Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 3, 2023

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 35 South Bartlett Road, Waterford, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced address (the "Property"). Cellco's facility consists of antennas and remote radio heads attached to a tower. Equipment associated with the facility is located on the ground adjacent to the tower. Cellco's facility was approved by the Siting Council ("Council") in September of 2015 (PE1133-VER-20150805). A copy of the Council's PE1133-VER-20150805 approval is included in Attachment 1.

Cellco's proposed modification involves the installation of four (4) interference mitigation filters ("filters") on Cellco's existing antenna platform and mounting assembly. The filter specification sheet is included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Brooklyn's Chief Elected Official and Land Use Officer. The Town of Waterford is the owner of the Property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The filters will be installed on Cellco's existing antenna platform and mounting assembly.

Robinson+Cole

Melanie A. Bachman, Esq. August 3, 2023 Page 2

- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new filters will not result in a change to radio frequency (RF) emissions from the facility. Therefore, no new RF emissions information is included in this filing.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, foundation, antenna platform and mounting assembly can support Cellco's proposed modifications. A copy of the SA and MA are included in <u>Attachment 3</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 4</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 5.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Kunie gmu-

Enclosures

Copy to:

Robert J. Brule, First Selectman Jonathan Mullen, Planning Director Kamoya Bautista, Verizon Wireless

ATTACHMENT 1

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 B-Mail: siting.council@ct.gov www.ct.gov/csc

September 28, 2015

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: PE1133-VER-20150805 – Cellco Partnership d/b/a Verizon Wireless sub-petition for a declaratory ruling for approval of an eligible facility request for modifications to an existing telecommunications facility located at 35 South Bartlett Road, Waterford, Connecticut.

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) hereby approves your Eligible Facilities Request (EFR) to install antennas and associated equipment at the above-referenced facility pursuant to the Federal Communications Commission Wireless Infrastructure Report and Order, with the following conditions:

- Install feed lines and remote radio heads in accordance with the structural analysis report prepared by FDH Velocitel dated April 21, 2015 and stamped by Dennis Abel;
- Within 45 days following completion of the equipment installation, Cellco shall provide documentation that its installation complied with the recommendations of the structural analysis;
- Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and
 operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- The validity of this action shall expire one year from the date of this letter; and
- The petitioner may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the EFR received August 5, 2015.

Thank you for your attention and cooperation.

Very truly yours,

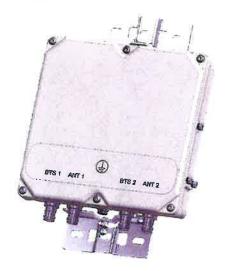
Melanie Bachman

Acting Executive Director

MB/MP

c: Honorable Daniel M. Steward, First Selectman, Town of Waterford Mark A. Wujtewicz, Planner, Town of Waterford

ATTACHMENT 2


BSF0020F3V1-1

TWIN BANDSTOP 900MHZ INTERFERENCE MITIGATION FILTER

The BSF0020 is ideal for co-located 700, 850 and 900 networks. Utilising a 2,6MHz guardband the BSF0020 provides rejection of the 900 UL band while passing 700/850 UL and DL bands. Capable of being used in an outdoor environment the BSF0020 contains two identical bandstop filters, suitable for 2x2 MIMO configuration, offering excellent insertion loss, group delay and rejection.

FEATURES

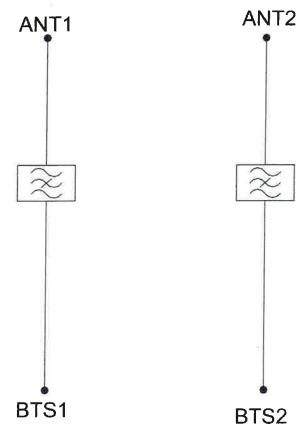
- · Passes full 700 and 850 bands
- Low insertion loss
- · Rejection of 900MHz uplink
- DC/AISG pass
- Twin unit
- Dual twin mounting available

BAND NAME	700 PATH / 850 UPLINK PATH	850 DOWNLINK PATH
Passband	698 - 849MHz	869 - 891 5MHz
Insertion loss	0.1dB typical / 0.3dB maximum	0.5dB typical, 1.45dB maximum
Return loss	24dB typical,	8dB minimum
Maximum input power (Per Port)	100W average	200W average and 66W per 5MHz
Rejection	53dB minimum @	894.1 - 896.5MHz
ELECTRICAL		
Impedance	500	nns
Intermodulation products	-160dBc məximum in UL Band (assuming -153dBc məximur	
DC / AISG		
Passband	0 - 13	MHz
Insertion loss	0,3dB m	aximum
Return loss	15dB m	nimum
Input voltage range	± 3	3V
DC current rating	2A continuou	ıs. 4A peak
Compliance	3GPP TS	25,461
ENVIRONMENTAL		
For further details of environmental co	ompliance, please contact Kaelus.	
Temperature range	-20°C to +60°C	-4°F to +140°F
Ingress protection	IPE	7
Altitude	2600m	8530ft
Lightning protection	RF port: ±5kA maximum (8/20us), IEC 61000-4-5 – Unit m	ust be terminated with some lightning protection circuits
MTBF	>1,000,00	00 hours
Compliance	ETSI EN 300 019 class 4.1H,	RoHS, NEBS GR-487-CORE
MECHANICAL		
Dimensions H x D x W	269 x 277 x 80mm 10.60 x 10.90 x 3.15	in (Excluding brackets and connectors)
Weight	8.0 kg 17.6 lb:	s (no bracket)
Finish	Powder coated, ligh	at grey (RAL7035)
Connectors	RF: 4.3-1	O(F) x 4

Optional pole/wall bracket supplied with two metal clamps 45-178mm diameter poles or custom bracket. See ordering

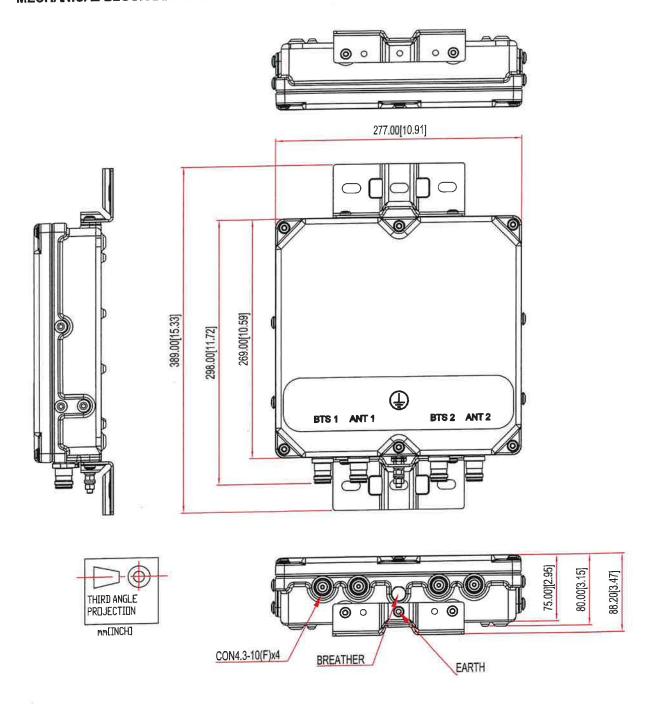
information.

Mounting



ORDERING INFORMATION

OKDERING III. Grans (SONEIGURATION	OPTIONAL FEATURES	CONNECTORS
PART NUMBER BSF0020F3V1	TWIN, 2 in / 2 out	DC/AISG PASS NO BRACKET	4,3-10 (F)
BSF0020F3V1-1	TWIN, 2 in / 2 out	DC/AISG PASS	4.3-10 (F)
BSF0020F3V1-2	QUAD, 4 in / 4 out	DC/AISG PASS	4.3-10 (F)



ELECTRICAL BLOCK DIAGRAM

MECHANICAL BLOCK DIAGRAM

ATTACHMENT 3

T + 561.995.7670 F + 561.995.7626

sbasite.com

Structural Analysis Report

Client: Verizon

Client Site ID / Name: 5000244862 / Quaker Hill CT Application #: 232427, v2

SBA Site ID / Name: CT09680-S / Rogers Hill

180' Self Supporting Tower

35 South Bartlett Road Quaker Hill, CT 06375 Lat: 41.417653, Long: -72.106728

Project number: CT09680-VZW-070723

Analysis Results

Tower	86.8%	Pass
Foundation	62.3%	Pass

Change in tower stress due to mount modification / replacement	N/A
--	-----

Prepared by:

Reviewed by:

Daniel Yohannes Structural Engineer II 214-570-8110 ext 2626 dyohannes@sbasite.com Anantha (Shan) Shanubhogue, P.E. Senior Manager, Structural Engineering 561-981-7390 SShanubhogue@sbasite.com

July 10, 2023

Table of Contents

Introduction	
Analysis Criteria	
Appurtenance Loading	
Analysis Results	
Tower	
Conclusions	
Installation Requirements	
Assumptions and Limitations	
	······································
Appendix	
Tower Geometry	
Coax Layout	***************************************
tnxTower Report	
Foundation Analysis Report	

Introduction

The purpose of this report is to summarize the analysis results on the 180' Self Supporting Tower to support the proposed antennas and transmissions lines in addition to those currently installed.

Table 1 List of Documents Used

Item	Document
Tower Design	World Tower Company, Inc , Job #: Q071062 , Dated: 12/5/2007
Foundation Design	World Tower Company, Inc , Job #: Q071062F , Dated: 1/8/2008
Geotechnical report	Clarence Welti Associates, Inc. , Dated: 12/17/2007
Modification drawings	N/A
Mount Analysis	Maser Consulting, Project # 20777648A, dated 04/20/2021
Latest SA Report	SBAE, Project # CT09680-VZW-061721, dated 7/21/2021 (Redlined)

Analysis Criteria

Table 2 Code Related Data

Connecticut / New London / Quaker Hill
ANSI/TIA-222-H , 2021 IBC, 2022 CSBC
126 mph
50 mph
60 mph
1 in
C
1
0 ft.
261.8 ft.
0.194
0.053

This structural analysis is based upon the tower being classified as a Risk category II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Appurtenance Loading

Existing Loading:

Table 3 Existing Appurtenances

Mount Elev. (ft)	CL Elev. (ft)	Туре	Qty	Manufacturer	Model on Expending	Feed Line Size	Mount Type Qty.	Carrier
	187.5	Omni	2	Sinclair	SC488-HF2LNF		AND I SHEET WARD	
180	182.5	Omni	1	Telewave	ANT150F2	(3) 1-5/8"	(3) Standoff w/ tieback	Town of
	180	TMA	1	dbSpectra	ATSSTMA10			Waterford
		Panel	3	Ericsson	Air 21 B2A/B4P			
		Panel	3	Ericsson	AIR6449 B41			
		Panel	3	RFS	APXVAARR24_43-U-NA20	(4) 1-5/8"	(3) 12.5' T-Frame	
150	150	Panel	3	Ericsson	AIR32 KRD901146-1_B66A_B2A (Octo)	(9) 1-5/8"	(6) V-Bracing Kit	T-Mobile
		TMA	3	Ericsson	KRY 112 144/1	Fiber	[Metrosite MS-C1B-2875P]	
- 1		RRU	3	Ericsson	Radio 4449 B71+B85			
		RRU	3	Ericsson	4415 B25			
		Panel	9	Commscope	SBNHH-1D65B		(3) Sector Frame	
		Panel	3	Samsung	MT6407-77A	(3) 1-5/8"	[Commscope SF-QV12-B] (6) V-Bracing Kit	
120	120	RRU	3	Samsung	B5/B13	Hybrid	[VZWSMART-SFK3]	Verizon
		RRU	3	Samsung	B2/B66A	(9) 1-5/8"	(6) Support Rail	
		OVP	3	Raycap	RRFDC-3315-PF-48		(3) Side-By-Side Mounting Kit [Commscope BSAMNT-SBS-1-2]	

Proposed Loading:

Information pertaining to proposed antennas and transmission lines were based upon the Application #: 232427, v2 from Verizon and is listed in Table 4.

Table 4 Proposed Appurtenances

Mount Elev. (ft)	CL Elev. (ft)	Туре	Qty	Manufacturer	Model	Feed Line Size	Mount Type Qty.	Carrier
		Panel	9	Commscope	SBNHH-1D65B		(0) 0 . 1 . 5	
		Panel	3	Samsung	MT6407-77A	1	(3) Sector Frame [Commscope SF-QV12-B]	
120	120	RRU	3	Samsung	B5/B13	(3) 1-5/8"	(6) V-Bracing Kit	
120	120	RRU	3	Samsung	B2/B66A	Hybrid (9) 1-5/8"	[VZWSMART-SFK3] (6) Support Rail	Verizon
		OVP	3	Raycap	RRFDC-3315-PF-48	1 ` ′ · · · ·	(3) Side-By-Side Mounting Kit	
		Filters	4	Kaelus	BSF0020F3V1-1		[Commscope BSAMNT-SBS-1-2]	

Analysis Results

Tower

The results of the structural analysis are shown below in table 5. Additional information for the tower analysis is provided within the Appendix.

Table 5 Tower Analysis Summary

Structural Component	% capacity	Analysis Result
Leg	72.9	Pass
Diagonal	82.8	Pass
Horizontal	18.7	Pass
Secondary Horizontal	86.8	Pass
Top girt	28.4	Pass
Bottom girt	23.2	Pass
Bolt	86.8	Pass
Anchor Bolt	52.5	Pass

Foundation

The results of the foundation analysis are shown below in table 6. Additional information for the foundation analysis is provided within the Appendix.

Table 6 Foundation Analysis Summary

Structural Component	Max Usage (%)	Analysis Result
Foundation	62.3	Pass

Conclusions

Based on the analysis results, the existing tower and foundation were found to be <u>sufficient</u> to safely support the equipment listed in this analysis. No modification to the tower and foundation is needed at this time.

Installation Requirements

This analysis was performed under the assumption that the carrier will place the proposed equipment and feed lines at the installation height listed in Table 4 and in accordance with the coax layout shown. TMAs and RRUs are to be installed on existing mounts behind tenant's antennas unless otherwise noted. No equipment is to be installed directly in the climbing path. All equipment is to be installed per mount manufacturer specifications. In case site conditions do not allow for the required installation parameters to be met the carrier must notify SBA Communications Corporation engineers for approval of an alternative placement.

Assumptions and Limitations

Assumptions

This analysis was completed based on the following assumptions:

- Tower and foundation were built in accordance to manufacturer specifications.
- Tower and foundation has been properly maintained in accordance with the manufacturer's specifications
- All existing structural members were assumed to be in good condition with no physical damage or deterioration associated with corrosion
- Welds and bolts are assumed able to carry their intended original design loads.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Table 3 and 4.
- This analysis may be affected if any assumptions are not valid or have been made in error. SBA should be notified to determine the effect on the structural integrity of the tower.

Limitations

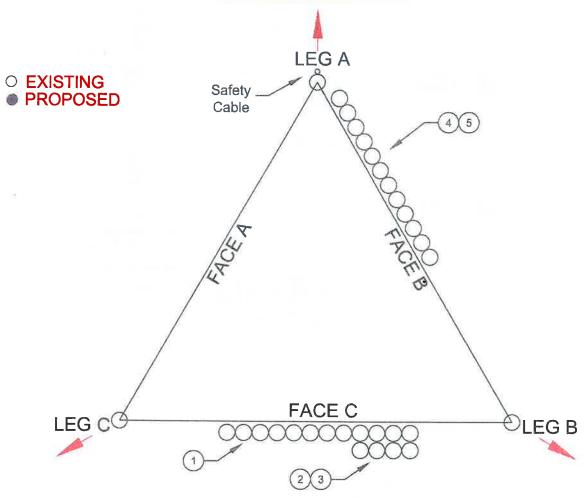
The computer generated analysis performed by the tower software is limited to theoretical capacities of the towers structural members and does not account for any missing or damaged members or connections. The tower and foundation are assumed to have been properly designed, fabricated, installed and maintained, barring any conflicting findings from the most recent inspection.

SBA Communications Corporation has used its due diligence to verify the information provided to perform this analysis. It is unreasonable to perform a more detailed inspection of a tower and its components. This report is not a condition assessment of the tower or foundation.

Appendix

13-24 14-34 13-3	ALL REACTIONS ARE FACTIONS - 126 mph Wino - 1,0000 1,00	Section			18:		=	2		=		
13334 134344 134344 134344 134344 1343444 1343444 1343444 1343444 1343444 1343444 1343444 1343444 1343444 1343444 1343444 1343444 1343444 1343444 134344444 13434444 13434444 13434444 13434444 13434444 13434444 13434444 13434444 13	900.0 B. ALL REACTIONS - 126 mph ALL REACTIONS - 126 mph ALL REACTIONS - 126 mph ARE FACTORED ARE FACTORED AND ARE	Legs	3864		SR 3 3/4	ar.	8310	SR 3		SR 2 3	SR 2 3/4	SR 2 3/4 SR 2
1357114 ANS	### 1999 1999	Log Grade					A572-50					
12 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1	SOOR SOOR SOOR SOOR SOOR SEISMIC AXIAL 79 K SHEAR 2 K TORQUE 1 kip-R SOmph WIND - 1.0000 AXIAL 79 K SHEAR 2 K SHEAR 3 K SHEAR	Diapones	L3x3x1/4		1300018		3	24241/4		L2x2x3	L2x2x3/10	L2a2x3/10
12 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1	ALL REACTIONS ARE FACTORED MAX. CORNER R DOWN: 321 K SHEAR: 25 K AXIAL 46 K SHEAR: 25 K AXIAL 79 K SHEAR 10 K TORQUE 0 kip-II 50 mph WIND - 1,0000 AXIAL 79 K SHEAR 10 K TORQUE 11 kip-II 50 mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II 50 mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II 50 mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K	Dingonal Grade					A36					
NA N	ALL REACTIONS ARE FACTORED MAX. CORNER R DOWN: 221 K SHEAR: 25 K UPLIFT: -284 AXIAL 46 K SHEAR: 25 K AXIAL 79 K SHEAR 10 K TORQUE 0 kip-II 50 mph WIND -1.0000. AXIAL 45 K SHEAR 46 K SHEAR 47 K TORQUE 11 kip-II 50 mph WIND -1.0000. AXIAL 45 K SHEAR 46 K SHEAR 46 K SHEAR 47 K TORQUE 11 kip-II 50 mph WIND -1.0000.	Top Girts			NA				1	L2x2x1	L2x2x1/0	
100.00	ALL REACTIONS ARE FACTORED MAX. COMM. 321 K SHEAR: 25 K UPLIFT: -284 SHEAR: 22 K AXIAL 46 K SHEAR: 27 K TORQUE 0 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II SO mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K SHEA	Bottom Girts				NA						SRI
100.001 100.00	BUDGET 2012 1 100.0 B. ALL REACTIONS ARE FACTORED MAX. CORNER R DOWN: 321 K SHEAR: 22 K SHEAR: 22 K AXIAL 46 K SHEAR: 22 K AXIAL 79 K SHEAR: 10 K SHE	Hodopotats				A'N						188
60.0 n. 60.0 n	800 B ALL REACTIONS ARE FACTORED MAX. CORNER B DOWN: 321 K SHEAR: 22 K AXIAL 46 K SHEAR: 22 K AXIAL 46 K SHEAR: 22 K TORQUE 0 kip-li 50 mph WiND - 1.0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-li REACTIONS - 126 mph		L2 1/2×2 1/2×3118	8,11			99	Z Z	40		7	L RS
100.0 II. 100.0 II. 20.0 II. 20.0 II. 20.0 II.	BODE ALL REACTIONS ARE FACTORED MAX. CORNER F DOWN: 321 K SHEAR: 25 K UPLIFT: -284 SHEAR: 25 K AXIAL 46 K SHEAR 2 K TORQUE 0 kip-fl 50 mph WIND - 1.0000 AXIAL 15 K SHEAR 40 K TORQUE 11 kip-fl REACTIONS - 126 mph			8@10				12@6				12 @ 5.20833
100.0 n.	ALL REACTIONS ARE FACTORED MAX. CORNER R DOWN: 321 K SHEAR: 25 K UPLIFT: 284 SHEAR: 25 K AXIAL 46 K SHEAR 2 K TORQUE 0 kip-R SEISMIC AXIAL 79 K SHEAR 10 K TORQUE 3 kip-R 50 mph WIND - 1,0000 AXIAL 45 K SHEAR 40 K TORQUE 11 kip-R TORQUE 11 kip-R TORQUE 11 kip-R				2	:			_	2		0
	ARE FACTORED MAX. CORNER F DOWN 321 K SHEAR: 25 K UPLIFT: -284 SHEAR: 22 K AXIAL 46 K SHEAR 2 K TORQUE 0 kip-II SEISMIC AXIAL 79 K SHEAR 10 K TORQUE 3 kip-II 50 mph WIND -1.0000 II AXIAL 45 K SHEAR 40 K TORQUE 11 kip-II TORQUE 11 kip-II	<u>0.0</u> R	2 <u>0.0 fl</u>	40.0 A			N 0.08	100,0 ft	120.0 JL		140 OTL	140 OT
	ARE FACTORED MAX. CORNER R DOWN: 321 K SHEAR: 25 K UPLIFT: -284 SHEAR: 22 K AXIAL 46 K SHEAR 2 K TORQUE 0 kip-fl SEISMIC AXIAL 79 K SHEAR 10 K TORQUE 3 kip-fl 50 mph WIND - 1.0000 I AXIAL 45 K SHEAR 10 K TORQUE 11 kip-fl											

DESIGNED APPURTENANCE LOADING


TYPE Lighting Risd 1.5C480+HF3.HF (16)* x 2.9* x 2.9*) ANT 150F2 (90" x 2.75" x 2.75") ANT 150F2 (90" x 2.75" x 2.75")	ELEVATION 100 100	12.5" - Framo (7) V-Bracing (R) [Methodile MS-C18 29717]	150
(2) SG488-HF3LHF (16)* x 2.9* x 2.9*) ANT 150F2 (00* x 2.75* x 2.75*)		Chi M. Stempler Will Intermedia 115, Cont. 2621/75	
NAT 150F 2 (50° × 2.75° × 2.75°)	1000	(N) A-recurred to a larger come and a constraint.	110
		(2) V-brading Kit (Metrosite MS-C18-78/59)	150
det inn vine water being	180	(2) V-Brasing Kit [Metrosite MS-C18-29759]	150
AFSSTMA10 (21.25" x 13.25" x 9")	100	Air 21 D2AD4P (55.9" x 12" x 7.8") w/ mount pipe	150
Standoff of teheck	100	Air 21 82ABAP (\$5.9" x 12" x 7.8") w/mount ploc	150
Standoff w/ tiotiack	160	Sesmic Load @140	140
Standoff on Retrack	100	M*G407-77A (35.12" x 10.00" x 3.51") w/ mount pipe	120
Seismic Load (\$150	180	M15407-77A (35.12" x 16.06" x 5.51") or mount pipe	120
Sasmic Load & 160	160	M76407-77A (35.12" x 16.06" x 5.51") w/ mount pipe	120
Ar 21 D2A/D4P (55.5" x 12" x 7.6") w mount place	150	DS:D13 RAH BRO4C (15"x15"x8.1")	120
ASSOCIATION OF COURT ASSOCIATION OF COURT PROPERTY PROPER	100	85B33 RRM 9R04C (15"x15"x5.1")	120
ARIOLAS BA1 (33.1" x 20.0" x 6.3") w mount pipe	100	B5/813 RRH BRO4C (15°x15°x8.1°)	120
ARGG49 B41 (33.1" x 20.5" x 8.3") w/ mount plot	150	02066A (15" x 15" x 10")	120
APXVAARR24 43-U-NA20 (15.9" x 24" x 8.7") #	150	B2D66A (15" x 15" x 10")	120
mount pipe	1	B2(B)8(A (15" a 15" x 10")	120
MPXVAARR24 43-U NA20 (90.9" x 24" x 8.7") W	150	RRFDC-3315-PF-48 (22 90" x 15 79" x 10.25")	120
PORT INNOV	1500	RRFDC-3315-PF-48 (22:50" x 15:70" x 10:25")	120
APXVAARR24_43-U-NA70 (95.9" x 24" x 8.7") W	150	HREDC-3315-PT-48 (22.95" x 15.79" x 10.25")	120
mount sipe		(2) INSF 0020F3V1-1 (10.6° ± 10.9° ± 3.15°)	120
AR32 KRD901146-1_866A_82A (Octo) (58.6" x 12.9"	100	BSF0020F3V1-1 (10.6° x 10.9° x 3.15°)	120
5.7") w/ axoust pipe		85F0020F3V1-1 (10.6" x 10.6" x 3.16")	120
AIR32 KRD901145 1_B66A_R2A (Octo) (56.6° s 12.9° 6.7°) w/mount pipe	100	Sector Frames (Commscope SF QV12 II)	120
AR32 KRD901146-1_866A_82A (Octo) (56.6° a 12.9°	150	Sector Frames (Commacope SF-QV128)	120
8.7) w/mount pipe	1	Sector Frames (Commoope SF-QV12-0)	120
SRY 112 14471 (0.9" x 0.1" x 2.7")	100	(2) V Bracing Kit (VZVVSAMHT SFXC) - Support Rat	120
(BY 112 144/1 (6.9° x 6.1° x 2.7°)	100	(2) V Brading Kit [VZWSMART-SFK3] - Sepport Rail	120
KRY 112 144/1 (8.9° x 6.1° x 2.7°)	100	(2) V-Bracing Kit (VZWSMART-SFK3) - Support Rail	120
Radio 4449 071-089 (12.5" x 14.9" x 9.2")	150	Side the Side Mounting Kit BISANAY 585 1-2]	120
Radio 4449 B21 - 885 (13.1° x 14.1° x 9.2°)	100	Side By Side stounting Kit (ti SAAN 7.585-1-2)	120
Redio 4449 B71+BB5 (13 1" x 14 9" x 9.2")	150	Side Dy Side Mounting Kit (DSAMNT-585-1-7)	120
4415 B25 (16 5" x 13.4" x 5 9")	150	(2) Seven-10556 (77" x 11.85" x 7.1") w/mount.plpe	120
		(3) Stitlet 10458 (72" x 11.60" x 7.1") = mount pipe	120
4415 B25 (18 5" x 13 4" x 5 9")	150	O) 509He4-10650 (72" x 11.05" x 7.1") w/mount pipe	120
		Sesuric Load (0120	120
4415 B25 (16.5° x 13.4° x 5.9°)	150	Seismic Load @100	100
		Sesuric Load (260	50
12.5' T-Frame	150	Seismic Load (360	60
12.5' T-Frame	150	Scientic Load (\$40	40
		Seismit Lord (20	20

		MATE	RIAL STRENGTH	=		
GRADE	Fy	Fu 65 kel	GRADE	Fy	58 Kai	Fu

TOWER DESIGN NOTES

- in New London County, Connecticut,
 for Exposure C to the TIA-222-H Standard,
 for a 126 mph basic wind in accordance with the TIA-222-H Standard,
 signed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height,
 based upon a 60 mph wind,
 gopy II.
 legory 1 with Crest Height of 0,00 ft
 G; 88.6%

COAX LAYOUT

CT09680-S						
#	CARRIER	SIZE	QTY.	ELEVATION	NOTES	
1	Town of Waterford	1-5/8"	3	180'		
2	T-Mobile	1-5/8"	4	450		
3	1-Mobile	1-5/8"	9	150'	Fiber	
4	Verizon	1-5/8"	3	420	Hybrid	
5	verizon	1-5/8"	9	120'		

tnxTower	Job	Page 1 of 25
SBA Communications	Project CT09680-VZW-070723	Date 15:31:52 07/10/23
8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670	Client	Designed by Daniel Yohannes

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 4.00 ft at the top and 14.50 ft at the base.

This tower is designed using the TIA-222-H standard.

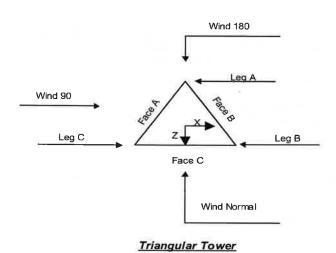
The following design criteria apply:

- 1. Tower is located in New London County, Connecticut.
- Tower base elevation above sea level: 261.80 ft.
- Basic wind speed of 126 mph.
- Risk Category II. 4.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.0000 in.
- 10. Ice thickness is considered to increase with height.
- 11. Ice density of 56 pcf.
- 12. A wind speed of 50 mph is used in combination with ice.
- 13. Temperature drop of 50 °F.
- 14. Deflections calculated using a wind speed of 60 mph.
- 15. A non-linear (P-delta) analysis was used.
- 16. Pressures are calculated at each section.
- 17. Stress ratio used in tower member design is 1.
- 18. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
- SR Members Have Cut Ends SR Members Are Concentric


- Distribute Leg Loads As Uniform Assume Legs Pinned
- Assume Rigid Index Plate
- Use Clear Spans For Wind Area
- Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients Project Wind Area of Appurt. Autocalc Torque Arm Areas
- Add IBC .6D+W Combination Sort Capacity Reports By Component
- Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- Consider Feed Line Torque
- Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

SBA Communications 8051 Congress Avenue

Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
		2 of 25
Project		Date
	CT09680-VZW-070723	15:31:52 07/10/23
Client		Designed by
		Daniel Yohannes

Tower	Section	Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database	•	Width	of	Length
					Sections	
	ft			ft		ft
T1	180.00-160.00	4		4.00	1	20.00
T2	160.00-140.00			4.00	1	20.00
T3	140.00-120.00			4.00	1	20.00
T4	120.00-100.00			5.50	1	20.00
T5	100.00-80.00			7.00	1	20.00
T6	80.00-60.00			8.50	ī	20.00
T7	60.00-40.00			10.00	i	20.00
T8	40.00-20.00			11.50	î	20.00
T9	20.00-0.00			13.00	î	20.00

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		9 Page 3 of 25
Project	CT09680-VZW-070723	Date 15:31:52 07/10/23
Client		Designed by Daniel Yohannes

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace	Has Ho r izontals	Top Girt Offset	Bottom Girl Offset
	ft	ft		End Panels		in	in
T1	180.00-160.00	3.21	K Brace Left	No	Yes+Steps	4.5000	4.5000
T2	160.00-140.00	3.21	K Brace Left	No	Yes+Steps	4.5000	4.5000
T3	140.00-120.00	5.00	X Brace	No	No	0.0000	0.0000
T4	120.00-100.00	5.00	X Brace	No	No	0.0000	0.0000
T5	100.00-80.00	5.00	Х Втасе	No	No	0.0000	0.0000
T6	80.00-60.00	10.00	X Brace	No	Yes	0.0000	0.0000
T7	60.00-40.00	10.00	X Brace	No	Yes	0.0000	0.0000
T8	40.00-20.00	10.00	X Brace	No	Yes	0.0000	0.0000
T9	20.00-0.00	10.00	X Brace	No	Yes	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Туре	Size	Grade	Туре	Size	Grade
71 100 00 100 00	Solid Round	1 1/2	A572-50	Solid Round	1	A36
T1 180.00-160.00	Solid Roulid	1 1/2	(50 ksi)			(36 ksi)
T2 160.00-140.00	Solid Round	2	A572-50	Solid Round	1 1/4	A36
12 100.00-140.00	Solia Rouna	-	(50 ksi)			(36 ksi)
T3 140.00-120.00	Solid Round	2 3/4	A572-50	Single Angle	L2x2x3/16	A36
13 140.00-120.00	Solid Round	2 -/ .	(50 ksi)			(36 ksi)
T4 120.00-100.00	Solid Round	3	À572-50	Single Angle	L2x2x1/4	A36
14 120.00-100.00	Dona Round	_	(50 ksi)	•		(36 ksi)
T5 100.00-80.00	Solid Round	3 1/2	À572-50	Single Angle	L2x2x1/4	A36
15 100.00 00.00	Dona Italia		(50 ksi)			(36 ksi)
T6 80.00-60.00	Solid Round	3 1/2	A572-50	Single Angle	L3x3x3/16	A36
10 00.00 00.00	0011011111		(50 ksi)			(36 ksi)
T7 60.00-40.00	Solid Round	3 3/4	A572-50	Single Angle	L3x3x3/16	A36
1, 00.00 10.00			(50 ksi)			(36 ksi)
T8 40.00-20.00	Solid Round	4	A572-50	Single Angle	L3x3x3/16	A36
10 10100 20100			(50 ksi)			(36 ksi)
T9 20.00-0.00	Solid Round	4	A572-50	Single Angle	L3x3x1/4	A36
1, 20.00 0.00	~		(50 ksi)			(36 ksi)

Tower Elevation	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 180.00-160.00	Solid Round	1	A36 (36 ksi)	Solid Round	1	A36 (36 ksi)
T2 160.00-140.00	Solid Round	1	A36 (36 ksi)	Solid Round	1	A36 (36 ksi)
T3 140.00-120.00	Single Angle	L2x2x1/8	A36 (36 ksi)	Solid Round		A36 (36 ksi)

tnxTower	Job	Page 4 of 25
SBA Communications 8051 Congress Avenue	Project CT09680-VZW-070723	Date 15:31:52 07/10/23
Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626	Client	Designed by Daniel Yohannes

	Tower Section Geometry (cont'd)										
Tower Elevation ft	No. of Mid Girts	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade				
T1 180.00-160.00	None	Flat Bar		A36 (36 ksi)	Solid Round	1	A36 (36 ksi)				
T2 160.00-140.00	None	Flat Bar		A36 (36 ksi)	Solid Round	1	A36 (36 ksi)				

Tower	Secondary	Secondary Horizontal	Secondary	Inner Bracing	Inner Bracing Size	Inner Bracing
Elevation	Horizontal Type	Size	Horizontal Grade	Туре		Grade
ft						
Г1 180.00-160.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T2 160.00-140.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T6 80.00-60.00	Equal Angle	L2x2x1/8	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T7 60.00-40.00	Equal Angle	L2x2x3/16	A36	Solid Round		À572-50
			(36 ksi)			(50 ksi)
T8 40.00-20.00	Equal Angle	L2 1/2x2 1/2x3/16	A36	Solid Round		À572-50
			(36 ksi)			(50 ksi)
T9 20.00-0.00	Equal Angle	L2 1/2x2 1/2x3/16	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)

	Tower Section Geometry (cont'd)											
Tower Elevation ft	Gusset Area (per face) ft²	Gusset Thickness in	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in			
T1 180.00-	0.00	0.0000	A36	1	31	1.05	36.0000	36.0000	36.0000			
160.00			(36 ksi)	8	785							
T2 160.00- 140.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T3 140.00- 120.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T4 120.00- 100.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T5 100.00- 80.00	0.00	0.0000	A36 (36 ksi)	i	1	1.05	36.0000	36.0000	36.0000			
6 80.00-60.00	0.00	0.0000	A36 (36 ksi)	ì	1	1.05	36.0000	36.0000	36.0000			

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
1002		5 of 25
Project	CT09680-VZW-070723	Date 15:31:52 07/10/23
Client		Designed by Daniel Yohannes

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
T7 60.00-40.00	0.00	0.0000	A36 (36 ksi)	1)	1	1.05	36.0000	36.0000	36.0000
T8 40.00-20.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000
T9 20.00-0.00	0.00	0.0000	A36 (36 ksi)	1:	1	1.05	36.0000	36.0000	36.0000

Tower Section Geometry (cont'd)

						K Fac	ctors!			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	\boldsymbol{X}	X	X	X	X
ft	Ü			Y	Y	Y	Y	Y	Y	<u> </u>
T1 180.00-	Yes	Yes	1	1	1	1	1	1	1	1
160.00				1	1	1	1	1	1	1
T2 160.00-	Yes	Yes	1	1	1	1	1	1	l .	1
140.00				1	1	1	1	1	1	1
T3 140.00-	Yes	Yes	4.	1	1	1	1	1	I	1
120.00				1	1	1	1	1	1	1
T4 120.00-	Yes	Yes	1	1	1	1	1	1	1	1
100.00				1	1	1	1	1	1	1
T5 100:00-	Yes	Yes	1	1	1	1	1	1	1	1
80.00				1	1	1	1	1	I .	1
T6 80.00-	Yes	Yes	1	1	1	1	1	1	1	1
60.00				1	1	1	1	1	0.5	1
T7 60.00-	Yes	Yes	1	1	1	1	1	1	1	1
40.00				1	1	1	1	1	0.5	1
T8 40.00-	Yes	Yes	1	1	1	1	1	1	1	1
20.00				1	I,	1	1	1	0.5	1
79 20.00-0.00	Yes	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	0.5	1

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Elevation	Leg			nal	Тор С	irt	Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
JI	Net Width Deduct in	U	Net Width Deduct in	U	Net Width U Deduct in	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	
T1 180.00- 160.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

SBA Communications 8051 Congress Avenue

Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
	2	6 of 25
Project		Date
	CT09680-VZW-070723	15:31:52 07/10/23
Client		Designed by
		Daniel Yohannes

Tower Elevation fl	Leg		Diago	nal	Top G	irt	Botton	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
Ž	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T2 160.00- 140.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 140.00- 120.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 120.00- 100.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 100.00- 80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation ft	Reduna Horizo		Reduna Diago		Redundant Sub- Diagonal		Redunda Horiza		Redundan	t Vertical	Redundant Hip		Redundant Hip Diagonal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00- 160.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 160.00- 140.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 140.00- 120.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 120.00- 100.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 100.00- 80.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 80.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 60.00-40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 40.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 20.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation ft	Leg Connection Type	Leg		Diagon	al	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
T1 180.00- 160.00	Flange	0.7500 A325N	4	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T2 160.00- 140.00	Flange	0.7500 A325N	4	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0

tnxTower	Job		Page 7 of 25
SBA Communications	Project CT0	9680-VZW-070723	Date 15:31:52 07/10/23
8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626	Client		Designed by Daniel Yohannes

Tower Elevation	Leg Connection	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
ft	Туре	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
T3 140.00- 120.00	Flange	1.0000 A325N	4	0.6250 A325N	1	0.6250 A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T4 120.00- 100.00	Flange	1.0000 A325N	6	0.6250 A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T5 100.00-	Flange	1.0000 A325N	6	0.6250 A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
80.00 T6 80.00-60.00	Flange	1.2500 A325N	6	0.7500 A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	1
T7 60.00-40.00	Flange	>1" 1.2500 A325N	6	0.7500 A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	1
T8 40.00-20.00	Flange	>1" 1.2500 A325N	6	0.7500 A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	1
T9 20.00-0.00	Flange	>1" 1.2500 A354-BC	0	0.7500 A325N	I	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	1

Feed Line/Linear Appurtenances - Entered As Round Or Flat Weight Width or Perimeter Lateral ClearAllow Component Placement Face Exclude Face Description Per Spacing Diameter Offset Offset FromТуре orShield plf(Frac FW) in Row in ft in Leg Torque Calculation 0.22 0.5000 0.3750 1 Ar (CaAa) 180.00 -0.00000.5 Safety Cable No No 5.00 1.04 0.5000 1.9800 3 3 180.00 -0.00000.15 Ar (CaAa) No 1-5/8" С No 5.00 8.40 0 0.5000 3.0000 180.00 -0.0000 No Af (CaAa) C No Feedline 5.00 Ladder (Af) 1.04 150.00 -0.50001.9800 0.0000 0.05 No Ar (CaAa) 1-5/8" С No 5.00 0.5000 1.6250 1.10 -0.05 150.00 -0.0000 Ar (CaAa) 1-5/8" Fiber C No No 5.00 0.5000 2.0000 1.10 -0.35 3 120.00 -0.0000Аг (СаАа) 1-5/8" Hybrid В No No 5.00 1.04 0.0000 -0.2 0.5000 1.9800 Ar (CaAa) 120.00 -No 1-5/8" В No 5.00 8.40 0.5000 3.0000 120.00 -0.00000.25 Af (CaAa) No В No Feedline 5.00 Ladder (Af)

Feed Line/Linear Appurtenances - Entered As Area

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670

FAX: 5619957626

Job		Page
		8 of 25
Project		Date
CT09680	-VZW-070723	15:31:52 07/10/23
Client		Designed by
		Daniel Yohannes

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number	$C_A A_A$	Weigh
	Leg		Torque	71	ft		ft²/ft	plf
			Calculation				, ,	1.7

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Façe	C _A A _A Out Face	Weight
	ſt		ft ²	ft ²	ft²	ft²	K
T1	180.00-160.00	A	0.000	0.000	0.750	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	21.880	0.000	0.23
T2	160.00-140.00	Α	0.000	0.000	0.750	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	44.425	0.000	0.37
T3	140.00-120.00	Α	0.000	0.000	0.750	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	66.970	0.000	0.51
T4	120.00-100.00	Α	0.000	0.000	0.750	0.000	0.00
		В	0.000	0.000	57.640	0.000	0.42
		C	0.000	0.000	66.970	0.000	0.51
T5	100.00-80.00	Α	0.000	0.000	0.750	0.000	0.00
		В	0.000	0.000	57.640	0.000	0.42
		C	0.000	0.000	66.970	0.000	0.51
T6	80.00-60.00	A	0.000	0.000	0.750	0.000	0.00
		В	0.000	0.000	57.640	0.000	0.42
		C	0.000	0.000	66,970	0.000	0.51
T7	60.00-40.00	Α	0.000	0.000	0.750	0.000	0.00
		В	0.000	0.000	57.640	0.000	0.42
		C	0.000	0.000	66.970	0.000	0.51
T8	40.00-20.00	Α	0.000	0.000	0.750	0.000	0.00
		В	0.000	0.000	57.640	0.000	0.42
		C	0.000	0.000	66.970	0.000	0.51
T9	20.00-0.00	Α	0.000	0.000	0.563	0.000	0.00
		В	0.000	0.000	43.230	0.000	0.32
		C	0.000	0.000	50,227	0.000	0.38

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C_AA_A In Face	C _A A _A Out Face	Weight		
	fi	ft Les	Leg	in	in ft²		ft²	ft ²	K	
T 1	180.00-160.00	A	1.178	0.000	0.000	5.463	0.000	0.05		
		В		0.000	0.000	0.000	0.000	0.00		
		С		0.000	0.000	40.357	0.000	0.57		
T2	160.00-140.00	A	1.163	0.000	0.000	5.404	0.000	0.05		
		В		0.000	0.000	0.000	0.000	0.00		
		C		0.000	0.000	73.160	0.000	1.02		
T3	140.00-120.00	Α	1.147	0.000	0.000	5.338	0.000	0.05		

SBA Communications 8051 Congress Avenue

Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
Job		9 of 25
Project	CT09680-VZW-070723	Date 15:31:52 07/10/23
Client	C109000-V2VV-070723	Designed by
		Daniel Yohannes

Tower	Tower	Face	Ice Thickness	A_R	A_F	$C_A A_A$ In Face	C _A A _A Out Face	Weight
Section	Elevation	or Leg	in	ft²	ft²	ft²	ft²	K
	<i>J</i> ¹	B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	105.727	0.000	1.47
T4	120.00-100.00	A	1.128	0.000	0.000	5.262	0.000	0.05
14	120.00-100.00	В	1.120	0.000	0.000	101.095	0.000	1.29
		č		0.000	0.000	105.276	0.000	1.46
Tr.e	100.00-80.00	A	1.106	0.000	0.000	5.172	0.000	0.04
T5	100.00-80.00	В	1.100	0.000	0.000	100.727	0.000	1.28
		C		0.000	0.000	104.745	0.000	1.44
Tr.C	80.00-60.00	A	1.078	0.000	0.000	5.062	0.000	0.04
Т6	80.00-00.00	В	1.070	0.000	0.000	100.277	0.000	1.26
		C		0.000	0.000	104.095	0.000	1.42
Tr.	60.00-40.00	A	1.042	0.000	0.000	4.920	0.000	0.04
T 7	00.00-40.00	В	1.042	0.000	0.000	99.692	0.000	1.23
		C		0.000	0.000	103.250	0.000	1.39
700	40.00-20.00	A	0.991	0.000	0.000	4.712	0.000	0.04
T8	40.00-20.00	В	0.771	0.000	0.000	98.843	0.000	1.19
		Č		0.000	0.000	102.023	0.000	1.35
TO.	20.00.0.00	A	0.887	0.000	0.000	3.225	0.000	0.02
Т9	20.00-0.00	В	0.007	0.000	0.000	72.870	0.000	0.84
		C		0.000	0.000	74.695	0.000	0.96

