

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

March 17, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 150 Mattatuck Heights, Waterbury, CT 06705 Latitude: 41.537908 Longitude: -72.985002 Site #: 876317_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 150 Mattatuck Heights, Waterbury, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 120-foot level of the existing 143foot monopole, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by Kimley Horn, dated March 3, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated October 4, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the City of Waterbury, however the City has been unable to locate a copy of the approval. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mayor Neil O'Leary, and Robert Nerney, City Planner for the City of Waterbury, as well as the tower owner (Crown Castle) and property owner (Waterbury Twin LLC & 150 MH LLC).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 143-feet and the Dish Wireless LLC antennas will be located at a centerline height of 120-feet.

2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 27.88% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in Waterbury. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 120-foot level of the existing 143-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Waterbury.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Ce: Mayor Neil O'Leary City Hall Building 235 Grand Street, 2nd floor Waterbury, CT 06702

> Robert Nerney, City Planner 185 South Main Street, 5th floor Waterbury, CT 06706

Waterbury Twin LLC & 150 MH LLC – Property Owner 12 Iselin Terrace Larchmont, NY 10538

Crown Castle - Tower Owner

Exhibit A

Original Facility Approval

Myl, Kimberly

From:	Myl, Kimberly
Sent:	Tuesday, May 17, 2016 3:38 PM
То:	'siting.council@ct.gov'
Subject:	150 Mattatuck Heights - Existing Telecommunications Tower Original Zoning Approval

To Whom It May Concern:

Please be advised both the township (email below) and Crown Castle as the tower owner, do not have the original zoning resolution on file. Please use this email as notification to waive this requirement as we will include this and the email from the township within our submission.

Please let me know if you have any questions or need additional information. Thank you in advance.

KIMBERLY MYL Real Estate Specialist T: (201) 236-9069 | M: (201) 993-3697

CROWN CASTLE 1200 MacArthur Blvd, Suite 200 Mahwah, NJ 07430

From: Margaret Rice [mailto:mrice@waterburyct.org] Sent: Tuesday, May 17, 2016 1:03 PM To: Myl, Kimberly Subject: RE: 150 Mattatuck Heights - Existing Telecommunications Tower Original Zoning Approval

Hi Kimberly,

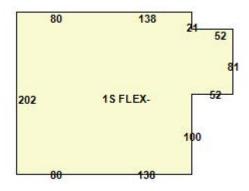
I checked our records and City Clerk's office and could not find anything. I then contacted the Town Clerk and I was told that there might be something on the Land Records and that you would need to contact the Town Clerk for them to do a Title Search. They're phone number is (203) 574-6806.

Cissie Administrative Support Specialist III 203)572-6817 Ext,7296

Exhibit B

Property Card

	Appraised Value	Assessed Value
Total	1,900,000	1,330,000


Owner's Information

Owner's D	ata
-----------	-----

WATERBURY TWIN LLC & 150 MH LLC % LEONARD LINSBKER 12 ISELIN TERRACE LARCHMONT, NY 10538

Building 1

Category:	Industrial	Use:	Industrial - Flex	GLA:	48,248
Stories:	1.00	Construction:	Average	Year Built:	1988
Heating:	Space Heater	Fuel:		Cooling Percent:	0%
Siding:	Brick, Solid	Roof Material:		Beds/Units:	0

Special Features

Sprinklers	48248
------------	-------

Attached Components

Detached Outbuildings

Туре:	Year Built:	Length:	Width:	Area:
Asphalt Paving	1988			46,096
Concrete Paving	1988			40
Concrete Paving	1988			40
Concrete Paving	1996			390
Tanks Tanks	1996			1

Owner History - Sales

Owner Name	Volume	Page	Sale Date	Deed Type	Sale Price
WATERBURY TWIN LLC & 150 MH LLC	4647	0071	05/15/2003	Warranty Sale	\$2,315,000

Building Permits

Permit Number	Permit Type	Date Opened	Reason
2020.0581	Plumbing	03/05/2020	remove old power vent water heater install new water heater
2019.3185	Electrical	11/06/2019	att new walk in cabinet for att equipment. third party for inspection.
2019.1540	Electrical	06/07/2019	install 25kw generator for cell site.
2019.0880	Electrical	04/29/2019	AT&T to install (9) antennaes (12) remote radio units - (3) DC6s (2) fiber cables on existing teleco
2019.0374	Electrical	02/21/2019	Sprint to remove and replace 3 antennas and remove 3 remote radio heads (non-Antenna)
2019.0375	Electrical	02/21/2019	Verizon to remove 9 remote radio heads (non-Antenna) and replace with 6 new remote radio heads.
2018.3410	Electrical	12/05/2018	replace 3 exising antennas & 3 RRU's - repace 1 coax line with 1 hybrid fiber line
2017.1945	Electrical	07/26/2017	VERIZON WIRELESS ANTENNA SWAP
2017.0766	Electrical	03/30/2017	REPLACE 3 ANTENNAS
2016.1412	Electrical	06/13/2016	REMOVE AND REPLACE ANTENNA MOUNT
2015.1784	Electrical	08/31/2015	ADD OUTLET FOR CABLE BOX POWER
2014.0494	Electrical	03/13/2014	UPGRADE TELECOMM CABINETS AT CELL SITE
2014.0271	Electrical	02/10/2014	VERIZON WIRELESS UPGRADE AND ANTENNAE
2013.0461	Comm Renovations	02/23/2013	

Information Published With Permission From The Assessor

77 MAT

0

D LLC TUCK HEIGHTS 141-0041

- 18.14

0424-0141-0001 150 MATTATUCK HEIGHTS WATERBURY TWIN LLC & 150 MH LLC

0,...

12

0448-01 171 MATTAT NEOPER

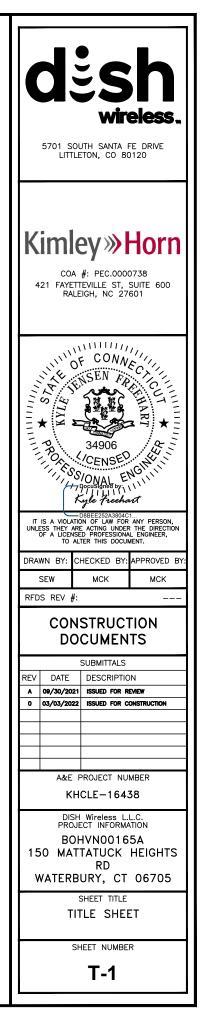
0447-0141-0002 MATTATUCK HEIGHTS DESOMMA ANTHONY

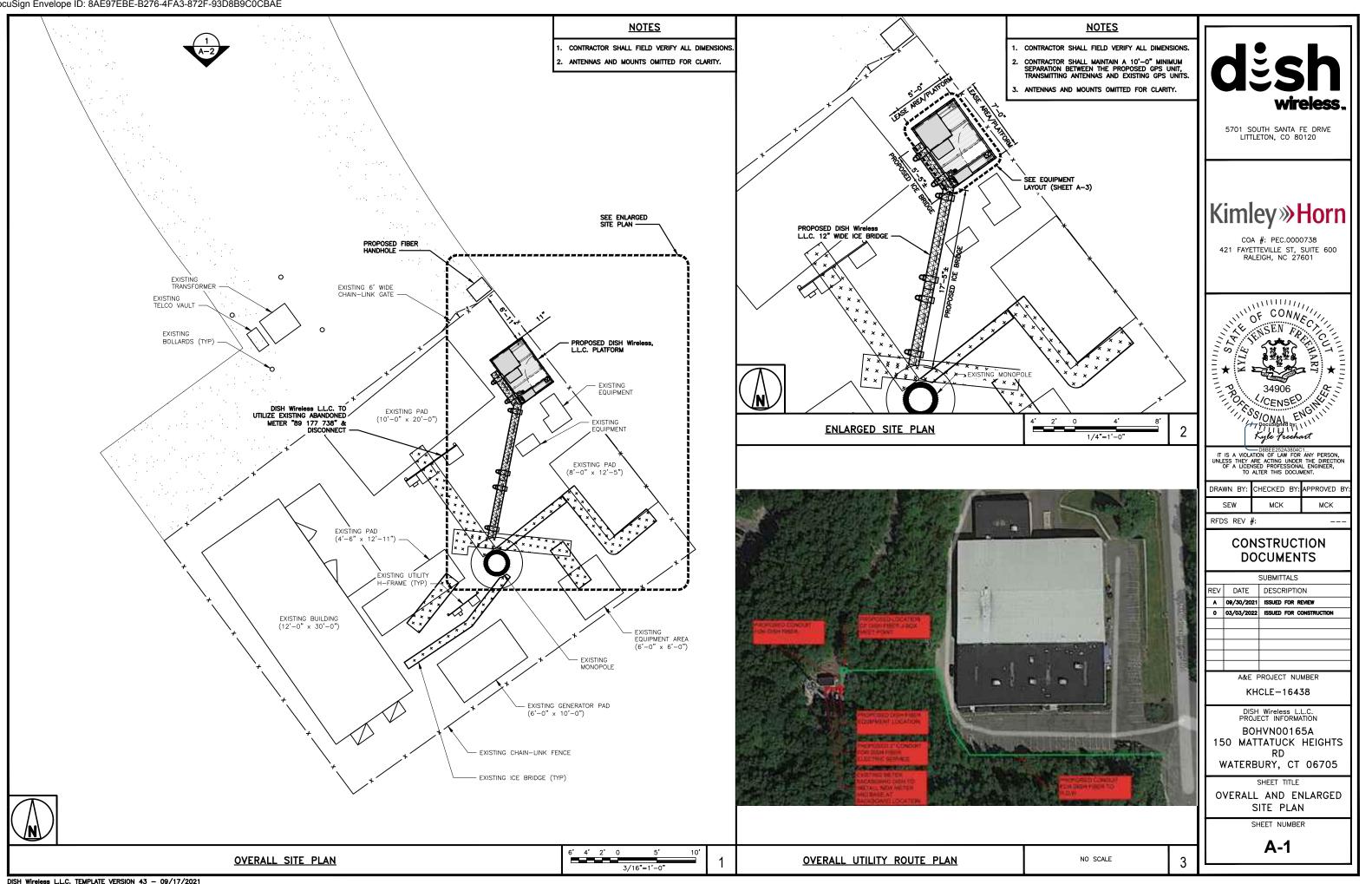
> 8 3

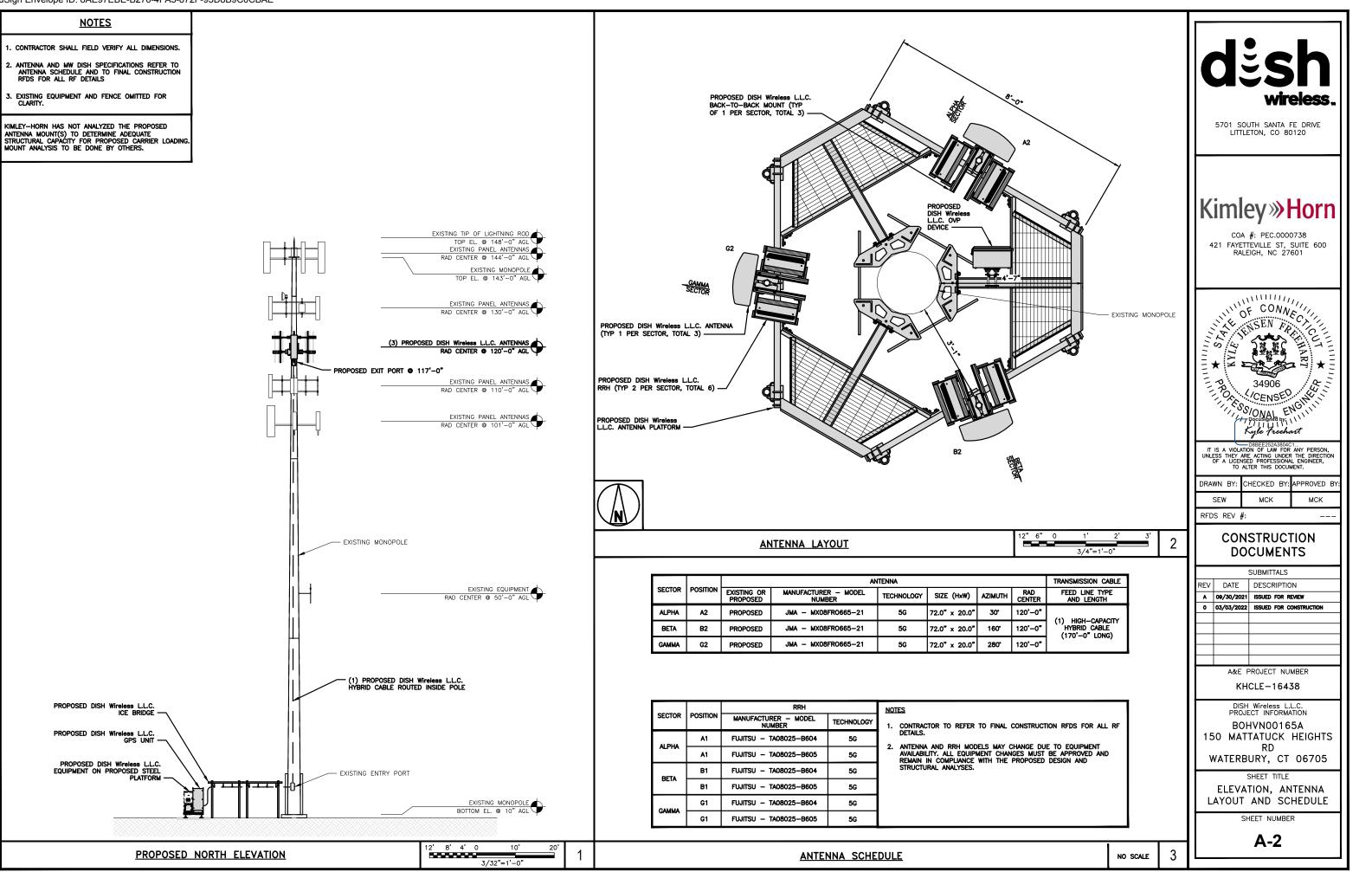
A-0141-0003 TTATUCK HEIGHTS AE REALTY LLC

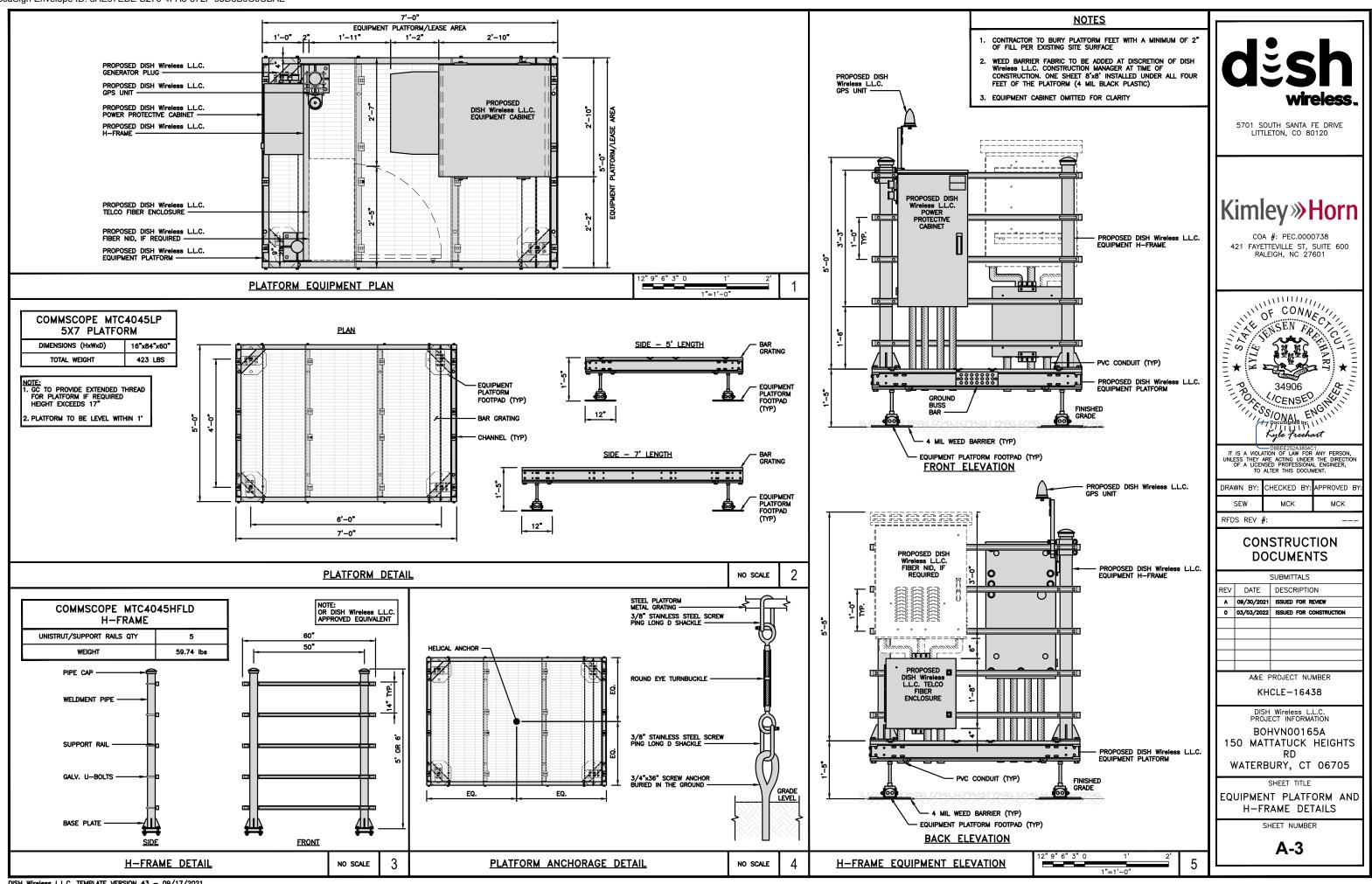
MATTATUCK REIGHTS RD

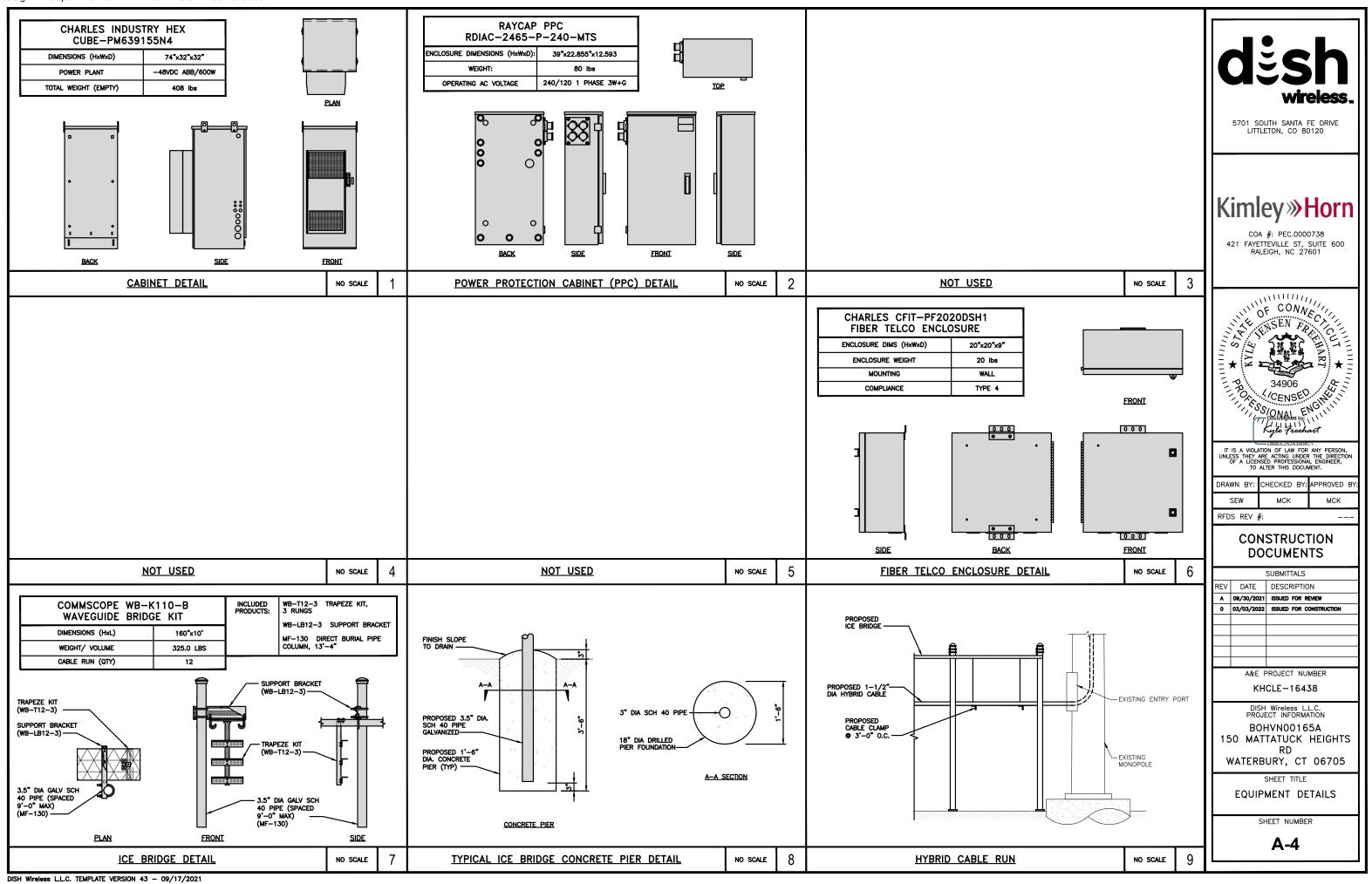
0447-0141-0031 86 STONEFIELD DR P R SCOTT LLC

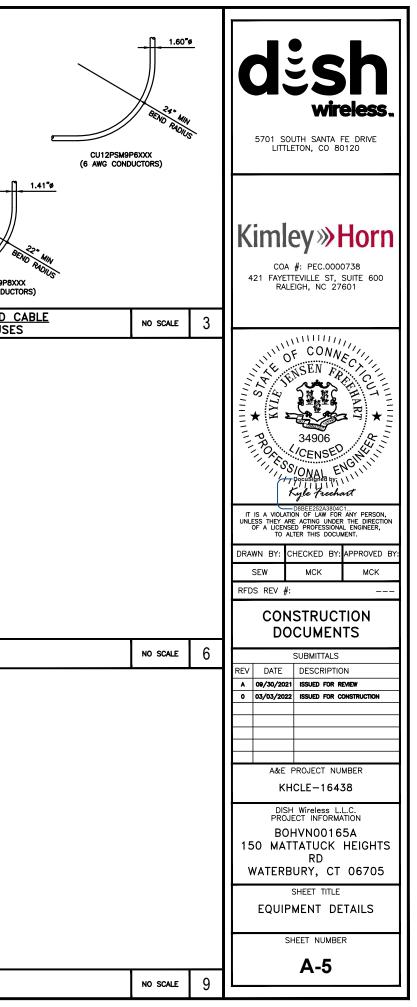

STORETELEDEN LIC

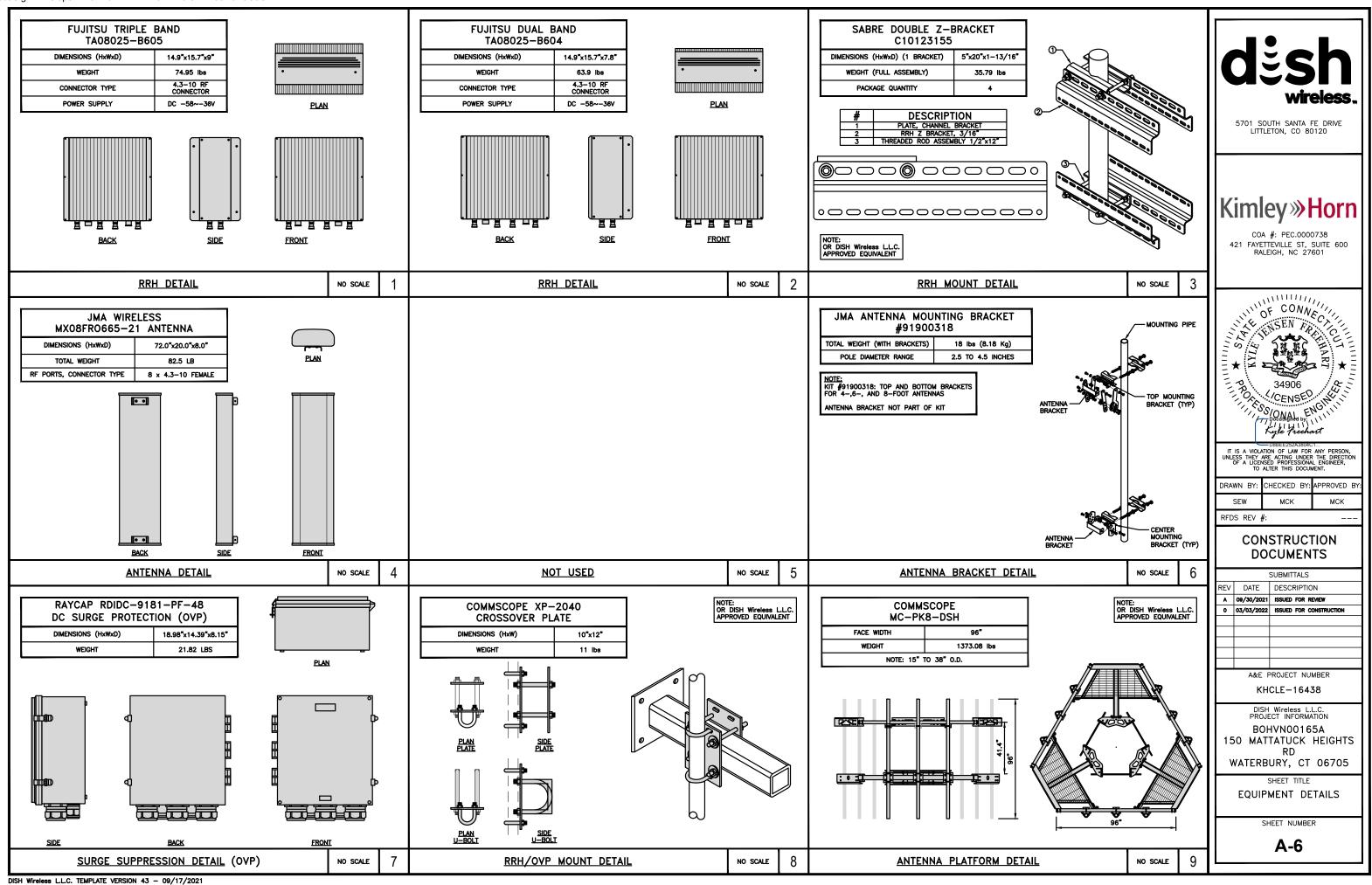

Exhibit C

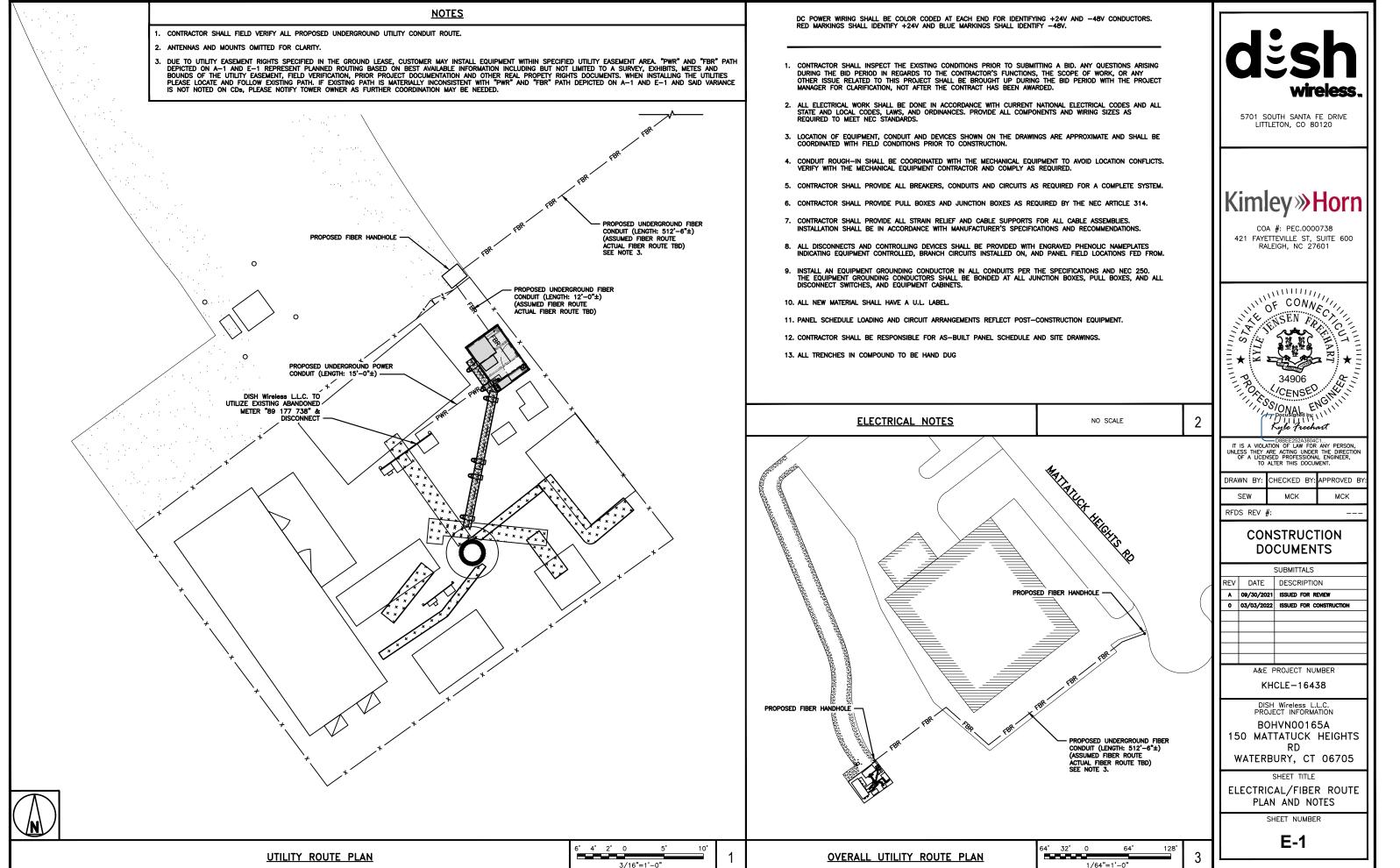

Construction Drawings


APPLICANT:	5701 S	RELESS, LLC. DUTH SANTA FE DRIVE N, CO 80120
TOWER OWNER:	2000 C	CASTLE DRPORATE DRIVE BURG, PA 15317 86–9377
SITE DESIGNER:	3875 El AKRON, (216) 5	HORN & ASSOCIATES WBASSY PKWY, SUITE 280 OH 44333 05-7771 PEC.0000738
SITE ACQUISITION:		VICTOR NUNEZ (917) 563-3682
CONSTRUCTION MANAGER:		JAVIER SOTO JAVIER.SOTO@DISH.COM
RF ENGINEER:		SYED ZAIDI SYED.ZAIDI©DISH.COM

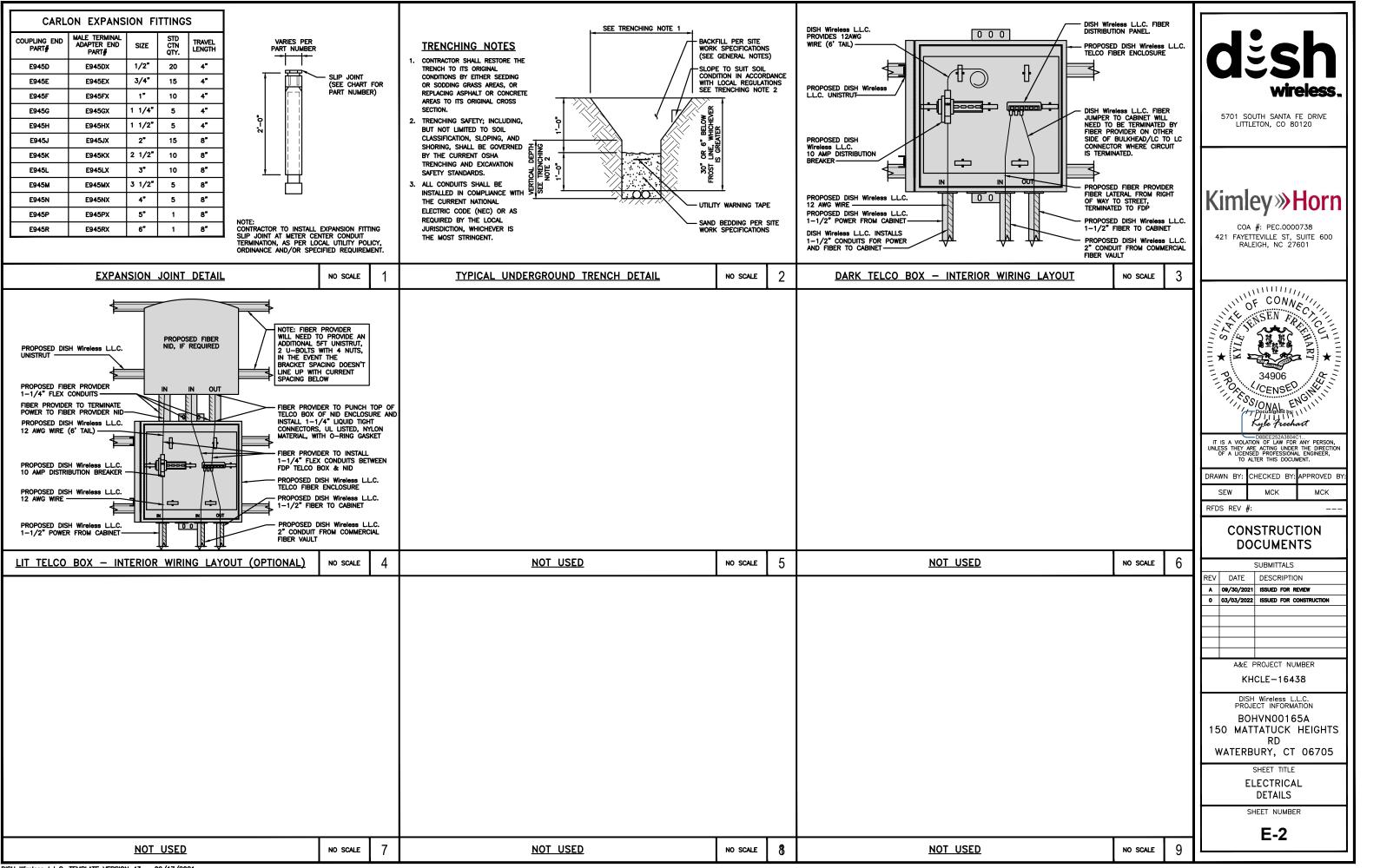


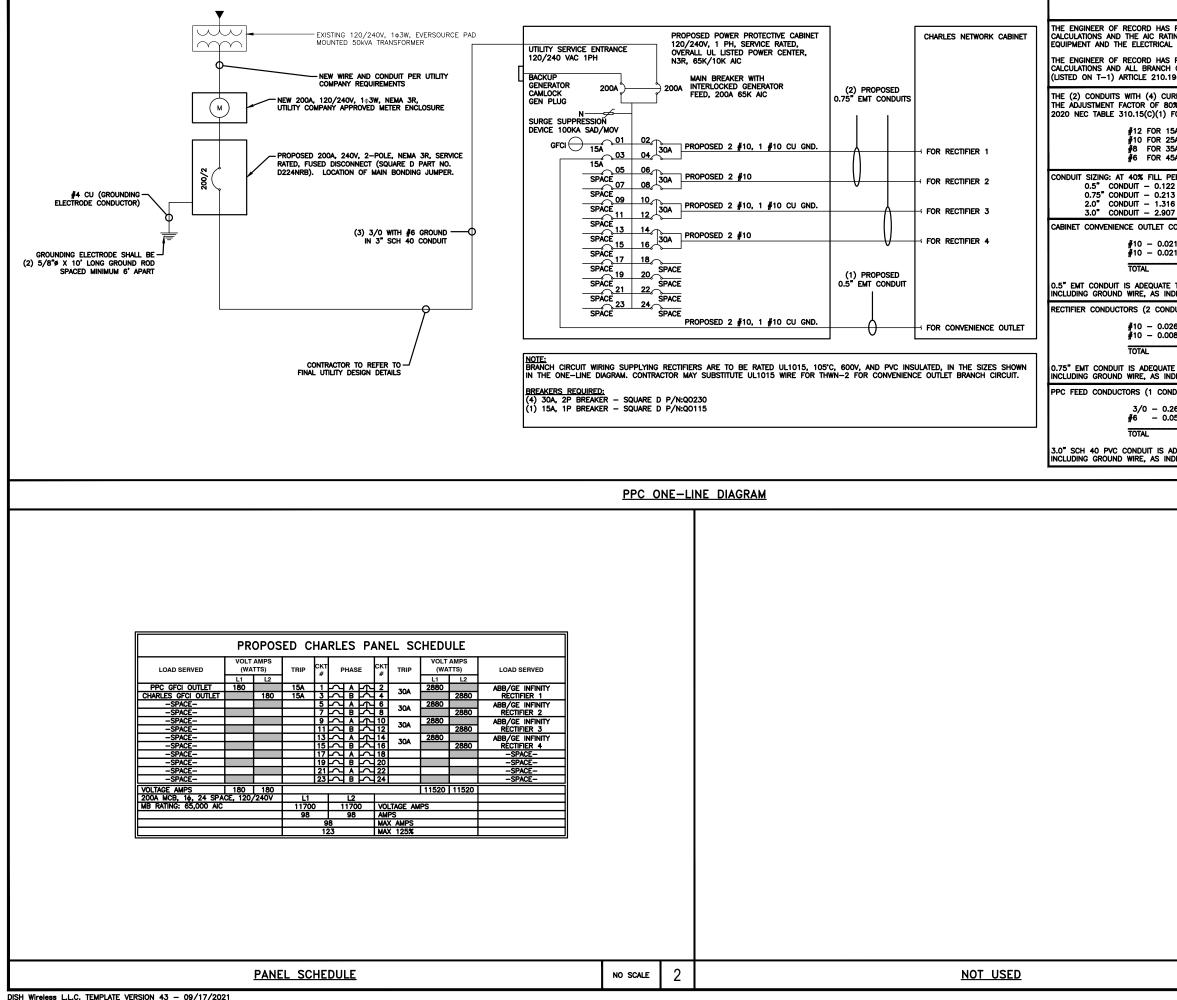

DocuSign Envelope ID: 8AE97EBE-B276-4FA3-872F-93D8B9C0CBAE

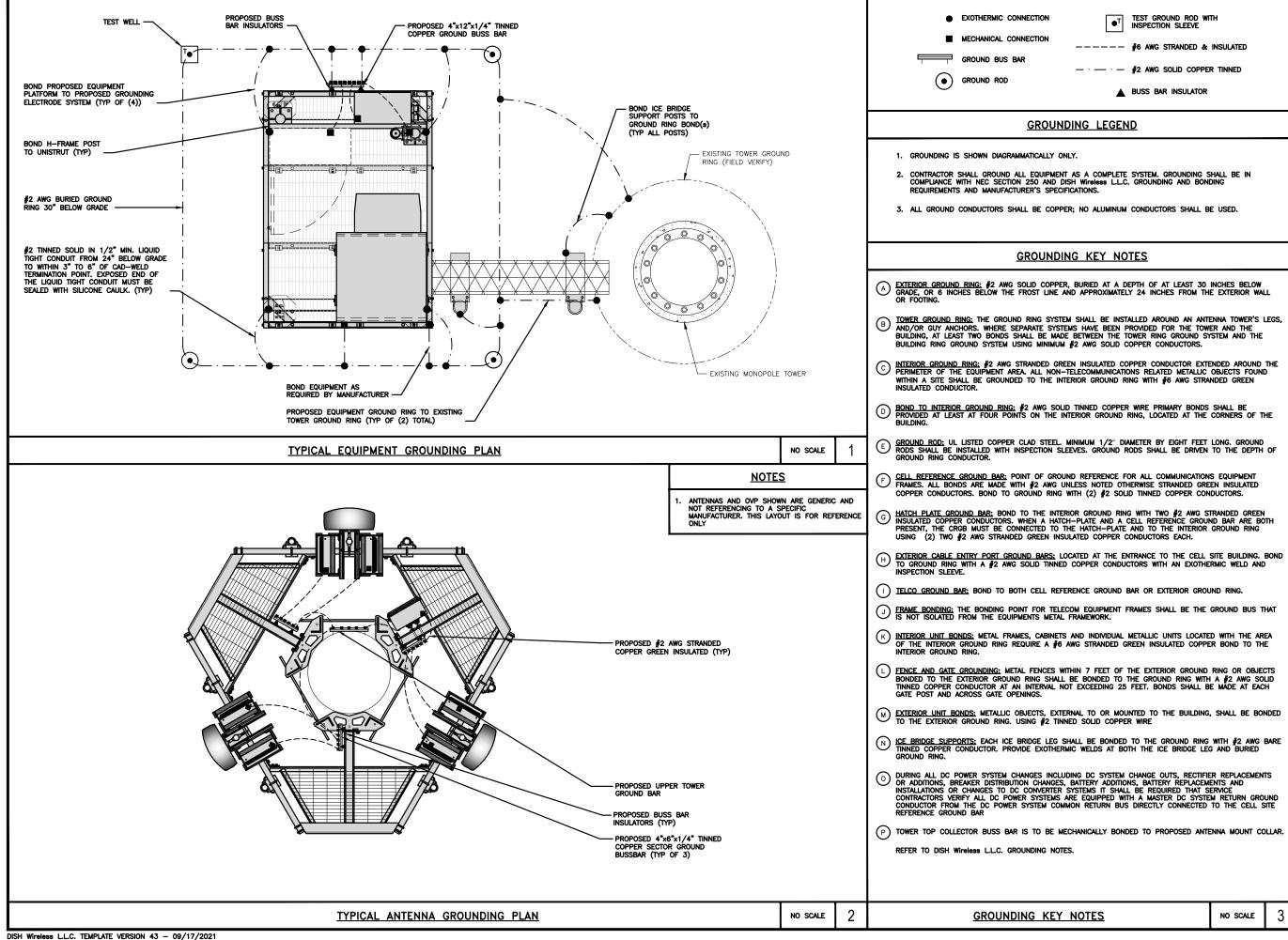


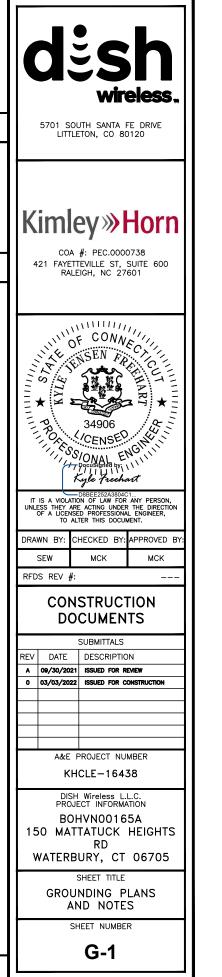


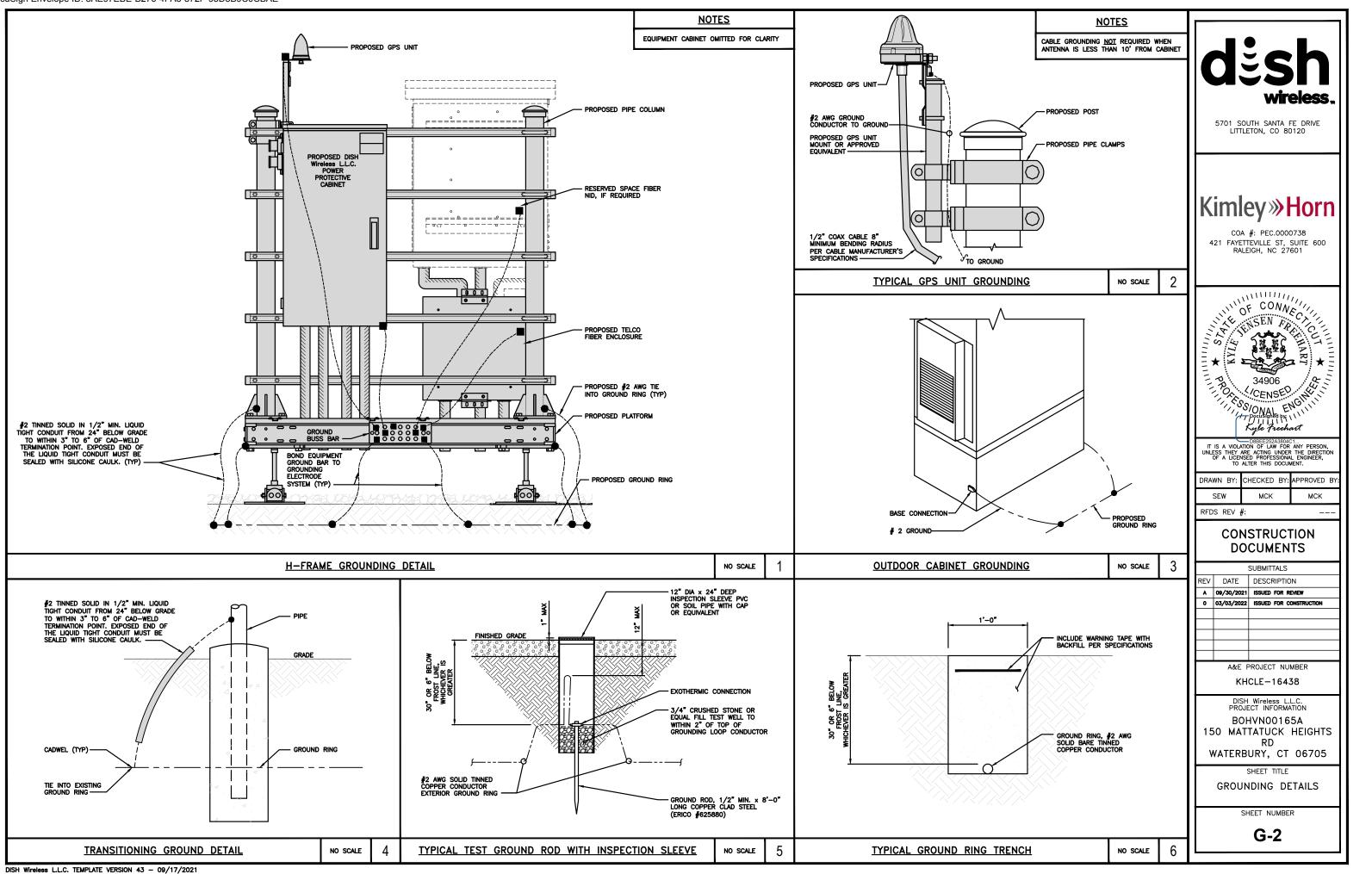
DocuSign Envelope ID: 8AE97EBE-B276-4FA3-872F-93D8B9C0CBAE

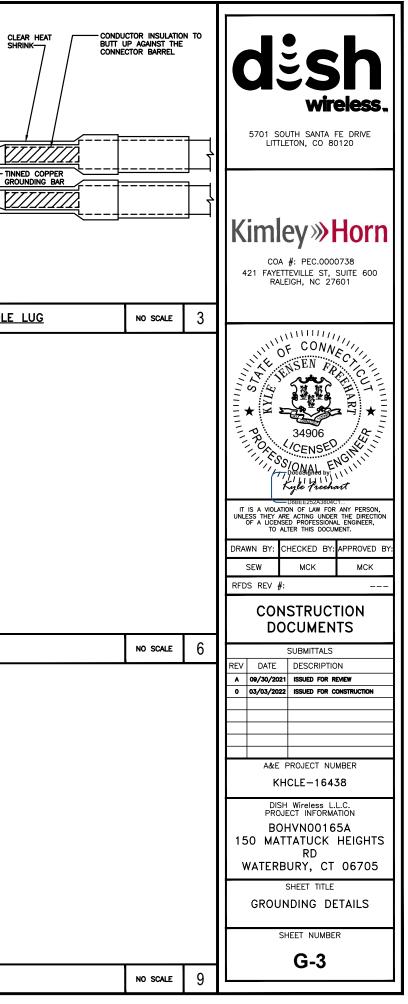

PCTEL DIMENSIONS (DIAXH) MM/INCH 81x184mm 3.2"x7.25" WEIGHT W/ACCESSORIES 075 lbs CONNECTOR N-FEMALE FREQUENCY RANGE 1590 ± 30MHz			MINIMUM OF 75% OR 270° IN ANY DIRECTION GPS GPS UNIT BE BELOW 10° BE BELOW 10°			CU12PSM6P4XXX (4 AWG CONDUCTORS)
<u>GPS_DETAIL</u>	NO SCALE	1	GPS MINIMUM SKY VIEW REQUIREMENTS	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUSE
NOT_USED	NO SCALE	4	NOT_USED	NO SCALE	5	NOT USED
NOT USED	NO SCALE	7	NOT USED	NO SCALE	8	NOT USED
DISH Wireless L.L.C. TEMPLATE VERSION 43 - 09/17/2021					Ē	




DocuSign Envelope ID: 8AE97EBE-B276-4FA3-872F-93D8B9C0CBAE



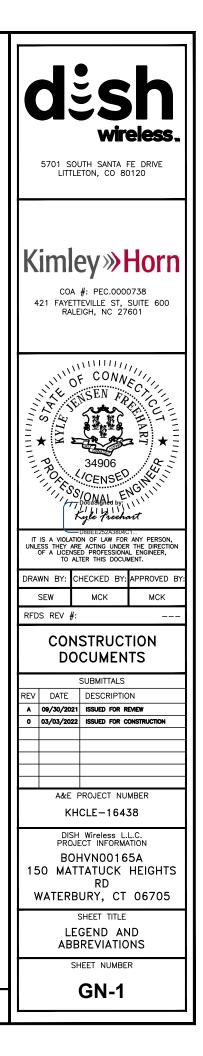

NOTEO		1	
HAS PERFORMED ALL REQUIRED SH RATINGS FOR EACH DEVICE IS ADE ICAL SYSTEM.	QUATE TO PROT	ect the	
HAS PERFORMED ALL REQUIRED VO NCH CIRCUIT AND FEEDERS COMPL' 10.19(A)(1) FPN NO. 4.		;	dish
CURRENT CARRYING CONDUCTORS 80% PER 2014/17 NEC TABLE 3 1) FOR UL1015 WIRE.			wireless
R 15A-20A/1P BREAKER: 0.8 x 3 R 25A-30A/2P BREAKER: 0.8 x 4 R 35A-40A/2P BREAKER: 0.8 x 5 R 45A-60A/2P BREAKER: 0.8 x 7	OA = 32.0A 5A = 44.0A		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
L PER NEC CHAPTER 9, TABLE 4, 0.122 SQ. IN AREA 0.213 SQ. IN AREA 0.316 SQ. IN AREA 0.907 SQ. IN AREA	ARTICLE 358.		
ET CONDUCTORS (1 CONDUIT): USI	NG THWN-2, CU		Kimley Horn
0.0211 SQ. IN X 2 = 0.0422 SQ. 0.0211 SQ. IN X 1 = 0.0211 SQ.			-
= 0.0633 SQ.			COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600
ATE TO HANDLE THE TOTAL OF (3) INDICATED ABOVE.) WIRES,		RALEIGH, NC 27601
CONDUITS): USING UL1015, CU.			
0.0266 SQ. IN X 4 = 0.1064 SQ. 0.0082 SQ. IN X 1 = 0.0082 SQ.			
= 0.1146 SQ.			OF CONNE
UATE TO HANDLE THE TOTAL OF (INDICATED ABOVE.	5) WIRES,		NECHTINE CHI
CONDUIT): USING THWN, CU.			
0.2679 SQ. IN X 3 = 0.8037 SC	2. IN		T IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION
0.0507 SQ. IN X 1 = 0.0507 SQ $= 0.8544 SQ$			1 PR 34906
IS ADEQUATE TO HANDLE THE TOTA		i,	CENSED IN
INDICATED ABOVE.			T Docusined by
	NO SCALE	1	Kyle Freehart
	SUALE		DISEE252A3804C1 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY:
			SEW MCK MCK
			RFDS REV #:
			CONSTRUCTION DOCUMENTS
			SUBMITTALS
			REV DATE DESCRIPTION
			A 09/30/2021 ISSUED FOR REVIEW 0 03/03/2022 ISSUED FOR CONSTRUCTION
			A&E PROJECT NUMBER
			KHCLE-16438
			DISH Wireless L.L.C. PROJECT INFORMATION
			BOHVN00165A
			150 MATTATUCK HEIGHTS RD
			WATERBURY, CT 06705
			SHEET TITLE
			ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
			SHEET NUMBER
			E-3
	NO SCALE	3	



<u> </u>	NO SCALE	3
----------	----------	---

Г

 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO G BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BU THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	LARGER. ES WITH MPOUND NDUCTOR OLTED ON STOR.		TOOTHED EXTERIOR TWO-HOLE SHRINK IV / BUTT	UCTOR INSULATIO		EXTERNAL INSPECTION WINDOW IN BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE CONNECTORS S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING
TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HO
	WASHER (TYP) VASHER (TYP)					
LUG DETAIL	NO SCALE	4	NOT USED	NO SCALE	5	NOT USED
	L	I		, ,	L	
<u>NOT_USED</u>	NO SCALE	7	<u>NOT_USED</u>	NO SCALE	8	<u>NOT USED</u>



RF JUMPER COLOR CODING		3/4" TAPE WIDTHS WITH 3/4" SPA	CING			
LOW-BAND RRH - (600MHz N71 BASEBAND) + (850MHz N26 BAND) + (700MHz N29 BAND) - OPTIONAL PER MARKET ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	RED RED RED R	LANT + SLANT - SLANT + SLANT ED BLUE BLUE BLUE ED ORANGE ORANGE BLUE NGE VHITE ORANGE	- SLANT + SLANT - : BLUE GREEN GR BLUE ORANGE OR	CAMMA RRH IRT 2 PORT 3 PORT 4 SLANT + SLANT - SLANT REEN GREEN GREEN ANGE GREEN GREEN HITE ORANGE ORANGE PORT ORANGE WHITE (-) PORT		LOW BANDS (N71+N26) OPTIONAL - (N29) ORANGE CBRS TECH (3 GHz) YELLOW
MID-BAND RRH - (AWS BANDS N66+N70) ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	PURPLE PURPLE RED RUNNER		BLUE PURPLE PU	REEN GREEN GREEN RPLE GREEN GREEN HITE PORT PURPLE PURPLE WHITE (-) PORT		ALPHA SECTOR RED COLOR IDENTIFIER
HYBRID/DISCREET CABLES	EXAMPLE 1 EXAMPLE 2	EXAMPLE 3				
INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS	RED RED BLUE BLUE GREEN GREEN ORANGE YELLOW PURPLE YELLOW	RED ORANGE PURPLE				
	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH	HIGH BAND RRH		
FIBER JUMPERS TO RRHS LOW-BAND RRH FIBER CABLES HAVE SECTOR STRIPE ONLY	RED RED PURPLE	BLUE BLUE PURPLE	GREEN	GREEN PURPLE		
POWER CABLES TO RRHs	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH	HIGH BAND RRH		
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED RED	BLUE BLUE	GREEN	GREEN		
	PURPLE	PURPLE		PURPLE		NOT USED
RET MOTORS AT ANTENNAS	ANTENNA 1 ANTENNA 1 LOW BAND/ HIGH BAND/ "IN" "IN" RED RED PURPLE	ANTENNA 1 ANTENNA 1 LOW BAND/ HIGH BAND/ "IN" BLUE BLUE PURPLE		ANTENNA 1 IIGH BAND/ "IN" GREEN PURPLE		
MICROWAVE RADIO LINKS	FORWARD AZIMUTH OF 0-120 DEGREES	TORWARD AZIMUTH OF 120–240 DEGREES	FORWARD AZIMUTH OF 2	240–360 DEGREES		
LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO. MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S	PRIMARY SECONDARY	PRIMARY SECONDARY WHITE WHITE BLUE BLUE WHITE WHITE WHITE WHITE WHITE WHITE	PRIMARY S WHITE GREEN WHITE	Secondary White GREEN WHITE GREEN WHITE		
				1	· · · · · · · · · · · · · · · · · · ·	

NO SCALE	(N66+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANT/RRH	_	5701 SOUTH SANTA FE DRIVE
NO SCALE NO SCALE NO SCALE SUBMITIALS REV DATE PROJECT NUMBER KHCLE-16438 DISH WIRELESS LLC. PROJECT NUMBER KHCLE-16438 DISH WIRELESS LLC. PROJECT TITLE RF			COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600
NO SCALE NO SCALE NO SCALE SUBMITIALS REV DATE PROJECT NUMBER KHCLE-16438 DISH WIRELESS LLC. PROJECT NUMBER KHCLE-16438 DISH WIRELESS LLC. PROJECT TITLE RF	NO SCALE	2	
NO SCALE 3 SUBMITTALS REV DATE DESCRIPTION A 09/30/2021 ISSUED FOR REVIEW 0 03/03/2022 ISSUED FOR CONSTRUCTION Added PROJECT NUMBER KHCLE-16438 DISH Wireless L.L.C. PROJECT INFORMATION BOHVN00165A 150 MATTATUCK HEIGHTS RD WATERBURY, CT 06705 SHEET TITLE RF		1	Ad906 SOUNAL
REV DATE DESCRIPTION A 09/30/2021 ISSUED FOR REMEW 0 03/03/2022 ISSUED FOR CONSTRUCTION - - - <th></th> <th>2</th> <th></th>		2	
SHEET NUMBER		<u> </u>	REV DATE DESCRIPTION A 09/30/2021 ISSUED FOR REVIEW 0 03/03/2022 ISSUED FOR CONSTRUCTION 0 03/03/2022 ISSUED FOR CONSTRUCTION 0 04/03/2022 ISSUED FOR CONSTRUCTION 0 04/03/2022 ISSUED FOR CONSTRUCTION 0 04/03/2022 ISSUED FOR CONSTRUCTION 0 04/04/04 04/04/04 0 04/04/04 04/04/04 0 04/04/04 04/04/04 0 04/04/04 04/04/04 0 04/04/04 04/04/04 0 04/04/04 04/04/04 0 04/04/04 04/04/04 0 06/04/04 04/04/04 0 06/04/04 04/04/04 0 06/04/04 04/04/04 0 06/04/04 04/04/04 0 06/04/04 04/04/04 0 06/04/04 06/04/04 0 06/04/04 06/04/04 0 06/04/04 06/04/04 0 06/04/04 06/04/04 <
NO SCALE 4	NO SCALE	4	

Doc	uSign Envelope ID: 8AE97EBE-B276-4FA3-872F-93D8B9C0CBAE	
	EXOTHERMIC CONNECTION	•
	MECHANICAL CONNECTION	
	BUSS BAR INSULATOR	

		AB	ANCHOR BOLT	IN	INCH
EXOTHERMIC CONNECTION	•	ABV	ABOVE	INT	INTERIOR
MECHANICAL CONNECTION	•	AC	ALTERNATING CURRENT	LB(S)	POUND(S)
BUSS BAR INSULATOR		ADDL AFF	ADDITIONAL ABOVE FINISHED FLOOR	LF	LINEAR FEET
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	•	AFG	ABOVE FINISHED GRADE	LTE MAS	LONG TERM EVOLUTION MASONRY
TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	€T	AGL	ABOVE GROUND LEVEL	MAX	MAXIMUM
EXOTHERMIC WITH INSPECTION SLEEVE		AIC	AMPERAGE INTERRUPTION CAPACITY	MB	MACHINE BOLT
GROUNDING BAR		ALUM ALT	ALUMINUM ALTERNATE	MECH MFR	MECHANICAL MANUFACTURER
GROUND ROD	ı –●	ANT	ANTENNA	MGB	MASTER GROUND BAR
TEST GROUND ROD WITH INSPECTION SLEEVE	ı ⊢⊕ ⊤	APPROX		MIN	MINIMUM
		ARCH	ARCHITECTURAL AUTOMATIC TRANSFER SWITCH	MISC	MISCELLANEOUS
SINGLE POLE SWITCH	\$	ATS AWG	AMERICAN WIRE GAUGE	MTL MTS	METAL MANUAL TRANSFER SWITCH
DUPLEX RECEPTACLE	Ж	BATT	BATTERY	MW	MICROWAVE
	Ψ_{μ}	BLDG	BUILDING	NEC	NATIONAL ELECTRIC CODE
DUPLEX GFCI RECEPTACLE	· · · · · · · · · · · · · · · · · · ·	BLK BLKG	BLOCK BLOCKING	NM	NEWTON METERS
FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48		BM	BEAM	NO. #	NUMBER NUMBER
	-10 F LJ	BTC	BARE TINNED COPPER CONDUCTOR	# NTS	NOT TO SCALE
SMOKE DETECTION (DC)	SD	BOF	BOTTOM OF FOOTING	oc	ON-CENTER
	\bigcirc	CAB CANT	CABINET CANTILEVERED	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
EMERGENCY LIGHTING (DC)		CHG	CHARGING	OPNG P/C	OPENING PRECAST CONCRETE
SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW		CLG	CEILING	PCS	PERSONAL COMMUNICATION SERVICES
LED-1-25A400/51K-SR4-120-PE-DDBTXD		CLR	CLEAR	PCU	PRIMARY CONTROL UNIT
CHAIN LINK FENCE	x x x x	COL COMM	COLUMN COMMON	PRC	PRIMARY RADIO CABINET
WOOD/WROUGHT IRON FENCE	-00000	CONC	CONCRETE	PP PSF	POLARIZING PRESERVING POUNDS PER SQUARE FOOT
WALL STRUCTURE		CONSTR		PSI	POUNDS PER SQUARE INCH
LEASE AREA		DBL DC	DOUBLE DIRECT CURRENT	PT	PRESSURE TREATED
PROPERTY LINE (PL)		DEPT	DEPARTMENT	PWR	POWER CABINET
SETBACKS		DF	DOUGLAS FIR	QTY RAD	QUANTITY RADIUS
ICE BRIDGE		DIA	DIAMETER	RECT	RECTIFIER
CABLE TRAY		DIAG DIM	DIAGONAL DIMENSION	REF	REFERENCE
WATER LINE	w w w w w	DWG	DRAWING	REINF	REINFORCEMENT
UNDERGROUND POWER		DWL	DOWEL	REQ'D RET	REQUIRED REMOTE ELECTRIC TILT
		EA	EACH	RF	RADIO FREQUENCY
	UGT UGT UGT	EC EL.	ELECTRICAL CONDUCTOR ELEVATION	RMC	RIGID METALLIC CONDUIT
OVERHEAD POWER	OHP OHP OHP	ELEC	ELECTRICAL	RRH	REMOTE RADIO HEAD
OVERHEAD TELCO	онт ——— онт ———— онт ————	EMT	ELECTRICAL METALLIC TUBING	RRU RWY	REMOTE RADIO UNIT RACEWAY
UNDERGROUND TELCO/POWER	UGT/P UGT/P UGT/P	ENG EQ	ENGINEER EQUAL	SCH	SCHEDULE
ABOVE GROUND POWER	AGP AGP AGP AGP	EXP	EXPANSION	SHT	SHEET
ABOVE GROUND TELCO	AGT AGT AGT	EXT	EXTERIOR	SIAD SIM	SMART INTEGRATED ACCESS DEVICE SIMILAR
ABOVE GROUND TELCO/POWER	AGT/P AGT/P AGT/P	EW	EACH WAY	SPEC	SPECIFICATION
WORKPOINT	W.P.	FAB FF	FABRICATION FINISH FLOOR	SQ	SQUARE
	XX	FG	FINISH GRADE	SS	STAINLESS STEEL
SECTION REFERENCE	x-x	FIF	FACILITY INTERFACE FRAME	STD STL	STANDARD STEEL
	_	FIN	FINISH(ED)	TEMP	TEMPORARY
	XX	FLR FDN	FLOOR FOUNDATION	ТНК	THICKNESS
DETAIL REFERENCE	X-X	FOC	FACE OF CONCRETE	TMA TN	TOWER MOUNTED AMPLIFIER TOE NAIL
		FOM	FACE OF MASONRY	TOA	TOP OF ANTENNA
		FOS	FACE OF STUD	тос	TOP OF CURB
		FOW FS	FACE OF WALL FINISH SURFACE	TOF	
		FT	FOOT	TOP TOS	TOP OF PLATE (PARAPET) TOP OF STEEL
		FTG	FOOTING	TOW	TOP OF WALL
		GA GEN	GAUGE GENERATOR	TVSS	TRANSIENT VOLTAGE SURGE SUPPRESSION
		GFCI	GROUND FAULT CIRCUIT INTERRUPTER	TYP	
		GLB	GLUE LAMINATED BEAM	UG UL	UNDERGROUND UNDERWRITERS LABORATORY
		GLV GPS	GALVANIZED GLOBAL POSITIONING SYSTEM	UNO	UNLESS NOTED OTHERWISE
		GPS GND	GLUBAL POSITIONING STSTEM GROUND	UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
		GSM	GLOBAL SYSTEM FOR MOBILE	UPS	UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
		HDG	HOT DIPPED GALVANIZED	VIF W	verified in field Wide
		HDR HGR	HEADER HANGER	w/	WITH
		HUAC	HANGER HEAT/VENTILATION/AIR CONDITIONING	WD	WOOD
		нт	HEIGHT	WP	WEATHERPROOF
		IGR	INTERIOR GROUND RING	WT	WEIGHT
	LEGEND				ABBREVIATIONS
	<u></u>				

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRERS LL.C. AND DISH WIREISS L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIREISS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELS LLC. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

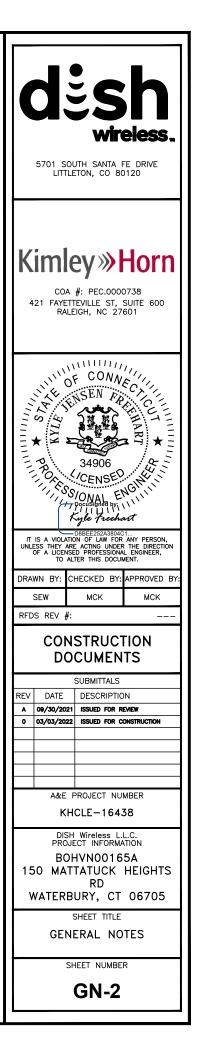
5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.


10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (I'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO 3. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6. DRAWINGS:

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

TIE WRAPS ARE NOT ALLOWED.

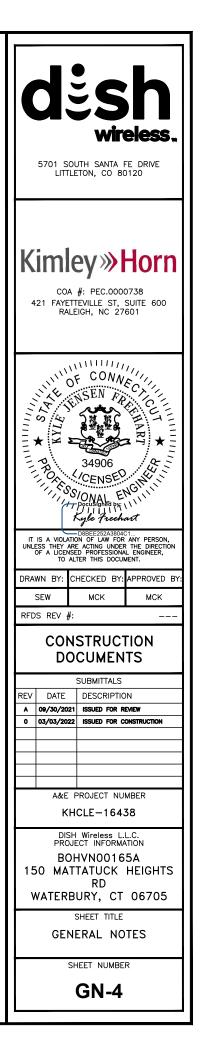
ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN- THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH 12 TYPE THHW. THWN. THWN-2, XHHW. XHHW-2, THW. THW-2, RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).


RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE Kimley »Horn COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. RALEIGH, NC 27601 EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET OF CONNEC METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR JE CU. × 87471 NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND VEFR PROK 34906 THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE (CENSED SSIONAL ENTIN THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIC OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY SFW MCK MCK RFDS REV # ___ CONSTRUCTION DOCUMENTS SUBMITTALS RFV DATE DESCRIPTION A 09/30/2021 ISSUED FOR REVIEW 0 03/03/2022 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER KHCLE-16438 DISH Wireless L.L.C. PROJECT INFORMATION BOHVN00165A **150 MATTATUCK HEIGHTS** RD WATERBURY, CT 06705 SHEET TITLE GENERAL NOTES SHEET NUMBER GN-3

16. 17. GRADE PVC CONDUIT. 18. OCCURS OR FLEXIBILITY IS NEEDED. 19. SCREW FITTINGS ARE NOT ACCEPTABLE. 20. NEC. 21 (WIREMOLD SPECMATE WIREWAY). 22. 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED 24. STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. 25. EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. 28 WITH 29. 30.

GROUNDING NOTES: ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS 5. WITH GREEN INSULATION. SIZED IN ACCORDANCE WITH THE NEC. SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED. 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. USE OF 90" BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45" BENDS CAN BE ADEQUATELY 10. SUPPORTED. 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. 13. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND 15. CONNECTIONS. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. 16. 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND 18. CONDUCTOR. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED 19. THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT. 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL). BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE 21. TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM. THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

DocuSign

Certificate Of Completion

Envelope Id: 8AE97EBEB2764FA3872F93D8B9C0CBAE Subject: Please DocuSign: BOHVN00165A_FCD_REV 0_03.03.2022_sealed.pdf Source Envelope: Document Pages: 18 Signatures: 18 Certificate Pages: 1 Initials: 0 AutoNav: Enabled EnvelopeId Stamping: Enabled Time Zone: (UTC-05:00) Eastern Time (US & Canada)

Record Tracking

Status: Original 3/7/2022 10:06:28 AM

Signer Events

Kyle Freehart kyle.freehart@kimley-horn.com Kimley-Horn Security Level: Email, Account Authentication (None)

Electronic Record and Signature Disclosure: Not Offered via DocuSign

Holder: Manuel JaraPerez

Manuel.JaraPerez@kimley-horn.com

Signature

DocuSigned by: Kyle Freehart D8BEE252A3804C1...

Signature Adoption: Pre-selected Style Using IP Address: 208.127.231.172

Status: Completed

Envelope Originator: Manuel JaraPerez 401 Fayetteville St. Suite 600 Raleigh, NC 27601 Manuel.JaraPerez@kimley-horn.com IP Address: 208.127.231.172

Location: DocuSign

Timestamp

Sent: 3/7/2022 10:11:50 AM Viewed: 3/7/2022 11:15:25 AM Signed: 3/7/2022 11:16:16 AM

Payment Events	Status	Timestamps
Completed	Security Checked	3/7/2022 11:16:16 AM
Signing Complete	Security Checked	3/7/2022 11:16:16 AM
Certified Delivered	Security Checked	3/7/2022 11:15:25 AM
Envelope Sent	Hashed/Encrypted	3/7/2022 10:11:50 AM
Envelope Summary Events	Status	Timestamps
Notary Events	Signature	Timestamp
Witness Events	Signature	Timestamp
Carbon Copy Events	Status	Timestamp
Certified Delivery Events	Status	Timestamp
Intermediary Delivery Events	Status	Timestamp
Agent Delivery Events	Status	Timestamp
Editor Delivery Events	Status	Timestamp
In Person Signer Events	Signature	Timestamp

Exhibit D

Structural Analysis Report

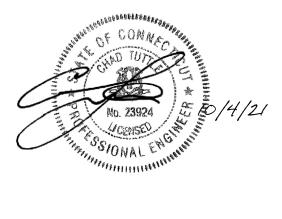
Date: October 04, 2021

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630

Subject:	Structural Analysis Report		
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number: Site Name:	BOHVN00165A CT-CCI-T-876317	
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	876317 Waterbury 645174 2028458 553382 Rev. 2	
Engineering Firm Designation:	B+T Group Project Number:	79982.004.01	
Site Data:	150 Mattatuck Heights, Waterbury, New Haven County, CT Latitude <i>41° 32' 16.3"</i> , Longitude <i>-</i> 72° <i>59' 6.1"</i> 144.25 Foot - Monopole Tower		

B+T Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:


LC7: Proposed Equipment Configuration

Sufficient Capacity – 93.8%

This analysis utilizes an ultimate 3-second gust wind speed of 118 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Erik Perez

Respectfully submitted by: B+T Engineering, Inc. COA: PEC.0001564; Expires: 02/10/2022

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Component Stresses vs. Capacity – LC7 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 134.25 ft. Monopole tower designed by Valmont. A 10-ft tower extension has been considered in this analysis, bringing the total tower height to 144.25 ft.

The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	118 mph
Exposure Category:	B
Topographic Factor:	1
Ice Thickness:	1 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	Fujitsu	TA08025-B604		
		3	Fujitsu	TA08025-B605		
120.0	120.0	3	JMA Wireless	MX08FRO665-21	1	1-1/2
		1	Raycap	RDIDC-9181-PF-48		
		1		Commscope MC-PK8-DSH (1)		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	144.0	1	Site Pro 1	F3P-12W		
	144.0	1		Miscellaneous [NA 507-1]		
		3	CCI Antennas	HPA65R-BU8A		
		3	Ericsson	RADIO 4415 B30		0/4
144.0		3	Ericsson	RRUS 4449 B5/B12	6	3/4 3/8
	143.0	3	Ericsson	RRUS 4478 B14	<u> </u>	5/0
		3	Ericsson	RRUS 8843 B2/B66A		
		6	KMW Comm.	EPBQ-654L8H8-L2		
		3	Raycap	DC6-48-60-18-8F		
	133.0	1	Andrew	VHLP2-18		
	133.0	2	Andrew	VHLP2-23	-	
		3	Alcatel Lucent	1900MHZ RRH (65MHZ)	-	
120.0	130.0	3	Alcatel Lucent	800 EXTERNAL NOTCH FILTER	3	1-1/4
130.0		3	Alcatel Lucent	800MHZ RRH	1	Elliptical 1-1/2
		3	Nokia	AAHC	•	
		4	RFS Celwave	APXVSPP18-C-A20	1	
		4	RFS Celwave	IBC1900HB-2	<u> </u>	

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		2	RFS Celwave	PD2DE-700/2700		
		1		Pipe Mount [PM 601-3]		
		1		Platform Mount [LP 602-1]		
	128.0	3	Alcatel Lucent	1900MHZ RRH (65MHZ)		
	113.0	1	Trimble	BULLET III		
		3	Andrew	SBNHH-1D65B		
		3	Antel	BXA-80063/4CF	-	
		1	Raycap	RVZDC-6627-PF-48		
110.0	110.0	3	Samsung Telecom.	RFV01U-D1A	6 2	1-5/8 1-1/4
	110.0	3	Samsung Telecom.	RFV01U-D2A	1	1/2
		1		PLK5 Kicker Kit	_	
		1		Platform Mount [LP 602-1]		
		3	Vzw	Sub6 Antenna - VZS01		
	103.0	3	Ericsson	RADIO 4449 B12/B71		
		3	Ericsson	AIR -32 B2A/B66AA	6	1-1/4
100.0	101.0	3	Ericsson	AIR 21 B2A/B4P	5	7/8
100.0		3	RFS Celwave	APXVAARR24_43-U-NA20	2	1-1/2
		3	RFS Celwave	ATMAA1412D-1A20	1	1-5/8
	100.0	1		Platform Mount [LP 303-1]		
50.0	51.0	1	Lucent	KS24019-L112A	- 1	1/0
50.0	50.0	1		Side Arm Mount [SO 701-1]		1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
Tower Manufacturer Drawing	1530953	CCI Sites
Mount Analysis Report	9974866	CCI Sites
Tower Modification Drawing	2381113	CCI Sites
Post Modification Inspection	2381112	CCI Sites
Tower Modification Drawing	3315244	CCI Sites
Post Modification Inspection	3770745	CCI Sites
Tower Modification Drawing	8142142	CCI Sites
Post Modification Inspection	8624542	CCI Sites
Foundation Drawing	1630930	CCI Sites
Geotech Report	1529737	CCI Sites
Crown CAD Package	Date: 09/30/2021	CCI Sites

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

- 1) The tower and structures were maintained in accordance with the TIA-222 standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	144.25 - 139.25	Pole	TP12.75x12.75x0.375	1	-4.510		12.5	Pass
L2	139.25 - 134.75	Pole	TP12.75x12.75x0.375	2	-4.793		25.8	Pass
L3	134.75 - 134.25	Pole	TP13.48x13.48x0.375	3	-4.828		24.4	Pass
L4	134.25 - 129.25	Pole	TP14.466x13.48x0.1875	4	-8.608		49.1	Pass
L5	129.25 - 124.25	Pole	TP15.452x14.466x0.1875	5	-8.883		67.9	Pass
L6	124.25 - 123.42	Pole	TP15.616x15.452x0.1875	6	-8.944		70.7	Pass
L7	123.42 - 123.17	Pole + Reinf.	TP15.665x15.616x0.5375	7	-8.982		46.1	Pass
L8	123.17 - 118.17	Pole + Reinf.	TP16.651x15.665x0.5125	8	-12.422		59 <u>.</u> 2	Pass
L9	118.17 - 113.17	Pole + Reinf.	TP17.637x16.651x0.4875	9	-13.025		72.5	Pass
L10	113.17 - 109.5	Pole + Reinf.	TP18.36x17.637x0.475	10	-16.653		81.9	Pass
L11	109.5 - 109.25	Pole + Reinf.	TP18.409x18.36x0.5875	11	-16.708		69.0	Pass
L12	109.25 - 104.75	Pole + Reinf.	TP19.296x18.409x0.5625	12	-17.438		80.1	Pass
L13	104.75 - 104.5	Pole + Reinf.	TP19.346x19.296x0.775	13	-17.503		64.6	Pass
L14	104.5 - 102.42	Pole + Reinf.	TP19.756x19.346x0.7625	14	-17.935		68.5	Pass
L15	102.42 - 102.17	Pole + Reinf.	TP19.806x19.756x0.5625	15	-17.994		85.5	Pass
L16	102.17 - 98.75	Pole + Reinf.	TP20.479x19.806x0.55	16	-22.016		93.8	Pass
L17	98.75 - 98.5	Pole + Reinf.	TP20.528x20.479x0.8375	17	-22.098		82.0	Pass

Table 4 - Section Capacity (Summary)

Section No <u>.</u>	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L18	98.5 - 97.5	Pole + Reinf.	TP20.726x20.528x0.8375	18	-22.351		71.3	Pass
L19	97.5 - 97.25	Pole + Reinf.	TP20.775x20.726x0.75	19	-22.422		83.0	Pass
L20	97.25 - 95.55	Pole + Reinf.	TP21.81x20.775x0.7375	20	-22.837		86.5	Pass
L21	95.55 - 90.55	Pole + Reinf.	TP21.73x20.735x0.8	21	-24.893		89.8	Pass
L22	90.55 - 89.25	Pole + Reinf.	TP21.989x21.73x0.775	22	-25.253		91.9	Pass
L23	89.25 - 89	Pole + Reinf.	TP22.039x21.989x1	23	-25.346		79.4	Pass
L24	89 - 88.25	Pole + Reinf.	TP22.189x22.039x0.975	24	-25.575		66.4	Pass
L25	88.25 - 88	Pole + Reinf.	TP22.238x22.189x0.7625	25	-25.647		76.0	Pass
L26	88 - 87.83	Pole + Reinf.	TP22.272x22.238x0.7625	26	-25.694		76.2	Pass
L27	87.83 - 87.58	Pole + Reinf.	TP22.321x22.272x0.675	27	-25.754		80.8	Pass
L28	87.58 - 82.58	Pole + Reinf.	TP23.317x22.321x0.65	28	-26.997		87.0	Pass
L29	82.58 - 77.58	Pole + Reinf.	TP24.312x23.317x0.625	29	-28.278		92.6	Pass
L30	77.58 - 77	Pole + Reinf.	TP24.428x24.312x0.625	30	-28.437		93.2	Pass
L31	77 - 76.75	Pole + Reinf.	TP24.478x24.428x0.825	31	-28.520		87.4	Pass
L32	76,75 - 76,33	Pole + Reinf.	TP24,561x24,478x0,825	32	-28,644		87.8	Pass
L33	76.33 - 76.08	Pole + Reinf.	TP24.611x24.561x0.825	33	-28.718		88.9	Pass
L34	76.08 - 74.25	Pole + Reinf.	TP24.976x24.611x0.8	34	-29.230		90.7	Pass
L35	74.25 - 74	Pole + Reinf.	TP25.026x24.976x0.8875	35	-29.327		80.1	Pass
L36	74 - 73.75	Pole + Reinf.	TP25.076x25.026x0.8875	36	-29.403		80.3	Pass
L37	73.75 - 73.5	Pole + Reinf.	TP25.125x25.076x0.9125	37	-29.482		79.6	Pass
L38	73.5 - 68.5	Pole + Reinf.	TP26.121x25.125x0.875	38	-31.044		83.8	Pass
L39	68.5 - 63.5	Pole + Reinf.	TP27.116x26.121x0.85	39	-32,637		87.8	Pass
L40	63.5 - 60.5	Pole + Reinf.	TP27.714x27.116x0.825	40	-33.607		90.0	Pass
L40	60.5 - 60.25	Pole + Reinf.	TP27.763x27.714x0.825	40	-33.698		90.1	Pass
L41	60.25 - 59.5	Pole + Reinf.	TP27.913x27.763x0.825	41	-33.935		90.7	Pass
L42	59.5 - 59.25	Pole + Reinf.	TP27.962x27.913x0.8875	42	1		84.9	
					-34.027			Pass
L44	59.25 - 54.25	Pole + Reinf.	TP28.958x27.962x0.85	44	-35.723		88.1	Pass
L45	54.25 - 50	Pole + Reinf.	TP30.64x28.958x0.8375	45	-37.194		90.7	Pass
L46	50 - 44.8	Pole + Reinf	TP30.333x29.304x0.8375	46	-40.327		92.4	Pass
L47	44.8 - 43.58	Pole + Reinf.	TP30.574x30.333x0.8375	47	-40.762		93.0	Pass
L48	43.58 - 43.33	Pole + Reinf	TP30.624x30.574x0.85	48	-40.869		92.1	Pass
L49	43.33 - 43.17	Pole + Reinf	TP30.657x30.624x0.85	49	-40.934		92.2	Pass
L50	43.17 - 42.92	Pole + Reinf.	TP30.706x30.657x0.9375	50	-41.032		87.3	Pass
L51	42.92 - 39	Pole + Reinf.	TP31.481x30.706x0.9125	51	-42.568		89.1	Pass
L52	39 - 38.75	Pole + Reinf.	TP31.531x31.481x0.95	52	-42.586		84.2	Pass
L53	38.75 - 37.17	Pole + Reinf.	TP31.844x31.531x0.9375	53	-42.704		84.9	Pass
L54	37.17 - 36.92	Pole + Reinf.	TP31.894x31.844x0.8875	54	-43.346		88.2	Pass
L55	36.92 - 34	Pole + Reinf.	TP32.471x31.894x0.8875	55	-43.462		89.4	Pass
L56	34 - 33.75	Pole + Reinf.	TP32.52x32.471x0.875	56	-44.629		89.4	Pass
L57	33.75 - 29.75	Pole + Reinf.	TP33.312x32.52x0.8625	57	-44.736		91.0	Pass
L58	29.75 - 29.5	Pole + Reinf.	TP33.361x33.312x0.8625	58	-46.295		90.0	Pass
L59	29.5 - 24.5	Pole + Reinf.	TP34.351x33.361x0.85	59	-46.404		91.7	Pass
L60	24.5 - 23	Pole + Reinf.	TP34.648x34.351x0.8375	60	-48.406		92.2	Pass
L61	23 - 22.75	Pole + Reinf.	TP34.697x34.648x0.9625	61	-48.997		85.5	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L62	22.75 - 21.58	Pole + Reinf.	TP34.928x34.697x0.9625	62	-49.116		85.9	Pass
L63	21.58 - 21.33	Pole + Reinf.	TP34.978x34.928x0.85	63	-49.620		90.7	Pass
L64	21.33 - 16.33	Pole + Reinf.	TP35.967x34.978x0.8375	64	-49.735		92.1	Pass
L65	16.33 - 12.92	Pole + Reinf.	TP36.644x35.967x0.825	65	-51.856		93.1	Pass
L66	12.92 - 12.67	Pole + Reinf.	TP36.693x36.644x0.9125	66	-53.310		84.4	Pass
L67	12.67 - 12.5	Pole + Reinf.	TP36.726x36.693x0.9125	67	-53.426		84.4	Pass
L68	12.5 - 12.25	Pole + Reinf.	TP36.776x36.726x0.7625	68	-53.505		87.6	Pass
L69	12.25 - 12	Pole + Reinf.	TP36.825x36.776x0.7625	69	-53.610		87.6	Pass
L70	12 - 11.75	Pole + Reinf.	TP36.874x36.825x0.6625	70	-53.715		89.6	Pass
L71	11.75 - 8.5	Pole + Reinf.	TP37.518x36.874x0.65	71	-53.827		90.3	Pass
L72	8.5 - 8.25	Pole + Reinf.	TP37.567x37.518x0.925	72	-55.112		74.1	Pass
L73	8.25 - 7	Pole + Reinf.	TP37.815x37.567x0.9125	73	-55.242		74.3	Pass
L74	7 - 6.75	Pole + Reinf.	TP37.864x37.815x0.8125	74	-55.832		86.1	Pass
L75	6.75 - 1.75	Pole + Reinf.	TP38.854x37.864x0.7875	75	-55.950		87.2	Pass
L76	1.75 - 0	Pole + Reinf.	TP39.2x38.854x0.7875	76	-58,133		87.6	Pass
							Summary	
						Pole (L6)	80.2	Pass
						Reinforcement	93.8	Pass
						Rating =	93.8	Pass

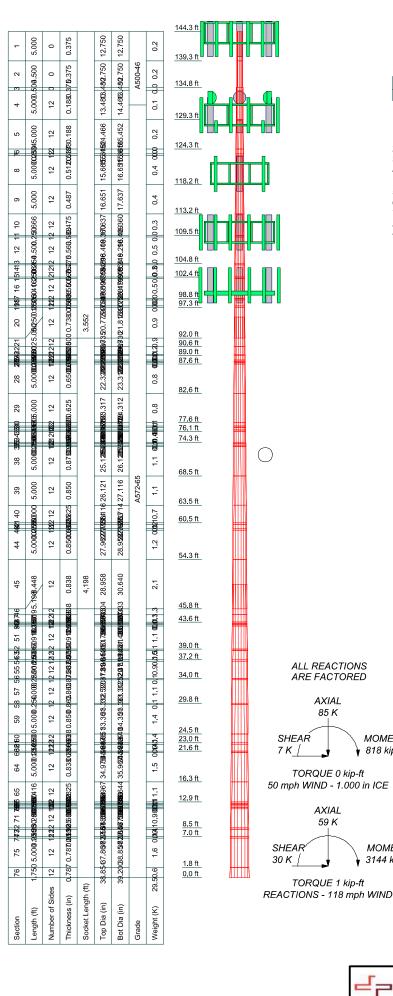
Table 5 - Tower Component Stresses vs. Capacity – LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Flange Connection	134.25	38.5	Pass
1,2	Anchor Rods	Base	87.1	Pass
1,2	Base Plate	Base	60.5	Pass
1,2	Base Foundation (Structure)	Base	19.8	Pass
1,2	Base Foundation (Soil Interaction)	Base	85.2	Pass

Structure Rating (max from all components) =	93.8%	

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.


2) Rating per TIA-222-H Section 15.5.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH							
GRADE	Fy	Fu	GRADE	Fy	Fu		
A500-46	46 ksi	62 ksi	A572-65	65 ksi	80 ksi		

MATERIAL OTRENOTU

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 118 mph basic wind in accordance with the TIA-222-H Standard. 4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- 5
- Deflections are based upon a 60 mph wind. Tower Risk Category II. 6
- Topographic Category 1 with Crest Height of 0.000 ft 7.
- TIA-222-H Annex S 8.

