October 2, 2014

Melanie A. Bachman Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: T-Mobile-Exempt Modification - Crown Site BU: 828915

T-Mobile Site ID: CT11053E

Located at: 316 Woodhouse Ave., Wallingford, CT 06492

Dear Ms. Bachman:

This letter and exhibits are submitted on behalf of T-Mobile. T-Mobile is making modifications to certain existing sites in its Connecticut system in order to implement their 700MHz technology. Please accept this letter and exhibits as notification, pursuant to § 16-50j-73 of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In compliance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to The Honorable. William W. Dickinson Jr., Mayor for City of Wallingford, and Connecticut Street Road Association, Property Owner.

T-Mobile plans to modify the existing wireless communications facility owned by Crown Castle and located at **316 Woodhouse Ave., Wallingford, CT**. Attached are a compound plan and elevation depicting the planned changes (Exhibit-1), and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration (Exhibit-2). Also included is a power density table report reflecting the modification to T-Mobile's operations at the site (Exhibit-3).

The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") § 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in the R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. T-Mobile's replacement antennas will be located at the same elevation on the existing tower.
- 2. There will be no proposed modifications to the ground and no extension of boundaries.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more.

- 4. The operation of the replacement antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. A cumulative General Power Density table report for T-Mobile's modified facility is included as Exhibit-3.
- 5. A Structural Modification Report confirming that the tower and foundation can support T-Mobile's proposed modifications is included as Exhibit-2.

For the foregoing reasons, T-Mobile respectfully submits the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Jerry Feathers Real Estate Specialist

Enclosure

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report

Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc: The Honorable William W. Dickinson Jr.

City of Wallingford 43 South Main Street

Room 310

Wallingford, CT 06492

cc: Connecticut Street Rod Association

P.O. Box 1517

Wallingford, CT 06492

T-MOBILE NORTHEAST LLC

T-MOBILE SITE #: CT11053E CROWN CASTLE BU #:828915 SITE NAME: WALLINGFORD /I-91 316 WOODHOUSE AVE WALLINGFORD, CT 06492 NEW HAVEN COUNTY

SITE CONFIGURATION: 702CU

SITE INFORMATION **PROJECT INFORMATION** CT11053E T-MOBILE SITE #: CROWN CASTLE BU #: 828915 SITE ADDRESS: 316 WOODHOUSE AVE WALLINGFORD, CT 06492 NEW HAVEN COUNTY LATITUDE: N 41° 26' 2.76" LONGITUDE: W 72° 48' 5.26" PROJECT LOCATION TOWER OWNER: CROWN CASTLE 1200 MACARTHUR BLVD., SUITE 200 MAHWAH, NJ 07430 CONTACT: PETER TISI (201) 236-9224 APPLICANT: T-MOBILE NORTHEAST, LLC 4 SYLVAN WAY PARSIPPANY, NJ 07054 PHONE #: (973) 397-4800 CONTACT: FAX #: (973) 292-8893 DEWBERRY ENGINEERS INC. **ENGINEER:** 600 PARSIPPANY ROAD, SUITE 301 PARSIPPANY, NJ 07054 GREG NAWROTZKI CONTACT: (973) 576-9653 SCOPE OF WORK: ADD (3) NEW ANTENNAS, ADD (3) NEW **KEY MAP** RRU'S N.T.S. **DIRECTIONS: (FROM PARSIPPANY):**

START OUT GOING WEST ON SYLVAN WAY TOWARD CENTURY DR. TURN RIGHT ONTO LITTLETON RD / US-202 N. KEEP LEFT AT THE FORK TO GO ON LITTLETON RD E.

MERGE ONTO I-91 N VIÁ EXIT 48 ON THE LEFT TOWARD HARTFORD. TAKE THE CT-150 / WOODHOUSE AVE EXIT 14 TOWARD WALLINGFORD. TURN LEFT ONTO CT-150 / WOOD

MERGE ONTO I-287 N. MERGE ONTO I-87 S / I-287 E / NEW YORK TRWY S TOWARD I-87 S / TAPPAN ZEE BRG /NEW YORK CITY. KEEP LEFT TO TAKE I-287 E / CROSS WESTCHESTER EXPY E VIA EXIT 8 TOWARD WHITE PLAINS / RYE. STAY STRAIGHT ONTO I-95 N / NEW ENGLAND TRWY N. CONTINUE TO FOLLOW I-95 N.

HOUSE AVE. 316 WOODHOUSE AVE IS ON THE RIGHT.

		SIILLI	INDLA		
SHEET NO.		SHEE	T DESCRIPTION		9
T-1	TITLE SHEET				
G-1	GENERAL NOTES				
C-1	COMPOUND PLAN	& EQUIPMENT PLANS			1-
C-2	ANTENNA LAYOUTS	& ELEVATIONS			
C-3	CONSTRUCTION DE	TAILS			
E-1	GROUNDING NOTES	& DETAILS	The state of the s		
			100000	111.11	
	12.7 (12.2	21 1 1955 5 15.	41.114		
	and the same of th		V 1202 122 V 18 1 3 18 18	2 302 00	di e deser ,
			8 1 1111111 1 1111 11	1.	1
					ii 1 111 - 1
		APPRO	OVALS		
T-MC	DBILE	12 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			DATE
OWNE	R/ LANDLORD				DATE
RF EI	NGINEER				DATE
ZONIN	NG				DATE
CONS	TRUCTION				DATE

SHEET INDEX

Dewberry®

Dewberry Engineers Inc.

600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710

T · Mobile

T-MOBILE NORTHEAST LLC

4 SYLVAN WAY PARSIPPANY, NJ 07054 PHONE: (973) 397-4800 FAX: (973) 292-8893

WALLINGFORD /I-91

CT11053E

316 WOODHOUSE AVE WALLINGFORD, CT 06492 NEW HAVEN COUNTY

THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO 8E USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER.

ALE

AS SHOWN

è 11 1		
		ł
		77 77
11 1	:::.	
10/03/14	НМР	ISSUED AS FINAL
09/05/14	НМР	ISSUED FOR REVIEW
DATE	BY	DESCRIPTION
SIONS		A
	09/05/14 DATE SIONS	09/05/14 HMP DATE BY

 DRAWN BY
 HMP

 CHECKED BY
 BSH

 APPROVED BY
 GHN

 DATE
 08/20/14

TITLE

TITLE SHEET

PROJECT NO. 50066258/50066269

T-1

OWNER - T-MOBILE

OEM - ORIGINAL EQUIPMENT MANUFACTURER

- PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF PROJECT MANAGEMENT.
- 3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 5. DRAWINGS PROVIDED HERE ARE NOT TO SCALE UNLESS OTHERWISE NOTED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY PROJECT MANAGEMENT.
- CONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. CONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. CONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH PROJECT MANAGEMENT.
- 10. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES, ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- 11. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION
- 12. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 13. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- 14. CONTRACTOR SHALL NOTIFY DEWBERRY 48 HOURS IN ADVANCE OF POURING CONCRETE, OR BACKFILLING TRENCHES, SEALING ROOF AND WALL PENETRATIONS & POST DOWNS, FINISHING NEW WALLS OR FINAL ELECTRICAL CONNECTIONS FOR ENGINEER REVIEW.
- 15. CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK, ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. CONTRACTOR SHALL NOTIFY PROJECT MANAGEMENT OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 16. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY CONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 17. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

SITE WORK GENERAL NOTES:

- 1. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED
 - A) FALL PROTECTION
 - B) CONFINED SPACE
- C) ELECTRICAL SAFETY
 D) TRENCHING & EXCAVATION.
- 3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, TOP SOIL AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, OWNER AND/OR LOCAL UTILITIES.
- 6. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION.
- 7. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE T-MOBILE SPECIFICATION FOR SITE SIGNAGE.
- 8. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE TRANSMISSION EQUIPMENT AND TOWER AREAS.
- NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION, SEE SOIL COMPACTION NOTES.
- 11. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION.
- 12. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL JURISDICTION'S GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

CONSTRUCTION NOTES:

- CONTRACTOR SHALL FIELD VERIFY SCOPE OF WORK, T-MOBILE ANTENNA PLATFORM LOCATION AND ANTENNAS TO BE REPLACED.
- 2. COORDINATION OF WORK-
- CONTRACTOR SHALL COORDINATE RF WORK AND PROCEDURES WITH PROJECT MANAGEMENT.
- CABLE LADDER RACK:
 CONTRACTOR SHALL FURNISH AND INSTALL CABLE LADDER RACK, CABLE TRAY, AND CONDUIT AS REQUIRED TO SUPPORT CABLES TO THE NEW BTS LOCATION.
- GROUNDING OF ALL EQUIPMENT AND ANTENNAS IS NOT CONSIDERED PART OF THE SCOPE OF THIS PROJECT AND IS THE RESPONSIBILITY OF THE OWNER AND CONTRACTOR AT THE TIME OF CONSTRUCTION. ALL EQUIPMENT AND ANTENNAS TO BE INSTALLED AND GROUNDED IN ACCORDANCE WITH GOVERNING BUILDING CODE, MANUFACTURER RECOMMENDATIONS AND OWNER SPECIFICATIONS.

ELECTRICAL INSTALLATION NOTES:

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE
- CONTRACTOR SHALL MODIFY EXISTING CABLE TRAY SYSTEM AS REQUIRED TO SUPPORT RF AND TRANSPORT CABLING TO THE NEW BTS EQUIPMENT. CONTRACTOR SHALL SUBMIT MODIFICATIONS TO PROJECT MANAGEMENT FOR APPROVAL
- 3. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED.
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC AND
- 5. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC AND TELCORDIA.
- 6. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS.
- EACH END OF EVERY POWER, POWER PHASE CONDUCTOR (I.E., HOTS), GROUNDING, AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC & OSHA, AND MATCH EXISTING INSTALLATION
- ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING, AND BRANCH CIRCUIT ID NUMBERS (I.E., PANELBOARD AND CIRCUIT ID'S).
- PANELBOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS.
- 10. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP FOGES.
- 11. POWER, CONTROL, AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.
- 12. POWER PHASE CONDUCTORS (I.E., HOTS) SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL.) PHASE CONDUCTOR COLOR CODES SHALL CONFORM WITH THE NEC & OSHA AND MATCH EXISTING INSTALLATION REQUIREMENTS.
- 13. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (SIZE 6 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION, CLASS B STRANDED COPPER CABLE RATED FOR 90°C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.
- SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED OUTDOORS, OR BELOW GRADE, SHALL BE SINGLE CONDUCTOR #2 AWG SOLID TINNED COPPER CABLE, UNLESS OTHERWISE SPECIFIED.
- 15. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT, SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90°C (WET AND DRY) OPERATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED, UNLESS OTHERWISE SPECIFIED.
- 16. ALL POWER AND POWER GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRENUTS BY thomas and betts (or equal). Lugs and wirenuts shall be rated for operation at no less than 75°C (90°C if
- 17. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL. ANSI/IEEE.
- 18. NEW RACEWAY OR CABLE TRAY WILL MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.
- 19. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40, OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.
- 20. ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 21. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE GRADE.
- 22. RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERGROUND;
 DIRECT BURIED, IN AREAS OF OCCASIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED CONCRETE IN AREAS OF HEAVY
- 23. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SETSCREW FITTINGS ARE NOT ACCEPTABLE.
- 25. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL,
- 26. CABINETS, BOXES, AND WIREWAYS TO MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.
- 27. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.
- 28. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES, AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL, SHALL MEET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.
- 29. METAL RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED, OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER)
- 30. NONMETALLIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 31. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM PROJECT MANAGEMENT BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 32. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY.

