

Northeast Site Solutions
Denise Sabo
4 Angela's Way, Burlington CT 06013
203-435-3640
denise@northeastsitesolutions.com

October 13, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 945 East Center Street, CT Wallingford CT 06492 Latitude: 41.443711 Longitude: 72.796267 Site# 876310 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 945 East Center Street in Wallingford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 143-foot level of the existing 147-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by B+T Group, dated July 8, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated June 10, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Wallingford Planning and Zoning on September 8, 1997. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to the Mayor, Hon. William W. Dickinson, Jr. and Kevin Pagini, Town Planner for the Town of Wallingford, as well as the tower owner (Crown Castle) and property owner (Albert W. Beaumont)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 147-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 143-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 16.56% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in Wallingford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 143-foot level of the existing 147-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Wallingford.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Hon. William W. Dickinson, Jr. - Mayor Wallingford Town Hall 45 South Main Street, Room #310 Wallingford, CT 06492

Kevin Pagini, Town Planner Wallingford Town Hall 45 South Main Street, Wallingford, CT 06492

Albert W. Beaumont 945 East Center Street Wallingford, CT 06492

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

MEMO

To : Steve Paisner, Sprint Spectrum L.P.

From : Lewis A. Hurwitz, Esq., Harris Beach & Wiclox

; 9-10-97 :

Date : 9/9/97

Re : Wallingford, Sites 008 and 009

cc : Steve Crotty, Steve Kotfila, Christine Rosenthal, Jennifer Charland,

Scott Chasse, Kate Peabody, Tom Flynn

WILCOX
A LIMITED LIABILITY PARTNERSHIP
ATTORNEYS AT LAW
147 NORTH BROAD STREET

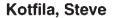
HARRIS

147 NORTH BROAD STREET PO. BOX 112 MILFORD, CONNECTICUT 06460-0112 (203) 877-8000 (203) 878-9800 (FAX)

Please be advised that on September 8, 1997, the Wallingford Zoning Board approved our applications to construct monopoles at Beaumont's Farm and the Suzio property. There were conditions in regard to the Beaumont Farm application, details of which will be supplied in the letter of approval. However, it should be noted that a second row of 20' trees is being required. In addition, the Board reserved the right to inform us as to what color to paint the tower. We should have a response from them in a very short period of time in regard to this issue.

This was a very difficult and hard fight. The Beaumont Farm vote was three to two and without the conditions I do not believe we would have prevailed.

End of Memo


APPILIATES
LIVORNO PARE LOUTION OSLO

WASHINGTON, DC MILYDRD, CT HACHENBACK, NJ

ALDANY BUTTALO MEW YORK CTTY

NEW YORK CTTY

ROCKESTES

From:

Chasse, Scott

Sent:

Monday, September 29, 1997 7:57 AM

To:

Rosenthal, Christine

Cc:

Kotfila, Steve RE: 008 Lawsuit

Subject: Importance:

High

PostHC is not necessary at this time. Lets accumulate information first.

From:

Rosenthal, Christine

Sent: To: Monday, September 29, 1997 7:47 AM

Cc:

Chasse, Scott Charland, Jennifer

Subject:

RE: 008 Lawsuit

At the public hearing, the change in the *application* was cited as being our agreement to maintain the trees as screening. Lew Hurwitz pointed out right then and there that that was a private matter and did not affect our *application* as it stood. Is that was you are asking about? You should bring Lew in on dissecting the lawsuit because he would know how defendable each point is. I don't think that we changed the site plan until after the entire application was heard and decided upon. Confirm with Jenn. Shall I organize a Post-Hearing Conference on this one?

From:

Chasse, Scott

Sent:

Monday, September 29, 1997 7:40 AM

To:

Charland, Jennifer; Flynn, Tom; Johnson, Karen; Knuff, John; Rosenthal, Christine

Subject: 008 Lawsuit Importance: Hid

One of the items in the lawsuit against us states that our site plan was changed at the Sept. 8, 1997 hearing. Was this due to the tower foundation size being larger than expected and therefore, necessitating that we move the tower within the compound? If so, at who's direction was this done **prior** to getting the zoning approval? Something as mundane as moving the tower within the compound should have waited until after the approval, then **amend** the site plans of record to conform with the realities of construction.

MEMORANDUM

TO:

JEN CHARLAND

FROM:

TOM FLYNN,

RE:

03:008 BEAUMONT FARM

DATE:

SEPT. 10, 1997

AS YOU KNOW, THE ABOVE NOTED SPECIAL PERMIT APPLICATION WAS APPROVED ON MONDAY, SEPTEMBER 8, 1997. THERE ARE SEVERAL CONDITIONS THAT WILL EFFECT THE PROCESS OF OBTAINING A BUILDING PERMIT.

- 1. THE TOWN HAS REQUIRED A \$1000.00 SEDIMENTATION AND EROSION CONTROL BOND. THIS BOND MAY BE IN THE FORM OF CASH, A SURETY BOND OR LETTER OF CREDIT, WHICHEVER IS MOST CONVENIENT FOR SPRINT TO OBTAIN.
- 2. THE TOWN HAS REQUIRED A REVISED LANDSCAPE PLAN THAT SHOWS A LINE OF EVERGREEN TREES (3 DIFFERENT SPECIES AND AT LEAST 20' TALL AT PLANTING) ON THE PERIMETER OF THE LEASE AREA.
- 3. I WILL NEED A MYLAR FOR RECORDING AND 5 CLEAN COPIES OF THE PLANS, INCLUDING THE REVISED LANDSCAPE PLANS, FOR DELIVERY TO THE PLANNING OFFICE PRIOR TO ISSUANCE OF THE BUILDING PERMIT.
- 4. WE CAN MAKE APPLICATION FOR THE BUILDING PERMIT PRIOR THE END OF THE APPEAL PERIOD, BUT WILL NEED THE ABOVE NOTED ITEMS PRIOR TO ANY SIGN OFF BY THE PZC.

C\O SPRINT PCS 9 BARNES INDUSTRIAL ROAD WALLINGFORD, CT. 06429 203-294-5620

Kotfila, Steve

From:

Paisner, Steven

Sent:

Thursday, November 20, 1997 2:04 PM

To:

Lindblad, Ernest; Kotfila, Steve

Subject:

Couple of Items

I spoke to Lew Hurwitz...

- 1). WESTBROOK He agrees that any attorney that tries to exclude another attorney (i.e. Westbrook not allowing Lew to attend today) is up to something no good and non attendance is the way to go.
- 2). WALLINGFORD Beaumont appeal. KC agrees to stall as long as necessary and make it as tough as possbile/expensive on the citizen appeal. Hence, Lew has filed to transfer the case from Superior court to Federal Distrcit court...probably the first of several such requests. In the meantime, we are on the air...Ok aside from having to pay more legal bills ourselves.

Kotfila, Steve

From:

Kotfila, Steve

Sent:

Friday, May 22, 1998 7:05 AM

To:

Carrozzella, Bill

Cc:

Cashin, Julie; Gelinas, Chris

Subject:

RE: Wallingford # 008 - Beaumont

Importance:

High

So long as this language does not prohibit us from doing a structural replacement. For that to take place there will be a short period where there would be 2 towers in the compound, but only long enough to effect the swap over of antennas, pulling of a demo permit and dismantling of the old tower. 90 days should cover this evolution.

From:

Carrazzella, Bill

Sent:

Thursday, May 21, 1998 11:03 AM

To:

Katfila, Steve

Cc:

Cashin, Julie; Gelinas, Chris

Wallingfard # 008 - Beaumant Subject:

In my discussions with Bill Beaumont he has requested that Sprint not install a second tower within the lease area. Please let me know if it is OK to agree to that.

If we do I will have included in the lease amendment that Sprint still retains the right to replace the existing tower even with a taller tower.

Please advise.

PINNACLE Site Development

Memo

To:

Julie Cashin

From:

Bill Carrozzella

CC:

C. Gelinas; S. Kotfila

Date:

May 20, 1998

Re:

Wallingford - Beaumont Farm # 008

Julie, I have reviewed the Owner Consent and Lease Amendment for the Bell/SNET sublease. Can you please make the following revisions:

Owner Consent:

Can the references (and exhibits) to the BANM and SNET Subleases be eliminated? These subleases may not be signed for several weeks or months in the case of Bell. I would like to have the landlord consent finalized ASAP so the additional rent does not go up while we wait for the Bell and SNET agreements to be signed.

Amendment to Lease:

Please add a temporary construction easement to this amendment. Bell and SNET may have to access the site for construction over other land owned by landlord as opposed to the existing access easement afforded Sprint. I'd suggest making this temp construction easement broad such as "Landlord shall grant to Subtenants a temporary access easement for the purposes of installing its equipment. This easement shall allow access to the Site through Landlord's adjacent land surrounding the Site in an area to be mutually agreed upon by Landlord and each Subtenant."

Please let me know if you have any questions.

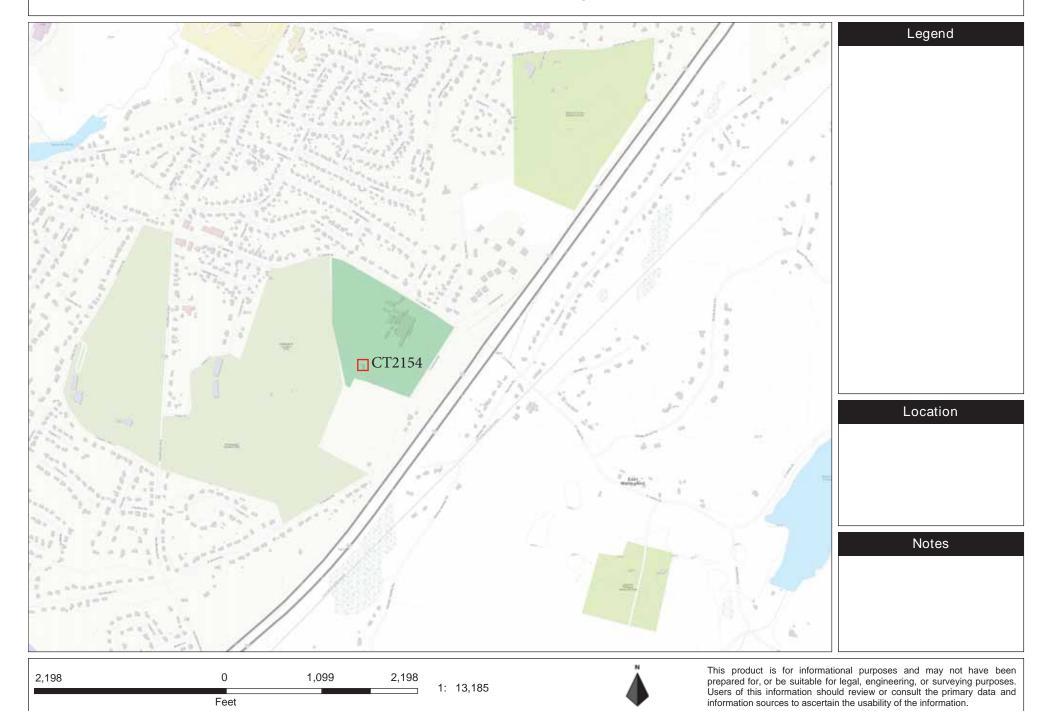

Thanks for your help.

Exhibit B

Property Card

945 East Center St; Wallingford, CT 06492

Feet

Property Location: 945 EAST CENTER ST MAP ID: 151//98// Bldg Name: State Use: 1010 Account #B0226901 Sec #: 1 of Vision ID: 1293 Bldg #: 1 of 1 1 Card 1 of 3 Print Date: 12/02/2016 11:27 CONSTRUCTION DETAIL CONSTRUCTION DETAIL (CONTINUED) Element Cd. |Ch. Description Element Cd. |Ch. Description Style 03 Colonial 01 Model Residential Grade Stories 2 Stories Occupancy MIXED USE Exterior Wall 1 Wood Shingle Code Description Percentage 1010 Single Family 100 Exterior Wall 2 Roof Structure Hip FOP FOP Roof Cover Asphalt Interior Wall 1 Plastered 11 COST/MARKET VALUATION Interior Wall 2 Drywall Adj. Base Rate: 92.63 12 Hardwood Interior Flr 1 **FUS** 282,052 BAS Interior Flr 2 Pine/Soft Wood CRL 26 Net Other Adj: 20,400.00 Heat Fuel Oil Replace Cost 302,452 Heat Type 05 Hot Water AYB 1840 16 AC Type None UAT FUS BAS Total Bedrooms 6 Bedrooms Dep Code Total Bthrms Remodel Rating Total Half Baths 0 Year Remodeled UBM Dep % 49 Total Xtra Fixtrs FOP Total Rooms Functional Obslnc External Obslnc Bath Style 02 Average Cost Trend Factor Kitchen Style 02 Average Status 30 % Complete Overall % Cond 51 Whirlpool Tub 154,300 Apprais Val Fireplaces Dcp % Ovr Dep Ovr Comment Misc Imp Ovr Misc Imp Ovr Comment Cost to Cure Ovr Cost to Cure Ovr Comment OB-OUTBUILDING & YARD ITEMS(L) / XF-BUILDING EXTRA FEATURES(B) Description Sub Sub Descript L/B Units Unit Price Yr Gde Dp Rt Cnd %Cnd Apr Value Code GRN3 Pipe + Plastic G5 G6 2,400 4.00 1996 C 50 50 50 50 4,800 Pipe + Plastic 1996 C 3,500 GRN3 2,880 4.00 Implement She 1940 C 3,900 IMP 1,296 6.00 SHD1 Shed Frame 1,008 10.00 1940 C 5,000 IMP Implement She 1940 C 6.00 2,500 IMP Implement She 1940 C 720 6.00 IMP Implement She-IMP 2-POLE IL 1940 C 840 6.00 IMP Implement She-1940 C 1,350 6.00 SHD1 Shed Frame 10.00 1940 C 100 BUILDING SUB-AREA SUMMARY SECTION Code Description Living Area Gross Area Eff. Area Unit Cost Undeprec. Value BAS First Floor 1,364 1,364 1,364 92.63 126,345 CRL Crawl Space 464 0.00 FOP Porch, Open 250 50 18.53 FUS Upper Story, Finished 1,316 1,316 1,316 92.63 121,898 **UAT** Attic, Unfinished 900 135 13.89 12,505 **UBM** Basement, Unfinished 900 180 18.53 16,673 Til Grace I iuli onco Aron. 2.680 5 194 3 045 302 452

Property Loca Vision ID: 1	ation: 945 EA 293	ST CENT		ccount	t #B02269	01	MAP ID	151//9	98/ / Bldg #:	1 of 1	Bldg Sec #	Name:	1 Card	1	of 3	2		te Use:	1010 12/02/201	6 11.27
	RENT OWNE	R	TOF		UTILI		STRT	ROAD		CATION	1		URRENT AS.				2 1 1 1	Date	12/02/201	0 11.27
	ALBERT WIL		1 Level		2 Public V		1 Paved		2 Subur	ban		Description			sed Valu	e Asses	sed Valı	ie		
945 E CENTEI	R ST										RESI		1-1		110,40			,300	614	
												EXCES LLING	1-2 1-3		9,70 154,30		108	,800 N	ALLINGI	FORD, CT
WALLINGFO. Additional Ow	RD, CT 06492		0.1 10			PPLE	MENTAL				RES	DUTBL	1-4		780,20	0	546	,200		
induitional On	iici s.		Other ID: Census:		24001002 759		P/Z MA ENG M					LAND 1 LAND	4-1 6-1		100,00 224,40			,000, ,800		
			Old MBL		132		Easeme				TALL	LEATING	0-1		224,40		1.4	7,000,000		(2017)24
			TC MAP				Town I				1							1	ZI	ON
			TC MAP				IND PA	RKS											IOI	OI
			Record Lo GIS ID: 1				ASSOC	BID#					Total		1,379,00	0	821.	100		
RI	ECORD OF O	The second second	-		K-VOL/PA	GE S			SALE	PRICEV	C		PREVIOU			1				
BEAUMONT	ALBERT WIL	LIAM	-	- 12	724/ 18	02	03/13/19		JALL	0		Code Assessed		Coo		sessed Va		Yr. Co.	de Acces	sed Value
BEAUMONT A	ALBERT J JR				626/650						2015	1-1	77,3002014	4 1-1	1		77,3002	013 1-		77,300
							19				2015	1-2 1-3	6,8002014 108,0002014	4 1-2 4 1-3		210	6,8002			6,800
								1 1		01	2015		546,2002014	4 1-4			08,0002 28,2002			108,000 496,100
											2015		70,0002014	4 4-1			70,0002			70,000
												Total:	821,100	Tota			97,900	Tot		765,800
V T		XEMPTIO.	NS							ESSMENT	-	1 20	This signatu	re ac	knowle	dges a vi	isit by a	Data (Collector of	r Assessor
Year Typ	ne	Description		-	Amount	Code	Liese	ription	Nui	nber	Amount	Comm. Int.								
															DDD 4	SED VA	(IIIE C	TTAFAF	IDV	
							1					1					LULS	OMINI/	11.1	
			Tota										Appraised Bld	-		•				154,300
Vario		Venezen		ASSI	ESSING N								Appraised XF		-					
NBHD/ S 110/A		NBHD	Name		Street Inc	dex Nan	ne	Trac	ring		Bate		Appraised OB		-					780,200
110/A													Appraised Lar			dg)				220,100
IST=IB,1BED	OTHER (N(TES	N ND CON	D MALID E	ELD E 6	0.510			Special Land '	Value	2					224,400
	B,LR,K,OTHE	D 1					N=VP CON					1 1	Total Appraise	ed Pa	rcel Va	lue				1,379,000
		K-1					RECTED FA						Valuation Met							(
30X30 SECTIO							GRAND LIS	I 4 NE	W FARM	BUILDING	S		Variation ivie	mou.						
,	RMS) IF FUS					FOR 2	2007 GL						Adjustment:							
OCCUPIED O	CELL TOWER	ON SIGH	Γ			CELL	TOWER V	ALUED	ON 151/9	8/2										
1ST FLR = CE	EILINGS/WAL	LS FALLII	NG									1	Net Total App	praise	ed Parc	ei Value				1,379,000
			No.	BU	JILDING	PERMI	T RECOR	D							VIS	IT/ CHA	NGE I	OTSIL	RV	
Permit ID	Issue Date	Type	Description			mount	Insp. I	ate 9	% Comp.	Date Comp	Comm	ents	Date		Type	IS	ID	Cd.	Purpose	/Result
27234 25068	11/13/2012 10/12/2010	CM RS	Commerc				000 07/30/		100		4 GRI	ENHOUSES	11/06/2015		02	1	KC	63 P	ermit Check	k - No Measi
25067	10/12/2010	CM	Residenti		1		500 08/22/2 200 08/22/2		100 100			ROOF E ROOF	09/18/2015 12/04/2014		02	1	KC KC		eld Review	k - No Measi
24367	02/04/2010	CM	Commerc	ial	+	6,0	000 07/23/	2010	100	07/23/2010	RPL	ANTENNAS	09/05/2013	- 1	06	1	SJ			Cost Informs
24364 20744	02/03/2010 07/06/2006	CM CM	Commerc		-		000 07/23/3 000 09/07/3		100 100	07/23/2010 09/07/2006		FY FACILITY		1	06		SJ	16 L	etter Sent-C	Cost Informa
20711	0770072000	CIVI	Commer	.iai		10,	000 03/0//	2000	100	07/0//2000	KPL	ANTENNAS/A	DI	1						
			-					LAND	LINE VA	LUATION	SECTI	201								
B Use	Use		П	-		-	Unit	LAND	Acre	LUATION C. ST)IN		-	Special I	Pelaina	SAC	-li		
# Code	Description	Zone	D Front	Depth	Units		Price	Factor S		Factor Id.	Adj.	Notes-	Adi			Spec Cal			Unit Price	Land Value
1 1010 Sing		R18			18,000	SF	6.15	1.0000	5 1.0000	1.00 11	0 1.05			57.2		TF1 .95		.95	6.13	110,40
1 1010 Sing 1 7120 Tilla		R18 R18		1	0.92 24.50	AC AC	10,000.00						1	400	670				10,500.00	9,70
I 7140 Orc	hards	R18		1	1.00	AC	10,000.00	1.0000	0 1.0000	1.00 11	0 1.05			490 490	1390	1		.00	7,875.00 10,500.00	192,900 10,500
1 7170 Woo	odland	R18			2.00	AC	10,000.00							490	240				10,500.00	21,00
											8		i							
													1				1			
															1 1					

Property Loc Vision ID:		ST CENTER ST		MAI	P ID: 151//98//	1 -61	Bldg N Sec #:			C		- 6	1	State Use: 1010
	CONSTRUCTIO	ON DETAIL	CONSTR	UCTION DE	Bldg #: TAIL (CONTINUED)	1 01 1	Sec #:	1 05	1	Cara	2	oj	3	Print Date: 12/02/2016 11:27
Element	Cd. Ch.	Description	Code 1010 Single	MIXEI Description Family	Description DUSE Percentage 100									
			Cost Trend Fac		T VALUATION									
Code De SHD1 Shed BRN4 1 Str BRN1 Barr	scription Sub Frame Ty Loft & E I Stry I Stry I Stry I Stry I Stry I Hse I-To Age-Avg I Plastic Gc I Plastic Gc	32- GREY BA L 1,632 33- YELLOW L 1,936 L 8,000 L 1,280 L 484 L 60,00 L 11,25 BUILDING SUB-AR	Unit Price Yr 10.00 1940 38.00 1940 22.00 1985 22.00 1920 54.00 1920 4.00 2007 30.00 1996 16.00 2013 16.00 2012	Gde Dp Rt C C C C C C C C C C C C C C C C C C C	Cnd %Cnd Apr Value 50 1,400 50 28,500 75 26,900 50 21,300 50 216,000 50 2,600					No	Pho	to Or	n Record	
	Ttl. Gross Liv	/Lease Area:	0 0	0	302	152								

Property Location	n: 945 EAST	Γ CENT	ER ST			MAP I	D : 151//	98//			Bldg Naı						State	Use: 101)	
Vision ID: 1293			- 1147					Bldg			Sec #:	1 of	1 Care	d 2	of	3	Print 3	Date: 12/0	2/2016 11	1:27
BEAUMONT ALBI	TOWNER ERT WILLL	AM	TOP	0	TILITIES	STR	T./ROAD	1	LOCATION	V	Descr	ription	CURRENT Code		SMEN ised Vali		ed Value	-		
945 E CENTER ST												p.r.o	Conac	пррис	isea ran	A 7336336	u raine	1	6148	
WALLINGFORD,			ļ		CHARL	CACCACTA												WALI	INGFOR	lD, CT
Additional Owners:			Other ID:	0240010		EMENTA.	LDATA											I	S 2005	
																		X7	SIC	MI
						1												V	210	T
			GIS ID: 1	51/98		ASS	OC PID#			+			Total	al	1,379,0	000	821,10	0		
RECO	RD OF OW	NERSH	IP	BK-VO	L/PAGE			v/i SA	LE PRICE							MENTS (I				
											Yr. Code	Asses	sed Value	Yr. Co		Issessed Valu		Code	Assessed	Value
																	1			
																	į			
	EXE	MPTIO	N.C				OT	TIED AS	SSESSME	VTC	Total:		Tri.:		tal:			Total:		
Year Type		scription		Amount	Coc	de De	escription		Number		ount C	omm. Int.	I nis sign	iature a	cknowle	edges a visi	t by a D	ata Colle	tor or As	sessor
															APPRA	ISED VAL	UE SU	MMARY		
			Total										Appraised				3			154,30
NBHD/ SUB		NBHD	Name	ASSESSIN	G NEIGI et Index No			alum.			0 /		Appraised							
110/A		1101110	nume	31/6	er muel m	ime	Tru	cing			Batch		Appraised							780,20
					NOTES								Appraised Special La			ldg)				220,10 224,40
													Total Appr Valuation			alue	3		I.	,379,00
													v atuation	Memoa	•					
													Adjustmer	nt:						
									(*)				Net Total		ad Dar	ool Volus	-		1 1	270 00
-			-	pru ni	W DEDA	IIT RECO	nn						iver total	Apprais					1,,	3 79,00
Permit ID Issu	ie Date	Туре	Descriptio		Amoun			% Comp.	Date Cor	nn C	omments		Date		Type	SIT/ CHAN			/D	. 1.
					37779313	71150	Daic	70 COMB.	Dute Cor	np. C	omments		Date	6	Type	13	ID C	a. P	urpose/Res	ш
																1 1				
																1 1		1		
							- 1			1										
																1 1		1		
B Use	Use	7				Date			ALUATIO		CTION				<u></u>					
= Code De.	scription		D Front	Depth U	iits	Unit Price	I. Factor S	Ac. S.A. Di.	re C. sc Factor	ST. Idx	Adi.	Note	s- Adj		Special	Pricing Spec Calc	S Adj Fact	Adi Unit I	rice Land	d Value
1 431V TEL REI 1 8000 Frontage		R18 R18		1.60	.00 BL		0 1.0000	0 1.0	000 1.00	(0.00 CEL		(1000)			Spec Care	1.00	100,00	0.00	100,00
1 431V TEL REL		WIO			350 SF	0.0	0 1.0000 0 1.0000	0 1.0	000 1.00 000 1.00	110 1	0.00 CEL	L SITE A	REA	FF	0.01		.00		0.00	
				'				955	100 PS		(OL 71)						1			
							1			- 1										
		Tot	al Card La	nd Units:	0.17 AC	Parcel '	Fotal Land	d Area: 2	29 AC	_						L	Tota	l Land Va	lue:	100,00
						-														

Property Loc Vision ID: 1	eation: 945 EA	ST CEN	TER ST			MAP ID: 151/		H. 1.61	Bldg Name:	1 Cond	2 -6	2		Use: 1	
	the second secon	TD.	TOR	i I i	uru mico	CTRT (DA)	Bldg		Sec #: 1 of	1 Card	· · · · · · · · · · · · · · · · · · ·	3	Print	Date: I	2/02/2016 11:27
BEAUMONT	RENT OWNE ALBERT WIL	LIAM	TOPO	,	UTILITIES	STRT./ROA	D LC	OCATION	Description	CURRENT A	Appraised Va		d Value	-	
045 E CENTE									Description	Code	прргивей га	ine Assesse	a yaiue	-	6148
						The authority of		BBV DV						WA	LLINGFORD, CI
VALLINGFO Additional Ow	ORD, CT 06492	2	0.1		SUPPLEM	ENTAL DATA									
tauttional On	ricis.		Other ID:	02400	1002										
															TOTO * 1
															ISION
	34	er.	1											1	
			GIS ID: 15			ASSOC PID				Total			821,10		
R	ECORD OF C	WNERS	HIP	BK-V	OL/PAGE SA	LE DATE q/t	v/i SAL	E PRICE V.			OUS ASSES				
					1				Yr. Code As	sessed Value	Yr. Code	Assessed Valu	e Yr	Code	Assessed Value
										1			1		
						1	1. 1								
	E'	XEMPTI	ONE				THED AC	CECCMEN'T	Total:	Moz · ·	Total:			Total	
Year Typ		Description		Amou	nt Code	Descriptio		SESSMENT. umber	Amount Comm.		iture acknow	ledges a visi	t by a D	ata Co	llector or Assessor
		20000		7,,,,,	iji Out	Descriptio		umoei .	amoun Comm.	mi.					
					1						APPR	AISED VAL	UE SU	MMAR	Y
			Total:						4	Appraised F	Bldg. Value (Card)			154,30
			J.Oldi.		ING NEIGHBO	ORHOOD					KF (B) Value				
NBHD/ S		NBF	ID Name	S	treet Index Name	T	racing		Batch		OB (L) Value				780,20
110/A	4										and Value (1				220,10
					NOTES					Special Lan	d Value				224,40
										Total Appra	aised Parcel V	/alue			1,379,00
										Valuation N		. 4.40			_, ,
										Adjustment					
										Net Total A	ppraised Pa	rcel Value	I		1,379,00
-				DIMI	NAC DEDICA	r neconn				rice Potal A	Second Vinder				
Permit ID	Issue Date	Type	Description		DING PERMIT Amount	Insp. Date	% Comp.	Date Comp	Comments	Date		ISIT/ CHAI		STOR	Purpose/Result
					74.100		76 COMp.	Date Comp.	Comments	Dute	Type	10	ID (Ju.	T urpose/nesum
			1					1							
							ŀ		1	1			Ī		
						LAN	D LINE V	ALUATION	SECTION					102	
B Use # Code	Use Description					Unit 1.		C S7				l Pricing	S Adj		
Code	Description	20	ne D Front	Depth	Units	Price Facto	r S.A.	Factor Id	Adj. N	Votes- Adj	Spec Use	Spec Calc	Fact	Adj. U	nit Price Land Value
		1				*			1		i I			1	ľ
				4									Í		1
10															
				1	11 2										
		- 1	Fotal Card La	nd Units:	0.00 AC	Parcel Total La	and Area-20	9 AC			1		Tot	al Lone	Value:
						- ATTACK OTHER AND							10	ai Daile	· arue.