ALL REACTIONS

ARE FACTORED

AXIAL

85 K

TORQUE 0 kip-ft

AXIAL

59 K

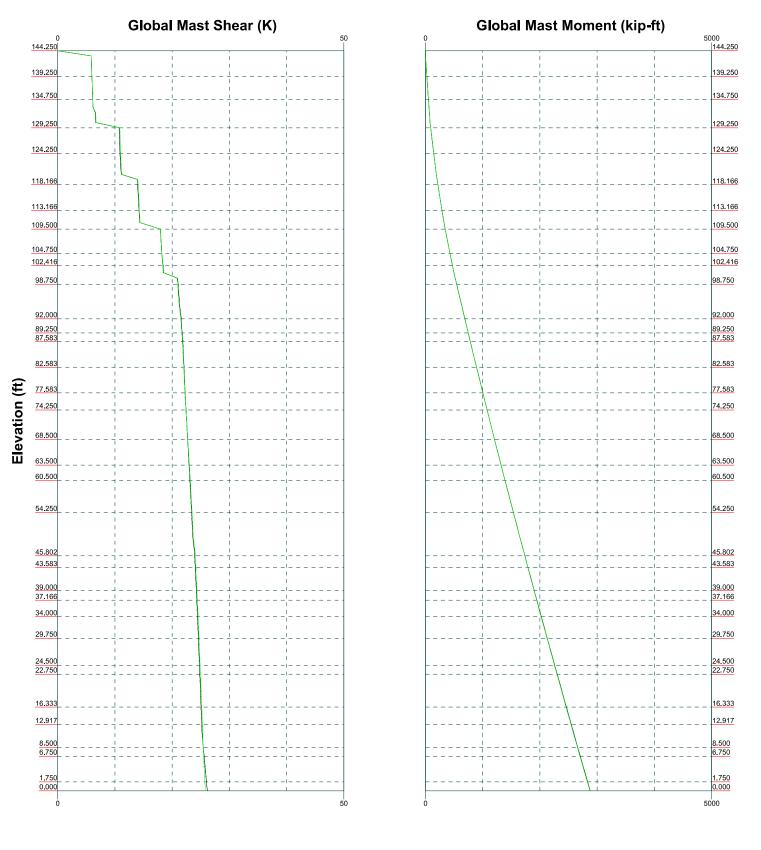
TORQUE 1 kip-ft

MOMENT

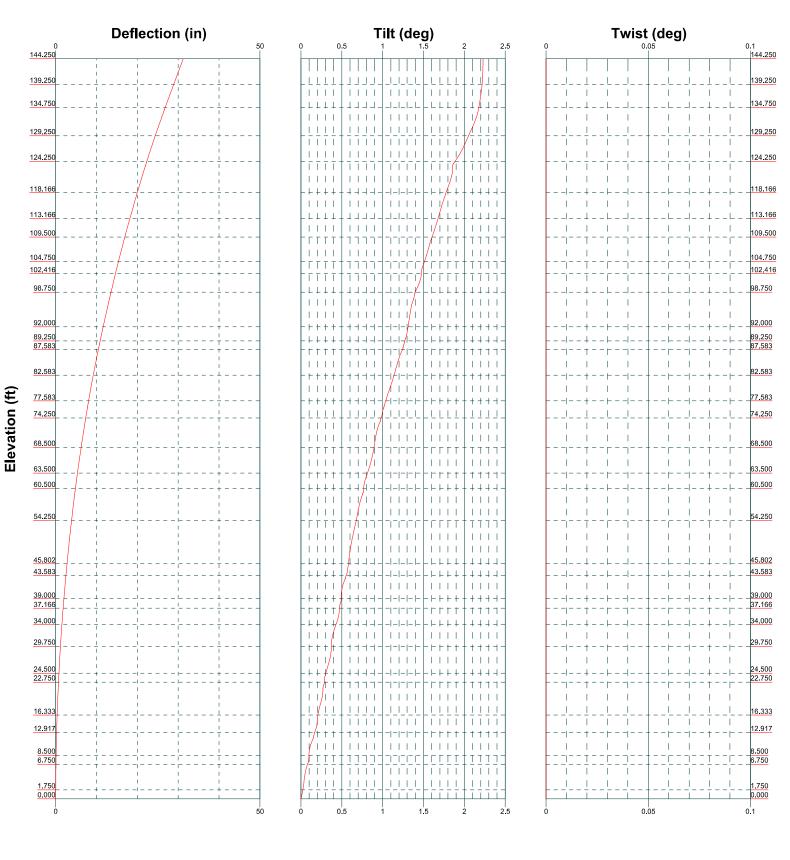
MOMENT

3144 kip-ft

🖌 818 kip-ft


SHEAR

7K (


9. TOWER RATING:93.8%

Г	B+T Group	^{Job:} 79982.004.01	- WATERBURY,	CT (BU# 87631)
	1717 S. Boulder, Suite 300	Project:		1
B+T GRP	Tulsa, OK 74119	^{Client:} Crown Castle	^{Drawn by:} Jayaraj B	App'd:
	Phone: (918) 587-4630	^{Code:} TIA-222-H	Date: 10/04/21	^{Scale:} NTS
		Path:	nieweb.wf.07082 004 01 CEI FOUTUNESE 004 01 INATEMBURY OT Medilin	^{Dwg No.} E-1

		Job: 🗕			OT (DU!! 0700/
Г	B+T Group	/	9982.004.01	- WATERBURY	,CT (BU# 87631)
	1717 S. Boulder, Suite 300	Projec	t:		
B+T GRP	Tulsa. OK 74119	Client:	Crown Castle	^{Drawn by:} Jayaraj B	App'd:
	Phone: (918) 587-4630	Code:	TIA-222-H	Date: 10/04/21	^{Scale:} NTS
	FAX: (918) 295-0265	Path:	55. Adv/2021 Colorer 2021 02/1992 ATR317 Millerbury-main	AND THE REPORT OF A CONTRACT OF A DESCRIPTION OF AND	Dwg No. E-4
-					

Г		^{Job:} 79982.004.01	- WATERBURY,	,CT (BU# 87631
	1717 S. Boulder, Suite 300	Project:		
B+T GRP	Tulsa. OK 74119	^{Client:} Crown Castle	^{Drawn by:} Jayaraj B	App'd:
	Phone: (918) 587-4630	^{Code:} TIA-222-H		^{Scale:} NTS
		Path:	AND THE REPORT OF A DESCRIPTION OF A DATEMONY OF MADE	^{Dwg No.} E-5

Feed Line Distribution Chart 0' - 144'3"

App In Face App Out Face Truss Leg

44.250	Face A	144.000		Face B	144.000	Face C	144.250
39.250							139.250
34.750							134.750
29.250 -		130.000			130.000		- 129.250
24.250		125.416			125.416		124.250
24.230		120.000			120.000		124.230
18.166					-		<u>118.16</u>
3.166	26 H	<u>- 111.000</u>			111.000	c¦∱∱FP¦045100	113.16
9.500	cct-A		I I I I I I I I I I I I I I I I I I I	ACCC+A			109.50
04.750 02.416	altheint altheint annent Cl-JAFF-040075	106.500 105.330	╡╡╡╪╞╞╒╒		106.500 105.330		104.750
8.750		<u>101.000</u>			101.000		98.750
+	25 Reinf	96.000	│┤┤┼┼┼ ┝┝╶	625 Reinfor	96.000		-
2.000 9.250	292	90.333 89.250		Pel 4 25×3.62	90.333 89.250	PL1+4	92.000
7.583	P-040475	86.500 85.330			86.500 85.330		87.583
2.583		78.750 @ 🕤			78.750		82.583
7.583	Beirton Comment	75.333 X	8/8		75.333		77.583
4.250	x2: 2 4 ve manual ve	B-034->	0088(1-1/2) 1-M5J(1-1/4) 3) 3) Safety Line 3/8	PLr':28x5.5 Riginto/cemen Reinforcement	-		
68.500	PL1/25x5.5 Reinforcem		C 008P 008P(1 -0813U4-M5J(KX(1-1/2) -1/4) -1/4) Safety	PL1	-		68.500
3.500	45,000	62.250	SC 008 41-1/4) 		62.250		63.500
0.500	CCL-571200	-58.750-	Cec.00 HB114-1-081 SM9P6XX(1 (15/8) XX-11(1-1/4) (XX-11(1-1/4) (1/2)	CCC:SFF-045100 CCC:SFF-045100 CCC:SFFF-045100 CCC:SFFF-045100 CCC:SFFF-045100	58.750		60.500
4.250			CU12P(11DF7500 11DF4502 11DF4502		09(1/8) 50.000		54.250
-	Reinforcement Reinforcement	50.000	B 1411 1411	Reinforcement	50.000	1 4 6 4 5	-
5.802 3.583	- <u>m</u> e	45.250	(2) HB1(6)		45.250 (S	₽_₽	45.802
9.000		40.750		PL1.25k9.625	40.750	2 Mi C 11 4 Mi C 11	39.000
7.166 4.000					35.767		37.166
9.750		32.250 29.750			32.250 29.750		29.750
4.500 -	Cemen	25.083	LDF4-50A(1/2)	Reinforcemen	25.083		_ 24.500
2.750		20.083	нородина 1941		20.083		22.750
6.333	рания и развити и раз На странити и развити	16.420		FP−−−− - −−− − − − − − − − − − − − − − − − − −	16.420		16.333
2.9172 9 8.5002		10 522		та адагааны 	10 500		12.917
8.500 6.750	tife-neritix	<u>10.000</u>		S 10	<u>10.000</u>	Sufference: 1	8.500
1.750		5.000			5.000		1.750
0.000	Tansition	4			_	Transition	0.000

		-		
Г	B+T Group		- WATERBURY	CT (BU# 87631
	1717 S. Boulder, Suite 300	Project:		
B+T GRP	Tulsa. OK 74119	Client: Crown Castle	^{Drawn by:} Jayaraj B	App'd:
Det sast	Phone: (918) 587-4630	^{Code:} TIA-222-H	Date: 10/04/21	^{Scale:} NTS
		Path:	anno-durintees on of COPOLE-MORE ON OF MATCHINE CT Music	Dwg No. E-7

Elevation (ft)

Round

Flat

B+T Group

300

Job

Client

1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in New Haven County, Connecticut. Tower base elevation above sea level: 660.000 ft. Basic wind speed of 118 mph. Risk Category II. Exposure Category B. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height: 0.000 ft. Nominal ice thickness of 1.000 in. Ice thickness is considered to increase with height. Ice density of 56.000 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50.000 °F. Deflections calculated using a wind speed of 60 mph. TIA-222-H Annex S. TOWER RATING:93.8%. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Tower analysis based on target reliabilities in accordance with Annex S. Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$. Maximum demand-capacity ratio is: 1.05. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules Consider Moments - Horizontals Assume Legs Pinned Calculate Redundant Bracing Forces Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Members in FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable Use Code Safety Factors - Guys Retension Guys To Initial Tension Offset Girt At Foundation Escalate Ice Bypass Mast Stability Checks Consider Feed Line Torque Use Azimuth Dish Coefficients Always Use Max Kz Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use Special Wind Profile Project Wind Area of Appurt. Include Bolts In Member Capacity Autocalc Torque Arm Areas Use TIA-222-H Tension Splice Exemption Add IBC .6D+W Combination Leg Bolts Are At Top Of Section Poles Secondary Horizontal Braces Leg Sort Capacity Reports By Component Include Shear-Torsion Interaction Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow SR Members Have Cut Ends Treat Feed Line Bundles As Cylinder Use Top Mounted Sockets SR Members Are Concentric Ignore KL/ry For 60 Deg. Angle Legs Pole Without Linear Attachments
 - Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

			Тар	ered P	ole Se	ction G	Geomet	ry	
Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	<u>ft</u>	ft	ft	Sides	in	in	in	in	
L1	144.250-139.25	5.000	0.000	Round	12.750	12.750	0.375		A500-46
L2	0 139.250-134.75	4.500	0.000	Round	12.750	12.750	0.375		(46 ksi) A500-46
L2	0	4.300	0.000	Kouna	12.750	12.750	0.375		(46 ksi)
L3	134.750-134.25	0.500	0.000	Round	13.480	13.480	0.375		A500-46
	0								(46 ksi)
L4	134.250-129.25	5.000	0.000	12	13.480	14.466	0.188	0.750	A572-65
	0								(65 ksi)
L5	129.250-124.25	5.000	0.000	12	14.466	15.452	0.188	0.750	A572-65
L6	0 124.250-123.41	0.834	0.000	12	15.452	15.616	0.188	0.750	(65 ksi) A572-65
LU	6	0.854	0.000	12	15.452	15.010	0.188	0.750	(65 ksi)
L7	123.416-123.16	0.250	0.000	12	15.616	15.665	0.537	2.150	A572-65
	6								(65 ksi)
L8	123.166-118.16	5.000	0.000	12	15.665	16.651	0.512	2.050	A572-65
	6								(65 ksi)
L9	118.166-113.16	5.000	0.000	12	16.651	17.637	0.487	1.950	A572-65
L10	6 113.166-109.50	3.666	0.000	12	17.637	18.360	0.475	1.900	(65 ksi) A572-65
LIU	0	5.000	0.000	12	17.057	18.300	0.473	1.900	(65 ksi)
L11	109.500-109.25	0.250	0.000	12	18.360	18.409	0.588	2.350	A572-65
	0								(65 ksi)
L12	109.250-104.75	4.500	0.000	12	18.409	19.296	0.563	2.250	A572-65
	0								(65 ksi)
L13	104.750-104.50	0.250	0.000	12	19.296	19.346	0.775	3.100	A572-65
T 1 4	0	2 094	0.000	10	10.246	10.75(0.7(2	2.050	(65 ksi)
L14	104.500-102.41 6	2.084	0.000	12	19.346	19.756	0.762	3.050	A572-65 (65 ksi)
L15	102.416-102.16	0.250	0.000	12	19.756	19.806	0.563	2.250	A572-65
	6								(65 ksi)
L16	102.166-98.750	3.416	0.000	12	19.806	20.479	0.550	2.200	A572-65
									(65 ksi)
L17	98.750-98.500	0.250	0.000	12	20.479	20.528	0.838	3.350	A572-65
L18	98.500-97.500	1.000	0.000	12	20.528	20.726	0.838	3.350	(65 ksi) A572-65
LIO	98.300-97.300	1.000	0.000	12	20.328	20.720	0.838	5.550	(65 ksi)
L19	97.500-97.250	0.250	0.000	12	20.726	20.775	0.750	3.000	A572-65
									(65 ksi)
L20	97.250-92.000	5.250	3.552	12	20.775	21.810	0.738	2.950	A572-65
									(65 ksi)
L21	92.000-90.552	5.000	0.000	12	20.735	21.730	0.800	3.200	A572-65
L22	90.552-89.250	1.302	0.000	12	21.730	21.989	0.775	3.100	(65 ksi) A572-65
LZZ	90.332-89.230	1.502	0.000	12	21.750	21.989	0.775	5.100	(65 ksi)
L23	89.250-89.000	0.250	0.000	12	21.989	22.039	1.000	4.000	A572-65
									(65 ksi)
L24	89.000-88.250	0.750	0.000	12	22.039	22.189	0.975	3.900	A572-65
									(65 ksi)
L25	88.250-88.000	0.250	0.000	12	22.189	22.238	0.762	3.050	A572-65
1.26	88.000-87.833	0.167	0.000	12	11 120	22.22	0.762	3.050	(65 ksi) A572-65
L26	00.000-87.833	0.107	0.000	12	22.238	22.272	0.762	5.050	A572-65 (65 ksi)
L27	87.833-87.583	0.250	0.000	12	22.272	22.321	0.675	2.700	A572-65
									(65 ksi)
L28	87.583-82.583	5.000	0.000	12	22.321	23.317	0.650	2.600	A572-65
									(65 ksi)

tnxTower

79982.004.01 - WATERBURY,CT (BU# 876317)

Page 3 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L29	82.583-77.583	5.000	0.000	12	23.317	24.312	0.625	2.500	A572-65
T 20	77 592 77 000	0.592	0.000	12	24.312	24 428	0.625	2 500	(65 ksi)
L30	77.583-77.000	0.583	0.000	12	24.312	24.428	0.625	2.500	A572-65 (65 ksi)
L31	77.000-76.750	0.250	0.000	12	24.428	24.478	0.825	3.300	A572-65
									(65 ksi)
L32	76.750-76.333	0.417	0.000	12	24.478	24.561	0.825	3.300	A572-65
			0.000				0.005		(65 ksi)
L33	76.333-76.083	0.250	0.000	12	24.561	24.611	0.825	3.300	A572-65
L34	76.083-74.250	1.833	0.000	12	24.611	24.976	0.800	3.200	(65 ksi) A572-65
251	10.005 11.250	1.055	0.000	12	21.011	21.970	0.000	5.200	(65 ksi)
L35	74.250-74.000	0.250	0.000	12	24.976	25.026	0.887	3.550	À572-65
									(65 ksi)
L36	74.000-73.750	0.250	0.000	12	25.026	25.076	0.887	3.550	A572-65
L37	72 750 72 500	0.250	0.000	12	25.076	25.125	0.912	3.650	(65 ksi) A572-65
L37	73.750-73.500	0.230	0.000	12	25.076	23.125	0.912	5.050	(65 ksi)
L38	73.500-68.500	5.000	0.000	12	25.125	26.121	0.875	3.500	A572-65
									(65 ksi)
L39	68.500-63.500	5.000	0.000	12	26.121	27.116	0.850	3.400	A572-65
T 40	(2,500, (0,500	2 000	0.000	10	27.116	07.714	0.005	2 200	(65 ksi)
L40	63.500-60.500	3.000	0.000	12	27.116	27.714	0.825	3.300	A572-65
L41	60.500-60.250	0.250	0.000	12	27.714	27.763	0.825	3.300	(65 ksi) A572-65
211	00.200 00.220	0.200	0.000	12	27.71	27.705	0.025	5.500	(65 ksi)
L42	60.250-59.500	0.750	0.000	12	27.763	27.913	0.825	3.300	A572-65
									(65 ksi)
L43	59.500-59.250	0.250	0.000	12	27.913	27.962	0.887	3.550	A572-65
L44	50 250 54 250	5.000	0.000	12	27.062	28.958	0.850	3.400	(65 ksi)
L44	59.250-54.250	3.000	0.000	12	27.962	28.938	0.850	5.400	A572-65 (65 ksi)
L45	54.250-45.802	8.448	4.198	12	28.958	30.640	0.838	3.350	A572-65
									(65 ksi)
L46	45.802-44.802	5.198	0.000	12	29.304	30.333	0.838	3.350	A572-65
T 47	44 902 42 592	1.210	0.000	10	20.222	20 574	0.020	2 250	(65 ksi)
L47	44.802-43.583	1.219	0.000	12	30.333	30.574	0.838	3.350	A572-65 (65 ksi)
L48	43.583-43.333	0.250	0.000	12	30.574	30.624	0.850	3.400	A572-65
210	101000 101000	0.200	0.000	12	501571	20.021	0.000	51100	(65 ksi)
L49	43.333-43.166	0.167	0.000	12	30.624	30.657	0.850	3.400	A572-65
									(65 ksi)
L50	43.166-42.916	0.250	0.000	12	30.657	30.706	0.938	3.750	A572-65
L51	42.916-39.000	3.916	0.000	12	30.706	31.481	0.912	3.650	(65 ksi) A572-65
251	12.910 39.000	5.910	0.000	12	50.700	51.101	0.912	5.050	(65 ksi)
L52	39.000-38.750	0.250	0.000	12	31.481	31.531	0.950	3.800	A572-65
									(65 ksi)
L53	38.750-37.166	1.584	0.000	12	31.531	31.844	0.938	3.750	A572-65
154	27 166 26 016	0.250	0.000	12	31.844	21.904	0 997	2 550	(65 ksi)
L54	37.166-36.916	0.250	0.000	12	51.644	31.894	0.887	3.550	A572-65 (65 ksi)
L55	36.916-34.000	2.916	0.000	12	31.894	32.471	0.887	3.550	A572-65
									(65 ksi)
L56	34.000-33.750	0.250	0.000	12	32.471	32.520	0.875	3.500	A572-65
T 65	22 750 20 750	1.000	0.000	10	22.520	22.212	0.070	2 450	(65 ksi)
L57	33.750-29.750	4.000	0.000	12	32.520	33.312	0.863	3.450	A572-65
L58	29.750-29.500	0.250	0.000	12	33.312	33.361	0.863	3.450	(65 ksi) A572-65
250	27.150 27.500	0.230	0.000	14	55.514	55.501	0.005	5.150	(65 ksi)
L59	29.500-24.500	5.000	0.000	12	33.361	34.351	0.850	3.400	A572-65

tnxTower

79982.004.01 - WATERBURY,CT (BU# 876317)

Page 4 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
		<i></i>							(65 ksi)
L60	24.500-23.000	1.500	0.000	12	34.351	34.648	0.838	3.350	A572-65
									(65 ksi)
L61	23.000-22.750	0.250	0.000	12	34.648	34.697	0.963	3.850	A572-65
									(65 ksi)
L62	22.750-21.583	1.167	0.000	12	34.697	34.928	0.963	3.850	A572-65
									(65 ksi)
L63	21.583-21.333	0.250	0.000	12	34.928	34.978	0.850	3.400	A572-65
									(65 ksi)
L64	21.333-16.333	5.000	0.000	12	34.978	35.967	0.838	3.350	A572-65
									(65 ksi)
L65	16.333-12.917	3.416	0.000	12	35.967	36.644	0.825	3.300	A572-65
									(65 ksi)
L66	12.917-12.667	0.250	0.000	12	36.644	36.693	0.912	3.650	A572-65
									(65 ksi)
L67	12.667-12.500	0.167	0.000	12	36.693	36.726	0.912	3.650	A572-65
									(65 ksi)
L68	12.500-12.250	0.250	0.000	12	36.726	36.776	0.762	3.050	A572-65
									(65 ksi)
L69	12.250-12.000	0.250	0.000	12	36.776	36.825	0.762	3.050	A572-65
									(65 ksi)
L70	12.000-11.750	0.250	0.000	12	36.825	36.874	0.662	2.650	A572-65
									(65 ksi)
L71	11.750-8.500	3.250	0.000	12	36.874	37.518	0.650	2.600	A572-65
									(65 ksi)
L72	8.500-8.250	0.250	0.000	12	37.518	37.567	0.925	3.700	A572-65
x = 2		1.050	0.000						(65 ksi)
L73	8.250-7.000	1.250	0.000	12	37.567	37.815	0.912	3.650	A572-65
		0.050	0.000				0.010		(65 ksi)
L74	7.000-6.750	0.250	0.000	12	37.815	37.864	0.813	3.250	A572-65
1.75	6 750 1 750	5 000	0.000	10	27.064	20.054	0 707	2 1 5 0	(65 ksi)
L75	6.750-1.750	5.000	0.000	12	37.864	38.854	0.787	3.150	A572-65
176	1 750 0 000	1 750		10	20.054	20.200	0 797	2 1 5 0	(65 ksi)
L76	1.750-0.000	1.750		12	38.854	39.200	0.787	3.150	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ī	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in ⁴	in	in	in ³	in^4	in ²	in	
L1	12.750	14.579	279.335	4.377	6.375	43.817	558.670	7.285	0.000	0
	12.750	14.579	279.335	4.377	6.375	43.817	558.670	7.285	0.000	0
L2	12.750	14.579	279.335	4.377	6.375	43.817	558.670	7.285	0.000	0
	12.750	14.579	279.335	4.377	6.375	43.817	558.670	7.285	0.000	0
L3	13.480	15.439	331.709	4.635	6.740	49.215	663.419	7.715	0.000	0
	13.480	15.439	331.709	4.635	6.740	49.215	663.419	7.715	0.000	0
L4	13.889	8.025	180.994	4.759	6.983	25.921	366.742	3.950	3.110	16.587
	14.910	8.621	224.322	5.112	7.493	29.936	454.538	4.243	3.374	17.996
L5	14.910	8.621	224.322	5.112	7.493	29.936	454.538	4.243	3.374	17.996
	15.931	9.216	274.067	5.465	8.004	34.242	555.334	4.536	3.639	19.405
L6	15.931	9.216	274.067	5.465	8.004	34.242	555.334	4.536	3.639	19.405
	16.101	9.315	283.020	5.523	8.089	34.988	573.475	4.585	3.683	19.641
L7	15.977	26.097	757.351	5.398	8.089	93.626	1534.599	12.844	2.745	5.106
	16.028	26.182	764.802	5.416	8.115	94.250	1549.697	12.886	2.758	5.131
L8	16.037	25.006	732.852	5.425	8.115	90.312	1484.956	12.307	2.825	5.512
	17.058	26.633	885.390	5.778	8.625	102.651	1794.041	13.108	3.089	6.027

Page 5 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
		in				in			$in^{\widetilde{2}}$		
	L9	17.067									6.474
L10 18.092 26.249 98.088 6.144 9.136 108.014 1999-541 12.019 3.454 7 L11 18.800 33.621 1355.419 6.302 9.510 114.2521 2246.446 16.543 3.346 5 18.851 33.714 1366.728 6.380 9.536 143.352 2769.561 16.533 3.359 5 1.13 19.764 46.220 2023.726 6.631 9.995 52.067 3079.878 16.700 3.664 6 1.14 19.755 46.343 2039.927 6.648 10.021 205.664 131.44 22.848 3.044 3 1.14 20.355 347.65 163.4766 6.871 10.234 1208.93 4331.131 2.2952 3.214 17.14 3.804 6 20.306 34.854 164.239 157.312 3270.230 16.787 3.834 6 1.16 20.306 34.854 17.373 10.0643 247.139											7.016
	L10										7.271
L11 18.800 33.621 135.8149 6.380 9.510 142.521 2246.446 16.543 33.346 5 L12 18.860 32.324 131.4044 6.380 9.536 143.325 2760.361 16.593 33.39 5 L13 19.764 46.220 2023.726 6.631 9.995 152.067 3079.878 16.700 3.664 6 L14 19.755 46.343 2039.927 6.648 10.021 205.666 4133.444 22.184 3.048 4 L14 19.755 46.343 2039.927 6.638 10.021 205.666 413.344 22.184 3.33.044 1.11 3.800 6 L15 20.255 34.755 16.4776 6.880 10.234 120.847 333.844 17.154 3.800 6 L16 20.310 34.102 16.1343 27.135 10.608 16.8667 362.516 17.371 4.014 7 L20 35.102	LIU										7.679
18.81 3.714 136.0728 6.380 9.536 143.325 2709.361 16.999 3.359 5 1.13 19.778 33.911 1519.973 6.707 9.995 152.067 3079.878 16.700 3.664 6 1.14 19.755 46.343 2023.726 6.631 100.21 200.566 410.018 22.448 3.108 4 20.159 45.65 2147.450 6.6801 10.224 1507.41 331.451 12.222 3.251 1.15 20.255 34.755 163.4756 6.891 10.259 157.31 333.604 17.110 3.77.7 6 20.306 34.854 164.333 6.891 10.259 157.31 237.023 16.687 325.16 17.371 4.014 7 21.008 35.205 17.302 20.802 7.049 10.634 247.139 532.065 26.135 3.257 3 3 1.11 2.248 3.250 26.135 3.257 3 </td <td>T 11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.695</td>	T 11										5.695
L12 18.860 9.2324 1314.044 6.389 9.536 137.804 2662.690 15.090 3.646 6 L13 19.704 46.220 2023.726 6.631 9.995 152.007 3079.877 16.700 3.64 6 L14 19.755 46.343 2039.927 6.648 10.021 205.665 4133.444 22.848 3.0148 4 20.184 46.635 2147.450 6.870 10.221 205.665 4133.444 17.154 3.800 6 20.306 34.854 1647.385 6.889 10.259 160.574 3333.044 17.154 3.800 6 20.906 52.969 2068.327 7.135 10.608 16.8667 362.551 17.714 4.014 7 21.102 38.241 245.693 7.151 10.736 222.15 584.61 2.237 3 3.14 21.921 50.042 274.930 10.544 247.139 532.560.5 2.6131 <	LII										5.718
	т 12				6.380					3.339	6.091
L3 19.754 46.420 2023.726 6.631 0.9995 202.465 4100.618 22.748 3.094 3 L14 19.759 45.626 2011.080 6.663 10.021 203.656 413.444 22.808 3.114 4 L15 20.255 34.765 163.4756 6.871 10.234 209.893 451.151 22.952 3.211 4.01 3.77 6 20.306 34.854 164.736 6.871 10.259 167.341 332.804 17.154 3.800 6 21.008 35.295 17.892.55 7.135 10.608 168.667 362.516 17.371 4.014 7 20.957 53.102 2628.012 7.049 10.634 247.139 532.5065 26.135 3.257 3 21.161 53.633 270.7746 7.169 10.761 23.600 940.129 3.143 4 22.121 948.24 47.538 173 10.761 23.600 940.129	LIZ										
19.755 46.343 2039.027 6.648 10.021 20.0687 4074.993 22.456 3.108 4 20.184 46.635 214.7450 6.800 10.234 209.839 4351.315 22.255 3.251 4 20.306 34.854 1647.383 6.889 10.259 165.741 3338.044 17.154 3.800 6 21.008 35.295 17.89.255 7.135 10.608 168.667 365.516 17.371 4.014 7 20.957 53.102 2628.012 7.049 10.634 247.139 532.5065 26.135 3.257 3 21.161 53.633 2707.746 7.120 10.761 22.30015 53.102 268.012 7.049 10.634 247.139 532.5065 26.135 3.257 3 21.192 48.241 246.6993 7.151 10.736 228.15 49.804 3.584 4 21.243 47.524 248.533 7.173 10.761 23.0010 </td <td>1.10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.514</td>	1.10										6.514
L14 19.759 45.626 2011.080 6.630 10.021 200.687 4074.993 22.456 3.141 4 L15 20.255 34.765 1634.756 6.871 10.234 10.839 431.151 22.952 3.4765 1634.756 6.871 10.259 165.74 338.044 17.154 3.800 6 20.008 32.951 7.815 10.698 16.867 632.516 17.371 4.014 7 L17 20.906 52.969 268.327 7.032 10.668 245.878 525.16 17.371 4.014 7 L18 20.957 53.102 268.012 7.049 10.634 247.139 532.065 26.135 3.257 3 L19 L19.21 20.957 53.102 268.012 7.049 10.766 228.654 978.544 23.743 3.344 4 21.21 21.948 475.826 7.151 10.761 226.004 941.129 23.149 3.584 4 23.	L13										3.993
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.										4.01
L15 20.255 34.765 16.34.756 6.871 10.234 159.741 3312.459 17.110 3.787 6 L16 20.310 34.102 1613.915 6.894 10.259 157.312 3270.230 16.784 3.834 6 L17 20.906 52.969 2608.327 7.032 10.608 16.8667 3025.516 17.31 4.014 7 L17 20.907 53.102 2628.012 7.049 10.634 247.139 5325.065 26.135 3.257 3 21.161 53.633 2707.746 7.120 10.736 252.815 486.627 2.3801 3.544 4 21.213 48.300 2475.226 7.169 10.761 220.600 494.1129 2.341 3.591 4 22.012 51.045 574.111 298 251.605 577.859 25.74 3.413 4 22.121 65.043 301.4753 7.493 11.256 267.829 6108.707 <td< td=""><td>L14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.141</td><td>4.119</td></td<>	L14									3.141	4.119
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											4.264
L16 20.310 34.102 1613.915 6.894 10.259 157.312 3270.230 16.784 3.834 6 L17 20.906 52.969 2608.327 7.032 10.608 245.878 528.517 26.070 3.244 3 L18 20.957 53.102 262.8012 7.049 10.634 247.139 5325.065 26.135 3.257 3 L19 21.121 246.241 245.693 7.151 10.736 252.215 5486.627 26.397 3.310 3 3.544 4 21.012 48.244 245.693 7.151 10.761 230.010 5015.479 23.801 3.558 4 21.21 10.61 53.032 260.471.571.839 23.778 59 25.274 3.413 4 22.215 53.916 3014.733 7.493 11.256 267.899 6108.707 26.566 3.816 4 22.492 52.941 3041.148 7.595 11.391 233.	L15										6.733
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											6.756
L17 20.906 52.969 2608.327 7.032 10.608 247.139 5325.065 26.135 3.257 3 L18 20.957 53.102 2628.012 7.049 10.634 247.139 5325.065 26.135 3.257 3 L19 L192 48.241 245.6993 7.151 10.736 222.828 8497.8534 23.743 3.544 4 L20 21.248 47.526 7.169 10.761 230.010 5015.479 23.801 3.558 4 L20 21.248 47.526 7.169 10.761 226.004 941.129 23.801 3.558 4 22.0116 51.3191 30.04753 7.493 11.228 226.049 941.112 23.819 3.801 3.274 3.414 4 22.212 53.916 3014.753 7.493 11.256 267.829 6108.707 26.536 3.680 - L22 22.223 52.924 3041.148 7.595 11.391 </td <td>L16</td> <td>20.310</td> <td></td> <td>1613.915</td> <td>6.894</td> <td>10.259</td> <td></td> <td>3270.230</td> <td>16.784</td> <td></td> <td>6.971</td>	L16	20.310		1613.915	6.894	10.259		3270.230	16.784		6.971
L17 20.906 52.969 2608.327 7.032 10.608 247.139 5325.065 26.135 3.257 3 L18 20.957 53.102 2628.012 7.049 10.634 247.139 5325.065 26.135 3.257 3 L19 L192 48.241 245.6993 7.151 10.736 222.828 8497.8534 23.743 3.544 4 L20 21.248 47.526 7.169 10.761 230.010 5015.479 23.801 3.558 4 L20 21.248 47.526 7.169 10.761 226.004 941.129 23.801 3.558 4 22.0116 51.3191 30.04753 7.493 11.228 226.049 941.112 23.819 3.801 3.274 3.414 4 22.212 53.916 3014.753 7.493 11.256 267.829 6108.707 26.536 3.680 - L22 22.223 52.924 3041.148 7.595 11.391 </td <td></td> <td>21.008</td> <td>35.295</td> <td></td> <td>7.135</td> <td>10.608</td> <td>168.667</td> <td>3625.516</td> <td>17.371</td> <td>4.014</td> <td>7.299</td>		21.008	35.295		7.135	10.608	168.667	3625.516	17.371	4.014	7.299
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L17	20.906	52.969	2608.327	7.032	10.608		5285.177	26.070	3.244	3.873
L18 20.957 53.102 2628.012 7.049 10.634 24.1139 5325.065 26.135 3.257 3.3 L19 21.161 53.633 2707.746 7.120 10.736 252.215 5486.627 26.397 3.310 3 L19 21.192 48.241 2456.993 7.151 10.736 252.815 846.627 26.301 3.558 4 L20 21.248 47.584 243.833 7.173 10.761 220.010 501.479 23.801 3.558 4 L21 12.1916 51.352 2064.1715 7.137 10.741 242.512 57.789 25.274 3.414 4 22.15 53.916 3014.753 7.493 11.256 260.391 593.041 25.373 3.747 4 L22 22.223 52.944 291.020 7.502 11.216 260.391 593.041 25.778 3.343 3.227 3 L23 2.2412 67.586 3800.525 <td></td> <td>20.957</td> <td>53.102</td> <td></td> <td></td> <td>10.634</td> <td>247.139</td> <td>5325.065</td> <td>26.135</td> <td></td> <td>3.889</td>		20.957	53.102			10.634	247.139	5325.065	26.135		3.889
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L18										3.889
											3.952
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L19										4.726
	LIV										4.744
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.20										4.869
	L20										5.246
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.21										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LZI										4.266
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x										4.6
	L22										4.834
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										3.816	4.924
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L23										3.213
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											3.227
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L24										3.378
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											3.419
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L25		52.606	3082.526		11.494	268.194	6246.033			5.119
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22.754	52.728	3104.059	7.688	11.519	269.463	6289.666	25.951	3.916	5.136
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L26	22.754	52.728	3104.059	7.688	11.519	269.463	6289.666	25.951	3.916	5.136
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		22.788	52.810	3118.499	7.700	11.537	270.312	6318.925	25.992		5.148
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L27		46.940	2794.467	7.732	11.537	242.225	5662.348			6.163
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											6.182
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L28										6.523
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	220										6.934
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.20										7.318
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	127										7.745
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.20										7.745
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L30										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.21										7.795
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L31										5.256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											5.272
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L32										5.272
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							356.411				5.299
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L33	25.137	63.055	4534.514	8.498	12.723	356.411	9188.154	31.034	4.371	5.299
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25.188	63.188	4563.100	8.515	12.748	357.932	9246.078	31.099	4.385	5.315
L35 25.544 68.839 5098.436 8.624 12.938 394.081 10330.813 33.880 4.315 4 25.595 68.981 5130.107 8.641 12.963 395.740 10394.987 33.950 4.328 4 L36 25.595 68.981 5130.107 8.641 12.963 395.740 10394.987 33.950 4.328 4 L36 25.595 68.981 5130.107 8.641 12.963 395.740 10394.987 33.950 4.328 4 L37 25.647 69.123 5161.909 8.659 12.989 397.403 10459.427 34.020 4.342 4 L37 25.638 70.997 5290.875 8.650 12.989 407.332 10720.748 34.943 4.275 4 L38 25.703 68.325 5128.616 8.668 13.015 409.042 10787.138 35.015 4.288 4 L38 25.703 68.325 5128.616	L34	25.197	61.337	4438.791	8.524	12.748	348.182	8994.194	30.188	4.452	5.565
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25.575	62.277	4646.037	8.655	12.938	359.113	9414.131	30.651	4.550	5.687
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L35	25.544	68.839	5098.436	8.624	12.938	394.081	10330.813	33.880	4.315	4.862
L36 25.595 68.981 5130.107 8.641 12.963 395.740 10394.987 33.950 4.328 4 25.647 69.123 5161.909 8.659 12.989 397.403 10459.427 34.020 4.342 4 L37 25.638 70.997 5290.875 8.650 12.989 407.332 10720.748 34.943 4.275 4 25.690 71.143 5323.640 8.668 13.015 409.042 10787.138 35.015 4.288 4 L38 25.703 68.325 5128.616 8.682 13.015 394.057 10391.966 33.628 4.389 5 26.734 71.130 5786.510 9.038 13.531 427.662 11725.038 35.008 4.655 5 L39 26.742 69.166 5637.897 9.047 13.531 416.679 11423.908 34.041 4.722 5											4.877
25.64769.1235161.9098.65912.989397.40310459.42734.0204.3424L3725.63870.9975290.8758.65012.989407.33210720.74834.9434.275425.69071.1435323.6408.66813.015409.04210787.13835.0154.2884L3825.70368.3255128.6168.68213.015394.05710391.96633.6284.389526.73471.1305786.5109.03813.531427.66211725.03835.0084.6555L3926.74269.1665637.8979.04713.531416.67911423.90834.0414.7225	L36										4.877
L37 25.638 70.997 5290.875 8.650 12.989 407.332 10720.748 34.943 4.275 4 25.690 71.143 5323.640 8.668 13.015 409.042 10787.138 35.015 4.288 4 L38 25.703 68.325 5128.616 8.682 13.015 394.057 10391.966 33.628 4.389 5 26.734 71.130 5786.510 9.038 13.531 427.662 11725.038 35.008 4.655 5 L39 26.742 69.166 5637.897 9.047 13.531 416.679 11423.908 34.041 4.722 5											4.892
25.690 71.143 5323.640 8.668 13.015 409.042 10787.138 35.015 4.288 4 L38 25.703 68.325 5128.616 8.682 13.015 394.057 10391.966 33.628 4.389 5 26.734 71.130 5786.510 9.038 13.531 427.662 11725.038 35.008 4.655 5 L39 26.742 69.166 5637.897 9.047 13.531 416.679 11423.908 34.041 4.722 5	1.37										4.685
L38 25.703 68.325 5128.616 8.682 13.015 394.057 10391.966 33.628 4.389 5 26.734 71.130 5786.510 9.038 13.531 427.662 11725.038 35.008 4.655 55 L39 26.742 69.166 5637.897 9.047 13.531 416.679 11423.908 34.041 4.722 55	101										4.699
26.734 71.130 5786.510 9.038 13.531 427.662 11725.038 35.008 4.655 55 L39 26.742 69.166 5637.897 9.047 13.531 416.679 11423.908 34.041 4.722 55	138										
L39 26.742 69.166 5637.897 9.047 13.531 416.679 11423.908 34.041 4.722 5	L30										5.016
	1.20										5.32
27.775 71.891 6330.781 9.403 14.046 450.710 12827.879 35.382 4.989 5	L39										5.556
		27.773	/1.891	6330.781	9.403	14.046	450.710	12827.879	35.382	4.989	5.87

Page 6 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	$in^{\widetilde{2}}$	in	
L40	27.782	69.843	6162.143	9.412	14.046	438.704	12486.173	34.375	5.056	6.129
	28.400	71.430	6591.746	9.626	14.356	459.174	13356.665	35.155	5.216	6.323
L41	28.400	71.430	6591.746	9.626	14.356	459.174	13356.665	35.155	5.216	6.323
2	28.452	71.562	6628.421	9.644	14.381	460.901	13430.978	35.221	5.230	6.339
L42	28.452	71.562	6628.421	9.644	14.381	460.901	13430.978	35.221	5.230	6.339
1.72	28.606	71.958	6739.262	9.697	14.459	466.102	13655.572	35.416	5.270	6.387
T 42										
L43	28.584	77.231	7199.745	9.675	14.459	497.950	14588.636	38.011	5.102	5.749
T 44	28.636	77.374	7239.601	9.693	14.485	499.815	14669.394	38.081	5.115	5.764
L44	28.649	74.207	6962.552	9.706	14.485	480.688	14108.019	36.522	5.216	6.136
	29.680	76.932	7758.004	10.063	15.000	517.192	15719.820	37.863	5.483	6.45
L45	29.684	75.834	7654.119	10.067	15.000	510.266	15509.320	37.323	5.516	6.587
	31.425	80.370	9111.392	10.669	15.872	574.072	18462.150	39.556	5.967	7.125
L46	30.903	76.767	7940.296	10.191	15.180	523.091	16089.192	37.783	5.609	6.697
	31.108	79.542	8832.656	10.559	15.712	562.143	17897.356	39.148	5.885	7.027
L47	31.108	79.542	8832.656	10.559	15.712	562.143	17897.356	39.148	5.885	7.027
	31.357	80.192	9051.177	10.646	15.837	571.505	18340.138	39.468	5.949	7.104
L48	31.353	81.355	9174.689	10.641	15.837	579.304	18590.408	40.041	5.916	6.96
210	31.404	81.491	9220.582	10.659	15.863	581.261	18683.399	40.107	5.929	6.975
L49	31.404	81.491	9220.582	10.659	15.863	581.261	18683.399	40.107	5.929	6.975
L49	31.438	81.581	9251.324	10.671	15.880	582.570	18745.690	40.107	5.938	6.986
1.50										
L50	31.407	89.715	10114.068	10.639	15.880	636.899	20493.845	44.155	5.704	6.084
	31.459	89.864	10164.669	10.657	15.906	639.054	20596.375	44.228	5.717	6.098
L51	31.468	87.541	9918.558	10.666	15.906	623.581	20097.688	43.085	5.784	6.338
	32.270	89.819	10712.920	10.944	16.307	656.941	21707.280	44.206	5.991	6.566
L52	32.257	93.395	11112.181	10.930	16.307	681.424	22516.292	45.966	5.891	6.201
	32.308	93.546	11166.294	10.948	16.333	683.668	22625.939	46.041	5.904	6.215
L53	32.312	92.353	11032.887	10.952	16.333	675.500	22355.621	45.453	5.938	6.334
	32.637	93.300	11375.549	11.065	16.495	689.623	23049.946	45.919	6.022	6.423
L54	32.654	88.467	10821.202	11.083	16.495	656.017	21926.689	43.541	6.156	6.936
	32.706	88.608	10873.172	11.100	16.521	658.145	22031.995	43.610	6.169	6.951
L55	32.706	88.608	10873.172	11.100	16.521	658.145	22031.995	43.610	6.169	6.951
L33	33.303	90.257	11491.697	11.307	16.820	683.221	23285.295	44.422	6.324	7.125
L56	33.308	89.021	11343.300	11.311	16.820	674.398	22984.602	43.814	6.357	7.265
L30										
1.67	33.359	89.161	11396.674	11.329	16.846	676.540	23092.752	43.882	6.370	7.281
L57	33.363	87.922	11247.182	11.333	16.846	667.666	22789.841	43.272	6.404	7.425
	34.183	90.120	12112.233	11.617	17.256	701.930	24542.669	44.354	6.616	7.671
L58	34.183	90.120	12112.233	11.617	17.256	701.930	24542.669	44.354	6.616	7.671
	34.234	90.258	12167.724	11.635	17.281	704.100	24655.108	44.422	6.629	7.686
L59	34.238	88.984	12005.222	11.639	17.281	694.697	24325.835	43.795	6.663	7.839
	35.263	91.692	13135.172	11.993	17.794	738.186	26615.420	45.128	6.928	8.151
L60	35.267	90.378	12956.500	11.998	17.794	728.145	26253.382	44.481	6.962	8.312
	35.575	91.178	13303.879	12.104	17.948	741.261	26957.266	44.875	7.041	8.407
L61	35.531	104.400	15120.579	12.059	17.948	842.484	30638.392	51.382	6.706	6.967
	35.582	104.553	15187.307	12.077	17.973	844.995	30773.601	51.458	6.719	6.981
L62	35.582	104.553	15187.307	12.077	17.973	844.995	30773.601	51.458	6.719	6.981
102	35.821	105.269	15501.390	12.160	18.093	856.767	31410.018	51.810	6.781	7.046
L63	35.861	93.272	13826.015	12.200	18.093	764.168		45.906	7.083	8.333
L05							28015.256			
т.с.4	35.912	93.408	13886.327	12.218	18.119	766.416	28137.463	45.973	7.096	8.348
L64	35.916	92.068	13697.156	12.222	18.119	755.975	27754.151	45.313	7.130	8.513
	36.941	94.737	14923.078	12.577	18.631	800.976	30238.202	46.626	7.395	8.83
L65	36.945	93.356	14716.043	12.581	18.631	789.863	29818.694	45.947	7.428	9.004
	37.645	95.152	15581.827	12.823	18.981	820.902	31573.007	46.831	7.609	9.224
L66	37.614	104.987	17108.449	12.792	18.981	901.330	34666.356	51.671	7.375	8.082
	37.665	105.132	17179.621	12.809	19.007	903.859	34810.570	51.743	7.388	8.097
L67	37.665	105.132	17179.621	12.809	19.007	903.859	34810.570	51.743	7.388	8.097
	37.700	105.229	17227.274	12.821	19.024	905.550	34907.127	51.791	7.397	8.106
L68	37.753	88.299	14577.031	12.875	19.024	766.241	29537.017	43.458	7.799	10.228
	37.804	88.421	14637.280	12.893	19.050	768.372	29659.097	43.518	7.812	10.246
L69	37.804	88.421	14637.280	12.893	19.050	768.372	29659.097	43.518	7.812	10.246
L07	37.855	88.5421		12.893	19.030	770.507	29039.097	43.578	7.812	
1.70			14697.694							10.263
L70	37.890 37.942	77.144 77.249	12876.656	12.946	19.075	675.042	26091.595	37.968	8.094	12.217
		117/10	12929.583	12.964	19.101	676.907	26198.841	38.020	8.107	12.237

tnxTower	Job 79982.004.01 - WATERBURY,CT (BU# 876317)	Page 7 of 92
B+T Group 1717 S. Boulder, Suite 300	Project	Date 11:01:28 10/04/21
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Jayaraj B

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	in ²	in	
L71	37.946	75.818	12698.770	12.968	19.101	664.823	25731.151	37.315	8.140	12.524
	38.612	77.164	13387.320	13.199	19.434	688.855	27126.339	37.978	8.313	12.789
L72	38.515	108.991	18628.043	13.100	19.434	958.520	37745.466	53.642	7.576	8.19
	38.566	109.139	18703.710	13.118	19.460	961.146	37898.786	53.715	7.589	8.204
L73	38.571	107.701	18469.846	13.122	19.460	949.128	37424.916	53.007	7.623	8.353
	38.827	108.428	18846.355	13.211	19.588	962.140	38187.825	53.365	7.689	8.426
L74	38.862	96.807	16917.795	13.247	19.588	863.684	34280.038	47.645	7.957	9.793
	38.913	96.936	16985.752	13.264	19.614	866.020	34417.740	47.709	7.970	9.809
L75	38.922	94.017	16496.461	13.273	19.614	841.073	33426.303	46.272	8.037	10.206
	39.946	96.526	17852.914	13.628	20.126	887.049	36174.844	47.507	8.302	10.543
L76	39.946	96.526	17852.914	13.628	20.126	887.049	36174.844	47.507	8.302	10.543
	40.305	97.404	18344.678	13.752	20.306	903.430	37171.292	47.940	8.395	10.66

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
144.250-139.2 30 12 1 1 139.250-134.7 - 50 - 134.750-134.2 1 1 50 - - 134.750-134.2 - - 50 - - 14.4 1 1 1 134.250-120.2 - - - 50 - - - 15 1 1 1 1 129.250-124.2 - - - - 50 - - - - - 16 - <		ft^2	in					in	in	in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	1	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144.250-139.2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L2				1	1	1			
L3111 $134.750-134.2$ 50 $ 14$ 111 $134.250-129.2$ $ 50$ $ 129.250-124.2$ $ 50$ $ 16$ $ 17$ 11 0.873259 $124.250-123.4$ $ 16$ $ 17$ 11 0.873259 $123.416-123.1$ $ 66$ $ 18$ 11 0.880843 $123.166-118.1$ $ 66$ $ 19$ 11 0.893543 $118.166-113.1$ $ 66$ $ 10$ 11 0.905539 $105.000-109.2$ $ 50$ $ 113$ 1 1 0.905539 $103.250-104.7$ $ 50$ $ 113$ 1 1 0.90283 $104.750-104.5$ $ 00$ $ 104.750-104.5$ $ 00$ $ 104.750-104.5$ $ 104.750-104.5$ $ 104.750-104.5$ $ 105.800000000000000000000000000000000000$	139.250-134.7									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	1	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	134.750-134.2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	1	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	134.250-129.2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	1	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129.250-124.2									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	1	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	1	0.873259			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
					1	1	0.880843			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
					1	1	0.893543			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	1	0.895307			
L11 1 0.905539 109.500-109.2 50 L12 1 1 0.915518 109.250-104.7 50 L13 1 1 0.930283 104.750-104.5 00										
109.500-109.2 50 L12 109.250-104.7 50 L13 104.750-104.5 00										
50 L12 109.250-104.7 50 L13 104.750-104.5 00 1 1 1 0.930283 10.930283					1	1	0.905539			
L12 1 1 0.915518 109.250-104.7 50 L13 1 1 0.930283 104.750-104.5 00										
109.250-104.7 50 L13 104.750-104.5 00										
50 L13 104.750-104.5 00	L12				1	1	0.915518			
L13 1 1 0.930283 104.750-104.5 00										
104.750-104.5 00	50									
00					1	1	0.930283			
L14 1 0 929776										
					1	1	0.929776			
104.500-102.4										
16	16									
L15 1 1 1.12278	L15				1	1	1.12278			

tnxTower	

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
102.416-102.1 66								
L16			1	1	1.12029			
102.166-98.75								
0 L17			1	1	1.00154			
98.750-98.500			I	1	1.00134			
L18			1	1	0.993827			
98.500-97.500 L19			1	1	1.04068			
97.500-97.250			1	I	1.04008			
L20			1	1	1.04446			
97.250-92.000			1	1	1.02262			
L21 92.000-90.552			1	1	1.02362			
L22			1	1	1.04642			
90.552-89.250			1	1	0.966606			
L23 89.250-89.000			1	1	0.966606			
L24			1	1	0.985049			
89.000-88.250			1		1.01704			
L25 88.250-88.000			1	1	1.01704			
L26			1	1	1.01598			
88.000-87.833			_					
L27 87.833-87.583			1	1	1.00822			
L28			1	1	1.01675			
87.583-82.583			_		1			
L29 82.583-77.583			1	1	1.02867			
L30			1	1	1.02561			
77.583-77.000					0.052500			
L31 77.000-76.750			1	1	0.973799			
L32			1	1	0.971453			
76.750-76.333			_					
L33 76.333-76.083			1	1	0.922508			
L34			1	1	0.940709			
76.083-74.250			_		0.000 100			
L35 74.250-74.000			1	1	0.893422			
L36			1	1	0.892163			
74.000-73.750					0.000 (2.1			
L37 73.750-73.500			1	1	0.909624			
L38			1	1	0.921059			
73.500-68.500								
L39 68.500-63.500			1	1	0.922459			
L40			1	1	0.935147			
63.500-60.500								
L41 60.500-60.250			1	1	0.933979			
L42			1	1	0.930501			
60.250-59.500								
L43 59.500-59.250			1	1	0.9205			
59.500-59.230								

|--|

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
<i>ft</i> L44	ft^2	in		1	1	0.936205	in	in	in
59.250-54.250 L45				1	1	0.930203			
54.250-45.802 L46				1	1	0.938065			
45.802-44.802 L47				1	1	0.933481			
44.802-43.583 L48				1	1	0.974523			
43.583-43.333 L49				1	1	0.97385			
43.333-43.166 L50				1	1	0.934786			
43.166-42.916 L51				1	1	0.943944			
42.916-39.000 L52				1	1	0.949681			
39.000-38.750 L53				1	1	0.955574			
38.750-37.166 L54				1	1	0.972827			
37.166-36.916 L55				1	1	0.961485			
36.916-34.000 L56				1	1	0.928941			
34.000-33.750 L57				1	1	0.927889			
33.750-29.750 L58				1	1	0.93743			
29.750-29.500 L59				1	1	0.933623			
29.500-24.500 L60				1	1	0.942163			
24.500-23.000 L61				1	1	0.90832			
23.000-22.750 L62				1	1	0.904351			
22.750-21.583 L63				1	1	0.971473			
21.583-21.333 L64				1	1	0.968358			
21.333-16.333 L65				1	1	0.971282			
16.333-12.917 L66				1	1	0.961412			
12.917-12.667 L67				1	1	0.96084			
12.667-12.500 L68				1	1	1.00814			
12.500-12.250 L69				1	1	1.00732			
12.250-12.000 L70				1	1	1.07745			
12.000-11.750 L71				1	1	1.08702			
11.750-8.500 L72				1	1	0.961703			
8.500-8.250 L73				1	1	0.970307			

tnxTower	Јов 79982.004.01 - WATERBURY,CT (BU# 876317)	Page 10 of 92
B+T Group 1717 S. Boulder, Suite 300	Project	Date 11:01:28 10/04/21
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Jayaraj B

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing	Spacing	Spacing
						Diagonals	Horizontals	Redundants
ft	ft^2	in				in	in	in
8.250-7.000								
L74			1	1	0.961877			
7.000-6.750								
L75			1	1	0.976278			
6.750-1.750								
L76			1	1	0.971053			
1.750-0.000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weight
		Torque Calculation	-71	ft				in	in	klf
FB-L98B-034-XXX(3/8)	В	No	Surface Ar (CaAa)	144.000 - 0.000	2	2	0.000 0.020	0.394		0.000
WR-VG86ST-BRD(3/4)	В	No	Surface Ar (CaAa)	144.000 - 0.000	6	3	0.000 0.170	0.795		0.001
7983A(ELLIPTICAL)	В	No	Surface Ar (CaAa)	130.000 - 0.000	3	1	-0.380 -0.300	0.573		0.000
CU12PSM9P6XXX(1-1/ 2)	В	No	Surface Ar (CaAa)	120.000 - 0.000	1	1	-0.100 -0.080	1.600		0.002
MLC HYBRID 6X12 6AWGX6(1-1/2)	С	No	Surface Ar (CaAa)	100.000 - 0.000	2	2	0.370 0.400	1.530		0.001
Safety Line 3/8	В	No	Surface Ar (CaAa)	144.250 - 0.000	1	1	-0.400 -0.370	0.375		0.000
PL1.25x6.875 Reinforcement	А	No	Surface Af (CaAa)	29.750 - 0.000	1	1	0.250 0.250	6.875	16.250	0.000
PL1.25x6.875 Reinforcement	В	No	Surface Af (CaAa)	29.750 - 0.000	1	1	0.250 0.250	6.875	16.250	0.000
PL1.25x6.875 Reinforcement	С	No	Surface Af (CaAa)	29.750 - 9.170	1	1	0.250 0.250	6.875	16.250	0.000
PL1.25x6.875 Reinforcement	С	No	Surface Af (CaAa)	16.420 - 0.000	1	1	$0.000 \\ 0.000$	6.875	16.250	0.000
PL1.25x6.875 Reinforcement ***	С	No	Surface Af (CaAa)	16.420 - 0.000	1	1	0.500 0.500	6.875	16.250	0.000
PL1.25x6.625 Reinforcement	А	No	Surface Af (CaAa)	59.500 - 29.750	1	1	0.250 0.250	6.625	15.750	0.000
PL1.25x6.625 Reinforcement	В	No	Surface Af (CaAa)	59.500 - 29.750	1	1	0.250 0.250	6.625	15.750	0.000
PL1.25x6.625 Reinforcement ***	С	No	Surface Af (CaAa)	59.500 - 29.750	1	1	0.250 0.250	6.625	15.750	0.000
PL1.25x5.5 Reinforcement	А	No	Surface Af (CaAa)	89.250 - 59.500	1	1	$0.250 \\ 0.250$	5.500	13.500	0.000
PL1.25x5.5 Reinforcement	В	No	Surface Af (CaAa)	89.250 - 59.500	1	1	0.250	5.500	13.500	0.000
PL1.25x5.5 Reinforcement	С	No	Surface Af (CaAa)	89.250 - 59.500	1	1	0.250 0.250 0.250	5.500	13.500	0.000
PL1.25x3.625	А	No	Surface Af	100.000 -	1	1	0.250	3.625	9.750	0.000

Page 11 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weight
		Torque Calculation		ft				in	in	klf
Reinforcement			(CaAa)	89.250			0.250			
PL1.25x3.625	В	No	Surface Af	100.000 -	1	1	0.250	3.625	9.750	0.000
Reinforcement	~		(CaAa)	89.250	_	_	0.250			
PL1.25x3.625	С	No	Surface Af	100.000 -	1	1	0.250	3.625	9.750	0.000
Reinforcement ***			(CaAa)	89.250			0.250			
PL1x4 Reinforcement	А	No	Surface Af	35.750 -	1	1	0.000	4.000	10.000	0.000
	P		(CaAa)	10.750			0.000	1 0 0 0	10.000	
PL1x4 Reinforcement	В	No	Surface Af	35.750 -	1	1	-0.250	4.000	10.000	0.000
DI 14 Dainfanaan	С	N.	(CaAa)	10.750 40.750 -	1	1	-0.250	4 000	10.000	0.000
PL1x4 Reinforcement	C	No	Surface Af		1	1	-0.250	4.000	10.000	0.000
***			(CaAa)	10.750			-0.250			
PL1x4 Reinforcement	А	No	Surface Af	62.250 -	1	1	0.500	4.000	10.000	0.000
r L1x4 Kennorcement	А	NO	(CaAa)	32.250	1	1	0.500	4.000	10.000	0.000
PL1x4 Reinforcement	в	No	Surface Af	62.250 -	1	1	0.500	4.000	10.000	0.000
I LIX4 Kennoreement	Б	110	(CaAa)	32.250	1	1	0.500	4.000	10.000	0.000
PL1x4 Reinforcement	С	No	Surface Af	62.250 -	1	1	0.500	4.000	10.000	0.000
	e	110	(CaAa)	32.250			0.500	1.000	10.000	0.000
***			(Curiu)	52.200			0.000			
PL1x4 Reinforcement	А	No	Surface Af	78.750 -	1	1	-0.250	4.000	10.000	0.000
			(CaAa)	58.750			-0.250			
PL1x4 Reinforcement	В	No	Surface Af	78.750 -	1	1	-0.250	4.000	10.000	0.000
			(CaAa)	58.750			-0.250			
PL1x4 Reinforcement	С	No	Surface Af	78.750 -	1	1	-0.250	4.000	10.000	0.000
			(CaAa)	58.750			-0.250			

PL1x4 Reinforcement	Α	No	Surface Af	106.500 -	1	1	-0.250	4.000	10.000	0.000
			(CaAa)	86.500			-0.250			
PL1x4 Reinforcement	В	No	Surface Af	106.500 -	1	1	-0.250	4.000	10.000	0.000
			(CaAa)	86.500			-0.250			
PL1x4 Reinforcement	С	No	Surface Af	106.500 -	1	1	-0.250	4.000	10.000	0.000
			(CaAa)	86.500			-0.250			
***		3.7	a a b a	10 500			0.500	1 000	16.000	0.000
Transition Stiffener 1x7	А	No	Surface Af	10.500 -	1	1	-0.500	1.000	16.000	0.000
outro 1 7	ъ	ŊŢ	(CaAa)	0.000			-0.500	1 000	16.000	0.000
Transition Stiffener 1x7	В	No	Surface Af	10.500 -	1	1	-0.250	1.000	16.000	0.000
	C	N	(CaAa)	0.000	1	1	-0.250 -0.250	1.000	16,000	0.000
ransition Stiffener 1x7	С	No	Surface Af	10.500 -	1	1		1.000	16.000	0.000
*			(CaAa)	0.000			-0.250			
CCI-SFP-060100	в	No	Surface Af	25.000 -	1	1	-0.500	6.000	14.000	0.000
CCI-SIT-000100	Б	INO	(CaAa)	5.000 -	1	1	-0.500	0.000	14.000	0.000
CCI-SFP-060100	С	No	Surface Af	25.000 -	1	1	0.000	6.000	14.000	0.000
000100	C	110	(CaAa)	5.000 -	1	1	0.000	0.000	14.000	0.000
*			(Caria)	5.000			0.000			
CCI-SFP-060100	С	No	Surface Af	25.000 -	1	1	-0.250	6.000	14.000	0.000
CCI SII 000100	e	110	(CaAa)	10.000			-0.250	0.000	11.000	0.000
*										
CCI-SFP-045100	В	No	Surface Af	35.083 -	1	1	0.000	4.500	11.000	0.000
			(CaAa)	20.083			0.000			
*										
CCI-SFP-045100	С	No	Surface Af	35.083 -	1	1	0.000	4.500	11.000	0.000
			(CaAa)	25.083			0.000			
*										
CCI-SFP-045100	Α	No	Surface Af	45.080 -	1	1	-0.250	4.500	11.000	0.000
			(CaAa)	25.083			-0.250			
*										
CCI-SFP-060100	В	No	Surface Af	45.167 -	1	1	0.000	6.000	14.000	0.000
			(CaAa)	35.167			0.000			

Page 12 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Description	Sector	Exclude	Component	Placement	Total	Number	Start/End		Perimeter	Weigh
		From	Туре		Number	Per Row	Position	Diameter		
		Torque		ft				in	in	klf
	~	Calculation	~ ~							
CCI-SFP-060100	С	No	Surface Af	45.167 -	1	1	0.000	6.000	14.000	0.000
*			(CaAa)	35.167			0.000			
CCI-SFP-045100	А	No	Surface Af	75.250 -	1	1	0.000	4.500	11.000	0.000
CCI-511-045100	А	INO	(CaAa)	45.250	1	1	0.000	4.500	11.000	0.000
CCI-SFP-045100	В	No	Surface Af	75.250 -	1	1	0.000	4.500	11.000	0.000
045100	Б	140	(CaAa)	45.250	1	1	0.000	4.500	11.000	0.000
*			(Curru)	15.250			0.000			
CCI-SFP-040075	В	No	Surface Af	75.250 -	1	1	0.000	4.000	9.500	0.000
			(CaAa)	45.250			0.000			
*										
CCI-SFP-040075	В	No	Surface Af	100.330 -	1	1	0.000	4.000	9.500	0.000
			(CaAa)	75.330			0.000			
CCI-SFP-040075	С	No	Surface Af	100.330 -	1	1	0.000	4.000	9.500	0.000
			(CaAa)	75.330			0.000			
*			~ ~							
CCI-SFP-040075	А	No	Surface Af	90.333 -	1	1	-0.500	4.000	9.500	0.000
*			(CaAa)	75.333			-0.500			
CCI-AFP-05012520	С	No	Surface Af	105.330 -	1	1	0.000	5.000	12.500	0.000
00012020	C	110	(CaAa)	85.330	1	1	0.000	5.000	12.500	0.000
*			(Curru)	05.550			0.000			
CCI-AFP-045100	А	No	Surface Af	125.416 -	1	1	0.000	4.500	11.000	0.000
			(CaAa)	100.416			0.000			
CCI-AFP-045100	В	No	Surface Af	125.416 -	1	1	0.000	4.500	11.000	0.000
			(CaAa)	100.416			0.000			
CCI-AFP-045100	С	No	Surface Af	125.416 -	1	1	0.000	4.500	11.000	0.000
			(CaAa)	100.416			0.000			
*										
CCI-AFP-040075	А	No	Surface Af	111.000 -	1	1	-0.500	4.000	9.500	0.000
*			(CaAa)	96.000			-0.500			
* CCI-AFP-040075	в	No	Surface Af	111.000 -	1	1	-0.500	4.000	9.500	0.000
CCI-AFP-0400/3	D	INO	(CaAa)	101.000 -	1	1	-0.500	4.000	9.300	0.000
*			(Carra)	101.000			-0.500			
*										
*										
*										

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow Shield	Exclude From	Component Tuma	Placement	Total Number		$C_A A_A$	Weight
	or Leg	Sniela	Torque	Туре	ft	number		ft²/ft	klf
			Calculation						
MLC6C-06C-008R-	в	No	No	Inside Pole	130.000 - 0.000	1	No Ice	0.000	0.002
008R(1-1/2)							1/2" Ice	0.000	0.002
							1" Ice	0.000	0.002
HB114-1-0813U4-M	в	No	No	Inside Pole	130.000 - 0.000	3	No Ice	0.000	0.001
5J(1-1/4)							1/2" Ice	0.000	0.001
· · · ·							1" Ice	0.000	0.001
*									
*									
LDF7-50A(1-5/8)	в	No	No	Inside Pole	110.000 - 0.000	6	No Ice	0.000	0.001
							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
HB114-U6S12-XXX	В	No	No	Inside Pole	110.000 - 0.000	2	No Ice	0.000	0.002

Project

Client

Job 79982.004.01 - WATERBURY,CT (BU# 876317)

Page 13 of 92 Date

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-026

Crown Castle

Designed by Jayaraj B

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft^2/ft	klf
-LI(1-1/4)							1/2" Ice	0.000	0.002
. ,							1" Ice	0.000	0.002
LDF4-50A(1/2)	в	No	No	Inside Pole	110.000 - 0.000	1	No Ice	0.000	0.000
							1/2" Ice	0.000	0.000
*							1" Ice	0.000	0.000
LDF5-50A(7/8)	С	No	No	Inside Pole	100.000 - 0.000	5	No Ice	0.000	0.000
2010 001((//0))		1.0	110		100,000 0,000		1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
LDF6-50A(1-1/4)	С	No	No	Inside Pole	100.000 - 0.000	6	No Ice	0.000	0.001
							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
MLE HYBRID	С	No	No	Inside Pole	100.000 - 0.000	1	No Ice	0.000	0.001
POWER/18FIBER							1/2" Ice	0.000	0.001
RL 2(1-5/8)							1" Ice	0.000	0.001
LDF4-50A(1/2)	в	No	No	Inside Pole	50.000 - 0.000	1	No Ice	0.000	0.000
	-	1.0				-	1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
*								0.000	0.000
*									
*									
*									

		Feed	d Line/l	_inear A	ppurter	nances S	Section Are
Tower	Tower	Face	A_R	A_F	$C_{4}A_{4}$	$C_A A_A$	Weight
Section	Elevation	Tucc	218	215	In Face	Out Face	" cigni
Section	ft		ft^2	ft^2	ft ²	ft^2	Κ
L1	144.250-139.250	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	1.694	0.000	0.018
		C	0.000	0.000	0.000	0.000	0.000
L2	139.250-134.750	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	1.596	0.000	0.017
		С	0.000	0.000	0.000	0.000	0.000
L3	134.750-134.250	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.177	0.000	0.002
		С	0.000	0.000	0.000	0.000	0.000
L4	134.250-129.250	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	1.817	0.000	0.023
		С	0.000	0.000	0.000	0.000	0.000
L5	129.250-124.250	А	0.000	0.000	0.875	0.000	0.000
		В	0.000	0.000	2.935	0.000	0.046
		С	0.000	0.000	0.875	0.000	0.000
L6	124.250-123.416	А	0.000	0.000	0.625	0.000	0.000
		В	0.000	0.000	0.969	0.000	0.008
		С	0.000	0.000	0.625	0.000	0.000
L7	123.416-123.166	А	0.000	0.000	0.188	0.000	0.000
		В	0.000	0.000	0.291	0.000	0.002
		С	0.000	0.000	0.188	0.000	0.000
L8	123.166-118.166	А	0.000	0.000	3.750	0.000	0.000
		В	0.000	0.000	6.104	0.000	0.050
		С	0.000	0.000	3.750	0.000	0.000
L9	118.166-113.166	А	0.000	0.000	3.750	0.000	0.000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Section	Tower Elevation	Face	A_R	A_F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight
	ft		ft^2	ft^2	ft^2	ft^2	K
	v	В	0.000	0.000	6.610	0.000	0.058
		Ċ	0.000	0.000	3.750	0.000	0.000
L10	113.166-109.500	A	0.000	0.000	3.749	0.000	0.000
		В	0.000	0.000	5.847	0.000	0.047
		Ē	0.000	0.000	2.749	0.000	0.000
L11	109.500-109.250	Ă	0.000	0.000	0.354	0.000	0.000
LII	109.500 109.250	В	0.000	0.000	0.497	0.000	0.005
		Č	0.000	0.000	0.188	0.000	0.000
L12	109.250-104.750	Ă	0.000	0.000	7.542	0.000	0.000
LIZ	109.250-104.750	B	0.000	0.000	10.116	0.000	0.000
		C	0.000	0.000	5.025	0.000	0.000
L13	104.750-104.500	Ă	0.000	0.000	0.521	0.000	0.000
L13	104.750-104.500	B	0.000	0.000	0.664	0.000	0.000
		Б С	0.000	0.000	0.563	0.000	0.003
T 14	104 500 102 416						
L14	104.500-102.416	A	0.000	0.000	4.342	0.000	0.000
		B	0.000	0.000	5.534	0.000	0.042
T 1.F	102 416 102 166	C	0.000	0.000	4.689	0.000	0.000
L15	102.416-102.166	A	0.000	0.000	0.521	0.000	0.000
		В	0.000	0.000	0.664	0.000	0.005
		С	0.000	0.000	0.563	0.000	0.000
L16	102.166-98.750	A	0.000	0.000	6.622	0.000	0.000
		В	0.000	0.000	8.130	0.000	0.068
		С	0.000	0.000	8.628	0.000	0.009
L17	98.750-98.500	А	0.000	0.000	0.484	0.000	0.000
		В	0.000	0.000	0.627	0.000	0.005
		С	0.000	0.000	0.769	0.000	0.002
L18	98.500-97.500	А	0.000	0.000	1.938	0.000	0.000
		В	0.000	0.000	2.510	0.000	0.020
		С	0.000	0.000	3.077	0.000	0.007
L19	97.500-97.250	А	0.000	0.000	0.484	0.000	0.000
		В	0.000	0.000	0.627	0.000	0.005
		С	0.000	0.000	0.769	0.000	0.002
L20	97.250-92.000	А	0.000	0.000	7.505	0.000	0.000
		В	0.000	0.000	13.175	0.000	0.105
		С	0.000	0.000	16.153	0.000	0.039
L21	92.000-90.552	А	0.000	0.000	1.840	0.000	0.000
		В	0.000	0.000	3.634	0.000	0.029
		С	0.000	0.000	4.455	0.000	0.011
L22	90.552-89.250	А	0.000	0.000	2.377	0.000	0.000
		В	0.000	0.000	3.267	0.000	0.026
		Ē	0.000	0.000	4.006	0.000	0.010
L23	89.250-89.000	Ă	0.000	0.000	0.563	0.000	0.000
		В	0.000	0.000	0.706	0.000	0.005
		Č	0.000	0.000	0.847	0.000	0.002
L24	89.000-88.250	Ă	0.000	0.000	1.688	0.000	0.000
	09.000 00.290	B	0.000	0.000	2.117	0.000	0.000
		Б С	0.000	0.000	2.542	0.000	0.015
L25	88.250-88.000	A	0.000	0.000	0.563	0.000	0.000
140	00.230-00.000	B	0.000	0.000	0.706	0.000	0.000
		C D	0.000	0.000	0.847	0.000	0.003
L26	88.000-87.833	A	0.000	0.000	0.376	0.000	0.002
L20	00.000-07.000	B	0.000	0.000	0.378	0.000	0.000
1.27	07 072 07 507	C	0.000	0.000	0.566 0.563	0.000	0.001
L27	87.833-87.583	A	0.000	0.000		0.000	0.000
		B	0.000	0.000	0.706	0.000	0.005
1.00	07 502 02 502	С	0.000	0.000	0.847	0.000	0.002
L28	87.583-82.583	A	0.000	0.000	8.639	0.000	0.000
		B	0.000	0.000	11.499	0.000	0.100
		C	0.000	0.000	12.046	0.000	0.037
L29	82.583-77.583	А	0.000	0.000	8.695	0.000	0.000
		в	0.000	0.000	11.555	0.000	0.100

tnxTower

79982.004.01 - WATERBURY,CT (BU# 876317)

Page 15 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Section	Tower Elevation	Face	A_R	A_F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight
secuon	ft		ft^2	ft²	ft ²	ft ²	K
	Ji	С	0.000	0.000	10.225	0.000	0.037
L30	77.583-77.000	A	0.000	0.000	1.312	0.000	0.000
150	11.565 11.666	B	0.000	0.000	1.645	0.000	0.000
		Č	0.000	0.000	1.490	0.000	0.0012
L31	77.000-76.750	Ă	0.000	0.000	0.563	0.000	0.000
201	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	В	0.000	0.000	0.706	0.000	0.005
		Ē	0.000	0.000	0.639	0.000	0.002
L32	76.750-76.333	Ā	0.000	0.000	0.938	0.000	0.000
		В	0.000	0.000	1.177	0.000	0.008
		С	0.000	0.000	1.066	0.000	0.003
L33	76.333-76.083	А	0.000	0.000	0.563	0.000	0.000
		В	0.000	0.000	0.706	0.000	0.005
		С	0.000	0.000	0.639	0.000	0.002
L34	76.083-74.250	А	0.000	0.000	4.152	0.000	0.000
		В	0.000	0.000	5.869	0.000	0.037
		С	0.000	0.000	3.965	0.000	0.014
L35	74.250-74.000	А	0.000	0.000	0.583	0.000	0.000
		В	0.000	0.000	0.893	0.000	0.005
		С	0.000	0.000	0.472	0.000	0.002
L36	74.000-73.750	А	0.000	0.000	0.583	0.000	0.000
		В	0.000	0.000	0.893	0.000	0.005
		С	0.000	0.000	0.472	0.000	0.002
L37	73.750-73.500	А	0.000	0.000	0.583	0.000	0.000
		В	0.000	0.000	0.893	0.000	0.005
		С	0.000	0.000	0.472	0.000	0.002
L38	73.500-68.500	А	0.000	0.000	11.667	0.000	0.000
		В	0.000	0.000	17.860	0.000	0.100
		С	0.000	0.000	9.447	0.000	0.037
L39	68.500-63.500	A	0.000	0.000	11.667	0.000	0.000
		В	0.000	0.000	17.860	0.000	0.100
	(7 7 0 0 0 0 0 0	С	0.000	0.000	9.447	0.000	0.037
L40	63.500-60.500	A	0.000	0.000	8.167	0.000	0.000
		В	0.000	0.000	11.883	0.000	0.060
T 41	(0.500 (0.350	С	0.000	0.000	6.835	0.000	0.022
L41	60.500-60.250	A	0.000	0.000	0.750	0.000	0.000
		B	0.000	0.000	1.060	0.000	0.005
L42	60.250-59.500	C	$0.000 \\ 0.000$	$0.000 \\ 0.000$	0.639 2.250	$0.000 \\ 0.000$	0.002 0.000
L42	00.230-39.300	A B	0.000	0.000	3.179	0.000	0.000
		C	0.000	0.000	1.917	0.000	0.015
L43	59.500-59.250	A	0.000	0.000	0.797	0.000	0.000
L-1.5	59.500-59.250	B	0.000	0.000	1.107	0.000	0.000
		C	0.000	0.000	0.686	0.000	0.003
L44	59.250-54.250	A	0.000	0.000	12.938	0.000	0.002
211	57.250 54.250	B	0.000	0.000	19.131	0.000	0.100
		Č	0.000	0.000	10.717	0.000	0.037
L45	54.250-45.802	Ă	0.000	0.000	21.296	0.000	0.000
		В	0.000	0.000	31.761	0.000	0.170
		Ē	0.000	0.000	17.545	0.000	0.063
L46	45.802-44.802	Ā	0.000	0.000	2.393	0.000	0.000
		В	0.000	0.000	3.458	0.000	0.020
		С	0.000	0.000	2.410	0.000	0.007
L47	44.802-43.583	А	0.000	0.000	3.073	0.000	0.000
		В	0.000	0.000	3.968	0.000	0.025
		С	0.000	0.000	3.644	0.000	0.009
L48	43.583-43.333	А	0.000	0.000	0.630	0.000	0.000
		В	0.000	0.000	0.814	0.000	0.005
		С	0.000	0.000	0.747	0.000	0.002
L49	43.333-43.166	А	0.000	0.000	0.421	0.000	0.000
		В	0.000	0.000	0.544	0.000	0.003
		С	0.000	0.000	0.499	0.000	0.001

tnxTower

79982.004.01 - WATERBURY,CT (BU# 876317)

Page 16 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Section	Tower Elevation	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation #		ft^2	ft^2	In Face ft ²	Out Face ft ²	K
1.50	$\frac{ft}{42.166.42.016}$	•		v.	0.630	0.000	
L50	43.166-42.916	A	$0.000 \\ 0.000$	$0.000 \\ 0.000$	0.830	0.000	$0.000 \\ 0.005$
		B C	0.000	0.000	0.814	0.000	0.003
151	42 016 20 000				9.872	0.000	0.002
L51	42.916-39.000	A	0.000	0.000			
		B C	0.000	0.000	12.747	$0.000 \\ 0.000$	0.079
1.50	20.000.28.750		0.000	0.000	12.871		0.029
L52	39.000-38.750	A	0.000	0.000	0.630	0.000	0.000
		B	0.000	0.000	0.814	0.000	0.005
T 60	20 750 27 1//	С	0.000	0.000	0.914	0.000	0.002
L53	38.750-37.166	A	0.000	0.000	3.993	0.000	0.000
		B	0.000	0.000	5.156	0.000	0.032
		С	0.000	0.000	5.791	0.000	0.012
L54	37.166-36.916	A	0.000	0.000	0.630	0.000	0.000
		В	0.000	0.000	0.814	0.000	0.005
	26.016.01.000	С	0.000	0.000	0.914	0.000	0.002
L55	36.916-34.000	A	0.000	0.000	8.517	0.000	0.000
		В	0.000	0.000	10.406	0.000	0.059
		С	0.000	0.000	10.408	0.000	0.022
L56	34.000-33.750	А	0.000	0.000	0.797	0.000	0.000
		В	0.000	0.000	0.940	0.000	0.005
		С	0.000	0.000	0.873	0.000	0.002
L57	33.750-29.750	А	0.000	0.000	11.083	0.000	0.000
		В	0.000	0.000	13.371	0.000	0.081
		С	0.000	0.000	12.307	0.000	0.030
L58	29.750-29.500	А	0.000	0.000	0.641	0.000	0.000
		в	0.000	0.000	0.784	0.000	0.005
		С	0.000	0.000	0.717	0.000	0.002
L59	29.500-24.500	А	0.000	0.000	12.375	0.000	0.000
		В	0.000	0.000	16.173	0.000	0.101
		С	0.000	0.000	14.905	0.000	0.037
L60	24.500-23.000	Ā	0.000	0.000	2.719	0.000	0.000
		В	0.000	0.000	6.202	0.000	0.030
		С	0.000	0.000	6.178	0.000	0.011
L61	23.000-22.750	Ă	0.000	0.000	0.453	0.000	0.000
		В	0.000	0.000	1.034	0.000	0.005
		Ē	0.000	0.000	1.030	0.000	0.002
L62	22.750-21.583	Ă	0.000	0.000	2.115	0.000	0.000
202	22.700 21.000	В	0.000	0.000	4.825	0.000	0.024
		Č	0.000	0.000	4.806	0.000	0.009
L63	21.583-21.333	Ă	0.000	0.000	0.453	0.000	0.000
105	21.505-21.555	B	0.000	0.000	1.034	0.000	0.000
		C	0.000	0.000	1.034	0.000	0.005
L64	21.333-16.333	A	0.000	0.000	9.063	0.000	0.002
L04	21.555-10.555	A B	0.000	0.000	9.063	0.000	0.000
165	16 222 12 017	C	0.000	0.000	20.792	0.000	0.037
L65	16.333-12.917	A	0.000	0.000	6.191	0.000	0.000
		B	0.000	0.000	11.562	0.000	0.069
1.((12 017 12 (77	С	0.000	0.000	21.897	0.000	0.026
L66	12.917-12.667	A	0.000	0.000	0.453	0.000	0.000
		B	0.000	0.000	0.846	0.000	0.005
* · *		С	0.000	0.000	1.603	0.000	0.002
L67	12.667-12.500	A	0.000	0.000	0.303	0.000	0.000
		В	0.000	0.000	0.565	0.000	0.003
		С	0.000	0.000	1.070	0.000	0.001
L68	12.500-12.250	А	0.000	0.000	0.453	0.000	0.000
		В	0.000	0.000	0.846	0.000	0.005
		С	0.000	0.000	1.603	0.000	0.002
L69	12.250-12.000	А	0.000	0.000	0.453	0.000	0.000
		В	0.000	0.000	0.846	0.000	0.005
		С	0.000	0.000	1.603	0.000	0.002
L70	12.000-11.750	А	0.000	0.000	0.453	0.000	0.000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft²	ft^2	K
		В	0.000	0.000	0.846	0.000	0.005
		С	0.000	0.000	1.603	0.000	0.002
L71	11.750-8.500	А	0.000	0.000	4.684	0.000	0.000
		в	0.000	0.000	9.793	0.000	0.066
		С	0.000	0.000	17.359	0.000	0.024
L72	8.500-8.250	Α	0.000	0.000	0.323	0.000	0.000
		в	0.000	0.000	0.716	0.000	0.005
		С	0.000	0.000	0.936	0.000	0.002
L73	8.250-7.000	А	0.000	0.000	1.616	0.000	0.000
		В	0.000	0.000	3.581	0.000	0.025
		С	0.000	0.000	4.680	0.000	0.009
L74	7.000-6.750	А	0.000	0.000	0.323	0.000	0.000
		В	0.000	0.000	0.716	0.000	0.005
		С	0.000	0.000	0.936	0.000	0.002
L75	6.750-1.750	Α	0.000	0.000	6.463	0.000	0.000
		В	0.000	0.000	11.073	0.000	0.101
		С	0.000	0.000	15.472	0.000	0.037
L76	1.750-0.000	А	0.000	0.000	2.262	0.000	0.000
		В	0.000	0.000	3.263	0.000	0.035
		С	0.000	0.000	4.803	0.000	0.013

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft²	ft²	ft²	ft²	K
L1	144.250-139.250	А	0.983	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	5.390	0.000	0.056
		С		0.000	0.000	0.000	0.000	0.000
L2	139.250-134.750	А	0.980	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	5.040	0.000	0.052
		С		0.000	0.000	0.000	0.000	0.000
L3	134.750-134.250	А	0.978	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.559	0.000	0.006
		С		0.000	0.000	0.000	0.000	0.000
L4	134.250-129.250	А	0.976	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	5.776	0.000	0.066
		С		0.000	0.000	0.000	0.000	0.000
L5	129.250-124.250	А	0.972	0.000	0.000	1.101	0.000	0.006
		В		0.000	0.000	7.934	0.000	0.119
		С		0.000	0.000	1.101	0.000	0.006
L6	124.250-123.416	А	0.970	0.000	0.000	0.787	0.000	0.005
		В		0.000	0.000	1.925	0.000	0.023
		С		0.000	0.000	0.787	0.000	0.005
L7	123.416-123.166	А	0.970	0.000	0.000	0.236	0.000	0.001
		В		0.000	0.000	0.577	0.000	0.007
		С		0.000	0.000	0.236	0.000	0.001
L8	123.166-118.166	А	0.968	0.000	0.000	4.718	0.000	0.028
		В		0.000	0.000	12.177	0.000	0.149
		С		0.000	0.000	4.718	0.000	0.028
L9	118.166-113.166	А	0.964	0.000	0.000	4.714	0.000	0.027
		В		0.000	0.000	13.270	0.000	0.165
		С		0.000	0.000	4.714	0.000	0.027
L10	113.166-109.500	А	0.960	0.000	0.000	4.741	0.000	0.027
		В		0.000	0.000	10.936	0.000	0.132
		С		0.000	0.000	3.453	0.000	0.020
L11	109.500-109.250	А	0.958	0.000	0.000	0.450	0.000	0.003
		В		0.000	0.000	0.866	0.000	0.012

Page 18 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
Section	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
	<u> </u>	 C		0.000	0.000	0.235	0.000	0.001
L12	109.250-104.750	Ă	0.956	0.000	0.000	9.597	0.000	0.055
		В		0.000	0.000	17.072	0.000	0.217
		Ĉ		0.000	0.000	6.331	0.000	0.037
L13	104.750-104.500	Ā	0.954	0.000	0.000	0.664	0.000	0.004
		В		0.000	0.000	1.079	0.000	0.013
		С		0.000	0.000	0.706	0.000	0.004
L14	104.500-102.416	A	0.953	0.000	0.000	5.533	0.000	0.032
		В		0.000	0.000	8.988	0.000	0.107
		С		0.000	0.000	5.880	0.000	0.034
L15	102.416-102.166	А	0.952	0.000	0.000	0.664	0.000	0.004
		В		0.000	0.000	1.078	0.000	0.013
		С		0.000	0.000	0.705	0.000	0.004
L16	102.166-98.750	А	0.950	0.000	0.000	8.481	0.000	0.049
		В		0.000	0.000	13.654	0.000	0.168
		С		0.000	0.000	11.179	0.000	0.075
L17	98.750-98.500	А	0.948	0.000	0.000	0.625	0.000	0.004
		В		0.000	0.000	1.048	0.000	0.013
		С		0.000	0.000	1.035	0.000	0.008
L18	98.500-97.500	А	0.948	0.000	0.000	2.499	0.000	0.015
		В		0.000	0.000	4.192	0.000	0.050
		С		0.000	0.000	4.141	0.000	0.032
L19	97.500-97.250	А	0.947	0.000	0.000	0.625	0.000	0.004
		В		0.000	0.000	1.048	0.000	0.013
		С		0.000	0.000	1.035	0.000	0.008
L20	97.250-92.000	А	0.944	0.000	0.000	9.685	0.000	0.058
		В		0.000	0.000	21.981	0.000	0.264
		С		0.000	0.000	21.722	0.000	0.169
L21	92.000-90.552	А	0.941	0.000	0.000	2.377	0.000	0.014
		В		0.000	0.000	6.063	0.000	0.073
		С		0.000	0.000	5.991	0.000	0.047
L22	90.552-89.250	А	0.940	0.000	0.000	3.060	0.000	0.018
		В		0.000	0.000	5.441	0.000	0.065
		С		0.000	0.000	5.381	0.000	0.042
L23	89.250-89.000	А	0.939	0.000	0.000	0.703	0.000	0.004
		В		0.000	0.000	1.124	0.000	0.013
		С		0.000	0.000	1.113	0.000	0.008
L24	89.000-88.250	Α	0.938	0.000	0.000	2.110	0.000	0.012
		В		0.000	0.000	3.372	0.000	0.039
		С		0.000	0.000	3.338	0.000	0.025
L25	88.250-88.000	А	0.938	0.000	0.000	0.703	0.000	0.004
		В		0.000	0.000	1.124	0.000	0.013
		С		0.000	0.000	1.113	0.000	0.008
L26	88.000-87.833	А	0.938	0.000	0.000	0.470	0.000	0.003
		В		0.000	0.000	0.751	0.000	0.009
		С		0.000	0.000	0.743	0.000	0.006
L27	87.833-87.583	Α	0.937	0.000	0.000	0.703	0.000	0.004
		В		0.000	0.000	1.124	0.000	0.013
		С	0.07.	0.000	0.000	1.112	0.000	0.008
L28	87.583-82.583	A	0.934	0.000	0.000	10.710	0.000	0.060
		В		0.000	0.000	19.106	0.000	0.237
		С		0.000	0.000	16.089	0.000	0.131
L29	82.583-77.583	A	0.929	0.000	0.000	10.769	0.000	0.060
		В		0.000	0.000	19.134	0.000	0.236
		С		0.000	0.000	13.842	0.000	0.118
L30	77.583-77.000	A	0.926	0.000	0.000	1.635	0.000	0.009
		В		0.000	0.000	2.609	0.000	0.030
T A (С	0.07-7	0.000	0.000	1.993	0.000	0.016
L31	77.000-76.750	A	0.925	0.000	0.000	0.701	0.000	0.004
		В		0.000	0.000	1.118	0.000	0.013
		С		0.000	0.000	0.855	0.000	0.007

