

March 21, 2014

Melanie A. Bachman
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Sprint PCS-Exempt Modification - Crown Site BU: 806370 Sprint PCS Site ID: CT03XC091
 Located at: 570 New Park Avenue, West Hartford, CT 06110

Dear Ms. Bachman:
This letter and exhibits are submitted on behalf of Sprint PCS (Sprint). Sprint is making modifications to certain existing sites in its Connecticut system in order to implement their 2.5 GHz LTE technology. Please accept this letter and exhibits as notification, pursuant to § 16$50 j-73$ of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In compliance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to The Honorable Scott Slifka, Mayor for the Town of West Hartford.

Sprint plans to modify the existing wireless communications facility owned by Crown Castle and located at 570 New Park Avenue, West Hartford, CT 06110. Attached are a compound plan and elevation depicting the planned changes (Exhibit-1), and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration (Exhibit-2). Also included is a power density table report reflecting the modification to Sprint's operations at the site (Exhibit-3).

The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") § 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in the R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Sprint's additional antennas will be located at the same elevation on the existing tower.
2. There will be no proposed modifications to the ground and no extension of boundaries.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more.
4. A Structural Modification Report confirming that the tower and foundation can support Sprint's proposed modifications is included as Exhibit-2.
5. The operation of the additional antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. A cumulative General Power Density table report for Sprint's modified facility is included as Exhibit-3.

For the foregoing reasons, Sprint respectfully submits the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Donna Neal.

Sincerely,

Jeff Barbadora
Real Estate Specialist

Enclosures

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab 2: Exhibit-2: Structural Modification Report
Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc: The Honorable Scott Slifka, Mayor
Town of West Hartford
50 South Main Street
West Hartford, CT 06107

THESE OUTLINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS SECTION 01 - 100 - SCOPE OF WORK
PART 1 - GENERAL

1.2 RELATED DOCUMENTS:
A. THE REQUREMENTS OF THIS SECTON APPLY TO AL SECTONS IN THIS
B. SPRIN -STANOARD CONSTPUCTTON DETALS FOR WIRELESSS SIES ARE INCLUDED IN
1.3 PRECDEELEES SHOULD CONNUCTS OCCUR REEWEEN THE STANDRRD CONSTRUCTON

1.4 natonallr recognzed codes and standaros:

1. GR-63-CORE NEES REQUIEMENTS: PHYSICAL PROTECTON
2. GR-7-COCORE GENERIC REOURIMEMTS FOR THE PHYSICAL DESIIN AND
3. GR-1089 CORE, ELECTROMAGNETC COMPADBUTY AND EECCRICAL SAEET
4. NATONAL FRE PROTECTON ASSOCLATON CODES AND STANDARD (NFPA) INCLUDNG NFPA 70
(LFE SAEEY CODE).
5. AMERICAN SOCIETY FOR TESTNG OF MATERLLLS (ASTM)
6. INSTTUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE)
7. AMERICAN CONCRETE INSTIUTE (ACI)
8. AMERICAN WIRE PRODUCERS ASSOCIATON (AWPA)
9. concrete reinforcing stel instiute (CRSI)
10. AMERRCAN ASSOCLITON OF STAE HIGHWAY AND TRANSPORTATION Officials
11. portand cement associaton (PCA)
12. NATONAL CONCREIE MASONRY ASSOCIATON (NCMA)
13. ERICK INDUSTRY ASSOCITION (BA)
14. AMERICAN WELDING SOCIETY (AWS)
15. NATINNL ROORNG CONTRACTORS ASSOCIATIN (NRCA)
16. SHET METAL AND AR CONDTIONING CONTRACTORS' NATONAL ASSOCIATION
17. DOOR AND HARDWARE INSTIUTE (DHI)
18. OCCUPATIONAL SAEETY ANO HEATH ACT (OSHA)
19. APPLCABLE AUIDING COOES INCLUDING UNIFORM BUILING COOE, SOUTHERN
1.5 DEFRITONs:

A WORK: THE SUM OF TASKS AND RESPONSIILITIES IDENIIRED IN THE CONTRACT
B. COMPAN: SPRINT CORPORATON

F. OFCI: OWNER FURNISHED, CONTRACTOR INSTALLED EQUIPMENT
6. CONSTRUCTON MANAGER - ALI PRONECTS REATEO COMUUNCATON TO FLOW

PRODUCTON OF "AS-BULLT DRAWINGS.

 PROCEEDING WTH THE WORK.
1.10 UEE OF JO日 SIEE THE CONTRCTOR SHAL CONFNE ALL CONSTRUCTION AND

. 15 USE OF ELECTRONC PRONECT MANAGEMENT SYSTEMS:
PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1

 AUHORIZED COMPANT PERSONNEL AND AUHORZZED REPR
ARCHIEET/ENGINERR DURING ALI PHASES OF THE WORK.
 A WORK AREA FOR COMMAN'S TEST AGENCY

OR ALIER SRUCTURA
ARCHITECT ANO ENGINER.
SECTION 01200 -

1.2 RELAED DOCUMENT:
1.2 RELATED DOCUMENS:
A. THE RECUMEMENS OF THIS SECTION APPLY TO AL SECTIONS IN THIS
B. SPRIN ASTADAAD CONSTTUCTON DETALS FOR WIREESS STESS ARE INCLUDED IN PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 RECEIPT OF MATERML AND EQUPMENT

B. THE CONTRACTOR IS RESPONSIDLE FOR SPRINT PROMDED MATERAL AND
accert delverres as shiped and take receilr.
2. VERIF COMPLITENESS AND CONDION OF AL DELUERES
3. TAKE RESPONSIIUUTY FOR EQUIPMENT AND PROVDE INSURANCE PROTECTON

5. Pronde secure and necessary weather protected warehousing.

3.2 deLIERABELES:

E. IF APPLCABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTAON REPORT AS
c. MPLLAD OOCUMENATON INTO SPRINT STI MANAGEMENT STSTEM (SMS) AND/OR SECTION O1 300 - CELL SITE CONSTRUCTION CO. PART 1 - GENERAL

1.2 RELATED DOCUMENS:

A THE RECOIIREMENTS OF THIS SECTION APPLY TO AL SECTONS IN THIS
e. SPRIN STANDARD CONSTRUCTON DETALS FOR WHRELESS STES ARE INCLUDDD IN
1.3 Notce to proceed

A NO WORK SHAL COMMENCE PRIOR TO COMPANT'S WRITEN NOTICE TO PROCEED

PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 functional reourement
A. THE ACTMTES DESCRIEED IN THIS PARAGRPH REPRESENT MINMUM ACTONS AND

e. SUBMT SPECIIC DOCUMENATON AS INDICAEED HEREIN, AND OBTAN REQUIRED
c. manage and conduct all feld constructon service related actimtes
. PRovoe consiruction activies To THE Exien reoured br The contract

Sprint
C580 Sprint Parkway
Oveland Park, Kansas 66251

INFINIGYY

$\underset{\substack{\text { 1033 Watevilies Shaker Rc } \\ \text { Abbany, NY } \\ 12205 \\ \hline}}{ }$

vas Mumer $353-00$

HRT 099943226

CT03XC091
site adoress: \quad NEW Park ave WEST HARTFORD, CT 06110

SPRINT SPECIFICATIONS
SP-1

ONTINUE FROM SP-1

1. perform ant required site envionmental migaton.
2. PREPARE GROUND STES: RROVOE DE-GRUBING; AND ROUGH AND FNAL
3. MANAGE AND CONDUCT AL ACTMTES FOR INSTALATON OF UILTIES

4. install above ground grounding ststems.
5. PROVDE NEW HNAC INSTALATONS AND MODIFCATINS.
6. Install "H-frames", cabinets and shelitrs as indicated.
7. INSTAL ROADS, ACCESS WATS, CURBS AND DRANS AS INDICAIED.
8. ACCOMPUSH REQUIRED MODIICATON OF EXISTNG FACIITESS.
9. PROVIDE ANIENNA SUPPORT STRUCTURE FOUNDATONS.
10. provide slabs and equipmen plaftorms.
11. INSTALH COMPOUND FENCING, SIGHT SHIIEDING, LANDSCAPING AND ACCESS 13. Perform inspection and materal testng as required hereinatir. 14. Conduct site resistance to earth tesing as required herematir 15. INSTAL FXED GENERATOR SEIS AND OTHER STANDBY POWER SOLUTIONS.
12. INSTAL TOWERS, ANENR SUEPPORT STRUCTURES AND PLATFORMS ON

