Attorney Melanie Bachman

Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06501

Re: Notice of Exempt Modification Siemon Company/T-Mobile co-location T-Mobile Site ID CTNH354A 27 Siemon Company Drive, Watertown, CT

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, the Siemon Company owns the existing smokestack telecommunications tower and related facility at 27 Siemon Company Drive, Watertown, CT (-73.11166/41.60338). T-Mobile intends to replace 3 existing antennas with 3 new antennas and related equipment at this existing telecommunications facility in Watertown ("Watertown Facility"). Please accept this letter as notification, pursuant to R.C.S.A. $\S 16-50 j-73$, of construction which constitutes an exempt modification pursuant to R.C.S.A. § $16-50 j-72(b)(2)$. In accordance with R. C.S.A. § $16-$ 50j-73, a copy of this letter is being sent to the Town Manager, Charles Frigon, and the property owner, Siemon Company.

The existing Watertown Facility consists of a 135- foot smokestack tower. ${ }^{1}$ T-Mobile plans to replace 3 existing antennas on antenna mounts and pipe masts with 3 new antennas on new mounting pipes and new pipe masts ${ }^{2}$ at a centerline of 123 feet. (See the plans revised to August 5, 2014 attached hereto as Exhibit A). T-Mobile will also install a remote radio unit on a unistrut. The existing Watertown Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated August 11, 2014, and attached hereto as Exhibit B.

The planned modifications to the Watertown Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

[^0]August 29, 2014
CTNH354A
Page 2
The planned modifications to the Watertown Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's existing antennas are at a centerline of 123 feet; the replacement antennas will be installed at the same 123 -foot level. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The proposed modifications will not require an extension on the site boundaries or lease area, as depicted on Sheet 3 of Exhibit A. T-Mobile's equipment will be located entirely within the existing compound area.
3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated August 25, 2014. T-Mobile's operations would add 8.66% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 22.98% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement antennas and equipment at the Watertown Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement of this exempt modification, T-Mobile shall commence construction approximately sixty days from the receipt of the Council's decision.

Rachel A. Schwartzman, Esq.

cc: Town Manager Charles Frigon, Town of Watertown Siemon Company Jamie Ford, EBI Consulting

EXHIBIT A

STRUCTURAL ANALYSIS REPORT

For

CTNH354A

CTNH354 / SIEMON CO DRIVE
27 Siemon Company Drive Watertown, CT 06795

Antennas Mounted on Pipe Masts Secured to Face of Smokestack; Equipment on Concrete Slab on Grade

Prepared for:
Transcend Wireless

Dated: August 11, 2014
Prepared by:

1600 Osgood Street Building 20 North, Suite 3090

Design Groupuc

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by Transcend Wireless to conduct a structural evaluation of the structure supporting the proposed T-Mobile equipment located in the areas depicted in the latest HDG's construction drawings.

This report represents this office's findings, conclusions and recommendations pertaining to the support of T-Mobile's proposed equipment.

CONCLUSION SUMMARY:

Smokestack plans were not available and could not be obtained for our use. Construction drawings and a structural analysis report prepared by Bay State Design dated February 2009 were obtained for our reference.

A limited visual survey of the structure was completed in or near the areas of the proposed work. Based on our evaluation, we have determined that the proposed antennas ARE CAPABLE of being supported by the smoke stack structure.

APPURTENANCE/EQUIPMENT CONFIGURATION:

(3) SBNHH-1D65C Antennas (96"x11.9"x7.1" - Wt. = 50 lbs /each) (One per sector)
(3) RRUS-11 RRH's (19.7"x17"x7.2") (Wt. = 50.7 lbs. /each) (One per sector)

DESIGN CRITERIA:

1. International Building Code 2003 with 2005 Connecticut Supplement with 2009 Amendments; ASCE 7-05 Minimum Design Loads for Buildings and Other Structures.

