Turnkey Wireless Development

Northeast Site Solutions
Denise Sabo
4 Angela's Way, Burlington CT 06013
denise@northeastsitesolutions.com

February 6, 2023

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Tower Share Application 1050 Buckley Hwy, Union CT 06076
Latitude: 41.999167
Longitude: -72.158369
Site \#: CT24369-A_BOBOS00876A_SBA_DISH

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 1050 Buckley Hwy, Union, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 105 -foot level of the existing 168 -foot tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the fenced compound. Included are plans by B+T, dated January 25, 2023, Exhibit C. Also included is a structural analysis prepared by GPD, stamped January 30, 2023, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Union, Special Permit approval no. 9719 received on August 16, 1998. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to First Selectman David D Eaton and Mathieu J Silbermann, ZEO/ Planning and Zoning Commissioner for the Town of Union, as well as the tower owner and property owner.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 168 -feet and the Dish Wireless LLC antennas will be located at a center line height of 105 -feet.
2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

Turnkey Wireless Development

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 13.53% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.
A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Union. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 105 -foot level of the existing 168-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Union.

Sincerely,
Denise sabo

Denise Sabo

Mobile: 203-435-3640
Fax: 413-521-0558
Office: 4 Angela's Way, Burlington CT 06013
Email: denise@northeastsitesolutions.com

NORTHESST
 SITE SOLUTIONS

Turnkey Wireless Development

Attachments
Cc:
First Selectman David D Eaton
Union Town Hall
1043 Buckley Hwy Union CT 06076
Mathieu J Silbermann, ZEO/ Planning and Zoning Commissioner
Union Town Hall
1043 Buckley Hwy Union CT 06076
Wayne Kemp and Kathy-Lee Kemp
1050 Buckley Highway Union, CT 06076
SBA - Tower Owner

Exhibit A

Original Facility Approval

Copy Distribution:
White - Planning \& Zoning Commission
Yellow - Building Inspector
Blue - Assessor
Green - Applicant

TOWN OF UNION, CONNECTICUT
OCCUPANCY/USE PERMIT
This is to certify that the Planning and Zoning Commission and/or the Building Official of the Town of Union, Connecticut, have inspected the
\qquad
and the location and use of this structure and premises complies with the provisions of The Town of Union Zoning Regulations and substantially complies with the Connecticut Building Code.

Inspected for Connecticut Building Code Compliance \qquad
Date $9-16$-98
Use Group \qquad
Type of Construction \qquad

Live load list floor \qquad
Live load and floor \qquad

Fire Grading \qquad

PLANNING AND ZONING COMMISSION TOWN of UNION, CONNECTIEGUT

TOWER
TELEPHONE
RADIO TOWER

Copy Distribution:

```
White - Planning & Zoning Commission
Yellow - Building inspector
Blue - Assessor
Green - Appllcant
```


TOWN OF UNION, CONNECTICUT
ZONING PERMIT

This is to certify that the Planning and Zoning Commission of the Town of Union, Connecticut, acting upon the application of WAYNE KEMP presently residing at 1050 BUCKLEY HioHfOAY do hereby approve and grant said applicant a Zoning Permit tor:

to be located at the following location: 1050 BUCKLEY HIGHWAY.

Be it understood that the requirements of the Zoning Regulations of the Town of Union Connecticut be fulfilled and that before occupancy of said structure or use of such building an Occupancy/Use Permit must be obtained from the Building Inspector and the Planning \& Zoning Commission.

This document is not a Building Permit but is an approval from the Zoning Board that what you propose to do complies with the Town of Union Zoning Regulations.

A BUILDING PERMIT MUST BE OBTAINED BEFORE CONSTRUCTION BEGINS. PLEASE BE SURE TO CONTACT THE BUILDING INSPECTOR BEFORE PROCEEDING WITH ANY CONSTRUCTION.

PLANNING AND ZONING COMMISSION
TOWN OF UNION, CONNECTICUT
Mail Address: 1024 Buckley Highway, Union, CT 06076
SPECIAL PERMIT
\qquad
Nature of Special Permit: of A TELECOMmUNicATIONS FACility
\qquad
\qquad
Applicable Regulations): \qquad $V_{\text {Ni on }} P_{2} \geq \operatorname{Sectan} 3.11$

Owners of Record:

Date Issued:

\qquad
\qquad

Exhibit B

Property Card

1050 BUCKLEY HIGHWAY

Location 1050 BUCKLEY HIGHWAY	Mblu $13 / 18 / 020 / /$		
Acct\#	00023000	Owner	KEMP WAYNE \& KATHY LEE
Assessment	$\$ 448,160$	Appraisal	$\$ 640,230$
PID 186	Building Count	3	

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2018	\$403,770	\$236,460	\$640,230
Assessment			
Valuation Year	Improvements	Land	Total
2018	\$282,640	\$165,520	\$448,160

Owner of Record

Owner	KEMP WAYNE \& KATHY LEE	Sale Price	\$135,000
Co-Owner		Certificate	
Address	1050 BUCKLEY HWY	Book \& Page	39/384
	UNION, CT 06076	Sale Date	11/14/1996
		Instrument	Q

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrument	Sale Date
KEMP WAYNE \& KATHY LEE	\$135,000		39/384	Q	11/14/1996

Building Information

Building 1 : Section 1

Year Built:	1959
Living Area:	1,720
Replacement Cost:	$\$ 232,042$
Building Percent Good:	64
Replacement Cost Less Depreciation:	$\$ 148,510$

	Field
Style	Ranch
Model	Residential
Grade:	C+
Stories:	1 Story
Occupancy	1
Exterior Wall 1	Wood Shingle
Exterior Wall 2	
Roof Structure:	Gable or Hip
Roof Cover	Asphalt
Interior Wall 1	Drywall/Sheet
Interior Wall 2	Hardwood
Interior Flr 1	Quarry Tile
Interior Flr 2	Oil
Heat Fuel	Forced Air
Heat Type:	Central
AC Type:	3 Bedrooms
Total Bedrooms:	2
Total Bthrms:	0
Total Half Baths:	Modern
Total Xtra Fixtrs:	Total Rooms:
Bath Style:	
Kitchen Style:	

Building Photo

(https://images.vgsi.com/photos/UnionCTPhotos//00100101112.jpg)

Building Layout

(ParcelSketch.ashx?pid=186\&bid=186)

Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
BAS	First Floor	1,720	1,720
CTH	Cathedral Ceiling	448	0
FGR	Garage	397	0
PTO	Patio	866	0
UBM	Unfinished Basement	1,720	0
		5,151	1,720

Building 2 : Section 1

Year Built:	1999
Living Area:	2,200
Replacement Cost:	$\$ 224,312$
Building Percent Good:	77

Replacement Cost
Less Depreciation:
\$172,720

Building Attributes: Bldg 2 of 3	
Field	Description
STYLE	Garage/Office
MODEL	Commercial
Grade	Average
Stories:	1
Occupancy	1.00
Exterior Wall 1	Vinyl Siding
Exterior Wall 2	
Roof Structure	Gable or Hip
Roof Cover	Asphalt
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Oil
Heating Type	Gravity Air
AC Type	None/Partial
Bldg Use	STORE/SHOP
Total Rooms	
Total Bedrms	
Total Baths	
1st Floor Use:	
Heat/AC	None
Frame Type	Wood Frame
Baths/Plumbing	Light
Ceiling/Wall	CEIL \& WALLS
Rooms/Prtns	Light
Wall Height	13.00
\% Comn Wall	0.00

Building Photo

(https://images.vgsi.com/photos/UnionCTPhotos//default.jpg)

Building Layout

(ParcelSketch.ashx?pid=186\&bid=808)

Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
BAS	First Floor	1,750	1,750
AOF	Office	250	250
FST	Finished Utility/Storage	500	200
		2,500	2,200

Building 3 : Section 1

Year Built:

Living Area: 0
Replacement Cost: $\$ 0$

Building Percent Good:

Replacement Cost
Less Depreciation: \$0

	Field
Style	Description
Model	
Grade:	
Stories:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Style:	
Kitchen Style:	

Building Photo

(https://images.vgsi.com/photos/UnionCTPhotos//default.jpg)

Building Layout

(ParcelSketch.ashx?pid=186\&bid=819)

Building Sub-Areas (sq ft)	Legend
No Data for Building Sub-Areas	

Extra Features

Extra Features Legend				
Code	Description	Size	Value	Bldg \#
WHL	WHIRLPOOL	1.00 UNITS	\$2,310	1
FPL1	FIREPLACE 1 ST	1.00 UNITS	\$1,450	1
SNA	SAUNA	192.00 S.F.	\$9,220	1

Land

Land Use

Use Code 1010

Description
Zone
Neighborhood
Alt Land Appr No
Category

Land Line Valuation

Size (Acres) 5.40
Frontage 0
Depth 0
Assessed Value \$165,520
Appraised Value $\$ 236,460$

Outbuildings									Legend	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#				
FGR2	GARAGE-GOOD			2400.00 S.F.	$\$ 67,200$					
PAV1	PAVING-ASPHALT			3500.00 S.F.	$\$ 2,360$					

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2018	\$403,770	\$236,460	\$640,230
2017	\$334,280	\$247,630	\$581,910
2013	\$334,280	\$247,630	\$581,910

Assessment			
Valuation Year	Improvements	Land	Total
2018	\$282,640	\$165,520	\$448,160
2017	\$234,000	\$173,340	\$407,340
2013	\$234,000	\$173,340	\$407,340

(c) 2022 Vision Government Solutions, Inc. All rights reserved.