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X Ice	CP _z Ice
	fi	in	in	in	in
T1	180.00-160.00	-1.7520	2.9843	-1.4902	1.6316
T2	160.00-140.00	-0.9984	4.4468	-1.1304	3.1483
T3	140.00-120.00	-0.5941	4.7708	-0.9807	4.5624
T4	120.00-120.00	1.8882	-5.0694	1.6615	-4.1128
T5	100.00-80.00	2.1442	-5.8447	1.8923	-4.8289
T6	80.00-60.00	2.2700	-6.2808	2.0680	-5.4469
T7	60.00-40.00	2.4853	-6.9334	2.2544	-6.1020
	40.00-20.00	2.6276	-7.3805	2.3829	-6.6724
T8 T9	20.00-20.00	2.2992	-6.4763	2.0721	-6.1301

Shielding Factor Ka

ſ	Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
ŀ	T1	1	Safety Cable		0.6000	0.6000
ı	11			180.00		9 5555
ı	T1	3	1-5/8"	160.00 -	0.6000	0.6000
ı				180.00	0.5000	0.6000
١	T1	4	Feedline Ladder (Af)	160.00 - 180.00	0.6000	0.6000

SBA Communications 8051 Congress Avenue

Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job	Page
	10 of 25
Project	Date
CT09680-VZW-070723	15:31:52 07/10/23
Client	Designed by
	Daniel Yohannes

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T2	1	Safety Cable		0.6000	0.6000
		Salety Cable	160.00	0.0000	0.0000
T2	3	1-5/8"		0.6000	0.6000
1 12		1-5/6		0.6000	0.6000
T2	4	Foodling Lodder (A.C.	160.00	0.6000	0.5000
1 12	"	Feedline Ladder (Af)		0.6000	0.6000
T-1		1.50	160.00		110000000000000000000000000000000000000
T2	6	1-5/8"		0.6000	0.6000
	_		150.00		
T2	7	1-5/8" Fiber		0.6000	0.6000
			150.00		
T3	1	Safety Cable	2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	0.6000	0.6000
			140.00		
T3	3	1-5/8"	120.00 -	0.6000	0.6000
1 1			140.00		-05-340/0/0/
T3	4	Feedline Ladder (Af)	120.00 -	0.6000	0.6000
			140.00		
T3	6	1-5/8"	120.00 -	0.6000	0.6000
1			140.00		500000000000000000000000000000000000000
T3	7	1-5/8" Fiber	120.00 -	0.6000	0.6000
			140.00		
T4	1	Safety Cable	100.00 -	0.6000	0.6000
1			120.00	0.0000	0.0000
T4	3	1-5/8"	100.00 -	0.6000	0.6000
1 1		1-5/6	120.00	0.0000	0.0000
Т4	4	Feedline Ladder (Af)	100.00 -	0.6000	0.6000
1 1		r codine Eadder (Ar)	120.00	0.0000	0.000
T4	6	1-5/8"		0.0000	0.5000
1 17	٩	1-3/6	100.00 -	0.6000	0.6000
T4	7	1-5/8" Fiber	120.00	0.0000	0.0000
14	(1	1-3/8" Fiber	100.00 -	0.6000	0.6000
T4	9	1 5 (0) 17 1 1	120.00	1912000	(A) CONTRACTOR
14	9	1-5/8" Hybrid	100.00 -	0.6000	0.6000
T4	10	4. 8/04	120.00	66433555	95,025,53
T4	10	1-5/8"	100.00 -	0.6000	0.6000
m4			120.00	7007704252000	DOMESTICAL CONTROL
T4	11	Feedline Ladder (Af)	100.00 -	0.6000	0.6000
		7490 6047	120.00		
T5	1	Safety Cable	80.00 - 100.00	0.6000	0.6000
T5	3	1-5/8"	80.00 - 100.00	0.6000	0.6000
T5	4	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
T5	6	1-5/8"	80.00 - 100.00	0.6000	0.6000
T5	7	1-5/8" Fiber	80.00 - 100.00	0.6000	0.6000
T5	9	1-5/8" Hybrid		0.6000	0.6000
T5	10	1-5/8"	80.00 - 100.00	0.6000	0.6000
T5	11	Feedline Ladder (Af)		0.6000	0.6000
Т6	1	Safety Cable	60.00 - 80.00	0.6000	0.6000
Т6	3	1-5/8"	60.00 - 80.00	0.6000	0.6000
Т6	4	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Т6	6	1-5/8"	60.00 - 80.00	0.6000	0.6000
T6	7	1-5/8" Fiber		0.6000	0.6000
T6	9	1-5/8" Hybrid	60.00 - 80.00		0.6000
T6	10	1-5/8 Hyotta 1-5/8"		0.6000	
T6	11	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T7	1		60.00 - 80.00	0.6000	0.6000
T7	3	Safety Cable	40.00 - 60.00	0.6000	0.6000
T7		1-5/8"	40.00 - 60.00	0.6000	0.6000
T7	4	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
	6	1-5/8"	40.00 - 60.00	0.6000	0.6000
T7		1-5/8" Fiber	40.00 - 60.00	0.6000	0.6000
T7	9	1-5/8" Hybrid	40.00 - 60.00	0.6000	0.6000

SBA Communications 8051 Congress Avenue

Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page 11 of 25
Project	CT09680-VZW-070723	Date 15:31:52 07/10/23
Client		Designed by Daniel Yohannes

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.	-	Segment Elev.	No Ice	Ice
T7	10	1-5/8"	40.00 - 60.00	0.6000	0.6000
T7	11	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т8	1	Safety Cable	20.00 - 40.00	0.6000	0.6000
Т8	3	1-5/8"	20.00 - 40.00	0.6000	0.6000
T8	4	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T8	6	1-5/8"	20.00 - 40.00	0.6000	0.6000
T8	7	1-5/8" Fiber	20.00 - 40.00	0.6000	0.6000
T8	9	1-5/8" Hybrid	20.00 - 40.00	0.6000	0.6000
T8	10	1-5/8"	20.00 - 40.00	0.6000	0.6000
T8	11	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T9	1	Safety Cable	5.00 - 20.00	0.6000	0.6000
T9	3	1-5/8"	5.00 - 20.00	0.6000	0.6000
T9	4	Feedline Ladder (Af)	5.00 - 20.00	0.6000	0.6000
T9	6	1-5/8"	5.00 - 20.00	0.6000	0.6000
T9	7	1-5/8" Fiber	5.00 - 20.00	0.6000	0.6000
T9	9	1-5/8" Hybrid	5.00 - 20.00	0.6000	0.6000
T9	10	1-5/8"	5.00 - 20.00	0.6000	0.6000
T9	11	Feedline Ladder (Af)	5.00 - 20.00	0.6000	0.6000

User Defined Loads - Seismic

Description	Elevation	Offset From	Azimuth Angle	$E_{ u}$	E_{hx}	E_{hz}	E_h
	n	Centroid ft	o	K	K	K	K
Seismic Load @180	180.00	0.00	0.0000	0.07	0.00	0.00	0.14
Seismic Load @160	160.00	0.00	0.0000	0.22	0.00	0.00	0.47
Seismic Load @140	140.00	0.00	0.0000	0.09	0.00	0.00	0.14
Seismic Load @140	120.00	0.00	0.0000	0.29	0.00	0.00	0.46
Seismic Load @120	100.00	0.00	0.0000	0.16	0.00	0.00	0.17
Seismic Load @80	80.00	0.00	0.0000	0.15	0.00	0.00	0.13
0	60.00	0.00	0.0000	0.17	0.00	0.00	0.11
Seismic Load @60	40.00	0.00	0.0000	0.19	0.00	0.00	0.07
Seismic Load @40 Seismic Load @20	20.00	0.00	0.0000	0.19	0.00	0.00	0.03

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weigh
			Vert fi ft	0	ft		ft²	ft²	K
Lightning Rod	A	From Leg	0.00 0.00 2.00	0.0000	180.00	No Ice 1/2" Ice 1" Ice	0.25 0.66 1.07	0.25 0.66 1.07	0.04 0.07 0.10

SBA Communications
8051 Congress Avenue

Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
		12 of 25
Project	CT09680-VZW-070723	Date 15:31:52 07/10/23
Client		Designed by Daniel Yohannes

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert						
			fl	0	ft		fi²	ft²	K
			ft		Ji		<i>)</i>	Ji	Λ
			ft						

(2) SC488-HF2LNF (183" x	Α	From Leg	6.00	0.0000	180.00	No Ice	4.42	4.42	0.03
2.9" x 2.9")			0.00			1/2" Ice	5.98	5.98	0.06
			7.50			1" Ice	7.54	7.54	0.09
ANT150F2 (60" x 2.75" x	В	From Leg	6.00	0.0000	180.00	No Ice	1.31	1.31	10.0
2.75")			0.00			1/2" Ice	1.74	1.74	0.02
A NTT 1 50 FO (COIL D. G.C.)	_		2.50			1" Ice	2.16	2.16	0.03
ANT150F2 (60" x 2.75" x	C	From Leg	6.00	0.0000	180.00	No Ice	1.31	1.31	0.01
2.75")			0.00			1/2" Ice	1.74	1.74	0.02
+ TO COTO 4 + 10 /01 05"	_		2.50			1" Ice	2.16	2.16	0.03
ATSSTMA10 (21.25" x	В	From Leg	6.00	0.0000	180.00	No Ice	2.35	1.59	0.03
13.25" x 9")			0.00			1/2" Ice	2.52	1.75	0.04
G. 1 m // 1			0.00			1" Ice	2.69	1.90	0.06
Standoff w/ tieback	Α	From Leg	3.00	0.0000	180.00	No Ice	1.84	4.96	0.15
			0.00			1/2" Ice	2.24	7.00	0.18
	_		0.00			1" Ice	2.64	9.04	0.21
Standoff w/ tieback	В	From Leg	3.00	0.0000	180.00	No Ice	1.84	4.96	0.15
			0.00			1/2" Ice	2.24	7.00	0.18
0. 1.00 //: 1.1	_	_	0.00			1" Ice	2.64	9.04	0.21
Standoff w/ tieback	C	From Leg	3.00	0.0000	180.00	No Ice	1.84	4.96	0.15
			0.00			1/2" Ice	2.24	7.00	0.18
****			0.00			1" Ice	2.64	9.04	0.21
Air 21 B2A/B4P (55.9" x 12"		F I	2.00	0.0000					
x 7.8") w/ mount pipe	A	From Leg	3.00	0.0000	150.00	No Ice	6.83	6.16	0.12
x 7.8) w/ mount pipe			0.00			1/2" Ice	7.54	7.31	0.18
Air 21 B2A/B4P (55.9" x 12"	В	Enom I as	0.00	0.0000	150.00	1" Ice	8.25	8.47	0.23
x 7.8") w/ mount pipe	ь	From Leg	3.00	0.0000	150.00	No Ice	6.83	6.16	0.12
x 7.8) w/ mount pipe			0.00			1/2" Ice	7.54	7.31	0.18
Air 21 B2A/B4P (55.9" x 12"	С	Econ I ac	0.00	0.0000	150.00	1" Ice	8.25	8.47	0.23
x 7.8") w/ mount pipe	C	From Leg	3.00	0.0000	150.00	No Ice	6.83	6.16	0.12
x 7.8) w/ mount pipe			0.00			1/2" Ice	7.54	7.31	0.18
AIR6449 B41 (33.1" x 20.5"	A	T T	0.00	0.0000	1.50.00	1" Ice	8.25	8.47	0.23
•	Α	From Leg	3.00	0.0000	150.00	No Ice	6.90	4.32	0.13
x 8.3") w/ mount pipe			0.00			1/2" Ice	7.69	5.35	0.18
ATD 6440 D41 (22 1" = 20 5"	D	F T	0.00	0.0000	4.50.00	1" Ice	8.48	6.38	0.24
AIR6449 B41 (33.1" x 20.5"	В	From Leg	3.00	0.0000	150.00	No Ice	6.90	4.32	0.13
x 8.3") w/ mount pipe		221	0.00			1/2" Ice	7.69	5.35	0.18
ATB 6440 D41 (22 18 20 58	C	г т	0.00	0.0000	4.50.00	1" Ice	8.48	6.38	0.24
AIR6449 B41 (33.1" x 20.5"	С	From Leg	3.00	0.0000	150.00	No Ice	6.90	4.32	0.13
x 8.3") w/ mount pipe			0.00			1/2" Ice	7.69	5.35	0.18
ADVITA ADDOL 42 II NIA 20		P .	0.00			1" Ice	8.48	6.38	0.24
APXVAARR24_43-U-NA20	A	From Leg	3.00	0.0000	150.00	No Ice	20.24	10.79	0.16
(95.9" x 24" x 8.7") w/			0.00			1/2" Ice	20.90	12.19	0.30
mount pipe	ъ	ъ т	0.00	0.0000		1" Ice	21.56	13.58	0.44
PXVAARR24_43-U-NA20	В	From Leg	3.00	0.0000	150.00	No Ice	20.24	10.79	0.16
(95.9" x 24" x 8.7") w/			0.00			1/2" Ice	20.90	12.19	0.30
mount pipe	C	Europe T	0.00	0.0000	1.50.00	1" Ice	21.56	13.58	0.44
PXVAARR24_43-U-NA20	С	From Leg	3.00	0.0000	150.00	No Ice	20.24	10.79	0.16
(95.9" x 24" x 8.7") w/			0.00	6		1/2" Ice	20.90	12.19	0.30
mount pipe		P *	0.00	0.0000		1" Ice	21.56	13.58	0.44
AIR32 KRD901146-	A	From Leg	3.00	0.0000	150.00	No Ice	7.29	6.61	0.16
_B66A_B2A (Octo) (56.6" x			0.00			1/2" Ice	8.00	7.77	0.22
2.9" x 8.7") w/ mount pipe			0.00			1" Ice	8.71	8.93	0.28

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
		13 of 25
Project		Date
-	CT09680-VZW-070723	15:31:52 07/10/23
Client		Designed by
		Daniel Yohannes

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
	Leg	71	Lateral Vert						
			ft	0	ft		ft^2	ft²	K
			ft		-				
			ft						
AIR32 KRD901146-	В	From Leg	3.00	0.0000	150.00	No Ice	7.29	6.61	0.16
1_B66A_B2A (Octo) (56.6" x			0.00			1/2" Ice	8.00	7.77	0.22
12.9" x 8.7") w/ mount pipe			0.00		150.00	1" Ice	8.71	8.93	0.28
AIR32 KRD901146-	C	From Leg	3.00	0.0000	150.00	No Ice	7.29	6.61	0.16
1_B66A_B2A (Octo) (56.6" x			0.00			1/2" Ice	8.00	7.77 8.93	0.22 0.28
12.9" x 8.7") w/ mount pipe			0.00	0.0000	150.00	1" Ice	8.71	0.16	0.28
KRY 112 144/1 (6.9" x 6.1" x	A	From Leg	3.00	0.0000	150.00	No Ice	0.35 0.42	0.10	0.01
2.7")			0.00			1/2" Ice 1" Ice	0.42	0.21	0.01
	_		0.00	0.0000	150.00	No Ice	0.49	0.26	0.02
KRY 112 144/1 (6.9" x 6.1" x	В	From Leg	3.00	0.0000	150.00	1/2" Ice	0.33	0.10	0.01
2.7")			0.00			1/2 Ice	0.42	0.21	0.01
	_		0.00	0.000	150.00	No Ice	0.49	0.26	0.02
KRY 112 144/1 (6.9" x 6.1" x	C	From Leg	3.00	0.0000	150.00	1/2" Ice	0.33	0.10	0.01
2.7")			0.00			172 Ice	0.42	0.21	0.01
			0.00	0.0000	150.00	No Ice	1.73	1.16	0.02
Radio 4449 B71+B85 (13.1"	Α	From Leg	3.00	0.0000	130.00	1/2" Ice	1.90	1.29	0.09
x 14.9" x 9.2")			0.00			1" Ice	2.07	1.44	0.03
	_		0.00	0.000	150.00	No Ice	1.73	1.16	0.11
Radio 4449 B71+B85 (13.1"	В	From Leg	3.00	0.0000	130.00	1/2" Ice	1.90	1.29	0.07
x 14.9" x 9.2")			0.00			172 Ice	2.07	1.44	0.05
		Б Т	0.00	0.000	150.00	No Ice	1.73	1.16	0.07
Radio 4449 B71+B85 (13.1"	C	From Leg	3.00	0.0000	130.00	1/2" Ice	1.90	1.29	0.07
x 14.9" x 9.2")			0.00			1" Ice	2.07	1.44	0.11
		D I	0.00	0.0000	150.00	No Ice	1.84	0.82	0.05
4415 B25 (16.5" x 13.4" x	A	From Leg	3.00	0.0000	150.00	1/2" Ice	2.01	0.94	0.06
5.9")			$0.00 \\ 0.00$			1" Ice	2.19	1.07	0.08
		Post I am		0.0000	150.00	No Ice	1.84	0.82	0.05
4415 B25 (16.5" x 13.4" x	В	From Leg	3.00 0.00	0.0000	150.00	1/2" Ice	2.01	0.94	0.06
5.9")			0.00			1" Ice	2.19	1.07	0.08
		E I	3.00	0.0000	150.00	No Ice	1.84	0.82	0.05
4415 B25 (16.5" x 13.4" x	C	From Leg	0.00	0.0000	150.00	1/2" Ice	2.01	0.94	0.06
5.9")			0.00			1" Ice	2.19	1.07	0.08
10.51 T. F.		Errore Log	1.50	0.0000	150.00	No Ice	9.72	7.05	0.28
12.5' T-Frame	Α	From Leg	0.00	0.0000	150.00	1/2" Ice	13.66	9.87	0.40
			0.00			1" Ice	17.60	12.69	0.52
10 51 T F	В	From Leg	1.50	0.0000	150.00	No Ice	9.72	7.05	0.28
12.5' T-Frame	В	From Leg	0.00	0.0000	150.00	1/2" Ice	13.66	9.87	0.40
			0.00			1" Ice	17.60	12.69	0.52
10.51.00.0	C	From Leg	1.50	0.0000	150.00	No Ice	9.72	7.05	0.28
12.5' T-Frame	С	Fioni Leg	0.00	0.0000	150,00	1/2" Ice	13.66	9.87	0.40
			0.00			1" Ice	17.60	12.69	0.52
CONTROL OF THE PROPERTY.		From Leg	1.50	0.0000	150.00	No Ice	3.77	2.91	0.11
(2) V-Bracing Kit [Metrosite	Α	LIGHT FER	0.00	0.0000	150.00	1/2" Ice	4.71	3.64	0.14
MS-C1B-2875PJ			0.00			1" Ice	5.66	4.37	0.17
(O) M. D Wit D. Mater-lite	D	From Leg	1.50	0.0000	150.00	No Ice	3.77	2.91	0.11
(2) V-Bracing Kit [Metrosite	В	riom reg	0.00	0.0000	150.00	1/2" Ice	4.71	3.64	0.14
MS-C1B-2875P]			0.00			1" Ice	5.66	4.37	0.17
(2) N. D	C	From Leg	1.50	0.0000	150.00	No Ice	3.77	2.91	0.11
(2) V-Bracing Kit [Metrosite	С	rrom Leg		0.0000	150.00	1/2" Ice	4.71	3.64	0.14
MS-C1B-2875P]			0.00 0.00			1" Ice	5.66	4.37	0.17
			0.00			1 100	2.00	11.27	U.A.1

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
		14 of 25
Project		Date
	CT09680-VZW-070723	15:31:52 07/10/23
Client		Designed by
		Designed by Daniel Yohannes

	or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_{\lambda}A_{\Lambda}$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral Vert						
			ft ft	٥	ft		fl²	ft²	K
			ft						
(3) SBNHH-1D65B (72" x	Α	From Leg	3.00	0.0000	120.00	No Ice	8.53	7.24	0.08
1.85" x 7.1") w/ mount pipe			0.00			1/2" Ice	9.19	8.49	0.15
			0.00			1" Ice	9.85	9.75	0.21
(3) SBNHH-1D65B (72" x	В	From Leg	3.00	0.0000	120.00	No Ice	8.53	7.24	0.08
1.85" x 7.1") w/ mount pipe			0.00			1/2" Ice	9.19	8.49	0.15
			0.00			1" Ice	9.85	9.75	0.21
(3) SBNHH-1D65B (72" x	С	From Leg	3.00	0.0000	120.00	No Ice	8.53	7.24	0.08
1.85" x 7.1") w/ mount pipe			0.00			1/2" Ice	9.19	8.49	0.15
			0.00			1" Ice	9.85	9.75	0.21
MT6407-77A (35.12" x	Α	From Leg	3.00	0.0000	120.00	No Ice	5.91	3.74	0.12
16.06" x 5.51") w/ mount			0.00			1/2" Ice	6.67	4.77	0.16
pipe			0.00			1" Ice	7.43	5.80	0.21
MT6407-77A (35.12" x	В	From Leg	3.00	0.0000	120.00	No Ice	5.91	3.74	0.12
16.06" x 5.51") w/ mount			0.00			1/2" Ice	6.67	4.77	0.16
pipe			0.00			1" Ice	7.43	5.80	0.21
MT6407-77A (35.12" x	С	From Leg	3.00	0.0000	120.00	No Ice	5.91	3.74	0.12
16.06" x 5.51") w/ mount		3	0.00			1/2" Ice	6.67	4.77	0.16
pipe			0.00			1" Ice	7.43	5.80	0.21
B5/B13 RRH BR04C	Α	From Leg	3.00	0.0000	120.00	No Ice	1.88	1.01	0.07
(15"x15"x8.1")		11001206	0.00	0.0000	120.00	1/2" Ice	2.05	1.14	0.09
(15 1115 11011)			0.00			1" Ice	2.22	1.28	0.11
B5/B13 RRH BR04C	В	From Leg	3.00	0.0000	120.00	No Ice	1.88	1.01	0.07
(15"x15"x8.1")	D	Trom Dog	0.00	0.0000	120.00	1/2" Ice	2.05	1.14	0.09
(15 K15 K0.1)			0.00			1" Ice	2.22	1.28	0.03
B5/B13 RRH BR04C	С	From Leg	3.00	0.0000	120.00	No Ice	1.88	1.01	0.11
(15"x15"x8.1")	C	From Leg	0.00	0.0000	120.00				0.07
(15 ALS AG.1)						1/2" Ice	2.05	1.14	
B2/B66A (15" x 15" x 10")	Α.	From I ac	0.00	0.0000	120.00	1" Ice	2.22	1.28	0.11
B2/B00A (13 X 13 X 10)	A	From Leg	3.00	0.0000	120.00	No Ice	1.88	1.25	0.08
			0.00			1/2" Ice	2.03	1.38	0.10
D2/D444 (158 158 108)	ъ	Б. Т.	0.00	0.0000	100.00	1" Ice	2.18	1.50	0.11
B2/B66A (15" x 15" x 10")	В	From Leg	3.00	0.0000	120.00	No Ice	1.88	1.25	0.08
			0.00			1/2" Ice	2.03	1.38	0.10
D0 D0 00 1 00 1 00 1 00 10 10 10 10 10 10 10	_		0.00			1" Ice	2.18	1.50	0.11
B2/B66A (15" x 15" x 10")	C	From Leg	3.00	0.0000	120.00	No Ice	1.88	1.25	0.08
			0.00			1/2" Ice	2.03	1.38	0.10
			0.00			1" Ice	2.18	1.50	0.11
RRFDC-3315-PF-48 (22.98"	Α	From Leg	3.00	0.0000	120.00	No Ice	3.02	1.96	0.03
x 15.79" x 10.25")			0.00			1/2" Ice	3.22	2.13	0.05
			0.00			1" Ice	3.41	2.30	0.08
RRFDC-3315-PF-48 (22.98"	В	From Leg	3.00	0.0000	120.00	No Ice	3.02	1.96	0.03
x 15.79" x 10.25")			0.00			1/2" Ice	3.22	2.13	0.05
			0.00			1" Ice	3.41	2.30	0.08
RRFDC-3315-PF-48 (22.98"	C	From Leg	3.00	0.0000	120.00	No Ice	3.02	1.96	0.03
x 15.79" x 10.25")			0.00			1/2" Ice	3.22	2.13	0.05
•			0.00			1" Ice	3.41	2.30	0.08
2) BSF0020F3V1-1 (10.6" x	A	From Leg	3.00	0.0000	120.00	No Ice	0.96	0.29	0.02
10.9" x 3.15")			0.00		120.00	1/2" Ice	1.07	0.37	0.02
,			0.00			1" Ice	1.18	0.45	0.02
BSF0020F3V1-1 (10.6" x	В	From Leg	3.00	0.0000	120.00	No Ice	0.96	0.43	0.03
10.9" x 3.15")		110m Log	0.00	0.0000	120.00	1/2" Ice	1.07	0.29	0.02
10.7 23.13)			0.00			1" Ice	1.07	0.37	0.02
BSF0020F3V1-1 (10.6" x	С	From Leg	3.00	0.0000	120.00	No Ice	0.96	0.43	0.03
TOT 00501.2 & 1-1 (10.0 X	C	Trom reg	0.00	0.0000	120.00	No ice 1/2" Ice	1.07	0.29	0.02

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page 15 of 25
Project	CT09680-VZW-070723	Date 15:31:52 07/10/23
Client		Designed by Daniel Yohannes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
	8		Vert ft	٥	ft		ft²	ft²	K
			ft ft						
			0.00			1" Ice	1.18	0.45	0.03
Sector Frames [Commscope	Α	From Leg	1.50	0.0000	120.00	No Ice	19.94	8.22	0.42
SF-OV12-B1			0.00			1/2" Ice	24.47	11.99	0.65
(- ,			0.00			1" Ice	29.00	15.76	0.88
Sector Frames [Commscope	В	From Leg	1.50	0.0000	120.00	No Ice	19.94	8.22	0.42
SF-OV12-B]		J	0.00			1/2" Ice	24.47	11.99	0.65
51 Q 111 - J			0.00			1" Ice	29.00	15.76	0.88
Sector Frames [Commscope	С	From Leg	1.50	0.0000	120.00	No Ice	19.94	8.22	0.42
SF-QV12-B]	-		0.00			1/2" Ice	24.47	11.99	0.65
			0.00			1" Ice	29.00	15.76	0.88
(2) V-Bracing Kit	Α	From Leg	1.50	0.0000	120.00	No Ice	6.74	5.88	0.12
[VZWSMART-SFK3] +	**	11012208	0.00			1/2" Ice	8.43	7.35	0.15
Support Rail			0.00			1" Ice	10.11	8.82	0.18
(2) V-Bracing Kit	В	From Leg	1.50	0.0000	120.00	No Ice	6.74	5.88	0.12
[VZWSMART-SFK3] +		i ioni zeg	0.00			1/2" Ice	8.43	7.35	0.15
Support Rail			0.00			1" Ice	10.11	8.82	0.18
(2) V-Bracing Kit	C	From Leg	1.50	0.0000	120.00	No Ice	6.74	5.88	0.12
()	C	1 Ioni Log	0.00	0.000		1/2" Ice	8.43	7.35	0.15
[VZWSMART-SFK3] +			0.00			1" Ice	10.11	8.82	0.18
Support Rail	Α	From Leg	3.00	0.0000	120.00	No Ice	0.22	0.30	0.07
Side-By-Side Mounting Kit	А	riotii Leg	0.00	0.0000	120.00	1/2" Ice	0.26	0.35	0.09
[BSAMNT-SBS-1-2]			0.00			1" Ice	0.30	0.40	0.10
nii n cid-Mdi Wid	D	From Lac	3.00	0.0000	120.00	No Ice	0.22	0.30	0.07
Side-By-Side Mounting Kit	В	From Leg	0.00	0.0000	120.00	1/2" Ice	0.26	0.35	0.09
[BSAMNT-SBS-1-2]			0.00			1" Ice	0.30	0.40	0.10
	0	From Los	3.00	0.0000	120.00	No Ice	0.22	0.30	0.07
Side-By-Side Mounting Kit	С	From Leg	0.00	0.0000	120.00	1/2" Ice	0.26	0.35	0.09
[BSAMNT-SBS-1-2]			0.00			1" Ice	0.30	0.40	0.10

Load Combinations

Comb. No.	Description	
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	

tnxTower	Job	Page 16 of 25	
SBA Communications 8051 Congress Avenue	Project CT09680-VZW-070723	Date 15:31:52 07/10/23	
Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626	Client	Designed by Daniel Yohannes	

Comb.		Description		
No. 15	0.9 Dead+1.0 Wind 180 deg - No Ice		 	
16	1.2 Dead+1.0 Wind 210 deg - No Ice			
17	0.9 Dead+1.0 Wind 210 deg - No Ice			
18	1.2 Dead+1.0 Wind 240 deg - No Ice			
19	0.9 Dead+1.0 Wind 240 deg - No Ice			
20			3.5	
21	1.2 Dead+1.0 Wind 270 deg - No Ice			
22	0.9 Dead+1.0 Wind 270 deg - No Ice			
23	1.2 Dead+1.0 Wind 300 deg - No Ice			
24	0.9 Dead+1.0 Wind 300 deg - No Ice 1.2 Dead+1.0 Wind 330 deg - No Ice			
25	_			
26	0.9 Dead+1.0 Wind 330 deg - No Ice			
27	1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp			
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp			
29	· · · · · · · · · · · · · · · · · · ·			
30	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp			
31	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp			
32	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp			
33	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp			
33 34	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp			
35	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp			
	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp			
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp			
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp			
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp			
39	Dead+Wind 0 deg - Service			
40	Dead+Wind 30 deg - Service			
41 42	Dead+Wind 60 deg - Service			
42	Dead+Wind 90 deg - Service			
43 44	Dead+Wind 120 deg - Service			
	Dead+Wind 150 deg - Service			
45	Dead+Wind 180 deg - Service			
46 47	Dead+Wind 210 deg - Service			
	Dead+Wind 240 deg - Service			
48 49	Dead+Wind 270 deg - Service			
50	Dead+Wind 300 deg - Service			
51	Dead+Wind 330 deg - Service			
52	1.2 Dead+1.0 Ev+1.0 Eh 0 deg			
53	0.9 Dead-1.0 Ev+1.0 Eh 0 deg			
	1.2 Dead+1.0 Ev+1.0 Eh 30 deg			
54	0.9 Dead-1.0 Ev+1.0 Eh 30 deg			
55 56	1.2 Dead+1.0 Ev+1.0 Eh 60 deg			
56	0.9 Dead-1.0 Ev+1.0 Eh 60 deg			
<i>57</i>	1.2 Dead+1.0 Ev+1.0 Eh 90 deg			
58	0.9 Dead-1.0 Ev+1.0 Eh 90 deg			
59	1.2 Dead+1.0 Ev+1.0 Eh 120 deg			
60	0.9 Dead-1.0 Ev+1.0 Eh 120 deg			
61	1.2 Dead+1.0 Ev+1.0 Eh 150 deg			
62	0.9 Dead-1.0 Ev+1.0 Eh 150 deg			
63	1.2 Dead+1.0 Ev+1.0 Eh 180 deg			
64	0.9 Dead-1.0 Ev+1.0 Eh 180 deg			
65	1.2 Dead+1.0 Ev+1.0 Eh 210 deg			
66	0.9 Dead-1.0 Ev+1.0 Eh 210 deg			
67	1.2 Dead+1.0 Ev+1.0 Eh 240 deg			
68	0.9 Dead-1.0 Ev+1.0 Eh 240 deg			
69	1.2 Dead+1.0 Ev+1.0 Eh 270 deg			
70	0.9 Dead-1.0 Ev+1.0 Eh 270 deg			
70				
70 71 72	1.2 Dead+1.0 Ev+1.0 Eh 300 deg 0.9 Dead-1.0 Ev+1.0 Eh 300 deg			

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670

FAX: 5619957626

Job		Page 47 1505
		17 of 25
Project	CT09680-VZW-070723	Date 15:31:52 07/10/23
Client		Designed by Daniel Yohannes

Comb. No.		Description	
73	1.2 Dead+1.0 Ev+1.0 Eh 330 deg		
74	0.9 Dead-1.0 Ev+1.0 Eh 330 deg		

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	A	Deflection in	Load Comb.	0	۰
	180 - 160	4.924	40	0.2401	0.0650
T2	160 - 140	3.927	46	0.2286	0.0356
T3	140 - 120	2.991	46	0.2018	0.0193
T4	120 - 100	2.193	40	0.1710	0.0145
T5	100 - 80	1.521	40	0.1378	0.0124
T6	80 - 60	0.978	40	0.1092	0.0098
T7	60 - 40	0.558	40	0.0785	0.0071
T8	40 - 20	0.262	40	0.0506	0.0044
T9	20 - 0	0.075	40	0.0256	0.0018

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
ft		Load Comb	in	0	0	ft
180.00	Lightning Rod	40	4.924	0.2401	0.0650	337281
160.00	Seismic Load @160	46	3.927	0.2286	0.0356	81482
150.00	Air 21 B2A/B4P (55.9" x 12" x 7.8")	46	3.446	0.2166	0.0256	43914
140.00	w/ mount pipe Seismic Load @140	46	2.991	0.2018	0.0193	30274
120.00	(3) SBNHH-1D65B (72" x 11.85" x	40	2.193	0.1710	0.0145	39790
100.00	7.1") w/ mount pipe Seismic Load @100	40	1.521	0.1378	0.0124	35238
80.00	Seismic Load @80	40	0.978	0.1092	0.0098	39693
60.00	Seismic Load @60	40	0.558	0.0785	0.0071	37393
40.00	Seismic Load @40	40	0.262	0.0506	0.0044	48271
20.00	Seismic Load @20	40	0.075	0.0256	0.0018	35181

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	fi	Deflection in	Load Comb.	o	
T1	180 - 160	21.859	2	1.0652	0.2783
T2	160 - 140	17.410	2	1.0166	0.1496
T3	140 - 120	13.245	2	0.8972	0.0851
T4	120 - 100	9.701	4	0.7597	0.0640
T5	100 - 80	6.725	4	0.6108	0.0549
T6	80 - 60	4.322	4	0.4834	0.0434

tnxTower	Job	Page 18 of 25
SBA Communications 8051 Congress Avenue	Project CT09680-VZW-070723	Date 15:31:52 07/10/23
Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626	Client	Designed by Daniel Yohannes

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	fi	in	Comb.	0	0
T7	60 - 40	2.467	4	0.3471	0.0311
T8	40 - 20	1.156	4	0.2237	0.0194
T9	20 - 0	0.330	4	0.1130	0.0081

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
fi		Comb.	in	۰	0	ft
180.00	Lightning Rod	2	21.859	1.0652	0.2783	78840
160.00	Seismic Load @160	2	17.410	1.0166	0.1496	18944
150.00	Air 21 B2A/B4P (55.9" x 12" x 7.8") w/ mount pipe	2	15.267	0.9631	0.1093	9928
140.00	Seismic Load @140	2	13.245	0.8972	0.0851	6906
120.00	(3) SBNHH-1D65B (72" x 11.85" x 7.1") w/ mount pipe	4	9.701	0.7597	0.0640	9001
100.00	Seismic Load @100	4	6.725	0.6108	0.0549	7951
80.00	Seismic Load @80	4	4.322	0.4834	0.0434	8934
60.00	Seismic Load @60	4	2.467	0.3471	0.0311	8419
40.00	Seismic Load @40	4	1.156	0.2237	0.0194	10908
20.00	Seismic Load @20	4	0.330	0.1130	0.0081	7961

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	fl			in	Bolts	per Bolt K	per Bolt K	Allowable		
T 1	180	Leg	A325N	0.7500	4	2.34	30.10	0.078	1	Bolt Tension
T2	160	Leg	A325N	0.7500	4	9.87	30.10	0.328	1	Bolt Tension
T3	140	Leg	A325N	1.0000	4	16.90	54.52	0.310	1	Bolt Tension
		Diagonal	A325N	0.6250	1	3.56	6.83	0.522	1	Member Block Shear
		Top Girt	A325N	0.6250	1	1.29	4.55	0.284	1	Member Block Shear
T4	120	Leg	A325N	1.0000	6	18.52	54.52	0.340	1	Bolt Tension
		Diagonal	A325N	0.6250	1	5.43	9.11	0.596	1	Member Block Shear
T5	100	Leg	A325N	1.0000	6	25.14	54.52	0.461	1	Bolt Tension
		Diagonal	A325N	0.6250	1	5.51	9.11	0.605	1	Member Block Shear
T6	80	Leg	A325N >1"	1.2500	6	30.27	76.32	0.397	1	Bolt Tension
		Diagonal	A325N	0.7500	1	7.45	9.46	0.787	1	Member Bearing
		Secondary Horizontal	A325N	0.6250	1	3.95	4.55	0.868	1	Member Block Shear

tnxTower	Job	Page 19 of 25
SBA Communications 8051 Congress Avenue	Project CT09680-VZW-070723	Date 15:31:52 07/10/23
Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626	Client	Designed by Daniel Yohannes

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
ft	ft			in	Bolts	per Bolt K	per Bolt K	Allowable	-	
T7	60	Leg	A325N >1"	1.2500	6	35.86	76.32	0.470	1	Bolt Tension
		Diagonal	A325N	0.7500	1	7.62	9.46	0.806	1	Member Bearing
		Secondary Horizontal	A325N	0.6250	1	4.46	6.83	0.653	1	Member Block Shear
T8	40	Leg	A325N >1"	1.2500	6	41.14	76.32	0.539	1	Bolt Tension
		Diagonal	A325N	0.7500	1	7.84	9.46	0.828	1	Member Bearing
		Secondary Horizontal	A325N	0.6250	1	4.90	7.83	0.626	1	Member Bearing
T9	20	Diagonal	A325N	0.7500	1	7.89	12.62	0.626	1	Member Bearing
		Secondary Horizontal	A325N	0.6250	1	5.52	7.83	0.704	1	Member Bearing

Compression Checks

Section	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P_u
No.	ft		fî	ft		in ²	K	K	ϕP_n
T1	180 - 160	1 1/2	20.00	3.21	102.7 K=1.00	1.7672	-9.76	36.79	0.265
T2	160 - 140	2	20.00	3.21	77.0 K=1.00	3.1416	-40.48	91.64	0.442
T3	140 - 120	2 3/4	20.02	5.00	87.4 K =1.00	5.9396	-74.7 1	152.99	0.488
T4	120 - 100	3	20.02	5.00	80.1 K=1.00	7.0686	-124.12	199.04	0.624
T5	100 - 80	3 1/2	20.02	5.00	68.6 K=1.00	9.6211	-167.76	306.80	0.547
T6	80 - 60	3 1/2	20.02	5.20	71.3 K=1.00	9.6211	-202.20	298.51	0.677
Т7	60 - 40	3 3/4	20.02	5.17	66.2 K=1.00	11.0447	-240.26	360.68	0.666
T8	40 - 20	4	20.02	5.15	61.8 K=1.00	12.5664	-276.98	427.55	0.648
Т9	20 - 0	4	20.02	5.14	61.7 K=1.00	12.5664	-312.17	428.28	0.729

 $^{^{1}}P_{u}$ / ϕP_{n} controls

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307

ca Raton, FL 33487-13 Phone: 5619957670 FAX: 5619957626

Job		Page
-		20 of 25
Project		Date
	CT09680-VZW-070723	15:31:52 07/10/23
Client		Designed by
		Daniel Yohannes

0.668 1

0.604 1

12.19

13.74

Section No.	Elevation	Size	L	L_{u}	KVr	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in^2	K	K	ϕP_n
T1	180 - 160	1	5.13	4.97	166.9 K=0.70	0.7854	-2.40	6.37	0.377
T2	160 - 140	1 1/4	5.13	4.91	132.1 K=0.70	1.2272	-8.08	15.87	0.509
T3	140 - 120	L2x2x3/16	6.52	3.13	101.5 K=1.06	0.7150	-3.72	17.40	0.214
T4	120 - 100	L2x2x1/4	8.45	4.07	124.8 K=1.00	0.9380	-5.42	17.23	0.315
T5	100 - 80	L2x2x1/4	9.70	4.67	143.3 K=1.00	0.9380	-5.51	13.07	0.421 1
T6	80 - 60	L3x3x3/16	13.88	6.87	138.2 K=1.00	1.0900	-7.62	16.33	0.467 1
T7	60 - 40	L3x3x3/16	14.96	7.39	148.7 K=1.00	1.0900	-7.87	14.10	0.558 1

7.94

8.54

160.0

K=1.00

173.2

K=1.00

1.0900

1.4400

-8.15

-8.29

16.11

17.31

Diagonal Design Data (Compression)

40 - 20

20 - 0

L3x3x3/16

L3x3x1/4

T8

T9

Horizontal Design Data (Compression)									
Section No.	Elevation	Size	Ĺ	L_{μ}	Kl/r	A	P_{u}	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	K	$\frac{1}{\Phi P_n}$
T 1	180 - 160	1	4.00	3.88	130.2 K=0.70	0.7854	-0.28	10.42	0.026
T2	160 - 140	1	4.00	3.83	128.8 K=0.70	0.7854	-1.99	10.63	0.187

 $^{^{1}}P_{u}/\phi P_{n}$ controls

	Secondary Horizontal Design Data (Compression)										
Section No.	Elevation	Size	Ĺ	L_u	Kl/r	A	P_u	фР"	Ratio P		
	ft		ft	fl		in ²	K	K	ϕP_n		
T1	180 - 160		2.00	1.94	83.9 K=0.90	0.7854	-0.00	17.56	0.000		

 $^{^{1}}P_{u}$ / ϕP_{n} controls

tnx Tower Job Page 21 of 25 SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626 Project CT09680-VZW-070723 Date 15:31:52 07/10/23 Client Daniel Yohannes Designed by Daniel Yohannes

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.,
No.	ft		ft	ft		in ²	K	K	ϕP_n
T2	160 - 140	1	2.00	1.92	83.7 K=0.91	0.7854	-0.00	17.59	0.000
T6	80 - 60	L2x2x1/8	9.61	4.54	137.0 K=1.00	0.4844	-3.95	7.38	0.536 1
Т7	60 - 40	L2x2x3/16	11.11	5.28	160.8 K=1.00	0.7150	-4.46	7.91	0.564
Т8	40 - 20	L2 1/2x2 1/2x3/16	12.61	6.02	146.0 K=1.00	0.9020	-4.90	12.12	0.405 1
T9	20 - 0	L2 1/2x2 1/2x3/16	14.12	6.77	164.1 K=1.00	0.9020	-5.52	9.58	0.576 1

 $^{{}^{1}}P_{u}$ / ϕP_{n} controls

	Top Girt Design Data (Compression)								
Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_u	ϕP_n	Ratio Pu
NO.	ft		ft	ft		in^2	K	K	ϕP_{\shortparallel}
T1	180 - 160	1	4.00	3.88	130.2 K=0.70	0.7854	-0.85	10.42	0.082
T2	160 - 140	1	4.00	3.83	128.8 K=0.70	0.7854	-1.25	10.63	0.118 1
T3	140 - 120	L2x2x1/8	4.00	3.53	113.3 K=1.06	0.4844	-1.29	10.28	0.126

¹ P_u / ϕP_n controls

	Bottom Girt Design Data (Compression)									
Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_u	ϕP_n	Ratio P _u	
100.	ft		ft	ft		in^2	K	K	ϕP_n	
T1	180 - 160	1	4.00	3.88	130.2 K=0.70	0.7854	-1.00	10.42	0.096	
T2	160 - 140	1	4.00	3.83	128.8 K=0.70	0.7854	-2.47	10.63	0.232	