Wind Analysis:

Reference Wind Speed: \begin{tabular}{ll}
95 mph

78 mph \& | (includes 3-second gust) |
| :--- |
| (fastest mile) |

\end{tabular}

Roof:
Ground Snow, Pg: 35 psf \quad (Connecticut Supplement)
2. EIA/TIA -222- F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

City/Town:	Watertown
County:	Litchfield
Wind Load:	80 mph (Basic Wind Speed)
Nominal Ice Thickness:	$3 / 4$ inch

3. Approximate height above grade to the center of the antennas:
$123^{\prime}-0^{\prime \prime}+/-$

Hudson

Design Groupuc

ANTENNA SUPPORT RECOMMENDATIONS:

The three new antennas are proposed to be mounted on the existing antenna mounts that will become empty upon the removal of three of the existing antennas. The existing pipe masts will need to be swapped out with new longer pipe masts to accommodate the new larger antennas.

RRH SUPPORT RECOMMENDATIONS:

The new RRH's are proposed to be mounted on a new H-frame secured to the existing concrete slab on grade with epoxy anchors.

Limitations and assumptions:

1. Reference the latest HDG construction drawings for all the equipment location details.
2. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
3. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
4. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements and specifications.
5. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.
6. The smoke stack has been inspected annually to confirm that its brick components are free from damage at this time.
7. HDG loading is based on the antenna loading/attachment to the smoke stack. In order to complete the analysis on the smoke stack HDG requires the geometry of the smoke stack structure (i.e. as built plans / mapping report).

EXISTING ANTENNAS:

Photo 1: Sample photo illustrating the existing T-Mobile antennas.

Photo 2: Sample photo illustrating the connection of the T-Mobile antennas to the face of the smokestack.

Calculations

Site Name:

CTNH354A		
GH	Checked by:	MSC
$8 / 11 / 2014$		

References:

> * Structural Standards for Steel Antenna Towers and Antenna Supporting Structures (TIA/EIA-222-F).

Material Reference Notes:

2.3.1 Wind and lce Loads

The total design wind load shall include the sum of the horizontal forces applied to the structure in the direction of the wind and the design wind load on guys and discrete appurtenances.

Ice loading, depending on tower height, elevation, and exposure, may be a significant load on the structure in most parts of the United States. If the structure is to be located where ice accumulation is expected, consideration shall be given to an ice load when specifying the requirements for the structure.

2.3.2 Horizontal Force Applied to each Section of the Structure

$\mathrm{F}=\mathrm{q}_{\mathrm{Z}}{ }^{*} \mathrm{G}_{\mathrm{H}}\left[\mathrm{C}_{\mathrm{F}}{ }^{*} \mathrm{~A}_{\mathrm{E}}+\sum\left(\mathrm{C}_{\mathrm{A}}{ }^{*} \mathrm{~A}_{\mathrm{A}}\right)\right]$
(Not to exceed $2^{*} \mathrm{G}_{\mathrm{Z}}{ }^{*} \mathrm{G}_{\mathrm{H}}{ }^{*} A_{G}$)
where $A_{G}=$ Gross area of one tower face $\left(\mathrm{ft}^{2}\right)$

2.3.3 Velocity Pressure $\left(\mathrm{q}_{\mathrm{z}}\right)$ and Exposure Coefficient $\left(\mathrm{K}_{\mathrm{z}}\right)$

$\mathrm{a}_{z}=.00256^{*} \mathrm{~K}_{z} * V^{2}$	$V=$ Basic Wind Speed for the Structure Location (mph)
$\mathrm{K}_{\mathrm{z}}=(\mathrm{z} / 33)^{2 / 7}$	$\mathrm{z}=$ Ht. above avg. ground level to midpoint of section (ft.)
$1.00 \leq \mathrm{K}_{\mathrm{z}} \leq 2.58$	$A_{\mathrm{E}}=$ effective projected area of structural components in one face

2.3.4 \quad Gust Response Factors $\left(G_{H}\right)$

2.3.4.1 For latticed structures, gust response factor $\left(G_{H}\right)$ shall be calculated from the equation:
$\mathrm{G}_{\mathrm{H}}=0.65+0.60 /(\mathrm{h} / 33)^{1 / 7}(\mathrm{~h}$ in (ft.))
$1.0<G_{H}<1.25$
2.3.4.2 For Tubular pole structures, the gust response factor $\left(G_{H}\right)$ shall be 1.69
2.3.4.3 One gust response factor shall apply for the entire structure.
2.3.4.4 When Cantilevered tubular or latticed pole structures are mounted on latticed structures, the gust response factor the the pole and the latticed structure shall be based on the height of the latticed structure without the pole. The stresses calculated for the pole structures and their connections to latticed structures shall be multiplied by 1.25 to compensate for the greater gust response for the mounted pole structures.

