Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

January 2, 2024

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification

51 Daniels Avenue, Waterford, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced address (the "Property"). Cellco's facility consists of antennas and remote radio heads attached to a tower. Equipment associated with the facility is located on the ground adjacent to the tower. The tower was approved by the Town of Waterford in November 2008. Cellco's shared use of the tower was approved by the Council in April of 2009 (TS-VER-152-090326). A copy of the Town's original tower approval and Cellco's shared use approval are included in Attachment 1.

Cellco's proposed modification involves the removal of six (6) existing antennas and three (3) existing remote radio heads (RRHs) and the installation of nine (9) new antennas (six (6) Model JAHH-65B-R2B and three (3) Model MT6413-77A) and six (6) new RRHs (three (3) Model RF4439d-25A and three (3) Model RF4461d-13A). All new equipment will be installed on Cellco's existing antenna mounting assemblies. A set of Project Plans showing Cellco's modifications and the specifications for the new antennas and RRHs are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Waterford's Chief Elected Official and Land Use Officer. The Town of Waterford is the owner of the Property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

28331257-v1

Robinson+Cole

Melanie A. Bachman, Esq. January 2, 2024 Page 2

- 1. The proposed modification will not result in an increase in the height of the existing tower. The replacement antennas and RRHs will be installed on Cellco's existing mounting assemblies.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas and RRHs will not result in a change to radio frequency (RF) emissions from the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A Calculate Radio Frequency Emissions Report for Cellco's modified facility is included in <u>Attachment 3</u>.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, foundation, and antenna mounting assemblies, with certain modifications, can support Cellco's proposed modifications. A copy of the SA and MA are included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the Property owner is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Kunie gmu

Enclosures Copy to:

Rob Brule, First Selectman Jonathan Mullen, Planning Director Alex Tyurin, Verizon Wireless

ATTACHMENT 1

FIFTEEN ROPE FERRY ROAD

TOWN OF WATERFORD PLANNING & ZONING COMMISSION

NOTICE OF GRANT OF A SPECIAL PERMIT

This is to certify that on November 24, 2008, the Waterford Planning & Zoning Commission granted Special Permit #PZ2008-033.

Owner of Record: Town of Waterford

Address: 51 Daniels Avenue

Description of Premises:

As recorded in Volumes 107, Page(s) 567 of the Waterford Land Records.

Nature of Special Permit: Special Permit and site plan approval granted for erection of a telecommunications tower

Applicable Zoning Regulations: Sections 5, 22 & 23.

Permit findings, stipulations and conditions are filed in the office of the Town Clerk as stated in the minutes of the Planning & Zoning Commission meeting of November 24, 2008.

PLANNING & ZONING COMMISSION

By: 🐰

Recording Secretary

Planning & Zoning Commission

This notice is to be recorded on the land records of the Town of Waterford, indexed in the Grantor's Index under the name of the record owner.

October 17, 2008

Christopher B. Fisher, Esq. Cuddy & Feder LLP 445 Hamilton Avenue, 14th Floor White Plains, NY 10601

RE: Conservation Permit #2008-041
51 Daniels Avenue - Communications Tower

Dear Mr. Fisher:

At a meeting held on October 16, 2008, the Waterford Conservation Commission approved the above referenced application with conditions.

Please submit two copies of the finalized site plans in accordance with the terms and conditions of the permit (attached). Once submitted, the Chairman will sign the plans and permit and a set will be forwarded to you for your records. If you have any questions, please feel free to call Maureen FitzGerald, Environmental Planner, at 860-444-5813.

Sincerely,

Carol Libby 0

Recording Secretary Conservation Commission

Certified Mail #7006 0810 0006 0893 5010

Town of Waterford 1st Selectman SBA Network Services, Inc.

WATERFORD, CT 06385-2886

SBA Towers II, LLC c/o SBA Network Services, Inc. 80 Eastern Boulevard Glastonbury, CT 06033

RE:

Application #PZ2008-033

51 Daniels Avenue/Communications Tower

Dear Mr. Dupont:

At a meeting on November 24, 2008, the Town of Waterford Planning and Zoning Commission took the following action in regards to the above referenced application:

APPROVED WITH CONDITIONS: #PZ2008-033 - Request of the Town of Waterford by its agent SBA Towers II, LLC, applicant; Town of Waterford, owner, Christopher B. Fisher, Esq. agent for special permit and site plan approval to locate a communications tower at 51 Daniels Avenue, R-40 zone, in accordance with Sections 5.2.1, 5.2.2, 22 and 23 of the Zoning Regulations and as shown on plans entitled "Site Name: Southwest School, Site Address: 51 Daniels Avenue, Waterford, CT 06385" dated July 28, 2008 with revisions to September 13, 2008.

Please refer to the attached minutes and special permit for the conditions of the approval.

In order to comply with the record retention schedule required by the State of Connecticut, you are required to file a Notice of Special Permit with the Waterford Town Clerk. This Notice can be filed after the 15 day appeal period expires, which is December 16, 2008. At the time you are ready to file this Notice, please come to the Permitting Office and the original notice and one copy will be given to you. Both of these shall be stamped in at the Clerk's Office, and the copy is to be returned to this office.

Please also submit two sets of check prints incorporating the conditions of the Planning and Zoning Commission and Conservation Commission approvals for Staff review. After this review, you will be notified to submit one mylar and 12 sets of final plans for the Chairmen's signatures.

Sincerely,

Recording Secretary

Planning and Zoning Commission

awn Chouse

Enclosure:

Minutes

Notice of Action

Certified #7008 0500 0000 7478 7841

Cc: Christopher B. Fisher, Esq., w/attachments

FIFTEEN ROPE FERRY ROAD

November 25, 2008

The Day Publishing Company – Legal Ads Eugene O'Neill Drive New London, CT 06320

Please prepare the following notice for publication in your newspaper on Monday December 1, 2008 and send a Publisher's Certificate along with your bill, charged to #92962:

TOWN OF WATERFORD PLANNING AND ZONING COMMISSION NOTICE OF ACTION

At a meeting held on November 24, 2008, the Waterford Planning and Zoning Commission took the following actions:

APPROVED WITH CONDITIONS

#PZ2008-033 - Request of the Town of Waterford by its agent SBA Towers II, LLC, applicant; Town of Waterford, owner, Christopher B. Fisher, Esq. agent for special permit and site plan approval to locate a communications tower at 51 Daniels Avenue, R-40 zone.

#PZ2008-030—Request of Jeffrey J. Barclay, applicant Edmund O & Vincent P. DeSantis owners; Boundaries, LLC, agent for Coastal Site Plan review and approval to construct a new single family home on property located at 14 Westcot Road, RU-120 zone.

#PZ2008-038 - Request of Michael Hoelck, applicant; Hoelck's Realty LLC, owner, for modification of an approved site plan at 341 Boston Post Road, R-20 zone. The approval of this site plan includes fire zones as may be established and enforced pursuant to Chapter 8.08 of the Waterford Code of Ordinances.

Information regarding the above actions is on file in the office of the Planning and Zoning Commission, Waterford, Connecticut.

Dated at Waterford, CT this 25th day of November, 2008.

Edwin Maguire, Chairman Gwendolyn Hughes, Secretary

By: Dawn Choisy, Recording Secretary 444-5813

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: TS-VER-152-090326 - Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 51 Daniels Avenue, Waterford, Connecticut.

Dear Attorney Baldwin:

At a public meeting held April 23, 2009, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures with the following conditions:

- The coax lines shall be configured per Figure 1 of the structural analysis report dated March 3, 2009 and sealed by Christopher Michael Murphy, P.E.; and
- The Council shall be notified in writing that the coax was configured as specified.

This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction. Please be advised that the validity of this action shall expire one year from the date of this letter.

The proposed shared use is to be implemented as specified in your letter dated March 26, 2009, including the placement of all necessary equipment and shelters within the tower compound.

Thank you for your attention and cooperation.

Very truly yours,

Daniel F. Caruso

Chairman

DFC/MP/laf

c: The Honorable Daniel M. Steward, First Selectman, Town of Waterford Thomas V. Wagner, Planning Director, Town of Waterford SBA

& F. Caruso

t:\sining\Corms\examod\usdelu.doc

ATTACHMENT 2

20 ALEXANDER DRIVE, 2nd FLOOR WALLINGFORD, CT 06492

WATERFORD SOUTH CT

51 DANIELS AVENUE WATERFORD, CT 06385 **NEW LONDON COUNTY**

PROJECT TYPE: UPGRADE TO EXISTING WIRELESS TELECOMMUNICATIONS INSTALLATION ON EXISTING 180'± SELF-SUPPORT TOWER

SITE INFORMATION

VERIZON LOCATION CODE: WATERFORD SOUTH CT VERIZON SITE NAME-SBA SITE NUMBER: CT09865-S SBA SITE NAME: NIANTIC 240519, V1 SBA COLLO APP NUMBER 5000244405 FUZE PROJECT ID: 17123905 51 DANIELS AVENUE SITE ADDRESS: WATERFORD, CT 06385 TOWN OF WATERFORD PROPERTY OWNER 15 ROPE FERRY ROAD WATERFORD, CT 06385

TOWER OWNER SBA TOWERS II. LLC 8501 CONGRESS AVENUE BOCA RATON, FL 33487

PHONE: 561-226-9523 NEW LONDON, CT (R-40) RESIDENTIAL

SELF-SUPPORT TOWER STRUCTURE TYPE: STRUCTURE HEIGHT: STRUCTURE HEIGHT W/APPURTENANCE: 188'+ 116'± GROUND ELEVATION:

COUNTY ZONING DISTRICT:

TOTAL AMSL CENTER OF EXISTING SELF-SUPPORT TOWER SITE CONTROL POINT N 41°-19'-48.95" (41.330264°) (NAD '83) W 72°-10'-00.02" (-72.166672°) (NAD '83)

ARCHITECT/ENGINEER: CHAPPELL ENGINEERING ASSOCIATES, LLC 201 BOSTON POST ROAD WEST, SUITE 101

MARI BOROUGH MA 01752

GENERAL NOTES

- 1. CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON JOB SITE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK, FAILURE TO NOTIFY THE ARCHITECT/ENGINEER PLACES THE RESPONSIBILITY ON THE CONTRACTOR TO CORRECT THE DISCREPANCIES AT THE CONTRACTOR'S EXPENSE
- 2. NEW CONSTRUCTION SHALL CONFORM TO ALL APPLICABLE CODES AND ORDINANCES.
 - BUILDING CODE: 2022 CONNECTICUT STATE BUILDING CODE ELECTRICAL CODE: 2017 NATIONAL ELECTRICAL CODE

 - STRUCTURAL CODE: TIA/EIA-222-G STRUCTURAL STANDARDS FOR ANTENNA SUPPORTING STRUCTURES AND ANTENNAS

AT LEAST 72 HOURS PRIOR TO DIGGING, THE CONTRACTOR IS REQUIRED TO CALL DIG SAFE AT 81

VICINITY MAP

SCALE: 1"=1000"

DRIVING DIRECTIONS

FROM WALLINGFORD, TAKE CT-68 EAST. TURN LEFT ONTO CT-17 NORTH/MAIN STREET, TURN RIGHT ONTO RANDOLPH ROAD. TURN RIGHT TO MERGE ONTO CT-9 SOUTH TOWARD OLD SAYBROOK, MERGE ONTO CT-9 SOUTH, USE LEFT LANE
TO MERGE ONTO I-95 NORTH/US-1 NORTH TOWARD NEW LONDON/PROVIDENCE. CONTINUE TO FOLLOW I-95 NORTH. TAKE EXIT 75 TOWARD WATERFORD, MERGE ONTO US-1 NORTH/BOSTON POST ROAD, TURN RIGHT ONTO NIANTIC RIVER ROAD, TURN LEFT ONTO DANIELS AVENUE. SITE IS LOCATED ON THE RIGHT HAND SIDE.

SHEET INDEX

SUPPORTING DOCUMENTS

ANTENNA MOUNT STRUCTURAL ANALYSIS DATE: 09/13/23 (BY COLLIERS ENGINEERING & DESIGN)

STRUCTURAL ANALYSIS DATE: 11/21/23 (BY TOWER ENGINEERING SOLUTIONS)

RADIO FREQUENCY (RF) DESIGN DATE: 12/05/23

DWG.	DESCRIPTION	REV.
T01	TITLE SHEET	2
GN01	GENERAL NOTES	2
A01	SITE PLAN	2
A02	COMPOUND PLAN	2
A03	TOWER ELEVATIONS	2
A04	ANTENNA PLANS & SITE DETAILS	2
RF01	RF DATA	2
RF02	RF PLUMBING DIAGRAM	2
RF03	RF COLOR CODE SPECIFICATIONS	2
E01	GROUNDING NOTES & DETAILS	2

DO NOT SCALE DRAWINGS

ALL PLANS, EXISTING DIMENSIONS AND CONDITIONS AT THE PROPOSED PROJECT SITE SHALL BE VERIFIED IN THE FIELD DURING THE CONSTRUCTION PHASE. THE PROJECT OWNER'S REPRESENTATIVE SHALL BE NOTIFIED IN WRITING OF ANY DISCREPANCIES IMMEDIATELY PRIOR TO PROCEEDING WITH THE PROPOSED WORK AFFECTED BY SUCH DISCREPANCIES. IN THE EVENT OF LACK OF SUCH NOTIFICATION, SUCH DISCREPANCIES SHALL BECOME THE RESPONSIBILITY OF THE PREVAILING CONTRACTOR RESPONSIBLE FOR CONSTRUCTION.

PROJECT DESCRIPTION

- 1. THIS IS AN UNMANNED AND RESTRICTED ACCESS EQUIPMENT INSTALLATION AND WILL BE USED FOR THE TRANSMISSION OF RADIO SIGNAL FOR THE PURPOSE OF PROVIDING PUBLIC WIRELESS TELECOMMUNICATIONS SERVICE.
- 2. THIS FACILITY DOES NOT NOR WILL IT CONSUME UNRECOVERABLE ENERGY 3. NO PORTABLE WATER SUPPLY IS OR WILL BE PROVIDED AT THIS LOCATION
- 4. NO WASTE WATER IS OR WILL BE GENERATED AT THIS LOCATION

SCOPE OF WORK

- REMOVE:

 3 SECTOR FRAMES
- 12 ANTENNAS 3 RADIOS
- 1 JUNCTION BOX (OVP) 18 COAXIAL CABLES

- INSTALL:

 3 HEAVY-DUTY V-FRAMES
- 3 SIDE-BY-SIDE ANTENNA MOUNTS 9 ANTENNAS
- 6 BADIOS
- 3 DIPLEXERS
- 2 JUNCTION BOXES (OVP)

verizon^v

20 ALEXANDER DRIVE, 2ND FLOOR WALLINGFORD, CT 06492 (203) 741-7338

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 (508) 251-0720

R.K. EXECUTIVE CENTRE
201 BOSTON POST ROAD WEST, SUITE 101
MARLBOROUGH, MA 01752
(508) 481-7400
www.chappellengineering.com

JMT SUBMITTALS 11/21/23 ISSUED FOR CONSTRUCTION CAID

> WATERFORD SOUTH CT

51 DANIELS AVENUE WATERFORD, CT 06385

VZW LOCATION CODE 460015 MDG LOCATION ID: 5000244405 FUZE PROJECT ID: 17123905

TITLE SHEET

T01

GENERAL NOTES:

- FOR THE PURPOSE OF CONSTRUCTION DRAWINGS, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR VERIZON WIRELESS SUBCONTRACTOR GENERAL CONTRACTOR (CONSTRUCTION)
 - OWNER VERIZON WIRELESS
 OEM ORIGINAL EQUIPMENT MANUFACTURER
- PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL YIST THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWNINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.
- 3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES, SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- 4, ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 5. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CONTRACTOR.
- 9. Subcontractor shall determine actual routing of conduit, power and t1 cables, grounding cables as shown on the power, grounding and telco plan drawing. Subcontractor shall utilize existing trays and/or shall add new trays as necessary. Subcontractor shall confirm the actual routing with the contractor.
- 10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAYEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- 11. Subcontractor shall legally and properly dispose of all scrap materials such as coaxial cables and other items removed from the existing facility. Antennas removed shall be returned to the owner's designated location.
- 12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 13. THE SUBCONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HERBIN. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- 14. SUBCONTRACTOR SHALL NOTIFY CHAPPELL ENGINEERING ASSOCIATES, LLC. 48 HOURS IN ADVANCE OF POURING CONCRETE OR BUCK FILLING TRENCHES, SEALING ROOF AND WALL PONETRATIONS & POST DOWNS, FINISHING NEW WALLS OR FINAL ELECTRICAL CONNECTIONS FOR ENGINEERING ROMEW.
- 15. CONSTRUCTION SHALL COMPLY WITH VERIZON WIRELESS NETWORK STANDARD (INSTD123 TO THE MAXIMUM EXTENT FEASIBLE UNLESS PRECLUDED OR LIMITED BY DESIGN SHOWN ON THESE DRAWINGS.
- 18. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK, ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWNESS MUST BE "URBRIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCORPANCES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 17. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION, ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR.
 ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MAINTENANCE.
- 18, SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMACNETIC RADATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

SITE WORK GENERAL NOTES:

- 1. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 2. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTIED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RECLORED AS DIRECTED BY EVANDEEDS. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRELLING PIERS AROUND OR NEAR UTILITIES, SUBCONTRACTION SHOULD SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLIDE BUT NOT BE LIMITED TO A PLALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY (7) TRENCHING & EXCAVATION.
- 3. ALL SITE WORK SHALL RE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 5. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BITS EQUIPMENT AND TOWER AREAS.
- 8. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 7. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 8. ALL DOSTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE RELOYED AND/OR CAPPED, PUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE DISCUTION OF THE WORK, SUBJECT TO THE APPROVAL OF ENGINEERING, OWNER AND/OR LOCAL UTILITIES.
- 9. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRINBURY, SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION AS SPECIFICED IN THE PROJECT SPECIFICATION.
- 10. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 11. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE VERIZON WIRELESS SPECIFICATION FOR SITE SIGNAGE.

CONCRETE AND REINFORCING STEEL NOTES:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2, ALL CONCRETE SHALL HAVE A MANMAN COMPRESSIVE STRENGTH OF 3000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE, A HIGHER STRENGTH (4000PSI) MAY BE USED, ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 381 CODE
- 3. REINFORCING STEEL SHALL CONFORM TO ASTM A 815, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE, WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 186 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD. UNO.
- 4. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- 5. A CHAMFER 36" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.
- 6. INSTALLATION OF CONCRETE EXPANSION/MEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWMINGS. MO REBAR SHALL BE CUT WITHOUT PRIOR ENGINEERING APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY COMPRISING COOKS, SHALL BE STANLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY PANSET/REDHEAD OR APPROVED EQUAL.
- 7. CONCRETE CYLINDER TEST IS NOT REQUIRED FOR SLAB ON GRADE WHEN CONCRETE IS LESS THAN 50 CUBIC YARDS (BBC1805.8.2.3) IN THAT EVENT THE FOLLOWING RECORDS SHALL BE PROVIDED BY THE CONCRETE SUPPLIER; (A) RESULTS OF CONCRETE CYLINDER TEST PERFORMED AT THE SUPPLIERS PLANT. (B) CERTIFICATION OF IMMINIUM COMPRESSIVE STRENGTH FOR THE CONCRETE GRADE SUPPLIED.
- FOR GREATER THAM 50 CUBIC YARDS THE GC SHALL PERFORM THE CONCRETE CYLINDER TEST.

 8. AS AN ALTERNATIVE TO ITEM 7. TEST CYLINDERS SHALL BE TAKEN INITIALLY AND THEREAFTER FOR EVERY 50 YARDS OF CONCRETE FROM EACH DIFFERENT BATCH PLANT.
- 9. EQUIPMENT SHALL NOT BE PLACED ON NEW PADS FOR SEVEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY CYLINDER TESTS THAT COMPRESSIVE STRENGTH HAS BEEN ATTAINED.

STRUCTURAL STEEL NOTES:

- 1. ALL STEEL WORK SHALL BE PAINTED OR GALVANIZED IN ACCORDANCE WITH THE DRAWINGS AND VERIZON WIRELESS SPECIFICATION
 28/282-000-3PS-GET-00001 UNLESS OTHERWISE NOTED. STRUCTURAL STEEL SHALL BE ASTM-A-38 UNLESS OTHERWISE NOTED ON
 THE SITE SPECIFIC DRAWINGS. STEEL DESIGN, INSTALLATION AND BOLTING SHALL BE IN ACCORDANCE WITH THE AMERICAN INSTITUTE
 OF STEEL CONSTRUCTION (AISC) "MANUAL OF STEEL CONSTRUCTION".
- 2. ALL WELDING SHALL BE PERFORMED USING ETOICK ELECTRODES AND WELDING SHALL CONFORM TO AISC AND AWS D1.1. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE WINNUM SIZE PER TABLE 12.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION", 9TH EDITION. PAINTED SURFACES SHALL BE TOUCHED UP.
- 3. BOLTED CONNECTIONS SHALL USE BEARING TYPE ASTM A325 BOLTS (%*) AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE.
- 4. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE %" DIA. ASTM A 307 BOLTS LINLESS MOTED OTHERWISE.
- 5. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHORS SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE.
 THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO THE MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS
 SHOWN ON THE PRANINGS, NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE,
 SPECIAL INSPECTIONS, REQUIRED BY COVERNING CODES, SHALL BE PERFORMED IN CORDET TO MAINTAIN MANUFACTURER'S MAXIMUM
 ALLOWMENE LOADS, ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED, EXPANSION BOLTS
- 6. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR ENGINEER REVIEW & APPROVAL ON PROJECTS REQUIRING STRUCTURAL STEEL
- 7. ALL STRUCTURAL STEEL WORK SHALL BE DONE IN ACCORDANCE WITH AISC SPECIFICATIONS.

SOIL COMPACTION NOTES FOR SLAB ON GRADE:

- 1. EXCAVATÉ AS REQUIRED TO RÉMOVÉ VEGETATION AND TOPSON. TO EXPOSE NATURAL SUBGRADE AND PLACE CRUSHED STONE AS RÉQUIRED.
- 2. COMPACTION CERTIFICATION: AN INSPECTION AND WRITTEN CERTIFICATION BY A QUALIFIED GEOTECHNICAL TECHNICIAN OR ENGINEER IS ACCEPTABLE.
- 3. AS AN ALTERNATE TO INSPECTION AND WRITTEN CERTIFICATION, THE "UNDISTURBED SOIL" BASE SHALL BE COMPACTED WITH "COMPACTION EQUIPMENT", LISTED BELOW, TO AT LEAST 90% MODIFIED PROCTOR MAXIMUM DENSITY PER ASTM D 1557 METHOD C.
- 4. COMPACTED SUBBASE SHALL BE UNIFORM AND LEVELED. PROVIDE 6" MINIMUM CRUSHED STONE OR GRAVEL COMPACTED IN 3"
 LIFTS ABOVE COMPACTED SOIL GRAVEL SHALL BE NATURAL OR CRUSHED WITH 100% PASSING #1 SECVE.
- 5. AS AN ALTERNATE TO ITEMS 2 AND 3, THE SUBGRADE SOLS WITH 5 PASSES OR A MEDIUM SIZED VIBRATORY PLATE COMPACTOR (SUCH AS BOMAG BPR 30/38) OR HAND-OPERATED SINGLE DRUM VIBRATORY ROLLER (SUCH AS BOMAG BW 55E), AND SOFT AREAS THAT ARE ENCOUNTERED SHOULD BE REMOVED AND REPLACED WITH A WELL-GRADED GRANULAR FILL AND COMPACTED AS STATED ABOVE.

COMPACTION EQUIPMENT:

1. HAND OPERATED DOUBLE DRUM, VIBRATORY ROLLER, VIBRATORY PLATE COMPACTOR OR JUMPING JACK COMPACTOR.

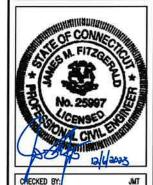
CONSTRUCTION NOTES:

- 1. FELD VERFICATION: SUBCONTRACTOR SHALL FIELD VERIFY SCOPE OF WORK, VERIZON WIRELESS ANTENNA PLATFORM LOCATION AND ANTENNAS TO BE REPLACED.
- 2. COORDINATION OF WORK: SUBCONTRACTOR SHALL COORDINATE RF WORK AND PROCEDURES WITH CONTRACTOR.
- 3. CABLE LADDER RACK: SUBCONTRACTOR STALL FURNISH AND INSTALL CABLE LADDER RACK, CABLE TRAY, AND CONDUIT AS REQUIRED TO SUPPORT CABLES TO THE NEW BTS LOCATION.

ELECTRICAL INSTALLATION NOTES:

- 1. WIRING, RACEWAY, AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC AND TELECORDIA.
- 2. SUBCONTRACTOR SHALL MODIFY EXISTING CABLE TRAY SYSTEM AS REQUIRED TO SUPPORT RF AND TRANSPORT CABLING TO THE NEW BTS EQUIPMENT. SUBCONTRACTOR SHALL SUBMIT MODIFICATIONS TO CONTRACTOR FOR APPROVAL
- J. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC AND TELCORDIA.
- 4. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS.
- 5. EACH END OF EVERY POWER, GROUNDING, AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC & OSHA, AND MATCH EXISTING INSTALLATION REQUIREMENTS.
- 8. POWER PHASE CONDUCTORS (I.E., HOTS) SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/4 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL), PHASE CONDUCTOR COLOR CODES SHALL CONFORM WITH THE NEC & OSHA AND MATCH EXISTING INSTALLATION REQUIREMENTS
- 7. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACTY RATING, AND BRANCH CIRCUIT ID NUMBERS (I.E., PANEL BOARD AND CIRCUIT ID'S).
- 8. PANEL BOARDS (ID NUMBERS) AND INTERNAL CRICUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS.
- 8. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.
- 10. POWER, CONTROL, AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (#34-AWG OR LARGER), 500 Y, OIL RESISTANT THEN OR THINN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 'C' (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIAL OF THE CONTROL OF THE CON
- 11. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (#6 AWG OR LARGER), 800 V, OIL RESISTANT THEN OR THYN-2 GREEN INSULATION, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEMAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.
- 12. Supplemental equipment ground wring located outdoors, or below grade, shall be single conductor

 ∮3 awg solid tinned copper cable, unless otherwise specified.
- 13. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT, SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#34 AMG OR LARGER), 800 V, OIL RESISTANT THEN OR THINN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (MET AND DRY) OPERATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED, UNLESS OTHERWISE SPECIFIED.
- 14. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75°C (90°C IF AVAILABLE).
- 15. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.
- 18. NEW RACEWAY OR CABLE TRAY WILL MATCH THE EXISTING INSTALLATION WHERE POSSIBLE
- 17. ELECTRICAL METALLIC TURBING (EMT) OR RIGID NONMETALLIC CONDUIT (LE, RIGID PVC SCHEDULE 40, OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.
- 18. ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PMC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 19. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE GRADE
- RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERGROUND; DIRECT BURED; IN AREAS OF OCCISIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED CONDITION.
- 21. LIQUID—TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID—TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 22. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 23. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/REEE, AND NEC.
- 24. CABINETS, BOXES, AND WIREWAYS TO MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.
- 25. WIREWAYS SHALL BE EPOXY—COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) INTROORS
- 28. EDUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES, AND PULL BOXES SHALL BE GALVANIZED OR PDOXY-COATED SHEET STEEL, SHALL MEET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) HIDDORS, OR NEMA 1 (OR BETTER) HIDDORS,
- 27. METAL RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED, OR NON— CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER
- 28. NONMETALLIC RECEPTACLE, SWITCH, AND DEWCE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 29. THE SUBCONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CONTRACTOR BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 30. THE SUBCONTRACTOR SHALL PROMDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY.
- 31. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE LOCAL CODES.
- 32. CONDUIT ROUTINGS ARE SCHEMATIC. SUBCONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED.


20 ALEXANDER DRIVE, 2ND FLOOR WALLINGFORD, CT 06492 (203) 741-7338

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 (508) 251-0720

R.K. EXECUTIVE CENTRE
201 BOSTON POST ROAD WEST, SUITE 101
MARLBOROUGH, MA 01752
(508) 481-7400
www.choppellengineering.com

APPROVED BY: JMT

SUBMITTALS

REV. DATE DESCRIPTION BY

2 12/08/23 CONSTRUCTION REVISED CAC
1 11/21/23 ISSUED FOR CONSTRUCTION CAC
0 11/14/23 ISSUED FOR REVISED CAC

PROJECT NAME & ADDRESS

WATERFORD SOUTH CT

WATERFORD, CT 06385

SHEET WILE

GENERAL NOTES

SHEET HUMBER

GN01

22138

20 ALEXANDER DRIVE, 2ND FLOOR WALLINGFORD, CT 06492 (203) 741-7338

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 (508) 251-0720

R.K. EXECUTIVE CENTRE
201 BOSTON POST ROAD WEST, SUITE 101
MARLBOROUGH, MA 01752
(508) 481-7400
www.chappellengineering.com

CHECKED BY: JMT

APPROVED BY: JMT

	S	UBMITTALS	
REV.	DATE	DESCRIPTION	BY
2	12/08/23	CONSTRUCTION REVISED	O.C
1	11/21/23	ESSUED FOR CONSTRUCTION	CLC
0	11/14/23	ISSUED FOR REVEN	CHC

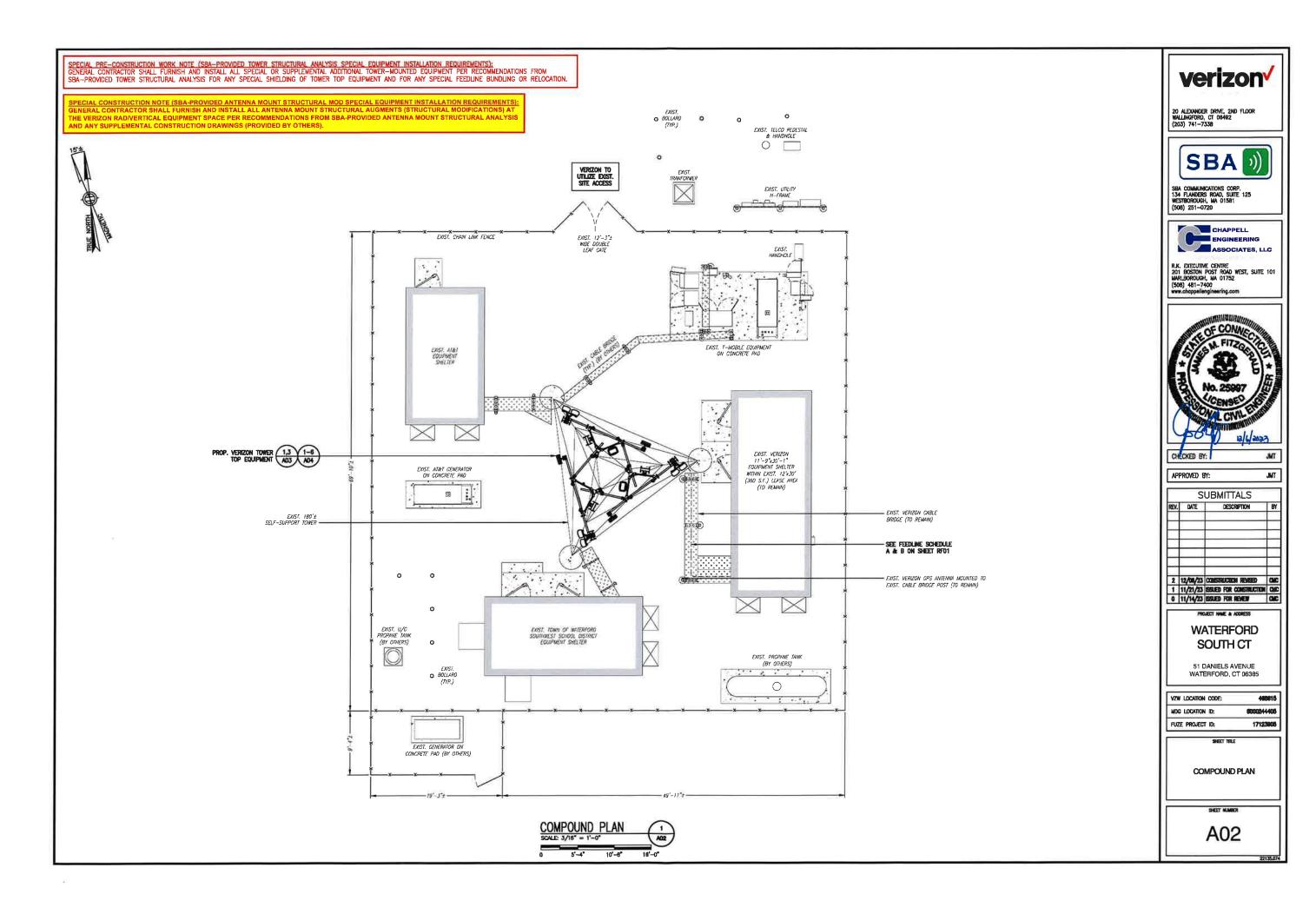
WATERFORD SOUTH CT

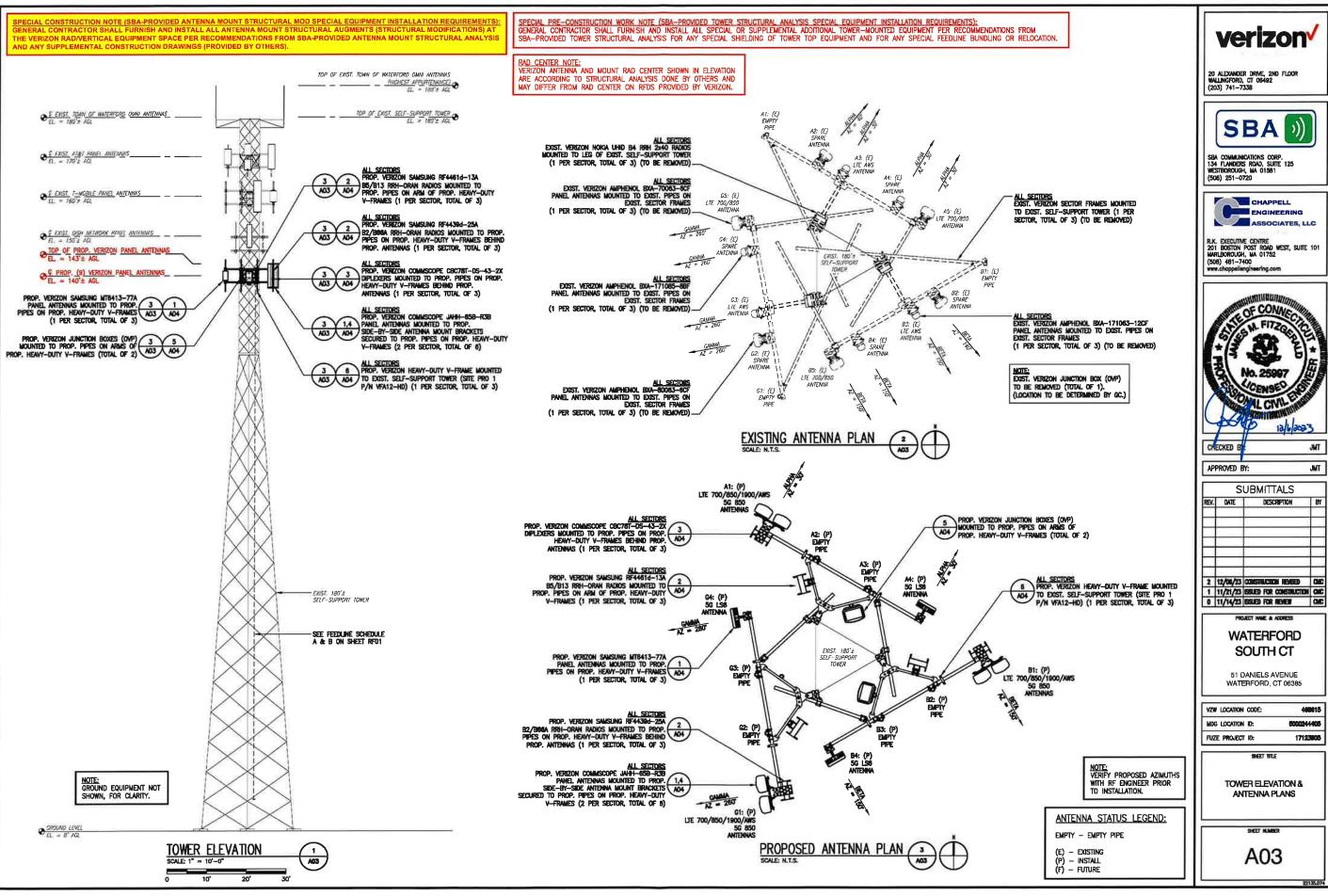
51 DANIELS AVENUE WATERFORD, CT 06385

ı	VZW LOCATION CODE:	4606
ı	MDG LOCATION ID:	50002444
ı	FUZE PROJECT ID:	171239

SHEET

SITE PLAN


SHEET NUM


A01

SITE PLAN

SCALE: 1" = 100"-0"

100' 200' 300'

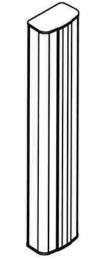
verizon/

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBORDUGH, MA 01581

R.K. EXECUTIVE CENTRE
201 BOSTON POST ROAD WEST, SUITE 101
MARLBOROUGH, MA 01752
(S08) 481-7400
www.choppellengineering.com

JMT JMT

SUBMITTALS REV. DATE DESCRIPTION 2 12/06/23 CONSTRUCTION REVISED CMC 1 11/21/23 ISSUED FOR CONSTRUCTION CHIC


WATERFORD

51 DANIELS AVENUE

8000244405 17123005

TOWER ELEVATION & ANTENNA PLANS

A03

COMMSCOPE JAHH-658-R3B ANTENNA DIMENSIONS: 72.0"H x 13.8"W x 8.2"D WEIGHT: 64.4 Ibu QUANTITY: 2 PER SECTOR, TOTAL OF 8 SECTORS: ALPHA, BETA, GAMMA

SAMSUNG MT6413-77A ANTENNA DIMENSIONS: 28.9"H x 15.8"W x 5.5"D

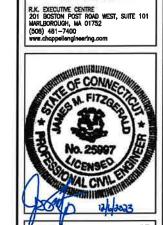
WEIGHT: 57.3 Be QUANTITY: 1 PER SECTOR, TOTAL OF 3 SECTORS: ALPHA, BETA, GAMMA 1 AD4 ANTENNA DETAILS

SAMSUNG RF4439d-25A B2/B66A RADIO

DMENSIONS: 15.0"H x 15.0"W x 10.0"D WEIGHT: 74.7 Ibn QUANTITY: 1 PER SECTOR, TOTAL OF 3 SECTORS: ALPHA, BETA, GAMMA

SAMSUNG RF4461d-13A B5/B13 RADIO

DIMENSIONS: 15.0"H x 15.0"W x 10.2"D WEIGHT: 79.1 lbn QUANTITY: 1 PER SECTOR, TOTAL OF 3 SECTORS: ALPHA, BETA, GAMMA



COMMSCOPE CBC78T-DS-43-2X 4-PACK 700/850MHz DIPLEXER DIMENSIONS: 6.4"H x 6.9"W x 9.6"D WEIGHT: 20.7 lbs QUANTITY: 1 PER SECTOR, TOTAL OF 3

DIPLEXER DETAIL

verizon/

20 ALEXANDER DRIVE, 2ND FLOOR WALLINGFORD, CT 06492 (203) 741-7338

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 (506) 251-0720

CHAPPELL

SBA (1)

CHECKED JMT

	S	UBMITTALS	
REV.	DATE	DESCRIPTION	BY
2	12/08/23	CONSTRUCTION REVISED	CMC
1	11/21/23	ESUED FOR CONSTRUCTION	CHE
0	11/14/23	ESSUED FOR REVEN	

WATERFORD SOUTH CT

51 DANIELS AVENUE WATERFORD, CT 06385

ı	VZW LOCATION CODE:	460615
ı	MDG LOCATION ID:	5000244405
ı	FUZE PROJECT ID:	17123005

SITE DETAILS

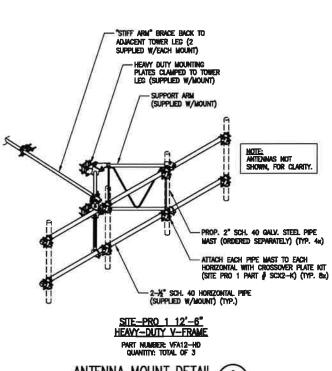
A04

ANTENNA MOUNTING PLATE. DO NOT REMOVE, LOOSEN, OR ADJUST THE ANTENNA MOUNTING PLATE(S). TOP 627281 BOTTOM 627281 BRACKET PIPE MOUNT BRACKETS

Procedure Mounting Procedure

A mounting base is delivered with the unit. The base allows either walt/ladder or pole mounted installation. See picture to identify the hotes for each installation

ssembled in unit as shipped:									
Oty	Connector Size	Pos	Insert P/N	Insert Hole	Cable Type				
2	M75	Α	180-0760	42mm	5x12 FL				
4	M75	В	190-0738	3x 16.5mm	1x2				


nctuc	ed in lat shippe Connector	Insert	Insert	Cable		
Qty	Stze	P/N	Hole	Type	Purpose	Pos
2	M75	190-0760	42mm	6x12 FL	2 glands f4 1 each 6/12 Hyb	В
2	M75	190-0747	2x 24.5mm	2x12 DC	2 glands fit 2 cach #6 12 cond DC	В
1	M75	190-0905	2x 10.5mm	2x12 Fiber	1 gland fit 2 x 12 fiber trunk	В
1	M75	190-0912	2x 9 5mm	2 ETH	1 gland fits 2 othernet cable	В

FIBER JUNCTION BOX DMENSIONS: 29.58"H x 16.5"W x 12.6"D WEIGHT: 32.0 lbb QUANTITY: TOTAL OF 2

TYPICAL FIBER JUNCTION BOX (OVP) DETAILS (6)

SECTOR	EQUIPMENT MAKE & MODEL	QTY	AZIMUTH (TRUE NORTH)	ANTENNA RAD	BAND	MECHANICAL DOWNTILT	ELECTRICAL DOWNTILT	EQUIPMENT STATUS	H (IN)	W (IN)	D (IN)	WEIGHT (LBS)	HYBRID CABLE SIZE & QTY
	AMPHENOL BXA-80063/6CF ANTENNA	1	40*	140'± AGL	SPARE		•	ETRE	71,1	11.2	4.5	14.9	
AL DUIA	AMPHENOL BXA-171063/12CF ANTENNA	1	J0'	140'± AGL	LTE AWS	2*	2"	ETRE	72.5	5.1	4.1	12.8	
ALPHA	AMPHENOL BXA-171085/88F ANTENNA	1	30'	140°± ACL	SPARE		-	ETRE	48.5	6.1	4,7	10.5	
	AMPHENOL BXA-70063/6CF ANTENNA	1	30'	140'± AGL	LTE 700/850	10'/10'	0./0.	ETRE	71,0	11.3	6.0	17.0	
	AMPHENOL BXA-80063/6CF ANTENNA	1	140*	140'± AGL	SPARE	-		ETRE	71.7	11.2	4.5	14_9	
BETA	AMPHENOL BXA-171063/12CF ANTENNA	1	150*	140'± AGL	LTE AWS	1*5	2*	ETRE	72.5	5.1	4.7	12.8	EXIST. (18) 1-% COAXAL CABLES EXIST. (1) 6x12 HYBRID CABLE
	AMPHENOL BXA-171085/8BF ANTENNA	1	150*	140'± AGL	SPARE	-	-	ETRE	48.5	6.1	4,1	10.5	
	AMPHENOL BXA-70063/6CF ANTENNA	1	150'	140'± AGL	LTE 700/850	3'/3'	0./0.	ETRE	71.0	11,3	6,0	17.0	
	AMPHENOL BXA-80063/6CF ANTENNA	1	260'	140'± AGL	SPARE		72	ETRE	71.1	11.2	4.5	14.9	
041414	AMPHENOL BXA-171063/12CF ANTENNA	1	250*	140'± AGL	LTE AWS	2'	2"	EIRE	72.5	5.1	4.1	12.8	
GAMMA	AMPHENOL BXA-171085/8BF ANTENNA	1	260*	140'± AGL	SPARE		-	ETRE	48.5	5.1	4.1	10.5	
	AMPHENOL BXA-70063/6CF ANTENNA	1	260*	140'± AGL	LTE 700/850	3./3.	0./0.	ETRE	71.0	11.3	6.0	17.0	
ALI	NOKIA UHID B4 RRH 2×40 RADIOS	J	. 15:	16:	=	101	100	EIRE	24.4	10.6	6.7	44.0	
ALL	OVP 6	1	-	72	14	-	-	ETRE	29.6	16.5	12.6	32.0	

				F	INAL EQUIPMEN	T CONFIGUR	RATION						
SECTOR	EQUIPMENT MAKE & MODEL	QTY	AZIMUTH (TRUE NORTH)	ANTENNA RAD	BAND	MECHANICAL DOWNTILT	ELECTRICAL DOWNTILT	EQUIPMENT STATUS	H (IN)	W (IN)	D (IN)	WEIGHT (LBS)	HYBRID CABLE SIZE & QTY
ALPHA	COMMISCOPE JAHH-658-R38 ANTENNAS	2	30*	140'± AGL	LTE 700/850/1900/AWS 5G 850	7/7/7/7 7	10/10/Z/Z 10	NEW	72.0	13.8	8,2	64.4	
,,	SAMSUNG MT8413-77A ANTENNA	1	30"	140'± AGL	5G LS8	2	1°	NEW	28.9	15.8	5.5	57.3	
BETA	COMMISCOPE JAHH-658-R38 ANTENNAS	2	150"	140'± AGL	LTE 700/850/1900/AWS 5G 850	ଫ/ଫ/ ଫ/ଫ ଫ	14/14/Z/Z 14	NEW	72.0	13.8	8.2	64.4	EXIST. (1) Gr.12 HYBRID CABLE PROP. (1) Gr.12 HYBRID CABLE
52.71	SAMSUNG MT8413-77A ANTENNA	1	150"	140'± AGL	5G LS8	6	ľ	NEW	28.9	15.8	5.5	57.3	
GAMMA	COMMSCOPE JAHH-658-R38 ANTENNAS	2	260*	140'± AGL	LTE 700/850/1900/AWS 50 850	ଫ/ଫ/ଫ/ ଫ ଫ	10/10/2/2 10	NEW	72.0	13.8	8.2	84.4	
0, 411.111	SAMSUNG MITB413-77A ANTENNA	1	290"	140'± AGL	5G LS8	0	T T	NEW	28.9	15.8	5.5	57.3	
	SAMSUNG B5/B13 RF4461d-13A RADIOS	3	-	()				NEW	15.0	15.0	10.2	79.1	
	SAMSUNG B2/B86A RF4430d-25A RADIOS	3	-	-		=	-	NEW	15.0	15.0	10.0	74.7	
ALL	COMMISCOPE CBC78T-DS-43-2X DIPLEXERS	3		-		-) - :	NEW	8.4	6.9	9.6	20.7	
	OVP 8	2	-	-	5	-	-	NEW	29.8	16.5	12.6	32.0	
NOTES: 1 2 3 4	. "EIR" DENOTES "EXISTING TO REMAN" "EIRE" DENOTES "EXISTING TO BE REMOVED I. WEIGHTS LISTED ARE WITHOUT MOUNTING BR INFORMATION IS BASED ON RFDS DATED 12,	ACKETS.			· · · · · · · · · · · · · · · · · · ·								

FEEDLINE SCHEDULE							
	FEEDLINES	LOCATION					
EXISTING TO REMAIN:	(1) ½° COAX CABLE FOR GPS ANTENNA (1) 6×12 HYBRIO CABLE						
EXISTING TO BE REMOVED:	(18) 1-%" CONONL CABLES	ROUTED PER STRUCTURAL ANALYSIS					
PROPOSED:	(1) 8x12 HYBRED CABLE						
	Existing to be removed:	FEEDLINES EXISTING TO REMAIN: (1) %" COAX CHOLE FOR GPS ANTENNA (1) 6-12 HYBRIO CABLE DOSTING TO BE REMOVED: (18) 1-%" COAXOL CARLES					

verizon /

20 ALEXANDER DRIVE, 2ND FLOOR WALLINGFORD, CT 08492 (203) 741-7338

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 (508) 251-0720

R.K. EXECUTIVE CENTRE
201 BOSTON POST ROAD WEST, SUITE 101
MARLBOROUGH, MA 01732
(500) 481-7400
www.choppellengineering.com

CHECKED ET:

JMT

JMT

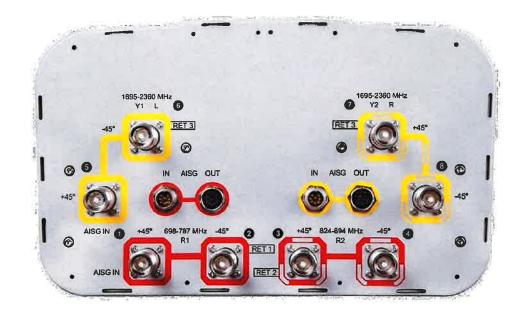
APPROVED BY:

	S	UBMITTALS	
REV.	DATE	DESCRIPTION	BY
		*	
2	12/04/23	CONSTRUCTION REVISED	œ
1	11/21/23	ESSUED FOR CONSTRUCTION	œ
0	11/14/23	ISSUED FOR REVIEW	CHE

WATERFORD SOUTH CT

51 DANIELS AVENUE WATERFORD, CT 06385

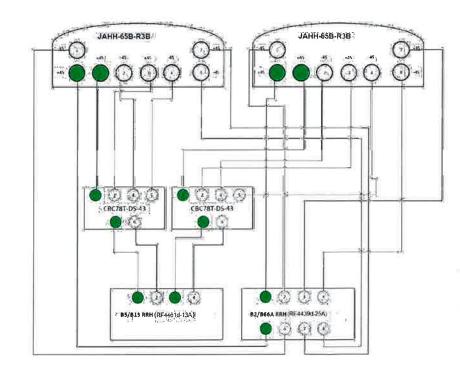
ı	VZW LOCATION CODE:	46861
ı	MDG LOCATION ID:	500024440
ı	FUZE PROJECT ID:	1712300

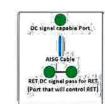

SHET TIFLE

RF DATA

SHEET HUMB

RF01




C-Band MMU

- Ports 1 & 2 are for 700MHz
- Ports 3 & 4 are for 850MHz
- Ports 5, 6, 7 & 8 are for high band (1695-2180)
 MHz).
- Smart Bias Tee (SBT) is through port 1 for low band and port 5 for high band.
- AISG cable is only needed when drawn in the diagrams below, if it is not drawn then SBT is enough to control all RET motors.
- Not all SBT ports are needed to control RET, only green port connection to green port will control RET.

RF PLUMBING DIAGRAM SCALE: N.T.S.

