |

Sum of moments  $M_{oy3} = 863.2 \text{ kip}_{ft}$ 

Strength reduction factor  $\phi_y = 0.650$ 

Utilmate axial load capacity  $P_{uy3} = \phi_y \times P_{ny3} = 555.2 \text{ kips}$  Utilmate moment load capacity  $M_{uoy3} = \phi_y \times M_{oy3} = 561.1 \text{ kip ft}$ 

#### Axial and bending capacity with tension face reinforcement strain of 0.005 (bending about y axis)

#### Moment of resistance of concrete

Depth to neutral axis  $c_{y4} = 9.0$  in

Depth of equivalent rectangular stress block  $a_{y4} = min((\beta_1 \times c_{y4}), b) = 8$  in

Concrete compression force  $P_{ycon4} = 0.85 \times f_c \times h \times a_{y4} = 544.8 \text{ kips}$ 

Concrete moment of resistance  $M_{ycon4} = P_{ycon4} \times (b/2 - (a_{y4}/2)) = 462.4 \text{ kip_ft}$ 

Moment of resistance of reinforcement

Strain in layer 1  $\epsilon_{y14} = \epsilon_c \times (1 - x_{y1} / c_{y4}) = 0.00164$ 

Stress in layer 1  $\sigma_{y14} = \min(f_y, E_s \times \epsilon_{y14}) - 0.85 \times f_c = 45059.63 \text{ psi}$ 

Force carried by layer 1  $P_{y14} = N_y \times A_{bar} \times \sigma_{y14} = 135.088$  kips

Moment carried by steel layer 1  $M_{y14} = P_{y14} \times ((b / 2) - x_{y1}) = 111.853 \text{ kip_ft}$ 

Strain in layer 2  $\epsilon_{y24} = \epsilon_c \times (1 - x_{y2} / c_{y4}) = -0.00168$ 

Stress in layer 2  $\sigma_{y24} = max(-1 \times f_y, E_s \times \epsilon_{y24}) = -48695.19 \text{ psi}$ 

Force carried by layer 2  $P_{y24} = 2 \times A_{bar} \times \sigma_{y24} = -97.325 \text{ kips}$ 

Moment carried by steel layer 2  $M_{y24} = P_{y24} \times ((b/2) - x_{y2}) = 0.000 \text{ kip\_ft}$ 

Strain in layer 3  $\epsilon_{y34} = \epsilon_c \times (1 - x_{y3} / c_{y4}) = -0.00500$ 

Stress in layer 3  $\sigma_{y34} = \max(-1 \times f_y, E_s \times \varepsilon_{y34}) = -60000.00 \text{ psi}$ 

Force carried by layer 3  $P_{y34} = N_y \times A_{bar} \times \sigma_{y34} = -179.879 \text{ kips}$ 

Moment carried by steel layer 3  $M_{y34} = P_{y34} \times ((b/2) - x_{y3}) = 148.940 \text{ kip\_ft}$ 

Combined axial load and moment resistance

Sum of forces  $P_{ny4}$  = 402.6 kips Sum of moments  $M_{0y4}$  = 723.2 kip\_ft

Strength reduction factor  $\phi_v = 0.894$ 

Utilmate axial load capacity  $P_{uy4} = \phi_y \times P_{ny4} = \textbf{360.1 kips}$  Utilmate moment load capacity  $M_{uoy4} = \phi_y \times M_{oy4} = \textbf{646.7 kip\_ft}$ 

#### Axial and bending capacity with axial capacity of zero (bending about y axis)

#### Moment of resistance of concrete

Depth to neutral axis  $c_{y5} = 4.5$  in

Depth of equivalent rectangular stress block  $a_{y5} = min((\beta_1 \times c_{y5}), b) = 4$  in

Concrete compression force  $P_{ycon5} = 0.85 \times f'_c \times h \times a_{y5} = 273.9 \text{ kips}$ 

Concrete moment of resistance  $M_{ycon5} = P_{ycon5} \times (b/2 - (a_{y5}/2)) = 275.7 \text{ kip ft}$ 

Moment of resistance of reinforcement

 $\begin{array}{ll} \text{Strain in layer 1} & \qquad \qquad \epsilon_{y15} = \epsilon_c \times (1 - x_{y1} / c_{y5}) = \textbf{0.00030} \\ \text{Stress in layer 1} & \qquad \qquad \sigma_{y15} = \min(f_y, \, \mathsf{E_s} \times \epsilon_{y15}) = \textbf{8649.87} \, \mathsf{psi} \\ \text{Force carried by layer 1} & \qquad \qquad \mathsf{P_{y15}} = \mathsf{N_y} \times \mathsf{A_{bar}} \times \sigma_{y15} = \textbf{25.932} \, \mathsf{kips} \end{array}$ 

Moment carried by steel layer 1  $M_{y15} = P_{y15} \times ((b/2) - x_{y1}) = 21.472 \text{ kip_ft}$ 



99 Summer St. Boston, MA 02110

| Project<br>West Hartf | ord Relo CT    |                 |                | Job Ref.<br>50114615 |                |
|-----------------------|----------------|-----------------|----------------|----------------------|----------------|
| Section<br>Concrete C | Column         |                 |                | Sheet no./rev        | <i>1</i> .     |
| Calc. by              | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |

Strain in layer 2  $\varepsilon_{y25} = \varepsilon_c \times (1 - x_{y2} / c_{y5}) = -0.00631$ 

Stress in layer 2  $\sigma_{y25} = max(-1 \times f_y, E_s \times \epsilon_{y25}) = -60000.00 \text{ psi}$ 

Force carried by layer 2  $P_{y25} = 2 \times A_{bar} \times \sigma_{y25} = -119.919$  kips

Moment carried by steel layer 2  $M_{y25} = P_{y25} \times ((b/2) - x_{y2}) = \textbf{0.000} \text{ kip\_ft}$ 

Strain in layer 3  $\epsilon_{y35} = \epsilon_c \times (1 - x_{y3} / c_{y5}) = \textbf{-0.01291}$ 

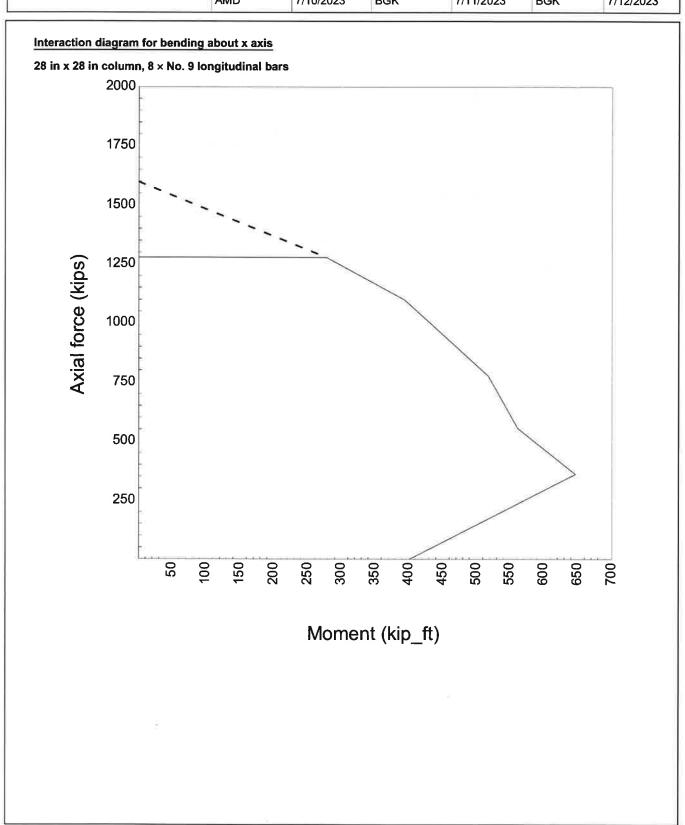
Stress in layer 3  $\sigma_{y35} = max(-1 \times f_y, \ E_s \times \epsilon_{y35}) = -60000.00 \ psi$ 