2.3.5 Structure Force Coetticients (Keterence Iable I)

Site Name:	CTNH354 /	Co Drive	
Site No.	CTNH354A		
Done by:	GH	Checked by:	MSC
Date:	8/11/2014		

Date: $8 / 11 / 2014$

Velocity Pressure:

qz $=$	23.86	psf

[2.3.3]

Is member analyzing a tube pole structure?
If yes, then: Gh= 1.69

If no, then use value below:
Gh=
1.15
[2.3.4.1]

Gh= 1.69

Determine Cf:

If lattice structure see manual...

If cantlevered tube pole, then:
Use Correct Value from Table 1 Below:

TABLE 1
Coefficients (Cf) for Cantilevered Tubular Pole Structures

C (mph ft)	Round	16 Sided $\mathbf{r}<0.26$	16 Sided $\mathrm{r} \geq 0.26$	12 Sides	8 Sided
<32	1.2	1.2	1.2	1.2	1.2
32 to 64	$130 / \mathrm{C}^{1.3}$	$1.78+1.40 \mathrm{r}-\mathrm{C} / 91.5-\mathrm{Cr} / 22.9$	$.72+(64-\mathrm{C}) / 44.8$	$12.5 / \mathrm{C}^{.6}$	1.2
>64	0.59	$1.08-1.40 \mathrm{r}$	0.72	1.03	1.2

Derivation of Structure Coefficient (Cf):

Dp = Avg. Diam. or Avg. Least width of Tubular Pole Structure: \square

Site Name: CTNH354 / Siemon Co Drive
Site No.
Done by:
Date:

CTNH354A		
GH	Checked by:	
$8 / 11 / 2014$		

$\mathrm{C}=\left(\mathrm{K}_{\mathrm{z}}\right)^{1 / 2}$ *V*Dp (for Dp in ft [m]

$\begin{array}{cr}\begin{array}{c}\text { C } \\ (\mathrm{mph} \mathrm{ft})\end{array} & \text { Round Only Member } \\ & \\ <32 & 1.2 \\ 32<64 & 2.07 \\ >64 & 0.59\end{array}$
$C=24.14$
(Max $C f=1.2$)
($\mathrm{Min} \mathrm{Cf}=0.59$)

Determine Ae:

If tube structure, then use projected area including ice: If not a tube structure, then see manual.

$\mathrm{Ae}=$	2.96

[2.3.7]

Determine Ca:

2.3.7 The force coefficient $\left(C_{A}\right)$ applied to the projected area $\left(\mathrm{ft}^{2}\right)\left[\mathrm{m}^{2}\right]$ of a linear appurtenance $\left(A_{A}\right)$ not considered as a structural component shall be determined from Table 3. The force coefficient for cylindrical members may be applied to the additional projected area of radial ice when specified. (Refer to Figure 1.)

Note: Linear interpolation may be used to aspect ratios other than shown
2.3.8 Regardless of location, linear appurtenances not considered as structural components in accordance with 2.3.6.3 shall be included in the term $\Sigma C_{A} A_{A}$.
2.3.9 The horizontal force (F) applied to a section of the structure may be assumed to be uniformly distributed based on the wind pressure at the mid-height of the section.

Site Name:
Site No.
Done by: Date:

CTNH354 / Siemon Co Drive
CTNH354A GH $8 / 11 / 2014$

	Item \# I
Member Length (Inches):	96
Member Width (Inches):	11.9
Calculated Aspect Ratio:	8

Item \#2
0
0
\#DIV/0!
Item \#3
0
0
\#DIV/0!

Item \#4	Item \#5
0	0
0	0
\#DIV/0!	\#DIV $/ 0$!

From Table 3 Above:

$\mathrm{Ca}=$	1.4	1.4	1.4	1.4	1.4

Determine Aa: (sf)

From above:

	tem \#	Item \#2	Item \#3	Item \#4	Item \#5
$A a=$	7.93	0.00	0.00	0.00	0.00
	11.11	0.00	0.00	0.00	0.00

Calculated Sums of Ca*Aa:

11.11 sf

ICE WEIGHT CALCULATIONS

Project: CTNH354A

Thickness of ice:
0.75 in.

