

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

May 25, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 23 Holland Road, Union, CT 06076 Latitude: 42.029411 Longitude: -72.139827 Site #: 876346_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 23 Holland Road, Union, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 119-foot level of the existing 150foot monopole tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the fenced compound. Included are plans by NB+C, dated March 9, 2022, Exhibit C. Also included is a structural analysis prepared by Paul J. Ford & Company, dated September 20, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was originally approved by the Town of Union Planning & Zoning Commission on June 4, 1997. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to David D. Eaton, First Selectman and Mathieu Silbermann, Planning & Zoning Commission Chair for the Town of Union as well as the tower owner (Crown Castle) and property owner (Transportation Alliance Bank).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 150-feet and the Dish Wireless LLC antennas will be located at a center line height of 119-feet.

2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 8.02% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole tower in Union. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 119-foot level of the existing 150-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Union.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: David D. Eaton, First Selectman Union Town Hall 1043 Buckley Highway Union, CT 06076

Mathieu Silbermann, Planning & Zoning Commission Chair Union Town Hall 1043 Buckley Highway Union, CT 06076

Transportation Alliance Bank 4185 Harrison Blvd Suite 200P Ogden, UT 84403

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

 $\left(\begin{array}{c} \\ \end{array} \right)$

Y

......

TOWN	VOL 40 PAGE 38 ING AND ZONING COMMISSION N OF UNION, CONNECTICUT 2024 Buckley Highway, Union, CT 06076 SPECIAL PERMIT
Description of Premises:	Z'3 HOLLAND RD UNION (T
	TO PERMIT THE CONSTRUCTIONS OF A TELECOMMUNICATIONS FACILITY
Applicable Regulation(s);	PEZZEE SECTION 3.1/
<u>Owners of Record:</u>	LUCILLE GRODHALL
Date Issued:	DUNE 4, 1997
RECEIVED <u>10,1997</u>	Chăirman Union Planning & Zoning

÷.

9

Exhibit B

Property Card

23 HOLLAND RD

Location	23 HOLLAND RD	Mblu	11/ 05/ 002/ /
Acct#	00022000	Owner	TRANSPORTATION ALLIANCE BANK INC
Assessment	\$80,780	Appraisal	\$115,390
PID	364	Building Count	1

Current Value

Appraisal						
Valuation Year Improvements Land Total						
2018	\$0	\$115,390	\$115,390			
	Assessment					
Valuation Year	Improvements	Land	Total			
2018	9	\$0 \$80,780	\$80,780			

Owner of Record

Owner	TRANSPORTATION ALLIANCE BANK INC	Sale Price	\$300,000
Co-Owner		Certificate	
Address	DBA TAB BANK	Book & Page	66/232
	4185 HARRISON BLVD SUITE 200 P	Sale Date	05/29/2018
	OGDEN, UT 84403	Instrument	13

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
TRANSPORTATION ALLIANCE BANK INC	\$300,000		66/232	13	05/29/2018
NEW ENGLAND LAND & LUMBER CORP	\$500,000		51/206	24	04/27/2005
UNION FUEL ASSOCIATES, LLC	\$245,000		40/68	00	07/01/1997
GOODHALL	\$0		0/0		01/01/1900

Building Information

Building 1 : Section	n 1			
Year Built:				
Living Area:	0			

Replacement Cost:\$0Building Percent Good:\$1

\$0

Replacement Cost

Less Depreciation:

Building Attributes			
Field	Description		
Style	Vacant Land		
Model			
Grade:			
Stories:			
Occupancy			
Exterior Wall 1			
Exterior Wall 2			
Roof Structure:			
Roof Cover			
Interior Wall 1			
Interior Wall 2			
Interior FIr 1			
Interior FIr 2			
Heat Fuel			
Heat Type:			
АС Туре:			
Total Bedrooms:			
Total Bthrms:			
Total Half Baths:			
Total Xtra Fixtrs:			
Total Rooms:			
Bath Style:			
Kitchen Style:			

Extra Features

Building Photo

Building Photo (http://images.vgsi.com/photos/UnionCTPhotos//84)

Building Layout

(ParcelSketch.ashx?pid=364&bid=364)

Building Sub-Areas (sq ft)	<u>Legend</u>
----------------------------	---------------

No Data for Building Sub-Areas

No Data for Extra Features

Extra Features

<u>Legend</u>

Land

Land Use		Land Line Valua	tion
Use Code	3900	Size (Acres)	7.85
Description	DEVEL LAND	Frontage	0
Zone	CI	Depth	0
Neighborhood	12	Assessed Value	\$80,780
Alt Land Appr	No	Appraised Value	\$115,390

Outbuildings

Outbuildings	<u>Legend</u>
No Data for Outbuildings	

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2018	\$0	\$115,390	\$115,390		
2017	\$0	\$125,770	\$125,770		
2013	\$0	\$125,770	\$125,770		

Assessment				
Valuation Year	Improvements	Land	Total	
2018	\$0	\$80,780	\$80,780	
2017	\$0	\$88,040	\$88,040	
2013	\$0	\$88,040	\$88,040	

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

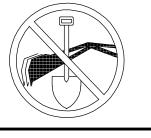
Construction Drawings

DISH Wireless L.L.C. SITE ID: BOBOS00873A

DISH Wireless L.L.C. SITE ADDRESS:

23 HOLLAND ROAD UNION, CT 06076

CONNECTICUT CODE OF COMPLIANCE


ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES <u>CODE TYPE</u> <u>CODE</u> 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS BUILDING

MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX	
SHEET NO.	SHEET TITLE	
T-1	TITLE SHEET	
A-1	OVERALL AND ENLARGED SITE PLAN	
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE	
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS	
A-4	EQUIPMENT DETAILS	
A-5	EQUIPMENT DETAILS	
A-6	EQUIPMENT DETAILS	
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	
E-2	ELECTRICAL DETAILS	
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	
G-1	GROUNDING PLANS AND NOTES	
G-2	GROUNDING DETAILS	
G-3	GROUNDING DETAILS	
RF-1	RF CABLE COLOR CODE	
GN-1	LEGEND AND ABBREVIATIONS	
GN-2	GENERAL NOTES	
GN-3	GENERAL NOTES	THE FACILITY IS UNMANN
GN-4	GENERAL NOTES	FOR ROUTINE MAINTENAN DRAINAGE. NO SANITARY SIGNAGE IS PROPOSED.
		11"x17" PL
		CONTRAC THE JOB SITE, AND

A	HIS IS NO ⁻ PPROVED I HE PROJEC	EQUI	VALENT
• • • • •	OWER SCO INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL	 (3) (1) PRC (6) (1) 	PROP(PROP(

SCOPE OF WORK

INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. LLY CONSISTS OF THE FOLLOWING:

POSED PANEL ANTENNAS (1 PER SECTOR) POSED ANTENNA PLATFORM MOUNT ED JUMPERS OSED RRUs (2 PER SECTOR) POSED OVER VOLTAGE PROTECTION DEVICE (OVP) POSED HYBRID CABLE BLE Z-BRACKETS (1 PER SECTOR)

ORK: POSED METAL PLATFORM OSED ICE BRIDGE

- POSED PPC CABINET
- POSED EQUIPMENT CABINET POSED POWER CONDUIT
- POSED TELCO CONDUIT POSED TELCO-FIBER BOX
- OSED GPS UNIT
- POSED SAFETY SWITCH (IF REQUIRED) POSED FIBER NID (IF REQUIRED)
- POSED METER SOCKET

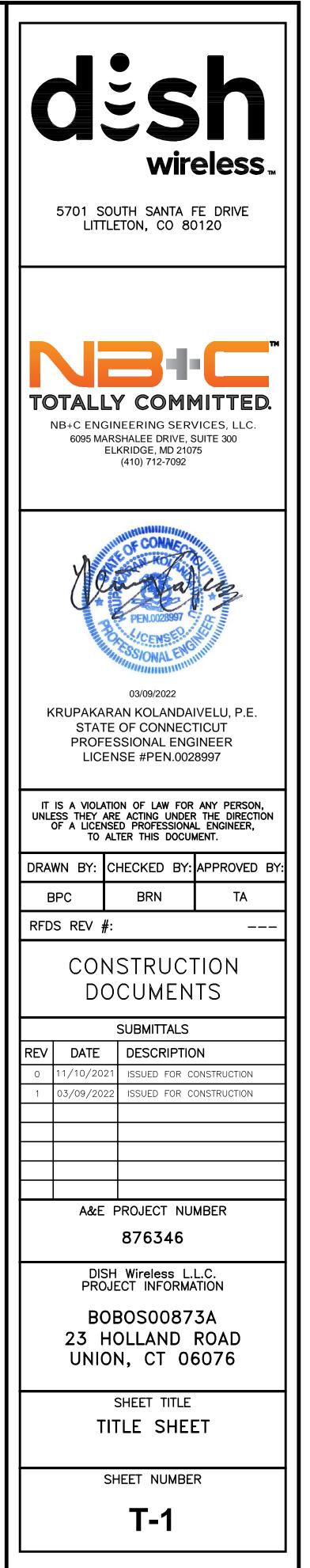
CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

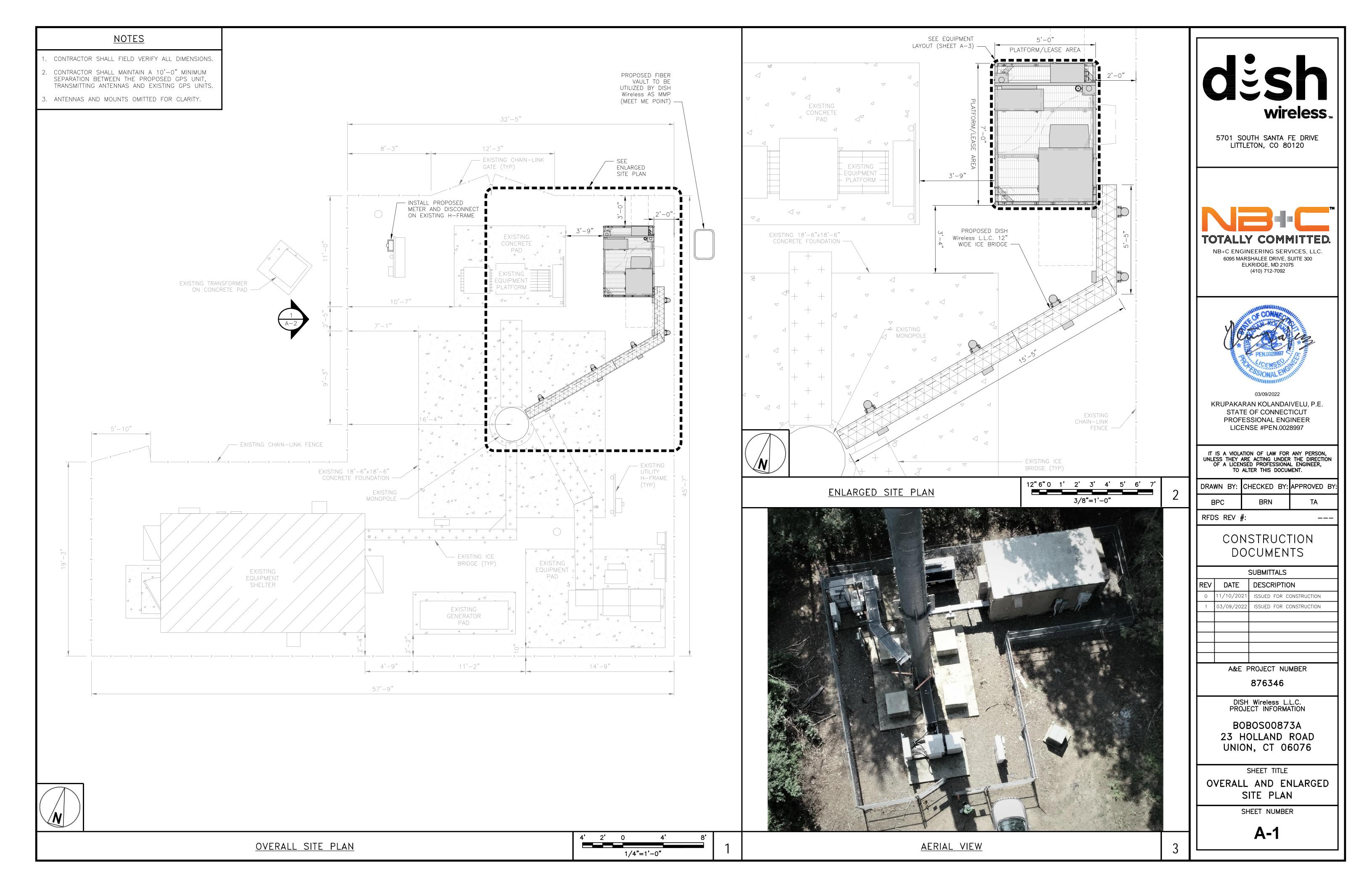
GENERAL NOTES

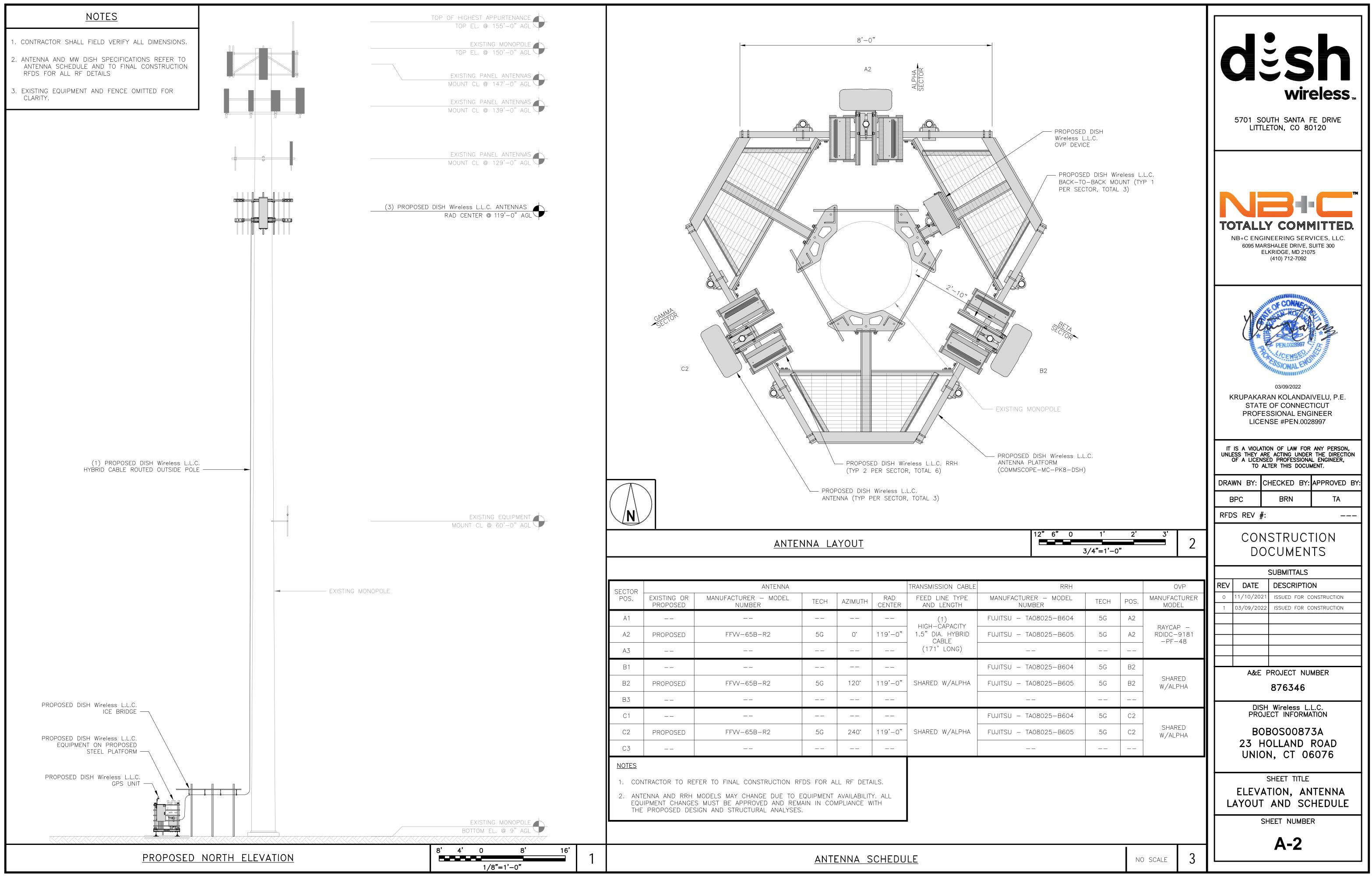
IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL

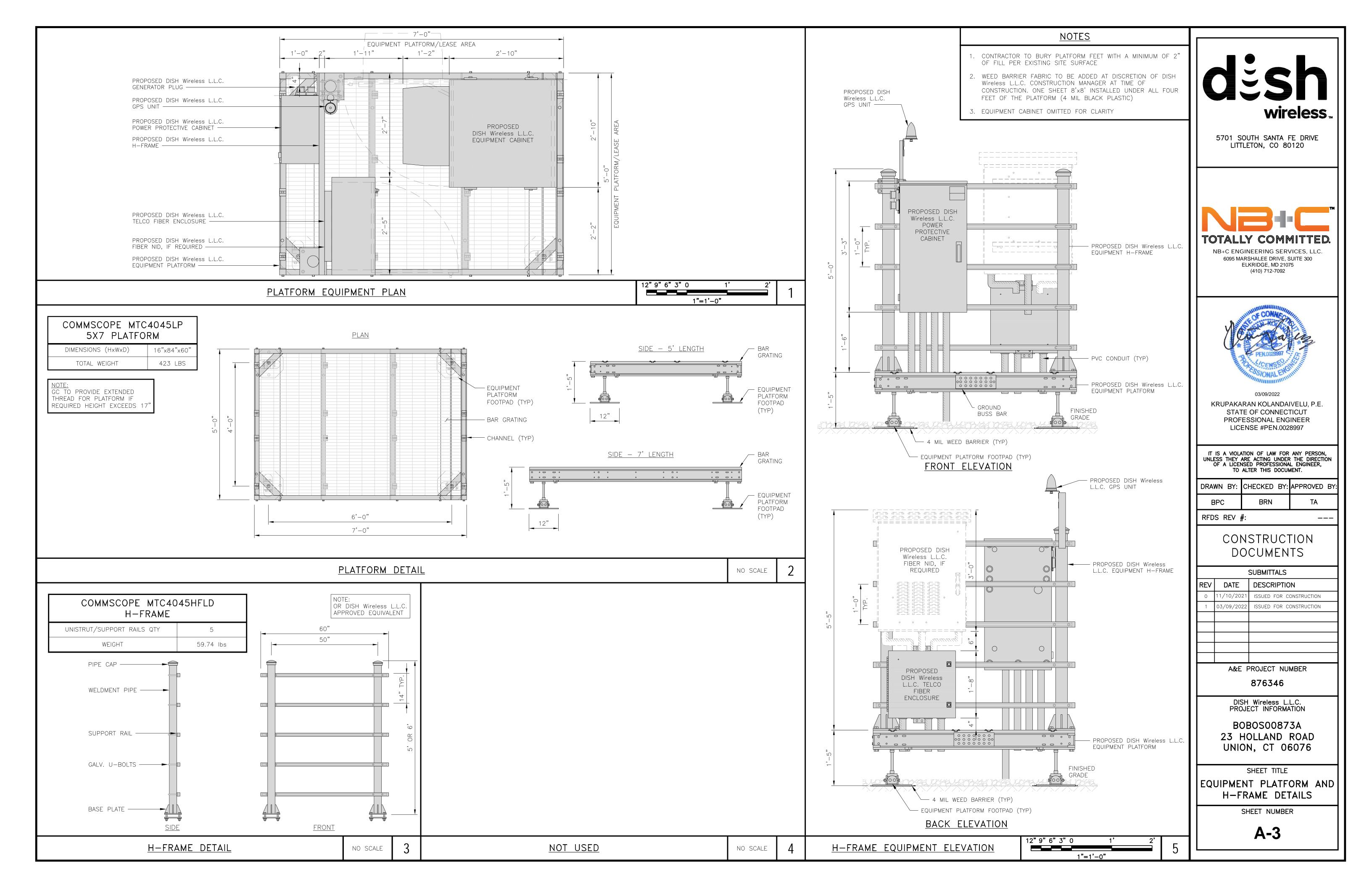
(17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

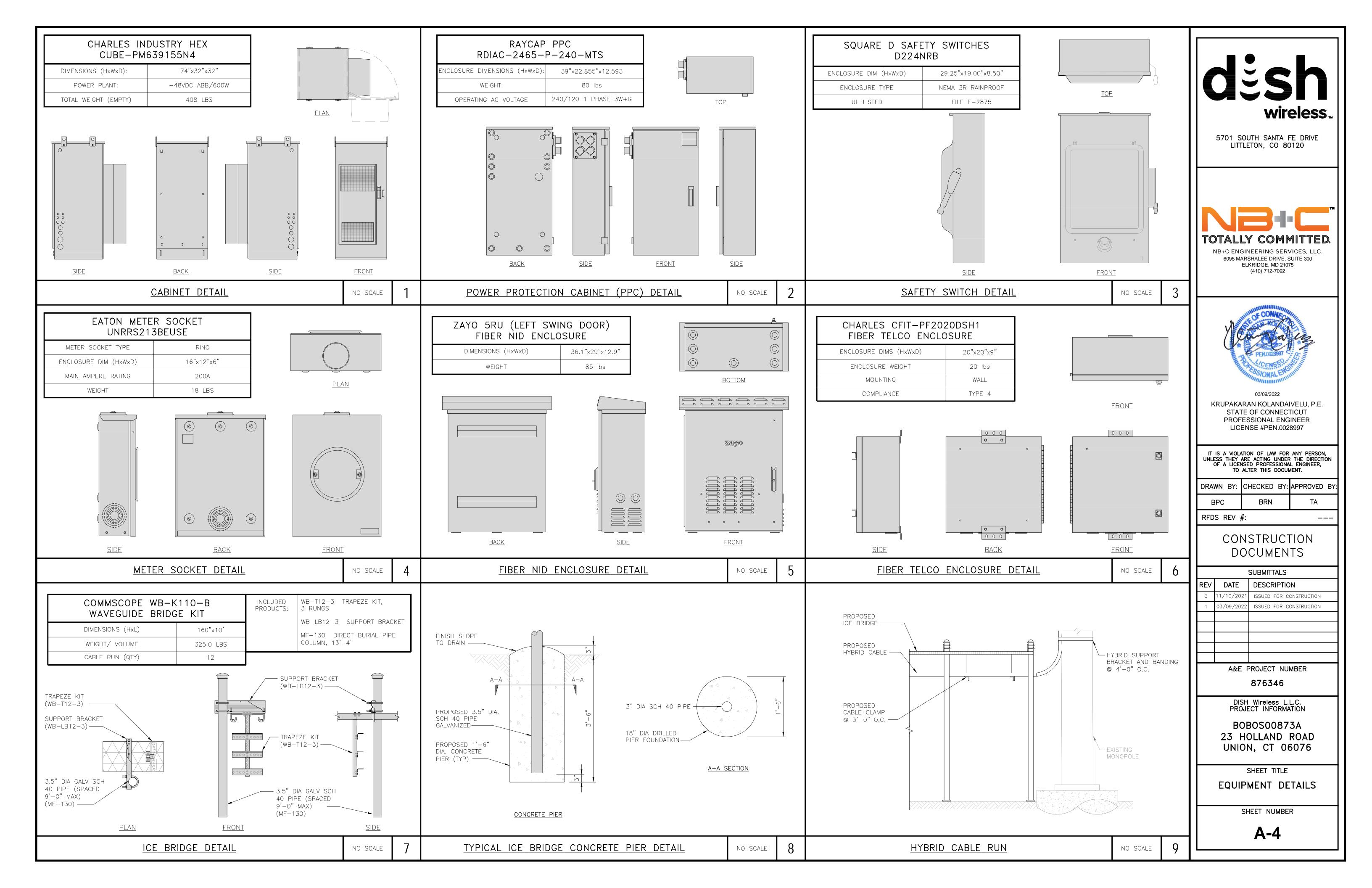
CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

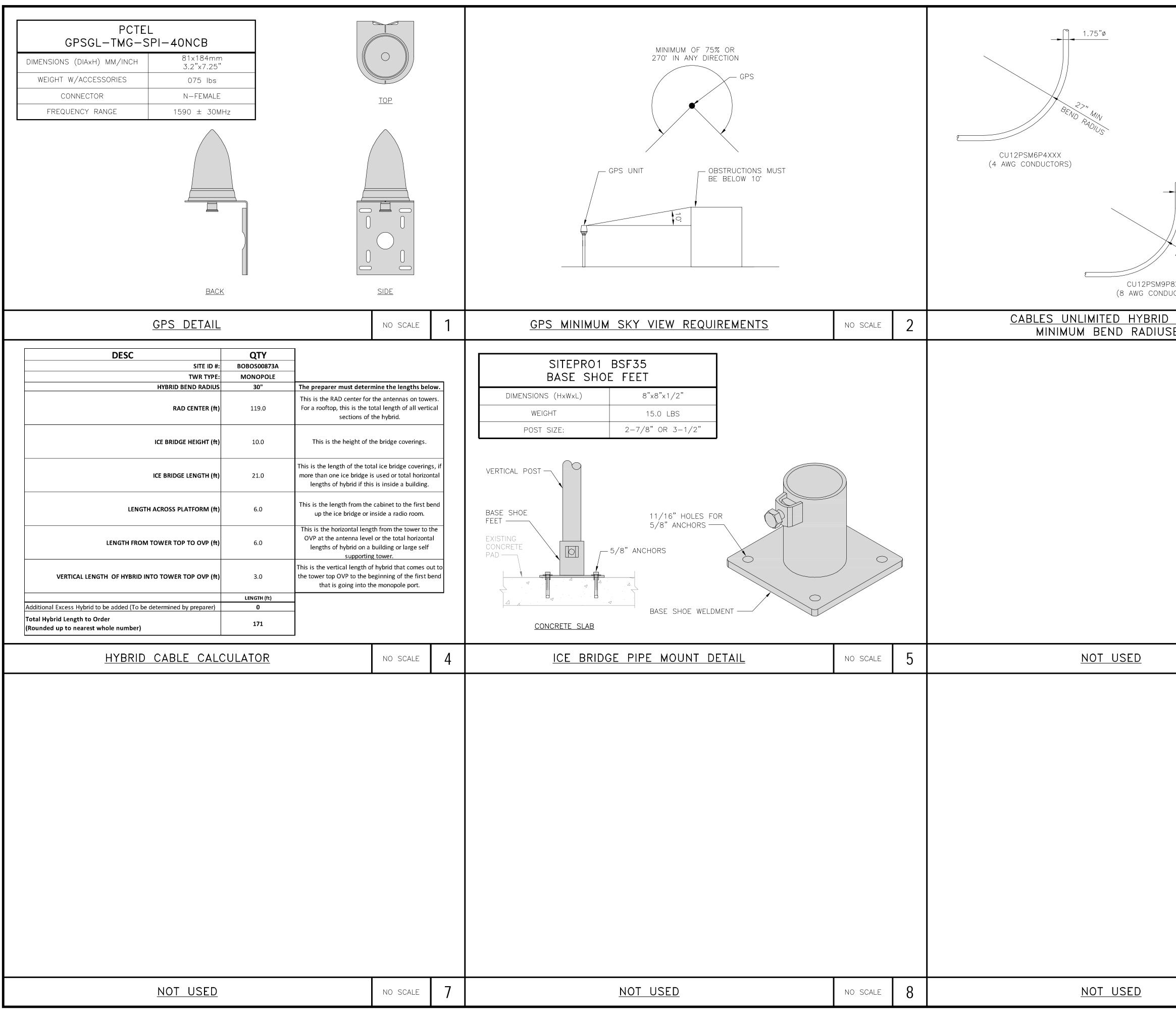

SITE IN	IFORMATION	PRC	JECT DIRECTORY
	LANDING ROCK LLC 15 BALDWIN DR HAMPDEN, MA 01036	APPLICANT:	DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
TOWER TYPE:	MONOPOLE	TOWER OWNER:	CROWN CASTLE USA INC. 2000 CORPORATE DR.
TOWER CO SITE ID:	876346		CANONSBURG, PA 15317 (877) 486-9377
TOWER APP NUMBER:	572902		
COUNTY:	TOLLAND	SITE DESIGNER:	NB+C ENGINEERING SERVICES, LLC 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075
LATITUDE (NAD 83):	42°1′45.94″N 42.029428N		(410) 712-7092
LONGITUDE (NAD 83):			
ZONING JURISDICTION:	CONNECTICUT SITING COUNCIL	SITE ACQUISITION	CORWIN DIXON CORWIN.DIXON@CROWNCASTLE.CO
ZONING DISTRICT:	CI – COMMERCIAL/INDUSTRIAL		
PARCEL NUMBER:	CT-145-11-05-000006	CONSTRUCTION M	ANAGER: AARON CHANDLER AARON.CHANDLER@DISH.COM
OCCUPANCY GROUP:	U	RF ENGINEER:	ARVIN SEBASTIAN ARVIN.SEBASTIAN@DISH.COM
CONSTRUCTION TYPE:	II-B		
POWER COMPANY:	NARRAGANSETT ELECTRIC		
TELEPHONE COMPANY:	T.B.D.		

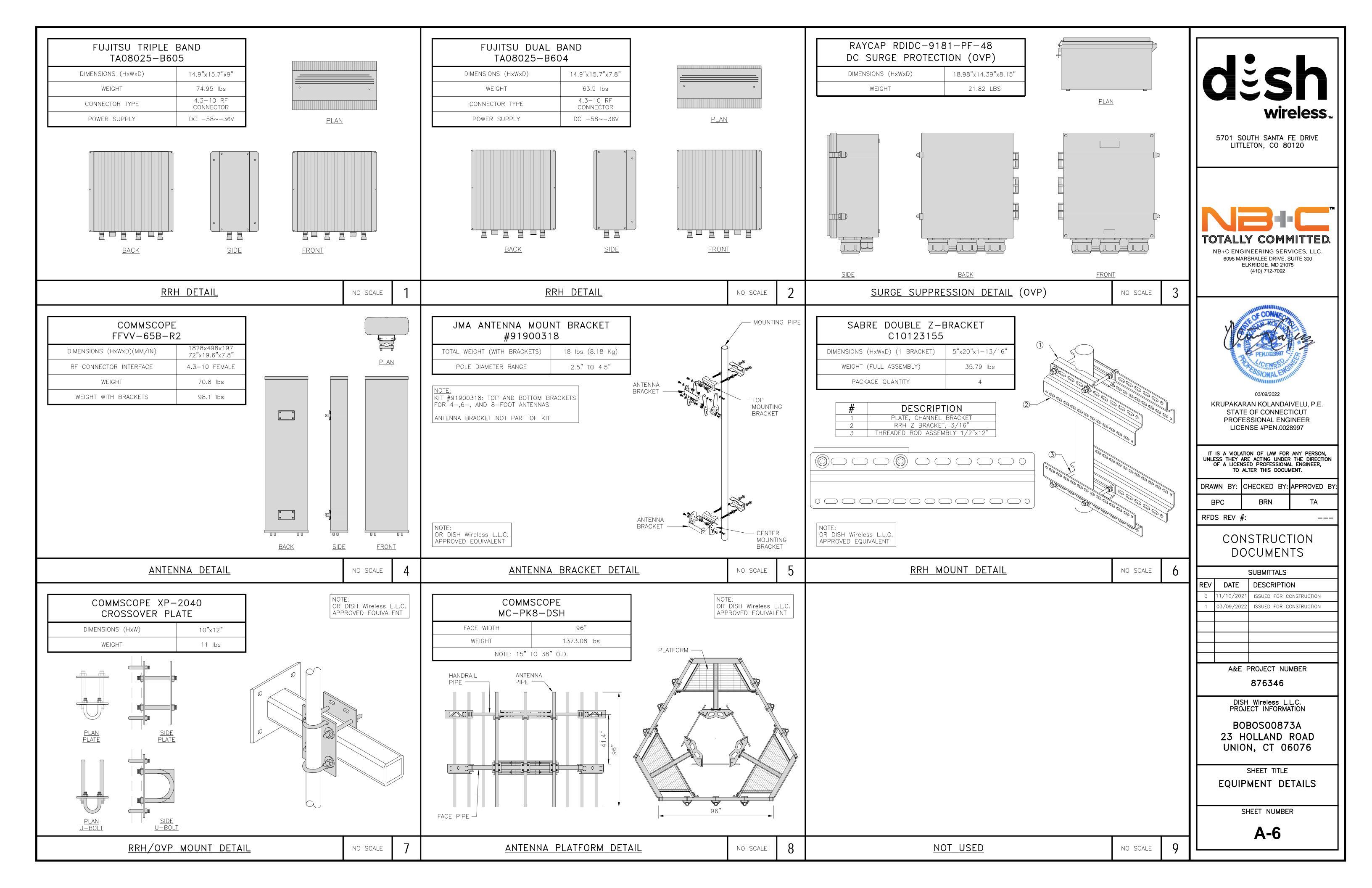

DIRECTIONS

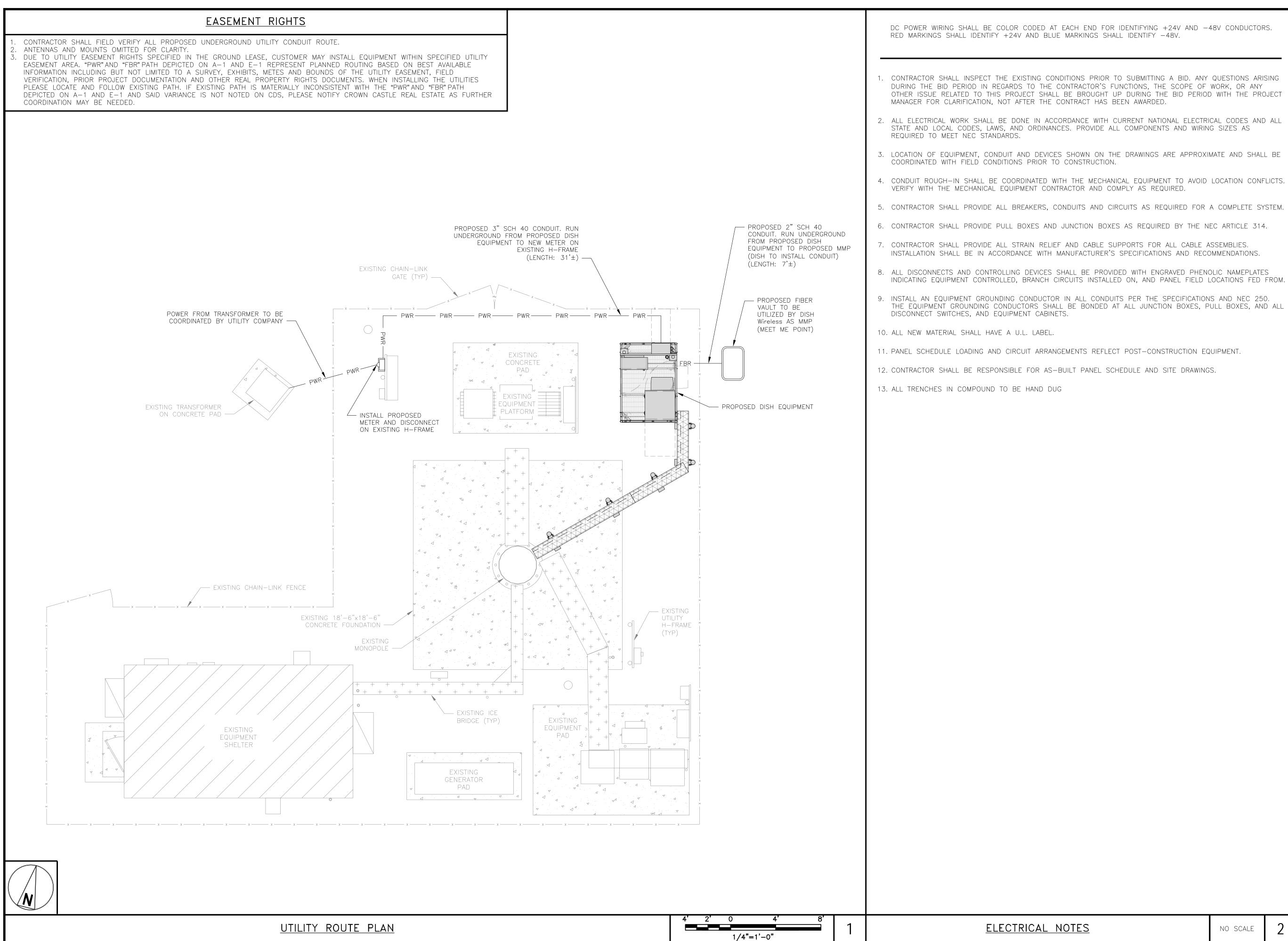

DIRECTIONS FROM SOUTHBRIDGE MUNICIPAL AIRPORT: START OUT GOING SOUTHEAST ON CLEMENCE HILL RD. TAKE THE 1ST RIGHT ONTO AIRPORT ACCESS RD. TURN LEFT ONTO PLEASANT ST. TURN LEFT ONTO MAIN ST. TAKE THE 1ST RIGHT ONTO WEST ST. TURN RIGHT ONTO SOUTH ST. SOUTH ST BECOMES MASHAPAUG RD. TURN RIGHT TO STAY ON MASHAPAUG RD. TURN LEFT TO STAY ON MASHAPAUG RD. MERGE ONTO I-84 W TOWARD HARTFORD CT. TAKE THE CT-171 EXIT, EXIT 74. TURN RIGHT ONTO HOLLAND RD. TAKE THE IMMEDIATE RIGHT INTO QUARRY AND FOLLOW ROAD TO THE LEFT. GO RIGHT AT THE FORK AND TAKE THE IMMEDIATE RIGHT. FOLLOW ROAD TO SITE AT END.

