

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

October 13, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 1358 New Britain Avenue, West Hartford CT 06110 Latitude: 41.730746 Longitude: 72.753669 Site# 876324 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 1358 New Britain Avenue in West Hartford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 86-foot level of the existing 130-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by B+T Group, dated August 18, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated September 13, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the CT Siting Council, TS-NEXTEL-155-010531 on July 13, 2001. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to the Mayor, Shari Cantor and Todd Dumais, Town Planner for the Town of West Hartford, as well as the tower owner (Crown Castle) and property owner (West Hartford Methodist Church)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 130-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 86-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 16.94% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in West Hartford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 86-foot level of the existing 130-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through West Hartford.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Mayor Shari Cantor West Hartford Town Hall 50 S. Main Street, West Hartford CT 06107

Todd Dumais, Town Planner West Hartford Town Hall 50 S. Main Street, West Hartford CT 06107

West Hartford Methodist Church 1358 New Britain Ave. West Hartford, CT 06110

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

STATE OF CONNECTICUT

CT. 257

CONNECTICUT SITING COUNCIL

July 13, 2001

Ten Franklin Square New Britain, Connecticut 06051 Phone: (860) 827-2935 Fax: (860) 827-2950

Ronald C. Clark Manager, Real Estate Operations

Nextel Communications 100 Corporate Park Rocky Hill, CT 06067

TS-NEXTEL-155-010531 - Nextel Communications, Inc. request for an order to approve tower sharing at an existing telecommunications facility located at 1358 New Britain Avenue, West Hartford, Connecticut.

Dear Mr. Clark:

At a public meeting held July 11, 2001, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures, with the emidition for placement of an architectural wall lacade with a brick veneer consistent the adjacent church Initiding and vegetative landscaping, and that these plans be submitted to the West Hartford Town Planner for review, This facility has also been earefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of tadio frequency exposure at the closest point uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

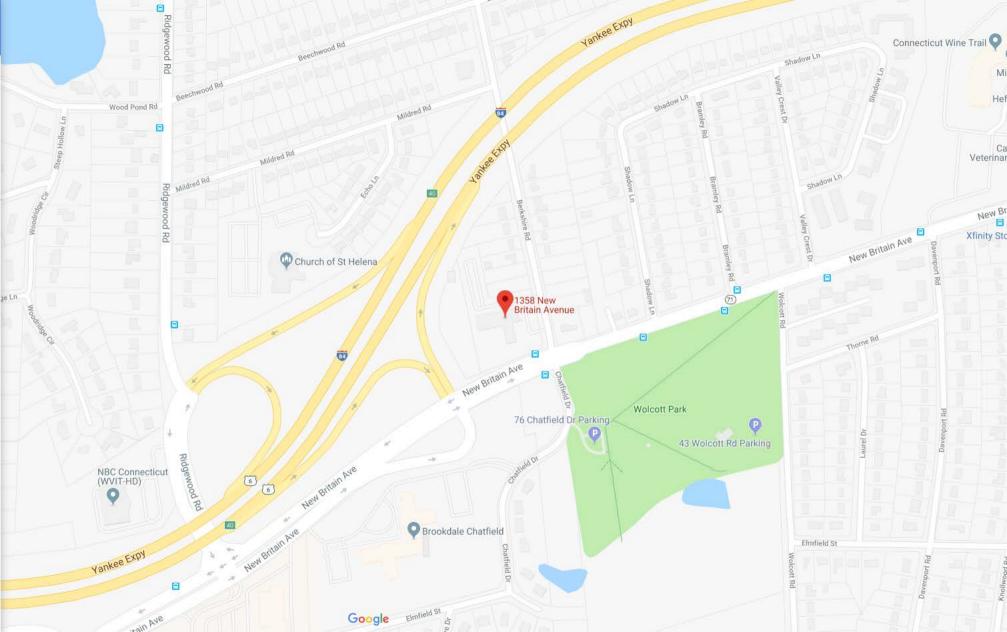
This decision applies only to this request for tower sharing and is not applicable to any other request or The proposed shared use is to be implemented as specified in your letters dated May 31, 2001, June 11,

Thank you for your attention and cooperation.

Very traly yours,

A. Heleton

Chairman


MAG/RKE/laf

Barry M. Peldman, Town Manager, Town of West Hartford Donald Foster, Town Planner, Town of West Hartford Julie M. Donaldson, Fisq., Hurwitz & Sagarin LLC Christophec B. Fisher, Esq., Cuddy & Feder & Worby LLP Stephen J. Humes, Esq., LeBoauf, Lamb, Greene & MacRae

I hillingstermistern wide dida the.

Exhibit B

Property Card

1358 NEW BRITAIN AVENUE

Location 1358 NEW BRITAIN AVENUE

Mblu E15/ 3771/ 1358/ /

Parcel ID 3771 2 1358 0002

Owner WEST HARTFORD

METHODIST CHURCH

Assessment \$161,070

Appraisal \$235,300

Vision Id # 18679

Building Count 1

Current Value

	Appraisal		-	
Valuation Year	Improvements	Land	Total	
2016	\$55,100	\$180,200	\$235,30	
	Assessment	The second secon	THE STATE OF THE S	
Valuation Year	Improvements	Land	Total	
2016	\$34,930	\$126,140	\$161,070	

Owner of Record

Owner

WEST HARTFORD METHODIST CHURCH

Co-Owner C/O CROWN CASTLE (SITE 876324)

Address

PMB 331

4017 WASHINGTON ROAD MCMURRAY, PA 15317

Sale Price

\$0

Certificate 1

Book & Page 515/ 149

Sale Date

07/16/1973

Instrument

Building Photo

Ownership History

Ownership History							
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date		
WEST HARTFORD METHODIST CHURCH	\$0	1	515/ 149	U	07/16/1973		
	\$0	1	298/ 256	U			

Building Information

Building 1 : Section 1

Year Built:

1998

Living Area:

200

Replacement Cost: **Building Percent**

\$40,602

82

Good:

Replacement Cost

Less Depreciation:

\$33,300

Building Attributes

Field

Description

STYLE	Equipment Shed
MODEL	Comm/Ind
Grade	C 1.50
Stories:	1
Occupancy	
Exterior Wall 1	Brick w/Frame
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Built Up
Interior Wall 1	Typical
Interior Wall 2	
Floor Type	Reinf Concrete
Floor Cover	Vinyl
Heating Fuel	Typical
Heating Type	Complete HVAC
AC Type	Complete HVAC
As Built Use	ESHD
Bldg Use	Commercial
# of Bedrooms	
Total Baths	
Туре	00
Wet Sprinkler	
Dry Sprinkler	
1st Floor Use:	
Class	Class C
Frame Type	Rigid Steel
Plumbing	LIGHT
Ceiling	Not Applicable
Group	сом
Wall Height	10

(http://images.vgsi.com/photos/WestHartfordCTPhotos//default.j

Building Layout

TEL[200]

	Legend		
Code	Description	Gross Area	Living Area
TEL	TELEPHONE BUILDING	200	200
		200	200

Extra Features

Adjustment

Extra Features	Legend
No Data for Extra Features	

Land

Land Use

Land Line Valuation

Use Code Description 201

Commercial

Zone R-6 Size (Acres)

0.01

Frontage

Depth

Assessed Value \$126,140 Appraised Value \$180,200

Outbuildings

Outbuildings							
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #	
CP18	Chn Link Fence 8' hght			800 LF	\$13,800	1	
CFC5	Shed - Concrete Block			135 SF	\$8,000		

Valuation History

Appraisal						
Valuation Year	Improvements	Land	Total			
2017	\$55,100	\$180,200	\$235,300			
2016	\$55,100	\$180,200	\$235,300			
2015	\$38,400	\$150,300	\$188,700			

Assessment						
Valuation Year	Improvements	Land	Total			
2017	\$34,930	\$126,140	\$161,070			
2016	\$34,930	\$126,140	\$161,070			
2015	\$26,880	\$105,210	\$132,090			

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

O is h wireless...

DISH Wireless L.L.C. SITE ID:

BOBDL00078A

DISH Wireless L.L.C. SITE ADDRESS:

1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL ELECTRICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX				
SHEET NO.	SHEET TITLE				
T-1	TITLE SHEET				
A-1	OVERALL AND ENLARGED SITE PLAN				
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE				
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS				
A-4	EQUIPMENT DETAILS				
A-5	EQUIPMENT DETAILS				
A-6	EQUIPMENT DETAILS				
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES				
E-2	ELECTRICAL DETAILS				
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE				
G-1	GROUNDING PLANS AND NOTES				
G-2	GROUNDING DETAILS				
G-3	GROUNDING DETAILS				
RF-1	RF CABLE COLOR CODE				
GN-1	LEGEND AND ABBREVIATIONS				
GN-2	GENERAL NOTES				
GN-3	GENERAL NOTES				
GN-4	GENERAL NOTES				

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORK:

INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)

INSTALL (1) PROPOSED TOWER PLATFORM MOUNT

INSTALL PROPOSED JUMPERS

INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)

GROUND SCOPE OF WORK:

• INSTALL (1) PROPOSED METAL PLATFORM

INSTALL PROPOSED ICE BRIDGE
 PROPOSED PPC CABINET

INSTALL PROPOSED EQUIPMENT CABINET

INSTALL (PROPOSED POWER CONDUIT

INSTALL (1) PROPOSED TELCO CONDUIT

INSTALL PROPOSED TELCO-FIBER BOX INSTALL (1) PROPOSED GPS UNIT

INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)
INSTALL (1) PROPOSED METER IN A EXISTING SOCKET

REPLACE EXISTING FENCE AS NECESSARY

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

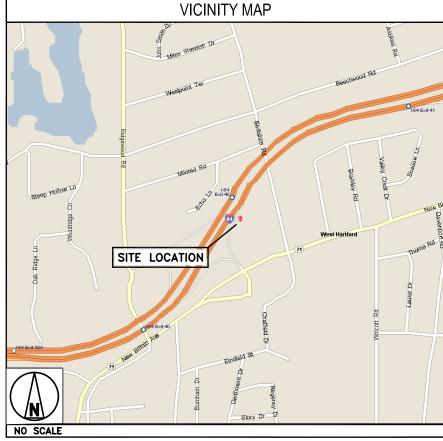
 \mathfrak{A}

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTIO

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED


CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SITE INFORMATION PROJECT DIRECTORY WEST HARTFORD METHODIST CHURCH PROPERTY OWNER: DISH Wireless L.L.C. ADDRESS: 1358 NEW BRITAIN AVENUE 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 WEST HARTFORD, CT 06110 TOWER TYPE: MONOPOLE TOWER OWNER: CROWN CASTLE TOWER CO SITE ID: 876324 2000 CORPORATE DRIVE CANONSBURG, PA 15317 TOWER APP NUMBER: 556615 (877) 486-9377 SITE DESIGNER: B+T GROUP COUNTY: HARTFORD 1717 S. BOULDER AVE, SUITE 300 TULSA, OK 74119 LATITUDE (NAD 83): 41' 43' 50 7" N 41.730746 N (918) 587-4630 LONGITUDE (NAD 83): 72° 45' 13.2" W 72 753669 W ZONING JURISDICTION: CONNECTICUT SITING COUNCIL SITE ACQUISITION: NICHOLAS CURRY NICHOLAS.CURRY® ZONING DISTRICT: CONSTRUCTION MANAGER: JAVIER SOTO JAVIER SOTO@DISH.COM PARCEL NUMBER: 09003155-0381170001 OCCUPANCY GROUP: RF ENGINEER: BOSSENER CHARLES BOSSENER.CHARLES® DISH.COM CONSTRUCTION TYPE: TELEPHONE COMPANY: CROWN CASTLE

DIRECTIONS

DIRECTIONS FROM DISTRICT OFFICE:

From Waterbury, take 84 East to exit 40, exit off turn left, go to first stop light, turn left again, tower in church parking lot on the left.

5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC.

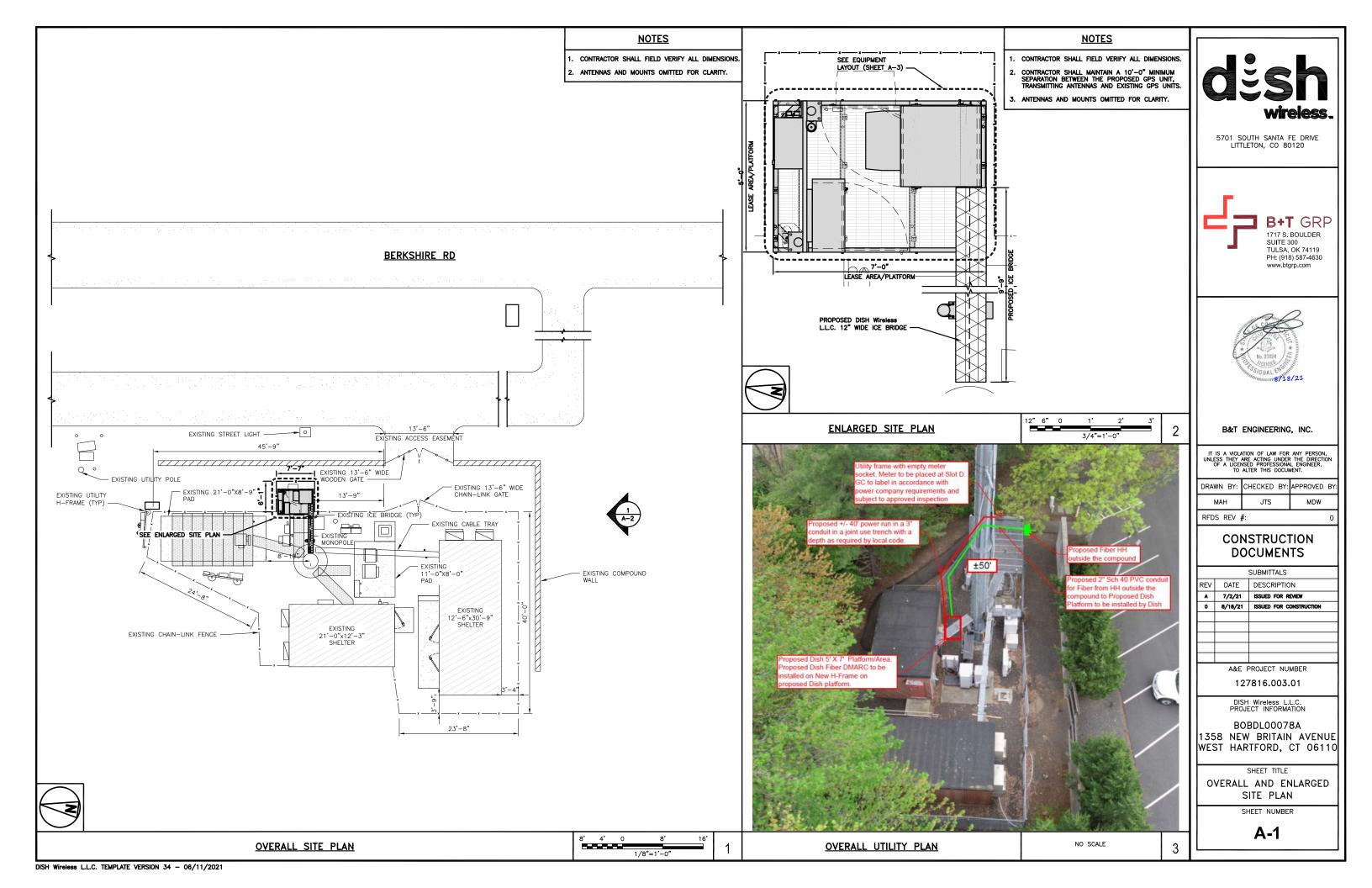
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

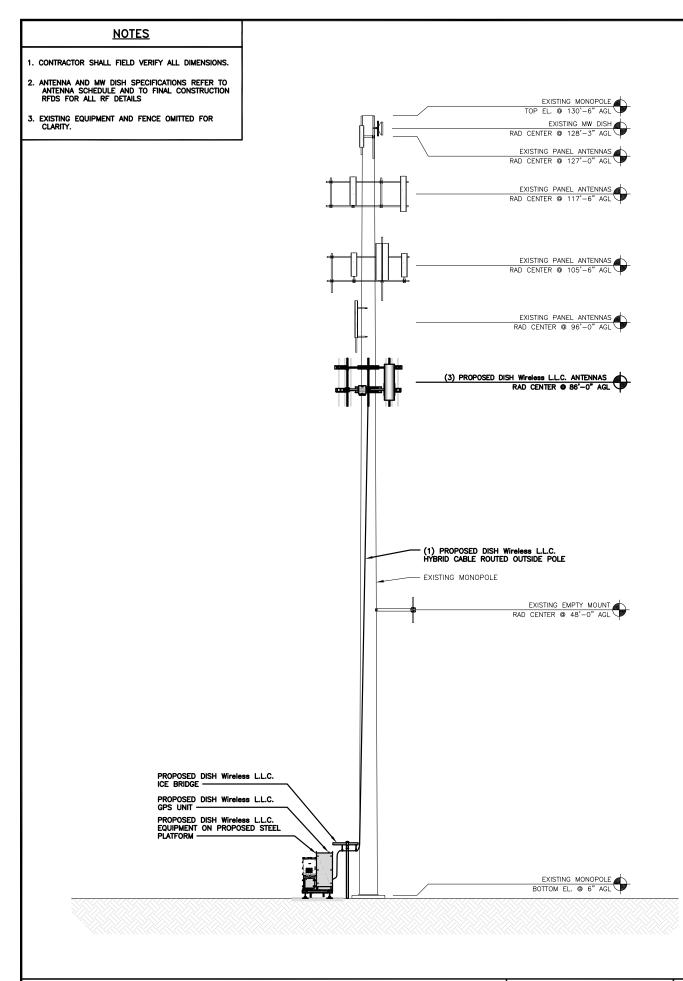
DRAWN BY:		CHECKED	BY:	APPROVED	BY:
MAH		JTS		MDW	

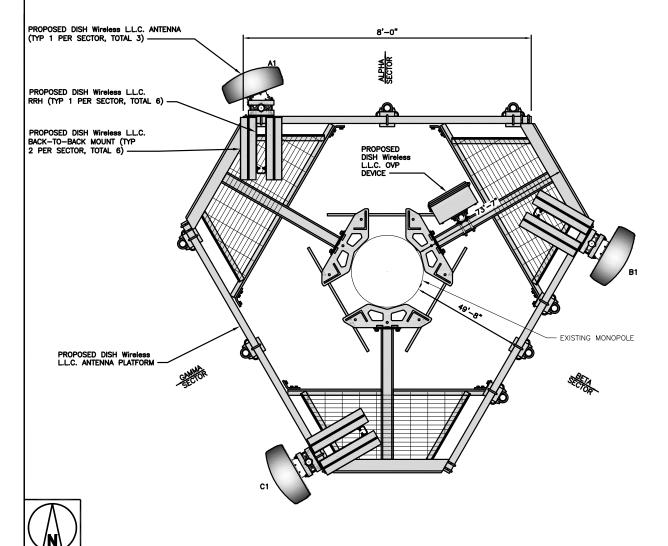
RFDS REV #:

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS						
REV	DATE DESCRIPTION						
A	7/2/21	ISSUED FOR REVIEW					
0	8/18/21	ISSUED FOR CONSTRUCTION					
	A&E F	PROJECT NUMBER					


127816.003.01


BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110


> SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

ANTENNA LAYOUT

			ANTENNA						
SECTOR	POSITION	EXISTING OR PROPOSED	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	SIZE (HxW)	AZIMUTH	RAD CENTER	FEED LINE TYPE AND LENGTH	
ALPHA	A1	PROPOSED	JMA WIRELESS-MX08FR0665-21	5G	72.0" x 20.0"	340°	86'-0"	(4) 111011 04040177	
BETA	B1	PROPOSED	JMA WIRELESS-MX08FR0665-21	5G	72.0" × 20.0"	120°	86'-0"	(1) HIGH-CAPACITY HYBRID CABLE (119' LONG)	
GAMMA	C1	PROPOSED	JMA WIRELESS-MX08FR0665-21	5G	72.0" x 20.0"	240°	86'-0"	(119 2010)	

		RRH					
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY				
ALPHA	A1	FUJITSU - TA08025-B604	5G				
ALPHA	A1	FUJITSU - TA08025-B605	5G				
BETA	B1	FUJITSU - TA08025-B604	5G				
DEIA	B1	FUJITSU - TA08025-B605	5G				
CAMMA	C1	FUJITSU - TA08025-B604	5G				
GAMMA	C1	FUJITSU - TA08025-B605	5G				

NOTES

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED	BY:
	MAH	JTS	MDW	
ı	DEDC DEV	и.		

CONSTRUCTION **DOCUMENTS**

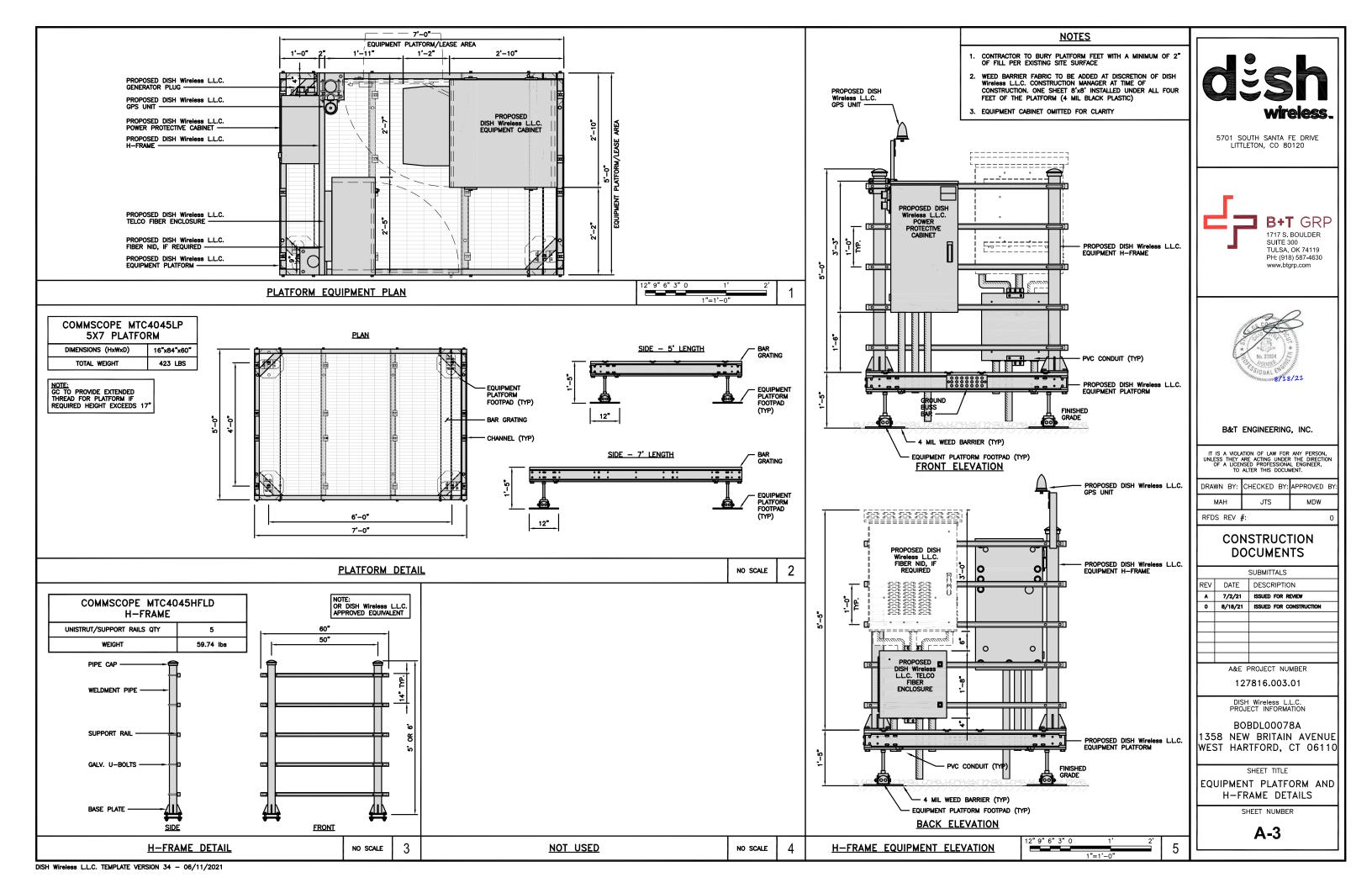
7							
1	SUBMITTALS						
1	REV	DATE	DESCRIPTION				
- 1	A	7/2/21	ISSUED FOR REVIEW				
- 1	0	8/18/21	ISSUED FOR CONSTRUCTION				
- 1							
- 1							
- 1							
- 1							
- 1							
- 1		A&E f	PROJECT NUMBER				

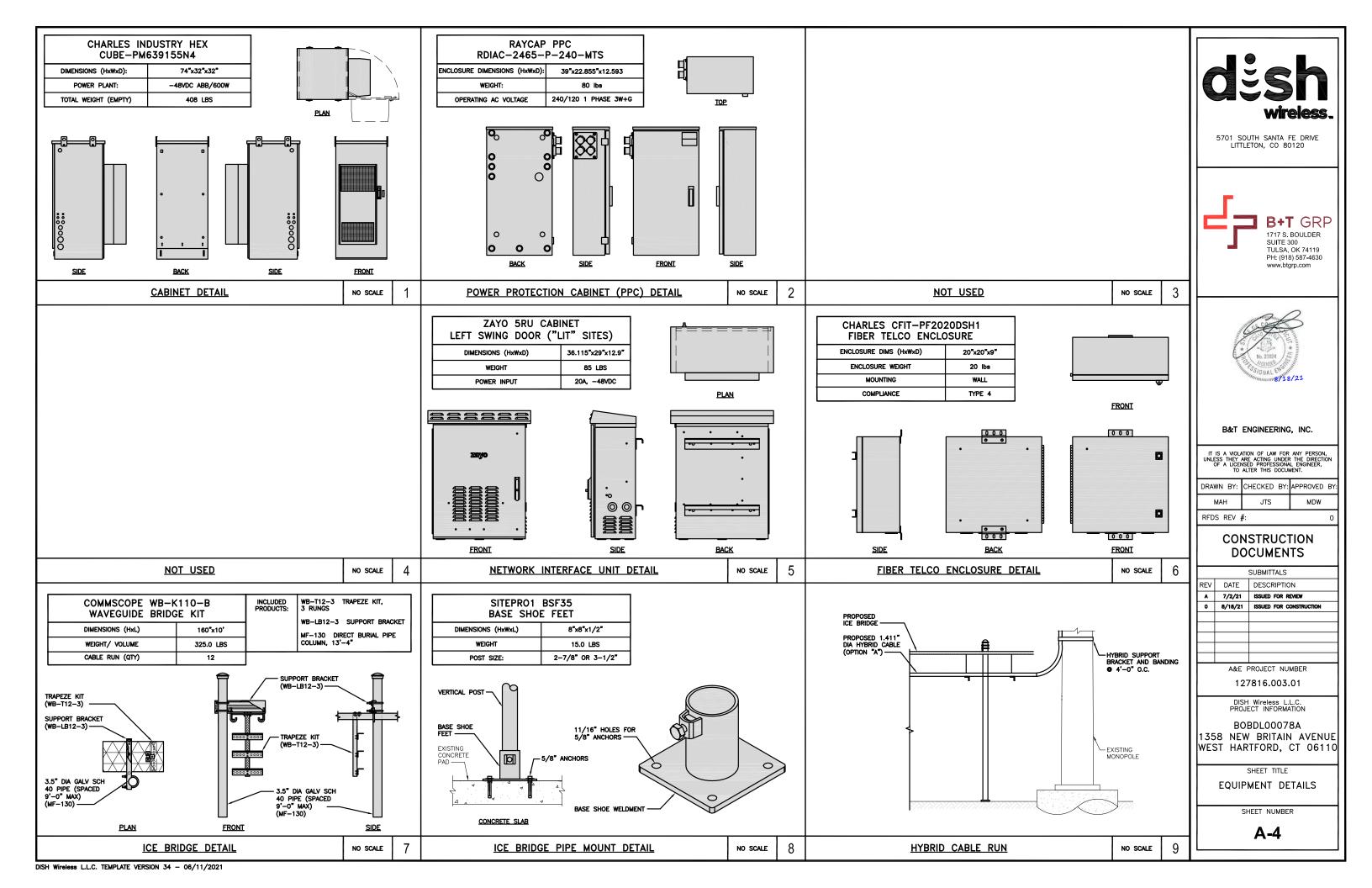
127816.003.01

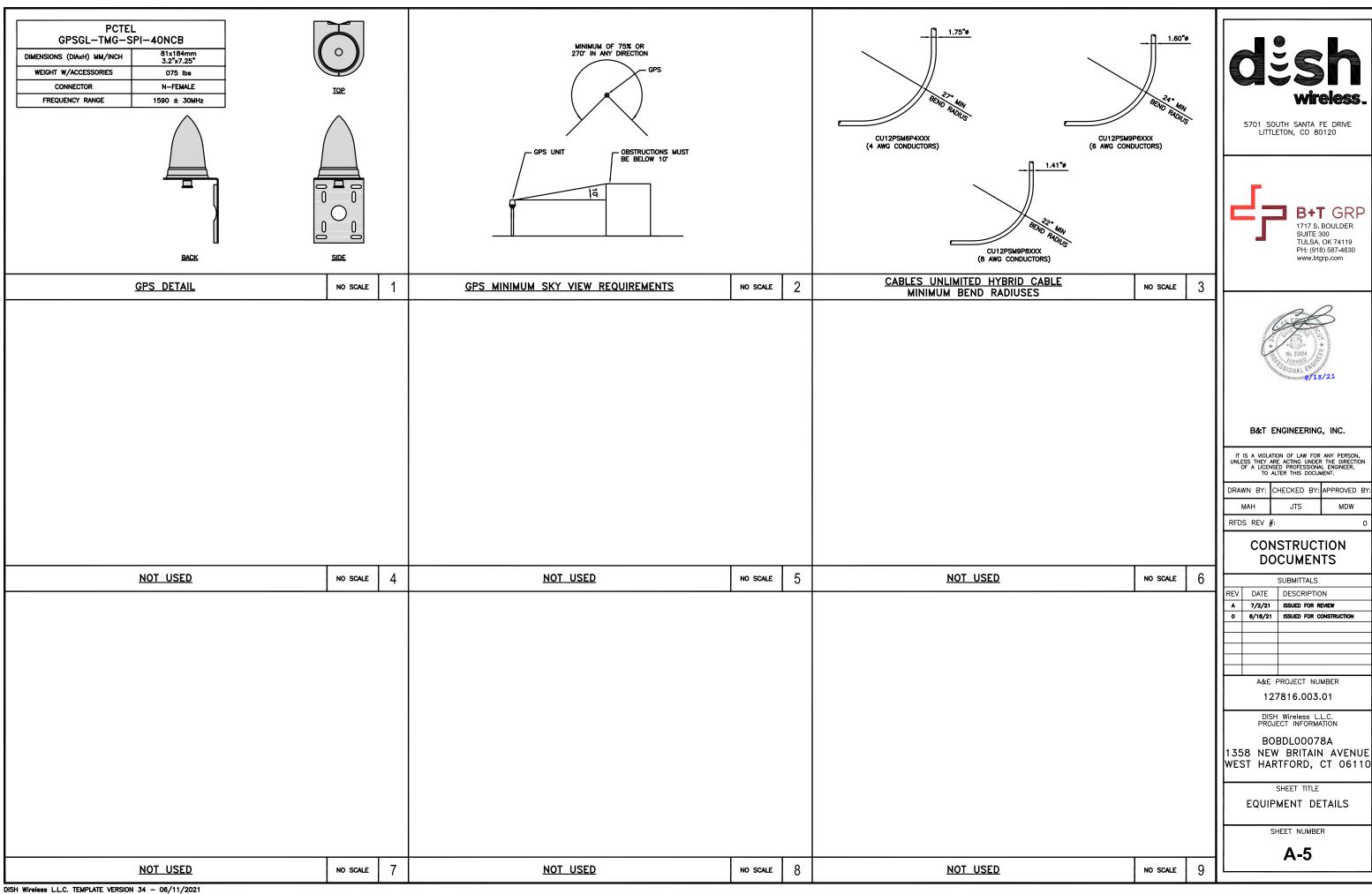
DISH Wireless L.L.C. PROJECT INFORMATION

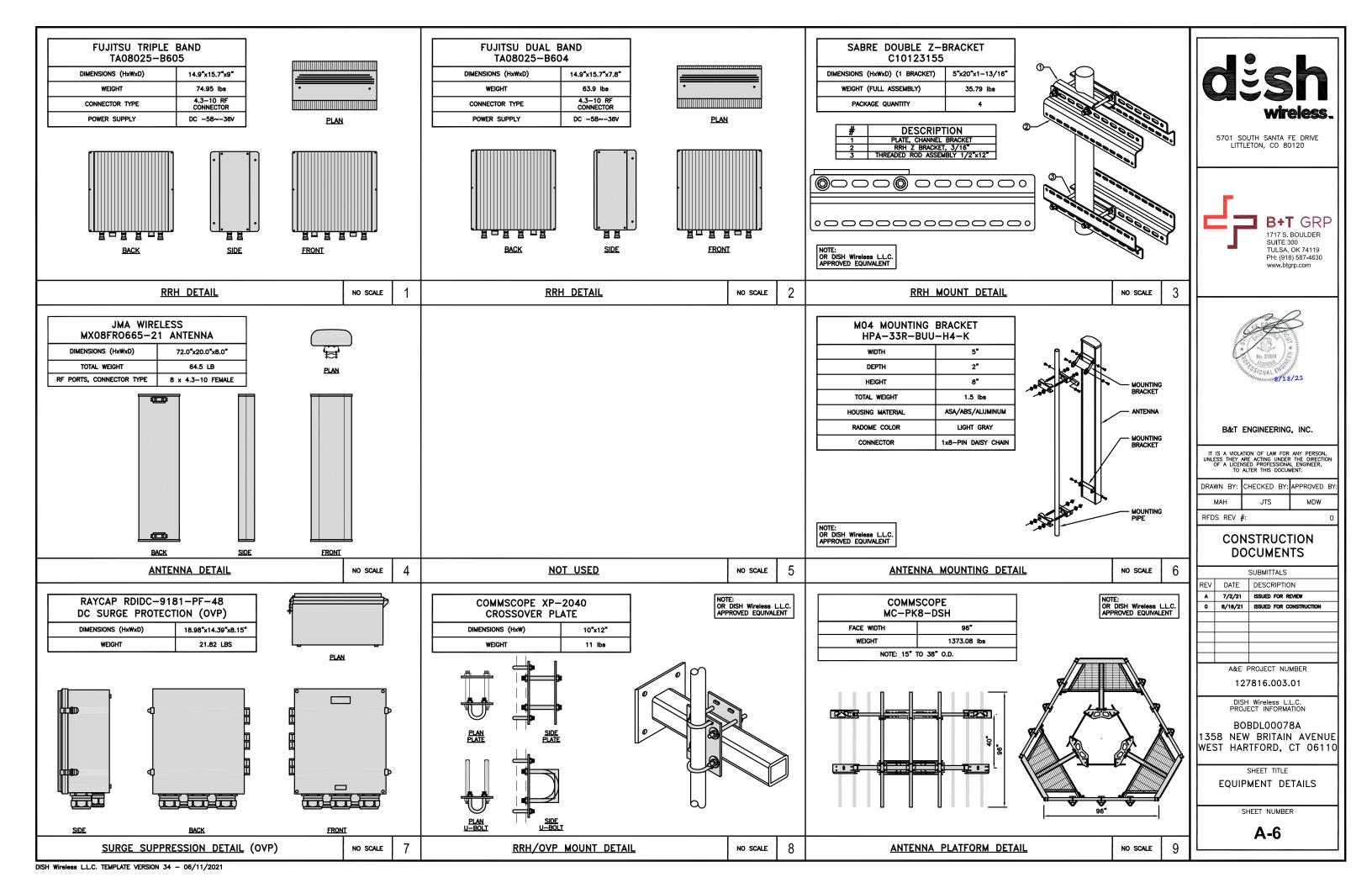
BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110

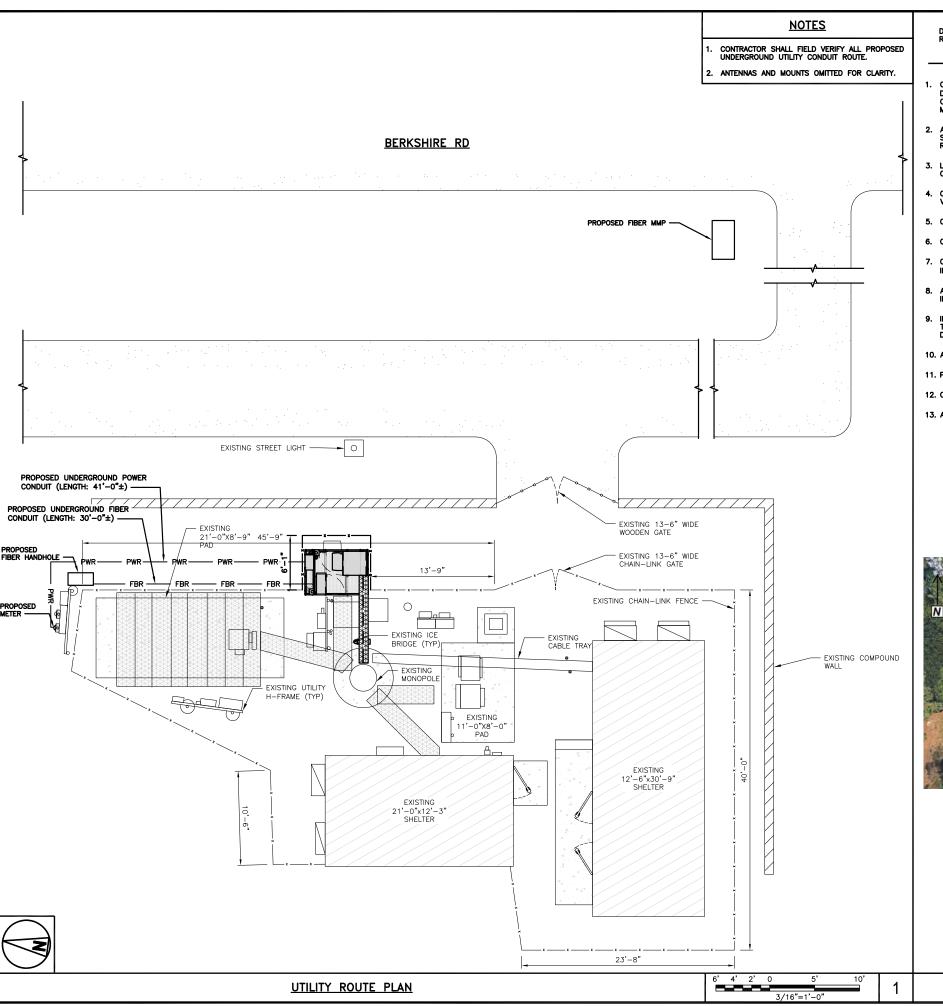
SHEET TITLE


ELEVATION, ANTENNA LAYOUT AND SCHEDULE


SHEET NUMBER


A-2


1/8"=1'-0"


PROPOSED SOUTH ELEVATION



DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING ± 24 V and ± 48 V conductors. RED MARKINGS SHALL IDENTIFY ± 24 V and blue markings shall identify ± 48 V.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS.
 VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B+T GRP 1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com

B&T ENGINEERING, INC.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
МАН	JTS	MDW

RFDS REV #:

CONSTRUCTION DOCUMENTS

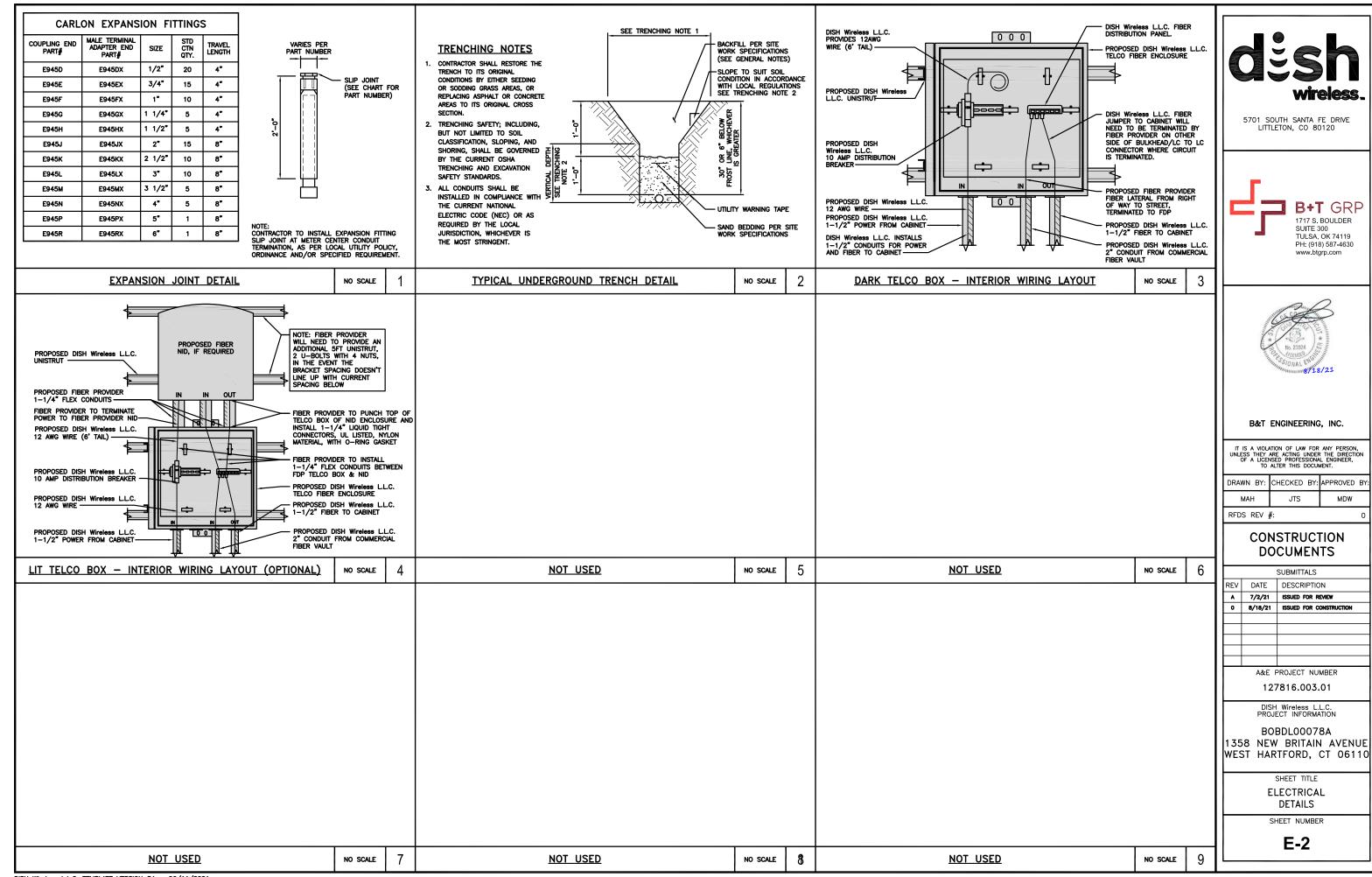
SUBMITTALS						
REV	EV DATE DESCRIPTION					
A						
0 8/18/21 ISSUED FOR CONSTRUCTION						
	∧ 9.E I	DOUBLE NITIMBED				

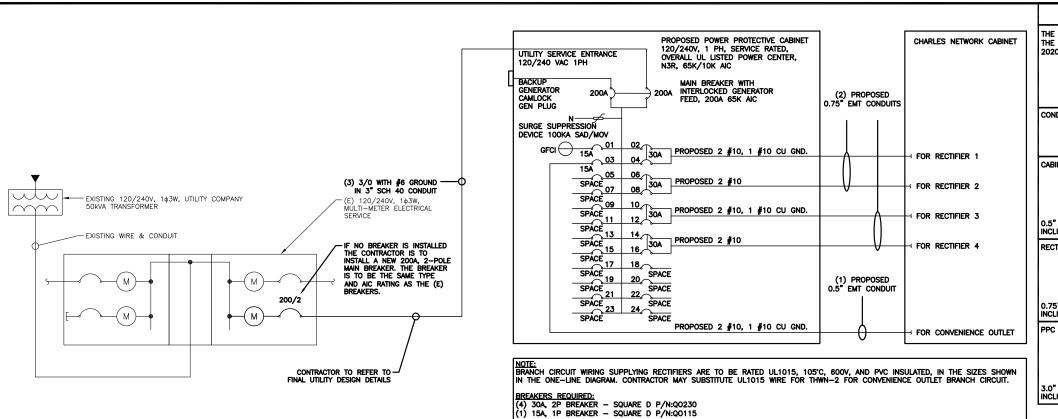
A&E PROJECT NUMBER 127816.003.01

DISH Wireless L.L.C. PROJECT INFORMATION

BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110

SHEET TITLE


ELECTRICAL/FIBER ROUTE PLAN AND NOTES


SHEET NUMBER

E-1

ELECTRICAL NOTES

NO SCALE

NOTES

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(σ) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358.