Force carried by layer 3  $P_{y35} = N_y \times A_{bar} \times \sigma_{y35} = -179.879 \text{ kips}$ 

Moment carried by steel layer 3  $M_{y35} = P_{y35} \times ((b/2) - x_{y3}) = 148.940 \text{ kip_ft}$ 

Combined axial load and moment resistance

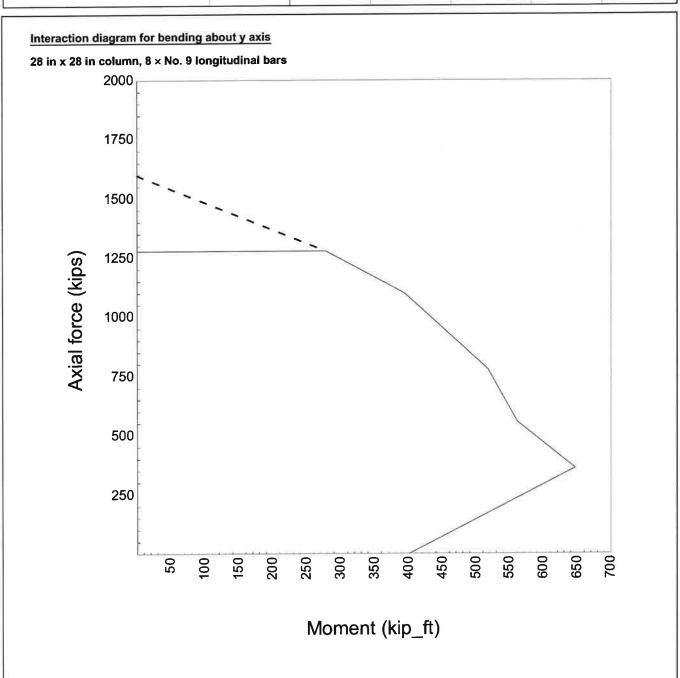
Sum of forces  $P_{ny5} = 0.0 \text{ kips}$ Sum of moments  $M_{0y5} = 446.2 \text{ kip_ft}$ 


Strength reduction factor  $\phi_y = 0.900$ 

Utilmate axial load capacity  $P_{uy5} = \phi_y \times P_{ny5} = \textbf{0.0 kips}$  Utilmate moment load capacity  $M_{uoy5} = \phi_y \times M_{oy5} = \textbf{401.5 kip\_ft}$ 



Dewberry Engineers Inc. 99 Summer St. Boston, MA 02110


| Project<br>West Hartf | ord Relo CT    |                 |                | Job Ref.<br>50114615 |                |
|-----------------------|----------------|-----------------|----------------|----------------------|----------------|
| Section<br>Concrete C | Column         |                 |                | Sheet no./rev        | <i>t</i> .     |
| Calc. by              | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |

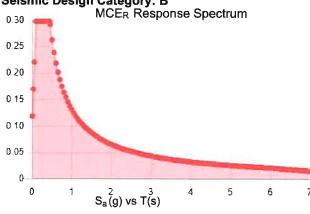


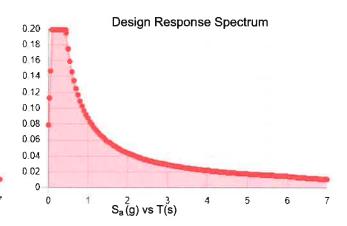


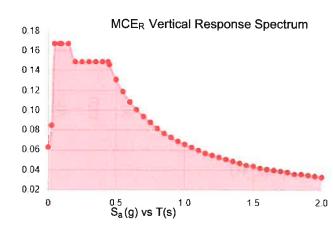
Dewberry Engineers Inc. 99 Summer St. Boston, MA 02110

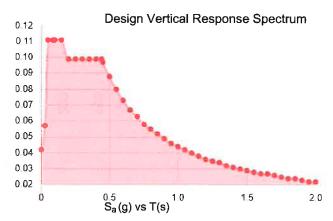
| Project<br>West Hartfo | ord Relo CT    |                 |                | Job Ref.<br>50114615 |                |
|------------------------|----------------|-----------------|----------------|----------------------|----------------|
| Section<br>Concrete Co | olumn          |                 |                | Sheet no./rev        | <i>.</i> .     |
| Calc. by               | Date 7/10/2023 | Chk'd by<br>BGK | Date 7/11/2023 | App'd by<br>BGK      | Date 7/12/2023 |




#### D - Default (see Section 11.4.3)


#### Site Soil Class:


#### Results:


| S <sub>s</sub> :  | 0.186 | S <sub>D1</sub> :  | 0.088 |
|-------------------|-------|--------------------|-------|
| S <sub>1</sub> :  | 0.055 | $T_L$ :            | 6     |
| F <sub>a</sub> :  | 1.6   | PGA:               | 0.1   |
| $F_v$ :           | 2.4   | PGA M              | 0.16  |
| S <sub>MS</sub> : | 0.298 | F <sub>PGA</sub> : | 1.6   |
| S <sub>M1</sub> : | 0.131 | l <sub>e</sub> :   | 1     |
| S <sub>DS</sub> : | 0.199 | C <sub>v</sub> :   | 0.7   |

#### Seismic Design Category: B









Data Accessed: Wed Jul 19 2023

**Date Source:** 

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.



# EAST > New England > > North East > W HARTFORD W CT RELO Latorre. Juan - jay.latorre@verizonwireless.com - 10042023

## **Project Details**

# Location Information

| Site ID: 1339019     | Search Ring# | E-NodeB ID#: 068846 0689552 | PSLC# 472708             | Switch Name: Windsor-3                                        | Tower Type:         | Site Type: MACRO             | Street Address: 139 North Main Street | City. West Hartford             | State: CT                       | Zip Code: 06107 | County. Harfford                                          | Latitude: 4177062  | Longitude: -72.7496 |
|----------------------|--------------|-----------------------------|--------------------------|---------------------------------------------------------------|---------------------|------------------------------|---------------------------------------|---------------------------------|---------------------------------|-----------------|-----------------------------------------------------------|--------------------|---------------------|
| Carrier Aggregation: |              | dea                         | Project Name: RADIO SWAP | Project Alt Name. W HARTFORD W CT RELO - C BAND GEN 2 MMU FOA | Project ID 17082760 | Designed Sector Camer 4G: 12 | Designed Sector Camer 5G: 6           | Additional Sector Carrier 4G: 0 | Additional Sector Carrier 5G: 0 | Suffix:         | FP Solution Type & Tech Type   MODIFICATION:5G_Radio Swap | RFDS Project Scope |                     |

## RFDS Project Scope

C Band Gen 1 to Gen 2 MMU Swap.

