November 22, 2016

VIA EMAIL AND OVERNIGHT DELIVERY
Ms. Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051
RE: T-Mobile Northeast LLC - CT11860A
Notice of Exempt Modification
48 Quail Trail, Trumbull, CT
Pole 838
LAT: 41-13-57.66N
LNG: 73-10-20.11W

Dear Ms. Bachman:
T-Mobile Northeast LLC ("T-Mobile") currently maintains three (3) antennas at the 105' level on the existing 95' transmission tower located at 48 Quail Trail, Trumbull, CT. The structure is owned by Eversource Energy, their use of the structure was approved by the Council on December 14, 2000 (Docket No. 496). T-Mobile submitted a Petition for a 10' extension on this structure, which was approved by the Council on December 4, 2008 (Petition 872).

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A.16-50j-72(b)(2). In accordance with R.C.S.A. 16-50j-73, a copy of this letter is being sent to Timothy M. Herbst, First Selectman, Town of Trumbull, and the property owner, Eversource Energy.

The planned modifications to the facility fall squarely within those activities explicitly provided for in RC.S.A. 16-50j-72(b)(s).

1. The proposed modifications will not result in an increase in the height of the existing structure. T-Mobile proposes to swap (3) antennas, at a centerline height of 105' on the existing 95' structure.
2. The proposed modifications will not require the extension of the site boundary. There will be no effect on the site compound or T-Mobile's leased area.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local
criteria. The incremental effect of the proposed changes will be negligible.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, T-Mobile's operations at the site will result in a power density of 2.50%; the combined site operations will result in a total power density of 2.50%.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site. T-Mobile will swap antennas on the existing mounts and the coax lines will be run within the existing cable tray.
6. The existing structure, and its foundation can support T-Mobile's proposed loading, as indicated in the attached structural analysis.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitute an exempt modification under R.C.S.A. J 6-50j-72(b)(2) .

Please feel free to call me with any questions or concerns regarding this matter. Thank you for your consideration.

Respectfully submitted,

By:
Jamie Ford, Agent for T-Mobile jford@verticaldevelopmentllc.com 774-248-5373

Attachments

[^0]
NOTES:

LEASE EXHIBIT

PROPOSED T-MOBILE INSTALLATION SHALL CONSIST OF THE REPLACEMENT OF THREE (3) DIRECTIONAL PANEL ANTENNAS MOUNTED AT A CENTERLINE ELEVATION OF $\pm 105^{\prime}$ AGL.

THIS LEASE PLAN IS DIAGRAMMATIC IN NATURE AND IS INTENDED TO PROVIDE GENERAL INFORMATION REGARDING THE LOCATION AND SIZE OF THE PROPOSED WIRELESS COMMUNICATION
FACILITY. THE SITE LAYOUT WILL BE FINALIZED UPON COMPLETION OF SITE SURVEY AND FACILITY DESIGN.

TOWER COORDINATES: \quad LAT.: $41^{\circ}-13^{\prime}-57.74^{\prime \prime} \prime \prime$
GROUND ELEVATION: $228 \pm$ A.M.S.L.
COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH

LEASE EXHIBIT

THIS LEASE PLAN IS DIAGRAMMATIC IN NATURE AND IS INTENDED TO PROVIDE GENERAL NFORMA ION REGARDING THE LOCATION AND SIZE FACILITY. THE SITE LAYOUT WILL BE FINALIZED UPON COMPLETION OF SITE SURVEY AND FACILITY DESIGN.

PROPOSED T-MOBILE ANTENNAS, TYP.
OF THREE (3) MOUNTED TO EXISTING
ANTENNA MAST ATTACHED TO
EVERSOURCE TRANSMISSION STRUCTURE.

GRAPHIC SCALE
$\frac{1}{L-2}$

EAST ELEVATION
EXISTING T-MOBILE STAND OF

(IN FEET)
1 inch $=10 \mathrm{ft}$.

2 ANTEANNA LAYOUT PLAN
NOT TO SCALE

Centered on Solutions" ${ }^{\text {" }}$

Structural Analysis of
Antenna Mastand Pole

T-Mobile Site Ref: CT11860A

Eversource Structure No. 838 95' Electric Transmission Pole

$$
\begin{gathered}
48 \text { Quail Trail } \\
\text { Trumbull, } C T
\end{gathered}
$$

CENTEK Project No. 16159.04

$$
\text { Date: October 24, } 2016
$$

Prepared for:
T-Mobile USA 35 Griffin Road
Bloomfield, CT 06002

Table of Contents

SECTION 1- REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- DESIGN BASIS
- RESULTS
- CONCLUSION

SECTION 2- CONDITIONS \& SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS
- RISA 3-D
- PLS POLE

SECTION 3 - DESIGN CRITERIA

- CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSON TOWERS
- NU DESIGN CRITERIA TABLE
- PCS SHAPE FACTOR CRITERIA
- WIRE LOADS SHEET

SECTION 4 - DRAWINGS

- EL-1 POLE AND MAST ELEVATION

SECTION 5 -
 TIA-222-G LOAD CALCULATIONS FOR MAST ANALYSIS

- MAST WIND \& ICE LOAD

SECTION 6 - MAST ANALYSIS PER TIA-222G

- LOAD CASES AND COMBINATIONS (TIA LOADING)
- RISA 3-D ANALYSIS REPORT
- MAST CONNECTION TO TOWER ANALYSIS

SECTION 7 - NECS/NU LOAD CALCULATIONS FOR OBTAINING MAST REACTIONS APPLIED TO UTILITY STRUCTURE

- MAST WIND LOAD

SECTION 8 - MAST ANALYSIS PER NESC/NU FOR OBTAINING REACTIONS APPLIED TO UTILITY STRUCTURE

- LOAD CASES AND COMBINATIONS (NESC/NU LOADING)
- RISA 3-D ANALYSIS REPORT

SECTION 9 - PLS POLE RESULTS FROM MAST REACTIONS CALCULATED IN RISA WITH NESC/NU CRITERIA

- COAX CABLE LOAD ON CL\&P TOWER CALCULATION
- PLS REPORT
- ANCHOR BOLT ANALYSIS
- FOUNDATION ANALYSIS

SECTION 10 - REFERENCE MATERIAL

- RFDS SHEET
- EQUIPMENT CUT SHEETS

Introduction

The purpose of this report is to analyze the existing mast and 95 ' utility pole located at 48 Quail Trail in Trumbull, CT for the proposed antenna and equipment upgrade by T-Mobile.
The existing/proposed loads consist of the following:

- T-MOBILE (Existing to be removed):

Antennas: Three (3) RFS APX16DWV-16DWVS-E-A20 panel antennas mounted on a mast with a RAD center elevation of 105 -ft above tower base plate.

- T-MOBILE (Existing to remain):

Coax Cables: Twelve (12) 1-5/8" \varnothing coax cables running on the outside of the tower as indicated in section 4 of this report.

- T-MOBILE (Proposed):

Antennas: Three (3) Andrew SBNHH-1D65A panel antennas mounted on three (3) existing standoff arms to the existing pipe mast with a RAD center elevation of $105-\mathrm{ft}$ above tower base plate.
Coax Cables: Six (6) 1-5/8" \varnothing coax cables running on the outside of the tower as indicated in section 4 of this report.

Primary assumptionsusedin the analysis

- ASCE Manual No. 72, "Design of Steel Transmission Pole Structures Second Edition", defines steel stresses for evaluation of the utility pole.
- All utility pole members are adequately protected to prevent corrosion of steel members.
- All proposed antenna mounts are modeled as listed above.
- Pipe mast will be properly installed and maintained.
- No residual stresses exist due to incorrect pole erection.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds conform to the requirements of AWS D1.1.
- Pipe mast and utility pole will be in plumb condition.
- Utility pole was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy.

Analysis

Structural analysis of the existing antenna mast was independently completed using the current version of RISA-3D computer program licensed to CENTEK Engineering, Inc.
The existing mast consisting of a $12-\mathrm{in} \times 28.25-\mathrm{ft}$ long SCH. 40 pipe (O.D. $=12.75$ ") connected at two points to the existing tower was analyzed for its ability to resist loads prescribed by the TIA-222G standard. Section 5 of this report details these gravity and lateral wind loads. NESC prescribed loads were also applied to the mast in order to obtain reactions needed for analyzing the utility pole structure. These loads are developed in Section 7 of this report. Load cases and combinations used in RISA-3D for TIA-222-G loading and for NESC/NU loading are listed in report Sections 6 and 8, respectively.
An envelope solution was first made to determine maximum and minimum forces, stresses, and deflections to confirm the selected section as adequate. Additional analyses were then made to determine the NESC forces to be applied to the pole structure.
The RISA-3D program contains a library of all AISC shapes and corresponding section properties are computed and applied directly within the program. The program's Steel Code Check option was also utilized. The forces calculated in RISA-3D using NESC guidelines were then applied to the pole using PLS-Pole. Maximum usage for the pole was calculated considering the additional forces from the mast and associated appurtenances.

Design Basis

Our analysis was performed in accordance with TIA-222-G, ASCE Manual No. 72 - "Design of Steel Transmission Pole Structures Second Edition", NESC C2-2007 and Northeast Utilities Design Criteria.

- UTILITY POLE ANALYSIS

The purpose of this analysis is to determine the adequacy of the existing utility pole to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the NU Design Criteria Table, NESC C2-2007 ~ Construction Grade B, and ASCE Manual No. 72.

Load cases considered:
Load Case 1: NESC Heavy
Wind Pressure..................................... 4.0 psf
Radial Ice Thickness............................. 0.5"
Vertical Overload Capacity Factor............. 1.50
Wind Overload Capacity Factor................ 2.50
Wire Tension Overload Capacity Factor...... 1.65
Load Case 2: NESC Extreme
Wind Speed...................................... 110 mph ${ }^{(1)}$
Radial Ice Thickness.............................. 0"
Note 1: NESC C2-2007, Section25, Rule 250C: Extreme Wind Loading, 1.25 x Gust Response Factor (wind speed: 3second gust)

- MAST ASSEMBLY ANALYSIS

Mast, appurtenances and connections to the utility tower were analyzed and designed in accordance with the NU Design Criteria Table, TIA-222-G and AISC standards.

Load cases considered:
Load Case 1:
Wind Speed. 97 mph ${ }^{(2016 \text { CSBC Appendix-N) }}$
Radial Ice Thickness.............................. 0"
Load Case 2:
Wind Pressure \qquad 50 mph wind pressure
Radial Ice Thickness.
0.75 "

Results

- MAST ASSEMBLY

The existing mast was determined to be structurally adequate.

Member	Stress Ratio (\% of capacity)	Result
$12^{\prime \prime}$ Sch. 40 Pipe	17.3%	PASS
$3 / 4 " \varnothing$ ASTM A325 Bolt	14.7%	PASS

- UTILITY POLE

This analysis finds that the subject utility pole is adequate to support the proposed antenna mast and related appurtenances. The pole stresses meet the requirements set forth by the ASCE Manual No. 72, "Design of Steel Transmission Pole Structures Second Edition", for the applied NESC Heavy and Hi-Wind load cases. The detailed analysis results are provided in Section 9 of this report. The analysis results are summarized as follows:

A maximum usage of $\mathbf{6 8 . 5 9 \%}$ occurs in the utility pole base plate under the NESC Heavy loading condition.

POLE SECTION:
The utility pole was found to be within allowable limits.

Tower Section	Elevation	Stress Ratio (\% of capacity)	Result
Tube Number 2	$9.25-54.25^{\prime}(\mathrm{AGL})$	68.59%	PASS

BASE PLATE:
The base plate was found to be within allowable limits from the PLS output based on 16 bend lines.

Tower Component	Design Limit	Stress Ratio (percentage of capacity)	Result
Base Plate	Bending	61.82%	PASS

- FOUNDATION AND ANCHORS

The existing foundation consists of a 10-ft square $\times 14$-ft long reinforced concrete pier with (16) rock anchors. The base of the tower is connected to the foundation by means of (20) 2.25 " \varnothing, ASTM A615-75 anchor bolts embedded into the concrete foundation structure. Foundation information was obtained from NUSCO drawing \# 01103-60000.