0.5" CONDUIT — 0.122 SQ. IN AREA

0.75" CONDUIT — 0.213 SQ. IN AREA

2.0" CONDUIT — 1.316 SQ. IN AREA

3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND TOTAL = 0.0633 SQ. IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND TOTAL = 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

NO SCALE

NO SCALE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY JTS MDW MAH

B&T ENGINEERING, INC.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B+T GRP

1717 S. BOULDER SUITE 300 TULSA, OK 74119

PH: (918) 587-4630

www.btgrp.com

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

SUBMITTALS REV DATE DESCRIPTION								
DEV DATE DECODIDITION	SUBMITTALS							
REV DATE DESCRIPTION	DATE DESCRIPTION				DESCRIPTION			
A 7/2/21 ISSUED FOR REVIEW	W							
0 8/18/21 ISSUED FOR CONSTRUCTO	TRUCTIO							

A&E PROJECT NUMBER

127816.003.01

BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110

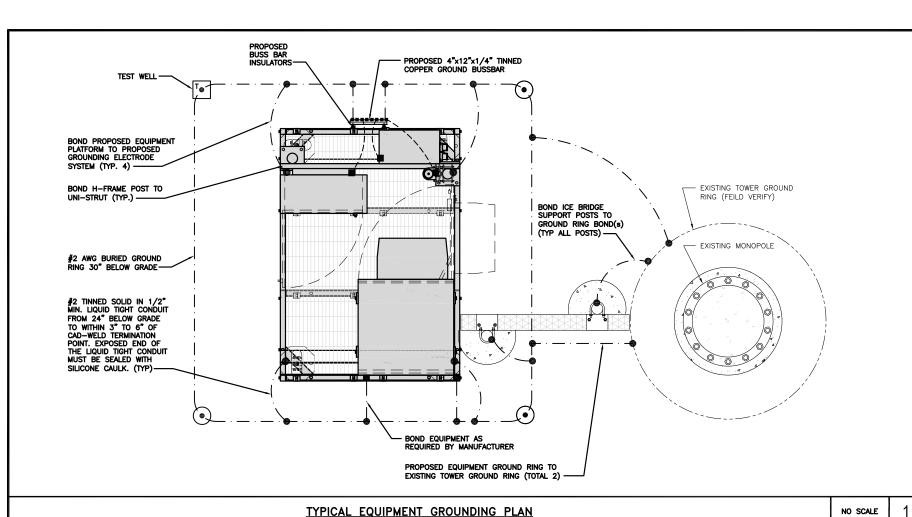
SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3

LOAD SERVED		AMPS TTS)	TRIP	СК1 #	Р	HAS	Е	СКТ #	TRIP		AMPS TTS)	LOAD SERVED
	L1	L2			Ь.					L1	L2	
PPC GFCI OUTLET	180		15A	1	ζ	Α	4	2	30A	2880		ABB/GE INFINITY
CHARLES GFCI OUTLET		180	15A	3	ζ	В	Δ	4	JUN		2880	RECTIFIER 1
-SPACE-				5	7	A	Ł	6	30A	2880		ABB/GE INFINITY
-SPACE-				7	ζ	В	Σ	8	JUA		2880	RÉCTIFIER 2
-SPACE-				9	Σ	Α	돳	10	30A	2880		ABB/GE INFINITY
-SPACE-				11	Σ	В	Σ	12	JUA		2880	RÉCTIFIER 3
-SPACE-				13	$\overline{\Sigma}$	Α	모	14	704	2880		ABB/GE INFINITY
-SPACE-				15	7	В	≺	16	30A		2880	RÉCTIFIER 4
-SPACE-				17	7	Α	7	18				-SPACE-
-SPACE-				19	$\overline{\Sigma}$	В	\overline{Z}	20				-SPACE-
-SPACE-				21	7	Α	7	22				-SPACE-
-SPACE-				23	Σ	В	7	24				-SPACE-
VOLTAGE AMPS	180	180								11520	11520	
200A MCB, 16, 24 SPA	CE, 120,	/240V	L1			L2						
MB RATING: 65,000 AIC			1170	-	1	170	0	VOL	TAGE AM	IPS		
			98			98		AMF	PS .			
				9	8			MAX	AMPS			
				1	23			MAX	125%			


PANEL SCHEDULE

2

NOT USED

NO SCALE

DISH Wireless L.L.C. TEMPLATE VERSION 34 - 06/11/2021

TYPICAL ANTENNA GROUNDING PLAN

NOTES

NO SCALE

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

EXOTHERMIC CONNECTION MECHANICAL CONNECTION

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #6 AWG STRANDED & INSULATED

GROUND ROD

(•)

— · — · — #2 AWG SOLID COPPER TINNED

▲ BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FORMAL TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- © Interior ground ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- GROUND BAR OR EXTERIOR GROUND RING.
- UIPMENT FRAMES SHALL BE THE GROUND BUS THAT
- NDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA RANDED GREEN INSULATED COPPER BOND TO THE
- FEET OF THE EXTERIOR GROUND RING OR OBJECTS NODED TO THE GROUND RING WITH A #2 AWG SOLID EEDING 25 FEET. BONDS SHALL BE MADE AT EACH
- TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED
- BE BONDED TO THE GROUND RING WITH #2 AWG BARE ILDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- C SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS RY ADDITIONS, BATTERY REPLACEMENTS AND AS IT SHALL BE REQUIRED THAT SERVICE UIPPED WITH A MASTER DC SYSTEM RETURN GROUND ETURN BUS DIRECTLY CONNECTED TO THE CELL SITE
- CALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

GROUNDING KEY NOTES

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED	BY:			
	MAH	JTS	MDW				
П	RFDS REV #:						

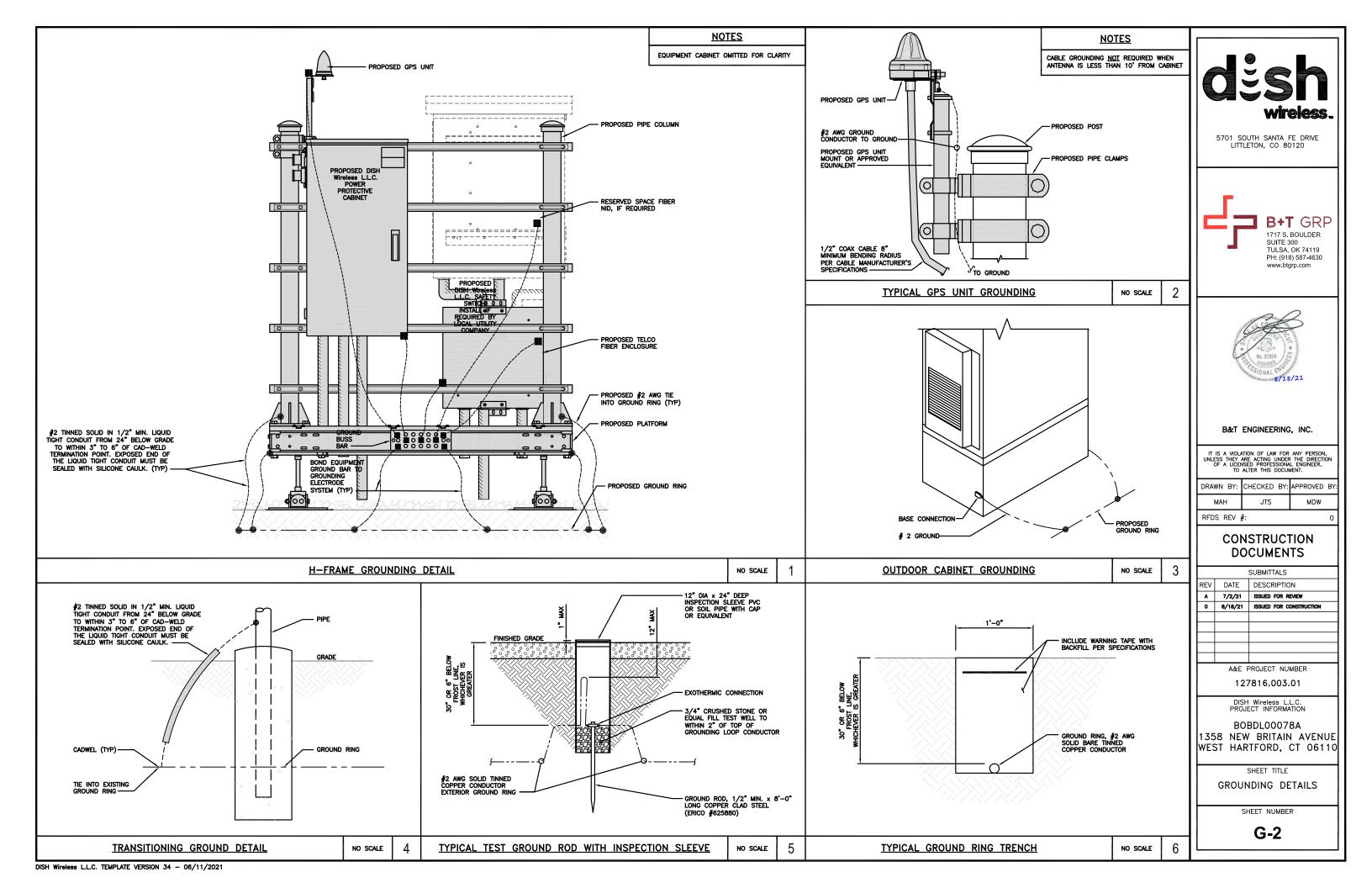
CONSTRUCTION **DOCUMENTS**

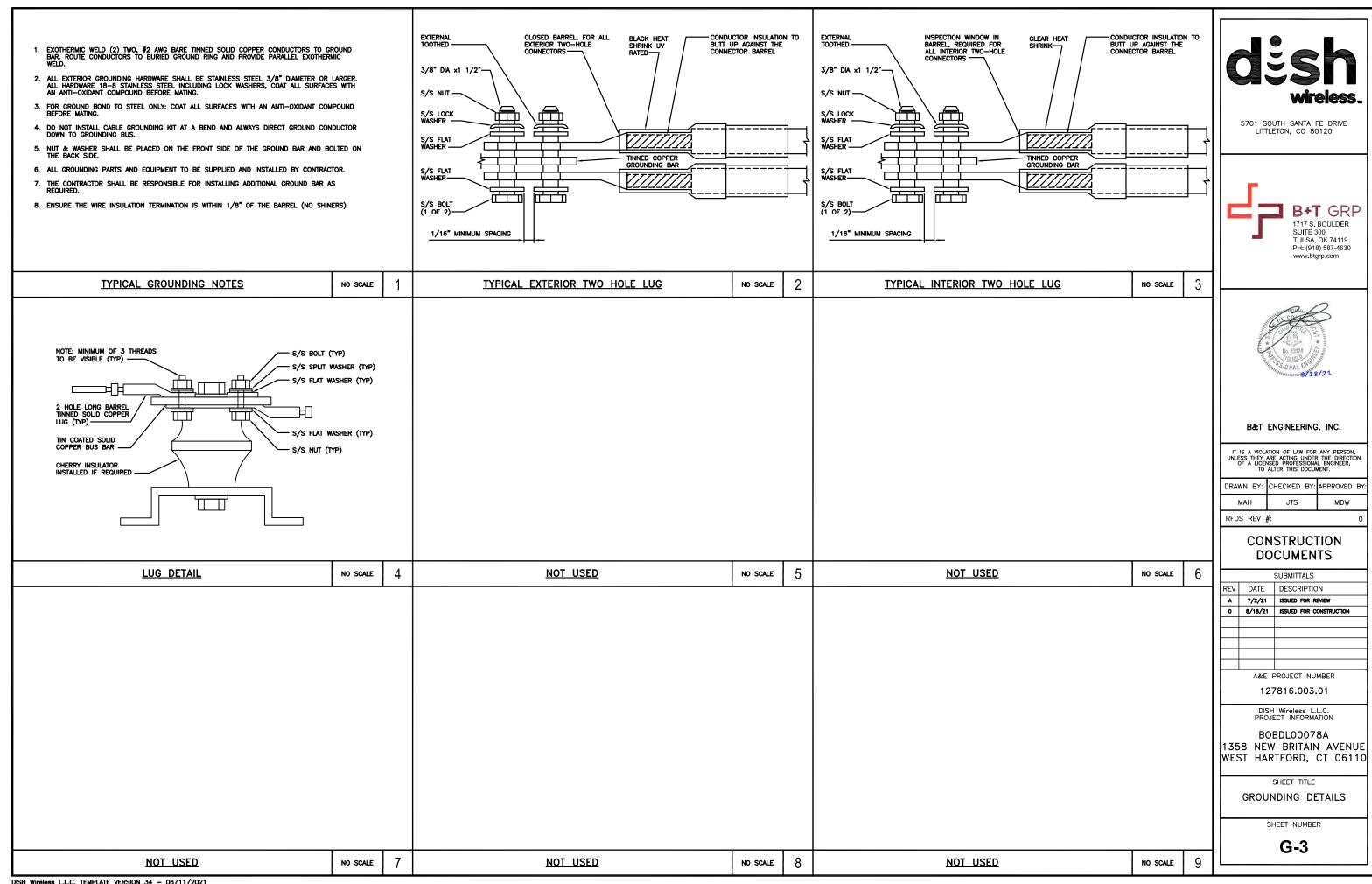
	SUBMITTALS					
REV	V DATE DESCRIPTION					
Α.	7/2/21	ISSUED FOR REVIEW				
0	8/18/21	ISSUED FOR CONSTRUCTION				
	A&F F	PROJECT NUMBER				

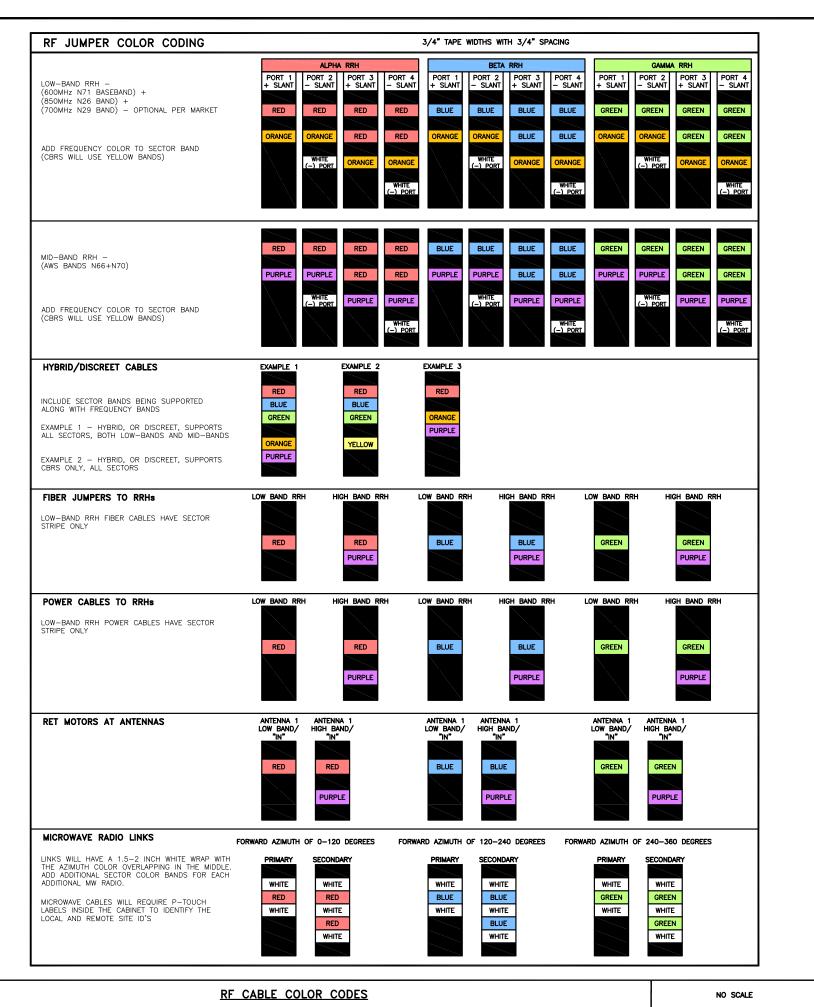
127816.003.01

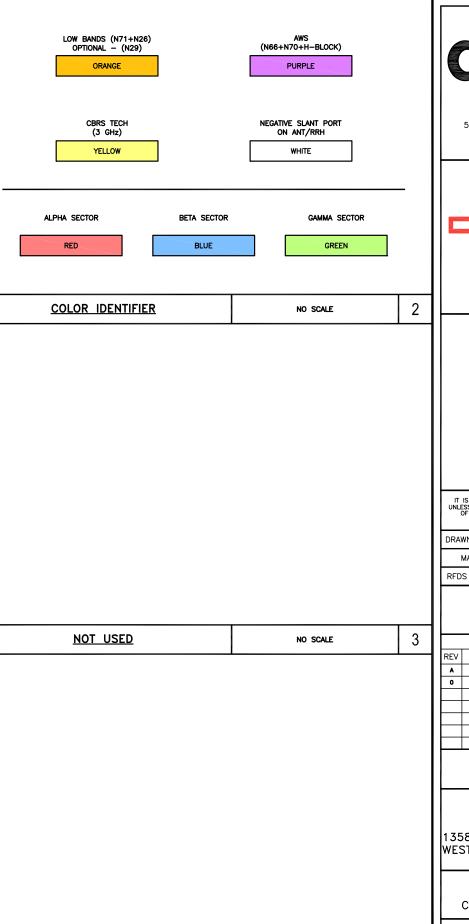
DISH Wireless L.L.C. PROJECT INFORMATION

BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110


> SHEET TITLE GROUNDING PLANS AND NOTES


> > SHEET NUMBER


NO SCALE


G-1

PROPOSED #2 AWG STRANDED COPPER GREEN INSULATED (TYP) PROPOSED 4"x6"x1/4" TINNED COPPER SECTOR GROUND BUSSBAR (TYP OF 3) PROPOSED UPPER TOWER GROUND BAR	TELCO GROUND BAR; BOND TO BOTH CELL REFERENCE FRAME BONDING: THE BONDING POINT FOR TELECOM EQIS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEN KINTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND IN OF THE INTERIOR GROUND RING REQUIRE A #6 AWG ST INTERIOR GROUND RING. FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 BONDED TO THE EXTERIOR GROUND RING SHALL BE BOTHNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCE GATE POST AND ACROSS GATE OPENINGS. MEXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLOND RING. NICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BITNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELL GROUND RING. DURING ALL DC POWER SYSTEM CHANGES INCLUDING DO OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTER INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEM CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPMENT OF THE COMMON REFERENCE GROUND BAR TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICAREFER TO DISH WIREJESS L.L.C. GROUNDING NOTES.
	REFER TO DISH WITHOUS L.L.C. GROUNDING NOTES.

NO SCALE

NOT USED

dësh wireless

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B+T GRP 1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com

B&T ENGINEERING, INC.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

MAH JTS MDW	DRAWN BY	CHECKED BY:	APPROVED BY:
	MAH	JTS	MDW

RFDS REV #:

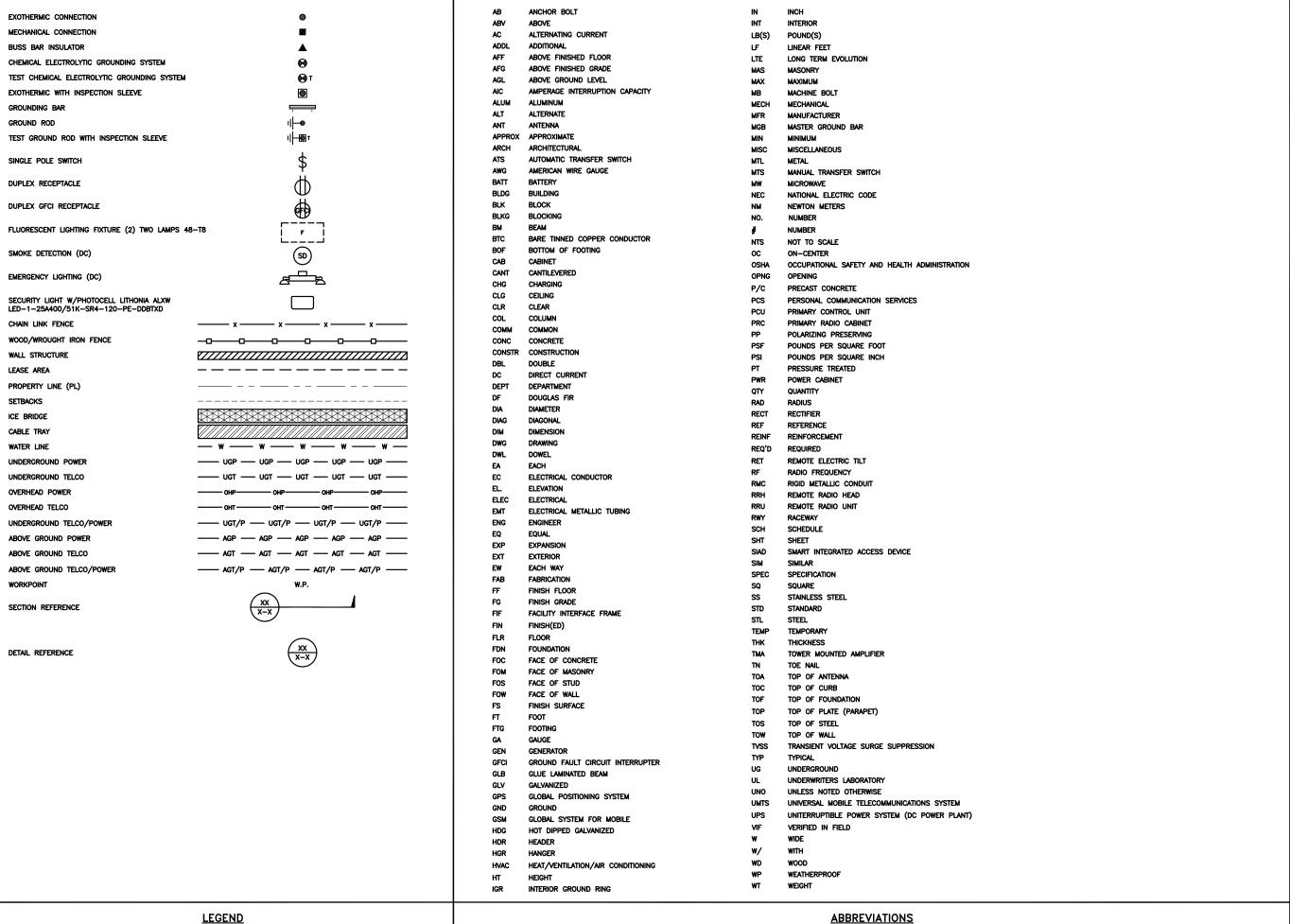
CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	7/2/21	ISSUED FOR REVIEW				
0	8/18/21	ISSUED FOR CONSTRUCTION				
A&E PROJECT NUMBER						

A&E PROJECT NUMBER

127816.003.01

PROJECT INFORMATIO


BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110

SHEET TITLE

CABLE COLOR CODES

SHEET NUMBER

RF-1

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

www.btgrp.com

B&T ENGINEERING, INC.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
MAH	JTS	MDW

RFDS REV #:

CONSTRUCTION DOCUMENTS

L			SUBMITTALS
Ī	REV	DATE	DESCRIPTION
Г	A	7/2/21	ISSUED FOR REVIEW
Г	0	8/18/21	ISSUED FOR CONSTRUCTION
г			

A&E PROJECT NUMBER

127816.003.01

PROJECT INFORMATIO

BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIFELDS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED	BY:
MAH	JTS	MDW	
RFDS REV	#:		0

CONSTRUCTION DOCUMENTS

0.101.000.00							
SUBMITTALS							
REV DATE DESCRIPTION							
A 7/2/21 ISSUED FOR REVIEW							
0 8/18/21 ISSUED FOR CONSTRUCT	ION						
A&E PROJECT NUMBER							

127816.003.01

DISH Wireless L.L.C. PROJECT INFORMATIO

BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.
- UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf
- ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°f AT TIME OF PLACEMENT.
- CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- . CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- TIE WRAPS ARE NOT ALLOWED.
- ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. NEC.
- 21 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28 WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

B&T ENGINEERING, INC.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

Т	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
١	MAH		JTS		MDW	

RFDS REV #

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS								
REV	DATE	DESCRIPTION							
Α	7/2/21	ISSUED FOR REVIEW							
0	8/18/21	ISSUED FOR CONSTRUCTION							
	A&E F	PROJECT NUMBER							

127816.003.01

BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

www.btgrp.com

B&T ENGINEERING, INC.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY	:	CHECKED	BY:	APPROVED	BY:
	MAH		JTS		MDW	
ш			,,			

RFDS REV #

CONSTRUCTION DOCUMENTS

	SUBMITTALS								
REV	DATE	DESCRIPTION							
A	7/2/21	ISSUED FOR REVIEW							
0	8/18/21	ISSUED FOR CONSTRUCTION							
	A&F I	PRO IECT NI IMBER							

127816.003.01

DISH Wireless L.L

PROJECT INFORMATIO

BOBDL00078A 1358 NEW BRITAIN AVENUE WEST HARTFORD, CT 06110

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: September 13, 2021

Crown Castle 2000 Corporate Drive Canonsburg. PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOBDL00078A Site Name: CT-CCI-T-876324

Crown Castle Designation: BU Number: 876324

Site Name: WEST HARTFORD UNITED METHODIST

 JDE Job Number:
 650068

 Work Order Number:
 2016303

 Order Number:
 556615 Rev. 0

Engineering Firm Designation: Crown Castle Project Number: 2016303

Site Data: 1358 New Britain Avenue, WEST HARTFORD, HARTFORD County, CT

Latitude 41° 43′ 50.37″, Longitude -72° 45′ 13.17″

130 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity-96.8%

This analysis utilizes an ultimate 3-second gust wind speed of 117 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Kibreab Gebremariam

Respectfully submitted by:

Terry P Styran
2021.09.14
2001.56:06 -04'00'

Terry P. Styran, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC5
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 130 ft Monopole tower designed by ROHN. The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 117 mph

Exposure Category:CTopographic Factor:1Ice Thickness:2 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	l = 1	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
86.0	86.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-3/8
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	ng Line of Antenna Antenna Model		Number of Feed Lines	Feed Line Size (in)				
	128.0	1	andrew	VHLP2-18				
		3	argus technologies	LLPX310R w/ Mount Pipe				
		2	dragonwave	A-ANT-18G-2-C	3	1/4 5/16		
127.0	127.0	1	raycap	DC6-48-60-18-8F	3 3 2	1/2		
	127.0	127.0	127.0	3	samsung telecommunications	RRH-2WB	2	Conduit
			tower mounts	Side Arm Mount [SO 102-3]				
447.0	117.0	3	alcatel lucent	800MHz 2X50W RRH W/FILTER				
117.0		1	tower mounts	Side Arm Mount [SO 102-3]	-	-		
	115.0	3	alcatel lucent	PCS 1900MHz 4x45W-65MHz				
		3	alcatel lucent	TD-RRH8x20-25				
116.0	440.0	116.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	3	1-1/4	
110.0	110.0	3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe	1	3/4		
		1	tower mounts	Platform Mount [LP 502-1]				
105.0	107.0	3	antel	BXA-70063/4CF w/ Mount Pipe	6	7/8		
103.0	107.0	6	commscope	SBNHH-1D65B w/ Mount Pipe	2	1-5/8		

Mounting Level (ft)	Flavation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	samsung telecommunications	RFV01U-D1A		
		1	raycap	RRFDC-3315-PF-48		
	106.0	1	rfs celwave	DB-T1-6Z-8AB-0Z		
	100.0	3	samsung telecommunications	RFV01U-D2A		
	105.0	1	tower mounts	Platform Mount [LP 502-1]		
	104.0	3	antel	BXA-80063-4CF-EDIN-2 w/ Mount Pipe		
96.0	96.0	3	rfs celwave	APXV18-209015-C-A20	6	1 5/0
90.0	1		tower mounts	Pipe Mount [PM 601-3]	0	1-5/8
60.0	60.0	2	tower mounts	Side Arm Mount [SO 701-1]	-	-
50.0	50.0	1	lucent	KS24019-L112A	1	1/2
50.0	30.0	1	tower mounts	Side Arm Mount [SO 701-1]		1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	1529734	CCISITES
4-POST-MODIFICATION INSPECTION	2364340	CCISITES
4-POST-MODIFICATION INSPECTION	2745780	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	1615437	CCISITES
4-TOWER MANUFACTURER DRAWINGS	1771422	CCISITES
4-POST-MODIFICATION INSPECTION	6894104	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2364338	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2745779	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	6581208	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
130 - 126	Pole	TP16x16x0.1875	Pole	1.7%	Pass
126 - 122	Pole	TP16x16x0.1875	Pole	6.6%	Pass
122 - 120	Pole	TP16x16x0.1875	Pole	9.3%	Pass
120 - 116	Pole	TP24x24x0.25	Pole 5.3%		Pass
116 - 112	Pole	TP24x24x0.25	Pole	10.9%	Pass
112 - 108	Pole	TP24x24x0.25	Pole	16.4%	Pass
108 - 104	Pole	TP24x24x0.25	Pole	24.0%	Pass
104 - 100	Pole	TP24x24x0.25	Pole	33.1%	Pass
100 - 96	Pole	TP24x24x0.25	Pole	42.5%	Pass
96 - 92	Pole	TP24x24x0.25	Pole	52.6%	Pass
92 - 90	Pole	TP24x24x0.25	Pole	57.7%	Pass
90 - 86	Pole	TP24x24x0.375	Pole 43.3%		Pass
86 - 83.5	Pole	TP24x24x0.375	Pole 49.0%		Pass
83.5-83.25	Pole + Reinf.	TP24x24x0.6	Reinf. 8 Tension Rupture	35.3%	Pass
83.25 - 79.25	Pole + Reinf.	TP24x24x0.6	Reinf. 8 Tension Rupture 41.6%		Pass
79.25 - 75.25	Pole + Reinf.	TP24x24x0.6	Reinf. 8 Tension Rupture 48.0%		Pass
75.25 - 75	Pole + Reinf.	TP24x24x0.6	Reinf. 8 Tension Rupture	48.4%	Pass
75 - 74.75	Pole + Reinf.	TP24x24x0.6	Reinf, 3 Compression	49.3%	Pass
74.75 - 70.75	Pole + Reinf.	TP24x24x0.6	Reinf. 3 Compression 55.9%		Pass
70.75 - 66.75	Pole + Reinf.	TP24x24x0.6	Reinf. 3 Compression 62.9%		Pass
66.75 - 62.75	Pole + Reinf.	TP24x24x0.6	Reinf. 3 Compression 69.9%		Pass
62.75 - 60	Pole + Reinf.	TP24x24x0.6	Reinf. 3 Compression 74.9%		Pass
60 - 59.75	Pole + Reinf.	TP30x30x0.5438	Reinf. 2 Compression 51.8%		Pass
59.75 - 55.75	Pole + Reinf.	TP30x30x0.5438	Reinf. 2 Compression 57.5%		Pass
55.75 - 51.75	Pole + Reinf.	TP30x30x0.5438	Reinf. 2 Compression 63.2%		Pass
51.75 - 48.5	Pole + Reinf.	TP30x30x0.5438	Reinf. 2 Compression	67.9%	Pass
48.5 - 48.25	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	50.3%	Pass
48.25 -44.25	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	54.7%	Pass
44.25 -40.25	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	59.2%	Pass
40.25 - 36.25	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	63.8%	Pass
36.25 - 32.25	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	68.5%	Pass
32.25 - 30	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	71.1%	Pass
30 - 29.75	Pole + Reinf.	TP36x36x0.55	Pole	63.4%	Pass

29.75 - 25.75	Pole + Reinf.	TP36x36x0.55	Pole 68.1%		Pass
25.75 -23	Pole + Reinf.	TP36x36x0.55	Pole	71.4% Pass	
23 - 22.75	Pole + Reinf.	TP36x36x0.55	Pole	72.4% Pass	
22.75 - 20.75	Pole + Reinf.	TP36x36x0.55	Pole	74.9% Pass	
20.75 - 20.5	Pole + Reinf.	TP36x36x0.6875	Reinf. 1 Tension Rupture	71.8% Pass	
20.5 - 17.75	Pole + Reinf.	TP36x36x0.6875	Reinf. 1 Tension Rupture	75.0% Pass	
17.75 - 17.5	Pole + Reinf.	TP36x36x0.7	Reinf. 1 Tension Rupture	73.8% Pass	
17.5 - 13.5	Pole + Reinf.	TP36x36x0.7	Reinf. 1 Tension Rupture	78.5%	Pass
13.5 - 9.5	Pole + Reinf.	TP36x36x0.7	Reinf. 1 Tension Rupture	83.3%	Pass
9.5 - 5.5	Pole + Reinf.	TP36x36x0.7	Reinf. 1 Tension Rupture	88.1% Pass	
5.5 - 3.25	Pole + Reinf.	TP36x36x0.7	Reinf. 1 Tension Rupture	90.9% Pass	
3.25 - 3	Pole + Reinf.	TP36x36x0.6875	Reinf. 1 Tension Rupture	93.0%	Pass
3 - 0	Pole + Reinf.	TP36x36x0.6875	Reinf. 1 Tension Rupture	96.8%	Pass
				Summary	
			Pole	81.7%	Pass
			Reinforcement	96.8%	Pass
			Overall	96.8%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

<u> </u>	Tower compensations of cocce ver capacity			
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	83.3	Pass
1	Base Plate	0	69.7	Pass
1	Base Foundation (Structure)	0	82.9	Pass
1	Base Foundation (Soil Interaction)	0	28.3	Pass
1	Flange Connection	120	7.9	Pass
1	Flange Connection	90	39.6	Pass
1	Flange Connection	60	47.6	Pass
1	Flange Connection	30	58.9	Pass

Structure Rating (max from all components) = 96.8%
--

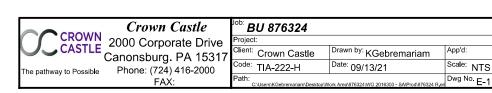
Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT


	12		ı		130.0 ft	
-	XO.78766 FD FED FED FED FED FED FOR SPECIAL OF 24 XO.6P 24 XO.6P 24 XF FED XX 0.6P 24 XF 0.6P 24 XF FED XX 0.6P 24 XF FED XX 0.6P 24 XF FED XX 0.6P 24 XF 0.6P 24	.0000 4.0000 9.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 8.0000 9.0		0.1	126.0 ft	1001
2	380.1B	0000		0.1		
n	80P08	0000		0.1	122.0 ft 120.0 ft	GRADE
4	24xB:128	.0000		0.3		A53-B-42 42
2	1×0.28%	7 0000		0.3	116.0 ft	
	0.2824	000			112.0 ft	1. Tower is loc 2. Tower design
9	2824x	90.4		0.3	108.0 ft	3. Tower designment of the state of the stat
	2 B 24x0	4.000		0.3	104.0 ft	in thickness 5. Deflections
∞	324×0.2	4.0000		0.3	100.0 ft	6. Tower Risk 7. Topographi
0	24×0.2	4.0000		0.3	96.0 ft	8. TOWER RA
10	4×0.28	0000		0.3		
-	230×3	9000		1.0	92.0 ft 90.0 ft	
12	5x0.B2	0000		4.0		
6	0.682	6 0004		0,00.2	86.0 ft 83.5 ft	
4 51	SE SE	00028		0.6 0.0		• •
	0.6P24	00 4.0			<u>79.3 ft</u>	\vdash
16	×	000		9.0	75.3 ft	
19	24/1928	4.00 @0 2		0.6 @	70.8 ft	
20	24×0.6F	0000	42	9.0		
21	4x0.6P	0000	A53-B-42	9.0	66.8 ft	
52	#80582	X5004.		0.00.4	62.8 ft 60.0 ft	
24 23	36*062	000280		0.7 0.0	<u>60.0 it</u>	
	5P308R	000			<u>55.8 ft</u>	
52	BH (30745)	00 4.00		5 0.7	<u>51.8 ft</u>	
27 26	270203	25005		0.1 0.5	48.5 ft	
78	80 KC3 (B)	4.000		6:0	44.3 ft	
59		4.0000		6.0	40.3 ft	
30	x0.7878			6.0		
31	0.7878	9000		6.0	36.3 ft	
	CHECOCK	16004.0			32.3 ft	ALL REACTIONS
34 3832	(B)	000226		0.8 0.10.5	30.0 ft	ARE FACTORED
35	6.836x	5004.0			25.8 ft	AXIAL 76 K
736 3	200	00800		0.10.70.0.0.10.6	23.0 ft	/0 K
39 383736	1) je		0 02	20.8 ft	SHEAR MOMENT
40 39	999	9008		10.7	<u>17.8 ft</u>	8 K _
14	236 KBB	4.00 0		1.	13.5 ft	TORQUE 0 kip-ft
42	36×0.7	0000		7.		50 mph WIND - 2.0000 in ICE
43	P3FAGOSHICKARONET36KO.7P36KO.7P36KADANEMAKANANEMAKANEGE.P36KADGANGATATATATATATATATATATATATATATATATATAT	00000 4 0000 4 0000 4 0000 8 0000000000			9.5 ft_	AXIAL 40 K
4	808A3	6004			5.5 ft	SHEAR MOMENT
46 4544	100 100 100 100 100 100 100 100 100 100	000		0.70,10.6	3.3 ft	26 K / 2002 kip-ft
4	3398	30.6		19.6	<u>0.0 ft</u>	TORQUE 1 kip-ft
	"			19		REACTIONS - 117 mph WIND
Section	Size	Length (ft)	Grade	Weight (K)		
					•	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-42	42 ksi	63 ksi			

TOWER DESIGN NOTES

- coated in Hartford County, Connecticut.
 signed for Exposure C to the TIA-222-H Standard.
 signed for a 117 mph basic wind in accordance with the TIA-222-H Standard.
 also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to increase so with height.
 as are based upon a 60 mph wind.
 as Category II.
 hic Category 1 with Crest Height of 0.0000 ft
 RATING: 96.8%

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Hartford County, Connecticut.
- Tower base elevation above sea level: 158.0000 ft.
- Basic wind speed of 117 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.0000 ft.
- Nominal ice thickness of 2.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.00 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- TOWER RATING: 96.8%.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

√ Use Code Stress Ratios

 ✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
 √ Lies Azimuth Dish Coefficients
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing
Treat Feed Line Bundles As Cylinder
Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 V Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Comer Radii Are Known

Pole Section Geometry

fr	Section	Elevation	Section Length	Pole Size	Pole Grade	Socket Leng ft
128,0000	1.1	ft	ft	D16v0 4075	A 5 2 D 4 2	
12	LI		4.0000	P16XU.18/5		
122,0000	L2		4.0000	P16x0.1875		
120,0000		122.0000	-			
L4	L3		2.0000	P16x0.1875		
116,0000	1.4		4.0000	D040.05		
L5 116,0000- 4,0000 P24x0,25 A53-B-42 (42 ks) 112,0000	L4		4.0000	P24x0.25		
112,0000	L5		4.0000	P24x0.25		
108,0000						
Tol. 108.000-	L6		4.0000	P24x0.25		
104,0000	1.7		4.0000	D24v0 25		
L8	L/		4.0000	F 24XU.23		
L9	L8		4.0000	P24x0.25		
Second (42 ksi) P24x0.25 A53-B-42 (42 ksi) P24x0.25 A53-B-42 (42 ksi) P24x0.25 A53-B-42 (42 ksi) P24x0.25 A53-B-42 (42 ksi) P24x0.375 P24x0.375 A53-B-42 (42 ksi) P24x0.375 A53-B-42 (42 ksi) P24x0.375 P24x0.375 A53-B-42 (42 ksi) P24x0.375 A53-B-42						
L10	L9		4.0000	P24x0.25		
L11 92.0000-90.0000 2.0000 P24x0.25 A53-B-42 (42 ksi)	I 10		4 0000	P24v0 25		
L11	LIO	30.0000-32.0000	4.0000	1 2470.20		
L12	L11	92.0000-90.0000	2.0000	P24x0.25		
L13	1.40	00 0000 00 0000	4.0000	D04 0 077		
L13 86.0000-83.5000 2.5000 P24x0.375 A53-8-42 (42 ksi) L14 83.5000-83.2500 0.2500 P24x0.6 A53-8-42 (42 ksi) L15 83.2500-79.2500 4.0000 P24x0.6 A53-8-42 (42 ksi) L16 79.2500-75.2500 4.0000 P24x0.6 A53-8-42 (42 ksi) L17 75.2500-75.0000 0.2500 P24x0.6 A53-8-42 (42 ksi) L18 75.0000-74.7500 0.2500 P24x0.6 A53-8-42 (42 ksi) L19 74.7500-70.7500 4.0000 P24x0.6 A53-8-42 (42 ksi) L20 70.7500-66.7500 4.0000 P24x0.6 A53-8-42 (42 ksi) L21 66.7500-62.7500 4.0000 P24x0.6 A53-8-42 (42 ksi) L22 62.7500-60.0000 2.7500 P24x0.6 A53-8-42 (42 ksi) L23 60.0000-59.7500 0.2500 P30x0.54375 A53-8-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53-8-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-8-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-8-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-8-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-8-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-8-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-8-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-8-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-8-42 (42 ksi) L33 30.0000-29.7500 0.2500 P36x0.55 A53-8-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.7375 A53-8-42 (42 ksi) L33 30.0000-29.7500 0.2500 P36x0.55 A53-8-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.7375 A53-8-42 (42 ksi) L33 30.0000-29.7500 0.2500 P36x0.55 A53-8-42 (42 ksi) L34 29.7500-25.7500 A.0000 P36x0.55 A53-8-42 (42 ksi)	L12	90.0000-86.0000	4.0000	P24x0.375		
L14 83.5000-83.2500 0.2500 P24x0.6 A53-B-42 (42 ksi) L15 83.2500-79.2500 4.0000 P24x0.6 A53-B-42 (42 ksi) L16 79.2500-75.2500 4.0000 P24x0.6 A53-B-42 (42 ksi) L17 75.2500-75.000 0.2500 P24x0.6 A53-B-42 (42 ksi) L17 75.2500-74.7500 0.2500 P24x0.6 A53-B-42 (42 ksi) L18 75.0000-74.7500 0.2500 P24x0.6 A53-B-42 (42 ksi) L19 74.7500-70.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L20 70.7500-66.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L21 66.7500-62.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L22 62.7500-60.0000 2.7500 P24x0.6 A53-B-42 (42 ksi) L23 60.0000-59.7500 0.2500 P30x0.54375 A53-B-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L34 29.7500-25.7500 A.0000 P30x0.7375 A53-B-42 (42 ksi)	L13	86.0000-83.5000	2.5000	P24x0.375		
L15			-		(42 ksi)	
L15 83,2500-79,2500 4.0000 P24x0.6 A53-B-42 (42 ksi) L16 79,2500-75,2500 4.0000 P24x0.6 A53-B-42 (42 ksi) L17 75,2500-75,0000 0.2500 P24x0.6 A53-B-42 (42 ksi) L18 75,0000-74,7500 0.2500 P24x0.6 A53-B-42 (42 ksi) L19 74,7500-70,7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L20 70,7500-66,7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L21 66,7500-62,7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L22 62,7500-60,0000 2,7500 P24x0.6 A53-B-42 (42 ksi) L23 60,0000-59,7500 0.2500 P30x0.54375 A53-B-42 (42 ksi) L24 59,7500-55,7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55,7500-51,7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51,7500-48,5000 3,2500 P30x0.54375 A53-B-42 (42 ksi) L27 48,5000-48,2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48,2500-44,2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44,2500-40,2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40,2500-36,2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36,2500-32,2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L33 30,0000-29,7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29,7500-25,7500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L35 32,2500-30,0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L31 36,2500-32,2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L33 30,0000-29,7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29,7500-25,7500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L35 A53-B-42 (42 ksi) L36 A53-B-42 (42 ksi) L37 A53-B-42 (42 ksi) L38 A53-B-42 (42 ksi) L39 A53-B-42 (42 ksi) L30 A53-B-42 (42 ksi) L31 A53-B-42 (42 ksi) L32 A55-B5-B5-B5-B5-B5-B5-B5-B5-B5-B5-B5-B5-B	L14	83.5000-83.2500	0.2500	P24x0.6		
L16	I 15	83 2500 70 2500	4 0000	D24v0 6		
L16 79.2500-75.2500 4.0000 P24x0.6 A53-B-42 (42 ksi) L17 75.2500-75.000 0.2500 P24x0.6 A53-B-42 (42 ksi) L18 75.0000-74.7500 0.2500 P24x0.6 A53-B-42 (42 ksi) L19 74.7500-70.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L20 70.7500-66.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L21 66.7500-62.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L21 66.7500-60.0000 2.7500 P24x0.6 A53-B-42 (42 ksi) L22 62.7500-60.0000 2.7500 P24x0.6 A53-B-42 (42 ksi) L23 60.0000-59.7500 0.2500 P30x0.54375 A53-B-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi)<	LIJ	03.2300-79.2300	4.0000	1 2480.0		
L17 75.2500-75.0000 0.2500 P24x0.6 A53-B-42 (42 ksi) L18 75.0000-74.7500 0.2500 P24x0.6 A53-B-42 (42 ksi) L19 74.7500-70.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L20 70.7500-66.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L21 66.7500-62.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L22 62.7500-60.0000 2.7500 P24x0.6 A53-B-42 (42 ksi) L23 60.0000-59.7500 0.2500 P30x0.54375 A53-B-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7	L16	79.2500-75.2500	4.0000	P24x0.6		
L18	1.47	75 0500 75 0000	0.2500	D04v0 6		
L18	LII	75.2500-75.0000	0.2500	P24X0.0		
L19	L18	75.0000-74.7500	0.2500	P24x0.6		
L20 70.7500-66.7500 4.0000 P24x0.6 A53.B-42 (42 ksi) L21 66.7500-62.7500 4.0000 P24x0.6 A53.B-42 (42 ksi) L22 62.7500-60.0000 2.7500 P24x0.6 A53.B-42 (42 ksi) L23 60.0000-59.7500 0.2500 P30x0.54375 A53.B-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53.B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53.B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53.B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53.B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53.B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53.B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53.B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53.B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53.B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53.B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53.B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53.B-42 (42 ksi)						
L20	L19	74.7500-70.7500	4.0000	P24x0.6		
L21 66.7500-62.7500 4.0000 P24x0.6 A53-B-42 (42 ksi) L22 62.7500-60.0000 2.7500 P24x0.6 A53-B-42 (42 ksi) L23 60.0000-59.7500 0.2500 P30x0.54375 A53-B-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.555 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	L20	70.7500-66.7500	4.0000	P24x0.6		
L22 62.7500-60.0000 2.7500 P24x0.6 A53-B-42 (42 ksi) L23 60.0000-59.7500 0.2500 P30x0.54375 A53-B-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)						
L22 62.7500-60.0000 2.7500 P24x0.6 A53-B-42 (42 ksi) L23 60.0000-59.7500 0.2500 P30x0.54375 A53-B-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-30.0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L32 32.2500-30.0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	L21	66.7500-62.7500	4.0000	P24x0.6		
L23 60.0000-59.7500 0.2500 P30x0.54375 A53-B-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-30.0000 P30x0.7375 A53-B-42 (42 ksi) L32 32.2500-30.0000 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	1 22	62 7500 60 0000	2 7500	D24v0 6		
L23 60.0000-59.7500 0.2500 P30x0.54375 A53-B-42 (42 ksi) L24 59.7500-55.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L32 32.2500-30.0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	LZZ	02.7300-00.0000	2.7500	1 2480.0		
L24 59.7500-55.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L32 32.2500-30.0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	L23	60.0000-59.7500	0.2500	P30x0.54375		
L25 55.7500-51.7500 4.0000 P30x0.54375 A53-B-42 (42 ksi) L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L32 32.2500-30.0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	1.04	EO 7EOO EE 7500	4.0000	D00-0 54075		
L25	L 2 4	59./500-55./500	4.0000	P3UXU.543/5		
L26 51.7500-48.5000 3.2500 P30x0.54375 A53-B-42 (42 ksi) L27 48.5000-48.2500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L28 48.2500-44.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L29 44.2500-40.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L30 40.2500-36.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L32 32.2500-30.0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P30x0.7375 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	L25	55.7500-51.7500	4.0000	P30x0.54375		
L27		_,		B06 5		
L27	L26	51.7500-48.5000	3.2500	P30x0.54375		
L28	L27	48,5000-48.2500	0.2500	P30x0.7375		
L29						
L29	L28	48.2500-44.2500	4.0000	P30x0.7375		
L30	1 29	44 2500-40 2500	4 0000	P30v0 7375	` ,	
L30	L20	→→₁∠∪∪∪ □ ∪₁∠∪∪∪	7.0000	1 30,0,7373		
L31 36.2500-32.2500 4.0000 P30x0.7375 A53-B-42 (42 ksi) L32 32.2500-30.0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	L30	40.2500-36.2500	4.0000	P30x0.7375		
L32 32.2500-30.0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	1.24	26 2500 22 2502	4.0000	D20v0 7075	` ,	
L32 32.2500-30.0000 2.2500 P30x0.7375 A53-B-42 (42 ksi) L33 30.0000-29.7500 0.2500 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	LJI	Ა Ს.∠ ᲔᲡᲡ-Კ∠ . ∠ᲔᲡᲡ	4.0000	P3UXU./3/5		
L33 30.0000-29.7500 0.2500 P36x0.55 A53-B-42 (42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi) L34 (42 ksi)	L32	32.2500-30.0000	2.2500	P30x0.7375		
(42 ksi) L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)					(42 ksi)	
L34 29.7500-25.7500 4.0000 P36x0.55 A53-B-42 (42 ksi)	L33	30.0000-29.7500	0.2500	P36x0.55		
(42 ksi)	L34	29.7500-25 7500	4.0000	P36x0 55		
		201. 000 201.000	.10000	. 55%0.00		
	L35	25.7500-23.0000	2.7500	P36x0.55		