Comments:

Diagram shows configuration as viewed from below antennas

Cap and weatherproof unused antenna ports

CDMA not shown (not being changed)

All plumbing diagram colors are irrelevant except for AISG cable. (For the coax colors follow Coax Colors quide):

20 ALEXANDER DRIVE, 2ND FLOOR WALLINGFORD, CT 06492 (203) 741-7338

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 (508) 251-0720

R.K. EXECUTIVE CENTRE
201 BOSTON POST ROAD WEST, SUITE 101
MARLBOROUGH, MA 01752
(\$08) 481-7400
www.chappellengineering.com

CHECKED BY JMT

APPROVED BY: JMT

	5	UBMITTALS	
REV.	DATE	DESCRIPTION	81
_			_
_			-
2	12/08/23	CONSTRUCTION REVISED	CME
1	11/21/23	ESSUED FOR CONSTRUCTION	OC.
0	11/14/23	ISSUED FOR REVIEW	CHC

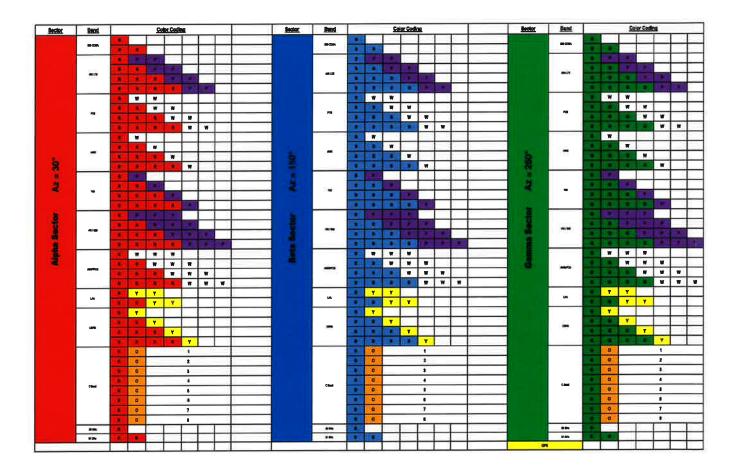
WATERFORD SOUTH CT

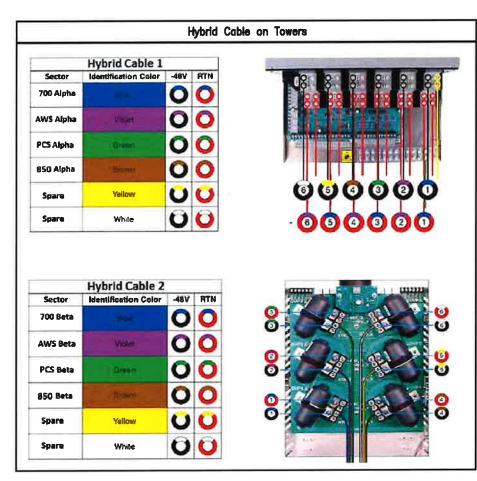
51 DANIELS AVENUE WATERFORD, CT 06385

 VZW LOCATION CODE:
 468615

 MDG LOCATION ID:
 5000244405

 FUZE PROJECT ID:
 17123005


SHEET II


RF PLUMBING DIAGRAM

SHEET HUMB

RF02

72135

20 ALEXANDER DRIVE, 2ND FLOOR WALLINGFORD, CT 06492 (203) 741-7338

SBA COMMUNICATIONS CORP. 134 FLANDERS ROAD, SUITE 125 WESTBOROUGH, MA 01581 (508) 251-0720

R.K. EXECUTIVE CENTRE
201 BOSTON POST ROAD WEST, SUITE 101
MARLBOROUGH, MA 01752
(509) 481-7400
www.chappellengineering.com

CHECKED BY:

APPROVED BY:

AED BY: JMT
SUBMITTALS

	_ >	UBMITTALS	
REV.	DATE	DESCRIPTION	8
-			H
_	_		H
2	12/06/23	CONSTRUCTION REVISED	a
1	11/21/23	ISSUED FOR CONSTRUCTION	G
0		ISSUED FOR REVIEW	a

WATERFORD SOUTH CT

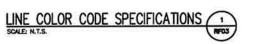
51 DANIELS AVENUE WATERFORD, CT 06385

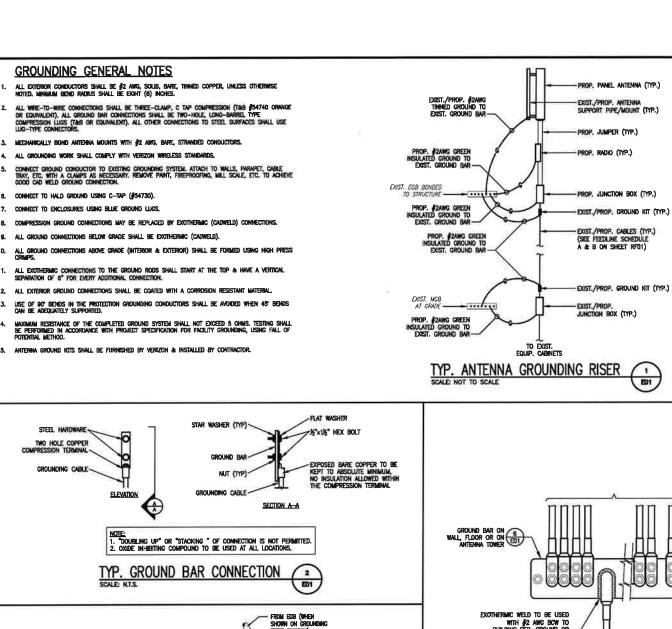
 VZW LOCATION CODE:
 468615

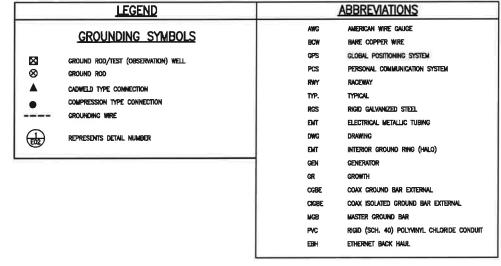
 MDG LOCATION ID:
 5000244405

 FUZE PROJECT ID:
 17123006

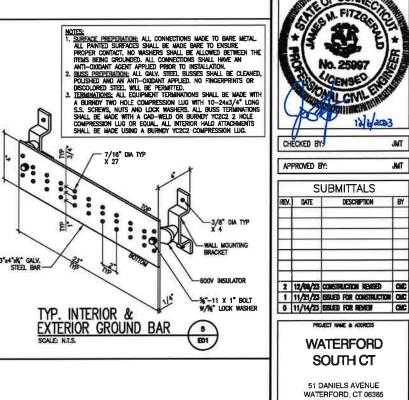
SHEET IT

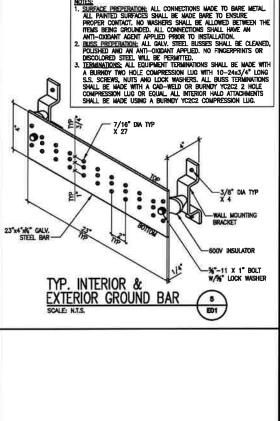

RF COLOR CODE SPECIFICATIONS

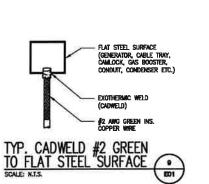

SHEET HUM

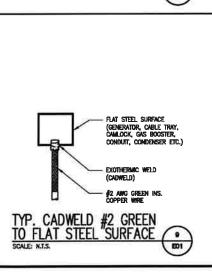

RF03

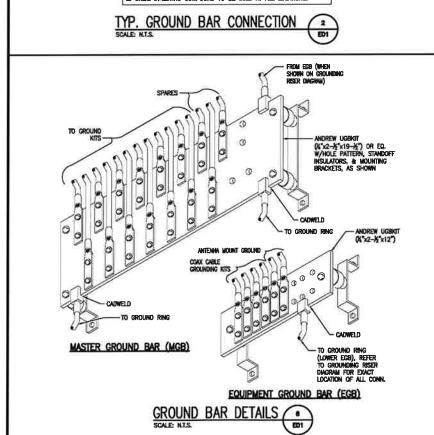
CABLE NOTE:

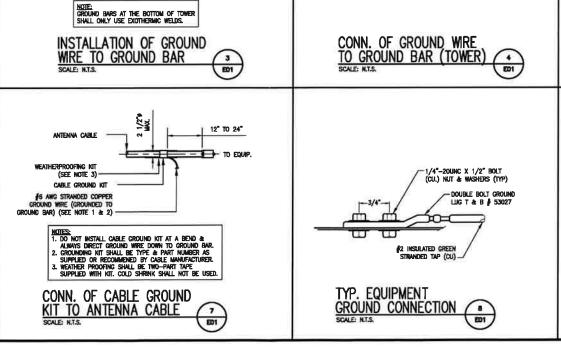

SEE FEEDLINE SCHEDULE A & B ON SHEET RF01 FOR EXISTING & PROPOSED CABLE QUANTITIES.











TO ANTENNAS

TX1 RX1 TX2 RX2 TX T T T

面面面值

COAX JUMPER

ANTENNA CABLE

WEATHERPROOFING KIT (TYP.)

GROUND KIT (TYP.) (SEE NOTE)

- ANTENNA GROUND BAR, SIMILAR TO DETAIL 3 WITHOUT INSULATORS. BONDED DIRECTLY TO TOP OF TOWER OR TOWER.

VZW LOCATION CODE: 468615 MDG LOCATION ID: 5000244405 FUZE PROJECT ID: 17123008 **GROUNDING NOTES** & DETAILS

OF CONNE

No. 25997

OMLGNIL

SUBMITTALS

WATERFORD

SOUTH CT

51 DANIELS AVENUE

WATERFORD CT 06385

12 Haco3

JMT

JMT

E01

8-port sector antenna, 2x 698–787, 2x 824-894 and 4x 1695–2360 MHz, 65° HPBW, 3x RET and low bands have diplexers. Internal SBT's on first LB(Port 1) and first HB(Port 5).

- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One RET for 700MHz, one RET for 850MHz, and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO
- Internal filter on low band and interleaved dipole technology providing for attractive, low wind load mechanical package
- Separate RS-485 RET input/output for low and high band

General Specifications

Antenna Type Sector

Band Multiband

Color Light gray

Effective Projective Area (EPA), frontal 0.28 m² | 3.014 ft² Effective Projective Area (EPA), lateral 0.24 m² | 2.583 ft²

Grounding TypeRF connector body grounded to reflector and mounting bracket

Performance Note

Outdoor usage | Wind loading figures are validated by wind tunnel

measurements described in white paper WP-112534-EN

Radome Material Fiberglass, UV resistant

Radiator Material Aluminum | Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location

RF Connector Quantity, high band

RF Connector Quantity, low band

4

RF Connector Quantity, total

8

Remote Electrical Tilt (RET) Information, General

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 2 female | 2 male

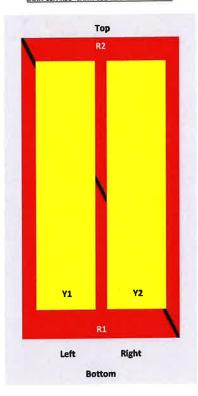
Dimensions

Width 350 mm | 13.78 in

Page 1 of 4

JAHH-65B-R3B

Length


1828 mm | 71.969 in

Depth

208 mm | 8.189 in

Array Layout

JAHH-65A-R3B JAHH-65B-R3B JAHH-65C-R3B

Array	Freq	Couns	RET (SRET)	AISG RET UID
RI	698-798	1-2		ANaxxxxxxxxxxxxxxx
E2	824-894	3-4	2	ANaxxxxxxxxxxxxxx
YI	1695-2360	5.6	- 3	ANTEXXXXXXXXXXXXXX
Y2	1695-2160	7-8	1	

View from the front of the antenna

(Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

50 ohm **Impedance**

1695 – 2360 MHz | 698 – 787 MHz | 824 – 894 MHz **Operating Frequency Band**

±45° **Polarization**

Remote Electrical Tilt (RET) Information, Electrical

3GPP/AISG 2.0 (Single RET) **Protocol**

Power Consumption, idle state, maximum

2 W

JAHH-65B-R3B

Power Consumption, normal conditions, maximum

13 W

Input Voltage

10-30 Vdc

Internal Bias Tee

Port 1 | Port 5

Internal RET

High band (1) | Low band (2)

Electrical Specifications

•						
Frequency Band, MHz	698–787	824-894	1695–1880	1850–1990	1920–2200	2300–2360
Gain, dBi	14.5	15.8	18	18.4	18.5	18.8
Beamwidth, Horizontal, degrees	67	65	63	63	65	68
Beamwidth, Vertical, degrees	12.4	10.5	5.7	5.2	4.9	4.4
Beam Tilt, degrees	2–14	2–14	0–10	0–10	0–10	0–10
USLS (First Lobe), dB	18	18	20	20	21	23
Front-to-Back Ratio at 180°, dB	32	34	31	35	36	38
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR Return loss, dB	1,5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50° C, maximum, watts	200	200	300	300	300	250

Electrical Specifications, BASTA

Fiectifical Pheetification	יו בווט ובוונ	•					
Frequency Band, MHz	698-787	824-894	1695–1880	1850-1990	1920–2200	2300–2360	
Gain by all Beam Tilts, average, dBi	14.3	14.9	17.6	18,1	18.2	18.5	
Gain by all Beam Tilts Tolerance, dB	±0.3	±0.5	±0.6	±0.4	±0.5	±0.6	
Gain by Beam Tilt, average, dBi	2 ° 14.3 8 ° 14.3 14 ° 14.3	2 ° 15.0 8 ° 14.9 14 ° 15.4	0 ° 17.2 5 ° 17.6 10 ° 17.6	0 ° 17.6 5 ° 18.2 10 ° 18.2	0 ° 17.7 5 ° 18 ₁ 3 10 ° 18 ₁ 3	0° 17.9 5° 18.7 10° 18.7	
Beamwidth, Horizontal Tolerance, degrees	±1.2	±1.4	±4	±2.4	±2.9	±2.7	
Beamwidth, Vertical Tolerance, degrees	±0.9	±0.5	±0.3	±0.2	±0.3	±0.1	
USLS, beampeak to 20° above beampeak, dB	18	17	17	18	19	18	
Front-to-Back Total Power at 180° ± 30°, dB	25	24	26	29	27	29	
CPR at Boresight, dB	22	23	20	21	21	24	

Page 3 of 4

JAHH-65B-R3B

CPR at Sector, dB 11	12	11	11	11	8
----------------------	----	----	----	----	---

Mechanical Specifications

 Wind Loading at Velocity, frontal
 301.0 N @ 150 km/h
 67.7 lbf @ 150 km/h

 Wind Loading at Velocity, lateral
 254.0 N @ 150 km/h
 57.1 lbf @ 150 km/h

 Wind Loading at Velocity, maximum
 143.4 lbf @ 150 km/h
 638.0 N @ 150 km/h

Wind Speed, maximum 241 km/h | 149.75 mph

Packaging and Weights

 Width, packed
 456 mm | 17.953 in

 Depth, packed
 357 mm | 14.055 in

 Length, packed
 1975 mm | 77.756 in

 Net Weight, without mounting kit
 29.2 kg | 64.375 lb

 Weight, gross
 42.5 kg | 93.696 lb

Regulatory Compliance/Certifications

Agency Classification

CHINA-ROHS Above maximum concentration value

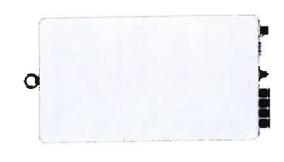
ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

ROHS Compliant/Exempted

Included Products

BSAMNT- Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes


Performance Note Severe environmental conditions may degrade optimum performance

C-band 64T64R

Gen 2

Gen 2 : Higher conducted power radio with reduced size/volume/weight vs Gen 1 and also SOC embedded for flexibility to support new features

※ Preliminary Design: External appearance and mechanical design can be subject to change

Gen 2. 64T64	Gen 2. 64T64R C-band MMU Dimensions
Size (WxHxD)	400 x 734 x 140 mm (15.75 x 28.90 x 5.51 inch)
Weight	26kg (57.3 lb)

Gen 2 64T64R (MT6413-77A)	NR n77/TDD	3700 ~ 3980 MHz	200 MHz	200 MHz	20(HW ready)/40/60/80/100 MHz	2 camiers	DL : 16L, UL : 16RX (8L)	64T64R	4V16H with 192 AE	80.5 dBm @320W (55 dBm + 25.5 dBi)	320W	TX/RX support	Typical -97,8dBm @(1Rx, 18.36MHz with 30kHz,51RBs)	DL 256QAM support (DL 1024QAM with 1~2dB power back-off)	DL/UL option 7-2x	-48 VDC (-38 VDC to -57 VDC)	1,287W (100% load, room temp.)	400 x 734 x 140 mm (15.75 x 28.90 x 5.51 inch)	41.11	26kg (57.3 lb)	-40°C - 55°C (w/o solar load)	Natural convection	3GPP 38,104	FCC 47 CFR 27.53 : < -13dBm/MHz	 40 dBm/MHz @ above 4 GHz 50 dBm /MHz @ 4,040 ~ 4,050 MHz 60 dBm /MHz @ above 4,050 MHz 	15km, 4 ports (25Gbps x 4), SFP28, single mode, Bi-di (Option: Duplex)	Pole, wall	Not support	4RX	1000
Item	Air Technology	Frequency	Wal	OBW	Carrier Bandwidth	# of Carriers	Layer	RF Chain	Antenna Configuration	EIRP	Conductive Power	Spectrum Analyzer	RX Sensitivity	Modulation	Function Split	Input Power	Power Consumption	Size (WHD)	Volume	Weight	Operating Temperature	Cooling			Unwanted Emission	Optic Interface	Mounting Options	NB-IoT	External Alarm	Fronthaul Interface

© Samsung Electronics All Rights Reserved.

SAMSUNG

AWS/PCS MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A

Homepage

Points of Differentiation

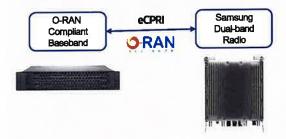
Continuous Migration

Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.



Supports up to 7 carriers

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L

2 FH connectivity O-RAN capability More carriers

Same as an incumbent radio volume

Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4×40W or 2×60W (B66) 4×60W or 2×80W
IBW/OBW	(B25) 65MHz/30MHz (B66) DL 90MHz, UL 70MHz/60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

700/850 4T4R Macro 320W ORU - New Filter (RF4461d-13A)

Specifications

* 5MHz supporting in BI3(700MHz) depends on 3GPP std. and UE capability. External filters in interferent and victim sides for Mexican boarder to support 5MHz service need to be considered
** Finger guard is not needed.

Item	Speci	Specification
Air Interface	LTE, NR(HW	LTE, NR(HW resource ready)
Band	Band13 (700MHz)	Band5 (850MHz)
	DL: 746~756MHz	DL: 869~894MHz
Frequency	UL: 777~787MHz	UL: 824~849MHz
Wali	10MHz	25MHz
W8O	10MHz	25MHz
Carrier Bandwidth	LTE/NR 5*/10MHz	LTE 5/10MHz NR 5/10/15/20MHz
# of carriers	2C*	30
Total # of carriers	4C + B1	4C + B13 (SDL) 1C
RF Chain	4T4R/2T4I	414R/214R/372R/112R 212R+212R bi-sector
(L	Total	Total: 320W
RF Output Power	4 x 40W or 2 x 60W	4 x 40W or 2 x 60W
Spectrum Analyzer	TX/RX	TX/RX Support
RX Sensitivity	Typ104.5dBm (Typ104.5dBm @1Rx (25RBs 5MHz)
Modulation	256QAM support, (1024QAI	256QAM support, (1024QAM with 1~2dB power back-off)
Input Power	-48VDC (-38)	-48VDC (-38VDC to -57VDC)
Power Consumption	1,165 Watt @ 100% R	1,165 Watt @ 100% RF load, room temperature
Size (WHD)	380 x 380 x 260 mm (1	380 x 380 x 260 mm (14.96 x 14.96 x 10.23 inch)
Volume	, S	37.5 L
Weight (W/o Solar Shield & finger guard)	35.9 kg	35.9 kg (79.1 lb)
Operating Temperature	-40℃ (-40°F) ~ 55°C (1	~ 55°C (131°F) (Without solar load)
Cooling	Natural	Natural convection
	3GPP 36.104	3GPP 36,104
Unwanted Emission	FCC 47 CFR 27.53 c), f)	FCC 47 CFR 22.917
		-69 d8m/100 kHz per path @ 856 ~901MHz
CPRI Cascade	Not s	Not supported
Optic Interface	20km, 2 ports (9.8Gbps x 2), SFP+	20km, 2 ports (9.8Gbps x 2), SFP+, single mode, Duplex (Option: Bi-di)
RET & TMA Interface	AI	AISG 3.0
Bias-T	4 ports (2 p	4 ports (2 ports per band)
Mounting Options	Po	Pole, wall
NB-loT	2GB+2IB or 4IB	25A+2GB or 2GB+2IB or 4GB
PIM Cancellation	SL	Support
# of antenna port		4
External Alarm		4
Fronthaul Interface	Opt 8 CPRI / Opt 7-2x selec	Opt. 8 CPRI / Opt. 7-2x selectable (not simultaneous support)
	4613	Not Connot

ATTACHMENT 3

C Squared Systems, LLC
65 Dartmouth Drive
Auburn, NH 03032
(603) 644-2800
support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

Waterford South CT 51 Daniels Ave, Waterford, CT 06385

December 13, 2023

Table of Contents

1. Introduction	11
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits	1
3. RF Exposure Prediction Methods	2
4. Antenna Inventory	3
5. Calculation Results	4
6. Conclusion	6
7. Statement of Certification	6
Attachment A: References	7
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)	8
Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns	10
List of Figures	
Figure 1: Graph of General Population % MPE vs. Distance	4
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)	
List of Tables	
Table 1: Proposed Antenna Inventory	3
Table 2: Maximum Percent of General Population Exposure Values	5
Table 3: FCC Limits for Maximum Permissible Exposure	8

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of Verizon's antenna arrays to be mounted at 140' AGL on an existing self-support tower located at 51 Daniels Ave in Waterford, CT. The coordinates of the monopole tower are 41° 19' 48.95" N, 72° 10' 0.02" W.

Verizon is proposing the following:

- 1) Install six (6) multi-band antennas, two (2) per sector to support its commercial LTE network.
- 2) Install three (3) C-Band antenna, one (1) per sector.

This report considers the proposed antenna configuration for Verizon¹ as well as existing antenna configuration²³ for AT&T, DISH, Town of Waterford and T-Mobile to derive the resulting % MPE of its proposed installation.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

Waterford South CT 1 December 13, 2023

¹ As referenced to Verizon's Radio Frequency Design Sheet updated 09/22/2023.

² As referenced to SBA's Structural Analysis Report, dated November 16, 2023

³ As referenced to C Squared Systems Calculated Radio Frequency Exposure report dated, March 15, 2022

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density =
$$\left(\frac{GRF^2 \times 1.64 \times ERP}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

R = Radial Distance = $\sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor (GRF) of 1.6

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

Operator	Sector / Call Sign	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width (degree)	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)
		700	160	14.5	4509		67	0		140
		850	160	15.8	6083	JAHH-65B-R3B	65		6	
	Alpha / 30°	1900	160	18.4	11069	JAIIII-03D-R3D	63		Ů	140
	30	2100	240	18.5	16991		65			
		3700	320	26.5	117530	MT6413-77A	105	0	2.46	140
		700	160	14.5	4509		67			
		850	160	15.8	6083	JAHH-65B-R3B	65	0	6	140
Verizon	Beta / 150°	1900	160	18.4	11069		63			
	150	2100	240	18.5	16991		65			
		3700	320	26.5	117530	MT6413-77A	105	0	2.46	140
		700	160	14.5	4509		67	0	6	140
		850	160	15.8	6083	TATHL (5D D2D	65			
	Gamma /	1900	160	18.4	11069	JAHH-65B-R3B	63		0	140
	260°	2100	240	18.5	16991		65			
		3700	320	26.5	117530	MT6413-77A	105	0	2.46	140

Table 1: Proposed Antenna Inventory⁴⁵

Waterford South CT 3 December 13, 2023

⁴ Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 11/21/2023,

 $^{^{5}}$ Transmit power assumes 0 dB of cable loss.

5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within \pm 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

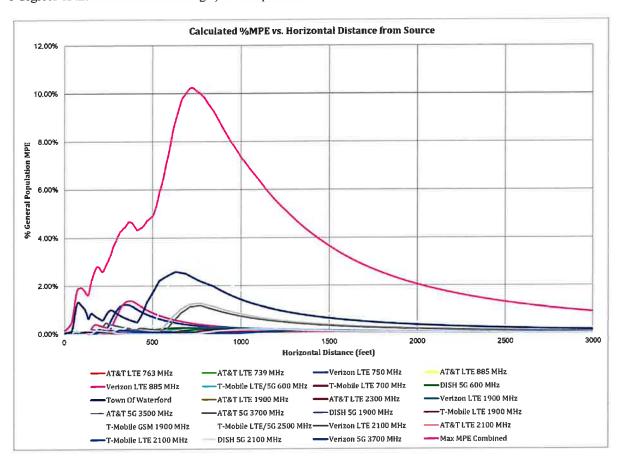


Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (10.23% of the General Population limit) is calculated to occur at a horizontal distance of 724 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1500 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 724 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm²)	Limit (mW/cm²)	% MPE
AT&T 5G 3500 MHz	1	108.4	170.0	724	0.012423	1.000	1.24%
AT&T 5G 3700 MHz	1	108.4	170.0	724	0.011327	1.000	1.13%
AT&T LTE 1900 MHz	1	160.0	170.0	724	0.000351	1.000	0.04%
AT&T LTE 2100 MHz	1	240.0	170.0	724	0.000378	1.000	0.04%
AT&T LTE 2300 MHz	1	160.0	170.0	724	0.000539	1.000	0.05%
AT&T LTE 739 MHz	1	160.0	170.0	724	0.000934	0.493	0.19%
AT&T LTE 763 MHz	1	160.0	170.0	724	0.000385	0.509	0.08%
AT&T LTE 885 MHz	1	160.0	170.0	724	0.000813	0.590	0.14%
DISH 5G 1900 MHz	1	160.0	160.0	724	0.000167	1.000	0.02%
DISH 5G 2100 MHz	1	160.0	160.0	724	0.000118	1.000	0.01%
DISH 5G 600 MHz	1	160.0	160.0	724	0.000991	0.400	0.25%
T-Mobile GSM 1900 MHz	1	20.0	160.0	724	0.000059	1.000	0.01%
T-Mobile LTE 1900 MHz	1	160.0	160.0	724	0.000472	1.000	0.05%
T-Mobile LTE 2100 MHz	1	160.0	160.0	724	0.000443	1.000	0.04%
T-Mobile LTE 700 MHz	1	160.0	160.0	724	0.000741	0.467	0.16%
T-Mobile LTE/5G 2500 MHz	1	240.0	160.0	724	0.031904	1.000	3.19%
T-Mobile LTE/5G 600 MHz	1	160.0	160.0	724	0.000960	0.400	0.24%
Town Of Waterford	1	100.0	180.0	724	0.000038	0.567	0.01%
Verizon 5G 3700 MHz	1	320.0	140.0	724	0.023576	1.000	2.36%
Verizon LTE 1900 MHz	1	160.0	160.0	724	0.001595	1.000	0.16%
Verizon LTE 2100 MHz	1	240.0	140.0	724	0.000535	1.000	0.05%
Verizon LTE 750 MHz	1	160.0	140.0	724	0.001770	0.500	0.35%
Verizon LTE 885 MHz	1	160.0	140.0	724	0.002466	0.567	0.44%
						Total	10.23%

Table 2: Maximum Percent of General Population Exposure Values⁶

Waterford South CT 5 December 13, 2023

⁶ In the case where pattern data was unavailable from the manufacturer, vertical patterns with similar specifications were used

6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be 10.23% of the FCC limit (General Population/Uncontrolled). This maximum cumulative percent of MPE value is calculated to occur 724 feet away from the site.

7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By:

Ram Acharya

RF Engineer 1 C Squared Systems, LLC December 11, 2023 Date

Mark of Law

Reviewed/Approved By:

Martin Lavin Senior RF Engineer C Squared Systems, LLC December 13, 2023 Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Waterford South CT 7 December 13, 2023

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure⁷

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	S#	=	f/300	6
500-100,000	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure⁸

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500	8.50	. 	f/1500	30
1500-100,000	-	3 -	1.0	30

f = frequency in MHz * Plane-wave equivalent power density

Table 3: FCC Limits for Maximum Permissible Exposure

Waterford South CT 8 December 13, 2023

•

Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁸ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

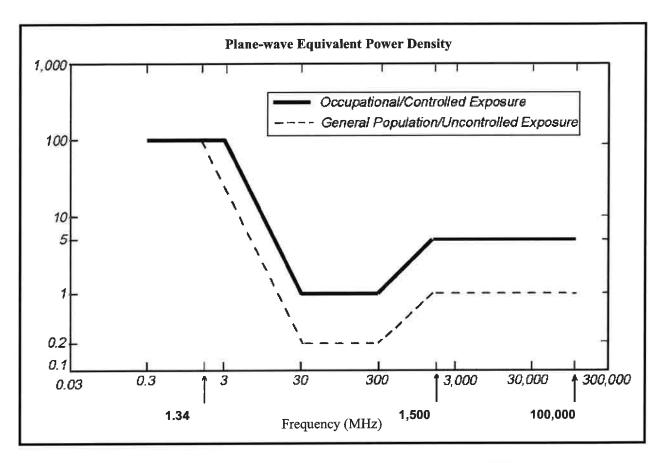


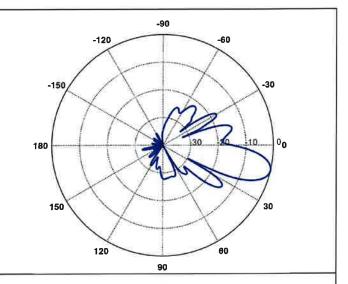
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Waterford South CT 9 December 13, 2023

Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns

739 MHz

Manufacturer: CommScope


Model #: JAHH-65B-R3B

Frequency Band: 698-787 MHz

Gain: 14.5 dBi

Vertical Beamwidth: 12.4° Horizontal Beamwidth: 67°

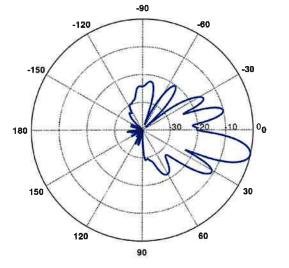
Polarization: Dual Linear 45° Size L x W x D: 72" x 13.78" x 8.2"

885 MHz

Manufacturer: CommScope

Model #: JAHH-65B-R3B

Frequency Band: 824 - 894 MHz


Gain: 15.8 dBi

Vertical Beamwidth: 10.5°

Horizontal Beamwidth: 65°

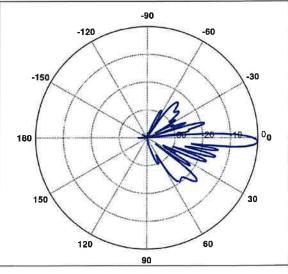
Polarization: Dual Linear 45°

Size L x W x D: 72" x 13.78" x 8.2"

1900 MHz

Manufacturer: CommScope

Model #: JAHH-65B-R3B


Frequency Band: 1850-1990 MHz

Gain: 18.4 dBi

Vertical Beamwidth: 5.2° Horizontal Beamwidth: 63°

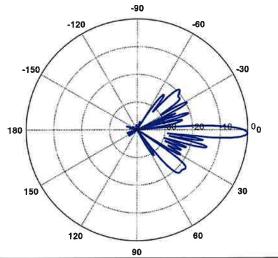
Polarization: Dual Linear 45°

Size L x W x D: 72" x 13.78" x 8.2"

2100 MHz

Manufacturer: CommScope

Model #: JAHH-65B-R3B


Frequency Band: 1920-2200 MHz

Gain: 18.5 dBi

Vertical Beamwidth: 4.9° Horizontal Beamwidth: 65°

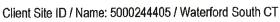
Polarization: Dual Linear 45°

Size L x W x D: 72" x 13.78" x 8.2"

ATTACHMENT 4

By ssamuel at 5:16:54 PM, 11/21/2023

SBA


SBA Communications Corporation 8051 Congress Avenue Boca Raton, FL 33487-1307

> T + 561.995.7670 F + 561.995.7626

> > sbasite.com

Structural Analysis Report

Client: Verizon

Application #: 240519, v1

SBA Site ID / Name: CT09865-S / NIANTIC

180' Self Supporting Tower

51 Daniel's Avenue Waterford, CT 06385 Lat: 41.330264, Long: -72.166672

Project number: CT09865-VZW-111323

Analysis Results

Tower	78.3%	Pass
Foundation	72.0%	Pass

Ol	NI/A
Change in tower stress due to mount modification / replacement	N/A

Prepared by:

Reviewed by:

Asmerom Hagos Structural Engineer II 214-570-8110 ext 2612 ahagos@sbasite.com

Shan Shanubhogue, P.E. Senior Manager, Structural Engineering 561-981-7390 sshanubhogue@sbasite.com

November 16, 2023

Table of Contents

Introduction	
Analysis Criteria	
Appurtenance Loading	3
Existing Loading:	
Proposed Loading:	
Analysis Results	6
Tower	
Foundation System	6
Conclusions	
Installation Requirements	
Assumptions and Limitations	
Assumptions	8
Limitations	8
Appendix	9
Tower Geometry	
Coax Layout	**********
tnxTower Report	
Foundation Analysis Report	

Introduction

The purpose of this report is to summarize the analysis results on the 180' Self Supporting Tower to support the proposed antennas and transmissions lines in addition to those currently installed.

Table 1 List of Documents Used

Item	Document
Tower Design	Tower Innovations, Project # 5210, dated 11/5/2008
Foundation Design	Tower Innovations, Project # 5210, dated 11/5/2008
Geotechnical report	Dr.Clearance Welti, P.E., dated 10/23/2008
Modification drawings	N/A
Carrier MA	Colliers Engineering & Design, Project # 22777306 (Rev. 3), Dated 9/13/2023
Latest SA Report	TES, Project # 137520-Rev1, dated 1/5/2023

Analysis Criteria

Table 2 Code Related Data

Table 2 Code Notated Bata	
Jurisdiction (State/County/City)	Connecticut / New London / Waterford
Governing Codes	ANSI/TIA-222-H , 2021 IBC, 2022 Connecticut State Building Code /
Ultimate Wind Speed (3-Sec gust)	127 mph
Wind Speed with Ice (3-Sec gust)	50 mph
Service Wind Speed (3-Sec gust)	60 mph
Ice Thickness	1 in
Risk category	
Exposure Category	C
Topographic Category	1
Crest Height	0 ft.
Ground Elevation	116.12 ft.
Seismic Parameter S₅	0.193
Seismic Parameter S ₁	0.053

This structural analysis is based upon the tower being classified as a Risk category II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Appurtenance Loading

Existing Loading:

Table 3 Existing Appurtenances

Mount Elev. (ft)	CL Elev. (ft)	Туре	Qty	Manufacturer	Model	Feed Line Size	Mount Type Qty.	Carrier
180	187.9	Omni	3	Sinclaire	SC488-HF2LNF	(2) 4 5/9"	(3) 6'	Town of
100	180	TMA	1	DBSpectra	ATS8TMA10	(2) 1-5/8"	Stàndoffs	Waterford
	171.8	Panel	3	Ericsson	AIR 6419 B77G			
		Panel	3	CCI	DMP65R-BU4DA			
		Panel	3	KMW	EPBQ-654L8H6-L2			
		TMA	6	Powerwave	TT19-08BP111-001	(11) 1-5/8"		
		RRU	6	Ericsson	RRUS 32	(1) 1" DC Power		
170	170	RRU	3	Ericsson	RRUS 4478 B14	(2) 1/2" Fiber	(3) Modified T-Frames	AT&T
		RRU	3	Ericsson	4415 B25	(6) 3/4" DC (1) 7/16"	r-Frames	
		RRU	3	Ericsson	RRUS 4449 B5/B12	Fiber		
		OVP	2	Raycap	DC6-48-60-18-8F			
		OVP	1	Raycap	DC9-48-60-24-8C-EV			
	168	Panel	3	Ericsson	AIR 6449 B77D			
		Panel	3	RFS	APXVAARR24_43-U-NA20		(3) Modified T-Frames	T-Mobile
		TMA	3	Ericsson	KRY 112 144/1	1		
		TMA	3	Ericsson	KRY 112 489/2	(13) 1-5/8" (3) 1-5/8"		
160	160	TMA	3	Kathrein	782 11056	Fiber		
		Panel	3	Ericsson	AIR 6419 B41	(1) 1/2" (2) 1.9" Fiber		
		RRU	3	Ericsson	4449 B71 + B85	(2) 1.0 1 1001		
		RRU	3	Ericsson	4460 B25 + B66			
		Panel	3	JMA Wireless	MX08FRO665-21			
450	450	RRU	3	Fujitsu	TA08025-B605	(1) 1.6"	(3) Sector Mounts	Dish Wireless
150	150	RRU	3	Fujitsu	TA08025-B604	Hybrid		
		OVP	1	Raycap	RDIDC-9181-PF-48			
		Panel	6	Commscope	JAHH-65B-R3B			
		Panel	3	Antel	BXA-80063/6CF			
		Panel	3	Samsung	MT6407-77A		(3) V-Frame	
140	140	Diplexer		CBC78T-DS- 2X/W14F05P50	(2) 1-5/8" w/ (3) Side- by-side	Verizon		
		RRU	3	Samsung	B5/B13 RFV01U-D2A	Tiybiid	mounts	
		RRU	3	Samsung	B2/B66A RRHBR049			
		OVP	2	RFS Celwave	DB-T1-6Z-8AB-0Z			

Note: AT&T loading includes FirstNET equipment

Proposed Loading:

Information pertaining to proposed antennas and transmission lines were based upon the Application #: 240519, v1 from Verizon and is listed in Table 4.

Table 4 Proposed Appurtenances

Mount Elev. (ft)	CL Elev. (ft)	Туре	Qty	Manufacturer	Model	Feed Line Size	Mount Type Qty.	Carrier
		Panel	6	Commscope	JAHH-65B-R3B		(3) V-Frame Assemblies (Site Pro 1 VFA12-HD), (3) Side-by-side mounts (Commscope	
		Panel	3	Antel	BXA-80063/6CF	(16) 1-5/8" - (2) 1-5/8" Hybrid		Verizon
		Panel	3	Samsung	MT6413-77A			
140	140	Diplexer	3	Commscope	CBC78T-DS- 2X/W14F05P50			
.,,		RRU	3	Samsung	B2/B66A RRH ORAN (RF4439d-25A)			
	RRU	3	Samsung	B5/B13 RRH ORAN (RF4461d-13A)		BSAMNT-SBS- 2-2)	 	
		OVP	2	Raycap	DB-T1-6Z-8AB-0Z (Rfs Celwave)			

Analysis Results

Tower

The results of the structural analysis are shown below in table 5. Additional information for the tower analysis is provided within the Appendix.

Table 5 Tower Analysis Summary

Structural Component	% capacity	Analysis Result
Leg	62.4	Pass
Diagonal	78.3	Pass
Top girt	33.6	Pass
Bottom girt	38.2	Pass
Bolt	61.4	Pass
Anchor Bolt	30.9	Pass

Foundation

The results of the foundation analysis are shown below in table 6. Additional information for the foundation analysis is provided within the Appendix.

Table 6 Foundation Analysis Summary

Structural Component	Max Usage (%)	Analysis Result	
Foundation	72.0	Pass	

Conclusions

Based on the analysis results, the existing tower and foundation were found to be <u>sufficient</u> to safely support the equipment listed in this analysis. No modification to the tower and foundation is needed at this time.

Installation Requirements

This analysis was performed under the assumption that the carrier will place the proposed equipment and feed lines at the installation height listed in Table 4 and in accordance with the coax layout shown. TMAs and RRUs are to be installed on existing mounts behind tenant's antennas unless otherwise noted. No equipment is to be installed directly in the climbing path. All equipment is to be installed per mount manufacturer specifications. In case site conditions do not allow for the required installation parameters to be met the carrier must notify SBA Communications Corporation engineers for approval of an alternative placement.

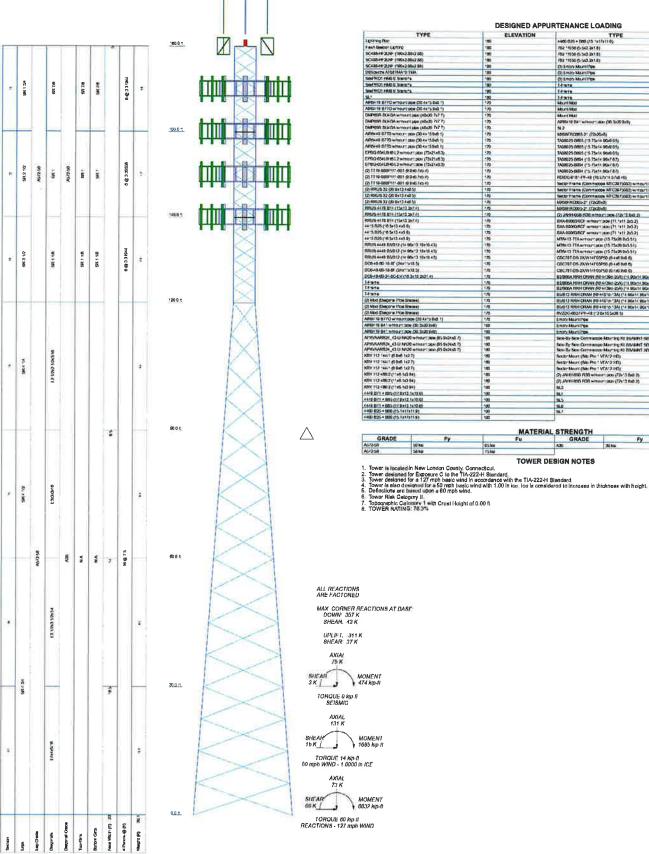
Assumptions and Limitations

Assumptions

This analysis was completed based on the following assumptions:

- Tower and foundation were built in accordance to manufacturer specifications.
- Tower and foundation has been properly maintained in accordance with the manufacturer's specifications
- All existing structural members were assumed to be in good condition with no physical damage or deterioration associated with corrosion
- Welds and bolts are assumed able to carry their intended original design loads.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Table 3 and 4.
- This analysis may be affected if any assumptions are not valid or have been made in error. SBA should be notified to determine the effect on the structural integrity of the tower.

Limitations

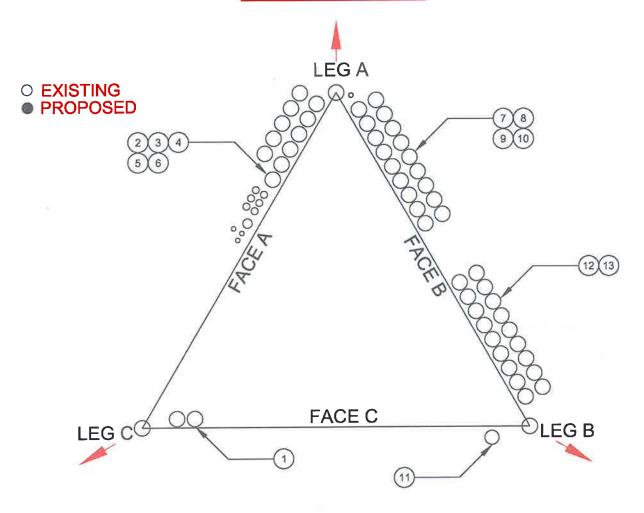

The computer generated analysis performed by the tower software is limited to theoretical capacities of the towers structural members and does not account for any missing or damaged members or connections. The tower and foundation are assumed to have been properly designed, fabricated, installed and maintained, barring any conflicting findings from the most recent inspection.

SBA Communications Corporation has used its due diligence to verify the information provided to perform this analysis. It is unreasonable to perform a more detailed inspection of a tower and its components. This report is not a condition assessment of the tower or foundation.

Appendix

DESIGNED APPLIETENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
(gravefue	180	##00 025 • 000 (15.1×17×110)	100
Fiesh Emicon Laters	100	WE - 1000 CO Sec 2018)	180
SC4864#23# (1904289/238)	180	/82 11050 E-542 2018)	100
SC4384#20# (190x288/238)	180	782 11000 G Sel (P18)	100
SCHILLE STAN GROUP STAND	100	Children Mouttibe	100
DOSIGNOTA AUSTRIAN O THAN	100	CD Emate Macretine	100
SIMPROT PRESE SINFOTA	100	O) Logo Munifipe	100
Seef 9701 HMU E Stanot's	190	Litate	*00
SWEETEN FAREST STREETS	190	Témis	100
4.	100	Tears	100
ARRESTS BY/C WYOUT DOE DO AN'S DIG 1)	120	Mort No	100
APRIL 19 EFFO WYOUT DON (DO AN'S END 1)	130	Munitabe	100
DAPPOST EXHIDA wronest paur (48x39 7x7 7)	120	MariMai	700
DANFORD DENIES WITHOUT DEN (ABOZ) 737.7)	170	Addition that witness these CR 3x202x3y	100
DAPOSE BUILDA wronytyko (48400 7x7 7)	170	M2	*60
Mildred 077D witter: por CO 4+150-6 ()	179	30000FR0005-31 (7250048)	100
ARISHED B770 witto 21 ppm (30-4x150-d) 1)	120	TAGGG25 (1905 (15 75) 14 (00/0 05)	100
APRIL 48 (1770 who y 1 pou (30 4x 15 0x) ()	170	\$500025 (9005 (15 75e14 9042 05)	100
CPSO MALES EL THUMBER (POLITICATION)	170	TA00025-D005 (15-73-14-90-0-05)	150
EPRO 4541.0Feb (2 w/morr) pop (73x21x83)	170	TACADOS (8004 (15 75x14 90x7 87)	150
EPRO-COLUMN LT winds (12s21s03)	120	TA00025-8004 (15 75x11 90x7 87)	110
(3) T1 19-0009*111-001 (9:09:0-7/G-4)	170	\$400029-0004 (*5 75414.0047.87)	198
(5 TT16-0009*11' (001 (6 2) (6 750 (4)	130	HDDG-6181-FY-48 (10.57)14 5/48 (10.	190
Ch TT19-088P111-001 (9 9n6 7n5-4)	130	Sector Prisms (Commiscope MTCDS (1003) without Pros	100
(2) FORUS 30 (20 0×13 4×6 5)	170	Sector Frems (Commiscope MITCOS (1983) without I have	190
(3) 10 (US 32 (X) 9×13 (XB 5)	1.30	taxor Frame (Commacos MI CSI/1063) w tour Pice	190
D) NRUS 32 (00 \$x12 4x0 5)	1,80	AMMONICOURS! (72/QUAB)	100
(982/9-4478 B14 (15e/3-2474)	1/0	M00019(0005-21/72(20)st)	100
19025 4478 B14 (15x12 2x7.4)	179	G) 3/494-008-R38 w/mo/* (pow//2x*2 8x8 2)	140
ROBUS 4478 BIH (15e/3 2e/74)	179	BIG-600036(2F w/nov*130e (F1,*x11,2x5.2)	740
4415 ft25 (10.5e13 4s0.0)	120	TOWN ADDITIONAL SWINNING CHOICE (TO 1911 2x5 2)	140
4415 ft25 (18 5413 415 ft)	130	DXA-600/DRCF winds/1 (spe (71 1st) 2s5.2)	140
4415 (105 (16 5413 445 9)	126	M76413 77Awrtour pap (15 75c/8 9x5.51)	164
RPUS 4449 BSB12 (14 90x13 19x10 43)	170	MONEY 77A with our latest \$15.75x00 data 513	140
RRUB 4448 RSD12 (14 95x12 10x10 40)	170	MONEY 27A WITHOUT JUST (15 75ch Gr5 51)	14D
ERADIN 4440 D5012 (14 00413 10x10 42)	136	CDC76Y DB 392W MF05P50 (B 4 HR 9 HR B)	140
DOS-48 NO 18 NF (Rest twith by	136	COCTET OS JOANNATOSPSO (B.446 946 6)	140
DC0-48-90-18-8F (249***958.5)	1/9	CBC/R1-CB-2XW14F09/50 (R4-6-2-0-0)	100
DC6+640-2-60-EV (18.3118.201.41	189	82 900A MRS CHAN (NEW 200 20A) (14 90x14 90x19 94)	340
Ante	1/9	82800A HIGH CHINE 80-4/280-25A) (14 900)4 900/0 0/1	140
17916	1.69	BETREATION CHAY NO 4/360-25A) (14 BOX14 BOX10 BH)	140
lêwre .	1.00	BUBIC HIDECHAN (60-44010-13A) (14 MIX14 MIX10 22)	540
(2) Mixt (Decoral Pice (Deces)	120	BINESS RRING CHAIN BY HABON-13A) (14 MONTA MONTO 20)	149
(2) Next (Departe Place linears)	170	85613 RRHORAN RG HIEFO 13A) (14 96414 90410 22)	140
(2) Mod (Dagona Pice Sneces)	170	MVZ0G-662/49-48 (12/6x16/5x29/5)	140
Miller to B770 wireunspie (30 Ax's 9x2 1)	189	Errory Mouril Pee	140
ARRITER BAT WITTOUT DOW (NO 2000 BAS)	100	Empty Atturating e	140
AREA 19 BH T without Look COC BIOCE WIND	190	Empty Mourisi Pole	140
WWW. GUNDOWNOUT DON (IS DIGUE I)	100	Size-thy-Size Communical Mounting for BISAMM1-926-5-2	165
MANAGER AS O MOD WHILE TO SEE \$5 947445 TO	180	See By See Commission Morning Nr. 85-WART 105-22	140
PROMOTOR AS EL NOON WHITE TO DO US DESCRIPTION	180	Seal By Sea Commission Max vig to 85/AMT 305-22	140
OKY 112 14421 (5 BM 1427)	190	Secto Mourt (No Pro 1 VEAT2 HD)	140
GCC 112 144/1 gt 9x6 1x27)	100	Sector Moure (Silo Pro 1 VEA12 FED)	140
OTE 112 144/1 (0 But) 142/2)	100	Sector Short (Sale Pro 1 VCA12 HO)	140
GIV 112+86/2 (11+6 143 54)	*00	(2) AVELOSS FOR winners poor (72x13 fact 2)	148
OW 112 486/2 (1146 NO 64)	100	(2) 39 91 000 FOR white r 100 (73/13 6) 6 2)	144
00Y 112 (08/3/11/6 142 84)	100	14.3	146
14/9 E/1 + 500 (17.0x12.1x126)	100	W.	120
4/9 (8/1 + 805 (1/ 8x13 (x10 0)	100	945	00
4/0 #/1 • 900 (1/ PA13 1A10 00	100	90	(0)
400 H25 + 000 (15.1x17x11.9)	100	94.7	20
6400 PCS + BOX (15 fatZatt \$1	100		


MATERIAL STRENGTH							
GRADE	Fy	Fu	GRADE	FV	Fu		
AGF2450	90 No.	COAM	AN	30 kg	26 900		
A01258	56 No.	7550		*******	159.15.		

TOWER DESIGN NOTES

SBA Communications Corporation 8051 Congress Avenue Boca Raton, FL 33487 Phone: 214.670.8110 ext 2812 FAX:

м	**************************************							
**								
	Ower	Down by Asmorom	Apolt					
	Licce TIA-222-11	Owie 11/10/23	tors NTS					
	/wh	Dec 140 E-1						

COAX LAYOUT

	CT09865-S							
#	CARRIER	SIZE	QTY.	ELEVATION	NOTES			
1	Town of Waterford	1-5/8"	2	180				
2		1-5/8"	11					
3	AT&T	1"	1		DC Power			
4		1/2"	2	170	Fiber			
5		3/4"	6		DC Power			
6		7/16"	1		Fiber			
7		1-5/8"	13					
8	T	1-5/8"	3	160	Fiber			
9	T-Mobile -	1/2"	1	160				
10		1.9"	2		Fiber			
11	Dish Wireless	1.6"	1	150	Hybrid			
12	Mariana.	1-5/8"	16	140				
13	Verizon	1-5/8"	2	140	Hybrid			

SBA Communications Corporation

8051 Congress Avenue Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:

Job		Page 1 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180,00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 23.00 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in New London County, Connecticut.

Tower base elevation above sea level: 116.12 ft.