13. PERFORN, DOCUMENT, AND CLOSE DU ANY CONSTRUCTIN CONROL
14. PERRORM ANTENNA AND COAX SWEEP TESTING AND MAKE ANY AND AL

3.2 GENERAL REQUIREMENTS FOR CML CONSTRUCTON:
 REMOVE FROM THE STE AL REMANNG
B. EOUPPMENT ROOMS SHAL AT ALL TMES BE MANTANED"BROOM CLEAN AND
c. Contractor shal take al reasomable precautons to discover and

 2. CONTRACTOR AGREES TO USE CARE WHIE ON THE STE AND SHAL NOT TAKE CONDITON TO QE FURTHER RELEASED IN THE EMMRONMENT, OR TO FURTHER
EXPOSE NDMOUAAS TO THEE HZZARD

E. CONDUCT TESTNG AS REQUIRED herein.
3.3 Deliverables

B. PROMDE DOCUMENATON INCLUDNG, BUT NOT LMITED TO, THE FOLOWING.
15. ALL CORRESPONDENCE AND PRELMMINARY CONSTRUCTION REPORTS.
16. PROUECT PROGRESS REPORTS.
17. CML CONSTRUCTON START DATE (POPULATE REL IN SMS AND/OR FORWARD
18. ELECTRLCAL SERUCE COMPLLTION DATE (POPULAE FEL IN SMS AND/OR
FORWARD NOTFCATON).
19. \ln FES AND ANTENNA INSTAL DATE (POPULATE RED IN SMS AND/OR
FORWARD NOTICATON).
20. Power install date (populate rel in sms and/or forward
notricaton).
21. TELCO REAOY DATE (POPULATE FED IN SMS AND/OR FORMARD
22. PPC (OR SHELTER) INSTAL DATE (POPULATE FELD IN SMS AND/OR FORWARD
23. TOWER CONSTRUCTON START DATE (POPULATE FELD IN SMS AND/OR
24. TOWER CONSTRUCTON COMPLETE DATE (POPULAIE FIED IN SMS AND/OR
FORWRD NOTICATON).
25. ATS AND RADIO EQUIPMENT DEINERED AT STE DATE (POPULATE FIEL IN
SMS ANO/OR FORWAPD NOTFCCATON).
26. NETWORK OPERATONS HANDOFF CHECKLST (HOC WALK) COMPLLTE (UPLLOA
27. CML CONSTRUCTON COMPLEE DATE (POPULATE FED IN SMS AND/OR
FORWARD NOTFCATON).
28. SIIE CONSTRUCTION PROGRESS PHOTOS UNLDADED INTO SMS.

SECTION 01400 - SUBMITTALS \& TESTS
PART 1 - GENERAL
 1.2 RELATED documents:
A. THE REQUIEEMENTS OF THIS SECTON APPLY TO ALL SECTIONS IN THIS
B. SPRIN "STANDRRD CONSTRUCTON DEGALS FOR WIRELESSS STESS ARE INCLUDED IN 1.3 Subumtals:
A. THE WORK IN AL ASPECTS SHAL COMPIY WTH THE CONSTRUCTON DRAWINGS
b. SUBMT THE FOLOWING TO COMPANY REPRESENTATVE FOR APPROVAL

1. CONCRERE MX-DESIGNS FOR TOWER FOUNDATONS, ANCHORS PIERS, AND
CONCREIE PAVNG.
2. concrete break test as specifed herein.
3. SPECILL RNISHES FOR INIEROR SPACES, IF ANY.
4. AL ECOUPMENT AND MATERALS SO IDEMIFED ON THE CONSTRUCTON
5. CHEMCAL GROUNDING DESIGN
D. ALERNMTES: AT THE COMPAV'S REQUEST, AN ALIERNATMES TO THE MATERMLS

. 4 TESTS AND INSPECTIONS:
A. THE CONTRACTOR SHAL EE REEPDNSIEE FOR AL CONSTRUCTION TESTS,
в. CONTRACTOR SHALL ACCOMPLSH TESTNG INCLUDING BUT NOT LMMTED TO THE
6. COAX SWEEPS AND HEER TESTS PER TS-0200 REV 4 ANTENNA UNE
7. AGL AIMUTH AND DOWNLT USING ELECTRONLC COMMERCILL
 c. REQURED CLOSEOUT DOCUMENATON INCLUDES, BUT IS NOT UMITED TO THE
 2. SCAMABE EARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE
8. AL AVALABLE JURISOICTONAL INFORMATON
9. PDF SCAN of redunes produced in fad

10. LEN WAVERS
11. FNNL PAMMENT APPLCATON
a. REQUIRED FNAL CONSTRUCTION PHOTOS
12. CONSTRUCTION AND COMMISSIONING CHECKUST COMPLETE WTH NO DEFCIENT
13. All POST NTP TASKS INCLLDONG DOCUMEN UPLOADS COMPLETED IN STERRA
1.5 commissioning: Perform all commissioning as required gr applcable
1.6 INTEGRATON: PERFORM ALL INTEGRATON ACTVTIES AS REQUIRED BY APPUCABLE

PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3. 1 REQUIREMENTS FOR TESTNG:
A. THIRD PARTY TEETNG AGENCY:

3.

3.2 REQURED TESTS:
A. CONTRACTOO: SHALL ACCOMPUSH TESTNG INCLUDING BUT NOT LMITED TO THE

2. ASPALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHESS, AND
3. REND QUULTY CONTROL TESTING AS SPECIFED IN SECTON: PORTLAND CEMENT
4. TESTNG REEURED UNDER SECTIN: AGGREGATE QASE FOR ACCESS ROADS,
5. STRUCTURAL EACKRLL COMPACTON TESTS FOR THE TOWER FOUNDATON.
6. SII RESSITTANE TO EARTH TESTNG PER EXHIIIT: CEL SIE GROUNDING
7. ANTENA AND COAX SWESP TESTS PER EXHIBT: ANIENNA TRANSMISSION UNE
8. GROUNDING AT ANIENNA MASTS FOR GPS AND ANTENNAS
g. All OTHER TESTS REQUIRED gY COMPANY OR JURISICICTON.
3.3 REQUIRED INSPECTONS
A. SCHEDULE INSPECTONS WTH COMPANY REPRESENATVE.
B. CONDUCT INSPECTONS INCLUDING BUT NOT LIMTED TO THE FOLOWING

 4. PRE- AND POST-CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTONS ON
5. TOWER ERECHON SECTON STACKING AND PLAFIORM ATACHMENT DOCUMENTED
6. ANTENA AIIUUTH, DOWN TLT AND PER SUNUGHT TOOL SUNSIGHT

INFINIGY\& nay, wixi

HRT 099943226

CT03XC091

570 NEW PARK AVE WEST HARTFORD, CT 06110

SPRINT SPECIFICATIONS
SP-2

CONTINUE FROM SP-2

7. VERIICATON DOCUMENTED WTH THE ANTENNA CHECKLST REPORT, BY AKE,
8. RNAL INSPECTON CHECKLST AND HANDOFF WAK (HOC.). SIINED FORM
9. COAX SWEEP AND HBER TESTNG DOCUMENTS SUBMITIED VA SMS FOR RF
10. SCAN-AAEE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSILILE
11. AL AVALABLE JURSOICTONAL INFormaton
12. pdf scan of redunes produced in feld
c. THE CONTRACTOR SHAL BE RESPONSIBLE FOR ANY AND ALL CORRECTONS TO AS A RESULI OF IESTIN
D. CONSTRUCTON INSPECTONS AND CORRECTIE MEASURES SHAL BE DOCUMENED