Section	Elevation	Section	Pole	Pole	Socket Length
		Length	Size	Grade	ft
	ft	ft			
				(42 ksi)	
L36	23.0000-22.7500	0.2500	P36x0.55	A53-B-42	
				(42 ksi)	
L37	22.7500-20.7500	2.0000	P36x0.55	A53-B-42	
				(42 ksi)	
L38	20.7500-20.5000	0.2500	P36x0.6875	A53-B-42	
				(42 ksi)	
L39	20.5000-17.7500	2.7500	P36x0.6875	A53-B-42	
				(42 ksi)	
L40	17.7500-17.5000	0.2500	P36x0.7	A53-B-42	
				(42 ksi)	
L41	17.5000-13.5000	4.0000	P36x0.7	A53-B-42	
				(42 ksi)	
L42	13.5000-9.5000	4.0000	P36x0.7	A53-B-42	
				(42 ksi)	
L43	9.5000-5.5000	4.0000	P36x0.7	A53-B-42	
				(42 ksi)	
L44	5.5000-3.2500	2.2500	P36x0.7	A53-B-42	
				(42 ksi)	
L45	3.2500-3.0000	0.2500	P36x0.6875	A53-B-42	
				(42 ksi)	
L46	3.0000-0.0000	3.0000	P36x0.6875	A53-B-42	
				(42 ksi)	

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor A,	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L1 130.0000-			1	1	1			
126.0000								
L2 126.0000-			1	1	1			
122.0000								
L3 122.0000-			1	1	1			
120.0000			,					
L4 120.0000-			1	1	1			
116.0000			4		4			
L5 116.0000-			1	1	1			
112.0000			4		4			
L6 112.0000-			1	1	1			
108.0000			4	4	4			
L7 108.0000-			1	1	1			
104.0000			1	1	4			
L8 104.0000-			ı	1	1			
100.0000 L9 100.0000-			1	1	1			
96.0000			I	1	ı			
L10 96 0000			1	1	1			
92.0000			ı	'	1			
L11 92 0000			1	1	1			
90.0000			ı	'	'			
L12 90 0000			1	1	1			
86 0000			'		'			
L13 86 0000-			1	1	1			
83.5000			•		•			
L14 83 5000-			1	1	0.937077			
83.2500			•	•	0.007.077			
L15 83 2500-			1	1	0.937077			
79.2500			·	-				
L16 79 2500-			1	1	0.937077			
75.2500								
L17 75 2500-			1	1	0.937077			
75.0000								
L18 75 0000-			1	1	0.937077			
74.7500								
L19 74 7500-			1	1	0.937077			
70.7500								

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor A _t	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L20 70.7500-			1	1	0.937077			
66.7500								
L21 66.7500-			1	1	0.937077			
62.7500								
L22 62.7500-			1	1	0.937077			
60.0000								
L23 60.0000-			1	1	0.961898			
59.7500								
L24 59.7500-			1	1	0.961898			
55.7500								
L25 55.7500-			1	1	0.961898			
51.7500			4		0.004000			
L26 51.7500-			1	1	0.961898			
48.5000			4	4	0.070000			
L27 48.5000-			1	1	0.979382			
48.2500			4		0.070000			
L28 48.2500-			1	1	0.979382			
44.2500			4	4	0.070000			
L29 44.2500-			1	1	0.979382			
40.2500			4	4	0.070202			
L30 40.2500-			1	1	0.979382			
36.2500			4	4	0.070000			
L31 36.2500-			1	1	0.979382			
32.2500			4	1	0.979382			
L32 32.2500-			1	1	0.979362			
30.0000 L33 30.0000-			1	1	0.979046			
29.7500			ı	'	0.979046			
L34 29.7500			1	1	0.979046			
25.7500			l	'	0.97 9040			
L35 25 7500			1	1	0.979046			
23.0000			l	'	0.373040			
L36 23 0000-			1	1	0.979046			
22.7500			'		0.373040			
L37 22 7500			1	1	0.979046			
20.7500			'		0,57 50 40			
L38 20 7500-			1	1	0.952228			
20.5000			•		0.002220			
L39 20 5000-			1	1	0.952228			
17.7500			•		0.002220			
L40 17 7500			1	1	1.04022			
17 5000			·	•	1.0 1022			
L41 17 5000-			1	1	1.04022			
13.5000								
L42 13 5000-			1	1	1.04022			
9.5000			·	•				
L43 9 5000-			1	1	1.04022			
5.5000			·	-				
L44 5 5000-			1	1	1.04022			
3.2500			·	•				
L45 3.2500-			1	1	0.952228			
3.0000			•	•				
L46 3 0000-			1	1	0.952228			
0.0000			•	-				

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
•		From	`t		Number	PerRow	d	Diamete	r	J
		Torque	Type	ft			Position	r		plf
		Calculation	, ,,					in	in	•
FSJ4-50B(1/2)	В	No	Surface Ar	127.0000 -	3	2	-0.100	0.5300		0.14
,			(CaAa)	0.0000			-0.050			

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number PerRow	Start/En	Width or Diamete	Perimete r	Weight
		Torque Calculation	Type	ft			Position	r in	in	plf
2" Rigid Conduit	В	No		127.0000 -	2	2	-0.050	2.0000		2.80
***			(CaAa)	0.0000			0.050			
LDF4-50A(1/2)	С	No	Surface Ar	50.0000 -	1	1	0.150	0.6300		0.15
,			(CaAa)	0.0000			0.160			
*** 3.75 x 1.25 FP	Α	No	Surface Af	22 0000	1	1	0.450	3.3750	9.2500	0.00
3.73 X 1.23 FF	A	INO	(CaAa)	0.0000	ı	ı	0.500	3.3730	9.2500	0.00
3.75 x 1.25 FP	В	No		22.0000 -	1	1	0.450	3.3750	9.2500	0.00
3.75 x 1.25 FP	С	No	(CaAa) Surface Af	0.0000 22.0000 -	1	1	0.500 0.450	3.3750	9.2500	0.00
	Ü	110	(CaAa)	0.0000		•	0.500	0.0700	0.2000	0.00
*** CCI-65FP-045100	۸	No	Surface Af	E4 E000	1	1	0.000	4.5000	11.0000	0.00
CCI-05FF-045100	Α	INO	(CaAa)	30.0000	ı	ı	0.000	4.5000	11.0000	0.00
CCI-65FP-045100	В	No	Surface Af		1	1	0.000	4.5000	11.0000	0.00
CCI-65FP-045100	С	No	(CaAa) Surface Af	30.0000 51.5000	1	1	0.100 0.000	4.5000	11.0000	0.00
	Ü	140	(CaAa)	30.0000	•		0.100	4.0000	11.0000	0.00
***	۸	NI-	Surface Af	75.0000	4	4	0.000	4.5000	44.0000	0.00
CCI-65FP-045100	Α	No	(CaAa)	60.0000	1	1	0.000 0.100	4.5000	11.0000	0.00
CCI-65FP-045100	В	No		75.0000 -	1	1	0.000	4.5000	11.0000	0.00
CCI-65FP-045100	С	No	(CaAa) Surface Af	60.0000	1	1	0.100 0.000	4.5000	11.0000	0.00
	O	140	(CaAa)	60.0000	•	'	0.100	4.5000	11.0000	0.00
*** MC 600	۸	No	Curfoss Af	25 0000	1	4	0.500	6 0000	14.0000	0.00
MS-600	Α	No	(CaAa)	25.0000 - 0.0000	1	1	-0.500 -0.150	6.0000	14.0000	0.00
MS-600	В	No	Surface Af	25.0000 -	1	1	-0.500	6.0000	14.0000	0.00
MS-600	С	No	(CaAa) Surface Af	0.0000 25.0000 -	1	1	-0.150 -0.500	6.0000	14.0000	0.00
	Ü	140	(CaAa)	0.0000	•	•	-0.150	0.0000	14.0000	0.00
*** MC 600	۸	Na	Curfoes Af	20.0000	4	4	0.450	6.0000	14.0000	0.00
MS-600	Α	No	Surface Af (CaAa)	19.0000	1	1	0.150 0.250	6.0000	14.0000	0.00
MS-600	В	No	Surface Af		1	1	0.150	6.0000	14.0000	0.00
MS-600	С	No	(CaAa) Surface Af	19.0000 30.0000	1	1	0.250 0.150	6.0000	14.0000	0.00
WO-000	O	140	(CaAa)	19.0000	•	'	0.250	0.0000	14.0000	0.00
*** CCI-65FP-065125	۸	No	Curfoso Af	20 5000	1	1	0.150	6.5000	15.5000	0.00
COI-03FF-003123	Α	INO	Surface Af (CaAa)	0.5000	ı	ı	0.150	0.5000	13.3000	0.00
***			, ,							
MS-600	Α	No	Surface Af (CaAa)	51.5000 - 30.0000	1	1	0.350 0.450	6.0000	14.0000	0.00
MS-600	В	No	Surface Af	51.5000 -	1	1	0.350	6.0000	14.0000	0.00
MO 000	0	NI-	(CaAa)	30.0000	4	4	0.450	0.0000	44.0000	0.00
MS-600	С	No	Surface Af (CaAa)	30.0000 -	1	1	0.350 0.450	6.0000	14.0000	0.00
***			, ,							
CCI-65FP-045100	Α	No	Surface Af (CaAa)	85.0000 - 75.0000	1	1	0.000 0.100	4.5000	11.0000	0.00
CCI-65FP-045100	В	No	Surface Af	85.0000 -	1	1	0.000	4.5000	11.0000	0.00
OOLGEED 045400	_	N-	(CaAa)	75.0000	4	4	0.100	4 5000	11 0000	0.00
CCI-65FP-045100	С	No	Surface Af (CaAa)	85.0000 - 75.0000	1	1	0.000 0.100	4.5000	11.0000	0.00
***			,							
CU12PSM9P8XXX(1- 3/8)	Α	No	Surface Ar (CaAa)	86.0000 - 0.0000	1	1	0.000 0.100	1.4110		1.66
			(Jana)	0.0000			0.100			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Type 1	ft			ft²/ft	plf
FSJ1-50A(1/4)	В	No	No	Inside Pole	127.0000 -	3	No Ice	0.0000	0.04
					0.0000		1/2" I ce	0.0000	0.04
							1" I ce	0.0000	0.04
							2" Ice	0.0000	0.04
9207(5/16)	В	No	No	Inside Pole	127.0000 -	3	No Ice	0.0000	0.60
					0.0000		1/2" I ce	0.0000	0.60
							1" I ce	0.0000	0.60
***							2" Ice	0.0000	0.60
HB114-1-08U4-	С	No	No	Inside Pole	116.0000 -	2	No Ice	0.0000	1.08
M5J(1-1/4)					0.0000		1/2" Ice	0.0000	1.08
,							1" I ce	0.0000	1.08
							2" Ice	0.0000	1.08
HB114-21U3M12-	С	No	No	Inside Pole	116.0000 -	1	No Ice	0.0000	1.22
XXXF(1-1/4)					0.0000		1/2" Ice	0.0000	1.22
, ,							1" I ce	0.0000	1.22
***							2" Ice	0.0000	1.22
HB158-1-08U8-	С	No	No	Inside Pole	105.0000 -	2	No Ice	0.0000	1.30
S8J18(1-5/8)	Ū				0.0000	_	1/2" Ice	0.0000	1.30
							1" Ice	0.0000	1.30
							2" Ice	0.0000	1.30
LCF78-50A(7/8)	С	No	No	Inside Pole	105.0000 -	6	No Ice	0.0000	0.34
	_				0.0000	•	1/2" Ice	0.0000	0.34
							1" Ice	0.0000	0.34
							2" Ice	0.0000	0.34

AVA7-50(1-5/8)	С	No	No	Inside Pole	96.0000 -	6	No Ice	0.0000	0.70
					0.0000		1/2" Ice	0.0000	0.70
							1" Ice	0.0000	0.70
							2" Ice	0.0000	0.70

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	130.0000-	Α	0.000	0.000	0.000	0.000	0.00
	126.0000	В	0.000	0.000	0.506	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.00
L2	126.0000-	Α	0.000	0.000	0.000	0.000	0.00
	122.0000	В	0.000	0.000	2.024	0.000	0.03
		С	0.000	0.000	0.000	0.000	0.00
L3	122.0000-	Α	0.000	0.000	0.000	0.000	0.00
	120,0000	В	0.000	0.000	1.012	0.000	0.02
		С	0.000	0.000	0.000	0.000	0.00
L4	120.0000-	Α	0.000	0.000	0.000	0.000	0.00
	116.0000	В	0.000	0.000	2.024	0.000	0.03
		С	0.000	0.000	0.000	0.000	0.00
L5	116.0000-	Α	0.000	0.000	0.000	0.000	0.00
	112.0000	В	0.000	0.000	2.024	0.000	0.03
		С	0.000	0.000	0.000	0.000	0.01
L6	112.0000-	Α	0.000	0.000	0.000	0.000	0.00
	108.0000	В	0.000	0.000	2.024	0.000	0.03
		С	0.000	0.000	0.000	0.000	0.01
L7	108.0000-	Α	0.000	0.000	0.000	0.000	0.00
	104.0000	В	0.000	0.000	2.024	0.000	0.03
		С	0.000	0.000	0.000	0.000	0.02
L8	104.0000-	Α	0.000	0.000	0.000	0.000	0.00
	100.0000	В	0.000	0.000	2.024	0.000	0.03
		С	0.000	0.000	0.000	0.000	0.03
L9	100.0000-	Α	0.000	0.000	0.000	0.000	0.00

Tower	Tower	Face	A_R	A_F	C_AA_A	C_AA_A	Weight
Sectio n	Elevation ft		ft ²	ft²	In Face ft²	Out Face ft²	К
	96.0000	В	0.000	0.000	2.024	0.000	0.03
		С	0.000	0.000	0.000	0.000	0.03
L10	96.0000-92.0000	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	2.024	0.000	0.03
1 1 1	02 0000 00 0000	C	0.000	0.000	0.000	0.000	0.05 0.00
L11	92.0000-90.0000	A B	0.000 0.000	0.000 0.000	0.000 1.012	0.000 0.000	0.00
		C	0.000	0.000	0.000	0.000	0.02
L12	90.0000-86.0000	Ā	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	2.024	0.000	0.03
		С	0.000	0.000	0.000	0.000	0.05
L13	86.0000-83.5000	A B	0.000	0.000	1.478 2.390	0.000	0.00 0.02
		C	0.000 0.000	0.000 0.000	2.390 1.125	0.000 0.000	0.02
L14	83.5000-83.2500	Ă	0.000	0.000	0.223	0.000	0.00
		В	0.000	0.000	0.314	0.000	0.00
		С	0.000	0.000	0.188	0.000	0.00
L15	83.2500-79.2500	A	0.000	0.000	3.564	0.000	0.01
		В	0.000	0.000	5.024	0.000	0.03
L16	79.2500-75.2500	C A	0.000 0.000	0.000 0.000	3.000 3.564	0.000 0.000	0.05 0.01
LIO	19.2300-13.2300	В	0.000	0.000	5.024	0.000	0.03
		Č	0.000	0.000	3.000	0.000	0.05
L17	75.2500-75.0000	Α	0.000	0.000	0.223	0.000	0.00
		В	0.000	0.000	0.314	0.000	0.00
1.40	75 0000 74 7500	C	0.000	0.000	0.188	0.000	0.00
L18	75.0000-74.7500	A B	0.000	0.000	0.223	0.000	0.00
		С	0.000 0.000	0.000 0.000	0.314 0.188	0.000 0.000	0.00 0.00
L19	74.7500-70.7500	Ä	0.000	0.000	3.564	0.000	0.01
		В	0.000	0.000	5.024	0.000	0.03
		С	0.000	0.000	3.000	0.000	0.05
L20	70.7500-66.7500	A	0.000	0.000	3.564	0.000	0.01
		B C	0.000	0.000	5.024	0.000	0.03
L21	66.7500-62.7500	A	0.000 0.000	0.000 0.000	3.000 3.564	0.000 0.000	0.05 0.01
	00.1000 02.7000	В	0.000	0.000	5.024	0.000	0.03
		С	0.000	0.000	3.000	0.000	0.05
L22	62.7500-60.0000	Α	0.000	0.000	2.451	0.000	0.00
		В	0.000	0.000	3.454	0.000	0.02
L23	60.0000-59.7500	C A	0.000 0.000	0.000 0.000	2.063 0.035	0.000 0.000	0.03 0.00
LZS	00.0000-39./300	В	0.000	0.000	0.033	0.000	0.00
		Č	0.000	0.000	0.000	0.000	0.00
L24	59.7500-55.7500	Ä	0.000	0.000	0.564	0.000	0.01
		В	0.000	0.000	2.024	0.000	0.03
1.05	FF 7F00 F4 7F00	C	0.000	0.000	0.000	0.000	0.05
L25	55.7500-51.7500	A B	0.000 0.000	0.000 0.000	0.564 2.024	0.000 0.000	0.01 0.03
		C	0.000	0.000	0.000	0.000	0.05
L26	51.7500-48.5000	Ä	0.000	0.000	5.709	0.000	0.01
		В	0.000	0.000	6.894	0.000	0.03
		С	0.000	0.000	5.345	0.000	0.04
L27	48.5000-48.2500	A	0.000	0.000	0.473	0.000	0.00
		В	0.000	0.000	0.564	0.000	0.00
L28	48.2500-44.2500	C A	0.000 0.000	0.000 0.000	0.453 7.564	0.000 0.000	0.00 0.01
	.0.2000 44.2000	В	0.000	0.000	9.024	0.000	0.03
		С	0.000	0.000	7.252	0.000	0.05
L29	44.2500-40.2500	Α	0.000	0.000	7.564	0.000	0.01
		В	0.000	0.000	9.024	0.000	0.03
L30	40.2500-36.2500	C	0.000 0.000	0.000 0.000	7.252 7.564	0.000 0.000	0.05 0.01
LOU	+0.2300-36.2300	A B	0.000	0.000	7.564 9.024	0.000	0.01
		C	0.000	0.000	7.252	0.000	0.05
L31	36.2500-32.2500	Ä	0.000	0.000	7.564	0.000	0.01
		В	0.000	0.000	9.024	0.000	0.03
1.00	00 0500 00 0000	Ç	0.000	0.000	7.252	0.000	0.05
L32	32.2500-30.0000	Α	0.000	0.000	4.255	0.000	0.00

Tower Sectio	Tower Elevation	Face	A_R	A_F	C₄A₄ In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft ²	ft²	ft ²	K
		В	0.000	0.000	5.076	0.000	0.02
		С	0.000	0.000	4.079	0.000	0.03
L33	30.0000-29.7500	Ā	0.000	0.000	0.272	0.000	0.00
		В	0.000	0.000	0.363	0.000	0.00
		С	0.000	0.000	0.252	0.000	0.00
L34	29.7500-25.7500	Α	0.000	0.000	4.344	0.000	0.01
		В	0.000	0.000	5.804	0.000	0.03
		С	0.000	0.000	4.032	0.000	0.05
L35	25.7500-23.0000	Α	0.000	0.000	4.987	0.000	0.00
		В	0.000	0.000	5.990	0.000	0.02
		С	0.000	0.000	4.772	0.000	0.03
L36	23.0000-22.7500	A	0.000	0.000	0.522	0.000	0.00
		В	0.000	0.000	0.613	0.000	0.00
L37	22 7500 20 7500	C A	0.000	0.000	0.502	0.000	0.00
LSI	22.7500-20.7500	В	0.000 0.000	0.000 0.000	4.875 5.605	0.000 0.000	0.00 0.02
		C	0.000	0.000	5.605 4.719	0.000	0.02
L38	20.7500-20.5000	A	0.000	0.000	0.662	0.000	0.02
LJO	20.7300-20.3000	В	0.000	0.000	0.753	0.000	0.00
		C	0.000	0.000	0.643	0.000	0.00
L39	20.5000-17.7500	Ä	0.000	0.000	9.082	0.000	0.00
200	2010000 1111000	В	0.000	0.000	7.106	0.000	0.02
		č	0.000	0.000	5.888	0.000	0.03
L40	17.7500-17.5000	Ā	0.000	0.000	0.697	0.000	0.00
		В	0.000	0.000	0.517	0.000	0.00
		С	0.000	0.000	0.406	0.000	0.00
L41	17.5000-13.5000	Α	0.000	0.000	11.148	0.000	0.01
		В	0.000	0.000	8.274	0.000	0.03
		С	0.000	0.000	6.502	0.000	0.05
L42	13.5000-9.5000	Α	0.000	0.000	11.148	0.000	0.01
		В	0.000	0.000	8.274	0.000	0.03
		Ç	0.000	0.000	6.502	0.000	0.05
L43	9.5000-5.5000	Α	0.000	0.000	11.148	0.000	0.01
		В	0.000	0.000	8.274	0.000	0.03
	F F000 0 0F00	C	0.000	0.000	6.502	0.000	0.05
L44	5.5000-3.2500	A B	0.000 0.000	0.000 0.000	6.271 4.654	0.000 0.000	0.00 0.02
		C	0.000	0.000	4.654 3.657		0.02
L45	3,2500-3,0000	A	0.000	0.000	3.657 0.697	0.000 0.000	0.03
LTJ	3.2300-3.0000	В	0.000	0.000	0.517	0.000	0.00
		C	0.000	0.000	0.406	0.000	0.00
L46	3.0000-0.0000	A	0.000	0.000	7.819	0.000	0.00
L+0	5.5555 5.5550	В	0.000	0.000	6.205	0.000	0.02
		Č	0.000	0.000	4.877	0.000	0.04

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C₄A₄ In Face	C _A A _A Out Face	Weight
	ft		in	ft ²	ft ²	ft ²	ft²	κ
n		Leg						
L1	130.0000-	Α	1.947	0.000	0.000	0.000	0.000	0.00
	126.0000	В		0.000	0.000	1.606	0.000	0.03
		С		0.000	0.000	0.000	0.000	0.00
L2	126.0000-	Α	1.941	0.000	0.000	0.000	0.000	0.00
	122.0000	В		0.000	0.000	6.411	0.000	0.11
		С		0.000	0.000	0.000	0.000	0.00
L3	122.0000-	Α	1.936	0.000	0.000	0.000	0.000	0.00
	120.0000	В		0.000	0.000	3.201	0.000	0.06
		С		0.000	0.000	0.000	0.000	0.00
L4	120.0000-	Α	1.931	0.000	0.000	0.000	0.000	0.00
	116.0000	В		0.000	0.000	6.392	0.000	0.11
		С		0.000	0.000	0.000	0.000	0.00
L5	116.0000-	A	1.924	0.000	0.000	0.000	0.000	0.00
	112.0000	В		0.000	0.000	6.379	0.000	0.11
		Ċ		0.000	0.000	0.000	0.000	0.01
L6	112.0000-	Ā	1.918	0.000	0.000	0.000	0.000	0.00

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C₄A₄ In Face	$C_{A}A_{A}$ Out Face	Weight
ก	ft	Leg	in	ft^2	ft ²	ft ²	ft ²	Κ
	108.0000	В		0.000	0.000	6.365	0.000	0.11
		C		0.000	0.000	0.000	0.000	0.01
L7	108.0000-	Α	1.910	0.000	0.000	0.000	0.000	0.00
	104.0000	B C		0.000 0.000	0.000 0.000	6.351 0.000	0.000 0.000	0.11 0.02
L8	104.0000-	Ä	1.903	0.000	0.000	0.000	0.000	0.02
	100.0000	В		0.000	0.000	6.336	0.000	0.11
		С		0.000	0.000	0.000	0.000	0.03
L9	100.0000-	A	1.895	0.000	0.000	0.000	0.000	0.00
	96.0000	B C		0.000 0.000	0.000 0.000	6.321 0.000	0.000 0.000	0.11 0.03
L10	96.0000-92.0000	Ā	1.888	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	6.305	0.000	0.11
		Ç		0.000	0.000	0.000	0.000	0.05
L11	92.0000-90.0000	Α	1.881	0.000	0.000	0.000	0.000	0.00
		B C		0.000 0.000	0.000 0.000	3.146 0.000	0.000 0.000	0.05 0.02
L12	90.0000-86.0000	A	1.875	0.000	0.000	0.000	0.000	0.02
		В		0.000	0.000	6.280	0.000	0.11
		С		0.000	0.000	0.000	0.000	0.05
L13	86.0000-83.5000	Α	1.868	0.000	0.000	2.721	0.000	0.04
		B C		0.000 0.000	0.000 0.000	5.351 1.435	0.000 0.000	0.09 0.05
L14	83.5000-83.2500	A	1.865	0.000	0.000	0.368	0.000	0.03
		В	11000	0.000	0.000	0.630	0.000	0.01
		С		0.000	0.000	0.239	0.000	0.01
L15	83.2500-79.2500	Α	1.860	0.000	0.000	5.875	0.000	0.09
		B C		0.000 0.000	0.000 0.000	10.073 3.822	0.000 0.000	0.16 0.10
L16	79.2500-75.2500	A	1.851	0.000	0.000	5.864	0.000	0.09
210	7012000 7012000	В	11001	0.000	0.000	10.050	0.000	0.16
		С		0.000	0.000	3.818	0.000	0.10
L17	75.2500-75.0000	A	1.846	0.000	0.000	0.366	0.000	0.01
		B C		0.000 0.000	0.000 0.000	0.627 0.239	0.000 0.000	0.01 0.01
L18	75.0000-74.7500	Ä	1.845	0.000	0.000	0.402	0.000	0.01
		В		0.000	0.000	0.664	0.000	0.01
		C		0.000	0.000	0.275	0.000	0.01
L19	74.7500-70.7500	A	1.840	0.000	0.000	6.431	0.000	0.09
		B C		0.000 0.000	0.000 0.000	10.604 4.394	0.000 0.000	0.16 0.10
L20	70.7500-66.7500	Ä	1.829	0.000	0.000	6.416	0.000	0.09
		В		0.000	0.000	10.577	0.000	0.16
		C		0.000	0.000	4.388	0.000	0.10
L21	66.7500-62.7500	A	1.819	0.000	0.000	6.400	0.000	0.09
		B C		0.000 0.000	0.000 0.000	10.548 4.381	0.000 0.000	0.16 0.10
L22	62.7500-60.0000	Ä	1.809	0.000	0.000	4.391	0.000	0.06
		В		0.000	0.000	7.234	0.000	0.11
	00 0000 50 7500	C	4.004	0.000	0.000	3.008	0.000	0.07
L23	60.0000-59.7500	A	1.804	0.000 0.000	0.000	0.125 0.384	0.000 0.000	0.00 0.01
		B C		0.000	0.000 0.000	0.000	0.000	0.00
L24	59.7500-55.7500	Ä	1.798	0.000	0.000	2.003	0.000	0.03
		В		0.000	0.000	6.126	0.000	0.10
		C	4 705	0.000	0.000	0.000	0.000	0.05
L25	55.7500-51.7500	A	1.785	0.000	0.000	1.992	0.000	0.03
		B C		0.000 0.000	0.000 0.000	6.100 0.000	0.000 0.000	0.10 0.05
L26	51.7500-48.5000	Ä	1.773	0.000	0.000	8.988	0.000	0.11
		В		0.000	0.000	12.313	0.000	0.16
	10 5000 10 0505	C	4 700	0.000	0.000	8.003	0.000	0.13
L27	48.5000-48.2500	A	1.766	0.000 0.000	0.000 0.000	0.738 0.993	0.000 0.000	0.01 0.01
		B C		0.000	0.000	0.993 0.718	0.000	0.01
L28	48.2500-44.2500	Ä	1.758	0.000	0.000	11.784	0.000	0.14
		В		0.000	0.000	15.860	0.000	0.21
1.00	44 0500 40 0500	C	4 740	0.000	0.000	11.472	0.000	0.17
L29	44.2500-40.2500	Α	1.743	0.000	0.000	11.746	0.000	0.14

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C₄A₄ In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
		В		0.000	0.000	15.803	0.000	0.20
		С		0.000	0.000	11.434	0.000	0.17
L30	40.2500-36.2500	Α	1.725	0.000	0.000	11.705	0.000	0.14
		В		0.000	0.000	15.741	0.000	0.20
		С		0.000	0.000	11.393	0.000	0.17
L31	36.2500-32.2500	Α	1.706	0.000	0.000	11.660	0.000	0.13
		В		0.000	0.000	15.673	0.000	0.20
		С		0.000	0.000	11.347	0.000	0.17
L32	32.2500-30.0000	Α	1.690	0.000	0.000	6.537	0.000	0.07
		В		0.000	0.000	8.783	0.000	0.11
		С		0.000	0.000	6.361	0.000	0.09
L33	30.0000-29.7500	Α	1.683	0.000	0.000	0.400	0.000	0.01
		В		0.000	0.000	0.649	0.000	0.01
		С		0.000	0.000	0.380	0.000	0.01
L34	29.7500-25.7500	Α	1.671	0.000	0.000	6.384	0.000	0.08
		В		0.000	0.000	10.355	0.000	0.15
		С		0.000	0.000	6.072	0.000	0.12
L35	25.7500-23.0000	Α	1.649	0.000	0.000	7.031	0.000	0.08
		В		0.000	0.000	9.743	0.000	0.13
		С		0.000	0.000	6.816	0.000	0.11
L36	23.0000-22.7500	Α	1.639	0.000	0.000	0.729	0.000	0.01
		В		0.000	0.000	0.974	0.000	0.01
		С		0.000	0.000	0.709	0.000	0.01
L37	22.7500-20.7500	Α	1.631	0.000	0.000	6.931	0.000	0.08
		В		0.000	0.000	8.892	0.000	0.11
		С		0.000	0.000	6.775	0.000	0.10
L38	20.7500-20.5000	Α	1.622	0.000	0.000	0.948	0.000	0.01
		В		0.000	0.000	1.193	0.000	0.01
		С		0.000	0.000	0.929	0.000	0.01
L39	20.5000-17.7500	Α	1.610	0.000	0.000	12.873	0.000	0.14
		В		0.000	0.000	11.692	0.000	0.14
		С		0.000	0.000	8.798	0.000	0.13
L40	17.7500-17.5000	Α	1.597	0.000	0.000	1.016	0.000	0.01
		В		0.000	0.000	0.908	0.000	0.01
		С		0.000	0.000	0.646	0.000	0.01
L41	17.5000-13.5000	Α	1.576	0.000	0.000	16.189	0.000	0.17
		В		0.000	0.000	14.455	0.000	0.18
		Ç		0.000	0.000	10.285	0.000	0.15
L42	13.5000-9.5000	Α	1.530	0.000	0.000	16.043	0.000	0.16
		В		0.000	0.000	14.288	0.000	0.17
		С		0.000	0.000	10.174	0.000	0.15
L43	9.5000-5.5000	A	1.466	0.000	0.000	15.839	0.000	0.15
		В		0.000	0.000	14.057	0.000	0.16
	E E000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ç	4.000	0.000	0.000	10.020	0.000	0.14
L44	5.5000-3.2500	Α	1.389	0.000	0.000	8.771	0.000	80.0
		В		0.000	0.000	7.751	0.000	0.09
	0.0500.0.000	Ċ	4.0.10	0.000	0.000	5.532	0.000	0.08
L45	3.2500-3.0000	A	1.343	0.000	0.000	0.965	0.000	0.01
		В		0.000	0.000	0.851	0.000	0.01
1.40	0.0000.0.0000	C	4.040	0.000	0.000	0.608	0.000	0.01
L46	3.0000-0.0000	Α	1.248	0.000	0.000	10.689	0.000	0.09
		В		0.000	0.000	9.955	0.000	0.10
		С		0.000	0.000	7.123	0.000	0.09

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	130.0000-	1.0309	-0.6392	1.0868	-0.7154
	126.0000				
L2	126.0000-	2.9252	-1.8140	2.4137	-1.5887
	122.0000				
L3	122.0000-	2.9252	-1.8140	2.4130	-1.5881
	120.0000				

Section	Elevation	CP _X	CPz	CP _X	CP _z
	#	in	in	Ice	Ice
L4	ft 120.0000-	<u>in</u> 3.2447	<i>in</i> -2.0140	<i>in</i> 3.0101	<u>in</u> -1.9837
L4		3.2447	-2.0140	3.0101	-1.9037
L5	116.0000 116.0000-	3.2447	-2.0140	3.0082	-1.9822
LS	112,0000	3.2447	-2.0140	3.0062	-1.9022
L6	112.0000	3.2447	-2.0140	3.0062	-1.9808
LO	108.0000	3.2447	-2.0140	3.0002	-1.9000
L7	108.0000	3.2447	-2.0140	3.0042	-1.9792
L/	104.0000	3.2447	-2.0140	3.0042	-1.9792
L8	104.0000	3.2447	-2.0140	3.0020	-1.9776
Lo	100.0000	3.2447	-2.0140	3.0020	-1.9770
L9	100.0000	3.2447	-2.0140	2.9998	-1.9760
L10	96.0000-92.0000	3.2447	-2.0140 -2.0140	2.9975	-1.9743
L10 L11	92.0000-92.0000	3.2447 3.2447	-2.0140 -2.0140	2.9975 2.9957	-1.9743 -1.9729
L12	90.0000-96.0000		-2.0140 -2.0140	2.9938	-1.9729 -1.9715
L12 L13		3.2447 1.2778			
L13	86.0000-83.5000	0.9971	-1.4043	1.4609	-1.8983
L14 L15	83.5000-83.2500		-1.0958 1.0058	1.2738 1.2732	-1.6548
L16	83.2500-79.2500 79.2500-75.2500	0.9971 0.9971	-1.0958 -1.0958	1.2732	-1.6535
L16 L17					-1.6512 1.6400
L17 L18	75.2500-75.0000	0.9971	-1.0958	1.2716 1.2123	-1.6499
	75.0000-74.7500	0.9971	-1.0958 1.0058		-1.5729
L19 L20	74.7500-70.7500	0.9971	-1.0958	1.2118	-1.5717
L20 L21	70.7500-66.7500	0.9971	-1.0958	1.2107	-1.5693
L21 L22	66.7500-62.7500 62.7500-60.0000	0.9971	-1.0958	1.2096 1.2087	-1.5668
L22 L23	60.0000-59.7500	0.9971 2.3423	-1.0958 -2.5795	2,0925	-1.5645
L23 L24	59.7500-55.7500	2.3423	-2.5795 -2.5795	2.0925	-2.7126 -2.7101
L24 L25	55.7500-51.7500	2.3423	-2.5795 -2.5795	2.0895	-2.7101 -2.7052
L25 L26	51.7500-48.5000	0.5632	-2.5795 -0.5897	0.9295	-1.0875
L20 L27	48.5000-48.2500	0.5164	-0.5057 -0.5057	0.8013	-0.8015
L27 L28	48.2500-44.2500	0.5164	-0.5057 -0.5057	0.8013	-0.8009
L29	44.2500-40.2500	0.5164	-0.5057 -0.5057	0.8009	-0.7997
L30	40.2500-36.2500	0.5164	-0.5057 -0.5057	0.7992	-0.7983
L31	36.2500-32.2500	0.5164	-0.5057 -0.5057	0.7983	-0.7968
L32	32,2500-30,0000	0.5164	-0.5057 -0.5057	0.7975	-0.7955
L33	30.0000-29.7500	1.0486	-1.0278	1.2536	-1.2500
L34	29.7500-25.7500	1.0486	-1.0278	1,2523	-1.2481
L35	25.7500-23.0000	0.5921	0.5804	0.9735	0 9695
L36	23.0000-22.7500	0.5416	-0.5308	0.8972	0.8931
L37	22.7500-20.7500	0.4869	-0.4772	0.8007	-0.7968
L38	20.7500-20.5000	0.4591	-0.4500	0.7519	0.7480
L39	20.5000-17.7500	0.0047	-2.2152	0.3491	-2.3044
L40	17.7500-17.5000	0.0054	-2.5709	0.3913	-2.5915
L40 L41	17.5000-17.5000	0.0054	-2.5709 -2.5709	0.3893	-2.5920
L42	13.5000-13.5000	0.0054	-2.5709 -2.5709	0.3851	-2.5925
L42 L43	9.5000-5.5000	0.0054	-2.5709 -2.5709	0.3794	-2.5923 -2.5922
L44	5.5000-3.2500	0.0054	-2.5709	0.3724	2.5919
L45	3.2500-3.0000	0.0054	-2.5709	0.3682	-2.5916
L46	3.0000-0.0000	0.0972	-2.2715	0.4445	-2.3306

 $Note: For pole \ sections, center of \ pressure \ calculations \ do \ not \ consider feed \ line \ shielding.$

Shielding Factor Ka

	Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
ı				Ēlev.		
Ī	L1	2	FSJ4-50B(1/2)	126.00 -	1.0000	1.0000
ı				127.00		
ı	L1	4	2" Rigid Conduit	126.00 -	1.0000	1.0000
ı				127.00		
ı	L2	2	FSJ4-50B(1/2)		1.0000	1.0000
١				126.00		