Basic wind speed of 127 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1. Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

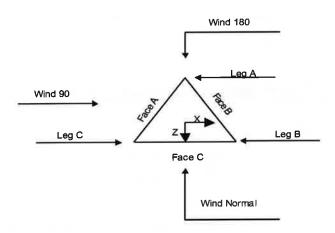
Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options


Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 - Use Special Wind Profile
- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- ✓ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric
 Distribute Leg Loads As Uniform

- Assume Legs Pinned
- Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurtenances Alternative Appurt. EPA Calculation
- √ Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing
- √ Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles

Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are Known

tnxTower	Job	Page 2 of 27	
SBA Communications Corporation 8051 Congress Avenue	Project CT09865-VZW-111323	Date 08:13:57 11/16/23	
Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:	Client	Designed by Asmerom	

Triangular Tower

Tower Section Geometry						
Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	ſŧ			ſl		ſŧ
T1	180.00-160.00			5.00	1	20.00
T2	160.00-140.00			5.00	1	20.00
T3	140.00-120.00			5.00	1	20.00
T4	120.00-90.00			5.00	1	30.00
T5	90.00-60.00			9.50	1	30.00
T6	60.00-30.00			14.00	1	30.00
T7	30.00-0.00			18.50	1	30.00

Tower Section Geometry (cont'd)							
Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Giri Offset
	fl	ft		Panels		in	in
T1	180.00-160.00	3.32	X Brace	No	Yes	0.0000	1.0000
T2	160.00-140.00	3.31	X Brace	No	Yes	1.0000	1.0000
T3	140.00-120.00	3.32	X Brace	No	Yes	1.0000	0.0000
T4	120.00-90.00	7.50	X Brace	No	No	0.0000	0.0000

SBA Communications Corporation

8051 Congress Avenue Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:

Job		Page 3 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Cilent		Designed by Asmerom

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace	Has Horizontals	Top Girt Offset	Bottom Gird Offset
	ſŧ	fi		End Panels		in	În
T5	90.00-60.00	7.50	X Brace	No	No	0.0000	0.0000
T6	60.00-30.00	7.50	X Brace	No	No	0.0000	0.0000
T7	30.00-0.00	7.50	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Туре	Size	Grade	Туре	Size	Grade
fi						
Г1 180.00-160.00	Solid Round	1 3/4	A572-50	Solid Round	7/8	A572-50
			(50 ksi)			(50 ksi)
Γ2 160.00-140.00	Solid Round	2 1/2	A572-50	Solid Round	1	A572-50
			(50 ksi)			(50 ksi)
Γ3 140.00-120.00	Solid Round	3 1/2	A572-50	Solid Round	1 1/8	A572-50
			(50 ksi)			(50 ksi)
T4 120.00-90.00	Solid Round	4 1/4	A572-58	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(58 ksi)			(36 ksi)
T5 90.00-60.00	Solid Round	4 1/2	A572-58	Equal Angle	L3x3x3/16	A36
			(58 ksi)			(36 ksi)
T6 60.00-30.00	Solid Round	4 3/4	A572-58	Equal Angle	L3 1/2x3 1/2x1/4	A36
			(58 ksi)			(36 ksi)
T7 30.00-0.00	Solid Round	4 3/4	A572-58	Equal Angle	L4x4x5/16	A36
			(58 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation (i	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 180.00-160.00	Solid Round	7/8	A572-50	Solid Round	7/8	A570-50
T2 160.00-140.00	Solid Round	1	(50 ksi) A572-50	Solid Round	1	(50 ksi) A572-50
T3 140.00-120.00	Solid Round	1 1/8	(50 ksi) A572-50	Solid Round	1 1/8	(50 ksi) A572-50
			(50 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

tnxTower	Job		Page 4 of 27	
SBA Communications Corporation 8051 Congress Avenue	Project	CT09865-VZW-111323	Date 08:13:57 11/16/23	
Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612	Client		Designed by Asmerom	

Tower Elevation	Gussel Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ſt	ft^2	in					in	in	in
T1 180.00-	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
160.00			(36 ksi)						
T2 160.00-	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
140.00			(36 ksi)						_
T3 140.00-	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
120.00			(36 ksi)						
T4 120.00-	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
90.00			(36 ksi)						
T5 90,00-60.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						
T6 60.00-30.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						
T7 30.00-0.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						

FAX:

Tower Section Geometry (cont'd)

						K Fac	ctorsi			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz	Inner Brace
ft	Angles	Rounds		<i>X</i> <i>Y</i>	X Y	Х У	X Y	X Y	X Y	X Y
T1 180.00- 160.00	Yes	Yes	I		1	1	1	1	12	1
T2 160.00- 140.00	Yes	Yes	ī	1	1 1	1	1	1 1	1	1
T3 140.00- 120.00	Yes	Yes	1	1	1	1	1	1	1	1
T4 120.00- 90.00	Yes	Yes	1	1	1	I,	i	1	1	1
T5 90.00- 60.00	Yes	Yes	1	1	1	1	1	1	1	1
T6 60.00- 30.00	Yes	Yes	ī	1	1	1	1	1	1	1
Г7 30.00-0.00	Yes	Yes	1	1	1	1	1	1	1	1

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

SBA Communications

-		Bogo
	Job	Page 5 of 27
	Project CT09865-VZW-111323	Date 08:13:57 11/16/23
	Client	Designed by Asmerom

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
£	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00- 160.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 160.00- 140.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 140.00- 120.00	0.0000	1	0.0000	1	0.0000	1	0,0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 120.00- 90.00	0.0000	1	0.0000	0.75	0.0000	1	0,0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 90.00-60.00	0.0000	1	0.0000	0.75	0.0000	1	0,0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 60.00-30.00	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 30.00-0.00	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation ft	Redur Horiza		Reduna Diago		Redundan Diagor		Redunda Horiz		Redundan	t Vertical	Reduna	lant Hip		lant Hip zonal
Ţ.	Net Width Deduct in	ı U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00- 160.00		0.75 (1) 0.75 (2)		0.75 (1) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1) 0.75 (2)	0.0000	0.75 (1) 0.75 (2)
	0.0000	0.75 (2)	1	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (2)
	0.0000	0.75 (4)		(3) 0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)
T2 160.00- 140.00	0.0000	0.75 (1)		0.75 (1) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1) 0.75 (2)	0.0000	0.75 (1) 0.75 (2)
	0.0000	0.75 (3)	1	(2) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	1	0.75 (4)		(3) 0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)
T3 140.00- 120.00	0.0000	0.75 (1)		0.75 (1) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1) 0.75 (2)	0.0000	0.75 (1)
		0.75 (3)		(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
		0.75 (4)		(3) 0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)
T4 120.00- 90.00	0.0000	0.75 (1)		0.75 (1) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1) 0.75 (2)	0.0000	0.75 (1)
		0.75 (3)		(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487
Phone: 214.570.8110 ext 2612
FAX:

Job		Page 6 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Tower Elevation	Redun Horizo		Reduna Diago		Redundan Diago		Redunda Horiz		Redundan	t Vertical	Reduna	lant Hip		lant Hip gonal
fi	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T5 90.00-60.00	0.0000 0.0000 0.0000	ì	0.0000	0.75 (1) 0.75 (2) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000 0.0000 0.0000	0.75 (1) 0.75 (2) 0.75 (3)	0.0000	0.75 (1) 0.75 (2) 0.75 (3)
T6 60.00-30.00	0.0000	0.75 (4) 0.75 (1)	0.0000	(3) 0.75 (4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (4) 0.75 (1)	0.0000	0.75 (4) 0.75 (1)
		0.75 (2) 0.75 (3)		(1) 0.75 (2) 0.75 (3)							0.0000	0.75 (2) 0.75 (3)	0.0000	0.75 (2)
T7 30.00-0.00	0.0000	0.75 (4)		0.75 (4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (4)	0.0000	0.75 (4)
	0.0000	0.75 (2)	0.0000	0.75 (2)				-			0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75					<u> </u>		0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)

Tower Section Geometry (cont'd)

Tower Elevation fl	Leg Connection Type	Leg		Diagon	al	Top G	irl	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hor	izontal
	-27	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size in	No.	Bolt Size in	No.
T1 180.00- 160.00	Flange	0.8750 A325N	6	0.0000 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T2 160.00- 140.00	Flange	1.1250 A325N>1"	6	0.0000 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T3 140.00- 120.00	Flange	1.1250 A325N>1"	6	0.0000 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0,6250 A325N	0	0.6250 A325N	0
T4 120.00- 90.00	Flange	1.2500 A325N>1"	6	0.7500 A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0,6250 A325N	0	0.6250 A325N	0

tnxTower	Job	Page 7 of 27
SBA Communications Corporation 8051 Congress Avenue	Project CT09865-VZW-111323	Date 08:13:57 11/16/23
Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:	Client	Designed by Asmerom

Tower Elevation fl	Leg Connection Type	Leg		Diagoi	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
		Bolt Size in	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
T5 90.00-60.00	Flange	1.2500 A325N>1"	6	0.7500 A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T6 60.00-30.00	Flange	1.2500 A325N>1"	6	0.8750 A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T7 30.00-0.00	Flange	0.0000 A325N>1"	0	0.8750 -A325N	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf

Safety Line 3/8 ***	A	No	No	Ar (CaAa)	180.00 - 0.00	0.0000	0.5	1	1	0.5000	0.3750		0.22
Feedline Ladder (Af) 1.5"	С	No	No	Af (CaAa)	180.00 - 0.00	-2.0000	0.45	1	1	0.5000	1.5000		4.20
LDF7-50A (1- 5/8 FOAM) ***	С	No	No	Ar (CaAa)	180.00 - 0.00	-2.0000	0.45	2	2	0.5000	1.9800		0.82
Feedline Ladder (Af) 1.5"	Α	No	No	Af (CaAa)	180.00 - 0.00	0.0000	0.45	1	1	0.5000	1.5000		4.20
LDF7-50A (1- 5/8 FOAM)	Α	No	No	Ar (CaAa)	170.00 - 0.00	0.0000	0.45	11	6	0.5000	1.9800		0.82
3/4" DC Power	Α	No	No	Ar (CaAa)	170.00 - 0.00	0.0000	0.41	6	3	0.5000	0.8650		0.15
1" DC Power	Α	No	No	Ar (CaAa)	170.00 - 0.00	0,0000	0.39	1	ï	0.5000	1.0000		0.66
1/2" Fiber	Α	No	No	Ar (CaAa)	170.00 - 0.00	0.0000	0.38	2	1	0.5000	0.5000		0.25
7/16" DC Fiber ***	A	No	No	Ar (CaAa)	170.00 - 0.00	0.0000	0.37	1	1	0.5000	0.8650		0.15
Feedline Ladder (Af) 1.5"	В	No	No	Af (CaAa)	180.00 - 0.00	0.0000	-0.35	1	1	0.5000	1.5000		4.20
(16) 1-5/8" & (2) 1.9" Fiber	В	No	No	Ar (CaAa)	160.00 - 0.00	0.0000	-0.35	18	9	0.5000	1.9800		0.82
LDF4-50A (1/2 FOAM) ***	В	No	No	Ar (CaAa)	160.00 - 0.00	0.0000	-0.39	1	1	0.5000	0.6300		0.15
Feedline Ladder (Af) 1.5"	С	No	No	Af (CaAa)	180.00 - 0.00	0.0000	-0.45	1	1	0.5000	1.5000		4.20
1.60" Hybrid	С	No	No	Ar (CaAa)	150.00 - 0.00	0.0000	-0.45	1	1	0.5000	1.6000		0.82

Inx Tower Job Page 8 of 27 SBA Communications Corporation 8051 Congress Avenue Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX: Client Date 08:13:57 11/16/23 Designed by Asmerom

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weigh
	Leg	Jilicia	Torque Calculation	727	ſì	in	(Frac FW)		Row	in	in	in	plf
Feedline Ladder (Af) 1.5"	В	No	No	Af (CaAa)	180.00 - 0.00	0.0000	0.4	1	1	0.5000	1.5000		4.20
LDF7-50A (1- 5/8 FOAM)	В	No	No	Ar (CaAa)	140.00 - 0.00	0.0000	0.4	16	8	0.5000	1.9800		0.82
1-5/8" Hybrid	В	No	No	Ar (CaAa)	140.00 - 0.00	0.0000	0.36	2	1	0.5000	1.9800		2.72

Feed Line/Linear Appurtenances - Entered As Area									
Description		Allow	Exclude	Component	Placement	Total	C_AA_A	Weight	
	or Leg	Shield	From Torque Calculation	Туре	ft	Number	ft²/fi	plf	

		Feed	l Line/L	_inear A	ppurter	nances	Section	Areas
Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight	4
	ft		ft²	ft ²	ft²	ft²	K	
T1	180,00-160,00	Α	0.000	0.000	35.585	0.000	0.20	
		В	0.000	0.000	10.000	0.000	0.17	
		C	0.000	0.000	17.920	0.000	0.20	
T2	160.00-140.00	Α	0.000	0.000	65.420	0.000	0.31	
		В	0.000	0.000	82.540	0.000	0.47	
		C	0.000	0.000	19.520	0.000	0.21	
T3	140.00-120.00	Α	0.000	0.000	65.420	0.000	0.31	
		В	0.000	0.000	153.820	0.000	0.84	
		C	0.000	0.000	21.120	0.000	0.22	
T4	120.00-90.00	Α	0.000	0.000	98.130	0.000	0.47	
		В	0.000	0.000	230.730	0.000	1.26	
		C	0.000	0.000	31.680	0.000	0.33	
T5	90.00-60.00	Α	0.000	0.000	98.130	0.000	0.47	
		В	0.000	0.000	230.730	0.000	1.26	
		С	0.000	0.000	31.680	0.000	0.33	
Т6	60.00-30.00	Α	0.000	0.000	98.130	0.000	0.47	
		В	0.000	0.000	230.730	0.000	1.26	
		C	0.000	0.000	31.680	0.000	0.33	
T7	30.00-0.00	Α	0.000	0.000	98,130	0.000	0.47	
		В	0.000	0.000	230.730	0.000	1.26	
		C	0.000	0.000	31,680	0.000	0.33	

SBA Communications
Corporation

8051 Congress Avenue Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:

Job		Page
		9 of 27
Project		Date
	CT09865-VZW-111323	08:13:57 11/16/23
Client		Designed by
1		Asmerom

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
	ft	Leg	in	ft^2	ft²	ft²	ft²	K
T1	180.00-160.00	Α	1.178	0.000	0.000	59.732	0.000	0.80
		В		0.000	0.000	19,425	0.000	0.36
		C		0.000	0.000	39.622	0.000	0.54
T2	160.00-140.00	Α	1.163	0.000	0.000	103.753	0.000	1,36
		В		0.000	0.000	87.928	0.000	1.52
		C		0.000	0.000	43.330	0.000	0.59
T3	140.00-120.00	Α	1.147	0.000	0.000	103.150	0.000	1,35
		В		0.000	0.000	164.269	0.000	2.77
		C		0.000	0.000	46.945	0.000	0.62
T4	120.00-90.00	Α	1.123	0.000	0.000	153.397	0.000	1.99
		В		0.000	0.000	245.264	0.000	4.11
		C		0.000	0.000	69.730	0.000	0.92
T5	90.00-60.00	Α	1.086	0.000	0.000	151.363	0.000	1.93
		В		0.000	0.000	243.520	0.000	4.04
		C		0.000	0.000	68.677	0.000	0.89
T6	60.00-30.00	Α	1.032	0.000	0.000	148.405	0.000	1.86
		В		0.000	0.000	240.983	0.000	3.93
		C		0.000	0.000	67.146	0.000	0.86
T7	30.00-0.00	A	0.924	0.000	0.000	142.536	0.000	1.72
		В		0.000	0.000	235,955	0.000	3.72
		C		0.000	0.000	64.107	0.000	0.79

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ſŧ	in	in	in	in
T 1	180.00-160.00	-2.0553	-9.0925	-1.5297	-7.1889
T2	160.00-140.00	-0.1345	-17.1464	-0.2973	-13.9018
T3	140.00-120.00	5.2682	-10.1467	4.0353	-9.2145
T4	120.00-90.00	6.0807	-12.6106	5.2701	-12.3291
T5	90.00-60.00	8.1210	-17.6298	7.3491	-17.5664
T6	60.00-30.00	9.2817	-21.0413	8.7728	-21,4582
T7	30.00-0.00	9.8373	-23.1693	9.6729	-24.2189

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _u No Ice	K _a Ice
T1	2	Safety Line 3/8	160.00 -	0.6000	0.6000
			180.00	0	F 144 T 1 44 T 1 1 1 1 1 1 1 1 1 1 1 1 1
T1	4	Feedline Ladder (Af) 1.5"	160.00 -	0.6000	0.6000
			180.00	J. J.	

tnxTower	Job	Page 10 of 27
SBA Communications Corporation 8051 Congress Avenue	Project CT09865-VZW-111323	Date 08:13:57 11/16/23
Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:	Client	Designed by Asmerom

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	•	Segment Elev.	No Ice	Ice
T1	5	LDF7-50A (1-5/8 FOAM)	160.00 -	0.6000	0.6000
т,	7	Feedline Ladder (Af) 1.5"	180.00 160.00 -	0.6000	0.6000
T1	:/	recuite Lauder (A1) 1.5	180.00		11.75.1001.54.010
T1	8	LDF7-50A (1-5/8 FOAM)	160.00 -	0.6000	0.6000
T.	9	3/4" DC Power	170.00 160.00 -	0.6000	0.6000
T1		5/4 DC FOWER	170.00	0,0000	
T1	10	1" DC Power	160.00 -	0.6000	0.6000
т1	11	1/2" Fiber	170.00 160.00 -	0.6000	0.6000
11		1/2 11001	170.00	0.0000	36.36.36.36.36
T1	12	7/16" DC Fiber	160.00 -	0.6000	0.6000
Т1	14	Feedline Ladder (Af) 1.5"	170.00 160.00 -	0.6000	0.6000
11	14	recullic Laudel (A1) 1.5	180.00	0.0000	
T1	18	Feedline Ladder (Af) 1.5"	160.00 -	0.6000	0.6000
7.1	21	Feedline Ladder (Af) 1.5"	180.00 160.00 -	0.6000	0.6000
T1	21	recullie Laudei (AI) 1.5	180.00		#0000.00000000
T2	2	Safety Line 3/8	140.00 -	0.6000	0.6000
та	ا، ا	Feedline Ladder (Af) 1.5"	160.00 140.00 -	0.6000	0.6000
Т2	4	reculine Ladder (A1) 1.5	160.00	0.0000	0.0000
T2	5	LDF7-50A (1-5/8 FOAM)	140.00 -	0.6000	0.6000
	7	Feedline Ladder (Af) 1.5"	160.00 140.00 -	0.6000	0.6000
T2	/	recume Laudei (AI) 1.5	160.00	0.0000	0.0000
T2	8	LDF7-50A (1-5/8 FOAM)	140.00 -	0.6000	0.6000
	9	3/4" DC Power	160.00 140.00 -	0.6000	0.6000
Т2	9	3/4 DC FOWEI	160.00	0.0000	0.0000
Т2	10	1" DC Power		0.6000	0.6000
T2	11	1/2" Fiber	160.00 140.00 -	0.6000	0.6000
12	11	1/2 1 1001	160.00		22000
T2	12	7/16" DC Fiber	140.00 -	0.6000	0.6000
Т2	14	Feedline Ladder (Af) 1.5"	160.00 140.00 -	0.6000	0.6000
12	14	1 couline Dadder (Att) 1.5	160.00		
T2	15	(16) 1-5/8" & (2) 1.9" Fiber		0.6000	0.6000
Т2	16	LDF4-50A (1/2 FOAM)	160.00 140.00 -	0.6000	0.6000
12	16	DDI 7-50A (1/2 1 OAM)	160.00		
T2	18	Feedline Ladder (Af) 1.5"		0.6000	0.6000
Т2	19	1.60" Hybrid	160.00 140.00 -	0.6000	0.6000
12	19	,	150.00		900
T2	21	Feedline Ladder (Af) 1.5"	140.00 -	0.6000	0.6000
Т3	2	Safety Line 3/8	160.00 120.00 -	0,6000	0.6000
13			140.00		1000000
Т3	4	Feedline Ladder (Af) 1.5"		0.6000	0.6000
Т3	5	LDF7-50A (1-5/8 FOAM)	140.00 120.00 -	0.6000	0.6000
13			140.00		Wikede
Т3	7	Feedline Ladder (Af) 1.5"		0.6000	0.6000
1	l l	li,	140.00	Ų.	ļ ļ

SBA Communications

Job	Page
	11 of 27
Project CT09865-VZW-111323	Date 08:13:57 11/16/23
Client	Designed by Asmerom

Tower	Feed Line	Description	Feed Line	K _a	K_a
Section	Record No.	,	Segment Elev.	No Ice	Ice
T3	8	LDF7-50A (1-5/8 FOAM)	120.00 -	0.6000	0.6000
			140.00		
T3	9	3/4" DC Power		0.6000	0.6000
	10		140.00		
Т3	10	1" DC Power		0.6000	0.6000
T3	11	1/2" Fiber	140.00	0.6000	0.6000
13	11	1/2 Fiber	120.00 - 140.00	0.6000	0.6000
Т3	12	7/16" DC Fiber	120.00 -	0.6000	0.6000
12	[Wio Belieu	140.00	0.0000	0.0000
Т3	14	Feedline Ladder (Af) 1.5"	120.00 -	0.6000	0.6000
			140.00		
Т3	15	(16) 1-5/8" & (2) 1.9" Fiber		0.6000	0.6000
			140.00		F. 5 = 5 = 7 = 6 = 7 = 6 = 7
T3	16	LDF4-50A (1/2 FOAM)	120.00 -	0.6000	0.6000
	- 1		140.00		
T3	18	Feedline Ladder (Af) 1.5"	120.00 -	0.6000	0.6000
			140.00	10.1003070	1/20000000000
T3	19	1.60" Hybrid	120.00 -	0.6000	0.6000
772	2.	E 41 I 11 (40.1.60	140.00	0.6000	W. 2000
T3	21	Feedline Ladder (Af) 1.5"	120.00 -	0.6000	0.6000
Т3	22	LDF7-50A (1-5/8 FOAM)	140.00	0.6000	0.6000
13	22	LDF /-30A (1-3/8 FOAM)	120.00 - 140.00	0.6000	0.6000
T3	23	1-5/8" Hybrid	120.00 -	0.6000	0.6000
1.7		1-5/6 Tryund	140.00	0.0000	0.0000
T4	2	Safety Line 3/8		0.6000	0.6000
T4	4	Feedline Ladder (Af) 1.5"		0.6000	0.6000
T4		LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T4	5 7	Feedline Ladder (Af) 1.5"		0.6000	0.6000
T4	8	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T4	9	3/4" DC Power	90.00 - 120.00	0.6000	0.6000
T4	10	1" DC Power	90.00 - 120.00	0.6000	0.6000
T4	11		90.00 - 120.00	0.6000	0.6000
T4	12	7/16" DC Fiber		0.6000	0.6000
T4	14	Feedline Ladder (Af) 1.5"		0.6000	0.6000
T4 T4	15	(16) 1-5/8" & (2) 1.9" Fiber		0.6000	0.6000
T4	16	LDF4-50A (1/2 FOAM)		0.6000	0.6000
T4	18 19	Feedline Ladder (Af) 1.5"	90.00 - 120.00	0.6000	0.6000
T4	21	Feedline Ladder (Af) 1,5"	90.00 - 120.00	0.6000	0.6000
T4	22	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T4	23		90.00 - 120.00	0.6000	0.6000
T5	2	Safety Line 3/8	60.00 - 90.00	0.6000	0.6000
T5	4	Feedline Ladder (Af) 1.5"	60.00 - 90.00	0.6000	0.6000
T5	5	LDF7-50A (1-5/8 FOAM)	60.00 - 90.00	0.6000	0.6000
T5	7	Feedline Ladder (Af) 1.5"	60.00 - 90.00	0.6000	0.6000
T5	8	LDF7-50A (1-5/8 FOAM)	60.00 - 90.00	0.6000	0.6000
T5	9	3/4" DC Power	60.00 - 90.00	0.6000	0.6000
T5	10	1" DC Power	60.00 - 90.00	0.6000	0.6000
T5	11	1/2" Fiber	60.00 - 90.00	0.6000	0.6000
T5	12	7/16" DC Fiber	60.00 - 90.00	0.6000	0.6000
T5 T5	14	Feedline Ladder (Af) 1.5"	60.00 - 90.00	0.6000	0.6000
T5	15 16	(16) 1-5/8" & (2) 1.9" Fiber LDF4-50A (1/2 FOAM)	60.00 - 90.00 60.00 - 90.00	0.6000	0.6000
T5	18	Feedline Ladder (Af) 1.5"	60.00 - 90.00	0.6000	0.6000
T5	19	1.60" Hybrid	60.00 - 90.00	0.6000	0.6000 0.6000
T5	21	Feedline Ladder (Af) 1.5"		0.6000	0.6000

tnxTower	Job		Page 12 of 27	
SBA Communications Corporation 8051 Congress Avenue	Project	CT09865-VZW-111323	Date 08:13:57 11/16/23	
Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:	Client		Designed by Asmerom	

Tower	Feed Line	Description	Feed Line	K_a	K _a
Section	Record No.	-	Segment Elev.	No Ice	Ice
T5	22	LDF7-50A (1-5/8 FOAM)	60.00 - 90.00	0.6000	0.6000
T5	23	1-5/8" Hybrid	60.00 - 90.00	0.6000	0,6000
Т6	2	Safety Line 3/8	30.00 - 60.00	0.6000	0.6000
Т6	4	Feedline Ladder (Af) 1.5"	30.00 - 60.00	0.6000	0.6000
Т6	5	LDF7-50A (1-5/8 FOAM)	30.00 - 60.00	0.6000	0.6000
Т6	7	Feedline Ladder (Af) 1.5"	30.00 - 60.00	0.6000	0.6000
Т6	8	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
Т6	9	3/4" DC Power	100000	0.6000	0.6000
Т6	10	1" DC Power	122 541	0.6000	0.6000
Т6	11	1/2" Fiber		0.6000	0.6000
Т6	12	7/16" DC Fiber	30.00 - 60.00	0.6000	0.6000
Т6	14	Feedline Ladder (Af) 1.5"	30.00 - 60.00	0.6000	0.6000
Т6	15	(16) 1-5/8" & (2) 1.9" Fiber	30.00 - 60.00	0.6000	0.6000
Т6	16	LDF4-50A (1/2 FOAM)	30.00 - 60.00	0.6000	0.6000
Т6	18	Feedline Ladder (Af) 1.5"	30.00 - 60.00	0.6000	0.6000
Т6	19	1.60" Hybrid	30.00 - 60.00	0.6000	0.6000
Т6	21	Feedline Ladder (Af) 1.5"	30.00 - 60.00	0.6000	0.6000
Т6	22	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T6	23	1-5/8" Hybrid	30.00 - 60.00	0.6000	0.6000
T7	2	Safety Line 3/8	0.00 - 30.00	0.6000	0.6000
T7	4	Feedline Ladder (Af) 1.5"	0.00 - 30.00	0.6000	0.6000
T7	5	LDF7-50A (1-5/8 FOAM)	0.00 - 30.00	0.6000	0.6000
T7	7	Feedline Ladder (Af) 1.5"	0.00 - 30.00	0.6000	0.6000
T7	8	LDF7-50A (1-5/8 FOAM)	0.00 - 30.00	0.6000	0.6000
T7	9	3/4" DC Power	0.00 - 30.00	0.6000	0.6000
T7	10	1" DC Power	0.00 - 30.00	0.6000	0.6000
T7	11	1/2" Fiber	0.00 - 30.00	0.6000	0.6000
T7	12	7/16" DC Fiber	0.00 - 30.00	0.6000	0.6000
<u>T7</u>	14	Feedline Ladder (Af) 1.5"	0.00 - 30.00	0.6000	0.6000
T7	15	(16) 1-5/8" & (2) 1.9" Fiber	0.00 - 30.00	0.6000	0.6000
T7	16	LDF4-50A (1/2 FOAM)	0.00 - 30.00	0.6000	0.6000
T7	18	Feedline Ladder (Af) 1.5"	0.00 - 30.00	0.6000	0.6000
T7	19	1.60" Hybrid	0.00 - 30.00	0.6000	0.6000
<u>T7</u>	21	Feedline Ladder (Af) 1.5"	0.00 - 30.00	0.6000	0.6000
T7	22	LDF7-50A (1-5/8 FOAM)	0.00 - 30.00	0.6000	0.6000
T7	23	1-5/8" Hybrid	0.00 - 30.00	0.6000	0.6000

User Defined Loads - Seismic

Description	Elevation	Offset From Centroid	Azimuth Angle	E_{ν}	E_{hx}	E_{hs}	E_h
E.	fi	ft	0	K	K	K	K
SL1	180.00	0.00	0.0000	0.23	0.00	0.00	0.56
SL2	160.00	0.00	0.0000	0.34	0.00	0.00	0.77
SL3	140.00	0.00	0.0000	0.35	0.00	0.00	0.68
SL4	120.00	0.00	0.0000	0.31	0.00	0.00	0.50
SL5	90.00	0.00	0.0000	0.35	0.00	0.00	0.42
SL6	60.00	0.00	0.0000	0.43	0.00	0.00	0.33
SL7	30.00	0.00	0.0000	0.51	0.00	0.00	0.18

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487
Phone: 214.570.8110 ext 2612
FAX:

Job	Page 13 of 27
Project CT09865-VZW-111323	Date 08:13:57 11/16/23
Client	Designed by Asmerom

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C₄A₄ Side	Weight
			Vert fi fi fi	•	fì		ft²	ft²	K
*** Lightning Rod	С	From Leg	3.00	0.0000	180.00	No Ice	0.25	0.25	0.03
Lightning Rod	C	From Deg	0.00	0.0000	160.00	1/2" Ice	0.25	0.23	0.03
			0.00			1" Ice	0.97	0.97	0.04
Flash Beacon Lighting	C	None	0.00	0.0000	180,00	No Ice	2.70	2.70	0.04
Flash Beacon Lighting	C	None		0.0000	160,00	1/2" Ice	3.10	3.10	0.03
						1/2 Ice 1" Ice	3.50	3.50	0.07
申申申						1 ice	3.30	3.30	0.09
SC488-HF2LNF	Α	From Leg	3.00	0.0000	180.00	No Ice	4.56	4.56	0.03
(190x2.88x2.88)	А	110m Leg	0.00	0.0000	160.00	1/2" Ice	6.18	6.18	0.03
(19072.0072.00)			7.92			1" Ice	7.81	7.81	0.07
SC488-HF2LNF	В	From Lea	3.00	0.0000	180.00		4.56	4.56	0.03
(190x2.88x2.88)	ь	From Leg	0,00	0.0000	160.00	No Ice 1/2" Ice		6.18	
(190x2.86x2.86)							6.18		0.07
CC400 HEST NE	С	F T	7.92	0.0000	100.00	1" Ice	7.81	7.81	0.11
SC488-HF2LNF	C	From Leg	3.00	0.0000	180.00	No Ice	4.56	4.56	0.03
(190x2.88x2.88)			0.00			1/2" Ice	6.18	6.18	0.07
DDC	0	ГТ	7.92	0.0000	100.00	1" Ice	7.81	7.81	0.11
DBSpectra ATS8TMA10	C	From Leg	3.00	0.0000	180.00	No Ice	2.74	2.74	0.03
TMA			0.00			1/2" Ice	3.03	3.03	0.04
			0.00			1" Ice	3.33	3.33	0.07
SitePRO1 HM6 6' Stanoffs	Α	From Leg	3.00	0.0000	180.00	No Ice	2.64	4.40	0.08
			0.00			1/2" Ice	3.69	6.20	0.10
	_	_	0.00			1" Ice	4.74	8.00	0.12
SitePRO1 HM6 6' Stanoffs	В	From Leg	3.00	0.0000	180.00	No Ice	2.64	4.40	0.08
			0.00			1/2" Ice	3.69	6.20	0.10
			0.00			1" lce	4.74	8.00	0.12
SitePRO1 HM6 6' Stanoffs	C	From Leg	3.00	0.0000	180.00	No Ice	2.64	4.40	0.08
			0.00			1/2" Ice	3.69	6.20	0.10
ofe rife ade			0.00			1" Ice	4.74	8.00	0.12
1R6419 B77G w/mount pipe	Α	From Leg	3.00	0.0000	170.00	No Ice	5.33	4.05	0.11
(30.4x15.9x8.1)			0.00			1/2" Ice	6.15	5.09	0.16
TD (410 D B B C)	-		1.80			1" Ice	6.88	5.98	0.22
IR6419 B77G w/mount pipe	В	From Leg	3.00	0.0000	170.00	No Ice	5.33	4,05	0.11
(30.4x15.9x8.1)			0.00			1/2" Ice	6.15	5.09	0.16
	_		1.80			1" Ice	6.88	5.98	0.22
IR6419 B77G w/mount pipe	C	From Leg	3.00	0.0000	170.00	No Ice	5.33	4.05	0.11
(30.4x15.9x8.1)			0.00			1/2" Ice	6.15	5,09	0.16
			1.80			1" Ice	6.88	5.98	0.22
DMP65R-BU4DA w/mount	Α	From Leg	3.00	0.0000	170.00	No Ice	9.23	5.41	0.10
pipe (48x20.7x7.7)			0.00			1/2" Ice	10.03	6,54	0.17
			0.00			1" Ice	10.76	7,52	0.25
DMP65R-BU4DA w/mount	В	From Leg	3.00	0.0000	170.00	No Ice	9.23	5,41	0.10
pipe (48x20.7x7.7)			0.00			1/2" lce	10.03	6.54	0.17
		_	0.00			1" lce	10.76	7.52	0.25
DMP65R-BU4DA w/mount	C	From Leg	3.00	0.0000	170.00	No Ice	9.23	5,41	0.10
pipe (48x20.7x7.7)			0.00			1/2" lce	10.03	6,54	0.17

SBA Communications

Job		Page 14 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert fl fl		ſi		ft²	ft²	K
			fi			1" lce	10.76	7.52	0.25
VDC110 DEED /		F 1	0.00	0.0000	170.00	No Ice	5.33	4.05	0.11
AIR6449 B77D w/mount pipe	A	From Leg	3.00 0.00	0.0000	170.00	1/2" Ice	6.15	5.09	0.16
(30.4x15.9x8.1)			-2.00			1" Ice	6.88	5.98	0.22
IDC 440 DZZD/	В	From Leg	3.00	0.0000	170.00	No Ice	5.33	4.05	0.11
AIR6449 B77D w/mount pipe	ь	rioni Leg	0.00	0.0000	170.00	1/2" Ice	6.15	5.09	0.16
(30.4x15.9x8.1)			-2.00			1" Ice	6.88	5.98	0.22
IR6449 B77D w/mount pipe	С	From Leg	3.00	0.0000	170.00	No Ice	5.33	4.05	0.11
	C	I Tom Log	0.00	0.0000	170.00	1/2" Ice	6.15	5.09	0.16
$(30.4 \times 15.9 \times 8.1)$			-2.00			1" Ice	6.88	5.98	0.22
EPBQ-654L8H6-L2 w/mount	Α	From Leg	3.00	0.0000	170.00	No Ice	13.69	6.86	0.10
pipe (73x21x6.3)	А	I TOM LCE	0.00	0.000	1,0,00	1/2" Ice	14.40	8.14	0.20
pipe (/3x21x0.3)			0,00			1" Ice	15.07	9.28	0.30
EPBQ-654L8H6-L2 w/mount	В	From Leg	3.00	0.0000	170.00	No Ice	13.69	6.86	0.10
pipe (73x21x6.3)	ъ	I Tom Log	0.00	0.0000	170.00	1/2" Ice	14.40	8.14	0.20
pipe (/3x21x0.3)			0.00			1" Ice	15.07	9.28	0.30
EPBQ-654L8H6-L2 w/mount	С	From Leg	3.00	0.0000	170.00	No Ice	13.69	6.86	0.10
pipe (73x21x6.3)	C	TIOM LOG	0.00	0,0000	1,0,00	1/2" Ice	14.40	8.14	0.20
pipe (/3x21x0.3)			0.00			1" Ice	15.07	9.28	0.30
(2) TT19-08BP111-001	Α	From Leg	3.00	0.0000	170.00	No Ice	0.55	0.45	0.02
(9.9x6.7x5.4)	Λ	110th Log	0.00	0.0000	1,0,00	1/2" Ice	0.65	0.53	0.02
(9.980.783.4)			0.00			1" Ice	0.75	0.63	0.03
(2) TT19-08BP111-001	В	From Leg	3.00	0.0000	170.00	No Ice	0.55	0.45	0.02
	ь	I Iom Leg	0.00	0.0000	170100	1/2" Ice	0.65	0.53	0.02
(9.9x6.7x5.4)			0.00			1" Ice	0.75	0.63	0.03
(2) TT10 08BB111 001	С	From Leg	3.00	0.0000	170.00	No Ice	0.55	0.45	0.02
(2) TT19-08BP111-001	C	LIOIII TER	0.00	0.0000	170.00	1/2" Ice	0.65	0.53	0.02
(9.9x6.7x5.4)			0.00			1" Ice	0.75	0.63	0.03
2) PRIE 22 (20 0v12 4v0 5)	Α	From Leg	3.00	0.0000	170.00	No Ice	2.33	1.65	0.08
(2) RRUS 32 (20.9x13.4x9.5)	^	I TOIL LCg	0.00	0.0000	1,0100	1/2" Ice	2.53	1.83	0.10
			0.00			1" Ice	2.73	2.01	0.12
2) BBHS 22 (20 012 40 5)	В	From Leg	3.00	0.0000	170.00	No Ice	2.33	1.65	0.08
2) RRUS 32 (20.9x13.4x9.5)	В	From Leg	0.00	0.0000	170100	1/2" Ice	2.53	1.83	0.10
			0.00			1" lce	2.73	2.01	0.12
2) DBUE 22 (20 0±12 4±0 5)	С	From Leg	3.00	0.0000	170.00	No Ice	2.33	1.65	0.08
(2) RRUS 32 (20.9x13.4x9.5)		I fom Leg	0.00	0.0000	170,00	1/2" lce	2.53	1.83	0.10
			0.00			1" Ice	2.73	2.01	0.12
DDI10 4470 D14	Α	From Leg	3.00	0.0000	170.00	No Ice	1.65	0.93	0.06
RRUS 4478 B14	Δ.	I Tom Leg	0.00	0.0000	170100	1/2" lce	1.81	1.05	0.07
(15x13.2x7.4)			0.00			1" lce	1.98	1.19	0.09
DBI10 4470 D14	В	From Leg	3.00	0.0000	170.00	No Ice	1.65	0.93	0.06
RRUS 4478 B14	D	110m reg	0.00	0.0000	1,0.00	1/2" lce	1.81	1.05	0.07
(15x13.2x7.4)			0.00			1" Ice	1.98	1.19	0.09
DDIIS 4470 D14	C	From Leg	3.00	0.0000	170.00	No Ice	1.65	0.93	0.06
RRUS 4478 B14		1 tour reg	0.00	0,0000	1,0100	1/2" Ice	1.81	1.05	0.07
(15x13.2x7.4)			0.00			1" Ice	1.98	1.19	0.09
4415 B25 (16.5x13.4x5.9)	Α	From Leg	3.00	0.0000	170.00	No Ice	1.84	0.82	0.05
4412 (10.5X13.4X5.9)	^	1 tom reg	0.00	0.0000	1,0100	1/2" Ice	2.01	0.94	0.06
			0.00			1" Ice	2.19	1.07	0.08
4415 B25 (16.5x13.4x5.9)	В	From Leg	3.00	0.0000	170.00	No Ice	1.84	0.82	0.05
4413 B23 (10.3X13.4X3.9)	۵	From reg	0.00	0.0000	170.00	1/2" Ice	2.01	0.94	0.06
			0.00			1" Ice	2.19	1.07	0.08
4415 DOS (16 5-12 4-5 0)	C	From Lac		0.0000	170.00	No Ice	1.84	0.82	0.05
4415 B25 (16.5x13.4x5.9)	C	From Leg	3.00	0.0000	170.00	140 100	1.07	0.02	0.05

SBA Communications

Job	Page 15 of 27
Project CT09865-VZW-111323	Date 08:13:57 11/16/23
Client	Designed by Asmerom

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert fi fi fi	6	fi		ft²	ſt²	K
			0.00			1/2" Ice	2.01	0.94	0.06
			0.00			1" Ice	2.19	1.07	0.08
RRUS 4449 B5/B12	A	From Leg	3.00	0.0000	170.00	No Ice	1.64	1.30	0.07
(14.96x13.19x10.43)			0.00			1/2" Ice	1.80	1.45	0.09
			0.00			1" Ice	1.97	1.60	0.11
RRUS 4449 B5/B12	В	From Leg	3.00	0.0000	170.00	No Ice	1.64	1.30	0.07
(14.96x13.19x10.43)			0.00			1/2" Ice	1.80	1.45	0.09
			0.00			1" Ice	1.97	1.60	0.11
RRUS 4449 B5/B12	C	From Leg	3.00	0.0000	170.00	No Ice	1.64	1.30	0.07
(14.96x13.19x10.43)			0.00			1/2" Ice	1.80	1.45	0.09
, , , , , , , , , , , , , , , , , , ,			0.00			1" Ice	1.97	1.60	0.11
DC6-48-60-18-8F	Α	From Leg	3.00	0.0000	170.00	No Ice	2.20	3.70	0.03
(24x11x18.5)		8	0.00			1/2" Ice	2,40	3.94	0.06
,			0.00			1" Ice	2.60	4.19	0.10
DC6-48-60-18-8F	В	From Leg	3.00	0.0000	170.00	No Ice	2.20	3.70	0.03
(24x11x18.5)	_		0.00	010000	1,0100	1/2" Ice	2.40	3.94	0.06
(2 1111111111)			0.00			1" Ice	2.60	4.19	0.10
DC9-48-60-24-8C-EV	C	From Leg	3.00	0.0000	170.00	No Ice	1.56	4.79	0.03
(18.3x10.2x31.4)	•	110m Log	0.00	0.0000	170.00	1/2" Ice	1.72	5.07	0.06
(18.5×10.2×51.4)			0.00			1" Ice	1.72	5.36	
T-Frame	Α	From Leg	1.50	0.0000	170.00	No Ice	9.72	7.05	0.10
1-Frame	Λ	rioin Leg		0.0000	170.00				0.28
			0.00			1/2" Ice	13.66	9.87	0.40
T France	D	F I	0.00	0.0000	170.00	1" Ice	17.60	12.69	0.52
T-Frame	В	From Leg	1.50	0.0000	170.00	No Ice	9.72	7.05	0.28
			0.00			1/2" Ice	13.66	9.87	0.40
	_		0.00		450.00	1" Ice	17.60	12.69	0.52
T-Frame	С	From Leg	1.50	0.0000	170.00	No Ice	9.72	7.05	0.28
			0.00			1/2" Ice	13.66	9.87	0.40
			0.00			1" Ice	17.60	12.69	0.52
(2) Mod (Diagonal Pipe	Α	From Leg	3.00	0.0000	170.00	No Ice	1.17	1.17	0.04
Braces)			0.00			1/2" Ice	1.58	1.58	0.05
			0.00			1" Ice	1.99	1.99	0.06
(2) Mod (Diagonal Pipe	В	From Leg	3.00	0.0000	170.00	No Ice	1.17	1.17	0.04
Braces)			0.00			1/2" Ice	1.58	1.58	0.05
			0.00			1" lce	1.99	1.99	0.06
(2) Mod (Diagonal Pipe	C	From Leg	3.00	0.0000	170.00	No lce	1.17	1.17	0.04
Braces)			0.00			1/2" Ice	1.58	1.58	0.05
			0.00			1" lce	1.99	1.99	0.06
His object of									
IR6419 B41 w/mount pipe	Α	From Leg	3.00	0.0000	160.00	No Ice	7.50	4.78	0.11
(36.3x20.9x9)			0.00			1/2" lce	8.34	5.85	0.18
			0.00			1" lce	9.09	6.78	0.25
IR6419 B41 w/mount pipe	В	From Leg	3.00	0.0000	160.00	No Ice	7.50	4.78	0.11
(36.3x20.9x9)		_	0.00			1/2" Ice	8.34	5.85	0.18
			0.00			1" Ice	9.09	6.78	0.25
IR6419 B41 w/mount pipe	C	From Leg	3.00	0.0000	160.00	No Ice	7.50	4.78	0.11
(36.3x20.9x9)		J	0.00			1/2" Ice	8.34	5.85	0.18
,			0.00			1" Ice	9.09	6.78	0.25
PXVAARR24_43-U-NA20	Α	From Leg	3.00	0.0000	160.00	No Ice	20.24	10.79	0.16
mount pipe (95.9x24x8.7)	-		0.00			1/2" Ice	20.89	12.21	0.29
F-F- ()			0.00			1" Ice	21.55	13.49	0.44
			0.00						
PXVAARR24_43-U-NA20	В	From Leg	3.00	0.0000	160.00	No Ice	20.24	10.79	0.16

SBA Communications

Job		Page 16 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Vert						
			fi fi fi	o	_{ca} ft		ft²	ft²	K
			0.00			1" Ice	21.55	13.49	0.44
APXVAARR24_43-U-NA20	C	From Leg	3.00	0.0000	160.00	No Ice	20,24	10.79	0.16
w/mount pipe (95.9x24x8.7)			0.00			1/2" Ice	20.89	12.21	0.29
			0.00			1" Ice	21.55	13.49	0.44
KRY 112 144/1 (6.9x6.1x2.7)	Α	From Leg	3.00	0.0000	160.00	No Ice	0.35	0.16	0.01
			0.00			1/2" Ice	0.43	0.21	0.01
			0.00			1" Ice	0.51	0.28	0.02
RY 112 144/1 (6.9x6.1x2.7)	В	From Leg	3.00	0.0000	160.00	No Ice	0.35	0.16	0.01
			0.00			1/2" Ice	0.43	0.21	0.01
	_	_	0.00	0.0000	1.60.00	1" Ice	0.51	0.28	0.02
KRY 112 144/1 (6.9x6.1x2.7)	С	From Leg	3.00	0.0000	160.00	No Ice	0.35	0.16	0.01
			0.00			1/2" Ice 1" Ice	0.43	0.21 0.28	0.01 0.02
TCD37 110 400/0		From La-	0.00	0.0000	140.00		0.51 0.56	0.28	0.02
KRY 112 489/2	A	From Leg	3.00	0.0000	160.00	No Ice 1/2" Ice	0.66	0.37	0.02
(11x6.1x3.94)			0.00			1" Ice	0.76	0.43	0.02
17917 110 400/3	D	From Lan	0.00	0.0000	160.00	No Ice	0.76	0.37	0.03
KRY 112 489/2	В	From Leg	3.00 0.00	0.0000	100.00	1/2" Ice	0.66	0.45	0.02
(11x6.1x3.94)			0.00			1" Ice	0.76	0.54	0.03
VD3/ 112 490/2	С	From Leg	3.00	0.0000	160.00	No Ice	0.56	0.37	0.02
KRY 112 489/2	C	Floin Leg	0.00	0.0000	100.00	1/2" Ice	0.66	0.45	0.02
(11x6.1x3.94)			0.00			1" Ice	0.76	0.54	0.03
4449 B71 + B85	Α	From Leg	3.00	0.0000	160.00	No Ice	1.95	1.58	0.08
(17.9x13.1x10.6)	A	Trom Leg	0.00	010000	200.00	1/2" Ice	2.13	1.74	0.09
(17.9x13.1x10.0)			0.00			1" Ice	2.31	1.91	0.12
4449 B71 + B85	В	From Leg	3.00	0.0000	160.00	No Ice	1.95	1.58	0.08
(17.9x13.1x10.6)		riom Leg	0.00	0,000		1/2" Ice	2.13	1.74	0.09
(17.5%15.1%10.0)			0.00			1" Ice	2.31	1.91	0.12
4449 B71 + B85	C	From Leg	3.00	0.0000	160.00	No Ice	1.95	1.58	0.08
(17.9x13.1x10.6)			0,00			1/2" Ice	2.13	1.74	0.09
(1713/12/1/1/10/0)			0.00			1" Ice	2.31	1.91	0.12
4460 B25 + B66	Α	From Leg	3.00	0.0000	160.00	No Ice	2.14	1.50	0.10
(15.1x17x11.9)			0.00			1/2" Ice	2.32	1.65	0.13
(22.2.2.7)			0.00			1" lce	2.51	1.81	0.15
4460 B25 + B66	В	From Leg	3.00	0.0000	160.00	No Ice	2.14	1.50	0.10
(15.1x17x11.9)			0.00			1/2" lce	2.32	1.65	0.13
,			0.00			1" lce	2.51	1.81	0.15
4460 B25 + B66	C	From Leg	3.00	0.0000	160.00	No Ice	2.14	1.50	0.10
(15.1x17x11.9)			0.00			1/2" Ice	2.32	1.65	0.13
			0.00			1" lce	2.51	1.81	0.15
782 11056 (5.5x3.2x1.8)	Α	From Leg	3.00	0.0000	160.00	No Ice	0.15	0.08	0.00
			0.00			1/2" Ice	0.20	0.13	0.00
			0.00			1" Ice	0.26	0.18	0.01
782 11056 (5.5x3.2x1.8)	В	From Leg	3.00	0.0000	160.00	No Ice	0.15	0.08	0.00
			0.00			1/2" Ice	0.20	0.13	0.00
			0.00	0.0000	160.00	1" Ice	0.26	0.18	0.01
782 11056 (5.5x3.2x1.8)	C	From Leg	3.00	0.0000	160,00	No Ice	0.15	0.08	0.00
			0.00			1/2" Ice	0.20	0.13	0.00
	_		0.00	0.0000	160.00	1" Ice	0.26	0.18	0.01
(3) Empty Mount Pipe	Α	From Leg	3.00	0.0000	160.00	No Ice	1.90	1.90	0.03
			0.00			1/2" Ice	2.70	2.70	0.04
(3) Empty Mount Pipe	В	From Leg	0.00 3.00	0.0000	160.00	1" Ice No Ice	3.30 1.90	3.30 1.90	0.06 0.03

SBA Communications

Job		Page
		17 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C₁A₁ Side	Weight
	- 3		Vert fi fi	٥	ft		ft²	ft²	K
	_		0.00			1/2" Ice	2.70	2.70	0.04
			0.00			1" Ice	3.30	3.30	0.06
(3) Empty Mount Pipe	С	From Leg	3.00	0.0000	160.00	No Ice	1.90	1.90	0.03
(b) 2p.()ca	-	110111 206	0.00	0.000	100.00	1/2" Ice	2.70	2.70	0.04
			0.00			1" Ice	3.30	3.30	0.06
T-Frame	Α	From Leg	1.50	0.0000	160.00	No Ice	16.58	10.27	0.32
		710th 20g	0.00	0.0000	100,00	1/2" Ice	20.58	13.30	0.48
			0.00			1" Ice	24.58	16.33	0.64
T-Frame	В	From Leg	1.50	0.0000	160.00	No Ice	16.58	10.27	0.32
	_	7 to 20g	0.00	0.0000	100,00	1/2" Ice	20.58	13.30	0.48
			0.00			l" Ice	24.58	16.33	0.64
T-Frame	С	From Leg	1.50	0.0000	160.00	No Ice	16.58	10.27	0.32
1 114110	_	Trom Log	0.00	0.0000	100.00	1/2" Ice	20.58	13.30	0.48
			0.00			1" Ice	24.58	16.33	0.48
Mount Mod	A	From Leg	1.50	0.0000	160.00	No Ice	16.16	16.16	0.33
MOUN MOO	А	Tiom Log	0.00	0.0000	100.00	1/2" Ice	20.12	20.12	0.45
			0.00			1" Ice	24.08	24.08	0.56
Mount Mod	В	From Leg	1.50	0.0000	160.00	No Ice	16.16	16.16	0.33
Modift Mod	ь	Fiolii Leg	0.00	0.0000	100.00	1/2" Ice	20.12	20.12	0.33
			0.00						
Mount Mod	С	Enoma I an	1.50	0.0000	160.00	1" Ice	24.08	24.08	0.56
Modiff Mod	C	From Leg	0.00	0.0000	160.00	No Ice	16.16	16.16	0.33
			0.00			1/2" Ice 1" Ice	20.12 24.08	20.12	0.45
***			0.00			1 Tee	24.08	24.08	0.56
MX08FRO665-21 (72x20x8)	Α	From Leg	3.00	0.0000	150.00	No Inc	12.40	E 97	0.06
//AUSI KO005-21 (/2x20x8)	A	From Leg	0.00	0.0000	130.00	No Ice 1/2" Ice	12.49 12.99	5.87 6.32	0.14
AV09ED 0665 21 (72209)	В	From I am	0.00	0.0000	150.00	1" Ice	13.49	6.79	0.22
MX08FRO665-21 (72x20x8)	В	From Leg	3.00	0.0000	150.00	No Ice	12.49	5.87	0.06
			0.00			1/2" Ice	12.99	6.32	0.14
AV09ED 0665 31 (73-20-9)	С	Ename I am	0.00	0.0000	1.50.00	1" Ice	13.49	6.79	0.22
MX08FRO665-21 (72x20x8)	C	From Leg	3.00	0.0000	150.00	No Ice	12.49	5.87	0.06
			0.00			1/2" Ice	12.99	6.32	0.14
T4 00035 B405		F1	0.00	0.0000	150.00	1" lce	13.49	6.79	0.22
TA08025-B605	A	From Leg	3.00	0.0000	150.00	No Ice	1.96	1.19	0.07
(15.75x14.96x9.05)			0.00			1/2" Ice	2.14	1.33	0.09
T1 00055 D405	-		0.00	0.0000	4.80.00	1" Ice	2.32	1.48	0.11
TA08025-B605	В	From Leg	3.00	0.0000	150.00	No Ice	1.96	1.19	0.07
(15.75x14.96x9.05)			0.00			1/2" lce	2.14	1.33	0.09
T1 0000 P D 00			0.00			1" lce	2.32	1.48	0.11
TA08025-B605	C	From Leg	3.00	0.0000	150.00	No Ice	1.96	1.19	0.07
(15.75x14.96x9.05)			0.00			1/2" lce	2.14	1.33	0.09
m		_	0.00			1" Ice	2.32	1.48	0.11
TA08025-B604	Α	From Leg	3.00	0.0000	150.00	No Ice	1.96	1.03	0.06
(15.75x14.96x7.87)			0.00			1/2" Ice	2.14	1.17	0.08
	_	_	0.00			1" Ice	2.32	1.31	0.10
TA08025-B604	В	From Leg	3.00	0.0000	150.00	No Ice	1.96	1.03	0.06
(15.75x14.96x7.87)			0.00			1/2" Ice	2.14	1.17	0.08
	_		0.00			1" Ice	2.32	1.31	0.10
TA08025-B604	C	From Leg	3.00	0.0000	150.00	No Ice	1.96	1.03	0.06
(15.75x14.96x7.87)			0.00			1/2" Ice	2.14	1.17	0.08
			0.00			1" Ice	2.32	1.31	0.10
RDIDC-9181-PF-48	В	From Leg	3.00	0.0000	150.00	No Ice	2.01	1.17	0.02
(16.57x14.57x8.46)			0.00			1/2" Ice	2.19	1.31	0.04