Parcel Information:

7/31/2019 11:42:39 AM
GIS ID: CT-145-13-18-000020
Owner Name: \quad KEMP WAYNE \& KATHY LEE

Taxlot highlighted in blue

Exhibit C

Construction Drawings

4. Do not nstall cable grounong kit at a bend and alwars direct grouno conouctor
5. NUT \& wastir shall be placed on the front side of the ground bar and bolted on
6. all grounolng parts and equipment to be suppled and installed by contractor.
7. THE Contractor shall. be responsible for installing adodtional grouno bar as
8. ensure the wre insuation terminaton is within $1 / 8$ " of the barrel (no shiners).

No sCaLE

6

5701 STUTHN SANTA E1 DRVE
LITLTEON, CO 80120

MTS ENGINEERNG P.L.L.C.

DRAWN BY:	CHECKED BY:	APPRoved BY:
MEH	RMC	RMC
Rfos rev \#		1.00

CONSTRUCTION
DOCUMENTS

Submitals		
Rev	Date	DESCRIPTION
-	9/20/22	Issuep for constuction
	10/28/22	1 ISsue for construction
2	1/25/23	ISSuep for construction
$\begin{aligned} & \text { A\&E PROJECT NUMEER } \\ & 165225.001 .01 \end{aligned}$		
Oish Wireless L-L.C.C.		
вовоS00876A 1050 BUCKLEY HWY UNION, CT 06076		
SHEET TITLEGROUNDING DETAILS		
G-3		

INFORMATION

This is an access point to an area with transmitting antennas.

Obey all signs and barriers beyond this point. Call the DISH Wireless L.L.C. NOC at 1-866-624-6874

Site ID: \qquad
3

NOTICE

 ($\left(1 i^{\prime}\right)$)
Transmilting Antenna(s)

Radio frequency fields beyond this point MAY EXCEED the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.
Site ID:

dish

A CAUTION

Transmitting Antenna(s)
Radio frequency fields beyond this point MAY EXCEED the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.
Site ID: \qquad desh

A WARNING

Radio frequency fields beyond this point EXCEED the FCC Occupational exposure limit.

bey all posted signs and site guidelines for

working in radio frequency environments.
Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.
Site ID:
dish

SBA ())

8051 CONGEESS AVENUE
BOCA RATON,
FL

CONSTRUCTIO DOCUMENTS
\qquad

165225.001 .01

IISH Whireless LL.LC.
PROUCCT INFORMATON
вовоs00876A BOBOSOB76A
050 BUCKLEY HWY UNION, CT 06076
\qquad
RF SIGNAGE

SIIE ACTVITY REQUREMENTS:

NoTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIING A WRITTEN NOTCE TO PROCEED
NTP) AND THE ISSUANCE OF A PURCHASE (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST
L.L.C. AND TOWER OWNER NOC \& THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

LOOK UP" - DISH Wreless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:
THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILTY SHALL BE CONSIDERED DURING ALL STAGES
OF DESIGN, INSTALATION, AND INSPECTON. TOWER MODFICATION, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALLATONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CIMBTNG FATCNS SHA

PRIOR TO THE START OF CONSTRUCTION, ALL REOURED JURISOICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT
IS NOT LIMTED TO, BUILING, ELECTRICAL, MECHANLCAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSTE ACTVIIES

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMTED TO, ERECTION PLANS, RIGGING PLANS, CLIMBBING
PLANS, AND RESCUE PLANS SHALL BE THE RESPONIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTANED HEREN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDTITON); FEDERAL, STATE, AND LOCAL REGULATIONS;
AND ANY APPLCABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTIN ACTVTIES BEING PERFORMED. ALL RGGG

 ACCORDANCE WTH ANSI/TA-322 (LATEST EDTION
5. ALL SITE WORK TO COMPLY WITH DISH Wireless LL.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION
ACTVIIES ON DISH Wireless LLL.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTNG STRUCTURES AND ANTENNAS."
6. IF THE SPECIFED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWNGS, THE CONTRACTOR SHALL PROPOSE
AN ALTERNATVE NTITALLATON FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDNG WTTH ANY SUCH
CHANGE OF INSTALLATON.
7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ALL APPLICABLE CODES, REGLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH AL LAWS, ORDNANCES RGES AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRRATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES,
REGLTATONS AND LAWUL ORDERS O AAY PUBLIC AUTHORITY REGRDING HE PERORMANCE OF THE WORK. ALL WORK CARRIED

8. THE CONTTACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WTH MANUFACTURER'S RECOMMENDATIONS
9. THE CONTRActor shall contact utlity locating services including private locates services prior to the start
10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTLITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE
PROTECTED AT ALL TIMES AND WHERE REQURED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED PROTECTED AT ALL TIMES AND WHERE REQURED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY
CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILING PIERS AROUND OR NEAR UTLITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LMMTED TO A) FALL PROTECTI,
PROCEDURES.
11. ALL SITE WORK SHAL
LATEST APRROVED REVISION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATNG WASTE MATERILL, DEBRIS, AND TRASH AT THE COMPLETION OF
THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRI, STCKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE STIE AND disposed of legally.
 WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WLL NOT INTEREERE WTH
THE EXECUTON OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTLTIIES.

15. the site shall be graded to cause surface water to flow away from the carrier's equipment and tower areas. 16. THE SUB GRADE SHALL BE COMPACTED AND bROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUPMENT OR
DRIVEWAY, SAALL BE GRADED TO A UNIFORM SLOPE, AND STABIIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTON DRIVEWAYE SHARLL BE GRADED TO A UNIORN
DRAWINGS ADN/OR PROJECT SPECIFICITONS
18. CONTRACTOR SHALL MINMIZE DISTURBANCE TO EXIISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
REQURED DURING CONSTRUCTOM, SHALL BE IN CONFORMANCE WITH THE LOCAL GUDELINES FOR EROSION AND SEDMENTS CONTROL 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCA
DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTON OF OWNER.
20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERALS SUCH AS COAAXAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
LCOATION.
21. contractor shall leave premises in clean condition. trash and debris should be removed from site on a daly
22. NO FILL OR EMBANKMENT MATERILL SHALL BE PLACED ON FROZEN GRound. FROZEN MATERILLS, SNOW OR ICE SHALL NOT
BE PLACED IN ANY FLLL OR EMBANKMENT.

GENERAL NOTES:
1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION
CARRIER:IISH Wireless L.L.C.
OWER OWNER:TOWER OWNER
 WORK DEPICTED WLL BE PERRORMED BY AN EXPERENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE
OF THE APPLLCABLE CODE STANDARDS AND REQUREMENTS AND OF INDUSTRY ACCEPTED STANDRD GOOD PRACTCE. AS NOT EVERY OF THE APPLCABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTCEE. AS NOT EVERY
CONDITON OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWNGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED CONDTTON OR ELEMENT IS (OR CAN BE EXPLCITLY SHOWN ON THESE DRAWINGS
STANDARD GOOD PRACTICE FOR MISELLAEEOUS WORK NOT EXPLICTLY SHOWN.
3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF
CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTON MEANS, METHODS, TECHNQUES

SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AN,
 STE VISTS BY THE ENGINEER OR HIS REPRESENT
OBSERVTION OF THE FINSHED STRUCTURE ONLY.
NOTES AND DETALL IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETALS
NO THERE NO DETALS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMLAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR GREATER,
RECORD.
S. SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENIIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND /OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBILTT OF THE CONTRACTOR TO IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBLITY OF THE CONTRACTOR TO FIELD VERFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO
FABRICATION OR CUTING OF ANY NEW OR EXISTING CONSTRUCTON ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANIES AND/OR CONFLCTS WITH THE CONSTRUCTION DRAWIIGS THE ENGINEER OF RECORD IS TO BE NOTFIED AS SOON AS
POSIBLE. Possible.
 EXISTING CONOITIONS AND LO CONFRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE
OISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
7. ALD MATERILS FURNSHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ALL APPLICABLE CODES, REGLLATIONS
AND ORINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTCES AND COMPLY WITH ALL LAWS, ORDINANCES, RULESS. AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES,
REGULATONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED

ORDINANCES AND APPLICABLE REGULATIONS
8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNSHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR
NECESSARY TO COMPLETE ALL INSTALATIONS AS INLCATED ON THE DRAWINGS.
9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WTH MANUFACTURER'S RECOMMENDATIONS
10. IF THE SPECIFILD EQUIPMENT CAN NOT BE INSTALLED AS SHOW ON THESE DRAWNGS, THE CONTRACTOR SHALL PROPOSE
AN ALTERATV
OF INSTALATION.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY
DAMAGED PART SHALL BE REPARED AT CONTRACTOR'S EXPENSE TO THE SATISACTION OF DISH Wireless L.L.C. AND TOWER OWNER
 ${ }_{\text {BASIS. }}^{14 .}$

SBA ())

-
No. 23924
lCENSEO IONAL E N

MTS ENGINEERING P.L.