BASE REACTIONS:

From PLS-Pole analysis of pole based on NESC/NU prescribed loads.

Load Case	Shear	Axial	Moment
NESC Heavy Wind	47.97 kips	63.68 kips	3540.23 ft -kips
NESC Extreme Wind	49.98 kips	34.68 kips	3462.89 ft-kips

Note 1 - 10\% increase applied to tower base reactions per OTRM 051

ANCHOR BOLTS:

The anchor bolts were found to be within allowable limits.

Tower Component	Design Limit	Stress Ratio (\% of capacity)	Result
Anchor Bolts	Tension	58.71%	PASS

FOUNDATION:

The foundation was found to be within allowable limits.

Foundation	Design Limit	Allowable Limit	Proposed Loading ${ }^{(4)}$	Result
Reinf. Conc. Pier w/Rock Anchors	OTM Bearing Pressure	$1.0 \mathrm{FS}^{(2)}$	$1.97 \mathrm{FS}^{(2)}$	PASS

Note 1: OTM denotes overturning moment.
Note 2: FS denotes Factor of Safety
Note 3: Bearing Capacity based on Weak Rock.
Note 4: 10% increase to PLS base reactions used in foundation analysis per OTRM 051.

Conclusion

This analysis shows that the subject utility pole is adequate to support the proposed T-Mobile equipment upgrade.

The analysis is based, in part on the information provided to this office by Eversource and T-Mobile. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.
Respectfully Submitted by:

STANDARD CONDITIONS FOR FURNISHINGOF PROFESSIONAL ENGINEERING SERVICES ON EXISTINGSTRUCTURES

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 \& ANSI/EIA-222.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM~RISA-3D

RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

Modeling Features:

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems \& conversions at any time
- Automatic interaction with RISASection libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

Analysis Features:

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5\% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation - draw a polygon with any number of sides to create a mesh of well-formed quadrilateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges - web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases \& rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements
- 1-Way members, for tension only bracing, slipping, etc.
- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

Graphics Features:

- Unlimited simultaneous model view windows
- Extraordinary "true to scale" rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot \& print virtually everything with color coding \& labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to quickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000,EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd \& 3rd, HSS Specification, CAN/CSA-S16.11994 \& 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, MarinoIWARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing
- Plate force summation tool

Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member \& joint deflections, beam \& plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

GENERAL DESCRIPTIONOF STRUCTURAL ANALYSIS PROGRAM~PLS-TOWER

PLS-TOWER is a Microsoft Windows program for the analysis and design of steel latticed towers used in electric power lines or communication facilities. Both self-supporting and guyed towers can be modeled. The program performs design checks of structures under user specified loads. For electric power structures it can also calculate maximum allowable wind and weight spans and interaction diagrams between different ratios of allowable wind and weight spans.

Modeling Features:

- Powerful graphics module (stress usages shown in different colors)
- Graphical selection of joints and members allows graphical editing and checking
- Towers can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces
- Can extract geometry and connectivity information from a DXF CAD drawing
- CAD design drawings, title blocks, drawing borders or photos can be tied to structure model
- XML based post processor interface
- Steel Detailing Neutral File (SDNF) export to link with detailing packages
- Can link directly to line design program PLS-CADD
- Automatic generation of structure files for PLS-CADD
- Databases of steel angles, rounds, bolts, guys, etc.
- Automatic generation of joints and members by symmetries and interpolations
- Automated mast generation (quickly builds model for towers that have regular repeating sections) via graphical copy/paste
- Steel angles and rounds modeled either as truss, beam or tension-only elements
- Guys are easily handled (can be modeled as exact cable elements)

Analysis Features:

- Automatic handling of tension-only members
- Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.)
- Automatic calculation of tower dead, ice, and wind loads as well as drag coefficients according to:
- ASCE 74-1991
- NESC 2002
- NESC 2007
- IEC 60826:2003
- EN50341-1:2001 (CENELEC)
- EN50341-3-9:2001 (UK NNA)
- EN50341-3-17:2001 (Portugal NNA)
- ESAA C(b)1-2003 (Australia)
- TPNZ (New Zealand)
- REE (Spain)
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G
- Minimization of problems caused by unstable joints and mechanisms
- Automatic bandwidth minimization and ability to solve large problems
- Design checks according to (other standards can be added easily):
- ASCE Standard 10-90
- AS 3995 (Australian Standard 3995)
- BS 8100 (British Standard 8100)
- EN50341-1 (CENELEC, both empirical and analytical methods are available)
- ECCS 1985
- NGT-ECCS
- PN-90/B-03200
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- EDF/RTE Resal
- IS 802 (India Standard 802)

Results Features:

- Design summaries printed for each group of members
- Easy to interpret text, spreadsheet and graphics design summaries
- Automatic determination of allowable wind and weight spans
- Automatic determination of interaction diagrams between allowable wind and weight spans
- Capability to batch run multiple tower configurations and consolidate the results
- Automated optimum angle member size selection and bolt quantity determination

Tool for interactive angle member sizing and bolt quantity determination.

Criteria for Design of PCS Facilities on or Extending Above Metal Electric Transmission Towers \& Analysis of Transmission Towers Supporting PCSMasts ${ }^{\text {(1) }}$

Introduction

This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as "masts"), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts.

ANSI Standard TIA-222 covering the design of telecommunications structures specifies a working strength/allowable stress design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that it does not exceed some defined percentage of failure strength (allowable stress).

ANSI Standard C2-2007 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress).

Each standard defines the details of how loads are to be calculated differently. Most of the NU effort in "unifying" both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings.

Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 50 -year recurrence (2% annual probability). The second is a winter condition combining wind and ice loadings.

The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports.

Note 1: Prepared from documentation provide from Northeast Utilities.

PCSMast

The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be designed in accordance with the provisions of TIA 222-G:

ELECTRIC TRANSMISSION TOWER

The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled "NU Design Criteria". This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility:

- PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure.
- Conductors are related devices and hardware.
- Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower.

The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.)

In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members.

Attachment A
NU Design Criteria

Communication Antennas on Transmission Structures (CL\&P \& WMECo Only)

Shape Factor Criteria shall be per TIA Shape Factors.
2) STEP 2 - The electric transmission structure analysis and evaluation shall be performed in accordance with NESC requirements and shall include the mast and antenna loads determined from NESC applied loading conditions (not TIA/EIA Loads) on the structure and mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria)

The structure shall be analyzed using yield stress theory in accordance with Attachment A, "NU Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility:
a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure.
b) Conductors and related devices and hardware (wire loads will be provided by NU).
c) Electric Transmission Structure
i) The loads from the wireless communication equipment components based on NESC and NU Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower.
ii) Shape Factor Multiplier:

NESC Structure Shape	Cd
Polyround (for polygonal steel poles)	1.3
Flat	1.6
Open Lattice	3.2

iii) When Coaxial Cables are mounted along side the pole structure, the shape multiplier shall be:

Mount Type	Cable Cd	Pole Cd
Coaxial Cables on outside periphery (One layer)	1.45	1.45
Coaxial Cables mounted on stand offs	1.6	1.3

d) The uniform loadings and factors specified for the above components in Attachment A, "NU Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above.
Note: The NESC does not require ice load be included in the supporting structure. (Ice on conductors and shield wire only, and NU will provide these loads).
e) Mast reaction loads shall be evaluated for local effects on the transmission structure members at the attachment points.

Communication Antennas on Transmission Structures (CL\&P \& WMECo Only)

OTRM 059
Page 3 of 9

Rev. 1 03/17/2011

TOWER ID: \square

Wind Speed: 90.5711047 mph
Extreme Wind Model : PCS Addition

Shield Wire Properties:

	BACK	AHEAD
NAME $=$	OPGW-120	OPGW-120
DESCRIPTION =	6-Groove	6-Groove
STRANDING =	10/9 FOCAS	10/9 FOCAS
DIAMETER =	0.738 in	0.738 in
WEIGHT =	$0.518 \mathrm{lb} / \mathrm{ft}$	$0.518 \mathrm{lb} / \mathrm{ft}$

Conductor Properties:

Insulator Weight $=0$ Ibs Broken Wire Side $=$ AHEAD SPAN

Horizontal Line Tensions:

	BACK		AHEAD	
	Shield	Conductor	Shield	Conductor
NESC HEAVY =	6,000	11,400	6,000	11,400
EXTREME WIND =	6,016	12,178	6,016	12,178
LONG. WIND $=$	na	na	na	na
250D COMBINED =	na	na	na	na
NESC W/O OLF =	na	na	na	na
60 DEG F NO WIND =	2,045	5,625	2,045	5,625

Line Geometry:

LINE ANGLE (deg) =					SUM
	BACK:	8	AHEAD:	8	15
WIND SPAN (ft) =	BACK:	262	AHEAD:	262	524
WEIGHT SPAN (ft) =	BACK:	396	AHEAD:	396	792

	Page	of
Spec. Number	Sheet	of
Computed by	Date	$9 / 29 / 09$
Checked by	Date	

WIRE LOADING AT ATTACHMENTS
TOWER ID:

Wind Span	$=$
Weight Span	$=$524 ft 792 ft 15 degrees Total Angle $=$ r

Broken Wire Span $=$ AHEAD SPAN
Type of Insulator Attachment $=$ STRAIN

1. NESC RULE 250B Heavy Loading:

	INTACT CONDITION			BROKEN WIRE CONDITION		
	Horizontal	Longitudinal	Vertical	Horizontal	Longitudina	Vertical
Shield Wire =	3,426 lb	0 lb	1,530 lb	1,713 lb	9,810 lb	765 lb
Conductor =	6,160 lb	0 lb	$3,607 \mathrm{lb}$	$3,080 \mathrm{lb}$	$18,639 \mathrm{lb}$	$1,803 \mathrm{lb}$

2. NESC RULE 250C Transverse Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	$2,614 \mathrm{lb}$	0 lb	472 lb
Conductor	$=$$1,302 \mathrm{lb}$ 0 lb $1,630 \mathrm{lb}$		

3. NESC RULE 250C Longitudinal Extreme Wind Loading:

	Horizontal	Longitudina	Vertical
Shield Wire =	\#VALUE!	\#VALUE!	472 lb
Conductor $=$	\#VALUE!	\#VALUE!	1,630 lb

4. NESC RULE 250D Extreme Ice \& Wind Loading:

| | Horizontal | | Longitudinal |
| ---: | :--- | :--- | :--- | Vertical

5. NESC RULE 250B w/o OLF's

| | Horizontal | | Longitudinal |
| ---: | :--- | :--- | :--- | Vertical

6. 60 Deg. F. No Wind

	Horizontal	Longitudinal	Vertical
Shield Wire =	551 lb	0 lb	410 lb
Conductor =	$1,515 \mathrm{lb}$	0 lb	$1,418 \mathrm{lb}$

7. Construction

	Horizontal	Longitudina	Vertical
Shield Wire =	826 lb	0 lb	615 lb
Conductor =	2,273 lb	0 lb	$2,127 \mathrm{lb}$

NOTE: All loads include required overload factors (OLF's).