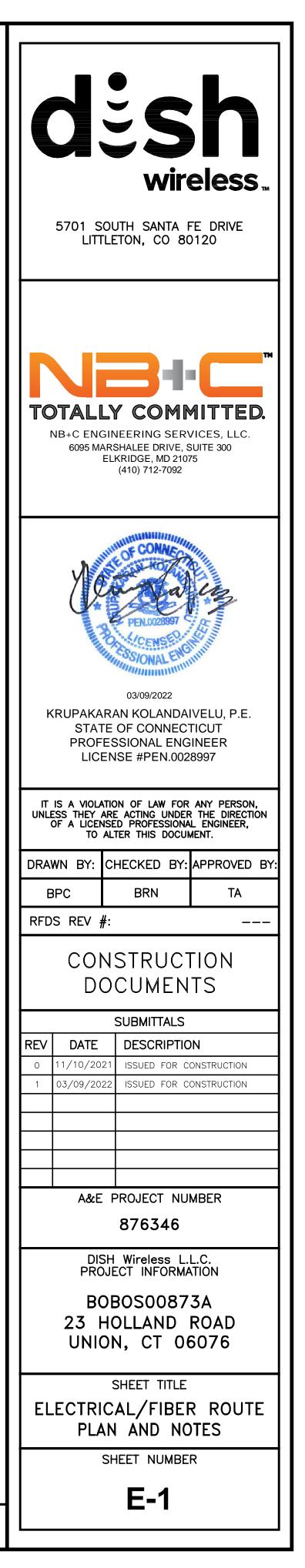


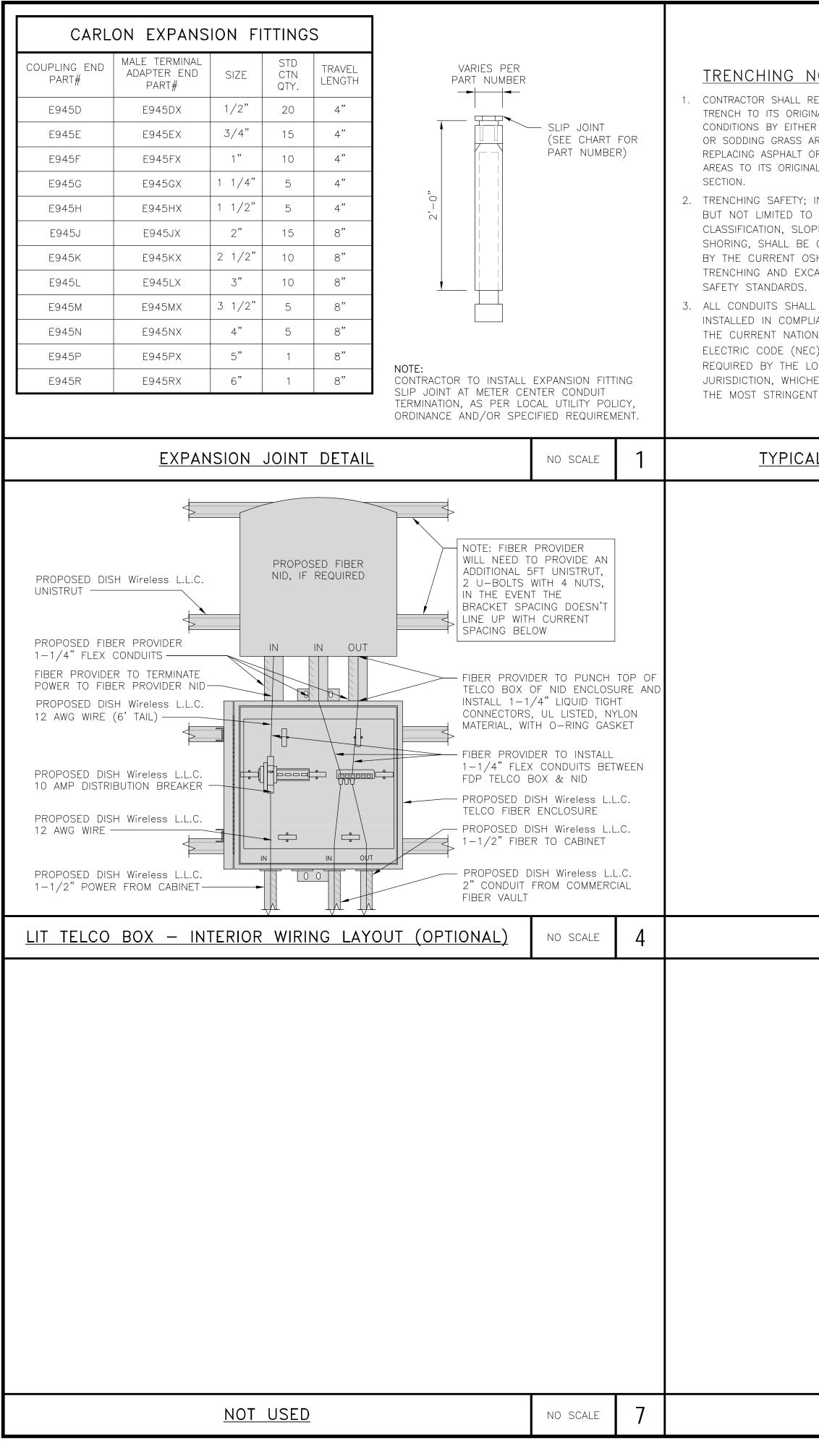


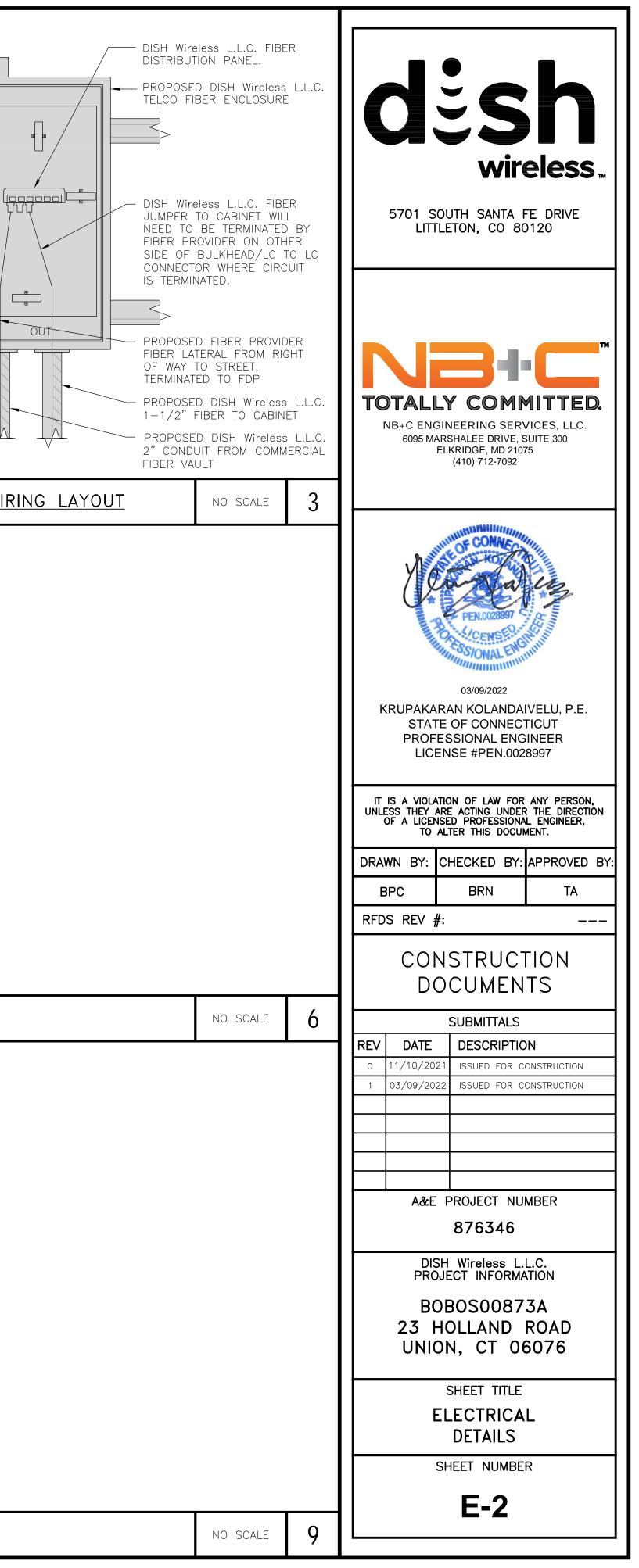


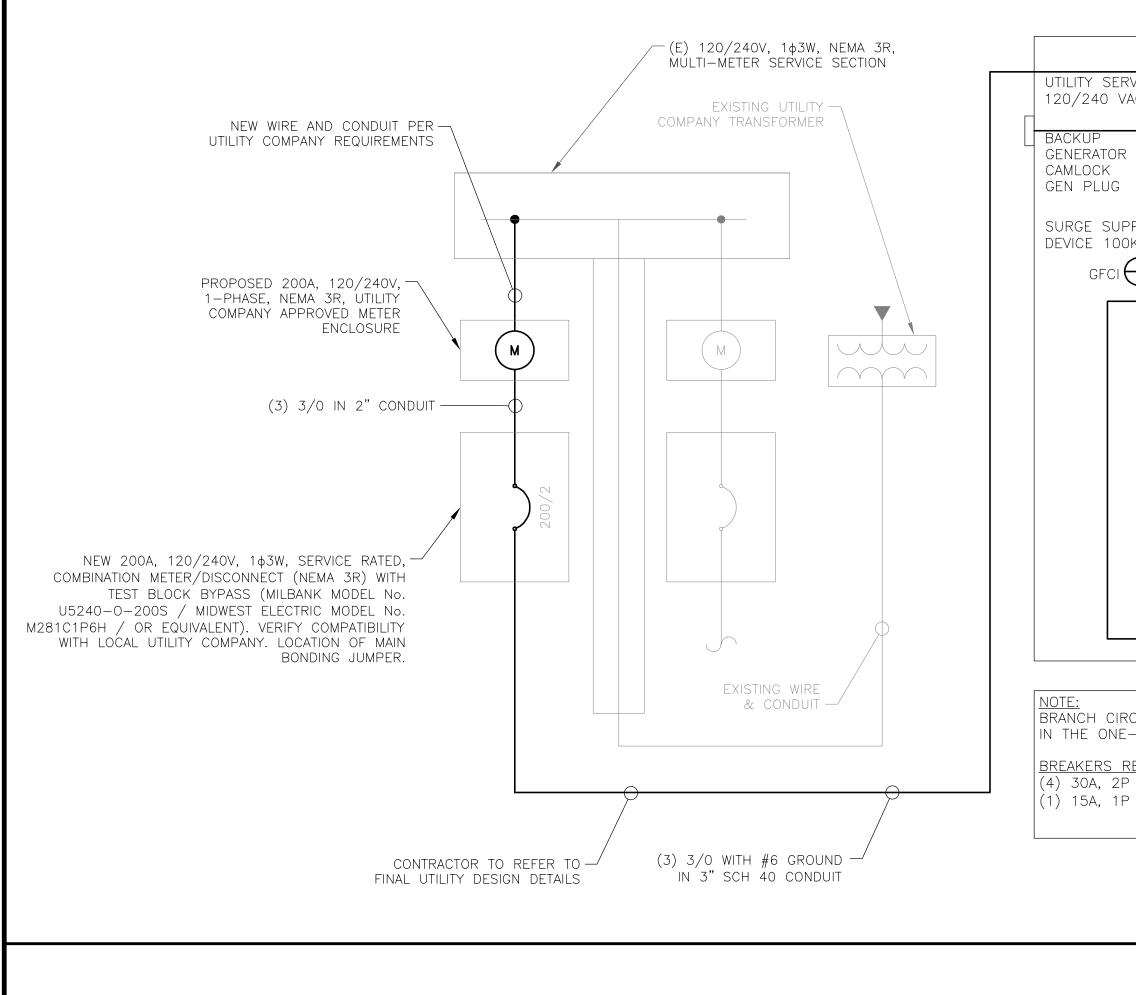




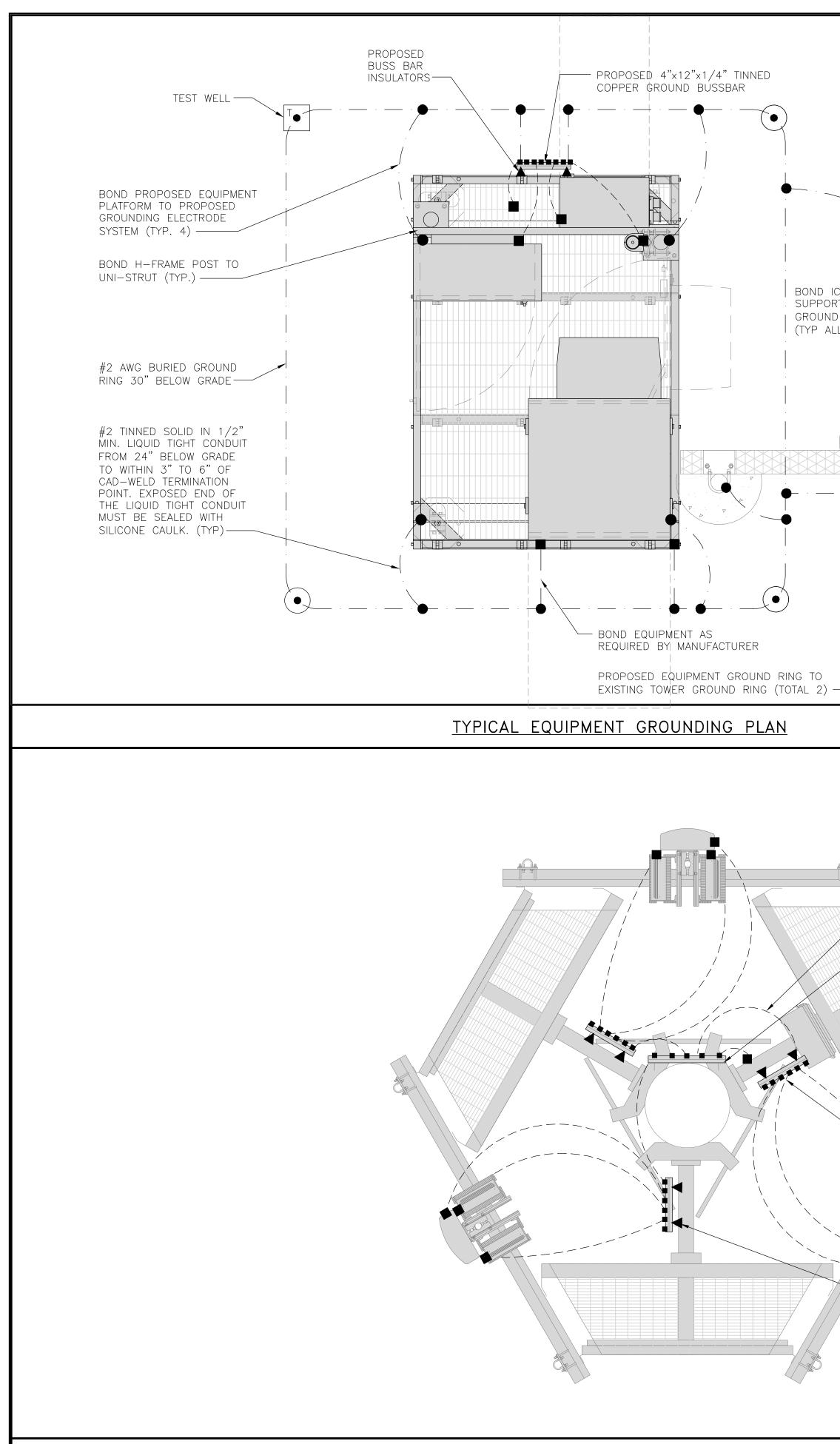



$\int_{1}^{1} 1.41$	Gissh bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bisebise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bise bis bise bis bis bis bis bis bis bis bis bis bis			
BEND RADIUS BXXX JCTORS) CABLE ES NO SCALE 3	NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092			
	CONFICUENCIAL CO			
	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: BPC BRN TA RFDS REV #: CONSTRUCTION DOCUMENTS			
NO SCALE 6	SUBMITTALS REV DATE DESCRIPTION 0 11/10/2021 ISSUED FOR CONSTRUCTION 1 03/09/2022 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 876346 DISH Wireless L.L.C. PROJECT INFORMATION BOBOS00873A 80BOS00873A 23 HOLLAND ROAD UNION, CT 06076 SHEET TITLE EQUIPMENT DETAILS SHEET NUMBER A-5 A-5			
NO SCALE 9				

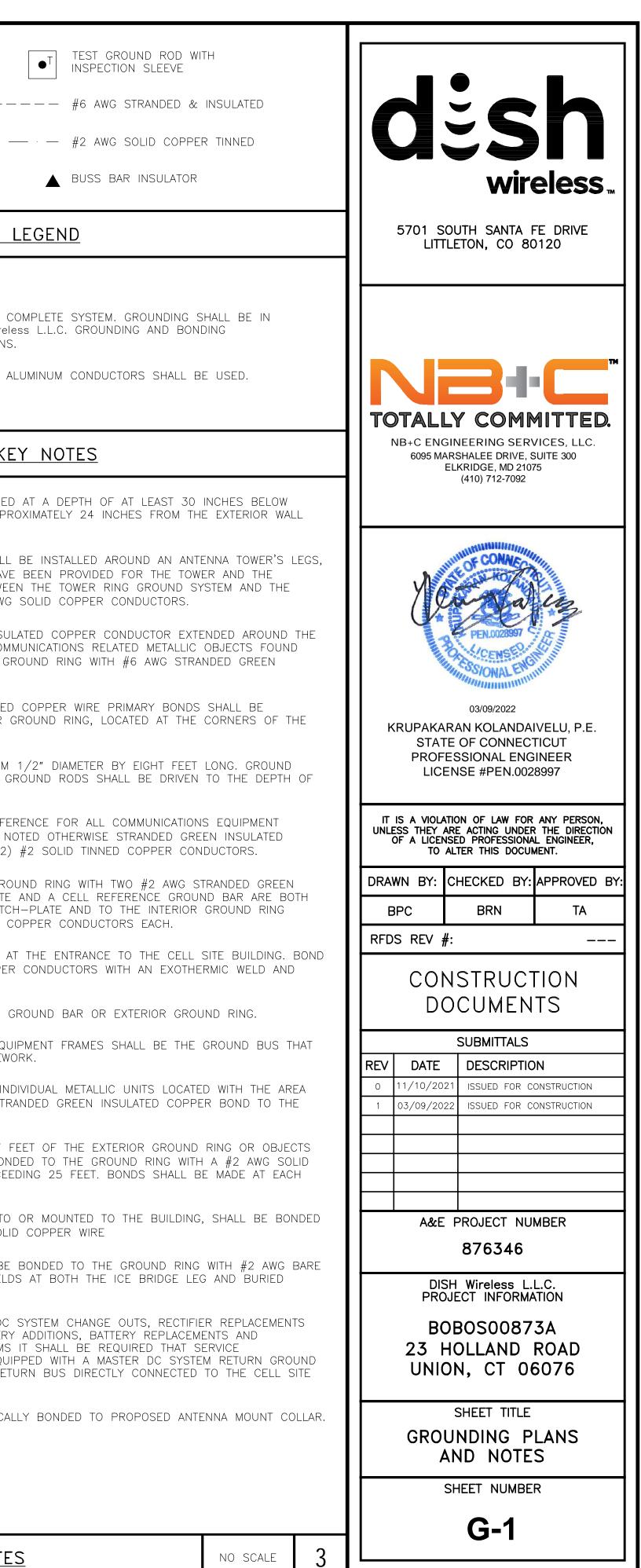


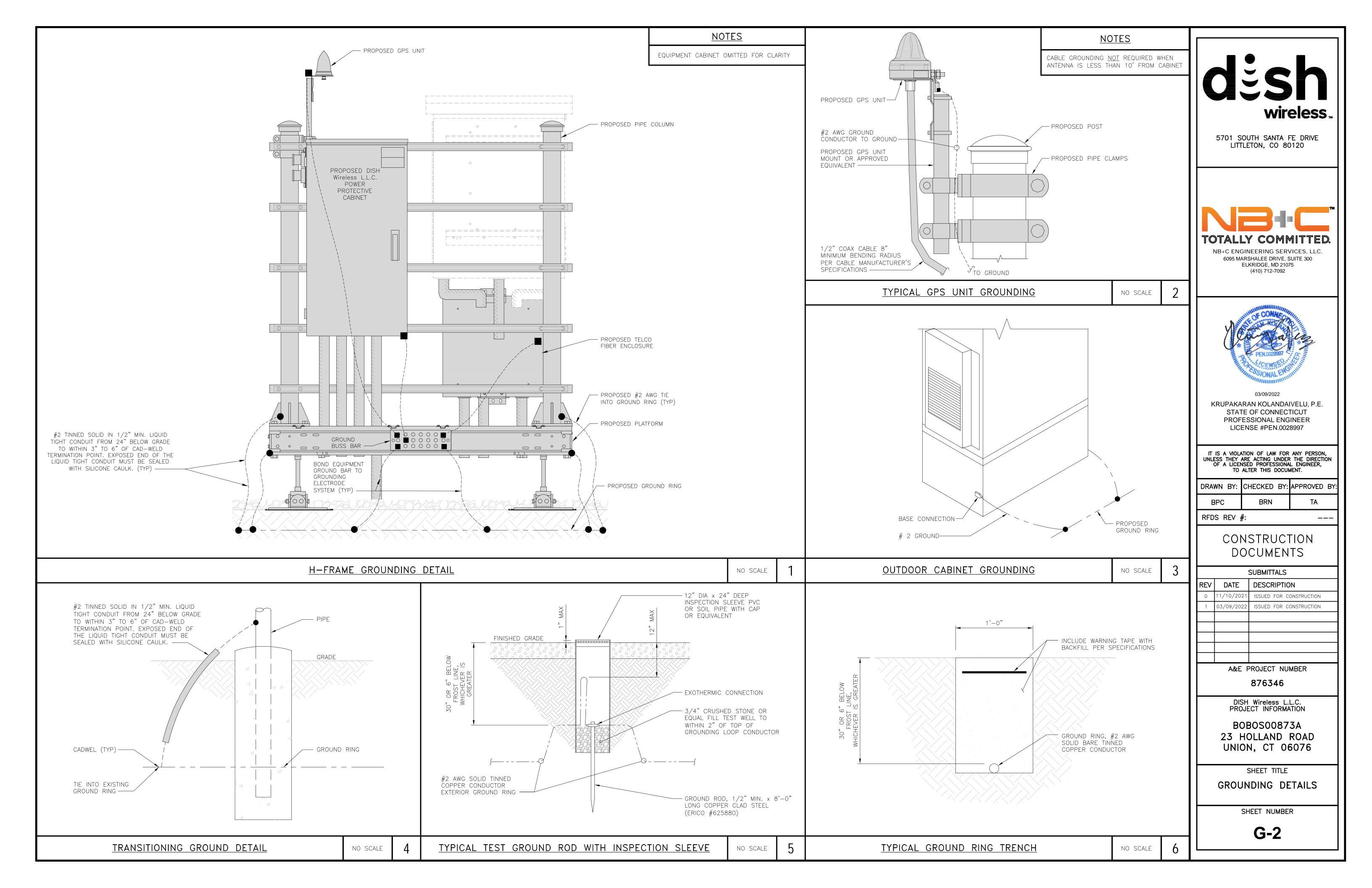

NO SCALE

C) OR AS OCAL	WARNING TAP WARNING TAP BEDDING PER SPECIFICATIONS	SITE	PROPOSED DISH Wireless L.L.C. 10 AMP DISTRIBUTION BREAKER PROPOSED DISH Wireless L.L.C. 12 AWG WIRE PROPOSED DISH Wireless L.L.C. 1-1/2" POWER FROM CABINET DISH Wireless L.L.C. INSTALLS 1-1/2" CONDUITS FOR POWER AND FIBER TO CABINET DARK TELCO BOX - INTERIOR WI
<u>NOT USED</u>	NO SCALE	5	NOT_USED
<u>NOT USED</u>	NO SCALE	8	<u>NOT USED</u>

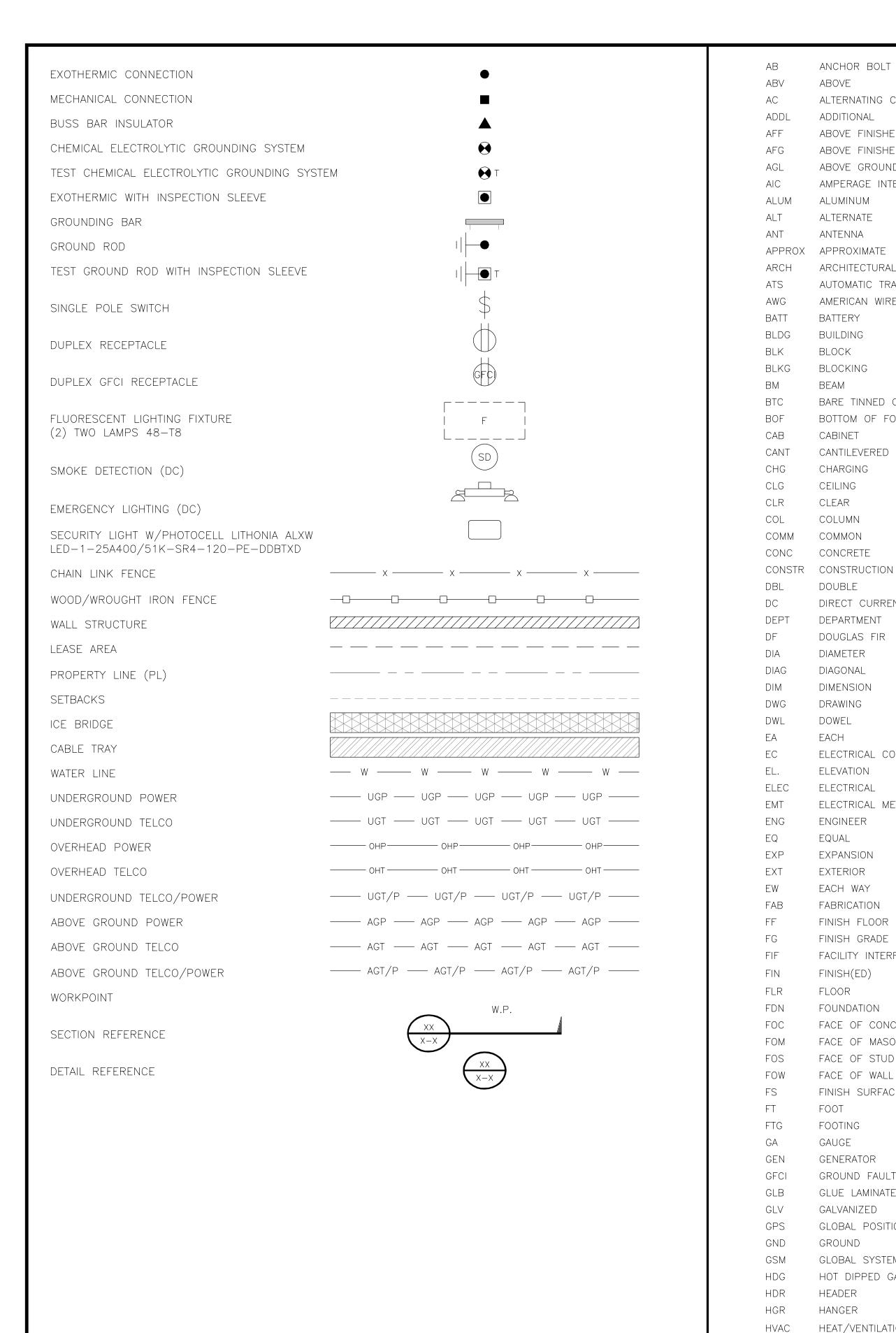

PROPOSED CHARLES PANEL SCHEDULE										
LOAD SERVED	VOLT (WA	TTS)	TRIP	СКТ	PHASE	СКТ #	TRIP	(WA	AMPS TTS)	LOAD SERVED
	L1	L2						L1	L2	
PPC GFCI OUTLET CHARLES GFCI OUTLET	180	180	15A 15A	1		2	30A	2880	2880	ABB/GE INFINITY RECTIFIER 1
-SPACE-		100	10/(5		6	30A	2880		ABB/GE INFINITY
-SPACE-				7		8	00/1		2880	RECTIFIER 2
-SPACE-				9		10	30A	2880		ABB/GE INFINITY
-SPACE-				11		12			2880	RECTIFIER 3
-SPACE-				13		14	30A	2880		ABB/GE INFINITY
-SPACE-				15		16			2880	RÉCTIFIER 4
-SPACE-				17		18				-SPACE-
-SPACE-				19		20				-SPACE-
-SPACE-				21		22				-SPACE-
-SPACE-				23		24				-SPACE-
VOLTAGE AMPS	180	180						11520	11520	
200A MCB, 14, 24 SPA	200A MCB, 1¢, 24 SPACE, 120/240V L1 L2									
MB RATING: 65,000 AIC	11700	C	11700	VOI	VOLTAGE AMPS					
					98	AM				
				9	-		X AMPS			
				12	23	MA>	X 125%			

PANEL SCHEDULE


	<i>≠</i>			0.75" EMT CO	1		THE ADJUSTMENT FACTOR OF 8 2020 NEC TABLE 310.15(C)(1)
<u> </u>	(MOV)	30A PROPOSED 2	#10, 1 #10 CU GND.			- FOR RECTIFIER 1	#12 FOR #10 FOR 2 #8 FOR 4 #6 FOR 4
SP/ SP/	$\begin{array}{c c} 05 & 06\\ ACE & 07 & 08 \end{array}$	`	#10 #10, 1 #10 CU GND.			- FOR RECTIFIER 2	CONDUIT SIZING: AT 40% FILL 0.5" CONDUIT – 0.1 0.75" CONDUIT – 0.2 2.0" CONDUIT – 1.3
SP/ SP/	$ \begin{array}{c ccc} 11 & 12 \\ \hline 12 & 14 \\ \hline 12 & 14 \\ \hline 15 & 16 \\ \hline 15 & 16 \\ \end{array} $					→ FOR RECTIFIER 3 → FOR RECTIFIER 4	3.0" CONDUIT - 2.90 CABINET CONVENIENCE OUTLET #10 - 0.0 #10 - 0.0
SP/ SP/	$\begin{array}{c c} ACE \\ 17 \\ 18 \\ CE \\ 19 \\ 20 \\ CE \\ 21 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 2$	SPACE SPACE SPACE		(1) PROPO 0.5" EMT CO			#10 - 0.0 TOTAL 0.5" EMT CONDUIT IS ADEQUAT INCLUDING GROUND WIRE, AS II
SP/	-23 + 24 -	SPACE	#10, 1 #10 CU GND.			- FOR CONVENIENCE OUTLET	RECTIFIER CONDUCTORS (2 CON #10 - 0.0 #10 - 0.0
– LINE D <u>required</u> ? breake	AGRAM. CONTRA	ACTOR MAY SUBSTITU D P/N:Q0230	BE RATED UL1015, 10 JTE UL1015 WIRE FOR	95°C, 600V, AND F Thwn—2 for con	PVC INSI	ULATED, IN THE SIZES SHOWN CE OUTLET BRANCH CIRCUIT.	TOTAL 0.75" EMT CONDUIT IS ADEQUA INCLUDING GROUND WIRE, AS II PPC FEED CONDUCTORS (1 CO 3/0 - 0
							#6 - 0
							······································
	<u>PPC C</u>	NE-LINE DIA	GRAM				
	<u>PPC C</u>	<u>NE-LINE DIA</u>	AGRAM				

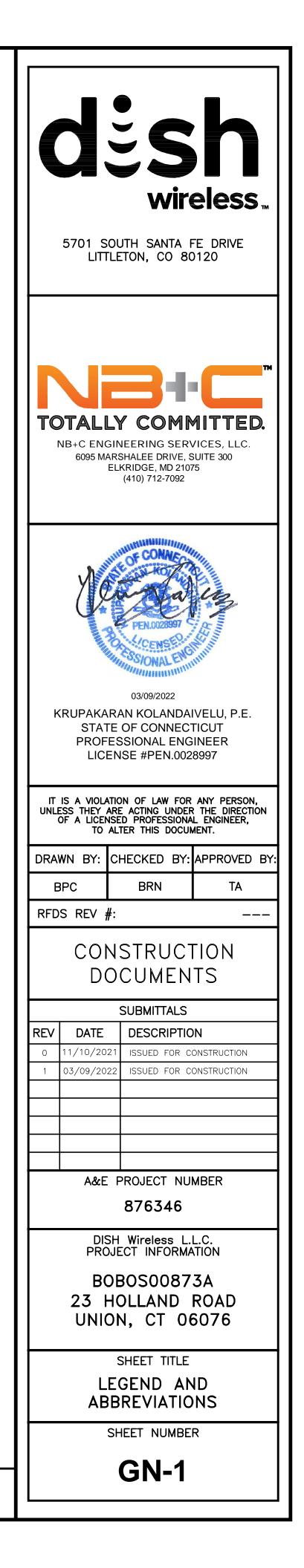

NOTES			
IAS PERFORMED ALL REQUIRED SH RATINGS FOR EACH DEVICE IS ADE		ECT THE	
CAL SYSTEM. IAS PERFORMED ALL REQUIRED VOI ICH CIRCUIT AND FEEDERS COMPLY 0.19(A)(1) FPN NO. 4.	ltage drop		dish
CURRENT CARRYING CONDUCTORS 80% PER 2014/17 NEC TABLE 3			wireless
1) FOR UL1015 WIRE. R 15A-20A/1P BREAKER: 0.8 x 39 R 25A-30A/2P BREAKER: 0.8 x 49 R 35A-40A/2P BREAKER: 0.8 x 59 R 45A-60A/2P BREAKER: 0.8 x 79	0A = 32.0A 5A = 44.0A		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
PER NEC CHAPTER 9, TABLE 4, .122 SQ. IN AREA .213 SQ. IN AREA .316 SQ. IN AREA .907 SQ. IN AREA .T CONDUCTORS (1 CONDUIT): USIN	ARTICLE 358.		
$\begin{array}{rcl} \text{D.0211 SQ. IN X 2 = 0.0422 SQ.} \\ \text{D.0211 SQ. IN X 1 = 0.0211 SQ.} \\ &= 0.0633 \text{ SQ.} \\ \hline \\ \text{ATE TO HANDLE THE TOTAL OF (3)} \\ \text{INDICATED ABOVE.} \end{array}$	IN IN <ground IN</ground 		TOTALLY COMMITTED. NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092
CONDUITS): USING UL1015, CU. D.0266 SQ. IN X 4 = 0.1064 SQ. D.0082 SQ. IN X 1 = 0.0082 SQ.		JND	NUMBER CONNECTING
= 0.1146 SQ. JATE TO HANDLE THE TOTAL OF (5 INDICATED ABOVE.			Versealers PENLO220007
CONDUIT): USING THWN, CU. 0.2679 SQ. IN X 3 = 0.8037 SG 0.0507 SQ. IN X 1 = 0.0507 SG = 0.8544 SG	. IN <ground< td=""><td></td><td>03/09/2022</td></ground<>		03/09/2022
S ADEQUATE TO HANDLE THE TOTA INDICATED ABOVE.		,	KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997
	NO SCALE	1	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,
			TO ALTER THIS DOCUMENT.
			BPC BRN TA
			RFDS REV #:
			CONSTRUCTION DOCUMENTS
			SUBMITTALS REV DATE DESCRIPTION 0 11/10/2021 ISSUED FOR CONSTRUCTION 1 03/09/2022 ISSUED FOR CONSTRUCTION
			A&E PROJECT NUMBER 876346
			DISH Wireless L.L.C. PROJECT INFORMATION
			BOBOSO0873A 23 HOLLAND ROAD UNION, CT 06076
			SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
			SHEET NUMBER
	NO SCALE	3	E-3
		J	

	GROUNDING
CE BRIDGE RT POSTS TO D RING BOND(s) L POSTS)	 GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLIANCE WITH NEC SECTION 250 AND DISH Wire REQUIREMENTS AND MANUFACTURER'S SPECIFICATION: ALL GROUND CONDUCTORS SHALL BE COPPER; NO A
	<u>GROUNDING K</u>
	A <u>EXTERIOR GROUND RING:</u> #2 AWG SOLID COPPER, BURIE GRADE, OR 6 INCHES BELOW THE FROST LINE AND APP OR FOOTING.
	B <u>TOWER GROUND RING:</u> THE GROUND RING SYSTEM SHALL AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAV BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWC
	C <u>INTERIOR GROUND RING:</u> #2 AWG STRANDED GREEN INSU PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECON WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR G INSULATED CONDUCTOR.
	D <u>BOND TO INTERIOR GROUND RING:</u> #2 AWG SOLID TINNE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR BUILDING.
NO SCALE 1	E <u>GROUND ROD:</u> UL LISTED COPPER CLAD STEEL. MINIMUM RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. (GROUND RING CONDUCTOR.
NOTES ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT	(F) <u>CELL REFERENCE GROUND BAR:</u> POINT OF GROUND REF FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS N COPPER CONDUCTORS. BOND TO GROUND RING WITH (2
REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE PURPOSES ONLY	G <u>HATCH PLATE GROUND BAR:</u> BOND TO THE INTERIOR GROUND BAR: BOND TO THE INTERIOR GROUNDUCTORS. WHEN A HATCH-PLATE PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH USING (2) TWO #2 AWG STRANDED GREEN INSULATED
COPPER GREEN INSULATED (TYP) PROPOSED UPPER TOWER	(H) <u>EXTERIOR CABLE ENTRY PORT GROUND BARS:</u> LOCATED , TO GROUND RING WITH A #2 AWG SOLID TINNED COPPE INSPECTION SLEEVE.
GROUND BAR	I TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE
	J <u>FRAME BONDING:</u> THE BONDING POINT FOR TELECOM EQU IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEW
PROPOSED #2 AWG STRANDED COPPER GREEN INSULATED (TYP)	K <u>INTERIOR UNIT BONDS:</u> METAL FRAMES, CABINETS AND IN OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STR INTERIOR GROUND RING.
	L <u>FENCE AND GATE GROUNDING:</u> METAL FENCES WITHIN 7 BONDED TO THE EXTERIOR GROUND RING SHALL BE BON TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCE GATE POST AND ACROSS GATE OPENINGS.
	(\mathbf{M}) <u>Exterior unit bonds:</u> Metallic objects, external to to the exterior ground ring. Using #2 tinned sol
PROPOSED 4"x6"x1/4" COPPER SECTOR GROUND BUSSBAR (TYP OF 3)	(N) <u>ICE BRIDGE SUPPORTS:</u> EACH ICE BRIDGE LEG SHALL BE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WEL GROUND RING.
	• DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTER INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQU CONDUCTOR FROM THE DC POWER SYSTEM COMMON RET REFERENCE GROUND BAR
PROPOSED BUSS BAR (TYP.)	P TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICA
	REFER TO DISH Wireless L.L.C. GROUNDING NOTES.
N NO SCALE 2	GROUNDING KEY NOTE



 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GROUND BAR, ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERMIC WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/6" DIAMETER OR LARGER. ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CONDUCTOR DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOLTED ON THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACTOR. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINERS). 	TOOTHED EXTERIOR TWO-HOLE SHRINK UV 3/8" DIA x1 1/2" S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT WASHER	CTOR INSULATION TO IP AGAINST THE CTOR BARREL	EXTERNAL TOOTHED SARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE CONNECTORS S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING	STOLES CONTRACTOR STOLES CONTR
TYPICAL GROUNDING NOTES NO SCALE	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE 2	TYPICAL INTERIOR TWO HOLE LUG NO SCALE	3
NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) S/S SPLIT WASHER (TYP) S/S FLAT WASHER (TYP) S/S FLAT WASHER (TYP) S/S FLAT WASHER (TYP) S/S FLAT WASHER (TYP) S/S NUT (TYP) CHERRY INSULATOR INSTALLED IF REQUIRED				J J <td< td=""></td<>
LUG DETAIL NO SCALE	<u>NOT USED</u>	NO SCALE 5	NOT USED NO SCALE	6 SUBMITTALS
				REV DATE DESCRIPTION 0 11/10/2021 ISSUED FOR CONSTRUCTION 1 03/09/2022 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 876346 DISH Wireless L.L.C. PROJECT INFORMATION BOBOS00873A 23 HOLLAND ROAD UNION, CT 06076 SHEET TITLE GROUNDING DETAILS SHEET NUMBER GE-3 G-3 ISSUED FOR CONSTRUCTION
NOT USED	<u>NOT USED</u>	NO SCALE 8	NOT USED NO SCALE	9

HYBRID/DISCREET CABLES			3/4	4" TAPE	WIDTHS W
LOW-BAND RRH (600 MHz N71 BASEBAND) + (850 MHz N26 BAND) + (700 MHz N29 BAND) - OPTIONAL PER MARKET ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BAND)	+ SLANT – S RED R ORANGE OR	ALPHARRHRT 2 SLANTPORT 3 + SLANTEDREDANGEREDHTEPORTORANGE	PORT 4 – SLANT RED RED ORANGE (–) PORT	PORT 1 + SLANT BLUE ORANGE	PORT 2 - SLANT BLUE ORANGE WHITE - PORT
MID-BAND RRH (AWS BANDS N66+N70) ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	PURPLE PUI	RPLE RED	RED RED PURPLE (-) PORT	BLUE	BLUE PURPLE WHITE (-) PORT
HYBRID/DISCREET CABLES INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS. EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS. EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS. EXAMPLE 3 – MAIN COAX WITH GROUND MOUNTED RRHS.	EXAMPLE 1 RED BLUE GREEN ORANGE PURPLE	EXAMPLE 2 RED BLUE GREEN YELLOW	E	EXAMPLE 3 COAX#1 (ALPHA)	CANISTER COAX #2 (ALPHA) RED RED
FIBER JUMPERS TO RRHS LOW-BAND HHR FIBER CABLES HAVE SECTOR STRIPE ONLY.	LOW BAND RRH RED ORANGE	MID BAND RRI RED PURPLE	H LOI	W BAND RR BLUE ORANGE	RH MID
POWER CABLES TO RRHS LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	LOW BAND RRH	MID BAND RRI RED PURPLE	H LOV	W BAND RR BLUE ORANGE	RH MID
RET MOTORS AT ANTENNAS RET CONTROL IS HANDLED BY THE MID-BAND RRH WHEN ONE SET OF RET PORTS EXIST ON ANTENNA. SEPARATE RET CABLES ARE USED WHEN ANTENNA PORTS PROVIDE INPUTS FOR BOTH LOW AND MID BANDS.	RED R			ANTENNA 1 MID BAND IN BLUE PURPLE	
MICROWAVE RADIO LINKS LINKS WILL HAVE A 1.5–2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO. MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S.	PRIMARYSECCWHITEWHREDRWHITEWHREDRREDRREDRREDR	MUTH OF 0-120 D NDARY HITE ED HITE HITE	PEGREES		AZIMUTH OF SECONDARY WHITE BLUE WHITE BLUE WHITE


AWS (N66+N70+H–BLOCK) PURPLE NEGATIVE SLANT PORT ON ANT/RRH WHITE		big
TOR GAMMA SECTOR GREEN		TOTALLY COMMITTED. NB+C ENGINEERING SERVICES, LLC. 6095 MARSHALEE DRIVE, SUITE 300 ELKRIDGE, MD 21075 (410) 712-7092
	2	USAN BY: CHECKED BY: APPROVED BY: BPC BRN TA RFDS REV #:
	3	SUBMITTALSREVDATEDESCRIPTION011/10/2021ISSUED FOR CONSTRUCTION103/09/2022ISSUED FOR CONSTRUCTION
		A&E PROJECT NUMBER A&E PROJECT NUMBER 876346 DISH Wireless L.L.C. PROJECT INFORMATION BOBOSO0873A 23 HOLLAND ROAD UNION, CT 06076 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER RF-1
	4	·

<u>LEGEND</u>

ABBREVIATIONS

AB	ANCHOR BOLT	IN	INCH
ABV	ABOVE	INT	INTERIOR
AC	ALTERNATING CURRENT	LB(S)	POUND(S)
ADDL	ADDITIONAL		
		LF	LINEAR FEET
AFF	ABOVE FINISHED FLOOR	LTE	LONG TERM EVOLUTION
AFG	ABOVE FINISHED GRADE	MAS	MASONRY
AGL	ABOVE GROUND LEVEL	MAX	MAXIMUM
AIC	AMPERAGE INTERRUPTION CAPACITY	МВ	MACHINE BOLT
ALUM	ALUMINUM	MECH	MECHANICAL
ALT	ALTERNATE	MFR	MANUFACTURER
ANT	ANTENNA	MGB	MASTER GROUND BAR
APPROX	APPROXIMATE	MIN	MINIMUM
ARCH	ARCHITECTURAL	MISC	MISCELLANEOUS
ATS	AUTOMATIC TRANSFER SWITCH	MTL	METAL
AWG	AMERICAN WIRE GAUGE		
		MTS	MANUAL TRANSFER SWITCH
BATT	BATTERY	MW	MICROWAVE
BLDG	BUILDING	NEC	NATIONAL ELECTRIC CODE
BLK	BLOCK	NM	NEWTON METERS
BLKG	BLOCKING	NO.	NUMBER
BM	BEAM		
BTC	BARE TINNED COPPER CONDUCTOR	#	NUMBER
		NTS	NOT TO SCALE
BOF	BOTTOM OF FOOTING	OC	ON-CENTER
CAB	CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANT	CANTILEVERED	OPNG	OPENING
CHG	CHARGING		
CLG	CEILING	P/C	PRECAST CONCRETE
		PCS	PERSONAL COMMUNICATION SERVICES
CLR	CLEAR	PCU	PRIMARY CONTROL UNIT
COL	COLUMN	PRC	PRIMARY RADIO CABINET
COMM	COMMON	PP	POLARIZING PRESERVING
CONC	CONCRETE		
CONSTR	CONSTRUCTION	PSF	POUNDS PER SQUARE FOOT
		PSI	POUNDS PER SQUARE INCH
DBL	DOUBLE	PT	PRESSURE TREATED
DC	DIRECT CURRENT	PWR	POWER CABINET
DEPT	DEPARTMENT	QTY	QUANTITY
DF	DOUGLAS FIR		
DIA	DIAMETER	RAD	RADIUS
DIAG	DIAGONAL	RECT	RECTIFIER
		REF	REFERENCE
DIM	DIMENSION	REINF	REINFORCEMENT
DWG	DRAWING	REQ'D	REQUIRED
DWL	DOWEL		
EA	EACH	RET	REMOTE ELECTRIC TILT
EC	ELECTRICAL CONDUCTOR	RF	RADIO FREQUENCY
		RMC	RIGID METALLIC CONDUIT
EL.	ELEVATION	RRH	REMOTE RADIO HEAD
ELEC	ELECTRICAL	RRU	REMOTE RADIO UNIT
EMT	ELECTRICAL METALLIC TUBING		
ENG	ENGINEER	RWY	RACEWAY
EQ	EQUAL	SCH	SCHEDULE
		SHT	SHEET
EXP	EXPANSION	SIAD	SMART INTEGRATED ACCESS DEVICE
EXT	EXTERIOR	SIM	SIMILAR
EW	EACH WAY		
FAB	FABRICATION	SPEC	SPECIFICATION
FF	FINISH FLOOR	SQ	SQUARE
FG	FINISH GRADE	SS	STAINLESS STEEL
		STD	STANDARD
FIF	FACILITY INTERFACE FRAME	STL	STEEL
FIN	FINISH(ED)	TEMP	TEMPORARY
FLR	FLOOR		
FDN	FOUNDATION	ТНК	THICKNESS
FOC	FACE OF CONCRETE	ТМА	TOWER MOUNTED AMPLIFIER
		TN	TOE NAIL
FOM	FACE OF MASONRY	ТОА	TOP OF ANTENNA
FOS	FACE OF STUD	TOC	TOP OF CURB
FOW	FACE OF WALL	TOF	TOP OF FOUNDATION
FS	FINISH SURFACE		
FT	FOOT	TOP	TOP OF PLATE (PARAPET)
FTG	FOOTING	TOS	TOP OF STEEL
		TOW	TOP OF WALL
GA	GAUGE	TVSS	TRANSIENT VOLTAGE SURGE SUPPRESSION
GEN	GENERATOR	TYP	TYPICAL
GFCI	GROUND FAULT CIRCUIT INTERRUPTER		
GLB	GLUE LAMINATED BEAM	UG	UNDERGROUND
GLV	GALVANIZED	UL	UNDERWRITERS LABORATORY
		UNO	UNLESS NOTED OTHERWISE
GPS	GLOBAL POSITIONING SYSTEM	UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
GND	GROUND		
GSM	GLOBAL SYSTEM FOR MOBILE	UPS	UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
HDG	HOT DIPPED GALVANIZED	VIF	VERIFIED IN FIELD
HDR	HEADER	W	WIDE
		W/	WITH
HGR	HANGER		
HVAC		WD	WOOD
110/10	HEAT/VENTILATION/AIR CONDITIONING		
HT	HEAT/VENTILATION/AIR CONDITIONING HEIGHT	WP	WEATHERPROOF
	, , ,		

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
 REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS. PAVEMENTS. CURBS. LANDSCAPING AND STRUCTURES. ANY

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

<u>GENERAL NOTES:</u>

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

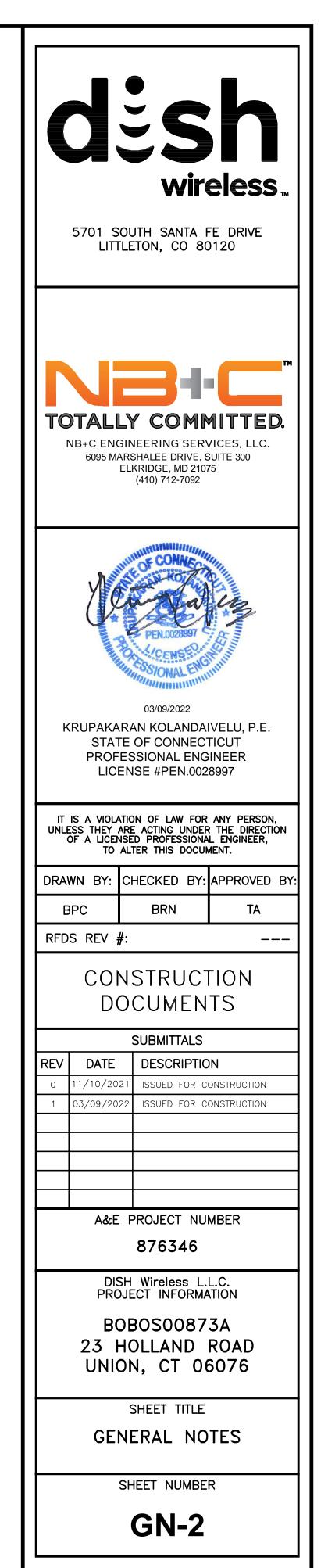
4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.