| ď  |
|----|
| Ε  |
| Ε  |
| 5  |
| u, |
| æ  |
| E  |
|    |
| д  |
| Έ  |
| ₫  |
|    |
|    |

| Added Antennas    |                      |       |            |             |             |                           |                                                     |               |                  |
|-------------------|----------------------|-------|------------|-------------|-------------|---------------------------|-----------------------------------------------------|---------------|------------------|
| L-Sub6            | Make                 | Model | -          | Centerline  | Tip Height  | Azımuth                   | Install                                             | Install Type  | Quantify         |
| 56                | Samsung              | MT64  | MT6413-77A | 78          | 79.2        | 40(310).140(311),270(312) |                                                     | PHYSICAL      | 6                |
| A<br>V            | All v lems per page  |       |            |             |             |                           |                                                     |               | 1 - 1 of 1 items |
| Removed Antennas  | gr.                  |       |            |             |             |                           |                                                     |               |                  |
| P-Sub6            | Make                 | Model | -          | Centerline  | Tip Height  | Azımuth                   | Install                                             | Install Type  | Quantity         |
| 56                | Samsung              | MT64  | MT6407-77A | 78          | 79.5        | 40(310),140(311),270(312) |                                                     | PHYSICAL      | en               |
| X<br>A<br>V       | All v Rems per page  |       |            |             |             |                           |                                                     |               | 1-1 of 1 ilems   |
| Retained Antennas |                      |       |            |             |             |                           |                                                     |               |                  |
| 700               | 1900                 | AWS   | Make       | Model       | Centerline  | Tip Height                | Azimuth                                             | Install Type  | Quantity         |
| e an              | SG,UTE LITE          | an    | ANDREW     | SBNHH-1D65B | 87          | 18                        | 40(1),140(2),270(3),40(310),140(311),270(3 PHYSICAL | 70(3 PHYSICAL | 9:               |
| A Y Y             | All v ilems per page |       |            |             |             |                           |                                                     |               | 1 - 1 of 1 items |
|                   |                      |       | Added: 3   | Ren         | Removed : 3 | Retained : 6              |                                                     |               |                  |
|                   |                      |       |            |             |             |                           |                                                     |               |                  |

|   | С  | _  |
|---|----|----|
|   | =  | =  |
|   | 17 | 9  |
|   | c  | •  |
|   | 6  | :  |
|   | 7  |    |
|   | E  | •  |
|   | =  |    |
|   | -  | ð, |
| 1 | u  | 1  |
|   | _  | •  |
|   | -  |    |
|   | 17 | 2  |
|   | С  | =  |
|   |    | ÷  |
|   |    |    |
|   | α  | ,  |
|   | 4  | à  |
|   | Ė  |    |
|   | -  | :  |
|   | d  | r  |
|   |    | ٠. |
|   | •  | •  |
|   | 7  | •  |
|   | c  | ,  |
|   | -  | •  |
|   | 4  |    |
|   |    |    |
|   |    |    |

| Equipment Type        | Location              |     | L-Sub6 | Make    |     | Model      |                                | Install Type | Hide on PDF      |
|-----------------------|-----------------------|-----|--------|---------|-----|------------|--------------------------------|--------------|------------------|
| A A M                 | All v : Rems per page |     |        |         |     |            |                                |              | 1 - 1 of 1 ilems |
| Removed Non Antennas  |                       |     |        |         |     |            |                                |              |                  |
| Equipment Type        | Location              |     | L-Sub6 | Make    |     | Model      |                                | Install Type | Hide on PDF      |
| Retained Non Antennas | All • Rems per page   |     |        |         |     |            |                                |              | 1 - 1 of 1 ilems |
|                       | or line               | 200 | 850    | 0000    | ANA | Make       | MAGE                           | envi liciani | Octanish         |
|                       | Tower                 | 3   | 3      | - T     | LTE | Samsung    | B2/B66A RRH-BR049 (RFV01U-D1A) | PHYSICAL     | 8                |
| RRU                   | Tower                 | #1  | 56,LTE |         |     | Samsung    | B5/B13 RRH-BR04C (RFV01U-D2A)  | PHYSICAL     | E                |
| X Y                   | Ali 🔻 Rems per page   |     |        |         |     |            |                                |              | 1-2 of 2 items   |
|                       |                       |     |        | Added:0 |     | Removed: 0 | Retained:6                     |              |                  |
|                       |                       |     |        |         |     |            |                                |              |                  |

|                             | 0000                                                   |                                |                                | 0000                                                    |                                |                                |
|-----------------------------|--------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------|--------------------------------|--------------------------------|
|                             | Site Record Id:1129647 Last Import:2023-04-10 08:46:32 | nport:2023-04-10 D8:46:34      |                                | Site Record 1d:8595125 Last Import:2023-04-10*08:46:34* | Import:2023-04-10 08:46:34"    |                                |
| 1900 LTE                    |                                                        | 0000                           |                                |                                                         | 0002                           |                                |
| Sector:                     | 01                                                     | 02                             | 03                             | 01                                                      | 02                             | 03                             |
| Azimuth:                    | 40                                                     | 140                            | 270                            | 40                                                      | 140                            | 270                            |
| Cell/E-NodeB ld:            | 063846                                                 | 068846                         | 068846                         | 068846                                                  | 063846                         | 063846                         |
| Antenna Model:              | SBNHH-1D65B                                            | SBNHH-1D65B                    | SBNHH-1D65B                    | SBNHH-1D65B                                             | SBNHH-1D65B                    | SBNHH-1D65B                    |
| Antenna Make:               | ANDREW                                                 | ANDREW                         | ANDREW                         | ANDREW                                                  | ANDREW                         | ANDREW                         |
| Antenna CenterLine(Ft):     | 78                                                     | 78                             | 78                             | 78                                                      | 78                             | 78                             |
| DLEARFCN:                   | 1050                                                   | 1050                           | 1050                           | 1050                                                    | 1050                           | 1050                           |
| Mechanical Down-Tift(Deg.): | 0                                                      | 0                              | 0                              | 0                                                       | 0                              | 0                              |
| Electrical Down-Tilt:       | 0                                                      | 3                              | 0                              | 0                                                       | 3                              | 0                              |
| Tip Height:                 | 81                                                     | 81                             | 81                             | 28                                                      | <u>.</u>                       | 81                             |
| Regulatory Power:           | 290.31 (WMHz) EIRP                                     | 290 31 (WMHz) EIRP             | 290.31 (W/MHz) EIRP            | 290,31 (WMHz) EIRP                                      | 290.31 (W/MHz) EIRP            | 290,31 (WMHz) EIRP             |
| Cell Max Power:             | 46 dBm                                                 | 45 dBm                         | 46 dBm                         | 46 dBm                                                  | 46 dBm                         | 46 dBm                         |
| TMA Make:                   | ווחם                                                   | null                           | null                           | Inul                                                    | null                           | llun                           |
| TMA Model:                  | llun                                                   | llun                           | וחח                            | llnu                                                    | llun                           | llun                           |
| RRU Make:                   | Samsung                                                | Samsung                        | Samsung                        | Samsung                                                 | Samsung                        | Samsung                        |
| RRU Model:                  | B2/B66A RRH-BR049 (RFV01U-D1A)                         | B2/B66A RRH-BR049 (RFV01U-D1A) | B2/B66A RRH-BR049 (RFV01U-D1A) | B2/B66A RRH-BR049 (RFV01U-D1A)                          | B2/B66A RRH-BR049 (RFV01U-D1A) | B2/B66A RRH-BR049 (RFV01U-D1A) |
| Number of Tx, Rx Lines:     | 4,4                                                    | 4 4                            | 2.4                            | 4 4                                                     | t t                            | 2,4                            |
| Position:                   | ווחו                                                   | linu                           | llun                           | llun                                                    | llun                           | luli                           |
| Transmitter Id:             | 7477208                                                | 7477209                        | 7477210                        | 16564986                                                | 16564989                       | 16564992                       |
| Source:                     | SHASUZI                                                | SHASUZI                        | SHASUZI                        | LATORJU                                                 | LATORJU                        | LATORJU                        |
| Bandwidth                   | 10                                                     | 10                             | 10                             | 10                                                      | 10                             | 10                             |