	Page	of
Spec. Number	Sheet	of
Computed by	Date	$9 / 29 / 09$
Checked by	Date	

INPUT DATA

TOWER ID: \square

Structure Height (ft) :
95

Wind Zone : Central CT (green)

Tower Type : O Suspension
Extreme Wind Model : PCS Addition

Shield Wire Properties:

	BACK
NAME $=$	$3 / 8 \mathrm{AW}$
DESCRIPTION $=$	$3 / 8$
STRANDING $=$	$7 \# 8$ AI Weld
DIAMETER $=$	$3 / 8 \mathrm{AW}$
WEIGHT $=$	$3 / 8$
	0.385 in

Conductor Properties:

Horizontal Line Tensions:

	BACK		AHEAD	
NESC HEAVY $=$	Shield	Conductor	Shield	Conductor
EXTREME WIND $=$	4,200	11,400	4,200	11,400
LONG. WIND $=$	3,440	12,178	3,440	12,178
250D COMBINED $=$	na	na	na	na
NESC W/O OLF $=$	na	na	na	na
60 DEG F NO WIND $=$	na	na	na	na
1,234	5,625	1,234	5,625	

Line Geometry:

LINE ANGLE (deg) =		8			SUM
				8	15
WIND SPAN (ft) $=$	BACK:	262	AHEAD:	262	524
WEIGHT SPAN (ft) =	BACK:	396	AHEAD:	396	792

	Page	of
Spec. Number	Sheet	of
Computed by	Date	$9 / 29 / 09$
Checked by	Date	

WIRE LOADING AT ATTACHMENTS
TOWER ID:

Wind Span	$=$
Weight Span	$=$524 ft 792 ft 15 degrees
Total Angle	$=$

Broken Wire Span $=$ AHEAD SPAN
Type of Insulator Attachment $=$ STRAIN

1. NESC RULE 250B Heavy Loading:

	INTACT CONDITION			BROKEN WIRE CONDITION		
	Horizontal	Longitudinal	Vertical	Horizontal	Longitudinal	Vertical
Shield Wire =	2,471 lb	0 lb	965 lb	1,236 lb	6,867 lb	482 lb
Conductor $=$	6,160 lb	0 lb	3,607 lb	$3,080 \mathrm{lb}$	$18,639 \mathrm{lb}$	1,803 lb

2. NESC RULE 250C Transverse Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	$1,457 \mathrm{lb}$	0 lb	238 lb
Conductor $=$	$0,302 \mathrm{lb}$	0 lb	$1,630 \mathrm{lb}$

3. NESC RULE 250C Longitudinal Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire =	\#VALUE!	\#VALUE!	238 lb
Conductor $=$	\#VALUE!	\#VALUE!	1,630 lb

4. NESC RULE 250D Extreme Ice \& Wind Loading:

	Horizontal		Longitudinal
Shield Wire	$=$\#VALUE! \#VALUE! $1,571 \mathrm{lb}$ Conductor $=$\#VALUE! \#VALUE! $3,884 \mathrm{lb}$		

5. NESC RULE 250B w/o OLF's

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	\#VALUE! \#VALUE! 643 lb Conductor $=$ \#VALUE! \#VALUE! $2,405 \mathrm{lb}$		

6. 60 Deg . F, No Wind

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	332 lb	0 lb	207 lb
Conductor $=$	0 lb	$1,418 \mathrm{lb}$	

7. Construction

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	499 lb 0 lb 311 lb Conductor $=$ $2,273 \mathrm{lb}$ 0 lb $2,127 \mathrm{lb}$		

NOTE: All loads include required overload factors (OLF's).

REVISIONS			(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road, Branford, CI 06405	$\begin{gathered} \text { CT11860A } \\ \text { EVERSOURCE } 838 \end{gathered}$	PROJECT NO: 16159.04		4-Mobile	TOWER AND MAST ELEVATION
00	10/24/16	ISSUED FOR REVIEW			DRAWN	TJL		
					CHECK	CFC		- 1
				48 QUAIL TRAIL	SCALE:	AS NOTED		
				TRUMBULL, CT 06611	DATE:	10/19/16		DWG. 1 OF 1

二 $=\mathrm{NT}$ 二人 engineering	Subject：	Loads on T－Mobile Equipmnet Structure \＃ 838
Centered on Solutions＂\quad momycentekenscom 63.2 North Banford Roasd	Location：	Trumbull，CT
Qanorderames	Rev．0：10／24／16	Prepared by：T．J．L．Checked by：C．F．C． Job No． 16159.04

Development of Design Heights，Exposure Coefficients，

 and Velocity Pressures Per TIA－222－G
Wind Speeds

Basic Wind Speed
Basic Wind Speed with Ice

$\mathrm{V}:=97$	mph	（User Input－2016 CSBC Appendix N）
$\mathrm{V}_{\mathrm{i}}:=50$	mph	（User Input per Annex B of TIA－222－G）

Input			
Structure Type $=$	Structure＿Type	（User Input）	
Structure Category＝	SC ：＝III	（User Input）	
Exposure Category＝	Exp ：＝C	（User Input）	
Structure Height $=$	$\mathrm{h}:=95$	（User Input）	
Height to Center of Antennas＝	$z_{\text {AT\＆T }}:=105$	（User Input）	
Radial Ice Thickness＝	$\operatorname{lr}:=0.75$	（User Input per Annex	f TIA－222－G）
Radial Ice Density＝	Id ：＝ 56.00	（User Input）	
	$\mathrm{K}_{\mathrm{a}}:=0.8$	（User Input）	
Output			
Wind Direction Probability Factor $=$	$\mathrm{K}_{\mathrm{d}}:=\left\lvert\, \begin{aligned} & 0.95 \text { if Structure_Type }=\text { Pole } \\ & 0.85 \text { if Structure_Type }=\text { Lattice } \end{aligned}\right.$		（Table 2－2 of TIA／EIA－222－G）
Importance Factor＝	$I:=\left\lvert\, \begin{aligned} & 0.87 \text { if } S C=1=1.15 \\ & 1.00 \text { if } S C=2 \\ & 1.15 \text { if } S C=3 \end{aligned}\right.$		（Table 2－3 of TIA／EIA－222－G）
Velocity Pressure Coefficient $=$	$K z_{A T \& T}:=2.01\left(\left(\frac{z_{\text {AT\＆T }}}{z g}\right)\right)^{\frac{2}{\alpha}}=1.279$		
Velocity Pressure w／o Ice＝	$\mathrm{qz} \mathrm{AT}_{\text {AT }}:=0.00$	$T \& T \cdot V^{2} \cdot I=33.649$	
Velocity Pressure with Ice＝	qzice.AT\&T:=	$\mathrm{Kz}_{\mathrm{AT} \& \mathrm{~T}} \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot \mathrm{I}=8.941$	
Gust Response Factor＝	$\mathrm{G}_{\mathrm{H}}:=1.35$		

二NT $=\mathrm{K}$ engineering	Subject:	Loads on T-Mobile Equipmnet Structure \# 838
	Location:	Trumbull, CT
	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Development of Wind \& Ice Load on Mast

Mast Data:	(Pipe 12" Sch. 40)	(User Input)
Mast Shape $=$	Round	(User Input)
Mast Diameter $=$	$\mathrm{D}_{\text {mast }}:=12.75$ in	(User Input)
Mast Length $=$	$\mathrm{L}_{\text {mast }}:=28.25 \quad \mathrm{ft}$	(User Input)
Mast Thickness $=$	$\mathrm{t}_{\text {mast }}:=0.375 \quad$ in	(User Input)
Mast Aspect Ratio $=$	$\mathrm{Ca}_{\text {mast }}:=\frac{12 \mathrm{~L}_{\text {mast }}}{\mathrm{D}_{\text {mast }}}=26.6$	

Wind Load (without ice)

Mast Projected Surface Area $=$

Total Mast Wind Force =

Wind Load (with ice)

Mast Projected Surface Area w/ Ice =

Total Mast Wind Force w/ Ice =

Gravity Loads (without ice)

Weight of the mast =

Gravity Loads (ice only)
Ice Area per Linear Foot =

Weight of Ice on Mast =

$$
\begin{array}{ll}
\mathrm{A}_{\text {mast }}:=\frac{\mathrm{D}_{\text {mast }}}{12}=1.063 & \mathrm{sf} / \mathrm{ft} \\
\mathrm{qz}_{\text {AT\&T }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \text { Ca }_{\text {mast }} \cdot \mathrm{A}_{\text {mast }}=58 & \text { plf } \\
\text { BLC 5 }
\end{array}
$$

$$
\mathrm{sf} / \mathrm{ft}
$$

plf

BLC 4
$\mathrm{qz}_{\text {ice }} . A T \& T \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {mast }} \cdot \mathrm{AICE}_{\text {mast }}=17$
(Computed internally by Risa-3D)
plf
BLC 1
$A i_{\text {mast }}:=\frac{\pi}{4}\left[\left(\mathrm{D}_{\text {mast }}+\mathrm{Ir} \cdot 2\right)^{2}-\mathrm{D}_{\text {mast }}{ }^{2}\right]=31.8$
sq in
$W_{\text {ICEmast }}:=$ Id• $\frac{A i_{\text {mast }}}{144}=12$

二NT $=\mathrm{K}$ engineering	Subject:	Loads on T-Mobile Equipmnet Structure \# 838
	Location:	Trumbull, CT
	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Development of Wind \& Ice Load on Antennas

Proposed Antenna Data:

Antenna Model $=$
Antenna Shape $=$
Antenra Height $=$
Antenna Width =
Antenna Thickness =

Antenna Weight =

Number of Antemas =

Antenna Aspect Ratio =

Antenna Force Coefficient $=$

Wind Load (without ice)

Surface Area for One Antenna =

Antenna Projected Surface A rea =

Total Antema Wind Force =

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ I œ =

Total Antenna Wind Force w/ Ice =

Gravity Load (without ice)
Weight of All Antennas =
Gravity Loads (ice only)
Volum e of Each Antenna =

Volum e of Ice on Each Antenna =

Weight of Ice on Each Antenna =

Weight of Ice on All Antennas =

Andrew SBNHH-1D65A
Flat
$\mathrm{L}_{\mathrm{ant}}:=55.5 \quad$ in \quad (User Input)
$\mathrm{W}_{\text {ant }}:=11.9$ in (User Input)
$\mathrm{T}_{\text {ant }}:=7.1$ in (User Input)
$\mathrm{WT}_{\text {ant }}:=34$ lbs (User Input)
$\mathrm{N}_{\mathrm{ant}}:=3 \quad$ (User Input)
$\mathrm{Ar}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}}}{\mathrm{W}_{\mathrm{ant}}}=4.7$
$\mathrm{Ca}_{\mathrm{ant}}=1.3$
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }} \cdot W_{\text {ant }}}{144}=4.6 \quad \mathrm{sf}$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=13.8 \quad \mathrm{sf}$
$F_{\text {ant }}:=q z_{A T \& T} \cdot G_{H} \cdot \mathrm{Ca}_{\text {ant }} \cdot K_{a} \cdot A_{a n t}=648$
lbs
BLC 5

SA ICEant $:=\frac{\left(\mathrm{L}_{\text {ant }}+2 \cdot \mathrm{Ir}\right) \cdot\left(\mathrm{W}_{\text {ant }}+2 \cdot \mathrm{Ir}\right)}{144}=5.3 \quad \mathrm{sf}$
AICEant $:=$ SA $_{\text {ICEant }} \cdot N_{\text {ant }}=15.9 \quad$ sf
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}$ ice.AT\&T$\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\text {ICEant }}=199 \quad$ lbs
BLC 4

BLC 2
cu in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)-\mathrm{V}_{\mathrm{ant}}=1879$
cu in
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot$ Id $=61$
lbs
$W_{\text {ICEant }}{ }^{N_{\text {ant }}}=183$
lbs
f
lbs
$\mathrm{V}_{\text {ant }}:=\mathrm{L}_{\text {ant }} \cdot \mathrm{W}_{\text {ant }} \cdot \mathrm{T}_{\text {ant }}=4689$