Page 19 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
Section	ft	Leg	in	ft²	ft^2	ft ²	ft ²	K
L32	76.750-76.333	A	0.925	0.000	0.000	1.170	0.000	0.007
1.52	10.150-10.555	В	0.725	0.000	0.000	1.865	0.000	0.007
		C		0.000	0.000	1.425	0.000	0.021
L33	76.333-76.083	Ă	0.924	0.000	0.000	0.701	0.000	0.001
L 55	10.555 10.005	В	0.921	0.000	0.000	1.118	0.000	0.013
		č		0.000	0.000	0.855	0.000	0.007
L34	76.083-74.250	Ă	0.923	0.000	0.000	5.152	0.000	0.029
151	10.005 11.250	В	0.725	0.000	0.000	9.061	0.000	0.098
		č		0.000	0.000	5.344	0.000	0.045
L35	74.250-74.000	Ă	0.922	0.000	0.000	0.722	0.000	0.004
200		В	013 22	0.000	0.000	1.351	0.000	0.014
		ĉ		0.000	0.000	0.641	0.000	0.006
L36	74.000-73.750	Ă	0.921	0.000	0.000	0.722	0.000	0.004
200	/ 11000 / 51/00	В	0.921	0.000	0.000	1.350	0.000	0.014
		Ē		0.000	0.000	0.641	0.000	0.006
L37	73.750-73.500	Ă	0.921	0.000	0.000	0.721	0.000	0.004
201	101100 101000	В	0.721	0.000	0.000	1.350	0.000	0.014
		č		0.000	0.000	0.641	0.000	0.006
L38	73.500-68.500	A	0.918	0.000	0.000	14.420	0.000	0.080
250	15.500 00.500	В	0.910	0.000	0.000	26.975	0.000	0.278
		č		0.000	0.000	12.812	0.000	0.112
L39	68.500-63.500	Ă	0.911	0.000	0.000	14.400	0.000	0.079
20)	00.000 00.000	В	0.911	0.000	0.000	26.911	0.000	0.276
		Č		0.000	0.000	12.790	0.000	0.111
L40	63.500-60.500	Ă	0.905	0.000	0.000	10.113	0.000	0.056
2.0	001000 001000	В	0.500	0.000	0.000	17.598	0.000	0.173
		Č		0.000	0.000	9.146	0.000	0.075
L41	60.500-60.250	Ă	0.903	0.000	0.000	0.931	0.000	0.005
211	00.200 00.200	В	0.905	0.000	0.000	1.554	0.000	0.005
		č		0.000	0.000	0.850	0.000	0.013
L42	60.250-59.500	Ă	0.902	0.000	0.000	2.791	0.000	0.007
L12	00.250 59.500	В	0.902	0.000	0.000	4.659	0.000	0.015
		č		0.000	0.000	2.550	0.000	0.020
L43	59.500-59.250	Ă	0.901	0.000	0.000	0.977	0.000	0.005
LIJ	59.500 59.250	В	0.901	0.000	0.000	1.600	0.000	0.005
		C		0.000	0.000	0.897	0.000	0.013
L44	59.250-54.250	Ă	0.897	0.000	0.000	15.719	0.000	0.084
511	57.250 54.250	B	0.077	0.000	0.000	28.142	0.000	0.279
		č		0.000	0.000	14.106	0.000	0.116
L45	54.250-45.802	A	0.886	0.000	0.000	25.787	0.000	0.110
L 15	51.250 15.002	B	0.000	0.000	0.000	46.653	0.000	0.463
		č		0.000	0.000	23.057	0.000	0.190
L46	45.802-44.802	A	0.877	0.000	0.000	2.895	0.000	0.015
LIU	15.002 11.002	В	0.077	0.000	0.000	5.097	0.000	0.013
		Č		0.000	0.000	3.097	0.000	0.025
L47	44.802-43.583	A	0.875	0.000	0.000	3.713	0.000	0.029
E17	11.002 15.505	В	0.075	0.000	0.000	5.780	0.000	0.062
		č		0.000	0.000	4.545	0.000	0.034
L48	43.583-43.333	Ă	0.874	0.000	0.000	0.761	0.000	0.004
E IO	15.505 15.555	В	0.071	0.000	0.000	1.185	0.000	0.013
		C		0.000	0.000	0.932	0.000	0.013
L49	43.333-43.166	A	0.873	0.000	0.000	0.508	0.000	0.007
	15.555 15.100	В	0.075	0.000	0.000	0.791	0.000	0.009
		C		0.000	0.000	0.622	0.000	0.005
L50	43.166-42.916	A	0.873	0.000	0.000	0.761	0.000	0.003
200	151100 12,910	B	0.070	0.000	0.000	1.184	0.000	0.004
		C		0.000	0.000	0.932	0.000	0.013
L51	42.916-39.000	A	0.869	0.000	0.000	11.912	0.000	0.067
201	12.710 57.000	B	0.007	0.000	0.000	18.525	0.000	0.002
		C		0.000	0.000	16.052	0.000	0.179
		<u> </u>		0.000	0.000	10.004	0.000	0.110

Page 20 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

L53 L54 L55 L56	<i>Elevation</i> <i>ft</i> 38.750-37.166 37.166-36.916 36.916-34.000 34.000-33.750	or Leg B C A B C A B C A B C A B	Thickness in 0.862 0.860	$\begin{array}{c} ft^2 \\ \hline 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ \end{array}$	$\begin{array}{c} ft^2 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	$ In Face ft^2 1.181 1.140 4.812 7.477 7.210 $	Out Face ft² 0.000 0.000 0.000 0.000 0.000 0.000	<i>K</i> 0.013 0.008 0.025
L54 L55	37.166-36.916 36.916-34.000	C A B C A B C A B	0.860	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	1.140 4.812 7.477	$0.000 \\ 0.000$	0.008 0.025
L54 L55	37.166-36.916 36.916-34.000	A B C A B C A B	0.860	0.000 0.000 0.000 0.000 0.000	$0.000 \\ 0.000 \\ 0.000$	4.812 7.477	0.000	0.025
L54 L55	37.166-36.916 36.916-34.000	B C A B C A B	0.860	0.000 0.000 0.000 0.000	$0.000 \\ 0.000$	7.477		
L55	36.916-34.000	C A B C A B		$\begin{array}{c} 0.000\\ 0.000\\ 0.000\end{array}$	0.000		0.000	
L55	36.916-34.000	A B C A B		$0.000 \\ 0.000$		7 210		0.080
L55	36.916-34.000	B C A B		0.000	0.000	7.219	0.000	0.051
		C A B	0.050			0.759	0.000	0.004
		A B	0.056		0.000	1.179	0.000	0.013
		В		0.000	0.000	1.139	0.000	0.008
L56	34.000-33.750		0.856	0.000	0.000	10.315	0.000	0.053
L56	34.000-33.750			0.000	0.000	15.028	0.000	0.152
L56	34.000-33.750	С	0.050	0.000	0.000	13.026	0.000	0.092
		A	0.852	0.000	0.000	0.967	0.000	0.005
		В		0.000	0.000	1.365	0.000	0.013
T. C. C.	22 550 20 550	С	0.047	0.000	0.000	1.099	0.000	0.008
L57	33.750-29.750	A	0.847	0.000	0.000	13.369	0.000	0.068
		B		0.000	0.000	19.700	0.000	0.201
1.50	20 750 20 500	С	0.041	0.000	0.000	15.480	0.000	0.112
L58	29.750-29.500	A	0.841	0.000	0.000	0.767	0.000	0.004
		B		0.000	0.000	1.161	0.000	0.012
1.50	20 500 24 500	C	0.922	0.000	0.000	0.898	0.000	0.007
L59	29.500-24.500	A	0.833	0.000	0.000	14.777	0.000	0.073
		B C		$0.000 \\ 0.000$	0.000	23.734	0.000	0.244 0.134
L60	24.500-23.000	A	0.822	0.000	$0.000 \\ 0.000$	18.607 3.212	$0.000 \\ 0.000$	0.134
LOU	24.300-23.000	B	0.822	0.000	0.000	8.665	0.000	0.010
		Б С		0.000		8.003 7.581	0.000	0.080
L61	23.000-22.750	A	0.819	0.000	$0.000 \\ 0.000$	0.535	0.000	0.049
LUI	25.000-22.750	B	0.019	0.000	0.000	1.443	0.000	0.003
		C B		0.000	0.000	1.263	0.000	0.008
L62	22.750-21.583	Ă	0.817	0.000	0.000	2.496	0.000	0.003
L02	22.750-21.565	B	0.017	0.000	0.000	6.729	0.000	0.062
		Č		0.000	0.000	5.891	0.000	0.038
L63	21.583-21.333	Ă	0.814	0.000	0.000	0.535	0.000	0.003
205	21.505 21.555	В	0.011	0.000	0.000	1.440	0.000	0.013
		\overline{c}		0.000	0.000	1.261	0.000	0.008
L64	21.333-16.333	Ă	0.804	0.000	0.000	10.670	0.000	0.051
		В		0.000	0.000	25.288	0.000	0.245
		С		0.000	0.000	25.398	0.000	0.160
L65	16.333-12.917	А	0.784	0.000	0.000	7.262	0.000	0.033
		В		0.000	0.000	16.383	0.000	0.161
		С		0.000	0.000	25.947	0.000	0.146
L66	12.917-12.667	А	0.773	0.000	0.000	0.530	0.000	0.002
		В		0.000	0.000	1.195	0.000	0.012
		С		0.000	0.000	1.896	0.000	0.011
L67	12.667-12.500	А	0.772	0.000	0.000	0.354	0.000	0.002
		В		0.000	0.000	0.798	0.000	0.008
		С		0.000	0.000	1.266	0.000	0.007
L68	12.500-12.250	А	0.771	0.000	0.000	0.530	0.000	0.002
		В		0.000	0.000	1.193	0.000	0.012
		С		0.000	0.000	1.895	0.000	0.011
L69	12.250-12.000	A	0.769	0.000	0.000	0.530	0.000	0.002
		В		0.000	0.000	1.193	0.000	0.012
	10 000 11	С	0.815	0.000	0.000	1.894	0.000	0.010
L70	12.000-11.750	A	0.767	0.000	0.000	0.530	0.000	0.002
		B		0.000	0.000	1.192	0.000	0.012
1 71	11 750 0 500	С	0 755	0.000	0.000	1.894	0.000	0.010
L71	11.750-8.500	A	0.755	0.000	0.000	5.560	0.000	0.033
		B		0.000	0.000	14.118	0.000	0.151
1.72	9 500 9 250	C	0.741	0.000	0.000	20.669	0.000	0.125
L72	8.500-8.250	A B	0.741	$0.000 \\ 0.000$	$0.000 \\ 0.000$	0.389 1.043	$0.000 \\ 0.000$	0.003 0.012

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Jayaraj B

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
Section	ft	Leg	in	ft²	ft^2	ft^2	ft^2	K
		С		0.000	0.000	1.138	0.000	0.008
L73	8.250-7.000	А	0.734	0.000	0.000	1.941	0.000	0.013
		В		0.000	0.000	5.199	0.000	0.058
		С		0.000	0.000	5.681	0.000	0.040
L74	7.000-6.750	А	0.727	0.000	0.000	0.388	0.000	0.003
		В		0.000	0.000	1.037	0.000	0.012
		С		0.000	0.000	1.135	0.000	0.008
L75	6.750-1.750	А	0.692	0.000	0.000	7.693	0.000	0.050
		В		0.000	0.000	16.750	0.000	0.209
		С		0.000	0.000	18.851	0.000	0.136
L76	1.750-0.000	А	0.591	0.000	0.000	2.631	0.000	0.015
		В		0.000	0.000	4.909	0.000	0.064
		С		0.000	0.000	5.765	0.000	0.040

Project

Client

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	144.250-139.250	2.053	-1.044	1.816	-1.198
L2	139.250-134.750	2.101	-1.058	1.860	-1.206
L3	134.750-134.250	2.156	-1.086	1.914	-1.242
L4	134.250-129.250	1.549	-0.817	1.933	-1.320
L5	129.250-124.250	1.211	-0.783	1.734	-1.475
L6	124.250-123.416	0.688	-0.445	1.190	-1.013
L7	123.416-123.166	0.693	-0.448	1.198	-1.020
L8	123.166-118.166	0.795	-0.536	1.331	-1.134
L9	118.166-113.166	0.973	-0.688	1.561	-1.333
L10	113.166-109.500	0.167	-0.450	0.923	-1.095
L11	109.500-109.250	-0.747	-0.173	0.130	-0.782
L12	109.250-104.750	-0.658	0.017	0.116	-0.571
L13	104.750-104.500	-0.493	0.842	0.093	0.260
L14	104.500-102.416	-0.499	0.850	0.093	0.263
L15	102.416-102.166	-0.523	0.892	0.093	0.267
L16	102.166-98.750	0.202	1.727	0.660	1.007
L17	98.750-98.500	0.610	2.197	0.882	1.514
L18	98.500-97.500	0.613	2.208	0.886	1.521
L19	97.500-97.250	0.616	2.219	0.890	1.529
L20	97.250-92.000	0.902	1.566	1.155	0.926
L21	92.000-90.552	1.004	1.352	1.250	0.728
L22	90.552-89.250	0.702	2.168	0.980	1.462
L23	89.250-89.000	0.581	2.089	0.871	1.502
L24	89.000-88.250	0.583	2.099	0.874	1.509
L25	88.250-88.000	0.595	2.141	0.879	1.518
L26	88.000-87.833	0.596	2.144	0.881	1.521
L27	87.833-87.583	0.597	2.147	0.882	1.523
L28	87.583-82.583	0.769	2.104	1.079	1.332
L29	82.583-77.583	0.829	1.697	1.151	0.968
L30	77.583-77.000	0.698	1.429	1.012	0.853
L31	77.000-76.750	0.701	1.434	1.015	0.856
L32	76.750-76.333	0.702	1.437	1.017	0.858
L33	76.333-76.083	0.704	1.441	1.019	0.860
L34	76.083-74.250	0.870	-0.257	1.168	-0.617
L35	74.250-74.000	1.026	-1.525	1.305	-1.720
L36	74.000-73.750	1.028	-1.527	1.307	-1.723
L37	73.750-73.500	1.030	-1.530	1.309	-1.726
L38	73.500-68.500	1.047	-1.556	1.330	-1.753

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L39	68.500-63.500	1.080	-1.605	1.368	-1.804
L40	63.500-60.500	0.993	-1.475	1.271	-1.676
L41	60.500-60.250	0.935	-1.388	1.204	-1.588
L42	60.250-59.500	0.937	-1.393	1.207	-1.592
L43	59.500-59.250	0.899	-1.336	1.172	-1.547
L44	59.250-54.250	1.079	-1.603	1.362	-1.797
L45	54.250-45.802	1.137	-1.690	1.431	-1.889
L46	45.802-44.802	0.902	-0.626	1.199	-1.009
L47	44.802-43.583	0.364	0.993	0.656	0.394
L48	43.583-43.333	0.366	0.997	0.658	0.396
L49	43.333-43.166	0.366	0.998	0.659	0.397
L50	43.166-42.916	0.366	1.000	0.659	0.398
L51	42.916-39.000	0.740	1.242	0.993	0.628
L52	39.000-38.750	1.178	1.525	1.388	0.899
L53	38.750-37.166	1.184	1.532	1.393	0.904
L54	37.166-36.916	1.189	1.539	1.399	0.909
L55	36.916-34.000	0.632	0.578	0.917	0.056
L56	34.000-33.750	0.270	-0.025	0.634	-0.485
L57	33.750-29.750	0.301	-0.028	0.699	-0.533
L58	29.750-29.500	0.321	-0.030	0.739	-0.563
L59	29.500-24.500	0.449	-0.134	0.849	-0.647
L60	24.500-23.000	1.256	-0.705	1.534	-1.087
L61	23.000-22.750	1.261	-0.708	1.539	-1.090
L62	22.750-21.583	1.265	-0.710	1.543	-1.093
L63	21.583-21.333	1.268	-0.712	1.546	-1.095
L64	21.333-16.333	0.578	-0.317	0.949	-0.760
L65	16.333-12.917	-1.660	0.804	-1.007	0.253
L66	12.917-12.667	-1.674	0.810	-1.021	0.260
L67	12.667-12.500	-1.675	0.811	-1.023	0.261
L68	12.500-12.250	-1.676	0.811	-1.024	0.262
L69	12.250-12.000	-1.678	0.812	-1.026	0.263
L70	12.000-11.750	-1.679	0.812	-1.028	0.264
L71	11.750-8.500	-2.206	1.068	-1.400	0.539
L72	8.500-8.250	-1.934	0.132	-1.094	-0.246
L73	8.250-7.000	-1.940	0.132	-1.103	-0.243
L74	7.000-6.750	-1.946	0.133	-1.113	-0.240
L75	6.750-1.750	-0.995	0.150	-0.232	-0.249
L76	1.750-0.000	-0.376	0.162	0.267	-0.210

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
L1	1	FB-L98B-034-XXX(3/8)	139.25 -	1.0000	1.0000
			144.00		
L1	2	WR-VG86ST-BRD(3/4)	139.25 -	1.0000	1.0000
			144.00		
L1	23	Safety Line 3/8	139.25 -	1.0000	1.0000
			144.25		
L2	1	FB-L98B-034-XXX(3/8)	134.75 -	1.0000	1.0000
			139.25		
L2	2	WR-VG86ST-BRD(3/4)	134.75 -	1.0000	1.0000

Shielding Factor Ka

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.	1	Segment Elev.	No Ice	Ice
L2	23	Safety Line 3/8	139.25 134.75 -	1.0000	1.0000
L3	1	FB-L98B-034-XXX(3/8)	139.25 134.25 - 134.75	1.0000	1.0000
L3	2	WR-VG86ST-BRD(3/4)	134.25 - 134.75	1.0000	1.0000
L3	23	Safety Line 3/8	134.25 - 134.75	1.0000	1.0000
L4	1	FB-L98B-034-XXX(3/8)	129.25 - 134.25	1.0000	1.0000
L4	2	WR-VG86ST-BRD(3/4)	129.25 - 134.25	1.0000	1.0000
L4	4	7983A(ELLIPTICAL)	129.25 - 130.00	1.0000	1.0000
L4	23	Safety Line 3/8	129.25 - 134.25	1.0000	1.0000
L5	1	FB-L98B-034-XXX(3/8)	124.25 - 129.25	1.0000	1.0000
L5	2	WR-VG86ST-BRD(3/4)	124.25 - 129.25	1.0000	1.0000
L5	4	7983A(ELLIPTICAL)	124.25 - 129.25	1.0000	1.0000
L5 L5	23 89	Safety Line 3/8 CCI-AFP-045100	124.25 - 129.25 124.25	1.0000	1.0000 1.0000
L5 L5	89 90	CCI-AFP-045100	124.25 - 125.42 124.25 -	1.0000	1.0000
L5 L5	90	CCI-AFP-045100 CCI-AFP-045100	124.25 - 125.42 124.25 -	1.0000	1.0000
L5 L6	91	FB-L98B-034-XXX(3/8)	124.23 - 125.42 123.42 -	1.0000	1.0000
L6	2	WR-VG86ST-BRD(3/4)	123.42 - 124.25 123.42 -	1.0000	1.0000
L6	4	7983A(ELLIPTICAL)	124.25 123.42 -	1.0000	1.0000
L6	23	Safety Line 3/8	124.25 123.42 -	1.0000	1.0000
L6	89	CCI-AFP-045100	124.25 123.42 -	1.0000	1.0000
L6	90	CCI-AFP-045100	124.25 123.42 -	1.0000	1.0000
L6	91	CCI-AFP-045100	124.25 123.42 -	1.0000	1.0000
L7	1	FB-L98B-034-XXX(3/8)	124.25 123.17 -	1.0000	1.0000
L7	2	WR-VG86ST-BRD(3/4)	123.42 123.17 -	1.0000	1.0000
L7	4	7983A(ELLIPTICAL)	123.42 123.17 -	1.0000	1.0000
L7	23	Safety Line 3/8	123.42 123.17 - 123.42	1.0000	1.0000
L7	89	CCI-AFP-045100	123.42 123.17 - 123.42	1.0000	1.0000
L7	90	CCI-AFP-045100	123.42 123.17 - 123.42	1.0000	1.0000
L7	91	CCI-AFP-045100	123.42 123.17 - 123.42	1.0000	1.0000
L8	1	FB-L98B-034-XXX(3/8)	123.42 118.17 - 123.17	1.0000	1.0000
L8	2	WR-VG86ST-BRD(3/4)		1.0000	1.0000

Page 24 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

<i>Tower</i>	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
L8	4	7983A(ELLIPTICAL)	123.17 118.17 - 123.17	1.0000	1.0000
L8	9	CU12PSM9P6XXX(1-1/2)	123.17 118.17 - 120.00	1.0000	1.0000
L8	23	Safety Line 3/8	120.00 118.17 - 123.17	1.0000	1.0000
L8	89	CCI-AFP-045100	118.17 - 123.17	1.0000	1.0000
L8	90	CCI-AFP-045100	118.17 - 123.17	1.0000	1.0000
L8	91	CCI-AFP-045100	118.17 - 123.17	1.0000	1.0000
L9	1	FB-L98B-034-XXX(3/8)	113.17 - 118.17	1.0000	1.0000
L9	2	WR-VG86ST-BRD(3/4)	113.17 - 118.17	1.0000	1.0000
L9	4	7983A(ELLIPTICAL)	113.17 - 118.17	1.0000	1.0000
L9	9	CU12PSM9P6XXX(1-1/2)	113.17 - 118.17	1.0000	1.0000
L9	23	Safety Line 3/8	113.17 - 118.17 113.17	1.0000	1.0000 1.0000
L9 L9	89 90	CCI-AFP-045100 CCI-AFP-045100	113.17 - 118.17 113.17 -	1.0000	1.0000
L9 L9	90	CCI-AFP-045100	113.17 - 118.17 113.17 -	1.0000	1.0000
L10	1	FB-L98B-034-XXX(3/8)	113.17 - 118.17 109.50 -	1.0000	1.0000
L10	2	WR-VG86ST-BRD(3/4)	113.17 109.50 -	1.0000	1.0000
L10	4	7983A(ELLIPTICAL)	113.17 109.50 -	1.0000	1.0000
L10	9	CU12PSM9P6XXX(1-1/2)	113.17 109.50 -	1.0000	1.0000
L10	23	Safety Line 3/8	113.17 109.50 -	1.0000	1.0000
L10	89	CCI-AFP-045100	113.17 109.50 - 113.17	1.0000	1.0000
L10	90	CCI-AFP-045100	113.17 109.50 - 113.17	1.0000	1.0000
L10	91	CCI-AFP-045100	113.17 109.50 - 113.17	1.0000	1.0000
L10	93	CCI-AFP-040075	113.17 109.50 - 111.00	1.0000	1.0000
L10	95	CCI-AFP-040075	109.50 - 111.00	1.0000	1.0000
L11	1	FB-L98B-034-XXX(3/8)	109.25 - 109.50	1.0000	1.0000
L11	2	WR-VG86ST-BRD(3/4)	109.25 - 109.50	1.0000	1.0000
L11	4	7983A(ELLIPTICAL)	109.25 - 109.50	1.0000	1.0000
L11	9	CU12PSM9P6XXX(1-1/2)	109.25 - 109.50	1.0000	1.0000
L11	23	Safety Line 3/8	109.25 - 109.50	1.0000	1.0000
L11	89	CCI-AFP-045100	109.25 - 109.50	1.0000	1.0000
L11	90	CCI-AFP-045100	109.25 -	1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	*	Segment Elev.	No Ice	Ice
			109.50		
L11	91	CCI-AFP-045100	109.25 -	1.0000	1.0000
L11	93	CCI-AFP-040075	109.50 109.25 -	1.0000	1.0000
LII	95	CCI-AFF-040073	109.23 -	1.0000	1.0000
L11	95	CCI-AFP-040075	109.25 -	1.0000	1.0000
			109.50		
L12	1	FB-L98B-034-XXX(3/8)	104.75 -	1.0000	1.0000
L12	2	WR-VG86ST-BRD(3/4)	109.25 104.75 -	1.0000	1.0000
LIZ	2	WK-VG8051-DKD(5/4)	104.73 -	1.0000	1.0000
L12	4	7983A(ELLIPTICAL)	104.75 -	1.0000	1.0000
			109.25		
L12	9	CU12PSM9P6XXX(1-1/2)	104.75 -	1.0000	1.0000
L12	23	Safety Line 3/8	109.25 104.75 -	1.0000	1.0000
LIZ	23	Safety Line 5/8	104.75	1.0000	1.0000
L12	55	PL1x4 Reinforcement	104.75 -	1.0000	1.0000
			106.50		
L12	56	PL1x4 Reinforcement	104.75 -	1.0000	1.0000
L12	57	PL1x4 Reinforcement	106.50 104.75 -	1.0000	1.0000
LIZ	57	PL1X4 Keimorcement	104.75 -	1.0000	1.0000
L12	87	CCI-AFP-05012520	100.50	1.0000	1.0000
			105.33		
L12	89	CCI-AFP-045100	104.75 -	1.0000	1.0000
T 10	90	CCI AED 045100	109.25	1.0000	1 0000
L12	90	CCI-AFP-045100	104.75 - 109.25	1.0000	1.0000
L12	91	CCI-AFP-045100	104.75 -	1.0000	1.0000
			109.25		
L12	93	CCI-AFP-040075	104.75 -	1.0000	1.0000
L12	95	CCI-AFP-040075	109.25 104.75 -	1.0000	1.0000
LIZ	93	CCI-AFP-040073	104.73 -	1.0000	1.0000
L13	1	FB-L98B-034-XXX(3/8)	104.50 -	1.0000	1.0000
		, , , , , , , , , , , , , , , , , , ,	104.75		
L13	2	WR-VG86ST-BRD(3/4)	104.50 -	1.0000	1.0000
L13	4	7983A(ELLIPTICAL)	104.75 104.50 -	1.0000	1.0000
L15	-	7985A(ELLII TICAL)	104.30	1.0000	1.0000
L13	9	CU12PSM9P6XXX(1-1/2)	104.50 -	1.0000	1.0000
			104.75		
L13	23	Safety Line 3/8	104.50 -	1.0000	1.0000
L13	55	PL1x4 Reinforcement	104.75 104.50	1.0000	1.0000
L15	55	r L1x4 Kennorcement	104.50 - 104.75	1.0000	1.0000
L13	56	PL1x4 Reinforcement	104.50 -	1.0000	1.0000
			104.75		
L13	57	PL1x4 Reinforcement	104.50 -	1.0000	1.0000
L13	87	CCI-AFP-05012520	104.75 104.50 -	1.0000	1.0000
L13		CCI-AIT-05012520	104.30 -	1.0000	1.0000
L13	89	CCI-AFP-045100	104.50 -	1.0000	1.0000
			104.75		
L13	90	CCI-AFP-045100	104.50 -	1.0000	1.0000
L13	91	CCI-AFP-045100	104.75 104.50 -	1.0000	1.0000
L13	91	CCI-AFF-043100	104.30 -	1.0000	1.0000
L13	93	CCI-AFP-040075	104.50 -	1.0000	1.0000
			104.75		
L13	95	CCI-AFP-040075	104.50 -	1.0000	1.0000

Page 26 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
			104.75		
L14	1	FB-L98B-034-XXX(3/8)		1.0000	1.0000
L14	2	WR-VG86ST-BRD(3/4)	104.50 102.42 -	1.0000	1.0000
1714	2	WIC- V 00051-DRD(5/4)	102.42	1.0000	1.0000
L14	4	7983A(ELLIPTICAL)	102.42 -	1.0000	1.0000
			104.50	1 0 0 0 0	1 0 0 0 0
L14	9	CU12PSM9P6XXX(1-1/2)	102.42 - 104.50	1.0000	1.0000
L14	23	Safety Line 3/8	104.50	1.0000	1.0000
		-	104.50		
L14	55	PL1x4 Reinforcement	102.42 -	1.0000	1.0000
L14	56	PL1x4 Reinforcement	104.50 102.42 -	1.0000	1.0000
211	20		104.50	1.0000	1.0000
L14	57	PL1x4 Reinforcement	102.42 -	1.0000	1.0000
L14	87	CCI-AFP-05012520	104.50 102.42 -	1.0000	1.0000
L14	07	CCI-AI1-05012520	102.42	1.0000	1.0000
L14	89	CCI-AFP-045100	102.42 -	1.0000	1.0000
T 1 4	0.0		104.50	1 0000	1 0000
L14	90	CCI-AFP-045100	102.42 - 104.50	1.0000	1.0000
L14	91	CCI-AFP-045100	104.50	1.0000	1.0000
			104.50		
L14	93	CCI-AFP-040075	102.42 -	1.0000	1.0000
L14	95	CCI-AFP-040075	104.50 102.42 -	1.0000	1.0000
211	20	cerriir cicore	104.50	1.0000	1.0000
L15	1	FB-L98B-034-XXX(3/8)		1.0000	1.0000
L15	2	WR-VG86ST-BRD(3/4)	102.42 102.17 -	1.0000	1.0000
LIJ	2	WK-V08051-DKD(5/4)	102.17 -	1.0000	1.0000
L15	4	7983A(ELLIPTICAL)	102.17 -	1.0000	1.0000
			102.42	1 0000	1 0000
L15	9	CU12PSM9P6XXX(1-1/2)	102.17 - 102.42	1.0000	1.0000
L15	23	Safety Line 3/8	102.17 -	1.0000	1.0000
			102.42		
L15	55	PL1x4 Reinforcement	102.17 - 102.42	1.0000	1.0000
L15	56	PL1x4 Reinforcement	102.42	1.0000	1.0000
			102.42		
L15	57	PL1x4 Reinforcement	102.17 -	1.0000	1.0000
L15	87	CCI-AFP-05012520	102.42 102.17 -	1.0000	1.0000
L15	07	CCI-AFT-05012520	102.17 -	1.0000	1.0000
L15	89	CCI-AFP-045100	102.17 -	1.0000	1.0000
T 15	00	CCL A FR 045100	102.42	1 0000	1 0000
L15	90	CCI-AFP-045100	102.17 - 102.42	1.0000	1.0000
L15	91	CCI-AFP-045100	102.17 -	1.0000	1.0000
			102.42		
L15	93	CCI-AFP-040075	102.17 - 102.42	1.0000	1.0000
L15	95	CCI-AFP-040075	102.42	1.0000	1.0000
210	,,,		102.42		
L16	1	FB-L98B-034-XXX(3/8)		1.0000	1.0000
L16 L16	2 4	WR-VG86ST-BRD(3/4) 7983A(ELLIPTICAL)		1.0000 1.0000	$1.0000 \\ 1.0000$
L16 L16	4	CU12PSM9P6XXX(1-1/2)		1.0000	1.0000
	18	MLC HYBRID 6X12		1.0000	1.0000

Page 27 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
Section	Record 110.	6AWGX6(1-1/2)	Segment Liev.	110 100	ice
L16	23	Safety Line 3/8	98 75 - 102 17	1.0000	1.0000
L16 L16	39	PL1.25x3.625 Reinforcement	98.75 - 100.00	1.0000	1.0000
L16	40	PL1.25x3.625 Reinforcement		1.0000	1.0000
L16	40	PL1.25x3.625 Reinforcement	98.75 - 100.00	1.0000	1.0000
L10 L16	55	PL1x4 Reinforcement		1.0000	1.0000
L16	56	PL1x4 Reinforcement	98.75 - 102.17	1.0000	1.0000
L10 L16	57	PL1x4 Reinforcement		1.0000	1.0000
L10 L16	82	CCI-SFP-040075		1.0000	1.0000
L10 L16	83	CCI-SFP-040075		1.0000	1.0000
L10 L16	87	CCI-AFP-05012520	98.75 - 100.33	1.0000	1.0000
L10 L16	89	CCI-AFP-045100	100.42 -	1.0000	1.0000
L10	07	045100	100.42	1.0000	1.0000
L16	90	CCI-AFP-045100	102.17	1.0000	1.0000
L10	90	CCI-AI1-045100	100.42 -	1.0000	1.0000
L16	91	CCI-AFP-045100	102.17	1.0000	1.0000
L10	71	CCI-AIT-045100	100.42 -	1.0000	1.0000
L16	93	CCI-AFP-040075		1.0000	1.0000
L16 L16	93 95	CCI-AFP-040075 CCI-AFP-040075	101.00 -	1.0000	1.0000
L10	95	CCI-AFP-0400/5	101.00 -	1.0000	1.0000
L17	1	ED 1 000 024 VVV(2/0)	102.17 98.50 - 98.75	1 0000	1.0000
L17 L17	1	FB-L98B-034-XXX(3/8) WR-VG86ST-BRD(3/4)	98.50 - 98.75 98.50 - 98.75	$1.0000 \\ 1.0000$	1.0000
L17 L17	4		98.50 - 98.75 98.50 - 98.75	1.0000	1.0000
L17 L17	4	7983A(ELLIPTICAL) CU12PSM9P6XXX(1-1/2)	98.50 - 98.75 98.50 - 98.75	1.0000	1.0000
L17 L17	-			1.0000	
LI/	18	MLC HYBRID 6X12	98.50 - 98.75	1.0000	1.0000
1.17	22	6AWGX6(1-1/2)	09 50 09 75	1 0000	1 0000
L17 L17	23	Safety Line 3/8 PL1.25x3.625 Reinforcement	98.50 - 98.75	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
	39	PL1.25x3.625 Reinforcement PL1.25x3.625 Reinforcement	98.50 - 98.75		
L17	40		98.50 - 98.75	1.0000	1.0000
L17	41	PL1.25x3.625 Reinforcement	98.50 - 98.75	1.0000	1.0000
L17	55	PL1x4 Reinforcement	98.50 - 98.75	$1.0000 \\ 1.0000$	1.0000
L17	56	PL1x4 Reinforcement	98.50 - 98.75		1.0000
L17	57	PL1x4 Reinforcement	98.50 - 98.75	$1.0000 \\ 1.0000$	1.0000
L17	82	CCI-SFP-040075	98.50 - 98.75		1.0000
L17	83	CCI-SFP-040075	98.50 - 98.75	1.0000	1.0000
L17 L17	87 93	CCI-AFP-05012520	98.50 - 98.75	$1.0000 \\ 1.0000$	1.0000
L17 L18		CCI-AFP-040075 FB-L98B-034-XXX(3/8)	98.50 - 98.75 97.50 - 98.50	1.0000	$1.0000 \\ 1.0000$
L18 L18	1			1.0000	
	4	WR-VG86ST-BRD(3/4)	97.50 - 98.50 97.50 - 98.50	1.0000	$1.0000 \\ 1.0000$
L18	4	7983A(ELLIPTICAL) CU12PSM9P6XXX(1-1/2)		1.0000	
L18	-		97.50 - 98.50 97.50 - 98.50	1.0000	$1.0000 \\ 1.0000$
L18	18	MLC HYBRID 6X12 6AWGX6(1-1/2)	77.50 - 98.50	1.0000	1.0000
L18	23	Safety Line 3/8	97.50 - 98.50	1.0000	1.0000
L18 L18	23 39	PL1.25x3.625 Reinforcement	97.50 - 98.50	1.0000	1.0000
L18 L18	39 40			1.0000	
L18 L18	40 41	PL1.25x3.625 Reinforcement PL1.25x3.625 Reinforcement	97.50 - 98.50 97.50 - 98.50	1.0000	$1.0000 \\ 1.0000$
	41 55	PL1.25X3.625 Reinforcement PL1x4 Reinforcement	97.50 - 98.50	1.0000	1.0000
L18 L18	55 56	PL1x4 Reinforcement	97.50 - 98.50	1.0000	1.0000
L18 L18			97.50 - 98.50	1.0000	
	57	PL1x4 Reinforcement			1.0000
L18	82	CCI-SFP-040075	97.50 - 98.50	1.0000	1.0000
L18	83	CCI-SFP-040075	97.50 - 98.50	1.0000	1.0000
L18	87	CCI-AFP-05012520	97.50 - 98.50	1.0000	1.0000
L18	93	CCI-AFP-040075	97.50 - 98.50 97.25 - 97.50	1.0000	1.0000
L19	1	FB-L98B-034-XXX(3/8)		1.0000	1.0000
L19	2	WR-VG86ST-BRD(3/4)	97.25 - 97.50	1.0000	1.0000
L19	4	7983A(ELLIPTICAL)	97.25 - 97.50	1.0000	1.0000
L19	9	CU12PSM9P6XXX(1-1/2)	97.25 - 97.50	1.0000	1.0000
L19	18	MLC HYBRID 6X12	97.25 - 97.50	1.0000	1.0000
T 10	~~	6AWGX6(1-1/2)	07.25 07.50	1 0000	1 0000
L19	23	Safety Line 3/8	97.25 - 97.50	1.0000	1.0000
L19	39	PL1.25x3.625 Reinforcement	97.25 - 97.50	1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	V I	V
Tower Section	Feed Line Record No.	Description	Segment Elev.	K _a No Ice	K _a Ice
L19	40	PL1.25x3.625 Reinforcement	97.25 - 97.50	1.0000	1.0000
L19	40	PL1.25x3.625 Reinforcement	97.25 - 97.50	1.0000	1.0000
L19	55	PL1x4 Reinforcement	97.25 - 97.50	1.0000	1.0000
L19	56	PL1x4 Reinforcement	97.25 - 97.50	1.0000	1.0000
L19	57	PL1x4 Reinforcement	97.25 - 97.50	1.0000	1.0000
L19	82	CCI-SFP-040075	97.25 - 97.50	1.0000	1.0000
L19	83	CCI-SFP-040075	97.25 - 97.50	1.0000	1.0000
L19	87	CCI-AFP-05012520	97.25 - 97.50	1.0000	1.0000
L19	93	CCI-AFP-040075	97.25 - 97.50	1.0000	1.0000
L20	1	FB-L98B-034-XXX(3/8)	92.00 - 97.25	1.0000	1.0000
L20	2	WR-VG86ST-BRD(3/4)	92.00 - 97.25	1.0000	1.0000
L20	4	7983A(ELLIPTICAL)	92.00 - 97.25	1.0000	1.0000
L20	9	CU12PSM9P6XXX(1-1/2)	92.00 - 97.25	1.0000	1.0000
L20	18	MLC HYBRID 6X12	92.00 - 97.25	1.0000	1.0000
		6AWGX6(1-1/2)			
L20	23	Safety Line 3/8	92.00 - 97.25	1.0000	1.0000
L20	39	PL1.25x3.625 Reinforcement	92.00 - 97.25	1.0000	1.0000
L20	40	PL1.25x3.625 Reinforcement	92.00 - 97.25	1.0000	1.0000
L20	41	PL1.25x3.625 Reinforcement	92.00 - 97.25	1.0000	1.0000
L20	55	PL1x4 Reinforcement	92.00 - 97.25	1.0000	1.0000
L20	56	PL1x4 Reinforcement	92.00 - 97.25	1.0000	1.0000
L20	57	PL1x4 Reinforcement	92.00 - 97.25	1.0000	1.0000
L20	82	CCI-SFP-040075 CCI-SFP-040075	92.00 - 97.25	1.0000	1.0000
L20 L20	83 87	CCI-SFP-040075 CCI-AFP-05012520	92.00 - 97.25 92.00 - 97.25	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L20 L20	93	CCI-AFP-05012520 CCI-AFP-040075	92.00 - 97.23	1.0000	1.0000
L20 L21	93	FB-L98B-034-XXX(3/8)	90.55 - 92.00	1.0000	1.0000
L21 L21	2	WR-VG86ST-BRD(3/4)	90.55 - 92.00	1.0000	1.0000
L21 L21	4	7983A(ELLIPTICAL)	90.55 - 92.00	1.0000	1.0000
L21 L21	9	CU12PSM9P6XXX(1-1/2)	90.55 - 92.00	1.0000	1.0000
L21	18	MLC HYBRID 6X12	90.55 - 92.00	1.0000	1.0000
221	10	6AWGX6(1-1/2)	90100 9 2 100	110000	1.0000
L21	23	Safety Line 3/8	90.55 - 92.00	1.0000	1.0000
L21	39	PL1.25x3.625 Reinforcement	90.55 - 92.00	1.0000	1.0000
L21	40	PL1.25x3.625 Reinforcement	90.55 - 92.00	1.0000	1.0000
L21	41	PL1.25x3.625 Reinforcement	90.55 - 92.00	1.0000	1.0000
L21	55	PL1x4 Reinforcement	90.55 - 92.00	1.0000	1.0000
L21	56	PL1x4 Reinforcement	90.55 - 92.00	1.0000	1.0000
L21	57	PL1x4 Reinforcement	90.55 - 92.00	1.0000	1.0000
L21	82	CCI-SFP-040075	90.55 - 92.00	1.0000	1.0000
L21	83	CCI-SFP-040075	90.55 - 92.00	1.0000	1.0000
L21	87	CCI-AFP-05012520	90.55 - 92.00	1.0000	1.0000
L22	1	FB-L98B-034-XXX(3/8)	89.25 - 90.55	1.0000	1.0000
L22	2	WR-VG86ST-BRD(3/4)	89.25 - 90.55	1.0000	1.0000
L22	4	7983A(ELLIPTICAL)	89.25 - 90.55	1.0000	1.0000
L22	9	CU12PSM9P6XXX(1-1/2)		1.0000	1.0000
L22	18	MLC HYBRID 6X12	89.25 - 90.55	1.0000	1.0000
T 22		6AWGX6(1-1/2)	80.25 00.55	1 0000	1 0000
L22	23	Safety Line 3/8 BL 1 25x2 625 Painforcement	89.25 - 90.55	1.0000	1.0000 1.0000
L22 L22	39 40	PL1.25x3.625 Reinforcement PL1.25x3.625 Reinforcement	89.25 - 90.55 89.25 - 90.55	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L22 L22	40 41	PL1.25x3.625 Reinforcement	89.25 - 90.55 89.25 - 90.55	1.0000	1.0000
L22 L22	41 55	PL1.25X3.625 Reinforcement PL1x4 Reinforcement	89.25 - 90.55 89.25 - 90.55	1.0000	1.0000
L22 L22	55	PL1x4 Reinforcement	89.25 - 90.55	1.0000	1.0000
L22 L22	57	PL1x4 Reinforcement	89.25 - 90.55	1.0000	1.0000
L22 L22	82	CCI-SFP-040075	89.25 - 90.55	1.0000	1.0000
L22 L22	82	CCI-SFP-040075	89.25 - 90.55	1.0000	1.0000
L22 L22	85	CCI-SFP-040075	89.25 - 90.33	1.0000	1.0000
L22 L22	87	CCI-AFP-05012520	89.25 - 90.55	1.0000	1.0000
L22 L23	1	FB-L98B-034-XXX(3/8)	89.00 - 89.25	1.0000	1.0000
L23	2	WR-VG86ST-BRD(3/4)		1.0000	1.0000
L23	4	7983A(ELLIPTICAL)		1.0000	1.0000
. 1	·			•	•

Page 29 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	K_a	K
Tower Section	Record No.	Description	Segment Elev.	No Ice	K _a Ice
L23	9	CU12PSM9P6XXX(1-1/2)	89.00 - 89.25	1.0000	1.0000
L23 L23	18	MLC HYBRID 6X12	89.00 - 89.25	1.0000	1.0000
125	10	6AWGX6(1-1/2)	07.00 - 07.25	1.0000	1.0000
L23	23	Safety Line 3/8	89.00 - 89.25	1.0000	1.0000
L23 L23	35	PL1.25x5.5 Reinforcement	89.00 - 89.23	1.0000	1.0000
L23 L23	36	PL1.25x5.5 Reinforcement	89.00 - 89.25	1.0000	1.0000
L23 L23	30	PL1.25x5.5 Reinforcement	89.00 - 89.23	1.0000	1.0000
L23 L23	55	PL1x4 Reinforcement	89.00 - 89.25	1.0000	1.0000
L23 L23	56	PL1x4 Reinforcement	89.00 - 89.23	1.0000	1.0000
L23 L23	57	PL1x4 Reinforcement	89.00 - 89.25	1.0000	1.0000
L23 L23	82	CCI-SFP-040075	89.00 - 89.23	1.0000	1.0000
L23 L23	82	CCI-SFP-040075	89.00 - 89.25	1.0000	1.0000
L23 L23	85	CCI-SFP-040075	89.00 - 89.25	1.0000	1.0000
L23 L23	83	CCI-AFP-05012520	89.00 - 89.23	1.0000	1.0000
L23 L24	1	FB-L98B-034-XXX(3/8)	89.00 - 89.23	1.0000	1.0000
L24 L24	2	WR-VG86ST-BRD(3/4)	88.25 - 89.00	1.0000	1.0000
L24 L24		· · · · · · · · · · · · · · · · · · ·		1.0000	1.0000
L24 L24	4 9	7983A(ELLIPTICAL) CU12PSM9P6XXX(1-1/2)	88.25 - 89.00 88.25 - 89.00	1.0000	1.0000
L24 L24	18	MLC HYBRID 6X12	88.25 - 89.00 88.25 - 89.00	1.0000	1.0000
L24	18	6AWGX6(1-1/2)	00.25 - 89.00	1.0000	1.0000
1.24	22	Safety Line 3/8	88.25 - 89.00	1 0000	1.0000
L24 L24	23 35	PL1.25x5.5 Reinforcement	88.25 - 89.00 88.25 - 89.00	$1.0000 \\ 1.0000$	1.0000
L24 L24	36	PL1.25x5.5 Reinforcement	88.25 - 89.00	1.0000	1.0000
L24 L24	30	PL1.25x5.5 Reinforcement	88.25 - 89.00	1.0000	1.0000
L24 L24	57	PL1.25x5.5 Reinforcement PL1x4 Reinforcement	88.25 - 89.00	1.0000	1.0000
L24 L24	56	PL1x4 Reinforcement	88.25 - 89.00	1.0000	1.0000
L24 L24	57	PL1x4 Reinforcement	88.25 - 89.00	1.0000	1.0000
L24 L24	82	CCI-SFP-040075	88.25 - 89.00	1.0000	1.0000
L24 L24	82	CCI-SFP-040075	88.25 - 89.00	1.0000	1.0000
L24 L24	85	CCI-SFP-040075	88.25 - 89.00	1.0000	1.0000
L24 L24	87	CCI-AFP-05012520	88.25 - 89.00	1.0000	1.0000
L24 L25	1	FB-L98B-034-XXX(3/8)	88.00 - 88.25	1.0000	1.0000
L25 L25	2	WR-VG86ST-BRD(3/4)	88.00 - 88.25	1.0000	1.0000
L25 L25	4	7983A(ELLIPTICAL)	88.00 - 88.25	1.0000	1.0000
L25 L25	4	CU12PSM9P6XXX(1-1/2)	88.00 - 88.25	1.0000	1.0000
L25 L25	18	MLC HYBRID 6X12	88.00 - 88.25	1.0000	1.0000
L23	10	6AWGX6(1-1/2)	88.00 - 88.25	1.0000	1.0000
L25	23	Safety Line 3/8	88.00 - 88.25	1.0000	1.0000
L25 L25	35	PL1.25x5.5 Reinforcement	88.00 - 88.25	1.0000	1.0000
L25 L25	36	PL1.25x5.5 Reinforcement	88.00 - 88.25	1.0000	1.0000
L25 L25	37	PL1.25x5.5 Reinforcement	88.00 - 88.25	1.0000	1.0000
L25 L25	55	PL1x4 Reinforcement	88.00 - 88.25	1.0000	1.0000
L25 L25	56	PL1x4 Reinforcement	88.00 - 88.25	1.0000	1.0000
L25 L25	57	PL1x4 Reinforcement	88.00 - 88.25	1.0000	1.0000
L25 L25	82	CCI-SFP-040075	88.00 - 88.25	1.0000	1.0000
L25 L25	83	CCI-SFP-040075	88.00 - 88.25	1.0000	1.0000
L25 L25	85	CCI-SFP-040075	88.00 - 88.25	1.0000	1.0000
L25 L25	87	CCI-AFP-05012520	88.00 - 88.25	1.0000	1.0000
L25 L26	1	FB-L98B-034-XXX(3/8)	87.83 - 88.00	1.0000	1.0000
L20 L26	2	WR-VG86ST-BRD(3/4)	87.83 - 88.00	1.0000	1.0000
L20 L26	4	7983A(ELLIPTICAL)	87.83 - 88.00	1.0000	1.0000
L20 L26	9	CU12PSM9P6XXX(1-1/2)	87.83 - 88.00	1.0000	1.0000
L20 L26	18	MLC HYBRID 6X12	87.83 - 88.00	1.0000	1.0000
220	10	6AWGX6(1-1/2)	0.00	1.0000	1.0000
L26	23	Safety Line 3/8	87.83 - 88.00	1.0000	1.0000
L20 L26	35	PL1.25x5.5 Reinforcement	87.83 - 88.00	1.0000	1.0000
L20 L26	36	PL1.25x5.5 Reinforcement	87.83 - 88.00	1.0000	1.0000
L20 L26	37	PL1.25x5.5 Reinforcement	87.83 - 88.00	1.0000	1.0000
L26 L26	55	PL1x4 Reinforcement	87.83 - 88.00	1.0000	1.0000
L20 L26	56	PL1x4 Reinforcement	87.83 - 88.00	1.0000	1.0000
L20 L26	57	PL1x4 Reinforcement	87.83 - 88.00	1.0000	1.0000
L20 L26	82	CCI-SFP-040075			
2201				1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
L26	83	CCI-SFP-040075	87.83 - 88.00	1.0000	1.0000
L26	85	CCI-SFP-040075	87.83 - 88.00	1.0000	1.0000
L26	87	CCI-AFP-05012520	87.83 - 88.00	1.0000	1.0000
L27	1	FB-L98B-034-XXX(3/8)	87.58 - 87.83	1.0000	1.0000
L27	2	WR-VG86ST-BRD(3/4)	87.58 - 87.83	1.0000	1.0000
L27	4	7983A(ELLIPTICAL)	87.58 - 87.83	1.0000	1.0000
L27	9	CU12PSM9P6XXX(1-1/2)	87.58 - 87.83	1.0000	1.0000
L27	18	MLC HYBRID 6X12	87.58 - 87.83	1.0000	1.0000
		6AWGX6(1-1/2)			
L27	23	Safety Line 3/8		1.0000	1.0000
L27	35	PL1.25x5.5 Reinforcement	87.58 - 87.83	1.0000	1.0000
L27	36	PL1.25x5.5 Reinforcement	87.58 - 87.83	1.0000	1.0000
L27	37	PL1.25x5.5 Reinforcement	87.58 - 87.83	1.0000	1.0000
L27	55	PL1x4 Reinforcement	87.58 - 87.83	1.0000	1.0000
L27 L27	56 57	PL1x4 Reinforcement PL1x4 Reinforcement	87.58 - 87.83 87.58 - 87.83	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L27 L27	82	CCI-SFP-040075	87.58 - 87.83	1.0000	1.0000
L27 L27	82 83	CCI-SFP-040075	87.58 - 87.83	1.0000	1.0000
L27 L27	85	CCI-SFP-040075	87.58 - 87.83	1.0000	1.0000
L27 L27	87	CCI-AFP-05012520	87.58 - 87.83	1.0000	1.0000
L28	1	FB-L98B-034-XXX(3/8)	82.58 - 87.58	1.0000	1.0000
L28	2	WR-VG86ST-BRD(3/4)	82.58 - 87.58	1.0000	1.0000
L28	4	7983A(ELLIPTICAL)	82.58 - 87.58	1.0000	1.0000
L28	9	CU12PSM9P6XXX(1-1/2)	82.58 - 87.58	1.0000	1.0000
L28	18	MLC HYBRID 6X12	82.58 - 87.58	1.0000	1.0000
		6AWGX6(1-1/2)			
L28	23	Safety Line 3/8	82.58 - 87.58	1.0000	1.0000
L28	35	PL1.25x5.5 Reinforcement	82.58 - 87.58	1.0000	1.0000
L28	36	PL1.25x5.5 Reinforcement	82.58 - 87.58	1.0000	1.0000
L28	37	PL1.25x5.5 Reinforcement	82.58 - 87.58	1.0000	1.0000
L28	55	PL1x4 Reinforcement	86.50 - 87.58	1.0000	1.0000
L28	56	PL1x4 Reinforcement	86.50 - 87.58	1.0000	1.0000
L28	57	PL1x4 Reinforcement	86.50 - 87.58	1.0000	1.0000
L28 L28	82 83	CCI-SFP-040075	82.58 - 87.58	1.0000	$1.0000 \\ 1.0000$
L28 L28	85 85	CCI-SFP-040075 CCI-SFP-040075	82.58 - 87.58 82.58 - 87.58	$1.0000 \\ 1.0000$	1.0000
L28 L28	87	CCI-AFP-05012520	85.33 - 87.58	1.0000	1.0000
L20 L29	1	FB-L98B-034-XXX(3/8)	77.58 - 82.58	1.0000	1.0000
L29	2	WR-VG86ST-BRD(3/4)	77.58 - 82.58	1.0000	1.0000
L29	- 4	7983A(ELLIPTICAL)	77.58 - 82.58	1.0000	1.0000
L29	9	CU12PSM9P6XXX(1-1/2)	77.58 - 82.58	1.0000	1.0000
L29	18	MLC HYBRID 6X12	77.58 - 82.58	1.0000	1.0000
		6AWGX6(1-1/2)			
L29	23	Safety Line 3/8	77.58 - 82.58	1.0000	1.0000
L29	35	PL1.25x5.5 Reinforcement	77.58 - 82.58	1.0000	1.0000
L29	36	PL1.25x5.5 Reinforcement		1.0000	1.0000
L29	37	PL1.25x5.5 Reinforcement	77.58 - 82.58	1.0000	1.0000
L29	51	PL1x4 Reinforcement	77.58 - 78.75	1.0000	1.0000
L29	52	PL1x4 Reinforcement	77.58 - 78.75	1.0000	1.0000
L29	53	PL1x4 Reinforcement CCI-SFP-040075	77.58 - 78.75	1.0000	1.0000 1.0000
L29 L29	82 83		77.58 - 82.58	$1.0000 \\ 1.0000$	1.0000 1.0000
L29 L29	83 85	CCI-SFP-040075 CCI-SFP-040075	77.58 - 82.58 77.58 - 82.58	1.0000	$1.0000 \\ 1.0000$
L29 L30	85 1	FB-L98B-034-XXX(3/8)	77.00 - 77.58	1.0000	1.0000
L30 L30	2	WR-VG86ST-BRD(3/4)	77.00 - 77.58	1.0000	1.0000
L30 L30	4	7983A(ELLIPTICAL)	77.00 - 77.58	1.0000	1.0000
L30 L30	9	CU12PSM9P6XXX(1-1/2)	77.00 - 77.58	1.0000	1.0000
L30	18	MLC HYBRID 6X12	77.00 - 77.58	1.0000	1.0000
200	10	6AWGX6(1-1/2)			
L30	23	Safety Line 3/8	77.00 - 77.58	1.0000	1.0000
L30	35	PL1.25x5.5 Reinforcement	77.00 - 77.58	1.0000	1.0000
L30	36	PL1.25x5.5 Reinforcement	77.00 - 77.58	1.0000	1.0000
•	•				•

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tation	Food time	Dogovintin	FoodIter	V	V
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K_a Ice
L30	37	PL1.25x5.5 Reinforcement	77.00 - 77.58	1.0000	1.0000
L30 L30	51	PL1x4 Reinforcement	77.00 - 77.58	1.0000	1.0000
L30	52	PL1x4 Reinforcement	77.00 - 77.58	1.0000	1.0000
L30	53	PL1x4 Reinforcement	77.00 - 77.58	1.0000	1.0000
L30	82	CCI-SFP-040075	77.00 - 77.58	1.0000	1.0000
L30	83	CCI-SFP-040075	77.00 - 77.58	1.0000	1.0000
L30	85	CCI-SFP-040075	77.00 - 77.58	1.0000	1.0000
L31	1	FB-L98B-034-XXX(3/8)	76.75 - 77.00	1.0000	1.0000
L31	2	WR-VG86ST-BRD(3/4)	76.75 - 77.00	1.0000	1.0000
L31	4	7983A(ELLIPTICAL)	76.75 - 77.00	1.0000	1.0000
L31	9	CU12PSM9P6XXX(1-1/2)	76.75 - 77.00	1.0000	1.0000
L31	18	MLC HYBRID 6X12	76.75 - 77.00	1.0000	1.0000
		6AWGX6(1-1/2)			
L31	23	Safety Line 3/8	76.75 - 77.00	1.0000	1.0000
L31	35	PL1.25x5.5 Reinforcement	76.75 - 77.00	1.0000	1.0000
L31	36	PL1.25x5.5 Reinforcement	76.75 - 77.00	1.0000	1.0000
L31	37	PL1.25x5.5 Reinforcement	76.75 - 77.00	1.0000	1.0000
L31	51	PL1x4 Reinforcement	76.75 - 77.00	1.0000	1.0000
L31	52	PL1x4 Reinforcement	76.75 - 77.00 76.75 - 77.00	1.0000	1.0000
L31	53 82	PL1x4 Reinforcement	76.75 - 77.00 76.75 - 77.00	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L31 L31	82 83	CCI-SFP-040075 CCI-SFP-040075	76.75 - 77.00	1.0000	1.0000
L31 L31	85 85	CCI-SFP-040075 CCI-SFP-040075	76.75 - 77.00	1.0000	1.0000
L31 L32	1	FB-L98B-034-XXX(3/8)	76.33 - 76.75	1.0000	1.0000
L32 L32	2	WR-VG86ST-BRD(3/4)	76.33 - 76.75	1.0000	1.0000
L32 L32	4	7983A(ELLIPTICAL)	76.33 - 76.75	1.0000	1.0000
L32 L32	9	CU12PSM9P6XXX(1-1/2)	76.33 - 76.75	1.0000	1.0000
L32	18	MLC HYBRID 6X12	76.33 - 76.75	1.0000	1.0000
202	10	6AWGX6(1-1/2)	,		1.0000
L32	23	Safety Line 3/8	76.33 - 76.75	1.0000	1.0000
L32	35	PL1.25x5.5 Reinforcement	76.33 - 76.75	1.0000	1.0000
L32	36	PL1.25x5.5 Reinforcement	76.33 - 76.75	1.0000	1.0000
L32	37	PL1.25x5.5 Reinforcement	76.33 - 76.75	1.0000	1.0000
L32	51	PL1x4 Reinforcement	76.33 - 76.75	1.0000	1.0000
L32	52	PL1x4 Reinforcement	76.33 - 76.75	1.0000	1.0000
L32	53	PL1x4 Reinforcement	76.33 - 76.75	1.0000	1.0000
L32	82	CCI-SFP-040075	76.33 - 76.75	1.0000	1.0000
L32	83	CCI-SFP-040075	76.33 - 76.75	1.0000	1.0000
L32	85	CCI-SFP-040075	76.33 - 76.75	1.0000	1.0000
L33	1	FB-L98B-034-XXX(3/8)	76.08 - 76.33	1.0000	1.0000
L33	2	WR-VG86ST-BRD(3/4)	76.08 - 76.33	1.0000	1.0000
L33	4	7983A(ELLIPTICAL)	76.08 - 76.33	1.0000	1.0000
L33	9	CU12PSM9P6XXX(1-1/2)	76.08 - 76.33	1.0000	1.0000
L33	18	MLC HYBRID 6X12	76.08 - 76.33	1.0000	1.0000
тээ	23	6AWGX6(1-1/2)	76.08 76.22	1 0000	1 0000
L33	23 35	Safety Line 3/8 PL1.25x5.5 Reinforcement	76.08 - 76.33 76.08 - 76.33	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L33 L33	35	PL1.25x5.5 Reinforcement PL1.25x5.5 Reinforcement	76.08 - 76.33	1.0000	1.0000
L33 L33	30	PL1.25x5.5 Reinforcement	76.08 - 76.33	1.0000	1.0000
L33 L33	51	PL1x4 Reinforcement	76.08 - 76.33	1.0000	1.0000
L33 L33	52	PL1x4 Reinforcement	76.08 - 76.33	1.0000	1.0000
L33	53	PL1x4 Reinforcement	76.08 - 76.33	1.0000	1.0000
L33	82	CCI-SFP-040075	76.08 - 76.33	1.0000	1.0000
L33	83	CCI-SFP-040075	76.08 - 76.33	1.0000	1.0000
L33	85	CCI-SFP-040075	76.08 - 76.33	1.0000	1.0000
L34	1	FB-L98B-034-XXX(3/8)	74.25 - 76.08	1.0000	1.0000
L34	2	WR-VG86ST-BRD(3/4)	74.25 - 76.08	1.0000	1.0000
L34	4	7983A(ELLIPTICAL)	74.25 - 76.08	1.0000	1.0000
L34	9	CU12PSM9P6XXX(1-1/2)	74.25 - 76.08	1.0000	1.0000
L34	18	MLC HYBRID 6X12	74.25 - 76.08	1.0000	1.0000
		6AWGX6(1-1/2)			
L34	23	Safety Line 3/8	74.25 - 76.08	1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Town	Food Line	Description	Food Line	V	V
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L34	35	PL1.25x5.5 Reinforcement	74.25 - 76.08	1.0000	1.0000
		PL1.25x5.5 Reinforcement PL1.25x5.5 Reinforcement	74.25 - 76.08		
L34	36			1.0000	1.0000
L34	37	PL1.25x5.5 Reinforcement	74.25 - 76.08	1.0000	1.0000
L34	51	PL1x4 Reinforcement	74.25 - 76.08	1.0000	1.0000
L34	52	PL1x4 Reinforcement	74.25 - 76.08	1.0000	1.0000
L34	53	PL1x4 Reinforcement	74.25 - 76.08	1.0000	1.0000
L34	77	CCI-SFP-045100	74.25 - 75.25	1.0000	1.0000
L34	78	CCI-SFP-045100	74.25 - 75.25	1.0000	1.0000
L34	80	CCI-SFP-040075	74.25 - 75.25	1.0000	1.0000
L34	82	CCI-SFP-040075	75.33 - 76.08	1.0000	1.0000
L34	83	CCI-SFP-040075	75.33 - 76.08	1.0000	1.0000
L34	85	CCI-SFP-040075	75.33 - 76.08	1.0000	1.0000
L35	1	FB-L98B-034-XXX(3/8)	74.00 - 74.25	1.0000	1.0000
L35	2	WR-VG86ST-BRD(3/4)	74.00 - 74.25	1.0000	1.0000
L35	4	7983A(ELLIPTICAL)	74.00 - 74.25	1.0000	1.0000
L35	9	CU12PSM9P6XXX(1-1/2)	74.00 - 74.25	1.0000	1.0000
L35	18	MLC HYBRID 6X12	74.00 - 74.25	1.0000	1.0000
		6AWGX6(1-1/2)			
L35	23	Safety Line 3/8	74.00 - 74.25	1.0000	1.0000
L35 L35	35	PL1.25x5.5 Reinforcement	74.00 - 74.25	1.0000	1.0000
L35	36	PL1.25x5.5 Reinforcement	74.00 - 74.25	1.0000	1.0000
L35 L35	37	PL1.25x5.5 Reinforcement	74.00 - 74.25	1.0000	1.0000
L35 L35	51	PL1x4 Reinforcement	74.00 - 74.25	1.0000	1.0000
L35 L35	52	PL1x4 Reinforcement	74.00 - 74.25	1.0000	1.0000
L35 L35	53	PL1x4 Reinforcement	74.00 - 74.23	1.0000	1.0000
L35	77	CCI-SFP-045100	74.00 - 74.25	1.0000	1.0000
L35	78	CCI-SFP-045100	74.00 - 74.25	1.0000	1.0000
L35	80	CCI-SFP-040075	74.00 - 74.25	1.0000	1.0000
L36	1	FB-L98B-034-XXX(3/8)	73.75 - 74.00	1.0000	1.0000
L36	2	WR-VG86ST-BRD(3/4)	73.75 - 74.00	1.0000	1.0000
L36	4	7983A(ELLIPTICAL)	73.75 - 74.00	1.0000	1.0000
L36	9	CU12PSM9P6XXX(1-1/2)	73.75 - 74.00	1.0000	1.0000
L36	18	MLC HYBRID 6X12	73.75 - 74.00	1.0000	1.0000
		6AWGX6(1-1/2)			
L36	23	Safety Line 3/8	73.75 - 74.00	1.0000	1.0000
L36	35	PL1.25x5.5 Reinforcement	73.75 - 74.00	1.0000	1.0000
L36	36	PL1.25x5.5 Reinforcement	73.75 - 74.00	1.0000	1.0000
L36	37	PL1.25x5.5 Reinforcement	73.75 - 74.00	1.0000	1.0000
L36	51	PL1x4 Reinforcement	73.75 - 74.00	1.0000	1.0000
L36	52	PL1x4 Reinforcement	73.75 - 74.00	1.0000	1.0000
L36	53	PL1x4 Reinforcement	73.75 - 74.00	1.0000	1.0000
L36	77	CCI-SFP-045100	73.75 - 74.00	1.0000	1.0000
L36	78	CCI-SFP-045100	73.75 - 74.00	1.0000	1.0000
L36	80	CCI-SFP-040075	73.75 - 74.00	1.0000	1.0000
L37	1	FB-L98B-034-XXX(3/8)	73.50 - 73.75	1.0000	1.0000
L37	2	WR-VG86ST-BRD(3/4)		1.0000	1.0000
L37	4	7983A(ELLIPTICAL)	73.50 - 73.75	1.0000	1.0000
L37	9	CU12PSM9P6XXX(1-1/2)	73.50 - 73.75	1.0000	1.0000
L37	18	MLC HYBRID 6X12	73.50 - 73.75	1.0000	1.0000
207	10	6AWGX6(1-1/2)			
L37	23	Safety Line 3/8	73.50 - 73.75	1.0000	1.0000
L37 L37	35	PL1.25x5.5 Reinforcement	73.50 - 73.75	1.0000	1.0000
L37 L37	36	PL1.25x5.5 Reinforcement	73.50 - 73.75	1.0000	1.0000
L37 L37	37	PL1.25x5.5 Reinforcement	73.50 - 73.75	1.0000	1.0000
L37 L37	51	PL1x4 Reinforcement	73.50 - 73.75	1.0000	1.0000
L37 L37	52	PL1x4 Reinforcement	73.50 - 73.75	1.0000	1.0000
L37 L37	52	PL1x4 Reinforcement	73.50 - 73.75	1.0000	
					1.0000
L37	77 79	CCI-SFP-045100	73.50 - 73.75	1.0000	1.0000
L37	78	CCI-SFP-045100	73.50 - 73.75	1.0000	1.0000
L37	80	CCI-SFP-040075	73.50 - 73.75	1.0000	1.0000
L38	1	FB-L98B-034-XXX(3/8)	68.50 - 73.50	1.0000	1.0000
L38	2	WR-VG86ST-BRD(3/4)	68.50 - 73.50	1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Dover Freed Due Description Freed Line K_a K_a Section Record No. Segment Elev. No Lee Lev L38 9 CU12PSMP6XX(1-12) 68:50 - 73:50 1.0000 1.0000 L38 18 MLC HYBRID 6X12 68:50 - 73:50 1.0000 1.0000 L38 25 Safety Line 3/8 68:50 - 73:50 1.0000 1.0000 L38 35 PL125x5:5 Reinforcement 68:50 - 73:50 1.0000 1.0000 L38 51 PL14 Reinforcement 68:50 - 73:50 1.0000 1.0000 L38 52 PL14 Reinforcement 68:50 - 73:50 1.0000 1.0000 L38 7 CC1-SIF-045100 68:50 - 73:50 1.0000 1.0000 L38 7 CC1-SIF-045100 68:50 - 73:50 1.0000 1.0000 L38 7 CC1-SIF-045100 63:50 - 68:50 1.0000 1.0000 L39 1 FH-98E-04:47(3) 63:50 - 68:50 1.0000 1.0000	T				V	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tower	Feed Line	Description	Feed Line	K_a	K_a
L38 18 MLC HYBRID 6X12 68.50 - 73.50 1.0000 1.0000 L38 23 Safety Line 3/8 68.50 - 73.50 1.0000 1.0000 L38 35 PL1.25x.5.5 Reinforcement 68.50 - 73.50 1.0000 1.0000 L38 37 PL1.25x.5.5 Reinforcement 68.50 - 73.50 1.0000 1.0000 L38 51 PL1.4 Reinforcement 68.50 - 73.50 1.0000 1.0000 L38 52 PL1.4 Reinforcement 68.50 - 73.50 1.0000 1.0000 L38 77 CC1-SFP-0495100 68.50 - 73.50 1.0000 1.0000 L38 R0 CC1-SFP-049510 68.50 - 73.50 1.0000 1.0000 L39 1 FB-198B-034-XXX(3/8) 63.50 - 68.50 1.0000 1.0000 L39 2 WR-VG86ST-BRD(4)-12 63.50 - 68.50 1.0000 1.0000 L39 3 PL1.25x5.5 Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 3 PL1.25x5.5 Reinforcement 63.50						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	L38	18		68.50 - 73.50	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			5			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
L38 51 PL1x4 Reinforcement $68.50 - 73.50$ 1.0000 1.0000 L38 53 PL1x4 Reinforcement $68.50 - 73.50$ 1.0000 1.0000 L38 77 CCI-SFP-045100 $68.50 - 73.50$ 1.0000 1.0000 L38 78 CCI-SFP-04075 $68.50 - 73.50$ 1.0000 1.0000 L39 1 FB-L98B-034-XXX(38 $63.50 - 68.50$ 1.0000 1.0000 L39 2 WR-VG865T-BRD(3/4) $63.50 - 68.50$ 1.0000 1.0000 L39 9 CU12PSMP6XX(1-12) $63.50 - 68.50$ 1.0000 1.0000 L39 23 Safety Line 378 $63.50 - 68.50$ 1.0000 1.0000 L39 35 PL1.25x5.5 Reinforcement $63.50 - 68.50$ 1.0000 1.0000 L39 51 PL1x4 Reinforcement $63.50 - 68.50$ 1.0000 1.0000 L39 52 PL1x4 Reinforcement $63.50 - 68.50$ 1.0000 1.0000 L39 52 PL1x4 Reinforcement 63		36	PL1.25x5.5 Reinforcement	68.50 - 73.50		
L38 52 PL1x4 Reinforcement $68.50 - 73.50$ 1.0000 1.0000 L38 77 CC1-SIP-045100 $68.50 - 73.50$ 1.0000 1.0000 L38 78 CC1-SIP-045100 $68.50 - 73.50$ 1.0000 1.0000 L39 1 FED-198B-034-XXX(3/8) $63.50 - 68.50$ 1.0000 1.0000 L39 2 WR-VG86ST-BRD(3/4) $63.50 - 68.50$ 1.0000 1.0000 L39 4 7983A(ELL)PTICAL) $63.50 - 68.50$ 1.0000 1.0000 L39 9 CU12PSM9P6XXX(1-1/2) $63.50 - 68.50$ 1.0000 1.0000 L39 35 PL1.255.5 Reinforcement $63.50 - 68.50$ 1.0000 1.0000 L39 37 PL1.255.5 Reinforcement $63.50 - 68.50$ 1.0000 1.0000 L39 37 PL1.4 Reinforcement $63.50 - 68.50$ 1.0000 1.0000 L39 51 PL1.4 Reinforcement $63.50 - 68.50$ 1.0000 1.0000 L39 77 CC1-SFP-045100 <		37	PL1.25x5.5 Reinforcement	68.50 - 73.50	1.0000	1.0000
L38 53 PL1x4 Reinforcement 68.50 - 73.50 1.0000 L38 77 CC1-SFP-045100 68.50 - 73.50 1.0000 L38 80 CC1-SFP-04075 68.50 - 73.50 1.0000 1.0000 L39 1 FEJ-L98B-034-XXX(38) 63.50 - 68.50 1.0000 1.0000 L39 2 WR-VG86ST-BRD(3/4) 63.50 - 68.50 1.0000 1.0000 L39 4 7983A(ELL)PTICAL) 63.50 - 68.50 1.0000 1.0000 L39 23 Safety Line 3/8 63.50 - 68.50 1.0000 1.0000 L39 23 Safety Line 3/8 63.50 - 68.50 1.0000 1.0000 L39 35 PL1.25x5.5 Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 51 PL1x4 Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 77 CC1-SFP-045100 63.50 - 68.50 1.0000 1.0000 L39 78 CC1-SFP-04075 63.50 - 63.50 1.0000 1.0000	L38	51	PL1x4 Reinforcement	68.50 - 73.50	1.0000	1.0000
L38 77 CCI-SFP-045100 68.50 - 73.50 1.0000 L38 80 CCI-SFP-045100 68.50 - 73.50 1.0000 L39 1 FB-L98B-034-XXX(3/8) 63.50 - 68.50 1.0000 1.0000 L39 2 WR-VG8ST-BRD(3/4) 63.50 - 68.50 1.0000 1.0000 L39 4 7983A(ELLIPTICAL) 63.50 - 68.50 1.0000 1.0000 L39 9 CU12PSM9P6XXX(1-1/2) 63.50 - 68.50 1.0000 1.0000 L39 23 Safety Ling 3/8 63.50 - 68.50 1.0000 1.0000 L39 35 PL1.25x.5. Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 35 PL1.4 Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 51 PL1.4 Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 76 CCI-SFP-045100 63.50 - 68.50 1.0000 1.0000 L39 77 CCI-SFP-045100 63.50 - 63.50 1.0000 1.0000 <	L38	52	PL1x4 Reinforcement	68.50 - 73.50	1.0000	1.0000
L38 78 CCLSEP-045100 68.50 - 73.50 1.0000 1.0000 L39 1 FB-L98B-034-XXX/3/8 63.50 - 68.50 1.0000 1.0000 L39 2 WR-VG&65T-BRD(3/4) 63.50 - 68.50 1.0000 1.0000 L39 4 7983A(ELLIPTLCL) 63.50 - 68.50 1.0000 1.0000 L39 9 CU12PSM9P6XXX(1-1/2) 63.50 - 68.50 1.0000 1.0000 L39 35 PL1.25x.5 S Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 36 PL1.25x.5 S Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 51 PL1x4 Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 52 PL1x4 Reinforcement 63.50 - 68.50 1.0000 1.0000 L39 77 CC1-SFP-045100 63.50 - 68.50 1.0000 1.0000 L39 78 CC1-SFP-045100 63.50 - 63.50 1.0000 1.0000 L39 78 CC1-SFP-045100 63.50 - 63.50	L38	53	PL1x4 Reinforcement	68.50 - 73.50	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L38	77	CCI-SFP-045100	68.50 - 73.50	1.0000	1.0000
	L38	78	CCI-SFP-045100	68.50 - 73.50	1.0000	1.0000
	L38	80	CCI-SFP-040075	68.50 - 73.50	1.0000	1.0000
	L39	1	FB-L98B-034-XXX(3/8)	63.50 - 68.50	1.0000	1.0000
		2		63.50 - 68.50	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	L39	23		63 50 - 68 50	1 0000	1 0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
L40 9 CU12PSM9P6XXX(1-1/2) MLC HYBRID 6X12 60.50 - 63.50 1.0000 1.0000 L40 18 MLC HYBRID 6X12 60.50 - 63.50 1.0000 1.0000 L40 23 Safety Line 3/8 60.50 - 63.50 1.0000 1.0000 L40 35 PL1.25x5.5 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 36 PL1.25x5.5 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 37 PL1.25x5.5 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 47 PL1x4 Reinforcement 60.50 - 62.25 1.0000 1.0000 L40 48 PL1x4 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 51 PL1x4 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 51 PL1x4 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 53 PL1x4 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 53 PL1x4 Reinforcement <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			÷ , , , , , , , , , , , , , , , , , , ,			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
L40 23 Safety Line 3/8 60.50 - 63.50 1.0000 1.0000 L40 35 PL1.25x5.5 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 36 PL1.25x5.5 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 37 PL1.25x5.5 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 47 PL1x4 Reinforcement 60.50 - 62.25 1.0000 1.0000 L40 48 PL1x4 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 49 PL1x4 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 51 PL1x4 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 52 PL1x4 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 53 PL1x4 Reinforcement 60.50 - 63.50 1.0000 1.0000 L40 77 CC1-SFP-045100 60.50 - 63.50 1.0000 1.0000 L40 78 CC1-SFP-040075 60.50 -	L40	18		60.50 - 63.50	1.0000	1.0000
L4035PL1.25x5.5 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4036PL1.25x5.5 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4037PL1.25x5.5 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4047PL1x4 Reinforcement $60.50 - 62.25$ 1.0000 1.0000 L4048PL1x4 Reinforcement $60.50 - 62.25$ 1.0000 1.0000 L4049PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4051PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4052PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4053PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4077CCI-SFP-045100 $60.50 - 63.50$ 1.0000 1.0000 L4078CCI-SFP-045100 $60.50 - 63.50$ 1.0000 1.0000 L4078CCI-SFP-04075 $60.50 - 63.50$ 1.0000 1.0000 L411FB-L98B-034-XXX(3/8) $60.25 - 60.50$ 1.0000 1.0000 L412WR-VG86ST-BRD(3/4) $60.25 - 60.50$ 1.0000 1.0000 L4147983A(ELLIPTICAL) $60.25 - 60.50$ 1.0000 1.0000 L4118MLC HYBRID 6X12 $60.25 - 60.50$ 1.0000 1.0000 L4135PL1.25x5.5 Reinforcement $60.25 - 60.50$ 1.0000 1.0000 L4136PL1.2						
L4036PL1.25x5.5 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4037PL1.25x5.5 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4047PL1x4 Reinforcement $60.50 - 62.25$ 1.0000 1.0000 L4048PL1x4 Reinforcement $60.50 - 62.25$ 1.0000 1.0000 L4049PL1x4 Reinforcement $60.50 - 62.25$ 1.0000 1.0000 L4051PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4052PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4053PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4077CCI-SFP-045100 $60.50 - 63.50$ 1.0000 1.0000 L4078CCI-SFP-045100 $60.50 - 63.50$ 1.0000 1.0000 L4080CCI-SFP-045100 $60.50 - 63.50$ 1.0000 1.0000 L411FB-L98B-034-XXX(3/8) $60.25 - 60.50$ 1.0000 1.0000 L412WR-VG86ST-BRD(3/4) $60.25 - 60.50$ 1.0000 1.0000 L419CU12PSM9P6XXX(1-1/2) $60.25 - 60.50$ 1.0000 1.0000 L4135PL1.25x5.5 Reinforcement $60.25 - 60.50$ 1.0000 1.0000 L4136PL1.25x5.5 Reinforcement $60.25 - 60.50$ 1.0000 1.0000 L4137PL1.25x5.5 Reinforcement $60.25 - 60.50$ 1.0000 1.0000 L4136<						
L4037PL1.25x5.5 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4047PL1x4 Reinforcement $60.50 - 62.25$ 1.0000 1.0000 L4048PL1x4 Reinforcement $60.50 - 62.25$ 1.0000 1.0000 L4049PL1x4 Reinforcement $60.50 - 62.25$ 1.0000 1.0000 L4051PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4052PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4053PL1x4 Reinforcement $60.50 - 63.50$ 1.0000 1.0000 L4077CCI-SFP-045100 $60.50 - 63.50$ 1.0000 1.0000 L4078CCI-SFP-045100 $60.50 - 63.50$ 1.0000 1.0000 L411FB-L98B-034-XXX(3/8) $60.25 - 60.50$ 1.0000 1.0000 L412WR-VG86ST-BRD(3/4) $60.25 - 60.50$ 1.0000 1.0000 L4147983A(ELLIPTICAL) $60.25 - 60.50$ 1.0000 1.0000 L4123Safety Line 3/8 $60.25 - 60.50$ 1.0000 1.0000 L4135PL1.25x5.5 Reinforcement $60.25 - 60.50$ 1.0000 1.0000 L4136PL1.25x5.5 Reinforcement $60.25 - 60.50$ 1.0000 1.0000 L4137PL1.25x5.5 Reinforcement $60.25 - 60.50$ 1.0000 1.0000 L4147PL1.25x5.5 Reinforcement $60.25 - 60.50$ 1.0000 1.0000 L4148 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			PL1x4 Reinforcement			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L40	49			1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			PL1x4 Reinforcement	60.50 - 63.50		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L40	53		60.50 - 63.50	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L40		CCI-SFP-045100	60.50 - 63.50	1.0000	1.0000
L40 80 CCI-SFP-040075 60.50 - 63.50 1.0000 1.0000 L41 1 FB-L98B-034-XXX(3/8) 60.25 - 60.50 1.0000 1.0000 L41 2 WR-VG86ST-BRD(3/4) 60.25 - 60.50 1.0000 1.0000 L41 4 7983A(ELLIPTICAL) 60.25 - 60.50 1.0000 1.0000 L41 9 CU12PSM9P6XXX(1-1/2) 60.25 - 60.50 1.0000 1.0000 L41 9 CU12PSM9P6XXX(1-1/2) 60.25 - 60.50 1.0000 1.0000 L41 18 MLC HYBRID 6X12 60.25 - 60.50 1.0000 1.0000 L41 23 Safety Line 3/8 60.25 - 60.50 1.0000 1.0000 L41 35 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 -	L40		CCI-SFP-045100	60.50 - 63.50	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				60.50 - 63.50		
L41 2 WR-VG86ST-BRD(3/4) 60.25 - 60.50 1.0000 1.0000 L41 4 7983A(ELLIPTICAL) 60.25 - 60.50 1.0000 1.0000 L41 9 CU12PSM9P6XXX(1-1/2) 60.25 - 60.50 1.0000 1.0000 L41 9 CU12PSM9P6XXX(1-1/2) 60.25 - 60.50 1.0000 1.0000 L41 18 MLC HYBRID 6X12 60.25 - 60.50 1.0000 1.0000 L41 23 Safety Line 3/8 60.25 - 60.50 1.0000 1.0000 L41 35 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1.24 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 6						
L41 4 7983A(ELLIPTICAL) 60.25 - 60.50 1.0000 1.0000 L41 9 CU12PSM9P6XXX(1-1/2) 60.25 - 60.50 1.0000 1.0000 L41 18 MLC HYBRID 6X12 60.25 - 60.50 1.0000 1.0000 L41 18 MLC HYBRID 6X12 60.25 - 60.50 1.0000 1.0000 L41 23 Safety Line 3/8 60.25 - 60.50 1.0000 1.0000 L41 35 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000						
L41 9 CU12PSM9P6XXX(1-1/2) 60.25 - 60.50 1.0000 1.0000 L41 18 MLC HYBRID 6X12 60.25 - 60.50 1.0000 1.0000 L41 23 Safety Line 3/8 60.25 - 60.50 1.0000 1.0000 L41 35 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000						
L41 18 MLC HYBRID 6X12 6AWGX6(1-1/2) 60.25 - 60.50 1.0000 1.0000 L41 23 Safety Line 3/8 60.25 - 60.50 1.0000 1.0000 L41 35 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000						
6AWGX6(1-1/2) 1.0000 L41 23 Safety Line 3/8 60.25 - 60.50 1.0000 1.0000 L41 35 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000			, , ,			
L41 23 Safety Line 3/8 60.25 - 60.50 1.0000 1.0000 L41 35 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000	2.1	10			2.0000	1.0000
L41 35 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000	I.41	23		60.25 - 60 50	1 0000	1 0000
L41 36 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000			5			
L41 37 PL1.25x5.5 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000						
L41 47 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000 L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000						
L41 48 PL1x4 Reinforcement 60.25 - 60.50 1.0000 1.0000						
1.0000						
	L41	49	r L1x4 Kennorcement	00.25 - 00.50	1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	K_a Ice
L41	51	PL1x4 Reinforcement	60.25 - 60.50	1.0000	1.0000
L41	52	PL1x4 Reinforcement	60.25 - 60.50	1.0000	1.0000
L41	53	PL1x4 Reinforcement	60.25 - 60.50	1.0000	1.0000
L41	77	CCI-SFP-045100	60.25 - 60.50	1.0000	1.0000
L41	78	CCI-SFP-045100	60.25 - 60.50	1.0000	1.0000
L41 L42	80	CCI-SFP-040075	60.25 - 60.50	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L42 L42	1	FB-L98B-034-XXX(3/8) WR-VG86ST-BRD(3/4)	59.50 - 60.25 59.50 - 60.25	1.0000	1.0000
L42 L42	4	7983A(ELLIPTICAL)	59.50 - 60.25	1.0000	1.0000
L42	9	CU12PSM9P6XXX(1-1/2)	59.50 - 60.25	1.0000	1.0000
L42	18	MLC HYBRID 6X12	59.50 - 60.25	1.0000	1.0000
		6AWGX6(1-1/2)			
L42	23	Safety Line 3/8	59.50 - 60.25	1.0000	1.0000
L42	35	PL1.25x5.5 Reinforcement	59.50 - 60.25	1.0000	1.0000
L42	36	PL1.25x5.5 Reinforcement	59.50 - 60.25	1.0000	1.0000
L42 L42	37 47	PL1.25x5.5 Reinforcement PL1x4 Reinforcement	59.50 - 60.25 59.50 - 60.25	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L42 L42	47	PL1x4 Reinforcement	59.50 - 60.25	1.0000	1.0000
L42 L42	49	PL1x4 Reinforcement	59.50 - 60.25	1.0000	1.0000
L42 L42	51	PL1x4 Reinforcement	59.50 - 60.25	1.0000	1.0000
L42	52	PL1x4 Reinforcement	59.50 - 60.25	1.0000	1.0000
L42	53	PL1x4 Reinforcement	59.50 - 60.25	1.0000	1.0000
L42	77	CCI-SFP-045100	59.50 - 60.25	1.0000	1.0000
L42	78	CCI-SFP-045100	59.50 - 60.25	1.0000	1.0000
L42	80	CCI-SFP-040075	59.50 - 60.25	1.0000	1.0000
L43	1	FB-L98B-034-XXX(3/8)	59.25 - 59.50	1.0000	1.0000
L43 L43	2 4	WR-VG86ST-BRD(3/4) 7983A(ELLIPTICAL)	59.25 - 59.50 59.25 - 59.50	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L43 L43	4	CU12PSM9P6XXX(1-1/2)	59.25 - 59.50	1.0000	1.0000
L43 L43	18	MLC HYBRID 6X12	59.25 - 59.50	1.0000	1.0000
2.10	10	6AWGX6(1-1/2)	0,120 0,100	110000	1.0000
L43	23	Safety Line 3/8	59.25 - 59.50	1.0000	1.0000
L43	31	PL1.25x6.625 Reinforcement	59.25 - 59.50	1.0000	1.0000
L43	32	PL1.25x6.625 Reinforcement	59.25 - 59.50	1.0000	1.0000
L43	33	PL1.25x6.625 Reinforcement	59.25 - 59.50	1.0000	1.0000
L43	47	PL1x4 Reinforcement	59.25 - 59.50	1.0000	1.0000
L43 L43	48 49	PL1x4 Reinforcement PL1x4 Reinforcement	59.25 - 59.50 59.25 - 59.50	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L43 L43	51	PL1x4 Reinforcement	59.25 - 59.50	1.0000	1.0000
L43 L43	52	PL1x4 Reinforcement	59.25 - 59.50	1.0000	1.0000
L43	53	PL1x4 Reinforcement	59.25 - 59.50	1.0000	1.0000
L43	77	CCI-SFP-045100	59.25 - 59.50	1.0000	1.0000
L43	78	CCI-SFP-045100	59.25 - 59.50	1.0000	1.0000
L43	80	CCI-SFP-040075	59.25 - 59.50	1.0000	1.0000
L44	1	FB-L98B-034-XXX(3/8)	54.25 - 59.25	1.0000	1.0000
L44	2	WR-VG86ST-BRD(3/4)		1.0000	1.0000
L44 L44	4	7983A(ELLIPTICAL) CU12PSM9P6XXX(1-1/2)	54.25 - 59.25 54.25 - 59.25	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L44 L44	18	MLC HYBRID 6X12	54.25 - 59.25 54.25 - 59.25	1.0000	1.0000
1.74	10	6AWGX6(1-1/2)	57.25 - 57.25	1.0000	1.0000
L44	23	Safety Line 3/8	54.25 - 59.25	1.0000	1.0000
L44	31	PL1.25x6.625 Reinforcement	54.25 - 59.25	1.0000	1.0000
L44	32	PL1.25x6.625 Reinforcement	54.25 - 59.25	1.0000	1.0000
L44	33	PL1.25x6.625 Reinforcement	54.25 - 59.25	1.0000	1.0000
L44	47	PL1x4 Reinforcement	54.25 - 59.25	1.0000	1.0000
L44	48	PL1x4 Reinforcement	54.25 - 59.25	1.0000	1.0000
L44	49	PL1x4 Reinforcement	54.25 - 59.25	1.0000	1.0000
L44 L44	51 52	PL1x4 Reinforcement PL1x4 Reinforcement	58.75 - 59.25 58.75 - 59.25	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L44 L44	52	PL1x4 Reinforcement PL1x4 Reinforcement	58.75 - 59.25 58.75 - 59.25	1.0000	1.0000
L44 L44	55 77	CCI-SFP-045100		1.0000	1.0000
L44 L44	78				
	, 0				