STRUCTURAL NOTES:

- AS REQUIRED UNDER SECTION 15 OF THE TIA/EIA 222G STANDARD, T-MOBILE SHALL PROVIDE A STRUCTURAL ANALYSIS OF THE TOWER PREPARED BY A LICENSED MASSACHUSETTS STRUCTURAL ENGINEER CERTIFYING THAT THE TOWER AND ANY REQUIRED IMPROVEMENTS HAVE SUFFICIENT CAPACITY TO SUPPORT ALL EXISTING AND PROPOSED ANTENNAS, SUPPORTS AND APPURTENANCES AND COMPLIES WITH THE CURRENT NEW MASSACHUSETTS STATE BY BUILDING CODE AND EIA/TIA CRITERIA. THE CONTRACTOR IS RESPONSIBLE TO CONFIRM THAT ANY IMPROVEMENTS AND REINFORCEMENTS REQUIRED BY THE STRUCTURAL ANALYSIS CERTIFICATION ARE PROPERLY INSTALLED PRIOR TO THE ADDITION OF ANTENNAS, SUPPORTS AND APPURTENANCES PROPOSED ON THESE DRAWINGS OR OTHERWISE NOTED IN THE STRUCTURAL ANALYSIS.
- FOR STRUCTURAL MODIFICATIONS REQUIRING FIELD WELDING; THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL REQUIRED PERMITS AND IMPLEMENTING ALL INDUSTRY STANDARDS FOR PROTECTION OF ALL EXISTING PROPERTY AND PERSONNEL FOR DAMAGE OR HARM. ALL PROPERTY DAMAGED DURING CONSTRUCTION OF THIS PROJECT SHALL BE REPLACED OR REPAIRED TO THE SATISFACTION OF THE OWNER.

SUITE 301 PARSIPPANY N.I 07054 PHONE: 973.739.9400 FAX: 973,739,9710

T · · Mobile ·

T-MOBILE NORTHEAST LL

PARSIPPANY, NJ 0705 PHONE: (973) 397-480 FAX: (973) 292-8893

WALLINGFORD /I-91

CT11053E

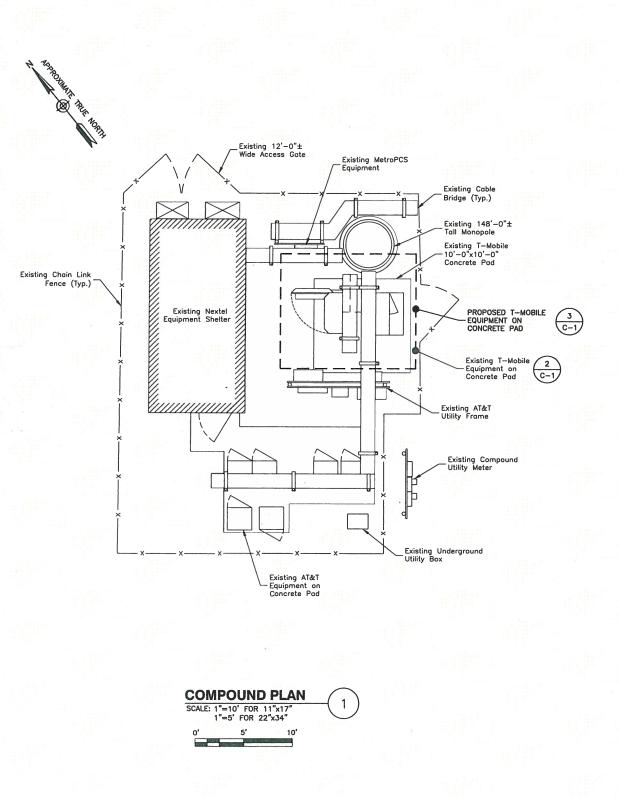
316 WOODHOUSE AVE WALLINGFORD, CT 06492 NEW HAVEN COUNTY

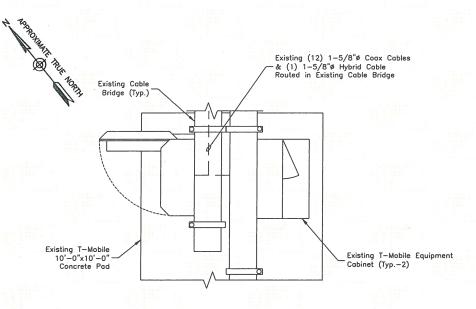
THIS DOCUMENT WAS DEVELOPED TO REFLECT SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PETAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER A STABILITION

SCALE

AS SHOWN

		1	17.	
		11.1		- 1
		1 1		
i	r			
				711515
	1 / 1			
		111	111.	
	0	10/03/14	НМР	ISSUED AS FINAL
į	Α	09/05/14	нмР	ISSUED FOR REVIEW
	REV.	DATE	BY	DESCRIPTION
	 REV	ISIONS		100

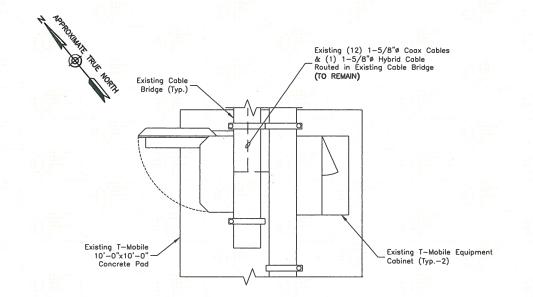

CHECKED BY BSH APPROVED BY _GHN DATE 08/20/14


TITLE

GENERAL NOTES

PROJECT NO. 50066258/50066269

G - 1



EXISTING EQUIPMENT PLAN

SCALE: 3/16"=1' FOR 11"x17"
3/8"=1' FOR 22"x34"

0' 2' 4' 6'

PROPOSED EQUIPMENT PLAN

SCALE: 3/16"=1' FOR 11"x17"

3/8"=1' FOR 22"x34"

3

NOTE:

 NO EQUIPMENT IS PROPOSED AT GRADE.

NOTES:

- 1. NORTH SHOWN AS APPROXIMATE.
- 2. NOT ALL INFORMATION IS SHOWN FOR CLARITY.
- 3. MOUNT ALL ANTENNAS, TMAS, COAX, ETC. IN ACCORDANCE WITH STRUCTURAL ANALYSIS TO BE COMPLETED BY OTHERS.

Dewberry*

Dewberry Engineers Inc.

T · Mobile

T-MOBILE NORTHEAST LLC

4 SYLVAN WAY PARSIPPANY, NJ 07054 PHONE: (973) 397-4600 FAX: (973) 292-8893

WALLINGFORD /I-91

CT11053E

316 WOODHOUSE AVE WALLINGFORD, CT 06492 NEW HAVEN COUNTY

THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER.

SCALE

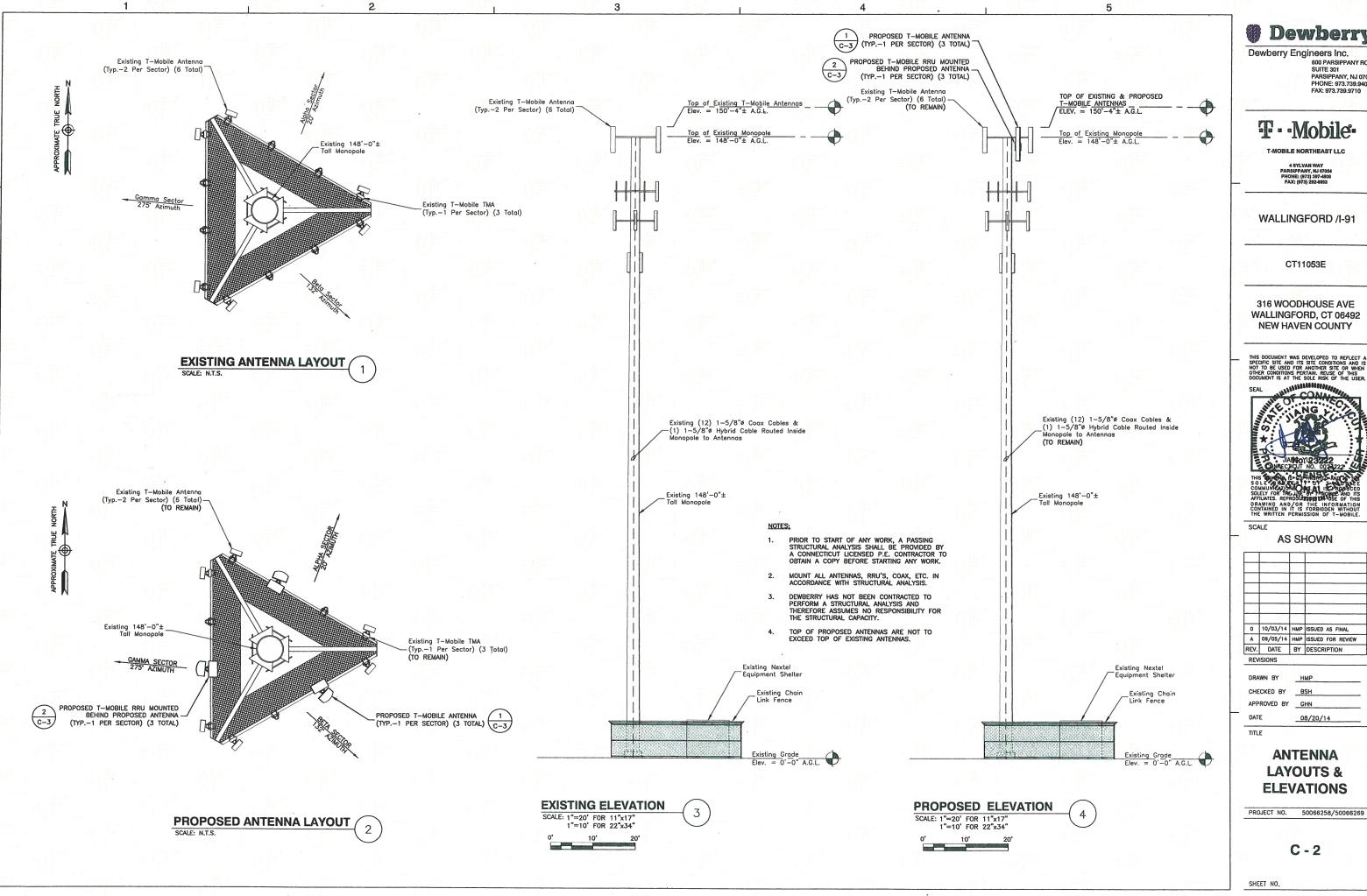
AS SHOWN

		::	
	1274	151	1 1
	- 1		
	(0)		1.777
			1,4,3
0 I X	* * 6	- 1	
	1.0	:::.	0 0
0	10/03/14	нмр	ISSUED AS FINAL
Α	09/05/14	НМР	ISSUED FOR REVIEW
REV.	DATE	BY	DESCRIPTION
	DATE	BY	DESCRIPTION

 DRAWN
 BY
 HMP

 CHECKED
 BY
 BSH

 APPROVED
 BY
 GHN

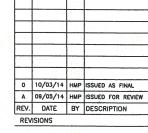

 DATE
 08/20/14

TITLE

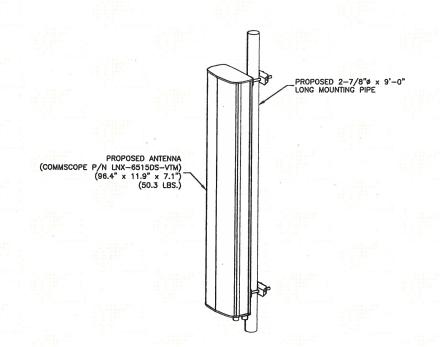
& EQUIPMENT PLANS

PROJECT NO. 50066258/50066269

C - 1

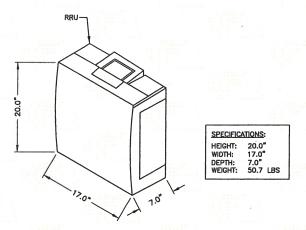

Dewberry*

600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710


316 WOODHOUSE AVE WALLINGFORD, CT 06492

THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER.