BLC 3

二NTT	Subject:	Loads on T-Mobile Equipmnet Structure \# 838
Centered on Solutions" 63.2North Banford Roasd	Location:	Trumbull, CT
Eamordictiencos	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Development of Wind \& Ice Load on Antenna Mounts					
Mount Data:					
Mount Type:	Valmort Standoff Ams				
Mount Shape =	Flat		(User Input)		
Mount Projected Surface Area $=$	CaAa $:=5$	sf	(User Input)		
Mount Projected Surface Area w/ Ice =	CaAa ice $:=9$	sf	(User Input)		
Mount Weight =	$W T_{\text {mnt }}:=150$	Ibs	(User Input)		
Mount Weight w/ Ice =	$W T_{\text {mnt.ice }}:=400$	lbs			
Wind Load (without ice)					
Total Mount Wind Force =	$\mathrm{F}_{\mathrm{mnt}}:=\mathrm{qz}_{\mathrm{AT}}$ \% $\mathrm{T} \cdot \mathrm{G}^{\prime}$	AA		lbs	BLC 5
Wind Load (with ice)					
Total Mount Wind Force $=$	$\mathrm{Fi}_{\mathrm{mnt}}:=\mathrm{qz}$ ice.AT .	$\mathrm{H}^{\text {Ca }}$	$\mathrm{a}_{\text {ice }}=109$	lbs	BLC 4
Gravity Loads (without ice)					
Weight of All Mounts =	$W T_{\text {mnt }}=150$			lbs	BLC 2
Gravity Loads (ice only)					
Weight of Ice on All Mounts =	$W T_{\text {mnt.ice }}-W T_{\text {m }}$	250		lbs	BLC 3

二三NT	Subject:	Loads on T-Mobile Equipmnet Structure \# 838
	Location:	Trumbull, CT
	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Development of Wind \& Ice Load on Coax Cables

Shape $=$
Coax Outside Diameter $=$
Coax Cable Length =
Weight of Coax per foot $=$
Total Number of Coax =
No. of Coax Projecting Outside Face of Mast =

Coax aspect ratio,

Coax Cable Force Factor Coefficient $=$

Wind Load (without ice)

Coax projected surface area $=$

Total Coax Wind Force =

Wind Load (with ice)

Coax projected surface area w/ Ice =

Total Coax Wind Force w/ Ice =

Gravity Loads (without ice)

Weight of all cables w/o ice

Gravity Loads (ice only)
Ice Area per Linear Foot =

Ice Weight All Coax per foot =

$$
{ }^{1}
$$

Coax Cable Data:
Coax Type $=\quad$ HELIAX 1-5/8"

CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405 Ph. 203-488-0580 / Fax. 203-488-8587	Subject:	s of TIA-222G nly ed Load Cases ull, CT Prepared by: T.J.L.	d and Ice Load Checked by: C.F.C	Analysis of Job No. 16159.04
Load Case	Description			
1	Self Weight (Mast) Weight of Appurtenances Weight of Ice Only TIA Wind with Ice TIA Wind			
2				
3				
4				
5				
Footnotes:				

二NT $=\mathrm{K}$ engineering	Subject:	Mast Connection to CL\&P Tower \# 838
	Location:	Trumbull, CT
	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Mast Top Connection:

Maximum Design Reactions at Brace:

Vertical $=$	Vert $:=1.9 \cdot \mathrm{kips}$	(User Input)
Horizontal $=$	Horz $:=6.2 \cdot \mathrm{kips}$	(User Input)
Moment $=$	Moment $:=0$	(User Input)

Bolt Data:

Bolt Grade =

A 325	(User Input)
$\mathrm{n}_{\mathrm{b}}:=6$	(User Input)
$\mathrm{d}_{\mathrm{b}}:=0.75 \mathrm{in}$	(User Input)
$\mathrm{F}_{\mathrm{t} . \mathrm{all}}:=67.5 \cdot \mathrm{ksi}$	(User Input)
$\mathrm{F}_{\mathrm{v} . \mathrm{all}}:=40.5 \cdot \mathrm{ksi}$	(User Input)
$\mathrm{e}:=21.125 \cdot \mathrm{in}$	(User Input)
$\mathrm{S}_{\text {vert }}:=9 \cdot \mathrm{in}$	(User Input)
$\mathrm{S}_{\text {horz }}:=20.5 \cdot \mathrm{in}$	(User Input)

Bolt Area $=$
$a_{b}:=\frac{1}{4} \cdot \pi \cdot d_{b}^{2}=0.442 \cdot$ in 2

C=NT $=\mathrm{K}$ engineering	Subject:	Mast Connection to CL\&P Tower \# 838
Centered on Solutions" 63.2 North Banford Roasd	Location:	Trumbull, CT
	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Check Bolt Stresses:

Wind Acting Parallel to Stiffiner Plate:

Shear Force per Bolt $=$

Shear Stress per Bolt =

Allowable Tensile Stress Adjusted for Shear =

> Moment From Mast Eccentricity $=$
> Total Tension Force $=$
> Tension Force Each Bolt $=$

Tension Stress Each Bolt =

Wind Acting Perpendicular to Stiffiner Plate:

> Shear Force per Bolt =
> Shear Stress per Bolt =

Allowable Tensile Stress Adjusted for Shear = Moment from Mast Eccentricity $=$

Tension Force per Bolt $=$

Tension Stress Each Bolt =
$\mathrm{F}_{\text {V.conn }}:=\frac{\text { Vert }}{\mathrm{n}_{\mathrm{b}}}=0.317 \cdot \mathrm{kips}$
$\mathrm{F}_{\mathrm{V} . \mathrm{act}}:=\frac{\mathrm{F}_{\mathrm{v} . \text { conn }}}{\mathrm{a}_{\mathrm{b}}}=0.717 \cdot \mathrm{ksi}$
Condition1 := if $\left(\mathrm{F}_{\mathrm{v} . \text { act }}<\mathrm{F}_{\mathrm{v} . \mathrm{all}}\right.$, "OK" , "Overstressed" $)$

Condition1 = "OK"
$F_{\text {t.adj }}:=\sqrt{F_{\text {t.all }}{ }^{2}-4.39 \cdot F_{\text {v.act }}{ }^{2}}=67.48 \cdot \mathrm{ksi}$
$M_{\text {par }}:=$ Vert $\cdot \mathrm{e}=40.1 \cdot \mathrm{kips} \cdot \mathrm{in}$
$F_{\text {tension }}:=$ Horz $=6.2 \cdot \mathrm{kips}$
$F_{\text {tension.bolt }}:=\frac{F_{\text {tension }}}{n_{b}}+\frac{M_{\text {par }}}{S_{\text {vert }} \cdot 2}=3.263 \cdot \mathrm{kips}$
$F_{\text {t.act }}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=7.4 \cdot \mathrm{ksi}$

Condition2 := if $\left(F_{t . a c t}<F_{\text {t.adj }}\right.$, "OK" , "Overstressed" $)$
Condition2 = "OK"
$F_{\text {V.conn }}:=\frac{{\sqrt{\text { Vert }^{2}+\text { Horz }^{2}}}^{2}}{n_{b}}=1.081 \cdot \mathrm{kips}$
$F_{\text {v.act }}:=\frac{F_{\text {v.conn }}}{a_{b}}=2.446 \cdot \mathrm{ksi}$

Condition3:= if $\left(F_{\text {v.act }}<F_{\text {v.all }}\right.$,"OK" , "Overstressed" $)$
Condition3 = "OK"
$F_{\text {t.adj }}:=\sqrt{F_{\text {t.all }}{ }^{2}-4.39 \cdot F_{\text {v.act }}{ }^{2}}=67.31 \cdot \mathrm{ksi}$
$M_{\text {perp }}:=$ Horz $\cdot \mathrm{e}=131 \cdot \mathrm{kips} \cdot \mathrm{in}$
$F_{\text {tension.conn }}:=\frac{M_{\text {perp }}}{S_{\text {horz }} \cdot 3}+\frac{M_{\text {par }}}{S_{\text {vert }} \cdot 2}=4.36 \cdot$ kips
$F_{\text {tension.act }}:=\frac{F_{\text {tension.conn }}}{a_{b}}=9.868 \cdot \mathrm{ksi}$
Condition4 := if($F_{\text {tension.act }}<F_{\text {t.adj }}$, "OK" , "Overstressed" $)$
Condition4 = "OK"

$=\mathrm{NT}=\mathrm{K}$ engineering	Subject:	Mast Connection to Bottom Bracket
	Location:	Trumbull, CT
	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Mast Connection to Bottom Bracket:

Design Reactions at Brace:

Axial $=$
Shear $=$
Moment $=$

Anchor Bolt Data: Bolt Grade = Design Shear Stress $=$ Design Tension Stress = Total Number of Bolts $=$ Number of Bolts Tension Side Parallel $=$ Number of Bolts Tension Side Diagonal $=$

Bolt Diameter $=$
Bolt Spacing X Direction $=$
Bolt Spacing Z Direction $=$

Base Plate Data:

Base Plate Steel $=$	A 36	(User Input)
Allowable Yidd Stress $=$	$\mathrm{F}_{\mathrm{y}}:=36 \cdot \mathrm{ksi}$	(User Input)
Base Plate Width $=$	$\mathrm{PI}_{\mathrm{w}}:=14.5 \cdot \mathrm{in}$	(User Input)
Base Plate Thickness $=$	$\mathrm{PI}_{\mathrm{t}}:=1 \cdot \mathrm{in}$	(User Input)
Bolt Edge Distance $=$	$\mathrm{B}_{\mathrm{E}}:=1.75 \cdot \mathrm{in}$	(User Input)
Pole Diameter $=$	$\mathrm{D}_{\mathrm{p}}:=12.75 \cdot \mathrm{in}$	(User Input)
Base Plate Data:		
Weld Grade	E 70 XX	
Weld Yield Stress $=$	$\mathrm{F}_{\mathrm{yw}}:=70 \cdot \mathrm{ksi}$	(User Input)
Weld Size $=$	$\mathrm{sw}:=0.3125 \cdot \mathrm{in}$	(User Input)

Anchor Bolt Check:

Bolt Area =	$\mathrm{a}_{\mathrm{b}}:=\frac{1}{4} \cdot \pi \cdot \mathrm{~d}_{\mathrm{b}}^{2}=0.785 \cdot \mathrm{in}^{2}$
Bolt Spacing Diag. Direction $=$	$S_{\text {diag }}:=\sqrt{S_{x}{ }^{2}+S{ }^{2}}{ }^{2}=15.56 \cdot$ in
Tension Load per Bolt Parallel =	$\mathrm{T}_{\mathrm{par}}:=\frac{\text { Moment }}{\mathrm{S}_{\mathrm{x}} \cdot \mathrm{n}_{\mathrm{b} . \mathrm{par}}}-\frac{\text { Axial }}{\mathrm{n}_{\mathrm{b}}}=3.37 \cdot \mathrm{kips}$
Tension Load per Bolt Diagonal $=$	$\mathrm{T}_{\text {diag }}:=\frac{\text { Moment }}{\mathrm{S}_{\text {diag }} \cdot \mathrm{n}_{\mathrm{b} \cdot \mathrm{diag}}}-\frac{\text { Axial }}{\mathrm{n}_{\mathrm{b}}}=4.84 \cdot \mathrm{kips}$
Actual Shear Stress =	$\mathrm{f}_{\mathrm{v}}:=\frac{\text { Shear }}{\mathrm{a}_{\mathrm{b}} \cdot \mathrm{n}_{\mathrm{b}}}=0.16 \cdot \mathrm{ksi}$
	Condition1 := if ($\mathrm{f}_{\mathrm{v}}<\mathrm{F}_{\mathrm{V}}$, "OK", "Overstressed")
	Condition1 = "OK"

$F_{\mathrm{t} . \mathrm{adj}}:=\sqrt{\mathrm{F}_{\mathrm{T}}{ }^{2}-4.39 \cdot \mathrm{f}_{\mathrm{v}}{ }^{2}}=67.499 \cdot \mathrm{ksi}$
$\mathrm{T}:=\operatorname{if}\left(\mathrm{T}_{\text {par }}>\mathrm{T}_{\text {diag }}, \mathrm{T}_{\text {par }}, \mathrm{T}_{\text {diag }}\right)=4.839 \cdot \mathrm{kips}$
$f_{t}:=\frac{T}{a_{b}}=6.16 \cdot \mathrm{ksi}$
Condition2 := if $\left(\mathrm{f}_{\mathrm{t}}<\mathrm{F}_{\mathrm{t} \text {. adj }}\right.$, "OK" , "Overstressed" $)$
Condition2 = "OK"