SBA Communications

Job		Page
		18 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Laterat Vert ft	0	_ft		ft²	ft²	K
			ſŧ						
			ft 0.00			1" Ice	2.37	1.46	0.06
Sector Frame (Commscope	Α	From Leg	1.50	0.0000	150.00	No Ice	10.60	8.10	0.43
MTC3975083) w/mount Pipe			0.00			1/2" Ice	16.40	12.60	0.59
			0.00			1" Ice	22.20	17.10	0.74
Sector Frame (Commscope	В	From Leg	1.50	0.0000	150.00	No Ice	10.60	8.10	0.43
MTC3975083) w/mount Pipe		_	0.00			1/2" Ice	16.40	12.60	0.59
•			0.00			1" Ice	22.20	17.10	0.74
Sector Frame (Commscope	C	From Leg	1.50	0.0000	150.00	No Ice	10.60	8.10	0.43
MTC3975083) w/mount Pipe		•	0.00			1/2" Ice	16.40	12.60	0.59
			0.00			1" Ice	22.20	17.10	0.74

2) JAHH-65B-R3B w/mount	Α	From Leg	3.00	0.0000	140.00	No Ice	9.59	7.88	0.09
pipe (72x13.8x8.2)			0.00			1/2" Ice	10.26	9.17	0.17
			0.00			1" Ice	10.90	10.31	0.26
2) JAHH-65B-R3B w/mount	В	From Leg	3.00	0.0000	140.00	No Ice	9.59	7.88	0.09
pipe (72x13.8x8.2)			0.00			1/2" Ice	10.26	9.17	0.17
			0.00			1" Ice	10.90	10.31	0.26
2) JAHH-65B-R3B w/mount	C	From Leg	3.00	0.0000	140.00	No Ice	9.59	7.88	0.09
pipe (72x13.8x8.2)			0.00			1/2" Ice	10.26	9.17	0.17
			0.00			1" lce	10.90	10.31	0.26
BXA-80063/6CF w/mount	Α	From Leg	3.00	0.0000	140.00	No Ice	8.07	6.07	0.05
pipe (71.1x11.2x5.2)			0.00			1/2" Ice	8.74	7.33	0.11
			0.00			1" Ice	9.37	8.45	0.18
BXA-80063/6CF w/mount pipe (71.1x11.2x5.2)	В	From Leg	3.00	0.0000	140.00	No Ice	8.07	6.07	0.05
			0.00			1/2" Ice	8.74	7.33	0.11
			0.00			1" Ice	9.37	8.45	0.18
BXA-80063/6CF w/mount	C	From Leg	3.00	0.0000	140.00	No Ice	8.07	6.07	0.05
pipe (71.1x11.2x5.2)			0.00			1/2" Ice	8.74	7.33	0.11
			0.00		4.40.00	1" Ice	9.37	8.45	0.18
MT6413 77A w/mount pipe	Α	From Leg	3.00	0.0000	140.00	No Ice	5.38	2.63	0.09
(15.75x28.9x5.51)			0.00			1/2" Ice	6.33	3.58	0.13
			0.00			1" Ice	7.15	4.38	0.18
MT6413 77A w/mount pipe (15.75x28.9x5.51)	В	From Leg	3.00	0.0000	140.00	No Ice	5.38	2.63	0.09
			0.00			1/2" Ice	6.33	3.58	0.13
			0.00	0.0000	1.40.00	1" lce	7.15	4.38	0.18
MT6413 77A w/mount pipe (15.75x28.9x5.51)	C	From Leg	3.00	0.0000	140.00	No Ice	5.38	2.63	0.09
			0.00			1/2" lce	6.33	3.58	0.13
			0.00	0.0000	140.00	1" Ice	7.15	4.38	0.18
CBC78T-DS-2X/W14F05P50 (6.4x6.9x9.6)	Α	From Leg	3.00	0.0000	140.00	No Ice	0.37	0.51	0.02
			0.00			1/2" lce	0.45	0.60	0.03
	-	F	0.00	0.0000	1.40.00	1" Ice	0.53 0.37	0.70 0.51	0.04 0.02
CBC78T-DS-2X/W14F05P50 (6.4x6.9x9.6)	В	From Leg	3.00	0.0000	140.00	No Ice		0.60	0.02
			0.00			1/2" Ice 1" Ice	0.45	0.70	0.03
	_		0.00	0.0000	140.00		0.53 0.37	0.70	0.04
CBC78T-DS-2X/W14F05P50 (6.4x6.9x9.6)	C	From Leg	3.00	0.0000	140.00	No Ice	0.37	0.60	0.02
			0.00			1/2" Ice 1" Ice	0.43	0.70	0.03
DAM(() DETICE ()	,	F	0.00	0.0000	140.00	No Ice			0.04
B2/B66A RRH ORAN	Α	From Leg	3.00	0.0000	140.00	1/2" Ice	1.87 2.03	1.25 1.39	0.07
(RF4439d-25A)			0.00			1" Ice	2.03	1.54	0.09
(14.96x14.96x10.04)	Б	Eugen I	0.00	0.000	140.00	No Ice	1.87	1.25	0.07
B2/B66A RRH ORAN	В	From Leg	3.00	0.0000	140.00	1/2" Ice	2.03	1.39	0.07
(RF4439d-25A)			0.00			1/2" Ice 1" Ice	2.03	1.54	0.09
(14.96x14.96x10.04)			0.00			1 Ice	2.21	1.34	0,11

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487
Phone: 214.570.8110 ext 2612
FAX:

Job		Page
		19 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front fl^2	$C_A A_A$ Side	Weight K
	Les		Vert ft		ft				
			fi fi		<i>J</i> 1		Ji	J.	A
B2/B66A RRH ORAN	С	From Leg	3.00	0,0000	140.00	No Ice	1.87	1.25	0.07
(RF4439d-25A)	Ü	210m 20g	0.00	0.0000	140.00	1/2" Ice	2.03	1.39	0.09
(14.96x14.96x10.04)			0.00			1" Ice	2.21	1.54	0.11
B5/B13 RRH ORAN	Α	From Leg	3.00	0.0000	140.00	No Ice	1.87	1.28	0.08
(RF4461d-13A)		Trom Log	0.00	0.0000	140.00	1/2" Ice	2.03	1.42	0.10
(14.96x14.96x10.23)			0.00			1" Ice	2.21	1.57	0.12
B5/B13 RRH ORAN	В	From Leg	3.00	0.0000		No Ice	1.87	1.28	0.12
(RF4461d-13A)		I tom Leg	0.00	0.0000	140.00	1/2" Ice	2.03	1.42	0.10
(14.96x14.96x10.23)			0.00			1" Ice	2.03	1.42	
B5/B13 RRH ORAN	С	From Leg	3.00	0.0000	140.00	No Ice	1.87		0.12
(RF4461d-13A)	C	rioin Leg		0.0000	140.00	1/2" Ice		1.28	0.08
•			0.00				2.03	1.42	0.10
(14.96x14.96x10.23)	'n	F T	0.00	0.0000	140.00	1" Ice	2.21	1.57	0.12
RVZDC-6627-PF-48	В	From Leg	3.00	0.0000	140.00	No Ice	1.73	3.10	0.03
(12.6x16.5x29.5)			0.00			1/2" Ice	1.90	3.34	0.07
			0.00	0.0000	4.40.00	1" Ice	2.07	3.58	0.11
Empty Mount Pipe	Α	From Leg	3.00	0.0000	140.00	No Ice	1.90	1.90	0.03
			0.00			1/2" Ice	2.70	2.70	0.04
	_		0.00			1" Ice	3.30	3.30	0.06
Empty Mount Pipe	В	From Leg	3.00	0.0000	140.00	No Ice	1.90	1.90	0.03
			0.00			1/2" Ice	2.70	2.70	0.04
			0.00			1" Ice	3.30	3.30	0.06
Empty Mount Pipe	C	From Leg	3.00	0.0000	140.00	No Ice	1.90	1.90	0.03
			0.00			1/2" Ice	2.70	2.70	0.04
			0.00			1" Ice	3.30	3.30	0.06
Side-By-Side Commscope Mounting Kit BSAMNT-	Α	From Leg	3.00	0.0000	140.00	No Ice	0.22	0.30	0.07
			0.00			1/2" Ice	0.26	0.35	0.09
SBS-2-2			0.00			1" Ice	0.30	0.40	0.10
Side-By-Side Commscope	В	From Leg	3.00	0.0000	140.00	No Ice	0.22	0.30	0.07
Mounting Kit BSAMNT-			0.00			1/2" Ice	0.26	0.35	0.09
SBS-2-2			0.00			1" Ice	0.30	0.40	0.10
Side-By-Side Commscope	C	From Leg	3.00	0.0000	140.00	No Ice	0.22	0.30	0.07
Mounting Kit BSAMNT- SBS-2-2			0.00			1/2" Ice	0.26	0.35	0.09
			0.00			1" Ice	0.30	0.40	0.10
Sector Mount (Site Pro 1 VFA12-HD)	Α	From Leg	1.50	0.0000	140.00	No Ice	13.20	9.20	0.74
		_	0.00			1/2" Ice	17.82	12.42	1.00
·			0.00			1" lce	22.44	15.64	1.25
Sector Mount (Site Pro 1	В	From Leg	1.50	0.0000	140.00	No Ice	13.20	9.20	0.74
VFA12-HD)			0.00			1/2" lce	17.82	12.42	1.00
			0.00			1" Ice	22.44	15.64	1.25
Sector Mount (Site Pro 1	С	From Leg	1.50	0.0000	140.00	No Ice	13.20	9.20	0.74
VFA12-HD)	-		0.00	0.0000	110.00	1/2" lce	17.82	12.42	1.00
/			0.00			1" Ice	22.44	15.64	1.25
***			00			. 100		10.01	1120

Load Combinations

tnxTower

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487
Phone: 214.570.8110 ext 2612
FAX:

Job		Page 20 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Comb.	Description	
No. 1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	1.2D+1.0W (pattern 1) 0 deg - No Ice	
4	1.2D+1.0W (pattern 2) 0 deg - No Ice	
5	0.9 Dead+1.0 Wind 0 deg - No Ice	
6	1.2 Dead+1.0 Wind 30 deg - No Ice	
7	1.2D+1.0W (pattern 1) 30 deg - No Ice	
8	1.2D+1.0W (pattern 2) 30 deg - No Ice	
9	0.9 Dead+1.0 Wind 30 deg - No Ice	
10	1.2 Dead+1.0 Wind 60 deg - No Ice	
11	1.2D+1.0W (pattern 1) 60 deg - No Ice	
12	1.2D+1.0W (pattern 2) 60 deg - No Ice	
13	0.9 Dead+1.0 Wind 60 deg - No Ice	
14	1.2 Dead+1.0 Wind 90 deg - No Ice	
15	1.2D+1.0W (pattern 1) 90 deg - No Ice	
16	1.2D+1.0W (pattern 2) 90 deg - No Ice	
17	0.9 Dead+1.0 Wind 90 deg - No Ice 1.2 Dead+1.0 Wind 120 deg - No Ice	
18 19	1.2 Dead+1.0 Wild 120 deg - No Ice 1.2D+1.0W (pattern 1) 120 deg - No Ice	
20	1.2D+1.0W (pattern 2) 120 deg - No Ice	
21	0.9 Dead+1.0 Wind 120 deg - No Ice	
22	1.2 Dead+1.0 Wind 150 deg - No Ice	
23	1.2D+1.0W (pattern 1) 150 deg - No Ice	
24	1.2D+1.0W (pattern 2) 150 deg - No Ice	
25	0.9 Dead+1.0 Wind 150 deg - No Ice	
26	1.2 Dead+1.0 Wind 180 deg - No Ice	
27	1.2D+1.0W (pattern 1) 180 deg - No Ice	
28	1.2D+1.0W (pattern 2) 180 deg - No Ice	
29	0.9 Dead+1.0 Wind 180 deg - No Ice	
30	1.2 Dead+1.0 Wind 210 deg - No Ice	
31	1.2D+1.0W (pattern 1) 210 deg - No Ice	
32	1.2D+1.0W (pattern 2) 210 deg - No Ice	
33	0.9 Dead+1.0 Wind 210 deg - No Ice	
34	1.2 Dead+1.0 Wind 240 deg - No Ice 1.2D+1.0W (pattern 1) 240 deg - No Ice	
35 36	1.2D+1.0W (pattern 2) 240 deg - No Ice	
37	0.9 Dead+1.0 Wind 240 deg - No Ice	
38	1.2 Dead+1.0 Wind 270 deg - No Ice	
39	1.2D+1.0W (pattern 1) 270 deg - No Ice	
40	1.2D+1.0W (pattern 2) 270 deg - No Ice	
41	0.9 Dead+1.0 Wind 270 deg - No Ice	
42	1.2 Dead+1.0 Wind 300 deg - No Ice	
43	1.2D+1.0W (pattern 1) 300 deg - No Ice	
44	1.2D+1.0W (pattern 2) 300 deg - No Ice	
45	0.9 Dead+1.0 Wind 300 deg - No Ice	
46	1.2 Dead+1.0 Wind 330 deg - No Ice	
47	1.2D+1.0W (pattern 1) 330 deg - No Ice	
48	1.2D+1.0W (pattern 2) 330 deg - No Ice	
49	0.9 Dead+1.0 Wind 330 deg - No Ice	
50	1.2 Dead+1.0 Ice+1.0 Temp	
51 52	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
52 53	1.2 Dead+1.0 Wind 50 deg+1.0 Ice+1.0 Temp	
54	1,2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
55	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
56	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
57	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
58	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	

tnxTower

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487
Phone: 214.570.8110 ext 2612
FAX:

Job		Page
		21 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Comb.	Description	
No.	·	
59	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
60	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
61	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
62	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
63	Dead+Wind 0 deg - Service	
64	Dead+Wind 30 deg - Service	
65	Dead+Wind 60 deg - Service	
66	Dead+Wind 90 deg - Service	
67	Dead+Wind 120 deg - Service	
68	Dead+Wind 150 deg - Service	
69	Dead+Wind 180 deg - Service	
70	Dead+Wind 210 deg - Service	
71	Dead+Wind 240 deg - Service	
72	Dead+Wind 270 deg - Service	
73	Dead+Wind 300 deg - Service	
74	Dead+Wind 330 deg - Service	
75	1.2 Dead+1.0 Ev+1.0 Eh 0 deg	
76	0.9 Dead-1.0 Ev+1.0 Eh 0 deg	
77	1.2 Dead+1.0 Ev+1.0 Eh 30 deg	
78	0.9 Dead-1.0 Ev+1.0 Eh 30 deg	
79	1.2 Dead+1.0 Ev+1.0 Eh 60 deg	
80	0.9 Dead-1.0 Ev+1.0 Eh 60 deg	,
81	1.2 Dead+1.0 Ev+1.0 Eh 90 deg	
82	0.9 Dead-1.0 Ev+1.0 Eh 90 deg	
83	1.2 Dead+1.0 Ev+1.0 Eh 120 deg	
84	0.9 Dead-1.0 Ev+1.0 Eh 120 deg	
85	1.2 Dead+1.0 Ev+1.0 Eh 150 deg	
86	0.9 Dead-1.0 Ev+1.0 Eh 150 deg	
87	1.2 Dead+1.0 Ev+1.0 Eh 180 deg	
88	0.9 Dead-1.0 Ev+1.0 Eh 180 deg	
89	1.2 Dead+1.0 Ev+1.0 Eh 210 deg	
90	0.9 Dead-1.0 Ev+1.0 Eh 210 deg	
91	1.2 Dead+1.0 Ev+1.0 Eh 240 deg	
92	0.9 Dead-1.0 Ev+1.0 Eh 240 deg	
93	1.2 Dead+1.0 Ev+1.0 Eh 270 deg	
94	0.9 Dead-1.0 Ev+1.0 Eh 270 deg	
95	1.2 Dead+1.0 Ev+1.0 Eh 300 deg	
96	0.9 Dead-1.0 Ev+1.0 Eh 300 deg	
97	1.2 Dead+1.0 Ev+1.0 Eh 330 deg	
98	0.9 Dead-1.0 Ev+1.0 Eh 330 deg	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No_*		Deflection	Load		
	fî	in	Comb.	•	0
T 1	180 - 160	3.787	65	0.2248	0.0759
T2	160 - 140	2.846	65	0.2146	0.0750
T3	140 - 120	1.973	65	0.1775	0.0612
T4	120 - 90	1.281	65	0.1260	0.0426
T5	90 - 60	0.665	65	0.0725	0.0211
Т6	60 - 30	0.293	71	0.0416	0.0107
T7	30 - 0	0.084	71	0.0193	0.0044

tnxTower	Job		Page 22 of 27	
SBA Communications Corporation 8051 Congress Avenue	Project	CT09865-VZW-111323	Date 08:13:57 11/16/23	
Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:	Client		Designed by Asmerom	

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	0	fi
180.00	Lightning Rod	65	3.787	0.2248	0.0759	315200
170.00	AIR6419 B77G w/mount pipe (30,4x15.9x8.1)	65	3.313	0.2219	0.0766	157600
160.00	AIR6419 B41 w/mount pipe (36.3x20.9x9)	65	2.846	0.2146	0.0750	75267
150.00	MX08FRO665-21 (72x20x8)	65	2.394	0.1994	0.0695	38192
140.00	(2) JAHH-65B-R3B w/mount pipe (72x13.8x8.2)	65	1.973	0.1775	0.0612	25463
120.00	SL4	65	1.281	0.1260	0.0426	17815
90.00	SL5	65	0.665	0.0725	0.0211	59545
60.00	SL6	71	0.293	0.0416	0.0107	66608
30.00	SL7	71	0.084	0.0193	0.0044	72787

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	0
T1	180 - 160	16.821	14	1,0016	0.3402
T2	160 - 140	12.622	14	0.9547	0.3360
T3	140 - 120	8.743	37	0.7887	0.2740
T4	120 - 90	5.689	37	0.5585	0.1914
T5	90 - 60	2.967	37	0.3200	0.0947
T6	60 - 30	1.316	37	0.1833	0.0478
T7	30 - 0	0.375	37	0.0854	0.0198

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
fi		Comb.	in	0	0	ft
180.00	Lightning Rod	14	16.821	1.0016	0.3402	69185
170.00	AIR6419 B77G w/mount pipe (30.4x15.9x8.1)	14	14.706	0.9881	0.3433	34592
160.00	AIR6419 B41 w/mount pipe (36.3x20.9x9)	14	12.622	0.9547	0.3360	16578
150.00	MX08FRO665-21 (72x20x8)	14	10.611	0.8866	0.3112	8548
140.00	(2) JAHH-65B-R3B w/mount pipe (72x13.8x8.2)	37	8.743	0.7887	0.2740	5706
120.00	SL4	37	5.689	0.5585	0.1914	4001
90.00	SL5	37	2.967	0.3200	0.0947	13446
60.00	SL6	37	1.316	0.1833	0.0478	15068
30.00	SL7	37	0.375	0.0854	0.0198	16538

tnxTower

SBA Communications Corporation

8051 Congress Avenue Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:

Job		Page
		23 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft	-37		în	Bolts	per Bolt K	per Bolt K	Allowable		
T 1	180	Leg	A325N	0.8750	6	3.60	41.56	0.087	1	Bolt Tension
T2	160	Leg	A325N>1'	1.1250	6	16.30	60.11	0.271	1	Bolt Tension
T3	140	Leg	A325N>1'	1.1250	6	34.33	60.11	0.571	1	Bolt Tension
T4	120	Leg	A325N>1'	1.2500	6	38.37	76.32	0.503	1	Bolt Tension
		Diagonal	A325N	0.7500	1	3.84	8.97	0.428	1	Member Block Shear
T5	90	Leg	A325N>1'	1.2500	6	42.31	76.32	0.554	1	Bolt Tension
		Diagonal	A325N	0.7500	1	4.68	9.46	0.495	1	Member Bearing
Т6	60	Leg	A325N>1'	1.2500	6	46.83	76.32	0.614	1	Bolt Tension
		Diagonal	A325N	0.8750	1	6.18	14.79	0.418	1	Member Bearing
T7	30	Diagonal	A325N	0.8750	1	7.49	18.49	0.405	1	Member Bearing

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	$L_{\scriptscriptstyle \sf H}$	Kl/r	A	P_u	ϕP_n	Ratio P _{ii}
	ft		ft	ft		in ²	K	K	ϕP_n
T1	180 - 160	1 3/4	20.00	3.32	91.0 K=1.00	2.4053	-21.81	59.04	0.369
T2	160 - 140	2 1/2	20.00	3.31	63.5 K=1.00	4.9087	-99.14	164.54	0.603 1
T3	140 - 120	3 1/2	20.00	3.32	45.5 K=1.00	9.6211	-220.31	372.07	0.592 1
T4	120 - 90	4 1/4	30.11	7.53	85.0 K=1.00	14.1863	-249.44	401.11	0.622 1
T5	90 - 60	4 1/2	30.11	7.53	80.3 K=1.00	15.9043	-279.81	480.48	0.582 1
Т6	60 - 30	4 3/4	30.11	7.53	76.1 K=1.00	17.7205	-315.39	566.21	0.557 1 %
T7	30 - 0	4 3/4	30.11	7.53	76.1 K=1.00	17.7205	-353.33	566.21	0.624

Section	Elevation	Size	L	$L_{\scriptscriptstyle H}$	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		fl	ft		in²	K	K	$\frac{P_u}{\phi P_n}$

 $^{^{1}}$ P_{u} / ϕP_{n} controls

		Diagoi	nal Des	sign [Data (C	Compr	ession)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	fi		ft	ft		in ²	K	K	$\phi P_{''}$
T 1	180 - 160	7/8	6.00	2.91	143.8 K=0.90	0.6013	-3.67	6.57	0.559
T2	160 - 140	1	5.99	2.87	124.1 K=0.90	0.7854	-9.02	11.53	0.783
T3	140 - 120	1 1/8	6.00	2.83	108.5 K=0.90	0.9940	-12.35	18.91	0.653
T4	120 - 90	L2 1/2x2 1/2x3/16	11.67	5.84	141.5 K=1.00	0.9020	-3.61	12.89	0.280
T5	90 - 60	L3x3x3/16	15.39	7.67	154.4 K=1.00	1.0900	-5.00	13.09	0.382
Т6	60 - 30	L3 1/2x3 1/2x1/4	19.44	9.66	167.1 K=1.00	1,6900	-6.54	17.33	0.377
Т7	30 - 0	L4x4x5/16	23.66	11.77	178.5 K=1.00	2.4000	-8.14	21.56	0.378

 $^{^{1}} P_{u} / \phi P_{u}$ controls

		Тор	Girt Des	ign E	oata (C	ompr	ession)		
Section No.	Elevation	Size	L	L_{u}	Kl/r	A	Pu	ϕP_n	Ratio P _u
140.	ft		ft	ft		in ²	K	K	ΦP_{ii}
T1	180 - 160	7/8	5.00	4.85	186.4 K=0.70	0.6013	-0.12	3.91	0.032
T2	160 - 140	1	5.00	4.79	161.0 K=0.70	0.7854	-1.86	6.85	0.271
Т3	140 - 120	1 1/8	5.00	4.71	140.6 K=0.70	0.9940	-3.82	11.36	0.336

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Bottom Girt Design Data (Compression)

tnxTower

SBA Communications

Corporation 8051 Congress Avenue Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:

Job		Page 25 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	fl		ft	ft		in ²	K	K	ϕP_n
T1	180 - 160	7/8	5.00	4.85	186.4 K=0.70	0.6013	-0.44	3.91	0.112
T2	160 - 140	1	5.00	4.79	161.0 K=0.70	0.7854	-1.86	6.85	0.271 1
T3	140 - 120	1 1/8	5.00	4.71	140.6 K=0.70	0.9940	-4.33	11.36	0.382 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Tension Checks

			Leg Des	sign E)ata (Tensio	n)			
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_{n}	Ratio P _u	
	ft		ft	ft		in^2	K	K	φ <i>P</i> ,,	
T1	180 - 160	1 3/4	20.00	0.08	2.3	2.4053	21.58	108.24	0.199	
T2	160 - 140	2 1/2	20.00	0.08	1.6	4.9087	97.78	220.89	0.443 1	
Т3	140 - 120	3 1/2	20.00	3.32	45.5	9.6211	206.00	432.95	0.476 1	
T4	120 - 90	4 1/4	30.11	7.53	85.0	14.1863	230.19	740.52	0.311 1	
T5	90 - 60	4 1/2	30.11	7.53	80.3	15.9043	253.89	830.21	0.306 1	
Т6	60 - 30	4 3/4	30.11	7.53	76. 1	17.7205	281.00	925.01	0.304 1	
Т7	30 - 0	4 3/4	30.11	7.53	76.1	17.7205	308.67	925.01	0.334 1	

 $^{^{1}}P_{u}$ / ϕP_{n} controls

		Dia	igonal l	Desig	n Dat	a (Ten	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.
	ft		ft	ft		in²	K	K	φ <i>P</i> ,,
T1	180 - 160	7/8	6.00	2.91	159.8	0,6013	3.63	27.06	0.134

Inx Tower Job Page 26 of 27 SBA Communications Corporation 8051 Congress Avenue Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX: Client Date 08:13:57 11/16/23 Client Designed by Asmerom

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	Ratio P _u
	fi		ft	fl		in ²	K	K	ϕP_{κ}
T2	160 - 140	1	5.99	2.87	137.9	0.7854	8.95	35.34	0.253
T3	140 - 120	1 1/8	6.00	2.83	120.6	0.9940	12.18	44.73	0.272 1
T4	120 - 90	L2 1/2x2 1/2x3/16	9.34	4.78	75.8	0,5535	3.84	24.08	0.160 1
T5	90 - 60	L3x3x3/16	15.39	7.67	99.7	0.6945	4.68	30.21	0.155 1
T6	60 - 30	L3 1/2x3 1/2x1/4	19.44	9.66	108.0	1.0800	6.18	46.98	0.132 1
T7	30 - 0	L4x4x5/16	23.66	11.77	115.3	1.5656	7.49	68.10	0.110 1

 $^{^{1}} P_{u} / \phi P_{n}$ controls

		To	p Girt E)esig	n Data	a (Tens	sion)		
Section No.	Elevation	Size	L	L_{\scriptscriptstyleM}	Kl/r	A	P_u	ϕP_n	Ratio P _u
1100	fi		fi	ft		in ²	K	K	ΦP_n
T1	180 - 160	7/8	5.00	4.85	266.3	0.6013	0.09	27.06	0.003 1
T2	160 - 140	1	5,00	4.79	230.0	0.7854	1.86	35.34	0.053 1
Т3	140 - 120	1 1/8	5,00	4.71	200.9	0.9940	3.82	44.73	0.085 1

 $^{^{1}} P_{u} / \phi P_{n}$ controls

		Bot	tom Girl	Desi	gn Da	ata (Te	nsion)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	фР"	Ratio P _u
110.	fi		ſŧ	ft		in ²	K	K	φ <i>P</i> .,
T1	180 - 160	7/8	5.00	4.85	266.3	0.6013	0.44	27.06	0.016
T2	160 - 140	1	5.00	4.79	230.0	0.7854	1.86	35.34	0.053 1
T3	140 - 120	1 1/8	5.00	4.7 1	200.9	0.9940	4.33	44.73	0.097 1

 $^{^{1}}P_{u}$ / ϕP_{n} controls

tnxTower

SBA Communications Corporation

8051 Congress Avenue Boca Raton, FL 33487 Phone: 214.570.8110 ext 2612 FAX:

Job		Page
		27 of 27
Project	CT09865-VZW-111323	Date 08:13:57 11/16/23
Client		Designed by Asmerom

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$øP_{allow}$	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
T1	180 - 160	Leg	1 3/4	2	-21.81	59.04	36.9	Pass
T2	160 - 140	Leg	2 1/2	47	-99.14	164.54	60.3	Pass
T3	140 - 120	Leg	3 1/2	92	-220,31	372.07	59.2	Pass
T4	120 - 90	Leg	4 1/4	136	-249.44	401.11	62.2	Pass
T5	90 - 60	Leg	4 1/2	163	-279.81	480.48	58.2	Pass
T6	60 - 30	Leg	4 3/4	190	-315.39	566.21	55.7	Pass
	20 0		1211				61.4 (b)	
T 7	30 - 0	Leg	4 3/4	217	-353.33	566.21	62.4	Pass
T 1	180 - 160	Diagonal	7/8	14	-3.67	6.57	55.9	Pass
T2	160 - 140	Diagonal	1	59	-9.02	11.53	78.3	Pass
T3	140 - 120	Diagonal	1 1/8	105	-12.35	18.91	65.3	Pass
T4	120 - 90	Diagonal	L2 1/2x2 1/2x3/16	141	-3.61	12.89	28.0 42.8 (b)	Pass
T5	90 - 60	Diagonal	L3x3x3/16	168	-5.00	13.09	38.2 49.5 (b)	Pass
T6	60 - 30	Diagonal	L3 1/2x3 1/2x1/4	195	-6.54	17.33	37.7 41.8 (b)	Pass
T7	30 - 0	Diagonal	L4x4x5/16	222	-8.14	21.56	37.8 40.5 (b)	Pass
T1	180 - 160	Top Girt	7/8	5	-0.12	3.91	3.2	Pass
T2	160 - 140	Top Girt	1	49	-1.86	6.85	27.1	Pass
T3	140 - 120	Top Girt	1 1/8	95	-3.82	11.36	33.6	Pass
T1	180 - 160	Bottom Girt	7/8	8	-0.44	3.91	11.2	Pass
T2	160 - 140	Bottom Girt	1	52	-1.86	6.85	27.1	Pass
T3	140 - 120	Bottom Girt	1 1/8	97	-4.33	11.36	38.2	Pass
1-	110 120	Dollom Out	1 1/0	,,	1.55	11.50	Summary	1 =00
						Leg (T7)	62.4	Pass
						Diagonal (T2)	78.3	Pass
						Top Girt (T3)	33.6	Pass
						Bottom Girt (T3)	38.2	Pass
						Bolt Checks	61.4	Pass
						RATING =	78.3	Pass

Loading for Seismic Analysis - Rev H (2.7.7.1 Equivalent Lateral Force Procedure)

Analysis complete Project#: CT09865-VZW-111323 1.00 Structure Date I =Tower Data SST Risk category: I $F_a =$ 1.60 Tower type: Site class: D (default) $F_v =$ 2.40 Height (ft): 180 Seismic Date T (sec) =0.75 23 Base face width (ft): 7 R =3.00 Short period (S_s): 0.193 Number of sections: 1sec period (S₁): 0.053 Ke = 1.13 0.06 Long period transition (T_L) (Fig B-19): $C_s =$ Note: V_s (kip) = 3.44 1: Get self weight & add weight (feedline) from "Mast Forces table (tnxTower Reports)" Ts(sec) =0.41 2: Get appurtenance weight from "Appurt. Pressure table (tnxTower Reports)" Tnx User Forces 3: Get the guy weight from "WEIGHTAUXDATA" excel file from the tnx out put files Add Weight Self Appurtenance Top Guy Weight Total Weight *E, $E_h(F_x)$ Top Elev Weight Section width Weight (feedline) ft kip kip kip kip kip kip kip ft 0.57 3.87 5.48 0.56 0.23 5 1.04 180 0.77 0.34 5 1.74 0.99 5.51 8.24 2 160 8.48 0.68 0.35 4.17 5 2.94 1.37 3 140 0.50 0.31 7.44 4 120 5 5.39 2.05 8.49 0.42 0.35 2.05 5 90 9.5 6.44 10.36 0.33 0.43 2.05 60 14 8.31 6 0.51 12.31 0.18 7 30 18.5 10.26 2.05

13.55

10.6

36.12

11.13

60.8

3.44

Self Support Anchor Bolt Check

	SBA Project #:	CT09865-VZW-	11132
	Code:	H	
Leg Reaction	n		
Uplift(kips)	: 311	Shear (kips):	37
Comp(kips)	357	Shear (kips):	43

Strength Reduction Factors

Tension: 0.75
Compression: 0.90
Shear: 0.75
Flexure: 0.9

Bolt Capacity: 30.0% Pass

Bolt Information	
Quantity:	8
Diameter (in):	1.5
Assumed lar (in):	1.5
Bolt Fy (ksi) :	105
Bolt Fu (AISC Table 2-6) (ksi):	125
Bolt Grade Info:	Known
# of threads (AISC Table 7-17):	6

Mar Farm	dation Design for Co	If Curporting Tower	Date
Mat Foundation Design for Self Supporting Tower			11/16/2023
Customer Name:	Verizon	TIA Standard:	TIA-222-H
Site Name:	7 1 5 6 7	Structure Height (Ft.):	180
Site Nmber:	CT09865-S	Engineer Name:	A. Hagos
Engr. Number:		Engineer Login ID:	

Foundation Info Obtained from:

Analysis or Design?

Number of Tower Legs:

Base Reactions (Factored):

(1). Individual Leg:

Axial Load (Kips):

Shear Force (Kips):

(2). Tower Base:

Total Vertical Load (Kips):

6632.0

Moment (Kips-ft):

Foundation Geometries:

Leg distance (Center-to-Center ft.): Diameter of Pier (ft.): Round Tower center to mat center (ft): Length of Pad (ft.):

Thickness of Pad (ft):

Drawings/Calculations

Analysis

3 Legs

311.0

Total Shear Force (Kips):

Uplift Force (Kips):

357.0 43.0

73.0

36

2.00

66.0

No

0.50

6.5

36

36

62.6

62.4

Mods required -Yes/No ?: 23.0 3.5 Pier Height A. G. (ft.):

0 Depth of Base BG (ft.):

Width of Pad (ft.):

0.00 11.5 6.5 36

6.640

0.00

18.0

4.72

11.360

23.0

Material Properties and Reabr Info:

Concrete Strength (psi):	4000	Steel Elastic Modulus:	29000	ksi
Vertical bar yield (ksi)	60	Tie steel yield (ksi):	60	
Vertical Rebar Size #:	7	Tie / Stirrup Size #:	4	
Qty. of Vertical Rebars:	24	Tie Spacing (in):	9.0	
Pad Rebar Yield (Ksi):	60	Pad Steel Rebar Size (#):	9	
Concrete Cover (in.):	3	Unit Weight of Concrete:	150.0	pcf
Rebar at the bottom of the concrete	pad:			

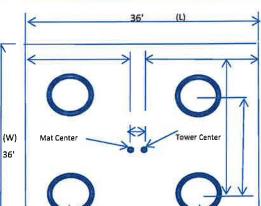
36 Qty. of Rebar in Pad (L):

Rebar at the top of the concrete pad:

Qty. of Rebar in Pad (L): 36

Qty. of Rebar in Pad (W): 36

Qty. of Rebar in Pad (W):


Pcf

pcf

Yes

(W)

36'

19.919

Soil Design Parameters:

Soil Unit Welght (pcf):
Water Table B.G.S. (ft):
Ultimate Bearing Pressure (psf):
Consider Soil Lateral Resistance

125.0 Soll Buoyant Weight: 11.5 Unit Weight of Water: 8000

Consider ties in concrete shear strength:

No

TES Engr. Number:	0	Page 2/2 Date:	11/16/2023	
Foundation Analysis and Design: Uplift Strength Reduction Factor:	0.75	Compression Strength Reduction Factor:	0.75	
Total Dry Soil Volume (cu. Ft.):	5702.11	Total Dry Soil Weight (Kips):	712.76	
Total Buoyant Soil Volume (cu. Ft.):	0.00	Total Buoyant Soil Weight (Kips):	0.00	
Total Effective Soil Weight (Kips):	712.76	Weight from the Concrete Block at Top (K):	0.00	
Total Dry Concrete Volume (cu. Ft.):	2736.32	Total Dry Concrete Weight (Kips):	410.45	
Total Buoyant Concrete Volume (cu. Ft.):	0.00	Total Buoyant Concrete Weight (Kips):	0.00	
Total Effective Concrete Weight (Kips):	410.45	Total Vertical Load on Base (Kips):	1196.21	
Total Effective controller (velgit (vips).	410.43	Total Vertical Load on base (Kips).	LOBO	
Check Soil Capacities:			Capa Ratio	
Calculated Maxium Net Soil Pressure under the base (psf):	1710.39	< Allowable Factored Soil Bearing (psf):	6000 O	.29 OK!
Allowable Foundation Overturning Resistance (kips-ft.);	19510.0	> Design Factored Momont (kips-ft):	7094 0	36 OK!
Factor of Safety Against Overturning (O. R. Moment/Design Moment):	2.75	OKI		
Check the capacities of Reinforceing Concrete:				
Strength reduction factor (Flexure and axial tension):	0.90	Strength reduction factor (Shear):	0.75	
Strength reduction factor (Axial compresion):	0.65	Wind Load Factor on Concrete Design:	1.00	
(1) Concrete Pier:			Load Capa Ratio	city
Vertical Steel Rebar Area (sq. in./each):	0.60	Tie / Stirrup Area (sq. in./each):	0.20	
Calculated Moment Capacity (Mn,Kips-Ft):	685.7	> Design Factored Moment (Mu, Kips-Ft)		31 OK!
Calculated Shear Capacity (Kips):	133.3	> Design Factored Shear (Kips):		.32 OK!
Calculated Tension Capacity (Tn, Kips):	777.6	> Design Factored Tension (Tu Kips):		40 OK!
Calculated Compression Capacity (Pn, Kips):	2424.0	> Design Factored Axial Load (Pu Kips):		15 OKI
Moment & Tension Strength Combination:	0.31	OK! Check Tie Spacing (Design/Req'd):	0.75	
Pier Reinforcement Ratio:	0.010	Reinforcement Ratio is satisfied per ACI		
(2).Concrete Pad:				
One-Way Design Shear Capacity (L or W Direction, Kips):	837.6	> One-Way Factored Shear (L/W-Dir Kips	384.9 0	46 OKI
One-Way Design Shear Capacity (Diagonal Dir., Kips):	778.9	> One-Way Factored Shear (Dia. Dir, Kips		44 OKI
Lower Steel Pad Reinforcement Ratio (L or W-Direct.):	0.0041	Lower Steel Reinf. Ratio (Dia. Dir.):	0.0037	olti
Lower Steel Pad Moment Capacity (L or W-Dir. Kips-ft):	3191.8	> Moment at Bottom (L-Direct. K-Ft):		.65 OKI
Lower Steel Pad Moment Capacity (Dia. Direction,K-ft):	3041.8	> Moment at Bottom (Dia. Dir. K-Ft):		72 OKI
Upper Steel Pad Reinforcement Ratio (L or W -Direction):	0.0041	Upper Steel Reinf. Ratio (Dia. Dir.):	0.0037	OKI
Upper Steel Pad Moment Capacity (L or W-Dir., Kips-ft):	3191.8	> Moment at the top (L-Dir Kips-Ft):		25 O KI
Upper Steel Pad Moment Capacity (Dia. Direction, K-ft):	3041.8	> Moment at the top (Dia. Dir., K-Ft):		20 OKI
Punching Failure Capacity From Down Load (Kips):	760.6	> Punch. Failure Factored Shear (K):		47 OKI
Punching Failure Capacity From Uplift (Kips):	676.9	> Punch. Failure Factored Shear (K):		46 OKI
(3). Check Max. eccentricity of Loading: The maximum eccentricity of Loading:	5.93	ft, Allowable eccentricity (0.45 W, ft.):	16.2	OK!
THE HIBARITUM COCCURRENCY OF LOCALING.	2.53	in Anomabic eccentricity (0.45 vv, It.).	10.2	OKI

Colliers Engineering & Design CT, P.C. 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@collierseng.com

New/Replacement Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis-VZW

SMART Tool Project #: 10209455 Colliers Engineering & Design CT, P.C. Project #: 22777306 (Rev. 3)

September 13, 2023

Site Information Site ID: 5000244405-VZW / WATERFORD SOUTH CT

Site Name: WATERFORD SOUTH CT

Carrier Name: Verizon Wireless Address: 51 Daniels Avenue

Waterford, Connecticut 06385

New London County

Latitude: 41.330264° Longitude: -72.166672°

Structure Information Tower Type: Self-Support

Mount Type: 12.50-Ft Sector Frame

FUZE ID # 2025221

Analysis Results

Sector Frame: 65.7% Pass w/ Mount Replacement*
(3 Site Pro 1: VFA12-HD)

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report
Available & Submitted via portal at https://pmi.vzwsmart.com
For additional questions and support, please reach out to:
pmisupport@colliersengineering.com

Report Prepared By: Prasanna Dhakal

Executive Summary:

The objective of this report is to determine the capacity of the proposed antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. The proposed mount was assumed to be installed properly to the existing tower per the manufacturer's instructions. Colliers Engineering & Design CT, P.C. cannot verify that the proposed mount will fit properly and is not liable for any fit-up issues during installation.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks	
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 325079, dated August 22, 2023	
Desktop Mount Mapping Report	Colliers Engineering & Design, Project # 22777306A, dated October 17, 2022	
Previous Mount Analysis	Colliers Engineering & Design, Project # 22777306A, dated October 24, 2022	
Mount Manufacturer Drawings	Site Pro 1, Part #: VFA12-HD	

Analysis Criteria:

Codes and Standards: ANSI/TIA-222-H

2022 Connecticut State Building Code (CSBC), Effective October 1, 2022

Wind Parameters: Basic Wind Speed (Ultimate 3-sec. Gust), Vult: 130 mph

Ice Wind Speed (3-sec. Gust):50 mphDesign Ice Thickness:1.00 inRisk Category:IIExposure Category:CTopographic Category:1Topographic Feature Considered:N/ATopographic Method:N/A

Topographic Feature Considered: N/A
Topographic Method: N/A
Ground Elevation Factor, K_e: 0.996

Seismic Parameters: Ss: 0.194 g
S₁: 0.053 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Load, Lv: 250 lbs. Maintenance Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status	
140.00 140.00		6	Commscope	JAHH-65B-R3B		
	3 1	3	Samsung	MT6413-77A		
		1	Raycap	RVZDC-6627-PF-48	Added	
	140.00	3	Samsung	RF4439d-25A	Added	
	3 Commso	Commscope	CBC78T-DS-43-2X			
	3	Samsung	RF4461d-13A			

Any proposed antennas not currently installed should be mounted such that the centerline of the antennas does not exceed 6 inches vertically from the center of the antenna mounts.

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- 1. All engineering services are performed on the basis that the information provided to Colliers Engineering & Design CT, P.C. and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design CT, P.C. to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design CT, P.C. is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.

Site ID: 5000244405-VZW / WATERFORD SOUTH CT Page | 4

7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate
HSS (Rectangular)
Pipe
Threaded Rod
Bolts
ASTM A36 (Gr. 36)
ASTM 500 (Gr. B-46)
ASTM A53 (Gr. B-35)
F1554 (Gr. 36)
ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design CT, P.C.

Analysis Results:

Component	Utilization %	Pass/Fail
Face Horizontal	65.7%	Pass
Standoff Plate	43.0%	Pass
Standoff Horizontal	25.4%	Pass
Standoff Diagonal	8.3%	Pass
Mount Pipe	48.1%	Pass
Standoff Vertical	7.4%	Pass
Tieback	2.7%	Pass
Mount Connection	9.5%	Pass

	0= 70/
Structure Rating – (Controlling Utilization of all Components)	65.7%

BASELINE mount weight per SBA agreement: 1541.4 lbs

Increase in mount weight due to Verizon loading change per SBA agreement: 1082.8 lbs

The weights listed above include 3 sectors.

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipes Excluded		pes Excluded Mount Pip	
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	16.2	7.9	25.3	17.0
0.5	25.3	14.1	38.3	27.0
1	33.7	19.6	50.5	36.4

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector.
- Ka factors included in (EPA)a calculations

September 13, 2023 Site ID: 5000244405-VZW / WATERFORD SOUTH CT Page | 5

Requirements:

The proposed antenna mounts are **SUFFICIENT** for the final loading configuration (attachment 2) upon completion of the mount replacement (attachment 3) and requirements below.

Refer to document at the end of this form for special instructions. Contact EOR if special instructions are not available.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Manufacturer Drawings
- 4. Existing Mount Photos
- 5. Analysis Calculations

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – New Mount Passing MA

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com
For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000244405

SMART Project #: 10209455

Fuze Project ID: 2025221

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.

Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.

Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.

Each photo should be time and date stamped.

Photos should be high resolution.

Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.

The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

Photos taken at ground level

- Photo of Gate Signs showing the tower owner, site name, and number.
- Overall tower structure after installation.
- Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.

Photos taken at Mount Elevation

- O Photos showing the safety climb wire rope above and below the mount prior to installation.
- O Photos showing the climbing facility and safety climb if present.
- Photos showing each individual sector after installation of mounts. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed mount; pictures shall also include connection hardware (Ubolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the installed mount elevation.

Antenna & Equipment Placement and Geometry Confirmation:

The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
OR
☐ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Special Instructions / Validation as required from the MA or any other information the contractor
deems necessary to share that was identified:
Issue:
 Refer to document at the end of this form for special instructions. Contact EOR if special instructions are not available.
are not available.
Response:
Special Instruction Confirmation:
\square The contractor has read and acknowledges the above special instructions.
Contractor certifies that the climbing facility / safety climb was not damaged prior to starting work:
□ Yes □ No
Contractor certifies no new damage created during the current installation:
□ Yes □ No

Contrac	tor to certify the cor	ndition of the safe	ety climb and verify no damage when leaving the site:
[Comme	□ Safety Climb in Go	od Condition	☐ Safety Climb Damaged
Comme	1113.		
New Mo	ount Certification:		
		es that the New Mo	Mount installed is as specified in the Passing Mount Analysis. unt installed is not as specified and engineering approval was
Certifyir	ng Individual:		
	Company:		
	Employee Name:		
	Contact Phone:		
	Email:		

Project #: 22777306 (Rev. 3)

MDG: 5000244405

Site Name: WATERFORD SOUTH CT

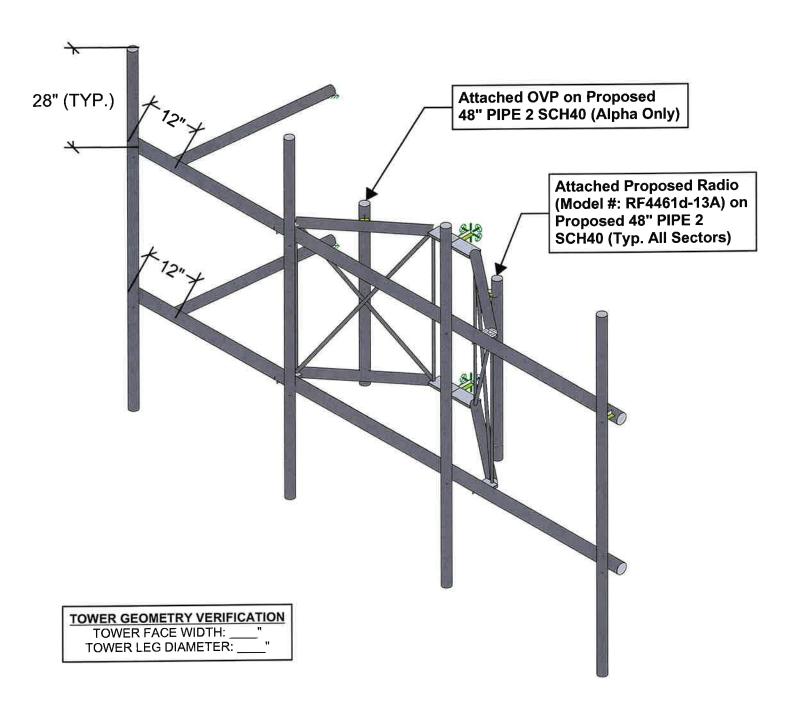
FUZE: 2025221

PMI Notes:

Contractor shall remove existing mount and associated hardware. Contractor shall restore any degradation in galvanization on tower due to removed mount and protect with two (2) coats of cold galvanization (Zinga or Zinc Kote).

Contractor shall install the proposed VFA12-HD mounts in accordance with manufacturer specifications and the Mount Replacement Sketch. Contact EOR if these documents are not available.

Contractor shall install (4) 96" long PIPE 2 SCH40 mount pipes per sector. Refer to placement diagrams and Mount Replacement Sketch. Contact EOR if these documents are not available.


Contractor shall install mount pipes with vertical offsets as shown in the Mount Replacement Sketch.

Attach tiebacks to adjacent tower legs. Proposed tieback shall extend no more than 12" beyond the plane of the tower face. Contractor shall trim as required and protect cut end with two (2) coats of cold galvanization (Zinga or Zinc Kote).

Contractor shall install proposed OVP on a new 48" long PIPE 2 SCH40 pipes connected to the welded tabs of the alpha sector standoff. Refer to the Mount Replacement Sketch.

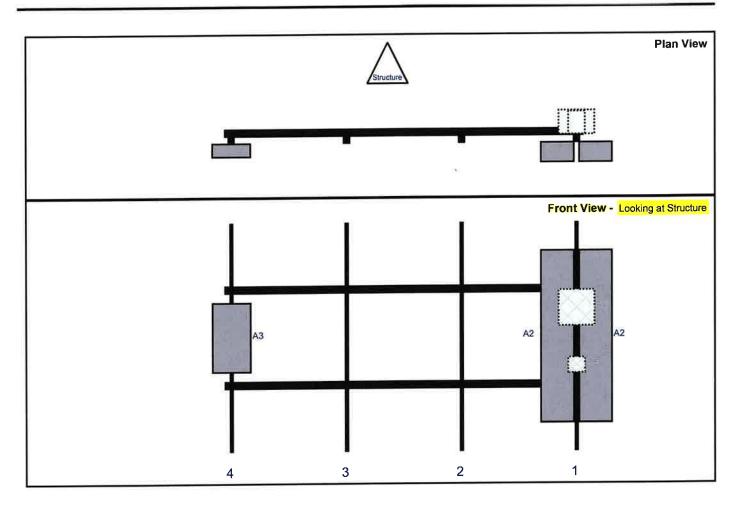
Contractor shall install proposed radio (Model #: RF4461d-13A) on a new 48" long PIPE 2 SCH40 pipes connected to the welded tabs on all sector standoffs. Refer to the Mount Replacement Sketch.