9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. GRADE PVC CONDUIT. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. psf. OCCURS OR FLEXIBILITY IS NEEDED. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET 19. wireless MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. SCREW FITTINGS ARE NOT ACCEPTABLE. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90° f AT TIME OF PLACEMENT. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. 5701 SOUTH SANTA FE DRIVE CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE NEC. LITTLETON, CO 80120 BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. (WIREMOLD SPECMATE WIREWAY). 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF #4 BARS AND SMALLER 40 ksi THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE #5 BARS AND LARGER 60 ksi MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR TOTALLY COMMITTED. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT NB+C ENGINEERING SERVICES, LLC. DRAWINGS: FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED 6095 MARSHALEE DRIVE, SUITE 300 MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. ELKRIDGE, MD 21075 • CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" (410) 712-7092 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET • CONCRETE EXPOSED TO EARTH OR WEATHER: STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. • #6 BARS AND LARGER 2" 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR • #5 BARS AND SMALLER 1-1/2" EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR • CONCRETE NOT EXPOSED TO EARTH OR WEATHER: BETTER) FOR EXTERIOR LOCATIONS. • SLAB AND WALLS 3/4" 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. ● BEAMS AND COLUMNS 1-1/2" 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. 03/09/2022 THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28. KRUPAKARAN KOLANDAIVELU, P.E. WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. STATE OF CONNECTICUT ELECTRICAL INSTALLATION NOTES: **PROFESSIONAL ENGINEER** INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". 29. 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE LICENSE #PEN.0028997 FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 30. IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED. TO ALTER THIS DOCUMENT. WIRING. RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. DRAWN BY: CHECKED BY: APPROVED BY: ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. BPC BRN TA 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE. RFDS REV #: ___ 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CONSTRUCTION CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE DOCUMENTS GOVERNING JURISDICTION. 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE SUBMITTALS LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR REV DATE DESCRIPTION EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. 0 11/10/2021 ISSUED FOR CONSTRUCTION ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE 1 03/09/2022 ISSUED FOR CONSTRUCTION CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. TIE WRAPS ARE NOT ALLOWED. 8. A&E PROJECT NUMBER ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) 9. WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. 876346 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH DISH Wireless L.L.C. TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. PROJECT INFORMATION 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS BOBOS00873A OTHERWISE SPECIFIED. 23 HOLLAND ROAD UNION, CT 06076 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. SHEET TITLE 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE). GENERAL NOTES RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND 14. NEC. SHEET NUMBER 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS. GN-3

GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE. BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED 8. COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

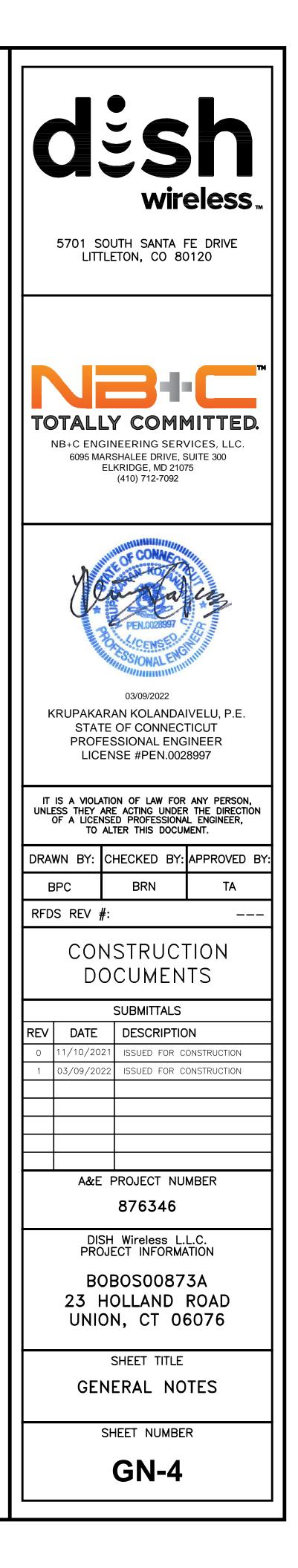
EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 11.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR.

APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND 15. CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. 16.


MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND 17. RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Date: October 01, 2021

Crown Castle 2000 Corporate Dr. Canonsburg, PA (724) 416-2000

Subject:	Structural Analysis Report	
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number:	BOBOS00873A
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	876346 UNION 671531 2013637 572902 Rev. 0
Engineering Firm Designation:	Crown Castle Project Number:	2013637
Site Data:	23 Holland Road, Union, Tolland Latitude <i>42° 1' 45.94''</i> , Longitude 150 Foot - Monopole Tower	

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity-98.9%

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 118 mph. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Alexander Greguric, E.I.T.

Respectfully submitted by:

Terry P Styran 2021.10.01 18:50:36 -04'00'

Terry P. Styran, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC5

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 150 ft Monopole tower designed by ROHN. The tower has been modified in the past to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	118 mph
Exposure Category:	С
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
119.0	119.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		2	alcatel lucent	PCS 1900MHz 4x45W-65MHz		
		4	alcatel lucent	RRH2X50-800		
147.0 147.0	2	commscope	NNVV-65B-R4 w/ Mount Pipe			
	4	decibel	DB980H90E-M w/ Mount Pipe	8	1-1/4	
	2	nokia	FZHN		1 1/4	
	2	2	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe		
		1	tower mounts	Platform Mount [LP 502-1]		
		3	cci antennas	HPA65R-BU4A w/ Mount Pipe		
		3	cci antennas	OPA65R-BU4D w/ Mount Pipe		
		3	ericsson	RRUS 4449 B5/B12	n.	
		3	ericsson	RRUS 4478 B14		3/8 3/4 1-1/4 1-5/8
		3	ericsson	RRUS 8843 B2/B66A		
	140.0	3	kathrein	80010964 w/ Mount Pipe	2	
139.0		2	powerwave technologies	7770.00 w/ Mount Pipe	4	
		4	powerwave technologies	LGP21401		
		1 raycap DC6-48-60-18-8C				
		2	raycap	DC6-48-60-18-8F		Ì
	139.0	1	tower mounts	Platform Mount [LP 1201-1_HR-1]]	

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	130.0	3	kathrein	800 10504 w/ Mount Pipe		0.10
129.0	130.0	3	kathrein	860 10118	6	3/8 1-5/8
	129.0	1	tower mounts	T-Arm Mount [TA 602-3]		1 0/0
60.0	61.0	1	lucent	KS24019-L112A	1	1/2
00.0	60.0	1	tower mounts	Side Arm Mount [SO 701-1]		1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	1855010	CCISITES
4-POST-MODIFICATION INSPECTION	3716688	CCISITES
4-POST-MODIFICATION INSPECTION	7634325	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	1447038	CCISITES
4-TOWER MANUFACTURER DRAWINGS	1406212	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2425474	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3252388	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) Base and flange plate design methodology of the manufacturer has been reviewed and found to be an acceptable means of designing to resist the full capacity of the bolts and shaft.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section	Capacity	(Summary)
-------------------	----------	-----------

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
150 - 146	Pole	TP24x24x0.25	Pole	2.7%	Pass
146 - 142	Pole	TP24x24x0.25	Pole	5.1%	Pass
142 - 138	Pole	TP24x24x0.25	Pole	11.3%	Pass

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fai
138 - 134	Pole	TP24x24x0.25	Pole	19.6%	Pass
134 - 130	Pole	TP24x24x0.25	Pole	28.1%	Pass
130 - 126	Pole	TP24x24x0.25	Pole	37.9%	Pass
126 - 122	Pole	TP24x24x0.25	Pole	48.0%	Pass
122 - 120	Pole	TP24x24x0.25	Pole	53.2%	Pass
120 - 116	Pole	TP30x30x0.375	Pole	27.9%	Pass
116 - 112	Pole	TP30x30x0.375	Pole	33.7%	Pass
112 - 108	Pole	TP30x30x0.375	Pole	39.6%	Pass
108 - 104	Pole	TP30x30x0.375	Pole	45.6%	Pass
104 - 100	Pole	TP30x30x0.375	Pole	51.7%	Pass
100 - 96	Pole	TP30x30x0.375	Pole	57.9%	Pass
96 - 92	Pole	TP30x30x0.375	Pole	64.2%	Pass
92 - 90	Pole	TP30x30x0.375	Pole	67.4%	Pass
90 - 86	Pole	TP36x36x0.375	Pole	52.6%	Pass
86 - 82	Pole	TP36x36x0.375	Pole	57.3%	Pass
82 - 78	Pole	TP36x36x0.375	Pole	62.0%	Pass
78 - 74	Pole	TP36x36x0.375	Pole	66,9%	Pass
74 - 70	Pole	TP36x36x0.375	Pole	71.8%	Pass
70 - 66	Pole	TP36x36x0.375	Pole	76.8%	Pass
66 - 62	Pole	TP36x36x0.375	Pole	81.9%	Pass
62 - 60	Pole	TP36x36x0.375	Pole	84.5%	Pass
60 - 56	Pole	TP42x42x0.375	Pole	67.1%	Pass
56 - 52	Pole	TP42x42x0.375	Pole	71.0%	Pass
52 - 48	Pole	TP42x42x0.375	Pole	75.1%	Pass
48 - 44	Pole	TP42x42x0.375	Pole	79.1%	Pass
44 - 40.25	Pole	TP42x42x0.375	Pole	83.0%	Pass
40.25 - 40	Pole	TP42x42x0.375	Pole	83.3%	Pass
40 - 36	Pole	TP42x42x0.375	Pole	87.5%	Pass
36 - 32	Pole	TP42x42x0.375	Pole	91.7%	Pass
			1		
32 - 30	Pole	TP42x42x0.375	Pole	93.9%	Pass
30 - 29.75	Pole	TP42x42x0.5	Pole	68.6%	Pass
29.75 - 25.75	Pole	TP42x42x0.5	Pole	71.8%	Pass
25.75 - 21.75	Pole	TP42x42x0.5	Pole	75.0%	Pass
21.75 - 17.75	Pole	TP42x42x0.5	Pole	78.3%	Pass
17.75 - 13.75	Pole	TP42x42x0.5	Pole	81.6%	Pass
13.75 - 9.75	Pole	TP42x42x0.5	Pole	84.9%	Pass
9.75 - 7.92	Pole	TP42x42x0.5	Pole	86.4%	Pass
7.92 - 7.67	Pole	TP42x42x0.5	Pole	86.6%	Pass
7.67 - 3.67	Pole	TP42x42x0.5	Pole	90.0%	Pass
3.67 - 0	Pole	TP42x42x0.5	Pole	93.0%	Pass
				Summary	_
			Pole	93.9%	Pass
			Reinforcement	0.0%	Pass
			Overall	93.9%	Pass

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Flange Connection	120	53.2	Pass
1,2	Flange Connection	90	67.4	Pass
1,2	Flange Connection	60	84.5	Pass
1,2	Flange Connection	30	93.9	Pass
1	Anchor Rods	0	98.9	Pass
1,2	Base Plate	0	98.9	Pass
1	Base Foundation (Structure)	0	30.8	Pass
1	Base Foundation (Soil Interaction)	0	87.8	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

ຮ	Structure Rating (max from all components) =	98.9%
5	Structure Rating (max from all components) =	98.9%

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

2) Base/Flange plates are assumed to have the same capacity as their respective splice bolts or shaft.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

	2				150.0 ft	
-	24x0.2	4.00		0.3	146.0 ft	
7	24x0.2	4.00		0.3	142.0 ft	
m	24×0.2	4.00		0.3	138.0 ft	
4	4x0.25	4.00		0.3	134.0 ft	
ى.	4x0.25	4.00		0.3	<u>130.0 ft</u>	
g	4×0.25	4.00		0 <u>.3</u>		
~	4×0.252	4.00		0.3	<u>126.0 ft</u>	H
œ	245.02	4.00 2.00		0.1	122.0 ft 120.0 ft	┝╼╆
ര	20X082			0.5	<u>116.0 ft</u>	
6	CX CAR	4.00		0.5	<u>112.0 ft</u>	
7	SCOXOD2	4.00		0.5	108.0 ft	
12	8.0×98	4.00		0.5	104.0 ft	
5	BCO BC	4.00		0.5	100.0 ft	
4	2x0.842x0.84280.845650.8456.9456.9456.0.8456x0.8456x0.8456x0.8456.8450.8456.08450.8456.08450.8456.8450.824x0.824x0.824x0.824x0.824x0.224x0.224x0.824x0.824x0.824x0.224x0.224x0.824x0.824x0.824x0.224x0.8244x0.8	4.00		0.5	96.0 ft	
15	0¥0 £	4.00		0.5	92.0 ft	
16	30502	0 2.00 4.00		0.2	90.0 ft	日
17	e alla alla alla alla alla alla alla al	9 4.00		0.6	<u>86.0 ft</u>	
	BEXO.	4.00		9.0	<u>82.0 ft</u>	
19	PB6x0.1	4.00	3-42	9.0	78.0 ft	
50	388×0.3	4.00	A53-B-42	0.6	74.0 ft	
21	380.3	4.00		0.6	70.0 ft	
52	BA: OX	4.00		9.0	66.0 ft	
23	36.50.2	4.00		9.0	62.0 ft	
5 24	9.3650	4.00 2.00		7 0.3	60.0 ft	
25	BR2×(7 0.7	<u>56.0 ft</u>	
. 26	BPR2×0	0 4.00		7.0.7	<u>52.0 ft</u>	
27	BR2X0	0 4.00		. 0.7	<u>48.0 ft</u>	
28	BREXO	5 4.00		0.7	<u>44.0 ft</u>	
30 29	2005300	0.25.7		0.7 0 0 0.6	<u>40.3 ft</u>	
31	BAEEKG;	4.000,2500,4.000,253.75		-	<u>36.0 ft</u>	
32	632.50	0 4.00		3 0.7	<u>32.0 ft</u>	
35 3433	1000 Manager	00 .2 50		0.9 0 0.3	<u>30.0 ft</u>	
30	x0. \$ 42	4.00		0.0	<u>25.8 ft</u>	
	(0. 5 42:				<u>21.8 ft</u>	
37	0.542>	0 4.00		6.0	<u>17.8 ft</u>	
38	0. 5 42x	4.000.25B3 4.00 4.00		6.0 -	<u>13.8 ft</u>	
30	x6 .42x(83 4.00		4.0.9	<u>9.8 ft</u>	
42 4140	ZROPAL	.000.25		0.9 0.0	<u>7.9 ft</u>	
43	P42x0.942R6330.6442x0.942x0.942x0.942x0.942x0.942x0.942x0.9789250.878286338828058782x0.978	3.67 4		8.0	<u>3.7 ft</u>	
	P42	e		21.4 0	<u>0.0 ft</u>	
Section	Size	Length (ff)	Grade	Weight (K)		

		MATERIAL	STRENGT	н	
GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-42	42 ksi	63 ksi			

TOWER DESIGN NOTES

- Tower is located in Tolland County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
- 3. Tower designed for a 118 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to i ncrease in thickness with height.
 Deflections are based upon a 60 mph wind.

ALL REACTIONS ARE FACTORED

AXIAL 68 K

Ż, TORQUE 1 kip-ft 50 mph WIND - 1.5000 in ICE AXIAL 44 K

TORQUE 3 kip-ft REACTIONS - 118 mph WIND

MOMENT

MOMENT 2360 kip-ft

854 kip-ft

SHEAR

8 K |

SHEAR

21 K

- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 93.9%

Crown Castle	^{Job:} BU 876346		
CROWN CASTLE 2000 Corporate Dr.	Project:		
Canonsburg, PA	^{Client:} Crown Castle	Drawn by: AGreguric	App'd:
The Pathway to Possible Phone: (724) 416-2000	^{Code:} TIA-222-H	Date: 10/01/21	^{Scale:} NTS
FAX:	Path: C:/Users/agreguric/OneDrive - Crown Castle USA Inc/Desk	top/Work Area/676346/WO 2013637 - SAIProd/LC5/676346_reinf.er	Dwg No. E-1

Tower Input Data

The tower is a monopole. This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Tolland County, Connecticut.
- Tower base elevation above sea level: 840.00 ft.
- Basic wind speed of 118 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- TOWER RATING: %.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

 ✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- ✓ Assume Rigid Index Plate
 ✓ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
- Retension Guys To Initial Tension √ Bypass Mast Stability Checks
- $\sqrt{}$ Use Azimuth Dish Coefficients
- $\sqrt{\frac{1}{2}}$ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation Consider Feed Line Torque

- Include Angle Block Shear Check Use TIA-222-H Bracing Resist Exemption Use TIA-222-H Tension Splice Exemption
- Poles ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Pole Section Geometry

Section	Elevation	Section Length	Pole Size	Pole Grade	Socket Lengt ft
1.1	ft	ft	D04-0.05		
L1	150.00-146.00	4.00	P24x0.25	A53-B-42 (42 ksi)	
L2	146.00-142.00	4.00	P24x0.25	A53-B-42	
				(42 ksi)	
L3	142.00-138.00	4.00	P24x0.25	A53-B-42 (42 ksi)	
L4	138.00-134.00	4.00	P24x0.25	A53-B-42	
				(42 ksi)	
L5	134.00-130.00	4.00	P24x0.25	A53-B-42	
L6	130.00-126.00	4.00	P24x0.25	(42 ksi) A53-B-42	
				(42 ksi)	
L7	126.00-122.00	4.00	P24x0.25	A53-B-42 (42 ksi)	
L8	122.00-120.00	2.00	P24x0.25	A53-B-42	
				(42 ksi)	
L9	120.00-116.00	4.00	P30x0.375	A53-B-42	
L10	116.00-112.00	4.00	P30x0.375	(42 ksi) A53-B-42	
				(42 ksi)	
L11	112.00-108.00	4.00	P30x0.375	A53-B-42 (42 ksi)	
L12	108.00-104.00	4.00	P30x0.375	A53-B-42	
				(42 ksi)	
L13	104.00-100.00	4.00	P30x0.375	A53-B-42 (42 ksi)	
L14	100.00-96.00	4.00	P30x0.375	A53-B-42	
				(42 ksi)	
L15	96.00-92.00	4.00	P30x0.375	A53-B-42 (42 ksi)	
L16	92.00-90.00	2.00	P30x0.375	A53-B-42	
–		1.00	Baa a a b	(42 ksi)	
L17	90.00-86.00	4.00	P36x0.375	A53-B-42 (42 ksi)	
L18	86.00-82.00	4.00	P36x0.375	A53-B-42	
1.40	00 00 70 00	4.00	D00 0 075	(42 ksi)	
L19	82.00-78.00	4.00	P36x0.375	A53-B-42 (42 ksi)	
L20	78.00-74.00	4.00	P36x0.375	A53-B-42	
1.04	74 00 70 00	4.00	D26-0 275	(42 ksi)	
L21	74.00-70.00	4.00	P36x0.375	A53-B-42 (42 ksi)	
L22	70.00-66.00	4.00	P36x0.375	A53-B-42	
1.00	00 00 00 00	4.00	D20v0 275	(42 ksi)	
L23	66.00-62.00	4.00	P36x0.375	A53-B-42 (42 ksi)	
L24	62.00-60.00	2.00	P36x0.375	A53-B-42	
L25	60.00-56.00	4.00	P42x0.375	(42 ksi) 453-B-42	
LZJ	00.00-00.00	4.00	1 7210.010	A53-B-42 (42 ksi)	
L26	56.00-52.00	4.00	P42x0.375	A53-B-42	
L27	52.00-48.00	4.00	P42x0.375	(42 ksi) A53-B-42	
	02.00-40.00	4.00	1 7270.070	(42 ksi)	
L28	48.00-44.00	4.00	P42x0.375	A53-B-42	
L29	44.00-40.25	3.75	P42x0.375	(42 ksi) A53-B-42	
	100 1020			(42 ksi)	
L30	40.25-40.00	0.25	P42x0.375	A53-B-42	
L31	40.00-36.00	4.00	P42x0.375	(42 ksi) A53-B-42	
				(42 ksi)	
L32	36.00-32.00	4.00	P42x0.375	A53-B-42	
L33	32.00-30.00	2.00	P42x0.375	(42 ksi) A53-B-42	
				(42 ksi)	
L34	30.00-29.75	0.25	P42x0.5	A53-B-42	
204				(42 ksi)	

Section	Elevation	Section	Pole	Pole	Socket Length
		Length	Size	Grade	ft
	ft	ft			
				(42 ksi)	
L36	25.75-21.75	4.00	P42x0.5	A53-B-42	
				(42 ksi)	
L37	21.75-17.75	4.00	P42x0.5	A53-B-42	
				(42 ksi)	
L38	17.75-13.75	4.00	P42x0.5	A53-B-42	
				(42 ksi)	
L39	13.75-9.75	4.00	P42x0.5	A53-B-42	
				(42 ksi)	
L40	9.75-7.92	1.83	P42x0.5	A53-B-42	
				(42 ksi)	
L41	7.92-7.67	0.25	P42x0.5	A53-B-42	
				(42 ksi)	
L42	7.67-3.67	4.00	P42x0.5	A53-B-42	
				(42 ksi)	
L43	3.67-0.00	3.67	P42x0.5	A53-B-42	
				(42 ksi)	

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
L1 150.00-			1	1	1			
146.00								
L2 146.00-			1	1	1			
142.00								
L3 142.00-			1	1	1			
138.00								
L4 138.00-			1	1	1			
134.00			4	4	4			
L5 134.00- 130.00			1	1	1			
L6 130.00			1	1	1			
126.00			I	1	I			
L7 126.00-			1	1	1			
122.00			1		1			
L8 122.00-			1	1	1			
120.00				•				
L9 120.00-			1	1	1			
116.00								
L10 116.00-			1	1	1			
112.00								
L11 112.00-			1	1	1			
108.00								
L12 108.00-			1	1	1			
104.00								
L13 104.00-			1	1	1			
100.00								
L14 100.00-			1	1	1			
96.00 L15 96.00-			1	1	1			
92.00			I	I	I			
L16 92.00			1	1	1			
90.00			· ·	1	I			
L17 90.00-			1	1	1			
86.00								
L18 86.00-			1	1	1			
82.00								
L19 82.00-			1	1	1			
78.00								
L20 78.00-			1	1	1			
74.00								
L21 74.00-			1	1	1			
70.00								
L22 70.00-			1	1	1			
66.00								

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor Ar	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
L23 66.00-			1	1	1			
62.00								
L24 62.00-			1	1	1			
60.00								
L25 60.00-			1	1	1			
56.00								
L26 56.00-			1	1	1			
52.00			4	4	1			
L27 52.00- 48.00			1	1	1			
48.00 L28 48.00-			1	1	1			
44.00			Ι	I	I			
L29 44.00-			1	1	1			
40.25			1		I			
L30 40.25-			1	1	1			
40.00								
L31 40.00-			1	1	1			
36.00								
L32 36.00-			1	1	1			
32.00								
L33 32.00-			1	1	1			
30.00								
L34 30.00-			1	1	1			
29.75								
L35 29.75-			1	1	1			
25.75								
L36 25.75-			1	1	1			
21.75			1	4	1			
L37 21 75- 17 75			Ι	1	I			
L38 17 75			1	1	1			
13.75			I	I	I			
L39 13 75-			1	1	1			
9.75			•	1	·			
L40 9 75-7 92			1	1	1			
L41 7 92 7 67			1	1	1			
L42 7 67 3 67			1	1	1			
L43 3.67-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Componen	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Torque	Type	ft	Number	1 01 1100	Position	r	,	plf
		Calculation	1960					in	in	pii
** miscl **										
Safety Line 3/8	A	No	Surface Ar (CaAa)	150.00 - 0.00	1	1	-0.250 -0.250	0.3750		0.22
*										
LDF4-50A(1/2) *	С	No	Surface Ar (CaAa)	60.00 - 0.00	1	1	0.000 0.050	0.6300		0.15
CU12PSM9P6XXX(1- 1/2) *	В	No	Surface Ar (CaAa)	- 119.00 0.00	1	1	0.000 0.050	1.6000		2.35
PL 1.25" x 3"	А	No	Surface Af (CaAa)	8.80 - 0.00	1	1	0.250 0.250	3.0000	8.5000	12.76
PL 1.25" x 3"	В	No	()	8.80 - 0.00	1	1	0.250 0.250	3.0000	8.5000	12.76
PL 1.25" x 3"	С	No	()	8.80 - 0.00	1	1	0.250 0.250	3.0000	8.5000	12.76

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Туре	ft			Position	r		plf
		Calculation						in	in	
PL 1.25" x 3"	A	No	Surface Af	41.20 -	1	1	0.250	3.0000	8.5000	12.76
			(CaAa)	30.20			0.250			
PL 1.25" x 3"	В	No	Surface Af	41.20 -	1	1	0.250	3.0000	8.5000	12.76
			(CaAa)	30.20			0.250			
PL 1.25" x 3"	С	No	Surface Af	41.20 -	1	1	0.250	3.0000	8.5000	12.76
			(CaAa)	30.20			0.250			
****			. ,							

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf
*									
LDF6-50A(1-1/4)	С	No	No	Inside Pole	147.00 - 0.00	8	No Ice	0.00	0.60
	-					-	1/2" [ce	0.00	0.60
							1" Ice	0.00	0.60
							2" Ice	0.00	0.60
HJ5-50A(7/8)	С	No	No	Inside Pole	147.00 - 0.00	1	No Ice	0.00	0.54
	-						1/2" Ice	0.00	0.54
							1" Ice	0.00	0.54
							2" Ice	0.00	0.54
*									
CR 50 1873(1-5/8)	С	No	No	Inside Pole	139.00 - 0.00	6	No Ice	0.00	0.83
							1/2" Ice	0.00	0.83
							1" Ice	0.00	0.83
							2" Ice	0.00	0.83
WR-VG86ST-	С	No	No	Inside Pole	137.00 - 0.00	6	No Ice	0.00	0.58
BRD(3/4)							1/2" Ice	0.00	0.58
· · ·							1" Ice	0.00	0.58
							2" Ice	0.00	0.58
FB-L98B-002-	С	No	No	Inside Pole	139.00 - 0.00	2	No Ice	0.00	0.06
75000(3/8)							1/2" Ice	0.00	0.06
							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
LDF6-50A(1-1/4)	С	No	No	Inside Pole	139.00 - 0.00	4	No Ice	0.00	0.60
	-						1/2" [ce	0.00	0.60
							1" Ice	0.00	0.60
							2" Ice	0.00	0.60
2" Rigid Conduit	С	No	No	Inside Pole	139.00 - 0.00	1	No Ice	0.00	2.80
							1/2" Ice	0.00	2.80
							1" Ice	0.00	2.80
							2" Ice	0.00	2.80
*									
FB-L98B-009-	С	No	No	Inside Pole	129.00 - 0.00	1	No Ice	0.00	0.06
50000(3/8)							1/2" Ice	0.00	0.06
							1" Ice	0.00	0.06
							2" [ce	0.00	0.06
LDF7-50A(1 5/8")	С	No	No	Inside Pole	129.00 - 0.00	6	No Ice	0.00	0.82
. ,							1/2" [ce	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82

Feed Line/Linear Appurtenances Section Areas

Tower Soctio	Tower Elevation	Face	A _R	AF	C _A A _A	C _A A _A	Weight
Sectio	Elevation ft		ft²	ft²	In Face ft²	Out Face ft²	к
<u>n</u> L1	150.00-146.00	A	0.000	0.000	0.150	0.000	0
L I	100.00-140.00	B	0.000	0.000	0.150	0.000	0
		C	0.000	0.000	0.000	0.000	0
L2	146.00-142.00	Ă	0.000	0.000	0.150	0.000	0
62	140.00 142.00	В	0.000	0.000	0.000	0.000	Ő
		č	0.000	0.000	0.000	0.000	õ
L3	142.00-138.00	Ă	0.000	0.000	0.150	0.000	Ő
LU	142.00 100.00	В	0.000	0.000	0.000	0.000	õ
		Č	0.000	0.000	0.000	0.000	õ
L4	138.00-134.00	Ă	0.000	0.000	0.150	0.000	õ
	100,00 101,00	В	0.000	0.000	0.000	0.000	õ
		Ĉ	0.000	0.000	0.000	0.000	Õ
L5	134.00-130.00	Ă	0.000	0.000	0.150	0.000	Õ
20		В	0.000	0.000	0.000	0.000	Õ
		č	0.000	0.000	0.000	0.000	Õ
L6	130.00-126.00	Ă	0.000	0.000	0.150	0.000	õ
LU	100.00 120.00	В	0.000	0.000	0.000	0.000	õ
		č	0.000	0.000	0.000	0.000	Ő
L7	126.00-122.00	Ă	0.000	0.000	0.150	0.000	0
	120.00-122.00	В	0.000	0.000	0.000	0.000	0
		C	0.000	0.000	0.000	0.000	0
L8	122.00-120.00	A	0.000	0.000	0.075	0.000	0
L0	122.00-120.00	B	0.000	0.000	0.075	0.000	0
		C	0.000	0.000	0.000	0.000	0
L9	120.00-116.00	A	0.000	0.000	0.000	0.000	0
L3	120.00-110.00	B	0.000	0.000	0.480	0.000	0
		C	0.000	0.000	0.000	0.000	0
L10	116.00-112.00	Ă	0.000	0.000	0.150	0.000	0
LIU	110.00-112.00	В	0.000	0.000	0.640	0.000	0
		C	0.000	0.000	0.000	0.000	0
L11	112.00-108.00	A	0.000	0.000	0.000	0.000	0
	112.00-106.00			0.000	0.130		
		B C	0.000			0.000	0
140	100 00 101 00		0.000	0.000	0.000	0.000	0
L12	108.00-104.00	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
140	101 00 100 00	C	0.000	0.000	0.000	0.000	0
L13	104.00-100.00	A	0.000	0.000	0.150	0.000	0
		B	0.000	0.000	0.640	0.000	0
144	100 00 00 00	C	0.000	0.000	0.000	0.000	0
L14	100.00-96.00	A	0.000	0.000	0.150	0.000	0
		B	0.000	0.000	0.640	0.000	0
145	00.00.00.00	C	0.000	0.000	0.000	0.000	0
L15	96.00-92.00	A	0.000	0.000	0.150	0.000	0
		B	0.000	0.000	0.640	0.000	0
1.40	00.00.00.00	C	0.000	0.000	0.000	0.000	0
L16	92.00-90.00	A	0.000	0.000	0.075	0.000	0
		B	0.000	0.000	0.320	0.000	0
1 4 7	00.00.00.00	C	0.000	0.000	0.000	0.000	0
L17	90.00-86.00	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
1.40	00.00.00.00	C	0.000	0.000	0.000	0.000	0
L18	86.00-82.00	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
1.46	~~~~~~	C	0.000	0.000	0.000	0.000	0
L19	82.00-78.00	A	0.000	0.000	0.150	0.000	0
		B	0.000	0.000	0.640	0.000	0
1.00	70 00 7: 55	С	0.000	0.000	0.000	0.000	0
L20	78.00-74.00	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
		С	0.000	0.000	0.000	0.000	0
L21	74.00-70.00	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
		С	0.000	0.000	0.000	0.000	0
L22	70.00-66.00	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
		С	0.000	0.000	0.000	0.000	0
L23	66.00-62.00	А	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
		č	0.000		0.000	0.000	-

Tower Sectio	Tower Elevation	Face	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
Sectio n	Elevation ft		ft²	ft²	In Face ft ²	ft ²	к
 L24	62.00-60.00	A	0.000	0.000	0.075	0.000	0
LZ4	02.00-00.00	В	0.000	0.000	0.320	0.000	0
		C	0.000	0.000	0.000	0.000	0
L25	60.00-56.00	A	0.000	0.000	0.150	0.000	0
LZU	00.00-50.00	B		0.000			
		C	0.000	0.000	0.640 0.252	0.000	0
1.06			0.000			0.000	0
L26	56.00-52.00	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
1.07	50.00 40.00	C	0.000	0.000	0.252	0.000	0
L27	52.00-48.00	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
		С	0.000	0.000	0.252	0.000	0
L28	48.00-44.00	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
		С	0.000	0.000	0.252	0.000	0
L29	44.00-40.25	A	0.000	0.000	0.616	0.000	0
		В	0.000	0.000	1.075	0.000	0
		С	0.000	0.000	0.711	0.000	0
L30	40.25-40.00	А	0.000	0.000	0.134	0.000	0
		В	0.000	0.000	0.165	0.000	0
		С	0.000	0.000	0.141	0.000	0
L31	40.00-36.00	А	0.000	0.000	2.150	0.000	0
		В	0.000	0.000	2.640	0.000	0
		С	0.000	0.000	2,252	0.000	0
L32	36.00-32.00	А	0.000	0.000	2.150	0.000	0
		В	0.000	0.000	2.640	0.000	0
		С	0.000	0.000	2.252	0.000	0
L33	32.00-30.00	Ā	0.000	0.000	0.975	0.000	0
		В	0.000	0.000	1.220	0.000	0
		Ĉ	0.000	0.000	1.026	0.000	Õ
L34	30.00-29.75	Ă	0.000	0.000	0.009	0.000	õ
LUI	00.00 20.10	В	0.000	0.000	0.040	0.000	õ
		C	0.000	0.000	0.016	0.000	Õ
L35	29.75-25.75	Ă	0.000	0.000	0.150	0.000	Ö
LUU	23.10-23.10	В	0.000	0.000	0.640	0.000	0
		C	0.000	0.000	0.252	0.000	0
L36	25.75-21.75	Ă	0.000	0.000	0.150	0.000	0
L30	23.75-21.75			0.000			
		B C	0.000 0.000	0.000	0.640 0.252	0.000	0
1.27	01 75 17 75					0.000	0
L37	21.75-17.75	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
1.20	17 75 40 75	C	0.000	0.000	0.252	0.000	0
L38	17.75-13.75	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
1.00	40 75 0 75	С	0.000	0.000	0.252	0.000	0
L39	13.75-9.75	A	0.000	0.000	0.150	0.000	0
		В	0.000	0.000	0.640	0.000	0
	o == = = = =	С	0.000	0.000	0.252	0.000	0
L40	9.75-7.92	A	0.000	0.000	0.509	0.000	0
		В	0.000	0.000	0.733	0.000	0
		С	0.000	0.000	0.555	0.000	0
L41	7.92-7.67	A	0.000	0.000	0.134	0.000	0
		В	0.000	0.000	0.165	0.000	0
		С	0.000	0.000	0.141	0.000	0
L42	7.67-3.67	А	0.000	0.000	2.150	0.000	0
		В	0.000	0.000	2.640	0.000	0
		С	0.000	0.000	2.252	0.000	0
L43	3.67-0.00	А	0.000	0.000	1.973	0.000	0
		В	0.000	0.000	2,422	0.000	0
		Ċ	0.000	0.000	2.066	0.000	Ō

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A _R	AF	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft²	ft²	ft ²	ĸ

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	AF	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft²	ft ²	ft ²	K
L1	150.00-146.00	А	1.481	0.000	0.000	1.335	0.000	0
		В		0.000	0.000	0.000	0.000	0
		С		0.000	0.000	0.000	0.000	0
L2	146.00-142.00	Ă	1.477	0.000	0.000	1.332	0.000	Õ
LZ	140.00-142.00	В	1.477	0.000	0.000	0.000	0.000	0
		С		0.000	0.000	0.000	0.000	0
L3	142.00-138.00	А	1.473	0.000	0.000	1.329	0.000	0
		В		0.000	0.000	0.000	0.000	0
		С		0.000	0.000	0.000	0.000	0
L4	138.00-134.00	А	1.469	0.000	0.000	1.325	0.000	0
		В		0.000	0.000	0.000	0.000	0
		č		0.000	0.000	0.000	0.000	Ő
L5	134.00-130.00	Ă	1.465	0.000	0.000	1.322	0.000	0
LO	134.00-130.00		1.405					
		В		0.000	0.000	0.000	0.000	0
		С		0.000	0.000	0.000	0.000	0
L6	130.00-126.00	А	1.460	0.000	0.000	1.318	0.000	0
		В		0.000	0.000	0.000	0.000	0
		С		0.000	0.000	0.000	0.000	0
L7	126.00-122.00	Ă	1.455	0.000	0.000	1.314	0.000	Ő
L/	120.00-122.00	B	1.400	0.000	0.000	0.000	0.000	
								0
		С		0.000	0.000	0.000	0.000	0
L8	122.00-120.00	А	1.452	0.000	0.000	0.656	0.000	0
		В		0.000	0.000	0.000	0.000	0
		С		0.000	0.000	0.000	0.000	0
L9	120.00-116.00	Ă	1.448	0.000	0.000	1.309	0.000	Ő
LU	120.00 110.00	В	1.110	0.000	0.000	1.349	0.000	Ũ
	440.00 440.00	С	4.440	0.000	0.000	0.000	0.000	0
L10	116.00-112.00	A	1.443	0.000	0.000	1.305	0.000	0
		В		0.000	0.000	1.795	0.000	0
		С		0.000	0.000	0.000	0.000	0
L11	112.00-108.00	А	1.438	0.000	0.000	1.301	0.000	0
		В		0.000	0.000	1.791	0.000	0
		č		0.000	0.000	0.000	0.000	Õ
140	100 00 101 00		4 400					
L12	108.00-104.00	A	1.433	0.000	0.000	1.296	0.000	0
		В		0.000	0.000	1.786	0.000	0
		С		0.000	0.000	0.000	0.000	0
L13	104.00-100.00	А	1.427	0.000	0.000	1.292	0.000	0
		В		0.000	0.000	1.782	0.000	0
		С		0.000	0.000	0.000	0.000	0
L14	100.00-96.00	Ă	1.422	0.000	0.000	1.287	0.000	Õ
L 14	100.00 00.00	В	1.722	0.000	0.000	1.777	0.000	Ö
		С		0.000	0.000	0.000	0.000	0
L15	96.00-92.00	A	1.416	0.000	0.000	1.283	0.000	0
		В		0.000	0.000	1.773	0.000	0
		С		0.000	0.000	0.000	0.000	0
L16	92.00-90.00	A	1.411	0.000	0.000	0.639	0.000	0
		В		0.000	0.000	0.884	0.000	õ
		C		0.000	0.000	0.000	0.000	0
1 1 7	90.00-86.00		1 406					
L17	90.00-00.00	A	1.406	0.000	0.000	1.275	0.000	0
		В		0.000	0.000	1.765	0.000	0
		С		0.000	0.000	0.000	0.000	0
L18	86.00-82.00	А	1.400	0.000	0.000	1.270	0.000	0
		В		0.000	0.000	1.760	0.000	0
		Č		0.000	0.000	0.000	0.000	õ
L19	82.00-78.00	Ă	1.393	0.000	0.000	1.264	0.000	0
L13	02.00-10.00		1.585					
		В		0.000	0.000	1.754	0.000	0
		С		0.000	0.000	0.000	0.000	0
L20	78.00-74.00	A	1.386	0.000	0.000	1.259	0.000	0
		В		0.000	0.000	1.749	0.000	0
		C		0.000	0.000	0.000	0.000	0
L21	74.00-70.00	Ă	1.378	0.000	0.000	1.253	0.000	Ő
	1-100-10.00		1.570					
		В		0.000	0.000	1.743	0.000	0
		С		0.000	0.000	0.000	0.000	0
L22	70.00-66.00	A	1.371	0.000	0.000	1.246	0.000	0
		В		0.000	0.000	1.736	0.000	0
		Ĉ		0.000	0.000	0.000	0.000	Õ
L23	66.00-62.00	Ă	1.362	0.000	0.000	1.240	0.000	Ő
L2J	00.00-02.00		1.002					
		B C		0.000 0.000	0.000 0.000	1.730 0.000	0.000 0.000	0 0