LAYOUTS & ELEVATIONS

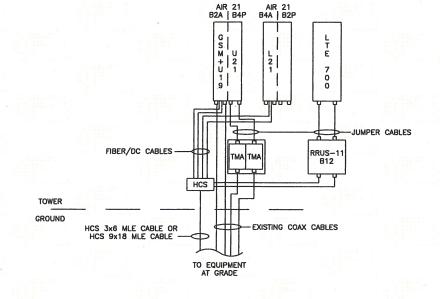


NOTES

- MOUNT ANTENNAS PER MANUFACTURER'S RECOMMENDATIONS.
- 2. GROUND ANTENNAS AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS.
- 3. CONFIRM REQUIRED ANTENNAS WITH THE LATEST

ISOMETRIC ANTENNA DETAIL
SCALE: N.T.S.

1



ERICSSON RRUS-11 B12

RRU NOTES:

- 1. MOUNT EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS.
- 2. GROUND EQUIPMENT AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS.
- 3. CONFIRM REQUIRED EQUIPMENT WITH THE LATEST RFDS.

RRUS-11 - REMOTE RADIO UNIT
SCALE: N.T.S. 2

SITE CONFIGURATION 700MHZ

SCALE: NTS

(3)

DESIGN CONFIGURATION ANTENNAS COAX COAX LENGTH EXISTING PROPOSED PROPOSED EXISTING ERICSSON AIR21 ANTENNA EXISTING TO REMAIN ALPHA COMMSCOPE LNX-6515DS-VTM (4) 1-5/8"198' ERICSSON AIR21 ANTENNA EXISTING TO REMAIN ERICSSON AIR21 ANTENNA EXISTING TO REMAIN BETA COMMSCOPE LNX-6515DS-VTM (4) 1-5/8"198' ERICSSON AIR21 ANTENNA EXISTING TO REMAIN ERICSSON AIR21 ANTENNA EXISTING TO REMAIN GAMMA COMMSCOPE LNX-6515DS-VTM (4) 1-5/8"198' ERICSSON AIR21 ANTENNA EXISTING TO REMAIN

Dewberry Engineers Inc.
600 PARSIPPANY ROAD
SUITE 301
PARSIPPANY, NJ 07054
PHONE: 973,739,9400
FAX: 973,739,9710

T · Mobile ·

T-MOBILE NORTHEAST LLC

4 SYLVAN WAY PARSIPPANY, NJ 07054 PHONE: (973) 397-4800 FAX: (973) 292-8893

WALLINGFORD /I-91

CT11053E

316 WOODHOUSE AVE WALLINGFORD, CT 06492 NEW HAVEN COUNTY

THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN, REUSE OF THIS DOCUMENT IS AT THE SOLE BISK OF THE USER.

SCALE

AS SHOWN

	7 =	Non	* *
	1	-	nervi
			11 (14)
		111	
0	10/03/14	HMP	ISSUED AS FINAL
A	09/05/14	НМР	ISSUED FOR REVIEW
REV.	DATE	BY	DESCRIPTION
REV	ISIONS		

CHECKED BY BSH

APPROVED BY GHN

DATE 08/20/14

TITLE

CONSTRUCTION DETAILS

PROJECT NO. 50066258/50066269

C-3

2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS. ALL AVAILABLE GROUNDING ELECTRODES SHALL BE CONNECTED TOGETHER IN ACCORDANCE WITH THE NEC

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. USE OF OTHER METHODS MUST BE PRE-APPROVED BY THE

THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS ON TOWER SITES AND 10 OHMS OR LESS ON ROOFTOP SITES. WHEN ADDING ELECTRODES, CONTRACTOR SHALL MAINTAIN A MINIMUM DISTANCE BETWEEN THE ADDED ELECTRODE AND ANY OTHER EXISTING ELECTRODE EQUAL TO THE BURIED LENGTH OF THE ROD. IDEALLY, CONTRACTOR SHALL STRIVE TO KEEP THE SEPARATION DISTANCE EQUAL TO TWICE THE BURIED LENGTH OF THE RODS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWG COPPER WIRE AND UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO TRANSMISSION EQUIPMENT.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK-TO-BACK CONNECTIONS ON OPPOSITE SIDES OF GROUND BUS ARE PERMITTED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL DE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED. IN ALL CASES, BENDS SHALL BE MADE WITH A MINIMUM BEND RADIUS OF 8 INCHES.

11. EACH INTERIOR TRANSMISSION CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH 6 AWG STRANDED, GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRE UNLESS NOTED OTHERWISE IN THE DETAILS. EACH OUTDOOR CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE BURIED GROUND RING WITH 2 AWG SOLID TIN-PLATED COPPER WIRE UNLESS NOTED OTHERWISE IN THE DETAILS.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE 2 AWG SOLID TIN-PLATED COPPER UNLESS OTHERWISE INDICATED.

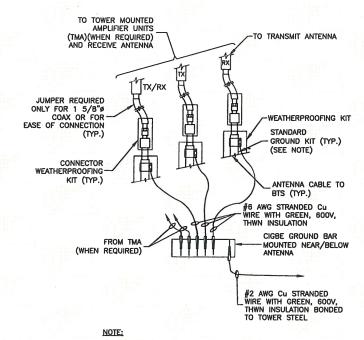
13. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS EXOIHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. CONNECTIONS O ABOVE GRADE UNITS SHALL BE MADE WITH EXOTHERMIC WELDS WHERE PRACTICAL OR WITH 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STAINLESS STEEL HARDWARE, INCLUDING SET SCREWS. HIGH PRESSURE CRIMP CONNECTORS MAY ONLY BE USED WITH WRITTEN PERMISSION FROM T-MOBILE MARKET DEPORTED ATTAINLY.

EXOTHERMIC WELDS SHALL BE PERMITTED ON TOWERS ONLY WITH THE EXPRESS APPROVAL OF THE TOWER MANUFACTURER OR THE CONTRACTORS STRUCTURAL ENGINEER.

ALL WIRE TO WIRE GROUND CONNECTIONS TO THE INTERIOR GROUND RING SHALL BE FORMED USING HIGH PRESS CRIMPS OR SPLIT BOLT CONNECTORS WHERE INDICATED IN THE DETAILS.

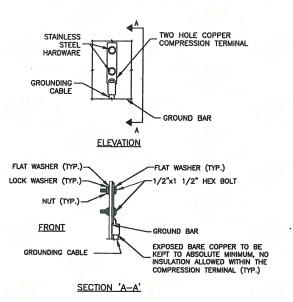
16. ON ROOFTOP SITES WHERE EXOTHERMIC WELDS ARE A FIRE HAZARD COPPER COMPRESSION CAP CONNECTORS MAY BE USED FOR WIRE TO WIRE CONNECTORS. 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STAINLESS STEEL HARDWARE, INCLUDING SET SCREWS SHALL BE USED FOR CONNECTION TO ALL ROOFTOP TRANSMISSION EQUIPMENT AND STRUCTURAL STEEL

17. COAX BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR USING TWO-HOLE MECHANICAL TYPE BRASS CONNECTORS AND STAINLESS STEEL


18. APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

20. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.


21. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF THE BURIED GROUND RING WITH 2 AWG SOLID TIN-PLATED COPPER GROUND CONDUCTOR. DURING EXCAVATION FOR NEW GROUND CONDUCTORS, IF EXISTING GROUND CONDUCTORS ARE ENCOUNTERED, BOND EXISTING GROUND CONDUCTORS TO NEW CONDUCTORS

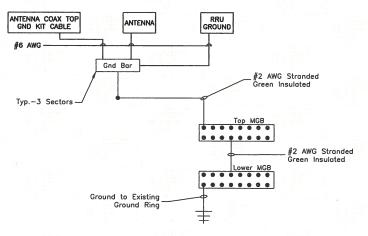
22. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS LINAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT WITH LISTED BONDING

DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE.

CONNECTION OF GROUND WIRES TO GROUNDING BAR (CIGBE)



NOTES:


1. DOUBLING UP OR STACKING OF CONNECTIONS IS NOT PERMITTED.

2. OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATIONS.

TYPICAL GROUND BAR MECHANICAL CONNECTION DETAIL

TYPICAL ANTENNA **GROUNDING DETAIL** 3

NOTES:

- BOND ANTENNA GROUNDING KIT CABLE TO TOP CIGBE
- BOND ANTENNA GROUNDING KIT CARLE TO BOTTOM CIGRE.
- SCHEMATIC GROUNDING DIAGRAM IS TYPICAL FOR EACH SECTOR.
- VERIFY EXISTING GROUND SYSTEM IS INSTALLED PER T-MOBILE

SCHEMATIC GROUNDING DIAGRAM

Dewberry Engineers Inc.

600 PARSIPPANY ROAD SUITE 301 PARSIPPANY N.I.07054 PHONE: 973.739.9400 FAX: 973.739.9710

T · Mobile

T-MOBILE NORTHEAST LLC

PARSIPPANY, NJ 07054 PHONE: (973) 397-4800 FAX: (973) 292-8893

WALLINGFORD /I-91

CT11053E

316 WOODHOUSE AVE WALLINGFORD, CT 06492 **NEW HAVEN COUNTY**

THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOMETHING OF THE USER.

DRAWING AND/OR THE INFORMATION CONTAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF T-MOBILE

SCALE

AS SHOWN

		17.	
	111		
	1.1		
			52,5/1
		111	
_0	10/03/14	НМР	ISSUED AS FINAL
Α	09/05/14	НМР	ISSUED FOR REVIEW
REV.	DATE	8Y	DESCRIPTION
REV	ISIONS		

CHECKED BY BSH APPROVED BY GHN DATE 08/20/14

TITLE

GROUNDING **NOTES & DETAILS**

PROJECT NO. 50066258/50066269

E-1

Date: September 23, 2014

Timothy Howell Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277 **JACOBS**

Jacobs Engineering Group. Inc. 5449 Bells Ferry Road Acworth, GA 30102 (770) 701-2500

Subject:

Structural Analysis Report

Carrier Designation:

T-Mobile Co-Locate
Carrier Site Number:

Carrier Site Name:

CT11053E

Wallingford I-91 X14

Crown Castle Designation:

Crown Castle BU Number:

Crown Castle Site Name:

828915

Wallingford/ I-91/ X14/ S

Crown Castle JDE Job Number: Crown Castle Work Order Number:

304494 924098

Crown Castle Application Number:

261507 Rev. 0

Engineering Firm Designation:

Jacobs Engineering Group, Inc. Project Number:

924098

Site Data:

316 Woodhouse Avenue, Wallingford, New Haven County, CT

Latitude 41° 26' 2.76", Longitude -72° 48' 5.26"

147 Foot - Monopole Tower

Dear Timothy Howell,

Jacobs Engineering Group, Inc. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 707407, in accordance with application 261507, revision 0.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Existing + Proposed Equipment

Note: See Table I and Table II for the proposed and existing loading, respectively.

