July 18, 2014 Melanie A. Bachman Connecticut Siting Council 10 Franklin Square New Britain, CT 06051 RE: Sprint PCS-Exempt Modification - Crown Site BU: 806377 **Sprint PCS Site ID: CT60XC935** Located at: 197 South Street, Vernon, CT 06066 Dear Ms. Bachman: This letter and exhibits are submitted on behalf of Sprint PCS (Sprint). Sprint is making modifications to certain existing sites in its Connecticut system in order to implement their 2.5GHz LTE technology. Please accept this letter and exhibits as notification, pursuant to § 16-50j-73 of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In compliance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to The Honorable Daniel A. Champagne, Mayor for Town of Vernon. Sprint plans to modify the existing wireless communications facility owned by Crown Castle and located at **197 South Street, Vernon, CT 06066**. Attached are a compound plan and elevation depicting the planned changes (Exhibit-1), and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration (Exhibit-2). Also included is a power density table report reflecting the modification to Sprint's operations at the site (Exhibit-3). The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") § 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in the R.C.S.A. § 16-50j-72(b)(2). - 1. The proposed modifications will not result in an increase in the height of the existing tower. Sprint's additional antennas will be located at the same elevation on the existing tower. - 2. There will be no proposed modifications to the ground and no extension of boundaries. - 3. The proposed modifications will not increase noise levels at the facility by six decibels or more. - 4. A Structural Modification Report confirming that the tower and foundation can support Sprint's proposed modifications is included as Exhibit-2. - 5. The operation of the additional antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. A cumulative General Power Density table report for Sprint's modified facility is included as Exhibit-3. For the foregoing reasons, Sprint respectfully submits the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Donna Neal. Sincerely, Jeff Barbadora Real Estate Specialist ### **Enclosures** Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes Tab 2: Exhibit-2: Structural Modification Report Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report) cc: The Honorable Daniel A. Champagne, Mayor Town of Vernon Vernon Town Hall, 3rd Floor 14 Park Place Vernon, CT 06066 PROJECT: 2.5 EQUIPMENT DEPLOYMENT SITE NAME: **CROWN ROCKVILLE** SITE CASCADE: CT60XC935 SITE NUMBER: 806377 SITE ADDRESS: 197 SOUTH STREET VERNON, CT 06066 Know what's below. Call before you dig. **SELF SUPPORT TOWER** MARKET: SITE TYPE: NORTHERN CONNECTICUT PLANS PREPARED BY: - MLA PARTNER: - INFINIGY8 1033 Watervliet Shaker Ro Albany, NY 12205 Office # (518) 690-0790 JOB NUMBER 353-000 CROYYN - DRAWING NOTICE: 0 0 0 0 0 0 0 0 THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT | DESCRIPTION | DATE | BY | REV | |-------------|--------|----------|-----| | | | | | | | _ | | _ | | | _ | \vdash | - | | | _ | \vdash | - | | FOR PERMIT | 7/8/14 | MPS | 0 | SITE NAME: **CROWN ROCKVILLE** SITE CASCADE CT60XC935 SITE ADDRESS: = 197 SOUTH STREET VERNON, CT 06066 SHEET DESCRIPTION: - TITLE SHEET & PROJECT DATA SHEET NUMBER **T-1** THESE OUTLINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. ### SECTION 01 100 - SCOPE OF WORK ### PART 1 - GENERAL 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT CONSTRUCTION STANDARDS FOR WIRELESS SITES, CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. #### 1.2 RELATED DOCUMENTS: - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. - 1.3 PRECEDENCE: SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES INCLUDING THE STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS. ### 1.4 NATIONALLY RECOGNIZED CODES AND STANDARDS: - A. THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED - 1. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION - 5. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT. - GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR NETWORK TELECOMMUNICATIONS EQUIPMENT. - 4. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE - "NEC") AND NFPA 101 - 5. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM) - 6. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE) - 7. AMERICAN CONCRETE INSTITUTE (ACI) - 8. AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA) - 9. CONCRETE REINFORCING STEEL INSTITUTE (CRSI) - 10. AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO) - 11. PORTLAND CEMENT ASSOCIATION (PCA) - 12. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA) - 13. BRICK INDUSTRY ASSOCIATION (BIA) - 14. AMERICAN WELDING SOCIETY (AWS) - 15. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA) - 16. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) - 17. DOOR AND HARDWARE INSTITUTE (DHI) - 18. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA) - 19. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE. ### 1.5 DEFINITIONS: - A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT - B. COMPANY: SPRINT CORPORATION - C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE - D. CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE - E. THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK. - F. OFCI: OWNER FURNISHED, CONTRACTOR INSTALLED EQUIPMENT. - G. CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT ... - 1.6 SITE FAMILIARITY: CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS. - 1.7 POINT OF CONTACT: COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT. - 1.8 ON—SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK - 1.9 DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL. SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION. - A. THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS. - B. DETAILS ARE INTENDED TO SHOW DESIGN INTENT. MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK. CONTRACTOR SHALL NOTIFY SPRINT CONSTRUCTION MANAGER OF ANY VARIATIONS PRIOR TO PROCEEDING WITH THE - C. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO - 1.10 USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS. - 1.11
UTILITIES SERVICES: WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY - 1.12 PERMITS / FEES: WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. - 1.13 CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY. - 1.14 METHODS OF PROCEDURE (MOPS) FOR CONSTRUCTION: CONTRACTOR SHALL PERFORM WORK AS DESCRIBED IN THE FOLLOWING INSTALLATION AND COMMISSIONING NOTE: IN SHORT-FORM SPECIFICATIONS ON THE DRAWINGS, A/E TO INSERT LIST OF APPLICABLE MOPS INCLUDING EN-2012-001, EN-2013-002, EL-0568, AND TS-0193 1.15 USE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS: PART 2 - PRODUCTS (NOT USED) ### PART 3 - EXECUTION - 3.1 TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS. - 3.2 ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK. - 3.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY. - 3.4 DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS. 3.5 EXISTING CONDITIONS: NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER. ### SECTION 01 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT PART 1 - GENERAL 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. PART 3 - EXECUTION - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION. - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. PART 2 - PRODUCTS (NOT USED) ### 3.1 RECEIPT OF MATERIAL AND EQUIPMENT: - A. A COMPANY FURNISHED MATERIAL AND EQUIPMENT IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS. - B. THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL: - 1 ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT. - 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES. - 3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT. - RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY—FOUR HOURS AFTER RECEIPT, REPORT TO SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF - 5. PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING. - COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE #### 3.2 DELIVERABLES: - A. COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY - B. IF APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY - C. UPLOAD DOCUMENTATION INTO SPRINT SITE MANAGEMENT SYSTEM (SMS) AND/OR PROVIDE HARD COPY DOCUMENTATION AS REQUESTED. ### SECTION 01 300 - CELL SITE CONSTRUCTION CO. PART 1 - GENERAL 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. ### 1.2 RELATED DOCUMENTS: - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. ### 1.3 NOTICE TO PROCEED - A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED AND THE ISSUANCE OF THE WORK ORDER. - B. UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY. TOWER OWNER NOTIFICATION ONCE THE CONTRACTOR HAS RECEIVED AND ACCEPTED THE NOTICE TO PROCEED, CONTRACTOR WILL CONTACT THE CROWN CASTLE CONSTRUCTION MANAGER OF RECORD (NOTED ON THE FIRST PAGE ON THIS CONSTRUCTION DRAWING) A MINIMUM OF 48 HOURS PRIOR TO WORK START. UPON ARRIVAL TO THE JOB SITE, CONTRACTOR CREW IS REQUIRED CALL 1-800-788-7011 TO NOTIFY THE CROWN CASTLE NOC WORK HAS BEGUN. ### PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION ### 3.1 FUNCTIONAL REQUIREMENTS: - A. THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK. THE ACTIVITIES DESCRIBED ARE NOT EXHAUSTIVE, AND CONTRACTOR SHALL TAKE ANY AND ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH - B. SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED. - C. MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES - D. PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING: PLANS PREPARED FOR: Overland Park, Kansas 66251 PLANS PREPARED BY: 1033 Watervliet Shaker Rd Albany, NY 12205 Office # (518) 690-0790 JOB NUMBER 353-000 MI A PARTNER! ENGINEERING LICENSE: - DRAWING NOTICE: - THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT. | REVISIONS: | | _ | _ | |-------------|--------|----------|-----| | DESCRIPTION | DATE | BY | REV | | | | _ | _ | | | _ | | | | | | - | | | | _ | \vdash | _ | | FOR PERMIT | 7/8/14 | MPS | 0 | | | | - | - | - SITE NAME: - **CROWN ROCKVILLE** CT60XC935 SITE ADDRESS: 197 SOUTH STREET VERNON, CT 06066 - SHEET DESCRIPTION: - SPRINT SPECIFICATIONS ### CONTINUE FROM SP-1 - 1. PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION. - PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND SURFACE TREATMENTS. - 3. MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND TELCO BACKHAUL. - 4. INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS CONDUITS, AND UNDERGROUND GROUNDING SYSTEM. - 5. INSTALL ABOVE GROUND GROUNDING SYSTEMS. - 6. PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS. - 7. INSTALL "H-FRAMES", CABINETS AND SHELTERS AS INDICATED. - 8. INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED. - 9. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES. - 10. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS. - 11. PROVIDE SLABS AND EQUIPMENT PLATFORMS. - 12. INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS BARRIERS. - 13. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER. - 14. CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER - 15. INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS. - INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON EXISTING TOWERS AS REQUIRED. - 17. INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED FOLLIPMENT. - PERFORM, DOCUMENT, AND CLOSE OUT ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES AND LANDLORDS. - 19. PERFORM ANTENNAL AND COAX SWEEP TESTING AND MAKE ANY AND ALL NECESSARY CORRECTIONS. - 20. REMAIN ON SITE MOBILIZED THROUGHOUT HAND-OFF AND INTEGRATION TO ASSIST AS NEEDED UNTIL SITE IS DEEMED SUBSTANTIALLY COMPLETE AND PLACED "ON AIR." ### 3.2 GENERAL REQUIREMENTS FOR CIVIL CONSTRUCTION: - A. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES. AND SURPLUS MATERIALS. - B. EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS. - C. CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION. - IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING, THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY. - CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD. - D. CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION - E. CONDUCT TESTING AS
REQUIRED HEREIN. ### 3.3 DELIVERABLES: - A. CONTRACTOR SHALL REVIEW, APPROVE, AND SUBMIT TO SPRINT SHOP DRAWINGS, PRODUCT DATA, SAMPLES, AND SIMILAR SUBMITTALS AS REQUIRED HEREINAFTER - B. PROVIDE DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED INTO SMS. - 1. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS. - 2. PROJECT PROGRESS REPORTS. - CIVIL CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - ELECTRICAL SERVICE COMPLETION DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - LINES AND ANTENNA INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - POWER INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - TELCO READY DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - PPC (OR SHELTER) INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - TOWER CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - TOWER CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - BTS AND RADIO EQUIPMENT DELIVERED AT SITE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - 12. NETWORK OPERATIONS HANDOFF CHECKLIST (HOC WALK) COMPLETE (UPLOAD FORM IN SMS) - CIVIL CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - 14. SITE CONSTRUCTION PROGRESS PHOTOS UNLOADED INTO SMS. ### SECTION 01 400 - SUBMITTALS & TESTS #### PART 1 - GENERAL 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. #### 1.2 RELATED DOCUMENTS: - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION. - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. #### 1.3 SUBMITTALS - A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE SPECIFICATIONS. - B. SUBMIT THE FOLLOWING TO COMPANY REPRESENTATIVE FOR APPROVAL. - CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING. - 2. CONCRETE BREAK TESTS AS SPECIFIED HEREIN. - 3. SPECIAL FINISHES FOR INTERIOR SPACES, IF ANY. - 4. ALL EQUIPMENT AND MATERIALS SO IDENTIFIED ON THE CONSTRUCTION DRAWINGS. - 5. CHEMICAL GROUNDING DESIGN - D. ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT. ### 1.4 TESTS AND INSPECTIONS: - A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT DOCUMENTATION. - B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING: - COAX SWEEPS AND FIBER TESTS PER TS-0200 REV 4 ANTENNA LINE ACCEPTANCE STANDARDS. - AGL, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE—FOR—THE—PURPOSE ANTENNA ALIGNMENT TOOL. - CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING. - C. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES, BUT IS NOT LIMITED TO THE FOLLOWING; - AZIMUTH, DOWNTILT, AGL UPLOAD REPORT FROM ANTENNA ALIGNMENT TOOL TO SITERRA TASK 465. INSTALLED AZIMUTH, DOWNTILT, AND AGL MUST CONFORM TO THE RF DATA SHEETS. SWEEP AND FIBER TESTS - 2. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT - 3. ALL AVAILABLE JURISDICTIONAL INFORMATION - 4. PDF SCAN OF REDLINES PRODUCED IN FIELD 5. ELECTRONIC AS—BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS. ANY FIELD CHANGE MUST BE REFLECTED BY MODIFYING THE PLANS, ELEVATIONS, AND DETAILS IN THE DRAWING SETS. GENERAL NOTES INDICATING MODIFICATIONS WILL NOT BE ACCEPTED. CHANGES SHALL BE HIGHLIGHTED AS "CLOUDS" IDENTIFIED AS THE "AS—BUILT" CONDITION. - 6. LIEN WAIVERS - 7. FINAL PAYMENT APPLICATION - 8. REQUIRED FINAL CONSTRUCTION PHOTOS - 9 . CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS - ALL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLETED IN SITERRA (SPRINTS DOCUMENT REPOSITORY OF RECORD). - 1.5 COMMISSIONING: PERFORM ALL COMMISSIONING AS REQUIRED BY APPLICABLE - 1.6 INTEGRATION: PERFORM ALL INTEGRATION ACTIVITIES AS REQUIRED BY APPLICABLE MOPS PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION ### 3.1 REQUIREMENTS FOR TESTING: ### A. THIRD PARTY TESTING AGENCY: - WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REGULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS. - 2. THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES. - 3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED. - 4. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED. ### 3.2 REQUIRED TESTS: - A. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOILOWING: - CONCRETE CYLINDER BREAK TESTS FOR THE TOWER AND ANCHOR FOUNDATIONS AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING. - ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY TESTING AS SPECIFIED IN SECTION: HOT MIX ASPHALT PAVING. - 3. FIELD QUALITY CONTROL TESTING AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING. - 4. TESTING REQUIRED UNDER SECTION: AGGREGATE BASE FOR ACCESS ROADS, PADS AND ANCHOR LOCATIONS - 5. STRUCTURAL BACKFILL COMPACTION TESTS FOR THE TOWER FOUNDATION. - 6. SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING SYSTEM DESIGN. - 7. ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS. - 8. GROUNDING AT ANTENNA MASTS FOR GPS AND ANTENNAS - 9. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION. ### 3.3 REQUIRED INSPECTIONS - A. SCHEDULE INSPECTIONS WITH COMPANY REPRESENTATIVE. - B. CONDUCT INSPECTIONS INCLUDING BUT NOT LIMITED TO THE FOLLOWING: - GROUNDING SYSTEM INSTALLATION PRIOR TO EARTH CONCEALMENT DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE. - FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE. - COMPACTION OF BACKFILL MATERIALS; AGGREGATE BASE FOR ROADS, PADS, AND ANCHORS; ASPHALT PAVING; AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES, BY INDEPENDENT THIRD PARTY AGENCY. - PRE— AND POST—CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING FACILITIES. - 5. TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL PHOTOGRAPHS BY THIRD PARTY AGENCY. - ANTENNA AZIMUTH, DOWN TILT AND PER SUNLIGHT TOOL SUNSIGHT INSTRUMENTS — ANTENNALIGN ALIGNMENT TOOL (AAT) Sprint 6580 Sprint Parkway Overland Park, Kansas 66251 PLANS PREPARED BY: MLA PARTNER: INFINIGY8 1033 Watervliet Shaker Rd Albany, NY 12205 Office # (518) 690-0790 Fax # (518) 690-0793 JOB HAMBER 353-000 CROWN No. 24705 CENSE ONAL ENGINEERING LICENSE P DRAWING NOTICE: THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT. | And the second | | _ | | |-------------------------|--------|-----|-----| | REVISIONS: DESCRIPTION | DATE | вү | REV | | | | | | | | | | | | FOR PERMIT | 7/8/14 | MPS | 0 | | | | | | SITE NAME: - CROWN ROCKVILLE SITE CASCADE: CT60XC935 SITE ADDRESS: 197 SOUTH STREET VERNON, CT 06066 SHEET DESCRIPTION: SPRINT SPECIFICATIONS - SHEET NUMBER: - SP-2 ### CONTINUE FROM SP-2 - 7. VERIFICATION DOCUMENTED WITH THE ANTENNA CHECKLIST REPORT, BY A&E, SITE DEVELOPMENT REP, OR RF REP. - FINAL INSPECTION CHECKLIST AND HANDOFF WALK (HOC.). SIGNED FORM SHOWING ACCEPTANCE BY FIELD OPS IS TO BE UPLOADED INTO SMS. - COAX SWEEP AND FIBER TESTING DOCUMENTS SUBMITTED VIA SMS FOR RF - 10. SCAN-ABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT - 11. ALL AVAILABLE JURISDICTIONAL INFORMATION - 12. PDF SCAN OF REDLINES PRODUCED IN FIELD - C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING. - D. CONSTRUCTION INSPECTIONS AND CORRECTIVE MEASURES SHALL BE DOCUMENTED BY THE CONTRACTOR WITH WRITTEN REPORTS AND PHOTOGRAPHS. PHOTOGRAPHS MUST BE DIGITAL AND OF SUFFICIENT QUALITY TO CLEARLY SHOW THE SITE CONSTRUCTION. PHOTOGRAPHS MUST CLEARLY IDENTIFY THE PHOTOGRAPHED ITEM AND BE LABELED WITH THE SITE CASCADE NUMBER, SITE NAME, DESCRIPTION, AND - 3.4 DELIVERABLES: TEST AND INSPECTION REPORTS AND CLOSEOUT DOCUMENTATION SHALL BE UPLOADED TO THE SMS AND/OR FORWARDED TO SPRINT FOR INCLUSION INTO THE - A. THE FOLLOWING TEST AND INSPECTION REPORTS SHALL BE PROVIDED AS - 1. CONCRETE MIX AND CYLINDER BREAK REPORTS. - 2. STRUCTURAL BACKFILL COMPACTION REPORTS. - 3. SITE RESISTANCE TO EARTH TEST. - ANTENNA AZIMUTH AND DOWN TILT VERIFICATION - 5. TOWER ERECTION INSPECTIONS AND MEASUREMENTS DOCUMENTING TOWER INSTALLED PER SUPPLIER'S REQUIREMENTS AND THE APPLICABLE SECTIONS - 6. COAX CABLE SWEEP TESTS PER COMPANY'S "ANTENNA LINE ACCEPTANCE - B. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES THE FOLLOWING - TEST WELLS AND TRENCHES: PHOTOGRAPHS OF ALL TEST WELLS; PHOTOGRAPHS SHOWING ALL OPEN EXCAVATIONS AND TRENCHING PRIOR TO BACKFILLING SHOWING A TAPE MEASURE VISIBLE IN THE EXCAVATIONS - 2. CONDUITS, CONDUCTORS AND GROUNDING: PHOTOGRAPHS SHOWING TYPICAL
INSTALLATION OF CONDUCTORS AND CONNECTORS; PHOTOGRAPHS SHOWING TYPICAL BEND RADIUS OF INSTALLED GROUND WIRES AND GROUND ROD - 3. CONCRETE FORMS AND REINFORCING: CONCRETE FORMING AT TOWER AND EQUIPMENT/SHELTER PAD/FOUNDATIONS — PHOTOGRAPHS SHOWING ALL REINFORCING STEEL, UTILITY AND CONDUIT STUB OUTS; PHOTOGRAPHS SHOWING CONCRETE POUR OF SHELTER SLAB/FOUNDATION, TOWER FOUNDATION AND GUY ANCHORS WITH VIBRATOR IN USE; PHOTOGRAPHS SHOWING EACH ANCHOR ON GUYED TOWERS, BEFORE CONCRETE POUR. - 4. TOWER, ANTENNAS AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAX LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN; PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR; PHOTOS OF GPS ANTENNA(S); PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERPROOFING — TOP AND BOTTOM; PHOTOS OF COAX GROUNDING—TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE. - ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION; PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF: - 6. SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS. - 7. FINISHED UTILITIES: CLOSE—UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE—UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND IUI; CLOSE—UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL. - 8. REQUIRED MATERIALS CERTIFICATIONS: CONCRETE MIX DESIGNS; MILL CERTIFICATION FOR ALL REINFORCING AND STRUCTURAL STEEL; AND ASPHALT - 9. ANY AND ALL SUBMITTALS BY THE JURISDICTION OR COMPANY. ### SECTION 01 400 - SUBMITTALS & TESTS #### PART 1 - GENERAL 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. #### 1.2 RELATED DOCUMENTS: - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. ### PART 2 - PRODUCTS (NOT USED) ### PART 3 - EXECUTION #### 3.1 WEEKLY REPORTS: - A. CONTRACTOR SHALL PROVIDE SPRINT WITH WEEKLY REPORTS SHOWING PROJECT STATUS. THIS STATUS REPORT FORMAT WILL BE PROVIDED TO THE CONTRACTOR BY SPRINT. THE REPORT WILL CONTAIN SITE ID NUMBER, THE MILESTONES FOR EACH SITE, INCLUDING THE BASELINE DATE, ESTIMATED COMPLETION DATE AND ACTUAL - B. REPORT INFORMATION WILL BE TRANSMITTED TO SPRINT VIA ELECTRONIC MEANS AS REQUIRED. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING #### 3.2 PROJECT CONFERENCE CALLS: A. SPRINT MAY HOLD WEEKLY PROJECT CONFERENCE CALLS. CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS #### 3.3 PROJECT TRACKING IN SMS: A. CONTRACTOR SHALL PROVIDE SCHEDULE UPDATES AND PROJECTIONS IN THE SMS SYSTEM ON A WEEKLY BASIS. #### 3.4 ADDITIONAL REPORTING: A. ADDITIONAL OR ALTERNATE REPORTING REQUIREMENTS MAY BE ADDED TO THE REPORT AS DETERMINED TO BE REASONABLY NECESSARY BY COMPANY. - A. FILE DIGITAL PHOTOGRAPHS OF COMPLETED SITE IN JPEG FORMAT IN THE SMS PHOTO LIBRARY FOR THE RESPECTIVE SITE. PHOTOGRAPHS SHALL BE CLEARLY LABELED WITH SITE NUMBER, NAME AND DESCRIPTION, AND SHALL INCLUDE AT A MINIMUM THE FOLLOWING AS APPLICABLE: - 1. 1SHELTER AND TOWER OVERVIEW. - 2. TOWER FOUNDATION(S) FORMS AND STEEL BEFORE POUR (EACH ANCHOR ON GUYED TOWERS). - 3. TOWER FOUNDATION(S) POUR WITH VIBRATOR IN USE (EACH ANCHOR ON GUYED TOWERS). - 4. TOWER STEEL AS BEING INSTALLED INTO HOLE (SHOW ANCHOR STEEL ON GUYED TOWERS). - 5. PHOTOS OF TOWER SECTION STACKING. - 6. CONCRETE TESTING / SAMPLES. - 7. PLACING OF ANCHOR BOLTS IN TOWER FOUNDATION. - 8. BUILDING/WATER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS. - 9. SHELTER FOUNDATION -- FORMS AND STEEL BEFORE POURING - 10. SHELTER FOUNDATION POUR WITH VIBRATOR IN USE. - 11. COAX CABLE ENTRY INTO SHELTER. - 12. PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE. - 13. ROOFTOP PRE AND POST CONSTRUCTION PHOTOS TO INCLUDE PENETRATIONS AND INTERIOR CEILING. - 14. PHOTOS OF TOWER TOP COAX LINE COLOR CODING AND COLOR CODING AT - 15. PHOTOS OF ALL APPROPRIATE COMPANY OR REGULATORY SIGNAGE. - 16. PHOTOS OF EQUIPMENT BOLT DOWN INSIDE SHELTER - 17. POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE AND POWER AND TELCO SUPPLY LOCATIONS INCLUDING METER/DISCONNECT. - 18. ELECTRICAL TRENCH(S) WITH ELECTRICAL / CONDUIT BEFORE BACKFILL - 19. ELECTRICAL TRENCH(S) WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL. - 20. TELCO TRENCH WITH TELEPHONE / CONDUIT BEFORE BACKFILL. 21. TELCO TRENCH WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL. - 22. SHELTER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII). - 23. TOWER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII). - 24. FENCE GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII). - 25. ALL BTS GROUND CONNECTIONS. - 26. ALL GROUND TEST WELLS. - 27. ANTENNA GROUND BAR AND EQUIPMENT GROUND BAR. - 28. ADDITIONAL GROUNDING POINTS ON TOWERS ABOVE 200' - 29. HVAC UNITS INCLUDING CONDENSERS ON SPLIT SYSTEMS. - 30. GPS ANTENNAS. - 31. CABLE TRAY AND/OR WAVEGUIDE BRIDGE. - 32. DOGHOUSE/CABLE EXIT FROM ROOF. - 33. EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA. - 34. MASTER BUS BAR. - 35. TELCO BOARD AND NIU. - 36. ELECTRICAL DISTRIBUTION WALL. - 37. CABLE ENTRY WITH SURGE SUPPRESSION - 38. ENTRANCE TO EQUIPMENT ROOM. - 39. COAX WEATHERPROOFING-TOP AND BOTTOM OF TOWER. - 40. COAX GROUNDING -TOP AND BOTTOM OF TOWER. - 41, ANTENNA AND MAST GROUNDING. 42. LANDSCAPING - WHERE APPLICABLE. - 3.6 FINAL PROJECT ACCEPTANCE: COMPLETE ALL REQUIRED REPORTING TASKS PER CONTRACT, CONTRACT DOCUMENTS OR THE SPRINT INTEGRATED CONSTRUCTION STANDARD'S FOR WIRELESS SITES AND UPLOAD INTO SITERRA. PLANS PREPARED FOR Overland Park, Kansas 66251 MLA PARTNER: 1033 Watervliet Shaker Rd Office # (518) 690-0790 Fax # (518) 690-0793 JOB NUMBER 353-000 ENGINEERING LICENSE: OF CONN CENSED. CENSE CONTRACTOR - DRAWING NOTICE: THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF | REVISIONS: DESCRIPTION | DATE | BY | REV | |------------------------|--------|-----|-----| | | | | | | FOR PERMIT | 7/8/14 | MPS | 0 | CROWN ROCKVILLE CT60XC935 - SITE ADDRESS: - 197 SOUTH STREET VERNON, CT 06066 - SHEET DESCRIPTION: - SPRINT SPECIFICATIONS SHEET NUMBER: NO SCALE PROPOSED T-MOUNT TYPICAL ANTENNA & RRU MOUNTING DETAILS Overland Park, Kansas 66251 PLANS PREPARED BY: Albany, NY 12205 Office # (518) 690-0790 Fax # (518) 690-0793 JOB NUMBER 353-000 - ENGINEERING LICENSE: No. 24705 DRAWING NOTICE: • THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF | | _ | | |--------|----------|----------| | DATE | BY | RE | | | | | | | ▙ | _ | | | - | - | | | \vdash | \vdash | | 7/8/14 | MPS | 0 | | ֡ | | | **CROWN ROCKVILLE** CT60XC935 197 SOUTH STREET VERNON, CT 06066 SHEET DESCRIPTION: - ANTENNA LAYOUT & MOUNTING DETAILS NO SCALE A-3 | | | NV CABLE | S | | |--------|-------|----------|------|-------| | BAND | INDIC | ATOR | PORT | COLOR | | 800-1 | YEL | GRN | NV-1 | GRN | | 1900-1 | YEL | RED. | NV-2 | BLU | | 1900-2 | YEL | BRN | NV-3 | BRN | | 1900-3 | YEL | BLU | NV-4 | WHT | | 1900-4 | YEL | SLT | NV-5 | RED | | 800-2 | YEL | ORG | NV-6 | SLT | | SPARE | YEL | WHT | NV-7 | | | 2500 | YEL | PPL | NV-8 | ORG | | HYBR | ID | |--------|------------| | HYBRID | COLOR | | 1 | GRN | | 2 | BLU | | 3 | BRN | | 4 | WHT | | 5 | S-150 | | 6 | SLT | | 7 | II van sii | | 8 | ORG | 2.5 Band 2500 Radio 1 COLOR GRN YEL WHT YEL WHT BLU YEL WHT YEL WHT WHT YEL WHT YEL WHT SLT YEL WHT ORG YEL WHT Figure 1: Antenna Orientation ### NOTES: - 1. ALL CABLES SHALL BE MARKED WITH 2" WIDE, UV STABILIZED, UL APPROVED TAPE. - 2. THE FIRST RING SHALL BE CLOSEST TO THE END OF THE CABLE AND SPACED APPROXIMATELY 2" FROM THE END CONNECTOR, WEATHERPROOFING, OR BREAK-OUT CYLINDER. THERE SHALL BE A 1" SPACE BETWEEN EACH RING FOR THE CABLE IDENTIFIER, AND NO SPACES BETWEEN THE FREQUENCY BANDS. - 3. A 2" GAP SHALL SEPARATE THE CABLE COLOR CODE FROM THE FREQUENCY COLOR CODE. THE 2" COLOR RINGS FOR THE FREQUENCY CODE SHALL BE PLACED NEXT TO EACH OTHER WITH NO SPACES. - 4. THE 2" COLORED TAPE(S) SHALL EACH BE WRAPPED A MINIMUM OF 3 TIMES AROUND THE INDIVIDUAL CABLES, AND THE TAPE SHALL BE KEPT IN THE SAME LOCATION AS MUCH AS POSSIBLE. - 5. SITES WITH MORE THAN FOUR (4) SECTORS WILL REQUIRE ADDITIONAL RINGS FOR EACH SECTOR, FOLLOWING THE PATTERN. HIGH CAPACITY SITES WILL USE THE NEXT COLOR IN THE SEQUENCE FOR ADDITIONAL CABLES IN EACH SECTOR. - 6. HYBRID FIBER CABLE SHALL BE SECTOR IDENTIFIED INSIDE THE CABINET ON FREQUENCY BUNDLES, ON THE SEALTITE, ON THE MAIN LINE UPON EXIT OF SEALTITE, AND BEFORE AND AFTER THE BREAKOUT UNIT (MEDUSA), AS WELL AS BEFORE AND AFTER ANY ENTRANCE OR EXIT. - 7. HFC "MAIN TRUNK"
WILL NOT BE MARKED WITH THE FREQUENCY CODES, AS IT CONTAINS ALL FREQUENCIES. - 8. INDIVIDUAL POWER PAIRS AND FIBER BUNDLES SHALL BE LABELED WITH BOTH THE CABLE AND FREQUENCY. | Sector | Cable | First Ring | Second