Weight of ice based on total radial SF area: (P) Antenna

Depth (in):
7.1
height (in): 96
Width (in): 11.9
Total weight of ice on object: 89 pounds ice
Weight of object:
50 pounds
Combined weight of ice and object: 139 pounds

Per foot weight of ice:
(P) Pipe
pipe weight per foot:
pipe length (ft):
3.66
diameter (in):
2.38

Per foot weight of ice on object:
Total weight of ice on object:
Total weight of pipe:
Combined weight of pipe and ice:
2 pounds ice /ft
17 pounds
29 pounds
47 pounds
*Density of ice used = 56 PCF

Site Name: CTNH354 / Siemon Co Drive
Site No. CTNH354A
Done by: GH
Checked by: MSC
Date: 8/11/2014

CHECK CONNECTION CAPACITY

Reference: Hilti HIT-HY 150 MAX Adhesive for Masonry

Epoxy Type =
Anchor Diameter = Embedment Depth =

Allowable Tensile Load =
$\mathrm{F}_{\text {Tall }}=$

Allowable Shear Load =
$F_{\text {Vall }}=\quad \quad 1375$ lbs.

WIND FORCES

Reaction $\quad F=\quad 224$ lbs.
(Worst Case)

GRAVITY LOADS

Ice and Equipment

No. of Supports =
No. of Anchors / Support =
HIT-HY150
1/2 in.
3-3/8 in. (Min.)

775 lbs.
van
ins.

Tension Design Load / Anchor =

Shear Design Load / Anchor=

$$
\mathrm{f}_{\mathrm{v}}=\quad 47.50 \mathrm{lbs} . \quad<\quad 1375 \mathrm{lbs} . \quad \text { Therefore, OK! }
$$

CHECK COMBINED TENSION AND SHEAR

f_{t} / F_{T}	+	f_{v} / F_{V}	≤ 1.0
0.145	+	0.035	$=0.179<1.0$ Therefore, OK !

Referenced Documents

February 17, 2009

Mr. Hans Fiedler
UMTS Development Project Manager
T \cdots Monte, USA
35 Griffin Rd South
Bloomfield, CT 06002

Ref: T-Mobile Site CTNH354A

Siemon Realty Company
27 Siemon Company Dr
Watertown, CT 06795
Dear Mr. Fiedler:
As requested, Bay State Design, Inc. performed the structural analysis of adding three UMTS quad pole antennas, adding three twin TMAs, and adding one proposed RBS 3106 cabinet on the existing concrete pad. Based on the structural analysis, field survey report, and the site file review completed for this site, it is concluded that the structure is adequate to support the additional loads imposed by the proposed changes.

This analysis is based on T-Mobile's RF data sheet Rev 2.0 dated 02/02/09. BSD shall be notified if there any changes.

Please feel free to contact this office if you have any questions.
Sincerely yours,

Design Calculations

SIte NAME: T-Mobile Siemon Realty Company
Project Number: CTNH354A
SITE ADDRESS: 27 Siemon Company Drive, Watertown, CT 06795
DESCRIPTION: Antenna Mount, Equipment Pad
Calculated by: Kenny Wang

CHECKED BY: Ram Satyaprasad, P.E

DATE: February 17, 2009

BAY STATE DESIGN

Bay State Wesign，Inc
Architects．Fingineers
715 Tower Oflice Park
Woburn，\tat 01sol
Phone（781）43こ－こ．67
Fが（781）932－977！

Project	CTNH354A	Job No．	2898．302	Page	1 of
	WATERTOWN，CT	Computed by	KW	Date	2／17／09
Detail		Checked by		Date	

Reference：1． 2005 Connecticut Building Code
2．Structural Standard for Antenna Supporting Structures and Antennas（TIA－222－G）
3．Steel Construction Manual by AISC（13th Edition）