Sufficient Capacity

The analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code based upon a wind speed of 85 mph fastest mile.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at *Jacobs Engineering Group, Inc.* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Antonino Badalamenti

Anthony Badalamenti, E.I.T. Structural Engineer

Reviewed By:

Matthew E. Watkins, P.E., LEED^{AP}
Engineering Project Manager

tnxTower Report - version 6.1.4.1

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing Antenna and Cable Information

Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Components vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 147 ft Monopole tower designed by PiROD in March of 2000. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	- 14:	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
148.0	148.0	3	commscope	LNX-6515DS-VTM w/ Mount Pipe	-	-	_
		3	ericsson	RRUS 11 B12			

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Antenna Model Manufacturer		Number of Feed Lines	Feed Line Size (in)	Note
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe		1-5/8	
148.0	148.0	3	ericsson	ERICSSON AIR 21 B4A B2P w/ Mount Pipe	13		1
		3	ericsson	KRY 112 144/1			
		1	tower mounts	Platform Mount [LP 403-1]			
	135.0	3	argus technologies	LLPX310R w/ Mount Pipe		5/16 1/2	1
		1	dragonwave	A-ANT-23G-2-C			
135.0		3	samsung telecommunications	RRH-B4	6		
		1	tower mounts	Platform Mount [LP 403-1]			
		6	ericsson	RRUS 11		1-5/8 3/8	1
		3	kmw communications	AM-X-CD-16-65-00T-RET w/ Mount Pipe			
128.0	128.0	6	powerwave technologies	7770.00 w/ Mount Pipe	12 2		
		6	powerwave technologies	LGP 21403		7/16	
		1 raycap DC6-		DC6-48-60-18-8F			
		1	tower mounts	Platform Mount [LP 403-1]			
118.0	118.0	3	rfs celwave	APX\/18_206517S_C		1-5/8	1

Notes:

Existing Equipment

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
148	148	6	andrew	RR90-17	12	1-5/8
138	138	12	andrew	RR90-17	12	1-5/8
128	128	12	andrew	RR90-17	12	1-5/8

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
GEOTECHNICAL REPORTS	Dr. Clarence Welti, P.E., P.C.	3590826	CCISITES
TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	FDH Engineering	3590825	CCISITES
TOWER MANUFACTURER DRAWINGS	PiROD	3822414	CCISITES

3.1) Analysis Method

tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.
- 5) ASTM A687 grade anchor rods are assumed to have an Fu of 150 ksi.
- Base and flange plate design methodology of the manufacturer has been reviewed and found to be an acceptable means of designing to resist the full capacity of the bolts and shaft.

This analysis may be affected if any assumptions are not valid or have been made in error. Jacobs Engineering Group, Inc. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	147.083 - 136.583	Pole	TP17.6875x15x0.25	1	-2.35	698.21	20.2	Pass
L2	136.583 - 101.083	Pole	TP26x16.6756x0.25	2	-9.40	1032.31	88.9	Pass
L3	101.083 - 66.5	Pole	TP34.0625x24.7748x0.3125	3	-14.39	1691.35	89.6	Pass
L4	66.5 - 32.8333	Pole	TP41.75x32.4881x0.375	4	-19.49	2365.75	79.4	Pass
L5	32.8333 - 0	Pole	TP49.0625x39.8474x0.375	5	-22.85	2513.41	82.1	Pass
							Summary	
						Pole (L3)	89.6	Pass
						Rating =	89.6	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	78.0	Pass
1,2	Base Plate	0	82.1	Pass
1	Base Foundation	0	98.2	Pass

Structure Rating (max from all components) =	98.2%
--	-------

Notes:

4.1) Recommendations

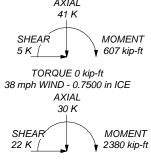
The tower and its foundation have sufficient capacity to carry the existing and prosed loads. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

²⁾ Flange plates have the same capacity as their respective shaft.

APPENDIX A TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION
ERICSSON AIR 21 B2A B4P w/ Mount	148	RRH-B4	135
Pipe		4' x 3" Pipe Mount	135
ERICSSON AIR 21 B2A B4P w/ Mount	148	(3) 5' x 2" Pipe Mount	135
Pipe		(3) 5' x 2" Pipe Mount	135
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	148	(3) 5' x 2" Pipe Mount	135
ERICSSON AIR 21 B4A B2P w/ Mount	1/18	Platform Mount [LP 403-1]	135
Pipe	140	A-ANT-23G-2-C	135
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	148	AM-X-CD-16-65-00T-RET w/ Mount Pipe	128
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	148	AM-X-CD-16-65-00T-RET w/ Mount Pipe	128
KRY 112 144/1	148	(2) 7770.00 w/ Mount Pipe	128
KRY 112 144/1	148	(2) 7770.00 w/ Mount Pipe	128
KRY 112 144/1	148	(2) 7770.00 w/ Mount Pipe	128
LNX-6515DS-VTM w/ Mount Pipe	148	(2) LGP 21403	128
LNX-6515DS-VTM w/ Mount Pipe	148	(2) LGP 21403	128
LNX-6515DS-VTM w/ Mount Pipe	148	(2) LGP 21403	128
RRUS 11 B12	148	(2) RRUS 11	128
RRUS 11 B12	148	(2) RRUS 11	128
RRUS 11 B12	148	(2) RRUS 11	128
Platform Mount [LP 403-1]	148	DC6-48-60-18-8F	128
LLPX310R w/ Mount Pipe	135	Platform Mount [LP 403-1]	128
LLPX310R w/ Mount Pipe	135	AM-X-CD-16-65-00T-RET w/ Mount	128
LLPX310R w/ Mount Pipe	135	Pipe	
RRH-B4	135	APXV18-206517S-C w/ Mount Pipe	118
RRH-B4	135	APXV18-206517S-C w/ Mount Pipe	118
		APXV18-206517S-C w/ Mount Pipe	118

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in New Haven County, Connecticut.
- 2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- 3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 50 mph wind.5. TOWER RATING: 89.6%

JACOBS

Jacobs Engineering Group, Inc.

5449 Bells Ferry Road Acworth, GA 30102 Phone: (770) 701-2500 FAX: (770) 701-2501

b: Wallingford/ I-91/	^{b:} Wallingford/ I-91/ X14/ S - BU828915									
roject: WO 924098										
lient: Crown Castle	Drawn by: AB	App'd:								
ode: TIA/EIA-222-F	Date: 09/23/14	Scale: NTS								
ath:	Dwg No. E-									

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut. 1)
- Basic wind speed of 85 mph. 2)
- Nominal ice thickness of 0.7500 in. 3)
- Ice thickness is considered to increase with height. 4)
- Ice density of 56 pcf. 5)
- A wind speed of 38 mph is used in combination with ice. 6)
- Temperature drop of 50 °F. 7)
- Deflections calculated using a wind speed of 50 mph. 8)
- 9) A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section. 10)
- Stress ratio used in pole design is 1.333. 11)
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are 12) not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals **Use Moment Magnification**

- Use Code Stress Ratios
- Use Code Safety Factors Guys
 - Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- Consider Feedline Torque Include Angle Block Shear Check Poles
- Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	147.08-136.58	10.50	2.00	18	15.0000	17.6875	0.2500	1.0000	A572-65 (65 ksi)
L2	136.58-101.08	37.50	2.92	18	16.6756	26.0000	0.2500	1.0000	A572-65 (65 ksi)
L3	101.08-66.50	37.50	3.83	18	24.7748	34.0625	0.3125	1.2500	À572-65 (65 ksi)
L4	66.50-32.83	37.50	4.67	18	32.4881	41.7500	0.3750	1.5000	À572-65 (65 ksi)
L5	32.83-0.00	37.50		18	39.8474	49.0625	0.3750	1.5000	À572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1.	r	С	I/C	J	It/Q	W	w/t
	in	in ²	in⁴	in	in	in³	in⁴	in ²	in	
L1	15.2314	11.7041	321.7069	5.2363	7.6200	42.2188	643.8372	5.8532	2.2000	8.8
	17.9604	13.8367	531.5413	6.1903	8.9853	59.1571	1063.7821	6.9196	2.6730	10.692
L2	17.4378	13.0337	444.2708	5.8311	8.4712	52.4448	889.1261	6.5181	2.4949	9.98
	26.4011	20.4326	1711.6544	9.1412	13.2080	129.5922	3425.5610	10.2183	4.1360	16.544
L3	25.8905	24.2635	1834.3582	8.6841	12.5856	145.7508	3671.1300	12.1341	3.8104	12.193
	34.5880	33.4758	4817.4335	11.9812	17.3038	278.4040	9641.2058	16.7411	5.4450	17.424
L4	33.9506	38.2226	4979.9173	11.4001	16.5040	301.7409	9966.3872	19.1149	5.0579	13.488
	42.3941	49.2466	10650.982	14.6881	21.2090	502.1916	21315.979	24.6280	6.6880	17.835
			2				3			
L5	41.6266	46.9820	9248.1787	14.0127	20.2425	456.8699	18508.526	23.4955	6.3531	16.942
							3			
	49.8194	57.9503	17355.137	17.2841	24.9238	696.3293	34733.111	28.9807	7.9750	21.267
			8				9			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _t	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals
ft	ft ²	in				in	in
L1 147.08-			1	1	1		
136.58							
L2 136.58-			1	1	1		
101.08							
L3 101.08-			1	1	1		
66.50							
L4 66.50-			1	1	1		
32.83							
L5 32.83-0.00			1	1	1		

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Component	Placement	Total	Number	Clear	Width or	Perimete	Weight
	or	Shield	Type		Number	Per Row	Spacing	Diamete	r	
	Leg			ft			in	r		plf
	_							in	in	

Feed Line/Linear Appurtenances - Entered As Area

Description	Face		Component	Placement	Total		C_AA_A	Weight
	or	Shield	Type		Number		_	
	Leg			ft			ft²/ft	plf
LDF7-50A(1-5/8")	Α	No	Inside Pole	147.00 - 0.00	13	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
						4" Ice	0.00	0.82

LDF4-50A(1/2")	Α	No	Inside Pole	135.00 - 0.00	1	No Ice	0.00	0.15
						1/2" Ice	0.00	0.15
						1" Ice	0.00	0.15
						2" Ice	0.00	0.15
						4" Ice	0.00	0.15
9207(5/16")	Α	No	Inside Pole	135.00 - 0.00	6	No Ice	0.00	0.60
						1/2" Ice	0.00	0.60
						1" Ice	0.00	0.60
						2" Ice	0.00	0.60
						4" Ice	0.00	0.60
2" Rigid Conduit	Α	No	Inside Pole	135.00 - 0.00	1	No Ice	0.00	2.80
-						1/2" Ice	0.00	2.80
						1" Ice	0.00	2.80
						2" Ice	0.00	2.80
						4" Ice	0.00	2.80

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg	Officia	Турс	ft	INGITIDO		ft²/ft	plf
****	9						,	μ
LDF2-50(3/8")	С	No	Inside Pole	128.00 - 0.00	2	No Ice	0.00	0.08
, ,						1/2" Ice	0.00	0.08
						1" Ice	0.00	0.08
						2" Ice	0.00	0.08
						4" Ice	0.00	0.08
LDF7-50A(1-5/8")	С	No	Inside Pole	128.00 - 0.00	12	No Ice	0.00	0.82
, ,						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
						4" Ice	0.00	0.82
100266(7/16")	С	No	Inside Pole	128.00 - 0.00	1	No Ice	0.00	0.08
						1/2" Ice	0.00	0.08
						1" Ice	0.00	0.08
						2" Ice	0.00	0.08
						4" Ice	0.00	0.08