Property Loc Vision ID:		EAST CENT	ER ST					MAP	ID: 15	1/ / 98/ / <i>Bldg</i> #:	1 of 1	Bldg N Sec #:	Vame: 1 of	1	Car	rd 3	of	3		State Use: 101 Print Date: 12/	
Element	CONSTRUC Cd. Ch	TION DETAI Descr	IL ription		CO Ele	NSTRU ment	CTIO.	N DET Ch.	AIL (C	ONTINUED) escription					-			-	-		
			×		Code 1010	Single	Descrip	AIXED otion	USE	Percentage 100											er Is
		4				COS	ST/MA	RKET	VALU	ATION											
					Cost Tr	end Fact	or														
Code De GRN4 Com GRN3 Pipe GRN3 Pipe GRN3 Pipe	scription	LDING & YAK iub Sub Descrip	pt L/B L L L	Units U 8,500 6 2,880 4 2,880 4 2,880 4	Init Pric .00 .00 .00	2014 (2015 (2015 (2015 (Gde Di	XTRA I	nd %C	RES(B) and Apr Value 45,900 8,600 8,600 8,600					M	o Dh	-1- 0	an Doc			
Code	Des	BUILDIN	IG SUI	B-AREA	A SUM Gross	MARY Area	SECTI Eff. Are	ION ea U	nit Cost	Undeprec. Val	ue				N	o Pn	oto C	n Red	cora		
	Til Grace	s I iv/I ense Ar.	an.		0	0		0		282	452										

Exhibit C

Construction Drawings

dish wireless...

DISH Wireless L.L.C. SITE ID:

BOHVN00020A

DISH Wireless L.L.C. SITE ADDRESS:

945 EAST CENTER ST. **WALLINGFORD, CT 06492**

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS MECHANICAL

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
RF-2	RF PLUMBING DIAGRAM
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORK:

INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)

INSTALL (1) PROPOSED TOWER PLATFORM MOUNT

INSTALL PROPOSED JUMPERS

INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)

INSTALL (1) PROPOSED HYBRID CABLE

GROUND SCOPE OF WORK:
• INSTALL (1) PROPOSED METAL PLATFORM

(1) PROPOSED ICE BRIDGE (1) PROPOSED PPC CABINET

INSTALL INSTALL (1) PROPOSED EQUIPMENT CABINET

INSTALL PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT

PROPOSED TELCO-FIBER BOX INSTALL (PROPOSED GPS UNIT

PROPOSED SAFETY SWITCH (IF REQUIRED)

INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)
INSTALL (1) PROPOSED METER SOCKET

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

COUNTY: NEW HAVEN LATITUDE (NAD 83): 41° 26' 37,36" N 41.443711 N LONGITUDE (NAD 83): 72° 47' 46.56" W 72.796267 W CONNECTICUT SITING COUNCIL ZONING JURISDICTION: ZONING DISTRICT: PARCEL NUMBER: 151/98/2 OCCUPANCY GROUP:

876310

SITE INFORMATION

AT&T WIRELESS PCS INC

C/O AT&T MOBILITY 754 PEACHTREE ST NE

ATLANTA, GA 30308

PROPERTY OWNER:

TOWER CO SITE ID:

TOWER APP NUMBER: 553364

ADDRESS:

TOWER TYPE:

CONSTRUCTION TYPE:

TELEPHONE COMPANY: CROWN CASTLE

PROJECT DIRECTORY

DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

TOWER OWNER: CROWN CASTLE

2000 CORPORATE DRIVE CANONSBURG, PA 15317 (877) 486-9377

SITE DESIGNER: B+T GROUP

1717 S. BOULDER AVE, SUITE 300 TULSA, OK 74119

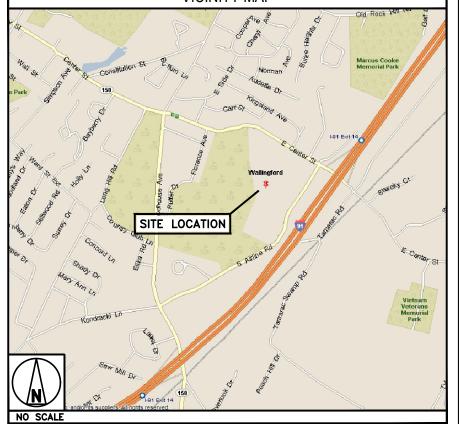
(918) 587-4630

SITE ACQUISITION: SARAH PARSONS

SARAH.PARSONS@CROWNCASTLE.COM

CONSTRUCTION MGR: JAVIER SOTO JAVIER.SOTO@DISH.COM

RF ENGINEER: SYED ZAIDI


SYED.ZAIDI@DISH.COM

WALLINGFORD ELECTRIC

DIRECTIONS

FROM HARTFORD, TAKE 91 SOUTH TO EXIT 14, TAKE A RIGHT ONTO EAST CENTER STREET AND RIGHT ON S AIRLINE RD, GO PASS TWO PONDS AND THE ACCESS ROAD ON RIGHT.

VICINITY MAP

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

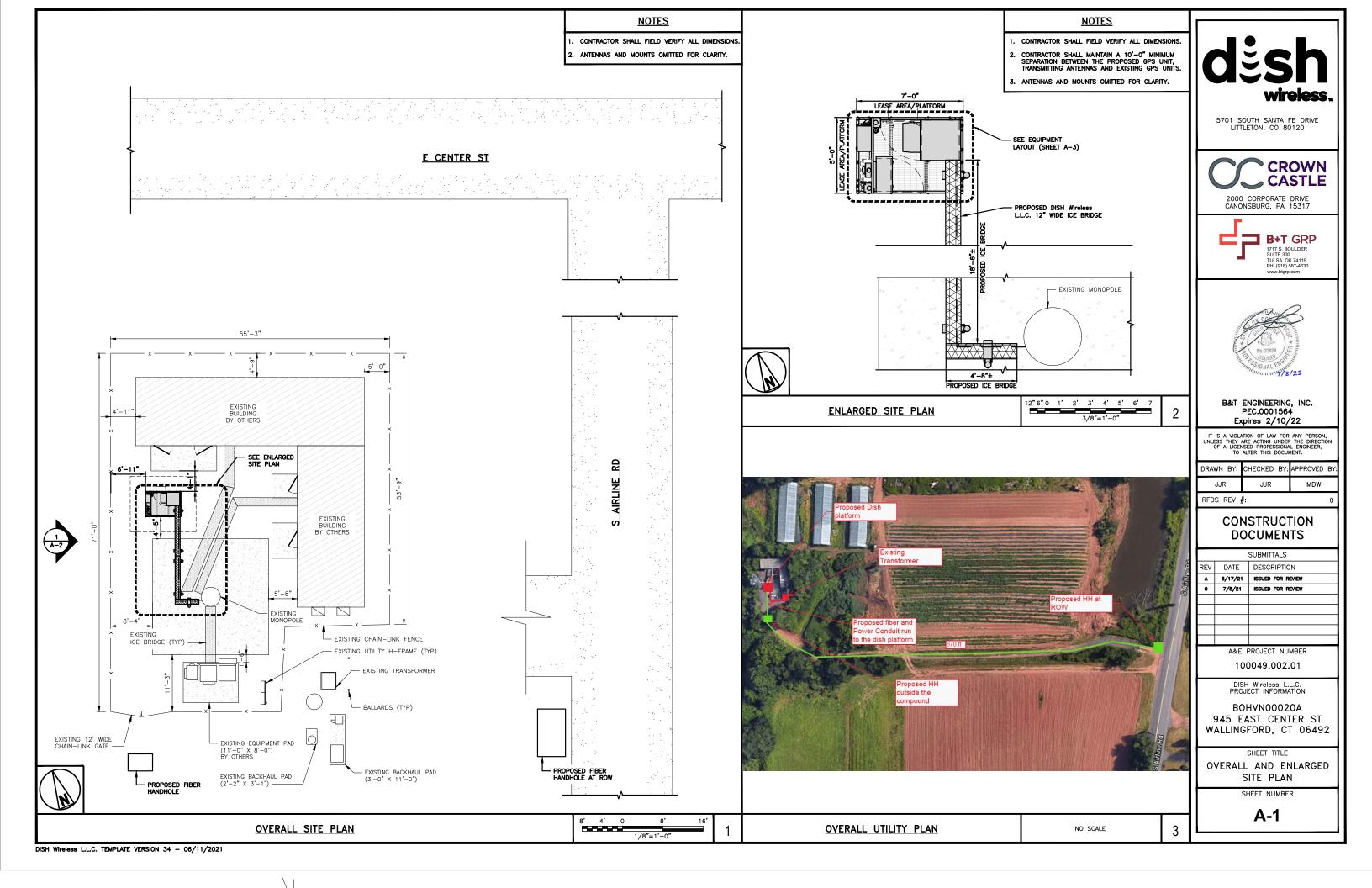
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

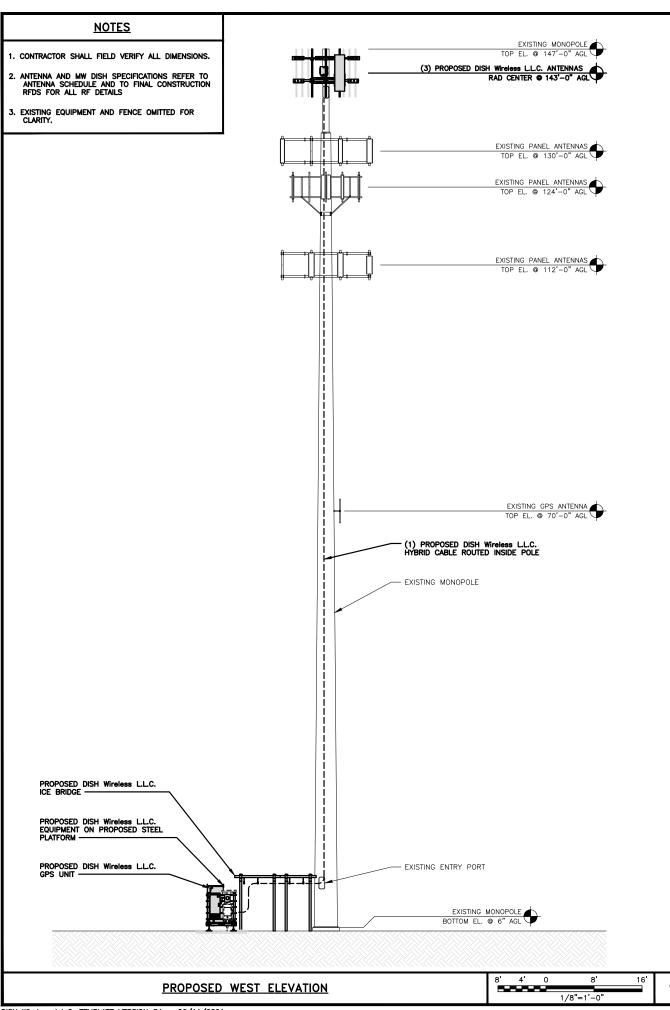
DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
JJR	1	JJR		MDW	

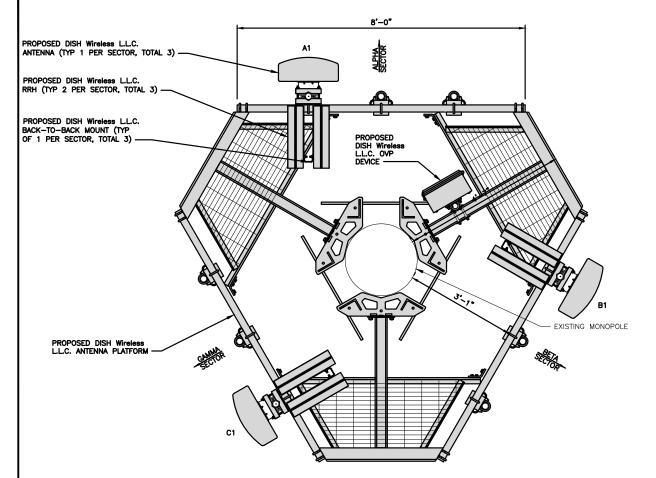
RFDS REV #:

CONSTRUCTION **DOCUMENTS**

		SUBMITTALS	
REV	DATE	DESCRIPTION	_
A	6/17/21	ISSUED FOR REVIEW	
٥	7/8/21	ISSUED FOR REVIEW	
	A&E F	PROJECT NUMBER	


100049.002.01


BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492


> SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

ANTENNA LAYOUT

			AN	TENNA				TRANSMISSION CABLE
SECTOR	POSITION	EXISTING OR PROPOSED	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	SIZE (HxW)	AZIMUTH	RAD CENTER	FEED LINE TYPE AND LENGTH
ALPHA	A1	PROPOSED	JMA WIRELESS-MX08FR0665-21	5G	72.00" × 20.0"	0°	143'-0"	(4) HIGH CARACITY
BETA	B1	PROPOSED	JMA WIRELESS-MX08FR0665-21	5G	72.00" × 20.0"	120°	143'-0"	(1) HIGH—CAPACITY HYBRID CABLE (190' LONG)
GAMMA	C1	PROPOSED	JMA WIRELESS-MX08FR0665-21	5G	72.00" x 20.0"	240°	143'-0"	(150 2010)

		RRH		
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	
ALPHA	A1	FUJITSU - TA08025-B605	5G	l
ALFIIA	A1	FUJITSU - TA08025-B604	5G	
BETA	B1	FUJITSU - TA08025-B605	5G	
BLIA	B1	FUJITSU - TA08025-B604	5G	
GAMMA	C1	FUJITSU - TA08025-B605	5G	
GAMMA	C1	FILITSII - TAORO25-R604	50	ı

NOTES

1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.

12" 6" 0

3/4"=1'-0

ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY, ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

JJR JJR MDW	1	DRAWN BY:	CHECKED BY:	APPROVED BY:
	1	JJR	JJR	MDW

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

		SUBMITTALS
REV	DATE	DESCRIPTION
A	6/17/21	ISSUED FOR REVIEW
0	7/8/21	ISSUED FOR REVIEW

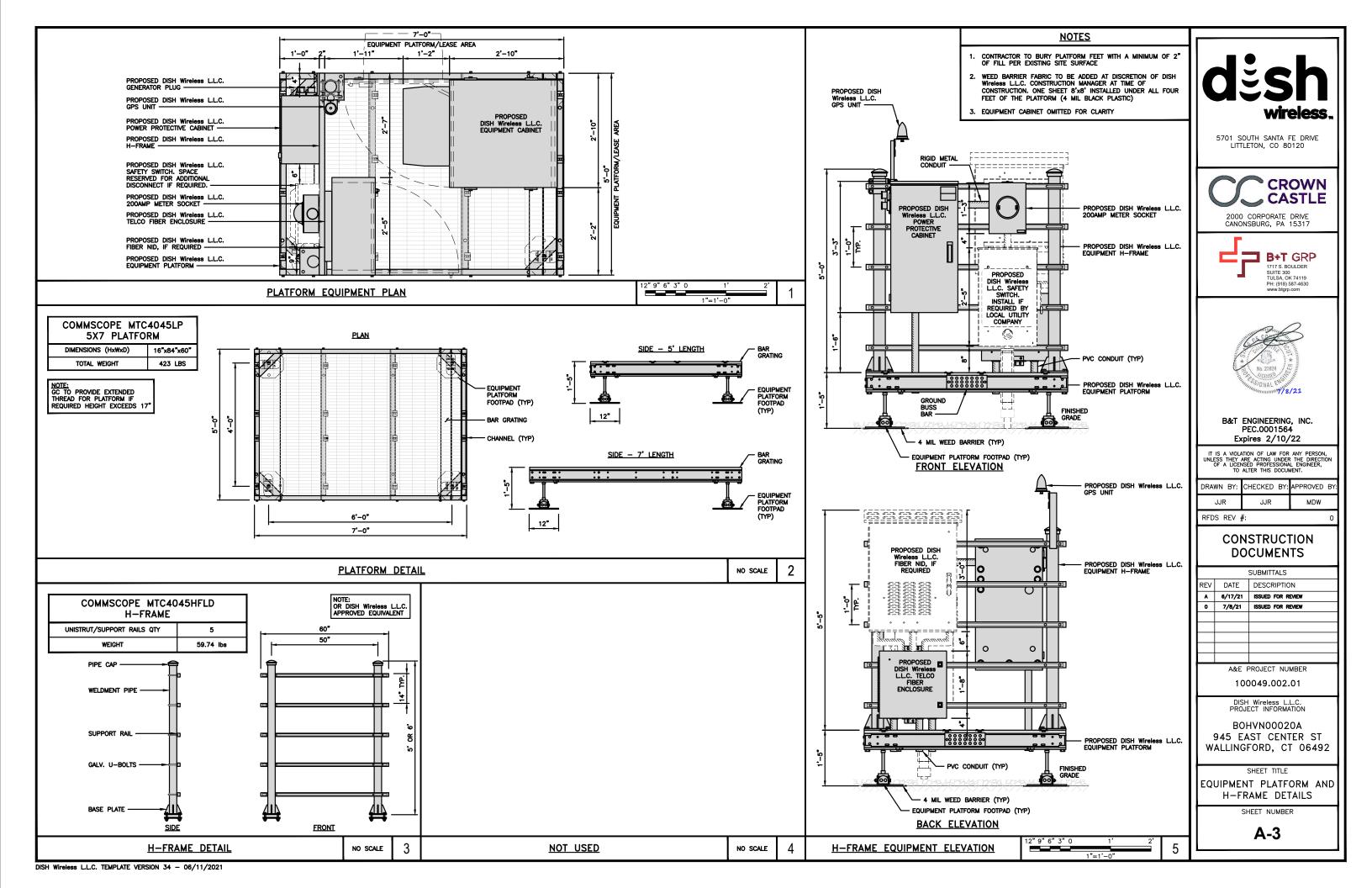
A&E PROJECT NUMBER

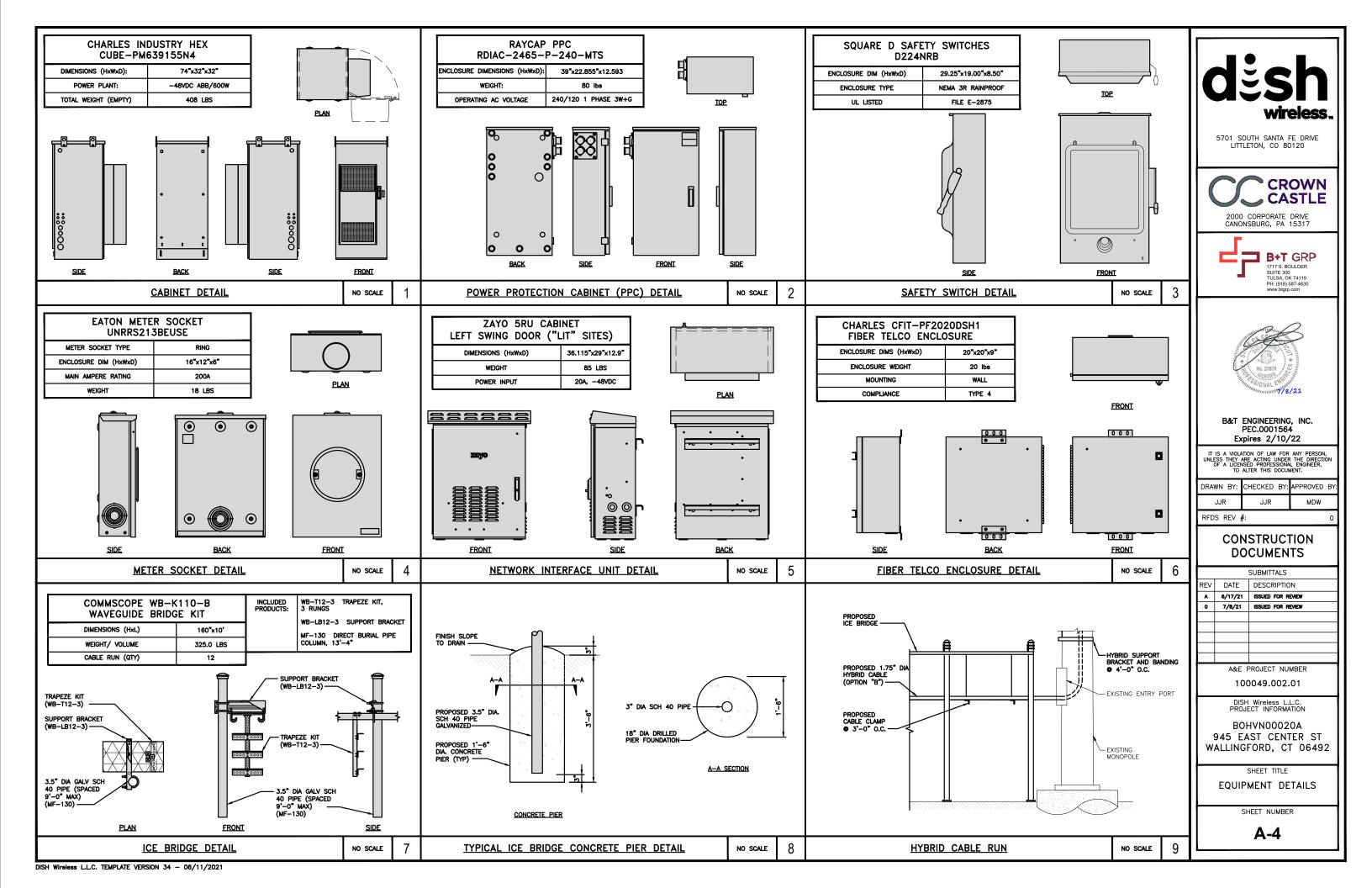
100049.002.01

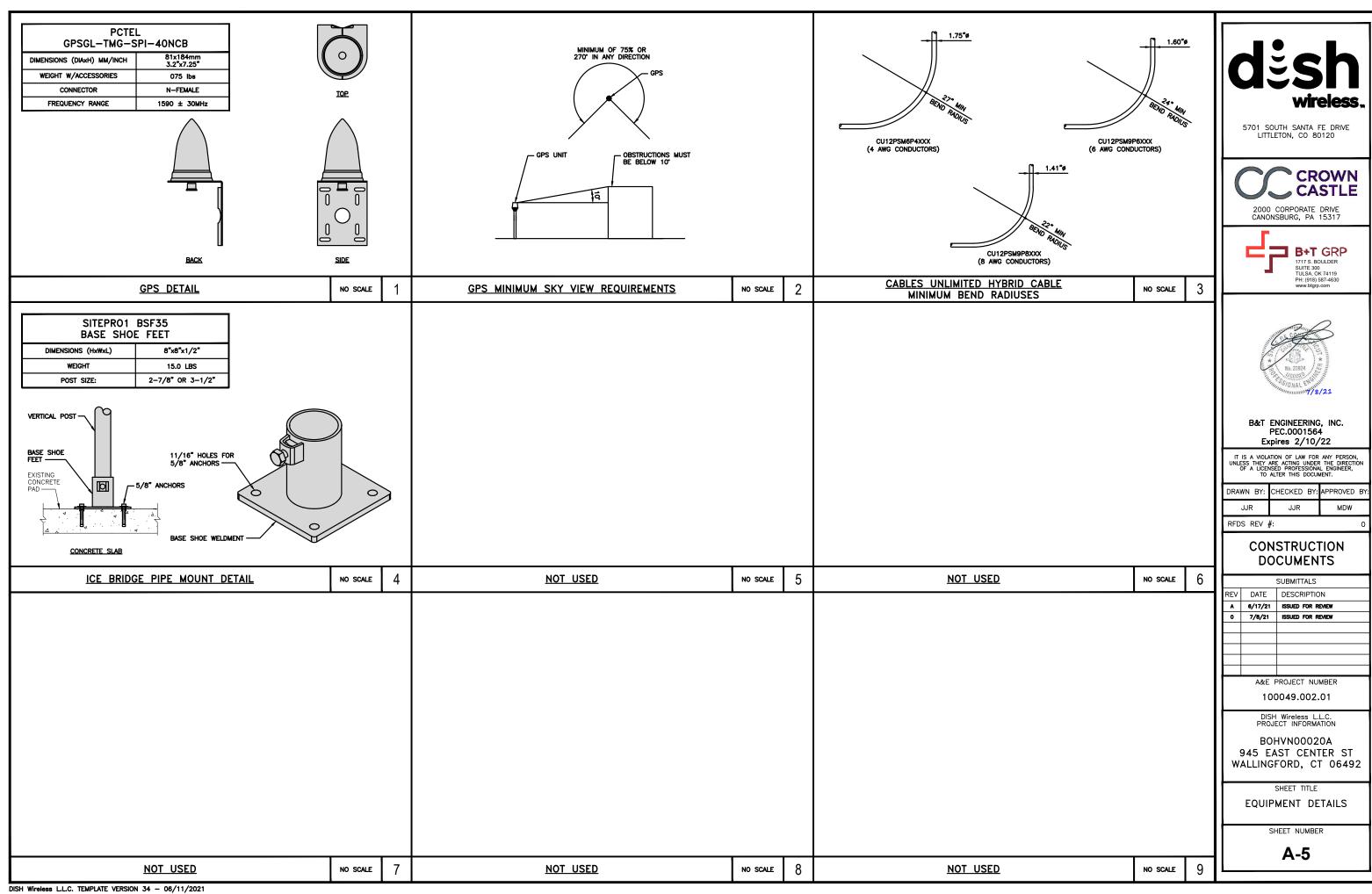
DISH Wireless L.L.C. PROJECT INFORMATION