Ring | Third Ring | |---------|-------|-----------------|----------------|------------| | 1 Alpha | 1 | Green | No Tape | No Tape | | 1 | 2 | S=10 (以) | No Tape | No Tape | | 1 | 3 | W B Barti | No Tape | No Tape | | 1 | 4 | White | No Tape | No Tape | | 1 | 5 | Red | No Tape | No Tape | | 1 | 6 | Grey | No Tape | No Tape | | 1 | 7 | Purple | No Tape | No Tape | | 1 | 8 | Orange | No Tape | No Tape | | 2 Beta | 1 | Green | Green | No Tape | | 2 | 2 | Blue | BLO | No Tape | | 2 | 3 | and the same of | | No Tape | | 2 | 4 | White | White | No Tape | | 2 | 5 | Red | A Red | No Tape | | 2 | 6 | Grey | Grey | No Tape | | 2 | 7 | Purple | Pumle | No Tape | | 2 | 8 | Orange | Orange | No Tape | | 3 Gamma | 1 | Green | Green | Green | | 3 | 2 | 6 ue. | Blue | E Blue San | | 3 | 3 | A town is | | | | 3 | 4 | White | White | White | | 3 | 5 | Red | Red | PERE | | 3 | 6 | Grey | Grey | Grey | | 3 | 7 | Purple | Purple : | Purple | | 3 | 8 | Orange | Orange | Orange | | NV
FREQUENCY | INDICATOR | ID | |-----------------|-----------|-----| | 800-1 | YEL | GRN | | 1900-1 | YEL | RED | | 1900-2 | YEL | BRN | | 1900-3 | YEL | BLU | | 1900-4 | YEL | SLT | | 800-1 | YEL | ORG | | RESERVED | YEL | WHT | | RESERVED | YEL | 的程序 | | 2.5
FREQUENCY | IN | DICATOR | ID | |------------------|-----|---------|------| | 2500 -1 | YEL | WHT | GRN | | 2500 -2 | YEL | WHT | RED | | 2500 -3 | YEL | WHT | BRN | | 2500 -4 | YEL | WHT | BLU | | 2500 -5 | YEL | WHT | SLT | | 2500 -6 | YEL | WHT | ORG | | 2500 -7 | YEL | WHT | WHT | | 2500 -8 | YEL | WHT | HE . | Example - Sector 2, Cable 2, 800mhz Radio #1 Example - Sector 3, Cable 1, 1900mhz Radio #1 Example – Sector 1, Cable 4, 800 mhz Radio #1 and 1900mhz Radio #1 Sprint 6580 Sprint Parkway Overland Park, Kansas 66251 PLANS PREPARED BY: VFINIGY Build. 1033 Watervliet Shaker Rd Albany, NY 12205 Office # (518) 690-0790 Fax # (518) 690-0793 JOB HUNBER 353-000 CROYYN No. 24705 - DRAWING NOTICE: - THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT. | DESCRIPTION | DATE | BY | REV | |-------------|--------|-----|-----| | | | | | | | | | | | FOR PERMIT | 7/8/14 | MPS | 0 | SITE NAME: - CROWN ROCKVILLE - SITE CASCADE CT60XC935 SITE ADDRESS: 197 SOUTH STREET VERNON, CT 06066 - SHEET DESCRIPTION: - COLOR CODING AND NOTES SHEET NUMBER: 4-4 ALU 2.5 ALU SCENARIO 1 RAN WIRING DIAGRAM RF 2.5 ALU SCENARIO 1 PLUMBING DIAGRAM NO SCALE PLANS PREPARED BY: ### NFINIGY Build. 1033 Watervliet Shaker Rd Albany, NY 12205 Office # (518) 690-0790 Fax # (518) 690-0793 JOB NUMBER 353-000 MLA PARTNER: CROWN No. 24705 - DRAWING NOTICE: THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT | REVISIONS: | | | | |-------------|--------|-----|-----| | DESCRIPTION | DATE | BY | REV | | | | | | | | | | | | FOR PERMIT | 7/8/14 | MPS | 0 | SITE NAME: **CROWN ROCKVILLE** SITE CASCADE: - CT60XC935 PITE ADDDER 197 SOUTH STREET VERNON, CT 06066 - SHEET DESCRIPTION: CIVIL DETAILS SHEET NUMBER: A-7 2 NO SCALE PANEL SCHEDULE PLANS PREPARED BY INFINIGY Build. 1033 Watervliet Shaker Rd Albany, NY 12205 Office # (518) 690-0790 Fax # (518) 690-0793 JOB NUMBER 353-000 MLA PARTNER: CROWN CASTLE ENGINEERING LICENSE - DRAWING NOTICE: THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT. | REVISIONS: | | _ | _ | |-------------|--------|----------|----| | DESCRIPTION | DATE | BY | RE | | | | | | | | _ | \vdash | L | | | _ | \vdash | H | | | _ | _ | H | | FOR PERMIT | 7/8/14 | MPS | 0 | | | TO THE | | 1 | SITE NAME: CROWN ROCKVILLE SITE CASCADE CT60XC935 SITE ADDRESS: 197 SOUTH STREET VERNON, CT 06066 SHEET DESCRIPTION ELECTRICAL & GROUNDING DETAILS SHEET NUMBER: - E-2 6580 Sprint Parkway 1033 Watervliet Shaker Rd Albany, NY 12205 Office # (518) 690-0790 JOB NUMBER 353-000 THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF | REVISIONS: | | | | |-------------|--------|-----|-----| | DESCRIPTION | DATE | BY | REV | | | | _ | | | | | | | | | | | | | FOR PERMIT | 7/8/14 | MPS | 0 | | | | | - 3 | **CROWN ROCKVILLE** CT60XC935 197 SOUTH STREET VERNON, CT 06066 ELECTRICAL & **GROUNDING DETAILS** PLANS PREPARED BY: ### NFINIGY Build. Deliver 1033 Watervilet Shaker Rd Albany, NY 12205 Office # (518) 690-0790 Fax # (518) 690-0793 JOB HUMBER 353-000 MLA PARTNER: - DRAWING NOTICE: - THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT. | 74 | | | | |------------------------|--------|-----|-----| | REVISIONS: DESCRIPTION | DATE | BY | RE' | FOR PERMIT | 7/8/14 | MPS | 0 | | | | - | _ | SITE NAM **CROWN ROCKVILLE** - SITE CASCADE: - CT60XC935 SITE ADDRESS 197 SOUTH STREET VERNON, CT 06066 SHEET DESCRIPTION: RRH DETAIL & CONNECTIVITY TO DISTRIBUTION BOX SHEET NUMBER: E-4 8TBR DETAIL NO SCALE 1 RRH TO DISTRIBUTION BOX FIBER CONNECTIVITY NO SCALE Date: June 4, 2014 Patrick Byrum Crown Castle 3530 Torrington Way Suite 300 Charlotte, NC 28277 (704) 405-6532 **88 550€**[™] SSOE Group 320 Seven Springs Way, Suite 350 Brentwood, TN 37027 (615) 661-7585 djones@ssoe.com Subject: Structural Analysis Report Carrier Designation: Sprint PCS Co-Locate Scenario 2.5B Carrier Site Number: CT60XC935 Crown Castle Designation: Crown Castle BU Number: 806377 Crown Castle Site Name: HRT 084 943242 Crown Castle JDE Job Number: 286421 Crown Castle Work Order Number: 773066 Crown Castle Application Number: 245730 Rev. 4 Engineering Firm Designation: SSOE Group Project Number: 014-00564-00 Site Data: 197 South Street, Vernon, CT 06066, Tolland County Latitude 41° 51′ 12.51″, Longitude -72° 27′ 7.52″ 132 Foot – Modified Rohn Self Support Tower Dear Mr. Patrick Byrum, SSOE Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 652500, in accordance with application 245730, revision 4. The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be: LC7: Existing + Reserved + Proposed Equipment Sufficient Capacity Note: See Table I and Table II for the proposed and existing/reserved loading, respectively. This analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code with 2009 amendment based upon a wind speed of 85 mph fastest mile, exposure category B. We at SSOE Group appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call. Structural analysis prepared by: Dominique E. Jones Respectfully submitted by: £ 6/4/14 Barry W. Burgess, PE Section Manager ### **TABLE OF CONTENTS** ### 1) INTRODUCTION ### 2) ANALYSIS CRITERIA Table 1 - Proposed Antenna and Cable Information Table 2 - Existing and Reserved Antenna and Cable Information Table 3 - Design Antenna and Cable Information ### 3) ANALYSIS PROCEDURE Table 4 - Documents Provided - 3.1) Analysis Method - 3.2) Assumptions ### 4) ANALYSIS RESULTS Table 5 - Section Capacity (Summary) Table 6 - Tower Component Stresses vs. Capacity 4.1) Recommendations ### 5) DISCLAIMER OF WARRANTIES ### 6) APPENDIX A tnxTower Output ### 7) APPENDIX B Base Level Drawing ### 8) APPENDIX C **Additional Calculations** ### 1) INTRODUCTION The existing 132' tower is supported on three legs and has seven major sections. It has a triangular cross section made of bolted connections, with an "X" frame configuration. The tower is fabricated with pipe legs and angle diagonals. The tower was originally designed for Motorola, Inc. and Metro Mobile CTS by Rohn in accordance with E.I.A. Zone "A" with 0.5" radial ice. All modifications designed by L&W Engineering (W.O. #: 2106-2, dated 10/31/95), which consisted of replacing tower legs from the 60' to 80' elevations and replacing tower diagonals from the 100' to 120' elevations, have been considered. ### 2) ANALYSIS CRITERIA The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 28 mph with 1.0" ice thickness and 50 mph under service loads. Table 1 - Proposed Antenna and Cable Information | Mounting
Level (ft) | Floureties | Number
of
Antennas | Antenna
Manufacturer | | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|------------|--------------------------|-------------------------|---------------------------------|----------------------------|---------------------------|------| | | | 3 | Alcatel Lucent | TD-RRH8x20-25 | | | | | 130.0 | 130.0 | 3 | RFS Celwave | APXVTM14-C-120 w/
Mount Pipe | 1 | 1-1/4 | 1 | | | | 1 | | Sector Mount [SM 803-3] | | | | Notes: Table 2 - Existing and Reserved Antenna and Cable Information | Mounting
Level (ft) | Flevation | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines |
Feed
Line
Size (in) | Note | |------------------------|-----------|--------------------------|-------------------------|----------------------------------|----------------------------|---------------------------|------| | | 149.0 | 1 | Telewave | ANT450D6-9 | | | | | | 142.0 | 1 | Telewave | ANT450D6-9 | | | 1 | | | 130.0 | 1 | | Pipe Mount [PM 601-1] | | | | | 130.0 | | 3 | RFS Celwave | APXVSPP18-C-A20 w/
Mount Pipe | | | | | | 130.0 | 3 | Alcatel Lucent | 800MHz 2X50W RRH
W/FILTER | 3 | 1-1/4 | | | | | 3 | Alcatel Lucent | 1900MHz RRH (65MHz) | | | | ¹⁾ See Appendix B for the proposed coax layout. | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | | |------------------------|-------------------------------------|--------------------------|---------------------------|--|----------------------------|---------------------------|------|--| | | | 3 | Alcatel Lucent | RRH2X40-AWS | | | | | | | | 2 | Andrew | LBX-6515DS-T0M w/ Mount
Pipe | | | | | | | | 2 | Andrew | LNX-6514DS-T4M w/ Mount
Pipe | | | | | | | | 1 | Andrew | LNX-6514DS-T6M w/ Mount
Pipe | 12 | 7/8 | | | | 117.0 | 117.0 | 3 | RFS Celwave | APX18-206516L-CT2 w/
Mount Pipe | 1 | 1-5/8 | | | | | | 3 | RFS Celwave | APX18-206517-CT2 w/ Mour
Pipe | nt | | | | | | | 1 | RFS Celwave | DB-T1-6Z-8AB-0Z | | | | | | | | 6 | RFS Celwave | FD9R6004/2C-3L | | | | | | | | 1 | | Sector Mount [SM 504-3] | | | | | | | | 1 | Antel | BXA-70063-6CF-2 w/Mount
Pipe | | | 2 | | | | | 1 | Raycap | DC6-48-60-18-8F | | | | | | | | 2 | Andrew | SBNH-1D6565C w/ Mount
Pipe | | | | | | | | 3 | Communication Components | DTMABP7819VG12A | | | | | | 104.0 | 106.0 | 3 | CSS | DBC-750 | 1 2 | 3/8
3/4
7/8 | | | | 104.0 | | 3 | Kathrein | 782-10250 | _ 12 | | | | | | | | 3 | Kathrein | 800 10121 w/ Mount Pipe | | | | | | | 4 | KMW
Communications | AM-X-CD-16-65-00T-RET w
Mount Pipe | _ | | | | | | | 6 | Ericsson | RRUS-11 | | | | | | | 104.0 | | | Sector Mount [SM 504-3] | | | | | | 92.0 | 92.0 | 3 | Kathrein | 742 213 w/ Mount Pipe | 6 | 1-5/8 | | | | | | 3 | Ericsson | ERICSSON AIR 21 B2A B4F
w/ Mount Pipe | | | | | | 84.0 | 84.0 | 3 | Ericsson | ERICSSON AIR 21 B4A B2F
w/ Mount Pipe | 1
12 | 1-5/8
7/8 | | | | | | 3 | Ericsson | KRY 112 144/1 | | | | | | | | | | Sector Mount [SM 308-3] | | | | | | | | 1 | Maxrad | MPRC2449 | | | | | | 61.0 61.0 | | 1 | Redline
Communications | RDL-3000 | 2 | 3/8 | | | | | | 1 | | Side Arm Mount [SO 311-1] | | | | | | 58.0 | 61.0 | 1 | Maxrad | GPS-TMG-20N | 1 1/2 | | | | | 00.0 | 58.0 | 1 | Tower Mounts | wer Mounts Side Arm Mount [SO 311-1] | | 1/2 | | | | 46.0 | 47.0 | 1 | Lucent | KS24019-L112A | _ 1 | 1 1/2 | | | | 46.0 | | 1 | | Side Arm Mount [SO 701-1] | | | | | Notes: - 1) 2) Existing equipment to be removed; has not been considered in analysis. Reserved loading. | Mounting
Level (ft) | Flovation | Number
of
Antennas | Antenna Antenna Model
Manufacturer | | Number
of Feed
Lines | Feed
Line
Size (in) | |------------------------|-----------|--------------------------|---------------------------------------|-------------------|----------------------------|---------------------------| | 127.0 | 127.0 | 4 | Celwave | PD10017 | - | - | | 127.0 | 127.0 | 4 | Generic | 3' Side Arm Mount | - | - | | 124.0 | 124.0 | 2 | Generic | 8' Ø STD Dishes | - | - | | 112.0 | 112.0 | 6 | Celwave | PD1132 | - | - | | 112.0 | 112.0 | | Generic | 6' Side Arm Mount | - | - | | 80.0 80.0 | | 1 | Celwave | PD1109 | - | - | | | | 1 | Generic | 6' Side Arm Mount | - | - | ### 3) ANALYSIS PROCEDURE Table 4 - Documents Provided | Document | Remarks | Reference | Source | |------------------------------|---|------------------|-----------| | Original Tower Drawings | Rohn File #: 22731JC,
dated 7/24/87 | Doc ID#: 529704 | Crown DMZ | | Foundation Drawings | ERI Project #: ST/536,
dated 3/11/97 | Doc ID#: 1014812 | Crown DMZ | | Geotechnical Reports | FDH Project #: 04-1212E,
dated 12/30/04 | Doc ID#: 1014866 | Crown DMZ | | Tower Reinforcement Drawings | L&W Work Order #: 2106-2,
dated 10/31/95 | Doc ID#: 2240842 | Crown DMZ | ### 3.1) Analysis Method tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. ### 3.2) Assumptions - 1) The tower was constructed in accordance with its original design and maintained per the manufacturer's specifications. - 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings. - 3) Mount sizes, weights, and manufacturers are best estimates based on photos provided and determined without the benefit of a site visit by SSOE. - 4) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report. - 5) All foundation steel reinforcing is assumed to have been designed to meet or exceed the load carrying capacity of the surrounding soils unless otherwise specified in this report. - 6) All equipment model numbers, quantities, and centerline elevations are as provided in the CCI CAD package, dated 5/23/14 with any adjustments as noted below. This analysis may be affected if any assumptions are not valid or have been made in error. SSOE Group should be notified to determine the effect on the structural integrity of the tower. ### 4) ANALYSIS RESULTS **Table 5 - Section Capacity (Summary)** | Section
No. | | Component Type | | Critical
Element | P (K) | SF*P_allow
(K) | %
Capacity | Pass / Fail | |----------------|-----------|----------------|-------------------|---------------------|---------|-------------------|------------------|-------------| | T1 | 132 - 124 | Leg | ROHN 2 STD | 3 | -3.33 | 32.30 | 10.3 | Pass | | T2 | 124 - 120 | Leg | ROHN 2 STD | 21 | -6.74 | 32.30 | 20.9 | Pass | | Т3 | 120 - 100 | Leg | ROHN 2.5 STD | 33 | -31.83 | 50.25 | 63.3 | Pass | | T4 | 100 - 80 | Leg | ROHN 3 STD | 60 | -61.37 | 62.82 | 97.7 | Pass | | T5 | 80 - 60 | Leg | ROHN 3 XX-STR | 80 | -91.64 | 143.51 | 63.9 | Pass | | T6 | 60 - 40 | Leg | ROHN 4 X-STR | 101 | -119.56 | 139.07 | 86.0 | Pass | | T7 | 40 - 20 | Leg | ROHN 5 X-STR | 122 | -143.70 | 177.46 | 81.0 | Pass | | T8 | 20 - 0 | Leg | ROHN 5 X-STR | 137 | -168.30 | 177.46 | 94.8 | Pass | | T1 | 132 - 124 | Diagonal | L1 3/4x1 3/4x3/16 | 9 | -1.82 | 7.67 | 23.8
32.8 (b) | Pass | | T2 | 124 - 120 | Diagonal | L1 3/4x1 3/4x3/16 | 28 | -1.66 | 7.65 | 21.7
29.6 (b) | Pass | | Т3 | 120 - 100 | Diagonal | L2x2x3/16 | 36 | -4.44 | 6.70 | 66.3
69.0 (b) | Pass | | T4 | 100 - 80 | Diagonal | L2 1/2x2 1/2x3/16 | 63 | -5.62 | 8.33 | 67.5
75.8 (b) | Pass | | T5 | 80 - 60 | Diagonal | L2 1/2x2 1/2x3/16 | 84 | -5.78 | 6.32 | 91.5 | Pass | | T6 | 60 - 40 | Diagonal | L3x3x3/16 | 105 | -6.25 | 8.79 | 71.1
84.8 (b) | Pass | | T7 | 40 - 20 | Diagonal | L3x3x1/4 | 127 | -7.21 | 7.82 | 92.2 | Pass | | Т8 | 20 - 0 | Diagonal | L3 1/2x3 1/2x1/4 | 142 | -7.48 | 10.60 | 70.5 | Pass | | T1 | 132 - 124 | Top Girt | L2x2x3/16 | 5 | -0.06 | 3.03 | 2.1 | Pass | | T2 | 124 - 120 | Top Girt | L2x2x3/16 | 22 | -0.25 | 4.00 | 6.3 | Pass | | | | | | | | | Summary | | | | | | | | | Leg (T4) | 97.7 | Pass | | | | | | | | Diagonal