DRAWN BY:	CHECKED Br:	APPRovED
мЕН	RMC	RMC

OCUMENTS

Submitals		
REV	DATE	DESCRIPTION
-	9/20/22	Issuef for consruut
1	10/88/22	Issuef for conssiructon
2	1/25/23	Issueb for constructon

165225.001.01

DISH WWireless h.L.C.
PROUECT NFORRATION
bobos00876A
UNION, CT 06076

GENERAL NOTES
(

CONCREIE，FOUNDAIONS，AND REINFORCING STEEL
ALL CONCRETE WORK SHALL BE IN ACCORDANCE WTH THE ACI 301，ACI 318，ACI 336，ASTM A184，ASTM A185 AND THE DESIGN
2．UNLESS NOTED otherwise，soll bearing pressure used for design of slabs and foundations is assumed to be 1000
3．ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIIE STRENGTH（f＇c）OF 3000 psi AT 28 DAYS，UNLLESS NOTED OTHERWIIEE．No
MORE THAN 90 MINUTES SHALL ELAPSE RROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD． MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACE
TEMPERATURE OF CONCREIE SHALL NOT EXCEED $90^{\circ}+$ AT TIME OF PLACEMENT
 MAXIMUM WATER－TO－CEMENT RATIO（W／C）OF 0．45．
5．all steel reinforcing shall conform to astm a615．AlL welded wire fabric（wwf）shall conform to ast a 185 ．al SPLICES SHALL BE CLASS＂B＂TENSION SPLICES，UNLESS NOTED OTHERWISE．ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS，
\＃4 bars and smaller 40 ks
\＃5 bars and larger 60 ks
${ }_{6}^{6 .}{ }_{\text {DRAWING：}}^{\text {THE }}$
Lolowing minmum concrete cover shall be provided for reinforcing steel unless shown otherwise on
－CONCRETE CAST AGAINST AND PERMANENLly EXposed to EARTH $3^{\text {n }}$
－CONCRETE EXPOSED TO EARTH OR WEATHER
－\＃g bars and larger $2^{\prime \prime}$
－concrete not exposed to earth or weather：
－slab and walls $3 / 4^{\prime \prime}$
－beams and Columns $1-1 / 2$
7．A tooled edge or a 3／4＂chamfer shall be provided at all exposed edges of concrete，unless noted otherwise，

ELECTRICAL INSTALATION NOTES：

ALL ELECTRICAL WORK SHALL BE PERFORMED in ACCORDAnCE with the project specifications，nec and all applicable 2．CONDUTT ROUTINGS are schematic．contractor shall install conduits so that access to equipment is not blocked 2． CONDUT ROUTINGS ARE SC
TRIP HAZARDS ARE ELMMNATED．

Wiring，raceway and support methods and materlals shall comply with the requirements of the nec．
all circuits shall be segregated and maintain minimum cable separation as required by the nec．
4．1．ALL EQUIPMEN SHALL BEAR THE UNDERWRTTERS LABORATORIES LABEL OF APPROVAL，AND SHALL CONFORM To REQUIREMENT OF THE NATIONAL ELECTRICAL CODE．
4．2．ALL overcurrent devices shall have an interrupting current rating that shall be greater than the short circuit
 governing jurisoiction．
5．EACH END OF EVERY POWER PHASE CONDUCTOR，GROUNDING CONDUCTOR，AND TELCO CONDUCTOR OR CABLE SHALL BE
LABELED WITH COLOR－CODED INSULATION OR ELECTRICAL TAPE（ 3 M BRAND， $1 / 2^{" \prime}$ PLASTCC ELECTRICAL TAPE WTH UV PROTECTION，OR EQUAL）．THE IDENTIFICATION METHOD SHALL CONFORM WTH NEC AND OSHA
6．ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE，PHASE
CONFIGURATON，WRE CONFIGURATON，POWER OR AMPACITY RATNG AND BRANCH CIRCUIT ID NUMBERS（i．e．PANEL BOARD AND CIRCUIT CoNf．
ID＇S）．
panel boards（id numbers）shall be clearly labeled with plastic labels．
tie wraps are not allowed．
9．ALL POWER AND EQUIPMENT GROUND WRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR（\＃14 OR LARGER）
WITH TTPE THHW，THWN，THWN－2，XHHW，XHHW－2，THW，THW－2，RHW，OR RHW－2 $\operatorname{INSULATION~UNLESS~OTHERWISE~SPCCIFIED~}$

11．POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI－CONDUCTOR，TYPE SOOW CORD（\＃14 OR LARGER）UNLESS
11．PPWER AD
OTHERWISE SPECFIFED．
 13．ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP－STYLLE，COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AN位S（OR EQUAL）．LUGS AND WIRE NUTS SHALL BE RATED FOR OPFRATON NOT LESS THAN $75^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{C}\right.$ IF AVAILABLE）

14．Raceway and cable tray shall be listed or labeled for electrical use in accordance with nema，ul，ansi／IEee and Ne． | ELECTRICAL Metallic tubing（emt），intermedate metal condut（imC），or rigid metal conduit（rmc）shall be used for |
| :--- |

ELECTRICAL METALLIC TUBING（EMT）OR METAL－CLAD CABLE（MC）SHALL BE USED FOR CONCEALED INDOOR LOCATIONS SCHEDULE 40 PVC UNDERGROUND ON STRAGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS／90s AND all approved above 18．LIOUD－TIGHT FLEXXBLE METALLIC CONDUIT（LIQUID－TIIE FLEX）SHALL BE USED INDOORS AND OUTDOORS，WHERE VIBRATION
OCCURS OR FLEXBBIITY IS NEEDED． 19．CONDUT AND tUBING FITTINGS SHALL BE THREADED OR COMPression－TYPE AND APProved for the location used．SEt 20．CABinets，boxes and wire ways shall be labeled for electrical use in accordance with nema，ul，ansl／iee and the
nec． 21．Wrewars shall be metal with an enamel finish and include a hinged cover，designed to swing open downward （Wiremolo specmate wireway）
22．SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER（PANDUTT TYPE E OR EQUAL）．
23．CONDUTS SHALL BE FASTENED SECURELY IN PLACE WTH APPROVED NON－PERFORATED STRAPS AND HANGERS．EXPLOSIVE
DEVICES（i．e．POWDER－ACTUATED）FOR ATACHING HANGRS TO STRUCTURE WIL NOT BE PERMTTED DEVICES（i．e．POWDER－ACTUATED）FOR ATTACHING HANGERS TO STRUCTURE WLLL NOT BE PERMITED．CLOSELY FOLLOW THE LINES O
THE STRUCTURE，MANTAN CLOSE PROXMITY TO THE STRUCTURE AND KEEP CONDUTS IN TIGHT ENYELOPES CHAGES

 FROM ENTERING．CONDUITS SHALL BE RIGIDYY CLAMPE
MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE
24．EQUIPMENT CABINETS，TERMINAL BOXES，JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY－COATED SHEET SteEL ShaLl MEE
EXTERIOR LOCATIONS．
25．METAL RECEPTACLE，SWICH AND DEVICE BOXES SHALL BE GALVANIZED，EPOXY－COATED OR NON－CORRODNG；SHALL MEET OR
EXCEED UL $514 A$ AND NEMA OS 1 AND BE RATED NEMA（（OR BETTER）FOR INTEROR LOCATIONS AND WEATHER PROTECTED（WP OR EXCEED UL 514 A AND NEMA OS 1
BETER）FOR EXTEROR LOCATONS．
26．nonmetallic receptacle，switch and device boxes shall meet or exceed nema os 2 （newest revision）and be rated NEMA 1 （OR BETTFR）FOR INTERIOR LOCATIONS AND WEATHER PROTECTED（WP OR BETTER）FOR EXTERIOR LOCATIONS，
27．THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSAAYY AUTHORIZATION FROM THE CARRIER AND／OR DISH Wireless L．L．C．AND
28．THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS，CABLES AND DISTRBUTION PANELS IN ACCORDANCE
．
29．INSTALL LAMICOID LabeL on the meter center to show＂ilsh Wireless l．．．c．c．
30．All empty／spare conduits that are installed are to have a metered mule tape pull cord installed．