A THE FOLLOWNG TEST AND INSPECTON REPORTS SHAL EE Provided as
13. CONCRETE MIX AND CYINDER break reports.
14. STRUCTURAL EACKFIL COMPACTON REPORTS.
15. SITE RESISTANCE TO EARTH TEST.
16. ANIENNA AZIMUTH AND DOWN TLT VERIFCATON

17. COAX CABEE SWEEP TESTS PER COMPANY'S "ANIENNA UNE ACCEPTANCE
g. REQURRDD CLOSEOUT DOCUMETAATON INCLUDES THE FOLOWING;
18. TEST WELS AND TRENCHES: PHOTOGRPPH OF AL TEST WEHS; ACCKFHNG SHOWNG
19. CONDUITS, CONOUCTORS AND GROUNDING: PHOTOGRAPHS SHOWNG TPICAL

 ANCHI ON GUED TOWERS,
20. TOWER ANIENAS AND MANLNE: INSPECTION AND PHOTOGRPHS OF SECTON

TOWER/MONOPOLE.
21. ROOF TOPS: PRE-CONSTRUCTION AND POST-CONTTRUCTON ISUAN INSPECTION

22. SIE LYYOUT - PHOTOGRAPHS OF THE OVERAL COMPOUND, INCLUOING
23. FNISHED UTIUTESS CLOSE- YP PHOOOGGAMS O O THE PRC BREAKER PANEL
 MEIER BOX AND/OR FACIITY DISTRIBUTION PANEL

24. ANY AND ALL SUBMTTALS EY THE JURISDICTON OR COMPANY.
A. THE REQUREMENTS OF THIS SECTON APPLY TO AL SECTONS IN THIS

日. SPRIT - STANOARD CONTTUCTON DETALS FOR MRELESS STESSARE INCLUDED IN PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 WEEKLY REPORTS:

 REQUIRED. THIS
RND PAMEN.
3.2 PROUECT CONFERENCE CALS:

3.3 PRONECT TRACKING IN SMS:
A. CONTRACTOR SHAL PROMDE SCHEDULE UPDATES AND PROEECTONS IN THE SMS
3.4 ADDITINAL REPORTNG:
 3.5 PROECT PHOTOGRAPHS:

 1. ISHELIER AND TOWER OVERVEW.
2. TOWER FOUNDOTON(S) - FORMS AND STEE BeFORE POUR (EACH ANCHOR
3. TOWER FOUNDATON(S) POUR WITH MBRATOR IN USE (EACH ANCHOR ON
4. Tower stel as aeng installeo into hole (show anchor stel on
. Photos of tower secton stacking.
6. CONCREIE TESTNG / SAMPLES
7. PLACING of ANCHOR BoLts IN TOWER FOUNDATON
8. BUILDING/WATER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS.
9. SHELIER FOUNDATON--FORMS AND STEEL BEFORE POURING.
10. SHELIter foundaton pour with vibator in use
11. Coax Cable eniky into shetre.
12. PLATORM MECHANICAL CONNECTONS TO TOWER/MONOPOLE.
13. ROOFTOP PRE AND POST CONSTRUCTION PHOTOS TO INCLUDE PENETRATONS
14. PHotos of tower top coax line color coding and color cooing at
15. photos of al appropriate company or regulatory signage.
16. PHOTOS OF EQUIPMEN BOLT DOWN INSIDE SHEITER.
17. POWER AND TICO ENTRANCE TO COMPANY ENCLOSURE AND POWER AND
TELCO SUPPLY LOCATONS INCLUOING MEIER/OISCONNECT.
18. ELECTRICAL TRENCH(s) WTH ELECTRICAL / CONDUUT aEFORE EACKFL
19. EIECTRICAL TRENCH(S) WTH FOIL-BACKED TAPE BEFORE FURTHER BACKFLL.
20. TELCO TRENCH WTH TEEPHONE / CONDUT PEFORE EACKFLL
21. TELCO TRENCH WTH FOLL-EACKED TAPE BEFORE FURTHER BACKFLL
22. SHELIER GROUND-RING TRENCH WIH GROUND-WIRE BEFORE BACKFLL (SHOW
23. TOWER GROUND-RING TRENCH WITHH GROUND-WIRE BEFORE BACKFLL (SHOW
24. FENCE GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFLL (SHOW
25. AL BTS GROUND CONNECTONS
26. All GROUND TEST WEUS.

Sprint
$\left.\begin{array}{c}6500 \text { Spainf Parkway } \\ \text { Overand }\end{array}\right)$ Pars, Kansas 66251
27. antenna ground bar and equipment ground bar.
28. Adomonal grounding points on towers above 200'.
29. HVAC UNTI INCLUDING CONDENSERS ON SPLT STSTEMS.
30. GPS ANIENNAS.

1. cable tray and/or waveguide arioge
2. DOGHOUSE/CABLE EXT FROM ROOF
3. EACH SECTOR OF ANTENNS: ONE PHOTOGRAPH LOOKING AT THE SECTOR AND
4. master bus aar.
5. TELCO BOARD AND NU.
6. ELECTRICAL DISTRIEUTON WAL
7. CABLE ENTRY WITH SURGE SUPPRESSION
. EITRANCE TO EQUIPMEN Roou
8. COAX WEATHERPROORNG-TOP AND BotTOM OF TOWE.
9. COAX GROUNOING -Top and bottom of tower.
10. ANIENNA AND MAST GROUNDING.
11. LANOSCAPING - WHERE APPLCABLE

HRT 099943226

CT03XC091

570 NEW PARK AVE WEST HARTFORD, CT 06110

SPRINT SPECIFICATIONS

RFS Hybrillex riser cable schedule

RFS HYBRIFLEX JUMPER CABLE SCHEDULE

EIGER ONLY

ALU 2.5 ALU SCENARIO 1

RAN WIRING DIAGRAM

Sprint 6580 Sprint ParkwayOverland Park, Kansas 662	
INFINIGY8 W33 Walervliet Shaker RAlbany, NY 12205Office \# (518) $690-0790$ J08 RUMEER $351-000$	
W Crown	
Sosisgarion	Done der mey
HRT 099943226	
Ст03XC091	
570 NEW PARK AVE. WEST HARTFORD, CT 06110	
plumbing diagram	
A-	

Date: January 13, 2014
Patrick Byrum
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277
(704) 405-6532

GPD Group
520 S. Main St., Suite 2531
Akron, OH 44311
(614) 859-1607
dpalkovic@gpdgroup.com

Subject:

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:

Site Data:

Structural Analysis Report

Sprint PCS Co-Locate
 Carrier Site Number:
 Carrier Site Name:

Crown Castle BU Number:
Crown Castle Site Name:
Crown Castle JDE Job Number: 252989
Crown Castle Work Order Number: 696085
Crown Castle Application Number: 208261 Rev. 3
GPD Group Project Number: $\quad 2014777.806370 .01$
570 NEW PARK AVENUE, WEST HARTFORD, Hartford County, CT Latitude $41^{\circ} 44$ ' $10.5^{\prime \prime}$, Longitude -72으' $14.2^{\prime \prime}$
150 Foot - Valmont Monopole Tower

Dear Patrick Byrum,
GPD Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 607755, in accordance with application 208261, revision 3.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

> LC7: Existing + Reserved + Proposed Equipment
> Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

Sufficient Capacity

The analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code based upon a wind speed of 80 mph fastest mile.

We at GPD Group appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

John N. Kabak, P.E.
Connecticut \#: PEN. 0028336

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information
Table 3- Design Antennas and Cable Informations

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

The existing monopole has three major sections connected by slip joints. It has 12 sides and is evenly tapered from 61.5" (flat-flat) at the base to 26.19 " (flat-flat) at the top. The structure is galvanized and has no tower lighting.

This tower is a 150 ft Monopole tower designed by VALMONT in May of 1990 . The tower was originally designed for a wind speed of 125 mph per EIA-222-D.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no ice, 28 mph with 1 inch ice thickness (in accordance with ASCE 7 ice conditions) and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Size (in)
134.0	135.0	3	Alcatel Lucent	TD-RRH8x20-25	1	$5 / 8$
		3	RFS Celwave	APXVTM14-C-120	1	

Notes:

1) See Appendix B for the proposed coax layout.