LDF7-50A(1-5/8")	С	No	Inside Pole	118.00 - 0.00	6	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
						4" Ice	0.00	0.82

Safety Line 3/8	Α	No	CaAa (Out Of	147.00 - 0.00	1	No Ice	0.04	0.22
			Face)			1/2" Ice	0.14	0.75
						1" Ice	0.24	1.28
						2" Ice	0.44	2.34
						4" Ice	0.84	4.46

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	•
n	ft		ft ²	ft ²	ft ²	ft²	K
L1	147.08-136.58	Α	0.000	0.000	0.000	0.391	0.11
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
L2	136.58-101.08	Α	0.000	0.000	0.000	1.331	0.61
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.35
L3	101.08-66.50	Α	0.000	0.000	0.000	1.297	0.60
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.52
L4	66.50-32.83	Α	0.000	0.000	0.000	1.263	0.59
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.51
L5	32.83-0.00	Α	0.000	0.000	0.000	1.231	0.57
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.49

Feed Line/Linear Appurtenances Section Areas - With Ice

_				_				
Tower	Tower	Face	lce	A_R	A_F	$C_{A}A_{A}$	$C_{A}A_{A}$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	147.08-136.58	Α	0.893	0.000	0.000	0.000	2.252	0.12
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
L2	136.58-101.08	Α	0.874	0.000	0.000	0.000	7.674	0.64
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.35
L3	101.08-66.50	Α	0.838	0.000	0.000	0.000	7.340	0.63

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft^2	ft ²	ft ²	ft ²	K
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.52
L4	66.50-32.83	Α	0.787	0.000	0.000	0.000	6.905	0.62
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.51
L5	32.83-0.00	Α	0.750	0.000	0.000	0.000	6.401	0.60
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.49

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CPz
				Ice	Ice
	ft	in	in	in	in
L1	147.08-136.58	0.0000	-0.0544	0.0000	-0.2541
L2	136.58-101.08	0.0000	-0.0551	0.0000	-0.2695
L3	101.08-66.50	0.0000	-0.0554	0.0000	-0.2782
L4	66.50-32.83	0.0000	-0.0556	0.0000	-0.2772
L5	32.83-0.00	0.0000	-0.0557	0.0000	-0.2691

D :		
Discrete	LOWAR	1 2246
1/15/11/6/6		I UAUS

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft ²	K

ERICSSON AIR 21 B2A B4P w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	6.83 7.35 7.86 8.93 11.18	5.64 6.48 7.26 8.86 12.29	0.11 0.17 0.23 0.38 0.81
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	6.83 7.35 7.86 8.93 11.18	5.64 6.48 7.26 8.86 12.29	0.11 0.17 0.23 0.38 0.81
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	6.83 7.35 7.86 8.93 11.18	5.64 6.48 7.26 8.86 12.29	0.11 0.17 0.23 0.38 0.81
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	6.83 7.35 7.86 8.93 11.18	5.64 6.48 7.26 8.86 12.29	0.11 0.17 0.23 0.38 0.81
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	6.83 7.35 7.86 8.93 11.18	5.64 6.48 7.26 8.86 12.29	0.11 0.17 0.23 0.38 0.81
ERICSSON AIR 21 B4A	С	From Leg	4.00	0.0000	148.00	No Ice	6.83	5.64	0.11

tnxTower Report - version 6.1.4.1

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft ²	ft ²	К
B2P w/ Mount Pipe			0.00			1/2"	7.35	6.48	0.17
			0.00			Ice	7.86	7.26	0.23
						1" Ice	8.93	8.86	0.38
						2" Ice	11.18	12.29	0.81
KRY 112 144/1	Α	From Leg	4.00	0.0000	148.00	4" Ice No Ice	0.41	0.19	0.01
KKT 112 144/1	^	1 Tolli Leg	0.00	0.0000	140.00	1/2"	0.50	0.19	0.01
			0.00			Ice	0.60	0.33	0.02
						1" Ice	0.82	0.51	0.03
						2" Ice	1.36	0.97	0.08
KDV 440 444/4	_	Г I	4.00	0.0000	440.00	4" Ice	0.44	0.40	0.01
KRY 112 144/1	В	From Leg	4.00 0.00	0.0000	148.00	No Ice 1/2"	0.41 0.50	0.19 0.26	0.01 0.01
			0.00			Ice	0.60	0.20	0.01
			0.00			1" Ice	0.82	0.51	0.03
						2" Ice	1.36	0.97	0.08
						4" Ice			
KRY 112 144/1	С	From Leg	4.00	0.0000	148.00	No Ice	0.41	0.19	0.01
			0.00 0.00			1/2" Ice	0.50 0.60	0.26 0.33	0.01 0.02
			0.00			1" Ice	0.82	0.53	0.02
						2" Ice	1.36	0.97	0.08
						4" Ice			
LNX-6515DS-VTM w/	Α	From Leg	4.00	0.0000	148.00	No Ice	11.68	9.84	0.08
Mount Pipe			0.00			1/2"	12.40	11.37	0.17
			0.00			Ice 1" Ice	13.14 14.60	12.91 15.27	0.27 0.51
						2" Ice	17.87	20.14	1.15
						4" Ice	17.07	20.11	1.10
LNX-6515DS-VTM w/	В	From Leg	4.00	0.0000	148.00	No Ice	11.68	9.84	0.08
Mount Pipe			0.00			1/2"	12.40	11.37	0.17
			0.00			Ice	13.14	12.91	0.27
						1" Ice 2" Ice	14.60 17.87	15.27 20.14	0.51 1.15
						4" Ice	17.07	20.14	1.10
LNX-6515DS-VTM w/	С	From Leg	4.00	0.0000	148.00	No Ice	11.68	9.84	0.08
Mount Pipe			0.00			1/2"	12.40	11.37	0.17
			0.00			Ice	13.14	12.91	0.27
						1" Ice 2" Ice	14.60 17.87	15.27 20.14	0.51 1.15
						4" Ice	17.07	20.14	1.15
RRUS 11 B12	Α	From Leg	4.00	0.0000	148.00	No Ice	3.31	1.36	0.05
			0.00			1/2"	3.55	1.54	0.07
			0.00			Ice	3.80	1.73	0.10
						1" Ice	4.33	2.13	0.15
						2" Ice 4" Ice	5.50	3.04	0.31
RRUS 11 B12	В	From Leg	4.00	0.0000	148.00	No Ice	3.31	1.36	0.05
		Ü	0.00			1/2"	3.55	1.54	0.07
			0.00			Ice	3.80	1.73	0.10
						1" Ice	4.33	2.13	0.15
						2" Ice 4" Ice	5.50	3.04	0.31
RRUS 11 B12	С	From Leg	4.00	0.0000	148.00	No Ice	3.31	1.36	0.05
			0.00			1/2"	3.55	1.54	0.07
			0.00			Ice	3.80	1.73	0.10
						1" Ice	4.33	2.13	0.15
						2" Ice	5.50	3.04	0.31
Platform Mount [LP 403-1]	С	None		0.0000	148.00	4" Ice No Ice	18.85	18.85	1.50
. Iddom Modific [Er 400-1]	5	140110		0.0000	140.00	1/2"	24.30	24.30	1.80
						Ice	29.75	29.75	2.09
						1" Ice	40.65	40.65	2.69
						2" Ice	62.45	62.45	3.87
						4" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft ²	K

LLPX310R w/ Mount Pipe	Α	From Leg	4.00	0.0000	135.00	No Ice	5.07	2.98	0.05
			0.00			1/2"	5.48	3.53	0.08
			0.00			Ice 1" Ice	5.91 6.79	4.09 5.31	0.13 0.23
						2" Ice	8.70	8.13	0.54
						4" Ice	0.70	0.10	0.54
LLPX310R w/ Mount Pipe	В	From Leg	4.00	0.0000	135.00	No Ice	5.07	2.98	0.05
·			0.00			1/2"	5.48	3.53	0.08
			0.00			Ice	5.91	4.09	0.13
						1" Ice	6.79	5.31	0.23
						2" Ice	8.70	8.13	0.54
LLPX310R w/ Mount Pipe	С	From Leg	4.00	0.0000	135.00	4" Ice No Ice	5.07	2.98	0.05
LLI X31010 W/ WOUTH I IPE	C	1 Tolli Leg	0.00	0.0000	155.00	1/2"	5.48	3.53	0.03
			0.00			Ice	5.91	4.09	0.13
						1" Ice	6.79	5.31	0.23
						2" Ice	8.70	8.13	0.54
	_	_				4" Ice			
RRH-B4	Α	From Leg	4.00	0.0000	135.00	No Ice 1/2"	1.24	3.22	0.06
			0.00 0.00			lce	1.43 1.63	3.47 3.73	0.08 0.10
			0.00			1" Ice	2.07	4.27	0.16
						2" Ice	3.03	5.46	0.31
						4" Ice			
RRH-B4	В	From Leg	4.00	0.0000	135.00	No Ice	1.24	3.22	0.06
			0.00			1/2"	1.43	3.47	0.08
			0.00			Ice	1.63	3.73	0.10
						1" Ice 2" Ice	2.07 3.03	4.27 5.46	0.16 0.31
						4" Ice	3.03	3.40	0.51
RRH-B4	С	From Leg	4.00	0.0000	135.00	No Ice	1.24	3.22	0.06
			0.00			1/2"	1.43	3.47	0.08
			0.00			Ice	1.63	3.73	0.10
						1" Ice	2.07	4.27	0.16
						2" Ice 4" Ice	3.03	5.46	0.31
4' x 3" Pipe Mount	Α	From Leg	4.00	0.0000	135.00	No Ice	1.00	1.00	0.03
r x o r ipo moditi	, ,	1 10m 20g	0.00	0.0000	100.00	1/2"	1.25	1.25	0.04
			0.00			Ice	1.50	1.50	0.05
						1" Ice	2.05	2.05	0.08
						2" Ice	3.42	3.42	0.19
(3) 5' x 2" Pipe Mount	۸	From Leg	4.00	0.0000	135.00	4" Ice No Ice	1.00	1.00	0.03
(3) 5 X 2 Pipe Mount	Α	Fiolii Leg	0.00	0.0000	133.00	1/2"	1.00	1.00	0.03
			0.00			Ice	1.70	1.70	0.05
						1" Ice	2.35	2.35	0.08
						2" Ice	3.78	3.78	0.20
(0) 51 - 01 Dia - Massat	-	F	4.00	0.0000	405.00	4" Ice	4.00	4.00	0.00
(3) 5' x 2" Pipe Mount	В	From Leg	4.00 0.00	0.0000	135.00	No Ice 1/2"	1.00 1.39	1.00 1.39	0.03 0.04
			0.00			Ice	1.70	1.70	0.04
			0.00			1" Ice	2.35	2.35	0.08
						2" Ice	3.78	3.78	0.20
	_	_	_			4" Ice			
(3) 5' x 2" Pipe Mount	С	From Leg	4.00	0.0000	135.00	No Ice	1.00	1.00	0.03
			0.00 0.00			1/2" Ice	1.39 1.70	1.39 1.70	0.04 0.05
			0.00			1" Ice	2.35	2.35	0.05
						2" Ice	3.78	3.78	0.00
						4" Ice	5 0	5.70	J. _ U
Platform Mount [LP 403-1]	С	None		0.0000	135.00	No Ice	18.85	18.85	1.50
_						1/2"	24.30	24.30	1.80
						Ice	29.75	29.75	2.09
						1" Ice	40.65	40.65	2.69