| 700 LTE | Sector: 01 | Azimuth: 40 | Cell/E-NodeB ld: 058846 | Antenna Model: SBNHH-1D65B | Antenna Make: ANDREW | Antenna CenterLine(Ft): 78 | DLEARFCN: \$230 | Mechanical Down-Tilt(Deg.): | Electrical Down-TiN: 0 | Tip Height: | Regulatory Power: 77.46 (W/MHz) ERP | Cell Max Power: 46 dBm | TMA Make: null | TMA Model: | RRU Make: Samsung | RRU Model: B5/B13 RRH-BR04C (RFV01U-D2A) | Number of Tx, Rx Lines: 4, 4 | Position: null | Transmitter Id: 7477214 |  |
|---------|------------|-------------|-------------------------|----------------------------|----------------------|----------------------------|-----------------|-----------------------------|------------------------|-------------|-------------------------------------|------------------------|----------------|------------|-------------------|------------------------------------------|------------------------------|----------------|-------------------------|--|
|         |            |             | 91                      | DesB                       | ΞW                   |                            |                 |                             |                        |             | Hz) ERP                             | Ę                      |                |            | bun               | C (RFV01U-D2A)                           | 4                            | -              | 214                     |  |
| 0000    | 02         | 140         | 068846                  | SBNHH-1D65B                | ANDREW               | 78                         | 5230            | 100                         | .0                     | 81          | 77.46 (WMHz) ERP                    | 46 dBm                 | וחוו           | llun       | Samsung           | B5/B13 RRH-BR04C (RFV01U-D2A)            | 4,4                          | null           | 7477216                 |  |
|         | 03         | 270         | 068846                  | SBNHH-1D65B                | ANDREW               | 78                         | 5230            | 0                           | 0                      | 81          | 117.24 (WMHz) ERP                   | 47.8 dBm               | ווחים          | null       | Samsung           | B5/B13 RRH-BR04C (RFV01U-D2A)            | 2.4                          | huni           | 7477218                 |  |
|         | 01         | 40          | 068846                  | SBNHH-1D65B                | ANDREW               | 78                         | 5230            | 0                           | 0                      | 81          | 77 46 (WMAH2) ERP                   | 46 dBm                 | llun           | llun       | Samsung           | B5/B13 RRH-BR04C (RFV01U-D2A)            | 4.4                          | llun           | 16564985                |  |
| 0002    | 02         | 140         | 068846                  | SBNHH-1D65B                | ANDREW               | 78                         | 5230            | 0                           | 0                      | 18          | 77.46 (WMHz) ERP                    | 46 dBm                 | llun           | llun       | Samsung           | B5/B13 RRH-BR04C (RFV01U-D2A)            | 4                            | llun           | 16564988                |  |
|         | 03         | 270         | 068846                  | SBNHH-1D65B                | ANDREW               | 78                         | 9230            | 0                           | 0                      | 81          | 117.24 (WMHz) ERP                   | 47 8 dBm               | Inn            | llun       | Samsung           | B5/B13 RRH-BR04C (RFV01U-D2A)            | 2,4                          | llun           | 16564891                |  |

| 850 LTE | Sector | Azimuth: | Cell/E-NodeB ld: | Antenna Model: | Antenna Make: | Antenna CenterLine(Ft): | DLEARFCN: | Mechanical Down-Tilt(Deg.): | Electrical Down-Tift: | Tip Height: | Regulatory Power:    | Cell Max Power: | TMA Make: | TMA Model: | RRU Make: | RRU Model:                    | Number of Tx, Rx Lines: | Position: | Transmitter Id: | Source: | Bandwidth |
|---------|--------|----------|------------------|----------------|---------------|-------------------------|-----------|-----------------------------|-----------------------|-------------|----------------------|-----------------|-----------|------------|-----------|-------------------------------|-------------------------|-----------|-----------------|---------|-----------|
|         | 10     | 40       | 068846           | SBNHH-1D658    | ANDREW        | 78                      | 2450      | 0                           | 7                     | 5           | 366 87 (WMHz) ERPSD  | 46 dBm          | πυll      | ווחוו      | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 4,4                     | llun      | 10970620        | SHASU2I | 10        |
| 0000    | 02     | 140      | 068846           | SBNHH-1D65B    | ANDREW        | 60                      | 2450      | 0                           | 0                     | 81          | 305.36 (W/MHz) ERPSD | 46 dBm          | null      | nul        | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 4.4                     | וחת       | 10970621        | SHASUZI | 10        |
|         | 03     | 270      | 068846           | SBNHH-1D65B    | ANDREW        | 78                      | 2450      | 0                           | 0                     | 18          | 152.68 (W/MHz) ERPSD | 45 dBm          | null      | nulf       | Samsung   | BS/B13 RRH-BR04C (RFV01U-D2A) | 2,4                     | llun      | 10970622        | SHASUZI | 10        |
|         | 01     | 40       | 063846           | SBNHH-1D65B    | ANDREW        | 78                      | 2450      | 0                           | 7                     | 81          | 366.87 (WMHz) ERPSD  | 46 dBm          | Indi      | וחח        | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 4,4                     | flun      | 16564997        | LATORJU | 10        |
| 7,000   | 02     | 140      | 068846           | SBNHH-1D65B    | ANDREW        | 78                      | 2450      | 0                           | 0                     | 81          | 305.36 (WMMHz) ERPSD | 46 dBm          | null      | Hnu        | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 4.4                     | llun      | 16564998        | LATORJU | 10        |
|         | 03     | 270      | 068846           | SBNHH-1D65B    | ANDREW        | 78                      | 2450      | 0                           | 0                     | 81          | 152 68 (W/MHz) ERPSD | 46 dBm          | llun      | linu       | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 4,2                     | llun      | 16564999        | LATORJU | 10        |

| 850 NR | Sector: | Azimuth: | Cell/E-NodeB Id: | Antenna Model: | Antenna Make: | Antenna CenterLine(Ft): | DLEARFCN: | Mechanical Down-Titt(Deg.): | Electrical Down-Tift: | Tip Height: | Regulatory Power.    | Cell Max Power: | TMA Make: | TMA Model: | RRU Make: | RRU Model:                    | Number of Tx, Rx Lines: | Position: | Transmitter Id: | Source: | Bandwidth |
|--------|---------|----------|------------------|----------------|---------------|-------------------------|-----------|-----------------------------|-----------------------|-------------|----------------------|-----------------|-----------|------------|-----------|-------------------------------|-------------------------|-----------|-----------------|---------|-----------|
|        | 0310    | 40       | 0689552          | SBNHH-1D65B    | ANDREW        | 78                      | 2450      | 0                           | _                     | 20          | 366.87 (WMHz) ERPSD  | 46 dBm          | llon      | ווחט       | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 4,4                     | (Inu      | 10970620        | SHASU2I | 10        |
| 0000   | 0311    | 140      | 0689552          | SBNHH-1D65B    | ANDREW        | 78                      | 2450      | 0                           | 0                     | 81          | 305.36 (W/MHz) ERPSD | 46 dBm          | llun      | llun       | Samsung   | BS/B13 RRH-BR04C (RFV01U-D2A) | 4.4                     | וותו      | 10970621        | SHASU2I | 10        |
|        | 0312    | 270      | 0689552          | SBNHH-1D658    | ANDREW        | 78                      | 2450      | 0                           | 0                     | 18          | 152,68 (WAMHz) ERPSD | 46 dBm          | llun      | llun       | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 2,4                     | llun      | 10970622        | SHASU2I | 10        |
|        | 0310    | 40       | 0689552          | SBNHH-1D65B    | ANDREW        | 78                      | 2450      | 0                           | 7                     | 81          | 366.87 (WMHz) ERPSD  | 46 dBm          | Inul      | Ilun       | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 4.4                     | llun      | 16564997        | LATORJU | 10        |
| 2000   | 0311    | 140      | 0689552          | SBNHH-1D65B    | ANDREW        | 78                      | 2450      | 0                           | 0                     | 81          | 305.36 (WAMHz) ERPSD | 46 dBm          | liun      | Inul       | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 4.4                     | llun      | 16564998        | LATORJU | 10        |
|        | 0312    | 270      | 0689552          | SBNHH-1D65B    | ANDREW        | 78                      | 2450      | 0                           | 0                     | 81          | 152 68 (WMHz) ERPSD  | 46 dBm          | llun      | llnu       | Samsung   | B5/B13 RRH-BR04C (RFV01U-D2A) | 2,4                     | llun      | 16564999        | LATORJU | 10        |