Base Plate Check:

$$
\begin{aligned}
\text { Allowable Bending Stress }= & \mathrm{F}_{\mathrm{b}}:=0.9 \cdot \mathrm{~F}_{\mathrm{y}}=32.4 \cdot \mathrm{ksi} \\
\text { Plate Bending Width }= & \mathrm{Z}:=\left(\mathrm{P} \mathrm{I}_{\mathrm{w}} \cdot \sqrt{2}-\mathrm{D}_{\mathrm{p}}\right)=7.76 \cdot \mathrm{in} \\
\text { Moment Arm }= & \mathrm{K}:=\frac{\left(\mathrm{S}_{\mathrm{diag}}-\mathrm{D}_{\mathrm{p}}\right)}{2}=1.4 \cdot \mathrm{in} \\
\text { Moment in Base Plate }= & \mathrm{S}_{\mathrm{Z}}:=\frac{1}{6} \cdot \mathrm{Z} \cdot \mathrm{P} \mathrm{I}_{\mathrm{t}}^{2}=1.29 \cdot \mathrm{in}^{3} \\
\text { Section Modulus }= & \mathrm{f}_{\mathrm{b}}:=\frac{\mathrm{M}}{\mathrm{~S}_{\mathrm{Z}}}=5.79 \cdot \mathrm{kips} \cdot \mathrm{in} \\
\text { Bending Stress }= & \text { Condition3: }:=\mathrm{if}\left(\mathrm{f}_{\mathrm{b}}<\mathrm{F}_{\mathrm{b}}, \text { "OK" , "Overstressed" }\right) \\
& \text { Condition3 }=\text { "OK" }
\end{aligned}
$$

二NNT $=\mathrm{K}$ engineering	Subject:	Mast Connection to Bottom Bracket
Centered on Solutions" wombentekens.an 62.2North Banford Road	Location:	Trumbull, CT
	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Base Plate to Mast Weld Check:

Allowable Weld Stress =

Weld Moment of Inertia =

Section Modulus of Weld =

Weld Stress =
$\mathrm{F}_{\mathrm{w}}:=0.45 \cdot \mathrm{~F}_{\mathrm{yw}}=31.5 \cdot \mathrm{ksi}$
$\mathrm{c}:=\frac{\mathrm{D}_{\mathrm{p}}}{2}+\mathrm{sw} \cdot 0.707=6.6 \cdot \mathrm{in}$
$I_{w}:=\frac{\pi}{64} \cdot\left[\left(D_{p}+2 s w \cdot 0.707\right)^{4}-D_{p}^{4}\right]=189.4 \cdot$ in 4
$S_{W}:=\frac{{ }^{\mathrm{I}}}{\mathrm{w}}=28.71 \cdot \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{w}}:=\frac{\text { Moment }}{\mathrm{S}_{\mathrm{w}}}=2.72 \cdot \mathrm{ksi}$
Condition4 := if($\mathrm{f}_{\mathrm{w}}<\mathrm{F}_{\mathrm{w}}$, "OK", "Overstressed")
Condition4 = "OK"

二NT $=\mathrm{K}$ engineering	Subject:	Mast Connection to CL\&P Tower \# 838
	Location:	Trumbull, CT
	Location:	Trumbull, CT
	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Mast Bottom Connection:

Maximum Design Reactions at Brace:

Vertical $=$	Vert $:=0.7 \cdot \mathrm{kips}$	(User Input)
Horizontal $=$	Horz $:=0.5 \cdot \mathrm{kips}$	(User Input)
Moment $=$	Moment $:=6.5 \cdot \mathrm{ft} \cdot \mathrm{kips}$	(User Input)

Bolt Data:

Bolt Grade =
Number of Bolts =
Bolt Diameter $=$
Design Tensile Stress =
Design Shear Stress =
Bolt Eccentricity from C.L. Mast =

Vetical Spacing Between Top and Bottom Bolts =
Horizontal Spacing Between Bolts =

Bolt Area =

cerpendicuar

A325
$n_{b}:=16$
$\mathrm{d}_{\mathrm{b}}:=0.75 \mathrm{in}$
$\mathrm{F}_{\mathrm{t} . \mathrm{all}}:=67.5 \cdot \mathrm{ksi}$
$\mathrm{F}_{\text {v.all }}:=40.5 \cdot \mathrm{ksi}$
$e:=21.125 \cdot \mathrm{in}$
$S_{\text {vert }}:=21 \cdot$ in
$S_{\text {horz }}:=27.25 \cdot$ in (User Input)
$\mathrm{a}_{\mathrm{b}}:=\frac{1}{4} \cdot \pi \cdot \mathrm{~d}_{\mathrm{b}}{ }^{2}=0.442 \cdot \mathrm{in}^{2}$

C=NT $=\mathrm{K}$ engineering	Subject:	Mast Connection to CL\&P Tower \# 838
Centered on Solutions" 63.2 North Banford Roasd	Location:	Trumbull, CT
	Rev. 0: 10/24/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Check Bolt Stresses:

Wind Acting Parallel to Stiffiner Plate:

Shear Force per Bolt =	$F_{\text {V.conn }}:=\frac{\text { Vert }}{n_{b}}=0.044 \cdot \mathrm{kips}$
Shear Stress per Bolt =	$\mathrm{F}_{\mathrm{v} . \mathrm{act}}:=\frac{\mathrm{F}_{\mathrm{v} . \mathrm{conn}}}{\mathrm{a}_{\mathrm{b}}}=0.099 \cdot \mathrm{ksi}$
	Condition1 := if ($\mathrm{v}_{\mathrm{v} . \mathrm{act}}<\mathrm{F}_{\mathrm{v} . \mathrm{all}}$, "OK" , "Overstressed" $)$
	Condition1 = "OK"
Allowable Tensile Stress Adjusted for Shear =	$F_{\mathrm{t} . \mathrm{adj}}:=\sqrt{\mathrm{F}_{\mathrm{t} . \mathrm{all}}{ }^{2}-4.39 \cdot \mathrm{~F}_{\mathrm{v} . \mathrm{act}}{ }^{2}}=67.5 \cdot \mathrm{ksi}$ (AISC 9th Ed. Table J3.3)
Moment From Mast Eccentricity =	$M_{\text {par }}:=$ Vert $\cdot \mathrm{e}+$ Moment $=92.8 \cdot \mathrm{kips} \cdot \mathrm{in}$
Total Tension Force $=$	$F_{\text {tension }}:=$ Horz $=0.5 \cdot \mathrm{kips}$
Tension Force Each Bolt =	$F_{\text {tension.bolt }}:=\frac{F_{\text {tension }}}{n_{b}}+\frac{M_{\text {par }}}{S_{\text {vert }} \cdot 2}=2.24 \cdot \mathrm{kips}$
Tension Stress Each Bolt =	$F_{\text {t.act }}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=5.1 \cdot \mathrm{ksi}$
	Condition2 := if ($\mathrm{F}_{\mathrm{t} . \mathrm{act}}<\mathrm{F}_{\mathrm{t} . \mathrm{adj}}$, "OK" , "Overstressed" $)$
	Condition2 = "OK"
Wind Acting Perpendicular to Stiffiner Plate: Shear Force per Bolt =	$F_{\text {v.conn }}:=\frac{\sqrt{\left(\text { Vert }+\frac{\text { Moment } \cdot 2}{S_{\text {horz }} \cdot n_{b}}\right)^{2}+\text { Horz }^{2}}}{n_{b}}=0.073 \cdot \mathrm{kips}$
Shear Stress per Bolt =	$F_{\mathrm{v} . \mathrm{act}}:=\frac{\mathrm{F}_{\mathrm{v} . \mathrm{conn}}}{a_{\mathrm{b}}}=0.166 \cdot \mathrm{ksi}$
	Condition3: if ($\mathrm{F}_{\mathrm{v} . \mathrm{act}}<\mathrm{F}_{\mathrm{v} . \mathrm{all}}$, "OK" , "Overstressed" $)$
	Condition3 = "OK"
Allowable Tensile Stress Adjusted for Shear =	$F_{\mathrm{t} . \mathrm{adj}}:=\sqrt{\mathrm{F}_{\mathrm{t} . \mathrm{all}}{ }^{2}-4.39 \cdot \mathrm{~F}_{\mathrm{v} . \mathrm{act}}{ }^{2}}=67.5 \cdot \mathrm{ksi}$ (AISC 9th Ed. Table J3.3)
Moment from Mast Eccentricity =	$M_{\text {perp }}:=$ Horz $\cdot \mathrm{e}=11 \cdot$ kips \cdot in
Tension Force per Bolt $=$	$F_{\text {tension.conn }}:=\frac{M_{\text {perp }} \cdot 2}{S_{\text {horz }} \cdot n_{b}}+\frac{M_{\text {par }}}{S_{\text {vert }} \cdot 2}=2.258 \cdot \mathrm{kips}$
Tension Stress Each Bolt =	$F_{\text {tension.act }}:=\frac{F_{\text {tension.conn }}}{a_{b}}=5.11 \cdot \mathrm{ksi}$
	Condition4 := if($\mathrm{F}_{\text {tension.act }}<\mathrm{F}_{\text {t.adj }}$, "OK", "Overstressed" $)$
	Condition4 = "OK"

C=N $=$ K engineering	Subject:	Load Analysis of T-Mobile Equipment on Structure \#838
	Location:	Trumbull, CT
	Rev. 0: 10/18/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16159.04

二 NT 二人 enginearing	Subject：	Load Analysis of T－Mobile Equipment on Structure \＃838
	Location：	Trumbull，CT
	Rev．0：10／18／16	Prepared by：T．J．L Checked by：C．F．C． Job No． 16159.04

Development of Wind \＆Ice Load on PCS Mast

Mast Data：
Mast Shape $=$
Mast Diameter $=$
Mast Length $=$

Mast Thickness＝
（Pipe 12＂Sch．40）
Round
$D_{\text {mast }}:=12.75 \quad$ in
$\mathrm{L}_{\text {mast }}:=28.2$
$t_{\text {mast }}:=0.375$
（User Input）
（User Input）
（User Input）
（User Input）

Wind Load（NESC Extreme）

Mast Projected Surface Area $=$

Total Mast Wind Force（Below NU Structure）＝

Wind Load（NESE Heavy）

Mast Projected Surface Area w／Ice＝

Total Mast Wind Force w／Ice＝

Gravity Loads（without ice）

Weight of the mast＝

Gravity Loads（ice only）

Ice Area per Linear Foot $=$

Weight of Ice on Mast＝
（NESE
$A_{\text {mast }}:=\frac{D_{\text {mast }}}{12}=1.063 \quad \mathrm{sf} / \mathrm{ft}$
$q z \cdot C d_{R} \cdot A_{\text {mast }} \cdot m=59$
$\mathrm{AICE}_{\text {mast }}:=\frac{\left(\mathrm{D}_{\text {mast }}+2 \cdot \mathrm{Ir}\right)}{12}=1.146 \quad \mathrm{sf} / \mathrm{ft}$
$p \cdot$ Cd $_{R} \cdot$ AICE $_{\text {mast }}=6$

Self Weight（Computed internally by Risa－3D）
$A i_{\text {mast }}:=\frac{\pi}{4}\left[\left(D_{\text {mast }}+\mid r \cdot 2\right)^{2}-D_{\text {mast }}^{2}\right]=20.8$
$W_{\text {ICEmast }}:=$ Id．$\frac{A i_{\text {mast }}}{144}=8$
plf
plf
BLC 5

BLC 4
plf
sq in
plf

BLC 1

二三NT 二人，engineering	Subject：	Load Analysis of T－Mobile Equipment on Structure \＃838
	Location：	Trumbull，CT
Cantordetenos her，	Rev．0：10／18／16	Prepared by：T．J．L Checked by：C．F．C． Job No． 16159.04