Table 2 - Existing and Reserved Antenna and Cable Information
$\left.\begin{array}{|c|c||c|c|c|c|c|c|}\hline \begin{array}{c}\text { Mounting } \\ \text { Level (ft) }\end{array} & \begin{array}{c}\text { Center } \\ \text { Line } \\ \text { Elevation } \\ \text { (ft) }\end{array} & \begin{array}{c}\text { Number } \\ \text { of } \\ \text { Antennas }\end{array} & \begin{array}{c}\text { Antenna } \\ \text { Manufacturer }\end{array} & \text { Antenna Model } & \begin{array}{c}\text { Number } \\ \text { of Feed } \\ \text { Lines }\end{array} & \begin{array}{c}\text { Feed } \\ \text { Size (in) }\end{array} & \text { Sote }\end{array}\right\}$

Notes:

1) Abandoned Equipment
2) Reserved Equipment

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
147	147	1		Platform		
140	3		PD10017			
134	140	6		PD10017		

Table 4 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	T.E.P., Project \#: 082233.01 dated 9/3/08	2308053	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	TEP Project \#: 082233 , dated: $8 / 26 / 08$	2308022	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Valmont Order\#: $10704-90$, dated: $5 / 22 / 90$	260794	CCISITES
4-TOWER STRUCTURAL ANALYSIS REPORTS	P-sec Project \#: 9184, dated: $7 / 2 / 13$	3903130	CCISITES

3.1) Analysis Method

tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.
5) Mount sizes, weights, and manufacturers are best estimates based on site photos provided and were determined without the benefit of a site visit by GPD.
6) All member connections and foundation steel reinforcing are assumed designed to meet or exceed the load carrying capacity of the connected member and surrounding soils respectively unless otherwise specified in this report.
7) All equipment model numbers, quantities, and centerline elevations are as provided in the CCl CAD package dated 1/2/2014 with any adjustments as noted below.
a) Per application \# 208261 revision 3, three of the existing antennas model: PCS 1900 MHz $4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$ should have mount center line at 136' rather than 137'.

This analysis may be affected if any assumptions are not valid or have been made in error. GPD Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

| Section
 No. | Elevation (ft) | Component
 Type | Size | Critical
 Element | P(K) | $\mathbf{S F}^{\star} \mathbf{P}$ allow
 (\mathbf{K}) | \%
 Capacity | Pass / Fail |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | $150-96.8333$ | Pole | TP39.21×26.19x0.3125 | 1 | -10.47 | 1962.20 | 35.0 | Pass |
| L2 | $96.8333-48$ | Pole | TP50.55x37.1973x0.406 | 2 | -21.29 | 3291.40 | 44.5 | Pass |
| L3 | $48-0$ | Pole | TP61.5x48.023x0.5 | 3 | -40.47 | 5071.45 | 45.9 | Pass |
| | | | | | | | Summary | |
| | | | | | | Pole (L3) | 45.9 | Pass |
| | | | | | | Rating $=$ | 45.9 | Pass |

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	40.7	Pass
1	Base Plate	0	30.1	Pass
1	Base Foundation	0	26.3	Pass
1	Base Foundation Soil Interaction	0	70.5	Pass

Structure Rating (max from all components) $=$	70.5%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The existing tower and its foundation are sufficient for the proposed loading and do not require modifications.

5) DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Platform Mount [LP 602-1]	146	800MHz 2X50W RRH W/FILTER	137
BXA-70063-6CF-EDIN-4 w/ Mount Pipe	146	PCS 1900MHz 4x45W-65MHz	137
		PCS 1900MHz 4x45W-65MHz	137
BXA-70063-6CF-EDIN-4 w/ Mount Pipe	146	PCS 1900MHz 4x45W-65MHz	137
		PCS 1900MHz 4x45W-65MHz	137
BXA-70063-6CF-EDIN-4 w/ Mount Pipe	146	PCS 1900MHz 4x45W-65MHz	137
	146	PCS 1900MHz 4x45W-65MHz	137
BXA-171063-12CF-EDIN-2 w/ Mount Pipe		Pipe Mount 6'x2.375'	137
BXA-171063-12CF-EDIN-2 w/ Mount Pipe	146	Pipe Mount 6'x2.375'	137
		Pipe Mount 6'x2.375"	137
BXA-171063-12CF-EDIN-2 w/ Mount Pipe	146	Platform Mount [LP 602-1]	134
		APXVTM14-C-120 w/ Mount Pipe	134
RRH2x40-AWS	146	APXVTM14-C-120 w/ Mount Pipe	134
RRH 2×40-AWS	146	APXVTM14-C-120 w/ Mount Pipe	134
RRH2x40-AWS	146	TD-RRH8x20-25	134
DB-T1-6Z-8AB-0Z	146	TD-RRH8×20-25	134
BXA-171063-8BF-2 w/ Mount Pipe	146	TD-RRH8x20-25	134
BXA-171063-12CF-EDIN-2 w/ Mount Pipe	146	APXVSPP18-C-A20 w/ Mount Pipe	134
		APXVSPP18-C-A20 w/ Mount Pipe	134
BXA-171063-12CF-EDIN-2 w/ Mount Pipe	146	APXVSPP18-C-A20 w/ Mount Pipe	134
BXA-70063-6CF-EDIN-5 w/ Mount Pipe	146	IBC1900BB-1	134
		IBC1900BB-1	134
BXA-70063-6CF-EDIN-5 w/ Mount Pipe	146	IBC1900BB-1	134
		IBC1900HG-2A	134
BXA-70063-6CF-EDIN-5 w/ Mount Pipe	146	IBC1900HG-2A	134
		IBC1900HG-2A	134
Side Arm Mount [SO 102-3]	137	Pipe Mount 6'x2.375'	134
$800 \mathrm{MHz} 2 \mathrm{2X50W}$ RRH W/FILTER	137	Pipe Mount 6'x2.375'	134
800MHz 2X50W RRH W/FILTER	137	Pipe Mount 6'x2.375'	134
		Side Arm Mount [SO 702-1]	117
		BCD-87010	117

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
$\mathrm{s}-22$	65 ksi	80 ksi				

TOWER DESIGN NOTES
Tower is located in Hartford County, Connecticut
2. Tower designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard.
3. Tower is also designed for a 28 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 50 mph wind
5. TOWER RATING: 45.9\%

TORQUE 0 kip-ft 28 mph WIND - 1.0000 in ICE

AXIAL

TORQUE 1 kip-ft
REACTIONS - 80 mph WIND

Feed Line Distribution Chart
0' - 150'
\qquad Found \quad Fla \qquad App In Face \qquad App Out Face \qquad Truss Leg

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:

1) Tower is located in Hartford County, Connecticut.
2) Basic wind speed of 80 mph .
3) Nominal ice thickness of 1.0000 in.
4) Ice thickness is considered to increase with height.
5) Ice density of 56 pcf.
6) A wind speed of 28 mph is used in combination with ice.
7) Temperature drop of $50{ }^{\circ} \mathrm{F}$.
8) Deflections calculated using a wind speed of 50 mph .
9) A non-linear (P-delta) analysis was used.
10) Pressures are calculated at each section.
11) Stress ratio used in pole design is 1.333 .
12) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs	Distribute Leg Loads As Uniform	Treat Feedline Bundles As Cylinder
Consider Moments - Horizontals	Assume Legs Pinned	Use ASCE 10 X-Brace Ly Rules
Consider Moments - Diagonals	$\sqrt{ }$ Assume Rigid Index Plate	Calculate Redundant Bracing Forces
Use Moment Magnification	$\sqrt{ }$ Use Clear Spans For Wind Area	Ignore Redundant Members in FEA
$\sqrt{ }$ Use Code Stress Ratios	$\sqrt{ }$ Use Clear Spans For KL/r	SR Leg Bolts Resist Compression
$\sqrt{ }$ Use Code Safety Factors - Guys	Retension Guys To Initial Tension	All Leg Panels Have Same Allowable
$\sqrt{ }$ Escalate Ice	$\sqrt{ }$ Bypass Mast Stability Checks	Offset Girt At Foundation
Always Use Max Kz	$\sqrt{ }$ Use Azimuth Dish Coefficients	$\sqrt{ }$ Consider Feedline Torque
Use Special Wind Profile	$\sqrt{ }$ Project Wind Area of Appurt.	Include Angle Block Shear Check
Include Bolts In Member Capacity	Autocalc Torque Arm Areas	Poles
Leg Bolts Are At Top Of Section	SR Members Have Cut Ends	$\sqrt{ }$ Include Shear-Torsion Interaction
Secondary Horizontal Braces Leg	Sort Capacity Reports By Component	Always Use Sub-Critical Flow
Use Diamond Inner Bracing (4 Sided)	Triangulate Diamond Inner Bracing	Use Top Mounted Sockets
Add IBC $.6 \mathrm{D}+$ W Combination	Use TIA-222-G Tension Splice	
	Capacity Exemption	