(T7) | 92.2 | Pass | | | | | | | | Top Girt
(T2) | 6.3 | Pass | | | | | | | | Bolt Checks | 85.7 | Pass | | | | | | | | Rating = | 97.7 | Pass | Table 6 - Tower Component Stresses vs. Capacity - LC7 | Notes | Component | Elevation (ft) | % Capacity | Pass / Fail | |-------|-----------------|----------------|------------|-------------| | 1 | Base Foundation | | 91.8% | Pass | | | Anchor Rods | | 85.7% | Pass | | Structure Rating (max from all components) = | 97.7% | |--|-------| Notes: ### 4.1) Recommendations The existing tower and its foundations are sufficient for the proposed loads and do not require modifications. ¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed. ### 5) DISCLAIMER OF WARRANTIES SSOE Group has not performed a site visit to the tower to verify member sizes or antenna/coax loading. SSOE Group shall be contacted immediately if the existing conditions are not as represented on the tower elevation contained in this report in order to evaluate the significance of the discrepancy. SSOE Group has not performed a condition assessment of the tower foundation. This report does not replace a full tower inspection. The tower and foundation are assumed to have been properly fabricated, erected and maintained and to be in good condition, twist free, and plumb. The engineering services rendered by SSOE Group in connection with this structural analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to resist dead loads only when no other loads are applied. No allowance has been made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance has been made for any loose bolts or cracked welds. For the purposes of this report, SSOE Group has assumed that all connections in the tower are sufficient to develop the allowable strength of the associated members. SSOE Group has not performed engineering analysis to verify adequacy of these connections. It is the owner's responsibility to determine the amount of ice accumulation, if any, that should be considered in the structural analysis. The attached sketches are a schematic
representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearances in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a construction document. Construction documents depicting the required modification are obtainable from SSOE Group, but are beyond the scope of this report. Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as part of our work. We recommend that material of suitable size and strength be purchased from a reputable tower manufacturer. SSOE Group makes no warranty, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. SSOE Group will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of SSOE Group pursuant to this report will be limited to the total fee received for preparation of this report. # APPENDIX A TNXTOWER OUTPUT | | 2 | | 2 | | | 2 | | |-------------------------|--|--------------------|-----------------|---|------------|--------------|-------------------------| | | | : | | 400000000000000000000000000000000000000 | 1000 | | | | regs | ROHN | ROHN 5 X-STR | ROHN 4 X-STR | ROHN 3 XX-STR | ROHN 3 STD | ROHN 2.5 STD | ROHN 2 STD | | Leg Grade | | | | A572-50 | | | | | Diagonals | L3 1/2x3 1/2x1/4 | L3x3x1/4 | L3x3x3/16 | L2 1/2x2 1/2x3/16 | 1/2x3/16 | L2x2x3/16 | L1 3/4x1 3/4x3/16 | | Diagonal Grade | A572 | A572-50 | | | A36 | | | | Top Girts | | | N.A. | _ | | | L2x2x3/16 | | Face Width (ft) 18.7708 | 16.7708 | 14.7708 | 12.7604 | 10.6875 | 8.6875 | | 6.64583 6.63194 6.60417 | | # Panels @ (ft) | (a) 4 | @ 10 | _ | 9 @ 6.66667 | | 4 @ 5 | 3 @ 4 | | Weight (K) 11 | 11.9 | 2.5 | 2.0 | 2.0 | 1.2 | 0.9 | 0.2 0.3 | | | 0.0 ft | 20.0 ft | 60.0 ft 40.0 ft | | 80.0 ft | 100.0 ft | 132.0 ft
124.0 ft | | TOR
REACTIO | SHEAR 5 K TOR 28 mph V SHEAR 32 K TOR | MAX
D
S
S | | | | | | **MATERIAL STRENGTH** | GRADE | Fy | Fu | GRADE | Fy | Fu | |---------|--------|--------|-------|--------|--------| | A572-50 | 50 ksi | 65 ksi | A36 | 36 ksi | 58 ksi | ### **TOWER DESIGN NOTES** - 1. Tower is located in Tolland County, Connecticut. - 2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard. - 3. Tower is also designed for a 28 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height. - 4. Deflections are based upon a 50 mph wind. - 5. TOWER RATING: 97.7% .. CORNER REACTIONS AT BASE: OWN: 174 K HEAR: 20 K PLIFT: -147 K HEAR: 17 K AXIAL 66 K MOMENT 484 kip-ft QUE 3 kip-ft VIND - 1.00 in ICE AXIAL 30 K MOMENT 2675 kip-ft QUE 22 kip-ft NS - 85 mph WIND ### SSOE Group 320 Seven Springs way, Suite 350 Brentwood, TN 37027 Phone: (615) 661-7585 FAX: (615) 661-7569 | | ^{Job:} BU 806377 H | IRT 084 94 | 3242 | |---|-------------------------------------|-----------------|------------| |) | Project: 014-00546-00 | | | | | Client: CCI | Drawn by: 15310 | App'd: | | | Code: TIA/EIA-222-F | Date: 06/04/14 | Scale: NTS | | | Path:
F:\Projects\June\806377\ti | Dwg No. E-1 | | Round ______ Flat _____ App In Face _____ App Out Face _____ Truss Leg Face A Face B Face C 132.00 132.00 130.00 124.00 124.00 120.00 120.00 104.00 104.00 100.00 100.00 92.00 92.00 84.00 80.00 80.00 HB114-21U3M12-XXXF(1-1/4") (3) HB114-1-08U4-M5J(1 1/4") (2) HB078-1-08U3-M3J(7/8") Feedline Ladder (Af) Feedline Ladder (Af) Feedline Ladder (Af) Safety Line 3/8 Step Pegs HB158-1-08U8-S8J18(1-5/8) (9) LDF5-50A(7/8") (2) LDF5-50A(7/8") LDF5-50A(7/8") Banjo Bracket (2) WR-VG86ST-BRD(3/4) FB-L98B-002-75000(3/8") Æ (12) LDF5-50A(7/8") 60.00 2" Flex Conduit 58.00 58.00 (6) LDF7-50A (1-5/8 FOAM) (12) LDF5-50A (7/8 FOAM) LDF7-50A (1-5/8 FOAM) 46.00 46.00 40.00 40.00 40.00 40.00 (2) LDF2-50 (3/8 FOAM) LDF4RN-50A (1/2 FOAM) DF4RN-50A (1/2 FOAM) Step Pegs Step Pegs 20.00 20.00 0.00 Elevation (ft) ### **Tower Input Data** The main tower is a 3x free standing tower with an overall height of 132.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line. The face width of the tower is 6.60 ft at the top and 18.77 ft at the base. This tower is designed using the TIA/EIA-222-F standard. The following design criteria apply: Tower is located in Tolland County, Connecticut. Basic wind speed of 85 mph. Nominal ice thickness of 1.00 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 28 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 50 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in tower member design is 1.333. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered. ### **Options** Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification - √ Use Code Stress Ratios - √ Use Code Safety Factors Guys - ✓ Escalate Ice Always Use Max Kz Use Special Wind Profile - √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section - √ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination Distribute Leg Loads As Uniform Assume Legs Pinned - √ Assume Rigid Index Plate - √ Use Clear Spans For Wind Area - ✓ Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks - √ Use Azimuth Dish Coefficients - √ Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends - √ Sort Capacity Reports By Component - √ Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules - √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA - √ SR Leg Bolts Resist Compression - √ All Leg Panels Have Same Allowable Offset Girt At Foundation - √ Consider Feedline Torque - √ Include Angle Block Shear Check ### Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Triangular Tower | Tower | Tower | Assembly | Description | Section | Number | Section | |---------|---------------|----------|-------------|---------|----------|---------| | Section | Elevation | Database | | Width | of | Length | | | | | | | Sections | Ü | | | ft | | | ft | | ft | | T1 | 132.00-124.00 | | | 6.60 | 1 | 8.00 | | T2 | 124.00-120.00 | | | 6.63 | 1 | 4.00 | | Т3 | 120.00-100.00 | | | 6.65 | 1 | 20.00 | | T4 | 100.00-80.00 | | | 8.69 | 1 | 20.00 | | T5 | 80.00-60.00 | | | 10.69 | 1 | 20.00 | | T6 | 60.00-40.00 | | | 12.76 | 1 | 20.00 | | T7 | 40.00-20.00 | | | 14.77 | 1 | 20.00 | | Т8 | 20.00-0.00 | | | 16.77 | 1 | 20.00 | ### **Tower Section Geometry** (cont'd) | Tower
Section | Tower
Elevation | Diagonal
Spacing | Bracing
Type | Has
K Brace | Has
Horizontals | Top Girt
Offset | Bottom Girt
Offset | |------------------|--------------------|---------------------|-----------------|----------------|--------------------|--------------------|-----------------------| | | | | | End | | | | | | ft | ft | | Panels | | in | in | | T1 | 132.00-124.00 | 4.00 | X Brace | No | No | 0.00 | 0.00 | | T2 | 124.00-120.00 | 4.00 | X Brace | No | No | 0.00 | 0.00 | | Т3 | 120.00-100.00 | 5.00 | X Brace | No | No | 0.00 | 0.00 | | T4 | 100.00-80.00 | 6.67 | X Brace | No | No | 0.00 | 0.00 | | T5 | 80.00-60.00 | 6.67 | X Brace | No | No | 0.00 | 0.00 | | T6 | 60.00-40.00 | 6.67 | X Brace | No | No | 0.00 | 0.00 | | T7 | 40.00-20.00 | 10.00 | X Brace | No | No | 0.00 | 0.00 | | T8 | 20.00-0.00 | 10.00 | X Brace | No | No | 0.00 | 0.00 | | Tower | Leg | Leg | Leg | Diagonal | Diagonal | Diagonal | |----------------|------|---------------|----------|-------------|-------------------|----------| | Elevation | Type | Size | Grade | Type | Size | Grade | | ft | | | | | | | | T1 132.00- | Pipe | ROHN 2 STD | A572-50 | Equal Angle | L1 3/4x1 3/4x3/16 | A36 | | 124.00 | | | (50 ksi) | | | (36 ksi) | | T2 124.00- | Pipe | ROHN 2 STD | A572-50 | Equal Angle | L1 3/4x1 3/4x3/16 | A36 | | 120.00 | | | (50 ksi) | | | (36 ksi) | | T3 120.00- | Pipe | ROHN 2.5 STD | A572-50 | Equal Angle | L2x2x3/16 | A36 | | 100.00 | | | (50 ksi) | | | (36 ksi) | | T4 100.00- | Pipe | ROHN 3 STD | A572-50 | Equal Angle | L2 1/2x2 1/2x3/16 | A36 | | 80.00 | | | (50 ksi) | | | (36 ksi) | | T5 80.00-60.00 | Pipe | ROHN 3 XX-STR | A572-50 | Equal Angle | L2 1/2x2 1/2x3/16 | A36 | | | | | (50 ksi) | | | (36 ksi) | | T6 60.00-40.00 | Pipe | ROHN 4 X-STR | A572-50 | Equal Angle | L3x3x3/16 | A36 | | | | | (50 ksi) | | | (36 ksi) | | T7 40.00-20.00 | Pipe | ROHN 5 X-STR | A572-50 | Equal Angle | L3x3x1/4 | A572-50 | | | | | (50 ksi) | | | (50 ksi) | | T8 20.00-0.00 | Pipe | ROHN 5 X-STR | A572-50 | Equal Angle | L3 1/2x3 1/2x1/4 | A572-50 | | | | | (50 ksi) | | | (50 ksi) | ### **Tower Section Geometry** (cont'd) | Tower
Elevation
ft | Top Girt
Type | Top Girt
Size | Top Girt
Grade | Bottom Girt
Type | Bottom Girt
Size | Bottom Girt
Grade | |--------------------------|------------------|------------------|-------------------|---------------------|---------------------|----------------------| | T1 132.00- | Equal Angle | L2x2x3/16 | A36 | Flat Bar | | A36 | | 124.00 | | | (36 ksi) | | | (36 ksi) | | T2 124.00- | Equal Angle | L2x2x3/16 | A36 | Flat Bar | | A36 | | 120.00 | | | (36 ksi) | | | (36 ksi) | ### **Tower Section Geometry** (cont'd) | Tower | Gusset | Gusset | Gusset Grade | Adjust. Factor | Adjust. | Weight Mult. | | Double Angle | |---------------
-----------------|-----------|--------------------|----------------|---------|--------------|-------------|--------------| | Elevation | Area | Thickness | | A_f | Factor | | Stitch Bolt | Stitch Bolt | | | (per face) | | | | A_r | | Spacing | Spacing | | • | ft ² | • | | | | | Diagonals | Horizontals | | ft | | in | | | | | in | in | | T1 132.00- | 0.00 | 0.00 | A36 | 1 | 1 | 1.05 | 36.00 | 36.00 | | 124.00 | | | (36 ksi) | | | | | | | T2 124.00- | 0.00 | 0.00 | A36 | 1 | 1 | 1.05 | 36.00 | 36.00 | | 120.00 | | | (36 ksi) | | | | | | | T3 120.00- | 0.00 | 0.00 | A36 | 1 | 1 | 1.05 | 36.00 | 36.00 | | 100.00 | | | (36 ksi) | | | | | | | T4 100.00- | 0.00 | 0.00 | A36 | 1 | 1 | 1.05 | 36.00 | 36.00 | | 80.00 | | | (36 ksi) | | | | | | | T5 80.00- | 0.00 | 0.00 | A36 | 1 | 1 | 1.05 | 36.00 | 36.00 | | 60.00 | | | (36 ksi) | | | | | | | T6 60.00- | 0.00 | 0.00 | A36 | 1 | 1 | 1.05 | 36.00 | 36.00 | | 40.00 | | | (36 ksi) | | | | | | | T7 40.00- | 0.00 | 0.00 | A36 | 1 | 1 | 1.05 | 36.00 | 36.00 | | 20.00 | | | (36 ksi) | | | | | | | T8 20.00-0.00 | 0.00 | 0.00 | ` A36 [′] | 1 | 1 | 1.05 | 36.00 | 36.00 | | | | | (36 ksi) | | | | | | ### **Tower Section Geometry** (cont'd) | | | | | | | K Fac | ctors ¹ | | | | |--------------------|---------------------|--------------------|------|---------------------|---------------------|-----------------|--------------------|--------|----------------|----------------| | Tower
Elevation | Calc
K
Single | Calc
K
Solid | Legs | X
Brace
Diags | K
Brace
Diags | Single
Diags | Girts | Horiz. | Sec.
Horiz. | Inner
Brace | | | Angles | Rounds | | x | X | X | X | X | X | X | | ft | | | | Υ | Y | Y | Υ | Y | Y | Y | | T1 132.00- | Yes | Yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 124.00 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | T2 124.00- | Yes | Yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 120.00 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | T3 120.00- | Yes | Yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 100.00 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | T4 100.00- | Yes | Yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 80.00 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | T5 80.00- | Yes | Yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 60.00 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | T6 60.00- | Yes | Yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 40.00 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | T7 40.00- | Yes | Yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 20.00 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | T8 20.00- | Yes | Yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0.00 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length. ### **Tower Section Geometry** (cont'd) | Tower
Elevation
ft | Leg | | Diago | nal | Тор G | irt | Bottor | n Girt | Mid | Girt | Long Ho | rizontal | Short Ho | prizontal | |--------------------------|---------------------------|---|------------------------------|------|---------------------------|------|------------------------------|--------|------------------------------|------|------------------------------|----------|------------------------------|-----------| | | Net Width
Deduct
in | U | Net
Width
Deduct
in | U | Net Width
Deduct
in | U | Net
Width
Deduct
in | U | Net
Width
Deduct
in | U | Net
Width
Deduct
in | U | Net
Width
Deduct
in | U | | T1 132.00-
124.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T2 124.00-
120.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T3 120.00-
100.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T4 100.00-
80.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T5 80.00-
60.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T6 60.00-
40.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T7 40.00-