T	Fordlin	De animetic :	F05-11'	IZ I	1/
Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
L2	4	2" Rigid Conduit	<i>Elev.</i> 122.00 -	1.0000	1.0000
L3	2	FSJ4-50B(1/2)	126.00 120.00 -	1.0000	1.0000
L3	4	2" Rigid Conduit	122.00 120.00 -	1.0000	1.0000
L4	2	FSJ4-50B(1/2)	122.00 116.00 -	1.0000	1.0000
L4	4	2" Rigid Conduit	120.00 116.00 -	1.0000	1.0000
L5	2	FSJ4-50B(1/2)	120.00 112.00 -	1.0000	1.0000
L5	4	2" Rigid Conduit	116.00 112.00 -	1.0000	1.0000
L6	2	FSJ4-50B(1/2)	116.00 108.00 - 112.00	1.0000	1.0000
L6	4	2" Rigid Conduit	108.00 - 108.00 - 112.00	1.0000	1.0000
L7	2	FSJ4-50B(1/2)	104.00 - 108.00	1.0000	1.0000
L7	4	2" Rigid Conduit	104.00 - 104.00 - 108.00	1.0000	1.0000
L8	2	FSJ4-50B(1/2)	100.00 - 104.00	1.0000	1.0000
L8	4	2" Rigid Conduit	100.00 - 104.00	1.0000	1.0000
L9	2	FSJ4-50B(1/2)	96.00 - 100.00	1.0000	1.0000
L9	4	2" Rigid Conduit	96.00 - 100.00	1.0000	1.0000
L10	2	FSJ4-50B(1/2)	92.00 - 96.00	1.0000	1.0000
L10	4	2" Rigid Conduit	92.00 - 96.00	1.0000	1.0000
L11	2	FSJ4-50B(1/2)	90.00 - 92.00	1.0000	1.0000
L11	4	2" Rigid Conduit	90.00 - 92.00	1.0000	1.0000
L12	2	FSJ4-50B(1/2)	86.00 - 90.00	1.0000	1.0000
L12	4	2" Rigid Conduit	86.00 - 90.00	1.0000	1.0000
L13	2	FSJ4-50B(1/2)	83.50 - 86.00	1.0000	1.0000
L13		2" Rigid Conduit	83.50 - 86.00	1.0000	1.0000
L13	43	CCI-65FP-045100	83.50 - 85.00	1.0000	1.0000
L13	44	CCI-65FP-045100	83.50 - 85.00	1.0000	1.0000
L13	45	CCI-65FP-045100	83.50 - 85.00	1.0000	1.0000
L13	47	CU12PSM9P8XXX(1-3/8)	83.50 - 86.00	1.0000	1.0000
L14	2	FSJ4-50B(1/2)	83.25 - 83.50	1.0000	1.0000
L14	4	2" Rigid Conduit	83.25 - 83.50	1.0000	1.0000
L14	43	CCI-65FP-045100	83.25 - 83.50	1.0000	1.0000
L14	44	CCI-65FP-045100	83.25 - 83.50	1.0000	1.0000
L14	45	CCI-65FP-045100	83.25 - 83.50	1.0000	1.0000
L14	47	CU12PSM9P8XXX(1-3/8)	83.25 - 83.50	1.0000	1.0000
L15	2	FSJ4-50B(1/2)	79.25 - 83.25	1.0000	1.0000
L15	4	2" Rigid Conduit	79.25 -	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.		Segment Elev.	No Ice	Ice
L15	43	CCI-65FP-045100	83.25 79.25 - 83.25	1.0000	1.0000
L15	44	CCI-65FP-045100	79.25 - 83.25	1.0000	1.0000
L15	45	CCI-65FP-045100	79.25 - 83.25	1.0000	1.0000
L15	47	CU12PSM9P8XXX(1-3/8)	79.25 - 83.25	1.0000	1.0000
L16	2	FSJ4-50B(1/2)	75.25 - 79.25	1.0000	1.0000
L16	4	2" Rigid Conduit	75.25 - 79.25	1.0000	1.0000
L16	43	CCI-65FP-045100	75.25 - 79.25	1.0000	1.0000
L16	44	CCI-65FP-045100	75.25 - 79.25	1.0000	1.0000
L16	45	CCI-65FP-045100	75.25 - 79.25	1.0000	1.0000
L16	47	CU12PSM9P8XXX(1-3/8)	75.25 - 79.25	1.0000	1.0000
L17	2	FSJ4-50B(1/2)	75.00 - 75.25	1.0000	1.0000
L17	4	2" Rigid Conduit	75.00 - 75.25	1.0000	1.0000
L17	43	CCI-65FP-045100	75.00 - 75.25	1.0000	1.0000
L17	44	CCI-65FP-045100	75.00 - 75.25	1.0000	1.0000
L17	45	CCI-65FP-045100	75.00 - 75.25	1.0000	1.0000
L17	47	CU12PSM9P8XXX(1-3/8)	75.00 - 75.25	1.0000	1.0000
L18	2	FSJ4-50B(1/2)	74.75 - 75.00	1.0000	1.0000
L18	4	2" Rigid Conduit	74.75 - 75.00	1.0000	1.0000
L18	25	CCI-65FP-045100	74.75 - 75.00	1.0000	1.0000
L18	26	CCI-65FP-045100	74.75 - 75.00	1.0000	1.0000
L18	27	CCI-65FP-045100	74.75 - 75.00	1.0000	1.0000
L18	47	CU12PSM9P8XXX(1-3/8)	74.75 - 75.00	1.0000	1.0000
L19	2	FSJ4-50B(1/2)	70.75 - 74.75	1.0000	1.0000
L19	4	2" Rigid Conduit	70.75 - 74.75	1.0000	1.0000
L19	25	CCI-65FP-045100	70.75 - 74.75	1.0000	1.0000
L19	26	CCI-65FP-045100	70.75 - 74.75	1.0000	1.0000
L19	27	CCI-65FP-045100	70.75 - 74.75	1.0000	1.0000
L19	47	CU12PSM9P8XXX(1-3/8)	70.75 - 74.75	1.0000	1.0000
L20	2	FSJ4-50B(1/2)	66.75 - 70.75	1.0000	1.0000
L20	4	2" Rigid Conduit	66.75 - 70.75	1.0000	1.0000
L20	25	CCI-65FP-045100	66.75 - 70.75	1.0000	1.0000
L20	26	CCI-65FP-045100	66.75 - 70.75	1.0000	1.0000
L20	27	CCI-65FP-045100	66.75 - 70.75	1.0000	1.0000
L20	47	CU12PSM9P8XXX(1-3/8)	66.75 - 70.75	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
L21	2	FSJ4-50B(1/2)	<i>Elev.</i> 62.75 -	1.0000	1.0000
L21	4	2" Rigid Conduit	66.75 62.75 -	1.0000	1.0000
L21	25	CCI-65FP-045100	66.75 62.75 -	1.0000	1.0000
L21	26	CCI-65FP-045100	66.75 62.75 -	1.0000	1.0000
L21	27	CCI-65FP-045100	66.75 62.75 -	1.0000	1.0000
L21	47	CU12PSM9P8XXX(1-3/8)	66.75 62.75 -	1.0000	1.0000
L22	2	FSJ4-50B(1/2)	66.75 60.00 -	1.0000	1.0000
L22	4	2" Rigid Conduit	62.75 60.00 -	1.0000	1.0000
L22	25	CCI-65FP-045100	62.75 60.00 -	1.0000	1.0000
L22	26	CCI-65FP-045100	62.75 60.00 -	1.0000	1.0000
L22	27	CCI-65FP-045100	62.75 60.00 -	1.0000	1.0000
L22	47	CU12PSM9P8XXX(1-3/8)	62.75 60.00 - 62.75	1.0000	1.0000
L23	2	FSJ4-50B(1/2)	59.75 - 60.00	1.0000	1.0000
L23	4	2" Rigid Conduit	59.75 - 60.00	1.0000	1.0000
L23	47	CU12PSM9P8XXX(1-3/8)	59.75 - 60.00	1.0000	1.0000
L24	2	FSJ4-50B(1/2)	55.75 - 59.75	1.0000	1.0000
L24	4	2" Rigid Conduit	55.75 - 59.75	1.0000	1.0000
L24	47	CU12PSM9P8XXX(1-3/8)	55.75 - 59.75	1.0000	1.0000
L25	2	FSJ4 - 50B(1/2)	51.75 - 55.75	1.0000	1.0000
L25	4	2" Rigid Conduit	51.75 - 55.75	1.0000	1.0000
L25	47	CU12PSM9P8XXX(1-3/8)	51.75 - 55.75	1.0000	1.0000
L26	2	FSJ4-50B(1/2)	48.50 - 51.75	1.0000	1.0000
L26	4	2" Rigid Conduit		1.0000	1.0000
L26	15	LDF4-50A(1/2)	48.50 - 50.00	1.0000	1.0000
L26	21	CCI-65FP-045100	48.50 - 51.50	1.0000	1.0000
L26	22	CCI-65FP-045100	48.50 - 51.50	1.0000	1.0000
L26	23	CCI-65FP-045100	48.50 - 51.50	1.0000	1.0000
L26	39	MS-600	48.50 - 51.50	1.0000	1.0000
L26	40	MS-600	48.50 - 51.50	1.0000	1.0000
L26	41	MS-600	48.50 - 51.50	1.0000	1.0000
L26	47	CU12PSM9P8XXX(1-3/8)	48.50 - 51.75	1.0000	1.0000
L27	2	FSJ4-50B(1/2)	48.25 - 48.50	1.0000	1.0000
L27	4	2" Rigid Conduit	48.25 - 48.50	1.0000	1.0000
L27	15	LDF4-50A(1/2)	48.25 - 48.50	1.0000	1.0000
L27	21	CCI-65FP-045100		1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L27	22	CCI-65FP-045100	48.50 48.25 -	1.0000	1.0000
L27	23	CCI-65FP-045100	48.50 48.25 - 48.50	1.0000	1.0000
L27	39	MS-600	48.25 - 48.50	1.0000	1.0000
L27	40	MS-600	48.25 - 48.50	1.0000	1.0000
L27	41	MS-600	48.25 - 48.50	1.0000	1.0000
L27	47	CU12PSM9P8XXX(1-3/8)	48.25 - 48.50	1.0000	1.0000
L28	2	FSJ4-50B(1/2)	44.25 - 48.25	1.0000	1.0000
L28	4	2" Rigid Conduit	44.25 - 48.25	1.0000	1.0000
L28	15	LDF4-50A(1/2)	44.25 - 48.25	1.0000	1.0000
L28	21	CCI-65FP-045100	44.25 - 48.25	1.0000	1.0000
L28	22	CCI-65FP-045100	44.25 - 48.25	1.0000	1.0000
L28	23	CCI-65FP-045100	44.25 - 48.25	1.0000	1.0000
L28	39	MS-600	44.25 - 48.25	1.0000	1.0000
L28	40	MS-600	44.25 - 48.25	1.0000	1.0000
L28	41	MS-600	44.25 - 48.25	1.0000	1.0000
L28	47	CU12PSM9P8XXX(1-3/8)	44.25 - 48.25	1.0000	1.0000
L29	2	FSJ4-50B(1/2)	40.25 - 44.25	1.0000	1.0000
L29	4	2" Rigid Conduit	40.25 - 44.25	1.0000	1.0000
L29	15	LDF4-50A(1/2)	40.25 - 44.25	1.0000	1.0000
L29	21	CCI-65FP-045100	40.25 - 44.25	1.0000	1.0000
L29	22	CCI-65FP-045100	40.25 - 44.25	1.0000	1.0000
L29	23	CCI-65FP-045100	40.25 - 44.25	1.0000	1.0000
L29	39	MS-600	40.25 - 44.25	1.0000	1.0000
L29	40	MS-600	40.25 - 44.25	1.0000	1.0000
L29	41	MS-600	40.25 - 44.25	1.0000	1.0000
L29	47	CU12PSM9P8XXX(1-3/8)	40.25 - 44.25	1.0000	1.0000
L30	2	FSJ4-50B(1/2)	36.25 - 40.25	1.0000	1.0000
L30	4	2" Rigid Conduit	36.25 - 40.25	1.0000	1.0000
L30	15	LDF4-50A(1/2)	36.25 - 40.25	1.0000	1.0000
L30	21	CCI-65FP-045100	36.25 - 40.25	1.0000	1.0000
L30	22	CCI-65FP-045100	36.25 - 40.25	1.0000	1.0000
L30	23	CCI-65FP-045100	36.25 - 40.25	1.0000	1.0000
L30	39	MS-600	36.25 - 40.25	1.0000	1.0000
L30	40	MS-600	36.25 - 40.25	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.	·	Segment Elev.	No Ice	Ice
L30	41	MS-600	36.25 - 40.25	1.0000	1.0000
L30	47	CU12PSM9P8XXX(1-3/8)	40.25 36.25 - 40.25	1.0000	1.0000
L31	2	FSJ4-50B(1/2)	32.25 - 36.25	1.0000	1.0000
L31	4	2" Rigid Conduit	32.25 - 36.25	1.0000	1.0000
L31	15	LDF4-50A(1/2)	32.25 - 36.25	1.0000	1.0000
L31	21	CCI-65FP-045100	32.25 - 36.25	1.0000	1.0000
L31	22	CCI-65FP-045100	32.25 - 36.25	1.0000	1.0000
L31	23	CCI-65FP-045100	32.25 - 36.25	1.0000	1.0000
L31	39	MS-600	32.25 - 36.25	1.0000	1.0000
L31	40	MS-600	32.25 - 36.25	1.0000	1.0000
L31	41	MS-600	32.25 - 36.25	1.0000	1.0000
L31	47	CU12PSM9P8XXX(1-3/8)	32.25 - 36.25	1.0000	1.0000
L32	2	FSJ4-50B(1/2)	30.00 - 32.25	1.0000	1.0000
L32	4	2" Rigid Conduit	30.00 - 32.25	1.0000	1.0000
L32	15	LDF4-50A(1/2)	30.00 - 32.25	1.0000	1.0000
L32	21	CCI-65FP-045100	30.00 - 32.25	1.0000	1.0000
L32	22	CCI-65FP-045100	30.00 - 32.25	1.0000	1.0000
L32	23	CCI-65FP-045100	30.00 - 32.25	1.0000	1.0000
L32	39	MS - 600	30.00 - 32.25	1.0000	1.0000
L32	40	MS-600	30.00 - 32.25	1.0000	1.0000
L32	41	MS-600	30.00 - 32.25	1.0000	1.0000
L32	47	CU12PSM9P8XXX(1-3/8)	30.00 - 32.25	1.0000	1.0000
L33	2	FSJ4-50B(1/2)	29.75 - 30.00	1.0000	1.0000
L33	4	2" Rigid Conduit	29.75 - 30.00	1.0000	1.0000
L33	15	LDF4-50A(1/2)	29.75 - 30.00	1.0000	1.0000
L33	33	MS-600	29.75 - 30.00	1.0000	1.0000
L33	34	MS-600	29.75 - 30.00	1.0000	1.0000
L33	35	MS-600	29.75 - 30.00	1.0000	1.0000
L33	47	CU12PSM9P8XXX(1-3/8)	29.75 - 30.00	1.0000	1.0000
L34	2	FSJ4-50B(1/2)	25.75 - 29.75	1.0000	1.0000
L34	4	2" Rigid Conduit	25.75 - 25.75 - 29.75	1.0000	1.0000
L34	15	LDF4-50A(1/2)	25.75 - 25.75 - 29.75	1.0000	1.0000
L34	33	MS-600	25.75 - 25.75 - 29.75	1.0000	1.0000
L34	34	MS-600	25.75 - 25.75 - 29.75	1.0000	1.0000
L34	35	MS-600		1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
			Elev.		
L34	47	CU12PSM9P8XXX(1-3/8)	29.75 25.75 - 29.75	1.0000	1.0000
L35	2	FSJ4-50B(1/2)	23.00 - 25.75	1.0000	1.0000
L35	4	2" Rigid Conduit	23.00 - 25.75	1.0000	1.0000
L35	15	LDF4-50A(1/2)	23.00 - 25.75	1.0000	1.0000
L35	29	MS-600	23.00 - 25.00	1.0000	1.0000
L35	30	MS-600	23.00 - 25.00	1.0000	1.0000
L35	31	MS-600	23.00 - 25.00	1.0000	1.0000
L35	33	MS-600	23.00 - 25.75	1.0000	1.0000
L35	34	MS-600	23.00 - 25.75	1.0000	1.0000
L35	35	MS-600	23.00 - 25.75	1.0000	1.0000
L35	47	CU12PSM9P8XXX(1-3/8)	23.00 - 25.75	1.0000	1.0000
L36	2	FSJ4-50B(1/2)	22.75 - 23.00	1.0000	1.0000
L36	4	2" Rigid Conduit	22.75 - 23.00	1.0000	1.0000
L36	15	LDF4-50A(1/2)	22.75 - 23.00	1.0000	1.0000
L36	29	MS-600	22.75 - 23.00	1.0000	1.0000
L36	30	MS-600	22.75 - 23.00	1.0000	1.0000
L36	31	MS-600	22.75 - 23.00	1.0000	1.0000
L36	33	MS-600	22.75 - 23.00	1.0000	1.0000
L36	34 35	MS-600	22.75 - 23.00 22.75 -	1.0000	1.0000 1.0000
L36	47	MS-600 CU12PSM9P8XXX(1-3/8)	22.75 - 23.00 22.75 -	1.0000	1.0000
L37	2	FSJ4-50B(1/2)	23.00 20.75 -	1.0000	1.0000
L37	4	2" Rigid Conduit	20.75 - 22.75 - 20.75 -	1.0000	1.0000
L37	15	LDF4-50A(1/2)	22.75 20.75 -	1.0000	1.0000
L37	17	3.75 x 1.25 FP	22.75 20.75 -	1.0000	1.0000
L37	18	3.75 x 1.25 FP	22.00 20.75 -	1.0000	1.0000
L37	19	3.75 x 1.25 FP	22.00 20.75 -	1.0000	1.0000
L37	29	MS-600	22.00 20.75 -	1.0000	1.0000
L37	30	MS-600	22.75 20.75 -	1.0000	1.0000
L37	31	MS-600	22.75 20.75 -	1.0000	1.0000
L37	33	MS-600	22.75 20.75 -	1.0000	1.0000
L37	34	MS-600	22.75 20.75 -	1.0000	1.0000
L37	35	MS-600	22.75 20.75 -	1.0000	1.0000
L37	47	CU12PSM9P8XXX(1-3/8)	22.75 20.75 - 22.75	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.	·	Segment Elev.	No Ice	Ice
L38	2	FSJ4-50B(1/2)	20.50 - 20.75	1.0000	1.0000
L38	4	2" Rigid Conduit	20.75 20.50 - 20.75	1.0000	1.0000
L38	15	LDF4-50A(1/2)	20.50 - 20.75	1.0000	1.0000
L38	17	3.75 x 1.25 FP	20.50 - 20.75	1.0000	1.0000
L38	18	3.75 x 1.25 FP	20.50 - 20.75	1.0000	1.0000
L38	19	3.75 x 1.25 FP	20.50 - 20.75	1.0000	1.0000
L38	29	MS-600	20.50 - 20.75	1.0000	1.0000
L38	30	MS-600	20.75 20.50 - 20.75	1.0000	1.0000
L38	31	MS-600	20.75 20.50 - 20.75	1.0000	1.0000
L38	33	MS-600	20.75 20.50 - 20.75	1.0000	1.0000
L38	34	MS-600	20.75 20.50 - 20.75	1.0000	1.0000
L38	35	MS-600	20.75 20.50 - 20.75	1.0000	1.0000
L38	47	CU12PSM9P8XXX(1-3/8)	20.75 20.50 - 20.75	1.0000	1.0000
L39	2	FSJ4-50B(1/2)	17.75 - 20.50	1.0000	1.0000
L39	4	2" Rigid Conduit	17.75 - 20.50	1.0000	1.0000
L39	15	LDF4-50A(1/2)	17.75 - 20.50	1.0000	1.0000
L39	17	3.75 x 1.25 FP	17.75 - 20.50	1.0000	1.0000
L39	18	3.75 x 1.25 FP	17.75 - 20.50	1.0000	1.0000
L39	19	3.75 x 1.25 FP	20.50 17.75 - 20.50	1.0000	1.0000
L39	29	MS-600	17.75 - 20.50	1.0000	1.0000
L39	30	MS-600	17.75 - 20.50	1.0000	1.0000
L39	31	MS-600	17.75 - 20.50	1.0000	1.0000
L39	33	MS-600	19.00 - 20.50	1.0000	1.0000
L39	34	MS-600	19.00 - 20.50	1.0000	1.0000
L39	35	MS-600	19.00 - 20.50	1.0000	1.0000
L39	37	CCI-65FP-065125	17.75 -	1.0000	1.0000
L39	47	CU12PSM9P8XXX(1-3/8)	20.50 17.75 -	1.0000	1.0000
L40	2	FSJ4-50B(1/2)	20.50 17.50 -	1.0000	1.0000
L40	4	2" Rigid Conduit	17.75 17.50 -	1.0000	1.0000
L40	15	LDF4-50A(1/2)	17.75 17.50 -	1.0000	1.0000
L40	17	3.75 x 1.25 FP	17.75 17.50 - 17.75	1.0000	1.0000
L40	18	3.75 x 1.25 FP	17.50 -	1.0000	1.0000
L40	19	3.75 x 1.25 FP	17.75 17.50 - 17.75	1.0000	1.0000
L40	29	MS-600	17.50 -	1.0000	1.0000
L40	30	MS-600	17.75 17.50 -	1.0000	1.0000

-			_ ,	17	
Tower Section	Feed Line Record No.	Description	Feed Line Segment	K₃ No Ice	K _a Ice
Section	Necola No.		Elev.	NO ICE	100
			17.75		
L40	31	MS-600	17.50 -	1.0000	1.0000
			17.75		
L40	37	CCI-65FP-065125	17.50 -	1.0000	1.0000
L40	47	CU12PSM9P8XXX(1-3/8)	17.75 17.50 -	1.0000	1.0000
		00121 CIMO1 0700X(1 0/0)	17.75	1.0000	
L41	2	FSJ4-50B(1/2)	13.50 -	1.0000	1.0000
L41	4	2" Rigid Conduit	17.50	1.0000	1.0000
L41	4	2 Rigid Conduit	13.50 - 17.50	1.0000	1.0000
L41	15	LDF4-50A(1/2)	13.50 -	1.0000	1.0000
L41	17	3.75 x 1.25 FP	17.50	1.0000	1.0000
L41	''	3.73 X 1.23 FP	13.50 - 17.50	1.0000	1.0000
L41	18	3.75 x 1.25 FP	13.50 -	1.0000	1.0000
			17.50		
L41	19	3.75 x 1.25 FP	13.50 - 17.50	1.0000	1.0000
L41	29	MS-600	13.50	1.0000	1.0000
			17.50		
L41	30	MS-600	13.50 - 17.50	1.0000	1.0000
L41	31	MS-600	13.50	1.0000	1.0000
			17.50		
L41	37	CCI-65FP-065125	13.50 -	1.0000	1.0000
L41	47	CU12PSM9P8XXX(1-3/8)	17.50 13.50 -	1.0000	1.0000
'	7'	00121 01001 0700X(1 070)	17.50	1.0000	1.0000
L42	2	FSJ4-50B(1/2)	9.50 - 13.50	1.0000	1.0000
L42	4	2" Rigid Conduit	9.50 - 13.50	1.0000	1.0000
L42	15	LDF4-50A(1/2)	9.50 - 13.50	1.0000	1.0000
L42	17	3.75 x 1.25 FP	9.50 - 13.50	1.0000	1.0000
L42 L42	18 19	3.75 x 1.25 FP 3.75 x 1.25 FP	9.50 - 13.50 9.50 - 13.50	1.0000 1.0000	1.0000 1.0000
L42	29	3.75 X 1.25 FF	9.50 - 13.50	1.0000	1.0000
L42	30	MS-600	9.50 - 13.50	1.0000	1.0000
L42	31	MS-600	9.50 - 13.50	1.0000	1.0000
L42	37	CCI-65FP-065125	9.50 - 13.50	1.0000	1.0000
L42	47	CU12PSM9P8XXX(1-3/8)	9.50 - 13.50	1.0000	1.0000
L43	2	FSJ4-50B(1/2)	5.50 - 9.50	1.0000	1.0000
L43	4	2" Rigid Conduit	5.50 - 9.50	1.0000	1.0000
L43	15	LDF4-50A(1/2)	5.50 - 9.50	1.0000	1.0000
L43	17	3.75 x 1.25 FP	5.50 - 9.50	1.0000	1.0000
L43	18	3.75 x 1.25 FP	5.50 - 9.50	1.0000	1.0000
L43	19	3.75 x 1.25 FP	5.50 - 9.50	1.0000	1.0000
L43 L43	29 30	MS-600 MS-600	5.50 - 9.50 5.50 - 9.50	1.0000 1.0000	1.0000 1.0000
L43	31	MS-600	5.50 - 9.50	1.0000	1.0000
L43	37	CCI-65FP-065125	5.50 - 9.50	1.0000	1.0000
L43	47	CU12PSM9P8XXX(1-3/8)	5.50 - 9.50	1.0000	1.0000
L44	2	FSJ4-50B(1/2)	3.25-5.50	1.0000	1.0000
L44	4	2" Rigid Conduit	3.25 - 5.50	1.0000	1.0000
L44	15	LDF4-50A(1/2)	3.25 - 5.50	1.0000	1.0000
L44	17	3.75 x 1.25 FP	3.25 - 5.50	1.0000	1.0000
L44 L44	18 19	3.75 x 1.25 FP 3.75 x 1.25 FP	3.25 - 5.50 3.25 - 5.50	1.0000 1.0000	1.0000 1.0000
L44	29	3.75 X 1.25 FP MS-600	3.25 - 5.50	1.0000	1.0000
L44	30	MS-600	3.25 - 5.50	1.0000	1.0000
L44	31	MS-600	3.25 - 5.50	1.0000	1.0000
L44	37	CCI-65FP-065125	3.25 - 5.50	1.0000	1.0000
L44	47	CU12PSM9P8XXX(1-3/8)	3.25 - 5.50	1.0000	1.0000
L45	2	FSJ4-50B(1/2)	3.00 - 3.25	1.0000	1.0000
L45	4	2" Rigid Conduit	3.00 - 3.25	1.0000	1.0000
L45 L45	15 17	LDF4-50A(1/2) 3.75 x 1.25 FP	3.00 - 3.25	1.0000 1.0000	1.0000
L45 L45	17	3.75 x 1.25 FP 3.75 x 1.25 FP	3.00 - 3.25 3.00 - 3.25	1.0000	1.0000 1.0000
L45	19	3.75 x 1.25 FP	3.00 - 3.25	1.0000	1.0000
L45					

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L45	30	MS-600	3.00 - 3.25	1.0000	1.0000
L45	31	MS-600	3.00 - 3.25	1.0000	1.0000
L45	37	CCI-65FP-065125	3.00 - 3.25	1.0000	1.0000
L45	47	CU12PSM9P8XXX(1-3/8)	3.00 - 3.25	1.0000	1.0000
L46	2	FSJ4-50B(1/2)	0.00 - 3.00	1.0000	1.0000
L46	4	2" Rigid Conduit	0.00 - 3.00	1.0000	1.0000
L46	15	LDF4-50A(1/2)	0.00 - 3.00	1.0000	1.0000
L46	17	3.75 x 1.25 FP	0.00 - 3.00	1.0000	1.0000
L46	18	3.75 x 1.25 FP	0.00 - 3.00	1.0000	1.0000
L46	19	3.75 x 1.25 FP	0.00 - 3.00	1.0000	1.0000
L46	29	MS-600	0.00 - 3.00	1.0000	1.0000
L46	30	MS-600	0.00 - 3.00	1.0000	1.0000
L46	31	MS-600	0.00 - 3.00	1.0000	1.0000
L46	37	CCI-65FP-065125	0.50 - 3.00	1.0000	1.0000
L46	47	CU12PSM9P8XXX(1-3/8)	0.00-3.00	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculatio	Width Ratio
			Elev.	n Method	Ralio
L13	43	CCI-65FP-045100	83.50 -	Auto	1.0000
L13	44	CCI-65FP-045100	85.00 83.50 -	Auto	1,0000
LIS	44	CCI-03FF-043 100	85.00	Auto	1.0000
L13	45	CCI-65FP-045100	83.50 -	Auto	1.0000
 L14	43	OOL CEED 045400	85.00 83.25 -	A 4 =	1.0000
L14	43	CCI-65FP-045100	83.25	Auto	1.0000
L14	44	CCI-65FP-045100	83.25	Auto	1.0000
		001.0550.045400	83.50		
L14	45	CCI-65FP-045100	83.25 - 83.50	Auto	1.0000
L15	43	CCI-65FP-045100	79.25 -	Auto	1,0000
			83.25		
L15	44	CCI-65FP-045100	79.25 -	Auto	1.0000
L15	45	CCI-65FP-045100	83.25 79.25 -	Auto	1.0000
		0010011 010100	83.25	71010	1.0000
L16	43	CCI-65FP-045100	75.25 -	Auto	1.0000
L16	44	CCI-65FP-045100	79.25 75.25 -	Auto	1.0000
10	44	CCI-031 F -043 100	79.25	Auto	1.0000
L16	45	CCI-65FP-045100	75.25 -	Auto	1.0000
L17	43	CCI-65FP-045100	79.25	۸	1.0000
L1/	43	CCI-65FP-045100	75.00 - 75.25	Auto	1.0000
L17	44	CCI-65FP-045100	75.00-	Auto	1.0000
		001.0550.045400	75.25		4 0000
L17	45	CCI-65FP-045100	75.00 - 75.25	Auto	1.0000
L18	25	CCI-65FP-045100	74.75	Auto	1.0000
			75.00		
L18	26	CCI-65FP-045100	74.75 -	Auto	1.0000
L18	27	CCI-65FP-045100	75.00 74.75 -	Auto	1.0000
	[3313311 340100	75.00	,	
L19	25	CCI-65FP-045100	70.75 -	Auto	1.0000
L19	26	CCI-65FP-045100	74.75 70.75	Auto	1,0000
1 19	1 201	001-0311-043100	10.75-		1.00001

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
	necora ivo.		Elev.	n	Ratio
			74.75	Method	
L19		CCI-65FP-045100	70.75 - 74.75	Auto	1.0000
L20	25	CCI-65FP-045100	66.75 - 70.75	Auto	1.0000
L20	26	CCI-65FP-045100	66.75 - 70.75	Auto	1.0000
L20	27	CCI-65FP-045100	66.75 - 70.75	Auto	1.0000
L21	25	CCI-65FP-045100	62.75 - 66.75	Auto	1.0000
L21	26	CCI-65FP-045100	62.75 - 66.75	Auto	1.0000
L21	27	CCI-65FP-045100	62.75 - 66.75	Auto	1.0000
L22	25	CCI-65FP-045100	60.00-	Auto	1.0000
L22	26	CCI-65FP-045100	62.75 60.00 - 62.75	Auto	1.0000
L22	27	CCI-65FP-045100	60.00 - 62.75	Auto	1.0000
L26	21	CCI-65FP-045100	48.50 - 51.50	Auto	1.0000
L26	22	CCI-65FP-045100	48.50 - 51.50	Auto	1.0000
L26	23	CCI-65FP-045100	48.50 - 51.50	Auto	1.0000
L26	39	MS-600	48.50 - 51.50	Auto	1.0000
L26	40	MS-600	48.50 - 51.50	Auto	1.0000
L26	41	MS-600	48.50 - 51.50	Auto	1.0000
L27	21	CCI-65FP-045100	48.25 - 48.50	Auto	1.0000
L27	22	CCI-65FP-045100	48.25 - 48.50	Auto	1.0000
L27	23	CCI-65FP-045100	48.25 - 48.50	Auto	1.0000
L27	39	MS-600	48.25 - 48.50	Auto	1.0000
L27	40	MS-600	48.25 - 48.50	Auto	1.0000
L27	41	MS-600	48.25 - 48.50	Auto	1.0000
L28	21	CCI-65FP-045100	44.25 - 48.25	Auto	1.0000
L28	22	CCI-65FP-045100	46.25 44.25 - 48.25	Auto	1.0000
L28	23	CCI-65FP-045100	44.25 -	Auto	1.0000
L28	39	MS-600	48.25 44.25 - 48.25	Auto	1.0000
L28	40	MS-600	44.25 - 48.25	Auto	1.0000
L28	41	MS-600	48.25 44.25 - 48.25	Auto	1.0000
L29	21	CCI-65FP-045100	40.25 - 44.25	Auto	1.0000
L29	22	CCI-65FP-045100	44.25 40.25 - 44.25	Auto	1.0000
L29	23	CCI-65FP-045100	40.25 - 44.25	Auto	1.0000
L29	39	MS-600	44.25 40.25 - 44.25	Auto	1.0000
L29	40	MS-600	40.25 - 44.25	Auto	1.0000
L29	41	MS-600		Auto	1.0000

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
	riccora rio.		Elev.	n	Ratio
			44.25	Method	
L30	21	CCI-65FP-045100	36.25 - 40.25	Auto	1.0000
L30	22	CCI-65FP-045100	36.25 - 40.25	Auto	1.0000
L30	23	CCI-65FP-045100	36.25 - 40.25	Auto	1.0000
L30	39	MS-600	36.25 - 40.25	Auto	1.0000
L30	40	MS-600	36.25 - 40.25	Auto	1.0000
L30	41	MS-600	36.25 - 40.25	Auto	1.0000
L31	21	CCI-65FP-045100	32.25 - 36.25	Auto	1.0000
L31	22	CCI-65FP-045100	32.25 - 36.25	Auto	1.0000
L31	23	CCI-65FP-045100	32.25 - 36.25	Auto	1.0000
L31	39	MS-600	32.25 - 36.25	Auto	1.0000
L31	40	MS-600	32.25 - 36.25	Auto	1.0000
L31	41	MS-600	32.25 - 36.25	Auto	1.0000
L32	21	CCI-65FP-045100	30.00 - 32.25	Auto	1.0000
L32	22	CCI-65FP-045100	30.00 - 32.25	Auto	1.0000
L32	23	CCI-65FP-045100	30.00 - 32.25	Auto	1.0000
L32	39	MS-600	30.00 - 32.25	Auto	1.0000
L32	40	MS-600	30.00 - 32.25	Auto	1.0000
L32	41	MS-600	30.00 - 32.25	Auto	1.0000
L33	33	MS-600	29.75 - 30.00	Auto	1.0000
L33	34	MS-600	29.75 - 30.00	Auto	1.0000
L33	35	MS-600	29.75 - 30.00	Auto	1.0000
L34	33	MS-600	25.75 - 29.75	Auto	1.0000
L34	34	MS-600	25.75 - 29.75	Auto	1.0000
L34	35	MS-600	25.75 - 25.75 - 29.75	Auto	1.0000
L35	29	MS-600	23.00 - 25.00	Auto	1.0000
L35	30	MS-600	23.00 - 23.00 - 25.00	Auto	1.0000
L35	31	MS-600	23.00 - 23.00 - 25.00	Auto	1.0000
L35	33	MS-600	23.00 - 23.75	Auto	1.0000
L35	34	MS-600	23.00 - 25.75	Auto	1.0000
L35	35	MS-600	23.00 - 25.75	Auto	1.0000
L36	29	MS-600	22.75 - 22.75 - 23.00	Auto	1.0000
L36	30	MS-600	22.75 - 23.00	Auto	1.0000
L36	31	MS-600	22.75 - 23.00	Auto	1.0000
L36	33	MS-600		Auto	1.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculatio n	Width Ratio
			23.00	Method	
L36	34	MS-600	22.75 - 23.00	Auto	1.0000
L36	35	MS-600	22.75 - 23.00	Auto	1.0000
L37	17	3.75 x 1.25 FP	20.75 - 22.00	Auto	1.0000
L37	18	3.75 x 1.25 FP	20.75 - 22.00	Auto	1.0000
L37	19	3.75 x 1.25 FP	20.75 - 22.00	Auto	1.0000
L37	29	MS-600	20.75 - 22.75	Auto	1.0000
L37	30	MS-600	20.75 - 22.75	Auto	1.0000
L37	31	MS-600	20.75 - 22.75	Auto	1.0000
L37	33	MS-600	20.75 - 20.75 - 22.75	Auto	1.0000
L37	34	MS-600	20.75 - 22.75	Auto	1.0000
L37	35	MS-600	20.75 - 22.75	Auto	1.0000
L38	17	3.75 x 1.25 FP	20.50 - 20.75	Auto	1.0000
L38	18	3.75 x 1.25 FP	20.50 - 20.75	Auto	1.0000
L38	19	3.75 x 1.25 FP	20.50 - 20.75	Auto	1.0000
L38	29	MS-600	20.50 - 20.75	Auto	1.0000
L38	30	MS-600	20.50 - 20.75	Auto	1.0000
L38	31	MS-600	20.50 - 20.75	Auto	1.0000
L38	33	MS-600	20.50 - 20.75	Auto	1.0000
L38	34	MS-600	20.50 - 20.75	Auto	1.0000
L38	35	MS-600	20.50 - 20.75	Auto	1.0000
L39	17	3.75 x 1.25 FP	17.75 - 20.50	Auto	1.0000
L39	18	3.75 x 1.25 FP	17.75 - 20.50	Auto	1.0000
L39	19	3.75 x 1.25 FP	17.75 - 20.50	Auto	1.0000
L39	29	MS-600	17.75 - 20.50	Auto	1.0000
L39	30	MS-600	17.75 - 20.50	Auto	1.0000
L39	31	MS-600	17.75 - 20.50	Auto	1.0000
L39	33	MS-600	19.00 - 20.50	Auto	1.0000
L39	34	MS-600	19.00 - 20.50	Auto	1.0000
L39	35	MS-600	19.00 - 20.50	Auto	1.0000
L39	37	CCI-65FP-065125	17.75 - 20.50	Auto	1.0000
L40	17	3.75 x 1.25 FP	17.50 - 17.75	Auto	1.0000
L40	18	3.75 x 1.25 FP	17.50 - 17.75	Auto	1.0000
L40	19	3.75 x 1.25 FP	17.50 - 17.75	Auto	1.0000
L40	29	MS-600	17.50 -	Auto	1.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	2000	Segment	Calculatio	Width
			Elev.	n	Ratio
			17.75	Method	
L40	30	MS-600	17.75	Auto	1.0000
			17.75	, 1010	
L40	31	MS-600	17.50 -	Auto	1.0000
	27	001 0000 000400	17.75	A 4 -	4 0000
L40	37	CCI-65FP-065125	17.50 - 17.75	Auto	1.0000
L41	17	3.75 x 1.25 FP	13.50-	Auto	1.0000
			17.50		
L41	18	3.75 x 1.25 FP	13.50 -	Auto	1.0000
L41	19	3.75 x 1.25 FP	17.50 13.50 -	Auto	1.0000
L41	19	3.75 X 1.25 FP	17.50	Auto	1.0000
L41	29	MS-600	13.50 -	Auto	1.0000
			17.50		
L41	30	MS-600	13.50 -	Auto	1.0000
L41	31	MS-600	17.50 13.50 -	Auto	1.0000
	31	IVI3-000	17.50	Auto	1.0000
L41	37	CCI-65FP-065125	13.50-	Auto	1.0000
			17.50		
L42	17	3.75 x 1.25 FP	9.50 - 13.50	Auto	1.0000
L42	18	3.75 x 1.25 FP	9.50 - 13.50	Auto	1.0000
L42	19	3.75 x 1.25 FP	9.50 - 13.50	Auto	1.0000
L42 L42	29 30	MS-600 MS-600	9.50 - 13.50 9.50 - 13.50	Auto	1.0000 1.0000
L42	30	MS-600 MS-600	9.50 - 13.50	Auto	1.0000
L42	31	CCI-65FP-065125	9.50 - 13.50	Auto Auto	1.0000
L42	17	3.75 x 1.25 FP	5.50 - 13.50	Auto	1.0000
L43	18	3.75 x 1.25 FP	5.50 - 9.50	Auto	1.0000
L43	19	3.75 x 1.25 FP	5.50 - 9.50	Auto	1.0000
L43	29	MS-600	5.50 - 9.50	Auto	1.0000
L43	30	MS-600	5.50 - 9.50	Auto	1,0000
L43	31	MS-600	5.50 - 9.50	Auto	1.0000
L43	37	CCI-65FP-065125	5.50 - 9.50	Auto	1.0000
L44	17	3.75 x 1.25 FP	3.25 - 5.50	Auto	1.0000
L44	18	3.75 x 1.25 FP	3.25 - 5.50	Auto	1.0000
L44	19	3.75 x 1.25 FP	3.25 - 5.50	Auto	1.0000
L44	29	MS-600	3.25 - 5.50	Auto	1.0000
L44	30	MS-600	3.25 - 5.50	Auto	1.0000
L44	31	MS-600	3.25 - 5.50	Auto	1.0000
L44	37	CCI-65FP-065125	3.25 - 5.50	Auto	1.0000
L45	17	3.75 x 1.25 FP	3.00 - 3.25	Auto	1.0000
L45	18	3.75 x 1.25 FP	3.00 - 3.25	Auto	1.0000
L45	19	3.75 x 1.25 FP MS-600	3.00 - 3.25	Auto	1.0000
L45 L45	29 30	MS-600 MS-600	3.00 - 3.25 3.00 - 3.25	Auto	1.0000 1.0000
L45	30	MS-600 MS-600	3.00 - 3.25	Auto Auto	1.0000
L45	37	CCI-65FP-065125	3.00 - 3.25	Auto	1.0000
L46	17	3,75 x 1,25 FP	0.00 - 3.00	Auto	1.0000
L46	18	3.75 x 1.25 FP	0.00 - 3.00	Auto	1.0000
L46	19	3.75 x 1.25 FP	0.00 - 3.00	Auto	1.0000
L46	29	MS-600	0.00-3.00	Auto	1.0000
L46	30	MS-600	0.00-3.00	Auto	1.0000
L46	31	MS-600	0.00 - 3.00	Auto	1.0000
L46	37	CCI-65FP-065125	0.50 - 3.00	Auto	1.0000

Discrete Tower Loads

Vert ft ft ft ft ft ft ft	Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement
LLPX310R w/ Mount Pipe A From Leg 0.000 0.00 127.0000 0.00 127.0000 0.00 0.00 127.0000 0.00 0.00 127.0000 0.00 0.00 127.0000 0.00 0.00 0.00 127.0000 0.00 0.00 0.00 0.00 127.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.		Leg		Vert ft	٥	ft
LLPX310R w/ Mount Pipe						
LLPX310R w/ Mount Pipe LLPX310R w/ Mount Pipe C From Leg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	LLPX310R w/ Mount Pipe	А	From Leg	1.0000 0.00	0.00	127.0000
LLPX310R w/ Mount Pipe	LLPX310R w/ Mount Pipe	В	From Leg	1.0000 0.00	0.00	127.0000
RRH-2WB B From Leg 3,0000 0,00 127,0000 0,00 RRH-2WB B From Leg 3,0000 0,00 127,0000 0,00 0,00 127,0000 0,00 0,00 127,0000 0,00 0,00 127,0000 0,00 0,00 127,0000 0,00 0,00 0,00 127,0000 0,00 0,00 0,00 0,00 0,00 0,00 0,	LLPX310R w/ Mount Pipe	С	From Leg	1.0000 0.00	0.00	127.0000
RRH-2WB	RRH-2WB	Α	From Leg	3.0000 0.00	0.00	127.0000
RRH-2WB C From Leg 3,0000 0.00 127,0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0	RRH-2WB	В	From Leg	3.0000 0.00	0.00	127.0000
DC6-48-60-18-8F	RRH-2WB	С	From Leg	3.0000 0.00	0.00	127.0000
2.375" OD x 6" Mount Pipe A From Leg 3,0000 0.00 127,0000 0.00 0.00 0.00 127,0000 0.00 0.00 127,0000 0.00 0.00 127,0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0	DC6-48-60-18-8F	С	From Leg	3.0000 0.00	0.00	127.0000
2.375"OD x 6' Mount Pipe B From Leg 3.0000 0.00 127.0000 2.375"OD x 6' Mount Pipe C From Leg 3.0000 0.00 127.0000 3.000 0.00 0.00 127.0000 3.000 0.00 0.00 127.0000 3.000 0.00 0.00 127.0000 3.000 0.00 0.00 127.0000 3.000 0.00 0.00 127.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 117.0000 3.000 0.00 0.00 0.00 116.0000 3.000 0.00 0.00 0.00 116.0000 3.000 0.000 0.00 0.00 116.0000 3.000 0.000 0.00 0.00 116.0000 3.000 0.000 0.00 0.00 0.00 116.0000 3.000 0.000 0.000 0.00 0.00 0.00 0	2.375" OD x 6' Mount Pipe	Α	From Leg	3.0000 0.00	0.00	127.0000
2.375" OD x 6' Mount Pipe	2.375" OD x 6' Mount Pipe	В	From Leg	3.0000 0.00	0.00	127.0000
Side Arm Mount [SO 102-3] C None 0.00 127.0000	2.375" OD x 6' Mount Pipe	С	From Leg	3.0000	0.00	127.0000
800MHz 2X50W RRH W/FILTER B From Leg 2.0000 0.00 117.0000 0.00 0.00 117.0000 0.00 0.	Side Arm Mount [SO 102-3]	С	None	0.00	0.00	127.0000
800MHz 2X50W RRH W/FILTER B From Leg 2.0000 0.00 0.00 800MHz 2X50W RRH W/FILTER C From Leg 2.0000 0.00 0.00 0.00 0.00 0.00 0.00 0	800MHz 2X50W RRH W/FILTER	Α	From Leg	0.00	0.00	117.0000
RODMHz 2X50W RRH W/FILTER C	800MHz 2X50W RRH W/FILTER	В	From Leg	2.0000 0.00	0.00	117.0000
PCS 1900MHz 4x45W-65MHz A From Leg 2.0000 0.00 -2.00 PCS 1900MHz 4x45W-65MHz B From Leg 2.0000 0.00 -2.00 PCS 1900MHz 4x45W-65MHz B From Leg 2.0000 0.00 -2.00 PCS 1900MHz 4x45W-65MHz C From Leg 2.0000 0.00 -2.00 PCS 1900MHz 4x45W-65MHz C From Leg 2.0000 0.00 -2.00 117.0000 0.00 -2.00 Side Arm Mount [SO 102-3]	800MHz 2X50W RRH W/FILTER	С	From Leg	2.0000	0.00	117.0000
PCS 1900MHz 4x45W-65MHz B From Leg 2.0000 0.00 -2.00 PCS 1900MHz 4x45W-65MHz C From Leg 2.0000 0.00 -2.00 Side Arm Mount [SO 102-3] **** APXVSPP18-C-A20 w/ Mount Pipe A From Leg 4.0000 0.00 0.00 APXVSPP18-C-A20 w/ Mount Pipe C From Leg 4.0000 0.00 0.00 0.00 APXVSPP18-C-A20 w/ Mount Pipe A From Leg 4.0000 0.00 0.00 0.00 APXVSPP18-C-A20 w/ Mount Pipe A From Leg 4.0000 0.00 0.00 0.00 APXVSPP18-C-A20 w/ Mount Pipe A From Leg 4.0000 0.00 0.00 0.00 0.00 APXVSPP18-C-A20 w/ Mount Pipe A From Leg 4.0000 0.00 0.00 0.00 0.00 APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 0.00 0.00 0.00 APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 0.00 0.00	PCS 1900MHz 4x45W-65MHz	Α	From Leg	2.0000 0.00	0.00	117.0000
PCS 1900MHz 4x45W-65MHz C From Leg 2.0000 0.00 -2.00 Side Arm Mount [SO 102-3]	PCS 1900MHz 4x45W-65MHz	В	From Leg	2.0000 0.00	0.00	117.0000
Side Arm Mount [SO 102-3] C None 0.00 117.0000 APXVSPP18-C-A20 w/ Mount Pipe A From Leg 4.0000 0.00 116.0000 APXVSPP18-C-A20 w/ Mount Pipe B From Leg 4.0000 0.00 116.0000 APXVSPP18-C-A20 w/ Mount Pipe C From Leg 4.0000 0.00 116.0000 APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 116.0000 APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 116.0000	PCS 1900MHz 4x45W-65MHz	С	From Leg	2.0000 0.00	0.00	117.0000
0.00 0.00 APXVSPP18-C-A20 w/ Mount Pipe B From Leg 4.0000 0.00 APXVSPP18-C-A20 w/ Mount Pipe C From Leg 4.0000 0.00 APXVSPP18-C-A20 w/ Mount Pipe C From Leg 4.0000 0.00 APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 0.00 0.00 0.00	Side Arm Mount [SO 102-3]	С	None	-2.00	0.00	117.0000
APXVSPP18-C-A20 w/ Mount Pipe B From Leg 4.0000 0.00 116.0000 0.00 APXVSPP18-C-A20 w/ Mount Pipe C From Leg 4.0000 0.00 116.0000 0.00 APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 116.0000 0.00 APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 116.0000 0.00	APXVSPP18-C-A20 w/ Mount Pipe	Α	From Leg	0.00	0.00	116.0000
APXVSPP18-C-A20 w/ Mount Pipe C From Leg 4.0000 0.00 116.0000 0.00 0.00 APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 116.0000 0.00 0.00 0.00	APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.0000 0.00	0.00	116.0000
APXVTM14-C-120 w/ Mount Pipe A From Leg 4.0000 0.00 116.0000 0.00 0.00	APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.0000 0.00	0.00	116.0000
	APXVTM14-C-120 w/ Mount Pipe	Α	From Leg	4.0000 0.00	0.00	116.0000
	APXVTM14-C-120 w/ Mount Pipe	В	From Leg		0.00	116.0000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placeme
	Leg		Lateral		
			Vert		
			ft	٥	ft
			ft		
			ft		
			0.00		
APXVTM14-C-120 w/ Mount Pipe	С	From Leg	0.00 4.0000	0.00	116.000
AFAV TWT4-C-120 W/ Wouth Fipe	C	Fioliticeg	0.00	0.00	110.000
			0.00		
TD-RRH8x20-25	Α	From Leg	4,0000	0.00	116.000
1D 1(1(10x20 23	^	r form Leg	0.00	0.00	110.000
			0.00		
TD-RRH8x20-25	В	From Leg	4.0000	0.00	116.000
		· ·	0.00		
			0.00		
TD-RRH8x20-25	С	From Leg	4.0000	0.00	116.000
			0.00		
			0.00		
Platform Mount [LP 502-1]	C	None		0.00	116.000
(2) 2.375" OD x 6' Mount Pipe	Α	From Leg	4.0000	0.00	116.000
			0.00		
(2) 2 275" OD v CI Marriat Dia a	В	From Law	0.00	0.00	110.000
(2) 2.375" OD x 6' Mount Pipe	В	From Leg	4.0000	0.00	116.000
			0.00 0.00		
(2) 2.375" OD x 6' Mount Pipe	С	From Leg	4.0000	0.00	116.000
(2) 2.375 ODX6 Wouth Fipe	C	Fioliticeg	0.00	0.00	110.000
			0.00		
****			0.00		

BXA-80063-4CF-EDIN-2 w/ Mount Pipe	Α	From Leg	4.0000	0.00	105.000
		_	0.00		
			-1.00		
BXA-80063-4CF-EDIN-2 w/ Mount Pipe	В	From Leg	4.0000	0.00	105.000
			0.00		
DVA 00000 405 50IN 0 - /N - + B'	•		-1.00	0.00	105.000
BXA-80063-4CF-EDIN-2 w/ Mount Pipe	С	From Leg	4.0000	0.00	105.000
			0.00 -1.00		
(2) SBNHH-1D65B w/ Mount Pipe	Α	From Leg	4.0000	0.00	105.000
(2) SBNHH-1DOSB W/ WOUTH Pipe	^	Fioliticeg	0.00	0.00	103.000
			2.00		
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.0000	0.00	105.000
(2) OBITITI TOOD W/ Modifier ipo		r rom Log	0.00	0.00	100.000
			2.00		
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.0000	0.00	105.000
, , = === .	-	- - - - - - - - -	0.00	-	
			2.00		
BXA-70063/4CF w/ Mount Pipe	Α	From Leg	4.0000	0.00	105.000
·		-	0.00		
			2.00		
BXA-70063/4CF w/ Mount Pipe	В	From Leg	4.0000	0.00	105.000
			0.00		
DVA 70000/40E. /\$4:	0	Francisco	2.00	0.00	405.000
BXA-70063/4CF w/ Mount Pipe	С	From Leg	4.0000	0.00	105.000
			0.00 2.00		
RFV01U-D1A	۸	From Leg	4.0000	0.00	105.000
ULANTO-DIA	Α	Fiolii Leg	0.00	0.00	100.000
			2.00		
RFV01U-D1A	В	From Leg	4.0000	0.00	105.000
1010 517	5	5m 20g	0.00	0.00	. 55.000
			2.00		
RFV01U-D1A	С	From Leg	4.0000	0.00	105.000
1 1010 0111	J	20g	0.00	0.00	. 55.556
			2.00		
RFV01U-D2A	Α	From Lea	2.00 4.0000	0.00	105.000
RFV01U-D2A	Α	From Leg		0.00	105.000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral Vert		
			ft ft	۰	ft
			ft		
RFV01U-D2A	В	From Leg	4.0000 0.00	0.00	105.0000
RFV01U-D2A	С	From Leg	1.00 4.0000 0.00	0.00	105.0000
RRFDC-3315-PF-48	Α	From Leg	1.00 4.0000 0.00	0.00	105.0000
DB-T1-6Z-8AB-0Z	В	From Leg	1.00 4.0000 0.00	0.00	105.0000
Platform Mount [LP 502-1]	С	None	1.00	0.00	105.0000
APXV18-209015-C-A20	Α	From Leg	1.0000 0.00	0.00	96.0000
APXV18-209015-C-A20	В	From Leg	0.00 1.0000 0.00	0.00	96.0000
APXV18-209015-C-A20	С	From Leg	0.00 1.0000 0.00	0.00	96.0000
Pipe Mount [PM 601-3]	С	None	0.00	0.00	96.0000
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.0000 0.00	0.00	86.0000
MX08FRO665-21 w/ Mount Pipe	В	From Leg	0.00 4.0000 0.00	0.00	86.0000
MX08FRO665-21 w/ Mount Pipe	С	From Leg	0.00 4.0000 0.00	0.00	86.0000
TA08025-B604	А	From Leg	0.00 4.0000 0.00	0.00	86.0000
TA08025-B604	В	From Leg	0.00 4.0000 0.00	0.00	86.0000
TA08025-B604	С	From Leg	0.00 4.0000 0.00 0.00	0.00	86.0000
TA08025-B605	А	From Leg	4.0000 0.00 0.00	0.00	86.0000
TA08025-B605	В	From Leg	4.0000 0.00 0.00	0.00	86.0000
TA08025-B605	С	From Leg	4.0000 0.00 0.00	0.00	86.0000
RDIDC-9181-PF-48	Α	From Leg	4.0000 0.00 0.00	0.00	86.0000
(2) 8' x 2" Mount Pipe	А	From Leg	4.0000 0.00 0.00	0.00	86.0000
(2) 8' x 2" Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	86.0000
(2) 8' x 2" Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	86.0000
			0.00		86.0000

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placemen
	Log		Vert		
			ft	٥	ft
			ft		
			ft		
**					
Side Arm Mount [SO 701-1]	Α	From Leg	1.0000	60.00	60.0000
			0.00		
011 4 14 150 704 13			0.00	00.00	
Side Arm Mount [SO 701-1]	Α	From Leg	1.0000	-60.00	60.0000
			0.00		
***			0.00		
KS24019-L112A	В	From Leg	4.0000	60.00	50.0000
NOZTO 13 ET 12A	Б	r totti Log	0.00	00.00	30.0000
			0.00		
Side Arm Mount [SO 701-1]	В	From Leg	1.0000	60.00	50.0000
		110111 209	0.00	00100	00.000
			0.00		

