STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

March 3, 2023
Mark Roberts
SAI Group
12 Industrial Way
Salem, NH 03079
Mark.Roberts@ QCDevelopment.net
RE: EM-AT\&T-153-230214 - AT\&T notice of intent to modify an existing telecommunications facility located at 27 Siemon Company Drive, Watertown, Connecticut.

Dear Mark Roberts:
The Connecticut Siting Council (Council) is in receipt of your correspondence of March 2, 2023 submitted in response to the Council's February 28, 2023 notification of an incomplete request for exempt modification with regard to the above-referenced matter.

The submission renders the request for exempt modification complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

Melanie Bachman
Executive Director
MAB/ANM/laf

From: Mark Roberts <mark.roberts@ qcdevelopment.net>
Sent: Thursday, March 2, 2023 9:09 AM
To: Fontaine, Lisa Lisa.Fontaine@ct.gov
Cc: CSC-DL Siting Council Siting.Council@ct.gov
Subject: RE: Council Incomplete - EM-AT\&T-153-230214 (Siemon Company Drive) - Watertown
Importance: High
Hello - In response to your attached incompleteness letter, please find attached the corrected Structural Analysis. A hard copy will follow by mail.

Thanks
Mark Roberts
QC Development
860-670-9068

Chimney Design Calculations by ICC Commonwealth
 795 Wurlitzer Drive, North Tonawanda, NY 14120

Customer: TEP Northeast
ICC Project Number: 2248
Site: 76 Westbury Park Road | Watertown, CT 06795
Chimney Description: 140' Radial Brick Chimney

Summary:

The following is a structural analysis of a 140^{\prime} radial brick chimney at site mentioned in title above. With the proposed AT\&T cellular equipment modifications at the 135^{\prime} elevation, it was found that the chimney shell is not overstressed. This analysis assumes the brick chimney is in good condition with sound brick and mortar throughout its height. Therefore, the chimney must have the repairs noted below to make the chimney usable for AT\&T to install their proposed equipment. This analysis assumes all repairs required from list below have been completed and all antenna mounts have been designed by others. If repairs are ignored, this chimney will likely be overstressed structurally which may lead to further damage and possible chimney failure. The existing foundation was not analyzed and therefore is not a design responsibility of ICC Commonwealth.

Repairs required:

1) Rake out and point all loose and open mortar joints on the exterior of radial section of the chimney column. Approximately 20% to 25% is required.
2) Replace spalled brick faces in the radial section of the chimney. Approximately (12) to (15) are required.
3) Rake out and point all loose and open mortar joints throughout the common brick pedestal. Approximately 10% to 15% is required.
4) Remove and replace loose brickwork in the corbel section of the pedestal on the East side.
5) Partial removal and replace the deteriorated sections of the cement water table at the top of the pedestal.
6) Cut out and point the 8^{\prime} to 9^{\prime} vertical crack found on the South side of the pedestal.
7) Cut out and point the vertical crack on the West side of the brick pedestal.
8) Remove loose and deteriorated spalls withing exterior of the foundation and repair with Sika Top 123 Plus. Repair remaining cracks with Sika Flex 11FC.
9) Repair and replace (2) broken downlead anchors and reattached lightning protection downlead on the East side.
10) Install new self-taping screws to hold down the roof access panel on the side lifting.

Analysis Results

Approved - Structure can accommodate the proposed changes. No repairs required.

Conditional Approval - Structure can accommodate the proposed changes. Repairs required.

Not Approved - Structure cannot accommodate the proposed changes without reinforcement.

All repairs should be supervised under a qualified and experienced professional. If repairs are required and not performed and supervised by a licensed professional engineer, additional inspection is required.