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

<i>T</i>	F 11:	D	F 1 1 1		V
Tower Section	Feed Line Pasard No	Description	Feed Line	K _a No Ico	K_a
Section L44	Record No. 80	CCI SED 040075	Segment Elev. 54.25 - 59.25	No Ice 1.0000	<i>Ice</i> 1.0000
L44 L45	80	CCI-SFP-040075 FB-L98B-034-XXX(3/8)	54.25 - 59.25 45.80 - 54.25	1.0000	1.0000
L45 L45	2	WR-VG86ST-BRD(3/4)	45.80 - 54.25	1.0000	1.0000
L43 L45	4	7983A(ELLIPTICAL)	45.80 - 54.25	1.0000	1.0000
L43 L45	4	CU12PSM9P6XXX(1-1/2)	45.80 - 54.25	1.0000	1.0000
L45 L45	18	MLC HYBRID 6X12	45.80 - 54.25	1.0000	1.0000
L45	10	6AWGX6(1-1/2)	45.80 - 54.25	1.0000	1.0000
L45	23	Safety Line 3/8	45.80 - 54.25	1.0000	1.0000
L45 L45	31	PL1.25x6.625 Reinforcement	45.80 - 54.25	1.0000	1.0000
L45 L45	32	PL1.25x6.625 Reinforcement	45.80 - 54.25	1.0000	1.0000
L45	33	PL1.25x6.625 Reinforcement	45.80 - 54.25	1.0000	1.0000
L45	47	PL1x4 Reinforcement	45.80 - 54.25	1.0000	1.0000
L45	48	PL1x4 Reinforcement	45.80 - 54.25	1.0000	1.0000
L45	49	PL1x4 Reinforcement	45.80 - 54.25	1.0000	1.0000
L45	77	CCI-SFP-045100	45.80 - 54.25	1.0000	1.0000
L45	78	CCI-SFP-045100	45.80 - 54.25	1.0000	1.0000
L45	80	CCI-SFP-040075	45.80 - 54.25	1.0000	1.0000
L46	1	FB-L98B-034-XXX(3/8)	44.80 - 45.80	1.0000	1.0000
L46	2	WR-VG86ST-BRD(3/4)	44.80 - 45.80	1.0000	1.0000
L46	4	7983A(ELLIPTICAL)	44.80 - 45.80	1.0000	1.0000
L46	9	CU12PSM9P6XXX(1-1/2)	44.80 - 45.80	1.0000	1.0000
L46	18	MLC HYBRID 6X12	44.80 - 45.80	1.0000	1.0000
		6AWGX6(1-1/2)			
L46	23	Safety Line 3/8	44.80 - 45.80	1.0000	1.0000
L46	31	PL1.25x6.625 Reinforcement	44.80 - 45.80	1.0000	1.0000
L46	32	PL1.25x6.625 Reinforcement	44.80 - 45.80	1.0000	1.0000
L46	33	PL1.25x6.625 Reinforcement	44.80 - 45.80	1.0000	1.0000
L46	47	PL1x4 Reinforcement	44.80 - 45.80	1.0000	1.0000
L46	48	PL1x4 Reinforcement	44.80 - 45.80	1.0000	1.0000
L46	49	PL1x4 Reinforcement	44.80 - 45.80	1.0000	1.0000
L46	72	CCI-SFP-045100	44.80 - 45.08	1.0000	1.0000
L46	74	CCI-SFP-060100	44.80 - 45.17	1.0000	1.0000
L46	75	CCI-SFP-060100	44.80 - 45.17	1.0000	1.0000
L46	77	CCI-SFP-045100	45.25 - 45.80	1.0000	1.0000
L46	78	CCI-SFP-045100	45.25 - 45.80	1.0000	1.0000
L46	80	CCI-SFP-040075	45.25 - 45.80	1.0000	1.0000
L47	1	FB-L98B-034-XXX(3/8)	43.58 - 44.80	1.0000	1.0000
L47 L47	2	WR-VG86ST-BRD(3/4)	43.58 - 44.80	1.0000	1.0000
L47 L47	4	7983A(ELLIPTICAL)	43.58 - 44.80 43.58 - 44.80	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L47 L47	18	CU12PSM9P6XXX(1-1/2) MLC HYBRID 6X12	43.58 - 44.80	1.0000	1.0000
L4/	18	6AWGX6(1-1/2)	+3.30 - 44.80	1.0000	1.0000
L47	23	Safety Line 3/8	43.58 - 44.80	1.0000	1.0000
L47 L47	23 31	PL1.25x6.625 Reinforcement	43.58 - 44.80	1.0000	1.0000
L47 L47	31	PL1.25x6.625 Reinforcement	43.58 - 44.80	1.0000	1.0000
L47 L47	32			1.0000	1.0000
L47 L47	47	PL1x4 Reinforcement	43.58 - 44.80	1.0000	1.0000
L47	48	PL1x4 Reinforcement	43.58 - 44.80	1.0000	1.0000
L47	49	PL1x4 Reinforcement	43.58 - 44.80	1.0000	1.0000
L47	72	CCI-SFP-045100	43.58 - 44.80	1.0000	1.0000
L47	74	CCI-SFP-060100	43.58 - 44.80	1.0000	1.0000
L47	75	CCI-SFP-060100	43.58 - 44.80	1.0000	1.0000
L48	1	FB-L98B-034-XXX(3/8)	43.33 - 43.58	1.0000	1.0000
L48	2	WR-VG86ST-BRD(3/4)	43.33 - 43.58	1.0000	1.0000
L48	4	7983A(ELLIPTICAL)	43.33 - 43.58	1.0000	1.0000
L48	9	CU12PSM9P6XXX(1-1/2)	43.33 - 43.58	1.0000	1.0000
L48	18	MLC HYBRID 6X12	43.33 - 43.58	1.0000	1.0000
		6AWGX6(1-1/2)			
L48	23	Safety Line 3/8	43.33 - 43.58	1.0000	1.0000
L48	31	PL1.25x6.625 Reinforcement	43.33 - 43.58	1.0000	1.0000
L48	32	PL1.25x6.625 Reinforcement	43.33 - 43.58	1.0000	1.0000
L48	33	PL1.25x6.625 Reinforcement	43.33 - 43.58	1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

T			r. 17.	V	V
Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
L48	47	PL1x4 Reinforcement	43.33 - 43.58	1.0000	1.0000
L48	48	PL1x4 Reinforcement	43.33 - 43.58	1.0000	1.0000
L48	49	PL1x4 Reinforcement	43.33 - 43.58	1.0000	1.0000
L48	72	CCI-SFP-045100	43.33 - 43.58	1.0000	1.0000
L48	74	CCI-SFP-060100	43.33 - 43.58	1.0000	1.0000
L48	75	CCI-SFP-060100	43.33 - 43.58	1.0000	1.0000
L49	1	FB-L98B-034-XXX(3/8)	43.17 - 43.33	1.0000	1.0000
L49	2	WR-VG86ST-BRD(3/4)	43.17 - 43.33	1.0000	1.0000
L49	4	7983A(ELLIPTICAL)	43.17 - 43.33	1.0000	1.0000
L49	9	CU12PSM9P6XXX(1-1/2)	43.17 - 43.33	1.0000	1.0000
L49	18	MLC HYBRID 6X12	43.17 - 43.33	1.0000	1.0000
T 40	22	6AWGX6(1-1/2)	42.17 42.22	1 0000	1 0000
L49	23	Safety Line 3/8	43.17 - 43.33	1.0000	1.0000
L49	31	PL1.25x6.625 Reinforcement	43.17 - 43.33	1.0000	1.0000
L49	32	PL1.25x6.625 Reinforcement	43.17 - 43.33	1.0000	1.0000
L49	33	PL1.25x6.625 Reinforcement	43.17 - 43.33	1.0000	1.0000
L49	47	PL1x4 Reinforcement	43.17 - 43.33	1.0000	1.0000
L49	48	PL1x4 Reinforcement	43.17 - 43.33	1.0000	1.0000
L49	49	PL1x4 Reinforcement	43.17 - 43.33	1.0000	1.0000
L49	72	CCI-SFP-045100	43.17 - 43.33	1.0000	1.0000
L49	74	CCI-SFP-060100	43.17 - 43.33	1.0000	1.0000
L49	75	CCI-SFP-060100	43.17 - 43.33	1.0000	1.0000
L50	1	FB-L98B-034-XXX(3/8)	42.92 - 43.17	1.0000	1.0000
L50	2	WR-VG86ST-BRD(3/4)	42.92 - 43.17	1.0000	1.0000
L50	4	7983A(ELLIPTICAL)	42.92 - 43.17	1.0000	1.0000
L50	9	CU12PSM9P6XXX(1-1/2)	42.92 - 43.17	1.0000	1.0000
L50	18	MLC HYBRID 6X12	42.92 - 43.17	1.0000	1.0000
T 50	22	6AWGX6(1-1/2)	42.02 42.17	1 0000	1 0000
L50	23	Safety Line 3/8	42.92 - 43.17	1.0000	1.0000
L50	31	PL1.25x6.625 Reinforcement	42.92 - 43.17	1.0000	1.0000
L50	32	PL1.25x6.625 Reinforcement	42.92 - 43.17	1.0000	1.0000
L50	33	PL1.25x6.625 Reinforcement	42.92 - 43.17	1.0000	1.0000
L50	47	PL1x4 Reinforcement	42.92 - 43.17	1.0000	1.0000
L50	48	PL1x4 Reinforcement	42.92 - 43.17	1.0000	1.0000
L50	49	PL1x4 Reinforcement	42.92 - 43.17	1.0000	1.0000
L50	72	CCI-SFP-045100	42.92 - 43.17	1.0000	1.0000
L50	74	CCI-SFP-060100	42.92 - 43.17	1.0000	1.0000
L50	75	CCI-SFP-060100	42.92 - 43.17	1.0000	1.0000
L51	1	FB-L98B-034-XXX(3/8)	39.00 - 42.92	1.0000	1.0000
L51	2	WR-VG86ST-BRD(3/4)	39.00 - 42.92	1.0000	1.0000
L51	4	7983A(ELLIPTICAL)	39.00 - 42.92	1.0000	1.0000
L51	9	CU12PSM9P6XXX(1-1/2)	39.00 - 42.92	1.0000	1.0000
L51	18	MLC HYBRID 6X12	39.00 - 42.92	1.0000	1.0000
L51	23	6AWGX6(1-1/2) Safety Line 3/8	30.00 42.02	1.0000	1.0000
L51 L51	23	PL1.25x6.625 Reinforcement	39.00 - 42.92 39.00 - 42.92	1.0000	1.0000
L51	32	PL1.25x6.625 Reinforcement	39.00 - 42.92	1.0000	1.0000
L51	33	PL1.25x6.625 Reinforcement	39.00 - 42.92	1.0000	1.0000 1.0000
L51 L51	45 47	PL1x4 Reinforcement PL1x4 Reinforcement	39.00 - 40.75	$1.0000 \\ 1.0000$	1.0000 1.0000
L51 L51			39.00 - 42.92	1.0000	1.0000 1.0000
	48	PL1x4 Reinforcement PL1x4 Reinforcement	39.00 - 42.92 39.00 - 42.92		1.0000 1.0000
L51	49 72			$1.0000 \\ 1.0000$	1.0000
L51 L51	72 74	CCI-SFP-045100 CCI-SFP-060100	39.00 - 42.92 39.00 - 42.92	1.0000	$\begin{array}{c} 1.0000\\ 1.0000\end{array}$
	74 75	CCI-SFP-060100 CCI-SFP-060100			
L51			39.00 - 42.92	1.0000	1.0000
L52	1	FB-L98B-034-XXX(3/8)	38.75 - 39.00	1.0000	1.0000
L52	2	WR-VG86ST-BRD(3/4)	38.75 - 39.00	1.0000	1.0000
L52	4	7983A(ELLIPTICAL)	38.75 - 39.00	1.0000	1.0000 1.0000
L52	9	CU12PSM9P6XXX(1-1/2)	38.75 - 39.00	1.0000	1.0000
L52	18	MLC HYBRID 6X12	38.75 - 39.00	1.0000	1.0000
1.50	22	6AWGX6(1-1/2)	28 75 20.00	1 0000	1 0000
L52	23	Safety Line 3/8	38.75 - 39.00	1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tatura	Eagd I to -	Degericitie	Food I in a	V	V
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K_a Ice
L52	Record No.	PL1.25x6.625 Reinforcement	38.75 - 39.00	1.0000	1.0000
L32 L52	31	PL1.25x6.625 Reinforcement	38.75 - 39.00	1.0000	1.0000
L52 L52	32	PL1.25x6.625 Reinforcement	38.75 - 39.00	1.0000	1.0000
L52 L52	45	PL1x4 Reinforcement	38.75 - 39.00	1.0000	1.0000
L52 L52	47	PL1x4 Reinforcement	38.75 - 39.00	1.0000	1.0000
L52 L52	48	PL1x4 Reinforcement	38.75 - 39.00	1.0000	1.0000
L52	49	PL1x4 Reinforcement	38.75 - 39.00	1.0000	1.0000
L52	72	CCI-SFP-045100	38.75 - 39.00	1.0000	1.0000
L52	74	CCI-SFP-060100	38.75 - 39.00	1.0000	1.0000
L52	75	CCI-SFP-060100	38.75 - 39.00	1.0000	1.0000
L53	1	FB-L98B-034-XXX(3/8)	37.17 - 38.75	1.0000	1.0000
L53	2	WR-VG86ST-BRD(3/4)	37.17 - 38.75	1.0000	1.0000
L53	4	7983A(ELLIPTICAL)	37.17 - 38.75	1.0000	1.0000
L53	9	CU12PSM9P6XXX(1-1/2)	37.17 - 38.75	1.0000	1.0000
L53	18	MLC HYBRID 6X12	37.17 - 38.75	1.0000	1.0000
		6AWGX6(1-1/2)			
L53	23	Safety Line 3/8	37.17 - 38.75	1.0000	1.0000
L53	31	PL1.25x6.625 Reinforcement	37.17 - 38.75	1.0000	1.0000
L53	32	PL1.25x6.625 Reinforcement	37.17 - 38.75	1.0000	1.0000
L53	33	PL1.25x6.625 Reinforcement	37.17 - 38.75	1.0000	1.0000
L53	45	PL1x4 Reinforcement	37.17 - 38.75	1.0000	1.0000
L53	47	PL1x4 Reinforcement	37.17 - 38.75	1.0000	1.0000
L53	48	PL1x4 Reinforcement	37.17 - 38.75	1.0000	1.0000
L53	49	PL1x4 Reinforcement	37.17 - 38.75	1.0000	1.0000
L53	72	CCI-SFP-045100	37.17 - 38.75	1.0000	1.0000
L53	74	CCI-SFP-060100	37.17 - 38.75	1.0000	1.0000
L53	75	CCI-SFP-060100	37.17 - 38.75	1.0000	1.0000
L54	1	FB-L98B-034-XXX(3/8)	36.92 - 37.17	1.0000	1.0000
L54	2	WR-VG86ST-BRD(3/4)	36.92 - 37.17	1.0000	1.0000
L54	4	7983A(ELLIPTICAL)	36.92 - 37.17	1.0000	1.0000
L54	9	CU12PSM9P6XXX(1-1/2)	36.92 - 37.17	1.0000	1.0000
L54	18	MLC HYBRID 6X12	36.92 - 37.17	1.0000	1.0000
T.5.4	22	6AWGX6(1-1/2)	26.02 27.17	1 0000	1 0000
L54 L54	23 31	Safety Line 3/8 PL1.25x6.625 Reinforcement	36.92 - 37.17 36.92 - 37.17	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L34 L54	31	PL1.25x6.625 Reinforcement	36.92 - 37.17	1.0000	1.0000
L34 L54	32	PL1.25x6.625 Reinforcement	36.92 - 37.17	1.0000	1.0000
L54 L54	45	PL1x4 Reinforcement	36.92 - 37.17	1.0000	1.0000
L54	47	PL1x4 Reinforcement	36.92 - 37.17	1.0000	1.0000
L54	48	PL1x4 Reinforcement	36.92 - 37.17	1.0000	1.0000
L54	40	PL1x4 Reinforcement	36.92 - 37.17	1.0000	1.0000
L54 L54	72	CCI-SFP-045100	36.92 - 37.17	1.0000	1.0000
L54	72	CCI-SFP-060100	36.92 - 37.17	1.0000	1.0000
L54	75	CCI-SFP-060100	36.92 - 37.17	1.0000	1.0000
L55	1	FB-L98B-034-XXX(3/8)	34.00 - 36.92	1.0000	1.0000
L55	2	WR-VG86ST-BRD(3/4)		1.0000	1.0000
L55	4	7983A(ELLIPTICAL)		1.0000	1.0000
L55	9	CU12PSM9P6XXX(1-1/2)	34.00 - 36.92	1.0000	1.0000
L55	18	MLC HYBRID 6X12	34.00 - 36.92	1.0000	1.0000
		6AWGX6(1-1/2)			
L55	23	Safety Line 3/8	34.00 - 36.92	1.0000	1.0000
L55	31	PL1.25x6.625 Reinforcement	34.00 - 36.92	1.0000	1.0000
L55	32	PL1.25x6.625 Reinforcement	34.00 - 36.92	1.0000	1.0000
L55	33	PL1.25x6.625 Reinforcement	34.00 - 36.92	1.0000	1.0000
L55	43	PL1x4 Reinforcement	34.00 - 35.75	1.0000	1.0000
L55	44	PL1x4 Reinforcement	34.00 - 35.75	1.0000	1.0000
L55	45	PL1x4 Reinforcement	34.00 - 36.92	1.0000	1.0000
L55	47	PL1x4 Reinforcement	34.00 - 36.92	1.0000	1.0000
L55	48	PL1x4 Reinforcement	34.00 - 36.92	1.0000	1.0000
L55	49	PL1x4 Reinforcement	34.00 - 36.92	1.0000	1.0000
L55	68	CCI-SFP-045100	34.00 - 35.08	1.0000	1.0000
L55	70	CCI-SFP-045100	34.00 - 35.08	1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Ŧ	F 17.			V	V
Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	CCL SED 045100	Segment Elev.	No Ice	<i>Ice</i>
L55	72	CCI-SFP-045100	34.00 - 36.92	1.0000	1.0000
L55	74 75	CCI-SFP-060100 CCI-SFP-060100	35.17 - 36.92	1.0000	1.0000
L55	75		35.17 - 36.92	1.0000	1.0000
L56	1	FB-L98B-034-XXX(3/8)	33.75 - 34.00	1.0000	1.0000
L56	2	WR-VG86ST-BRD(3/4)	33.75 - 34.00	1.0000	1.0000
L56	4	7983A(ELLIPTICAL)	33.75 - 34.00	1.0000	1.0000
L56	9	CU12PSM9P6XXX(1-1/2)	33.75 - 34.00	1.0000	1.0000
L56	18	MLC HYBRID 6X12	33.75 - 34.00	1.0000	1.0000
156	23	6AWGX6(1-1/2)	22 75 24 00	1 0000	1 0000
L56 L56	23 31	Safety Line 3/8 PL1.25x6.625 Reinforcement	33.75 - 34.00 33.75 - 34.00	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L36 L56	31	PL1.25x6.625 Reinforcement	33.75 - 34.00	1.0000	1.0000
L30 L56	32	PL1.25x6.625 Reinforcement	33.75 - 34.00	1.0000	1.0000
L56	43	PL1x4 Reinforcement	33.75 - 34.00	1.0000	1.0000
L30 L56	43	PL1x4 Reinforcement	33.75 - 34.00	1.0000	1.0000
L30 L56	44	PL1x4 Reinforcement	33.75 - 34.00	1.0000	1.0000
L56	47	PL1x4 Reinforcement	33.75 - 34.00	1.0000	1.0000
L36 L56	47	PL1x4 Reinforcement	33.75 - 34.00	1.0000	1.0000
L36 L56	40 49	PL1x4 Reinforcement	33.75 - 34.00	1.0000	1.0000
L36 L56	49 68	CCI-SFP-045100	33.75 - 34.00	1.0000	1.0000
L36 L56	08 70	CCI-SFP-045100 CCI-SFP-045100	33.75 - 34.00	1.0000	1.0000
L36 L56	70	CCI-SFP-045100 CCI-SFP-045100	33.75 - 34.00	1.0000	1.0000
L50 L57	1	FB-L98B-034-XXX(3/8)	29.75 - 33.75	1.0000	1.0000
L57 L57	2	WR-VG86ST-BRD(3/4)	29.75 - 33.75	1.0000	1.0000
L57 L57	4	7983A(ELLIPTICAL)	29.75 - 33.75	1.0000	1.0000
L57 L57	9	CU12PSM9P6XXX(1-1/2)	29.75 - 33.75	1.0000	1.0000
L57 L57	18	MLC HYBRID 6X12	29.75 - 33.75	1.0000	1.0000
237	10	6AWGX6(1-1/2)	27.15-55.15	1.0000	1.0000
L57	23	Safety Line 3/8	29.75 - 33.75	1.0000	1.0000
L57 L57	31	PL1.25x6.625 Reinforcement	29.75 - 33.75	1.0000	1.0000
L57 L57	32	PL1.25x6.625 Reinforcement	29.75 - 33.75	1.0000	1.0000
L57	33	PL1.25x6.625 Reinforcement	29.75 - 33.75	1.0000	1.0000
L57	43	PL1x4 Reinforcement	29.75 - 33.75	1.0000	1.0000
L57	44	PL1x4 Reinforcement	29.75 - 33.75	1.0000	1.0000
L57	45	PL1x4 Reinforcement	29.75 - 33.75	1.0000	1.0000
L57	47	PL1x4 Reinforcement	32.25 - 33.75	1.0000	1.0000
L57	48	PL1x4 Reinforcement	32.25 - 33.75	1.0000	1.0000
L57	49	PL1x4 Reinforcement	32.25 - 33.75	1.0000	1.0000
L57	68	CCI-SFP-045100	29.75 - 33.75	1.0000	1.0000
L57	70	CCI-SFP-045100	29.75 - 33.75	1.0000	1.0000
L57	72	CCI-SFP-045100	29.75 - 33.75	1.0000	1.0000
L58	1	FB-L98B-034-XXX(3/8)	29.50 - 29.75	1.0000	1.0000
L58	2	WR-VG86ST-BRD(3/4)	29.50 - 29.75	1.0000	1.0000
L58	4	7983A(ELLIPTICAL)	29.50 - 29.75	1.0000	1.0000
L58	9	CU12PSM9P6XXX(1-1/2)	29.50 - 29.75	1.0000	1.0000
L58	18	MLC HYBRID 6X12	29.50 - 29.75	1.0000	1.0000
		6AWGX6(1-1/2)			
L58	23	Safety Line 3/8	29.50 - 29.75	1.0000	1.0000
L58	25	PL1.25x6.875 Reinforcement	29.50 - 29.75	1.0000	1.0000
L58	26	PL1.25x6.875 Reinforcement	29.50 - 29.75	1.0000	1.0000
L58	27	PL1.25x6.875 Reinforcement	29.50 - 29.75	1.0000	1.0000
L58	43	PL1x4 Reinforcement	29.50 - 29.75	1.0000	1.0000
L58	44	PL1x4 Reinforcement	29.50 - 29.75	1.0000	1.0000
L58	45	PL1x4 Reinforcement	29.50 - 29.75	1.0000	1.0000
L58	68	CCI-SFP-045100	29.50 - 29.75	1.0000	1.0000
L58	70	CCI-SFP-045100	29.50 - 29.75	1.0000	1.0000
L58	72	CCI-SFP-045100	29.50 - 29.75	1.0000	1.0000
L59	1	FB-L98B-034-XXX(3/8)	24.50 - 29.50	1.0000	1.0000
L59	2	WR-VG86ST-BRD(3/4)	24.50 - 29.50	1.0000	1.0000
L59	4	7983A(ELLIPTICAL)	24.50 - 29.50	1.0000	1.0000
L59	9	CU12PSM9P6XXX(1-1/2)	24.50 - 29.50	1.0000	1.0000
L59	18	MLC HYBRID 6X12	24.50 - 29.50	1.0000	1.0000

Page 39 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	K	V
Tower Section	Feed Line Record No.	Description	Segment Elev.	K _a No Ice	K _a Ice
Section	Record No.	6AWGX6(1-1/2)	Segment Liev.	None	166
L59	23	Safety Line 3/8	24.50 - 29.50	1.0000	1.0000
L59	25	PL1.25x6.875 Reinforcement	24.50 - 29.50	1.0000	1.0000
L59	26	PL1.25x6.875 Reinforcement	24.50 - 29.50	1.0000	1.0000
L59	27	PL1.25x6.875 Reinforcement	24.50 - 29.50	1.0000	1.0000
L59	43	PL1x4 Reinforcement	24.50 - 29.50	1.0000	1.0000
L59	44	PL1x4 Reinforcement	24.50 - 29.50	1.0000	1.0000
L59	45	PL1x4 Reinforcement	24.50 - 29.50	1.0000	1.0000
L59	63	CCI-SFP-060100	24.50 - 25.00	1.0000	1.0000
L59	64	CCI-SFP-060100	24.50 - 25.00	1.0000	1.0000
L59	66	CCI-SFP-060100	24.50 - 25.00	1.0000	1.0000
L59	68	CCI-SFP-045100	24.50 - 29.50	1.0000	1.0000
L59	70	CCI-SFP-045100	25.08 - 29.50	1.0000	1.0000
L59	72	CCI-SFP-045100	25.08 - 29.50	1.0000	1.0000
L60	1	FB-L98B-034-XXX(3/8)	23.00 - 24.50	1.0000	1.0000
L60	2	WR-VG86ST-BRD(3/4)	23.00 - 24.50	1.0000	1.0000
L60	4	7983A(ELLIPTICAL)	23.00 - 24.50	1.0000	1.0000
L60	9	CU12PSM9P6XXX(1-1/2)	23.00 - 24.50	1.0000	1.0000
L60	18	MLC HYBRID 6X12	23.00 - 24.50	1.0000	1.0000
T CO		6AWGX6(1-1/2)		1 0000	1 0000
L60	23	Safety Line 3/8	23.00 - 24.50	1.0000	1.0000
L60	25	PL1.25x6.875 Reinforcement	23.00 - 24.50	1.0000	1.0000
L60	26	PL1.25x6.875 Reinforcement	23.00 - 24.50	1.0000	$1.0000 \\ 1.0000$
L60	27	PL1.25x6.875 Reinforcement	23.00 - 24.50	1.0000	
L60 L60	43 44	PL1x4 Reinforcement PL1x4 Reinforcement	23.00 - 24.50 23.00 - 24.50	1.0000 1.0000	$1.0000 \\ 1.0000$
L60	44	PL1x4 Reinforcement	23.00 - 24.50	1.0000	1.0000
L60	63	CCI-SFP-060100	23.00 - 24.50	1.0000	1.0000
L60 L60	64	CCI-SFP-060100	23.00 - 24.50	1.0000	1.0000
L60 L60	66	CCI-SFP-060100	23.00 - 24.50	1.0000	1.0000
L60	68	CCI-SFP-045100	23.00 - 24.50	1.0000	1.0000
L60	1	FB-L98B-034-XXX(3/8)	22.75 - 23.00	1.0000	1.0000
L61	2	WR-VG86ST-BRD(3/4)	22.75 - 23.00	1.0000	1.0000
L61	4	7983A(ELLIPTICAL)	22.75 - 23.00	1.0000	1.0000
L61	9	CU12PSM9P6XXX(1-1/2)	22.75 - 23.00	1.0000	1.0000
L61	18	MLC HYBRID 6X12	22.75 - 23.00	1.0000	1.0000
		6AWGX6(1-1/2)			
L61	23	Safety Line 3/8	22.75 - 23.00	1.0000	1.0000
L61	25	PL1.25x6.875 Reinforcement	22.75 - 23.00	1.0000	1.0000
L61	26	PL1.25x6.875 Reinforcement	22.75 - 23.00	1.0000	1.0000
L61	27	PL1.25x6.875 Reinforcement	22.75 - 23.00	1.0000	1.0000
L61	43	PL1x4 Reinforcement	22.75 - 23.00	1.0000	1.0000
L61	44	PL1x4 Reinforcement	22.75 - 23.00	1.0000	1.0000
L61	45	PL1x4 Reinforcement	22.75 - 23.00	1.0000	1.0000
L61	63	CCI-SFP-060100	22.75 - 23.00	1.0000	1.0000
L61	64	CCI-SFP-060100		1.0000	1.0000
L61	66	CCI-SFP-060100	22.75 - 23.00	1.0000	1.0000
L61	68	CCI-SFP-045100	22.75 - 23.00	1.0000	1.0000
L62	1	FB-L98B-034-XXX(3/8)	21.58 - 22.75	1.0000	1.0000
L62	2	WR-VG86ST-BRD(3/4)	21.58 - 22.75	1.0000	$1.0000 \\ 1.0000$
L62	4	7983A(ELLIPTICAL)	21.58 - 22.75	1.0000 1.0000	
L62 L62	9 18	CU12PSM9P6XXX(1-1/2) MLC HYBRID 6X12	21.58 - 22.75 21.58 - 22.75	1.0000	$1.0000 \\ 1.0000$
L02	18	6AWGX6(1-1/2)	21.30 - 22.73	1.0000	1.0000
L62	23	Safety Line 3/8	21.58 - 22.75	1.0000	1.0000
L62 L62	23 25	PL1.25x6.875 Reinforcement	21.58 - 22.75	1.0000	1.0000
L62	23 26	PL1.25x6.875 Reinforcement	21.58 - 22.75	1.0000	1.0000
L62	20	PL1.25x6.875 Reinforcement	21.58 - 22.75	1.0000	1.0000
L62	43	PL1x4 Reinforcement	21.58 - 22.75	1.0000	1.0000
L62	44	PL1x4 Reinforcement	21.58 - 22.75	1.0000	1.0000
L62	45	PL1x4 Reinforcement	21.58 - 22.75	1.0000	1.0000
L62	63	CCI-SFP-060100			
. 202	55	- 51 511 000100			1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
L62	64	CCI-SFP-060100	21.58 - 22.75	1.0000	1.0000
L62	66	CCI-SFP-060100	21.58 - 22.75	1.0000	1.0000
L62	68	CCI-SFP-045100	21.58 - 22.75	1.0000	1.0000
L63	1	FB-L98B-034-XXX(3/8)	21.33 - 21.58	1.0000	1.0000
L63	2	WR-VG86ST-BRD(3/4)	21.33 - 21.58	1.0000	1.0000
L63	4	7983A(ELLIPTICAL)	21.33 - 21.58	1.0000	1.0000
L63	9	CU12PSM9P6XXX(1-1/2)	21.33 - 21.58	1.0000	1.0000
L63	18	MLC HYBRID 6X12	21.33 - 21.58	1.0000	1.0000
		6AWGX6(1-1/2)			
L63	23	Safety Line 3/8	21.33 - 21.58	1.0000	1.0000
L63	25	PL1.25x6.875 Reinforcement	21.33 - 21.58	1.0000	1.0000
L63	26	PL1.25x6.875 Reinforcement	21.33 - 21.58	1.0000	1.0000
L63	27	PL1.25x6.875 Reinforcement	21.33 - 21.58	1.0000	1.0000
L63	43	PL1x4 Reinforcement	21.33 - 21.58	1.0000	1.0000
L63	44	PL1x4 Reinforcement	21.33 - 21.58	1.0000	1.0000
L63	45	PL1x4 Reinforcement	21.33 - 21.58	1.0000	1.0000
L63	63	CCI-SFP-060100	21.33 - 21.58	1.0000	1.0000
L63	64	CCI-SFP-060100	21.33 - 21.58	1.0000	1.0000
L63	66	CCI-SFP-060100	21.33 - 21.58	1.0000	1.0000
L63	68	CCI-SFP-045100	21.33 - 21.58	1.0000	1.0000
L64	1	FB-L98B-034-XXX(3/8)	16.33 - 21.33	1.0000	1.0000
L64	2	WR-VG86ST-BRD(3/4)	16.33 - 21.33	1.0000	1.0000
L64	4	7983A(ELLIPTICAL)	16.33 - 21.33	1.0000	1.0000
L64	9	CU12PSM9P6XXX(1-1/2)	16.33 - 21.33	1.0000	1.0000
L64	18	MLC HYBRID 6X12	16.33 - 21.33	1.0000	1.0000
		6AWGX6(1-1/2)			
L64	23	Safety Line 3/8	16.33 - 21.33	1.0000	1.0000
L64	25	PL1.25x6.875 Reinforcement	16.33 - 21.33	1.0000	1.0000
L64	26	PL1.25x6.875 Reinforcement	16.33 - 21.33	1.0000	1.0000
L64	27	PL1.25x6.875 Reinforcement	16.33 - 21.33	1.0000	1.0000
L64	28	PL1.25x6.875 Reinforcement	16.33 - 16.42	1.0000	1.0000
L64	29	PL1.25x6.875 Reinforcement	16.33 - 16.42	1.0000	1.0000
L64	43	PL1x4 Reinforcement	16.33 - 21.33	1.0000	1.0000
L64 L64	44 45	PL1x4 Reinforcement	16.33 - 21.33 16.33 - 21.33	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L64 L64	43 63	PL1x4 Reinforcement CCI-SFP-060100	16.33 - 21.33	1.0000	1.0000
L64 L64	64 64	CCI-SFP-060100 CCI-SFP-060100	16.33 - 21.33	1.0000	1.0000
L64 L64	66	CCI-SFP-060100 CCI-SFP-060100	16.33 - 21.33	1.0000	1.0000
L64 L64	68	CCI-SFP-045100	20.08 - 21.33	1.0000	1.0000
L65	1	FB-L98B-034-XXX(3/8)	12.92 - 16.33	1.0000	1.0000
L65	2	WR-VG86ST-BRD(3/4)	12.92 - 16.33	1.0000	1.0000
L65	4	7983A(ELLIPTICAL)	12.92 - 16.33	1.0000	1.0000
L65	9	CU12PSM9P6XXX(1-1/2)	12.92 - 16.33	1.0000	1.0000
L65	18	MLC HYBRID 6X12	12.92 - 16.33	1.0000	1.0000
200	10	6AWGX6(1-1/2)			
L65	23	Safety Line 3/8	12.92 - 16.33	1.0000	1.0000
L65	25	PL1.25x6.875 Reinforcement	12.92 - 16.33	1.0000	1.0000
L65	26	PL1.25x6.875 Reinforcement	12.92 - 16.33	1.0000	1.0000
L65	27	PL1.25x6.875 Reinforcement	12.92 - 16.33	1.0000	1.0000
L65	28	PL1.25x6.875 Reinforcement	12.92 - 16.33	1.0000	1.0000
L65	29	PL1.25x6.875 Reinforcement	12.92 - 16.33	1.0000	1.0000
L65	43	PL1x4 Reinforcement	12.92 - 16.33	1.0000	1.0000
L65	44	PL1x4 Reinforcement	12.92 - 16.33	1.0000	1.0000
L65	45	PL1x4 Reinforcement	12.92 - 16.33	1.0000	1.0000
L65	63	CCI-SFP-060100	12.92 - 16.33	1.0000	1.0000
L65	64	CCI-SFP-060100	12.92 - 16.33	1.0000	1.0000
L65	66	CCI-SFP-060100	12.92 - 16.33	1.0000	1.0000
L66	1	FB-L98B-034-XXX(3/8)	12.67 - 12.92	1.0000	1.0000
L66	2	WR-VG86ST-BRD(3/4)	12.67 - 12.92	1.0000	1.0000
L66	4	7983A(ELLIPTICAL)	12.67 - 12.92	1.0000	1.0000
L66	9	CU12PSM9P6XXX(1-1/2)	12.67 - 12.92	1.0000	1.0000
L66	18	MLC HYBRID 6X12	12.67 - 12.92	1.0000	1.0000

Page 41 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

T	F 17:			V	V
Tower Section	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	6AWCX6(1-1/2)	Segment Elev.	No Ice	Ice
T.C.	22	6AWGX6(1-1/2)	12 (7 12 02	1 0000	1 0000
L66	23 25	Safety Line 3/8	12.67 - 12.92	1.0000	1.0000
L66		PL1.25x6.875 Reinforcement	12.67 - 12.92	1.0000	1.0000
L66	26	PL1.25x6.875 Reinforcement	12.67 - 12.92	1.0000	1.0000
L66	27	PL1.25x6.875 Reinforcement	12.67 - 12.92	1.0000	1.0000
L66	28	PL1.25x6.875 Reinforcement	12.67 - 12.92	1.0000	1.0000
L66	29	PL1.25x6.875 Reinforcement	12.67 - 12.92	1.0000	1.0000
L66	43	PL1x4 Reinforcement PL1x4 Reinforcement	12.67 - 12.92	1.0000	1.0000
L66	44		12.67 - 12.92	1.0000	1.0000
L66 L66	45 63	PL1x4 Reinforcement CCI-SFP-060100	12.67 - 12.92	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$
L66	64 64	CCI-SFP-060100 CCI-SFP-060100	12.67 - 12.92 12.67 - 12.92	1.0000	1.0000
L66	66	CCI-SFP-060100	12.67 - 12.92 12.67 - 12.92	1.0000	1.0000
L60 L67	1	FB-L98B-034-XXX(3/8)	12.50 - 12.67	1.0000	1.0000
L67 L67	2	WR-VG86ST-BRD(3/4)	12.50 - 12.67	1.0000	1.0000
L67 L67	4	7983A(ELLIPTICAL)	12.50 - 12.67	1.0000	1.0000
L67 L67	4	· · · · · · · · · · · · · · · · · · ·	12.50 - 12.67	1.0000	1.0000
L67 L67	18	CU12PSM9P6XXX(1-1/2) MLC HYBRID 6X12	12.50 - 12.67	1.0000	1.0000
L07	18	6AWGX6(1-1/2)	12.30 - 12.07	1.0000	1.0000
L67	23	Safety Line 3/8	12.50 - 12.67	1.0000	1.0000
L67 L67	23 25	PL1.25x6.875 Reinforcement	12.50 - 12.67	1.0000	1.0000
L67 L67	23	PL1.25x6.875 Reinforcement	12.50 - 12.67	1.0000	1.0000
L67 L67	20	PL1.25x6.875 Reinforcement	12.50 - 12.67	1.0000	1.0000
L67	28	PL1.25x6.875 Reinforcement	12.50 - 12.67	1.0000	1.0000
L67	28	PL1.25x6.875 Reinforcement	12.50 - 12.67	1.0000	1.0000
L67 L67	43	PL1x4 Reinforcement	12.50 - 12.67	1.0000	1.0000
L67	44	PL1x4 Reinforcement	12.50 - 12.67	1.0000	1.0000
L67	45	PL1x4 Reinforcement	12.50 - 12.67	1.0000	1.0000
L67	63	CCI-SFP-060100	12.50 - 12.67	1.0000	1.0000
L67	64	CCI-SFP-060100	12.50 - 12.67	1.0000	1.0000
L67	66	CCI-SFP-060100	12.50 - 12.67	1.0000	1.0000
L68	1	FB-L98B-034-XXX(3/8)	12.25 - 12.50	1.0000	1.0000
L68	2	WR-VG86ST-BRD(3/4)	12.25 - 12.50	1.0000	1.0000
L68	4	7983A(ELLIPTICAL)	12.25 - 12.50	1.0000	1.0000
L68	9	CU12PSM9P6XXX(1-1/2)	12.25 - 12.50	1.0000	1.0000
L68	18	MLC HYBRID 6X12	12.25 - 12.50	1.0000	1.0000
		6AWGX6(1-1/2)			
L68	23	Safety Line 3/8	12.25 - 12.50	1.0000	1.0000
L68	25	PL1.25x6.875 Reinforcement	12.25 - 12.50	1.0000	1.0000
L68	26	PL1.25x6.875 Reinforcement	12.25 - 12.50	1.0000	1.0000
L68	27	PL1.25x6.875 Reinforcement	12.25 - 12.50	1.0000	1.0000
L68	28	PL1.25x6.875 Reinforcement	12.25 - 12.50	1.0000	1.0000
L68	29	PL1.25x6.875 Reinforcement	12.25 - 12.50	1.0000	1.0000
L68	43	PL1x4 Reinforcement	12.25 - 12.50	1.0000	1.0000
L68	44	PL1x4 Reinforcement	12.25 - 12.50	1.0000	1.0000
L68	45	PL1x4 Reinforcement	12.25 - 12.50	1.0000	1.0000
L68	63	CCI-SFP-060100	12.25 - 12.50	1.0000	1.0000
L68	64	CCI-SFP-060100	12.25 - 12.50	1.0000	1.0000
L68	66	CCI-SFP-060100	12.25 - 12.50	1.0000	1.0000
L69	1	FB-L98B-034-XXX(3/8)	12.00 - 12.25	1.0000	1.0000
L69	2	WR-VG86ST-BRD(3/4)	12.00 - 12.25	1.0000	1.0000
L69	4	7983A(ELLIPTICAL)	12.00 - 12.25	1.0000	1.0000
L69	9	CU12PSM9P6XXX(1-1/2)	12.00 - 12.25	1.0000	1.0000
L69	18	MLC HYBRID 6X12 6AWGX6(1-1/2)	12.00 - 12.25	1.0000	1.0000
L69	23	Safety Line 3/8	12.00 - 12.25	1.0000	1.0000
L69	25	PL1.25x6.875 Reinforcement	12.00 - 12.25	1.0000	1.0000
L69	26	PL1.25x6.875 Reinforcement	12.00 - 12.25	1.0000	1.0000
L69	20	PL1.25x6.875 Reinforcement	12.00 - 12.25	1.0000	1.0000
L69	28	PL1.25x6.875 Reinforcement	12.00 - 12.25	1.0000	1.0000
L69	20	PL1.25x6.875 Reinforcement	12.00 - 12.25	1.0000	1.0000
L69	43		12.00 - 12.25		
	15		12.20	2.00000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Taure	Facd I	Description	FacJI	ν	V
Tower Section	Feed Line	Description	Feed Line	K _a No Ice	K_a
	Record No.	DI 14 D	Segment Elev.		Ice
L69	44	PL1x4 Reinforcement	12.00 - 12.25	1.0000	1.0000
L69	45	PL1x4 Reinforcement	12.00 - 12.25	1.0000	1.0000
L69	63	CCI-SFP-060100	12.00 - 12.25	$1.0000 \\ 1.0000$	1.0000
L69	64	CCI-SFP-060100	12.00 - 12.25		1.0000
L69	66	CCI-SFP-060100	12.00 - 12.25	1.0000	1.0000
L70	1	FB-L98B-034-XXX(3/8)	11.75 - 12.00	1.0000	1.0000
L70	2	WR-VG86ST-BRD(3/4)		1.0000	1.0000
L70	4	7983A(ELLIPTICAL)		1.0000	1.0000
L70	9	CU12PSM9P6XXX(1-1/2)	11.75 - 12.00	1.0000	1.0000
L70	18	MLC HYBRID 6X12	11.75 - 12.00	1.0000	1.0000
		6AWGX6(1-1/2)		1 0 0 0 0	1 0 0 0 0
L70	23	Safety Line 3/8	11.75 - 12.00	1.0000	1.0000
L70	25	PL1.25x6.875 Reinforcement	11.75 - 12.00	1.0000	1.0000
L70	26	PL1.25x6.875 Reinforcement	11.75 - 12.00	1.0000	1.0000
L70	27	PL1.25x6.875 Reinforcement	11.75 - 12.00	1.0000	1.0000
L70	28	PL1.25x6.875 Reinforcement	11.75 - 12.00	1.0000	1.0000
L70	29	PL1.25x6.875 Reinforcement	11.75 - 12.00	1.0000	1.0000
L70	43	PL1x4 Reinforcement	11.75 - 12.00	1.0000	1.0000
L70	44	PL1x4 Reinforcement	11.75 - 12.00	1.0000	1.0000
L70	45	PL1x4 Reinforcement	11.75 - 12.00	1.0000	1.0000
L70	63	CCI-SFP-060100	11.75 - 12.00	1.0000	1.0000
L70	64	CCI-SFP-060100	11.75 - 12.00	1.0000	1.0000
L70	66	CCI-SFP-060100	11.75 - 12.00	1.0000	1.0000
L71	1	FB-L98B-034-XXX(3/8)	8.50 - 11.75	1.0000	1.0000
L71	2	WR-VG86ST-BRD(3/4)	8.50 - 11.75	1.0000	1.0000
L71	4	7983A(ELLIPTICAL)		1.0000	1.0000
L71	9	CU12PSM9P6XXX(1-1/2)	8.50 - 11.75	1.0000	1.0000
L71	18	MLC HYBRID 6X12	8.50 - 11.75	1.0000	1.0000
		6AWGX6(1-1/2)			
L71	23	Safety Line 3/8	8.50 - 11.75	1.0000	1.0000
L71	25	PL1.25x6.875 Reinforcement	8.50 - 11.75	1.0000	1.0000
L71	26	PL1.25x6.875 Reinforcement	8.50 - 11.75	1.0000	1.0000
L71	27	PL1.25x6.875 Reinforcement	9.17 - 11.75	1.0000	1.0000
L71	28	PL1.25x6.875 Reinforcement	8.50 - 11.75	1.0000	1.0000
L71	29	PL1.25x6.875 Reinforcement	8.50 - 11.75	1.0000	1.0000
L71	43	PL1x4 Reinforcement	10.75 - 11.75	1.0000	1.0000
L71	44	PL1x4 Reinforcement	10.75 - 11.75	1.0000	1.0000
L71	45	PL1x4 Reinforcement	10.75 - 11.75	1.0000	1.0000
L71	59	Transition Stiffener 1x7	8.50 - 10.50	1.0000	1.0000
L71	60	Transition Stiffener 1x7	8.50 - 10.50	1.0000	1.0000
L71	61	Transition Stiffener 1x7	8.50 - 10.50	1.0000	1.0000
L71 L71	63	CCI-SFP-060100	8.50 - 11.75	1.0000	1.0000
L71 L71	64	CCI-SFP-060100 CCI-SFP-060100	8.50 - 11.75	1.0000	1.0000
L71 L71	66	CCI-SFP-060100	10.00 - 11.75	1.0000	1.0000
L71 L72	1	FB-L98B-034-XXX(3/8)		1.0000	1.0000
L72 L72	2	WR-VG86ST-BRD(3/4)		1.0000	1.0000
L72 L72	2 4	7983A(ELLIPTICAL)		1.0000	1.0000
L72 L72	4	CU12PSM9P6XXX(1-1/2)	8.25 - 8.50 8.25 - 8.50	1.0000	1.0000
		. ,			
L72	18	MLC HYBRID 6X12	8.25 - 8.50	1.0000	1.0000
T 72		6AWGX6(1-1/2)	0.75 0.50	1 0000	1 0000
L72	23	Safety Line 3/8	8.25 - 8.50	1.0000	1.0000
L72	25	PL1.25x6.875 Reinforcement	8.25 - 8.50	1.0000	1.0000
L72	26	PL1.25x6.875 Reinforcement	8.25 - 8.50	1.0000	1.0000
L72	28	PL1.25x6.875 Reinforcement	8.25 - 8.50	1.0000	1.0000
L72	29	PL1.25x6.875 Reinforcement	8.25 - 8.50	1.0000	1.0000
L72	59	Transition Stiffener 1x7	8.25 - 8.50	1.0000	1.0000
L72	60	Transition Stiffener 1x7	8.25 - 8.50	1.0000	1.0000
L72	61	Transition Stiffener 1x7	8.25 - 8.50	1.0000	1.0000
L72	63	CCI-SFP-060100	8.25 - 8.50	1.0000	1.0000
L72	64	CCI-SFP-060100	8.25 - 8.50	1.0000	1.0000
L73	1	FB-L98B-034-XXX(3/8)		1.0000	1.0000
L73	2	WR-VG86ST-BRD(3/4)	7.00 - 8.25	1.0000	1.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Beschphon	Segment Elev.	No Ice	Ice
L73	4	7983A(ELLIPTICAL)	7.00 - 8.25	1.0000	1.0000
L73	9	CU12PSM9P6XXX(1-1/2)	7.00 - 8.25	1.0000	1.0000
L73	18	MLC HYBRID 6X12	7.00 - 8.25	1.0000	1.0000
275	10	6AWGX6(1-1/2)	7.00 0.23	1.0000	1.0000
L73	23	Safety Line 3/8	7.00 - 8.25	1.0000	1.0000
L73	25	PL1.25x6.875 Reinforcement	7.00 - 8.25	1.0000	1.0000
L73	26	PL1.25x6.875 Reinforcement	7.00 - 8.25	1.0000	1.0000
L73	28	PL1.25x6.875 Reinforcement	7.00 - 8.25	1.0000	1.0000
L73	29	PL1.25x6.875 Reinforcement	7.00 - 8.25	1.0000	1.0000
L73	59	Transition Stiffener 1x7	7.00 - 8.25	1.0000	1.0000
L73	60	Transition Stiffener 1x7	7.00 - 8.25	1.0000	1.0000
L73	61	Transition Stiffener 1x7	7.00 - 8.25	1.0000	1.0000
L73	63	CCI-SFP-060100	7.00 - 8.25	1.0000	1.0000
L73	64	CCI-SFP-060100	7.00 - 8.25	1.0000	1.0000
L74	1	FB-L98B-034-XXX(3/8)	6.75 - 7.00	1.0000	1.0000
L74	2	WR-VG86ST-BRD(3/4)	6.75 - 7.00	1.0000	1.0000
L74	4	7983A(ELLIPTICAL)	6.75 - 7.00	1.0000	1.0000
L74	9	CU12PSM9P6XXX(1-1/2)	6.75 - 7.00	1.0000	1.0000
L74	18	MLC HYBRID 6X12	6.75 - 7.00	1.0000	1.0000
	10	6AWGX6(1-1/2)		2.5000	110000
L74	23	Safety Line 3/8	6.75 - 7.00	1.0000	1.0000
L74	25	PL1.25x6.875 Reinforcement	6.75 - 7.00	1.0000	1.0000
L74	26	PL1.25x6.875 Reinforcement	6.75 - 7.00	1.0000	1.0000
L74	28	PL1.25x6.875 Reinforcement	6.75 - 7.00	1.0000	1.0000
L74	29	PL1.25x6.875 Reinforcement	6.75 - 7.00	1.0000	1.0000
L74	59	Transition Stiffener 1x7	6.75 - 7.00	1.0000	1.0000
L74	60	Transition Stiffener 1x7	6.75 - 7.00	1.0000	1.0000
L74	61	Transition Stiffener 1x7	6.75 - 7.00	1.0000	1.0000
L74	63	CCI-SFP-060100	6.75 - 7.00	1.0000	1.0000
L74	64	CCI-SFP-060100	6.75 - 7.00	1.0000	1.0000
L75	1	FB-L98B-034-XXX(3/8)	1.75 - 6.75	1.0000	1.0000
L75	2	WR-VG86ST-BRD(3/4)	1.75 - 6.75	1.0000	1.0000
L75	4	7983A(ELLIPTICAL)	1.75 - 6.75	1.0000	1.0000
L75	9	CU12PSM9P6XXX(1-1/2)	1.75 - 6.75	1.0000	1.0000
L75	18	MLC HYBRID 6X12	1.75 - 6.75	1.0000	1.0000
		6AWGX6(1-1/2)			
L75	23	Safety Line 3/8	1.75 - 6.75	1.0000	1.0000
L75	25	PL1.25x6.875 Reinforcement	1.75 - 6.75	1.0000	1.0000
L75	26	PL1.25x6.875 Reinforcement	1.75 - 6.75	1.0000	1.0000
L75	28	PL1.25x6.875 Reinforcement	1.75 - 6.75	1.0000	1.0000
L75	29	PL1.25x6.875 Reinforcement	1.75 - 6.75	1.0000	1.0000
L75	59	Transition Stiffener 1x7	1.75 - 6.75	1.0000	1.0000
L75	60	Transition Stiffener 1x7	1.75 - 6.75	1.0000	1.0000
L75	61	Transition Stiffener 1x7	1.75 - 6.75	1.0000	1.0000
L75	63	CCI-SFP-060100	5.00 - 6.75	1.0000	1.0000
L75	64	CCI-SFP-060100	5.00 - 6.75	1.0000	1.0000
L76	1	FB-L98B-034-XXX(3/8)	0.00 - 1.75	1.0000	1.0000
L76	2	WR-VG86ST-BRD(3/4)	0.00 - 1.75	1.0000	1.0000
L76	4	7983A(ELLIPTICAL)	0.00 - 1.75	1.0000	1.0000
L76	9	CU12PSM9P6XXX(1-1/2)	0.00 - 1.75	1.0000	1.0000
L76	18	MLC HYBRID 6X12	0.00 - 1.75	1.0000	1.0000
		6AWGX6(1-1/2)			
L76	23	Safety Line 3/8	0.00 - 1.75	1.0000	1.0000
L76	25	PL1.25x6.875 Reinforcement	0.00 - 1.75	1.0000	1.0000
L76	26	PL1.25x6.875 Reinforcement	0.00 - 1.75	1.0000	1.0000
L76	28	PL1.25x6.875 Reinforcement	0.00 - 1.75	1.0000	1.0000
L76	29	PL1.25x6.875 Reinforcement	0.00 - 1.75	1.0000	1.0000
L76	59	Transition Stiffener 1x7	0.00 - 1.75	1.0000	1.0000
L76	60	Transition Stiffener 1x7	0.00 - 1.75	1.0000	1.0000
L76	61	Transition Stiffener 1x7	0.00 - 1.75	1.0000	1.0000
				-	

B+T Group 1717 S. Boulder, Suite 300

Tulsa, OK 74119

Phone: (918) 587-4630 FAX: (918) 295-0265

Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculation	Width
				Method	Ratio
L5	89	CCI-AFP-045100	124.25 -	Auto	0.1983
L5	90	CCI-AFP-045100	125.42 124.25 -	Auto	0.1983
LJ	90	CCI-AFF-043100	124.23 -	Auto	0.1965
L5	91	CCI-AFP-045100	124.25 -	Auto	0.1983
20			125.42	Tuto	0.1702
L6	89	CCI-AFP-045100	123.42 -	Auto	0.1865
			124.25		
L6	90	CCI-AFP-045100	123.42 -	Auto	0.1865
Ŧć			124.25		0.1067
L6	91	CCI-AFP-045100	123.42 -	Auto	0.1865
L7	89	CCI-AFP-045100	124.25 123.17 -	Auto	0.3886
L7	09	CCI-AI1-045100	123.42	Auto	0.5880
L7	90	CCI-AFP-045100	123.12	Auto	0.3886
			123.42		
L7	91	CCI-AFP-045100	123.17 -	Auto	0.3886
			123.42		
L8	89	CCI-AFP-045100	118.17 -	Auto	0.3429
TO			123.17		0.0.400
L8	90	CCI-AFP-045100	118.17 -	Auto	0.3429
L8	91	CCI-AFP-045100	123.17 118.17 -	Auto	0.3429
Lo	51	001-2011-04-5100	123.17	Tuto	0.5427
L9	89	CCI-AFP-045100	113.17 -	Auto	0.2693
			118.17		
L9	90	CCI-AFP-045100	113.17 -	Auto	0.2693
			118.17		
L9	91	CCI-AFP-045100	113.17 -	Auto	0.2693
L10	89	CCI-AFP-045100	118.17 109.50 -	Auto	0.2110
L10	09	CCI-AI1-045100	113.17	Auto	0.2110
L10	90	CCI-AFP-045100	109.50 -	Auto	0.2110
			113.17		
L10	91	CCI-AFP-045100	109.50 -	Auto	0.2110
			113.17		
L10	93	CCI-AFP-040075	109.50 -	Auto	0.0981
L10	95	CCI-AFP-040075	111.00 109.50 -	Auto	0.0981
L10	93	CCI-AFF-040075	109.30 -	Auto	0.0981
L11	89	CCI-AFP-045100	109.25 -	Auto	0.2550
211	0,7		109.50		0.2000
L11	90	CCI-AFP-045100	109.25 -	Auto	0.2550
			109.50		
L11	91	CCI-AFP-045100	109.25 -	Auto	0.2550
т 1 1		COL APP 040075	109.50	.	0.1610
L11	93	CCI-AFP-040075	109.25 - 109.50	Auto	0.1619
L11	95	CCI-AFP-040075	109.30	Auto	0.1619
111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0017111 040075	109.50	1100	0.1017
L12	55	PL1x4 Reinforcement		Auto	0.0956
				. '	•

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculation Method	Width Ratio
			106.50	метоа	Кано
L12	56	PL1x4 Reinforcement	104.75 -	Auto	0.0956
L12	57	PL1x4 Reinforcement	106.50 104.75 -	Auto	0.0956
L12	51	TETX+ Reinforcement	104.75	Tuto	0.0950
L12	87	CCI-AFP-05012520	104.75 - 105.33	Auto	0.2703
L12	89	CCI-AFP-045100	105.55	Auto	0.2122
т 10	00	CCI AED 045100	109.25	A	0.2122
L12	90	CCI-AFP-045100	104.75 - 109.25	Auto	0.2122
L12	91	CCI-AFP-045100	104.75 -	Auto	0.2122
L12	93	CCI-AFP-040075	109.25 104.75 -	Auto	0.1138
			109.25		
L12	95	CCI-AFP-040075	104.75 - 109.25	Auto	0.1138
L13	55	PL1x4 Reinforcement	104.50 -	Auto	0.2248
L13	56	PL1x4 Reinforcement	104.75 104.50 -	Auto	0.2248
L13	50	I LIX4 Kennorcement	104.30	Auto	0.2240
L13	57	PL1x4 Reinforcement	104.50 -	Auto	0.2248
L13	87	CCI-AFP-05012520	104.75 104.50 -	Auto	0.3798
r 10	00		104.75		0.2100
L13	89	CCI-AFP-045100	104.50 - 104.75	Auto	0.3109
L13	90	CCI-AFP-045100	104.50 -	Auto	0.3109
L13	91	CCI-AFP-045100	104.75 104.50 -	Auto	0.3109
			104.75	Tuto	
L13	93	CCI-AFP-040075	104.50 - 104.75	Auto	0.2248
L13	95	CCI-AFP-040075	104.50 -	Auto	0.2248
L14	55	PL1x4 Reinforcement	104.75 102.42 -	Auto	0.2010
L14	55	r L1x4 Kennorcement	102.42 -	Auto	0.2010
L14	56	PL1x4 Reinforcement	102.42 -	Auto	0.2010
L14	57	PL1x4 Reinforcement	104.50 102.42 -	Auto	0.2010
.			104.50		0.000
L14	87	CCI-AFP-05012520	102.42 - 104.50	Auto	0.3608
L14	89	CCI-AFP-045100	102.42 -	Auto	0.2897
L14	90	CCI-AFP-045100	104.50 102.42 -	Auto	0.2897
			104.50	Tuto	
L14	91	CCI-AFP-045100	102.42 - 104.50	Auto	0.2897
L14	93	CCI-AFP-040075	104.30	Auto	0.2010
L14	95	CCI-AFP-040075	104.50 102.42 -	A	0.2010
L14	95	UUI-AFF-0400/5	102.42 - 104.50	Auto	0.2010
L15	55	PL1x4 Reinforcement	102.17 -	Auto	0.0515
L15	56	PL1x4 Reinforcement	102.42 102.17 -	Auto	0.0515
			102.42		
L15	57	PL1x4 Reinforcement	102.17 - 102.42	Auto	0.0515
L15	87	CCI-AFP-05012520	102.17 -	Auto	0.2412
			102.42		

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

T					ECC /
Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculation	Effective Width
Section	Record No.		Segment Elev.	Method	Ratio
L15	89	CCI-AFP-045100	102.17 -	Auto	0.1569
L15	07	049100	102.17	<i>T</i> uto	0.150.
L15	90	CCI-AFP-045100	102.17 -	Auto	0.1569
215	20	001/01/01/01/01	102.42	<i>i</i> iuto	0.150.
L15	91	CCI-AFP-045100	102.12	Auto	0.1569
215	71	019100	102.17	<i>ruto</i>	0.150.
L15	93	CCI-AFP-040075	102.17 -	Auto	0.0515
L15))	CCI-AI I -040075	102.17	Auto	0.051.
L15	95	CCI-AFP-040075	102.42	Auto	0.0515
L15)5	CCI-AI I -040075	102.17	Auto	0.051.
L16	39	PL1.25x3.625 Reinforcement		Auto	0.000
L16	40	PL1.25x3.625 Reinforcement		Auto	0.0000
L10 L16	40	PL1.25x3.625 Reinforcement		Auto	0.0000
L10 L16	55	PL1x4 Reinforcement		Auto	0.019
L16	56	PL1x4 Reinforcement			0.019
L16 L16	57	PL1x4 Reinforcement		Auto	
				Auto	0.019
L16	82	CCI-SFP-040075 CCI-SFP-040075	98.75 - 100.33	Auto	0.007
L16	83	CCI-SFP-040073 CCI-AFP-05012520		Auto	0.007
L16	87		98.75 - 102.17	Auto	0.215
L16	89	CCI-AFP-045100	100.42 -	Auto	0.137
T 1 (0.0		102.17		0.125
L16	90	CCI-AFP-045100	100.42 -	Auto	0.137
			102.17		
L16	91	CCI-AFP-045100	100.42 -	Auto	0.137
			102.17		
L16	93		98.75 - 102.17	Auto	0.019
L16	95	CCI-AFP-040075	101.00 -	Auto	0.033
			102.17		
L17	39	PL1.25x3.625 Reinforcement	98.50 - 98.75	Auto	0.103
L17	40	PL1.25x3.625 Reinforcement	98.50 - 98.75	Auto	0.103
L17	41	PL1.25x3.625 Reinforcement	98.50 - 98.75	Auto	0.103
L17	55	PL1x4 Reinforcement	98.50 - 98.75	Auto	0.187
L17	56	PL1x4 Reinforcement	98.50 - 98.75	Auto	0.187
L17	57	PL1x4 Reinforcement	98.50 - 98.75	Auto	0.187
L17	82	CCI-SFP-040075	98.50 - 98.75	Auto	0.187
L17	83	CCI-SFP-040075	98.50 - 98.75	Auto	0.187
L17	87	CCI-AFP-05012520	98.50 - 98.75	Auto	0.349
L17	93	CCI-AFP-040075	98.50 - 98.75	Auto	0.187
L18	39	PL1.25x3.625 Reinforcement	97.50 - 98.50	Auto	0.094
L18	40	PL1.25x3.625 Reinforcement	97.50 - 98.50	Auto	0.094
L18	41	PL1.25x3.625 Reinforcement	97.50 - 98.50	Auto	0.094
L18	55	PL1x4 Reinforcement	97.50 - 98.50	Auto	0.179
L18	56	PL1x4 Reinforcement	97.50 - 98.50	Auto	0.179
L18	57	PL1x4 Reinforcement	97.50 - 98.50	Auto	0.179
L18	82	CCI-SFP-040075		Auto	0.179
L18	83	CCI-SFP-040075	97.50 - 98.50	Auto	0.179
L18	87	CCI-AFP-05012520	97.50 - 98.50	Auto	0.343
L18	93	CCI-AFP-040075	97.50 - 98.50	Auto	0.179
L10 L19	39	PL1.25x3.625 Reinforcement	97.25 - 97.50	Auto	0.020
L19	40	PL1.25x3.625 Reinforcement	97.25 - 97.50	Auto	0.020
L19	41	PL1.25x3.625 Reinforcement	97.25 - 97.50	Auto	0.020
L19 L19	55	PL1x4 Reinforcement	97.25 - 97.50	Auto	0.020
L19 L19	56	PL1x4 Reinforcement	97.25 - 97.50	Auto	0.112
L19 L19	50	PL1x4 Reinforcement	97.25 - 97.50		0.112
			97.25 - 97.50	Auto	
L19	82	CCI-SFP-040075 CCI-SFP-040075		Auto	0.112
L19	83		97.25 - 97.50	Auto	0.112
L19	87	CCI-AFP-05012520	97.25 - 97.50	Auto	0.289
L19	93	CCI-AFP-040075	97.25 - 97.50	Auto	0.112
L20	39	PL1.25x3.625 Reinforcement	92.00 - 97.25	Auto	0.000
1.201	40	PL1.25x3.625 Reinforcement	92.00 - 97.25	Auto	0.000
L20 L20	41		92.00 - 97.25	Auto	0.000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculation	Width
			_	Method	Ratio
L20	55	PL1x4 Reinforcement	92.00 - 97.25	Auto	0.0675
L20	56	PL1x4 Reinforcement	92.00 - 97.25	Auto	0.0675
L20	57	PL1x4 Reinforcement	92.00 - 97.25	Auto	0.0675
L20	82	CCI-SFP-040075	92.00 - 97.25	Auto	0.0675
L20	83	CCI-SFP-040075	92.00 - 97.25	Auto	0.0675
L20	87	CCI-AFP-05012520	92.00 - 97.25	Auto	0.2540
L20	93	CCI-AFP-040075	96.00 - 97.25	Auto	0.0939
L21 L21	39 40	PL1.25x3.625 Reinforcement PL1.25x3.625 Reinforcement	90.55 - 92.00 90.55 - 92.00	Auto	0.0009 0.0009
L21 L21	40 41	PL1.25x3.625 Reinforcement	90.33 - 92.00 90.55 - 92.00	Auto Auto	0.0009
L21 L21	55	PL1x4 Reinforcement	90.55 - 92.00 90.55 - 92.00	Auto	0.0009
L21 L21	56	PL1x4 Reinforcement	90.55 - 92.00	Auto	0.0897
L21 L21	57	PL1x4 Reinforcement	90.55 - 92.00	Auto	0.0897
L21 L21	82	CCI-SFP-040075	90.55 - 92.00	Auto	0.0897
L21	83	CCI-SFP-040075	90.55 - 92.00	Auto	0.0897
L21	87	CCI-AFP-05012520	90.55 - 92.00	Auto	0.2718
L22	39	PL1.25x3.625 Reinforcement	89.25 - 90.55	Auto	0.0000
L22	40	PL1.25x3.625 Reinforcement	89.25 - 90.55	Auto	0.0000
L22	41	PL1.25x3.625 Reinforcement	89.25 - 90.55	Auto	0.0000
L22	55	PL1x4 Reinforcement	89.25 - 90.55	Auto	0.0546
L22	56	PL1x4 Reinforcement	89.25 - 90.55	Auto	0.0546
L22	57	PL1x4 Reinforcement	89.25 - 90.55	Auto	0.0546
L22	82	CCI-SFP-040075	89.25 - 90.55	Auto	0.0546
L22	83	CCI-SFP-040075	89.25 - 90.55	Auto	0.0546
L22	85	CCI-SFP-040075	89.25 - 90.33	Auto	0.0532
L22	87	CCI-AFP-05012520	89.25 - 90.55	Auto	0.2437
L23	35	PL1.25x5.5 Reinforcement	89.00 - 89.25	Auto	0.4146
L23	36	PL1.25x5.5 Reinforcement	89.00 - 89.25	Auto	0.4146
L23	37	PL1.25x5.5 Reinforcement	89.00 - 89.25	Auto	0.4146
L23	55	PL1x4 Reinforcement	89.00 - 89.25	Auto	0.1950
L23	56	PL1x4 Reinforcement	89.00 - 89.25	Auto	0.1950
L23	57	PL1x4 Reinforcement	89.00 - 89.25	Auto	0.1950
L23	82	CCI-SFP-040075	89.00 - 89.25	Auto	0.1950
L23	83	CCI-SFP-040075	89.00 - 89.25	Auto	0.1950
L23	85	CCI-SFP-040075	89.00 - 89.25	Auto	0.1950
L23	87	CCI-AFP-05012520	89.00 - 89.25	Auto	0.3560
L24 L24	35	PL1.25x5.5 Reinforcement	88.25 - 89.00	Auto	0.3975
L24 L24	36	PL1.25x5.5 Reinforcement PL1.25x5.5 Reinforcement	88.25 - 89.00	Auto	0.3975 0.3975
L24 L24	37 55	PL1.25x5.5 Reinforcement PL1x4 Reinforcement	88.25 - 89.00 88.25 - 89.00	Auto	0.3973
L24 L24	55 56	PL1x4 Reinforcement	88.25 - 89.00 88.25 - 89.00	Auto Auto	0.1716
L24 L24	57	PL1x4 Reinforcement	88.25 - 89.00	Auto	0.1716
L24 L24	82	CCI-SFP-040075	88.25 - 89.00 88.25 - 89.00	Auto	0.1716
L24 L24	82	CCI-SFP-040075	88.25 - 89.00	Auto	0.1716
L24 L24	85	CCI-SFP-040075	88.25 - 89.00	Auto	0.1716
L24 L24	87	CCI-AFP-05012520	88.25 - 89.00	Auto	0.3373
L25	35	PL1.25x5.5 Reinforcement	88.00 - 88.25	Auto	0.2891
L25	36	PL1.25x5.5 Reinforcement	88.00 - 88.25	Auto	0.2891
L25	37	PL1.25x5.5 Reinforcement	88.00 - 88.25	Auto	0.2891
L25	55	PL1x4 Reinforcement	88.00 - 88.25	Auto	0.0226
L25	56	PL1x4 Reinforcement	88.00 - 88.25	Auto	0.0226
L25	57	PL1x4 Reinforcement	88.00 - 88.25	Auto	0.0226
L25	82	CCI-SFP-040075	88.00 - 88.25	Auto	0.0226
L25	83	CCI-SFP-040075	88.00 - 88.25	Auto	0.0226
L25	85	CCI-SFP-040075	88.00 - 88.25	Auto	0.0226
L25	87	CCI-AFP-05012520	88.00 - 88.25	Auto	0.2181
L26	35	PL1.25x5.5 Reinforcement	87.83 - 88.00	Auto	0.2871
L26	36	PL1.25x5.5 Reinforcement	87.83 - 88.00	Auto	0.2871
L26	37	PL1.25x5.5 Reinforcement	87.83 - 88.00	Auto	0.2871
L26	55	PL1x4 Reinforcement	87.83 - 88.00	Auto	0.0198
L26	56	PL1x4 Reinforcement	87.83 - 88.00	Auto	0.0198

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	<i>F</i>	Segment Elev.	Calculation	Width
			0	Method	Ratio
L26	57	PL1x4 Reinforcement	87.83 - 88.00	Auto	0.0198
L26	82	CCI-SFP-040075	87.83 - 88.00	Auto	0.0198
L26	83	CCI-SFP-040075	87.83 - 88.00	Auto	0.0198
L26 L26	85 87	CCI-SFP-040075	87.83 - 88.00 87.83 - 88.00	Auto	0.0198 0.2158
L20 L27	35	CCI-AFP-05012520 PL1.25x5.5 Reinforcement	87.83 - 88.00 87.58 - 87.83	Auto Auto	0.2158
L27 L27	36	PL1.25x5.5 Reinforcement	87.58 - 87.83	Auto	0.2425
L27 L27	37	PL1.25x5.5 Reinforcement	87.58 - 87.83	Auto	0.2425
L27	55	PL1x4 Reinforcement	87.58 - 87.83	Auto	0.0000
L27	56	PL1x4 Reinforcement	87.58 - 87.83	Auto	0.0000
L27	57	PL1x4 Reinforcement	87.58 - 87.83	Auto	0.0000
L27	82	CCI-SFP-040075	87.58 - 87.83	Auto	0.0000
L27	83	CCI-SFP-040075	87.58 - 87.83	Auto	0.0000
L27	85	CCI-SFP-040075	87.58 - 87.83	Auto	0.0000
L27	87	CCI-AFP-05012520	87.58 - 87.83	Auto	0.1667
L28	35	PL1.25x5.5 Reinforcement	82.58 - 87.58	Auto	0.2048
L28	36	PL1.25x5.5 Reinforcement	82.58 - 87.58	Auto	0.2048
L28	37	PL1.25x5.5 Reinforcement	82.58 - 87.58	Auto	0.2048
L28 L28	55 56	PL1x4 Reinforcement PL1x4 Reinforcement	86.50 - 87.58 86.50 - 87.58	Auto Auto	$0.0000 \\ 0.0000$
L28 L28	57	PL1x4 Reinforcement	86.50 - 87.58	Auto	0.0000
L28 L28	82	CCI-SFP-040075	82.58 - 87.58	Auto	0.0000
L28 L28	83	CCI-SFP-040075	82.58 - 87.58	Auto	0.0000
L28	85	CCI-SFP-040075	82.58 - 87.58	Auto	0.0000
L28	87	CCI-AFP-05012520	85.33 - 87.58	Auto	0.1400
L29	35	PL1.25x5.5 Reinforcement	77.58 - 82.58	Auto	0.1441
L29	36	PL1.25x5.5 Reinforcement	77.58 - 82.58	Auto	0.1441
L29	37	PL1.25x5.5 Reinforcement	77.58 - 82.58	Auto	0.1441
L29	51	PL1x4 Reinforcement	77.58 - 78.75	Auto	0.0000
L29	52	PL1x4 Reinforcement	77.58 - 78.75	Auto	0.0000
L29	53	PL1x4 Reinforcement	77.58 - 78.75	Auto	0.0000
L29	82	CCI-SFP-040075	77.58 - 82.58	Auto	0.0000
L29	83	CCI-SFP-040075	77.58 - 82.58	Auto	0.0000
L29	85	CCI-SFP-040075	77.58 - 82.58	Auto	0.0000
L30 L30	35 36	PL1.25x5.5 Reinforcement PL1.25x5.5 Reinforcement	77.00 - 77.58 77.00 - 77.58	Auto	$0.1170 \\ 0.1170$
L30 L30	30	PL1.25x5.5 Reinforcement	77.00 - 77.58	Auto Auto	0.1170
L30 L30	51	PL1x4 Reinforcement	77.00 - 77.58	Auto	0.0000
L30 L30	52	PL1x4 Reinforcement	77.00 - 77.58	Auto	0.0000
L30	53	PL1x4 Reinforcement	77.00 - 77.58	Auto	0.0000
L30	82	CCI-SFP-040075	77.00 - 77.58	Auto	0.0000
L30	83	CCI-SFP-040075	77.00 - 77.58	Auto	0.0000
L30	85	CCI-SFP-040075	77.00 - 77.58	Auto	0.0000
L31	35	PL1.25x5.5 Reinforcement	76.75 - 77.00	Auto	0.2105
L31	36	PL1.25x5.5 Reinforcement		Auto	0.2105
L31	37	PL1.25x5.5 Reinforcement	76.75 - 77.00	Auto	0.2105
L31	51	PL1x4 Reinforcement	76.75 - 77.00	Auto	0.0000
L31	52	PL1x4 Reinforcement	76.75 - 77.00	Auto	0.0000
L31	53	PL1x4 Reinforcement	76.75 - 77.00	Auto	0.0000
L31	82	CCI-SFP-040075	76.75 - 77.00	Auto	0.0000
L31 L31	83 85	CCI-SFP-040075 CCI-SFP-040075	76.75 - 77.00 76.75 - 77.00	Auto Auto	$0.0000 \\ 0.0000$
L31 L32	35	PL1.25x5.5 Reinforcement	76.33 - 76.75	Auto	0.0000
L32 L32	36	PL1.25x5.5 Reinforcement	76.33 - 76.75	Auto	0.2072
L32 L32	37	PL1.25x5.5 Reinforcement	76.33 - 76.75	Auto	0.2072
L32 L32	51	PL1x4 Reinforcement	76.33 - 76.75	Auto	0.0000
L32	52	PL1x4 Reinforcement	76.33 - 76.75	Auto	0.0000
L32	53	PL1x4 Reinforcement	76.33 - 76.75	Auto	0.0000
L32	82	CCI-SFP-040075	76.33 - 76.75	Auto	0.0000
L32	83	CCI-SFP-040075	76.33 - 76.75	Auto	0.0000
L32	85	CCI-SFP-040075	76.33 - 76.75	Auto	0.0000
					-

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Description	Segment Elev.	Calculation	Width
200000				Method	Ratio
L33	35	PL1.25x5.5 Reinforcement	76.08 - 76.33	Auto	0.2040
L33	36	PL1.25x5.5 Reinforcement	76.08 - 76.33	Auto	0.2040
L33	37	PL1.25x5.5 Reinforcement	76.08 - 76.33	Auto	0.2040
L33	51	PL1x4 Reinforcement	76.08 - 76.33	Auto	0.0000
L33	52	PL1x4 Reinforcement	76.08 - 76.33	Auto	0.0000
L33	53	PL1x4 Reinforcement	76.08 - 76.33	Auto	0.0000
L33	82	CCI-SFP-040075	76.08 - 76.33	Auto	0.0000
L33	83	CCI-SFP-040075	76.08 - 76.33	Auto	0.0000
L33	85	CCI-SFP-040075	76.08 - 76.33	Auto	0.0000
L34	35	PL1.25x5.5 Reinforcement	74.25 - 76.08	Auto	0.1817
L34	36	PL1.25x5.5 Reinforcement	74.25 - 76.08	Auto	0.1817
L34	37	PL1.25x5.5 Reinforcement	74.25 - 76.08	Auto	0.1817
L34	51	PL1x4 Reinforcement	74.25 - 76.08	Auto	0.0000
L34	52	PL1x4 Reinforcement	74.25 - 76.08	Auto	0.0000
L34 L34	53 77	PL1x4 Reinforcement	74.25 - 76.08 74.25 - 75.25	Auto	$0.0000 \\ 0.0000$
L34 L34	77	CCI-SFP-045100 CCI-SFP-045100	74.25 - 75.25	Auto	0.0000
L34 L34	78 80	CCI-SFP-040075	74.25 - 75.25	Auto Auto	0.0000
L34 L34	80	CCI-SFP-040075	75.33 - 76.08	Auto	0.0000
L34 L34	82	CCI-SFP-040075	75.33 - 76.08	Auto	0.0000
L34 L34	85	CCI-SFP-040075	75.33 - 76.08	Auto	0.0000
L34 L35	35	PL1.25x5.5 Reinforcement	74.00 - 74.25	Auto	0.0000
L35 L35	36	PL1.25x5.5 Reinforcement	74.00 - 74.25	Auto	0.2142
L35 L35	37	PL1.25x5.5 Reinforcement	74.00 - 74.25	Auto	0.2142
L35	51	PL1x4 Reinforcement	74.00 - 74.25	Auto	0.0000
L35	52	PL1x4 Reinforcement	74.00 - 74.25	Auto	0.0000
L35	53	PL1x4 Reinforcement	74.00 - 74.25	Auto	0.0000
L35	77	CCI-SFP-045100	74.00 - 74.25	Auto	0.0396
L35	78	CCI-SFP-045100	74.00 - 74.25	Auto	0.0396
L35	80	CCI-SFP-040075	74.00 - 74.25	Auto	0.0000
L36	35	PL1.25x5.5 Reinforcement	73.75 - 74.00	Auto	0.2118
L36	36	PL1.25x5.5 Reinforcement	73.75 - 74.00	Auto	0.2118
L36	37	PL1.25x5.5 Reinforcement	73.75 - 74.00	Auto	0.2118
L36	51	PL1x4 Reinforcement	73.75 - 74.00	Auto	0.0000
L36	52	PL1x4 Reinforcement	73.75 - 74.00	Auto	0.0000
L36	53	PL1x4 Reinforcement	73.75 - 74.00	Auto	0.0000
L36	77	CCI-SFP-045100	73.75 - 74.00	Auto	0.0367
L36	78	CCI-SFP-045100	73.75 - 74.00	Auto	0.0367
L36	80	CCI-SFP-040075	73.75 - 74.00	Auto	0.0000
L37	35	PL1.25x5.5 Reinforcement	73.50 - 73.75	Auto	0.2216
L37	36	PL1.25x5.5 Reinforcement	73.50 - 73.75	Auto	0.2216
L37	37	PL1.25x5.5 Reinforcement	73.50 - 73.75	Auto	0.2216
L37 L37	51 52	PL1x4 Reinforcement PL1x4 Reinforcement	73.50 - 73.75 73.50 - 73.75	Auto	$0.0000 \\ 0.0000$
	52 53			Auto	
L37		PL1x4 Reinforcement	73.50 - 73.75 73.50 - 73.75	Auto	$0.0000 \\ 0.0486$
L37 L37	77 78	CCI-SFP-045100 CCI-SFP-045100	73.50 - 73.75	Auto Auto	0.0486 0.0486
L37 L37	78 80	CCI-SFP-045100 CCI-SFP-040075	73.50 - 73.75	Auto	0.0486
L37 L38	35	PL1.25x5.5 Reinforcement	68.50 - 73.50	Auto	0.0000
L38 L38	36	PL1.25x5.5 Reinforcement	68.50 - 73.50 68.50 - 73.50	Auto	0.1778
L38 L38	37	PL1.25x5.5 Reinforcement	68.50 - 73.50	Auto	0.1778
L38 L38	51	PL1x4 Reinforcement	68.50 - 73.50	Auto	0.0000
L38	52	PL1x4 Reinforcement	68.50 - 73.50	Auto	0.0000
L38	53	PL1x4 Reinforcement	68.50 - 73.50	Auto	0.0000
L38	77	CCI-SFP-045100	68.50 - 73.50	Auto	0.0052
L38	78	CCI-SFP-045100	68.50 - 73.50	Auto	0.0052
L38	80	CCI-SFP-040075	68.50 - 73.50	Auto	0.0000
L39	35	PL1.25x5.5 Reinforcement	63.50 - 68.50	Auto	0.1171
L39	36	PL1.25x5.5 Reinforcement	63.50 - 68.50	Auto	0.1171
L39	37	PL1.25x5.5 Reinforcement	63.50 - 68.50	Auto	0.1171
L39	51	PL1x4 Reinforcement	63.50 - 68.50	Auto	0.0000
					-

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	×	Segment Elev.	Calculation	Width
			_	Method	Ratio
L39	52	PL1x4 Reinforcement	63.50 - 68.50	Auto	0.0000
L39	53	PL1x4 Reinforcement	63.50 - 68.50	Auto	0.0000
L39	77	CCI-SFP-045100	63.50 - 68.50	Auto	0.0000
L39	78	CCI-SFP-045100	63.50 - 68.50	Auto	0.0000
L39	80	CCI-SFP-040075	63.50 - 68.50	Auto	0.0000
L40	35	PL1.25x5.5 Reinforcement	60.50 - 63.50	Auto	0.0661
L40	36	PL1.25x5.5 Reinforcement	60.50 - 63.50	Auto	0.0661
L40	37	PL1.25x5.5 Reinforcement	60.50 - 63.50	Auto	0.0661
L40	47	PL1x4 Reinforcement	60.50 - 62.25	Auto	0.0000
L40	48	PL1x4 Reinforcement	60.50 - 62.25	Auto	0.0000
L40	49 51	PL1x4 Reinforcement	60.50 - 62.25	Auto	$0.0000 \\ 0.0000$
L40 L40		PL1x4 Reinforcement	60.50 - 63.50	Auto	
L40 L40	52 53	PL1x4 Reinforcement PL1x4 Reinforcement	60.50 - 63.50 60.50 - 63.50	Auto	$0.0000 \\ 0.0000$
L40 L40	55 77	CCI-SFP-045100	60.50 - 63.50	Auto Auto	0.0000
L40 L40	78	CCI-SFP-045100	60.50 - 63.50	Auto	0.0000
L40 L40	80	CCI-SFP-040075	60.50 - 63.50	Auto	0.0000
L40 L41	35	PL1.25x5.5 Reinforcement	60.25 - 60.50	Auto	0.0000
L41 L41	36	PL1.25x5.5 Reinforcement	60.25 - 60.50	Auto	0.0504
L41 L41	37	PL1.25x5.5 Reinforcement	60.25 - 60.50	Auto	0.0504
L41	47	PL1x4 Reinforcement	60.25 - 60.50	Auto	0.0000
L41	48	PL1x4 Reinforcement	60.25 - 60.50	Auto	0.0000
L41	49	PL1x4 Reinforcement	60.25 - 60.50	Auto	0.0000
L41	51	PL1x4 Reinforcement	60.25 - 60.50	Auto	0.0000
L41	52	PL1x4 Reinforcement	60.25 - 60.50	Auto	0.0000
L41	53	PL1x4 Reinforcement	60.25 - 60.50	Auto	0.0000
L41	77	CCI-SFP-045100	60.25 - 60.50	Auto	0.0000
L41	78	CCI-SFP-045100	60.25 - 60.50	Auto	0.0000
L41	80	CCI-SFP-040075	60.25 - 60.50	Auto	0.0000
L42	35	PL1.25x5.5 Reinforcement	59.50 - 60.25	Auto	0.0455
L42	36	PL1.25x5.5 Reinforcement	59.50 - 60.25	Auto	0.0455
L42	37	PL1.25x5.5 Reinforcement	59.50 - 60.25	Auto	0.0455
L42	47	PL1x4 Reinforcement	59.50 - 60.25	Auto	0.0000
L42	48	PL1x4 Reinforcement	59.50 - 60.25	Auto	0.0000
L42	49	PL1x4 Reinforcement	59.50 - 60.25	Auto	0.0000
L42	51	PL1x4 Reinforcement	59.50 - 60.25	Auto	0.0000
L42	52	PL1x4 Reinforcement	59.50 - 60.25	Auto	0.0000
L42	53	PL1x4 Reinforcement	59.50 - 60.25	Auto	0.0000
L42	77	CCI-SFP-045100	59.50 - 60.25	Auto	0.0000
L42	78	CCI-SFP-045100	59.50 - 60.25	Auto	0.0000
L42	80	CCI-SFP-040075	59.50 - 60.25	Auto	0.0000
L43	31	PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement	59.25 - 59.50	Auto	0.2289
L43 L43	32 33	PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement	59.25 - 59.50 59.25 - 59.50	Auto	0.2289 0.2289
L43 L43	33 47			Auto	0.2289
L43 L43	47 48	PL1x4 Reinforcement PL1x4 Reinforcement	59.25 - 59.50 59.25 - 59.50	Auto Auto	0.0000
L43 L43	48 49	PL1x4 Reinforcement	59.25 - 59.50 59.25 - 59.50	Auto	0.0000
L43 L43	49 51	PL1x4 Reinforcement	59.25 - 59.50 59.25 - 59.50	Auto	0.0000
L43 L43	52	PL1x4 Reinforcement	59.25 - 59.50	Auto	0.0000
L43 L43	53	PL1x4 Reinforcement	59.25 - 59.50	Auto	0.0000
L43 L43	77	CCI-SFP-045100	59.25 - 59.50	Auto	0.0000
L43 L43	78	CCI-SFP-045100	59.25 - 59.50	Auto	0.0000
L43	80	CCI-SFP-040075	59.25 - 59.50	Auto	0.0000
L44	31	PL1.25x6.625 Reinforcement	54.25 - 59.25	Auto	0.1926
L44	32	PL1.25x6.625 Reinforcement	54.25 - 59.25	Auto	0.1926
L44	33	PL1.25x6.625 Reinforcement	54.25 - 59.25	Auto	0.1926
L44	47	PL1x4 Reinforcement	54.25 - 59.25	Auto	0.0000
L44	48	PL1x4 Reinforcement	54.25 - 59.25	Auto	0.0000
L44	49	PL1x4 Reinforcement	54.25 - 59.25	Auto	0.0000
L44	51	PL1x4 Reinforcement	58.75 - 59.25	Auto	0.0000
L44	52	PL1x4 Reinforcement	58.75 - 59.25	Auto	0.0000
				•	