|         | 03     | 270      | 068846           | SBNHH-1D65B    | ANDREW        | 17.                     | 2050      | 0                           | 0                     | 150         | 144.05 (WMHz) EIRP  | 46 dBm          | linu.     | llnu       | Samsung   | B2/B66A RRH-BR049 (RFV01U-D1A) | 2,4                     | Jinu      | 16564993        | LATORAU | 20        |
|---------|--------|----------|------------------|----------------|---------------|-------------------------|-----------|-----------------------------|-----------------------|-------------|---------------------|-----------------|-----------|------------|-----------|--------------------------------|-------------------------|-----------|-----------------|---------|-----------|
| 0005    | 02     | 140      | 068846           | SBNHH-1D65B    | ANDREW        | 7.8                     | 2050      | 0                           | 65                    | <u>~~</u>   | 144.05 (WIMHZ) EIRP | 46 dBm          | llun      | llnu       | Samsung   | B2/B66A RRH-BR049 (RFV01U-D1A) | 4.4                     | llnu      | 16564990        | LATORJU | 20        |
|         | 01     | 40       | 068846           | SBNHH-1D65B    | ANDREW        | 78                      | 2050      | 0                           | 0                     | 150         | 144.05 (W/MHz) EIRP | 46 dBm          | llun      | וחעו       | Samsung   | B2/B66A RRH-BR049 (RFV01U-D1A) | 4.4                     | llun      | 16564987        | LATORJU | 20        |
|         | 03     | 270      | 068846           | SBNHH-1D65B    | ANDREW        | 78                      | 2050      | 0                           | 0                     | <u>**</u>   | 144.05 (W/MHz) EIRP | 46 dBm          | llun      | llun       | Samsung   | B2/B66A RRH-BR049 (RFV01U-D1A) | 2.4                     | llun      | 7477219         | SHASU2I | 20        |
| 0000    | 02     | 140      | 066846           | SBNHH-1D65B    | ANDREW*       | 7.8                     | 2050      | 0                           | 6                     | 81          | 144.05 (W/MHz) EIRP | 46 dBm          | llun      | llun       | Samsung   | B2/B66A RRH-BR049 (RFV01U-D1A) | 4.4                     | llnu      | 7477217         | SHASU2I | 20        |
|         | 10     | 40       | 068846           | SBNHH-1D65B    | ANDREW        | 78                      | 2050      | 0                           | 0                     | 8           | 144.05 (WMHz) EIRP  | 46 dВт          | llun      | llun       | Samsung   | B2/B66A RRH-BR049 (RFV01U-D1A) | 4,4                     | llun      | 7477215         | SHASU2  | 20        |
| AWS LTE | Sector | Azimuth: | Cell/E-NodeB Id: | Antenna Model: | Antenna Make: | Antenna CenterLine(Ft): | DLEARFCN: | Mechanical Down-Tilt(Deg.): | Electrical Down-Tilt: | Tip Height: | Regulatory Power:   | Cell Max Power: | TMA Make: | TMA Model: | RRU Make: | RRU Model:                     | Number of Tx, Rx Lines: | Position: | Transmitter Id: | Source: | Bandwidth |

|          | 0312    | 270      | 0689552          | MT6413-77A     | Samsung       | 78                      | 648672    | 0                           | e                     | 78.2        | 1603.82 (W/MHz) ERP  | 51.1 dBm        | null      | ווחם       | Samsung   | MT6413-77A | 2,2                     | llun      | 16564996        | LATORJU | 09        |
|----------|---------|----------|------------------|----------------|---------------|-------------------------|-----------|-----------------------------|-----------------------|-------------|----------------------|-----------------|-----------|------------|-----------|------------|-------------------------|-----------|-----------------|---------|-----------|
| 0000     | 0311    | 140      | 0689552          | MT6413-77A     | Samsung       | 78                      | 648672    | 0                           | 60                    | 79.2        | 1603.82 (WIMHz) EIRP | 51,1 dBm        | llun      | llou       | Samsung   | MT6413-77A | 2.2                     | llnu      | 16564995        | LATORJU | 09        |
|          | 0310    | 9        | 0689552          | MT6413-77A     | Samsung       | 78                      | 648672    | 0                           | ¢*                    | 79.2        | 1603,82 (WIMHZ) EIRP | 51.1 dBm        | ווח       | llnu       | Samsung   | MT6413-77A | 2.2                     | llun      | 16564994        | LATORJU | 09        |
|          | 0312    | 270      | 0689552          | MT6407-77A     | Samsung       | 78                      | 648672    | 0                           | -                     | 79.5        | 767.64 (W/MHz) EIRP  | 47,8 dBm        | Patil     | nutl       | Samsung   | MT6407-77A | 2,2                     | llun      | 7477240         | SHASUZI | 09        |
| 0000     | 0311    | 140      | 0689552          | MT6407-77A     | Samsung       | 78                      | 648672    | 0                           | -                     | 79.5        | 767.64 (W/MHz) EIRP  | 47.8 dBm        | llun      | שתון       | Samsung   | MT6407-77A | 2,2                     | null      | 7477239         | SHASUZI | 09        |
|          | 0310    | 40       | 0689552          | MT6407-77A     | Samsung       | 78                      | 648672    | 0                           | -                     | 79.5        | 767.64 (W/MHz) EIRP  | 47.8 dBm        | llun      | nuil       | Samsung   | MT6407-77A | 2,2                     | llnu      | 7477238         | SHASUZI | 09        |
| CBAND NR | Sector: | Azimuth: | Cell/E-NodeB ld: | Antenna Model: | Antenna Make: | Antenna CenterLine(Ft): | DLEARFCN: | Mechanical Down-Tilt(Deg.): | Electrical Down-Tilt: | Tip Height: | Regulatory Power:    | Cell Max Power: | TMA Make: | TMA Model: | RRU Make: | RRU Model: | Number of Tx, Rx Lines: | Position: | Transmitter Id: | Source: | Bandwidth |