MOUNT REPLACEMENT SKETCH

MOUNT ISOMETRIC VIEW N.T.S

Structure: 5000244405-VZW - NE WATERFORD SOUTH

Sector: A 9/13/2023


Structure Type: Self Support

10209455

Colliers Engineering & Design

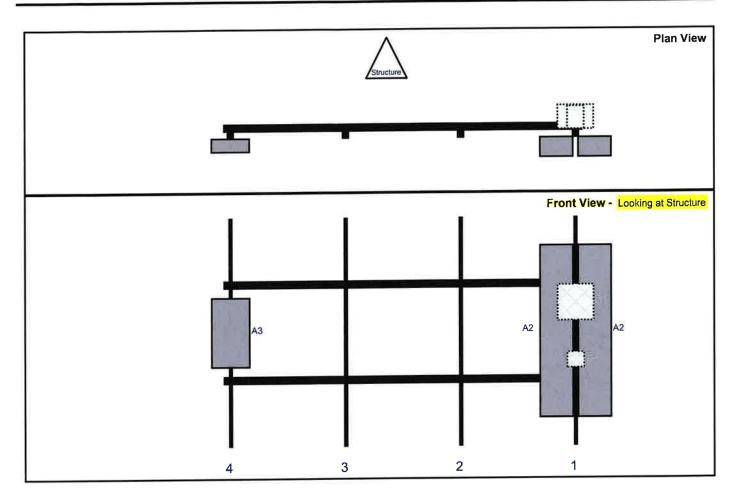
Mount Elev: 140.00

Page: 1

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	JAHH-65B-R3B	72	13.8	147	1	а	Front	48	-8	Added	
A2	JAHH-65B-R3B	72	13.8	147	1	b	Front	48	8	Added	
R4	RF4439d-25A	15	15	147	1	а	Behind	36	0	Added	
R5	CBC78T-DS-43-2X	6.4	6.9	147	1	а	Behind	60	0	Added	
A3	MT6413-77A	28.9	15.8	3	4	а	Front	48	0	Added	4
OVP	RVZDC-6627-PF-48	29.5	16.5		Memb	er				Added	
RRU	RF4461d-13A	15	15		Memb	er				Added	

Structure: 5000244405-VZW - NE WATERFORD SOUTH

Sector: **B** 9/13/2023

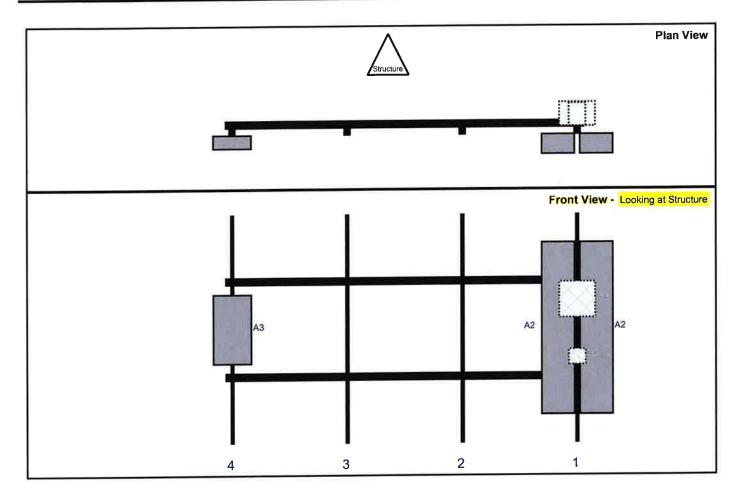

Structure Type: Self Support 10209455

140.00

Mount Elev:

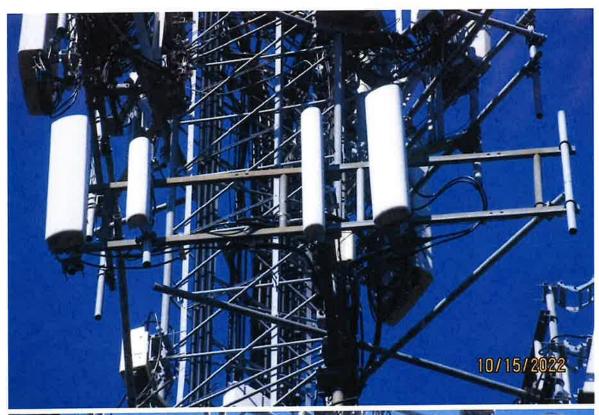
Page: 2

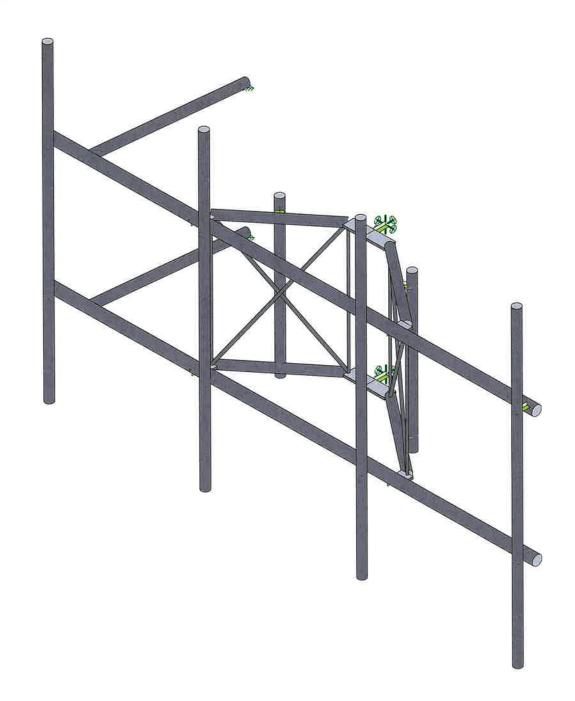
A3	MT6413-77A	28.9	15.8	3	4	а	Front	48	0	Added	
R5	CBC78T-DS-43-2X	6.4	6.9	147	1	а	Behind	60	0	Added	
R4	RF4439d-25A	15	15	147	1	а	Behind	36	0	Added	
A2	JAHH-65B-R3B	72	13.8	147	1	b	Front	48	8	Added	
A2	JAHH-65B-R3B	72	13.8	147	1	а	Front	48	-8	Added	
Ref#	Model	Height (in)	Width (in)	H Dist Frm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant Frm T.	Ant H Off	Status	Validation


Structure: 5000244405-VZW - NE WATERFORD SOUTH

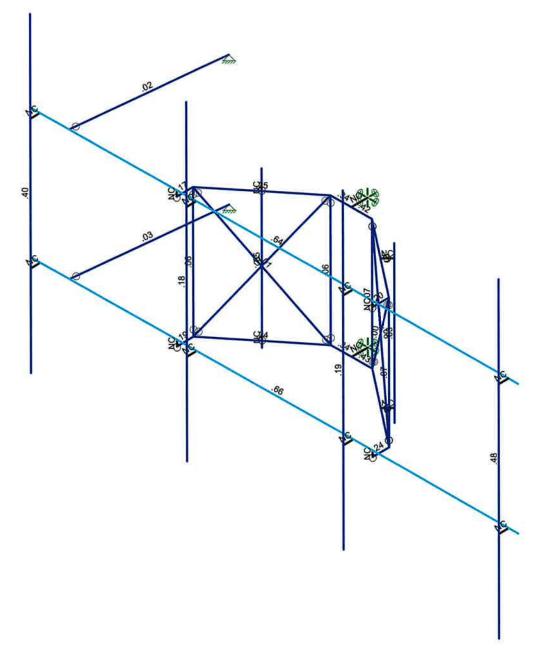
Sector: C 9/13/2023

Structure Type: Self Support 10209455


Mount Elev: 140.00 Page: 3

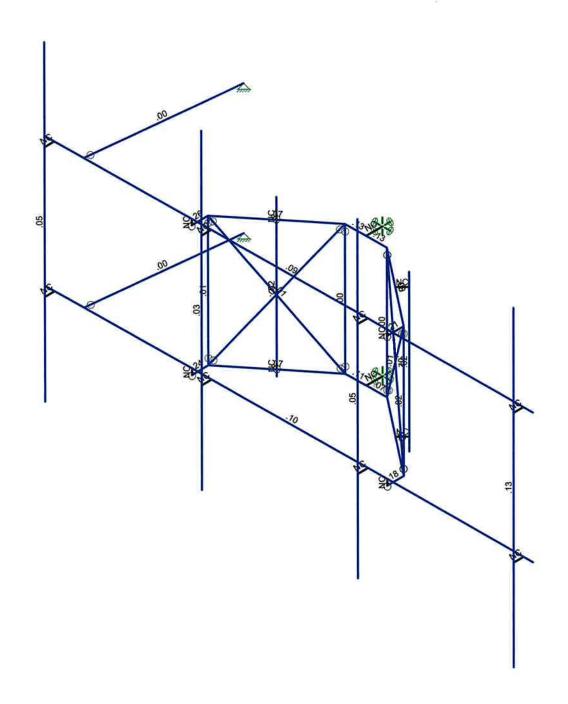

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	JAHH-65B-R3B	72	13.8	147	1	а	Front	48	-8	Added	
A2	JAHH-65B-R3B	72	13.8	147	1	b	Front	48	8	Added	
R4	RF4439d-25A	15	15	147	1	а	Behind	36	0	Added	
R5	CBC78T-DS-43-2X	6.4	6.9	147	1	а	Behind	60	0	Added	
A3	MT6413-77A	28.9	15.8	3	4	а	Front	48	0	Added	

	442 B4	142.81	33.86	36.24	31.77	38.01	18.39	23.49	2.58	8.02	38.37	14.37	18.90	81.50	153.87	1.92	0.24	0.17	0.85	3.19	4.18	2.79	4.00	0.00	14.1	3.55	1.08	2.50	1.76	1.72	9.22	23.64	9.56	2.18	0.89	4.58	738.06	k, NY 3A 3A ies, CA	¥×		AGE DF 5
ŀ	74 44	+	33.86	36.24	15.88	19.00	16.39	5.87	2.58	2.04	4.80	3.59	2.36	40.75	76.94	0.48	90'0	0.04	0.21	0.40	1.05	0.70	6.13	02.0	0.00	0.02	0.27	0.31	70.0	0.03	0.13	0.74	09:0	0.03	0.01	0.07	TOTAL WT. #	Locations: New York, NY Engineering Atlanta, GA Support Team: Loc Angeles CA	Salem, O Dallas, T	 	
H	LENGIH				12 ln	13 in		5 1/2 in			7 in	12 1/16 in	8 1/8 In	126 in	150 in	2 1/2 In				18 in				7 in	E G			2 1/4 in	1/8 in					3/32 in	1/8 in		<u>F</u>]	Engine	1	VEA12.HD	VFA12-HD
-							M-HD		M-HD				-	IPE	PIPE									200	2	2													A valmont & com	PART NO.	DWG. NO.
PARTSLIST	PAKI DESCRIPTION	SUPPORT ARM	CLAMP WELDMENT FOR BCAM-HD	MULTI-HOLE TAPER PLATE WELDMENT	VFA-HD PIVOT PLATE	BENT BACKING PLATE	ANGLE ADJUSTMENT WELDMENT FOR BCAM-HD	SLIDING PIPE TIE BACK PLATE	POSITIONING PLATE WELDMENT FOR BCAM-HD	TIE BACK CLIP ANGLE	CROSSOVER PLATE	CLAMP HALF 1/2" THICK, 11-5/8" LONG	1/2" THICK, 5-3/4" CNTER TO CENTER CLAMP HALF	2-3/8" X 126" (2" SCH, 40) GALVANIZED PIPE	2-7/8" X 150" (2-1/2" SCH. 40) GALVANIZED PIPE	3/4" x 2-1/2" UNC HEX BOLT (A325)	3/4" HDG USS FLATWASHER	3/4" HDG LOCKWASHER	3/4" HDG HEAVY 2H HEX NUT	5/8" x 18" THREADED ROD (HDG.)	5/8" x 12" THREADED ROD (HDG.)	5/8" x 8" THREADED ROD (HDG.)	5/8" X 3" X 3-1/4" X 2-1/2" U-BOLI (HDC)	Sid A 2-3/8 A 4-1/2 A 2 U-BOLI (HUG.)	5/8" X /" HDG HEX BOLT GRS FULL THREAD	5/8" v 4" HDG HEX BOLT GRS FOLL THRE	5/8" x 2" HDG HEX BOLT GR5	5/8" x 2-1/4" HDG A325 HEX BOLT	5/8" HDG USS FLATWASHER	5/8" HDG LOCKWASHER	5/8" HDG HEAVY 2H HEX NUT	1/2" X 3" X 5" X 2" GALV U-BOLT	1/2" X 2" X 3" X 1-1/4" U-BOLT (HDG.)	1/2" HDG USS FLATWASHER	1/2" HDG LOCKWASHER	1/2" HDG HEAVY 2H HEX NUT		12' 6" HEAVY DUTY V-FRAME ASSEMBLY	WITH TWO STIFF ARMS	DRAWN BY ENG. APPROVAL PAR	IG USAGE CHECKED BY JSTOMER BMC 12/13/2017
	PART NO.	X-VFAW	X-HDCAMTBW	х-мнтрно	X-VFAPL4	X-LCBP4	X-HDCAMSS	X-SPTB	X-HDCAMSP	X-TBCA	SCX2	MCP	DCP	P2126	P30150	A34212	G34FW	G34LW	G34NUT	G58R-18	G58R-12	G58R-8	X-085300	A-U85258	65807	65804	G5802	A582114	GSBFW	GSBLW	GSBNUT	X-UB1300	X-UB1212	G12FW	G12LW	G12NUT		DESCRIPTION	_	CPD NO.	cLASS SUB 81 02
	+	2	-	о -	Н	5 2	6 7	7 4	- ×	4	H	⊢	H	+	\vdash	⊢	16 4	17 4	18 4	19 8	-	21 4	+	2 6	24 5	B 96	╁	╀	1	30 66	31 71	32 32	33 16	34 64	-	36 64		E NOTED ARE:	IG OF HOLES NG OF HOLES		THE CONSENT OF
							(\	/	<i>'</i>	/		The state of the s	*//																						y =====	TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE. SAWED, SHEARED AND GAS CUT EDGES (#.0.009")	DRILLED AND GAS C	ALL OTHER MACHINING (# 0.0307)	PROPAGATAN WOTE. PROPAGATAN WOTE. THE CATA WOT TOO MACHINED BY THIS DAWNING ARE PROPAGANT INFORMATION OF VALDORY THIS CATA WAS TOO TOO MACHINED BY THIS CATA WAS THE CATA WA
										.1	- 39		Ţ										>	×					THE SHE				<i></i>						ISION 2 CEK 6/29/2018	CEK	CEK 2/2/2017
							Ţ					- P																			-					2			D UPDATED BCAM VERSION 1 TO BCAM VERSION	П	REV DESCRIPTION OF REVISION HISTORY REV DESCRIPTION OF REVISION HISTORY



Envelope Only Solution

Colliers Engineering & De		SK - 1
	Antenna Mount Analysis	Sept 12, 2023 at 3:54 PM
Project # 22777306		5000244405-VZW_MT_LOT_A_H



Member Code Checks Displayed (Enveloped) Envelope Only Solution

Colliers Engineering & De		SK - 2
	Antenna Mount Analysis	Sept 12, 2023 at 3:54 PM
Project # 22777306		5000244405-VZW_MT_LOT_A_H

Member Shear Checks Displayed (Enveloped) Envelope Only Solution

Colliers Engineering & De		SK - 3
	Antenna Mount Analysis	Sept 12, 2023 at 3:54 PM
Project # 22777306		5000244405-VZW_MT_LOT_A_H

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:____

Basic Load Cases

	BLC Description	Category	X Gr	Y Gr	Z Gr	Joint	Point	Distributed	Area(Member)	Surfa
1 1	Antenna D	None					30			
2	Antenna Di	None					30			
3	Antenna Wo (0 Deg)	None					30			
4	Antenna Wo (30 Deg)	None					30			
5	Antenna Wo (60 Deg)	None					30			
6	Antenna Wo (90 Deg)	None			d .		30			
7	Antenna Wo (120 Deg)	None					30			
8	Antenna Wo (150 Deg)	None					30			
9	Antenna Wo (180 Deg)	None					30			
10	Antenna Wo (210 Deg)	None					30			
11	Antenna Wo (240 Deg)	None					30			
12	Antenna Wo (270 Deg)	None					30			
13	Antenna Wo (300 Deg)	None					30			
14	Antenna Wo (330 Deg)	None					30			
15	Antenna Wi (0 Deg)	None					30			
16	Antenna Wi (30 Deg)	None				IRI	30			
17	Antenna Wi (60 Deg)	None					30			
18	Antenna Wi (90 Deg)	None					30			
19	Antenna Wi (120 Deg)	None					30			
20	Antenna Wi (150 Deg)	None					30			
21	Antenna Wi (180 Deg)	None					30			
	Antenna Wi (100 Deg)	None					30			
22	Antenna Wi (240 Deg)	None					30			
23	Antenna Wi (240 Deg)	None					30			
24	Antenna Wi (270 Deg)	None					30			
25	Antenna Wi (330 Deg)	None					30		k- 1"	
26		None					30			
27	Antenna Wm (0 Deg)	None					30			
28	Antenna Wm (30 Deg)	None					30			
29	Antenna Wm (60 Deg)	None					30			
30	Antenna Wm (90 Deg) Antenna Wm (120 Deg)	None					30			
31		None					30			
32	Antenna Wm (150 Deg)	None					30			
33	Antenna Wm (180 Deg)	None					30			
34	Antenna Wm (210 Deg)	None					30			
35	Antenna Wm (240 Deg)	None					30			
36	Antenna Wm (270 Deg)	None					30			
37	Antenna Wm (300 Deg)	None			- 0	V	30			
38	Antenna Wm (330 Deg)	None		-1						
39	Structure D	None						30		
40	Structure Di	None						60		
41	Structure Wo (0 Deg)	None						60		
42	Structure Wo (30 Deg)	None						60		
43	Structure Wo (60 Deg)							60		
44	Structure Wo (90 Deg)	None						60		
45	Structure Wo (120 Deg)	None	-					60		
46	Structure Wo (150 Deg)	None					1 -	60		
47	Structure Wo (180 Deg)	None						60		
48	Structure Wo (210 Deg)	None					1	60		
49	Structure Wo (240 Deg)	None			-			60		
50	Structure Wo (270 Deg)	None			-			60		
51	Structure Wo (300 Deg)	None						60		
52	Structure Wo (330 Deg)	None		-				60		
53	Structure Wi (0 Deg)	None		-	-		-	60		
54	Structure Wi (30 Deg)	None		-	+			60		
55	Structure Wi (60 Deg)	None					1	60		
56	Structure Wi (90 Deg)	None						- 00		

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Basic Load Cases (Continued)

	BLC Description	Category	X Gr	Y Gr	Z Gr	Joint	Point		Area(Member)	Surfa
57	Structure Wi (120 Deg)	None						60		
58	Structure Wi (150 Deg)	None						60		
59	Structure Wi (180 Deg)	None						60		
60	Structure Wi (210 Deg)	None						60		
61	Structure Wi (240 Deg)	None						60		
62	Structure Wi (270 Deg)	None						60		
63	Structure Wi (300 Deg)	None						60		
64	Structure Wi (330 Deg)	None						60		
65	Structure Wm (0 Deg)	None						60		
66	Structure Wm (30 Deg)	None						60		
67	Structure Wm (60 Deg)	None						60		
68	Structure Wm (90 Deg)	None						60		
69	Structure Wm (120 Deg)	None						60		
70	Structure Wm (150 Deg)	None						60		-
71	Structure Wm (180 Deg)	None						60		
72	Structure Wm (210 Deg)	None						60		
73	Structure Wm (240 Deg)	None						60		
74	Structure Wm (270 Deg)	None						60		
75	Structure Wm (300 Deg)	None						60		_
76	Structure Wm (330 Deg)	None						60		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			-
80	Lv2	None					1			
81	Antenna Ev	None					30			-
82	Antenna Eh (0 Deg)	None					20			-
83	Antenna Eh (90 Deg)	None					20			_
84	Structure Ev	ELY		0414						
85	Structure Eh (0 Deg)	ELZ			1035					
86	Structure Eh (90 Deg)	ELX	.1035							

Load Combinations

	Description		PDelSR.	BLC	Fa	BLC	Fa	BLC	Fa	.B	Fa	В	Fa	.в	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa
1	1.2D+1.0Wo (0 Deg)	Yes		1	1.2		1.2	3	1	41	1							_		_		_	
2	1.2D+1.0Wo (30 Deg)			1	1.2	_	1.2		1	42	1												
3	1.2D+1.0Wo (60 Deg)			11	1.2	39	1.2		1	43												_	
4	1.2D+1.0Wo (90 Deg)	Yes	Y	1	1.2	_	1.2	-	1	44	1												
5	1.2D+1.0Wo (120 De.	Yes	Υ	1	1.2		1.2		1	45	1							-	-				
6	1.2D+1.0Wo (150 De.	Yes	Y	1	1.2		1.2		1	46	1		_			-	-	_	-				
7	1.2D+1.0Wo (180 De.	Yes	Y	11	1.2		1.2		1	47	1							-					
8	1.2D+1.0Wo (210 De.			1	1.2	-	1.2		1	48	1							-	-				
9	1.2D+1.0Wo (240 De.			1	1.2		1.2		1	49	1					-		-		-			
10	1.2D+1.0Wo (270 De.			1	1.2		1.2		1	50	1						_	-					
11	1.2D+1.0Wo (300 De.			1_1_	1.2	39	1.2	-	1	51	1							-	-				
12	1.2D+1.0Wo (330 De.			1	1.2	39	1.2	_	1	52	1							-	-	_		-	-
13	1.2D + 1.0Di + 1.0Wi			1	1.2	39	1.2	-	1	40	1	15	1	53				-					
14	1.2D + 1.0Di + 1.0Wi			1	1.2	39	1.2		1	40	1	16	1_	54			_	-	-				-
15	1.2D + 1.0Di + 1.0Wi	Yes	Υ	1	1.2	39	1.2		1	40	1	17	1	55		_		-		-			_
16	1.2D + 1.0Di + 1.0Wi	Yes	Y	1	1.2	39	1.2		1	40	1	18	1	56	1			-	-				
17	1.2D + 1.0Di + 1.0Wi.			1	1.2	39	1.2		1	40	1	19		57	1			_		-			
18	1.2D + 1.0Di + 1.0Wi.	Yes	Υ	1	1.2	39	1.2		1	40	1	20	1	58				-	-				
19	1.2D + 1.0Di + 1.0Wi.			1	1.2	39	1.2	-	1	40	1	21	1	59									
20	1.2D + 1.0Di + 1.0Wi.	Yes	Y	1	1.2	39	1.2		1	40	1	22	1	60		-	_	-	-	-			
21	1.2D + 1.0Di + 1.0Wi.	Yes	Υ	1	1.2	39	1.2		1	40	1	23	1	61									
22	1.2D + 1.0Di + 1.0Wi	Yes	Y	1	1.2	39	1.2	2	1	40	1	24	1	62	1								

Colliers Engineering & Design

Project # 22777306
Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:__

Load Combinations (Continued)

LUat	Combinations					_	_			55	201	-	G-97 T		891 U		201-20		2007		7207		-	
	Description	S F	Del.	.SR	BLC	Fa	BLC	Fa	BLC	Fa	B	Fa	B	Fa	B	Fa	BLC	Fa	В	Fa	<u>B</u>	Fa	B	Fa
23	1.2D + 1.0Di + 1.0Wi				1	1.2	39	1.2	2	1	40	1	25	1	63	1					\vdash			_
	1.2D + 1.0Di + 1.0Wi				1	1.2		1.2	2	1	40	1	26	1	64	1								
	1.2D + 1.5Lm1 + 1.0				1	1.2	39	1.2	77	1.5			65	1										
	1.2D + 1.5Lm1 + 1.0		Ÿ		1	1.2		1.2		1.5			66			1								
				-				1.2		1.5			67	1							\vdash			
	1.2D + 1.5Lm1 + 1.0		_	-	1_	1.2							-	_			_							
28	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2		1.2		1.5			68					-			-			
29	1.2D + 1.5Lm1 + 1.0	Yes	Y		_1_	1.2		1.2		1.5			69			-	-				-	-		
30	1.2D + 1.5Lm1 + 1.0	Yes.	Y		1	1.2	39	1.2					70	1									-	
31	1.2D + 1.5Lm1 + 1.0	Yes	Υ		1	1.2	39	1.2	77	1.5	33	1	71	1							\vdash		_	
32	1.2D + 1.5Lm1 + 1.0	Yes	Υ		1	1.2		1.2		1.5	34	1	72	1							1			
33	1.2D + 1.5Lm1 + 1.0	Yes	Ÿ		1	1.2		1.2		1.5		1	73	1										
24	1.2D + 1.5Lm1 + 1.0	Vec	Ÿ	-	1	1.2		1.2					74	1	-				_					
34	1.2D + 1.5Lin1 + 1.0	Voc				1.2		1.2		1.5			75											
35	1.2D + 1.5Lm1 + 1.0	res	Y	-	1		29						76											
36	1.2D + 1.5Lm1 + 1.0	. Yes	<u>Y</u>		1_	1.2	39	1.2	77	1.5	30	4	-	_							-			
37	1.2D + 1.5Lm2 + 1.0	.Yes	<u>Y</u>		1	1.2			78				65								-			
38	1.2D + 1.5Lm2 + 1.0	.Yes	Y		1_	1.2			78	1.5	28	1	66								-			
39	1.2D + 1.5Lm2 + 1.0	.Yes	Y		1	1.2		1.2		1.5			67								_			
	1.2D + 1.5Lm2 + 1.0				1	1.2	39	1.2	78	1.5	30	1	68	1										
	1.2D + 1.5Lm2 + 1.0				1	1.2			78				69	1										
	1.2D + 1.5Lm2 + 1.0				1	1.2	39	12	78	1.5	32	1	70	1										
42	1.2D + 1.5Lm2 + 1.0	Voc	Ÿ		1	1.2			78				71											
				-		1.2			78				72	1										
_	1.2D + 1.5Lm2 + 1.0			-	1								_	_				-						
	1.2D + 1.5Lm2 + 1.0		<u>Y</u>	-	1	1.2		1.2		1.5			73											
	1.2D + 1.5Lm2 + 1.0				1	1.2			78				74	-					-	_	-	-		
47	1.2D + 1.5Lm2 + 1.0	. Yes	Y		1	1.2			78				75		_				-	_	\vdash	-	-	
48	1.2D + 1.5Lm2 + 1.0	Yes	Y		1	1.2			78			1	76	_1_							_		-	
49	1.2D + 1.5Lv1	Yes	Y		1	1.2	39	1.2	79	1.5														
50	1.2D + 1.5Lv2		Y		1	1.2			80															
	1.4D	Yes		_	1	1.4		1.4																
51	1.2D + 1.0Ev + 1.0E				1	1.2		1.2		1	E	1	82	1	83		ELZ	1	E					
52	1.2D + 1.0EV + 1.0E	/	1	-		_		1.2		1	E		82	866	83	5	ELZ							
53	1.2D + 1.0Ev + 1.0E	. res	Y	-	1	1.2				_			100000000000000000000000000000000000000		03	988	ELZ	5	E	866				
	1.2D + 1.0Ev + 1.0E				1	1.2		1.2	_	1	E		82	.5								_	_	
	1.2D + 1.0Ev + 1.0E				11	1.2		1.2		1	E,		82		83		ELZ		E				\vdash	-
56	1.2D + 1.0Ev + 1.0E	. Yes	Y		1	1.2	39	1.2	81	1	E		82	5	83	ddb.	ELZ	5	E	.800	4	_	-	-
57	1.2D + 1.0Ev + 1.0E	. Yes	Υ		1	1.2	39	1.2	81	1	E	1					ELZ				_		⊢	\vdash
58	1.2D + 1.0Ev + 1.0E	. Yes	Υ		1	1.2	39	1.2	81	1	E	1	82	-1	83		ELZ							
50	1.2D + 1.0Ev + 1.0E	. Yes	Ý		1	1.2		1.2		1	E	1	82	8	83	5	ELZ	8	E	5				
60	1.2D + 1.0Ev + 1.0E	Veg	v		1	1.2		1.2		1	E	1	82	5	83	8	ELZ	5	E	8				
				+	1	1.2		1.2		1	E	1	82				ELZ			-1				
	1.2D + 1.0Ev + 1.0E			+						1	E	_		5			ELZ		1					
	1.2D + 1.0Ev + 1.0E			-	1	1.2		1.2		_			02	.5	03	U	ELZ	866	E	5	+-	_		
	1.2D + 1.0Ev + 1.0E				1	1.2		1.2		1	E										-	\vdash	\vdash	\vdash
64	0.9D - 1.0Ev + 1.0Eh.	. Yes	Y		1	.9	39	.9	81	-1	E.,,	-1	82	1	83		ELZ				-	-	-	
65	0.9D - 1.0Ev + 1.0Eh.	.Yes	Υ		1	.9	39		81	-1	E	-1	82	.866	83	.5	ELZ	.866	E	.5	+	_		
66	0.9D - 1.0Ev + 1.0Eh.	.Yes	Υ		1	.9	39		81	-1	E	-1	82	.5	83	.866	ELZ	.5	E	.866	j		1	
67	0.9D - 1.0Ev + 1.0Eh.	Yes	Ÿ		1	.9	39	.9		-1	E	-1	82		83	1	ELZ		E	1				
60	0.9D - 1.0Ev + 1.0Eh.	Yes	Ÿ		1	.9	39	.9		-1	E	-1	82	5	83	.866	ELZ	5	E	.866	3			
00	0.9D - 1.0Ev + 1.0Eh.	Voc	V		1	.9	39	.9	81	-1	Ε	-1	82	8	83	.5	ELZ	8	E	.5				
69	0.9D - 1.0EV + 1.0En.	V	T	-		1145.45.1							82				ELZ				100			
70	0.9D - 1.0Ev + 1.0Eh.	res	Y	-	1	.9	39	.9	81	_	=	-1	02	ρ	800		ELZ							
71	0.9D - 1.0Ev + 1.0Eh.	Yes	Y		1_	.9	39	.9	81	-1	E	-1	02	0	03	5	C1 7		E	0	+			
72	0.9D - 1.0Ev + 1.0Eh.	.Yes	Y		1_	.9	39	.9		-1				5	83	0	ELZ	5					-	+
73	0.9D - 1.0Ev + 1.0Eh.	.Yes	Y		1	.9	39	.9	81	-1	E	-1	82	11771-	83	-1	ELZ			-1			-	
74	0.9D - 1.0Ev + 1.0Eh.	.Yes	Y		1	.9	39	.9	81	-1	E	-1	82	.5	83	8	ELZ	.5	E	8			1	
75	0.9D - 1.0Ev + 1.0Eh.	Yes	V		1	.9	39			-1	E	-1	82	.866	83	5	ELZ	.866	E	5				
13	U.UL TOLY TOLIN			1	-					-	-	_	-	_	_									

Page 3

: Colliers Engineering & Design

Project # 22777306
Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:___

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap.
1	N1	6.249997	-3.187497	2.380203	0	
2	N2	-6.250003	-3.187497	2.380203	0	
3	N3	6.249997	0.145837	2.380203	0	
4	N4	-6.250003	0.145837	2.380203	0	
5	N5	-6.000003	-3.187497	2.380203	0	
6	N6	-6.000003	0.145837	2.380203	0	
7	N7	-2.000003	-3.187497	2.380203	0	
8	N8	-2.000003	0.145837	2.380203	0	
9	N9	1.999997	-3.187497	2.380203	0	
10	N10	1.999997	0.145837	2.380203	0	
11	N11	5.999997	-3.187497	2.380203	0	
12	N12	5.999997	0.145837	2.380203	0	
13	N13	-6.000003	-3.187497	2.630203	0	
14	N14	-6.000003	0.145837	2.630203	0	
15	N15	-2.000003	-3.187497	2.630203	0	
16	N16	-2.000003	0.145837	2.630203	0	
17	N17	1.999997	-3.187497	2.630203	0	
18	N18	1.999997	0.145837	2.630203	0	
19	N19	5.999997	-3.187497	2.630203	0	
20	N20	5.999997	0.145837	2.630203	0	
21	N21	-2.500003	-3.33333	2.380203	0	
22	N22	-2.500003	0.000003	2.380203	0	
23	N23	2.499997	-3.33333	2.380203	0	
24	N24	2,499997	0.000003	2.380203	0	
25	N25	-2.500003	-3.33333	1.958328	0	
26	N26	-2.500003	0.000003	1.958328	0	
27	N27	2,499997	-3.33333	1.958328	0	
28	N28	2.499997	0.000003	1.958328	0	
29	N29	-0.000003	-3.33333	0.416662	0	
30	N30	-0.000003	0.000003	0.416662	0	
31	N31	-0.531253	-3.33333	0.416662	0	
	N32	-0.531253	0.000003	0.416662	0	
32	N33	0.531247	-3.33333	0.416662	0	
33	N34	0.531247	0.000003	0.416662	0	
34	N35	-0.000003	-3.33333	-0.000005	0	
35		-0.000003	0.000003	-0.000005	0	
36	N36	-6.000003	2.47917	2.630203	0	
37	N39	-2.000003	2.47917	2.630203	Ö	
38	N40		2.47917	2.630203	0	
39	N41	1.999997 5.999997	2.47917	2.630203	Ö	
40	N42		-5.52083	2.630203	0	
41	N43	-6.000003		2.630203	0	
42	N44	-2.000003	-5.52083	2.630203	0	
43	N45	1.999997	-5.52083		0	
44	N46	5.999997	-5.52083	2.630203	0	
45	N58	-2.500003	0.000003	2.005203	0	
46	N76	-0.093753	-3.33333	0.416662	0	
47	N77	-0.395837	-3.33333	0.416662		
48	N78	0.093747	-3.33333	0.416662	0	
49	N79	0.39583	-3.33333	0.416662	0	
50	N80	-0.093753	0.000003	0.416662	0	
51	N81	-0.395837	0.000003	0.416662	0	
52	N82	0.093747	0.000003	0.416662	0	
53	N83	0.39583	0.000003	0.416662	0	
54	N58A	-0.000003	0.145837	2.380203	0	
55	N59	-2.500003	-3.187497	2.380203	0	
56	N60	-2.500003	0.145837	2.380203	0	

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y Ifti	Z [ft]	Temp [F]	Detach From Diap.
57	N61	2,499997	-3.187497	2.380203	0	
58	N62	2.499997	0.145837	2.380203	0	
59	N59A	-5.250003	0.145837	2.380203	0	
60	N61A	-4.829632	0.145837	-1.2941	0	
61	N63	-5.250003	-3.187463	2.380203	0	
62	N64	-4.829632	-3.187463	-1.2941	0	
63	N63A	-1.515628	0.000003	1.187495	0	
64	N64A	-1.515628	-3.33333	1.187495	0	
65	N65	-1.692405	0.000003	1.010718	0	
66	N66	-1.692405	-3.33333	1.010718	0	
67	N67	-1.692405	0.333333	1.010718	00	
68	N68	-1.692405	-3.666667	1.010718	0	
69	N69	1.515628	0.000003	1.187495	0	
70	N70	1.515628	-3.33333	1.187495	0	
71	N71	1.692405	0.000003	1.010718	0	
72	N72	1.692405	-3.33333	1.010718	0	
73	N73	1.692405	0.333333	1.010718	0	
74	N74	1.692405	-3.666667	1.010718	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Desig A [in2] lyy [i lzz [i J [in4]
1	Mount Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical 1.02 .627 .627 1.25
2	Face Horizontal	PIPE 2.5	Beam	Pipe	Q235	Typical 1.61 1.45 1.45 2.89
3	Standoff Horizontal	PIPE 2.0	Beam	Pipe	Q235	Typical 1.02 .627 .627 1.25
4	Standoff Diagonal	SR 0.75	Column	BAR	Q235	Typical .4418 .0155 .0155 .0311
5	Tieback	PIPE 2.0	Beam	Pipe	Q235	Typical 1.02 .627 .627 1.25
6	Standoff Vertical	SR 0.625	Column	BAR	Q235	Typical .3068 .0075 .0075 .015
7	Standoff Plate	PL5/8X3.5	Beam	BAR	Q235	Typical 2.1875 .0712 2.2331 .2528

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt_
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3
7	Q235	29000	11154	.3	.65	.49	35	1.5	58	1.2

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d.,	. Section/Shape	Type	Design List	Material	Design Ru
1	F	N2	N1			Face Horizontal	Beam	Pipe	Q235	Typical
2	M2	N4	N3			Face Horizontal	Beam	Pipe	Q235	Typical
3	3	N5	N13			RIGID	None	None	RIGID	Typical
	M4	N6	N14	Tive to		RIGID	None	None	RIGID	Typical
5	M5	N8	N16			RIGID	None	None	RIGID	Typical
	M6	N7	N15			RIGID	None	None	RIGID	Typical
6	M9	N10	N18			RIGID	None	None	RIGID	Typical
0	2	N9	N17			RIGID	None	None	RIGID	Typical
8		N12	N20			RIGID	None	None	RIGID	Typical
9	M11	N12	N19			RIGID	None	None	RIGID	Typical
10	M13	N22	N26		90	Standoff Plate	Beam	BAR	Q235	Typical

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Primary Data (Continued)

	Label	1 Joint	J Joint	K Joint Rotate(d	, Section/Shape	Type	Design List		Design Ru.
12	M14	N21	N25	90		Beam	BAR	Q235	Typical
13	M15	N23	N27	90	Standoff Plate		BAR	Q235	Typical
14	M16	N24	N28	90		Beam	BAR	Q235	Typical
15	SO	N26	N32		Standoff Horizontal		Pipe	Q235	Typical
16	M18	N25	N31		Standoff Horizontal		Pipe	Q235	Typical
17	M19	N27	N33		Standoff Horizontal		Pipe	Q235	Typical
18	M20	N28	N34		Standoff Horizontal	Beam	Pipe	Q235	Typical
19	M21	N32	N30	90	Standoff Plate	Beam	BAR	Q235	Typical
20	M22	N34	N30	90	Standoff Plate	Beam	BAR	Q235	Typical
21	M23	N31	N29	90	Standoff Plate	Beam	BAR	Q235	Typical
22	M24	N33	N29	90	Standoff Plate	Beam	BAR	Q235	Typical
23	M25	N31	N26		Standoff Diagonal	Column	BAR	Q235	Typical
24	M26	N32	N25		Standoff Diagonal	Column	BAR	Q235	Typical
25	M27	N33	N28		Standoff Diagonal	Column	BAR	Q235	Typical
26	M28	N27	N34		Standoff Diagonal	Column	BAR	Q235	Typical
27	M29	N29	N35		RIGID	None	None	RIGID	Typical
28	M30	N30	N36		RIGID	None	None	RIGID	Typical
29	MP4A	N39	N43		Mount Pipe	Column	Pipe	A53 Gr. E	
	MP3A	N40	N44		Mount Pipe	Column	Pipe	A53 Gr. E	
30	MP2A	N41	N45		Mount Pipe	Column		A53 Gr. E	
31	MP1A	N42	N46		Mount Pipe	Column	Pipe	A53 Gr. E	
32	M44	N25	N26		Standoff Vertical	Column	BAR	Q235	Typical
33	M45	N31	N32		Standoff Vertical	Column	BAR	Q235	Typical
34	M46	N33	N34		Standoff Vertical	Column	BAR	Q235	Typical
35	M47	N27	N28		Standoff Vertical	Column	BAR	Q235	Typical
36	M47B	N22	N60		RIGID	None	None	RIGID	Typical
37		N21	N59		RIGID	None	None	RIGID	Typical
38	M48A M49A	N24	N62		RIGID	None	None	RIGID	Typical
39		N23	N61		RIGID	None	None	RIGID	Typical
40	M50A	N30	N36		RIGID	None	None	RIGID	Typical
41	M51A	N29	N35		RIGID	None	None	RIGID	Typical
42	M52A	N59A	N61A		Tieback	Beam	Pipe	Q235	Typical
43	M43		N64		Tieback	Beam	Pipe	Q235	Typical
44	M45A	N63	N66		RIGID	None	None	RIGID	Typical
45	M45B	N64A			RIGID	None	None	RIGID	Typical
46	M46A	N63A	N65		Mount Pipe	Column	Pipe	A53 Gr. E	
47	OVP	N67	N68		RIGID	None	None	RIGID	Typical
48	M48	N70	N72		RIGID	None	None	RIGID	Typical
49	M49	N69	N71			Column			Typical
50	RRU	N73	N74		Mount Pipe	Columni	Line	MOO OI. L	I ypical

Member Advanced Data

	Label	l Release	J Release	I Offsetfinl	J Offset[in]	T/C Only	Physical	Defl Ratio Opti	. Analysis	Inactive	Seismi
1	F	Tricicasc	01,0.0000				Yes				None
2	M2						Yes				None
3	3						Yes	** NA **			None
4	M4						Yes	** NA **			None
5	M5						Yes	** NA **			None
6	M6						Yes	** NA **			None
7	M9						Yes	** NA **			None
8	2						Yes	** NA **			None
_							Yes	** NA **			None
9	M11			_			Yes	** NA **			None
10	NA42						Yes	Default			None
11	M13						Yes	Default			None
12 13	M14 M15						Yes	Doladit			None

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ratio Opti	Analysis	Inactive	Seismi
14	M16						Yes				None
15	SO						Yes	Default			None
16	M18						Yes				None
17	M19						Yes				None
18	M20						Yes	Default			None
19	M21						Yes	Default			None
20	M22						Yes				None
21	M23						Yes				None
22	M24						Yes				None
23	M25	BenPIN	BenPIN			Euler Bu	Yes	** NA **			None
24	M26	BenPIN	BenPIN			Euler Bu	Yes	** NA **			None
25	M27	BenPIN	BenPIN			Euler Bu	Yes	** NA **			None
26	M28	BenPIN	BenPIN			Euler Bu	Yes	** NA **			None
27	M29	Doin in					Yes	** NA **		Inactive	None
28	M30						Yes	** NA **		Inactive	None
29	MP4A						Yes	** NA **			None
30	MP3A						Yes	** NA **			None
31	MP2A						Yes	** NA **			None
32	MP1A						Yes	** NA **			None
33	M44	BenPIN	BenPIN				Yes	** NA **			None
34	M45	BenPIN	BenPIN			7	Yes	** NA **	1		None
35	M46	BenPIN	BenPIN				Yes	** NA **			None
36	M47	BenPIN	BenPIN				Yes	** NA **			None
37	M47B	Den ny	000000				Yes	** NA **			None
38	M48A		00000				Yes	** NA **			None
39	M49A		00000				Yes	** NA **			None
40	M50A		00000				Yes	** NA **			None
41	M51A						Yes	** NA **			None
42	M52A						Yes	** NA **			None
43	M43	BenPIN					Yes	Default			None
44	M45A	BenPIN					Yes	Default			None
45	M45B	Delli III	000000				Yes	** NA **			None
46	M46A		000000				Yes	** NA **			None
47	OVP		555,55				Yes	** NA **			None
48	M48		000000				Yes	** NA **			None
48	M49		000000				Yes	** NA **			None
50	RRU		300,00				Yes	** NA **			None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	Y	-70.3	1
2	RRU	My	0	1
3	RRU	Mz	0	1
4	OVP	Y	-32	1
5	OVP	My	0	
6	OVP	Mz	0	1 1 1
7	MP1A	Y	-31.65	1.5
8	MP1A	Mv	0158	1.5
9	MP1A	Mz	0211	1.5
10	MP1A	Y	-31.65	6.5
11	MP1A	Mv	0158	6.5
12	MP1A	Mz	0211	6.5
13	MP1A	Y	-31.65	1.5
14	MP1A	My	0158	1.5
15	MP1A	Mz	.0211	1.5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP1A	Y	-31.65	6.5
17	MP1A	Mv	0158	6.5
18	MP1A	Mz	.0211	6.5
19	MP4A	Y	-28.65	3
20	MP4A	My	0143	3
21	MP4A	Mz	0	3
22	MP4A	Y	-28.65	5
23	MP4A	Mv	0143	5
24	MP4A	Mz	0	5
25	MP1A	Y	-74.7	3
26	MP1A	Mv	.0374	3
27	MP1A	Mz	0	3
28	MP1A	Y	-20.8	5
29	MP1A	Mv	.0104	5
30	MP1A	Mz	0	5

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	Y	-42.8205	
2	RRU	My	0	
3	RRU	Mz	0	1
4	OVP	Υ	-88.0361	1
5	OVP	My	0	1
6	OVP	Mz	0	1
7	MP1A	Υ	-70.0453	1.5
8	MP1A	My	035	1.5
9	MP1A	Mz	0467	1.5
10	MP1A	Υ	-70.0453	6.5
11	MP1A	Mv	035	6.5
12	MP1A	Mz	0467	6.5
13	MP1A	Y	-70.0453	1.5
14	MP1A	My	035	1.5
15	MP1A	Mz	.0467	1.5
16	MP1A	Y	-70.0453	6.5
17	MP1A	My	035	6.5
18	MP1A	Mz	.0467	6.5
19	MP4A	Y	-29.8213	3
20	MP4A	My	0149	3
21	MP4A	Mz	0	3
22	MP4A	Y	-29.8213	5
23	MP4A	My	0149	5
24	MP4A	Mz	0	5
25	MP1A	Y	-44.965	3
26	MP1A	My	.0225	3
27	MP1A	Mz	0	3
28	MP1A	Y	-16.1917	5
29	MP1A	My	.0081	5
30	MP1A	Mz	0	5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	0	1
2	RRU	Z	-69.934	
3	RRU	Mx	0	1
4	OVP	X	0	
5	OVP	Z	-149.125	1

Colliers Engineering & Design

Project # 22777306
Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	OVP	Mx	0	
7	MP1A	X	0	1.5
8	MP1A	Z	-227.941	1.5
9	MP1A	Mx	.152	1.5
10	MP1A	X	0	6.5
11	MP1A	Z	-227.941	6.5
12	MP1A	Mx	.152	6.5
13	MP1A	X	0	1.5
14	MP1A	Z	-227.941	1.5
15	MP1A	Mx	152	1.5
16	MP1A	X	0	6.5
17	MP1A	Z	-227.941	6.5
18	MP1A	Mx	152	6.5
19	MP4A	X	0	3
20	MP4A	Z	-94.829	3
21	MP4A	Mx	0	3
22	MP4A	X	0	5
23	MP4A	Z	-94.829	5
24	MP4A	Mx	0	5
25	MP1A	X	0	3
26	MP1A	Z	-77.565	3
27	MP1A	Mx	0	3
28	MP1A	X	0	5
29	MP1A	Z	-18.516	5
30	MP1A	Mx	0	5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	27.335	112 6
2	RRU	Z	-47.346	1
3	RRU	Mx	0	11
4	OVP	X	65.054	
5	OVP	Z	-112.678	1
6	OVP	Mx	0	1
7	MP1A	X	104.191	1.5
8	MP1A	Z	-180.465	1.5
9	MP1A	Mx	.0682	1.5
10	MP1A	X	104.191	6.5
11	MP1A	Z	-180.465	6.5
12	MP1A	Mx	.0682	6.5
13	MP1A	X	104.191	1.5
14	MP1A	Z	-180.465	1.5
15	MP1A	Mx	1724	1.5
16	MP1A	X	104.191	6.5
17	MP1A	Z	-180.465	6.5
18	MP1A	Mx	1724	6.5
19	MP4A	X	40.126	3
20	MP4A	Z	-69.501	3
21	MP4A	Mx	0201	3
22	MP4A	X	40.126	5
23	MP4A	Z	-69.501	5
24	MP4A	Mx	0201	5
25	MP1A	X	35.592	3
26	MP1A	Z	-61.648	3
27	MP1A	Mx	.0178	3
28	MP1A	X	10.146	5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:_

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP1A	Z	-17.573	5
30	MP1A	Mx	.0051	5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	40.737	1
2	RRU	Z	-23.52	1
3	RRU	Mx	0	11
4	OVP	X	104.444	1
5	OVP	Z	-60.301	1
6	OVP	Mx	0	1
7	MP1A	X	146.589	1.5
8	MP1A	Z	-84.633	1.5
9	MP1A	Mx	0169	1.5
10	MP1A	X	146.589	6.5
11	MP1A	Z	-84.633	6.5
12	MP1A	Mx	0169	6.5
13	MP1A	X	146.589	1,5
14	MP1A	Z	-84.633	1.5
15	MP1A	Mx	1297	1.5
16	MP1A	X	146.589	6.5
17	MP1A	Z	-84.633	6.5
18	MP1A	Mx	-,1297	6.5
19	MP4A	X	44.254	3
20	MP4A	Z	-25.55	3
21	MP4A	Mx	0221	3
22	MP4A	X	44.254	5
23	MP4A	Z	-25.55	5
24	MP4A	Mx	0221	5
25	MP1A	X	50.597	3
26	MP1A	Z	-29.212	3
27	MP1A	Mx	.0253	3
28	MP1A	X	20.65	5
29	MP1A	Z	-11.922	5
30	MP1A	Mx	.0103	5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	54.671	1
2	RRU	Z	0	1
3	RRU	Mx	O	11
4	OVP	X	130.109	1
5	OVP	Z	0	1
6	OVP	Mx	0	
7	MP1A	X	149.709	1.5
8	MP1A	Z	0	1.5
9	MP1A	Mx	0749	1.5
10	MP1A	X	149.709	6.5
11	MP1A	Z	0	6.5
12	MP1A	Mx	0749	6.5
13	MP1A	X	149.709	1.5
14	MP1A	Z	0	1.5
15	MP1A	Mx	0749	1.5
16	MP1A	X	149.709	6.5
17	MP1A	Z	0	6.5
18	MP1A	Mx	0749	6.5

Colliers Engineering & Design

Project # 22777306
Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
19	MP4A	X	36.524	3
20	MP4A	Z	0	3
21	MP4A	Mx	0183	3
22	MP4A	X	36.524	5
23	MP4A	Z	.0	5
24	MP4A	Mx	0183	5
25	MP1A	X	52.044	3
26	MP1A	Z	0	3
27	MP1A	Mx	.026	3
28	MP1A	X	25.621	5
29	MP1A	Z	0	5
30	MP1A	Mx	.0128	5

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	60.564	1
2	RRU	Z	34.967	
3	RRU	Mx	0	1
4	OVP	X	129.146	11
5	OVP	Z	74.562	11
6	OVP	Mx	0	1
7	MP1A	X	146.589	1.5
8	MP1A	Z	84.633	1.5
9	MP1A	Mx	1297	1.5
10	MP1A	X	146.589	6.5
11	MP1A	Z	84.633	6.5
12	MP1A	Mx	1297	6.5
13	MP1A	X	146.589	1.5
14	MP1A	Z	84.633	1.5
15	MP1A	Mx	0169	1.5
16	MP1A	X	146.589	6.5
17	MP1A	Z	84.633	6.5
18	MP1A	Mx	0169	6.5
19	MP4A	X	44.254	3
20	MP4A	Z	25.55	3
21	MP4A	Mx	0221	3
22	MP4A	X	44.254	5
23	MP4A	Z	25.55	5
24	MP4A	Mx	0221	5
25	MP1A	X	50.597	3
26	MP1A	Z	29.212	3
27	MP1A	Mx	.0253	3
28	MP1A	X	20.65	5
29	MP1A	Z	11.922	5
30	MP1A	Mx	.0103	5

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	38.782	
2	RRU	Z	67.173	
3	RRU	Mx	0	1
4	OVP	X	79.316	
5	OVP	Z	137.38	1
6	OVP	Mx	0	1
7	MP1A	X	104.191	1.5
8	MP1A	Z	180.465	1.5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP1A	Mx	1724	1.5
10	MP1A	X	104.191	6.5
11	MP1A	Z	180.465	6.5
12	MP1A	Mx	1724	6.5
13	MP1A	X	104.191	1.5
14	MP1A	Z	180.465	1.5
15	MP1A	Mx	.0682	1.5
16	MP1A	X	104.191	6.5
17	MP1A	Z	180.465	6.5
18	MP1A	Mx	.0682	6.5
19	MP4A	X	40.126	3
20	MP4A	Z	69.501	3
21	MP4A	Mx	0201	3
22	MP4A	X	40.126	5
23	MP4A	Z	69.501	5
24	MP4A	Mx	0201	5
25	MP1A	X	35.592	3
26	MP1A	Z	61.648	3
27	MP1A	Mx	.0178	3
28	MP1A	X	10.146	5
29	MP1A	Z	17.573	5
30	MP1A	Mx	.0051	5

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	0	1
2	RRU	Z	69.934	1
3	RRU	Mx	0	1
4	OVP	X	0	1
5	OVP	Z	149.125	1
6	OVP	Mx	0	1
7	MP1A	X	0	1.5
8	MP1A	Z	227.941	1.5
9	MP1A	Mx	152	1.5
10	MP1A	X	0	6.5
11	MP1A	Z	227.941	6.5
12	MP1A	Mx	152	6.5
13	MP1A	X	0	1.5
14	MP1A	Z	227.941	1.5
15	MP1A	Mx	.152	1.5
16	MP1A	X	0	6.5
17	MP1A	Z	227.941	6.5
18	MP1A	Mx	.152	6.5
19	MP4A	X	0	3
20	MP4A	Z	94.829	3
21	MP4A	Mx	0	3
22	MP4A	X	0	5
23	MP4A	Z	94.829	5
24	MP4A	Mx	0	5
25	MP1A	X	0	3
26	MP1A	Z	77.565	3
27	MP1A	Mx	0	3
28	MP1A	X	0	5
29	MP1A	Z	18.516	5
30	MP1A	Mx	0	5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-27.335	1
2	RRU	Z	47.346	
3	RRU	Mx	0	1
4	OVP	X	-65.054	1
5	OVP	Z	112.678	1
6	OVP	Mx	0	1
7	MP1A	X	-104.191	1.5
8	MP1A	Z	180.465	1.5
9	MP1A	Mx	0682	1.5
10	MP1A	X	-104.191	6.5
11	MP1A	Z	180.465	6.5
12	MP1A	Mx	0682	6.5
13	MP1A	X	-104.191	1.5
14	MP1A	Z	180.465	1.5
15	MP1A	Mx	.1724	1.5
16	MP1A	X	-104.191	6.5
17	MP1A	Z	180.465	6.5
18	MP1A	Mx	.1724	6.5
19	MP4A	X	-40.126	3
20	MP4A	Z	69.501	3
21	MP4A	Mx	.0201	3
22	MP4A	X	-40.126	5
23	MP4A	Z	69.501	5
24	MP4A	Mx	.0201	5
25	MP1A	X	-35.592	3
26	MP1A	Z	61.648	3
27	MP1A	Mx	0178	3
28	MP1A	X	-10.146	5
29	MP1A	Z	17.573	5
30	MP1A	Mx	0051	5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-40.737	1
2	RRU	Z	23.52	1
3	RRU	Mx	0	11
4	OVP	X	-104.444	1
5	OVP	Z	60.301	1
6	OVP	Mx	0	1
7	MP1A	X	-146.589	1.5
8	MP1A	Z	84.633	1.5
9	MP1A	Mx	.0169	1.5
10	MP1A	X	-146.589	6.5
11	MP1A	Z	84.633	6.5
12	MP1A	Mx	.0169	6.5
13	MP1A	X	-146.589	1.5
14	MP1A	Z	84.633	1.5
15	MP1A	Mx	.1297	1.5
16	MP1A	X	-146.589	6.5
17	MP1A	Z	84.633	6.5
18	MP1A	Mx	.1297	6.5
19	MP4A	X	-44.254	3
20	MP4A	Z	25.55	3
21	MP4A	Mx	.0221	3
22	MP4A	X	-44.254	5
23	MP4A	Z	25.55	5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 11: Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
24	MP4A	Mx	.0221	5
25	MP1A	X	-50.597	3
24 25 26	MP1A	Z	29.212	3
27	MP1A	Mx	0253	3
28	MP1A	X	-20.65	5
29	MP1A	Z	11.922	5
30	MP1A	Mx	0103	5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-54.671	1
2	RRU	Z	0	
3	RRU	Mx	0	1
4	OVP	X	-130.109	1 1 1
5	OVP	Z	0	11
6	OVP	Mx	0	1
7	MP1A	X	-149.709	1.5
8	MP1A	Z	0	1.5
9	MP1A	Mx	.0749	1.5
10	MP1A	X	-149.709	6.5
11	MP1A	Z	0	6.5
12	MP1A	Mx	.0749	6.5
13	MP1A	X	-149.709	1.5
14	MP1A	Z	0	1.5
15	MP1A	Mx	.0749	1.5
16	MP1A	X	-149.709	6.5
17	MP1A	Z	0	6.5
18	MP1A	Mx	.0749	6.5
19	MP4A	X	-36.524	3
20	MP4A	Z	0	3
21	MP4A	Mx	.0183	3
22	MP4A	X	-36.524	5
23	MP4A	Z	0	5
24	MP4A	Mx	.0183	5
25	MP1A	X	-52.044	3
26	MP1A	Z	0	3
27	MP1A	Mx	026	3
28	MP1A	X	-25.621	5
29	MP1A	Z	0	5
30	MP1A	Mx	0128	5