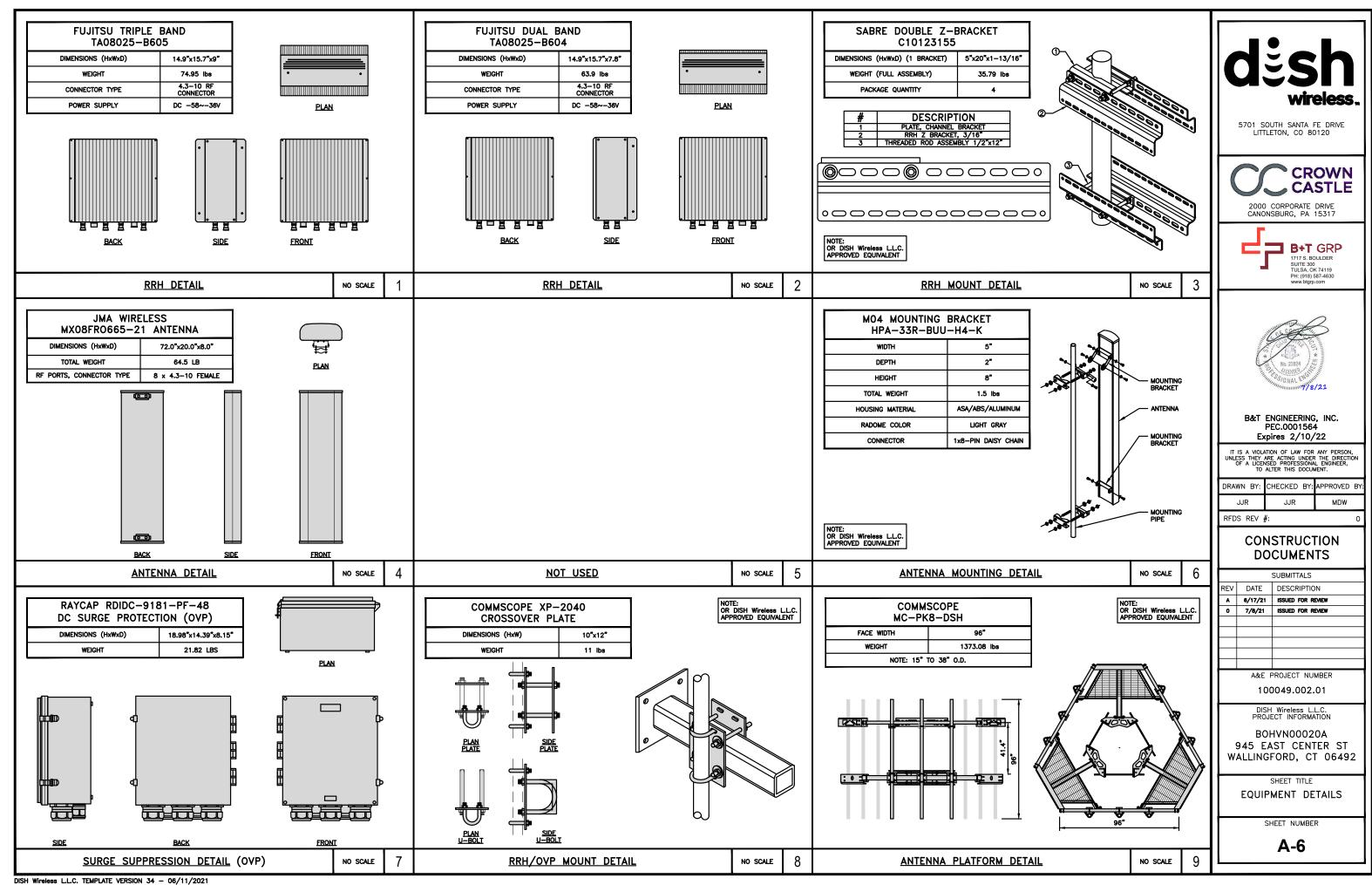
BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492

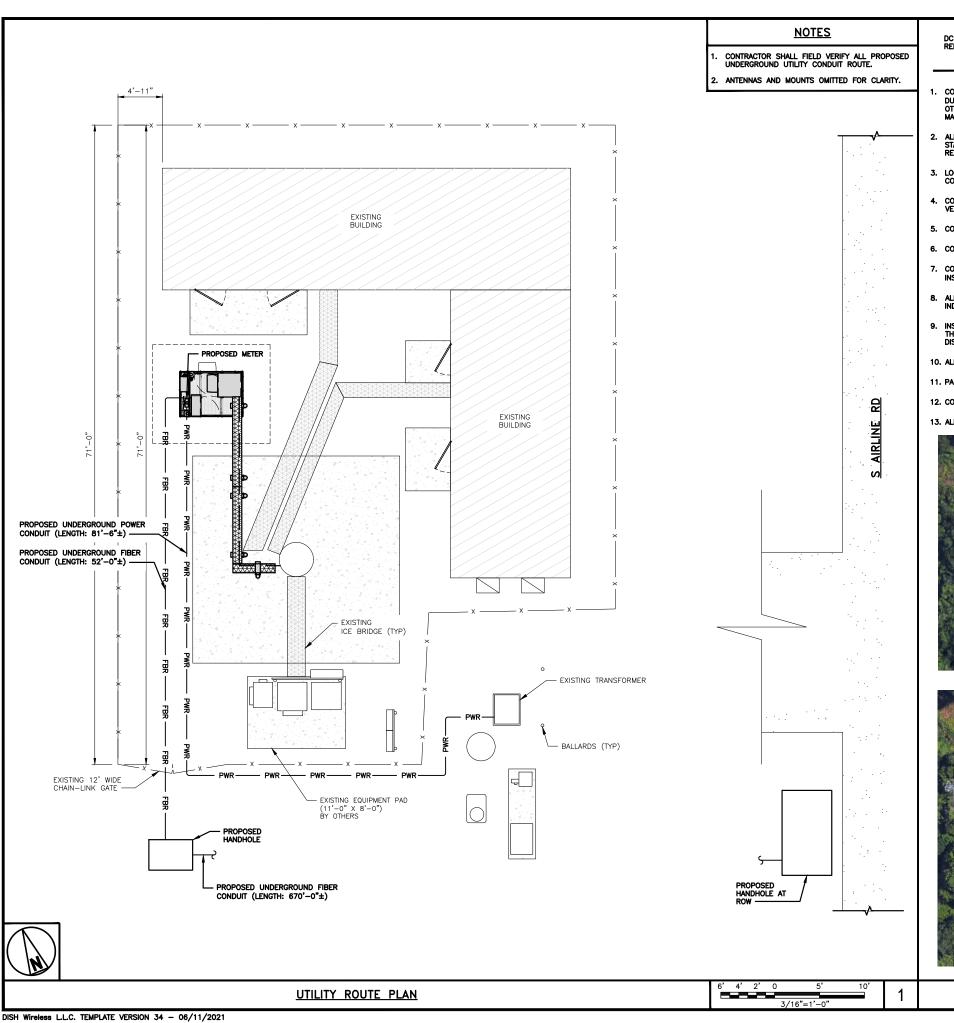
SHEET TITLE


ELEVATION, ANTENNA LAYOUT AND SCHEDULE


SHEET NUMBER


A-2


ANTENNA SCHEDULE


NO SCALE

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
JJR		JJR		MDW	

RFDS REV #:

CONSTRUCTION DOCUMENTS

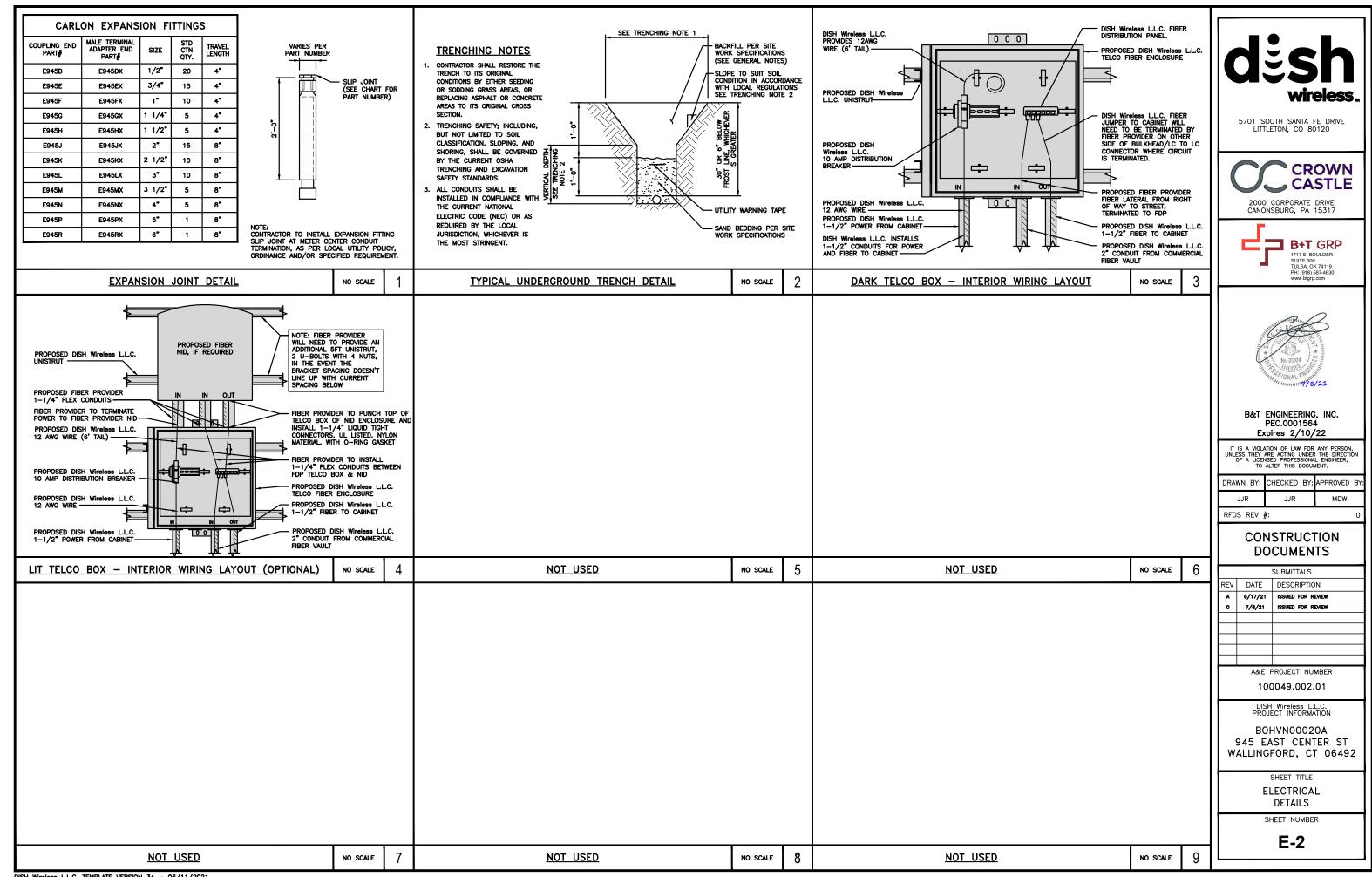
	SUBMITTALS				
REV	DATE	DESCRIPTION			
A	6/17/21	ISSUED FOR REVIEW			
0	7/8/21	ISSUED FOR REVIEW			
	, in the second				
	\ &e	DRO IECT NI IMBED			

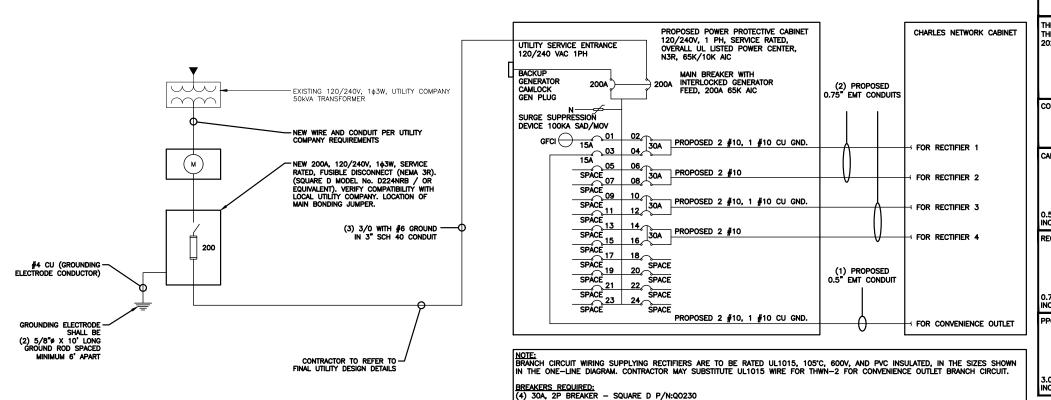
100049.002.01

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492

SHEET TITLE


ELECTRICAL/FIBER ROUTE
PLAN AND NOTES


SHEET NUMBER

E-1

ELECTRICAL NOTES

NO SCALE

NOTES

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA

3.0" CONDUIT - 2.907 SQ. IN AREA CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

> #10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND = 0.0633 SQ. IN

O.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

2.0" CONDUIT - 1.316 SQ. IN AREA

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND

= 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

TOTAL = 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

(1) 15A, 1P BREAKER - SQUARE D P/N:Q0115

PROPOSED CHARLES PANEL SCHEDULE (WATTS) (WATTS) LOAD SERVED ABB/GE INFINITY RECTIFIER 1 30A ABB/GE INFINITY RECTIFIER 2 30A ABB/GE INFINITY 30A ABB/GE INFINIT 30A RECTIFIER 4
-SPACE-SPACE-VOLTAGE AMPS 180 180 200A MCB, 1¢, 24 SPACE, 120/240V MB RATING: 65,000 AIC 11700 11700 VOLTAGE AMPS 98 98 AMPS

PANEL SCHEDULE

NO SCALE

NO SCALE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

2000 CORPORATE DRIVE

CANONSBURG, PA 15317

CROWN CASTLE

B+T GRP

1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com

DRAWN BY: CHECKED BY: APPROVED BY MDW

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS				
REV	DATE DESCRIPTION				
A	A 6/17/21 ISSUED FOR REVIEW				
۰	7/8/21	ISSUED FOR REVIEW			
	A&E PROJECT NUMBER				

100049.002.01

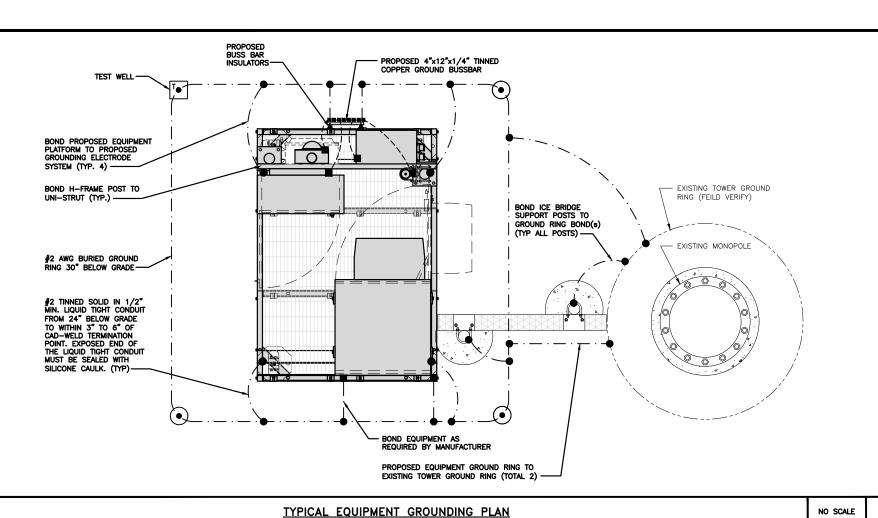
DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492

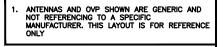
SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER


E-3

2


NO SCALE

NOT USED

DISH Wireless L.L.C. TEMPLATE VERSION 34 - 06/11/2021

NOTES

PROPOSED #2 AWG STRANDED COPPER GREEN INSULATED (TYP)

PROPOSED 4"x6"x1/4" TINNED COPPER SECTOR GROUND BUSSBAR (TYP OF 3)

PROPOSED UPPER TOWER GROUND BAR

EXOTHERMIC CONNECTION

GROUND BUS BAR

GROUND ROD

 (\bullet)

TEST GROUND ROD WITH INSPECTION SLEEVE

MECHANICAL CONNECTION

---- #6 AWG STRANDED & INSULATED

- · - #2 AWG SOLID COPPER TINNED

BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- © Interior ground ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green insulated conductor.
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE BILLI DING.
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- (G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- (K) INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A ∯2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- M <u>Exterior unit bonds</u>; metallic objects, external to or mounted to the building, shall be bonded to the exterior ground ring. Using ∦2 tinned solid copper wire
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- P TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
JJR		JJR		MDW	

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS				
REV	DATE	DESCRIPTION			
Α	6/17/21	ISSUED FOR REVIEW			
٥	7/8/21	ISSUED FOR REVIEW			
	, i		·		
	A&E f	PROJECT NUMBER			

100049.002.01

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492

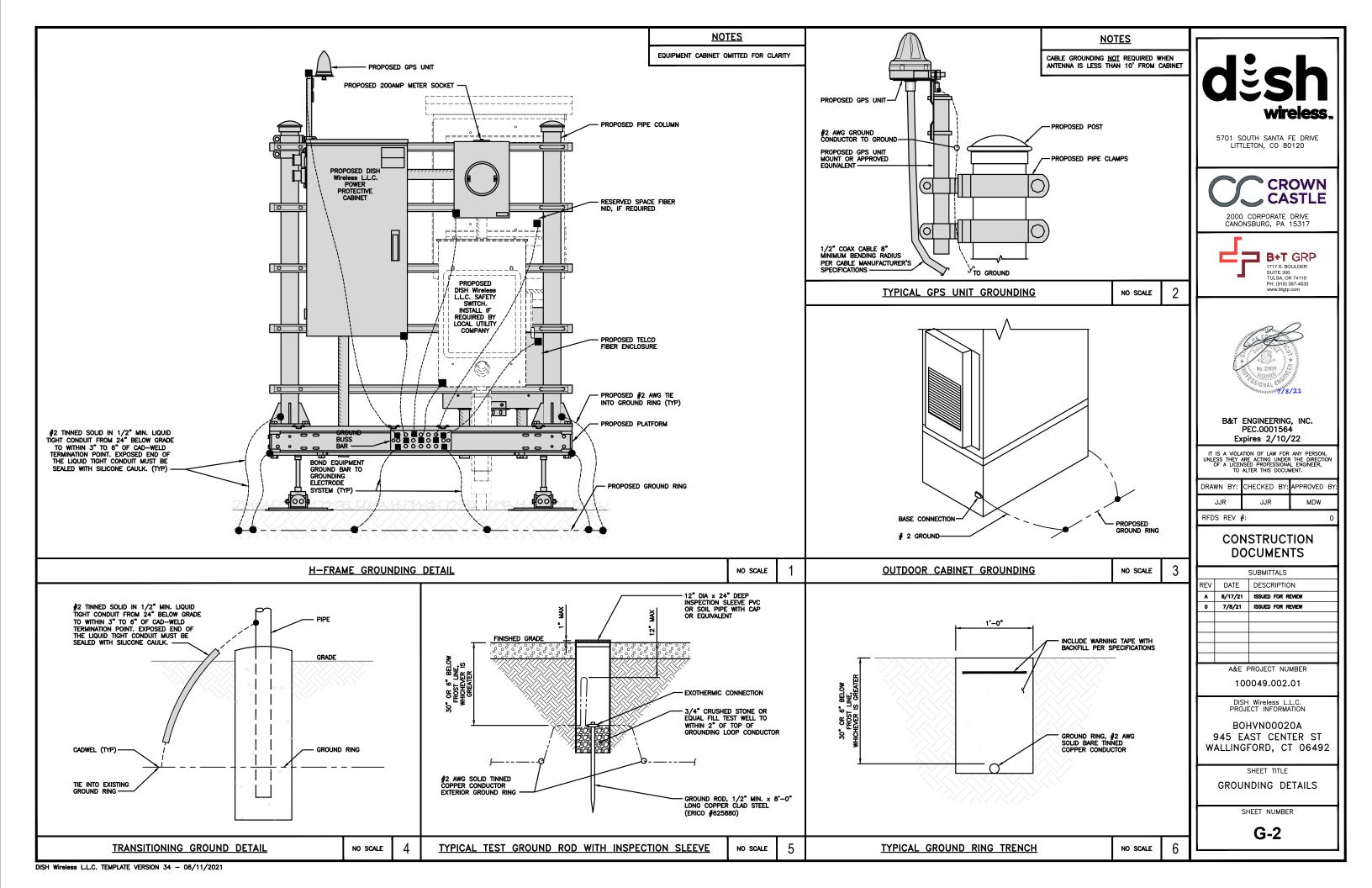
SHEET TITLE

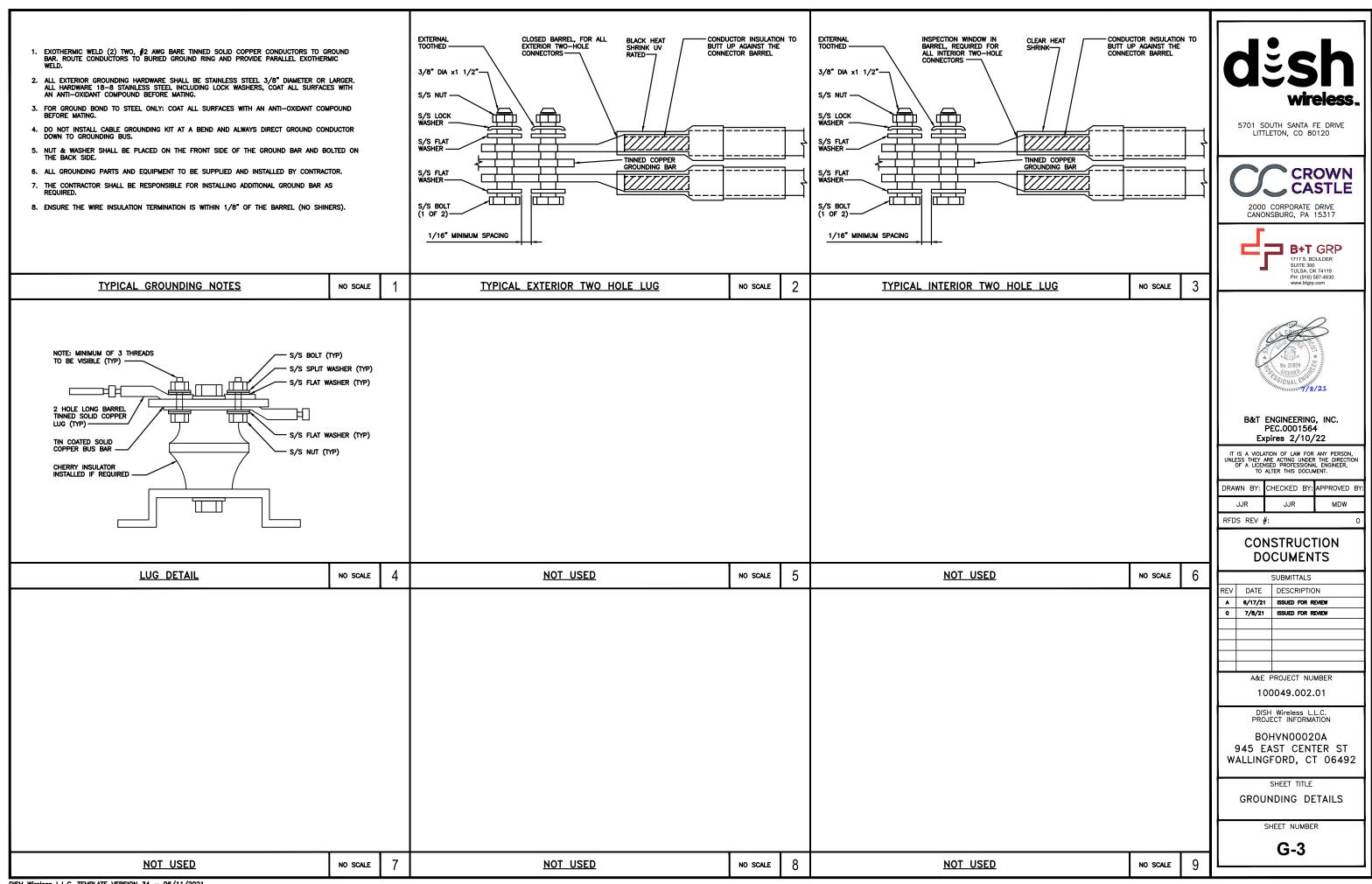
GROUNDING PLANS AND NOTES

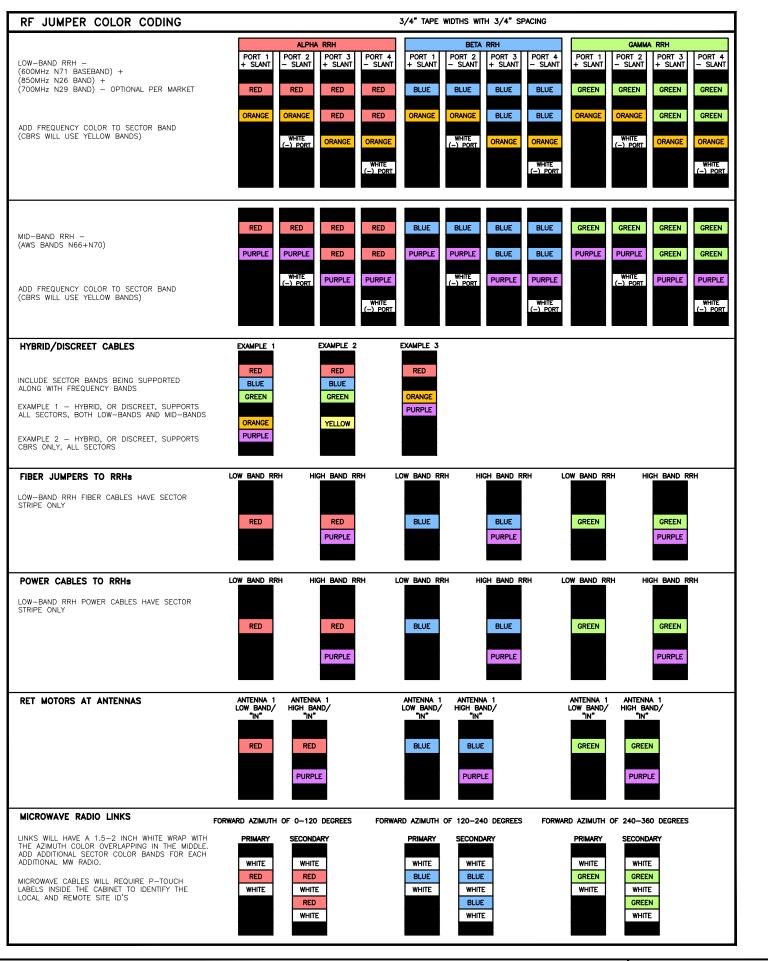
SHEET NUMBER

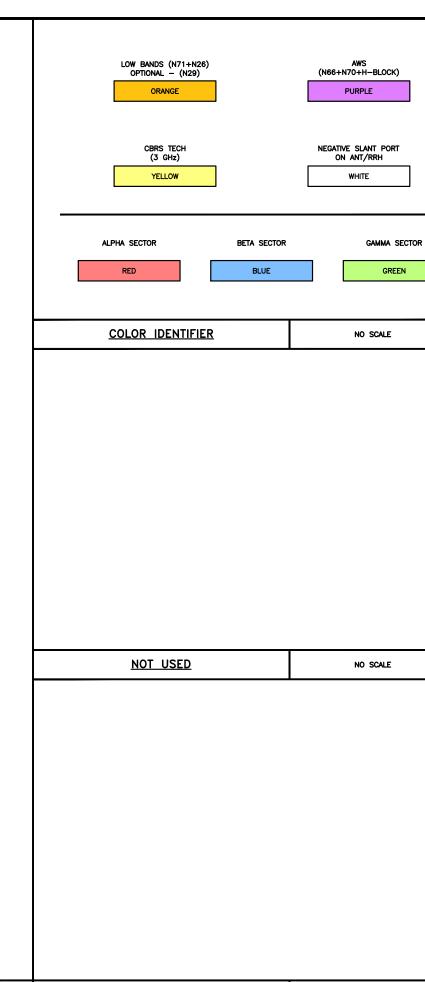
G-1

TYPICAL ANTENNA GROUNDING PLAN


NO SCALE


2


GROUNDING KEY NOTES


NO SCALE

· •

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED BY:
	JJR	JJR	MDW
	RFDS REV	#:	0