20.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | T8 20.00-0.00 | 0.00 | 1 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | 0.00 | 0.75 | | Tower Section Geometry (cont'd) | Tower | Section | Geometry | (cont'd) | |--|--------------|----------------|----------|----------| |--|--------------|----------------|----------|----------| | Tower | Leg | Leg | | Diagor | nal | Top G | irt | Bottom | Girt | Mid G | irt | Long Horiz | zontal | Shor | t | |---------------|------------|-----------|-----|-----------|-----|-----------|-----|-----------|------|-----------|-----|------------|--------|-----------|------| | Elevation | Connection | | | | | | | | | | | | | Horizor | ntal | | ft | Type | | | | | | | | | | | | | | | | | | Bolt Size | No. | | | in | T1 132.00- | Flange | 0.00 | 0 | 0.63 | 1 | 0.63 | 1 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | | 124.00 | | A325N | T2 124.00- | Flange | 0.63 | 4 | 0.63 | 1 | 0.63 | 1 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | | 120.00 | | A325N | T3 120.00- | Flange | 0.75 | 4 | 0.63 | 1 | 0.50 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | | 100.00 | | A325N | T4 100.00- | Flange | 0.88 | 4 | 0.63 | 1 | 0.50 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | | 80.00 | | A325N | T5 80.00- | Flange | 0.88 | 4 | 0.63 | 1 | 0.50 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | | 60.00 | | A325N | T6 60.00- | Flange | 1.00 | 4 | 0.63 | 1 | 0.50 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | | 40.00 | | A325N | T7 40.00- | Flange | 1.00 | 4 | 0.63 | 1 | 0.50 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | | 20.00 | | A325N | T8 20.00-0.00 | Flange | 1.00 | 4 | 0.75 | 1 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | 0.63 | 0 | | | | A449 | | A325N | | ## Feed Line/Linear Appurtenances - Entered As Round Or Flat | HB114-1-
08U4-M5J(1
1/4")
HB114-
21U3M12-
XXXF(1-1/4")
HB078-1-
08U3-M3J(
7/8")
LDF5-
50A(7/8") | B
B
A
A | Yes Yes Yes Yes | Ar (CfAe) Ar (CfAe) Ar (CfAe) Ar (CfAe) | 130.00 - 8.00
130.00 - 8.00
130.00 - 8.00 | Offset in 0.00 0.00 0.00 | Offset
(Frac FW)
0.4
0.45 | 3 1 2 | Per
Row
3 | 0.00
0.00 | Diameter in 1.54 | r
in | 0.00
0.00 | |---|------------------|-------------------|--|---|--------------------------|------------------------------------|-------|-----------------|--------------|------------------|---------|--------------| | 08U4-M5J(1
1/4")
HB114-
21U3M12-
XXXF(1-1/4")
HB078-1-
08U3-M3J(
7/8")
LDF5-
50A(7/8") | B
B | Yes
Yes
Yes | Ar (CfAe)
Ar (CfAe) | 130.00 - 8.00
130.00 - 8.00 | 0.00 | 0.45 | 1 | 1 | 0.00 | 1.54 | in | | | 08U4-M5J(1
1/4")
HB114-
21U3M12-
XXXF(1-1/4")
HB078-1-
08U3-M3J(
7/8")
LDF5-
50A(7/8") | B
B | Yes
Yes
Yes | Ar (CfAe)
Ar (CfAe) | 130.00 - 8.00
130.00 - 8.00 | 0.00 | 0.45 | 1 | 1 | 0.00 | 1.54 | | | | 1/4") HB114- 21U3M12- XXXF(1-1/4") HB078-1- 08U3-M3J(7/8") LDF5- 50A(7/8") | В | Yes
Yes | Ar (CfAe) | 130.00 - 8.00 | | | | | | | | 0.00 | | HB114-
21U3M12-
XXXF(1-1/4")
HB078-1-
08U3-M3J(
7/8")
LDF5-
50A(7/8") | В | Yes
Yes | Ar (CfAe) | 130.00 - 8.00 | | | | | | | | 0.00 | | 21U3M12-
XXXF(1-1/4")
HB078-1-
08U3-M3J(
7/8")
LDF5-
50A(7/8") | В | Yes
Yes | Ar (CfAe) | 130.00 - 8.00 | | | | | | | | 0.00 | | XXXF(1-1/4")
HB078-1-
08U3-M3J(
7/8")
LDF5-
50A(7/8") | Α | Yes | , , | | 0.00 | -0.35 | 2 | • | | | | | | HB078-1-
08U3-M3J(
7/8")
LDF5-
50A(7/8") | Α | Yes | , , | | 0.00 | -0.35 | 2 | _ | | | | | | 08U3-M3J(
7/8")
LDF5-
50A(7/8") | Α | Yes | , , | 447.00 0.00 | | | | 2 | 0.00 | 1.09 | | 0.00 | | LDF5-
50A(7/8") | | | Ar (CfAe) | 447.00 0.00 | | | | | | | | | | 50A(7/8") | | | Ar (CfAe) | 447.00 0.00 | | | | | | | | | | ` , | Α | | | 117.00 - 8.00 | 0.00 | 0.4 | 9 | 9 | 0.00 | 1.09 | | 0.00 | | I DF5- | Α | | | | | | | | | | | | | | | Yes | Ar (CfAe) | 117.00 - 8.00 | 2.00 | 0.2 | 2 | 1 | 0.00 | 1.09 | | 0.00 | | 50A(7/8") | ٨ | Voc | Λ = (CfΛ a) | 117.00 0.00 | 0.00 | 0.27 | 4 | 1 | 0.00 | 1.09 | | 0.00 | | LDF5-
50A(7/8") | Α | Yes | Ar (CfAe) | 117.00 - 8.00 | 0.00 | 0.27 | 1 | 1 | 0.00 | 1.09 | | 0.00 | | ` , | Α | Yes | Ar (CfAe) | 117.00 - 8.00 | 1.00 | 0.3 | 1 | 1 | 0.00 | 1.98 | | 0.00 | | 08U8-S8J18(| ^ | 103 | Ai (OiAc) | 117.00 - 0.00 | 1.00 | 0.5 | ' | | 0.00 | 1.50 | | 0.00 | | 1-5/8) | | | | | | | | | | | | | | LDF5- | С | Yes | Ar (CfAe) | 104.00 - 8.00 | 0.00 | -0.4 | 12 | 12 | 0.00 | 1.09 | | 0.00 | | 50A(7/8") | | | | | | | | | | | | | | | С | Yes | Ar (CfAe) | 104.00 - 8.00 | 0.00 | -0.47 | 1 | 1 | 0.00 | 0.00 | | 0.00 | | 002-75000(| | | | | | | | | | | | | | 3/8") | _ | V | A = (O(A =) | 40400 000 | 0.00 | 0.45 | _ | | 0.00 | 0.00 | | 0.00 | | WR-
VG86ST- | С | Yes | Ar (CfAe) | 104.00 - 8.00 | 0.00 | -0.45 | 2 | 1 | 0.00 | 0.00 | | 0.00 | | BRD(3/4) | | | | | | | | | | | | | | | С | Yes | Ar (CfAe) | 104.00 - 8.00 | 0.00 | -0.45 | 1 | 1 | 0.00 | 2.00 | | 0.00 | | Conduit | | . 00 | / ii (Gi/ iG) | | 0.00 | 00 | • | | 0.00 | 2.00 | | 0.00 | | LDF7-50A | В | No | Ar (Leg) | 92.00 - 8.00 | 0.00 | 0.08 | 6 | 2 | 0.00 | 1.98 | | 0.00 | | (1-5/8 | | | | | | | | | | | | | | FOAM) | | | | | | | | | | | | | | | В | No | Ar (Leg) | 84.00 - 8.00 | 0.00 | 0.05 | 12 | 3 | 0.00 | 1.09 | | 0.00 | | (7/8 FOAM) | n | NI. | A = (1 = =) | 04.00 0.00 | 0.00 | 0.00 | 4 | | 0.00 | 4.00 | | 0.00 | | LDF7-50A
(1-5/8 | В | No |
Ar (Leg) | 84.00 - 8.00 | 0.00 | 0.06 | 1 | 1 | 0.00 | 1.98 | | 0.00 | | (1-5/8
FOAM) | | | | | | | | | | | | | | | В | Yes | Ar (CfAe) | 61.00 - 8.00 | 0.00 | -0.35 | 2 | 2 | 0.00 | 0.44 | | 0.00 | | FOAM) | ی | 100 | 7.1 (017.0) | 01.00 0.00 | 0.00 | 0.00 | _ | _ | 0.00 | 0.77 | | 0.00 | | - / | В | Yes | Ar (CfAe) | 58.00 - 8.00 | 0.00 | -0.43 | 1 | 1 | 0.00 | 0.63 | | 0.00 | | Description | Face
or
Leg | Allow
Shield | Component
Type | Placement
ft | Face
Offset
in | Lateral
Offset
(Frac FW) | # | #
Per
Row | Clear
Spacing
in | Width or
Diameter
in | r | Weight
klf | |--|-------------------|-----------------|-------------------|-----------------|----------------------|--------------------------------|---|-----------------|------------------------|----------------------------|-------|---------------| | (1/2 FOAM) | | | | | | | | | | | in | | | (1/2 FOAM)
LDF4RN-50A
(1/2 FOAM) | В | Yes | Ar (CfAe) | 46.00 - 8.00 | 0.00 | 0.45 | 1 | 1 | 0.00 | 0.63 | | 0.00 | | Banjo
Bracket | Α | Yes | Af (CfAe) | 117.00 - 8.00 | 0.00 | 0.33 | 1 | 1 | 0.00 | 0.00 | 0.50 | 0.01 | | Feedline
Ladder (Af) | Α | Yes | Af (CfAe) | 132.00 - 8.00 | 0.00 | 0.4 | 1 | 1 | 0.00 | 3.00 | 12.00 | 0.01 | | Safety Line
3/8 | Α | No | Ar (Leg) | 132.00 - 8.00 | 0.00 | 0 | 1 | 1 | 0.00 | 0.38 | | 0.00 | | Step Pegs | Α | No | Ar (Leg) | 132.00 - 8.00 | 0.00 | 0 | 1 | 1 | 0.00 | 0.80 | | 0.00 | | T-Bracket | В | No | Ar (Leg) | 92.00 - 8.00 | 0.00 | 0 | 1 | 1 | 0.00 | 1.00 | | 0.01 | | Step Pegs | В | No | Ar (Leg) | 40.00 - 8.00 | 0.00 | 0 | 1 | 1 | 0.00 | 0.80 | | 0.00 | | Feedline
Ladder (Af) | В | Yes | Af (CfAe) | 130.00 - 8.00 | 0.00 | 0.4 | 1 | 1 | 0.00 | 3.00 | 12.00 | 0.01 | | Feedline (Af) | В | Yes | Af (CfAe) | 130.00 - 8.00 | 0.00 | -0.4 | 1 | 1 | 0.00 | 3.00 | 12.00 | 0.01 | | Feedline
Ladder (Af) | С | Yes | Af (CfAe) | 104.00 - 8.00 | 0.00 | -0.4 | 1 | 1 | 0.00 | 3.00 | 12.00 | 0.01 | | Step Pegs | С | No | Ar (Leg) | 40.00 - 8.00 | 0.00 | 0 | 1 | 1 | 0.00 | 0.80 | | 0.00 | ### Feed Line/Linear Appurtenances Section Areas | Tower | Tower | Face | A_R | A_F | C_AA_A | C_AA_A | Weight | |--------|---------------|------|-----------------|-----------------|-----------------|-----------------|-----------| | Sectio | Elevation | | , .K | • • • | In Face | Out Face | rr o.g. n | | n | ft | | ft ² | ft ² | ft ² | ft ² | K | | T1 | 132.00-124.00 | Α | 0.783 | 2.000 | 0.000 | 0.000 | 0.09 | | | | В | 4.953 | 3.000 | 0.000 | 0.000 | 0.14 | | | | С | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | T2 | 124.00-120.00 | Α | 0.392 | 1.000 | 0.000 | 0.000 | 0.05 | | | | В | 3.172 | 2.000 | 0.000 | 0.000 | 0.09 | | | | С | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | Т3 | 120.00-100.00 | Α | 21.749 | 5.000 | 0.000 | 0.000 | 0.49 | | | | В | 15.858 | 10.000 | 0.000 | 0.000 | 0.46 | | | | С | 5.027 | 1.000 | 0.000 | 0.000 | 0.06 | | T4 | 100.00-80.00 | Α | 25.242 | 5.000 | 0.000 | 0.000 | 0.53 | | | | В | 22.568 | 10.000 | 0.000 | 0.000 | 0.65 | | | | С | 31.843 | 5.000 | 0.000 | 0.000 | 0.28 | | T5 | 80.00-60.00 | Α | 25.242 | 5.000 | 0.000 | 0.000 | 0.53 | | | | В | 32.948 | 10.000 | 0.000 | 0.000 | 0.85 | | | | С | 42.150 | 5.000 | 0.000 | 0.000 | 0.28 | | Т6 | 60.00-40.00 | Α | 25.242 | 5.000 | 0.000 | 0.000 | 0.53 | | | | В | 35.602 | 10.000 | 0.000 | 0.000 | 0.86 | | | | С | 42.150 | 5.000 | 0.000 | 0.000 | 0.28 | | T7 | 40.00-20.00 | Α | 26.575 | 5.000 | 0.000 | 0.000 | 0.53 | | | | В | 37.775 | 10.000 | 0.000 | 0.000 | 0.91 | | | | С | 44.817 | 5.000 | 0.000 | 0.000 | 0.33 | | T8 | 20.00-0.00 | Α | 15.945 | 3.000 | 0.000 | 0.000 | 0.32 | | | | В | 22.665 | 6.000 | 0.000 | 0.000 | 0.55 | | | | С | 26.890 | 3.000 | 0.000 | 0.000 | 0.20 | ### Feed Line/Linear Appurtenances Section Areas - With Ice | Tower
Sectio | Tower
Elevation | Face
or | lce
Thickness | A_R | A_F | C _A A _A
In Face | C _A A _A
Out Face | Weight | |-----------------|--------------------|------------|------------------|-----------------|-----------------|--|---|--------| | n | ft | Leg | in | ft ² | ft ² | ft ² | ft ² | K | | T1 | 132.00-124.00 | Α | 1.177 | 3.921 | 3.046 | 0.000 | 0.000 | 0.19 | | | | В | | 9.536 | 6.654 | 0.000 | 0.000 | 0.32 | | | | С | | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | T2 | 124.00-120.00 | Α | 1.170 | 1.952 | 1.520 | 0.000 | 0.000 | 0.10 | | | | В | | 5.681 | 4.430 | 0.000 | 0.000 | 0.21 | | | | С | | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | T3 | 120.00-100.00 | Α | 1.155 | 30.194 | 22.103 | 0.000 | 0.000 | 1.21 | | | | В | | 28.166 | 22.085 | 0.000 | 0.000 | 1.05 | | | | С | | 4.111 | 5.510 | 0.000 | 0.000 | 0.18 | tnxTower Report - version 6.1.4.1 | Tower | Tower | Face | lce | A_R | A_F | $C_A A_A$ | $C_A A_A$ | Weight | |--------|--------------|------|-----------|-----------------|-----------------|-----------------|-----------------|--------| | Sectio | Elevation | or | Thickness | | | In Face | Out Face | | | n | ft | Leg | in | ft ² | ft ² | ft ² | ft ² | K | | T4 | 100.00-80.00 | Α | 1.128 | 33.267 | 24.546 | 0.000 | 0.000 | 1.31 | | | | В | | 37.726 | 24.670 | 0.000 | 0.000 | 1.45 | | | | С | | 30.208 | 30.197 | 0.000 | 0.000 | 0.89 | | T5 | 80.00-60.00 | Α | 1.094 | 32.597 | 24.397 | 0.000 | 0.000 | 1.28 | | | | В | | 52.044 | 28.784 | 0.000 | 0.000 | 1.94 | | | | С | | 44.418 | 34.349 | 0.000 | 0.000 | 0.87 | | T6 | 60.00-40.00 | Α | 1.051 | 31.731 | 24.205 | 0.000 | 0.000 | 1.24 | | | | В | | 60.227 | 29.288 | 0.000 | 0.000 | 1.99 | | | | С | | 43.263 | 34.253 | 0.000 | 0.000 | 0.84 | | T7 | 40.00-20.00 | Α | 1.000 | 35.375 | 23.978 | 0.000 | 0.000 | 1.19 | | | | В | | 66.492 | 29.061 | 0.000 | 0.000 | 2.05 | | | | С | | 51.233 | 34.139 | 0.000 | 0.000 | 0.91 | | T8 | 20.00-0.00 | Α | 1.000 | 21.225 | 14.387 | 0.000 | 0.000 | 0.72 | | | | В | | 39.895 | 17.437 | 0.000 | 0.000 | 1.23 | | | | С | | 30.740 | 20.483 | 0.000 | 0.000 | 0.54 | # Feed Line Shielding | Section | Elevation | Face | A_R | A_R | A_F | A_F | |---------|---------------|------|-----------------|-----------------|-----------------|-----------------| | | | | | lce | | lce | | | ft | | f t² | ft ² | ft ² | f t² | | T1 | 132.00-124.00 | Α | 0.000 | 0.496 | 0.212 | 0.378 | | | | В | 0.000 | 1.816 | 0.760 | 1.384 | | | | С | 0.000 | 0.000 | 0.000 | 0.000 | | T2 | 124.00-120.00 | Α | 0.000 | 0.289 | 0.127 | 0.226 | | | | В | 0.000 | 1.411 | 0.606 | 1.101 | | | | С | 0.000 | 0.000 | 0.000 | 0.000 | | Т3 | 120.00-100.00 | Α | 0.000 | 4.148 | 1.977 | 3.590 | | | | В | 0.000 | 3.978 | 1.906 | 3.443 | | | | С | 0.000 | 0.910 | 0.481 | 0.788 | | T4 | 100.00-80.00 | Α | 0.000 | 3.485 | 2.149 | 3.862 | | | | В | 0.000 | 2.927 | 1.816 | 3.244 | | | | С | 0.000 | 3.354 | 2.289 | 3.717 | | T5 | 80.00-60.00 | Α | 0.000 | 3.161 | 2.035 | 3.610 | | | | В | 0.000 | 2.671 | 1.725 | 3.050 | | | | С | 0.000 | 3.047 | 2.168 | 3.481 | | T6 | 60.00-40.00 | Α | 0.000 | 2.880 | 2.358 | 4.110 | | | | В | 0.000 | 3.029 | 2.220 | 4.323 | | | | С | 0.000 | 2.784 | 2.512 | 3.973 | | T7 | 40.00-20.00 | Α | 0.000 | 1.906 | 1.675 | 2.860 | | | | В | 0.000 | 2.137 | 1.627 | 3.206 | | | | С | 0.000 | 1.848 | 1.785 | 2.772 | | Т8 | 20.00-0.00 | Α | 0.000 | 1.108 | 1.136 | 1.940 | | | | В | 0.000 | 1.243 | 1.103 | 2.175 | | | | С | 0.000 | 1.074 | 1.210 | 1.880 | ### **Feed Line Center of Pressure** | Section | Elevation | CP_X | CP_Z | CP_X | CP_Z | |---------|---------------|--------|--------|--------|--------| | | | | | lce | Ice | | | ft | in | in | in | in | | T1 | 132.00-124.00 | 4.36 | -3.63 | 1.83 | -3.52 | | T2 | 124.00-120.00 | 5.05 | -3.30 | 2.01 | -3.04 | | T3 | 120.00-100.00 | 6.06 | -8.62 | 3.09 | -7.00 | | T4 | 100.00-80.00 | 13.28 | -2.85 | 8.77 | -3.44 | | T5 | 80.00-60.00 | 17.08 | -1.18 | 11.32 | -2.32 | | T6 | 60.00-40.00 | 17.54 | -1.84 | 12.15 | -3.05 | | T7 | 40.00-20.00 | 20.18 | -1.46 | 14.59 | -2.05 | | T8 | 20.00-0.00 | 15.59 | -1.10 | 11.75 | -1.62 | | | | | Disc | rete Tov | ver Load | ds | | | | |----------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|---|--|---------------------------------------|--------------------------------------| | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | | | | | ft
ft
ft | ٥ | ft | | ft ² | ft ² | K | | APXVSPP18-C-A20 w/
Mount Pipe | A | From Leg | 3.15
-2.46
0.00 | -38.00 | 130.00 | No Ice
1/2"
Ice
1" Ice | 8.26
8.81
9.36
10.50 | 6.71
7.66
8.49
10.20 | 0.08
0.14
0.22
0.39 | | TME-1900MHz RRH
(65MHz) | Α | From Leg | 3.15
-2.46
0.00 | -38.00 | 130.00 | 2" Ice
4" Ice
No Ice
1/2"
Ice | 12.88
2.70
2.94
3.18 | 13.98
2.77
3.01
3.26 | 0.87
0.06
0.08
0.11 | | 800MHz 2x50W RRH | А | From Leg | 3.15 | -38.00 | 130.00 | 1" Ice
2" Ice
4" Ice
No Ice | 3.70
4.85
2.40 | 3.78
4.93
2.25 | 0.18
0.35
0.06 | | W/FILTER | | | -2.46
0.00 | | | 1/2"
Ice
1" Ice
2" Ice
4" Ice | 2.61
2.83
3.30
4.34 | 2.46
2.68
3.13
4.15 | 0.09
0.11
0.17
0.34 | | APXVTM14-C-120 w/
Mount Pipe | Α | From Leg | 3.15
-2.46
0.00 | -38.00 | 130.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 7.13
7.66
8.18
9.26
11.53 | 4.96
5.75
6.47
8.01
11.41 | 0.08
0.13
0.19
0.34
0.75 | | TD-RRH8x20-25 | Α | From Leg | 3.15
-2.46
0.00 | -38.00 | 130.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice | 4.72
5.01
5.32
5.95 | 1.70
1.92
2.15
2.62 | 0.07
0.10
0.13
0.20 | | APXVSPP18-C-A20 w/
Mount Pipe | В |
From Leg | 3.15
-2.46
0.00 | -38.00 | 130.00 | 2" Ice
4" Ice
No Ice
1/2"
Ice
1" Ice | 7.31
8.26
8.81
9.36
10.50 | 3.68
6.71
7.66
8.49
10.20 | 0.40
0.08
0.14
0.22
0.39 | | 1900MHZ RRH (65MHz) | В | From Leg | 3.15
-2.46
0.00 | -38.00 | 130.00 | 2" Ice
4" Ice
No Ice
1/2" | 12.88
2.70
2.94
3.18 | 13.98
2.77
3.01
3.26 | 0.87
0.06
0.08