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft²	ft²	ft²	K
L24	62.00-60.00	А	1.356	0.000	0.000	0.617	0.000	0
		В		0.000	0.000	0.862	0.000	0
		С		0.000	0.000	0.000	0.000	0
L25	60.00-56.00	A	1.349	0.000	0.000	1.229	0.000	0
		В		0.000	0.000	1.719	0.000	0
		С		0.000	0.000	1.331	0.000	0
L26	56.00-52.00	А	1.339	0.000	0.000	1.221	0.000	0
		В		0.000	0.000	1.711	0.000	0
		С		0.000	0.000	1.323	0.000	0
L27	52.00-48.00	А	1.329	0.000	0.000	1,213	0.000	0
		В		0.000	0.000	1.703	0.000	0
		С		0.000	0.000	1.315	0.000	0
L28	48.00-44.00	А	1.318	0.000	0.000	1.204	0.000	0
		В		0.000	0.000	1.694	0.000	0
		Ē		0.000	0.000	1.306	0.000	0
L29	44.00-40.25	Ă	1.307	0.000	0.000	1.834	0.000	Ō
		В		0.000	0.000	2.294	0.000	Õ
		č		0.000	0.000	1.930	0.000	õ
L30	40.25-40.00	Ă	1.300	0.000	0.000	0.262	0.000	0
200	-0.20-+0.00	В	1.000	0.000	0.000	0.293	0.000	0
		C		0.000	0.000	0.268	0.000	0
L31	40.00-36.00	Ă	1.293	0.000	0.000	4.182	0.000	0
LUI	40.00-30.00	B	1.235	0.000	0.000	4.672	0.000	0
		C		0.000	0.000	4.072	0.000	0
1.20	26 00 22 00		1 070					
L32	36.00-32.00	A	1.279	0.000	0.000	4.161	0.000	0
		В		0.000	0.000	4.651	0.000	0
	~~~~~~~~	C	4 007	0.000	0.000	4.263	0.000	0
L33	32.00-30.00	A	1.267	0.000	0.000	1.923	0.000	0
		В		0.000	0.000	2.168	0.000	0
		С		0.000	0.000	1.974	0.000	0
L34	30.00-29.75	А	1.262	0.000	0.000	0.072	0.000	0
		В		0.000	0.000	0.103	0.000	0
		С		0.000	0.000	0.079	0.000	0
L35	29.75-25.75	A	1.253	0.000	0.000	1.152	0.000	0
		В		0.000	0.000	1.642	0.000	0
		С		0.000	0.000	1.254	0.000	0
L36	25.75-21.75	А	1.234	0.000	0.000	1.137	0.000	0
		В		0.000	0.000	1.627	0.000	0
		С		0.000	0.000	1,239	0.000	0
L37	21.75-17.75	А	1.211	0.000	0.000	1.119	0.000	0
		В		0.000	0.000	1.609	0.000	0
		С		0.000	0.000	1.221	0.000	0
L38	17.75-13.75	А	1.184	0.000	0.000	1.097	0.000	0
		В		0.000	0.000	1.587	0.000	0
		Ċ		0.000	0.000	1.199	0.000	0
L39	13.75-9.75	Ă	1.150	0.000	0.000	1.070	0.000	Ō
		В		0.000	0.000	1.560	0.000	Ő
		č		0.000	0.000	1,172	0.000	Ũ
L40	9.75-7.92	Ă	1.118	0.000	0.000	1.077	0.000	0 0
<b>_</b>		В		0.000	0.000	1.301	0.000	0
		C		0.000	0.000	1.124	0.000	0
L41	7.92-7.67	Ă	1.104	0.000	0.000	0.235	0.000	0
<u>-</u>	1.02-1.01	В	1.104	0.000	0.000	0.265	0.000	0
		C		0.000	0.000	0.205	0.000	0
142	7.67-3.67		1 060					
L42	1.01-3.01	A	1.069	0.000	0.000	3.711	0.000	0
		В		0.000	0.000	4.201	0.000	0
1.40	0.07.0.00	C	0.055	0.000	0.000	3.813	0.000	0
L43	3.67-0.00	A	0.955	0.000	0.000	3.279	0.000	0
		В		0.000	0.000	3.728	0.000	0
		С		0.000	0.000	3.372	0.000	0

## Feed Line Center of Pressure

Section	Elevation	CPx	CPz	$CP_X$	CPz
				Ice	Ice
	ft	in	in	in	in
L1	150.00-146.00	-0.3693	0.0000	-1.3426	0.0000
L2	146.00-142.00	-0.3693	0.0000	-1.3400	0.0000
L3	142.00-138.00	-0.3693	0.0000	-1.3374	0.0000
L4	138.00-134.00	-0.3693	0.0000	-1.3347	0.0000
L5	134.00-130.00	-0.3693	0.0000	-1.3320	0.0000
L6	130.00-126.00	-0.3693	0.0000	-1.3291	0.0000
L7	126.00-122.00	-0.3693	0.0000	-1.3262	0.0000
L8	122.00-120.00	-0.3693	0.0000	-1.3240	0.0000
L9	120.00-116.00	0.6756	-0.5193	-0.0559	-0.6118
L10	116.00-112.00	0.9914	-0.6761	0.3353	-0.7920
L11	112.00-108.00	0.9914	-0.6761	0.3359	-0.7908
L12	108.00-104.00	0.9914	-0.6761	0.3364	-0.7895
L13	104.00-100.00	0.9914	-0.6761	0.3370	-0.7882
L14	100.00-96.00	0.9914	-0.6761	0.3376	-0.7869
L15	96.00-92.00	0.9914	-0.6761	0.3382	-0.7855
L16	92.00-90.00	0.9914	-0.6761	0.3387	-0.7844
L17	90.00-86.00	1.0003	-0.6837	0.3434	-0.8115
L18	86.00-82.00	1.0003	-0.6837	0.3441	-0.8098
L19	82.00-78.00	1.0003	-0.6837	0.3449	-0.8080
L20	78.00-74.00	1.0003	-0.6837	0.3456	-0.8061
L21	74.00-70.00	1.0003	-0.6837	0.3464	-0.8041
L22	70.00-66.00	1.0003	-0.6837	0.3473	-0.8020
L23	66.00-62.00	1.0003	-0.6837	0.3482	-0.7998
L24	62,00-60,00	1.0003	-0.6837	0.3489	-0.7981
L25	60.00-56.00	0.9502	-0.1027	0.2647	0.5109
L26	56.00-52.00	0.9502	-0.1027	0.2661	0.5076
L27	52.00-48.00	0.9502	-0.1027	0.2675	0.5042
L28	48.00-44.00	0.9502	-0.1027	0.2691	0.5004
L29	44.00-40.25	0.8185	-0.0885	0.2453	0.4498
L30	40.25-40.00	0.5810	-0.0628	0.1928	0.3507
L31	40.00-36.00	0.5810	-0.0628	0.1935	0.3491
L32	36.00-32.00	0.5810	-0.0628	0.1950	0.3457
L33	32.00-30.00	0.6045	-0.0654	0.2022	0.3531
L34	30.00-29.75	0.9502	-0.1027	0.2771	0.4813
L35	29.75-25.75	0.9502	-0.1027	0.2785	0.4781
L36	25 75-21 75	0.9502	-0.1027	0.2813	0.4713
L37	21.75-17.75	0.9502	-0.1027	0.2847	0.4635
L38	17.75-13.75	0.9502	-0.1027	0.2887	0.4539
L39	13,75-9,75	0.9502	-0.1027	0.2938	0.4417
L40	9.75-7.92	0.7278	-0.0787	0.2524	0.3634
L40 L41	7.92-7.67	0.5810	-0.0628	0.2324	0.3076
L42	7.67-3.67	0.5810	-0.0628	0.2216	0.2985
L42	3.67-0.00	0.5810	-0.0628	0.2345	0.2677

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

#### Tower Feed Line Description Feed Line Ka Ka Section Record No. Segment No Ice lce Ĕlev. Safety Line 3/8 146.00 -1.0000 1.0000 L1 2 150.00 2 Safety Line 3/8 142.00 -1.0000 1.0000 L2 146.00 2 L3 Safety Line 3/8 138.00 -1.0000 1.0000 142.00 2 1.0000 L4 Safety Line 3/8 134.00 -1.0000 138.00 2 1.0000 L5 Safety Line 3/8 130.00 -1.0000 134.00 2 1.0000 L6 Safety Line 3/8 126.00 -1.0000

Shielding Factor Ka

tnxTower Report - version 8.1.1.0

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	lce
17	2	Cafatul ing 2/0	130.00	1 0000	1 0000
L7	2	Safety Line 3/8	122.00 - 126.00	1.0000	1.0000
L8	2	Safety Line 3/8	120.00 - 122.00	1.0000	1.0000
L9	2	Safety Line 3/8	116.00 -	1.0000	1.0000
L9	20	CU12PSM9P6XXX(1-1/2)	120.00 116.00 -	1.0000	1.0000
L10	2	Safety Line 3/8	119.00 112.00 -	1.0000	1.0000
		-	116.00		
L10	20	CU12PSM9P6XXX(1-1/2)	112.00 - 116.00	1.0000	1.0000
L11	2	Safety Line 3/8	108.00 - 112.00	1.0000	1.0000
L11	20	CU12PSM9P6XXX(1-1/2)	108.00 -	1.0000	1.0000
L12	2	Safety Line 3/8	112.00 104.00 -	1.0000	1.0000
L12	20	CU12PSM9P6XXX(1-1/2)	108.00 104.00 -	1.0000	1.0000
		· · ·	108.00		
L13	2	Safety Line 3/8	100.00 - 104.00	1.0000	1.0000
L13	20	CU12PSM9P6XXX(1-1/2)	100.00 -	1.0000	1.0000
L14	2	Safety Line 3/8	104.00 96.00 -	1.0000	1.0000
L14	20	CU12PSM9P6XXX(1-1/2)	100.00 96.00 -	1.0000	1.0000
		. ,	100.00		
L15	2	Safety Line 3/8	92.00 - 96.00	1.0000	1.0000
L15	20	CU12PSM9P6XXX(1-1/2)	92.00 - 96.00	1.0000	1.0000
L16	2	Safety Line 3/8	90.00 -	1.0000	1.0000
L16	20	CU12PSM9P6XXX(1-1/2)	92.00 90.00 -	1.0000	1.0000
L17	2	Safety Line 3/8	92.00 86.00 -	1.0000	1.0000
		-	90.00		
L17	20	CU12PSM9P6XXX(1-1/2)	86.00 - 90.00	1.0000	1.0000
L18	2	Safety Line 3/8	82.00 - 86.00	1.0000	1.0000
L18	20	CU12PSM9P6XXX(1-1/2)	82.00 -	1.0000	1.0000
L19	2	Safety Line 3/8	86.00 78.00 -	1.0000	1.0000
L19	20	CU12PSM9P6XXX(1-1/2)	82.00 78.00 -	1.0000	1.0000
		. ,	82.00		
L20	2	Safety Line 3/8	74.00 - 78.00	1.0000	1.0000
L20	20	CU12PSM9P6XXX(1-1/2)	74.00 - 78.00	1.0000	1.0000
L21	2	Safety Line 3/8	70.00 -	1.0000	1.0000
L21	20	CU12PSM9P6XXX(1-1/2)	74.00 70.00 -	1.0000	1.0000
L22	2	Safety Line 3/8	74.00 66.00 -	1.0000	1.0000
			70.00		
L22	20	CU12PSM9P6XXX(1-1/2)	66.00 - 70.00	1.0000	1.0000
L23	2	Safety Line 3/8	62.00 - 66.00	1.0000	1.0000
L23	20	CU12PSM9P6XXX(1-1/2)	62.00 -	1.0000	1.0000
L24	2	Safety Line 3/8	66.00 - 60.00	1.0000	1.0000
L24	20	CU12PSM9P6XXX(1-1/2)	62.00 60.00 -	1.0000	1.0000
		······································	62.00		

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K₄ No Ice	K _a Ice
L25	2	Safety Line 3/8	56.00 -	1.0000	1.0000
L25	18	LDF4-50A(1/2)	60.00 56.00 - 60.00	1.0000	1.0000
L25	20	CU12PSM9P6XXX(1-1/2)	56.00 - 60.00	1.0000	1.0000
L26	2	Safety Line 3/8	52.00 -	1.0000	1.0000
L26	18	LDF4-50A(1/2)	56.00 52.00 - 56.00	1.0000	1.0000
L26	20	CU12PSM9P6XXX(1-1/2)	52.00 - 56.00	1.0000	1.0000
L27	2	Safety Line 3/8	48.00 - 52.00	1.0000	1.0000
L27	18	LDF4-50A(1/2)	48.00 - 52.00	1.0000	1.0000
L27	20	CU12PSM9P6XXX(1-1/2)	48.00 - 52.00	1.0000	1.0000
L28	2	Safety Line 3/8	44.00 - 48.00	1.0000	1.0000
L28	18	LDF4-50A(1/2)	44.00 - 48.00	1.0000	1.0000
L28	20	CU12PSM9P6XXX(1-1/2)	48.00 44.00 - 48.00	1.0000	1.0000
L29	2	Safety Line 3/8	40.25 - 44.00	1.0000	1.0000
L29	18	LDF4-50A(1/2)	44.00 40.25 - 44.00	1.0000	1.0000
L29	20	CU12PSM9P6XXX(1-1/2)	44.00 40.25 44.00	1.0000	1.0000
L29	26	PL 1.25" x 3"	40.25 - 41.20	1.0000	1.0000
L29	27	PL 1.25" x 3"	41.20 40.25 - 41.20	1.0000	1.0000
L29	28	PL 1.25" x 3"	41.20 40.25 - 41.20	1.0000	1.0000
L30	2	Safety Line 3/8	40.00 - 40.25	1.0000	1.0000
L30	18	LDF4-50A(1/2)	40.23 40.00 - 40.25	1.0000	1.0000
L30	20	CU12PSM9P6XXX(1-1/2)	40.25 40.00 - 40.25	1.0000	1.0000
L30	26	PL 1.25" x 3"	40.23 40.00 - 40.25	1.0000	1.0000
L30	27	PL 1.25" x 3"	40.23 40.00 - 40.25	1.0000	1.0000
L30	28	PL 1.25" x 3"	40.23 40.00 - 40.25	1.0000	1.0000
L31	2	Safety Line 3/8	40.23 36.00 - 40.00	1.0000	1.0000
L31	18	LDF4-50A(1/2)	40.00 36.00 - 40.00	1.0000	1.0000
L31	20	CU12PSM9P6XXX(1-1/2)	36.00 - 40.00	1.0000	1.0000
L31	26	PL 1.25" x 3"	40.00 36.00 - 40.00	1.0000	1.0000
L31	27	PL 1.25" x 3"	40.00 36.00 - 40.00	1.0000	1.0000
L31	28	PL 1.25" x 3"	40.00 36.00 - 40.00	1.0000	1.0000
L32	2	Safety Line 3/8	40.00 32.00 36.00	1.0000	1.0000
L32	18	LDF4-50A(1/2)	30.00 32.00 - 36.00	1.0000	1.0000
L32	20	CU12PSM9P6XXX(1-1/2)	32.00 - 36.00	1.0000	1.0000
L32	26	PL 1.25" x 3"	32.00 32.00 - 36.00	1.0000	1.0000
L32	27	PL 1.25" x 3"		1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	lce
			Elev.		
L32	28	PL 1.25" x 3"	36.00 32.00 -	1.0000	1.0000
LUZ	20	1 L 1.20 × 0	36.00	1.0000	1.0000
L33	2	Safety Line 3/8	30.00 -	1.0000	1.0000
		-	32.00		
L33	18	LDF4-50A(1/2)	30.00 -	1.0000	1.0000
L33	20	CU12PSM9P6XXX(1-1/2)	32.00 30.00 -	1.0000	1.0000
L33	20	CO 12F SWI9F 0AAA(1-1/2)	32.00	1.0000	1.0000
L33	26	PL 1.25" x 3"	30.20 -	1.0000	1.0000
			32.00		
L33	27	PL 1.25" x 3"	30.20 -	1.0000	1.0000
L33	28	PL 1.25" x 3"	32.00 30.20 -	1.0000	1.0000
LUU	20	TE 1.20 × 0	32.00	1.0000	1.0000
L34	2	Safety Line 3/8	29.75 -	1.0000	1.0000
			30.00		
L34	18	LDF4-50A(1/2)	29.75 -	1.0000	1.0000
L34	20	CU12PSM9P6XXX(1-1/2)	30.00 29.75 -	1.0000	1.0000
LUT	20		30.00	1.0000	1.0000
L35	2	Safety Line 3/8	25.75 -	1.0000	1.0000
			29.75		
L35	18	LDF4-50A(1/2)	25.75 - 29.75	1.0000	1.0000
L35	20	CU12PSM9P6XXX(1-1/2)	29.75	1.0000	1.0000
200	20		29.75	110000	110000
L36	2	Safety Line 3/8	21.75 -	1.0000	1.0000
1.00	10		25.75	4 0000	1 0000
L36	18	LDF4-50A(1/2)	21.75 - 25.75	1.0000	1.0000
L36	20	CU12PSM9P6XXX(1-1/2)	21.75 -	1.0000	1.0000
			25.75		
L37	2	Safety Line 3/8	17.75 -	1.0000	1.0000
L37	18		21.75	1.0000	1.0000
LST	10	LDF4-50A(1/2)	17.75 21.75	1.0000	1.0000
L37	20	CU12PSM9P6XXX(1-1/2)		1.0000	1.0000
			21.75		
L38	2	Safety Line 3/8	13.75 -	1.0000	1.0000
L38	18	LDF4-50A(1/2)	17.75 13.75 -	1.0000	1.0000
L30	10	LDI 4-30A(1/2)	17.75	1.0000	1.0000
L38	20	CU12PSM9P6XXX(1-1/2)	13.75 -	1.0000	1.0000
			17.75		
L39	2	Safety Line 3/8	9.75 - 13.75	1.0000	1.0000
L39 L39	18 20	LDF4-50A(1/2) CU12PSM9P6XXX(1-1/2)	9.75 - 13.75 9.75 - 13.75	1.0000 1.0000	1.0000 1.0000
L39 L40	20	Safety Line 3/8	7.92 9.75	1.0000	1.0000
L40	18	LDF4-50A(1/2)	7.92 - 9.75	1.0000	1.0000
L40	20	CU12PSM9P6XXX(1-1/2)	7.92 - 9.75	1.0000	1.0000
L40	22	PL 1.25" x 3"	7.92 - 8.80	1.0000	1.0000
L40	23	PL 1.25" x 3"	7.92 - 8.80	1.0000	1.0000
L40 L41	24 2	PL 1.25" x 3" Safety Line 3/8	7.92 - 8.80 7.67 - 7.92	1.0000 1.0000	1.0000 1.0000
L41	18	LDF4-50A(1/2)	7.67 7.92	1.0000	1.0000
L41	20	CU12PSM9P6XXX(1-1/2)	7.67 7.92	1.0000	1.0000
L41	22	PL 1.25" x 3"	7.67 - 7.92	1.0000	1.0000
L41	23	PL 1.25" x 3"	7.67 - 7.92	1.0000	1.0000
L41 L42	24 2	PL 1.25" x 3" Safety Line 3/8	7.67 - 7.92 3.67 - 7.67	1.0000 1.0000	1.0000 1.0000
L42	18	LDF4-50A(1/2)	3.67 7.67	1.0000	1.0000
L42	20	CU12PSM9P6XXX(1-1/2)	3.67 7.67	1.0000	1.0000
L42	22	PL 1.25" x 3"	3.67 - 7.67	1.0000	1.0000
L42	23	PL 1.25" x 3"	3.67 - 7.67	1.0000	1.0000
L42 L43	24 2	PL 1.25" x 3" Safety Line 3/8	3.67 - 7.67 0.00 - 3.67	1.0000 1.0000	1.0000 1.0000
L43		LDF4-50A(1/2)	0.00 - 3.67	1.0000	1.0000
L43		CU12PSM9P6XXX(1-1/2)			

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	Ka Ice
L43	22	PL 1.25" x 3"	0.00 - 3.67	1.0000	1.0000
L43	23	PL 1.25" x 3"	0.00 - 3.67	1.0000	1.0000
L43	24	PL 1.25" x 3"	0.00 - 3.67	1.0000	1.0000

### Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Ēlev.	n	Ratio
				Method	
L29	26	PL 1.25" x 3"	40.25 -	Auto	1.0000
			41.20		
L29	27	PL 1.25" x 3"	40.25 -	Auto	1.0000
			41.20		
L29	28	PL 1.25" x 3"	40.25 -	Auto	1.0000
1.00	00		41.20		4 0000
L30	26	PL 1.25" x 3"	40.00 -	Auto	1.0000
L30	27	PL 1.25" x 3"	40.25 40.00 -	Auto	1.0000
L30	21	PL 1.25 X 3	40.00 - 40.25	Auto	1.0000
L30	28	PL 1.25" x 3"	40.00 -	Auto	1.0000
230	20	TE 1.25 X 5	40.25	Auto	1.0000
L31	26	PL 1.25" x 3"	36.00 -	Auto	1.0000
			40.00	,	
L31	27	PL 1.25" x 3"	36.00 -	Auto	1.0000
			40.00		
L31	28	PL 1.25" x 3"	36.00 -	Auto	1.0000
			40.00		
L32	26	PL 1.25" x 3"	32.00 -	Auto	1.0000
			36.00		
L32	27	PL 1.25" x 3"	32.00 -	Auto	1.0000
			36.00		4 0000
L32	28	PL 1.25" x 3"	- 32.00 36.00	Auto	1.0000
L33	26	PL 1.25" x 3"	30.00	Auto	1.0000
L33	20	FE 1.25 X 5	32.00	Auto	1.0000
L33	27	PL 1.25" x 3"	30.20 -	Auto	1.0000
200			32.00	7.010	110000
L33	28	PL 1.25" x 3"	30.20 -	Auto	1.0000
			32.00		
L40	22	PL 1.25" x 3"	7.92 - 8.80	Auto	1.0000
L40	23	PL 1.25" x 3"	7.92 - 8.80	Auto	1.0000
L40	24	PL 1.25" x 3"	7.92 - 8.80	Auto	1.0000
L41	22	PL 1.25" x 3"	7.67 - 7.92	Auto	1.0000
L41	23	PL 1.25" x 3"	7.67 - 7.92	Auto	1.0000
L41	24	PL 1.25" x 3"	7.67 - 7.92	Auto	1.0000
L42	22	PL 1.25" x 3" PL 1.25" x 3"	3.67 - 7.67	Auto	1.0000
L42 L42	23 24	PL 1.25" x 3" PL 1.25" x 3"	3.67 - 7.67	Auto	1.0000 1.0000
L42 L43	24 22	PL 1.25" x 3" PL 1.25" x 3"	3.67 - 7.67 0.00 - 3.67	Auto Auto	1.0000
L43 L43	22	PL 1.25 X 3 PL 1.25" X 3"	0.00 - 3.67	Auto	1.0000
L43 L43	23	PL 1.25" x 3"	0.00 - 3.67	Auto	1.0000
L40	24	1 - 1.23 × 3	0.00 0.07	Auto	1.0000

### **Discrete Tower Loads**

Description	Face	Offset	Offsets:	Azimuth	Placemen
	or Leg	Туре	Horz Lateral	Adjustment	
	Leg		Vert		
			ft	0	ft
			ft ft		
2.4" Dia x 8-ft Mount Pipe	A	From Leg	0.00	0.0000	150.00
2.1 Dia Xo it Modifier ipo	,,	1 Tom Log	0.00	0.0000	100.00
***			4.00		
DB980H90E-M w/ Mount Pipe	А	From Leg	4.00	0.0000	147.00
			0.00		
			0.00	0.0000	147.00
DB980H90E-M w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	147.00
			0.00		
DB980H90E-M w/ Mount Pipe	В	From Leg	4.00	0.0000	147.00
			0.00 0.00		
DB980H90E-M w/ Mount Pipe	С	From Leg	4.00	0.0000	147.00
			0.00		
NNVV-65B-R4 w/ Mount Pipe	А	From Leg	0.00 4.00	0.0000	147.00
			0.00	0.0000	
	0	- ·	0.00	0.0000	4 47 00
NNVV-65B-R4 w/ Mount Pipe	С	From Leg	4.00 0.00	0.0000	147.00
			0.00		
APXVTM14-ALU-I20 w/ Mount Pipe	А	From Leg	4.00	0.0000	147.00
			0.00 0.00		
APXVTM14-ALU-I20 w/ Mount Pipe	С	From Leg	4.00	0.0000	147.00
		Ū.	0.00		
PCS 1900MHz 4x45W-65MHz	А	From Leg	0.00 4.00	0.0000	147.00
1 03 13000012 4x4300-030012	~	1 Iom Leg	0.00	0.0000	147.00
	-		0.00		
PCS 1900MHz 4x45W-65MHz	С	From Leg	4.00 0.00	0.0000	147.00
			0.00		
(2) RRH2X50-800	А	From Leg	4.00	0.0000	147.00
			0.00 0.00		
(2) RRH2X50-800	С	From Leg	4.00	0.0000	147.00
( ),		C C	0.00		
FZHN	А	From Leg	0.00 4.00	0.0000	147.00
	~	r tom Ley	0.00	0.0000	147.00
	-	<b>_</b> .	0.00	0.005-	
FZHN	С	From Leg	4.00 0.00	0.0000	147.00
			0.00		
(3) 6' x 2" Mount Pipe	А	From Leg	4.00	0.0000	147.00
			0.00 0.00		
6' x 2" Mount Pipe	В	From Leg	4.00	0.0000	147.00
·		5	0.00		
6' x 2" Mount Pipe	С	From Leg	0.00 4.00	0.0000	147.00
	0	Trom Leg	0.00	0.0000	147.00
	~	<b>.</b> .	0.00	0.005-	
Platform Mount [LP 502-1] ** 137 **	С	None		0.0000	147.00
80010964 w/ Mount Pipe	А	From Leg	4.00	0.0000	139.00
•		Ŭ	0.00		-
80010964 w/ Mount Pipe	В	From Leg	1.00 4.00	0.0000	139.00
ooo rooo4 w/ wount Pipe	D	r tom Leg	4.00 0.00	0.0000	139.00
80010964 w/ Mount Pipe	С	From Leg	1.00 4.00	0.0000	139.00

Description	Face	Offset	Offsets:	Azimuth	Placement
	or Leg	Туре	Horz Lateral	Adjustment	
	LUG		Vert		
			ft	0	ft
			ft ft		
			1.00		
OPA65R-BU4D w/ Mount Pipe	А	From Leg	4.00	0.0000	139.00
			0.00 1.00		
OPA65R-BU4D w/ Mount Pipe	В	From Leg	4.00	0.0000	139.00
			0.00		
	ĉ		1.00	0.0000	400.00
OPA65R-BU4D w/ Mount Pipe	С	From Leg	4.00 0.00	0.0000	139.00
			1.00		
HPA65R-BU4A w/ Mount Pipe	А	From Leg	4.00	0.0000	139.00
			0.00 1.00		
HPA65R-BU4A w/ Mount Pipe	В	From Leg	4.00	0.0000	139.00
		2	0.00		
HDAGED BLIAA w/ Marint Din-	C	From	1.00	0.0000	120.00
HPA65R-BU4A w/ Mount Pipe	С	From Leg	4.00 0.00	0.0000	139.00
			1.00		
7770.00 w/ Mount Pipe	А	From Leg	4.00	0.0000	139.00
			0.00 1.00		
7770.00 w/ Mount Pipe	С	From Leg	4.00	0.0000	139.00
······································	-	<b>6 6</b>	0.00		
	^	Eromler	1.00	0.0000	400.00
RRUS 4449 B5/B12	A	From Leg	4.00 0.00	0.0000	139.00
			1.00		
RRUS 4449 B5/B12	В	From Leg	4.00	0.0000	139.00
			0.00		
RRUS 4449 B5/B12	С	From Leg	1.00 4.00	0.0000	139.00
	-		0.00		
	^	Eromler	1.00	0.0000	400.00
RRUS 8843 B2/B66A	A	From Leg	4.00 0.00	0.0000	139.00
			1.00		
RRUS 8843 B2/B66A	В	From Leg	4.00	0.0000	139.00
			0.00 1.00		
RRUS 8843 B2/B66A	С	From Leg	4.00	0.0000	139.00
		2	0.00		
RRUS 4478 B14	А	From Leg	1.00 4.00	0.0000	139.00
11100 4470 014	~	TION Ley	0.00	0.0000	139.00
	_		1.00		
RRUS 4478 B14	В	From Leg	4.00	0.0000	139.00
			0.00 1.00		
RRUS 4478 B14	С	From Leg	4.00	0.0000	139.00
			0.00		
(2) DC6-48-60-18-8F	А	From Leg	1.00 4.00	0.0000	139.00
(_, _ = = = = = = = = = = = = = = = = = =			0.00	0.0000	100,00
		E.c.	1.00	0.0000	100.00
DC6-48-60-18-8C	A	From Leg	4.00 0.00	0.0000	139.00
			1.00		
(2) LGP21401	А	From Leg	4.00	0.0000	139.00
			0.00		
(2) LGP21401	С	From Leg	1.00 4.00	0.0000	139.00
	0	i ioni Leg	0.00	0.0000	100.00
			0.00		
2.4" Dia x 6-ft Pipe	В	From Leg	1.00 4.00	0.0000	139.00

Description	Face	Offset	Offsets:	Azimuth	Placemer
	or	Туре	Horz Lateral	Adjustment	
	Leg		Vert		
			ft	0	ft
			ft		
			0.00		
Platform Mount [LP 1201-1_HR-1]	С	None		0.0000	139.00
** 129 ** 800 10504 w/ Mount Pipe	A	From Leg	4.00	30.0000	129.00
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r tom Log	0.00	00.0000	120.00
	_		1.00		
800 10504 w/ Mount Pipe	В	From Leg	4.00 0.00	30.0000	129.00
			1.00		
800 10504 w/ Mount Pipe	С	From Leg	4.00	30.0000	129.00
			0.00		
860 10118	А	From Leg	1.00 4.00	30.0000	129.00
	~	1 tom 20g	0.00	0010000	120100
000 10110	5	Energy 1 a	1.00	00.0000	400.00
860 10118	В	From Leg	4.00 0.00	30.0000	129.00
			1.00		
860 10118	С	From Leg	4.00	30.0000	129.00
			0.00 1.00		
6' x 2" Mount Pipe	А	From Leg	4.00	0.0000	129.00
17 -		3	0.00		
6' x 2" Mount Pipe	P	From	0.00	0.0000	100.00
o x 2 iviount Pipe	В	From Leg	4.00 0.00	0.0000	129.00
			0.00		
6' x 2" Mount Pipe	С	From Leg	4.00	0.0000	129.00
			0.00 0.00		
T-Arm Mount [TA 602-3]	А	None	0.00	0.0000	129.00
* MX08FRO665-21 w/ Mount Pipe	А	From Leg	4.00	0.0000	119.00
www.uoriteouo-zitw/wountripe	~	r totti Leg	0.00	0.0000	113.00
			0.00		
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00	0.0000	119.00
			0.00 0.00		
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00	0.0000	119.00
			0.00		
TA08025-B604	А	From Leg	0.00 4.00	0.0000	119.00
			0.00	0.0000	1.0.00
	_	Enc. 1	0.00	0.0000	110.00
TA08025-B604	В	From Leg	4.00 0.00	0.0000	119.00
			0.00		
TA08025-B604	С	From Leg	4.00	0.0000	119.00
			0.00 0.00		
TA08025-B605	А	From Leg	4.00	0.0000	119.00
		5	0.00		
TA08025-B605	В	FromLog	0.00 4.00	0.0000	119.00
	D	From Leg	4.00	0.0000	119.00
			0.00		
TA08025-B605	С	From Leg	4.00	0.0000	119.00
			0.00 0.00		
RDIDC-9181-PF-48	А	From Leg	4.00	0.0000	119.00
			0.00		
(2) 8' x 2" Mount Pipe	А	From Leg	0.00 4.00	0.0000	119.00
	~	1 Juli Leg	0.00	0.0000	113.00

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemen
	Leg		Lateral		
			Vert	٥	
			ft	·	ft
			ft ft		
			0.00		
(2) 8' x 2" Mount Pipe	В	From Leg	4.00	0.0000	119.00
(Z) 6 X Z Mount Fipe	Б	T TOILLEY	0.00	0.0000	113.00
			0.00		
(2) 8' x 2" Mount Pipe	С	From Leg	4.00	0.0000	119.00
	0	From Log	0.00	010000	110100
			0.00		
Commscope MC-PK8-DSH	С	None		0.0000	119.00
KS24019-L112A	С	From Face	3.00	10.0000	60.00
			0.00		
			1.00		
Side Arm Mount [SO 701-1]	С	From Face	1.50	0.0000	60.00
			0.00		
*			0.00		
Bridge Stiffener (56" x 12" x 1")	А	From Leg	0.50	0.0000	30.00
,		-	0.00		
			0.00		
Bridge Stiffener (56" x 12" x 1")	С	From Face	0.50	0.0000	30.00
			0.00		
	_		0.00		
Bridge Stiffener (56" x 12" x 1")	В	From Leg	0.50	0.0000	30.00
			0.00		
	0	Energy Law	0.00	0.0000	20.02
Bridge Stiffener (56" x 12" x 1")	С	From Leg	0.50	0.0000	30.00
			0.00 0.00		
****			0.00		

Load Combinations

Ormah	Deserviction
Comb.	Description
<u>No.</u>	Deed Oak
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice

tnxTower Report - version 8.1.1.0

Comb.	Description
No.	
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment	Minor Axi Moment
No.	450 440	D	NA			kip-ft	kip-ft
L1	150 - 146	Pole	Max Tension	33	0	0	0
			Max. Compression	26	-7	5	3
			Max. Mx	36	-7	6	3
			Max. My	2	-2	2	6
			Max. Vy	20	-3	6	1
			Max. Vx	2	-3	2	6
			Max. Torque	4	-	-	2
L2	146 - 142	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-8	5	3
			Max. Mx	20	-3	19	1
			Max. My	2	-3	1	19
			Max. Vy	20	-3	19	1
			Max. Vx	2	-4	1	19
			Max. Torque	4			2
L3	142 - 138	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-18	6	6
			Max. Mx	20	-8	41	1
			Max. My	2	-7	1	42
			Max. Vy	20	-8	41	1
			Max. Vx	2	-8	1	42
			Max. Torque	6			3
L4	138 - 134	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-19	6	6
			Max. Mx	20	-8	75	1
			Max. My	2	-8	1	76
			Max. Vy	20	-9	75	1
			Max. Vx	2	-9	1	76
			Max. Torque	6			3
L5	134 - 130	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-20	6	6
			Max. Mx	20	-8	109	0
			Max. My	2	-8	0	111
			Max. Vy	20	-9	109	0
			Max. Vx	2	-9	0	111
			Max, Torque	6	-	-	3
L6	130 - 126	Pole	Max Tension	1	0	0	Ő

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	<u></u>	kip-ft	kip-ft
			Max. Compression	26	-23	6	6
			Max. Mx Max. My	20 2	-10 -10	149 0	0 151
			Max. Wy Max. Vy	2 20	-10	149	0
			Max. Vy Max. Vx	20	-10	0	151
			Max. Torque	6		Ũ	3
L7	126 - 122	Pole	Max Tension	1	0	0	Õ
			Max. Compression	26	-23	6	6
			Max. Mx	20	-10	190	-1
			Max. My	2	-10	-1	193
			Max. Vy	20	-10	190	-1
			Max. Vx	2	-11	-1	193
			Max. Torque	6			3
L8	122 - 120	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-24	6	6
			Max. Mx	20	-10	211	-1
			Max. My	2	-10	-1	214
			Max. Vy	20	-10	211	-1
			Max. Vx Max. Torque	2	-11	-1	214
L9	120 - 116	Pole	Max. Torque Max Tension	6 1	0	0	3 0
L9	120 - 116	Pole	Max Tension Max. Compression	26	0 -30	6	0 7
			Max. Compression Max. Mx	20	-30 -14	262	-2
			Max. My	20	-14	-1	266
			Max. Vy	20	-14	262	-2
			Max. Vx	2	-14	-1	266
			Max. Torque	6	• •	•	4
L10	116 - 112	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-31	6	7
			Max. Mx	20	-15	318	-2
			Max. My	2	-15	-2	323
			Max. Vy	20	-14	318	-2
			Max. Vx	2	-14	-2	323
			Max. Torque	6			4
L11	112 - 108	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-32	6	7
			Max. Mx	20	-15	375	-2
			Max. My	2	-15	-2	380
			Max. Vy	20	-14	375	-2
			Max. Vx Max. Torque	2 6	-15	-2	380 4
L12	108 - 104	Pole	Max. Torque Max Tension	6 1	0	0	4
LIZ	100 - 104	FUIE	Max Tension Max. Compression	26	-33	6	7
			Max. Oompression Max. Mx	20	-16	433	-3
			Max. My	2	-16	-3	439
			Max. Vy	20	-15	433	-3
			Max. Vx	2	-15	-3	439
			Max. Torque	6		-	4
L13	104 - 100	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-34	6	7
			Max. Mx	20	-17	492	-3
			Max. My	2	-17	-3	499
			Max. Vy	20	-15	492	-3
			Max. Vx	2	-15	-3	499
			Max. Torque	6			4
L14	100 - 96	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-35	6	7
			Max. Mx	20	-18	552	-4
			Max. My	2	-18	-4	560
			Max. Vy	20	-15	552	-4
			Max. Vx Max. Taraua	2	-15	-4	560
115	06 02	Dala	Max. Torque	6	0	0	4
L15	96 - 92	Pole	Max Tension	1 26	0 -36	0 6	0 7
			Max. Compression Max. Mx	26 20	-36 -18	6 614	-4
			Max. My	20	-10 -18	-4	-4 622
			Max. Wy Max. Vy	20	-16	-4 614	-4
			Max. Vy Max. Vx	20	-16	-4	622

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
No.		Dala	NA. T	Comb.	<u></u>	kip-ft	kip-ft
L16	92 - 90	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-37	6	7
			Max. Mx	20	-19	645	-5
			Max. My	2	-19	-5 645	654 -5
			Max. Vy	20	-16		
			Max. Vx	2	-16	-5	654
1 4 7	00 00	D.L.	Max. Torque	6	0	0	4
L17	90 - 86	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-38	6	7
			Max. Mx	20	-20	708	-5
			Max. My	2	-20	-5	717
			Max. Vy	20	-16	708	-5
			Max. Vx	2	-16	-5	717
			Max. Torque	6			4
L18	86 - 82	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-39	6	7
			Max. Mx	20	-20	772	-6
			Max. My	2	-20	-6	782
			Max. Vy	20	-16	772	-6
			Max. Vx	2	-16	-6	782
			Max. Torque	6			4
L19	82 - 78	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-40	6	7
			Max, Mx	20	-21	837	-6
			Max. My	2	-21	-6	848
			Max. Vy	20	-16	837	-6
			Max. Vx	2	-17	-6	848
			Max. Torque	6		•	4
L20	78 - 74	Pole	Max Tension	1	0	0	0
220	10 14	1 010	Max. Compression	26	-41	6	7
			Max. Oompression Max. Mx	20	-22	903	-7
			Max. My	20	-22	-7	-, 916
			Max. Vy	20	-22	903	-7
					-17		
			Max. Vx	2	-17	-7	916
1.04	74 70	Dele	Max. Torque	6	0	0	4
L21	74 - 70	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-42	6	8
			Max. Mx	20	-23	971	-7
			Max. My	2	-23	-7	984
			Max. Vy	20	-17	971	-7
			Max. Vx	2	-17	-7	984
			Max. Torque	6			4
L22	70 - 66	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-43	6	8
			Max. Mx	20	-24	1040	-8
			Max. My	2	-24	-8	1053
			Max. Vý	20	-17	1040	-8
			Max. Vx	2	-17	-8	1053
			Max. Torque	6			4
L23	66 - 62	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-44	6	8
			Max. Mx	20	-25	1109	-8
			Max. My	2	-25	-8	1124
			Max. Vy	20	-18	1109	-8
			Max. Vy Max. Vx	2	-18	-8	1124
			Max. Torque	6	-10	-0	4
L24	62 - 60	Pole	Max. Torque Max Tension	0 1	0	0	4
L24	02 - 00	FUR	Max Tension Max. Compression	26	-45	6	0 8
					-45 -25	1144	о -8
			Max. Mx Max. Mx	20			
			Max. My	2	-25	-9	1159
			Max. Vy	20	-18	1144	-8
			Max. Vx	2	-18	-9	1159
	aa	_ .	Max. Torque	6	-	-	4
L25	60 - 56	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-46	6	7
			Max. Mx	20	-26	1216	-9
			Max. My	2	-26	-9	1231