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Tension Checks

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
		22 of 25
Project		Date
	CT09680-VZW-070723	15:31:52 07/10/23
Client		Designed by
		Daniel Yohannes

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	fi		in ²	K	K	ϕP_n
T1	180 - 160	1 1/2	20.00	0.38	12.0	1.7672	9.36	79.52	0.118
T2	160 - 140	2	20.00	0.38	9.0	3.1416	39.48	141.37	0.279
T3	140 - 120	2 3/4	20.02	5.00	87.4	5.9396	67.59	267.28	0.253 1
T4	120 - 100	3	20.02	5.00	80.1	7.0686	111.12	318.09	0.349 1
T5	100 - 80	3 1/2	20.02	5.00	68.6	9.6211	150.84	432.95	0.348 1
T6	80 - 60	3 1/2	20.02	4.81	66.0	9.6211	181.79	432.95	0.420 1
T7	60 - 40	3 3/4	20.02	4.84	61.9	11.0447	215.35	497.01	0.433 1
T8	40 - 20	4	20.02	4.86	58.3	12.5664	247.09	565.49	0.437
T9	20 - 0	4	20.02	4.87	58.5	12,5664	277.01	565.49	0.490 1

 $^{^{1}}P_{\mu}$ / ϕP_{n} controls

Diagonal	Design Data	(Tension)

Section	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in ²	K	K	$\frac{P_u}{\Phi P_n}$
T1	180 - 160	1	5.13	4.97	238.4	0.7854	2.40	25.45	0.0941
T2	160 - 140	1 1/4	5.13	4.91	188.7	1.2272	8.08	39.76	0.203 1
Т3	140 - 120	L2x2x3/16	6.52	3.13	63.2	0.4308	3.56	18.74	0.190 1
T4	120 - 100	L2x2x1/4	7.86	3.78	76.8	0.5629	5.43	24.49	0.222 1
T5	100 - 80	L2x2x1/4	9.70	4.67	94.4	0.5629	5.51	24.49	0.225 1
T6	80 - 60	L3x3x3/16	13.88	6.87	89.5	0.6945	7.45	30.21	0.247 1
T7	60 - 40	L3x3x3/16	14.96	7.39	96.1	0.6945	7.62	30.21	0.252 1
T8	40 - 20	L3x3x3/16	16.11	7.94	103.3	0.6945	7.84	30.21	0.259 1

SBA Communications
8051 Congress Avenue

Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
		23 of 25
Project	CT09680-VZW-070723	Date 15:31:52 07/10/23
Client	C109060-V2W-070723	Designed by
i		Daniel Yohannes

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_{ii}
Т9	20 - 0	L3x3x1/4	16.70	8.25	108.1	0.9159	7.89	39.84	0.198

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Horizontal Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
IVO.	ft		ft	ft		in^2	K	K	φ <i>P</i> ,,
Tl	180 - 160	1	4.00	3.88	186.0	0.7854	0.28	25.45	0.011
T2	160 - 140	1	4.00	3.83	184.0	0.7854	2.02	25.45	0.079 1

 $^{^{1}}P_{u}$ / ϕP_{n} controls

		Secondar	y Horiz	ontal	Desig	n Data	a (Tens	ion)	
Section	Elevation	Size	$\frac{1}{L}$	<i>L</i> ,,	Kl/r	A	P_{u}	ϕP_n	Ratio
o.	Lievation	5,20	_			2			P

Section	Elevation	Dide	_	—и			-		P_{u}
No.	ft		ft	ft		in²	K	K	ϕP_n
Tl	180 - 160	1	2.00	1.94	93.0	0.7854	0.00	25.45	0.000
T2	160 - 140	1	2.00	1.92	92.0	0.7854	0.00	25.45	0.000 1
Т6	80 - 60	L2x2x1/8	8.86	4.16	164.2	0.2930	3.95	12.74	0.310 1
T7	60 - 40	L2x2x3/16	11.11	5.28	210.0	0.4308	4.46	18.74	0.238 1
Т8	40 - 20	L2 1/2x2 1/2x3/16	11.86	5.65	177.8	0.5710	4.90	24.84	0.197 1
Т9	20 - 0	L2 1/2x2 1/2x3/16	14.12	6.77	212.6	0.5710	5.52	24.84	0.222 1

 $^{^{1}}P_{u}$ / ϕP_{u} controls

Top Girt Design Data (Tension)

SBA Communications 8051 Congress Avenue

Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job	Page 24 of 25
Project CT09680-VZW-070723	Date 15:31:52 07/10/23
Client	Designed by Daniel Yohannes

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_{μ}	ϕP_n	Ratio P _u
ft	ft		fi	ft		in^2	K	K	φP.,
T 1	180 - 160	1	4.00	3.88	186.0	0.7854	0.87	25.45	0.034 1
T2	160 - 140	Î	4.00	3.83	184.0	0.7854	1.19	25.45	0.047
Т3	140 - 120	L2x2x1/8	4.00	3.53	72.3	0.2930	1.29	12.74	0.102 1

 $^{^{1}}P_{u}$ / ϕP_{n} controls

Bottom	Girt	Design	Data	(Tension)
			- 444	(10101011)

Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_u	ϕP_n	Ratio P.,
	fŧ		ft	ft		in^2	K	K	φ <i>P</i> ,,
T1	180 - 160	1	4.00	3.88	186.0	0.7854	1.06	25.45	0.042
T2	160 - 140	1	4.00	3.83	184.0	0.7854	2.56	25.45	0.101

 $^{^{1}}P_{\mu}/\phi P_{n}$ controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	ø P_{allow}	% Capacity	Pass Fail
T1	180 - 160	Leg	1 1/2	3	-9.76	36.79	26.5	Pass
T2	160 - 140	Leg	2	51	-40.48	91.64	44.2	Pass
T3	140 - 120	Leg	2 3/4	99	-74.71	152.99	48.8	Pass
T4	120 - 100	Leg	3	129	-124.12	199.04	62.4	Pass
T5	100 - 80	Leg	3 1/2	156	-167.76	306.80	54.7	Pass
T6	80 - 60	Leg	3 1/2	183	-202,20	298.51	67.7	Pass
T7	60 - 40	Leg	3 3/4	204	-240,26	360.68	66.6	Pass
T8	40 - 20	Leg	4	225	-276.98	427.55	64.8	Pass
T9	20 - 0	Leg	4	246	-312.17	428,28	72.9	Pass
T1	180 - 160	Diagonal	1	11	-2.40	6.37	37.7	Pass
T2	160 - 140	Diagonal	1 1/4	60	-8.08	15.87	50.9	Pass
T3	140 - 120	Diagonal	L2x2x3/16	124	-3.72	17.40	21.4	Pass
		•					52.2 (b)	
T4	120 - 100	Diagonal	L2x2x1/4	134	-5.42	17.23	31.5	Pass
		•					59.6 (b)	
T5	100 - 80	Diagonal	L2x2x1/4	161	-5.51	13.07	42.1	Pass
							60.5 (b)	
T6	80 - 60	Diagonal	L3x3x3/16	188	-7.62	16.33	46.7	Pass
		ī			73		78.7 (b)	
T7	60 - 40	Diagonal	L3x3x3/16	209	-7.87	14.10	55.8	Pass
							80.6 (b)	

SBA Communications 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: 5619957670 FAX: 5619957626

Job		Page
		25 of 25
Project		Date
	CT09680-VZW-070723	15:31:52 07/10/23
Client		Designed by
		Daniel Yohannes

Section	Elevation	Component	Size	Critical	P		%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
T8	40 - 20	Diagonal	L3x3x3/16	230	-8.15	12.19	66.8	Pass
10		- Santa Caracter Cara					82.8 (b)	
T9	20 - 0	Diagonal	L3x3x1/4	251	-8.29	13.74	60.4	Pass
• /							62.6 (b)	
T 1	180 - 160	Horizontal	1	22	-0.28	10.42	2.6	Pass
T2	160 - 140	Horizontal	1	77	-1.99	10.63	18.7	Pass
Ti	180 - 160	Secondary Horizontal	1	41	-0.00	17.56	0.1	Pass
T2	160 - 140	Secondary Horizontal	1	75	-0.00	17.59	0.1	Pass
T6	80 - 60	Secondary Horizontal	L2x2x1/8	191	-3.95	7.38	53.6	Pass
10	00 - 00	Sobolidary 1101111011111					86.8 (b)	
T7	60 - 40	Secondary Horizontal	L2x2x3/16	212	-4.46	7.91	56.4	Pass
17	00 - 40	Secondary Horizonian					65.3 (b)	
Т8	40 - 20	Secondary Horizontal	L2 1/2x2 1/2x3/16	233	-4.90	12.12	40.5	Pass
10	40 - 20	Scondary Horizontal	22 2/2/12 1/2/12				62.6 (b)	
TO	20 - 0	Secondary Horizontal	L2 1/2x2 1/2x3/16	254	-5.52	9.58	57.6	Pass
T9	20-0	Secondary Horizontal	EZ I/ERB I/ERB/IO				70.4 (b)	
Tr.	180 - 160	Top Girt	1	5	-0.85	10.42	8.2	Pass
T1	160 - 160	Top Girt	î	53	-1.25	10.63	11.8	Pass
T2		Top Girt	L2x2x1/8	101	-1.29	10.28	12.6	Pass
T3	140 - 120	тор Опт	EZZZX170	101			28.4 (b)	
TD 1	100 160	Bottom Girt	1	8	-1.00	10.42	9.6	Pass
T1	180 - 160	Bottom Girt	î	56	-2.47	10.63	23.2	Pass
T2	160 - 140	Bouom Girt		50	2117	10.00	Summary	
						Leg (T9)	72.9	Pass
						Diagonal	82.8	Pass
						(T8)	0210	
						Horizontal	18.7	Pass
						(T2)	1017	
						Secondary	86.8	Pass
						Horizontal	00.0	1 400
						(T6)		
						Top Girt	28.4	Pass
						(T3)	20.4	1 433
						Bottom Girt	23.2	Pass
						(T2)	23.4	1 455
						Bolt Checks	86.8	Pass
								Pass
						RATING =	86.8	L 5122

 $Program\ Version\ 8.1.1.0-6/3/2021\ File: C:/Users/dyohannes/Desktop/temp/CT09680-S/232427, v2/Tower\ Calcs/CT09680-VZW-070723. erion and the contraction of the co$

Self Support Anchor Bolt Check

Project Information
SBA Project #: CT09680-VZW-070723

Code: H

Leg Reaction

Uplift(kips): 284 Shear (kips): 22 Comp(kips): 321 Shear (kips): 25

Grout

5,000 psi Grout Present

☑ Use Section 15.7 exemption

Strength Reduction Factors

Tension: 0.75
Compression: 0.90
Shear: 0.75
Flexure: 0.9

Bolt Capacity: 52.5% Pass

Bolt Information

Quantity: 6
ameter (in): 1.25

Diameter (in) : 1.25
Assumed lar (in) : 1.25

Bolt Fy (ksi): 109 able 2-6) (ksi): 125

Bolt Fu (AISC Table 2-6) (ksi):

of threads (AISC Table 7-17): 7

Analysis complete Project#: CT09680-VZW-070723 1.00 I =Structure Date **Tower Data** Risk category: II $F_a =$ 1.60 Tower type: SST Site class: D (default) $F_{\nu} =$ 2.40 Height (ft): 180 0.91 T (sec) =14.5 Seismic Date Base face width (ft): R= Short period (S_s): 0.194 3.00 9 Number of sections: 1.21 1sec period (S₁): 0.053 Ke= Long period transition (T_L) (Fig B-19): $C_s =$ 0.05 Note: 1: Get self weight & add weight (feedline) from "Mast Forces table (tnxTower Reports)" V_s (kip) = 1.73 0.41 Ts(sec) =2: Get appurtenance weight from "Appurt. Pressure table (InxTower Reports)" 3: Get the guy weight from "WEIGHTAUXDATA" excel file from the tnx out put files **Tnx User Forces** Self Add Weight Appurtenance Top $E_h(F_x)$ *E_v Guy Weight | Total Weight Top Elev width Weight (feedline) Weight Section kip kip kip kip kip kip ft kip ft 0.14 0.07 0.00 1.74 180 4 0.91 0.23 0.6 0.47 0.22 5.33 4 1.35 0.38 3.6 0.00 2 160 2.24 0.14 0.09 1.72 0.52 0.00 0.00 140 4 3 6.99 0.46 0.29 0.94 3.89 0.00 120 5.5 2.16 4 0.94 0.00 0.00 3.75 0.17 0.16 2.81 5 100 7 0.00 0.00 3.74 0.13 0.15 8.5 2.8 0.94 6 80 0.11 0.17 0.94 0.00 0.00 4.16 3.22 10 7 60 4.61 0.07 0.19 0 0.00 0.94 3.67 8 40 11.5 4.71 0.03 0.19 0 0.00 4.01 0.7 9 20 13

8.09

8.2

22.65

6.53

37.27

1.73

Mot Four	detion Design for Salf S	unnerting Tower	Date
mat roun	dation Design for Self S	upporting Tower	7/10/2023
Customer Name:		TIA Standard:	TIA-222-H
Site Name:		Structure Height (Ft.):	180
Site Nmber:	CT09680-VZW-070723	Engineer Name:	D. Yohannes
Engr. Number:		Engineer Login ID:	

Foundation Info Obtained from:		Drawings/Calculations				ž.	
Analysis or Design?		Analysis					
Number of Tower Legs:		3 Legs			-	K _	=
Base Reactions (Factored):					3'	*	0.00
(1). Individual Leg:				1		il .	
Axial Load (Kips):	321.0	Uplift Force (Kips):	284.0	<u> </u>	7/1		
Shear Force (Kips):	25.0	, , , ,					27.
(2). Tower Base:					- 1		11 # 4
Total Vertical Load (Kips):	45.0	Total Shear Force (Kips):	40.0	9	99'		12 # 8
Moment (Kips-ft):	3870.0			4.5*			1
Foundation Geometries:				- 5	V		38 # 9
Leg distance (Center-to-Center ft.):	14.5	Mods required -Yes/No ?:	No		<u> </u>		38 # 9
Diameter of Pier (ft.): Round	3.0	Pier Height A. G. (ft.):	1.00				
Tower center to mat center (ft):	0	Depth of Base BG (ft.):	4.5		6 9 0	0 0	• • •
Length of Pad (ft.):	28	Width of Pad (ft.):	28				2,!
Thickness of Pad (ft):	2.50				1		To the second se
					38	# 9	38 # 9
Material Properties and Reabr Info					Mat Center		
Concrete Strength (psi):	4000	Steel Elastic Modulus:	29000	ksi (W)		0.00	Tower Center
Vertical bar yield (ksi)	60	Tie steel yield (ksi):	60	28'		1	14.5
Vertical Rebar Size #:	8	Tie / Stirrup Size #:	4				
Qty. of Vertical Rebars:	12	Tie Spacing (in):	6.0				
Pad Rebar Yield (Ksi):	60	Pad Steel Rebar Size (#):	9		5.63	8.372	
Concrete Cover (in.):	3	Unit Weight of Concrete:	150.0	pcf			
Rebar at the bottom of the concrete	pad:			\downarrow		12.557	
Qty. of Rebar in Pad (L):	38	Qty. of Rebar in Pad (W):	38	-	101	ESSELL	200
Rebar at the top of the concrete page	d:				<	28'	(L)
Qty. of Rebar in Pad (L):	38	Qty. of Rebar in Pad (W):	38	_			
Call Davies Daves				1	<		A >
Soil Design Parameters:	1100	Sail Dunum Mi-t-Li	A7.C	D-4			
Soil Unit Weight (pcf): Water Table B.G.S. (ft):	99.0	Soil Buoyant Weight:	47.6	Pct			
Ultimate Bearing Pressure (psf):	12000	Unit Weight of Water: Consider ties in concrete shear str	62.4	pcf			
Consider Soil Lateral Resistance ?	No	Consider ties in concrete snear str	engui:	Yes	Mat Contac	K	Tower Center
CONSIDER SOIL FOREIGN VESISTANCE !	NU			(W)	Mat Center	> 6	Tower Center
				28			
							T V
						<u> </u>	
				<u> </u>			7

TES Engr. Number:

0

Page 2/2

Date:

7/10/2023

Total Dry Soil Volume (cu. Ft.):	1525.59	Total I	Dry Soil Weight (Kips):	167.81		
Total Buoyant Soil Volume (cu. Ft.):	0.00	Total I	Buoyant Soil Weight (Kips):	0.00		
Total Effective Soil Weight (Kips):	167.81	Weigh	nt from the Concrete Block at Top (K):	0.00		
Total Dry Concrete Volume (cu. Ft.):	2023.62	Total I	Dry Concrete Weight (Kips):	303.54		
Total Buoyant Concrete Volume (cu. Ft.):	0.00	Total l	Buoyant Concrete Weight (Kips):	0.00		
Total Effective Concrete Weight (Kips):	303.54	Total \	Vertical Load on Base (Kips):	516.36		
Total Elizabeth South and the South Control of the					Load/ Capacity	
Check Soil Capacities:					Ratio	
Calculated Maxium Net Soil Pressure under the base (psf):	2070.16	<	Allowable Factored Soil Bearing (psf):	9000	0.23	OK!
Allowable Foundation Overturning Resistance (kips-ft.):	6569.1	>	Design Factored Momont (kips-ft):	4090	0.62	OK!
Factor of Safety Against Overturning (O. R. Moment/Design Moment):	1.61	OK!				
Check the capacities of Reinforceing Concrete:	0.00	Chuana	th reduction factor (Shear):	0.75		
Strength reduction factor (Flexure and axial tension):	0.90	_	, , ,	1.00		
Strength reduction factor (Axial compresion):	0.65	wina	Load Factor on Concrete Design:	1.00	Load/	
					Capacity	
(1) Concrete Pier:			/a:	0.20	Ratio	
Vertical Steel Rebar Area (sq. in./each):	0.79		Tie / Stirrup Area (sq. in./each):	0.20	0.26	OK!
Calculated Moment Capacity (Mn, Kips-Ft):	293.6	>	Design Factored Moment (Mu, Kips-Ft	75.0		OK!
Calculated Shear Capacity (Kips):	123.2	>	Design Factored Shear (Kips):	25.0	0.20	
Calculated Tension Capacity (Tn, Kips):	511.9	>	Design Factored Tension (Tu Kips):	284.0	0.55	OKI
Calculated Compression Capacity (Pn, Kips):	1782.8	>	Design Factored Axial Load (Pu Kips):	321.0	0.18	OK!
Moment & Tension Strength Combination:	0.26		Check Tie Spacing (Design/Req'd):	0.50		
Pier Reinforcement Ratio:	0.009	Rei	nforcement Ratio is satisfied per ACI			
(2).Concrete Pad:						
One-Way Design Shear Capacity (L or W Direction, Kips):	842.7	>	One-Way Factored Shear (L/W-Dir Kips	246.9	0.29	OK!
One-Way Design Shear Capacity (Diagonal Dir., Kips):	780.9	>	One-Way Factored Shear (Dia. Dir, Kipe	185.3	0.24	OK!
Lower Steel Pad Reinforcement Ratio (L or W-Direct.):	0.0043		Lower Steel Reinf. Ratio (Dia. Dir.):	0.0038		
Lower Steel Pad Moment Capacity (L or W-Dir. Kips-ft):	4350.2	>	Moment at Bottom (L-Direct. K-Ft):	1429.7	0.33	OK!
Lower Steel Pad Moment Capacity (Dia. Direction, K-ft):	4282.3	>	Moment at Bottom (Dia. Dir. K-Ft):	1439.9	0.34	OK!
Upper Steel Pad Reinforcement Ratio (L or W -Direction):	0.0043		Upper Steel Reinf. Ratio (Dia. Dir.):	0.0038		
Upper Steel Pad Moment Capacity (Lor W-Dir., Kips-ft):	4350.2	>	Moment at the top (L-Dir Kips-Ft):	672.3	0.15	OK!
Upper Steel Pad Moment Capacity (Dia. Direction, K-ft):	4282.3	>	Moment at the top (Dia. Dir., K-Ft):	456.9	0.11	OK!
Punching Failure Capacity From Down Load (Kips):	983.9	>	Punch. Failure Factored Shear (K):	321.0	0.33	OK!
Punching Failure Capacity From Uplift (Kips):	873.6	>	Punch. Failure Factored Shear (K):	284.0	0.33	OK!
Full ching candle capacity from Opine (App).						
(3). Check Max. eccentricity of Loading:						
The maximum eccentricity of Loading:	7.92	ft.	Allowable eccentricity (0.45 W, ft.):	12.6		OK!

Reinforce Concrete Pad by enlarging the size of pier (Yes/No):

Colliers Engineering & Design CT. P.C. 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis

SMART Tool Project #: 10206280 Colliers Engineering & Design CT. P.C. Project #: 23777045 (Rev. 1)

July 10, 2023

Site Information

Site ID:

5000244862-VZW / Quaker Hill CT - A

Site Name: Carrier Name: Quaker Hill CT - A Verizon Wireless

Address:

35 South Bartlett Road

Quaker Hill, Connecticut 06375

New London County

Latitude:

Longitude:

41.41765277° -72.10672777°

Structure Information

Tower Type:

160-Ft Self Support

Mount Type:

12.50-Ft Sector Frame

FUZE ID # 17123917

Analysis Results

Sector Frame: 63.4% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Frank Centone

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 5001350, dated February 10, 2021
Mount Mapping Report	Hudson Design Group LLC, Site ID: 467959, dated February 9, 2021
Previous Mount Analysis Report	Maser Consulting, Project #: 20777648, dated April 20, 2021
Post-Modification Inspection Report	Maser Consulting, Project #: 20777648, dated July 25, 2022
Filter Added Scope	Provided by Verizon Wireless

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H

2022 Connecticut State Building Code (CSBC), Effective October 1, 2022

0.991

Tille I didillotoro	Wind Parameters:	Basic Wind Speed	(Ultimate 3-sec.	Gust), V _{ULT} :	126 mp
---------------------	------------------	------------------	------------------	---------------------------	--------

Ice Wind Speed (3-sec. Gust): 50 mph Design Ice Thickness: 1.00 in Risk Category: П C **Exposure Category:** Topographic Category: 1 N/A Topographic Feature Considered: N/A Topographic Method:

Ground Elevation Factor, Ke: $0.194 \, q$ Seismic Parameters: S_s:

0.053 gS₁:

Wind Speed (3-sec. Gust): 30 mph Maintenance Parameters:

250 lbs. Maintenance Load, Lv: 500 lbs. Maintenance Load, Lm:

RISA-3D (V17) Analysis Software:

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status	
1.7	, ,	3	Samsung	MT6407-77A		
119.50	120.00	9	Andrew	SBNHH-1D65B		
		3	Samsung	B2/B66A RRH-BR049	Retained	
		3	Samsung	B5/B13 RRH-BR04C		
			3	Raycap	RRFDC-3315-PF-48	
		4	KAelus	BSF0020F3V1-1	Added	

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Colliers Engineering & Design CT. P.C. and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design CT. P.C. to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity
 of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design CT. P.C. is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate 0

ASTM A36 (Gr. 36)

o HSS (Rectangular)

ASTM 500 (Gr. B-46)

Pipe

ASTM A53 (Gr. B-35)

0

Threaded Rod

F1554 (Gr. 36)

Bolts

ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design CT. P.C..

Analysis Results:

Component	Utilization %	Pass/Fail
Face Horizontal	63.4 %	Pass
Antenna Pipe	54.5 %	Pass
Standoff Horizontal	25.0 %	Pass
Standoff Vertical	18.0 %	Pass
Standoff Diagonal	10.5 %	Pass
Back Plate 2	30.7 %	Pass
Back Plate 1	29.5 %	Pass
Tie Back	3.7 %	Pass
Mod Face horizontal	51.5 %	Pass
Mod V kit	12.1 %	Pass
Connection Check	7.0 %	Pass

Structure Rating – (Controlling Utilization of all Components)	63.4%

BASELINE mount weight per SBA agreement: 2371.11 lbs

Increase in mount weight due to Verizon loading change per SBA agreement: No Change

The weights listed above include 3 sectors.

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipe	s Excluded	Mount Pipes Included		
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	
0	43.7	12.3	53.2	21.8	
0.5	57.0	17.4	70.5	30.9	
1	69.8	21.9	87.3	39.4	

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector(s).
- Ka factors included in (EPA)a calculations

Mount Structural Analysis Report (3) 12.50-Ft Sector Frame

July 10, 2023 Site ID: 5000244862-VZW / Quaker Hill CT - A Page | 5

Requirements:

The existing mounts are **SUFFICIENT** for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading. Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com. For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000244862

SMART Project #: 10206280 Fuze Project ID: 17123917

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.

- Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

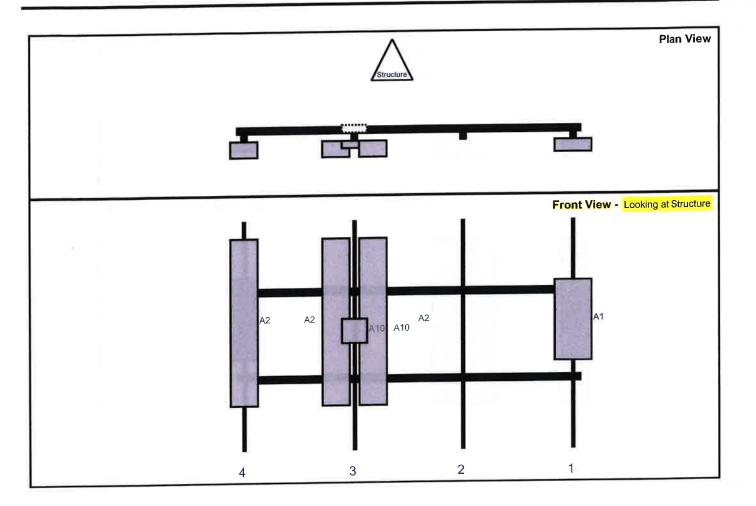
•	The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
	☐ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
	OR
	☐ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Specia	I Instructions / Validation as required from the MA or any other information the contractor
deems	necessary to share that was identified:
ssue:	
Respo	nsa.
respo	TISC.
Specia	I Instruction Confirmation:
	\square The contractor has read and acknowledges the above special instructions.
	\square All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.
	☐ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.

		lized was approved d as part of the con			endor as an "equiv	alent" and this
Commen	tc.					
Commen	L3.					
	17					
Contract	or certifies that	the climbing facil	ity / safety clir	nb was not da	maged prior to s	tarting work:
	Yes 🗆	No				
Contract	or certifies no n	ew damage creat	ed during the	current installa	tion:	
	Yes □	No				
Contracte	or to certify the	condition of the	safety climb ar	nd verify no da	mage when leav	ing the site:
	Safety Climb in	Good Condition		☐ Safety Clir	nb Damaged	
Certifyins	g Individual:					
,,						
	Company:					
	Employee Name: Contact Phone:					
	Email:					
	Date:					

Sector:

Mount Elev:

Structure Type: Self Support


119.50

10206280

7/10/2023

Colliers Engineering & Design

Page: 1

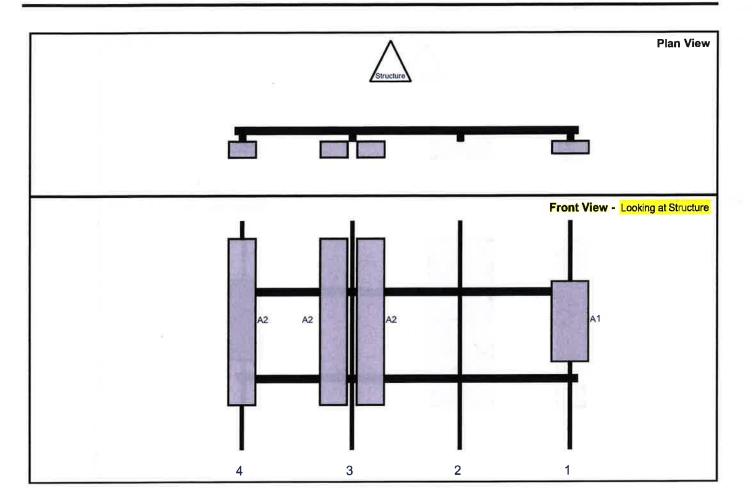
		Heiaht	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Model		(in)	(in)	Fm L.	#	Pos V	Pos	Frm T _*	H Off	Status	Validation
MT6407-77A		35.1	16.1	146.5	1	а	Front	44.04	0	Retained	06/30/2022
		72.6	11.9	51.5	3	а	Front	44.04	8	Retained	06/30/2022
		72.6	11.9	51.5	3	b	Front	44.04	-8	Retained	06/30/2022
		10.6	10.9	51.5	3	а	Behind	48	0	Added	
		10.6	10.9	51.5	3	b	Front	48	0	Added	
		72.6	11.9	3.5	4	a	Front	44.04	0	Retained	06/30/2022
		15	15		Memb	er				Retained	06/30/2022
		15	15		Memb	er				Retained	06/30/2022
		19,1	15.7	8	Memb	er				Retained	06/30/2022
	Model MT6407-77A SBNHH-1D65B SBNHH-1D65B BSF0020F3V1-1 BSF0020F3V1-1 SBNHH-1D65B B2/B66A RRH-BR049 B5/B13 RRH-BR04C RRFDC-3315-PF-48	MT6407-77A SBNHH-1D65B SBNHH-1D65B BSF0020F3V1-1 BSF0020F3V1-1 SBNHH-1D65B B2/B66A RRH-BR049 B5/B13 RRH-BR04C	MT6407-77A 35.1 SBNHH-1D65B 72.6 SBNHH-1D65B 72.6 BSF0020F3V1-1 10.6 BSF0020F3V1-1 10.6 SBNHH-1D65B 72.6 B2/B66A RRH-BR049 15 B5/B13 RRH-BR04C 16	Model (in) (in) MT6407-77A 35.1 16.1 SBNHH-1D65B 72.6 11.9 SBNHH-1D65B 72.6 11.9 BSF0020F3V1-1 10.6 10.9 SBNHH-1D65B 72.6 11.9 SBNHH-1D65B 72.6 11.9 B2/B66A RRH-BR049 15 15 B5/B13 RRH-BR04C 15 15	Model (in) (in) Fm L MT6407-77A 35.1 16.1 146.5 SBNHH-1D65B 72.6 11.9 51.5 BSF0020F3V1-1 10.6 10.9 51.5 BSF0020F3V1-1 10.6 10.9 51.5 SBNHH-1D65B 72.6 11.9 3.5 B2/B66A RRH-BR049 15 15 15 B5/B13 RRH-BR04C 15 15 15	Model (in) (in) Fm L. # MT6407-77A 35.1 16.1 146.5 1 SBNHH-1D65B 72.6 11.9 51.5 3 SBNHH-1D65B 72.6 11.9 51.5 3 BSF0020F3V1-1 10.6 10.9 51.5 3 SBNHH-1D65B 72.6 11.9 3.5 4 B2/B66A RRH-BR049 15 15 Member 15 B5/B13 RRH-BR04C 15 15 Member 15	Model (in) (in) Fm L. # Pos V MT6407-77A 35.1 16.1 146.5 1 a SBNHH-1D65B 72.6 11.9 51.5 3 a BSF0020F3V1-1 10.6 10.9 51.5 3 a BSF0020F3V1-1 10.6 10.9 51.5 3 b SBNHH-1D65B 72.6 11.9 3.5 4 a B2/B66A RRH-BR049 15 15 15 Member B5/B13 RRH-BR04C 15 15 Member	Model (in) (in) Fm L. # Pos V Pos V MT6407-77A 35.1 16.1 146.5 1 a Front SBNHH-1D65B 72.6 11.9 51.5 3 a Front BSF0020F3V1-1 10.6 10.9 51.5 3 a Behind BSF0020F3V1-1 10.6 10.9 51.5 3 b Front SBNHH-1D65B 72.6 11.9 3.5 4 a Front B2/B66A RRH-BR049 15 15 Member Member B5/B13 RRH-BR04C 15 15 Member Member	Model (in) (in) Fm L # Pos V Pos Model MT6407-77A 35.1 16.1 146.5 1 a Front 44.04 SBNHH-1D65B 72.6 11.9 51.5 3 a Front 44.04 BSF0020F3V1-1 10.6 10.9 51.5 3 a Behind 48 BSF0020F3V1-1 10.6 10.9 51.5 3 b Front 48 SBNHH-1D65B 72.6 11.9 3.5 4 a Front 44.04 SBNHH-1D65B 72.6 11.9 3.5 4 a Front 44.04 BB2/B66A RRH-BR049 15 15 Member Member Front 44.04 Bb/B13 RRH-BR04C 15 15 Member Member Front 44.04	Model (in) (in) Fm L # Pos V Fos D Fm T H Off MT6407-77A 35.1 16.1 146.5 1 a Front 44.04 0 SBNHH-1D65B 72.6 11.9 51.5 3 b Front 44.04 -8 BSF0020F3V1-1 10.6 10.9 51.5 3 b Front 48 0 SBNHH-1D65B 72.6 11.9 51.5 3 b Front 48 0 BSF0020F3V1-1 10.6 10.9 51.5 3 b Front 48 0 SBNHH-1D65B 72.6 11.9 3.5 4 a Front 44.04 0 B2/B66A RRH-BR049 15 15 Member Member Front 44.04 Test B5/B13 RRH-BR04C 15 15 Member Member Front 44.04 Test	Model (in) (in) Fm L. # Pos V Pos Fm T. H Off Status MT6407-77A 35.1 16.1 146.5 1 a Front 44.04 0 Retained SBNHH-1D65B 72.6 11.9 51.5 3 a Front 44.04 8 Retained BSF0020F3V1-1 10.6 10.9 51.5 3 a Behind 48 0 Added BSF0020F3V1-1 10.6 10.9 51.5 3 b Front 48 0 Added SBNHH-1D65B 72.6 11.9 3.5 4 a Front 44.04 0 Added BSF0020F3V1-1 10.6 10.9 51.5 3 b Front 44.04 0 Retained BS/B66A RRH-BR049 15 15 15 Member Wember Yes Yes Retained BS/B13 RRH-BR04C 15 15 15 Member

Sector:

Mount Elev:

R

119.50


Structure Type: Self Support

10206280

7/10/2023

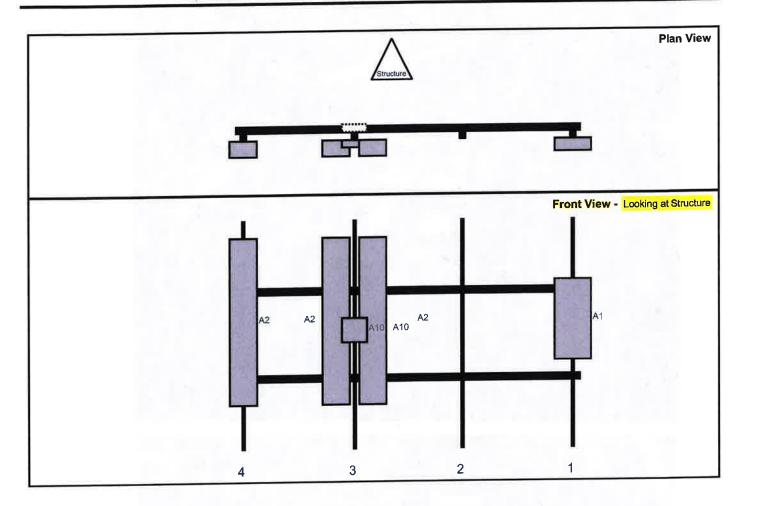
Page: 2

Ref#	Model		Height	Width (in)	H Dist Frm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant	Ant H Off	Status	Validation
A1	MT6407-77A		35.1	16.1	146.5	1	а	Front	44.04	0	Retained	06/30/2022
A2	SBNHH-1D65B		72.6	11.9	51.5	3	а	Front	44.04	8	Retained	06/30/2022
A2	SBNHH-1D65B		72.6	11.9	51.5	3	b	Front	44.04	-8	Retained	06/30/2022
A2	SBNHH-1D65B	4 2	72.6	11.9	3.5	4	а	Front	44.04	0	Retained	06/30/2022

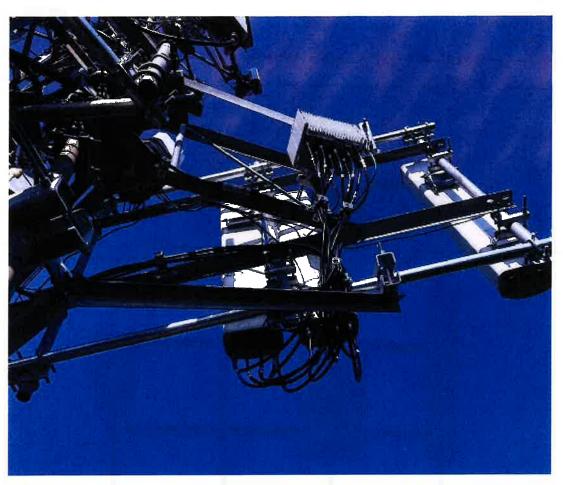
Sector:

Mount Elev:

119.50


Structure Type: Self Support

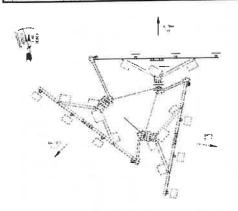
10206280


7/10/2023

Colliers Engineering & Design

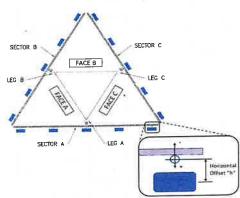
Page: 3

					61	Di	A-1	C Ast	Ant		
Ref#	Model	Height (in)	Width (in)	H Dist Frm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant Frm T.	H Off	Status	Validation
A1	MT6407-77A	35.1	16.1	146.5	1	а	Front	44.04	0	Retained	06/30/2022
A2	SBNHH-1D65B	72.6	11.9	51.5	3	а	Front	44.04	8	Retained	06/30/2022
A2	SBNHH-1D65B	72.6	11.9	51.5	3	b	Front	44.04	-8	Retained	06/30/2022
A10	BSF0020F3V1-1	10.6	10.9	51.5	3	а	Behind	48	0	Added	
A10	BSF0020F3V1-1	10.6	10.9	51.5	3	b	Front	48	0	Added	
A2	SBNHH-1D65B	72.6	11.9	3.5	4	a	Front	44.04	0	Retained	06/30/2022



	e e es estados E	OF PATENT DENDING	FCC 8
	Antenna Mount Mapping F	Drill (PATENT FERDING)	126207
Tower Owner:	ISBA	Mapping Date:	2/9/2021
Site Name:	Quacker Hill CT	Tower Type:	Self Support
Site Number or ID:	467959	Tower Height (FL):	160
Mapping Contractor:	Hudson Design Group LLC	Mount Elevation (FL):	120

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE a 10.48, OSHA, ECC, FAA and other safety requirements that may apply, TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.


			e Configurat	ion and G	eometries [Unit = Inches]	Vertical	
Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	Mount Pipe Size & Length	Offset Dimension	Horizontal Offset "C1, C2, C3, etc.
A1	PIPE 2"Ø STD. X 100" LONG	69.00	3.00	C1	PIPE 2"Ø STD. X 100" LONG	69.00	3.00
A2	PIPE 2"Ø STD. X 100" LONG	59.00	51.00	C2	PIPE 2"Ø STD. X 100" LONG	69.00	51.00
A3	PIPE 2"Ø STD. X 100" LONG	69.00	98.00	C3	PIPE 2"Ø STD. X 100" LONG	69,00	98.00
A4	PIPE 2"Ø STD. X 100" LONG	69.00	146.00	C4	PIPE 2"Ø STD. X 100" LONG	69.00	146.00
A5				C5			
A6				C6			
B1	PIPE 2"Ø STD. X 100" LONG	69.00	3.00	D1			
82	PIPE 2"Ø 5TD. X 100" LONG	69.00	51.00	D2			
B3	PIPE 2"Ø 5TD. X 100" LONG	69.00	98.00	D3			
B4	PIPE 2"Ø STD, X 100° LONG	69.00	146.00	D4			
B5				DS			
B6				D6). Unit is inches. See 'Mount Elev Ref'		

Distance from top of bottom support rail to lowest tip of ant./eqpt. of Carrier above. (N/A if > 10 ft.):

Distance from top of bottom support rail to highest tip of ant./eqpt. of Carrier below. (N/A if > 10 ft.): Please enter additional infomation or comments below.