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-60.564	11
2	RRU	Z	-34.967	1
3	RRU	Mx	0	1:
4	OVP	X	-129.146	
5	OVP	Z	-74.562	1
6	OVP	Mx	0	1
7	MP1A	X	-146.589	1.5
8	MP1A	Z	-84.633	1.5
9	MP1A	Mx	.1297	1.5
10	MP1A	X	-146.589	6.5
11	MP1A	Z	-84.633	6.5
12	MP1A	Mx	.1297	6.5
13	MP1A	X	-146.589	1.5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
14	MP1A	Z	-84.633	1.5
15	MP1A	Mx	.0169	1.5
16	MP1A	X	-146.589	6.5
17	MP1A	Z	-84.633	6.5
18	MP1A	Mx	.0169	6.5
19	MP4A	X	-44.254	3
20	MP4A	Z	-25.55	3
21	MP4A	Mx	.0221	3
22	MP4A	X	-44.254	5
23	MP4A	Z	-25.55	5
24	MP4A	Mx	.0221	5
25	MP1A	X	-50.597	3
26	MP1A	Z	-29.212	3
27	MP1A	Mx	0253	3
28	MP1A	X	-20.65	5
29	MP1A	Z	-11.922	5
30	MP1A	Mx	0103	5

Member Point Loads (BLC 14: Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-38.782	11
2	RRU	Z	-67.173	1
3	RRU	Mx	0	1
4	OVP	X	-79.316	1
5	OVP	Z	-137.38	1
6	OVP	Mx	0	1
7	MP1A	X	-104.191	1.5
8	MP1A	Z	-180.465	1.5
9	MP1A	Mx	.1724	1.5
10	MP1A	X	-104.191	6.5
11	MP1A	Z	-180.465	6.5
12	MP1A	Mx	.1724	6.5
13	MP1A	X	-104.191	1.5
14	MP1A	Z	-180.465	1.5
15	MP1A	Mx	0682	1.5
16	MP1A	X	-104.191	6.5
17	MP1A	Z	-180.465	6.5
18	MP1A	Mx	0682	6.5
19	MP4A	X	-40.126	3
20	MP4A	Z	-69.501	3
21	MP4A	Mx	.0201	3
22	MP4A	X	-40.126	5
23	MP4A	Z	-69.501	5
24	MP4A	Mx	.0201	5
25	MP1A	X	-35.592	3
26	MP1A	Z	-61.648	3
27	MP1A	Mx	0178	3
28	MP1A	X	-10.146	5
29	MP1A	Z	-17.573	5
30	MP1A	Mx	0051	5

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	0	<u>1</u>
2	RRU	Z	-15.079	1
3	RRU	Mx	0	1

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4	OVP	X	0	1
5	OVP	Z	-32.189	1
6	OVP	Mx	0	1
7	MP1A	X	0	1.5
8	MP1A	Z	-36.954	1.5
9	MP1A	Mx	.0246	1.5
10	MP1A	X	0	6.5
11	MP1A	Z	-36.954	6.5
12	MP1A	Mx	.0246	6.5
13	MP1A	X	0	1.5
14	MP1A	Z	-36.954	1.5
15	MP1A	Mx	-,0246	1.5
16	MP1A	X	0	6.5
17	MP1A	Z	-36.954	6.5
18	MP1A	Mx	0246	6.5
19	MP4A	X	0	3
20	MP4A	Z	-16.039	3
21	MP4A	Mx	0	3
22	MP4A	X	0	5
23	MP4A	Z	-16.039	5
24	MP4A	Mx	0	5
25	MP1A	X	0	3
26	MP1A	Z	-16.567	3
27	MP1A	Mx	0	3
28	MP1A	X	0	5
29	MP1A	Z	-4.022	5
30	MP1A	Mx	0	5

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	6.052	1
2	RRU	Z	-10.483	1
3	RRU	Mx	0	1
4	OVP	X	14.239	1
5	OVP	Z	-24.663	1
6	OVP	Mx	0	1
7	MP1A	X	17.009	1.5
8	MP1A	Z	-29.46	1.5
9	MP1A	Mx	.0111	1.5
10	MP1A	X	17.009	6.5
11	MP1A	Z	-29.46	6.5
12	MP1A	Mx	.0111	6.5
13	MP1A	X	17.009	1.5
14	MP1A	Z	-29.46	1.5
15	MP1A	Mx	0281	1.5
16	MP1A	X	17.009	6.5
17	MP1A	Z	-29.46	6.5
18	MP1A	Mx	0281	6.5
19	MP4A	X	6.861	3
20	MP4A	Z	-11.884	3
21	MP4A	Mx	0034	3
22	MP4A	X	6.861	5
23	MP4A	Z	-11.884	5
24	MP4A	Mx	0034	5
25	MP1A	X	7.653	3
26	MP1A	Z	-13.256	3

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
27	MP1A	Mx	.0038	3
28	MP1A	X	2.173	5
29	MP1A	Z	-3.763	5
30	MP1A	Mx	.0011	5

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	9.194	1
2	RRU	Z	-5.308	1
3	RRU	Mx	0	1
4	OVP	X	23.056	1
5	OVP	Z	-13.311	11
6	OVP	Mx	0	1
7	MP1A	X	24.375	1.5
8	MP1A	Z	-14.073	1.5
9	MP1A	Mx	0028	1.5
10	MP1A	X	24.375	6.5
11	MP1A	Z	-14.073	6.5
12	MP1A	Mx	0028	6.5
13	MP1A	X	24.375	1.5
14	MP1A	Z	-14.073	1.5
15	MP1A	Mx	0216	1.5
16	MP1A	X	24.375	6.5
17	MP1A	Z	-14.073	6.5
18	MP1A	Mx	0216	6.5
19	MP4A	X	7.872	3
20	MP4A	Z	-4.545	3
21	MP4A	Mx	0039	3
22	MP4A	X	7.872	5
23	MP4A	Z	-4.545	5
24	MP4A	Mx	0039	5
25	MP1A	X	11.072	3
26	MP1A	Z	-6.393	3
27	MP1A	Mx	.0055	3
28	MP1A	X	4.322	5
29	MP1A	Z	-2.495	5
30	MP1A	Mx	.0022	5

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	12.104	1
2	RRU	Z	0	1
3	RRU	Mx	0	11
4	OVP	X	28.478	
5	OVP	Z	0	1
6	OVP	Mx	0	
7	MP1A	X	25.209	1.5
8	MP1A	Z	0	1.5
9	MP1A	Mx	0126	1.5
10	MP1A	X	25.209	6.5
11	MP1A	Z	0	6.5
12	MP1A	Mx	0126	6.5
13	MP1A	X	25.209	1.5
14	MP1A	Z	0	1.5
15	MP1A	Mx	0126	1.5
16	MP1A	X	25.209	6.5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP1A	Z	0	6.5
18	MP1A	Mx	0126	6.5
19	MP4A	X	6.773	.3
20	MP4A	Z	0	3
21	MP4A	Mx	0034	3
22	MP4A	X	6.773	5
23	MP4A	Z	0	5
24	MP4A	Mx	0034	5
25	MP1A	X	11.524	3
26	MP1A	Z	0	3
27	MP1A	Mx	.0058	3
28	MP1A	X	5.313	5
29	MP1A	Z	0	5
30	MP1A	Mx	.0027	5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	13.059	1
2	RRU	Z	7.54	1
3	RRU	Mx	0	1
4	OVP	X	27.877	1
5	OVP	Z	16.095	1
6	OVP	Mx	0	
7	MP1A	X	24.375	1.5
8	MP1A	Z	14.073	1.5
9	MP1A	Mx	0216	1.5
10	MP1A	X	24.375	6.5
11	MP1A	Z	14.073	6.5
12	MP1A	Mx	0216	6.5
13	MP1A	X	24.375	1.5
14	MP1A	Z	14.073	1.5
15	MP1A	Mx	0028	1.5
16	MP1A	X	24.375	6.5
17	MP1A	Z	14.073	6.5
18	MP1A	Mx	0028	6.5
19	MP4A	X	7.872	3
20	MP4A	Z	4.545	3
21	MP4A	Mx	0039	3
22	MP4A	X	7.872	5
23	MP4A	Z	4.545	5
24	MP4A	Mx	0039	5
25	MP1A	X	11.072	3
26	MP1A	Z	6.393	3
27	MP1A	Mx	.0055	3
28	MP1A	X	4.322	5
29	MP1A	Z	2.495	5
30	MP1A	Mx	.0022	5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	X	8.283	1
	Z	14.347	1
	Mx	0	1
	X	17.022	1
	Z	29.483	1
	Mx	0	1
	Member Label RRU RRU RRU OVP OVP	RRU X RRU Z RRU Mx OVP X OVP Z	RRU X 8.283 RRU Z 14.347 RRU Mx 0 OVP X 17.022 OVP Z 29.483

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
7	MP1A	X	17.009	1.5
8	MP1A	Z	29.46	1.5
9	MP1A	Mx	0281	1.5
10	MP1A	X	17.009	6.5
11	MP1A	Z	29.46	6.5
12	MP1A	Mx	0281	6.5
13	MP1A	X	17.009	1.5
14	MP1A	Z	29.46	1.5
15	MP1A	Mx	.0111	1.5
16	MP1A	X	17.009	6.5
17	MP1A	Z	29.46	6.5
18	MP1A	Mx	.0111	6.5
19	MP4A	X	6.861	3
20	MP4A	Z	11.884	3
21	MP4A	Mx	0034	3
22	MP4A	X	6.861	5
23	MP4A	Z	11.884	5
24	MP4A	Mx	0034	5
25	MP1A	X	7.653	3
26	MP1A	Z	13.256	3
27	MP1A	Mx	.0038	3
28	MP1A	X	2.173	5
29	MP1A	Z	3.763	5
30	MP1A	Mx	.0011	5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	0	1
2	RRU	Z	15.079	
3	RRU	Mx	0	1
4	OVP	X	0	1
5	OVP	Z	32.189	
6	OVP	Mx	0	1 1
7	MP1A	X	0	1.5
8	MP1A	Z	36.954	1.5
9	MP1A	Mx	0246	1.5
10	MP1A	X	0	6.5
11	MP1A	Z	36.954	6.5
12	MP1A	Mx	0246	6.5
13	MP1A	X	0	1.5
14	MP1A	Z	36.954	1.5
15	MP1A	Mx	.0246	1.5
16	MP1A	X	0	6.5
17	MP1A	Z	36.954	6.5
18	MP1A	Mx	.0246	6.5
19	MP4A	X	0	3
20	MP4A	Z	16.039	3
21	MP4A	Mx	0	3
22	MP4A	X	0	5
23	MP4A	Z	16.039	5
24	MP4A	Mx	0	5
25	MP1A	X	0	3
26	MP1A	Z	16.567	3
27	MP1A	Mx	0	3
28	MP1A	X	0	5
29	MP1A	Z	4.022	5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
30	MP1A	Mx	0	5

Member Point Loads	(BLC 22 : Antenna	Wi ((210 Deg))
--------------------	-------------------	------	------------

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-6.052	
2	RRU	Z	10.483	
3	RRU	Mx	0	1
4	OVP	X	-14.239	1
5	OVP	Z	24.663	1
6	OVP	Mx	0	1
7	MP1A	X	-17.009	1.5
8	MP1A	Z	29.46	1.5
9	MP1A	Mx	0111	1.5
10	MP1A	X	-17.009	6.5
11	MP1A	Z	29.46	6.5
12	MP1A	Mx	0111	6.5
13	MP1A	X	-17.009	1.5
14	MP1A	Z	29.46	1.5
15	MP1A	Mx	.0281	1.5
16	MP1A	X	-17.009	6.5
17	MP1A	Z	29.46	6.5
18	MP1A	Mx	.0281	6.5
19	MP4A	X	-6.861	3
20	MP4A	Z	11.884	3
21	MP4A	Mx	.0034	3
22	MP4A	X	-6.861	5
23	MP4A	Z	11.884	5
24	MP4A	Mx	.0034	5
25	MP1A	X	-7.653	3
26	MP1A	Z	13.256	3
27	MP1A	Mx	0038	3
28	MP1A	X	-2.173	5
29	MP1A	Z	3.763	5
30	MP1A	Mx	0011	5

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-9.194	1
2	RRU	Z	5.308	1
3	RRU	Mx	0	11
4	OVP	X	-23.056	1, 1
5	OVP	Z	13.311	11
6	OVP	Mx	0	11
7	MP1A	X	-24.375	1.5
8	MP1A	Z	14.073	1.5
9	MP1A	Mx	.0028	1.5
10	MP1A	X	-24.375	6.5
11	MP1A	Z	14.073	6.5
12	MP1A	Mx	.0028	6.5
13	MP1A	X	-24.375	1.5
14	MP1A	Z	14.073	1.5
15	MP1A	Mx	.0216	1.5
16	MP1A	X	-24.375	6.5
17	MP1A	Z	14.073	6.5
18	MP1A	Mx	.0216	6.5
19	MP4A	X	-7.872	3

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:_

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP4A	Z	4.545	3
21	MP4A	Mx	.0039	3
22	MP4A	X	-7.872	5
23	MP4A	Z	4.545	5
24	MP4A	Mx	.0039	5
25	MP1A	X	-11.072	3
26	MP1A	Z	6.393	3
27	MP1A	Mx	0055	3
28	MP1A	X	-4.322	5
29	MP1A	7	2.495	5
30	MP1A	Mx	0022	5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-12.104	1
2	RRU	Z	0	1
3	RRU	Mx	0	1
4	OVP	X	-28.478	1
5	OVP	Z	0	11
6	OVP	Mx	0	
7	MP1A	X	-25.209	1.5
8	MP1A	Z	0	1.5
9	MP1A	Mx	.0126	1.5
10	MP1A	X	-25.209	6.5
11	MP1A	Z	0	6.5
12	MP1A	Mx	.0126	6.5
13	MP1A	X	-25.209	1.5
14	MP1A	Z	0	1.5
15	MP1A	Mx	.0126	1.5
16	MP1A	X	-25.209	6.5
17	MP1A	Z	0	6,5
18	MP1A	Mx	.0126	6.5
19	MP4A	X	-6.773	3
20	MP4A	Z	0	3
21	MP4A	Mx	.0034	3
22	MP4A	X	-6.773	5
23	MP4A	Z	0	5
24	MP4A	Mx	.0034	5
25	MP1A	X	-11.524	3
26	MP1A	Z	0	3
27	MP1A	Mx	0058	3
28	MP1A	X	-5.313	5
29	MP1A	Z	0	5
30	MP1A	Mx	0027	5

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-13.059	11
2	RRU	Z	-7.54	1
3	RRU	Mx	0	1
4	OVP	X	-27.877	
5	OVP	Z	-16.095	1
6	OVP	Mx	0	
7	MP1A	X	-24.375	1.5
8	MP1A	Z	-14.073	1.5
9	MP1A	Mx	.0216	1.5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
10	MP1A	X	-24.375	6.5
11	MP1A	Z	-14.073	6.5
12	MP1A	Mx	.0216	6.5
13	MP1A	X	-24.375	1.5
14	MP1A	Z	-14.073	1.5
15	MP1A	Mx	.0028	1.5
16	MP1A	X	-24.375	6.5
17	MP1A	Z	-14.073	6.5
18	MP1A	Mx	.0028	6.5
19	MP4A	X	-7.872	3
20	MP4A	Z	-4.545	3
21	MP4A	Mx	.0039	3
22	MP4A	X	-7.872	5
23	MP4A	Z	-4.545	5
24	MP4A	Mx	.0039	5
25	MP1A	X	-11.072	3
26	MP1A	Z	-6.393	3
27	MP1A	Mx	0055	3
28	MP1A	X	-4.322	5
29	MP1A	Z	-2.495	5
30	MP1A	Mx	0022	5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-8.283	1
2	RRU	Z	-14.347	
3	RRU	Mx	0	1
4	OVP	X	-17.022	1
5	OVP	Z	-29.483	1
6	OVP	Mx	0	1
7	MP1A	X	-17.009	1.5
8	MP1A	Z	-29.46	1.5
9	MP1A	Mx	.0281	1.5
10	MP1A	X	-17.009	6.5
11	MP1A	Z	-29.46	6.5
12	MP1A	Mx	.0281	6.5
13	MP1A	X	-17.009	1.5
14	MP1A	Z	-29.46	1.5
15	MP1A	Mx	0111	1.5
16	MP1A	X	-17.009	6.5
17	MP1A	Z	-29.46	6.5
18	MP1A	Mx	0111	6.5
19	MP4A	X	-6.861	3
20	MP4A	Z	-11.884	3
21	MP4A	Mx	.0034	3
22	MP4A	X	-6.861	5
23	MP4A	Z	-11.884	5
24	MP4A	Mx	.0034	5
25	MP1A	X	-7.653	3
26	MP1A	Z	-13.256	3
27	MP1A	Mx	0038	3
28	MP1A	X	-2.173	5
29	MP1A	Z	-3.763	5
30	MP1A	Mx	0011	5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	0	1
2	RRU	Z	-3.724	
3	RRU	Mx	0	1
4	OVP	X	0	14
5	OVP	Z	-7.942	1
6	OVP	Mx	0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
7	MP1A	X	0	1.5
8	MP1A	Z	-12.139	1.5
9	MP1A	Mx	.0081	1.5
10	MP1A	X	0	6.5
11	MP1A	Z	-12.139	6.5
12	MP1A	Mx	.0081	6.5
13	MP1A	X	0	1.5
14	MP1A	Z	-12.139	1.5
15	MP1A	Mx	0081	1.5
16	MP1A	X	0	6.5
17	MP1A	Z	-12.139	6.5
18	MP1A	Mx	0081	6.5
19	MP4A	X	0	3
20	MP4A	Z	-5.05	3
21	MP4A	Mx	0	3
22	MP4A	X	0	5
23	MP4A	Z	-5.05	5
24	MP4A	Mx	0	5
25	MP1A	X	0	3
26	MP1A	Z	-4.131	3
27	MP1A	Mx	0	3
28	MP1A	X	0	5
29	MP1A	Z	986	5
30	MP1A	Mx	0	5

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	1.456	11
2	RRU	Z	-2.521	1
3	RRU	Mx	0	1
4	OVP	X	3.464	
5	OVP	Z	-6.001	11
6	OVP	Mx	0	1
7	MP1A	X	5.549	1.5
8	MP1A	Z	-9.611	1.5
9	MP1A	Mx	.0036	1.5
10	MP1A	X	5.549	6.5
11	MP1A	Z	-9.611	6.5
12	MP1A	Mx	.0036	6.5
13	MP1A	X	5.549	1.5
14	MP1A	Ž	-9.611	1.5
15	MP1A	Mx	0092	1.5
16	MP1A	X	5.549	6.5
17	MP1A	Z	-9.611	6.5
18	MP1A	Mx	0092	6.5
19	MP4A	X	2.137	3
20	MP4A	Z	-3.701	3
21	MP4A	Mx	0011	3
22	MP4A	X	2.137	5
23	MP4A	Z	-3.701	5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 28: Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
24	MP4A	Mx	0011	5
25	MP1A	X	1.895	3
25 26	MP1A	Z	-3.283	3
27	MP1A	Mx	.000948	3
28	MP1A	X	.54	5
28 29	MP1A	Z	936	5
30	MP1A	Mx	.00027	5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	2.169	1
2	RRU	Z	-1.253	1
3	RRU	Mx	0	1
4	OVP	X	5.562	1
5	OVP	Z	-3.211	1
6	OVP	Mx	0	1
7	MP1A	X	7.807	1.5
8	MP1A	Z	-4.507	1.5
9	MP1A	Mx	000899	1.5
10	MP1A	X	7.807	6.5
11	MP1A	Z	-4.507	6.5
12	MP1A	Mx	000899	6.5
13	MP1A	X	7.807	1.5
14	MP1A	Z	-4.507	1.5
15	MP1A	Mx	0069	1.5
16	MP1A	X	7.807	6.5
17	MP1A	Z	-4.507	6.5
18	MP1A	Mx	0069	6.5
19	MP4A	X	2.357	3
20	MP4A	Z	-1.361	3
21	MP4A	Mx	0012	3
22	MP4A	X	2.357	5
23	MP4A	Z	-1.361	5
24	MP4A	Mx	0012	5
25	MP1A	X	2.694	3
26	MP1A	Z	-1.556	3
27	MP1A	Mx	.0013	3
28	MP1A	X	1.1	5
29	MP1A	Z	635	5
30	MP1A	Mx	.00055	5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	2.911	1
2	RRU	Z	0	
3	RRU	Mx	0	1
4	OVP	X	6.929	
5	OVP	Z	0	11
6	OVP	Mx	0	1
7	MP1A	X	7.973	1.5
8	MP1A	Z	0	1.5
9	MP1A	Mx	004	1.5
10	MP1A	X	7.973	6.5
11	MP1A	Z	0	6.5
12	MP1A	Mx	004	6.5
13	MP1A	X	7.973	1.5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
14	MP1A	Z	0	1.5
15	MP1A	Mx	004	1.5
16	MP1A	X	7.973	6.5
17	MP1A	Z	0	6.5
18	MP1A	Mx	004	6.5
19	MP4A	X	1.945	3
20	MP4A	Z	0	3
21	MP4A	Mx	000972	3
22	MP4A	X	1.945	5
23	MP4A	Z	0	5
24	MP4A	Mx	000972	5
25	MP1A	X	2.772	3
26	MP1A	Z	0	3
27	MP1A	Mx	.0014	3
28	MP1A	X	1.364	5
29	MP1A	Z	0	5
30	MP1A	Mx	.000682	5

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	3.225	1
2	RRU	Z	1.862	1
3	RRU	Mx	0	1
4	OVP	X	6.878	11
5	OVP	Z	3.971	1
6	OVP	Mx	0	
7	MP1A	X	7.807	1.5
8	MP1A	Z	4.507	1.5
9	MP1A	Mx	0069	1.5
10	MP1A	X	7.807	6.5
11	MP1A	Z	4.507	6.5
12	MP1A	Mx	0069	6.5
13	MP1A	X	7.807	1.5
14	MP1A	Z	4.507	1.5
15	MP1A	Mx	000899	1.5
16	MP1A	X	7.807	6.5
17	MP1A	Z	4.507	6.5
18	MP1A	Mx	000899	6.5
19	MP4A	X	2.357	3
20	MP4A	Z	1.361	3
21	MP4A	Mx	0012	3
22	MP4A	X	2.357	5
23	MP4A	Z	1.361	5
24	MP4A	Mx	0012	5
25	MP1A	X	2.694	3
26	MP1A	Z	1.556	3
27	MP1A	Mx	.0013	3
28	MP1A	X	1.1	5
29	MP1A	Z	.635	5
30	MP1A	Mx	.00055	5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	2.065	1
2	RRU	Z	3.577	1
3	RRU	Mx	0	1

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4	OVP	X	4.224	1
5	OVP	Z	7.316	11
6	OVP	Mx	0	1
7	MP1A	X	5.549	1.5
8	MP1A	Z	9.611	1.5
9	MP1A	Mx	0092	1.5
10	MP1A	X	5.549	6.5
11	MP1A	Z	9.611	6.5
12	MP1A	Mx	0092	6.5
13	MP1A	X	5.549	1.5
14	MP1A	Z	9.611	1.5
15	MP1A	Mx	.0036	1.5
16	MP1A	X	5.549	6.5
17	MP1A	Z	9.611	6.5
18	MP1A	Mx	.0036	6.5
19	MP4A	X	2.137	3
20	MP4A	Z	3.701	3
21	MP4A	Mx	0011	3
22	MP4A	X	2.137	5
23	MP4A	Z	3.701	5
24	MP4A	Mx	0011	.5
25	MP1A	X	1.895	3
26	MP1A	Z	3.283	3
27	MP1A	Mx	.000948	3
28	MP1A	X	.54	5
29	MP1A	Z	.936	5
30	MP1A	Mx	.00027	5

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	0	1
2	RRU	Z	3.724	
3	RRU	Mx	0	1
4	OVP	X	0	
5	OVP	Z	7.942	1
6	OVP	Mx	0	1
7	MP1A	X	0	1.5
8	MP1A	Z	12.139	1.5
9	MP1A	Mx	0081	1.5
10	MP1A	X	0	6.5
11	MP1A	Z	12.139	6.5
12	MP1A	Mx	0081	6.5
13	MP1A	X	0	1.5
14	MP1A	Z	12.139	1.5
15	MP1A	Mx	.0081	1.5
16	MP1A	X	0	6.5
17	MP1A	Z	12.139	6.5
18	MP1A	Mx	.0081	6.5
19	MP4A	X	0	3
20	MP4A	Z	5.05	3
21	MP4A	Mx	0	3
22	MP4A	X	0	5
23	MP4A	Z	5.05	5
24	MP4A	Mx	0	5
25	MP1A	X	0	3
26	MP1A	Z	4.131	3

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
27	MP1A	Mx	0	3
28	MP1A	X	0	5
29	MP1A	7	.986	5
30	MP1A	Mx	0	5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-1.456	1
2	RRU	Z	2.521	1
3	RRU	Mx	0	1
4	OVP	X	-3.464	1
5	OVP	Z	6.001	1
6	OVP	Mx	0	1
7	MP1A	X	-5.549	1.5
8	MP1A	Z	9.611	1.5
9	MP1A	Mx	0036	1.5
10	MP1A	X	-5.549	6.5
11	MP1A	Z	9.611	6.5
12	MP1A	Mx	0036	6.5
13	MP1A	X	-5.549	1.5
14	MP1A	Z	9.611	1.5
15	MP1A	Mx	.0092	1.5
16	MP1A	X	-5.549	6.5
17	MP1A	Z	9.611	6.5
18	MP1A	Mx	.0092	6.5
19	MP4A	X	-2.137	3
20	MP4A	Z	3.701	3
21	MP4A	Mx	.0011	3
22	MP4A	X	-2.137	5
23	MP4A	Z	3.701	5
24	MP4A	Mx	.0011	5
25	MP1A	X	-1.895	3
26	MP1A	Z	3.283	3
27	MP1A	Mx	000948	3
28	MP1A	X	54	5
29	MP1A	Z	.936	5
30	MP1A	Mx	00027	5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-2.169	
2	RRU	Z	1.253	1
3	RRU	Mx	0	1
4	OVP	X	-5.562	
5	OVP	Z	3.211	1
6	OVP	Mx	0	1
7	MP1A	X	-7.807	1.5
8	MP1A	Z	4.507	1.5
9	MP1A	Mx	.000899	1.5
10	MP1A	X	-7.807	6.5
11	MP1A	Z	4.507	6.5
12	MP1A	Mx	.000899	6.5
13	MP1A	X	-7.807	1.5
14	MP1A	Z	4.507	1.5
15	MP1A	Mx	.0069	1.5
16	MP1A	X	-7.807	6.5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:_

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP1A	Z	4.507	6.5
18	MP1A	Mx	.0069	6.5
19	MP4A	X	-2.357	3
20	MP4A	Z	1.361	3
21	MP4A	Mx	.0012	3
22	MP4A	X	-2.357	5
23	MP4A	Z	1.361	5
24	MP4A	Mx	.0012	5
25	MP1A	X	-2.694	3
26	MP1A	Z	1.556	3
27	MP1A	Mx	0013	3
28	MP1A	X	-1.1	5
29	MP1A	Z	.635	5
30	MP1A	Mx	00055	5

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-2.911	1
2	RRU	Z	0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
3	RRU	Mx	0	1
4	OVP	X	-6.929	
5	OVP	Z	0	1
6	OVP	Mx	0	
7	MP1A	X	-7.973	1.5
8	MP1A	Z	0	1.5
9	MP1A	Mx	.004	1.5
10	MP1A	X	-7.973	6.5
11	MP1A	Z	0	6.5
12	MP1A	Mx	.004	6.5
13	MP1A	X	-7.973	1.5
14	MP1A	Z	0	1.5
15	MP1A	Mx	.004	1.5
16	MP1A	X	-7.973	6.5
17	MP1A	Z	0	6.5
18	MP1A	Mx	.004	6.5
19	MP4A	X	-1.945	3
20	MP4A	Z	0	3
21	MP4A	Mx	.000972	3
22	MP4A	X	-1.945	5
23	MP4A	Z	0	5
24	MP4A	Mx	.000972	5
25	MP1A	X	-2.772	3
26	MP1A	Z	0	3
27	MP1A	Mx	0014	3
28	MP1A	X	-1.364	5
29	MP1A	Z	0	5
30	MP1A	Mx	000682	5

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft] -3.225	Location[ft,%]
1	RRU	X	-3.225	1
2	RRU	Z	-1.862	1
3	RRU	Mx	0	1
4	OVP	X	-6.878	1 1
5	OVP	Z	-3.971	1
6	OVP	Mx	0	

Colliers Engineering & Design

Project # 22777306
Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
7	MP1A	X	-7.807	1.5
8	MP1A	Z	-4.507	1.5
9	MP1A	Mx	.0069	1.5
10	MP1A	X	-7.807	6.5
11	MP1A	Z	-4.507	6.5
12	MP1A	Mx	.0069	6.5
13	MP1A	X	-7.807	1.5
14	MP1A	Z	-4.507	1.5
15	MP1A	Mx	.000899	1.5
16	MP1A	X	-7.807	6.5
17	MP1A	Z	-4.507	6.5
18	MP1A	Mx	.000899	6.5
19	MP4A	X	-2.357	3
20	MP4A	Z	-1.361	3
21	MP4A	Mx	.0012	3
22	MP4A	X	-2.357	5
23	MP4A	Z	-1.361	5
24	MP4A	Mx	.0012	5
25	MP1A	X	-2.694	3
26	MP1A	Z	-1.556	3
27	MP1A	Mx	0013	3
28	MP1A	X	-1.1	5
29	MP1A	Z	635	5
30	MP1A	Mx	00055	5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	-2.065	1
2	RRU	Z	-3.577	1
3	RRU	Mx	0	1
4	OVP	X	-4.224	1
5	OVP	Z	-7.316	1
6	OVP	Mx	0	
7	MP1A	X	-5.549	1.5
8	MP1A	Z	-9.611	1.5
9	MP1A	Mx	.0092	1.5
10	MP1A	X	-5.549	6.5
11	MP1A	Z	-9.611	6.5
12	MP1A	Mx	.0092	6.5
13	MP1A	X	-5.549	1.5
14	MP1A	Z	-9.611	1.5
15	MP1A	Mx	-,0036	1.5
16	MP1A	X	-5.549	6.5
17	MP1A	Z	-9.611	6.5
18	MP1A	Mx	0036	6.5
19	MP4A	X	-2.137	3
20	MP4A	Z	-3.701	3
21	MP4A	Mx	.0011	3
22	MP4A	X	-2.137	5
23	MP4A	Z	-3.701	5
24	MP4A	Mx	.0011	5
25	MP1A	X	-1.895	3
26	MP1A	Ž	-3.283	3
27	MP1A	Mx	000948	3
28	MP1A	X	54	5
29	MP1A	Z	936	5

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:____

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
30	MP1A	Mx	00027	5
	Delegal - ada (DI)	0.77 . 1 41		
embe	er Point Loads (BL			1 16- 0/1
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	3	Y	-500	0
lembe	er Point Loads (BL	C 78 : Lm2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	11	Y	-500	0
4 b -	er Point Loads (BL	C 70 · 1 v/1)		
rembe		Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	Member Label F	V	-250	%50
		•		
<u>/lembe</u>	er Point Loads (BL	C 80 : Lv2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	F	Υ	-250	%100
1	Member Label	Direction	Magnitude[lb,k-ft] -2.9095	Location[ft,%]
1	RRU		-2.9095	
2	RRU RRU	My Mz	0	1
3 4	OVP	Y	-1.3244	1
5	OVP	My	0	1
6	OVP	Mz	Ů	1
7	MP1A	Y	-1.3099	1.5
8	MP1A	My	000655	1.5
9	MP1A	Mz	000873	1.5
10	MP1A	Y	-1.3099	6.5
11	MP1A	My	000655	6.5
12	MP1A	Mz	000873	6.5
13	MP1A	Y	-1.3099	1.5 1.5
14	MP1A	My	000655	1.5
15	MP1A	Mz	.000873 -1.3099	6.5
16	MP1A	Y	000655	6.5
17	MP1A MP1A	Mz	.000873	6.5
18	MP4A	Y	-1.1857	3
19	MP4A	My	000593	3
21	MP4A	Mz	0	3
22	MP4A	Y	-1.1857	5
23	MP4A	My	000593	5
24	MP4A	Mz	0	5
25	MP1A	Y	-3.0916	3
26	MP1A	My	.0015	3
27	MP1A	Mz	0	3
28	MP1A	Y	8608	5
29	MP1A	My	.00043	5
30	MP1A	Mz	0	5

Location[ft,%]

1

Magnitude[lb,k-ft]

-7.2737

Member Label RRU

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

Direction

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
2	RRU	Mx	0	1
3	OVP	Z	-3.3109	1
4	OVP	Mx	0	1
5	MP1A	Z	-3.2747	1.5
6	MP1A	Mx	.0022	1.5
7	MP1A	Z	-3.2747	6.5
8	MP1A	Mx	.0022	6.5
9	MP1A	Z	-3.2747	1.5
10	MP1A	Mx	0022	1.5
11	MP1A	Z	-3.2747	6.5
12	MP1A	Mx	0022	6.5
13	MP4A	Z	-2.9643	3
14	MP4A	Mx	0	3
15	MP4A	Z	-2.9643	5
16	MP4A	Mx	0	5
17	MP1A	Z	-7.729	3
18	MP1A	Mx	0	3
19	MP1A	Z	-2.1521	5
20	MP1A	Mx	0	5

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	RRU	X	7.2737	1
2	RRU	Mx	0	1
3	OVP	X	3.3109	1
4	OVP	Mx	0	1
5	MP1A	X	3.2747	1.5
6	MP1A	Mx	0016	1.5
7	MP1A	X	3.2747	6.5
8	MP1A	Mx	0016	6.5
9	MP1A	X	3.2747	1.5
10	MP1A	Mx	0016	1.5
11	MP1A	X	3.2747	6.5
12	MP1A	Mx	0016	6.5
13	MP4A	X	2.9643	3
14	MP4A	Mx	0015	3
15	MP4A	X	2.9643	5
16	MP4A	Mx	0015	5
17	MP1A	X	7.729	3
18	MP1A	Mx	.0039	3
19	MP1A	X	2.1521	5
20	MP1A	Mx	.0011	5

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft,.	.End Location[ft,
1	F	Y	-5.6898	-5.6898	0	%100
2	M2	Y	-5.6898	-5.6898	0	%100
3	M13	Y	-6.6502	-6.6502	0	%100
4	M14	Y	-6.6502	-6.6502	0	%100
5	M15	Y	-6.6502	-6.6502	0	%100
6	M16	Y	-6.6502	-6.6502	0	%100
7	SO	Y	-4.9839	-4.9839	0	%100
8	M18	Y	-4.9839	-4.9839	0	%100
9	M19	Ý	-4.9839	-4.9839	0	%100
10	M20	Ŷ	-4.9839	-4.9839	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	.Start Location[ft,	.End Location[ft,
11	M21	Y	-6.6502	-6.6502	0	%100
12	M22	Y	-6.6502	-6.6502	0	%100
13	M23	Y	-6.6502	-6.6502	0	%100
14	M24	Y	-6.6502	-6.6502	0	%100
15	M25	Y	-2.6899	-2.6899	0	%100
16	M26	Y	-2.6899	-2.6899	0	%100
17	M27	Y	-2.6899	-2.6899	0	%100
18	M28	Y	-2.6899	-2.6899	0	%100
19	MP4A	Υ	-4,9839	-4.9839	0	%100
20	MP3A	Y	-4.9839	-4.9839	0	%100
21	MP2A	Y	-4.9839	-4.9839	0	%100
22	MP1A	Y	-4.9839	-4.9839	0	%100
23	M44	Υ	-2.5135	-2.5135	0	%100
24	M45	Y	-2.5135	-2.5135	0	%100
25	M46	Y	-2.5135	-2.5135	0	%100
26	M47	Y	-2.5135	-2.5135	0	%100
27	M43	Y	-4.9839	-4.9839	0	%100
28	M45A	Y	-4.9839	-4.9839	0	%100
29	OVP	Y	-4.9839	-4.9839	0	%100
30	RRU	Υ	-4.9839	-4.9839	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude[l.	Start Location[ft	End Location[ft,
1	F	X	O O	0	0	%100
2	F	Z	-14.3871	-14.3871	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-14.3871	-14.3871	0	%100
5	M13	X	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	0	0	0	%100
12	M16	Z	0	0	0	%100
13	SO	X	0	0	0	%100
14	SO	Z	-5.6803	-5.6803	0	%100
15	M18	X	0	0	0	%100
16	M18	Z	-5.6803	-5.6803	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	-5.6803	-5.6803	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	-5.6803	-5.6803	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	-3.1276	-3.1276	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	-3.1276	-3.1276	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	-3.1276	-3.1276	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	-3.1276	-3.1276	0	%100
29	M25	X	0	0	0	%100
30	M25	Z	-3.2394	-3.2394	0	%100
31	M26	X	0	0	0	%100
32	M26	Z	-3.2394	-3.2394	0	%100
33	M27	X	0	0	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:_

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude	End Magnitude[]	Start Location[f	End Location[ff
34	M27	Z	-3.2394	-3.2394	0	%100
35	M28	X	0	0	00	%100
36	M28	Z	-3.2394	-3.2394	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	-11.885	-11.885	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	-11.885	-11.885	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	-11.885	-11.885	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	-11.885	-11.885	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	-3.1276	-3.1276	0	%100
47	M45	X	0	0	0	%100
48	M45	Z	-3.1276	-3.1276	0	%100
49	M46	X	0	0	0	%100
50	M46	Z	-3.1276	-3.1276	0	%100
51	M47	X	0	0	0	%100
52	M47	Z	-3.1276	-3.1276	0	%100
53	M43	X	0	0	0	%100
54	M43	Z	1356	1356	0	%100
55	M45A	X	0	0	0	%100
56	M45A	Z	1356	1356	0	%100
57	OVP	X	0	0	0	%100
58	OVP	Z	-10.8308	-10.8308	0	%100
59	RRU	X	0	0	0	%100
60	RRU	Z	-10.8308	-10.8308	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction		End Magnitude[IS		End Location[f
1	F	X	5.3951	5.3951	0	%100
2	F	Z	-9.3447	-9.3447	0	%100
3	M2	X	5.3951	5.3951	0	%100
4	M2	Z	-9.3447	-9.3447	0	%100
5	M13	X	.391	.391	0	%100
6	M13	Z	6771	6771	0	%100
7	M14	X	.391	.391	0	%100
8	M14	Z	6771	6771	0	%100
9	M15	X	.391	.391	0	%100
10	M15	Z	6771	6771	0	%100
11	M16	X	.391	.391	0	%100
12	M16	Z	6771	6771	0	%100
13	SO	X	.6394	.6394	0	%100
14	SO	Z	-1.1075	-1.1075	0	%100
15	M18	X	.6394	.6394	0	%100
16	M18	Z	-1.1075	-1.1075	0	%100
17	M19	X	4.4915	4.4915	0	%100
18	M19	Z	-7.7796	-7.7796	0	%100
19	M20	X	4.4915	4.4915	0	%100
20	M20	Z	-7.7796	-7.7796	0	%100
21	M21	X	1.1729	1.1729	0	%100
22	M21	Z	-2.0314	-2.0314	0	%100
23	M22	X	1.1729	1.1729	0	%100
24	M22	Z	-2.0314	-2.0314	0	%100
25	M23	X	1.1729	1.1729	0	%100
26	M23	Z	-2.0314	-2.0314	0	%100

Company Designer Job Number Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	"End Magnitude[I.		.End Location[ft
27	M24	X	1.1729	1.1729	0	%100
28	M24	Z	-2.0314	-2.0314	0	%100
29	M25	X	1.2951	1.2951	0	%100
30	M25	Z	-2.2432	-2.2432	0	%100
31	M26	X	1.2951	1.2951	0	%100
32	M26	Z	-2.2432	-2.2432	0	%100
33	M27	X	1.8633	1.8633	0	%100
34	M27	Z	-3.2273	-3.2273	0	%100
35	M28	X	1.8633	1.8633	0	%100
36	M28	Z	-3.2273	-3.2273	0	%100
37	MP4A	X	5.9425	5.9425	0	%100
38	MP4A	Z	-10.2927	-10.2927	0	%100
39	MP3A	X	5.9425	5.9425	0	%100
40	MP3A	Z	-10.2927	-10.2927	0	%100
41	MP2A	X	5.9425	5.9425	0	%100
42	MP2A	Z	-10.2927	-10.2927	0	%100
43	MP1A	X	5.9425	5.9425	0	%100
44	MP1A	Z	-10.2927	-10.2927	0	%100
45	M44	X	1.5638	1.5638	0	%100
46	M44	Z	-2.7086	-2.7086	0	%100
47	M45	X	1.5638	1.5638	0	%100
48	M45	Z	-2.7086	-2.7086	0	%100
49	M46	X	1.5638	1.5638	0	%100
50	M46	Z	-2.7086	-2.7086	0	%100
51	M47	X	1.5638	1.5638	0	%100
52	M47	Z	-2.7086	-2.7086	0	%100
53	M43	X	.8326	.8326	0	%100
54	M43	Z	-1.4421	-1.4421	0	%100
55	M45A	X	.8326	.8326	0	%100
56	M45A	Z	-1.4421	-1.4421	0	%100
57	OVP	X	5.4154	5.4154	0	%100
58	OVP	Z	-9.3798	-9.3798	0	%100
59	RRU	X	5.4154	5.4154	0	%100
60	RRU	Z	-9.3798	-9.3798	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[IS	tart Location[ft,	End Location[ft,.
1	F	X	3.1149	3.1149	0	%100
2	F	Z	-1.7984	-1.7984	0	%100
3	M2	X	3.1149	3.1149	0	%100
4	M2	Z	-1.7984	-1.7984	0	%100
5	M13	X	2.0314	2.0314	0	%100
6	M13	Z	-1.1729	-1.1729	0	%100
7	M14	X	2.0314	2.0314	0	%100
8	M14	Z	-1,1729	-1.1729	0	%100
9	M15	X	2.0314	2.0314	0	%100
10	M15	Z	-1.1729	-1.1729	0	%100
11	M16	X	2.0314	2.0314	0	%100
12	M16	Z	-1.1729	-1.1729	0	%100
13	SO	X	.1561	.1561	0	%100
14	SO	Z	0901	0901	0	%100
15	M18	X	.1561	.1561	0	%100
16	M18	7.	0901	0901	0	%100
17	M19	X	6.8282	6.8282	0	%100
18	M19	Z	-3.9423	-3.9423	0	%100
19	M20	X	6.8282	6.8282	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:_

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label		Start Magnitude.	End Magnitude[I.	Start Location[ft,	End Location[ft,
20	M20	Z	-3.9423	-3.9423	0	%100
21	M21	X	.6771	.6771	0	%100
22	M21	Z	391	391	0	%100
23	M22	X	.6771	.6771	0	%100
24	M22	Z	391	391	0	%100
25	M23	X	.6771	.6771	0	%100
26	M23	Z	391	391	0	%100
27	M24	X	.6771	.6771	0	%100
28	M24	Z	391	391	0	%100
29	M25	X	2.1029	2.1029	0	%100
30	M25	Z	-1.2141	-1.2141	0	%100
31	M26	X	2.1029	2.1029	0	%100
32	M26	Z	-1.2141	-1.2141	0	%100
33	M27	X	3.087	3.087	0	%100
34	M27	Z	-1.7823	-1.7823	0	%100
35	M28	X	3.087	3.087	0	%100
36	M28	Z	-1.7823	-1.7823	0	%100
37	MP4A	X	10.2927	10.2927	0	%100
38	MP4A	Z	-5.9425	-5.9425	0	%100
39	MP3A	X	10.2927	10.2927	0	%100
40	MP3A	Z	-5.9425	-5.9425	0	%100
41	MP2A	X	10.2927	10.2927	0	%100
42	MP2A	Z	-5.9425	-5.9425	0	%100
43	MP1A	X	10.2927	10.2927	0	%100
44	MP1A	Z	-5.9425	-5.9425	0	%100
45	M44	X	2.7086	2.7086	0	%100
46	M44	Z	-1.5638	-1.5638	0	%100
47	M45	X	2.7086	2.7086	0	%100
48	M45	Z	-1.5638	-1.5638	0	%100
49	M46	X	2.7086	2.7086	0	%100
50	M46	Z	-1.5638	-1.5638	0	%100
51	M47	X	2.7086	2.7086	0	%100
52	M47	Z	-1.5638	-1.5638	0	%100
53	M43	X	5.8693	5.8693	0	%100
54	M43	Z	-3.3886	-3.3886	0	%100
55	M45A	X	5.8693	5.8693	0	%100
56	M45A	Z	-3.3886	-3.3886	0	%100
57	OVP	X	9.3798	9.3798	0	%100
58	OVP	Z	-5.4154	-5.4154	0	%100
59	RRU	X	9.3798	9.3798	0	%100
60	RRU	Z	-5.4154	-5.4154	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude[l.	.Start Location[ft,	End Location[ft
1	F	X	0	0.	0	%100
2	F	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	X	3.1276	3.1276	0	%100
6	M13	7	0	0	0	%100
7	M14	X	3.1276	3.1276	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	3,1276	3.1276	0	%100
10	M15	7	0	0	0	%100
11	M16	X	3,1276	3.1276	0	%100
12	M16	Z	0	0	0	%100

Company Designer Job Number Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude	End Magnitude[IS	tart Location[ft	End Location[ft
13	SO	X	3.4831	3.4831	0	%100 %100
14	SO	Z	0	0	0	
15	M18	X	3.4831	3.4831	0	%100
16	M18	Z	0	0	0	%100
17	M19	X	3.4831	3.4831	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	3.4831	3.4831	0	%100
20	M20	Z	0	0	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	0	0	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	2.9154	2.9154	0	%100
30	M25	Z	0	0	0	%100
31	M26	X	2.9154	2.9154	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	2.9154	2.9154	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	2.9154	2.9154	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	X	11.885	11.885	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	11.885	11.885	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	11.885	11.885	0	%100
	MP2A	Z	0	0	0	%100
42	MP1A	X	11.885	11.885	0	%100
43	MP1A	Ž	0	0	0	%100
44	M44	X	3.1276	3.1276	0	%100
45	M44	Z	0	0	0	%100
46	M45	X	3.1276	3.1276	0	%100
47	M45	Ž	0	0	0	%100
48		X	3.1276	3.1276	Ö	%100
49	M46	Z	0	0	0	%100
50	M46	X	3.1276	3.1276	0	%100
51	M47	Z	0	0	0	%100
52	M47	X	10.3597	10.3597	0	%100 %100
53	M43	Z	0	0	0	%100 %100
54	M43		10.3597	10.3597	0	%100
55	M45A	X		0	0	%100 %100
56	M45A	Z	10,0200	10.8308	0	%100
57	OVP	X	10.8308			%100 %100
58	OVP	Z	0	0	0	%100 %100
59	RRU	X	10.8308	10.8308		%100 %100
60	RRII	Z	0	0	0	% 100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude[I.,S	Start Location[ft,	End Location[ft,
1	F	X	3.1149	3.1149	0	%100
2	F	7	1.7984	1.7984	0	%100
2	M2	X	3.1149	3.1149	0	%100
4	M2	7	1.7984	1.7984	0	%100
5	M13	X	2.0314	2.0314	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	.End Magnitude[l.	.Start Location[ft.,	End Location[ft
6	M13	Z	1.1729	1.1729	0	%100
7	M14	X	2.0314	2.0314	0	%100
8	M14	Z	1.1729	1.1729	0	%100
9	M15	X	2.0314	2.0314	0	%100
10	M15	Z	1.1729	1.1729	0	%100
11	M16	X	2.0314	2.0314	0	%100
12	M16	Z	1.1729	1.1729	0	%100
13	SO	X	6.8282	6.8282	0	%100
14	SO	Z	3.9423	3.9423	0	%100
15	M18	X	6.8282	6.8282	0	%100
16	M18	Z	3.9423	3.9423	0	%100
17	M19	X	.1561	.1561	0	%100
18	M19	Z	.0901	.0901	0	%100
19	M20	X	.1561	.1561	0	%100
20	M20	Z	.0901	.0901	0	%100
	M21	X	.6771	.6771	0	%100
21 22	M21	Ž	.391	.391	0	%100
	M22	X	.6771	.6771	0	%100
23	M22	Ž	.391	.391	0	%100
24		X	.6771	.6771	0	%100
25	M23	Z	.391	.391	Ö	%100
26	M23	X	.6771	.6771	0	%100
27	M24	Ž	.391	.391	Ö	%100
28	M24	X	3.087	3.087	0	%100
29	M25		1.7823	1.7823	0	%100
30	M25	Z		3.087	0	%100
31	M26	X	3.087	1.7823	0	%100
32	M26	Z	1.7823		0	%100
33	M27	X	2.1029	2.1029	0	%100
34	M27	Z	1.2141	1.2141	0	%100
35	M28	X	2.1029	2.1029		%100 %100
36	M28	Z	1.2141	1.2141	0	%100 %100
37	MP4A	X	10.2927	10.2927	0	%100 %100
38	MP4A	Z	5.9425	5.9425	0	%100
39	MP3A	X	10.2927	10.2927	0	%100 %100
40	MP3A	Z	5.9425	5.9425	0	
41	MP2A	X	10.2927	10.2927	0	%100
42	MP2A	Z	5.9425	5.9425	0	%100
43	MP1A	X	10.2927	10.2927	0	%100
44	MP1A	Z	5.9425	5.9425	0	%100
45	M44	X	2.7086	2.7086	0	%100
46	M44	Z	1.5638	1.5638	0	%100
47	M45	X	2.7086	2.7086	0	%100
48	M45	Z	1.5638	1.5638	0	%100
49	M46	X	2.7086	2.7086	0	%100
50	M46	Z	1.5638	1.5638	0	%100
51	M47	X	2.7086	2.7086	0	%100
52	M47	Z	1.5638	1.5638	0	%100
53	M43	X	7.6471	7.6471	0	%100
54	M43	Z	4.4151	4.4151	0	%100
55	M45A	X	7.6471	7.6471	0	%100
56	M45A	Z	4.4151	4.4151	0	%100
57	OVP	X	9.3798	9.3798	0	%100
58	OVP	Z	5.4154	5.4154	0	%100
59	RRU	X	9.3798	9.3798	0	%100
60	RRU	Z	5.4154	5.4154	0	%100