			Max. Vy	20	-18	1216	-9 1231

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Torque	6			4
L26	56 - 52	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-48	6	7
			Max. Mx	20	-27	1288	-10
			Max. My	2	-27	-10	1304
			Max. Vy	20	-18	1288	-10
			Max. Vx	2	-18	-10	1304
			Max. Torque	6			3
L27	52 - 48	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-49	6	7
			Max. Mx	20	-28	1362	-10
			Max. My	2	-28	-10	1379
			Max. Vy	20	-19	1362	-10
			Max. Vx	2	-19	-10	1379
			Max. Torque	6	10	10	3
L28	48 - 44	Pole	Max Tension	1	0	0	0
LZO	40 - 44	FUIC	Max. Compression	26	-50	6	7
			•	20	-30	1437	-11
			Max. Mx				
			Max. My	2	-29	-11	1454
			Max. Vy	20	-19	1437	-11
			Max. Vx	2	-19	-11	1454
			Max. Torque	6			3
L29	44 - 40.25	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-51	6	8
			Max. Mx	20	-30	1508	-11
			Max. My	2	-30	-11	1526
			Max. Vy	20	-19	1508	-11
			Max. Vx	2	-19	-11	1526
			Max. Torque	6			3
L30	40.25 - 40	Pole	Max Tension	1	0	0	Õ
LOO	10.20 10	1 010	Max. Compression	26	-51	ő	8
			Max. Max	20	-30	1513	-11
			Max. My	20	-30	-11	1531
				20	-30 -19	1513	-11
			Max. Vy Max. Vy				
			Max. Vx	2	-19	-11	1531
	40.00	.	Max. Torque	6	•	0	3
L31	40 - 36	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-53	6	8
			Max. Mx	20	-31	1590	-12
			Max. My	2	-31	-12	1608
			Max. Vy	20	-19	1590	-12
			Max. Vx	2	-20	-12	1608
			Max. Torque	6			3
L32	36 - 32	Pole	Max Tension	1	0	0	0
_			Max. Compression	26	-54	6	8
			Max. Mx	20	-32	1668	-12
			Max. My	2	-32	-12	1687
			Max. Wy	20	-20	1668	-12
			Max. Vy Max. Vx	20	-20	-12	1687
				2 6	-20	-12	
1.22	22 20	Dele	Max. Torque		0	0	3
L33	32 - 30	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-55	6	8
			Max. Mx	20	-33	1707	-12
			Max. My	2	-33	-13	1726
			Max. Vy	20	-20	1707	-12
			Max. Vx	2	-20	-13	1726
			Max. Torque	6			3
L34	30 - 29.75	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-56	6	7
			Max. Mx	20	-34	1712	-13
			Max. My	2	-34	-13	1731
			Max. Vy	20	-20	1712	-13
			Max. Vy Max. Vx	20	-20	-13	1731
			Max. Torque	6	-20	-13	
1.25	20.75	Dele			0	^	3
L35	29.75 -	Pole	Max Tension	1	0	0	0
	25.75			~~		~	_
			Max. Compression	26	-58	6	7
					05	4700	40
			Max. Mx Max. My	20 2	-35 -35	1793 -13	-13 1812

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
			Max. Vy	20	-20	1793	-13
			Max. Vx	2	-20	-13	1812
			Max. Torque	6			3
L36	25.75 -	Pole	Max Tension	1	0	0	0
	21.75		Max. Compression	26	-59	6	7
			Max, Mx	20	-36	1875	-14
			Max. My	2	-36	-14	1894
			Max. Vy	20	-21	1875	-14
			Max, Vx	2	-21	-14	1894
			Max Torque	6			3
L37	21.75 -	Pole	Max Tension	1	0	0	Õ
	17.75		Max. Compression	26	-61	6	7
			Max. Mx	20	-38	1958	-14
			Max. My	2	-38	-14	1977
			Max. Wy Max. Vy	20	-21	1958	-14
			Max. Vy Max. Vx	20	-21	-14	1977
			Max. Torque	6	-21	-14	3
1.20	17 75	Dala	Max. Torque Max Tension		0	٥	
L38	17.75 - 13.75	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-62	6	7
			Max, Mx	20	-39	2041	-15
			Max. My	2	-39	-15	2060
			Max. Vy	20	-21	2041	-15
			Max. Vx	2	-21	-15	2060
			Max. Torque	6	- 1	10	3
L39	13.75 - 9.75	Pole	Max Tension	1	0	0	0
LOU	10.10 0.10	1 010	Max. Compression	26	-64	6	7
			Max. Compression Max. Mx	20	-40	2125	-15
			Max. My	20	-40 -40	-15	2144
			Max. Wy Max. Vy	20	-40	2125	-15
			Max. Vy Max. Vx	20	-21	-15	2144
					-21	-15	
1.40	0.75 7.00	D.L.	Max. Torque	6	0	0	3
L40	9.75 - 7.92	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-65	6	7
			Max. Mx	20	-41	2163	-16
			Max. My	2	-41	-15	2182
			Max. Vy	20	-21	2163	-16
			Max. Vx	2	-21	-15	2182
			Max. Torque	6			3
L41	7.92 - 7.67	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-65	6	7
			Max. Mx	20	-41	2169	-16
			Max. My	2	-41	-15	2188
			Max. Vy	20	-21	2169	-16
			Max. Vx	2	-21	-15	2188
			Max. Torque	6			3
L42	7.67 - 3.67	Pole	Max Tension	1	0	0	0
			Max. Compression	26	-66	6	7
			Max. Mx	20	-42	2253	-16
			Max. My	2	-42	-16	2272
			Max. Vy	20	-21	2253	-16
			Max. Vx	2	-21	-16	2272
			Max Torque	6			3
L43	3.67 - 0	Pole	Max Tension	1	0	0	Ő
2.0		. 510	Max. Compression	26	-68	6	7
			Max. Max. Mx	20	-44	2331	-16
			Max. My	20	-44	-16	2350
			Max. Wy Max. Vy	20	-44 -21	2331	-16
			Max. Vy Max. Vx	20	-21	-16	2350
			Max. Vx Max. Torque	2 6	-21	-10	2350
			iviax, LOLUUC	U			3

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	ĸ	K
		Comb.			
Pole	Max. Vert	33	68	0	-8
	Max. H _x	21	33	21	0
	Max. H _z	2	44	0	21
	Max. M _x	2	2350	0	21
	Max. M _z	8	2327	-21	0
	Max. Torsion	6	3	-19	11
	Min. Vert	11	33	-18	-11
	Min. H _x	9	33	-21	0
	Min. H _z	15	33	0	-21
	Min. M _x	14	-2347	0	-21
	Min. M _z	20	-2331	21	0
	Min. Torsion	18	-3	19	-11

Tower Mast Reaction Summary

Load	Vertical	Shearx	Shear₂	Overturning	Overturning	Torque
Combination	к	к	К	Moment, M _x kip-ft	Moment, Mz kip-ft	kip-ft
Dead Only	36	0	0	-1	2	0
1.2 Dead+1.0 Wind 0 deg -	44	0	-21	-2350	-16	-2
No Ice						
0.9 Dead+1.0 Wind 0 deg -	33	0	-21	-2316	-17	-2
No Ice						
1.2 Dead+1.0 Wind 30 deg -	44	11	-19	-2045	-1178	-3
No Ice						
0.9 Dead+1.0 Wind 30 deg -	33	11	-19	-2015	-1162	-3
		10	44	1100	0004	0
1.2 Dead+1.0 Wind 60 deg - No Ice	44	19	-11	-1192	-2024	-3
0.9 Dead+1.0 Wind 60 deg -	33	19	-11	-1174	-1996	-3
No Ice		19	-11	-11/4	-1990	-5
1.2 Dead+1.0 Wind 90 deg -	44	21	0	-20	-2327	-2
No Ice			•			-
0.9 Dead+1.0 Wind 90 deg -	33	21	0	-19	-2294	-2
No Ice						
1.2 Dead+1.0 Wind 120 deg	44	18	11	1157	-2006	-1
- No Ice						
0.9 Dead+1.0 Wind 120 deg	33	18	11	1140	-1978	-1
			40	0000	4447	4
1.2 Dead+1.0 Wind 150 deg - No Ice	44	11	18	2023	-1147	1
0.9 Dead+1.0 Wind 150 deg	33	11	18	1994	-1131	1
- No Ice	55		10	1334	-1151	I
1.2 Dead+1.0 Wind 180 deg	44	0	21	2347	20	2
- No Ice		ů,		2011		-
0.9 Dead+1.0 Wind 180 deg	33	0	21	2313	19	2
- No Ice						
1.2 Dead+1.0 Wind 210 deg	44	-11	19	2041	1182	3
- No Ice						_
0.9 Dead+1.0 Wind 210 deg	33	-11	19	2012	1165	3
- No Ice	44	-19	11	1188	2028	3
1.2 Dead+1.0 Wind 240 deg - No Ice	44	-19	11	1100	2028	3
0.9 Dead+1.0 Wind 240 deg	33	-19	11	1172	1998	3
- No Ice	00	10		1172	1000	0
1.2 Dead+1.0 Wind 270 deg	44	-21	0	16	2331	2
- No Ice						
0.9 Dead+1.0 Wind 270 deg	33	-21	0	17	2297	2
- No Ice						
1.2 Dead+1.0 Wind 300 deg	44	-18	-11	-1160	2010	1
- No Ice						
0.9 Dead+1.0 Wind 300 deg	33	-18	-11	-1143	1980	1
- No Ice	44	-11	10	2007	1151	-1
1.2 Dead+1.0 Wind 330 deg - No Ice	44	-11	-18	-2027	1151	- 1

Load Combination	Vertical	Shearx	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	ĸ	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 330 deg	33	-11	-18	-1997	1134	-1
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	68	0	0	-7	6	C
1.2 Dead+1.0 Wind 0	68	0	-8	-854	1	-1
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	68	4	-7	-743	-419	-1
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	68	7	-4	-435	-726	-1
deg+1.0 Ice+1.0 Temp		·				
1.2 Dead+1.0 Wind 90	68	8	0	-12	-836	-1
deg+1.0 Ice+1.0 Temp	00	0	Ū	12	000	
1.2 Dead+1.0 Wind 120	68	7	4	412	-721	C
deg+1.0 Ice+1.0 Temp	00	'		712	-121	, c
1.2 Dead+1.0 Wind 150	68	4	7	724	-411	C
deg+1.0 Ice+1.0 Temp	00	4	'	724	-4	L L
U	68	0	8	840	11	-
1.2 Dead+1.0 Wind 180	00	0	0	040	11	
deg+1.0 Ice+1.0 Temp	<u> </u>	4	7	700	404	
1.2 Dead+1.0 Wind 210	68	-4	7	729	431	
deg+1.0 lce+1.0 Temp		_		100	=00	
1.2 Dead+1.0 Wind 240	68	-7	4	420	738	-
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	68	-8	0	-2	848	-
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	68	-7	-4	-427	733	(
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	68	-4	-7	-738	423	(
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	36	0	-5	-569	-3	-1
Dead+Wind 30 deg - Service	36	3	-5	-495	-284	-1
Dead+Wind 60 deg - Service	36	5	-3	-289	-488	-1
Dead+Wind 90 deg - Service	36	5	0	-6	-561	-1
Dead+Wind 120 deg -	36	4	3	278	-484	C
Service						
Dead+Wind 150 deg -	36	3	4	488	-276	C
Service		-				
Dead+Wind 180 deg -	36	0	5	566	6	
Service		0	0	000	0	
Dead+Wind 210 deg -	36	-3	5	492	287	
Service	00	0	0	452	201	
Dead+Wind 240 deg -	36	-5	3	286	491	
Service	50	-5	5	200	431	
	36	-5	0	3	565	
Dead+Wind 270 deg -	30	- 3	0	3	606	
	00	4	0	004	407	,
Dead+Wind 300 deg -	36	-4	-3	-281	487	(
Service	~ ~	-	-			-
Dead+Wind 330 deg - Service	36	-3	-4	-491	279	(

	Solution Summary									
	Sun	n of Applied Force	es		Sum of Reactio	ns				
Load	PX	PY	PZ	PX	PY	PZ	% Error			
Comb.	K	K	ĸ	ĸ	ĸ	ĸ				
1	0	-36	0	0	36	0	0.000%			
2	0	-44	-21	0	44	21	0.000%			
3	0	-33	-21	0	33	21	0.000%			
4	11	-44	-19	-11	44	19	0.000%			
5	11	-33	-19	-11	33	19	0.000%			
6	19	-44	-11	-19	44	11	0.000%			
7	19	-33	-11	-19	33	11	0.000%			
8	21	-44	0	-21	44	0	0.000%			
9	21	-33	0	-21	33	0	0.000%			
10	18	-44	11	-18	44	-11	0.000%			
11	18	-33	11	-18	33	-11	0.000%			
12	11	-44	18	-11	44	-18	0.000%			
13	11	-33	18	-11	33	-18	0.000%			

	Sun	n of Applied Force	s		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	ĸ	K	ĸ	K	K	
14	0	-44	21	0	44	-21	0.000%
15	0	-33	21	0	33	-21	0.000%
16	-11	-44	19	11	44	-19	0.000%
17	-11	-33	19	11	33	-19	0.000%
18	-19	-44	11	19	44	-11	0.000%
19	-19	-33	11	19	33	-11	0.000%
20	-21	-44	0	21	44	0	0.000%
21	-21	-33	0	21	33	0	0.000%
22	-18	-44	-11	18	44	11	0.000%
23	-18	-33	-11	18	33	11	0.000%
24	-11	-44	-18	11	44	18	0.000%
25	-11	-33	-18	11	33	18	0.000%
26	0	-68	0	0	68	0	0.000%
27	0	-68	-8	0	68	8	0.000%
28	4	-68	-7	-4	68	7	0.000%
29	7	-68	-4	-7	68	4	0.000%
30	8	-68	0	-8	68	0	0.000%
31	7	-68	4	-7	68	-4	0.000%
32	4	-68	7	-4	68	-7	0.000%
33	0	-68	8	0	68	-8	0.000%
34	-4	-68	7	4	68	-7	0.000%
35	-7	-68	4	7	68	-4	0.000%
36	-8	-68	0	8	68	0	0.000%
37	-7	-68	-4	7	68	4	0.000%
38	-4	-68	-7	4	68	7	0.000%
39	0	-36	-5	0	36	5	0.000%
40	3	-36	-5	-3	36	5	0.000%
41	5	-36	-3	-5	36	3	0.000%
42	5	-36	0	-5	36	0	0.000%
43	4	-36	3	-4	36	-3	0.000%
44	3	-36	4	-3	36	-4	0.000%
45	0	-36	5	0	36	-5	0.000%
46	-3	-36	5	3	36	-5	0.000%
47	-5	-36	3	5	36	-3	0.000%
48	-5	-36	0	5	36	Ő	0.000%
49	-4	-36	-3	4	36	3	0.000%
50	-3	-36	-4	3	36	4	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000668
2	Yes	5	0.0000001	0.00085253
3	Yes	5	0.0000001	0.00040913
4	Yes	6	0.0000001	0.00055537
5	Yes	6	0.0000001	0.00019140
6	Yes	6	0.0000001	0.00064998
7	Yes	6	0.0000001	0.00022697
8	Yes	6	0.0000001	0.00009014
9	Yes	5	0.0000001	0.00065608
10	Yes	6	0.0000001	0.00054912
11	Yes	6	0.0000001	0.00019125
12	Yes	6	0.0000001	0.00055837
13	Yes	6	0.0000001	0.00019460
14	Yes	6	0.0000001	0.00008029
15	Yes	5	0.0000001	0.00057979
16	Yes	6	0.0000001	0.00065203
17	Yes	6	0.0000001	0.00022744
18	Yes	6	0.0000001	0.00055357
19	Yes	6	0.0000001	0.00019091
20	Yes	6	0.0000001	0.00006699
21	Yes	5	0.0000001	0.00048691
22	Yes	6	0.0000001	0.00059199
23	Yes	6	0.0000001	0.00020630

24	Yes	6	0.0000001	0.00058659
25	Yes	6	0.00000001	0.00020395
26	Yes	5	0.00000001	0.00020819
27	Yes	7	0.0000001	0.00014080
28	Yes	7	0.00000001	0.00016282
29	Yes	7	0.00000001	0.00016519
30	Yes	6	0.00000001	0.00098600
31	Yes	7	0.00000001	0.00015445
32	Yes	7	0.00000001	0.00015527
33	Yes	6	0.00000001	0.00098953
34	Yes	7	0.00000001	0.00016483
35	Yes	7	0.00000001	0.00016168
36	Yes	7	0.00000001	0.00013970
37	Yes	7	0.00000001	0.00016631
38	Yes	7	0.00000001	0.00016624
39	Yes	5	0.00000001	0.00006738
40	Yes	5	0.00000001	0.00013599
41	Yes	5	0.00000001	0.00019229
42	Yes	5	0.00000001	0.00007760
43	Yes	5	0.00000001	0.00012910
44	Yes	5	0.00000001	0.00013332
45	Yes	5	0.0000001	0.00007005
46	Yes	5	0.00000001	0.00019157
47	Yes	5	0.00000001	0.00013718
48	Yes	5	0.00000001	0.00007490
49	Yes	5	0.0000001	0.00015792
50	Yes	5	0.0000001	0.00015149

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	o	٥
L1	150 - 146	22.119	40	1.2226	0.0111
L2	146 - 142	21.099	40	1.2221	0.0110
L3	142 - 138	20.081	40	1.2188	0.0104
L4	138 - 134	19.065	40	1.2122	0.0097
L5	134 - 130	18.057	40	1.1989	0.0088
L6	130 - 126	17.063	40	1.1784	0.0079
L7	126 - 122	16.088	40	1.1501	0.0069
L8	122 - 120	15.140	40	1.1132	0.0060
L9	120 - 116	14.679	40	1.0915	0.0056
L10	116 - 112	13.771	40	1.0742	0.0052
L11	112 - 108	12.880	40	1.0529	0.0049
L12	108 - 104	12.008	40	1.0275	0.0045
L13	104 - 100	11.160	40	0.9980	0.0042
L14	100 - 96	10.338	40	0.9641	0.0039
L15	96 - 92	9.546	40	0.9259	0.0035
L16	92 - 90	8.788	40	0.8833	0.0032
L17	90 - 86	8.423	40	0.8603	0.0030
L18	86 - 82	7.714	40	0.8318	0.0028
L19	82 - 78	7.030	40	0.8008	0.0026
L20	78 - 74	6.373	40	0.7670	0.0024
L21	74 - 70	5.745	40	0.7305	0.0022
L22	70 - 66	5.150	40	0.6911	0.0020
L23	66 - 62	4.588	40	0.6489	0.0018
L24	62 - 60	4.063	40	0.6038	0.0016
L25	60 - 56	3.815	40	0.5802	0.0015
L26	56 - 52	3.342	40	0.5492	0.0014
L27	52 - 48	2.896	40	0.5163	0.0013
L28	48 - 44	2.478	40	0.4814	0.0011
L29	44 - 40.25	2.090	40	0.4447	0.0010
L30	40.25 - 40	1.755	40	0.4084	0.0009
L31	40 - 36	1.733	40	0.4059	0.0009
L32	36 - 32	1.410	40	0.3652	0.0008
L33	32 - 30	1.122	40	0.3224	0.0007
L34	30 - 29.75	0.992	40	0.3002	0.0006
L35	29.75 - 25.75	0.976	40	0.2981	0.0006

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L36	25.75 - 21.75	0.741	40	0.2633	0.0005
L37	21.75 - 17.75	0.535	40	0.2269	0.0004
L38	17.75 - 13.75	0.361	40	0.1888	0.0004
L39	13.75 - 9.75	0.219	40	0.1491	0.0003
L40	9.75 - 7.92	0.112	40	0.1078	0.0002
L41	7.92 - 7.67	0.074	40	0.0883	0.0002
L42	7.67 - 3.67	0.070	40	0.0856	0.0002
L43	3.67 - 0	0.016	40	0.0417	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	o	ft
150.00	2.4" Dia x 8-ft Mount Pipe	40	22.119	1.2226	0.0111	77890
147.00	DB980H90E-M w/ Mount Pipe	40	21.354	1.2224	0.0111	77890
139.00	80010964 w/ Mount Pipe	40	19.319	1.2144	0.0099	25867
129.00	800 10504 w/ Mount Pipe	40	16.817	1.1720	0.0076	8697
119.00	MX08FRO665-21 w/ Mount Pipe	40	14.450	1.0846	0.0054	8763
60.00	KS24019-L112A	40	3.815	0.5802	0.0015	5902
30.00	Bridge Stiffener (56" x 12" x 1")	40	0.992	0.3002	0.0006	5836

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	o	0
L1	150 - 146	91.408	4	5.0310	0.0454
L2	146 - 142	87.203	4	5.0300	0.0447
L3	142 - 138	83.002	4	5.0202	0.0423
L4	138 - 134	78.814	4	4.9969	0.0395
L5	134 - 130	74.656	4	4.9465	0.0358
L6	130 - 126	70.552	4	4.8660	0.0321
L7	126 - 122	66.529	4	4.7532	0.0283
L8	122 - 120	62.614	4	4.6045	0.0245
L9	120 - 116	60.707	4	4.5165	0.0226
L10	116 - 112	56.959	4	4.4454	0.0213
L11	112 - 108	53.277	4	4.3578	0.0199
L12	108 - 104	49.675	4	4.2530	0.0185
L13	104 - 100	46.167	4	4.1309	0.0171
L14	100 - 96	42.769	4	3.9910	0.0157
L15	96 - 92	39.495	4	3.8330	0.0143
L16	92 - 90	36.360	4	3.6567	0.0129
L17	90 - 86	34.850	4	3.5616	0.0122
L18	86 - 82	31.918	4	3.4440	0.0114
L19	82 - 78	29.088	4	3.3155	0.0106
L20	78 - 74	26.371	4	3.1756	0.0098
L21	74 - 70	23.776	4	3.0244	0.0089
L22	70 - 66	21.311	4	2.8615	0.0081
L23	66 - 62	18.988	4	2.6868	0.0073
L24	62 - 60	16.816	4	2.5001	0.0065
L25	60 - 56	15.789	4	2.4022	0.0061
L26	56 - 52	13.831	4	2.2737	0.0056
L27	52 - 48	11.984	4	2.1374	0.0051
L28	48 - 44	10.254	4	1.9932	0.0047
L29	44 - 40.25	8.648	4	1.8408	0.0042
L30	40.25 - 40	7.261	4	1.6906	0.0037
L31	40 - 36	7.173	4	1.6803	0.0037
L32	36 - 32	5.835	4	1.5115	0.0032
L33	32 - 30	4.643	4	1.3343	0.0027
L34	30 - 29.75	4.103	4	1.2426	0.0025

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L35	29.75 - 25.75	4.038	4	1.2338	0.0025
L36	25.75 - 21.75	3.065	4	1.0896	0.0021
L37	21.75 - 17.75	2,215	4	0.9388	0.0018
L38	17.75 - 13.75	1.494	4	0.7813	0.0015
L39	13.75 - 9.75	0.908	4	0.6170	0.0011
L40	9.75 - 7.92	0.462	4	0.4459	0.0008
L41	7.92 - 7.67	0.307	4	0.3653	0.0007
L42	7.67 - 3.67	0.288	4	0.3542	0.0006
L43	3.67 - 0	0.067	4	0.1726	0.0003

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	0	ft
150.00	2.4" Dia x 8-ft Mount Pipe	4	91.408	5.0310	0.0454	28277
147.00	DB980H90E-M w/ Mount Pipe	4	88.254	5.0308	0.0450	28277
139.00	80010964 w/ Mount Pipe	4	79.859	5.0048	0.0403	7442
129.00	800 10504 w/ Mount Pipe	4	69.538	4.8407	0.0311	2225
119.00	MX08FRO665-21 w/ Mount Pipe	4	59.763	4.4883	0.0220	2187
60.00	KS24019-L112A	4	15.789	2.4022	0.0061	1431
30.00	Bridge Stiffener (56" x 12" x 1")	4	4.103	1.2426	0.0025	1411

Compression Checks

	Pole Design Data									
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio Pu	
	ft		ft	ft		in²	K	К	ϕP_n	
L1	150 - 149	P24x0.25	4.00	0.00	0.0	18.653 2	0	662	0.000	
	149 - 148					18.653 2	0	662	0.000	
	148 - 147					18.653 2	0	662	0.000	
	147 - 146					18.653 2	-7	662	0.011	
L2	146 - 145	P24x0.25	4.00	0.00	0.0	18.653 2	-7	662	0.011	
	145 - 144					18.653 2	-3	662	0.004	
	144 - 143					18.653 2	-3	662	0.004	
	143 - 142					18.653 2	-3	662	0.004	
L3	142 - 141	P24x0.25	4.00	0.00	0.0	18.653 2	-3	662	0.004	
	141 - 140					18.653 2	-3	662	0.004	
	140 - 139					18.653 2	-3	662	0.005	
	139 - 138					18.653 2	-7	662	0.011	
L4	138 - 137	P24x0.25	4.00	0.00	0.0	18.653 2	-8	662	0.011	
	137 - 136					18.653 2	-8	662	0.012	

Section No.	Elevation	Size	L	Lu	Kl/r	A in ²	Pu	φPn	Ratio Pu
	ft 136 - 135		ft	ft		<i>in</i> ² 18.653	<u>К</u> -8	<u>К</u> 662	φ <i>P_n</i> 0.012
	135 - 134					2 18.653	-8	662	0.012
L5	135 - 134	P24x0.25	4.00	0.00	0.0	2	-o -8	662	0.012
LU	133 - 132	F24x0.23	4.00	0.00	0.0	18.653 2 18.653	-8	662	0.012
	132 - 132					2 18.653	-8	662	0.012
	131 - 130					2 18.653	-8	662	0.012
L6	130 - 129	P24x0.25	4.00	0.00	0.0	2 18.653	-8	662	0.012
LU	129 - 128	1 2470.20	4.00	0.00	0.0	2 18.653	-10	662	0.013
	123 - 120					2 18.653	-10	662	0.014
	127 - 126					2 18.653	-10	662	0.015
L7	126 - 125	P24x0.25	4.00	0.00	0.0	2 18.653	-10	662	0.015
L7	125 - 124	1 2400.20	4.00	0.00	0.0	2 18.653	-10	662	0.015
	123 - 124					2 18.653	-10	662	0.015
	123 - 122					2 18.653	-10	662	0.015
L8	122 - 121	P24x0.25	2.00	0.00	0.0	2 18.653	-10	662	0.015
LO	122 - 121	1 2470.20	2.00	0.00	0.0	2 18.653	-10	662	0.016
L9	120 - 119	P30x0.375	4.00	0.00	0.0	2 34.901	-10	1311	0.008
L3	119 - 118	1 3000.373	4.00	0.00	0.0	1 34.901	-14	1311	0.000
	118 - 117					1 34.901	-14	1311	0.011
	117 - 116					1 34.901	-14	1311	0.011
L10	116 - 115	P30x0.375	4.00	0.00	0.0	1 34.901	-14	1311	0.011
LIU	115 - 114		1100	0100	010	1 34.901	-14	1311	0.011
	114 - 113					1 34.901	-15	1311	0.011
	113 - 112					1 34.901	-15	1311	0.011
L11	112 - 111	P30x0.375	4.00	0.00	0.0	1 34.901	-15	1311	0.011
	111 - 110					1 34.901	-15	1311	0.012
	110 - 109					1 34.901	-15	1311	0.012
	109 - 108					1 34.901	-15	1311	0.012
L12	108 - 107	P30x0.375	4.00	0.00	0.0	1 34.901	-16	1311	0.012
	107 - 106					1 34.901	-16	1311	0.012
	106 - 105					1 34.901	-16	1311	0.012
	105 - 104					1 34.901	-16	1311	0.012
L13	104 - 103	P30x0.375	4.00	0.00	0.0	1 34.901	-16	1311	0.012
	103 - 102					1 34.901	-17	1311	0.013
	102 - 101					1 34.901	-17	1311	0.013
. –									

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio Pu
	ft		ft	ft		<i>in</i> ²	К	К	ϕP_n
	101 - 100					34.901 1	-17	1311	0.013
L14	100 - 99	P30x0.375	4.00	0.00	0.0	34.901 1	-17	1311	0.013
	99 - 98					34.901 1	-17	1311	0.013
	98 - 97					34 <u>.</u> 901 1	-17	1311	0.013
	97 - 96					34.901 1	-18	1311	0.013
L15	96 - 95	P30x0.375	4.00	0.00	0.0	34.901 1	-18	1311	0.014
	95 - 94					34.901 1	-18	1311	0.014
	94 - 93					34.901 1	-18	1311	0.014
	93 - 92					34.901 1	-18	1311	0.014
L16	92 - 91	P30x0.375	2.00	0.00	0.0	34.901 1	-18	1311	0.014
	91 - 90					34.901	-19	1311	0.014
L17	90 - 89	P36x0.375	4.00	0.00	0.0	1 41 <u>.</u> 969	-19	1490	0.013
	89 - 88					7 41.969 7	-19	1490	0.013
	88 - 87					7 41.969 7	-19	1490	0.013
	87 - 86					7 41.969	-20	1490	0.013
L18	86 - 85	P36x0.375	4.00	0.00	0.0	7 41.969	-20	1490	0.013
	85 - 84					7 41.969	-20	1490	0.013
	84 - 83					7 41.969	-20	1490	0.014
	83 - 82					7 41.969	-20	1490	0.014
L19	82 - 81	P36x0.375	4.00	0.00	0.0	7 41 <u>.</u> 969	-21	1490	0.014
	81 - 80					7 41 <u>.</u> 969	-21	1490	0.014
	80 - 79					7 41.969	-21	1490	0.014
	79 - 78					7 41.969	-21	1490	0.014
L20	78 - 77	P36x0.375	4.00	0.00	0.0	7 41.969	-21	1490	0.014
	77 - 76					7 41.969	-22	1490	0.014
	76 - 75					7 41.969	-22	1490	0.015
	75 - 74					7 41.969	-22	1490	0.015
L21	74 - 73	P36x0.375	4.00	0.00	0.0	7 41.969	-22	1490	0.015
	73 - 72					7 41.969	-22	1490	0.015
	72 - 71					7 41.969	-23	1490	0.015
	71 - 70					7 41.969	-23	1490	0.015
L22	70 - 69	P36x0.375	4.00	0.00	0.0	7 41.969	-23	1490	0.015
	69 - 68					7 41.969	-23	1490	0.016
	68 - 67					7 41.969	-23	1490	0.016

Section No.	Elevation	Size	L	Lu	Kl/r	Α	Pu	ϕP_n	Ratio Pu
110.	ft		ft	ft		in²	к	к	<u></u> φPn
	67 - 66					41.969 7	-24	1490	0.016
L23	66 - 65	P36x0.375	4.00	0.00	0.0	41.969 7	-24	1490	0.016
	65 - 64					41.969 7	-24	1490	0.016
	64 - 63					41.969 7	-24	1490	0.016
	63 - 62					41.969 7	-25	1490	0.016
L24	62 - 61	P36x0.375	2.00	0.00	0.0	41.969 7	-25	1490	0.017
	61 - 60					41.969 7	-25	1490	0.017
L25	60 - 59	P42x0.375	4.00	0.00	0.0	49.038 3	-25	1669	0.015
	59 - 58					49.038 3	-26	1669	0.015
	58 - 57					49.038	-26	1669	0.015
	57 - 56					3 49.038	-26	1669	0.016
L26	56 - 55	P42x0.375	4.00	0.00	0.0	3 49.038	-26	1669	0.016
	55 - 54					3 49.038	-27	1669	0.016
	54 - 53					3 49.038	-27	1669	0.016
	53 - 52					3 49.038	-27	1669	0.016
L27	52 - 51	P42x0.375	4.00	0.00	0.0	3 49.038	-27	1669	0.016
	51 - 50					3 49.038	-27	1669	0.016
	50 - 49					3 49.038	-28	1669	0.017
	49 - 48					3 49.038	-28	1669	0.017
L28	48 - 47	P42x0.375	4.00	0.00	0.0	3 49.038	-28	1669	0.017
	47 - 46					3 49.038	-28	1669	0.017
	46 - 45					3 49.038	-29	1669	0.017
	45 - 44					3 49.038	-29	1669	0.017
L29	44 - 42.75	P42x0.375	3.75	0.00	0.0	3 49.038	-29	1669	0.018
	42.75 - 41.5					3 49.038	-30	1669	0.018
	41.5 - 40.25					3 49.038	-30	1669	0.018
L30	40.25 - 40	P42x0.375	0.25	0.00	0.0	3 49.038	-30	1669	0.018
L31	(30) 40 - 39	P42x0.375	4.00	0.00	0.0	3 49.038	-30	1669	0.018
	39 - 38					3 49.038	-31	1669	0.018
	38 - 37					3 49.038	-31	1669	0.018
	37 - 36					3 49.038	-31	1669	0.019
L32	36 - 35	P42x0.375	4.00	0.00	0.0	3 49.038	-31	1669	0.019
	35 - 34					3 49.038	-32	1669	0.019
	34 - 33					3 49.038	-32	1669	0.019
	33 - 32					3 49.038	-32	1669	0.019

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	φPn	Ratio Pu
	ft		ft	ft		in ²	К	К	φPn
L33	32 - 31	P42x0.375	2.00	0.00	0.0	3 49.038	-33	1669	0.020
	31 - 30					3 49.038	-33	1669	0.020
L34	30 - 29.75 (34)	P42x0.5	0.25	0.00	0.0	3 65.188 0	-34	2410	0.014
L35	(34) 29.75 - 28.75	P42x0.5	4.00	0.00	0.0	65.188 0	-34	2410	0.014
	28.75 - 27.75					65.188 0	-34	2410	0.014
	27.75 - 26.75					65.188 0	-35	2410	0.014
	26.75 - 25.75					65.188 0	-35	2410	0.015
L36	25.75 - 24.75	P42x0.5	4.00	0.00	0.0	65.188 0	-35	2410	0.015
	24.75 - 23.75					65.188 0	-36	2410	0.015
	23.75 - 22.75					65.188 0	-36	2410	0.015
	22.75 - 21.75					65.188 0	-36	2410	0.015
L37	21.75 - 20.75	P42x0.5	4.00	0.00	0.0	65.188 0	-37	2410	0.015
	20.75 - 19.75					65.188 0	-37	2410	0.015
	19.75 - 18.75					65.188 0	-37	2410	0.015
	18.75 - 17.75					65.188 0	-38	2410	0.016
L38	17.75 - 16.75	P42x0.5	4.00	0.00	0.0	65.188 0	-38	2410	0.016
	16.75 - 15.75					65.188 0	-38	2410	0.016
	15.75 - 14.75					65.188 0	-39	2410	0.016
	14.75 - 13.75					65.188 0	-39	2410	0.016
L39	13.75 - 12.75	P42x0.5	4.00	0.00	0.0	65.188 0	-39	2410	0.016
	12.75 - 11.75					65.188 0	-39	2410	0.016
	11.75 - 10.75					65.188 0	-40	2410	0.016
	10.75 - 9.75					65.188 0	-40	2410	0.017
L40	9.75 - 7.92 (40)	P42x0.5	1.83	0.00	0.0	65.188 0	-41	2410	0.017
L41	7.92 - 7.67 (41)	P42x0.5	0.25	0.00	0.0	65.188 0	-41	2410	0.017
L42	7.67 - 6.67	P42x0.5	4.00	0.00	0.0	65.188 0	-41	2410	0.017
	6.67 - 5.67					65.188 0	-42	2410	0.017
	5.67 - 4.67					65.188 0	-42	2410	0.017
	4.67 - 3.67					65.188 0	-42	2410	0.018
L43	3.67 - 2.44667	P42x0.5	3.67	0.00	0.0	65.188 0	-43	2410	0.018
	2.44667 - 1.22333					65.188 0	-43	2410	0.018
	1.22333 - 0					65.188 0	-44	2410	0.018

Pole Bending Design Data

	Section	Elevation	Size	M _{ux}	φ M _{nx}	Ratio	Muy	φ <i>M_{ny}</i>	Ratio
			0120			Mux			Muy
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	•				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L1		P24x0.25						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L2		P24x0.25						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
		144 - 143			397		0	397	
141 - 140 27 397 0.067 0 397 0.000 139 - 138 42 397 0.106 0 397 0.000 137 - 136 59 397 0.116 0 397 0.000 135 - 134 67 397 0.117 0 397 0.000 135 - 134 76 397 0.120 397 0.000 133 - 132 94 397 0.236 397 0.000 131 - 130 111 397 0.226 397 0.000 128 - 127 131 397 0.328 397 0.000 128 - 127 131 397 0.328 397 0.000 129 - 128 121 397 0.433 397 0.000 127 - 126 124 122 397 0.433 397 0.000 123 - 122 123 122 123 397 0.436 397 0.000 124 - 120 129									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L3		P24x0.25						
139 138									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14		P24x0 25						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L4		1 24x0.25						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L5	134 - 133	P24x0.25						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0.258			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			D24v0.25						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LO		P24x0.25						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L7		P24x0.25						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		125 - 124		172	397		0	397	0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				182					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L8		P24x0.25						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		D20v0 275						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L9		P30X0.375						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.252			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L10		P30x0.375						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.4.4		D20-0 075						
110 - 109 367 948 0.387 0 948 0.000 109 - 108 382 948 0.403 0 948 0.000 L12 108 - 107 P30x0.375 396 948 0.418 0 948 0.000 107 - 106 411 948 0.434 0 948 0.000 105 - 104 426 948 0.449 0 948 0.000 103 - 103 P30x0.375 456 948 0.481 0 948 0.000 102 - 101 486 948 0.512 0 948 0.000 101 - 100 501 948 0.528 948 0.000 94 - 93 93x0.375 516 948 0.561 948 0.000 97 - 96 531 948 0.561 948 0.000 98 - 97 547 948 0.626 948 0.000 97 - 96 562 948 0.626 948 0.000 95 - 94 593 948 0.626 948	LII		P30x0.375						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