Bridge Stiffener (111" x 11.5" x 1.25")	Α	None		0.00	60.0000
Bridge Stiffener (111" x 11.5" x 1.25")	В	None		0.00	60.0000
Bridge Stiffener (111" x 11.5" x 1.25")	С	None		0.00	60.0000
Channel Bridge Stiffener (44" x 6" x 1.25")	Α	None		0.00	60.0000
Channel Bridge Stiffener (44" x 6" x 1.25")	В	None		0.00	60.0000
Channel Bridge Stiffener (44" x 6" x 1.25")	С	None		0.00	60.0000
Channel Bridge Stiffener (56" x 8" x 1.25")	Α	None		0.00	30.0000
Channel Bridge Stiffener (56" x 8" x 1.25")	В	None		0.00	30.0000
Channel Bridge Stiffener (56" x 8" x 1.25")	C	None		0.00	30.0000
Bridge Stiffener (135" x 11.5" x 1.25")	A	None		0.00	30.0000
Bridge Stiffener (135" x 11.5" x 1.25")	B	None		0.00	30.0000
Bridge Stiffener (135" x 11.5" x 1.25")	Č	None		0.00	30.0000

Dishes								
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter
				ft	0	٥	ft	ft
VHLP2-18	Α	Paraboloid w/o Radome	From Leg	1.0000 0.00 1.00	30.00		127.0000	2.1750
A-ANT-18G-2-C	В	Paraboloid w/o Radome	From Leg	1.0000 0.00 0.00	30.00		127.0000	2.1750
A-ANT-18G-2-C	С	Paraboloid w/o Radome	From Leg	1.0000 0.00 0.00	30.00		127.0000	2.1750

Load Combinations

Comb. No.	Description
1	Dood Only

- 1 2

- Dead Only 1.2 Dead+1.0 Wind 0 deg No Ice 0.9 Dead+1.0 Wind 0 deg No Ice 1.2 Dead+1.0 Wind 30 deg No Ice

Comb. No.	Description
5	0.9 Dead+1.0 Wind 30 deg-No Ice
6	1.2 Dead+1.0 Wind 60 deg-No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg-No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0,9 Dead+1,0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg -Service
43	Dead+Wind 120 deg-Service
44	Dead+Wind 150 deg-Service
45	Dead+Wind 180 deg-Service
46	Dead+Wind 210 deg-Service
47	Dead+Wind 240 deg-Service
48	Dead+Wind 270 deg-Service
49	Dead+Wind 300 deg-Service
50	Dead+Wind 330 deg-Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		1,700		Comb.	K	kip-ft	kip-ft
L1	130 - 126	Pole	Max Tension	42	0.00	0.00	0.00
			Max. Compression	26	-2.38	0.38	-0.18
			Max. Mx	20	-0.72	2.04	-0.28
			Max. My	14	-0.73	0.32	-1.96
			Max. Vy	20	-1.62	2.04	-0.28
			Max. Vx	14	1.53	0.32	-1.96
			Max. Torque	12			-0.49
L2	126 - 122	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-2.82	0.31	-0.14
			Max Mx	20	-0.90	8.84	-0.27
			Max. My	14	-0.91	0.83	-8.37
			Max. Vý	20	-1.78	8.84	-0.27
			Max Vx	14	1.69	0.83	-8.37
			Max. Torque	12			-0.49
L3	122 - 120	Pole	Max Tension	1	0.00	0.00	0.00

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment
NO.			Max. Compression	26	-3.04	<u>кір-ті</u> 0.27	<u>kip-ft</u> -0.12
			Max. Mx	20	-3.04 -0.99	12.47	-0.12 -0.27
			Max. My	14	-1.00	1.09	-11.82
			Max. Vy	20	-1.86	12.47	-0.27
			Max. Vx	14	1.77	1.09	-11.82
			Max. Torque	12			-0.49
L4	120 - 116	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-5.00	0.17	-0.06
			Max. Mx	20	-1.79	20.56	-0.25
			Max. My	14	-1.80	1.59	-19.52
			Max. Vy	20	-2.77	20.56	-0.25
			Max. Vx	14	2.67	1.59	-19.52
1.5	116 110	Dala	Max. Torque	12	0.00	0.00	-0.49
L5	116 - 112	Pole	Max Tension Max. Compression	1 26	0.00 -12.94	0.00 0.06	0.00 0.01
			Max. Mx	20	-12.94 -4.16	41.84	-0.23
			Max. My	14	-4.16	2.11	-0.23 -40.43
			Max. Vy	20	5.45	41.84	-0.23
			Max. Vx	14	5.35	2.11	-40.43
			Max. Torque	12			-0.49
L6	112 - 108	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-13.62	-0.06	80.0
			Max. Mx	20	-4.51	64.07	-0.21
			Max. My	14	-4.51	2.62	-62.30
			Max. Vy	20	-5.68	64.07	-0.21
			Max. Vx	14	5.59	2.62	-62.30
. 7	400 404	D-I-	Max. Torque	12	0.00	0.00	-0.49
L7	108 - 104	Pole	Max Tension Max, Compression	1 26	0.00 -23.18	0.00 -1.10	0.00 0.46
			Max. Mx	20	-23.16 -7.09	92.97	-0.06
			Max. My	14	-7.09 -7.09	2.87	-90.97
			Max. Vy	20	-9.13	92.97	-0.06
			Max. Vx	14	9.03	2.87	-90.97
			Max. Torque	12			-0.49
L8	104 - 100	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-23.88	-1.22	0.53
			Max. Mx	20	-7.47	129.91	0.14
			Max. My	14	-7.47	3.22	-127.52
			Max. Vy	20	-9.35	129.91	0.14
			Max. Vx	14	9.26	3.22	-127.52
L9	100 - 96	Pole	Max. Torque Max Tension	20 1	0.00	0.00	-0.45 0.00
L9	100 - 96	Pole	Max. Compression	26	-24.58	-1.34	0.61
			Max. Mx	20	-7.86	167.73	0.34
			Max. My	14	-7.85	3.57	-164.97
			Max. Vy	20	-9.57	167.73	0.34
			Max. Vx	14	9.48	3.57	-164.97
			Max. Torque	20			-0.45
L10	96 - 92	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-26.23	-1.47	0.69
			Max. Mx	20	-8.59	208.52	0.53
			Max. My	14	-8.58	3.92	-205.38
			Max. Vy	20	-10.31	208.52	0.53
			Max. Vx Max. Torque	14 20	10.22	3.92	-205.38
1 1 1	02 00	Dolo	•		0.00	0.00	-0.45
L11	92 - 90	Pole	Max Tension Max. Compression	1 26	0.00 -26.59	0.00 -1.53	0.00 0.73
			Max, Mx	20	-8.80	229.22	0.73
			Max. My	14	-8.79	4.10	-225.90
			Max. Vy	20	-10.41	229.22	0.63
			Max. Vx	14	10.32	4.10	225 90
			Max. Torque	20			-0.45
L12	90 - 86	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-27.45	-1.65	0.80
			Max Mx	20	-9.36	271.26	0.83
			Max. Mx				
			Max. My	14	-9.36	4.45	-267.57

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial	Major Axis Moment kip-ft	Minor Axis Moment
L13	86 - 83.5	Pole	Max Tension		0.00		kip-ft
LIS	00-03.3	Pole		1		0.00	0.00
			Max. Compression Max. Mx	26 20	-34.83 -12.78	-1.70 305.48	1.44 1.06
			Max. My	20	-12.76 -12.79	6.56	301.59
			Max. Vy	20	-12.79 -13.76	305.48	1.06
			Max. Vx	14	13.70	4.67	-301.53
			Max. Torque	20	13.70	4.07	-30 i 53 -0.68
L14	83.5 -83.25	Pole	Max Tension	1	0.00	0.00	0.00
L14	00.0 -00.20	i Ole	Max. Compression	26	-34.91	-1.71	1.44
			Max. Mx	20	-12.84	308.92	1.08
			Max. My	2	-12.85	6.60	305.01
			Max. Vy	20	-13.77	308.92	1.08
			Max. Vx	14	13.73	4.70	-304.96
			Max. Torque	20	10110	11.0	-0.68
L15	83.25 -	Pole	Max Tension	1	0.00	0.00	0.00
	79.25	. 0.0	max renesal	•	0.00	0.00	0.00
	10120		Max. Compression	26	-36.19	-1.79	1.54
			Max. Mx	20	-13.63	364.40	1.28
			Max. My	14	-13.60	5.06	-360.69
			Max. Vý	8	14.18	-363.52	-0.85
			Max. Vx	14	14.16	5.06	-360.69
			Max. Torque	20			-0.68
L16	79.25 - 75.25	Pole	Max Tension	1	0.00	0.00	0.00
	. 0120		Max. Compression	26	-37.46	-1.88	1.64
			Max. Mx	8	-14.39	421.07	-1.01
			Max. My	14	-14.39	5.42	418.11
			Max. Vy	8	14.59	421.07	-1.01
			Max, Vx	14	14,57	5.42	418.11
			Max. Torque	20		•••	-0.68
L17	75.25 - 75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-37.54	-1.88	1.65
			Max. Mx	8	-14.44	-424.72	-1.01
			Max. My	14	-14.45	5.45	-421.75
			Max. Vy	8	14.61	424.72	-1.01
			Max. Vx	14	14.59	5.45	-421.75
			Max. Torque	20			-0.68
L18	75 - 74.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-37.62	-1.89	1.65
			Max. Mx	8	-14.49	-428.38	-1.02
			Max. My	14	-14.50	5.47	-425.40
			Max. Vy	8	14.64	-428.38	-1.02
			Max. Vx	14	14.62	5.47	-425.40
			Max. Torque	20			-0.68
L19	74.75 - 70.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-38.89	-1.97	1.75
			Max. Mx	8	-15.29	-487.74	-1.18
			Max. My	14	-15.30	5.83	-484.64
			Max. Vy	8	15.04	-487.74	-1.18
			Max. Vx	14	15.02	5.83	484.64
			Max. Torque	20			-0.68
L20	70.75 - 66.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-40.15	-2.06	1.85
			Max. Mx	8	-16.10	-548.67	-1.34
			Max. My	14	-16.10	6.19	545.44
			Max. Vy	8	15.42	-548.67	-1.34
			Max. Vx	14	15.40	6.19	545.44
			Max. Torque	20			-0.68
L21	66.75 - 62.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-41.42	-2.14	1.94
			Max. Mx	8	-16.92	-611.09	-1.50
			Max. My	14	-16.92	6.55	-607.73
			Max. Vy	8	15.79	-611.09	-1.50
			Max. Vx	14	15.77	6.55	-607.73
			Max. Torque	20			-0.68
L22	62.75 - 60	Pole	Max Tension	1	0.00	0.00	0.00

Max. Compression Comb. K Kip-ft	kip-ft 2.00 -1.61 -651.38 -1.61 -651.38 -0.68 0.00 2.53 -1.31
Max. Mx	-1.61 -651.38 -1.61 -651.38 -0.68 0.00 2.53
Max. My	-651.38 -1.61 -651.38 -0.68 0.00 2.53
L23	-1.61 -651.38 -0.68 0.00 2.53
L23	-651.38 -0.68 0.00 2.53
L23	-0.68 0.00 2.53
L23	0.00 2.53
Max. Compression	2.53
Max. Mix	
Max. My	
Max. Vý	-655.58
Max. Vx	-1.31
L24 59.75 - Pole Max Torque 20 Max Tension 1 0.00 0.00	-655.58
L24	-0.86
Max. Mx 8 -20.71 -732.12 Max. My 14 -20.71 7.18 Max. Vy 8 18.30 -732.12 Max. Vx 14 18.31 7.18 Max. Torque 20 L25 55.75 - Pole Max Tension 1 0.00 0.00 51.75 Max. Compression 26 -48.20 -2.38 Max. Mx 8 -21.65 -805.73 Max. Mx 8 -21.65 7.53 Max. Vy 8 18.51 -805.73 Max. Vy 8 18.51 -805.73 Max. Torque 20 L26 51.75 -48.5 Pole Max Tension 1 0.00 0.00 Max. Compression 26 -49.61 -2.75 Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vy 14 18.92 7.64 Max. Vy 14 18.92 7.64 Max. Torque 20 L27 48.5 -48.25 Pole Max Tension 1 0.00 0.00	0.00
Max. Mx 8 -20.71 -732.12 Max. My 14 -20.71 7.18 Max. Vy 8 18.30 -732.12 Max. Vx 14 18.31 7.18 Max. Torque 20 L25 55.75 - Pole Max Tension 1 0.00 0.00 51.75 Max. Compression 26 -48.20 -2.38 Max. Mx 8 -21.65 -805.73 Max. Mx 8 -21.65 7.53 Max. Vy 8 18.51 -805.73 Max. Vy 8 18.51 -805.73 Max. Torque 20 L26 51.75 -48.5 Pole Max Tension 1 0.00 0.00 Max. Compression 26 -49.61 -2.75 Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vy 14 18.92 7.64 Max. Vy 14 18.92 7.64 Max. Torque 20 L27 48.5 -48.25 Pole Max Tension 1 0.00 0.00	2.63
Max. Vý	-1.46
Max. Vx	-728.34
L25 55.75 - Pole Max Tension 1 0.00 0.00	-1.46
L25	-728.34
51.75 Max. Compression 26 -48.20 -2.38 Max. Mx 8 -21.65 -805.73 Max. My 14 -21.65 7.53 Max. Vy 8 18.51 -805.73 Max. Vx 14 18.52 7.53 Max. Torque 20 L26 51.75 -48.5 Pole Max Tension 1 0.00 0.00 Max. Compression 26 -49.61 -2.75 Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vy 8 18.95 -866.76 Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 -48.25 Pole Max Tension 1 0.00 0.00	-0.86
Max. Mx 8 -21.65 -805.73 Max. My 14 -21.65 7.53 Max. Vy 8 18.51 -805.73 Max. Vx 14 18.52 7.53 Max. Torque 20 L26 51.75 -48.5 Pole Max Tension 1 0.00 0.00 Max. Compression 26 -49.61 -2.75 Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vy 14 18.92 7.64 Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 -48.25 Pole Max Tension 1 0.00 0.00	0.00
Max. My 14 -21.65 7.53 Max. Vy 8 18.51 -805.73 Max. Vx 14 18.52 7.53 Max. Torque 20 L26 51.75 -48.5 Pole Max Tension 1 0.00 0.00 Max. Compression 26 -49.61 -2.75 Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vy 14 18.92 7.64 Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 -48.25 Pole Max Tension 1 0.00 0.00	2.74
Max. Vý 8 18.51 -805.73 Max. Vx 14 18.52 7.53 Max. Torque 20 L26 51.75 - 48.5 Pole Max Tension 1 0.00 0.00 Max. Compression 26 -49.61 -2.75 Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vy 14 18.92 7.64 Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 - 48.25 Pole Max Tension 1 0.00 0.00	-1.62
Max. Vx 14 18.52 7.53 Max. Torque 20 L26 51.75 - 48.5 Pole Max Tension 1 0.00 0.00 Max. Compression 26 -49.61 -2.75 Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vx 14 18.52 7.53 Max. Torque 20 L27 48.5 - 48.25 Pole Max Tension 1 0.00 0.00	-801.94
L26 51.75 - 48.5 Pole Max Torque Max Tension 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	-1.62
L26 51.75 - 48.5 Pole Max Tension 1 0.00 0.00 Max. Compression 26 -49.61 -2.75 Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 - 48.25 Pole Max Tension 1 0.00 0.00	-801.94
Max. Compression 26 -49.61 -2.75 Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 -48.25 Pole Max Tension 1 0.00 0.00	-0.86
Max. Mx 8 -22.49 -866.76 Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 -48.25 Pole Max Tension 1 0.00 0.00	0.00
Max. My 14 -22.49 7.64 Max. Vy 8 18.95 -866.76 Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 -48.25 Pole Max Tension 1 0.00 0.00	2.64
Max. Vy 8 18.95 -866.76 Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 -48.25 Pole Max Tension 1 0.00 0.00	-1.84
Max. Vx 14 18.92 7.64 Max. Torque 20 L27 48.5 - 48.25 Pole Max Tension 1 0.00 0.00	-862.82
Max. Torque 20 L27 48.5 - 48.25 Pole Max Tension 1 0.00 0.00	-1.84
L27 48.5 - 48.25 Pole Max Tension 1 0.00 0.00	-862.82
	-0.86
	0.00
Max. Compression 26 -49.73 -2.76	2.65
Max. Mx 8 -22.57 -871.50	-1.85
Max. My 14 -22.57 7.67	-867.55
Max. Vy 8 18.97 -871.50	-1.85
Max. Vx 14 18.94 7.67 Max. Torque 20	-867.55
Max. Torque 20 L28 48.25 - Pole Max Tension 1 0.00 0.00 44.25	-0.78 0.00
Max. Compression 26 -51.63 -2.85	2.72
Max. Mx 8 -23.79 -948.32	2.72
Max. My 14 -23.79 8.02	-944.19
Max. Vy 8 19.44 -948.32	-2.01
Max. Vx 14 19.40 8.02	-944 19
Max. Torque 20	-0.78
L29 44.25 - Pole Max Tension 1 0.00 0.00 40.25	0.00
Max. Compression 26 -53.51 -2.92	2.79
Max. Mx 8 -25.01 -1026.96	-2.16
Max. My 14 -25.02 8.37	-1022.63
Max. Vý 8 19.88 -1026.96	-2.16
Max. Vx 14 19.84 8.37	-1022.63
Max. Torque 20	-0.78
L30 40.25 - Pole Max Tension 1 0.00 0.00 36.25	0.00
Max. Compression 26 -55.39 -2.99	2.85
Max. Mx 8 -26.25 -1107.33	-2.31
Max. My 14 -26.25 8.72	-1102.76
Max. Vy 8 20.31 -1107.33	-2.31
Max. Vx 14 20.26 8.72	-1102.76
Max. Torque 20	-0.78
L31 36.25 - Pole Max Tension 1 0.00 0.00 32.25	0.00

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-57.26	-3.06	2.91
			Max. Mx	8	-27.49	-1189.34	-2.47
			Max. My	14	-27.49	9.07	-1184.51
			Max. Vy	8	20.71	-1189.34	-2.47
			Max. Vx	14	20,65	9.07	-1184.51
			Max. Torque	20			-0.78
L32	32.25 - 30	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-58.31	3.10	2.94
			Max. Mx	8	-28.19	-1236 15	-2.55
			Max. My	14	-28.20	9.26	-1231.17
			Max. Vy	8	20.92	-1236 15	-2.55
			Max. Vx	14	20.86	9.26	-1231.17
			Max. Torque	20	20.00	3.20	-0.77
L33	30 - 29.75	Pole	Max Tension	1	0.00	0.00	0.00
LSS	30-29.73	FUIE	Max. Compression	26	-61.59	3.11	2.94
			•				
			Max. Mx	8	-30.39	-1241.93	-2.56
			Max. My	14	-30.39	9.28	-1236.93
			Max. Vy	8	23.14	-1241.93	-2.56
			Max. Vx	14	23.08	9.28	-1236.93
			Max. Torque	20			-0.77
L34	29.75 - 25.75	Pole	Max Tension	1	0.00	0.00	0.00
	20,10		Max. Compression	26	-63.25	-3.19	3.01
			Max. Mx	8	-31.52	-1335.35	-2.71
			Max. My	14	-31.52	9.63	-1330.05
			Max. Vy	8	23.57	-1335.35	-2.71
			Max. Vx	14	23.51	9.63	-1330.05
			Max. Torque	20			-0.77
L35	25.75 - 23	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-64.46	3.25	3.06
			Max. Mx	8	-32.30	-1400.55	-2.81
			Max. My	14	-32.30	9.86	-1395.04
			Max. Vy	8	23.86	-1400.55	-2.81
			Max. Vx	14	23,80	9.86	-1395.04
			Max. Torque	20	23.00	3.00	-0.77
L36	23 - 22.75	Pole	Max Tension	1	0.00	0.00	0.00
LSO	23-22.73	Pole	Max. Compression	26	64.57	3.25	3.07
			•				
			Max. Mx	8	-32.38	-1406.52	-2.82
			Max. My	14	-32.38	9.88	-1400.99
			Max. Vy	8	23.87	-1406.52	-2.82
			Max. Vx	14	23.82	9.88	-1400.99
			Max. Torque	20			-0.77
L37	22.75 - 20.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-65.51	-3.29	3.10
			Max. Mx	8	-32.95	-1454 48	-2.90
			Max. My	14	-32.95	10.05	-1448.81
			Max. Vy	8	24.09	-1454 48	-2.90
			Max. Vx	14	24.03	10.05	-1448.81
			Max. Torque	20	24.00	10.00	-0.77
L38	20.75 - 20.5	Pole	Max Tension	1	0.00	0.00	0.00
L30	20.73-20.3	1 016				3.30	3.10
			Max. Compression	26	-65.64		
			Max. Mx	8	-33.04	-1460.50	-2.90
			Max. My	14	-33.04	10.07	-1454.82
			Max. Vy	8	24.11	-1460.50	-2.90
			Max. Vx	14	24.05	10.07	-1454.82
			Max. Torque	20			-0.77
L39	20.5 - 17.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-67.08	-3.31	3.20
			Max. Mx	8	-33.96	-1527.21	-3.01
			Max. My	14	-33.96	10.30	-1521.35
			Max. Vy	8	24.41	-1527.21	-3.01
			Max. Vx	14	24.36	10.30	-1521.35
			Max. Torque	20		•	-0.77
L40	17.75 - 17.5	Pole	Max Tension	1	0.00	0.00	0.00
		. 5.5	Max. Compression	26	-67.21	3.32	3.21
			Max. Mx	8	-34.06	-1533.31	-3.01
			Max. My	14	-34.06	10.33	-1527.44
			Max. Vy	8	24.43	-1533.31	-1327.44
			Max. vy	J	27.40	-1000.01	-5.01

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
740.			Max. Vx	14	24.38	10.33	-1527.44
			Max. Torque	20	24.00	10.00	-0.77
L41	17.5 - 13.5	Pole	Max Tension	1	0.00	0.00	0.00
	1110 1010	1 0.0	Max. Compression	26	-69.34	3.34	3.34
			Max. Mx	8	35.53	-1631.81	-3.16
			Max. My	14	35.53	10.66	-1625.69
			Max. Vy	8	24.82	-1631.81	-3.16
			Max. Vx	14	24.77	10.66	-1625.69
			Max. Torque	20			-0.77
L42	13.5 - 9.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-71.43	-3.36	3.47
			Max. Mx	8	-37.02	-1731.80	-3.31
			Max. My	14	-37.02	11.00	-1725.46
			Max. Vy	8	25.19	-1731.80	-3.31
			Max. Vx	14	25.15	11.00	-1725.46
			Max. Torque	20			-0.77
L43	9.5 - 5.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-73.50	-3.39	3.60
			Max. Mx	8	-38.52	-1833.24	-3.45
			Max. My	14	-38.52	11.33	-1826.70
			Max. Vy	8	25.54	-1833.24	-3.45
			Max Vx	14	25.51	11.33	-1826.70
			Max. Torque	20			-0.77
L44	5.5 - 3.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-74.64	-3.40	3.66
			Max. Mx	8	-39.36	-1890.92	-3.54
			Max. My	14	-39.36	11.51	-1884.27
			Max. Vy	8	25.74	-1890.92	-3.54
			Max. Vx	14	25.71	11.51	-1884.27
			Max. Torque	20			-0.77
L45	3.25 - 3	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-74.76	-3.40	3.67
			Max. Mx	8	-39.45	-1897.35	-3.54
			Max. My	14	-39.45	11.53	-1890.69
			Max. Vy	8	25.75	-1897.35	-3.54
			Max. Vx	14	25.72	11.53	-1890.69
			Max. Torque	20			-0.77
L46	3 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-76.12	-3.43	3.75
			Max. Mx	8	-40.48	-1974.97	-3.65
			Max. My	14	-40.48	11.78	-1968.18
			Max. Vy	8	26.00	-1974.97	-3.65
			Max. Vx	14	25.98	11.78	-1968.18
			Max. Torque	20			-0.77

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	30	76.12	-7.67	-0.01
	Max. H _x	20	40.49	24.48	0.04
	Max. H _z	2	40.49	0.17	24.42
	Max. M _x	2	1873.28	0.17	24.42
	$Max. M_z$	8	1974.97	-25.99	-0.04
	Max. Torsion	10	0.43	- 21.31	-12.19
	Min. Vert	19	30.37	21.03	-12.28
	Min. H _x	8	40.49	-25.99	-0.04
	Min. H _z	14	40.49	0.09	-25.96
	$Min. M_x$	14	-1968.18	0.09	-25.96
	$Min. M_z$	20	-1880.78	24.48	0.04
	Min. Torsion	20	-0.77	24.48	0.04

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overtuming Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only 1.2 Dead+1.0 Wind 0 deg - No Ice	33.74 40.49	0.00 -0.17	0.00 -24.42	-0.84 -1873.28	-0.92 21.09	0.00 0.34
0.9 Dead+1.0 Wind 0 deg - No Ice	30.37	-0.17	-24.42	-1855.24	21.13	0.34
1.2 Dead+1.0 Wind 30 deg - No Ice	40.49	12.20	-21.20	-1630.83	-938.07	0.31
0.9 Dead+1.0 Wind 30 deg - No Ice	30.37	12.20	-21.20	-1615.06	-928.86	0.31
1.2 Dead+1.0 Wind 60 deg - No Ice	40.49	22.45	-12.80	-966.07	-1710.09	-0.14
0.9 Dead+1.0 Wind 60 deg - No Ice	30.37	22.45	-12.80	-956.79	-1693.73	-0.14
1.2 Dead+1.0 Wind 90 deg - No Ice	40.49	25.99	0.04	3.65	-1974.97	-0.36
0.9 Dead+1.0 Wind 90 deg - No Ice	30.37	25.99	0.04	3.88	-1956.14	-0.36
1.2 Dead+1.0 Wind 120 deg - No Ice	40.49	21.31	12.19	924.59	-1632.45	-0.43
0.9 Dead+1.0 Wind 120 deg - No Ice	30.37	21.31	12.19	916.12	-1616.65	-0.42
1.2 Dead+1.0 Wind 150 deg - No Ice	40.49	12.56	21.73	1669.31	-966.66	-0.13
0.9 Dead+1.0 Wind 150 deg - No Ice	30.37	12.56	21.73	1653.71	-957.18	-0.12
1.2 Dead+1.0 Wind 180 deg - No Ice	40.49	-0.09	25.96	1968.18	11.78	-0.13
0.9 Dead+1.0 Wind 180 deg - No Ice	30.37	-0.09	25.96	1949.98	11.91	-0.12
1.2 Dead+1.0 Wind 210 deg - No Ice	40.49	-12.94	22.47	1708.00	981.54	0.10
0.9 Dead+1.0 Wind 210 deg - No Ice	30.37	-12.94	22.47	1692.24	972.62	0.10
1.2 Dead+1.0 Wind 240 deg - No Ice	40.49	-21.03	12.28	946.31	1606.88	0.36
0.9 Dead+1.0 Wind 240 deg - No Ice	30.37	-21.03	12.28	937.55	1591.95	0.36
1.2 Dead+1.0 Wind 270 deg - No Ice	40.49	-24.48	-0.04	-5.52	1880.78	0.77
0.9 Dead+1.0 Wind 270 deg - No Ice	30.37	-24.48	-0.04	-5.20	1863.18	0.77
1.2 Dead+1.0 Wind 300 deg - No Ice	40.49	-22.32	-13.08	-1004.28	1694.49	0.65
0.9 Dead+1.0 Wind 300 deg - No Ice	30.37	-22.32	-13.08	-994.55	1678.89	0.64
1.2 Dead+1.0 Wind 330 deg - No Ice	40.49	-13.09	-22.65	-1734.22	1000.90	0.53
0.9 Dead+1.0 Wind 330 deg - No Ice	30.37	-13.09	-22.65	-1717.64	991.76	0.53
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	76.12 76.12	0.00 -0.04	-0.00 -7.63	-3.75 -678.42	-3.43 2.25	-0.00 0.11
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	76.12	3.81	-6.62	-590.18	-341.11	0.09
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	76.12	6.63	-3.79	-336.57	-589.74	-0.03
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	76.12	7.67	0.01	-2.57	-680.50	-0.10
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	76.12	6.65	3.81	330.79	-590.47	-0.13
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	76.12	3.85	6.65	584.06	-343.39	-0.07
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	76.12	-0.02	7.66	671.77	-0.26	-0.06
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	76.12	-3.82	6.63	582.13	333.86	0.00

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 240	76.12	-6.58	3.83	336.30	577.47	0.08
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	76.12	-7.65	-0.01	-5.04	673.89	0.20
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	76.12	-6.60	-3.85	-346.49	579.39	0.19
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	76.12	-3.83	-6.63	-590.93	335.97	0.16
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	33.74	-0.04	-6.05	-462.13	4.52	0.08
Dead+Wind 30 deg -Service	33.74	3.02	-5.25	402.40	-231.78	0.07
Dead+Wind 60 deg - Service	33.74	5.56	-3.17	-238.66	-422.02	-0.03
Dead+Wind 90 deg -Service	33.74	6.44	0.01	0.28	-487.29	-0.09
Dead+Wind 120 deg-	33.74	5.28	3.02	227.18	-402.85	-0.10
Service						
Dead+Wind 150 deg-	33.74	3.11	5.38	410.66	-238.83	-0.03
Service						
Dead+Wind 180 deg-	33.74	-0.02	6.43	484.33	2.23	-0.03
Service						
Dead+Wind 210 deg-	33.74	-3.20	5.57	420.22	241.17	0.03
Service						
Dead+Wind 240 deg-	33.74	-5.21	3.04	232.52	395.22	0.09
Service						
Dead+Wind 270 deg-	33.74	-6.06	-0.01	-1.98	462.69	0.19
Service						
Dead+Wind 300 deg-	33.74	-5.53	-3.24	-248.06	416.84	0.16
Service						
Dead+Wind 330 deg-	33.74	-3.24	-5.61	-427.92	245.95	0.13
Service						

So	lution	Sumn	nary
----	--------	------	------

	Sun	n of Applied Force			Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-33.74	0.00	0.00	33.74	0.00	0.000%
2	-0.17	-40.49	-24.42	0.17	40.49	24.42	0.000%
3	-0.17	-30.37	-24.42	0.17	30.37	24.42	0.000%
4	12.20	-40.49	-21.20	-12.20	40.49	21.20	0.000%
5	12.20	-30.37	-21.20	-12.20	30.37	21.20	0.000%
6	22.45	40.49	-12.80	-22.45	40.49	12.80	0.000%
7	22.45	-30.37	-12.80	-22.45	30.37	12.80	0.000%
8	25.99	-40.49	0.04	-25.99	40.49	-0.04	0.000%
9	25.99	-30.37	0.04	-25.99	30.37	-0.04	0.000%
10	21.31	-40.49	12.19	-21.31	40.49	-12.19	0.000%
11	21.31	-30.37	12.19	-21.31	30.37	-12.19	0.000%
12	12.56	-40.49	21.73	-12.56	40.49	-21.73	0.000%
13	12.56	-30.37	21.73	-12.56	30.37	-21.73	0.000%
14	-0.09	40.49	25.96	0.09	40.49	-25.96	0.000%
15	-0.09	-30.37	25.96	0.09	30.37	-25.96	0.000%
16	-12.94	-40.49	22.47	12.94	40.49	-22.47	0.000%
17	-12.94	-30.37	22.47	12.94	30.37	-22.47	0.000%
18	-21.03	-40.49	12.28	21.03	40.49	-12.28	0.000%
19	-21.03	-30.37	12.28	21.03	30.37	-12.28	0.000%
20	-24.48	-40.49	-0.04	24.48	40.49	0.04	0.000%
21	-24.48	-30.37	-0.04	24.48	30.37	0.04	0.000%
22	-22.32	-40.49	-13.08	22.32	40.49	13.08	0.000%
23	- 22.32	-30.37	-13.08	22.32	30.37	13.08	0.000%
24	-13.09	-40.49	-22.65	13.09	40.49	22.65	0.000%
25	-13.09	-30.37	-22.65	13.09	30.37	22.65	0.000%
26	0.00	-76.12	0.00	-0.00	76.12	0.00	0.000%
27	-0.04	-76.12	-7.63	0.04	76.12	7.63	0.000%
28	3.81	-76.12	-6.62	-3.81	76.12	6.62	0.000%
29	6.63	-76.12	-3.79	-6.63	76.12	3.79	0.000%
30	7.67	-76.12	0.01	-7.67	76.12	-0.01	0.000%
31	6.65	-76.12	3.81	-6.65	76.12	-3.81	0.000%
32	3.85	-76.12	6.65	-3.85	76.12	-6.65	0.000%

	Sur	n of Applied Force	?s		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
33	-0.02	-76.12	7.66	0.02	76.12	-7.66	0.000%
34	-3.82	-76.12	6.63	3.82	76.12	-6.63	0.000%
35	-6.58	-76.12	3.83	6.58	76.12	-3.83	0.000%
36	-7.65	-76.12	-0.01	7.65	76.12	0.01	0.000%
37	-6.60	-76.12	-3.85	6.60	76.12	3.85	0.000%
38	-3.83	-76.12	-6.63	3.83	76.12	6.63	0.000%
39	-0.04	-33.74	-6.05	0.04	33.74	6.05	0.000%
40	3.02	-33.74	-5.25	-3.02	33.74	5.25	0.000%
41	5.56	-33.74	-3.17	-5.56	33.74	3.17	0.000%
42	6.44	-33.74	0.01	-6.44	33.74	-0.01	0.000%
43	5.28	-33.74	3.02	-5.28	33.74	-3.02	0.000%
44	3.11	-33.74	5.38	-3.11	33.74	-5.38	0.000%
45	-0.02	-33.74	6.43	0.02	33.74	-6.43	0.000%
46	-3.20	-33.74	5.57	3.20	33.74	-5.57	0.000%
47	-5.21	-33.74	3.04	5.21	33.74	-3.04	0.000%
48	-6.06	-33.74	-0.01	6.06	33.74	0.01	0.000%
49	-5.53	-33.74	-3.24	5.53	33.74	3.24	0.000%
50	-3.24	-33.74	-5.61	3.24	33.74	5.61	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	3	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00010613
3	Yes	5	0.0000001	0.00004356
4	Yes	6	0.00000001	0.00024941
5	Yes	6	0.00000001	0.00008535
6	Yes	6	0.0000001	0.00025868
7	Yes	6	0.00000001	0.00008772
8	Yes	5	0.00000001	0.00012596
9	Yes	5	0.0000001	0.00005361
10	Yes	6	0.00000001	0.00023809
11	Yes	6	0.0000001	0.00008154
12	Yes	6	0.0000001	0.00026154
13	Yes	6	0.0000001	0.00008877
14	Yes	5	0.00000001	0.00011090
15	Yes	5	0.00000001	0.00004664
16	Yes	6	0.00000001	0.00026219
17	Yes	6	0.00000001	0.00008884
18	Yes	6	0.00000001	0.00023976
19	Yes	6	0.00000001	0.00008217
20 21	Yes Yes	5 5	0.00000001 0.00000001	0.00032470 0.00015436
21	Yes	6	0.00000001	0.00015436
23	Yes	6	0.0000001	0.00027004
24	Yes	6	0.00000001	0.00009100
2 4 25	Yes	6	0.00000001	0.00020073
26	Yes	4	0.00000001	0.00065548
27	Yes	6	0.00000001	0.00092679
28	Yes	7	0.00000001	0.00015348
29	Yes	7	0.00000001	0.00015148
30	Yes	6	0.00000001	0.00093091
31	Yes	7	0.00000001	0.00014932
32	Yes	7	0.00000001	0.00015194
33	Yes	6	0.0000001	0.00091370
34	Yes	7	0.0000001	0.00014771
35	Yes	7	0.00000001	0.00014714
36	Yes	6	0.0000001	0.00091877
37	Yes	7	0.0000001	0.00015138
38	Yes	7	0.0000001	0.00015053
39	Yes	4	0.0000001	0.00040264
40	Yes	5	0.00000001	0.00009198
41	Yes	5	0.00000001	0.00009574
42	Yes	4	0.00000001	0.00043779

43	Yes	5	0.0000001	0.00008310
44	Yes	5	0.0000001	0.00009556
45	Yes	4	0.0000001	0.00040215
46	Yes	5	0.0000001	0.00009604
47	Yes	5	0.0000001	0.00008346
48	Yes	4	0.0000001	0.00055362
49	Yes	5	0.0000001	0.00010310
50	Yes	5	0.0000001	0.00009673

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	130 - 126	17.64	50	1.10	0.00
L2	126 - 122	16.72	50	1.10	0.00
L3	122 - 120	15.80	50	1.09	0.00
L4	120 - 116	15.35	50	1.09	0.00
L5	116 - 112	14.43	50	1.09	0.00
L6	112 - 108	13.53	50	1.08	0.00
L7	108 - 104	12.63	50	1.07	0.00
L8	104 - 100	11.74	50	1.05	0.00
L9	100 - 96	10.87	50	1.03	0.00
L10	96 - 92	10.02	50	1.00	0.00
L11	92 - 90	9.20	50	0.96	0.00
L12	90 - 86	8.80	50	0.93	0.00
L13	86 - 83.5	8.04	50	0.90	0.00
L14	83.5 - 83.25	7.58	50	0.87	0.00
L15	83.25 - 79.25	7.53	50	0.87	0.00
L16	79.25 - 75.25	6.82	50	0.84	0.00
L17	75.25 - 75	6.13	50	0.80	0.00
L18	75 - 74.75	6.09	50 50	0.80	0.00
L19	74.75 - 70.75	6.05	50	0.79	0.00
L20	70.75 - 66.75	5.40 4.79	50 50	0.75	0.00
L21 L22	66.75 - 62.75 62.75 - 60	4.79	50 50	0.70 0.65	0.00 0.00
L22 L23	62.75-60 60-59.75	4.23 3.87	50 50	0.65	0.00
L23 L24	59.75 - 55.75	3.83	50	0.60	0.00
L24 L25	55.75 - 51.75	3.34	50 50	0.57	0.00
L26	51.75 - 48.5	2.88	50 50	0.53	0.00
L27	48.5 - 48.25	2.54	50 50	0.49	0.00
L28	48.25 - 44.25	2.51	50 50	0.49	0.00
L29	44.25 - 40.25	2.12	50 50	0.45	0.00
L30	40.25 - 36.25	1.75	50	0.42	0.00
L31	36.25 - 32.25	1.42	50	0.37	0.00
L32	32.25 - 30	1.13	50	0.33	0.00
L33	30 - 29.75	0.98	50	0.30	0.00
L34	29.75 - 25.75	0.96	50	0.30	0.00
L35	25.75 - 23	0.73	50	0.26	0.00
L36	23 - 22.75	0.58	50	0.23	0.00
L37	22.75 - 20.75	0.57	50	0.23	0.00
L38	20.75 - 20.5	0.48	50	0.21	0.00
L39	20.5 - 17.75	0.47	50	0.21	0.00
L40	17.75 - 17.5	0.36	50	0.18	0.00
L41	17.5 - 13.5	0.35	50	0.18	0.00
L42	13.5-9.5	0.21	50	0.14	0.00
L43	9.5 - 5.5	0.11	50	0.10	0.00
L44	5.5 - 3.25	0.04	50	0.06	0.00
L45	3.25 - 3	0.01	50	0.04	0.00
L46	3 - 0	0.01	50	0.03	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	0	ft
128.0000	VHLP2-18	50	17.18	1.10	0.00	57672
127.0000	A-ANT-18G-2-C	50	16.95	1.10	0.00	57672
117.0000	800MHz 2X50W RRH W/FILTER	50	14.66	1.09	0.00	45023
116.0000	APXVSPP18-C-A20 w/ Mount Pipe	50	14.43	1.09	0.00	43522
105.0000	BXA-80063-4CF-EDIN-2 w/ Mount Pipe	50	11.96	1.06	0.00	12315
96.0000	APXV18-209015-C-A20	50	10.02	1.00	0.00	6250
86.0000	MX08FRO665-21 w/ Mount Pipe	50	8.04	0.90	0.00	5936
60.0000	Side Arm Mount [SO 701-1]	50	3.87	0.61	0.00	4825
50.0000	KS24019-L112A	50	2.69	0.51	0.00	5602
30.0000	Channel Bridge Stiffener (56" x 8" x 1.25")	50	0.98	0.30	0.00	5406

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
710.	ft	in	Comb.	0	0
L1	130 - 126	71.62	24	4.47	0.01
L2	126 - 122	67.88	24	4.47	0.01
L3	122 - 120	64.15	24	4.45	0.01
L4	120 - 116	62.29	24	4.43	0.01
L5	116 - 112	58.59	24	4.42	0.01
L6	112 - 108	54.91	24	4.39	0.01
L7	108 - 104	51.26	24	4.34	0.01
L8	104 - 100	47.65	24	4.28	0.01
L9	100 - 96	44.11	24	4.18	0.01
L10	96 - 92	40.67	24	4.05	0.01
L11	92 - 90	37.35	24	3.88	0.00
L12	90 - 86	35.75	24	3.79	0.00
L13	86 - 83.5	32.64	24	3.64	0.00
L14	83.5 - 83.25	30.76	24	3.53	0.00
L15	83.25 - 79.25	30.57	24	3.53	0.00
L16	79.25 - 75.25	27.68	24	3.40	0.00
L17	75.25 - 75	24.89	24	3.25	0.00
L18	75 - 74.75	24.73	24	3.24	0.00
L19	74.75 - 70.75	24.56	24	3.23	0.00
L20	70.75 - 66.75	21.93	24	3.05	0.00
L21	66.75 - 62.75	19.46	24	2.85	0.00
L22	62.75 - 60	17.16	24	2.63	0.00
L23	60 - 59.75	15.69	24	2.46	0.00
L24	59.75 - 55.75	15.57	24	2.45	0.00
L25	55.75 - 51.75	13.57	24	2.31	0.00
L26	51.75 - 48.5	11.71	24	2.14	0.00
L27	48.5 - 48.25	10.30	24	2.00	0.00
L28	48.25 - 44.25	10.19	24	1.99	0.00
L29	44.25 - 40.25	8.59	24	1.84	0.00
L30	40.25 - 36.25	7.11	24	1.69	0.00
L31	36.25 - 32.25	5 77	24	1.52	0.00
L32	32.25 - 30	4.57	24	1.33	0.00
L33	30 - 29.75	3.97	24	1.23	0.00
L34	29.75 - 25.75	3.90	24	1,22	0.00
L35	25.75 - 23	2.95	24	1.06	0.00
L36	23 - 22,75	2.37	24	0.95	0.00
L37	22.75 - 20.75	2.32	24	0.94	0.00
L38	20.75 - 20.5	1.95	24	0.85	0.00
L39	20.5 - 17.75	1.90	24	0.84	0.00
L40	17.75 - 17.5	1.44	24	0.74	0.00
L41	17.5 - 13.5	1.41	24	0.73	0.00
L42	13.5 - 9.5	0.85	24	0.58	0.00
L43	9.5 - 5.5	0.43	24	0.42	0.00
L44	5.5 - 3.25	0.15	24	0.25	0.00
L45	3.25 - 3	0.05	24	0.15	0.00
L46	3 - 0	0.04	24	0.14	0.00

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	۰	٥

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	o	ft
128.0000	VHLP2-18	24	69.75	4.47	0.01	14842
127.0000	A-ANT-18G-2-C	24	68.82	4.47	0.01	14842
117.0000	800MHz 2X50W RRH W/FILTER	24	59.52	4.42	0.01	11262
116.0000	APXVSPP18-C-A20 w/ Mount	24	58.59	4.42	0.01	10880
	Pipe					
105.0000	BXA-80063-4CF-EDIN-2 w/	24	48.55	4.30	0.01	3071
	Mount Pipe					
96.0000	APXV18-209015-C-A20	24	40.67	4.05	0.01	1555
86.0000	MX08FRO665-21 w/ Mount Pipe	24	32.64	3.64	0.00	1472
60.0000	Side Arm Mount [SO 701-1]	24	15.69	2.46	0.00	1192
50.0000	KS24019-L112A	24	10.94	2.06	0.00	1382
30.0000	Channel Bridge Stiffener (56" x	24	3.97	1.23	0.00	1332
	8" x 1.25")					

Compression Checks

	 _		_
D -	۱ ا		Data
	DCI	nn	HIDTO
ГО	450	u	Dala

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio
NO.	ft		ft	ft		in ²	Κ	K	$\frac{P_u}{\phi P_n}$
L1	130 - 126 (1)	P16x0.1875	4.0000	0.0000	0.0	9.3143	-0.72	342.69	0.002
L2	126 - 122 (2)	P16x0.1875	4.0000	0.0000	0.0	9.3143	-0.90	342.69	0.003
L3	122 - 120 (3)	P16x0.1875	2.0000	0.0000	0.0	9.3143	-0.98	342.69	0.003
L4	120 - 116 (4)	P24x0.25	4.0000	0.0000	0.0	18.653 2	-1.78	662.26	0.003
L5	116 - 112 (5)	P24x0.25	4.0000	0.0000	0.0	18.653 2	-4.14	662.26	0.006
L6	112 - 108 (6)	P24x0.25	4.0000	0.0000	0.0	18.653 2	-4.49	662.26	0.007
L7	108 - 104 (7)	P24x0.25	4.0000	0.0000	0.0	18.653 2	-7.06	662.26	0.011
L8	104 - 100 (8)	P24x0.25	4.0000	0.0000	0.0	18.653 2	-7.44	662.26	0.011
L9	100 - 96 (9)	P24x0.25	4.0000	0.0000	0.0	18.653 2	-7.83	662.26	0.012
L10	96 - 92 (10)	P24x0.25	4.0000	0.0000	0.0	18.653 2	-8.56	662.26	0.013
L11	92 - 90 (11)	P24x0.25	2.0000	0.0000	0.0	18.653 2	-8.77	662.26	0.013
L12	90 - 86 (12)	P24x0.375	4.0000	0.0000	0.0	27.832 5	-9.33	1052.07	0.009
L13	86 - 83.5 (13)	P24x0.375	2.5000	0.0000	0.0	27.832 5	-12.75	1052.07	0.012
L14	83.5 -83.25 (14)	P24x0.6	0.2500	0.0000	0.0	44.108 0	-12.80	1667.28	800.0
L15	83.25 - 79.25 (15)	P24x0.6	4.0000	0.0000	0.0	44.108 0	-13.59	1667.28	0.008
L16	79.25 - 75.25 (16)	P24x0.6	4.0000	0.0000	0.0	44.108 0	-14.40	1667.28	0.009
L17	75.25 - 75 (17)	P24x0.6	0.2500	0.0000	0.0	44.108 0	-14.45	1667.28	0.009