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	150.00-96.83	53.17	5.67	12	26.1900	39.2100	0.3125	1.2500	$\begin{gathered} \mathrm{S}-22 \\ (65 \mathrm{ksi}) \end{gathered}$
L2	96.83-48.00	54.50	7.00	12	37.1973	50.5500	0.4060	1.6240	$\begin{gathered} \mathrm{S}-22 \\ (65 \mathrm{ksi}) \end{gathered}$
L3	48.00-0.00	55.00		12	48.0230	61.5000	0.5000	2.0000	$\begin{gathered} \mathrm{S}-22 \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	$l n^{4}$	r $i n$	C $i n$	l / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w $i n$	w / t
	27.1139	26.0392	2225.6599	9.2641	13.5664	164.0565	4509.7903	12.8157	6.1814	19.781
L1	40.5932	39.1406	7558.8706	13.9253	20.3108	372.1605	15316.321	19.2638	9.6708	30.946

tnxTower Report - version 6.1.4.1

Feed Line/Linear Appurtenances - Entered As Area

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Allow Shield \& Component Type \& ft \& Total Number \& \& $C_{A} A_{A}$

$\mathrm{ft}^{2} / \mathrm{ft}$ \& | Weight |
| :--- |
| plf |

\hline \multirow[t]{5}{*}{LDF6-50A(1-1/4")} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{Inside Pole} \& \multirow[t]{5}{*}{146.00-8.00} \& \multirow[t]{5}{*}{12} \& No Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 1 ' Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 0.66

\hline LDF6-50A(1-1/4") \& C \& No \& Inside Pole \& 146.00-8.00 \& 6 \& No Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 1 ' Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 0.66

\hline HB158-1-08U8-S8J18(\& C \& No \& Inside Pole \& 146.00-8.00 \& 1 \& No Ice \& 0.00 \& 1.30

\hline 1-5/8) \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.30

\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 1.30

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 1.30

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 1.30

\hline HB114-1-08U4-M5J(1 \& A \& No \& Inside Pole \& 134.00-8.00 \& 3 \& No Ice \& 0.00 \& 1.08

\hline 1/4") \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.08

\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 1.08

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 1.08

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 1.08

\hline HB058-M12- \& C \& No \& Inside Pole \& 134.00-8.00 \& 1 \& No Ice \& 0.00 \& 0.24

\hline XXXF(5/8") \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.24

\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 0.24

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.24

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 0.24

\hline LDF5-50A(7/8") \& C \& No \& Inside Pole \& 117.00-8.00 \& 1 \& No Ice \& 0.00 \& 0.33

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.33

\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 0.33

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.33

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 0.33

\hline Safety Line (3/8") \& B \& No \& CaAa (Out Of \& 150.00-8.00 \& 1 \& No Ice \& 0.04 \& 0.22

\hline \& \& \& Face) \& \& \& 1/2" Ice \& 0.14 \& 0.75

\hline \& \& \& \& \& \& 1 " Ice \& 0.24 \& 1.28

\hline \& \& \& \& \& \& 2 " Ice \& 0.44 \& 2.34

\hline \& \& \& \& \& \& 4" Ice \& 0.84 \& 4.46

\hline Step Pegs \& B \& No \& CaAa (Out Of \& 150.00-8.00 \& 1 \& No Ice \& 0.08 \& 2.72

\hline \& \& \& Face) \& \& \& 1/2" Ice \& 0.18 \& 3.51

\hline \& \& \& \& \& \& 1 " Ice \& 0.28 \& 4.92

\hline \& \& \& \& \& \& 2" Ice \& 0.48 \& 9.56

\hline
\end{tabular}

tnxTower Report - version 6.1.4.1

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation n	ft	Face	A_{R}	A_{F}	$C_{A} A_{A}$ $I n ~ F a c e ~_{n}$ $f t^{2}$	$C_{A} A_{A}$ Out Face
L1	$150.00-96.83$	A	0.000	0.000	0.000	0.000	Weight
		B	0.000	0.000	0.000	6.247	0.12
		C	0.000	0.000	0.000	0.000	0.16
L2	$96.83-48.00$	A	0.000	0.000	0.000	0.000	0.16
		B	0.000	0.000	0.000	5.738	0.14
		C	0.000	0.000	0.000	0.000	0.67
L3	$48.00-0.00$	A	0.000	0.000	0.000	0.000	0.13
		B	0.000	0.000	0.000	4.700	0.12
		C	0.000	0.000	0.000	0.000	0.55

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Ice Thickness in \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{150.00-96.83} \& A \& \multirow[t]{3}{*}{1.170} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.12

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 31.128 \& 0.38

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.66

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{96.83-48.00} \& A \& \multirow[t]{3}{*}{1.098} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.16

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 28.591 \& 0.35

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.67

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{48.00-0.00} \& A \& \multirow[t]{3}{*}{1.000} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.13

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 22.268 \& 0.27

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.55

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ Ice	$C P_{Z}$ Ice in
	ft	in	in	in	in
	$150.00-96.83$	0.1463	0.0845	0.5912	0.3413
L1	$96.83-48.00$	0.1480	0.0854	0.6285	0.3629
L2	$48.00-0.00$	0.1224	0.0707	0.5195	0.2999

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
○
\end{tabular} \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side $f t^{2}$ \& Weight

K

\hline \multirow[t]{5}{*}{Platform Mount [LP 602-1]} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& 0.0000 \& 146.00 \& No Ice \& 32.03 \& 32.03 \& 1.34