L12 108 - 107 P30x0.375 396 948 0.418 0 948 0.000 107 - 106 411 948 0.434 0 948 0.000 105 - 105 426 948 0.449 0 948 0.000 105 - 104 441 948 0.465 0 948 0.000 103 - 102 471 948 0.497 0 948 0.000 102 - 101 486 948 0.512 0 948 0.000 101 - 100 501 948 0.528 0 948 0.000 91 - 910 501 948 0.552 948 0.000 98 - 97 516 948 0.552 948 0.000 98 - 97 547 948 0.577 0 948 0.000 97 - 96 562 948 0.609 948 0.000 948 0.000 97 - 96 593 948 0.626									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L12		P30x0.375						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		107 - 106			948	0.434	0	948	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L13		P30x0.375						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
L14 100 - 99 P30x0.375 516 948 0.545 0 948 0.000 99 - 98 531 948 0.561 0 948 0.000 98 - 97 547 948 0.577 0 948 0.000 97 - 96 562 948 0.593 0 948 0.000 95 - 94 593 948 0.609 0 948 0.000 94 - 93 609 948 0.626 0 948 0.000 93 - 92 625 948 0.659 0 948 0.000 93 - 92 625 948 0.659 0 948 0.000 91 - 90 656 948 0.692 0 948 0.000 116 92 - 91 P30x0.375 672 1339 0.502 0 1339 0.000 L17 90 - 89 P36x0.375 672 1339 0.502 0 1339 0.000 89 - 88 88 - 87 704 1339 0.526 0 1339 <									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L14		P30x0.375						
98 - 97 547 948 0.577 0 948 0.000 97 - 96 562 948 0.593 0 948 0.000 L15 96 - 95 P30x0.375 578 948 0.609 0 948 0.000 95 - 94 593 948 0.626 0 948 0.000 94 - 93 609 948 0.642 0 948 0.000 93 - 92 625 948 0.659 0 948 0.000 16 92 - 91 P30x0.375 640 948 0.675 0 948 0.000 116 92 - 91 P30x0.375 640 948 0.692 0 948 0.000 117 90 - 89 P36x0.375 672 1339 0.502 0 1339 0.000 89 - 88 688 1339 0.514 0 1339 0.000 87 - 86 704 1339 0.526 0 1339 0.000 87 - 86 720 1339 0.550 0									
L15 96 - 95 P30x0.375 578 948 0.609 0 948 0.000 95 - 94 593 948 0.626 0 948 0.000 94 - 93 609 948 0.626 0 948 0.000 93 - 92 625 948 0.659 0 948 0.000 L16 92 - 91 P30x0.375 640 948 0.675 0 948 0.000 91 - 90 656 948 0.692 0 948 0.000 L17 90 - 89 P36x0.375 672 1339 0.502 0 1339 0.000 89 - 88 682 1339 0.514 0 1339 0.000 88 - 87 704 1339 0.526 0 1339 0.000 87 - 86 720 1339 0.538 0 1339 0.000 L18 86 - 85 P36x0.375 736 1339 0.550 0 1339 0.000		98 - 97			948	0.577		948	
95 - 94 593 948 0.626 0 948 0.000 94 - 93 609 948 0.642 0 948 0.000 93 - 92 625 948 0.659 0 948 0.000 L16 92 - 91 P30x0.375 640 948 0.675 0 948 0.000 91 - 90 656 948 0.692 0 948 0.000 L17 90 - 89 P36x0.375 672 1339 0.502 0 1339 0.000 89 - 88 688 1339 0.514 0 1339 0.000 88 - 87 704 1339 0.526 0 1339 0.000 87 - 86 720 1339 0.538 0 1339 0.000 L18 86 - 85 P36x0.375 736 1339 0.550 0 1339 0.000									
94 - 93 609 948 0.642 0 948 0.000 93 - 92 625 948 0.659 0 948 0.000 L16 92 - 91 P30x0.375 640 948 0.675 0 948 0.000 91 - 90 656 948 0.692 0 948 0.000 L17 90 - 89 P36x0.375 672 1339 0.502 0 1339 0.000 89 - 88 688 1339 0.514 0 1339 0.000 88 - 87 704 1339 0.526 0 1339 0.000 87 - 86 720 1339 0.538 0 1339 0.000 L18 86 - 85 P36x0.375 736 1339 0.550 0 1339 0.000	L15		P30x0.375						
93 - 92 625 948 0.659 0 948 0.000 L16 92 - 91 P30x0.375 640 948 0.675 0 948 0.000 91 - 90 656 948 0.692 0 948 0.000 L17 90 - 89 P36x0.375 672 1339 0.502 0 1339 0.000 89 - 88 688 1339 0.514 0 1339 0.000 88 - 87 704 1339 0.526 0 1339 0.000 87 - 86 720 1339 0.538 0 1339 0.000 L18 86 - 85 P36x0.375 736 1339 0.550 0 1339 0.000									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
91 - 90 656 948 0.692 0 948 0.000 L17 90 - 89 P36x0.375 672 1339 0.502 0 1339 0.000 89 - 88 688 1339 0.514 0 1339 0.000 88 - 87 704 1339 0.526 0 1339 0.000 87 - 86 720 1339 0.538 0 1339 0.000 L18 86 - 85 P36x0.375 736 1339 0.550 0 1339 0.000	1 16		P30v0 375						
L17 90 - 89 P36x0.375 672 1339 0.502 0 1339 0.000 89 - 88 68 7 704 1339 0.514 0 1339 0.000 87 - 86 720 1339 0.526 0 1339 0.000 L18 86 - 85 P36x0.375 736 1339 0.550 0 1339 0.000	LIU		1 3000.375						
89 - 8868813390.514013390.00088 - 8770413390.526013390.00087 - 8672013390.538013390.000L1886 - 85P36x0.37573613390.550013390.000	L17		P36x0.375						
88 - 8770413390.526013390.00087 - 8672013390.538013390.000L1886 - 85P36x0.37573613390.550013390.000									
L18 86-85 P36x0.375 736 1339 0.550 0 1339 0.000				704	1339	0.526	0	1339	0.000
85 - 84 (52 1339 0.562 0 1339 0.000	L18		P36x0.375						
		85 - 84		752	1339	0.562	U	1339	0.000

t k_0 - t k_0 - t k_0 - t k_0 - t k_0 k_0 B3 - B2 769 1339 0.574 0 1339 0.00 B1 - B0 818 1339 0.611 0 1339 0.00 B1 - B0 815 1339 0.623 0 1339 0.00 79 - 78 865 1339 0.648 0 1339 0.00 77 - 76 885 1339 0.648 0 1339 0.00 75 - 74 960.375 986 1339 0.674 0 1339 0.00 74 - 72 970 1339 0.725 0 1339 0.00 74 - 72 74 970 1339 0.773 0 1339 0.00 74 - 72 74 970 1339 0.773 0 1339 0.00 66 - 65 9360.375 1005 1339 0.773 0 1339 0.00 66 - 6	Section No.	Elevation	Size	M _{ux}	φM _{nx}	Ratio M _{ux}	Muy	φ M _{ny}	Ratio M _{uy}
	110.	ft		kip-ft	kip-ft		kip-ft	kip-ft	φ <i>M_{ny}</i>
									0.000
									0.000
81 + 80 818 1339 0.611 0 1339 0.00 $79 + 78$ 851 1339 0.636 0 1339 0.00 $77 + 76$ 868 1339 0.664 0 1339 0.00 $77 - 76$ 902 1339 0.674 0 1339 0.00 $77 - 76$ 902 1339 0.686 0 1339 0.00 $77 - 76$ 996 1339 0.686 0 1339 0.00 $77 - 77$ 970 1338 0.725 0 1339 0.00 $71 - 70$ 987 1339 0.725 0 1339 0.00 $66 - 67$ 1002 1339 0.760 0 1339 0.00 $66 - 66$ 9360.375 1075 1339 0.00 1339 0.00 $64 - 63$ 1110 1339 0.00 139 0.00 <t< td=""><td>L19</td><td></td><td>P36x0.375</td><td></td><td></td><td></td><td></td><td></td><td>0.000</td></t<>	L19		P36x0.375						0.000
									0.000
		80 - 79				0.623	0		0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0.636			0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L20		P36x0.375						0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									0.000
									0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.04		D20-0 275						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LZT		P36X0.375						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
									0.000
	122		P36x0.375						0.000
									0.000
									0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		67 - 66			1339	0.790		1339	0.000
	L23	66 - 65	P36x0.375			0.803	0		0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.000
									0.000
			B 00.0075						0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L24		P36x0.375						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.05		D40v0 275						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LZO		F42X0.375						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L26		P42x0.375						0.000
									0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		54 - 53		1291	1797	0.718	0	1797	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L27		P42x0.375						0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00		D40v0 275						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LZO		F42X0.373						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L29		P42x0.375						0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		42.75 - 41.5		1508	1797	0.839	0	1797	0.000
$ \begin{array}{ccccccccccccccccccccccccccccccc$		41.5 - 40.25							0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L30		P42x0.375	1537	1797	0.855	0	1797	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L31		P42x0.375						0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132		P42x0 375						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LUZ		1 42/0.010						0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L33	32 - 31	P42x0.375					1797	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1797	0.965	0	1797	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L34		P42x0.5	1738	2464	0.705	0	2464	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			B 40 0 5	4750	0.404	0.744	•	0404	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L35		P42x0.5						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.000
24.75 - 23.75186024640.755024640.0023.75 - 22.75188124640.763024640.0022.75 - 21.75190124640.772024640.00L3721.75 - 20.75P42x0.5192224640.780024640.0020.75 - 19.75194324640.789024640.0019.75 - 18.75196424640.797024640.00	136		P42x0.5						0.000
23.75 - 22.75188124640.763024640.0022.75 - 21.75190124640.772024640.00L3721.75 - 20.75P42x0.5192224640.780024640.0020.75 - 19.75194324640.789024640.0019.75 - 18.75196424640.797024640.00	200		/0.0						0.000
22.75 - 21.75190124640.772024640.00L3721.75 - 20.75P42x0.5192224640.780024640.0020.75 - 19.75194324640.789024640.0019.75 - 18.75196424640.797024640.00									0.000
L37 21.75 - 20.75 P42x0.5 1922 2464 0.780 0 2464 0.00 20.75 - 19.75 1943 2464 0.789 0 2464 0.00 19.75 - 18.75 1964 2464 0.797 0 2464 0.00				1901					0.000
19.75 - 18.75 1964 2464 0.797 0 2464 0.00	L37	21.75 - 20.75	P42x0.5	1922		0.780			0.000
									0.000
18.75 - 17.75 1984 2464 0.806 0 2464 0.0C									0.000
		18.75 - 17.75		1984	2464	0.806	0	2464	0.000

Section No.	Elevation	Size	M _{ux}	φ M _{nx}	Ratio M _{ux}	Muy	φ Μ _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	φM _{ny}
L38	17.75 - 16.75	P42x0.5	2005	2464	0.814	0	2464	0.000
	16.75 - 15.75		2026	2464	0.822	0	2464	0.000
	15.75 - 14.75		2047	2464	0.831	0	2464	0.000
	14.75 - 13.75		2068	2464	0.839	0	2464	0.000
L39	13.75 - 12.75	P42x0.5	2089	2464	0.848	0	2464	0.000
	12.75 - 11.75		2110	2464	0.857	0	2464	0.000
	11.75 - 10.75		2131	2464	0.865	0	2464	0.000
	10.75 - 9.75		2153	2464	0.874	0	2464	0.000
L40	9.75 - 7.92 (40)	P42x0.5	2191	2464	0.889	0	2464	0.000
L41	(40) 7.92 - 7.67 (41)	P42x0.5	2197	2464	0.892	0	2464	0.000
L42	7.67 - 6.67	P42x0.5	2218	2464	0.900	0	2464	0.000
	6.67 5.67		2239	2464	0.909	0	2464	0.000
	5.67 - 4.67		2260	2464	0.917	0	2464	0.000
	4.67 - 3.67		2282	2464	0.926	0	2464	0.000
L43	3.67 - 2.44667	P42x0.5	2308	2464	0.937	0	2464	0.000
	2.44667 - 1.22333		2334	2464	0.947	0	2464	0.000
	1.22333 - 0		2360	2464	0.958	0	2464	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	φVn	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	ĸ	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	150 - 149	P24x0.25	0	202	0.001	0	324	0.000
	149 - 148		0	202	0.001	0	324	0.000
	148 - 147		0	202	0.001	0	324	0.000
	147 - 146		1	202	0.005	0	324	0.001
L2	146 - 145	P24x0.25	1	202	0.006	0	324	0.001
	145 - 144		3	202	0.016	1	324	0.002
	144 - 143		3	202	0.017	1	324	0.002
	143 - 142		3	202	0.017	1	324	0.002
L3	142 - 141	P24x0.25	4	202	0.017	1	324	0.002
	141 - 140		4	202	0.018	1	324	0.002
	140 - 139		4	202	0.018	1	324	0.002
	139 - 138		8	202	0.042	2	324	0.007
L4	138 - 137	P24x0.25	8	202	0.042	2	324	0.007
	137 - 136		9	202	0.042	2	324	0.007
	136 - 135		9	202	0.043	2	324	0.007
	135 - 134		9	202	0.043	2	324	0.007
L5	134 - 133	P24x0.25	9	202	0.043	2	324	0.007
	133 - 132		9	202	0.044	2	324	0.007
	132 - 131		9	202	0.044	2 2 2 2 2	324	0.007
	131 - 130		9	202	0.044	2	324	0.007
L6	130 - 129	P24x0.25	9	202	0.044	2	324	0.007
	129 - 128		10	202	0.050	2	324	0.007
	128 - 127		10	202	0.051	3	324	0.010
	127 - 126		10	202	0.051	3	324	0.010
L7	126 - 125	P24x0.25	10	202	0.052	3	324	0.010
	125 - 124		10	202	0.052	3	324	0.010
	124 - 123		11	202	0.052	3	324	0.010
	123 - 122		11	202	0.052	3	324	0.010
L8	122 - 121	P24x0.25	11	202	0.053	3	324	0.010
	121 - 120		11	202	0.053	3	324	0.010
L9	120 - 119	P30x0.375	11	396	0.027	3	995	0.003
	119 - 118		14	396	0.035	3	995	0.003
	118 - 117		14	396	0.035	3	995	0.003
	117 - 116		14	396	0.036	3	995	0.003
L10	116 - 115	P30x0.375	14	396	0.036	3	995	0.003
	115 - 114		14	396	0.036	3	995	0.003
	114 - 113		14	396	0.036	3	995	0.003
	113 - 112		14	396	0.036	3	995	0.003

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.	~		V_u		V_u	T_u		T_u
	ft		ĸ	К	φVn	kip-ft	kip-ft	φ <i>T</i> _n
L11	112 - 111	P30x0.375	14	396	0.036	3	995	0.003
	111 - 110		14	396	0.037	3	995	0.003
	110 - 109		15	396	0.037	3	995	0.003
1.40	109 - 108	B00 0 075	15	396	0.037	3	995	0.003
L12	108 - 107	P30x0.375	15	396	0.037	3	995	0.003
	107 - 106		15	396	0.037	3	995	0.003
	106 - 105		15	396	0.038	3	995 005	0.003
L13	105 - 104 104 - 103	P30x0.375	15 15	396 396	0.038 0.038	3 3	995 995	0.003 0.003
LIS	103 - 102	F30X0.375	15	396 396	0.038	3	995 995	0.003
	102 - 102		15	396	0.038	3	995	0.003
	101 - 100		15	396	0.038	3	995	0.003
L14	100 - 99	P30x0.375	15	396	0.039	3 3	995	0.003
	99 - 98		15	396	0.039	3	995	0.003
	98 - 97		15	396	0.039	3	995	0.003
	97 - 96		15	396	0.039	3	995	0.003
L15	96 - 95	P30x0.375	16	396	0.039	3	995	0.003
	95 - 94		16	396	0.039	3	995	0.003
	94 - 93		16	396	0.040	3	995	0.003
	93 - 92		16	396	0.040	3	995	0.003
L16	92 - 91	P30x0.375	16	396	0.040	3	995	0.003
	91 - 90		16	396	0.040	3	995	0.003
L17	90 - 89	P36x0.375	16	454	0.035	3	1094	0.003
	89 - 88		16	454	0.035	3	1094	0.003
	88 - 87		16	454	0.035	3	1094	0.003
1.40	87 - 86	D 00 0 075	16	454	0.036	3	1094	0.003
L18	86 - 85	P36x0.375	16	454	0.036	3 3	1094	0.003
	85 - 84		16	454	0.036	3	1094	0.003
	84 - 83 83 - 82		16	454 454	0.036 0.036	3	1094 1094	0.003 0.003
L19	82 - 81	P36x0.375	16 17	454 454	0.036	3 3	1094	0.003
LIS	81 - 80	F 30X0.37 3	17	454	0.030	3	1094	0.003
	80 - 79		17	454	0.037	3	1094	0.003
	79 - 78		17	454	0.037	3	1094	0.003
L20	78 - 77	P36x0.375	17	454	0.037	3	1094	0.003
	77 - 76		17	454	0.037	3	1094	0.003
	76 - 75		17	454	0.037	3	1094	0.003
	75 - 74		17	454	0.037	3	1094	0.003
L21	74 - 73	P36x0.375	17	454	0.038	3	1094	0.003
	73 - 72		17	454	0.038	3	1094	0.003
	72 - 71		17	454	0.038	3	1094	0.003
	71 - 70		17	454	0.038	3	1094	0.003
L22	70 - 69	P36x0.375	17	454	0.038	3	1094	0.003
	69 - 68		17	454	0.038	3	1094	0.003
	68 - 67 67 - 66		17	454	0.038	3	1094	0.003
L23	67 - 66 66 - 65	P36x0.375	18	454 454	0.039 0.039	3 3	1094 1094	0.003 0.003
LZS	65 - 64	F30X0.375	18 18	454	0.039	3	1094	0.003
	64 - 63		18	454	0.039	3	1094	0.003
	63 - 62		18	454	0.039	3	1094	0.003
L24	62 - 61	P36x0.375	18	454	0.039	3	1094	0.003
	61 - 60		18	454	0.039	3	1094	0.003
L25	60 - 59	P42x0.375	18	429	0.042	3	1208	0.003
	59 - 58		18	429	0.042	3	1208	0.003
	58 - 57		18	429	0.042	3	1208	0.003
	57 - 56		18	429	0.043	3 3 3	1208	0.003
L26	56 - 55	P42x0.375	18	429	0.043	3	1208	0.003
	55 - 54		18	429	0.043	3	1208	0.003
	54 - 53		18	429	0.043	3	1208	0.003
	53 - 52		19	429	0.043	3	1208	0.003
L27	52 - 51	P42x0.375	19	429	0.043	3	1208	0.003
	51 - 50		19	429	0.044	3	1208	0.003
	50 - 49		19	429	0.044	3	1208	0.003
1.00	49 - 48	D4000 075	19	429	0.044	3	1208	0.003
L28	48 - 47 47 46	P42x0.375	19 10	429 429	0.044 0.044	3	1208 1208	0.003 0.003
	47 - 46 46 - 45		19 19	429 429	0.044	3 3	1208	0.003
	46 - 45 45 - 44		19	429 429	0.044	3	1208	0.003
L29	44 - 42.75	P42x0.375	19	429	0.044	3	1208	0.003
-20	11 72110		10	720	0.040	U	1200	5.000

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		Vu	Tu		Tu
	ft		K	K	ϕV_n	kip-ft	kip-ft	φTn
	42.75 - 41.5		19	429	0.045	3	1208	0.003
	41.5 - 40.25		19	429	0.045	3	1208	0.003
L30	40.25 - 40	P42x0.375	19	429	0.045	3	1208	0.003
	(30)							
L31	40 - 39	P42x0.375	19	429	0.045	3	1208	0.003
	39 - 38		19	429	0.045	3	1208	0.003
	38 - 37		20	429	0.045	3	1208	0.003
	37 - 36		20	429	0.046	3	1208	0.003
L32	36 - 35	P42x0.375	20	429	0.046	3	1208	0.003
	35 - 34		20	429	0.046	3	1208	0.003
	34 - 33		20	429	0.046	3	1208	0.003
	33 - 32		20	429	0.046	3	1208	0.003
L33	32 - 31	P42x0.375	20	429	0.046	3	1208	0.003
	31 - 30		20	429	0.046	3	1208	0.003
L34	30 - 29.75 (34)	P42x0.5	20	739	0.027	3	2419	0.001
L35	29.75 - 28.75	P42x0.5	20	739	0.028	3	2419	0.001
	28.75 - 27.75		20	739	0.028	3	2419	0.001
	27.75 - 26.75		20	739	0.028	3	2419	0.001
	26.75 - 25.75		20	739	0.028	3	2419	0.001
L36	25.75 - 24.75	P42x0.5	21	739	0.028	3	2419	0.001
	24.75 - 23.75		21	739	0.028	3	2419	0.001
	23.75 - 22.75		21	739	0.028	3	2419	0.001
	22.75 - 21.75		21	739	0.028	3	2419	0.001
L37	21.75 - 20.75	P42x0.5	21	739	0.028	3	2419	0.001
	20.75 - 19.75		21	739	0.028	3	2419	0.001
	19.75 - 18.75		21	739	0.028	3	2419	0.001
	18.75 - 17.75		21	739	0.028	3	2419	0.001
L38	17.75 - 16.75	P42x0.5	21	739	0.028	3	2419	0.001
	16.75 - 15.75		21	739	0.028	3	2419	0.001
	15.75 - 14.75		21	739	0.028	3	2419	0.001
	14.75 - 13.75		21	739	0.028	3	2419	0.001
L39	13.75 - 12.75	P42x0.5	21	739	0.028	3	2419	0.001
	12.75 - 11.75		21	739	0.029	3	2419	0.001
	11.75 - 10.75		21	739	0.029	3	2419	0.001
	10.75 - 9.75		21	739	0.029	3	2419	0.001
L40	9.75 - 7.92	P42x0.5	21	739	0.029	3	2419	0.001
L41	(40) 7.92 - 7.67	P42x0.5	21	739	0.029	3	2419	0.001
	(41)		<i></i>					0 00 i
L42	7.67 - 6.67	P42x0.5	21	739	0.029	3	2419	0.001
	6.67 - 5.67		21	739	0.029	3	2419	0.001
	5.67 - 4.67		21	739	0.029	3	2419	0.001
	4.67 - 3.67	B (0, 5, 7	21	739	0.029	3	2419	0.001
L43	3.67 - 2.44667	P42x0.5	21	739	0.029	3	2419	0.001
	2.44667 -		21	739	0.029	3	2419	0.001
	1.22333							
	1.22333 - 0		21	739	0.029	3	2419	0.001

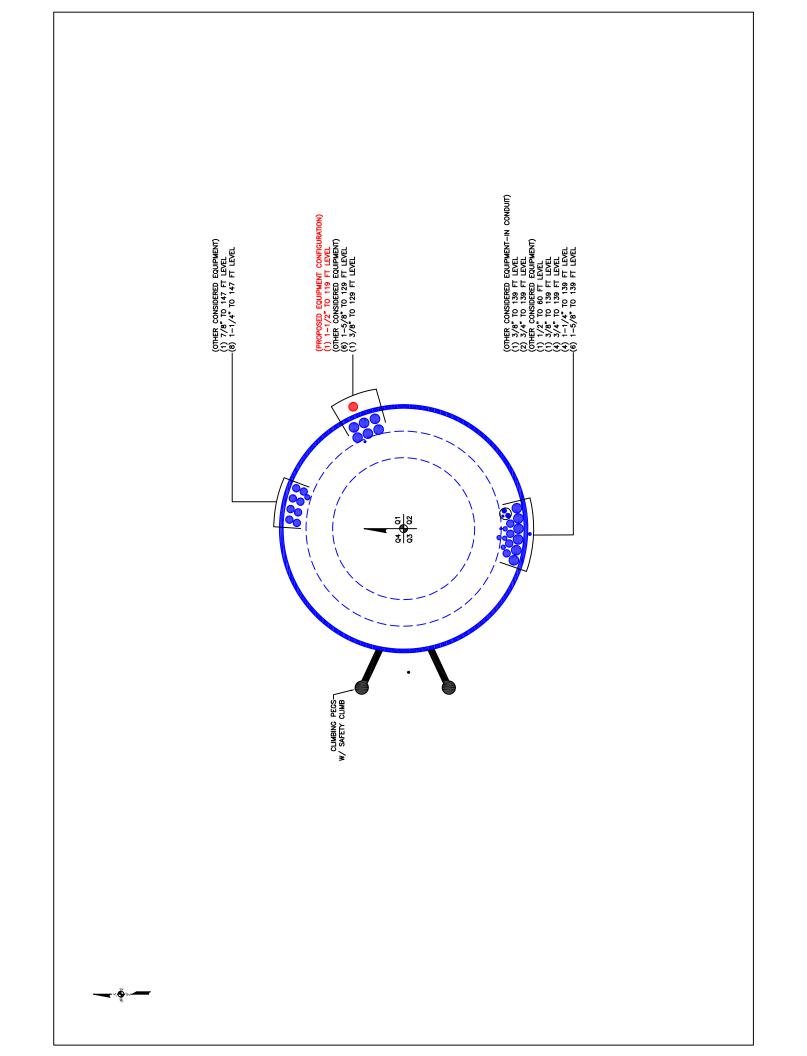
Pole Interaction Design Data

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φM _{nx}	φM _{ny}	φVn	φTn	Ratio	Ratio	
L1	150 - 149	0.000	0.001	0.000	0.001	0.000	0.001	1.050	4.8.2
	149 - 148	0.000	0.002	0.000	0.001	0.000	0.002	1.050	4.8.2
	148 - 147	0.000	0.002	0.000	0.001	0.000	0.003	1.050	4.8.2
	147 - 146	0.011	0.018	0.000	0.005	0.001	0.029	1.050	4.8.2
L2	146 - 145	0.011	0.021	0.000	0.006	0.001	0.032	1.050	4.8.2
	145 - 144	0.004	0.032	0.000	0.016	0.002	0.037	1.050	4.8.2
	144 - 143	0.004	0.041	0.000	0.017	0.002	0.045	1.050	4.8.2
	143 - 142	0.004	0.049	0.000	0.017	0.002	0.054	1.050	4.8.2

Section	Elousti	Deti-	Dati-	Dati-	Deti-	D-4:-	Camb	All	Cuite -
Section No.	Elevation	Ratio	Ratio M	Ratio M	Ratio	Ratio T	Comb. Stress	Allow. Stress	Criteria
NO.	ft	P_u				$\frac{T_u}{T_u}$	Ratio	Ratio	
10		<u>φP</u> n	<u>φ</u> <i>M_{nx}</i>	<u>φ</u> <i>M_{ny}</i>	φ <i>V</i> _n	<u>φ</u> <i>T_n</i>			4.0.0
L3	142 - 141 141 - 140	0.004	0.058	0.000	0.017	0.002 0.002	0.063	1.050	4.8.2
	140 - 139	0.004 0.005	0.067 0.076	0.000 0.000	0.018 0.018	0.002	0.072 0.081	1.050 1.050	4.8.2 4.8.2
	139 - 138	0.003	0.106	0.000	0.018	0.002	0.081	1.050	4.8.2
L4	138 - 137	0.011	0.127	0.000	0.042	0.007	0.113	1.050	4.8.2
L-7	137 - 136	0.012	0.148	0.000	0.042	0.007	0.163	1.050	4.8.2
	136 - 135	0.012	0.170	0.000	0.043	0.007	0.184	1.050	4.8.2
	135 - 134	0.012	0.192	0.000	0.043	0.007	0.206	1.050	4.8.2
L5	134 - 133	0.012	0.214	0.000	0.043	0.007	0.228	1.050	4.8.2
	133 - 132	0.012	0.236	0.000	0.044	0.007	0.250	1.050	4.8.2
	132 - 131	0.012	0.258	0.000	0.044	0.007	0.273	1.050	4.8.2
	131 - 130	0.012	0.280	0.000	0.044	0.007	0.295	1.050	4.8.2
L6	130 - 129	0.013	0.303	0.000	0.044	0.007	0.318	1.050	4.8.2
	129 - 128	0.014	0.329	0.000	0.050	0.007	0.347	1.050	4.8.2
	128 - 127	0.015	0.354	0.000	0.051	0.010	0.373	1.050	4.8.2
	127 - 126	0.015	0.381	0.000	0.051	0.010	0.399	1.050	4.8.2
L7	126 - 125	0.015	0.407	0.000	0.052	0.010	0.425	1.050	4.8.2
	125 - 124	0.015	0.433	0.000	0.052	0.010	0.452	1.050	4.8.2
	124 - 123	0.015	0.459	0.000	0.052	0.010	0.479	1.050	4.8.2
1.0	123 - 122	0.015	0.486	0.000	0.052	0.010	0.505	1.050	4.8.2
L8	122 - 121 121 - 120	0.015 0.016	0.513 0.540	0.000 0.000	0.053 0.053	0.010 0.010	0.532 0.559	1.050 1.050	4.8.2 4.8.2
L9	120 - 119	0.018	0.340	0.000	0.033	0.003	0.339	1.050	4.8.2
L9	120 - 119 119 - 118	0.008	0.252	0.000	0.027	0.003	0.240	1.050	4.8.2
	118 - 117	0.010	0.267	0.000	0.035	0.003	0.279	1.050	4.8.2
	117 - 116	0.011	0.281	0.000	0.036	0.003	0.273	1.050	4.8.2
L10	116 - 115	0.011	0.296	0.000	0.036	0.003	0.309	1.050	4.8.2
210	115 - 114	0.011	0.311	0.000	0.036	0.003	0.324	1.050	4.8.2
	114 - 113	0.011	0.326	0.000	0.036	0.003	0.339	1.050	4.8.2
	113 - 112	0.011	0.341	0.000	0.036	0.003	0.354	1.050	4.8.2
L11	112 - 111	0.011	0.357	0.000	0.036	0.003	0.370	1.050	4.8.2
	111 - 110	0.012	0.372	0.000	0.037	0.003	0.385	1.050	4.8.2
	110 - 109	0.012	0.387	0.000	0.037	0.003	0.400	1.050	4.8.2
	109 - 108	0.012	0.403	0.000	0.037	0.003	0.416	1.050	4.8.2
L12	108 - 107	0.012	0.418	0.000	0.037	0.003	0.432	1.050	4.8.2
	107 - 106	0.012	0.434	0.000	0.037	0.003	0.447	1.050	4.8.2
	106 - 105	0.012	0.449	0.000	0.038	0.003	0.463	1.050	4.8.2
1.40	105 - 104	0.012	0.465	0.000	0.038	0.003	0.479	1.050	4.8.2
L13	104 - 103	0.012	0.481	0.000	0.038	0.003	0.495	1.050	4.8.2
	103 - 102 102 - 101	0.013 0.013	0.497 0.512	0.000 0.000	0.038 0.038	0.003 0.003	0.511 0.527	1.050 1.050	4.8.2 4.8.2
	102 - 101	0.013	0.512	0.000	0.038	0.003	0.527	1.050	4.8.2
L14	100 - 99	0.013	0.525	0.000	0.039	0.003	0.543	1.050	4.8.2
L14	99 - 98	0.013	0.561	0.000	0.039	0.003	0.576	1.050	4.8.2
	98 - 97	0.013	0.577	0.000	0.039	0.003	0.592	1.050	4.8.2
	97 - 96	0.013	0.593	0.000	0.039	0.003	0.608	1.050	4.8.2
L15	96 - 95	0.014	0.609	0.000	0.039	0.003	0.625	1.050	4.8.2
	95 - 94	0.014	0.626	0.000	0.039	0.003	0.641	1.050	4.8.2
	94 - 93	0.014	0.642	0.000	0.040	0.003	0.658	1.050	4.8.2
	93 - 92	0.014	0.659	0.000	0.040	0.003	0.675	1.050	4.8.2
L16	92 - 91	0.014	0.675	0.000	0.040	0.003	0.691	1.050	4.8.2
	91 - 90	0.014	0.692	0.000	0.040	0.003	0.708	1.050	4.8.2
L17	90 - 89	0.013	0.502	0.000	0.035	0.003	0.516	1.050	4.8.2
	89 - 88	0.013	0.514	0.000	0.035	0.003	0.528	1.050	4.8.2
	88 - 87	0.013	0.526	0.000	0.035	0.003	0.540	1.050	4.8.2
	87 - 86	0.013	0.538	0.000	0.036	0.003	0.552	1.050	4.8.2
L18	86 - 85	0.013	0.550	0.000	0.036	0.003	0.565	1.050	4.8.2
	85 - 84	0.013	0.562	0.000	0.036	0.003	0.577	1.050	4.8.2
	84 - 83	0.014	0.574	0.000	0.036	0.003	0.589	1.050	4.8.2
L19	83 - 82 82 - 81	0.014 0.014	0.586 0.599	0.000 0.000	0.036 0.036	0.003 0.003	0.602	1.050	4.8.2
L19						0.003	0.614	1.050	4.8.2
	81 - 80 80 - 79	0.014 0.014	0.611 0.623	0.000 0.000	0.037 0.037	0.003	0.627 0.639	1.050 1.050	4.8.2 4.8.2
	80 - 79 79 - 78	0.014	0.623	0.000	0.037	0.003	0.639	1.050	4.8.2
L20	79 - 78 78 - 77	0.014	0.638	0.000	0.037	0.003	0.664	1.050	4.8.2
	77 - 76	0.014	0.661	0.000	0.037	0.003	0.677	1.050	4.8.2
		U.U.T		0.000					
		0.015	0.674	0.000	0.037	0.003	0.690	1.050	4.8.2
	76 - 75 75 - 74	0.015 0.015	0.674 0.686	0.000 0.000	0.037 0.037	0.003 0.003	0.690 0.703	1.050 1.050	4.8.2 4.8.2

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	 φ <i>P</i> _n	φM _{nx}	φ <i>M_{ny}</i>	φ <i>V</i> _n	φ <i>T</i> _n	Ratio	Ratio	
	73 - 72	0.015	0.712	0.000	0.038	0.003	0.729	1.050	4.8.2
	72 - 71	0.015	0.725	0.000	0.038	0.003	0.742	1.050	4.8.2
	71 - 70	0.015	0.738	0.000	0.038	0.003	0.755	1.050	4.8.2
L22	70 - 69	0.015	0.751	0.000	0.038	0.003	0.768	1.050	4.8.2
	69 - 68	0.016	0.763	0.000	0.038	0.003	0.781	1.050	4.8.2
	68 - 67	0.016	0.777	0.000	0.038	0.003	0.794	1.050	4.8.2
	67 - 66	0.016	0.790	0.000	0.039	0.003	0.807	1.050	4.8.2
L23	66 - 65	0.016	0.803	0.000	0.039	0.003	0.821	1.050	4.8.2
LZJ	65 - 64	0.016	0.803	0.000	0.039		0.834	1.050	4.8.2
						0.003			
	64 - 63	0.016	0.829	0.000	0.039	0.003	0.847	1.050	4.8.2
1.04	63 - 62	0.016	0.842	0.000	0.039	0.003	0.861	1.050	4.8.2
L24	62 - 61	0.017	0.856	0.000	0.039	0.003	0.874	1.050	4.8.2
	61 - 60	0.017	0.869	0.000	0.039	0.003	0.888	1.050	4.8.2
L25	60 - 59	0.015	0.657	0.000	0.042	0.003	0.675	1.050	4.8.2
	59 - 58	0.015	0.668	0.000	0.042	0.003	0.685	1.050	4.8.2
	58 - 57	0.015	0.678	0.000	0.042	0.003	0.695	1.050	4.8.2
	57 - 56	0.016	0.688	0.000	0.043	0.003	0.705	1.050	4.8.2
L26	56 - 55	0.016	0.698	0.000	0.043	0.003	0.716	1.050	4.8.2
	55 - 54	0.016	0.708	0.000	0.043	0.003	0.726	1.050	4.8.2
	54 - 53	0.016	0.718	0.000	0.043	0.003	0.737	1.050	4.8.2
	53 - 52	0.016	0.729	0.000	0.043	0.003	0.747	1.050	4.8.2
L27	52 - 51	0.016	0.739	0.000	0.043	0.003	0.758	1.050	4.8.2
	51 - 50	0.016	0.749	0.000	0.044	0.003	0.768	1.050	4.8.2
	50 - 49	0.017	0.760	0.000	0.044	0.003	0.779	1.050	4.8.2
	49 - 48	0.017	0.770	0.000	0.044	0.003	0.789	1.050	4.8.2
L28	48 - 47	0.017	0.781	0.000	0.044	0.003	0.800	1.050	4.8.2
LZO		0.017		0.000					
	47 - 46		0.791		0.044	0.003	0.811	1.050	4.8.2
	46 - 45	0.017	0.802	0.000	0.044	0.003	0.821	1.050	4.8.2
	45 - 44	0.017	0.813	0.000	0.044	0.003	0.832	1.050	4.8.2
L29	44 - 42.75	0.018	0.826	0.000	0.045	0.003	0.846	1.050	4.8.2
	42.75 - 41.5	0.018	0.839	0.000	0.045	0.003	0.859	1.050	4.8.2
	41.5 - 40.25	0.018	0.853	0.000	0.045	0.003	0.873	1.050	4.8.2
L30	40.25 - 40	0.018	0.855	0.000	0.045	0.003	0.876	1.050	4.8.2
	(30)								
L31	40 - 39	0.018	0.866	0.000	0.045	0.003	0.887	1.050	4.8.2
	39 - 38	0.018	0.877	0.000	0.045	0.003	0.898	1.050	4.8.2
	38 - 37	0.018	0.888	0.000	0.045	0.003	0.909	1.050	4.8.2
	37 - 36	0.019	0.899	0.000	0.046	0.003	0.920	1.050	4.8.2
L32	36 - 35	0.019	0.910	0.000	0.046	0.003	0.931	1.050	4.8.2
202	35 - 34	0.019	0.920	0.000	0.046	0.003	0.942	1.050	4.8.2
	34 - 33	0.019	0.931	0.000	0.046	0.003	0.953	1.050	4.8.2
	33 - 32	0.019	0.942	0.000	0.046	0.003	0.964	1.050	4.8.2
L33	32 - 31	0.019	0.942	0.000	0.046	0.003	0.904	1.050	4.8.2
LSS									
1.2.4	31 - 30	0.020	0.965	0.000	0.046	0.003	0.987	1.050	4.8.2
L34	30 - 29.75	0.014	0.705	0.000	0.027	0.001	0.720	1.050	4.8.2
1.05	(34)	0.044	0 - 1 1	0.000	0.000	0.001	0 700	4.050	4.0.0
L35	29.75 - 28.75	0.014	0.714	0.000	0.028	0.001	0.729	1.050	4.8.2
	28.75 - 27.75	0.014	0.722	0.000	0.028	0.001	0.737	1.050	4.8.2
	27.75 - 26.75	0.014	0.730	0.000	0.028	0.001	0.745	1.050	4.8.2
	26.75 - 25.75	0.015	0.738	0.000	0.028	0.001	0.754	1.050	4.8.2
L36	25.75 - 24.75	0.015	0.747	0.000	0.028	0.001	0.762	1.050	4.8.2
	24.75 - 23.75	0.015	0.755	0.000	0.028	0.001	0.771	1.050	4.8.2
	23 75 - 22 75	0.015	0.763	0.000	0.028	0.001	0.779	1.050	4.8.2
	22.75 - 21.75	0.015	0.772	0.000	0.028	0.001	0.788	1.050	4.8.2
L37	21.75 - 20.75	0.015	0.780	0.000	0.028	0.001	0.796	1.050	4.8.2
	20.75 - 19.75	0.015	0.789	0.000	0.028	0.001	0.805	1.050	4.8.2
	19.75 18.75	0.015	0.797	0.000	0.028	0.001	0.813	1.050	4.8.2
	18 75 17 75	0.016	0.806	0.000	0.028	0.001	0.822	1.050	4.8.2
L38	17.75 - 16.75	0.016	0.814	0.000	0.028	0.001	0.831	1.050	4.8.2
200	16.75 15.75	0.016	0.822	0.000	0.028	0.001	0.839	1.050	4.8.2