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Description	Segment Elev.	Calculation	Width
Section	Record No.		Segment Liev.	Method	Ratio
L44	53	PL1x4 Reinforcement	58.75 - 59.25	Auto	0.0000
L44	77	CCI-SFP-045100	54.25 - 59.25	Auto	0.0000
L44	78	CCI-SFP-045100	54.25 - 59.25	Auto	0.0000
L44 L44	80	CCI-SFP-040075	54.25 - 59.25	Auto	0.0000
L44 L45	31	PL1.25x6.625 Reinforcement	45.80 - 54.25	Auto	0.1333
L45 L45	31	PL1.25x6.625 Reinforcement	45.80 - 54.25	Auto	0.1333
L45 L45	32	PL1.25x6.625 Reinforcement	45.80 - 54.25	Auto	0.1333
L43 L45	47	PL1x4 Reinforcement			0.1333
L43 L45	47	PL1x4 Reinforcement	45.80 - 54.25 45.80 - 54.25	Auto	0.0000
L43 L45	48 49		45.80 - 54.25	Auto Auto	0.0000
		PL1x4 Reinforcement			
L45	77	CCI-SFP-045100	45.80 - 54.25	Auto	0.0000
L45	78	CCI-SFP-045100	45.80 - 54.25	Auto	0.0000
L45	80	CCI-SFP-040075	45.80 - 54.25	Auto	0.0000
L46	31	PL1.25x6.625 Reinforcement	44.80 - 45.80	Auto	0.1157
L46	32	PL1.25x6.625 Reinforcement	44.80 - 45.80	Auto	0.1157
L46	33	PL1.25x6.625 Reinforcement	44.80 - 45.80	Auto	0.1157
L46	47	PL1x4 Reinforcement	44.80 - 45.80	Auto	0.0000
L46	48	PL1x4 Reinforcement	44.80 - 45.80	Auto	0.0000
L46	49	PL1x4 Reinforcement	44.80 - 45.80	Auto	0.0000
L46	72	CCI-SFP-045100	44.80 - 45.08	Auto	0.0000
L46	74	CCI-SFP-060100	44.80 - 45.17	Auto	0.0208
L46	75	CCI-SFP-060100	44.80 - 45.17	Auto	0.0208
L46	77	CCI-SFP-045100	45.25 - 45.80	Auto	0.0000
L46	78	CCI-SFP-045100	45.25 - 45.80	Auto	0.0000
L46	80	CCI-SFP-040075	45.25 - 45.80	Auto	0.0000
L47	31	PL1.25x6.625 Reinforcement	43.58 - 44.80	Auto	0.1069
L47	32	PL1.25x6.625 Reinforcement	43.58 - 44.80	Auto	0.1069
L47	33	PL1.25x6.625 Reinforcement	43.58 - 44.80	Auto	0.1069
L47	47	PL1x4 Reinforcement	43.58 - 44.80	Auto	0.0000
L47	48	PL1x4 Reinforcement	43.58 - 44.80	Auto	0.0000
L47	49	PL1x4 Reinforcement	43.58 - 44.80	Auto	0.0000
L47	72	CCI-SFP-045100	43.58 - 44.80	Auto	0.0000
L47	74	CCI-SFP-060100	43.58 - 44.80	Auto	0.0138
L47	75	CCI-SFP-060100	43.58 - 44.80	Auto	0.0138
L48	31	PL1.25x6.625 Reinforcement	43.33 - 43.58	Auto	0.1060
L48	32	PL1.25x6.625 Reinforcement	43.33 - 43.58	Auto	0.1060
L48	33	PL1.25x6.625 Reinforcement	43.33 - 43.58	Auto	0.1060
L48	47	PL1x4 Reinforcement	43.33 - 43.58	Auto	0.0000
L48	48	PL1x4 Reinforcement	43.33 - 43.58	Auto	0.0000
L48 L48	49	PL1x4 Reinforcement	43.33 - 43.58	Auto	0.0000
L48 L48	72	CCI-SFP-045100	43.33 - 43.58	Auto	0.0000
L48 L48	72	CCI-SFP-043100 CCI-SFP-060100	43.33 - 43.58	Auto	0.0000
L48 L48	74	CCI-SFP-060100 CCI-SFP-060100	43.33 - 43.38	Auto	0.0129
L48 L49	31	PL1.25x6.625 Reinforcement	43.33 - 43.38 43.17 - 43.33	Auto	0.0129
L49 L49	31	PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement	43.17 - 43.33		0.1044 0.1044
				Auto	
L49 L40	33	PL1.25x6.625 Reinforcement	43.17 - 43.33	Auto	0.1044
L49	47	PL1x4 Reinforcement	43.17 - 43.33	Auto	0.0000
L49	48	PL1x4 Reinforcement	43.17 - 43.33	Auto	0.0000
L49	49	PL1x4 Reinforcement	43.17 - 43.33	Auto	0.0000
L49	72	CCI-SFP-045100	43.17 - 43.33	Auto	0.0000
L49	74	CCI-SFP-060100	43.17 - 43.33	Auto	0.0111
L49	75	CCI-SFP-060100	43.17 - 43.33	Auto	0.0111
L50	31	PL1.25x6.625 Reinforcement	42.92 - 43.17	Auto	0.1381
L50	32	PL1.25x6.625 Reinforcement	42.92 - 43.17	Auto	0.1381
L50	33	PL1.25x6.625 Reinforcement	42.92 - 43.17	Auto	0.1381
L50	47	PL1x4 Reinforcement	42.92 - 43.17	Auto	0.0000
L50	48	PL1x4 Reinforcement	42.92 - 43.17	Auto	0.0000
L50	49	PL1x4 Reinforcement	42.92 - 43.17	Auto	0.0000
L50	72	CCI-SFP-045100	42.92 - 43.17	Auto	0.0000
L50	74	CCI-SFP-060100	42.92 - 43.17	Auto	0.0483
L50	75	CCI-SFP-060100	42.92 - 43.17		
				. '	•

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	*	Segment Elev.	Calculation	Width
			-	Method	Ratio
L51	31	PL1.25x6.625 Reinforcement	39.00 - 42.92	Auto	0.1113
L51	32	PL1.25x6.625 Reinforcement	39.00 - 42.92	Auto	0.1113
L51	33	PL1.25x6.625 Reinforcement	39.00 - 42.92	Auto	0.1113
L51	45	PL1x4 Reinforcement	39.00 - 40.75	Auto	0.0000
L51	47	PL1x4 Reinforcement	39.00 - 42.92	Auto	0.0000
L51	48	PL1x4 Reinforcement	39.00 - 42.92	Auto	0.0000
L51	49	PL1x4 Reinforcement	39.00 - 42.92	Auto	0.0000
L51	72	CCI-SFP-045100	39.00 - 42.92	Auto	0.0000
L51	74	CCI-SFP-060100	39.00 - 42.92	Auto	0.0187
L51 L52	75 31	CCI-SFP-060100	39.00 - 42.92	Auto	0.0187
L52 L52	31	PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement	38.75 - 39.00 38.75 - 39.00	Auto	$0.1098 \\ 0.1098$
L32 L52	32	PL1.25x6.625 Reinforcement	38.75 - 39.00	Auto	0.1098
L52 L52	45	PL1x4 Reinforcement	38.75 - 39.00	Auto Auto	0.1098
L52 L52	43	PL1x4 Reinforcement	38.75 - 39.00	Auto	0.0000
L52 L52	48	PL1x4 Reinforcement	38.75 - 39.00	Auto	0.0000
L52 L52	49	PL1x4 Reinforcement	38.75 - 39.00	Auto	0.0000
L52 L52	72	CCI-SFP-045100	38.75 - 39.00	Auto	0.0000
L52 L52	74	CCI-SFP-060100	38.75 - 39.00	Auto	0.0000
L52 L52	75	CCI-SFP-060100	38.75 - 39.00	Auto	0.0171
L53	31	PL1.25x6.625 Reinforcement	37.17 - 38.75	Auto	0.0974
L53	32	PL1.25x6.625 Reinforcement	37.17 - 38.75	Auto	0.0974
L53	33	PL1.25x6.625 Reinforcement	37.17 - 38.75	Auto	0.0974
L53	45	PL1x4 Reinforcement	37.17 - 38.75	Auto	0.0000
L53	47	PL1x4 Reinforcement	37.17 - 38.75	Auto	0.0000
L53	48	PL1x4 Reinforcement	37.17 - 38.75	Auto	0.0000
L53	49	PL1x4 Reinforcement	37.17 - 38.75	Auto	0.0000
L53	72	CCI-SFP-045100	37.17 - 38.75	Auto	0.0000
L53	74	CCI-SFP-060100	37.17 - 38.75	Auto	0.0038
L53	75	CCI-SFP-060100	37.17 - 38.75	Auto	0.0038
L54	31	PL1.25x6.625 Reinforcement	36.92 - 37.17	Auto	0.0698
L54	32	PL1.25x6.625 Reinforcement	36.92 - 37.17	Auto	0.0698
L54	33	PL1.25x6.625 Reinforcement	36.92 - 37.17	Auto	0.0698
L54	45	PL1x4 Reinforcement	36.92 - 37.17	Auto	0.0000
L54	47	PL1x4 Reinforcement	36.92 - 37.17	Auto	0.0000
L54	48	PL1x4 Reinforcement	36.92 - 37.17	Auto	0.0000
L54	49	PL1x4 Reinforcement	36.92 - 37.17	Auto	0.0000
L54	72	CCI-SFP-045100	36.92 - 37.17	Auto	0.0000
L54	74	CCI-SFP-060100	36.92 - 37.17	Auto	0.0000
L54	75	CCI-SFP-060100	36.92 - 37.17	Auto	0.0000
L55	31	PL1.25x6.625 Reinforcement	34.00 - 36.92	Auto	0.0572
L55 L55	32	PL1.25x6.625 Reinforcement	34.00 - 36.92	Auto	0.0572
L55 L55	33 43	PL1.25x6.625 Reinforcement	34.00 - 36.92	Auto	0.0572 0.0000
L55 L55	43 44	PL1x4 Reinforcement	34.00 - 35.75 34.00 - 35.75	Auto Auto	0.0000
L55 L55	44 45	PL1x4 Reinforcement PL1x4 Reinforcement	34.00 - 35.75 34.00 - 36.92	Auto	0.0000
L33 L55	43 47	PL1x4 Reinforcement	34.00 - 36.92	Auto	0.0000
L55 L55	47	PL1x4 Reinforcement	34.00 - 36.92	Auto	0.0000
L55 L55	40	PL1x4 Reinforcement	34.00 - 36.92	Auto	0.0000
L55 L55	68	CCI-SFP-045100	34.00 - 35.08	Auto	0.0000
L55 L55	70	CCI-SFP-045100	34.00 - 35.08	Auto	0.0000
L55 L55	70	CCI-SFP-045100	34.00 - 36.92	Auto	0.0000
L55	74	CCI-SFP-060100	35.17 - 36.92	Auto	0.0000
L55	75	CCI-SFP-060100	35.17 - 36.92	Auto	0.0000
L56	31	PL1.25x6.625 Reinforcement	33.75 - 34.00	Auto	0.0394
L56	32	PL1.25x6.625 Reinforcement	33.75 - 34.00	Auto	0.0394
L56	33	PL1.25x6.625 Reinforcement	33.75 - 34.00	Auto	0.0394
L56	43	PL1x4 Reinforcement	33.75 - 34.00	Auto	0.0000
L56	44	PL1x4 Reinforcement	33.75 - 34.00	Auto	0.0000
L56	45	PL1x4 Reinforcement	33.75 - 34.00	Auto	0.0000
L56	47	PL1x4 Reinforcement			0.0000
I					•

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Section L56 L56 L56 L56 L57 L57 L57 L57 L57 L57 L57 L57 L57 L57	Attachment Record No. 48 49 68 70 72 31 32 33 43 43 44 45 47 48 49	Description PL1x4 Reinforcement PL1x4 Reinforcement CCI-SFP-045100 CCI-SFP-045100 CCI-SFP-045100 PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	Attachment Segment Elev. 33.75 - 34.00 33.75 - 34.00 33.75 - 34.00 33.75 - 34.00 33.75 - 34.00 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75	Ratio Calculation <u>Method</u> Auto Auto Auto Auto Auto Auto Auto Auto	Effective Width Ratio 0.0000 0.0000 0.0000 0.0000 0.0000 0.0174 0.0174
L56 L56 L56 L57 L57 L57 L57 L57 L57 L57 L57 L57 L57	49 68 70 72 31 32 33 43 44 45 47 48	PL1x4 Reinforcement CCI-SFP-045100 CCI-SFP-045100 CCI-SFP-045100 PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	33.75 - 34.00 33.75 - 34.00 33.75 - 34.00 33.75 - 34.00 33.75 - 34.00 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75	Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0000 0.0000 0.0174 0.0174 0.0174
L56 L56 L56 L57 L57 L57 L57 L57 L57 L57 L57 L57 L57	49 68 70 72 31 32 33 43 44 45 47 48	PL1x4 Reinforcement CCI-SFP-045100 CCI-SFP-045100 CCI-SFP-045100 PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	33.75 - 34.00 33.75 - 34.00 33.75 - 34.00 33.75 - 34.00 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75	Auto Auto Auto Auto Auto Auto Auto	0.0000 0.0000 0.0000 0.0000 0.0174 0.0174 0.0174
L56 L56 L57 L57 L57 L57 L57 L57 L57 L57 L57 L57	68 70 72 31 32 33 43 44 45 47 48	CCI-SFP-045100 CCI-SFP-045100 CCI-SFP-045100 PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	33.75 - 34.00 33.75 - 34.00 33.75 - 34.00 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75	Auto Auto Auto Auto Auto Auto	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0174\\ 0.0174\\ 0.0174\end{array}$
L56 L57 L57 L57 L57 L57 L57 L57 L57 L57 L57	70 72 31 32 33 43 44 45 47 48	CCI-SFP-045100 CCI-SFP-045100 PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	33.75 - 34.00 33.75 - 34.00 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75	Auto Auto Auto Auto Auto	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0174\\ 0.0174\\ 0.0174\end{array}$
L56 L57 L57 L57 L57 L57 L57 L57 L57 L57 L57	72 31 32 33 43 44 45 47 48	CCI-SFP-045100 PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	33.75 - 34.00 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75	Auto Auto Auto Auto	0.0000 0.0174 0.0174 0.0174
L57 L57 L57 L57 L57 L57 L57 L57 L57 L57	31 32 33 43 44 45 47 48	PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	29.75 - 33.75 29.75 - 33.75 29.75 - 33.75 29.75 - 33.75	Auto Auto Auto	0.0174 0.0174 0.0174
L57 L57 L57 L57 L57 L57 L57 L57 L57 L57	32 33 43 44 45 47 48	PL1.25x6.625 Reinforcement PL1.25x6.625 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	29.75 - 33.75 29.75 - 33.75 29.75 - 33.75	Auto Auto	0.0174 0.0174
L57 L57 L57 L57 L57 L57 L57 L57	33 43 44 45 47 48	PL1.25x6.625 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	29.75 - 33.75 29.75 - 33.75	Auto	0.0174
L57 L57 L57 L57 L57 L57 L57 L57	43 44 45 47 48	PL1x4 Reinforcement PL1x4 Reinforcement PL1x4 Reinforcement	29.75 - 33.75		
L57 L57 L57 L57 L57 L57 L57	44 45 47 48	PL1x4 Reinforcement PL1x4 Reinforcement		Auto	
L57 L57 L57 L57 L57	45 47 48	PL1x4 Reinforcement	29 75 - 33 75		0.0000
L57 L57 L57 L57	47 48			Auto	0.0000
L57 L57 L57	48	P[]y4 Reinforcement]	29.75 - 33.75	Auto	0.0000
L57 L57			32.25 - 33.75	Auto	0.0000
L57	//01	PL1x4 Reinforcement	32.25 - 33.75	Auto	0.0000
		PL1x4 Reinforcement	32.25 - 33.75	Auto	0.0000
T 67	68 70	CCI-SFP-045100	29.75 - 33.75	Auto	0.0000
L57	70	CCI-SFP-045100	29.75 - 33.75	Auto	0.0000
L57	72	CCI-SFP-045100	29.75 - 33.75	Auto	0.0000
L58	25	PL1.25x6.875 Reinforcement	29.50 - 29.75	Auto	0.0367
L58	26	PL1.25x6.875 Reinforcement	29.50 - 29.75	Auto	0.0367
L58	27	PL1.25x6.875 Reinforcement PL1x4 Reinforcement	29.50 - 29.75	Auto	$0.0367 \\ 0.0000$
L58	43 44		29.50 - 29.75	Auto Auto	
L58 L58	44	PL1x4 Reinforcement PL1x4 Reinforcement	29.50 - 29.75 29.50 - 29.75		$0.0000 \\ 0.0000$
L58 L58			29.50 - 29.75 29.50 - 29.75	Auto	
L58 L58	68 70	CCI-SFP-045100 CCI-SFP-045100	29.30 - 29.73 29.50 - 29.75	Auto Auto	$0.0000 \\ 0.0000$
L58 L58	70	CCI-SFP-045100	29.50 - 29.75	Auto	0.0000
L58 L59	25	PL1.25x6.875 Reinforcement	29.50 - 29.73	Auto	0.0000
L59 L59	25	PL1.25x6.875 Reinforcement	24.50 - 29.50	Auto	0.0123
L59 L59	20 27	PL1.25x6.875 Reinforcement	24.50 - 29.50	Auto	0.0123
L59 L59	43	PL1x4 Reinforcement	24.50 - 29.50	Auto	0.0000
L59	44	PL1x4 Reinforcement	24.50 - 29.50	Auto	0.0000
L59	45	PL1x4 Reinforcement	24.50 - 29.50	Auto	0.0000
L59	63	CCI-SFP-060100	24.50 - 25.00	Auto	0.0000
L59	64	CCI-SFP-060100	24.50 - 25.00	Auto	0.0000
L59	66	CCI-SFP-060100	24.50 - 25.00	Auto	0.0000
L59	68	CCI-SFP-045100	24.50 - 29.50	Auto	0.0000
L59	70	CCI-SFP-045100	25.08 - 29.50	Auto	0.0000
L59	72	CCI-SFP-045100	25.08 - 29.50	Auto	0.0000
L60	25	PL1.25x6.875 Reinforcement	23.00 - 24.50	Auto	0.0000
L60	26	PL1.25x6.875 Reinforcement	23.00 - 24.50	Auto	0.0000
L60	27	PL1.25x6.875 Reinforcement	23.00 - 24.50	Auto	0.0000
L60	43	PL1x4 Reinforcement	23.00 - 24.50	Auto	0.0000
L60	44	PL1x4 Reinforcement	23.00 - 24.50	Auto	0.0000
L60	45	PL1x4 Reinforcement	23.00 - 24.50	Auto	0.0000
L60	63	CCI-SFP-060100	23.00 - 24.50	Auto	0.0000
L60	64	CCI-SFP-060100	23.00 - 24.50	Auto	0.0000
L60	66	CCI-SFP-060100	23.00 - 24.50	Auto	0.0000
L60	68	CCI-SFP-045100	23.00 - 24.50	Auto	0.0000
L61	25	PL1.25x6.875 Reinforcement	22.75 - 23.00	Auto	0.0236
L61	26	PL1.25x6.875 Reinforcement	22.75 - 23.00	Auto	0.0236
L61	27	PL1.25x6.875 Reinforcement	22.75 - 23.00	Auto	0.0236
L61	43	PL1x4 Reinforcement	22.75 - 23.00	Auto	0.0000
L61	44	PL1x4 Reinforcement	22.75 - 23.00	Auto	0.0000
L61	45	PL1x4 Reinforcement	22.75 - 23.00	Auto	0.0000
L61	63	CCI-SFP-060100	22.75 - 23.00	Auto	0.0000
L61	64	CCI-SFP-060100	22.75 - 23.00	Auto	0.0000
L61	66	CCI-SFP-060100	22.75 - 23.00	Auto	0.0000
L61	68	CCI-SFP-045100	22.75 - 23.00	Auto	0.0000
L62	25	PL1.25x6.875 Reinforcement	21.58 - 22.75	Auto	0.0181
L62	26	PL1.25x6.875 Reinforcement	21.58 - 22.75	Auto	0.0181
L62	27	PL1.25x6.875 Reinforcement	21.58 - 22.75	Auto	0.0181

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Description	Segment Elev.	Calculation	Width
Sec.1011	10001 # 110.		~	Method	Ratio
L62	43	PL1x4 Reinforcement	21.58 - 22.75	Auto	0.0000
L62	44	PL1x4 Reinforcement	21.58 - 22.75	Auto	0.0000
L62	45	PL1x4 Reinforcement	21.58 - 22.75	Auto	0.0000
L62	63	CCI-SFP-060100	21.58 - 22.75	Auto	0.0000
L62	64	CCI-SFP-060100	21.58 - 22.75	Auto	0.0000
L62	66	CCI-SFP-060100	21.58 - 22.75	Auto	0.0000
L62	68	CCI-SFP-045100	21.58 - 22.75	Auto	0.0000
L63	25	PL1.25x6.875 Reinforcement	21.33 - 21.58	Auto	0.0000
L63	26	PL1.25x6.875 Reinforcement	21.33 - 21.58	Auto	0.0000
L63	27	PL1.25x6.875 Reinforcement	21.33 - 21.58	Auto	0.0000
L63	43	PL1x4 Reinforcement	21.33 - 21.58	Auto	0.0000
L63	44	PL1x4 Reinforcement	21.33 - 21.58	Auto	0.0000
L63	45	PL1x4 Reinforcement	21.33 - 21.58	Auto	0.0000
L63	63	CCI-SFP-060100	21.33 - 21.58	Auto	0.0000
L63	64	CCI-SFP-060100	21.33 - 21.58	Auto	0.0000
L63	66	CCI-SFP-060100	21.33 - 21.58	Auto	0.0000
L63	68	CCI-SFP-045100	21.33 - 21.58	Auto	0.0000
L64	25	PL1.25x6.875 Reinforcement	16.33 - 21.33	Auto	0.0000
L64	26	PL1.25x6.875 Reinforcement	16.33 - 21.33	Auto	0.0000
L64	27	PL1.25x6.875 Reinforcement	16.33 - 21.33	Auto	0.0000
L64	28	PL1.25x6.875 Reinforcement	16.33 - 16.42	Auto	0.0000
L64	29	PL1.25x6.875 Reinforcement	16.33 - 16.42	Auto	0.0000
L64	43	PL1x4 Reinforcement	16.33 - 21.33	Auto	0.0000
L64	44	PL1x4 Reinforcement	16.33 - 21.33	Auto	0.0000
L64	45	PL1x4 Reinforcement	16.33 - 21.33	Auto	0.0000
L64	63	CCI-SFP-060100	16.33 - 21.33	Auto	0.0000
L64	64	CCI-SFP-060100	16.33 - 21.33	Auto	0.0000
L64	66	CCI-SFP-060100	16.33 - 21.33	Auto	0.0000
L64 L65	68 25	CCI-SFP-045100 PL1.25x6.875 Reinforcement	20.08 - 21.33 12.92 - 16.33	Auto	0.0000
L65	23 26	PL1.25x6.875 Reinforcement	12.92 - 16.33	Auto	$0.0000 \\ 0.0000$
L65	20	PL1.25x6.875 Reinforcement	12.92 - 16.33	Auto Auto	0.0000
L65	27	PL1.25x6.875 Reinforcement	12.92 - 16.33	Auto	0.0000
L65	28 29	PL1.25x6.875 Reinforcement	12.92 - 16.33	Auto	0.0000
L65	43	PL1x4 Reinforcement	12.92 - 16.33	Auto	0.0000
L65	44	PL1x4 Reinforcement	12.92 - 16.33	Auto	0.0000
L65	45	PL1x4 Reinforcement	12.92 - 16.33	Auto	0.0000
L65	63	CCI-SFP-060100	12.92 - 16.33	Auto	0.0000
L65	64	CCI-SFP-060100	12.92 - 16.33	Auto	0.0000
L65	66	CCI-SFP-060100	12.92 - 16.33	Auto	0.0000
L66	25	PL1.25x6.875 Reinforcement	12.67 - 12.92	Auto	0.0000
L66	26	PL1.25x6.875 Reinforcement	12.67 - 12.92	Auto	0.0000
L66	27	PL1.25x6.875 Reinforcement	12.67 - 12.92	Auto	0.0000
L66	28	PL1.25x6.875 Reinforcement	12.67 - 12.92	Auto	0.0000
L66	29	PL1.25x6.875 Reinforcement		Auto	0.0000
L66	43	PL1x4 Reinforcement	12.67 - 12.92	Auto	0.0000
L66	44	PL1x4 Reinforcement	12.67 - 12.92	Auto	0.0000
L66	45	PL1x4 Reinforcement	12.67 - 12.92	Auto	0.0000
L66	63	CCI-SFP-060100	12.67 - 12.92	Auto	0.0000
L66	64	CCI-SFP-060100	12.67 - 12.92	Auto	0.0000
L66	66	CCI-SFP-060100	12.67 - 12.92	Auto	0.0000
L67	25	PL1.25x6.875 Reinforcement	12.50 - 12.67	Auto	0.0000
L67	26	PL1.25x6.875 Reinforcement	12.50 - 12.67	Auto	0.0000
L67	27	PL1.25x6.875 Reinforcement	12.50 - 12.67	Auto	0.0000
L67	28	PL1.25x6.875 Reinforcement	12.50 - 12.67	Auto	0.0000
L67	29	PL1.25x6.875 Reinforcement	12.50 - 12.67	Auto	0.0000
L67	43	PL1x4 Reinforcement	12.50 - 12.67	Auto	0.0000
L67	44	PL1x4 Reinforcement	12.50 - 12.67	Auto	0.0000
L67	45	PL1x4 Reinforcement	12.50 - 12.67	Auto	0.0000
L67	63	CCI-SFP-060100	12.50 - 12.67	Auto	0.0000
L67	64	CCI-SFP-060100	12.50 - 12.67	Auto	0.0000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Tower Section Attachment Record No. Description Attachment Segment Elev. Ratio Calculati Method L67 66 CCI-SFP-060100 12.50 - 12.67 Au L68 25 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 26 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 27 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 28 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 28 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	Ratio to 0.0000 to 0.0000
L67 66 CCI-SFP-060100 12.50 - 12.67 Au L68 25 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 26 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 26 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 27 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 28 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	Ratio to 0.0000 to 0.0000
L67 66 CCI-SFP-060100 12.50 - 12.67 Au L68 25 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 26 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 26 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 27 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 28 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	to 0.0000
L68 25 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 26 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 26 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 27 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 28 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	to 0.0000
L68 26 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 27 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 28 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 28 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	to 0.0000
L68 28 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	to 0.0000
L68 29 PL1.25x6.875 Reinforcement 12.25 - 12.50 Au L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	to 0.0000
L68 43 PL1x4 Reinforcement 12.25 - 12.50 Au L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	to 0.0000 to 0.0000 to 0.0000 to 0.0000 to 0.0000
L68 44 PL1x4 Reinforcement 12.25 - 12.50 Au L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	to 0.0000 to 0.0000 to 0.0000 to 0.0000
L68 45 PL1x4 Reinforcement 12.25 - 12.50 Au	to 0.0000 to 0.0000 to 0.0000
	to 0.0000 to 0.0000
	to 0.0000
L68 63 CCI-SFP-060100 12.25 - 12.50 Au	
L68 64 CCI-SFP-060100 12.25 - 12.50 Au	tol 0.0000
L68 66 CCI-SFP-060100 12.25 - 12.50 Au	
L69 25 PL1.25x6.875 Reinforcement 12.00 - 12.25 Au	
L69 26 PL1.25x6.875 Reinforcement 12.00 - 12.25 Au	
L69 27 PL1.25x6.875 Reinforcement 12.00 - 12.25 Au	
L69 28 PL1.25x6.875 Reinforcement 12.00 - 12.25 Au	
L69 29 PL1.25x6.875 Reinforcement 12.00 - 12.25 Au	
L69 43 PL1x4 Reinforcement 12.00 - 12.25 Au	
L69 44 PL1x4 Reinforcement 12.00 - 12.25 Au	
L69 45 PL1x4 Reinforcement 12.00 - 12.25 Au L69 63 CCI-SFP-060100 12.00 - 12.25 Au	
L70 25 PL1.25x6.875 Reinforcement 11.75 - 12.00 Au L70 26 PL1.25x6.875 Reinforcement 11.75 - 12.00 Au	
L70 20 PL1.25x6.875 Reinforcement 11.75 - 12.00 At	
L70 28 PL1.25x6.875 Reinforcement 11.75 - 12.00 Au	
L70 29 PL1.25x6.875 Reinforcement 11.75 - 12.00 Au	
L70 43 PL1x4 Reinforcement 11.75 - 12.00 Au	
L70 44 PL1x4 Reinforcement 11.75 - 12.00 Au	
L70 45 PL1x4 Reinforcement 11.75 - 12.00 Au	
L70 63 CCI-SFP-060100 11.75 - 12.00 Au	
L70 64 CCI-SFP-060100 11.75 - 12.00 Au	
L70 66 CCI-SFP-060100 11.75 - 12.00 Au	
L71 25 PL1.25x6.875 Reinforcement 8.50 - 11.75 Au	
L71 26 PL1.25x6.875 Reinforcement 8.50 - 11.75 Au	
L71 27 PL1.25x6.875 Reinforcement 9.17 - 11.75 Au	to 0.0000
L71 28 PL1.25x6.875 Reinforcement 8.50 - 11.75 Au	to 0.0000
L71 29 PL1.25x6.875 Reinforcement 8.50 - 11.75 Au	to 0.0000
L71 43 PL1x4 Reinforcement 10.75 - 11.75 Au	
L71 44 PL1x4 Reinforcement 10.75 - 11.75 Au	to 0.0000
L71 45 PL1x4 Reinforcement 10.75 - 11.75 Au	to 0.0000
L71 59 Transition Stiffener 1x7 8.50 - 10.50 Au	
L71 60 Transition Stiffener 1x7 8.50 - 10.50 Au	
L71 61 Transition Stiffener 1x7 8.50 - 10.50 Au	
L71 63 CCI-SFP-060100 8.50 - 11.75 Au	
L71 64 CCI-SFP-060100 8.50 - 11.75 Au	
L71 66 CCI-SFP-060100 10.00 - 11.75 Au	
L72 25 PL1.25x6.875 Reinforcement 8.25 - 8.50 Au	
L72 26 PL1.25x6.875 Reinforcement 8.25 - 8.50 Au	
L72 28 PL1.25x6.875 Reinforcement 8.25 - 8.50 Au	
L72 29 PL1.25x6.875 Reinforcement 8.25 - 8.50 Au	
L72 59 Transition Stiffener $1x7$ 8.25 - 8.50 Au	
L72 60 Transition Stiffener 1x7 8.25 - 8.50 Au	
L72 61 Transition Stiffener 1x7 8.25 - 8.50 Au	
L72 63 CCI-SFP-060100 8.25 - 8.50 Au	
L72 64 CCI-SFP-060100 8.25 - 8.50 Au L73 25 PL1.25x6.875 Reinforcement 7.00 - 8.25 Au	
L73 25 PL1.25x6.875 Reinforcement 7.00 - 8.25 Au L73 26 PL1.25x6.875 Reinforcement 7.00 - 8.25 Au	
L73 26 PL1.25x6.875 Reinforcement 7.00 - 8.25 At	
	to 0.0000
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculation	Width
				Method	Ratio
L73	59	Transition Stiffener 1x7	7.00 - 8.25	Auto	0.0000
L73	60	Transition Stiffener 1x7	7.00 - 8.25	Auto	0.0000
L73	61	Transition Stiffener 1x7	7.00 - 8.25	Auto	0.0000
L73	63	CCI-SFP-060100	7.00 - 8.25	Auto	0.0000
L73	64	CCI-SFP-060100	7.00 - 8.25	Auto	0.0000
L74	25	PL1.25x6.875 Reinforcement	6.75 - 7.00	Auto	0.0000
L74	26	PL1.25x6.875 Reinforcement	6.75 - 7.00	Auto	0.0000
L74	28	PL1.25x6.875 Reinforcement	6.75 - 7.00	Auto	0.0000
L74	29	PL1.25x6.875 Reinforcement	6.75 - 7.00	Auto	0.0000
L74	59	Transition Stiffener 1x7	6.75 - 7.00	Auto	0.0000
L74	60	Transition Stiffener 1x7	6.75 - 7.00	Auto	0.0000
L74	61	Transition Stiffener 1x7	6.75 - 7.00	Auto	0.0000
L74	63	CCI-SFP-060100	6.75 - 7.00	Auto	0.0000
L74	64	CCI-SFP-060100	6.75 - 7.00	Auto	0.0000
L75	25	PL1.25x6.875 Reinforcement	1.75 - 6.75	Auto	0.0000
L75	26	PL1.25x6.875 Reinforcement	1.75 - 6.75	Auto	0.0000
L75	28	PL1.25x6.875 Reinforcement	1.75 - 6.75	Auto	0.0000
L75	29	PL1.25x6.875 Reinforcement	1.75 - 6.75	Auto	0.0000
L75	59	Transition Stiffener 1x7	1.75 - 6.75	Auto	0.0000
L75	60	Transition Stiffener 1x7	1.75 - 6.75	Auto	0.0000
L75	61	Transition Stiffener 1x7	1.75 - 6.75	Auto	0.0000
L75	63	CCI-SFP-060100	5.00 - 6.75	Auto	0.0000
L75	64	CCI-SFP-060100	5.00 - 6.75	Auto	0.0000
L76	25	PL1.25x6.875 Reinforcement	0.00 - 1.75	Auto	0.0000
L76	26	PL1.25x6.875 Reinforcement	0.00 - 1.75	Auto	0.0000
L76	28	PL1.25x6.875 Reinforcement	0.00 - 1.75	Auto	0.0000
L76	29	PL1.25x6.875 Reinforcement	0.00 - 1.75	Auto	0.0000
L76	59	Transition Stiffener 1x7	0.00 - 1.75	Auto	0.0000
L76	60	Transition Stiffener 1x7	0.00 - 1.75	Auto	0.0000
L76	61	Transition Stiffener 1x7	0.00 - 1.75	Auto	0.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	0	ft		ft²	ft^2	Κ
(2) EPBQ-654L8H8-L2 w/ Mount Pipe	А	From Leg	4.000 0.000 -1.000	0.000	144.000	No Ice 1/2" Ice 1" Ice	14.860 15.720 16.590	6.250 7.020 7.800	0.119 0.228 0.351
(2) EPBQ-654L8H8-L2 w/ Mount Pipe	В	From Leg	4.000 0.000 -1.000	0.000	144.000	No Ice 1/2" Ice 1" Ice	14.860 15.720 16.590	6.250 7.020 7.800	0.119 0.228 0.351
(2) EPBQ-654L8H8-L2 w/ Mount Pipe	С	From Leg	4.000 0.000 -1.000	0.000	144.000	No Ice 1/2" Ice 1" Ice	14.860 15.720 16.590	6.250 7.020 7.800	0.119 0.228 0.351
HPA65R-BU8A w/ Mount Pipe	А	From Leg	4.000 0.000 -1.000	0.000	144.000	No Ice 1/2" Ice 1" Ice	8.100 8.860 9.640	6.940 7.690 8.450	0.087 0.170 0.266
HPA65R-BU8A w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	144.000	No Ice 1/2" Ice	8.100 8.860	6.940 7.690	0.087 0.170

Page 57 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral	5					
			Vert	o	G		<i>c</i> ₂ 2	02	V
			ft ft	Ū	ft		ft²	ft²	K
						111.7	0.640	0.450	0.266
UDA (5D DU0A/ Marriet	C	F	-1.000	0.000	144.000	1" Ice	9.640	8.450	0.266
HPA65R-BU8A w/ Mount Pipe	С	From Leg	$4.000 \\ 0.000$	0.000	144.000	No Ice 1/2" Ice	$8.100 \\ 8.860$	6.940 7.690	$0.087 \\ 0.170$
Fipe			-1.000			172 Ice 1" Ice	9.640	8.450	0.170
RRUS 4478 B14	А	From Leg	4.000	0.000	144.000	No Ice	1.843	1.059	0.260
		Trom Leg	0.000	0.000	1111000	1/2" Ice	2.012	1.197	0.076
			-1.000			1" Ice	2.190	1.342	0.094
RRUS 4478 B14	В	From Leg	4.000	0.000	144.000	No Ice	1.843	1.059	0.060
			0.000			1/2" Ice	2.012	1.197	0.076
			-1.000			1" Ice	2.190	1.342	0.094
RRUS 4478 B14	С	From Leg	4.000	0.000	144.000	No Ice	1.843	1.059	0.060
			0.000			1/2" Ice	2.012	1.197	0.076
DADIO 4415 D20		г. т.	-1.000	0.000	144.000	1" Ice	2.190	1.342	0.094
RADIO 4415 B30	А	From Leg	4.000	0.000	144.000	No Ice	1.643	0.639	0.043
			0.000 -1.000			1/2" Ice 1" Ice	1.803 1.971	$0.750 \\ 0.867$	0.055 0.069
RADIO 4415 B30	в	From Leg	4.000	0.000	144.000	No Ice	1.643	0.887	0.009
KADIO 4415 D50	Б	FIOIDLeg	0.000	0.000	144.000	1/2" Ice	1.803	0.039	0.045
			-1.000			172 Ice	1.971	0.867	0.069
RADIO 4415 B30	С	From Leg	4.000	0.000	144.000	No Ice	1.643	0.639	0.043
	e	110111 2008	0.000	0.000	1111000	1/2" Ice	1.803	0.750	0.055
			-1.000			1" Ice	1.971	0.867	0.069
RRUS 4449 B5/B12	Α	From Leg	4.000	0.000	144.000	No Ice	1.968	1.408	0.071
		-	0.000			1/2" Ice	2.144	1.564	0.090
			-1.000			1" Ice	2.328	1.727	0.111
RRUS 4449 B5/B12	в	From Leg	4.000	0.000	144.000	No Ice	1.968	1.408	0.071
			0.000			1/2" Ice	2.144	1.564	0.090
	_		-1.000			1" Ice	2.328	1.727	0.111
RRUS 4449 B5/B12	С	From Leg	4.000	0.000	144.000	No Ice	1.968	1.408	0.071
			0.000			1/2" Ice	2.144	1.564	0.090
		Enom Log	-1.000	0.000	144.000	1" Ice	2.328	1.727	0.111
RRUS 8843 B2/B66A	А	From Leg	$4.000 \\ 0.000$	0.000	144.000	No Ice 1/2" Ice	1.639 1.799	1.353 1.500	0.072 0.090
			-1.000			1/2 ICe 1" Ice	1.966	1.655	0.090
RRUS 8843 B2/B66A	В	From Leg	4.000	0.000	144.000	No Ice	1.639	1.353	0.072
KK05 8845 B2/B00A	Б	110m Leg	0.000	0.000	144.000	1/2" Ice	1.799	1.500	0.072
			-1.000			172 Ice	1.966	1.655	0.110
RRUS 8843 B2/B66A	С	From Leg	4.000	0.000	144.000	No Ice	1.639	1.353	0.072
		8	0.000			1/2" Ice	1.799	1.500	0.090
			-1.000			1" Ice	1.966	1.655	0.110
DC6-48-60-18-8F	А	From Leg	4.000	0.000	144.000	No Ice	1.212	1.212	0.033
			0.000			1/2" Ice	1.892	1.892	0.055
			-1.000			1" Ice	2.105	2.105	0.080
DC6-48-60-18-8F	В	From Leg	4.000	0.000	144.000	No Ice	1.212	1.212	0.033
			0.000			1/2" Ice	1.892	1.892	0.055
DC (10 (0 10 0 D	a		-1.000	0.000		1" Ice	2.105	2.105	0.080
DC6-48-60-18-8F	С	From Leg	4.000	0.000	144.000	No Ice	1.212	1.212	0.033
			0.000			1/2" Ice	1.892	1.892	0.055
(2) 8' x 2" Mount Ding	٨	From Law	-1.000	0.000	144.000	1" Ice No Ice	2.105	2.105	0.080
(2) 8' x 2" Mount Pipe	А	From Leg	4.000	0.000	144.000	No Ice 1/2" Ice	1.900	1.900	0.029
			0.000 -1.000			1/2" Ice 1" Ice	2.728 3.401	2.728 3.401	0.044 0.063
(2) 8' x 2" Mount Pipe	В	From Leg	4.000	0.000	144.000	No Ice	1.900	5.401 1.900	0.003
(2) 0 X 2 mount ripe	U	r tom Leg	0.000	0.000	177.000	1/2" Ice	2.728	2.728	0.029
			-1.000			172 Ice	3.401	3.401	0.063
(2) 8' x 2" Mount Pipe	С	From Leg	4.000	0.000	144.000	No Ice	1.900	1.900	0.009
(_) = 11 = 110 and 1 ipo	č	D•B	0.000			1/2" Ice	2.728	2.728	0.044

Page 58 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Vert	o	c		c?	<i>c</i> ²	17
			ft ft ft	Ū	ft		ft²	ft²	K
			-1.000			1" Ice	3.401	3.401	0.063
F3P-12W	С	None		0.000	144.000	No Ice	25.520	25.520	1.999
						1/2" Ice 1" Ice	31.740	$31.740 \\ 40.100$	2.599
Miscellaneous [NA 507-1]	С	None		0.000	144.000	No Ice	40.100 4.560	40.100	3.414 0.245
wiscenaleous [NA 507-1]	C	None		0.000	144.000	1/2" Ice	6.390	6.390	0.243
						1" Ice	8.180	8.180	0.402
*									
2) APXVSPP18-C-A20 w/	А	From Leg	4.000	0.000	130.000	No Ice	4.600	4.010	0.095
Mount Pipe			0.000			1/2" Ice	5.050	4.450	0.160
			0.000	0.000	120.000	1" Ice	5.500	4.890	0.235
APXVSPP18-C-A20 w/	В	From Leg	4.000	0.000	130.000	No Ice	4.600	4.010	0.095
Mount Pipe			0.000			1/2" Ice	5.050	4.450	0.160
ADVUCDD19 C A 20/	C	Enom Las	0.000	0.000	120.000	1" Ice	5.500	4.890	0.235
APXVSPP18-C-A20 w/	С	From Leg	$4.000 \\ 0.000$	0.000	130.000	No Ice 1/2" Ice	4.600 5.050	4.010	0.095
Mount Pipe			0.000			1/2 Ice	5.500	4.450 4.890	0.160 0.235
AAHC w/ Mount Pipe	А	From Leg	4.000	0.000	130.000	No Ice	4.409	2.691	0.233
AATTC w/ Would Tipe	л	From Leg	0.000	0.000	150.000	1/2" Ice	4.727	3.079	0.115
			0.000			172 Icc 1" Ice	5.055	3.486	0.202
(2) AAHC w/ Mount Pipe	В	From Leg	4.000	0.000	130.000	No Ice	4.409	2.691	0.115
(2) 11 11 10 10 11 10 11 10 10	2	r tom Leg	0.000	0.000	120.000	1/2" Ice	4.727	3.079	0.156
			0.000			1" Ice	5.055	3.486	0.202
(2) IBC1900HB-2	А	From Leg	4.000	0.000	130.000	No Ice	1.125	0.713	0.040
		U	0.000			1/2" Ice	1.270	0.837	0.049
			0.000			1" Ice	1.423	0.968	0.060
IBC1900HB-2	В	From Leg	4.000	0.000	130.000	No Ice	1.125	0.713	0.040
			0.000			1/2" Ice	1.270	0.837	0.049
			0.000			1" Ice	1.423	0.968	0.060
IBC1900HB-2	С	From Leg	4.000	0.000	130.000	No Ice	1.125	0.713	0.040
			0.000			1/2" Ice	1.270	0.837	0.049
			0.000	0.000	120.000	1" Ice	1.423	0.968	0.060
800 EXTERNAL NOTCH	А	From Leg	4.000	0.000	130.000	No Ice	0.660	0.321	0.011
FILTER			0.000			1/2" Ice	0.763	0.398	0.017
00 EVTEDNAL NOTCH	В	From Leg	$\begin{array}{c} 0.000\\ 4.000\end{array}$	0.000	130.000	1" Ice No Ice	0.873 0.660	0.483 0.321	0.024
800 EXTERNAL NOTCH FILTER	D	FIOIII Leg	4.000	0.000	130.000	1/2" Ice	0.860	0.321	0.017
TIETER			0.000			172 Ice	0.873	0.483	0.017
800 EXTERNAL NOTCH	С	From Leg	4.000	0.000	130.000	No Ice	0.660	0.321	0.011
FILTER	e	r tom Deg	0.000	0.000	120.000	1/2" Ice	0.763	0.398	0.017
			0.000			1" Ice	0.873	0.483	0.024
1900MHZ RRH (65MHZ)	Α	From Leg	4.000	0.000	130.000	No Ice	2.313	2.375	0.060
× /		U	0.000			1/2" Ice	2.517	2.581	0.084
			0.000			1" Ice	2.728	2.794	0.111
1900MHZ RRH (65MHZ)	В	From Leg	4.000	0.000	130.000	No Ice	2.313	2.375	0.060
			0.000			1/2" Ice	2.517	2.581	0.084
			0.000			1" Ice	2.728	2.794	0.111
1900MHZ RRH (65MHZ)	С	From Leg	4.000	0.000	130.000	No Ice	2.313	2.375	0.060
			0.000			1/2" Ice	2.517	2.581	0.084
		Enour I	0.000	0.000	120.000	1" Ice	2.728	2.794	0.111
1900MHZ RRH (65MHZ)	Α	From Leg	4.000	0.000	130.000	No Ice	2.313	2.375	0.060
			0.000			1/2" Ice	2.517	2.581	0.084
1900MHZ RRH (65MHZ)	P	From Log	-2.000 4.000	0.000	130.000	1" Ice No Ice	2.728 2.313	2.794 2.375	0.111 0.060
	В	From Leg		0.000	130.000				
			0.000			1/2" 100	2517	7.501	
			0.000 -2.000			1/2" Ice 1" Ice	2.517 2.728	2.581 2.794	0.084 0.111

Page 59 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral	-					
			Vert	o	c		c 2	c ?	
			ft G	0	ft		ft^2	ft²	K
			ft ft						
			0.000			1/2" Ice	2.517	2.581	0.084
			-2.000			1" Ice	2.728	2.794	0.111
800MHZ RRH	Α	From Leg	4.000	0.000	130.000	No Ice	2.134	1.773	0.053
		C	0.000			1/2" Ice	2.320	1.946	0.074
			0.000			1" Ice	2.512	2.127	0.098
800MHZ RRH	В	From Leg	4.000	0.000	130.000	No Ice	2.134	1.773	0.053
			0.000			1/2" Ice	2.320	1.946	0.074
	-		0.000			1" Ice	2.512	2.127	0.098
800MHZ RRH	С	From Leg	4.000	0.000	130.000	No Ice	2.134	1.773	0.053
			0.000			1/2" Ice	2.320	1.946	0.074
(2) PD2DE 700/2700	А	Enom Lag	0.000	0.000	130.000	1" Ice No Ice	2.512 0.114	2.127 0.114	0.098 0.001
(2) PD2DE-700/2700	A	From Leg	$4.000 \\ 0.000$	0.000	130.000	1/2" Ice	0.114	0.114	0.001
			0.000			172 Ice	0.250	0.250	0.002
(3) 6' x 2" Mount Pipe	А	From Leg	4.000	0.000	130.000	No Ice	1.425	1.425	0.004
(b) 6 x 2 mount i pe	11	Tiom Leg	0.000	0.000	120.000	1/2" Ice	1.925	1.925	0.033
			0.000			1" Ice	2.294	2.294	0.048
(3) 6' x 2" Mount Pipe	В	From Leg	4.000	0.000	130.000	No Ice	1.425	1.425	0.022
		e	0.000			1/2" Ice	1.925	1.925	0.033
			0.000			1" Ice	2.294	2.294	0.048
(3) 6' x 2" Mount Pipe	С	From Leg	4.000	0.000	130.000	No Ice	1.425	1.425	0.022
			0.000			1/2" Ice	1.925	1.925	0.033
			0.000			1" Ice	2.294	2.294	0.048
(3) 5' x 2" Pipe Mount	А	From Leg	4.000	0.000	130.000	No Ice	1.188	1.188	0.018
			0.000			1/2" Ice	1.496	1.496	0.027
(2) 51 011 D' 1) (t	р	F	0.000	0.000	120.000	1" Ice	1.807	1.807	0.040
(3) 5' x 2" Pipe Mount	В	From Leg	4.000	0.000	130.000	No Ice	1.188 1.496	1.188 1.496	0.018
			$0.000 \\ 0.000$			1/2" Ice 1" Ice	1.496	1.496	0.027 0.040
(4) 5' x 2" Pipe Mount	С	From Leg	4.000	0.000	130.000	No Ice	1.188	1.188	0.040
(4) 5 x 2 Tipe Mount	C	Tion Leg	0.000	0.000	150.000	1/2" Ice	1.496	1.496	0.010
			0.000			1" Ice	1.807	1.807	0.040
Pipe Mount [PM 601-3]	С	None		0.000	130.000	No Ice	3.170	3.170	0.195
						1/2" Ice	3.790	3.790	0.232
						1" Ice	4.420	4.420	0.279
atform Mount [LP 602-1]	С	None		0.000	130.000	No Ice	31.070	31.070	1.343
						1/2" Ice	34.820	34.820	1.967
						1" Ice	38.480	38.480	2.669
*		F I	1 0 0 0	0.000	120.000	N T T	0.010	1 220	0 100
X08FRO665-21 w/ Mount	А	From Leg	4.000	0.000	120.000	No Ice	8.010	4.230	0.108
Pipe			$0.000 \\ 0.000$			1/2" Ice 1" Ice	8.520 9.040	4.690 5.160	0.194 0.292
X08FRO665-21 w/ Mount	В	From Leg	4.000	0.000	120.000	No Ice	9.040 8.010	4.230	0.292
Pipe	D	110III Leg	0.000	0.000	120.000	1/2" Ice	8.520	4.690	0.108
Tipe			0.000			1" Ice	9.040	5.160	0.292
X08FRO665-21 w/ Mount	С	From Leg	4.000	0.000	120.000	No Ice	8.010	4.230	0.108
Pipe		8	0.000			1/2" Ice	8.520	4.690	0.194
*			0.000			1" Ice	9.040	5.160	0.292
TA08025-B604	А	From Leg	4.000	0.000	120.000	No Ice	1.964	0.981	0.064
		-	0.000			1/2" Ice	2.138	1.112	0.081
			0.000			1" Ice	2.320	1.250	0.100
TA08025-B604	В	From Leg	4.000	0.000	120.000	No Ice	1.964	0.981	0.064
			0.000			1/2" Ice	2.138	1.112	0.081
TA00025 DC04	C	E	0.000	0.000	120.000	1" Ice	2.320	1.250	0.100
TA08025-B604	С	From Leg	$4.000 \\ 0.000$	0.000	120.000	No Ice 1/2" Ice	1.964 2.138	0.981	0.064 0.081
			0.000			L/7" Ice	2.1.58	1.112	0.081

Page 60 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral						
			Vert ft	0	ft		ft²	ft²	K
			ft ft		5		5.	5	
TA08025-B605	А	From Leg	4.000	0.000	120.000	No Ice	1.964	1.129	0.075
		C C	0.000			1/2" Ice	2.138	1.267	0.093
	_		0.000			1" Ice	2.320	1.411	0.114
TA08025-B605	В	From Leg	4.000	0.000	120.000	No Ice	1.964	1.129	0.075
			$0.000 \\ 0.000$			1/2" Ice 1" Ice	2.138 2.320	1.267 1.411	0.093 0.114
TA08025-B605	С	From Leg	4.000	0.000	120.000	No Ice	2.320 1.964	1.411	0.114
11100025 10005	C	1 Iom Leg	0.000	0.000	120.000	1/2" Ice	2.138	1.267	0.093
			0.000			1" Ice	2.320	1.411	0.114
RDIDC-9181-PF-48	А	From Leg	4.000	0.000	120.000	No Ice	2.012	1.168	0.022
		-	0.000			1/2" Ice	2.189	1.311	0.040
			0.000			1" Ice	2.373	1.461	0.060
(2) 8' x 2" Mount Pipe	А	From Leg	4.000	0.000	120.000	No Ice	1.900	1.900	0.029
			0.000			1/2" Ice	2.728	2.728	0.044
(2) 81 x 2" Manut Dina	р	Enom Lac	0.000	0.000	120.000	1" Ice	3.401	3.401	0.063
(2) 8' x 2" Mount Pipe	В	From Leg	$4.000 \\ 0.000$	0.000	120.000	No Ice 1/2" Ice	1.900 2.728	1.900 2.728	0.029 0.044
			0.000			172 Icc 1" Ice	3.401	3.401	0.044
(2) 8' x 2" Mount Pipe	С	From Leg	4.000	0.000	120.000	No Ice	1.900	1.900	0.005
(2) 0 11 2 11104111 1.pe	e	r tom Deg	0.000	0.000	1201000	1/2" Ice	2.728	2.728	0.044
			0.000			1" Ice	3.401	3.401	0.063
Commscope MC-PK8-DSH	С	None		0.000	120.000	No Ice	34.240	34.240	1.749
						1/2" Ice	62.950	62.950	2.099
*						1" Ice	91.660	91.660	2.450
SBNHH-1D65B w/ Mount	А	From Leg	4.000	0.000	110.000	No Ice	4.090	3.300	0.066
Pipe		U	0.000			1/2" Ice	4.490	3.680	0.130
			0.000			1" Ice	4.890	4.070	0.204
SBNHH-1D65B w/ Mount	В	From Leg	4.000	0.000	110.000	No Ice	4.090	3.300	0.066
Pipe			0.000			1/2" Ice	4.490	3.680	0.130
	a	Б . Т	0.000	0.000	110.000	1" Ice	4.890	4.070	0.204
SBNHH-1D65B w/ Mount	С	From Leg	4.000	0.000	110.000	No Ice	4.090	3.300	0.066
Pipe			$0.000 \\ 0.000$			1/2" Ice 1" Ice	4.490 4.890	3.680 4.070	0.130 0.204
BXA-80063/4CF w/ Mount	А	From Leg	4.000	0.000	110.000	No Ice	4.890	3.650	0.204
Pipe	л	From Leg	0.000	0.000	110.000	1/2" Ice	5.350	4.140	0.028
T Ipe			0.000			1" Ice	5.880	4.640	0.109
BXA-80063/4CF w/ Mount	В	From Leg	4.000	0.000	110.000	No Ice	4.830	3.650	0.028
Pipe		C C	0.000			1/2" Ice	5.350	4.140	0.065
			0.000			1" Ice	5.880	4.640	0.109
BXA-80063/4CF w/ Mount	С	From Leg	4.000	0.000	110.000	No Ice	4.830	3.650	0.028
Pipe			0.000			1/2" Ice	5.350	4.140	0.065
	C	Б Т	0.000	0.000	110.000	1" Ice	5.880	4.640	0.109
BULLET III	С	From Leg	$4.000 \\ 0.000$	0.000	110.000	No Ice 1/2" Ice	0.066 0.101	0.066	0.000
			3.000			172 Ice 1" Ice	0.101	$0.101 \\ 0.144$	0.002 0.003
RFV01U-D1A	А	From Leg	4.000	0.000	110.000	No Ice	1.875	1.250	0.084
	11	r tom Leg	0.000	0.000	110.000	1/2" Ice	2.045	1.393	0.103
			0.000			1" Ice	2.223	1.543	0.124
RFV01U-D1A	В	From Leg	4.000	0.000	110.000	No Ice	1.875	1.250	0.084
		U	0.000			1/2" Ice	2.045	1.393	0.103
			0.000			1" Ice	2.223	1.543	0.124
RFV01U-D1A	С	From Leg	4.000	0.000	110.000	No Ice	1.875	1.250	0.084
			0.000			1/2" Ice	2.045	1.393	0.103
		Enore I	0.000	0.000	110.000	1" Ice	2.223	1.543	0.124
RFV01U-D2A	Α	From Leg	4.000	0.000	110.000	No Ice 1/2" Ice	1.875 2.045	1.013	0.070 0.087

Page 61 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert	-					
			ft	o	ft		ft²	ft²	Κ
			ft ft						
			0.000			1" Ice	2.223	1.284	0.106
RFV01U-D2A	В	From Leg	4.000	0.000	110.000	No Ice	1.875	1.013	0.070
			0.000			1/2" Ice	2.045	1.145	0.087
	a		0.000	0.000	110.000	1" Ice	2.223	1.284	0.106
RFV01U-D2A	С	From Leg	4.000	0.000	110.000	No Ice	1.875	1.013	0.070
			$0.000 \\ 0.000$			1/2" Ice 1" Ice	2.045 2.223	1.145 1.284	0.087 0.106
RVZDC-6627-PF-48	С	From Leg	4.000	0.000	110.000	No Ice	3.792	2.514	0.108
Rv2DC-0027-11-+0	C	1 Iom Leg	0.000	0.000	110.000	1/2" Ice	4.044	2.727	0.063
			0.000			1" Ice	4.303	2.947	0.099
ub6 Antenna - VZS01 w/	А	From Leg	4.000	0.000	110.000	No Ice	4.915	2.687	0.101
Mount Pipe		8	0.000			1/2" Ice	5.264	3.151	0.141
Ĩ			0.000			1" Ice	5.623	3.631	0.186
ub6 Antenna - VZS01 w/	В	From Leg	4.000	0.000	110.000	No Ice	4.915	2.687	0.101
Mount Pipe			0.000			1/2" Ice	5.264	3.151	0.141
			0.000			1" Ice	5.623	3.631	0.186
ub6 Antenna - VZS01 w/	С	From Leg	4.000	0.000	110.000	No Ice	4.915	2.687	0.101
Mount Pipe			0.000			1/2" Ice	5.264	3.151	0.141
			0.000			1" Ice	5.623	3.631	0.186
4' x 2" Pipe Mount	Α	From Leg	4.000	0.000	110.000	No Ice	0.785	0.785	0.029
			0.000			1/2" Ice	1.028	1.028	0.035
41 OF D' DA	р	г т	0.000	0.000	110.000	1" Ice	1.281	1.281	0.044
4' x 2" Pipe Mount	В	From Leg	4.000	0.000	110.000	No Ice	0.785	0.785	0.029
			0.000			1/2" Ice	1.028 1.281	1.028	0.035
4' x 2" Pipe Mount	С	From Leg	$0.000 \\ 4.000$	0.000	110.000	1" Ice No Ice	0.785	1.281 0.785	0.044 0.029
4 x 2 Fipe Mount	C	FIOII Leg	0.000	0.000	110.000	1/2" Ice	1.028	1.028	0.029
			0.000			172 rec 1" Ice	1.281	1.281	0.044
(3) 3' x 2" Pipe Mount	А	From Leg	4.000	0.000	110.000	No Ice	0.583	0.583	0.011
		Trom Dog	0.000	0.000	1101000	1/2" Ice	0.770	0.770	0.017
			0.000			1" Ice	0.967	0.967	0.024
(3) 3' x 2" Pipe Mount	В	From Leg	4.000	0.000	110.000	No Ice	0.583	0.583	0.011
		0	0.000			1/2" Ice	0.770	0.770	0.017
			0.000			1" Ice	0.967	0.967	0.024
(3) 3' x 2" Pipe Mount	С	From Leg	4.000	0.000	110.000	No Ice	0.583	0.583	0.011
			0.000			1/2" Ice	0.770	0.770	0.017
			0.000			1" Ice	0.967	0.967	0.024
6' x 2" Mount Pipe	Α	From Leg	4.000	0.000	110.000	No Ice	1.425	1.425	0.022
			0.000			1/2" Ice	1.925	1.925	0.033
	P		0.000	0.000	110.000	1" Ice	2.294	2.294	0.048
6' x 2" Mount Pipe	В	From Leg	4.000	0.000	110.000	No Ice	1.425	1.425	0.022
			0.000			1/2" Ice	1.925	1.925	0.033
6' x 2" Mount Bino	C	From Leg	0.000	0.000	110.000	1" Ice	2.294	2.294	0.048
6' x 2" Mount Pipe	С	From Leg	$4.000 \\ 0.000$	0.000	110.000	No Ice 1/2" Ice	1.425 1.925	1.425 1.925	0.022
			0.000			172 ICe 1" Ice	2.294	2.294	0.033
Platform Mount [LP	С	None	0.000	0.000	110.000	No Ice	42.300	42.300	1.618
602-1_KCKR]	C	None		0.000	110.000	1/2" Ice	49.040	49.040	2.384
002 I_RERRY						1" Ice	55.870	55.870	3.267
* •	٨	From Log	4 000	0.000	100.000	No Iso	14 600	6 870	A 104
YVAARR24_43-U-NA20	А	From Leg	4.000	0.000	100.000	No Ice 1/2" Ice	14.690 15.460	6.870 7.550	0.186
w/ Mount Pipe			$0.000 \\ 1.000$			1/2" Ice 1" Ice	15.460 16.230	7.550 8.250	0.315 0.458
XVAARR24 43-U-NA20	В	From Leg	4.000	0.000	100.000	No Ice	16.230 14.690	8.250 6.870	0.458
w/ Mount Pipe	Б	From Leg	4.000	0.000	100.000	1/2" Ice	14.690	6.870 7.550	0.186
w/ mount ripe			1.000			172 ICe 1" Ice	16.230	8.250	0.313
			1 (1111)			· 100	16 / 30	8 / 20	

Page 62 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	8		Vert ft	o	ft		ft ²	ft²	K
			ft ft		0		0	5	
w/ Mount Pipe			0.000			1/2" Ice	15.460	7.550	0.315
AIR 21 B2A/B4P w/ Mount		En la la ca	1.000	0.000	100.000	1" Ice	16.230	8.250	0.458
	А	From Leg	$4.000 \\ 0.000$	0.000	100.000	No Ice 1/2" Ice	3.140 3.450	2.580 2.880	0.103 0.154
Pipe			1.000			172 Ice 1" Ice	3.430	2.880	0.134
AIR 21 B2A/B4P w/ Mount	В	From Leg	4.000	0.000	100.000	No Ice	3.140	2.580	0.214
Pipe	D	FIOII Leg	4.000 0.000	0.000	100.000	1/2" Ice	3.450	2.380	0.103
ripe			1.000			172 Ice	3.760	3.180	0.134
AIR 21 B2A/B4P w/ Mount	С	From Leg	4.000	0.000	100.000	No Ice	3.140	2.580	0.103
Pipe	C	From Leg	0.000	0.000	100.000	1/2" Ice	3.450	2.880	0.103
ripe			1.000			172 ICC 1" Icc	3.430	3.180	0.134
AIR -32 B2A/B66AA w/	А	From Leg	4.000	0.000	100.000	No Ice	3.760	3.150	0.214
Mount Pipe	л	From Leg	0.000	0.000	100.000	1/2" Ice	4.120	3.490	0.194
Would Tipe			1.000			172 Ice	4.480	3.840	0.320
AIR -32 B2A/B66AA w/	В	From Leg	4.000	0.000	100.000	No Ice	3.760	3.150	0.320
Mount Pipe	Б	FIOIDLeg	4.000 0.000	0.000	100.000	1/2" Ice	4.120	3.490	0.252
Mount I ipe			1.000			172 Ice	4.120	3.840	0.232
AIR -32 B2A/B66AA w/	С	From Leg	4.000	0.000	100.000	No Ice	3.760	3.150	0.320
Mount Pipe	C	From Leg	0.000	0.000	100.000	1/2" Ice	4.120	3.490	0.252
Would Tipe			1.000			172 Ice	4.480	3.840	0.232
ATMAA1412D-1A20	А	From Leg	4.000	0.000	100.000	No Ice	0.407	1.000	0.013
ATMAA1412D-1A20	л	From Leg	0.000	0.000	100.000	1/2" Ice	0.407	1.126	0.013
			1.000			1" Ice	0.593	1.259	0.030
ATMAA1412D-1A20	В	From Leg	4.000	0.000	100.000	No Ice	0.393	1.000	0.013
	Б	i ioni Leg	0.000	0.000	100.000	1/2" Ice	0.497	1.126	0.021
			1.000			1" Ice	0.593	1.259	0.030
ATMAA1412D-1A20	С	From Leg	4.000	0.000	100.000	No Ice	0.407	1.000	0.013
	C	I tom Leg	0.000	0.000	100.000	1/2" Ice	0.497	1.126	0.021
			1.000			1" Ice	0.593	1.259	0.021
RADIO 4449 B12/B71	А	From Leg	4.000	0.000	100.000	No Ice	1.650	1.163	0.074
		Tiom Log	0.000	0.000	100.000	1/2" Ice	1.810	1.301	0.090
			3.000			1" Ice	1.978	1.447	0.109
RADIO 4449 B12/B71	В	From Leg	4.000	0.000	100.000	No Ice	1.650	1.163	0.074
	2	r tom Log	0.000	0.000	1001000	1/2" Ice	1.810	1.301	0.090
			3.000			1" Ice	1.978	1.447	0.109
RADIO 4449 B12/B71	С	From Leg	4.000	0.000	100.000	No Ice	1.650	1.163	0.074
			0.000			1/2" Ice	1.810	1.301	0.090
			3.000			1" Ice	1.978	1.447	0.109
Platform Mount [LP 303-1]	С	None		0.000	100.000	No Ice	14.690	14.690	1.250
						1/2" Ice	18.010	18.010	1.569
						1" Ice	21.340	21.340	1.942
*	~			0.000					c
KS24019-L112A	С	From Leg	4.000	0.000	50.000	No Ice	0.141	0.141	0.005
			0.000			1/2" Ice	0.198	0.198	0.007
	C		1.000	0.000	50.000	1" Ice	0.262	0.262	0.009
Side Arm Mount [SO 701-1]	С	From Leg	0.500	0.000	50.000	No Ice	0.850	1.670	0.065
			0.000			1/2" Ice	1.140	2.340	0.079
*			0.000			1" Ice	1.430	3.010	0.093
*									
*									

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by

Date

Jayaraj B

11:01:28 10/04/21

Dishes

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weigh
				ft	0	0	ft	ft		ft^2	Κ
VHLP2-23	А	Paraboloid	From	4.000	0.000		130.000	2.175	No Ice	3.715	0.031
		w/Shroud (HP)	Leg	0.000					1/2" Ice	4.006	0.052
			-	3.000					1" Ice	4.296	0.072
VHLP2-23	В	Paraboloid	From	4.000	-50.000		130.000	2.175	No Ice	3.715	0.031
		w/Shroud (HP)	Leg	0.000					1/2" Ice	4.006	0.052
				3.000					1" Ice	4.296	0.072
VHLP2-18	С	Paraboloid	From	4.000	-60.000		130.000	2.175	No Ice	3.715	0.031
		w/Shroud (HP)	Leg	0.000					1/2" Ice	4.006	0.052
			C C	3.000					1" Ice	4.296	0.072
*											

Load Combinations

Comb.	Description	
No.		
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18	1.2 Dead+1.0 Wind 240 deg - No Ice	
19	0.9 Dead+1.0 Wind 240 deg - No Ice	
20	1.2 Dead+1.0 Wind 270 deg - No Ice	
21	0.9 Dead+1.0 Wind 270 deg - No Ice	
22	1.2 Dead+1.0 Wind 300 deg - No Ice	
23	0.9 Dead+1.0 Wind 300 deg - No Ice	
24	1.2 Dead+1.0 Wind 330 deg - No Ice	
25	0.9 Dead+1.0 Wind 330 deg - No Ice	
26	1.2 Dead+1.0 Ice+1.0 Temp	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	

Job

Project

Client

79982.004.01 - WATERBURY,CT (BU# 876317)

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Cro

Crown Castle

Jayaraj B

Comb.	Description				
No.					
39	Dead+Wind 0 deg - Service				
40	Dead+Wind 30 deg - Service				
41	Dead+Wind 60 deg - Service				
42	Dead+Wind 90 deg - Service				
43	Dead+Wind 120 deg - Service				
44	Dead+Wind 150 deg - Service				
45	Dead+Wind 180 deg - Service				
46	Dead+Wind 210 deg - Service				
47	Dead+Wind 240 deg - Service				
48	Dead+Wind 270 deg - Service				
49	Dead+Wind 300 deg - Service				
50	Dead+Wind 330 deg - Service				

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
	•			Comb.	K	kip-ft	kip-ft
L1	144.25 - 139.25	Pole	Max Tension	21	0.000	-0.000	-0.000
			Max. Compression	26	-9.706	-0.062	0.045
			Max. Mx	8	-4.532	-24.155	0.014
			Max. My	2	-4.528	-0.023	24.166
			Max. Vy	8	5.984	-24.155	0.014
			Max. Vx	2	-5.988	-0.023	24.166
			Max. Torque	6			-0.000
L2	139.25 - 134.75	Pole	Max Tension	1	0.000	0.000	0.000
	10 11/0		Max. Compression	26	-10.103	-0.122	0.089
			Max. Mx	8	-4.817	-51.399	0.027
			Max. My	2	-4.813	-0.046	51.430
			Max. Vy	8	6.121	-51.399	0.027
			Max. Vx	2	-6.128	-0.046	51.430
			Max. Torque	6			-0.000
L3	134.75 - 134.25	Pole	Max Tension	1	0.000	0.000	0.000
	10 1120		Max. Compression	26	-10.150	-0.128	0.094
			Max. Mx	8	-4.853	-54.464	0.029
			Max. My	2	-4.849	-0.049	54.497
			Max. Vy	8	6.135	-54.464	0.029
			Max. Vx	2	-6.142	-0.049	54.497
			Max. Torque	6			-0.000
L4	134.25 - 129.25	Pole	Max Tension	1	0.000	0.000	0.000
	127.25		Max. Compression	26	-17.901	-1.803	1.551
			Max. Mx	8	-8.618	-90.469	0.773
			Max. My	2	-8.592	-1.183	90.632
			Max. Vy	20	-10.757	88.503	0.608
			Max. Vx	2	-10.864	-1.183	90.632
			Max. Torque	23			0.724
L5	129.25 -	Pole	Max Tension	1	0.000	0.000	0.000
	124.25		Max. Compression	26	-18.320	-1.907	1.626
			Max. Compression Max. Mx	20	-18.320	-144.447	0.707
			Max. My	8 2	-8.945 -8.921	-144.447	0.707 145.301
				$\frac{2}{20}$	-8.921 -10.914	-1.222 142.623	0.667
			Max. Vy Max. Vx				0.667 145.301
				2	-11.017	-1.222	
L6	124.25	Pole	Max. Torque	15	0.000	0.000	0.445
LO	124.25 -	role	Max Tension	1	0.000	0.000	0.000

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
	123.416		May Communication	26	18 402	1.022	1.638
			Max. Compression Max. Mx	26	-18.403	-1.923	
				8	-9.005	-153.524	0.695
			Max. My	2	-8.983	-1.228	154.491
			Max. Vy	20	-10.941	151.725	0.677
			Max. Vx	2	-11.039	-1.228	154.491
	100.414	D 1	Max. Torque	15	0.000	0.000	0.444
L7	123.416 - 123.166	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-18.441	-1.929	1.642
			Max. Mx	8	-9.043	-156.251	0.692
			Max. My	2	-9.021	-1.230	157.251
			Max. Vy	20	-10.947	154.459	0.680
			Max. Vx	2	-11.043	-1.230	157.251
			Max. Torque	15			0.444
L8	123.166 -	Pole	Max Tension	1	0.000	0.000	0.000
	118.166		Max. Compression	26	-24.108	-2.034	2.010
			Max. Compression Max. Mx	20	-12.497	-216.563	0.730
							218.313
			Max. My	2	-12.475	-1.270	
			Max. Vy	20	-13.984	214.912	0.844
			Max. Vx	2	-14.077	-1.270	218.313
то	110.166	D 1	Max. Torque	7	0.000	0.000	0.575
L9	118.166 - 113.166	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-24.926	-2.156	2.093
			Max. Mx	8	-13.100	-286.915	0.667
			Max. My	2	-13.083	-1.318	289.236
			Max. Vy	20	-14.235	285.391	0.907
			Max. Vx	2	-14.303	-1.318	289.236
			Max. Torque	7			0.575
L10	113.166 -	Pole	Max Tension	1	0.000	0.000	0.000
	109.5		Max. Compression	26	-32.060	-1.805	1.908
			Max. Mx	8	-16.735	-340.907	0.554
			Max. My	2	-16.722	-1.233	343.615
			Max. Vy	20	-17.954	339.793	0.871
			Max. Vx	2	-17.980	-1.233	343.615
			Max. Torque	7	17.500	1.235	0.575
L11	109.5 - 109.25	Pole	Max Tension	1	0.000	0.000	0.000
LII	109.5 109.25	1 010	Max. Compression	26	-32.114	-1.811	1.913
			Max. Max. Mx	8	-16.789	-345.386	0.555
			Max. My	2	-16.777	-1.239	348.109
			Max. Vy	20	-17.956	344.278	0.871
			Max. Vx	20	-17.980	-1.239	348.109
			Max. Torque	7	-17.980	-1.239	0.574
L12	109.25 -	Pole	Max Tension	1	0.000	0.000	0.000
	104.75		Max. Compression	26	-33.105	-1.910	2.005
			Max. Compression Max. Mx	20	-17.519	-426.603	0.569
			Max. My	8 2	-17.519	-426.603	429.477
			Max. Vy	$\frac{2}{20}$	-17.312	425.609	429.477 0.858
			Max. Vy Max. Vx	20	-18.219	-1.355	0.838 429.477
				2 7	-10.194	-1.333	
T 13	104.75 - 104.5	Pole	Max. Torque		0.000	0.000	0.574
L13	104.75 - 104.5	Pole	Max Tension	1		0.000	0.000
			Max. Compression	26	-33.176	-1.916	2.010
			Max. Mx May My	8	-17.583	-431.150	0.570
			Max. My	2	-17.577	-1.362	434.026
			Max. Vy	20	-18.231	430.162	0.858
			Max. Vx	2	-18.201	-1.362	434.026

tnxTower

79982.004.01 - WATERBURY,CT (BU# 876317)

Page 66 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	-			Comb.	K	kip-ft	kip-ft
L14	104.5 - 102.416	Pole	Max Tension	1	0.000	0.000	0.000
	102.110		Max. Compression	26	-33.773	-1.961	2.043
			Max. Mx	8	-18.010	-469.264	0.576
			Max. My	2	-18.008	-1.416	472.109
			Max. Vy	20	-18.422	468.328	0.852
			Max. Vx	2	-18.354	-1.416	472.109
	100 111	D 1	Max. Torque	7		0.000	0.574
L15	102.416 - 102.166	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-33.841	-1.967	2.047
			Max. Mx	8	-18.067	-473.861	0.577
			Max. My	2	-18.066	-1.422	476.698
			Max. Vy	20	-18.436	472.932	0.851
			Max. Vx	2	-18.361	-1.422	476.698
			Max. Torque	7			0.574
L16	102.166 - 98.75	Pole	Max Tension	1	0.000	0.000	0.000
	98.75		Max. Compression	26	-40.577	-2.046	2.079
			Max. Mx	8	-22.094	-541.892	0.586
			Max. My	2	-22.095	-1.511	544.547
			Max. Vy	20	-21.064	541.047	0.840
			Max. Vx	2	-20.966	-1.511	544.547
			Max. Torque	7			0.574
L17	98.75 - 98.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-40.663	-2.053	2.081
			Max. Mx	8	-22.176	-547.148	0.587
			Max. My	2	-22.177	-1.518	549.787
			Max. Vy	20	-21.066	546.309	0.839
			Max. Vx	2	-20.968	-1.518	549.787
			Max. Torque	7			0.573
L18	98.5 - 97.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-41.009	-2.078	2.084
			Max. Mx	8	-22.431	-568.213	0.589
			Max. My	2	-22.432	-1.544	570.788
			Max. Vy	20	-21.141	567.398	0.835
			Max. Vx	2	-21.045	-1.544	570.788
			Max. Torque	7			0.573
L19	97.5 - 97.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-41.092	-2.084	2.085
			Max. Mx	8	-22.503	-573.489	0.589
			Max. My	2	-22.504	-1.551	576.049
			Max. Vy	20	-21.149	572.681	0.834
			Max. Vx	2	-21.054	-1.551	576.049
			Max. Torque	7			0.573
L20	97.25 - 92	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-41.653	-2.135	2.092
			Max. Mx	8	-22.918	-609.429	0.593
			Max. My	2	-22.919	-1.596	611.887
			Max. Vy	20	-21.272	608.662	0.827
			Max. Vx	2	-21.181	-1.596	611.887
			Max. Torque	7			0.572
L21	92 - 90.552	Pole	Max Tension	1	0.000	0.000	0.000
-			Max. Compression	26	-44.218	-2.288	2.114
			Max. Mx	8	-24.975	-716.673	0.602
			Max. My	2	-24.974	-1.730	718.873
			Max. Vy	20	-21.695	716.028	0.807
			Max. Vx	2	-21.617	-1.730	718.873
			Max. Torque	7			0.572
L22	90.552 - 89.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-44.678	-2.323	2.119

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. Mx	8	-25.337	-744.904	0.605
			Max. My	2	-25.336	-1.765	747.046
			Max. Vy	20	-21.771	744.290	0.802
			Max. Vx	2	-21.696	-1.765	747.046
			Max. Torque	7			0.572
L23	89.25 - 89	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-44.778	-2.331	2.120
			Max. Mx	8	-25.430	-750.336	0.606
			Max. My	2	-25.429	-1.772	752.468
			Max. Vy	20	-21.773	749.728	0.801
			Max. Vx	2	-21.699	-1.772	752.468
			Max. Torque	7	21.077	1.772	0.572
L24	89 - 88.25	Pole	Max Tension	1	0.000	0.000	0.000
L24	07 - 00.25	TOIC	Max. Compression	26	-45.078	-2.349	2.121
			Max. Compression Max. Mx	20	-25.660	-766.660	0.607
				° 2	-25.658	-1.792	768.762
			Max. My	20		-1.792 766.068	0.798
			Max. Vy		-21.829		
			Max. Vx	2	-21.761	-1.792	768.762
			Max. Torque	7			0.572
L25	88.25 - 88	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-45.166	-2.356	2.123
			Max. Mx	8	-25.733	-772.109	0.608
			Max. My	2	-25.731	-1.799	774.202
			Max. Vy	20	-21.839	771.523	0.797
			Max. Vx	2	-21.772	-1.799	774.202
			Max. Torque	7			0.572
L26	88 - 87.833	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-45.225	-2.361	2.123
			Max. Mx	8	-25.779	-775.752	0.608
			Max. My	2	-25.778	-1.803	777.839
			Max. Vy	20	-21.848	775.169	0.797
			Max. Vx	2	-21.782	-1.803	777.839
			Max. Torque	7			0.572
L27	87.833 - 87.583	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-45.307	-2.367	2.124
			Max. Mx	8	-25.840	-781.207	0.608
			Max. My	2	-25.839	-1.810	783.285
			Max. Vy	20	-21.861	780.630	0.796
			Max. Vx	2	-21.796	-1.810	783.285
			Max. Torque	7	21.790	1.010	0.572
L28	87.583 - 82.583	Pole	Max Tension	1	0.000	0.000	0.000
	02.000		Max. Compression	26	-46.864	-2.496	2.151
			Max. Mx	8	-27.084	-890.881	0.618
			Max. My	2	-27.081	-1.944	892.805
			Max. Vy	20	-22.091	890.413	0.775
			Max. Vx	20	-22.031	-1.944	892.805
					-22.033	-1.944	
1.20	00 500	D.1.	Max. Torque	7	0.000	0.000	0.572
L29	82.583 - 77.583	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-48.430	-2.625	2.189
			Max. Mx	8	-28.365	-1001.570	0.627
			Max. My	2	-28.362	-2.079	1003.399
			Max. Vy	20	-22.282	1001.210	0.754
			Max. Vx	2	-22.240	-2.079	1003.399
			Max. Torque	7			0.571
		D 1	Max Tension	1	0.000	0.000	0.000
L30	77.583 - 77	Pole	wax rension	-		0.000	
L30	77.583 - 77	Pole	Max. Compression	26	-48.621	-2.640	2.193
L30	77.583 - 77	Pole					

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	,	. 1		Comb.	K	kip-ft	kip-ft
			Max. Vy	20	-22.296	1014.191	0.752
			Max. Vx	2	-22.259	-2.095	1016.363
			Max. Torque	7			0.571
L31	77 - 76.75	Pole	Max Tension	1	0.000	0.000	0.000
201			Max. Compression	26	-48.716	-2.647	2.195
			Max. Mx	8	-28.606	-1020.103	0.628
			Max. My	2	-28.602	-2.101	1021.92
			Max. Vy	20	-22.301	1019.761	0.751
			Max. Vx	20	-22.266	-2.101	1021.92
			Max. Torque	7	-22.200	-2.101	0.571
L32	76.75 - 76.333	Pole	Max. Torque Max Tension	1	0.000	0.000	0.000
L32	/0./3 - /0.555	Fole		26	-48.874	-2.657	2.198
			Max. Compression				
			Max. Mx	8	-28.730	-1029.393	0.629
			Max. My	2	-28.726	-2.113	1031.21
			Max. Vy	20	-22.324	1029.060	0.749
			Max. Vx	2	-22.293	-2.113	1031.21
			Max. Torque	7			0.571
L33	76.333 - 76.083	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-48.965	-2.664	2.200
			Max. Mx	8	-28.805	-1034.967	0.630
			Max. My	2	-28.800	-2.119	1036.79
			Max. Vy	20	-22.334	1034.639	0.748
			Max. Vx	2	-22.305	-2.119	1036.79
			Max. Torque	7			0.571
L34	76.083 - 74.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-49.636	-2.717	2.225
			Max. Mx	8	-29.317	-1075.926	0.633
			Max. My	2	-29.312	-2.169	1077.76
			Max. Vy	20	-22.448	1075.637	0.740
			Max. Vy Max. Vx	20	-22.434	-2.169	1077.76
			Max. Torque	7	-22.454	-2.109	0.571
L35	74.25 - 74	Pole	Max. Tension	1	0.000	0.000	0.000
L33	/4.23 - /4	1010	Max. Compression	26	-49.731	-2.726	2.231
			Max. Mx	20		-1081.525	0.633
					-29.414		
			Max. My	2	-29.408	-2.175	1083.36
			Max. Vy	20	-22.436	1081.241	0.739
			Max. Vx	2	-22.423	-2.175	1083.36
	54 53 55	D 1	Max. Torque	7	0.000	0.000	0.571
L36	74 - 73.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-49.827	-2.735	2.236
			Max. Mx	8	-29.489	-1087.127	0.634
			Max. My	2	-29.484	-2.182	1088.97
			Max. Vy	20	-22.449	1086.848	0.738
			Max. Vx	2	-22.438	-2.182	1088.97
			Max. Torque	7			0.571
L37	73.75 - 73.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-49.925	-2.743	2.241
			Max. Mx	8	-29.568	-1092.732	0.634
			Max. My	2	-29.563	-2.189	1094.58
			Max. Vy	20	-22.462	1092.459	0.737
			Max. Vx	2	-22.453	-2.189	1094.58
			Max. Torque	7			0.571
	73.5 - 68.5	Pole	Max Tension	1	0.000	0.000	0.000
L38			Max. Compression	26	-51.887	-2.906	2.337
L38			Max. Mx	8	-31.131	-1205.510	0.643
L38				-			
L38				2	-31 123	-2.324	1207 57
L38			Max. My	2 20	-31.123 -22.727	-2.324 1205 340	
L38			Max. My Max. Vy	20	-22.727	1205.340	0.716
L38			Max. My				1207.57 0.716 1207.57 0.571

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	5-	-71-		Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-53.867	-3.072	2.435
			Max. Mx	8	-32.722	-1319.537	0.652
			Max. My	2	-32.713	-2.460	1321.979
			Max. Vy	20	-22.973	1319.468	0.695
			Max. Vy Max. Vx	20	-23.035	-2.460	1321.979
			Max. Torque	7	-25.055	-2.400	0.570
L40	63.5 - 60.5	Pole	1	1	0.000	0.000	0.000
L40	03.3 - 00.3	Pole	Max Tension	26			
			Max. Compression		-55.092	-3.172	2.493
			Max. Mx	8	-33.691	-1388.535	0.658
			Max. My	2	-33.682	-2.541	1391.281
			Max. Vy	20	-23.116	1388.525	0.683
			Max. Vx	2	-23.195	-2.541	1391.281
			Max. Torque	7			0.570
L41	60.5 - 60.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-55.197	-3.181	2.499
			Max. Mx	8	-33.782	-1394.304	0.658
			Max. My	2	-33.772	-2.548	1397.078
			Max. Vy	20	-23.115	1394.300	0.682
			Max. Vx	2	-23.196	-2.548	1397.078
			Max. Torque	7			0.570
L42	60.25 - 59.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-55.510	-3.206	2.513
			Max. Mx	20	-34.018	1411.639	0.679
			Max. My	2	-34.011	-2.568	1414.488
			Max. Vy	20	-23.158	1411.639	0.679
			Max. Vy Max. Vx	20	-23.243	-2.568	1414.488
			Max. Torque	7	-23.245	-2.508	0.570
L43	59.5 - 59.25	Pole	Max Tension	1	0.000	0.000	0.000
L43	59.5 - 59.25	roic					
			Max. Compression	26 20	-55.619	-3.215	2.518
			Max. Mx	20	-34.110	1417.425	0.678
			Max. My	2	-34.102	-2.575	1420.298
			Max. Vy	20	-23.163	1417.425	0.678
			Max. Vx	2	-23.249	-2.575	1420.298
			Max. Torque	7			0.570
L44	59.25 - 54.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-57.736	-3.383	2.615
			Max. Mx	20	-35.808	1533.764	0.657
			Max. My	2	-35.802	-2.711	1537.125
			Max. Vy	20	-23.413	1533.764	0.657
			Max. Vx	2	-23.499	-2.711	1537.125
			Max. Torque	7			0.570
L45	54.25 - 45.802	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-59.545	-3.508	2.686
			Max. Mx	20	-37.276	1633.562	0.639
			Max. My	2	-37.270	-2.828	1637.339
			Max. Vy	20	-23.606	1633.562	0.639
			Max. Vx	2	-23.692	-2.828	1637.339
			Max. Torque	7	101031		0.570
L46	45.802 -	Pole	Max Tension	1	0.000	0.000	0.000
LIC	44.802	1010					
			Max. Compression	26	-63.312	-3.462	2.652
			Max. Mx	20	-40.408	1757.460	0.588
			Max. My	2	-40.402	-2.777	1761.578
			Max. Vy	20	-23.999	1757.460	0.588
			Max. Vx	2	-24.096	-2.777	1761.578
			Max. Torque	7			0.569
L47	44.802 - 43.583	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-63.848	-3.492	2.657
			Max. Mx	20	-40.842	1786.710	0.596

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
NO.	ft	Type		Loaa Comb.	K	kip-ft	kip-ft
			Max. Vy	20	-24.053	1786.710	0.596
			Max. Vy Max. Vx			-2.799	1790.963
			Max. VX Max. Torque	2 7	-24.153	-2.199	0.569
L48	43.583 -	Pole	Max Tension	1	0.000	0.000	0.000
L40	43.333	1016	IVIAX TENSION	I	0.000	0.000	0.000
	-J.JJJ		Max. Compression	26	-63.963	-3.499	2.658
			Max. Max. Mx	20	-40.948	1792.716	0.597
			Max. My	20	-40.942	-2.803	1796.997
			Max. Vy	20	-24.046	1792.716	0.597
			Max. Vx	20	-24.146	-2.803	1796.997
			Max. Torque	7	21.110	2.005	0.569
L49	43.333 -	Pole	Max Tension	1	0.000	0.000	0.000
2.0	43.166	1 0 10		-	0.000	01000	01000
			Max. Compression	26	-64.039	-3.504	2.659
			Max. Mx	20	-41.012	1796.730	0.598
			Max. My	2	-41.006	-2.806	1801.030
			Max. Vy	20	-24.052	1796.730	0.598
			Max. Vx	2	-24.153	-2.806	1801.030
			Max. Torque	7			0.569
L50	43.166 -	Pole	Max Tension	1	0.000	0.000	0.000
	42.916		Max. Compression	26	-64.159	-3.509	2.660
			Max. Compression Max. Mx	20 20	-04.139	1802.741	0.600
			Max. My	20	-41.110	-2.811	1807.069
			Max. Vy	$\frac{2}{20}$	-24.064	1802.741	0.600
			Max. Vy Max. Vx	20	-24.165	-2.811	1807.069
			Max. Torque	7	-24.105	-2.011	0.569
L51	42.916 - 39	Pole	Max Tension	1	0.000	0.000	0.000
LJ1	42.910-39	1010	Max. Compression	26	-66.033	-3.611	2.665
			Max. Max. Mx	20	-42.641	1897.248	0.623
			Max. My	20	-42.635	-2.880	1902.034
			Max. Vy	20	-24.252	1897.248	0.623
			Max. Vx	2	-24.361	-2.880	1902.034
			Max. Torque	7	211001	21000	0.569
L52	39 - 38.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-66.158	-3.619	2.665
			Max. Mx	20	-42.756	1903.304	0.624
			Max. My	2	-42.750	-2.884	1908.121
			Max. Vy	20	-24.244	1903.304	0.624
			Max. Vx	2	-24.353	-2.884	1908.121
			Max. Torque	7			0.569
L53	38.75 - 37.166	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-66.952	-3.663	2.662
			Max. Mx	20	-43.397	1941.737	0.634
			Max. My	2	-43.392	-2.912	1946.749
			Max. Vy	20	-24.336	1941.737	0.634
			Max. Vx	2	-24.448	-2.912	1946.749
			Max. Torque	7			0.569
L54	37.166 - 36.916	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-67.075	-3.670	2.662
			Max. Mx	20	-43.512	1947.813	0.635
			Max. My	2	-43.506	-2.916	1952.856
			Max. Vy	20	-24.324	1947.813	0.635
			Max. Vx	2	-24.436	-2.916	1952.856
			Max. Torque	7			0.569
L55	36.916 - 34	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-68.515	-3.748	2.672
			Max. Mx	20	-44.676	2018.862	0.653
			Max. My	2	-44.671	-2.968	2024.278
			Max. Vy	20	-24.460	2018.862	0.653