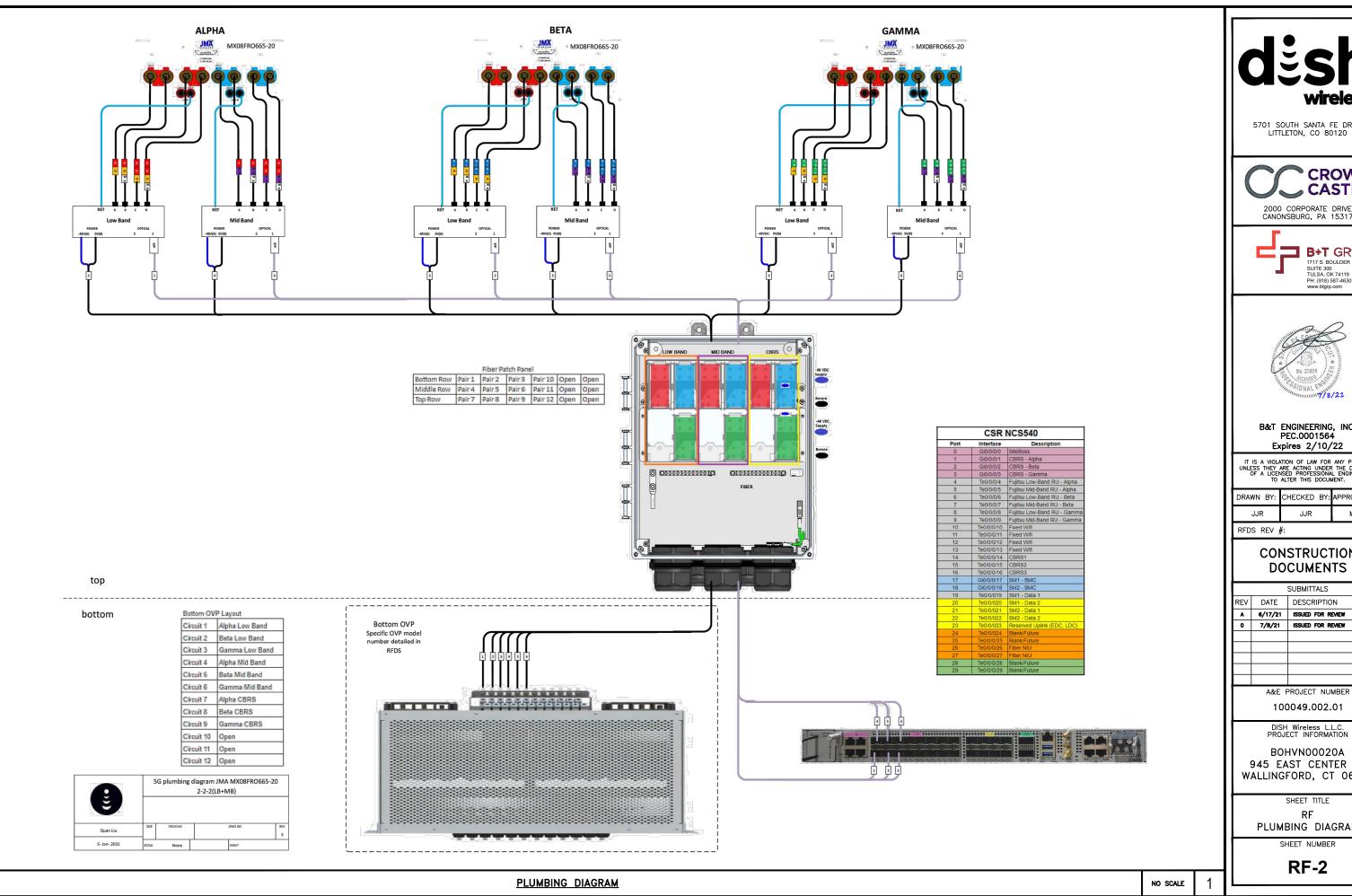
CONSTRUCTION DOCUMENTS

			SUBMITTALS
1	REV	DATE	DESCRIPTION
	A	6/17/21	ISSUED FOR REVIEW
	٥	7/8/21	ISSUED FOR REVIEW
		A&E F	PROJECT NUMBER

A&E PROJECT NUMBER 100049.002.01

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492


SHEET TITLE

RF

CABLE COLOR CODES

SHEET NUMBER

RF-1

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

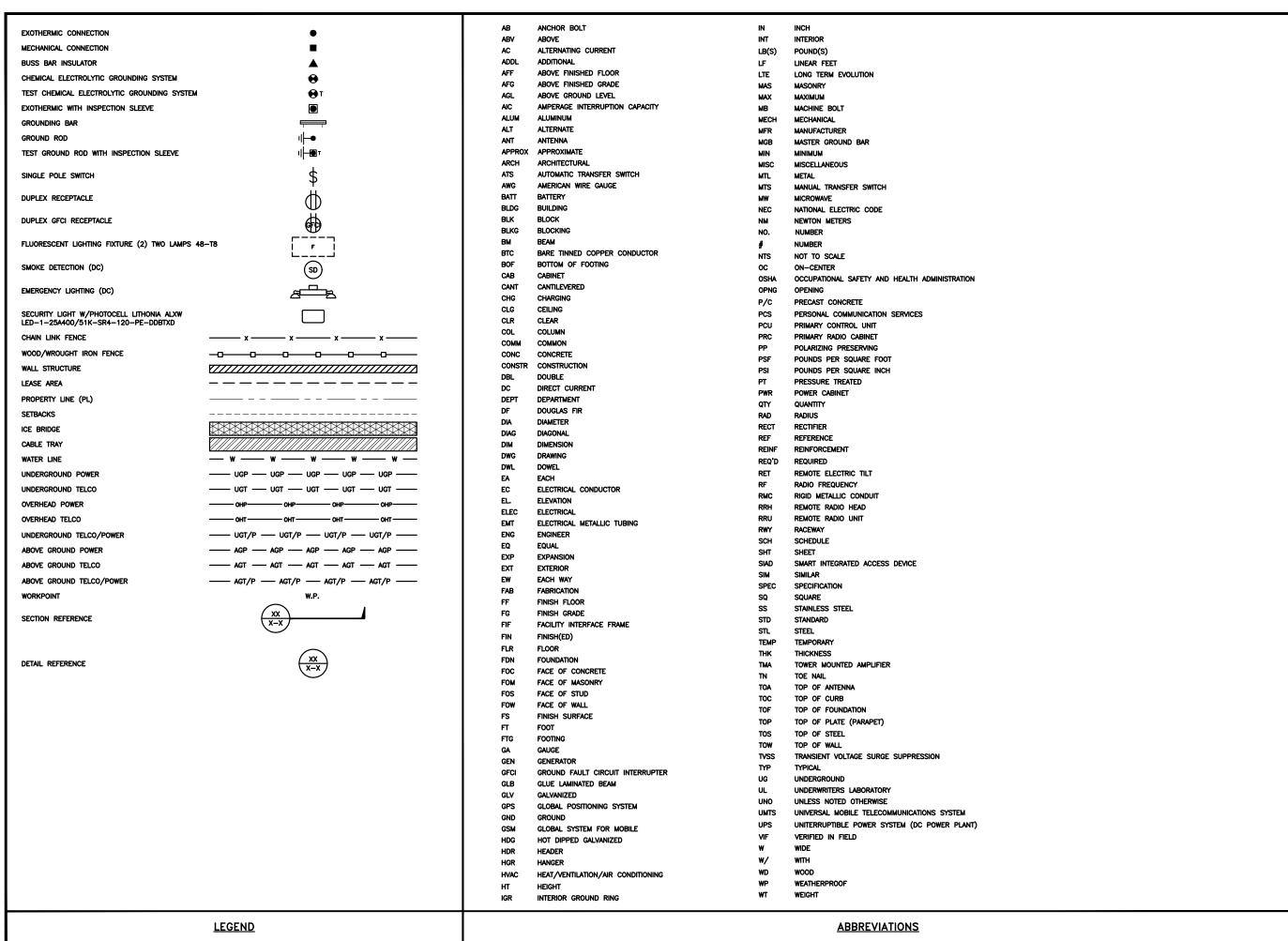
DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
JJR		JJR		MDW	

CONSTRUCTION **DOCUMENTS**

SUBMITTALS							
REV	DATE	DESCRIPTION					
A	6/17/21	ISSUED FOR REVIEW					
۰	7/8/21	ISSUED FOR REVIEW					

100049.002.01

DISH Wireless L.L.C. PROJECT INFORMATION


BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492

SHEET TITLE

PLUMBING DIAGRAM

SHEET NUMBER

RF-2

dish

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
JJR	?	JJR		MDW	

RFDS REV #:

CONSTRUCTION DOCUMENTS

		SUBMITTALS		
REV	DATE	DESCRIPTION		
Α	6/17/21	ISSUED FOR REVIEW		
0	7/8/21	ISSUED FOR REVIEW		
	405.5	DDO IEGT AUUMDED		

A&E PROJECT NUMBER

100049.002.01

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

GN-1

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIReless L.L.C. AND DISH WIReless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION, TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED BY:
П	JJR	JJR	MDW

RFDS REV #

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV	DESCRIPTION					
A	6/17/21	ISSUED FOR REVIEW				
0	7/8/21	ISSUED FOR REVIEW				
A&E PROJECT NUMBER						

100049.002.01

BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-2

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi at 28 days, unless noted otherwise. No more than 90 minutes shall elapse from batch time to time of placement unless approved by the engineer of record. Temperature of concrete shall not exceed 90°f at time of placement.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES, AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- 6. ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PRABLLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 50. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	JJR		JJR		MDW	

RFDS REV #

CONSTRUCTION DOCUMENTS

	SUBMITTALS						
REV	DATE	DESCRIPTION					
A	6/17/21	ISSUED FOR REVIEW					
٥	7/8/21	ISSUED FOR REVIEW					
	A&E PROJECT NUMBER						

DISH Wireless L.L.C. PROJECT INFORMATIO

BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-3

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

"						
JJR	JJR		MDW			
DRAWN BY:	CHECKED	BY:	APPROVED	BY:		

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS							
REV	DATE	DESCRIPTION						
A 6/17/21 ISSUED FOR REVIEW								
0	ISSUED FOR REVIEW							
	∧ 9a⊏ I	DDO IECT NILIMDED						

A&E PROJECT NUMBER

100049.002.01

DISH Wireless L.L PROJECT INFORMAT

BOHVN00020A 945 EAST CENTER ST WALLINGFORD, CT 06492

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-4

Exhibit D

Structural Analysis Report

Date: June 10, 2021

Crown Castle 2000 Corporate Drive Canonsburg. PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOHVN00020A Site Name: CT-CCI-T-876310

Crown Castle Designation: BU Number: 876310

Site Name: BEAUMONT FARM

 JDE Job Number:
 645170

 Work Order Number:
 1966259

 Order Number:
 553364 Rev. 1

Engineering Firm Designation: Crown Castle Project Number: 1966259

Site Data: 945 East Center St., Wallingford, NEW HAVEN County, CT

Latitude 41° 26' 37.36", Longitude -72° 47' 46.56"

147 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity-93.4%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Kibreab Gebremariam

Respectfully submitted by:

P P 31522

Terry P Styran 2021.06.10 12:08:02 -04'00'

Terry P. Styran, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC5
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 147 ft Monopole tower designed by SUMMIT.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 125 mph

Exposure Category:

Topographic Factor:

Ice Thickness:

Wind Speed with Ice:

Service Wind Speed:

C

1

1.5 in

50 mph

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elevetion	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
143.0	143.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)					
		1	andrew	VHLP1-23							
	132.0	1	andrew	VHLP2-23							
		1	andrew	VHLP2.5-23							
		3	alcatel lucent	1900MHZ RRH (65MHZ)							
	130.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER							
					3	alcatel lucent	800MHZ RRH				
		3	alcatel lucent	TD-RRH8X20-25							
		130.0		3	argus technologies	LLPX310R-V1 w/ Mount Pipe	6	5/16			
130.0			9	rfs celwave	ACU-A20-N	3	7983A				
			1	rfs celwave	APXV9ERR18-C-A20 w/ Mount Pipe	3	7/8 1-1/4				
									2	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe							
		3	samsung telecommunications	RRH-2WB							
		1	tower mounts	Miscellaneous [NA 510-3]							
		1	tower mounts	Platform Mount [LP 1201-1]							

Mounting Level (ft)	(π)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)						
	126.0	2	raycap	RRFDC-3315-PF-48								
		3	alcatel lucent	B13 RRH 4X30								
		2	antel	BXA-70063/6CFx2 w/ Mount Pipe								
		1	antel	BXA-70063/6CFx4 w/ Mount Pipe								
124.0		2	antel	LPA-80063/6CF w/ Mount Pipe	14	1-5/8						
124.0	124.0	4	antel	LPA-80080-6CF-EDIN w/ Mount Pipe	14	1-5/6						
		6	commscope	SBNHH-1D65B w/ Mount Pipe								
		3	nokia	B25 RRH4X30 (UHFA)								
		3	nokia	B66A RRH4X45 (UHIE)								
		1	tower mounts	Platform Mount [LP 1201- 1_KCKR-HR-1]								
			3	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe							
		3	ericsson	RRUS 32								
	112.0	3	ericsson	RRUS 4426 B66								
		112.0						3	ericsson	RRUS-11		
			3	ericsson	RRUS12/RRUS A2		0,0					
111.0			112.0	3	kaelus	DBCT108F1V92-1	2 4	3/8 3/4				
111.0					3	powerwave technologies	7770.00 w/ Mount Pipe	12	1-1/4			
		6	powerwave technologies	LGP21401								
		3	quintel technology	QS66512-2 w/ Mount Pipe								
		2	raycap	cap DC6-48-60-18-8F								
	111.0	1	tower mounts	Platform Mount [LP 1201-1]								
70.0	70.0	1	kathrein	OG-860/1920/GPS-A	1	1/2						
70.0	70.0	1	tower mounts	Side Arm Mount [SO 701-1]		1/2						

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Table o Bodamento i Toviaca							
Document	Reference	Source					
4-GEOTECHNICAL REPORTS	1531484	CCISITES					
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	1855118	CCISITES					
4-TOWER MANUFACTURER DRAWINGS	1855980	CCISITES					
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2015154	CCISITES					

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	147 - 133	Pole	TP12.75x12.75x0.5	1	-3662.96	636437.52	22.3	Pass
L2	133 - 85.5	Pole	TP29.418x19.537x0.313	2	-22101.70	1750759.42	79.3	Pass
L3	85.5 - 42.75	Pole	TP37.687x27.477x0.375	3	-32311.90	2690099.88	93.4	Pass
L4	42.75-0	Pole	TP45.83x35.894x0.438	4	-47952.00	3927923.82	90.1	Pass
							Summary	
						Pole (L3)	93.4	Pass
						Rating =	93.4	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	80.0	Pass
1	Base Plate	0	82.4	Pass
1	Base Foundation (Structure)	0	26.2	Pass
1	Base Foundation (Soil Interaction)	0	88.9	Pass
1	Flange Connection	133.0	51.8	Pass

Structure Rating (max from all components) = 93.4%
--

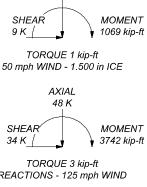
Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A TNXTOWER OUTPUT


Section	4	ю		2	-
Length (ft)	47.50	46.50	47.	47.50	14.00
Number of Sides	12	12	-	12	1
Thickness (in)	0.438	0.375	0.3	0.313	0.500
Socket Length (ft)		4.75		3.75	
Top Dia (in)	35.894	27.477	19.	19.537	12.750
Bot Dia (in)	45.830	37.687	29.	29.418	12.750
Grade		A607-65		A53-B-35	
Weight (K) 20.2	9.2	6.2	ි. වේ	3.9	6.0
	<u>0.0</u> ft	<u>42.8 ft</u>	85.5 ft	133.0 ft	147.0 ft
TORQUE 3 kip-ft REACTIONS - 125 mph WIND	ALL REACTIONS ARE FACTORED AXIAL 78 K SHEAR 9 K TORQUE 1 kip-ft 50 mph WIND - 1.500 in ICE AXIAL 48 K SHEAR 34 K MOMEN 3742 kip				

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-35	35 ksi	60 ksi	A607-65	65 ksi	80 ksi

TOWER DESIGN NOTES

- 1. Tower is located in New Haven County, Connecticut.
 2. Tower designed for Exposure C to the TIA-222-H Standard.
 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
 5. Deflections are based upon a 60 mph wind.
 6. Tower Risk Category II.
 7. Topographic Category 1 with Crest Height of 0.00 ft
 8. TOWER RATING: 93.4%

Crown Castle	^{Job:} BU 876310		
2000 Corporate Drive	Project:		
CROWN 2000 Corporate Drive Castle Canonsburg. PA 15317	^{Client:} Crown Castle	Drawn by: KGebremariam	App'd:
The pathway to Possible Phone: (724) 416-2000	^{Code:} TIA-222-H	Date: 06/10/21	Scale: NTS
FAX:	Path: C:\Users\KGebremariam\Desktop\Wor	k Area\876310\WO 1966259 - SA\Prod\876310 update.ei	Dwg No. E-

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 244.00 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

- √ Use Code Safety Factors Guys
 - Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

√ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
- √ Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Comer Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	147.00-133.00	14.00	0.000	Round	12.750	12.750	0.500		A53-B-35 (35 ksi)
L2	133.00-85.50	47.50	3.750	12	19.537	29.418	0.313	1.250	À607-6́5 (65 ksi)
L3	85.50-42.75	46.50	4.750	12	27.477	37.687	0.375	1.500	A607-65 (65 ksi)
L4	42.75-0.00	47.50		12	35.894	45.830	0.438	1.750	A607-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in ³	in⁴	in²	in	
L1	12.750	19.242	361.544	4.335	6.375	56.713	723.088	9.615	0.000	0
	12.750	19.242	361.544	4.335	6.375	56.713	723.088	9.615	0.000	0
L2	20.116	19.345	912.551	6.882	10.120	90.172	1849.075	9.521	4.398	14.075
	30.346	29.287	3166.774	10.420	15.239	207.814	6416.742	14.414	7.047	22.549
L3	29.167	32.726	3068.189	9.703	14.233	215.567	6216.983	16.107	6.359	16.957
	38.884	45.054	8006.057	13.358	19.522	410.107	16222.442	22.174	9.095	24.254
L4	38.035	49.949	8015.109	12.693	18.593	431.079	16240.785	24.584	8.447	19.308
	47.292	63.947	16817.916	16.251	23.740	708.423	34077.658	31.473	11.110	25.394

Tower	Gusset	Gusset	Gusset GradeAdjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area (per face)	Thickness	A_f	Factor A _r		Stitch Bolt Spacing	Stitch Bolt Spacing	Stitch Bolt Spacing
						Diagonals	Horizontals	Redundants
ft	ft ²	in				in	in	in
L1 147.00-			1	1	1			
133.00								
L2 133.00-			1	1	1			
85.50								
L3 85.50-			1	1	1			
42.75								
L4 42 75-0 00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement			Start/En		Perimete	Weight
		From	t		Number	<i>PerRow</i>	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation	1					in	in	
Misc										
Safety Line 3/8	Α	No	Surface Ar	133.00 -	1	1	-0.250	0.375		0.220
			(CaAa)	0.00			-0.250			
Step Pegs (5/8" SR) 7-	A	No	Surface Ar	147.00 -	1	1	-0.250	0.350		0.487
in, w/30" step			(CaAa)	0.00			-0.250			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or Leg	Shield	From Torque	t Type	ft	Number		ft²/ft	plf
			Calculation	1					
130									
7983A(ELLIPTICA	С	No	No	Inside Pole	130.00 - 0.00	3	No Ice 1/2" Ice	0.00 0.00	0.084 0.084
L)							1" Ice	0.00	0.084

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Type	ft			ft²/ft	plf
							2" Ice	0.00	0.084
9207(5/16")	С	No	No	Inside Pole	130.00 - 0.00	6	No Ice	0.00	0.600
							1/2" I ce	0.00	0.600
							1" I ce	0.00	0.600
							2" Ice	0.00	0.600
HB114-08U3M12-	С	No	No	Inside Pole	130.00 - 0.00	1	No Ice	0.00	0.683
xxxF(7/8")							1/2" Ice	0.00	0.683
							1" Ice	0.00	0.683
							2" Ice	0.00	0.683
HB114-1-0813U4-	С	No	No	Inside Pole	130.00 - 0.00	3	No Ice	0.00	1.200
M5J(1 1/4")							1/2" I ce	0.00	1.200
, ,							1" Ice	0.00	1.200
							2" Ice	0.00	1.200
2" Flexible Conduit	С	No	No	Inside Pole	130.00 - 0.00	1	No Ice	0.00	0.340
							1/2" Ice	0.00	0.340
							1" Ice	0.00	0.340
							2" Ice	0.00	0.340
121 FLC 158-50J(1-	Α	No	No	Inside Pole	124.00 - 0.00	12	No Ice	0.00	0.920
5/8")	,,	110	110	molder old	124.00 0.00	12	1/2" Ice	0.00	0.920
0/0 /							1" Ice	0.00	0.920
							2" Ice	0.00	0.920
HB158-1-08U8-	Α	No	No	Incide Pole	124.00 - 0.00	2	No Ice	0.00	1,300
S8J18(1-5/8")	^	NO	NO	IIISIGE FOIE	124.00-0.00	2	1/2" Ice	0.00	1.300
30310(1-3/07)							1" Ice	0.00	1,300
							2" Ice	0.00	1.300
111	0	NI-	NIa	Innida Dala	444.00.000	40	Nie Iee	0.00	0.700
FLC 114-50J(1-	С	No	No	Inside Pole	111.00 - 0.00	12	No Ice	0.00	0.700
1/4")							1/2" Ice	0.00	0.700
							1" Ice	0.00	0.700
MENGOSE	_						2" Ice	0.00	0.700
WR-VG86ST-	С	No	No	Inside Pole	111.00 - 0.00	4	No Ice	0.00	0.584
BRD(3/4")							1/2" Ice	0.00	0.584
							1" Ice	0.00	0.584
	_					_	2" Ice	0.00	0.584
FB-L98B-002-	С	No	No	Inside Pole	111.00 - 0.00	2	No Ice	0.00	0.059
75000(3/8")							1/2" Ice	0.00	0.059
							1" Ice	0.00	0.059
70							2" Ice	0.00	0.059
	0	NI-	NI-	Incide Del-	70.00.000	4	No Iss	0.00	0.450
LDF4-50A(1/2")	С	No	No	mside Pole	70.00 - 0.00	1	No Ice	0.00	0.150
							1/2" Ice	0.00	0.150
							1" Ice	0.00	0.150
***							2" Ice	0.00	0.150
CU12PSM9P6XXX	С	No	No	Inside Pole	143.00 - 0.00	1	No Ice	0.00	2.350
(1-1/2)							1/2" Ice	0.00	2.350
,							1" Ice	0.00	2.350
							2" Ice	0.00	2.350