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	ϕP_n	Ratio
NO.	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_n}$
L18	75 - 74.75	P24x0.6	0.2500	0.0000	0.0	44.108	-14.50	1667.28	0.009
L19	(18) 74.75 - 70.75	P24x0.6	4.0000	0.0000	0.0	0 44.108 0	-15.26	1667.28	0.009
L20	(19) 70.75 - 66.75 (20)	P24x0.6	4.0000	0.0000	0.0	44.108 0	-16.07	1667.28	0.010
L21	66.75-62.75 (21)	P24x0.6	4.0000	0.0000	0.0	44.108 0	-16.90	1667.28	0.010
L22	62.75-60 (22)	P24x0.6	2.7500	0.0000	0.0	44.108 0	-17.46	1667.28	0.010
L23	60 - 59.75 (23)	P30x0.54375	0.2500	0.0000	0.0	50.318 4	-19.76	1902.03	0.010
L24	59.75 - 55.75 (24)	P30x0.54375	4.0000	0.0000	0.0	50.318 4	-20.69	1902.03	0.011
L25	55.75 - 51.75 (25)	P30x0.54375	4.0000	0.0000	0.0	50.318 4	-21.63	1902.03	0.011
L26	51.75 -48.5 (26)	P30x0.54375	3.2500	0.0000	0.0	50.318 4	-22.47	1902.03	0.012
L27	48.5 - 48.25 (27)	P30x0.7375	0.2500	0.0000	0.0	67.799 0	-22.55	2562.80	0.009
L28	48.25 - 44.25 (28)	P30x0.7375	4.0000	0.0000	0.0	67.799 0	-23.77	2562.80	0.009
L29	44.25 - 40.25 (29)	P30x0.7375	4.0000	0.0000	0.0	67.799 0	-25.00	2562.80	0.010
L30	40.25 - 36.25 (30)	P30x0.7375	4.0000	0.0000	0.0	67.799 0	-26.23	2562.80	0.010
L31	36.25 - 32.25 (31)	P30x0.7375	4.0000	0.0000	0.0	67.799 0	-27.48	2562.80	0.011
L32	32.25 - 30 (32)	P30x0.7375	2.2500	0.0000	0.0	67.799 0	-28.18	2562.80	0.011
L33	30 - 29.75 (33)	P36x0.55	0.2500	0.0000	0.0	61.253 2	-30.37	2315.37	0.013
L34	29.75 - 25.75 (34)	P36x0.55	4.0000	0.0000	0.0	61.253 2	-31.51	2315.37	0.014
L35	25.75 - 23 (35)	P36x0.55	2.7500	0.0000	0.0	61.253 2	-32.29	2315.37	0.014
L36	23 - 22.75 (36)	P36x0.55	0.2500	0.0000	0.0	61.253 2	-32.37	2315.37	0.014
L37	22.75 - 20.75 (37)	P36x0.55	2.0000	0.0000	0.0	61.253 2	-32.94	2315.37	0.014
L38	20.75 - 20.5 (38)	P36x0.6875	0.2500	0.0000	0.0	76.269 5	-33.03	2882.99	0.011
L39	20.5 - 17.75 (39)	P36x0.6875	2.7500	0.0000	0.0	76.269 5	-33.95	2882.99	0.012
L40	17.75 - 17.5 (40)	P36x0.7	0.2500	0.0000	0.0	77.628 8	-34.05	2934.37	0.012
L41	17.5 - 13.5 (41)	P36x0.7	4.0000	0.0000	0.0	77.628 8	-35.53	2934.37	0.012
L42	13.5 - 9.5 (42)	P36x0.7	4.0000	0.0000	0.0	77.628 8	-37.02	2934.37	0.013
L43	9.5 - 5.5 (43)	P36x0.7	4.0000	0.0000	0.0	77.628 8	-38.51	2934.37	0.013
L44	5.5 - 3.25 (44)	P36x0.7	2.2500	0.0000	0.0	77.628 8	-39.36	2934.37	0.013
L45	3.25 - 3 (45)	P36x0.6875	0.2500	0.0000	0.0	76.269 5	-39.45	2882.99	0.014
L46	3 - 0 (46)	P36x0.6875	3.0000	0.0000	0.0	76.269 5	-40.48	2882.99	0.014

Pole Bending Design Data

Section	Elevation	Size	M _{ux}	φ <i>M</i> _{nx}	Ratio	M _{uy}	φ M _{ny}	Ratio
No.	_				M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	130 - 126 (1)	P16x0.1875	2.07	133.84	0.015	0.00	133.84	0.000

Section	Elevation	Síze	M _{ux}	φ M _{nx}	Ratio	Muy	φ M _{ny}	Ratio
No.	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
L2	126 - 122 (2)	P16x0.1875	8.87	133.84	φινι _{nx} 0.066	0.00	133.84	φ <i>ινι_{ny}</i>
L3	122 - 120 (3)	P16x0.1875	12.62	133.84	0.094	0.00	133.84	0.000
L4	120 - 116 (4)	P24x0.25	20.99	396.68	0.053	0.00	396.68	0.000
L5	116 - 112 (5)	P24x0.25	42.65	396.68	0.108	0.00	396.68	0.000
L6	112 - 108 (6)	P24x0.25	65.33	396.68	0.165	0.00	396.68	0.000
L7	108 - 104 (7)	P24x0.25	95.06	396.68	0.240	0.00	396.68	0.000
L8	104 - 100 (8)	P24x0.25	132.71	396.68	0.335	0.00	396.68	0.000
L9 L10	100 - 96 (9) 96 - 92 (10)	P24x0.25 P24x0.25	171.31 212.94	396.68 396.68	0.432 0.537	0.00 0.00	396.68 396.68	0.000
L10	92 - 90 (11)	P24x0.25	234.09	396.68	0.590	0.00	396.68	0.000
L12	90 - 86 (12)	P24x0.375	277.06	623.72	0.444	0.00	623.72	0.000
L13	86 - 83.5 (13)	P24x0.375	311.87	623.72	0.500	0.00	623.72	0.000
L14	83.5 - 83.25	P24x0.6	315.38	1035.12	0.305	0.00	1035.12	0.000
	(14)							
L15	83.25 - 79.25	P24x0.6	372.10	1035.12	0.359	0.00	1035.12	0.000
L16	(15) 79.25 - 75.25	P24x0.6	429.82	1035.12	0.415	0.00	1035.12	0.000
L17	(16) 75.25-75	P24x0.6	433.46	1035.12	0.419	0.00	1035.12	0.000
L18	(17) 75 - 74.75	P24x0.6	437.11	1035.12	0.422	0.00	1035.12	0.000
L19	(18) 74.75 - 70.75	P24x0.6	496.82	1035.12	0.480	0.00	1035.12	0.000
L20	(19) 70.75 - 66.75	P24x0.6	558.85	1035.12	0.540	0.00	1035.12	0.000
L21	(20) 66.75 - 62.75	P24x0.6	622.37	1035.12	0.601	0.00	1035.12	0.000
L22	(21) 62.75-60	P24x0.6	666.87	1035.12	0.644	0.00	1035.12	0.000
L23	(22) 60 - 59.75	P30x0.54375	671.73	1443.46	0.465	0.00	1443.46	0.000
L24	(23) 59.75 - 55.75	P30x0.54375	745.69	1443.46	0.517	0.00	1443.46	0.000
L25	(24) 55.75 - 51.75	P30x0.54375	820.50	1443.46	0.568	0.00	1443.46	0.000
L26	(25) 51.75 - 48.5	P30x0.54375	882.10	1443.46	0.611	0.00	1443.46	0.000
L27	(26) 48.5 - 48.25	P30x0.7375	886.91	1989.70	0.446	0.00	1989.70	0.000
L28	(27) 48.25 - 44.25 (28)	P30x0.7375	964.83	1989.70	0.485	0.00	1989.70	0.000
L29	44.25 - 40.25 (29)	P30x0.7375	1044.56	1989.70	0.525	0.00	1989.70	0.000
L30	40.25 - 36.25 (30)	P30x0.7375	1126.02	1989.70	0.566	0.00	1989.70	0.000
L31	36.25 - 32.25 (31)	P30x0.7375	1209.12	1989.70	0.608	0.00	1989.70	0.000
L32	32.25 - 30 (32)	P30x0.7375	1256.54	1989.70	0.632	0.00	1989.70	0.000
L33	30 - 29.75 (33)	P36x0.55	1262.39	2052.07	0.615	0.00	2052.07	0.000
L34	29.75 - 25.75 (34)	P36x0.55	1356.89	2052.07	0.661	0.00	2052.07	0.000
L35	25.75 - 23 (35)	P36x0.55	1422.83	2052.07	0.693	0.00	2052.07	0.000
L36	23 - 22.75 (36)	P36x0.55	1428.87	2052.07	0.696	0.00	2052.07	0.000
L37	22.75 - 20.75	P36x0.55	1477.36	2052.07	0.720	0.00	2052.07	0.000
L38	20.75 - 20.5 (38)	P36x0.6875	1483.45	2649.32	0.560	0.00	2649.32	0.000
L39	20.5 - 17.75 (39)	P36x0.6875	1550.88	2649.32	0.585	0.00	2649.32	0.000
L40	17.75 - 17.5 (40)	P36x0.7	1557.05	2705.17	0.576	0.00	2705.17	0.000
L41	17.5 - 13.5 (41)	P36x0.7	1656.51	2705.17	0.612	0.00	2705.17	0.000
L42	13.5 - 9.5 (42)	P36x0.7	1757.39	2705.17	0.650	0.00	2705.17	0.000

Section	Elevation	Size	M _{ux}	φ M _{nx}	Ratio	Muy	φ M _{ny}	Ratio
No.					M_{ux}			M_{uv}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
L43	9.5 - 5.5 (43)	P36x0.7	1859.63	2705.17	0.687	0.00	2705.17	0.000
L44	5.5 - 3.25 (44)	P36x0.7	1917.72	2705.17	0.709	0.00	2705.17	0.000
L45	3.25 - 3 (45)	P36x0.6875	1924.20	2649.32	0.726	0.00	2649.32	0.000
L46	3 - 0 (46)	P36x0.6875	2002.33	2649.32	0.756	0.00	2649.32	0.000

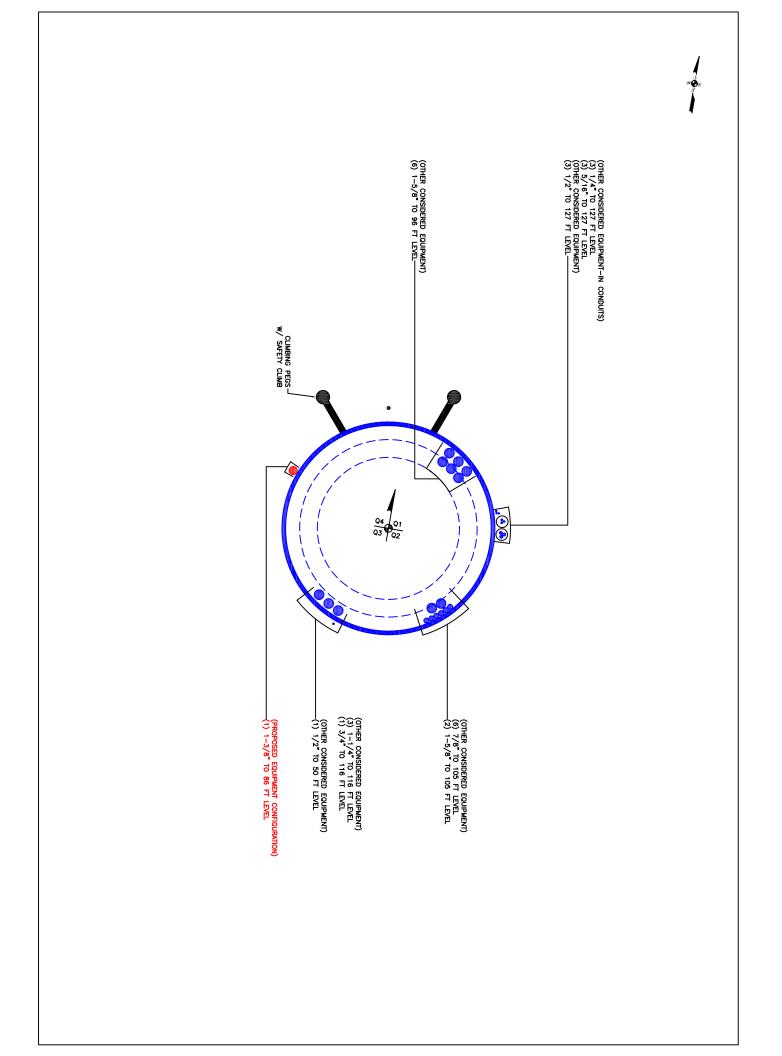
Pole Shear Design Data										
Section No.	Elevation	Size	Actual V _u	φV _n	Ratio V _u	Actual T _u	φ <i>T</i> _n	Ratio T _u		
740.	ft		K	K	$\frac{V_u}{\phi V_n}$	kip-ft	kip-ft	$\frac{T_u}{\phi T_n}$		
L1	130 - 126 (1)	P16x0.1875	1.57	105.63	0.015	0.18	128.62	0.001		
L2 L3	126 - 122 (2) 122 - 120 (3)	P16x0.1875	1.82 1.92	105.63 105.63	0.017 0.018	0.49 0.49	128.62 128.62	0.004 0.004		
L3 L4	122 - 120 (3) 120 - 116 (4)	P16x0.1875 P24x0.25	2.85	201.86	0.016	0.49	324.23	0.004		
L5	116 - 112 (5)	P24x0.25	5.54	201.86	0.027	0.49	324.23	0.002		
L6	112 - 108 (6)	P24x0.25	5.80	201.86	0.029	0.49	324.23	0.002		
L7	108 - 104 (7)	P24x0.25	9.29	201.86	0.046	0.10	324.23	0.000		
L8	104 - 100 (8)	P24x0.25	9.53	201.86	0.047	0.10	324.23	0.000		
L9	100 - 96 (9)	P24x0.25	9.77	201.86	0.048	0.10	324.23	0.000		
L10	96 - 92 (10)	P24x0.25	10.52	201.86	0.052	0.10	324.23	0.000		
L11 L12	92 - 90 (11) 90 - 86 (12)	P24x0.25	10.63 10.86	201.86 315.62	0.053 0.034	0.10 0.10	324.23 655.57	0.000		
L12	86 - 83.5 (13)	P24x0.375 P24x0.375	14.04	315.62	0.034	0.10	655.57	0.000		
L13	83.5 - 83.25	P24x0.575	14.04	500.18	0.044	0.01	1029.03	0.000		
	(14)	1 2470.0	14.00	000.10	0.020	0.01	1020.00	0.000		
L15	83.25 - 79.25 (15)	P24x0.6	14.31	500.18	0.029	0.01	1029.03	0.000		
L16	79.25 - 75.25 (16)	P24x0.6	14.56	500.18	0.029	0.01	1029.03	0.000		
L17	75.25 - 75 (17)	P24x0.6	14.57	500.18	0.029	0.01	1029.03	0.000		
L18	75 - 74.75 (18)	P24x0.6	14.59	500.18	0.029	0.01	1029.03	0.000		
L19	74.75 - 70.75 (19)	P24x0.6	15.32	500.18	0.031	0.42	1029.03	0.000		
L20	70.75 - 66.75 (20)	P24x0.6	15.70	500.18	0.031	0.42	1029.03	0.000		
L21	66.75 - 62.75 (21)	P24x0.6	16.07	500.18	0.032	0.42	1029.03	0.000		
L22	62.75-60 (22)	P24x0.6	16.31	500.18	0.033	0.42	1029.03	0.000		
L23	60 - 59.75 (23)	P30x0.54375	18.38	570.61	0.032	0.51	1477.73	0.000		
L24	59.75 - 55.75 (24)	P30x0.54375	18.60	570.61	0.033	0.51	1477.73	0.000		
L25	55.75 - 51.75 (25)	P30x0.54375	18.81	570.61	0.033	0.51	1477.73	0.000		
L26	51.75 -48.5 (26)	P30x0.54375	19.22	570.61	0.034	0.53	1477.73	0.000		
L27	48.5 - 48.25 (27)	P30x0.7375	19.25	768.84	0.025	0.53	1978.01	0.000		
L28	48.25 - 44.25 (28)	P30x0.7375	19.72	768.84	0.026	0.53	1978.01	0.000		
L29	44.25 - 40.25 (29)	P30x0.7375	20.16	768.84	0.026	0.53	1978.01	0.000		
L30	40.25 - 36.25 (30)	P30x0.7375	20.58	768.84	0.027	0.53	1978.01	0.000		
L31 L32	36.25 - 32.25 (31) 32.25 - 30	P30x0.7375 P30x0.7375	20.98 21.20	768.84 768.84	0.027 0.028	0.53 0.53	1978.01 1978.01	0.000		
L32	(32) 30 - 29.75	P36x0.7575	23.41	694.61	0.028	0.53	2164.90	0.000		
L34	(33) 29.75 - 25.75 (34)	P36x0.55	23.84	694.61	0.034	0.53	2164.90	0.000		

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio Vu	Actual T _u	ϕT_n	Ratio Tu
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	ϕT_n
L35	25.75 - 23 (35)	P36x0.55	24.13	694.61	0.035	0.53	2164.90	0.000
L36	23 - 22.75 (36)	P36x0.55	24.15	694.61	0.035	0.53	2164.90	0.000
L37	22.75 - 20.75 (37)	P36x0.55	24.36	694.61	0.035	0.53	2164.90	0.000
L38	20.75 - 20.5 (38)	P36x0.6875	24.38	864.90	0.028	0.53	2685.18	0.000
L39	20.5 - 17.75 (39)	P36x0.6875	24.67	864.90	0.029	0.53	2685.18	0.000
L40	17.75 - 17.5 (40)	P36x0.7	24.68	880.31	0.028	0.53	2732.06	0.000
L41	17.5 - 13.5 (41)	P36x0.7	25.06	880.31	0.028	0.53	2732.06	0.000
L42	13.5 - 9.5 (42)	P36x0.7	25.40	880.31	0.029	0.53	2732.06	0.000
L43	9.5 - 5.5 (43)	P36x0.7	25.74	880.31	0.029	0.53	2732.06	0.000
L44	5.5 - 3.25 (44)	P36x0.7	25.92	880.31	0.029	0.53	2732.06	0.000
L45	3.25 - 3 (45)	P36x0.6875	25.93	864.90	0.030	0.53	2685.18	0.000
L46	3 - 0 (46)	P36x0.6875	26.17	864.90	0.030	0.53	2685.18	0.000

Pole Interaction D	esian Data
--------------------	------------

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		P_u	M_{ux}	M_{uy}	V_u	T_u	Stress	Stress	
	ft	ΦP_n	ϕM_{nx}	ϕM_{nv}	ϕV_n	$\overline{\phi T_n}$	Ratio	Ratio	
L1	130 - 126 (1)	0.002	0.015	0.000	0.015	0.001	0.018	1.050	4.8.2
L2	126 - 122 (2)	0.003	0.066	0.000	0.017	0.004	0.069	1.050	4.8.2
L3	122 - 120 (3)	0.003	0.094	0.000	0.018	0.004	0.098	1.050	4.8.2
L4	120 - 116 (4)	0.003	0.053	0.000	0.014	0.002	0.056	1.050	4.8.2
L5	116 - 112 (5)	0.006	0.108	0.000	0.027	0.002	0.115	1.050	4.8.2
L6	112 - 108 (6)	0.007	0.165	0.000	0.029	0.002	0.172	1.050	4.8.2
L7	108 - 104 (7)	0.011	0.240	0.000	0.046	0.000	0.252	1.050	4.8.2
L8	104 - 100 (8)	0.011	0.335	0.000	0.047	0.000	0.348	1.050	4.8.2
L9	100 - 96 (9)	0.012	0.432	0.000	0.048	0.000	0.446	1.050	4.8.2
L10	96 - 92 (10)	0.013	0.537	0.000	0.052	0.000	0.552	1.050	4.8.2
L11	92 - 90 (11)	0.013	0.590	0.000	0.053	0.000	0.606	1.050	4.8.2
L12	90 - 86 (12)	0.009	0.444	0.000	0.034	0.000	0.454	1.050	4.8.2
L13	86 - 83.5 (13)	0.012	0.500	0.000	0.044	0.000	0.514	1.050	4.8.2
L14	83.5 -83.25 (14)	0.008	0.305	0.000	0.028	0.000	0.313	1.050	4.8.2
L15	83.25 - 79.25 (15)	0.008	0.359	0.000	0.029	0.000	0.368	1.050	4.8.2
L16	79.25 - 75.25 (16)	0.009	0.415	0.000	0.029	0.000	0.425	1.050	4.8.2
L17	75.25 - 75 (17)	0.009	0.419	0.000	0.029	0.000	0.428	1.050	4.8.2
L18	75 - 74.75 (18)	0.009	0.422	0.000	0.029	0.000	0.432	1.050	4.8.2
L19	74.75 - 70.75 (19)	0.009	0.480	0.000	0.031	0.000	0.490	1.050	4.8.2
L20	70.75 - 66.75 (20)	0.010	0.540	0.000	0.031	0.000	0.551	1.050	4.8.2
L21	66.75 - 62.75 (21)	0.010	0.601	0.000	0.032	0.000	0.612	1.050	4.8.2
L22	62.75 - 60 (22)	0.010	0.644	0.000	0.033	0.000	0.656	1.050	4.8.2
L23	60 - 59.75 (23)	0.010	0.465	0.000	0.032	0.000	0.477	1.050	4.8.2
L24	59.75 - 55.75 (24)	0.011	0.517	0.000	0.033	0.000	0.529	1.050	4.8.2
L25	55.75 - 51.75 (25)	0.011	0.568	0.000	0.033	0.000	0.581	1.050	4.8.2
L26	51.75 - 48.5	0.012	0.611	0.000	0.034	0.000	0.624	1.050	4.8.2

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uv}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	$\frac{1}{\phi P_n}$	φ <i>M</i> _{nx}	ϕM_{ny}	$\frac{u}{\phi V_n}$	$\frac{1}{\phi T_n}$	Ratio	Ratio	
	(26)								
L27	48.5 - 48.25 (27)	0.009	0.446	0.000	0.025	0.000	0.455	1.050	4.8.2
L28	48.25 - 44.25 (28)	0.009	0.485	0.000	0.026	0.000	0.495	1.050	4.8.2
L29	44.25 - 40.25 (29)	0.010	0.525	0.000	0.026	0.000	0.535	1.050	4.8.2
L30	40.25 - 36.25 (30)	0.010	0.566	0.000	0.027	0.000	0.577	1.050	4.8.2
L31	36.25 - 32.25 (31)	0.011	0.608	0.000	0.027	0.000	0.619	1.050	4.8.2
L32	32.25 - 30 (32)	0.011	0.632	0.000	0.028	0.000	0.643	1.050	4.8.2
L33	30 - 29.75 (33)	0.013	0.615	0.000	0.034	0.000	0.629	1.050	4.8.2
L34	29.75 - 25.75 (34)	0.014	0.661	0.000	0.034	0.000	0.676	1.050	4.8.2
L35	25.75 - 23 (35)	0.014	0.693	0.000	0.035	0.000	0.709	1.050	4.8.2
L36	23 - 22.75 (36)	0.014	0.696	0.000	0.035	0.000	0.712	1.050	4.8.2
L37	22.75 - 20.75 (37)	0.014	0.720	0.000	0.035	0.000	0.735	1.050	4.8.2
L38	20.75 - 20.5 (38)	0.011	0.560	0.000	0.028	0.000	0.572	1.050	4.8.2
L39	20.5 - 17.75 (39)	0.012	0.585	0.000	0.029	0.000	0.598	1.050	4.8.2
L40	17.75 - 17.5 (40)	0.012	0.576	0.000	0.028	0.000	0.588	1.050	4.8.2
L41	17.5 - 13.5 (41)	0.012	0.612	0.000	0.028	0.000	0.625	1.050	4.8.2
L42	13.5 - 9.5 (42)	0.013	0.650	0.000	0.029	0.000	0.663	1.050	4.8.2
L43	9.5 - 5.5 (4̀3)	0.013	0.687	0.000	0.029	0.000	0.701	1.050	4.8.2
L44	5.5 - 3.25 (44)	0.013	0.709	0.000	0.029	0.000	0.723	1.050	4.8.2
L45	3.25 - 3 (45)	0.014	0.726	0.000	0.030	0.000	0.741	1.050	4.8.2
L46	3 - 0 (46)	0.014	0.756	0.000	0.030	0.000	0.771	1.050	4.8.2


Section	Capa	city '	Table
	Cape		

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	130 - 126	Pole	P16x0.1875	1	-0.72	359.83	1.8	Pass
L2	126 - 122	Pole	P16x0.1875	2	-0.90	359.83	6.6	Pass
L3	122 - 120	Pole	P16x0.1875	3	-0.98	359.83	9.3	Pass
L4	120 - 116	Pole	P24x0.25	4	-1.78	695.38	5.3	Pass
L5	116 - 112	Pole	P24x0.25	5	-4.14	695.38	10.9	Pass
L6	112 - 108	Pole	P24x0.25	6	-4.49	695.38	16.4	Pass
L7	108 - 104	Pole	P24x0.25	7	-7.06	695.38	24.0	Pass
L8	104 - 100	Pole	P24x0.25	8	-7.44	695.38	33.1	Pass
L9	100 - 96	Pole	P24x0.25	9	-7.83	695.38	42.5	Pass
L10	96 - 92	Pole	P24x0.25	10	-8.56	695.38	52.6	Pass
L11	92 - 90	Pole	P24x0.25	11	-8.77	695.38	57.7	Pass
L12	90 - 86	Pole	P24x0.375	12	-9.33	1104.67	43.3	Pass
L13	86 - 83.5	Pole	P24x0.375	13	-12.75	1104.67	49.0	Pass
L14	83.5-83.25	Pole	P24x0.6	14	-12.80	1750.64	29.8	Pass
L15	83.25 - 79.25	Pole	P24x0.6	15	-13.59	1750.64	35.1	Pass
L16	79.25 - 75.25	Pole	P24x0.6	16	-14.40	1750.64	40.4	Pass
L17	75.25 - 75	Pole	P24x0.6	17	-14.45	1750.64	40.8	Pass
L18	75 - 74 75	Pole	P24x0.6	18	-14.50	1750.64	41.1	Pass
L19	74.75 - 70.75	Pole	P24x0.6	19	-15.26	1750.64	46.7	Pass
L20	70.75 - 66.75	Pole	P24x0.6	20	-16.07	1750.64	52.4	Pass
L21	66.75 -62.75	Pole	P24x0.6	21	-16.90	1750.64	58.3	Pass

Section	Elevation	Component	Size	Critical	Р	øP _{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L22	62.75 - 60	Pole	P24x0.6	22	-17.46	1750.64	62.5	Pass
L23	60 - 59.75	Pole	P30x0.54375	23	-19.76	1997.13	45.4	Pass
L24	59.75 - 55.75	Pole	P30x0.54375	24	-20.69	1997.13	50.3	Pass
L25	55.75 - 51.75	Pole	P30x0.54375	25	-21.63	1997.13	55.3	Pass
L26	51.75 - 48.5	Pole	P30x0.54375	26	-22.47	1997.13	59.4	Pass
L27	48.5-48.25	Pole	P30x0.7375	27	-22.55	2690.94	43.4	Pass
L28	48.25 - 44.25	Pole	P30x0.7375	28	-23.77	2690.94	47.1	Pass
L29	44.25 - 40.25	Pole	P30x0.7375	29	-25.00	2690.94	51.0	Pass
L30	40.25 - 36.25	Pole	P30x0.7375	30	-26.23	2690.94	54.9	Pass
L31	36.25 - 32.25	Pole	P30x0.7375	31	-27.48	2690.94	59.0	Pass
L32	32.25 - 30	Pole	P30x0.7375	32	-28.18	2690.94	61.3	Pass
L33	30 - 29.75	Pole	P36x0.55	33	-30.37	2431.14	59.9	Pass
L34	29.75 - 25.75	Pole	P36x0.55	34	-31.51	2431.14	64.4	Pass
L35	25.75 - 23	Pole	P36x0.55	35	-32.29	2431.14	67.5	Pass
L36	23 - 22.75	Pole	P36x0.55	36	-32.37	2431.14	67.8	Pass
L37	22.75 - 20.75	Pole	P36x0.55	37	-32.94	2431.14	70.0	Pass
L38	20.75 - 20.5	Pole	P36x0.6875	38	-33.03	3027.14	54.5	Pass
L39	20.5 - 17.75	Pole	P36x0.6875	39	-33.95	3027.14	57.0	Pass
L40	17.75 - 17.5	Pole	P36x0.7	40	-34.05	3081.09	56.0	Pass
L41	17.5 - 13.5	Pole	P36x0.7	41	-35.53	3081.09	59.6	Pass
L42	13.5 - 9.5	Pole	P36x0.7	42	-37.02	3081.09	63.2	Pass
L43	9.5 - 5.5	Pole	P36x0.7	43	-38.51	3081.09	66.8	Pass
L44	5.5 - 3.25	Pole	P36x0.7	44	-39.36	3081.09	68.9	Pass
L45	3.25 - 3	Pole	P36x0.6875	45	-39.45	3027.14	70.6	Pass
L46	3 - 0	Pole	P36x0.6875	46	-40.48	3027.14	73.4	Pass
							Summary	
						Pole (L46)	73.4	Pass
						RATING =	73.4	Pass

^{*}NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Site BU: 876324
Work Order: 2016303

Pole Geometry

Copyright © 2019 Crown Castle

		Pole Height Above Base (ft)	_	Lap Splice Length	Number of Sides	Top Diameter	Bottom Diameter	Wall Thickness (in)	Bend Radius	Pole Material
		Base (π)	(ft)	(ft)		(in)	(in)		(in)	
	1	130	10		0	16	16	0.1875		A53-B-42
Г	2	120	30		0	24.00	24	0.25		A53-B-42
	3	90	30		0	24.00	24	0.375		A53-B-42
	4	60	30		0	30.00	30	0.375		A53-B-42
	5	30	30		0	36.00	36	0.375		A53-B-42

Reinforcement Configuration

			1																		1		1 1
	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	20.75	plate	FP 3.375 x 1.25 BW	3	117	231	357															
2	30	60	plate	MS-450 (1.1875")	3				45	165	285												П
3	60	75	plate	MS-450 (1.1875")	3				45	165	285												
4	0	23	plate	MS-600 (1.1875")	3							59	174	294									
5	23	30	plate	MS-600 (1.1875")	3							20	137	260									
6	3.25	17.75	plate	CCI-SFP-065125	1	20																	
7	30	48.5	plate	CCI-SFP-060100	3		15	150	255														
8	75	83.5	plate	CCI-SFP-045100	3		45	165	285														
9	·																						
10																							

Reinforcement Details

		inche i	Detuiis									
	B (in)	H (in)	Gross Area (in²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	3.375	1.25	4.21875	0.625	Welded	n/a	PC 8.8 - M20 (100)	12.000	24.000	2.656	1.1875	A572-65
2	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.625	3.250	1.1875	A572-65
3	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.625	3.250	1.1875	A572-65
4	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.375	4.750	1.1875	A572-65
5	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.375	4.750	1.1875	A572-65
6	6.5	1.25	8.125	0.625	PC 8.8 - M20 (100)	33	PC 8.8 - M20 (100)	33.000	19.000	6.563	1.1875	A572-65
7	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.000	4.750	1.1875	A572-65
8	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65

Connection Details for Custom Reinforcements

Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)		Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
FP 3.375 x 1.25 BW	Top	4	N	3	3	-	-	-	-	-	-	-	-	-
FP 3.3/3 X 1.23 BW	Bottom	-	-	-	-	80	CJP Groove	3.375	1.25	45	0.3125	-	-	-

TNX Geometry Input

Inci	rement (ft): 4	port to TNX	Lap Splice Length			Bottom Diameter	Wall Thickness	Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	(in)	Grade	Multiplier
1	130 - 126	4	()	0	16.000	16.000	0.1875	A53-B-42	1.000
2	126 - 122	4		0	16.000	16.000	0.1875	A53-B-42	1.000
3	122 - 120	2	0	0	16.000	16.000	0.1875	A53-B-42	1.000
4	120 - 116	4	-	0	24.000	24.000	0.25	A53-B-42	1.000
5	116 - 112	4		0	24.000	24.000	0.25	A53-B-42	1.000
6	112 - 108	4		0	24.000	24.000	0.25	A53-B-42	1.000
7	108 - 104	4		0	24.000	24.000	0.25	A53-B-42	1.000
8	104 - 100	4		0	24.000	24.000	0.25	A53-B-42	1.000
9	100 - 96	4		0	24.000	24.000	0.25	A53-B-42	1.000
10	96 - 92	4		0	24.000	24.000	0.25	A53-B-42	1.000
11	92 - 90	2	0	0	24.000	24.000	0.25	A53-B-42	1.000
12	90 - 86	4		0	24.000	24.000	0.375	A53-B-42	1.000
13	86 - 83.5	2.5		0	24.000	24.000	0.375	A53-B-42	1.000
14	83.5 - 83.25	0.25		0	24.000	24.000	0.6	A53-B-42	0.937
15	83.25 - 79.25	4		0	24.000	24.000	0.6	A53-B-42	0.937
16	79.25 - 75.25	4		0	24.000	24.000	0.6	A53-B-42	0.937
17	75.25 - 75	0.25		0	24.000	24.000	0.6	A53-B-42	0.937
18	75 - 74.75	0.25		0	24.000	24.000	0.6	A53-B-42	0.937
19	74.75 - 70.75	4		0	24.000	24.000	0.6	A53-B-42	0.937
20	70.75 - 66.75	4		0	24.000	24.000	0.6	A53-B-42	0.937
21	66.75 - 62.75	4		0	24.000	24.000	0.6	A53-B-42	0.937
22	62.75 - 60	2.75	0	0	24.000	24.000	0.6	A53-B-42	0.937
23	60 - 59.75	0.25		0	30.000	30.000	0.54375	A53-B-42	0.962
24	59.75 - 55.75	4		0	30.000	30.000	0.54375	A53-B-42	0.962
25	55.75 - 51.75	4		0	30.000	30.000	0.54375	A53-B-42	0.962
26	51.75 - 48.5	3.25		0	30.000	30.000	0.54375	A53-B-42	0.962
27	48.5 - 48.25	0.25		0	30.000	30.000	0.7375	A53-B-42	0.979
28	48.25 - 44.25	4		0	30.000	30.000	0.7375	A53-B-42	0.979
29	44.25 - 40.25	4		0	30.000	30.000	0.7375	A53-B-42	0.979
30	40.25 - 36.25	4		0	30.000	30.000	0.7375	A53-B-42	0.979
31	36.25 - 32.25	4		0	30.000	30.000	0.7375	A53-B-42	0.979
32	32.25 - 30	2.25	0	0	30.000	30.000	0.7375	A53-B-42	0.979
33	30 - 29.75	0.25		0	36.000	36.000	0.55	A53-B-42	0.979
34	29.75 - 25.75	4		0	36.000	36.000	0.55	A53-B-42	0.979
35	25.75 - 23	2.75		0	36.000	36.000	0.55	A53-B-42	0.979
36	23 - 22.75	0.25		0	36.000	36.000	0.55	A53-B-42	0.979
37	22.75 - 20.75	2		0	36.000	36.000	0.55	A53-B-42	0.979
38	20.75 - 20.5	0.25		0	36.000	36.000	0.6875	A53-B-42	0.952
39	20.5 - 17.75	2.75		0	36.000	36.000	0.6875	A53-B-42	0.952
40	17.75 - 17.5	0.25		0	36.000	36.000	0.7	A53-B-42	1.040
41	17.5 - 13.5	4		0	36.000	36.000	0.7	A53-B-42	1.040
42	13.5 - 9.5	4		0	36.000	36.000	0.7	A53-B-42	1.040
43	9.5 - 5.5	4		0	36.000	36.000	0.7	A53-B-42	1.040
44	5.5 - 3.25	2.25		0	36.000	36.000	0.7	A53-B-42	1.040
45	3.25 - 3	0.25		0	36.000	36.000	0.6875	A53-B-42	0.952
46	3 - 0	3		0	36.000	36.000	0.6875	A53-B-42	0.952

TNX Section Forces

Ind	crement (fi	t):	4	Т	NX Outpu	
					M _{ux} (kip-	V_{u}
	Section	He	ight (ft)	P _u (K)	ft)	(K)
1	130	-	126	0.72	2.07	1.57
2	126	-	122	0.90	8.87	1.82
3	122	-	120	0.98	12.62	1.92
4	120	-	116	1.78	20.99	2.85
5	116	-	112	4.14	42.65	5.54
6	112	-	108	4.49	65.33	5.80
7	108	-	104	7.06	95.06	9.29
8	104	-	100	7.44	132.71	9.53
9	100	-	96	7.83	171.31	9.77
10	96	-	92	8.56	212.94	10.52
11	92	-	90	8.77	234.09	10.63
12	90	-	86	9.33	277.06	10.86
13	86	-	83.5	12.75	311.87	14.04
14	83.5	-	83.25	12.80	315.38	14.06
15	83.25	-	79.25	13.59	372.10	14.31
16	79.25	-	75.25	14.40	429.82	14.56
17	75.25	-	75	14.45	433.46	14.57
18	75	-	74.75	14.50	437.11	14.59
19	74.75	-	70.75	15.26	496.82	15.32
20	70.75	-	66.75	16.07	558.85	15.70
21	66.75	-	62.75	16.90	622.37	16.07
22	62.75	-	60	17.46	666.87	16.31
23	60	-	59.75	19.76	671.73	18.38
24	59.75	-	55.75	20.69	745.69	18.60
25	55.75	-	51.75	21.63	820.50	18.81
26	51.75	-	48.5	22.47	882.10	19.22
27	48.5	-	48.25	22.55	886.91	19.25
28	48.25	-	44.25	23.77	964.82	19.72
29	44.25	-	40.25	25.00	1044.56	20.16
30	40.25	-	36.25	26.23	1126.02	20.58
31	36.25	-	32.25	27.48	1209.12	20.98
32	32.25	_	30	28.18	1256.54	21.20
33	30	-	29.75	30.37	1262.39	23.41
34	29.75	_	25.75	31.51	1356.89	23.84
35	25.75	_	23	32.29	1422.83	24.13
36	23	_	22.75	32.37	1428.86	24.15
37	22.75	_	20.75	32.94	1477.36	24.36
38	20.75	_	20.5	33.03	1483.45	24.38
39	20.5	_	17.75	33.95	1550.88	24.67
40	17.75	_	17.5	34.05	1557.05	24.68
41	17.5	_	13.5	35.53	1656.51	25.06
42	13.5	_	9.5	37.02	1757.39	25.40
43	9.5	_	5.5	38.51	1859.63	25.74
44	5.5	_	3.25	39.36	1917.72	25.92
45	3.25	_	3.23	39.45	1924.20	25.93
46	3.23	_		40.48	2002.33	26.17
40	5	-	0	40.48	2002.55	20.17

Analysis Results

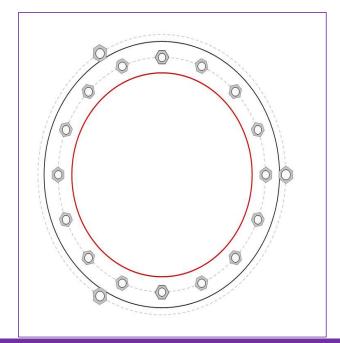
Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fa
130 - 126	Pole	TP16x16x0.1875	Pole	1.7%	Pass
126 - 122	Pole	TP16x16x0.1875	Pole	6.6%	Pass
122 - 120	Pole	TP16x16x0.1875	Pole	9.3%	Pass
120 - 116	Pole	TP24x24x0.25	Pole	5.3%	Pass
116 - 112	Pole	TP24x24x0.25	Pole	10.9%	Pass
112 - 108	Pole	TP24x24x0.25	Pole	16.4%	Pass
108 - 104	Pole	TP24x24x0.25	Pole	24.0%	Pass
104 - 100	Pole	TP24x24x0.25	Pole	33.1%	Pass
100 - 96	Pole	TP24x24x0.25	Pole	42.5%	Pass
96 - 92	Pole	TP24x24x0.25	Pole	52.6%	Pass
92 - 90	Pole	TP24x24x0.25	Pole	57.7%	Pass
90 - 86	Pole	TP24x24x0.375	Pole	43.3%	Pass
86 - 83.5	Pole	TP24x24x0.375	Pole	49.0%	Pass
83.5 - 83.25	Pole + Reinf.	TP24x24x0.6	Reinf. 8 Tension Rupture	35.3%	Pass
83.25 - 79.25	Pole + Reinf.	TP24x24x0.6	Reinf. 8 Tension Rupture	41.6%	Pass
79.25 - 75.25	Pole + Reinf.	TP24x24x0.6	Reinf. 8 Tension Rupture	48.0%	Pass
75.25 - 75	Pole + Reinf.	TP24x24x0.6	Reinf. 8 Tension Rupture	48.4%	Pass
75 - 74.75	Pole + Reinf.	TP24x24x0.6	Reinf. 3 Compression	49.3%	Pass
74.75 - 70.75	Pole + Reinf.	TP24x24x0.6	Reinf. 3 Compression	55.9%	Pass
70.75 - 66.75	Pole + Reinf.	TP24x24x0.6	Reinf. 3 Compression	62.9%	Pass
66.75 - 62.75	Pole + Reinf.	TP24x24x0.6	Reinf. 3 Compression	69.9%	Pass
62.75 - 60	Pole + Reinf.	TP24x24x0.6	Reinf. 3 Compression	74.9%	Pass
60 - 59.75	Pole + Reinf.	TP30x30x0.5438	Reinf. 2 Compression	51.8%	Pass
59.75 - 55.75	Pole + Reinf.	TP30x30x0.5438	Reinf. 2 Compression	57.5%	Pass
55.75 - 51.75	Pole + Reinf.	TP30x30x0.5438	Reinf. 2 Compression	63.2%	Pass
51.75 - 48.5	Pole + Reinf.	TP30x30x0.5438	Reinf. 2 Compression	67.9%	Pass
48.5 - 48.25	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	50.3%	Pass
48.25 - 44.25	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	54.7%	Pass
44.25 - 40.25	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	59.2%	Pass
40.25 - 36.25	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	63.8%	Pass
36,25 - 32,25	Pole + Reinf.	TP30x30x0,7375	Reinf. 2 Compression	68.5%	Pass
32.25 - 30	Pole + Reinf.	TP30x30x0.7375	Reinf. 2 Compression	71.1%	Pass
~~ ~~ ==	Pole + Reinf.	TD00 00 0 5		00.40/	
29.75 - 25.75	Pole + Reinf.	TP36x36x0.55	Pole	63.4%	Pass Pass
25.75 - 23	Pole + Reinf.	TP36x36x0.55	Pole	71.4%	Pass
23 - 22.75	Pole + Reinf.	TP36x36x0.55	Pole	71.4%	Pass
22.75 - 20.75	Pole + Reinf.	TP36x36x0.55	Pole Point 1 Tansian Puntura	74.9%	Pass
20.75 - 20.5	Pole + Reinf.	TP36x36x0.6875	Reinf. 1 Tension Rupture	71.8%	Pass
20.5 - 17.75	Pole + Reinf.	TP36x36x0.6875	Reinf. 1 Tension Rupture	75.0%	Pass
17.75 - 17.5	Pole + Reinf	TP36x36x0.7	Reinf. 1 Tension Rupture	73.8%	Pass
17.5 - 13.5	Pole + Reinf	TP36x36x0.7	Reinf. 1 Tension Rupture	78.5%	Pass
13.5 - 9.5	Pole + Reinf.	TP36x36x0.7	Reinf. 1 Tension Rupture	83.3%	Pass
9.5 - 5.5	Pole + Reinf.	TP36x36x0.7	Reinf. 1 Tension Rupture	88.1%	Pass
5.5 - 3.25	Pole + Reinf.	TP36x36x0.7	Reinf. 1 Tension Rupture	90.9%	Pass
3.25 - 3	Pole + Reinf.	TP36x36x0.6875	Reinf. 1 Tension Rupture	93.0%	Pass
3 - 0	Pole + Reinf.	TP36x36x0.6875	Reinf. 1 Tension Rupture	96.8%	Pass
				Summary	
			Pole	81.7%	Pass
			Reinforcement	96.8%	Pass

Additional Calculations

Section	Mom	ent of Inerti	a (in ⁴)		Area (in²)					% Ca	pacity*				
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	R8
130 - 126	291	n/a	291	9.31	n/a	9.31	1.7%								
126 - 122	291	n/a	291	9.31	n/a	9.31	6.6%								
122 - 120	291	n/a	291	9.31	n/a	9.31	9.3%								
120 - 116	1315	n/a	1315	18.65	n/a	18.65	5.3%								
116 - 112	1315	n/a	1315	18.65	n/a	18.65	10.9%								
112 - 108	1315	n/a	1315	18.65	n/a	18.65	16.4%								
108 - 104	1315	n/a	1315	18.65	n/a	18.65	24.0%								
104 - 100	1315	n/a	1315	18.65	n/a	18.65	33.1%								
100 - 96	1315	n/a	1315	18.65	n/a	18.65	42.5%								
96 - 92	1315	n/a	1315	18.65	n/a	18.65	52.6%								
92 - 90	1315	n/a	1315	18.65	n/a	18.65	57.7%								
90 - 86	1942	n/a	1942	27.83	n/a	27.83	43.3%								
86 - 83.5	1942	n/a	1942	27.83	n/a	27.83	49.0%								
83.5 - 83.25	1942	1067	3009	27.83	13.50	41.33	31.9%								35.3%
83.25 - 79.25	1942	1067	3009	27.83	13.50	41.33	37.5%								41.6%
79.25 - 75.25	1942	1067	3009	27.83	13.50	41.33	43.2%								48.0%
75.25 - 75	1942	1067	3009	27.83	13.50	41.33	43.6%								48.4%
75 - 74.75	1942	1067	3009	27.83	13.50	41.33	44.0%			49.3%					
74.75 - 70.75	1942	1067	3009	27.83	13.50	41.33	49.9%			55.9%					
70.75 - 66.75	1942	1067	3009	27.83	13.50	41.33	56.1%			62.9%					
66.75 - 62.75	1942	1067	3009	27.83	13.50	41.33	62.4%			69.9%					
62.75 - 60	1942	1067	3009	27.83	13.50	41.33	66.8%			74.9%					
60 - 59.75	3829	1634	5463	34.90	13.50	48.40	48.4%		51.8%						
59.75 - 55.75	3829	1634	5463	34.90	13.50	48.40	53,6%		57,5%						
55.75 - 51.75	3829	1634	5463	34.90	13.50	48.40	58.9%		63.2%						
51.75 - 48.5	3829	1634	5463	34.90	13.50	48.40	63.3%		67.9%						
48.5 - 48.25	3831	3463	7294	34.90	31.50	66.40	48.3%		50.3%					44.7%	
48.25 - 44.25	3831	3463	7294	34.90	31.50	66,40	52.5%		54.7%					48.6%	
44.25 - 40.25	3831	3463	7294	34.90	31.50	66.40	56.8%		59.2%					52.6%	
40.25 - 36.25	3831	3463	7294	34.90	31.50	66.40	61.2%		63.8%					56.7%	
36.25 - 32.25	3831	3463	7294	34.90	31.50	66.40	65.7%		68.5%					60.9%	
32.25 - 30	3831	3463	7294	34.90	31.50	66.40	68.3%		71.1%					63.2%	
30 - 29.75	6659	3004	9663	41.97	18.00	59.97	63.4%		1 11 70			59.1%			
29.75 - 25.75	6659	3004	9663	41.97	18.00	59.97	68.1%					63.5%			
25.75 - 23	6659	3004	9663	41.97	18.00	59.97	71.4%					66.5%			
23 - 22.75	6660	2933	9593	41.97	18.00	59.97	72.4%				67.0%	001070			
22.75 - 20.75	6660	2933	9593	41.97	18.00	59.97	74.9%				69.2%				
20.75 - 20.5	6661	5291	11952	41.97	30.66	72.63	60.6%	71.8%			56.8%				
20.5 - 17.75	6661	5291	11952	41.97	30.66	72.63	63.3%	75.0%			59.3%				
17.75 - 17.5	6660	5449	12109	41.97	38.78	80.75	62.3%	73.8%			59.1%		43.7%		
17.5 - 13.5	6660	5449	12109	41.97	38.78	80.75	66.3%	78.5%			62.8%		46.5%		
13.5 - 9.5	6660	5449	12109	41.97	38.78	80.75	70.3%	83.3%			66.6%		49.3%		
9.5 - 5.5	6660	5449	12109	41.97	38.78	80.75	70.3%	88.1%			70.5%		52.1%		
5.5 - 3.25	6660	5449	12109	41.97	38.78	80.75	74.4%	90.9%			70.5%		53.7%		
3.25 - 3	6661	5291	11952	41.97	30.66	72.63	78.5%	93,0%			73.5%		33.1%		_
								93.0%							
Note: Section canacity	6661	5291	11952	41.97	30.66	72.63	81.7%	96.8%			76.5%				

Note: Section capacity checked using 5 degree increments.
Rating per TIA-222-H Section 15.5.