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	К
****						2" Ice 4" Ice	62.45	62.45	3.87
AM-X-CD-16-65-00T-RET	Α	From Leg	4.00	0.0000	128.00	No Ice	8.50	6.30	0.07
w/ Mount Pipe		_	0.00			1/2"	9.15	7.48	0.14
			0.00			Ice	9.77	8.37	0.21
						1" Ice 2" Ice	11.03	10.18	0.38
						4" Ice	13.68	14.02	0.87
AM-X-CD-16-65-00T-RET	В	From Leg	4.00	0.0000	128.00	No Ice	8.50	6.30	0.07
w/ Mount Pipe	_		0.00	0.000	0.00	1/2"	9.15	7.48	0.14
			0.00			Ice	9.77	8.37	0.21
						1" Ice	11.03	10.18	0.38
						2" Ice	13.68	14.02	0.87
AM V OD 40 05 00T DET	0	F	4.00	0.0000	400.00	4" Ice	0.50	0.00	0.07
AM-X-CD-16-65-00T-RET w/ Mount Pipe	С	From Leg	4.00 0.00	0.0000	128.00	No Ice 1/2"	8.50 9.15	6.30 7.48	0.07 0.14
w/ Mount Fipe			0.00			Ice	9.77	8.37	0.14
			0.00			1" Ice	11.03	10.18	0.21
						2" Ice	13.68	14.02	0.87
						4" Ice			
(2) 7770.00 w/ Mount Pipe	Α	From Leg	4.00	0.0000	128.00	No Ice	6.12	4.25	0.06
			0.00			1/2"	6.63	5.01	0.10
			0.00			Ice 1" Ice	7.13	5.71	0.16
						2" Ice	8.16 10.36	7.16 10.41	0.29 0.66
						4" Ice	10.50	10.41	0.00
(2) 7770.00 w/ Mount Pipe	В	From Leg	4.00	0.0000	128.00	No Ice	6.12	4.25	0.06
		_	0.00			1/2"	6.63	5.01	0.10
			0.00			Ice	7.13	5.71	0.16
						1" Ice	8.16	7.16	0.29
						2" Ice 4" Ice	10.36	10.41	0.66
(2) 7770.00 w/ Mount Pipe	С	From Leg	4.00	0.0000	128.00	No Ice	6.12	4.25	0.06
(=)	•		0.00	0.000	0.00	1/2"	6.63	5.01	0.10
			0.00			Ice	7.13	5.71	0.16
						1" Ice	8.16	7.16	0.29
						2" Ice	10.36	10.41	0.66
(2) LGP 21403	Α	From Leg	4.00	0.0000	128.00	4" Ice No Ice	0.95	0.37	0.02
(2) LGF 21403	^	r tom Leg	0.00	0.0000	120.00	1/2"	1.09	0.37	0.02
			0.00			Ice	1.24	0.60	0.02
						1" Ice	1.57	0.87	0.05
						2" Ice	2.32	1.51	0.12
(0) 1 05 04 400	_					4" Ice			
(2) LGP 21403	В	From Leg	4.00 0.00	0.0000	128.00	No Ice 1/2"	0.95 1.09	0.37 0.48	0.02 0.02
			0.00			lce	1.09	0.46	0.02
			0.00			1" Ice	1.57	0.87	0.05
						2" Ice	2.32	1.51	0.12
						4" Ice			
(2) LGP 21403	С	From Leg	4.00	0.0000	128.00	No Ice	0.95	0.37	0.02
			0.00			1/2"	1.09	0.48	0.02
			0.00			Ice 1" Ice	1.24 1.57	0.60 0.87	0.03 0.05
						2" Ice	2.32	1.51	0.12
						4" Ice	2.02	1.01	0.12
(2) RRUS 11	Α	From Leg	4.00	0.0000	128.00	No Ice	3.25	1.37	0.05
			0.00			1/2"	3.49	1.55	0.07
			0.00			Ice	3.74	1.74	0.10
						1" Ice 2" Ice	4.27	2.14	0.15
						4" Ice	5.43	3.04	0.31
(2) RRUS 11	В	From Leg	4.00	0.0000	128.00	No Ice	3.25	1.37	0.05
()	_		0.00			1/2"	3.49	1.55	0.07

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft ²	ft ²	K
			0.00			Ice 1" Ice 2" Ice 4" Ice	3.74 4.27 5.43	1.74 2.14 3.04	0.10 0.15 0.31
(2) RRUS 11	С	From Leg	4.00 0.00 0.00	0.0000	128.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	3.25 3.49 3.74 4.27 5.43	1.37 1.55 1.74 2.14 3.04	0.05 0.07 0.10 0.15 0.31
DC6-48-60-18-8F	Α	From Leg	4.00 0.00 0.00	0.0000	128.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.47 1.67 1.88 2.33 3.38	1.47 1.67 1.88 2.33 3.38	0.03 0.05 0.07 0.12 0.25
Platform Mount [LP 403-1]	С	None		0.0000	128.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	18.85 24.30 29.75 40.65 62.45	18.85 24.30 29.75 40.65 62.45	1.50 1.80 2.09 2.69 3.87
APXV18-206517S-C w/ Mount Pipe	Α	From Face	1.00 0.00 0.00	0.0000	118.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	5.40 5.96 6.48 7.55 9.92	4.70 5.86 6.73 8.51 12.28	0.05 0.10 0.15 0.28 0.68
APXV18-206517S-C w/ Mount Pipe	В	From Face	1.00 0.00 0.00	0.0000	118.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	5.40 5.96 6.48 7.55 9.92	4.70 5.86 6.73 8.51 12.28	0.05 0.10 0.15 0.28 0.68
APXV18-206517S-C w/ Mount Pipe	С	From Face	1.00 0.00 0.00	0.0000	118.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	5.40 5.96 6.48 7.55 9.92	4.70 5.86 6.73 8.51 12.28	0.05 0.10 0.15 0.28 0.68

	Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	K
A-ANT-23G-2-C	A	Paraboloid w/Shroud (HP)	From Leg	4.00 0.00 0.00	30.0000		135.00	2.17	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	3.72 4.01 4.30 4.88 6.04	0.03 0.05 0.07 0.11 0.19

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+lce+Temp	
16	Dead+Wind 30 deg+Ice+Temp	
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+Ice+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind 180 deg+Ice+Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg+lce+Temp	
26	Dead+Wind 330 deg+Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.	٨	٨	K
Pole	Max. Vert	15	40.61	-0.01	5.22
	Max. H _x	11	30.32	21.57	-0.11
	Max. H _z	2	30.32	-0.06	21.59
	Max. M _x	2	2372.61	-0.06	21.59
	$Max. M_z$	5	2367.65	-21.56	0.07
	Max. Torsion	5	1.22	-21.56	0.07
	Min. Vert	1	30.32	0.00	0.00
	Min. H _x	5	30.32	-21.56	0.07
	Min. H₂	8	30.32	0.07	-21.63
	Min. M _x	8	-2377.71	0.07	-21.63
	Min. M_z	11	-2369.03	21.57	-0.11
	Min. Torsion	11	-1.22	21.57	-0.11

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	30.32	0.00	0.00	-0.48	0.00	0.00
Dead+Wind 0 deg - No Ice	30.32	0.06	-21.59	-2372.61	-8.03	-0.24
Dead+Wind 30 deg - No Ice	30.32	10.80	-18.71	-2056.92	-1187.28	-0.70
Dead+Wind 60 deg - No Ice	30.32	18.67	-10.84	-1193.51	-2050.31	-1.04
Dead+Wind 90 deg - No Ice	30.32	21.56	-0.07	-10.26	-2367.65	-1.22
Dead+Wind 120 deg - No Ice	30.32	18.66	10.75	1179.66	-2049.47	-1.03
Dead+Wind 150 deg - No Ice	30.32	10.69	18.73	2058.95	-1170.99	-0.17
Dead+Wind 180 deg - No Ice	30.32	-0.07	21.63	2377.71	9.90	0.34
Dead+Wind 210 deg - No Ice	30.32	-10.82	18.75	2061.13	1190.27	0.80
Dead+Wind 240 deg - No Ice	30.32	-18.70	10.88	1197.19	2054.64	1.14
Dead+Wind 270 deg - No Ice	30.32	-21.57	0.11	15.13	2369.03	1.22
Dead+Wind 300 deg - No Ice	30.32	-18.64	-10.79	-1185.32	2046.79	0.94
Dead+Wind 330 deg - No Ice	30.32	-10.72	-18.70	-2055.84	1175.37	0.35
Dead+Ice+Temp	40.61	0.00	-0.00	-1.14	0.00	0.00
Dead+Wind 0	40.61	0.01	-5.22	-606.81	-1.84	-0.05
deg+lce+Temp						
Dead+Wind 30	40.61	2.61	-4.53	-526.16	-303.08	-0.19
deg+lce+Temp						
Dead+Wind 60	40.61	4.52	-2.62	-305.61	-523.54	-0.29
deg+lce+Temp						
Dead+Wind 90	40.61	5.22	-0.02	-3.46	-604.56	-0.34
deg+lce+Temp						
Dead+Wind 120	40.61	4.52	2.60	300.22	-523.34	-0.29
deg+lce+Temp						
Dead+Wind 150	40.61	2.59	4.53	524.41	-299.34	-0.07
deg+lce+Temp						
Dead+Wind 180	40.61	-0.02	5.23	605.77	2.27	0.08
deg+lce+Temp						
Dead+Wind 210	40.61	-2.62	4.54	524.92	303.77	0.21
deg+lce+Temp						
Dead+Wind 240	40.61	-4.53	2.63	304.24	524.54	0.31
deg+lce+Temp						
Dead+Wind 270	40.61	-5.22	0.02	2.36	604.88	0.34
deg+lce+Temp						
Dead+Wind 300	40.61	-4.51	-2.61	-303.73	522.73	0.27
deg+lce+Temp						
Dead+Wind 330	40.61	-2.60	-4.53	-525.91	300.34	0.11
deg+lce+Temp						
Dead+Wind 0 deg - Service	30.32	0.02	-7.47	-822.96	-2.78	-0.08
Dead+Wind 30 deg - Service	30.32	3.74	-6.47	-713.51	-411.65	-0.25
Dead+Wind 60 deg - Service	30.32	6.46	-3.75	-414.15	-710.87	-0.37
Dead+Wind 90 deg - Service	30.32	7.46	-0.02	-3.90	-820.89	-0.43
Dead+Wind 120 deg -	30.32	6.46	3.72	408.66	-710.57	-0.36
Service						
Dead+Wind 150 deg -	30.32	3.70	6.48	713.52	-406.00	-0.06
Service						
Dead+Wind 180 deg -	30.32	-0.02	7.48	824.05	3.43	0.12
Service						
Dead+Wind 210 deg -	30.32	-3.75	6.49	714.29	412.70	0.28
Service		55	55	0		5.20
Dead+Wind 240 deg -	30.32	-6.47	3.76	414.75	712.39	0.40
Service	00.02	0.71	0.70	717.70	7 12.00	010
Dead+Wind 270 deg -	30.32	-7.46	0.04	4.90	821.37	0.43
Service	00.02	7.40	0.04	4.00	021.07	010
Dead+Wind 300 deg -	30.32	-6.45	-3.73	-411.30	709.64	0.33
Service	00.02	-0.43	-0.70	-711.50	700.04	0.00
Dead+Wind 330 deg -	30.32	-3.71	-6.47	-713.13	407.51	0.12
Service	00.02	0.7 1	0.47	7 10.10		0.12