Equipment：1．RBS 3106 （64．0＂H X 51．2＂W X 28．0＂D）： 1874 1bs
2．Proposed Antenna（APX16DWV－16DWVS）： 48.2 lbs （55．9＂H X 13．3＂W X 3．15＂D）
2．Proposed Antenna（APX16PV－16PVL）： 40 lbs （53．0＂H X $13^{\prime \prime} \mathrm{W}$ X $\left.3.15^{\prime \prime} \mathrm{D}\right)$

Basic Wind Speed（ 3 second gust）V ： 95 MPH
Structure Classification：Class III
Importance Factor I： 1.15 （wind load without ice）

Exposure Category ：$C \quad Z_{g}=900 \mathrm{ft}$
$\alpha=9.5$
$K_{z_{\text {（min）}}}=0.85$
z（height above ground level）$=125.0 \mathrm{ft}$
$K_{z}=2.01\left(z / Z_{g}\right)^{2 / \alpha}=1.33$
$K_{z t}=1.0$（Topographic Category：1）

Wind Direction Probability Factor K_{d} ： 0.95
（tubular pole structure）

Velocity Pressure $q_{z}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{G}} \mathrm{Iv}^{2}$
$\mathrm{q}_{\mathrm{z}}=33.5 \mathrm{psf}$

BAY STATE
Raj state Design ne
Archacels • Finguneers
70 Tower ()ffice Park
Woburn. NA (H[s]l
Phone 781 332.2t07
Fax 1781)932-9771

WIND LOAD @ ANTENNA
$F_{A}=q_{z} G_{n} K_{a}(E P A)=33.5 p s f \times 1.35 \times 1.0 \times 6.6 / 4.66=64 \mathrm{lb} / \mathrm{ft}$
WIND LOAD@ 2 " ϕ PIPE
$F_{S T}=q_{z} G_{h} C_{f} A_{P}=33.5 \mathrm{psf} \times 1.1 \times 1.2 \times 2.38 / 12=9 \mathrm{pb} / \mathrm{ft}$

$$
\begin{aligned}
& V_{\max }=110 \mathrm{lbs} \\
& M_{\max }=46.4 \mathrm{ft}-\mathrm{Qb}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { PIPE 2" STD. (WT. } \left.3.66 \mathrm{lb} / \mathrm{ft} A=1.0 \mathrm{in}^{2} Z=0.713 \mathrm{in}^{3}\right) \quad F_{Y}=35.0 \mathrm{ksi} \\
V_{n} / \Omega & =0.6 F_{Y} A / 2 \Omega=0.6 \times 35 \times 1.0 / 2 \times 1.67=6.3 \mathrm{kips}>0.11 \mathrm{oK} \\
M_{n} / \Omega & =35.0 \times 0.713 / 1.67
\end{array}\right)=14.9 \mathrm{in}-\mathrm{K} .
$$

BAY STATE
Bay State Destgn Inc DESIGN Archuceis. ingincers

70) Tower Oftice Park

Fax: ィ781: 9320771

Project	CTNH354A	Job No.	2898.302	Page	3 of
	WATERTOWN, CT	Computed by	K W	Date	2/17/09
Detail		Checked by		Date	

CHECK L $3 \times 3 \times 1 / 4 \times 9^{\prime \prime}$ LG.

$$
\begin{aligned}
& M(@ \text { SEC. B) }=0.034 \times 4.44+0.183 \times 1.75=0.47 \mathrm{in}-\mathrm{K} \\
& \quad Z=9 \times 0.252 / 4=0.14 \mathrm{in}^{3} \\
& \quad M_{n} / \Omega=36.0 \times 0.14 / 1.67=3.0 \mathrm{in}-\mathrm{K}>0.47 \mathrm{OK}
\end{aligned}
$$

FORCE @ A

$$
\begin{aligned}
& \text { SHEAR }=34 / 2=17 \mathrm{xbs} / \text { BOLT } \\
& \text { TENSION }=183 / 2+(34 \times 4.69+183 \times 4.75) / 1.25 \times 2=503 \mathrm{ebs}
\end{aligned}
$$

HILTI HIT-HY 150 MAX ADHESIUE ANCHOR ($1 / 2^{\prime \prime} \phi \omega / 33 / 8^{\prime \prime}$ EMBEOMENT)
ALLOWABLE SHEAR $=1375 \mathrm{R} 6 \mathrm{~s}$
ALLOWABLE TENSION $=775 \mathrm{ebS}$
$\left(\frac{17}{1375}\right)^{5 / 3}+\left(\frac{503}{775}\right)^{5 / 3}=0.49<1.0$ OK.