Monopole Base Plate Connection



Site Info		
В	J # 87632	24
Site Na	ne ARTFORD UN	ITED MET
Orde	r# 556615 R	ev# 0

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	See Custom Sheet
I _{ar} (in)	See Custom Sheet

Applied Loads	
Moment (kip-ft)	2002.33
Axial Force (kips)	40.48
Shear Force (kips)	26.17

^{*}TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data GROUP 1: (16) 1-1/2" ø bolts (A354-BC N; Fy=109 ksi, Fu=125 ksi) on 41.5" BC GROUP 2: (3) 1-3/4" ø bolts (Williams N; Fy=127.7 ksi, Fu=125 ksi) on 49.5" BC

Base Plate Data

47" OD x 2" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Stiffener Data

N/A

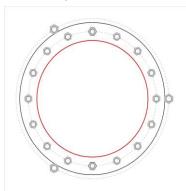
Pole Data

36" x 0.6875" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
GROUP 1:		
Pu_t = 94.44	φPn_t = 132.19	Stress Rating
Vu = 1.64	φVn = 82.83	68.0%
Mu = n/a	φMn = n/a	Pass
GROUP 2:		
Pu_t = 213.27	φPn_t = 243.75	Stress Rating
Vu = 0	φVn = 121.88	83.3%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	23.7	(Flexural)
Allowable Stress (ksi):	32.4	
Stress Rating:	69.7%	Pass

CCIplate


Elevation (ft)	0	(Base)

note: Bending interaction not considered when Grout Considered = "Yes"

Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending	Grout Considered	Apply at BARB Elevation	BARB CL Elevation (ft)
1	Yes	Yes	Yes	No	No	
2	No	No	No	No	No	

Custom	Bolt Con	nection								
Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	<u>Material</u>	Bolt Circle (in)	Eta Factor, η:	I _{ar} (in):	Thread Type	Area Override, in^2	Tension Only
1	1	0	1.5	A354-BC	41.5	0.5	0	N-Included		No
2	1	22.5	1.5	A354-BC	41.5	0.5	0	N-Included		No
3	1	45	1.5	A354-BC	41.5	0.5	0	N-Included		No
4	1	67.5	1.5	A354-BC	41.5	0.5	0	N-Included		No
5	1	90	1.5	A354-BC	41.5	0.5	0	N-Included		No
6	1	112.5	1.5	A354-BC	41.5	0.5	0	N-Included		No
7	1	135	1.5	A354-BC	41.5	0.5	0	N-Included		No
8	1	157.5	1.5	A354-BC	41.5	0.5	0	N-Included		No
9	1	180	1.5	A354-BC	41.5	0.5	0	N-Included		No
10	1	202.5	1.5	A354-BC	41.5	0.5	0	N-Included		No
11	1	225	1.5	A354-BC	41.5	0.5	0	N-Included		No
12	1	247.5	1.5	A354-BC	41.5	0.5	0	N-Included		No
13	1	270	1.5	A354-BC	41.5	0.5	0	N-Included		No
14	1	292.5	1.5	A354-BC	41.5	0.5	0	N-Included		No
15	1	315	1.5	A354-BC	41.5	0.5	0	N-Included		No
16	1	337.5	1.5	A354-BC	41.5	0.5	0	N-Included		No
17	2	0	1.75	Williams	49.5	0.5	0	N-Included	2.6	No
18	2	120	1.75	Williams	49.5	0.5	0	N-Included	2.6	No
19	2	240	1.75	Williams	49.5	0.5	0	N-Included	2.6	No

Plot Graphic

Monopole Flange Plate Connection

Site Name ARTFORD UNITED MET

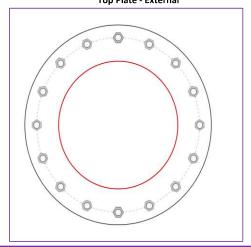
BU#

Order#

TIA-222 Revision

Elevation = 30 ft.

	CROW	N
-	CASTL	E


Applied Loads to	Flange Connections	Applied Loads to	Bridge Stiffeners
Moment (kip-ft)	543.65	Moment (kip-ft)	712.90
Axial Force (kips)	28.18	Axial Force (kips)	0.00
Shear Force (kips)	21.20	Shear Force (kips)	0.00

^{*}TIA-222-H Section 15.5 Applied

H Top Plate - External

876324

556615 Rev# 0

Bottom Plate - External

Connection Properties

Bolt Data

(16) 1-1/2" ø bolts (A325 N; Fy=81 ksi, Fu=120 ksi) on 41" BC

Top Plate Data

47" OD x 2" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

30" x 0.7375" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bridge Stiffener Group 1 Data

(3) Welded, 6.5"x1", A572-65, Lu=6", Upper Plate Width=10.5", Lower Plate Width=10.5", Neglect Flange in MOI: No

Bottom Plate Data

47" OD x 2" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

36" x 0.55" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Analysis Results Bolt Capacity May Load (kins) 38.00

 Max Load (kips)
 38.00

 Allowable (kips)
 126.88

 Stress Rating:
 28.5%
 Pass

Top Plate Capacity

Max Stress (ksi):	19.99	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	58.8%	Pass	
Tension Side Stress Rating:	32.2%	Pass	

Bridge Stiffener Group 1 Analysis Capacity

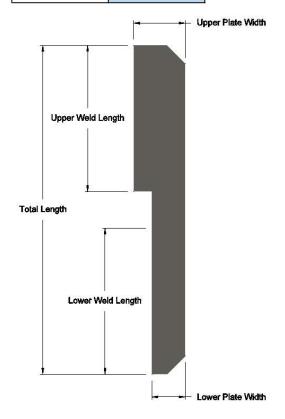
Max Compression (kip):	225.87	
Max Tension (kip):	225.87	
Comp. Capacity (kip):	364.95	
Tens. Capacity (kip):	380.25	(Yield)
Comp. Stress Rating:	58.9%	Pass
Tens. Stress Rating:	56.6%	Pass

Bottom Plate Capacity

Max Stress (ksi):	8.98	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	26.4%	Pass	
Tension Side Stress Rating:	9.6%	Pass	

Welded Bridge Stiffener Design

Elevation = 30 ft.



BU#	876324
Site Name	ARTFORD UNITED MET
Order#	556615 Rev# 0

TIA-222 Revision	Н

Applied Loads to Design Groups			
Moment (kip-ft)	712.90		
Axial Force (kips)	0.00		
Shear Force (kips)	0.00		

*TIA-222-H Section 15.5 Applied

Design Properties

Bridge Stiffener Group 1 Data

(3) Welded, 6.5"x1", A572-65, Lu=6", Upper Plate Width=10.5", Lower Plate Width=10.5", Neglect Flange in MOI: No

Total Length:	120	in	Upper Weld Size:	Good
Weld Type:	Fillet (bot	h sides)	Upper Weld Rating:	33.17%
Weld Size:	0.25	in	Lower Weld Size:	Good
Exx:	70	ksi	Lower Weld Rating:	36.03%
Upper Weld Length:	60	in	Top Plate Lateral-Torsional Buckling Rating:	5.54%
Upper Plate Width:	10.5	in	Top Plate Tension Yield Rating:	9.19%
Lower Weld Length:	54	in	Top Plate Tension Rupture Rating:	9.96%
Lower Plate Width:	10.5	in	Top Plate Interaction Rating:	6.59%
			Bottom Plate Lateral-Torsional Buckling Rating:	4.68%
Stiffener Front EPA (No Ice):	13.54	ft²	Bottom Plate Tension Yield Rating:	10.21%
Stiffener Side EPA (No Ice):	1.67	ft²	Bottom Plate Tension Rupture Rating:	11.07%
Stiffener Front EPA (1/2" Ice):	14.20	ft²	Bottom Plate Interaction Rating:	5.97%
Stiffener Side EPA (1/2" Ice):	3.36	ft²	Top Pole Punching Shear Rating:	6.59%
Stiffener Weight (No Ice):	0.357	kip	Bottom Pole Punching Shear Rating:	7.72%
Stiffener Weight (1/2" Ice):	0.403	kip		

Monopole Flange Plate Connection

Site Name ARTFORD UNITED MET

876324

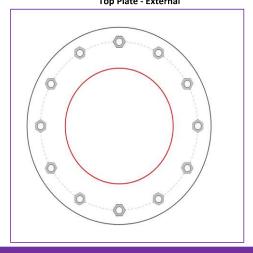
556615 Rev# 0

Н

BU#

Order#

TIA-222 Revision


Elevation = 60 ft.

	CROW	N
-	CASTL	E

Applied Loads to Flange Connections		Applied Loads to	Bridge Stiffeners	
Moment (kip-ft)	263.44	Moment (kip-ft)	403.42	
Axial Force (kips)	17.46	Axial Force (kips)	0.00	
Shear Force (kips)	16.31	Shear Force (kips)	0.00	

^{*}TIA-222-H Section 15.5 Applied

Top Plate - External

Bottom Plate - External

Connection Properties

Bolt Data

(12) 1-1/2" ø bolts (A325 N; Fy=81 ksi, Fu=120 ksi) on 35" BC

Top Plate Data

41" OD x 2" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

24" x 0.6" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bridge Stiffener Group 1 Data

(3) Welded, 5"x1", A572-65, Lu=6", Upper Plate Width=10.5", Lower Plate Width=10.5", Neglect Flange in MOI: No

Bottom Plate Data

41" OD x 2" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

126.88

21.5%

Pass

Bottom Pole Data

30" x 0.54375" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Analysis Results Bolt Capacity Max Load (kips) 28.63

Top Plate Capacity Max Stress (ksi): 13.62 (Flexural)

Allowable (kips)

Stress Rating:

Allowable Stress (ksi): 32.40 Stress Rating: 40.0% Pass Tension Side Stress Rating: 22.5% Pass

Bridge Stiffener Group 1 Analysis Capacity

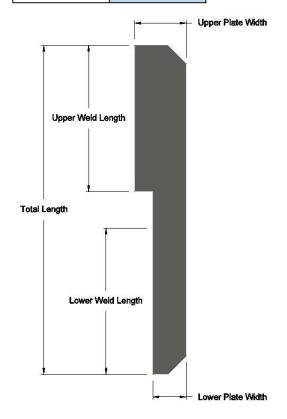
Max Compression (kip):	140.32	
Max Tension (kip):	140.32	
Comp. Capacity (kip):	280.73	
Tens. Capacity (kip):	292.50	(Yield)
Comp. Stress Rating:	47.6%	Pass
Tens. Stress Rating:	45.7%	Pass

Bottom Plate Capacity

6.44	(Flexural)	
32.40		
18.9%	Pass	
6.5%	Pass	
	32.40 18.9%	32.40 18.9% Pass

Welded Bridge Stiffener Design

Elevation = 60 ft.


CC	CROWN
	CASTLE

BU#	876324
Site Name	ARTFORD UNITED MET
Order #	556615 Rev# 0

TIA-222 Revision	Н

Applied Loads to Design Groups			
Moment (kip-ft)	403.42		
Axial Force (kips)	0.00		
Shear Force (kips)	0.00		

*TIA-222-H Section 15.5 Applied

Design Properties

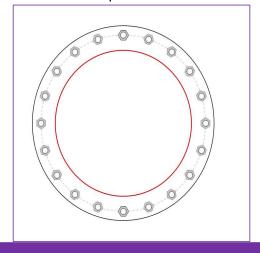
Bridge Stiffener Group 1 Data

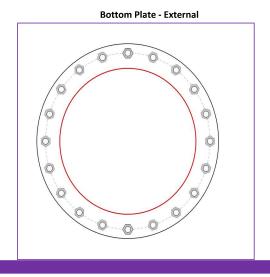
(3) Welded, 5"x1", A572-65, Lu=6", Upper Plate Width=10.5", Lower Plate Width=10.5", Neglect Flange in MOI: No

Good	Upper Weld Size:	in	96	Total Length:
27.35%	Upper Weld Rating:	h sides)	Fillet (bot	Weld Type:
Good	Lower Weld Size:	in	0.25	Weld Size:
29.96%	Lower Weld Rating:	ksi	70	Exx:
5.41%	Top Plate Lateral-Torsional Buckling Rating:	in	48	Upper Weld Length:
7.14%	Top Plate Tension Yield Rating:	in	10.5	Upper Plate Width:
7.73%	Top Plate Tension Rupture Rating:	in	42	Lower Weld Length:
6.03%	Top Plate Interaction Rating:	in	10.5	Lower Plate Width:
4.98%	Bottom Plate Lateral-Torsional Buckling Rating:			
8.16%	Bottom Plate Tension Yield Rating:	ft²	10.30	Stiffener Front EPA (No Ice):
8.84%	Bottom Plate Tension Rupture Rating:	ft²	1.33	Stiffener Side EPA (No Ice):
5.80%	Bottom Plate Interaction Rating:	ft²	10.85	Stiffener Front EPA (1/2" Ice):
8.44%	Top Pole Punching Shear Rating:	ft²	2.69	Stiffener Side EPA (1/2" Ice):
8.85%	Bottom Pole Punching Shear Rating:	kip	0.286	Stiffener Weight (No Ice):
		kip	0.323	Stiffener Weight (1/2" Ice):

Monopole Flange Plate Connection

Elevation = 90 ft.


876324
ARTFORD UNITED ME
556615 Rev# 0


TIA-222 Revision	Н

Applied Loads								
Moment (kip-ft)	234.09							
Axial Force (kips)	8.77							
Shear Force (kips)	10.63							

^{*}TIA-222-H Section 15.5 Applied

Top Plate - External

Connection Properties

Bolt Data

(20) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 29" BC

Top Plate Data

32" OD x 1.5" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

24" x 0.25" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bottom Plate Data

32" OD x 1.5" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

24" x 0.375" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

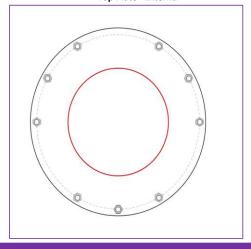
	Max Load (kips)	18.93	
	Allowable (kips)	54.53	
	Stress Rating:	33.1%	Pass

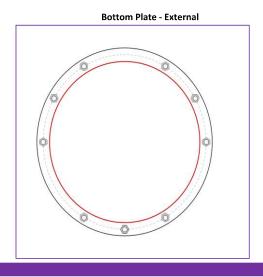
Top Plate Capacity

Max Stress (ksi):	13.47	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	39.6%	Pass
Tension Side Stress Rating:	18.9%	Pass

Bottom Plate Capacity

Max Stress (ksi):	13.47	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	39.6%	Pass
Tension Side Stress Rating:	18.9%	Pass


Monopole Flange Plate Connection


Elevation = 120 ft.	U CA
ed Loads	
12.62	

BU #	876324			
Site Name	ARTFORD UNITED MET			
Order#	556615 Rev# 0			
TIA-222 Revision	222 Revision H			

^{*}TIA-222-H Section 15.5 Applied

Top Plate - External

Connection Properties

Bolt Data

(9) 3/4" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 26" BC

Top Plate Data

28" OD x 1.5" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

16" x 0.1875" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bottom Plate Data

28" OD x 0.75" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

24" x 0.25" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Analysis Results								
Bolt Capacity								
Max Load (kips)	2.48							
Allowable (kips)	30.06							
Stress Rating:	7.9%	Pass						

Top Plate Capacity

Max Stress (ksi):	2.50	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	7.3%	Pass	
Tension Side Stress Rating:	4.9%	Pass	

Bottom Plate Capacity

Max Stress (ksi):	2.07	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	6.1%	Pass	
Tension Side Stress Rating:	2.3%	Pass	

Drilled Pier Foundation

BU #: 876324
Site Name: WEST HARTFORD UNITEI
Order Number: 556615 rev# 0
TIA-222 Revison: H
Tower Type: Monopole

	Uplift				
Applied Loads	Comp.	2002	40	26	Material Properties
Applie		Moment (kip-ft)	Axial Force (kips)	Shear Force (kips)	Material

			Rebar & Pier Options		Embedded Pole Inputs	Belled Pier Inputs							
KSI	60 ksi	60 ksi		ft	ft		grade	ft			in		in
3.5 Ksl	09	09	Pier Design Data	24 ft	0.5 ft	Pier Section 1	ade to 24' below g	1) S'S	20	6	3	2	
Concrete Strength, f'c:	Rebar Strength, Fy:	Tie Yield Strength, Fyt:	Pier De	Depth	Ext. Above Grade	Pier 5	From 0.5' above grade to 24' below grade	Pier Diameter	Rebar Quantity	Rebar Size	Clear Cover to Ties	Tie Size	Tie Spacing

Soil Lateral Check	Compression	l Inliff
D (ft from TOC)	9.41	
Soil Safety Factor	4.48	
Max Moment (kip-ft)	2238.09	ı
Rating*	28.3%	-
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	417.45	1
End Bearing (kips)	142.55	-
Weight of Concrete (kips)	74.53	=
Total Capacity (kips)	260.00	1
(kips)	114.53	1
Rating*	19.5%	-
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	95.6	1
Critical Moment (kip-ft)	2237.66	-
Critical Moment Capacity	2571.32	-
Rating*	82.9%	-
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	16.95	=
Critical Shear (kip)	296.59	=
Critical Shear Capacity	376.18	-
Rating*	75.1%	•

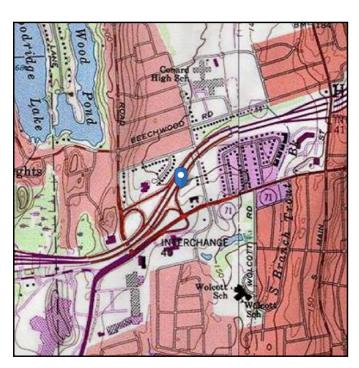
82.9%	28.3%	n 15.5	ofile	
Structural Foundation Rating*	Soil Interaction Rating*	*Rating per TIA-222-H Section 15.5	Soil Profile	7
Structural Fou	Soil Int	*Rating per T		# Of Layore

								,						
Groundw	Groundwater Depth					# of Layers	5							
					•									
Layer	Top (ft)	Bottom (ft)	Thickness (ft)	Y _{soil} (pcf)	Vconcrete (pcf)	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)	Calculated Calculated Ultimate Skin Ultimate Skin Ultimate Skin Friction Comp riction Comp Friction Upliff Override (ksf) (ksf) (ksf)	Calculated Calculated Ultimate Skin Ultimate Skin Ultimate Skin Ultimate Skin Friction Comp Friction Uplift Friction Comp Friction Uplift Override (ksf) (ksf) (ksf)	Ultimate Skin Friction Uplift Override (ksf)	Jlt. Gross Bearing Capacity (ksf)	SPT Blow Count	Soil Type
	1	9	9	70	150	0	0	000'0	000'0	00.00	00.00			Cohesionless
	2 6	7	1	108	150	0	0	000'0	000'0					Cohesionless
	3 7	7 8.25	1.25	63	97.8	0	0	000'0	000'0					Cohesionless
4	4 8.25	5 16	7.75	63	97.8	4	0	2.045	2.045					Cohesive
	7	24	α	63	87.6	T	Ċ	2 0.45	2 0.45			α		Cohecive

Check Limitation	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	
N/A	
Additional Longitudinal Rebar	_
Input Effective Depths (else Actual):	>
Shear Design Options	
Check Shear along Depth of Pier:	>
Utilize Shear-Friction Methodology:	
Override Critical Depth:	
Go to Soil Calculations	ulations

Analysis Results

Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16 Elevation: 158.39 ft (NAVD 88)

Risk Category: || Latitude: 41.730658

Soil Class: D - Stiff Soil Longitude: -72.753658

Wind

Results:

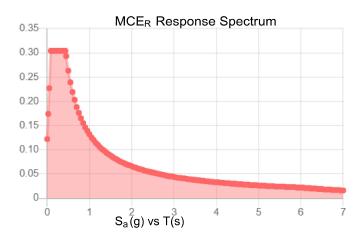
Wind Speed: 117 Vmph
10-year MRI 75 Vmph
25-year MRI 84 Vmph
50-year MRI 90 Vmph
100-year MRI 97 Vmph

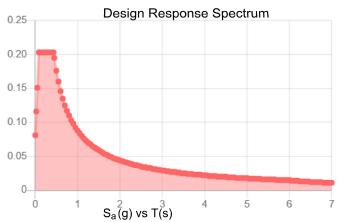
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1—CC.2-4, and Section 26.5.2

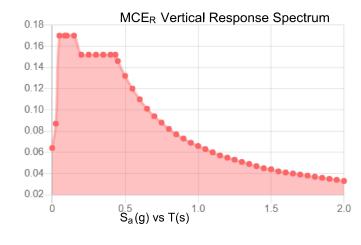
Date Accessed: Mon Sep 13 2021

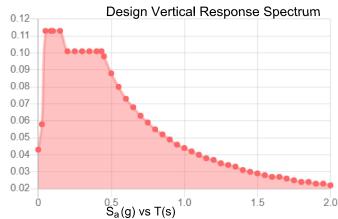
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class:	D - Stiff Soil


Results:


S _s :	0.19	S _{D1} :	0.088
S ₁ :	0.055	T _L :	6
F _a :	1.6	PGA :	0.103
F _v :	2.4	PGA _M :	0.164
S _{MS} :	0.304	F _{PGA} :	1.594
S _{M1} :	0.132	l _e :	1
S _{DS} :	0.203	C_v :	0.7

Seismic Design Category B

Data Accessed:

Mon Sep 13 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.50 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Mon Sep 13 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Mon Sep 13 2021

Exhibit E

Mount Analysis

Date: August 2, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: Dish Network Dish 5G

Carrier Site Number:BOBDL00078ACarrier Site Name:CT-CCI-T-876324

Crown Castle Designation: Crown Castle BU Number: 876324

Crown Castle Site Name: West Hartford United Methodist

Crown Castle JDE Job Number: 650068 Crown Castle Order Number: 556615 Rev. 0

Engineering Firm Designation: Trylon Report Designation: 189042

Site Data: 1358 New Britain Avenue, West Hartford, Hartford County, CT, 06110

Latitude 41°43'50.37" Longitude -72°45'13.17"

Structure Information: Tower Height & Type: 130.0 ft Monopole

Mount Elevation: 86.0 ft
Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient*
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Aura Baltoiu

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC / 2018 CTSBC

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 125 mph

Exposure Category: Topographic Factor at Base: 1.00 Topographic Factor at Mount: 1.00 Ice Thickness: 2.0 in Wind Speed with Ice: 50 mph Seismic S_s: 0.181 Seismic S₁: 0.064 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	JMA WIRELESS	MX08FRO665-21	O O ft Dietferm
86.0	86.0	3	FUJITSU	TA08025-B604	8.0 ft Platform
80.0	80.0	3	FUJITSU	TA08025-B605	[Commscope, MC- PK8-C]
		1	RAYCAP	RDIDC-9181-PF-48	PRO-CJ

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source	
Crown Application	Dish Network Application	556615, Rev.0	CCI Sites	
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon	

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

		mpasity (: :atio:	····, · ··· • • • · · · · · · · · · · ·		
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP3	86.0	35.8	Pass
1,2	Horizontal(s)	H1		10.7	Pass
	Standoff(s)	SA2		60.6	Pass
	Bracing(s)	PB2		42.4	Pass
	Handrail(s)	M19		18.0	Pass
	Corner Angle(s)	CP3		9.3	Pass
	Plate(s)	CP5		24.6	Pass
	Mount Connection(s)	-		24.4	Pass

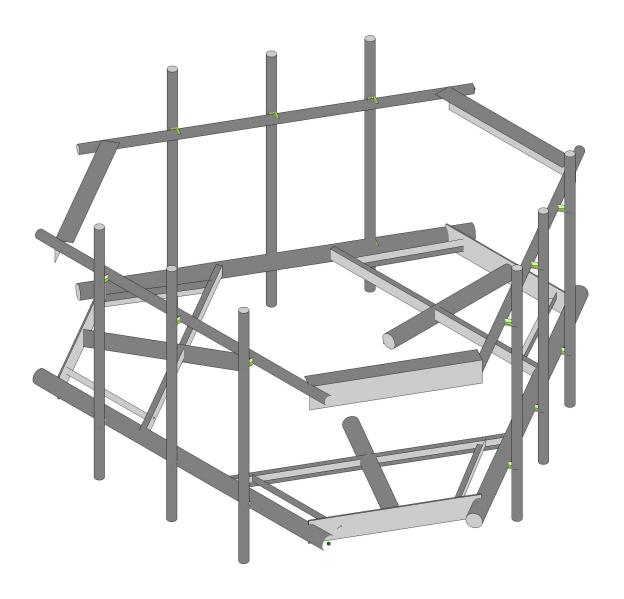
Structure Rating (max from all components) =	60.6%
--	-------

Notes:

2) Rating per TIA-222-H, Section 15.5

¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

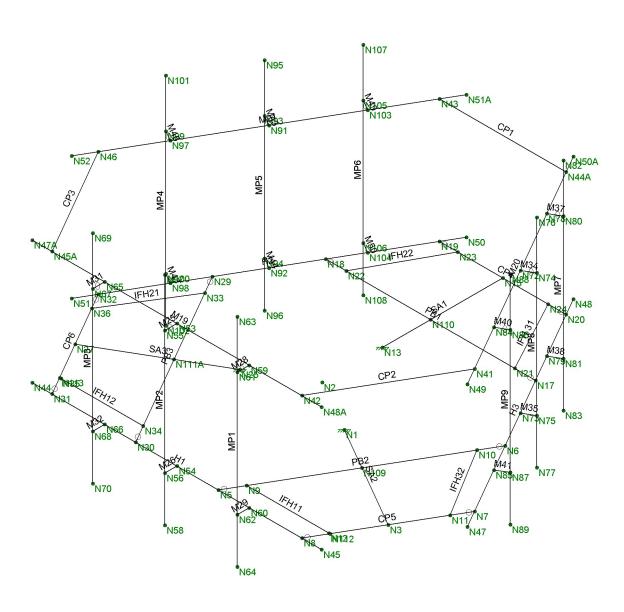
4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A WIRE FRAME AND RENDERED MODELS



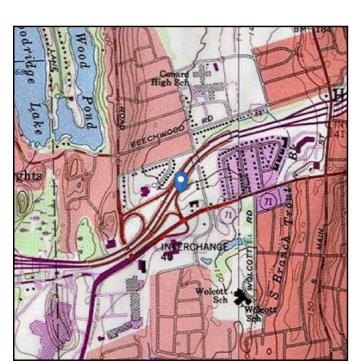
Envelope Only Solution

Trylon		SK - 1
AB	876324	July 28, 2021 at 1:28 PM
189042		876324.r3d

Envelope Only Solution

Trylon		SK - 2
AB	876324	July 28, 2021 at 1:28 PM
189042		876324.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS


Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 158.39 ft (NAVD 88)

Risk Category: || Latitude: 41.730658 Soil Class: D - Stiff Soil Longitude: -72.753658

Ice

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Jul 28 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA		
Job Code:	189042	
Carrier Site ID:	BOBDL00078A	
Carrier Site Name:	CT-CCI-T-876324	

CODES AND STANDARDS		
Building Code:	2015 IBC	
Local Building Code:	2018 CSBC	
Design Standard:	TIA-222-H	

STRUCTURE DETAILS			
Mount Type:	Platform		
Mount Elevation:	86.0	ft.	
Number of Sectors:	3		
Structure Type:	Monopole		
Structure Height:	130.0	ft.	

ANALYSIS CRITERIA			
Structure Risk Category:	=		
Exposure Category:	С		
Site Class:	D - Stiff Soil		
Ground Elevation:	158.39	ft.	

TOPOGRAPHIC DATA		
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAMETERS			
Design Wind Speed:	125	mph	
Wind Escalation Factor (K _s):	1.00		
Velocity Coefficient (Kz):	1.23		
Directionality Factor (K _d):	0.95		
Gust Effect Factor (Gh):	1.00		
Shielding Factor (K _a):	0.90		
Velocity Pressure (q _z):	46.32	psf	

ICE PARAMETERS			
Design Ice Wind Speed:	50	mph	
Design Ice Thickness (t _i):	2.00	in	
Importance Factor (I _i):	1.00		
Ice Velocity Pressure (qzi):	46.32	psf	
Mount Ice Thickness (t _{iz}):	2.20	in	

WIND STRUCTURE CALCULATIONS			
Flat Member Pressure:	83.38	psf	
Round Member Pressure:	50.03	psf	
Ice Wind Pressure:	7.19	psf	

SEISMIC PARAMETERS							
Importance Factor (I _e):	1.00						
Short Period Accel .(S _s):	0.181	g					
1 Second Accel (S ₁):	0.064	g					
Short Period Des. (S _{DS}):	0.19	g					
1 Second Des. (S _{D1}):	0.10	g					
Short Period Coeff. (F _a):	1.60						
1 Second Coeff. (F _v):	2.40						
Response Coefficient (Cs):	0.10						
Amplification Factor (A _S):	1.20						

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28 29	0.9DL + 1WL 225 AZI 0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 240 AZI 0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 270 AZI 0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 300 AZI 0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 43 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description
"	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	86	No Ice	8.01	3.21	82.50
MP1/MP4/MP7, 0/120/240			w/ Ice	10.18	5.12	375.99
TA08025-B604	3	86	No Ice	1.96	0.98	63.90
MP1/MP4/MP7, 0/120/240			w/ Ice	2.52	1.42	95.09
TA08025-B605	3	86	No Ice	1.96	1.13	75.00
MP1/MP4/MP7, 0/120/240			w/ Ice	2.52	1.58	101.05
RDIDC-9181-PF-48	1	86	No Ice	2.01	1.17	21.85
MP1, 0	-		w/ Ice	2.57	1.64	99.66
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			NI. I.			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	86	1.00	1.23	0.95	2.20	46.32	7.41
TA08025-B604	3	86	1.00	1.23	0.95	2.20	46.32	7.41
TA08025-B605	3	86	1.00	1.23	0.95	2.20	46.32	7.41
RDIDC-9181-PF-48	1	86	1.00	1.23	0.95	2.20	46.32	7.41

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	333.95	183.86	283.92	133.83	283.92	183.86
MP1/MP4/MP7, 0/120/240		w/ Ice	67.93	42.59	59.48	34.15	59.48	42.59
TA08025-B604	3	No Ice	81.86	51.14	71.62	40.90	71.62	51.14
MP1/MP4/MP7, 0/120/240		w/ Ice	16.80	11.28	14.96	9.44	14.96	11.28
TA08025-B605	3	No Ice	81.86	55.78	73.17	47.09	73.17	55.78
MP1/MP4/MP7, 0/120/240	-	w/ Ice	16.80	12.11	15.23	10.55	15.23	12.11
RDIDC-9181-PF-48	1	No Ice	83.88	57.50	75.08	48.70	75.08	57.50
MP1, 0	-	w/ Ice	17.17	12.49	15.61	10.92	15.61	12.49
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		W/ ICE			l			

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F p [lbs]
MX08FRO665-21	3	86	82.5	9.56
TA08025-B604	3	86	63.9	7.40
TA08025-B605	3	86	75	8.69
RDIDC-9181-PF-48	1	86	21.85	2.53

APPENDIX C SOFTWARE ANALYSIS OUTPUT

Company : Trylon Designer : AB Job Number : 189042 Model Name : 876324

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include S hear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P -Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AIS I S 100-12: LRF D
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	AC I 318-14
Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM 1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

In the second se	Ι.
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

July 28, 2021 1:28 PM Checked By: CA

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	Other
O m Z	1
O m X	1
C d Z	1
CdX	1
Rho Z	1
R ho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft^3]	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft^3]	Yield[psi]	Fu[psi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33000	45000
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	6.6x4.46x0.25	Beam	Single Angle	A36 Gr.36	Typical	2.702	4.759	12.473	.055
7	Horizontals	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

Company : Trylon Designer : AB Job Number : 189042 Model Name : 876324

July 28, 2021 1:28 PM Checked By: CA

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
8	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

Cold Formed Steel Section Sets

	Label	Shape	Type	Des ign List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	CF1A	8CU1.25X057	Beam	None	A653 S S G r33	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distribu	.A rea (M	Surface
1	Self Weight	DL			-1		13		3	
2	Structure Wind X	WLX						33		
3	Structure Wind Y	WLY						33		
4	Wind Load 0 AZI	WLX					13			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLY					13			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	lce Weight	OL1					13	33	3	
13	Structure Ice Wind X	OL2						33		
14	Structure Ice Wind Y	OL3						33		
15	Ice Wind Load 0 AZI	OL2					13			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					13			
20	Ice Wind Load 120 AZI	None					26			
21	Ice Wind Load 135 AZI	None					26			
22	Ice Wind Load 150 AZI	None					26			
23	Seismic Load X	ELX	116				13			
24	Seismic Load Y	ELY		116			13			
25	Live Load 1 (Lv)	LL					1			
26	Live Load 2 (Lv)	LL					1			
27	Live Load 3 (Lv)	LL					1			
28	Live Load 4 (Lv)	LL					1			
29	Live Load 5 (Lv)	LL					1			
30	Live Load 6 (Lv)	LL					1			
31	Maintenance Load 1 (Lm)	None					1			
32	Maintenance Load 2 (Lm)	None					1			
33	Maintenance Load 3 (Lm)	None					1			

Company : Trylon
Designer : AB
Job Number : 189042
Model Name : 876324

July 28, 2021 1:28 PM Checked By: CA

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity Z Gravity	Joint	P oint	Distribu	.Area (M Surface.
34	Maintenance Load 4 (Lm)	None				1		
35	Maintenance Load 5 (Lm)	None				1		
36	Maintenance Load 6 (Lm)	None				1		
37	Maintenance Load 7 (Lm)	None				1		
38	Maintenance Load 8 (Lm)	None				1		
39	Maintenance Load 9 (Lm)	None				1		
40	BLC 1 Transient Area Loads	None					9	
41	BLC 12 Transient Area Loads	None					9	

Load Combinations

	Des cription	Solve	PD	SRB	Factor	BLC	Factor	В.	Fa	.B	.Fa	.BLC	Fa	В	Fa	В	Fa	.B	.Fa.	B.	Fa	.B	.Fa
1	1.4DL	Yes	Υ	DL	1.4																		ш
2	1.2DL + 1WL 0 AZI	Yes	Υ	DL	1.2	2	1	3		4	1												
3	1.2DL + 1WL 30 AZI	Yes	Υ	DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1WL 45 AZI	Yes	Υ	DL	1.2	2	.707	3	.707	6	1												
5	1.2DL + 1WL 60 AZI	Yes	Υ	DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1WL 90 AZI	Yes	Υ	DL	1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZI	Yes	Υ	DL	1.2	2	5	3	.866	9	1												
8	1.2DL + 1WL 135 AZI	Yes	Υ	DL	1.2	2	707	3	.707	10	1												
9	1.2DL + 1WL 150 AZI	Yes	Υ	DL	1.2	2	866	3	.5	11	1												
10	1.2DL + 1WL 180 AZI	Yes	Υ	DL	1.2	2	-1	3		4	-1												
11	1.2DL + 1WL 210 AZI	Yes	Υ	DL	1.2	2	866	3	5	5	-1												
12	1.2DL + 1WL 225 AZI	Yes	Υ	DL	1.2	2	707	3	7.	-6	-1												
13	1.2DL + 1WL 240 AZI	Yes	Υ	DL	1.2	2	5	3	8.	7	-1												
14	1.2DL + 1WL 270 AZI	Yes	Υ	DL	1.2	2		3	-1	8	-1												
15	1.2DL + 1WL 300 AZI	Yes	Υ	DL	1.2	2	.5	3	8.	9	-1												
16	1.2DL + 1WL 315 AZI	Yes	Υ	DL	1.2	2	.707	3	7.	10	-1												
17	1.2DL + 1WL 330 AZI	Yes	Υ	DL	1.2	2	.866	3	5	11	-1												
18	0.9DL + 1WL 0 AZI	Yes	Υ	DL	.9	2	1	3		4	1												
19	0.9DL + 1WL 30 AZI	Yes	Υ	DL	.9	2	.866	3	.5	5	1												
20	0.9DL + 1WL 45 AZI	Yes	Υ	DL	.9	2	.707	3	.707	6	1												
21	0.9DL + 1WL 60 AZI	Yes	Υ	DL	.9	2	.5	3	.866	7	1												
22	0.9DL + 1WL 90 AZI	Yes	Υ	DL	.9	2		3	1	8	1												
23	0.9DL + 1WL 120 AZI	Yes	Υ	DL	.9	2	5	3	.866	9	1												
24	0.9DL + 1WL 135 AZI	Yes	Υ	DL	.9	2	707	3	.707	10	1												
25	0.9DL + 1WL 150 AZI	Yes	Υ	DL	.9	2	866	3	.5	11	1												
26	0.9DL + 1WL 180 AZI	Yes	Υ	DL	.9	2	-1	3		4	-1												
27	0.9DL + 1WL 210 AZI	Yes	Υ	DL	.9	2	866	3	5	5	-1												
28	0.9DL + 1WL 225 AZI	Yes	Υ	DL	.9	2	707	3	7.	-6	-1												
29	0.9DL + 1WL 240 AZI	Yes	Υ	DL	.9	2	5	3	8.	7	-1												
30	0.9DL + 1WL 270 AZI	Yes	Υ	DL	.9	2		3	-1	8	-1												
31	0.9DL + 1WL 300 AZI	Yes	Υ	DL	.9	2	.5	3	8.	9	-1												
32	0.9DL + 1WL 315 AZI	Yes	Υ	DL	.9	2	.707	3	7.	10	-1												
33	0.9DL + 1WL 330 AZI	Yes	Υ	DL	.9	2	.866	3	5	11	-1												
34	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	3 1	14		15	1										
35	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	3.866	14	.5	16	1										
36	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	3.707	14	.707	17	1										
37	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	.5	14	.866	18	1										
38	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	3	14	1	19	1										
39	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	5	14	.866	20	1										

July 28, 2021 1:28 PM Checked By: CA

Load Combinations (Continued)

	es cription	Solve	PΠ	SR B	Factor	BLC	Factor	R	Fa	B	Fa	BLC	Fa	R	Fa	R	Fa	R	Fa	R	Fa	R	Fa
	+ 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1					21	1	د.	ı a	ط	1 a	<u>.</u>	.ı a	ط	1 a	J	1 a
	+ 1DLi + 1W L	Yes	Ϋ́	DL	1.2	OL1	1		8			22	1										
	+ 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1		-1			15	-1										
. —	+ 1DLi + 1W L	Yes	Ϋ́	DL	1.2	OL1	1		8			16	-1										
	+ 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1		7				-1										
	+ 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	_			_	· 17 · 18	-1										
	+ 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	13		14		19	-1										
	+ 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	13			8		-1										
	+ 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	_	_			. 21	-1										
	+ 1DLi + 1W L	Yes	Y	DL	1,2	OL1	1		.866														
	2Sds) +1.0E	Yes	Y	DL	1.239	ELX	1	E	.000	14	5												
	2Sds) +1.0E	Yes	Y	DL	1.239	ELX	.866	E	5														
, ,	2Sds) +1.0E	Yes	Y	DL	1.239	ELX			.707														
	2Sds) +1.0E	Yes	Y	DL	1.239	ELX	.707	_	.866														
	2Sds) +1.0E		Y	DL		ELX	.5	E															
,	2Sds) +1.0E	Yes Yes	Y	DL	1.239 1.239		5	_	866														
	2Sds) + 1.0E		Y	DL		ELX		_	.707	_													
	2Sds) + 1.0E	Yes Yes	Y	DL	1.239 1.239			E															
	2Sds) +1.0E		Y	DL		ELX	000	E	c.														
'	2Sds) + 1.0E	Yes	Y	DL		ELX	•		-														
,	2Sds) +1.0E	Yes	Y	DL			866		ə 7														
,	,	Yes				ELX		E															
	2Sds) +1.0E	Yes	Y	DL		ELX	5																
	2Sds) +1.0E	Yes	Y	DL		ELX		E															
,	2Sds) +1.0E	Yes	Y	DL		ELX	.5	_	8														
	2Sds) +1.0E	Yes	Y	DL		ELX			7														
,	2Sds) +1.0E	Yes	Y	DL	1.239	ELX			5														
(2 2 2 2	2Sds) + 1.0E	Yes	Y	DL	.861	ELX	1	Ε	_														
. .	2Sds) + 1.0E	<u>Yes</u>	Y	DL	.861	ELX		E															
,	2Sds) + 1.0E	<u>Yes</u>	Y	DL	.861	ELX		_	.707	_													
,	2Sds) + 1.0E	Yes	Y	DL	.861	ELX	.5		.866														
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX		Ε	1														
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX	5	_	.866	_													
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX			.707														
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX		E	.5														
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX	-1	E															
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX			5														
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX																	
,	2Sds) + 1.0E	Yes	Y	DL		ELX	5		8														
. • .	2Sds) + 1.0E	Yes	Y	DL	.861	ELX			-1														
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX	.5	_	8														
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX		_	7														
	2Sds) + 1.0E	Yes	Y	DL	.861	ELX		E	5														
	+ 1.5 Lv1	Yes	Y	DL	1.2	25	1.5																
	+ 1.5 Lv2	Yes	Υ	DL	1.2	26	1.5																
	+ 1.5 Lv3	Yes	Y	DL	1.2	27	1.5																
	+ 1.5 Lv4	Yes	Y	DL	1.2	28	1.5																
	+ 1.5 Lv5	Yes	Y	DL	1.2	29	1.5																
	+ 1.5 Lv6	Yes	Y	DL	1.2	30	1.5		051		051												
	1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5		.058				00.5										
	1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5		.058				.029										
	1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5		.058				.041										
91 1.2D +	1.5Lm + 1.0	Yes	Υ	DL	1.2	31	1.5	7	.058	2	.029	3	.05										<u></u>

July 28, 2021 1:28 PM Checked By: CA

Load Combinations (Continued)