SBA (μ)

GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S)
BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WTH THE NEC.
2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTNG (PER IEEE 1100 AND 81) FOR

GROUND ELLECTRODE SUSTEMS, THE CONTACCIO
ACHEVE A TEST RESULT OF 5 OHMS OR LESS
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO
PREVENT ANY LOSS OF CONTINUITY N THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTNUOUS WITH LISTED BONDING FITTINGS OR BY
BONDING ACROSS THE DISCONTINUITY WTH \#6 COPPER WIRE UL APPROVED GROUNDING TYP CONDUT CLAMPS
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQURED EQUPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS
WTH GREEN INSULATION, SIZED IN ACCORDANCE WTH THE NEC, SHALL BE FURNISHED AND INSTALLED WTH THE POWER CIRCUTS TO BTS EQUPMENT.
6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WTH GREEN INSULATED SUPPLEMENTAL
EQUPMENT GROUND WIRES, \#O STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLID TINNED COPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSTIE SIDE

OF THE GROUND BUS ARE PERMITIED.
8. All exterior ground conductors between equipment/ground bars and the ground ring shall be \#z solid tinned
9. ALUMNUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONs.
10. USE OF 90' bends in the protection grounding conductors shall be avoided when 45* bends can be adequately
. exothermic welds shall be used for all grounding connections below grade.
12. ALL GRound CONNECTIONS Above grade (INTERIOR and Exterior) shall be formed using high press crimps.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
14.
BAR.
15. APProved antioxidant coatings (i.e. conductive gel or paste) shall be used on all compression and bolted ground
Cónnections. Onnections.
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED wITH A CORROSION RESISTANT MATERILL.
17. MISCELLANEOUS ELLECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED to the Ground
18. Bond all metallic obuects within 6 ft of main ground ring with (1) \#2 bare solid tinned copper ground
19. GROUND CONDUCTORS USED FOR THE FACLITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED
THROUGH METALLIC OBUECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUIS, METAL SUPPORT CLIPS

 NONMETALLIC CONDUTT PROHBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

21. BULDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE
TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXITTNG GROUNDING TVO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WAIER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING
SYSEM, THE GROUNDING CONDUCTORS SHALL NOT EE SMALLER THAN $2 / 0$ COPPER. ROOFTOP GROUNOING RING SHALL BE BONDED THE EXISTING GROUNDING SYSTEM, THE BULLING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING
(FERROUS OR NONFERROUS METAL PPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINLER SYSTEM PIPES,

5701 SOUTH SANTA FE DRNE
LTTLETON, CO 80120

Bo51 Congress Aven『

1.23
10.23924

No. 23924
SIONAL

MTS ENGINEERNG P.L.L.C.
ires $3 / 31 / 23$

 \begin{tabular}{|c|c|c|}
\hline DRAWN BY: \& CHECKED BY: APPROVED BY:

\hline MEH \& RUC \& RUC

\hline

\hline MEH

\hline ReDS REV \#:

\hline
\end{tabular}

CONSTRUCTION
DOCUMENTS

REV	DAIE
0	$\mathrm{~g} / 20$

ARE PROJECT NUMEER
165225.001.01

DISH W Wrieless L.L.C.C.
PROUCCT NSORAMOTON
вовоS00876
1050 BUCKLEY HWY
UNION, CT 06076
SHEET TTLLE
general notes
GN-5

Exhibit D

Structural Analysis Report

STRUCTURAL ANALYSIS REPORT

168' Modified Self Support Tower
1050 Buckley Highway
Union, CT 06076
41.9992 N, 72.1524 W

SBA Site Name: Union 4, CT
SBA Site ID: CT24369-A
Dish Wireless Site Name: N/A
Dish Wireless Site ID: BOBOS00876A
Application ID: 208095, v1
GPD Project Number: 2023778.24369.05

Analysis Results		
Tower Components	88.4%	Sufficient
Foundation	84.7%	Sufficient
Net Change in Tower Stress Ratio	0.0%	As compared to the Previous Structural Analysis detailed on Page 2

Dish Wireless Mount Replacement

| Net Change in Tower Stress
 Ratio due to Mount
 Replacement | N/A |
| :---: | :---: | :---: |

January 30, 2023
Respectfully submitted by:

1/30/2023
Christopher J. Scheks, P.E.
Connecticut P.E. \#: 0030026

Analysis Criteria

The purpose of this analysis is to verify whether the existing modified self-support tower is structurally capable of carrying the proposed mount, antenna, and feedline loads as specified by Dish Wireless to SBA. This report was commissioned by Mr. Mark Luther of SBA.

The existing structure and its foundations have been analyzed per the following requirements:

Governing Code(s)	TIA-222-H \& 2022 Connecticut State Building Code
Wind Speed	$118 \mathrm{MPH} 3-$-Second Gust
Wind Speed w/ Ice	$50 \mathrm{MPH} 3-$ Second Gust
Radial Ice Thickness	$1.5 "$
Risk Category	II
Exposure Category	B
Topographic Category	1

Analysis Method

tnxTower (Version 8.1.1.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate member stresses for various dead, live, wind and ice load cases. Selected output from the analysis is included in the appendices of this report.

Tower Description

The existing 168' modified self-support tower is located in Union, CT. The original tower design load was unknown at the time of this analysis. However, the tower design and loading were taken from the following documents:

Documents Provided

Document Type	Remarks	Source
Tower Mapping	TEP Project \#: 263470.515260 Dated: $05 / 05 / 2021$	SBA
Foundation Mapping	TEP Project \#: 263470.515260 Dated: $05 / 05 / 2021$	SBA
Geotechnical Report	Dr. Clarence Welti Dated: $05 / 24 / 2002$	SBA
Boring Log Review	GPD Project \#: 2021778.24369.01 Dated: $10 / 29 / 2021$	SBA
TIA Inspection	FDH Job \#: PR-004780 Dated: $11 / 04 / 2020$	SBA
Previous Structural Analysis	GPD Project \#: 2022778.24369 .04 Dated: $10 / 07 / 2022$	SBA
Application Amendment	SBA Application \#: $208095, \mathrm{v} 1$ Dated: $08 / 17 / 2022$	SBA

Tower Materials (Assumed)

Structural Components	Material Strength
Legs	ASTM A572 (50 KSI Yield Strength)
Bracing Members	ASTM A36 (36 KSI Yield Strength)
Member Bolts	A325X
Anchor Rods	ASTM F1554 Gr 105

Tower Loading

The following data shows the major loading that the tower supports. All existing, leased, and proposed loading information was provided by SBA or taken from the previous structural analysis.

Existing/Leased Loading

Carrier	Mounting Level (ft)	Center Line Elevation (ft)	\# of Antennas	Antenna Manufact.	Antenna/Mount Model	\# of Coax	Coax Size (in)	Note
Tolland County Mutual Aid	168.0	178.0	1		20' Dipole	1	1-5/8	
		174.0	1		8' Omni	1	1-1/4	
		173.0	1		6' Dipole	1	7/8	
		170.0	1		6' Yagi	1	7/8	
Abandoned	154.0	154.0	3		Standoff	-	-	
Verizon	149.0	150.0	6	Commscope	SBNHH-1D65B	$\begin{gathered} 12 \\ 2 \end{gathered}$	$\begin{gathered} 1-5 / 8 \\ 1-5 / 8 \text { Hybrid } \end{gathered}$	
			4	Antel	WPA-80063/4CF			
			2	Antel	WPA-80080/4CF			
			3	Samsung	VZS01			
			3	Commscope	BSAMNT-SBS-1-2			
			3	Samsung	RFV01U-D2A			
			3	Samsung	RFV01U-D1A			
			2		OVP Box			
		149.0	3		Sector Mount			
T-Mobile	140.0	140.0	3	RFS	APX16DWV-16DWVS-E-A20	$\begin{aligned} & 6 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} \text { 1-5/8 Coax } \\ \text { 1-1/4 Hybrid } \\ \text { 0.325 DC } \\ 1 / 2 \text { Fiber } \end{gathered}$	
			3	RFS	APXVAALL24_43-U-NA20			
			1	Commscope	VHLP2-11W/A			
			2	Ceragon	RFU-D			
			1		Pipe Mount			
			3	Ericsson	Radio4449 B71+B12			
			3	Ericsson	Radio4415 B66A			
			3		Twin Style A1-PCS TMA			
			3		Sector Mount			
Sprint	130.0	130.0	3	Commscope	NNVV-65B-R4	4	1-1/4	
			3	RFS	APXV9TM14-ALU-I20			
			3	Alcatel Lucent	TD-RRH8×20-25			
			3	Alcatel Lucent	RRH2×50-800			
			3	Alcatel Lucent	RRH4x45-1900			
			3		Sector Mount			
AT\&T	120.0	120.0	3	Powerwave	7770.00	6121	$\begin{gathered} \text { 1-1/4 } \\ \text { 1/2 RET } \\ \text { 3/4 DC } \\ \text { 5/16 Fiber } \end{gathered}$	
			2	Powerwave	P65-17-XL-R			
			1	KMW	AM-X-CD-16-65-00T			
			3	Ericsson	RRUS11			
			3	Powerwave	LGP214nn			
			3		RET			
			1	Raycap	DC6-48-60-18-8F			
			3		Sector Mounts			
Abandoned	87.0	87.0	1		Sector Mount	-	-	
Sprint	82.0	82.0	1		GPS	1	1/2	
Tolland	71.0	71.0	1		12' Dipole	1	3/8	
County Mutual Aid			1		Pipe Mount			
Landowner	68.0	68.0	1		Flood Light	1	1/2	
	62.0	62.0	1		Flood Light	1	1/2	
	23.0	23.0	1		Camera	1	1/4	