BAYSTATE
Bay State Lesign．Inc DESIGN

Architects • Vingoncers
71）Tower Oftice Park：
Hoburn．MA $1918 \cdot 91$
Phone（78！！3ヶ2－2tい？
トа：「781）032－9771

Project	CTNH354A	Job No．	2898.302	Page	4 of 6
	WATERTOWN，CT	Computed by	K ω	Date	2／17／09
Detail		Checked by		Date	

TWIN TMA（ATMFF1412D－1CWA）
$13.8^{\prime \prime H} \times 8.7^{\prime \prime} D \times 3.1^{\prime \prime W} ; W E I G H T=13$ ebs

WIND LOAD © TWIN TMA
$F_{A}=q_{z} G_{h} K a C_{a} A=33.5 p 5 f \times 1.35 \times 1.0 \times 1.2 \times 13.8 \times 8.7 / 144=45 \mathrm{lbs}$

OPTIOH）I（MOUNT ON THE PIPE）

OPTION II（MOUNIT OH THE WALL）

Project	CTNH354A	Job No. Computed by Checked by	2898,302	Page	5 of 6
	WATERTOWN, CT		KW	Date	2/17/09
Detail				Date	

Reference: 1. 2005 Connecticut Building Code
2. Structural Standard for Antenna Supporting Structures and Antennas (TIA-222-G)
3. Steel Construction Manual by AISC (13th Edition)

Equipment: 1. RBS 3106 (64.0 "H X $51.2^{\prime \prime} \mathrm{W}$ X 28.0 DD): 1874 lbs
2. Proposed Antenna (APX16DWV-16DWVS): 48.2 lbs (55.9"H X 13.3"W X 3.15'D)
2. Proposed Antenna (APX16PV-16PVL) : 40 Ibs (53.0"H X 13"W X 3.15"D)

```
Basic Wind Speed (3 second gust) V : }95\textrm{MPH
Structure Classification: Class III
Importance Factor I: 1.15 (wind load without ice)
Exposure Category : C Z Zg}=900\textrm{ft
                    \alpha=9.5
                    K}\mp@subsup{\textrm{z}(\mathrm{ min) }}{}{}=0.8
```

z (height above ground level) $=3.0 \mathrm{ft}$

$$
K_{z}=2.01\left(z / Z_{g}\right)^{2 / \alpha}=0.60
$$

$K_{z t}=1.0$ (Topographic Category: 1)

Wind Direction Probability Factor K_{d} : 0.95
(tubular pole structure)

Velocity Pressure $\mathrm{q}_{\mathrm{z}}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{d}} I \mathrm{v}^{2}$

$$
q_{z}=15.3 \mathrm{psf}
$$

WINJO LOAD@RBS 3106
$F_{A}=q_{z} G_{n} K_{a} C_{a} A=15.3 p s f \times 1.35 \times 1.0 \times 1.2 \times 64 \times 51.2 / 144=5642 \mathrm{bs}$

$$
\begin{aligned}
& \bar{\pi} \text { EXISTING } 8^{\prime \prime} \\
& \text { CONCRETE PAD }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SHEAR }=564 / 4=141 \mathrm{lbs} / 30 L T \\
& \text { TENSION }=0 \\
& \text { HILTI HIT HY } 150 \text { MAX ADHESIVE ANCHOR } \\
& 5 / 8^{\prime \prime} \phi \text { HASROD } \omega / 27 / 8 "(M / N .) \text { EMBEDMENT } \\
& \text { ALLOWABLE TENSION }=1940 \mathrm{lbS}>0 \\
& \text { ALLOGABLE SHEAR }=4095 \text { RbS }>141265 \\
& \text { PROUIOE (4)-5/8" } \quad \text { HILTI HIT HY } 150 \text { MAX AOHESUUE } \\
& \text { ANCHORS } \omega / 27 / 8^{\prime \prime}(M I N .) \text { EMBEOMENT }
\end{aligned}
$$