ALL RRH AND OVP UNITS MOUNTED TO STANDOFF

Tower Face Width at Mount Elev. (ft.): 5.5 Tower Leg. Size or Pole Shaft Diameter at Mount Elev. (in.):

ANTENNA PLAN

	Enter antenn	a model.	If not labe	led, enter '	'Unknown'		Mountin [Units are inch	g Locations nes and de		Photos of antennas
Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (Ft.)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz, Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	Photo Numbers
					Sector A					
Antıa										
Antih										
Ant _{1c}										
Ant _{2a}										
Ant _{2b}	SBNHH-1D65B	12.00	7.50	73.00		121.167	55.00	8.00	0.00	134
Ant _{2c}										
Ant₃,										
Ant ₃₆	SBNHH-1D65B	12.00	7.50	73.00		121.167	55.00	8.00	0.00	138
Ant _{3c}									-	
Ant _{4a}									0.00	139
Ant _{4b}	SBNHH-1D65B	12.00	7.50	73.00		121.167	55.00	8.00	0.00	139
Ant _{4c}					_					_
Ant _{Sa}					-					
Ant _{Sb}						_				
Antsc					-	_				
Ant on Standoff	B4 RRH2X60-4R	11.00	5.50	36.00			20.00	-6.00		117
Ant on Standoff	913 RRH4X30	12.00	9.00	21.50			20.00	-6.00		131
Ant on Tower	B25 RRH4X30	12.00	9.00	21.50			20.00	6,00		128
Ant on Tower	RRFDC-3315-PF-48	15.00	10.00	28.00			34.00	5.00		121

記記	Antie Antie	27	Antas Antas	2	Anta-	4. 4.	Antso	41 42	Anta
	å			ă L		ž :-	1	L	
			II		II		il		II
<u>gr</u>	Antre -1	2	Antze C3		Pete		Antac		Anto
E				OI .	C3		4		

Antenna Layout (Looking Out From Tower)

			T	4 45	1					Sector E	3				
	nt Azimuth (for Each Sec			lmuth (Degree) h Sector	Ant ₁₄										
Sector A:	0,00	Deg Leg		Deg	Antub										
Sector B:	100.00	Deg Leg		Deg	Ant _{1c}										
Sector C:	220.00	Deg Leg		Deg	Ant _{2a}										
Sector D:		Deg Leg I	D:	Deg	Ant _{2b}	SBNHH-1D65B	12.00	7.50	73.00		121,167	55.00	8.00	100.00	134
		Climbing F	acility information		Ant _{2c}										
Location:	45.00	Deg	On Leg A		Ant₃ _d								-		
Climbing	Corros	on Type:	Good condition.		Ant _{3b}	SBNHH-1D65B	12.00	7.50	73.00		121.167	55.00	8.00	100.00	138
Facility		cess:	Climbing path was i	inobstructed.	Ant _{3c}		-			_	-		_		
	Con	dition:	Good condition.		Ant _{4a}	TRANSPORTED	12.00	7.50	73.00	_	121.167	55.00	8.00	100.00	139
	3 3	HIII	÷ 6		Ant _{4b}	SBNHH-1D6SB	12,00	7.30	73.00		121.107	33.00	0.00	150.00	
ī	ר ר		пп		Ant _{dc}	-									
- 1	1 1				Ants								1		
Ĺ	Ħ,	1111		2	Antsc										
		11 11		T	Ant on	B4 RRH2X60-4R	11.00	5.50	36.00			20.00	-6.00		117
10	7 (7)		пп	CONTROL PROBLETS OF LEASY THE CT ANY (DIPT OF CANNES) AND (C ANY (DIPT OF CANNES) AND (C ANY (D ANY	Standoff	B4 RRH2X0U-4R	11.00	5.50	30.00		\vdash	20.00			
i.e	****	11 1 1 1		(by a IF > 10 FT)	Ant on Standoff	B13 RRH4X30	12.00	9.00	21.50			20.00	-6.00		131
-		1111115		1	Ant on	B25 RRH4X30	12.00	9.00	21.50			20.00	-6.00		128
T_	- W		п Е	PLANCE FROM THE OF MAN. PLANCEN UDDINGS TO HIGHEST THE OF MAT / DOI'S OF CAMBON UDLESS (S/A IF > 12 FT)	Tower	DES BRITANSU	12.00	5.00	-230		-				
		HI III	n		Ant on Tower	RRFDC-3315-PF-48	15.00	10.00	28.00			34.00	5,00		121
Γ			пп							Sector (
					Ant ₁₄										
1		170			Ant _{1b}										
79.	ليا ل	WIII	had had		Ant _{1c}										
-			n (*)		Ant _{2a}								0.00	220.00	124
1			1		Ant _{2b}	SBNHH-1D65B	12.00	7.50	73.00		121.167	55.00	8.00	220,00	134
1	-		T		Ant _{2c}		-						+		_
4_			#		Ant _{3a}		10.00	7.50	73.00		121.167	55.00	8.00	220.00	138
	,	1 2		T	Ant _{3b}	5BNHH-1D658	12.00	7.50	/5.00		121.107	33.00	0.00	220.00	150
				DISTANCE FRANCE FOR ST. OF SHITTING	Ant _{3c}						-		-		
				SUFFICIAL TO CARTE OF SE	Ant _{4b}	58NHH-1D658	12.00	7.50	73.00		121.167	55.00	8.00	220.00	139
٩					Ant _{4c}	John Toron	-								
e-	12111911			1	Antsa										
ISTRIC SEUTON FAMI SIGN	wc / ¬			STREET FILE TO STREET OF S	Antsb										
3400		K-	L'armen		Antsc										
٦	i r	1 Y	h [h		Ant on	84 RRH2X60-4R	11.00	5.50	36.00			20.00	-6.00		117
1	er		SP-		Standoff Ant on					_					124
			<u></u>		Standoff	B13 RRH4X30	12.00	9.00	21.50			20.00	-6,00		131
Ļ	<u> </u>	1 / 4			Ant on	B25 RRH4X30	12.00	9.00	21.50			20.00	-6.00		128
					Ant on		_						1	7	121
					Tower	RRFDC-3315-PF-48	15.00	10.00	28.00			34.00	5.00		121
										Sector E			_		_
					Antı		-			_			+	-	
					Ant _{1b}		-		-	-					
					Ant _{1c}						_		-		
					Ant ₂		-	_	-				-		
					Ant _{2b}										
					Ant _{3a}	-									
					Ant _{3b}										
					Ant _{3c}								Л		
					Ant _{4a}										
					Ant _{ro}										
					Ant _{4c}										
					Ant _{5a}										
					Ant _{Sb}										
					Ant _{Sc}										
					Ant on										
					Standoff Ant on										
52					Standoff		_							_	_
					Ant on										
					Tower		-			_	_			_	
					Ant on						10				

	Observed Safety and Structural Issues During the Mount Mapping	
Issue #	Description of Issue	Photo #

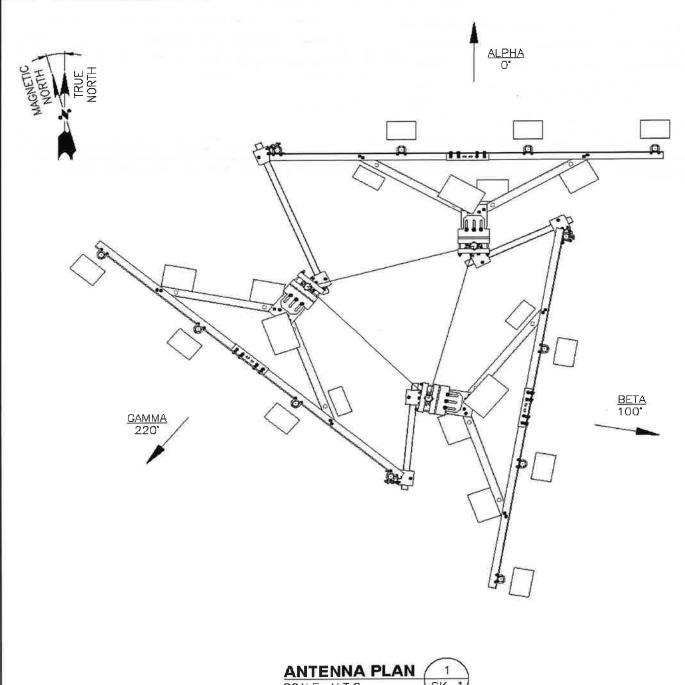
1		32
2	(3) 1-1/4"Ø HYBRID	32
3		
4		
5		
6		
7		
8		

Mapping Notes

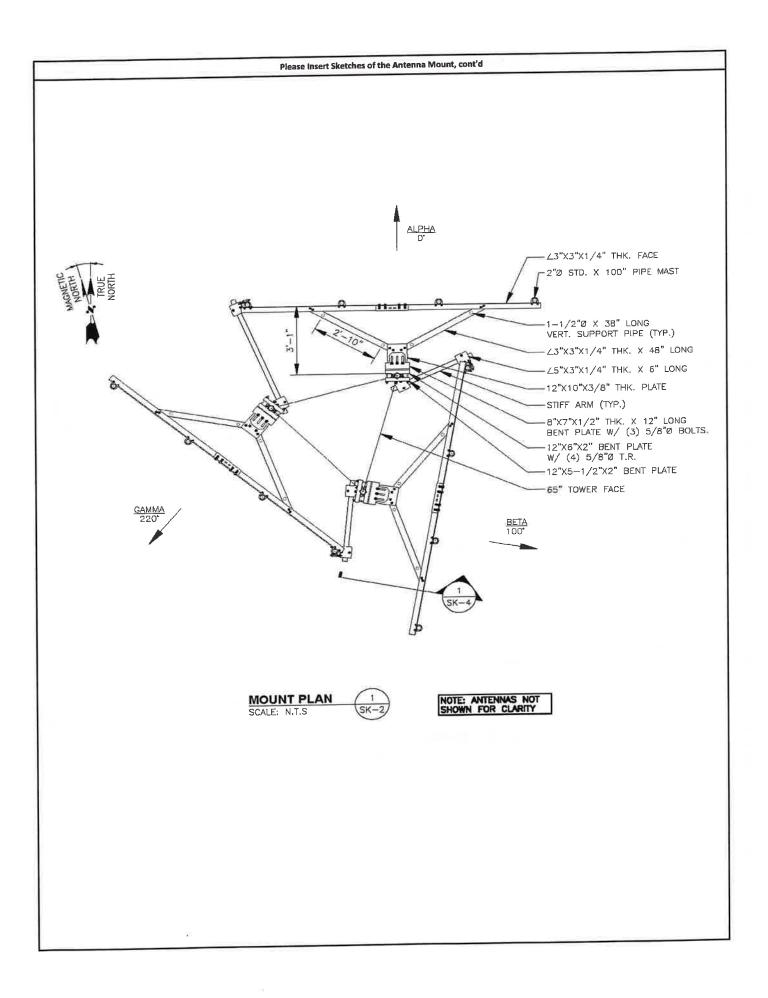
- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.

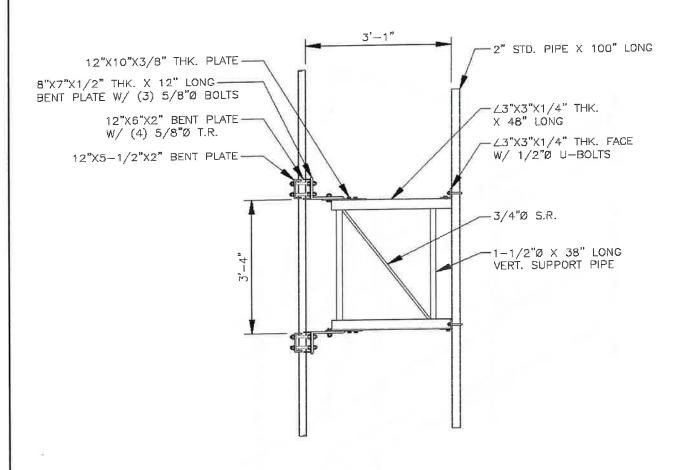
 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
- 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.
- 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.
- 6. Please measure and report the size and length of all existing antenna mounting pipes.
 7. Please measure and report the antenna information for all sectors.
- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

Standard Conditions


1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

MASER

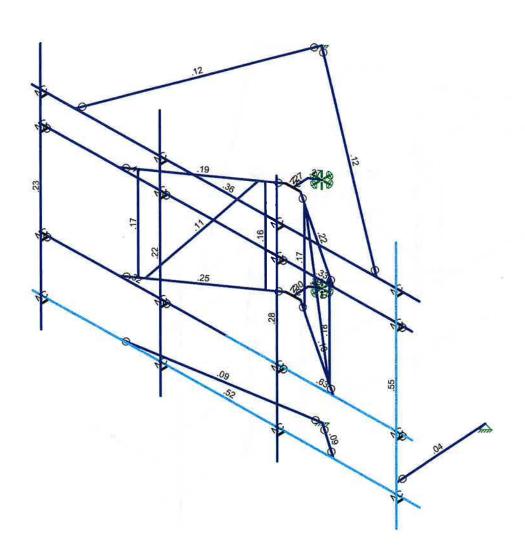

			V3.0 Updated on 8-3	1-2020
		(DATENIT DENIDING)	S L TO SUIL	FCC#
	Antenna Mount Mapping Fo	orm (PATENT PENDING)		1262077
Tower Owner:	SBA	Mapping Date:		2021
Site Name:	Quacker Hill CT	Tower Type:	Self S	Support
Site Number or ID:	467959	Tower Height (F1.):	1	60
Mapping Contractor:	Hudson Design Group LLC	Mount Elevation (Ft.):	1	20


Indian terraph of the same that may apply, TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

Please Insert Sketches of the Antenna Mount

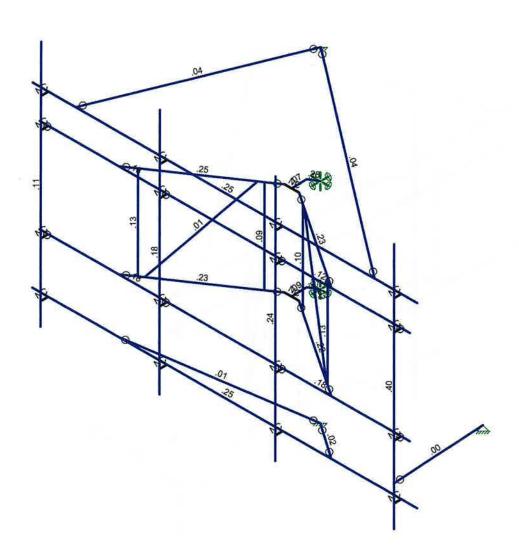
ANTENNA PLAN SCALE: N.T.S

MOUNT ELEVATION 1 SCALE: N.T.S



Envelope Only Solution

Colliers Engineering & De		SK - 1
	5000244862-VZW_MT_LOT_SectorA_H	July 5, 2023 at 9:40 AM
		5000244862-VZW_MT_LOT_A_H



Member Code Checks Displayed (Enveloped) Envelope Only Solution

Envelope Only Solution				
Colliers Engineering & De		SK - 2		
505.15 <u>2</u> g5	5000244862-VZW_MT_LOT_SectorA_H	July 5, 2023 at 9:40 AM		
		5000244862-VZW_MT_LOT_A_H		

Member Shear Checks Displayed (Enveloped) Envelope Only Solution

Colliers Engineering & De...

5000244862-VZW_MT_LOT_SectorA_H

SK - 3

July 5, 2023 at 9:40 AM

5000244862-VZW_MT_LOT_A_H...

Colliers Engineering & Design

July 5, 2023 9:40 AM Checked By:___

5000244862-VZW_MT_LOT_SectorA_H

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(
1	Antenna D	None					36			
2	Antenna Di	None					36			
3 Ant	enna Wo (0 Deg)	None					36			
	enna Wo (30 Deg)	None					36			IE II IIX
5 Ante	enna Wo (60 Deg)	None					36			_
6 Ante	enna Wo (90 Deg)	None					36			
	enna Wo (120 Deg)	None					36			
	enna Wo (150 Deg)	None					36			
	enna Wo (180 Deg)	None					36			
	enna Wo (210 Deg)	None					36	7		
10	enna Wo (240 Deg)	None					36			
	enna Wo (270 Deg)	None					36			
1-	enna Wo (270 Deg)	None					36			
	enna Wo (330 Deg)	None					36			
	tenna Wi (0 Deg)	None	+				36			
		None					36	THE RESERVE		
	enna Wi (30 Deg)	None					36			
	enna Wi (60 Deg)						36	100		
	enna Wi (90 Deg)	None	+				36	1.1		
	tenna Wi (120 Deg)	None	-				36			
	tenna Wi (150 Deg)	None					36			
	tenna Wi (180 Deg)	None					36			
	tenna Wi (210 Deg)	None					36			
	tenna Wi (240 Deg)	None					36			
	tenna Wi (270 Deg)	None								
	tenna Wi (300 Deg)	None					36			
26 An	tenna Wi (330 Deg)	None					36			
	enna Wm (0 Deg)	None					36			
28 An	tenna Wm (30 Deg)	None					36			
29 An	tenna Wm (60 Deg)	None					36			-
	tenna Wm (90 Deg)	None					36			
	enna Wm (120 Deg)	None					36			
32 Ant	enna Wm (150 Deg)	None					36			
	enna Wm (180 Deg)	None					36			
	enna Wm (210 Deg)	None					36			
	enna Wm (240 Deg)	None					36			
	enna Wm (270 Deg)	None					36			
	enna Wm (300 Deg)	None					36			
	enna Wm (330 Deg)	None					36			
39	Structure D	None		-1						
40	Structure Di	None						29		
	cture Wo (0 Deg)	None			rt			58		
42 Str	ucture Wo (30 Deg)	None						58		
	ucture Wo (60 Deg)	None						58		
	ucture Wo (90 Deg)	None						58		
	ucture Wo (120 Deg)	None						58		
	cture Wo (150 Deg)	None						58		
	cture Wo (180 Deg)	None						58		
	icture Wo (210 Deg)	None			- NO	W 1, - P		58		
-10		None						58		
	ucture Wo (240 Deg)							58		
	icture Wo (270 Deg)	None						58		
<u> </u>	ucture Wo (300 Deg)	None						58	-	
	ucture Wo (330 Deg)	None						58		
	ucture Wi (0 Deg)	None						58		
	ructure Wi (30 Deg)	None		41111				58		
	ucture Wi (60 Deg)	None						58		
56 Str	ucture Wi (90 Deg)	None						00		

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed Area(Me.	. Surface(
57	Structure Wi (120 Deg)	None						58	
58	Structure Wi (150 Deg)	None						58	
59	Structure Wi (180 Deg)	None						58	
60	Structure Wi (210 Deg)	None						58	
61	Structure Wi (240 Deg)	None						58	
62	Structure Wi (270 Deg)	None						58	
63	Structure Wi (300 Deg)	None						58	
64	Structure Wi (330 Deg)	None						58	
65	Structure Wm (0 Deg)	None						58	
66	Structure Wm (30 Deg)	None						58	
67	Structure Wm (60 Deg)	None						58	
68	Structure Wm (90 Deg)	None						58	
69	Structure Wm (120 Deg)	None						58	
70	Structure Wm (150 Deg)	None						58	
71	Structure Wm (180 Deg)	None						58	
72	Structure Wm (210 Deg)	None						58	
73	Structure Wm (240 Deg)	None						58	
74	Structure Wm (270 Deg)	None						58	
75	Structure Wm (300 Deg)	None						58	
76	Structure Wm (330 Deg)	None						58	
77	Lm1	None					11		
78	Lm2	None					1		
79	Lv1	None					11		
80	Lv2	None					1		
81	Antenna Ev	None					36		
82	Antenna Eh (0 Deg)	None					24		
83	Antenna Eh (90 Deg)	None					24		
84	Structure Ev	ELY		041					
85	Structure Eh (0 Deg)	ELZ			103				
86	Structure Eh (90 Deg)	ELX	.103						

Load Combinations

RISA-3D Version 17.0.4

	Description	So	P	S I	BLC	Fac.	BLC	Fac	BLC	Fac.	BLC	Fac	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac
1	1.2D+1.0Wo (0 Deg)	Yes	Y		1	1.2	39	1.2	3	1	41	1					_							
2	1.2D+1.0Wo (30 Deg)	Yes	Y		1	1.2	39	1.2	4	1	42	1		W.	-20									2
3	1.2D+1.0Wo (60 Deg)	Yes	Υ		1	1.2	39	1.2	5	1	43	1					_							
4	1.2D+1.0Wo (90 Deg)	Yes	Y		1	1.2	39	1.2	6	1	44	1										I IV		T
5	1.2D+1.0Wo (120 Deg) Yes	Y		1	1.2	39	1.2	7	1	45	1					_				_			
6	1.2D+1.0Wo (150 Deg) Yes	Y		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg) Yes	Y		1	1.2	39	1.2	9	1	47	1					_				_			
8	1.2D+1.0Wo (210 Deg) Yes	Y		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (240 Deg) Yes	Y		1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 Deg) Yes	Y		1	1.2	39	1.2	12	1	50	1								FI.				
11	1.2D+1.0Wo (300 Deg) Yes	Y		1	1.2	39	1.2	13	1	51	1					_				_			
12	1.2D+1.0Wo (330 Deg) Yes	Y		1	1.2	39	1.2	14	1	52	1				.U.II			11.0					- 9.
13	1.2D + 1.0Di + 1.0Wi (.	. Yes	Υ		1	1.2	39	1.2	2	1	40	1	15	1	53	1							_	
14	1.2D + 1.0Di + 1.0Wi (.	. Yes	Y		1	1.2	39	1.2	2	1	40	1	16	1	54	1						-		
15	1.2D + 1.0Di + 1.0Wi (.	. Yes	Y		1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Wi (.	. Yes	Y		1	1.2	39	1.2	2	1	40	1	18	1_	56	1								17/4
17	1.2D + 1.0Di + 1.0Wi (.	. Yes	Y		1	1.2	39	1.2	2	1	40	1	19	1	57	1					_			
18	1.2D + 1.0Di + 1.0Wi (.	. Yes	Y		1	1.2	39	1.2	2	1	40	1	20	1	58	1								13
19	1.2D + 1.0Di + 1.0Wi (.	. Yes	Y		1	1.2	39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0Wi (.	Yes	Y		1	1.2	39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0Wi (. Yes	Y		1	1.2	39	1.2	2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.0Wi (.				1	1.2	39	1.2	2	1	40	1	24	1	62	1		TEN						

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:___

Load Combinations (Continued)

Load	Combinations	Co	nti	nue	<u>;a)</u>	_			_	_		_			_	_	_	_	_	_	_	_	er. 0	
	Description	So	P	S F	BLC	Fac	BLC	Fac	BLC	Fac.	BLC	Fac.	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
23	1.2D + 1.0Di + 1.0Wi (Yes	Υ		1	1.2	39	1.2	2	1	40	1	25	1	63	1							\blacksquare	
	1.2D + 1.0Di + 1.0Wi (1.2				1	40	1	26	1	64	1				Lon				
	1,2D + 1,5Lm1 + 1.0W				1	1.2	39	1.2	77	1.5	27	1	65	1										
20	1.2D + 1.5Lm1 + 1.0W	Ves	v		1		39	12	77	1.5	28	1	66	1										
-					1					1.5		1	67	1										
	1.2D + 1.5Lm1 + 1.0W			\vdash	_	1.2	30	12	77	1.5	30	1	68	1										
	1.2D + 1.5Lm1 + 1.0W.,			-	1					1.5		1	69	1									\Box	
	1.2D + 1.5Lm1 + 1.0W			\vdash	1								70	1										
	1.2D + 1.5Lm1 + 1.0W				1					1.5		1	-	1	-	_			-					
31	1.2D + 1.5Lm1 + 1.0W	Yes	<u>Y</u> _		1	1.2	39	1.2	11	1.5	33		71	4										
	1.2D + 1.5Lm1 + 1.0W.,				1_	1.2	39	1.2	77	1.5	34	_1_	72	1	_	_	-	-	-		-			
33	1.2D + 1.5Lm1 + 1.0W	Yes	Y		1					1.5		_1_	73	1	_	_						-		
	1.2D + 1.5Lm1 + 1.0W				1	1.2	39	1.2	77	1.5	36	_1_	74	1										
35	1.2D + 1.5Lm1 + 1.0W	Yes	Y		1	1.2	39	1.2	77	1.5	37	1	75	1					_					
	1.2D + 1.5Lm1 + 1.0W				1	1.2	39	1.2	77	1.5	38	1_	76	1										
	1.2D + 1.5Lm2 + 1.0W				1	12	39	1.2	78	1.5	27	1	65	1										
	1.2D + 1.5Lm2 + 1.0W				1	12	39	12	78	1.5	28	1	66	1										
38	1.2D + 1.5Lm2 + 1.0W	Vos	÷		1					1.5		1	67	1										
39	1.2D + 1.5Lm2 + 1.0W	Voc	$\frac{1}{}$	\vdash	1	1.2	30	1.2	78	1.5	30	1	68	1										
	1.2D + 1.5Lm2 + 1.0W	165	÷	\vdash	<u> </u>	1.2	30	1.2	70	1.5	31	1	69	1										
41	1.2D + 1.5Lm2 + 1.0W			\vdash	1		28	1.2	70	1.5	27	4	70	1										
	1.2D + 1.5Lm2 + 1.0W			\vdash	1	1.2	39	1.2	78	1.5	32	+		-		-								
	1.2D + 1.5Lm2 + 1.0W				1_					1.5			71	1							-			
	1.2D + 1.5Lm2 + 1.0W				1	1.2	39	1.2	78	1.5	34	1	72	1		-			-		-	-	$\overline{}$	
45	1.2D + 1.5Lm2 + 1.0W	Yes	Y		1_	1.2	39	1.2	78	1.5	35	1	73	1_	_	_			-		-	_	-	
	1.2D + 1.5Lm2 + 1.0W	Yes	Y		1_	1.2	39	1.2	78	1.5	36	1_	74	1									-	
	1.2D + 1.5Lm2 + 1.0W				1	1.2	39	1.2	78	1.5	37	1	75	1_										
48	1.2D + 1.5Lm2 + 1.0W				1	1.2	39	1.2	78	1.5	38	1	76	1										
		Yes			1					1.5														
49		Yes			1					1.5														
50					1			1.4		110														
51		Yes		1	<u> </u>	1.7	20	1.2	21	1	ELY	1	82	1	83		ELZ	1	ELX					== !:
52	1.2D + 1.0Ev + 1.0Eh			-	1					+	ELY	_		.866				.866	ELX	.5				
_53	1.2D + 1.0Ev + 1.0Eh			\vdash	1			1.2		-	_		_	5	03	.866	FI Z	5	FI X	866				
54	1.2D + 1.0Ev + 1.0Eh				1			1.2			ELY		82	.5			ELZ		ELX					
55	1.2D + 1.0Ev + 1.0Eh				1			1.2		_	ELY		82		83									
56	1.2D + 1.0Ev + 1.0Eh	Yes	Y		1			1.2		1	ELY		82			.866	ELZ	5	齡	.000	-			
57	1.2D + 1.0Ev + 1.0Eh	Yes	Y		1	1.2	39	1.2	81	1	ELY	1		866				866					\vdash	
58	1.2D + 1.0Ev + 1.0Eh				1	1.2	39	1.2	81	1	ELY	1	82	-1	83			-1					_	
59	1.2D + 1.0Ev + 1.0Eh				1	1.2	39	1.2	81	1	ELY	1	82	866									\sqcup	
59	1.2D + 1.0Ev + 1.0Eh			\Box	1			1.2			ELY	1	82	5					ELX	866				
	1.2D + 1.0Ev + 1.0Eh				1	1.2		1.2		-	ELY	_	82		83	-1	ELZ		ELX	-1				
61					1	1.2		1.2			ELY	_	82	.5	83	866	ELZ	.5	ELX	866				
62				1		-				1	ELY		82	.866	83	- 5	ELZ	.866	ELX	5				
63	1.2D + 1.0Ev + 1.0Eh			\vdash	1	1.4	39	1.4	01						83		ELZ		ELX					
64	0.9D - 1.0Ev + 1.0Eh (Yes	Y		_	.9	39	.9	01	-1	ELV	-1	02	.866										
65	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	39	.9	81	1-7	ELY	-1	02	.000	03	000	E15	.000	타	988				
66	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	.5	83	.000	EL-2	.5	= +0	.000	\vdash			
67	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82		83	1	ELZ		ELX	000				_
68	0.9D - 1.0Ev + 1.0Eh (Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	5	83	.866	ELZ	5	ELX	.866			_	
60	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	39	.9	181	-1	ELY	-1	82	866	83	.5	ELZ	866	ELX	.5				
70	0.9D - 1.0Ev + 1.0Eh (Yes	V		1	q	30	9	81	-1	ELY	-1	82	-1	83		ELZ	-1	ELX					
	0.9D - 1.0Ev + 1.0Eh (Voc	÷		1	- 0	30	.9	81	-1	ELY	-1	82	866	83									
71					_	0	20	0	21		FIV	_1	82	5	83	.866	ELZ	5	ELX	866				
72					1	1.9	39	.9	01	1-1	EIV	1	92	0	83	-1	El 7	.0	EI X	-1				
73	0.9D - 1.0Ev + 1.0Eh (1	1.9	39	.9	01	-1		-1	02	.5	03	966	E1 7	E					\vdash	
74					1			.9		_	ELY	-7	82	.5	03	F.000	EL Z	.0	딹	.500			-	_
75	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	139	.9	181	-1	ELY	-1	182	.866	183	5	ELZ	.000	ELY	D	ш			_

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap.
1	N1	0	625	0	0	
2	N2	-12.5	625	0	0	
3	N6	-0.291667	625	0	0	
4	N10	-0.291667	625	.25	0	
5	N11	0	2.541667	0	0	
6	N12	-12.5	2.541667	0	0	
7	N16	-0.291667	2.541667	0	0	
8	N20	-0.291667	2.541667	.25	0	
9	N24	-0.291667	5.125	.25	0	
10	N26	-0.291667	-3.208333	.25	0	
11	N32	-9.836552	625	0	0	
12	N33	-9.836552	2.541667	0	0	
13	N34	-6.25	625	0	0	
14	N35	-6.25	2.541667	0	0	
15	N36	-6.491537	625	-2.25	0	
16	N37	-6.491537	2.541667	-2.25	0	
17	N38	-9.451569	2.541667	-0.258956	0	
18	N41	-9.451569	625	-0.258956	0	
19	N42	-9.313277	2.541667	-0.351977	0	
20	N45	-9.313277	625	-0.351977	0	
21	N46	-7.031452	2.541667	-1.886831	0	
22	N49	-7.031452	625	-1.886831	0	
23	N50	-6.893159	2.541667	-1.979852	0	
	N53	-6.893159	625	-1.979852	0	
24		-6.265624	625	-2.774525	0	
25	N59 N60	-6.265624	2.541667	-2.774525	Ö	
26		-5.976949	625	-2.941192	Ö	
27	N61A	-5.976949	2.541667	-2.941192	Ö	
28	N62		2.541667	-2.25	Ö	
29	N61B	-6	625	-2.25	0	
30	N63	-6.25		-2.25	0	
31	N64	-6.25	2.541667	-2.25	0	
32	N63A	-6	-0.625		0	
33	N55	-2.663448	625	0	0	
34	N56	-2.663448	2.541667	0		
35	N59A	-3.047457	2.541667	-0.258956	0	
36	N60A	-3.047457	625	-0.258956	0	
37	N61	-3.186723	2.541667	-0.351977	0	
38	N62A	-3.185399	625	-0.351977	0	
39	N63B	-5.461452	2.541667	-1.886831	0	
40	N64A	-5.468548	625	-1.886831	0	
41	N65	-5.599394	2.541667	-1.979852	0	
42	N66	-5.599394	625	-1.979852	0	
43	N47	-4.291667	625	0	0	
44	N48	-4.291667	625	.25	0	
45	N49A	-4.291667	2.541667	0	0	
46	N50A	-4.291667	2.541667	.25	0	
47	N51	-4.291667	5.125	.25	0	
48	N52	-4.291667	-3.208333	.25	0	
49	N53A	-8.208333	625	0	0	
50	N54	-8.208333	625	.25	0	
51	N55A	-8.208333	2.541667	0	0	
52	N56A	-8.208333	2.541667	.25	0	
	N57	-8.208333	5.125	.25	0	
53	N58	-8.208333	-3.208333	.25	0	
54		-8.208333	625	0	0	
55	N59B N60B	-12.208333	625	.25	0	

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diag
57	N61C	-12,208333	2.541667	0	0	
58	N62B	-12.208333	2.541667	.25	0	
59	N63C	-12,208333	5.125	.25	0	
60	N64B	-12.208333	-3.208333	.25	0	
61	N63D	-4.291667	3.208333	.25	0	
62	N64C	-4.291667	-0.291667	.25	0	
	N65A	-4.291667	1.458333	.25	0	
63	N66A	-12.208333	0.958333	.25	0	
64	N67	-4.291667	2.458333	.25	0	
65		-4.291667	0.458333	.25	0	
66	N68	-3.226949	625	-7.704332	0	
67	N69	-0.476949	-1.875	-2.941192	0	
68	N71	-0.476949	2.541667	-2.941192	0	
69	N72	-0.291667	-1.875	.25	0	
70	N71A		0.708333	.25	0	
71	N74	-0.291667	6.458333	-2.941192	0	
72	N74A	-5.976949	3.541667	0	0	
73	N75	.25	3.541667	0	0	
74	N76	-12.75		0	0	
75	N77	-0,291667	3.541667	.25	Ö	
76	N78	-0.291667	3.541667	0	0	
77	N80	-6.25	3.541667	0	0	
78	N82	-4.291667	3.541667		0	
79	N83	-4.291667	3.541667	.25	0	
80	N84	-8.208333	3.541667	0	0	
81	N85	-8.208333	3.541667	.25		
82	N86	-12.208333	3.541667	0	0	
83	N87	-12.208333	3.541667	.25	0	
84	N89	-11.3	3.541667	0	0	101
85	N90	-1.2	3.541667	0	0	
86	N92	.25	-2.458333	0	0	TOTAL TOTAL
87	N93	-12.75	-2.458333	0	0	
88	N94	-0.291667	-2.458333	0	0	1701
89	N95	-0.291667	-2.458333	.25	0	
90	N96	-9.836552	-2.458333	0	0	
91	N97	-6.25	-2.458333	0	0	
92	N98	-2.663448	-2.458333	0	0	LUL I I'm
93	N99	-4.291667	-2.458333	0	0	
	N100	-4.291667	-2.458333	.25	0	
94	N101	-8.208333	-2.458333	0	0	
95		-8.208333	-2.458333	.25	0	
96	N102	-12.208333	-2.458333	0	0	
97	N103	-12.208333	-2.458333	.25	0	THE THE
98	N104	-12,206535	-2.458333	0	0	
99	N105		-2.458333	0	0	
100	N106	-11.3	-2.458333	0	0	
101	N107	-1.2		-2.941192	Ö	THE REAL PROPERTY.
102	N108	-5.976949	-4.541667	-2.941192	0	
103	N104A	-11.5	2.541667		U	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
4		PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
1	Antenna Pipe	PIPE 2.5	Beam	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
2_	Mod Tieback			Pipe	A500 Gr. B	Typical	1.02	.627	.627	1.25
3_	Mod Face horizontal	PIPE 2.0	Beam		A36 Gr.36		1.44	1.23	1.23	.031
4	Face Horizontal	L3X3X4	Beam	Single Angle	A36 Gr.36		1.44	1.23	1.23	.031
5	Standoff Horizontal	L3X3X4	Beam	Single Angle	1A30 G1.30	1 ypicai	1.44	1.20	1.23	,001

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design List	Material	Design R	A [in2]	Ivy [in4]	Izz [in4]	J [in4]
6	Mod V kit	L2.5x2.5x4	Beam	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026
7	Standoff Vertical	PIPE 1.0	Beam	Pipe	A53 Gr. B	Typical	.469	.083	.083	.166
8	Standoff Diagonal	SR 0.75	Beam	RECT	A36 Gr.36	Typical	.442	.016	.016	.031
9	Back Plate 1	PL3/8x10	Beam	RECT	A36 Gr.36	Typical	3.75	.044	31.25	.172
10	Back Plate 2	PL1/2X7 HRA	Beam	RECT	A36 Gr.36	Typical	3.5	.073	14.292	.279
11	Tie Back	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Density/k/f	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deq)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N2	N34		180	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
2	M5	N10	N6			RIGID	None	None	RIGID	Typical
3	M6	N12	N35		270	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
4	M10	N20	N16			RIGID	None	None	RIGID	Typical
5	MP1A	N24	N26			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
6	M15	N33	N37		180	Standoff Horiz	Beam	Single Angle	A36 Gr.36	Typical
7	M18	N32	N36		270	Standoff Horiz	Beam	Single Angle		Typical
8	M19	N38	N41		45	Standoff Vertical	Beam	Pipe	A53 Gr. B	Typical
9	M20	N50	N53		45	Standoff Vertical	Beam	Pipe	A53 Gr. B	Typical
10	M23	N46	N45			Standoff Diago	Beam	RECT	A36 Gr.36	Typical
11	M31	N60	N62		90	Back Plate 2	Beam	RECT	A36 Gr.36	Typical
12	M32	N59	N61A		90	Back Plate 2	Beam	RECT	A36 Gr.36	Typical
13	M31A	N64	N60		90	Back Plate 1	Beam	RECT	A36 Gr.36	Typical
14	M32A	N63	N59		90	Back Plate 1	Beam	RECT	A36 Gr.36	Typical
15	M33	N61B	N37			RIGID	None	None	RIGID	Typical
16	M31B	N63A	N36			RIGID	None	None	RIGID	Typical
17	M27	N56	N61B		90	Standoff Horiz	Beam	Single Angle	A36 Gr.36	Typical
18	M28	N55	N63A			Standoff Horiz	Beam	Single Angle	A36 Gr.36	Typical
19	M29	N59A	N60A		45	Standoff Vertical	Beam	Pipe	A53 Gr. B	Typical
20	M30	N65	N66		45	Standoff Vertical	Beam	Pipe	A53 Gr. B	Typical
21	M31C	N63B	N62A			Standoff Diago	Beam	RECT	A36 Gr.36	Typical
22	M23A	N48	N47			RIGID	None	None	RIGID	Typical
23	M24	N50A	N49A			RIGID	None	None	RIGID	Typical
24	MP2A	N51	N52			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
25	M26	N54	N53A			RIGID	None	None	RIGID	Typical
26	M27A	N56A	N55A			RIGID	None	None	RIGID	Typical
27	MP3A	N57	N58			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
28	M29A	N60B	N59B			RIGID	None	None	RIGID	Typical
29	M30A	N62B	N61C			RIGID	None	None	RIGID	Typical
30	MP4A	N63C	N64B			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
31	M32B	N34	N1		180	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
32	МЗЗА	N35	N11		270	Face Horizontal	Beam	Single Angle		Typical
33	M33B	N71A	N71			Tie Back	Beam	Pipe	A53 Gr. B	Typical
34	M36	N78	N77			RIGID	None	None	RIGID	Typical
35	M37	N83	N82			RIGID	None	None	RIGID	Typical
36	M38	N85	N84			RIGID	None	None	RIGID	Typical

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Primary Data (Continued)

(With Collection)	Listat	Ligint	K loint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
			IX JOHN	/ Coloro (Gog)		None	None	RIGID	Typical
				270				-	Typical
M40	The second secon			210			The state of the s	A36 Gr.36	
M40A				270					Typical
M41	N74A								Typical
M44	N95	N94			1.7	1.0	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW		Typical
M45	N100	N99							The second little
The state of the s		N101			RIGID	None			Typical
					RIGID	None			Typical
	777777777			270	Mod Face hori	Beam	Pipe	A500 Gr	Typical
The state of the s	-				Mod V kit	Beam	Single Angle	A36 Gr.36	Typical
				210	Mod V kit	Beam	Single Angle	A36 Gr.36	Typical
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	M41	M39 N87 M40 N76 M40A N74A M41 N74A M44 N95 M45 N100 M46 N102 M47 N104 M48 N93 M49 N108	M39 N87 N86 M40 N76 N75 M40A N74A N89 M41 N74A N90 M44 N95 N94 M45 N100 N99 M46 N102 N101 M47 N104 N103 M48 N93 N92 M49 N108 N96	M39 N87 N86 M40 N76 N75 M40A N74A N89 M41 N74A N90 M44 N95 N94 M45 N100 N99 M46 N102 N101 M47 N104 N103 M48 N93 N92 M49 N108 N96	M39 N87 N86 M40 N76 N75 270 M40A N74A N89 270 M41 N74A N90 M44 N95 N94 M45 N100 N99 M46 N102 N101 M47 N104 N103 M48 N93 N92 270 M49 N108 N96 270	M39 N87 N86 RIGID M40 N76 N75 270 Mod Face hori M40A N74A N89 270 Mod V kit M41 N74A N90 Mod V kit RIGID M44 N95 N94 RIGID M45 N100 N99 RIGID M46 N102 N101 RIGID M47 N104 N103 RIGID M48 N93 N92 270 Mod Face hori M49 N108 N96 270 Mod V kit	M39 N87 N86 RIGID None M40 N76 N75 270 Mod Face hori Beam M40A N74A N89 270 Mod V kit Beam M41 N74A N90 Mod V kit Beam M44 N95 N94 RIGID None M45 N100 N99 RIGID None M46 N102 N101 RIGID None M47 N104 N103 RIGID None M48 N93 N92 270 Mod Face hori Beam M49 N108 N96 270 Mod V kit Beam	M39 N87 N86 RIGID None None M40 N76 N75 270 Mod Face hori Beam Pipe M40A N74A N89 270 Mod V kit Beam Single Angle M41 N74A N90 Mod V kit Beam Single Angle M44 N95 N94 RIGID None None M45 N100 N99 RIGID None None M46 N102 N101 RIGID None None M47 N104 N103 RIGID None None M48 N93 N92 270 Mod Face hori Beam Pipe M49 N108 N96 270 Mod V kit Beam Single Angle	Label I Joint Joint K Joint Rolate(leg) RIGID None None RIGID M39 N87 N86 270 Mod Face hori Beam Pipe A500 Gr M40 N76 N75 270 Mod V kit Beam Pipe A36 Gr.36 M40A N74A N89 270 Mod V kit Beam Single Angle A36 Gr.36 M41 N74A N90 Mod V kit Beam Single Angle A36 Gr.36 M44 N95 N94 RIGID None None RIGID M45 N100 N99 RIGID None None RIGID M46 N102 N101 RIGID None None RIGID M47 N104 N103 RIGID None None RIGID M48 N93 N92 270 Mod Face hori Beam Pipe A500 Gr M49 N108 N96 270

Member Advanced Data

		Release	J Release	I Offsetfinl	J Offset[in]	T/C Only	Physica	Defl Rat., Analysi	s Inactive	Seismic
4	Label M1	Release	J Release	Onseini	- Citedani		Yes			None
1_		OOOXOX				11	Yes	** NA **		None
2	M5	OUCKUK					Yes			None
3	M6	OOOXOX					Yes	** NA **	of the second	None
4_	M10	OOOXOX					Yes			None
5	MP1A	DDIN	OOOOXX				Yes	Default		None
6	M15	BenPIN	0000XX	-			Yes	Default		None
7	M18	BenPill	0000			7/0	Yes			None
8	M19	_					Yes			None
9	M20						Yes	Default	6-019	None
10	M23						Yes			None
11	M31					1 40	Yes			None
12	M32						Yes			None
13	M31A					- W	Yes			None
14	M32A						Yes	** NA **		None
15	M33						Yes	** NA **		None
16	M31B		22224				Yes	Default		None
17	M27	BenPIN	0000XX				Yes	Default		None
18	M28	BenPIN	0000XX				Yes	Doradit		None
19	M29						Yes			None
20	M30					-	Yes	Default		None
21	M31C						Yes	** NA **		None
22	M23A	OOOXOX		-			Yes	** NA **		None
23	M24	OOOXOX					Yes	TIVA —		None
24	MP2A				-		Yes	** NA **		None
25	M26	OOOXOX				-	Yes	** NA **		None
26	M27A	OOOXOX					Yes	INA		None
27	MP3A				-	-	Yes	** NA **		None
28	M29A	OOOXOX					Yes	** NA **		None
29	M30A	OOOXOX				-		IVA		None
30	MP4A						Yes			None
31	M32B						Yes			None
32	МЗЗА						Yes	Default		None
33	МЗЗВ	BenPIN					Yes	Default		None
34	M36		1000				Yes	** NA **		None
35	M37						Yes	** NA **		None
36	M38						Yes	** NA **		None
37	M39						Yes	** NA **		None
38	M40						Yes	Default		None
39	M40A	BenPIN	BenPIN				Yes			
40	M41	BenPIN	BenPIN				Yes	44 110 44		None
41	M44						Yes	** NA **		None

Colliers Engineering & Design

: 5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatA	Analysis	Inactive	Seismic
42	M45						Yes	** NA **			None
43	M46						Yes	** NA **			None
44	M47						Yes	** NA **			None
45	M48						Yes	Default			None
46	M49	BenPIN	BenPIN				Yes				None
47	M50	BenPIN	BenPIN				Yes				None

Member Point Loads (BLC 1 : Antenna D)

Member Lab	pel Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP1A	Y	-43.55	2.67
2 MP1A	My	022	2.67
3 MP1A	Mz	0	2.67
4 MP1A	Y	-43.55	4.67
5 MP1A	My	022	4.67
6 MP1A	Mz	0	4.67
7 MP3A	Y	-20	1.92
8 MP3A	My	013	1.92
9 MP3A	Mz	.013	1.92
10 MP3A	Y	-20	5.42
11 MP3A	My	013	5.42
12 MP3A	Mz	.013	5.42
13 MP3A	Y	-20	1.92
14 MP3A	My	013	1.92
15 MP3A	Mz	013	1.92
16 MP3A	Y	-20	5.42
17 MP3A	My	013	5.42
18 MP3A	Mz	013	5.42
19 MP4A	Y	-20	1.92
20 MP4A	My	013	1.92
21 MP4A	Mz	0	1.92
22 MP4A	Y	-20	5.42
23 MP4A	My	013	5.42
24 MP4A	Mz	0	5.42
25 M19	Y	-84.4	1
26 M19	My	.042	1
27 M19	Mz	0	1
28 M29	Y	-70.3	1
29 M29	My	.035	1
30 M29	Mz	0	1
31 M30	Y	-26.9	1.5
32 M30	My	0	1.5
33 M30	Mz	0	1.5
34 MP3A	Y	-17.6	4
35 MP3A	My	.009	4
36 MP3A	Mz	0	4

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-35.041	2.67
2	MP1A	My	018	2.67
3	MP1A	Mz	0	2.67
4	MP1A	Y	-35.041	4.67
5	MP1A	My	018	4.67
6	MP1A	Mz	0	4.67
7	MP3A	Y	-60.087	1.92