Final Proposed Loading Configuration

Carrier	Mounting Level (ft)	Center Line Elevation (ft)	\# of Antennas	Antenna Manufact.	Antenna/Mount Model	\# of Coax	Coax Size (in)	Note
Dish Wireless	105.0	105.0	3	JMA Wireless	MX08FRO665-21	1	1.6 Hybrid	1
			3	Fujitsu	TA08025-B605			
			3	Fujitsu	TA08025-B604			
			1	Raycap	RDIDC-9181-PF-48			
			3	Commscope	MTC3975083 Sector Mount			

Notes:

1) This loading represents Dish Wireless' final configuration on the tower. See the next page for the proposed feedline layout.

Final Proposed Coax Layout

\#	CARRIER	SIZE	QTY.	ELEVATION	FACE	NOTES
1	Tolland County	1-5/8"	1	168.0^{\prime}	B	
2	Tolland County	1-1/4"	1	168.0'	C	
3	Tolland County	7/8"	2	168.0 '	C	
4	Verizon	1-5/8"	14	149.0'	A	(2) Hybrid
5	T-Mobile	1-1/4"	3	140.0 '	B	Hybrid
6	T-Mobile	1-5/8"	6	140.0 '	B	
7	T-Mobile	0.325 "	2	140.0 '	B	DC Power
8	T-Mobile	1/2"	2	140.0 '	B	Fiber
9	Sprint	1-1/4"	4	130.0 '	B	
10	AT\&T	1-1/4"	6	120.0'	A	
11	AT\&T	1/2"	1	120.0 '	A	RET
12	AT\&T	5/16"	1	120.0 '	A	Fiber
13	AT\&T	3/4"	2	120.0'	A	DC Power
14	Dish Wireless	1.6 "	1	105.0 '	B	Proposed Hybrid
15	Sprint	1/2"	1	82.0'	B	
16	Tolland County	3/8"	1	71.0'	C	
17	Landowner	1/2"	1	$68.0{ }^{\prime}$	B	
18	Landowner	1/2"	1	$62.0{ }^{\prime}$	B	
19	Landowner	1/4"	1	23.0'	B	

Tower Section Results

Capacity Summary of Structural Components

Notes	Component	\% Capacity	Pass / Fail
	Legs	88.4	Pass
	Diagonals	73.6	Pass
	Horizontals	33.2	Pass
	Member Bolts	74.0	Pass
	Anchor Rods	49.9	Pass
	Tower Base Foundation	84.7	Pass

Conclusions \& Recommendations

The designs of the tower and its foundations are sufficient to support the proposed loading configuration and will not require modification.

Assumptions

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in the Existing/Reserved Loading and Proposed Loading Tables, and the specified documents.
4) All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5) Mount sizes, weights, and manufacturers are best estimates based on photos provided and determined without the benefit of a site visit by GPD.
6) All member connections and foundation steel reinforcing are assumed designed to meet or exceed the load carrying capacity of the connected member and surrounding soils respectively unless otherwise specified in this report.
7) The existing feedline layout has been based upon the previous structural analysis and site photos.
8) Tower leg azimuths were estimated with the use of satellite imagery software.
9) The proposed feedline shall be installed as illustrated in order for the results of this analysis to be valid.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

Disclaimer of Warranties

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation for this report.

SYMBOL LIST								
MARK	SIZE		MARK	SIZE				
A P	P 2-1/2 STD w/ Split P 3 X-STR (GPD)		C	L2x2x3/16				
B P	P 3 STD w/ Split P 3-1/2 STD (GPD)							
MATERIAL STRENGTH								
GRADE	Fy	Fu				GRAD	- Fy	Fu
A572-50	50 ksi	65 ksi	A53-B-35	35 ksi	63 ksi			
A36	36 ksi	58 ksi						

TOWER DESIGN NOTES

Tower is located in Tolland County, Connecticut
2. Tower designed for Exposure B to the TIA-222-H Standard.

Tower designed for a 118 mph basic wind in accordance with the TIA-222-H Standard
4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 88.4\%

ALL REACTIONS
ARE FACTORED

MAX. CORNER REACTIONS AT BASE:
DOWN: 225 K
SHEAR: 23 K
UPLIFT: -190 K
SHEAR: 20 K

AXIAL

TORQUE 5 kip-ft
50 mph WIND - 1.5000 in ICE

TORQUE 25 kip-ft
REACTIONS - 118 mph WIND

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 168.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 6.67 ft at the top and 19.00 ft at the base.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in Tolland County, Connecticut.
Tower base elevation above sea level: 988.00 ft .
Basic wind speed of 118 mph .
Risk Category II.
Exposure Category B.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.5000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice
Always Use Max Kz
Use Special Wind Profile
$\sqrt{ }$ Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
\checkmark Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
$\sqrt{ }$ Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
\checkmark Consider Feed Line Torque
$\sqrt{ }$ Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
Include Shear-Torsion Interaction Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

Self-Support Anchor Rod Analysis - TIA-222-H-1 CT24369-A ; Union 4, CT
 2023778.24369.05

General Info	
Apply TIA-222-H Section 15.5	No
Modified Anchor Rods	No
Leg Eccentricity	No
Overstrength	No
Max Capacity	100%

Tower Reactions		
Compression, $\mathrm{P}_{\mathrm{u}}=$	225.00	kips
Compression Shear, $\mathrm{V}_{\mathrm{u}}=$	23.00	kips
Uplift, $\mathrm{P}_{\mathrm{u}}=$	190.00	kips
Uplift Shear, $\mathrm{V}_{\mathrm{u}}=$	20.00	kips
Number of Tower Legs $=$	3	
Tower Axial Force $=$	126.00	kips

Anchor Rods		
Number of Anchor Rods, $\mathrm{n}=$	6	
Anchor Rod Grade $=$	$\mathrm{A} 354-\mathrm{BC}$	
Anchor Rod Diameter, $\mathrm{d}=$	1	in
Bolt Circle Diameter, $\mathrm{BC}=$	9	in
Rod Clear Span, $\mathrm{I}_{\mathrm{ar}}=$	0	in
Is grout present?	Yes	
Yield Strength, $\mathrm{F}_{\mathrm{y}}=$	109	ksi
Tensile Strength, $\mathrm{F}_{\mathrm{u}}=$	125	ksi
Rod Compression, $\mathrm{P}_{\mathrm{uc}}=$	37.50	kips
Rod Shear, $\mathrm{V}_{\mathrm{u}}=$	3.83	kips
Rod Moment, $\mathrm{M}_{\mathrm{u}}=$	0.00	k -in
Rod Tension, $\mathrm{P}_{\mathrm{ut}}=$	31.67	kips
Rod Shear, $\mathrm{V}_{\mathrm{u}}=$	3.33	kips
Rod Moment, $\mathrm{M}_{\mathrm{u}}=$	0.00	k-in