Page 71 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	5	. 1		Comb.	Κ	kip-ft	kip-ft
			Max. Vx	2	-24.578	-2.968	2024.278
			Max. Torque	7		-000	0.569
L56	34 - 33.75	Pole	Max Tension	1	0.000	0.000	0.000
100	51 55.75	1 010	Max. Compression	26	-68.636	-3.755	2.675
			Max. Mx	20	-44.787	2024.968	0.654
			Max. My	20	-44.781	-2.972	2030.417
			Max. Vy	20	-24.447	2024.968	0.654
			Max. Vy Max. Vx	20	-24.447	-2.972	2030.417
				7	-24.303	-2.972	0.569
1.57	22 75 20 75	D-1-	Max. Torque		0.000	0.000	
L57	33.75 - 29.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26 20	-70.532	-3.858	2.704
			Max. Mx	20	-46.340	2122.975	0.678
			Max. My	2	-46.335	-3.043	2128.962
			Max. Vy	20	-24.602	2122.975	0.678
			Max. Vx	2	-24.727	-3.043	2128.962
			Max. Torque	7			0.569
L58	29.75 - 29.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-70.651	-3.865	2.707
			Max. Mx	20	-46.447	2129.119	0.680
			Max. My	2	-46.442	-3.048	2135.140
			Max. Vy	20	-24.597	2129.119	0.680
			Max. Vx	2	-24.721	-3.048	2135.140
			Max. Torque	7			0.569
L59	29.5 - 24.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-73.033	-4.004	2.745
			Max. Mx	20	-48.426	2252.447	0.710
			Max. My	2	-48.422	-3.137	2259.161
			Max. Vy	20	-24.781	2252.447	0.710
			Max. Vx	2	-24.907	-3.137	2259.161
			Max. Torque	7	21.907	5.157	0.569
L60	24.5 - 23	Pole	Max Tension	1	0.000	0.000	0.000
LUU	21.5 25	1 010	Max. Compression	26	-73.764	-4.065	2.758
			Max. Mx	20	-49.024	2289.611	0.719
			Max. My	20	-49.024	-3.163	2296.534
			•	20	-24.843	2289.611	0.719
			Max. Vy				
			Max. Vx	2	-24.968	-3.163	2296.534
T (1	22 22 75	D.1.	Max. Torque	7	0.000	0.000	0.569
L61	23 - 22.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-73.895	-4.076	2.761
			Max. Mx	20	-49.147	2295.813	0.721
			Max. My	2	-49.143	-3.168	2302.770
			Max. Vy	20	-24.827	2295.813	0.721
			Max. Vx	2	-24.952	-3.168	2302.770
			Max. Torque	7			0.569
L62	22.75 - 21.583	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-74.508	-4.123	2.770
			Max. Mx	20	-49.649	2324.794	0.728
			Max. My	2	-49.646	-3.189	2331.914
			Max. Vy	20	-24.889	2324.794	0.728
			Max. Vx	2	-25.014	-3.189	2331.914
			Max. Torque	7			0.569
L63	21.583 - 21.333	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-74.635	-4.134	2.773
			Max. Mx	20	-49.763	2331.010	0.729
			Max. My	2	-49.760	-3.193	2338.164
			Max. Vy	20	-24.882	2331.010	0.729
			Max. Vy Max. Vx	20	-25.007	-3.193	2338.164
			Max. Torque	7	20.007	2.175	0.569
L64	21.333 -	Pole	Max Tension	1	0.000	0.000	0.000
				*	0.000	0.000	0.000

tnxTower

79982.004.01 - WATERBURY,CT (BU# 876317)

Page 72 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	5			Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-77.147	-4.316	2.801
			Max. Mx	20	-51.866	2455.761	0.760
			Max. My	2	-51.863	-3.283	2463.610
			Max. Vy	20	-25.066	2455.761	0.760
			Max. Vx	2	-25.191	-3.283	2463.610
			Max. Torque	7	20.171	5.205	0.569
L65	16.333 -	Pole	Max Tension	1	0.000	0.000	0.000
105	12.917	1010	Max Tension	1	0.000	0.000	0.000
	12.917		Max. Compression	26	-78.907	-4.406	2.756
			Max. Mx	20	-53.322	2541.501	0.781
			Max. My	20	-53.320	-3.344	2549.797
			Max. Vy	20	-25.200	2541.501	0.781
			Max. Vy Max. Vx	20	-25.308	-3.344	2549.797
					-25.508	-3.344	
TCC	12.017	Pole	Max. Torque	7	0.000	0.000	0.569
L66	12.917 - 12.667	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-79.045	-4.412	2.753
			Max. Mx	20	-53.447	2547.794	0.782
			Max. My	2	-53.446	-3.348	2556.120
			Max. Vy	20	-25.192	2547.794	0.782
			Max. Vx	2	-25.298	-3.348	2556.120
			Max. Torque	7			0.569
L67	12.667 - 12.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-79.137	-4.417	2.751
			Max. Mx	20	-53.526	2551.999	0.783
			Max. My	2	-53.524	-3.351	2560.345
			Max. Vy	20	-25.198	2551.999	0.783
			Max. Vx	2	-25.303	-3.351	2560.345
			Max. Torque	7			0.569
L68	12.5 - 12.25	Pole	Max Tension	1	0.000	0.000	0.000
200	1210 12120	1010	Max. Compression	26	-79.263	-4.423	2.748
			Max. Mx	20	-53.629	2558.296	0.785
			Max. My	20	-53.627	-3.356	2566.671
			Max. Vy	20	-25.208	2558.296	0.785
			Max. Vy Max. Vx	20	-25.312	-3.356	2566.671
			Max. VX Max. Torque	7	-23.312	-3.330	
L69	12.25 12	Pole	-	1	0.000	0.000	0.569
L09	12.25 - 12	Pole	Max Tension		0.000		0.000
			Max. Compression	26 20	-79.389	-4.430	2.745
			Max. Mx	20	-53.734	2564.594	0.786
			Max. My	2	-53.732	-3.360	2573.000
			Max. Vy	20	-25.217	2564.594	0.786
			Max. Vx	2	-25.320	-3.360	2573.000
			Max. Torque	7			0.569
L70	12 - 11.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-79.509	-4.436	2.741
			Max. Mx	20	-53.832	2570.895	0.788
			Max. My	2	-53.831	-3.365	2579.330
			Max. Vy	20	-25.225	2570.895	0.788
			Max. Vx	2	-25.327	-3.365	2579.330
			Max. Torque	7			0.569
L71	11.75 - 8.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-81.057	-4.511	2.704
			Max. Mx	20	-55.112	2653.177	0.808
			Max. My	2	-55.112	-3.423	2661.776
			Max. Vy	20	-25.469	2653.177	0.808
			Max. Vx	2	-25.439	-3.423	2661.776
			Max. Torque	7			0.569
	8.5 - 8.25	Pole	Max. Torque Max Tension	1	0.000	0.000	0.000
L.72	0.2 0.20	1010					
L72			May Compression	76		_4 5 16	· · / · ////
L72			Max. Compression Max. Mx	26 20	-81.197 -55.243	-4.516 2659.537	$2.704 \\ 0.810$

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vy	20	-25.468	2659.537	0.810
			Max. Vx	2	-25.427	-3.427	2668.131
			Max. Torque	7			0.569
L73	8.25 - 7	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-81.894	-4.545	2.701
			Max. Mx	20	-55.832	2691.424	0.817
			Max. My	2	-55.832	-3.450	2699.953
			Max. Vy	20	-25.603	2691.424	0.817
			Max. Vx	2	-25.510	-3.450	2699.953
			Max. Torque	7			0.572
L74	7 - 6.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-82.022	-4.551	2.701
			Max. Mx	20	-55.949	2697.819	0.819
			Max. My	2	-55.949	-3.454	2706.327
			Max. Vy	20	-25.606	2697.819	0.819
			Max. Vx	2	-25.502	-3.454	2706.327
			Max. Torque	7			0.573
L75	6.75 - 1.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-84.513	-4.652	2.684
			Max. Mx	20	-58.107	2826.788	0.850
			Max. My	2	-58.108	-3.543	2834.376
			Max. Vy	20	-26.034	2826.788	0.850
			Max. Vx	2	-25.739	-3.543	2834.376
			Max. Torque	7			0.579
L76	1.75 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-85.365	-4.684	2.678
			Max. Mx	20	-58.866	2872.413	0.861
			Max. My	2	-58.866	-3.575	2879.453
			Max. Vy	20	-26.193	2872.413	0.861
			Max. Vx	24	-25.878	1560.330	2729.650
			Max. Torque	7			0.579

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	Κ	K
		Comb.			
Pole	Max. Vert	30	85.365	-6.377	-0.002
	Max. H _x	21	44.163	26.153	0.002
	Max. H _z	25	44.163	14.828	25.840
	Max. M _x	2	2879.453	-0.007	25.793
	Max. M _z	8	2871.144	-26.118	-0.012
	Max. Torsion	7	0.579	-22.127	12.928
	Min. Vert	5	44.163	-12.577	21.947
	Min. H _x	9	44.163	-26.118	-0.012
	Min. Hz	13	44.163	-14.837	-25.838
	Min. M _x	14	-2873.371	0.026	-25.759
	Min. Mz	20	-2872.413	26.153	0.002
	Min. Torsion	19	-0.218	22.117	-12.915

Tower Mast Reaction Summary

tnxTower

Job 79982.004.01 - WATERBURY,CT (BU# 876317)

Page 74 of 92

Date

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	49.070	0.000	-0.000	-0.949	-1.534	0.000
1.2 Dead+1.0 Wind 0 deg - No	58.884	0.007	-25.793	-2879.453	-3.575	-0.091
Ice 0.9 Dead+1.0 Wind 0 deg - No	44.163	0.007	-25.793	-2822.278	-2.996	-0.087
Ice	4.105	0.007	-23.195	-2022.270	-2.790	-0.007
1.2 Dead+1.0 Wind 30 deg - No	58.884	12.577	-21.947	-2470.821	-1415.096	-0.337
Ice						
0.9 Dead+1.0 Wind 30 deg - No Ice	44.163	12.577	-21.947	-2421.560	-1386.583	-0.335
1.2 Dead+1.0 Wind 60 deg - No	58.884	22.127	-12.928	-1435.008	-2447.236	-0.579
Ice						
0.9 Dead+1.0 Wind 60 deg - No	44.163	22.127	-12.928	-1406.264	-2398.328	-0.579
	50.004	26 110	0.012	0.205	0071 144	0.220
1.2 Dead+1.0 Wind 90 deg - No Ice	58.884	26.118	0.012	-0.205	-2871.144	-0.229
0.9 Dead+1.0 Wind 90 deg - No	44.163	26.118	0.012	0.114	-2813.964	-0.232
Ice						
1.2 Dead+1.0 Wind 120 deg -	58.884	24.369	14.206	1517.254	-2599.347	0.155
No Ice 0.9 Dead+1.0 Wind 120 deg -	44.163	24.369	14.206	1488.106	-2548.441	0.151
No Ice	1.105	21.009	11.200	1100.100	2010.111	0.101
1.2 Dead+1.0 Wind 150 deg -	58.884	14.837	25.838	2726.941	-1565.631	-0.029
No Ice	44.162	14 927	75.979	2674 746	1525.010	0.024
0.9 Dead+1.0 Wind 150 deg - No Ice	44.163	14.837	25.838	2674.746	-1535.010	-0.034
1.2 Dead+1.0 Wind 180 deg -	58.884	-0.026	25.759	2873.371	2.492	-0.054
No Ice						
0.9 Dead+1.0 Wind 180 deg - No Ice	44.163	-0.026	25.759	2816.929	2.929	-0.058
1.2 Dead+1.0 Wind 210 deg -	58.884	-12.569	21.905	2464.620	1411.375	0.105
No Ice						
0.9 Dead+1.0 Wind 210 deg -	44.163	-12.569	21.905	2416.076	1383.913	0.102
No Ice 1.2 Dead+1.0 Wind 240 deg -	58.884	-22.117	12.915	1431.681	2443.575	0.218
No Ice	50.004	-22.117	12.915	1451.001	2445.575	0.210
0.9 Dead+1.0 Wind 240 deg -	44.163	-22.117	12.915	1403.610	2395.706	0.218
No Ice	50 001	26 152	0.002	0.961	2972 412	0.200
1.2 Dead+1.0 Wind 270 deg - No Ice	58.884	-26.153	-0.002	-0.861	2872.413	0.200
0.9 Dead+1.0 Wind 270 deg -	44.163	-26.153	-0.002	-0.533	2816.186	0.202
No Ice						
1.2 Dead+1.0 Wind 300 deg - No Ice	58.884	-24.399	-14.195	-1518.088	2599.681	-0.297
0.9 Dead+1.0 Wind 300 deg -	44.163	-24.399	-14.195	-1488.289	2549.758	-0.294
No Ice						
1.2 Dead+1.0 Wind 330 deg -	58.884	-14.828	-25.840	-2729.650	1560.330	-0.081
No Ice 0.9 Dead+1.0 Wind 330 deg -	44.163	-14.828	-25.840	-2676.770	1530.820	-0.077
No Ice	44.103	-14.828	-23.840	-2070.770	1550.820	-0.077
1.2 Dead+1.0 Ice+1.0 Temp	85.365	0.000	-0.000	-2.678	-4.684	0.000
1.2 Dead+1.0 Wind 0 deg+1.0	85.365	0.002	-6.301	-759.665	-5.379	-0.024
Ice+1.0 Temp	95 765	2 1 2 1	-5.457	650 175	-380.716	0.078
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	85.365	3.131	-3.437	-658.475	-380.716	-0.078
1.2 Dead+1.0 Wind 60 deg+1.0	85.365	5.458	-3.184	-383.222	-655.195	-0.129
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	85.365	6.377	0.002	-2.739	-759.900	-0.058
1.2 Dead+1.0 Wind 120	85.365	5.827	3.393	393.066	-683.436	0.003
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	85.365	3.548	6.176	706.507	-411.716	-0.073

tnxTower

79982.004.01 - WATERBURY,CT (BU# 876317)

Page 75 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Load	Vertical	Shear _x	Shear _z	Overturning	Overturning	Torque
Combination	K	K	Κ	Moment, M _x kip-ft	Moment, M _z kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp	Λ	Λ	Λ	кір-јі	кір-јі	кір-јі
1.2 Dead+1.0 Wind 180	85.365	-0.006	6.300	754.035	-3.668	-0.007
deg+1.0 Ice+1.0 Temp	05.505	-0.000	0.500	754.055	-5.000	-0.007
1.2 Dead + 1.0 Wind 210	85.365	-3.136	5.460	653,381	371.833	0.029
deg+1.0 Ice+1.0 Temp	05.505	-5.150	5.400	055.501	571.055	0.027
1.2 Dead+1.0 Wind 240	85.365	-5.465	3.186	378.041	646.568	0.052
deg+1.0 Ice+1.0 Temp	00.000	5.100	5.100	570.011	010.000	0.002
1.2 Dead+1.0 Wind 270	85.365	-6.385	-0.000	-2.512	751.413	0.052
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	85.365	-5.833	-3.391	-398.258	674.694	-0.033
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	85.365	-3.547	-6.177	-712.116	401.737	0.050
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	49.070	0.002	-6.298	-696.698	-2.004	-0.021
Dead+Wind 30 deg - Service	49.070	3.071	-5.359	-597.888	-343.171	-0.083
Dead+Wind 60 deg - Service	49.070	5.403	-3.156	-347.528	-592.635	-0.144
Dead+Wind 90 deg - Service	49.070	6.377	0.003	-0.762	-695.091	-0.058
Dead+Wind 120 deg - Service	49.070	5.948	3.468	366.031	-629.475	0.037
Dead+Wind 150 deg - Service	49.070	3.622	6.308	658.734	-379.766	-0.009
Dead+Wind 180 deg - Service	49.070	-0.006	6.289	693.801	-0.546	-0.015
Dead+Wind 210 deg - Service	49.070	-3.069	5.348	594.961	339.982	0.025
Dead+Wind 240 deg - Service	49.070	-5.400	3.153	345.296	589.459	0.054
Dead+Wind 270 deg - Service	49.070	-6.385	-0.001	-0.920	693.107	0.051
Dead+Wind 300 deg - Service	49.070	-5.956	-3.465	-367.653	627.268	-0.073
Dead+Wind 330 deg - Service	49.070	-3.620	-6.308	-660.810	376.201	-0.019

Solution Summary

	Sur	n of Applied Force	5		Sum of Reaction	IS	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	Κ	Κ	K	K	Κ	
1	0.000	-49.070	0.000	-0.000	49.070	0.000	0.000%
2	0.007	-58.884	-25.793	-0.007	58.884	25.793	0.000%
3	0.007	-44.163	-25.793	-0.007	44.163	25.793	0.000%
4	12.577	-58.884	-21.947	-12.577	58.884	21.947	0.000%
5	12.577	-44.163	-21.947	-12.577	44.163	21.947	0.000%
6	22.127	-58.884	-12.928	-22.127	58.884	12.928	0.000%
7	22.127	-44.163	-12.928	-22.127	44.163	12.928	0.000%
8	26.118	-58.884	0.012	-26.118	58.884	-0.012	0.000%
9	26.118	-44.163	0.012	-26.118	44.163	-0.012	0.000%
10	24.369	-58.884	14.206	-24.369	58.884	-14.206	0.000%
11	24.369	-44.163	14.206	-24.369	44.163	-14.206	0.000%
12	14.837	-58.884	25.838	-14.837	58.884	-25.838	0.000%
13	14.837	-44.163	25.838	-14.837	44.163	-25.838	0.000%
14	-0.026	-58.884	25.759	0.026	58.884	-25.759	0.000%
15	-0.026	-44.163	25.759	0.026	44.163	-25.759	0.000%
16	-12.569	-58.884	21.905	12.569	58.884	-21.905	0.000%
17	-12.569	-44.163	21.905	12.569	44.163	-21.905	0.000%
18	-22.117	-58.884	12.915	22.117	58.884	-12.915	0.000%
19	-22.117	-44.163	12.915	22.117	44.163	-12.915	0.000%
20	-26.153	-58.884	-0.002	26.153	58.884	0.002	0.000%
21	-26.153	-44.163	-0.002	26.153	44.163	0.002	0.000%
22	-24.399	-58.884	-14.195	24.399	58.884	14.195	0.000%
23	-24.399	-44.163	-14.195	24.399	44.163	14.195	0.000%
24	-14.828	-58.884	-25.840	14.828	58.884	25.840	0.000%
25	-14.828	-44.163	-25.840	14.828	44.163	25.840	0.000%
26	0.000	-85.365	0.000	-0.000	85.365	0.000	0.000%
27	0.002	-85.365	-6.301	-0.002	85.365	6.301	0.000%

Page 76 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

	Su	m of Applied Forces	1		Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Erroi	
Comb.	K	K	K	K	K	K		
28	3.131	-85.365	-5.457	-3.131	85.365	5.457	0.000%	
29	5.458	-85.365	-3.184	-5.458	85.365	3.184	0.000%	
30	6.377	-85.365	0.002	-6.377	85.365	-0.002	0.000%	
31	5.827	-85.365	3.393	-5.827	85.365	-3.393	0.000%	
32	3.548	-85.365	6.176	-3.548	85.365	-6.176	0.000%	
33	-0.006	-85.365	6.300	0.006	85.365	-6.300	0.000%	
34	-3.136	-85.365	5.460	3.136	85.365	-5.460	0.000%	
35	-5.465	-85.365	3.186	5.465	85.365	-3.186	0.000%	
36	-6.385	-85.365	-0.000	6.385	85.365	0.000	0.000%	
37	-5.833	-85.365	-3.391	5.833	85.365	3.391	0.000%	
38	-3.547	-85.365	-6.177	3.547	85.365	6.177	0.000%	
39	0.002	-49.070	-6.298	-0.002	49.070	6.298	0.000%	
40	3.071	-49.070	-5.359	-3.071	49.070	5.359	0.000%	
41	5.403	-49.070	-3.156	-5.403	49.070	3.156	0.000%	
42	6.377	-49.070	0.003	-6.377	49.070	-0.003	0.000%	
43	5.948	-49.070	3.468	-5.948	49.070	-3.468	0.000%	
44	3.622	-49.070	6.308	-3.622	49.070	-6.308	0.000%	
45	-0.006	-49.070	6.289	0.006	49.070	-6.289	0.000%	
46	-3.069	-49.070	5.348	3.069	49.070	-5.348	0.000%	
47	-5.400	-49.070	3.153	5.400	49.070	-3.153	0.000%	
48	-6.385	-49.070	-0.001	6.385	49.070	0.001	0.000%	
49	-5.956	-49.070	-3.465	5.956	49.070	3.465	0.000%	
50	-3.620	-49.070	-6.308	3.620	49.070	6.308	0.000%	

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000956
2	Yes	6	0.00000001	0.00014337
3	Yes	5	0.00000001	0.00059060
4	Yes	8	0.00000001	0.00012499
5	Yes	7	0.00000001	0.00033964
6	Yes	8	0.00000001	0.00012696
7	Yes	7	0.00000001	0.00034556
8	Yes	6	0.00000001	0.00019013
9	Yes	5	0.00000001	0.00089252
10	Yes	8	0.00000001	0.00013318
11	Yes	7	0.00000001	0.00035883
12	Yes	8	0.00000001	0.00013974
13	Yes	7	0.00000001	0.00037370
14	Yes	6	0.00000001	0.00013459
15	Yes	5	0.00000001	0.00055076
16	Yes	8	0.00000001	0.00012548
17	Yes	7	0.00000001	0.00034142
18	Yes	8	0.00000001	0.00012497
19	Yes	7	0.00000001	0.00033995
20	Yes	6	0.00000001	0.00018431
21	Yes	5	0.00000001	0.00085578
22	Yes	8	0.00000001	0.00013265
23	Yes	7	0.00000001	0.00035730
24	Yes	8	0.00000001	0.00013935
25	Yes	7	0.00000001	0.00037257
26	Yes	5	0.00000001	0.00042028
27	Yes	7	0.00000001	0.00085259
28	Yes	8	0.00000001	0.00019906

ts

tnx	tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265		82.004.01 - WATE	ERBURY,CT (BU# 876317)	Page 77 of 92		
			Project				
Phone:			Client Crown Castle				
29	Yes	8	0.00000001	0.00019965			
30	Yes	7	0.00000001	0.00085060			
31	Yes	8	0.00000001	0.00020338			
32	Yes	8	0.00000001	0.00021292			
33	Yes	7	0.00000001	0.00083849			
34	Yes	8	0.00000001	0.00019215			
35	Yes	8	0.00000001	0.00019188			
36	Yes	7	0.00000001	0.00083503			
37	Yes	8	0.00000001	0.00020299			
38	Yes	8	0.00000001	0.00021102			
39	Yes	5	0.00000001	0.00028075			
40	Yes	6	0.00000001	0.00022419			
41	Yes	6	0.00000001	0.00023329			
42	Yes	5	0.00000001	0.00029314			
43	Yes	6	0.00000001	0.00024800			
44	Yes	6	0.00000001	0.00027253			
45	Yes	5	0.00000001	0.00028135			
46	Yes	6	0.00000001	0.00022148			
47	Yes	6	0.00000001	0.00021899			
48	Yes	5	0.00000001	0.00028894			
49	Yes	6	0.00000001	0.00024495			
50	Yes	6	0.00000001	0.00026934			

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	144.25 - 139.25	31.211	50	2.231	0.001
L2	139.25 - 134.75	28.879	50	2.220	0.001
L3	134.75 - 134.25	26.805	50	2.178	0.001
L4	134.25 - 129.25	26.577	50	2.172	0.001
L5	129.25 - 124.25	24.364	50	2.051	0.001
L6	124.25 - 123.416	22.298	50	1.888	0.001
L7	123.416 - 123.166	21.971	50	1.857	0.001
L8	123.166 - 118.166	21.874	50	1.854	0.001
L9	118.166 - 113.166	19.975	50	1.774	0.001
L10	113.166 - 109.5	18.167	50	1.678	0.001
L11	109.5 - 109.25	16.907	50	1.602	0.000
L12	109.25 - 104.75	16.824	50	1.597	0.000
L13	104.75 - 104.5	15.359	50	1.511	0.000
L14	104.5 - 102.416	15.280	50	1.507	0.000
L15	102.416 - 102.166	14.629	50	1.475	0.000
L16	102.166 - 98.75	14.552	50	1.470	0.000
L17	98.75 - 98.5	13.527	50	1.398	0.000
L18	98.5 - 97.5	13.454	50	1.394	0.000
L19	97.5 - 97.25	13.163	50	1.379	0.000
L20	97.25 - 92	13.091	50	1.375	0.000
L21	95.552 - 90.552	12.607	50	1.347	0.000
L22	90.552 - 89.25	11.221	50	1.292	0.000
L23	89.25 - 89	10.871	50	1.270	0.000
L24	89 - 88.25	10.805	50	1.267	0.000
L25	88.25 - 88	10.607	50	1.256	0.000
L26	88 - 87.833	10.541	50	1.252	0.000
L27	87.833 - 87.583	10.497	50	1.249	0.000
L28	87.583 - 82.583	10.432	50	1.244	0.000
L29	82.583 - 77.583	9.183	50	1.142	0.000
L30	77.583 - 77	8.043	50	1.036	0.000
L31	77 - 76.75	7.917	50	1.024	0.000
L32	76.75 - 76.333	7.864	50	1.020	0.000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	0	Deflection	Load	0	0
7.0.0	ft	in	Comb.		
L33	76.333 - 76.083	7.775	50	1.013	0.000
L34	76.083 - 74.25	7.722	50	1.009	0.000
L35	74.25 - 74	7.340	50	0.979	0.000
L36	74 - 73.75	7.289	50	0.975	0.000
L37	73.75 - 73.5	7.238	50	0.972	0.000
L38	73.5 - 68.5	7.187	50	0.968	0.000
L39	68.5 - 63.5	6.214	50	0.892	0.000
L40	63.5 - 60.5	5.319	50	0.816	0.000
L41	60.5 - 60.25	4.821	50	0.770	0.000
L42	60.25 - 59.5	4.781	50	0.766	0.000
L43	59.5 - 59.25	4.661	50	0.755	0.000
L44	59.25 - 54.25	4.622	50	0.751	0.000
L45	54.25 - 45.802	3.873	50	0.679	0.000
L46	50 - 44.802	3.296	50	0.617	0.000
L47	44.802 - 43.583	2.645	50	0.572	0.000
L48	43.583 - 43.333	2.502	50	0.555	0.000
L49	43.333 - 43.166	2.473	50	0.551	0.000
L50	43.166 - 42.916	2.453	50	0.549	0.000
L51	42.916 - 39	2.425	50	0.546	0.000
L52	39 - 38.75	1.998	50	0.494	0.000
L53	38.75 - 37.166	1.973	50	0.491	0.000
L54	37.166 - 36.916	1.813	50	0.471	0.000
L55	36.916 - 34	1.788	50	0.468	0.000
L56	34 - 33.75	1.514	50	0.430	0.000
L50 L57	33.75 - 29.75	1.492	50	0.427	0.000
L58	29.75 - 29.5	1.152	50	0.374	0.000
L59	29.5 - 24.5	1.137	50	0.371	0.000
L60	24.5 - 23	0.783	50	0.306	0.000
L61	23 - 22.75	0.690	50	0.287	0.000
L62	22.75 - 21.583	0.675	50	0.284	0.000
L62 L63	21.583 - 21.333	0.607	50	0.271	0.000
L63 L64	21.333 - 16.333	0.593	50 50	0.271	0.000
L64 L65	16.333 - 12.917	0.345	50 50	0.208	0.000
L65 L66	12.917 - 12.667	0.213	50 50	0.200	0.000
L60 L67	12.667 - 12.5	0.213	50 50	0.164	0.000
L67 L68	12.5 - 12.25	0.199	50 50	0.159	0.000
L68 L69	12.25 - 12.25	0.199	50	0.159	0.000
L09 L70	12.23 - 12 12 - 11.75	0.190	50 50	0.150	0.000
L71	11.75 - 8.5	0.174	50	0.149	0.000
L72	8.5 - 8.25	0.090	50	0.100	0.000
L73	8.25 - 7	0.085	50 50	0.097	0.000
L74	7 - 6.75	0.061	50	0.084	0.000
L75	6.75 - 1.75	0.057	50	0.081	0.000
L76	1.75 - 0	0.004	50	0.020	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
144.000	(2) EPBQ-654L8H8-L2 w/ Mount Pipe	50	31.094	2.231	0.003	9621
133.000	VHLP2-23	50	26.013	2.151	0.003	2844
130.000	(2) APXVSPP18-C-A20 w/ Mount Pipe	50	24.688	2.073	0.003	2111
120.000	MX08FRO665-21 w/ Mount Pipe	50	20.662	1.806	0.002	3258
110.000	SBNHH-1D65B w/ Mount Pipe	50	17.076	1.611	0.001	2858

tnxTower	Јов 79982.004.01 - WATERBURY,CT (BU# 876317)	Page 79 of 92
B+T Group 1717 S. Boulder, Suite 300	Project	Date 11:01:28 10/04/21
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Jayaraj B

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
100.000	APXVAARR24_43-U-NA20 w/	50	13.896	1.421	0.001	3084
	Mount Pipe					
50.000	KS24019-L112A	50	3.296	0.617	0.000	5297

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	144.25 - 139.25	128.805	24	9.236	0.005
L2	139.25 - 134.75	119.218	24	9.187	0.005
L3	134.75 - 134.25	110.694	24	9.012	0.005
L4	134.25 - 129.25	109.758	24	8.990	0.005
L5	129.25 - 124.25	100.656	24	8.490	0.006
L6	124.25 - 123.416	92.152	24	7.816	0.004
L7	123.416 - 123.166	90.805	24	7.690	0.004
L8	123.166 - 118.166	90.405	24	7.675	0.004
L9	118.166 - 113.166	82.575	24	7.346	0.003
L10	113.166 - 109.5	75.118	24	6.953	0.002
L11	109.5 - 109.25	69.922	24	6.635	0.002
L12	109.25 - 104.75	69.576	24	6.617	0.002
L13	104.75 - 104.5	63.529	24	6.258	0.002
L14	104.5 - 102.416	63.203	24	6.243	0.002
L15	102.416 - 102.166	60.516	24	6.111	0.002
L16	102.166 - 98.75	60.197	24	6.090	0.002
L17	98.75 - 98.5	55.960	12	5.792	0.001
L18	98.5 - 97.5	55.658	12	5.777	0.001
L19	97.5 - 97.25	54.458	12	5.716	0.001
L20	97.25 - 92	54.160	12	5.699	0.001
L21	95.552 - 90.552	52.159	12	5.581	0.001
L22	90.552 - 89.25	46.429	12	5.356	0.001
L23	89.25 - 89	44.984	12	5.264	0.001
L24	89 - 88.25	44.710	12	5.249	0.001
L25	88.25 - 88	43.891	12	5.206	0.001
L26	88 - 87.833	43.619	12	5.187	0.001
L27	87.833 - 87.583	43.438	12	5.175	0.001
L28	87.583 - 82.583	43.169	12	5.155	0.001
L29	82.583 - 77.583	38.004	12	4.731	0.001
L30	77.583 - 77	33.288	12	4.293	0.001
L31	77 - 76.75	32.768	12	4.243	0.001
L32	76.75 - 76.333	32.546	12	4.226	0.001
L33	76.333 - 76.083	32.179	12	4.198	0.001
L34	76.083 - 74.25	31.960	12	4.181	0.001
L35	74.25 - 74	30.381	12	4.058	0.001
L36	74 - 73.75	30.169	12	4.042	0.001
L37	73.75 - 73.5	29.958	12	4.026	0.001
L38	73.5 - 68.5	29.748	12	4.011	0.001
L39	68.5 - 63.5	25.718	12	3.697	0.001
L40	63.5 - 60.5	22.016	12	3.381	0.000
L41	60.5 - 60.25	19.954	12	3.190	0.000
L42	60.25 - 59.5	19.787	12	3.174	0.000
L43	59.5 - 59.25	19.293	12	3.128	0.000
L44	59.25 - 54.25	19.129	12	3.113	0.000
L45	54.25 - 45.802	16.031	12	2.811	0.000
L46	50 - 44.802	13.644	12 12	2.557	0.000
L47	44.802 - 43.583	10.949	12	2.371	0.000

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L48	43.583 - 43.333	10.353	12	2.298	0.000
L49	43.333 - 43.166	10.233	12	2.283	0.000
L50	43.166 - 42.916	10.154	12	2.274	0.000
L51	42.916 - 39	10.035	12	2.260	0.000
L52	39 - 38.75	8.270	12	2.046	0.000
L53	38.75 - 37.166	8.163	12	2.033	0.000
L54	37.166 - 36.916	7.503	12	1.951	0.000
L55	36.916 - 34	7.401	12	1.938	0.000
L56	34 - 33.75	6.266	12	1.780	0.000
L57	33.75 - 29.75	6.173	12	1.766	0.000
L58	29.75 - 29.5	4.786	12	1.548	0.000
L59	29.5 - 24.5	4.705	12	1.535	0.000
L60	24.5 - 23	3.239	12	1.267	0.000
L61	23 - 22.75	2.853	12	1.188	0.000
L62	22.75 - 21.583	2.792	12	1.176	0.000
L63	21.583 - 21.333	2.511	12	1.123	0.000
L64	21.333 - 16.333	2.452	12	1.110	0.000
L65	16.333 - 12.917	1.426	12	0.851	0.000
L66	12.917 - 12.667	0.880	12	0.677	0.000
L67	12.667 - 12.5	0.845	12	0.665	0.000
L68	12.5 - 12.25	0.822	12	0.658	0.000
L69	12.25 - 12	0.788	12	0.644	0.000
L70	12 - 11.75	0.754	12	0.631	0.000
L71	11.75 - 8.5	0.722	12	0.615	0.000
L72	8.5 - 8.25	0.372	12	0.413	0.000
L73	8.25 - 7	0.351	12	0.402	0.000
L74	7 - 6.75	0.252	12	0.347	0.000
L75	6.75 - 1.75	0.235	12	0.335	0.000
L76	1.75 - 0	0.016	12	0.085	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
144.000	(2) EPBQ-654L8H8-L2 w/ Mount	24	128.325	9.235	0.013	2435
	Pipe					
133.000	VHLP2-23	24	107.437	8.903	0.012	721
130.000	(2) APXVSPP18-C-A20 w/ Mount	24	101.988	8.579	0.011	540
	Pipe					
120.000	MX08FRO665-21 w/ Mount Pipe	24	85.407	7.481	0.006	823
110.000	SBNHH-1D65B w/ Mount Pipe	24	70.616	6.673	0.004	713
100.000	APXVAARR24 43-U-NA20 w/	24	57.486	5.889	0.003	763
	Mount Pipe					
50.000	KS24019-L112A	12	13.644	2.557	0.001	1283

Compression Checks

Pole Design Data

Page 81 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	$\frac{1}{\phi P_n}$
L1	144.25 -	TP12.75x12.75x0.375	5.000	0.000	0.0	14.579	-4.488	603.569	0.007
	139.25 (1)								
L2	139.25 - 134.75 (2)	TP12.75x12.75x0.375	4.500	0.000	0.0	14.579	-4.770	603.569	0.008
L3	134.75 -	TP13.48x13.48x0.375	0.500	0.000	0.0	15.439	-4.806	639.173	0.008
	134.25 (3)								
L4	134.25 -	TP14.466x13.48x0.188	5.000	0.000	0.0	8.621	-8.607	504.301	0.017
L5	129.25 (4) 129.25 -	TP15.452x14.466x0.188	5.000	0.000	0.0	9.216	-8.843	539.118	0.016
LJ	124.25 (5)	11 15.452214.40020.188	5.000	0.000	0.0	9.210	-0.045	559.118	0.010
L6	124.25 -	TP15.616x15.452x0.188	0.834	0.000	0.0	9.315	-8.904	544.926	0.016
	123.416 (6)		0.050	0.000	0.0	0 (100	0.041	1.501.650	0.007
L7	123.416 - 123.166 (7)	TP15.665x15.616x0.538	0.250	0.000	0.0	26.183	-8.941	1531.670	0.006
L8	123.166 -	TP16.651x15.665x0.513	5.000	0.000	0.0	26.633	-12.361	1558.020	0.008
	118.166 (8)								
L9	118.166 -	TP17.637x16.651x0.488	5.000	0.000	0.0	26.920	-12.950	1574.840	0.008
L10	113.166 (9) 113.166 -	TP18.36x17.637x0.475	3.666	0.000	0.0	27.355	-16.556	1600.250	0.010
LIU	109.5 (10)	11 10.50X17.057X0.475	5.000	0.000	0.0	27.555	10.550	1000.250	0.010
L11	109.5 - 109.25	TP18.409x18.36x0.588	0.250	0.000	0.0	33.714	-16.611	1972.260	0.008
T 10	(11)	TD10 20(18 4000 5(2	4.500	0.000	0.0	22.021	17 222	1984.990	0.000
L12	109.25 - 104.75 (12)	TP19.296x18.409x0.563	4.500	0.000	0.0	33.931	-17.332	1984.990	0.009
L13	104.75 - 104.5	TP19.346x19.296x0.775	0.250	0.000	0.0	46.343	-17.397	2711.050	0.006
	(13)								
L14	104.5 -	TP19.756x19.346x0.763	2.084	0.000	0.0	46.635	-17.825	2728.130	0.007
L15	102.416 (14) 102.416 -	TP19.806x19.756x0.563	0.250	0.000	0.0	34.854	-17.883	2038.970	0.009
LIJ	102.166 (15)	11 19:000x19:750x0:505	0.250	0.000	0.0	51.051	17.005	2050.970	0.009
L16	102.166 -	TP20.479x19.806x0.55	3.416	0.000	0.0	35.295	-21.892	2064.730	0.011
1.17	98.75 (16)	TD20 52920 4700 929	0.250	0.000	0.0	52 102	21.074	2106 440	0.007
L17	98.75 - 98.5 (17)	TP20.528x20.479x0.838	0.250	0.000	0.0	53.102	-21.974	3106.440	0.007
L18	98.5 - 97.5 (18)	TP20.726x20.528x0.838	1.000	0.000	0.0	53.633	-22.227	3137.550	0.007
L19	97.5 - 97.25	TP20.775x20.726x0.75	0.250	0.000	0.0	48.360	-22.299	2829.070	0.008
L20	(19) 97.25 - 92 (20)	TP21.81x20.775x0.738	5.250	0.000	0.0	48.379	-22.710	2830.160	0.008
L20 L21	97.23 - 92 (20) 92 - 90.552	TP21.73x20.735x0.8	5.000	0.000	0.0	48.379 53.916	-22.710	3154.100	0.008
221	(21)	11 21.10 120.100 100.0	2.000	0.000	0.0	00.010	2	515 1100	0.000
L22	90.552 - 89.25	TP21.989x21.73x0.775	1.302	0.000	0.0	52.941	-25.118	3097.030	0.008
L23	(22) 89.25 - 89 (23)	TP22.039x21.989x1	0.250	0.000	0.0	67.746	-25.212	3963.150	0.006
L23 L24	89.23 - 89 (23) 89 - 88.25 (24)	TP22.189x22.039x0.975	0.230	0.000	0.0	66.600	-25.212	3896.090	0.000
L25	88.25 - 88 (25)	TP22.238x22.189x0.763	0.250	0.000	0.0	52.729	-25.513	3084.620	0.008
L26	88 - 87.833	TP22.272x22.238x0.763	0.167	0.000	0.0	52.810	-25.560	3089.390	0.008
	(26)								
L27	87.833 - 87.583 (27)	TP22.321x22.272x0.675	0.250	0.000	0.0	47.048	-25.621	2752.330	0.009
L28	87.583 (27)	TP23.317x22.321x0.65	5.000	0.000	0.0	47.442	-26.860	2775.340	0.010
	82.583 (28)								
L29	82.583 -	TP24.312x23.317x0.625	5.000	0.000	0.0	47.671	-28.142	2788.740	0.010
L30	77.583 (29) 77.583 - 77	TP24.428x24.312x0.625	0.583	0.000	0.0	47.904	-28.301	2802.410	0.010
L30	(30)	1127.720727.31230.023	0.585	0.000	0.0	77.704	-20.301	2002.410	0.010
L31	77 - 76.75 (31)	TP24.478x24.428x0.825	0.250	0.000	0.0	62.835	-28.384	3675.830	0.008
L32	76.75 - 76.333	TP24.561x24.478x0.825	0.417	0.000	0.0	63.055	-28.508	3688.730	0.008
1.22	(32)	TD04 (11-04 5(1, 0.905	0.250	0.000	0.0	(2 100	20 502	2606 470	0.000
L33	76.333 - 76.083 (33)	TP24.611x24.561x0.825	0.250	0.000	0.0	63.188	-28.583	3696.470	0.008

Page 82 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
L34	76.083 - 74.25 (34)	TP24.976x24.611x0.8	1.833	0.000	0.0	62.277	-29.093	3643.220	0.008
L35	74.25 - 74 (35)	TP25.026x24.976x0.888	0.250	0.000	0.0	68.981	-29.191	4035.390	0.007
L36	74 - 73.75 (36)	TP25.076x25.026x0.888	0.250	0.000	0.0	69.123	-29.267	4043.710	0.007
L37	73.75 - 73.5 (37)	TP25.125x25.076x0.913	0.250	0.000	0.0	71.143	-29.346	4161.880	0.007
L38	73.5 - 68.5 (38)	TP26.121x25.125x0.875	5.000	0.000	0.0	71.130	-30.907	4161.110	0.007
L39	68.5 - 63.5 (39)	TP27.116x26.121x0.85	5.000	0.000	0.0	71.891	-32.502	4205.620	0.008
L40	63.5 - 60.5 (40)	TP27.714x27.116x0.825	3.000	0.000	0.0	71.430	-33.474	4178.630	0.008
L41	60.5 - 60.25 (41)	TP27.763x27.714x0.825	0.250	0.000	0.0	71.562	-33.566	4186.370	0.008
L42	60.25 - 59.5 (42)	TP27.913x27.763x0.825	0.750	0.000	0.0	71.959	-33.804	4209.570	0.008
L43	59.5 - 59.25 (43)	TP27.962x27.913x0.888	0.250	0.000	0.0	77.373	-33.898	4526.350	0.007
L44	59.25 - 54.25 (44)	TP28.958x27.962x0.85	5.000	0.000	0.0	76.932	-35.602	4500.500	0.008
L45	54.25 - 45.802 (45)	TP30.64x28.958x0.838	8.448	0.000	0.0	78.116	-37.077	4569.780	0.008
L46	45.802 - 44.802 (46)	TP30.333x29.304x0.838	5.198	0.000	0.0	79.542	-40.211	4653.200	0.009
L47	44.802 - 43.583 (47)	TP30.574x30.333x0.838	1.219	0.000	0.0	80.192	-40.648	4691.260	0.009
L48	43.583 - 43.333 (48)	TP30.624x30.574x0.85	0.250	0.000	0.0	81.491	-40.757	4767.200	0.009
L49	43.333 - 43.166 (49)	TP30.657x30.624x0.85	0.167	0.000	0.0	81.581	-40.822	4772.490	0.009
L50	43.166 - 42.916 (50)	TP30.706x30.657x0.938	0.250	0.000	0.0	89.864	-40.920	5257.060	0.008
L51	42.916 - 39 (51)	TP31.481x30.706x0.913	3.916	0.000	0.0	89.819	-42.460	5254.390	0.008
L52	39 - 38.75 (52)	TP31.531x31.481x0.95	0.250	0.000	0.0	93.547	-42.578	5472.470	0.008
L53	38.75 - 37.166 (53)	TP31.844x31.531x0.938	1.584	0.000	0.0	93.300	-43.221	5458.030	0.008
L54	37.166 - 36.916 (54)	TP31.894x31.844x0.888	0.250	0.000	0.0	88.608	-43.339	5183.570	0.008
L55	36.916 - 34 (55)	TP32.471x31.894x0.888	2.916	0.000	0.0	90.257	-44.512	5280.050	0.008
L56	34 - 33.75 (56)	TP32.52x32.471x0.875	0.250	0.000	0.0	89.161	-44.627	5215.900	0.009
L57	33.75 - 29.75 (57)	TP33.312x32.52x0.863	4.000	0.000	0.0	89.021	-45.428	5207.730	0.009
L58	29.75 - 29.5 (58)	TP33.361x33.312x0.863	0.250	0.000	0.0	90.120	-46.211	5272.040	0.009
L59	29.5 - 24.5 (59)	TP34.351x33.361x0.85	5.000	0.000	0.0	88.984	-46.322	5205.560	0.009
L60	24.5 - 23 (60)	TP34.648x34.351x0.838	1.500	0.000	0.0	90.378	-48.337	5287.090	0.009
L61	23 - 22.75 (61)	TP34.697x34.648x0.963	0.250	0.000	0.0	104.400	-48.931	6107.370	0.008
L62	22.75 - 21.583 (62)	TP34.928x34.697x0.963	1.167	0.000	0.0	104.553	-49.051	6116.340	0.008
L63	21.583 - 21.333 (63)	TP34.978x34.928x0.85	0.250	0.000	0.0	93.272	-49.557	5456.440	0.009
L64	21.333 - 16.333 (64)	TP35.967x34.978x0.838	5.000	0.000	0.0	92.068	-49.673	5385.980	0.009
L65	16.333 - 12.917 (65)	TP36.644x35.967x0.825	3.416	0.000	0.0	93.356	-51.809	5461.320	0.009
L66	12.917 - 12.667 (66)	TP36.693x36.644x0.913	0.250	0.000	0.0	104.987	-53.271	6141.720	0.009
L67	12.667 - 12.5 (67)	TP36.726x36.693x0.913	0.167	0.000	0.0	105.132	-53.387	6150.220	0.009
L68	12.5 - 12.25 (68)	TP36.776x36.726x0.763	0.250	0.000	0.0	88.299	-53.467	5165.520	0.010

<i>tnxTower</i>	
01000-01000	

Page 83 of 92 11:01:28 10/04/21

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Project

Client

Crown Castle

Designed by Jayaraj B

Date

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
110.	ft		ft	ft		in^2	Κ	K	$\frac{1}{\phi P_n}$
L69	12.25 - 12 (69)	TP36.825x36.776x0.763	0.250	0.000	0.0	88.421	-53.572	5172.630	0.010
L70	12 - 11.75 (70)	TP36.874x36.825x0.663	0.250	0.000	0.0	77.144	-53.679	4512.900	0.012
L71	11.75 - 8.5 (71)	TP37.518x36.874x0.65	3.250	0.000	0.0	75.818	-53.792	4435.340	0.012
L72	8.5 - 8.25 (72)	TP37.567x37.518x0.925	0.250	0.000	0.0	108.991	-55.087	6376.000	0.009
L73	8.25 - 7 (73)	TP37.815x37.567x0.913	1.250	0.000	0.0	107.701	-55.219	6300.490	0.009
L74	7 - 6.75 (74)	TP37.864x37.815x0.813	0.250	0.000	0.0	96.807	-55.812	5663.190	0.010
L75	6.75 - 1.75 (75)	TP38.854x37.864x0.788	5.000	0.000	0.0	94.017	-55.931	5499.990	0.010
L76	1.75 - 0 (76)	TP39.2x38.854x0.788	1.750	0.000	0.0	96.526	-58.131	5646.780	0.010

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.	A		trin ft	1: G	M _{ux}	hin ft		M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	144.25 -	TP12.75x12.75x0.375	24.331	198.187	0.123	0.000	198.187	0.00
L2	139.25 (1)	TD12 75-12 75-0 275	51.924	100 107	0.2(1	0.000	100 107	0.000
L2	139.25 - 134.75 (2)	TP12.75x12.75x0.375	51.824	198.187	0.261	0.000	198.187	0.00
L3	134.75 -	TP13.48x13.48x0.375	54.921	222.251	0.247	0.000	222.251	0.00
1.5	134.25 (3)	11 15.40.15.40.0.575	54.921	222.231	0.247	0.000	222.231	0.00
L4	134.25 -	TP14.466x13.48x0.188	90.922	183.885	0.494	0.000	183.885	0.00
2.	129.25 (4)		,	1001000	01121	0.000	1001000	0.00
L5	129.25 -	TP15.452x14.466x0.188	146.002	210.328	0.694	0.000	210.328	0.00
	124.25 (5)							
L6	124.25 -	TP15.616x15.452x0.188	155.307	214.735	0.723	0.000	214.735	0.00
	123.416 (6)							
L7	123.416 -	TP15.665x15.616x0.538	158.102	578.929	0.273	0.000	578.929	0.00
	123.166 (7)			(0.0 5 0 0	0.040		(20.522	
L8	123.166 -	TP16.651x15.665x0.513	220.250	630.532	0.349	0.000	630.532	0.00
L9	118.166 (8) 118.166 -	TP17.637x16.651x0.488	293.073	679.449	0.431	0.000	679.449	0.00
L9	113.166 (9)	1P1/.03/X10.031X0.488	293.073	0/9.449	0.451	0.000	679.449	0.00
L10	113.166 -	TP18.36x17.637x0.475	349.473	721.324	0.484	0.000	721.324	0.00
LIU	109.5 (10)	11 10.50x17.057x0.475	547.475	721.324	0.404	0.000	721.524	0.00
L11	109.5 - 109.25	TP18.409x18.36x0.588	354.118	880.375	0.402	0.000	880.375	0.00
2	(11)			0001070	0	0.000	0001070	0.00
L12	109.25 -	TP19.296x18.409x0.563	438.588	934.067	0.470	0.000	934.067	0.00
	104.75 (12)							
L13	104.75 - 104.5	TP19.346x19.296x0.775	443.330	1250.400	0.355	0.000	1250.400	0.00
	(13)							
L14	104.5 -	TP19.756x19.346x0.763	483.083	1288.933	0.375	0.000	1288.933	0.00
	102.416 (14)			006.005	.			
L15	102.416 -	TP19.806x19.756x0.563	487.879	986.325	0.495	0.000	986.325	0.00
L16	102.166 (15) 102.166 -	TD20 470v10 806v0 55	558.782	1036.033	0.539	0.000	1036.033	0.00
L10	98.75 (16)	TP20.479x19.806x0.55	558.782	1056.055	0.339	0.000	1030.035	0.00
L17	98.75 - 98.5	TP20.528x20.479x0.838	564.262	1518.050	0.372	0.000	1518.050	0.00
LI/	(17)	1120.520820.17580.050	501.202	1910.090	0.572	0.000	1510.050	0.00
L18	98.5 - 97.5 (18)	TP20.726x20.528x0.838	586.245	1549.233	0.378	0.000	1549.233	0.00
L19	97.5 - 97.25	TP20.775x20.726x0.75	591.757	1412.833	0.419	0.000	1412.833	0.00
	(19)							
L20	97.25 - 92 (20)	TP21.81x20.775x0.738	629.337	1439.625	0.437	0.000	1439.625	0.00
L21	92 - 90.552	TP21.73x20.735x0.8	741.925	1645.142	0.451	0.000	1645.142	0.00
	(21)							
L22	90.552 - 89.25	TP21.989x21.73x0.775	771.672	1639.983	0.471	0.000	1639.983	0.00
	(22)							

Page 84 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

L24 L25 L26 L27 L28 L29 L30	ft 89.25 - 89 (23) 89 - 88.25 (24) 88.25 - 88 (25) 88 - 87.833 (26) 87.583 - 87.583 (27) 87.583 - 82.583 (28) 82.583 - 77.583 (29) 77.583 - 77 (30) 77 - 76.75 (31) 76.75 - 76.333 (32) 76.333 -	TP22.039x21.989x1 TP22.189x22.039x0.975 TP22.238x22.189x0.763 TP22.272x22.238x0.763 TP22.321x22.272x0.675 TP23.317x22.321x0.65 TP24.312x23.317x0.625 TP24.428x24.312x0.625 TP24.428x24.428x0.825 TP24.4561x24.478x0.825	kip-ft 777.402 794.629 800.384 804.232 809.996 926.342 1044.675 1058.600 1064.575	kip-ft 2059.442 2044.433 1655.175 1660.392 1494.833 1582.242 1665.175 1681.742	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	kip-ft 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	kip-ft 2059.442 2044.433 1655.175 1660.392 1494.833 1582.242 1665.175	$\begin{tabular}{ c c c c c c } \hline M_{ty} & ϕM_{ny} \\ \hline ϕM_{ny} & 0.000 \\ \hline 0.000 & 0.000 \\ \hline \end{tabular}$
L24 L25 L26 L27 L28 L29 L30 L31 L32	89 - 88.25 (24) 88.25 - 88 (25) 88 - 87.833 (26) 87.833 - 87.583 (27) 87.583 - 82.583 (28) 82.583 - 77.583 - 77.583 - 77.583 - 77.583 - 77.583 - 77.675 (31) 76.75 - 76.333 (32) 76.333 -	TP22.189x22.039x0.975 TP22.238x22.189x0.763 TP22.272x22.238x0.763 TP22.321x22.272x0.675 TP23.317x22.321x0.65 TP24.312x23.317x0.625 TP24.428x24.312x0.625 TP24.478x24.428x0.825	794,629 800.384 804.232 809.996 926.342 1044.675 1058.600 1064.575	2044.433 1655.175 1660.392 1494.833 1582.242 1665.175 1681.742	0.389 0.484 0.484 0.542 0.585 0.627	0.000 0.000 0.000 0.000 0.000 0.000	2044.433 1655.175 1660.392 1494.833 1582.242 1665.175	0.000 0.000 0.000 0.000 0.000 0.000
L25 L26 L27 L28 L29 L30 L31 L32	88.25 - 88 (25) 88 - 87.833 (26) 87.833 - 87.583 (27) 87.583 - 82.583 (28) 82.583 (28) 82.583 (29) 77.583 - 77 (30) 77 - 76.75 (31) 76.75 - 76.333 (32) 76.333 -	TP22.238x22.189x0.763 TP22.272x22.238x0.763 TP22.321x22.272x0.675 TP23.317x22.321x0.65 TP24.312x23.317x0.625 TP24.428x24.312x0.625 TP24.478x24.428x0.825	800.384 804.232 809.996 926.342 1044.675 1058.600 1064.575	1655.175 1660.392 1494.833 1582.242 1665.175 1681.742	0.484 0.484 0.542 0.585 0.627	0.000 0.000 0.000 0.000 0.000	1655.175 1660.392 1494.833 1582.242 1665.175	0.000 0.000 0.000 0.000 0.000
L26 L27 L28 L29 L30 L31 L32	88 - 87.833 (26) 87.833 - 87.583 (27) 87.583 - 82.583 (28) 82.583 - 77.583 (29) 77.583 - 77 (30) 77 - 76.75 (31) 76.75 - 76.333 (32) 76.333 -	TP22.272x22.238x0.763 TP22.321x22.272x0.675 TP23.317x22.321x0.65 TP24.312x23.317x0.625 TP24.428x24.312x0.625 TP24.478x24.428x0.825	804.232 809.996 926.342 1044.675 1058.600 1064.575	1660.392 1494.833 1582.242 1665.175 1681.742	0.484 0.542 0.585 0.627	0.000 0.000 0.000 0.000	1660.392 1494.833 1582.242 1665.175	0.000 0.000 0.000 0.000
L27 L28 L29 L30 L31 L32	(26) 87.833 - 87.583 (27) 87.583 - 82.583 (28) 82.583 - 77.583 (29) 77.583 - 77 (30) 77 - 76.75 (31) 76.75 - 76.333 (32) 76.333 -	TP22.321x22.272x0.675 TP23.317x22.321x0.65 TP24.312x23.317x0.625 TP24.428x24.312x0.625 TP24.478x24.428x0.825	809.996 926.342 1044.675 1058.600 1064.575	1494.833 1582.242 1665.175 1681.742	0.542 0.585 0.627	0.000 0.000 0.000	1494.833 1582.242 1665.175	0.000 0.000 0.000
L28 L29 L30 L31 L32	87.833 - 87.583 (27) 87.583 - 82.583 (28) 82.583 - 77.583 (29) 77.583 - 77 (30) 77 - 76.75 (31) 76.75 - 76.333 (32) 76.333 -	TP23.317x22.321x0.65 TP24.312x23.317x0.625 TP24.428x24.312x0.625 TP24.478x24.428x0.825	926.342 1044.675 1058.600 1064.575	1582.242 1665.175 1681.742	0.585 0.627	0.000 0.000	1582.242 1665.175	0.000 0.000
L29 L30 L31 L32	82.583 (28) 82.583 - 77.583 (29) 77.583 - 77 (30) 77 - 76.75 (31) 76.75 - 76.333 (32) 76.333 -	TP24.312x23.317x0.625 TP24.428x24.312x0.625 TP24.478x24.428x0.825	1044.675 1058.600 1064.575	1665.175 1681.742	0.627	0.000	1665.175	0.000
L30 L31 L32	77.583 (29) 77.583 - 77 (30) 77 - 76.75 (31) 76.75 - 76.333 (32) 76.333 -	TP24.428x24.312x0.625 TP24.478x24.428x0.825	1058.600 1064.575	1681.742				
L31 L32	(30) 77 - 76.75 (31) 76.75 - 76.333 (32) 76.333 -	TP24.478x24.428x0.825	1064.575		0.629	0.000	1 (0 1 7 4 0	
L32	76.75 - 76.333 (32) 76.333 -						1681.742	0.000
	(32) 76.333 -	TP24.561x24.478x0.825	1074 567	2173.708	0.490	0.000	2173.708	0.000
L33	76.333 -		1074.567	2189.250	0.491	0.000	2189.250	0.000
	76.083 (33)	TP24.611x24.561x0.825	1080.558	2198.600	0.491	0.000	2198.600	0.000
L34	76.083 - 74.25	TP24.976x24.611x0.8	1124.683	2205.850	0.510	0.000	2205.850	0.000
L35	74.25 - 74 (35)	TP25.026x24.976x0.888	1130.725	2430.833	0.465	0.000	2430.833	0.000
L36	74 - 73.75 (36)	TP25.076x25.026x0.888	1136.775	2441.050	0.466	0.000	2441.050	0.000
L37	73.75 - 73.5 (37)	TP25.125x25.076x0.913	1142.825	2512.542	0.455	0.000	2512.542	0.000
L38	73.5 - 68.5 (38)	TP26.121x25.125x0.875	1265.092	2626.917	0.482	0.000	2626.917	0.000
	68.5 - 63.5 (39)	TP27.116x26.121x0.85	1389.633	2768.483	0.502	0.000	2768.483	0.000
	63.5 - 60.5 (40)	TP27.714x27.116x0.825	1465.433	2820.483	0.520	0.000	2820.483	0.000
L41	60.5 - 60.25 (41)	TP27.763x27.714x0.825	1471.792	2831.083	0.520	0.000	2831.083	0.000
L42	60.25 - 59.5 (42)	TP27.913x27.763x0.825	1490.883	2863.033	0.521	0.000	2863.033	0.000
L43	59.5 - 59.25 (43)	TP27.962x27.913x0.888	1497.258	3070.117	0.488	0.000	3070.117	0.000
L44	59.25 - 54.25 (44)	TP28.958x27.962x0.85	1625.975	3176.850	0.512	0.000	3176.850	0.000
L45	54.25 - 45.802 (45)	TP30.64x28.958x0.838	1737.133	3328.592	0.522	0.000	3328.592	0.000
L46	45.802 - 44.802 (46)	TP30.333x29.304x0.838	1875.942	3452.967	0.543	0.000	3452.967	0.000
L47	44.802 - 43.583 (47)	TP30.574x30.333x0.838	1908.892	3510.467	0.544	0.000	3510.467	0.000
L48	43.583 - 43.333 (48)	TP30.624x30.574x0.85	1915.667	3570.392	0.537	0.000	3570.392	0.000
L49	43.333 - 43.166 (49)	TP30.657x30.624x0.85	1920.192	3578.433	0.537	0.000	3578.433	0.000
L50	43.166 - 42.916 (50)	TP30.706x30.657x0.938	1926.975	3925.383	0.491	0.000	3925.383	0.000
L51	42.916 - 39 (51)	TP31.481x30.706x0.913	2033.833	4035.258	0.504	0.000	4035.258	0.000
L52	39 - 38.75 (52)	TP31.531x31.481x0.95	2040.700	4199.433	0.486	0.000	4199.433	0.000
L53	38.75 - 37.166 (53)	TP31.844x31.531x0.938	2084.308	4236.008	0.492	0.000	4236.008	0.000
L54	37.166 - 36.916 (54)	TP31.894x31.844x0.888	2091.208	4042.658	0.517	0.000	4042.658	0.000
L55	36.916 - 34 (55)	TP32.471x31.894x0.888	2171.958	4196.683	0.518	0.000	4196.683	0.000
L56 L57	34 - 33.75 (56) 33.75 - 29.75	TP32.52x32.471x0.875 TP33.312x32.52x0.863	2178.908 2234.575	4155.650 4205.717	0.524 0.531	$0.000 \\ 0.000$	4155.650 4205.717	$0.000 \\ 0.000$
L58	(57) 29.75 - 29.5	TP33.361x33.312x0.863	2290.433	4311.608	0.531	0.000	4311.608	0.000

Page 85 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
110.	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
	(58)				1			1
L59	29.5 - 24.5 (59)	TP34.351x33.361x0.85	2297.425	4267.175	0.538	0.000	4267.175	0.000
L60	24.5 - 23 (60)	TP34.648x34.351x0.838	2437.908	4472.633	0.545	0.000	4472.633	0.000
L61	23 - 22.75 (61)	TP34.697x34.648x0.963	2480.267	5174.958	0.479	0.000	5174.958	0.000
L62	22.75 - 21.583	TP34.928x34.697x0.963	2487.333	5190.383	0.479	0.000	5190.383	0.000
	(62)							
L63	21.583 -	TP34.978x34.928x0.85	2520.375	4693.900	0.537	0.000	4693.900	0.000
	21.333 (63)							
L64	21.333 -	TP35.967x34.978x0.838	2527.458	4643.575	0.544	0.000	4643.575	0.000
	16.333 (64)							
L65	16.333 -	TP36.644x35.967x0.825	2669.675	4851.733	0.550	0.000	4851.733	0.000
	12.917 (65)							
L66	12.917 -	TP36.693x36.644x0.913	2767.400	5536.417	0.500	0.000	5536.417	0.000
	12.667 (66)							
L67	12.667 - 12.5	TP36.726x36.693x0.913	2774.575	5551.958	0.500	0.000	5551.958	0.000
	(67)							
L68	12.5 - 12.25	TP36.776x36.726x0.763	2779.367	4706.633	0.591	0.000	4706.633	0.000
	(68)							
L69	12.25 - 12 (69)	TP36.825x36.776x0.763	2786.542	4719.725	0.590	0.000	4719.725	0.000
L70	12 - 11.75 (70)	TP36.874x36.825x0.663	2793.725	4146.442	0.674	0.000	4146.442	0.000
L71	11.75 - 8.5 (71)	TP37.518x36.874x0.65	2800.900	4083.675	0.686	0.000	4083.675	0.000
L72	8.5 - 8.25 (72)	TP37.567x37.518x0.925	2894.650	5887.708	0.492	0.000	5887.708	0.000
L73	8.25 - 7 (73)	TP37.815x37.567x0.913	2901.900	5830.017	0.498	0.000	5830.017	0.000
L74	7 - 6.75 (74)	TP37.864x37.815x0.813	2938.217	5305.175	0.554	0.000	5305.175	0.000
L75	6.75 - 1.75 (75)	TP38.854x37.864x0.788	2945.500	5166.292	0.570	0.000	5166.292	0.000
L76	1.75 - 0 (76)	TP39.2x38.854x0.788	3092.425	5448.700	0.568	0.000	5448.700	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_u	ϕV_n	$Ratio V_u$	Actual T_u	ϕT_n	Ratio T_u
110.	ft		$K^{\prime u}$	Κ	$\frac{v_u}{\Phi V_n}$	kip-ft	kip-ft	$\frac{1}{\phi T_n}$
L1	144.25 -	TP12.75x12.75x0.375	6.032	181.071	0.033	0.000	197.003	0.000
	139.25 (1)							
L2	139.25 -	TP12.75x12.75x0.375	6.188	181.071	0.034	0.000	197.003	0.000
	134.75 (2)							
L3	134.75 -	TP13.48x13.48x0.375	6.205	191.752	0.032	0.000	220.931	0.000
	134.25 (3)							
L4	134.25 -	TP14.466x13.48x0.188	10.807	151.290	0.071	0.161	190.015	0.001
	129.25 (4)							
L5	129.25 -	TP15.452x14.466x0.188	11.152	161.736	0.069	0.231	217.158	0.001
	124.25 (5)							
L6	124.25 -	TP15.616x15.452x0.188	11.184	163.478	0.068	0.231	221.863	0.001
	123.416 (6)							
L7	123.416 -	TP15.665x15.616x0.538	11.192	459.502	0.024	0.231	611.454	0.000
	123.166 (7)							
L8	123.166 -	TP16.651x15.665x0.513	14.379	467.405	0.031	0.319	663.528	0.000
	118.166 (8)							
L9	118.166 -	TP17.637x16.651x0.488	14.769	472.451	0.031	0.334	712.699	0.000
	113.166 (9)							
L10	113.166 -	TP18.36x17.637x0.475	18.582	480.074	0.039	0.336	755.248	0.000
	109.5 (10)							
L11	109.5 - 109.25	TP18.409x18.36x0.588	18.591	591.677	0.031	0.004	927.533	0.000
	(11)							
L12	109.25 -	TP19.296x18.409x0.563	18.970	595.497	0.032	0.003	981.300	0.000
	104.75 (12)							

Page 86 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation	Size	Actual V_u	ϕV_n	$Ratio V_u$	Actual T _u	ϕT_n	Ratio T_u
	ft		ĸ	K	$\frac{1}{\phi V_n}$	kip-ft	kip-ft	ϕT_n
L13	104.75 - 104.5	TP19.346x19.296x0.775	18.983	813.314	0.023	0.003	1328.558	0.000
L14	(13) 104.5 -	TP19.756x19.346x0.763	19.182	818.440	0.023	0.007	1367.417	0.000
T 15	102.416 (14)		10 107	(11 (01	0.021	0.009	1025 400	0.000
L15	102.416 - 102.166 (15)	TP19.806x19.756x0.563	19.197	611.691	0.031	0.008	1035.400	0.000
L16	102.166 - 98.75 (16)	TP20.479x19.806x0.55	21.930	619.420	0.035	0.014	1085.858	0.000
L17	98.75 - 98.5 (17)	TP20.528x20.479x0.838	21.940	931.933	0.024	0.014	1614.175	0.000
L18	98.5 - 97.5 (18)	TP20.726x20.528x0.838	22.046	941.264	0.023	0.016	1646.667	0.000
L18 L19	97.5 - 97.25	TP20.775x20.726x0.75	22.040	848.721	0.025	0.016	1494.983	0.000
L19	(19)	1F20.773X20.720X0.75	22.002	040.721	0.020	0.010	1494.905	0.000
L20	97.25 - 92 (20)	TP21.81x20.775x0.738	22.234	849.049	0.026	0.016	1521.492	0.000
L21	92 - 90.552	TP21.73x20.735x0.8	22.811	946.229	0.024	0.016	1742.083	0.000
L22	(21) 90.552 - 89.25	TP21.989x21.73x0.775	22.928	929.108	0.025	0.017	1733.792	0.000
	(22)			1100.070	0.010	0.015		
L23	89.25 - 89 (23)	TP22.039x21.989x1	22.938	1188.950	0.019	0.017	2200.350	0.000
L24	89 - 88.25 (24)	TP22.189x22.039x0.975	23.020	1168.830	0.020	0.018	2181.042	0.000
L25	88.25 - 88 (25)	TP22.238x22.189x0.763	23.037	925.385	0.025	0.019	1748.125	0.000
L26	88 - 87.833 (26)	TP22.272x22.238x0.763	23.052	926.817	0.025	0.019	1753.542	0.000
L27	87.833 - 87.583 (27)	TP22.321x22.272x0.675	23.073	825.698	0.028	0.019	1572.192	0.000
L28	87.583 - 82.583 (28)	TP23.317x22.321x0.65	23.493	832.602	0.028	0.024	1660.075	0.000
L29	82.583 -	TP24.312x23.317x0.625	23.886	836.622	0.029	0.026	1743.192	0.000
L30	77.583 (29) 77.583 - 77 (30)	TP24.428x24.312x0.625	23.922	840.722	0.028	0.026	1760.317	0.000
L31	77 - 76.75 (31)	TP24.478x24.428x0.825	23.937	1102.750	0.022	0.026	2294.383	0.000
L32	76.75 - 76.333 (32)	TP24.561x24.478x0.825	23.977	1106.620	0.022	0.026	2310.525	0.000
L33	76.333 - 76.083 (33)	TP24.611x24.561x0.825	23.997	1108.940	0.022	0.027	2320.225	0.000
L34	76.083 - 74.25 (34)	TP24.976x24.611x0.8	24.187	1092.970	0.022	0.027	2324.292	0.000
L35	74.25 - 74 (35)	TP25.026x24.976x0.888	24.183	1210.620	0.020	0.022	2570.467	0.000
L35 L36	74 - 73.75 (36)	TP25.076x25.026x0.888	24.207	1210.020	0.020	0.022	2581.075	0.000
L30 L37	73.75 - 73.5	TP25.125x25.076x0.913	24.230	1248.560	0.020	0.021	2659.225	0.000
	(37)							
L38	73.5 - 68.5 (38)	TP26.121x25.125x0.875	24.703	1248.330	0.020	0.003	2772.167	0.000
L39	68.5 - 63.5 (39)	TP27.116x26.121x0.85	25.152	1261.680	0.020	0.026	2915.075	0.000
L40	63.5 - 60.5 (40)	TP27.714x27.116x0.825	25.422	1253.590	0.020	0.039	2964.992	0.000
L41	60.5 - 60.25 (41)	TP27.763x27.714x0.825	25.432	1255.910	0.020	0.040	2975.975	0.000
L42	60.25 - 59.5 (42)	TP27.913x27.763x0.825	25.508	1262.870	0.020	0.043	3009.058	0.000
L43	59.5 - 59.25	TP27.962x27.913x0.888	25.523	1357.910	0.019	0.044	3233.983	0.000
L44	(43) 59.25 - 54.25 (44)	TP28.958x27.962x0.85	25.991	1350.150	0.019	0.068	3338.192	0.000
L45	54.25 - 45.802 (45)	TP30.64x28.958x0.838	26.362	1370.930	0.019	0.089	3493.133	0.000
L46	45.802 - 44.802 (46)	TP30.333x29.304x0.838	27.003	1395.960	0.019	0.115	3621.825	0.000
L47	44.802 - 43.583 (47)	TP30.574x30.333x0.838	27.103	1407.380	0.019	0.115	3681.317	0.000
L48	43.583 (47) 43.583 -	TP30.624x30.574x0.85	27.102	1430.160	0.019	0.114	3745.558	0.000

Page 87 of 92

Date

Project

Client

Job

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_{u}		V_u	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
	43.333 (48)							
L49	43.333 -	TP30.657x30.624x0.85	27.114	1431.750	0.019	0.114	3753.883	0.000
	43.166 (49)							
L50	43.166 -	TP30.706x30.657x0.938	27.136	1577.120	0.017	0.114	4129.758	0.000
	42.916 (50)							
L51	42.916 - 39	TP31.481x30.706x0.913	27.471	1576.320	0.017	0.114	4238.592	0.000
	(51)							
L52	39 - 38.75 (52)	TP31.531x31.481x0.95	27.470	1641.740	0.017	0.114	4416.233	0.000
L53	38.75 - 37.166	TP31.844x31.531x0.938	27.623	1637.410	0.017	0.115	4451.542	0.000
	(53)							
L54	37.166 -	TP31.894x31.844x0.888	27.616	1555.070	0.018	0.115	4241.300	0.000
	36.916 (54)							
L55	36.916 - 34	TP32.471x31.894x0.888	27.801	1584.020	0.018	0.115	4400.650	0.000
	(55)							
L56	34 - 33.75 (56)	TP32.52x32.471x0.875	27.789	1564.770	0.018	0.115	4355.717	0.000
L57	33.75 - 29.75	TP33.312x32.52x0.863	27.950	1571.970	0.018	0.115	4405.008	0.000
T 50	(57)	TD22 261 22 212 0 062	27.002	1504.000	0.010	0.115	4514 455	0.000
L58	29.75 - 29.5	TP33.361x33.312x0.863	27.993	1584.020	0.018	0.115	4514.475	0.000
T 60	(58)	TD24251 22261 0.05	20.052	1671 170	0.010	0.115	1466.050	0.000
L59	29.5 - 24.5 (59)	TP34.351x33.361x0.85	28.052	1571.170	0.018	0.115	4466.058	0.000
L60	24.5 - 23 (60)	TP34.648x34.351x0.838	28.302	1600.180	0.018	0.115	4675.825	0.000
L61	23 - 22.75 (61)	TP34.697x34.648x0.963	28.285	1834.900	0.015	0.115	5428.967	0.000
L62	22.75 - 21.583	TP34.928x34.697x0.963	28.360	1847.470	0.015	0.115	5444.933	0.000
τ.(2	(62)	TD24 078-24 028-0 85	28 252	1620 210	0.017	0.115	4006 025	0.000
L63	21.583 -	TP34.978x34.928x0.85	28.353	1639.310	0.017	0.115	4906.925	0.000
L64	21.333 (63) 21.333 -	TP35.967x34.978x0.838	28.408	1625.160	0.017	0.115	4852.367	0.000
L04	21.333 - 16.333 (64)	1P35.96/X34.9/8X0.838	28.408	1623.160	0.017	0.115	4852.307	0.000
L65	16.333 -	TP36.644x35.967x0.825	28.610	1648.900	0.017	0.115	5064.658	0.000
L03	12.917 (65)	1150.044x55.907x0.825	28.010	1046.900	0.017	0.115	5004.058	0.000
L66	12.917 (03)	TP36.693x36.644x0.913	28.695	1845.070	0.016	0.115	5791.033	0.000
L00	12.667 (66)	11 30.093230.04420.913	28.095	1845.070	0.010	0.115	5791.055	0.000
L67	12.667 - 12.5	TP36.726x36.693x0.913	28.701	1846.770	0.016	0.115	5807.083	0.000
LUI	(67)	11 50.720250.07520.715	20.701	10-0.770	0.010	0.115	5007.005	0.000
L68	12.5 - 12.25	TP36.776x36.726x0.763	28.713	1551.790	0.019	0.115	4902.275	0.000
LUU	(68)	11 50.770x50.720x0.705	20.715	1551.790	0.017	0.115	4902.275	0.000
L69	12.25 - 12 (69)	TP36.825x36.776x0.763	28.723	1553.920	0.018	0.115	4915.775	0.000
L09 L70	12.23 - 12(0)) 12 - 11.75(70)	TP36.874x36.825x0.663	28.731	1355.720	0.018	0.115	4306.608	0.000
L70 L71	11.75 - 8.5 (71)	TP37.518x36.874x0.65	28.836	1338.480	0.021	0.115	4239.850	0.000
L71 L72	8.5 - 8.25 (72)	TP37.567x37.518x0.925	28.995	1915.390	0.022	0.082	6156.925	0.000
L72 L73	8.25 - 7 (73)	TP37.815x37.567x0.913	29.146	1902.900	0.015	0.082	6094.317	0.000
L73 L74	7 - 6.75 (74)	TP37.864x37.815x0.813	29.149	1701.230	0.015	0.067	5529.792	0.000
L74 L75	6.75 - 1.75 (75)	TP38.854x37.864x0.788	29.264	1658.800	0.017	0.064	5381.242	0.000
L75 L76	1.75 - 0 (76)	TP39.2x38.854x0.788	29.839	1709.450	0.010	0.034	5672.325	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	144.25 - 139.25 (1)	0.007	0.123	0.000	0.033	0.000	0.131	1.050	4.8.2 🖌
L2	139.25 - 134.75 (2)	0.008	0.261	0.000	0.034	0.000	0.271	1.050	4.8.2 🖌

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation	Ratio P_u	$Ratio M_{ux}$	$Ratio \ M_{uy}$	Ratio V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L3	134.75 - 134.25 (3)	0.008	0.247	0.000	0.032	0.000	0.256	1.050	4.8.2 🖌
L4	134.25 - 129.25 (4)	0.017	0.494	0.000	0.071	0.001	0.517	1.050	4.8.2 🗸
L5	129.25 - 124.25 (5)	0.016	0.694	0.000	0.069	0.001	0.715	1.050	4.8.2 🗸
L6	124.25 - 123.416 (6)	0.016	0.723	0.000	0.068	0.001	0.744	1.050	4.8.2 🗸
L7	123.416 - 123.166 (7)	0.006	0.273	0.000	0.024	0.000	0.280	1.050	4.8.2 🗸
L8	123.166 - 118.166 (8)	0.008	0.349	0.000	0.031	0.000	0.358	1.050	4.8.2 🖌
L9	118.166 - 113.166 (9)	0.008	0.431	0.000	0.031	0.000	0.441	1.050	4.8.2 🗸
L10	113.166 - 109.5 (10)	0.010	0.484	0.000	0.039	0.000	0.496	1.050	4.8.2 🖌
L11	109.5 - 109.25 (11)	0.008	0.402	0.000	0.031	0.000	0.412	1.050	4.8.2 🗸
L12	109.25 - 104.75 (12)	0.009	0.470	0.000	0.032	0.000	0.479	1.050	4.8.2 🗸
L13	104.75 - 104.5 (13)	0.006	0.355	0.000	0.023	0.000	0.362	1.050	4.8.2 🗸
L14	104.5 - 102.416 (14)	0.007	0.375	0.000	0.023	0.000	0.382	1.050	4.8.2 🗸
L15	102.416 - 102.166 (15)	0.009	0.495	0.000	0.031	0.000	0.504	1.050	4.8.2 🗸
L16	102.166 - 98.75 (16)	0.011	0.539	0.000	0.035	0.000	0.551	1.050	4.8.2 🖌
L17	98.75 - 98.5 (17)	0.007	0.372	0.000	0.024	0.000	0.379	1.050	4.8.2 🖌
L18	98.5 - 97.5 (18)	0.007	0.378	0.000	0.023	0.000	0.386	1.050	4.8.2 🖌
L19	97.5 - 97.25 (19)	0.008	0.419	0.000	0.026	0.000	0.427	1.050	4.8.2 🖌
L20	97.25 - 92 (20)	0.008	0.437	0.000	0.026	0.000	0.446	1.050	4.8.2 🖌
L21	92 - 90.552 (21)	0.008	0.451	0.000	0.024	0.000	0.459	1.050	4.8.2 🖌
L22	90.552 - 89.25 (22)	0.008	0.471	0.000	0.025	0.000	0.479	1.050	4.8.2 🖌
L23	89.25 - 89 (23)	0.006	0.377	0.000	0.019	0.000	0.384	1.050	4.8.2 🗸
L24	89 - 88.25 (24)	0.007	0.389	0.000	0.020	0.000	0.396	1.050	4.8.2 🖌
L25	88.25 - 88 (25)	0.008	0.484	0.000	0.025	0.000	0.492	1.050	4.8.2 🗸
L26	88 - 87.833 (26)	0.008	0.484	0.000	0.025	0.000	0.493	1.050	4.8.2 🖌
L27	87.833 - 87.583 (27)	0.009	0.542	0.000	0.028	0.000	0.552	1.050	4.8.2 🖌
L28	87.583 - 82.583 (28)	0.010	0.585	0.000	0.028	0.000	0.596	1.050	4.8.2 🗸

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation	Ratio P_u	Ratio M_{ux}	$Ratio M_{uy}$	Ratio V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L29	82.583 - 77.583 (29)	0.010	0.627	0.000	0.029	0.000	0.638	1.050	4.8.2 🖌
L30	77.583 - 77 (30)	0.010	0.629	0.000	0.028	0.000	0.640	1.050	4.8.2 🖌
L31	77 - 76.75 (31)	0.008	0.490	0.000	0.022	0.000	0.498	1.050	4.8.2 🗸
L32	76.75 - 76.333 (32)	0.008	0.491	0.000	0.022	0.000	0.499	1.050	4.8.2 🗸
L33	76.333 - 76.083 (33)	0.008	0.491	0.000	0.022	0.000	0.500	1.050	4.8.2 🖌
L34	76.083 - 74.25 (34)	0.008	0.510	0.000	0.022	0.000	0.518	1.050	4.8.2 🖌
L35	74.25 - 74 (35)	0.007	0.465	0.000	0.020	0.000	0.473	1.050	4.8.2 🖌
L36	74 - 73.75 (36)	0.007	0.466	0.000	0.020	0.000	0.473	1.050	4.8.2 🗸
L37	73.75 - 73.5 (37)	0.007	0.455	0.000	0.019	0.000	0.462	1.050	4.8.2 🗸
L38	73.5 - 68.5 (38)	0.007	0.482	0.000	0.020	0.000	0.489	1.050	4.8.2 🖌
L39	68.5 - 63.5 (39)	0.008	0.502	0.000	0.020	0.000	0.510	1.050	4.8.2 🖌
L40	63.5 - 60.5 (40)	0.008	0.520	0.000	0.020	0.000	0.528	1.050	4.8.2 🗸
L41	60.5 - 60.25 (41)	0.008	0.520	0.000	0.020	0.000	0.528	1.050	4.8.2 🗸
L42	60.25 - 59.5 (42)	0.008	0.521	0.000	0.020	0.000	0.529	1.050	4.8.2 🖌
L43	59.5 - 59.25 (43)	0.007	0.488	0.000	0.019	0.000	0.496	1.050	4.8.2 🖌
L44	59.25 - 54.25 (44)	0.008	0.512	0.000	0.019	0.000	0.520	1.050	4.8.2 🖌
L45	54.25 - 45.802 (45)	0.008	0.522	0.000	0.019	0.000	0.530	1.050	4.8.2 🖌
L46	45.802 - 44.802 (46)	0.009	0.543	0.000	0.019	0.000	0.552	1.050	4.8.2 🖌
L47	44.802 - 43.583 (47)	0.009	0.544	0.000	0.019	0.000	0.553	1.050	4.8.2 🖌
L48	43.583 - 43.333 (48)	0.009	0.537	0.000	0.019	0.000	0.545	1.050	4.8.2 🖌
L49	43.333 - 43.166 (49)	0.009	0.537	0.000	0.019	0.000	0.546	1.050	4.8.2 🖌
L50	43.166 - 42.916 (50)	0.008	0.491	0.000	0.017	0.000	0.499	1.050	4.8.2 🖌
L51	42.916 - 39 (51)	0.008	0.504	0.000	0.017	0.000	0.512	1.050	4.8.2 🖌
L52	39 - 38.75 (52)	0.008	0.486	0.000	0.017	0.000	0.494	1.050	4.8.2 🖌
L53	38.75 - 37.166 (53)	0.008	0.492	0.000	0.017	0.000	0.500	1.050	4.8.2 🖌
L54	37.166 - 36.916 (54)	0.008	0.517	0.000	0.018	0.000	0.526	1.050	4.8.2 🗸

Project

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

Section No.	Elevation	Ratio P_u	$Ratio M_{ux}$	$Ratio M_{uy}$	$Ratio V_u$	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{nv}	ϕV_n	ϕT_n	Ratio	Ratio	
L55	36.916 - 34 (55)	0.008	0.518	0.000	0.018	0.000	0.526	1.050	4.8.2 🖌
L56	34 - 33.75 (56)	0.009	0.524	0.000	0.018	0.000	0.533	1.050	4.8.2 🖌
L57	33.75 - 29.75 (57)	0.009	0.531	0.000	0.018	0.000	0.540	1.050	4.8.2 🗸
L58	29.75 - 29.5 (58)	0.009	0.531	0.000	0.018	0.000	0.540	1.050	4.8.2 🖌
L59	29.5 - 24.5 (59)	0.009	0.538	0.000	0.018	0.000	0.548	1.050	4.8.2 🖌
L60	24.5 - 23 (60)	0.009	0.545	0.000	0.018	0.000	0.555	1.050	4.8.2 🖌
L61	23 - 22.75 (61)	0.008	0.479	0.000	0.015	0.000	0.488	1.050	4.8.2 🖌
L62	22.75 - 21.583 (62)	0.008	0.479	0.000	0.015	0.000	0.487	1.050	4.8.2 🖌
L63	21.583 - 21.333 (63)	0.009	0.537	0.000	0.017	0.000	0.546	1.050	4.8.2 🖌
L64	21.333 - 16.333 (64)	0.009	0.544	0.000	0.017	0.000	0.554	1.050	4.8.2 🖌
L65	16.333 - 12.917 (65)	0.009	0.550	0.000	0.017	0.000	0.560	1.050	4.8.2 🖌
L66	12.917 - 12.667 (66)	0.009	0.500	0.000	0.016	0.000	0.509	1.050	4.8.2 🖌
L67	12.667 - 12.5 (67)	0.009	0.500	0.000	0.016	0.000	0.509	1.050	4.8.2 🖌
L68	12.5 - 12.25 (68)	0.010	0.591	0.000	0.019	0.000	0.601	1.050	4.8.2 🖌
L69	12.25 - 12 (69)	0.010	0.590	0.000	0.018	0.000	0.601	1.050	4.8.2 🖌
L70	12 - 11.75 (70)	0.012	0.674	0.000	0.021	0.000	0.686	1.050	4.8.2 🖌
L71	11.75 - 8.5 (71)	0.012	0.686	0.000	0.022	0.000	0.698	1.050	4.8.2 🖌
L72	8.5 - 8.25 (72)	0.009	0.492	0.000	0.015	0.000	0.501	1.050	4.8.2 🖌
L73	8.25 - 7 (73)	0.009	0.498	0.000	0.015	0.000	0.507	1.050	4.8.2 🖌
L74	7 - 6.75 (74)	0.010	0.554	0.000	0.017	0.000	0.564	1.050	4.8.2 🖌
L75	6.75 - 1.75 (75)	0.010	0.570	0.000	0.018	0.000	0.581	1.050	4.8.2 🖌
L76	1.75 - 0 (76)	0.010	0.568	0.000	0.017	0.000	0.578	1.050	4.8.2 🖌