Development of Wind \＆Ice Load on Antennas

Proposed Antenna Data：

Antenna Model $=$
Antenna Shape $=$
Antenna Height $=$
Antenna Width $=$
Antenna Thickness $=$
Antenna Weight $=$
Number of Antemas $=$

Wind Load（NESC Extreme）

Assumes Maximum Possible Wind Pressure

 Applied to all Antennas SimultaneouslySurface Area for One Antenna＝ Antenna Projected Surface Area＝

Total Antema Wind Force＝

Wind Load（NESC Heavy）

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Surface Area for One Antenna w／Ice＝

Antenna Projected Surface Area w／$\propto=$

Total Antenna Wind Force w／Ice＝

Gravity Load（without ice）

Weight of All Antennas＝

Gravity Load（ice only）

Volum e of Each Antenna＝

Volum e of Ice on Each Antenna＝

Weight of Ice on Each Antenna＝

Weight of Ice on All Antennas＝

SBNHH－1D65A
Flat
$\mathrm{L}_{\text {ant }}:=55.5 \quad$ in \quad（User Input）
$W_{\text {ant }}:=11.9 \quad$ in \quad（User Input）
$\mathrm{T}_{\text {ant }}:=7.1 \quad$ in \quad（User Input）
$\mathrm{WT}_{\text {ant }}:=34$ lbs（User Input）
$\mathrm{N}_{\mathrm{ant}}:=3$
（User Input）
$W T_{\text {ant }} \cdot N_{\text {ant }}=102$
$\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\text {ant }} \cdot \mathrm{W}_{\text {ant }}}{144}=4.6 \quad \mathrm{sf}$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=13.8 \quad \mathrm{sf}$
$F_{\text {ant }}:=q z \cdot C_{F} \cdot A_{\text {ant }} \cdot m=945$

SA $_{\text {ICEant }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+1\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+1\right)}{144}=5.1 \quad \mathrm{sf}$
AICEant $^{:=}$SA $_{\text {ICEant }} \cdot N_{\text {ant }}=15.2$ sf
$\mathrm{Fi}_{\text {ant }}:=\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\text {ICEant }}=97$
$\mathrm{V}_{\text {ant }}:=\mathrm{L}_{\text {ant }} \cdot \mathrm{W}_{\text {ant }} \cdot \mathrm{T}_{\text {ant }}=4689$
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+1\right)\left(\mathrm{W}_{\text {ant }}+1\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+1\right)-\mathrm{V}_{\mathrm{ant}}=1214$
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot$ Id $=39$
$W_{\text {ICEant }} N_{\text {ant }}=118$
lbs
lbs
BLC 5
lbs

BLC 2
cu in
cu in
lbs

二 $=N \mathrm{~N}=\mathrm{K}$ engineering	Subject:	Load Analysis of T-Mobile Equipment on Structure \#838
	Location:	Trumbull, CT
	Rev. 0: 10/18/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16159.04

Development of Wind \& Ice Load on Antenna Mounts

Mount Data:

Mount Data:			
Mount Type:	Valmort Standoff A		
Mount Shape $=$	Flat		(User Input)
Mount Projected Surface Area $=$	CdAa $:=5$	sf	(User Input)
Mount Projected Surface Area w/ Ice =	$\mathrm{CdAa}_{\text {ice }}:=9$	sf	(User Input)
Mount Weight $=$	$W T_{\text {mnt }}:=150$	lbs	(User Input)
Mount Weight w/ Ice =	$W T_{\text {mnt.ice }}:=400$	lbs	

Wind Load (NESC Extreme)

Total Mount Wind Force $=$

Wind Load (NESC Heavy)

Total Mount Wind Force w/ Ice =

Gravity Loads (without ice)

Weight of All Mounts =

Gravity Load (ice only)

Weight of Ice on All Mounts =
$\mathrm{Fi}_{\mathrm{mnt}}:=\mathrm{p} \cdot \mathrm{CdAa}_{\mathrm{ice}}=36$
(per TIA/EIA-222-F-1996)
$W T_{\text {mnt }}=150$
(per TIA/EIA-222-F-1996)
$\mathrm{W} \mathrm{T}_{\mathrm{mnt}} \mathrm{ice}-\mathrm{W} \mathrm{T}_{\mathrm{mnt}}=250$
lbs
$F_{m n t}:=q z \cdot C d A a \cdot m=215$
BLC 5,7

BLC 4,6

Ibs
BLC 2
lbs BLC 3

二 $=N \mathrm{~N}=\mathrm{K}$ engineering	Subject:	Load Analysis of T-Mobile Equipment on Structure \#838
	Location:	Trumbull, CT
	Rev. 0: 10/18/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16159.04

Development of Wind \& Ice Load on Coax Cables

Coax Cable Data:

Coax Type $=$	HELIAX 1-5/8"		
Shape $=$	Round		(User Input)
Coax Outside Diameter $=$	$\mathrm{D}_{\text {coax }}:=1.98$	in	(User Input)
Coax Cable Length $=$	$\mathrm{L}_{\text {coax }}:=30$	ft	(User Input)
Weight of Coax per foot $=$	$\mathrm{Wt}_{\text {coax }}:=1.04$	plf	(User Input)
Total Number of Coax $=$	$\mathrm{N}_{\text {coax }}:=18$		(User Input)
tside Face of PCS Mast $=$	$\mathrm{NP}_{\text {coax }}:=4$	(User Input)	

Wind Load (NESC Extreme)

Coax projected surface area $=$

Total Coax Wind Force (Above NU Structure) =

Wind Load (NESC Heavy)

Coax projected surface area w/ Ice =

Total Coax Wind Force w/ Ice =

Gravity Loads (without ice)

Weight of all cables w/o ice

Gravity Load (ice only)

Ice Area per Linear Foot $=$

Ice Weight All Coax per foot =
$\mathrm{A}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\text {coax }} \mathrm{D}_{\text {coax }}\right)}{12}=0.7 \quad \mathrm{sf} / \mathrm{ft}$
$\mathrm{F}_{\text {coax }}:=\mathrm{qz} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{A}_{\text {coax }} \cdot \mathrm{m}=41$
BLC 5
$\mathrm{AICE}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\text {coax }} \cdot \mathrm{D}_{\text {coax }}+2 \cdot \mathrm{Ir}\right)}{12}=0.7$
sf/ft plf
$\mathrm{Fi}_{\text {coax }}:=\mathrm{p} \cdot \mathrm{Cd}_{\text {coax }} \cdot$ AlCE $_{\text {coax }}=4$
BLC 4
.
plf

BLC 2
$\mathrm{Ai}_{\text {coax }}:=\frac{\pi}{4}\left[\left(\mathrm{D}_{\text {coax }}+2 \cdot \mathrm{Ir}\right)^{2}-\mathrm{D}_{\text {coax }}^{2}\right]=3.9$
sq in
plf
$W T i_{\text {coax }}:=N_{\text {coax }} \cdot \frac{A d \cdot \frac{A i_{\text {coax }}}{144}=27, ~}{\text { l }}$

CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405 Ph. 203-488-0580 / Fax. 203-488-8587	Subject:	Analysis of NESC Heavy V for Obtaining Reactions Tabulated Load Cases Trumbull, CT Prepared by: T.J.L.	and NESC Extr ed to Utility Pole Checked by: C.F.C.	Vind Job No. 16159.04
Load Case		Description		
1		Self Weight (Mast)		
2		Weight of Appurtenances		
3		Weight of Ice Only		
4		NESC Heavy Wind		
5		NESC Extreme Wind		
Footnotes:				

C=NT $=\mathrm{K}$ engineering	Subject:	Coax Cable on Pole \#838
	Location:	Trumbull, CT
	Rev. 0: 10/18/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16159.04

Coax Cable on Pole

Distance Between Coax Cable Attach Points =

Coaxial Cable Span $=\quad$ Coax $_{\text {Span }}:=\left(\begin{array}{l}10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10\end{array}\right) \cdot f \quad \quad$ (User Input)
Diameter of Coax Cable $=$
Weight of Coax Cable $=$
Number of Coax Cables $=$
Number of Projected Coax Cables $=$
Extreme Wind Pressure $=$
Heavy Wind Pressure $=$
Radial Ice Thickness $=$
Radial Ice Density $=$
Shape Factor $=$

Overload Factor for NESC Heavy Wind Load =
Overload Factor for NESC Extreme Wind Load =
Overload Factor for NESC Heavy Vertical Load =
Overload Factor for NESC Extreme Vertica Load $=$
Wind Area with Ice $=$
Wind Area wit hout I $=$
Ice Area per Liner Ft $=$
Weight of Ice on All Coax Cables $=$

$\mathrm{D}_{\text {coax }}:=1.98 \cdot \mathrm{in}$	(User Input)
$W_{\text {coax }}:=1.04$. plf	(User Input)
$\mathrm{N}_{\text {coax }}$: $=18$	(User Input)
$N P_{\text {coax }}:=3$	(User Input)
$q z:=34.3 \cdot \mathrm{psf}$	(User Input)
$\mathrm{p}:=4 \cdot \mathrm{psf}$	(User Input)
Ir $:=0.5 \cdot \mathrm{in}$	(User Input)
$\mathrm{ld}:=56 . \mathrm{pcf}$	(User Input)
$C_{\text {coax }}$: $=1.6$	(User Input)
$\mathrm{OF}_{\mathrm{HW}}:=2.5$	(User Input)
$\mathrm{OF}_{\text {EW }}:=1.0$	(User Input)
$\mathrm{OF}_{\mathrm{HV}}:=1.5$	(User Input)
OF ${ }_{\text {EV }}:=1.0$	(User Input)
$\mathrm{A}_{\text {ice }}:=\left(N P_{\text {coax }} . \mathrm{D}^{\text {c }}\right.$	r) $=6.94 \cdot \mathrm{in}$
$\mathrm{A}:=\left(\mathrm{NP}_{\text {coax }} \cdot \mathrm{D}_{\text {coa }}\right.$	
$\mathrm{Ai}_{\text {coax }}:=\frac{\pi}{4} \cdot\left[\left(\mathrm{D}_{\mathrm{co}}\right.\right.$	$\left.{ }^{2}-D_{\operatorname{coax}}^{2}\right]$
$\mathrm{W}_{\text {ice }}:=\mathrm{Ai}_{\text {coax }} \cdot \mathrm{Id} \cdot \mathrm{N}$	7.269.plf

二NT $=\mathrm{K}$ engineering	Subject:	Coax Cable on Pole \#838
Centered on Solutions" momycentekenscom 62-2 North Banford Roasd	Location:	Trumbull, CT
	Rev. 0: 10/18/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16159.04

Heavy Vertical Load =					
Heavy $_{\text {Vert }}:=\overrightarrow{\left.\left(\mathrm{N}_{\text {coax }} \cdot \mathrm{W}_{\text {coax }}+\mathrm{W}_{\text {ice }}\right) \cdot \mathrm{Coax}_{\text {Span }} \cdot \mathrm{OF}_{\mathrm{HV}}\right]}$					
		(690)			
Heavy Transverse Load =		690			93
Heavy $_{\text {Trans }}:=\overrightarrow{\left(p \cdot A_{\text {ice }} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{Coax}_{\text {Span }} \cdot \mathrm{OF}_{\text {HW }}\right)}$		690			93
	Heavy $_{\text {Vert }}=$	690	lb	Heavy $_{\text {Trans }}=$	93
		690			93
		690			93
		690			(93)

Davit7:End 838avit8:O Davit8:End Davit7:0

838:WVGD6

838:WVGD5

838;WVGD4

838:WVGD3

838:WVGD1
838:WVGD2

二NT $=\mathrm{K}$ engineering	Subject:	Anchor Bolt Analysis Pole \#838
Centered on Solutions" moncentekenscom 63.2 North Eanford Rosd	Location:	Trumbull, CT
Eamorderconos hen	Rev. 0: 10/19/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Anchor Bolt Analysis:

Input Data:

Bolt Force:

Use ASTM A615 Grade 75

Number of Anchor Bolts $=$	$\mathrm{N}:=20$	(User Input)
Bolt "Column" Distance $=$	$\mathrm{I}:=3.0 \cdot \mathrm{in}$	(User Input)
Bolt Ultimate Strength $=$	$\mathrm{F}_{\mathrm{u}}:=100 \cdot \mathrm{ksi}$	(User Input)
Bolt Yeild Strength $=$	$\mathrm{F}_{\mathrm{y}}:=75 \cdot \mathrm{ksi}$	(User Input)
Bolt Modulus $=$	$\mathrm{E}:=29000 \cdot \mathrm{ksi}$	(User Input)
Diameter of Anchor Bol ts $=$	$\mathrm{D}:=2.25 \cdot \mathrm{in}$	(User Input)
Threads per Inch $=$	$\mathrm{n}:=4.5$	(User Input)

Maximum Tensile Force =

Anchor Bolt Data:
$\mathrm{T}_{\text {Max }}:=143 \cdot \mathrm{kips}$ (User Input from PLS-Pole)
(

Anchor Bolt Analysis:

Calculated Anchor Bolt Properties:

Net Area of Bolt $=$

$$
\mathrm{A}_{\mathrm{n}}:=\frac{\pi}{4} \cdot\left(\mathrm{D}-\frac{0.9743 \cdot \mathrm{in}}{\mathrm{n}}\right)^{2}=3.248 \cdot \mathrm{in}^{2}
$$

Bolt Tension Check:

Allowable Tensile Force (Net Area) =

Bolt Tension \% of Capacity =

Condition1 $=$
$T_{\text {ALL.Net }}:=1.0 \cdot\left(A_{n} \cdot F_{y}\right)=243.576 \cdot \mathrm{kips}$
$\frac{\mathrm{T}_{\text {Max }}}{\mathrm{T}_{\text {ALL.Net }}}=58.71 . \%$
Condition1:= if $\left(\frac{T_{\text {Max }}}{T_{\text {ALL.Net }}} \leq 1.00\right.$, "OK" , "Overstressed" $)$
Condition1 = "OK"

C=NT =K enginearing	Subject:	FOUNDATION ANALYSIS
	Location: Rev. 0: 10/19/16	Trumbull, CT Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Foundation:

Input Data:
Tower Data

Overturning Moment $=$	$\mathrm{OM}:=4039 \cdot 1.1 \cdot \mathrm{ft} \cdot \mathrm{kips}=4443 \cdot \mathrm{ft} \cdot \mathrm{kips}$	(User Input from PLS-Pole)
Shear Force $=$	Shear $:=52 \cdot \mathrm{kip} \cdot 1.1=57.2 \cdot \mathrm{kips}$	(User Input from PLS-Pole)
Axial Force $=$	Axial $:=58 \cdot \mathrm{kip} \cdot 1.1=63.8 \cdot \mathrm{kips}$	(User Input from PLS-Pole)
Tower Height =	$\mathrm{H}_{\mathrm{t}}:=95 \cdot \mathrm{ft}$	(User Input)
Footing Data:		
Depth to Bottom of Footing =	$\mathrm{D}_{\mathrm{f}}:=13.5 \cdot \mathrm{ft}$	(User Input)
Length of Pier $=$	$L_{p}:=14 \cdot \mathrm{ft}$	(User Input)
Extension of Pier Above Grade $=$	$\mathrm{L}_{\text {pag }}:=0.5 \cdot \mathrm{ft}$	(User Input)
Width of Pier $=$	$\mathrm{W}_{\mathrm{p}}:=10 \cdot \mathrm{ft}$	(User Input)
Depth of Soil $=$	$\mathrm{D}_{\text {soil }}:=13.5 \cdot \mathrm{ft}$	(User Input)
Depth of Rock $=$	$\mathrm{D}_{\text {rock }}:=18 \cdot \mathrm{ft}$	(User Input)
Material Properties:		
Concrete Compressive Strength $=$	$\mathrm{f}_{\mathrm{C}}:=3500 \cdot \mathrm{psi}$	(User Input)
Steel Reinforcment Yield Strength $=$	$\mathrm{f}_{\mathrm{y}}:=60000 \cdot \mathrm{psi}$	(User Input)
Anchor Bolt Yield Strength =	$\mathrm{f}_{\mathrm{ya}}:=75000 \cdot \mathrm{psi}$	(User Input)
Internal Friction Angle of Soil $=$	$\Phi_{\text {S }}:=30 \cdot \mathrm{deg}$	(User Input)
Allowable Soil Bearing Capacity =	$\mathrm{q}_{\mathrm{s}}:=4000 \cdot \mathrm{psf}$	(User Input)
Allowable Rock Bearing Capacity =	$\mathrm{q}_{\text {rock }}:=50000 \cdot \mathrm{psf}$	(User Input)
Unit Weight of Soil $=$	$\gamma_{\text {soil }}:=120 \cdot p \mathrm{cf}$	(User Input)
Unit Weight of Concrete =	$\gamma_{\text {conc }}:=150$. pcf	(User Input)
Unit Weight of Rock =	$\gamma_{\text {rock }}$: $=160 \cdot \mathrm{pcf}$	(User Input)
Foundation Bouyancy =	Bouyancy := 0	(User Input) (Yes=1/No=0)
Depth to Neglect $=$	$\mathrm{n}:=1.0 \cdot \mathrm{ft}$	(User Input)
Cohesion of Clay Type Soil =	$\mathrm{c}:=0 \cdot \mathrm{ksf}$	(User Input) (Use 0 for Sandy Soil)
Seismic Zone Factor $=$	$Z:=2$	(User Input) (UBC-1997 Fig 23-2)
Coefficient of Friction Between Concrete $=$	$\mu:=0.45$	(User Input)

C=NT =K C enginearing	Subject:	FOUNDATION ANALYSIS
	Location: Rev. 0: 10/19/16	Trumbull, CT Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Rock Anchor Properties:

ASTM A615 Grade 60
Bolt Ultimate Strength $=$

Bolt Yield Strength =
Anchor Diameter $=$

Hole Diameter $=$

Grout Strength =
Distance to Rock Anchor Group $1=$
Distance to Rock Anchor Group 2 =
Number of Rock Anchors in Group $1=$
Number of Rock Anchors in Group $2=$
Total Number of Rock Anchors $=$

$\mathrm{F}_{\mathrm{u}}:=90 \cdot \mathrm{ksi}$	(User Input)
$\mathrm{F}_{\mathrm{y}}:=60 \cdot \mathrm{ksi}$	(User Input)
$\mathrm{d}_{\mathrm{ra}}:=3.81 \cdot \mathrm{in}$	(User Input)
$\mathrm{d}_{\mathrm{Hole}}:=4 \cdot \mathrm{in}$	(User Input)
$\tau:=120 \cdot \mathrm{psi}$	(User Input)
$\mathrm{D}_{\mathrm{a} 1}:=24 \cdot \mathrm{in}$	(User Input)
$\mathrm{D}_{\mathrm{a} 2}:=48 \cdot \mathrm{in}$	(User Input)
$\mathrm{N}_{\mathrm{a} 1}:=4$	(User Input)
$\mathrm{N}_{\mathrm{a} 2}:=10$	(User Input)
$\mathrm{N}_{\mathrm{atot}}:=16$	(User Input)

(3 \# 10 Bars)

Area 1 =

Area $2=$

Distance to Centroid $1=$

Distance to Centroid $2=$

Distance from Toe to Centroid of Soil =

Area 1 =

Area 2 =

Distance to Centroid $1=$

Distance to Centroid $2=$

Distance from Toe to Centroid of Rock $=$
$\mathrm{A} 1_{\mathrm{s}}:=\frac{1}{2} \cdot \tan \left(\Phi_{\mathrm{s}}\right) \cdot \mathrm{D}_{\text {soil }}{ }^{2}=52.611 \mathrm{ft}^{2}$
$\mathrm{A} 2_{\mathrm{s}}:=\tan \left(\Phi_{\mathrm{s}}\right) \cdot \mathrm{D}_{\text {rock }} \cdot \mathrm{D}_{\text {soil }}=140.296 \mathrm{ft}^{2}$
Y1 $:=\tan \left(\Phi_{\mathrm{s}}\right) \cdot \mathrm{D}_{\text {rock }}+\frac{1}{3} \cdot \tan \left(\Phi_{\mathrm{S}}\right) \cdot \mathrm{D}_{\text {soil }}=12.99 \mathrm{ft}$
$\mathrm{Y} 2:=\frac{1}{2} \cdot \tan \left(\Phi_{\mathrm{s}}\right) \cdot \mathrm{D}_{\text {rock }}=5.196 \mathrm{ft}$
$Y_{\text {soil }}:=\frac{\left(A 1_{s} \cdot Y 1+A 2_{s} \cdot Y 2\right)}{\left(A 1_{s}+A 2_{s}\right)}+W_{p}=17.32 \mathrm{ft}$
$\mathrm{A} 1_{\mathrm{r}}:=\frac{1}{2} \cdot \tan \left(\Phi_{\mathrm{s}}\right) \cdot \mathrm{D}_{\text {rock }}{ }^{2}=93.531 \mathrm{ft}^{2}$
$\mathrm{A} 2_{\mathrm{r}}:=\mathrm{W}_{\mathrm{p}} \cdot \mathrm{D}_{\text {rock }}=180 \mathrm{ft}^{2}$
$\mathrm{Y} 1:=\mathrm{W}_{\mathrm{p}}+\frac{1}{3} \cdot \tan \left(\Phi_{\mathrm{s}}\right) \cdot \mathrm{D}_{\text {rock }}=13.464 \mathrm{ft}$
$\mathrm{Y} 2:=\frac{W_{p}}{2}=5 \mathrm{ft}$
$Y_{\text {rock }}:=\frac{\left(A 1_{r} \cdot Y 1+A 2_{r} \cdot Y 2\right)}{\left(A 1_{r}+A 2_{r}\right)}=7.89 f t$

二NT $=\mathrm{K}$ engineering	Subject:	FOUNDATION ANALYSIS
	Location:	Trumbull, CT
	Rev. 0: 10/19/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Stability of Footing:

Adjusted Concrete Unit Weight =
Adjusted Soil Unit Weight =

Coefficient of Lateral Soil Pressure $=$

Passive Pressure $=$
Une Shear
Ultimate Shear $=$

Weight of Concrete $\mathrm{Pad}=$ Total Weight of Soil = Total Weight of Rock $=$

Resisting Moment $=$ Overturning Moment $=$

Factor of Safety Actual $=$

Factor of Safety Required $=$
$\gamma_{c}:=\operatorname{if}\left(\right.$ Bouyancy $=1, \gamma_{\text {conc }}-62.4$ pcf, $\left.\gamma_{\text {conc }}\right)=150 \cdot$ pcf
$\gamma_{S}:=\operatorname{if}\left(\right.$ Bouyancy $=1, \gamma_{\text {soil }}-62.4$ pcf,$\left.\gamma_{\text {soil }}\right)=120 \cdot$ pcf
$\mathrm{K}_{\mathrm{p}}:=\frac{1+\sin \left(\Phi_{\mathrm{s}}\right)}{1-\sin \left(\Phi_{\mathrm{s}}\right)}=3$
$P_{\text {top }}:=0=0 \cdot \mathrm{ksf}$
$P_{\text {bot }}:=K_{p} \cdot \gamma_{s} \cdot D_{\text {soil }}+\mathrm{c} \cdot 2 \cdot \sqrt{K_{p}}=4.86 \cdot \mathrm{ksf}$
$P_{\text {ave }}:=\frac{P_{\text {top }}+P_{\text {bot }}}{2}=2.43 \cdot \mathrm{ksf}$
$A_{p}:=W_{p} \cdot\left(L_{p}-L_{p a g}\right)=135 \mathrm{ft}^{2}$
$S_{u}:=P_{\text {ave }} \cdot A_{p}=328.05 \cdot \mathrm{kip}$
$W T_{c}:=\left(W_{p}^{2} \cdot L_{p}\right) \cdot \gamma_{C}=210 \cdot k i p$
$\mathrm{WT}_{\text {Stot }}:=\left(\mathrm{A1}_{\mathrm{S}}+\mathrm{A} 2_{\mathrm{S}}\right) \cdot \mathrm{W}_{\mathrm{p}} \cdot \gamma_{\mathrm{S}}=231.5 \cdot \mathrm{kips}$
$W T_{\text {Rtot }}:=\left(A 1_{r}+A 2_{\mathrm{r}}\right) \cdot \mathrm{W}_{\mathrm{p}} \cdot \gamma_{\text {rock }}=437.6 \mathrm{kips}$
$M_{r}:=\left(W T_{c}+\right.$ Axial $) \cdot \frac{W_{p}}{2}+S_{u} \cdot \frac{\left(L_{p}-L_{\text {pag }}\right)}{3}+W T_{\text {Stot }} \cdot Y_{\text {soil }}+W T_{R t o t} \cdot Y_{\text {rock }}=10310 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$M_{\mathrm{ot}}:=\mathrm{OM}+$ Shear $\cdot \mathrm{L}_{\mathrm{p}}=5244 \cdot \mathrm{kip} \cdot \mathrm{ft}$
FS : $=\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{ot}}}=1.97$
$\mathrm{FS}_{\text {req }}:=1.0$