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:___

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8	MP3A	Mv	04	1.92
9	MP3A	Mz	.04	1.92
10	MP3A	Y	-60.087	5.42
11	MP3A	My	04	5.42
12	MP3A	Mz	.04	5.42
13	MP3A	Y	-60.087	1.92
	MP3A	My	04	1.92
14 15	MP3A	Mz	04	1.92
	MP3A	Y	-60.087	5.42
16 17	MP3A	My	04	5.42
	MP3A	Mz	04	5.42
18	MP4A	Y	-60.087	1.92
19	MP4A	My	04	1.92
20	MP4A	Mz	0	1.92
21	MP4A	Y	-60.087	5.42
22	MP4A	My	04	5.42
23	MP4A	Mz	0	5.42
24	M19	Y	-44.168	1
25	M19	My	.022	
26	M19	Mz	0	11
27	M29	Y	-39.716	1
	M29	My	.02	1
29	M29	Mz	0	
30	M30	Y	-54.397	1.5
31	M30	My	0	1.5
	M30	Mz	0	1.5
33	MP3A	Y	-17.041	4
34	MP3A	My	.009	4
35 36	MP3A	Mz	0	4

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

Momb	er Label D	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	P1A	X	0	2.67
50000	PIA	7	-107.987	2.67
	P1A	Mx	0	2.67
	P1A	X	0	4.67
	P1A	7	-107.987	4.67
	P1A	Mx	0	4.67
	P3A	X	0	1.92
	P3A	7	-126.598	1.92
	P3A	Mx	084	1.92
	P3A	X	0	5.42
		7	-126.598	5.42
	P3A	Mx	084	5.42
	P3A	X	0	1.92
	P3A	7	-126.598	1.92
The state of the s	P3A	Mx	.084	1.92
	P3A	X	0	5.42
10	P3A	7	-126.598	5.42
	P3A	Mx	.084	5.42
	P3A	X	0	1.92
	P4A	7	-126.598	1.92
	P4A		0	1.92
	P4A	Mx	0	5.42
	P4A	X	-126.598	5.42
	P4A		-120.530	5.42
24 M	P4A	Mx		0.72

Colliers Engineering & Design

5000244862-VZW MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	M19	X	0	1
26	M19	Z	-71.226	1
27	M19	Mx	0	11
28	M29	X	0	1
29	M29	Z	-71.226	11
30	M29	Mx	0	1
31	M30	X	0	1.5
32	M30	Z	-114.88	1.5
33	M30	Mx	0	1.5
34	MP3A	X	0	4
35	MP3A	Z	-44.114	4
36	MP3A	Mx	0	4

Member Point Loads (BLC 4: Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	45.78	2.67
2	MP1A	Z	-79.293	2.67
3	MP1A	Mx	023	2.67
4	MP1A	X	45.78	4.67
5	MP1A	Z	-79.293	4.67
6	MP1A	Mx	023	4.67
7	MP3A	X	54.281	1.92
8	MP3A	Z	-94.017	1.92
9	MP3A	Mx	099	1.92
10	MP3A	X	54.281	5.42
11	MP3A	Z	-94.017	5.42
12	MP3A	Mx	099	5.42
13	MP3A	X	54.281	1.92
14	MP3A	Z	-94.017	1.92
15	MP3A	Mx	.026	1.92
16	MP3A	X	54.281	5.42
17	MP3A	Z	-94.017	5.42
18	MP3A	Mx	.026	5.42
19	MP4A	X	54.281	1.92
20	MP4A	Z	-94.017	1.92
21	MP4A	Mx	036	1.92
22	MP4A	X	54.281	5.42
23	MP4A	Z	-94.017	5.42
24	MP4A	Mx	036	5.42
25	M19	X	32.683	1
26	M19	Z	-56.609	1
27	M19	Mx	.016	1
28	M29	X	31.592	1
29	M29	Z	-54.719	1
30	M29	Mx	.016	1
31	M30	X	52.405	1.5
32	M30	Z	-90.769	1.5
33	M30	Mx	0	1.5
34	MP3A	X	18.215	4
35	MP3A	Z	-31.55	4
36	MP3A	Mx	.009	4

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1A	X	50.84	2.67
2	MP1A	Z	-29.352	2.67

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP1A	Mx	025	2.67
4	MP1A	X	50.84	4.67
5	MP1A	Z	-29.352	4.67
6	MP1A	Mx	025	4.67
7	MP3A	X	62.778	1.92
8	MP3A	Z	-36.245	1.92
9	MP3A	Mx	066	1.92
10	MP3A	X	62.778	5.42
11	MP3A	Z	-36.245	5.42
12	MP3A	Mx	066	5.42
13	MP3A	X	62.778	1.92
14	MP3A	Z	-36.245	1.92
15	MP3A	Mx	018	1.92
16	MP3A	X	62.778	5.42
17	MP3A	Z	-36.245	5.42
	MP3A	Mx	018	5.42
18 19	MP4A	X	62.778	1,92
	MP4A	Z	-36.245	1.92
20	MP4A MP4A	Mx	042	1.92
21	MP4A	X	62.778	5.42
22	MP4A	Z	-36.245	5.42
23	MP4A MP4A	Mx	042	5.42
24	M19	X	46.461	11
25	M19	Z	-26.825	1
26	M19	Mx	.023	1
27	M29	X	40.791	1
28	M29	Z	-23.55	1
29		Mx	.02	1
30	M29	X	73.328	1.5
31	M30	Z	-42.336	1.5
32	M30	Mx	0	1.5
33	M30	X	18.242	4
34	MP3A	Z	-10.532	4
35 36	MP3A MP3A	Mx	.009	4

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	42.277	2.67
2	MP1A	Z	0	2.67
3	MP1A	Mx	021	2.67
4	MP1A	X	42.277	4.67
5	MP1A	Z	0	4.67
6	MP1A	Mx	021	4.67
7	MP3A	X	54.453	1.92
8	MP3A	Z	0	1.92
9	MP3A	Mx	036	1.92
10	MP3A	X	54.453	5.42
11	MP3A	Z	0	5.42
12	MP3A	Mx	036	5.42
13	MP3A	X	54.453	1.92
14	MP3A	Z	0	1.92
15	MP3A	Mx	036	1.92
16	MP3A	X	54.453	5.42
17	MP3A	Z	0	5.42
18	MP3A	Mx	036	5.42
19	MP4A	X	54.453	1.92

July 5, 2023 9:40 AM Checked By:_

5000244862-VZW_MT_LOT_SectorA_H

Member Point Loads (BLC 6: Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP4A	Z	0	1.92
21	MP4A	Mx	036	1.92
22	MP4A	X	54.453	5.42
23	MP4A	Z	0	5.42
24	MP4A	Mx	036	5.42
25	M19	X	47.79	1
26	M19	Z	0	1
27	M19	Mx	.024	1
28	M29	X	39.059	1
29	M29	Z	0	1
30	M29	Mx	.02	1
31	M30	X	74.603	1.5
32	M30	Z	0	1.5
33	M30	Mx	0	1.5
34	MP3A	X	13.38	4
35	MP3A	Z	0	4
36	MP3A	Mx	.007	4

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	50.84	2.67
2	MP1A	Z	29.352	2.67
3	MP1A	Mx	025	2.67
4	MP1A	X	50.84	4.67
5	MP1A	Z	29.352	4.67
6	MP1A	Mx	025	4.67
7	MP3A	X	62.778	1.92
8	MP3A	Z	36.245	1.92
9	МРЗА	Mx	018	1.92
10	MP3A	X	62.778	5.42
11	MP3A	Z	36.245	5.42
12	MP3A	Mx	018	5.42
13	MP3A	X	62.778	1.92
14	MP3A	Z	36.245	1.92
15	MP3A	Mx	066	1.92
16	MP3A	X	62.778	5.42
17	MP3A	Z	36.245	5.42
18	MP3A	Mx	066	5.42
19	MP4A	X	62.778	1.92
20	MP4A	Z	36.245	1.92
21	MP4A	Mx	042	1.92
22	MP4A	X	62.778	5.42
23	MP4A	Z	36.245	5.42
24	MP4A	Mx	042	5.42
25	M19	X	46.461	1
26	M19	Z	26.825	1
27	M19	Mx	.023	1
28	M29	X	40.791	1
29	M29	Z	23.55	1
30	M29	Mx	.02	1
31	M30	X	73.328	1.5
32	M30	Z	42.336	1.5
33	M30	Mx	0	1.5
34	MP3A	X	18.242	4
35	MP3A	Z	10.532	4
36	MP3A	Mx	.009	4

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	fember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	45.78	2.67
2	MP1A	Z	79.293	2.67
3	MP1A	Mx	023	2.67
4	MP1A	X	45.78	4.67
5	MP1A	Z	79.293	4.67
6	MP1A	Mx	023	4.67
7	MP3A	X	54.281	1.92
	MP3A	Ž	94.017	1.92
8	MP3A	Mx	.026	1.92
9	MP3A	X	54.281	5.42
	MP3A	7	94.017	5.42
11	MP3A	Mx	.026	5.42
12	MP3A	X	54.281	1.92
13	MP3A	7	94.017	1.92
14	MP3A	Mx	099	1.92
15	MP3A	X	54.281	5.42
16	MP3A	Z	94.017	5.42
17	MP3A	Mx	099	5.42
18	MP4A	X	54.281	1.92
19		Z	94.017	1.92
20	MP4A	Mx	036	1.92
21	MP4A	X	54,281	5.42
22	MP4A	Ž	94.017	5.42
23	MP4A	Mx	036	5.42
24	MP4A	X	32.683	1
25	M19	Z	56.609	1
26	M19	Mx	.016	1
27	M19	X	31.592	1
28	M29	Z	54.719	1
29	M29	Mx	.016	1
30	M29	X	52.405	1.5
31	M30	Ž	90.769	1.5
32	M30		0	1.5
33	M30	Mx	18.215	4
34	MP3A	X	31.55	4
35	MP3A		.009	4
36	MP3A	Mx	.000	

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	2.67
2	MP1A	I Z	107.987	2.67
3	MP1A	Mx	0	2.67
4	MP1A	X	0	4.67
	MP1A	7	107.987	4.67
5	MP1A	Mx	0	4.67
6	MP3A	X	0	1.92
/	MP3A	7	126.598	1.92
8	MP3A	Mx	.084	1.92
9	MP3A	X	0	5.42
10	MP3A	7	126.598	5.42
11	MP3A	Mx	.084	5.42
12		X	0	1.92
13	MP3A	7	126.598	1.92
14	MP3A	Mx	084	1.92
15	MP3A	Y	.0	5.42
16 17	MP3A MP3A	Z	126.598	5.42

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Point Loads (BLC 9: Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP3A	Mx	084	5.42
19	MP4A	X	0	1.92
20	MP4A	Z	126.598	1.92
21	MP4A	Mx	0	1.92
22	MP4A	X	0	5.42
23	MP4A	Z	126.598	5.42
24	MP4A	Mx	0	5.42
25	M19	X	0	1
26	M19	Z	71.226	1
27	M19	Mx	0	1
28	M29	X	0	1
29	M29	Z	71.226	1
30	M29	Mx	0	1
31	M30	X	0	1.5
32	M30	Z	114.88	1.5
33	M30	Mx	0	1.5
34	MP3A	X	0	4
35	MP3A	Z	44.114	4
36	MP3A	Mx	0	4

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-45.78	2.67
2	MP1A	Z	79.293	2.67
3	MP1A	Mx	.023	2.67
4	MP1A	X	-45.78	4.67
5	MP1A	Z	79.293	4.67
6	MP1A	Mx	.023	4.67
7	MP3A	X	-54.281	1.92
8	MP3A	Z	94.017	1.92
9	MP3A	Mx	.099	1.92
10	MP3A	X	-54.281	5.42
11	MP3A	Z	94.017	5.42
12	MP3A	Mx	.099	5.42
13	MP3A	X	-54.281	1.92
14	MP3A	Z	94.017	1.92
15	MP3A	Mx	026	1.92
16	MP3A	X	-54.281	5.42
17	MP3A	Z	94.017	5.42
18	MP3A	Mx	026	5.42
19	MP4A	X	-54.281	1.92
20	MP4A	Z	94.017	1.92
21	MP4A	Mx	.036	1.92
22	MP4A	X	-54.281	5.42
23	MP4A	Z	94.017	5.42
24	MP4A	Mx	.036	5.42
25	M19	X	-32.683	111
26	M19	Z	56.609	1
27	M19	Mx	016	- 1
28	M29	X	-31.592	1
29	M29	Z	54.719	1
30	M29	Mx	016	1
31	M30	X	-52.405	1.5
32	M30	Z	90.769	1.5
33	M30	Mx	0	1.5
34	MP3A	X	-18.215	4

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:___

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
05	MP3A	7	31.55	4
35	MP3A	Mx	009	4

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	ember Label	: Antenna VVO (240	Magnitude[lb,k-ft]	Location[ft,%]
	MP1A	X	-50.84	2.67
2	MP1A	Ž	29.352	2.67
	MP1A	Mx	.025	2.67
3	MP1A	X	-50.84	4.67
4	MP1A	Z	29.352	4.67
5	MP1A	Mx	.025	4.67
6	MP3A	X	-62.778	1.92
7		Z	36.245	1.92
8	MP3A MP3A	Mx	.066	1.92
9		X	-62.778	5.42
10	MP3A	Ž	36.245	5.42
11	MP3A	Mx	.066	5.42
12	MP3A	X	-62.778	1.92
13	MP3A	Z	36.245	1.92
14	MP3A	Mx	.018	1.92
15	MP3A	X	-62.778	5.42
16	MP3A	Z	36.245	5.42
17	MP3A	Mx	.018	5.42
18	MP3A	X	-62.778	1.92
19	MP4A	Z	36.245	1.92
20	MP4A	Mx	.042	1.92
21	MP4A	IVIX X	-62.778	5.42
22	MP4A	Z	36.245	5.42
23	MP4A		.042	5.42
24	MP4A	Mx	-46.461	1
25	M19	X	26.825	1
26	M19		023	1
27	M19	Mx	-40.791	1
28	M29	X	23.55	1
29	M29	Z	02	1
30	M29	Mx	-73.328	1.5
31	M30	X	42.336	1.5
32	M30	Z	0	1.5
33	M30	Mx	-18,242	4
34	MP3A	X	10.532	4
35	MP3A	Z	009	4
36	MP3A	Mx	009	J = 3 =

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
4		X	-42.277	2.67
1 -	MP1A	7	0	2.67
2	MP1A	Mx	.021	2.67
3	MP1A	- IVIX	-42.277	4.67
4	MP1A	7	0	4.67
5	MP1A	100	.021	4.67
6	MP1A	Mx	-54.453	1.92
7	MP3A		-54.455	1.92
8	MP3A		036	1.92
9	MP3A	Mx	.036	5.42
10	MP3A	X	-54.453	5.42
11	MP3A	Z	0	
12	MP3A	Mx	.036	5.42

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Point Loads (BLC 12: Antenna Wo (270 Deg)) (Continued)

M	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	X	-54.453	1.92
14	MP3A	Z	0	1.92
15	MP3A	Mx	.036	1.92
16	MP3A	X	-54.453	5.42
17	MP3A	Z	0	5.42
18	MP3A	Mx	.036	5.42
19	MP4A	X	-54.453	1.92
20	MP4A	Z	0	1.92
21	MP4A	Mx	.036	1.92
22	MP4A	X	-54.453	5.42
23	MP4A	Z	0	5.42
24	MP4A	Mx	.036	5.42
25	M19	X	-47.79	1
26	M19	Z	0	1
27	M19	Mx	024	1
28	M29	X	-39.059	
29	M29	Z	0	1
30	M29	Mx	02	1
31	M30	X	-74.603	1.5
32	M30	Z	0	1.5
33	M30	Mx	0	1.5
34	MP3A	X	-13.38	4
35	MP3A	Z	0	4
36	MP3A	Mx	007	4

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-50.84	2.67
2	MP1A	Z	-29.352	2.67
3	MP1A	Mx	.025	2.67
4	MP1A	X	-50.84	4.67
5	MP1A	Z	-29.352	4.67
6	MP1A	Mx	.025	4.67
7	MP3A	X	-62.778	1.92
8	MP3A	Z	-36.245	1.92
9	MP3A	Mx	.018	1.92
10	MP3A	X	-62.778	5.42
11	MP3A	Z	-36.245	5.42
12	MP3A	Mx	.018	5.42
13	MP3A	X	-62.778	1.92
14	MP3A	Z	-36.245	1.92
15	MP3A	Mx	.066	1.92
16	MP3A	X	-62.778	5.42
17	MP3A	Z	-36.245	5.42
18	MP3A	Mx	.066	5.42
19	MP4A	X	-62.778	1.92
20	MP4A	Z	-36.245	1.92
21	MP4A	Mx	.042	1.92
22	MP4A	X	-62.778	5.42
23	MP4A	Z	-36.245	5.42
24	MP4A	Mx	.042	5.42
25	M19	X	-46.461	1
26	M19	Z	-26.825	1
27	M19	Mx	023	1
28	M29	X	-40.791	1
29	M29	Z	-23.55	1

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	M29	Mx	02	
30 31 32 33 34 35	M30	X	-73.328	1.5
32	M30	Z	-42.336	1.5
33	M30	Mx	0	1.5
3/1	MP3A	X	-18.242	4
35	MP3A	Z	-10.532	4
36	MP3A	Mx	009	4

Member Point Loads (BLC 14: Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	MP1A	X	-45.78	2.67
2	MP1A	Z	-79.293	2.67
3	MP1A	Mx	.023	2.67
	MP1A	X	-45.78	4.67
4	MP1A	Z	-79.293	4.67
5	MP1A	Mx	.023	4.67
7	MP3A	X	-54.281	1.92
	MP3A	Z	-94.017	1.92
8	MP3A	Mx	026	1.92
9	MP3A	X	-54.281	5.42
10		7	-94.017	5.42
11	MP3A	Mx	026	5.42
12	MP3A MP3A	X	-54.281	1.92
13		Z	-94.017	1.92
14	MP3A	Mx	.099	1.92
15	MP3A	X	-54.281	5.42
16	MP3A	Z	-94.017	5.42
17	MP3A	Mx	.099	5.42
18	MP3A	X	-54.281	1.92
19	MP4A	Z	-94.017	1.92
20	MP4A	Mx	.036	1.92
21	MP4A	X	-54.281	5.42
22	MP4A	Z	-94.017	5.42
23	MP4A	Mx	.036	5.42
24	MP4A	X	-32.683	1
25	M19	Ž	-56.609	
26	M19	Mx	016	1
27	M19	X	-31.592	1
28	M29	7	-54.719	1
29	M29		016	
30	M29	Mx	-52.405	1.5
31	M30	X	-90.769	1.5
32	M30	Z	-90.769	1.5
33	M30	Mx	-18.215	4
34	MP3A	X	-31.55	4
35	MP3A	Z	009	4
36	MP3A	Mx	008	

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Marchael abol	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4	Member Label MP1A	X	0	2.67
2		7	-18.877	2.67
2	MP1A	Mx	0	2.67
<u> </u>	MP1A	Y	0	4.67
4	MP1A	7	-18.877	4.67
5	MP1A	Mx	0	4.67
6	MP1A	IVIX	0	1.92
7	MP3A			

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8 MP3A	Z	-32	1.92
9 MP3A	Mx	021	1.92
10 MP3A	X	0	5.42
11 MP3A	Z	-32	5.42
12 MP3A	Mx	021	5.42
13 MP3A	X	0	1.92
14 MP3A	Z	-32	1.92
15 MP3A	Mx	.021	1.92
16 MP3A	X	0	5.42
17 MP3A	Z	-32	5.42
18 MP3A	Mx	.021	5.42
19 MP4A	X	0	1.92
20 MP4A	Z	-32	1.92
21 MP4A	Mx	0	1.92
22 MP4A	X	0	5.42
23 MP4A	Z	-32	5.42
24 MP4A	Mx	0	5.42
25 M19	X	0	1
26 M19	Z	-15.897	1 1
27 M19	Mx	0	1
28 M29	X	0	1
29 M29	Z	-15.897	1
30 M29	Mx	0	1
31 M30	X	0	1_5
32 M30	Z	-20.719	1.5
33 M30	Mx	0	1.5
34 MP3A	X	0	4
35 MP3A	Z	-8.73	4
36 MP3A	Mx	0	4

Member Point Loads (BLC 16: Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1A	X	8.083	2.67
2	MP1A	Z	-14	2.67
3	MP1A	Mx	004	2.67
4	MP1A	X	8.083	4.67
5	MP1A	Z	-14	4.67
6	MP1A	Mx	004	4.67
7	MP3A	X	14.757	1.92
8	MP3A	Z	-25.56	1.92
9	MP3A	Mx	027	1.92
10	MP3A	X	14.757	5.42
11	MP3A	Z	-25.56	5.42
12	MP3A	Mx	027	5.42
13	MP3A	X	14.757	1.92
14	MP3A	Z	-25.56	1.92
15	MP3A	Mx	.007	1.92
16	MP3A	X	14.757	5.42
17	MP3A	Z	-25.56	5.42
18	MP3A	Mx	.007	5.42
19	MP4A	X	14.757	1.92
20	MP4A	Z	-25.56	1.92
21	MP4A	Mx	01	1.92
22	MP4A	X	14.757	5.42
23	MP4A	Z	-25.56	5.42
24	MP4A	Mx	01	5.42

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Mambar Labal	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	Member Label	Y	7.343	1
25	M19	A 7	-12.718	1
26	M19			1
27	M19	Mx	.004	1
28	M29	X	7.113	
	M29	Z	-12.319	11
29	M29	Mx	.004	1
30		Y	9.526	1.5
31	M30	2	-16.499	1.5
32	M30		-10.499	1.5
33	M30	Mx	0	1.5
34	MP3A	X	3.684	4
	MP3A	Z	-6.38	4
35 36	MP3A	Mx	.002	4

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP1A	X	9.303	2.67
2 MP1A	Z	-5.371	2.67
3 MP1A	Mx	005	2.67
4 MP1A	X	9.303	4.67
5 MP1A	Z	-5.371	4.67
6 MP1A	Mx	005	4.67
7 MP3A	X	21.255	1.92
8 MP3A	Z	-12.271	1.92
9 MP3A	Mx	022	1.92
10 MP3A	X	21.255	5.42
11 MP3A	Z	-12.271	5.42
12 MP3A	Mx	022	5.42
13 MP3A	X	21.255	1.92
14 MP3A	Z	-12.271	1.92
15 MP3A	Mx	006	1.92
16 MP3A	X	21.255	5.42
17 MP3A	Z	-12.271	5.42
	Mx	006	5.42
1.0	X	21.255	1.92
	Z	-12.271	1.92
1,000	Mx	014	1.92
The state of the s	X	21.255	5.42
	Z	-12.271	5.42
	Mx	014	5.42
	X	10.62	11_
20	Z	-6.131	1
	Mx	.005	1
	X	9.424	1
	Z	-5.441	1
29 M29 30 M29	Mx	.005	
	X	13.612	1.5
31 M30	Z	-7.859	1.5
32 M30	Mx	0	1.5
33 M30	X	4.02	4
34 MP3A	Ž	-2.321	4
35 MP3A	Mx	.002	4
36 MP3A	IVIX	.002	

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

icinoc.	Market shall	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	Member Label	Y	8.031	2.67
1	MP1A	7	0	2.67
2	MP1A		0	

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:___

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP1A	Mx	004	2.67
4	MP1A	X	8.031	4.67
5	MP1A	Z	0	4.67
6	MP1A	Mx	004	4.67
7	MP3A	X	22.057	1.92
8	MP3A	Z	0	1.92
9	MP3A	Mx	015	1.92
10	MP3A	X	22.057	5.42
11	MP3A	Z	0	5.42
12	MP3A	Mx	015	5.42
13	MP3A	X	22.057	1.92
14	MP3A	Z	0	1.92
15	MP3A	Mx	015	1,92
16	MP3A	X	22.057	5,42
17	MP3A	Z	0	5.42
18	MP3A	Mx	015	5.42
19	MP4A	X	22.057	1.92
20	MP4A	Z	0	1.92
21	MP4A	Mx	015	1.92
22	MP4A	X	22.057	5.42
23	MP4A	Z	0	5.42
24	MP4A	Mx	015	5.42
25	M19	X	11.051	11
26	M19	Z	0	1
27	M19	Mx	.006	11
28	M29	X	9.21	1
29	M29	Z	0	1
30	M29	Mx	.005	1
31	M30	X	14.05	1.5
32	M30	Z	0	1.5
33	M30	Mx	0	1.5
34	MP3A	X	3.279	4
35	MP3A	Z	0	4
36	MP3A	Mx	.002	4

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	9.303	2.67
2	MP1A	Z	5.371	2.67
3	MP1A	Mx	005	2.67
4	MP1A	X	9.303	4.67
5	MP1A	Z	5.371	4.67
6	MP1A	Mx	005	4.67
7	MP3A	X	21.255	1.92
8	MP3A	Z	12.271	1.92
9	MP3A	Mx	006	1.92
10	MP3A	X	21.255	5.42
11	MP3A	Z	12.271	5.42
12	MP3A	Mx	006	5.42
13	MP3A	X	21.255	1.92
14	MP3A	Z	12.271	1.92
15	MP3A	Mx	022	1.92
16	MP3A	X	21.255	5,42
17	мрза	Z	12.271	5.42
18	MP3A	Mx	022	5.42
19	MP4A	X	21.255	1.92

5000244862-VZW_MT_LOT_SectorA_H

Member Point Loads (BLC 19: Antenna Wi (120 Deg)) (Continued)

	Mambarlahal	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20 1	Member Label MP4A	7	12.271	1.92
20		Mx	-,014	1.92
21	MP4A	X	21.255	5.42
22	MP4A	2	12.271	5.42
23	MP4A		014	5.42
24	MP4A	Mx		1
25	M19	X	10.62	1
26	M19	Z	6.131	1
27	M19	Mx	.005	
28	M29	X	9.424	112-11
29	M29	Z	5.441	
30	M29	Mx	.005	1
31	M30	X	13.612	1.5
	M30	Z	7.859	1.5
32	M30	Mx	0	1.5
33	MP3A	X	4.02	4
34		7	2.321	4
35	MP3A	Mx	.002	4
36	MP3A	IAIV		

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	lember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	MP1A	X	8.083	2.67
1	MP1A	X	14	2.67
2	MP1A	Mx	004	2.67
3	MP1A	X	8.083	4.67
4		Z	14	4.67
5	MP1A	Mx	004	4.67
6	MP1A		14.757	1.92
7	MP3A	X	25.56	1.92
8	MP3A	Mx	.007	1.92
9	MP3A	X	14.757	5.42
10	MP3A	Z	25.56	5.42
11	MP3A	Mx	.007	5.42
12	MP3A	X	14.757	1.92
13	MP3A	Z	25.56	1.92
14	MP3A	Mx	027	1.92
15	MP3A	X	14.757	5.42
16	MP3A	Z	25.56	5.42
17	MP3A	Mx	027	5.42
18	MP3A	X	14.757	1.92
19	MP4A	Ž	25.56	1.92
20	MP4A	Mx	01	1.92
21	MP4A	X	14.757	5.42
22	MP4A	Z	25.56	5.42
23	MP4A	Mx	01	5.42
24	MP4A	X	7.343	1
25	M19	Z	12.718	1
26	M19	Mx	.004	1
27	M19	X	7.113	1
28	M29	Z	12.319	1
29	M29	Mx	.004	1
30	M29		9.526	1.5
31	M30	X	16.499	1.5
32	M30		0	1.5
33	M30	Mx	3.684	4
34	MP3A	X	6.38	4
35	MP3A	Mx	.002	4
36	MP3A	IVIX	.002	

5000244862-VZW MT LOT SectorA H

July 5, 2023 9:40 AM Checked By:___

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	2.67
2	MP1A	Z	18.877	2.67
3	MP1A	Mx	0	2.67
4	MP1A	X	0	4.67
5	MP1A	Z	18.877	4.67
6	MP1A	Mx	0	4.67
7	MP3A	X	0	1.92
8	MP3A	Z	32	1.92
9	MP3A	Mx	.021	1.92
10	MP3A	X	0	5.42
11	MP3A	Z	32	5.42
12	MP3A	Mx	.021	5.42
13	MP3A	X	0	1.92
14	MP3A	Z	32	1.92
15	MP3A	Mx	021	1.92
16	MP3A	X	0	5.42
17	MP3A	Z	32	5.42
18	MP3A	Mx	021	5.42
19	MP4A	X	0	1.92
20	MP4A	Z	32	1.92
21	MP4A	Mx	0	1.92
22	MP4A	X	0	5.42
23	MP4A	Z	32	5.42
24	MP4A	Mx	0	5.42
25	M19	X	0	1
26	M19	Z	15.897	1
27	M19	Mx	0	1
28	M29	X	0	1
29	M29	Z	15.897	1
30	M29	Mx	0	Seeme 1
31	M30	X	0	1.5
32	M30	Z	20.719	1.5
33	M30	Mx	0	1.5
34	MP3A	X	0	4
35	MP3A	Z	8.73	4
36	MP3A	Mx	0	4

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-8.083	2.67
2	MP1A	Z	14	2.67
3	MP1A	Mx	.004	2.67
4	MP1A	X	-8.083	4.67
5	MP1A	Z	14	4.67
6	MP1A	Mx	.004	4.67
7	MP3A	X	-14.757	1.92
8	MP3A	Z	25.56	1.92
9	MP3A	Mx	.027	1.92
10	MP3A	X	-14.757	5.42
11	MP3A	Z	25.56	5.42
12	MP3A	Mx	.027	5.42
13	MP3A	X	-14.757	1.92
14	MP3A	Z	25.56	1.92
15	MP3A	Mx	007	1.92
16	MP3A	X	-14.757	5.42
17	MP3A	Z	25.56	5.42

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:___

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

		Direction	Magnitude[lb,k-ft]	Location[ft,%]
Membe		Mx	007	5.42
18 MP		Y	-14,757	1.92
19 MP		7	25.56	1.92
20 MP			.01	1.92
21 MP		Mx	-14.757	5.42
22 MP	4A	X		5.42
23 MP	4A	Z	25.56	5.42
24 MP	4A	Mx	.01	3.42
25 M		X	-7.343	
26 M		Z	12.718	
27 M		Mx	004	
28 M2		X	-7.113	
		7	12.319	1
		Mx	004	1
		X	-9.526	1.5
31 M3		7	16.499	1.5
32 M3		Mx	0	1.5
33 M3		X	-3.684	4
34 MP			6.38	4
35 MP		Z		4
36 MP	3A	Mx	002	1

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Point Loads (BLC 23	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	Member Label MP1A	X	-9.303	2.67
	MP1A	Z	5.371	2.67
2	MP1A	Mx	.005	2.67
3	MP1A	X	-9.303	4.67
4	MP1A	Z	5.371	4.67
5	MP1A	Mx	.005	4.67
6	MP3A	X	-21.255	1.92
7		Z	12.271	1.92
8	MP3A	Mx	.022	1.92
9	MP3A	X	-21.255	5.42
10	MP3A	Z	12.271	5.42
11	MP3A	Mx	.022	5.42
12	MP3A	X	-21.255	1.92
13	MP3A	Ž	12.271	1.92
14	MP3A	Mx	.006	1.92
15	MP3A	X	-21.255	5.42
16	MP3A	Z	12.271	5.42
17	MP3A		.006	5.42
18	MP3A	Mx	-21.255	1.92
19	MP4A	X	12.271	1.92
20	MP4A	Z	.014	1.92
21	MP4A	Mx	-21.255	5.42
22	MP4A	X		5.42
23	MP4A	Z	12.271 .014	5.42
24	MP4A	Mx		1
25	M19	X	-10.62	4
26	M19	Z	6.131	1
27	M19	Mx	005	1
28	M29	X	-9.424	1
29	M29	Z	5.441	
30	M29	Mx	005	4.5
31	M30	X	-13.612	1.5
32	M30	Z	7.859	1.5
33	M30	Mx	0	1.5
34	MP3A	X	-4.02	4

5000244862-VZW MT LOT SectorA H

July 5, 2023 9:40 AM Checked By:___

Member Point Loads (BLC 23: Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP3A	Z	2.321	4
36	MP3A	Mx	002	4

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

M	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	- 8.031	2.67
2	MP1A	Z	0	2.67
3	MP1A	Mx	.004	2.67
4	MP1A	X	-8.031	4.67
5	MP1A	Z	0	4.67
6	MP1A	Mx	.004	4.67
7	MP3A	X	-22.057	1.92
8	MP3A	Z	0	1.92
9	MP3A	Mx	.015	1.92
10	MP3A	X	-22.057	5.42
11	MP3A	Z	0	5.42
12	MP3A	Mx	.015	5.42
13	MP3A	X	-22.057	1.92
14	MP3A	Z	0	1.92
15	MP3A	Mx	.015	1.92
16	MP3A	X	-22.057	5.42
17	MP3A	Z	0	5.42
18	MP3A	Mx	.015	5.42
19	MP4A	X	-22.057	1.92
20	MP4A	Z	0	1.92
21	MP4A	Mx	.015	1.92
22	MP4A	X	-22.057	5.42
23	MP4A	Z	0	5.42
24	MP4A	Mx	.015	5.42
25	M19	X	-11.051	1
26	M19	Z	0	1
27	M19	Mx	006	1
28	M29	X	-9.21	1
29	M29	Z	0	1
30	M29	Mx	005	1
31	M30	X	-14.05	1.5
32	M30	Z	0	1.5
33	M30	Mx	0	1.5
34	MP3A	X	-3.279	4
35	MP3A	Z	0	4
36	MP3A	Mx	002	4

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-9.303	2.67
2	MP1A	Z	-5.371	2.67
3	MP1A	Mx	.005	2.67
4	MP1A	X	-9.303	4.67
5	MP1A	Z	-5.371	4.67
6	MP1A	Mx	.005	4.67
7	MP3A	X	-21.255	1.92
8	MP3A	Z	-12.271	1.92
9	MP3A	Mx	.006	1.92
10	MP3A	X	-21.255	5.42
11	MP3A	Z	-12.271	5.42
12	MP3A	Mx	.006	5.42

July 5, 2023 9:40 AM Checked By:_

5000244862-VZW_MT_LOT_SectorA_H

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

Member Label MP3A MP3A	Direction X	Magnitude[lb,k-ft] -21.255	1.92
IVIPSA	Z	-12.271	1.92
			1.92
			5.42
	7		5.42
	My		5.42
			1.92
		10.000.000.0000.0000.0000.0000.0000.0000.0000	1.92
			1.92
			5.42
			5,42
			5.42
			3.42
M19			
M19	Z		
	Mx		
	X		
	Z	-5.441	1
	Mx	005	
		-13.612	1.5
		-7.859	1.5
		0	1.5
		-4.02	4
			4
			4
	MP3A MP3A MP3A MP3A MP4A MP4A MP4A MP4A MP4A MP4A MP4A	MP3A Mx MP3A X MP3A Z MP3A Mx MP4A X MP4A X MP4A X MP4A X MP4A X MP4A X M19 X M19 X M19 X M29 X M29 X M29 X M30 X M30 X M30 Mx MP3A X MP3A Z	MP3A Mx .022 MP3A X -21.255 MP3A Z -12.271 MP3A Mx .022 MP4A X -21.255 MP4A Mx .014 MP4A X -21.255 MP4A X -12.271 MP4A X -12.271 MP4A Mx .014 M19 X -10.62 M19 X -6.131 M19 Mx 005 M29 X -9.424 M29 X -9.424 M29 X -005 M30 X -13.612 M30 X -7.859 M30 Mx 0 MP3A X -4.02 MP3A X -2.321

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

RISA-3D Version 17.0.4

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1A	X	-8.083	2.67
2	MP1A	Ž	-14	2.67
	MP1A	Mx	.004	2.67
3	MP1A	X	-8.083	4.67
4	MP1A	7	-14	4.67
5	MP1A	Mx	.004	4.67
7	MP3A	X	-14.757	1.92
•	MP3A	7	-25.56	1.92
8	MP3A	Mx	007	1.92
9	MP3A	X	-14,757	5.42
10	MP3A	7	-25.56	5.42
11	MP3A	Mx	007	5.42
12	MP3A	X	-14.757	1.92
13	MP3A	Z	-25.56	1.92
14	MP3A	Mx	.027	1.92
15	MP3A	X	-14.757	5.42
16	MP3A	7	-25.56	5.42
17	MP3A	Mx	.027	5.42
18	MP4A	X	-14.757	1.92
19	MP4A	Z	-25.56	1.92
20	MP4A	Mx	.01	1.92
21	MP4A	X	-14.757	5.42
22		7	-25.56	5.42
23	MP4A	Mx	.01	5.42
24	MP4A	X	-7.343	11
25	M19	Z	-12.718	1 1
26	M19	Mx	004	1
27	M19	X	-7.113	1
28	M29	Z	-12.319	1
29	M29		12.010	

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Point Loads (BLC 26: Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
30	M29	Mx	004	1
31	M30	X	-9.526	1.5
32	M30	Z	-16.499	1.5
32 33	M30	Mx	0	1.5
34	MP3A	X	-3.684	4
34 35	MP3A	Z	-6.38	4
36	MP3A	Mx	002	4

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP1A	X	0	2.67
2 MP1A	Z	-6.026	2.67
3 MP1A	Mx	0	2.67
4 MP1A	X	0	4.67
5 MP1A	Z	-6.026	4.67
6 MP1A	Mx	0	4.67
7 MP3A	X	0	1.92
8 MP3A	Z	-7.064	1.92
9 MP3A	Mx	005	1.92
10 MP3A	X	0	5.42
11 MP3A	Z	-7.064	5.42
12 MP3A	Mx	005	5.42
13 MP3A	X	0	1.92
14 MP3A	Z	-7.064	1.92
15 MP3A	Mx	.005	1.92
16 MP3A	X	0	5.42
17 MP3A	Z	-7.064	5.42
18 MP3A	Mx	.005	5.42
19 MP4A	X	0	1.92
20 MP4A	Z	-7.064	1.92
21 MP4A	Mx	0	1.92
22 MP4A	X	0	5.42
23 MP4A	Z	-7.064	5.42
24 MP4A	Mx	0	5.42
25 M19	X	0	1
26 M19	Z	-3.974	1
27 M19	Mx	0	1
28 M29	X	0	1
29 M29	Z	-3.974	1
30 M29	Mx	0	1
31 M30	X	0	1.5
32 M30	Z	-6.41	1.5
33 M30	Mx	0	1.5
34 MP3A	X	0	4
35 MP3A	Z	-2.462	4
36 MP3A	Mx	0	4

Member Point Loads (BLC 28: Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1A	X	2.555	2.67
2	MP1A	Z	-4.425	2.67
3	MP1A	Mx	001	2.67
4	MP1A	X	2.555	4.67
5	MP1A	Z	-4.425	4.67
6	MP1A	Mx	001	4.67
7	MP3A	X	3.029	1.92

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8	MP3A	Z	-5.246	1.92
9	MP3A	Mx	006	1.92
10	MP3A	X	3.029	5.42
11	MP3A	Z	- 5.246	5.42
12	MP3A	Mx	006	5.42
13	MP3A	X	3.029	1.92
14	MP3A	Z	-5.246	1.92
15	MP3A	Mx	.001	1.92
16	MP3A	X	3.029	5.42
17	MP3A	Z	-5.246	5.42
18	MP3A	Mx	.001	5.42
19	MP4A	X	3.029	1.92
20	MP4A	Z	-5.246	1.92
21	MP4A	Mx	002	1.92
22	MP4A	X	3.029	5.42
23	MP4A	Z	-5.246	5.42
24	MP4A	Mx	002	5.42
25	M19	X	1.824	11
26	M19	Z	-3.159	11111
27	M19	Mx	.000912	11
28	M29	X	1.763	11
29	M29	Z	-3.053	111
30	M29	Mx	.000881	
31	M30	X	2.924	1.5
32	M30	Z	-5.065	1.5
33	M30	Mx	0	1.5
34	MP3A	X	1.016	4
35	MP3A	Z	-1.76	4
36	MP3A	Mx	.000508	4

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	2.837	2.67
2	MP1A	7	-1.638	2.67
	MP1A	Mx	001	2.67
3	MP1A	X	2.837	4.67
4	MP1A	7	-1.638	4.67
6	MP1A	Mx	001	4.67
7	MP3A	X	3.503	1.92
	MP3A	7	-2.022	1.92
8	MP3A	Mx	004	1.92
9	MP3A	X	3.503	5.42
10		Z	-2.022	5.42
11	MP3A	Mx	004	5.42
12	MP3A	X	3.503	1.92
13	MP3A	Z	-2.022	1.92
14	MP3A	Mx	000987	1.92
15	MP3A	X	3.503	5.42
16	MP3A	7	-2.022	5.42
17	MP3A	Mx	000987	5.42
18	MP3A	X	3.503	1.92
19	MP4A	7	-2.022	1.92
20	MP4A		002	1.92
21	MP4A	Mx	3.503	5.42
22	MP4A	X		5.42
23	MP4A	Z	-2.022	5.42
24	MP4A	Mx	002	1 3.42

5000244862-VZW MT LOT SectorA H

July 5, 2023 9:40 AM Checked By:__

Member Point Loads (BLC 29: Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	M19	X	2.593	1
26	M19	Z	-1.497	1
27	M19	Mx	.001	1.
28	M29	X	2.276	1
29	M29	Z	-1.314	1
30	M29	Mx	.001	1
31	M30	X	4.092	1.5
32	M30	Z	-2.362	1.5
33	M30	Mx	0	1.5
34	MP3A	X	1.018	4
35	MP3A	Z	588	4
36	MP3A	Mx	.000509	4

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

N.	Nember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	2.359	2.67
2	MP1A	Z	0	2.67
3	MP1A	Mx	001	2.67
4	MP1A	X	2.359	4.67
5	MP1A	Z	0	4.67
6	MP1A	Mx	001	4.67
7	MP3A	X	3.038	1.92
8	MP3A	Z	0	1.92
9	MP3A	Mx	002	1.92
10	MP3A	X	3.038	5.42
11	MP3A	Z	0	5.42
12	MP3A	Mx	002	5.42
13	MP3A	X	3.038	1.92
14	MP3A	Z	0	1.92
15	MP3A	Mx	002	1.92
16	MP3A	X	3.038	5.42
17	MP3A	Z	0	5.42
18	MP3A	Mx	002	5.42
19	MP4A	X	3.038	1.92
20	MP4A	Z	0	1.92
21	MP4A	Mx	002	1.92
22	MP4A	X	3.038	5.42
23	MP4A	Z	0	5.42
24	MP4A	Mx	002	5.42
25	M19	X	2.667	1
26	M19	Z	0	1
27	M19	Mx	.001	1
28	M29	X	2.18	1
29	M29	Z	0	1
30	M29	Mx	.001	1
31	M30	X	4.163	1.5
32	M30	Z	0	1.5
33	M30	Mx	0	1.5
34	MP3A	X	.747	4
35	MP3A	Z	0	4
36	MP3A	Mx	.000374	4

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	2.837	2.67
2	MP1A	Z	1.638	2.67

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

		: Antenna vvm (120	Magnitude[lb,k-ft]	Location[ft,%]
2	Member Label MP1A	Mx	001	2.67
3	MP1A	X	2.837	4.67
4	MP1A	Ž	1.638	4.67
5	MP1A	Mx	001	4.67
6	MP3A	X	3.503	1.92
7	MP3A	Z	2.022	1.92
8	MP3A	Mx	000987	1.92
9	MP3A	X	3.503	5.42
10		Ž	2.022	5.42
11	MP3A	Mx	000987	5.42
12	MP3A	X	3.503	1.92
13	MP3A	Ž	2.022	1.92
14	MP3A	Mx	004	1.92
15	MP3A	X	3.503	5.42
16	MP3A	Z	2.022	5.42
17	MP3A	Mx	004	5.42
18	MP3A	X	3.503	1.92
19	MP4A	Ž	2.022	1.92
20	MP4A	Mx	002	1.92
21	MP4A	X	3.503	5.42
22	MP4A	Ž	2.022	5.42
23	MP4A	Mx	002	5.42
24	MP4A	X	2.593	1
25	M19	Ž	1.497	1
26	M19	Mx	.001	1
27	M19	X	2.276	1
28	M29	Ž	1.314	1
29	M29	Mx	.001	1
30	M29	X	4.092	1.5
31	M30	Z	2.362	1.5
32	M30	Mx	0	1.5
33	M30		1.018	4
34	MP3A	X	.588	4
35	MP3A		.000509	4
36	MP3A	Mx	.000000	