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CTNH354A
Siemon Company Drive
27 Siemon Company Drive Watertown, CT 06795

August 25, 2014

site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	22.98%

August 25, 2014

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CTNH354A - Siemon Company Drive

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 27 Siemon Company Drive, Watertown, CT, for the purpose of determining whether the emissions from the Proposed TMobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The general population exposure limit for the 700 MHz Band is $567 \mu \mathrm{~W} / \mathrm{cm} 2$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm} 2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 27 Siemon Company Drive, Watertown, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) $\mathbf{2}$ UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition $97-01$ recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the RFS APX16DWV-16DWVS-E-A20 for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-A1M for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APX16DWV-16DWVS-E-A20 has a maximum gain of $\mathbf{1 5 . 6}$ dBd at its main lobe. The Commscope LNX-6515DS-A1M has a maximum gain of $\mathbf{1 5 . 5}$ $\mathbf{d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 2 3}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{aligned} & \text { RFS APX16DWV- } \\ & \text { 16DWVS-E-A20 } \end{aligned}$	Make / Model:	$\begin{aligned} & \text { RFS APX16DWV- } \\ & \text { 16DWVS-E-A20 } \end{aligned}$	Make / Model:	RFS APX16DWV-16DWVS-E-A20
Gain:	15.6 dBd	Gain:	15.6 dBd	Gain:	15.6 dBd
Height (AGL):	123	Height (AGL):	123	Height (AGL):	123
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS)/ } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Channel Count	6	\# PCS Channels:	6
Total TX Power:	90	Total TX Power:	90	\# AWS Channels:	90
ERP (W):	3,776.88	ERP (W):	3,776.88	ERP (W):	3,776.88
Antenna A1 MPE\%	2.29	Antenna B1 MPE\%	2.29	Antenna C1 MPE\%	2.29
Antenna\#:	2	Antenna\#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ \text { 6515DS-A1M } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ 6515 \text { DS-A1M } \end{gathered}$	Make / Model:	Commscope LNX- 6515DS-A1M
Gain:	15.5 dBd	Gain:	15.5 dBd	Gain:	15.5 dBd
Height (AGL):	123	Height (AGL):	123	Height (AGL):	123
Frequency Bands	700 Mhz	Frequency Bands	700 Mhz	Frequency Bands	700 Mhz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power;	30
ERP (W):	470.23	ERP (W):	470.23	ERP (W):	470.23
Antenna A2 MPE\%	0.60	Antenna B2 MPE\%	0.60	Antenna C2 MPE\%	0.60
	Site Composite MPE\%			T-Mobile Sector 1 Total:	I: $\quad 2.89 \%$
	Carrier	MPE\%		T-Mobile Sector 2 Total:	$1: \quad 2.89 \%$
	T-Mobile	8.66		T-Mobile Sector 3 Total:	l: 2.89%
	AT\&T	14.32 \%		Site Total:	1: 22.98%
	Site Total MPE \%:	22.98 \%			

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	2.89%
Sector 2:	2.89%
Sector 3:	2.89%
T-Mobile Total:	8.66%
Site Total:	22.98%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 2 . 9 8 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803°

[^0]: ${ }^{1}$ While the online docket for the Connecticut Siting Council does not provide a docket or petition number for approval of this structure, it does reference this structure in connection with a notice of intent captioned TS-T-MOBILE-153-060207.
 ${ }^{2}$ The structural analysis indicates that the pipe mast will be swapped out with new longer pipe masts to accommodate the new larger antennas (Exhibit B, p. 4).

 | 1115 Broad Street | 158 Deer Hill Avenue | 320 Post Road West | 657 Orange Center Road |
 | :--- | :--- | :--- | :--- |
 | PO. Box 1821 | Danbury, CT 06810 | Westrort, CT 06880 | Orange, CT 06477 |
 | Bridgeport, CT 06601-1821 | Tel: (203) 792-2771 | TEl: (203) 222-1034 | Tel: (203) 298-4066 |
 | Tel: (203) 368-0211 | Fax: (203) 791-8149 | Fax: (203) 227-1373 | Fax: (203) 298-4068 |

 FAX: (203) 394-9901