Search Information

Address:	76 Westbury Park Rd, Watertown, CT 06795, USA
Coordinates:	$41.6037641,-73.1117191$
Elevation:	482 ft
Timestamp:	$2022-06-03 T 19: 20: 02.757 \mathrm{Z}$
Hazard Type:	Wind

ASCE 7-16		ASCE 7-10		ASCE 7-05	
MRI 10-Year	75 mph	MRI 10-Year	76 mph	ASCE 7-05 Wind Speed	98 mph
MRI 25-Year	83 mph	MRI 25-Year	85 mph		
MRI 50-Year	89 mph	MRI 50-Year	91 mph		
MRI 100-Year	96 mph	MRI 100-Year	97 mph		
Risk Category I	106 mph	Risk Category I	108 mph		
Risk Category II	116 mph	Risk Category II	119 mph		
Risk Category III	125 mph	Risk Category III-IV	127 mph		
Risk Category IV	129 mph				

You are in a wind-borne debris region if you are also within 1 mile of the coastal
mean high water line.

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does

Height of chimney, h Define risk category Define exposure factor Basic wind speed, V

140
II
Bt
116
mph

0.85
1.0
1.0
1.0

Wind pressure, q

Table 1.5-1
Section 26.7.3
Attached Sheet, ASCE 7-16 wind properties

Section 26.11.1
Section 26.8.2
Round chimney, Table 26.6-1
Section 26.9
$q=0.00256 K_{z t} K_{d} K_{e} G V^{2}$ (Eq. 26.10-1)

SECTION	ΔH (ft)	K_{z}	C_{f}	$\begin{gathered} \hline \text { (factored) } \\ C_{f} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{des}} \\ (\mathrm{psf}) \end{gathered}$	$0.6 * F_{\text {des }}$ (psf)	Shape
1	130-140	1.08	1.11	1.44	45.63	27.38	Round
2	120-130	1.05	1.10	1.43	43.96	26.38	Round
3	110-120	1.03	0.85	0.86	25.89	15.53	Round
4	90-110	0.99	0.84	0.85	24.59	14.76	Round
5	70-90	0.93	0.84	0.85	23.10	13.86	Round
6	50-70	0.85	0.83	0.84	20.86	12.52	Round
7	30-50	0.76	0.83	0.83	18.47	11.08	Round
8	10-30	0.62	1.23	1.23	22.33	13.40	Octagon
9	0-10	0.57	1.23	1.23	20.53	12.32	Octagon

$\mathrm{F}_{\text {des }}=\mathrm{q}^{*} \mathrm{~K}_{\mathrm{z}}{ }^{*} \mathrm{C}_{\mathrm{f}}$
$\mathrm{F}_{\text {des }}<16 \mathrm{psf}$, then use 16 psf for minimum wind pressure 27.1.5 and 28.3.4
$0.6^{*} \mathrm{~F}_{\text {des }}$ based on ASD Load Combination 2

Calculate K_{z} as mid-height elevation of section for exposure category using Table 26.10-1
Calculate C $_{f}$ from Figure 29.4-1
Rough for standard brick, very rough at locations of equipment \& antenna
30% increase in C_{f} at regions with antennas

Input Stack Profile Data:

Starting from top of stack and working downward, enter data for each stack section to be analyzed:

$\left(\begin{array}{c}8 \\ 10 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 24 \\ 26 \\ 0\end{array}\right)$ in
$\underbrace{0}_{0}$

Input Wind Load and Unit Weight Data:

Starting from top of stack and working downward, enter data for each stack section to be analyzed:

Calculate Total Number of Stack Sections:

NoSections $=$ Total number of stack sections
being analyzed

$$
\text { NoSections }:=\left\{\begin{array}{l}
\mathrm{Mp} \leftarrow 0 \\
\text { for } \mathrm{r} \in 1 . .35 \\
\begin{array}{l}
\mathrm{Mp}_{\mathrm{r}} \leftarrow 1 \text { if } \operatorname{SectHgt}_{\mathrm{r}}>0 \\
\mathrm{Mp}_{\mathrm{r}} \leftarrow 0 \text { if } \text { SectHgt }_{\mathrm{r}} \leq 0
\end{array}
\end{array}\right.
$$

$$
\sum \text { NoSections }=9
$$

$$
\underset{\sim}{N}:=\sum \text { NoSections }
$$

$$
\mathrm{N}=9 \quad(\mathbf{N} \text { is used in calculations below })
$$

Calculate Stress:

Fa = Axial load at bottom of each stack section. This includes all dead load above the bottom of the stack section, including the stack section itself plus all other stack sections above it.

$$
\mathrm{Fa}:=\left\lvert\, \begin{aligned}
& \text { for } \mathrm{r} \in 1 . . \mathrm{N} \\
& \mathrm{Fa}_{\mathrm{r}} \leftarrow \frac{\text { DeadLoad }_{\mathrm{r}}}{\text { Area }_{\mathrm{r}}} \\
& \mathrm{Fa}
\end{aligned}\right.
$$

$\mathrm{Fb}=$ Bending stress due to wind at bottom of each stack section. This includes all wind load on the stack section itself plus the wind load on all stack sections above it.

$\mathrm{Fa}=\left(\begin{array}{c}8.264 \\ 14.681 \\ 22.148 \\ 33.165 \\ 42.621 \\ 51.064 \\ 58.909 \\ 58.496 \\ 63.432\end{array}\right) \cdot \frac{\mathrm{lb}}{\mathrm{in}^{2}} \quad \mathrm{Fb}=\left(\begin{array}{c}2.562 \\ 7.844 \\ 15.34 \\ 28.021 \\ 38.852 \\ 47.659 \\ 54.728 \\ 49.621 \\ 54.797\end{array}\right) \cdot \frac{\mathrm{lb}}{\mathrm{in}^{2}}$

The weight of the antennas is negligible to the self weight of the chimney, therefore it is essentially no change to the seismic response of the structure due to this equipment.

Allowable stresses on the chimney using Code ACI 530-13/ASCE 5-13/TMS 402-13

Height of Chimney (h in feet)	140	$\mathrm{f}_{\mathrm{m}}{ }^{\prime}(\mathrm{psi}) 1,000$

Sect.	Wall Thk. (in)	$\begin{aligned} & \mathrm{OD} \\ & (\mathrm{ft}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { ID } \\ \text { (ft) } \end{gathered}$	(ft)	h/r	$\begin{gathered} \mathrm{F}_{\mathrm{a}} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \hline \mathrm{F}_{\mathrm{bc}} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{f}_{\mathrm{a}} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \hline \mathrm{f}_{\mathrm{bc}} \\ (\mathrm{psi}) \end{gathered}$	$\begin{aligned} & \left(\mathrm{f}_{\mathrm{a}} / \mathrm{F}_{\mathrm{a}}\right)+ \\ & \left(\mathrm{f}_{\mathrm{bc}} / \mathrm{F}_{\mathrm{bc}}\right) \end{aligned}$	$\begin{gathered} \hline \mathrm{f}_{\mathrm{bt}} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{bt}} \\ (\mathrm{psi}) \end{gathered}$	$\mathrm{f}_{\mathrm{bt}} / \mathrm{F}_{\mathrm{bt}}$
1	8	8.73	7.40	2.86	48.94	219	333	8.26	2.56	0.045	-2.40	25	-0.10
2	10	9.14	7.47	2.95	47.43	221	333	14.68	7.84	0.090	-0.96	25	-0.04
3	10	9.54	7.87	3.09	45.27	224	333	22.15	15.34	0.145	2.05	25	0.08
4	12	10.34	8.34	3.32	42.16	227	333	33.17	28.02	0.230	8.12	25	0.32
5	14	11.14	8.81	3.55	39.43	230	333	42.62	38.85	0.302	13.28	25	0.53
6	16	11.95	9.28	3.78	37.01	233	333	51.06	47.66	0.363	17.02	25	0.68
7	18	12.75	9.75	4.01	34.89	234	333	58.91	54.73	0.416	19.38	25	0.78