\hline \& \& \& \& \& \& 1/2" \& 38.71 \& 38.71 \& 1.80

\hline \& \& \& \& \& \& Ice \& 45.39 \& 45.39 \& 2.26

\hline \& \& \& \& \& \& 1" Ice \& 58.75 \& 58.75 \& 3.17

\hline \& \& \& \& \& \& 2 " Ice \& 85.47 \& 85.47 \& 5.00

\hline
\end{tabular}

tnxTower Report - version 6.1.4.1

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t 0	Placement ft		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
						$\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \\ & \text { 4" Ice } \end{aligned}$	$\begin{aligned} & 3.72 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.61 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.35 \end{aligned}$
$\begin{gathered} \text { PCS } 1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}- \\ 65 \mathrm{MHz} \end{gathered}$	C	From Leg	$\begin{aligned} & 1.00 \\ & 0.00 \\ & -1.00 \end{aligned}$	0.0000	137.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 2.71 \\ & 2.95 \\ & 3.20 \\ & 3.72 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.61 \\ & 2.85 \\ & 3.09 \\ & 3.61 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.08 \\ & 0.11 \\ & 0.17 \\ & 0.35 \end{aligned}$
$\begin{gathered} \text { PCS } 1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}- \\ 65 \mathrm{MHz} \end{gathered}$	A	From Leg	$\begin{aligned} & 1.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	137.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 2.71 \\ & 2.95 \\ & 3.20 \\ & 3.72 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.61 \\ & 2.85 \\ & 3.09 \\ & 3.61 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.08 \\ & 0.11 \\ & 0.17 \\ & 0.35 \end{aligned}$
$\begin{gathered} \text { PCS } 1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}- \\ 65 \mathrm{MHz} \end{gathered}$	B	From Leg	$\begin{aligned} & 1.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	137.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 2.71 \\ & 2.95 \\ & 3.20 \\ & 3.72 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.61 \\ & 2.85 \\ & 3.09 \\ & 3.61 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.08 \\ & 0.11 \\ & 0.17 \\ & 0.35 \end{aligned}$
$\begin{gathered} \text { PCS } 1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}- \\ 65 \mathrm{MHz} \end{gathered}$	C	From Leg	$\begin{aligned} & 1.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	137.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 2.71 \\ & 2.95 \\ & 3.20 \\ & 3.72 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.61 \\ & 2.85 \\ & 3.09 \\ & 3.61 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.08 \\ & 0.11 \\ & 0.17 \\ & 0.35 \end{aligned}$
Pipe Mount 6'x2.375"	A	From Leg	$\begin{aligned} & 1.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	137.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 1.43 \\ & 1.92 \\ & 2.29 \\ & 3.06 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 1.92 \\ & 2.29 \\ & 3.06 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.05 \\ & 0.09 \\ & 0.23 \end{aligned}$
Pipe Mount 6'x2.375"	B	From Leg	$\begin{aligned} & 1.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	137.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 1.43 \\ & 1.92 \\ & 2.29 \\ & 3.06 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 1.92 \\ & 2.29 \\ & 3.06 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.05 \\ & 0.09 \\ & 0.23 \end{aligned}$
Pipe Mount 6'x2.375"	C	From Leg	$\begin{aligned} & 1.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	137.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 1.43 \\ & 1.92 \\ & 2.29 \\ & 3.06 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 1.92 \\ & 2.29 \\ & 3.06 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.05 \\ & 0.09 \\ & 0.23 \end{aligned}$
Platform Mount [LP 602-1]	C	None		0.0000	134.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 32.03 \\ & 38.71 \\ & 45.39 \\ & 58.75 \\ & 85.47 \end{aligned}$	$\begin{aligned} & 32.03 \\ & 38.71 \\ & 45.39 \\ & 58.75 \\ & 85.47 \end{aligned}$	$\begin{aligned} & 1.34 \\ & 1.80 \\ & 2.26 \\ & 3.17 \\ & 5.00 \end{aligned}$
APXVTM14-C-120 w/ Mount Pipe	A	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 1.00 \end{aligned}$	0.0000	134.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 7.13 \\ 7.66 \\ 8.18 \\ 9.26 \\ 11.53 \end{gathered}$	$\begin{gathered} 4.96 \\ 5.75 \\ 6.47 \\ 8.01 \\ 11.41 \end{gathered}$	$\begin{aligned} & 0.08 \\ & 0.13 \\ & 0.19 \\ & 0.34 \\ & 0.75 \end{aligned}$
APXVTM14-C-120 w/ Mount Pipe	B	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 1.00 \end{aligned}$	0.0000	134.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 7.13 \\ 7.66 \\ 8.18 \\ 9.26 \\ 11.53 \end{gathered}$	$\begin{gathered} 4.96 \\ 5.75 \\ 6.47 \\ 8.01 \\ 11.41 \end{gathered}$	$\begin{aligned} & 0.08 \\ & 0.13 \\ & 0.19 \\ & 0.34 \\ & 0.75 \end{aligned}$
APXVTM14-C-120 w/ Mount Pipe	C	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \end{aligned}$	0.0000	134.00	No Ice 1/2"	$\begin{aligned} & 7.13 \\ & 7.66 \end{aligned}$	$\begin{aligned} & 4.96 \\ & 5.75 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.13 \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
0
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \(C_{A} A_{A}\)
Side

$t t^{2}$ \& Weight

K

\hline \multirow{10}{*}{IBC1900HG-2A} \& \multirow{7}{*}{C} \& \multirow{7}{*}{From Leg} \& 0.00 \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{134.00} \& 1/2" \& 1.27 \& 0.65 \& 0.03

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 1.43 \& 0.77 \& 0.04

\hline \& \& \& \& \& \& 1 " Ice \& 1.76 \& 1.04 \& 0.06

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 2" Ice } \\
& \text { 4" Ice }
\end{aligned}
$$ \& 2.53 \& 1.69 \& 0.15

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.13 \& 0.53 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.27 \& 0.65 \& 0.03

\hline \& \& \& \multirow[t]{4}{*}{0.00} \& \& \& Ice \& 1.43 \& 0.77 \& 0.04

\hline \& \multirow{8}{*}{A} \& \multirow{8}{*}{From Leg} \& \& \multirow{8}{*}{0.0000} \& \multirow{8}{*}{134.00} \& $1{ }^{\prime \prime}$ Ice \& 1.76 \& 1.04 \& 0.06

\hline \& \& \& \& \& \& 2" Ice \& 2.53 \& 1.69 \& 0.15

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline \multirow[t]{6}{*}{Pipe Mount 6'x2.375"} \& \& \& 4.00 \& \& \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& \multirow[t]{4}{*}{0.00} \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& 4.70 \& 4.70 \& 0.23

\hline \& \multirow{7}{*}{B} \& \multirow{7}{*}{From Leg} \& \& \multirow{7}{*}{0.0000} \& \& 4" Ice \& \& \&

\hline \multirow[t]{6}{*}{Pipe Mount 6'x2.375"} \& \& \& 4.00 \& \& \multirow[t]{6}{*}{134.00} \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& \multirow[t]{4}{*}{0.00} \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& 4.70 \& 4.70 \& 0.23

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline \multirow[t]{6}{*}{Pipe Mount 6'x2.375"} \& \multirow[t]{6}{*}{C} \& \multirow[t]{6}{*}{From Leg} \& 4.00 \& \multirow[t]{6}{*}{0.0000} \& \multirow[t]{6}{*}{134.00} \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& \multirow[t]{4}{*}{0.00} \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& 4.70 \& 4.70 \& 0.23

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline \multirow[t]{6}{*}{Side Arm Mount [SO 7021]} \& \multirow[t]{6}{*}{A} \& \multirow[t]{6}{*}{From Leg} \& \& \multirow[t]{6}{*}{0.0000} \& \multirow[t]{6}{*}{117.00} \& No Ice \& 1.00 \& 1.43 \& 0.03

\hline \& \& \& $$
0.00
$$ \& \& \& 1/2" \& 1.00 \& 2.05 \& \[

0.04
\]

\hline \& \& \& \multirow[t]{4}{*}{0.00} \& \& \& Ice \& 1.00 \& 2.67 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 1.00 \& 3.91 \& 0.07

\hline \& \& \& \& \& \& 2" Ice \& 1.00 \& 6.39 \& 0.12

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline \multirow[t]{6}{*}{BCD-87010} \& \multirow[t]{6}{*}{A} \& \multirow[t]{6}{*}{From Leg} \& 4.00 \& \multirow[t]{6}{*}{0.0000} \& \multirow[t]{6}{*}{117.00} \& No Ice \& 2.90 \& 2.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.05 \& 4.05 \& 0.05

\hline \& \& \& \multirow[t]{4}{*}{5.00} \& \& \& Ice \& 5.21 \& 5.21 \& 0.08

\hline \& \& \& \& \& \& 1" Ice \& 7.01 \& 7.01 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& 9.85 \& 9.85 \& 0.41