Anchor Rod Results		
$\phi_{\mathrm{t}} \mathrm{R}_{\mathrm{nt}}=$	56.81	kips
$\phi_{\mathrm{c}} \mathrm{R}_{\mathrm{nc}}=$	77.05	kips
$\phi_{\mathrm{c}} \mathrm{R}_{\mathrm{nb}}=$	77.05	kips
$\phi_{\mathrm{v}} \mathrm{R}_{\mathrm{nv}}=$	36.82	kips
$\phi_{\mathrm{c}} \mathrm{R}_{\mathrm{nvc}}=$	34.67	kips
$\phi_{\mathrm{f}} \mathrm{M}_{\mathrm{n}}=$	16.35	k -in
Tension Interaction	31.9%	OK
Compression Interaction	49.9%	OK

GPD Self-Support Anchor Rod Analysis - V1.3

Pier and Pad Foundation

Site ID: CT24369-A
 Site Name: Union 4, CT
 Application ID: 208095, v1

TIA-222 Revision:	H
Tower Type:	Self Support

Top \& Bot. Pad Rein. Different?:	\square
Block Foundation?:	\square
Rectangular Pad?:	\square

Superstructure Analysis Reactions			
Compression, $\mathbf{P}_{\text {comp }}:$		225	
kips			
Compression Shear, Vu_comp:	23	kips	
Uplift, $\mathbf{P}_{\text {uplif: }}:$	190	kips	
Uplift Shear, $\mathbf{V}_{\text {u_uplif: }}:$	20	kips	
Tower Height, $\mathbf{H}:$	168	ft	
Base Face Width, BW:	19	ft	
BP Dist. Above Fdn, bp $\mathbf{d i s t}:$	2	in	

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier:	3	ft	
Ext. Above Grade, E:	1	ft	
Pier Rebar Size, Sc:	8		
Pier Rebar Quantity, mc:	12		
Pier Tie/Spiral Size, St:	4		
Pier Tie/Spiral Quantity, mt:	11		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, cc pier:	3	in	

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Uplift (kips)	224.43	190.00	$\mathbf{8 4 . 7 \%}$	Pass
Lateral (Sliding) (kips)	96.54	20.00	$\mathbf{2 0 . 7} \%$	Pass
Bearing Pressure (ksf)	12.38	6.21	$\mathbf{5 0 . 1 \%}$	Pass
Pier Flexure (Comp.) (kip*ft)	767.30	253.00	$\mathbf{3 3 . 0} \%$	Pass
Pier Flexure (Tension) (kip*ft)	411.99	220.00	$\mathbf{5 3 . 4 \%}$	Pass
Pier Compression (kip)	2078.62	239.00	$\mathbf{1 1 . 5 \%}$	Pass
Pad Flexure (kip*t)	664.74	71.13	$\mathbf{1 0 . 7 \%}$	Pass
Pad Shear - 1-way (kips)	160.94	15.75	$\mathbf{9 . 8 \%}$	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.042	$\mathbf{2 2 . 3} \%$	Pass
Flexural 2-way (Comp) (kip*ft)	1329.48	151.80	$\mathbf{1 1 . 4 \%}$	Pass
Pad Shear - 2-way (Uplift) (ksi)	0.190	0.069	$\mathbf{3 6 . 3 \%}$	Pass
Flexural 2-way (Tension) (kip*ft)	1329.48	132.00	$\mathbf{9 . 9 \%}$	Pass

Structural Rating:	53.4%
Soil Rating:	$\mathbf{8 4 . 7} \%$

Pad Properties		
Depth, $\mathbf{D}:$	12	ft
Pad Width, $\mathbf{W}_{1}:$	7.25	ft
Pad Thickness, T:	2	ft
Pad Rebar Size (Bottom dir. 2), $\mathbf{S p}_{2}:$	8	
Pad Rebar Quantity (Bottom dir. 2), $\mathbf{m p}_{2}:$	10	
Pad Clear Cover, $\mathbf{c c}_{\text {pad }}:$	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	4	ksi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties				pcf
Total Soil Unit Weight, $\gamma:$	125			
Ultimate Net Bearing, Qnet:	15.000	ksf		
Cohesion, Cu:		ksf		
Friction Angle, $\varphi:$	34	degrees		
SPT Blow Count, N	blows:			
Base Friction, $\mu:$	0.4			
Neglected Depth, N:	3.50	ft		
Foundation Bearing on Rock?	No			
Groundwater Depth, gw:	N / A	ft		

Exhibit E

Mount Analysis

Sherri Knapik
SBA Network Services, LLC.
134 Flanders Road, Suite 125
Westborough, MA 01581
(508) 251-0720 x 3805

MTS Engineering, P.L.L.C.
1717 S. Boulder, Suite 300
Tulsa, OK 74119
(918) 587-4630
towersupport@btgrp.com

Subject:

Carrier Designation:

Appurtenance Mount Analysis Report

Dish Wireless Co-Locate	
Site Number:	BOBOS00876A
Site Name:	N/A

CT24369-A
Union 4, CT
208095, v1
165225.001.01.0003

1050 Buckley Highway, Union, CT, 06076, Tolland County
Latitude 41.99874 ${ }^{\circ}$, Longitude -72.15234 ${ }^{\circ}$
Self-Support Tower
8' Sector Mount

Dear Ms. Knapik,
We are pleased to submit this "Appurtenance Mount Analysis Report" to determine the structural integrity of the antenna mount on the above-mentioned structure.

The purpose of the analysis is to determine acceptability of the mount's stress level. Based on our analysis we have determined the stress level for the mount under the following load case to be:

```
Proposed Equipment
Note: See Table 1 for the final loading configuration
```


Sufficient Capacity
 (Passing at 48.0\%)

This analysis utilizes an ultimate 3-second gust wind speed of 118 mph as required by the 2022 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

All the equipment proposed in this report shall be installed in accordance with the drawings for the determined available structural capacity to be effective.

We appreciate the opportunity of providing our continuing professional services to you and SBA Network Services, LLC. If you have any questions or need further assistance on this or any other projects please give us a call.

Mount structural analysis prepared by: Joseph Variamparampil
Respectfully submitted by: MTS Engineering, P.L.L.C.
COA: BER:2386985 Expires: 3/31/2023

Chad E. Tuttle, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Information
Table 2 - Documents Provided

3) ANALYSIS PROCEDURE

3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

5) RECOMMENDATIONS

6) APPENDIX A

RISA-3D Output
7) APPENDIX B

Additional Calculations

1) INTRODUCTION

The appurtenance mount consists of Commscope Sector mount Part\# MTC3975083 at 105 ft ., attached to self-support tower at 1050 Buckley Highway, Union, CT, 06076, Tolland County. The proposed antenna loading information was obtained from SBA Network Services, LLC. All information provided to us was assumed accurate and complete.

2) ANALYSIS CRITERIA

The structural analysis was performed for this mount in accordance with the ANSI/TIA-222-H-2017 Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures using a 3 -second gust wind speed of 118 mph with no ice and 50 mph with 1.5 inch escalated ice thickness Exposure Category C \& Topographic Category 1 and Risk Category II were used in this analysis. In addition, the sector mount has been analyzed for various live loading conditions consisting of a $250-\mathrm{lb}$ man live load applied individually at the midpoint and cantilevered ends of horizontal members as well as a $500-$ pound man live load applied individually at mount pipe locations using a 3 -second gust of 30 mph . The mount was analyzed under 30° increments in the wind direction. The analyzed loading is detailed in Table 1.

Table 1 - Proposed Equipment Information

Loading	RAD Center Elev. (ft.)	Position	Qty.	Description	Note
Proposed	105	2	3	JMA Wireless MX08FRO665-21	1
			3	Fujitsu TA08025-B605	2
			3	Fujitsu TA08025-B604	
		-	1	Raycap RDIDC-9181-PF-48	3

Note:

(1) Proposed Antenna to be installed on the Mount Pipe.
(2) Proposed Equipment to be installed directly behind the Antenna.
(3) Proposed Equipment to be installed on the Mount.

Table 2 - Documents Provided

Documents	Remarks	Reference	Source
SBA Application	Proposed Loading	Date: 08/16/2022	SBA Network Services, LLC
		Date: $08 / 15 / 2022$	

3) ANALYSIS PROCEDURE

3.1) Analysis Method

RISA-3D (Version 20.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the mount and calculate member stresses and deflections for various loading cases. Selected output from the analysis is included in Appendix A.

Manufacturers drawing were used to create the model.