For $h / r<99: F_{a}=(1 / 4) f_{m}{ }^{\prime}[1-(h / 140 r$.
For $\left.h / r>99: F_{a}=(1 / 4) f_{m}{ }^{\prime}(70 r / h)^{2}\right]$
$F_{b c}=(1 / 3) f_{m}$
$f_{b t}=(+)$ compressive, $(-)$ tensile $=f_{b c}-0.6 * f_{a}$

Octagonal Stresses

Chimney section

B
b
Unit Weight
Height
Dead Load Above
Moment

14.08	ft
10.08	ft
125	pcf
20	ft
449,716	lb
$1,444,583$	$\mathrm{ft}-\mathrm{lb}$

$\mathrm{A}_{\text {out }}=0.83 * \mathrm{~B}^{2}$
$\mathrm{A}_{\mathrm{in}}=0.83 * \mathrm{~b}^{2}$
$A_{\text {total }}=A_{\text {out }}-A_{\text {in }}\left(\mathrm{ft}^{2}\right)$

164.54
84.33
ft^{2}
80.21
ft^{2}

Moment of Inertia, $\mathrm{I}=(\mathrm{A} / 12) *\left[\mathrm{~B}^{2}\left(1+2 \cos ^{2}(22.5) / 4 \cos ^{2}(22.5)\right]\right.$

| $I_{\text {out }}$
 $I_{\text {in }}$
 ft^{4}
 $\mathrm{I}_{\mathrm{t}}=I_{\text {out }}-I_{\text {in }}\left(\mathrm{ft}^{4}\right)$$\quad 2,156$ |
| :--- | ---: |
| ft^{4} |

Section Modulus, $S=I / c$ where $c=B / 2$
S

Weight of Pedestal Total Dead Load

200,528	lbs
	650,244
Ibs	

(Unit Weight * Height * Area)
(Weight of Pedestal + Dead Load Above)

Axial, $f_{a}=D L / A$
Bending, $f_{b}=M / S$
$f_{t}=f_{a}-f_{b}$

56	psi
44	psi
11.860	psi

(+) tensile, (-) compression

Allowable tensile, F_{a} 40.0 psi

Ratio: f_{t} / F_{a}
0.297

PASS Must be < 1.0

Octagonal Stresses

Chimney section

B
b
Unit Weight
Height
Dead Load Above
Moment

14.08	ft
9.75	ft
125	pcf
10	ft
639,520	lb
$1,666,801$	$\mathrm{ft}-\mathrm{lb}$

$\mathrm{A}_{\text {out }}=0.83 * \mathrm{~B}^{2}$
$\mathrm{A}_{\mathrm{in}}=0.83 * \mathrm{~b}^{2}$
$A_{\text {total }}=A_{\text {out }}-A_{\text {in }}\left(\mathrm{ft}^{2}\right)$

164.54
78.90
85.64
ft^{2}
ft^{2}

Moment of Inertia, $\mathrm{I}=(\mathrm{A} / 12) *\left[\mathrm{~B}^{2}\left(1+2 \cos ^{2}(22.5) / 4 \cos ^{2}(22.5)\right]\right.$

$I_{\text {out }}$ $I_{\text {in }}$ ft^{4} $I_{\mathrm{t}}=I_{\text {out }}-I_{\text {in }}\left(\mathrm{ft}^{4}\right)$	2,156 ft^{4}

Section Modulus, $\mathrm{S}=\mathrm{I} / \mathrm{c}$ where $\mathrm{c}=\mathrm{B} / 2$
S

Weight of Pedestal Total Dead Load

107,053	lbs
746,573	lbs

(Unit Weight * Height * Area)
(Weight of Pedestal + Dead Load Above)

Axial, $f_{a}=D L / A$
Bending, $f_{b}=M / S$
$f_{t}=f_{a}-f_{b}$

61	psi
49	psi
11.445	psi

(+) tensile, (-) compression

Allowable tensile, F_{a} 40.0 psi

Ratio: f_{t} / F_{a}
0.286

PASS Must be < 1.0