0.11 | | 800MHz 2x50W RRH | В | From Leg | 3.15 | -38.00 | 130.00 | 1" Ice
2" Ice
4" Ice
No Ice | 3.70
4.85
2.40 | 3.78
4.93
2.25 | 0.18
0.35
0.06 | | W/FILTER | | | -2.46
0.00 | | | 1/2"
Ice
1" Ice
2" Ice
4" Ice | 2.61
2.83
3.30
4.34 | 2.46
2.68
3.13
4.15 | 0.09
0.11
0.17
0.34 | | APXVTM14-C-120 w/
Mount Pipe | В | From Leg | 3.15
-2.46
0.00 | -38.00 | 130.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 7.13
7.66
8.18
9.26
11.53 | 4.96
5.75
6.47
8.01
11.41 | 0.08
0.13
0.19
0.34
0.75 | | TD-RRH8x20-25 | В | From Leg | 3.15
-2.46
0.00 | -38.00 | 130.00 | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 4.72
5.01
5.32
5.95
7.31 | 1.70
1.92
2.15
2.62
3.68 | 0.07
0.10
0.13
0.20
0.40 | | APXVSPP18-C-A20 w/
Mount Pipe | С | From Leg | 2.68
-2.97 | -48.00 | 130.00 | 4" Ice
No Ice
1/2" | 8.26
8.81 | 6.71
7.66 | 0.08
0.14 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | $C_A A_A$ Front | $C_A A_A$
Side | Weight | |-------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|----------------------------|-----------------|-------------------|--------------| | | | | Vert
ft
ft
ft | 0 | ft | | ft ² | ft² | K | | | | | 0.00 | | | Ice | 9.36 | 8.49 | 0.22 | | | | | | | | 1" Ice
2" Ice
4" Ice | 10.50
12.88 | 10.20
13.98 | 0.39
0.87 | | TME-1900MHz RRH | С | From Leg | 2.68 | -48.00 | 130.00 | No Ice | 2.70 | 2.77 | 0.06 | | (65MHz) | | | -2.97 | | | 1/2" | 2.94 | 3.01 | 0.08 | | | | | 0.00 | | | lce
1" lce | 3.18
3.70 | 3.26
3.78 | 0.11
0.18 | | | | | | | | 2" Ice
4" Ice | 4.85 | 4.93 | 0.35 | | 800MHz 2x50W RRH | С | From Leg | 2.68 | -48.00 | 130.00 | No Ice | 2.40 | 2.25 | 0.06 | | W/FILTER | | | -2.97
0.00 | | | 1/2"
Ice | 2.61
2.83 | 2.46
2.68 | 0.09
0.11 | | | | | 0.00 | | | 1" Ice | 3.30 | 3.13 | 0.17 | | | | | | | | 2" Ice
4" Ice | 4.34 | 4.15 | 0.34 | | APXVTM14-C-120 w/ | С | From Leg | 2.68 | -48.00 | 130.00 | No Ice | 7.13 | 4.96 | 0.08 | | Mount Pipe | | | -2.97 | | | 1/2" | 7.66 | 5.75 | 0.13 | | | | | 0.00 | | | lce
1" lce | 8.18
9.26 | 6.47
8.01 | 0.19
0.34 | | | | | | | | 2" Ice
4" Ice | 11.53 | 11.41 | 0.75 | | TD-RRH8x20-25 | С | From Leg | 2.68 | -48.00 | 130.00 | No Ice | 4.72 | 1.70 | 0.07 | | | | | -2.97 | | | 1/2" | 5.01 | 1.92 | 0.10 | | | | | 0.00 | | | lce
1" lce | 5.32
5.95 | 2.15
2.62 | 0.13
0.20 | | | | | | | | 2" Ice
4" Ice | 7.31 | 3.68 | 0.40 | | Sector Mount [SM 803-3] | С | None | | 0.00 | 130.00 | No Ice | 40.40 | 40.40 | 0.98 | | | | | | | | 1/2" | 51.20 | 51.20 | 1.23 | | | | | | | | Ice | 62.00 | 62.00 | 1.47 | | | | | | | | 1" Ice
2" Ice
4" Ice | 83.60
126.80 | 83.60
126.80 | 1.95
2.91 | | LBX-6515DS-T0M w/ | Α | From Leg | 3.91 | 12.00 | 117.00 | No Ice | 8.92 | 6.10 | 0.05 | | Mount Pipe | | _ | 0.83 | | | 1/2" | 9.58 | 7.27 | 0.11 | | | | | 0.00 | | | Ice | 10.20 | 8.16 | 0.19 | | | | | | | | 1" Ice | 11.47 | 9.97 | 0.36 | | | | | | | | 2" Ice
4" Ice | 14.13 | 13.79 | 0.85 | | LNX-6514DS-T4M w/ | Α | From Leg | 3.91 | 12.00 | 117.00 | No Ice | 8.57 | 7.00 | 0.06 | | Mount Pipe | | - | 0.83 | | | 1/2" | 9.22 | 8.19 | 0.13 | | | | | 0.00 | | | Ice | 9.84 | 9.08 | 0.20 | | | | | | | | 1" Ice
2" Ice
4" Ice | 11.10
13.75 | 10.90
14.93 | 0.38
0.89 | | APX18-206516L-CT2 w/ | Α | From Leg | 3.91 | 12.00 | 117.00 | No Ice | 4.12 | 3.67 | 0.04 | | Mount Pipe | | | 0.83 | | | 1/2" | 4.73 | 4.72 | 0.08 | | | | | 0.00 | | | Ice | 5.26 | 5.48 | 0.13 | | | | | | | | 1" Ice
2" Ice
4" Ice | 6.41
8.85 | 7.05
10.39 | 0.24
0.58 | | APX18-206517-CT2 w/ | Α | From Leg | 3.91 | 12.00 | 117.00 | No Ice | 5.36 | 4.73 | 0.05 | | Mount Pipe | | ū | 0.83 | | | 1/2" | 5.91 | 5.90 | 0.09 | | | | | 0.00 | | | Ice | 6.44 | 6.79 | 0.15 | | | | | | | | 1" Ice
2" Ice
4" Ice | 7.51
9.86 | 8.58
12.36 | 0.28
0.68 | | (2) FD9R6004/2C-3L | Α | From Leg | 3.91 | 12.00 | 117.00 | No Ice | 0.37 | 0.08 | 0.00 | | (L) 1 DOI (000-1/20-0L | / \ | om Log | 0.83 | .2.00 | . 17.00 | 1/2" | 0.45 | 0.14 | 0.01 | | | | | 0.00 | | | Ice | 0.54 | 0.20 | 0.01 | | | | | | | | 1" Ice | 0.75 | 0.34 | 0.02 | | | | | | | | 2" Ice | 1.28 | 0.74 | 0.06 | | DB-T1-6Z-8AB-0Z | Α | From Leg | 3.91 | 12.00 | 117.00 | 4" Ice
No Ice | 5.60 | 2.33 | 0.04 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |----------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | ft
ft
ft | ٥ | ft | | ft ² | ft ² | K | | | | | 0.83 | | | 1/2" | 5.92 | 2.56 | 0.08 | | | | | 0.00 | | | Ice | 6.24 | 2.79 | 0.12 | | | | | | | | 1" Ice | 6.91 | 3.28 | 0.21 | | | | | | | | 2" Ice | 8.37 | 4.37 | 0.45 | | RRH2X40-AWS | Α | From Leg | 3.91 | 12.00 | 117.00 | 4" Ice
No Ice | 2.52 | 1.59 | 0.04 | | KKI IZA40-AW3 | ^ | From Leg | 0.83 | 12.00 | 117.00 | 1/2" | 2.75 | 1.80 | 0.04 | | | | | 0.00 | | | Ice | 2.99 | 2.01 | 0.08 | | | | | | | | 1" Ice | 3.44 | 2.43 | 0.12 | | | | | | | | 2" Ice | 4.36 | 3.27 | 0.20 | | | | | | | | 4" Ice | | | | | LBX-6515DS-T0M w/ | В | From Leg | 3.53 | -28.00 | 117.00 | No Ice | 8.92 | 6.10 | 0.05 | | Mount Pipe | | | -1.88 | | | 1/2" | 9.58 | 7.27 | 0.11 | | | | | 0.00 | | | lce | 10.20 | 8.16 | 0.19 | | | | | | | | 1" Ice
2" Ice | 11.47
14.13 | 9.97
13.79 | 0.36
0.85 | | | | | | | | 4" Ice | 14.13 | 13.79 | 0.65 | | APX18-206517-CT2 w/ | В | From Leg | 3.53 | -28.00 | 117.00 | No Ice | 5.36 | 4.73 | 0.05 | | Mount Pipe | _ | | -1.88 | 20.00 | | 1/2" | 5.91 | 5.90 | 0.09 | | | | | 0.00 | | | Ice | 6.44 | 6.79 | 0.15 | | | | | | | | 1" Ice | 7.51 | 8.58 | 0.28 | | | | | | | | 2" Ice | 9.86 | 12.36 | 0.68 | | | _ | | | | | 4" Ice | | | | | LNX-6514DS-T4M w/ | В | From Leg | 3.53 | -28.00 | 117.00 | No Ice | 8.57 | 7.00 | 0.06 | | Mount Pipe | | | -1.88 | | | 1/2" | 9.22 | 8.19 | 0.13 | | | | | 0.00 | | | lce
1" lce | 9.84
11.10 | 9.08
10.90 | 0.20
0.38 | | | | | | | | 2" Ice | 13.75 | 14.93 | 0.89 | | | | | | | | 4" Ice | 10.10 | 11.00 | 0.00 | | APX18-206516L-CT2 w/ | В | From Leg | 3.53 | -28.00 | 117.00 | No Ice | 4.12 | 3.67 | 0.04 | | Mount Pipe | | | -1.88 | | | 1/2" | 4.73 | 4.72 | 0.08 | | | | | 0.00 | | | Ice | 5.26 | 5.48 | 0.13 | | | | | | | | 1" Ice | 6.41 | 7.05 | 0.24 | | | | | | | | 2" Ice
4" Ice | 8.85 | 10.39 | 0.58 | | (2) FD9R6004/2C-3L | В | From Leg | 3.53 | -28.00 | 117.00 | No Ice | 0.37 | 0.08 | 0.00 | | | | | -1.88 | | | 1/2" | 0.45 | 0.14 | 0.01 | | | | | 0.00 | | | lce | 0.54 | 0.20 | 0.01 | | | | | | | | 1" Ice
2" Ice | 0.75
1.28 | 0.34
0.74 | 0.02
0.06 | | | | | | | | 4" Ice | 1.20 | 0.74 | 0.06 | | RRH2X40-AWS | В | From Leg | 3.53 | -28.00 | 117.00 | No Ice | 2.52 | 1.59 | 0.04 | | | | | -1.88 | | | 1/2" | 2.75 | 1.80 | 0.06 | | | | | 0.00 | | | Ice | 2.99 | 2.01 | 0.08 | | | | | | | | 1" Ice | 3.44 | 2.43 | 0.12 | | | | | | | | 2" Ice | 4.36 | 3.27 | 0.20 | | LNIV 054 4DQ TOM | 0 | F | 0.74 | 00.00 | 447.00 | 4" Ice | 0.57 | 7.00 | 0.00 | | LNX-6514DS-T6M w/ | С | From Leg | 3.71 | 22.00 | 117.00 | No Ice
1/2" | 8.57 | 7.00 | 0.06 | | Mount Pipe | | | 1.50
0.00 | | | lce | 9.22
9.84 | 8.19
9.08 | 0.13
0.20 | | | | | 0.00 | | | 1" Ice | 11.10 | 10.90 | 0.20 | | | | | | | | 2" Ice | 13.75 | 14.93 | 0.89 | | | | | | | | 4" Ice | | | | | APX18-206516L-CT2 w/ | С | From Leg | 3.71 | -28.00 | 117.00 | No Ice | 4.12 | 3.67 | 0.04 | | Mount Pipe | | _ | 1.50 | | | 1/2" | 4.73 | 4.72 | 0.08 | | | | | 0.00 | | | Ice | 5.26 | 5.48 | 0.13 | | | | | | | | 1" Ice | 6.41 | 7.05 | 0.24 | | | | | | | | 2" Ice
4" Ice | 8.85 | 10.39 | 0.58 | | BXA-70063-6CF-2 | С | From Leg | 3.71 | 32.00 | 117.00 | No Ice | 7.77 | 5.18 | 0.04 | | w/Mount Pipe | | J | 1.50 | | | 1/2" | 8.31 | 6.11 | 0.10 | | | | | 0.00 | | | Ice | 8.86 | 6.92 | 0.16 | | | | | | | | 1" Ice | 9.99 | 8.59 | 0.31 | | | | | | | | 2" Ice | 12.35 | 12.13 | 0.75 | | | | | | | | 4" Ice | | | | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---|-------------------|----------------|-------------------------------------|---------------------------|-----------|---|--|--|--------------------------------------| | | | | ft
ft
ft | ٥ | ft | | ft ² | ft² | K | | APX18-206517-CT2 w/
Mount Pipe | С | From Leg | 3.71
1.50
0.00 | 22.00 | 117.00 | No Ice
1/2"
Ice
1" Ice | 5.36
5.91
6.44
7.51 | 4.73
5.90
6.79
8.58 | 0.05
0.09
0.15
0.28 | | (2) FD9R6004/2C-3L | С | From Leg | 3.71 | 32.00 | 117.00 | 2" Ice
4" Ice
No Ice | 9.86
0.37 | 12.36
0.08 | 0.68 | | (2) 1 331(3334) 23 32 | Ü | Trom Log | 1.50
0.00 | 02 .00 | 117.00 | 1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.45
0.54
0.75
1.28 |
0.14
0.20
0.34
0.74 | 0.01
0.01
0.02
0.06 | | RRH2X40-AWS | С | From Leg | 3.71
1.50
0.00 | 32.00 | 117.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 2.52
2.75
2.99
3.44
4.36 | 1.59
1.80
2.01
2.43
3.27 | 0.04
0.06
0.08
0.12
0.20 | | Sector Mount [SM 504-3] | С | None | | 0.00 | 117.00 | No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice | 34.25
48.98
63.71
93.17
152.09 | 34.25
48.98
63.71
93.17
152.09 | 1.71
2.29
2.86
4.02
6.33 | | 800 10121 w/ Mount Pipe | Α | From Leg | 4.00
0.14
2.00 | 2.00 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 5.69
6.18
6.67
7.69
9.84 | 4.60
5.34
6.04
7.51
10.82 | 0.07
0.11
0.17
0.30
0.67 | | (2) AM-X-CD-16-65-00T-
RET w/ Mount Pipe | Α | From Leg | 4.00
0.14
2.00 | 2.00 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 8.50
9.15
9.77
11.03
13.68 | 6.30
7.48
8.37
10.18
14.02 | 0.07
0.14
0.21
0.38
0.87 | | 782-10250 | Α | From Leg | 4.00
0.14
2.00 | 2.00 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.52
0.63
0.75
1.01
1.63 | 0.27
0.36
0.46
0.69
1.24 | 0.01
0.01
0.02
0.03
0.09 | | DBC-750 | Α | From Leg | 4.00
0.14
2.00 | 2.00 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.51
0.60
0.71
0.95
1.53 | 0.10
0.16
0.23
0.40
0.84 | 0.00
0.01
0.01
0.02
0.07 | | DC6-48-60-18-8F | Α | From Leg | 4.00
0.14
2.00 | 2.00 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 2.22
2.44
2.66
3.15
4.21 | 2.22
2.44
2.66
3.15
4.21 | 0.02
0.04
0.06
0.12
0.27 | | (2) RRUS-11 | Α | From Leg | 4.00
0.14
2.00 | 2.00 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 3.25
3.49
3.74
4.27
5.43 | 1.37
1.55
1.74
2.14
3.04 | 0.05
0.07
0.09
0.15
0.31 | | DTMABP7819VG12A | Α | From Leg | 4.00
0.14
2.00 | 2.00 | 104.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 1.14
1.28
1.44
1.77
2.54 | 0.39
0.49
0.59
0.83
1.41 | 0.02
0.03
0.04
0.06
0.14 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |-------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | Vert
ft
ft
ft | ۰ | ft | | ft ² | ft ² | K | | 000 40404/ Marrat Bira | | F | 4.00 | 0.00 | 404.00 | 4" Ice | F 00 | 4.00 | 0.07 | | 800 10121 w/ Mount Pipe | В | From Leg | 4.00
0.14 | 2.00 | 104.00 | No Ice
1/2" | 5.69
6.18 | 4.60
5.34 | 0.07
0.11 | | | | | 2.00 | | | Ice | 6.67 | 6.04 | 0.17 | | | | | 2.00 | | | 1" Ice | 7.69 | 7.51 | 0.30 | | | _ | | | | | 2" Ice
4" Ice | 9.84 | 10.82 | 0.67 | | (2) AM-X-CD-16-65-00T- | В | From Leg | 4.00 | 2.00 | 104.00 | No Ice | 8.50 | 6.30 | 0.07 | | RET w/ Mount Pipe | | | 0.14
2.00 | | | 1/2"
Ice | 9.15
9.77 | 7.48
8.37 | 0.14
0.21 | | | | | 2.00 | | | 1" Ice | 11.03 | 10.18 | 0.21 | | | | | | | | 2" Ice | 13.68 | 14.02 | 0.87 | | | | | | | | 4" Ice | | | | | 782-10250 | В | From Leg | 4.00 | 2.00 | 104.00 | No Ice | 0.52 | 0.27 | 0.01 | | | | | 0.14 | | | 1/2" | 0.63 | 0.36 | 0.01 | | | | | 2.00 | | | lce | 0.75 | 0.46 | 0.02 | | | | | | | | 1" Ice
2" Ice | 1.01
1.63 | 0.69
1.24 | 0.03
0.09 | | | | | | | | 4" Ice | 1.03 | 1.24 | 0.09 | | DBC-750 | В | From Leg | 4.00 | 2.00 | 104.00 | No Ice | 0.51 | 0.10 | 0.00 | | | | J | 0.14 | | | 1/2" | 0.60 | 0.16 | 0.01 | | | | | 2.00 | | | Ice | 0.71 | 0.23 | 0.01 | | | | | | | | 1" Ice | 0.95 | 0.40 | 0.02 | | | | | | | | 2" Ice
4" Ice | 1.53 | 0.84 | 0.07 | | (3) RRUS-11 | В | From Leg | 4.00 | 2.00 | 104.00 | No Ice | 3.25 | 1.37 | 0.05 | | (0) 11100 11 | | 1 Tom Log | 0.14 | 2.00 | 104.00 | 1/2" | 3.49 | 1.55 | 0.07 | | | | | 2.00 | | | Ice | 3.74 | 1.74 | 0.09 | | | | | | | | 1" Ice | 4.27 | 2.14 | 0.15 | | | | | | | | 2" Ice | 5.43 | 3.04 | 0.31 | | DTMABP7819VG12A | В | From Leg | 4.00 | 2.00 | 104.00 | 4" Ice
No Ice | 1.14 | 0.39 | 0.02 | | D1101AB1 7013VG12A | Ь | 1 Tolli Log | 0.14 | 2.00 | 104.00 | 1/2" | 1.28 | 0.49 | 0.02 | | | | | 2.00 | | | lce | 1.44 | 0.59 | 0.04 | | | | | | | | 1" Ice | 1.77 | 0.83 | 0.06 | | | | | | | | 2" Ice | 2.54 | 1.41 | 0.14 | | 800 10121 w/ Mount Pipe | С | From Leg | 3.91 | 12.00 | 104.00 | 4" Ice
No Ice | 5.69 | 4.60 | 0.07 | | 000 TOTZT W/ MOUNTT IPE | C | i ioni Leg | 0.83 | 12.00 | 104.00 | 1/2" | 6.18 | 5.34 | 0.07 | | | | | 2.00 | | | lce | 6.67 | 6.04 | 0.17 | | | | | | | | 1" Ice | 7.69 | 7.51 | 0.30 | | | | | | | | 2" Ice | 9.84 | 10.82 | 0.67 | | (2) SBNH-1D6565C w/ | С | From Leg | 3.91 | 12.00 | 104.00 | 4" Ice
No Ice | 11.68 | 9.84 | 0.09 | | Mount Pipe | C | From Leg | 0.83 | 12.00 | 104.00 | 1/2" | 12.40 | 11.37 | 0.09 | | | | | 2.00 | | | lce | 13.14 | 12.91 | 0.28 | | | | | | | | 1" Ice | 14.60 | 15.27 | 0.52 | | | | | | | | 2" Ice | 17.87 | 20.14 | 1.16 | | 782-10250 | С | Erom Log | 2.04 | 12.00 | 104.00 | 4" Ice
No Ice | 0.52 | 0.27 | 0.01 | | 782-10230 | C | From Leg | 3.91
0.83 | 12.00 | 104.00 | 1/2" | 0.52
0.63 | 0.27 | 0.01 | | | | | 2.00 | | | lce | 0.75 | 0.46 | 0.02 | | | | | | | | 1" Ice | 1.01 | 0.69 | 0.03 | | | | | | | | 2" Ice | 1.63 | 1.24 | 0.09 | | DBC-750 | С | From Leg | 2.04 | 12.00 | 104.00 | 4" Ice
No Ice | 0.51 | 0.10 | 0.00 | | DDC-1:00 | C | From Leg | 3.91
0.83 | 12.00 | 104.00 | 1/2" | 0.60 | 0.10 | 0.00 | | | | | 2.00 | | | Ice | 0.71 | 0.10 | 0.01 | | | | | | | | 1" Ice | 0.95 | 0.40 | 0.02 | | | | | | | | 2" Ice | 1.53 | 0.84 | 0.07 | | DDUG 44 | _ | Гио-нь I | 0.04 | 40.00 | 404.00 | 4" Ice | 2.05 | 4.07 | 0.05 | | RRUS-11 | С | From Leg | 3.91
0.83 | 12.00 | 104.00 | No Ice
1/2" | 3.25
3.49 | 1.37
1.55 | 0.05
0.07 | | | | | 2.00 | | | lce | 3.74 | 1.74 | 0.07 | | | | | | | | 1" Ice | 4.27 | 2.14 | 0.15 | | | | | | | | | | | | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |--------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | ft
ft
ft | o | ft | | ft ² | ft ² | K | | | | | | | | 2" Ice
4" Ice | 5.43 | 3.04 | 0.31 | | DTMABP7819VG12A | С | From Leg | 3.91 | 12.00 | 104.00 | No Ice | 1.14 | 0.39 | 0.02 | | 21111121101010121 | • | | 0.83 | | | 1/2" | 1.28 | 0.49 | 0.03 | | | | | 2.00 | | | Ice | 1.44 | 0.59 | 0.04 | | | | | | | | 1" Ice | 1.77 | 0.83 | 0.06 | | | | | | | | 2" Ice | 2.54 | 1.41 | 0.14 | | Sector Mount [SM 504-3] | С | None | | 0.00 | 104.00 | 4" Ice
No Ice | 34.25 | 34.25 | 1.71 | | Sector Mount [SIM 504-5] | C | None | | 0.00 | 104.00 | 1/2" | 48.98 | 48.98 | 2.29 | | | | | | | | lce | 63.71 | 63.71 | 2.86 | | | | | | | | 1" Ice | 93.17 | 93.17 | 4.02 | | | | | | | | 2" Ice | 152.09 | 152.09 | 6.33 | | 740.040 /14 / 5: | | | | 00.00 | 00.00 | 4" Ice | - 07 | 4.00 | 0.05 | | 742 213 w/ Mount Pipe | Α | From Leg | 0.00 | -88.00 | 92.00 | No Ice | 5.37 | 4.62 | 0.05 | | | | | -1.00
0.03 | | | 1/2"
Ice | 5.95
6.50 | 6.00
6.98 | 0.09