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	147.00-133.00	Α	0.000	0.000	0.490	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.02
L2	133.00-85.50	Α	0.000	0.000	3.444	0.000	0.56
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.77
L3	85.50-42.75	Α	0.000	0.000	3.099	0.000	0.61

Tower	Tower	Face	A_R	A_{F}	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft ²	K
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.93
L4	42.75-0.00	Α	0.000	0.000	3.099	0.000	0.61
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.93

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	147.00-133.00	Α	1.473	0.000	0.000	4.615	0.000	0.05
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.02
L2	133.00-85.50	Α	1.435	0.000	0.000	30.716	0.000	0.86
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.77
L3	85.50-42.75	Α	1.361	0.000	0.000	27.644	0.000	0.88
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.93
L4	42.75-0.00	Α	1.221	0.000	0.000	26.376	0.000	0.86
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.93

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	147.00-133.00	-0.447	0.000	-1.221	0.000
L2	133.00-85.50	-0.484	0.000	-2.323	0.000
L3	85.50-42.75	-0.487	0.000	-2.496	0.000
L4	42.75-0.00	-0.489	0.000	-2.510	0.000

 $Note: For pole \ sections, center of \ pressure \ calculations \ do \ not \ consider feed \ line \ shielding.$

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	·	Segment	No Ice	Ice
			Elev.		
L1	19	Step Pegs (5/8" SR) 7-in.	133.00 -	1.0000	1.0000
		w/30" step	147.00		
L2	18	Safety Line 3/8	85.50 -	1.0000	1.0000
			133.00		
L2	19	Step Pegs (5/8" SR) 7-in.	85.50 -	1.0000	1.0000
		w/30" step	133.00		
L3	18	Safety Line 3/8	42.75 -	1.0000	1.0000
			85.50		
L3	19	Step Pegs (5/8" SR) 7-in.	42.75 -	1.0000	1.0000
		w/30" step	85.50		
L4	18	Safety Line 3/8	0.00 -42.75	1.0000	1.0000
L4	19	Step Pegs (5/8" SR) 7-in.	0.00 -42.75	1.0000	1.0000
		w/30" step			

	Discr	ete Tower L	oads		
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placemer
			Vert ft ft ft	۰	ft
130 LLPX310R-V1 w/ Mount Pipe	А	From Leg	4.00 0.000	0.000	130.00
LLPX310R-V1 w/ Mount Pipe	В	From Leg	0.000 4.00 0.000	0.000	130.00
LLPX310R-V1 w/ Mount Pipe	С	From Leg	0.000 4.00 0.000	0.000	130.00
APXV9ERR18-C-A20 w/ Mount Pipe	С	From Leg	0.000 4.00 0.000	0.000	130.00
APXVSPP18-C-A20 w/ Mount Pipe	А	From Leg	0.000 4.00 0.000	0.000	130.00
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	0.000 4.00 0.000	0.000	130.00
APXVTM14-C-120 w/ Mount Pipe	Α	From Leg	0.000 4.00 0.000 0.000	0.000	130.00
APXVTM14-C-120 w/ Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	130.00
APXVTM14-C-120 w/ Mount Pipe	С	From Leg	4.00 0.000 0.000	0.000	130.00
1900MHZ RRH (65MHZ)	Α	From Leg	4.00 0.000 0.000	0.000	130.00
1900MHZ RRH (65MHZ)	В	From Leg	4.00 0.000 0.000	0.000	130.00
1900MHZ RRH (65MHZ)	С	From Leg	4.00 0.000 0.000	0.000	130.00
800 EXTERNAL NOTCH FILTER	Α	From Leg	4.00 0.000 0.000	0.000	130.00
800 EXTERNAL NOTCH FILTER	В	From Leg	4.00 0.000 0.000	0.000	130.00
800 EXTERNAL NOTCH FILTER	С	From Leg	4.00 0.000 0.000	0.000	130.00
800MHZ RRH	Α	From Leg	4.00 0.000 0.000	0.000	130.00
800MHZ RRH	В	From Leg	4.00 0.000 0.000	0.000	130.00
800MHZ RRH	С	From Leg	4.00 0.000 0.000	0.000	130.00
TD-RRH8X20-25	Α	From Leg	4.00 0.000	0.000	130.00

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placeme
	Leg		Vert ft	۰	ft
			ft ft		
TD-RRH8X20-25	В	From Leg	0.000 4.00 0.000	0.000	130.00
TD-RRH8X20-25	В	From Leg	0.000 4.00 0.000 0.000	0.000	130.00
(3) ACU-A20-N	Α	From Leg	4.00 0.000 0.000	0.000	130.00
(3) ACU-A20-N	В	From Leg	4.00 0.000 0.000	0.000	130.00
(3) ACU-A20-N	С	From Leg	4.00 0.000 0.000	0.000	130.00
RRH-2WB	Α	From Leg	4.00 0.000 0.000	0.000	130.00
RRH-2WB	В	From Leg	4.00 0.000 0.000	0.000	130.00
RRH-2WB	С	From Leg	4.00 0.000 0.000	0.000	130.00
Platform Mount [LP 1201-1] Miscellaneous [NA 510-3] **121**	C C	None None		0.000 0.000	130.00 130.00
BXA-70063/6CFx2 w/ Mount Pipe	Α	From Leg	4.00 0.000 0.000	0.000	124.00
BXA-70063/6CFx2 w/ Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	124.00
BXA-70063/6CFx4 w/ Mount Pipe	С	From Leg	4.00 0.000 0.000	0.000	124.00
(2) LPA-80080-6CF-EDIN w/ Mount Pipe	Α	From Leg	4.00 0.000 0.000	0.000	124.00
(2) LPA-80080-6CF-EDIN w/ Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	124.00
(2) LPA-80063/6CF w/ Mount Pipe	С	From Leg	4.00 0.000 0.000	0.000	124.00
(2) SBNHH-1D65B w/ Mount Pipe	Α	From Leg	4.00 0.000 0.000	0.000	124.00
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	124.00
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.00 0.000 0.000	0.000	124.00
B13 RRH 4X30	Α	From Leg	4.00 0.000 0.000	0.000	124.00
B13 RRH 4X30	В	From Leg	4.00 0.000 0.000	0.000	124.00
B13 RRH 4X30	С	From Leg	4.00 0.000 0.000	0.000	124.00

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemen
	Leg		Lateral Vert		
			ft ft	٥	ft
			ft		
(2) FD9R6004/2C-3L	Α	From Leg	4.00 -7.000 0.000	30.000	121.00
(2) FD9R6004/2C-3L	С	From Leg	4.00 0.000	30.000	121.00
(2) FD9R6004/2C-3L	В	From Leg	0.000 4.00 -7.000	30.000	121.00
B66A RRH4X45 (UHIE)	Α	From Leg	0.000 4.00 0.000	0.000	124.00
B66A RRH4X45 (UHIE)	В	From Leg	0.000 4.00 0.000	0.000	124.00
B66A RRH4X45 (UHIE)	С	From Leg	0.000 4.00 0.000	0.000	124.00
B25 RRH4X30 (UHFA)	Α	From Leg	0.000 4.00 0.000	0.000	124.00
B25 RRH4X30 (UHFA)	В	From Leg	0.000 0.000 4.00 0.000	0.000	124.00
B25 RRH4X30 (UHFA)	С	From Leg	0.000 4.00	0.000	124.00
RRFDC-3315-PF-48	Α	From Leg	0.000 0.000 4.00	0.000	124.00
RRFDC-3315-PF-48	А	From Leg	0.000 2.000 4.00	0.000	124.00
			0.000 2.000		
Platform Mount [LP 1201-1_KCKR-HR-1] **119**	С	None	2.000	0.000	124.00
111 7770.00 w/ Mount Pipe	Α	From Leg	4.00 0.000	0.000	111.00
7770.00 w/ Mount Pipe	В	From Leg	1.000 4.00 0.000	0.000	111.00
7770.00 w/ Mount Pipe	С	From Leg	1.000 4.00 0.000	0.000	111.00
HPA-65R-BUU-H6 w/ Mount Pipe	Α	From Leg	1.000 4.00 0.000	0.000	111.00
HPA-65R-BUU-H6 w/ Mount Pipe	В	From Leg	1.000 4.00 0.000	0.000	111.00
HPA-65R-BUU-H6 w/ Mount Pipe	С	From Leg	1.000 4.00 0.000	0.000	111.00
QS66512-2 w/ Mount Pipe	Α	From Leg	1.000 4.00	0.000	111.00
QS66512-2 w/ Mount Pipe	В	From Leg	0.000 1.000 4.00	0.000	111.00
QS66512-2 w/ Mount Pipe	С	From Leg	0.000 1.000 4.00	0.000	111.00
(2) LGP21401	Α	From Leg	0.000 1.000 4.00	0.000	111.00
(2) 21401	^	i ioiii Leg	0.000	0.000	111.00

(2) LGP21401 (2) LGP21401	or Leg B	Туре	Lateral Vert ft	•	
	В		ft	۰	
	В			-	ft
	В		ft		11
	В		ft		
		From Leg	1.000 4.00	0.000	111.00
(2) LGP21401		1 Iom Log	0.000	0.000	111.00
(2) LGP21401	С	F==== 1 = =	1.000	0.000	111.00
	C	From Leg	4.00 0.000	0.000	111.00
			1.000		
DBCT108F1V92-1	Α	From Leg	4.00 0.000	0.000	111.00
			1.000		
DBCT108F1V92-1	В	From Leg	4.00	0.000	111.00
			0.000 1.000		
DBCT108F1V92-1	С	From Leg	4.00	0.000	111.00
		J	0.000		
RRUS 4426 B66	Α	From Leg	1.000 4.00	0.000	111.00
11103 4420 800	^	r ioiii Leg	0.000	0.000	111.00
			1.000		
RRUS 4426 B66	В	From Leg	4.00 0.000	0.000	111.00
			1.000		
RRUS 4426 B66	С	From Leg	4.00	0.000	111.00
			0.000 1.000		
RRUS 32	Α	From Leg	4.00	0.000	111.00
		J	0.000		
RRUS 32	В	From Leg	1.000 4.00	0.000	111.00
11100 32	Ь	i ioiii Leg	0.000	0.000	111.00
			1.000		
RRUS 32	С	From Leg	4.00 0.000	0.000	111.00
			1.000		
RRUS-11	Α	From Leg	4.00	0.000	111.00
			0.000 1.000		
RRUS-11	В	From Leg	4.00	0.000	111.00
			0.000		
RRUS-11	С	From Leg	1.000 4.00	0.000	111.00
			0.000		
RRUS12/RRUS A2	Α	From Leg	1.000 4.00	0.000	111.00
KKUS 12/KKUS A2	A	Floili Leg	0.000	0.000	111.00
	_		1,000		
RRUS12/RRUS A2	В	From Leg	4.00 0.000	0.000	111.00
			1.000		
RRUS12/RRUS A2	С	From Leg	4.00	0.000	111.00
			0.000 1.000		
DC6-48-60-18-8F	Α	From Leg	4.00	0.000	111.00
			0.000		
DC6-48-60-18-8F	Α	From Leg	1.000 4.00	0.000	111.00
230 10 00 10 01	, ,	5 L 5g	0.000	0.000	
2 All Dio y CIMeurat Die	Δ.	From Lee	1.000	0.000	111.00
2.4" Dia. x 6' Mount Pipe	Α	From Leg	4.00 0.000	0.000	111.00
			0.000		
2.4" Dia. x 6' Mount Pipe	В	From Leg	4.00	0.000	111.00
			0.000 0.000		
2.4" Dia. x 6' Mount Pipe	С	From Leg	4.00	0.000	111.00

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemen
	Leg	• •	Lateral	-	
			Vert	•	•
			ft ft	٥	ft
			π ft		
			0.000		
			0.000		
3.5" pipe x 15-ft	Α	From Leg	4.00	0.000	113.50
			0.000		
2 Ellipin a v. 45 #	Б	Farm Lan	0.000	0.000	440.50
3.5" pipe x 15-ft	В	From Leg	4.00 0.000	0.000	113.50
			0.000		
3.5" pipe x 15-ft	С	From Leg	4.00	0.000	113.50
			0.000		
			0.000		
3.5" Dia. x 3-ft Pipe	Α	From Leg	2.00 0.000	0.000	113.50
			0.000		
3.5" Dia. x 3-ft Pipe	В	From Leg	2.00	0.000	113.50
			0.000		
			0.000		
3.5" Dia. x 3-ft Pipe	С	From Leg	2.00	0.000	113.50
			0.000		
3.5" Dia. x 3-ft Pipe	Α	From Leg	0.000 2.00	0.000	113,50
0.0 Dia. x o iti ipe	^	1 Ioni Log	0.000	0,000	110.00
			0.000		
3.5" Dia. x 3-ft Pipe	В	From Leg	2.00	0.000	113.50
			0.000		
2 5" Dia v 2 # Dia a	0	Francia a	0.000	0.000	112.50
3.5" Dia. x 3-ft Pipe	С	From Leg	2.00 0.000	0.000	113.50
			0.000		
Side Arm Mount [SO 102-3]	С	None	0.000	0.000	113.50
Platform Mount [LP 1201-1]	С	None		0.000	111.00
70	0	F F	0.00	0.000	70.00
OG-860/1920/GPS-A	С	From Face	3.00 0.000	0.000	70.00
			0.000		
Side Arm Mount [SO 701-1]	С	From Face	1.50	0.000	70.00
-			0.000		
****			0.000		
Commscope MC-PK8-DSH	С	None		0.000	143.00
(2) 8' x 2" Mount Pipe	A	From Leg	4.00	0.000	143.00
(z) o x z modili. ipo	,,	20g	0.000	0,000	1 10100
			0.000		
(2) 8' x 2" Mount Pipe	В	From Leg	4.00	0.000	143.00
			0.000		
(2) 8' x 2" Mount Pipe	С	From Leg	0.000 4.00	0.000	143.00
(2) 6 x 2 Would Pipe	C	Fiolii Leg	0.000	0.000	143.00
			0.000		
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.00	0.000	143.00
•		-	0.000		
MYOOFDOOG OA (N. 15)	5	F.,	0.000	0.000	440.00
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00	0.000	143.00
			0.000 0.000		
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00	0.000	143.00
	-		0.000	2.220	
			0.000		
TA08025-B604	Α	From Leg	4.00	0.000	143.00
			0.000		
	В	From Leg	0.000 4.00	0.000	143.00
TANSN25 B604		1 101111 EO	4.00	0.000	143.00
TA08025-B604	Ь	110111209			
TA08025-B604	5		0.000 0.000		

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral		
			Vert		
			ft	٥	ft
			ft		
			ft		
			0.000		
			0.000		
TA08025-B605	Α	From Leg	4.00	0.000	143.00
			0.000		
			0.000		
TA08025-B605	В	From Leg	4.00	0.000	143.00
			0.000		
			0.000		
TA08025-B605	С	From Leg	4.00	0.000	143.00
			0.000		
			0.000		
RDIDC-9181-PF-48	Α	From Leg	4.00	0.000	143.00
			0.000		
			0.000		

	Dishes							
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter
				ft	۰	٥	ft	ft
130								
VHLP1-23	Α	Paraboloid w/Shroud (HP)	From Leg	4.00 0.000	20.000		130.00	1.27
VHLP2-23	С	Paraboloid w/Shroud (HP)	From Leg	2.000 4.00 0.000 2.000	-90.000		130.00	2.18
VHLP2.5-23	С	Paraboloid w/Shroud (HP)	From Leg	4.00 0.000	-45.000		130.00	2.92
***				2.000				

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg-No Ice	
5	0.9 Dead+1.0 Wind 30 deg-No Ice	
6	1.2 Dead+1.0 Wind 60 deg-No Ice	
7	0.9 Dead+1.0 Wind 60 deg-No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg-No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
	•	

Comb. No.	Description
18	1,2 Dead+1,0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30 31	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 100 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg-Service
45	Dead+Wind 180 deg-Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg-Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No				Comb.	lb	lb-ft	lb-ft
L1	147 - 133	Pole	Max Tension	39	0.14	-1.17	-0.01
			Max. Compression	26	-7476.65	35.95	462.69
			Max. Mx	20	-3679.28	44122.48	65.01
			Max. My	2	-3662.96	5.37	44740.33
			Max. Vy	20	-4566.78	44122.48	65.01
			Max. Vx	2	-4617.49	5.37	44740.33
			Max. Torque	20			-267.73
L2	133 - 85.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	48950.29	921.95	2570.03
			Max. Mx	20	-22168.24	943446.52	-2984.36
			Max. My	2	-22108.52	-3774.14	956356.76
			Max. Vy	20	-27174.62	943446.52	-2984.36
			Max. Vx	2	-27420.71	-3774.14	956356.76
			Max. Torque	4			2851.25
L3	85.5 - 42.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	60704.56	1347.70	2512.52
			Max. Mx	20	-32342.42	2155342.9	-7937.63
						9	
			Max. My	2	-32316.35	-8316.73	2177188.5 7
			Max. Vy	20	-30827.34	2155342.9 9	-7937.63
			Max. Vx	2	-31023.33	-8316.73	2177188.5 7
			Max. Torque	4			2833.92
L4	42.75-0	Pole	Max Tension	1	0.00	0.00	0.00
	5	. 310	Max. Compression	26	78319.62	1811.78	2779.88
			Max. Mx	20	47952.64	3706766.9	-13116.88

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		••		Comb.	lb	lb-ft	lb-ft
						2	
			Max. My	2	-47952.06	-13312.28	3737554 . 6 0
			Max. Vy	20	-34245.40	3706766.9 2	-13116.88
			Max. Vx	2	-34425.54	-13312.28	3737554.6 0
			Max. Torque	4			2667.98

Maximum Reactions	
	2

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	lb	lb	lb
		Comb.			
Pole	Max. Vert	27	78319.62	-15.39	8779.47
	Max. H _x	20	47995.13	34185.83	-105.94
	Max. H _z	2	47995.13	-102.53	34365.47
	$Max. M_x$	2	3737554.60	-102.53	34365.47
	$Max. M_z$	8	3704070.52	-34165.35	157.19
	Max. Torsion	4	2660.30	-17122.69	29848.81
	Min. Vert	7	35996.35	-29635.34	17354.42
	Min. H _x	8	47995.13	-34165.35	157.19
	$Min. H_z$	14	47995.13	102.09	-34240.86
	Min. M _x	14	-3718865.19	102.09	-34240.86
	$Min. M_z$	20	-3706766.92	34185.83	-105.94
	Min. Torsion	16	-2048.75	17134.46	-29741.36

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead Only	39995.94	0.00	0.00	-367.82	-70.82	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	47995.13	102.53	-34365.47	-3737554.60	-13313.09	-2249.20
0.9 Dead+1.0 Wind 0 deg - No Ice	35996.35	102.53	-34365.46	-3663658.89	-12992.09	-2252.66
1.2 Dead+1.0 Wind 30 deg- No Ice	47995.13	17122.69	-29848.81	-3248586.11	-1856366.23	-2660.30
0.9 Dead+1.0 Wind 30 deg- No Ice	35996.35	17122.69	-29848.81	-3184326.38	-1819756.29	-2658.09
1.2 Dead+1.0 Wind 60 deg - No Ice	47995.13	29635.34	-17354.42	-1892284.37	-3213665.62	-2102.57
0.9 Dead+1.0 Wind 60 deg - No Ice	35996.35	29635.34	-17354.42	-1854776.14	-3150306.88	-2094.81
1.2 Dead+1.0 Wind 90 deg - No Ice	47995.13	34165.35	-157.19	-21439.97	-3704070.52	-941.24
0.9 Dead+1.0 Wind 90 deg - No Ice	35996.35	34165.34	-157.19	-20865.27	-3631056.14	-930.14
1.2 Dead+1.0 Wind 120 deg - No Ice	47995.13	29486.44	17106.79	1858688.84	-3194135.44	473.06
0.9 Dead+1.0 Wind 120 deg - No Ice	35996.35	29486.44	17106.79	1822123.13	-3131171.33	484.10
1.2 Dead+1.0 Wind 150 deg - No Ice	47995.13	16893.21	29653.78	3221513.52	-1826332.76	1211.50
0.9 Dead+1.0 Wind 150 deg - No Ice	35996.35	16893.21	29653.78	3158063.88	-1790341.95	1218.62
1.2 Dead+1.0 Wind 180 deg - No Ice	47995.13	-102.09	34240.86	3718865.19	12891.02	1752.49
0.9 Dead+1.0 Wind 180 deg - No Ice	35996.35	-102.09	34240.86	3645633.63	12677.96	1754.46

Load Combination	Vertical lb	Shear _x Ib	Shear _z lb	Overturning Moment, M _x lb-ft	Overtuming Moment, M₂ lb-ft	Torque lb-ft
1.2 Dead+1.0 Wind 210 deg	47995.13	-17134.46	29741.36	3232366.81	1857761.46	2048.75
- No Ice	47995.15	-17 134.40	29741.30	3232300.01	1037701.40	2040.73
0.9 Dead+1.0 Wind 210 deg	35996.35	-17134.46	29741.36	3168699.11	1821212.84	2045.73
- No Ice						
1.2 Dead+1.0 Wind 240 deg	47995.13	-29594.33	17330.13	1887936.29	3207572.84	1949.74
- No Ice						
0.9 Dead+1.0 Wind 240 deg	35996.35	-29594.33	17330.13	1850753.73	3144420.80	1942.54
- No Ice	47995.13	24405.02	105.04	12117.00	2706766 02	CO4 0E
1.2 Dead+1.0 Wind 270 deg - No Ice	47995.13	-34185.83	105.94	13117.09	3706766.92	601.05
0.9 Dead+1.0 Wind 270 deg	35996.35	-34185.82	105.94	12980.37	3633752.35	589.81
- No Ice	00000100	01100102	100101	12000101	0000102100	000101
1.2 Dead+1.0 Wind 300 deg	47995.13	-29505.56	-17156.51	-1866849.55	3196587.05	-577.88
- No Ice						
0.9 Dead+1.0 Wind 300 deg	35996.35	-29505.56	-17156.51	-1829828.37	3133637.80	-589.54
- No Ice	47005.40	40040.00	20722	0007000.05	1000000000	4500.05
1.2 Dead+1.0 Wind 330 deg	47995.13	-16910.00	-29760.05	-3237688.25	1828360.29	-1539.85
- No Ice 0.9 Dead+1.0 Wind 330 deg	35996.35	-16910.00	-29760.05	-3173610.65	1792414.45	-1548.65
- No Ice	33990.33	-10310.00	-29700.03	-3173010.03	1732414.43	-1040.00
1.2 Dead+1.0 Ice+1.0 Temp	78319.62	-0.01	-0.03	-2779.88	1811.78	0.02
1.2 Dead+1.0 Wind 0	78319.62	15.39	-8779.47	-1069425.53	-219.05	449.41
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	78319.62	4375.51	-7618.00	928712.07	-528083.15	570.45
deg+1.0 Ice+1.0 Temp						
1 2 Dead+1 0 Wind 60	78319.62	7579.10	-4418.90	-540511.39	-916432.04	-484.28
deg+1.0 Ice+1.0 Temp	70040.00	0740.64	25.04	6706.00	1057100.01	207.02
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	78319.62	8743.64	-25.94	-6726.83	-1057422.94	-267.82
1.2 Dead+1.0 Wind 120	78319.62	7554.61	4378.79	528832.00	-912883.20	20.34
deg+1.0 Ice+1.0 Temp	70010.02	7004.01	4070.73	020002.00	312000.20	20.04
1.2 Dead+1.0 Wind 150	78319.62	4338.64	7585.30	917982.65	-522802.35	200.27
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	78319.62	-15.61	8756.31	1059895.71	4062.10	349.58
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	78319.62	-4378.26	7598.16	919709.01	532325.61	451.61
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240	78319.62	-7571.51	4415.16	534039.25	919056.95	460.84
deg+1.0 lce+1.0 Temp	70319.02	-7371.31	4415.10	554059.25	919000.90	400.04
1.2 Dead+1.0 Wind 270	78319.62	-8747.56	16.25	-690.33	1061861.42	202.49
deg+1.0 Ice+1.0 Temp		000		333.53		
1.2 Dead+1.0 Wind 300	78319.62	-7558.51	-4388.63	-536277.98	917312.85	-43.18
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	78319.62	-4342.22	-7605.10	-926991.72	527174.34	-267.78
deg+1.0 Ice+1.0 Temp	00005.04	00.05	7405.00	004000 40	0044.05	505.54
Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service	39995.94 39995.94	22.25 3719.50	-7465.06 -6483.90	-804800.40 -699579.00	-2911.85 -399646.65	-505.54 -601.23
Dead+Wind 60 deg - Service	39995.94	6437.58	-3769.78	-407615.86	-691797.09	478.66
Dead+Wind 90 deg - Service	39995.94	7421.64	-34.11	-4923.03	797292.20	-220.29
Dead+Wind 120 deg-	39995.94	6405.27	3716.05	399734.32	-687552.21	95.93
Service						
Dead+Wind 150 deg-	39995.94	3669.70	6441.58	693071.60	-393165.89	263.96
Service						
Dead+Wind 180 deg-	39995.94	-22.15	7438.02	800123.75	2715.48	391.30
Service	20005.04	2722.05	6460 50	605422.20	200026-04	465.09
Dead+Wind 210 deg - Service	39995.94	-3722.05	6460.58	695432.29	399826.81	400.09
Dead+Wind 240 deg-	39995.94	-6428,68	3764.51	406028.32	690356.42	448.26
Service	22000.01	3.23.00	3. 3 1.0 1	.00020,02	220000.12	
Dead+Wind 270 deg-	39995.94	-7426.08	22.99	2502.88	797744.93	146.84
Service						
Dead+Wind 300 deg-	39995.94	-6409.41	-3726.84	-402110.78	687961.90	-120.66
Service Dead+Wind 330 deg-	39995.94	-3673.34	-6464.64	-697187.32	393500.85	-341.62
Dood 1///ind 220 45						