3.2) Assumptions

1. The mount was built in accordance with the manufacturer's specifications.
2. The mount has been maintained in accordance with the manufacturer's specifications and is free of damage.
3. The configuration of antennas and other appurtenances are as specified in Table 1.
4. All mount components have been assumed to be in sufficient condition to carry their full design capacity for the analysis.
5. Mount areas and weights are determined from field measurements, standard material properties, and/or manufacturer product data.
6. Serviceability with respect to antenna twist, tilt, roll or lateral translation is not checked and is left to the carrier or tower owner to ensure conformance.
7. All prior structural modifications, if any are assumed to be correctly installed and fully effective.
8. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
9. The following material grades were assumed (Unless Noted Otherwise):
a) Connection Bolts : ASTM A325
b) Steel Pipe : ASTM A53 (GR. 35)
c) HSS (Round) : ASTM 500 (GR. B-42)
d) HSS (Rectangular) : ASTM 500 (GR. B-46)
e) Channel : ASTM A36 (GR. 36)
f) Steel Solid Rod : ASTM A36 (GR. 36)
g) Steel Plate : ASTM A36 (GR. 36)
h) Steel Angle : ASTM A36 (GR. 36)
i) UNISTRUT : ASTM A570 (GR. 33)

This analysis may be affected if any assumptions are not valid or have been made in error. We should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Notes	Component	Elevation (ft.)	\% Capacity	Pass / Fail
-	Face Horizontals	105	10.4	Pass
-	Support Arms	105	24.9	Pass
-	Diagonals	105	26.9	Pass
-	Connection Plates	105	22.0	Pass
-	Verticals	105	48.0	Pass
-	Tiebacks	105	9.7	Pass
-	Mount Pipes	105	11.7	Pass

5) RECOMMENDATIONS

The Commscope Sector mount Part\# MTC3975083 has sufficient capacity to carry the proposed loads and is in compliance with the ANSI/TIA-222-H standard for the proposed loading. (Refer to the RISA output for the specific members).

APPENDIX B

(Additional Calculations)

AMERICAN SOCIETY OF CIVIL ENGINEERS

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16
Risk Category: II
Soil Class: D - Default (see
Section 11.4.3)

Elevation: 0 ft (NAVD 88)
Latitude: 41.99874
Longitude: -72.15234

Wind

Results:

Wind Speed	118 Vmph
10 -year MRI	75 Vmph
25 -year MRI	84 Vmph
50 -year MRI	90 Vmph
100 -year MRI	98 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2 Wed Aug 242022

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class:
D - Default (see Section 11.4.3)

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.178
$\mathrm{~S}_{1}:$	0.055
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{MS}}:$	0.284
$\mathrm{~S}_{\mathrm{M} 1}:$	0.132
$\mathrm{~S}_{\mathrm{DS}}:$	0.189

$\mathrm{S}_{\mathrm{D} 1}:$	0.088
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.094
$\mathrm{PGA}_{\mathrm{M}}:$	0.151
$\mathrm{~F}_{\text {PGA }}:$	1.6
$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{C}_{V}:$	0.7

Seismic Design Category B

Data Accessed:
Wed Aug 242022
Date Source:
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:
Ice Thickness: $\quad 1.50 \mathrm{in}$.

Concurrent Temperature: 5 F
Gust Speed 50 mph
Data Source:
Date Accessed:
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Wed Aug 242022
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

PROJECT	$\mathbf{1 6 5 2 2 5 . 0 0 1 . 0 1 . 0 0 0 2} \mathbf{-}$ Union 4, CT,CT	KSC	
SUBJECT	Sector Mount Analysis		
DATE	$\mathbf{0 8 / 2 4 / 2 2}$		

B+T Group
1717 S. Boulder, Suite 300 Tulsa, OK 74119
(918) 587-4630

Tower Type		SST		
Ground Elevation	$\mathrm{z}_{\text {s }}$	1008	ft	[ASCE7 Hazard Tool]
Tower Height		168.00	ft	
Mount Elevation		105.00	ft	
Antenna Elevation		105.00	ft	
Crest Height		0	ft	
Risk Category		II		[Table 2-1]
Exposure Category		C		[Sec. 2.6.5.1.2]
Topography Category		1.00		[Sec. 2.6.6.2]
Wind Velocity	V	118	mph	[ASCE7 Hazard Tool]
Ice wind Velocity	V_{i}	50	mph	[ASCE7 Hazard Tool]
Service Velocity	$\mathrm{V}_{\text {s }}$	30	mph	[ASCE7 Hazard Tool]
Base Ice thickness	t_{i}	1.50	in	[ASCE7 Hazard Tool]
Seismic Design Cat.		B		[ASCE7 Hazard Tool]
	S_{S}	0.18		
	S_{1}	0.06		
	S_{DS}	0.19		
	$\mathrm{S}_{\mathrm{D} 1}$	0.09		
Gust Factor	G_{h}	1.00		[Sec. 16.6]
Pressure Coefficient	K	1.28		[Sec. 2.6.5.2]
Topography Facto	$\mathrm{K}_{\text {zt }}$	1.00		[Sec. 2.6.6]
Elevation Factor	K_{e}	0.96		[Sec. 2.6.8]
Directionality Factor	$\mathrm{K}_{\text {d }}$	0.95		[Sec. 16.6]
Shielding Factor	K_{a}	0.90		[Sec. 16.6]
Design Ice Thickness	$\mathrm{t}_{\text {iz }}$	1.68	in	[Sec. 2.6.10]
Importance Factor	I_{e}	1		[Table 2-3]
Response Coefficient	C	0.095		[Sec. 2.7.7.1]
Amplification	$\mathrm{A}_{\text {s }}$	1.5		[Sec. 16.7]
	q_{z}	41.75	psf	

PROJECT	$\mathbf{1 6 5 2 2 5 . 0 0 1 . 0 1 . 0 0 0 2} \mathbf{-}$ Union 4, CT,CT	KSC	
SUBJECT	Sector Mount Analysis		
DATE	$\mathbf{0 8 / 2 4 / 2 2}$		

Manufacturer	Model	Qty	Height $\left(\right.$ in $\left.^{2}\right)$	Width $\left(\right.$ in $\left.^{2}\right)$	Depth $\left(\right.$ in $\left.^{2}\right)$	Weight (lbs)	$\begin{gathered} \hline \mathbf{C}_{\mathbf{a}} \mathbf{A}_{\mathbf{a}} \\ (\mathrm{N}) \\ \left(\mathrm{ft}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C}_{\mathrm{a}} \mathbf{A}_{\mathbf{a}} \\ \text { (T) } \\ \left(\mathrm{ft}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C}_{\mathrm{a}} \mathbf{A}_{\mathrm{a}} \\ \text { (N) Ice } \\ \left(\mathrm{ft}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{C}_{\mathrm{a}} \mathbf{A}_{\mathbf{a}} \\ \text { (T) Ice } \\ \left(\mathrm{ft}^{2}\right) \\ \hline \end{gathered}$	$\overline{F_{A(N)}}$ (k)	$\overline{F_{A(T)}}$ (k)	$F_{A(N)}$ Ice (k)	$\begin{gathered} \hline \mathbf{F}_{\mathrm{A}(\mathrm{~T})} \\ \text { Ice } \\ (\mathrm{k}) \\ \hline \end{gathered}$
JMA Wireless	MX08FRO665-21	0.5	72.0	20.0	8.0	82.5	4.01	1.61	4.80	2.30	0.17	0.07	0.04	0.02
JMA Wireless	MX08FRO665-21	0.5					4.01	1.61	4.80	2.30	0.17	0.07	0.04	0.02
Fujitsu	TA08025-B605	1	15.8	15.0	9.1	75.0	1.96	1.19	2.92	1.98	0.07	0.04	0.01	0.01
Fujitsu	TA08025-B604	1	15.8	15.0	7.9	63.9	1.96	1.03	2.92	1.79	0.07	0.04	0.01	0.01
Raycap	RDIDC-9181-PF-48	1	16.6	14.6	8.2	21.9	2.01	1.13	2.98	1.91	0.08	0.04	0.01	0.01

Exhibit F

Power Density/RF Emissions Report

Radio Frequency Emissions Analysis Report

di̊sh

Site ID: BOBOS00876A

SBA Union 4, CT
1050 Buckley Highway
Union, CT 06076

January 6, 2023

Fox Hill Telecom Project Number: 222138

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 3 . 5 3} \%$

January 6, 2023
Dish Wireless
5701 South Santa Fe Drive
Littleton, CO 80120

Emissions Analysis for Site: BOBOS00876A - SBA Union 4, CT

Fox Hill Telecom, Inc ("Fox Hill") was directed to analyze the proposed radio installation for Dish Wireless, LLC (Dish) facility located at 1050 Buckley Highway, Union, CT, for the purpose of determining whether the emissions from the Proposed Dish radio and antenna installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 600 MHz band is approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS / AWS-4) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Fox Hill Telecom

CALCULATIONS

Calculations were performed for the proposed upgrades to the Dish Wireless antenna facility located at 1050 Buckley Highway, Union, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 for far field modeling calculations.

In OET-65, plane wave power densities in the Far Field of an antenna are calculated by considering antenna gain and reflective waves that would contribute to exposure.