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 60 deg - No Ice
5	Dead+Wind 90 deg - No Ice
6	Dead+Wind 120 deg - No Ice
7	Dead+Wind 150 deg - No Ice
8	Dead+Wind 180 deg - No Ice
9	Dead+Wind 210 deg - No lce
10	Dead+Wind 240 deg - No Ice
11	Dead+Wind 270 deg - No Ice
12	Dead+Wind 300 deg - No Ice
13	Dead+Wind 330 deg - No Ice

tnxTower Report - version 6.1.4.1

Comb.	Description
No.	
14	Dead+Ice+Temp
15	Dead+Wind 0 deg+Ice+Temp
16	Dead+Wind 30 deg+Ice+Temp
17	Dead+Wind 60 deg+Ice+Temp
18	Dead+Wind 90 deg+Ice+Temp
19	Dead+Wind 120 deg+Ice+Temp
20	Dead+Wind 150 deg+Ice+Temp
21	Dead+Wind 180 deg+Ice+Temp
22	Dead+Wind 210 deg+Ice+Temp
23	Dead+Wind 240 deg+Ice+Temp
24	Dead+Wind 270 deg+Ice+Temp
25	Dead+Wind 300 deg+Ice+Temp
26	Dead+Wind 330 deg+Ice+Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 30 deg - Service
29	Dead+Wind 60 deg - Service
30	Dead+Wind 90 deg - Service
31	Dead+Wind 120 deg - Service
32	Dead+Wind 150 deg - Service
33	Dead+Wind 180 deg - Service
34	Dead+Wind 210 deg - Service
35	Dead+Wind 240 deg - Service
36	Dead+Wind 270 deg - Service
37	Dead+Wind 300 deg - Service
38	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Twist
	ft	$150-96.8333$	16.313	31	\circ

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o		o

	Maximum Tower Defiections $=$ Design Wind				
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	Deflection	Load	\circ	\circ	
	ft	in	Comb.	\circ	0.0034
L1	$150-96.8333$	41.706	6	2.3827	0.0011
L2	$102.5-48$	19.729	6	1.8428	0.0004
L3	$55-0$	5.600	6	0.9299	

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	\circ	o
146.00	Platform Mount [LP 602-1]	6	39.729	2.3460	0.0031	28435
137.00	Side Arm Mount [SO 102-3]	6	35.308	2.2617	0.0026	10936
134.00	Platform Mount [LP 602-1]	6	33.852	2.2324	0.0024	8885
117.00	Side Arm Mount [SO 702-1]	6	25.894	2.0456	0.0015	4307

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	Ratio P
	ft		$f t$	ft		ksi	$i n^{2}$	K	K	P_{a}
L1	$150-96.8333$ (1)	TP39.21x26.19x0.3125	53.17	0.00	0.0	39.000	37.7442	-10.47	1472.02	0.007
L2	96.8333-48 (2)	TP50.55x37.1973x0.406	54.50	0.00	0.0	39.000	63.3122	-21.29	2469.17	0.009
L3	48-0 (3)	TP61.5×48.023×0.5	55.00	0.00	0.0	38.739	98.2100	-40.47	3804.54	0.011

Pole Bending Design Data										
Section No.	Elevation $f t$	Size	$\begin{gathered} \text { Actual } \\ M_{x} \\ \text { kip-ft } \end{gathered}$	$\begin{gathered} \text { Actual } \\ f_{b x} \\ k s i \end{gathered}$	Allow. $F_{b x}$ ksi	$\begin{gathered} \text { Ratio } \\ \frac{f_{b x}}{F_{b x}} \end{gathered}$	Actual M_{y} kip-ft	Actual $f_{b y}$ ksi	Allow. $F_{b y}$ ksi	Ratio $\frac{f_{b y}}{F_{b y}}$
L1	$150-96.8333$ (1)	TP39.21x26.19x0.3125	516.47	17.913	39.000	0.459	0.00	0.000	39.000	0.000
L2	$\begin{gathered} 96.8333-48 \\ (2) \end{gathered}$	TP50.55x37.1973x0.406	$\begin{gathered} 1421.4 \\ 8 \end{gathered}$	22.767	39.000	0.584	0.00	0.000	39.000	0.000
L3	48-0 (3)	TP61.5×48.023x0.5	$\begin{gathered} 2843.3 \\ 2 \end{gathered}$	23.303	38.739	0.602	0.00	0.000	38.739	0.000

Pole Shear Design Data

Section No.	Elevation $f t$	Size	Actual V K	Actual f_{v} ksi	Allow. F_{v} ksi	$\begin{gathered} \text { Ratio } \\ f_{v} \\ \hline F_{v} \end{gathered}$	$\begin{gathered} \text { Actual } \\ T \\ \text { kip-ft } \end{gathered}$	Actual $f_{v t}$ ksi	Allow. $F_{v t}$ ksi	Ratio $\frac{f_{v t}}{F_{v t}}$
L1	$150-96.8333$ (1)	TP39.21x26.19x0.3125	15.87	0.420	26.000	0.033	0.33	0.005	26.000	0.000
L2	$\begin{gathered} 96.8333-48 \\ (2) \end{gathered}$	TP50.55x37.1973×0.406	22.26	0.352	26.000	0.027	0.33	0.002	26.000	0.000
L3	48-0 (3)	TP61.5x48.023x0.5	29.46	0.300	26.000	0.023	0.33	0.001	26.000	0.000

tnxTower Report - version 6.1.4.1

Section No.	Elevation ft	Ratio P P_{a}	Ratio $\begin{gathered} f_{b x} \\ \hline F_{b x} \\ \hline \end{gathered}$	Ratio $\begin{gathered} f_{b y} \\ \hline F_{b y} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v} \\ \hline F_{v} \\ \hline \end{gathered}$	Ratio $\begin{gathered} f_{v t} \\ \hline F_{v t} \\ \hline \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L2	$\begin{gathered} 96.8333-48 \\ (2) \end{gathered}$	0.009	0.584	0.000	0.027	0.000	0.593	1.333	H1-3+VT
L3	48-0 (3)	0.011	0.602	0.000	0.023	0.000	0.612	1.333	H1-3+VT

Section Capacity Table

Section No.	$\begin{aligned} & \text { Elevation } \\ & \mathrm{ft} \end{aligned}$	Component Type	Size	Critical Element	$\begin{aligned} & \hline P \\ & K \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ K \end{gathered}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	Pass Fail
L1	150-96.8333	Pole	TP39.21×26.19×0.3125	1	-10.47	1962.20	35.0	Pass
L2	96.8333-48	Pole	TP50.55x37.1973×0.406	2	-21.29	3291.40	44.5	Pass
L3	48-0	Pole	TP61.5×48.023×0.5	3	-40.47	5071.45	45.9	Pass
						Summary	ELC:	Load Case 7
						Pole (L3)	45.9	Pass
						Rating =	45.9	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F
Site Data
BU\#: 806370
Site Name: HRT 099943226
App \#: 208261 Rev. 3
Pole Manufacturer: Other

Anchor Rod Data				
Qty:	24			
Diam:	2.25	in		
Rod Material:	A615-J			
Strength (Fu)	100			ksi
Yield (Fy):	75	ksi		
Bolt Circle:	70.17	in		

Plate Data		
Diam:	76.17	in
Thick:	3	in
Grade:	60	ksi
Single-Rod B-eff:	8.24	in

Stiffener Data (Welding at both sides)		
Config:	0	in **
Weld Type:		
Groove Depth:		
Groove Angle:		degrees
Fillet H. Weld:		<-- Disregard
Fillet V. Weld:		
Width:		in
Height:		in
Thick:		in
Notch:		in
Grade:		ksi
Weld str.:		ksi

Pole Data		
Diam:	61.5	in
Thick:	0.5	in
Grade	65	ksi
\# of Sides:	12	"0" IF Round
Fu	80	ksi
	0	" 0 " if None

Stress Increase Factor	
ASIF: 1.333	

Reactions		
Moment:	2843	$\mathrm{ft}-\mathrm{kips}$
Axial:	40	kips
Shear:	29	kips

If No stiffeners, Criteria:	AISC ASD $<-O n l y ~ A p p l c a b l e ~ t o ~ U n s t i f f e n e d ~ C a s e s ~$

Anchor Rod Results
Maximum Rod Tension:
Allowable Tension:
Anchor Rod Stress Ratio:

Base Plate Results

Base Plate Stress:
Allowable Plate Stress:
Base Plate Stress Ratio:

n/a

Stiffener Results

Horizontal Weld : n/a

Vertical Weld: /a

Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a
Plate Tension+Shear, $\mathrm{ft} / \mathrm{Ft}+(\mathrm{fv} / \mathrm{Fv})^{\wedge} 2$: n / a
Plate Comp. (AISC Bracket): n/a

Pole Results

Pole Punching Shear Check: n/a

40.7\% Pass

Flexural Check	Rigid
18.1 ksi	Service ASD
60.0 ksi	0.75*Fy*ASIF
30.1\% Pass	Y.L. Length: 33.79

Site Number	806370
Site Name	HRT 099 943226

Caisson Analysis

Pier Properties			
Moment	$2843 \mathrm{kip}-\mathrm{ft}$	Analysis Properties	
	29 kip	TIA Code	F
Shear		Soil Safety Factor	2.00
Pier Diameter	9.0 ft	Water Table Depth	14.0 ft
Height Above Grade	0.50 ft	5.0 ft	
Depth Below Grade	24.50 ft	Ignored Soil Depth	Cohesion Based on
Donut Diameter	ft	Max Soil Capacity	PLS Caisson
Donut Depth	ft		110%

Soil Properties						
	Top of Soil Layer (ft)	Layer Thickness (ft)	Bottom of Soil Layer (ft)	Soil Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)
Soil.Layer	Soil.Top	Soil.Thick	Soil.Bottom	Soil.Weight	Soil.Cohesion	Soil.Phi
1	0.00	14	14.00	100	300	30
2	14.00	11	25.00	98	100	23
3						
4						
5						
6						
7						
8						
10						

Critical Depths Below Grade		Results	
Rotation Axis	15.56 ft	Soil Capacity	
Zero Shear	6.23 ft	Max Pier Moment	

Moment At User Defined Depths Below Grade		
kip-ft	kip- ft	
kip-ft	kip- ft	

Moment Capacity of Drilled Concrete Shaft (Caisson) for TIA Rev F or G

Note: Shaft assumed to have ties, not spiral, transverse reinforcing

Site Data
BU\#: 806370
Site Name: HRT 099943226
App \#: 208261 Rev. 3

Enter Load Factors Below:		
For M (WL)	1.3	<---- Enter Factor
For P (DL)	1.3	<---- Enter Factor

Pier Properties	
Concrete:	
Pier Diameter	9.0
Concrete Area =	$9160.9 \mathrm{in}^{2}$
Reinforcement:	
Clear Cover to Tie=	3.00 in
Horiz. Tie Bar Size=	3
Vert. Cage Diameter =	8.33
Vert. Cage Diameter =	99.98 in
Vertical Bar Size $=$	10
Bar Diameter =	1.27
Bar Area =	$1.27 \mathrm{in}^{2}$
Number of Bars =	60
As Total=	$76.2 \mathrm{in}^{2}$
A s/ Aconc, Rho:	0.0083 0.83\%

ACI 10.5, ACI 21.10.4, and IBC 1810.
Min As for Flexural, Tension Controlled, Shafts:
$(3)^{*}($ Sqrt (f'c)/Fy: 0.0027
$200 /$ Fy: 0.0033

Minimum Rho Check:
Actual Req'd Min. Rho: 0.33%
Provided Rho:
$=0.83 \%$

Ref. Shaft Max Axial Capacities, ϕ Max(Pn or Tn):		
$\begin{aligned} & \text { Max Pu }=(\varphi=0.65) \mathrm{Pn} . \\ & \text { Pn per ACl } 318(10-2) \end{aligned}$		
	14423.73	kips
at $\mathrm{Mu}=(\phi=0.65) \mathrm{Mn}=$	10145.61	ft-kips
Max Tu, ($\varphi=0.9$) Tn=	4114.8	kips
at $\mathrm{Mu}=\phi=(0.90) \mathrm{Mn}=$	0.00	ft-kips

Maximum Shaft Superimposed Forces		
TIA Revision:	F	ft-kips (* Note) kips
Max. Service Shaft M:	3020.738	
Max. Service Shaft P:	40	
Max Axial Force Type:	Comp.	

(*) Note: Max Shaft Superimposed Moment does not necessarily equal to the shaft top reaction moment

Load Factor	Shaft Factored Loads	
1.30	Mu:	3926.959
ftt-kips		
	Pu:	52

Material Properties		
Concrete Comp. strength, f'c =	3000	psi
Reinforcement yield strength, Fy =	60	ksi
Reinforcing Modulus of Elasticity, $\mathrm{E}=$	29000	ksi
Reinforcement yield strain =	0.00207	
Limiting compressive strain $=$	0.003	
ACl 318 Code		
Select Analysis ACI Code=	2005	
Seismic Properties		
Seismic Design Category =	B	
Seismic Risk =	Low	

Solve (Run)
<-- Press Upon Completing All Input

Results:

Governing Orientation Case: 2

Case 1
Dist. From Edge to Neutral Axis:

Case 2
Extreme Steel Strain, ϵ t:
21.17 in
0.0117
et >0.0050, Tension Controlled
Reduction Factor, φ : 0.900

| Output Note: Negative Pu=Tension | | |
| ---: | :---: | :--- | :--- |
| For Axial Compression, φ Pn $=$ Pu: | 52.00 | kips |
| Drilled Shaft Moment Capacity, φ Mn: | $\mathbf{1 4 9 0 9 . 8 4}$ | ft-kips |
| Drilled Shaft Superimposed Mu: | 3926.96 | ft-kips |
| | | |
| (Mu/ φ Mn, Drilled Shaft Flexure CSR: | $\mathbf{2 6 . 3 \%}$ | |

environmental | engineering | due diligence

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility
Site ID: CT03XC091
HRT 099943226 (West Hartford Crown)
570 New Park Avenue
West Hartford, CT 06110
March 20, 2014

EBI Project Number: 62141241

March 20, 2014

Sprint
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495
Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site:
CT03XC091-HRT 099943226 (West Hartford Crown)
Site Total: $\mathbf{4 0 . 8 7 0 \%}$ - MPE \% in full compliance
EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 570 New Park Avenue, West Hartford, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limit for the cellular band (850 MHz Band) is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz and 2500 MHz bands band is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 570 New Park Avenue, West Hartford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario. Actual values seen from this site will be dramatically less than those shown in this report. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

1) 7 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation
3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications was used in this direction.
environmental | engineering | due diligence
6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTMM-C-120. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz . The RFS APXVTMM-C-120 has a 15.9 dBd gain value at its main lobe at 2500 MHz . All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario.
7) The antenna mounting height centerline for the proposed antennas is $\mathbf{1 3 5}$ feet above ground level (AGL)
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

	Site ID	CT03XC091- HRT 099943226 (West Hartford Crown)														
	Site Addresss	570 New Park Avenue, West Hartford, CT 06110														
	Site Type	Monopole														
Sector 1																
Antenna Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss (dB)	ERP	Power Density Percentage
1a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	7	140	15.9	135	129	1/2 "	0.5	3	2432.9212	5.25599\%
1a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	135	129	1/2"	0.5	3	195.44744	0.74469\%
1B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	13.4	135	129	1/2"	0.5	3	390.89489	1.48937\%
Sector total Power Density Value: 7.490%																
Sector 2																
Antenna Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss (dB)	ERP	Power Density Percentage
2a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	7	140	15.9	135	129	1/2"	0.5	3	2432.9212	5.25599\%
2 a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	135	129	1/2"	0.5	3	195.44744	0.74469\%
2B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	13.4	135	129	1/2"	0.5	3	390.89489	1.48937\%
Sector total Power Density Value: 7.490%																
Sector 3																
Antenna Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss (dB)	ERP	
3a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	7	140	15.9	135	129	1/2"	0.5	3	2432.9212	5.25599\%
3 a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	135	129	1/2"	0.5	3	195.44744	0.74469\%
3B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	13.4	135	129	1/2"	0.5	3	390.89489	1.48937\%
												Sector to	tal Power D	ensity Value:	7.490\%	

Site Composite MPE \%	
Carrier	MPE \%
Sprint	22.470%
Sensus (CL\&P)	0.840%
Verizon Wireless	16.710%
XM Satellite Radio	0.850%
Total Site MPE \%	40.870%

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are $\mathbf{2 2 . 4 7 0 \%}$ ($\mathbf{7 . 4 9 0} \%$ from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{4 0 . 8 7 0 \%}$ of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting
21 B Street
Burlington, MA 01803