Page 91 of 92

Date

Project

Job

Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	<i>Type</i>		Element	Κ	K	Capacity	Fail
L1	144.25 - 139.25	Pole	TP12.75x12.75x0.375	1	-4.488	633.747	**	**
L2	139.25 - 134.75	Pole	TP12.75x12.75x0.375	2	-4.770	633.747	**	**
L2 L3	134.75 - 134.25	Pole	TP13.48x13.48x0.375	3	-4.806	671.132	**	**
L3 L4	134.25 - 129.25	Pole	TP14.466x13.48x0.188	4	-8.607	529.516	**	**
L5	129.25 - 124.25	Pole	TP15.452x14.466x0.188	5	-8.843	566.074	**	**
L5 L6	129.25 - 124.25	Pole	TP15.616x15.452x0.188	6	-8.904	572.172	**	**
L0 L7	123.416 -	Pole	TP15.665x15.616x0.538	7	-8.941	1608.253	**	**
L/	123.166	1010	1115.005x15.010x0.558	/	-0.9+1	1008.255		
L8	123.166 - 118.166	Pole	TP16.651x15.665x0.513	8	-12.361	1635.921	**	**
L9	118.166 - 113.166	Pole	TP17.637x16.651x0.488	9	-12.950	1653.582	**	**
L10	113.166 - 109.5	Pole	TP18.36x17.637x0.475	10	-16.556	1680.262	**	**
L11	109.5 - 109.25	Pole	TP18.409x18.36x0.588	11	-16.611	2070.873	**	**
L12	109.25 - 104.75	Pole	TP19.296x18.409x0.563	12	-17.332	2084.239	**	**
L13	104.75 - 104.5	Pole	TP19.346x19.296x0.775	13	-17.397	2846.602	**	**
L14	104.5 - 102.416	Pole	TP19.756x19.346x0.763	14	-17.825	2864.536	**	**
L15	102.416 - 102.166	Pole	TP19.806x19.756x0.563	15	-17.883	2140.918	**	**
L16	102.166 - 98.75	Pole	TP20.479x19.806x0.55	16	-21.892	2167.966	**	**
L17	98.75 - 98.5	Pole	TP20.528x20.479x0.838	17	-21.974	3261.762	**	**
L18	98.5 - 97.5	Pole	TP20.726x20.528x0.838	18	-22.227	3294.427	**	**
L19	97.5 - 97.25	Pole	TP20.775x20.726x0.75	19	-22.299	2970.523	**	**
L20	97.25 - 92	Pole	TP21.81x20.775x0.738	20	-22.710	2971.668	**	**
L20 L21	92 - 90.552	Pole	TP21.73x20.735x0.8	20	-24.757	3311.805	**	**
L21 L22	90.552 - 89.25	Pole	TP21.989x21.73x0.775	21	-24.737	3251.881	**	**
L22 L23	90.332 - 89.23 89.25 - 89	Pole	TP22.039x21.989x1	22	-25.212	4161.307	**	**
L25 L24	89.23 - 89	Pole	TP22.189x22.039x0.975	23 24	-25.212		**	**
						4090.894	**	**
L25	88.25 - 88	Pole	TP22.238x22.189x0.763	25	-25.513	3238.851	**	**
L26	88 - 87.833	Pole	TP22.272x22.238x0.763	26	-25.560	3243.859	**	**
L27	87.833 - 87.583	Pole	TP22.321x22.272x0.675	27	-25.621	2889.946		
L28	87.583 - 82.583	Pole	TP23.317x22.321x0.65	28	-26.860	2914.107	**	**
L29	82.583 - 77.583	Pole	TP24.312x23.317x0.625	29	-28.142	2928.177	**	**
L30	77.583 - 77	Pole	TP24.428x24.312x0.625	30	-28.301	2942.530	**	**
L31	77 - 76.75	Pole	TP24.478x24.428x0.825	31	-28.384	3859.621	**	**
L32	76.75 - 76.333	Pole	TP24.561x24.478x0.825	32	-28.508	3873.166	**	**
L33	76.333 - 76.083	Pole	TP24.611x24.561x0.825	33	-28.583	3881.293	**	**
L34	76.083 - 74.25	Pole	TP24.976x24.611x0.8	34	-29.093	3825.381	**	**
L35	74.25 - 74	Pole	TP25.026x24.976x0.888	35	-29.191	4237.159	**	**
L36	74 - 73.75	Pole	TP25.076x25.026x0.888	36	-29.267	4245.895	**	**
L37	73.75 - 73.5	Pole	TP25.125x25.076x0.913	37	-29.346	4369.974	**	**
L38	73.5 - 68.5	Pole	TP26.121x25.125x0.875	38	-30.907	4369.165	**	**
L39	68.5 - 63.5	Pole	TP27.116x26.121x0.85	39	-32.502	4415.901	**	**
L40	63.5 - 60.5	Pole	TP27.714x27.116x0.825	40	-33.474	4387.561	**	**
L41	60.5 - 60.25	Pole	TP27.763x27.714x0.825	41	-33.566	4395.688	**	**
L42	60.25 - 59.5	Pole	TP27.913x27.763x0.825	42	-33.804	4420.048	**	**
L43	59.5 - 59.25	Pole	TP27.962x27.913x0.888	43	-33.898	4752.667	**	**
L44	59.25 - 54.25	Pole	TP28.958x27.962x0.85	44	-35.602	4725.525	**	**
L45	54.25 - 45.802	Pole	TP30.64x28.958x0.838	45	-37.077	4798.269	**	**
L46	45.802 - 44.802	Pole	TP30.333x29.304x0.838	46	-40.211	4885.860	**	**
L47	44.802 - 43.583	Pole	TP30.574x30.333x0.838	47	-40.648	4925.823	**	**
L47 L48	43.583 - 43.333	Pole	TP30.624x30.574x0.85	48	-40.757	5005.560	**	**
L48 L49	43.333 - 43.166	Pole	TP30.657x30.624x0.85	48	-40.822	5011.114	**	**
L49 L50					-40.822		**	**
	43.166 - 42.916	Pole	TP30.706x30.657x0.938	50 51		5519.913	**	**
L51	42.916 - 39	Pole	TP31.481x30.706x0.913	51	-42.460	5517.109	**	**
L52	39 - 38.75	Pole	TP31.531x31.481x0.95	52	-42.578	5746.093	**	**
L53	38.75 - 37.166	Pole	TP31.844x31.531x0.938	53	-43.221	5730.931		
L54	37.166 - 36.916	Pole	TP31.894x31.844x0.888	54	-43.339	5442.748	**	**

tnxTower	•

Page 92 of 92

Date

Project

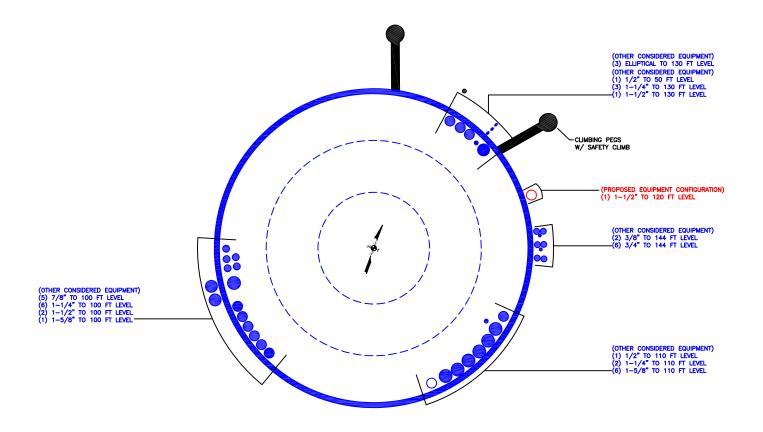
Client

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Jayaraj B

11:01:28 10/04/21


Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Type		Element	Κ	K	Capacity	Fail
L55	36.916 - 34	Pole	TP32.471x31.894x0.888	55	-44.512	5544.052	**	**
L56	34 - 33.75	Pole	TP32.52x32.471x0.875	56	-44.627	5476.695	**	**
L57	33.75 - 29.75	Pole	TP33.312x32.52x0.863	57	-45.428	5468.116	**	**
L58	29.75 - 29.5	Pole	TP33.361x33.312x0.863	58	-46.211	5535.642	**	**
L59	29.5 - 24.5	Pole	TP34.351x33.361x0.85	59	-46.322	5465.838	**	**
L60	24.5 - 23	Pole	TP34.648x34.351x0.838	60	-48.337	5551.444	**	**
L61	23 - 22.75	Pole	TP34.697x34.648x0.963	61	-48.931	6412.738	**	**
L62	22.75 - 21.583	Pole	TP34.928x34.697x0.963	62	-49.051	6422.157	**	**
L63	21.583 - 21.333	Pole	TP34.978x34.928x0.85	63	-49.557	5729.262	**	**
L64	21.333 - 16.333	Pole	TP35.967x34.978x0.838	64	-49.673	5655.279	**	**
L65	16.333 - 12.917	Pole	TP36.644x35.967x0.825	65	-51.809	5734.386	**	**
L66	12.917 - 12.667	Pole	TP36.693x36.644x0.913	66	-53.271	6448.806	**	**
L67	12.667 - 12.5	Pole	TP36.726x36.693x0.913	67	-53.387	6457.731	**	**
L68	12.5 - 12.25	Pole	TP36.776x36.726x0.763	68	-53.467	5423.796	**	**
L69	12.25 - 12	Pole	TP36.825x36.776x0.763	69	-53.572	5431.261	**	**
L70	12 - 11.75	Pole	TP36.874x36.825x0.663	70	-53.679	4738.545	**	**
L71	11.75 - 8.5	Pole	TP37.518x36.874x0.65	71	-53.792	4657.107	**	**
L72	8.5 - 8.25	Pole	TP37.567x37.518x0.925	72	-55.087	6694.800	**	**
L73	8.25 - 7	Pole	TP37.815x37.567x0.913	73	-55.219	6615.514	**	**
L74	7 - 6.75	Pole	TP37.864x37.815x0.813	74	-55.812	5946.349	**	**
L75	6.75 - 1.75	Pole	TP38.854x37.864x0.788	75	-55.931	5774.989	**	**
L76	1.75 - 0	Pole	TP39.2x38.854x0.788	76	-58.131	5929.119	**	**
							Summary	
						Pole (L6)	**	**
						RATING =	**	**

** Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

Program Version 8.1.1.0

APPENDIX B

BASE LEVEL DRAWING

BUSINESS UNIT: 876317

APPENDIX C

ADDITIONAL CALCULATIONS

Site BU: 876317 Work Order: 2028458

Pole Geometry

		ic decineary							Copyright @	2019 Crown Castle
		Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
	1	144.25	9.5	0	0	12.75	12.75	0.375		A500-46
- [2	134.75	0.5	0	0	13.48	13.48	0.375		A500-46
[3	134.25	42.25	3.552	12	13.48	21.81	0.1875	Auto	A572-65
[4	95.552	49.75	4.198	12	20.73	30.64	0.25	Auto	A572-65
	5	50	50	0	12	29.30	39.2	0.3125	Auto	A572-65
[

Reinforcement Configuration

		8															
	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12
1	0	29.75	plate	PL 6.875x1.25 BW	2				E1								E1
2	0	12.917	plate	PL 6.875x1.25 (14)	2							E1		E1			
3	12.917	29.75	plate	PL 6.875x1.25	1								E1				
4	29.75	59.5	plate	PL 6.625x1.25	3				E1				E1				E1
5	59.5	89.25	plate	PL 5.5x1.25	3				E1				E1				E1
6	89.25	98.75	plate	PL 3.625x1.25	3				E1				E1				E1
7	12.5	39	plate	PL 4x1	1	E2											
8	12.5	34	plate	PL 4x1	2						E2				E2		
9	34	60.5	plate	PL 4x1	3			E2				E2				E2	
10	60.5	77	plate	PL 4x1	3		E2				E2				E2		
11	88.25	104.75	plate	PL 4x1	3		E2				E2				E2		
12	0	8.5	plate	TS 1x7	3			3			3				3		
13	7	23	plate	CCI-SFP-060100	2					E3						E3	
14	12	23	plate	CCI-SFP-060100	1		E3										
15	21.583	37.166	plate	CCI-SFP-045100	1									E3			
16	23	37.166	plate	CCI-SFP-045100	1					E3							
17	23	43.583	plate	CCI-SFP-045100	1		E3										
18	37.166	43.166	plate	CCI-SFP-060100	2					E3				E3			
19	43.166	73.75	plate	CCI-SFP-045100	1									E3			
20	46.75	73.75	plate	CCI-SFP-045100	1	E3											
21	43.166	74.25	plate	CCI-SFP-040075	1					E3							
22	73.75	102.416	plate	CCI-SFP-040075	2	E3								E3			
23	76.333	89.25	plate	CCI-SFP-040075	1			E3									
24	87.833	102.416	plate	CCI-AFP-050125	1							E3					
25	102.416	123.416	plate	CCI-AFP-045100	2	E3								E3			
26	102.416	123.416	plate	CCI-AFP-045100	1					E3							
27	97.5	109.5	plate	CCI-AFP-040075	1			E3									
28	102.416	109.5	plate	CCI-AFP-040075	1											E3	
29																	

Reinforcement Details

	B (in)	H (in)	Gross Area (in ²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	6.875	1.25	8.59375	0.625	Welded	n/a	PC 8.8 - M20 (100)	36.000	15.000	6.953	1.2500	A572-65
2	6.875	1.25	8.59375	0.625	Welded	n/a	PC 8.8 - M20 (100)	42.000	15.000	6.953	1.2500	A572-65
3	6.875	1.25	8.59375	0.625	PC 8.8 - M20 (100)	42	PC 8.8 - M20 (100)	36.000	15.000	6.953	1.2500	A572-65
4	6.625	1.25	8.28125	0.625	None	n/a	PC 8.8 - M20 (100)	30.000	18.000	6.641	1.2500	A572-65
5	5.5	1.25	6.875	0.625	None	n/a	PC 8.8 - M20 (100)	18.000	18.000	5.234	1.2500	A572-65
6	3.625	1.25	4.53125	0.625	None	n/a	PC 8.8 - M20 (100)	15.000	24.000	2.891	1.2500	A572-65
7	4	1	4	0.5	PC 8.8 - M20 (100)	21	PC 8.8 - M20 (100)	21.000	20.000	2.750	1.1875	A572-65
8	4	1	4	0.5	PC 8.8 - M20 (100)	21	PC 8.8 - M20 (100)	21.000	20.000	2.750	1.1875	A572-65
9	4	1	4	0.5	PC 8.8 - M20 (100)	21	PC 8.8 - M20 (100)	21.000	20.000	2.750	1.1875	A572-65
10	4	1	4	0.5	PC 8.8 - M20 (100)	21	PC 8.8 - M20 (100)	21.000	20.000	2.750	1.1875	A572-65
11	4	1	4	0.5	PC 8.8 - M20 (100)	21	PC 8.8 - M20 (100)	21.000	20.000	2.750	1.1875	A572-65
12	1	7	7	3.5	Welded	n/a	Welded	0.000	0.750	7.000	0.0000	A572-65
13	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.000	4.750	1.1875	A572-65
14	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.000	4.750	1.1875	A572-65
15	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65
16	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65
17	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65
18	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.000	4.750	1.1875	A572-65
19	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65
20	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65
21	4	0.75	3	0.375	PC 8.8 - M20 (100)	12	PC 8.8 - M20 (100)	12.000	16.000	2.063	1.1875	A572-65
22	4	0.75	3	0.375	PC 8.8 - M20 (100)	12	PC 8.8 - M20 (100)	12.000	16.000	2.063	1.1875	A572-65
23	4	0.75	3	0.375	PC 8.8 - M20 (100)	12	PC 8.8 - M20 (100)	12.000	16.000	2.063	1.1875	A572-65
24	5	1.25	6.25	0.625	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	23.000	4.688	1.1875	A572-65
25	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
26	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
27	4	0.75	3	0.375	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	16.000	2.063	1.1875	A572-65
28	4	0.75	3	0.375	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	16.000	2.063	1.1875	A572-65

Connection Details for Custom Reinforcements

Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)	Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
PL 6.875x1.25 BW	Тор	12	N	3	3	-	-	-	-	-	-	-	-	
10.07541.25 044	Bottom	-			-	70	None	-	-	-		-	-	-
PL 6.875x1.25 (14)	Тор	14	Ν	3	3	-	-	-	-	-		-	-	-
FL 0.87 JX1.23 (14)	Bottom	-	-	-	-	70	None	-	-	-	-	-	-	
PL 6.875x1.25	Тор	12	N	3	3	-	-	-	-	-	-	-	-	-
PL 0.075X1.25	Bottom	14	N	3	3	0	-	-	-	-	-	-	-	-
PL 6.625x1.25	Тор	10	N	3	3	-	-	-	-	-	-	-	-	-
FL 0.025X1.25	Bottom	-	-	-	-	70	None	-	-					-
PL 5.5x1.25	Тор	6	N	3	3	-	-	-	-	-	-	-	-	-
PL 5.5X1.25	Bottom	-	-	-	-	70	None	-	-	-	-	-	-	-
PL 3.625x1.25	Тор	5	N	3	3	-	-	-	-	-		-	-	-
PL 5.025X1.25	Bottom	-	-	-	-	70	None	-	-	-	-	-	-	-
PL 4x1	Тор	7	N	3	3	-	-	-	-	-	-	-	-	-
PL 4X1	Bottom	7	N	3	3	0	-	-	-	-	-	-	-	-
TC 1-7	Тор	0		0	0	80	None	-	-	-		125.25	0.313	-
TS 1x7	Bottom	-			-	80	CJP Groove	12.5	0.5	45	0.3125	-	-	-

TNX Geometry Input

	Section Height (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplie
1	144.25 - 139.25	5	(11)	0	12.750	12.750	0.375	A500-46	1.000
2	139.25 - 134.75	4.5	0	0	12.750	12.750	0.375	A500-46	1.000
3	134.75 - 134.25	0.5	0	0	13.480	13.480	0.375	A500-46	1.000
4	134.25 - 129.25	5		12	13.480	14.466	0.1875	A572-65	1.000
5	129.25 - 124.25	5		12	14.466	15.452	0.1875	A572-65	1.000
6 7	124.25 - 123.416 123.416 - 123.166	0.834		12 12	15.452 15.616	15.616 15.665	0.1875	A572-65 A572-65	1.000 0.873
/ 8	123.166 - 118.166	5		12	15.665	16.651	0.5375	A572-65 A572-65	0.873
9	118.166 - 113.166	5		12	16.651	17.637	0.4875	A572-65	0.894
10	113.166 - 109.5	3.666		12	17.637	18.360	0.475	A572-65	0.895
11	109.5 - 109.25	0.25		12	18.360	18.409	0.5875	A572-65	0.906
12	109.25 - 104.75	4.5		12	18.409	19.296	0.5625	A572-65	0.916
13	104.75 - 104.5	0.25		12	19.296	19.346	0.775	A572-65	0.930
4	104.5 - 102.416	2.084		12	19.346	19.756	0.7625	A572-65	0.930
15	102.416 - 102.166	0.25		12	19.756	19.806	0.5625	A572-65	1.123
L6 L7	102.166 - 98.75 98.75 - 98.5	3.416 0.25		12	19.806 20.479	20.479 20.528	0.55	A572-65 A572-65	1.120 1.002
18	98.5 - 97.5	1		12	20.528	20.726	0.8375	A572-65	0.994
19	97.5 - 97.25	0.25		12	20.726	20.775	0.75	A572-65	1.041
20	97.25 - 95.552	5.25	3.552	12	20.775	21.810	0.7375	A572-65	1.044
21	95.552 - 90.552	5		12	20.735	21.730	0.8	A572-65	1.024
22	90.552 - 89.25	1.302		12	21.730	21.989	0.775	A572-65	1.046
23	89.25 - 89	0.25		12	21.989	22.039	1	A572-65	0.967
24	89 - 88.25	0.75		12	22.039	22.189	0.975	A572-65	0.985
25	88.25 - 88 88 - 87.833	0.25		12 12	22.189	22.238	0.7625	A572-65	1.017
26 27	88 - 87.833 87.833 - 87.583	0.167 0.25		12	22.238 22.272	22.272 22.321	0.7625 0.675	A572-65 A572-65	1.016 1.008
28	87.583 - 82.583	5		12	22.321	23.317	0.65	A572-65	1.003
29	82.583 - 77.583	5		12	23.317	24.312	0.625	A572-65	1.029
80	77.583 - 77	0.583		12	24.312	24.428	0.625	A572-65	1.026
31	77 - 76.75	0.25		12	24.428	24.478	0.825	A572-65	0.974
2	76.75 - 76.333	0.417		12	24.478	24.561	0.825	A572-65	0.971
3	76.333 - 76.083	0.25		12	24.561	24.611	0.825	A572-65	0.923
34	76.083 - 74.25	1.833		12	24.611	24.976	0.8	A572-65	0.941
5	74.25 - 74	0.25		12	24.976	25.026	0.8875	A572-65	0.893
86 87	74 - 73.75 73.75 - 73.5	0.25		12 12	25.026 25.076	25.076 25.125	0.8875 0.9125	A572-65 A572-65	0.892
38 88	73.5 - 68.5	5		12	25.125	26.121	0.875	A572-65	0.910
9	68.5 - 63.5	5		12	26.121	27.116	0.85	A572-65	0.922
10	63.5 - 60.5	3		12	27.116	27.714	0.825	A572-65	0.935
1	60.5 - 60.25	0.25		12	27.714	27.763	0.825	A572-65	0.934
12	60.25 - 59.5	0.75		12	27.763	27.913	0.825	A572-65	0.931
13	59.5 - 59.25	0.25		12	27.913	27.962	0.8875	A572-65	0.920
14	59.25 - 54.25	5		12	27.962	28.958	0.85	A572-65	0.936
15	54.25 - 50	8.448	4.198	12	28.958	30.640	0.8375	A572-65	0.931
16 17	50 - 44.802 44.802 - 43.583	5.198 1.219		12	29.304 30.333	30.333 30.574	0.8375	A572-65 A572-65	0.938
8	43.583 - 43.333	0.25		12	30.574	30.624	0.85	A572-65	0.935
19	43.333 - 43.166	0.167		12	30.624	30.657	0.85	A572-65	0.974
0	43.166 - 42.916	0.25		12	30.657	30.706	0.9375	A572-65	0.935
1	42.916 - 39	3.916		12	30.706	31.481	0.9125	A572-65	0.944
52	39 - 38.75	0.25		12	31.481	31.531	0.95	A572-65	0.950
3	38.75 - 37.166	1.584		12	31.531	31.844	0.9375	A572-65	0.956
4	37.166 - 36.916	0.25		12	31.844	31.894	0.8875	A572-65	0.973
5	36.916 - 34 34 - 33.75	2.916 0.25		12 12	31.894	32.471 32.520	0.8875	A572-65 A572-65	0.961
6	34 - 33.75 33.75 - 29.75	0.25		12	32.471 32.520	32.520	0.875	A572-65 A572-65	0.929
, 8	29.75 - 29.5	0.25		12	33.312	33.361	0.8625	A572-65	0.928
9	29.5 - 24.5	5		12	33.361	34.351	0.85	A572-65	0.934
0	24.5 - 23	1.5		12	34.351	34.648	0.8375	A572-65	0.942
1	23 - 22.75	0.25		12	34.648	34.697	0.9625	A572-65	0.908
2	22.75 - 21.583	1.167		12	34.697	34.928	0.9625	A572-65	0.904
3	21.583 - 21.333	0.25		12	34.928	34.978	0.85	A572-65	0.971
4	21.333 - 16.333	5		12	34.978	35.967	0.8375	A572-65	0.968
5	16.333 - 12.917	3.416		12	35.967	36.644	0.825	A572-65	0.971
6	12.917 - 12.667	0.25		12	36.644	36.693	0.9125	A572-65	0.961
7 8	12.667 - 12.5 12.5 - 12.25	0.167 0.25		12 12	36.693 36.726	36.726 36.776	0.9125	A572-65 A572-65	0.961
8 9	12.25 - 12.25	0.25		12	36.726	36.776	0.7625	A572-65 A572-65	1.008
0	12.23 - 12	0.25		12	36.825	36.874	0.6625	A572-65	1.007
'1	11.75 - 8.5	3.25		12	36.874	37.518	0.65	A572-65	1.087
2	8.5 - 8.25	0.25		12	37.518	37.567	0.925	A572-65	0.962
73	8.25 - 7	1.25		12	37.567	37.815	0.9125	A572-65	0.970
74	7 - 6.75	0.25		12	37.815	37.864	0.8125	A572-65	0.962
5	6.75 - 1.75	5		12	37.864	38.854	0.7875	A572-65	0.976

TNX Section Forces

Ine	crement (ft): 5	Т	NX Outpu	ıt
			M _{ux} (kip-	Vu
1	Section Height (ft) 144.25 - 139.25	P _u (K) 4.49	ft) 24.33	(K) 6.03
2	139.25 - 134.75	4.49	51.82	6.19
3	134.75 - 134.25	4.81	54.92	6.20
4	134.25 - 129.25	8.61	90.92	10.81
5	129.25 - 124.25	8.84	146.00	11.15
6 7	124.25 - 123.416	8.90 8.94	155.31 158.10	11.18 11.19
/ 8	123.416 - 123.166 123.166 - 118.166	12.36	220.25	11.19
9	118.166 - 113.166	12.95	293.07	14.77
10	113.166 - 109.5	16.56	349.47	18.58
11	109.5 - 109.25	16.61	354.12	18.59
12	109.25 - 104.75	17.33	438.59	18.97
13 14	104.75 - 104.5 104.5 - 102.416	17.40 17.83	443.33 483.08	18.98 19.18
14	102.416 - 102.166	17.83	487.88	19.18
16	102.166 - 98.75	21.89	558.78	21.93
17	98.75 - 98.5	21.97	564.26	21.94
18	98.5 - 97.5	22.23	586.25	22.05
19	97.5 - 97.25	22.30	591.76	22.06
20 21	97.25 - 95.552 95.552 - 90.552	22.71 24.76	629.34 741.93	22.23 22.81
21	90.552 - 90.552	24.76	771.67	22.81
23	89.25 - 89	25.21	777.40	22.94
24	89 - 88.25	25.44	794.63	23.02
25	88.25 - 88	25.51	800.38	23.04
26	88 - 87.833	25.56	804.23	23.05
27 28	87.833 - 87.583	25.62 26.86	810.00 926.34	23.07 23.49
28	87.583 - 82.583 82.583 - 77.583	26.86	926.34	23.49
30	77.583 - 77	28.30	1058.60	23.92
31	77 - 76.75	28.38	1064.58	23.94
32	76.75 - 76.333	28.51	1074.57	23.98
33	76.333 - 76.083	28.58	1080.56	24.00
34	76.083 - 74.25	29.09	1124.68	24.19
35 36	74.25 - 74 74 - 73.75	29.19 29.27	1130.73 1136.77	24.18 24.21
30	73.75 - 73.5	29.35	1142.83	24.21
38	73.5 - 68.5	30.91	1265.09	24.70
39	68.5 - 63.5	32.50	1389.63	25.15
40	63.5 - 60.5	33.47	1465.43	25.42
41	60.5 - 60.25	33.57	1471.79	25.43
42 43	60.25 - 59.5 59.5 - 59.25	33.80 33.90	1490.88 1497.26	25.51 25.52
44	59.25 - 54.25	35.60	1625.97	25.99
45	54.25 - 50	37.08	1737.13	26.36
46	50 - 44.802	40.21	1875.94	27.00
47	44.802 - 43.583	40.65	1908.89	27.10
48 49	43.583 - 43.333 43.333 - 43.166	40.76 40.82	1915.67 1920.19	27.10 27.11
49 50	43.166 - 42.916	40.82	1920.19	27.11
51	42.916 - 39	40.92	2033.84	27.14
52	39 - 38.75	42.58	2040.70	27.47
53	38.75 - 37.166	43.22	2084.31	27.62
54	37.166 - 36.916	43.34	2091.21	27.62
55 56	36.916 - 34 34 - 33.75	44.51 44.63	2171.96 2178.90	27.80 27.79
56	34 - 33.75 33.75 - 29.75	44.63	2178.90	27.79
58	29.75 - 29.5	46.31	2297.43	27.99
59	29.5 - 24.5	48.30	2437.91	28.23
60	24.5 - 23	48.91	2480.27	28.30
61	23 - 22.75	49.04	2487.34	28.28
62 63	22.75 - 21.583 21.583 - 21.333	49.54 49.66	2520.37 2527.46	28.36 28.35
64	21.333 - 16.333	51.78	2669.68	28.55
65	16.333 - 12.917	53.25	2767.40	28.70
66	12.917 - 12.667	53.38	2774.58	28.69
67	12.667 - 12.5	53.46	2779.37	28.70
68	12.5 - 12.25	53.57	2786.54	28.71
69 70	12.25 - 12 12 - 11.75	53.67 53.77	2793.72 2800.90	28.72 28.73
71	11.75 - 8.5	55.07	2894.65	29.00
72	8.5 - 8.25	55.20	2901.90	29.00
73	8.25 - 7	55.79	2938.22	29.15
74	7 - 6.75	55.92	2945.50	29.15
75	6.75 - 1.75	58.10	3092.43	29.65
76	1.75 - 0	58.86	3144.43	29.84

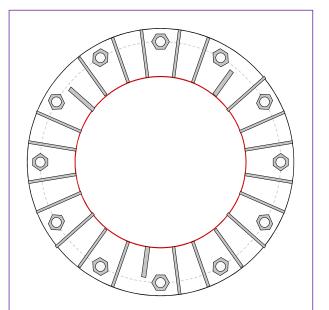
Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fa
44.25 - 139.25	Pole	TP12.75x12.75x0.375	Pole	12.5%	Pass
39.25 134.75	Pole	TP12.75x12.75x0.375	Pole	25.8%	Pass
134.75 - 134.25	Pole	TP13.48x13.48x0.375	Pole	24.4%	Pass
134.25 - 129.25	Pole	TP14 466x13 48x0 1875	Pole	49.1%	Pass
29.25 - 124.25	Pole	TP15.452x14.466x0.1875	Pole	67.9%	Pass
24.25 - 123.42	Pole	TP15.616x15.452x0.1875	Pole	70.7%	Pass
23.42 - 123.17	Pole + Reinf.	TP15.665x15.616x0.5375	Reinf. 25 Tension Rupture	46.1%	Pass
23.17 - 118.17	Pole + Reinf.	TP16.651x15.665x0.5125	Reinf. 25 Tension Rupture	59.2%	Pass
18.17 - 113.17	Pole + Reinf.	TP17.637x16.651x0.4875	Reinf. 25 Tension Rupture	72.5%	Pass
113.17 - 109.5	Pole + Reinf.	TP18.36x17.637x0.475	Reinf, 25 Tension Rupture	81.9%	Pass
109.5 - 109.25	Pole + Reinf.	TP18.409x18.36x0.5875	Reinf, 25 Tension Rupture	69.0%	Pass
09.25 - 104.75	Pole + Reinf.	TP19.296x18.409x0.5625	Reinf. 25 Tension Rupture	80.1%	Pass
104.75 - 104.5	Pole + Reinf.	TP19.346x19.296x0.775	Reinf. 11 Tension Rupture	64.6%	Pass
104.5 - 102.42	Pole + Reinf	TP19.756x19.346x0.7625	Reinf. 11 Tension Rupture	68.5%	Pass
02.42 - 102.17	Pole + Reinf	TP19.806x19.756x0.5625	Reinf. 11 Tension Rupture	85.5%	Pass
102 17 98 75	Pole + Reinf	TP20.479x19.806x0.55	Reinf, 11 Tension Rupture	93.8%	Pass
98.75 - 98.5	Pole + Reinf	TP20.528x20.479x0.8375	Reinf, 6 Bolt-Shaft Bearing	82.0%	Pass
98.5 97.5	Pole + Reinf.	TP20.726x20.528x0.8375		71.3%	Pass
			Reinf. 6 Tension Rupture		
97.5 - 97.25	Pole + Reinf.	TP20.775x20.726x0.75	Reinf. 6 Tension Rupture	83.0%	Pass
97.25 - 95.55	Pole + Reinf.	TP21.81x20.775x0.7375	Reinf. 6 Tension Rupture	86.5%	Pass
95.55 - 90.55	Pole + Reinf.	TP21.73x20.735x0.8	Reinf. 6 Tension Rupture	89.8%	Pass
90.55 - 89.25	Pole + Reinf.	TP21.989x21.73x0.775	Reinf. 6 Tension Rupture	91.9%	Pass
89.25 - 89	Pole + Reinf.	TP22.039x21.989x1	Reinf. 5 Bolt-Shaft Bearing	79.4%	Pass
89 - 88.25	Pole + Reinf.	TP22.189x22.039x0.975	Reinf. 11 Tension Rupture	66.4%	Pass
88.25 - 88	Pole + Reinf.	TP22.238x22.189x0.7625	Reinf. 5 Tension Rupture	76.0%	Pass
88 - 87.83	Pole + Reinf.	TP22.272x22.238x0.7625	Reinf. 5 Tension Rupture	76.2%	Pass
87.83 - 87.58	Pole + Reinf.	TP22.321x22.272x0.675	Reinf, 5 Tension Rupture	80.8%	Pass
87.58 - 82.58	Pole + Reinf.	TP23.317x22.321x0.65	Reinf. 5 Tension Rupture	87.0%	Pass
82.58 - 77.58	Pole + Reinf.	TP24.312x23.317x0.625	Reinf. 5 Tension Rupture	92.6%	Pass
77.58 - 77	Pole + Reinf.	TP24.428x24.312x0.625	Reinf. 5 Tension Rupture	93.2%	Pass
77 - 76.75	Pole + Reinf	TP24.478x24.428x0.825	Reinf, 10 Tension Rupture	87.4%	Pass
76.75 - 76.33	Pole + Reinf	TP24,561x24,478x0,825	Reinf, 10 Tension Rupture	87.8%	Pass
76.33 - 76.08	Pole + Reinf	TP24.611x24.561x0.825	Reinf. 10 Tension Rupture	88.9%	Pass
76.08 - 74.25	Pole + Reinf.	TP24.976x24.611x0.8	Reinf. 10 Tension Rupture	90.7%	Pass
74.25 74	Pole + Reinf.	TP25.026x24.976x0.8875	Reinf. 10 Tension Rupture	80.1%	Pass
74-73.75	Pole + Reinf. Pole + Reinf.	TP25.026x24.976x0.8875		80.1%	Pass
			Reinf, 10 Tension Rupture		
73.75 - 73.5	Pole + Reinf.	TP25.125x25.076x0.9125	Reinf. 21 Tension Rupture	79.6%	Pass
73.5 - 68.5	Pole + Reinf.	TP26.121x25.125x0.875	Reinf. 21 Tension Rupture	83.8%	Pass
68.5 - 63.5	Pole + Reinf.	TP27.116x26.121x0.85	Reinf. 21 Tension Rupture	87.8%	Pass
63.5 - 60.5	Pole + Reinf.	TP27.714x27.116x0.825	Reinf. 21 Tension Rupture	90.0%	Pass
60.5 - 60.25	Pole + Reinf	TP27.763x27.714x0.825	Reinf. 21 Tension Rupture	90.1%	Pass
60.25 - 59.5	Pole + Reinf	TP27.913x27.763x0.825	Reinf, 21 Tension Rupture	90.7%	Pass
59.5 - 59.25	Pole + Reinf.	TP27.962x27.913x0.8875	Reinf. 21 Tension Rupture	84.9%	Pass
59.25 - 54.25	Pole + Reinf.	TP28.958x27.962x0.85	Reinf. 21 Tension Rupture	88.1%	Pass
54.25 - 50	Pole + Reinf.	TP30.64x28.958x0.8375	Reinf. 21 Tension Rupture	90.7%	Pass
50 - 44.8	Pole + Reinf.	TP30.333x29.304x0.8375	Reinf. 9 Tension Rupture	92.4%	Pass
44.8 - 43.58	Pole + Reinf.	TP30.574x30.333x0.8375	Reinf. 9 Tension Rupture	93.0%	Pass
43.58 - 43.33	Pole + Reinf.	TP30.624x30.574x0.85	Reinf. 9 Tension Rupture	92.1%	Pass
43.33 - 43.17	Pole + Reinf.	TP30.657x30.624x0.85	Reinf. 9 Tension Rupture	92.2%	Pass
43.17 - 42.92	Pole + Reinf.	TP30.706x30.657x0.9375	Reinf. 9 Tension Rupture	87.3%	Pass
42.92 - 39	Pole + Reinf.	TP31.481x30.706x0.9125	Reinf. 9 Tension Rupture	89.1%	Pass
39 - 38.75	Pole + Reinf.	TP31.531x31.481x0.95	Reinf. 9 Tension Rupture	84.2%	Pass
38.75 - 37.17	Pole + Reinf.	TP31.844x31.531x0.9375	Reinf. 9 Tension Rupture	84.9%	Pass
37.17 - 36.92	Pole + Reinf.	TP31.894x31.844x0.8875	Reinf. 9 Tension Rupture	88.2%	Pass
36.92 - 34	Pole + Reinf.	TP32.471x31.894x0.8875	Reinf. 9 Tension Rupture	89.4%	Pass
34 - 33,75	Pole + Reinf	TP32.52x32.471x0.875	Reinf, 8 Tension Rupture	89.4%	Pass
33.75 29.75	Pole + Reinf	TP33.312x32.52x0.8625	Reinf. 8 Tension Rupture	91.0%	Pass
29.75 - 29.5	Pole + Reinf	TP33.361x33.312x0.8625	Reinf. 8 Tension Rupture	90.0%	Pass
29.5 - 24.5	Pole + Reinf	TP34.351x33.361x0.85	Reinf. 8 Tension Rupture	91.7%	Pass
24.5 - 23	Pole + Reinf	TP34.648x34.351x0.8375	Reinf, 8 Tension Rupture	92.2%	Pass
23 22 75	Pole + Reinf	TP34.697x34.648x0.9625	Reinf, 8 Tension Rupture	85.5%	Pass
22.75 21.58	Pole + Reinf	TP34.928x34.697x0.9625	Reinf. 8 Tension Rupture	85.9%	Pass
21.58 - 21.33	Pole + Reinf.	TP34.928X34.928x0.85	Reinf. 8 Tension Rupture	90.7%	Pass
21.33 - 16.33	Pole + Reinf.	TP35.967x34.978x0.8375	Reinf. 8 Tension Rupture	92.1%	Pass
16.33 - 12.92	Pole + Reinf.	TP36.644x35.967x0.825	Reinf. 8 Tension Rupture	93.1%	Pass
12.92 - 12.67	Pole + Reinf	TP36.693x36.644x0.9125	Reinf. 7 Tension Rupture	84.4%	Pass
12.67 - 12.5	Pole + Reinf	TP36.726x36.693x0.9125	Reinf. 7 Tension Rupture	84.4%	Pass
12.5 - 12.25	Pole + Reinf.	TP36.776x36.726x0.7625	Reinf. 14 Tension Rupture	87.6%	Pass
12.25 - 12	Pole + Reinf.	TP36.825x36.776x0.7625	Reinf. 14 Tension Rupture	87.6%	Pass
12 - 11.75	Pole + Reinf.	TP36.874x36.825x0.6625	Reinf. 2 Tension Rupture	89.6%	Pass
	Pole + Reinf.	TP37.518x36.874x0.65	Reinf, 2 Tension Rupture	90.3%	Pass
11.75 8.5	Pole + Reinf.	TP37.567x37.518x0.925	Reinf. 1 Tension Rupture	74.1%	Pass
11.75 - 8.5 8.5 - 8.25		TP37.815x37.567x0.9125	Reinf. 1 Tension Rupture	74.3%	Pass
	Pole + Reinf				Pass
8.5 - 8.25	Pole + Reinf. Pole + Reinf.	TP37.864x37.815x0.8125	Reinf. 1 Tension Rupture	86.1%	F ass
8.5 - 8.25 8.25 - 7		TP37.864x37.815x0.8125	Reinf. 1 Tension Rupture Reinf. 1 Tension Rupture	86.1%	Pass
8.5 - 8.25 8.25 - 7 7 - 6.75 6.75 - 1.75	Pole + Reinf. Pole + Reinf.	TP37.864x37.815x0.8125 TP38.854x37.864x0.7875	Reinf. 1 Tension Rupture	87.2%	Pass
8.5 - 8.25 8.25 - 7 7 - 6.75	Pole + Reinf.	TP37.864x37.815x0.8125		87.2% 87.6%	<u> </u>
8.5 - 8.25 8.25 - 7 7 - 6.75 6.75 - 1.75	Pole + Reinf. Pole + Reinf.	TP37.864x37.815x0.8125 TP38.854x37.864x0.7875	Reinf. 1 Tension Rupture	87.2%	Pass
8.5 - 8.25 8.25 - 7 7 - 6.75 6.75 - 1.75	Pole + Reinf. Pole + Reinf.	TP37.864x37.815x0.8125 TP38.854x37.864x0.7875	Reinf, 1 Tension Rupture Reinf, 1 Tension Rupture	87.2% 87.6% Summary	Pass Pass

Additional Calculations

Section	Mome	ent of Inerti	a (in ⁴)		Area (in ²)														% Ca	pacity*														
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf	Total	Pole	R1 R	2 R3	84	RS	R6	87	RS	B 9	R10	R11	R12	R13	814	R15	R16	R17	R18	R19	R20	R21	R22	823	R24	825	R26	827	R28
144.25 - 139.25	279	n/a	279	14.58	n/a	14.58	Pole 12-5%	RI R	2 R3	84	RS	Kb	R7	RS	К9	RIU	811	R1Z	R13	814	R15	R16	R17	R18	K19	RZU	821	RZZ	RZ3	RZ4	RZ5	R26	RZ7	R28
139.25 - 134.75	279	n/a	279	14.58	n/a	14.58	25.8%										-																	
134.75 - 134.25	332	n/a	332	15.44	n/a	15.44	24.4%																											
134.25 - 129.25	225	n/a	225	8.61	n/a	8.61	49.1%																											
129.25 - 124.25	274	n/a	274	9.20	n/a	9.20	67.9%																											
124.25 - 123.42 123.42 - 123.17	283 286	n/a 481	283	9.30 9.33	n/a 13.50	9.30 22.83	70.7%		_	_																						46.1%		
123.42 - 123.17 123.17 - 118.17	344	481	882	9.33	13.50	22.83	25,9%		_	_			_																	$ \rightarrow $	46,1%			
118.17 - 113.17	410	598	1008	10.52	13.50	23.43	42.5%						_																		72.5%	72.5%		-
113.17 - 109.5	463	644	1108	10.96	13.50	24.46	48.8%																								81.9%			-
109.5 - 109.25	472	909	1380	10.99	19.50	30.49	44.0%																								69.1%	69.1%	62.8%	62.89
109.25 - 104.75	544	993	1536	11.52	19.50	31.02	52.0%																								80.1%			
104.75 - 104.5	548	1509	2056	11.55	31.50	43.05	39.1%										64,6%														56,3%		53.7%	
104.5 - 102.42	584	1569	2153	11.80	31.50	43.30	41,9%										68,5%														59,8%	59,8%	57.0%	57,05
102.42 - 102.17	583 645	1079	1662	11.83	27.25	39.08	52,2%		_								85,5%											72,5%		53,5%			72,7%	-
102.17 - 98.75	645	1148 2001	1793 2651	12.23	27.25	39.48 53.11	58,2%		_	_		82.0%					93,8%											77,8%		58,9% 44,9%			79.9%	-
98.75 - 98.5 98.5 - 97.5	669	2001	2051	12.26	40.84	53.23	39.2%		_	-		71.3%	_		_		64,9%		_									55.7% 57.2%		46,1%			57.4% 59.0%	
97.5 - 97.25	677	1812	2489	12.30	37.84	50.26	45.7%					83.0%	_				69.7%		_					_				61.2%		46.1%			000070	-
97.25 - 95.55	711	1867	2577	12.61	37.84	50.46	48.0%					86,5%					72.7%											63.8%		48.1%				<u> </u>
95.55 - 90.55	1025	1971	2996	17.27	37.84	55.11	45.3%					89.8%					76.0%											67.2%		51.5%				
90.55 - 89.25	1062	2016	3078	17.48	37.84	55.32	46.5%					91,9%					77.8%											68,9%		52,8%				
89.25 - 89	1064	2782	3846	17.52	47.88	65.39	36.8%				79.4%						65,5%											57,5%	59,2%	47,8%				
89 - 88.25	1087	2779	3865	17.64	47.88	65.51	38,3%				60,0%						66,4%											58,3%	60,0%	48,4%				
88.25 - 88	1094	2011	3104	17.68	35.88	53.55	47.5%				76,0%																	72,7%	74,9%	58,5%				L
88 - 87.83	1099	2016	3115	17.70	35.88	53.58	47.6%			-	76.2%																	72.9%	75.2%	58.7%				<u> </u>
87.83 - 87.58 87.58 - 82.58	1113 1270	1720	2832 3135	17.74	29.63 29.63	47.37 48.17	55.3% 60.5%		_	-	80.8%																	79.9%		$ \rightarrow $				<u> </u>
87.58 - 82.58 82.58 - 77.58	1270	1866	3135 3459	18.54	29.63	48.17 48.97	60.5%	1		-	87.0% 92.6%														_			86.2% 91,9%	80.6%					-
77.58 - 77	1441	2018	3498	19.34	29.63	49.06	65,9%			-	93.2%																	92.5%	86,6%					+
77 - 76.75	1468	3032	4501	19.48	41.63	61.10	51,2%			1	73,7%					87,4%											-	74.4%						1
76.75 - 76.33	1483	3052	4535	19.54	41.63	61.17	51.5%				74.1%					87.8%												74.8%	71.0%					
76.33 - 76.08	1494	3049	4544	19.58	38.63	58.21	52.2%				81.1%					88.9%												77.5%						
76.08 - 74.25	1562	3135	4698	19.88	38.63	58.50	53.6%				82.8%					90.7%												79,2%						
74.25 - 74	1565	3585	5150	19.92	41.63	61.54	46.3%				73.1%	_				80.1%			_								79.3%	79.3%						
74 - 73.75	1574	3599	5173	19.96	41.63	61.58	46,4%			-	73.3%					80.3%											79,5%	79,5%						
73.75 - 73.5	1586	3743	5328	20.00	44.63 44.63	64.62	46.5%				72.2%					79.2%										71,2%								⊢
73.5 - 68.5 68.5 - 63.5	1784 1997	4029 4326	5813 6323	20.80 21.60	44.63 44.63	65.42 66.22	49.8%	1		-	76.0%					83.4% 87.3%									75.1%	75.1%								┣_
68.5 - 63.5 63.5 - 60.5	2134	4326	6323	21.60	44.63	66.22	53.0%				79.5%					87.3%									78,6%				-	$ \rightarrow $				-
60.5 - 60.25	2134	4509	6670	22.08	44.63	66.70	55.0%	1 +		1	81.7%				86.9%	30.4 %			-							80.8%			_					-
60.25 - 59.5	2145	4571	6751	22.24	44.63	66.86	55.4%				82.2%				87.4%											81.3%								<u> </u>
59.5 - 59.25	2192	5057	7249	22.28	48.84	71.12	51,9%			75.75	1				82.0%											76.4%								
59.25 - 54.25	2437	5404	7841	23.08	48.84	71.92	54.8%			75,95					85,2%										79,4%	79.4%								
54.25 - 50	2658	5709	8368	23.76	48.84	72.60	57,2%			78,15					87,7%										81,7%		90,7%							
50 - 44.8	3482	5456	8938	30.16	44.34	74.51	55,6%			85,85					92,4%				_						80,4%		88,9%							
44.8 - 43.58	3567	5539	9106	30.41	44.34	74.75	56.1%			86.35					93.0%										81.0%		89.5%							L
43.58 - 43.33	3582	5665	9247 9270	30.46 30.49	48.84	79.30	54.4%			80.65					92.1%								78.6%		78.3%		89.9%							_
43.33 - 43.17 43.17 - 42.92	3594 3621	5676 6494	9270 10115	30.49 30.54	48.84 53.34	79.33 83.88	54.4% 51.6%			80.75					92.2% 87.3%								78.7%	70.7%	78,4%		90.0%							-
43.17 - 42.92 42.92 - 39	3621 3905	6494	10115	30.54	53.34	83.88	53,2%		-	78,45					87.3%								80.0%	70,7%										-
39 - 38.75	3914	7251	11165	31.32	57.34	88.71	49.2%			71,65			78,6%		84.2%								71,2%	71.7%					-					+
38.75 - 37.17	4033	7389	11422	31.68	57.34	89.03	49.8%			72.25			79.2%		84.9%								71.8%	72.3%	_				_					+
37.17 - 36.92	4051	6900	10951	31.73	54.34	86.08	51.8%			73.55	6		79.5%		88.2%						81.1%	83.6%	72.7%											
36.92 - 34	4277	7140	11418	32.31	54.34	86.66	52,9%			74.55			80.7%		89.4%						82.2%	84.7%												
34 - 33.75	4297	7121	11418	32.36	50.34	82.71	53,1%			77,75			89.4%								84,5%	84,9%												
33.75 - 29.75	4622	7457	12079	33.16	50.34	83.50	54,6%			79.05	4		91.0%								86.0%													-
29.75 - 29.5	4643	7624	12267	33.21	51.28	84.49		77.5%	76.				90.0%									85.4%												⊢
29.5 - 24.5 24.5 - 23	5072 5206	8064 8198	13136 13404	34.20 34.50	51.28 51.28	85.48 85.78	55,8%	79.0%	78.					91,7% 92,2%							86,7% 87,2%	87.1% 87.5%												<u> </u>
24.5 - 23 23 - 22.75	5206	8198 9911	13404	34.50	51.28 60.28	85.78 94.83	56,4%		78				92.2% 83.7%						71.5%	75.6%		81,5%	87,2%											+
22.75 - 21.58	5252	10038	15163	34.55	60.28	94.83		71.5%	77				84.0%						71.8%															<u> </u>
21.58 - 21.33	5366	8584	13950	34.83	55.78	90.61	59.2%		87.				85.1%						71.8%	79.5%	011076				_				_					-
21.33 - 16.33	5838	9057	14895	35.83	55.78	91.61		75.4%	89.					92,1%					73.0%															
16.33 - 12.92	6177	9386	15563	36.51	55.78	92.29	62,1%	76.2%	90.				87.5%	93,1%					73,8%	81,7%														
12.92 - 12.67	6193	10933	17126	36.56	64.38	100.93	55,2%	72,4% 74					84,4%						68,0%	78,6%														
12.67 - 12.5	6210	10952	17162	36.59	64.38	100.96	55.2%						84.4%	81.1%					68.0%	78.6%														
12.5 - 12.25	6235	8459	14694	36.64	52.38	89.01		78.3% 83											76.4%	87.6%														
12.25 - 12	6261	8481	14742	36.69	52.38	89.06		78.4% 83	.3%	-										87.6%							_							
12 - 11.75	6353	6630	12984	36.74	46.38	83.11	79.0%			-									77,1%						_									⊢
11.75 - 8.5 8.5 - 8.25	6693 6727	6854 12128	13547 18855	37.38	46.38 67.38	83.76 104.81	80,2%			-								71,1%	77.8%															+
8.5 - 8.25 8.25 - 7	6727 6862	12128	18855	37.43 37.68	67.38	104.81 105.06	58,3%	74.1% 70		-					_			71.1%	63,3%						_	-	<u> </u>		_					-
8.25 - 7	6906	12276	19138	37.68	55.38	93.11		86.1% 74		-								72.3%	03,0%															<u> </u>
6.75 - 1.75	7464	10590	18051	38.73	55.38	94.10		87.2% 75		1								73.1%							_									-
				39.07	55.38	94.45		87.6% 76							_			73.4%							-				_					1
1.75 - 0	7666	10762	18428																															

BU # 876317 Site Name WATERBURY,CT Order # 553382,Rev# 2	El Applied Moment (kip-ft) Axial Force (kips) Shear Force (kips) *TIA-222-H Section 15.5 Ap.	54.92 4.81 6.20	CCCROWN							
Top Plate - External		Bottom Plate - External								
	Connection Properties									
(12) 1" ø ł	Bolt Data Its (A325 N; Fy=92 ksi, Fu=120	ksi) on 17" BC								
Top Plate Data 20" OD x 1" Plate (A572-50; Fy=50 ksi, Fu=65 ksi) Top Stiffener Data N/A	<u></u> <u>Bo</u> 20	ottom Plate Data " OD x 1" Plate (A572-50; Fy=50 ks ottom Stiffener Data	i, Fu=65 ksi)							
Top Pole Data 12.75" x 0.375" round pole (A500-46; Fy=46 ksi, Fu=62 ksi)		ottom Pole Data .48" x 0.1875" 12-sided pole (A572	2-65; Fy=65 ksi, Fu=80 ksi)							
	Analysis Results									
	Bolt Capacity									
Allo	oad (kips) 12.50 able (kips) 54.53 Rating: 21.8% Pa	ss								
Top Plate Capacity		ottom Plate Capacity								
Max Stress (ksi):18.18(Flexural)Allowable Stress (ksi):45.00Stress Rating:38.5%PassTension Side Stress Rating:23.5%Pass	All Str	ax Stress (ksi): Iowable Stress (ksi): ress Rating: nsion Side Stress Rating:	14.61 (Flexural) 45.00 30.9% 7.1% Pass							


Monopole Base Plate Connection

Site Info	
BU #	876317
Site Name	WATERBURY,CT
Order #	553382,Rev# 2

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
l _{ar} (in)	0.25

Applied Loads		
Moment (kip-ft)	3144.43	
Axial Force (kips)	58.86	
Shear Force (kips)	29.84	
*TIA-222-H Section 15.5 Applied		

Connection Properties

Anchor Rod Data

(12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 55.16" BC

Base Plate Data

61.16" OD x 2.5" Plate (S-128; Fy=60 ksi, Fu=80 ksi)

Stiffener Data

Group 1: (21) 21.5"H x 11"W x 0.625"T, Notch: 0.75" plate: Fy= 50 ksi ; weld: Fy= 80 ksi horiz. weld: 0.3125" groove, 45° dbl bevel, 0.5" fillet vert. weld: 0.3125" fillet

Group 2: (3) 126"H x 7"W x 1"T, Notch: 0.75" plate: Fy= 65 ksi ; weld: Fy= 80 ksi horiz. weld: 0.5" groove, 45° dbl bevel, 0.3125" fillet vert. weld: 0.3125" fillet

Pole Data

39.2" x 0.3125" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary	(u	nits of kips, kip-in)
Pu_t = 222.96	φPn_t = 243.75	Stress Rating
Vu = 2.49	φVn = 149.1	87.1%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	30.63	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	54.0%	Pass
Stiffener Summary		
Horizontal Weld:	40.4%	Pass
Vertical Weld:	40.7%	Pass
Plate Flexure+Shear:	22.0%	Pass
Plate Tension+Shear:	42.0%	Pass
Plate Compression:	60.5% Pass	
Pole Summary		
Punching Shear:	16.5%	Pass

CROWN

ysis Checks Demand

30.00

5.64

3353.38

1873.42

155.56

0.000

0.00

18499.97

Pier and Pad Foundation

	876317
	WATERBURY, CT
App. Number:	553382,Rev# 2

TIA-222 Revision: Н

Top & Bot. Pad Rein. Different?:	~
Block Foundation?:	~
Rectangular Pad?:	

Flexural 2-way (Comp) (kip*ft)

Tower Type: Monopole

Superstructure Analysis Re	eactions		Found	
Compression, P _{comp} :	59	kips		ī
Base Shear, Vu_comp:	30	kips		
			Lateral (Sliding) (kips)	
			Bearing Pressure (ksf)	
Moment, M _u :	3144	ft-kips	Overturning (kip*ft)	
Tower Height, H :	143	ft		
BP Dist. Above Fdn, bp_{dist}:	2.75	in		
Bolt Circle / Bearing Plate Width, BC:	55.16	in	Pad Flexure (kip*ft)	
			Pad Shear - 1-way (kips)	
			Pad Shear - 2-way (Comp) (ksi)	ľ

*Rating per TIA-222-H Section

15.5	
Structural Rating*	19.8

Rating*

10.3%

25.1%

85.2%

19.8%

8.6%

0.0%

0.0%

Check

Pass

Pass

Pass

Pass

Pass

Pass

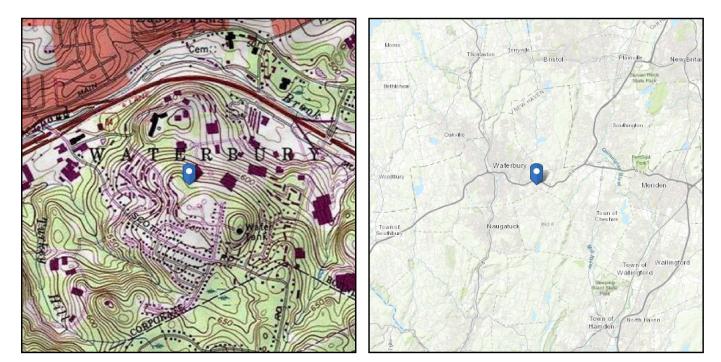
Pass

Structural Rating*:	19.8%
Soil Rating*:	85.2%

Pad Properties			
Depth, D :	6.75	ft	
Pad Width, W ₁ :	20	ft	
Pad Thickness, T :	6.75	ft	
Pad Rebar Size (Top dir.2), Sp_{top2}:	9		
Pad Rebar Quantity (Top dir. 2), mp_{top2}:	28		
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	10		
Pad Rebar Quantity (Bottom dir. 2), mp2:	21		
Pad Clear Cover, cc_{pad}:	3	in	

Material Properties			
Rebar Grade, Fy :	60	ksi	
Concrete Compressive Strength, F'c:	4	ksi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties						
Total Soil Unit Weight, $oldsymbol{\gamma}_{\mathbb{C}}$	125	pcf				
Ultimate Gross Bearing, Qult:	30.000	ksf				
Cohesion, Cu :	0.000	ksf				
Friction Angle, $oldsymbol{arphi}$:	36	degrees				
SPT Blow Count, N _{blows} :						
Base Friction, μ :	0.5					
Neglected Depth, N:	3.33	ft				
Foundation Bearing on Rock?	No					
Groundwater Depth, gw:	11.5	ft				


<--Toggle between Gross and Net

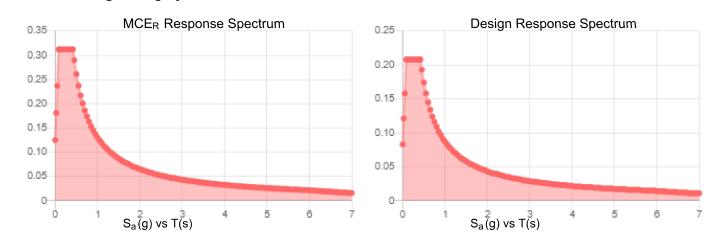
ASCE 7 Hazards Report

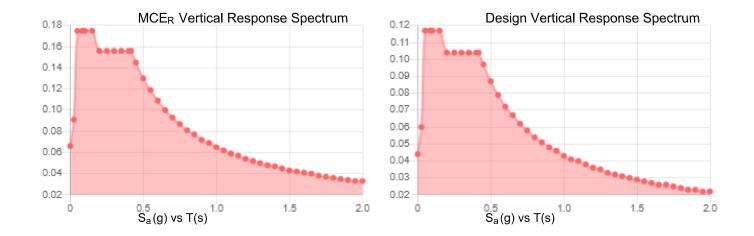
Address: No Address at This Location Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Default (see
Section 11.4.3)

Elevation: 660.21 ft (NAVD 88) Latitude: 41.537861 Longitude: -72.985028

Wind

Results:


Wind Speed:	118 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	90 Vmph
100-year MRI	97 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Fri Oct 01 2021


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Default (see Section 11.4.3)				
S _s :	0.195	S _{D1} :	0.087		
S ₁ :	0.054	T_L :	6		
F _a :	1.6	PGA :	0.108		
F _v :	2.4	PGA M :	0.171		
S _{MS} :	0.312	F _{PGA} :	1.585		
S _{M1} :	0.13	l _e :	1		
S _{DS} :	0.208	C _v :	0.7		
Seismic Design Category	В				

Data Accessed: Date Source: Fri Oct 01 2021

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Fri Oct 01 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Jacob Montoya Crown Castle 2055 S. Stearman Dr. Chandler, AZ 85286 480-298-9641		FROM ZERO TO INFINIGY the solutions are endless Infinigy Engineering, PLLC 1033 Watervliet Shaker Road Albany, NY 12205 518-690-0790 structural@infinigy.com	
Subject:	Mount Analysis Report		
Carrier Designation:	Dish Network 5G		
	Carrier Site Number:	BOHVN00165A	
	Carrier Site Name:	CT-CCI-T-876317	
Crown Castle Designation:	Crown Castle BU Number:	876317	
	Crown Castle Site Name:	WATERBURY	
	Crown Castle JDE Job Number:	645174	
	Crown Castle Order Number:	553382 Rev.1	
Engineering Firm Designation:	Infinigy Engineering, PLLC Report I	Designation: 1039-Z0001-B	
Site Data:	150 Mattatuck Heights, Waterbury, New Haven County, CT, 06705-3831 Latitude 41°32'16.30" Longitude -72°59'6.10"		
Structure Information:	Tower Height & Type: Mount Elevation: Mount Type:	144.3 ft Monopole 120.0 ft 8.0 ft Platform	
Dear Jacob Montoya,			
• ·			

Infinigy Engineering, PLLC is pleased to submit this "**Mount Analysis Report**" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis has been performed in accordance with the 2015 International Building Code based upon an ultimate 3second gust wind speed of 118 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Iker Moreno, EIT

Respectfully Submitted by: Emmanuel Poulin, P.E. 518-690-0790 <u>structural@infinigy.com</u> CT PE License No. 22947

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	118 mph
Exposure Category:	В
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Seismic S₅:	0.188
Seismic S₁:	0.064
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details	
		3	JMA WIRELESS	MX08FRO665-21		
120.0	120.0 120.0	3		TA08025-B604	8.0 ft Platform {Commscope MC-	
120.0 120.0	3 FUJITSU	TA08025-B605	PK8-DSH			
		1	RAYCAP	RDIDC-9181-PF-48	FRO-DSH}	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553382 Rev.1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-DSH	Infinigy

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

Infinigy Mount Analysis Tool V2.1.7, a tool internally developed by Infinigy, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- The antenna mounting system was properly fabricated, installed and maintained in good condition 1) in accordance with its original design and manufacturer's specifications.
- The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and 2) the referenced drawings.
- All member connections are assumed to have been designed to meet or exceed the load carrying 3) capacity of the connected member unless otherwise specified in this report.
- The analysis will be required to be revised if the existing conditions in the field differ from those 4) shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- Prior structural modifications to the tower mounting system are assumed to be installed as shown 5) per available data. Stee

6)
B-46)
5)
,
B-

This analysis may be affected if any assumptions are not valid or have been made in error. Infining Engineering, PLLC should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

6)

Table 3 -	 Mount Com 	ponent Stresses	s vs. Capa	acity (Platfor	m, All Secto	rs)	

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP4		12.1	Pass
	Horizontal(s)	H1	120.0	10.5	Pass
1,2	Standoff(s)	S2		29.1	Pass
1,2	Bracing(s)	CA1		31.2	Pass
	Corner Plate(s)	P2		15.4	Pass
	Mount Connection(s)			24.0	Pass

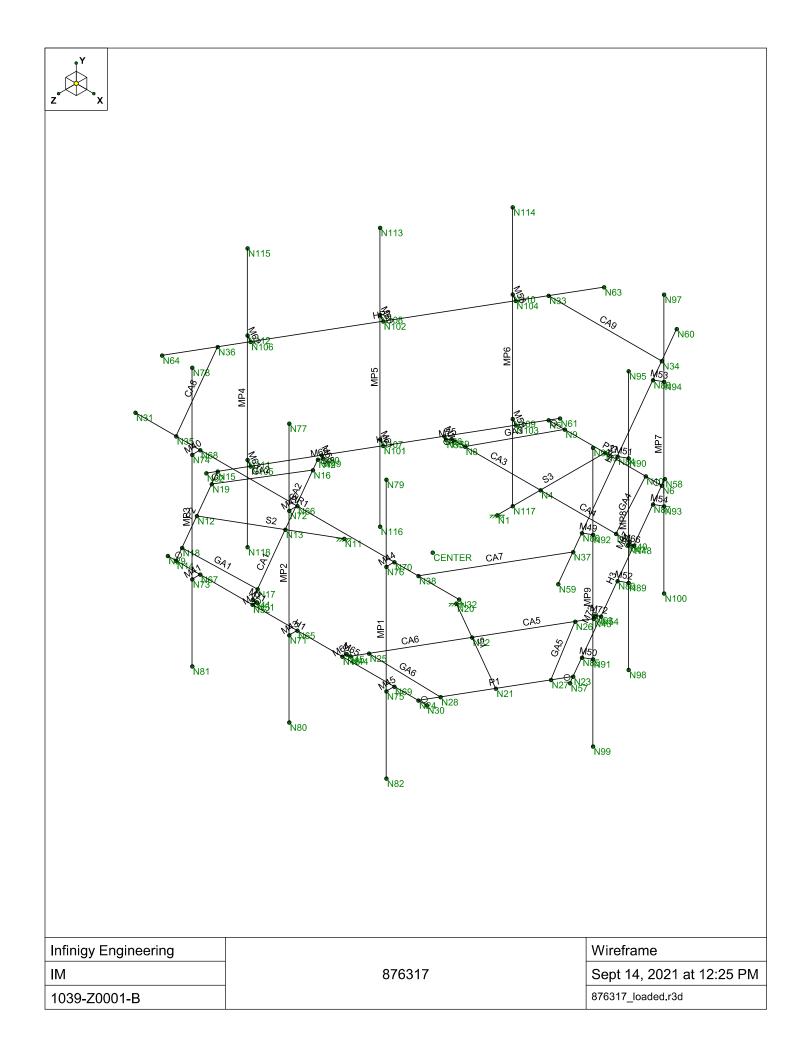
Structure Rating (max from all components) =	31.2%	
--	-------	--

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) See additional documentation in "Appendix D – Additional Calculations" for detailed mount connection calculations.

4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope MC-PK8-DSH

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Infinigy Engineering IM 1039-Z0001-B	876317	Rendering Sept 14, 2021 at 12:25 PM 876317_loaded.r3d
1033-20001-0		

APPENDIX B

SOFTWARE INPUT CALCULATIONS

Program Inputs

_	_	_	
ORMATION	Crown Castle	Dish Network	Iker Moreno
PROJECT INFORMATION	Client:	Carrier:	Engineer:

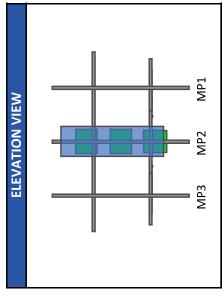
SITE INFORMATION	RMATION	
Risk Category:	_	
Exposure Category:	8	
Topo Factor Procedure:		Method 1, Category 1
Site Class:	Site Class: D - Stiff Soil (Assumed)	(Assumed)
Ground Elevation:	660.21	ft *Rev H

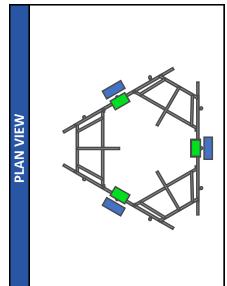
MOUNT INFORMATION	ORMATION	
Mount Type:	Platf	Platform
Num Sectors:	3	
Centerline AGL:	120.00	ft
Tower Height AGL:	144.25	ft

TA	N/A	ft	ft	ft	
HIC DA		N/A	N/A	N/A	
TOPOGRAPHIC DATA	Topo Feature:	Slope Distance:	Crest Distance:	Crest Height:	

EACTORS	NRC	
Directionality Fact. (K _d):	0.950	
Ground Ele. Factor (K _e):	0.976	*Rev H Only
Rooftop Speed-Up (K _s):	1.000	*Rev H Only
Topographic Factor (K _{zt}):	1.000	
Gust Effect Factor (G _h):	1.000	

NDARDS	2015 IBC	TIA-222-H	ASCE 7-10
CODE STANDARDS	Building Code:	TIA Standard:	ASCE Standard:


	mph	mph	mph	in	psf	psf	psf
ICE DATA	118	N/A	50	1.5	68.843	41.306	7.416
WIND AND ICE DATA	Ultimate Wind (V _{ult}):	Design Wind (V):	Ice Wind (V _{ice}):	Base Ice Thickness (t _i):	Flat Pressure:	Round Pressure:	Ice Wind Pressure:

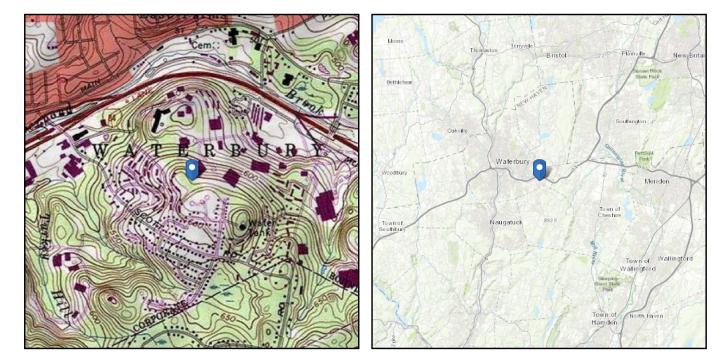

SEISMIC DATA	DATA	
Short-Period Accel. (S_s) :	0.188	ß
1-Second Accel. (S ₁):	0.064	ß
Short-Period Design (S _{DS}):	0.201	
1-Second Design (S _{D1}):	0.102	
Short-Period Coeff. (F _a):	1.600	
1-Second Coeff. (F _v):	2.400	
Amplification Factor (A _s):	3.000	
Response Mod. Coeff. (R):	2.000	

Infinigy Load Calculator V2.1.7

S	
+	
3	
0	
Ξ	
<u> </u>	
F	
σ	
<u> </u>	
60	
0	
Ľ	
Δ	

										T
	Member (a sector)	MP2	MP2	MP2						
	Seismic F (lbs)	24.82	19.22	22.56	<u></u>					
	Weight (Ibs)	82.50	63.90	75.00	CO:T7					
	Wind F _x (lbs)	99.44	30.39	34.99						
	Wind F _z (lbs)	248.14	60.83	60.83	00.70					
	EPA_{T} (ft ²)	3.21	0.98	1.13	0					
ORMATION	EPA_{N} (ft ²)	8.01	1.96	1.96	000					
APPURTENANCE INFORMATION	q _z (psf)	34.42	34.42	34.42	V t t					
APPURT	K _a	06.0	06.0	06.0	0.0					
	Qty.	3	ŝ	m						
	Elevation	120.0	120.0	120.0	0.00					
	Appurtenance Name	JMA WIRELESS MX08FR0665-21	FUJITSU TA08025-B604	FUJITSU TA08025-B605						

9/14/2021


No Address at This

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 660.21 ft (NAVD 88) Latitude: 41.537861 Longitude: -72.985028

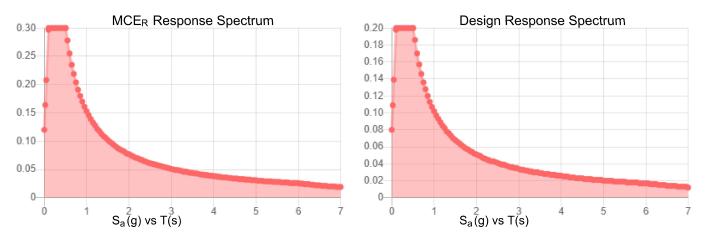
Wind

Results:

Wind Speed: 10-year MRI 25-year MRI 50-year MRI 100-year MRI 118 Vmph per State of Connecticut allowing ASCE 7-16 wind speed values
76 Vmph
86 Vmph
92 Vmph
99 Vmph

Date Socessed:

AGE EASE 147202 Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.188	S _{DS} :	0.2	
S ₁ :	0.064	S _{D1} :	0.102	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.097	
S _{MS} :	0.3	PGA M:	0.155	
S _{M1} :	0.153	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Tue Sep 14 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Tue Sep 14 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Materia	Design Rules
1	S3	N1	N3	K JUIIL		Standoff	Beam	Tube	A500 Gr	Typical
2	GA4	N7	N10		270	Grating Angle		Single Angle		Typical
3	GA3	N8	N9		210	Grating Angle		Single Angle		Typical
4	P3	N5	N6			Corner Plates	Beam	RECT	A36 Gr.36	Typical
5	S2	N11	N12			Standoff	Beam	Tube	A500 Gr	Typical
6	GA2	N16	N19		270	Grating Angle	Beam	Single Angle		Typical
7	GA1	N17	N18		2.0	Grating Angle		Single Angle		Typical
8	P2	N14	N15			Corner Plates	Beam	RECT	A36 Gr.36	Typical
9	S1	N20	N21			Standoff	Beam	Tube	A500 Gr	Typical
10	GA6	N25	N28		270	Grating Angle		Single Angle		Typical
11	GA5	N26	N27			Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
12	P1	N23	N24			Corner Plates	Beam	RECT	A36 Gr.36	Typical
13	H1	N29	N30			Horizontal	Beam	Pipe	A53 Gr.B	
14	HR1	N31	N32			Handrail	Beam	Pipe	A53 Gr.B	
15	CA8	N36	N35		180	Handrail Connector		Single Angle		Typical
16	CA9	N34	N33		180	Handrail Connector		Single Angle		Typical
17	CA7	N38	N37		180	Handrail Connector		Single Angle		Typical
18	CA3	N4	N39			Channel	Beam	Channel	A36 Gr.36	Typical
19	CA4	N40	N4			Channel	Beam	Channel	A36 Gr.36	Typical
20	CA1	N13	N41			Channel	Beam	Channel	A36 Gr.36	Typical
21	CA2	N42	N13			Channel	Beam	Channel	A36 Gr.36	Typical
22	CA5	N22	N43			Channel	Beam	Channel	A36 Gr.36	Typical
23	CA6	N44	N22			Channel	Beam	Channel	A36 Gr.36	Typical
24	M64	N46	N45			RIGID	None	None	RIGID	Typical
25	M65	N44	N45			RIGID	None	None	RIGID	Typical
26	M66	N48	N47			RIGID	None	None	RIGID	Typical
27	M67	N40	N47			RIGID	None	None	RIGID	Typical
28	M68	N50	N49			RIGID	None	None	RIGID	Typical
29	M69	N42	N49			RIGID	None	None	RIGID	Typical
30	M70	N52	N51			RIGID	None	None	RIGID	Typical
31	<u>M71</u>	N41	N51			RIGID	None	None	RIGID	Typical
32	M72	N54	N53			RIGID	None	None	RIGID	Typical
33	<u>M73</u>	N43	N53			RIGID	None	None	RIGID	Typical
34	<u>M74</u>	N56	N55			RIGID	None	None	RIGID	Typical
35	<u>M75</u>	N39	N55			PL 2.375x0.5	None	None	A36 Gr.36	Typical
36	<u>H3</u>	N57	N58			Horizontal	Beam	Pipe	A53 Gr.B	Typical
37	HR3	N59	N60			Handrail	Beam	Pipe	A53 Gr.B	Typical
38	H2	N61	N62			Horizontal	Beam		A53 Gr.B	
39	HR2	N63	N64			Handrail	Beam	Pipe	A53 Gr.B	
40	M40	N68	N74			RIGID	None None	None	RIGID	Typical Typical
41	<u>M41</u> M42	N67 N66	N73 N72			RIGID RIGID	None	None None	RIGID RIGID	Typical Typical
42	M42 M43	N65	N72			RIGID	None	None	RIGID	Typical
43	M43	N05	N76			RIGID	None	None	RIGID	Typical
44	M44 M45	N69	N75			RIGID	None	None	RIGID	Typical
45	MP3	N78	N81			Mount Pipe	Column		A53 Gr.B	
40	MP2	N77	N80			Mount Pipe	Column		A53 Gr.B A53 Gr.B	
47	MP1	N79	N82			Mount Pipe	Column		A53 Gr.B A53 Gr.B	
40	M49	N86	N92			RIGID	None	None	RIGID	Typical
50	M49 M50	N85	N91			RIGID	None	None	RIGID	Typical
51	M50 M51	N84	N90			RIGID	None	None	RIGID	Typical
52	M52	N83	N89			RIGID	None	None	RIGID	Typical
53	M52	N88	N94			RIGID	None	None	RIGID	Typical
54	M54	N87	N93			RIGID	None	None	RIGID	Typical
55	MP9	N96	N99			Mount Pipe	Column		A53 Gr.B	Typical
56	MP8	N95	N98			Mount Pipe	Column		A53 Gr.B	
	A-3D Version					1 09 06 - MA\Reno				Page 1

RISA-3D Version 17.0.4 [L:\...\...\Structural\2021.09.06 - MA\Report\876317_loaded_loaded.r3d] Page 1

Member Primary Data (Continued)

8

Company

Designer

INFINIG

OM ZERO TO INFINIGY

the solutions are endless

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
57	MP7	N97	N100			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
58	M58	N104	N110			RIGID	None	None	RIGID	Typical
59	M59	N103	N109			RIGID	None	None	RIGID	Typical
60	M60	N102	N108			RIGID	None	None	RIGID	Typical
61	M61	N101	N107			RIGID	None	None	RIGID	Typical
62	M62	N106	N112			RIGID	None	None	RIGID	Typical
63	M63	N105	N111			RIGID	None	None	RIGID	Typical
64	MP6	N114	N117			Mount Pipe	Column	Pipe	A53 Gr.B	
65	MP5	N113	N116			Mount Pipe	Column	Pipe	A53 Gr.B	
66	MP4	N115	N118			Mount Pipe	Column	Pipe	A53 Gr.B	Typical

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[lb/f	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	490	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	490	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	490	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	490	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	490	50	1.4	65	1.3
8	A913 Gr.65	29000	11154	.3	.65	490	65	1.1	80	1.1
9	A500 GR.C	29000	11154	.3	.65	490	46	1.6	60	1.2
10	A529 Gr. 50	29000	11154	.3	.65	490	50	1.1	65	1.1
11	A1011-33Ksi	29000	11154	.3	.65	490	33	1.5	58	1.2
12	A1011 36 Ksi	29000	11154	.3	.65	490	36	1.5	58	1.2
13	A1018 50 Ksi	29000	11154	.3	.65	490	50	1.5	65	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Corner Plates	PL6.5x0.375	Beam	RECT	A36 Gr.36	Typical	2.438	.029	8.582	.11
2	6"x0.37" Plate	Plate 6x.37	Beam	RECT	A36 Gr.36	Typical	2.22	.025	6.66	.097
3	Grating Angle	L2x2x4	Beam	Single Angle	A36 Gr.36	Typical	.944	.346	.346	.021
4	Horizontal	PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
5	Mount Pipe	PIPE 2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
6	Channel	C3.38x2.06x0.25	Beam	Channel	A36 Gr.36	Typical	1.75	.715	3.026	.034
7	Standoff	HSS4X4X4	Beam	Tube	A500 Gr.B Re.	Typical	3.37	7.8	7.8	12.8
8	Handrail Connector	L4X4X4	Beam	Single Angle	A36 Gr.36	Typical	1.93	3	3	.044
9	Handrail	PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	-0.	Ō	-74.1865	0	
2	CENTER	0	0	-50.1865	0	
3	N3	-0.	0	-114,1865	0	
4	N4	-0.	0	-90.1865	0	
5	N5	-21.	0	-114.1865	0	
6	N6	21.	0	-114.1865	0	
7	N7	28.	0	-90.1865	0	
8	N8	-28.	0	-90.1865	0	
9	N9	-15.	0	-114.1865	0	
10	N10	15.	0	-114.1865	0	
11	N11	-20.78461	0	-38.1865	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Dia
12	N12	-55.425626	0	-18.1865	0	
13	N13	-34.641016	0	-30.1865	0	
14	N14	-44.925626	0	0.000033	0	
15	N15	-65.925626	0	-36.373033	0	
16	N16	-48.641016	0	-54.435211	0	
17	N17	-20.641016	0	-5.937789	0	
18	N18	-47.925626	0	-5.196119	0	
19	<u>N19</u>	-62.925626	0	-31.176881	0	
20	N20	20.78461	0	-38.1865	0	
21	<u>N21</u>	55.425626	0	-18.1865	0	
22	N22	34.641016	0	-30.1865	0	
23	N23	65.925626	0	-36.373033	0	
24	N24	44.925626	0	0.000033	0	
25	N25	20.641016	0	-5.937789	0	
26	N26	48.641016	0	-54.435211	0	
27	N27	62.925626	0	-31.176881	0	
28	N28	47.925626	0	-5.196119	0	
29	N29	-48.	0	0.000033	0	
30	N30	48.	0	0.000033	0	
31	N31	-60.	40	0.000033	0	
32	N32	60.	40	0.000033	0	
33	N33	-21.	40	-114.1865	0	
34	N34	21.	40	-114.1865	0	
35	N35	-44.925626	40	0.000033	0	
36	N36	-65.925626	40	-36.373033	0	
37	N37	65.925626	40	-36.373033	0	
38	N38	44.925626	40	0.000033	0	
39	N39	-33.	0	-90.1865	0	
40	N40	33.	0	-90.1865	0	
41	N41	-18.141016	0	-1.607662	0	
42	N42	-51.141016	0	-58.765338	0	
43	N43	51.141016	0	-58.765338	0	
44	N44	18.141016	0	-1.607662	0	
45	N45	16.641016	0	-1.607662	0	
46	N46	16.641016	0	0.000033	0	
47	N47	33.75	0	-88.887462	0	
48	N48	35.142305	0	-89.691309	0	
49	N49	-50.391016	0	-60.064377	0	
50	N50	-51.783321	0	-60.868224	0	
51	N51	-16.641016	0	-1.607662	0	
52	N52	-16.641016	0	0.000033	0	
53	N53	50.391016	0	-60.064377	0	
54	N54	51.783321	0	-60.868224	0	
55	N55	-33.75	0	-88.887462	0	
56	N56	-35.142305	0	-89.691309	0	
57	N57	67.462813	0	-33.710548	0	
58	N58	19.462813	0	-116.848986	0	
59	N59	73.462813	40	-23.318243	0	
60	N60	13.462813	40	-127.241291	0	
61	N61	-19.462813	0	-116.848986	0	
62	N62	-67.462813	0	-33.710547	0	
63	N63	-13.462813	40	-127.241291	0	
64	N64	-73.462813	40	-23.318242	Ō	
65	N65	0.	0	0.000033	0	
66	N66	0.	40	0.000033	0	
67	N67	-36.	0	0.000033	0	
	N68	-36.	40	0.000033	0	

RISA-3D Version 17.0.4 [L:\...\...\Structural\2021.09.06 - MA\Report\876317_loaded_loaded.r3d] Page 3

Joint Coordinates and Temperatures (Continued)

68 N69 36. 0 0.000033 0 70 N70 36. 40 0.000033 0 71 N71 0. 0 3.000033 0 72 N72 0. 40 3.000033 0 73 N73 -36. 0 3.000033 0 74 N74 -36. 40 3.000033 0 75 N75 3.6. 40 3.000033 0 76 N76 36. 68 3.000033 0 78 N78 -36. 68 3.000033 0 80 N80 0. -28 3.000033 0 82 N82 36. -28 3.000033 0 83 N83 43.462813 40 -75.279767 0 84 N84 43.462813 40 -44.102852 0 86 N86 61.462813 40 -44.102852		Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	69						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				40			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
78 N78 -36. 68 3.000033 0 79 N79 36. 68 3.000033 0 80 N80 0. -28 3.000033 0 81 N81 -36. -28 3.000033 0 82 N82 36. -28 3.000033 0 83 N83 43.462813 0 -75.279767 0 84 N84 43.462813 0 -44.102852 0 86 N86 61.462813 0 -106.456681 0 87 N87 25.462813 40 -106.456681 0 88 N88 25.462813 40 -106.456681 0 90 N90 46.060889 0 -76.779767 0 91 N91 64.060889 0 -76.779767 0 92 N92 64.060889 68 -76.779767 0 93 N93 28.060889							
79 N79 36. 68 3.000033 0 80 N80 0. -28 3.000033 0 81 N81 -36. -28 3.000033 0 82 N82 36. -28 3.000033 0 83 N83 43.462813 0 -75.279767 0 84 N84 43.462813 40 -75.279767 0 85 N85 61.462813 40 -44.102852 0 86 N86 61.462813 40 -106.456681 0 88 N88 25.462813 40 -106.456681 0 89 N89 46.060889 0 -76.779767 0 90 N90 46.060889 0 -45.602852 0 91 N91 64.060889 40 -407.956681 0 92 N92 64.060889 68 -76.779767 0 94 N94 28.06088							
80 N80 0. -28 3.00033 0 81 N81 -36 . -28 3.00033 0 82 N82 36 . -28 3.00033 0 83 N83 43.462813 0 -75.279767 0 84 N84 43.462813 40 -75.279767 0 85 N85 61.462813 0 -44.102852 0 86 N86 61.462813 40 -44.102852 0 87 N87 25.462813 40 -106.456681 0 89 N89 46.60889 0 -76.779767 0 90 N90 46.060889 40 -45.002852 0 91 N91 64.060889 40 -107.956681 0 92 N92 64.060889 68 -76.779767 0 94 N94 28.060889 68 -107.956681 0							
81 N81 -36 -28 3.00033 0 82 N82 36 -28 3.00033 0 83 N83 43.462813 0 -75.279767 0 84 N84 43.462813 40 -75.279767 0 85 N85 61.462813 40 -44.102852 0 86 N86 61.462813 40 -44.102852 0 87 N87 25.462813 40 -106.456681 0 88 N88 25.462813 40 -106.456681 0 90 N90 46.060889 0 -76.779767 0 91 N91 64.060889 0 -76.779767 0 92 N92 64.060889 0 -107.956681 0 93 N93 28.060889 68 -76.779767 0 94 N94 28.060889 -28 -76.779767 0							
82 N82 36. -28 3.000033 0 83 N83 43.462813 0 -75.279767 0 84 N84 43.462813 40 -75.279767 0 85 N85 61.462813 0 -44.102852 0 86 N86 61.462813 40 -44.102852 0 87 N87 25.462813 0 -106.456681 0 88 N88 25.462813 40 -46.66681 0 90 N80 46.060889 0 -76.779767 0 91 N91 64.060889 40 -45.602852 0 92 N92 64.060889 40 -107.956681 0 93 N93 28.060889 68 -76.779767 0 94 N94 28.060889 68 -107.956681 0 95 N95 46.060889 -28 -76.779767 0 98 N98							
83 N83 43.462813 0 -75.279767 0 84 N84 43.462813 40 -75.279767 0 85 N85 61.462813 0 -44.102852 0 86 N86 61.462813 40 -44.102852 0 87 N87 25.462813 0 -106.456681 0 88 N88 25.462813 40 -106.456681 0 89 N89 46.060889 0 -76.779767 0 90 N90 46.060889 0 -45.602852 0 91 N91 64.060889 0 -107.956681 0 93 N93 28.060889 40 -107.956681 0 94 N94 28.060889 -88 -76.779767 0 96 N96 64.060889 -28 -76.779767 0 95 N95 46.060889 -28 -707.9767 0 98							
84 N84 43.462813 40 -75.279767 0 85 N85 61.462813 0 -44.102852 0 86 N86 61.462813 40 -106.456681 0 87 N87 25.462813 40 -106.456681 0 88 N88 25.462813 40 -76.779767 0 90 N90 46.060889 40 -76.779767 0 91 N91 64.060889 0 -45.602852 0 92 N92 64.060889 40 -107.956681 0 94 N94 28.060889 68 -45.02852 0 95 N95 46.060889 68 -45.02852 0 97 N97 28.060889 68 -45.02852 0 98 N98 46.060889 -28 -76.779767 0 98 N98 46.060889 -28 -45.02252 0							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
86 N86 61.462813 40 -44.102852 0 87 N87 25.462813 0 -106.456681 0 88 N88 25.462813 40 -106.456681 0 89 N89 46.060889 0 -76.779767 0 90 N90 46.060889 0 -45.602852 0 91 N91 64.060889 0 -407.956681 0 92 N92 64.060889 40 -107.956681 0 94 N94 28.060889 68 -76.779767 0 94 N94 28.060889 68 -107.956681 0 95 N95 46.060889 -28 -45.602852 0 97 N97 28.060889 -28 -107.956681 0 98 N98 46.060889 -28 -107.956681 0 100 N100 28.060889 -28 -107.956681							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
88 N88 25.462813 40 -106.456681 0 89 N89 46.060889 0 -76.779767 0 90 N90 46.060889 40 -76.779767 0 91 N91 64.060889 0 -45.602852 0 92 N92 64.060889 40 -45.602852 0 93 N93 28.060889 40 -107.956681 0 94 N94 28.060889 68 -76.779767 0 95 N95 46.060889 68 -107.956681 0 95 N96 64.060889 -28 -76.779767 0 98 N88 46.060889 -28 -76.779767 0 99 N99 64.060889 -28 -76.779767 0 100 N100 28.060889 -28 -76.779767 0 101 N101 -43.462813 0 -75.279766 0 101							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
90N9046.06088940 -76.779767 091N9164.0608890 -45.602852 092N9264.06088940 -45.602852 093N9328.0608890 -107.956681 094N9428.06088940 -107.956681 095N9546.06088968 -76.779767 096N9664.06088968 -45.602852 097N9728.06088968 -107.956681 098N9846.060889 -28 -76.779767 099N9964.060889 -28 -45.602852 0100N10028.060889 -28 -107.956681 0101N101 -43.462813 0 -75.279766 0102N102 -43.462813 40 -75.279766 0103N103 -25.462813 40 -106.456681 0105N105 -61.462813 0 -44.102852 0106N106 -61.462813 40 -76.779766 0108N108 -46.060889 0 -76.779766 0109N109 -28.060889 0 -76.779766 0103N103 -24.060889 0 -76.779766 0104N104 -25.462813 40 -76.779766 0108N108 -46.060889 0 -45.602852 0111N111 -64.060889 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
91N91 64.060889 0 -45.602852 092N92 64.060889 40 -45.602852 093N93 28.060889 0 -107.956681 094N94 28.060889 40 -107.956681 095N95 46.060889 68 -76.779767 096N96 64.060889 68 -107.956681 097N97 28.060889 68 -107.956681 098N98 46.060889 -28 -76.779767 099N99 64.060889 -28 -76.779767 0100N100 28.060889 -28 -107.956681 0101N101 -43.462813 0 -75.279766 0102N102 -43.462813 0 -75.279766 0103N103 -25.462813 0 -106.456681 0104N104 -25.462813 0 -44.102852 0105N105 -61.462813 40 -76.779766 0106N106 -61.462813 40 -76.779766 0108N108 -46.060889 0 -76.779766 0110N110 -28.060889 0 -107.956681 0111N111 -64.060889 0 -107.956681 0112N112 -64.060889 0 -107.956681 0114N114 -28.060889 68 -107.956681 0115 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				40			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	95	N95		68		0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	98					0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	101	N101		0		0	
104 N104 -25.462813 40 -106.456681 0 105 N105 -61.462813 0 -44.102852 0 106 N106 -61.462813 40 -44.102852 0 107 N107 -46.060889 0 -76.779766 0 108 N108 -46.060889 40 -76.779766 0 109 N109 -28.060889 0 -107.956681 0 110 N110 -28.060889 40 -107.956681 0 111 N111 -64.060889 0 -45.602852 0 112 N112 -64.060889 40 -45.602852 0 113 N113 -46.060889 68 -76.779766 0 114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0	102	N102		40		0	
104 N104 -25.462813 40 -106.456681 0 105 N105 -61.462813 0 -44.102852 0 106 N106 -61.462813 40 -44.102852 0 107 N107 -46.060889 0 -76.779766 0 108 N108 -46.060889 40 -76.779766 0 109 N109 -28.060889 0 -107.956681 0 110 N110 -28.060889 40 -107.956681 0 111 N111 -64.060889 0 -45.602852 0 112 N112 -64.060889 40 -45.602852 0 113 N113 -46.060889 68 -76.779766 0 114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0	103	N103	-25.462813	0	-106.456681	0	
105 N105 -61.462813 0 -44.102852 0 106 N106 -61.462813 40 -44.102852 0 107 N107 -46.060889 0 -76.779766 0 108 N108 -46.060889 40 -76.779766 0 109 N109 -28.060889 0 -107.956681 0 110 N110 -28.060889 40 -107.956681 0 111 N111 -64.060889 0 -45.602852 0 112 N112 -64.060889 40 -45.602852 0 113 N113 -46.060889 68 -76.779766 0 114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0 </td <td>104</td> <td>N104</td> <td></td> <td>40</td> <td></td> <td>0</td> <td></td>	104	N104		40		0	
107 N107 -46.060889 0 -76.779766 0 108 N108 -46.060889 40 -76.779766 0 109 N109 -28.060889 0 -107.956681 0 110 N110 -28.060889 40 -107.956681 0 111 N111 -64.060889 0 -45.602852 0 112 N112 -64.060889 40 -45.602852 0 113 N113 -46.060889 68 -76.779766 0 114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0	105	N105	-61.462813	0		0	
107 N107 -46.060889 0 -76.779766 0 108 N108 -46.060889 40 -76.779766 0 109 N109 -28.060889 0 -107.956681 0 110 N110 -28.060889 40 -107.956681 0 111 N111 -64.060889 0 -45.602852 0 112 N112 -64.060889 40 -45.602852 0 113 N113 -46.060889 68 -76.779766 0 114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0				40			
108 N108 -46.060889 40 -76.779766 0 109 N109 -28.060889 0 -107.956681 0 110 N110 -28.060889 40 -107.956681 0 111 N111 -64.060889 0 -45.602852 0 112 N112 -64.060889 40 -45.602852 0 113 N113 -46.060889 68 -76.779766 0 114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0				0			
109 N109 -28,060889 0 -107,956681 0 110 N110 -28,060889 40 -107,956681 0 111 N110 -28,060889 40 -107,956681 0 111 N111 -64,060889 0 -45,602852 0 112 N112 -64,060889 40 -45,602852 0 113 N113 -46,060889 68 -76,779766 0 114 N114 -28,060889 68 -107,956681 0 115 N115 -64,060889 68 -45,602852 0 116 N116 -46,060889 -28 -76,779766 0		N108		40	-76.779766	0	
110 N110 -28.060889 40 -107.956681 0 111 N111 -64.060889 0 -45.602852 0 112 N112 -64.060889 40 -45.602852 0 113 N113 -46.060889 68 -76.779766 0 114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0							
111 N111 -64.060889 0 -45.602852 0 112 N112 -64.060889 40 -45.602852 0 113 N113 -46.060889 68 -76.779766 0 114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0	110		-28.060889	40			
113 N113 -46.060889 68 -76.779766 0 114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0	111		-64.060889	0	-45.602852	0	
114 N114 -28.060889 68 -107.956681 0 115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0		N112	-64.060889		-45.602852		
115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0	113		-46.060889		-76.779766		
115 N115 -64.060889 68 -45.602852 0 116 N116 -46.060889 -28 -76.779766 0			-28.060889		-107.956681	0	
116 N116 -46.060889 -28 -76.779766 0						0	
	116	N116	-46.060889		-76.779766	0	
	117	N117	-28.060889	-28	-107.956681	0	
118 N118 -64.060889 -28 -45.602852 0	118	N118	-64.060889	-28	-45.602852		