| ANDREW         SBNHH-II         78         81         270         0         12 508         68 5           ANDREW         SBNHH-II         78         81         40         7         0         12 311         64 75           ANDREW         SBNHH-II         78         81         40         7         0         12 311         64 75           ANDREW         SBNHH-II         78         81         140         0         0         12 37         64 5           ANDREW         SBNHH-II         78         81         140         0         0         15 188         60 25           ANDREW         SBNHH-II         78         81         140         0         0         16 188999         53           ANDREW         SBNHH-II         78         81         140         0         0         16 189999         53           ANDREW         SBNHH-II         78         81         140         0         0         16 189999         53           ANDREW         SBNHH-II         78         81         270         0         0         12 57         64 5           ANDREW         78         81         140         3         0 | 270<br>40<br>40<br>270<br>270<br>270 | 0 2 2 0 0 | 0 0 0 | 12 508       |         | 1              | 700 : 850 |             |             | ,      |        |        |          |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|-------|--------------|---------|----------------|-----------|-------------|-------------|--------|--------|--------|----------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270<br>40<br>40<br>140<br>270<br>270 | 0         |       |              |         |                |           |             | 1900 : 2100 | 28 GHz | 31 GHz | 39 GHz | - L-Sub6 | : CBRS |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40<br>40<br>270<br>270<br>270        | r r 0 0   |       |              | 685 1   | 117.24         | WQJQ689   |             |             |        |        |        |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40<br>140<br>270<br>270<br>270       | 2 0 0     |       | 12.311       | 64.75   | 366.87 - PSD 🔻 | Ŷ         | KNKA404     |             |        |        |        |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270<br>270<br>270<br>140             | 0 0       |       | 12 311       | 64 75   | → QSd - PSD →  | ž         | KNKA404     |             |        |        |        |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270                                  | 0         |       | 12.57        | 64.5    | 305.36 - PSD ▼ | ō         | KNKA404     |             |        |        |        |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140<br>270                           |           | 0     | 16 188       | 60 25 1 | 144 05         |           |             | WQGA906,WQ  | WO     |        |        |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270                                  | 0         | 0     | 12.508       | 68.5 7  | 77.46 V        | WQJQ689   |             |             |        |        |        |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140                                  | 0         | 0     | 16 188999 53 |         | 290.31         |           | KNLH251.MPC | 1.WPC       |        |        |        |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | en.       | Ф     | 16 122       | 53 2    | 290.31         |           | KNLH251,WPO | 1,WPO       |        |        |        |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140                                  | 0         | 0     | 12 57        | 64.5    | 305.36 - PSD   | Ā         | KNKA404     |             |        |        |        |          |        |
| 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270                                  | 0         | 0     | 12.57        | 64.5    | 152.68 - PSD ▼ | <u>S</u>  | KNKA404     |             |        |        |        |          |        |
| SBNHH-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140                                  | 60        |       | 16 077       | 61.75   | 144 05         |           |             | WQGA906,WQ  | WO     |        |        |          |        |
| ANDREW SBNHH-1[ 78 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                   | 0         | 0     | 16 188999 53 |         | 290.31         |           | KALH251,MPO | I,WPO       |        |        |        |          |        |
| ANDREW SENHH-11 78 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270                                  | 0         | 0     | 12.57        | 64.5    | 152.68 - PSD 🔻 | Ŋ         | KNKA404     |             |        |        |        |          |        |
| ANDREW SBNHH-1L 78 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                   | . 0       |       | 16.188       | 60.25 1 | 144.05         |           |             | WQGA906,WQ  | WO     |        |        |          |        |
| ANDREW SBNHH-II 78 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                   | 0         | 0     | 12 508       | 68.5    | 77 46 V        | WQJQ689   |             |             |        |        |        |          |        |

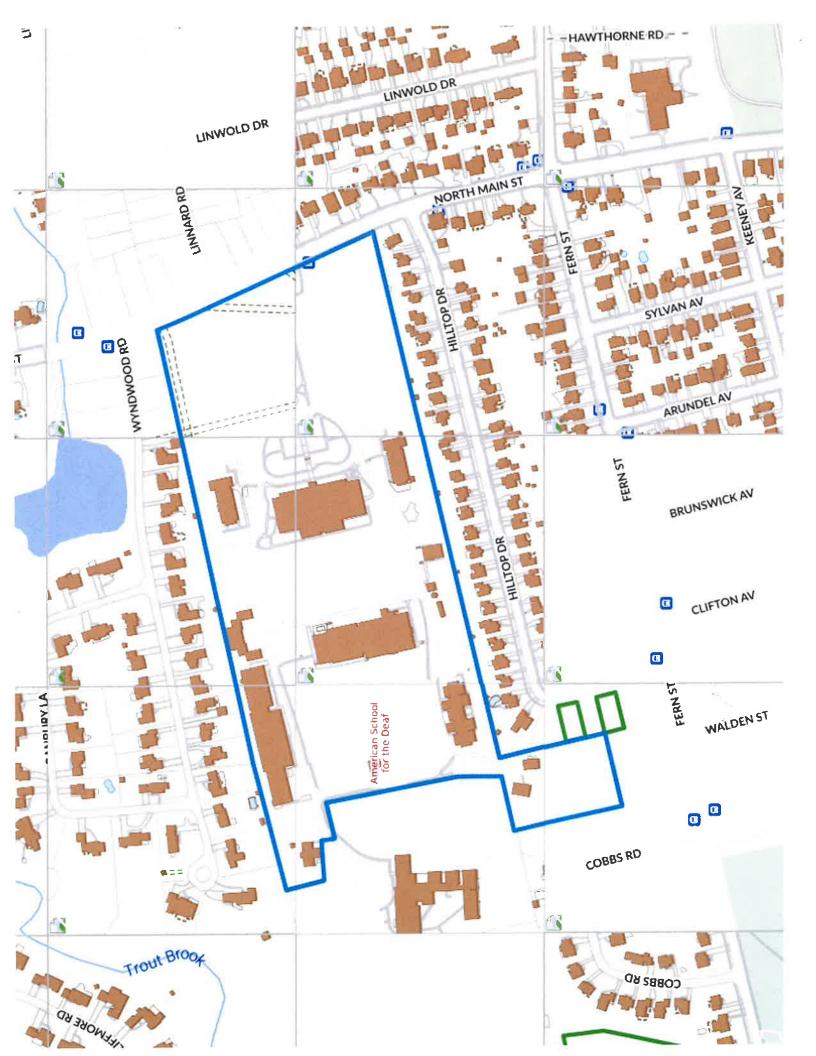
## Callaigna

| #27.000 - 1000 - 1000 - 1000 - 1000   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   122.00   1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| สะก ออการตด สระกาศอัสสาร เพลาะของสะด 152.58 400 1 <u>ยชีวิเรีย</u><br>เพาะละก . 646.59ก - เขาะรัคง                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Proprietary and Confidential. Not for disclosure outside of Verizon.

Proprietary and Confidential. Not for disclosure outside of Verizon.