: Colliers Engineering & Design

Project # 22777306
Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude(I.	Start Location[ft,	End Location[ft,
1	F	X	5.3951	5.3951	0	%100
2		Z	9.3447	9.3447	0	%100
3	M2	X	5.3951	5.3951	0	%100
4	M2	Z	9.3447	9.3447	0	%100
5	M13	X	.391	.391	0	%100
6	M13	Z	.6771	.6771	0	%100
7	M14	X	.391	.391	0	%100
8	M14	Z	.6771	.6771	0	%100
9	M15	X	.391	.391	0	%100
10	M15	Z	.6771	.6771	0	%100
11	M16	X	.391	.391	0	%100
12	M16	Z	.6771	.6771	0	%100
13	SO	X	4.4915	4.4915	0	%100
14	SO	Ž	7.7796	7.7796	0	%100
15	M18	X	4.4915	4.4915	0	%100
16	M18	Z	7.7796	7.7796	0	%100
17	M19	X	.6394	.6394	0	%100
	M19	Ž	1.1075	1.1075	0	%100
18	M20	X	.6394	.6394	0	%100
19	M20	Ž	1.1075	1.1075	0	%100
20	M21	X	1.1729	1.1729	0	%100
21	M21	Z	2.0314	2.0314	0	%100
22	M22	X	1.1729	1.1729	0	%100
23	M22	Z	2.0314	2.0314	0	%100
24		X	1.1729	1.1729	0	%100
25	M23	Z	2.0314	2.0314	Ö	%100
26	M23	X	1.1729	1.1729	0	%100
27	M24	Ž	2.0314	2.0314	Ö	%100
28	M24	X	1.8633	1.8633	0	%100
29	M25	Z	3.2273	3.2273	0	%100
30	M25	X	1.8633	1.8633	0	%100
31	M26	Z	3.2273	3.2273	0	%100 %100
32	M26	X	1.2951	1.2951	0	%100 %100
33	M27		2.2432	2.2432	0	%100 %100
34	M27	Z		1.2951	0	%100 %100
35	M28	X	1.2951	2.2432	0	%100 %100
36	M28	Z	2.2432		0	%100
37	MP4A	X	5.9425	5.9425	0	%100 %100
38	MP4A	Z	10.2927	10.2927	0	%100 %100
39	MP3A	X	5.9425	5.9425		%100 %100
40	MP3A	Z	10.2927	10.2927	0	%100 %100
41	MP2A	X	5.9425	5.9425	0	%100 %100
42	MP2A	Z	10.2927	10.2927		
43	MP1A	X	5.9425	5.9425	0	%100
44	MP1A	Z	10.2927	10.2927	0	%100
45	M44	X	1.5638	1.5638	0	%100
46	M44	Z	2.7086	2.7086	0	%100
47	M45	X	1.5638	1.5638	0	%100
48	M45	Z	2.7086	2.7086	0	%100
49	M46	X	1.5638	1.5638	0	%100
50	M46	Z	2.7086	2.7086	0	%100
51	M47	X	1.5638	1.5638	0	%100
52	M47	Z	2.7086	2.7086	0	%100
53	M43	X	1.859	1.859	0	%100
54	M43	Z	3.2199	3.2199	0	%100
55	M45A	X	1.859	1.859	0	%100
56	M45A	Z	3.2199	3.2199	0	%100
57	OVP	X	5.4154	5.4154	0	%100
				NAME AND ADDRESS OF		Dega 20

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:_

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft	.End Location[ft,
58	OVP	Z	9.3798	9.3798	0	%100
59	RRU	X	5,4154	5.4154	0	%100
60	RRU	Z	9.3798	9.3798	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label					End Location[ft,
1	F	X	0	0	0	%100
2		Z	14.3871	14.3871	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	14.3871	14.3871	0	%100
5	M13	X	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	0	0	0	%100
12	M16	Z	0	0	0	%100
13	SO	X	0	0	0	%100
14	SO	Z	5.6803	5.6803	0	%100
15	M18	X	0	0	0	%100
16	M18	Z	5.6803	5.6803	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	5.6803	5.6803	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	5.6803	5.6803	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	3.1276	3.1276	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	3.1276	3.1276	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	3.1276	3.1276	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	3.1276	3.1276	0	%100
29	M25	X	0	0	0	%100
30	M25	Z	3.2394	3.2394	0	%100
31	M26	X	0	0	0	%100
32	M26	Z	3.2394	3.2394	0	%100
33	M27	X	0	0	0	%100
34	M27	Z	3.2394	3.2394	0	%100
35	M28	X	0	0	0	%100
36	M28	Z	3.2394	3.2394	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	11.885	11.885	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	11.885	11.885	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	11.885	11.885	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	11.885	11.885	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	3.1276	3.1276	0	%100
47	M45	X	0	0	0	%100
48	M45	Z	3.1276	3.1276	0	%100
49	M46	X	0	0	0	%100
50	M46	Z	3.1276	3.1276	0	%100

Company Designer Job Number

Colliers Engineering & Design

b Number : Project # 22777306 odcl Name : Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Distributed Loads (BLC 47: Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude	End Magnitude[I	.Start Location[ft,	End Location[ft
51	M47	X	0	Ŏ	0	%100
52	M47	Z	3.1276	3.1276	0	%100
53	M43	X	0	0	0	%100
54	M43	7	.1356	.1356	0	%100
55	M45A	X	0	0	0	%100
56	M45A	7	.1356	.1356	0	%100
	OVP	X	0	0	0	%100
57	OVP	7	10.8308	10.8308	0	%100
58	RRU	Y	0	0	0	%100
59 60	RRU	Z	10.8308	10.8308	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction		End Magnitude[I		t,End Location[ft,
1	F	X	-5.3951	-5.3951	0	%100
2	F	Z	9.3447	9.3447	0	%100
3	M2	X	-5.3951	-5.3951	0	%100
4	M2	Z	9.3447	9.3447	0	%100
5	M13	X	391	391	0	%100
6	M13	Z	.6771	.6771	0	%100
7	M14	X	391	391	0	%100
8	M14	Z	.6771	.6771	0	%100
9	M15	X	391	391	0	%100
10	M15	Z	.6771	.6771	0	%100
11	M16	X	391	391	0	%100
12	M16	Z	.6771	.6771	0	%100
13	SO	X	6394	6394	0	%100
14	SO	Z	1.1075	1.1075	0	%100
15	M18	X	6394	6394	0	%100
16	M18	Z	1.1075	1.1075	0	%100
17	M19	Х	-4.4915	-4.4915	0	%100
18	M19	Z	7.7796	7.7796	0	%100
19	M20	X	-4.4915	-4.4915	0	%100
20	M20	Z	7.7796	7.7796	0	%100
21	M21	X	-1.1729	-1.1729	0	%100
22	M21	Z	2.0314	2.0314	0	%100
23	M22	X	-1.1729	-1.1729	0	%100
24	M22	Z	2.0314	2.0314	0	%100
25	M23	X	-1.1729	-1.1729	0	%100
26	M23	Z	2.0314	2.0314	0	%100
27	M24	X	-1.1729	-1.1729	0	%100
28	M24	Z	2.0314	2.0314	0	%100
29	M25	X	-1.2951	-1.2951	0	%100
30	M25	Z	2.2432	2.2432	0	%100
31	M26	Х	-1.2951	-1.2951	0	%100
32	M26	Z	2.2432	2.2432	0	%100
33	M27	X	-1.8633	-1.8633	0	%100
34	M27	Z	3.2273	3.2273	0	%100
35	M28	X	-1.8633	-1.8633	0	%100
36	M28	Z	3.2273	3.2273	0	%100
37	MP4A	X	-5.9425	-5.9425	0	%100
38	MP4A	Z	10.2927	10.2927	0	%100
39	MP3A	X	-5.9425	-5.9425	0	%100
40	MP3A	Z	10.2927	10.2927	0	%100
41	MP2A	X	-5.9425	-5.9425	0	%100
42	MP2A	Z	10.2927	10.2927	0	%100
43	MP1A	X	-5.9425	-5.9425	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 48: Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude	.End Magnitude[l.	.Start Location[ft,	End Location[ft,
44	MP1A	Z	10.2927	10.2927	0	%100
45	M44	X	-1.5638	-1.5638	0	%100
46	M44	Z	2.7086	2.7086	0	%100
47	M45	X	-1.5638	-1.5638	0	%100
48	M45	Z	2.7086	2.7086	0	%100
49	M46	X	-1.5638	-1.5638	0	%100
50	M46	Z	2.7086	2.7086	0	%100
51	M47	X	-1.5638	-1.5638	0	%100
52	M47	Z	2.7086	2.7086	0	%100
53	M43	X	8326	8326	0	%100
54	M43	Z	1.4421	1.4421	0	%100
55	M45A	X	8326	8326	0	%100
56	M45A	Z	1.4421	1.4421	0	%100
57	OVP	X	-5.4154	-5.4154	0	%100
58	OVP	Z	9.3798	9.3798	0	%100
59	RRU	X	-5.4154	-5.4154	0	%100
60	RRU	Z	9.3798	9.3798	0	%100

Member Distributed Loads (BLC 49: Structure Wo (240 Deg))

Member Label	X Z X Z X Z Z X Z Z	-3.1149 1.7984 -3.1149 1.7984 -2.0314	End Magnitude[ISi -3.1149 1.7984 -3.1149 1.7984	0 0 0	%100 %100 %100
F M2 M2 M13 M13	X Z X	-3.1149 1. 798 4	-3.1149	0	
M2 M2 M13 M13	Z X	1.7984			%100
M2 M13 M13	Z X		1.7984		
M13 M13	X	-2.0314		0	%100
M13		-2.0314	-2.0314	0	%100
		1.1729	1.1729	0	%100
	X	-2.0314	-2.0314	0	%100
	Z	1.1729	1.1729	0	%100
		-2.0314	-2.0314	0	%100
		1.1729	1.1729	0	%100
		-2.0314	-2.0314	0	%100
			1.1729	0	%100
			1561	0	%100
	Z		.0901	0	%100
			1561	0	%100
	7		.0901	0	%100
			-6.8282	0	%100
			3.9423	0	%100
			-6.8282	0	%100
			3.9423	0	%100
			6771	0	%100
				0	%100
				0	%100
	7			0	%100
			6771	0	%100
			.391	0	%100
				0	%100
				0	%100
				0	%100
	7			0	%100
	X			0	%100
				0	%100
				0	%100
	7				%100
					%100
				0	%100
	M14 M14 M15 M15 M16 M16 SO SO SO M18 M18 M19 M19 M20 M21 M22 M22 M22 M22 M22 M22 M25 M25 M26 M26 M27 M27 M28 M28	M14 Z M15 X M16 X M16 X M16 Z SO X SO Z M18 X M19 X M19 X M20 X M21 X M21 X M22 X M23 X M23 X M24 X M25 X M25 Z M26 X M27 X M28 X	M14 Z 1.1729 M15 X -2.0314 M15 Z 1.1729 M16 X -2.0314 M16 Z 1.1729 SO X 1561 SO Z .0901 M18 X 1561 M18 Z .0901 M19 X -6.8282 M19 X -6.8282 M20 X -6.8282 M20 X -6.8282 M20 X -6.8282 M21 X -6.771 M21 X -6.771 M22 X -6.771 M23 X -6.771 M23 X -6.771 M23 X -6.771 M24 X -6.771 M24 X -6.771 M25 X -2.1029 M25 X -2.1029 M26 X <td>M14 Z 1.1729 1.1729 M15 X -2.0314 -2.0314 M15 Z 1.1729 1.1729 M16 X -2.0314 -2.0314 M16 Z 1.1729 1.1729 M16 Z 1.1729 1.1729 M16 X -2.0314 -2.0314 M16 X -2.091 -2.0914 M16 X -2.0901 -1.561 SO X -1.561 -1.561 SO Z 0.901 0.901 M18 X -1.561 -1.561 M18 X -1.561 -1.561 M18 X -1.561 -1.561 M18 X -1.561 -1.561 M18 X -1.561 -1.0901 M19 X -6.8282 -6.8282 M19 X -6.8282 -6.8282 M20 X -6.8282 -6.8282</td> <td>M14 Z 1.1729 0 M15 X -2.0314 -2.0314 0 M15 Z 1.1729 1.1729 0 M16 X -2.0314 -2.0314 0 M16 Z 1.1729 1.1729 0 SO X 1561 -1.561 0 SO Z .0901 .0901 0 M18 X 1561 1561 0 M18 Z .0901 .0901 0 M19 X -6.8282 0 0 M19 X -6.8282 -6.8282 0 M20 X -6.8282 -6.8282 0 M20 X -6.8282 -6.8282 0 M21 X <</td>	M14 Z 1.1729 1.1729 M15 X -2.0314 -2.0314 M15 Z 1.1729 1.1729 M16 X -2.0314 -2.0314 M16 Z 1.1729 1.1729 M16 Z 1.1729 1.1729 M16 X -2.0314 -2.0314 M16 X -2.091 -2.0914 M16 X -2.0901 -1.561 SO X -1.561 -1.561 SO Z 0.901 0.901 M18 X -1.561 -1.561 M18 X -1.561 -1.561 M18 X -1.561 -1.561 M18 X -1.561 -1.561 M18 X -1.561 -1.0901 M19 X -6.8282 -6.8282 M19 X -6.8282 -6.8282 M20 X -6.8282 -6.8282	M14 Z 1.1729 0 M15 X -2.0314 -2.0314 0 M15 Z 1.1729 1.1729 0 M16 X -2.0314 -2.0314 0 M16 Z 1.1729 1.1729 0 SO X 1561 -1.561 0 SO Z .0901 .0901 0 M18 X 1561 1561 0 M18 Z .0901 .0901 0 M19 X -6.8282 0 0 M19 X -6.8282 -6.8282 0 M20 X -6.8282 -6.8282 0 M20 X -6.8282 -6.8282 0 M21 X <

Company Designer Job Number Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude	End Magnitude[l	Start Location[ft	End Location[ft
37	MP4A	X	-10.2927	-10.2927	0	%100
38	MP4A	Z	5.9425	5.9425	0	%100
39	MP3A	X	-10.2927	-10.2927	0	%100
40	MP3A	Z	5.9425	5.9425	0	%100
41	MP2A	X	-10.2927	-10.2927	0	%100
42	MP2A	Z	5.9425	5.9425	0	%100
43	MP1A	X	-10.2927	-10.2927	0	%100
44	MP1A	Z	5.9425	5.9425	0	%100
45	M44	X	-2.7086	-2.7086	0	%100
46	M44	Z	1.5638	1.5638	0	%100
47	M45	X	-2,7086	-2.7086	0	%100
48	M45	Z	1.5638	1.5638	0	%100
49	M46	X	-2.7086	-2.7086	0	%100
50	M46	Z	1.5638	1.5638	0	%100
51	M47	X	-2,7086	-2.7086	0	%100
52	M47	Z	1.5638	1.5638	0	%100
53	M43	X	-5.8693	-5,8693	0	%100
54	M43	Z	3.3886	3,3886	0	%100
55	M45A	X	-5.8693	-5.8693	0	%100
	M45A	Z	3.3886	3.3886	0	%100
56	OVP	X	-9.3798	-9.3798	0	%100
57	OVP	Z	5.4154	5.4154	0	%100
58	RRU	X	-9.3798	-9.3798	0	%100
59 60	RRU	Z	5.4154	5.4154	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	Start Location[ft,	.End Location[ft.
1	F	X	0	Ö	0	%100
2	F .	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	X	-3.1276	-3.1276	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	-3.1276	-3.1276	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	-3.1276	-3.1276	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	-3.1276	-3.1276	0	%100
12	M16	Z	0	0	0	%100
13	SO	X	-3.4831	-3.4831	0	%100
14	SO	Z	0	0	0	%100
15	M18	X	-3.4831	-3.4831	0	%100
16	M18	Z	0	0	0	%100
17	M19	X	-3.4831	-3.4831	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	-3.4831	-3.4831	0	%100
20	M20	Z	0	0	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	0	0	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	-2.9154	-2.9154	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	Start Location[ft.	End Location[ft,
30	M25	Z	0	0	0	%100
31	M26	X	-2.9154	-2.9154	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	-2.9154	-2.9154	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	-2.9154	-2.9154	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	X	-11.885	-11.885	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	-11.885	-11.885	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	-11.885	-11.885	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	-11.885	-11.885	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	X	-3.1276	-3.1276	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	-3.1276	-3.1276	0	%100
48	M45	Z	0	0	0	%100
49	M46	X	-3.1276	-3.1276	0	%100
50	M46	Z	0	0	0	%100
51	M47	X	-3.1276	-3.1276	0	%100
52	M47	Z	0	0	0	%100
53	M43	X	-10.3597	-10.3597	0	%100
54	M43	Z	0	0	0	%100
55	M45A	X	-10.3597	-10.3597	0	%100
56	M45A	Ž	0	0	0	%100
57	OVP	X	-10.8308	-10.8308	0	%100
58	OVP	Z	0	0	0	%100
	RRU	X	-10.8308	-10.8308	0	%100
59 60	RRU	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	.Start Location[ft,	.End Location[f
1	F	X	-3.1149	-3.1149	0	%100
2	FILE	Z	-1.7984	-1.7984	0	%100
3	M2	X	-3.1149	-3.1149	0	%100
4	M2	Z	-1.7984	-1.7984	0	%100
5	M13	X	-2.0314	-2.0314	0	%100
6	M13	Z	-1.1729	-1.1729	0	%100
7	M14	X	-2.0314	-2.0314	0	%100
8	M14	Z	-1,1729	-1.1729	0	%100
9	M15	X	-2.0314	-2.0314	0	%100
10	M15	Z	-1.1729	-1.1729	0	%100
11	M16	X	-2.0314	-2.0314	0	%100
12	M16	Z	-1.1729	-1.1729	0	%100
13	SO	X	-6.8282	-6.8282	0	%100
14	SO	Z	-3.9423	-3.9423	0	%100
15	M18	X	-6.8282	-6.8282	0	%100
16	M18	Z	-3.9423	-3.9423	0	%100
17	M19	X	1561	1561	0	%100
18	M19	Z	0901	0901	0	%100
19	M20	X	1561	1561	0	%100
20	M20	Z	0901	0901	0	%100
21	M21	X	6771	6771	0	%100
22	M21	Z	391	391	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	.End Magnitude[I	Start Location[ft,	.End Location[ft
23	M22	X	6771	6771	00	%100
24	M22	Z	391	391	0	%100
25	M23	X	6771	6771	0	%100
26	M23	Z	391	391	0	%100
27	M24	X	6771	6771	0	%100
28	M24	Z	391	391	0	%100
29	M25	X	-3.087	-3.087	0	%100
30	M25	Z	-1.7823	-1.7823	0	%100
31	M26	X	-3.087	-3.087	0	%100
32	M26	Z	-1.7823	-1.7823	0	%100
33	M27	X	-2.1029	-2.1029	0	%100
34	M27	Z	-1.2141	-1.2141	0	%100
35	M28	X	-2.1029	-2.1029	0	%100
36	M28	Z	-1.2141	-1.2141	0	%100
37	MP4A	X	-10.2927	-10.2927	0	%100
38	MP4A	Z	-5.9425	-5.9425	0	%100
39	MP3A	X	-10.2927	-10.2927	0	%100
40	MP3A	Z	-5.9425	-5.9425	0	%100
41	MP2A	X	-10.2927	-10.2927	0	%100
42	MP2A	Z	-5.9425	-5.9425	0	%100
43	MP1A	X	-10.2927	-10.2927	0	%100
44	MP1A	Z	-5.9425	-5.9425	0	%100
45	M44	X	-2.7086	-2.7086	0	%100
46	M44	Z	-1.5638	-1.5638	0	%100
47	M45	X	-2.7086	-2.7086	0	%100
48	M45	Z	-1.5638	-1.5638	0	%100
49	M46	X	-2.7086	-2.7086	0	%100
50	M46	Ž	-1.5638	-1.5638	0	%100
51	M47	X	-2.7086	-2.7086	0	%100
52	M47	Ž	-1.5638	-1.5638	0	%100
53	M43	X	-7.6471	-7.6471	0	%100
	M43	Ž	-4.4151	-4.4151	0	%100
54 55	M45A	X	-7.6471	-7.6471	0	%100
	M45A	Z	-4.4151	-4.4151	0	%100
56	OVP	X	-9.3798	-9.3798	0	%100
57		Z	-5.4154	-5.4154	0	%100
58	OVP	X	-9.3798	-9.3798	0	%100
59 60	RRU RRU	Z	-5.4154	-5.4154	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	Start Location[ft,	.End Location[ft
1	F	X	-5.3951	-5.3951	0	%100
2	F	Z	-9.3447	-9.3447	0	%100
3	M2	X	-5.3951	-5.3951	0	%100
4	M2	Z	-9.3447	-9.3447	0	%100
5	M13	X	391	391	0	%100
6	M13	Z	6771	6771	0	%100
7	M14	X	391	391	0	%100
8	M14	Z	6771	6771	0	%100
9	M15	X	391	391	0	%100
10	M15	Z	6771	6771	0	%100
11	M16	X	391	391	0	%100
12	M16	Z	6771	6771	0	%100
13	SO	X	-4.4915	-4.4915	0	%100
14	SO	Z	-7.7796	-7.7796	0	%100
15	M18	X	-4.4915	-4.4915	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.			.End Location[ft,.
16	M18	Z	-7.7796	-7.7796	0	%100
17	M19	X	6394	6394	0	%100
18	M19	Z	-1.1075	-1.1075	0	%100
19	M20	X	6394	6394	0	%100
20	M20	Z	-1.1075	-1.1075	0	%100
21	M21	X	-1.1729	-1.1729	0	%100
22	M21	Z	-2.0314	-2.0314	0	%100
23	M22	X	-1.1729	-1.1729	0	%100
24	M22	Z	-2.0314	-2.0314	0	%100
25	M23	X	-1.1729	-1.1729	0	%100
26	M23	Z	-2.0314	-2.0314	0	%100
27	M24	X	-1.1729	-1.1729	0	%100
28	M24	Z	-2.0314	-2.0314	0	%100
29	M25	X	-1.8633	-1.8633	0	%100
30	M25	Z	-3.2273	-3.2273	0	%100
31	M26	X	-1.8633	-1.8633	0	%100
32	M26	Z	-3.2273	-3.2273	0	%100
33	M27	X	-1.2951	-1.2951	0	%100
34	M27	Z	-2.2432	-2.2432	0	%100
35	M28	X	-1.2951	-1.2951	0	%100
36	M28	Z	-2.2432	-2.2432	0	%100
37	MP4A	X	-5.9425	-5.9425	0	%100
38	MP4A	Z	-10.2927	-10.2927	0	%100
39	MP3A	X	-5.9425	-5.9425	0	%100
40	MP3A	Z	-10.2927	-10.2927	0	%100
41	MP2A	X	-5.9425	-5.9425	0	%100
42	MP2A	Z	-10.2927	-10.2927	0	%100
43	MP1A	X	-5.9425	-5.9425	0	%100
44	MP1A	Z	-10.2927	-10.2927	0	%100
45	M44	X	-1.5638	-1.5638	0	%100
46	M44	Z	-2.7086	-2.7086	0	%100
47	M45	X	-1.5638	-1.5638	0	%100
48	M45	Z	-2.7086	-2.7086	0	%100
49	M46	X	-1.5638	-1.5638	0	%100
50	M46	Z	-2.7086	-2.7086	0	%100
51	M47	X	-1.5638	-1.5638	0	%100
52	M47	Z	-2.7086	-2.7086	0	%100
53	M43	X	-1.859	-1.859	0	%100
54	M43	Z	-3.2199	-3.2199	0	%100
55	M45A	X	-1.859	-1.859	0	%100
56	M45A	Z	-3.2199	-3.2199	0	%100
57	OVP	X	-5.4154	-5.4154	0	%100
58	OVP	Z	-9.3798	-9.3798	0	%100
59	RRU	X	-5.4154	-5.4154	0	%100
60	RRU	Z	-9.3798	-9.3798	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	.Start Location[ft,	End Location[ft
1	F	X	0	0	0	%100
2	F	Z	-3.839	-3.839	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-3.839	-3.839	0	%100
5	M13	X	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	0	0	0	%100
8	M14	Z	0	0	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label				.Start Location[ft,	End Location[ft,.
9	M15	X	0	0	0	%100 %100
10	M15	Z	0	0	0	%100 %100
11	M16	X	0	0	0	%100 %100
12	M16	Z	0	0	0	%100 %100
13	SO	X	0	0	0	%100 %100
14	SO	Z	-1.6648	-1.6648	0	%100 %100
15	M18	X	0	0	0	%100 %100
16	M18	Z	-1.6648	-1.6648	0	%100 %100
17	M19	X	0	0	0	%100 %100
18	M19	Z	-1.6648	-1.6648	0	%100 %100
19	M20	X	0	0		%100
20	M20	Z	-1.6648	-1.6648	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	-1.4688	-1.4688	0	%100 %100
23	M22	X	0	0	0	%100 %100
24	M22	Z	-1.4688	-1.4688	0	%100 %100
25	M23	X	0	0	0	%100 %100
26	M23	Z	-1.4688	-1.4688	0	%100 %100
27	M24	X	0	0	0	%100
28	M24	Z	-1.4688	-1.4688		%100 %100
29	M25	X	0	0	0	%100
30	M25	Z	-1.8638	-1.8638		%100 %100
31	M26	X	0	0	0	%100 %100
32	M26	Z	-1.8638	-1.8638	0	%100
33	M27	X	0	-1.8638	0	%100 %100
34	M27	Z	-1.8638		0	%100
35	M28	X	-1.8638	-1.8638	0	%100
36	M28	Z		-1.0030	0	%100 %100
37	MP4A	X	0	-3.4688	0	%100
38	MP4A	Z	-3.4688	-3.4666	0	%100
39	MP3A	X	-3.4688	-3.4688	0	%100
40	MP3A	Z	-3.4000	-5.4000	0	%100
41	MP2A	X	-3.4688	-3.4688	0	%100
42	MP2A	Z X	-3.4666	-3.4000	0	%100
43	MP1A	Ž	-3.4688	-3.4688	0	%100
44	MP1A		-3.4666	-3.4000	0	%100
45	M44	Z	-1.9297	-1.9297	0	%100
46	M44	X	0	0	0	%100
47	M45	Z	-1.9297	-1.9297	Ö	%100
48	M45	X	0	0	0	%100
49	M46	Ž	-1.9297	-1.9297	0	%100
50	M46		0	0	0	%100
51	M47	Z	-1.9297	-1.9297	0	%100
52	M47	X	-1.9297	0	0	%100
53	M43	Z	0398	0398	Ö	%100
54	M43		0398	0	0	%100
55	M45A	X Z	0398	0398	0	%100
56	M45A	X	0396	0398	0	%100
57	OVP	Z	-3.1789	-3.1789	Ö	%100
58	OVP	X	0	0	0	%100
59 60	RRU RRU	Ž	-3.1789	-3.1789	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude	End Magnitude[I.	.Start Location[ft,	End Location[ft
1	F	X	1.4396	1.4396	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I		.End Location[ft
2	F	Z	-2.4935	-2.4935	0	%100
3	M2	X	1.4396	1.4396	0	%100
4	M2	Z	-2.4935	-2.4935	0	%100
5	M13	X	.1826	.1826	0	%100
6	M13	Z	3162	3162	0	%100
7	M14	X	.1826	.1826	0	%100
8	M14	Z	3162	3162	0	%100
9	M15	X	.1826	.1826	0	%100
10	M15	Z	3162	3162	0	%100
11	M16	X	.1826	.1826	0	%100
12	M16	Z	3162	3162	0	%100
13	SO	X	.1874	.1874	0	%100
14	SO	Z	3246	3246	0	%100
15	M18	X	.1874	.1874	0	%100
16	M18	Z	3246	3246	0	%100
17	M19	X	1.3164	1.3164	0	%100
18	M19	Z	-2.28	-2.28	0	%100
19	M20	X	1.3164	1.3164	0	%100
20	M20	Z	-2.28	-2.28	0	%100
21	M21	X	.5508	.5508	0	%100
22	M21	Z	954	954	0	%100
23	M22	X	.5508	.5508	0	%100
24	M22	Z	954	954	0	%100
25	M23	X	.5508	.5508	0	%100
26	M23	Z	954	954	0	%100
27	M24	X	.5508	.5508	0	%100
28	M24	Z	954	954	0	%100
29	M25	X	.7452	.7452	0	%100
30	M25	Z	-1.2907	-1.2907	0	%100
31	M26	X	.7452	.7452	0	%100
32	M26	Z	-1.2907	-1.2907	0	%100
33	M27	X	1.0721	1.0721	0	%100
34	M27	Z	-1.8568	-1.8568	0	%100
35	M28	X	1.0721	1.0721	0	%100
36	M28	Z	-1.8568	-1.8568	0	%100
37	MP4A	X	1.7344	1.7344	0	%100
38	MP4A	Z	-3.0041	-3.0041	0	%100
39	MP3A	X	1.7344	1.7344	0	%100
40	MP3A	Z	-3.0041	-3.0041	0	%100
41	MP2A	X	1.7344	1.7344	0	%100
42	MP2A	Z	-3.0041	-3.0041	0	%100 %100
43	MP1A	X	1.7344	1.7344	0	
44	MP1A	Z	-3.0041	-3.0041	0	%100
45	M44	X	.9649	.9649	0	%100 %100
46	M44	Z	-1.6712	-1.6712	0	
47	M45	X	.9649	.9649	0	%100
48	M45	Z	-1.6712	-1.6712	0	%100
49	M46	X	.9649	.9649	0	%100
50	M46	Z	-1.6712	-1.6712	0	%100 %100
51	M47	X	.9649	.9649	0	%100
52	M47	Z	-1.6712	-1.6712	0	%100
53	M43	X	.2443	.2443	0	%100
54	M43	Z	4232	4232	0	%100
55	M45A	X	.2443	.2443	0	%100
56	M45A	Z	4232	4232	0	%100
57	OVP	X	1.5895	1.5895	0	%100
58	OVP	Z	-2.753	-2.753	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	.Start Location[ft	.End Location[ft,
59	RRU	X	1.5895	1.5895	0	%100
60	RRU	Z	-2.753	-2.753	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label		Start Magnitude	.End Magnitude[l.	Start Location[ft,	End Location[ft,
1	F	X	.8312	.8312	0	%100
2	F	Z	4799	4799	0	%100
3	M2	X	.8312	.8312	0	%100
4	M2	Z	4799	4799	0	%100
5	M13	X	.9487	.9487	0	%100
6	M13	Z	5477	5477	0	%100
7	M14	X	.9487	.9487	0	%100
8	M14	Z	5477	5477	0	%100
9	M15	X	.9487	.9487	0	%100
10	M15	Z	5477	5477	0	%100
11	M16	X	.9487	.9487	0	%100
12	M16	Z	5477	5477	0	%100
13	SO	X	.0458	.0458	0	%100
14	SO	Z	0264	0264	0	%100
15	M18	X	.0458	.0458	0	%100
16	M18	Z	0264	0264	0	%100
17	M19	X	2.0012	2.0012	0	%100
18	M19	Z	-1.1554	-1.1554	0	%100
19	M20	X	2.0012	2.0012	0	%100
20	M20	Z	-1.1554	-1.1554	0	%100
21	M21	X	.318	.318	0	%100
22	M21	Z	1836	1836	0	%100
23	M22	X	.318	.318	0	%100
24	M22	Z	1836	1836	0	%100
25	M23	X	.318	.318	0	%100
26	M23	Z	1836	1836	0	%100
27	M24	X	.318	.318	0	%100
28	M24	Z	1836	1836	0	%100
29	M25	X	1.2099	1.2099	0	%100
30	M25	Z	6986	6986	0	%100
31	M26	X	1.2099	1.2099	0	%100
32	M26	Z	6986	6986	0	%100
33	M27	X	1.7761	1.7761	0	%100
34	M27	Z	-1.0254	-1.0254	0	%100
35	M28	X	1.7761	1.7761	0	%100
36	M28	Z	-1.0254	-1.0254	0	%100
37	MP4A	X	3.0041	3.0041	0	%100
38	MP4A	Z	-1.7344	-1.7344	0	%100
39	MP3A	X	3.0041	3.0041	0	%100
40	MP3A	Z	-1.7344	-1.7344	0	%100
41	MP2A	X	3.0041	3.0041	0	%100
42	MP2A	Z	-1.7344	-1.7344	0	%100
43	MP1A	X	3.0041	3.0041	0	%100
44	MP1A	Z	-1.7344	-1.7344	0	%100
45	M44	X	1.6712	1.6712	0	%100
46	M44	Z	9649	9649	0	%100
47	M45	X	1.6712	1.6712	0	%100
48	M45	Ž	9649	9649	0	%100
49	M46	X	1.6712	1.6712	0	%100
50	M46	Z	9649	9649	0	%100
51	M47	X	1.6712	1.6712	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude	End Magnitude[l.	.Start Location[ft,	End Location[ft
52	M47	Z	9649	9649	0	%100
53	M43	X	1.7222	1.7222	0	%100
54	M43	Z	9943	9943	0	%100
55	M45A	X	1.7222	1.7222	0	%100
56	M45A	Z	9943	9943	0	%100
57	OVP	X	2.753	2.753	0	%100
58	OVP	7	-1.5895	-1.5895	0	%100
59	RRU	X	2.753	2.753	0	%100
60	RRU	Z	-1.5895	-1.5895	0	%100

Member Distributed Loads (BLC 56: Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude[IS	tart Location[ft	End Location[ft,
1	F	X	0	0	0	%100
2	Figure 1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	X	1.4606	1.4606	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	1.4606	1.4606	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	1.4606	1.4606	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	1.4606	1.4606	0	%100
12	M16	Z	0	0	0	%100
13	SO	X	1.0208	1.0208	0	%100
14	SO	Z	0	0	0	%100
15	M18	X	1.0208	1.0208	0	%100
16	M18	Z	0	0	0	%100
17	M19	X	1.0208	1.0208	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	1.0208	1.0208	0	%100
20	M20	Z	0	0	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	0	0	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	1.6774	1.6774	0	%100
30	M25	Z	0	0	0	%100
31	M26	X	1.6774	1.6774	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	1.6774	1.6774	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	1.6774	1.6774	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	X	3.4688	3.4688	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	3.4688	3.4688	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	3.4688	3.4688	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	3.4688	3.4688	0	%100
44	MP1A	Z	0	0	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[l	Start Location[ft,	End Location[ft
45	M44	X	1.9297	1.9297	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	1.9297	1.9297	0	%100
48	M45	Z	0	0	0	%100
49	M46	X	1.9297	1.9297	0	%100
50	M46	Z	0	0	0	%100
51	M47	X	1.9297	1.9297	0	%100
52	M47	Z	0	0	0	%100
53	M43	X	3.0399	3.0399	0	%100
54	M43	Z	0	0	0	%100
55	M45A	X	3.0399	3.0399	0	%100
56	M45A	Z	0	0	0	%100
57	OVP	X	3.1789	3.1789	0	%100
58	OVP	Z	0	0	0	%100
59	RRU	X	3,1789	3.1789	0	%100
60	RRU	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude[l.	Start Location[ft,	.End Location[ft,
1	F	X	.8312	.8312	0	%100
2	F	Z	.4799	.4799	0	%100
3	M2	X	.8312	.8312	0	%100
4	M2	Z	.4799	.4799	0	%100
5	M13	X	.9487	.9487	0	%100
6	M13	Z	.5477	.5477	0	%100
7	M14	X	.9487	.9487	0	%100
8	M14	Z	.5477	.5477	0	%100
9	M15	X	.9487	.9487	0	%100
10	M15	Z	.5477	.5477	0	%100
11	M16	X	.9487	.9487	0	%100
12	M16	Z	.5477	.5477	0	%100
13	SO	X	2.0012	2.0012	0	%100
14	SO	Z	1.1554	1.1554	0	%100
15	M18	X	2.0012	2.0012	0	%100
16	M18	Z	1.1554	1.1554	0	%100
17	M19	X	.0458	.0458	0	%100
18	M19	Z	.0264	.0264	0	%100
19	M20	X	.0458	.0458	0	%100
20	M20	Z	.0264	.0264	0	%100
21	M21	X	.318	.318	0	%100
22	M21	Z	.1836	.1836	0	%100
23	M22	X	.318	.318	0	%100
24	M22	Z	.1836	.1836	0	%100
25	M23	X	.318	.318	0	%100
26	M23	Z	.1836	.1836	0	%100
27	M24	X	.318	.318	0	%100
28	M24	Z	.1836	.1836	0	%100
29	M25	Х	1.7761	1.7761	0	%100
30	M25	Z	1.0254	1.0254	0	%100
31	M26	X	1.7761	1.7761	0	%100
32	M26	Z	1.0254	1.0254	0	%100
33	M27	X	1.2099	1.2099	0	%100
34	M27	Z	.6986	.6986	0	%100
35	M28	X	1.2099	1.2099	0	%100
36	M28	Z	.6986	.6986	0	%100
37	MP4A	X	3.0041	3.0041	0	%100

Colliers Engineering & Design

Number : Project # 22777306
Name : Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I	Start Location[ff	End Location[ft
38	MP4A	Z	1.7344	1.7344	0	%100
39	MP3A	X	3.0041	3.0041	0	%100
40	MP3A	Z	1.7344	1.7344	0	%100
41	MP2A	X	3.0041	3.0041	0	%100
42	MP2A	Z	1.7344	1.7344	0	%100
43	MP1A	X	3.0041	3.0041	0	%100
44	MP1A	Z	1.7344	1.7344	0	%100
45	M44	X	1.6712	1,6712	0	%100
46	M44	Z	.9649	.9649	0	%100
47	M45	X	1.6712	1.6712	0	%100
48	M45	Z	.9649	.9649	0	%100
49	M46	X	1.6712	1.6712	0	%100
	M46	Ž	.9649	.9649	0	%100
50	M47	X	1.6712	1.6712	0	%100
51	M47	Z	.9649	.9649	0	%100
52	M43	X	2.2439	2.2439	0	%100
53	M43	Z	1.2955	1.2955	0	%100
54	M45A	X	2.2439	2.2439	0	%100
55	M45A	Z	1.2955	1.2955	0	%100
56	OVP	X	2.753	2.753	0	%100
57	OVP	Z	1.5895	1.5895	0	%100
58		X	2.753	2.753	0	%100
59 60	RRU RRU	Ž	1.5895	1.5895	Ö	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[l		End Location[ft
1	F	X	1.4396	1.4396	00	%100
2	F	Z	2.4935	2.4935	0	%100
3	M2	X	1.4396	1.4396	0	%100
4	M2	Z	2.4935	2.4935	0	%100
5	M13	X	.1826	.1826	0	%100
6	M13	Z	.3162	.3162	0	%100
7	M14	X	.1826	.1826	0	%100
8	M14	Z	.3162	.3162	0	%100
9	M15	X	.1826	.1826	0	%100
10	M15	Z	.3162	.3162	0	%100
11	M16	X	.1826	.1826	0	%100
12	M16	Z	.3162	.3162	0	%100
13	SO	X	1.3164	1.3164	0	%100
14	SO	Z	2.28	2.28	0	%100
15	M18	X	1.3164	1.3164	0	%100
16	M18	Z	2.28	2.28	0	%100
17	M19	X	.1874	.1874	0	%100
18	M19	Z	.3246	.3246	0	%100
19	M20	X	.1874	.1874	0	%100
20	M20	Z	.3246	.3246	0	%100
21	M21	X	.5508	.5508	0	%100
22	M21	Z	.954	.954	0	%100
23	M22	X	.5508	.5508	0	%100
24	M22	Z	.954	.954	0	%100
25	M23	X	.5508	.5508	0	%100
26	M23	Z	.954	.954	0	%100
27	M24	X	.5508	.5508	0	%100
28	M24	Z	.954	.954	0	%100
29	M25	X	1.0721	1.0721	0	%100
30	M25	Z	1.8568	1.8568	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:_

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction		End Magnitude[l		End Location[ft,
31	M26	X	1.0721	1.0721	0	%100
32	M26	Z	1.8568	1.8568	0	%100
33	M27	X	.7452	.7452	0	%100
34	M27	Z	1.2907	1.2907	0	%100
35	M28	X	.7452	.7452	0	%100
36	M28	Z	1.2907	1.2907	0	%100
37	MP4A	X	1.7344	1.7344	0	%100
38	MP4A	Z	3.0041	3.0041	0	%100
39	MP3A	X	1.7344	1.7344	0	%100
40	MP3A	Z	3.0041	3.0041	0	%100
41	MP2A	X	1.7344	1.7344	0	%100
42	MP2A	Z	3.0041	3.0041	0	%100
43	MP1A	X	1.7344	1.7344	0	%100
44	MP1A	Z	3.0041	3.0041	0	%100
45	M44	X	.9649	.9649	0	%100
46	M44	Z	1.6712	1.6712	0	%100
47	M45	X	.9649	.9649	0	%100
48	M45	Z	1.6712	1.6712	0	%100
49	M46	X	.9649	.9649	0	%100
50	M46	Z	1.6712	1.6712	0	%100
51	M47	X	.9649	.9649	0	%100
52	M47	Z	1.6712	1.6712	0	%100
53	M43	X	.5455	.5455	0	%100
54	M43	Z	.9448	.9448	0	%100
55	M45A	X	.5455	.5455	0	%100
56	M45A	Z	.9448	.9448	0	%100
57	OVP	X	1.5895	1.5895	0	%100
58	OVP	Z	2.753	2.753	0	%100
	RRU	X	1.5895	1.5895	0	%100
59 60	RRU	Z	2.753	2.753	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I	Start Location[ft,	End Location[ft,
1	F	X	0	0	0	%100
2	F	Z	3.839	3.839	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	3.839	3.839	0	%100
5	M13	X	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	0	0	0	%100
12	M16	Z	0	0	0	%100
13	SO	X	0	0	0	%100
	SO	Z	1.6648	1.6648	0	%100
14	M18	X	0	0	0	%100
15	M18	Z	1.6648	1.6648	0	%100
16	M19	X	0	0	0	%100
	M19	Z	1.6648	1.6648	0	%100
18	M20	X	0	0	0	%100
19	M20	Z	1.6648	1.6648	0	%100
20	M21	X	0	0	0	%100
21	M21	Z	1.4688	1.4688	0	%100
22	M22	X	0	0	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude	End Magnitude[I	Start Location[ft,	.End Location[ft,.
24	M22	Z	1.4688	1.4688	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	1.4688	1.4688	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	1.4688	1.4688	0	%100
29	M25	X	0	0	0	%100
30	M25	Z	1.8638	1.8638	0	%100
31	M26	X	0	0	0	%100
32	M26	Z	1.8638	1.8638	0	%100
33	M27	X	0	0	0	%100
34	M27	Z	1.8638	1.8638	0	%100
35	M28	X	0	0	0	%100
36	M28	Z	1.8638	1.8638	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	3.4688	3.4688	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	3.4688	3.4688	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	3.4688	3.4688	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	3.4688	3.4688	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	1.9297	1.9297	0	%100
47	M45	X	0	0	0	%100
48	M45	Z	1.9297	1.9297	0	%100
49	M46	X	0	0	0	%100
50	M46	Z	1.9297	1.9297	0	%100
51	M47	X	0	0	0	%100
52	M47	Z	1.9297	1.9297	0	%100
53	M43	X	0	0	0	%100
54	M43	Z	.0398	.0398	0	%100
55	M45A	X	0	0	0	%100
56	M45A	Z	.0398	.0398	0	%100
57	OVP	X	0	0	0	%100
58	OVP	Z	3.1789	3.1789	0	%100
59	RRU	X	0	0	0	%100
60	RRU	Z	3.1789	3.1789	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude	End Magnitude[IS	tart Location[ft	End Location[
1	F	X	-1.4396	-1.4396	0	%100
2	F	Z	2.4935	2.4935	0	%100
3	M2	X	-1.4396	-1.4396	0	%100
4	M2	Z	2,4935	2.4935	0	%100
5	M13	X	1826	1826	0	%100
6	M13	Z	.3162	.3162	0	%100
7	M14	X	1826	1826	0	%100
8	M14	Z	.3162	.3162	0	%100
9	M15	X	1826	-,1826	0	%100
	M15	Z	.3162	.3162	0	%100
10	M16	X	1826	1826	0	%100
	M16	7	.3162	.3162	0	%100
12	SO	X	1874	1874	0	%100
13		Z	.3246	.3246	0	%100
4	SO	X	1874	1874	0	%100
5 6	M18 M18	7	.3246	.3246	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft,	.End Location[ft,
17	M19	X	-1.3164	-1.3164	0	%100
18	M19	Z	2.28	2.28	0	%100
19	M20	X	-1.3164	-1.3164	0	%100
20	M20	Z	2.28	2.28	0	%100
21	M21	X	5508	5508	0	%100
22	M21	Z	.954	.954	0	%100
23	M22	X	5508	5508	0	%100
24	M22	Z	.954	.954	0	%100
25	M23	X	5508	5508	0	%100
26	M23	Z	.954	.954	0	%100
27	M24	X	5508	5508	0	%100
28	M24	Z	.954	.954	0	%100
29	M25	X	7452	7452	0	%100
30	M25	Z	1.2907	1.2907	0	%100
31	M26	X	7452	7452	0	%100
32	M26	Z	1.2907	1.2907	0	%100
33	M27	X	-1.0721	-1.0721	0	%100
34	M27	Z	1.8568	1.8568	0	%100
35	M28	X	-1.0721	-1.0721	0	%100
36	M28	Z	1.8568	1.8568	0	%100
37	MP4A	X	-1.7344	-1.7344	0	%100
38	MP4A	Z	3.0041	3.0041	0	%100
39	MP3A	X	-1.7344	-1.7344	0	%100
40	MP3A	Z	3.0041	3.0041	0	%100
41	MP2A	X	-1.7344	-1.7344	0	%100
42	MP2A	Z	3.0041	3.0041	0	%100
43	MP1A	X	-1.7344	-1.7344	0	%100
44	MP1A	Z	3.0041	3.0041	0	%100
45	M44	X	9649	9649	0	%100
46	M44	Z	1.6712	1.6712	0	%100
47	M45	X	9649	9649	0	%100
48	M45	Z	1.6712	1.6712	0	%100
49	M46	X	9649	9649	0	%100
50	M46	Z	1.6712	1.6712	0	%100
51	M47	X	9649	9649	0	%100
52	M47	Z	1.6712	1.6712	0	%100
53	M43	X	2443	2443	0	%100
54	M43	Ž	.4232	.4232	0	%100
55	M45A	X	2443	2443	0	%100
56	M45A	Z	.4232	.4232	0	%100
57	OVP	X	-1.5895	-1.5895	0	%100
58	OVP	Ž	2.753	2.753	0	%100
59	RRU	X	-1.5895	-1.5895	0	%100
60	RRU	Z	2.753	2.753	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude[l.	.Start Location[ft,	.End Location[ft,
1	F	X	8312	8312	0	%100
2	Ė	7	.4799	.4799	0	%100
3	M2	X	8312	8312	0	%100
4	M2	Z	.4799	.4799	0	%100
5	M13	X	9487	9487	0	%100
6	M13	7	.5477	.5477	0	%100
7	M14	X	9487	9487	0	%100
8	M14	7	.5477	.5477	0	%100
9	M15	X	9487	9487	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label		Start Magnitude			End Location[ft
10	M15	Z	.5477	.5477	0	%100
11	M16	X	9487	9487	0	%100
12	M16	Z	.5477	.5477	0	%100
13	SO	X	0458	0458	0	%100
14	SO	Z	.0264	.0264	0	%100
15	M18	X	0458	0458	0	%100
16	M18	Z	.0264	.0264	0	%100
17	M19	X	-2.0012	-2.0012	0	%100
18	M19	Z	1.1554	1.1554	0	%100
19	M20	X	-2.0012	-2.0012	0	%100
20	M20	Z	1.1554	1.1554	0	%100
21	M21	X	318	318	0	%100
22	M21	Z	.1836	.1836	0	%100
23	M22	X	318	318	0	%100
24	M22	Z	.1836	.1836	0	%100
25	M23	X	318	318	0	%100
26	M23	Z	.1836	.1836	0	%100
27	M24	X	318	318	0	%100
28	M24	Z	.1836	.1836	0	%100
29	M25	X	-1.2099	-1.2099	0	%100
30	M25	Z	.6986	.6986	0	%100
31	M26	X	-1.2099	-1.2099	0	%100
32	M26	Z	.6986	.6986	0	%100
33	M27	X	-1.7761	-1.7761	0	%100
34	M27	Ž	1.0254	1.0254	0	%100
	M28	X	-1.7761	-1.7761	0	%100
35 36	M28	Z	1.0254	1.0254	0	%100
	MP4A	X	-3.0041	-3.0041	0	%100
37	MP4A	Z	1.7344	1.7344	0	%100
38	MP3A	X	-3.0041	-3.0041	0	%100
39	MP3A	Ž	1.7344	1.7344	0	%100
40	MP2A	X	-3.0041	-3.0041	0	%100
41		Z	1.7344	1.7344	0	%100
42	MP2A	X	-3.0041	-3.0041	0	%100
43	MP1A	Z	1.7344	1.7344	Ö	%100
44	MP1A	X	-1.6712	-1.6712	Ö	%100
45	M44	Z	.9649	.9649	Ö	%100
46	M44	X	-1.6712	-1.6712	0	%100
47	M45	Z	.9649	.9649	0	%100
48	M45		-1.6712	-1.6712	0	%100
49	M46	X		.9649	0	%100
50	M46	Z	.9649	-1.6712	0	%100
51	M47	X	-1.6712		0	%100 %100
52	M47	Z	.9649	.9649		%100 %100
53	M43	X	-1.7222	-1.7222	0	%100 %100
54	M43	Z	.9943	.9943		%100 %100
55	M45A	X	-1.7222	-1.7222	0	
56	M45A	Z	.9943	.9943	0	%100
57	OVP	X	-2.753	-2.753	0	%100
58	OVP	Z	1.5895	1.5895	0	%100
59	RRU	X	-2.753	-2.753	0	%100
60	RRU	Z	1.5895	1.5895	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude	End Magnitude[I	Start Location[ft,	.End Location[ft,
1	F	X	0	0	0	%100
2		Z	0	0	0	%100

: Colliers Engineering & Design

Project # 22777306

Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

Member Label Direction Start Magnitude. End Magnitude[IStart Location[ft]. 3 M2 X 0 0 0 4 M2 Z 0 0 0 5 M13 X -1.4606 -1.4606 0 6 M13 Z 0 0 0 7 M14 X -1.4606 -1.4606 0 8 M14 Z 0 0 0 9 M15 X -1.4606 -1.4606 0 10 M15 Z 0 0 0 11 M16 X -1.4606 -1.4606 0 12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M19	%100 %100 %100 %100 %100 %100 %100 %100
4 M2 Z 0 0 0 5 M13 X -1.4606 -1.4606 0 6 M13 Z 0 0 0 7 M14 X -1.4606 -1.4606 0 8 M14 Z 0 0 0 9 M15 X -1.4606 -1.4606 0 10 M15 Z 0 0 0 11 M16 X -1.4606 -1.4606 0 12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 18 M19 Z 0 0 0 19 M20 X	%100 %100 %100 %100 %100 %100 %100 %100
5 M13 X -1.4606 -1.4606 0 6 M13 Z 0 0 0 7 M14 X -1.4606 -1.4606 0 8 M14 Z 0 0 0 9 M15 X -1.4606 -1.4606 0 10 M15 Z 0 0 0 11 M16 X -1.4606 -1.4606 0 12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X	%100 %100 %100 %100 %100 %100 %100 %100
6 M13 Z 0 0 0 7 M14 X -1.4606 -1.4606 0 8 M14 Z 0 0 0 9 M15 X -1.4606 -1.4606 0 10 M15 Z 0 0 0 11 M16 X -1.4606 -1.4606 0 12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100 %100 %100 %100 %100
7 M14 X -1.4606 -1.4606 0 8 M14 Z 0 0 0 9 M15 X -1.4606 -1.4606 0 10 M15 Z 0 0 0 11 M16 X -1.4606 -1.4606 0 12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100 %100 %100 %100 %100
8 M14 Z 0 0 0 9 M15 X -1.4606 -1.4606 0 10 M15 Z 0 0 0 11 M16 X -1.4606 -1.4606 0 12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100 %100 %100 %100 %100
9 M15 X -1.4606 -1.4606 0 10 M15 Z 0 0 0 11 M16 X -1.4606 -1.4606 0 12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100 %100 %100 %100 %100
10 M15 Z 0 0 0 11 M16 X -1.4606 -1.4606 0 12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100 %100 %100 %100 %100
11 M16 X -1.4606 -1.4606 0 12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100 %100 %100 %100 %100
12 M16 Z 0 0 0 13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100 %100 %100 %100
13 SO X -1.0208 -1.0208 0 14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100 %100 %100
14 SO Z 0 0 0 15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100 %100
15 M18 X -1.0208 -1.0208 0 16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100 %100
16 M18 Z 0 0 0 17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100 %100
17 M19 X -1.0208 -1.0208 0 18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100 %100
18 M19 Z 0 0 0 19 M20 X -1.0208 -1.0208 0	%100
19 M20 X -1.0208 -1.0208 0	
	CONTRACTOR OF THE PARTY OF THE
	%100
21 M21 X 0 0 0	%100
22 M21 Z 0 0 0	%100
23 M22 X 0 0 0	%100
24 M22 Z 0 0 0	%100
25 M23 X 0 0 0	%100
26 M23 Z 0 0 0	%100
27 M24 X 0 0 0	%100
28 M24 Z 0 0 0	%100
29 M25 X -1.6774 0	%100
30 M25 Z 0 0 0	%100
31 M26 X -1.6774 -1.6774 0	%100
32 M26 Z 0 0 0	%100
33 M27 X -1.6774 -1.6774 0	%100
34 M27 Z 0 0 0	%100
35 M28 X -1.6774 -1.6774 0	%100
36 M28 Z 0 0	%100
37 MP4A X -3.4688 0	%100
38 MP4A Z 0 0 0	%100
39 MP3A X -3.4688 0	%100
40 MP3A Z 0 0	%100
41 MP2A X -3.4688 -3.4688 0	%100
42 MP2A Z 0 0	%100
43 MP1A X -3.4688 0	%100
44 MP1A Z 0 0 0	%100
45 M44 X -1.9297 -1.9297 0	%100
46 M44 Z 0 0 0	%100
47 M45 X -1.9297 -1.9297 0	%100
48 M45 Z 0 0 0	%100
49 M46 X -1.9297 -1.9297 0	%100
50 M46 Z 0 0 0	%100
51 M47 X -1.9297 -1.9297 0	%100
52 M47 Z 0 0 0	%100
53 M43 X -3.0399 -3.0399 0	%100
54 M43 Z 0 0 0	%100
55 M45A X -3.0399 -3.0399 0	%100
56 M45A Z 0 0	%100
57 OVP X -3.1789 0	%100
58 OVP Z 0 0	
59 RRU X -3.1789 0	%100 %100