Solution Summary

	Sur	m of Applied Force	9S		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-30.32	0.00	0.00	30.32	0.00	0.000%
2	0.06	-30.32	-21.59	-0.06	30.32	21.59	0.000%

	Sur	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
3	10.80	-30.32	-18.71	-10.80	30.32	18.71	0.000%
4	18.67	-30.32	-10.84	-18.67	30.32	10.84	0.000%
5	21.56	-30.32	-0.07	-21.56	30.32	0.07	0.000%
6	18.66	-30.32	10.75	-18.66	30.32	-10.75	0.000%
7	10.69	-30.32	18.73	-10.69	30.32	-18.73	0.000%
8	-0.07	-30.32	21.63	0.07	30.32	-21.63	0.000%
9	-10.82	-30.32	18.75	10.82	30.32	-18.75	0.000%
10	-18.70	-30.32	10.88	18.70	30.32	-10.88	0.000%
11	-21.57	-30.32	0.11	21.57	30.32	-0.11	0.000%
12	-18.64	-30.32	-10.79	18.64	30.32	10.79	0.000%
13	-10.72	-30.32	-18.70	10.72	30.32	18.70	0.000%
14	0.00	-40.61	0.00	0.00	40.61	0.00	0.000%
15	0.01	-40.61	-5.22	-0.01	40.61	5.22	0.000%
16	2.61	-40.61	-4.53	-2.61	40.61	4.53	0.000%
17	4.52	-40.61	-2.62	-4.52	40.61	2.62	0.000%
18	5.22	-40.61	-0.02	-5.22	40.61	0.02	0.000%
19	4.52	-40.61	2.60	-4.52	40.61	-2.60	0.000%
20	2.59	-40.61	4.53	-2.59	40.61	-4.53	0.000%
21	-0.02	-40.61	5.23	0.02	40.61	-5.23	0.000%
22	-2.62	-40.61	4.54	2.62	40.61	-4.54	0.000%
23	-4.53	-40.61	2.63	4.53	40.61	-2.63	0.000%
24	-5.22	-40.61	0.02	5.22	40.61	-0.02	0.000%
25	-4.51	-40.61	-2.61	4.51	40.61	2.61	0.000%
26	-2.60	-40.61	-4.53	2.60	40.61	4.53	0.000%
27	0.02	-30.32	-7.47	-0.02	30.32	7.47	0.000%
28	3.74	-30.32	-6.47	-3.74	30.32	6.47	0.000%
29	6.46	-30.32	-3.75	-6.46	30.32	3.75	0.000%
30	7.46	-30.32	-0.02	-7.46	30.32	0.02	0.000%
31	6.46	-30.32	3.72	-6.46	30.32	-3.72	0.000%
32	3.70	-30.32	6.48	-3.70	30.32	-6.48	0.000%
33	-0.02	-30.32	7.48	0.02	30.32	-7.48	0.000%
34	-3.75	-30.32	6.49	3.75	30.32	-6.49	0.000%
35	-6.47	-30.32	3.76	6.47	30.32	-3.76	0.000%
36	-7.46	-30.32	0.04	7.46	30.32	-0.04	0.000%
37	-6.45	-30.32	-3.73	6.45	30.32	3.73	0.000%
38	-3.71	-30.32	-6.47	3.71	30.32	6.47	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.0000001
2	Yes	4	0.0000001	0.00092813
3	Yes	6	0.0000001	0.00012501
4	Yes	6	0.0000001	0.00013174
5	Yes	5	0.0000001	0.00016558
6	Yes	6	0.0000001	0.00012298
7	Yes	6	0.0000001	0.00012716
8	Yes	5	0.0000001	0.00007108
9	Yes	6	0.0000001	0.00013109
10	Yes	6	0.0000001	0.00012390
11	Yes	5	0.0000001	0.00008945
12	Yes	6	0.0000001	0.00013067
13	Yes	6	0.0000001	0.00012560
14	Yes	4	0.0000001	0.00001538
15	Yes	5	0.0000001	0.00038265
16	Yes	5	0.0000001	0.00054380
17	Yes	5	0.0000001	0.00055630
18	Yes	5	0.0000001	0.00038276
19	Yes	5	0.0000001	0.00053201
20	Yes	5	0.0000001	0.00053930
21	Yes	5	0.0000001	0.00038038
22	Yes	5	0.0000001	0.00054998
23	Yes	5	0.0000001	0.00053801
24	Yes	5	0.0000001	0.00038235

tnxTower Report - version 6.1.4.1

25	Yes	5	0.0000001	0.00055216
26	Yes	5	0.0000001	0.00054188
27	Yes	4	0.00000001	0.00022653
28	Yes	5	0.0000001	0.00019811
29	Yes	5	0.0000001	0.00021823
30	Yes	4	0.00000001	0.00053126
31	Yes	5	0.0000001	0.00019078
32	Yes	5	0.00000001	0.00020256
33	Yes	4	0.0000001	0.00027411
34	Yes	5	0.0000001	0.00021539
35	Yes	5	0.00000001	0.00019468
36	Yes	4	0.00000001	0.00045411
37	Yes	5	0.0000001	0.00021444
38	Yes	5	0.0000001	0.00019904

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L1	147.083 - 136.583	39.760	34	2.6860	0.0076
L2	138.583 - 101.083	35.023	34	2.6341	0.0076
L3	104 - 66.5	18.252	34	1.8744	0.0028
L4	70.3333 - 32.8333	7.749	34	1.0899	0.0011
L5	37.5 - 0	2.137	34	0.5314	0.0004

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
148.00	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	34	39.760	2.6860	0.0076	7697
135.00	A-ANT-23G-2-C	34	33.071	2.5930	0.0074	4002
128.00	AM-X-CD-16-65-00T-RET w/ Mount Pipe	34	29.371	2.4757	0.0067	3265
118.00	APXV18-206517S-C w/ Mount Pipe	34	24.405	2.2467	0.0051	2588

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L1	147.083 - 136.583	114.293	8	7.7259	0.0216
L2	138.583 - 101.083	100.702	9	7.5770	0.0217
L3	104 - 66.5	52.560	9	5.4004	0.0082
L4	70.3333 - 32.8333	22.338	9	3.1421	0.0032
L5	37.5 - 0	6.165	9	1.5327	0.0012

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
148.00	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	8	114.293	7.7259	0.0217	2784
135.00	A-ANT-23G-2-C	9	95.102	7.4592	0.0212	1443
128.00	AM-X-CD-16-65-00T-RET w/ Mount Pipe	9	84.489	7.1240	0.0190	1172
118.00	APXV18-206517S-C w/ Mount Pipe	9	70.236	6.4694	0.0145	924

Compression Checks

Pol	le l	Des	ian	Data
			.9	Dutu

Section No.	Elevation	Size	L	Lu	KI/r	Fa	Α	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in²	K	K	$\overline{P_a}$
L1	147.083 - 136.583 (1)	TP17.6875x15x0.25	10.50	0.00	0.0	39.000	13.4305	-2.35	523.79	0.004
L2	136.583 - 101.083 (2)	TP26x16.6756x0.25	37.50	0.00	0.0	39.000	19.8571	-9.40	774.43	0.012
L3	101.083 - 66.5 (3)	TP34.0625x24.7748x0.312 5	37.50	0.00	0.0	39.000	32.5341	-14.39	1268.83	0.011
L4	66.5 - 32.8333 (4)	TP41.75x32.4881x0.375	37.50	0.00	0.0	39.000	45.5066	-19.49	1774.76	0.011
L5	32.8333 - 0 (5)	TP49.0625x39.8474x0.375	37.50	0.00	0.0	39.000	48.3470	-22.85	1885.53	0.012

Pole Bending Design Data

Section No.	Elevation ft	Size	Actual M _x kip-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	Ratio f _{bx} F _{bx}	Actual M _y kip-ft	Actual f _{by} ksi	Allow. F _{by} ksi	Ratio f _{by} F _{by}
L1	147.083 - 136.583 (1)	TP17.6875x15x0.25	47.92	10.321	39.000	0.265	0.00	0.000	39.000	0.000
L2	136.583 - 101.083 (2)	TP26x16.6756x0.25	466.30	45.731	39.000	1.173	0.00	0.000	39.000	0.000
L3	101.083 - 66.5 (3)	TP34.0625x24.7748x0.31 25	1010.5 5	46.128	39.000	1.183	0.00	0.000	39.000	0.000
L4	66.5 - 32.8333 (4)	TP41.75x32.4881x0.375	1457.6 6	40.822	39.000	1.047	0.00	0.000	39.000	0.000
L5	32.8333 - 0 (5)	TP49.0625x39.8474x0.37 5	1702.3 6	42.213	39.000	1.082	0.00	0.000	39.000	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			V	f_{ν}	F_{ν}	f_{ν}	Τ	f_{vt}	F_{vt}	f_{vt}
	ft		K	ksi	ksi	$\overline{F_{v}}$	kip-ft	ksi	ksi	F_{vt}
L1	147.083 - 136.583 (1)	TP17.6875x15x0.25	5.35	0.398	26.000	0.031	0.00	0.000	26.000	0.000
L2	136.583 - 101.083 (2)	TP26x16.6756x0.25	15.13	0.762	26.000	0.059	0.79	0.038	26.000	0.001
L3	101.083 -	TP34.0625x24.7748x0.31	17.22	0.529	26.000	0.041	0.79	0.018	26.000	0.001

Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			V	f_{ν}	F_{v}	f_{ν}	Τ	f_{vt}	F_{vt}	f_{vt}
	ft		K	ksi	ksi	F_{v}	kip-ft	ksi	ksi	$\frac{f_{vt}}{F_{vt}}$
	66.5 (3)	25								
L4	66.5 - 32.8333 (4)	TP41.75x32.4881x0.375	18.94	0.416	26.000	0.032	0.80	0.011	26.000	0.000
L5	32.8333 - 0 (5)	TP49.0625x39.8474x0.37 5	19.79	0.409	26.000	0.031	0.80	0.010	26.000	0.000

Pole Interaction Design Data									
Section No.	Elevation	Ratio P	Ratio f _{bx}	Ratio f _{by}	Ratio f _v	Ratio f _{vt}	Comb. Stress	Allow. Stress	Criteria
	ft	P_a	F_{bx}	F_{by}	F_{ν}	F_{vt}	Ratio	Ratio	
L1	147.083 - 136.583 (1)	0.004	0.265	0.000	0.031	0.000	0.269	1.333	H1-3+VT 🗸
L2	136.583 - 101.083 (2)	0.012	1.173	0.000	0.059	0.001	1.186	1.333	H1-3+VT 🗸
L3	101.083 - 66.5 (3)	0.011	1.183	0.000	0.041	0.001	1.195	1.333	H1-3+VT 🗸
L4	66.5 - 32.8333 (4)	0.011	1.047	0.000	0.032	0.000	1.058	1.333	H1-3+VT 🗸
L5	32.8333 - 0 (5)	0.012	1.082	0.000	0.031	0.000	1.095	1.333	H1-3+VT 🗸

Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
L1	147.083 - 136.583	Pole	TP17.6875x15x0.25	1	-2.35	698.21	20.2	Pass
L2	136.583 - 101.083	Pole	TP26x16.6756x0.25	2	-9.40	1032.31	88.9	Pass
L3	101.083 - 66.5	Pole	TP34.0625x24.7748x0.3125	3	-14.39	1691.35	89.6	Pass
L4	66.5 - 32.8333	Pole	TP41.75x32.4881x0.375	4	-19.49	2365.75	79.4	Pass
L5	32.8333 - 0	Pole	TP49.0625x39.8474x0.375	5	-22.85	2513.41	82.1	Pass
							Summary	
						Pole (L3)	89.6	Pass
						RATING =	89.6	Pass

APPENDIX B BASE LEVEL DRAWING

1 RYTELPOTES THE 9/5/2014 OF TEMPLIES NAME: 828915 BASELEVEL.dwg

BASE LEVEL DRAWING

1. = 1.-0.