|                                                                             | S vit                                                                                             |                                                                                                                       |                                                        |                                                        |                                                 | 12 6.5                                                                                                               |                                                                                                         |                                                                                                                           |                                                     |                                    |                                              |                                                     |                                            |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| +                                                                           | +                                                                                                 | Ė                                                                                                                     |                                                        |                                                        | -                                               |                                                                                                                      | ₹8                                                                                                      | <u>#</u>                                                                                                                  | <del>3</del> 0                                      | #1                                 | = <del>5</del>                               | ÷                                                   | -                                          |
| petained                                                                    | retained                                                                                          | retained                                                                                                              |                                                        |                                                        |                                                 | relained                                                                                                             |                                                                                                         |                                                                                                                           | 8                                                   |                                    |                                              |                                                     |                                            |
| 1223.64                                                                     | 1223.64                                                                                           | 1223 64                                                                                                               | 1223.64                                                | 1223 64                                                | 1223.64                                         | 1223.64                                                                                                              | 1223.64                                                                                                 | 1223 64                                                                                                                   | 1223.64                                             | 1223 64                            | 1223 64                                      | 1223 64                                             | 1223,64                                    |
| 1640                                                                        | 1640                                                                                              | 1640                                                                                                                  | 1640                                                   | 1640                                                   | 1640                                            | 1640                                                                                                                 |                                                                                                         |                                                                                                                           |                                                     |                                    |                                              |                                                     |                                            |
| 0 1980,000/.00 290,31                                                       | 1970.000 -<br>0 1975.000/.00 290.31<br>000                                                        | 2110.000:<br>0.2120.000i.00 144.05<br>000                                                                             | 3720,000 - 000<br>3720,000/,00 -000/,000<br>-,000 -000 | 000 000<br>000 000                                     | 3740,000 000<br>3760.000/.00000/.000<br>000 000 | 2720,000-<br>30 2130,000/30 144,05<br>900                                                                            | 27700.000<br>= 27925.000.0<br>000                                                                       | 28150 000<br>28350 000/0<br>- 000                                                                                         | 000 <sup>7</sup> 000<br>000 <sup>7</sup> 000<br>000 | 000 -000<br>000 000                | 000 <sup>-</sup> 000<br>000 <sup>-</sup> 000 | 000 <sup>7</sup> 000<br>000 <sup>7</sup> 000<br>000 | 37900.000<br>                              |
| 1900,000/.0                                                                 | 1890.000-<br>1895.000/0<br>-,000                                                                  | 1710.000.0<br>1720.000.0<br>000                                                                                       | 3700.000 -<br>3720.000/ 0<br>000                       | 3720 000 -<br>3740 000/ 00<br>-,000                    | 3740.000 -<br>3760.000/.0<br>000                | 1720,060-<br>0 1730,060/L<br>000                                                                                     | 27500.000<br>0 27600.000/<br>000                                                                        | 27925 000<br>0 28050 000/<br>- 000                                                                                        | 37600.000<br>37700.000/0<br>000                     | 38500 000<br>38600 000/ 0<br>- 000 | 37700.000<br>37800.000/,0<br>000             | 37800.000<br>37900.000/.0<br>000                    | 37900 000<br>38000.000/<br>- 000           |
| 1990.000,00 1980.000,00 1990.000,00 1980.000;00 290,31<br>-,000 - 000 - 000 | 1890,000 - 1970,000 - 1890,000 - 1970,000 - 1885,000,00 1975,000,00 1895,000,00 1975,000,00000000 | 1770,000 - 2110,000 1770,000 - 2110,000 144,05 1720,000,00 2120,000,00 1720,000,00 2120,000,00 144,05 000 - 000 - 000 | 3700.000000<br>3720.000/.00 -000/.000<br>000 -000      | 3720 000 - 000<br>3740 000/ 00 -000/ 000<br>- 000 -000 | 3740.000000<br>3760.000/.00000<br>000000        | 1720,000 - 2120,000 - 1720,000 - 2120,000 - 1730,000,00 2130,000,00 1730,000,00 2130,000,00 144,05 - 800 - 800 - 800 | 27500.000 27700.000 27500.000 27700.000<br>27600.000.0 27925.000.0 27600.000.0 27925.000.0<br>000000000 | 27925 000 28150 000 27925 000 28150 000<br>28050 000/,0 28350 000/,0 28050 000/,0 28350 000/,0<br>- 000 - 000 - 000 - 000 | 37600 000 .000<br>37700 000,0 -000                  | 000 000 000 0038E                  | 37700.000 .000<br>37800.0007.0 -000<br>000   | 37800,000 000<br>37900,0000,0 -000                  | 37900,000 000<br>38000,000/0 -000<br>- 000 |
| 10,000                                                                      | 10,000                                                                                            | 20.000                                                                                                                | 20.000                                                 | 20 000                                                 | 20 000                                          | 20.000                                                                                                               | 325,000                                                                                                 | 325 000                                                                                                                   | 100.000                                             | 100 000                            | 100 000                                      | 100.000                                             | 100.000                                    |
| Yes                                                                         | \$2                                                                                               | <u>\$</u>                                                                                                             | Yes                                                    | Yes                                                    | Yes                                             | 3                                                                                                                    | Yes                                                                                                     | Yes                                                                                                                       | Yes                                                 | Yes                                | Yes                                          | Yes                                                 | Yes                                        |
| Cellon<br>Partnership                                                       | Cellco<br>Partnership                                                                             | Cellco<br>Partnership                                                                                                 | Cellco<br>Parlnership                                  | Cellco<br>Parlnership                                  | Celico<br>Parinership                           | Gelico<br>Partnership                                                                                                | Cellco<br>Partnership                                                                                   | Cellco<br>Partnership                                                                                                     | Cellco<br>Partnership                               | Cellco<br>Parinership              | Cellco<br>Partnership                        | Cellco<br>Partnership                               | Cellco<br>Partnership                      |
| Harfford                                                                    | Harfford                                                                                          | Harfford                                                                                                              | Hartford                                               | Harfford                                               | Hartford                                        | Harfford                                                                                                             | Harfford                                                                                                | Hartford                                                                                                                  | Hartford                                            | Hartford                           | Hartford                                     | Hartford                                            | Напбол                                     |
| 5                                                                           | ct                                                                                                | ъ                                                                                                                     | ರ                                                      | cī                                                     | ל                                               | 5                                                                                                                    | 5                                                                                                       | CT                                                                                                                        | b                                                   | CT                                 | ct                                           | Lo                                                  | ct                                         |
| O                                                                           | tu                                                                                                | 4                                                                                                                     | A1                                                     | A2                                                     | A3                                              |                                                                                                                      | 5                                                                                                       | 2                                                                                                                         | M<br>T                                              | M10                                | M2                                           | M3                                                  | <b>M</b>                                   |
| BTA184                                                                      | BTA184                                                                                            | CMAB32                                                                                                                | PEA001                                                 | PEA001                                                 | PEA001                                          | BEA010                                                                                                               | BTA184                                                                                                  | BTA184                                                                                                                    | PEA001                                              | PEA001                             | PEA001                                       | PEA001                                              | PEA001                                     |
| wo                                                                          | cw                                                                                                | AW                                                                                                                    | M                                                      | PM                                                     | PM                                              | WW                                                                                                                   | 3                                                                                                       | 25                                                                                                                        | 25                                                  | 3                                  | 20                                           | 3                                                   | n<br>n                                     |
| Harfford,<br>CT                                                             | Harfford,<br>CT                                                                                   | Harfford-<br>New<br>Britain-<br>Brisiol, CT                                                                           | New York<br>NY                                         | New York,<br>NY                                        | New Yark.<br>NY                                 | New York<br>No. New<br>Jer-Long<br>Island, NY-<br>NJ-CT-PA-<br>MA-                                                   | Harfford.                                                                                               | Hartford,<br>CT                                                                                                           | New York.<br>NY                                     | New York,<br>NY                    | New York,<br>NY                              | New York.<br>NY                                     | New York.<br>NY                            |
| WPOJ730                                                                     | KAILHZS1                                                                                          | WQGB276                                                                                                               | WRNE581                                                | WRNE582                                                | WRNE583                                         | WGGA806                                                                                                              | WRBA708                                                                                                 | WRBA709                                                                                                                   | WRHD609                                             | WRHD610                            | WRHD611                                      | WRHD612                                             | WRHD613                                    |