	15.75 - 14.75	0.016	0.831	0.000	0.028	0.001	0.848	1.050	4.8.2
1.00	14.75 - 13.75	0.016	0.839	0.000	0.028	0.001	0.856	1.050	4.8.2
L39	13.75 - 12.75	0.016	0.848	0.000	0.028	0.001	0.865	1.050	4.8.2
	12.75 - 11.75	0.016	0.857	0.000	0.029	0.001	0.874	1.050	4.8.2
	11.75 - 10.75	0.016	0.865	0.000	0.029	0.001	0.883	1.050	4.8.2
	10.75 - 9.75	0.017	0.874	0.000	0.029	0.001	0.891	1.050	4.8.2
L40	9.75 - 7.92	0.017	0.889	0.000	0.029	0.001	0.907	1.050	4.8.2
	(40)								
L41	7.92 - 7.67	0.017	0.892	0.000	0.029	0.001	0.909	1.050	4.8.2
- · ·									

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	φPn	φM _{nx}	φM _{ny}	φVn	φTn	Ratio	Ratio	
	(41)								
L42	7.67 - 6.67	0.017	0.900	0.000	0.029	0.001	0.918	1.050	4.8.2
	6.67 - 5.67	0.017	0.909	0.000	0.029	0.001	0.927	1.050	4.8.2
	5.67 - 4.67	0.017	0.917	0.000	0.029	0.001	0.936	1.050	4.8.2
	4.67 - 3.67	0.018	0.926	0.000	0.029	0.001	0.945	1.050	4.8.2
L43	3.67 - 2.44667	0.018	0.937	0.000	0.029	0.001	0.955	1.050	4.8.2
	2.44667 - 1.22333	0.018	0.947	0.000	0.029	0.001	0.966	1.050	4.8.2
	1.22333 - 0	0.018	0.958	0.000	0.029	0.001	0.977	1.050	4.8.2


Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	ĸ	K	Capacity	Fail
L1	150 - 146	Pole	P24x0.25	1	-7	695	2.7	Pass
L2	146 - 142	Pole	P24x0.25	2	-3	695	5.1	Pass
L3	142 - 138	Pole	P24x0.25	3	-7	695	11.4	Pass
L4	138 - 134	Pole	P24x0.25	4	-8	695	19.6	Pass
L5	134 - 130	Pole	P24x0.25	5	-8	695	28.1	Pass
L6	130 - 126	Pole	P24x0.25	6	-10	695	38.0	Pass
L7	126 - 122	Pole	P24x0.25	7	-10	695	48.1	Pass
L8	122 - 120	Pole	P24x0.25	8	-10	695	53.3	Pass
L9	120 - 116	Pole	P30x0.375	9	-14	1377	28.0	Pass
L10	116 - 112	Pole	P30x0.375	10	-15	1377	33.7	Pass
L11	112 - 108	Pole	P30x0.375	11	-15	1377	39.6	Pass
L12	108 - 104	Pole	P30x0.375	12	-16	1377	45.6	Pass
L13	104 - 100	Pole	P30x0.375	13	-17	1377	51.7	Pass
L14	100 - 96	Pole	P30x0.375	14	-18	1377	57.9	Pass
L15	96 - 92	Pole	P30x0.375	15	-18	1377	64.3	Pass
L16	92 - 90	Pole	P30x0.375	16	-19	1377	67.5	Pass
L17	90 - 86	Pole	P36x0.375	17	-20	1565	52.6	Pass
L18	86 - 82	Pole	P36x0.375	18	-20	1565	57.3	Pass
L19	82 - 78	Pole	P36x0.375	19	-21	1565	62.1	Pass
L20	78 - 74	Pole	P36x0.375	20	-22	1565	66.9	Pass
L21	74 - 70	Pole	P36x0.375	21	-23	1565	71.9	Pass
L22	70 - 66	Pole	P36x0.375	22	-24	1565	76.9	Pass
L23	66 - 62	Pole	P36x0.375	23	-25	1565	82.0	Pass
L24	62 - 60	Pole	P36x0.375	24	-25	1565	84.5	Pass
L25	60 - 56	Pole	P42x0.375	25	-26	1752	67.2	Pass
L26	56 - 52	Pole	P42x0.375	26	-27	1752	71.1	Pass
L27	52 - 48	Pole	P42x0.375	27	-28	1752	75.2	Pass
L28	48 - 44	Pole	P42x0.375	28	-29	1752	79.2	Pass
L29	44 - 40.25	Pole	P42x0.375	29	-30	1752	83.1	Pass
L30	40.25 - 40	Pole	P42x0.375	30	-30	1752	83.4	Pass
L31	40 - 36	Pole	P42x0.375	31	-31	1752	87.6	Pass
L32	36 - 32	Pole	P42x0.375	32	-32	1752	91.8	Pass
L32	32 - 30	Pole	P42x0.375	33	-33	1752	94.0	Pass
L34	30 - 29.75	Pole	P42x0.5	34	-34	2531	68.6	Pass
L35	29.75 - 25.75	Pole	P42x0.5	35	-35	2531	71.8	Pass
L36	25.75 - 21.75	Pole	P42x0.5	36	-36	2531	75.0	Pass
L30 L37	21.75 - 17.75	Pole	P42x0.5	30	-38	2531	78.3	Pass
L37 L38	17.75 - 13.75	Pole	P42x0.5	38	-39	2531	81.6	Pass
L30 L39	13.75 - 9.75	Pole	P42x0.5	39	-40	2531	84.9	Pass
L39 L40	9.75 - 7.92	Pole	P42x0.5	40	-40 -41	2531	86.4	Pass
L40 L41	975-792 792-767	Pole	P42x0.5	40	-41	2531	86.6	Pass
L41 L42	7.67 - 3.67	Pole	P42x0.5 P42x0.5	41 42	-41 -42	2531	90.0	Pass
L42 L43	3.67 - 0	Pole	P42x0.5 P42x0.5	42 43	-42 -44	2531	90.0 93.0	Pass Pass
L43	3.07 - 0	FOIG	F42XU.3	40	-44	2001		rass
						Dala (Lan)	Summary 94.0	Pass
						Pole (L33)		
						RATING =	94.0	Pass

*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Site BU: 876346

					Work Order: 2	013637				CASTLE
F	Pol	e Geometry			Copyright @	0 2019 Crown Castle				
		Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
	1	150	30		0	24	24	0.25		A53-B-42
	2	120	30		0	30.00	30	0.375		A53-B-42
	3	90	30		0	36.00	36	0.375		A53-B-42
	4	60	30		0	42.00	42	0.375		A53-B-42
	5	30	30		0	42.00	42	0.5		A53-B-42
			90 30 60 30							

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	7.92	plate	PL 3x1.25	4	40	140	220	320														
2	30	40.25	plate	PL 3x1.25	3	100	220	340															
3																							
4																							
5																							
6																							
7																							
8																							
9																							
10																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in ²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	3	1.25	3.75	0.625	PC 8.8 - M20 (100)	11	PC 8.8 - M20 (100)	11.000	24.000	2.109	1.2500	A572-65
2	3	1.25	3.75	0.625	PC 8.8 - M20 (100)	11	PC 8.8 - M20 (100)	11.000	24.000	2.109	1.2500	A572-65

Connection Details for Custom Reinforcements

Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)	Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
PL 3x1.25	Тор	4	N	3	2	-	-	-	-	-	-	-	-	-
	Bottom	4	N	3	2	-	-	-	-	-	-	-	-	-

TNX Geometry Input

Incr	rement (ft): 4 Ex	port to TNX							
			Lap Splice Length			Bottom Diameter		Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Grade	Multiplier
1	150 - 146	4		0	24.000	24.000	0.25	A53-B-42	1.000
2	146 - 142	4		0	24.000	24.000	0.25	A53-B-42	1.000
3	142 - 138	4		0	24.000	24.000	0.25	A53-B-42	1.000
4	138 - 134	4		0	24.000	24.000	0.25	A53-B-42	1.000
5	134 - 130	4		0	24.000	24.000	0.25	A53-B-42	1.000
6	130 - 126	4		0	24.000	24.000	0.25	A53-B-42	1.000
7	126 - 122	4		0	24.000	24.000	0.25	A53-B-42	1.000
8	122 - 120	2	0	0	24.000	24.000	0.25	A53-B-42	1.000
9	120 - 116	4		0	30.000	30.000	0.375	A53-B-42	1.000
10	116 - 112	4		0	30.000	30.000	0.375	A53-B-42	1.000
11	112 - 108	4		0	30.000	30.000	0.375	A53-B-42	1.000
12	108 - 104	4		0	30.000	30.000	0.375	A53-B-42	1.000
13	104 - 100	4		0	30.000	30.000	0.375	A53-B-42	1.000
14	100 - 96	4		0	30.000	30.000	0.375	A53-B-42	1.000
15	96 - 92	4		0	30.000	30.000	0.375	A53-B-42	1.000
16	92 - 90	2	0	0	30.000	30.000	0.375	A53-B-42	1.000
17	90 - 86	4		0	36.000	36.000	0.375	A53-B-42	1.000
18	86 - 82	4		0	36.000	36.000	0.375	A53-B-42	1.000
19	82 - 78	4		0	36.000	36.000	0.375	A53-B-42	1.000
20	78 - 74	4		0	36.000	36.000	0.375	A53-B-42	1.000
21	74 - 70	4		0	36.000	36.000	0.375	A53-B-42	1.000
22	70 - 66	4		0	36.000	36.000	0.375	A53-B-42	1.000
23	66 - 62	4		0	36.000	36.000	0.375	A53-B-42	1.000
24	62 - 60	2	0	0	36.000	36.000	0.375	A53-B-42	1.000
25	60 - 56	4		0	42.000	42.000	0.375	A53-B-42	1.000
26	56 - 52	4		0	42.000	42.000	0.375	A53-B-42	1.000
27	52 - 48	4		0	42.000	42.000	0.375	A53-B-42	1.000
28	48 - 44	4		0	42.000	42.000	0.375	A53-B-42	1.000
29	44 - 40.25	3.75		0	42.000	42.000	0.375	A53-B-42	1.000
30	40.25 - 40	0.25		0	42.000	42.000	0.375	A53-B-42	1.000
31	40 - 36	4		0	42.000	42.000	0.375	A53-B-42	1.000
32	36 - 32	4		0	42.000	42.000	0.375	A53-B-42	1.000
33	32 - 30	2	0	0	42.000	42.000	0.375	A53-B-42	1.000
34	30 - 29.75	0.25		0	42.000	42.000	0.5	A53-B-42	1.000
34	29.75 - 25.75	4		0	42.000	42.000	0.5	A53-B-42	1.000
36	25.75 - 21.75	4		0	42.000	42.000	0.5	A53-B-42	1.000
37	21.75 - 17.75	4		0	42.000	42.000	0.5	A53-B-42	1.000
38	17.75 - 13.75	4		0	42.000	42.000	0.5	A53-B-42 A53-B-42	1.000
38		4		0	42.000	42.000	0.5	A53-B-42 A53-B-42	1.000
39 40		4		0		42.000		A53-B-42 A53-B-42	
					42.000		0.5		1.000
41	7.92 - 7.67	0.25		0	42.000	42.000	0.5	A53-B-42	1.000
42	7.67 - 3.67	4		0	42.000	42.000	0.5	A53-B-42	1.000
43	3.67 - 0	3.67		0	42.000	42.000	0.5	A53-B-42	1.000

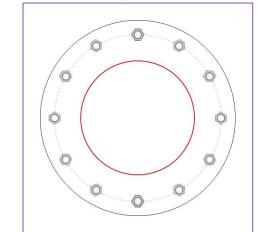
TNX Section Forces

Incr	rement (fi	t):	4	Т	'NX Outpu	ıt
					Vu	
	Section	He	ight (ft)	P _u (K)	ft)	(K)
1	150	-	146	7.05	7.11	1.11
2	146	-	142	2.76	19.54	3.45
3	142	-	138	7.48	41.97	8.41
4	138	-	134	7.86	76.09	8.66
5	134	-	130	8.25	111.20	8.90
6	130	-	126	9.72	151.02	10.29
7	126	-	122	10.14	192.83	10.59
8	122	-	120	10.36	214.10	10.70
9	120	-	116	14.04	266.77	14.05
10	116	-	112	14.74	323.58	14.35
11	112	-	108	15.44	381.56	14.64
12	108	-	104	16.15	440.69	14.92
13	104	-	100	16.86	500.92	15.20
14	100	-	96	17.58	562.21	15.46
15	96	-	92	18.31	624.51	15.70
16	92	-	90	18.68	656.03	15.82
17	90	-	86	19.50	719.93	16.14
18	86	-	82	20.33	785.07	16.44
19	82	-	78	21.17	851.40	16.73
20	78	-	74	22.01	918.89	17.02
21	74	-	70	22.86	987.48	17.29
22	70	-	66	23.71	1057.12	17.54
23	66	-	62	24.56	1127.75	17.79
24	62	-	60	24.99	1163.43	17.90
25	60	-	56	26.04	1235.60	18.25
26	56	-	52	27.00	1309.19	18.55
27	52	-	48	27.96	1383.93	18.83
28	48	-	44	28.93	1459.75	19.09
29	44	-	40.25	29.88	1531.78	19.33
30	40.25	-	40	29.96	1536.61	19.34
31	40	-	36	31.12	1614.45	19.59
32	36	-	32	32.29	1693.21	19.81
33	32	-	30	32.86	1732.91	19.91
34	30	-	29.75	33.85	1737.53	20.27
35	29.75	-	25.75	35.08	1819.04	20.49
36	25.75	-	21.75	36.33	1901.37	20.69
37	21.75	-	17.75	37.57	1984.45	20.87
38	17.75	-	13.75	38.82	2068.19	21.02
39	13.75	-	9.75	40.08	2152.50	21.16
40	9.75	-	7.92	40.69	2191.26	21.23
41	7.92	-	7.67	40.79	2196.56	21.21
42	7.67	-	3.67	 42.23	2281.66	21.35
43	3.67	-	0	43.55	2360.14	21.45

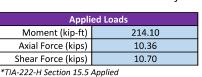
Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fai
150 - 146	Pole	TP24x24x0.25	Pole	2.7%	Pass
146 - 142	Pole	TP24x24x0.25	Pole	5.1%	Pass
142 - 138	Pole	TP24x24x0.25	Pole	11.3%	Pass
138 - 134	Pole	TP24x24x0.25	Pole	19.6%	Pass
134 - 130	Pole	TP24x24x0.25	Pole	28.1%	Pass
130 - 126	Pole	TP24x24x0.25	Pole	37.9%	Pass
126 - 122	Pole	TP24x24x0.25	Pole	48.0%	Pass
122 - 120	Pole	TP24x24x0.25	Pole	53.2%	Pass
120 - 116	Pole	TP30x30x0.375	Pole	27.9%	Pass
116 - 112	Pole	TP30x30x0.375	Pole	33.7%	Pass
112 - 108	Pole	TP30x30x0.375	Pole	39.6%	Pass
108 - 104	Pole	TP30x30x0.375	Pole	45.6%	Pass
104 - 100	Pole	TP30x30x0.375	Pole	51.7%	Pass
100 - 96	Pole	TP30x30x0.375	Pole	57.9%	Pass
96 - 92	Pole	TP30x30x0.375	Pole	64.2%	Pass
92 - 90	Pole	TP30x30x0.375	Pole	67.4%	Pass
90 - 86	Pole	TP36x36x0.375	Pole	52.6%	Pass
86 - 82	Pole	TP36x36x0.375	Pole	57.3%	Pass
82 - 78	Pole	TP36x36x0.375	Pole	62.0%	Pass
78 - 74	Pole	TP36x36x0.375	Pole	66.9%	Pass
74 - 70	Pole	TP36x36x0.375	Pole	71.8%	Pass
70 - 66	Pole	TP36x36x0.375	Pole	76.8%	Pass
66 - 62	Pole	TP36x36x0.375	Pole	81.9%	Pass
62 - 60	Pole	TP36x36x0.375	Pole	84.5%	Pass
60 - 56	Pole	TP42x42x0.375	Pole	67.1%	Pass
56 - 52	Pole	TP42x42x0.375	Pole	71.0%	Pass
52 - 48	Pole	TP42x42x0.375	Pole	75.1%	Pass
48 - 44	Pole	TP42x42x0.375	Pole	79.1%	Pass
44 - 40.25	Pole	TP42x42x0.375	Pole	83.0%	Pass
40.25 - 40	Pole	TP42x42x0.375	Pole	83.3%	Pass
40 - 36	Pole	TP42x42x0.375	Pole	87.5%	Pass
36 - 32	Pole	TP42x42x0.375	Pole	91.7%	Pass
32 - 30	Pole	TP42x42x0.375	Pole	93.9%	Pass
30 - 29.75	Pole	TP42x42x0.5	Pole	68.6%	Pass
29.75 - 25.75	Pole	TP42x42x0.5	Pole	71.8%	Pass
25.75 - 21.75	Pole	TP42x42x0.5	Pole	75.0%	Pass
21.75 - 17.75	Pole	TP42x42x0.5	Pole	78.3%	Pass
17.75 - 13.75	Pole	TP42x42x0.5	Pole	81.6%	Pass
13.75 - 9.75	Pole	TP42x42x0.5	Pole	84.9%	Pass
9.75 - 7.92	Pole	TP42x42x0.5	Pole	86.4%	Pass
7.92 - 7.67	Pole	TP42x42x0.5	Pole	86.6%	Pass
7.67 - 3.67	Pole	TP42x42x0.5	Pole	90.0%	Pass
3.67 - 0	Pole	TP42x42x0.5	Pole	93.0%	Pass
				Summary	
			Pole	93.9%	Pass
			Reinforcement	0.0%	Pass
			Overall	93.9%	Pass

Additional Calculations


Section	Mom	ent of Inerti	a (in ⁴)		Area (in ²)		% Ca	oacity*	
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2
150 - 146	1315	n/a	1315	18.65	n/a	18.65	2.7%		
146 - 142	1315	n/a	1315	18.65	n/a	18.65	5.1%		
142 - 138	1315	n/a	1315	18.65	n/a	18.65	11.3%		
138 - 134	1315	n/a	1315	18.65	n/a	18.65	19.6%		
134 - 130	1315	n/a	1315	18.65	n/a	18.65	28.1%		
130 - 126	1315	n/a	1315	18.65	n/a	18.65	37.9%		
126 - 122	1315	n/a	1315	18.65	n/a	18.65	48.0%		
122 - 120	1315	n/a	1315	18.65	n/a	18.65	53.2%		
120 - 116	3829	n/a	3829	34.90	n/a	34.90	27.9%		
116 - 112	3829	n/a	3829	34.90	n/a	34.90	33.7%		
112 - 108	3829	n/a	3829	34.90	n/a	34.90	39.6%		
108 - 104	3829	n/a	3829	34.90	n/a	34.90	45.6%		
104 - 100	3829	n/a	3829	34.90	n/a	34.90	51.7%		
100 - 96	3829	n/a	3829	34.90	n/a	34.90	57.9%		
96 - 9 2	3829	n/a	3829	34.90	n/a	34.90	64.2%		
92 - 90	3829	n/a	3829	34.90	n/a	34.90	67.4%		
90 - 86	6659	n/a	6659	41.97	n/a	41.97	52.6%		
86 - 82	6659	n/a	6659	41.97	n/a	41.97	57.3%		
82 - 78	6659	n/a	6659	41.97	n/a	41.97	62.0%		
78 - 74	6659	n/a	6659	41.97	n/a	41.97	66.9%		
74 - 70	6659	n/a	6659	41.97	n/a	41.97	71.8%		
70 - 66	6659	n/a	6659	41.97	n/a	41.97	76.8%		
66 - 62	6659	n/a	6659	41.97	n/a	41.97	81.9%		
62 - 60	6659	n/a	6659	41.97	n/a	41.97	84.5%		
60 - 56	10622	n/a	10622	49.04	n/a	49.04	67.1%		
56 - 52	10622	n/a	10622	49.04	n/a	49.04	71.0%		
52 - 48	10622	n/a	10622	49.04	n/a	49.04	75.1%		
48 - 44	10622	n/a	10622	49.04	n/a	49.04	79.1%		
44 - 40.25	10622	n/a	10622	49.04	n/a	49.04	83.0%		
40.25 - 40	10622	n/a	10622	49.04	n/a	49.04	83.3%		
40 - 36	10622	n/a	10622	49.04	n/a	49.04	87.5%		
36 - 32	10622	n/a	10622	49.04	n/a	49.04	91.7%		
32 - 30	10622	n/a	10622	49.04	n/a	49.04	93.9%		
30 - 29.75	14036	n/a	14036	65.19	n/a	65.19	68.6%		
29.75 - 25.75	14036	n/a	14036	65.19	n/a	65.19	71.8%		
25.75 - 21.75	14036	n/a	14036	65.19	n/a	65.19	75.0%		
21.75 - 17.75	14036	n/a	14036	65.19	n/a	65.19	78.3%		
17.75 - 13.75	14036	n/a	14036	65.19	n/a	65.19	81.6%		
13.75 - 9.75	14036	n/a	14036	65.19	n/a	65.19	84.9%		
9.75 - 7.92	14036	n/a	14036	65.19	n/a	65.19	86.4%		
7.92 - 7.67	14036	n/a	14036	65.19	n/a	65.19	86.6%		
7.67 - 3.67	14036	n/a	14036	65.19	n/a	65.19	90.0%		
3.67 - 0	14036	n/a	14036	65.19	n/a	65.19	93.0%		

Note: Section capacity checked using 5 degree increments. Rating per TIA-222-H Section 15.5.


Monopole Flange Plate Connection

BU #	876346
Site Name	Union
Order #	572902 rev. 0
TIA-222 Revision	н

Top Plate - External

Elevation = 120 ft.

Bottom Plate - External

Connection Properties Bolt Data

(12) 1-1/2" ø bolts (A325 N; Fy=81 ksi, Fu=120 ksi) on 35" BC

Top Plate Data

Top Stiffener Data

Top Pole Data

N/A

41" OD x 2" Plate (A36; Fy=36 ksi, Fu=58 ksi)

24" x 0.25" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bottom Plate Data 41" OD x 2" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

Bottom Pole Data

N/A

30" x 0.375" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Analysis Results							
	Bolt	Capacity					
	Max Load (kips)	23.59					
	Allowable (kips)	126.89					
	Stress Rating:	17.7%	Pass				
Top Plate Capacity			Bottom Plate Capacity				
Max Stress (ksi)	_		Max Stress (ksi):				

Max Stress (ksi): Allowable Stress (ksi): Stress Rating: Rohn OK Tension Side Stress Rating: Rohn OK

Max Stress (ksi):	-
Allowable Stress (ksi):	-
Stress Rating:	Rohn OK
Tension Side Stress Rating:	Rohn OK

Monopole Flang	e Plate Connectio	<u>on</u>		Elevation = 90 ft.	CCCROWN
BU #	876346		Арр	lied Loads	
Site Name	Union	Mor	ment (kip-ft)	656.03	
Order #	572902 rev. 0		Force (kips)		
TIA-222 Revision	Н		Force (kips) H Section 15.5		
1	Fop Plate - External			Bott	om Plate - External
00000				0000000	
		Connectio	on Propertie	!S	
		Во	lt Data		
Top Plate Data	(1	6) 1-1/2" ø bolts (A325 N;	Fy=81 ksi, Fı	u=120 ksi) on 41" BC Bottom Plate Data	
47" OD x 2" Plate (A36; Fy=3	36 ksi, Fu=58 ksi)			47" OD x 2" Plate (A36; Fy=36	ksi, Fu=58 ksi)
Top Stiffener Data				Bottom Stiffener Data	
N/A				N/A	
Top Pole Data				Bottom Pole Data	
30" x 0.375" round pole (A5	3-B-42; Fy=42 ksi, Fu=63 ks	i)		36" x 0.375" round pole (A53-	B-42; Fy=42 ksi, Fu=63 ksi)
		Analys	sis Results		
			Capacity		
		Max Load (kips)	46.81		
		Allowable (kips)	126.89		
		Stress Rating:	35.1%	Pass	
Top Plate Capacity				Bottom Plate Capacity	
Mary Church (Inci)					

Max Stress (ksi):	-
Allowable Stress (ksi):	-
Stress Rating:	Rohn OK
Tension Side Stress Rating:	Rohn OK

Max Stress (ksi):	-
Allowable Stress (ksi):	-
Stress Rating:	Rohn OK
Tension Side Stress Rating:	Rohn OK

Monopole Flang	e Plate Conne	<u>ction</u>		Elevation = 60 ft.	CC CROWN CASTLE	
BU #	876346		Арр	lied Loads		
Site Name	Union	Mo	ment (kip-ft)	1163.43		
Order #	572902 rev. 0		l Force (kips)			
[]			r Force (kips)			
TIA-222 Revision	Н	*TIA-222-	H Section 15.5	5 Applied		
	Top Plate - External Bottom Plate - External					
		Connecti	on Propertie	S		
			lt Data			
		(18) 1-1/2" ø bolts (A325 N;	Fy=81 ksi, Fu	u=120 ksi) on 47" BC		
Top Plate Data				Bottom Plate Data		
53" OD x 2" Plate (A36; Fy=3	26 kci Eu-59 kci)			53" OD x 2" Plate (A36; Fy=:	26 kci Eu-58 kci)	
55 OD X 2 Thate (A50, Ty-	50 K31, T U=50 K31)			55 00 x 2 1 late (A50, 1 y -	50 K3I, T 4-50 K3I	
Top Stiffener Data				Bottom Stiffener Data		
N/A				N/A		
Top Pole Data Bottom Pole Data						
36" x 0.375" round pole (A5	3-B-42; Fy=42 ksi, Fu=6	53 ksi)		42" x 0.375" round pole (A5	53-B-42; Fy=42 ksi, Fu=63 ksi)	
			cic Poculte			
	Analysis Results Bolt Capacity					
		Max Load (kips)	64.59			
		Allowable (kips)	126.89			
		Stress Rating:	48.5%	Pass		
		·				
Top Plate Capacity				Bottom Plate Capacity		

Max Stress (ksi): -Allowable Stress (ksi): -Rohn OK Stress Rating: Tension Side Stress Rating: Rohn OK

Max Stress (ksi):	-
Allowable Stress (ksi):	-
Stress Rating:	Rohn OK
Tension Side Stress Rating:	Rohn OK

Monopole Flange	e Plate Connectio	<u>on</u>		Elevation = 30 ft.	CCCCASTLE
BU #	876346		Арр	lied Loads	
Site Name	Union	Mo	ment (kip-ft	1732.91	
Order #	572902 rev. 0		l Force (kips		
			r Force (kips		
TIA-222 Revision	Н	*TIA-222-	H Section 15.	5 Applied	
Т	op Plate - External			Botton	n Plate - External
0000000					000000000000000000000000000000000000000
			on Propertie	25	
	(1)	Bc 3) 1-1/2" ø bolts (A325 N;	lt Data Ev=81 ksi E	u=120 ksi) on 47" BC	
	(10	, <u>, , , , , , , , , , , , , , , , , , </u>	19 01 (0),11		
op Plate Data				Bottom Plate Data	
3" OD x 2" Plate (A36; Fy=3	36 ksi, Fu=58 ksi)			53" OD x 2" Plate (A36; Fy=36 ks	si, Fu=58 ksi)
op Stiffener Data				Bottom Stiffener Data	
I/A				N/A	
op Pole Data				Bottom Pole Data	
2" x 0.375" round pole (A53	3-B-42; Fy=42 ksi, Fu=63 ksi)		42" x 0.5" round pole (A53-B-42	; Fy=42 ksi, Fu=63 ksi)
		Analy	sis Results		
			Capacity		
		Max Load (kips)	96.46		
		Allowable (kips) Stress Rating:	126.89 72.4%	Pass	
		Suess natilig.	12.4%	r abb	
op Plate Capacity				Bottom Plate Capacity	
Max Stress (ksi):	-			Max Stress (ksi):	-
llowable Stress (ksi):	-			Allowable Stress (ksi):	-
Stress Rating:	Rohn OK			Stress Rating:	Rohn OK

Stress Rating:

Tension Side Stress Rating:

Stress Rating:

Tension Side Stress Rating:

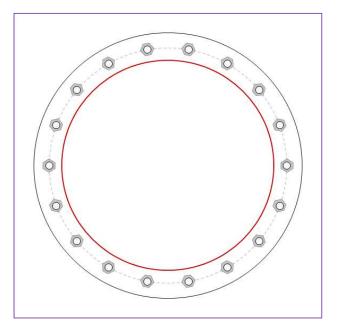
Rohn OK

Rohn OK

Rohn OK

Rohn OK

Monopole Base Plate Connection



Site Info	
BU #	876346
Site Name	Union
Order #	572902 rev. 0

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	1.75

Applied Loads	
Moment (kip-ft)	2360.14
Axial Force (kips)	43.55
Shear Force (kips)	21.45
*TIA 222 U.Contine 15 5 Am	lind

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(18) 1-1/2" ø bolts (A354-BC N; Fy=109 ksi, Fu=125 ksi) on 47" BC

Base Plate Data

Stiffener Data

N/A

Pole Data

42" x 0.5" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Analysis Results

Anchor Rod Summary	(u	nits of kips, kip-in)
Pu_t = 131.43	φPn_t = 132.19	Stress Rating
Vu = 1.19	φVn = 82.83	98.9%
Mu = 1.36	φMn = 55.18	Pass
Base Plate Summary		
Max Stress (ksi):	-	
Allowable Stress (ksi):	-	
Stress Rating:	Rohn OK	

Pier and Pad Foundation

BU # :	876346
Site Name:	
App. Number:	572902 rev. 0

TIA-222 Revision: н nopole

Tower Type:	Mon

	Capacity	Demand	Rating*
Found	dation Ana	ysis Chec	ks
Rectangular Pad?:			
Block Foundation?:	✓		

207.32

22.50

2989.64

4739.72

1231.14

0.164

9049.52

22.00

6.11

2625.96

1532.22

182.35

0.000

0.00

Top & Bot. Pad Rein. Different?:

Lateral (Sliding) (kips)

Bearing Pressure (ksf)

Overturning (kip*ft)

Pad Flexure (kip*ft)

Pad Shear - 1-way (kips)

Pad Shear - 2-way (Comp) (ksi)

Flexural 2-way (Comp) (kip*ft)

Superstructure Analysis Reactions			
Compression, P _{comp} :	44	kips	
Base Shear, Vu_comp:	22	kips	
Moment, M _u :	2488	ft-kips	
Tower Height, H:	150	ft	
BP Dist. Above Fdn, bp_{dist} :	3.25	in	
Bolt Circle / Bearing Plate Width, BC:	47	in	

*Rating per	TIA-222-H Section
15.5	

Check

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Structural Rating*:	30.8%
Soil Rating*:	87.8%

10.1%

27.2%

87.8%

30.8%

14.1%

0.0%

0.0%

Pad Properties				
Depth, D:	5.5	ft		
Pad Width, W ₁ :	18.5	ft		
Pad Thickness, T :	6	ft		
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8			
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	20			
Pad Clear Cover, cc _{pad} :	3	in		

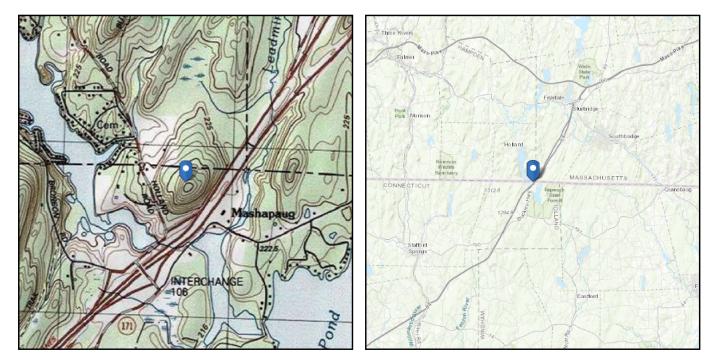
Material Properties	;	
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δ c :	164	pcf

Soil Properties				
Total Soil Unit Weight, $oldsymbol{\gamma}$:	140	pcf		
Ultimate Gross Bearing, Qult:	30.000	ksf		
Cohesion, Cu :	0.000	ksf		
Friction Angle, $\boldsymbol{\varphi}$:	42	degrees		
SPT Blow Count, N _{blows} :	14			
Base Friction, μ :	0.45			
Neglected Depth, N:	3.33	ft		
Foundation Bearing on Rock?	No			
Groundwater Depth, gw :	N/A	ft		

<--Toggle between Gross and Net

No Address at This

Location


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

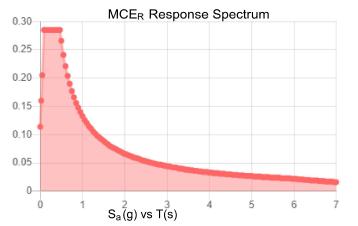
 Elevation:
 0 ft (NAVD 88)

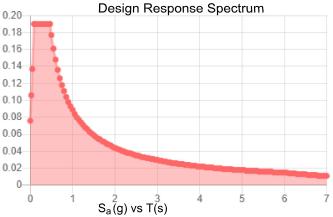
 Latitude:
 42.029428

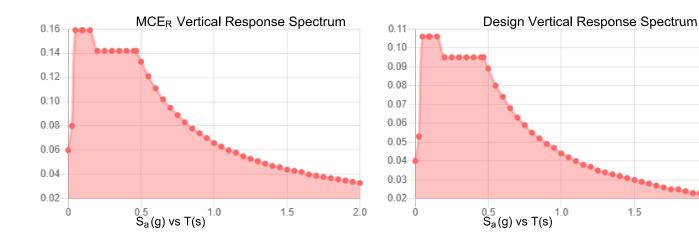
 Longitude:
 -72.139872

Wind

Results:


Wind Speed:	118 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	90 Vmph
100-year MRI	98 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Wed Sep 29 2021


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil		
S _s :	0.178	S _{D1} :	0.089
S ₁ :	0.055	T∟ :	6
F _a :	1.6	PGA :	0.094
F _v :	2.4	PGA M:	0.151
S _{MS} :	0.285	F _{PGA} :	1.6
S _{M1} :	0.133	e :	1
S _{DS} :	0.19	C _v :	0.7
Seismic Design Category	В		

Data Accessed: Date Source:

Wed Sep 29 2021 USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

2.0

Ice

Results:

Ice Thickness:	1.50 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Wed Sep 29 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Kimley »Horn

Kimley-Horn and Associates, Inc. 421 Fayetteville Street, Suite 600 Raleigh, NC 27601 (919) 677-2000 CrownMounts@kimley-horn.com

Subject:	Mount Analysis - Conditional Passing Report		
Carrier Designation:	DISH Network Equipment Ch Carrier Site Number: Carrier Site Name:	a nge-Out BOBOS00873A N/A	
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Order Number:	876346 UNION 671531 572902, Rev. 2	
Engineering Firm Designation:	Kimley-Horn Project Number	: 019558057	
Site Data:	23 Holland Road, Union, Tolla Latitude 42° 1' 45.94" Longit		
Structure Information:	Tower Height & Type: 150 ft Mount Elevation: 119 ft Mount Type: 8 ft Pl	-	

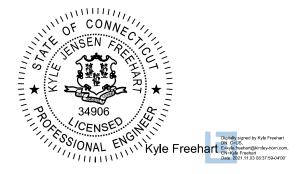
Kimley-Horn is pleased to submit this "**Mount Analysis - Conditional Passing Report**" to determine the structural integrity of DISH Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform w/ Support Rails

Sufficient

* See Section 4.1 for loading and structural modifications required for the mount to support the loading listed in Table 1.


This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3second gust wind speed of 118 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Saja Alkhafaji, E.I.

Respectfully Submitted by:

Kyle Freehart, P.E.

Lic. #PEN.0034906, Exp. 1/31/2022 Kimley-Horn and Associates, Inc. COA #PEC.0000738

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

The mounting configuration consists of a proposed 8 ft Platform w/ Support Rails designed by CommScope.

2) ANALYSIS CRITERIA

Building Code:	2018 Connecticut State BuildingCode
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	118 mph
Exposure Category:	С
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 – Proposed Equipment Configuration

Elev	Elevation (ft) Antennas		Mount / Modification		
Mount	Centerline	#	Manufacturer	Model	Details
		3	Fujitsu	TA08025-B604	Drange and 9 ft Diotforms w/
119	119	3	Fujitsu	TA08025-B605	Proposed 8 ft Platform w/
119	119	3	Jma wireless	MX08FRO665-21	Support Rails designed by CommScope
		1	Raycap	RDIDC-9181-PF-48	Commiscope

3) ANALYSIS PROCEDURE

Table 2 – Documents Provided

Document	Remarks	Reference	Source
Mount Design Drawing	CommScope	MC-PK8-DSH	On File
Photos	-	-	CCISItes

3.1) Analysis Method

RISA-3D (version 17.02.00), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A proprietary tool internally developed by Kimley-Horn was used to calculate wind loading on all appurtenances, dishes and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Mount Analysis* (Revision D).

3.2) Assumptions

- 1) The antenna mounting system (including any considered modifications) was properly fabricated, installed and maintained in good condition in accordance with its original design, TIA standards, and/or manufacturer specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the provided reference information.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members that could not be verified at this time.
- 5) Any referenced prior structural modifications to the tower mounting system are assumed to be installed as shown per available data unless noted otherwise.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
HSS (Rectangular)	ASTM A36 (Gr. 36)
Pipe	ASTM A53 (Gr. B-35)
Connection Bolts	ASTM A325
Threaded Rods	ASTM A36 (Gr. 36)

This analysis may be affected if any assumptions are not valid or have been made in error. Kimley-Horn should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1, 2	Connections	-		33%	Pass
1, 2	Stand Off Horizontals	M12		21%	Pass
1, 2	Mount Pipes	MP8	119	19%	Pass
1, 2	Support Rails	M25		13%	Pass
1, 2	Platform Base	M48		10%	Pass

Table 3 – Mount Component Stresses vs. Capacity

Structure Rating (max from all components) =

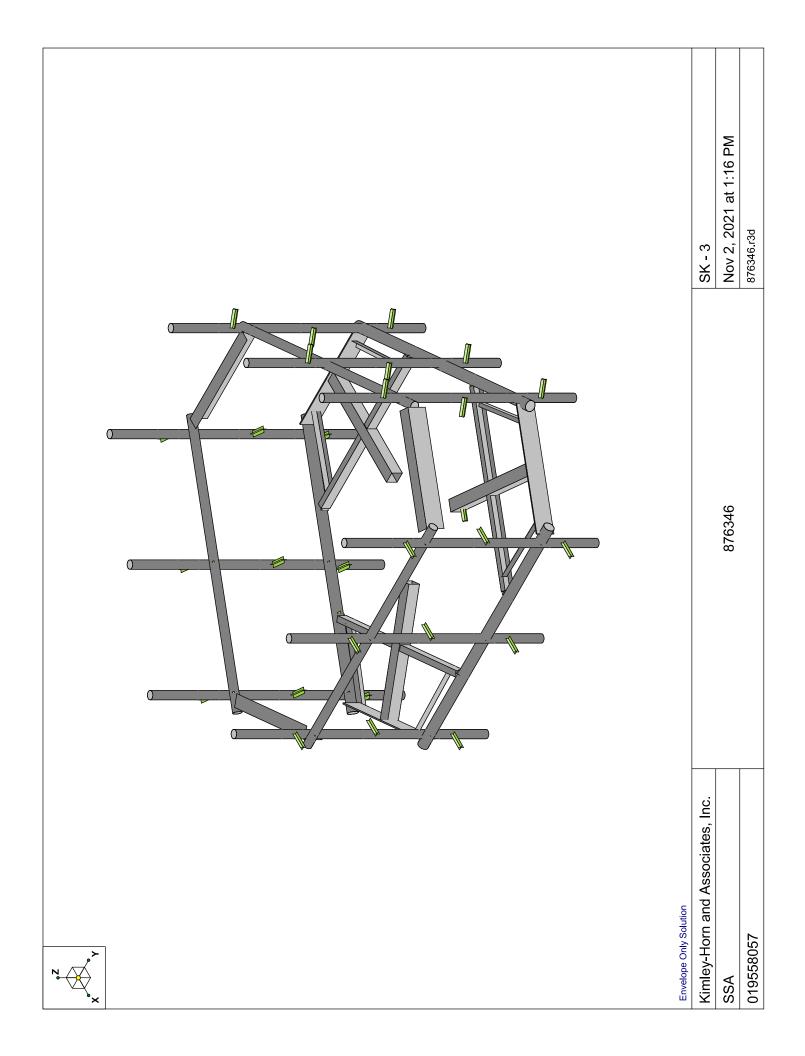
33%

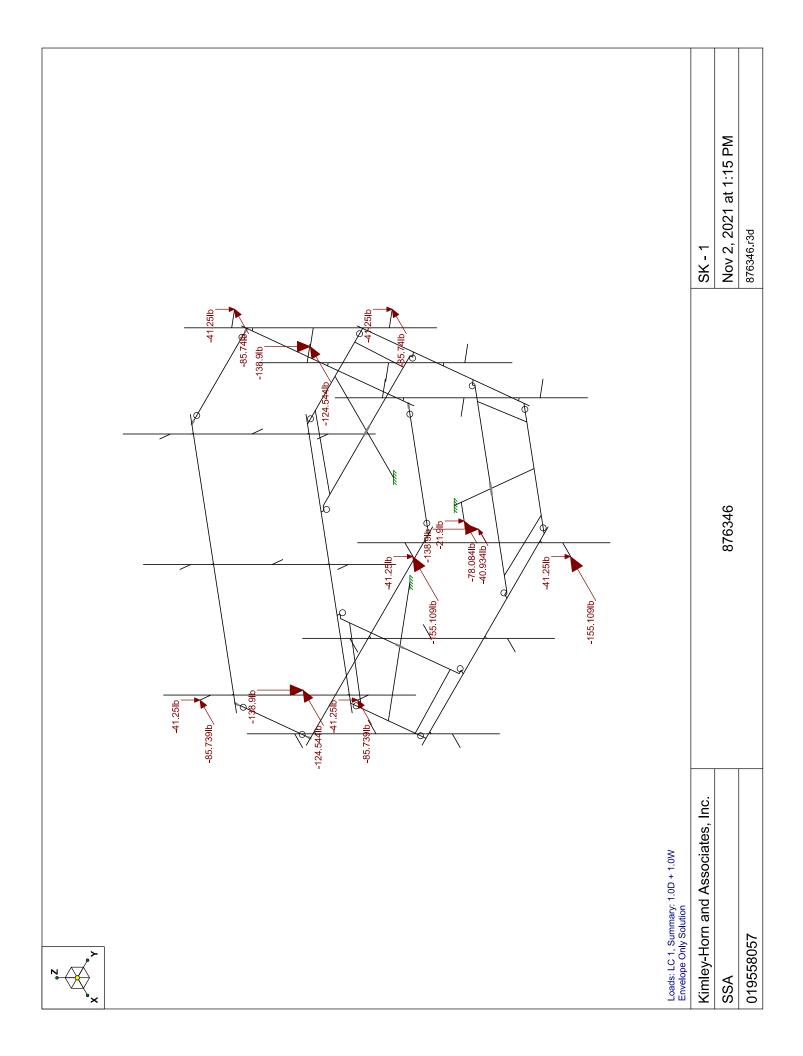
Notes:

1) See additional documentation in Appendix C and Appendix D for calculations supporting the % capacity consumed.

2) Rating per TIA-222-H, Section 15.5.

4.1) Recommendations


The mounting configuration will have sufficient capacity to carry the referenced loading once the following modifications are completed:


 Install a new Commscope MC-PK8-DSH platform. Vertically center antennas and mount pipes on mount face horizontals.

No additional modifications are required at this time provided that the above-listed changes are completed.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

APPENDIX B

SOFTWARE INPUT CALCULATIONS

General Criteria					
TIA Standard	Н				
IBC Edition	2018				
Structure Class					
Risk Category	- 11				

Site-Specific Criteria	
Exposure Category	С
Topographic Factor, K _{zt}	1.00
Structure Base Elev. (AMSL), z _s (ft)	840.52
Ground Effect Factor, Ke	0.97

Mount & Structure Criteria							
Mount Elevation (A	AGL) (ft)	119.00					
Structure Height (150.00						
Structure Type	Monopole						

Constants	
Wind Direction Probability Factor, \mathbf{K}_{d}	0.95
Gust Effect Factor, Gh	1
Shielding Factor, Ka (antenna)	0.9
Shielding Factor, K _a (mount)	0.9

Wind Summary	
Basic Wind Speed w/o Ice, V (mph)	118.00
Velocity Pressure Coeff., Kz	1.31
Velocity Pressure, qz (w/o Ice) (psf)	43.12

2 · 16 · 2 · 17 · 2	
Ice Load Summary	
Basic Wind Speed w/ Ice, V _i (mph)	50.00
Design Ice Thick. (ASCE 7-16) , ti (in)	1.5

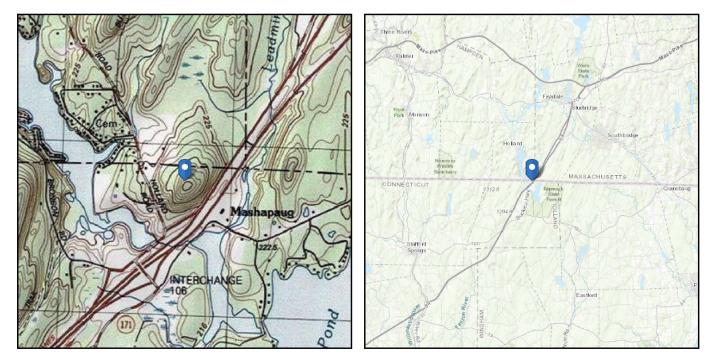
Velocity Pressure, qz (w/ Ice) (psf)	7.74
Escalated Ice Thick. @ Mount, t_{iz} (in)	1.71
Seismic Load Summary	
Spectral Response (Short Periods), $\mathbf{S_s}$	
Spectral Response (1-Sec. Period), S1	
Site Class	-
Seismic Design Category	-
Seismic Risk Category	

Snow Load Summary				
Ground Snow Load, pg (psf)				
Snow Load on Flat Roofs, p _f (psf)				

Date	November 02, 2021
Client	Crown Castle
Site #	876346
Site Name	UNION
Project #	19558057

Antenna Name	Qty	Shape	Dim	ensions	(in)	Weight	Joint Labels						EPA	(ft²)	No		ce, F _A (Ik With	o) i Ice		
			н	w	D	D (lb)	Alı	oha	Be	eta	Gar	nma	De	lta	Front	Side	Front	Side	Front	Side
MX08FRO665-21	3	Flat	72	20	8	82.5	A1B	A1T	B1B	B1T	G1B	G1T			7.99	3.23	310.22	125.23	67.36	31.67
TA08025-B604	3	Flat	15	15.8	7.9	63.9	A1R		B1R		G1R				0.49	1.96	19.04	76.21	6.02	20.44
TA08025-B605	3	Flat	15	15,8	9,1	75	A1R		B1R		G1R				0,56	1,96	21,89	76,21	6,65	20,44
RDIDC-9181-PF-48	1	Flat	16,6	14,6	8,5	21,9	RC								2,01	1,17	78,08	45,34	20,86	13,77

Kimley **»Horn**


No Address at This

Location

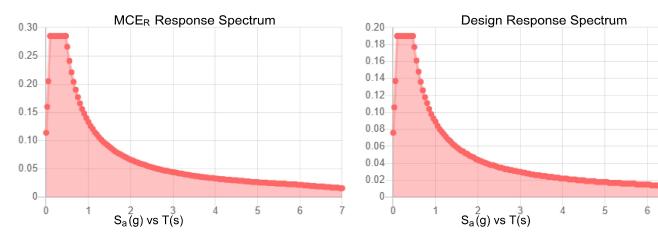
ASCE 7 Hazards Report

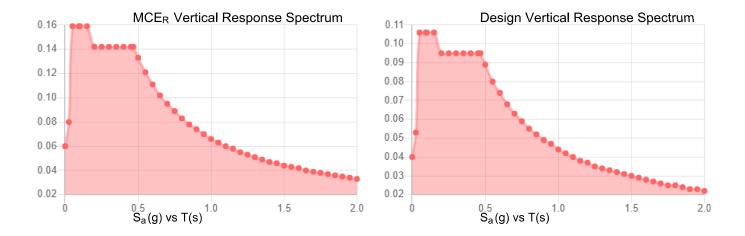
Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

Elevation: 840.52 ft (NAVD 88) Latitude: 42.029428 Longitude: -72.139872

Wind

Results:


Wind Speed:	118 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	90 Vmph
100-year MRI	98 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Tue Nov 02 2021


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil		
S _S :	0.178	S _{D1} :	0.089
S ₁ :	0.055	T∟ :	6
F _a :	1.6	PGA :	0.094
F _v :	2.4	PGA M :	0.151
S _{MS} :	0.285	F _{PGA} :	1.6
S _{M1} :	0.133	e :	1
S _{DS} :	0.19	C _v :	0.7
Seismic Design Category	В		

Data Accessed: Date Source:

Tue Nov 02 2021 USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

7

Ice

Results:

Ice Thickness:	1.50 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Tue Nov 02 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[lb/f	. Yie l d[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	490	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	490	36	1.5	58	1.2
3	A572 G r.50	29000	11154	.3	.65	490	50	1.1	65	1.1
4	A500 Gr.BRnd	29000	11154	.3	.65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	490	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	490	50	1.4	65	1.3
8	A913 G r.65	29000	11154	.3	.65	490	65	1.1	80	1.1
9	A500 Gr.C Rnd	29000	11154	.3	.65	490	46	1.6	62	1.2
10	A500 Gr.C Rect	29000	11154	.3	.65	490	50	1.5	62	1.2
11	A529 G r. 50	29000	11154	.3	.65	490	50	1.1	65	1.1
12	A1011-33 ksi	29000	11154	.3	.65	490	33	1.5	58	1.2
13	A1011 36 ksi	29000	11154	.3	.65	490	36	1.5	58	1.2
14	A1018 50 ksi	29000	11154	.3	.65	490	50	1.5	65	1.2
15	Q235	29000	11154	.3	.65	490	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Ru	. A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Corner Plate	PL6-1/2x3/8	Beam	None	A1011 36 ksi	Typical	2.438	.029	8.582	.11
2	Side Plate	PL2-3/8x1/2	Beam	None	A1011 36 ksi	Typical	1.188	.025	.558	.086
3	Grating Horiz	L2x2x4	Beam	None	A529 Gr. 50	Typical	.944	.346	.346	.021
4	Face Horiz	HSS3.500x0.1	Beam	None	A500 Gr.C Rnd	Typical	1.729	2.409	2.409	4.819
5	Mount Pipe	HSS2.875x0.1	Column	None	A500 Gr.C Rnd	Typical	1.039	.987	.987	1.975
6	Cross Horiz	C3.38x2.06x1/4	Beam	None	A1011 36 ksi	Typical	1.75	.715	3.026	.034
7	Stand-Off Horiz	HSS4X4X6	Beam	None	A500 Gr.C Rect	Typical	4.78	10.3	10.3	17.5
8	Support Rail	HSS2.875x0.1	Beam	None	A 500 Gr.C Rnd	Typical	1.039	.987	.987	1.975
9	SR Corner Brace	L6.6x4.46x0.25	Beam	None	A1011 36 ksi	Typical	2.703	4.759	12.473	.055

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]Lcom	p bot[in]L-torqu	. Куу	Kzz	Cb	Function
1	M3	Grating Horiz	27.295			Lbyy					Lateral
2	M8	Grating Horiz	27.295			Lbyy					Lateral
3	M13	Grating Horiz	27.295			Lbyy					Lateral
4	M28	SR Corner	42			Lbyy					Lateral
5	M29	SR Corner	42			Lbyy					Lateral
6	M30	SR Corner	42			Lbyy					Lateral
7	M63A	Cross Horiz	33			Lbyy					Lateral
8	M61B	Cross Horiz	33			Lbyy					Lateral
9	M63B	Cross Horiz	33			Lbyy					Lateral
10	M25	Support Rail	96			Lbyy					Lateral
11	M51	Support Rail	96			Lbyy					Lateral
12	M65A	Support Rail	96			Lbyy					Lateral
13	M2	Stand-Off H	44.5			Lbyy					Lateral
14	M7	Stand-Off H	44.5			Lbyy					Lateral
15	M12	Stand-Off H	44.5			Lbyy					Lateral
16	MP9	MountPipe	96			Lbyy					Lateral
17	MP7	Mount Pipe	96			Lbyy					Lateral
18	MP8	MountPipe	96			Lbyy					Lateral

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]L-t	torqu	Куу	Kzz	Cb	Function
19	MP3	MountPipe	96			Lbyy						Lateral
20	MP1	MountPipe	96			Lbyy						Lateral
21	MP6	MountPipe	96			Lbyy						Lateral
22	MP4	MountPipe	96			Lbyy						Lateral
23	MP2	MountPipe	96			Lbyy						Lateral
24	MP5	MountPipe	96			Lbyy						Lateral
25	M4	Grating Horiz	27.295			Lbyy						Lateral
26	M9	Grating Horiz	27.295			Lbyy						Lateral
27	M14	Grating Horiz	27.295			Lbyy						Lateral
28	M18	Face Horiz	96			Lbyy						Lateral
29	M48	Face Horiz	96			Lbyy						Lateral
30	M62	Face Horiz	96			Lbyy						Lateral
31	M61A	Cross Horiz	33			Lbyy						Lateral
32	M60A	Cross Horiz	33			Lbyy						Lateral
33	M62A	Cross Horiz	33			Lbyy						Lateral
34	M5	Corner Plate	42			Lbyy						Lateral
35	M10	Corner Plate	42			Lbyy						Lateral
36	M15	Corner Plate	42			Lbyy						Lateral
37	M88A	Side Plate	1.5			Lbyy						Lateral
38	M89A	Side Plate	1.5			Lbyy						Lateral
39	M90A	Side Plate	1.5			Lbyy						Lateral
40	M91A	Side Plate	1.5			Lbyy						Lateral
41	M92A	Side Plate	1.5			Lbyy						Lateral
42	M93A	Side Plate	1.5			Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	DistributedA	rea (Me	Surface(
1	Dead	DL			-1	13				
2	Dead of Ice	RL				13		42		
4	Structure Wind (0)	None						84		
5	Structure Wind (30)	None						84		
6	Structure Wind (45)	None						84		
7	Structure Wind (60)	None						84		
8	Structure Wind (90)	None						84		
9	Structure Wind (120)	None						84		
10	Structure Wind (135)	None						84		
11	Structure Wind (150)	None						84		
12	Structure Wind w/ Ice (0)	None						84		
13	Structure Wind w/ Ice (30)	None						84		
14	Structure Wind w/ Ice (45)	None						84		
15	Structure Wind w/ Ice (60)	None						84		
16	Structure Wind w/ Ice (90)	None						84		
17	Structure Wind w/ Ice (120)	None						84		
18	Structure Wind w/ Ice (135)	None						84		
19	Structure Wind w/ Ice (150)	None						84		
20	Antenna Wind (0)	None				26				
21	Antenna Wind (30)	None				26				
22	Antenna Wind (45)	None				26				
23	Antenna Wind (60)	None				26				
24	Antenna Wind (90)	None				26				

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	Area (Me	Surface(
25	Antenna Wind (120)	None				26				
26	Antenna Wind (135)	None				26				
27	Antenna Wind (150)	None				26				
28	Antenna Wind w/ Ice (0)	None				26				
29	Antenna Wind w/ Ice (30)	None				26				
30	Antenna Wind w/ Ice (45)	None				26				
31	Antenna Wind w/ Ice (60)	None				26				
32	Antenna Wind w/ Ice (90)	None				26				
33	Antenna Wind w/ Ice (120)	None				26				
34	Antenna Wind w/ Ice (135)	None				26				
35	Antenna Wind w/ Ice (150)	None				26				
36	Maintenance Live Lm (1)	OL1				1				
37	Maintenance Live Lm (2)	OL2				1				
38	Maintenance Live Lm (3)	OL3				1				
41	Maintenance Live Lv (1)	OL6					1			

Load Combinations

	Des cription	SoP	SRSSBL	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
1	Summary: 1.0D + 1.	.Yes Y	DL	. 1	20	1																
2	1.4D	Yes Y	DL	. 1.4																		
3	1.2D + 1.0W(0)	Yes Y	DI	. 1.2	4	1	20	1														
4	1.2D + 1.0W(30)	Yes Y	DI	. 1.2	5	1	21	1														
5	1.2D + 1.0W(45)	Yes Y	DL	. 1.2	6	1	22	1														
6	1.2D + 1.0W(60)	Yes Y	DL	. 1.2	7	1	23	1														
7	1.2D + 1.0W(90)		DL	. 1.2	8	1	24	1														
8	1.2D + 1.0W(120)	Yes Y	DL	. 1.2	9	1	25	1														
9	1.2D + 1.0W(135)	Yes Y	DL	. 1.2	10	1	26	1														
10	1.2D + 1.0W(150)	Yes Y	DL	. 1.2	11	1	27	1														
11	1.2D + 1.0W(180)	Yes Y	DL	. 1.2	4	-1	20	-1														
12	1.2D + 1.0W(210)		DL		5	-1	21	-1														
13	1.2D + 1.0W(225)	Yes Y	DL	1.2	6	-1	22	-1														
14	1.2D + 1.0W(240)		DL	1.2	7	-1	23	-1														
15	1.2D + 1.0W(270)		DL	. 1.2	8	-1	24	-1														
16	1.2D + 1.0W(300)	Yes Y	DL	1.2	9	-1	25	-1														
17	1.2D + 1.0W(315)		DL		10	-1	26	-1														
18	1.2D + 1.0W(330)		DL	. 1.2	11	-1	27	-1														
19	1.2D + 1.0Di + 1.0	Yes Y	DL	. 1.2	RL	1	12	1	28	1												
20	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	13	1	29	1												
21	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	14	1	30	1												
22	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	15	1	31	1												
23	1.2D + 1.0Di + 1.0		DL		RL	1	16	1	32	1												
24	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	17	1	33	1												
25	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	18	1	34	1												
26	1.2D + 1.0Di + 1.0	Yes Y	DL	. 1.2	RL	1	19	1	35	1												
27	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	12	-1	28	-1												
28	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	13	-1	39	-1												
29	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	14	-1	30	-1												
30	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	15	-1	31	-1												
31	1.2D + 1.0Di + 1.0		DL	. 1.2	RL	1	16	-1	32	-1												
32	1.2D + 1.0Di + 1.0	Yes Y	DL	. 1.2	RL	1	17	-1	33	-1												

Load Combinations (Continued)

	Description	So D	. SRSSBL	- Eas	DI C	È E e e	PI C	Faa	PL C	Eaa	PL C	Eaa		Faa	Eaa	DI C	Eaa	DI C	Eco	PLC	Ear
33	Des cription 1.2D + 1.0Di + 1.0			1.2			1		34		.BLU	гас	DLU	гас	гас	BLU	гас		Fac.	BLU	гa
	1.2D + 1.0Di + 1.0			. 1.2				-1	35												
	1.2D + 1.5Lm(1) +		_	1.2				.065													
	1.2D + 1.5Lm(1) + 1.2D + 1.5Lm(1) + 1.2D + 1.5Lm(1) +							.065													
	1.2D + 1.5Lm(1) + 1.2D + 1.5Lm(1) + 1.2D + 1.5Lm(1) +		_	1.2	_	_		.005	_												
				. 1.2		_			_		_										
	1.2D + 1.5Lm(1) +			_				.065													
	1.2D + 1.5Lm(1) +			_				.065													
	1.2D + 1.5Lm(1) +																				
41	1.2D + 1.5Lm(1) +					.065															
42	1.2D + 1.5Lm(1) +			. 1.2	_																
43	1.2D + 1.5Lm(1) +			. 1.2	_	065			_												
44	1.2D + 1.5Lm(1) +			_		065															
	1.2D + 1.5Lm(1) +			. 1.2		065															
46	1.2D + 1.5Lm(1) +	Yes Y	DI	. 1.2		065															
47	1.2D + 1.5Lm(1) +			. 1.2		065															
48	1.2D + 1.5Lm(1) +	Yes Y	DI			065															
49	1.2D + 1.5Lm(1) +	Yes Y				065															
50	1.2D + 1.5Lm(1) +	Yes Y	DI																		
	1.2D + 1.5Lm(2) +			1.2				.065													
	1.2D + 1.5Lm(2) +					.065															
-	1.2D + 1.5Lm(2) +			1.2				.065													
	1.2D + 1.5Lm(2) +							.065													
	1.2D + 1.5Lm(2) +		_	1.2	_	_		.065	_												
	1.2D + 1.5Lm(2) +			1.2		-															
57	1.2D + 1.5Lm(2) +		_	. 1.2		.065															
58	1.2D + 1.5Lm(2) +				_	_															
59	1.2D + 1.5Lm(2) +			1.2	_	065															
	1.2D + 1.5Lm(2) + 1.5Lm(2) + 1.5Lm(2)				_	065			_												
60				1.2	_	_															
61	1.2D + 1.5Lm(2) +			. 1.2	_	065															
62	1.2D + 1.5Lm(2) + 1.2D + 1.5Lm(2) + 1.2D + 1.5Lm(2) +					065															
63	1.2D + 1.5Lm(2) +			. 1.2	_	065															
64	1.2D + 1.5Lm(2) +																				
65	1.2D + 1.5Lm(2) +					065															
66	1.2D + 1.5Lm(2) +																				
	1.2D + 1.5Lm(3) +			. 1.2				.065													
	1.2D + 1.5Lm(3) +			-				.065													
	1.2D + 1.5Lm(3) +							.065													
	1.2D + 1.5Lm(3) +					.065															
	1.2D + 1.5Lm(3) +					.065															
	1.2D + 1.5Lm(3) +					.065															
73	1.2D + 1.5Lm(3) +	Yes Y				.065															
74	1.2D + 1.5Lm(3) +	Yes Y	DI	. 1.2	11	.065	27	.065	OL3	1.5											
75	1.2D + 1.5Lm(3) +	Yes Y				065															
	1.2D + 1.5Lm(3) +		DI	1.2	5	065	21	065	OL3	1.5											
	1.2D + 1.5Lm(3) +					065															
	1.2D + 1.5Lm(3) +			. 1.2																	
	1.2D + 1.5Lm(3) +					065															
	1.2D + 1.5Lm(3) +					065															
	1.2D + 1.5Lm(3) +					065															
	1.2D + 1.5Lm(3) +					065															
	1.2D + 1.5Lm(3) + 1.2D + 1.5Lv(1) + 1.5Lv(<u> </u>																	
	1.2D + 1.5Lv(1) +					.065															
04	1.20 · 1.3LV(1) +	1 Y	וט	. 1.2	0	1.005	21	.005		1.0											

Load Combinations (Continued)

	Des cription	SoP	SRSSBLC	Fac	BLC	FacE	3LC I	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
85	1.2D + 1.5Lv(1) + 1	Yes Y	DL	1.2	6	.065	22	.065	OL6	1.5												
86	1.2D + 1.5Lv(1) + 1	Yes Y	DL	1.2	7	.065	23	.065	OL6	1.5												
	1.2D + 1.5Lv(1) + 1		DL	1.2		.065																
88	1.2D + 1.5Lv(1) + 1	Yes Y	DL	1.2	9	.065	25	.065	OL6	1.5												
89	1.2D + 1.5Lv(1) + 1	Yes Y	DL	1.2		.065																
90	1.2D + 1.5Lv(1) + 1	Yes Y	DL	1.2	11	.065	27	.065	OL6	1.5												
	1.2D + 1.5Lv(1) + 1		DL	1.2		065																
	1.2D + 1.5Lv(1) + 1		DL	1.2		065																
	1.2D + 1.5Lv(1) + 1		DL	1.2	-	065	_															
94	1.2D + 1.5Lv(1) + 1	Yes Y	DL	1.2	7	065	23-	.065	OL6	1.5												
95	1.2D + 1.5Lv(1) + 1	Yes Y	DL	1.2		065																
	1.2D + 1.5Lv(1) + 1		DL	1.2		065																
	1.2D + 1.5Lv(1) + 1		DL	1.2		065						-										
98	1.2D + 1.5Lv(1) + 1	Yes Y	DL	1.2	11	065	27-	.065	OL6	1.5												

Envelope Joint Reactions

	Joint		X [b]	LC	Y [b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	P24	max	1066.707	18	892.062	16	1934.775	30	333.566	6	450.6	6	1838.333	18
2		min	-1065.112	10	-891.219	8	29.371	6	-4791.159	30	-2779.788	78	-1832.144	10
3	P13	max	681.589	3	1239.839	15	1889.538	19	898.541	31	4943.991	19	1798.47	7
4		min	-692.011	11	-1245.094	7	19.762	11	74.377	7	-512.763	11	-1795.427	15
5	P1	max	1221.596	3	821.97	15	1942.689	24	3683.671	24	60.509	16	1772.849	12
6		min	-1214.058	11	-816.254	7	36.662	16	-603.782	16	-3302.921	40	-1781.647	4
7	Totals:	max	2957.704	3	2925.581	15	5234.191	27						
8		min	-2957.7	11	-2925.525	7	1663.554	1						

Envelope A ISC 15th (360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]LC	ShearCheck	Loc[in]	DirLC	phi*Pnc	phi*Pnt	.phi*Mn	phi*Mn	.Cb Eqn
1	M62A	C3.38x2.06	.275	0 30	.059	26.1	y 21	48281.4	56700	2203.138	5751	1H1-1b
2	M61A	C3.38x2.06	.268	0 24	.057	26.1	y 32	48281.4	56700	2203.138	5751	1H1-1b
3	M60A	C3.38x2.06	.264	0 19	.057	26.1	y 27	48281.4	56700	2203.138	5751	1H1-1b
4	M63A	C3.38x2.06	.260	0 9	.039	0	y 19	48281.4	56700	2203.138	5751	1H1-1b
5	M61B	C3.38x2.06	.256	0 3	.039	0	y 29	48281.4	56700	2203.138	5751	1H1-1b
6	M63B	C3.38x2.06	.248	0 14	.038	0	y 24	48281.4	56700	2203.138	5751	1H1-1b
7	M10	PL6-1/2x3/8	.237	21 3	.131	36.0	y 31	3658.14	78975	616.993	8113.613	1H1-1b
8	M15	PL6-1/2x3/8	.233	21 14	.112	36.0	y 8	3658.14	78975	616.993	8108.21	1H1-1b
9	M5	PL6-1/2x3/8	.225	21 8	.119	36.0	y 3	3658.14	78975	616.993	8118.285	1H1-1b
10	M12	HSS4X4X6	.219	44.5 31	.074	23.8	y 27	201121	215100	23962.5	23962.5	2H1-1b
11	Μ7	HSS4X4X6	.215	44.5 21	.076	23.8	y 32	201121	215100	23962.5	23962.5	2H1-1b
12	M2	HSS4X4X6	.205	44.5 23	.097	44.5	y 39	201121	215100	23962.5	23962.5	2H1-1b
13	MP8	HSS2.875x	.201	26.2 4	.059	26.2	12	22397.2	. 43014.6	3142.95	3142.95	4H1-1b
14	M93A	PL2-3/8x1/2	.200	1.5 3	.246	0	y 22	38256 . 8	38475	400.783	1903.711	1H1-1b
15	M89A	PL2-3/8x1/2	.199	1.5 16	.254	0	y 27	38256 . 8	38475	400.783	1903.711	2H1-1b
16	M91A	PL2-3/8x1/2	.197	1.5 5	.249	0	y 34	38256 . 8	38475	400.783	1903.711	2H1-1b
17	M92A	PL2-3/8x1/2	.196	1.5 18	.173	0	y 21	38256.8	38475	400.783	1903.711	2H1-1b
18	MP2	HSS2.875x	.194	26.215	.061	26.2	7	22397.2	. 43014.6	3142.95	3142.95	4H1-1b
19	M88A	PL2-3/8x1/2	.192	1.5 7	.192	0	y 58	38256.8	38475	400.783	1903.711	2H1-1b
20	M90A	PL2-3/8x1/2	.190	1.5 12	.182	0	y 31	38256.8	38475	400.783	1903.711	2H1-1b
21	MP6	HSS2.875x	.185	26.210	.062	26.2	7	22397.2	. 43014.6	3142.95	3142.95	3H1-1b

Envelope A ISC 15th (360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]LC	ShearCheck	Loc[in]	Dir	LC	phi*Pnc	phi*Pnt	.phi*Mn	phi*Mn	.Cb E	Iqn
22	MP5	HSS2.875x	.184	26.210	.067	26.2		18	22397.2	43014.6	3142.95	3142.95	4 H ′	1-1b
23	MP3	HSS2.875x	.177	26.2 7	.063	26.2		13	22397.2	43014.6	3142.95	3142.95	3 H <i>'</i>	1-1b
24	M8	L2x2x4	.177	0 3	.012	0	У	11	29527 . 5	42480	959.63	2190.068	2 H	2-1
25	MP9	HSS2.875x	.175	26.2 4	.080	26.2		3	22397.2	43014.6	3142.95	3142.95	3 H <i>'</i>	1-1b
26	MP4	HSS2.875x	.171	26.218	.064	26.2		12	22397 . 2	43014.6	3142.95	3142.95	3H <i>*</i>	1-1b
27	M3	L2x2x4	.166	0 9	.012	0	У	16	29527.5	42480	959.63	2190.068	2 H	2-1
28	M13	L2x2x4	.163	0 14	.012	0	У	6	29527.5	42480	959.63	2190.068	2 H	2-1
29	MP1	HSS2.875x	.160	26.2 7	.067	26.2		9	22397.2	43014.6	3142.95	3142.95	4H*	1-1b
30	MP7	HSS2.875x	.156	26.212	.068	26.2		15	22397.2	43014.6	3142.95	3142.95	4H*	1-1b
31	M29	L6.6x4.46x	.155	39 3	.021	39	z	11	51434 . 5	87561	2464.809	7125.374	1 <u>H</u>	2-1
32	M30	L6.6x4.46x	.146	39 8	.021	39	z	16	51434 . 5	87561	2464.809	7125.374	1 H	2-1
33	M28	L6.6x4.46x	.142	0 8	.021	39	z	6	51434 . 5	87561	2464.809	7125.374	1 <u>H</u>	2-1
34	M4	L2x2x4	.139	0 16	.019	27.2	у	20	29527 . 5	42480	959.63	2190.068	2 H	2-1
35	M14	L2x2x4	.139	0 6	.019	27.2	у	26	29527 . 5	42480	959.63	2190.068	2 H	2-1
36	M25	HSS2.875x	.136	6.063 12	.062	92.4		9	22397 . 2	43014.6	3142.95	3142.95	1H1	1-1b
37	M65A	HSS2.875x	.132	6.063 18	.063	92.4		7	22397 . 2	43014.6	3142.95	3142.95		1-1b
38	M51	HSS2.875x	.130	6.063 7	.060	3.537		16	22397 . 2	43014.6	3142.95	3142.95	1H1	1-1b
39	M9	L2x2x4	.128	0 11	.019	27.2	J		29527 . 5	42480	959.63	2190.068	2 H	2-1
40	M62	HSS3.500x	.107	31.3 3	.047	48		17	45873 . 0	71580.6	6337.65	6337.65		1-1b
41	M48	HSS3.500x	.104	31.3 8	.045	48		15	45873 . 0	71580.6	6337.65	6337.65	2H*	1-1b
42	M18	HSS3.500x	.104	31.314	.038	48		5	45873 . 0	71580.6	6337.65	6337.65	1H	1-1b

APPENDIX D

ADDITIONAL CALCULATIONS

Square/Rectangular Flange Connection

-ПА-222-Н

Site Number	876346
Job number	19558057
Code	TIA-222-H

Normalize usages per TIA-222-H, Sec. 15.5

REACTIONS (ABOUT X - HORIZONTAL)					
Moment, Mu (kip-ft)	5.074				
Axial, Pu (kips) - Negative for tension	-0.173				
Shear, Vu (kips)	1.934				

BOLT CONFIGURATION					
Bolt Quantity, n _b	4				
Bolt Diameter, d _b (in)	0.625				
Bolt Grade	A325				
Width between bolts, s (in)	7.00				

PLATE CONFIGURATION					
Plate Shape	Square				
Plate Grade	A572-50				
Thickness of plate, t (in)	0.750				
Width of plate, w (in)	9.00				

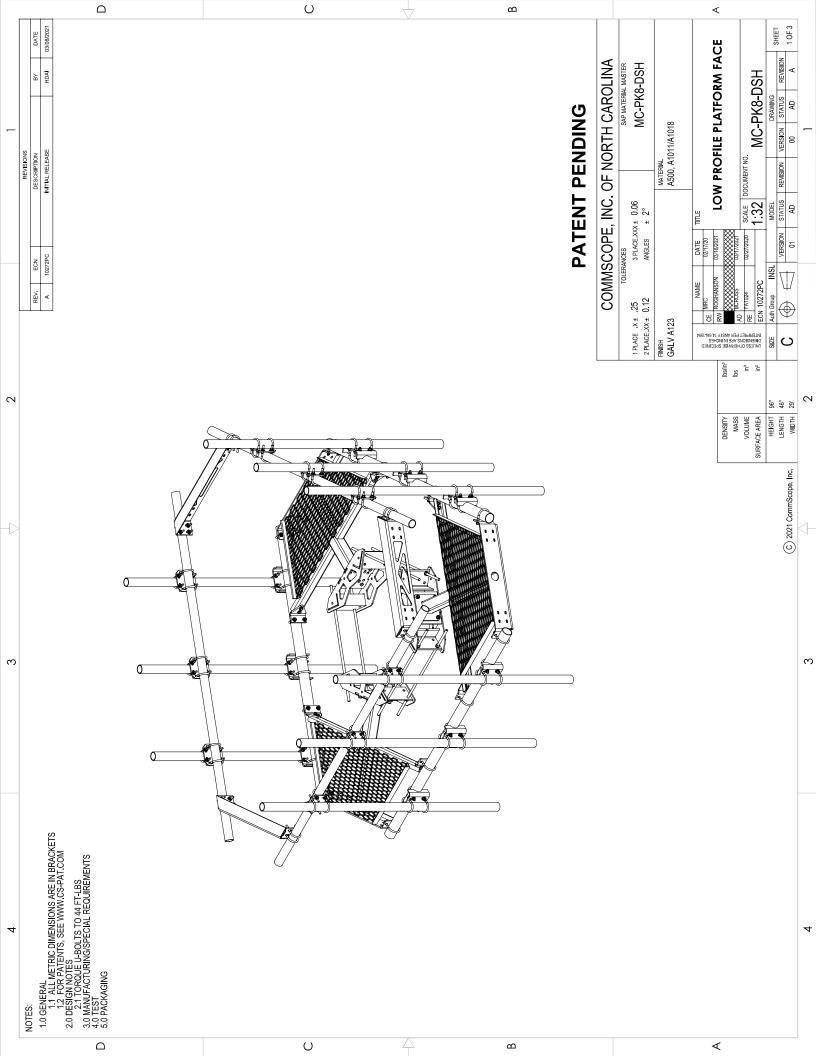
SUPPORT ARM CONFIGURATION					
Member Shape	Square				
Member Grade	A500-50				
Thickness of Member, t (in)	0.375				
Width of member, w (in)	4.000				

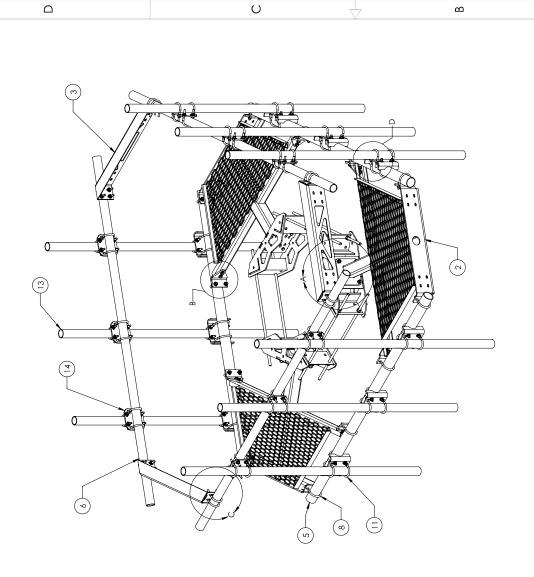
Stiffeners present?

Member/Node Under Consideration	P24
Controlling Load Combination (X-Direction)	LC 30
Controlling Load Combination (Y-Direction)	
X and Y Reactions Simultaneous?	No

Kimley **»Horn**

REACTIONS (ABOUT Y - VERTICAL)					
Moment, Mu (kip-ft)	0.089				
Axial, Pu (kips) - Negative for tension	0.730				
Shear, Vu (kips)	0.061				


BOLT USAGE						
Maximum Tension in Bolt, Tub (kip)	4.392					
Nominal Tensile Strength, ϕ Rnt (kip)	20.340					
Tensile Usage (Section 4.9.6.1)	21%					


PLATE USAGE	
Ultimate flexural load in plate, Mu (kip-in)	9.867
Factored flexural capacity, ϕ Mn (kip-in)	28.430
Flexural Usage	33%

SUPPORT ARM USAGE						
Ultimate flexural load in member, Mu (kip-ft)	5.074					
Factored flexural capacity, ϕ Mn (kip-ft)	27.817					
Flexural Usage	17%					

APPENDIX E

SUPPLEMENTAL DRAWINGS

© 2021 CommScope, Inc.

2

e

 MC-RN150: MC-RN150:
 12" - 50" OD RNGMONT
 11"

 MC-RN150: MC-200602
 SECTOR WELDMENT FOR SNUB NOSE PLATFORM
 3

 MT193801
 Corner Weldment FSNUb NOSE PLATFORM
 3

 MT54203
 S.0" OD RV PIT
 1

 M154796
 3.50" OD X 96" GALV PIPE
 3

 M1544120
 2.87" C DD. X 12" PIPE
 3

 M1544120
 1.2" SAT SO D. X 12" PIPE
 3

 M1544120
 1.12" C ALV ELIT MASHER
 12

 M1544120
 1.12" C ALV ELIT MASHER
 12

 M1545120
 1.12" C ALV DUT TIPE
 3

 M1544120
 1.12" C ALV DUT TIPE
 3

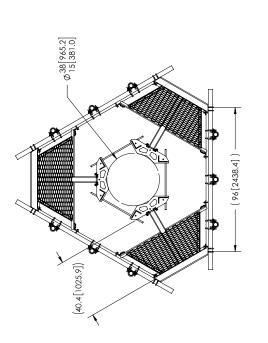
 M1545120
 1.12" X 3-5/8" X 5" GALV U-BOLT
 12

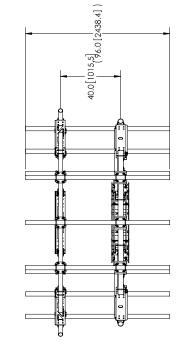
 M17200618
 1.12" C ALV DUT TIPE
 12

 M17200618
 1.12" X 2" GALV U-BOLT
 12

 M1721984
 3.5" OD X 2"/6" OD X 2"/6" OD X 2"/6" OD X 2"/6" OD X 2"/6

<


4


QTY.

DESCRIPTION

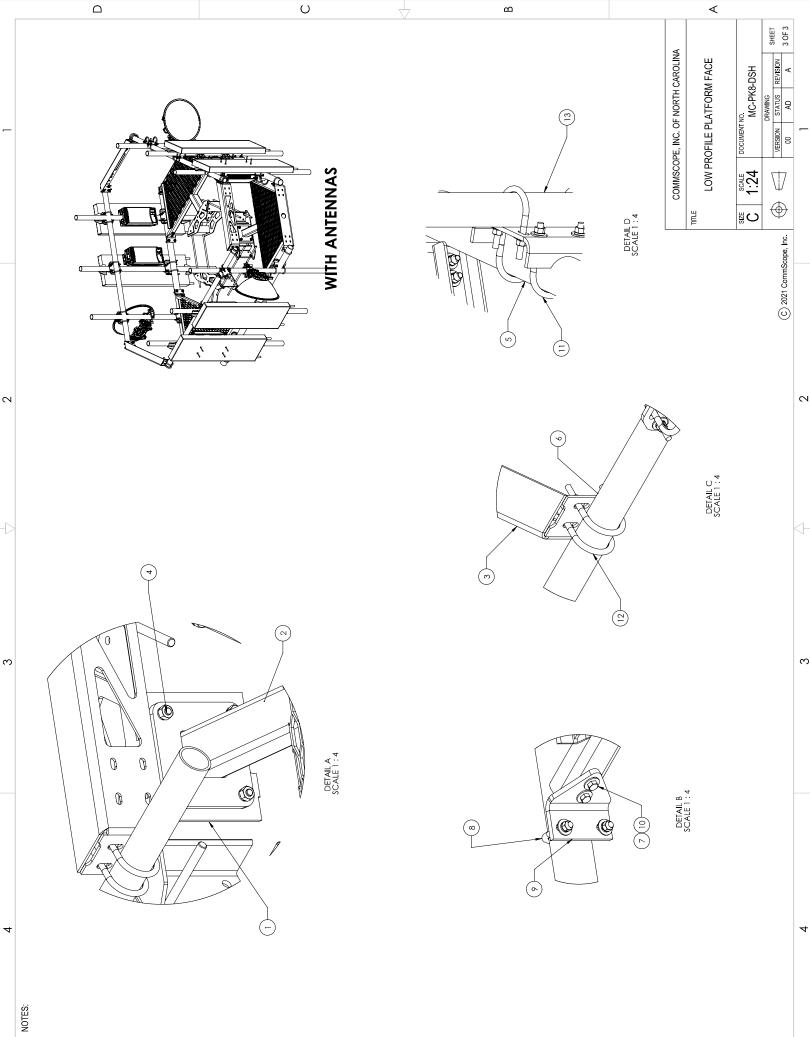
PART NO

ITEM

4	

മ

υ


NOTES:

 \Box

4

2

c

 \square

υ

മ

<

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 876346

BOBOS00873A 23 Holland Road Union, Connecticut 06076

May 19, 2022

EBI Project Number: 6222003234

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	8.02%			

environmental | engineering | due diligence

May 19, 2022

Attn: Dish Wireless

Emissions Analysis for Site: 876346 - BOBOS00873A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **23 Holland Road** in **Union, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 23 Holland Road in Union, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

environmental | engineering | due diligence

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 119 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	Ι
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd
Height (AGL):	119 feet	Height (AGL):	119 feet	Height (AGL):	119 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts
ERP (VV):	1,424.17	ERP (W):	1,424.17	ERP (VV):	1,424.17
Antenna AI MPE %:	0.59%	Antenna BI MPE %:	0.59%	Antenna CI MPE %:	0.59%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
Dish Wireless (Max at Sector A):	0.59%				
AT&T	4.26%				
Metro PCS	0.51%				
Sprint	2.66%				
Site Total MPE % :	8.02%				

Dish Wireless MPE % Per Sector							
Dish Wireless Sector A Total:	0.59%						
Dish Wireless Sector B Total:	0.59%						
Dish Wireless Sector C Total:	0.59%						
Site Total MPE % :	8.02%						

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	110.82	119.0	1.25	600 MHz n71	400	0.31%
Dish Wireless 1900 MHz n70	4	245.22	119.0	2.76	1900 MHz n70	1000	0.28%
					Total:	0.59%	

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	0.59%		
Sector B:	0.59%		
Sector C:	0.59%		
Dish Wireless			
Maximum MPE %	0.59%		
(Sector A):			
Site Total:	8.02%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **8.02%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

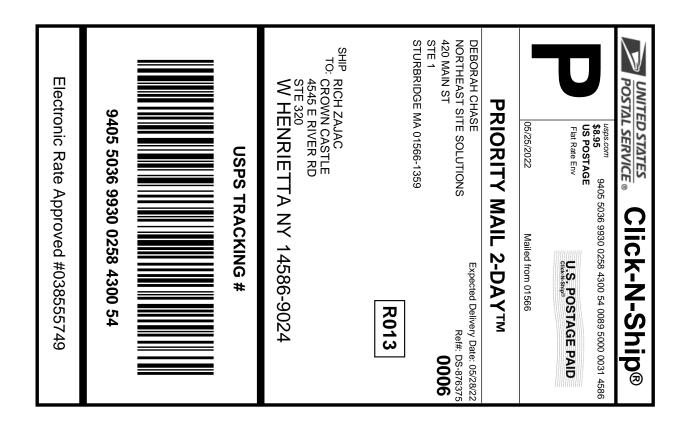
Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application Crown Castle telecommunications site at: 23 HOLLAND ROAD, UNION, CT 06076

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name:876346/UNIONCustomer Site ID:BOBOS00873A/Site Address:23 Holland Road, Union, CT 06076

Crown Castle

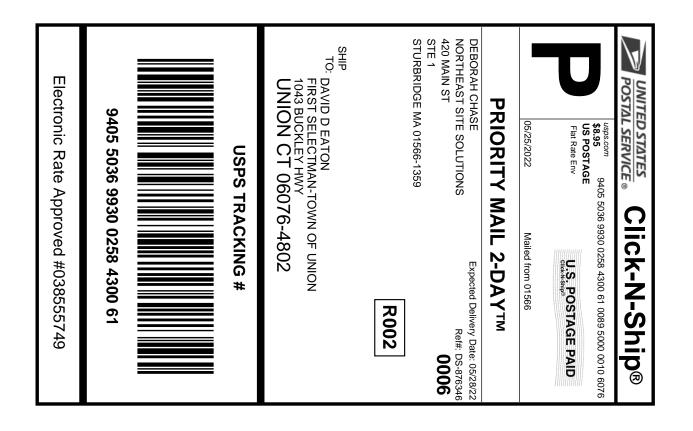

By:

5/24/2022 Date:

Richard Zajac Site Acquisition Specialist

Exhibit H

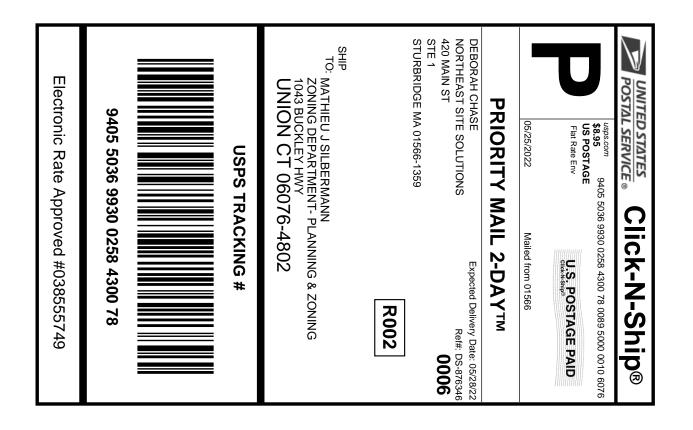
Recipient Mailings


Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

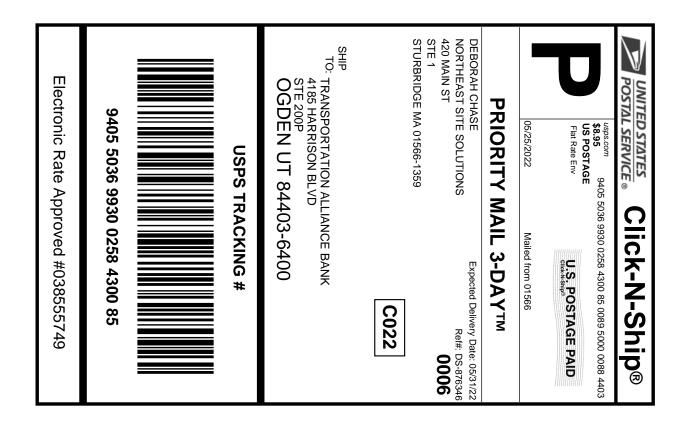
UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com


Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

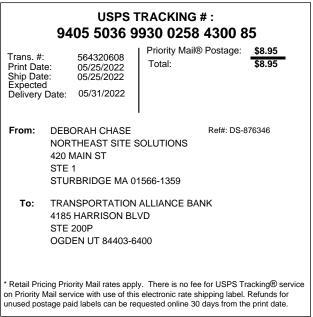
Click-N-Ship® Label Record

UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com


Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record


UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

EXAMPLE STATES Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

876346 Crown Dish

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

	(800)	275-8	177	0
05/27/2022				03:32 PM
Product		Qty		Price
Prepaid Mail West Hen Weight: (Acceptand	rietta, M D 1b 2.0 ce Date: D5/27/202	1 Y 145)0 oz 22		\$0,00
Prepaid Mail Stafford Weight: (Acceptand Fri (Tracking	Springs,) 15 8.5)e Date:)5/27/202	1 CT 0 50 oz 22	6076	\$0.00
Tracking	Springs,) 1b 8.5 >e Date:)5/27/202	i0 oz 2		\$0.00 78
Prepaid Mail Ogden, UT Weight: C Acceptanc Fri C Tracking 9405	- 84403) 15 8,5 >e Date:)5/27/202	2	3 4300 (\$0.00 35
Grand Total:				#0.00
eligibi o Go ********	usehold e to rec f 8 free to www.c *******	in the eive a test ovidte *****	e U.S. i a thírd kits. ≥sts.gov	s now set
T https://		r Pack for FR delive	kages REE O €FY.LISps	
	r guaran you for	teed s	sexvices busines	only. s.
Go to: http or scan this	s about s://post code wi	alexoe	entenceN	com/Pos