BUSINESS UNIT: 828915 TOWER ID: C_BASELEVEL

BASE LEVEL

A1-0

SHEET TITLE

SITE ADDRESS
316 WOODHOUSE AVE
WALLINGFORD, CT 06492
NEW HAVEN COUNTY
USA

828915

BUSINESS UNIT NUMBER

SITE NAME WALLING FORD /1-91/X14/S

SITE NUMBER

DRAWN BY: AH
CHECKED BY:
DRAWING DATE: 27/3/13

28/03/13 NEW BUILD PER WORK ORDER # 593087

24/04/13 UPDATED PER WORK ORDER # 601871

AS-BUILT INFORMATION ADDED PER WORK

13/02/14 UPDATED PER WORK ORDER # 712898

28/08/14 UPDATED PER WORK ORDER # 918756

05/08/14 UPDATED PER WORK ORDER # 924080

AMC SF MAG ESG AW APC

(INSTALLED-IN CONDUIT)
(6) 5/16" TO 135 FT LEVEL
(INSTALLED)
(1) 1/2" TO 135 FT LEVEL — (INSTALLED)
(2) 3/8" TO 128 FT LEVEL
(1) 7/16" TO 128 FT LEVEL
(12) 1-5/8" TO 128 FT LEVEL-(INSTALLED) (13) 1-5/8" TO 148 FT LEVEL 2 Q 2 Q (INSTALLED) (6) 1-5/8" TO 118 FT LEVEL

CROWN REGION ADDRESS

APPENDIX C ADDITIONAL CALCULATIONS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F

Site Data

BU#: 828915

Site Name: Wallingford/ I-91/ X14/S

App #: 261507

Pole Manufacturer: Pirod

Anchor Rod Data					
Qty:	33				
Diam:	1.25	in			
Rod Material:	Other				
Strength (Fu):	150	ksi			
Yield (Fy):	105	ksi			
Bolt Circle:	54	in			

Plate Data					
Diam:	58	in			
Thick:	1.5	in			
Grade:	50	ksi			
Single-Rod B-eff:	4.72	in			

Stiffener Da	Stiffener Data (Welding at both sides)					
Config:	0	*				
Weld Type:						
Groove Depth:		in **				
Groove Angle:		degrees				
Fillet H. Weld:		< Disregard				
Fillet V. Weld:		in				
Width:		in				
Height:		in				
Thick:		in				
Notch:		in				
Grade:		ksi				
Weld str.:		ksi				

Pole Data						
Diam:	49.0625	in				
Thick:	0.375	in				
Grade:	65	ksi				
# of Sides:	18	"0" IF Round				
Fu	80	ksi				
Reinf. Fillet Weld	0	"0" if None				

Stress Increase Factor				
ASIF:	1.333			

Reactions		
Moment:	2380	ft-kips
Axial:	30	kips
Shear:	22	kips

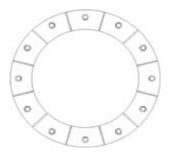
If No stiffeners, Criteria:	AISC ASD	<-Only Applcable to Unstiffened Cases
-----------------------------	----------	---------------------------------------

Anchor Rod Results

Maximum Rod Tension: 63.2 Kips
Allowable Tension: 81.0 Kips
Anchor Rod Stress Ratio: 78.0% Pass

Rigid
Service, ASD
Fty*ASIF

Base Plate ResultsFlexural CheckBase Plate Stress:Rohn/Pirod, OKAllowable Plate Stress:50.0 ksiBase Plate Stress Ratio:Rohn/Pirod, OK


Rigid
Service ASD
0.75*Fy*ASIF
Y.L. Length:
22.56

n/a

Stiffener ResultsN/A for Rohn / PirodHorizontal Weld :N/AVertical Weld:N/APlate Flex+Shear, fb/Fb+(fv/Fv)^2:N/APlate Tension+Shear, ft/Ft+(fv/Fv)^2:N/APlate Comp. (AISC Bracket):N/A

Pole Results

Pole Punching Shear Check: N/A

Analysis Date: 9/23/2014

 $^{^*}$ 0 = none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

(Bearing and Stability Checks) Tool for TIA Rev F or G - Application (MP, SST with unitbase)

Site Data

BU#: 828915

Site Name: Wallingford/ I-91/ X14/ S

App #: 261507

Enter Load Factors Below:				
For P (DL) 1.2 < Enter Factor				
For P,V, and M (WL)	< Enter Factor			

Pad & Pier Data				
Base PL Dist. Above Pier:	2	in		
Pier Dist. Above Grade:	8.4	in		
Pad Bearing Depth, D:	8.3	ft		
Pad Thickness, T:	3	ft		
Pad Length, L:	17	ft		
Pad Width, W	19			
Pier Cross Section Shape:	Round	<pull down<="" td=""></pull>		
Enter Pier Diameter:	6	ft		
Concrete Density:	150.0	pcf		
Pier Cross Section Area:	28.27	ft^2		
Pier Height:	6.00	ft		
Soil (above pad) Height:	5.30	ft		

Soil Parameters			
Unit Weight, γ:	125.0	pcf	
Ultimate Bearing Capacity, qn:	32.00	ksf	
Strength Reduct. factor, φ:	0.75		
Angle of Friction, Φ:	32.0	degrees	
Undrained Shear Strength, Cu:	0.00	ksf	
Allowable Bearing: φ*qn:	24.00	ksf	
Passive Pres. Coeff., Kp	3.25		

Forces/Moments due to Wind and Lateral Soil			
Minimum of (φ*Ultimate Pad			
Passive Force, Vu):	33.2	kips	
Pad Force Location Above D:	1.39	ft	
φ(Passive Pressure Moment):	46.13	ft-kips	
Factored O.T. M(WL), "1.6W":	3485.3	ft-kips	
Factored OT (MW-Msoil), M1	3439.12	ft-kips	

Resistance due to Foundation Gravity				
Soil Wedge Projection grade, a:	3.31	ft		
Sum of Soil Wedges Wt:	65.10	kips		
Soil Wedges ecc, K1:	2.89	ft		
Ftg+Soil above Pad wt:	363.9	kips		
Unfactored (Total ftg-soil Wt):	429.01	kips		
1.2D. No Soil Wedges.	472.69	kips		
0.9D. With Soil Wedges	413.11	kips		

Resistance due to Cohesion (Vertical)				
φ*(1/2*Cu)(Total Vert. Planes) 0.00 kips				
Cohesion Force Eccentricity, K2	0.00	ft		

Monopole Base Reaction Forces				
TIA Revision: F <pull down<="" td=""></pull>				
Unfactored DL Axial, PD:	30	kips		
Unfactored WL Axial, PW:	0	kips		
Unfactored WL Shear, V:	22	kips		
Unfactored WL Moment, M: 2380 ft-kips				

Load Factor	Shaft Factored Loads		
1.20	1.2D+1.6W, Pu:	36	kips
0.90	0.9D+1.6W, Pu:	27	kips
1.35	Vu:	29.7	kips
1.35	Mu:	3213	ft-kips

1.2D+1.6W Load Combination, Bearing Results:

(<u>No Soil Wedges</u>) [Reaction+Conc+Soil]	472.69	P1="1.2D+1.6W" (Kips)
Factored "1.6W" Overturning Moment (MW-Msoil), M1	3439.12	ft-kips

Orthogonal Direction:

ecc1 = M1/P1 = 7.28 ft Orthogonal qu= 11.35 ksf qu/ ϕ *qn Ratio= 47.31% Pass

Diagonal Direction:

ecc2 = (0.707M1)/P1 = 5.14 ft Diagonal qu= 10.49 ksf qu/ ϕ *qn Ratio= **43.71%** Pass

Run <-- Press Upon Completing All Input

Overturning Stability Check

0.9D+1.6W Load Combination, Bearing Results:

(<u>w/ Soil Wedges</u>) [Reaction+Conc+Soil]	413.11	P2="0.9D+1.6W" (Kips)
Factored "1.6W" Overturning Moment (MW-Msoil) - 0.9(M of Wedge + M of Cohesion), M2	3269.72	ft-kips

Orthogonal ecc3 = M2/P2 = 7.91 ft
Ortho Non Bearing Length,NBL= 15.83 ft
Orthogonal qu= 20.77 ksf
Diagonal qu= 12.25 ksf

Max Reaction Moment (ft-kips) so that $qu=\phi^*qn = 100\%$				
Capacity Rating				
Actual M: 2380.00				
M Orthogonal:	2424.58	98.16%	Pass	
M Diagonal:	2424.58	98.16%	Pass	

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11053E

Wallingford_I-91_X14 316 Woodhouse Avenue Wallingford, CT 06492

September 29, 2014

EBI Project Number: 62145245

Site Compliance Summary		
Compliance Status:	COMPLIANT	
Site total MPE% of		
FCC general public	38.49 %	
allowable limit:		

September 29, 2014

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11053E – Wallingford_I-91_X14

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **316 Woodhouse Avenue, Wallingford, CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 MHz Band is 467 μ W/cm², and the general population exposure limit for the PCS and AWS bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **316 Woodhouse Avenue, Wallingford, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
- 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
- 5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

- 6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antennas used in this modeling are the **Ericsson AIR21 B4A/B2P** for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the **Commscope LNX-6515DS-VTM** for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The **Ericsson AIR21 B4A/B2P** has a maximum gain of **15.9 dBd** at its main lobe. The **Commscope LNX-6515DS-VTM** has a maximum gain of **14.6 dBd** at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antenna mounting height centerline of the proposed antennas is **148 feet** above ground level (AGL).
- 9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	148	Height (AGL):	148	Height (AGL):	148
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	2	Channel Count	2	# PCS Channels:	2
Total TX Power:	120	Total TX Power:	120	# AWS Channels:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A1 MPE%	0.83	Antenna B1 MPE%	0.83	Antenna C1 MPE%	0.83
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	148	Height (AGL):	148	Height (AGL):	148
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power:	120	Total TX Power:	120	Total TX Power:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A2 MPE%	0.83	Antenna B2 MPE%	0.83	Antenna C2 MPE%	0.83
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	148	Height (AGL):	148	Height (AGL):	148
Frequency Bands	700 Mhz	Frequency Bands	700 Mhz	Frequency Bands	700 Mhz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	445.37	ERP (W):	445.37	ERP (W):	445.37
Antenna A3 MPE%	0.33	Antenna B3 MPE%	0.33	Antenna C3 MPE%	0.33

Site Composite MPE%		
Carrier	MPE%	
T-Mobile	5.99	
Nextel	3.13 %	
Clearwire	1.02 %	
MetroPCS	8.73 %	
AT&T	19.62 %	
Site Total MPE %:	38.49 %	

T-Mobile Sector 1 Total:	2.00 %	
T-Mobile Sector 2 Total:	2.00 %	
T-Mobile Sector 3 Total:	2.00 %	
Site Total:	38.49 %	

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector 1:	2.00 %
Sector 2:	2.00 %
Sector 3:	2.00 %
T-Mobile Total:	5.99 %
Site Total:	38.49 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **38.49**% of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803`