Solution Summary

		n of Applied Force		D)/	Sum of Reactio		0/ =
Load	PX "	PY "	PZ "	PX "	PY "	PZ "	% Error
Comb.	<i>lb</i> 0.00	<i>lb</i> -39995.94	<i>lb</i> 0.00	<i>lb</i> 0.00	<i>lb</i> 39995 . 94	<i>lb</i> 0.00	0.000%
1 2	102.53	-39995.94 -47995.13	-34365.46	-102.53	47995.94	34365.47	0.000%
3	102.53	-35996.35	-34365.46	-102.53 -102.53	35996.35	34365.46	0.000%
4	17122.69	47995.13	-29848.81	-17122.69	47995.13	29848.81	0.000%
5	17122.69	35996.35	-29848.81	-17122.69	35996.35	29848.81	0.000%
6	29635.34	-47995.13	-17354.42	-29635.34	47995.13	17354.42	0.000%
7	29635.34	-35996.35	-17354.42	-29635.34	35996.35	17354.42	0.000%
8	34165.34	-47995.13	-157.19	-34165.35	47995.13	157.19	0.000%
9	34165.34	-35996.35	-157.19	-34165.34	35996.35	157.19	0.000%
10	29486.44	-47995.13	17106.79	-29486.44	47995.13	-17106.79	0.000%
11	29486.44	-35996.35	17106.79	-29486.44	35996.35	-17106.79	0.000%
12 13	16893.21 16893.21	-47995.13 -35996.35	29653.78 29653.78	-16893.21 -16893.21	47995.13 35996.35	-29653.78 -29653.78	0.000% 0.000%
13 14	-102.09	-35996.35 -47995.13	34240.85	102.09	47995.13	-29653.76 -34240.86	0.000%
15	-102.09	-35996.35	34240.85	102.09	35996.35	-34240.86	0.000%
16	-17134.46	47995.13	29741.36	17134.46	47995.13	-29741.36	0.000%
17	-17134.46	-35996.35	29741.36	17134.46	35996.35	-29741.36	0.000%
18	-29594.33	-47995.13	17330.13	29594.33	47995.13	-17330.13	0.000%
19	-29594.33	-35996.35	17330.13	29594.33	35996.35	-17330.13	0.000%
20	-34185.82	-47995.13	105.94	34185.83	47995.13	-105.94	0.000%
21	-34185.82	-35996.35	105.94	34185.82	35996.35	-105.94	0.000%
22	-29505.56	-47995.13	-17156.51	29505.56	47995.13	17156.51	0.000%
23	-29505.56	-35996.35	-17156.51	29505.56	35996.35	17156.51	0.000%
24 25	-16910.00 -16910.00	-47995.13 -35996.35	-29760.05 -29760.05	16910.00 16910.00	47995.13 35996.35	29760.05 29760.05	0.000% 0.000%
26	0.00	-78319.62	0.00	0.01	78319.62	0.03	0.000%
27	15.39	78319.62	8779.29	-15.39	78319.62	8779.47	0.000%
28	4375.42	-78319.62	-7617.85	-4375.51	78319.62	7618.00	0.000%
29	7578.95	-78319.62	-4418.81	-7579.10	78319.62	4418.90	0.000%
30	8743.47	-78319.62	-25.94	-8743.64	78319.62	25.94	0.000%
31	7554.46	-78319.62	4378.71	-7554.61	78319.62	-4378.79	0.000%
32	4338.56	-78319.62 -78319.62	7585.15	-4338.64	78319.62	-7585.30	0.000%
33	-15.61	-78319.62 -78319.62	8756.14	15.61	78319.62	-8756.31	0.000%
34 35	-4378.17 -7571.36	-78319.62 -78319.62	7598.01 4415.07	4378.26 7571.51	78319.62 78319.62	-7598.16 -4415.16	0.000% 0.000%
36	-7371.30 -8747.39	-78319.62 -78319.62	16.25	8747.56	78319.62 78319.62	-16.25	0.000%
37	7558.36	-78319.62	4388.54	7558.51	78319.62	4388.63	0.000%
38	4342.13	78319.62	-7604.95	4342.22	78319.62	7605.10	0.000%
39	22.25	39995.94	-7465.05	-22.25	39995.94	7465.06	0.000%
40	3719.50	-39995.94	-6483.90	-3719.50	39995.94	6483.90	0.000%
41	6437.57	-39995.94	-3769.78	-6437.58	39995.94	3769.78	0.000%
42	7421.62	-39995.94	-34.11	-7421.64	39995.94	34.11	0.000%
43	6405.26	-39995.94	3716.04	-6405.27	39995.94	-3716.05	0.000%
44	3669.70	-39995.94	6441.58	-3669.70	39995.94	-6441.58	0.000%
45 46	-22.15 -3722.05	-39995.94 -39995.94	7438.01 6460.58	22.15 3722.05	39995.94 39995.94	-7438.02 -6460.58	0.000% 0.000%
46 47	-3722.05 -6428.68	-39995.94 -39995.94	3764.51	3722.05 6428.68	39995.94 39995.94	-6460.58 -3764.51	0.000%
48	-7426.07	-39995.94	22.99	7426.08	39995.94	-22.99	0.000%
49	6409.41	39995.94	3726.84	6409.41	39995.94	3726.84	0.000%
50	-3673.34	39995.94	6464.64	3673.34	39995.94	6464.64	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00065260
3	Yes	5	0.00000001	0.00030255
4	Yes	7	0.00000001	0.00011268
5	Yes	6	0.00000001	0.00038357
6	Yes	7	0.00000001	0.00012166
7	Yes	6	0.0000001	0.00041726

8	Yes	5	0.00000001	0.00059635
9	Yes	5	0.0000001	0.00026254
10	Yes	7	0.0000001	0.00011725
11	Yes	6	0.0000001	0.00040201
12	Yes	7	0.0000001	0.00011384
13	Yes	6	0.00000001	0.00038931
14	Yes	5	0.0000001	0.00078192
15	Yes	5	0.00000001	0.00035463
16	Yes	7	0.00000001	0.00012144
17	Yes	6	0.00000001	0.00041707
18	Yes	7	0.0000001	0.00011371
19	Yes	6	0.0000001	0.00038766
20	Yes	5	0.00000001	0.00009320
21	Yes	5	0.00000001	0.00003258
22	Yes	7	0.00000001	0.00011545
23	Yes	6	0.00000001	0.00039473
24	Yes	7	0.00000001	0.00012003
25	Yes	6	0.00000001	0.00041223
26	Yes	4	0.00000001	0.00004066
27	Yes	6	0.00004717	0.00030897
28	Yes	6	0.00004664	0.00079581
29	Yes	6	0.00004663	0.00084386
30	Yes	6	0.00004719	0.00030296
31	Yes	6	0.00004667	0.00079235
32	Yes	6	0.00004667	0.00078117
33	Yes	6	0.00004717	0.00030378
34	Yes	6	0.00004664	0.00082737
35	Yes	6	0.00004664	0.00079142
36	Yes	6	0.00004718	0.00030265
37	Yes	6	0.00004664	0.00081846
38	Yes	6	0.00004665	0.00082884
39	Yes	4	0.0000001	0.00073083
40	Yes	5	0.00000001	0.00020325
41	Yes	5	0.0000001	0.00024933
42	Yes	4	0.0000001	0.00056483
43	Yes	5	0.0000001	0.00022192
44	Yes	5	0.0000001	0.00020452
45	Yes	4	0.0000001	0.00066778
46	Yes	5	0.0000001	0.00024505
47	Yes	5	0.0000001	0.00020642
48	Yes	4	0.0000001	0.00051635
49	Yes	5	0.0000001	0.00021434
50	Yes	5	0.00000001	0.00023736

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	147 - 133	35.157	40	2.036	0.007
L2	133 - 85.5	29.218	40	1.997	0.006
L3	89.25 - 42.75	12.831	40	1.443	0.002
L4	47.5 - 0	3.440	40	0.682	0.001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
143.00	Commscope MC-PK8-DSH	40	33.451	2.029	0.008	30774
132.00	VHLP1-23	40	28.800	1.992	0.008	10421
130.00	LLPX310R-V1 w/ Mount Pipe	40	27.966	1.981	0.008	9327
124.00	BXA-70063/6CFx2 w/ Mount	40	25.498	1.935	0.007	7151

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	•	ft
121.00	(2) FD9R6004/2C-3L	40	24.285	1.906	0.007	6405
113.50	3.5" pipe x 15-ft	40	21.332	1.821	0.006	5080
111.00	7770.00 w/ Mount Pipe	40	20.375	1.789	0.006	4752
70.00	OG-860/1920/GPS-A	40	7.619	1.088	0.001	2954

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	147 - 133	163.023	2	9.465	0.031
L2	133 - 85.5	135.518	2	9.289	0.029
L3	89.25 - 42.75	59.575	4	6.714	0.010
L4	47.5-0	15.985	4	3.170	0.003

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
143.00	Commscope MC-PK8-DSH	2	155.122	9.434	0.036	7028
132.00	VHLP1-23	2	133.580	9.265	0.034	2373
130.00	LLPX310R-V1 w/ Mount Pipe	2	129.718	9.211	0.034	2120
124.00	BXA-70063/6CFx2 w/ Mount Pipe	2	118.284	8.999	0.032	1616
121.00	(2) FD9R6004/2C-3L	2	112.667	8.868	0.030	1444
113.50	`	2	98.982	8.472	0.026	1140
111.00 70.00	7770.00 w/ Mount Pipe OG-860/1920/GPS-A	2 4	94.549 35.402	8.321 5.061	0.024 0.006	1064 645

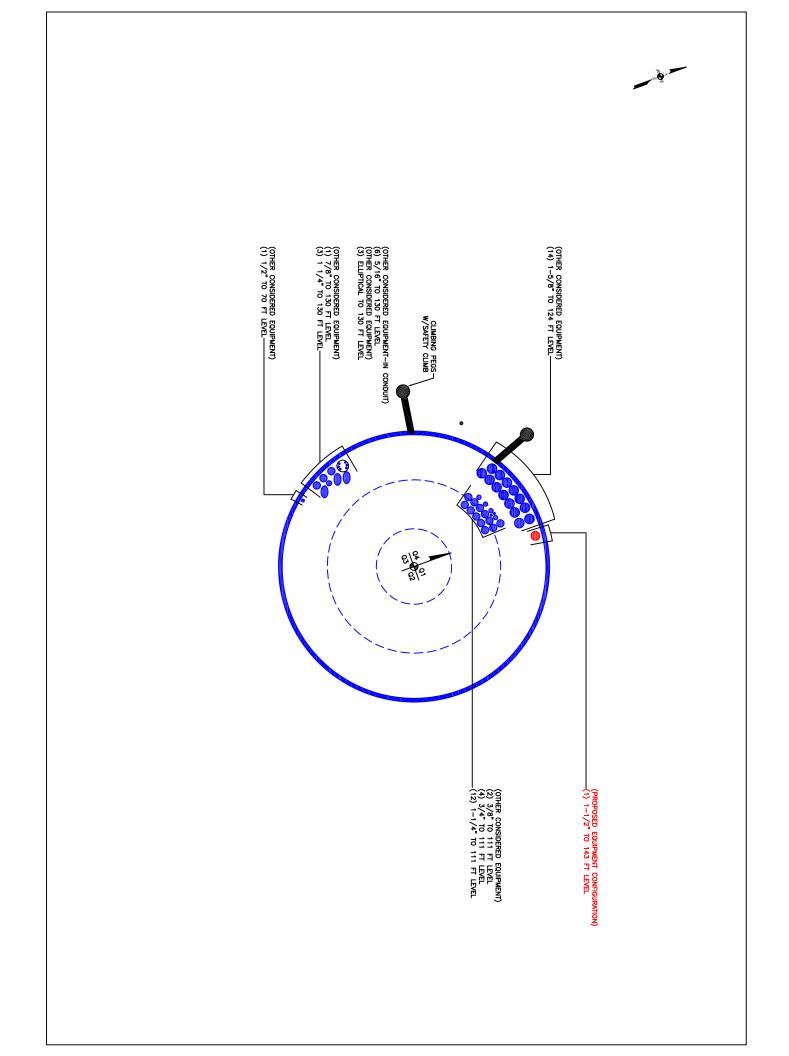
Compression Checks

Pole Design Data

Section	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in²	lb	lb	$\frac{P_u}{\phi P_n}$
L1	147 - 133 (1)	TP12.75x12.75x0.5	14.00	0.00	0.0	19.242	-3662.96	606131.00	0.006
L2	133 - 85.5 (2)	TP29.418x19.537x0.313	47.50	0.00	0.0	28.503	-22101.70	1667390.00	0.013
L3	85.5 - 42.75	TP37.687x27.477x0.375	46.50	0.00	0.0	43.795	-32311.90	2562000.00	0.013
L4	(3) 42.75 -0 (4)	TP45.83x35.894x0.438	47.50	0.00	0.0	63.947	-47952.00	3740880.00	0.013

Pole Bending Design Data

Section	Elevation	Size	M _{ux}	φ M _{nx}	Ratio	Muy	ϕM_{ny}	Ratio
No.				·	M_{ux}			M_{uy}
	ft		lb-ft	lb-ft	ϕM_{nx}	lb-ft	lb-ft	ϕM_{ny}
L1	147 - 133 (1)	TP12.75x12.75x0.5	44740.33	197066.67	0.227	0.00	197066.67	0.000
L2	133 - 85.5 (2)	TP29.418x19.537x0.313	956375.00	1171591.67	0.816	0.00	1171591.67	0.000


Section	Elevation	Size	Mux	ϕM_{nx}	Ratio	Muy	ϕM_{nv}	Ratio
No.				·	Mux			Muy
	ft		lb-ft	lb-ft	ϕM_{nx}	lb-ft	lb-ft	ϕM_{ny}
L3	85.5 - 42.75	TP37.687x27.477x0.375	2179016.67	2255016.67	0.966	0.00	2255016.67	0.000
	(3)							
L4	42.75 -0 (4)	TP45.83x35.894x0.438	3741575.00	4014483.33	0.932	0.00	4014483.33	0.000

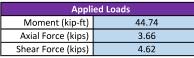
Pole Shear Design Data								
Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	φ <i>T</i> _n	Ratio T _u
	ft		lb	lb	$\frac{1}{\Phi V_n}$	lb-ft	lb-ft	ϕT_n
L1	147 - 133 (1)	TP12.75x12.75x0.5	4617.50	181839.00	0.025	0.03	195840.83	0.000
L2	133 - 85.5 (2)	TP29.418x19.537x0.313	27458.30	500218.00	0.055	2837.12	1246333.33	0.002
L3	85.5 - 42.7 ⁵ (3)	TP37.687x27.477x0.375	31070.80	768600.00	0.040	2669.88	2452091.67	0.001
L4	42.75 -0 (4)	TP45.83x35.894x0.438	34471.40	1122260.00	0.031	2660.26	4481041.67	0.001

Pole Interaction Design Data									
Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	φM _{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	147 - 133 (1)	0.006	0.227	0.000	0.025	0.000	0.234	1.050	4.8.2
L2	133 - 85.5 (2)	0.013	0.816	0.000	0.055	0.002	0.833	1.050	4.8.2
L3	85.5 -42.7 ² 5 (3)	0.013	0.966	0.000	0.040	0.001	0.981	1.050	4.8.2
L4	42.75 -0 (4)	0.013	0.932	0.000	0.031	0.001	0.946	1.050	4.8.2

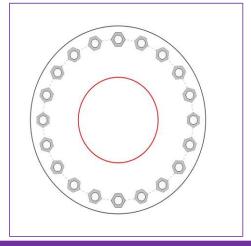
Section No.	Elevation ft	Component Type	Size	Critical Element	P Ib	øP _{allow} Ib	% Capacity	Pass Fail
L1	147 - 133	Pole	TP12.75x12.75x0.5	1	-3662.96	636437.52	22.3	Pass
L2	133 - 85.5	Pole	TP29.418x19.537x0.313	2	-22101.70	1750759.4 2	79.3	Pass
L3	85.5 - 42.75	Pole	TP37.687x27.477x0.375	3	-32311.90	2690099.8 8	93.4	Pass
L4	42.75 - 0	Pole	TP45.83x35.894x0.438	4	-47952.00	3927923.8 2	90.1	Pass
							Summary	
						Pole (L3)	93.4	Pass
						RATING =	93.4	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS


Monopole Flange Plate Connection

Elevation = 133 ft.


BU#	876310
Site Name	
Order#	553364


TIA-222 Revision	Н
TIA-ZZZ NEVISION	III.

^{*}TIA-222-H Section 15.5 Applied

Top Plate - External

Connection Properties

Bolt Data

(20) 1-1/4" ø bolts (A325 N; Fy=81 ksi, Fu=120 ksi) on 24" BC

Top Plate Data

28" OD x 1" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Top Stiffener Data

N/A

Top Pole Data

12.75" x 0.5" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Plate Data

28" OD x 1" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

19.537" x 0.3125" 12-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Anal	Analysis Results				
Bol	t Capacity				
Max Load (kips)	4.29				
Allowable (kips)	87.21				
Stress Rating:	4.7%	Pass			

Top Plate Capacity

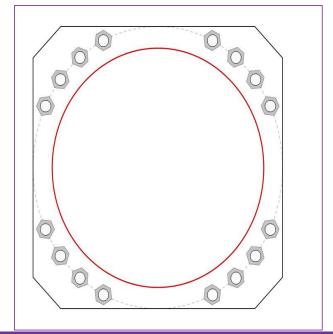
Max Stress (ksi):	19.76	(Flexural)	
Allowable Stress (ksi):	45.00		
Stress Rating:	41.8%	Pass	
Tension Side Stress Rating:	51.8%	Pass	

Bottom Plate Capacity

7.71	(Flexural)
45.00	
16.3%	Pass
9.3%	Pass
	45.00 16.3%

CCIplate - Version 4.1.1 Analysis Date: 6/10/2021

Monopole Base Plate Connection



Site Info	
BU#	876310
Site Name	
Order #	553364

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	0

Applied Loads	
Moment (kip-ft)	3741.58
Axial Force (kips)	47.95
Shear Force (kips)	34.47

^{*}TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data (16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 54" BC Anchor Spacing: 6 in

Base Plate Data

54" W x 3" Plate (A572-50; Fy=50 ksi, Fu=65 ksi); Clip: 6 in

Stiffener Data

N/A

Pole Data

45.83" x 0.4375" 12-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 204.72	φPn_t = 243.75	Stress Rating
Vu = 2.15	φVn = 149.1	80.0%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	38.92	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	82.4%	Pass

CCIplate - Version 4.1.1 Analysis Date: 6/10/2021

Pier and Pad Foundation

BU # : 876310 Site Name: App. Number: 553364

TIA-222 Revision: H
Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	▽
Rectangular Pad?:	

Superstructure Analysis Reactions		
Compression, P _{comp} :	48	kips
Base Shear, Vu_comp:	34	kips
Moment, $\mathbf{M}_{\mathbf{u}}$:	3742	ft-kips
Tower Height, H:	147	ft
BP Dist. Above Fdn, bp _{dist} :	2.5	in
Bolt Circle / Bearing Plate Width, BC:	54	in

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	193.76	34.00	16.7%	Pass
Bearing Pressure (ksf)	30,00	7.22	24.1%	Pass
Overturning (kip*ft)	4409.33	3919.08	88.9%	Pass
Pad Flexure (kip*ft)	8614.79	2370.49	26.2%	Pass
Pad Shear - 1-way (kips)	1244.56	320.48	24.5%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.000	0.0%	Pass
Flexural 2-way (Comp) (kip*ft)	11050.07	0.00	0.0%	Pass

*Rating per TIA-222-H Section

Structural Rating*:	26.2%
Soil Rating*:	88.9%

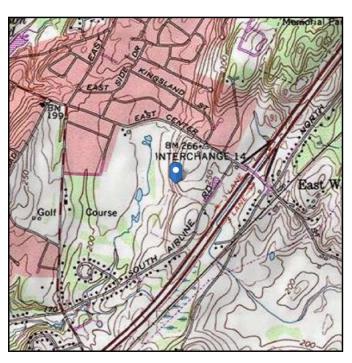
Pad Properties		
Depth, D :	4.5	ft
Pad Width, W ₁:	23	ft
Pad Thickness, T :	5	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	11	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	23	
Pad Clear Cover, cc _{pad} :	3	in

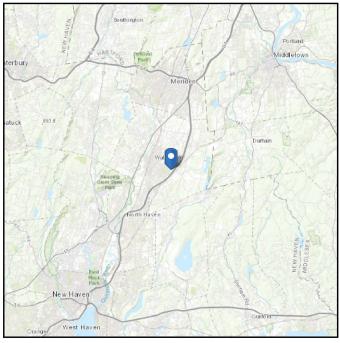
Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δ c :	150	pcf

Soil Properties		
Total Soil Unit Weight, $oldsymbol{\gamma}$:	165	pcf
Ultimate Gross Bearing, Qult:	40.000	ksf
Cohesion, Cu:		ksf
Friction Angle, $oldsymbol{arphi}$:	30	degrees
SPT Blow Count, N _{blows} :	74	
Base Friction, μ :		
Neglected Depth, N:		ft
Foundation Bearing on Rock?	Yes	
Groundwater Depth, gw :	N/A	ft

<--Toggle between Gross and Net

Address:


No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 243.75 ft (NAVD 88)

Risk Category: || Latitude: 41.443711

Soil Class: D - Stiff Soil Longitude: -72.796267

Wind

Results:

Wind Speed: 125 Vmph
10-year MRI 77 Vmph
25-year MRI 87 Vmph
50-year MRI 94 Vmph
100-year MRI 102 Vmph

Date Somessed: AS Ways 21 20001, Fig. 26.5-1A and Figs. CC-1—CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Fri May 21 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

BU:	876310
WO:	1966259
Order:	553364

Structure:	А
Rev:	1

Location			
Decimal Degrees	Deg	Min	Sec
Lat: 41.443711 +	41	26	37.36
Long: -72.796267 -	72	47	46.56
Code and Site Pa	rameters		
Seismic Design Code:	ASCE 7-10	1	
Site Soil:	D D	Stiff Soil (Default)	
Risk Category:	II	otim oon (Berault)	
<u>USGS Seismic Reference</u> S _s :	0.1830	g	
S ₁ :	0.0630	g	
T _L :	6	s	
Seismic Design Category	/ Determination		
г.н Г	1	1	
Importance Factor, I _e :	1		
Acceleration-based site coefficient, F _a :	1.6000		
Velocity-based site coefficient, F _v :	2.4000	J	
Design spectral response acceleration short period, S _{DS} :	0.1952	g	
Design spectral response acceleration 1 s period, S_{D1} :	0.1008	р В	
Design speed at response asserted at 1 2 5 periods, 501.	0,2000	J°	
Seismic Design Category Based on S _{DS} :	В	1	
Seismic Design Category Based on S _{D1} :	В	1	
Seismic Design Category Based on S ₁ :	N/A	1	
_		_	
Controlling Seismic Design Category:	В		

Exhibit E

Mount Analysis

Date: July 30, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 704-405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: Dish Network Equipment Change Out

Carrier Site Number: BOHVN00020A Carrier Site Name: CT-CCI-T-876310

Crown Castle Designation: Crown Castle BU Number: 876310

Crown Castle Site Name: BEAUMONT FARM

Crown Castle JDE Job Number: 645170 Crown Castle Order Number: 553364 Rev. 1

Engineering Firm Designation: Trylon Report Designation: 189036

Site Data: 945 East Center Street, Wallingford, New Haven County, CT, 06492

Latitude 41°26'37.36" Longitude -72°47'46.56"

Structure Information: Tower Height & Type: 147.0 ft Monopole

Mount Elevation: 143.0 ft
Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.


The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Steve Mustaro, P.E.

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed three sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 125 mph

Exposure Category: Topographic Factor at Base: 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic S_s: 0.183 Seismic S₁: 0.063 **Live Loading Wind Speed:** 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

	Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
			3	JMA WIRELESS	MX08FRO665-21	O O # Dlotform
	143.0	143.0	3	FUJITSU	TA08025-B604	8.0 ft Platform [Commscope MC-
	143.0	143.0	3	FUJITSU	TA08025-B605	PK8-DSH1
ĺ			1	RAYCAP	RDIDC-9181-PF-48	FK0 - D3HJ

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553364 Rev. 1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-DSH	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

ASTM A36 (GR 36)

HSS (Rectangular)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

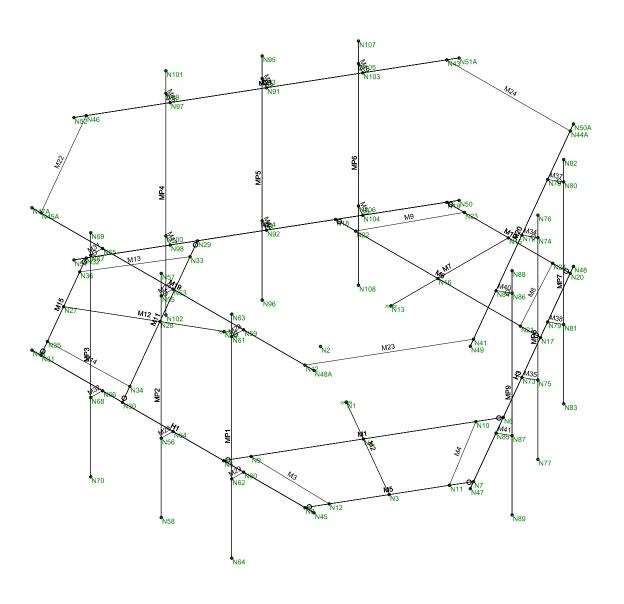
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP1		35.3	Pass
	Horizontal(s)	H3		11.8	Pass
1, 2	Standoff(s)	M2	143.0	49.0	Pass
1, 2	Bracing(s)	M1	143.0	37.9	Pass
	Handrail(s)	M22		14.7	Pass
	Mount Connection(s)	-		17.5	Pass

Structure Rating (max from all components) =	49.0%
--	-------

Notes:

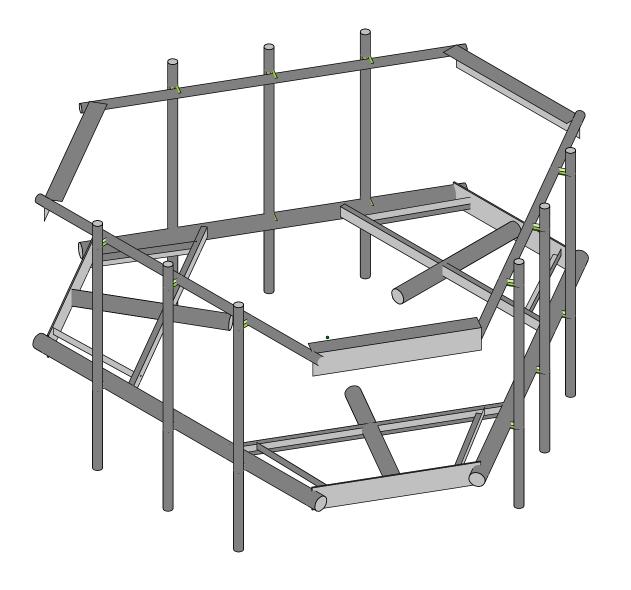
- 1) See additional documentation in "Appendix C Software Analysis Output" for calculations supporting the % capacity consumed
- 2) Rating per TIA-222-H, Section 15.5

4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope MC-PK8-DSH.