Hot Rolled Steel Design Parameters

	Label	Shape Length	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torque[i	Kyy Kzz	Cb	Funct
1	S3	Standoff 40			Lbyy					Lateral
2	GA4	Grating A 27.295			Lbyy					Lateral

Hot Rolled Steel Design Parameters (Continued)

	Label		Length	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torque[i	. Куу	Kzz	Cb	Funct
3	GA3	Grating A	27.295			Lbyy						Lateral
4	P3	Corner Pl	42			Lbyy						Lateral
5	S2	Standoff	40			Lbyy						Lateral
6	GA2	Grating A	27.295			Lbyy						Lateral
7	GA1	Grating A	27.295			Lbyy						Lateral
8	P2	Corner Pl	42			Lbyy						Lateral
9	S1	Standoff	40			Lbyy						Lateral
10	GA6	Grating A	27.295			Lbyy						Lateral
11	GA5	Grating A	27.295			Lbyy						Lateral
12	P1	Corner Pl	42			Lbyy						Lateral
13	H1	Horizontal	96			Lbyy						Lateral
14	HR1	Handrail	120			Lbyy						Lateral
15	CA8	Handrail	42			Lbyy						Lateral
16	CA9	Handrail	42			Lbyy						Lateral
17	CA7	Handrail	42			Lbyy						Lateral
18	CA3	Channel	33			Lbyy						Lateral
19	CA4	Channel	33			Lbyy						Lateral
20	CA1	Channel	33			Lbyy						Lateral
21	CA2	Channel	33			Lbyy						Lateral
22	CA5	Channel	33			Lbyy						Lateral
23	CA6	Channel	33			Lbyy						Lateral
24	M75	PL 2.375x	1.5			Lbyy						Lateral
25	H3	Horizontal	96			Lbyy						Lateral
26	HR3	Handrail	120			Lbyy						Lateral
27	H2	Horizontal	96			Lbyy						Lateral
28	HR2	Handrail	120			Lbyy						Lateral
29	MP3	Mount Pipe				Lbyy						Lateral
30	MP2	Mount Pipe				Lbyy						Lateral
31	MP1	Mount Pipe				Lbyy						Lateral
32	MP9	Mount Pipe				Lbyy						Lateral
33	MP8	Mount Pipe				Lbyy						Lateral
34	MP7	Mount Pipe				Lbyy						Lateral
35	MP6	Mount Pipe				Lbyy						Lateral
36	MP5	Mount Pipe				Lbvv						Lateral
37	MP4	Mount Pipe				Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Member)	Surface(Plate/Wall)
1	Self Weight	DĽ	•	-1	•		13		3	
2	Wind Load AZ	WLZ					26			
3	Wind Load AZ	None					26			
4	Wind Load AZ	None					26			
5	Wind Load AZ	WLX					26			
6	Wind Load AZ	None					26			
7	Wind Load AZ	None					26			
8	Wind Load AZ	None					26			
9	Wind Load AZ	None					26			
10	Wind Load AZ	None					26			
11	Wind Load AZ	None					26			
12	Wind Load AZ	None					26			
13	Wind Load AZ	None					26			
14	Distr. Wind Lo	WLZ						66		
15	Distr. Wind Lo	WLX						66		
16	Ice Weight	OL1					13	66	3	
17	Ice Wind Load	OL2					26			

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Member)	Surface(Plate/Wall)
18	Ice Wind Load	None					26			
19	Ice Wind Load	None					26			
20	Ice Wind Load	OL3					26			
21	Ice Wind Load	None					26			
22	Ice Wind Load	None					26			
23	Ice Wind Load	None					26			
24	Ice Wind Load	None					26			
25	Ice Wind Load	None					26			
26	Ice Wind Load	None					26			
27	Ice Wind Load	None					26			
28	Ice Wind Load	None					26			
29	Distr. Ice Wind	OL2						66		
30	Distr. Ice Wind	OL3						66		
31	Seismic Load Z	ELZ			301		13			
32	Seismic Load X	ELX	301				13			
33	Service Live L	LL				1				
34	Maintenance L	LL				1				
35	Maintenance L	LL				1				
36	Maintenance L	LL				1				
37	Maintenance L	LL				1				
38	Maintenance L	LL				1				
39	Maintenance L	LL				1				
40	Maintenance L	LL				1				
41	Maintenance L	LL				1				
42	Maintenance L	LL				1				
43	BLC 1 Transie	None						9		
44	BLC 16 Transi	None						9		

Joint Loads and Enforced Displacements (BLC 33 : Service Live Loads)

[]	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2		
1	N30	L	Υ	-250		
Joint Load	Joint Loads and Enforced Displacements (BLC 34 : Maintenance Load 1)					
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2		
1	N67	L	Y	-500		
Joint Load	s and Enforced Displa	cements (BLC 35 : Ma	aintenance Loa	d 2)		
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2		
1	N65	L	Y	-500		
Joint Load	s and Enforced Displace	cements (BLC 36 : Ma	aintenance Loa	d 3)		
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2		
1	N69	L	Υ	-500		
_Joint Load	s and Enforced Displa	cements (BLC 37 : Ma	aintenance Loa	d 4)		
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2		
1	N85	L	Y	-500		
Joint Loads and Enforced Displacements (BLC 38 : Maintenance Load 5)						
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2		
1	N83		V	-500		

Joint Loads and Enforced Displacements (BLC 39 : Maintenance Load 6)					
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2	
1	N87	L	Y	-500	
Joint Load	s and Enforced Displa	acements (BLC 40 : Ma	aintenance Loa	d 7)	
	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2	
1	N103	L	Υ	-500	
Joint Loads	s and Enforced Displa	acements (BLC 41 : Ma	aintenance Loa	d 8)	
	Joint Label	L,D,M	Direction	Magnitude[(Ib,Ib-ft), (in,rad), (Ib*s^2	
1	N101	L	Y	-500	
Joint Loads and Enforced Displacements (BLC 42 : Maintenance Load 9)					

Joint Label L,D,M Direction Magnitude[(lb,lb-ft), (in,rad), (lb*s^2... 1 N105 L Y -500

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Y	-41.25	6
2	MP2	Y	-41.25	78
3	MP2	Y	-63.9	%25
4	MP2	Y	-75	%50
5	MP2	Y	-21.85	%75
6	MP5	Y	-41.25	6
7	MP5	Y	-41.25	78
8	MP5	Y	-63.9	%33
9	MP5	Y	-75	%67
10	MP8	Y	-41.25	6
11	MP8	Y	-41.25	78
12	MP8	Ý	-63.9	%33
13	MP8	Y	-75	%67

Member Point Loads (BLC 2 : Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	0	6
2	MP2	Z	-124.07	6
3	MP2	Х	0	78
4	MP2	Z	-124.07	78
5	MP2	Х	0	%25
6	MP2	Z	-60.83	%25
7	MP2	Х	0	%50
8	MP2	Z	-60.83	%50
9	MP2	Х	0	%75
10	MP2	Z	-62.06	%75
11	MP5	Х	0	6
12	MP5	Z	-68.31	6
13	MP5	Х	0	78
14	MP5	Z	-68.31	78
15	MP5	Х	0	%33
16	MP5	Z	-38	%33
17	MP5	X	0	%67
18	MP5	Z	-41.45	%67
19	MP8	Х	0	6
20	MP8	Z	-68.31	6
21	MP8	Х	0	78

Member Point Loads (BLC 2 : Wind Load AZI 0) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
22	MP8	Z	-68.31	78
23	MP8	Х	0	%33
24	MP8	Z	-38	%33
25	MP8	Х	0	%67
26	MP8	Z	-41.45	%67

Member Point Loads (BLC 3 : Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	-52.74	6
2	MP2	Z	-91.35	6
3	MP2	Х	-52.74	78
4	MP2	Z	-91.35	78
5	MP2	Х	-26.61	%25
6	MP2	Z	-46.09	%25
7	MP2	Х	-27.18	%50
8	MP2	Z	-47.08	%50
9	MP2	Х	-27.78	%75
10	MP2	Z	-48.11	%75
11	MP5	Х	-52.74	6
12	MP5	Z	-91.35	6
13	MP5	Х	-52.74	78
14	MP5	Z	-91.35	78
15	MP5	Х	-26.61	%33
16	MP5	Z	-46.09	%33
17	MP5	Х	-27.18	%67
18	MP5	Z	-47.08	%67
19	MP8	Х	-24.86	6
20	MP8	Z	-43.06	6
21	MP8	Х	-24.86	78
22	MP8	Z	-43.06	78
23	MP8	Х	-15.2	%33
24	MP8	Z	-26.32	%33
25	MP8	Х	-17.5	%67
26	MP8	Z	-30.3	%67

Member Point Loads (BLC 4 : Wind Load AZI 60)

	Member Label	Direction	Magnitude[Ib,Ib-ft]	Location[in,%]
1	MP2	Х	-59.16	6
2	MP2	Z	-34.15	6
3	MP2	Х	-59.16	78
4	MP2	Z	-34.15	78
5	MP2	Х	-32.91	%25
6	MP2	Z	-19	%25
7	MP2	Х	-35.9	%50
8	MP2	Z	-20.72	%50
9	MP2	Х	-36.84	%75
10	MP2	Z	-21.27	%75
11	MP5	Х	-107.45	6
12	MP5	Z	-62.04	6
13	MP5	Х	-107.45	78
14	MP5	Z	-62.04	78
15	MP5	Х	-52.68	%33
16	MP5	Z	-30.41	%33
17	MP5	Х	-52.68	%67
18	MP5	Z	-30.41	%67
19	MP8	Х	-59.16	6

Member Point Loads (BLC 4 : Wind Load AZI 60) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
20	MP8	Z	-34.15	6
21	MP8	X	-59.16	78
22	MP8	Z	-34.15	78
23	MP8	Х	-32.91	%33
24	MP8	Z	-19	%33
25	MP8	Х	-35.9	%67
26	MP8	Z	-20.72	%67

Member Point Loads (BLC 5 : Wind Load AZI 90)

	Member Label	Direction	Magnitude[Ib,Ib-ft]	Location[in,%]
1	MP2	Х	-49.72	6
2	MP2	Z	0	6
3	MP2	Х	-49.72	78
4	MP2	Z	0	78
5	MP2	Х	-30.39	%25
6	MP2	Z	0	%25
7	MP2	Х	-34.99	%50
8	MP2	Z	0	%50
9	MP2	Х	-36.04	%75
10	MP2	Z	0	%75
11	MP5	Х	-105.48	6
12	MP5	Z	0	6
13	MP5	Х	-105.48	78
14	MP5	Z	0	78
15	MP5	Х	-53.22	%33
16	MP5	Z	0	%33
17	MP5	Х	-54.37	%67
18	MP5	Z	0	%67
19	MP8	Х	-105.48	6
20	MP8	Z	0	6
21	MP8	Х	-105.48	78
22	MP8	Z	0	78
23	MP8	Х	-53.22	%33
24	MP8	Z	0	%33
25	MP8	Х	-54.37	%67
26	MP8	Z	0	%67

Member Point Loads (BLC 6 : Wind Load AZI 120)

	Member Label	Direction	Magnitude[Ib,Ib-ft]	Location[in,%]
1	MP2	Х	-59.16	6
2	MP2	Z	34.15	6
3	MP2	Х	-59.16	78
4	MP2	Z	34.15	78
5	MP2	Х	-32.91	%25
6	MP2	Z	19	%25
7	MP2	Х	-35.9	%50
8	MP2	Z	20.72	%50
9	MP2	Х	-36.84	%75
10	MP2	Z	21.27	%75
11	MP5	Х	-59.16	6
12	MP5	Z	34.15	6
13	MP5	Х	-59.16	78
14	MP5	Z	34.15	78
15	MP5	Х	-32.91	%33
16	MP5	Z	19	%33
17	MP5	X	-35.9	%67

Member Point Loads (BLC 6 : Wind Load AZI 120) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
18	MP5	Z	20.72	%67
19	MP8	X	-107.45	6
20	MP8	Z	62.04	6
21	MP8	Х	-107.45	78
22	MP8	Z	62.04	78
23	MP8	Х	-52.68	%33
24	MP8	Z	30.41	%33
25	MP8	X	-52.68	%67
26	MP8	Z	30.41	%67

Member Point Loads (BLC 7 : Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	-52.74	6
2	MP2	Z	91.35	6
3	MP2	Х	-52.74	78
4	MP2	Z	91.35	78
5	MP2	Х	-26.61	%25
6	MP2	Z	46.09	%25
7	MP2	Х	-27.18	%50
8	MP2	Z	47.08	%50
9	MP2	Х	-27.78	%75
10	MP2	Z	48.11	%75
11	MP5	Х	-24.86	6
12	MP5	Z	43.06	6
13	MP5	Х	-24.86	78
14	MP5	Z	43.06	78
15	MP5	Х	-15.2	%33
16	MP5	Z	26.32	%33
17	MP5	Х	-17.5	%67
18	MP5	Z	30.3	%67
19	MP8	Х	-52.74	6
20	MP8	Z	91.35	6
21	MP8	Х	-52.74	78
22	MP8	Z	91.35	78
23	MP8	Х	-26.61	%33
24	MP8	Z	46.09	%33
25	MP8	Х	-27.18	%67
26	MP8	Z	47.08	%67

Member Point Loads (BLC 8 : Wind Load AZI 180)

	Member Label	Direction	Magnitude[Ib,Ib-ft]	Location[in,%]
1	MP2	Х	0	6
2	MP2	Z	124.07	6
3	MP2	Х	0	78
4	MP2	Z	124.07	78
5	MP2	Х	0	%25
6	MP2	Z	60.83	%25
7	MP2	Х	0	%50
8	MP2	Z	60.83	%50
9	MP2	Х	0	%75
10	MP2	Z	62.06	%75
11	MP5	Х	0	6
12	MP5	Z	68.31	6
13	MP5	X	0	78
14	MP5	Z	68.31	78
15	MP5	X	0	%33

Member Point Loads (BLC 8 : Wind Load AZI 180) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
16	MP5	Z	38	%33
17	MP5	X	0	%67
18	MP5	Z	41.45	%67
19	MP8	Х	0	6
20	MP8	Z	68.31	6
21	MP8	Х	0	78
22	MP8	Z	68.31	78
23	MP8	X	0	%33
24	MP8	Z	38	%33
25	MP8	Х	0	%67
26	MP8	Z	41.45	%67

Member Point Loads (BLC 9 : Wind Load AZI 210)

	Member Label	Direction	Magnitude[Ib,Ib-ft]	Location[in,%]
1	MP2	Х	52.74	6
2	MP2	Z	91.35	6
3	MP2	Х	52.74	78
4	MP2	Z	91.35	78
5	MP2	Х	26.61	%25
6	MP2	Z	46.09	%25
7	MP2	Х	27.18	%50
8	MP2	Z	47.08	%50
9	MP2	Х	27.78	%75
10	MP2	Z	48.11	%75
11	MP5	Х	52.74	6
12	MP5	Z	91.35	6
13	MP5	Х	52.74	78
14	MP5	Z	91.35	78
15	MP5	Х	26.61	%33
16	MP5	Z	46.09	%33
17	MP5	Х	27.18	%67
18	MP5	Z	47.08	%67
19	MP8	Х	24.86	6
20	MP8	Z	43.06	6
21	MP8	Х	24.86	78
22	MP8	Z	43.06	78
23	MP8	Х	15.2	%33
24	MP8	Z	26.32	%33
25	MP8	Х	17.5	%67
26	MP8	Z	30.3	%67

Member Point Loads (BLC 10 : Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	59.16	6
2	MP2	Z	34.15	6
3	MP2	Х	59.16	78
4	MP2	Z	34.15	78
5	MP2	Х	32.91	%25
6	MP2	Z	19	%25
7	MP2	Х	35.9	%50
8	MP2	Z	20.72	%50
9	MP2	Х	36.84	%75
10	MP2	Z	21.27	%75
11	MP5	Х	107.45	6
12	MP5	Z	62.04	6
13	MP5	X	107.45	78

Member Point Loads (BLC 10 : Wind Load AZI 240) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP5	Z	62.04	78
15	MP5	Х	52.68	%33
16	MP5	Z	30.41	%33
17	MP5	Х	52.68	%67
18	MP5	Z	30.41	%67
19	MP8	Х	59.16	6
20	MP8	Z	34.15	6
21	MP8	Х	59.16	78
22	MP8	Z	34.15	78
23	MP8	Х	32.91	%33
24	MP8	Z	19	%33
25	MP8	Х	35.9	%67
26	MP8	Z	20.72	%67

Member Point Loads (BLC 11 : Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	49.72	6
2	MP2	Z	0	6
3	MP2	Х	49.72	78
4	MP2	Z	0	78
5	MP2	Х	30.39	%25
6	MP2	Z	0	%25
7	MP2	Х	34.99	%50
8	MP2	Z	0	%50
9	MP2	Х	36.04	%75
10	MP2	Z	0	%75
11	MP5	Х	105.48	6
12	MP5	Z	0	6
13	MP5	Х	105.48	78
14	MP5	Z	0	78
15	MP5	Х	53.22	%33
16	MP5	Z	0	%33
17	MP5	Х	54.37	%67
18	MP5	Z	0	%67
19	MP8	Х	105.48	6
20	MP8	Z	0	6
21	MP8	Х	105.48	78
22	MP8	Z	0	78
23	MP8	Х	53.22	%33
24	MP8	Z	0	%33
25	MP8	Х	54.37	%67
26	MP8	Z	0	%67

Member Point Loads (BLC 12 : Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	59.16	6
2	MP2	Z	-34.15	6
3	MP2	Х	59.16	78
4	MP2	Z	-34.15	78
5	MP2	Х	32.91	%25
6	MP2	Z	-19	%25
7	MP2	Х	35.9	%50
8	MP2	Z	-20.72	%50
9	MP2	Х	36.84	%75
10	MP2	Z	-21.27	%75
11	MP5	Х	59.16	6

Member Point Loads (BLC 12 : Wind Load AZI 300) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
12	MP5	Z	-34.15	6
13	MP5	Х	59.16	78
14	MP5	Z	-34.15	78
15	MP5	Х	32.91	%33
16	MP5	Z	-19	%33
17	MP5	Х	35.9	%67
18	MP5	Z	-20.72	%67
19	MP8	Х	107.45	6
20	MP8	Z	-62.04	6
21	MP8	Х	107.45	78
22	MP8	Z	-62.04	78
23	MP8	Х	52.68	%33
24	MP8	Z	-30.41	%33
25	MP8	Х	52.68	%67
26	MP8	Z	-30.41	%67

Member Point Loads (BLC 13 : Wind Load AZI 330)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	52.74	6
2	MP2	Z	-91.35	6
3	MP2	Х	52.74	78
4	MP2	Z	-91.35	78
5	MP2	Х	26.61	%25
6	MP2	Z	-46.09	%25
7	MP2	Х	27.18	%50
8	MP2	Z	-47.08	%50
9	MP2	Х	27.78	%75
10	MP2	Z	-48.11	%75
11	MP5	Х	24.86	6
12	MP5	Z	-43.06	6
13	MP5	Х	24.86	78
14	MP5	Z	-43.06	78
15	MP5	Х	15.2	%33
16	MP5	Z	-26.32	%33
17	MP5	Х	17.5	%67
18	MP5	Z	-30.3	%67
19	MP8	Х	52.74	6
20	MP8	Z	-91.35	6
21	MP8	Х	52.74	78
22	MP8	Z	-91.35	78
23	MP8	Х	26.61	%33
24	MP8	Z	-46.09	%33
25	MP8	Х	27.18	%67
26	MP8	Z	-47.08	%67

Member Point Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Y	-139.878	6
2	MP2	Y	-139.878	78
3	MP2	Y	-68.656	%25
4	MP2	Y	-73.148	%50
5	MP2	Y	-71.885	%75
6	MP5	Y	-139.878	6
7	MP5	Y	-139.878	78
8	MP5	Y	-68.656	%33
9	MP5	Y	-73.148	%67

Member Point Loads (BLC 16 : Ice Weight) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
10	MP8	Y	-139.878	6
11	MP8	Y	-139.878	78
12	MP8	Y	-68.656	%33
13	MP8	Y	-73.148	%67

Member Point Loads (BLC 17 : Ice Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	0	6
2	MP2	Z	-17.6	6
3	MP2	Х	0	78
4	MP2	Z	-17.6	78
5	MP2	Х	0	%25
6	MP2	Z	-6.8	%25
7	MP2	Х	0	%50
8	MP2	Z	-6.8	%50
9	MP2	Х	0	%75
10	MP2	Z	-7.03	%75
11	MP5	Х	0	6
12	MP5	Z	-13.45	6
13	MP5	Х	0	78
14	MP5	Z	-13.45	78
15	MP5	Х	0	%33
16	MP5	Z	-5.53	%33
17	MP5	Х	0	%67
18	MP5	Z	-5.73	%67
19	MP8	Х	0	6
20	MP8	Z	-13.45	6
21	MP8	Х	0	78
22	MP8	Z	-13.45	78
23	MP8	Х	0	%33
24	MP8	Z	-5.53	%33
25	MP8	Х	0	%67
26	MP8	Z	-5.73	%67

Member Point Loads (BLC 18 : Ice Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	-8.11	6
2	MP2	Z	-14.04	6
3	MP2	Х	-8.11	78
4	MP2	Z	-14.04	78
5	MP2	X	-3.19	%25
6	MP2	Z	-5.52	%25
7	MP2	Х	-3.22	%50
8	MP2	Z	-5.58	%50
9	MP2	Х	-3.35	%75
10	MP2	Z	-5.8	%75
11	MP5	Х	-8.11	6
12	MP5	Z	-14.04	6
13	MP5	Х	-8.11	78
14	MP5	Z	-14.04	78
15	MP5	Х	-3.19	%33
16	MP5	Z	-5.52	%33
17	MP5	Х	-3.22	%67
18	MP5	Z	-5.58	%67
19	MP8	Х	-6.03	6
20	MP8	Z	-10.45	6

Member Point Loads (BLC 18 : Ice Wind Load AZI 30) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
21	MP8	X	-6.03	78
22	MP8	Z	-10.45	78
23	MP8	X	-2.55	%33
24	MP8	Z	-4.42	%33
25	MP8	Х	-2.69	%67
26	MP8	Z	-4.65	%67

Member Point Loads (BLC 19 : Ice Wind Load AZI 60)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	-11.64	6
2	MP2	Z	-6.72	6
3	MP2	Х	-11.64	78
4	MP2	Z	-6.72	78
5	MP2	Х	-4.79	%25
6	MP2	Z	-2.76	%25
7	MP2	Х	-4.96	%50
8	MP2	Z	-2.86	%50
9	MP2	Х	-5.21	%75
10	MP2	Z	-3.01	%75
11	MP5	Х	-15.24	6
12	MP5	Z	-8.8	6
13	MP5	Х	-15.24	78
14	MP5	Z	-8.8	78
15	MP5	Х	-5.89	%33
16	MP5	Z	-3.4	%33
17	MP5	Х	-5.89	%67
18	MP5	Z	-3.4	%67
19	MP8	Х	-11.64	6
20	MP8	Z	-6.72	6
21	MP8	Х	-11.64	78
22	MP8	Z	-6.72	78
23	MP8	Х	-4.79	%33
24	MP8	Z	-2.76	%33
25	MP8	Х	-4.96	%67
26	MP8	Z	-2.86	%67

Member Point Loads (BLC 20 : Ice Wind Load AZI 90)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	X	-12.06	6
2	MP2	Z	0	6
3	MP2	Х	-12.06	78
4	MP2	Z	0	78
5	MP2	Х	-5.1	%25
6	MP2	Z	0	%25
7	MP2	Х	-5.37	%50
8	MP2	Z	0	%50
9	MP2	Х	-5.68	%75
10	MP2	Z	0	%75
11	MP5	Х	-16.21	6
12	MP5	Z	0	6
13	MP5	Х	-16.21	78
14	MP5	Z	0	78
15	MP5	Х	-6.38	%33
16	MP5	Z	0	%33
17	MP5	Х	-6.44	%67
18	MP5	Z	0	%67

Member Point Loads (BLC 20 : Ice Wind Load AZI 90) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
19	MP8	X	Magnitude[lb,lb-ft] -16.21	6
20	MP8	Z	0	6
21	MP8	Х	-16.21	78
22	MP8	Z	0	78
23	MP8	Х	-6.38	%33
24	MP8	Z	0	%33
25	MP8	Х	-6.44	%67
26	MP8	Z	0	%67

Member Point Loads (BLC 21 : Ice Wind Load AZI 120)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	-11.64	6
2	MP2	Z	6.72	6
3	MP2	Х	-11.64	78
4	MP2	Z	6.72	78
5	MP2	Х	-4.79	%25
6	MP2	Z	2.76	%25
7	MP2	Х	-4.96	%50
8	MP2	Z	2.86	%50
9	MP2	Х	-5.21	%75
10	MP2	Z	3.01	%75
11	MP5	Х	-11.64	6
12	MP5	Z	6.72	6
13	MP5	Х	-11.64	78
14	MP5	Z	6.72	78
15	MP5	Х	-4.79	%33
16	MP5	Z	2.76	%33
17	MP5	Х	-4.96	%67
18	MP5	Z	2.86	%67
19	MP8	Х	-15.24	6
20	MP8	Z	8.8	6
21	MP8	Х	-15.24	78
22	MP8	Z	8.8	78
23	MP8	Х	-5.89	%33
24	MP8	Z	3.4	%33
25	MP8	Х	-5.89	%67
26	MP8	Z	3.4	%67

Member Point Loads (BLC 22 : Ice Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	-8.11	6
2	MP2	Z	14.04	6
3	MP2	X	-8.11	78
4	MP2	Z	14.04	78
5	MP2	Х	-3.19	%25
6	MP2	Z	5.52	%25
7	MP2	Х	-3.22	%50
8	MP2	Z	5.58	%50
9	MP2	Х	-3.35	%75
10	MP2	Z	5.8	%75
11	MP5	Х	-6.03	6
12	MP5	Z	10.45	6
13	MP5	Х	-6.03	78
14	MP5	Z	10.45	78
15	MP5	Х	-2.55	%33
16	MP5	Z	4.42	%33

Member Point Loads (BLC 22 : Ice Wind Load AZI 150) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
17	MP5	X	-2.69	%67
18	MP5	Z	4.65	%67
19	MP8	Х	-8.11	6
20	MP8	Z	14.04	6
21	MP8	Х	-8.11	78
22	MP8	Z	14.04	78
23	MP8	Х	-3.19	%33
24	MP8	Z	5.52	%33
25	MP8	Х	-3.22	%67
26	MP8	Z	5.58	%67

Member Point Loads (BLC 23 : Ice Wind Load AZI 180)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	0	6
2	MP2	Z	17.6	6
3	MP2	Х	0	78
4	MP2	Z	17.6	78
5	MP2	Х	0	%25
6	MP2	Z	6.8	%25
7	MP2	Х	0	%50
8	MP2	Z	6.8	%50
9	MP2	Х	0	%75
10	MP2	Z	7.03	%75
11	MP5	Х	0	6
12	MP5	Z	13.45	6
13	MP5	Х	0	78
14	MP5	Z	13.45	78
15	MP5	Х	0	%33
16	MP5	Z	5.53	%33
17	MP5	Х	0	%67
18	MP5	Z	5.73	%67
19	MP8	Х	0	6
20	MP8	Z	13.45	6
21	MP8	Х	0	78
22	MP8	Z	13.45	78
23	MP8	Х	0	%33
24	MP8	Z	5.53	%33
25	MP8	Х	0	%67
26	MP8	Z	5.73	%67

Member Point Loads (BLC 24 : Ice Wind Load AZI 210)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	8.11	6
2	MP2	Z	14.04	6
3	MP2	Х	8.11	78
4	MP2	Z	14.04	78
5	MP2	Х	3.19	%25
6	MP2	Z	5.52	%25
7	MP2	Х	3.22	%50
8	MP2	Z	5.58	%50
9	MP2	Х	3.35	%75
10	MP2	Z	5.8	%75
11	MP5	Х	8.11	6
12	MP5	Z	14.04	6
13	MP5	Х	8.11	78
14	MP5	Z	14.04	78

Member Point Loads (BLC 24 : Ice Wind Load AZI 210) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
15	MP5	Х	3.19	%33
16	MP5	Z	5.52	%33
17	MP5	Х	3.22	%67
18	MP5	Z	5.58	%67
19	MP8	Х	6.03	6
20	MP8	Z	10.45	6
21	MP8	Х	6.03	78
22	MP8	Z	10.45	78
23	MP8	Х	2.55	%33
24	MP8	Z	4.42	%33
25	MP8	Х	2.69	%67
26	MP8	Z	4.65	%67

Member Point Loads (BLC 25 : Ice Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	11.64	6
2	MP2	Z	6.72	6
3	MP2	Х	11.64	78
4	MP2	Z	6.72	78
5	MP2	Х	4.79	%25
6	MP2	Z	2.76	%25
7	MP2	Х	4.96	%50
8	MP2	Z	2.86	%50
9	MP2	Х	5.21	%75
10	MP2	Z	3.01	%75
11	MP5	Х	15.24	6
12	MP5	Z	8.8	6
13	MP5	Х	15.24	78
14	MP5	Z	8.8	78
15	MP5	Х	5.89	%33
16	MP5	Z	3.4	%33
17	MP5	Х	5.89	%67
18	MP5	Z	3.4	%67
19	MP8	Х	11.64	6
20	MP8	Z	6.72	6
21	MP8	Х	11.64	78
22	MP8	Z	6.72	78
23	MP8	Х	4.79	%33
24	MP8	Z	2.76	%33
25	MP8	Х	4.96	%67
26	MP8	Z	2.86	%67

Member Point Loads (BLC 26 : Ice Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	12.06	6
2	MP2	Z	0	6
3	MP2	Х	12.06	78
4	MP2	Z	0	78
5	MP2	Х	5.1	%25
6	MP2	Z	0	%25
7	MP2	Х	5.37	%50
8	MP2	Z	0	%50
9	MP2	Х	5.68	%75
10	MP2	Z	0	%75
11	MP5	Х	16.21	6
12	MP5	Z	0	6

Member Point Loads (BLC 26 : Ice Wind Load AZI 270) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
13	MP5	Х	16.21	78
14	MP5	Z	0	78
15	MP5	Х	6.38	%33
16	MP5	Z	0	%33
17	MP5	Х	6.44	%67
18	MP5	Z	0	%67
19	MP8	Х	16.21	6
20	MP8	Z	0	6
21	MP8	Х	16.21	78
22	MP8	Z	0	78
23	MP8	Х	6.38	%33
24	MP8	Z	0	%33
25	MP8	Х	6.44	%67
26	MP8	Z	0	%67

Member Point Loads (BLC 27 : Ice Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	11.64	6
2	MP2	Z	-6.72	6
3	MP2	Х	11.64	78
4	MP2	Z	-6.72	78
5	MP2	Х	4.79	%25
6	MP2	Z	-2.76	%25
7	MP2	Х	4.96	%50
8	MP2	Z	-2.86	%50
9	MP2	Х	5.21	%75
10	MP2	Z	-3.01	%75
11	MP5	Х	11.64	6
12	MP5	Z	-6.72	6
13	MP5	Х	11.64	78
14	MP5	Z	-6.72	78
15	MP5	Х	4.79	%33
16	MP5	Z	-2.76	%33
17	MP5	Х	4.96	%67
18	MP5	Z	-2.86	%67
19	MP8	Х	15.24	6
20	MP8	Z	-8.8	6
21	MP8	Х	15.24	78
22	MP8	Z	-8.8	78
23	MP8	Х	5.89	%33
24	MP8	Z	-3.4	%33
25	MP8	Х	5.89	%67
26	MP8	Z	-3.4	%67

Member Point Loads (BLC 28 : Ice Wind Load AZI 330)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	8.11	6
2	MP2	Z	-14.04	6
3	MP2	Х	8.11	78
4	MP2	Z	-14.04	78
5	MP2	Х	3.19	%25
6	MP2	Z	-5.52	%25
7	MP2	Х	3.22	%50
8	MP2	Z	-5.58	%50
9	MP2	Х	3.35	%75
10	MP2	Z	-5.8	%75

Member Point Loads (BLC 28 : Ice Wind Load AZI 330) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
11	MP5	Х	6.03	6
12	MP5	Z	-10.45	6
13	MP5	Х	6.03	78
14	MP5	Z	-10.45	78
15	MP5	Х	2.55	%33
16	MP5	Z	-4.42	%33
17	MP5	Х	2.69	%67
18	MP5	Z	-4.65	%67
19	MP8	Х	8.11	6
20	MP8	Z	-14.04	6
21	MP8	X	8.11	78
22	MP8	Z	-14.04	78
23	MP8	Х	3.19	%33
24	MP8	Z	-5.52	%33
25	MP8	Х	3.22	%67
26	MP8	Z	-5.58	%67

Member Point Loads (BLC 31 : Seismic Load Z)

	Member Label	Direction	Magnitude[Ib,Ib-ft]	Location[in,%]
1	MP2	Z	-12.408	6
2	MP2	Z	-12.408	78
3	MP2	Z	-19.221	%25
4	MP2	Z	-22.56	%50
5	MP2	Z	-6.572	%75
6	MP5	Z	-12.408	6
7	MP5	Z	-12.408	78
8	MP5	Z	-19.221	%33
9	MP5	Z	-22.56	%67
10	MP8	Z	-12.408	6
11	MP8	Z	-12.408	78
12	MP8	Z	-19.221	%33
13	MP8	Z	-22.56	%67

Member Point Loads (BLC 32 : Seismic Load X)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP2	Х	-12.408	6
2	MP2	Х	-12.408	78
3	MP2	Х	-19.221	%25
4	MP2	Х	-22.56	%50
5	MP2	Х	-6.572	%75
6	MP5	Х	-12.408	6
7	MP5	Х	-12.408	78
8	MP5	Х	-19.221	%33
9	MP5	Х	-22.56	%67
10	MP8	Х	-12.408	6
11	MP8	Х	-12.408	78
12	MP8	Х	-19.221	%33
13	MP8	X	-22.56	%67

Member Distributed Loads (BLC 14 : Distr. Wind Load Z)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	S3	SZ	-68.843	-68.843	0	%100
2	GA4	SZ	-68.843	-68.843	0	%100
3	GA3	SZ	-68.843	-68.843	0	%100

Member Distributed Loads (BLC 14 : Distr. Wind Load Z) (Continued)

4	Member Label	Direction		End Magnitude[lb/ft,F		End Location[in,%
4	P3	SZ	-68.843	-68.843	0	<u>%100</u>
5	<u>S2</u>	SZ	-68.843	-68.843	0	%100
6	GA2	SZ	-68.843	-68.843	0	%100
7	GA1	SZ	-68.843	-68.843	0	%100
8	P2	SZ	-68.843	-68.843	0	%100
9	<u>S1</u>	SZ	-68.843	-68.843	0	%100
10	GA6	SZ	-68.843	-68.843	0	%100
11	GA5	SZ	-68.843	-68.843	0	%100
12	P1	SZ	-68.843	-68.843	0	%100
13	H1	SZ	-41.306	-41.306	0	%100
14	HR1	SZ	-41.306	-41.306	0	%100
15	CA8	SZ	-68.843	-68.843	0	%100
16	CA9	SZ	-68.843	-68.843	0	%100
17	CA7	SZ	-68.843	-68.843	0	%100
18	CA3	SZ	-68.843	-68.843	0	%100
19	CA4	SZ	-68.843	-68.843	0	%100
20	CA1	SZ	-68.843	-68.843	0	%100
21	CA2	SZ	-68.843	-68.843	0	%100
22	CA5	SZ	-68.843	-68.843	0	%100
23	CA6	SZ	-68.843	-68.843	0	%100
24	M64	SZ	0	0	0	%100
25	M65	SZ	0	0	0	%100
26	M66	SZ	0	0	0	%100
27	M67	SZ	0	0	0	%100
28	M68	SZ	0	0	0	%100
20		SZ		-		
	M69		0	0	0	<u>%100</u>
30	M70	SZ	0	0	0	<u>%100</u>
31	<u>M71</u>	SZ	0	0	0	%100
32	M72	SZ	0	0	0	%100
33	M73	SZ	0	0	0	%100
34	<u>M74</u>	SZ	0	0	0	%100
35	<u>M75</u>	SZ	-68.843	-68.843	0	%100
36	<u>H3</u>	SZ	-41.306	-41.306	0	%100
37	HR3	SZ	-41.306	-41.306	0	%100
38	H2	SZ	-41.306	-41.306	0	%100
39	HR2	SZ	-41.306	-41.306	0	%100
40	M40	SZ	0	0	0	%100
41	M41	SZ	0	0	0	%100
42	M42	SZ	0	0	0	%100
43	M43	SZ	0	0	0	%100
44	M44	SZ	0	0	0	%100
45	M45	SZ	0	0	0	%100
46	MP3	SZ	-41.306	-41.306	0	%100
47	MP2	SZ	-41.306	-41.306	0	%100
48	MP1	SZ	-41.306	-41.306	0	%100
49	M49	SZ	0	0	0	%100
50	M50	SZ	0	0	0	%100
51	M51	SZ	0	0	0	%100
52	M52	SZ	0	0 0	0	%100
53	M53	SZ	0	0	0	%100
54	M54	SZ	0	0	0	%100
55	MP9	SZ	-41.306	-41.306	0	%100
56	MP8	SZ	-41.306	-41.306	0	%100
57	MP7	SZ	-41.306	-41.306	0	%100
58	M58	SZ	-41.300	-41.300	0	%100
		SZ		0		<u>%100</u> %100
59	M59		0		0	
60	M60	SZ	0	0	0	%100

RISA-3D Version 17.0.4 [L:\...\...\Structural\2021.09.06 - MA\Report\876317_loaded_loaded.r3d] Page 21

Member Distributed Loads (BLC 14 : Distr. Wind Load Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
61	M61	SZ	0	0	0	%100
62	M62	SZ	0	0	0	%100
63	M63	SZ	0	0	0	%100
64	MP6	SZ	-41.306	-41.306	0	%100
65	MP5	SZ	-41.306	-41.306	0	%100
66	MP4	SZ	-41.306	-41.306	0	%100

Member Distributed Loads (BLC 15 : Distr. Wind Load X)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	S3	SX	-68.843	-68.843	0	%100
2	GA4	SX	-68.843	-68,843	0	%100
3	GA3	SX	-68.843	-68.843	0	%100
4	P3	SX	-68.843	-68.843	0	%100
5	S2	SX	-68.843	-68.843	0	%100
6	GA2	SX	-68.843	-68.843	0	%100
7	GA1	SX	-68.843	-68.843	0	%100
8	P2	SX	-68.843	-68.843	0	%100
9	S1	SX	-68.843	-68.843	0	%100
10	GA6	SX	-68.843	-68.843	0	%100
11	GA5	SX	-68.843	-68.843	0	%100
12	P1	SX	-68.843	-68.843	0	%100
13	H1	SX	-41.306	-41.306	0	%100
14	HR1	SX	-41.306	-41.306	0	%100
15	CA8	SX	-68.843	-68.843	0	%100
16	CA9	SX	-68.843	-68.843	0	%100
17	CA7	SX	-68.843	-68.843	0	%100
18	CA3	SX	-68.843	-68.843	0	%100
19	CA4	SX	-68.843	-68.843	0	%100
20	CA1	SX	-68.843	-68.843	0	%100
21	CA2	SX	-68.843	-68.843	0	%100
22	CA5	SX	-68.843	-68.843	0	%100
23	CA6	SX	-68.843	-68.843	0	%100
24	M64	SX	0	0	0	%100
25	M65	SX	0	0	0	%100
26	M66	SX	0	0	0	%100
27	M67	SX	0	0	0	%100
28	M68	SX	0	0	0	%100
29	M69	SX	0	0	0	%100
30	M70	SX	0	0	0	%100
31	M71	SX	0	0	0	%100
32	M72	SX	0	0	0	%100
33	M73	SX	0	0	0	%100
34	M74	SX	0	0	0	%100
35	M75	SX	-68.843	-68.843	0	%100
36	H3	SX	-41.306	-41.306	0	%100
37	HR3	SX	-41.306	-41.306	0	%100
38	H2	SX	-41.306	-41.306	0	%100
39	HR2	SX	-41.306	-41.306	0	%100
40	M40	SX	0	0	0	%100
41	M41	SX	0	0	0	%100
42	M42	SX	0	0	0	%100
43	M43	SX	0	0	0	%100
44	M44	SX	0	0	0	%100
45	M45	SX	0	0	0	%100
46	MP3	SX	-41.306	-41.306	0	%100
47	MP2	SX	-41.306	-41.306	0	%100

Member Distributed Loads (BLC 15 : Distr. Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
48	MP1	SX	-41.306	-41.306	0	%100
49	M49	SX	0	0	0	%100
50	M50	SX	0	0	0	%100
51	M51	SX	0	0	0	%100
52	M52	SX	0	0	0	%100
53	M53	SX	0	0	0	%100
54	M54	SX	0	0	0	%100
55	MP9	SX	-41.306	-41.306	0	%100
56	MP8	SX	-41.306	-41.306	0	%100
57	MP7	SX	-41.306	-41.306	0	%100
58	M58	SX	0	0	0	%100
59	M59	SX	0	0	0	%100
60	M60	SX	0	0	0	%100
61	M61	SX	0	0	0	%100
62	M62	SX	0	0	0	%100
63	M63	SX	0	0	0	%100
64	MP6	SX	-41.306	-41.306	0	%100
65	MP5	SX	-41.306	-41.306	0	%100
66	MP4	SX	-41.306	-41.306	0	%100

Member Distributed Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	S3	Y	-15.354	-15.354	0	%100
2	GA4	Y	-9.456	-9.456	0	%100
3	GA3	Y	-9.456	-9.456	0	%100
4	P3	Y	-17.135	-17.135	0	%100
5	S2	Y	-15.354	-15.354	0	%100
6	GA2	Y	-9.456	-9.456	0	%100
7	GA1	Y	-9.456	-9.456	0	%100
8	P2	Y	-17.135	-17.135	0	%100
9	S1	Y	-15.354	-15.354	0	%100
10	GA6	Y	-9.456	-9.456	0	%100
11	GA5	Y	-9.456	-9.456	0	%100
12	P1	Y	-17.135	-17.135	0	%100
13	H1	Y	-10.857	-10.857	0	%100
14	HR1	Y	-9.553	-9.553	0	%100
15	CA8	Y	-15.354	-15.354	0	%100
16	CA9	Y	-15.354	-15.354	0	%100
17	CA7	Y	-15.354	-15.354	0	%100
18	CA3	Y	-11.812	-11.812	0	%100
19	CA4	Y	-11.812	-11.812	0	%100
20	CA1	Y	-11.812	-11.812	0	%100
21	CA2	Y	-11.812	-11.812	0	%100
22	CA5	Y	-11.812	-11.812	0	%100
23	CA6	Y	-11.812	-11.812	0	%100
24	M64	Y	-3.559	-3.559	0	%100
25	M65	Y	-3.559	-3.559	0	%100
26	M66	Y	-3.559	-3.559	0	%100
27	M67	Y	-3.559	-3.559	0	%100
28	M68	Y	-3.559	-3.559	0	%100
29	M69	Y	-3.559	-3.559	0	%100
30	M70	Y	-3.559	-3.559	0	%100
31	M71	Y	-3.559	-3.559	0	%100
32	M72	Y	-3.559	-3.559	0	%100
33	M73	Y	-3.559	-3.559	0	%100
34	M74	Y	-3.559	-3.559	0	%100

Member Distributed Loads (BLC 16 : Ice Weight) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
35	M75	Y	-8.619	-8.619	0	%100
36	H3	Y	-10.857	-10.857	0	%100
37	HR3	Y	-9.553	-9.553	0	%100
38	H2	Y	-10.857	-10.857	0	%100
39	HR2	Y	-9.553	-9.553	0	%100
40	M40	Y	-3.559	-3.559	0	%100
41	M41	Y	-3.559	-3.559	0	%100
42	M42	Y	-3.559	-3.559	0	%100
43	M43	Y	-3.559	-3.559	0	%100
44	M44	Y	-3.559	-3.559	0	%100
45	M45	Y	-3.559	-3.559	0	%100
46	MP3	Y	-9.553	-9.553	0	%100
47	MP2	Y	-9.553	-9.553	0	%100
48	MP1	Y	-9.553	-9.553	0	%100
49	M49	Y	-3.559	-3.559	0	%100
50	M50	Y	-3.559	-3.559	0	%100
51	M51	Y	-3.559	-3.559	0	%100
52	M52	Y	-3.559	-3.559	0	%100
53	M53	Y	-3.559	-3.559	0	%100
54	M54	Y	-3.559	-3.559	0	%100
55	MP9	Y	-9.553	-9.553	0	%100
56	MP8	Y	-9.553	-9.553	0	%100
57	MP7	Y	-9.553	-9.553	0	%100
58	M58	Y	-3.559	-3.559	0	%100
59	M59	Y	-3.559	-3.559	0	%100
60	M60	Y	-3.559	-3.559	0	%100
61	M61	Y	-3.559	-3.559	0	%100
62	M62	Y	-3.559	-3.559	0	%100
63	M63	Y	-3.559	-3.559	0	%100
64	MP6	Y	-9.553	-9.553	0	%100
65	MP5	Y	-9.553	-9.553	0	%100
66	MP4	Y	-9.553	-9.553	0	%100

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	S3	SZ	-11.891	-11.891	0	%100
2	GA4	SZ	-16.366	-16.366	0	%100
3	GA3	SZ	-16.366	-16.366	0	%100
4	P3	SZ	-11.304	-11.304	0	%100
5	S2	SZ	-11.891	-11.891	0	%100
6	GA2	SZ	-16.366	-16.366	0	%100
7	GA1	SZ	-16.366	-16.366	0	%100
8	P2	SZ	-11.304	-11.304	0	%100
9	S1	SZ	-11.891	-11.891	0	%100
10	GA6	SZ	-16.366	-16.366	0	%100
11	GA5	SZ	-16.366	-16.366	0	%100
12	P1	SZ	-11.304	-11.304	0	%100
13	H1	SZ	-14.649	-14.649	0	%100
14	HR1	SZ	-16.221	-16.221	0	%100
15	CA8	SZ	-11.891	-11.891	0	%100
16	CA9	SZ	-11.891	-11.891	0	%100
17	CA7	SZ	-11.891	-11.891	0	%100
18	CA3	SZ	-13.812	-13.812	0	%100
19	CA4	SZ	-13.812	-13.812	0	%100
20	CA1	SZ	-13.812	-13.812	0	%100
21	CA2	SZ	-13.812	-13.812	0	%100

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F		End Location[in,%]
22	CA5	SZ	-13.812	-13.812	0	%100
23	CA6	SZ	-13.812	-13.812	0	%100
24	M64	SZ	0	0	0	%100
25	M65	SZ	0	0	0	%100
26	M66	SZ	0	0	0	%100
27	M67	SZ	0	0	0	%100
28	M68	SZ	0	0	0	%100
29	M69	SZ	0	0	0	%100
30	M70	SZ	0	0	0	%100
31	M70 M71	SZ	0	0	0	%100
32	M72	SZ	0	0	0	%100
33	M72	SZ	0	0	0	%100
34	M74	SZ	0	0	0	%100
35	M75	SZ	-17.847	-17.847	0	%100
36	H3	SZ	-14.649	-14.649	0	%100
37	HR3	SZ	-16.221	-16.221	0	%100
38	H2	SZ	-14.649	-14.649	0	%100
39	HR2	SZ SZ	-16.221	-16.221	0	%100
40	M40	SZ	0	0	0	%100
40	M40	SZ	0	0	0	%100
41	M42	SZ	0	0	0	%100
42	M43	SZ	0	0	0	%100
43	M44	SZ	0	0	0	%100
44	M45	SZ SZ	0	0	0	%100
45	MP3	SZ	-16.221	-16,221	0	%100
40	MP3	SZ	-16.221	-16.221	0	%100
47	MP2 MP1	SZ	-16.221	-16.221	0	%100
40	MP1 M49	SZ	0	0	0	%100
50	M50	SZ	0	0	0	%100
51	M50	SZ	0	0	0	%100
52	M52	SZ	0	0	0	%100
53	M53	SZ SZ	0	0	0	%100 %100
53	M54	SZ	0	0	0	%100
55	MP9	SZ SZ	-16.221	-16.221	0	%100
56	MP9 MP8	SZ	-16.221	-16.221	0	%100
57	MP7	SZ	-16.221	-16.221	0	%100
58	M58	SZ SZ	-10.221	-10.221	0	%100
59	M59	SZ SZ	0	0	0	<u>%100</u> %100
60	M60	SZ SZ	0	0	0	%100
60	M61	SZ SZ	0	0	0	<u>%100</u> %100
62	M62	SZ SZ	0	0	-	<u>%100</u> %100
		<u> </u>	0	0	0	
63	M63					%100 %100
64	MP6	SZ	-16.221	-16.221	0	%100 %100
65	MP5	SZ	-16.221	-16.221	0	<u>%100</u>
66	MP4	SZ	-16.221	-16.221	0	%100

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	S3	SX	-11.891	-11.891	0	%100
2	GA4	SX	-16.366	-16.366	0	%100
3	GA3	SX	-16.366	-16.366	0	%100
4	P3	SX	-11.304	-11.304	0	%100
5	S2	SX	-11.891	-11.891	0	%100
6	GA2	SX	-16.366	-16.366	0	%100
7	GA1	SX	-16.366	-16.366	0	%100
8	P2	SX	-11.304	-11.304	0	%100

_Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) (Continued)

9	Member Label S1	Direction SX	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%] 0	End Location[in,%]
10	GA6	SX	-16.366	-16.366	0	%100
11	GA5	SX	-16.366	-16.366	0	%100
12	P1	SX	-11.304	-11.304	0	%100
13	H1	SX	-14.649	-14.649	0	%100
14	HR1	SX	-16.221	-16.221	0	%100
15	CA8	SX	-11.891	-11.891	0	%100
16	CA9	SX	-11.891	-11.891	0	%100
17	OA3 CA7	SX	-11.891	-11.891	0	%100
18	CA3	SX	-13.812	-13.812	0	%100
19	CA4	SX	-13.812	-13.812	0	%100
20	CA1	SX	-13.812	-13.812	0	%100
21	CA2	SX	-13.812	-13.812	0	%100
22	CA5	SX	-13.812	-13.812	0	%100
23	CA6	SX	-13.812	-13.812	0	%100
24	070 M64	SX	0	0	0	%100
25	M65	SX	0	0	0	%100
26	M66	SX	0	0	0	%100
27	M67	SX	0	0	0	%100
28	M68	SX	0	0	0	%100
29	M69	SX	0	0	0	%100
30	M70	SX	0	0	0	%100
31	M70	SX	0	0	0	%100
32	M72	SX	0	0	0	%100
33	M72	SX	0	0	0	%100
34	M73	SX	0	0	0	%100
35	M75	SX	-17.847	-17.847	0	%100
36	H3	SX	-14.649	-14.649	0	%100
37	HR3	SX	-16.221	-16.221	0	%100
38	H2	SX	-14.649	-14.649	0	%100
39	HR2	SX	-16.221	-16.221	0	%100
40	M40	SX	0	0	0	%100
41	M40 M41	SX	0	0	0	%100
42	M42	SX	0	0	0	%100
43	M43	SX	0	0	0	%100
44	M43	SX	0	0	0	%100
45	M45	SX	0	0	0	%100
46	MP3	SX	-16.221	-16.221	0	%100
40	MP3 MP2	SX	-16.221	-16.221	0	%100
48	MP1	SX	-16.221	-16.221	0	%100
40	M49	SX	0	0	0	%100
50	M50	SX	0	0	0	%100
51	M50 M51	SX	0	0	0	%100
52	M52	SX	0	0	0	%100
53	M53	SX	0	0	0	%100
54	M54	SX	0	0	0	%100
55	MP9	SX	-16.221	-16.221	0	%100
56	MP8	SX	-16.221	-16.221	0	%100
57	MP7	SX	-16.221	-16.221	0	%100
58	M58	SX	0	0	0	%100
59	M59	SX	0	0	0	%100
60	M60	SX	0	0	0	%100
61	M61	SX	0	0	0	%100
62	M62	SX	0	0	0	%100
63	M63	SX	0	0	0	%100
64	MP6	SX	-16.221	-16.221	0	%100
65	MP5	SX	-16.221	-16.221	0	%100
55			10.221	10.221	· · · ·	70100

RISA-3D Version 17.0.4 [L:\...\...\Structural\2021.09.06 - MA\Report\876317_loaded_loaded.r3d] Page 26

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
66	MP4	SX	-16.221	-16.221	0	%100

Member Distributed Loads (BLC 43 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	S2	Y	-3.185	-3.185	16.404	40
2	GA2	Y	-1.605	-1.605	3.828	27.295
3	GA1	Y	-1.605	-1.605	3.828	27.295
4	S3	Y	-3.185	-3.185	16.404	40
5	GA4	Y	-1.605	-1.605	3.828	27.295
6	GA3	Y	-1.605	-1.605	3.828	27.295
7	S1	Y	-3.185	-3.185	16.404	40
8	GA6	Y	-1.605	-1.605	3.828	27.295
9	GA5	Y	-1.605	-1.605	3.828	27.295

Member Distributed Loads (BLC 44 : BLC 16 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	S2	Y	-28.941	-28.941	16.404	40
2	GA2	Y	-14.585	-14.585	3.828	27.295
3	GA1	Y	-14.585	-14.585	3.828	27.295
4	S3	Y	-28.941	-28.941	16.404	40
5	GA4	Y	-14.585	-14.585	3.828	27.295
6	GA3	Y	-14.585	-14.585	3.828	27.295
7	S1	Y	-28.941	-28.941	16.404	40
8	GA6	Ý	-14.585	-14.585	3.828	27.295
9	GA5	Y	-14.585	-14.585	3.828	27.295

Load Combinations

	Description	<u>S</u>	PDel	<u>.</u> S	B	Fa	В	Fa		<u>Fa</u>	<u>B</u>	Fa	<u>B</u>	Fa	<u>B</u>	Fa	В	Fa	B	Fa	<u>B</u>	<u>Fa</u>	B	<u>Fa</u>
1	1.4DL	Yes			1	1.4																		
2	1.2DL + 1WL AZI 0	Yes	Υ		1	1.2	2	1	14	1	15													
3	1.2DL + 1WL AZI 30	Yes	Y		1	1.2	3	1	14	.866	15	.5												
4	1.2DL + 1WL AZI 60	Yes	Y		1	1.2	4	1	14	.5	15	.866												
5	1.2DL + 1WL AZI 90	Yes	Y		1	1.2	5	1	14		15	1												
6	1.2DL + 1WL AZI 120	Yes	Y		1	1.2	6	1	14	5	15	.866												
7	1.2DL + 1WL AZI 150	Yes	Y		1	1.2	7	1	14	8	15	.5												
8	1.2DL + 1WL AZI 180	Yes	Y		1	1.2	8	1	14	-1	15													
9	1.2DL + 1WL AZI 210	Yes	Y		1	1.2	9	1	14	8	15	5												
10	1.2DL + 1WL AZI 240	Yes	Y		1	1.2	10	1	14	5	15	8												
11	1.2DL + 1WL AZI 270	Yes	Y		1	1.2	11	1	14		15	-1												
12	1.2DL + 1WL AZI 300	Yes	Y		1	1.2	12	1	14	.5	15	8												
13	1.2DL + 1WL AZI 330	Yes	Y		1	1.2	13	1	14	.866	15	5												
14	0.9DL + 1WL AZI 0	Yes	Y		1	.9	2	1	14	1	15													
15	0.9DL + 1WL AZI 30	Yes	Y		1	.9	3	1	14	.866	15	.5												
16	0.9DL + 1WL AZI 60	Yes	Y		1	.9	4	1	14	.5	15	.866												
17	0.9DL + 1WL AZI 90	Yes	Y		1	.9	5	1	14		15	1												
18	0.9DL + 1WL AZI 120	Yes	Y		1	.9	6	1	14	5	15	.866												
19	0.9DL + 1WL AZI 150	Yes	Υ		1	.9	7	1	14	8	15	.5												
20	0.9DL + 1WL AZI 180	Yes	Υ		1	.9	8	1	14	-1	15													
21	0.9DL + 1WL AZI 210	Yes	Υ		1	.9	9	1	14	8	15	5												
22	0.9DL + 1WL AZI 240	Yes	Y		1	.9	10	1	14			8												
23	0.9DL + 1WL AZI 270	Yes	Y		1	.9	11	1	14		15	-1												
24	0.9DL + 1WL AZI 300	Yes	Y		1	.9	12	1	14			8												
25	0.9DL + 1WL AZI 330	Yes	Y		1	.9	13	1	14	.866														
26	1.2D + 1.0Di	Yes	Y		1	1.2	16																	

Load Combinations (Continued)

					_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
07				.S											<u>В</u>	<u>Fa</u>	<u>B</u>	<u>Fa</u>	<u>B</u>	<u>Fa</u>	<u>В</u>	<u>Fa</u>	<u>B</u>	<u>Fa.</u>
27	1.2D + 1.0Di +1.0Wi AZI 0 1.2D + 1.0Di +1.0Wi AZI 30					1.2			17			1 .866	30											-
	1.2D + 1.0Di +1.0Wi AZI 30					1.2																		-
	1.2D + 1.0Di +1.0Wi AZI 80					1.2				1				.866										-
	1.2D + 1.0Di +1.0Wi AZI 90					1.2					29			1 .866										-
	1.2D + 1.0Di +1.0Wi AZI 120				1	1.2			21 22			8												-
	1.2D + 1.0Di +1.0Wi AZI 180					1.2			22			0												-
	1.2D + 1.0Di +1.0Wi AZI 210					1.2			23			8												-
	1.2D + 1.0Di +1.0Wi AZI 240				1	1.2			24			5												-
	1.2D + 1.0Di +1.0Wi AZI 270					1.2			26		29			-1										-
	1.2D + 1.0Di +1.0Wi AZI 300				1	1.2			27			.5												-
	1.2D + 1.0Di +1.0Wi AZI 330					1.2						.866												-
	(1.2 + 0.2Sds)DL + 1.0E AZ.				1	1.24			32		23	.000	50	5										
	(1.2 + 0.2Sds)DL + 1.0E AZ.				1																			
	(1.2 + 0.2Sds)DL + 1.0E AZ.					1.24				.866														
	(1.2 + 0.2Sds)DL + 1.0E AZ.				1	1.24			32															
	(1.2 + 0.2Sds)DL + 1.0E AZ.					1.24																		
	(1.2 + 0.2Sds)DL + 1.0E AZ.																							
	(1.2 + 0.2Sds)DL + 1.0E AZ.					1.24			32															
	(1.2 + 0.2Sds)DL + 1.0E AZ.					1.24																		
	(1.2 + 0.2Sds)DL + 1.0E AZ.					1.24																		
48	(1.2 + 0.2Sds)DL + 1.0E AZ.	.Yes	Y			1.24				-1														
49	(1.2 + 0.2Sds)DL + 1.0E AZ.	.Yes	Y		1	1.24	31	.5	32	8														
50	(1.2 + 0.2Sds)DL + 1.0E AZ.	.Yes	Y		1	1.24																		
51	(0.9 - 0.2Sds)DL + 1.0E AZI.	.Yes	Y		1	.86	31	1	32															
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1	.86	31	.866	32	.5														
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1	.86			32	.866														
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1	.86			32															
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1					.866														
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1			8																
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1			-1																
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1					5														
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1					8														
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1	.86			32															
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1					8														
	(0.9 - 0.2Sds)DL + 1.0E AZI.				1					5														<u> </u>
	1.0DL + 1.5LL + 1.0SWL (6				1	1	2			.259				1.5										<u> </u>
	1.0DL + 1.5LL + 1.0SWL (6				1					.224														
	1.0DL + 1.5LL + 1.0SWL (6				1	1				.129														-
	1.0DL + 1.5LL + 1.0SWL (6				1			.259						1.5										F
	1.0DL + 1.5LL + 1.0SWL (6				1	1	6			1														-
	1.0DL + 1.5LL + 1.0SWL (6 1.0DL + 1.5LL + 1.0SWL (6				1	1	7			2 2				1.5										F
	1.0DL + 1.5LL + 1.0SWL (6				1	1				2														-
	1.0DL + 1.5LL + 1.0SWL (6				1					1														
	1.0DL + 1.5LL + 1.0SWL (6				1			.259				2												
	1.0DL + 1.5LL + 1.0SWL (6				1	1				.129														-
	1.0DL + 1.5LL + 1.0SWL (6				1					.224														
75	1.2DL + 1.5LL	Yes			1			1.5		.224	13		55	1.5										F
	1.2DL + 1.5LM-MP1 + 1SW.				1					.065	11	.065	15											
	1.2DL + 1.5LM-MP1 + 1SW.				1	1.2	34	1.5	2	.065	1/	.056	15	.032										
	1.2DL + 1.5LM-MP1 + 1SW.				1	1.2	34	1.5	4	.065	14	.032	15	.056										
	1.2DL + 1.5LM-MP1 + 1SW.				1					.065				.065										
	1.2DL + 1.5LM-MP1 + 1SW.				1					.065														
	1.2DL + 1.5LM-MP1 + 1SW.				1					.065														
	1.2DL + 1.5LM-MP1 + 1SW.					1.2																		
	1.2DL + 1.5LM-MP1 + 1SW.				1	12	34	1.5	9	.065	14	0.	15	0										
		1.20			1	_ · · ~	7	1.0	10		, i T		10				1		1	1	I	1		_

RISA-3D Version 17.0.4 [L:\...\...\Structural\2021.09.06 - MA\Report\876317_loaded_loaded.r3d] Page 28

Load Combinations (Continued)

	Somonations																						
	Description		<u>S</u> F	<u> PDel</u>	<u>S B</u>										<u> Fa</u>	<u> В</u>	<u>Fa</u>	<u>B</u>	<u>Fa</u>	<u>B</u>	<u>Fa</u>	<u>В</u>	Fa
	2DL + 1.5LM-MP1 +				1					.065													
85 1.2	2DL + 1.5LM-MP1 +	1SW	Yes	Y	1	1.2	2 34	1.5	11	.065	14		15 ·										
86 1.2	2DL + 1.5LM-MP1 +	1SW	Yes	Y	1	1.2	2 34	1.5	12	.065	14	.032	15 ·	0									
87 1.2	2DL + 1.5LM-MP1 +	1SW	Yes	Y	1	1.2	2 34	1.5	13	.065	14	.056	15	0									
	2DL + 1.5LM-MP2 +			Y	1	1.2	2 35	1.5	2	.065	14	.065	15										
	2DL + 1.5LM-MP2 +			Ý	1					.065				032			1						
	2DL + 1.5LM-MP2 +				1					.065													
	2DL + 1.5LM-MP2 +			Y										.065		-							
				· ·	1					.065						_		_					
	2DL + 1.5LM-MP2 +			Y	1					.065													
	2DL + 1.5LM-MP2 +			Y	1					.065				.032									
	2DL + 1.5LM-MP2 +			Y	1					.065													
95 1.2	2DL + 1.5LM-MP2 +	1SW	Yes	Y	1	1.2	2 35	1.5	9	.065	14	0	15 ·	0									
96 1.2	2DL + 1.5LM-MP2 +	1SW	Yes	Y	1	1.2	2 35	1.5	10	.065	14	0	15 ·	0									
97 1.2	2DL + 1.5LM-MP2 +	1SW	Yes	Y	1					.065			15 ·										
	2DL + 1.5LM-MP2 +			Ý	1	1.2				.065													
	2DL + 1.5LM-MP2 +			Ý	1					.065							1	1					
	2DL + 1.5LM-MP3 +				1	1.2				.065													
	2DL + 1.5LM-MP3 +			Y	4	1.4		1.0	2	.065	14	056	15	032									
				· ·	1																		
	2DL + 1.5LM-MP3 +			Y	1					.065													
	2DL + 1.5LM-MP3 +			Y	1					.065				.065									
	2DL + 1.5LM-MP3 +			Y	1	1.2				.065													
	2DL + 1.5LM-MP3 +			Y	1					.065				.032									
106 1.2	2DL + 1.5LM-MP3 +	1SW	Yes	Y	1	1.2	2 36	1.5	8	.065	14	0	15										
107 1.2	2DL + 1.5LM-MP3 +	1SW	Yes	Y	1	1.2	2 36	1.5	9	.065	14	0	15 ·	0									
	2DL + 1.5LM-MP3 +			Y	1					.065													
	2DL + 1.5LM-MP3 +			Ý	1					.065			15				-	-					
	2DL + 1.5LM-MP3 +				1					.065													
	2DL + 1.5LM-MP3 +			-																		_	
				Y	1					.065				0		_							
	2DL + 1.5LM-MP4 +			Y	1					.065													
	2DL + 1.5LM-MP4 +			Y	1		2 37	1.5	3	.065	14	.056	15	.032									
	2DL + 1.5LM-MP4 +			Y	1	1.2				.065													
115 1.2	2DL + 1.5LM-MP4 +	1SW	Yes	Y	1	1.2	2 37	1.5	5	.065	14		15	.065									
116 1.2	2DL + 1.5LM-MP4 +	1SW	Yes	Y	1	1.2	2 37	1.5	6	.065	14	0	15	.056									
117 1.2	2DL + 1.5LM-MP4 +	1SW	Yes	Y	1			1.5															
	2DL + 1.5LM-MP4 +			Ý	1					.065													
	2DL + 1.5LM-MP4 +			Ý	1	1.2	2 37	1 5	a	.065	1/	- 0	15	- 0			1						
	2DL + 1.5LM-MP4 +				1	1.2				.065													
	2DL + 1.5LM-MP4 +			Y	1								15										
					1					.065						_							
	2DL + 1.5LM-MP4 +				1					.065						_							
	2DL + 1.5LM-MP4 +		Yes	Y	1					.065				U									
	2DL + 1.5LM-MP5 +			Υ	1	1.2	2 38	1.5	2	.065	14	.065	15										
	2DL + 1.5LM-MP5 +				1					.065													
	2DL + 1.5LM-MP5 +			Y	1					.065			15	.056									
127 1.2	2DL + 1.5LM-MP5 +	1SW	Yes	Y	1					.065				.065									
	2DL + 1.5LM-MP5 +			Y	1					.065													
	2DL + 1.5LM-MP5 +			Ý	1	1 2	38	15	7	.065	14	0	15	.032									
	2DL + 1.5LM-MP5 +				1					.065													
	2DL + 1.5LM-MP5 +			Y	1					.065				- 0									
	2DL + 1.5LM-MP5 +			Y	1	1.2	2 20	1.5	10	.065	14	- 0	15	.0									
	2DL + 1.5LM-MP5 +			Y	1	12	238	1.5	11	.065	14	000	15	0									
	2DL + 1.5LM-MP5 +			Y	1					.065													
	2DL + 1.5LM-MP5 +			Y	1					.065				0									
	2DL + 1.5LM-MP6 +			Y	1					.065													
137 1.2	2DL + 1.5LM-MP6 +	1SW	Yes	Y	1	1.2	2 39	1.5	3	.065	14	.056	15										
	2DL + 1.5LM-MP6 +			Y	1					.065													
	2DL + 1.5LM-MP6 +				1	1 2	> 30	1.5	5	.065	14			.065				1					
	2DL + 1.5LM-MP6 +				1					.065													

 RISA-3D Version 17.0.4
 [L:\...\...\Structural\2021.09.06 - MA\Report\876317_loaded_loaded.r3d]
 Page 29

Load Combinations (Continued)

Description	S I	PDel	.S E	3	Fa	. В	. Fa	a	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
141 1.2DL + 1.5LM-MP6 + 1SW.				1	1.2	39	1	.5	7	.065	14	0	15	.032										
142 1.2DL + 1.5LM-MP6 + 1SW.	.Yes	Y		1						.065														
143 1.2DL + 1.5LM-MP6 + 1SW.	.Yes	Ý		1	1.2					.065														
144 1.2DL + 1.5LM-MP6 + 1SW.	.Yes	Ý		1						.065														
145 1.2DL + 1.5LM-MP6 + 1SW.	.Yes	Ý		1	1.2					.065				0										
146 1.2DL + 1.5LM-MP6 + 1SW.	.Yes	Y		1	1.2					.065			15	0										
147 1.2DL + 1.5LM-MP6 + 1SW.	.Yes	Y		1						.065														
148 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Y		1	1.2	40) 1.	.5	2	.065	14	.065	15											
149 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Y		1	1.2					.065	14	.056	15	.032										
150 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Y		1	1.2	40) 1.	.5	4	.065	14	.032	15	.056										
151 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Y		1	1.2					.065	14		15	.065										
152 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Y		1	1.2	40	1	.5	6	.065	14	0	15	.056										
153 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Y		1	1.2					.065														
154 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Y		1						.065														
155 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Υ		1	1.2	40	1	.5	9	.065	14	0	15	0										
156 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Υ		1	1.2					.065														
157 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Υ		1						.065				0										
158 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Υ		1	1.2	40	1	.5	12	.065	14	.032	15	0										
159 1.2DL + 1.5LM-MP7 + 1SW.	.Yes	Y		1						.065														
160 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Y		1	1.2	41	1.	.5	2	.065	14	.065	15											
161 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Y		1	1.2	41	1.	.5	3	.065	14	.056	15	.032										
162 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Y		1	1.2	41	1.	.5		.065			15	.056										
163 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Υ		1	1.2	41	1	.5	5	.065	14		15	.065										
164 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Y		1	1.2	41	1.	.5	6	.065	14	0	15	.056										
165 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Y		1	1.2	41	1.	.5	7	.065	14	0	15	.032										
166 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Y		1	1.2	41	1.	.5	8	.065	14	0	15											
167 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Υ		1	1.2	41	1	.5	9	.065	14	0	15	0										
168 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Y		1	1.2	41	1.	.5	10	.065	14	0	15	0										
169 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Y		1	1.2					.065				0										
170 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Υ		1	1.2					.065														
171 1.2DL + 1.5LM-MP8 + 1SW.	.Yes	Υ		1	1.2	41	1.	.5	13	.065	14	.056	15	0										
172 1.2DL + 1.5LM-MP9 + 1SW.	.Yes	Y		1	1.2		2 1.	.5	2	.065														
173 1.2DL + 1.5LM-MP9 + 1SW.	.Yes	Y		1	1.2	42	2 1.	.5	3	.065	14	.056	15	.032										
174 1.2DL + 1.5LM-MP9 + 1SW.	.Yes	Y		1	1.2	42	2 1.	.5					15	.056										
175 1.2DL + 1.5LM-MP9 + 1SW.		Y		1	1.2	42	2 1.	.5	5	.065	14		15	.065										
176 1.2DL + 1.5LM-MP9 + 1SW.	.Yes	Υ		1	1.2	42	2 1.	.5	6	.065	14	0	15	.056										
177 1.2DL + 1.5LM-MP9 + 1SW.		Υ		1	1.2	42	2 1	.5	7	.065	14	0	15	.032										
178 1.2DL + 1.5LM-MP9 + 1SW.	.Yes	Υ		1	1.2					.065														
179 1.2DL + 1.5LM-MP9 + 1SW.		Υ		1	1.2					.065														
180 1.2DL + 1.5LM-MP9 + 1SW.	.Yes	Y		1	1.2	42	! 1	.5	10	.065	14	0	15	0										
181 1.2DL + 1.5LM-MP9 + 1SW.	.Yes	Υ		1	1.2	42	2 1	.5	11	.065	14		15	0										
182 1.2DL + 1.5LM-MP9 + 1SW.	.Yes	Υ		1	1.2	42	2 1	.5	12	.065	14	.032	15	0										

Envelope Joint Reactions

	Joint	X [l b]	LC	Y [l b]	LC	Z [l b]	LC	MX [lb-ft]	LC	MY [İ b	LC	MZ [lb-ft]	LC
1	N20	 815.197	18	2158.851	35	1268.227	13	131.786	15	1640.4	19	3895.021	35
2		 -813.87	12	66.472	16	-1266.76	19	-2352.711	107	-1642	13	-178.412	16
3	N11	 815.187	4	2161.416	31	1269.695	3	131.598	25	1645.0	3	176.039	24
4		 -816.507	22	67.326	24	-1268.235	21	-2352.915	81	-1642	21	-3901.119	31
5	N1	 1321.274	17	2088.84	27	492.256	14	4400.483	27	1455.3	23	722.337	145
6		 -1321.276	23	32.498	20	-496.903	8	-284.017	20	-1455	17	-712.022	151
7	Totals:	 2684.985	5	6002.432	27	2839.856	2						
8		 -2684.985	11	1611.014	57	-2839.855	20						

Company:Infinigy EngineeringDesigner:IMJob Number:1039-Z0001-BModel Name:876317

Sept 14, 2021 1:46 PM Checked By:____

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code	Loc[in]	LC	Shear .	.Loc[in]	Dir	LC	phi*Pncpl		<u></u> phi*Mn		
1	CA1	C3.38x2.06	.312	0	31	.048	28.1	y	38	47760.0 5	56700	2202.821	5751.945	1 H1-1t
2	CA6	C3.38x2.06	.312	33	35	.048	4.813		28	47760.0 5				1H1-1b
3	CA2	C3.38x2.06	.309	33	31	.047	4.813	y	36	47760.0 5	56700	2202.821	5751.945	1H1-1b
4	CA5	C3.38x2.06	.309	0	35	.047	28.1	y	30	47760.0 5				1H1-1b
5	CA4	C3.38x2.06	.301	33	27	.046	4.813	y	32	47760.0 5	56700	2202.821	5751.945	1H1-1b
6	CA3	C3.38x2.06	.298	0	27	.046	28.1	y	34	47760.0 5	56700	2202.821		1H1-1b
7	S2	HSS4X4X4	.291	0	33	.093	0	y	82	1331781	39518	16180.5	16180.5	2H1-1k
8	S1	HSS4X4X4	.291	0	33	.093	0	y	106	1331781	39518	16180.5	16180.5	2H1-1k
9	S 3	HSS4X4X4	.281	0	29	.091	0	y	146	1331781	39518			2H1-1k
10	M75	PL 2.375x0.5	.163	1.5	12	.268	0	y	28		38475			2H1-1k
11	P2	PL6.5x0.375	.154	21	6	.081	5.687	ý	77	3658.14 7	78975			1H1-1b
12	P3	PL6.5x0.375	.154	21	2	.082	5.687	y	157	3658.14 7	78975	616.993	7428.804	1H1-1k
13	P1	PL6.5x0.375	.153	21	10	.081	36.3	y	111		78975	616.993		
14	GA2	L2x2x4	.149	0	6	.024	27.2	z	30		30585.6	690.934		
15	GA5	L2x2x4	.148	0	10	.024	27.2	y	36		30585.6	690.934	1576.849	2 H2-1
16	GA4	L2x2x4	.140	0	2	.024	27.2	z	38	23539.0 3	30585.6	690.934	1576.849	2 H2-1
17	GA3	L2x2x4	.140	0	2	.023	27.2	y	28	23539.0 3	80585.6	690.934	1576.849	2 H2-1
18	GA1	L2x2x4	.134	0	6	.024	27.2	y	32	23539.0 3	30585.6	690.934	1576.849	2 H2-1
19	GA6	L2x2x4	.134	0	10	.024	27.2	Z	34	23539.0 3	30585.6	690.934	1576.849	2 H2-1
20	CA7	L4X4X4	.131	0	13	.023	42	y	13	46987.2 6	32532	3137.597	6897.039	2 H2-1
21	CA8	L4X4X4	.131	42	3	.023	0	y	3	46987.2 6	32532	3137.597	6897.039	2 H2-1
22	MP4	PIPE 2.5	.121	28	8	.044	68		10	30038.4 5	50715	3596.25	3596.25	3H1-1b
23	MP9	PIPE 2.5	.121	28	8	.044	68		6		50715	3596.25	3596.25	3H1-1b
24	MP5	PIPE 2.5	.121	68	7	.062	68		7	30038.4 5	50715	3596.25	3596.25	3H1-1b
25	MP8	PIPE 2.5	.121	68	9	.062	68		9	30038.4 5	50715	3596.25	3596.25	
26	MP1	PIPE 2.5	.121	28	12	.048	68		2	30038.4 5	50715	3596.25		4H1-1b
27	MP3	PIPE 2.5	.121	28	4	.048	68		2	30038.4 5	50715	3596.25	3596.25	4H1-1k
28	CA9	L4X4X4	.120	0	5	.022	0	y	11	46987.2 6	32532	3137.597	6897.039	2 H2-1
29	MP2	PIPE 2.5	.119	68	5	.059	68	-	5	30038.4 5	50715	3596.25	3596.25	3H1-1b
30	MP6	PIPE 2.5	.118	68	13	.042	68		10	30038.4 5	50715	3596.25	3596.25	4H1-1k
31	MP7	PIPE 2.5	.118	68	3	.042	68		6	30038.4 5	50715	3596.25	3596.25	
32	H1	PIPE_3.0	.105	48	90	.053	32		5		35205	5748.75	5748.75	
33	H2	PIPE 3.0	.103	48	166	.054	64		7		35205	5748.75	5748.75	
34	H3	PIPE_3.0	.103	48	130	.054	32		9	_	35205	5748.75		1H1-1b
35	HR1	PIPE 2.5	.099	96.25	7	.110	16.25		8	22373.4 5	50715	3596.25		1H1-1t
36	HR3	PIPE_2.5	.099	23.75	13	.108	23.75		13		50715	3596.25		1H1-1b
37	HR2	PIPE_2.5	.099	96.25	3	.108	96.25		3	22373.4 5	50715	3596.25	3596.25	1H1-1t

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[LB]
1	General			•••	
2	RIGID		29	71.1	0
3	Total General		29	71.1	0
4					
5	Hot Rolled Steel				
6	A36 Gr.36	C3.38x2.06x0.25	6	198	98.255
7	A36 Gr.36	L2x2x4	6	163.8	43.838
8	A36 Gr.36	PL6.5x0.375	3	126	87.09
9	A36 Gr.36	L4X4X4	3	126	68.957
10	A36 Gr.36	PL 2.375x0.5	1	1.5	.505
11	A500 Gr.B Rect	HSS4X4X4	3	120	123.333
12	A53 Gr.B	PIPE_2.5	12	1224	558.804
13	A53 Gr.B	PIPE 3.0	3	288	169.05
14	Total HR Steel		37	2247.3	1149.833

APPENDIX D

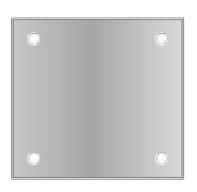
ADDITIONAL CALCUATIONS

FROM ZERO TO INFINICY the solutions are endless

Bolt Calculation Tool, V1.5.1

PROJECT DATA	T DATA
Site Name:	WATERBURY
Site Number:	876317
Connection Description:	Mount to Tower

MAXIMUM	MAXIMUM BOLT LOADS	
Bolt Tension:	4871.97	lbs
Bolt Shear:	840.16	lbs


WORST CASE	WORST CASE BOLT LOADS ¹	
Bolt Tension:	4871.97	lbs
Bolt Shear:	487.99	lbs

BOLT PRO	BOLT PROPERTIES	
Bolt Type:	Bolt	-
Bolt Diameter:	0.625	in
Bolt Grade:	A325	-
# of Bolts:	4	-
Threads Excluded?	No	-

¹ Worst case bolt loads correspond to Load combination #33 on member S2 in RISA-3D, which causes the maximum demand on the bolts.

Member Information I nodes of S3, S2, S1

BOLT CHECK		
Tensile Strength	20340.15	
Shear Strength	13805.83	
Max Tensile Usage	24.0%	
Max Shear Usage	6.1%	
Interaction Check (Worst Case)	0.06	≤1.05
Result	Pass	

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00165A

876317 150 Mattatuck Heights Road Waterbury, Connecticut 06705

November 19, 2021

EBI Project Number: 6221007199

Site Comp	liance Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	27.88%

environmental | engineering | due diligence

November 19, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00165A - 876317

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **150 Mattatuck Heights Road** in **Waterbury, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully

environmental | engineering | due diligence

aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 150 Mattatuck Heights Road in Waterbury, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 120 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

-		_	-	-	-
Sector:	A	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665-	Make / Model:	JMA MX08FRO665-	Make / Model:	JMA MX08FRO665-
Make / Model:	20	Make / Model:	20	Make / Model:	20
Engrupper Panda	600 MHz / 1900	Enguranay Pandar	600 MHz / 1900	Enguanau Pandau	600 MHz / 1900
Frequency Bands:	MHz / 2190 MHz	Frequency Bands:	MHz / 2190 MHz	Frequency Bands:	MHz / 2190 MHz
Gain:	17.45 dBd / 22.65	Gain:	17.45 dBd / 22.65	Gain:	17.45 dBd / 22.65
Gain:	dBd / 22.65 dBd	Gain:	dBd / 22.65 dBd	Gain:	dBd / 22.65 dBd
Height (AGL):	120 feet	Height (AGL):	120 feet	Height (AGL):	120 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (VV):	5,236.31	ERP (VV):	5,236.31	ERP (VV):	5,236.31
Antenna AI MPE %:	1.82%	Antenna BI MPE %:	1.82%	Antenna CI MPE %:	1.82%

environmental | engineering | due diligence

Site Composite MPE %	
Carrier	MPE %
Dish Wireless (Max at Sector A):	1.82%
AT&T	8.06%
Verizon	8.82%
T-Mobile	7.03%
Clearwire	0.12%
Sprint	I.59%
Nextel	0.44%
Site Total MPE % :	27.88%

Dish Wireless MPE % Per	Sector
Dish Wireless Sector A Total:	1.82%
Dish Wireless Sector B Total:	1.82%
Dish Wireless Sector C Total:	1.82%
Site Total MPE % :	27.88%

Dish	Wirele	ess Maxir	num	MPE Pow	ver Values (S	ector A)	
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	120.0	2.48	600 MHz n71	400	0.62%
Dish Wireless 1900 MHz n70	4	542.70	120.0	6.01	1900 MHz n70	1000	0.60%
Dish Wireless 2190 MHz n66	4	542.70	120.0	6.01	2190 MHz n66	1000	0.60%
	•		*	•		Total:	1.82%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	I.82%
Sector B:	I.82%
Sector C:	I.82%
Dish Wireless Maximum MPE % (Sector A):	1.82%
Site Total:	27.88%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **27.88%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

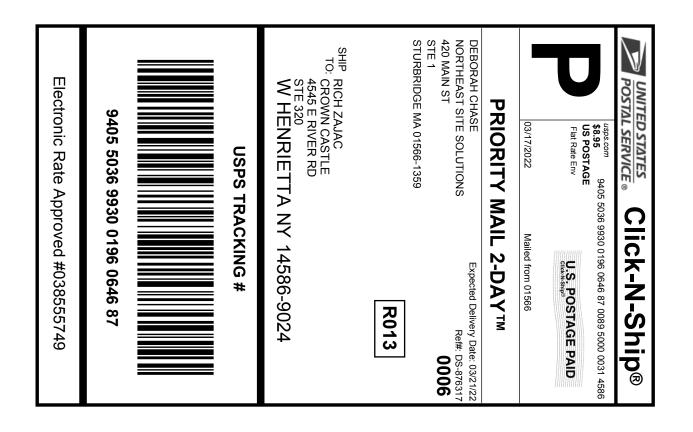
Re: Tower Share Application Crown Castle telecommunications site at: 150 MATTATUCK HEIGHTS, WATERBURY, CT 06705-3831

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: Customer Site ID: Site Address: 876317/WATERBURY BOHVN00165A/CT-CCI-T-876317 150 Mattatuck Heights, WATERBURY, CT 06705-3831

Date:

Crown Castle

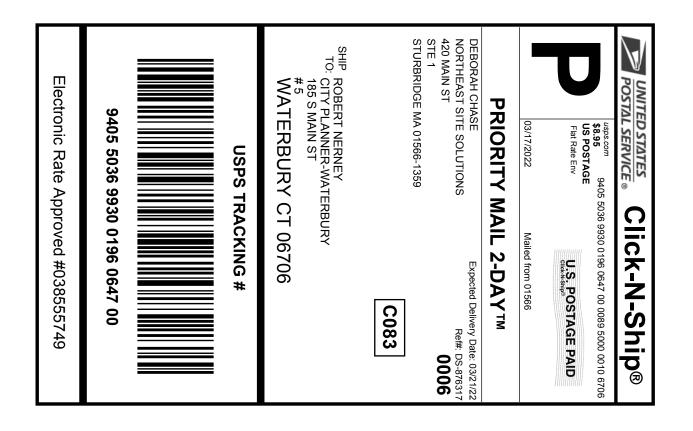

By:

3/14/2022

Richard Zajac Site Acquisition Specialist

Exhibit H

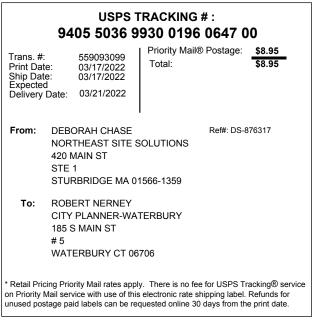
Recipient Mailings

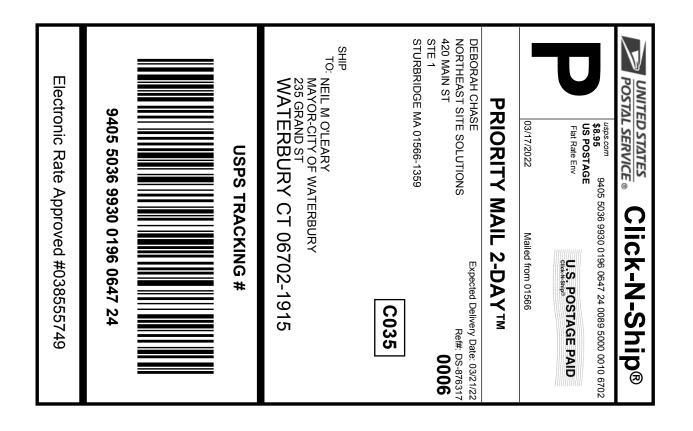


Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

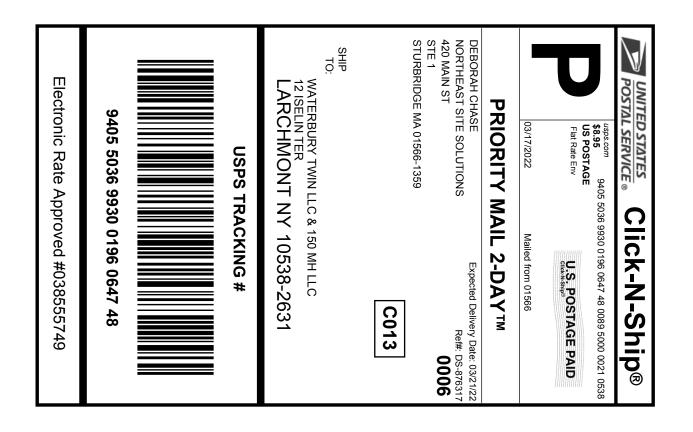




Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

876317	Change	52
a k	NITED STAT	TES WICE.
FARMING	FARMINGTON 210 MAIN ST TON, CT 06032-999 (800)275-8777	
03/18/2022		03:20 PM
Product	Qty Unit Price	Price
Weight: 0 H Acceptance Fri 03/ Tracking #:	Date: 18/2022	\$0.00 87
Tracking #	b 8.20 oz Date: /18/2022	\$0.00
Acceptance Fri O3 Tracking #	NY 10538 b 8.20 oz Date: /18/2022	\$0.00
Acceptance	[b 8.20 oz a Date:	\$0.00
Tracking 9405	5036 9930 0196 064	
Grand Total:		\$0.00

-