Description School PLO Sealth PLO Facility Facility		o o o o o o o o o o o o o o o o o o o	COILL	aoa,																_	
93 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 9 1.58 2.0 3 .05 94 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 10 1.58 2.0 3 .04 96 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 11 1.58 2.0 3 .02 97 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 5 508 2.0 3 .0 98 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 5 508 2.0 3 .0 99 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 5 6 508 2.0 3 .0 99 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 5 6 508 2.0 3 .0 100 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 7 508 2 2.0 3 .0 101 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 7 508 2 2.0 3 .0 102 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 7 508 2 2.0 3 .0 101 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 10 508 2 2.0 3 .0 102 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 10 508 2 2.0 3 .0 103 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 10 508 2 2.0 3 .0 104 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 508 2 2.0 3 .0 105 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 508 2 2.0 3 .0 106 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 508 2 2.0 3 .0 107 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 508 2 2.0 3 .0 109 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 508 2 2.0 3 .0 101 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 508 2 2.0 3 .0 109 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 508 2 2.0 3 .0 101 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 508 2 2.0 3 .0 109 1.20 + 1.5Lm + 1.0 Ye		Des cription	Solve	PD SF	₹B	Factor	BLC	Factor			.BLC	FaB.	Fa	В	Fa	.BF	al	B	Fa!	В <u>'</u>	<u> Fа</u> .
94 120 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 10.058 2 .0.5 3 .0.29 96 120 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 10.058 2 .0.5 3 .0.29 97 120 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 4 .058 2 .0.5 3 .0 98 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 6 .058 2 .0.5 3 .0 99 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 6 .058 2 .0.5 3 .0 99 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 6 .058 2 .0.5 3 .0 99 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 6 .058 2 .0.5 3 .0 99 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 6 .058 2 .0 3 .0 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 6 .058 2 .0 3 .0 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 6 .058 2 .0 3 .0 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 6 .058 2 .0 3 .0 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 10.058 2 .054 3 .0 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 31 1.5 10.058 2 .058 3 .0 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 4 .058 2 .058 3 .0 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 4 .058 2 .058 3 .0 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 4 .058 2 .058 3 .058 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 6 .058 2 .041 3 .041 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 6 .058 2 .041 3 .041 90 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 6 .058 2 .043 3 .05 90 1.20 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .05 90 1.20 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .05 90 1.20 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .0 90 1.20 1.20 + 15.5m + 1.0 Yes Y DL 1.2 32 1.5 6 .05	92	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	31	1.5	8 .058 2	3	3	.058									
96 120 + 15Lm + 10 Yes Y DL 1.2 31 1.5 4 1.058 2 .05 3 .028 96 120 + 15Lm + 10 Yes Y DL 1.2 31 1.5 4 0.058 2 .0. 3 7 97 1.20 + 1.5Lm + 10 Yes Y DL 1.2 31 1.5 5 0.058 2 .0. 3 7 98 1.20 + 15Lm + 10 Yes Y DL 1.2 31 1.5 5 0.058 2 .0. 3 .0 99 1.20 + 15Lm + 10 Yes Y DL 1.2 31 1.5 5 0.058 2 .0. 3 .0 90 1.20 + 15Lm + 10 Yes Y DL 1.2 31 1.5 7 0.058 2 .0. 3 .0 90 1.20 + 15Lm + 10 Yes Y DL 1.2 31 1.5 7 0.058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 31 1.5 7 0.058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 31 1.5 10.058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 31 1.5 10.058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 4 .058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .05 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .05 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3 .0 91 1.20 + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 .058 2 .0 3	93	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	31	1.5	9 .058 2	0	. 3	.05									
96 120 + 15Lm + 10 Yes Y DL 12 31 1.5 4 1.68 2 1.0 3 7 97 120 + 15Lm + 10 Yes Y DL 12 31 1.5 5 5085 2 1.05 3 7 98 1.20 + 1.5Lm + 10 Yes Y DL 12 31 1.5 6 1.68 2 1.0 3 7.0 99 1.20 + 1.5Lm + 10 Yes Y DL 12 31 1.5 7 1.68 2 1.0 3 7.0 99 1.20 + 1.5Lm + 10 Yes Y DL 12 31 1.5 7 1.68 2 1.0 3 7.0 101 1.20 + 1.5Lm + 10 Yes Y DL 12 31 1.5 9 1.68 2 1.0 3 7.0 101 1.20 + 1.5Lm + 10 Yes Y DL 12 31 1.5 9 1.68 2 1.01 3 7.0 102 1.20 + 1.5Lm + 10 Yes Y DL 12 31 1.5 11.068 2 1.01 3 7.0 103 1.20 + 1.5Lm + 10 Yes Y DL 12 31 1.5 11.068 2 1.05 3 7.0 104 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 4 1.068 2 1.05 3 7.0 105 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 6 1.068 2 1.05 3 7.0 106 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 6 1.068 2 1.05 3 7.0 107 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 6 1.068 2 1.01 3 7.0 108 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 8 1.068 2 1.03 3 1.05 109 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 10.068 2 1.0.3 3 1.05 110 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 10.068 2 1.0.3 3 1.0 111 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 10.068 2 1.0 3 1.0 112 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 10.068 2 1.0 3 7 113 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 10.068 2 1.0 3 7 114 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 10.068 2 1.0 3 7 115 1.20 + 1.5Lm + 10 Yes Y DL 12 32 1.5 10.068 2 1.0 3 7 116 1.20 + 1.5Lm + 10 Yes Y DL 1	94	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	31	1.5	10.058 2	0	. 3	.041									
98 120 + 15Lm + 10 Yes Y DL 1.2 31 1.5 5 5058 2 -05 3 0 98 120 + 15Lm + 10 Yes Y DL 1.2 31 1.5 5 6 5058 2 -0 3 -0 99 12D + 15Lm + 10 Yes Y DL 1.2 31 1.5 6 5058 2 -0 3 -0 100 12D + 15Lm + 10 Yes Y DL 1.2 31 1.5 8 5058 2 -1 3 -0 101 12D + 15Lm + 10 Yes Y DL 1.2 31 1.5 8 5058 2 -1 3 -0 101 12D + 15Lm + 10 Yes Y DL 1.2 31 1.5 10,058 2 2041 3 -0 102 12D + 15Lm + 10 Yes Y DL 1.2 31 1.5 10,058 2 2041 3 -0 103 12D + 15Lm + 10 Yes Y DL 1.2 31 1.5 10,058 2 2041 3 -0 104 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 5 5058 2 205 3 0.0. 105 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 5 5058 2 205 3 0.0. 106 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 5 5058 2 205 3 0.0. 107 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 7 5058 2 209 3 0.5 108 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 9 5058 2 -0 3 505 109 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 9 5058 2 -0 3 505 101 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 10,058 2 -0 3 505 101 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 10,058 2 -0 3 505 101 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 10,058 2 -0 3 505 101 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 10,058 2 -0 3 505 101 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 10,058 2 -0 3 505 101 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 10,058 2 -0 3 505 101 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 5058 2 -0 3 505 101 12D + 15Lm + 10 Yes Y DL 1.2 32 1.5 6 5058 2 -0 3 505 101 12D + 15Lm +	95	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	31	1.5	11.058 2	05	3	.029									
98 120 + 1,5Lm + 1,0 Yes Y DL 1,2 31 1,5 6,668 2,0 3 0,0 99 120 + 1,5Lm + 1,0 Yes Y DL 1,2 31 1,5 6,668 2,0 3 0,0 100 12D + 1,5Lm + 1,0 Yes Y DL 1,2 31 1,5 9,668 2,0 3 0,0 101 12D + 1,5Lm + 1,0 Yes Y DL 1,2 31 1,5 9,668 2,0 3 0,0 103 12D + 1,5Lm + 1,0 Yes Y DL 1,2 31 1,5 9,668 2,0 3 0,0 103 12D + 1,5Lm + 1,0 Yes Y DL 1,2 31 1,5 1,068 2,0 3 0,0 104 12D + 1,5Lm + 1,0 Yes Y DL 1,2 31 1,5 1,068 2,0 3 0,0 105 12D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 4,668 2,668 3 3 0,0 106 12D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 4,668 2,668 3 0,0 106 12D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 6,668 2,0 3 0,5 0,0 108 12D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 6,668 2,0 3 0,5 0,0 109 12D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 6,668 2,0 3 0,5 0,0 110 12D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 6,668 2,0 3 0,5 0,0 111 12D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 1,0.68 2,0 3 0,5 0,0 112 12D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 1,0.68 2,0 3 0,5 0,0 113 12D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 5,668 2,0 3 0,0 114 1,2D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 5,668 2,0 3 0,0 115 1,2D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 5,668 2,0 3 0,0 116 1,2D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 5,668 2,0 3 0,0 117 1,2D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 5,668 2,0 3 0,0 118 1,2D + 1,5Lm + 1,0 Yes Y DL 1,2 32 1,5 5,668 2,0 3 0,0 119 1,2D + 1,5Lm + 1,0 Yes Y DL 1,2	96	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	31	1.5	4 .058 2	0	. 3	7									
99 120 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 7 1.08 2 -0 3 -0.5	97	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	31	1.5	5 .058 2	05	3	0									
100 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 8 1.05 2 0.53 2 0.5 3 -0.5 102 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 9 1.05 2 0.53 2 0.5 3 -0.5 103 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 1 1.05 8 2 0.5 3 -0 103 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 1 1.05 8 2 0.5 3 -0 105 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 0.5 3 -0 105 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 0.5 3 0.29 106 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 0.5 3 0.09 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 7 0.08 2 0.93 3 0.5 108 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 7 0.08 2 0.93 3 0.5 108 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 0.08 2 0.3 3 0.5 109 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.08 2 -0.3 3 0.05 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.08 2 -0.3 3 0.04 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.08 2 -0.3 3 0.04 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 1.5 0.08 2 -0.3 3 0.04 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 -0.3 3 0.0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 -0.3 3 0.0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 -0.3 3 0.0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 -0.3 3 -0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 0.08 2 -0.3 3 -0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 0.08 2 0.3 3 -0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 0.08 2 0.3 3 -0 111 1.20 + 1.5Lm +	98	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	31	1.5	6 .058 2	0	. 3	0									
100 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 8 1.05 2 0.53 2 0.5 3 -0.5 102 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 9 1.05 2 0.53 2 0.5 3 -0.5 103 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 1 1.05 8 2 0.5 3 -0 103 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 1 1.05 8 2 0.5 3 -0 105 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 0.5 3 -0 105 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 0.5 3 0.29 106 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 0.5 3 0.09 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 7 0.08 2 0.93 3 0.5 108 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 7 0.08 2 0.93 3 0.5 108 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 0.08 2 0.3 3 0.5 109 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.08 2 -0.3 3 0.05 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.08 2 -0.3 3 0.04 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.08 2 -0.3 3 0.04 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 1.5 0.08 2 -0.3 3 0.04 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 -0.3 3 0.0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 -0.3 3 0.0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 -0.3 3 0.0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.08 2 -0.3 3 -0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 0.08 2 -0.3 3 -0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 0.08 2 0.3 3 -0 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 0.08 2 0.3 3 -0 111 1.20 + 1.5Lm +	99	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	_	1.5	7 .058 2	0	. 3	05									
101 120 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 9.068 2.029 3 - 0.05	100	1.2D + 1.5Lm + 1.0		Υ	DL							0									
102 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 10.058 2.041 3 0 103 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11.058 2.058 3 0 105 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.058 3 0.0. 105 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.058 3 0.0. 106 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.058 3 0.0. 107 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.028 3 0.5 108 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 7.058 2.028 3 0.5 109 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9.058 2.0 3 0.058 110 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9.058 2.0 3 0.058 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11.058 2.0 3 0.044 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11.058 2.0 3 0.044 112 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.0 3 0.0. 113 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.0 3 0.0. 114 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.0 3 0.0. 115 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.0 3 0.0. 116 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.0 3 0.0. 116 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.0 3 0.0. 117 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.0 3 0.0. 118 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.0 3 0.0. 119 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.029 3 0.0 120 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5.058 2.09 3 0.0 121 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5.058 2.04 3 0.0 122 1.20 + 1.5Lm + 1.0	101	1.2D + 1.5Lm + 1.0			DL					_		05							\neg	\neg	
103 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 31 1.5 11 1.56 2 0.5 3 0.1 104 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.56 2 0.56 3 0.29 105 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.56 2 0.56 3 0.29 106 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.56 2 0.56 3 0.04 107 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 6 0.56 2 0.41 3 0.41 107 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 0.58 2 3 3 0.56 108 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 0.58 2 3 3 0.56 109 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.56 2 0 3 0.56 110 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.56 2 0 3 0.56 111 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.56 2 0.0. 3 0.29 112 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.56 2 0.0. 3 0.1 113 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.56 2 0.0. 3 0.1 114 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.56 2 0.0. 3 0.1 115 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.56 2 0.0. 3 0.1 116 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.56 2 0.0. 3 0.1 116 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 0.56 2 0.0. 3 0.1 117 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 0.56 2 0.0. 3 0.1 118 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.56 2 0.0. 3 0.1 119 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.56 2 0.0. 3 0.1 119 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.56 2 0.0. 3 0.1 119 1.20 + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 0.56 2 0.5 3 0.1 110 1.20 +					DL					_		0									
105 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 4 0.68 2 0.58 3 0.29	103	1.2D + 1.5Lm + 1.0			DL							0							\neg	\neg	\neg
106 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 .058 2 .05 3 .029					DL																
106 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 6 .058 2 .041 3 .041 108 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 .058 2 .028 3 .058 109 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 .058 2 .0 3 .058 110 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10.058 2 .0 3 .058 111 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10.058 2 .0 3 .041 111 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11.058 2 .0 3 .041 111 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11.058 2 .0 3 .041 111 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 1.5 4 .058 2 .0 3 .0 112 13. 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 .058 2 .0 3 .0 114 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 .058 2 .0 3 .0 115 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 .058 2 .0 3 .0 116 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 .058 2 .0 3 .0 117 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 .058 2 .1 3 .0 118 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10.058 2 .058 3 .0 119 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10.058 2 .058 3 .0 119 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10.058 2 .058 3 .0 119 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10.058 2 .058 3 .0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 .058 2 .058 3 .0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 .058 2 .058 3 .0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 .058 2 .041 3 .041 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 .058 2 .041 3 .058 1.2D + 1.5Lm + 1.0 Yes Y DL												.029							-	\neg	_
107 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 7 0.58 2 0.28 3 0.05											_										
108 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 0.88 2 3 3 0.58 109 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 0.58 2 -0 3 0.04 111 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11 10.68 2 -0.5 3 0.04 111 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11 10.68 2 -0.5 3 0.04 111 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 1																			\neg	=	
109 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 0.58 2 -0 3 0.5 110 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 0.58 2 -0 3 0.04 111 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 1 10.58 2 -0.5 3 0.029 112 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 1 10.58 2 -0.5 3 7 113 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 0.58 2 -0.5 3 7																					
110 1.2D + 1.5Lm + 10 Yes Y											-										_
111 1.2D + 1.5Lm + 10																					
112 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 4 0.68 2 -0 3 7																					
113 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 5 058 2 -0.6 3 -0										_											
114 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 6 058 2 · 0 3 · 0 116 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 7 · 058 2 · 0 3 · 0 116 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 · 058 2 · 1 3 · 0 118 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 · 058 2 · 0.1 3 · 0 119 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11 · 058 2 · 0.5 3 · 0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 · 058 2 · 0.5 3 · 0 121 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 · 058 2 · 0.05 3 · 0 122 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 · 058 2 · 0.05 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td></t<>																		-	-	-	
115 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 7 058 2 - 0 3 -0.5 116 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 058 2 - 1 3 -0 117 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 058 2 .029 3 -0 119 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 058 2 .05 3 -0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 058 2 .05 3 -0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 058 2 .05 3 .029 122 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 1.068 2 .05 3 .05 124 1.2D + 1.5Lm + 1.0 Yes										_	_										
116 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 8 058 2 -1 3 -0 117 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 058 2 0.0 0.0 118 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 1 0.058 2 0.05 3 -0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 4 0.058 2 0.05 3 -0 121 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 0.058 2 0.05 3 0.029 122 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 0.058 2 0.05 3 .05 124 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 8 0.052 2 0 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>\dashv</td> <td>-</td> <td>_</td>							_			_	_							-	\dashv	-	_
117 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 9 0.68 2 0.09 3 -0.5 118 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10 10.058 2 .0.0 .0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 4 .058 2 .058 3 121 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 .058 2 .05 3 .029 122 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 .058 2 .05 3 .029 122 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 .058 2 .0.0 3 .05 124 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.068 2 .0 3 <td></td> <td></td> <td></td> <td></td> <td>\rightarrow</td> <td></td> <td>_</td> <td></td>					\rightarrow		_														
118 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 10.058 2 0.41 3 -0 119 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11.058 2 0.5 3 -0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 0.58 2 0.5 3 0.29 122 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 0.58 2 0.05 3 0.29 122 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.58 2 0.05 3 0.09 124 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.58 2 0.02 3 0.5 125 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 -0 3 0.05 126 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 -0 3 0.01 129 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td>-</td> <td></td>							_												-	-	
119 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 32 1.5 11.058 2 0.5 3 -0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 4 0.68 2 0.058 3 0.29 121 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 0.68 2 0.05 3 0.029 122 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.058 2 0.05 3 0.029 124 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.058 2 0.04 1 0.05 0.05 124 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 2.0 3 0.05 125 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11.058 2 2.0 3 0.041 129 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2					\rightarrow		-			_									\rightarrow		
120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 4 0.58 2 0.58 3 0.29 0.29 0.20 0.2							_												-		
121 1.2D + 1.5Lm + 1.0 Yes Y					-					_	_	0									
122 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 0.58 2 0.41 3 0.41 1.23 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.58 2 0.29 3 0.5 1.24 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 8 0.58 2 3 3 0.58 1.25 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 9 0.58 2 -0 3 0.5 1.25 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 1.0 0.58 2 -0 3 0.41 1.27 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 1.0 0.58 2 -0 3 0.41 1.27 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 1.1 0.58 2 -0 3 0.41 1.27 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 0.58 2 -0 3 7 1.29 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 0.58 2 -0 3 -0 1.20 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 0.58 2 -0 3 -0 1.20 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.58 2 -0 3 -0 1.20 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 1.5 9 0.58 2 0.29 3 -0.5 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 1.5 9 0.58 2 0.29 3 -0.5 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 1.5 1.0 0.58 2 0.58 3 -0 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 1.5 1.0 0.58 2 0.58 3 -0 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 0.58 2 0.58 3 -0 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 0.58 2 0.5 3 -0 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 0.58 2 0.5 3 -0 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 0.58 2 0.5 3 -0 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 0.58 2 0.5 3 0.5 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 0.58 2 0.0 3 0.5 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 3												000							\rightarrow		
123 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.58 2 0.29 3 .05 124 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .0 3 .05 126 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .0 3 .05 126 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .0 3 .04 1 127 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .0 3 .029 128 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .0 3 .0 129 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .0 3 .0 129 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 0.58 2 .0 3 .0 120 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 0.58 2 .0 3 .0 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.58 2 .0 3 .0 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.58 2 .0 3 .0 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.58 2 .0 3 .0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 9 0.58 2 .0 3 .0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .0 3 .0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .041 3 .0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .041 3 .0 135 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .058 3 1.5 10.058 2 .058 3 1.5 10					-		_			_	_								_		
124 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 8 0.58 2 3 3 0.58 125 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 9 0.58 2 -0 3 0.05 126 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 -0 3 0.041 127 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11.058 2 -0 3 0.041 128 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 4 0.058 2 -0 3 7 129 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 0.058 2 -0 3 -0 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 0.058 2 -0 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>_</td><td></td></td<>																			-	_	
125 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 9 .058 2 .0 3 .05 126 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .0 3 .041 127 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11.058 2 .0 3 .029 128 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 4 .058 2 .0 3 .0 130 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 .058 2 .0 3 .0 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 .058 2 .0 3 .0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .0 3 .0 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\rightarrow</td> <td></td> <td></td>					-					_									\rightarrow		
126 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 -0 3 .041 127 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11.058 2 -0.5 3 .029 128 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 4 .058 2 -0 3 .7 129 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 .058 2 -0 3 .0 130 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 .058 2 -0 3 -0 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 .058 2 -0 3 -0 132 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 9 .058 2 -0 3 -0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 -0 3 -0 134 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2<																			_		
127 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11,058 205 3 .029 .029 128 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 4 .058 20 3 7 129 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 .058 20 30 130 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 .058 20 30 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 .058 20 30 132 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 8 .058 20 30 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .029 305 134 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11.058 2 .058 30 135 1.2D + 1.5Lm + 1.0 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td>					-					_									_	_	
128 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 4 058 2 -0 3 7 129 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 058 2 -0 3 -0 130 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 058 2 -0 3 -0 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 058 2 -0 3 -0 132 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 8 058 2 -0 3 -0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 058 2 0.09 3 -0.0 134 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11 058 2 .041 3 -0 136 1.2D + 1.5Lm + 1.0 Yes <										_									_		
129 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 5 .058 2 .0.5 3 .0 130 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 .058 2 .0 3 .0 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 .058 2 .0 3 .0 132 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 8 .058 2 .0 3 .0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 .058 2 .0 3 .0 134 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 .058 2 .041 3 .0 135 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 .058 2 .058 3 .0 136 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 .058 2 .058 3 .0 137 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5	_																		_	_	
130 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 6 .058 20 30 131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 .058 20 30 132 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 8 .058 20 30 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 .058 2 .029 30 134 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 .058 2 .029 30 135 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11 .058 2 .058 3 137 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 .058 2 .058 3 138 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 6 .058 2 .058 3 .058							_														
131 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 7 .058 2 .0 3 .0.5 132 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 8 .058 2 .1 3 .0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 .058 2 .029 3 .05 134 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 .058 2 .041 3 .0 135 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 4 .058 2 .058 3 .0 136 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 4 .058 2 .058 3 .0 137 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 .058 2 .058 3 .029 138 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 6 .058 2 .041 3 .041 139 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 7 .058 2 .029 3 .05							1												_	_	
132 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 8 .058 2 -1 3 0 133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 9 .058 2 .029 3 0 134 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 .058 2 .041 3 0 135 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 4 .058 2 .05 3 0 136 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 4 .058 2 .058 3 137 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 .058 2 .053 3 .029 138 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 7 .058 2 .029 3							_														
133 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 9 .058 2 .029 3 .05 3 .05 134 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10 .058 2 .041 3 .0 10 .058 2 .058 3 .0 135 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 4 .058 2 .058 3 .0 136 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 .058 2 .058 3 .0 137 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 .058 2 .058 3 .0 138 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 6 .058 2 .041 3 .041 139 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 7 .058 2 .029 3 .05 140 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 8 .058 2 .0 3 .05 141 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 9 .058 2 .0 3 .0					\rightarrow														_	_	
134 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 10.058 2 .041 3 .0 .0 135 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11.058 2 .05 3 .0 .0 136 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 4 .058 2 .058 3 .058 3 .029 137 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 .058 2 .05 3 .029 138 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 6 .058 2 .041 3 .041 139 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 7 .058 2 .029 3 .05 140 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 8 .058 2 .0 3 .05 141 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 9 .058 2 .0 3 .05 142 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 10.058 2 .0 3 .																					
135 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 33 1.5 11.058 2 .058 3 .0 .0<					\rightarrow					_	_										
136 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 4 .058 2 .058 3 .029 137 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 .058 2 .05 3 .029 138 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 6 .058 2 .041 3 .041 139 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 7 .058 2 .029 3 .05 140 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 8 .058 2 3 .058 141 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 9 .058 2 3 .058 142 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 10 .058 2 <																					
137 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 5 .058 2 .05 3 .029 .029 .029 138 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 6 .058 2 .041 3 .041 .041 139 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 7 .058 2 .029 3 .05 .05 140 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 8 .058 2 .0 3 .058 .058 141 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 9 .058 2 -0 3 .05 142 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 10 .058 2 -0 3 .041					\rightarrow	1.2						0									
138 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 6 .058 2 .041 3 .041 139 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 7 .058 2 .029 3 .05 140 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 8 .058 2 3 3 .058 141 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 9 .058 2 -0 3 .05 142 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 10 .058 2 -0 3 .041																					
139 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 7 .058 2 .029 3 .05 3 .05 140 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 8 .058 2 3 3 .058 141 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 9 .058 2 -0 3 .05 142 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 10 .058 2 -0 3 .041			Yes		DL		34	1.5													
140 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 8 .058 2 3 3 .058 141 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 9 .058 2 0 3 .05 142 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 10 .058 2 0 3 .041			Yes		DL		34	1.5				.041									
141 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 9 .058 20 3 .05 3 .05 142 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 10 .058 20 3 .041			Yes		DL	1.2	34	1.5			3	.05						\Box			
142 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 10 058 20 3 041	140	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5				.058									
	141	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	9 .058 2	0	. 3	.05									
143 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 34 1.5 11 058 2 05 3 029			Yes	Υ	DL	1.2	34	1.5	10.058 2	0	. 3	.041									
	143	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	11.058 2	05	3	.029									

Load Combinations (Continued)

Load Combinations	(Cont	<u>ın uea</u>	<u>/</u>				
Des cription	Solve	PD 9	SRB I	Factor	BLC	Factor	BFaBFaBLC FaBFaBFaBFaBFa.
144 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	4 .058 20 3 7
145 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	34	1.5	5 .058 205 30
146 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	6 .058 20 30
147 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	7 .058 20 305
148 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	8 .058 2 -1 30
149 1.2D + 1.5Lm + 1.0	Yes	Ÿ	DL	1.2	34	1.5	9 .058 2 .029 305
150 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	10,058 2,041 3,-0
151 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	11,058 2,05 30
152 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	4 .058 2 .058 3
153 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	5 .058 2 .05 3 .029
154 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	6 .058 2 .041 3 .041
155 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	7 .058 2 .029 3 .05
156 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	8 .058 2 3 3 .058
157 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	9 .058 20 3 .05
158 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	10.058 2 -0 3 .041
159 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	11,058 205 3 .029
160 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	4 .058 20 3 7
161 1.2D + 1.5Lm + 1.0		Y	DL	1.2	35	1.5	5 .058 205 30
162 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	6 .058 20 30
163 1.2D + 1.5Lm + 1.0	Yes	Y	DL				7 .058 20 305
164 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	8 .058 2 -1 30
165 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2 1.2	35	1.5	9 .058 2 .029 305
166 1.2D + 1.5Lm + 1.0	Yes	Y	DL		35	1.5	
167 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	
168 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	11.058 2 .05 3 -0 4 .058 2 .058 3
169 1.2D + 1.5Lm + 1.0	Yes		DL	1.2	36	1.5	
170 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	5 .058 2 .05 3 .029 6 .058 2 .041 3 .041
	Yes			1.2	36	1.5	
171 1.2D + 1.5Lm + 1.0 172 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	7 .058 2 .029 3 .05 8 .058 2 3 3 .058
	Yes	Y	DL	1.2	36	1.5	
11.0	Yes	Y	DL	1.2	36	1.5	9 .058 20 3 .05
174 1.2D + 1.5Lm + 1.0 175 1.2D + 1.5Lm + 1.0	Yes		DL	1.2	36	1.5	10.058 20 3 .041
176 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	11.058 205 3 .029 4 .058 20 3 7
177 1.2D + 1.5Lm + 1.0	Yes		DL	1.2	36	1.5	
178 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	5 .058 205 30 6 .058 20 30
179 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	
180 1.2D + 1.5Lm + 1.0	Yes	Y	DL DL	1.2	36	1.5	
				1.2	36		
181 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	9 .058 2 .029 305
182 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	10.058 2 .041 30
183 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	11.058 2 .05 30
184 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	4 .058 2 .058 3
185 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	5 .058 2 .05 3 .029
186 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	6 .058 2 .041 3 .041
187 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	7 .058 2 .029 3 .05
188 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	8 .058 2 3 3 .058
189 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	9 .058 20 3 .05
190 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	10.058 20 3 .041
191 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	11.058 205 3 .029
192 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	4 .058 2 -0 3 7
193 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	5 .058 205 30
194 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	6 .058 2 -0 3 -0
195 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	7 .058 20 305

July 28, 2021 1:28 PM

Checked By: CA

: Trylon : 876324 July 28, 2021 1:28 PM Checked By: CA

Load Combinations (Continued)

Des cription	Solve	PD	SRB	Factor	BLC	Factor	BF	аВ	Fa	.BLC	Fa	BFa	B.	Fa.	B	.Fa	.B	Fa	.BI	Fa
196 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	8 .0	58 2	2 -1	. 3	0									
197 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	9 .0	58 2	.029	3	05									
198 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	10.0	58 2	.041	3	0									
199 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	11.0	58 2	2 .05	3	0									
200 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	4 .0	58 2	.058	3										
201 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	5 .0	58 2	2 .05	3	.029									
202 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	6 .0	58 2	.041	3	.041									
203 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	7 .0	58 2	.029	3	.05									
204 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	8 .0	58 2	3	3	.058									
205 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	9 .0	58 2	20	. 3	.05									
206 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	10.0	58 2	20	. 3	.041									
207 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	11.0	58 2	205	3	.029									
208 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	4 .0	58 2	20	. 3	7									
209 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	5 .0	58 2	205	3	0									
210 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	6 .0	58 2	20	. 3	0									
211 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	7 .0	58 2	20	. 3	05									
212 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5		58 2		. 3	0									
213 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	9 .0	58 2	.029	3	05									
214 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	10.0	58 2	.041	3	0									
215 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	11.0	58 2	2 .05	3	0									
216 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	4 .0	58 2	.058	3										
217 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	5 .0	58 2	2 .05	3	.029									
218 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	6 .0	58 2	.041	3	.041									
219 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	7 .0	58 2	.029	3	.05									
220 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	8 .0	58 2	3	3	.058									
221 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	9 .0	58 2	20	. 3	.05									
222 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	10.0	58 2	20	. 3	.041									
223 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	11.0	58 2	205	3	.029									
224 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	4 .0	58 2	20	. 3	7									
225 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	5 .0	58 2	205	3	0									
226 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	6 .0	58 2	20	. 3	0									
227 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	7 .0	58 2	20	. 3	05									
228 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	8 .0	58 2	2 -1	. 3	0									
229 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	9 .0	58 2	.029	3	05									
230 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	10.0	58 2	.041	3	0									
231 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	11.0	58 2	2 .05	3	0									

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [b]	LC	Z [l b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1627.34	3	1040.25	20	2317.63	39	523.47	30	473.35	33	1928.84	19
2		min	-1620.22	27	-1043.96	12	-111.37	31	-4 290.91	38	-2366.53	41	-1934.42	11
3	N1	max	1687.7	17	963.16	8	2384.6	45	4232.29	45	543.66	19	1980.12	25
4		min	-1687.24	25	-954.52	32	-101.09	21	-451.45	21	-2841.48	43	-1986.8	17
5	N13	max	362.1	18	1654.32	22	2258.11	34	757.83	14	4755.82	34	1628.81	30
6		min	-370.01	10	-1659.15	14	-142.03	26	-652.19	22	-648.23	26	-1633.62	6
7	Totals:	max	3226.15	18	3013.14	9	6661.61	43						
8		min	-3226.15	10	-3013.14	30	1366.08	67						

Company Designer Job Number : Trylon

: AB : 189042 : 876324

July 28, 2021 1:28 PM Checked By: CA

Envelope AISC 15th (360-16): LRFD Steel Code Checks

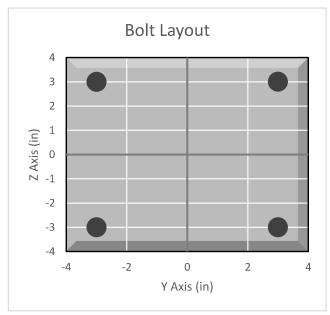
	Member	Shape	Code Check	Loc[in]	LC	SheLo phi*P phi*P phi*Mphi*M Eqn
1	SA2	PIPE 3.5	.637	40	45	.200 40 9 6449178750 79537953H1-1b
2	SA3	PIPE_3.5	.613	40	39	.193 40 3 6449178750 79537953H1-1b
3	SA1	PIPE_3.5	.598	40	34	.182 40 14 64491 78750 7953 7953 H1-1b
4	PB2	C3X5	.446	34.86	45	.167 63y 41 3285847628 981.26 4104H1-1b
5	PB3	C3X5	.442	34.86	40	.169 63y 36 3285847628 981.26 4104H1-1b
6	PB1	C3X5	.422	34.86	34	.160 63y 46 3285847628 981.26 4104H1-1b
7	MP3	PIPE 2.0	.376	57	5	.039 57 10 2086632130 187118711 H1-1b
8	MP9	PIPE 2.0	.374	57	10	.039 57 3 2086632130 18711871H1-1b
9	MP8	PIPE 2.0	.367	57	10	.044 57 14 2086632130 18711871H1-1b
10	MP2	PIPE 2.0	.364	57	5	.052 57 9 2086632130 187118711 H1-1b
11	MP1	PIPE_2.0	.356	57	16	.046 57 17 2086632130 18711871H1-1b
12	MP6	PIPE_2.0	.349	57	7	.039 57 8 2086632130 187118711 H1-1b
13	MP5	PIPE_2.0	.349	57	16	.052 57 3 2086632130 18711871H1-1b
14	MP4	PIPE_2.0	.337	57	11	.042 57 11 2086632130 18711871H1-1b
15	MP7	PIPE_2.0	.334	57	10	.033 57 9 2086632130 18711871H1-1b
16	CP5	6.5"x0.37" Plate	.259	21	12	.121 21 y 42 2754875757583.96 6615H1-1b
17	CP6	6.5"x0.37" Plate	.257	21	7	.120 21 y 37 27548. 75757. 583.96 6353 H1-1b
18	CP4	6.5"x0.37" Plate	.257	21	2	.113 21 y 48 2754875757583.96 6379H1-1b
19	M21	PIPE_2.0	.182	72	5	.187 72 13 1491632130 18711871H1-1b
20	M19	PIPE_2.0	.181	72	10	.190 72 2 1491632130 18711871H1-1b
21	M20	PIPE_2.0	.172	72	15	.185 72 8 1491632130 18711871H1-1b
22	IFH11	L2x2x3	.165	0	3	.032 0 z 49 1808423392557.72 1179 1 H2-1
23	IFH21	L2x2x3	.162	0	14	.032 0 z 43 1808423392557.72 1182 1 H2-1
24	IFH 31	L2x2x3	.134	0	9	.031 0 z 38 18084 23392 557.72 1182 1 H2-1
25	IFH32	L2x2x3	.116	0	13	.036 0 y 42 18084 23392 557.72 1182 1 H2-1
26	H1	PIPE 3.5	.109	34	12	.113 24 10 6066678750 79537953H1-1b
27	Н3	PIPE_3.5	.107	34	2	.112 24 16 60666 78750 7953 7953 H1-1b
28	IFH22	L2x2x3	.101	0	2	.034 0 y 47 18084 23392 557.72 1182 1 H2-1
29	H2	PIPE 3.5	.101	34	7	.105 24 5 6066678750 79537953H1-1b
30	IFH12	L2x2x3	.100	0	8	.035 0 y 36 18084 23392 557.72 1179 1 H2-1
31	CP3	6.6x4.46x0.25	.098	0	21	.043 42 z 4 5117087561 24647125 1 H2-1
32	CP2	6.6x4.46x0.25	.096	0	26	.042 0 y 9 5117087561 246471251 H2-1
33	CP1	6.6x4.46x0.25	.088	0	32	.040 0 y 14 51 170 87561 2464 7125 1 H2-1

Envelope AISIS 100-12: LRFD Cold Formed Steel Code Checks

Member Shape	Code Check	Loc[in]LC SheaLoc[iDirLC phi*Pn[phi*Tn[phi*Mnphi*Mn Cb Cmyy Cmzz Eqn
		No Data to Print

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 07/29/21



BOLT TOOL 1.5.2

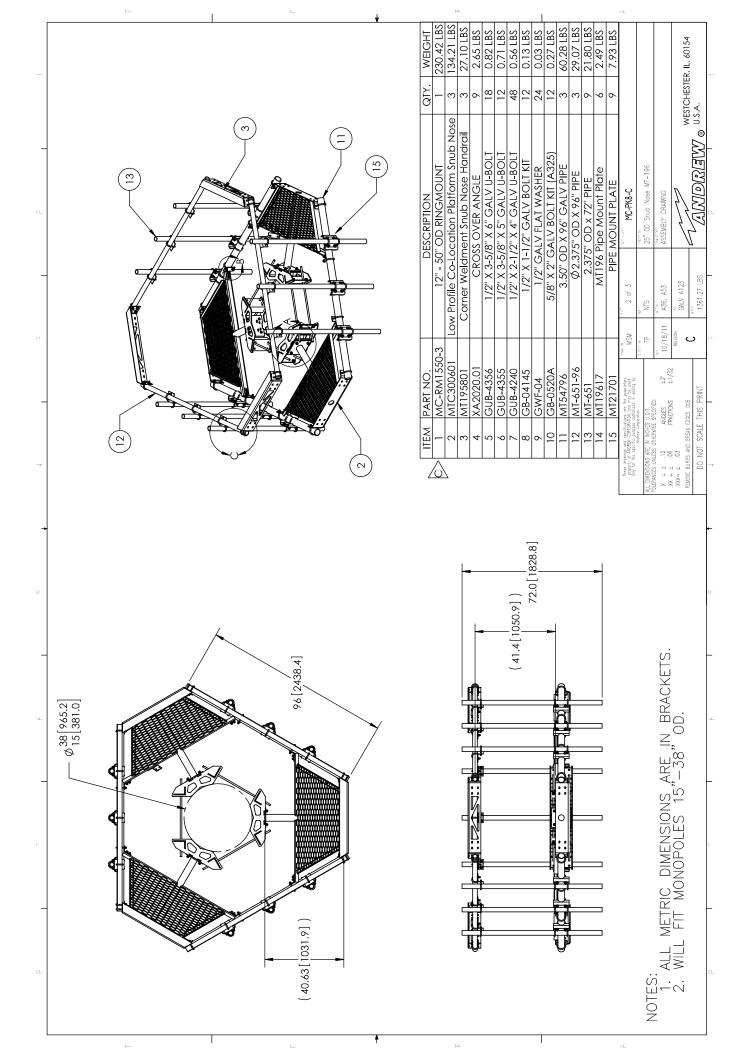
Project Data									
Job Code:	189042								
Carrier Site ID:	BOBDL00078A								
Carrier Site Name:	CT-CCI-T-876324								

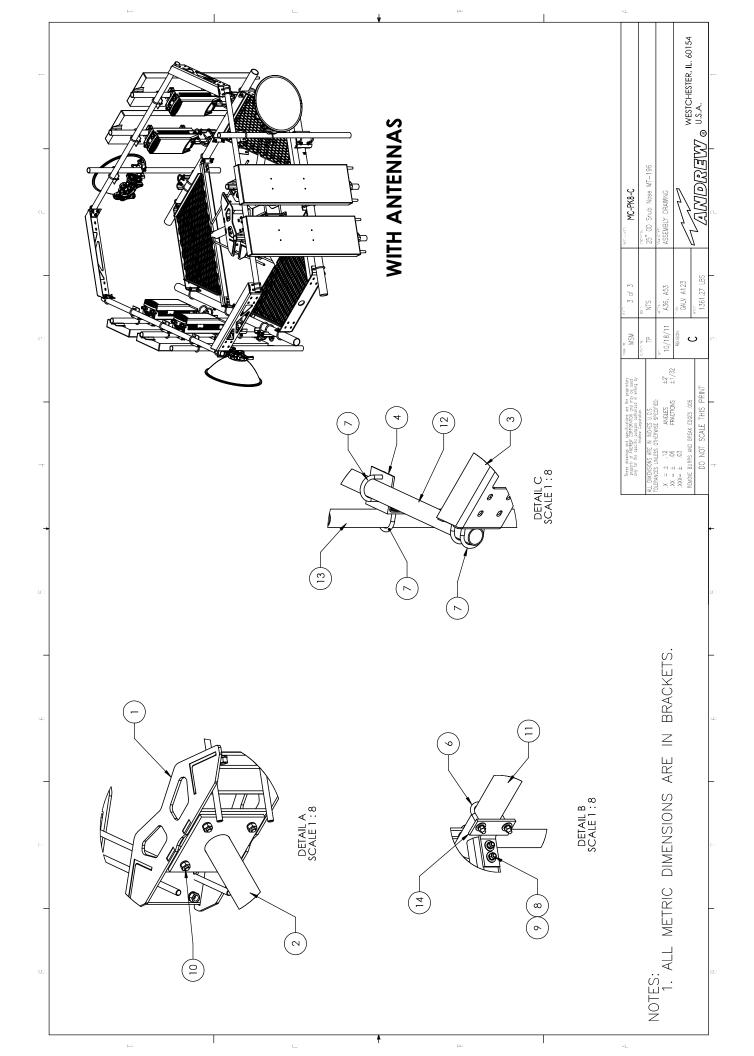
Code									
Design Standard:	TIA-222-H								
Slip Check:	No								
Pretension Standard:	AISC								

Bolt Properties									
Connection Type:	В	olt							
Diameter:	0.625	in							
Grade:	A325								
Yield Strength (Fy):	92	ksi							
Ultimate Strength (Fu):	120	ksi							
Number of Bolts:	4								
Threads Included:	No								
Double Shear:	No								
Connection Pipe Size:	-	in							

Connection Description	
Standoff to Monopole	

Bolt Check*										
Tensile Capacity (ϕT_n):		lbs								
Shear Capacity (ϕV_n):		lbs								
Tension Force (T _u):	5205.1	lbs								
Shear Force (V _u):	834.8	lbs								
Tension Usage:	24.4%									
Shear Usage:	4.6%									
Interaction:	24.4%	Pass								
Controlling Member:	SA2									
Controlling LC:	42									
*D-#: 45 5										


^{*}Rating per TIA-222-H Section 15.5


APPENDIX E SUPPLEMENTAL DRAWINGS

WESTCHESTER, IL. 60154

MESTCHESTER, IL. 60154

U.S.A. BY DRR MSM DESCRIPTION
INITIAL RELEASE
CHANGE NOSE CORNER BRKT, ADD GUB-4240 LOW PROFILE PLATFORM KIT 8' FACE MC-PK8-C REVISIONS ASSEMBLY DRAWING 1410.14 LBS GALV A123 1 of 3 A36, A500 10/18/11 MSM DO NOT SCALE THIS PRINT \triangle NOTE NO. 464.27 LBS 543.22 LBS FOR BOM ENTRY ONLY 402.64 LBS WEIGHT QIY. NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3. STEEL BUNDLE FOR SNUB NOSE PLATFORM PIPE STEEL BUNDLE FOR MC-PK8-C HARDWARE KIT FOR MC-PK8-C DESCRIPTION 2 MCPK8CSB 3 MCPK8CHWK MTC3006SB ITEM PART NO.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBDL00078A

876324

1358 New Britain Avenue West Hartford, Connecticut 06110

October 5, 2021

EBI Project Number: 6221005701

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	16.94%

October 5, 2021

Dish Wireless

Emissions Analysis for Site: BOBDL00078A - 876324

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 1358 New Britain Avenue in West Hartford, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully

aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 1358 New Britain Avenue in West Hartford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 86 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	86 feet	Height (AGL):	86 feet	Height (AGL):	86 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.51	ERP (W):	3,065.51	ERP (W):	3,065.51
Antenna A1 MPE %:	2.48%	Antenna B1 MPE %:	2.48%	Antenna C1 MPE %:	2.48%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	2.48%			
Nextel	0.47%			
Clearwire	0.13%			
AT&T	0.5%			
Sprint	1.23%			
Verizon	9.97%			
Metro PCS	1.5%			
VoiceStream	0.66%			
Site Total MPE % :	16.94%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	2.48%			
Dish Wireless Sector B Total:	2.48%			
Dish Wireless Sector C Total:	2.48%			
Site Total MPE % :	16.94%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	86.0	5.03	600 MHz n71	400	1.26%
Dish Wireless 1900 MHz n70	4	542.70	86.0	12.19	1900 MHz n70	1000	1.22%
	•					Total:	2.48%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	2.48%		
Sector B:	2.48%		
Sector C:	2.48%		
Dish Wireless Maximum MPE % (Sector A):	2.48%		
Site Total:	16.94%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **16.94**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

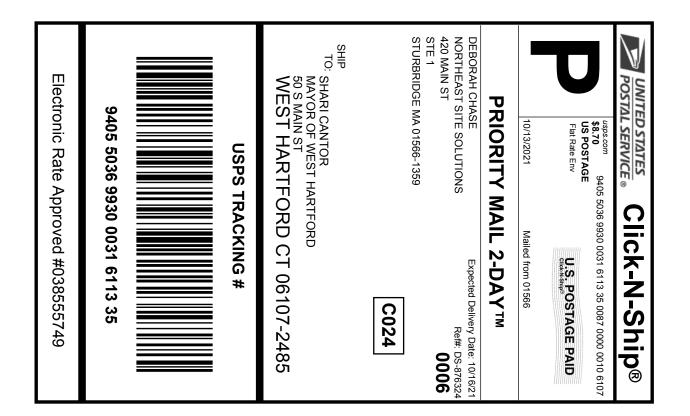
Re: Tower Share Application

Crown Castle telecommunications site at: 1358 NEW BRITAIN AVENUE, WEST HARTFORD, CT 06110

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 876324/WEST HARTFORD UNITED METHODIST

Customer Site ID: BOBDLooo78A/CT-CCI-T-876324


Site Address: 1358 New Britain Avenue, WEST HARTFORD, CT 06110

By:

Richard Zajac
Site Acquisition Specialist

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 6113 35

545870645 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876324

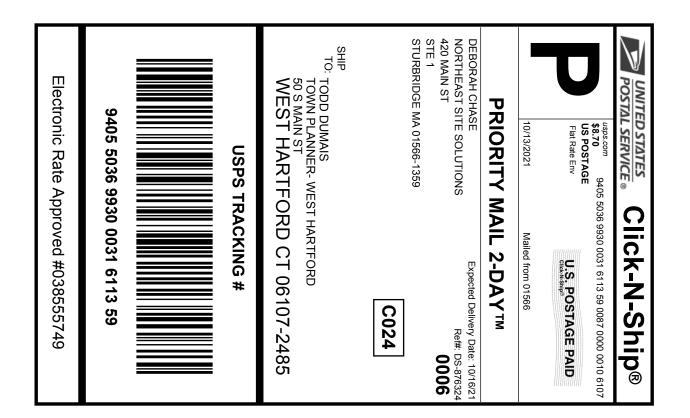
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


SHARI CANTOR

MAYOR OF WEST HARTFORD

50 S MAIN ST

WEST HARTFORD CT 06107-2485

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 6113 59

545870645 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876324

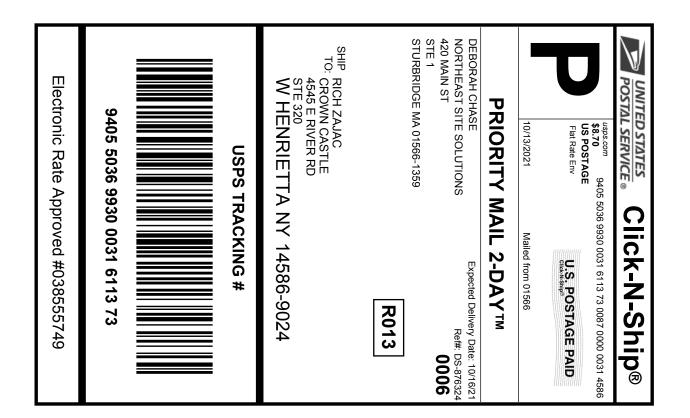
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


TODD DUMAIS

TOWN PLANNER- WEST HARTFORD

50 S MAIN ST

WEST HARTFORD CT 06107-2485

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 6113 73

545870645 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876324

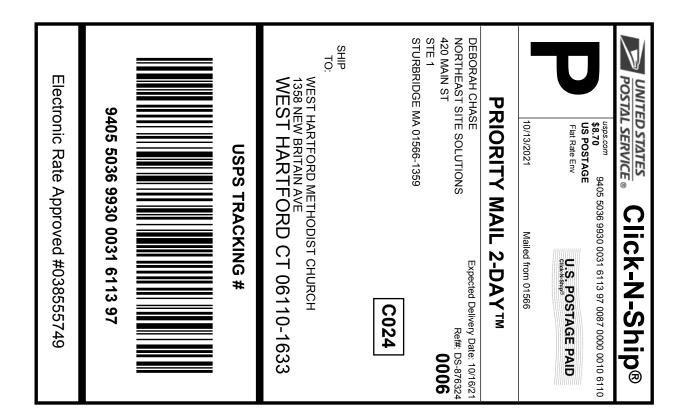
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 6113 97

545870645 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876324

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

WEST HARTFORD METHODIST CHURCH

1358 NEW BRITAIN AVE

WEST HARTFORD CT 06110-1633

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

876324

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

10/14/2021	(800)275-8		
the second contract of the second contract of the second contract of			03:51 PM
Product Prepaid Maii	Qty	Unit Price	Price
West Henriet Weight: 0 lb Acceptance D Thu 10/1 Tracking #: 9405 5036	ta, NY 1458 2.00 oz ate: 4/2021 5 9930 0031	36 6113 7:	\$0,00
Prepaid Mail West Hartford Weight: O lb Acceptance Da Thu 10/14 Tracking #: 9405 5036	1 4, CT 06107 14.20 oz te: /2021 9930 0031		\$0.00
Prepaid Mail West Hartford, Weight: 0 ib Acceptance Dat Thu 10/14/ Tracking #: 9405 5036	CT 06110 14.10 oz	5113 97	\$0.00
Prepaid Mail West Hartford, Weight: 0 1b 1 Acceptance Date Thu 10/14/2 Tracking #: 9405 5036 9	1 CT 06107 14.20 oz e: 2021 930 0031 6	113 35	\$0.00
Grand Total:			\$0 nn
	* * *** *** * * * * * * * * * * * * * *	en de de la de	