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Point Loads (BLC 32	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4 1	Member Label MP1A	X	2,555	2.67
1		7	4.425	2.67
2	MP1A	Mx	001	2.67
3	MP1A	X	2.555	4.67
4	MP1A	7	4.425	4.67
5	MP1A	Mx	001	4.67
6	MP1A	X	3.029	1.92
7	MP3A	7	5.246	1.92
8	MP3A		.001	1.92
9	MP3A	Mx	3.029	5.42
0	MP3A	X	5.246	5.42
1	MP3A	Z	.001	5.42
2	MP3A	Mx		1.92
3	MP3A	X	3.029	1.92
14	MP3A	Z	5.246	1.92
15	MP3A	Mx	006	5.42
16	MP3A	X	3.029	5.42
7	MP3A	Z	5.246	
18	MP3A	Mx	006	5.42
19	MP4A	X	3.029	1.92

5000244862-VZW_MT_LOT_SectorA_H

Member Point Loads (BLC 32: Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP4A	Z	5.246	1.92
21	MP4A	Mx	002	1.92
22	MP4A	X	3.029	5.42
23	MP4A	Z	5.246	5.42
24	MP4A	Mx	002	5.42
25	M19	X	1.824	1
26	M19	Z	3.159	1
27	M19	Mx	.000912	1
28	M29	X	1.763	111
29	M29	Z	3.053	1
30	M29	Mx	.000881	1
31	M30	X	2.924	1.5
32	M30	Z	5.065	1.5
33	M30	Mx	0	1.5
34	MP3A	X	1.016	4
35	MP3A	Z	1.76	4
36	MP3A	Mx	.000508	4

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	2.67
2	MP1A	Z	6.026	2.67
3	MP1A	Mx	0	2.67
4	MP1A	X	0	4.67
5	MP1A	Z	6.026	4.67
6	MP1A	Mx	Q	4.67
7	MP3A	X	0	1.92
8	MP3A	Z	7.064	1.92
9	MP3A	Mx	.005	1.92
10	MP3A	X	0	5.42
11	MP3A	Z	7.064	5.42
12	MP3A	Mx	.005	5.42
13	MP3A	X	0	1.92
14	MP3A	Z	7.064	1.92
15	MP3A	Mx	005	1.92
16	MP3A	X	0	5.42
17	MP3A	Z	7.064	5.42
18	MP3A	Mx	005	5.42
19	MP4A	X	0	1.92
20	MP4A	Z	7.064	1.92
21	MP4A	Mx	0	1.92
22	MP4A	X	0	5.42
23	MP4A	7	7.064	5.42
24	MP4A	Mx	0	5.42
25	M19	X	0	1
26	M19	Z	3.974	1
27	M19	Mx	0	
28	M29	X	Ō	
29	M29	Z	3.974	1
30	M29	Mx	0	1
31	M30	X	0	1.5
32	M30	Z	6.41	1.5
33	M30	Mx	0	1.5
34	MP3A	X	o o	4
35	MP3A	Ž	2.462	4
36	MP3A	Mx	0	4

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-2.555	2.67
2	MP1A	Z	4.425	2.67
3	MP1A	Mx	.001	2.67
4	MP1A	X	-2.555	4.67
5	MP1A	Z	4.425	4.67
6	MP1A	Mx	.001	4.67
7	MP3A	X	-3.029	1.92
8	MP3A	Z	5.246	1.92
9	MP3A	Mx	.006	1.92
	MP3A	X X	-3.029	5.42
10	MP3A	7	5.246	5.42
11	MP3A	Mx	.006	5.42
12	MP3A	X	-3.029	1.92
13	MP3A	Z	5,246	1.92
14	MP3A	Mx	001	1.92
15		X	-3.029	5.42
16	MP3A	Z	5.246	5.42
17	MP3A	Mx	001	5.42
18	MP3A	X	-3.029	1.92
19	MP4A	Z	5.246	1.92
20	MP4A	Mx	.002	1.92
21	MP4A	X	-3.029	5.42
22	MP4A	Z	5.246	5.42
23	MP4A	Mx	.002	5.42
24	MP4A	X	-1.824	1
25	M19	Ž	3.159	1
26	M19		000912	1
27	M19	Mx X	-1.763	
28	M29	Z	3.053	1
29	M29		000881	1
30	M29	Mx	-2.924	1.5
31	M30	X	5.065	1.5
32	M30	Z	0	1.5
33	M30	Mx	-1.016	4
34	MP3A	X	1.76	4
35	MP3A	Z	000508	4
36	MP3A	Mx	00000	

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4 1	MP1A	X	-2.837	2.67
1	MP1A	7	1.638	2.67
2		Mx	.001	2.67
3	MP1A	X	-2.837	4.67
4	MP1A	Z	1.638	4.67
5	MP1A	Mx	.001	4.67
6	MP1A	X	-3.503	1.92
1	MP3A	Z	2.022	1.92
8	MP3A	Mx	.004	1.92
9	MP3A	Y	-3.503	5.42
10	MP3A	Z	2.022	5.42
11	MP3A	Mx	.004	5.42
12	MP3A	X	-3.503	1.92
13	MP3A	7	2.022	1.92
14	MP3A		.000987	1.92
15	MP3A	Mx X	-3.503	5.42
16	MP3A	X 7	2.022	5.42
17	MP3A		2.022	0,12

Company
Designer
Job Number
Model Name

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Point Loads (BLC 35: Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP3A	Mx	.000987	5.42
19	MP4A	X	-3.503	1.92
20	MP4A	Z	2.022	1.92
21	MP4A	Mx	.002	1.92
22	MP4A	X	-3.503	5.42
23	MP4A	Z	2.022	5.42
24	MP4A	Mx	.002	5.42
25	M19	X	-2.593	1
26	M19	Z	1.497	1
27	M19	Mx	001	1
28	M29	X	-2.276	1
29	M29	Z	1.314	1
30	M29	Mx	001	1
31	M30	X	-4.092	1.5
32	M30	Z	2.362	1.5
33	M30	Mx	0	1.5
34	MP3A	X	-1.018	4
35	MP3A	Z	.588	4
36	MP3A	Mx	000509	4

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-2.359	2.67
2	MP1A	Z	0	2.67
3	MP1A	Mx	.001	2.67
4	MP1A	X	-2.359	4.67
5	MP1A	Z	0	4.67
6	MP1A	Mx	.001	4.67
7	MP3A	X	-3.038	1.92
8	MP3A	Z	0	1.92
9	MP3A	Mx	.002	1.92
10	MP3A	X	-3.038	5.42
11	MP3A	Z	0	5.42
12	MP3A	Mx	.002	5.42
13	MP3A	X	-3.038	1.92
14	MP3A	Z	0	1.92
15	MP3A	Mx	.002	1.92
16	MP3A	X	-3.038	5.42
17	MP3A	Z	0	5.42
18	MP3A	Mx	.002	5.42
19	MP4A	X	-3.038	1.92
20	MP4A	Z	0	1.92
21	MP4A	Mx	.002	1.92
22	MP4A	X	-3.038	5.42
23	MP4A	Z	0	5.42
24	MP4A	Mx	.002	5.42
25	M19	X	-2.667	1
26	M19	Z	0	1
27	M19	Mx	001	
28	M29	X	-2.18	1
29	M29	Z	0	1
30	M29	Mx	001	1
31	M30	X	-4.163	1.5
32	M30	Z	0	1.5
33	M30	Mx	0	1.5
34	MP3A	X	747	4

5000244862-VZW_MT_LOT_SectorA_H

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP3A	Z	0	4
36	MP3A	Mx	000374	4

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP1A	X	-2.837	2.67
2 MP1A	Z	-1.638	2.67
3 MP1A	Mx	.001	2.67
4 MP1A	X	-2.837	4.67
5 MP1A	Z	-1.638	4.67
6 MP1A	Mx	.001	4.67
7 MP3A	X	-3.503	1.92
	7	-2.022	1.92
	Mx	.000987	1.92
-	X	-3.503	5.42
	Z	-2.022	5.42
	Mx	.000987	5.42
	X	-3.503	1.92
100000000000000000000000000000000000000	Ž	-2.022	1.92
	Mx	.004	1.92
	X	-3.503	5.42
	Z	-2.022	5.42
	Mx	.004	5.42
	X	-3.503	1.92
	Z	-2.022	1.92
20 MP4A	Mx	.002	1.92
21 MP4A	X	-3.503	5.42
22 MP4A	Z	-2.022	5.42
23 MP4A	Mx	.002	5.42
24 MP4A	X	-2.593	1
25 M19	Ž	-1.497	1
26 M19	Mx	001	1
27 M19	X	-2.276	1
28 M29	Z	-1.314	1
29 M29	Mx	001	
30 M29		-4.092	1.5
31 M30	X	-2.362	1.5
32 M30	Mx	0	1.5
33 M30		-1.018	4
34 MP3A	X	588	4
35 MP3A		000509	4
36 MP3A	Mx	000008	The state of the s

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

Member L	abel Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP1	disci	-2.555	2.67
		-4.425	2.67
Company of the Compan		.001	2.67
3 MP1/	1	-2.555	4.67
4 MP1/		-4.425	4.67
5 MP1/		.001	4.67
6 MP1/ 7 MP3/		-3.029	1.92
		-5.246	1.92
		001	1.92
		-3.029	5.42
10 MP3/		-5.246	5.42
11 MP3/ 12 MP3/		001	5.42

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Member Point Loads (BLC 38: Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	X	-3.029	1.92
14	MP3A	Z	-5.246	1.92
15	MP3A	Mx	.006	1.92
16	MP3A	X	-3.029	5.42
17	MP3A	Z	-5.246	5,42
18	MP3A	Mx	.006	5.42
19	MP4A	X	-3.029	1.92
20	MP4A	Z	-5.246	1.92
21	MP4A	Mx	.002	1.92
22	MP4A	X	-3.029	5.42
23	MP4A	Z	-5,246	5.42
24	MP4A	Mx	.002	5.42
25	M19	X	-1.824	1
26	M19	Z	-3.159	
27	M19	Mx	000912	1
28	M29	X	-1.763	1
29	M29	Z	-3.053	11
30	M29	Mx	000881	1
31	M30	X	-2.924	1.5
32	M30	Z	-5.065	1.5
33	M30	Mx	0	1.5
34	MP3A	X	-1.016	4
35	MP3A	Z	-1.76	4
36	MP3A	Mx	000508	4

Member Point Loads (BLC 77: Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M46	Y	-500	%100

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M47	Y	-500	%100

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	M48	Y	-250	%50

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M48	Y	-250	0

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-1.802	2.67
2	MP1A	My	000901	2.67
3	MP1A	Mz	0	2.67
4	MP1A	Y	-1.802	4.67
5	MP1A	My	000901	4.67
6	MP1A	Mz	0	4.67
7	MP3A	Y	828	1.92
8	MP3A	My	000552	1.92
9	MP3A	Mz	.000552	1.92
10	MP3A	Y	828	5.42
11	MP3A	My	000552	5.42

Company Designer Job Number

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP3A	Mz	.000552	5,42
13	MP3A	Y	828	1.92
	MP3A	Mv	000552	1.92
14 15	MP3A	Mz	000552	1.92
	MP3A	Y	828	5.42
16 17	MP3A	My	000552	5.42
18	MP3A	Mz	000552	5.42
	MP4A	Y	828	1.92
19	MP4A	My	000552	1.92
21	MP4A	Mz	0	1.92
	MP4A	Y	828	5.42
22 23	MP4A	My	000552	5.42
24	MP4A	Mz	0	5.42
25	M19	Y	-3.493	11
	M19	Mv	.002	1
26 27	M19	Mz	0	1
28	M29	Y	-2.909	1
29	M29	Mv	.001	11
30	M29	Mz	0	1
31	M30	Y	-1.113	1.5
32	M30	My	0	1.5
33	M30	Mz	0	1.5
34	MP3A	Y	728	4
	MP3A	My	.000364	4
35 36	MP3A	Mz	0	4

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1A	Z	-4.506	2.67
	MP1A	Mx	0	2.67
2		Z	-4.506	4.67
3	MP1A	Mx	0	4.67
4	MP1A MP3A	Z	-2.069	1.92
5		Mx	001	1.92
6	MP3A	7	-2.069	5.42
7	MP3A	Mx	001	5.42
8	MP3A	7	-2.069	1.92
9	MP3A	Mx	.001	1.92
10	MP3A	7	-2.069	5.42
11	MP3A	Mx	.001	5.42
12	MP3A	7	-2.069	1.92
13	MP4A		-2:009	1.92
14	MP4A	Mx		5.42
15	MP4A	Z	-2.069	5.42
16	MP4A	Mx	0	3.42
17	M19	Z	-8.733	
18	M19	Mx	0	
19	M29	Z	-7.274	
20	M29	Mx	0	1
21	M30	Z	-2.783	1.5
22	M30	Mx	0	1.5
23	MP3A	Z	-1.821	4
24	MP3A	Mx	0	4

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

Member Label		Direction	Magnitude[lb,k-ft]	Location[ft,%]	
1	MP1A	X	4.506	2.01	
RISA-3D Version 17.0.4 [\\\\\\\\\\.			RISA\5000244862-VZW_MT_L0	OT_A_H.r3d] Page 35	

5000244862-VZW MT LOT SectorA H

July 5, 2023 9:40 AM Checked By:_

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
2	MP1A	Mx	002	2.67
3	MP1A	X	4.506	4.67
4	MP1A	Mx	002	4.67
5	MP3A	X	2.069	1.92
6	MP3A	Mx	001	1.92
7	MP3A	X	2.069	5.42
8	MP3A	Mx	001	5.42
9	MP3A	X	2.069	1.92
10	MP3A	Mx	001	1.92
11	MP3A	X	2.069	5.42
12	MP3A	Mx	001	5.42
13	MP4A	X	2.069	1.92
14	MP4A	Mx	001	1.92
15	MP4A	X	2.069	5.42
16	MP4A	Mx	001	5.42
17	M19	X	8.733	1
18	M19	Mx	.004	1
19	M29	X	7.274	11
20	M29	Mx	.004	1
21	M30	X	2.783	1.5
22	M30	Mx	0	1.5
23	MP3A	X	1.821	4
24	MP3A	Mx	.000911	4

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	. Start Location[ft,%]	End Location[ft,%]
1.	M1	Y	-7.476	-7.476	0	%100
2	M6	Υ	-7.476	-7.476	0	%100
3	MP1A	Y	-4.88	-4.88	0	%100
4	M15	Y	-7.476	-7.476	0	%100
5	M18	Y	-7.476	-7.476	0	%100
6	M19	Y	-3.408	-3.408	0	%100
7	M20	Y	-3,408	-3.408	0	%100
8	M23	Y	-2.622	-2.622	0	%100
9	M31	Y	-11.332	-11.332	0	%100
10	M32	Y	-11.332	-11.332	0	%100
11	M31A	Y	-15.485	-15.485	0	%100
12	M32A	Y	-15.485	-15.485	0	%100
13	M27	Y	-7.476	-7.476	0	%100
14	M28	Y	-7.476	-7.476	0	%100
15	M29	Y	-3.408	-3.408	0	%100
16	M30	Y	-3.408	-3.408	0	%100
17	M31C	Y	-2.622	-2.622	0	%100
18	MP2A	Y	-4.88	-4.88	0	%100
19	MP3A	Y	-4.88	-4.88	0	%100
20	MP4A	Y	-4.88	-4.88	0	%100
21	M32B	Y	-7.476	-7.476	0	%100
22	M33A	Y	-7.476	-7.476	0	%100
23	M33B	Y	-4.88	-4.88	0	%100
24	M40	Y	-4.88	-4.88	0	%100
25	M40A	Y	-6.493	-6.493	0	%100
26	M41	Y	-6.493	-6.493	0	%100
27	M48	Y	-4.88	-4.88	0	%100
28	M49	Y	-6.493	-6.493	0	%100
29	M50	Ý	-6.493	-6,493	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction		End Magnitude[lb/ft.F	. Start Location[tt,%]	End Location[ft.% %100
1	M1	Z	-22.976	-22.976	0	%100
2	M1		0	0	0	%100
3	M6	X	-22.976	-22.976	Ö	%100
4	M6	Z	-22.370	0	0	%100
5	MP1A	X	-10.914	-10.914	Ö	%100
6	MP1A	Z	-10.914	0	0	%100
7	M15	X	-13.479	-13.479	0	%100
3	M15	Z	-13.479	0	0	%100
9	M18	X	-13.479	-13.479	0	%100
0	M18	Z		0	0	%100
1	M19	X	-6.043	-6.043	0	%100
2	M19	Z	-0.043	0	0	%100
3	M20	X	-6.043	-6.043	0	%100
4	M20	Z	-6.043	0	0	%100
5	M23	X	-2.985	-2.985	0	%100
6	M23	Z	-2.965	0	0	%100
7	M31	X	-1.723	-1.723	0	%100
8	M31	Z	-1.723	0	0	%100
9	M32	X	-1.723	-1.723	0	%100
0	M32	Z	-1.723	-1.725	0	%100
21	M31A	X	002	002	0	%100
2	M31A	Z		002	0	%100
23	M32A	X	002	002	0	%100
24	M32A	Z	002	002	0	%100
25	M27	X	-13.45	-13.45	0	%100
26	M27	Z		0	0	%100
27	M28	X	0	-13.45	0	%100
28	M28	Z	-13.45	0	0	%100
9	M29	X	0	-6.043	0	%100
30	M29	Z	-6.043	-6.043	0	%100
31	<u>M30</u>	X	0	-6.043	0 2	%100
32	M30	Z	-6.043	-0.043	0	%100
33	M31C	X	0	-2.984	0	%100
34	M31C	Z	-2.984	-2.964	0	%100
35	MP2A	X	0	-10.914	0	%100
36	MP2A	Z	-10.914	-10.914	0	%100
37	MP3A	X	0	-10.914	0	%100
38	MP3A	Z	-10.914	-10.914	0	%100
39	MP4A	X	0	-10.914	0	%100
10	MP4A	Z	-10.914		0	%100
11	M32B	X	0	0	0	%100 %100
12	M32B	Z	-22.976	-22.976 0	0	%100 %100
13	M33A	X	0		0	%100 %100
14	M33A	Z	-22.976	-22.976	0	%100 %100
5	M33B	X	0	0	0	%100 %100
16	M33B	Z	031	031	0	%100 %100
17	M40	X	0	0		%100 %100
18	M40	Z	-10.914	-10.914	0	%100 %100
19	M40A	X	0	15 506	0	%100 %100
50	M40A	Z	-15.506	-15.506		%100
51	M41	X	0	0	0	%100
52	M41	Z	-15.004	-15.004	0	%100 %100
53	M48	X	0	0	0	%100 %100
54	M48	Z	-10.914	-10.914	0	%100 %100
55	M49	X	0	0	0	%100 %100
56	M49	Z	-13.207	-13.207	0	%100 %100
57	M50	X	0	0		70 IUU

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude(lb/ft,F	Start Location[ft,%]	End Location[ft,%]
58	M50	7	-11.931	-11.931	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
1	M1	X	8.616	8.616	0	%100
2	M1	Z	-14.923	-14.923	0	%100
3	M6	X	8.616	8.616	0	%100
4	M6	Z	-14.923	-14.923	0	%100
5	MP1A	X	5.457	5.457	0	%100
6	MP1A	Z	-9.451	-9.451	0	%100
7	M15	X	1.891	1.891	0	%100
8	M15	Z	-3.275	-3.275	0	%100
9	M18	X	1.891	1.891	0	%100
10	M18	Z	-3.275	-3.275	0	%100
11	M19	X	3.021	3.021	0	%100
12	M19	Z	-5.233	-5.233	0	%100
13	M20	X	3.021	3.021	0	%100
14	M20	Z	-5.233	-5.233	0	%100
15	M23	X	1.125	1.125	0	%100
16	M23	Z	-1.949	-1.949	0	%100
17	M31	X	.287	.287	0	%100
18	M31	Z	497	497	0	%100
19	M32	X	.287	.287	0	%100
20	M32	Z	497	497	0	%100
21	M31A	X	.238	.238	0	%100
22	M31A	Z	412	412	0	%100
23	M32A	X	.238	.238	0	%100
24	M32A	Z	412	412	0	%100
25	M27	X	9.736	9.736	0	%100
26	M27	Z	-16.863	-16.863	0	%100
27	M28	X	9.736	9.736	0	%100
28	M28	Z	-16.863	-16.863	0	%100
29	M29	X	3.021	3.021	0	%100
30	M29	Z	-5.233	-5.233	0	%100
31	M30	X	3.021	3.021	0	%100
32	M30	Z	-5.233	-5.233	0	%100
33	M31C	X	1.72	1.72	0	%100
34	M31C	Z	-2.978	-2.978	0	%100
35	MP2A	X	5.457	5.457	0	%100
36	MP2A	Z	-9.451	-9.451	0	%100
37	MP3A	X	5.457	5.457	0	%100
38	MP3A	Z	-9.451	-9.451	0	%100
39	MP4A	X	5.457	5.457	0	%100
40	MP4A	Z	-9.451	-9.451	0	%100
41	M32B	X	8.616	8.616	0	%100
42	M32B	Z	-14.923	-14.923	0	%100
43	M33A	X	8.616	8.616	0	%100
44	M33A	Z	-14.923	-14.923	0	%100
45	M33B	X	1.377	1.377	0	%100
46	M33B	Z	-2.385	-2.385	0	%100
47	M40	X	4.093	4.093	0	%100
48	M40	Z	-7.089	-7.089	0	%100
49	M40A	X	3.864	3.864	0	%100
50	M40A	Z	-6.693	-6.693	0	%100
51	M41	X	9.567	9.567	0	%100
52	M41	Z	-16.571	-16.571	0	%100

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

nonio.	er Distributed 25	Direction	Start Magnitudellh/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
	Member Label	Direction	4.093	4.093	0	%100
53	M48	7	-7.089	-7.089	0	%100
54	M48	- Z	2.693	2.693	0	%100
55	M49	<u> </u>		-4.664	0	%100
56	M49		-4.664	9.025	0	%100
57	M50	X	9.025		0	%100
58	M50	Z	-15.632	-15.632		70100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft.F	Start Location[ft,%]	End Location[ft.%]
1	M1	X	4.974	4.974	0	%100
2	M1	Z	-2.872	-2.872	0	%100
3	M6	X	4.974	4.974	0	%100
4	M6	Z	-2.872	-2.872	0	%100
5	MP1A	X	9.451	9.451	0	%100
6	MP1A	Ž	-5,457	-5.457	0	%100
7	M15	X	.08	.08	0	%100
8	M15	Ž	046	046	0	%100
	M18	X	.08	.08	0	%100
9	M18	Ž	046	046	0	%100
	M19	X	5.233	5.233	0	%100
1		Ž	-3.021	-3.021	0	%100
2	M19	X	5,233	5.233	0	%100
13	M20	Z	-3.021	-3.021	0	%100
4	M20	X	1.708	1.708	0	%100
15	M23	Ž	986	986	0	%100
6	M23	X	0	0	0	%100
7	M31	Ž	0	0	0	%100
18	M31	X	0	0	0	%100
19	M32	Ž	0	0	0	%100
20	M32	X	1.157	1.157	0	%100
21	M31A		668	668	Ö	%100
22	M31A	Z	1.157	1.157	0	%100
23	M32A	X	668	668	0	%100
24	M32A	Z	13.688	13.688	Ö	%100
25	M27	X		-7.903	O O	%100
26	M27	Z	-7.903	13.688	Ö	%100
27	M28	X	13.688	-7.903	Ö	%100
28	M28	Z	-7.903	5.233	0	%100
29	M29	X	5.233	-3.021	0	%100
30	M29	Z	-3.021		0	%100
31	M30	X	5.233	5.233	0	%100
32	M30	Z	-3.021	-3.021	0	%100 %100
33	M31C	X	2.738	2.738	0	%100
34	M31C	Z	-1.581	-1.581	0	%100 %100
35	MP2A	X	9.451	9.451	0	%100
36	MP2A	Z	-5.457	-5.457		%100 %100
37	MP3A	X	9.451	9.451	0	%100
38	MP3A	Z	-5.457	-5.457	0	%100 %100
39	MP4A	X	9.451	9.451	0	%100 %100
40	MP4A	Z	-5.457	-5.457	0	
41	M32B	X	4.974	4.974	0	%100
42	M32B	Z	-2.872	-2.872	0	%100
43	M33A	X	4.974	4.974	0	%100
44	M33A	Z	-2.872	-2.872	0	%100_
45	M33B	X	6.31	6.31	0	%100
46	M33B	Ž	-3.643	-3.643	0	%100
47	M40	X	2.363	2.363	0	%100

5000244862-VZW_MT_LOT_SectorA_H

Member Distributed Loads (BLC 43: Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
48	M40	Z	-1.364	-1.364	0	%100
49	M40A	X	3.105	3.105	0	%100
50	M40A	Z	-1.793	-1.793	0	%100
51	M41	X	13.633	13.633	0	%100
52	M41	Z	-7.871	-7.871	0	%100
53	M48	X	2.363	2.363	0	%100
54	M48	Z	-1.364	-1.364	0	%100
55	M49	X	2.807	2.807	0	%100
56	M49	Z	-1.621	-1.621	0	%100
57	M50	X	14.847	14.847	0	%100
58	M50	Z	-8.572	-8.572	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M6	X	0	0	0	%100
4	M6	Z	0	0	0	%100
5	MP1A	X	10.914	10.914	0	%100
6	MP1A	Z	0	0	.0	%100
7	M15	X	6.099	6.099	0	%100
8	M15	Z	0	0	0	%100
9	M18	X	6.099	6.099	0	%100
10	M18	Z	0	0	0	%100
11	M19	X	6.043	6.043	0	%100
12	M19	Z	0	0	0	%100
13	M20	X	6.043	6.043	0	%100
14	M20	Z	0	0	0	%100
15	M23	X	2,426	2.426	0	%100
16	M23	Z	0	0	0	%100
17	M31	X	.574	.574	0	%100
18	M31	Z	0	0	0	%100
19	M32	X	.574	.574	0	%100
20	M32	Z	0	0	0	%100
21	M31A	X	1.722	1.722	0	%100
22	M31A	Z	0	0	0	%100
23	M32A	X	1.722	1.722	0	%100
24	M32A	Z	0	0	0	%100
25	M27	X	6.117	6.117	0	%100
26	M27	Z	0	0	0	%100
27	M28	X	6.117	6.117	0	%100
28	M28	Z	0	0	0	%100
29	M29	X	6.043	6.043	0	%100
30	M29	Z	0	0	0	%100
31	M30	X	6.043	6.043	0	%100
32	M30	Z	0	0	0	%100
33	M31C	X	2.43	2.43	0	%100
34	M31C	Ž	0	0	0	%100
35	MP2A	X	10.914	10.914	0	%100
36	MP2A	Ž	0	0	0	%100
37	MP3A	X	10.914	10.914	0	%100
38	MP3A	Z	0	0	0	%100
39	MP4A	X	10.914	10.914	0	%100
40	MP4A	Ž	0	0	0	%100 %100
41	M32B	X	0	0	0	%100 %100
42	M32B	7	0	0	0	%100 %100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	a reconstruction of	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
	Member Label	Direction	O Start Wagnitude[Ib/11]	1 0	0	%100
43	M33A		0	0	0	%100
44	M33A	Z	0		0	%100
45	M33B	X	9.095	9.095	0	
46	M33B	Z	0	0	0	%100
47	M40	X	0	0	00	%100
	M40	7	0	0	0	%100
48		V	7.221	7.221	0	%100
49	M40A		1.221	0	0	%100
50	M40A		0 040	0.210	O O	%100
51	M41	X	8.218	8.218	0	%100
52	M41	Z	0	0	U	
53	M48	X	0	0	0	%100
	M48	7	0	0	0	%100
54		V V	8.919	8.919	0	%100
55	M49		0.010	0	0	%100
56	M49		10.447		0	%100
57	M50	X	10.117	10.117	0	%100
58	M50	Z	0	0	U	/6100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	er Distributed Lo Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
4	M1	X	4.974	4.974	0	%100
1	M1	Z	2.872	2.872	0	%100
2	M6	X	4.974	4.974	0	%100
3	M6	Z	2.872	2.872	0	%100
4		X	9.451	9.451	0	%100
5	MP1A	Z	5.457	5.457	0	%100
6	MP1A	X	13.679	13.679	0	%100
7	M15	Z	7.898	7.898	0	%100
8	M15	X	13.679	13.679	0	%100
9	M18	Z	7.898	7.898	0	%100
10	M18	X	5.233	5.233	0	%100
11	M19		3.021	3.021	0	%100
12	M19	Z	5.233	5.233	0	%100
13	M20	X	3.021	3.021	0	%100
14	M20	Z	2.737	2.737	0	%100
15	M23	X	1.58	1.58	Ŏ	%100
16	M23	Z		1.492	0	%100
17	M31	X	1.492	.862	0	%100
18	M31	Z	.862	1,492	0	%100
19	M32	X	1.492	.862	0	%100
20	M32	Z	.862		0	%100
21	M31A	X	1.08	1.08	0	%100
22	M31A	Z	.624	.624	0	%100
23	M32A	X	1.08	1.08		%100
24	M32A	Z	.624	.624	0	%100
25	M27	X	.082	.082	0	%100 %100
26	M27	Z	.047	.047	0	%100 %100
27	M28	X	.082	.082	0	
28	M28	Z	.047	.047	0	%100
29	M29	X	5.233	5.233	0	%100
30	M29	Z	3.021	3.021	0	%100
31	M30	X	5.233	5.233	0	%100
32	M30	Z	3.021	3.021	0	%100
33	M31C	X	1.71	1.71	0	%100
34	M31C	Z	.987	.987	0	%100
35	MP2A	X	9.451	9.451	0	%100
36	MP2A	Z	5.457	5.457	0	%100
37	MP3A	X	9.451	9.451	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
38	MP3A	Z	5.457	5.457	0	%100
39	MP4A	X	9.451	9.451	0	%100
40	MP4A	Z	5.457	5.457	0	%100
41	M32B	X	4.974	4.974	0	%100
42	M32B	Z	2.872	2.872	0	%100
43	M33A	X	4.974	4.974	0	%100
44	M33A	Z	2.872	2.872	0	%100
45	M33B	X	5.518	5.518	0	%100
46	M33B	Z	3.186	3.186	0	%100
47	M40	X	2.363	2.363	0	%100
48	M40	Z	1.364	1.364	0	%100
49	M40A	X	12.989	12.989	0	%100
50	M40A	Z	7.499	7.499	0	%100
51	M41	X	3.539	3.539	0	%100
52	M41	Z	2.043	2.043	0	%100
53	M48	X	2.363	2.363	0	%100
54	M48	Z	1.364	1.364	0	%100
55	M49	X	14.498	14.498	0	%100
56	M49	Z	8.37	8.37	0	%100
57	M50	X	3.462	3.462	0	%100
58	M50	Z	1.999	1.999	0	%100

Member Distributed Loads (BLC 46: Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
1	M1	X	8.616	8.616	0	%100
2	M1	Z	14.923	14.923	0	%100
3	M6	X	8.616	8.616	0	%100
4	M6	Z	14.923	14.923	0	%100
5	MP1A	X	5.457	5.457	0	%100
6	MP1A	Z	9.451	9.451	0	%100
7	M15	X	9.743	9.743	0	%100
8	M15	Z	16.875	16.875	0	%100
9	M18	X	9.743	9.743	0	%100
10	M18	Z	16.875	16.875	0	%100
11	M19	X	3.021	3.021	0	%100
12	M19	Z	5.233	5.233	0	%100
13	M20	X	3.021	3.021	0	%100
14	M20	Z	5.233	5.233	0	%100
15	M23	X	1.72	1.72	0	%100
16	M23	Z	2.979	2.979	0	%100
17	M31	X	1.149	1,149	0	%100
18	M31	Z	1.99	1.99	0	%100
19	M32	X	1.149	1.149	0	%100
20	M32	Z	1.99	1.99	0	%100
21	M31A	X	.194	.194	0	%100
22	M31A	Z	.335	.335	0	%100
23	M32A	X	.194	.194	0	%100
24	M32A	Z	.335	.335	0	%100
25	M27	X	1.881	1.881	0	%100
26	M27	Z	3.258	3.258	0	%100
27	M28	X	1.881	1.881	0	%100
28	M28	Z	3.258	3.258	0	%100
29	M29	X	3.021	3.021	0	%100
30	M29	Z	5.233	5.233	0	%100
31	M30	X	3.021	3.021	0	%100
32	M30	Z	5.233	5.233	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:___

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

monna c.	A PROTECTION OF THE PROTECTION	Direction	Start Magnitudellb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
00	Member Label	V	1.126	1.126	0	<u>%100</u>
33	M31C	7	1.95	1.95	0	%100
34	M31C	X	5.457	5.457	0	%100
35	MP2A	Ž	9.451	9.451	0	%100
36	MP2A		5.457	5.457	0	%100
37	MP3A	X		9,451	Ŏ	%100
38	MP3A	Z	9.451	5.457	0	%100
39	MP4A	X	5.457		Ŏ	%100
40	MP4A	Z	9.451	9.451	0	%100
41	M32B	X	8.616	8.616		%100
42	M32B	Z	14.923	14.923	0	%100
43	M33A	X	8.616	8.616	0	%100
44	M33A	Z	14.923	14.923	0	
45	M33B	X	.92	.92	00	%100
46	M33B	Z	1.593	1.593	0	%100
47	M40	X	4.093	4.093	0	%100
	M40	7	7.089	7.089	0	%100
48	M40A	X	9.571	9.571	0	%100
49	M40A	7	16.577	16.577	0	%100
50	- International Control of the Contr	X	3.74	3.74	0	<u>%100</u>
51	M41	7	6.477	6.477	0	%100
52	M41		4.093	4.093	0	%100
53	M48	X	7.089	7.089	0	%100
54	M48	Z		9.443	0	%100
55	M49	X	9.443		0	%100
56	M49	Z	16.355	16.355	0	%100
57	M50	X	2.452	2.452	0	%100
58	M50	Z	4.247	4.247	0	70100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	er Distributed LC	Direction	Start Magnitudellb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%
4	Member Label	X	Otal Magnitude	0	0	%100
1	M1	Z	22.976	22.976	0	%100
2	M1	X	0	0	0	%100
3	M6	Ž	22.976	22.976	0	%100
4	M6	X	0	0	0	%100
5	MP1A	7	10.914	10.914	0	%100
6	MP1A		0	0	0	%100
7	M15	X 7	13.479	13.479	0	%100
8	M15		13.479	0	0	%100
9	M18	X	13.479	13.479	Ö	%100
10	M18	Z	13.479	0	0	%100
11	<u>M19</u>	X		6.043	0	%100
12	M19	Z	6.043	0.043	0	%100
13	M20	X	0 0 1 0	6.043	Ö	%100
14	M20	Z	6.043	0.043	0	%100
15	M23	X	0		0	%100
16	M23	Z	2.985	2.985	0	%100
17	M31	X	0	0	0	%100
18	M31	Z	1.723	1.723	0	%100
19	M32	X	0	0	0	%100
20	M32	Z	1.723	1.723		%100
21	M31A	X	0	0	0	%100 %100
22	M31A	Z	.002	.002	0	
23	M32A	X	0	0	0	%100
24	M32A	Z	.002	.002	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	13.45	13.45	0	%100
27	M28	X	0	0	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Member Distributed Loads (BLC 47: Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
28	M28	Z	13,45	13.45	0	%100
29	M29	X	0	0	0	%100
30	M29	Z	6.043	6.043	0	%100
31	M30	X	0	0	0	%100
32	M30	Z	6.043	6.043	0	%100
33	M31C	X	0	0	0	%100
34	M31C	Z	2.984	2.984	0	%100
35	MP2A	X	0	0	0	%100
36	MP2A	Z	10.914	10.914	0	%100
37	MP3A	X	0	0	0	%100
38	MP3A	Z	10.914	10.914	0	%100
39	MP4A	X	0	0	0	%100
40	MP4A	Z	10.914	10.914	0	%100
41	M32B	X	0	0	0	%100
42	M32B	Z	22.976	22.976	0	%100
43	M33A	X	0	0	0	%100
44	M33A	Z	22.976	22.976	0	%100
45	M33B	X	0	0	0	%100
46	M33B	Z	.031	.031	0	%100
47	M40	X	0	0	0	%100
48	M40	Z	10.914	10.914	0	%100
49	M40A	X	0	0	0	%100
50	M40A	Z	15.506	15.506	0	%100
51	M41	X	0	0	0	%100
52	M41	Z	15.004	15.004	0	%100
53	M48	X	0	0	0	%100
54	M48	Z	10.914	10.914	0	%100
55	M49	X	0	0	0	%100
56	M49	Z	13.207	13.207	0	%100
57	M50	X	0	0	0	%100
58	M50	Z	11.931	11.931	0	%100

Member Distributed Loads (BLC 48: Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-8.616	-8.616	0	%100
2	M1	Z	14.923	14.923	0	%100
3	M6	X	-8.616	-8.616	0	%100
4	M6	Z	14.923	14.923	0	%100
5	MP1A	X	-5.457	-5.457	0	%100
6	MP1A	Z	9.451	9.451	0	%100
7	M15	X	-1.891	-1.891	0	%100
8	M15	Z	3.275	3.275	0	%100
9	M18	X	-1.891	-1.891	0	%100
10	M18	Z	3.275	3.275	0	%100
11	M19	X	-3.021	-3.021	0	%100
12	M19	Z	5.233	5.233	0	%100
13	M20	X	-3.021	-3.021 5.233	0	%100 %100
14	M20	Z	5.233			
15	M23	X	-1.125	-1.125	0	%100
16	M23	Z	1.949	1.949	0	%100
17	M31	X	287	287	0	%100
18	M31	Z	.497	.497	0	%100
19	M32	X	287	287	0	%100
20	M32	Z	.497	.497	0	%100
21	M31A	X	238	238	0	%100
22	M31A	Z	.412	.412	0	%100

Company Designer Job Number

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM

Checked By:__

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Marshay Labal	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
00	Member Label M32A	X	- 238	238	0	%100
23	M32A	Z	.412	.412	0	%100
24	M27	X	-9.736	-9.736	0	%100
25	M27	Ž	16.863	16.863	0	%100
26		X	-9.736	-9.736	0	%100
27	M28	Z	16.863	16.863	0	%100
28	M28	X	-3.021	-3.021	0	%100
29	M29	Ž	5.233	5.233	0	%100
30	M29		-3.021	-3.021	0	%100
31	M30	Z	5.233	5.233	0	%100
32	M30		-1.72	-1.72	0	%100
33	M31C	X	2.978	2.978	0	%100
34	M31C	Z		-5.457	0	%100
35	MP2A	X	-5.457	9.451	0	%100
36	MP2A	Z	9.451	-5.457	0	%100
37	MP3A	X	-5.457	9.451	0	%100
38	MP3A	Z	9.451	-5.457	0	%100
39	MP4A	X	-5.457		0	%100
40	MP4A	Z	9.451	9.451	0	%100 %100
41	M32B	X	-8.616	-8.616	0	%100 %100
42	M32B	Z	14.923	14.923	0	%100 %100
43	M33A	X	-8.616	-8.616		%100
44	M33A	Z	14.923	14.923	0	%100 %100
45	M33B	X	-1.377	-1.377	0	
46	M33B	Z	2.385	2.385	0	%100 %100
47	M40	X	-4.093	-4.093	0	
48	M40	Z	7.089	7.089	0	%100
49	M40A	X	-3.864	-3.864	0	%100
50	M40A	Z	6.693	6.693	0	%100
51	M41	X	-9.567	-9.567	0	%100
52	M41	Z	16.571	16.571	0	%100
53	M48	X	-4.093	-4.093	0	%100
54	M48	Z	7.089	7.089	0	%100
55	M49	X	-2.693	-2.693	0	%100
56	M49	Z	4.664	4.664	0	%100
57	M50	X	-9.025	-9.025	0	%100
58	M50	Z	15.632	15.632	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
4	Member Label M1	X	-4.974	-4.974	0	%100
2	M1	7	2.872	2.872	0	%100
	M6	X	-4.974	-4.974	0	%100
3	M6	7	2.872	2.872	0	%100
	MP1A	X	-9.451	-9.451	0	%100
5	MP1A	7	5.457	5.457	0	%100
7	M15	X	08	08	0	%100
8	M15	7	.046	.046	0	%100
9	M18	X	08	08	0	%100
10	M18	7	.046	.046	0	%100
11	M19	X	-5.233	-5.233	0	%100
12	M19	7	3.021	3.021	0	%100
13	M20	X	-5.233	-5.233	0	%100
14	M20	7	3.021	3.021	0	%100
	M23	X	-1.708	-1.708	0	%100
15	M23	7	.986	.986	0	%100
16	M31	X	0	0	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:___

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft.	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
18	M31	Z	0	0	0	%100
19	M32	X	0	0	0	%100
20	M32	Z	0	0	0	%100
21	M31A	X	-1.157	-1.157	0	%100
22	M31A	Z	.668	.668	0	%100
23	M32A	X	-1.157	-1.157	0	%100
24	M32A	Z	.668	.668	0	%100
25	M27	X	-13,688	-13.688	0	%100
26	M27	Z	7.903	7.903	0	%100
27	M28	X	-13.688	-13.688	0	%100
28	M28	Z	7.903	7.903	0	%100
29	M29	X	-5.233	-5.233	0	%100
30	M29	7	3.021	3.021	0	%100
31	M30	X	-5.233	-5.233	0	%100
32	M30	Z	3.021	3.021	0	%100
33	M31C	X	-2.738	-2.738	0	%100
34	M31C	Z	1.581	1.581	0	%100
35	MP2A	X	-9.451	-9.451	0.	%100
36	MP2A	Z	5.457	5.457	0	%100
37	MP3A	X	-9.451	-9.451	0	%100
38	MP3A	Z	5.457	5.457	0	%100
39	MP4A	X	-9.451	-9.451	0	%100
40	MP4A	Z	5.457	5.457	0	%100
41	M32B	X	-4.974	-4.974	0	%100
42	M32B	Z	2.872	2.872	0	%100
43	M33A	X	-4.974	-4.974	0	%100
44	M33A	Z	2.872	2.872	0	%100
45	M33B	X	-6.31	-6.31	0	%100
46	M33B	Z	3.643	3.643	0	%100
47	M40	X	-2.363	-2.363	0	%100
48	M40	Z	1.364	1.364	0	%100
49	M40A	X	-3.105	-3.105	0	%100
50	M40A	Z	1.793	1.793	0	%100
51	M41	X	-13.633	-13.633	0	%100
52	M41	Z	7.871	7.871	0	%100
53	M48	X	-2.363	-2.363	0	%100
54	M48	Z	1.364	1.364	0	%100
55	M49	X	-2.807	-2.807	0	%100
56	M49	Z	1.621	1.621	Ō	%100
57	M50	X	-14.847	-14.847	Ö	%100
58	M50	Z	8.572	8.572	Ō	%100

Member Distributed Loads (BLC 50: Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M6	X	0	0	0	%100
4	M6	Z	0	0	0	%100
5	MP1A	X	-10.914	-10.914	0	%100
6	MP1A	Z	0	0	0	%100
7	M15	X	-6.099	-6.099	0	%100
8	M15	Z	0	0	0	%100
9	M18	X	-6.099	-6.099	0	%100
10	M18	Z	0	0	0	%100
11	M19	X	-6.043	-6.043	0	%100
12	M19	Z	0	0	0	%100