0.15 | | | | | 0.00 | | | 1" Ice | 7.61 | 8.85 | 0.13 | | | | | | | | 2" Ice | 9.93 | 12.79 | 0.68 | | | | | | | | 4" Ice | | | | | 742 213 w/ Mount Pipe | В | From Leg | 0.00 | -88.00 | 92.00 | No Ice | 5.37 | 4.62 | 0.05 | | | | | -1.00 | | | 1/2" | 5.95 | 6.00 | 0.09 | | | | | 0.03 | | | Ice
1" Ice | 6.50
7.61 | 6.98
8.85 | 0.15
0.28 | | | | | | | | 2" Ice | 9.93 | 12.79 | 0.28 | | | | | | | | 4" lce | 0.00 | 12.10 | 0.00 | | 742 213 w/ Mount Pipe | С | From Leg | 0.00 | -88.00 | 92.00 | No Ice | 5.37 | 4.62 | 0.05 | | | | | -1.00 | | | 1/2" | 5.95 | 6.00 | 0.09 | | | | | 0.03 | | | lce
1" lce | 6.50
7.61 | 6.98 | 0.15
0.28 | | | | | | | | 2" Ice | 9.93 | 8.85
12.79 | 0.28 | | | | | | | | 4" Ice | 0.00 | 12.70 | 0.00 | | ERICSSON AIR 21 B2A | Α | From Leg | 4.00 | 2.00 | 84.00 | No Ice | 6.83 | 5.64 | 0.11 | | B4P w/ Mount Pipe | | | 0.14 | | | 1/2" | 7.35 | 6.48 | 0.17 | | | | | 0.00 | | | lce
1" lce | 7.86 | 7.26 | 0.23 | | | | | | | | 2" Ice | 8.93
11.18 | 8.86
12.29 | 0.38
0.81 | | | | | | | | 4" lce | 11.10 | 12.25 | 0.01 | | ERICSSON AIR 21 B4A | Α | From Leg | 4.00 | 2.00 | 84.00 | No Ice | 6.83 | 5.64 | 0.11 | | B2P w/ Mount Pipe | | | 0.14 | | | 1/2" | 7.35 | 6.48 | 0.17 | | | | | 0.00 | | | Ice | 7.86 | 7.26 | 0.23 | | | | | | | | 1" Ice
2" Ice | 8.93
11.18 | 8.86
12.29 | 0.38
0.81 | | | | | | | | 4" Ice | 11.10 | 12.25 | 0.01 | | KRY 112 144/1 | Α | From Leg | 4.00 | 2.00 | 84.00 | No Ice | 0.41 | 0.20 | 0.01 | | | | _ | 0.14 | | | 1/2" | 0.50 | 0.27 | 0.01 | | | | | 0.00 | | | Ice | 0.59 | 0.35 | 0.02 | | | | | | | | 1" Ice
2" Ice | 0.81 | 0.53 | 0.03 | | | | | | | | 4" Ice | 1.36 | 1.00 | 0.08 | | ERICSSON AIR 21 B2A | В | From Leg | 4.00 | 2.00 | 84.00 | No Ice | 6.83 | 5.64 | 0.11 | | B4P w/ Mount Pipe | | | 0.14 | | | 1/2" | 7.35 | 6.48 | 0.17 | | | | | 0.00 | | | Ice | 7.86 | 7.26 | 0.23 | | | | | | | | 1" Ice | 8.93 | 8.86 | 0.38 | | | | | | | | 2" Ice
4" Ice | 11.18 | 12.29 | 0.81 | | ERICSSON AIR 21 B4A | В | From Leg | 4.00 | 2.00 | 84.00 | No Ice | 6.83 | 5.64 | 0.11 | | B2P w/ Mount Pipe | ٥ | J 20g | 0.14 | 2.00 | 300 | 1/2" | 7.35 | 6.48 | 0.17 | | · | | | 0.00 | | | Ice | 7.86 | 7.26 | 0.23 | | | | | | | | 1" Ice | 8.93 | 8.86 | 0.38 | | | | | | | | 2" Ice | 11.18 | 12.29 | 0.81 | | KRY 112 144/1 | В | From
Leg | 4.00 | 2.00 | 84.00 | 4" Ice
No Ice | 0.41 | 0.20 | 0.01 | | MX 1 112 144/1 | ט | i ioni Leg | 0.14 | 2.00 | 04.00 | 1/2" | 0.41 | 0.20 | 0.01 | | | | | 0.00 | | | lce | 0.59 | 0.35 | 0.02 | | | | | | | | | | | | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |-------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | ft
ft
ft | ٥ | ft | | ft ² | ft ² | K | | | | | | | | 1" Ice | 0.81 | 0.53 | 0.03 | | | | | | | | 2" Ice
4" Ice | 1.36 | 1.00 | 0.08 | | ERICSSON AIR 21 B2A | С | From Leg | 4.00 | 2.00 | 84.00 | No Ice | 6.83 | 5.64 | 0.11 | | B4P w/ Mount Pipe | | • | 0.14 | | | 1/2" | 7.35 | 6.48 | 0.17 | | | | | 0.00 | | | Ice | 7.86 | 7.26 | 0.23 | | | | | | | | 1" Ice | 8.93 | 8.86 | 0.38 | | | | | | | | 2" Ice
4" Ice | 11.18 | 12.29 | 0.81 | | ERICSSON AIR 21 B4A | С | From Leg | 4.00 | 2.00 | 84.00 | No Ice | 6.83 | 5.64 | 0.11 | | B2P w/ Mount Pipe | | · · | 0.14 | | | 1/2" | 7.35 | 6.48 | 0.17 | | • | | | 0.00 | | | Ice | 7.86 | 7.26 | 0.23 | | | | | | | | 1" Ice | 8.93 | 8.86 | 0.38 | | | | | | | | 2" Ice | 11.18 | 12.29 | 0.81 | | | | | | | | 4" Ice | | | | | KRY 112 144/1 | С | From Leg | 4.00 | 2.00 | 84.00 | No Ice | 0.41 | 0.20 | 0.01 | | | | | 0.14 | | | 1/2" | 0.50 | 0.27 | 0.01 | | | | | 0.00 | | | Ice | 0.59 | 0.35 | 0.02 | | | | | | | | 1" Ice | 0.81 | 0.53 | 0.03 | | | | | | | | 2" Ice | 1.36 | 1.00 | 0.08 | | 0 / 14 / 1014 000 01 | • | | | 0.00 | 0.4.00 | 4" Ice | 00.04 | 00.04 | | | Sector Mount [SM 308-3] | С | None | | 0.00 | 84.00 | No Ice | 22.34 | 22.34 | 0.38 | | | | | | | | 1/2" | 31.70 | 31.70 | 0.83 | | | | | | | | Ice | 41.06 | 41.06 | 1.28 | | | | | | | | 1" Ice | 59.78 | 59.78 | 2.19 | | | | | | | | 2" Ice
4" Ice | 97.22 | 97.22 | 3.99 | | Side Arm Mount [SO 311- | С | From Leg | 0.00 | 90.00 | 61.00 | No Ice | 2.97 | 3.51 | 0.06 | | 1] | | | 4.00 | | | 1/2" | 4.39 | 5.33 | 0.09 | | | | | 0.00 | | | Ice | 5.81 | 7.15 | 0.13 | | | | | | | | 1" Ice | 8.65 | 10.79 | 0.19 | | | | | | | | 2" Ice
4" Ice | 14.33 | 18.07 | 0.32 | | RDL-3000 | С | From Leg | 0.00 | 90.00 | 61.00 | No Ice | 1.18 | 0.28 | 0.01 | | | | · · | 4.00 | | | 1/2" | 1.32 | 0.37 | 0.01 | | | | | 0.00 | | | Ice | 1.48 | 0.48 | 0.02 | | | | | | | | 1" Ice | 1.82 | 0.71 | 0.04 | | | | | | | | 2" Ice | 2.59 | 1.28 | 0.12 | | | | | | | | 4" Ice | | | | | Side Arm Mount [SO 311- | Α | From Leg | 1.70 | 32.00 | 58.00 | No Ice | 2.97 | 3.51 | 0.06 | | 1] | | | 1.06 | | | 1/2" | 4.39 | 5.33 | 0.09 | | | | | 0.00 | | | Ice | 5.81 | 7.15 | 0.13 | | | | | | | | 1" Ice | 8.65 | 10.79 | 0.19 | | | | | | | | 2" Ice
4" Ice | 14.33 | 18.07 | 0.32 | | GPS-TMG-20N | Α | From Leg | 2 20 | 32.00 | 58.00 | | 0.16 | 0.16 | 0.00 | | GPS-TWG-20IN | A | Fioni Leg | 3.39
2.12 | 32.00 | 36.00 | No Ice
1/2" | 0.16 | 0.16 | 0.00 | | | | | 0.00 | | | lce | 0.21 | 0.21 | 0.00 | | | | | 0.00 | | | 1" Ice | 0.28 | 0.28 | 0.01 | | | | | | | | 2" Ice | 0.44 | 0.44 | 0.01 | | | | | | | | 4" Ice | 0.00 | 0.00 | 0.03 | | Side Arm Mount [SO 701- | В | From Leg | 0.23 | 62.00 | 46.00 | No Ice | 0.85 | 1.67 | 0.07 | | 1] | | · · | 0.44 | | | 1/2" | 1.14 | 2.34 | 0.08 | | - | | | 0.00 | | | Ice | 1.43 | 3.01 | 0.09 | | | | | | | | 1" Ice | 2.01 | 4.35 | 0.12 | | | | | | | | 2" Ice | 3.17 | 7.03 | 0.18 | | KS24019-L112A | В | From Loc | 0.47 | 62.00 | 46.00 | 4" Ice
No Ice | 0.16 | 0.16 | | | N324019-L112A | D | From Leg | | 0∠.00 | 40.00 | | | | 0.01 | | | | | 0.88 | | | 1/2" | 0.22 | 0.22 | 0.01 | | | | | 1.00 | | | lce
1" lce | 0.30
0.48 | 0.30
0.48 | 0.01 | | | | | | | | 2" Ice | 0.48 | 0.48
0.95 | 0.02
0.06 | | | | | | | | 4" Ice | 0.30 | 0.90 | 0.00 | | | | | | | | | | | | | | | | | | Dishe | es | | | | | | |-------------|-------------------|------------------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|--------------------|------------------|--------------| | Description | Face
or
Leg | Dish
Type | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustment | 3 dB
Beam
Width | Elevation | Outside
Diameter | | Aperture
Area | Weigh | | | | | | ft | 0 | 0 | ft | ft | | ft ² | K | | MPRC2449 | С | Paraboloid
w/Radome | From | 0.00
4.00 | 90.00 | | 61.00 | 2.17 | No Ice
1/2" Ice | 3.69
3.98 | 0.02
0.04 | | | | W/Nauoine | Leg | 0.00 | | | | | 1" Ice | 4.27 | 0.06 | | | | | | | | | | | 2" Ice
4" Ice | 4.84
6.00 | 0.11
0.19 | # **Bolt Design Data** | Section
No. | Elevation
ft | Component
Type | Bolt
Grade | Bolt Size
in | Number
Of
Bolts | Maximum
Load per
Bolt
K | Allowable
Load
K | Ratio
Load
Allowable | Allowable
Ratio | Criteria | |----------------|-----------------|-------------------|---------------|-----------------|-----------------------|----------------------------------|------------------------|----------------------------|--------------------|-----------------------| | T1 | 132 | Diagonal | A325N | 0.63 | 1 | 1.78 | 4.08 | 0.437 | 1.333 | Member Block
Shear | | | | Top Girt | A325N | 0.63 | 1 | 0.06 | 6.44 | 0.010 🖊 | 1 | Bolt Shear | | T2 | 124 | Leg | A325N | 0.63 | 4 | 1.19 | 13.50 | 0.088 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 1.61 | 4.08 | 0.394 | 1.333 | Member Block
Shear | | | | Top Girt | A325N | 0.63 | 1 | 0.30 | 4.55 | 0.065 🗸 | 1.333 | Member Block
Shear | | Т3 | 120 | Leg | A325N | 0.75 | 4 | 6.15 | 19.43 | 0.316 🖊 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 4.38 | 4.76 | 0.920 🗸 | 1.333 | Member Block
Shear | | T4 | 100 | Leg | A325N | 0.88 | 4 | 12.80 | 26.46 | 0.484 🗸 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 5.50 | 5.44 | 1.011 🗸 | 1.333 | Member
Bearing | | T5 | 80 | Leg | A325N | 0.88 | 4 | 19.39 | 26.46 | 0.733 🗸 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 5.77 | 5.44 | 1.062 | 1.333 | Member
Bearing | | T6 | 60 | Leg | A325N | 1.00 | 4 | 25.38 | 34.56 | 0.735 🗸 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 6.14 | 5.44 | 1.130 | 1.333 | Member
Bearing | | T7 | 40 | Leg | A325N | 1.00 | 4 | 30.42 | 34.56 | 0.880 🗸 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.63 | 1 | 7.21 | 6.44 | 1.118 | 1.333 | Bolt Shear | | Т8 | 20 | Leg | A449 | 1.00 | 4 | 35.53 | 31.10 | 1.142 | 1.333 | Bolt Tension | | | | Diagonal | A325N | 0.75 | 1 | 7.21 | 8.13 | 0.887 | 1.333 | Member
Bearing | # Leg Design Data (Compression) | Section
No. | Elevation | Size | L | Lu | Kl/r | Fa | Α | Actual
P | Allow.
P _a | Ratio
P | |----------------|-----------|---------------|-------|------|----------------|-------|-----------------|-------------|--------------------------|------------| | | ft | | ft | ft | | ksi | in ² | Κ | K | Pa | | T1 | 132 - 124 | ROHN 2 STD | 8.00 | 4.00 | 61.0
K=1.00 | 22.55 | 1.07 | -3.33 | 24.23 | 0.137 | | T2 | 124 - 120 | ROHN 2 STD | 4.00 | 4.00 | 61.0
K=1.00 | 22.55 | 1.07 | -6.74 | 24.23 | 0.278 | | Т3 | 120 - 100 | ROHN 2.5 STD | 20.03 | 5.01 | 63.4
K=1.00 | 22.12 | 1.70 | -31.83 | 37.70 | 0.844 | | T4 | 100 - 80 | ROHN 3 STD | 20.03 | 6.68 | 68.9
K=1.00 | 21.15 | 2.23 | -61.37 | 47.12 | 1.302 | | T5 | 80 - 60 | ROHN 3 XX-STR | 20.04 | 6.68 | 76.5
K=1.00 | 19.69 | 5.47 | -91.64 | 107.66 | 0.851 | | Т6 | 60 - 40 | ROHN 4 X-STR | 20.03 | 6.68 | 54.3 | 23.67 | 4.41 | -119.56 | 104.33 | 1.146 | | Section
No. | Elevation | Size | L | Lu | Kl/r | F _a | Α | Actual
P | Allow.
P _a | Ratio
P | |----------------|-----------|--------------|-------|-------|----------------|----------------|------|-------------|--------------------------|------------| | | ft | | ft | ft | | ksi | in² | K | K | P_a | | | | | | | K=1.00 | | | | | ~ | | Т7 | 40 - 20 | ROHN 5 X-STR | 20.03 | 10.02 | 65.4
K=1.00 | 21.78 | 6.11 | -143.70 | 133.13 | 1.079 | | Т8 | 20 - 0 | ROHN 5 X-STR | 20.03 | 10.02 | 65.4
K=1.00 | 21.78 | 6.11 | -168.30 | 133.13 | 1.264 | | | Diagonal Design Data (Compression) | | | | | | | | | | | | | |----------------|------------------------------------|-------------------|-------|-------|-----------------|------|------|-------------|--------------------------|------------|--|--|--| | Section
No. | Elevation | Size | L | Lu | Kl/r | Fa | Α | Actual
P | Allow.
P _a | Ratio
P | | | | | | ft | | ft | ft | | ksi | in² | K | K | P_a | | | | | T1 | 132 - 124 | L1 3/4x1 3/4x3/16 | 7.74 | 3.63 | 126.9
K=1.00 | 9.27 | 0.62 | -1.82 | 5.76 | 0.317 | | | | | T2 | 124 - 120 | L1 3/4x1 3/4x3/16 | 7.75 | 3.64 | 127.1
K=1.00 | 9.24 | 0.62 | -1.66 | 5.74 | 0.289 | | | | | Т3 | 120 - 100 | L2x2x3/16 | 9.80 | 4.79 | 145.8
K=1.00 | 7.03 | 0.71 | -4.44 | 5.02 | 0.884 | | | | | T4 | 100 - 80 | L2 1/2x2 1/2x3/16 | 12.32 | 6.06 | 146.9
K=1.00 | 6.92 | 0.90 | -5.62 | 6.25 | 0.900 | | | | | T5 | 80 - 60 | L2 1/2x2 1/2x3/16 | 14.09 | 6.95 | 168.5
K=1.00 | 5.26 | 0.90 | -5.78 | 4.74 | 1.220 | | | | | Т6 | 60 - 40 | L3x3x3/16 | 15.90 | 7.80 | 157.1
K=1.00 | 6.05 | 1.09 | -6.25 | 6.59 | 0.948 | | | | | Т7 | 40 - 20 | L3x3x1/4 | 19.10 | 9.45 | 191.5
K=1.00 | 4.07 | 1.44 | -7.21 | 5.86 | 1.229 | | | | | Т8 | 20 - 0 | L3 1/2x3 1/2x1/4 | 20.83 | 10.30 | 178.1
K=1.00 | 4.71 | 1.69 | -7.48 | 7.96 | 0.940 | | | | | | Top Girt Design Data (Compression) | | | | | | | | | | | | | |----------------|------------------------------------|-----------|------|------|-----------------|------|-----------------|-------------|--------------|------------|--|--|--| | Section
No. | Elevation | Size | L | Lu | Kl/r | Fa | A | Actual
P | Allow.
Pa | Ratio
P | | | | | | ft |
 ft | ft | | ksi | in ² | K | K | Pa | | | | | T1 | 132 - 124 | L2x2x3/16 | 6.60 | 6.17 | 187.8
K=1.00 | 4.23 | 0.71 | -0.06 | 3.03 | 0.021 | | | | | T2 | 124 - 120 | L2x2x3/16 | 6.63 | 6.19 | 188.7
K=1.00 | 4.20 | 0.71 | -0.25 | 3.00 | 0.085 | | | | DL contr | Leg Design Data (Tension) | | | | | | | | | | | | | |---------------------------|-----------|---------------|-------|------|------|----------------|-----------------|-------------|--------------|------------|--|--| | Section
No. | Elevation | Size | L | Lu | Kl/r | F _a | Α | Actual
P | Allow.
Pa | Ratio
P | | | | | ft | | ft | ft | | ksi | in ² | K | ĸ | P_a | | | | T1 | 132 - 124 | ROHN 2 STD | 8.00 | 4.00 | 61.0 | 30.00 | 1.07 | 1.69 | 32.24 | 0.052 | | | | T2 | 124 - 120 | ROHN 2 STD | 4.00 | 4.00 | 61.0 | 30.00 | 1.07 | 4.77 | 32.24 | 0.148 | | | | Т3 | 120 - 100 | ROHN 2.5 STD | 20.03 | 5.01 | 63.4 | 30.00 | 1.70 | 24.58 | 51.12 | 0.481 | | | | T4 | 100 - 80 | ROHN 3 STD | 20.03 | 6.68 | 68.9 | 30.00 | 2.23 | 51.21 | 66.85 | 0.766 | | | | T5 | 80 - 60 | ROHN 3 XX-STR | 20.04 | 6.68 | 76.5 | 30.00 | 5.47 | 77.57 | 163.99 | 0.473 | | | | T6 | 60 - 40 | ROHN 4 X-STR | 20.03 | 6.68 | 54.3 | 30.00 | 4.41 | 101.54 | 132.22 | 0.768 | | | tnxTower Report - version 6.1.4.1 | Section
No. | Elevation | Size | L | Lu | Kl/r | F _a | Α | Actual
P | Allow.
P _a | Ratio
P | |----------------|-----------|--------------|-------|-------|------|----------------|------|-------------|--------------------------|------------------| | | ft | | ft | ft | | ksi | in² | K | ĸ | $\overline{P_a}$ | | | | | | | | | | | | ~ | | T7 | 40 - 20 | ROHN 5 X-STR | 20.03 | 10.02 | 65.4 | 30.00 | 6.11 | 121.69 | 183.36 | 0.664 | | | | | | | | | | | | | | Т8 | 20 - 0 | ROHN 5 X-STR | 20.03 | 10.02 | 65.4 | 30.00 | 6.11 | 142.13 | 183.36 | 0.775 | | | | | | | | | | | | | | | Diagonal Design Data (Tension) | | | | | | | | | | |----------------|--------------------------------|-------------------|-------|-------|-------|-------|------|-------------|--------------------------|------------| | Section
No. | Elevation | Size | L | Lu | Kl/r | Fa | Α | Actual
P | Allow.
P _a | Ratio
P | | | ft | | ft | ft | | ksi | in² | K | K | Pa | | T1 | 132 - 124 | L1 3/4x1 3/4x3/16 | 7.74 | 3.63 | 84.0 | 29.00 | 0.36 | 1.78 | 10.45 | 0.170 | | T2 | 124 - 120 | L1 3/4x1 3/4x3/16 | 7.75 | 3.64 | 84.1 | 29.00 | 0.36 | 1.61 | 10.45 | 0.154 | | Т3 | 120 - 100 | L2x2x3/16 | 9.80 | 4.79 | 95.5 | 29.00 | 0.43 | 4.38 | 12.49 | 0.350 | | T4 | 100 - 80 | L2 1/2x2 1/2x3/16 | 12.32 | 6.06 | 95.4 | 29.00 | 0.57 | 5.50 | 16.56 | 0.332 | | T5 | 80 - 60 | L2 1/2x2 1/2x3/16 | 12.89 | 6.36 | 100.0 | 29.00 | 0.57 | 5.77 | 16.56 | 0.349 | | Т6 | 60 - 40 | L3x3x3/16 | 15.90 | 7.80 | 101.3 | 29.00 | 0.71 | 6.14 | 20.65 | 0.298 | | T7 | 40 - 20 | L3x3x1/4 | 19.10 | 9.45 | 123.5 | 32.50 | 0.94 | 7.03 | 30.53 | 0.230 | | Т8 | 20 - 0 | L3 1/2x3 1/2x1/4 | 20.83 | 10.30 | 114.9 | 32.50 | 1.10 | 7.21 | 35.86 | 0.201 | | | Top Girt Design Data (Tension) | | | | | | | | | | |----------------|--------------------------------|-----------|------|----------------|-------|----------------|-----------------|-------------|--------------|------------| | Section
No. | Elevation | Size | L | L _u | Kl/r | F _a | Α | Actual
P | Allow.