Colliers Engineering & Design

b Number : Project # 22777306

del Name : Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:___

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[].	Start Location[ft	End Location(ft,
60	RRU	Z	0	0	0	%100

Member Distributed Loads (BI	.C 63 .	: Structure	Wi	(300 Deg))
------------------------------	---------	-------------	----	------------

	Member Label		Start Magnitude	End Magnitude[I.	.Start Location[ft,.	.End Location[ft,
1	F	X	8312	8312	0	%100
2	F	Z	4799	4799	0	%100
3	M2	X	8312	8312	0	%100 %100
4	M2	Z	4799	4799	0	%100 %100
5	M13	X	9487	9487	0	%100 %100
6	M13	Z	5477	5477	0	%100 %100
7	M14	X	9487	9487	0	
8	M14	Z	5477	5477	0	%100 %100
9	M15	X	9487	9487	0	%100 %100
10	M15	Z	5477	5477	0	%100 %100
11	M16	X	9487	9487	0	%100 %100
12	M16	Z	5477	5477	0	%100 %100
13	SO	X	-2.0012	-2.0012	0	%100 %100
14	SO	Z	-1.1554	-1.1554	0	
15	M18	X	-2.0012	-2.0012	0	%100 %100
16	M18	Z	-1.1554	-1.1554	0	
17	M19	X	0458	0458	0	%100
18	M19	Z	0264	0264	0	%100
19	M20	X	0458	0458	0	%100 %100
20	M20	Z	0264	0264	0	
21	M21	X	318	318	0	%100
22	M21	Z	1836	1836	0	%100 %100
23	M22	X	318	318	0	
24	M22	Z	1836	1836	0	%100
25	M23	X	318	318	0	%100
26	M23	Z	1836	1836	0	%100 %100
27	M24	X	318	318	0	
28	M24	Z	1836	1836	0	%100 %100
29	M25	X	-1.7761	-1.7761	0	%100 %100
30	M25	Z	-1.0254	-1.0254	0	%100 %100
31	M26	X	-1.7761	-1.7761	0	%100 %100
32	M26	Z	-1.0254	-1.0254	0	%100 %100
33	M27	X	-1.2099	-1.2099	0	%100
34	M27	Z	6986	6986	0	%100 %100
35	M28	X	-1.2099	-1.2099	0	%100
36	M28	Z	6986	6986	0	%100
37	MP4A	X	-3.0041	-3.0041	0	%100
38	MP4A	Z	-1.7344	-1.7344	0	%100
39	MP3A	X	-3.0041	-3.0041 -1.7344	0	%100 %100
40	MP3A	Z	-1.7344	-3.0041	0	%100 %100
41	MP2A	X	-3.0041		0	%100
42	MP2A	Z	-1.7344	-1.7344 -3.0041	0	%100
43	MP1A	X Z	-3.0041	-1.7344	0	%100
44	MP1A		-1. 7344 -1.6712	-1.6712	0	%100
45	M44	X		9649	0	%100
46	M44	Z	9649 -1.6712	-1.6712	0	%100
47	M45	X	-1.6712	9649	0	%100
48	M45	Z	-1.6712	-1.6712	0	%100
49	M46	X	-1.6712	9649	0	%100 %100
50	M46	Z X	-1.6712	-1.6712	0	%100
51	M47	Z	9649	9649	0	%100
52	M47		5045	5045	1	70100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft,	End Location[ft,
53	M43	X	-2.2439	-2.2439	0	%100
54	M43	7	-1.2955	-1.2955	0	%100
55	M45A	X	-2.2439	-2.2439	0	%100
	M45A	7	-1.2955	-1.2955	0	%100
56	OVP	X	-2.753	-2.753	0	%100
57	OVP	7	-1.5895	-1.5895	0	%100
58	RRU	X	-2.753	-2.753	0	%100
59 60	RRU	Z	-1.5895	-1.5895	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	Start Location[ft.	.End Location[ft
1	F	X	-1.4396	-1.4396	0	%100
2		Z	-2.4935	-2.4935	0	%100
3	M2	X	-1.4396	-1.4396	0	%100
4	M2	Z	-2.4935	-2.4935	0	%100
5	M13	X	1826	1826	0	%100
6	M13	Z	3162	3162	0	%100
7	M14	X	1826	1826	0	%100
8	M14	Z	3162	3162	0	%100
9	M15	X	1826	1826	0	%100
10	M15	Z	3162	3162	0	%100
11	M16	X	1826	1826	0	%100
12	M16	Z	3162	3162	0	%100
13	SO	X	-1.3164	-1.3164	0	%100
14	SO	Z	-2.28	-2.28	0	%100
15	M18	X	-1.3164	-1.3164	0	%100
16	M18	Z	-2.28	-2.28	0	%100
17	M19	X	1874	1874	0	%100
18	M19	Z	3246	3246	0	%100
19	M20	X	1874	1874	0	%100
20	M20	Z	3246	3246	0	%100
21	M21	X	5508	5508	0	%100
22	M21	Z	954	954	0	%100
23	M22	X	5508	5508	0	%100
24	M22	Z	954	954	0	%100
25	M23	X	5508	5508	0	%100
26	M23	Z	954	954	0	%100
27	M24	X	5508	5508	0	%100
28	M24	Z	954	954	0	%100
29	M25	X	-1.0721	-1.0721	0	%100
30	M25	Z	-1.8568	-1.8568	0	%100
31	M26	X	-1.0721	-1.0721	0	%100
32	M26	Z	-1.8568	-1.8568	0	%100
33	M27	X	7452	7452	0	%100
34	M27	Z	-1.2907	-1.2907	0	%100
35	M28	X	7452	7452	0	%100
36	M28	Z	-1.2907	-1.2907	0	%100
37	MP4A	X	-1.7344	-1.7344	0	%100
38	MP4A	Z	-3.0041	-3.0041	0	%100
39	MP3A	X	-1.7344	-1.7344	0	%100
40	MP3A	Z	-3.0041	-3.0041	0	%100
41	MP2A	X	-1.7344	-1.7344	0	%100
42	MP2A	Z	-3.0041	-3.0041	0	%100
42	MP1A	X	-1.7344	-1.7344	0	%100
43	MP1A	Ž	-3.0041	-3.0041	0	%100
45	M44	X	9649	9649	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[].	.Start Location[ff	End Location[ft,
46	M44	Z	-1.6712	-1.6712	0	%100
47	M45	X	9649	9649	0	%100
48	M45	Z	-1.6712	-1.6712	0	%100
49	M46	X	9649	9649	0	%100
50	M46	Z	-1.6712	-1.6712	0	%100
51	M47	X	9649	9649	0	%100
52	M47	Z	-1.6712	-1.6712	0	%100
53	M43	X	5455	5455	0	%100
54	M43	Z	9448	9448	0	%100
55	M45A	X	5455	5455	0	%100
56	M45A	Z	9448	9448	0	%100
57	OVP	X	-1.5895	-1.5895	0	%100
58	OVP	7	-2.753	-2.753	0	%100
59	RRU	X	-1.5895	-1.5895	0	%100
60	RRU	Z	-2.753	-2.753	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude	End Magnitude[IS		End Location
1	F	X	0	0	0	%100
2		Z	7662	7662	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	7662	7662	0	%100
5	M13	X	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	0	0	0	%100
12	M16	Z	0	0	0	%100
13	SO	X	0	0	0	%100
14	SO	Z	3025	3025	0	%100
15	M18	X	0	0	0	%100
16	M18	Z	3025	3025	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	3025	3025	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	3025	3025	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	1666	1666	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	1666	1666	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	1666	1666	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	1666	1666	0	%100
29	M25	X	0	0	0	%100
30	M25	Z	-,1725	1725	0	%100
31	M26	X	0	0	0	%100
32	M26	Z	1725	1725	0	%100
33	M27	X	0	0	0	%100
34	M27	Z	1725	1725	0	%100
35	M28	X	0	0	0	%100
36	M28	Z	1725	1725	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Ž	6329	6329	0	%100

: Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	.End Magnitude[l.	.Start Location[ft,	End Location[ft,
39	MP3A	X	0	0	0	%100
40	MP3A	Z	6329	6329	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	6329	6329	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	6329	6329	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	1666	1666	0	%100
47	M45	X	0	0	0	%100
48	M45	Z	1666	1666	0	%100
49	M46	X	0	0	0	%100
	M46	Z	1666	1666	0	%100
50	M47	X	0	0	0	%100
51	M47	Z	1666	-,1666	0	%100
52	M43	X	0	0	0	%100
53	M43	Z	0072	0072	0	%100
54	M45A	X	0	0	0	%100
55		Z	0072	0072	0	%100
56	M45A	X	0072	0	0	%100
57	OVP	Ž	5768	5768	0	%100
58	OVP	X	5700	0	0	%100
59 60	RRU RRU	Ž	5768	5768	Ö	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I		End Location[ft.
1	F	X	.2873	.2873	0	%100
2	E	Z	4976	4976	0	%100
3	M2	X	.2873	.2873	0	%100
4	M2	Z	4976	4976	0	%100
5	M13	X	.0208	.0208	0	%100
6	M13	Z	0361	0361	0	%100
7	M14	X	.0208	.0208	0	%100
8	M14	Z	0361	0361	0	%100
9	M15	X	.0208	.0208	0	%100
10	M15	Z	0361	0361	0	%100
11	M16	X	.0208	.0208	0	%100
12	M16	Z	0361	0361	0	%100
13	SO	X	.0341	.0341	0	%100
14	SO	Z	059	059	0	%100
15	M18	X	.0341	.0341	0	%100
16	M18	Z	059	059	0	%100
17	M19	X	.2392	.2392	0	%100
18	M19	Z	4143	4143	0	%100
19	M20	X	.2392	.2392	0	%100
20	M20	Z	-,4143	4143	0	%100
21	M21	X	.0625	.0625	0	%100
22	M21	Z	1082	1082	0	%100
23	M22	X	.0625	.0625	0	%100
24	M22	Z	1082	1082	0	%100
25	M23	X	.0625	.0625	0	%100
26	M23	Z	1082	1082	0	%100
27	M24	X	.0625	.0625	0	%100
28	M24	Z	1082	1082	0	%100
29	M25	X	.069	.069	0	%100
30	M25	Z	1195	1195	0	%100
31	M26	X	.069	.069	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude	.End Magnitude[I.	Start Location[ft,	End Location[ft,
32	M26	Z	1195	1195	0	%100
33	M27	X	.0992	.0992	0	%100
34	M27	Z	1719	1719	0	%100
35	M28	X	.0992	.0992	0	%100
36	M28	Z	1719	1719	0	%100
37	MP4A	X	.3165	.3165	0	%100
38	MP4A	Z	5481	5481	0	%100
39	MP3A	X	.3165	.3165	0	%100
40	MP3A	Z	5481	5481	0	%100
41	MP2A	X	.3165	.3165	0	%100
42	MP2A	Z	5481	5481	0	%100
43	MP1A	X	.3165	.3165	0	%100
44	MP1A	Z	5481	5481	0	%100
45	M44	X	.0833	.0833	0	%100
46	M44	Z	1442	1442	0	%100
47	M45	X	.0833	.0833	0	%100
48	M45	Z	1442	1442	0	%100
49	M46	X	.0833	.0833	0	%100
50	M46	Z	1442	1442	0	%100
51	M47	X	.0833	.0833	0	%100
52	M47	Z	- 1442	1442	0	%100
53	M43	X	.0443	.0443	0	%100
54	M43	Z	0768	0768	0	%100
55	M45A	X	.0443	.0443	0	%100
56	M45A	Z	0768	0768	0	%100
	OVP	X	.2884	.2884	0	%100
57 58	OVP	Z	4995	4995	0	%100
59	RRU	X	.2884	.2884	0	%100
60	RRU	Z	4995	4995	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I	Start Location[ft,	End Location[ft
1	F	X	.1659	.1659	0	%100
2		Z	0958	0958	0	%100
3	M2	X	.1659	.1659	0	%100
4	M2	Z	0958	0958	0	%100
5	M13	X	.1082	.1082	0	%100
6	M13	Z	0625	0625	0	%100
7	M14	X	.1082	.1082	0	%100
8	M14	Z	0625	0625	0	%100
9	M15	X	.1082	.1082	0	%100
10	M15	Z	0625	0625	0	%100
11	M16	X	.1082	.1082	0	%100
12	M16	Z	0625	0625	0	%100
13	SO	X	.0083	.0083	0	%100
14	SO	Z	0048	0048	0	%100
15	M18	X	.0083	.0083	0	%100
16	M18	Z	0048	0048	0	%100
17	M19	X	.3636	.3636	0	%100
18	M19	Z	2099	2099	0	%100
19	M20	X	.3636	.3636	.0	%100
20	M20	Z	2099	2099	0	%100
21	M21	X	.0361	.0361	0	%100
22	M21	Z	0208	0208	0	%100
23	M22	X	.0361	.0361	0	%100
24	M22	Z	0208	0208	0	%100

Colliers Engineering & Design

umber : Project # 22777306
Name : Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:_

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude	.End Magnitude[I.		.End Location[ft,
25	M23	X	.0361	.0361	0	%100
26	M23	Z	0208	0208	0	%100
27	M24	X	.0361	.0361	0	%100
28	M24	Z	0208	0208	0	%100
29	M25	X	.112	.112	0	%100
30	M25	Z	0647	0647	0	%100
31	M26	X	.112	.112	0	%100
32	M26	Z	0647	0647	0	%100
33	M27	X	.1644	.1644	00	%100
34	M27	Z	0949	0949	0	%100
35	M28	X	.1644	.1644	0	%100
36	M28	Z	0949	0949	0	%100
37	MP4A	X	.5481	.5481	0	%100
38	MP4A	Z	3165	3165	0	%100
39	MP3A	X	.5481	.5481	0	%100
40	MP3A	Z	3165	3165	0	%100
41	MP2A	X	.5481	.5481	0	%100
42	MP2A	Z	3165	3165	0	%100
43	MP1A	X	.5481	.5481	0	%100
44	MP1A	Z	3165	3165	0	%100
45	M44	X	.1442	.1442	0	%100
46	M44	Z	0833	0833	0	%100
47	M45	X	.1442	.1442	0	%100
48	M45	Z	0833	0833	0	%100
49	M46	X	.1442	.1442	0	%100
50	M46	Z	0833	0833	0	%100
51	M47	X	.1442	.1442	0	%100
52	M47	Z	0833	0833	0	%100
53	M43	X	.3126	.3126	0	%100
54	M43	Z	1805	1805	0	%100
55	M45A	X	.3126	.3126	0	%100
56	M45A	Z	1805	1805	0	%100
57	OVP	X	.4995	.4995	0	%100
58	OVP	Z	2884	2884	0	%100
59	RRU	X	.4995	.4995	0	%100
60	RRU	Z	2884	2884	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude[I.	.Start Location[ft,	End Location[ft,
1	F	X	0	Ô	0	%100
2	F	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	X	.1666	.1666	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	.1666	.1666	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	.1666	.1666	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	.1666	.1666	0	%100
12	M16	Z	0	0	0	%100
13	SO	X	.1855	.1855	0	%100
14	SO	Z	0	0	0	%100
15	M18	X	.1855	.1855	0	%100
16	M18	Z	0	0	0	%100
17	M19	X	.1855	.1855	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:_

Member Distributed Loads (BLC 68: Structure Wm (90 Deg)) (Continued)

	Member Label			End Magnitude[I.,S		End Location
18	M19	Z	0	0	0	%100
19	M20	X	.1855	.1855	0	%100
20	M20	Z	0	0	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	0	0	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	.1553	.1553	0	%100
30	M25	Z	0	0	0	%100
31	M26	X	.1553	.1553	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	.1553	.1553	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	.1553	.1553	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	X	.6329	.6329	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	.6329	.6329	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	.6329	.6329	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	.6329	.6329	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	X	.1666	.1666	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	.1666	.1666	0	%100
48	M45	Z	0	0	0	%100
49	M46	X	.1666	.1666	0	%100
50	M46	Z	0	0	0	%100
51	M47	X	.1666	.1666	0	%100
52	M47	Z	0	0	0	%100
53	M43	X	.5517	.5517	0	%100
54	M43	Z	0	0	0	%100
55	M45A	X	.5517	.5517	0	%100
56	M45A	Ž	0	0	0	%100
57	OVP	X	.5768	.5768	0	%100
58	OVP	Z	0	0	0	%100
59	RRU	X	.5768	.5768	0	%100
60	RRU	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	.Start Location[ft.	.End Location[ft,.
1	F	X	.1659	.1659	0	%100
2	E	7	.0958	.0958	0	%100
3	M2	X	.1659	.1659	0	%100
-	M2	7	.0958	.0958	0	%100
5	M13	X	.1082	.1082	0	%100
	M13	7	.0625	.0625	0	%100
6	M14	X	.1082	.1082	0	%100
6	M14	7	.0625	.0625	0	%100
8	M15	X	.1082	.1082	0	%100
9	M15	Z	.0625	.0625	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

- 7/	Member Label		Start Magnitude.	End Magnitude[I	Start Location[ft	End Location[ft,
11	M16	X	.1082	.1082	0	%100 %100
12	M16	Z	.0625	.0625	0	
13	SO	X	.3636	.3636	0	%100
14	SO	Z	.2099	.2099	0	%100
15	M18	X	.3636	.3636	0	%100
16	M18	Z	.2099	.2099	0	%100
17	M19	X	.0083	.0083	0	%100
18	M19	Z	.0048	.0048	0	%100
19	M20	X	.0083	.0083	0	%100
20	M20	Z	.0048	.0048	0	%100
21	M21	X	.0361	.0361	0	%100
22	M21	Z	.0208	.0208	0	%100
23	M22	X	.0361	.0361	0	%100
24	M22	Z	.0208	.0208	0	%100
25	M23	X	.0361	.0361	0	%100
26	M23	Z	.0208	.0208	0	%100
27	M24	X	.0361	.0361	0	%100
28	M24	Z	.0208	.0208	0	%100
29	M25	X	.1644	.1644	0	%100
30	M25	Z	.0949	.0949	0	%100
31	M26	X	.1644	.1644	0	%100
32	M26	Z	.0949	.0949	0	%100
33	M27	X	.112	.112	0	%100
34	M27	Z	.0647	.0647	0	%100
35	M28	X	.112	.112	0	%100
36	M28	Z	.0647	.0647	0	%100
37	MP4A	X	.5481	.5481	0	%100
38	MP4A	Z	.3165	.3165	0	%100
39	MP3A	X	.5481	.5481	0	%100
40	MP3A	Z	.3165	.3165	0	%100
41	MP2A	X	.5481	.5481	0	%100
42	MP2A	Z	.3165	.3165	0	%100
43	MP1A	X	.5481	.5481	0	%100
44	MP1A	Z	.3165	.3165	0	%100
45	M44	X	.1442	.1442	00	%100
46	M44	Z	.0833	.0833	0	%100
47	M45	X	.1442	.1442	0	%100
48	M45	Z	.0833	.0833	0	%100
49	M46	X	.1442	.1442	0	%100
50	M46	Z	.0833	.0833	0	%100
51	M47	X	.1442	.1442	0	%100
52	M47	Z	.0833	.0833	0	%100
53	M43	X	.4072	.4072	0	%100
54	M43	Z	.2351	.2351	0	%100
55	M45A	X	.4072	.4072	0	%100
56	M45A	Z	.2351	.2351	0	%100
57	OVP	X	.4995	.4995	0	%100
58	OVP	Z	.2884	.2884	0	%100
59	RRU	X	.4995	.4995	0	%100
60	RRU	Z	.2884	.2884	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude[I.	.Start Location[ft,.	.End Location[ft
1	F	X	.2873	.2873	0	%100
2	E	Z	.4976	.4976	0	%100
3	M2	X	.2873	.2873	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	istributed Loads (BLC / Member Label	Direction	Start Magnitude	.End Magnitude[I.	Start Location[ft	End Location(ft,
4	M2	Z	.4976	.4976	0	%100 %100
5	M13	X	.0208	.0208	0	
6	M13	Z	.0361	.0361	0	%100 %100
7	M14	X	.0208	.0208	0	
8	M14	Z	.0361	.0361	0	%100
9	M15	X	.0208	.0208	0	%100
10	M15	Z	.0361	.0361	0	%100
11	M16	X	.0208	.0208	0	%100
12	M16	Z	.0361	.0361	0	%100
13	SO	X	.2392	.2392	0	%100
14	SO	Z	.4143	.4143	0	%100
15	M18	X	.2392	.2392	0	%100
16	M18	Z	.4143	.4143	0	%100
17	M19	X	.0341	.0341	0	%100
18	M19	Z	.059	.059	0	%100
19	M20	X	.0341	.0341	0	%100
20	M20	Z	.059	.059	0	%100
21	M21	X	.0625	.0625	0	%100
22	M21	Z	.1082	.1082	0	%100
23	M22	X	.0625	.0625	0	%100
24	M22	Z	.1082	.1082	0	%100
25	M23	X	.0625	.0625	0	%100
26	M23	Z	.1082	.1082	0	%100
27	M24	X	.0625	.0625	0	%100
28	M24	Z	.1082	.1082	0	%100
29	M25	X	.0992	.0992	0	%100
30	M25	Z	.1719	.1719	0 -	%100
31	M26	X	.0992	.0992	0	%100
32	M26	Z	.1719	.1719	0	%100
33	M27	X	.069	.069	0	%100
34	M27	Z	.1195	.1195	0	%100
35	M28	X	.069	.069	0	%100
36	M28	Z	.1195	.1195	0	%100
37	MP4A	X	.3165	.3165	0	%100
38	MP4A	Z	.5481	.5481	0	%100
39	MP3A	X	.3165	.3165	0	%100
40	MP3A	Z	.5481	.5481	0	%100
41	MP2A	X	.3165	.3165	0	%100
42	MP2A	Z	.5481	.5481	0	%100
43	MP1A	X	.3165	.3165	0	%100
44	MP1A	Z	.5481	.5481	0	%100
45	M44	X	.0833	.0833	0	%100
46	M44	Z	.1442	.1442	0	%100
47	M45	X	.0833	.0833	0	%100
48	M45	Z	.1442	.1442	0	%100
49	M46	X	.0833	.0833	0	%100
50	M46	Z	.1442	.1442	0	%100
51	M47	X	.0833	.0833	0	%100
52	M47	Z	.1442	.1442	0	%100
53	M43	X	.099	.099	0	%100
54	M43	Z	.1715	.1715	0	%100
55	M45A	X	.099	.099	0	%100
56	M45A	Z	.1715	.1715	0	%100
57	OVP	X	.2884	.2884	0	%100
58	OVP	Z	.4995	.4995	0	%100
59	RRU	X	.2884	.2884	0	%100
60	RRU	Z	.4995	.4995	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:___

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

III III III	Member Label	Direction	Start Magnitude	End Magnitude[I		tEnd Location[ft
1	F	X	0	0	0	%100
2	Fig. 1	Z	.7662	.7662	0	%100
3	M2	X	00	0	0	%100
4	M2	Z	.7662	.7662	0	%100
5	M13	X	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	0	0	0	%100
12	M16	Z	0	0	0	%100
13	SO	X	0	0	0	%100
14	SO	Z	.3025	.3025	0	%100
15	M18	X	0	0	0	%100
16	M18	Z	.3025	.3025	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	.3025	.3025	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	.3025	.3025	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	.1666	.1666	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	.1666	.1666	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	.1666	.1666	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	.1666	.1666	0	%100
	M25	X	0	0	0	%100
29	M25	Z	.1725	.1725	0	%100
30	M26	X	0	0	0	%100
31	M26	Z	.1725	.1725	0	%100
32	M27	X	0	0	0	%100
33	M27	Z	.1725	.1725	0	%100
34	M28	X	0	0	0	%100
35	M28	Z	.1725	.1725	0	%100
36	MP4A	X	0	0	0	%100
37		Ž	.6329	.6329	0	%100
38	MP4A	X	0	0	0	%100
39	MP3A	Z	.6329	.6329	Ö	%100
40	MP3A	X	0	0	0	%100
41	MP2A	Z	.6329	.6329	0	%100
42	MP2A		0	0	0	%100
43	MP1A	X Z	.6329	.6329	Ö	%100
44	MP1A	X	0	0	0	%100
45	M44	Z	.1666	.1666	0	%100 %100
46	M44	X	0	0	0	%100 %100
47	M45	Z	.1666	.1666	0	%100 %100
48	M45	X	.1000	0	0	%100
49	M46	Z	.1666	.1666	0	%100
50	M46			0	0	%100 %100
51	M47	X	.1666	.1666	0	%100 %100
52	M47	Z		.1000	0	%100 %100
53	M43	X	0	.0072	0	%100
54	M43	Z	.0072		0	%100 %100
55	M45A	X	0	.0072	0	%100 %100
56	M45A	Z	.0072			%100 %100
57	OVP	X	0	0	00	/6 100

Colliers Engineering & Design

Company
Designer
Job Number
Hadel Name
Colliers Eng.
Project # 22777306
Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 71: Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I	.Start Location[ft.	End Location[ft
58	OVP	Z	.5768	.5768	0	%100
59	RRU	X	0	0	0	%100
60	RRII	7	.5768	.5768	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label		Start Magnitude.	End Magnitude[I.		.End Location[ft,
1	F	X	2873	2873	0	%100
2	FILL FILL	Z	.4976	.4976	0	%100
3	M2	X	2873	2873	0	%100
4	M2	Z	.4976	.4976	0	%100
5	M13	X	0208	0208	0	%100
6	M13	Z	.0361	.0361	0	%100
7	M14	X	0208	0208	0	%100
8	M14	Z	.0361	.0361	0	%100
9	M15	X	0208	0208	0	%100
10	M15	Z	.0361	.0361	0	%100
11	M16	X	0208	0208	0	%100
12	M16	Z	.0361	.0361	0	%100
13	SO	X	0341	0341	0	%100
14	SO	Z	.059	.059	0	%100
15	M18	X	0341	0341	0	%100
16	M18	Z	.059	.059	0	%100
17	M19	X	2392	2392	0	%100
18	M19	Z	.4143	.4143	0	%100
19	M20	X	2392	2392	0	%100
20	M20	Z	.4143	.4143	0	%100
21	M21	X	0625	0625	0	%100
22	M21	Z	.1082	.1082	0	%100
23	M22	X	0625	0625	0	%100
24	M22	Z	.1082	.1082	0	%100
25	M23	X	0625	0625	0	%100
26	M23	Z	.1082	.1082	0	%100
27	M24	X	0625	0625	0	%100
28	M24	Z	.1082	.1082	0	%100
29	M25	X	069	069	0	%100
30	M25	Z	.1195	.1195	0	%100
31	M26	X	069	069	0	%100
32	M26	Z	.1195	.1195	0	%100
33	M27	X	0992	0992	0	%100
34	M27	Z	.1719	.1719	0	%100
35	M28	X	0992	0992	0	%100
36	M28	Z	.1719	.1719	0	%100
37	MP4A	X	3165	3165	0	%100
38	MP4A	Z	.5481	.5481	0	%100
39	MP3A	X	3165	3165	0	%100
40	MP3A	Z	.5481	.5481	0	%100
41	MP2A	X	3165	3165	0	%100
42	MP2A	Z	.5481	.5481	0	%100
43	MP1A	X	3165	3165	0	%100
44	MP1A	Z	.5481	.5481	0	%100
45	M44	X	0833	0833	0	%100
46	M44	Z	.1442	.1442	0	%100
47	M45		0833	0833	0	%100
48	M45	X Z	.1442	.1442	0	%100
49	M46	X	0833	0833	0	%100
50	M46	Ž	.1442	.1442	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft,	End Location[ft,
51	M47	X	0833	0833	0	%100
52	M47	Z	.1442	.1442	0	%100
53	M43	X	0443	0443	0	%100
54	M43	7	.0768	.0768	0	%100
55	M45A	X	0443	0443	0	%100
	M45A	7	.0768	.0768	0	%100
56 57	OVP	X	2884	2884	0	%100
58	OVP	7	.4995	.4995	0	%100
59	RRU	X	2884	2884	0	%100
60	RRU	Z	.4995	.4995	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label		Start Magnitude	End Magnitude[I.,S	tart Location[ft,	End Location
1	F	X	1659	1659	0	%100
2	F	Z	.0958	.0958	0	%100
3	M2	X	1659	1659	0	%100
4	M2	Z	.0958	.0958	0	%100
5	M13	X	1082	1082	0	%100
6	M13	Z	.0625	.0625	0	%100
7	M14	X	1082	1082	0	%100
8	M14	Z	.0625	.0625	0	%100
9	M15	X	1082	1082	0	%100
10	M15	Z	.0625	.0625	0	%100
11	M16	X	1082	1082	0	%100
12	M16	Z	.0625	.0625	0	%100
13	SO	X	0083	0083	0	%100
14	SO	Z	.0048	.0048	0	%100
15	M18	X	0083	0083	0	%100
16	M18	Z	.0048	.0048	0	%100
17	M19	X	3636	3636	0	%100
18	M19	Z	.2099	.2099	0	%100
19	M20	X	3636	3636	0	%100
20	M20	Z	.2099	.2099	0	%100
21	M21	X	0361	0361	0	%100
22	M21	Z	.0208	.0208	0	%100
23	M22	X	0361	0361	0	%100
24	M22	Z	.0208	.0208	0	%100
25	M23	X	0361	0361	0	%100
	M23	Ž	.0208	.0208	0	%100
26	M24	X	0361	0361	0	%100
27 28	M24	Z	.0208	.0208	0	%100
	M25	X	112	112	0	%100
29	M25	Z	.0647	.0647	0	%100
30	M26	X	112	112	0	%100
31	M26	Z	.0647	.0647	0	%100
32	M27	X	1644	1644	0	%100
33	M27	Z	.0949	.0949	0	%100
34	M28	X	1644	1644	0	%100
35	M28	Z	.0949	.0949	0	%100
36	MP4A	X	5481	5481	0	%100
37	MP4A MP4A	Z	.3165	.3165	Ö	%100
38	MP3A	X	5481	5481	0	%100
39		Ž	.3165	.3165	0	%100
40	MP3A	X	5481	5481	0	%100
41	MP2A	Z	.3165	.3165	Ö	%100
42 43	MP2A MP1A	X	5481	5481	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:_

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[].	.Start Location[ft.	End Location[ft,
44	MP1A	Z	.3165	.3165	0	%100
45	M44	X	1442	1442	0	%100
46	M44	Z	.0833	.0833	0	%100
47	M45	X	1442	1442	0	%100
48	M45	Z	.0833	.0833	0	%100
49	M46	X	1442	1442	0	%100
50	M46	Z	.0833	.0833	0	%100
51	M47	X	1442	1442	0	%100
52	M47	Z	.0833	.0833	0	%100
53	M43	X	3126	3126	0	%100
54	M43	Z	.1805	.1805	0	%100
55	M45A	Х	3126	3126	0	%100
56	M45A	Z	.1805	.1805	0	%100
57	OVP	X	4995	4995	0	%100
58	OVP	Z	.2884	.2884	0	%100
59	RRU	X	4995	4995	0	%100
60	RRU	Z	.2884	.2884	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude[I		.End Location[ft,
1	F	X	Õ	0	0	%100
2	FINE DESCRIPTION OF THE PROPERTY OF THE PROPER	Z	0	0	0	%100
3	M2	X	0	.0	0	%100
4	M2	Z	0	0	0	%100
5	M13	X	1666	1666	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	1666	1666	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	1666	1666	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	1666	1666	0	%100
12	M16	Z	0	0	0	%100
13	SO	X	1855	1855	0	%100
14	SO	Z	0	0	0	%100
15	M18	X	1855	1855	0	%100
16	M18	Z	0	0	0	%100
17	M19	X	1855	1855	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	1855	1855	0	%100
20	M20	Z	0	0	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	0	0	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	1553	1553	0	%100
30	M25	Z	0	0	0	%100
31	M26	X	1553	1553	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	1553	1553	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	1553	1553	0	%100
36	M28	Z	0	0	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[IS	Start Location[ft	End Location[ft
37	MP4A	X	6329	6329	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	6329	6329	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	6329	6329	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	6329 0	6329	0	%100
44	MP1A	Z		0	0	%100
45	M44	X	1666	1666	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	1666	1666	0	%100
48	M45	Z	0	0	0	%100
49	M46	X	1666	1666	0	%100
50	M46	Z	0	0	0	%100
51	M47	X	1666	1666	0	%100
52	M47	Z	0	0	0	%100
53	M43	X	5517	5517	0	%100
54	M43	Z	0	0	0	%100
55	M45A	X	5517	5517	0	%100
56	M45A	Z	0	0	0	%100
	OVP	X	5768	5768	0	%100
57	OVP	Ž	0	0	0	%100
58	RRU	X	5768	5768	0	%100
59 60	RRU	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude	End Magnitude[l	Start Location[ft	End Location[ft,
1	F	X	1659	1659	0	%100
2	F	Z	0958	0958	0	%100
3	M2	X	1659	1659	00	%100
4	M2	Z	0958	0958	0	%100
5	M13	X	1082	1082	0	%100
6	M13	Z	0625	0625	0	%100
7	M14	X	1082	1082	0	%100
8	M14	Z	0625	0625	0	%100
9	M15	X	1082	1082	0	%100
10	M15	Z	0625	0625	0	%100
11	M16	X	1082	1082	0	%100
12	M16	Z	0625	0625	0	%100
13	SO	X	3636	3636	0	%100
14	SO	Z	2099	2099	0	%100
15	M18	X	3636	3636	0	%100
16	M18	Z	2099	2099	0	%100
17	M19	X	0083	0083	0	%100
18	M19	Z	0048	0048	0	%100
19	M20	X	0083	0083	0	%100
20	M20	Z	0048	0048	0	%100
21	M21	X	0361	0361	0	%100
22	M21	Z	0208	0208	0	%100
23	M22	X	0361	0361	0	%100
24	M22	Z	0208	0208	0	%100
25	M23	X	0361	0361	0	%100
26	M23	Z	0208	0208	0	%100
27	M24	X	0361	0361	.0	%100
28	M24	Z	0208	0208	0	%100
29	M25	X	1644	1644	0	%100

Colliers Engineering & Design

Project # 22777306 Antenna Mount Analysis Sept 12, 2023 3:54 PM Checked By:__

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.		Start Location[ft.	End Location[ft,
30	M25	Z	0949	0949	0	%100
31	M26	X	1644	1644	0	%100
32	M26	Z	0949	0949	0	%100
33	M27	X	112	112	0	%100
34	M27	Z	0647	0647	0	%100
35	M28	X	112	112	0	%100
36	M28	Z	0647	0647	0	%100
37	MP4A	X	5481	5481	0	%100
38	MP4A	Z	3165	3165	0	%100
39	MP3A	X	5481	5481	0	%100
40	MP3A	Z	3165	3165	0	%100
41	MP2A	X	5481	5481	0	%100
42	MP2A	Z	3165	3165	0	%100
43	MP1A	X	5481	5481	0	%100
44	MP1A	Z	3165	3165	0	%100
45	M44	X	-,1442	1442	0	%100
46	M44	Z	0833	0833	0	%100
47	M45	X	1442	1442	0	%100
48	M45	Z	0833	0833	0	%100
49	M46	X	1442	1442	0	%100
50	M46	Z	0833	0833	0	%100
51	M47	X	1442	1442	0	%100
52	M47	Z	0833	0833	0	%100
53	M43	X	4072	4072	0	%100
54	M43	Z	2351	2351	0	%100
55	M45A	X	4072	4072	0	%100
56	M45A	Z	2351	2351	0	%100
57	OVP	X	4995	4995	0	%100
58	OVP	Ž	2884	2884	0	%100
59	RRU	X	4995	4995	0	%100
60	RRU	Z	2884	2884	0	%100

Member Distributed Loads (BLC 76: Structure Wm (330 Deg))

	Member Label	Direction		End Magnitude[IS		End Location
1	F	X	2873	-,2873	0	%100
2	F	Z	4976	4976	0	%100
3	M2	X	2873	2873	0	%100
4	M2	Z	4976	4976	0	%100
5	M13	X	0208	0208	00	%100
6	M13	Z	0361	0361	0	%100
7	M14	X	0208	0208	0	%100
8	M14	Z	0361	0361	0	%100
9	M15	X	0208	0208	0	%100
10	M15	Z	0361	0361	0	%100
11	M16	X	0208	0208	0	%100
12	M16	7	0361	0361	0	%100
13	SO	X	2392	2392	0	%100
14	SO	Z	4143	4143	0	%100
15	M18	X	2392	2392	0	%100
16	M18	Z	4143	4143	0	%100
17	M19	X	0341	0341	0	%100
18	M19	7	059	059	0	%100
	M20	X	0341	0341	0	%100
19	M20	Z	059	059	0	%100
20		X	0625	0625	0	%100
21 22	M21 M21	Z	1082	1082	0	%100

Colliers Engineering & Design

Project # 22777306
Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:___

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

	Member Label			.End Magnitude[I		End Location[ft.
23	M22	X	0625	0625	0	%100
24	M22	Z	1082	1082	0	%100
25	M23	X	0625	0625	0	%100
26	M23	Z	1082	1082	0	%100
27	M24	X	0625	0625	0	%100
28	M24	Z	1082	1082	0	%100
29	M25	X	0992	0992	0	%100
30	M25	Z	1719	1719	0	%100
31	M26	X	0992	0992	0	%100
32	M26	Z	1719	1719	0	%100
33	M27	X	069	069	0	%100
34	M27	Z	1195	1195	0	%100
35	M28	X	069	069	0	%100
36	M28	Z	1195	1195	0	%100
37	MP4A	X	3165	3165	0	%100
38	MP4A	Z	5481	5481	0	%100
39	MP3A	X	3165	3165	0	%100
40	MP3A	Z	5481	5481	0	%100
41	MP2A	X	3165	3165	0	%100
42	MP2A	Z	5481	5481	0	%100
43	MP1A	X	3165	3165	0	%100
44	MP1A	Z	5481	5481	0	%100
45	M44	X	0833	0833	0	%100
46	M44	Z	1442	1442	0	%100
47	M45	X	0833	0833	0	%100
48	M45	Z	1442	1442	0	%100
49	M46	X	0833	0833	0	%100
50	M46	Z	1442	1442	0	%100
51	M47	X	0833	0833	0	%100
52	M47	Z	1442	1442	0	%100
53	M43	X	099	099	0	%100
54	M43	Z	1715	1715	0	%100
55	M45A	X	099	099	0	%100
	M45A	Ž	1715	1715	0	%100
56	OVP	X	2884	2884	0	%100
57	OVP	Z	4995	4995	0	%100
58	RRU	X	2884	2884	0	%100
59 60	RRU	Ž	4995	4995	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
CONTEX			No Data 1	to Print		

Envelope Joint Reactions

	Joint	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]		MZ [k-ft]	LC_
1	N35	1588.338	46	997.848	14	1914.8	1	122	8	0	75	.282	39
2	1435	-943.965	28	334.3	72	-969.787	7	409	14	0	1	158	33
3	N36	956.97	34	979.95	20	1468.464	1	102	7	0	75	.27	39
4	1430	-1600.013	40	328.373	66	-2369.963	7	392	13	0	1	152	33
5	N61A	68.103	2	17.227	14	610.684	8	0	75	0	75	0	75
6		-75.783	8	5.513	72	-675.48	2	0	1	0	1	0	1
7	N64	64.999	2	17.019	14	712.852	8	0	75	0	75	0	75
8	10170000	-88.803	8	5.484	72	-643.787	2	0	1	0	1	0	1
9	Totals:	1608.292	10	2006.134	14	2403.222	1				Ш		

Colliers Engineering & Design

Project # 22777306
Antenna Mount Analysis

Sept 12, 2023 3:54 PM Checked By:____

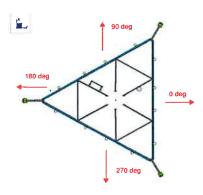
Envelope Joint Reactions (Continued)

	Joint	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft] L	MZ [k-ft]	LC
10		-1608.294	4	674.214	71	-2403.224	7					

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	And the Property of the Control of t	Code Check		LC	Shear Check	Lo	, LC	phi*Pncphi*Pnt [.phi*Mn	Cb	Eqn
1	F	PIPE 2.5	.657	3	8	.098	8	1	14558.7 50715	3.596	3.596	2.026	H1
2	M2	PIPE_2.5	.644	3	8	.094	8	7	14558.7 50715	3.596	3.596	2.457	H1
3	M13	PL5/8X3.5	.169	.422	8	.259	.374 y		66184.77 68906.25	.897	5.024	1.667	H1
4	M14	PL5/8X3.5	.194	0	26	.245	.422 y	8	66184.77 68906.25	.897	5.024	1.667	H1
5	M15	PL5/8X3.5	.236	0	43	.184	0 y		66184.77 68906.25	.897	5.024	1.667	H1
6	M16	PL5/8X3.5	.199	.422	43	.207	0 y	7	66184.77 68906.25	.897	5.024	1.667	H1
7	SO	PIPE 2.0	.254	0	2	.068	1.25	2	31128.25 32130	1.872	1.872	1.37	H1
8	M18	PIPE_2.0	.236	0	8	.073	0	26	31128.25 32130	1.872	1.872	2.443	H1
9	M19	PIPE 2.0	.177	0	1	.089	0	37	31128.25 32130	1.872	1.872	1.08	H1
10	M20	PIPE 2.0	.214	0	7	.077	1.25	1	31128.25 32130	1.872	1.872	2.354	H1
11	M21	PL5/8X3.5	.338	.531	32	.132	.531 y		67591.76 68906.25	.897	5.024	1.648	H1
12	M22	PL5/8X3.5	.424	.531	43	.128	.531 y		67591.76 68906.25	.897	5.024	1.682	H1
13	M23	PL5/8X3.5	.342	.531	26	.107	,531 y		67591.76 68906.25	.897	5.024	1.64	H1
14	M24	PL5/8X3.5	.430	.531	37	.066	,437 y	1	67591.76 68906.25	.897	5.024	1.678	H1
15	M25	SR 0.75	.005	4	44	.009	4	32	2863.854 13916.2	.174	.174	1.136	H1
16	M26	SR 0.75	.066	0	32	.013	4	26	2863.854 13916.2	.174	.174	1.136	H1
17	M27	SR 0.75	.000	0	75	.012	4	41	2863.854 13916.2	.174	.174	1.136	H1
18	M28	SR 0.75	.083	4	43	.017	0	48	2863.854 13916.2	.174	.174	1.136	H1
19	MP4A	PIPE 2.0	.396	2	33	.050	2	30	14916.0 32130	1.872	1.872	4.923	H1
20	МРЗА	PIPE_2.0	.183	2	32	.034	2	32	14916.0 32130	1.872	1.872	4.937	H1
21	MP2A	PIPE_2.0	.187	2	43	.049	5	45	14916.0 32130	1.872	1.872	4.973	H1
22	MP1A		.481	2	41	.126	2	5	14916.0 32130	1.872	1.872	4.856	H1
23	M44	SR_0.625	.059	1	8	.014	0	48	2158.31 9664.079	.101	.101	1.136	H1
24	M45	SR_0.625	.063	1	8	.005	0	42	2158.31 9664.079	.101	.101	1.136	H1
25	M46	SR 0.625	.066	1	7	.005	0	34	2158.31 9664.079	.101	.101	11	H1
26	M47	SR 0.625	.074	1	1	.015	0	46	2158.31 9664.079	.101	.101	11	H1
27	M43	PIPE_2.0	.023	0	8	.002	0	10	27270.42 32130	1.872	1.872	1.136	H1
28	M45A	PIPE_2.0	.027	0	8	.002	0	10	27270.42 32130	1.872	1.872	1.136	H1
29	OVP	PIPE_2.0	.050	1	6	.024	.333	43	26521.4 32130	1.872	1.872	1.333	H1
30	RRU	PIPE 2.0	.028	1	6	.021	.333	48	26521.4 32130	1.872	1.872	1.268	H1

Client:	VERIZON WIRELESS	Date:	9/12/2023
Site Name:	WATERFORD SOUTH CT		
MDG #:	5000244405		
Fuze ID #:	2025221	Pago:	1
1 424 15 11.			


Yes

Version 1.01

I. Mount-to-Tower Connection Check

Custom Orientation Require	2d
----------------------------	----

Nodes	Orientation
(labeled per Risa)	(per graphic of typical platform)
N36	0
N35	0

Tower Connection Bolt Checks

Bolt Orientation

Bolt Quantity per Reaction:

d_x (in) (Delta X of typ. bolt config. sketch): d_v (in) (Delta Y of typ. bolt config. sketch):

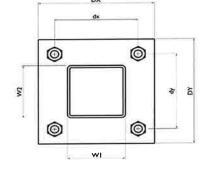
Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips):

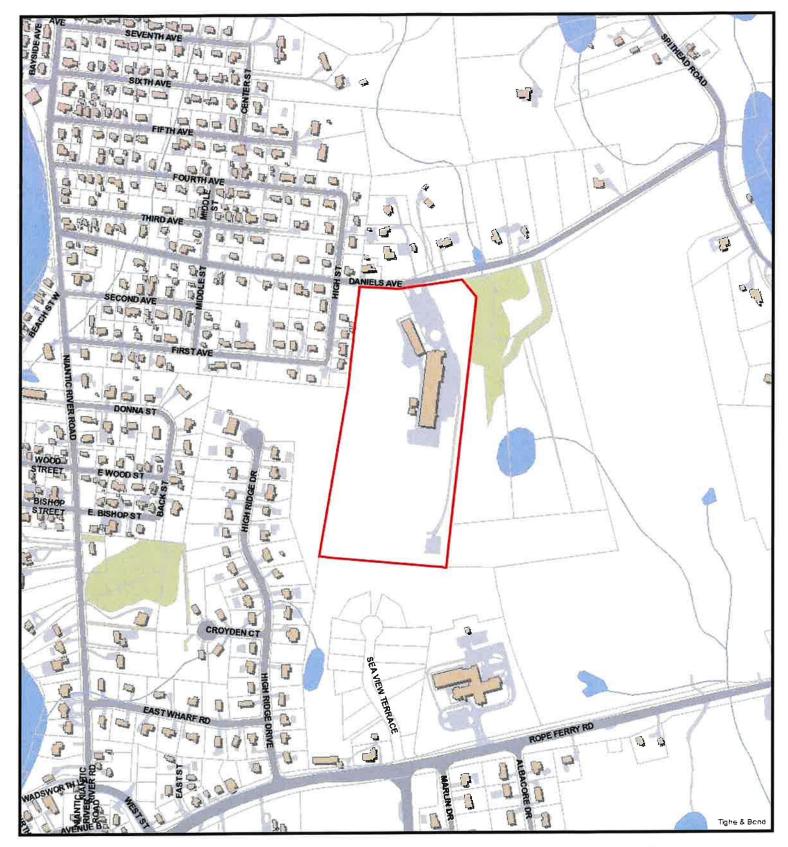
Required Shear Strength / bolt (kips):

Tensile Capacity / bolt (kips):


Shear Capacity / bolt (kips):

Bolt Overall Utilization:

4	
11	
4.5	
A307	
0.625	
0.7	
0.6	
10.4	
6.2	
9.5%	


No

Yes Parallel

Tower Connection Baseplate Checks

ATTACHMENT 5

51 Daniels Avenue

3/4/2022 10:38:04 AM

Scale: 1"=500'

Scale is approximate

The information depicted on this map is for planning purposes only. It is not adequate for legal boundary definition, regulatory interpretation, or parcel-level analyses.

51 DANIELS AVENUE

Location 51 DANIELS AVENUE

Mblu 143/ / 1783/ /

Acct# 00153300 Owner WATERFORD TOWN OF

\$2,924,780 Assessment

Appraisal \$4,178,257

PID 1783 **Building Count** 1

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2017	\$2,498,257	\$1,680,000	\$4,178,257
	Assessment		
Valuation Year	Improvements	Land	Total
2017	\$1,748,780	\$1,176,000	\$2,924,780

Parcel Addreses

Additional Addresses

No Additional Addresses available for this parcel

Owner of Record

Owner

WATERFORD TOWN OF

Co-Owner SOUTHWEST SCHOOL

Sale Price \$0

Certificate

Book & Page 0107/0567 09/15/1956

Sale Date

Instrument 00

Ownership History

		Ownership Histo	ry		
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
WATERFORD TOWN OF	\$0		0107/0567	00	09/15/1956

Building Information

Building 1: Section 1

Year Built:

1960

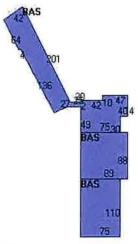
Living Area:

29,627

Replacement Cost:

\$3,608,900

Building Percent Good:


	Iding Attributes
Field	Description
STYLE	School
MODEL	Comm/Ind
Grade	Above Ave
Stories:	1.00
Occupancy	1.00
Exterior Wall 1	Brick Veneer
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Rolled
Interior Wall 1	Typical
Interior Wall 2	
Interior Floor 1	Comp Tile
Interior Floor 2	
Heating Fuel	Oil
Heating Type	Hot Water
% Central Air	0
Foundation	Poured Conc
Bldg Use	Exempt Comm
Total Rooms	0
Total Bedrms	0
Total Fixtures	0
% Wet Sprinkler	
% Dry Sprinkler	
1st Floor Use	
Heat/AC	Typical
Frame Type	MASONRY
Baths/Plumbing	AVERAGE
% Finished	100
Class	С
Wall Height	10.00
Usrfid 214	

Building Photo

(http://images.vgsi.com/photos/WaterfordCTPhotos/\00\01\54\22.jpg)

Building Layout

(http://images.vgsi.com/photos/WaterfordCTPhotos//Sketches/1783_1783.j

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	29,627	29,627
		29,627	29,627

Extra Features <u>Legender</u>				
Code	Description	Size	Value	Bldg #
ELV1	ELEVATOR PASS	1.00 STOPS	\$16,250	1
MSC13	RADIO TOWER	5000.00 UNIT	\$32,500	1
GEN	GEN BACKUP DIESEL	1.00 UNITS	\$10,000	1

Land

Land Use

Land Line Valuation

Use Code

920

Description

Exempt Comm

Zone

R-40

No

Neighborhood

Alt Land Appr Category

800

Assessed Value Appraised Value

Size (Acres)

Frontage

Depth

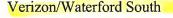
\$1,176,000 \$1,680,000

20

0

0

Outbuildings


Outbuildings						<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg#
PAV1	Paving	AS	Asphalt	42000.00 S.F.	\$78,750	1
SHD1	Shed	FR	Frame	400.00 S.F.	\$6,750	1
SHD1	Shed	FR	Frame	200.00 S.F.	\$3,380	1
SHD1	Shed	FR	Frame	400.00 S.F.	\$6,750	1

Valuation History

Appraisal				
Valuation Year	ion Year Improvements	Land	Total	
2021	\$2,498,257	\$1,680,000	\$4,178,257	
2020	\$2,498,257	\$1,680,000	\$4,178,257	

Assessment				
Valuation Year	Improvements	Land	Total	
2021	\$1,748,780	\$1,176,000	\$2,924,780	
2020	\$1,748,780	\$1,176,000	\$2,924,780	

ATTACHMENT 6

Certificate of Mailing — Firm

Name and Address of Sender TOTAL NO. TOTAL NO. Affix Stamp Here of Pieces Listed by Sender of Pieces Received at Post Office™ Postmark with Date of Receipt. Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street neopost Hartford, CT 06103 Postmaster, per (name of receiving employee) USPS® Tracking Number Address Postage Fee Special Handling Parcel Airlift (Name, Street, City, State, and ZIP Code™) Firm-specific Identifier Rob Brule, First Scleetman USPS Waterford Town Hall 15 Rope Ferry Road Waterford, CT 06385 Jonathan Mullen, Planning Director Waterford Town Hall 15 Rope Ferry Road Waterford, CT 06385 3.