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

Member	Label Direction	n Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%
13 M2	A STATE OF THE STA	-6.043	-6.043	0	%100
14 M2		0	0	0	%100
15 M2		-2,426	-2.426	0	%100
16 M2		0	0	0	%100
17 M3		574	574	0	%100
		0	0	0	%100
		574	574	0	%100
		0	0	0	%100
20 M3		-1.722	-1.722	0	%100
21 M31		0	0	0	%100
22 M31		-1.722	-1.722	0	%100
23 M32			0	0	%100
24 M32		0 0 117	-6.117	0	%100
25 M2		-6.117	-0.117	0	%100
26 M2		0		0	%100
27 M2		-6.117	-6.117	0	%100 %100
28 M2		0	0	0	%100 %100
29 M2	9 X	-6.043	-6.043		%100 %100
30 M2	9 Z	0	0	0	
31 M3	0 X	-6.043	-6.043	0	%100
32 M3	0 Z	0	0	0	%100
33 M31		-2.43	-2.43	0	%100
34 M31		0	0	0	%100
35 MP2		-10.914	-10.914	0	%100
36 MP2		0	0	0	%100
37 MP3		-10.914	-10.914	0	%100
38 MP3		0	0	0	%100
		-10.914	-10.914	0	%100
		0	0	0	%100
40 MP4		0	0	0	%100
41 M32		Ů Ů	0	0	%100
42 M32		0	0	0	%100
43 M33		0	0	0	%100
44 M33		-9.095	-9.095	0	%100
45 M33			-9.035	0	%100
46 M33		0	0	0	%100
47 M4			0	0	%100
48 M4		0	-7.221	0	%100 %100
49 M40		-7.221		0	%100 %100
50 M40		0	0 0 0 0 0 0	0	%100 %100
51 M4	1 X	-8.218	-8.218		%100 %100
52 M4		0	0	0	%100 %100
53 M4	8 X	0	0	0	
54 M4		0	0	0	%100
55 M4		-8.919	-8.919	0	%100
56 M4		0	0	0	%100
57 M5		-10.117	-10.117	0	%100
58 M5		0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F.,	. Start Location[ft,%]	End Location[ft,%]
4 [Member Label M1	Y	-4.974	-4.974	0	%100
2		7	-2.872	-2.872	0	%100
2	M1	V	-4.974	-4.974	0	%100
3	M6	7	-2.872	-2.872	0	%100
4	<u>M6</u>	V	-9.451	-9.451	0	%100
5	MP1A	+	-5.457	-5.457	0	%100
6	MP1A	V	-13.679	-13.679	0	%100
	M15		-10.075	10.070		

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	er Label	Direction		End Magnitude[lb/ft,F.,		End Location[ft.%
<u> 115</u>			-7.898	-7.898	0	%100
V118		X	-13.679	-13.679	0	%100
118		Z	-7.898	-7.898	0	%100
M19		X	-5.233	-5.233	0	%100
115		Z	-3.021	-3.021	0	%100
120		X	-5.233	-5.233	0	%100
120		Z	-3.021	-3.021	0	%100
123		X	-2.737	-2.737	0	%100
123		Z	-1.58	-1.58	0	%100
//31	31	X	-1.492	-1.492	0	%100
//31		Z	862	862	0	%100
//32		X	-1.492	-1.492	0	%100
132	32	Z	862	-,862	0	%100
31	81A	X	-1.08	-1.08	0	%100
31	11A	Z	624	624	0	%100
32	32A	X	-1.08	-1.08	0	%100
32	2A	Z	624	624	0	%100
//27	27	X	082	082	0	%100
/127		Z	047	047	0	%100
128		X	082	082	0	%100
/128		Z	047	047	0	%100
129		X	-5.233	-5.233	0	%100
/129		Z	-3.021	-3.021	0	%100
//30		X	-5.233	-5.233	0	%100
//30		Z	-3.021	-3.021	0	%100
	1C	X	-1.71	-1.71	0	%100
	1C	Z	987	987	0	%100
	2A	X	-9.451	-9.451	0	%100
	2A	Ž	-5.457	-5.457	0	%100
	23A	X	-9.451	-9.451	0	%100
	23A	Z	-5.457	-5.457	0	%100
	94A	X	-9.451	-9.451	0	%100
	24A	Z	-5.457	-5.457	0	%100
	2B	X	-4.974	-4.974	0	%100
	2B	Z	-2.872	-2.872	0	%100
	3A	X	-4.974	-4.974	0	%100
	3A	Ž	-2.872	-2.872	0	%100
	3B	X	-5.518	-5.518	0	%100
	3B	Ž	-3.186	-3.186	Ö	%100
140		X	-2.363	-2.363	0	%100
140		Z	-1.364	-1.364	0	%100
40/		X	-12.989	-12.989	0	%100
	0A	Z	-7.499	-7.499	0	%100 %100
<u>407</u> 141		X	-3.539	-3.539	0	%100 %100
141		Z	-2.043	-2.043	0	%100 %100
148		X	-2.363	-2.363	0	%100 %100
						%100 %100
		\ \ \ \ \				%100 %100
		7				%100 %100
						%100 %100
						%100 %100
148 149 149 150 150	49 49 50	Z X Z X Z	-1.364 -14.498 -8.37 -3.462 -1.999	-1.364 -14.498 -8.37 -3.462 -1.999	0 0 0 0	

Member Distributed Loads (BLC 52: Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-8.616	-8.616	0	%100
2	M1	Z	-14.923	-14.923	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%
3	M6	X	-8.616	-8.616	0	%100
4	M6	Z	-14.923	-14.923	0	%100
5	MP1A	X	-5.457	-5.457	0	%100
	MP1A	Z	-9.451	-9.451	0	%100
6	M15	X	-9.743	-9.743	0	%100
7		Z	-16.875	-16.875	0	%100
8	M15	X	-9.743	-9.743	0	%100
9	M18	Ž	-16.875	-16.875	0	%100
10	M18		-3.021	-3.021	0	%100
11	M19	X	-5.233	-5.233	0	%100
12	M19	Z		-3.021	0	%100
13	M20	X	-3.021	-5.233	0	%100
14	M20	Z	-5.233	-1.72	0	%100
15	M23	X	-1.72		0	%100 %100
16	M23	Z	-2.979	-2.979		%100 %100
17	M31	X	-1.149	-1.149	0	%100 %100
18	M31	Z	-1.99	-1.99	0	%100 %100
19	M32	X	-1.149	-1.149	0	
20	M32	Z	-1.99	-1.99	0	%100
21	M31A	X	194	194	0	%100
22	M31A	Z	335	335	0	%100
23	M32A	X	194	194	0	%100
24	M32A	Z	335	335	0	%100
25	M27	X	-1.881	-1.881	0	%100
26	M27	Z	-3.258	-3.258	0	%100
27	M28	X	-1.881	-1.881	0	%100
	M28	Z	-3.258	-3.258	0	%100
28	M29	X	-3.021	-3.021	0	%100
29	M29	Z	-5.233	-5.233	0	%100
30		X	-3.021	-3.021	0	%100
31	M30		-5.233	-5.233	0	%100
32	M30	X	-1.126	-1,126	0	%100
33	M31C	Z	-1.95	-1.95	0	%100
34	M31C		-5.457	-5.457	0	%100
35	MP2A	X		-9.451	0	%100
36	MP2A	Z	-9.451	-5.457	0	%100
37	MP3A	X	-5.457		0	%100
38	MP3A	Z	-9.451	-9.451	0	%100
39	MP4A	X	-5.457	-5.457		%100 %100
40	MP4A	Z	-9.451	-9.451	0	%100 %100
41	M32B	X	-8.616	-8.616	0	%100 %100
42	M32B	Z	-14.923	-14.923	0	
43	M33A	X	-8.616	-8.616	0	%100
44	M33A	Z	-14.923	-14.923	0	%100
45	M33B	X	92	92	0	%100
46	M33B	Z	-1.593	-1.593	0	%100
47	M40	X	-4.093	-4.093	0	%100
48	M40	Z	-7.089	-7.089	0	%100
49	M40A	X	-9.571	-9.571	0	%100
50	M40A	Z	-16.577	-16.577	0	%100
	M41	X	-3.74	-3.74	0	%100
51		Ž	-6.477	-6.477	0	%100
52	M41		-4.093	-4.093	0	%100
53	M48	Z	-7.089	-7.089	Ö	%100
54	M48	- -	-9.443	-9.443	0	%100
55	M49	X	-9.443 -16.355	-9.445	0	%100
56	M49	Z		-2.452	0	%100
57	M50	Z	-2.452 -4.24 7	-4.247	0	%100

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label M1	Direction	Start Magnitude[lb/ft 0	End Magnitude[lb/ft,F	Start Location[ft,%] 0	End Location[ft.%] %100
	M1	Z	-5.181	-5.181	0	%100 %100
2				-5.161	0	%100 %100
3	M6 M6	Z	-5.181	-5.181	0	%100
4				-5.161	0	%100 %100
5	MP1A	X	-3.312	-3.312	0	%100 %100
6	MP1A	Z			0	%100 %100
7	M15	X	0	0	0	
8	M15	Z	-3.128	-3.128		%100 %100
9	M18	X	0	0	0	%100 %100
10	M18	Z	-3.128	-3.128	0	
11	M19	X	0	0	0	%100
12	M19	Z	-2.308	-2.308	0	%100
13	M20	X	0	0	0	%100
14	M20	Z	-2.308	-2.308	0	%100
15	M23	X	0	0	0	%100
16	M23	Z	-1.791	-1.791	0	%100
17	M31	X	0	0	0	%100
18	M31	Z	976	976	0	%100
19	M32	X	0	0	0	%100
20	M32	Z	976	976	0	%100
21	M31A	X	0	0	0	%100
22	M31A	Z	001	001	0	%100
23	M32A	X	0	0	0	%100
24	M32A	Z	001	001	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	-3.121	-3.121	0	%100
27	M28	X	0	0	0	%100
28	M28	Z	-3.121	-3.121	0	%100
29	M29	X	0	0	0	%100
30	M29	Z	-2.308	-2.308	0	%100
31	M30	X	0	0	0	%100
32	M30	Z	-2.308	-2.308	0	%100
33	M31C	X	0	0	0	%100
34	M31C	Z	-1.79	-1.79	0	%100
35	MP2A	X	0	0	0	%100
36	MP2A	Z	-3.312	-3.312	0	%100
37	MP3A	X	0	0	0	%100
38	MP3A	Z	-3.312	-3.312	0	%100
39	MP4A	X	0	0	0	%100
40	MP4A	Z	-3.312	-3.312	0	%100
41	M32B	X	0	0	0	%100
42	M32B	Z	-5.181	-5.181	0	%100
43	M33A	X	0	0	0	%100
44	M33A	Z	-5.181	-5.181	0	%100
45	M33B	X	0	0	0	%100
46	M33B	Z	009	009	0	%100
47	M40	X	0	0	0	%100
48	M40	Z	-3.312	-3.312	0	%100
49	M40A	X	0	0	0	%100
50	M40A	Z	-3.715	-3.715	0	%100
51	M41	X	0	0	0	%100
52	M41	Z	-3.595	-3.595	0	%100
53	M48	X	0	0	0	%100
54	M48	Z	-3.312	-3.312	0	%100
55	M49	X	0	0	0	%100
56	M49	Z	-3.165	-3.165	0	%100
57	M50	X	0	0	0	%100

July 5, 2023 9:40 AM Checked By:_

5000244862-VZW_MT_LOT_SectorA_H

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
58	M50	Z	-2.885	-2.885	0	%100

Member Distributed Loads (BLC 54: Structure Wi (30 De	Member Dis	tributed Loads	(BLC 54 : Structure	Wi (30 Deg
---	------------	----------------	---------------------	------------

M	lember Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
1	M1	X	1.943	1.943	0	%100
2	M1	Z	-3.365	-3.365	0	%100
3	M6	X	1.943	1.943	0	%100
4	M6	Z	-3.365	-3.365	0	%100
5	MP1A	X	1.656	1.656	0	%100
6	MP1A	Z	-2.868	-2.868	0	%100
7	M15	X	.439	.439	0	%100
8	M15	Z	76	76	0	%100
9	M18	X	.439	.439	0	%100
10	M18	Z	76	76	0	%100
11	M19	X	1.154	1.154	0	%100
12	M19	Z	-1.999	-1.999	0	%100
13	M20	X	1.154	1.154	0	%100
14	M20	Z	-1.999	-1.999	0	%100
15	M23	X	.675	.675	0	%100
16	M23	Z	-1.17	-1.17	0	%100
17	M31	X	.163	.163	0	%100
18	M31	Z	282	282	0	%100
19	M32	X	.163	.163	0	%100
20	M32	Z	282	282	0	%100
21	M31A	X	.169	.169	0	%100
22	M31A	Z	292	292	0	%100
23	M32A	X	.169	.169	0	%100
	M32A	Z	292	292	0	%100
24	M27	X	2.259	2.259	0	%100
25	M27	Z	-3.913	-3.913	0	%100
26	M28	X	2.259	2.259	0	%100
27	M28	Z	-3.913	-3.913	0	%100
28		X	1.154	1.154	0	%100
29	M29 M29	Z	-1.999	-1.999	0	%100
30		X	1.154	1.154	0	%100
31	M30	Z	-1.999	-1.999	0	%100
32	M30	X	1.032	1.032	0	%100
33	M31C	Ž	-1.787	-1.787	0	%100
34	M31C	X	1.656	1.656	0	%100
35	MP2A	Ž	-2.868	-2.868	0	%100
36	MP2A	X	1.656	1,656	0	%100
37	MP3A		-2.868	-2.868	0	%100
38	MP3A	Z	1.656	1.656	0	%100
39	MP4A		-2.868	-2.868	Ö	%100
40	MP4A	Z	1.943	1.943	0	%100
41	M32B	X	-3.365	-3.365	0	%100
42	M32B	Z		1.943	0	%100
43	M33A	X	1.943	-3.365	0	%100
44	M33A	Z	-3.365	.421	0	%100
45	M33B	X	.421	729	0	%100
46	M33B	Z	729		0	%100 %100
47	M40	X	1.242	1.242	0	%100 %100
48	M40	Z	-2.151	-2.151	0	%100 %100
49	M40A	X	.926	.926	0	%100 %100
50	M40A	Z	-1.604	-1.604		%100 %100
51	M41	X	2.292	2.292	0	%100
52	M41	Z	-3.971	-3.971	0	70 100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 54: Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.,	. Start Location[ft,%]	End Location[ft,%]
53	M48	X	1.242	1.242	0	%100
54	M48	Z	-2.151	-2.151	0	%100
55	M49	X	.645	.645	0	%100
56	M49	Z	-1.118	-1.118	0	%100
57	M50	X	2.182	2.182	0	%100
58	M50	Z	-3.78	-3.78	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.122	1.122	0	%100
2	M1	Z	648	648	0	%100
3	M6	X	1.122	1.122	0	%100
4	M6	Z	648	648	0	%100
5	MP1A	X	2.868	2.868	0	%100
6	MP1A	Z	-1.656	-1.656	0	%100
7	M15	X	.018	.018	0	%100
8	M15	Z	011	011	0	%100
9	M18	X	.018	.018	0	%100
10	M18	Z	011	011	0	%100
11	M19	X	1.999	1.999	0	%100
12	M19	Z	-1.154	-1.154	0	%100
13	M20	X	1.999	1.999	0	%100
14	M20	Z	-1.154	-1.154	0	%100
15	M23	X	1.025	1.025	0	%100
16	M23	Z	592	592	0	%100
17	M31	X	0	0	0	%100
18	M31	Ž	0	0	0	%100
19	M32	X	0	0	0	%100
20	M32	Z	0	0	0	%100
21	M31A	X	.819	.819	0	%100
22	M31A	Z	473	473	0	%100
23	M32A	X	.819	.819	0	%100
24	M32A	Ž	473	473	0	%100
25	M27	X	3.176	3.176	0	%100
26	M27	Ž	-1.834	-1.834	0	%100
27	M28	X	3.176	3.176	0	%100
28	M28	Z	-1.834	-1.834	0	%100
29	M29	X	1.999	1.999	0	%100
30	M29	Z	-1.154	-1.154	0	%100
31	M30	X	1.999	1.999	0	%100
32	M30	7	-1.154	-1.154	0	%100
33	M31C	X	1.643	1.643	0	%100
34	M31C	Z	949	949	0	%100
35	MP2A	X	2.868	2.868	0	%100
36	MP2A	Z	-1.656	-1.656	0	%100
37	MP3A	X	2.868	2.868	0	%100
38	MP3A	Z	-1.656	-1.656	0	%100
39	MP4A	X	2.868	2.868	0	%100
40	MP4A	Z	-1.656	-1.656	0	%100
41	M32B	X	1.122	1.122	0	%100
42	M32B	Z	648	648	Ö	%100
43	M33A	X	1.122	1.122	0	%100
44	M33A	Z	648	648	Ö	%100
45	M33B	X	1.929	1.929	0	%100
46	M33B	Ž	-1.114	-1.114	0	%100
47	M40	X	.717	.717	0	%100 %100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

HOIII	1	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
	Member Label	Direction	-,414	414	0	%100
48	M40			.744	0	%100
49	M40A	X	.744		0	%100
50	M40A	Z	43	43	<u> </u>	
51	M41	X	3.267	3.267	0	%100
		7	-1.886	-1.886	0	%100
52	M41		.717	.717	0	%100
53	M48	X			0	%100
54	M48	Z	414	414	0	%100
55	M49	X	673	.673		
	M49	7	388	388	0	%100
56		V	3.59	3.59	0 -	%100
57	M50	^	-2.073	-2.073	0	%100
58	M50		-2.073	-2.070		

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft.F.,	Start Location[ft.%]	End Location[ft.%
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M6	X	0	0	0	%100
	M6	Ž	0	0	0	%100
4	MP1A	X	3.312	3.312	0	%100
5	MP1A	Z	0	0	0	%100
7	M15	X	1.415	1.415	0	%100
	M15	Ž	0	0	0	%100
8	M18	X	1.415	1.415	0	%100
9		Ž	0	0	0	%100
10	M18	X	2.308	2.308	0	%100
1	M19	Z	2.000	0	0	%100
2	M19	X	2.308	2.308	0	%100
13	M20	Ž	0	0	0	%100
4	M20	X	1.456	1.456	0	%100
15	M23	Z	0	0	0	%100
16	M23	X	.325	.325	0	%100
17	M31	Z	.323	0	0	%100
18	M31		.325	.325	Ö	%100
19	M32	X	.323	0	0	%100
20	M32	Z	1.219	1.219	0	%100
21	M31A	X		0	Ů Ů	%100
22	M31A	Z	1,219	1.219	Ö	%100
23	M32A	X		0	0	%100
24	M32A	Z	0	1.419	Ö	%100
25	M27	X	1.419		Ö	%100
26	M27	Z	0	0	0	%100
27	M28	X	1.419	1.419	0	%100
28	M28	Z	0	0	0	%100 %100
29	M29	X	2.308	2.308	0	%100
30	M29	Z	0	0	0	%100
31	M30	X	2.308	2.308	0	%100
32	M30	Z	0	0		%100
33	M31C	X	1.458	1.458	0	%100
34	M31C	Z	0	0	0	%100 %100
35	MP2A	X	3.312	3,312	0	%100 %100
36	MP2A	Z	0	0	0	
37	мР3А	X	3.312	3.312	0	%100 %100
38	MP3A	Z	0	0	0	%100
39	MP4A	X	3.312	3.312	0	%100
40	MP4A	Z	0	0	0	%100
41	M32B	X	0	0	0	%100
42	M32B	7	0	0	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 56: Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
43	M33A	X	0	0	0	%100
44	M33A	Z	0	0	0	%100
45	M33B	X	2.781	2.781	0	%100
46	M33B	Z	0	0	0	%100
47	M40	X	0	0	0	%100
48	M40	Z	0	0	0	%100
49	M40A	X	1.73	1.73	0	%100
50	M40A	Z	0	0	0	%100
51	M41	X	1.969	1.969	0	%100
52	M41	Z	0	0	0	%100
53	M48	X	0	0	0	%100
54	M48	Z	0	0	0	%100
55	M49	X	2.137	2.137	0	%100
56	M49	Z	0	0	0	%100
57	M50	X	2.446	2.446	- 0	%100
58	M50	Z	0	0	0	%100

Member Distributed Loads (BLC 57: Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.122	1.122	0	%100
2	M1	Z	.648	.648	0	%100
3	M6	X	1.122	1.122	0	%100
4	M6	Z	.648	.648	0	%100
5	MP1A	X	2.868	2.868	0	%100
6	MP1A	Z	1.656	1.656	0	%100
7	M15	X	3.174	3.174	0	%100
8	M15	Z	1.833	1.833	0	%100
9	M18	X	3.174	3.174	0	%100
10	M18	Z	1.833	1.833	0	%100
11	M19	X	1.999	1.999	0	%100
12	M19	Z	1.154	1.154	0	%100
13	M20	X	1.999	1.999	0	%100
14	M20	Z	1.154	1.154	0	%100
15	M23	X	1.642	1.642	0	%100
16	M23	Z	.948	.948	0	%100
17	M31	X	.845	.845	0	%100
18	M31	Z	.488	.488	0	%100
19	M32	X	.845	.845	0	%100
20	M32	Z	.488	.488	0	%100
21	M31A	X	.765	.765	0	%100
22	M31A	Z	.442	.442	0	%100
23	M32A	X	.765	.765	0	%100
24	M32A	Z	.442	.442	0	%100
25	M27	X	.019	.019	0	%100
26	M27	Z	.011	.011	0	%100
27	M28	X	.019	.019	0	%100
28	M28	Z	.011	.011	0	%100
29	M29	X	1.999	1.999	0	%100
30	M29	Z	1.154	1.154	0	%100
31	M30	X	1.999	1.999	0	%100
32	M30	Z	1.154	1.154	0	%100
33	M31C	X	1.026	1.026	0	%100
34	M31C	Z	.592	.592	0	%100
35	MP2A	X	2.868	2.868	0	%100
36	MP2A	Z	1.656	1.656	0	%100
37	MP3A	X	2.868	2.868	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%
20	MP3A	7	1.656	1.656	0	%100
38	MP4A	Y	2.868	2.868	0	%100
39	The state of the s	7	1.656	1.656	0	%100
40	MP4A	X	1.122	1.122	0	%100
41	M32B	7	.648	.648	0	%100
42	M32B		1.122	1.122	0	%100
43	M33A	X		.648	0	%100
44	M33A	Z	.648	1.687	0	%100
45	M33B	X	1.687	The state of the s	0	%100
46	M33B	Z	.974	.974	0	%100 %100
47	M40	X	.717	.717		%100 %100
48	M40	Z	.414	.414	0	%100 %100
49	M40A	X	3.112	3.112	0	
50	M40A	Z	1.797	1.797	0	%100
51	M41	X	.848	.848	0	%100
52	M41	7	.49	.49	0	%100
53	M48	X	.717	.717	0	%100
	M48	7	.414	.414	0	%100
54	- Additional Control of the Control	X	3.474	3.474	0	%100
55	M49	7	2.006	2.006	0	%100
56	M49	X	.837	.837	0	%100
57 58	M50 M50	Ž	.483	.483	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.943	1.943	0	%100
2	M1	Z	3.365	3.365	0	%100
	M6	X	1.943	1.943	0	%100
3	M6	Z	3.365	3.365	0	%100
4		X	1.656	1.656	0	%100
5	MP1A	Ž	2.868	2.868	0	%100
6	MP1A	X	2.261	2.261	0	%100
7	M15	Ž	3.916	3.916	0	%100
8	M15	X	2.261	2.261	0	%100
9	M18		3.916	3.916	0	%100
10	M18	Z	1.154	1.154	0	%100
11	M19	X	1.999	1.999	0	%100
12	M19	Z	1.154	1.154	Ö	%100
13	M20	X		1.999	Ö	%100
14	M20	Z	1.999	1.032	Ö	%100
15	M23	X	1.032	1.787	0	%100
16	M23	Z	1.787		0	%100
17	M31	X	.651	.651	0	%100
18	M31	Z	1.127	1.127	0	%100
19	M32	X	.651	.651		%100
20	M32	Z	1.127	1.127	0	%100
21	M31A	X	.137	.137	0	%100
22	M31A	Z	.237	.237	0	
23	M32A	X	.137	.137	0	%100
24	M32A	Z	.237	.237	0	%100
25	M27	X	.436	.436	0	%100
26	M27	Z	.756	.756	0	%100
27	M28	X	.436	.436	0	%100
28	M28	Z	.756	.756	0	%100
29	M29	X	1,154	1.154	0	%100
30	M29	Ž	1.999	1.999	0	%100
	M30	X	1.154	1.154	0	%100
31	M30	Z	1.999	1.999	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
33	M31C	X	.676	.676	0	%100
34	M31C	Z	1.17	1.17	0	%100
35	MP2A	X	1.656	1.656	0	%100
36	MP2A	Z	2.868	2.868	0	%100
37	MP3A	X	1,656	1.656	0	%100
38	MP3A	Z	2.868	2.868	0	%100
39	MP4A	X	1.656	1.656	0	%100
40	MP4A	Z	2.868	2.868	0	%100
41	M32B	X	1.943	1.943	0	%100
42	M32B	Z	3.365	3.365	0	%100
43	M33A	X	1,943	1.943	0	%100
44	M33A	Z	3.365	3.365	0	%100
45	M33B	X	.281	.281	0	%100
46	M33B	Z	.487	.487	0	%100
47	M40	X	1.242	1.242	0	%100
48	M40	Z	2.151	2.151	0	%100
49	M40A	X	2.293	2.293	0	%100
50	M40A	Z	3.972	3.972	0	%100
51	M41	X	.896	.896	0	%100
52	M41	Z	1.552	1.552	0	%100
53	M48	X	1.242	1.242	0	%100
54	M48	Z	2.151	2.151	0	%100
55	M49	X	2.263	2.263	0	%100
56	M49	Z	3.919	3.919	0	%100
57	M50	X	.593	.593	0	%100
58	M50	Z	1.027	1.027	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	5.181	5.181	0	%100
3	M6	X	0	0	0	%100
4	M6	Z	5.181	5.181	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	Z	3.312	3.312	0	%100
7	M15	X	0	0	0	%100
8	M15	Z	3.128	3.128	0	%100
9	M18	X	0	0	0	%100
10	M18	Z	3.128	3.128	0	%100
11	M19	X	0	0	0	%100
12	M19	Z	2.308	2.308	0	%100
13	M20	X	0	0	0	%100
14	M20	Z	2.308	2.308	0	%100
15	M23	X	0	0	0	%100
16	M23	Z	1.791	1.791	0	%100
17	M31	X	0	0	0	%100
18	M31	Z	.976	.976	0	%100
19	M32	X	0	0	0	%100
20	M32	Z	.976	.976	0	%100
21	M31A	X	0	0	0	%100
22	M31A	Z	.001	.001	0	%100
23	M32A	X	0	0	0	%100
24	M32A	Z	.001	.001	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	3.121	3.121	0	%100
27	M28	X	0	0	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	<u>er Distributed Lo</u>	Direction	Start MagnitudeIIh/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
00	Member Label	Z	3.121	3.121	0	%100
28	M28	X	0	0	0	%100
29	M29	Z	2.308	2.308	0	%100
30	M29	X	2.300	0	0	%100
31	M30	Z	2.308	2.308	0	%100
32	M30		2.300	0	Ö	%100
33	M31C	X Z	1.79	1.79	0	%100
34	M31C		0	0	0	%100
35	MP2A	X		3.312	0	%100
36	MP2A	Z	3.312	3.312	0	%100
37	MP3A	X	0	3.312	0	%100
38_	MP3A	Z	3.312	3.312	0	%100
39	MP4A	X	0	3.312	0	%100
40	MP4A	Z	3.312		0	%100
41	M32B	X	0	0	0	%100
42	M32B	Z	5.181	5.181	0	%100
43	M33A	X	0	0		%100
44	M33A	Z	5.181	5.181	0	%100 %100
45	M33B	X	0	0	0	
46	M33B	Z	.009	.009	0	%100
47	M40	X	0	0	0	%100
48	M40	Z	3.312	3.312	0	%100
49	M40A	X	0	0	0	%100
50	M40A	Z	3.715	3.715	0	%100
51	M41	X	0	0	0	%100
52	M41	Z	3.595	3.595	0	%100
53	M48	X	0	0	0	%100
54	M48	Z	3.312	3.312	0	%100
55	M49	X	0	0	0	%100
	M49	Z	3.165	3.165	0	%100
56	M50	X	0	0	0	%100
57 58	M50	Ž	2.885	2.885	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	er Distributed Lo Member Label	Direction	Start Magnitude[lb/ft.,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
1	M1	X	-1.943	-1.943	0	%100
	M1	7	3,365	3.365	0	%100
2	M6	X	-1.943	-1.943	0	%100
3		7	3.365	3.365	0	%100
4	M6	X	-1.656	-1.656	0	%100
5	MP1A	7	2.868	2.868	0	%100
6	MP1A	X	439	439	0	%100
7	M15	7	.76	.76	0	%100
8	M15	X	439	439	0	%100
9	M18		.76	.76	0	%100
10	M18	Z		-1.154	0	%100
11	M19	X	-1.154	1.999	0	%100
12	M19	Z	1.999	-1.154	0	%100
13	M20	X	-1.154		0	%100
14	M20	Z	1.999	1.999	0	%100
15	M23	X	675	675	0	%100
16	M23	Z	1.17	1.17	0	%100
17	M31	X	163	163		%100 %100
18	M31	Z	.282	.282	0	%100 %100
19	M32	X	163	163	0	
20	M32	Z	.282	.282	0	%100
21	M31A	X	169	169	0	%100
22	M31A	Z	.292	.292	0	%100

July 5, 2023 9:40 AM Checked By:_

5000244862-VZW_MT_LOT_SectorA_H

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

421	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
23	M32A	X	169	169	0	%100
24	M32A	Z	.292	.292	0	%100
25	M27	X	-2.259	-2.259	0	%100
26	M27	Z	3.913	3.913	0	%100
27	M28	X	-2.259	-2.259	0	%100
28	M28	Z	3.913	3.913	0	%100
29	M29	X	-1,154	-1.154	0	%100
30	M29	Z	1.999	1.999	0	%100
31	M30	X	-1.154	-1.154	0	%100
32	M30	Z	1.999	1.999	0	%100
33	M31C	X	-1.032	-1.032	0	%100
34	M31C	Z	1.787	1.787	0	%100
35	MP2A	X	-1.656	-1.656	0	%100
36	MP2A	7	2.868	2.868	0	%100
37	MP3A	X	-1.656	-1,656	0	%100
38	MP3A	Z	2.868	2.868	0	%100
39	MP4A	X	-1.656	-1.656	0	%100
40	MP4A	Z	2.868	2.868	0	%100
41	M32B	X	-1.943	-1.943	0	%100
42	M32B	Z	3.365	3.365	0	%100
43	M33A	X	-1.943	-1.943	0	%100
44	M33A	Z	3.365	3.365	0	%100
45	M33B	X	421	421	0	%100
46	M33B	Z	.729	.729	0	%100
47	M40	X	-1.242	-1.242	0	%100
48	M40	Z	2.151	2.151	0	%100
49	M40A	X	926	926	0	%100
50	M40A	Z	1.604	1.604	0	%100
51	M41	X	-2.292	-2.292	0	%100
52	M41	Z	3.971	3.971	0	%100
53	M48	X	-1.242	-1.242	Ö	%100
54	M48	Ž	2.151	2.151	Ö	%100
55	M49	X	645	645	Ö	%100
56	M49	Ž	1.118	1.118	Ŏ	%100
57	M50	X	-2.182	-2.182	0	%100
58	M50	Z	3.78	3.78	Ö	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.122	-1.122	0	%100
2	M1	Z	.648	.648	0	%100
3	M6	X	-1.122	-1.122	0	%100
4	M6	Z	.648	.648	0	%100
5	MP1A	X	-2.868	-2.868	0	%100
6	MP1A	Z	1.656	1.656	0	%100
7	M15	X	018	018	0	%100
8	M15	Z	.011	.011	0	%100
9	M18	X	018	018	0	%100
10	M18	Z	.011	.011	0	%100
11	M19	X	-1.999	-1.999	0	%100
12	M19	Z	1.154	1.154	0	%100
13	M20	X	-1.999	-1.999	0	%100
14	M20	Z	1.154	1.154	0	%100
15	M23	X	-1.025	-1.025	0	%100
16	M23	Z	.592	.592	0	%100
17	M31	X	.0	0	0	%100

5000244862-VZW_MT_LOT_SectorA_H

Member Distributed Loads (BLC 61: Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.	Start Location[ft.%]	End Location[ft,%]
18	M31	Z	0	0	0	%100
19	M32	X	0	0	0	%100
20	M32	Z	0	0	0	%100
	M31A	X	819	819	0	%100
21	M31A	Z	.473	.473	0	%100
22	M32A	X	819	819	0	%100
23	M32A	Z	.473	.473	0	%100
24		X	-3.176	-3.176	0	%100
25	M27	Ž	1.834	1.834	0	%100
26	M27	X	-3.176	-3.176	0	%100
27	M28	Ž	1.834	1.834	0	%100
28	M28	X	-1.999	-1.999	0	%100
29	M29	7	1.154	1.154	0	%100
30	M29		-1.999	-1.999	0	%100
31	M30	X	1.154	1.154	0	%100
32	M30		-1.643	-1.643	0	%100
33	M31C	X	.949	.949	0	%100
34	M31C	Z		-2.868	0	%100
35	MP2A	X	-2.868	1.656	0	%100
36	MP2A	Z	1.656	-2.868	0	%100
37	MP3A	X	-2.868	1.656	0	%100
38	MP3A	Z	1.656		0	%100
39	MP4A	X	-2.868	-2.868	0	%100
40	MP4A	Z	1.656	1.656	0	%100
41	M32B	X	-1.122	-1.122	0	%100
42	M32B	Z	.648	.648	0	%100
43	M33A	X	-1.122	-1.122		%100 %100
44	M33A	Z	.648	.648	0	%100 %100
45	M33B	X	-1.929	-1.929	0	%100
46	M33B	Z	1.114	1.114	0	
47	M40	X	717	717	0	%100
48	M40	Z	.414	.414	0	%100
49	M40A	X	744	744	0	%100
50	M40A	Z	.43	.43	0	%100
51	M41	X	-3.267	-3.267	0	%100
52	M41	Z	1.886	1.886	0	%100
53	M48	X	717	717	0	%100
54	M48	Z	.414	.414	0	%100
55	M49	X	673	673	0	%100
56	M49	Z	.388	.388	0	%100
57	M50	X	-3.59	-3.59	0	%100
58	M50	Z	2.073	2.073	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	er Distributed Le	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
	Member Label	Direction	O COLOR MANAGEMENT	0	0	%100
1	M1		0	0	0	%100
2	M1		0	0	0	%100
3	M6	X	0	0		%100
4	M6	Z	0	0	0	
5	MP1A	X	-3.312	-3.312	0	%100
6	MP1A	Z	0	0	0	%100
7	M15	X	-1.415	-1.415	0	%100
0	M15	7	0	0	0	%100
8			-1.415	-1,415	0	%100
9	M18	+	0	0	0	%100
10	M18			2 200	0	%100
11	M19	X	-2.308	-2.308	0	%100
12	M19	Z	0		U	70100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Member Distributed Loads (BLC 62: Structure Wi (270 Deg)) (Continued)

1100	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
13	M20	X	-2.308	-2.308	0	%100
14	M20	Z	0	0	0	%100
15	M23	X	-1.456	-1.456	0	%100
16	M23	Z	0	0	0	%100
17	M31	X	325	325	0	%100
18	M31	Z	0	0	0	%100
19	M32	X	325	325	Q	%100
20	M32	Z	0	0	0	%100
21	M31A	X	-1.219	-1.219	0	%100
22	M31A	Z	0	0	0	%100
23	M32A	X	-1.219	-1.219	0	%100
24	M32A	Z	0	0	0	%100
25	M27	X	-1.419	-1.419	0	%100
26	M27	Z	0	0	0	%100
27	M28	X	-1.419	-1.419	0	%100
28	M28	Z	0	0	Ö	%100
29	M29	X	-2.308	-2.308	Ö	%100
30	M29	Z	0	0	0	%100
31	M30	X	-2.308	-2.308	0	%100
32	M30	Z	0	0	0	%100
33	M31C	X	-1.458	-1.458	0	%100 %100
34	M31C	Ž	0	0	0	%100
35	MP2A	X	-3.312	-3.312	0	%100
36	MP2A	Ż	-3.312	-3.312	0	%100 %100
37	MP3A	X	-3.312	-3.312	0	%100
38	MP3A	Ž			0	%100
39	MP4A	X	-3.312	-3.312	0	%100 %100
40	MP4A	Ž	-3.312	-3.312	0	%100 %100
		X			0	%100 %100
41	M32B	Ž	0	0	0	
	M32B		·-		0	%100
43	M33A	X	0	0	0	%100 %100
44	M33A	Z	0			
45	M33B	Z	-2.781	-2.781	0	%100
46	M33B		0	0	0	%100
47	M40	X	0	0	0	%100
48	M40	Z	0	0	0	%100
49	M40A	X	-1.73	-1.73	0	%100
50	M40A	Z	0	0	0	%100
51	M41	X	-1.969	-1.969	0	%100
52	M41	Z	0	0	0	%100
53	M48	X	0	0	0	%100
54	M48	Z	0	0	0	%100
55	M49	X	-2.137	-2.137	0	%100
56	M49	Z	0	0	0	%100
57	M50	X	-2.446	-2.446	0	%100
58	M50	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.122	-1.122	0	%100
2	M1	Z	648	648	0	%100
3	M6	X	-1.122	-1.122	0	%100
4	M6	Z	648	648	0	%100
5	MP1A	X	-2.868	-2.868	0	%100
6	MP1A	Z	-1.656	-1.656	0	%100
7	M15	X	-3.174	-3.174	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,% %100
8	M15	Z	-1.833	-1.833	0	
9	M18	X	-3.174	-3.174	0	%100
10	M18	Z	-1.833	-1.833	0	%100
11	M19	X	-1.999	-1.999	0	%100
12	M19	Z	-1.154	-1.154	0	%100
13	M20	X	-1.999	-1.999	0	%100
14	M20	Z	-1.154	-1.154	0	%100
15	M23	X	-1.642	-1.642	0	%100
16	M23	Z	948	948	0	%100
17	M31	X	845	845	0	%100
18	M31	Z	488	488	0	%100
19	M32	X	845	845	0	%100
20	M32	Z	-,488	488	0	%100
21	M31A	X	765	765	0	%100
22	M31A	Z	- 442	442	0	%100
23	M32A	X	765	765	0	%100
24	M32A	Z	442	442	0	%100
25	M27	X	019	019	0	%100
26	M27	Z	011	011	0	%100
27	M28	X	019	019	0	%100
28	M28	Z	011	011	0	%100
29	M29	X	-1.999	-1.999	0	%100
30	M29	Z	-1.154	-1.154	0	%100
31	M30	X	-1.999	-1.999	0	%100
32	M30	Z	-1.154	-1.154	0	%100
33	M31C	X	-1.026	-1.026	0	%100
34	M31C	Z	592	592	0	%100
35	MP2A	X	-2.868	-2.868	0	%100
36	MP2A	Z	-1.656	-1.656	0	%100
37	MP3A	X	-2.868	-2.868	0	%100
38	MP3A	Ž	-1.656	-1.656	0	%100
39	MP4A	X	-2.868	-2.868	0	%100
40	MP4A	Z	-1.656	-1.656	0	%100
41	M32B	X	-1.122	-1.122	0	%100
42	M32B	Z	648	648	0	%100
43	M33A	X	-1.122	-1.122	0	%100
44	M33A	Z	648	648	0	%100
45	M33B	X	-1.687	-1.687	0	%100
	M33B	Z	974	974	0	%100
46	M40	X	717	717	0	%100
48	M40	Z	414	414	0	%100
	M40A	X	-3.112	-3.112	0	%100
49	M40A M40A	Z	-1.797	-1.797	0	%100
50		X	848	848	0	%100
51	M41	Z	49	49	Ō	%100
52	M41	X	717	717	0	%100
53	M48	Z	414	414	Ö	%100
54	M48		-3.474	-3.474	0	%100
55	M49	X	-3.474	-2.006	0	%100
56	M49	Z		837	0	%100
57 58	M50 M50	Z	837 483	483	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
1	M1	X	-1.943	-1.943	0	%100
2	M1	Z	-3.365	-3.365	0	%100

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 64: Structure Wi (330 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
3	<u>M6</u>	X	-1.943	-1.943	0	%100
4	M6	Z	-3.365	-3.365	0	%100
5	MP1A	X	-1.656	-1.656	0	%100
6	MP1A	, Z	-2.868	-2.868	0	%100
7	M15	X	-2.261	-2.261	0	%100
8	M15	Z	-3.916	-3.916	0	%100
9	M18	X	-2.261	-2.261	0	%100
10	M18	Z	-3.916	-3.916	0	%100
11	M19	X	-1.154	-1.154	0	%100
12	M19	Z	-1.999	-1.999	0	%100
13	M20	X	-1.154	-1.154	0	%100
14	M20	Z	-1.999	-1.999	0	%100
15	M23	X	-1.032	-1.032	0	%100
16	M23	Z	-1.787	-1.787	0	%100
17	M31	X	651	651	0	%100
18	M31	Z	-1.127	-1.127	0	%100
19	M32	X	651	651	0	%100
20	M32	Z	-1.127	-1.127	0	%100
21	M31A	X	137	137	0	%100
22	M31A	Ž	237	237	0	%100
23	M32A	X	137	137	0	%100
24	M32A	Z	237	237	0	%100
25	M27	X	436	436	0	%100
26	M27	Z	756	756	0	%100
27	M28	X	436	436	0	%100
28	M28	Ž	756	756	0	%100 %100
29	M29	X	-1.154	-1.154	0	%100
				-1.1999	0	%100 %100
30	M29	Z	-1.999	-1.999 -1.154	0	%100 %100
31	M30	X	-1.154		0	%100 %100
32	M30	Z	-1.999	-1.999	0	
33	M31C	X	676	676		%100
34	M31C	Z	-1.17	-1.17	0	%100
35	MP2A	X	-1.656	-1.656	0	%100
36	MP2A	Z	-2.868	-2.868	0	%100
37	MP3A	X	-1.656	-1.656	0	%100
38	MP3A	Z	-2.868	-2.868	0	%100
39	MP4A	X	-1.656	-1.656	0	%100
40	MP4A	Z	-2.868	-2.868	0	%100
41	M32B	X	-1.943	-1.943	0	%100
42	M32B	Z	-3.365	-3.365	0	%100
43	M33A	X	-1.943	-1.943	0	%100
44	M33A	Z	-3.365	-3.365	0	%100
45	M33B	X	281	281	0	%100
46	M33B	Z	487	487	0	%100
47	M40	X	-1.242	-1.242	0	%100
48	M40	Z	-2.151	-2.151	0	%100
49	M40A	X	-2.293	-2.293	0	%100
50	M40A	Z	-3.972	-3.972	0	%100
51	M41	X	896	896	0	%100
52	M41	Z	-1.552	-1.552	0	%100
53	M48	X	-1.242	-1.242	0	%100
54	M48	Z	-2.151	-2.151	0	%100
55	M49	X	-2.263	-2.263	0	%100
56	M49	Z	-3.919	-3.919	Ö	%100
57	M50	X	593	593	0	%100 %100
58	M50	Z	-1.027	-1.027	0	%100 %100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:___