Since the radiation pattern of an antenna has developed in the Far Field region the power gain in specific directions needs to be considered in exposure predictions to yield an Effective Radiated Power (ERP) in each specific direction from the antenna. Also, since the vertical radiation pattern of the antenna is considered, the exposure calculations would most likely be reduced significantly at ground level, resulting in a more realistic estimate of the actual exposure levels. To determine a worst-case scenario at each point along the calculation radials, each point was calculated using the antenna gain value at each angle of incident and compared against the result using an isotropic radiator at the antenna height with the greater of the two used to yield the more pessimistic far field value for each point along the calculation radial.

Additionally, to model a truly "worst case" prediction of exposure levels at or near a surface, such as at ground-level or on a rooftop, reflection off the surface of antenna radiation power can be assumed, resulting in a potential 1.6 times increase in power density in calculating far field power density values.

With these factors Considered, the worst case Far Field prediction model utilized in this analysis is determined by the following equation:

Equation 9 per FCC OET65 for Far Field Modeling

$$
S=\frac{33.4 E R P}{R^{2}}
$$

S = Power Density (in $\mu \mathrm{w} / \mathrm{cm}^{2}$)
ERP = Effective Radiated Power from antenna (watts)
$\mathrm{R}=$ Distance from the antenna (meters)

Predicted far field power density values for all carriers identified in this report were calculated 6 feet above the ground level and are displayed as a percentage of the applicable FCC standards. All emissions values for other carriers were calculated using the same Far Field model outlined above, using industry standard radio configurations and frequency band selection based upon available licenses in this geographic area for emissions contribution estimates.

For each Dish sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
5 G	n71 (600 MHz)	4	61.5
5 G	n 70 (AWS-4 / 1995-2020)	4	40
5 G	n 66 (AWS-4 /2180-2200)	4	40

Table 1: Channel Data Table

The following Dish antennas listed in Table 2 were used in the modeling for transmission in the 600 MHz (n71) frequency band and the 2100 MHz (AWS 4) frequency bands at $1995-2020 \mathrm{MHz}$ (n70) and 21802200 MHz (n66). This is based on feedback from Dish regarding anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	JMA MX08FRO665-21	105
B	1	JMA MX08FRO665-21	105
C	1	JMA MX08FRO665-21	105

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed Dish configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna \qquad	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	$\begin{gathered} \text { Total TX } \\ \text { Power (W) } \\ \hline \end{gathered}$	ERP (W)	MPE \%
Antenna A1	$\begin{gathered} \text { JMA } \\ \text { MX08FRO665-21 } \end{gathered}$	$\begin{gathered} \text { n71 (600 MHz) / } \\ \text { n70 (AWS-4 / 1995-2020) / } \\ \text { n66 (AWS-4 / 2180-2200) } \\ \hline \end{gathered}$	$\begin{gathered} 11.45 / 16.15 / \\ 16.65 \end{gathered}$	12	566	17,426.72	3.47
Sector A Composite MPE\%							3.47
Antenna B1	JMA MX08FRO665-21	n71 (600 MHz) / n70 (AWS-4 / 1995-2020) / n66 (AWS-4 / 2180-2200)	$\begin{gathered} 11.45 / 16.15 / \\ 16.65 \end{gathered}$	12	566	17,426.72	3.47
Sector B Composite MPE\%							3.47
Antenna C1	JMA MX08FRO665-21	$\begin{gathered} \text { n71 (600 MHz) / } \\ \text { n70 (AWS-4 / 1995-2020) / } \\ \text { n66 (AWS-4 / 2180-2200) } \end{gathered}$	$\begin{gathered} 11.45 / 16.15 / \\ 16.65 \end{gathered}$	12	566	17,426.72	3.47
Sector C Composite MPE\%							3.47

Table 3: Dish Emissions Levels

The Following table (Table 4) shows all additional carriers on site and their emissions contribution estimates, along with the newly calculated Dish far field emissions contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site emissions values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each Dish Sector as well as the composite emissions value for the site.

Site Composite MPE \%	
Carrier	MPE \%
Dish - Max Per Sector Value	$\mathbf{3 . 4 7} \%$
Tolland County Mutual Aid (Composite)	2.78%
Verizon Wireless	2.01%
T-Mobile	1.56%
Sprint	1.10%
AT\&T	2.61%
Site Total MPE \%:	$\mathbf{1 3 . 5 3 \%}$

Table 4: All Carrier MPE Contributions

Dish Sector A Total:	3.47%
Dish Sector B Total:	3.47%
Dish Sector C Total:	3.47%
Site Total:	

Table 5: Site MPE Summary

Fox Hill Telecom

Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated Dish sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

Dish _ Frequency Band / Technology Max Power Values (Per Sector)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
Dish n71 (600 MHz) 5G	4	858.77	105	9.16	n71 (600 MHz)	400	2.29\%
Dish n70 (AWS-4 / 1995-2020) 5G	4	1,648.39	105	5.90	n70 (AWS-4 / 1995-2020)	1000	0.59\%
Dish n66 (AWS-4 / 2180-2200) 5G	4	1,849.52	105	5.90	n66 (AWS-4 / 2180-2200)	1000	0.59\%
						Total:	3.47 \%

Table 6: Dish Maximum Sector MPE Power Values

Fox Hill Telecom

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Sector	Power Density Value (\%)
Sector A:	3.47%
Sector B:	3.47%
Sector C:	3.47%
Dish Maximum Total	
(per sector):	3.47%
Site Total:	13.53%
Site Compliance Status:	COMPLIANT

The anticipated composite emissions value for this site, assuming all carriers present, is $\mathbf{1 3 . 5 3} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon the far field calculations performed for all carriers identified in this report.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

Principal RF Engineer
Fox Hill Telecom, Inc
Worcester, MA 01609
(978)660-3998

Exhibit G

Letter of Authorization

SBA Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: Tower Share Application

SBA COMMUNICATIONS CORPORATION hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CONNECTICUT SITING COUNCIL for existing wireless communications towers.

SBA COMMUNICATIONS CORPORATION
134 Flanders Road, Suite 125
Westboro, MA 01581

Exhibit H

Recipient Mailings

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300474087032				
Trans. \#:		582096384	Priority Mail® Postage:	\$9.65
		02/06/2023	Total:	\$9.65
Ship Date:		02/06/2023		
Expected Delivery Date:		02/08/2023		
From:	NORTHEAST SITE SOLUTIONS			
	STE 1			
	420 MAIN ST			
	STURBRIDGE MA 01566-1359			
	SBA COMMUNICATIONS CORPORATION			
	STE 125			
	13 FLANDERS RD			
	WESTBOROUGH MA 01581			

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300474087049				
		582096384	Priority Mail® Postage:	\$9.65
Trans. \# Print Da Ship Da Delivery		02/06/2023	Total:	\$9.65
		02/06/2023		
	Date:	02/09/2023		
From:	DEBORAH CHASE Ref\#: SBdS-00876			
	NORTHEAST SITE SOLUTIONS			
	STE 1			
	420 MAIN ST			
	STURBRIDGE MA 01566-1359			
	DAVID DEATON			
	FIRST SELECTMAN-TOWN OF UNION			
	1043 BUCKLEY HWY			
	UNION CT 06076-4802			

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300474087056				
Trans. \# Ship Dat Delivery		582096384	Priority Mail® Postage:	\$9.65
		02/06/2023	Total:	\$9.65
		02/06/2023		
	Date:	02/09/2023		
From:	DEBORAH CHASE			
	STE 1 420 MAIN ST			
	STURBRIDGE MA 01566-1359			
	MATHIEU J SILBERMANN			
	ZONING DEPARTMENT- PLANNING \& ZONING			
	COMMISSIONER			
	1043 BUCKLEY HWY			
	UNION CT 06076-4802			
* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking $®$ ®ervice on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.				

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

BOBOSOO876A.

> LINCOLN MALL
> 560 LINCOLN ST STE 8 WORCESTER, MA $01605-1925$
> $(800) 275-8777$

02/07/2023 10:41 AM

Product	QtyUnit Price	Price
Prepaid Mail		
Stafford Springs, 1	CT 06076	$\$ 0.00$
Weight: 0 lb 14.30 oz		
Acceptance Date:		
Tue 02/07/2023		

Tracking \#: 9405503699300474087049

Prepaid Mail 1
$\$ 0.00$
Stafford Springs, CT 06076
Weight: 0 lb 14.80 oz
Acceptance Date:
Tue 02/07/2023
Tracking \#:
9405503699300474087063

| Prepaid Mail Springs, CT 06076 | $\$ 0.00$ |
| :--- | :--- | :--- |
| Stafford Sr | |
| Weight: 0 Ib 13.80 oz | |
| Acceptance Date: | |
| Tue 02/07/2023 | |
| Tracking \#: | |
| $94055036 \quad 99300474087056$ | |