| æ                                          | -                                | æ                                               | -                                        | ş                     | -                                                | ¥                                                   | -                                             | æ                                                | 0                         | 0                                             | 0                                | 0                                                 |
|--------------------------------------------|----------------------------------|-------------------------------------------------|------------------------------------------|-----------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|--------------------------------------------------|---------------------------|-----------------------------------------------|----------------------------------|---------------------------------------------------|
|                                            |                                  |                                                 |                                          |                       |                                                  |                                                     |                                               |                                                  |                           |                                               |                                  |                                                   |
|                                            |                                  |                                                 |                                          |                       |                                                  |                                                     |                                               |                                                  |                           |                                               |                                  |                                                   |
|                                            |                                  |                                                 |                                          |                       |                                                  |                                                     |                                               |                                                  |                           |                                               |                                  |                                                   |
| 1223 64                                    | 1223.64                          | 1223.64                                         | 1223.64                                  | 1223.64               | 1223.64                                          | 1223 64                                             | 1223.64                                       | 1223 64                                          | 1223.64                   | 1223.64                                       | 1223.64                          | 1223 64                                           |
|                                            |                                  |                                                 |                                          |                       |                                                  | 501                                                 | 501                                           | 501                                              | 1640                      | 1640                                          | 1640                             | 1640                                              |
|                                            |                                  |                                                 |                                          |                       |                                                  |                                                     |                                               |                                                  |                           |                                               |                                  |                                                   |
| 000<br>-000/ 000<br>-000/                  | .000<br>-000/.000<br>-000        | 000<br>-000/:000                                | 000.000                                  | 000,000               | .000<br>-000/<br>000                             | 0,000 /0<br>0,000 /0                                | 0,000                                         | 000 /0                                           | .000<br>-0007.000<br>-000 | 000<br>-000/.000<br>-000                      | .000<br>-000/.000<br>-000        | 000 /0                                            |
| 0.000                                      | 0000                             | 000/0                                           | 000                                      | 0.7000                | 0.7000                                           | 3550 000 - 000<br>3850 000/ 00 -000/ 000<br>-''000  | 3550.000000<br>3650.000/.00 -400/.000<br>000  | 3550 000 - 000<br>3650.000/.00 -000/.000<br>000  | 000                       | 8                                             | 00.00                            | 3820 000, 00 -000/ 000<br>-000 -000/ 00 -000/ 000 |
|                                            |                                  |                                                 |                                          |                       |                                                  |                                                     |                                               |                                                  | 000''000-                 |                                               |                                  |                                                   |
| 000-000-0                                  | .000.000<br>.0007.000            | 000-0                                           | 000.000-0                                | 000 000 000 000       | 000.000                                          | 000 -000/000                                        | 000-                                          | 000-000                                          | 000/000-                  | 000-000-0                                     | 000,000                          | 000-000-000                                       |
| 38000 000 .000<br>38100 000/0 000<br>- 000 | 38100.000<br>38200.000/.0<br>000 | 38200 000 000<br>38300 000/ 0 000/ 0 000<br>000 | 38300.000 .000<br>38400.000/.0 -000/.000 | 38400.000 000<br>     | 38600.000 ,000<br>= 0001.000 38700 0000,000 0000 | 3550 000 - 000<br>3650 0000,00 - 0000<br>- 000      | 3550.000000<br>3650.000,00 -0000.000<br>000   | 3550 000 - 000<br>3650 000/ 00 -000/ 00<br>- 000 | 000'000                   | 3760 060 - 000<br>3780 060/00 -000/000<br>000 | 3780.000-<br>3600.000/.00<br>000 | 3820 000, 000<br>3820 000,00 -000,000<br>- 000    |
| 100 000                                    | 100.000                          | 100 000                                         | 100.000                                  | 100 000               | 100.000                                          | 100 000                                             | 100.000                                       | 100 000                                          | 000                       | 20.000                                        | 20.000                           | 20.000                                            |
| <u>\$</u>                                  | ×8                               | Yes                                             | Yes                                      | Yes                   | Yes                                              | Yes                                                 | )SS                                           | Yes                                              | 8                         | Yes                                           | Yes                              | Yes                                               |
| Cellco<br>Parlnership                      | Cellco<br>Partnership            | Cellco<br>Partnership                           | Cellco<br>Parlnership                    | Cellco<br>Partnership | Cellco<br>Parlnership                            | Verizon<br>Wireless<br>Network<br>Procurement<br>LP | Verizon<br>Wireless<br>Network<br>Procurement | Verizon<br>Wireless<br>Network<br>Procurement    | Cellco<br>Partnership     | Celtco<br>Padnership                          | Cellco<br>Parinership            | Cellco<br>Parlnership                             |
| Hartford                                   | Hartford                         | Harfford                                        | Harfford                                 | Hartford              | Наптбол                                          | Harfford                                            | Hartford                                      | Hartford                                         | Насфол                    | Hartford                                      | Hartford                         | Hartford                                          |
| ь                                          | cd                               | ٦                                               | c                                        | CT                    | 15                                               | 72                                                  | ᅜ                                             | 5                                                | ៦                         | Ç                                             | ರ                                | CT                                                |
| MS                                         | M6                               | W7                                              | W8                                       | 8<br>W                | Ξ                                                | 0                                                   | 0                                             | 0                                                | 4                         | A4                                            | AS                               | B3                                                |
| PEA001                                     | PEA001                           | PEA001                                          | PEA001                                   | PEA001                | PEA001                                           | D09003                                              | D09003                                        | D03003                                           | REA001                    | PEA001                                        | PEA001                           | PEA001                                            |
|                                            |                                  |                                                 |                                          |                       |                                                  | L                                                   | _                                             | ū                                                | ш                         | 4                                             |                                  | ш                                                 |
| 3                                          | 3                                | 3                                               | 35                                       | 3                     | 3                                                | Ъ                                                   | చ                                             | 급                                                | 8                         | P.                                            | PM                               | Ā                                                 |
| New York.<br>NY                            | New York,<br>NY                  | New York.<br>NY                                 | New York,<br>NY                          | New York<br>NY        | New York,<br>NY                                  | D09003 ».<br>Hartford,<br>CT                        | D09003<br>Hartford,<br>CT                     | D09003 • Harfford.                               | Northeast                 | New York.<br>NY                               | New York,<br>NY                  | New York.<br>NY                                   |
| WRHD614                                    | WRMD615                          | WRHD616                                         | WRHD617                                  | WRHD618               | WRHD619                                          | WRLD513                                             | WRLD514                                       | WRLD515                                          | PEND1050                  | WRNES84                                       | WRNE585                          | WRNE586                                           |

| 0                                                     | ୍ଦ                                                     |
|-------------------------------------------------------|--------------------------------------------------------|
| 1223.64                                               | 1223 64                                                |
| 1640                                                  | 1640                                                   |
|                                                       | 3840 000 - 000<br>3850 000/,00 -000/ 000<br>- 000 -000 |
| 3820 000 - 000<br>3840 000/00 -000/.000<br>- 000 -000 | 3840 000 - 000<br>3860 000/ 00 - 400/ 000<br>- 000 000 |
| 20.000                                                | 20 000                                                 |
| Cellco<br>Partnership                                 | Celtoo Yes<br>Partnership                              |
| Hartford                                              | Harfford                                               |
| CT                                                    | CT                                                     |
| 95                                                    | 83                                                     |
| PEA001                                                | PEA001                                                 |
| M                                                     | ₩d                                                     |
| New York<br>NY                                        | New York<br>NY                                         |
| WRNE587                                               | WRNE558                                                |

All 🔻 items per page

1 - 31 of 31 items

### **ATTACHMENT 5**







Search

Sales Search Street Listing

Feedback

Home Back Print

Q Sales

O Map It

# **137 NORTH MAIN STREET**

Location 137 NORTH MAIN STREET

\$32,079,390 Assessment

20037

Vision Id#

F7/ 3836/ 137// Mpla AMERICAN SCHOOL FOR THE Owner

\$45,827,700 Appraisal

16 **Building Count** 

## Current Value

|                | Appraisal    |             |              |
|----------------|--------------|-------------|--------------|
| Valuation Year | Improvements | Land        | Total        |
| 2022           | \$38.073.700 | \$7.754.000 | \$45.827.700 |
|                | Assessment   |             |              |
| Valuation Year | Improvements | Land        | Total        |
| 2022           | \$26,651,590 | \$5,427,800 | \$32.079.390 |

# Owner of Record

AMERICAN SCHOOL FOR THE DEAF AT HARTFORD Co-Owner Owner

WEST HARTFORD, CT 06107 139 NORTH MAIN STREET Address

0382/0423 Book & Page Sale Price

Sale Date

 $\supset$ Instrument

### **ATTACHMENT 6**





| ame and Address of Sender                                                           | TOTAL NO. of Pieces Listed by Sender TOTAL NO. of Pieces Received at Post O                                                                                                                                                                                                | Affix Stamp Here  Postmark with Date of Receipt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103 | Postmaster, per (name of receiving employee)                                                                                                                                                                                                                               | neopost M<br>07/25/2023<br>US POSTAGE \$003.190<br>ZIP 06103<br>041L12203937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| USPS® Tracking Number<br>Firm-specific Identifier                                   | Address<br>(Name, Street, City, State, and ZIP Code™)                                                                                                                                                                                                                      | Postage Fee Special Handling Parcel Airlift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                     | Shari Cantor, Mayor Town of West Hartford 50 South Main Street West Hartford, CT 06107 Todd Dumais, Town Planner Town of West Hartford 50 South Main Street West Hartford, CT 06107 American School for the Deaf at Hartford 139 North Main Street West Hartford, CT 06107 | JUL 25 2023 PER STATE HOUSE POOR TO STATE POOR TO |
|                                                                                     |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                     |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                     |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |