

CONNECTICUT SITING COUNCIL

July 9, 2014

State of Connecticut **Connecticut Siting Council** 10 Franklin Square New Britain, CT 06051

RE:

Notification of Construction Completion on telecommunication facilities

To whom it may concern:

Alcatel Lucent hereby acknowledges that the list of attached sites have completed construction per the approval granted on the specified date. Please advise if further information is needed..

Very truly yours,

Martha Powers

Martha Powers Lead Development Manager Alcatel-Lucent **Sprint Vision Project** 1 Robbins Road Westford, MA 01886

Cc: FST, Siterra

•					
		-			
·					
EM-SPRINT-143-130604	218 Wheeler Road	Torrington	CT33XC592	6/28/2013	
EM-SPRINT-140-130724	583 Chapel Street	Thomaston	CT33XC603	8/8/2013	
EM-SPRINT-103-130920	Charles Marshall Drive	Norwalk	CT33XC802	10/4/2013	
EM-SPRINT-NEXTEL-064-130214	439-455 Homestead Ave.	Hartford	CT43XC805	3/1/2013	
EM-SPRINT-064-130311	99 Meadow Street	Hartford	CT43XC806	4/5/2013	
EM-SPRINT-083-131127	290 Preston Ave.	Middletown	CT43XC816	12/16/2013	
EM-SPRINT-128-130920	530 Bushy Hill Road	Simsbury	CT43XC825	10/4/2013	
EM-SPRINT-164-130405A	340 Bloomfield Avenue	Windsor	CT43XC826	4/19/2013	
EM-SPRINT-077-130109	239 Middle Turnpike	Manchester	CT43XC827	2/13/2013	
EM-SPRINT-165-130118	2-4 Volunteer Drive	Windsor Locks	CT43XC828	2/14/2013	
EM-SPRINT-NEXTEL-139-130214	44 Fyler Place	Suffield	CT43XC829	3/8/2013	
EM-SPRINT-111-130712	171 Town Hill Road	Plymouth	CT54XC712	7/26/2013	
EM-SPRINT-009-130322	38 Spring Hill Road	Bethel	CT54XC749	4/5/2013	
EM-SPRINT-154-131011	315 Spencer Plains Road	Westbrook	CT54XC758	10/25/2013	
EM-SPRINT-023-130405	14 Canton Springs Road	Canton	CT54XC760	4/19/2013	
EM-SPRINT-104-130606	153 Old Salem Road	Norwich	CT54XC775	6/28/2013	•
EM-SPRINT-164-130405B	99 Day Hill Road	Windsor	CT54XC787	4/19/2013	
EM-SPRINT-132-130920	300 Governor's Highway	South Windsor	CT60XC014	10/4/2013	
EM-SPRINT-094-130108	605 Willard Avenue	Newington	СТ60ХС018	1/25/2013	
EM-SPRINT-146-130506	197 South Street	Vernon	CT60XC935	5/24/2013	
EM-SPRINT-146-130311	777 Talcottville Road	Vernon	CT70XC147	4/5/2013	•
EM-SPRINT-126-130531	62 Birdseye Road	Shelton	CT73XC004	6/21/2013	

500 West Cummings Park, Suite 3600 Woburn, Ma 01801 Telephone: 781-771-2255 Email jeff.barbadora@crowncastle.com

June 27, 2014

Melanie A. Bachman Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE:

Sprint PCS-Exempt Modification - Crown Site BU: 806370

Sprint PCS Site ID: CT03XC091

Located at: 570 New Park Avenue, West Hartford, Connecticut

Dear Ms. Bachman:

This letter is to confirm that all construction activity has been completed. Pursuant to the Connecticut Siting Council approval of **EM-Sprint-Nextel-155-130201**, this letter is to satisfy item number three of the approval letter that the CSC will be notified in writing within 45 days after completion of construction.

Please contact me if you have any questions.

Sincerely,

Jeffrey Barbadora 781-970-0053

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

March 1, 2013

Kevin Savage Crown Castle 3530 Torrington Way, Suite 300 Charlotte, NC 28277

RE: **EM-SPRINT-NEXTEL-155-130201** - Sprint Nextel Corporation notice of intent to modify an existing telecommunications facility located at 570 New Park Avenue, West Hartford, Connecticut.

Dear Mr. Savage:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated February 8, 2013. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding

the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Linda Roberts
Executive Director

LR/CDM/cm

c: The Honorable Scott Slifka, Mayor, Town of West Hartford Mila Limson, Town Planner, Town of West Hartford

704-405-6560

January 29, 2013

Ms. Linda Roberts **Executive Director** Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051 Crown Castle 3530 Torrington Way Suite 300 Fax 724-416-4911 Charlotte NC 28277

www.crowncastle.com

Nextel-Exempt Modification Request- Crown Site BU 806370 Sprint RE: Nextel Site CT03XC091 - Located at 570 New Park Avenue West Hartford, CT 06110.

Dear Ms. Roberts:

This letter and attachments are submitted on behalf of Sprint Nextel (Sprint). Sprint is making modifications to certain existing sites in its Connecticut system in order to implement their network vision technology. Please accept this letter and attachments as notification, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies ("R.S.C.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the Town Clerk, Essie Labrot for the Town of West Hartford.

Sprint plans to modify the existing wireless communications facility owned by Crown Castle and located at 570 New Park Avenue West Hartford, CT 06110. Attached are a compound plan and elevation depicting the planned changes, and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration. Also included is a power density report reflecting the modification to Sprints operations at the site.

The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for the R.C.S.A. Section 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. Sprints replacement antennas and will be located at the same elevation on the existing tower.
- 2. Although the proposed modifications will involve replacing the ground-mounted equipment the proposed change will not require the extension of the site boundaries.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more.

4. The operation of the replacement antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted a safely standard. A cumulative General Power Density table for Sprint modified facility is included behind <u>Tab 2</u>.

Also attached is a Structural Report confirming that the tower and foundation can support Sprints proposed modifications. (See <u>Tab 3</u>).

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b) (2).

Sincerely,

Kevin Savage

Enclosures

Copy to: West Hartford, Town Clerk Essie Labrot

DRIVING DIRECTIONS

DEPART FROM SPRINT: 1 INTERNATIONAL BLVD MAHWAH, NJ 07430

- 1. HEAD NORTH ON INTERNATIONAL BLVD/PARK ST TOWARD QUEENSLAND RD CONTINUE TO FOLLOW INTERNATIONAL BLVD.
- 2. TAKE THE 3RD RIGHT ONTO PARK LN. 3. CONTINUE STRAIGHT ONTO LEISURE LN.
- 4. CONTINUE ONTO NJ-17 N.
- 5. TAKE THE NEW JERSEY 17 N/INTERSTATE 287 N EXIT TOWARD INTERSTATE 87/NORTH Y. THRUWAY.
- 6. KEEP LEFT AT THE FORK, FOLLOW SIGNS FOR I-287 N/I-87/NJ-17 N/N Y. THRUWAY AND MERGE ONTO I-287 N/NJ-17 N.
- 7. KEEP RIGHT AT THE FORK, FOLLOW SIGNS FOR I-87 S/I-287/TAPPAN ZEE BR/NEW YORK CITY/NEW YORK THRUWAY AND MERGE ONTO 1-287 E/1-87 S.
- B. TAKE EXIT 8A FOR NY-119/SAW MILL PKWY N TOWARD ELMSFORD. 9. KEEP LEFT AT THE FORK AND MERGE ONTO SAW MILL RIVER PARKWAY N.
 10. TAKE THE EXIT TOWARD I-684 N.
- 11. KEEP LEFT AT THE FORK, FOLLOW SIGNS FOR I-684/BREWSTER AND MERGE.
 12. TAKE EXIT 9E FOR INTERSTATE 84 E TOWARD DANBURY.
 13. MERGE ONTO I-84 E.
- 14. SLIGHT RIGHT TO STAY ON I-84 E.
- 15. SLIGHT RIGHT TO STAY ON 1-84 E.
 16. TAKE EXIT 41 FOR SOUTH MAIN STREET TOWARD ELMWOOD.
 17. TURN RIGHT ONTO S MAIN ST.
- 18. TURN LEFT ONTO NEW BRITAIN AVE. 19. TURN LEFT ONTO NEW PARK AVE.
- DESTINATION WILL BE ON THE RIGHT.

NETWORK VISION MMBTS LAUNCH NORTHERN CONNECTICUT MARKET

SITE NAME

WEST HARTFORD (CROWN)

SPRINT SITE NUMBER

CT03XC091

CROWN SITE NAME

HRT 099 943226

OWNER AND TENANT MAY, FROM TIME TO TIME AT SITE ADDRESS TENANT'S OPTION, REPLACE THIS EXHIBIT WITH AN EXHIBIT SETTING FORTH THE LEGAL DESCRIPTION OF **570 NEW PARK AVENUE** WEST HARTFORD, CT 06110 STRUCTURE TYPE

MONOPOLE

UNDERGROUND SERVICE ALERT **CALL TOLL FREE** 1-800-922-4455

PROJECT SUMMARY

SITE NAME:

SITE ADDRESS:

WEST HARTFORD (CROWN)

SITE NO .:

CT03XC091 570 NEW PARK AVENUE WEST HARTFORD, CT 06110

HARTFORD

±91'

COUNTY:

SITE COORDINATES:

GROUND ELEV .:

CONTACT:

PROJECT MANAGER:

41.73625' N LATITUDE: 72.72061111' W LONGITUDE:

(NAD 83) (NAD 83) (AMSL)

JURISDICTION: CONNECTICUT SITING COUNCIL

ZONING CLASSIFICATION:

ANDLORD: CROWN ATLANTIC COMPANY LLC 2000 CORPORATE DRIVE

CANONSBURG, PA 15317 PROJECT MANAGER

JOSH MOSTOW (201) 236-9059 MIKE CALLAHAN

CONSTRUCTION MANAGER: (860) 919-7278

APPLICANT: 1 INTERNATIONAL BLVD.

> ALCATEL LUCENT 1 ROBBINS ROAD

WESTFORD, MA 01886 CAMILLE MULLIGAN - (845) 313-6920 CONTACT:

TRACEY SWEARINGEN CONSTRUCTION MANAGER:

(518) 944-8794 (CELL)

MAHWAH. NJ 07495

ENGINEER: 11 HERBERT DRIVE LATHAM, NY 12110

PAUL FANOS - (518) 690-0790 CONTACT:

2003 INTERNATIONAL BUILDING CODE 2005 CONNECTICUT BUILDING CODE W/ 2009 AMENDMENT UNIFORM MECHANICAL CODE BUILDING CODE:

UNIFORM PLUMBING CODE LOCAL BUILDING CODE CITY/COUNTY ORDINANCES

ELECTRICAL CODE: 2005 NATIONAL ELECTRICAL CODE

VICINITY MAP

PROJECT TEAM

1 ROBBINS ROAD

PROJECT MANAGER

INFINIGY Build.

Latham, NY 12110 OFFICE #: (518) 690-0790 FAX #: (518) 690-0793

ENGINEER

SCOPE OF WORK:

THE SITE, OR WITH ENGINEERED OR AS-BUILT

DRAWING DEPICTING THE SITE OR ILLUSTRATING

STRUCTURAL MODIFICATIONS OR CONSTRUCTION

PLANS OF THE SITE. ANY VISUAL OR TEXTUAL

REPRESENTATION OF THE EQUIPMENT LOCATED

DOCUMENTS IS ILLUSTRATIVE ONLY, AND DOES NOT

LIMIT THE RIGHTS OF SPRINT AS PROVIDED FOR IN

THE AGREEMENT. THE LOCATIONS OF ANY ACCESS

AND LITHLITY FASEMENTS ARE ILLUSTRATIVE ONLY.

AND/OR THE SERVICING UTILITY COMPANY IN

ACTUAL LOCATIONS MAY BE DETERMINED BY TENAN

COMPLIANCE WITH LOCAL LAWS AND REGULATIONS.

WITHIN THE SITE CONTAINED IN THESE OTHER

- HANDICAP ACCESS REQUIREMENTS ARE NOT REQUIRED
- FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION
- FACILITY HAS NO PLUMBING OR REFRIGERANTS
- THIS FACILITY SHALL MEET OR EXCEED ALL FAA AND FCC
- ALL NEW MATERIAL SHALL BE FURNISHED AND INSTALLED BY CONTRACTOR UNLESS NOTED OTHERWISE. CABINETS, ANTENNAS/RRU AND CABLES FURNISHED BY OWNER AND INSTALLED BY CONTRACTOR

- INSTALL NEW ANTENNAS/RRH'S ON EXISTING TOWER
- INSTALL NEW BTS OR RETROFIT EXISTING BTS IN EXISTING
- REMOVE EXISTING CDMA ANTENNAS AND COAX CABLES
- REPLACE EXISTING BATTERY CABINET WITH NEW BATTERY
- REPLACE EXISTING GPS IF REQUIRED

ENGINEER'S LICENSE

CERTIFICATION STATEMENT: I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME. AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF CONNECTICUT.

LICENSED ENGINEER - STATE OF CONNECTICUT

APPROVALS

DATE DATE ALU RF DATE ALU LEASING/SITE ACC N-MARKET DATE CONSTRUCTION LEAD DATE NAME/COMPANY: SITE OWNER

No. 24705

minimum,

00

REVISED PER CONNENTS | KMF 12/17/

ecked: ASF Date: 11/7/12

294-036

roject Title

WEST HARTFORD (CROWN) CT03XC091

570 NEW PARK AEVNUE

Drawing Scale AS NOTED

1/18/13

TITLE SHEET

T1

GENERAL NOTES

THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:

A. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION

- B. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT.
- C. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE - "NEC").
- AND NFPA 101 (LIFE SAFETY CODE).

PART 1 - GENERAL REQUIREMENTS

- E. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM).
- F. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE).

DEFINITIONS:

- A: WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.
- B: COMPANY: SPRINT NEXTEL CORPORATION
- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT.
- D: CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK.
- E: THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK.
- POINT OF CONTACT: COMMUNICATION BETWEEN THE COMPANY AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE COMPANY SITE DEVELOPMENT SPECIALIST OR OTHER PROJECT COORDINATOR APPOINTED TO MANAGE THE PROJECT FOR THE COMPANY
- ON-SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.
- DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES, AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.
 A. THE JOBSITE DRAWINGS. SPECIFICATIONS AND DETAILS SHALL BE
 - CLEARLY MARKED DAILY IN PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS.
- USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.
- NOTICE TO PROCEED: A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO B. UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT NEXTEL WITH AN

PART 2 - EXECUTION

OPERATIONAL WIRELESS FACILITY.

- TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE, POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION, CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS
- ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE
- TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY.

- COMPANY FURNISHED MATERIAL AND EQUIPMENT: ALL HANDLING, STORAGE AND INSTALLATION OF COMPANY FURNISHED MATERIAL AND EQUIPMENT SHALL BE IN ACCORDANCE WITH THE REQUIREMENTS OF THE CONTRACT DOCUMENTS AND WITH THE MANUFACTURER'S INSTRUCTIONS AND RECOMMENDATIONS.
 - A. CONTRACTOR SHALL PROCURE ALL OTHER REQUIRED WORK RELATED MATERIALS NOT PROVIDED BY SPRINT NEXTEL TO SUCCESSFULLY CONSTRUCT A WIRFLESS FACILITY.
- DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS
- EXISTING CONDITIONS: NOTIFY THE COMPANY REPRESENTATIVE OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENCINEER.

PART 3 - RECEIPT OF MATERIAL & EQUIPMENT

- RECEIPT OF MATERIAL AND EQUIPMENT: CONTRACTOR IS RESPONSIBLE FOR SPRINT NEXTEL PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT
- ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.
 VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES.
- TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT.
- RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT, REPORT TO SPRINT NEXTEL OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH. PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING
- COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S

PART 4 - GENERAL REQUIREMENTS FOR CONSTRUCTION

- CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH, AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, MPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS
- CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION.
 A. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION
 - BY COMPANY. B. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT. OR TO EURTHER EXPOSE INDIVIDUALS TO THE HAZARD.
- CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION.
- 4.5 CONDUCT TESTING AS REQUIRED HEREIN.

PART 5 - TESTS AND INSPECTIONS

- - A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS INSPECTIONS AND PROJECT DOCUMENTATION
 - B. CONTRACTOR SHALL COORDINATE TEST AND INSPECTION SCHEDULES WITH COMPANY'S REPRESENTATIVE WHO MUST BE ON SITE TO WITNESS SUCH TESTS AND INSPECTIONS.
 - C. WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REGULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER
 - D. THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES. E. SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING SYSTEM DESIGN
 - F. ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS. HYBERFLEX TESTING NOT
 - G. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION.

PART 6 - TRENCHING AND BACKFILLING

- TRENCHING AND BACKFILLING: THE CONTRACTOR SHALL PERFORM ALL EXCAVATION OF EVERY DESCRIPTION AND OF WHATEVER SUBSTANCES ENCOUNTERED, TO THE DEPTHS INDICATED ON THE CONSTRUCTION DRAWINGS OR AS OTHERWISE SPECIFIED.
- PROTECTION OF EXISTING UTILITIES: THE CONTRACTOR SHALL CHECK WITH THE LOCAL UTILITIES AND THE RESPECTIVE UTILITY LOCATOR COMPANIES PRIOR TO STARTING EXCAVATION OPERATIONS IN EACH RESPECTIVE AREA TO ASCERTAIN THE LOCATIONS OF KNOWN UTILITY LINES. THE LOCATIONS, NUMBER AND TYPES OF EXISTING UTILITY LINES DETAILED ON THE CONSTRUCTION DRAWINGS ARE APPROXIMATE AND DO NOT REPRESENT EXACT INFORMATION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIRING ALL LINES DAMAGED DURING EXCAVATION AND ALL ASSOCIATED OPERATIONS. ALL UTILITY LINES UNCOVERED DURING THE EXCAVATION OPERATIONS, SHALL BE PROTECTED FROM DAMAGE DURING EXCAVATION AND ASSOCIATED OPERATIONS. ALL REPAIRS SHALL BE APPROVED BY THE UTILITY COMPANY.
- HAND DIGGING: UNLESS APPROVED IN WRITING OTHERWISE, ALL DIGGING WITHIN AN EXISTING CELL SITE COMPOUND IS TO BE DONE BY HAND.
- DURING EXCAVATION, MATERIAL SUITABLE FOR BACKFILLING SHALL BE STOCKPILED IN AN ORDERLY MANNER A SUFFICIENT DISTANCE FROM THE BANKS OF THE TRENCH TO AVOID OVERLOADING AND TO PREVENT SLIDES OR CAVE-INS, ALL EXCAVATED MATERIALS NOT REQUIRED OR SUITABLE FOR BACKFILL SHALL BE REMOVED AND DISPOSED OF AT THE CONTRACTOR'S EXPENSE.
- GRADING SHALL BE DONE AS MAY BE NECESSARY TO PREVENT D. SURFACE WATER FROM FLOWING INTO TRENCHES OR OTHER EXCAVATIONS, AND ANY WATER ACCUMULATING THEREIN SHALL REMOVED BY PUMPING OR BY OTHER APPROVED METHOD.
- SHEETING AND SHORING SHALL BE DONE AS NECESSARY FOR THE PROTECTION OF THE WORK AND FOR THE SAFETY OF PERSONNEL UNLESS OTHERWISE INDICATED, EXCAVATION SHALL BE BY OPEN CUT. EXCEPT THAT SHORT SECTIONS OF A TRENCH MAY BE TUNNELED IF. THE CONDUIT CAN BE SAFELY AND PROPERLY INSTALLED AND BACKFILL CAN BE PROPERLY TAMPED IN SUCH TUNNEL SECTIONS. EARTH EXCAVATION SHALL COMPRISE ALL MATERIALS AND SHALL INCLUDE CLAY, SILT SAND, MUCK, GRAVEL, HARDPAN, LOOSE SHALE, AND LOOSE
- TRENCHES SHALL BE OF NECESSARY WIDTH FOR THE PROPER LAYING OF THE CONDUIT OR CABLE, AND THE BANKS SHALL BE AS NEARLY VERTICAL AS PRACTICABLE. THE BOTTOM OF THE TRENCHES SHALL BE ACCURATELY GRADED TO PROVIDE UNIFORM BEARING AND SUPPORT FOR EACH SECTION OF THE CONDUIT OR CABLE ON UNDISTURBED SOIL AT EVERY POINT ALONG ITS ENTIRE LENGTH, EXCEPT WHERE ROCK IS ENCOUNTERED, CARE SHALL BE TAKEN NOT TO EXCAVATE BELOW THE DEPTHS INDICATED. WHERE ROCK EXCAVATIONS ARE NECESSARY, THE ROCK SHALL BE EXCAVATED TO A MINIMUM OVER DEPTH OF 6 INCHES BELOW THE TRENCH DEPTHS INDICATED ON THE CONSTRUCTION DRAWINGS OR SPECIFIED. OVER DEPTHS IN THE ROCK EXCAVATION AND UNAUTHORIZED OVER DEPTHS SHALL BE THOROUGHLY BACK FILLED AND TAMPED TO THE APPROPRIATE GRADE. WHENEVER WET OR OTHERWISE UNSTABLE SOIL THAT IS INCAPABLE OF PROPERLY SUPPORTING THE CONDUIT OR CABLE IS ENCOUNTERED IN THE BOTTOM OF THE TRENCH, SUCH SOLID SHALL BE REMOVED TO A MINIMUM OVER DEPTH OF 6 INCHES AND THE TRENCH BACKFILLED TO THE PROPER GRADE WITH EARTH OF OTHER SUITABLE MATERIAL, AS HEREINAFTER
- BACKFILLING OF TRENCHES, TRENCHES SHALL NOT BE BACKFILLED G. UNTIL ALL SPECIFIED TESTS HAVE BEEN PERFORMED AND ACCEPTED. WHERE COMPACTED BACKFILL IS NOT INDICATED THE TRENCHES SHALL BE CARFFULLY BACKFILLED WITH SELECT MATERIAL SUCH AS EXCAVATED SOILS THAT ARE FREE OF ICE, SNOW, ROOTS, SOD, RUBBISH OR STONES, DEPOSITED IN 6 INCH LAYERS AND THOROUGHLY AND CAREFULLY RAMMED UNTIL THE CONDUIT OR CABLE HAS A COVER OF NOT LESS THAN 1 FOOT.
 THE REMAINDER OF THE BACKFILL MATERIAL SHALL BE GRANULAR IN NATURE AND SHALL NOT CONTAIN ICE, SNOW ROOTS, SOD, RUBBISH, OR STONES OF 2-1/2 INCH MAXIMUM DIMENSION. BACKFILL SHALL BE CAREFULLY PLACED IN THE TRENCH AND IN 1 FOOT-LAYERS AND EACH LAYER TAMPED, SETTLING THE BACKFILL WITH WATER WILL BE PERMITTED. THE SURFACE SHALL BE GRADED TO A REASONABLE UNIFORMITY AND THE MOUNDING OVER THE TRENCHES LEFT IN A UNIFORM AND NEAT CONDITION.

PROJECT INFORMATION

THIS IS AN UNMANNED AND RESTRICTED ACCESS EQUIPMENT FACILITY AND WILL BE USED FOR THE TRANSMISSION OF RADIO SIGNALS FOR THE PURPOSE OF PROVIDING PUBLIC WIRELESS COMMUNICATIONS SERVICE.

NO POTABLE WATER SUPPLY IS TO BE PROVIDED AT THIS LOCATION.

NO WASTE WATER WILL BE GENERATED AT THIS LOCATION.

NO SOLID WASTE WILL BE GENERATED AT THIS LOCATION.

SPRINT MAINTENANCE CREW (TYPICALLY ONE PERSON) WILL MAKE AN AVERAGE OF ONE TRIP PER MONTH AT ONE HOUR PER VISIT.

LEGEND

SYMBOL	DESCRIPTION	
\sim	CIRCUIT BREAKER	man occos
마	NON-FUSIBLE DISCONNECT SWITCH	
E	FUSIBLE DISCONNECT SWITCH	
	SURFACE MOUNTED PANEL BOARD	
T	TRANSFORMER	
®	KILOWATT HOUR METER	
JB	JUNCTION BOX	
PB	PULL BOX TO NEC/TELCO STANDARDS	
<u> </u>	UNDERGROUND UTILITIES	
(1)	DENOTES REFERENCE NOTE	
•	EXOTHERMIC WELD CONNECTION	
•	MECHANICAL CONNECTION	
□ OR ⊗	GROUND ROD	
ul—⊙ OR 🄯	GROUND ROD WITH INSPECTION SLEEVE	
	GROUND BAR	
-81	PIN AND SLEEVE RECEPTACLE	
⊕	120AC DUPLEX RECEPTACLE	
——G —	GROUND CONDUCTOR	
#	REPRESENTS DETAIL NUMBER REF. DRAWING NUMBER	
ΛD	RREVIATIONS	

ABBREVIATIONS

CIGBE MIGB SST GPS TYP. DWG BCW BFG PVC	COAX ISOLATED GROUND BAR EXTERNAL MASTER ISOLATED GROUND BAR SELF SUPPORTING TOWER GLOBAL POSITIONING SYSTEM TYPICAL DRAWING BARE COPPER WIRE BELOW FINISH GRADE POLYVINYL CHLORIDE
CAB	CABINET
C	CONDUIT
 SS	STAINLESS STEEL
G	GROUND
AWG	AMERICAN WIRE GAUGE
RGS	RIGID GALVANIZED STEEL
AHJ	AUTHORITY HAVING JURISDICTION
TTLNA	TOWER TOP LOW NOISE AMPLIFIER
UNO	UNLESS NOTED OTHERWISE
EMT	ELECTRICAL METALLIC TUBING
AGL	ABOVE GROUND LEVEL

Design Bulld. Delive 00 FINGY

Annunny, No. 24705 CENSE

REVISED PER COMMENTS AHS 1/18/1 REVISED PER COMMENTS KMF

KMF Date: 11/7/12 AD Date: 11/7/12 cked AF Date: 11/7/12

294-036

lect Title

WEST HARTFORD (CROWN) CT03XC091

570 NEW PARK AFVNUE WEST HATRFORD, CT 08110

S

Drawing Scal AS NOTED 1/18/13

ring Title

GENERAL NOTES

REFER TO: CONSTRUCTION STANDARDS-SPRINT DOCUMENT: "EXHIBIT A - STANDARD CONSTRUCTION SPECIFICATIONS FOR

WIRELESS SITES REV 4.0 - 02.15.2011.DOCM" REFER TO: "WEATHERPROOFING SPECS: EXCERPT EXH A -WTHRPRF - STD CONSTR SPECS._157201110421855429.DOCM"
REFER TO: "COLOR CODING-SPRINT NEXTEL ANT AND LINE COLOR CODING (DRAFT) V3 09-08-11.PDF" CONTRACTOR TO VERIFY LATEST REV AND DATE PRIOR TO

NFINIGY® build.

11 Herbert Drive
Latham, NY 12110
Office # (518) 680-0790
Fax # (518) 680-0790 294-036 **WEST HARTFORD** (CROWN) CT03XC091 570 NEW PARK AEVNUE WEST HATRFORD, CT 08110

Sprint

Drawing Scale: AS NOTED

1/18/13

EQUIPMENT SITE PLANS

RRH MOUNTING

BRACKET (TYP.)

1900 COMBINER

RRH MOUNTING

BRACKET (TYP.)

SITE PRO UNIVERSAL RING MOUNT (OR APPROVED EQUAL)

PART #

LWRM

UGLM

POLE DIA.

12"-45"

10.5"-28"

3-1/2"ø O.D. MOUNTING PIPE-

MONOPOLE

SITE PRO FLUSH MOUNT

ADAPTER KIT FMA1

1900 RRH COMBINER WEIGHT 40 LBS.

RRH MOUNTING DETAIL (TYP.)

NOT TO SCALE

BATTERY CABINET PROFILE

TOP VIEW

FRONT VIEW

800/1900 MULTI-MODE

RFS ANTENNA

P/N: APXV9ERR18-C-A20

NOT TO SCALE

ANTENNA DETAILS

NOT TO SCALE

-1900 MHz RRH UNIT (TYP)

UNIT (TYP)

U-BOLTS:

PANEL ANTENNA

MOUNT DETAIL

NOT TO SCALE

ASTM A36

Design Bulld. Deliver 00

AJD Dale: 11/7/12 ked: ACF Dale: 11/7/12

WEST HARTFORD (CROWN) CT03XC091

294-036

570 NEW PARK AEVNUE WEST HATRFORD, CT 06110

rawing Scal

AS NOTED

ANTENNA PLANS

SCENARIO 127 v1.7

1 ANTENNA CABLE RISER DIAGRAM

INSTALLER VERIFY LATEST PLUMBING/WIRING DIAGRAMS, PRIOR TO INSTALLATION.

WEATHERPROOFING CONNECTORS AND GROUND KIT NOTES:

1. ALL CONNECTORS AND GROUND KITS SHALL BE WEATHERPROOFED USING BUTYL

1. ALL CONNECTORS AND GROUND KITS SHALL BE WEATHERPROOFED USING BUTYL RUBBER WEATHERPROOFING AND TAPE, THIS INSTALLATION MUST BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATION OR PER THE FOLLOWING INSTRUCTIONS (WHICHEVER IS GREATER).

2. THE COAXIAL CABLE CONNECTION OR GROUND KIT CAN BE ENCOMPASSED INTO COLD SHRINK AND COMPLETELY WRAPPED WITH 2 IN. WIDE ELECTRICAL TAPE OVERLAPPING EACH ROW BY APPROXIMATELY 1/2" AND EXTENDING PAST THE CONNECTION BY TWO INCHES AND DISCUSSED BELOW; OR

3. THE COAXIAL ABLE CONNECTION OR GROUND KIT CAN BE WRAPPED WITH LAYERS OR ELECTRICAL/BUTYL RUBBER/ELECTRICAL TAPE AS DISCUSSED BELOW OR;
4. THE COAXIAL CABLE CONNECTION OR GROUND KIT CAN BE WRAPPED WITH TWO LAYERS

4. THE COAXIAL CABLE CONNECTION OR GROUND KIT CAN BE WRAPPED WITH TWO LAYERS OF 1.5 INCH WIDE SELF-AMALGAMATING TAPE COVERED WITH TWO LAYERS OF ELECTRICAL TAPE.

RRH JUMPER NOTES:

1. FOR DISTANCES BETWEEN RRH'S AND ANTENNAS LESS THAN 10'-0" USE A 1/2" JUMPER.

2. FOR DISTANCES BETWEEN RRH'S AND ANTENNAS GREATER THAN 10'-0" USE A 7/8" JUMPER.

NFINGY Build.

11 Herbert Drive
Letham, NY 12110
Office # (518) 80-0790
Fax # (518) 60-0790

S. STE, CO.

UTHORNER A PHATON OF AGAIN THIS DOCUMENT IS A WOUNDING O UGABLE STATE AND/OR LOCAL LA

REVISED PER COMMENTS AMS 1/76,
REVISED PER COMMENTS HAIF (2/77
ISSUED FOR REVIEW HAIF (1/7),
Submittal Frenchion Apple Date

Drawn: NWF Date: 11/7/12
Designed: A.D Date: 11/7/12
Checked: ASF Date: 11/7/12

Project Number 294-036

Project Title

WEST HARTFORD (CROWN) CT03XC091

570 NEW PARK AEVNUE WEST HATRFORD, CT 06110

VISION

OCHARENT IS THE DESIGN PROPERTY A
RECHT OF INFINICY ENGINEERING, PLI
POR THE EXCLUSIVE URED BY THE THE
TH'ST, ANY DIPILICATION OR USE WITHOUT

Drawing Scale

AS NOTED

Date:

1/18/13

ANTENNA CABLE RISER AND GPS DETAILS

Drawing Numb

NO. 24705

NO. 24705

REVISED PER COMMUNIS NOT 12/17/12

REVISED PER REVISE NOT 11/1/12

REVISED PER REVISED NOT 11/1/12

REVISED

WEST HARTFORD (CROWN) CT03XC091

294-036

570 NEW PARK AEVNUE WEST HATRFORD, CT 06110

Drawing Scale:
AS NOTED

Date; 1/18/13

and Pend An

EQUIPMENT DETAILS

Drawing Number

	Market	Northern Connecticut		
1	Cascade ID	CT03XC091		
1	(Control Control Contr	SECTOR 1	SECTOR 2	SECTOR 3
		No No	No	No
and a	Split sector present	10	150	260
L	1900MHz_Azimuth	1	130	- Landing of the state of the s
	1900MHz_No_of_Antennas	135	135	135
	1900MHz_RADCenter(ft)	RFS	RFS	RFS
1	1900MHz_Antenna Make	APXVSPP18-C-A20	APXVSPP18-C-A20	APXVSPP18-C-A20
١	1900MHz_Antenna Model		65	65
- 1	1900MHz_Horizontal_Beamwidth	65	5.5	5.5
	1900MHz_Vertical_Beamwidth	5.5	The second secon	6
	1900MHz_AntennaHeight (ft)	6	6	
	1900MHz_AntennaGain(dBd)	15.9	15.9	15.9
	1900MHz_E_Tilt	-2	-2	1
	1900MHz_M_Tilt	0	0	. 0
- 1	1900MHz_Carrier_Forecast_Year_2013	7	7	7
- 1	1900MHz_RRH Manufacturer	ALU	ALU	ALU
3	1900MHz_RRH Model	RRH 1900 4X45 65MHz	RRH 1900 4X45 65MHz	RRH 1900 4X45 65MH
-	1900MHz_RRH Count	2	2	2
1	1900MHz_RRH Location	Top of the Pole/Tower	Top of the Pole/Tower	Top of the Pole/Towe
- [TO CONTROL OF THE CON	IBC1900BB-1 and	IBC1900BB-1 and	IBC1900BB-1 and
- 1	1900MHz Combiner Model	IBC1900HG-2A	IBC1900HG-2A	IBC1900HG-2A
	1900MHz_Top_Jumper #1_Length (RRH or Combiner-to-Antenna for TT or Main Coax to	10	10	10
	1900MHz_Top_Jumper #1_Cable_Model (RRH or Combiner-to-Antenna for TT or Main Coax	LCF12-50J	LCF12-50J	LCF12-50J
1	1900MHz_Top_Jumper #2_Length (RRH to Combiner for TT if applicable, ft)	6	6	6
	1900MHz_Top_Jumper #2_Cable_Model (RRH to Combiner for TT if applicable)	LCF12-50J	LCF12-50J	LCF12-50J
	1900MHz_Main_Coax_Cable_Length (ft)	N/A	N/A	N/A
	1900MHz_Main_Coax_Cable_Model	N/A	N/A	N/A
	1900MHz Bottom Jumper #1_Length (Ground based RRH to Combiner-OR-Main Coax, ft)	N/A	N/A	N/A
i	1900MHz_Bottom_Jumper #1_Cable_Model (Ground based RRH to Combiner-OR-Main Coax)	N/A	N/A	N/A
	1900MHz_Bottom_Jumper #2_Length (Ground based-Combiner to Main Coax, ft)	N/A	N/A	N/A
	1900MHz_Bottom_Jumper #2_Cable_Model (Ground based-Combiner to Main Coax)	N/A	N/A	N/A
100	800MHz Azimuth	-10	150	260
	800MHz_No_of_Antennas	0	0	0
	800MHz_RADCenter(ft)	135	135	135
	800MHz_AntennaMake	RFS	RFS	RFS
	QUOM 12_ATTENTION	APXVSPP18-C-A20 (Shared	APXVSPP18-C-A20 (Shared	APXVSPP18-C-A20 (Shar
	800MHz_AntennaModel	w/1900)	w/1900)	w/1900)
3	800MHz Horizontal Beamwidth	65	65	65
- 7	52 Y V V 7 Y V V V V V V V V V V V V V V V	11,5	11.5	11.5
	800MHz_Vertical_Beamwidth 800MHz_AntennaHeight (ft)	6	6	6
	STATE OF THE STATE	13.4	13.4	13.4
	800MHz_AntennaGain (dBd)	-8	1	1
	800MHz_E_Tilt	0	0	
Y	800MHz_M_Tilt	ALU	ALU	ALÚ
	800MHz_RRH Manufacturer		The state of the s	800 MHz RRH 2x50W
	800MHz_RRH Model	800 MHz RRH 2x50W	800 MHz RRH 2x50W	1
1	800MHz_RRH Count	Top of the Dale (Tower		Top of the Pole/Towe
	800MHz_RRH Location	Top of the Pole/Tower	Top of the Pole/Tower	10
	800_Top_Jumper #1_Length (RRH to Antenna for TT or Main Coax to Antenna for GM)	10	10	LCF12-50J
	800_Top_Jumper_Cable_Model (RRH to Antenna for TT or Main Coax to Antenna for GM)	LCF12-50J	LCF12-50J	
	800MHz_Main_Coax_Cable_Length (ft)	N/A	N/A	N/A
	800MHz_Main_Coax_Cable_Model	N/A	N/A	N/A
	800_Bottom_Jumper #1_Length (Ground based RRH to Main Coax) 800_Bottom_Jumper #1_Cable_Model (Ground based RRH to Main Coax)	N/A	N/A	N/A
	IROD Rottom Jumper #1 Cable Model (Ground based RRH to Main Coax)	N/A	N/A	N/A
	Plumbing Scenario *	128	128	128

REFER TO: CONSTRUCTION STANDARDS-SPRINT DOCUMENT: "EXHIBIT A - STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES REV 4.0 - 02.15.2011.DOCM"

REFER TO: "WEATHERPROOFING SPECS: EXCERPT EXH A -

WTHRPRF - STD CONSTR SPECS._157201110421855429.DOCM" REFER TO: "COLOR CODING-SPRINT NEXTEL ANT AND LINE

COLOR CODING (DRAFT) V3 09-08-11.PDF"
CONTRACTOR TO VERIFY LATEST REV AND DATE PRIOR TO CONSTRUCTION.

Sleel cable or rope hoist line 5 ft (1.5-m) ghp Cable or

HOIST GRIP DETAIL NOT TO SCALE

DO NOT USE ONE HOISTING GRIP FOR

TO CABLE TRAY TO SWAY OR FALL. DO NOT REUSE HOISTING GRIPS. USED GRIPS
MAY HAVE LOST ELASTICITY, STRETCHED, OR
BECOME WEAKENED. REUSING A GRIP CAN

TO FALL.

HOISTING TWO OR MORE CABLES OR CABLE

TRAYS. THIS CAN CAUSE THE HOISTING GRIP TO BREAK OR THE CABLES OR WAVE— GUIDES

DO NOT USE THE HOISTING GRIP FOR LOWERING CABLE OR CABLE TRAY. SNAGGING OF THE CABLE OR CABLE TRAY MAY LOOSEN THE GRIP AND POSSIBLY CAUSE THE CABLE

CAUSE THE CABLE OR CABLE TRAY TO SLIP,

BREAK, OR FALL. USE HOISTING GRIPS AT INTERVALS OF NO MORE THAN 200 FT (60 M).
MAKE SURE THAT THE PROPER HOISTING GRIP IS USED FOR THE CABLE OR CABLE TRAY
BEING INSTALLED. SLIPPAGE OR INSUFFICIENT

GRIPPING STRENGTH WILL RESULT IF YOU ARE USING THE WRONG HOISTING GRIP.

NOTE: RFDS SHOWN PROVIDED BY SPRINT DATED 11/9/12.

CHECK FST FOR LATEST VERSION OF RFDS

SPRINT RFDS

| NEINIGH | C | 11 Herbert Dive | C | 12 Herbert Dive | C | 12 Herbert Dive | C | 13 Herbert Dive | C | 14 Her

0 ISSUED FOR REVIEW | IGHF 11/7/1 to Submitted / Rentation Apply Date

awn: 10/F Dale: 11/7/12 Designed: AD Date: 11/7/12 Checked: ASF Date: 11/7/12

294-036

roject Title

WEST HARTFORD (CROWN) CT03XC091

570 NEW PARK AEVNUE WEST HATRFORD, CT 06110

Drawing Scale AS NOTED

1/18/13

RF AND CABLE DETAILS

C8

NOTE: COORDINATE RF ANTENNA INSTALLATION WITH FINAL SPRINT RFDS. COORDINATE RF MW DISH (IF APPLICABLE) INSTALLATION WITH FINAL SPRINT RFDS.

KWF_ Dale: 11/7/12

BOX DETAILS

CODED NOTES:

- PROPOSED SPRINT FIBER/POWER JUNCTION BOX MOUNTED TO NEW H-FRAME
- PROPOSED H-FRAME FURNISHED AND INSTALLED BY CONTRACTOR
- PROPOSED RETROFIT OF 4.0 MODCELL CABINET
- PROPOSED BATTERY
 BACKUP CABINET
- PROPOSED HYBRIFLEX CABLES ROUTED FROM PROPOSED FIBER JUNCTION BOX TO PROPOSED TOWER MOUNTED RRH TO FOLLOW EXISTING CABLES (CONTRACTOR TO VERIFY) (TYP. OF (1) PER SECTOR)
- 6 PROPOSED SPRINT GPS TO REPLACE EXISTING

CONTRACTOR SHALL NOT STACK THE IYBRIFLEX CABLES ON TOP OF THE EXISTING COAXIAL CABLES AS TO PREVENT THE COAXIAL CABLES FROM BEING REMOVED.

ELECTRICAL NOTES:

- 1. ALL ELECTRICAL WORK SHALL CONFORM TO THE LATEST EDITION OF THE NATIONAL ELECTRICAL CODE (N.E.C.), AND APPLICABLE
- 2. GROUNDING SHALL COMPLY WITH THE ARTICLE 250 OF NATIONAL
- ELECTRICAL CODE.

 3. ALL ELECTRICAL ITEMS SHALL BE U.L. APPROVED OR LISTED.

 4. ALL WIRES SHALL BE AWG MIN #12 THHN COPPER UNLESS NOTED. CONDUCTORS SHALL BE INSTALLED IN SCHEDULE 40 PVC CONDUIT UNLESS NOTED OTHERWISE.
- 6. LABEL SPRINT SERVICE DISCONNECTS WITH SWITCH AND PPC CABINET WITH ENGRAVED LAMACOID LABELS, LETTERS 1" IN HEIGHT.
- 7. ROUTE GROUNDING CONDUCTORS ALONG THE SHORTEST AND STRAIGHTEST PATH POSSIBLE. BEND GROUNDING LEADS WITH A MINIMUM B" RADIUS.
- ENGAGE AN INDEPENDENT TESTING FIRM TO TEST AND VERIFY
 THAT RESISTANCE DOES NOT EXCEED 10 OHMS TO GROUND, TEST GROUND RING RESISTANCE PRIOR TO MAKING FINAL GROUND CONNECTIONS TO INFRASTRUCTURE AND EQUIPMENT, GROUNDING AND OTHER OPERATIONAL TESTING SHALL BE WITNESSED BY SPRINTS REPRESENTATIVE.
- 9. PROVIDE PULL BOXES AND JUNCTION BOXES WHERE REQUIRED SO THAT CONDUIT BENDS DO NOT EXCEED 360 DEGREES.
- OBTAIN PERMITS AND PAY FEES RELATED TO ELECTRICAL WORK PERFORMED ON THIS PROJECT. DELIVER COPIES OF ALL PERMITS TO SPRINT REPRESENTATIVE.
- 11. SCHEDULE AND ATTEND INSPECTIONS RELATED TO ELECTRICAL WORK REQUIRED BY JURISDICTION HAVING AUTHORITY, CORRECT AND PAY FOR ANY WORK REQUIRED TO PASS ANY FAILED
- 12. REDLINED AS—BUILTS ARE TO BE DELIVERED TO A SPRINT REPRESENTATIVE
- 13. PROVIDE TWO COPIES OF OPERATION AND MAINTENANCE MANUALS
- 14. FURNISH AND INSTALL THE COMPLETE ELECTRICAL SERVICE, TELCO CONDUIT, AND THE COMPLETE GROUNDING SYSTEM. 15. ALL WORK SHALL BE PERFORMED IN STRICT ACCORDANCE WITH
- ALL APPLICABLE BUILDING CODES AND LOCAL ORDINANCES, INSTALLED IN A NEAT MANNER AND SHALL BE SUBJECT TO APPROVAL BY A SPRING REPRESENTATIVE.

 16. CONDUCT A PRE-CONSTRUCTION SITE VISIT AND VERIFY EXISTING
- SITE CONDITIONS AFFECTING THIS WORK. REPORT ANY OMISSIONS OR DISCREPANCIES FOR CLARIFICATION PRIOR TO THE START OF CONSTRUCTION.
- 17. PROJECT ADJACENT STRUCTURES AND FINISHES FROM DAMAGE, REPAIR TO ORIGINAL CONDITION ANY DAMAGED AREA.
- 18. REMOVE DEBRIS ON A DAILY BASIS. DEBRIS NOT REMOVED IN A TIMELY FASHION WILL BE REMOVED BY OTHERS AND THE RESPONSIBLE SUBCONTRACTOR SHALL BE CHARGED ACCORDINGLY. REMOVAL OF DEBRIS SHALL BE COORDINATED WITH THE OWNER'S REPRESENTATIVE. DEBRIS SHALL BE REMOVED FROM THE PROPERTY AND DISPOSED OF LEGALLY.
- 19. UPON COMPLETION OF WORK, THE SITE SHALL BE CLEAN AND FREE OF DUST AND FINGERPRINTS.
- 20. PRIOR TO ANY TRENCHING, CONTACT LOCAL UTILITY TO VERIFY LOCATION OF ANY EXISTING BURIED SERVICE CONDUITS.
- 21. DOCUMENT GROUND RING INSTALLATION AND CONNECTIONS TO IT WITH PHOTOGRAPHS PRIOR TO BACKFILLING SITE. PRESENT PHOTO ARCHIVE A SITE "PUNCH LIST" WALK TO SPRINT'S REPRESENTATIVE.

INFINIGY ENGINEERING HAS NOT CONDUCTED AN ELECTRICAL LOAD STUDY FOR THIS SITE. CONTRACTOR IS TO VERIFY EXISTING FLECTRICAL OADS PRIOR TO CONSTRUCTION TO ENSURE THERE S AMPLE SERVICE AVAILABLE TO ACCOMMODATE THE EXISTING AND PROPOSED EQUIPMENT.

CONNIN

REVISED PER COMMENTS | KMF 12/17/ ISSUED FOR REVIEW KMF 1

KMF Dale: 11/7/12 ned: A.D Date: 11/7/12 cked: AGF Date: 11/7/12

294-036

piecl Tille

WEST HARTFORD (CROWN) CT03XC091

570 NEW PARK AEVNUE WEST HATRFORD, CT 06110

Drawing Scale AS NOTED

S

1/18/13

UTILITY SITE PLAN

E1

SERVICE ALERT 1-800-922-4455

THREE WORKING DAYS BEFORE YOU DIG

UNDERGROUND

NOTES:

CONTRACTOR TO USE EXISTING SPARE CONDUITS, IF AVAILABLE. CONDUIT SIZES MUST BE EQUAL TO OR GREATER THAN THAT ALLOWED

EXISTING ALARMS NEED TO BE RE-ROUTED AND VERIFIED IN PROPER WORKING CONDITION WHEN NEW MMBTS EQUIPMENT IS INSTALLED.

REMAINING GROUND LEADS FROM REMOVED CABINETS TO BE COILED (NOT ON WALKING SURFACE).

REMAINING UNUSED CONDUITS FROM EXISTING CABINETS TO BE COVERED WITH WATERPROOF CAPS (NOT DUCT TAPE).

GROUNDING NOTES:
IN ADDITION TO POWER SERVICE GROUNDING
AS REQUIRED BY NEC. CONTRACTOR SHALL
BE RESPONSIBLE TO COORD AND INSTALL ALL
SURGE AND LIGHTING PROTECTION GROUNDING
AS REQUIRED AND SPECIFIED BY SPRINT.

TRENCH UNDISTURBED SOIL COMPACTED BACKFILL

- SEPARATION DIMENSIONS MUST BE VERIFIED WITH LOCAL UTILITY CO. REQUIREMENTS. *HAND DIG INSIDE COMPOUND

CONDUITS FOR FIBER AND

ELECTRICAL SHARING WHERE APPLICABLE

LEGEND

TINNED COPPER GROUND BAR, 1/4"x4"x20", NEWTON INSTRUMENT CO., HARGER TGBI14420M, OR EQUIVALENT. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.

INSULATORS, NEWTON INSTRUMENT CO. CAT. NO. 3061-4 OR HARGER EQUIVALENT. 5/8" LOCKWASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8 OR EQUIVALENT.

WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT. NO. A-6056 OR HARGER EQUIVALENT.

5/8-11"x1" H.H.C.S. BOLTS, NEWTON INSTRUMENT CO. CAT. NO. 3012-1 OR HARGER EQUIVALENT.

ALL MOUNTING HARDWARE CAN ALSO BE USED ON 6", 12", 18", ETC. GROUND BARS.
ENTIRE ESSEMBLY AVAILABLE FROM NEWTON INSTRUMENT CO. CAT. NO. 2106060010

NOTE: ANTENNA BUSS BARS SHOULD BE INSTALLED DIRECTLY TO TOWER STEEL WITHOUT

INSULATORS OR DOWN CONDUCTORS.

- ALL HARDWARE 18—8 STAINLESS STEEL INCLUDING SPLIT WASHERS.
 COAT WIRE END WITH ANTI—OXIDATION COMPOUND PRIOR TO INSERTION. INTO LUG BARREL AND CRIMPING.
- 3) APPLY ANTI-OXIDATION COMPOUND BETWEEN ALL LUGS AND BUSS BARS PRIOR TO MATING AND BOLTING.

GROUND LUG

Design Build. Deliver NEW CASE Latham Latham

d: AGF Dele: 11/7/02

294-036

oleci Tille

WEST HARTFORD (CROWN) CT03XC091

570 NEW PARK AEVNUE WEST HATRFORD, CT 06110

Drawing Scale AS NOTED Date:

1/18/13 wing Title

DETAILS

E2

CONNECTION OF GROUND KIT TO ANTENNA CABLE

Design. Bulld. Deliver FINIGY 11 Herbert Drive Latham, NY 12110 Office # (518) 690-0790 Fax # (518) 690-0793 William CONVIN TO THIS DOCIDENT IS A VIOLATION OF PRICABLE STATE AND/OR LOCAL LA REVISED PER COMMENTS KM BSUED FOR REVIEW KMF 11/7/1 KWF Dale: 11/7/12 ed: AJD Dale: 11/7/12 cked: AGF Date: 11/7/12 294-036 **WEST HARTFORD** (CROWN) CT03XC091 570 NEW PARK AEVNUE WEST HATRFORD, CT 06110 Sprint **Drawing Scale** AS NOTED

PLAN AND DETAILS

GROUNDING

1/18/13

<u>NOTES:</u>
1. CONTRACTOR TO VERIFY EXISTING LUG SPACES

ARE AVAILABLE ON GROUND BAR. ADD ADDITIONAL

2. ANTENNA GROUNDING CONNECTIONS SHOWN ARE

NOT EXACT TO THIS SITE. FOR EXACT ANTENNA LAYOUT REFER TO ANTENNA CONFIGURATION SHEET.

BUS BAR IF NO LUG SPACES ARE AVAILABLE.

TYPICAL ANTENNA

GROUNDING PLAN

NOT TO SCALE

E3

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Sprint Existing Facility

Site ID: CT03XC091

West Hartford (Crown) 570 New Park Avenue West Hartford, CT 06110

December 13, 2012

December 13, 2012

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Emissions Values for Site: <u>CT03XC091 – West Hartford (Crown)</u>

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 570 New Park Avenue, West Hartford, CT, for the purpose of determining whether the emissions from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band is approximately 567 μ W/cm², and the general population exposure limit for the PCS band is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 570 New Park Avenue, West Hartford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario. Actual values seen from this site will be dramatically less than those shown in this report. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 7 CDMA Carriers (1900 MHz) were considered for each sector of the proposed installation.
- 2) 1 CDMA Carrier (850 MHz) was considered for each sector of the proposed installation
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
- 5) The antenna used in this modeling is the APXVSPP18-C-A20. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario.

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

- 6) The antenna mounting height centerline of the proposed antennas is 135 feet above ground level (AGL)
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

			CIDSACJEL - West Hartiord (Crown)	וות (כוסאוו)	SECURISH ASSESSMENT												
	Site Addresss	570 New Park Av	venue, West Ha.	New Park Avenue, West Hartford, CT, 06110													
	Site Type		Monopole														
		- 0					Sector 1	r.1									
Antenna	Antenna Number Antenna Make	A: tenna Model	Radio Tvne	Frequency Band	Tectinology	Power Out Per Channel	Number of Composite	Composite	Antenna Gain in direction of sample Antenna point (dBd) Height (ft)	Antenna Heioht (ft)	analysis height	Cable Gra	Cable Loss Additional	Additional	ä	Power Density	Power Density
1a	RFS	AP: VSPP18-C-A20	1.6	1900 MHz	CDN:A/LTE	1	7	140	15.9	135	129	1/2"	0.5		4854 3159	104 8708	4854 3159 104 8708 10 48708%
13		APXVSPP18-C-A20		850 MHz	CDN/A / LTE		1	20	13.4	135	129	1/2 "	0.5		389.96892 8.424741	8.424741	1.48584%
Canada Ca												Sector tota	I Power Der	Sector total Power Density Value:	11.973%		
							Sector 2	1.2									
						Power			Antenna Gain								
Antenna							Number of Composite		in direction of sample	Antenna analysis	analysis		Cable Loss Additional	Additional		Power Density	Power Density
Number A	Antenna Make	Antenna Model	æ	Frequency Band	Technology	٥	Channels	Power	d)	Height (ft)		Cable Size	(dB)	Loss	ERP	Value	Percentage
2a	RFS	AP;: VSPP18-C-A20	RRH	1900 MHz	CDN/A/LTE	70		140	15.9	135	129	1/2 "	6.5	0	4854.3159 104.8708	104.8708	10.48708%
2a	RFS	AP): VSPP18-C-A20	RRH	850 MHz	CDINA / LTE	20	1	20	13.4	135	129	1/2 "	0.5	0	389.96892 8.424741	8.424741	1.48584%
			Section Assessed	Control of the Contro			D. Sandardara			No. of the name of	BANK SECTION	Sector tota	Sector total Power Density Value:	nsity Value:	11.973%		
							Sector 3	-3									
						Power Out Per			Antenna Gain in direction							Power	Power
Antenna Number	Antenna Make		Radio Type	Frequency Band	Technology	Channel (Watts)	Number of Composite Channels Power	Composite	of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss Additional (dB) Loss	Additional	ERP	Density Value	Density Percentage
			122	1900 MHz	CDN:A / LTE	20	7	140	2.564	135	129	1/2"	6.0	0	4854.3159	104.8708	10.48708%
3a		AP): VSPP18-C-A20		850 MHz	CDN:A / LTE	20	1	20	13.4	135	129	1/2 "	0.5	0	389.96892 8.424741	8.424741	1.48584%
												Sector tota	Sector total Power Density Value:	ısity Value:	11.973%		

Site Comp	Site Composite MPE %
Carrier	MPE%
Sprint	35.919%
Sensus (CL&P)	0.840%
Verizon Wireless	16.670%
XM Satellite Radio	0.850%
Total Site MPE %	54.279%

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the Sprint facility are **35.919**% (**11.973**% **from each sector**) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **54.279**% of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government

Tel: (781) 273.2500

Fax: (781) 273.3311

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803

Date: October 22, 2012

Marianne Dunst **Crown Castle** 3530 Toringdon Way, Suite 300 Charlotte, NC 28277

2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject:

Structural Analysis Report

Carrier Designation:

Sprint PCS Co-Locate - Interim Load

Carrier Site Number: Carrier Site Name:

CT03XC091 CT03XC091

Crown Castle Designation:

Crown Castle BU Number:

806370

Crown Castle Site Name: **Crown Castle JDE Job Number:** HRT 099 943226 190486

Crown Castle Work Order Number:

540880

Crown Castle Application Number:

165440 Rev. 1

Engineering Firm Designation:

Crown Castle Project Number:

540880

Site Data:

570 NEW PARK AVENUE, WEST HARTFORD, Hartford County, CT

Latitude 41° 44' 10.5", Longitude -72° 43' 14.2"

150 Foot - Monopole Tower

Dear Marianne Dunst.

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 540880, in accordance with application 165440, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

The analysis has been performed in accordance with the TIA/EIA-222-F standard and local code requirements based upon a wind speed of 80 mph fastest mile.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at Crown Castle appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Respectfully submitted by:

Reza Jenabzadeh, P.E.
Engineer II

tnxTower Report - version 6.0.4.0

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

- Table 1 Proposed Antenna and Cable Information
- Table 2 Existing and Reserved Antenna and Cable Information
- Table 3 Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

- Table 4 Documents Provided
- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

- Table 5 Section Capacity (Summary)
- Table 6 Tower Components vs. Capacity
- 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 150 ft Monopole tower designed by Valmont in May of 1990. The tower was originally designed for a wind speed of 125 mph per EIA-222-D.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no ice, 28.1 mph with 1 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Angelenia Pographica Pographica	na Ringa (2) Talah	dijaraja Konstant Constant			Manda Manda Manda Manda Manda Manda Manda		11,
		3	alcatel lucent	800MHz 2X50W RRH W/FILTER			
137	137	6	alcatel lucent	PCS 1900MHz 4x45W- 65MHz			
		1	tower mounts	Side Arm Mount [SO 102- 3]	3	1-1/4	•
404	405	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe			
134	135	3	rfs celwave	IBC1900BB-1			
		3	rfs celwave	IBC1900HG-2A	1		

Table 2 - Existing and Reserved Antenna and Cable Information

			Amonia ana Gasia		1 ,1 ,1	1.	
		ega i ja				1 (1) (1) (1)	
		2	antel	BXA-171063-12BF w/ Mount Pipe			
	147	1	antel	BXA-171063-8BF-2 w/ Mount Pipe	6	1-1/4	2
146	3		antel	BXA-70063-6CF-EDIN-5 w/ Mount Pipe	0	1-1/4	2
		6	antel	LPA-80063/6CF w/ Mount Pipe			
	146	1	tower mounts	Platform Mount [LP 602-1]	12	1-1/4	1
124	134 137 134		allgon	7185.03 w/ Mount Pipe	6	1-5/8	1
134			tower mounts	Platform Mount [LP 602-1]			'
	122	1	antel	BCD-87010			
117	117	1	tower mounts	Side Arm Mount [SO 701- 1]	1	7/8	3

Notes:

- **Existing Equipment** 1)
- Reserved Equipment
- 2) 3) Abandoned Equipment; considered in this analysis

Table 3 - Design Antenna and Cable Information

			er e		and the second of the second o	
147	147	3	rfs celwave	PD10017	-	-
134	134	6	rfs celwave	PD1132	-	-

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Plant Service			
4-GEOTECHNICAL REPORTS	Tower Engineering Professionals	2308053	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Tower Engineering Professionals (Mapping)	2308022	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Valmont	260794	CCISITES

3.1) Analysis Method

tnxTower (version 6.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.
- 5) The existing base plate grout was not considered in this analysis.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

		等 医自自体压抑性病毒素		arianak Hanan	No.		30.000 50%	
L1	150 - 96.8333	Pole	TP39,21x26,19x0,3125	1	-10.02	1962,20	36.1	Pass
L2	96.8333 - 48	Pole	1P50.55x37.1973x0.4063	2	-20.88	3293.42	44.9	Pass
L3	48 - 0	Pole	TP61.5x48.0225x0.5	3	-40.24	5071.45	46.0	Pass
							Summary	
						Pole (L3)	46.0	Pass
				[Rating =	46.0	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

	neganjeni ing			
1	Anchor Rods	0	40.8	Pass
1	Base Plate	0	30.2	Pass
1	Base Foundation Soil Interaction	0	69.9	Pass

ika da karangan kalangan kan kan kan kan kan kan kan kan kan k	Landing to the second s	
Market franklik franklik franklik fransk fra de ste fil sekte ein franklik franklik franklik franklik franklik		4.00

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the existing, reserved, and proposed loads. No modifications are required at this time.

See additional documentation in "Appendix C -- Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

3	55' 546" 532-132"	12	0.5000 0.3126	7. \$8-1/32"	48,0225 37,1973 26,1900	61,5000 50,5500 39,2100	A572-65	16.3 5.9
Section	Length (ft)	Number of Sides	Thickness (in)	Socket Length (ft)	Top Dia (in)	Bot Dia (in)	Grade	Weight (K) 32.8

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
(2) LPA-80063/6CF w/ Mount Pipe	146	(2) 6' x 2" Mount Pipe	137	
BXA-70063-6CF-EDIN-5 w/ Mount	146	(2) 6' x 2" Mount Pipe	137	
Pipe		(2) 6' x 2" Mount Pipe	137	
BXA-171063-8BF-2 w/ Mount Pipe	146	Side Arm Mount [SO 102-3]	137	
(2) LPA-80063/6CF w/ Mount Pipe	146	(2) 7185.03 w/ Mount Pipe	134	
BXA-70063-6CF-EDIN-5 w/ Mount	146	(2) 7185.03 w/ Mount Pipe	134	
Pipe		(2) 7185.03 w/ Mount Pipe	134	
BXA-171063-12BF w/ Mount Pipe	146	APXVSPP18-C-A20 w/ Mount Pipe	134	
(2) LPA-80063/6CF w/ Mount Pipe	146	IBC1900BB-1	134	
BXA-70063-6CF-EDIN-5 w/ Mount Pipe	146	IBC1900HG-2A	134	
	110	APXVSPP18-C-A20 w/ Mount Pipe	134	
BXA-171063-12BF w/ Mount Pipe	146	IBC1900HG-2A	134	
Platform Mount [LP 602-1]	146	IBC1900BB-1	134	
800MHz 2X50W RRH W/FILTER	137	APXVSPP18-C-A20 w/ Mount Pipe	134	
(2) PCS 1900MHz 4x45W-65MHz	137	IBC1900BB-1	134	
800MHz 2X50W RRH W/FILTER	137			
(2) PCS 1900MHz 4x45W-65MHz	137	IBC1900HG-2A	134	
800MHz 2X50W RRH W/FILTER	137	Platform Mount [LP 602-1]	134	
(2) PCS 1900MHz 4x45W-65MHz	137	BCD-87010	117	
(-) : : : : : : : : : : : : : : : : :	1,5,	Side Arm Mount [SO 701-1]	117	

MATERIAL STRENGTH

				•		
	GRADE	Fy	Fu	GRADE	Fy	Fu
ĺ	A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- wer is located in Hartford County, Connecticut.
 wer designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 wer is also designed for a 28 mph basic wind with 1.00 in ice. Ice is considered to increase
 thickness with height.
- offlections are based upon a 50 mph wind.

 OWER RATING: 46%

ower input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

- Tower is located in Hartford County, Connecticut.
- 5) Basic wind speed of 80 mph.
- Nominal ice thickness of 1.0000 in. 6)
- 7) Ice thickness is considered to increase with height.
- 8) Ice density of 56 pcf.
- A wind speed of 28 mph is used in combination with ice. 9)
- Temperature drop of 50 °F. 10)
- Deflections calculated using a wind speed of 50 mph. 11)
- A non-linear (P-delta) analysis was used. 12)
- 13) Pressures are calculated at each section.
- 14) Stress ratio used in pole design is 1.333.
- Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are 15) not considered.

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- - Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component Triangulate Diamond Inner Bracing

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- Consider Feedline Torque Include Angle Block Shear Check
- Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	150'-96'9- 31/32"	53'2-1/32"	5'8-1/32"	12	26.1900	39.2100	0.3125	1.2500	A572-65 (65 ksi)
L2	96'9-31/32"-48'	54'6"	7'	12	37.1973	50.5500	0.4063	1.6250	À572-65 (65 ksi)
L3	48'-0'	55'		12	48.0225	61.5000	0.5000	2.0000	À572-65 (65 ksi)

rapered Pole Properties

Section	Tip Dia. in	Area in²	l in⁴	r in	C in	I/C in³	J in⁴	It/Q in²	w in	w/t
L1	27.1139	26.0392	2225.6599	9.2641	13.5664	164.0565	4509.7903	12.8157	6.1814	19.781
	40.5932	39.1406	7558.8706	13.9253	20.3108	372.1605	15316.321	19.2638	9.6708	30.946

Section	Tip Dia.	Area	I,	r	Ċ	I/C	J	<i>lt</i> ∕Q	W	w/t
	in	in²	in⁴	in	in	in	in⁴	in²	in	
L2	39.9468	48.1273	8314.9824	13.1712	19.2682	431.5392	16848.408 6	23.6868	8.8801	21.859
	52.3332	65.5943	21051.625 0	17.9515	26.1849	803.9605	42656.299 6	32.2835	12.4587	30.667
L3	51.4924	76.5112	22055.094 3	17.0130	24.8756	886.6141	44689.600 5	37.6565	11.5300	23.06
	63.6695	98.2100	46644.595 5	21.8380	31.8570	1464.1867	94514.596 5	48.3360	15.1420	30.284

Tower Elevation ft	Gusset Area (per face) ft²	Gusset Thickness in	Gusset Grade Adjust. Factor A _t	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
L1 150'-96'9-			1	1	1		
31/32"							
L2 96'9-			1	1	1		
31/32"- 4 8'							
L3 48'-0'			1	1	1		

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		••	ft			ft²/ft	plf

LDF6-50A(1-1/4")	С	No	Inside Pole	146' - 0'	12	No Ice	0.00	0.66
						1/2" lce	0.00	0.66
						1" Ice	0.00	0.66
						2" Ice	0.00	0.66
						4" Ice	0.00	0.66
LDF6-50A(1-1/4")	С	No	Inside Pole	146' - 0'	6	No Ice	0.00	0.66
						1/2" lce	0.00	0.66
						1" Ice	0.00	0.66
						2" Ice	0.00	0.66
						4" Ice	0.00	0.66
***				40.41 01	•			
LDF7-50A(1-5/8")	Α	No	Inside Pole	134' - 0'	6	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" ice	0.00	0.82
ID444 4 00114 NE 1/4			1 21 5 1	4041 01	•	4" Ice	0.00	0.82
HB114-1-08U4-M5J(1	Α	No	Inside Pole	134' - 0'	3	No Ice	0.00	1.08
1/4")						1/2" Ice	0.00	1.08
						1" Ice	0.00	1.08
						2" Ice	0.00	1.08
***						4" Ice	0.00	1.08
LDF5-50A(7/8")	Α	No	Inside Pole	117' - 0'	1	No Ice	0.00	0.33
	• •			•	·	1/2" Ice	0.00	0.33
						1" Ice	0.00	0.33
						2" Ice	0.00	0.33
						4" lce	0.00	0.33

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_{F}	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft²	ft²	ft ²	ft ²	K
L1	150'-96'9-31/32"	A	0.000	0.000	0.000	0.000	0.31
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.58
L2	96'9-31/32"-48'	Α	0.000	0.000	0.000	0.000	0.41

tnxTower Report - version 6.0.4.0

Tower Sectio	Tower Elevation	Face	A_R	A_{F}	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft²	ft²	ft ²	ft ²	Κ
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.58
L3	48'-0'	Α	0.000	0.000	0.000	0.000	0.41
		В	0.000	0.000	0.000	0.000	0.00
		Ċ	0.000	0.000	0.000	0.000	0.57

and the state of t

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	fť²	K
L1	150'-96'9-31/32"	A	1.170	0.000	0.000	0.000	0.000	0.31
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.58
L2	96'9-31/32"-48'	Α	1.098	0.000	0.000	0.000	0.000	0.41
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.58
L3	48'-0'	Α	1.000	0.000	0.000	0.000	0.000	0.41
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.57

skiedilijne/Conekolkkiessurc

Section	Elevation	CP _x	CPz	CP _× Ice	CP _z Ice
	ft	in	in	in	in
L1	150'-96'9-31/32"	0.0000	0.0000	0,0000	0.0000
L2	96'9-31/32"- 4 8'	0.0000	0.0000	0.0000	0.0000
L3	48'-0'	0.0000	0.0000	0.0000	0.0000

[1] The state of t	在《大学》,一个大学,大学,大学的,一个大学,大学的大学的大学的大学的大学,在大学的大学,并不是一个大学,这个大学,这个大学,这个大学,这个大学,这个大学,这个
Monthean and the contract of t	ANY THE DESCRIPTION OF THE PROPERTY AND ASSOCIATION OF THE PROPERTY AND ASSOCIATION OF THE PROPERTY OF THE PRO

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			Vert ft ft ft	•	ft		ft²	ft²	κ
***									-
(2) LPA-80063/6CF w/ Mount Pipe	Α	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice	10.58 11.24 11.87 13.16	10.67 11.93 12.91 14.92	0.05 0.14 0.24 0.48
						2" Ice 4" Ice	15.87	19.16	1.09
BXA-70063-6CF-EDIN-5 w/ Mount Pipe	Α	From Leg	4. 00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	7.97 8.61 9.22 10.46 13.07	5.80 6.95 7.82 9.60 13.37	0.04 0.10 0.17 0.34 0.80
BXA-171063-8BF-2 w/ Mount Pipe	Α	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice	3.18 3.56 3.96 4.85 6.77	3.35 3.97 4.60 5.89 8.69	0.03 0.06 0.10 0.19 0.49

									•
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Sid e	Weight
	_		Vert ft ft ft	۰	ft		ft²	ft²	κ
		**				4" Ice			
(2) LPA-80063/6CF w/	В	From Leg	4.00	0.0000	146'	No Ice	10.58	10.67	0.05
Mount Pipe			0' 1'			1/2" Ice	11.24 11.87	11.93 12.91	0.14 0.24
			'			1" Ice	13.16	14.92	0.48
						2" Ice 4" Ice	15.87	19.16	1.09
BXA-70063-6CF-EDIN-5	В	From Leg	4.00	0.0000	146'	No Ice	7.97	5.80	0.04
w/ Mount Pipe	_		0'			1/2"	8.61	6.95	0.10
			1'			Ice	9.22	7.82	0.17
						1" Ice 2" Ice	10.46 13.07	9.60 13.37	0.34 0.80
						4" Ice	10.07	10.07	0.00
BXA-171063-12BF w/	В	From Leg	4.00	0.0000	146'	No Ice	4.97	5.23	0.04
Mount Pipe			0'			1/2"	5.52	6.39	0.08
			1'			lce 1" lce	6.04 7.09	7.26 9.05	0.14 0.27
						2" ice	9.36	12.82	0.27
						4" Ice	0.00	12.32	
(2) LPA-80063/6CF w/	С	From Leg	4.00	0.0000	146'	No Ice	10.58	10.67	0.05
Mount Pipe			0'			1/2"	11.24	11.93	0.14
			1'			Ice 1" Ice	11.87 13.16	12.91 14.92	0.24 0.48
						2" Ice	15.87	19.16	1.09
						4" Ice			
BXA-70063-6CF-EDIN-5	С	From Leg	4.00	0.0000	146'	No Ice	7.97	5.80	0.04
w/ Mount Pipe			0'			1/2"	8.61	6.95	0.10
			1'			Ice 1" Ice	9.22 10.46	7.82 9.60	0.17 0.34
						2" lce	13.07	13.37	0.80
						4" Ice			
BXA-171063-12BF w/	С	From Leg	4.00	0.0000	146'	No Ice	4.97	5.23	0.04
Mount Pipe			0' 1'			1/2" Ice	5.52 6.04	6.39 7.26	0.08 0.14
			'			1" Ice	7.09	9.05	0.17
						2" Ice 4" Ice	9.36	12.82	0.67
*						4 100			
Platform Mount [LP 602-1]	С	None		0.0000	146'	No Ice	32.03	32.03	1.34
						1/2" Ice	38.71 45.39	38.71 45.39	1.80 2.26
						1" Ice	45.39 58.75	58.75	3.17
						2" Ice	85.47	85.47	5.00
***						4" Ice			
800MHz 2X50W RRH	Α	From Leg	1.00	0.0000	137'	No Ice	2.40	2.25	0.06
W/FILTER		J	0'			1/2"	2.61	2.46	0.09
			0'			lce	2.83	2.68	0.11
						1" lce 2" lce	3.30 4.34	3.13 4.15	0.17 0.34
						4" Ice	4.34	4.10	0.34
(2) PCS 1900MHz 4x45W-	Α	From Leg	1.00	0.0000	137'	No Ice	2.71	2.61	0.06
65MHz			0'			1/2"	2.95	2.85	0.08
			0'			lce 1" lce	3.20 3.72	3.09 3.61	0.11 0.17
						2" ice	3.72 4.86	3.01 4.74	0.17
						4" lce			5.00
800MHz 2X50W RRH	В	From Leg	1.00	0.0000	137'	No Ice	2.40	2.25	0.06
WIFILTER			0'			1/2"	2.61	2.46	0.09
			0'			ice 1" ice	2.83 3.30	2.68 3.13	0.11 0.17
						2" Ice	3.30 4.34	3.13 4.15	0.17
						4" Ice			2.0.
(2) PCS 1900MHz 4x45W-	В	From Leg	1.00	0.0000	137'	No Ice	2.71	2.61	90.0
65MHz			Ŋ'			1/2"	2.95	2.85	0.08

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft²	ft²	κ
			0'			Ice	3.20	3.09	0.11
						1" Ice 2" Ice	3.72 4.86	3.61 4.74	0.17 0.35
800MHz 2X50W RRH	С	From Leg	1.00	0.0000	137'	4" Ice No Ice	2.40	2.25	0.06
WFILTER	•	<u>Log</u>	0'	0.0000	101	1/2"	2.61	2.46	0.09
			0,			Ice	2.83	2.68	0.11
						1" Ice	3.30	3.13	0.17
(0) =00 (000 11)	_					2" Ice 4" Ice	4.34	4.15	0.34
(2) PCS 1900MHz 4x45W-	С	From Leg	1.00	0.0000	137'	No Ice	2.71	2.61	0.06
65MHz			0'			1/2"	2.95 3.20	2.85	0.08
			U			Ice 1" Ice	3.72	3.09 3.61	0.11 0.17
						2" Ice	4.86	4.74	0.35
						4" Ice			5.55
(2) 6' x 2" Mount Pipe	Α	From Leg	1.00	0.0000	137'	No Ice	1.43	1.43	0.02
			0'			1/2"	1.92	1.92	0.03
			0'			Ice	2.29	2.29	0.05
						1" Ice 2" Ice	3.06 4.70	3.06 4.70	0.09 0.23
						4" Ice	4.70	4.70	0.23
(2) 6' x 2" Mount Pipe	В	From Leg	1.00	0.0000	137'	No Ice	1.43	1.43	0.02
•		J	0'			1/2"	1.92	1.92	0.03
			0'			Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
						2" Ice 4" Ice	4.70	4.70	0.23
(2) 6' x 2" Mount Pipe	С	From Leg	1.00	0.0000	137'	No Ice	1.43	1.43	0.02
			0'			1/2"	1.92	1.92	0.03
			0'			Ice	2.29	2.29	0.05
						1" Ice 2" Ice	3.06	3.06	0.09
						4" Ice	4.70	4.70	0.23
Side Arm Mount [SO 102-	С	None		0.0000	137'	No Ice	3.00	3.00	0.08
3]				0.000		1/2"	3.48	3.48	0.11
						Ice	3.96	3.96	0.14
						1" Ice	4.92	4.92	0.20
						2" ice 4" ice	6.84	6.84	0.32
*** (2) 7185.03 w/ Mount Pipe	Α	From Leg	4.00	0.0000	134'	No Ice	4.21	1.86	0.03
(2) / 100.00 W Wodin 1 ipo	,,	r roin Log	0'	0.0000	104	1/2"	4.59	2.36	0.05
			3'			lce	4.99	2.87	0.09
						1" lce	5.82	3.95	0.17
						2" lce	7.64	6.48	0.44
(2) 7195 02 w/ Mount Dina	В	C	4.00	0.0000	4041	4" Ice	4.04	4.00	0.00
(2) 7185.03 w/ Mount Pipe	В	From Leg	4.00 0'	0.0000	134'	No Ice 1/2"	4.21 4.59	1.86	0.03
			3'			lce	4.99	2.36 2.87	0.05 0.09
			·			1" Ice	5.82	3.95	0.03
						2" Ice	7.64	6.48	0.44
(0) 7405.00	_		,			4" Ice			
(2) 7185.03 w/ Mount Pipe	С	From Leg	4.00	0.0000	134'	No Ice	4.21	1.86	0.03
			3. 0.			1/2"	4.59 4.66	2.36	0.05
			3			ice 1" Ice	4.99 5.82	2.87 3.95	0.09 0.17
						2" Ice	7.64	6.48	0.17
*						4" Ice		3.40	0.11
APXVSPP18-C-A20 w/	Α	From Leg	4.00	0.0000	134'	No Ice	8.50	6.95	0.08
Mount Pipe		=	0'			1/2"	9.15	8.13	0.15
			1'			ice	9.77	9.02	0.22
						1" Ice	11.03	10.84	0.41
						2" Ice	13.68	14.85	0.91

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			Vert ft ft ft	•	ft		ft²	fť²	K
IBC1900BB-1	Α	From Leg	4.00 0' 1'	0.0000	134'	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.69	0.02 0.03 0.04 0.06 0.15
IBC1900HG-2A	Α	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.69	0.02 0.03 0.04 0.06 0.15
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	8.50 9.15 9.77 11.03 13.68	6.95 8.13 9.02 10.84 14.85	0.08 0.15 0.22 0.41 0.91
IBC1900HG-2A	В	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.69	0.02 0.03 0.04 0.06 0.15
IBC1900BB-1	В	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.69	0.02 0.03 0.04 0.06 0.15
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	8.50 9.15 9.77 11.03 13.68	6.95 8.13 9.02 10.84 14.85	0.08 0.15 0.22 0.41 0.91
IBC1900BB-1	С	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.69	0.02 0.03 0.04 0.06 0.15
IBC1900HG-2A	С	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.69	0.02 0.03 0.04 0.06 0.15
Platform Mount [LP 602-1]	С	None		0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	32.03 38.71 45.39 58.75 65.47	32.03 38.71 45.39 58.75 65.47	1.34 1.80 2.26 3.17 5.00
*** BCD-87010	Α	From Leg	4.00 0' 5'	0.0000	117'	No Ice 1/2" Ice 1" Ice 2" Ice	2.90 4.05 5.21 7.01 9.85	2.90 4.05 5.21 7.01 9.85	0.03 0.05 0.08 0.16 0.41
Side Arm Mount [SO 701-1]	Α	From Leg	2.00 0'	0.0000	117'	4" Ice No Ice 1/2"	0.85 1 14	1.67 2.34	0.07 0.08

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C_AA_A Front	C₄A₄ Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	κ
***			0'			Ice 1" Ice 2" Ice 4" Ice	1.43 2.01 3.17	3.01 4.35 7.03	0.09 0.12 0.18

Load Combinations

Comb.	b. Description	
No.		
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10		
11		
12		
13		
14		
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+Ice+Temp	
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+lce+Temp	
19		
20	Dead+Wind 150 deg+Ice+Temp	
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37	· · · · · · · · · · · · · · · · · · ·	
38	Dead+Wind 330 deg - Service	

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
L1	150 - 96 8333	Pole	Max Tension	15	0.00	0.00	-0.00

	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
iì	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Compression	14	-19.39	0.00	0.58
			Max. Mx	5	-10.02	-532.41	0.33
			Max. My	2	-10.03	0.00	532.42
			Max. Vy	5	15.98	-532.41	0.33
			Max. Vx	2	-15.95	0.00	532.42
			Max. Torque	11			-0.45
L2	96.8333 - 48	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-33.35	0.00	0.58
			Max. Mx	5	-20.88	-1437.70	0.34
			Max. My	2	-20.88	0.00	1436.32
			Max. Vy	5	22.17	-1437.70	0.34
			Max. Vx	2	-22.14	0.00	1436.32
			Max. Torque	11			-0.45
L3	48 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-56.70	0.00	0.58
			Max. Mx	5	-40.24	-2850.22	0.34
			Max. My	2	-40.24	0.00	2847.22
			Max. Vy	5	29.22	-2850.22	0.34
			Max. Vx	2	-29.19	0.00	2847.22
			Max. Torque	11			-0.45

	4	12	1	22	89	12	١v	1	30	3.	4	. 51	4	×			23						á,	38.			- 1		٧.	· 44.	£y:	10		5.	۲.,	.39	٠.	1	. ,		. 4	i.*.	. ()	12.			S			: 4		93	9
ş,	-	я	æ	1	81	Г			a i	m	n	mi:		ъ.	ø	- 6	21	n	٠	2	۰	1	h	¢	١,	٦,		٠i,	A:	A	٠.	97	٧.		. 1	ات.	ķn)	٠.3	5 7	100	υŝ	÷.		60	ý.	16	1.	100	di.		٠.		
v		Ш	C.	7.	A.	Já		J.	ч	л.	и.		п		œ	L٠	45	и	Ų.	Э.	v	и	٠	-2	γ.		 15.		ň,	ir	٠.,		1		Š.				4	v					٠.		84	 	1		1	35	

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, 2 K
Pole	Max. Vert	14	56.70	0.00	0.00
	Max. H _x	11	40.25	29.20	0.00
	Max. H _z	2	40.25	0.00	29.17
	Max. M _x	2	2847.22	0.00	29.17
	Max. M _z	5	2850.22	-29.20	0.00
	Max. Torsion	5	0.45	-29.20	0.00
	Min. Vert	1	40.25	0.00	0.00
	Min. H _x	5	40.25	-29.20	0.00
	Min. H _z	8	40.25	0.00	-29.17
	Min. M _x	8	-2846.53	0.00	-29.17
	Min. M _z	11	-2850.22	29.20	0.00
	Min. Torsion	11	-0.45	29.20	0.00

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
Combination	κ	κ	κ	kip-ft	kip-ft	kip-ft
Dead Only	40.25	0.00	0.00	-0.33	0.00	0.00
Dead+Wind 0 deg - No Ice	40.25	0.00	-29.17	-2847.22	0.00	0.00
Dead+Wind 30 deg - No Ice	40.25	14.60	-25.27	-2465.81	-1425.11	-0.23
Dead+Wind 60 deg - No Ice	40.25	25.29	-14.59	-1423.78	-2468.36	-0.39
Dead+Wind 90 deg - No Ice	40.25	29.20	0.00	-0.34	-2850.22	-0.45
Dead+Wind 120 deg - No Ice	40.25	25.29	14.59	1423.09	-2468.36	-0.39
Dead+Wind 150 dog No Ice	10.25	14.60	25.27	2465.12	-1425.11	0.23
Dead+Wind 180 deg - No Ice	40.25	0.00	29.17	2846.53	0.00	0.00
Dead+Wind 210 deg - No ice	40.25	-14.60	25.27	2465.12	1425.11	0.23
Dead+Wind 240 deg - No Ice	40.25	-25.29	14.59	1423.09	2468.36	0.39
Dead+Wind 270 deg - No Ice	40.25	-29.20	0.00	-0.34	2850.22	0.45
Dead+Wind 300 deg - No Ice	40.25	-25.29	-14.59	-1423.78	2468.36	0.39
Dead+Wind 330 deg - No Ice	40.25	-14.60	-25.27	-2465.81	1 4 25.11	0.23
Dead+lce+Temp	56.70	0.00	0.00	-0.58	0.00	0.00
Dead+Wind 0	56.70	0.00	-4.16	-429.67	0.00	0.00
deg+lce+Temp						
Dead+Wind 30	56.70	2.08	-3.61	-372.19	-214.77	-0.06

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overtuming Moment, M₂	Torque
Combination	κ	κ	κ	kip-ft	kip-ft	kip-ft
deg+lce+Temp						
Dead+Wind 60	56.70	3.61	-2.08	-215.14	-372.00	-0.11
deg+lce+Temp						
Dead+Wind 90	56.70	4.17	-0.00	-0.61	-429.55	-0.13
deg+lce+Temp						
Dead+Wind 120	56.70	3.61	2.08	213.92	-372.00	-0.11
deg+lce+Temp						
Dead+Wind 150	56.70	2.08	3.61	370.97	-214.77	-0.06
deg+lce+Temp						
Dead+Wind 180	56.70	0.00	4.16	428.46	0.00	0.00
deg+lce+Temp						
Dead+Wind 210	56.70	-2.08	3.61	370.97	214.77	0.06
deg+lce+Temp						
Dead+Wind 240	56.70	-3.61	2.08	213.92	372.00	0.11
deg+lce+Temp						
Dead+Wind 270	56.70	-4.17	-0.00	-0.61	42 9.55	0.13
deg+lce+Temp	F0 F0	0.04		04844	070.00	0.44
Dead+Wind 300	56.70	-3.61	-2.08	-215.14	372.00	0.11
deg+lce+Temp	FO 70	0.00	0.04	070.40	044.77	0.00
Dead+Wind 330	56.70	-2.08	-3.61	-372.19	214.77	0.06
deg+lce+Temp	40.25	0.00	-11.40	-1112.65	0.00	0.00
Dead+Wind 0 deg - Service						
Dead+Wind 30 deg - Service	40.25 40.25	5.70 9.88	-9.87 -5.70	-963.63 -556.50	-556.81 -964.42	-0.09 -0.15
Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service	40.25 40.25	9.00 11.41	-5.70 0.00	-0.34	-904.42 -1113.61	-0.15 -0.18
Dead+Wind 120 deg - Service	40.25	9.88	5.70	-0.3 4 555.81	-1113.01 -964.42	-0.16 -0.15
Service	40.25	9.00	5.70	333.61	-904.42	-0.15
Dead+Wind 150 deg -	40.25	5.70	9.87	962.94	-556.81	-0.09
Service	70.23	5.70	3.07	302.34	-000.01	-0.03
Dead+Wind 180 deg -	40.25	0.00	11.40	1111.97	0.00	0.00
Service	70.20	0.00	11.40	1111.01	0.00	0.00
Dead+Wind 210 deg -	40.25	-5.70	9.87	962.94	556.81	0.09
Service	40.20	0.70	0.07	002.04	000.01	0.00
Dead+Wind 240 deg -	40.25	-9.88	5.70	555.81	964.42	0.15
Service	.0.20	0.00	00	000.01		00
Dead+Wind 270 deg -	40.25	-11.41	0.00	-0.34	1113.61	0.18
Service			2.00	5.01		21.0
Dead+Wind 300 deg -	40.25	-9.88	-5.70	-556.50	964.42	0.15
Service		· · · ·				
Dead+Wind 330 deg -	40.25	-5.70	-9.87	-963.63	556.81	0.09
Service						

Solution Summary

	Sun	n of Applied Force	s		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-40.25	0.00	0.00	40.25	0.00	0.000%
2	0.00	-40.25	-29.17	0.00	40.25	29.17	0.000%
3	14.60	-40.25	-25.27	-14.60	40.25	25.27	0.000%
4	25.29	-40.25	-14.59	-25.29	40.25	14.59	0.000%
5	29.20	-40.25	0.00	-29.20	40.25	0.00	0.000%
6	25.29	-40.25	14.59	-25.29	40.25	-14.59	0.000%
7	14.60	-40.25	25.27	-14.60	40.25	-25.27	0.000%
8	0.00	-40.25	29.17	0.00	40.25	-29.17	0.000%
9	-14.60	-40.25	25.27	14.60	40.25	-25.27	0.000%
10	-25.29	-40.25	14.59	25.29	40.25	-14.59	0.000%
11	-29.20	-40.25	0.00	29.20	40.25	0.00	0.000%
12	-25.29	-40.25	-14.59	25.29	40.25	14.59	0.000%
13	-14.60	-40.25	-25.27	14.60	40.25	25.27	0.000%
14	0.00	-56.70	0.00	0.00	56.70	0.00	0.000%
15	0.00	-56.70	-4 .16	0.00	56.70	4.16	0.000%
16	2.08	-56.70	-3.61	-2.08	56.70	3.61	0.000%
17	3.61	-56.70	-2.08	-3.61	56.70	2.08	0.000%
18	4.17	-56.70	0.00	-4.17	56.70	0.00	0.000%
19	3,61	-56.70	2.08	-3.61	56.70	-2.08	0.000%

tnxTower Report - version 6.0.4.0

	Sur	n of Applied Force	es		Sum of Reactio	ns	<u></u>
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
20	2.08	-56.70	3.61	-2.08	56.70	-3.61	0.000%
21	0.00	-56.70	4.16	0.00	56.70	-4.16	0.000%
22	-2.08	-56.70	3.61	2.08	56.70	-3.61	0.000%
23	-3.61	-56.70	2.08	3.61	56.70	-2.08	0.000%
24	-4.17	-56.70	0.00	4.17	56.70	0.00	0.000%
25	-3.61	-56.70	-2.08	3.61	56.70	2.08	0.000%
26	-2.08	-56.70	-3.61	2.08	56.70	3.61	0.000%
27	0.00	-40.25	-11.40	0.00	40.25	11.40	0.000%
28	5.70	-40.25	-9.87	-5.70	40.25	9.87	0.000%
29	9.88	-40.25	-5.70	-9.88	40.25	5.70	0.000%
30	11.41	-40.25	0.00	-11.41	40.25	0.00	0.000%
31	9.88	-40.25	5.70	-9.88	40.25	-5.70	0.000%
32	5.70	-40.25	9.87	-5.70	40.25	-9.87	0.000%
33	0.00	-40.25	11.40	0.00	40.25	-11.40	0.000%
34	-5.70	-40.25	9.87	5.70	40.25	-9.87	0.000%
35	-9.88	-40.25	5.70	9.88	40.25	-5.70	0.000%
36	-11.41	-40.25	0.00	11.41	40.25	0.00	0.000%
37	-9.88	-40.25	-5.70	9.88	40.25	5.70	0.000%
38	-5.70	-40.25	-9.87	5.70	40.25	9.87	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2 3	Yes	4	0.0000001	0.00000908
3	Yes	4	0.0000001	0.00037865
4	Yes	4	0.0000001	0.00038625
5	Yes	4	0.0000001	0.00001470
6	Yes	4	0.0000001	0.00037635
7	Yes	4	0.0000001	0.00038372
8	Yes	4	0.0000001	0.00000907
9	Yes	4	0.0000001	0.00038372
10	Yes	4	0.0000001	0.00037635
11	Yes	4	0.0000001	0.00001470
12	Yes	4	0.0000001	0.00038625
13	Yes	4	0.0000001	0.00037865
14	Yes	4	0.0000001	0.0000001
15	Yes	4	0.0000001	0.00017878
1€	Yes	4	0.0000001	0.00018179
17	Yes	4	0.0000001	0.00018171
18	Yes	4	0.0000001	0.00017842
19	Yes	4	0.0000001	0.00018114
20	Yes	4	0.0000001	0.00018093
21	Yes	4	0.0000001	0.00017780
22	Yes	4	0.0000001	0.00018093
23	Yes	4	0.0000001	0.00018114
24	Yes	4	0.0000001	0.00017842
25	Yes	4	0.0000001	0.00018171
26	Yes	4	0.0000001	0.00018179
27	Yes	4	0.00000001	0.00000461
28	Yes	4	0.0000001	0.00003306
29	Yes	4	0.0000001	0.00003449
30	Yes	4	0.0000001	0.00000518
31	Yes	4	0.0000001	0.00003264
32	Yes	4	0.00000001	0.00003399
33	Yes	4	0.0000001	0.00000460
34	Yes	4	0.0000001	0.00003399
35	Yes	4	0.00000001	0.00003264
36	Yes	4	0.0000001	0.00000518
37	Yes	4	0.0000001	0.00003449
38	Yes	4	0.00000001	0.00003306
<u> </u>				

estantini

	1)																						

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	•
L1	150 - 96.8333	16.518	37	0.9515	0.0000
L2	102.5 - 48	7.772	30	0.7288	0.0003
L3	55 - 0	2.199	30	0.3655	0.0001

Critical Deflections and Radius of Gurvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	0	ft
146'	(2) LPA-80063/6CF w/ Mount Pipe	37	15.730	0.9361	0.0001	69577
137'	800MHz 2X50W RRH W/FILTER	37	13.968	0.9007	0.0001	26760
134'	(2) 7185.03 w/ Mount Pipe	37	13.388	0.8885	0.0002	21743
117'	BCD-87010	30	10.220	0.8112	0.0003	10541

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	•
L1	150 - 96.8333	42.261	5	2.4343	0.0001
L2	102.5 - 48	19.888	5	1.8648	0.0008
L3	55 - 0	5.627	5	0.9355	0.0003

Critical Deflections and Radius of Ourvature - Design Wind

Elevation #	Appurtenance	Gov. Load Comb.	Deflection in	Tilt •	Twist 。	Radius of Curvature
146'	(2) LPA-80063/6CF w/ Mount Pipe	5	40.245	2.3950	0.0002	27293
137'	800MHz 2X50W RRH W/FILTER	5	35.739	2.3045	0.0004	10497
134' 117'	(2) 7185.03 w/ Mount Pipe BCD-87010	5 5	34.255 26.152	2.2732 2.0757	0.0004 0.0007	8528 4133

Compression Checks

Pole Design Data

Section	Elevation	Size	L	Lu	KI/r	Fə	Α	Actual	Allow.	Ratio
No.	ft		ft	ft		ksi	in²	K	P₃ K	$\frac{P}{P_2}$
L1	150 - 96.8333	TP39.21x26.19x0.3125	53'2-	0'	0.0	39.000	37.7442	-10.02	1472.02	0.007
L2	96.8333 - 48 (2)	TP50.55x37.1973x0.4063	1/32" 54'6"	0'	0.0	39.000	63.3508	-20.88	2470.68	0.008

Section No.	Elevation	Size	L	Lu	KI/r	Fa	Α	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in ²	K	K	$\overline{P_a}$
L3	48 - 0 (3)	TP61.5x48.0225x0.5	55'	0'	0.0	38.739	98.2100	-40.24	3804.54	0.011

	Pole Bending Design Data									
Section No.	Elevation ft	Size	Actual M _x kip-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	Ratio f _{bx}	Actual M _y kip-ft	Actual f _{by} ksi	Allow. F _{by} ksi	Ratio f _{by} F _{by}
L1	150 - 96.8333 (1)	TP39.21x26.19x0.3125	532.49	18.469	39.000	0.474	0.00	0.000	39.000	0.000
L2	96.8333 - 48 (2)	TP50.55x37.1973x0.4063	1437.7 0	23.013	39.000	0.590	0.00	0.000	39.000	0.000
L3	48 - 0 (3)	TP61.5x48.0225x0.5	2850.2 2	23.359	38.739	0.603	0.00	0.000	38.739	0.000

Pole Shear Design Data										
Section No.	Elevation ft	Size	Actual V K	Actual f _v ksi	Allow. F _v ksi	Ratio f _v	Actual T kip-ft	Actual f _{vt} ksi	Allow. F _{vt} ksi	Ratio f _{vt}
L1	150 - 96.8333 (1)	TP39.21x26.19x0.3125	15.97	0.423	26.000	0.033	0.39	0.006	26.000	0.000
L2	96.8333 - 48 (2)	TP50.55x37.1973x0.4063	22.17	0.350	26.000	0.027	0.45	0.003	26.000	0.000
L3	48 - 0 (3)	TP61.5x48.0225x0.5	29.22	0.298	26.000	0.023	0.45	0.002	26.000	0.000

	Pole Interaction Design Data								
Section No.	Elevation ft	Ratio P P _a	Ratio f _{bx}	Ratio f _{by}	Ratio f _v	Ratio f _{vt}	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	150 - 96.8333 (1)	0.007	0.474	0.000	0.033	0.000	0.481	1.333	H1-3+VT 🗸
L2	96.8333 - 48 (2)	0.008	0.590	0.000	0.027	0.000	0.599	1.333	H1-3+VT ✔
L3	48 - 0 (3)	0.011	0.603	0.000	0.023	0.000	0.614	1.333	H1-3+VT 🖊

	Section Capacity Table							
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
L1	150 - 96.8333	Pole	TP39.21x26.19x0.3125	1	-10.02	1962.20	36.1	Pass
L2	96.8333 - 48	Pole	TP50.55x37.1973x0.4063	2	-20.88	3293.42	44.9	Pass
L3	48 - 0	Pole	TP61.5x48.0225x0.5	3	-40.24	5071.45	46.0	Pass
							Summary	
						Pole (L3)	46.0	Pass
						RATING =	46.0	Pass

150 Ft Monopole Tower Structural Analysis Project Number 540880, Application 165440, Revision 1

APPENDIX B BASE LEVEL DRAWING

(ABANDONED)
(1) 7/8" TO 117 FT LEVEL
(PRODOSED)
(3) 1-1/4" TO 134 FT LEVEL
(NSTALLED)
—(6) 1-5/8" TO 134 FT LEVEL (RESERVED)
(6) 1-1/4" TO 146 FT LEVEL
(INSTALLED)
(12) 1-1/4" TO 146 FT LEVEL -

BUSINESS UNIT: 806370 TOWER ID: C_BASELEVEL

The state of the s

APPENDIX C ADDITIONAL CALCULATIONS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material **TIA Rev F**

Site Data

BU#: 806370

Site Name: HRT 099 943226 App #: 165440, Rev. 1

> Pole Manufacturer: Other

Reactions		
Moment:	2850	ft-kips
Axial:	40	kips
Shear:	29	kips

Anchor Rod Data						
Qty:	24					
Diam:	2.25	in				
Rod Material:	A615-J					
Strength (Fu):	100	ksi				
Yield (Fy):	75	ksi				
Bolt Circle:	70.17	lin				

Plate Data						
Diam:	76.17	in				
Thick:	3	in				
Grade:	60	ksi				
Single-Rod B-eff:	8.24	in				

Stiffener Da	Stiffener Data (Welding at both sides)						
Config:	0	*					
Weld Type:							
Groove Depth:		in **					
Groove Angle:		degrees					
Fillet H. Weld:		< Disregard					
Fillet V. Weld:		in					
Width:		in					
Height:		in					
Thick:		in					
Notch:		in					
Grade:		ksi					
Weld str.:		ksi					

Pole Data						
Diam:	61.5	in				
Thick:	0.5	in				
Grade:	65	ksi				
# of Sides:	12	"0" IF Round				
Fu	80	ksi				
Reinf. Fillet Weld	0	"0" if None				

Stress	Stress Increase Factor							
ASIF:	1.333							

If No stiffeners, Criteria:	AISC ASD	<-Only Applcable to Unstiffened Cases

Anchor Rod Results

Maximum Rod Tension: 79.6 Kips Allowable Tension: 195.0 Kips

40.8% Pass Anchor Rod Stress Ratio:

Rigid	
Service, ASD	
Fty*ASIF	

Base Plate Results	Flexural Check
Base Plate Stress:	18.1 ksi
Allowable Plate Stress:	60.0 ksi
Base Plate Stress Ratio:	30.2% Pass

Rigid	l
Service ASD	l
0.75*Fy*ASIF	l
Y.L. Length:	l
33.79	l

n/a

Stiffener Results

Horizontal Weld: n/a Vertical Weld: n/a Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a Plate Comp. (AISC Bracket): n/a

Pole Results

Pole Punching Shear Check: n/a

Analysis Date: 10/20/2012

^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Monopole Drilled Pier

Checks capacity of a single drilled shaft foundation for a monopole

BU#: 806370

Site Name: *HRT 099 943226* App Number: *165440, Rev. 1*

Design Reactions		
Shear, S:	29.00	kips
Moment, Mt:	2850.00	ft-kips
Tower Weight, Wt:	40.00	kips
Tower Height, H:	150	ft
Base Diameter, BD:	61.5	in

Foundation Dimensions			
Caisson Diameter, CD:	9.0	ft	
Ext. Above Grade, E:	0.5	ft	
Depth Below Grade, L:	24.5	ft	
Neglected Depth, N:	5.0	ft	
Rebar Size, Sp:	10		
Rebar Quantity, mp:	60		
Tie Size, tp:	3		

Material Properties		
Rebar Tensile, Fy:	60	ksi
Concrete Strength, F'c:	3000	psi
Concrete Density, δx:	124	pcf
Clear Cover, cc:	3	in

Soil Properties		
Soil Unit Weight, γ:	73	pcf
Allowable Bearing, Bc:	6.000	ksf
Seismic Design Cat, z:	В	

Caisson Analysis			
Depth to Zero Shear:	6.3	ft	
Max Factored Moment:	3954.67	ft-kips	
Overturning FOS:	2.86		

Depth		Shear		Moment	
2.5	ft	29	kips	2932.9	ft-kips
5	ft	29	kips	3005.5	ft-kips
7.5	ft	-28.6	kips	3020.4	ft-kips

ACI 318 Version:	2002

	Capacity/ Availability	Demand/ Limits	Check
Minimum Req'd Dia. 1 (ft):	9.00	2.91	ОК
Minimum Req'd Dia. 2 (ft):	9.00	7.13	ОК
Bearing (ksf):	6.00	0.63	ОК
Rebar Area (in 2):	76.20	30.54	ок
Pier moment capacity (k-ft):	14909.84	3954.67	ОК
Rebar spacing (in):	4.07	2 < Bs <18	ок
Development Length (in):	215.90	12.00	ОК
Soil moment capacity (FOS):	2.86	2.00	ОК

Assume 0.33% Minimum Steel?

Bearing: 10.5%

Steel: 26.5%

Soil: 69.9%

Moment Capacity of Drilled Concrete Shaft (Caisson) for TIA Rev F or G

Note: Shaft assumed to have ties, not spiral, transverse reinforcing

Site Data BU#: 806370

Site Name: HRT 099 943226

App #: 165440, Rev. 1

Enter L	oad Factors	Below:
For M (WL)	1.3	< Enter Factor
For P (DL)	1.3	< Enter Factor

Pier Properties						
Concrete:		_				
Pier Diameter =	9.0	ft				
Concrete Area =	in ²					
Reinforcement:		_				
Clear Cover to Tie =	3.00	in				
Horiz. Tie Bar Size=	3					
Vert. Cage Diameter =	8.33	ft				
Vert. Cage Diameter =	99.98	in				
Vertical Bar Size =	10					
Bar Diameter =	1.27	_ in				
Bar Area =	1.27	in ²				
Number of Bars =	60					
As Total=	76.2	in²				
A s/ Aconc, Rho:	0.0083	0.83%				

ACI 10.5 , ACI 21.10.4, and IBC 1810.

Min As for Flexural, Tension Controlled, Shafts:

(3)*(Sqrt(f'c)/Fy: 0.0027
200 / Fy: 0.0033

Minimum Rho Check:

Actual Req'd Min. Rho: 0.33% Flexural Provided Rho: 0.83% OK

Ref. Shaft Max Axial Capacities, φ Max(Pn or Tn):					
Max Pu = (φ=0.65) Pn.					
Pn per ACI 318 (10-2)					
at Mu=(φ=0.65)Mn=	10145.61	ft-kips			
Max Tu, (φ=0.9) Tn = 4114.8 kips					
at Mu=φ=(0.90)Mn=	0.00	ft-kips			

Maximum Shaft Superimposed Forces TIA Revision: F Max. Service Shaft M: 3042.052 ft-kips (* Note) Max. Service Shaft P: 40 kips Max Axial Force Type: Comp.

(*) Note: Max Shaft Superimposed Moment does not necessarily equal to the shaft top reaction moment

Load Factor	Shaft Factored Loads			
1.30	Mu:	3954.668	ft-kips	
1.30	Pu:	52	kips	

Material Properties					
Concrete Comp. strength, fc =	3000	psi			
Reinforcement yield strength, Fy =	60	ksi			
Reinforcing Modulus of Elasticity, E =	29000	ksi			
Reinforcement yield strain =	0.00207				
Limiting compressive strain =	0.003	5			
ACI 318 Cod	le				
Select Analysis ACI Code=	2002				
Seismic Prope	rties				
Seismic Design Category =	В				
Seismic Risk =	Low				

Solve <--- Press Upon Completing All Input (Run)

Results:

Governing Orientation Case: 2

Dist. From Edge to Neutral Axis:

21.17 in **0.0117**

Extreme Steel Strain, et:

ct > 0.0050, Tension Controlled

Reduction Factor,φ:

0.900

Output Note: Negative Pu=Tension

For Axial Compression, φ Pn = Pu: 52.00 Drilled Shaft Moment Capacity, φ Mn: 14909.84 Drilled Shaft Superimposed Mu: 3954.67

(Mu/φMn, Drilled Shaft Flexure CSR: 26.5%

kips

ft-kips

ft-kips

806370 - Caisson

CAISSON Version 10.40 9:28:58 AM Saturday, October 20, 2012
Crown Castle USA

* CAISSON - Pier Foundations Analysis and Design - Copyright Power Line Systems, Inc. 1993-2010 *

Project Title: BU #806370 Project Notes: App. #165440, Rev. 1

Calculation Method: Full 8CD

****** INPUT DATA

Pier Properties

Diameter	Distance of Top of Pier above Ground		Steel Yield Strength
(ft)	(ft)	(ksi)	Strength (ksi)
9.00	0.50	3.00	60.00

Soil Properties

Layer	Туре	Thickness (ft)	Depth at Top of Layer (ft)	Density (1bs/ft^3)	CU (psf)	КР	PHI (deg)
1 2 3 4 5	Clay Clay Clay Clay Clay Clay	5.00 5.00 4.00 5.00 5.00 5.00	0.00 5.00 10.00 14.00 19.00 24.00	100.0 100.0 100.0 36.0 36.0 36.0	1144.0 1650.0 1375.0 1529.0 1684.0		

Design (Factored) Loads at Top of Pier

Moment	Axial Load	Shear Load	Additional Safety Factor Against Soil Failure
(ft-k)	(kips)	(kips)	5011 1411416
2850.0	40.0	29.00	2.86

****** R E S U L T S

Calculated Pier Properties

Length	Weight	End Bearing
(ft)	(kips)	Pressure (psf)
25.000	238.565	628.8

Ultimate Resisting Forces Along Pier

Туре	Distance of Top of Layer to Top of Pier	Thickness	Density	CU	KP Force	Arm
	(ft)	(ft)	(lbs/ft^3)	(psf)	(kips)	(ft)
Clay Clay Clay Clay Clay Clay Clay	0.50 5.50 10.50 14.50 16.03 19.50 24.50	5.00 5.00 4.00 1.53 3.47 5.00 0.50	100.0 100.0 100.0 36.0 36.0 36.0	1144.0 1650.0 1375.0 1375.0 1529.0 1684.0	0.00 411.84 475.20 151.01 -343.99 -550.44 -60.62	3.00 8.00 12.50 15.26 17.76 22.00 24.75

Shear and Moments Along Pier

Distance below	Shear	Moment	Shear	Moment
Top of Pier	(with Safety Factor)	(with Safety Factor)	(without Safety Factor)	(without Safety Factor)
(ft)	(kips)	(ft-k)	(kips)	(ft-k)
0.00 2.50 5.00 7.50 10.00 12.50 15.00 20.00 22.50	83.0 83.0 -81.7 -287.7 -566.4 -853.5 -809.1 -556.0 -280.8	8180.6 8388.1 8595.7 8638.4 8176.7 7127.3 5342.4 3114.5 1402.6 356.6	29.0 29.0 29.0 -28.6 -100.6 -198.1 -298.4 -282.9 -194.4 -98.2	2860.4 2932.9 3005.5 3020.4 2859.0 2492.1 1868.0 1089.0 490.4 124.7

Date: October 22, 2012

Marianne Dunst Crown Castle 3530 Toringdon Way Charlotte, NC 28277

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject:

Structural Analysis Report

Carrier Designation:

Sprint PCS Co-Locate Carrier Site Number:

Carrier Site Name:

CT03XC091 CT03XC091

Crown Castle Designation:

Crown Castle BU Number: Crown Castle Site Name:

806370 HRT 099 943226

Crown Castle JDE Job Number: Crown Castle Work Order Number:

190486 540880

Crown Castle Application Number:

165440 Rev. 1

Engineering Firm Designation:

Crown Castle Project Number:

540880

Site Data:

570 NEW PARK AVENUE, WEST HARTFORD, Hartford County, CT

Latitude 41° 44' 10.5", Longitude -72° 43' 14.2"

150 Foot - Monopole Tower

Dear Marianne Dunst,

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 540880, in accordance with application 165440, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

The analysis has been performed in accordance with the TIA/EIA-222-F standard and local code requirements based upon a wind speed of 80 mph fastest mile.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at Crown Castle appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: John Kazmierczak, E.I.T. / SLS No. 28558

No. 28558

No. 28558

Respectfully submitted by:

Reza Jenabzadeh, P.E.

Engineer II

tnxTower Report - version 6.0.4.0

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing and Reserved Antenna and Cable Information

Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 150 ft Monopole tower designed by Valmont in May of 1990. The tower was originally designed for a wind speed of 125 mph per EIA-222-D.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no ice, 28.1 mph with 1 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Marinitan Lovelson	y his order			i / nie mikaliser i			
		3	alcatel lucent	800MHz 2X50W RRH W/FILTER			
137	137	6	alcatel lucent	PCS 1900MHz 4x45W- 65MHz			
		1	tower mounts	Side Arm Mount [SO 102- 3]	3	1-1/4	-
404	405	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe			
134	135	3	rfs celwave	IBC1900BB-1			
		3	rfs celwave	IBC1900HG-2A			

Table 2 - Existing and Reserved Antenna and Cable Information

: -	Albeing und				lighter i		
		2	antel	BXA-171063-12BF w/ Mount Pipe			
146	1.47	1	antel BXA-171063-8BF-2 w/ Mount Pipe		6	1-1/4	2
	147	3	antel	BXA-70063-6CF-EDIN-5 w/ Mount Pipe	0	, .	2
		6	antel	LPA-80063/6CF w/ Mount Pipe			
	146	1	tower mounts	Platform Mount [LP 602-1]	12	1-1/4	1
134	137	6	allgon	7185.03 w/ Mount Pipe	6	1-5/8	4
134	134	1	tower mounts	Platform Mount [LP 602-1]	-	-	1
	122	1	antel	BCD-87010	į		
117	117	1	tower mounts	Side Arm Mount [SO 701- 1]	1	7/8	3

Notes:

- 1) Existing Equipment
- 2) Reserved Equipment
- 3) Abandoned Equipment; considered in this analysis
- 4) Equipment to Be Removed; not considered in this analysis

Table 3 - Design Antenna and Cable Information

Abandha Township Township	Marines Selfine The choice Selfines	Totaly (74. (111.) 5. (111.) 6. (111.)	oscinst i fear te		
147	147	3	rfs celwave	PD10017	-	-
134	134	6	rfs celwave	PD1132	-	-

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

poding 4 1	of includes	Mark Chines	
4-GEOTECHNICAL REPORTS	Tower Engineering Professionals	2308053	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Tower Engineering Professionals (Mapping)	2308022	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Valmont	260794	CCISITES

3.1) Analysis Method

tnxTower (version 6.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.
- 5) The existing base plate grout was not considered in this analysis.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

				4.5				
			WEST TO BE THE POST OF THE PARTY OF THE PA			PART A		
L1	150 - 96.8333	Pole	TP39.21x26.19x0.3125	1	-9.89	1962.20	34.8	Pass
L2	96.8333 - 48	Pole	TP50.55x37.1973x0.4063	2	-20.51	3293.42	43.6	Pass
L3	48 - 0	Pole	TP61.5x48.0225x0.5	3	-39.58	5071. 4 5	44.9	Pass
							Summary	
						Pole (L3)	44.9	Pass
						Rating =	44.9	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

		Pri (Cretting)		
1	Anchor Rods	0	39.8	Pass
1	Base Plate	0	29.5	Pass
1	Base Foundation Soil Interaction	0	68.5	Pass

Agricum was a mineral and a fine of the control of	SWEET SECTION OF THE
· 建作品的企业日本的基础的特殊的。1995年的特殊的,1995年,1995年,1995年,1995年,1995年,1996年,1996年,1996年,1996年,1996年,1996年,1996年,1996年,1996年	
- 開発を支援してきた。現在では最近に対抗などによっています。 行い変え行わられたとのにはいました。 12 - 行ったいました。 日本には、日本には、日本には、日本には、日本には、日本には、日本には、日本には、	
一般是大火发生后,只是你主意就是发行。但但看到上午到大台目中的事情的,但是有有多数主意的中最后,但是自己自己的。但是这些多数数数数数数数数数数数数数数数数数数	
#1900 [1915년 전 1915년 1일 1915년 1916년 1917년 1918년 1918년 1917년 1918년 1918년 1918년 1918년 1918년 1918년 1918년 1918년 1	我也是一个一个一个一个一个一个
"我想,我们我们们的是我们的我们的,我们就说,我们就是这个的,我们就是这个的,我们就是这个的,我们就没有的,我们就是这个的,我们就是这个的,我们就没有这个人的	

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the existing, reserved, and proposed loads. No modifications are required at this time.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

			4	T			Τ		150.0 ft
-	53'2-1/32"	12	0.3125	5'8-1/32"	26.1900	39.2100		5.9	(2) LI BXA- Pipe BXA- (2) LI BXA- Pipe BXA- (2) LI BXA- Platfit 800M (2) P
	/								(2) Pi 800M (2) Pi 800M (2) Pi 96.8 ft
2	54'6"	12	0.4063		37.1973	50.5500	A572-65	10.5	1. T 2. T 3. T ir 4. C 5. T
	/								48.0 ft
3	55'	12	0.5000		48.0225	61.5000		16.3	AXIAL 56 K SHEAR TORQUE 0 kip-ft 28 mph WIND - 1.0000 in ICE AXIAL 40 K SHEAR MOMEN 29 K MOMEN 2778 kip
Section	Length (ft)	Number of Sides	Thickness (in)	Socket Length (ft)	Top Dia (in)	Bot Dia (in)	Grade	Weight (K) 32.8	29 K /

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
(2) LPA-80063/6CF w/ Mount Pipe	146	(2) 6' x 2" Mount Pipe	137	
BXA-70063-6CF-EDIN-5 w/ Mount	146	(2) 6' x 2" Mount Pipe	137	
Pipe		(2) 6' x 2" Mount Pipe	137	
BXA-171063-8BF-2 w/ Mount Pipe	146	Side Arm Mount (SO 102-3)	137	
(2) LPA-80063/6CF w/ Mount Pipe	146	APXVSPP18-C-A20 w/ Mount Pipe	134	
BXA-70063-6CF-EDIN-5 w/ Mount	146	IBC1900BB-1	134	
Pipe		IBC1900HG-2A	134	
BXA-171063-12BF w/ Mount Pipe	146	APXVSPP18-C-A20 w/ Mount Pipe	134	
(2) LPA-80063/6CF w/ Mount Pipe	146	IBC1900HG-2A	134	
BXA-70063-6CF-EDIN-5 w/ Mount Pipe	146	IBC1900BB-1	134	
BXA-171063-12BF w/ Mount Pipe	146	APXVSPP18-C-A20 w/ Mount Pipe	134	
Platform Mount [LP 602-1]	146	IBC1900BB-1	134	
800MHz 2X50W RRH W/FILTER	137	IBC1900HG-2A	134	
		(2) 5' x 2" Pipe Mount	134	
(2) PCS 1900MHz 4x45W-65MHz	137	(2) 5' x 2" Pipe Mount	134	
800MHz 2X50W RRH W/FILTER	137	(2) 5' x 2" Pipe Mount	134	
(2) PCS 1900MHz 4x45W-65MHz	137	Platform Mount [LP 602-1]	134	
800MHz 2X50W RRH W/FILTER	137	BCD-87010		
PCS 1900MHz 4x45W-65MHz	137		117	
		Side Arm Mount [SO 701-1]	117	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- wer is located in Hartford County, Connecticut.
- wer designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- wer is also designed for a 28 mph basic wind with 1.00 in ice. Ice is considered to increase thickness with height.
- eflections are based upon a 50 mph wind. DWER RATING: 44.9%

Tower input Pata

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

- Tower is located in Hartford County, Connecticut.
- Basic wind speed of 80 mph. 6)
- Nominal ice thickness of 1.0000 in. 7)
- 8) Ice thickness is considered to increase with height.
- Ice density of 56 pcf. 9)
- A wind speed of 28 mph is used in combination with ice. 10)
- Temperature drop of 50 °F. 11)
- Deflections calculated using a wind speed of 50 mph. 12)
- A non-linear (P-delta) analysis was used. 13)
- Pressures are calculated at each section. 14)
- Stress ratio used in pole design is 1.333. 15)
- Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are 16) not considered.

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component Triangulate Diamond Inner Bracing

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- Consider Feedline Torque Include Angle Block Shear Check
- Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	150'-96'9- 31/32"	53'2-1/32"	5'8-1/32"	12	26.1900	39.2100	0.3125	1.2500	A572-65 (65 ksi)
L2	96'9-31/32"-48'	54'6"	7'	12	37.1973	50.5500	0.4063	1.6250	À572-65 (65 ksi)
L3	48'-0'	55'		12	48.0225	61.5000	0.5000	2.0000	À572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia. in	Area in²	l in⁴	r in	C in	I/C in³	J in⁴	It/Q in²	w in	w/t
L1	27.1139	26.0392	2225.6599	9.2641	13.5664	164.0565	4509.7903	12.8157	6.1814	19.781
	40.5932	39.1406	7558.8706	13.9253	20.3108	372.1605	15316.321	19.2638	9.6708	30.946

Section	Tip Dia. in	Area in²	I in⁴	r in	C in	I/C in³	J in⁴	It∕Q in²	w in	w/t
L2	39.9468	48.1273	8314.9821	13.1712	19.2682	431.5392	16848.408 0	23.6868	8.8801	21.859
	52.3332	65.5943	21051.625 0	17.9515	26.1849	803.9605	42656.299 6	32.2835	12.4587	30.667
L3	51.4924	76.5112	22055.094 6	17.0130	24.8756	886.6141	44 689.601	37.6565	11.5300	23.06
	63.6695	98.2100	46644.595 5	21.8380	31.8570	1464.1867	94514.596 5	48.3360	15.1420	30.284

Tower Elevation	Gusset Area (per face) ft²	Gusset Thickness in	Gusset Grade Adjust. Factor A _t	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
L1 150'-96'9-			1	1	1		
31/32"							
L2 96'9-			1	1	1		
31/32"-48'							
L3 48'-0'			1	11	1		

Reed Aine/Linear/Approviengnoes - Entered As Area - - -

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg			ft			ft²/ft	plf

LDF6-50A(1-1/4")	С	No	Inside Pole	146' - 0'	12	No Ice	0.00	0.66
						1/2" lce	0.00	0.66
						1" Ice	0.00	0.66
						2" lce	0.00	0.66
						4" lce	0.00	0.66
LDF6-50A(1-1/4")	С	No	Inside Pole	146' - 0'	6	No Ice	0.00	0.66
, ,						1/2" Ice	0.00	0.66
						1" Ice	0.00	0.66
						2" Ice	0.00	0.66
						4" Ice	0.00	0.66
***							0.00	
HB114-1-08U4-M5J(1	Α	No	Inside Pole	134' - 0'	3	No Ice	0.00	1.08
1/4")					_	1/2" lce	0.00	1.08
,						1" Ice	0.00	1.08
						2" ice	0.00	1.08
						4" Ice	0.00	1.08
***							0.00	.,
LDF5-50A(7/8")	Α	No	Inside Pole	117' - 0'	1	No Ice	0.00	0.33
				•	·	1/2" Ice	0.00	0.33
						1" lce	0.00	0.33
						2" Ice	0.00	0.33
						4" Ice	0.00	0.33

Feet Einer in ear Appultenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_{F}	C₄A₄ In Face	C _A A _A Out Face	Weight
n	ft		fť	ft ²	ft²	ft ²	K
L1	150'-96'9-31/32"	Α	0.000	0.000	0.000	0.000	0.13
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.58
L2	96'9-31/32"-48'	Α	0.000	0.000	0.000	0.000	0.17
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.58
L3	48'-0'	Α	0.000	0.000	0.000	0.000	0.17
		В	0.000	0.000	0.000	0.000	0.00

Equivalent Silty Soil Parameter Tool

This tool determines the equivalent soil parameters for silty soil (having both cohesion and angle of friction), according to the CCI Foundations orgaing discussions (2010), Criteria Item DS-7. The equivalent parameters results are to be input in the PLS-Caisson Software to account for the combined resistance of the granular and cohesive parameters simultaneously present in silty and similar soils

Site Name: HRT 099 943226 App #: 165440, Rev. 1 BU#: 806370 Site Data

Neglect Top Layer: # of Layers:

×

Input the data in the "shaded" columns. If soil layer is submerged, then enter the saturated density (buoyant unit weight)

Equivalent Parameters for PLS

Input	Equivalent K _p	0.00	4.07	3.67	2.46	2.44	2.43
Caisson Input	Equivalent Cohesion (psf)	0	1144	1650	1375	1529	1684
	P _p total (ksf)	0.000	9.150	13.200	11.003	12.236	13.469
	Clay Resistance (ksf)	00'0	2.40	2.40	0.80	0.80	0.80
	Sand Resistance (ksf)	0.000	6.750	10.800	10.203	11.436	12.669
	Depth to Mid-Overburden Layer (ft) (psf)	250	750	1200	1490	1670	1850
	Depth to Mid- Layer (ft)	2.5	7.5	12	16.5	21.5	26.5
	Κ _ρ	000'0	3.000	3.000	2.283	2.283	2.283
	Internal Friction Angle (deg)	3 - 28 - 18 S	30	30	23	23	23
	Cohesion (psf)		300	300	100	100	100
	Unit Weight of Soil (pcf)	100	100	100	36	36	36
	To (ft)	2	10	4	19	24	59
	From (ft)	0	S	10	4	19	24
	Layer Thickness (ft)	5	2	4	2	2	5
	Layer.	7	7	က	4	2	9

Calculation Notes:

- ----> (Per equations used in PLS-Caisson Software) 1-Sand Resistance = 3 * Kp * Overburden 2- Cohesion Resistance = 8 * C --------
- --> (Per equations used in PLS-Caisson Software, Full 8CD approach)
 - 3- Total Resistance = Sand Resistance + Cohesion Resistance
 - 4- Equivalent Kp= Total / Overburden / 3
 - 5- Equivalent C= Tctal / 8

Tower	Tower	Face	A_R	A_F	C_AA_A	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	_
n	ft		ft²	ft²	ft ²	ft ²	K
		С	0.000	0.000	0.000	0.000	0.57

Feed I line/Linear Appurienances Section Areas With loc

Tower Sectio	Tower Elevation	Face or	lce Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft²	ft²	ft²	K
L1	150'-96'9-31/32"	Α	1.170	0.000	0.000	0.000	0.000	0.13
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.58
L.2	96'9-31/32"-48'	Α	1.098	0.000	0.000	0.000	0.000	0.17
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.58
L3	48'-0'	Α	1.000	0.000	0.000	0.000	0.000	0.17
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.57

Etéet Lige Center of Pressure

Section	Elevation	CP _x	CPz	CP _× Ice	CP _z Ice
	ft	in	in	in	in
L1	150'-96'9-31/32"	0.0000	0.0000	0.0000	0.0000
L2	96'9-31/32"-48'	0.0000	0.0000	0.0000	0.0000
L3	48'-0'	0.0000	0.0000	0.0000	0.0000

1000 1000 1000 1000 1000 1000 1000 100	SALAPINE CHECKS AND PRESENTATIONS OF THE PROPERTY OF THE PROPE	ACT NO GROUPELINGS TO A SERVED A STORE OF	WOLASOFIO SEE
· · · · · · · · · · · · · · · · · · ·	A CONTRACTOR OF THE CONTRACTOR AND A SECOND STREET,		・ 大学 (1997年 1997年 1
The state of the s		(3) (c) () () () () () () () () (
· · · · · · · · · · · · · · · · · · ·	北京 江 15 7 年 18 日本 18 日	600 107 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TARREST STATE OF THE STATE OF T		既此,所从,天才孤孤。而太正疏明颇。而	A D. A REST. 1. A. A. A. A. ARDER SHOWN SHOWN IN

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			ft ft ft	•	ft		ft²	ft²	К

(2) LPA-80063/6CF w/ Mount Pipe	Α	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	10.58 11.24 11.87 13.16 15.87	10.67 11.93 12.91 14.92 19.16	0.05 0.14 0.24 0.48 1.09
BXA-70063-6CF-EDIN-5 w/ Mount Pipe	Α	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	7.97 8.61 9.22 10.46 13.07	5.80 6.95 7.82 9.60 13.37	0.04 0.10 0.17 0.34 0.80
BXA-171063-8BF-2 w/ Mount Pipe	Α	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	3.18 3.56 3.96 4.85 6.77	3.35 3.97 4.60 5.89 8.89	0.03 0.06 0.10 0.19 0.49
(2) LPA-80063/6CF w/ Mount Pipe	В	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice	10.58 11.24 11.87	10.67 11.93 12.91	0.05 0.14 0.24

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K
						1" Ice 2" Ice 4" Ice	13.16 15.87	14.92 19.16	0.48 1.09
BXA-70063-6CF-EDIN-5 w/ Mount Pipe	В	From Leg	4.00 0' 1'	0.0000	1 4 6'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	7.97 8.61 9.22 10.46 13.07	5.80 6.95 7.82 9.60 13.37	0.04 0.10 0.17 0.34 0.80
BXA-171063-12BF w/ Mount Pipe	В	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	4.97 5.52 6.04 7.09 9.36	5.23 6.39 7.26 9.05 12.82	0.04 0.08 0.14 0.27 0.67
(2) LPA-80063/6CF w/ Mount Pipe	С	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	10.58 11.24 11.87 13.16 15.87	10.67 11.93 12.91 14.92 19.16	0.05 0.14 0.24 0.48 1.09
BXA-70063-6CF-EDIN-5 w/ Mount Pipe	С	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	7.97 8.61 9.22 10.46 13.07	5.80 6.95 7.82 9.60 13.37	0.04 0.10 0.17 0.34 0.80
BXA-171063-12BF w/ Mount Pipe	С	From Leg	4.00 0' 1'	0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	4.97 5.52 6.04 7.09 9.36	5.23 6.39 7.26 9.05 12.82	0.04 0.08 0.14 0.27 0.67
Platform Mount [LP 602-1]	С	None		0.0000	146'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	32.03 38.71 45.39 58.75 85.47	32.03 38.71 45.39 58.75 85.47	1.34 1.80 2.26 3.17 5.00
800MHz 2X50W RRH W/FILTER	Α	From Leg	1.00 0' 0'	0.0000	137'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.40 2.61 2.83 3.30 4.34	2.25 2.46 2.68 3.13 4.15	0.06 0.09 0.11 0.17 0.34
(2) PCS 1900MHz 4x45W- 65MHz	Α	From Leg	1.00 0' 0'	0.0000	137'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.71 2.95 3.20 3.72 4.86	2.61 2.85 3.09 3.61 4.74	0.06 0.08 0.11 0.17 0.35
800MHz 2X50W RRH W/FILTER	В	From Leg	1.00 0' 0'	0.0000	137'	No Ice 1/2" ice 1" Ice 2" Ice 4" Ice	2.40 2.61 2.83 3.30 4.34	2.25 2.46 2.68 3.13 4.15	0.06 0.09 0.11 0.17 0.34
(2) PCS 1900MHz 4x45W- 65MHz	В	From Leg	1.00 0' 0'	0.0000	137'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.71 2.95 3.20 3.72 4.86	2.61 2.85 3.09 3.61 4.74	0.06 0.08 0.11 0.17 0.35

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
800MHz 2X50W RRH W/FILTER	С	From Leg	1.00 0' 0'	0.0000	137'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.40 2.61 2.83 3.30 4.34	2.25 2.46 2.68 3.13 4.15	0.06 0.09 0.11 0.17 0.34
(2) PCS 1900MHz 4x45W- 65MHz	С	From Leg	1.00 0' 0'	0.0000	137'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.71 2.95 3.20 3.72 4.86	2.61 2.85 3.09 3.61 4.74	0.06 0.08 0.11 0.17 0.35
(2) 6' x 2" Mount Pipe	Α	From Leg	1.00 0' 0'	0.0000	137'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.43 1.92 2.29 3.06 4.70	1.43 1.92 2.29 3.06 4.70	0.02 0.03 0.05 0.09 0.23
(2) 6' x 2" Mount Pipe	В	From Leg	1.00 0' 0'	0.0000	137'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.43 1.92 2.29 3.06 4.70	1.43 1.92 2.29 3.06 4.70	0.02 0.03 0.05 0.09 0.23
(2) 6' x 2" Mount Pipe	С	From Leg	1.00 0' 0'	0.0000	137'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.43 1.92 2.29 3.06 4.70	1.43 1.92 2.29 3.06 4.70	0.02 0.03 0.05 0.09 0.23
Side Arm Mount [SO 102- 3]	С	None		0.0000	137'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	3.00 3.48 3.96 4.92 6.84	3.00 3.48 3.96 4.92 6.84	0.08 0.11 0.14 0.20 0.32

APXVSPP18-C-A20 w/ Mount Pipe	Α	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	8.50 9.15 9.77 11.03 13.68	6.95 8.13 9.02 10.84 14.85	0.08 0.15 0.22 0.41 0.91
IBC1900BB-1	Α	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.69	0.02 0.03 0.04 0.06 0.15
IBC1900HG-2A	Α	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.09	0.02 0.03 0.04 0.06 0.15
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice	8.50 9.15 9.77 11.03 13.68	6.95 8.13 9.02 10.84 14.85	0.08 0.15 0.22 0.41 0.91
IBC1900HG-2A	В	From Leg	4.00 0' 1'	0.0000	134'	4" Ice No Ice 1/2" Ice	1.13 1.27 1.43	0.53 0.65 0.77	0.02 0.03 0.04

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	Κ
						1" Ice 2" Ice 4" Ice	1.76 2.53	1.04 1.69	0.06 0.15
IBC1900BB-1	В	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice	1.13 1.27 1.43 1.76	0.53 0.65 0.77 1.04	0.02 0.03 0.04 0.06
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.00 0'	0.0000	134'	2" Ice 4" Ice No Ice 1/2"	2.53 8.50 9.15	6.95 8.13	0.15 0.08 0.15
Modific Lipe			1'			ice 1" Ice 2" Ice 4" Ice	9.77 11.03 13.68	9.02 10.84 14.85	0.22 0.41 0.91
IBC1900BB-1	С	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.69	0.02 0.03 0.04 0.06 0.15
IBC1900HG-2A	С	From Leg	4.00 0' 1'	0.0000	134'	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.13 1.27 1.43 1.76 2.53	0.53 0.65 0.77 1.04 1.69	0.02 0.03 0.04 0.06 0.15
(2) 5' x 2" Pipe Mount	Α	From Leg	4.00 0' 1'	0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice	1.00 1.39 1.70 2.35 3.78	1.00 1.39 1.70 2.35 3.78	0.03 0.04 0.05 0.08 0.20
(2) 5' x 2" Pipe Mount	В	From Leg	4.00 0' 1'	0.0000	134'	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.00 1.39 1.70 2.35 3.78	1.00 1.39 1.70 2.35 3.78	0.03 0.04 0.05 0.08 0.20
(2) 5' x 2" Pipe Mount	С	From Leg	4.00 0' 1'	0.0000	134'	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.00 1.39 1.70 2.35 3.78	1.00 1.39 1.70 2.35 3.78	0.03 0.04 0.05 0.08 0.20
Platform Mount [LP 602-1]	С	None		0.0000	134'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	32.03 38.71 45.39 58.75 85.47	32.03 38.71 45.39 58.75 85.47	1.34 1.80 2.26 3.17 5.00
BCD-87010	Α	From Leg	4.00 0' 5'	0.0000	117'	No Ice 1/2" ice 1" Ice 2" Ice 4" Ice	2.90 4.05 5.21 7.01 9.85	2.90 4.05 5.21 7.01 9.85	0.03 0.05 0.08 0.16 0.41
Side Arm Mount [SO 701- 1]	Α	From Leg	2.00 0' 0'	0.0000	117'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.85 1.14 1.43 2.01 3.17	1.67 2.34 3.01 4.35 7.03	0.07 0.08 0.09 0.12 0.18

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement	C _A A _A Front	C _A A _A Side	Weight
			ft		ft	ft ²	ft ²	κ
			ft	۰				
			ft					
***					·			

Load Combinations

Comb.		Description
<u>No.</u>		
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+lce+Temp	
16	Dead+Wind 30 deg+lce+Temp	
17	Dead+Wind 60 deg+lce+Temp	
18	Dead+Wind 90 deg+lce+Temp	
19	Dead+Wind 120 deg+lce+Temp	
20	Dead+Wind 150 deg+lce+Temp	
21	Dead+Wind 180 deg+lce+Temp	
22	Dead+Wind 210 deg+lce+Temp	
23	Dead+Wind 240 deg+lce+Temp	
24	Dead+Wind 270 deg+lce+Temp	
25	Dead+Wind 300 deg+lce+Temp	
26	Dead+Wind 330 deg+lce+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Member Forces

Sectio n No.	Elevation ft	Compon e nt Type	Condition	Gov. Load Comb.	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	150 - 96.8333	Pole	Max Tension	15	0.00	0.00	-0.00
			Max. Compression	14	-18.92	0.00	0.58
			Max. Mx	5	-9.89	-513.93	0.33
			Max. My	2	-9.89	0.00	513.94
			Max. Vy	5	15.45	-513.93	0.33

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
	•		Max. Vx	2	-15.42	0.00	513.94
			Max. Torque	5			0.45
L2	96.8333 - 48	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-32.66	0.00	0.58
			Max. Mx	5	-20.51	-1394.30	0.34
			Max. Mv	2	-20.51	0.00	1392.92
			Max. Vý	5	21.65	-1394.30	0.34
			Max. Vx	2	-21.62	0.00	1392.92
			Max. Torque	5			0.45
L3	48 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-55.74	0.00	0.58
			Max. Mx	5	-39.58	-2778.32	0.34
			Max. My	2	-39.58	0.00	2775.32
			Max. Vv	5	28.71	-2778.32	0.34
			Max. Vx	2	-28.68	0.00	2775.32
			Max. Torque	5			0.45

	Later Co.	144 N. W. 1974 A. C.	
Maxi	mum	Keac	tions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load Comb.	Κ	κ	Κ
Pole	Max. Vert	14	55.74	0.00	0.00
	Max. H _x	11	39.59	28.70	0.00
	Max. H _z	2	39.59	0.00	28.67
	Max. M _x	2	2775.32	0.00	28.67
	Max. M _z	5	2778.32	-28.70	0.00
	Max. Torsion	5	0.45	-28.70	0.00
	Min. Vert	1	39.59	0.00	0.00
	Min. H _x	5	39.59	-28.70	0.00
	Min. H _z	8	39.59	0.00	-28.67
	Min. M _x	8	-2774.63	0.00	-28.67
	Min. M _z	11	-2778.32	28.70	0.00
	Min. Torsion	11	-0.45	28.70	0.00

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	K	K	K	kip-ft [°]	kip-ft -	kip-ft
Dead Only	39.59	0.00	0.00	-0.33	0.00	0.00
Dead+Wind 0 deg - No Ice	39.59	0.00	-28.67	-2775.32	0.00	0.00
Dead+Wind 30 deg - No Ice	39.59	14.35	-24.83	-2403.54	-1389.16	-0.23
Dead+Wind 60 deg - No Ice	39.59	24.85	-14.33	-1387.83	-2406.09	-0.39
Dead+Wind 90 deg - No Ice	39.59	28.70	0.00	-0.34	-2778.32	-0.45
Dead+Wind 120 deg - No Ice	39.59	24.85	14.33	1387.14	-2406.09	-0.39
Dead+Wind 150 deg - No Ice	39.59	14.35	24.83	2402.86	-1389.16	-0.23
Dead+Wind 180 deg - No Ice	39.59	0.00	28.67	2774.63	0.00	0.00
Dead+Wind 210 deg - No Ice	39.59	-14.35	24.83	2402.86	1389.16	0.23
Dead+Wind 240 deg - No Ice	39.59	-24.85	14.33	1387.14	2406.09	0.39
Dead+Wind 270 deg - No Ice	39.59	28.70	0.00	-0.34	2778.32	0.45
Dead+Wind 300 deg - No Ice	39.59	-24.85	-14.33	-1387.83	2406.09	0.39
Dead+Wind 330 deg - No Ice	39.59	-14.35	-24.83	-2403.54	1389.16	0.23
Dead+lce+Temp	55.74	0.00	0.00	-0.58	0.00	0.00
Dead+Wind 0	55.74	0.00	-4.09	-419.35	0.00	0.00
deg+lce+Temp						
Dead+Wind 30	55.74	2.05	-3.55	-363.25	-209.61	-0.06
deg+lce+Temp						
Dead+Wind 60	55.74	3.55	-2.05	-209.98	-363.06	-0.11
deg+lce+Temp						
Dead+Wind 90	55.74	4.10	-0.00	-0.61	-419.23	-0.13

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M.	Overturning Moment, M ₂	Torque
Combination	K	K	κ	kip-ft	kip-ft	kip-ft
deg+lce+Temp						
Dead+Wind 120	55.74	3.55	2.05	208.76	-363.06	-0.11
deg+lce+Temp						
Dead+Wind 150	55.74	2.05	3.55	362.04	-209.61	-0.06
deg+lce+Temp						
Dead+Wind 180	55.74	0.00	4.09	418.14	0.00	0.00
deg+lce+Temp						
Dead+Wind 210	55.74	-2.05	3.55	362.04	209.61	0.06
deg+lce+Temp						
Dead+Wind 240	55.74	-3.55	2.05	208.76	363.06	0.11
deg+lce+Temp						
Dead+Wind 270	55.74	- 4 .10	-0.00	-0.61	419.23	0.13
deg+lce+Temp						
Dead+Wind 300	55.74	-3.55	-2.05	-209.98	363.06	0.11
deg+lce+Temp						
Dead+Wind 330	55.74	-2.05	-3.55	-363.25	209.61	0.06
deg+lce+Temp						
Dead+Wind 0 deg - Service	39.59	0.00	-11.20	-1084.54	0.00	0.00
Dead+Wind 30 deg - Service	39.59	5.60	-9.70	-939.29	-542.75	-0.09
Dead+Wind 60 deg - Service	39.59	9.71	-5.60	-542.44	-940.08	-0.15
Dead+Wind 90 deg - Service	39.59	11.21	0.00	-0.34	-1085.51	-0.18
Dead+Wind 120 deg -	39.59	9.71	5.60	541.76	-940.08	-0.15
Service						
Dead+Wind 150 deg -	39.59	5.60	9.70	938.60	-542.75	-0.09
Service						
Dead+Wind 180 deg -	39.59	0.00	11.20	1083.86	0.00	0.00
Service						
Dead+Wind 210 deg -	39.59	-5.60	9.70	938.60	542.75	0.09
Service						
Dead+Wind 240 deg -	39.59	-9.71	5.60	541.76	940.08	0.15
Service						
Dead+Wind 270 deg -	39.59	-11.21	0.00	-0.34	1085.51	0.18
Service	_					
Dead+Wind 300 deg -	39.59	-9.71	-5.60	-542.44	940.08	0.15
Service						21.10
Dead+Wind 330 deg - Service	39.59	-5.60	-9.70	-939.29	542.75	0.09

Solution Summary

	Sun	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	Κ	K	K	
1	0.00	-39.59	0.00	0.00	39.59	0.00	0.000%
2	0.00	-39.59	-28.67	0.00	39.59	28.67	0.000%
3	14.35	-39.59	-24.83	-14.35	39.59	24.83	0.000%
4	24.85	-39.59	-14.33	-24.85	39.59	14.33	0.000%
5	28.70	-39.59	0.00	-28.70	39.59	0.00	0.000%
5 6	24.85	-39.59	14.33	-24.85	39.59	-14.33	0.000%
7	14.35	-39.59	24.83	-14.35	39.59	-24.83	0.000%
8	0.00	-39.59	28.67	0.00	39.59	-28.67	0.000%
9	-14.35	-39.59	24.83	14.35	39.59	-24.83	0.000%
10	-24.85	-39.59	14.33	24.85	39.59	-14.33	0.000%
11	-28.70	-39.59	0.00	28.70	39.59	0.00	0.000%
12	-24.85	-39.59	-14.33	24.85	39.59	14.33	0.000%
13	-14.35	-39.59	-24.83	14.35	39.59	24.83	0.000%
14	0.00	-55.74	0.00	0.00	55.74	0.00	0.000%
15	0.00	-55.74	-4.09	0.00	55.74	4.09	0.000%
16	2.05	-55.74	-3.55	-2.05	55.74	3.55	0.000%
17	3.55	-55.74	-2.05	-3.55	55.74	2.05	0.000%
18	4.10	-55.74	0.00	-4.10	55.74	0.00	0.000%
19	3.55	-55.7 4	2.05	-3.55	55.74	-2.05	0.000%
20	2.05	-55.74	3.55	-2.05	55.74	-3.55	0.000%
21	0.00	-55.74	4.09	0.00	55.74	-4.09	0.000%
22	-2.05	-55.74	3.55	2.05	55.74	-3.55	0.000%
23	-3.55	-55.74	2.05	3.55	55.74	-2.05	0.000%

	Sur	n of Applied Force	s		Sum of Reactio	ns	
Load	PX	PY	PΖ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
24	-4.10	-55.74	0.00	4.10	55.74	0.00	0.000%
25	-3.55	-55.74	-2.05	3.55	55.74	2.05	0.000%
26	-2.05	-55.74	-3.55	2.05	55.74	3.55	0.000%
27	0.00	-39.59	-11.20	0.00	39.59	11.20	0.000%
28	5.60	-39.59	-9.70	-5.60	39.59	9.70	0.000%
29	9.71	-39.59	-5.60	-9.71	39.59	5.60	0.000%
30	11.21	-39.59	0.00	-11.21	39.59	0.00	0.000%
31	9.71	-39.59	5.60	-9.71	39.59	-5.60	0.000%
32	5.60	-39.59	9.70	-5.60	39.59	-9.70	0.000%
33	0.00	-39.59	11.20	0.00	39.59	-11.20	0.000%
34	-5.60	-39.59	9.70	5.60	39.59	-9.70	0.000%
35	-9.71	-39.59	5.60	9.71	39.59	-5.60	0.000%
36	-11.21	-39.59	0.00	11.21	39.59	0.00	0.000%
37	-9.71	-39.59	-5.60	9.71	39.59	5.60	0.000%
38	-5.60	-39.59	-9.70	5.60	39.59	9.70	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00000860
2 3	Yes	4	0.0000001	0.00034416
4	Yes	4	0.0000001	0.00035148
5	Yes	4	0.0000001	0.00001407
6	Yes	4	0.0000001	0.00034197
7	Yes	4	0.0000001	0.00034905
8	Yes	4	0.0000001	0.00000860
9	Yes	4	0.0000001	0.00034905
10	Yes	4	0.0000001	0.00034197
11	Yes	4	0.0000001	0.00001407
12	Yes	4	0.0000001	0.00035148
13	Yes	4	0.0000001	0.00034416
14	Yes	4	0.0000001	0.00000001
15	Yes	4	0.0000001	0.00016978
16	Yes	4	0.0000001	0.00017248
17	Yes	4	0.0000001	0.00017240
18	Yes	4	0.0000001	0.00016943
19	Yes	4	0.0000001	0.00017185
20	Yes	4	0.00000001	0.00017165
21	Yes	4	0.00000001	0.00016882
22	Yes	4	0.0000001	0.00017165
23	Yes	4	0.0000001	0.00017185
24	Yes	4	0.00000001	0.00016943
25	Yes	4	0.00000001	0.00017240
26	Yes	4	0.0000001	0.00017248
27	Yes	4	0.0000001	0.00000435
28	Yes	4	0.0000001	0.00002997
29	Yes	4	0.0000001	0.00003134
30	Yes	4	0.00000001	0.00000490
31	Yes	4	0.00000001	0.00002957
32	Yes	4	0.00000001	0.00003085
33	Yes	4	0.0000001	0.00000434
34	Yes	4	0.0000001	0.00003085
35	Yes	4	0.0000001	0.00002957
36	Yes	4	0.00000001	0.00000490
37	Yes	4	0.00000001	0.00003134
38	Yes	4	0.0000001	0.00002997

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	•	o
L1	150 - 96.8333	16.031	37	0.9227	0.0000
L2	102.5 - 48	7.552	30	0.7069	0.0003
L3	55 - 0	2.140	36	0.3555	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	•	ft
146'	(2) LPA-80063/6CF w/ Mount Pipe	37	15.267	0.9078	0.0001	72043
137'	800MHz 2X50W RRH W/FILTER	37	13.559	0.8735	0.0001	27709
134'	APXVSPP18-C-A20 w/ Mount Pipe	37	12.997	0.8616	0.0002	22513
117'	BCD-87010	36	9.926	0.7867	0.0003	10915

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	•	۰
L1	150 - 96.8333	41.016	5	2.3609	0.0001
L2	102.5 - 4 8	19.325	5	1.8090	0.0008
L3	55 - 0	5.477	5	0.9098	0.0003

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
π		Comb.	in			ft
146'	(2) LPA-80063/6CF w/ Mount Pipe	5	39.062	2.3227	0.0002	28255
137'	800MHz 2X50W RRH W/FILTER	5	34.694	2.2350	0.0004	10867
134'	APXVSPP18-C-A20 w/ Mount Pipe	5	33.255	2.2046	0.0004	8829
117'	BCD-87010	5	25.400	2.0131	0.0007	4279

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	Lu	KI/r	Fa	Α	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in ²	ĸ	ĸ	
L1	150 - 96.8333 (1)	TP39.21x26.19x0.3125	53'2- 1/32"	0'	0.0	39.000	37.7442	-9.89	1472.02	0.007
L2	96.8333 - 48 (2)	TP50.55x37.1973x0.4063	54'6"	0'	0.0	39.000	63.3508	-20.51	2470.68	0.008
L3	48 - Ó (3)	TP61.5x48.0225x0.5	55'	0'	0.0	38.739	98.2100	-39.58	3804.54	0.010

Pole Bending Design Data										
Section No.	Elevation ft	Size	Actual M _x kip-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	Ratio f _{bx}	Actual M _y kip-ft	Actual f _{by} ksi	Allow. F _{by} ksi	Ratio f _{by} F _{by}
L1	150 - 96.8333 (1)	TP39.21x26.19x0.3125	514.02	17.828	39.000	0.457	0.00	0.000	39.000	0.000
L2	96.8333 - 48 (2)	TP50.55x37.1973x0.4063	1394.3 0	22.318	39.000	0.572	0.00	0.000	39.000	0.000
L3	48 - 0 (3)	TP61.5x48.0225x0.5	2778.3 2	22.770	38.739	0.588	0.00	0.000	38.739	0.000

Pole Shear Design Data										
Section No.	Elevation ft	Size	Actual V K	Actual f _v ksi	Allow. F _v ksi	Ratio f _v	Actual T kip-ft	Actual f _{vt} ksi	Allow. F _{vt} ksi	Ratio f _{vt}
L1	150 - 96.8333 (1)	TP39.21x26.19x0.3125	15.45	0.409	26.000	0.032	0.39	0.006	26.000	0.000
L2	96.8333 - 48 (2)	TP50.55x37.1973x0.4063	21.65	0.342	26.000	0.027	0.45	0.003	26.000	0.000
L3	48 - 0 (3)	TP61.5x48.0225x0.5	28.71	0.292	26.000	0.023	0.45	0.002	26.000	0.000

Pole Interaction Design Data									
Section No.	Elevation ft .	Ratio P	Ratio f _{bx}	Ratio f _{by}	Ratio f _v	Ratio	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	150 - 96.8333 (1)	0.007	0.457		0.032	0.000	0.464	1.333	H1-3+VT 🗸
L2	96.8333 - 48 (2)	0.008	0.572	0.000	0.027	0.000	0.581	1.333	H1-3+VT 🗸
L3	48 - 0 (3)	0.010	0.588	0.000	0.023	0.000	0.598	1.333	H1-3+VT

Section No.	Elevation ít	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
L1	150 - 96.8333	Pole	TP39.21x26.19x0.3125	1	-9.89	1962.20	34.8	Pass
L2	96.8333 - 48	Pole	TP50.55x37.1973x0.4063	2	-20.51	3293.42	43.6	Pass
L3	48 - 0	Pole	TP61.5x48.0225x0.5	3	39.58	5071.45	44.9	Pass
							Summary	
						Poie (L3)	44.9	Pass
						RATING =	44.9	Pass

APPENDIX B BASE LEVEL DRAWING

(ABANDONED)
(1) 7/8" TO 117 FT LEVEL (PROPOSED)
(3) 1-1/4" TO 134 FT LEVEL (NSTALLE)-TO BE REMOVED)
—(6) 1-5/8" TO 134 FT LEVEL (RESERVED) (6) 1-1/4" TO 146 FT LEVEL (INSTALLED) (12) 1-1/4" TO 146 FT LEVEL —

BUSINESS UNIT: 806370 TOWER ID: C_BASELEVEL

A THE

APPENDIX C ADDITIONAL CALCULATIONS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material TIA Rev F

Site Data

Strength (Fu):

Yield (Fy):

Bolt Circle:

BU#: 806370

Site Name: HRT 099 943226 App #: 165440, Rev. 1

Pole Manufacturer:	Other
. 0.0	And the second s

			_0
Pole M	anufacturer:	Other	
An	chor Rod D	ata]
Qty:	24		1
Diam:	2.25	in	
Rod Material:	A615-J	4	

ksi

in

P	Plate Data	
Diam:	76.17	in
Thick:	3	in
Grade:	60	ksi
Single-Rod B-eff:	8.24	ີ່ in 📗

100

75

70.17

Stiffener Data (Welding at both sides)			
Config:	0	*	
Weld Type:		n n n n	
Groove Depth:		in **	
Groove Angle:		degrees	
Fillet H. Weld:		< Disregard	
Fillet V. Weld:		in	
Width:		in	
Height:		in	
Thick:		in	
Notch:		in	
Grade:		ksi	
Weld str.:		ksi	

Pole Data				
Diam:	61.5	in		
Thick:	0.5	in		
Grade:	65	ksi		
# of Sides:	12	"0" IF Round		
Fu	80	ksi		
Reinf. Fillet Weld	0	"0" if None		

Stress Increase Factor			
ASIF:	1.333		

Reactions		Articles
Moment:	2778	ft-kips
Axial:	40	kips
Shear:	29	kips

		7	
lo stiffeners, Criteria:	AISC ASD	<-Only Applcable to	L

Anchor Rod Results

Maximum Rod Tension: Allowable Tension: 19 Anchor Rod Stress Ratio: 39

77.5 Kips	Service, ASD
95.0 Kips	Fty*ASIF
.8% Pass	

Base Plate Results Flexural Check Base Plate Stress: 17.7 ksi Allowable Plate Stress: 60.0 ksi Base Plate Stress Ratio: 29.5% Pass

	Rigid	
	Service ASD	l
	0.75*Fy*ASIF	l
ſ	Y.L. Length:	l
١	33.79	

Rigid

n/a

Stiffener Results

Horizontal Weld: n/a n/a Vertical Weld: Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a Plate Comp. (AISC Bracket): n/a

Pole Results

Pole Punching Shear Check: n/a

Analysis Date: 10/20/2012

^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Monopole Drilled Pier

Checks capacity of a single drilled shaft foundation for a monopole

BU#: 806370

Site Name: *HRT 099 943226* App Number: *165440, Rev. 1*

Design Reactions		
Shear, S:	29.00	kips
Moment, Mt:	2778.00	ft-kips
Tower Weight, Wt:	40.00	kips
Tower Height, H:	150	ft
Base Diameter, BD:	61.5	in

Foundation Dimensions				
Caisson Diameter, CD:	9.0	ft		
Ext. Above Grade, E:	0.5	ft		
Depth Below Grade, L:	24.5	ft		
Neglected Depth, N:	5.0	ft		
Rebar Size, Sp:	10			
Rebar Quantity, mp:	60			
Tie Size, tp:	3			

Material Properties				
Rebar Tensile, Fy:	60	ksi		
Concrete Strength, F'c:	3000	psi		
Concrete Density, δx:	124	pcf		
Clear Cover, cc:	3	in		

Soil Properties			
Soil Unit Weight, γ:	73	pcf	
Allowable Bearing, Bc:	6.000	ksf	
Seismic Design Cat, z:	В	9389	

Caisson Analysis			
Depth to Zero Shear:	6.3	ft	
Max Factored Moment:	3866.08	ft-kips	
Overturning FOS:	2.92		

Depth		Shear		Moment	
2.5	ft	29.1	kips	2863.7	ft-kips
5	ft	29.1	kips	2936.4	ft-kips
7.5	ft	-27.3	kips	2952.7	ft-kips

AC	I 318 Version:	2002

	Capacity/ Availability	Demand/ Limits	Check
Minimum Req'd Dia. 1 (ft):	9.00	2.91	ОК
Minimum Req'd Dia. 2 (ft):	9.00	7.13	ОК
Bearing (ksf):	6.00	0.63	ОК
Rebar Area (in 2):	76.20	30.54	ок
Pier moment capacity (k-ft):	14909.84	3866.08	ок
Rebar spacing (in):	4.07	2 < Bs <18	ок
Development Length (in):	215.52	12.00	ОК
Soil moment capacity (FOS):	2.92	2.00	ок

Assume 0.33% Minimum Steel?

Bearing: 10.5%

Steel: 25.9%

Soil: 68.5%

Moment Capacity of Drilled Concrete Shaft (Caisson) for TIA Rev F or G

Note: Shaft assumed to have ties, not spiral, transverse reinforcing

Site Data

BU#: 806370

Site Name: *HRT 099 943226* App #: *165440, Rev. 1*

Enter Lo	oad Factors	s Below:	
For M (WL) For P (DL)	1.3	< Enter Factor	
For P (DL)	1.3	< Enter Factor	

Pier Pro	perties	
Concrete:		
Pier Diameter =	9.0	ft
Concrete Area =	9160.9	in ²
Reinforcement:		
Clear Cover to Tie =	3.00	in
Horiz. Tie Bar Size=	3	
Vert. Cage Diameter =	8.33	ft
Vert. Cage Diameter =	99.98	in
Vertical Bar Size =	10	y, A
Bar Diameter =	1.27	_ in
Bar Area =	1.27	in ²
Number of Bars =	60	
As Total=	76.2	in²
A s/ Aconc, Rho:	0.0083	0.83%

ACI 10.5 , ACI 21.10.4, and IBC 1810.

Min As for Flexural, Tension Controlled, Shafts:

(3)*(Sqrt(f'c)/Fy: 0.0027
200 / Fy: 0.0033

Minimum Rho Check:

Actual Req'd Min. Rho: 0.33% Flexural Provided Rho: 0.83% OK

Ref. Shaft Max Axial Capacities, φ Max(Pn or Tn):						
Max Pu = (φ=0.65) Pn.						
Pn per ACI 318 (10-2)	14423.73	kips				
at Mu=(φ=0.65)Mn=	10145.61	ft-kips				
Max Tu, (φ=0.9) Tn =		kips				
at Mu=φ=(0.90)Mn=	0.00	ft-kips				

Maximum Shaft Superimposed Forces					
TIA Revision:	F				
Max. Service Shaft M:	2973.91	ft-kips (* Note)			
Max. Service Shaft P:	40	kips			
Max Axial Force Type:	Comp.				
Max Axial Force Type:	The second secon				

(*) Note: Max Shaft Superimposed Moment does not necessarily equal to the shaft top reaction moment

Load Factor	Sha	aft Factore	d Loads
1.30	Mu:	3866.083	ft-kips
1.30	Pu:	52	kips

Material Prope	rties	
Concrete Comp. strength, fc =	3000	psi
Reinforcement yield strength, Fy =	60	ksi
Reinforcing Modulus of Elasticity, E =	29000	ksi
Reinforcement yield strain =	0.00207	
Limiting compressive strain =	0.003	
ACI 318 Cod	е	
Select Analysis ACI Code=	2002	
Seismic Proper	rties	
Seismic Design Category =	В	
Seismic Risk =	Low	

Solve <-- Press Upon Completing All Input (Run)

Results:

Governing Orientation Case: 2

Dist. From Edge to Neutral Axis:

21.17 in

Extreme Steel Strain, et: 0.0117 et > 0.0050, Tension Controlled

Reduction Factor,φ:

0.900

Output Note: Negative Pu=Tension

For Axial Compression, φ Pn = Pu: 52.00
Drilled Shaft Moment Capacity, φMn: 14909.84
Drilled Shaft Superimposed Mu: 3866.08

(Mu/φMn, Drilled S	haft Flexure	CSR:	25.9%
--------------------	--------------	------	-------

kips

ft-kips

ft-kips

806370 - Caisson

CAISSON Version 10.40 9:59:21 AM Saturday, October 20, 2012
Crown Castle USA

* CAISSON - Pier Foundations Analysis and Design - Copyright Power Line Systems, Inc. 1993-2010

Project Title: BU #806370 Project Notes: App. #165440, Rev. 1

Calculation Method: Full 8CD

****** INPUT DATA

Pier Properties

Diameter	Distance of Top of Pier above Ground	Concrete Strength	Steel Yield
(ft)	above Ground (ft)	(ksi)	Strength (ksi)
9.00	0.50	3.00	60.00

Soil Properties

Layer	Туре	Thickness (ft)	Depth at Top of Layer (ft)	Density (1bs/ft^3)	CU (psf)	KP	PHI (deg)
1 2 3 4 5	Clay Clay Clay Clay Clay Clay	5.00 5.00 4.00 5.00 5.00 5.00	0.00 5.00 10.00 14.00 19.00 24.00	100.0 100.0 100.0 36.0 36.0 36.0	1144.0 1650.0 1375.0 1529.0 1684.0		

Design (Factored) Loads at Top of Pier

Moment	Axial Load	Shear Load	Additional Safety Factor Against Soil Failure
(ft-k)	(kips)	(kips)	3011 1411410
2778.0	40.0	29.00	2.92

***** R E S U L T S

Calculated Pier Properties

Length	Weight	End Bearing Pressure
(ft)	(kips)	(psf)
25.000	238.565	628.8

Ultimate Resisting Forces Along Pier

Туре	Distance of Top of Layer to Top of Pier	Thi ckness	Density	CU	KP Force	Arm
	(ft)	(ft)	(lbs/ft^3)	(psf)	(kips)	(ft)
Clay Clay Clay Clay Clay Clay Clay	0.50 5.50 10.50 14.50 16.04 19.50 24.50	5.00 5.00 4.00 1.54 3.46 5.00 0.50	100.0 100.0 100.0 36.0 36.0 36.0 36.0	1144.0 1650.0 1375.0 1375.0 1529.0 1684.0	0.00 411.84 475.20 151.98 -343.02 -550.44 -60.62	3.00 8.00 12.50 15.27 17.77 22.00 24.75

Shear and Moments Along Pier

	Distance below	Shear	Moment	Shear	Moment
	Top of Pier	(with Safety Factor)	(with Safety Factor)	(without Safety Factor)	(without Safety Factor)
	(ft)	(kips)	(ft-k)	(kips)	(ft-k)
-	0.00	84.9	8149.6	29.1	2791.0
	2.50	84.9	8362.0	29.1	2863.7
	5.00	84.9	8574.3	29.1	2936.4
	7.50	-79.8	8621.9	27.3	2952.7
	10.00	-285.7	8165.0	-97.8	2796.2
	12.50	-564.5	7120.5	-193.3	2438.5
	15.00	-851.6	5340.4	-291.6	1828.9
	17.50	-809.1	3114.5	-277.1	1066.6
	20.00	-556.0	1402.6	-190.4	480.3
	22.50	-280.8	356.6	-96.2	122.1
	25.00	-5.6	-1.4	-1.9	-0.5

Equivalent Silty Soil Parameter Tool

This tool determines the equivalent soil parameters for silty soil (having both cohesion and angle of friction), according to the CCI Foundations orgaing discussions (2010), Criteria Item DS-7. The equivalent parameters results are to be input in the PLS-Caisson Software to account for the combined resistance of the granular and cohesive parameters simultaneously present in silty and sirnilar soils

Site Name: HRT 099 943226 App #: 165440, Rev. 1 Site Data BU#: 806370

Neglect Top Layer: ________# of Layers: _______

Input the data in the "shaded" columns. If soil layer is submerged, then enter the saturated density (buoyant unit weight)

ν,	y ^a	Г	Т	_	Г		
Input the data in the "shaded" columns. If soil layer is submerged, then enter the saturated density (buoyant unit weight) Caisson Input	Equivalent K	0.00	4.07	3.67	2.46	2.44	2.43
	Equivalent Cohesion (psf)	0	1144	1650	1375	1529	1684
ght)	P _p total (ksf)	0.000	9.150	13.200	11.003	12.236	13.469
	Clay Resistance (ksf)	0.00	2.40	2.40	0.80	0.80	0.80
y (buoyan	Sand Resistance (ksf)	0.000	6.750	10.800	10.203	11.436	12.669
ted densit	Depth to Mid-Overburden Layer (ft)	250	750	1200	1490	1670	1850
the satura	Depth to Mid- Layer (ft)	2.5	7.5	12	16.5	21.5	26.5
ien enter i	Κ _ρ	0.000	3.000	3.000	2.283	2.283	2.283
nerged, th	Internal Friction Angle (deg)		30	30	23	23	23
er is subr	Cohesion (psf)		300	300	100	100	100
If soil lay	Unit Weight of Soil (pcf)	100	100	100	36	36	36
columns.	To (ft)	9	10	4	19	24	29
"shaded"	From (ft)	0	2	10	14	19	24
ata in the	Layer Thickness (ft)	9	. 2	4	5	5	2
Input the a	Layer.	٦	2	က	4	2	9
_	*******	225	10000			3-34	

Calculation Notes:

- 1-Sand Resistance = 3 * Kp * Overburden ---> (Per equations used in PLS-Caisson Software)
 2- Cohesion Resistance = 8 * C -----------------> (Per equations used in PLS-Caisson Software, Full 8CD approach)
- - 3- Total Resistance = Sand Resistance + Cohesion Resistance
 - 4- Equivalent Kp= Total / Overburden / 3 5- Equivalent C= Total / 8