	Member Label	Direction	Start Magnitude(lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%
1	M1	X	0	0	0	%100
2	M1	Z	-1.282	-1.282	0	%100
3	M6	X	0	0	0	%100
4	M6	Z	-1.282	-1.282	0	%100
	MP1A	X	0	0	0	%100
5		Z	-,609	609	0	%100
6	MP1A M15	X	0	0	0	%100
7	M15	Z	752	752	0	%100
8		X	0	0	0	%100
9	M18	Ž	752	752	0	%100
10	M18		0	0	0	%100
11	M19	X	337	337	0	%100
12	M19	Z	337	0	0	%100
13	M20	X	337	337	0	%100
14	M20	Z		0	0	%100
15	M23	X	-,167	167	0	%100
16	M23	Z		167	0	%100
17	M31	X	0		0	%100
18	M31	Z	096	096	0	%100 %100
19	M32	X	0	0	0	%100 %100
20	M32	Z	096	096		%100 %100
21	M31A	X	0	0	0	
22	M31A	Z	-8.5e-5	-8.5e-5	0	%100
23	M32A	X	0	0	0	%100
24	M32A	Z	-8.5e-5	-8.5e-5	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	751	751	0	%100
27	M28	X	0	0	0	%100
28	M28	Z	751	751	0	%100
29	M29	X	0	0	0	%100
30	M29	Z	337	337	0	%100
31	M30	X	0	0	0	%100
32	M30	Z	337	337	0	%100
	M31C	X	0	0	0	%100
33		Z	-,167	167	0	%100
34	M31C	X	0	0	0	%100
35	MP2A	Z	609	609	0	%100
36	MP2A	X	0	0	0	%100
37	MP3A	Ž	609	609	0	%100
38	MP3A		0	0	0	%100
39	MP4A	X -	609	609	0	%100
40	MP4A	Z		003	0	%100
41	M32B	X	0	-1.282	Ö	%100
42	M32B	Z	-1.282		0	%100
43	M33A	X	0	1 202	0	%100 %100
44	M33A	Z	-1.282	-1.282		%100 %100
45	M33B	X	0	0	0	%100 %100
46	M33B	Z	002	002	0	%100 %100
47	M40	X	0	0	0	%100 %100
48	M40	Z	609	609	0	
49	M40A	X	0	0	0	%100
50	M40A	Z	865	865	0	%100
51	M41	X	0	0	0	%100
52	M41	Z	837	837	0	%100
53	M48	X	0	0	0	%100
54	M48	Z	609	609	0	%100
	M49	X	0	0	0	%100
55	M49	Z	737	737	0	%100
56 57	M50	X	0	0	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
58	M50	Z	666	666	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction		.End Magnitude[lb/ft,F.		End Location[ft,%]
1	M1	X	.481	.481	0	%100
2	M1	Z	833	833	0	%100
3	M6	X	.481	.481	0	%100
4	M6	Z	833	833	0	%100
5	MP1A	X	.304	.304	0	%100
6	MP1A	Z	527	527	0	%100
7	M15	X	.106	.106	0	%100
8	M15	Z	183	183	0	%100
9	M18	X	.106	.106	0	%100
10	M18	Z	183	183	0	%100
11	M19	X	.169	.169	0	%100
12	M19	Z	292	292	0	%100
13	M20	X	.169	.169	0	%100
14	M20	Z	292	292	0	%100
15	M23	X	,063	.063	0	%100
16	M23	Z	109	109	0	%100
17	M31	X	.016	.016	0	%100
18	M31	Z	028	028	0	%100
19	M32	X	.016	.016	0	%100
20	M32	Ž	028	028	0	%100
21	M31A	X	.013	.013	0	%100
22	M31A	Ž	023	023	0	%100
	M32A	X	.013	.013	0	%100
23	M32A	Z	023	023	0	%100 %100
24			.543	.543	0	%100 %100
25	M27	Z	941	941	0	%100 %100
26	M27	X	.543	.543	0	%100 %100
27	M28			941	0	%100 %100
28	M28	Z	941	.169	0	%100 %100
29	M29	X	.169	292	0	%100 %100
30	M29	Z	292			%100 %100
31	M30	X	.169	.169	0	%100 %100
32	M30	Z	292	292	0	
33	M31C	X	.096	.096	0	%100
34	M31C	Z	166	166	0	%100
35	MP2A	X	.304	.304	0	%100
36	MP2A	Z	527	527	0	%100
37	MP3A	X	.304	.304	0	%100
38	MP3A	Z	527	527	0	%100
39	MP4A	X	.304	.304	0	%100
40	MP4A	Z	527	527	0	%100
41	M32B	X	.481	.481	0	%100
42	M32B	Z	833	833	0	%100
43	M33A	X	.481	.481	0	%100
44	M33A	Z	833	833	0	%100
45	M33B	X	.077	.077	0	%100
46	M33B	Z	133	133	0	%100
47	M40	X	.228	.228	0	%100
48	M40	Z	396	396	0	%100
49	M40A	X	.216	.216	0	%100
50	M40A	Z	373	373	0	%100
51	M41	X	.534	.534	0	%100
52	M41	Z	925	925	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	tytastabal	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
T	Member Label	Dijection	.228	.228	0	%100
53	M48	7	396	396	0	%100
54	M48		.15	15	0	%100
55	M49		26	26	0	%100
56	M49	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		.504	0	%100
57	M50	<u> </u>	.504	872	0	%100
58	M50		872	012		70.00

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.278	.278	0	%100
2	M1	Z	16	16	0	%100
	M6	X	.278	.278	0	%100
3	M6	Z	16	16	0	%100
4	MP1A	X	.527	.527	0	%100
5	MP1A	Z	304	304	0	%100
6	M15	X	.004	.004	0	%100
7		Z	003	003	0	%100
8	M15 M18	X	.004	.004	0	%100
9		Z	003	003	0	%100
10	M18	X	.292	.292	0	%100
11	M19	Ž	-,169	169	0	%100
12	M19	X	.292	.292	0	%100
13	M20		169	169	0	%100
14	M20	Z X	.095	.095	0	%100
15	M23	Z	055	055	0	%100
16	M23		055	0	0	%100
17	M31	X	0	0	Ö	%100
18	M31	Z	0	0	Ö	%100
19	M32	X	0	0	Ö	%100
20	M32	Z	.065	.065	0	%100
21	M31A	X		037	Ö	%100
22	M31A	Z	037	.065	0	%100
23	M32A	X	.065	037	Ö	%100
24	M32A	Z	037		0	%100
25	M27	X	.764	.764	0	%100
26	M27	Z	441		0	%100
27	M28	X	.764	.764	0	%100
28	M28	Z	441	441	0	%100
29	M29	X	.292	.292	0	%100
30	M29	Z	169	169		%100 %100
31	M30	X	.292	.292	0	%100
32	M30	Z	169	169	0	%100 %100
33	M31C	X	.153	.153	0	
34	M31C	Z	088	088	0	%100
35	MP2A	X	.527	.527	0	%100
36	MP2A	Z	304	304	0	%100
37	MP3A	X	.527	.527	0	%100
38	MP3A	Z	304	304	0	%100
39	MP4A	X	.527	.527	0	%100
40	MP4A	Z	304	304	0	%100
41	M32B	X	.278	.278	0	%100
42	M32B	Ž	16	16	0	%100
43	M33A	X	.278	.278	0	%100
	M33A	Z	16	16	0	%100
44	M33A M33B	X	.352	.352	0	%100
45	M33B	Ž	203	203	0	%100
46	M40	X	.132	:132	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

Member Distributed Loads (BLC 67: Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
48	M40	Z	076	076	0	%100
49	M40A	X	.173	.173	0	%100
50	M40A	Z	1	1	0	%100
51	M41	X	.761	.761	0	%100
52	M41	Z	439	439	0	%100
53	M48	X	.132	.132	0	%100
54	M48	Z	076	076	0	%100
55	M49	X	.157	.157	0	%100
56	M49	Z	09	09	0	%100
57	M50	X	.828	.828	0	%100
58	M50	Z	478	478	0	%100

Member Distributed Loads (BLC 68: Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M6	X	0	0	0	%100
4	M6	Z	0	0	0	%100
5	MP1A	X	.609	.609	0	%100
6	MP1A	Z	.0	0	0	%100
7	M15	X	.34	.34	0	%100
8	M15	Z	0	0	0	%100
9	M18	X	.34	.34	0	%100
10	M18	Z	0	0	0	%100
11	M19	X	.337	.337	0	%100
12	M19	Z	0	0	0	%100
13	M20	X	.337	.337	0	%100
14	M20	Z	0	0	0	%100
15	M23	X	.135	.135	0	%100
16	M23	Z	0	0	0	%100
17	M31	X	.032	.032	0	%100
18	M31	Z	0	0	0	%100
19	M32	X	.032	.032	0	%100
20	M32	Z	0	0	0	%100
21	M31A	X	.096	.096	0	%100
22	M31A	Z	0	0	0	%100
23	M32A	X	.096	.096	0	%100
24	M32A	Z	0	0	0	%100
25	M27	X	.341	.341	0	%100
26	M27	Z	0	0	0	%100
27	M28	X	.341	.341	0	%100
28	M28	Z	0	0	0	%100
29	M29	X	.337	.337	0	%100
30	M29	Z	0	0	0	%100
31	M30	X	.337	.337	0	%100
32	M30	Z	0	0	0	%100
33	M31C	X	.136	.136	0	%100
34	M31C	Z	0	0	0	%100
35	MP2A	X	.609	.609	0	%100
36	MP2A	Z	0	0	0	%100
37	MP3A	X	.609	.609	0	%100
38	MP3A	Z	0	0	Ö	%100
39	MP4A	X	.609	.609	0	%100
40	MP4A	Z	0	0	Ö	%100
41	M32B	X	Ö	0	Ö	%100
42	M32B	Z	0	0	0	%100 %100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

,,,,,,,		Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
	Member Label	Direction	Start Wagnitude (1071)	1 0	0	%100
43	M33A	X	0	0	0	%100
44	M33A	Z	0	507	0	%100
45	M33B	X	.507	.507	0	%100
46	M33B	Z	0	0	0	
47	M40	X	0	0	0	%100
	M40	7	0	0	0	%100
48		V	.403	.403	0	%100
49	M40A		0	0	0	%100
50	M40A				0	%100
51	M41	X	.459	.459	0	%100
52	M41	Z	0	0	0	
53	M48	X	0	0	0	%100
	M48	7	0	0	0	%100
54			.498	.498	0	%100
55	M49	7	0	0	0	%100
56	M49				n	%100
57	M50	X	.565	.565	0	%100
58	M50	Z	0	0	0	/0100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	er Distributed Lo Member Label	Direction	Start MagnitudeIlb/ft.	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
1 T	M1	X	.278	.278	0	%100
2	M1	Ž	.16	.16	0	%100
3	M6	X	.278	.278	0	%100
	M6	Z	.16	.16	0	%100
4		X	.527	.527	0	%100
5	MP1A	Z	.304	.304	0	%100
6	MP1A	X	.763	.763	0	%100
7	M15	Z	.441	.441	0	%100
8	M15	X	.763	.763	0	%100
9	M18	Ž	.441	.441	0	%100
10	M18	X	.292	.292	0	%100
11	M19		.169	.169	0	%100
12	M19	Z	.292	.292	0	%100
13	M20	X	.169	.169	0	%100
14	M20	Z	.153	.153	0	%100
15	M23	X	.088	.088	0	%100
16	M23	Z		.083	0	%100
17	M31	X	.083	.048	Ů Ů	%100
18	M31	Z	.048	.083	0	%100
19	M32	X	.083		0	%100
20	M32	Z	.048	.048	0	%100
21	M31A	X	.06	.06	0	%100
22	M31A	Z	.035	.035		%100 %100
23	M32A	X	.06	.06	0	%100
24	M32A	Z	.035	.035	0	%100
25	M27	Χ	.005	.005	0	%100
26	M27	Z	.003	.003	0	
27	M28	X	.005	.005	0	%100
28	M28	Z	.003	.003	0	%100
29	M29	X	.292	.292	0	%100
30	M29	Z	,169	.169	0	%100
31	M30	X	.292	.292	0	%100
32	M30	Z	.169	.169	0	%100
33	M31C	X	.095	.095	0	%100
	M31C	Z	.055	.055	0	%100
34		X	.527	.527	0	%100
35	MP2A	Z	.304	.304	0	%100
36	MP2A MP3A	X	.527	.527	0	%100

: Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Member Distributed Loads (BLC 69: Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
38	MP3A	Z	.304	.304	0	%100
39	MP4A	X	.527	.527	0	%100
40	MP4A	Z	.304	.304	0	%100
41	M32B	X	.278	.278	0	%100
42	M32B	Z	.16	.16	0	%100
43	M33A	X	.278	.278	0	%100
44	M33A	Z	.16	.16	0	%100
45	M33B	X	.308	.308	0	%100
46	M33B	Z	.178	.178	0	%100
47	M40	X	.132	.132	0	%100
48	M40	Z	.076	.076	0	%100
49	M40A	X	.725	.725	0	%100
50	M40A	Z	.418	.418	0	%100
51	M41	X	.197	.197	0	%100
52	M41	Z	.114	.114	0	%100
53	M48	X	.132	.132	0	%100
54	M48	Z	.076	.076	0	%100
55	M49	X	.809	.809	0	%100
56	M49	Z	.467	.467	0	%100
57	M50	X	.193	.193	0	%100
58	M50	Z	.112	.112	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.481	.481	0	%100
2	M1	Z	.833	.833	0	%100
3	M6	X	.481	.481	0	%100
4	M6	Z	.833	.833	0	%100
5	MP1A	X	.304	.304	0	%100
6	MP1A	Z	.527	.527	0	%100
7	M15	X	.544	.544	0	%100
8	M15	Z	.942	.942	0	%100
9	M18	X	.544	.544	0	%100
10	M18	Z	.942	.942	0	%100
11	M19	X	.169	.169	0	%100
12	M19	Z	.292	.292	0	%100
13	M20	X	.169	.169	0	%100
14	M20	Z	.292	.292	0	%100
15	M23	X	.096	.096	0	%100
16	M23	Z	.166	.166	0	%100
17	M31	X	.064	.064	0	%100
18	M31	Z	.111	.111	0	%100
19	M32	X	.064	.064	0	%100
20	M32	Z	.111	.111	0	%100
21	M31A	X	.011	.011	0	%100
22	M31A	Z	.019	.019	0	%100
23	M32A	X	.011	.011	0	%100
24	M32A	Z	.019	.019	0	%100
25	M27	X	.105	.105	0	%100
26	M27	Z	.182	.182	0	%100
27	M28	X	.105	.105	0	%100
28	M28	Z	.182	.182	0	%100
29	M29	X	.169	.169	0	%100
30	M29	Z	.292	.292	Ö	%100
31	M30	X	.169	.169	0	%100
32	M30	Z	.292	.292	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:___

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
33	M31C	X	.063	.063	0	%100
	M31C	Z	.109	.109	0	%100
34	MP2A	X	.304	.304	0	%100
35	MP2A	Z	.527	.527	0	%100
36	MP3A	X	304	.304	0	%100
37	The second secon	Z	527	.527	0	%100
38	MP3A	X	.304	.304	0	%100
39	MP4A	Z	.527	.527	0	%100
40	MP4A	X	.481	.481	0	%100
41	M32B	Z	.833	.833	0	%100
42	M32B	X	.481	.481	0	%100
43	M33A		.833	.833	0	%100
44	M33A	Z	.051	.051	0	%100
45	M33B	X 7	.089	.089	0	%100
46	M33B		.228	.228	0	%100
47	M40	X	.396	.396	0	%100
48	M40	Z		.534	0	%100
49	M40A	X	.534	.925	0	%100
50	M40A	Z	.925	.209	0	%100
51	M41	X	.209		0	%100
52	M41	Z	.361	.361	0	%100
53	M48	X	.228	.228	0	%100
54	M48	Z	.396	.396	0	%100 %100
55	M49	X	.527	.527		%100
56	M49	Z	.913	.913	0	
57	M50	X	.137	.137	0	%100
58	M50	Z	.237	.237	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	Member Laber	X	0	0	0	%100
-	M1	Z	1.282	1.282	0	%100
2	M6	X	0	0	0	%100
3		Z	1.282	1.282	0	%100
4	M6	X	0	0	0	%100
5	MP1A	Z	.609	.609	0	%100
6	MP1A	X	0	0	0	%100
7	M15	Z	.752	.752	0	%100
8	M15	X	0	0	0	%100
9	M18	Z	.752	.752	0	%100
10	M18		0	0	0	%100
11	M19	X	.337	.337	Ö	%100
12	M19	Z	0	0	0	%100
13	M20	X		.337	0	%100
14	M20	Z	.337	.557	0	%100
15	M23	X	0	.167	0	%100
16	M23	Z	.167	0	0	%100
17	M31	X	0		0	%100
18	M31	Z	.096	.096	0	%100
19	M32	X	0	0	0	%100 %100
20	M32	Z	.096	.096		%100 %100
21	M31A	X	0	0	0	
22	M31A	Z	8.5e-5	8.5e-5	0	%100
23	M32A	X	0	0	0	%100
24	M32A	Z	8.5e-5	8.5e-5	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	.751	.751	0	%100
27	M28	X	0	0	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
28	M28	Z	.751	.751	0	%100
29	M29	X	0	0	0	%100
30	M29	Z	.337	.337	0	%100
31	M30	X	0	0	0	%100
32	M30	Z	.337	.337	0	%100
33	M31C	X	0	0	0	%100
34	M31C	Z	.167	.167	0	%100
35	MP2A	X	0	0	0	%100
36	MP2A	Z	.609	.609	0	%100
37	MP3A	X	0	0	0	%100
38	MP3A	Z	.609	.609	0	%100
39	MP4A	X	0	0	0	%100
40	MP4A	7	.609	.609	0	%100
41	M32B	X	0	0	0	%100
42	M32B	Z	1.282	1.282	0	%100
43	M33A	X	0	0	0	%100
44	M33A	Z	1.282	1.282	0	%100
45	M33B	X	0	0	0	%100
46	M33B	Z	.002	.002	0	%100
47	M40	X	0	0	0	%100
48	M40	Z	.609	.609	0	%100
49	M40A	X	0	0	0	%100
50	M40A	Z	.865	.865	0	%100
51	M41	X	0	0	0	%100
52	M41	Z	.837	.837	0	%100
53	M48	X	0	0	0	%100
54	M48	Z	.609	.609	0	%100
55	M49	X	0	0	0	%100
56	M49	Z	.737	.737	0	%100
57	M50	X	0	0	0	%100
58	M50	7	.666	.666	0	%100

Member Distributed Loads (BLC 72: Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
1	M1	X	481	481	0	%100
2	M1	Z	.833	.833	0	%100
3	M6	X	481	481	0	%100
4	M6	Z	.833	.833	0	%100
5	MP1A	X	304	304	0	%100
6	MP1A	Z	.527	.527	0	%100
7	M15	X	106	- 106	0	%100
8	M15	Z	.183	.183	0	%100
9	M18	X	106	106	0	%100
10	M18	Z	.183	.183	0	%100
11	M19	X	169	169	0	%100
12	M19	Z	.292	.292	0	%100
13	M20	X	169	- 169	0	%100
14	M20	Z	.292	.292	0	%100
15	M23	X	063	063	0	%100
16	M23	Z	.109	.109	0	%100
17	M31	X	016	016	0	%100
18	M31	Z	.028	.028	0	%100
19	M32	X	016	016	0	%100
20	M32	Z	.028	.028	0	%100
21	M31A	X	013	013	0	%100
22	M31A	7	.023	.023	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:____

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

Helinger 213	oras tabal	Direction	Start Magnitudellb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%
	mber Label M32A	X	013	013	0	%100
	M32A	Z	.023	.023	0	%100
24		X	543	543	0	%100
25	M27	Z	.941	.941	0	%100
26	M27	X	543	543	0	%100
27	M28	Ž	.941	.941	0	%100
28	M28		169	169	0	%100
29	M29	X	.292	.292	Ŏ	%100
30	M29	Z		169	0	%100
31	M30	X	169	.292	Ö	%100
32	M30	Z	.292	096	0	%100
33	M31C	X	096		0	%100
34	M31C	Z	.166	.166	0	%100
35	MP2A	X	304	304	0	%100
36	MP2A	Z	.527	.527		%100
37	MP3A	X	304	304	0	%100
38	MP3A	Z	.527	.527	0	
39	MP4A	X	304	304	0	%100
40	MP4A	Z	.527	.527	0	%100
41	M32B	X	481	481	0	%100
42	M32B	Z	.833	.833	0	%100
43	M33A	X	481	481	0	%100
44	M33A	Z	.833	.833	0	%100
45	M33B	X	077	077	0	%100
46	M33B	Z	.133	.133	0	%100
47	M40	X	228	228	0	%100
	M40	Z	.396	.396	0	%100
48	M40A	X	216	216	0	%100
49	M40A	Ž	.373	.373	0	%100
50		X	534	534	0	%100
51	M41	Z	.925	.925	0	%100
52	M41	X	228	228	0	%100
53	M48	Z	.396	.396	0	%100
54	M48		15	15	0	%100
55	M49	X	.26	.26	0	%100
56	M49	Z		504	0	%100
57	M50	X	504	.872	0	%100
58	M50	Z	.872	.012	V .	70100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft.%]
4		Direction	278	278	0	%100
1	M1	7	.16	.16	0	%100
2	M1		278	278	0	%100
3	M6			.16	Ö	%100
4	M6	Z	.16	527	0	%100
5	MP1A	X	527		o o	%100
6	MP1A	Z	.304	.304	0	%100
7	M15	X	004	004	0	%100
8	M15	Z	.003	.003	0	- Colonianianiani
9	M18	X	004	004	0	%100
10	M18	Z	.003	.003	0	%100
11	M19	X	292	292	0	%100
	M19	7	.169	.169	0	%100
12		X	292	292	0	%100
13	M20	7	.169	.169	0	%100
14	M20 .	- Z	095	095	0	%100
15	M23			.055	0	%100
16	M23	Z	.055	.033	0	%100
17	M31	X	0	1 0	0	70100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 73: Structure Wm (240 Deg)) (Continued)

18 19 20 21 22 23 24 25	M31 M32 M32 M31A M31A M32A M32A	Z X Z X Z X X X X X	0 0 0 065	0 0 0 065	0 0 0	%100 %100 %100
20 21 22 23 24	M32 M31A M31A M32A M32A M27	Z X Z	0 065	0		
21 22 23 24	M31A M31A M32A M32A M27	X	065		0	0/ 100
22 23 24	M31A M32A M32A M27	Z		OGE		
23 24	M32A M32A M27		007		0	%100
24	M32A M27	Y	.037	.037	0	%100
	M27	^	065	065	0	%100
25		Z	.037	.037	0	%100
		X	764	764	0	%100
26	M27	Z	.441	.441	0	%100
27	M28	X	764	764	0	%100
28	M28	Z	.441	.441	0	%100
29	M29	X	292	292	0	%100
30	M29	Z	.169	.169	0	%100
31	M30	X	292	292	0	%100
32	M30	Z	.169	.169	0	%100
33	M31C	X	153	153	0	%100
34	M31C	Z	.088	.088	0	%100
35	MP2A	X	527	527	0	%100
36	MP2A	7	.304	.304	Ŏ	%100
37	MP3A	X	527	527	0	%100
38	MP3A	Z	.304	.304	0	%100
39	MP4A	X	527	527	Ö	%100
40	MP4A	Z	.304	.304	0	%100
41	M32B	X	278	278	Ō	%100
42	M32B	Z	.16	.16	Ö	%100
43	M33A	X	278	278	0	%100
44	M33A	Z	.16	.16	Ŏ	%100
45	M33B	X	352	352	0	%100
46	M33B	Z	.203	.203	Ö	%100
47	M40	X	132	132	Ö	%100
48	M40	Z	.076	.076	0	%100
49	M40A	X	173	173	0	%100
50	M40A	Z	.1	.1	Ö	%100
51	M41	X	761	761	0	%100
52	M41	Z	.439	.439	0	%100
53	M48	X	132	132	0	%100 %100
54	M48	Z	.076	.076	0	%100 %100
55	M49	X	157	157	0	%100 %100
56	M49	Z	.09	.09	0	%100 %100
57	M50	X	828	828	0	%100
58	M50	Ž	.478	.478	0	%100 %100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M6	X	0	0	0	%100
4	M6	Z	0	0	0	%100
5	MP1A	X	609	609	0	%100
6	MP1A	Z	0	0	0	%100
7	M15	X	34	34	0	%100
8	M15	Z	0	0	0	%100
9	M18	X	34	34	0	%100
10	M18	Z	0	0	0	%100
11	M19	X	337	337	0	%100
12	M19	Z	0	0	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,% %100
13	M20	X	337	337	0	%100 %100
14	M20	Z	0	0		%100 %100
15	M23	X	135	135	0	%100 %100
16	M23	Z	0	0		%100 %100
17	M31	X	032	032	0	%100 %100
18	M31	Z	0	0	0	%100 %100
19	M32	X	032	032	0	%100 %100
20	M32	Z	0	0	0	
21	M31A	X	096	096	0	%100
22	M31A	Z	0	0	0	%100
23	M32A	X	096	096	0	%100
24	M32A	Z	0	0	0	%100
25	M27	X	341	341	0	%100
26	M27	Z	0	0	0	%100
27	M28	X	341	341	0	%100
28	M28	Z	0	0	0	%100
29	M29	X	337	337	0	%100
30	M29	Z	0	0	0	%100
31	M30	X	337	337	0	%100
32	M30	Z	0	0	0	%100
33	M31C	X	136	136	0	%100
34	M31C	Z	0	0	0	%100
35	MP2A	X	609	609	0	%100
36	MP2A	Z	0	0	0	%100
	MP3A	X	609	609	0	%100
37	MP3A	Ž	0	0	0	%100
38	MP4A	X	609	-,609	0	%100
39		Z	0	0	0	%100
40	MP4A	X	0	0	0	%100
41	M32B	Z	0	0	0	%100
42	M32B	X	0	0	0	%100
43	M33A	Ž	0	0	0	%100
44	M33A	X	507	507	0	%100
45	M33B	Z	507	0	0	%100
46	M33B		0	0	0	%100
47	M40	X	0	0	Ö	%100
48	M40	Z	403	403	0	%100
49	M40A	X	403	403	0	%100
50	M40A	Z		459	0	%100
51	M41	X	459	459	0	%100
52	M41	Z	0	0	0	%100
53	M48	X	0		0	%100
54	M48	Z	0	0	0	%100
55	M49	X	498	498	0	%100 %100
56	M49	Z	0	0		%100 %100
57	M50	X	565	565	0	%100
58	M50	Z	0	0	0	70100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	er Distributeu Lo	Direction		End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
4 1	Member Label	V	278	278	0	%100
1	IVI i	- - - - - - -	16	16	0	%100
2	M1	- Z	278	278	0	%100
3	M6		16	16	0	%100
4	M6			527	0	%100
5	MP1A	X	527		0	%100
6	MP1A	Z	304	304	0	%100
7	M15	X	-,763	763		/6100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:__

Member Distributed Loads (BLC 75: Structure Wm (300 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	_	End Location[ft.
8	M15	Z	441	441	0	%100
9	M18	X	763	763	0	%100
10	M18	Z	441	441	. 0	%100
11	M19	X	292	292	0	%100
12	M19	2	169	169	0	%100
13	M20	X	-,292	292	0	%100
14	M20	Z	169	169	0	%100
15	M23	X	153	153	0	%100
16	M23	Z	088	088	0	%100
17	M31	X	083	083	0	%100
18	M31	Z	048	048	0	%100
19	M32	X	083	083	0	%100
20	M32	Z	048	048	0	%100
21	M31A	X	06	06	0	%100
22	M31A	Z	035	035	0	%100
23	M32A	X	06	06	0	%100
24	M32A	Z	035	035	0	%100
25	M27	X	005	005	0	%100
26	M27	Z	003	003	0	%100
27	M28	X	005	005	0	%100
28	M28	Z	003	003	0	%100
9	M29	X	292	292	0	%100
30	M29	Z	169	169	Ō	%100
31	M30	X	292	292	0	%100
32	M30	Z	169	169	Ō	%100
33	M31C	X	095	095	0	%100
34	M31C	Z	055	055	Ō	%100
35	MP2A	X	527	527	0	%100
36	MP2A	Z	304	304	Ö	%100
37	MP3A	X	527	527	0	%100
88	MP3A	Z	304	304	Ö	%100
19	MP4A	X	527	527	Ö	%100
10	MP4A	Z	304	304	Ö	%100
11	M32B	X	278	278	0	%100
2	M32B	Z	16	16	Ö	%100
3	M33A	X	278	278	0	%100
14	M33A	Z	16	16	0	%100 %100
5	M33B	X	308	308	0	%100
6	M33B	Ż	178	178	0	%100
7	M40	X	132	132	0	%100
8	M40	Ž	076	076	0	%100
9	M40A	X	725	725	0	%100 %100
		Ž	725	125	0	%100
0	M40A			416	0	%100 %100
51	M41	Z	197		0	%100 %100
2	M41		114	114		
3	M48	X	-,132	132	0	%100
4	M48	Z	076	076	0	%100
55	M49	X	809	809	0	%100
6	M49	Z	467	467	0	%100
7	M50	X	193	193	0	%100
8	M50	Z	112	112	0	%100

Member Distributed Loads (BLC 76: Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	481	481	0	%100
2	M1	Z	833	833	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	6: Structure Wr. Start Magnitude[lb/ft	End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%
3	M6	X	481	481	0	%100
4	M6	Z	833	833	0	%100
5	MP1A	X	304	304	0	%100
6	MP1A	Z	527	527	0	%100
7	M15	X	544	544	0	%100
8	M15	Z	942	942	0	%100
9	M18	X	544	544	0	%100
10	M18	Z	942	942	0	%100
11	M19	X	169	169	0	%100
12	M19	Z	292	292	0	%100
13	M20	X	169	169	0	%100
14	M20	Z	292	292	0	%100
15	M23	X	096	096	0	%100
16	M23	Z	166	166	0	%100
17	M31	X	064	064	0	%100
18	M31	Z	-,111	111	0	%100
	M32	X	064	064	0	%100
19 20	M32	Z	111	111	0	%100
	M31A	X	-,011	011	0	%100
21	M31A	Z	019	019	0	%100
22	M32A	X	011	011	0	%100
23	M32A	Z	019	019	0	%100
24	M27	X	105	105	0	%100
25	M27	Z	182	182	0	%100
26		X	105	105	0	%100
27	M28	Z	182	182	0	%100
28	M28	X	169	-,169	0	%100
29	M29	Ž	292	292	0	%100
30	M29	X	169	169	0	%100
31	M30	Ž	292	292	0	%100
32	M30	X	063	063	0	%100
33	M31C	Z	109	109	0	%100
34	M31C	X	304	304	0	%100
35	MP2A	Z	527	527	0	%100
36	MP2A		304	304	0	%100
37	MP3A	X	527	527	Ö	%100
38	MP3A	Z	304	304	0	%100
39	MP4A	X	527	527	0	%100
40	MP4A	Z	481	481	Ů Ů	%100
41	M32B	X	481	833	0	%100
42	M32B	Z		481	0	%100
43	M33A	X	481	833	0	%100
44	M33A	Z	833	051	0	%100
45	M33B	X	051	089	0	%100
46	M33B	Z	089	228	0	%100
47	M40	X	228	396	0	%100
48	M40	Z	396		0	%100
49	M40A	X	534	534	0	%100
50	M40A	Z	925	925	0	%100
51	M41	X	209	209	0	%100
52	M41	Z	361	361		%100
53	M48	X	228	228	0	%100
54	M48	Z	396	396	0	%100 %100
55	M49	X	527	527	0	
56	M49	Z	913	913	0	%100
57	M50	X	137	137	0	%100
58	M50	Z	237	237	0	%100

Colliers Engineering & Design

5000244862-VZW_MT_LOT_SectorA_H

July 5, 2023 9:40 AM Checked By:_

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
		N	lo Data to Prin	t		

Envelope Joint Reactions

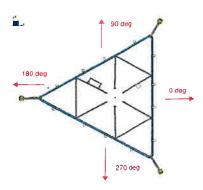
W = 6	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N61A	max	348.674	8	804.507	24	1271.113	12	124	73	0	75	03	6
2		min	-156.674	2	254.625	69	-1071.891	6	404	15	0	1	167	24
3	N62	max	477.872	7	721.466	18	1206.806	2	071	12	0	75	049	72
4		min	-348.221	1	165.033	12	-1146.478	8	375	18	0	1	156	14
5	N71	max	69.875	6	15.353	24	1050.931	6	0	75	0	75	.0	75
6		min	-50.914	12	3.932	5	-1078.296	12	0	1	0	1	0	1
7	N74A	max	815.68	12	965.381	6	432.041	12	.003	38	.006	12	.006	6
8		min	-959.5	6	-302.572	12	-993.138	6	0	8	006	6	006	12
9	N108	max	741.842	12	835.177	12	1203.839	12	.003	6	.001	6	.002	6
10		min	-894.694	6	-512.695	6	-811.907	6	003	12	002	12	002	12
11	Totals:	max	1577.159	11	2605.97		3146.342	1						
12		min	-1577.157	5	835.474	69	-3146.347	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code C	. Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	phi*Mn z	Cb	Egn
1	M1	L3X3X4	.321	2.669	6	.178	4.232			19638.824	46656	1.688	3.396	1	H2-1
2	M6	L3X3X4	.410	2.604	37	.179	2.604	V	48	19638.824	46656	1.688	3.401	1	H2-1
3	MP1A	PIPE 2.0	.545	7.031	12	.399	5.729		6	13973.503	32130	1.872	1.872	2	H3-6
4	M15	L3X3X4	.189	3.359	13	.249	.462	٧	36	32550.853	46656	1.688	3.744	1,	H2-1
5	M18	L3X3X4	.250	3.569	12	.226	.462	z	36	32550.853	46656	1.688	3.756	1	H2-1
6	M19	PIPE 1.0	.165	.99	12	.127	0		5	12039.608	14773.5	.465	.465	1,	H1-1b
7	M20	PIPE 1.0	.163	0	23	.088	3.167		12	12039.608	14773.5	.465	.465	2	H1-1b
8	M23	SR 0.75	.105	4.194	13	.011 -	0		8	2827.066	14313.866	.179	.179	2	H1-1b
9	M31	PL1/2X7_HRA	.272	.333	18	.275	0	٧	18	108906.6	113400	1.181	16.538	1	H1-1b
10	M32	PL1/2X7_HRA	.285	.333	14	.307	0	V	17	108906.6	113400	1.181	16.538	1	H1-1b
11	M31A	PL3/8x10	.271	.525	18	.074	0	٧		101674.5	121500	.949		1	H1-1b
12	M32A	PL3/8x10	.295	.525	18	.090	0			101674.5	121500	.949	25.313	1	H1-1b
13	M27	L3X3X4	.216	3.354	14	.228	4.024	z	18	32591.649	46656	1.688	3.755	1	H2-1
14	M28	L3X3X4	.133	.629	6	.216	4.024	У		32591.649	46656	1.688	3.756	1	H2-1
15	M29	PIPE 1.0	.180	.99	2	.133	0		12	12039.608	14773.5	.465	.465	2	H1-1b
16	M30	PIPE 1.0	.170	0	6	.099	0		6	12039.608	14773.5	.465	.465	2	H1-1b
17	M31C	SR 0.75	.100	4.191	14	.027	0		6	2831.301	14313.866	.179	.179	2	H1-1b
18	MP2A	PIPE 2.0	.276	7.552	6	.238	1.649		6	13973.503	32130	1.872	1.872	1	H1-1b
19	МРЗА	PIPE 2.0	.224	7.552	12	.177	2.517		12	13973.503	32130	1.872	1.872	1	H1-1b
20	MP4A	PIPE 2.0	.227	1.649	48	.111	5.729			13973.503	32130	1.872	1.872	3	H1-1b
21	M32B	L3X3X4	.634	3.581	6	.177	3.646	z		19638.824	46656	1.688	3.292	1	H2-1
22	M33A	L3X3X4	.326	3.581	1	.118	2.018	V	6	19638.824	46656	1.688	3.329	1	H2-1
23	M33B	PIPE 2.0	.037	0	6	.002	3.197		10	28425.244	32130	1.872	1.872	1	H1-1b*
24	M40	PIPE 2.0	.364	11.51	6	.251	11.646	-	6	5820.472	38556	2.246	2.246	4	H1-1b
25	M40A	L2.5x2.5x4	.117	3.372	12	.037	6.745	٧	12	9534.091	38556	1.114	2.088	1	H2-1
26	M41	L2.5x2.5x4	.121	3.095	12	.037	6.323	z	6	10849.516	38556	1.114	2.125	1	H2-1
27	M48	PIPE 2.0	.515	10.156	12	.250	10.156		12	5820.472	38556	2.246	2.246	1	H1-1b
28	M49	L2.5x2.5x4	.093	2.64	12	.014	0	z	42	15520.117	38556	1.114	2.222	1	H2-1
29	M50	L2.5x2.5x4	.094	2.295	12	.022	0	У	6	17636.274	38556	1.114	2.26	1	H2-1

VzWSMART Tool® Vendor

Client:	Verizon Wireless	Date:	7/5/2023
Site Name:	Quaker Hill CT - A		
MDG #:	5000244862		
Fuze ID #:	17123917	Page:	1
			Varaian 1 Of


Yes

Version 1.01

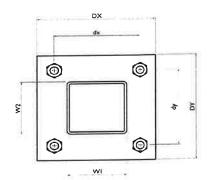
I. Mount-to-Tower Connection Check

Custom Orientation Required

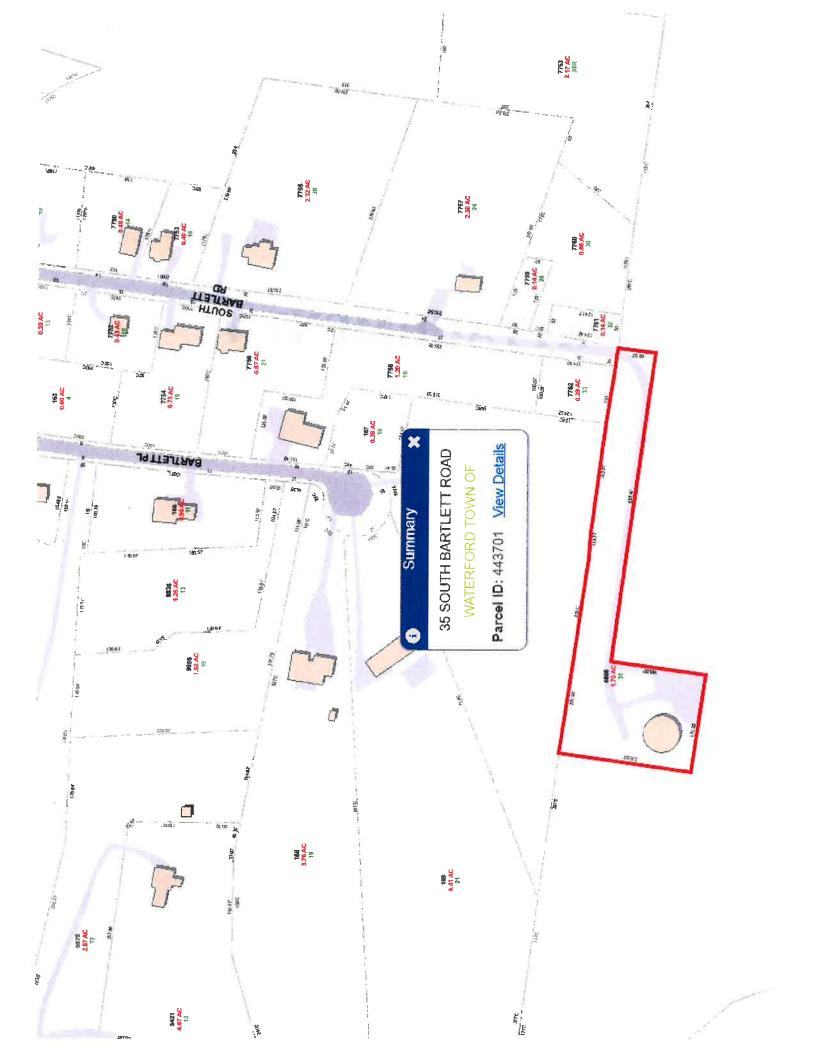
Nodes (labeled per Risa)	Orientation (per graphic of typical platform)
N62	60
N61A	60
the second second	THE PERSON NAMED IN

Tower Connection Bolt Checks

Bolt Orientation


Bolt Quantity per Reaction: d_x (in) (Delta X of typ. bolt config. sketch): d_y (in) (Delta Y of typ. bolt config. sketch): Bolt Type: Bolt Diameter (in): Required Tensile Strength / bolt (kips):

Required Shear Strength / bolt (kips): Tensile Capacity / bolt (kips): Shear Capacity / bolt (kips): **Bolt Overall Utilization:**


Tower Connection Baseplate Checks

Yes

Parallel	
4	
10	
2	
A307	
0.625	
0.2	
0.4	
10.4	
6.2	
7.0%	

ATTACHMENT 4

35 SOUTH BARTLETT ROAD

35 SOUTH BARTLETT ROAD Location

Mblu 11/ / 4866/ /

00443701 Acct#

WATERFORD TOWN OF Owner

\$562,060 Assessment

Appraisal \$802,930

PID 4866 **Building Count**

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Totai
2022	\$581,250	\$221,680	\$802,930
	Assessment		
Valuation Year	Improvements	Land	Total
2022	\$406,880	\$155,180	\$562,060

Parcel Addreses

Additional Addresses

No Additional Addresses available for this parcel

Owner of Record

Owner

WATERFORD TOWN OF

Sale Price

\$53,000

Co-Owner

Certificate

Book & Page 0777/0090

Sale Date

04/22/2005

Instrument

00

Ownership History

	Ownership	History			
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
WATERFORD TOWN OF	\$53,000		0777/0090	00	04/22/2005
MASHANTUCKET PEQUOT TRIBE THE	\$0		0743/0219	00	12/07/2004

Building Information

Building 1: Section 1

Year Built:

Living Area:

0

Replacement Cost:

\$0

Building Percent Good:

الداراة	Danadett
Field	Description
Style	Outbuildings
Model	
Grade:	
Stories	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure	
Roof Cover	
nterior Wall 1	2
nterior Wall 2	
nterior Flr 1	
nterior FIr 2	
Heat Fuel	
Heat Type:	
AC %	
otal Bedrooms:	
ull Bthrms:	
alf Baths:	X
xtra Fixtures	
otal Rooms:	
ath Style:	
Citchen Style:	
lum Kitchens	
ireplace(s)	
xtra Opening(s)	
as Fireplace(s)	
Attic Fin	
F Dormer	
oundation	
smt Gar(s)	
3smt %	
SF FBM	
SF Rec Rm	

Building Photo

(https://images.vgsi.com/photos/WaterfordCTPhotos//default.jpg)

Building Layout

Building Layout

(https://images.vgsi.com/photos/WaterfordCTPhotos//Sketches/4866_4866

Building Sub-Areas (sq ft)

<u>Legend</u>

No Data for Building Sub-Areas

Fin Bsmt Qual	
Bsmt Access	

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use

909

Use Code Description

Exempt Vac w/ OB

Zone

IP-1

Neighborhood IND1

Alt Land Appr

Category

Land Line Valuation

Size (Acres)

1.7

Frontage

0

Depth

0

Assessed Value

\$155,180

Appraised Value \$221,680

Outbuildings

Outbuildings					<u>Lege</u> ı	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
SUM	Lump Sum			775000.00 UNITS	\$581,250	

Valuation History

Appraisal				
Valuation Year	Improvements	Land	Total	
2022	\$581,250	\$221,680	\$802,930	
2021	\$697,500	\$221,680	\$919,180	

Assessment			
Valuation Year	Improvements	Land	Total
2022	\$406,880	\$155,180	\$562,060
2021	\$488,250	\$155,180	\$643,430

ATTACHMENT 5

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here	6		
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving.	B 2 employee)	neopost 08/03/2023 \$003.199 US POSTAGE \$003.199 7IP 06103 041L12203937			
USPS® Tracking Number Firm-specific Identifier	Ad (Name, Street, City,	dress State, and ZIP Code™)	Postage Fee	Special Handling	Parcel Airlift	
1. 2.	Robert J. Brule, First S Town of Waterford 15 Rope Ferry Road Waterford, CT 06385 Jonathan Mullen, Plant Town of Waterford 15 Rope Ferry Road Waterford, CT 06385	electman	AUG 3 - 2023	08103		
3.			,			
4.						
5.						
6.						