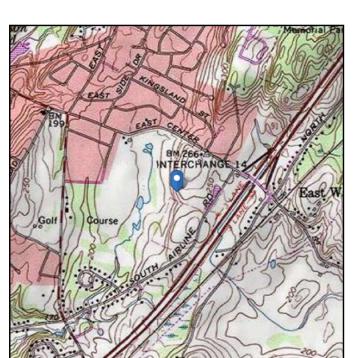
No structural modifications are required at this time, provided that the above-listed changes are implemented.

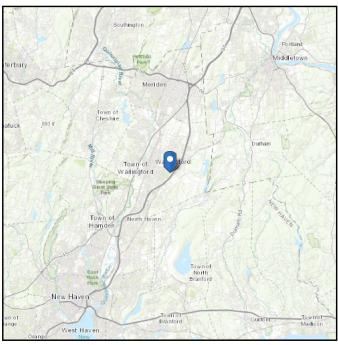

APPENDIX A WIRE FRAME AND RENDERED MODELS

Trylon		Wireframe
SMM	876310	July 30, 2021 at 10:27 AM
189036		876310_loaded.r3d

Trylon		Render
SMM	876310	July 30, 2021 at 10:27 AM
189036		876310_loaded.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS


Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 243.75 ft (NAVD 88)

Risk Category: || Latitude: 41.443711
Soil Class: D - Stiff Soil Longitude: -72.796267

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Fri Jul 30 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

CONNECTICUT DESIGN CRITERIA - STATE

CT is NOT a Home Rule State; Tab added only for Design Criteria

		Wind-Bor	Regi	Risk Cat. II	& III except Occup I-2
		Wind	mph)	Risk Cat.	III-IV
		Nominal Design Wind Speeds, V_{asd} (mph)	Risk Cat.	=	
TERS		Nomin	ec Spe	Risk Cat.	
IICIPALITY - SPECIFIC STRUCTURAL DESIGN PARAMETERS	ameters	gn Wind	² (mph)	Risk Cat III- Risk Cat. Risk Cat. Risk Cat. Risk Cat. II	2
RAL DESI	Wind Design Parameters	Jltimate Design Wind	Itimate Design Wir Speeds, Vut (mph)	Risk	Cat.II
RUCTU	Wind D	Ultii	<u>ਨ</u>	S ₁ Risk Risk	Cat.I Cat.II
ECIFIC ST		MCE	Spectral Accelerations (%g)	Sı	
LITY - SPI) W	Spe Accelerat	လွ	
INICIPAL		M	d Snc	PT un	orə
(APPENDIX N) MU		K	ilsqi:	oju:	nΜ

1. Wind-Borne Debris Regions: Type A:

Type A: Full Municipality.

Type B: Areas south of Interstate 95.

Exception: Areas that are more than one mile from the coastal mean high-water line as certified by a registered design professional may be classified as being outside a wind-

Yes

97

89

125

115

0.063

0.183

30

Wallingford

-Hurricane Prone Regions

d-Borne Debris

Regions¹

7/2/2021

R-397

Revison:

Occup I-2 & Risk Cat. IV

Risk Cat III

borne debris region.

Areas south of Metro North/Amtrak Railroad to the west of the Quinnipiac River and areas south of Interstate 95 to the east of the Quinnipiac River. Type C:

Exception: Areas that are more than one mile from the coastal mean high-water line as certified by a registered design professional may be classified as being outside a windborne debris region.

TIA LOAD CALCULATOR 2.0

PROJECT DATA			
Job Code:	189036		
Carrier Site ID:	BU# 876310		
Carrier Site Name:	BEAUMONT FARM		

CODES AND STANDARDS			
Building Code:	2015 IBC		
Local Building Code:	2018 CSBC		
Design Standard:	TIA-222-H		

STRUCTURE DETAILS				
Mount Type:	Platform			
Mount Elevation:	143.0	ft.		
Number of Sectors:	3			
Structure Type:	Monopole			
Structure Height:	147.0	ft.		

ANALYSIS CRITERIA				
Structure Risk Category:	=			
Exposure Category:	С			
Site Class:	D - Default			
Ground Elevation:	243.75	ft.		

TOPOGRAPHIC DATA				
Topographic Category:	1.00			
Topographic Feature:	N/A			
Crest Point Elevation:	0.00	ft.		
Base Point Elevation:	0.00	ft.		
Crest to Mid-Height (L/2):	0.00	ft.		
Distance from Crest (x):	0.00	ft.		
Base Topo Factor (K _{zt}):	1.00			
Mount Topo Factor (K _{zt}):	1.00			

WIND PARAMETERS			
Design Wind Speed:	125	mph	
Wind Escalation Factor (K _s):	1.00		
Velocity Coefficient (K _z):	1.36		
Directionality Factor (K _d):	0.95		
Gust Effect Factor (Gh):	1.00		
Shielding Factor (K _a):	0.90		
Velocity Pressure (q _z):	51.40	psf	

ICE PARAMETERS				
Design Ice Wind Speed:	50	mph		
Design Ice Thickness (t _i):	1.50	in		
Importance Factor (I _i):	1.00			
Ice Velocity Pressure (qzi):	51.40	psf		
Mount Ice Thickness (t _{iz}):	1.74	in		

WIND STRUCTURE CALCULATIONS				
Flat Member Pressure:	92.52	psf		
Round Member Pressure:	55.51	psf		
Ice Wind Pressure:	7.54	psf		

SEISMIC PARAMETERS				
Importance Factor (I _e):	1.00			
Short Period Accel .(S _s):	0.18	g		
1 Second Accel (S ₁):	0.06	g		
Short Period Des. (S_{DS}) :	0.20	g		
1 Second Des. (S _{D1}):	0.10	g		
Short Period Coeff. (F _a):	1.60			
1 Second Coeff. (F _v):	2.40			
Response Coefficient (Cs):	0.10			
Amplification Factor (A _S):	1.20			

LOAD COMBINATIONS [LRFD]

#	Description
1	1 <u>.</u> 4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	143	No Ice	8.01	3.21	82.50
MP1/MP4/MP7, 0/120/240			w/ Ice	9.62	4.62	285.43
TA08025-B604	3	143	No Ice	1.96	0.98	63.90
MP1/MP4/MP7, 0/120/240			w/ Ice	2.39	1.31	70.18
TA08025-B605	3	143	No Ice	1.96	1.13	75.00
MP1/MP4/MP7, 0/120/240			w/ Ice	2.39	1.47	74.76
RDIDC-9181-PF-48	1	143	No Ice	2.01	1.17	21.85
MP1, 0	-		w/ Ice	2.44	1.53	73.68
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	143	1.00	1.36	0.95	1.74	51.40	8.22
TA08025-B604	3	143	1.00	1.36	0.95	1.74	51.40	8.22
TA08025-B605	3	143	1.00	1.36	0.95	1.74	51.40	8.22
RDIDC-9181-PF-48	1	143	1.00	1.36	0.95	1.74	51.40	8.22

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	370.54	204.00	315.03	148.49	315.03	204.00
MP1/MP4/MP7, 0/120/240		w/ Ice	71.21	43.47	61.96	34.22	61.96	43.47
TA08025-B604	3	No Ice	90.83	56.75	79.47	45.39	79.47	56.75
MP1/MP4/MP7, 0/120/240		w/ Ice	17.68	11.70	15.69	9.71	15.69	11.70
TA08025-B605	3	No Ice	90.83	61.89	81.18	52.25	81.18	61.89
MP1/MP4/MP7, 0/120/240		w/ Ice	17.68	12.61	15.99	10.91	15.99	12.61
RDIDC-9181-PF-48	1	No Ice	93.07	63.80	83.31	54.04	83.31	63.80
MP1, 0		w/ Ice	18.09	13.00	16.39	11.30	16.39	13.00
		No Ice						
		w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-21	3	143	82.5	9.66
TA08025-B604	3	143	63.9	7.48
TA08025-B605	3	143	75	8.78
RDIDC-9181-PF-48	1	143	21.85	2.56

APPENDIX C SOFTWARE ANALYSIS OUTPUT

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P - Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AIS I S 100-16: LRFD
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	ACI318-14
Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM 1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

July 30, 2021 10:33 AM Checked By:____

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	O ther
O m Z	1
O m X	1
C d Z	1
CdX	1
Rho Z	1
R ho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 G r.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft^3]	Yield[psi]	Fu[psi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33000	45000
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single An	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	L6 5/8x4 7/16x3/16	Beam	Single An	A36 Gr.36	Typical	2.039	3.593	9.575	.023
7	Horizontals	PIPE_3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

July 30, 2021 10:33 AM Checked By:___

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design List	Material	Design R	. A [in2]	lyy [in4]	lzz [in4]	J [in4]
8	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

Cold Formed Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	CF1A	8C U1.25X 0	Beam	None	A653 S S G r33	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	A rea (Me	Surface(P
1	Self Weight	DL		-1			13		3	
2	Structure Wind Z	WLZ						33		
3	Structure Wind X	WLX						33		
4	Wind Load 0 AZI	WLZ					13			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLX					13			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	Ice Weight	OL1					13	33	3	
13	Ice Structure Wind Z	OL2						33		
14	Ice Structure Wind X	OL3						33		
15	Ice Wind Load 0 AZ I	OL2					13			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					13			
20	Ice Wind Load 120 AZ I	None					26			
21	Ice Wind Load 135 AZI	None					26			
22	Ice Wind Load 150 AZI	None					26			
23	Seismic Load Z	ELZ			117		13			
24	Seismic Load X	ELX	117				13			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Live Load 4 (Lv)	None					1			
29	Live Load 5 (Lv)	None					1			
30	Live Load 6 (Lv)	None					1			
31	Live Load 7 (Lv)	None					1			
32	Live Load 8 (Lv)	None					1			
33	Live Load 9 (Lv)	None					1			

July 30, 2021 10:33 AM Checked By:___

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	P oint	Distributed	A rea (Me	Surface(P
34	Maintenance Load 1 (None					1			
35	Maintenance Load 2 (None					1			
36	Maintenance Load 3 (None					1			
37	Maintenance Load 4 (None					1			
38	Maintenance Load 5 (None					1			
39	Maintenance Load 6 (None					1			
40	Maintenance Load 7 (None					1			
41	Maintenance Load 8 (None					1			
42	Maintenance Load 9 (None					1			
43	BLC 1 Transient Area	None						9		
44	BLC 12 Transient Are	None						9		

Load Combinations

	Des cription			S BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
1	1.4DL	Yes '	Υ	DL	1.4																		
2	1.2DL + 1WL 0 AZI	Yes '	Υ	DL	1.2	2	1	3		4	1												
3	1.2DL + 1WL 30 AZI	Yes '	Υ	DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1WL 45 AZI		•	DL	1.2	2	.707	3	.707	9	1												
5	1.2DL + 1WL 60 AZI			DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1WL 90 AZI		-	DL	1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZ		•	DL	1.2	2	5	3	.866		1												
_	1.2DL + 1WL 135 AZ		•	DL	1.2	2	707	3	.707	10	1												
_	1.2DL + 1WL 150 AZ		•	DL	1.2	2	866	3	.5	11	1												
	1.2DL + 1WL 180 AZ		-	DL	1.2	2	-1	3		4	-1												
11	1.2DL + 1WL 210 AZ	I Yes `	Υ	DL	1.2	2	866	3	5	5	-1												ı
	1.2DL + 1WL 225 AZ			DL	1.2	2	707	3	707	6	-1												
	1.2DL + 1WL 240 AZ			DL	1.2	2	5	3	866	7	-1												
	1.2DL + 1WL 270 AZ		•	DL	1.2	2		3	-1	8	-1												
	1.2DL + 1WL 300 AZ			DL	1.2	2	.5	3	866	9	-1												
16	1.2DL + 1WL 315 AZ	I Yes `	Υ	DL	1.2	2	.707	3	707	10	-1												
17	1.2DL + 1WL 330 AZ			DL	1.2	2	.866	3	5	11	-1												
18	0.9DL + 1WL 0 AZI	Yes '	Υ	DL	.9	2	1	3		4	1												
19	0.9DL + 1WL 30 AZI	Yes '	Υ	DL	.9	2	.866	3	.5	5	1												
20	0.9DL + 1WL 45 AZI	Yes '	Υ	DL	.9	2	.707	3	.707	6	1												
21	0.9DL + 1WL 60 AZI	Yes '	Υ	DL	.9	2	.5	3	.866	7	1												
22	0.9DL + 1WL 90 AZI	Yes '	Υ	DL	.9	2		3	1	8	1												
23	0.9DL + 1WL 120 AZ	Yes '	Υ	DL	.9	2	5	3	.866	9	1												
24	0.9DL + 1WL 135 AZ	Yes '	Υ	DL	.9	2	707	3	.707	10	1												
25	0.9DL + 1WL 150 AZ	Yes '	Υ	DL	.9	2	866	3	.5	11	1												
26	0.9DL + 1WL 180 AZ	IYes '	Υ	DL	.9	2	-1	3		4	-1												
27	0.9DL + 1WL 210 AZ	Yes '	Υ	DL	.9	2	866	3	5	5	-1												
28	0.9DL + 1WL 225 AZ	IYes '	Υ	DL	.9	2	707	3	707	6	-1												
29	0.9DL + 1WL 240 AZ	Yes '	Υ	DL	.9	2	5	3	866	7	-1												
30	0.9DL + 1WL 270 AZ	Yes '	Υ	DL	.9	2		3	-1	8	-1												
31	0.9DL + 1WL 300 AZ	Yes '	Υ	DL	.9	2	.5	3	866	9	-1												
32	0.9DL + 1WL 315 AZ	Yes '	Υ	DL	.9	2	.707	3	707	10	-1												
33	0.9DL + 1WL 330 AZ	Yes '	Υ	DL	.9	2	.866	3	5	11	-1												
34	1.2DL + 1DLi + 1W L.	Yes '	Υ	DL	1.2	OL1	1	13	1	14		15	1										
35	1.2DL + 1DLi + 1W L.	.Yes	Υ	DL	1.2	OL1	1	13	.866	14	.5	16	1										
36	1.2DL + 1DLi + 1W L.	.Yes	Υ	DL	1.2	OL1	1		.707			17	1										

July 30, 2021 10:33 AM Checked By:____

Load Combinations (Continued)

	Description SoF) S	BLCFac	BLC	Eac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
37		Y 7	DL 1.2			13			.866				1 40		1 40		1 40		1 40		1 40
38	1.2DL + 1DLi + 1W LYes		DL 1.2			13		14	1	19											
39	1.2DL + 1DLi + 1W LYes		DL 1.2				5														
40	1.2DL + 1DLi + 1W LYes		DL 1.2				707														
41	1.2DL + 1DLi + 1W L Yes		DL 1.				866		.5	22	1										
42	1.2DL + 1DLi + 1W L Yes		DL 1.2			13		14		15											
43	1.2DL + 1DLi + 1W L Yes		DL 1.				866	-	- 5												
44	1.2DL + 1DLi + 1W L Yes		DL 1.				707														
45	1.2DL + 1DLi + 1W L Yes		DL 1.2	_		13			866												
46	1.2DL + 1DLi + 1W L Yes		DL 1.			13		14		19											
47	1.2DL + 1DLi + 1W L Yes		DL 1.			13			866												
48	1.2DL + 1DLi + 1W L Yes		DL 1.2				.707														
49	1.2DL + 1DLi + 1W LYes		DL 1.				.866														
50	(1.2+0.2Sds)DL + 1 Yes		DL 1.2			24	.000	14	5	22											
	(1.2+0.2Sds)DL + 1 Yes	-	DL 1.2				.5														
51	(1.2+0.25 ds)DL + 1 Yes	-	DL 1.2				.707														
	(1.2+0.25 ds)DL + 1 Yes		DL 1.2				.866														
53 54			DL 1.2				1														
	(1.2+0.2Sds)DL + 1 Yes	•	DL 1.2		5	24	.866														
55 56	<u> </u>		DL 1.2																		
	(1.2+0.25 ds)DL + 1 Yes	-	DL 1.2																		
57	(1.2+0.2Sds)DL + 1 Yes	-																			
58	(1.2+0.25 ds)DL + 1 Yes	•	DL 1.2			24															
59	(1.2+0.25 ds)DL + 1 Yes		DL 1.2																		
60			DL 1.2																		
61	(1.2+0.2Sds)DL + 1 Yes (1.2+0.2Sds)DL + 1 Yes		DL 1.2	_	5		866														
62	(1.2+0.25 ds)DL + 1 Yes		DL 1.2			24															
63	(1.2+0.25 ds)DL + 1 Yes		DL 1.2				866														
64	(1.2+0.25 ds)DL + 1 Yes		DL 1.2				707														
65	(0.9-0.2Sds)DL + 1EYes				.866		5														
66		-	DL .86			24	_														
67	(0.9-0.2Sds)DL + 1EYes		DL .86																		
68	(0.9-0.2Sds)DL + 1EYes		DL .86				.707														
69	(0.9-0.2Sds)DL + 1EYes		DL .86				.866														
70	(0.9-0.2Sds)DL + 1EYes (0.9-0.2Sds)DL + 1EYes	-	DL .86			24	1													\vdash	
71			DL .86				.866														
72	(0.9-0.2Sds)DL + 1EYes	-			707																
73	(0.9-0.2Sds)DL + 1EYes (0.9-0.2Sds)DL + 1EYes				866																
	(0.9-0.2Sds)DL + 1EYes		DL .86																		
	(0.9-0.2Sds)DL + 1EYes		DL .86																		
			DL .86																		
	(0.9-0.2Sds)DL + 1EYes		DL .86																		
	(0.9-0.2Sds)DL + 1EYes		DL .86				-1														
	(0.9-0.2Sds)DL + 1EYes		DL .86																		
80	(0.9-0.2Sds)DL + 1EYes (0.9-0.2Sds)DL + 1EYes		DL .86																		
81			DL .86			24	5														
82	1.2DL + 1Lv1 Yes		DL 1.2																		
83	1.2DL + 1Lv2 Yes		DL 1.2																		
84	1.2DL + 1Lv3 Yes		DL 1.2	_																	
85	1.2DL + 1Lv4 Yes		DL 1.																		
86	1.2DL + 1Lv5 Yes		DL 1.																		
87	1.2DL +1Lv6 Yes		DL 1.2																		
88	1.2DL + 1Lv7 Yes	Υ	DL 1.2	<u> </u>	1.5																

July 30, 2021 10:33 AM Checked By:____

Load Combinations (Continued)

Des cription S	oP S	BLC Fac	BLC Fac.	.BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
89 1.2DL +1Lv8 Y	es Y	DL 1.2	32 1.5																
90 1.2DL +1Lv9 Y	es Y	DL 1.2	33 1.5																
91 1.2DL + 1.5Lm +1 Y	es Y	DL 1.2	34 1.5	2	.058	3		4	.058										
92 1.2DL + 1.5Lm + 1 Y	es Y		34 1.5		.05	3	.029	5	.058										
93 1.2DL + 1.5Lm +1 Y	es Y	DL 1.2			.041		.041	6	.058										
94 1.2DL + 1.5Lm +1 Y	es Y		34 1.5		.029	3	.05	7	.058										
95 1.2DL + 1.5Lm +1 Y	es Y	DL 1.2				3	.058	8	.058										
96 1.2DL + 1.5Lm +1 Y	es Y		34 1.5		029		.05		.058										
97 1.2DL + 1.5Lm +1 Y	es Y	DL 1.2		_	041		.041		.058									П	
98 1.2DL + 1.5Lm + 1 Y			34 1.5	_	05		.029		.058										
99 1.2DL + 1.5Lm +1 Y	es Y	DL 1.2			058				058									П	
100 1.2DL + 1.5Lm + 1 Y			34 1.5		05	_	029	_	058										
101 1.2DL + 1.5Lm + 1 Y		DL 1.2			041		041												
102 1.2DL + 1.5Lm + 1 Y			34 1.5	_	029	_	05	_	058										
103 1.2DL + 1.5Lm + 1 Y		DL 1.2					058		058										
104 1.2DL + 1.5Lm + 1 Y		DL 1.2			.029	_	05	_											
105 1.2DL + 1.5Lm +1 Y		DL 1.2			.041	_	041	_											
106 1.2DL + 1.5Lm +1 Y		DL 1.2		_	.05		029												
107 1.2DL + 1.5Lm +1 Y		DL 1.2			.058			4	.058										
108 1.2DL + 1.5Lm +1 Y			35 1.5		.05	3	.029	_	.058										
109 1.2DL + 1.5Lm +1 Y			35 1.5		.041	3	.041		.058										
110 1.2DL + 1.5Lm +1 Y			35 1.5		.029		.05	_	.058										
111 1.2DL + 1.5Lm +1 Y			35 1.5		1020	3	.058	_	.058										
112 1.2DL + 1.5Lm +1 Y			35 1.5		029	_	.05	9	.058										
113 1.2DL + 1.5Lm + 1 Y		DL 1.2			041		.041	_	.058										
114 1.2DL + 1.5Lm +1 Y			35 1.5		05		.029		.058										
115 1.2DL + 1.5Lm + 1 Y		DL 1.2			058		.020		058										
116 1.2DL + 1.5Lm +1 Y	_		35 1.5		05		029	<u> </u>	058										
117 1.2DL + 1.5Lm +1 Y			35 1.5		041		041	_	058										
118 1.2DL + 1.5Lm +1 Y			35 1.5		029		05	_	058										
119 1.2DL + 1.5Lm + 1 Y		DL 1.2			.020		058		058										
120 1.2DL + 1.5Lm +1 Y			35 1.5		.029		05	_	058										
121 1.2DL + 1.5Lm +1 Y		DL 1.2			.041	_	041	_											
122 1.2DL + 1.5Lm +1 Y		DL 1.2			.05	_	029	_											
123 1.2DL + 1.5Lm +1 Y		DL 1.2			.058		023	4	.058										
124 1.2DL + 1.5Lm +1 Y		DL 1.2	36 1.5		.05	3	.029	_	.058										
125 1.2DL + 1.5Lm +1 Y		DL 1.2			.041		.023		.058										
126 1.2DL + 1.5Lm +1 Y					.029														
127 1.2DL + 1.5Lm + 1 Y			36 1.5		.023	3	.058												
128 1.2DL + 1.5Lm +1 Y			36 1.5	_	029	_	.05												
129 1.2DL + 1.5Lm +1 Y			36 1.5						.058										
	es Y		36 1.5		041	-			.058										
			36 1.5		05		.029		058										
			36 1.5		058 05		- 020	_											
	es Y		36 1.5	_															
	es Y		36 1.5		041	_	041	_											
134 1.2DL + 1.5Lm +1 Y	-		36 1.5		029		05		058										
135 1.2DL + 1.5Lm +1 Y			36 1.5		020		058												
136 1.2DL + 1.5Lm +1 Y	-		36 1.5			_		_	058										
137 1.2DL + 1.5Lm +1 Y			36 1.5		.041		041												
	es Y		36 1.5		.05	_	029												
	es Y		37 1.5		.058	-	000	4	.058										
140 1.2DL + 1.5Lm +1 Y	es Y	DL 1.2	37 1.5	2	.05	3	.029	5	.058										

July 30, 2021 10:33 AM Checked By:___

Load Combinations (Continued)