Pa | Ratio
P | | | ft | | ft | ft | | ksi | in ² | K | K | Pa | | T1 | 132 - 124 | L2x2x3/16 | 6.60 | 6.17 | 124.6 | 29.00 | 0.43 | 0.02 | 12.49 | 0.001 | | T2 | 124 - 120 | L2x2x3/16 | 6.63 | 6.19 | 125.1 | 29.00 | 0.43 | 0.30 | 12.49 | 0.024 | ## **Section Capacity Table** | | Florestion | Component | C: | Critical | | CC*D | 0/ | Door | |---------|-----------------|-----------|-------------------|----------|---------|----------------------------|---------------|-------| | Section | Elevation
ft | Component | Size | Critical | P | SF*P _{allow}
K | %
Consoity | Pass | | No. | | Туре | | Element | K | | Capacity | Fail | | T1 | 132 - 124 | Leg | ROHN 2 STD | 3 | -3.33 | 32.30 | 10.3 | Pass | | T2 | 124 - 120 | Leg | ROHN 2 STD | 21 | -6.74 | 32.30 | 20.9 | Pass | | T3 | 120 - 100 | Leg | ROHN 2.5 STD | 33 | -31.83 | 50.25 | 63.3 | Pass | | T4 | 100 - 80 | Leg | ROHN 3 STD | 60 | -61.37 | 62.82 | 97.7 | Pass | | T5 | 80 - 60 | Leg | ROHN 3 XX-STR | 80 | -91.64 | 143.51 | 63.9 | Pass | | T6 | 60 - 40 | Leg | ROHN 4 X-STR | 101 | -119.56 | 139.07 | 86.0 | Pass | | T7 | 40 - 20 | Leg | ROHN 5 X-STR | 122 | -143.70 | 177.46 | 81.0 | Pass | | T8 | 20 - 0 | Leg | ROHN 5 X-STR | 137 | -168.30 | 177.46 | 94.8 | Pass | | T1 | 132 - 124 | Diagonal | L1 3/4x1 3/4x3/16 | 9 | -1.82 | 7.67 | 23.8 | Pass | | | | | | | | | 32.8 (b) | | | T2 | 124 - 120 | Diagonal | L1 3/4x1 3/4x3/16 | 28 | -1.66 | 7.65 | 21.7 | Pass | | | | | | | | | 29.6 (b) | _ | | Т3 | 120 - 100 | Diagonal | L2x2x3/16 | 36 | -4.44 | 6.70 | 66.3 | Pass | | | | | | | | | 69.0 (b) | _ | | T4 | 100 - 80 | Diagonal | L2 1/2x2 1/2x3/16 | 63 | -5.62 | 8.33 | 67.5 | Pass | | | | | | | | | 75.8 (b) | | | T5 | 80 - 60 | Diagonal | L2 1/2x2 1/2x3/16 | 84 | -5.78 | 6.32 | 91.5 | Pass | | T6 | 60 - 40 | Diagonal | L3x3x3/16 | 105 | -6.25 | 8.79 | 71.1 | Pass | | | | | | | | | 84.8 (b) | _ | | T7 | 40 - 20 | Diagonal | L3x3x1/4 | 127 | -7.21 | 7.82 | 92.2 | Pass | | T8 | 20 - 0 | Diagonal | L3 1/2x3 1/2x1/4 | 142 | -7.48 | 10.60 | 70.5 | Pass | | T1 | 132 - 124 | Top Girt | L2x2x3/16 | 5 | -0.06 | 3.03 | 2.1 | Pass | | T2 | 124 - 120 | Top Girt | L2x2x3/16 | 22 | -0.25 | 4.00 | 6.3 | Pass | | | | | | | | 0 | EL 0 | 1.07 | | | | | | | | Summary | ELC: | LC7 | | | | | | | | Leg (T4) | 97.7 | Pass | | | | | | | | Diagonal | 92.2 | Pass | | | | | | | | (T7) | 92.2 | газэ | | | | | | | | Top Girt | 6.3 | Pass | | | | | | | | | 0.3 | Fd55 | | | | | | | | (T2)
Bolt | 85.7 | Pass | | | | | | | | | 65.7 | rass | | | | | | | | Checks | 97.7 | Pass | | | | | | | | Rating = | 91.1 | F 055 | # APPENDIX B BASE LEVEL DRAWING # APPENDIX C ADDITIONAL CALCULATIONS ### (Bearing and Stability Checks) Tool for TIA Rev F or G - Application (MP, SST with unitbase) ### Site Data BU#: 806377 Site Name: *HRT 084 943242* App #: 245730 Rev. 4 | Enter Load Factors Below: | | | | | | | |---------------------------|------|----------------|--|--|--|--| | For P (DL) | 1.2 | < Enter Factor | | | | | | For P,V, and M
(WL) | 1.35 | < Enter Factor | | | | | | Pad & Pier Data | | | | | | | |---------------------------|--------|------------------------------|--|--|--|--| | Base PL Dist. Above Pier: | 3 | in | | | | | | Pier Dist. Above Grade: | 27.6 | in | | | | | | Pad Bearing Depth, D: | 4.2 | ft | | | | | | Pad Thickness, T: | 4.2 | ft | | | | | | Pad Width=Length, L: | 24 | ft | | | | | | Pier Cross Section Shape: | Square | <pull down<="" td=""></pull> | | | | | | Enter Pier Side Width: | 3.3 | ft | | | | | | Concrete Density: | 150.0 | pcf | | | | | | Pier Cross Section Area: | 10.89 | ft^2 | | | | | | Pier Height: | 2.30 | ft | | | | | | Soil (above pad) Height: | 0.00 | ft | | | | | | Soil Parameters | | | | | | | |--------------------------------|-------|---------|--|--|--|--| | Unit Weight, γ: | 115.0 | pcf | | | | | | Ultimate Bearing Capacity, qn: | 30.00 | ksf | | | | | | Strength Reduct. factor, φ: | 0.75 | | | | | | | Angle of Friction, Φ: | 33.0 | degrees | | | | | | Undrained Shear Strength, Cu: | 0.00 | ksf | | | | | | Allowable Bearing: φ*qn: | 22.50 | ksf | | | | | | Passive Pres. Coeff., Kp | 3.39 | | | | | | | Forces/Moments due to Wind and Lateral Soil | | | | | | | |---|---------|---------|--|--|--|--| | Minimum of (φ*Ultimate Pad | | | | | | | | Passive Force, Vu): | 43.2 | kips | | | | | | Pad Force Location Above D: | 1.40 | ft | | | | | | ф(Passive Pressure Moment): | | ft-kips | | | | | | Factored O.T. M(WL), "1.6W": | | ft-kips | | | | | | Factored OT (MW-Msoil), M1 | 3842.37 | ft-kips | | | | | | Resistance due to Foundation Gravity | | | | | | |--------------------------------------|--------|------|--|--|--| | Soil Wedge Projection grade, a: | 0.00 | ft | | | | | Sum of Soil Wedges Wt: | 0.00 | kips | | | | | Soil Wedges ecc, K1: | 0.00 | ft | | | | | Ftg+Soil above Pad wt: | 366.6 | kips | | | | | Unfactored (Total ftg-soil Wt): | 366.64 | kips | | | | | 1.2D. No Soil Wedges. | 475.96 | kips | | | | | 0.9D. With Soil Wedges | 356.97 | kips | | | | | Resistance due to Cohesion (Vertical) | | | | | | |---------------------------------------|------|------|--|--|--| | φ*(1/2*Cu)(Total Vert. Planes) | 0.00 | kips | | | | | Cohesion Force Eccentricity, K2 | 0.00 | ft | | | | | Monopole Base Reaction Forces | | | | | | | |-------------------------------|------|------------------------------|--|--|--|--| | TIA Revision: | F | <pull down<="" td=""></pull> | | | | | | Unfactored DL Axial, PD: | 30 | kips | | | | | | Unfactored WL Axial, PW: | 0 | kips | | | | | | Unfactored WL Shear, V: | 32 | kips | | | | | | Unfactored WL Moment, M: | 2675 | ft-kips | | | | | | Load Factor | Shaft Factored Loads | | | | | |-------------|----------------------|---------|---------|--|--| | 1.20 | 1.2D+1.6W, Pu: | 36 | kips | | | | 0.90 | 0.9D+1.6W, Pu: | 27 | kips | | | | 1.05 | Vu: | 43.2 | kips | | | | 1.35 | Mu: | 3611.25 | ft-kips | | | #### 1.2D+1.6W Load Combination, Bearing Results: | (<u>No Soil Wedges</u>)
[Reaction+Conc+Soil] | 475.96 | P1="1.2D+1.6W"
(Kips) | | | |---|---------|--------------------------|--|--| | Factored "1.6W" Overturning Moment (MW-Msoil), M1 | 3842.37 | ft-kips | | | ### Orthogonal Direction: ecc1 = M1/P1 = 8.07 ft Orthogonal qu= 2.52 ksf qu/ ϕ *qn Ratio= 11.22% Pass ### **Diagonal Direction:** ecc2 = (0.707M1)/P1 = 5.71 ft Diagonal qu= 3.01 ksf qu/ ϕ *qn Ratio= **13.36%** Pass Run <-- Press Upon Completing All Input ## Overturning Stability Check #### 0.9D+1.6W Load Combination, Bearing Results: | (<u>w/ Soil Wedges</u>)
[Reaction+Conc+Soil] | 356.97 | P2="0.9D+1.6W"
(Kips) |
---|---------|--------------------------| | Factored "1.6W" Overturning
Moment (MW-Msoil) - 0.9(M of
Wedge + M of Cohesion), M2 | 3842.37 | ft-kips | Orthogonal ecc3 = M2/P2 = 10.76 ft Ortho Non Bearing Length,NBL= 21.53 ft Orthogonal qu= 6.02 ksf Diagonal qu= 4.63 ksf | Max Reaction Moment (ft-kips) so that $qu=\phi^*qn = 100\%$ | | | | | | | | |---|----------------------------|--------|------|--|--|--|--| | Capacity Rating | | | | | | | | | Actual M: 2675.00 | | | | | | | | | M Orthogonal: | 2914.50 91.78% Pass | | | | | | | | M Diagonal: | 2914.50 | 91.78% | Pass | | | | | Monopole or Self Support Pad Foundation Reinforcing HRT 084 943242 - BU#: 806377 SSOE Project Number: 014-00546-00 | Analysis Code | F | | |---------------|-----|---| | Compression | 174 | k | | Uplift | 147 | k | | Pad Geometry & Reinforcing | | | | | | | |----------------------------|--------|-----|--|--|--|--| | Pad Length | 24 | ft | | | | | | Pad Width | 24 | ft | | | | | | Pad Thickness | 4.2 | ft | | | | | | Pad Top Rebar Size | # 8 | | | | | | | Pad Top Rebar Quantity | 24 | | | | | | | Pad Bottom Rebar Size | # 8 | | | | | | | Pad Bottom Rebar Quantity | 24 | | | | | | | Clear Cover | 3 | in | | | | | | f _c ' | 3 | ksi | | | | | | Rebar Fy | 60 | ksi | | | | | | Minimum Steel Assumed? | NO | | | | | | | Pier Shape | Square | | | | | | | Pier Rebar Size | # 9 | | | | | | | Pier Rebar Quantity | 16 | | | | | | | Pier Width | 3.3 | ft | | | | | | Anchor Rod Circle | 9.5 | in | | | | | | Anchor Rod Embedment | 66.5 | in | | | | | | Pier Tie Size | # 5 | | | | | | | Bearing Calculation | | | | | | |-------------------------------|---------|-----|--|--|--| | Max Bearing Pressure | 6.02 | ksf | | | | | Edge of Pad to Pier Face | 2.20833 | ft | | | | | Distance Between Piers | 18.8 | ft | | | | | ecc3 (From Crown Spreadsheet) | 10.76 | | | | | | Non-Bearing Length | 21.52 | ft | | | | | Reinforcing Calculations | | | | | | | |---------------------------|----------------------------|------|--|--|--|--| | Minimum Reinforcen | nent Check | | | | | | | A _s Min = | 1.08864 in | | | | | | | As = | 1.58 in | ²/ft | | | | | | | | OK | | | | | | Punching Sh | ear | | | | | | | φ (Shear) = | 0.75 | | | | | | | V _u = | 226.20 k | | | | | | | $\phi V_c =$ | 3430.62 k | | | | | | | Shear Capacity | 6.6% | OK | | | | | | Pad Flexure | е | | | | | | | φ (Tension) = | 0.9 | | | | | | | Mu | 13.42 k- | ft | | | | | | $\phi M_n =$ | 230.97 k- | ft | | | | | | Moment Capacity | 5.8% | OK | | | | | | Beam Shear | | | | | | | | Vu | 9.59 k | | | | | | | $\phi V_n =$ | 60.19 k | | | | | | | Shear Capacity | 15.9% | OK | | | | | | Pier Compres | sion | | | | | | | P _u | 226.2 k | | | | | | | $\phi P_n =$ | 3401.2943 k | | | | | | | Compression Capacity | 6.7% | OK | | | | | | Pier Tensio | Pier Tension | | | | | | | Pu= | 191.10 k | | | | | | | φPn= | 979.05 k | | | | | | | Tension Capacity = | 19.5% | OK | | | | | | Plain Concrete Int | Plain Concrete Interaction | | | | | | | Moment Capacity | N/A | OK | | | | | | Shear Capacity | N/A | OK | | | | | | Pier Compression Capacity | N/A | OK | | | | | # RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT **Sprint Existing Facility** Site ID: CT60XC935 Crown Rockville 197 South Street Vernon, CT 06066 July 17, 2014 EBI Project Number: 62143936 21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311 July 17, 2014 Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495 Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site: CT60XC935 - Crown Rockville Site Total: 96.52% - MPE% in full compliance EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 197 South Street, Vernon, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits. All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density. All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below. General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band (850 MHz Band) is approximately 567 μ W/cm², and the general population exposure limit for the 1900 MHz and 2500 MHz bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density. Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Additional details can be found in FCC OET 65. #### **CALCULATIONS** Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 197 South Street, Vernon, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower. For all calculations, all emissions were calculated using the following assumptions: - 1) 3 channels in the 1900 MHz Band were considered for each sector of the proposed installation. - 2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation - 3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation. - 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous. - 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTM14-C-I20. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. The RFS APXVTM14-C-I20 has a 15.9 dBd gain value at its main lobe at 2500 MHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 7) The antenna mounting height centerline for the proposed antennas is **130 feet** above ground level (AGL). - 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves. All calculation were done with respect to uncontrolled / general public threshold limits | | Site ID | CT60X | C935 - Crown R | ockville | | | | | | | | | | | | | |---------|---------------|-----------------|-----------------|----------------|------------|---------|-----------|-----------
--------------|-------------|----------|------------|--------------|----------------|--------|------------| | | Site Addresss | 197 South | Street, Vernon, | , CT, 06066 | | | | | | | | | | | | | | | Site Type | Se | elf Support Tow | er | Sector 1 | Power | | | | | | | | | | | | | | | | | | Out Per | | | Antenna Gain | | | | | | | Power | | Antenna | | | | | | Channel | Number of | Composite | (10 db | Antenna | analysis | | Cable Loss | Additional | | Density | | | Antenna Make | Antenna Model | Radio Type | Frequency Band | Technology | (Watts) | Channels | Power | , | Height (ft) | height | Cable Size | | Loss (dB) | ERP | Percentage | | 1a | RFS | APXVSPP18-C-A20 | RRH | 1900 MHz | CDMA / LTE | 20 | 3 | 60 | 5.9 | 130 | 124 | 1/2 " | 0.5 | 0 | 208.04 | 0.49% | | 1a | RFS | APXVSPP18-C-A20 | RRH | 850 MHz | CDMA / LTE | 20 | 1 | 20 | 3.4 | 130 | 124 | 1/2 " | 0.5 | 0 | 39.00 | 0.16% | | 1B | RFS | APXVTMM14-C-120 | RRH | 2500 MHz | CDMA / LTE | 20 | 2 | 40 | 5.9 | 130 | 124 | 1/2 " | 0.5 | 0 | 138.69 | 0.57% | | | | | | | | | | | | | | Sector to | otal Power D | ensity Value: | 1.22% | | | | | | | | | | Sector 2 | | | | | | | | | | | | | | | | | | JCC101 2 | Power | | | | | | | | | | | | | | | | | | Out Per | | | Antenna Gain | | | | | | | Power | | Antenna | | | | | | Channel | Number of | Composite | (10 db | Antenna | analysis | | Cable Loss | Additional | | Density | | | Antenna Make | Antenna Model | Radio Type | Frequency Band | Technology | (Watts) | Channels | Power | , | Height (ft) | height | Cable Size | | Loss (dB) | ERP | Percentage | | 2a | RFS | APXVSPP18-C-A20 | RRH | 1900 MHz | CDMA / LTE | 20 | 3 | 60 | 5.9 | 130 | 124 | 1/2 " | 0.5 | 0 | 208.04 | 0.49% | | 2a | RFS | APXVSPP18-C-A20 | RRH | 850 MHz | CDMA / LTE | 20 | 1 | 20 | 3.4 | 130 | 124 | 1/2 " | 0.5 | 0 | 39.00 | 0.16% | | 2B | RFS | APXVTMM14-C-120 | RRH | 2500 MHz | CDMA / LTE | 20 | 2 | 40 | 5.9 | 130 | 124 | 1/2 " | 0.5 | 0 | 138.69 | 0.57% | | | | | | | | | | | | | | Sector to | otal Power D | Density Value: | 1.22% | | | | | | | | | | Sector 3 | Power | | | | | | | | | | | | | | | | | | Out Per | | | Antenna Gain | | | | | | | Power | | Antenna | | | | | | Channel | | Composite | (10 db | Antenna | analysis | | Cable Loss | | | Density | | | Antenna Make | Antenna Model | Radio Type | Frequency Band | Technology | (Watts) | Channels | Power | | Height (ft) | height | Cable Size | | Loss (dB) | ERP | Percentage | | 3a | RFS | APXVSPP18-C-A20 | RRH | 1900 MHz | CDMA / LTE | 20 | 3 | 60 | 5.9 | 130 | 124 | 1/2 " | 0.5 | 0 | 208.04 | 0.49% | | 3a | RFS | APXVSPP18-C-A20 | RRH | 850 MHz | CDMA / LTE | 20 | 1 | 20 | 3.4 | 130 | 124 | 1/2 " | 0.5 | 0 | 39.00 | 0.16% | | 3B | RFS | APXVTMM14-C-120 | RRH | 2500 MHz | CDMA / LTE | 20 | 2 | 40 | 5.9 | 130 | 124 | 1/2 " | 0.5 | Ü | 138.69 | 0.57% | | | | | | | | | | | | | | Sector to | otal Power L | Density Value: | 1.22% | | | Site Composite MPE % | | | | | | | |----------------------|--------|--|--|--|--|--| | Carrier | MPE % | | | | | | | Sprint | 3.66% | | | | | | | AT&T | 36.94% | | | | | | | Verizon Wireless | 36.12% | | | | | | | XM Satellite Radio | 1.29% | | | | | | | Town | 7.38% | | | | | | | MetroPCS | 9.65% | | | | | | | Clearwire | 0.99% | | | | | | | T-Mobile | 0.49% | | | | | | | Total Site MPE % | 96.52% | | | | | | ## **Summary** All calculations performed for this analysis yielded results that were within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy. The anticipated Maximum Composite contributions from the Sprint facility are 3.66% (1.22% from sector 1, 1.22% from sector 2 and 1.22% from sector 3) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level. The anticipated composite MPE value for this site assuming all carriers present is **96.52**% of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions. FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were within the allowable 100% threshold standard per the federal government. Scott Heffernan RF Engineering Director **EBI Consulting** 21 B Street Burlington, MA 01803