Description So.P.M. S. B.CFac. B.C
142 1.2DL + 1.5Lm +1 Yes Y DL 1.2 37 1.5 2 .029 3 .05 7 .058
143 1.2DL +1.5Lm +1 Yes Y DL 1.2 37 1.5 2 0.58 8 0.58
144 1.2DL +1.5Lm +1 Yes Y DL 1.2 37 1.5 2 .028 3 .05 9 .058
146 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 -0.41 3 .041 10 .058
146 1.2DL + 1.5Lm + 1 Yes Y
147 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 .058 3 4 .058
148 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 -0.6 3 -0.29 5 -0.58
149 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 .041 3 .041 6 .058
150 1.2DL +1.5Lm +1 Yes Y DL 1.2 37 1.5 2 .029 3 .056 7 .058 151 1.2DL +1.5Lm +1 Yes Y DL 1.2 37 1.5 2 .029 3 .056 8 .058 153 1.2DL +1.5Lm +1 Yes Y DL 1.2 37 1.5 2 .029 3 .056 8 .058 154 1.2DL +1.5Lm +1 Yes Y DL 1.2 37 1.5 2 .041 3 .041 10 .058 154 1.2DL +1.5Lm +1 Yes Y DL 1.2 37 1.5 2 .05 3 .029 11 .058 155 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .058 3 .029 15 .058 156 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .058 3 .029 5 .058 157 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .058 3 .058 8 .058 158 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .029 3 .056 7 .058 159 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .029 3 .056 9 .058 160 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .029 3 .056 9 .058 161 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 10 .058 162 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 10 .058 163 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 10 .058 164 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .056 3 .029 11 .058 165 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .056 3 .029 11 .058 166 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .056 3 .029 11 .058 167 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 10 .058 169 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 10 .058 170 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 10 .058 171 1.2DL +1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .058 3 .058 8 .058 172 1.2DL +1.5L
151 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 2 3 -0.58 8 -0.58 152 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 .0.29 3 -0.58 153 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 .0.29 3 -0.58 154 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 .0.5 3 -0.29 11 -0.58 155 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.68 3 4 .0.58 156 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.5 3 .0.29 5 .0.58 157 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.5 3 .0.29 5 .0.58 158 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.29 3 .0.5 7 .0.58 158 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.29 3 .0.5 7 .0.58 159 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.29 3 .0.5 9 .0.58 160 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.29 3 .0.5 9 .0.58 161 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.58 3 .0.29 11 .0.58 162 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.58 3 .0.29 11 .0.58 163 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.58 3 .0.29 11 .0.58 164 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.58 3 .0.29 11 .0.58 165 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.58 3 .0.29 5 .0.58 166 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.29 3 .0.5 7 .0.58 167 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.29 3 .0.5 7 .0.58 168 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.29 3 .0.5 9 .0.58 170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .0.29 3 .0.5 9 .0.58 171 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .
152 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 .029 3 .05 9 .058
153 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 .041 3 .041 10 .058
154 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 37 1.5 2 .05 3 .029 11 .058
155 1.2DL + 1.5Lm +1 Yes Y DL 1.2 38 1.5 2 .058 3 4 .058
156 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .05 3 .029 5 .058
157 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 6 .058 158 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 .058 8 .058 159 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 .058 8 .058 160 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 .058 8 161 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 10 .058 162 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .058 3 .029 11 .058 163 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .051 3 .029 5 .058
158 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 .05 7 .058
159 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 2 3 .058 8 .058
160
161 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -0.41 3 .041 10 .058 162 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -0.58 3 .029 11 .058 163 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -0.058 3 4 -0.58 164 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -0.041 3 -0.058 9 165 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -0.041 3 -0.058 9 166 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -0.029 3 -0.05 7 -0.058 169 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 -0.05 9 -0.058 <t< td=""></t<>
162 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 05 3 .029 11 .058 163 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 058 3 4 058 164 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 041 3 041 6 058 165 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 041 3 041 6 058 167 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 029 3 058 8 058 168 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 058 8 058 170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .058 3 041 10
163 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -058 3 4 -058 164 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -05 3 -029 5 -058 165 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -041 3 -041 6 -058 166 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -029 3 -058 8 -058 167 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -029 3 -058 8 -058 168 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 -058 9 -058 170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .058 3 4 .058
164 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 05 3 029 5 058 165 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 041 3 041 6 058 166 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 029 3 058 8 058 167 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 029 3 058 8 058 168 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 058 8 058 170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .053 3 029 11058 171 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 4 .058
165 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -041 3 -041 6 -058 166 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -029 3 -058 8 -058 167 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 0.09 3 -058 8 -058 168 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 -059 9 -058 169 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 -059 9 -058 170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .058 3 -029 11 -058 171 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 .029 5
166 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 -029 3 05 7 058 167 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 3 058 8 058 168 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 059 9 058 169 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .041 3 041 10 058 170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .053 3 029 11 058 171 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 4 .058 172 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 6 .058
167 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 3 058 8 058 168 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 058 9 058 169 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .041 3 041 10 058 170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .058 3 041 10 058 171 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 4 .058 172 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 .029 5 .058 173 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 6 .058
168 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .029 3 05 9 058 169 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .041 3 041 10 058 170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .058 3 029 11 058 171 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 029 11 058 172 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 .029 5 .058 173 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 6 .058 174 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .058
169 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 10 .058 170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .058 3 .029 11 .058 171 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 .029 5 .058 172 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 .029 5 .058 173 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 6 .058 174 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .058 8 .058 175 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .058 9
170 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 38 1.5 2 .05 3 029 11058 .058
171 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 4 .058 172 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .058 3 .029 5 .058 173 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 6 .058 174 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .058 8 .058 175 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .058 8 .058 176 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .059 .058 177 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 10 .058 <
172 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .05 3 .029 5 .058 173 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 6 .058 174 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .05 7 .058 175 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .058 8 .058 176 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 -029 3 .058 8 .058 177 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 -041 3 .041 10 .058 178 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 058 <
173 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 6 .058 174 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .058 8 .058 175 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .058 8 .058 176 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .058 8 .058 177 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 10 .058 178 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 .029 11 .058 180 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 041 6
174 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .05 7 .058 175 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 029 3 .058 8 .058 176 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 029 3 .058 9 .058 177 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 041 3 .041 10 .058 178 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 .029 11 .058 180 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 029 5 058 181 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 041
175 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 3 .058 8 .058 176 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 029 3 .05 9 .058 177 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 041 3 .041 10 .058 178 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 05 3 .029 11 .058 180 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 4 058 181 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 053 3 041 6 058
176 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 -0.029 3 .05 9 .058 <t< td=""></t<>
177 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 041 3 .041 10 .058 178 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 .029 11 .058 179 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 4 058 180 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 05 3 029 5 058 181 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 041 3 041 6 058
178 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 05 3 .029 11 .058 <t< td=""></t<>
179 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 058 3 4 058 058 180 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 05 3 029 5 058 058 181 02 1.2 1.2 39 1.5 2 041 3 041 6 058 058 181 058
180 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 05 3 029 5 058 181 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 041 3 041 6 058
181 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2041 3041 6058
183 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 39 1.5 2 3058 8058
184 1.2DL + 1.5Lm +1 Yes Y DL 1.2 39 1.5 2 .029 305 9058
185 1.2DL + 1.5Lm +1 Yes Y DL 1.2 39 1.5 2 .041 3 -041 10058
186 1.2DL + 1.5Lm +1 Yes Y DL 1.2 39 1.5 2 .05 3 -029 11058
187 1.2DL + 1.5Lm +1 Yes Y DL 1.2 40 1.5 2 .058 3 4 .058
188 1.2DL + 1.5Lm +1 Yes Y DL 1.2 40 1.5 2 .05 3 .029 5 .058
189 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 40 1.5 2 .041 3 .041 6 .058
190 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 40 1.5 2 .029 3 .05 7 .058
191 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 40 1.5 2 3 .058 8 .058
192 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 40 1.5 2029 3 .05 9 .058

July 30, 2021 10:33 AM Checked By:___

Load Combinations (Continued)

Description So	P S	BLC Fac	BLC Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
193 1.2DL + 1.5Lm +1 Yes			40 1.5		041														
194 1.2DL + 1.5Lm +1 Yes			40 1.5	_	05		.029	_											
195 1.2DL + 1.5Lm + 1 Yes			40 1.5	_	058				058									П	
196 1.2DL + 1.5Lm +1 Yes	Υ		40 1.5	2	05	3	029	5	058										
197 1.2DL + 1.5Lm + 1 Yes	Υ	DL 1.2			041		041		058										
198 1.2DL + 1.5Lm + 1 Yes	Υ		40 1.5	2	029	3	05	7	058										
199 1.2DL + 1.5Lm + 1 Yes	Υ	DL 1.2		2		3	058	8	058										
200 1.2DL + 1.5Lm +1 Yes	Υ		40 1.5	2	.029	3	05	9	058										
201 1.2DL + 1.5Lm + 1 Yes	Υ	DL 1.2	40 1.5	2	.041	3	041	10	058										
202 1.2DL + 1.5Lm +1 Yes	Υ	DL 1.2	40 1.5	2	.05	3	029	11	058										
203 1.2DL + 1.5Lm +1 Yes	Υ	DL 1.2	41 1.5	2	.058	3		4	.058										
204 1.2DL + 1.5Lm + 1 Yes	Υ	DL 1.2	41 1.5	2	.05	3	.029	5	.058										
205 1.2DL + 1.5Lm + 1 Yes	Υ	DL 1.2	41 1.5	2	.041	3	.041	6	.058										
206 1.2DL + 1.5Lm + 1 Yes		DL 1.2	41 1.5	2	.029	3	.05		.058										
207 1.2DL + 1.5Lm + 1 Yes	Υ	DL 1.2	41 1.5	2		3	.058	8	.058										
208 1.2DL + 1.5Lm + 1 Yes		DL 1.2	41 1.5		029	3	.05	9	.058										
209 1.2DL + 1.5Lm +1 Yes	Υ	DL 1.2	41 1.5	2	041	3	.041	10	.058										
210 1.2DL + 1.5Lm +1 Yes	•	DL 1.2	41 1.5	2	05	3	.029	11	.058										
211 1.2DL + 1.5Lm +1 Yes	Υ	DL 1.2	41 1.5	2	058				058										
212 1.2DL + 1.5Lm + 1 Yes		DL 1.2	41 1.5	2	05		029	5	058										
213 1.2DL + 1.5Lm +1 Yes		DL 1.2	41 1.5	2	041	3	041		058										
214 1.2DL + 1.5Lm + 1 Yes			41 1.5		029		05		058										
215 1.2DL + 1.5Lm + 1 Yes			41 1.5	2			058	_	058									Ш	
216 1.2DL + 1.5Lm + 1 Yes	Υ		41 1.5	2	.029	_	05		058										
217 1.2DL + 1.5Lm +1 Yes	Υ	DL 1.2		2	.041	3	041											Ш	
218 1.2DL + 1.5Lm +1 Yes	Υ	DL 1.2		2	.05	3	029	11	058										
	Υ	DL 1.2		2	.058	3		4	.058										
220 1.2DL + 1.5Lm + 1 Yes	Υ		42 1.5	2	.05	3	.029		.058										
	Υ		42 1.5	2	.041	3	.041	_	.058										
222 1.2DL + 1.5Lm + 1 Yes			42 1.5	2	.029	3	.05	7	.058										
223 1.2DL + 1.5Lm + 1 Yes			42 1.5	2		3	.058	_	.058										
	Υ		42 1.5	2	029		.05	9	.058										
	Υ	DL 1.2		2	041	3	.041											\square	
226 1.2DL + 1.5Lm + 1 Yes		DL 1.2		2	05	3	.029		.058										
227 1.2DL + 1.5Lm + 1 Yes	-	DL 1.2		2	058				058										
228 1.2DL + 1.5Lm + 1 Yes			42 1.5	2	05		029		058										
229 1.2DL + 1.5Lm + 1 Yes	-	DL 1.2		_	041		041		058										
230 1.2DL + 1.5Lm +1 Yes			42 1.5		029		05		058										
	Υ	DL 1.2		2	205		058		058										
232 1.2DL + 1.5Lm + 1 Yes			42 1.5	2	.029		05		058										
	Υ	DL 1.2	42 1.5	2	.041		041	_											
234 1.2DL + 1.5Lm +1 Yes	Υ	DL 1.2	42 1.5	2	.05	3	029	11	058										

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1156.413	20	1896.373	39	1738.824	3	295.949	33	2065.355	19	185.859	31
2		min	- 1161.147	12	22.395	31	-1732.663	27	-1947.338	130	-2068.415	11	-3477.948	39
3	N1	max	1030.556	8	1948.313	45	1825.21	17	292.211	19	2108.015	25	3401.66	45
4		min	-1022.551	32	31.536	21	-1823.094	25	-2326.925	43	-2112.506	17	-167.184	21
5	N13	max	1773.266	22	1851.355	34	464.639	18	3859.226	34	1738.808	30	751.965	167

Company Designer Job Number : Trylon

: SMM : 189036 : 876310 July 30, 2021 10:33 AM Checked By:__

Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [b]	LC	Z [l b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
6		min	- 1776.181	14	-13.369	26	-473.12	10	-307.169	26	-1741.687	6	-616.885	223
7	Totals:	max	3346.322	22	5404.201	42	3579.912	18						
8		min	-3346.322	30	1345.794	66	-3579.913	10						

Envelope AISC 15th (360-16): LRFD Steel Code Checks

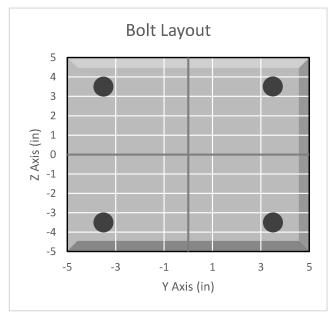
	Member	Shape	Code Check	Loc[in]	LC	SheaLoo	c	Lphi*Pnphi*Pnphi*Mnphi*Mn Eqn
1	M2	PIPE_3.5	.515	40	45	.182 4		9 75262 78750 7953.75 7953.75 2H1-1b
2	M12	PPE_3.5	.497	40	39	.174 4	0	3 75262 78750 7953.75 7953.75 2H1-1b
3	M7	PPE_3.5	.486	40	34	.159 4	0	14 75262 78750 7953.75 7953.75 2H1-1b
4	M1	C3X5	.398	34.856	44	.138 63.		y 40 1120247628 981.263 4104 1H1-1b
5	M11	C3X5	.387	34.856	40	.137 63.		y 35 1120247628 981.263 4104 1H1-1b
6	M6	C3X5	.379	34.856	34	.132 63.		y 45 3702747628 981.263 4020.21 H1-1b
7	MP1	PIPE_2.0	.371	48	16	.051 4	8	17 2086632130 1871.61871.62H1-1b
8	MP4	PIPE_2.0	.349	48	11	.053 4	8	11 2086632130 1871.61871.61H1-1b
9	MP3	PPE_2.0	.329	48	5	.034 4	8	10 2086632130 1871.61871.62H1-1b
10	MP9	PPE_2.0	.328	48	10	.030 4	8	3 2086632130 1871.61871.61H1-1b
11	MP7	PPE_2.0	.328	48	10	.040 4	8	9 2086632130 1871.61871.61H1-1b
12	MP8	PPE_2.0	.316	48	10	.040 4	8	10 2086632130 1871.61871.61H1-1b
13	MP2	PIPE_2.0	.315	48	5	.047 4	8	9 2086632130 1871.61871.62H1-1b
14	MP5	PIPE_2.0	.289	48	16	.046 4	8	3 2086632130 1871.61871.62H1-1b
15	MP6	PIPE_2.0	.285	48	15	.031 4	8	9 2086632130 1871.61871.62H1-1b
16	M10	6.5"x0.37	.263	21	2	.094 2	1	y 48 35 13 .8 <mark>75 75 7.5 58 3.96 3</mark> 63 58 .91H1 - 1 b
17	M15	6.5"x0.37	.260	21	7	.096 2		y 37 35 13 .8 75 75 7.5 58 3.96 3 63 15 .3 1 H1 - 1 b
18	M5	6.5"x0.37	.255	21	12	.100 2	1	y 42 35 13 .8 75 75 7.5 58 3.96 3 66 15 .0 1 H1 - 1 b
19	M13	L2x2x3	.213	0	14	.027) [Z 43 18051 23392.8 557.717 1239.29 2 H2-1
20	М3	L2x2x3	.206	0	3	.027) [z 49 18051 23392.8 557.717 1239.29 2 H2-1
21	M8	L2x2x3	.184	0	9	.026) [Z 38 18051 23392.8 557.717 1239.29 2H2-1
22	M4	L2x2x3	.158	0	13	.029 0)	y 41 18051 23392.8 557.717 1239.29 2H2 -1
23	M22	L6 5/8x4	.154	0	21	.030 4	2	Z 4 15453 66065 1040.5 3031.0 2 H2-1
24	M19	P IP E _2.0	.145	72	10	.127 7		2 1491632130 1871.61871.61H1-1b
25	M23	L6 5/8x4	.144	0	26	.030 4		y 17 15453660651040.53031.01H2-1
26	M9	L2x2x3	.141	0	2	.028 0	י כ	y 46 18051 23392.8 557.717 1239.29 2H2-1
27	M20	PPE_2.0	.137	24	16	.119 7	2	8 1491632130 1871.61871.61H1-1b
28	M21	PIPE_2.0	.131	72	5	.120 7		13 1491632130 1871.61871.61H1-1b
29	M14	L2x2x3	.129	0	7	.029 0		y 35 18051 23392.8 557.717 1239.29 2H2-1
30	M24	L6 5/8x4	.124	6.563	33	.027 4	2	y 6 15453 66065 1040.5 3031.0 1H2-1
31	Н3	PPE_3.5	.124	31	10	.096 2	4	16 60666 78750 7953.75 7953.75 1H1-1b
32	H1	PPE_3.5	.120	31	5	.099 2	4	10 60666 78750 7953.75 7953.75 1H1-1b
33	H2	PIPE_3.5	.116	31	15	.087 2	4	5 60666 78750 7953.75 7953.75 1H1-1b

Envelope AISIS 100-16: LRFD Cold Formed Steel Code Checks

Mem Shape	Code Check	Loc[in]	LC	SheLo phi* phi*Tphi* phi* phiphi Cb Eqn								
	No Data to Print											

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 7/30/2021



BOLT TOOL 1.5.2

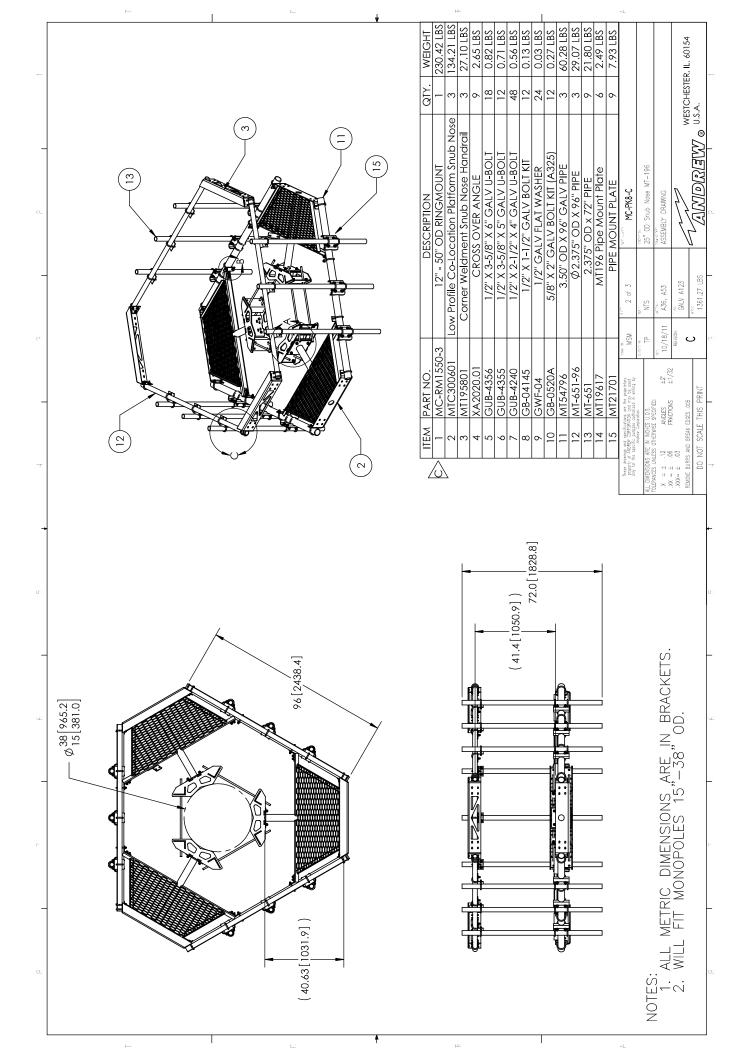
Project Data			
Job Code:	Job Code: 189036		
Carrier Site ID:	BU# 876310		
Carrier Site Name:	BEAUMONT FARM		

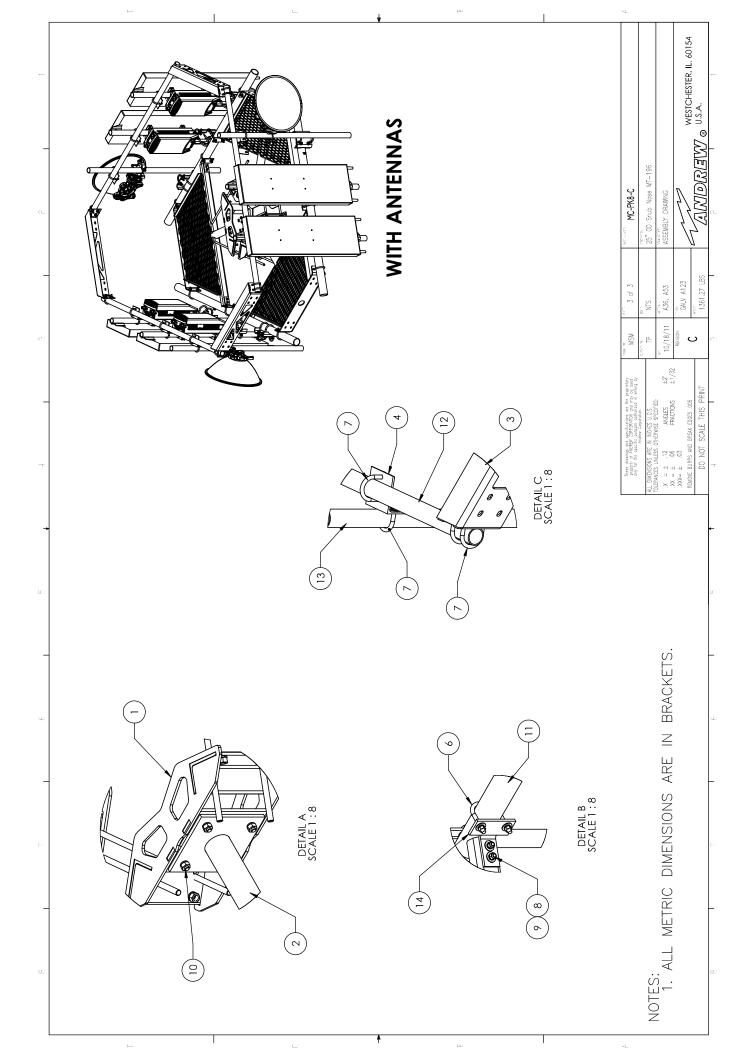
Code			
Design Standard:	TIA-222-H		
Slip Check:	No		
Pretension Standard:	TIA-222-H		

Bolt Properties				
Connection Type:	Bolt			
Diameter:	0.625	in		
Grade:	A325			
Yield Strength (Fy):	92	ksi		
Ultimate Strength (Fu):	120	ksi		
Number of Bolts:	4			
Threads Included:	Yes			
Double Shear:	No			
Connection Pipe Size:	-	in		

Connection Description		
Standoff to Collar Connection		

Bolt Check*				
Tensile Capacity (ϕT_n):	20340.1	lbs		
Shear Capacity (φV _n):	13805.8	lbs		
Tension Force (T _u):	3745.4	lbs		
Shear Force (V _u):	690.7	lbs		
Tension Usage:	17.5%			
Shear Usage:	4.8%			
Interaction:	17.5%	Pass		
Controlling Member:	M2			
Controlling LC:	42			


^{*}Rating per TIA-222-H Section 15.5


APPENDIX E SUPPLEMENTAL DRAWINGS

WESTCHESTER, IL. 60154

MESTCHESTER, IL. 60154

U.S.A. BY DRR MSM DESCRIPTION
INITIAL RELEASE
CHANGE NOSE CORNER BRKT, ADD GUB-4240 LOW PROFILE PLATFORM KIT 8' FACE MC-PK8-C REVISIONS ASSEMBLY DRAWING 1410.14 LBS GALV A123 1 of 3 A36, A500 10/18/11 MSM DO NOT SCALE THIS PRINT \triangle NOTE NO. 464.27 LBS 543.22 LBS FOR BOM ENTRY ONLY 402.64 LBS WEIGHT QIY. NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3. STEEL BUNDLE FOR SNUB NOSE PLATFORM PIPE STEEL BUNDLE FOR MC-PK8-C HARDWARE KIT FOR MC-PK8-C DESCRIPTION 2 MCPK8CSB 3 MCPK8CHWK MTC3006SB ITEM PART NO.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00020A

876310

945 East Center Street Wallingford, Connecticut 06492

August 31, 2021

EBI Project Number: 6221004790

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	16.56%			

August 31, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00020A - 876310

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **945 East Center Street** in **Wallingford**, **Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 945 East Center Street in Wallingford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 143 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	I43 feet	Height (AGL):	I43 feet	Height (AGL):	I 43 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (W):	5,236.31
Antenna A1 MPE %:	1.26%	Antenna BI MPE %:	1.26%	Antenna C1 MPE %:	1.26%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	1.26%			
AT&T	7.31%			
Verizon	6.66%			
Clearwire	0.12%			
Sprint	1.21%			
Site Total MPE % :	16.56%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	1.26%			
Dish Wireless Sector B Total:	1.26%			
Dish Wireless Sector C Total:	1.26%			
Site Total MPE % :	16.56%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	143.0	1.71	600 MHz n71	400	0.43%
Dish Wireless 1900 MHz n70	4	542.70	143.0	4.16	1900 MHz n70	1000	0.42%
Dish Wireless 2190 MHz n66	4	542.70	143.0	4.16	2190 MHz n66	1000	0.42%
	•					Total:	1.26%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)			
Sector A:	1.26%			
Sector B:	1.26%			
Sector C:	1.26%			
Dish Wireless Maximum MPE % (Sector A):	1.26%			
Site Total:	16.56%			
Site Compliance Status:	COMPLIANT			

The anticipated composite MPE value for this site assuming all carriers present is **16.56**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

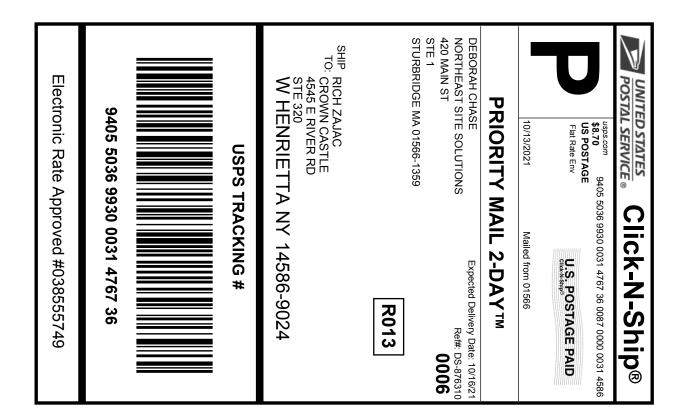
Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 945 EAST CENTER ST., WALLINGFORD, CT 06492


GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 876310/BEAUMONT FARM Customer Site ID: BOHVN00020A/CT-CCI-T-876310 Site Address: 945 East Center St., Wallingford, CT 06492

Crow	n Castle		
Ву: _	Richard Zajac Site Acquisition Specialist	Date:	10/11/2021

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 4767 36

545860100 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876310

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 4767 43

545860100 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

Ref#: CR-876310

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

WILLIAM A DICKINSON

45 S MAIN ST

WALLINGFORD CT 06492-4201

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 4767 50

545860100 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876310

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


KEVIN PAGINI

WALLINGFORD-TOWN PLANNER

45 S MAIN ST

WALLINGFORD CT 06492-4201

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 4767 67

545860100 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876310

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

ALBERT W BEAUMONT

945 E CENTER ST

WALLINGFORD CT 06492-5018

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

876310 UNITED STATES POSTAL SERVICE.

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

10/14/2021	(800)2/5			03:	52 PM
Product	Qty		Unit Price		Price
Prepaid Mail West Henrie Weight: 0 Acceptance Thu 10, Tracking #	1 etta, NY 1 1b 2.00 d Date: /14/2021	.4581 12		36	\$0.00
Tracking #	d, CT 0649 lb 11.70 Date: /14/2021	OΖ	4767	43	\$0.00
Tracking #	d, CT 064 lb 11.60 Date:)/14/2021	oz	l 4767	50	\$0.00
Tracking # 9405	e Date: 0/14/2021 #: 5036 9930	003			\$0.00
Crand Total					\$0.00