OverTurning_Moment_Check := if(FS \geq FS req , "Okay" , "No Good" $)$
OverTurning_Moment_Check = "Okay"

二NT $=\mathrm{K}$ engineering	Subject:	FOUNDATION ANALYSIS
	Location:	Trumbull, CT
	Rev. 0: 10/19/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16159.04

Rock Anchor Check:

$$
\begin{aligned}
& \text { Polar Moment of Inertia }= \\
& \mathrm{I}_{\mathrm{p}}:=\left(\mathrm{D}_{\mathrm{a} 1}{ }^{2} \cdot \mathrm{~N}_{\mathrm{a} 1}+\mathrm{D}_{\mathrm{a} 2}{ }^{2} \cdot \mathrm{~N}_{\mathrm{a} 2}\right)=25344 \cdot \mathrm{in}^{2} \\
& T_{2}:=\frac{M_{o t} \cdot D_{a 2}}{I_{p}}=119.2 \cdot \mathrm{kips} \\
& \mathrm{~T}_{1}:=\frac{\mathrm{M}_{\mathrm{ot}} \cdot \mathrm{D}_{\mathrm{a} 1}}{\mathrm{I}_{\mathrm{p}}}=59.6 \cdot \mathrm{kips} \\
& \text { Maximum Tension Force = } \\
& \text { Gross Area of Bolt = } \\
& \text { Allowable Tension = } \\
& \mathrm{T}_{\text {Max }}:=\max \left(\mathrm{T}_{2}, \mathrm{~T}_{1}\right)=119.2 \cdot \mathrm{kips} \\
& \mathrm{~T}_{\mathrm{all}}:=0.75 \cdot \mathrm{~A}_{\mathrm{g}} \cdot \mathrm{~F}_{\mathrm{u}}=769.6 \cdot \mathrm{kips} \\
& \frac{\mathrm{~T}_{\text {Max }}}{\mathrm{T}_{\text {all }}}=15.5 . \% \\
& \text { Condition1 := if }\left(\mathrm{T}_{\mathrm{Max}}<\mathrm{T}_{\text {all }} \text {, "OK" , "NG" }\right) \\
& \text { Condition1 = "OK" }
\end{aligned}
$$

Check Bond Strength:

$$
\begin{array}{ll}
\text { Bond Strength }= & \text { Bond_Strength }:=d_{\text {Hole }} \cdot \pi \cdot \mathrm{D}_{\text {rock }} \cdot \tau=326 \cdot \mathrm{kips} \\
& \frac{\mathrm{~T}_{\text {Max }}}{\text { Bond_Strength }}=36.6 \cdot \% \\
& \text { Condition2 }:=\mathrm{if}\left(\mathrm{~T}_{\text {Max }}<\text { Bond_Strength, "OK" , "NG" }\right) \\
& \text { Condition2 }=\text { "OK" }
\end{array}
$$

Bearing Pressure Caused by Footing:

$$
\begin{array}{ll}
& \text { Area of the Mat }= \\
A_{\text {mat }}:=\frac{\left(W_{p} \cdot \frac{W_{p}}{2}\right)}{2}=25 \mathrm{ft}^{2} \\
\text { Maximum Pressure in Mat }= & P_{\text {max }}:=\frac{W T_{c}+A x i a l}{}+T_{1} \cdot \frac{N_{a 1}}{2}+T_{2} \cdot \frac{N_{a 2}}{2} \\
A_{\text {mat }} \\
& \text { Max_Pressure_Check:= if(} \left.P_{\text {max }}<q_{\text {rock }}, \text { "Okay" , "No Good" }\right) \\
& \text { Max_Pressure_Check }=\text { "Okay" }
\end{array}
$$

Section 1 - Site Information

Site ID: CT11860A		Site Name: CT860/CL\&P Trumbull

----- This section is intentionally blank. -----

Section 3 - Proposed Template Images

Notes:

Section 4 - Siteplan Images
----- This section is intentionally blank. -----

Section 5 - RAN Equipment

Proposed RAN Equipment				
Template: 704Bu Outdoor				
Enclosure	1		2	
Enclosure Type	RBS 6102		Ground Mount	
Baseband				
Multiplexer	XMU L2100 L700			
Radio	RUS01 B2 (x3)RUS01 B2 (x3) G1900 U1900	RUS01 B4 (x6) U2100 L2100	RRUS11 B12 (x3) L700	

RAN Scope of Work:
\square

Section 6 - A\&L Equipment

		$\begin{aligned} & \text { 4B } \\ & \hline \text { _704Bu } \end{aligned}$
Sector 1 (Existing) view from behind		
Coverage Type	A - Outdoor Macro	
Antenna	$1 \square$	
Antenna Model	APX16DWV-16DWV-S-E-A20 (Quad)	
Azimuth	50	
M. Tilt	0	
Height	105	
Ports	P1	P2
Active Tech.	U1900 G1900	U2100 L2100
Dark Tech.		
Restricted Tech.		
Decomm. Tech.		
E. Tilt	(2)	(2)
Cables	$1-5 / 8$ " Coax -150 ft. $1-5 / 8{ }^{\prime \prime}$ Coax -150 ft. $1-5 / 8$ " Coax -150 ft. $1-5 / 8 \mathrm{ln}$ Coax -150 ft.	$1-5 / 8$ " Coax -150 ft $1-5 / 8$ " Coax -150 ft. $1-5 / 8$ " Coax -150 ft. $1-5 / 8$ " Coax -150 ft.
TMAs		
Diplexers/ Combiners		
Radio		
Sector Equipment		
Unconnected Equipment:		

Sector 1 (Proposed) view from behind			
Coverage Type	A - Outdoor Macro		
Antenna	1		
Antenna Model	SBNHH-1D65A (Hex)		
Azimuth	50		
M. Tilt	0		
Height	105		
Ports	P1	P2	P3
Active Tech.	U1900 G1900	U2100 L2100	$\boxed{400}$
Dark Tech.			
Restricted Tech.			
Decomm. Tech.			
E. Tilt	(2)	(2)	(2)
Cables	$\begin{aligned} & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \\ & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \end{aligned}$	$\begin{aligned} & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \\ & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \end{aligned}$	$\begin{aligned} & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \\ & 1-5 / 8^{" ~ C o a x ~}-150 \mathrm{ft} . \end{aligned}$
Diplexers / Combiners			
Radio			
Sector Equipment			
Unconnected Equipment:			
Install Bias-T's up top for RET's			

Sector 2 (Existing) view from behind		
Coverage Type	A - Outdoor Macro	
Antenna	1	
Antenna Model	APX16DWV-16DWV-S-E-A20 (Quad)	
Azimuth	170	
M. Tilt	0	
Height	105	
Ports	P1	P2
Active Tech.	U1900 G1900	U2100 L2100
Dark Tech.		
Restricted Tech.		
Decomm. Tech.		
E. Tilt	(7)	(8)
Cables	$1-5 / 8^{\prime \prime}$ Coax -150 ft. $1-5 / 8^{\prime \prime}$ Coax -150 ft. $1-5 / 8{ }^{\prime \prime}$ Coax -150 ft. $1-5 / 8^{\prime \prime}$ Coax -150 ft.	$1-5 / 8^{\prime \prime}$ Coax -150 ft. $1-5 / 8^{\prime \prime}$ Coax -150 ft. $1-5 / 8^{\prime \prime}$ Coax -150 ft. $1-5 / 8^{\prime \prime}$ Coax -150 ft.
TMAs		
Diplexers/ Combiners		
Radio		
Sector Equipment		
Unconnected Equipment:		

Sector 2 (Proposed) view from behind			
Coverage Type	A - Outdoor Macro		
Antenna	1		
Antenna Model	SBNHH-1D65A (Hex)		
Azimuth	170		
M. Tilt	0		
Height	105		
Ports	P1	P2	P3
Active Tech.	U1900 G1900	U2100 L2100	$\boxed{400}$
Dark Tech.			
Restricted Tech.			
Decomm. Tech.			
E. Tilt	(2)	(2)	(2)
Cables	$\begin{aligned} & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \\ & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \end{aligned}$	$\begin{aligned} & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \\ & \hline 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \end{aligned}$	$\begin{aligned} & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \\ & \hline 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \end{aligned}$
Diplexers/ Combiners			
Radio			
Sector Equipment			
Unconnected Equipment:			
Install Bias-T's up top for RET's			

Sector 3 (Existing) view from behind		
Coverage Type	A - Outdoor Macro	
Antenna	1	
Antenna Model	APX16DWV-16DWV-S-E-A20 (Quad)	
Azimuth	300	
M. Tilt	0	
Height	105	
Ports	P1	P2
Active Tech.	U1900 G1900	U2100 L2100
Dark Tech.		
Restricted Tech.		
Decomm. Tech.		
E. Tilt	(2)	(2)
Cables	$1-5 / 8^{\prime \prime}$ Coax -150 ft. $1-5 / 8^{\prime \prime}$ Coax -150 ft. $1-5 / 8^{\prime \prime}$ Coax -150 ft. $1-5 / 8^{\prime \prime}$ Coax -150 ft.	$1-5 / 8$ " Coax -150 ft. $1-5 / 8{ }^{\prime \prime}$ Coax -150 ft. $1-5 / 8$ " Coax -150 ft. $1-5 / 8{ }^{\prime \prime}$ Coax -150 ft.
TMAs		
Diplexers / Combiners		
Radio		
Sector Equipment		
Unconnected Equipment:		

Sector 3 (Proposed) view from behind			
Coverage Type	A - Outdoor Macro		
Antenna	1		
Antenna Model	SBNHH-1D65A (Hex)		
Azimuth	300		
M. Tilt	0		
Height	105		
Ports	P1	P2	P3
Active Tech.	U1900 G1900	U2100 L2100	$\boxed{400}$
Dark Tech.			
Restricted Tech.			
Decomm. Tech.			
E. Tilt	(2)	(2)	(2)
Cables	$\begin{aligned} & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \\ & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \end{aligned}$	$1-5 / 8^{\prime \prime} \text { Coax - } 150 \mathrm{ft} .$	$\begin{aligned} & 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \\ & \hline 1-5 / 8^{\prime \prime} \text { Coax }-150 \mathrm{ft} . \end{aligned}$
TMAs			
Diplexers/ Combiners			
Radio			
Sector Equipment			
Unconnected Equipment:			
Install Bias-T's up top for RET's			

SBNHH-1D65A

Andrew® Tri-band Antenna, 698-896 and $2 x$ 1695-2360 MHz, 65° horizontal beamwidth, internal RET. Both high bands share the same electrical tilt.

- Interleaved dipole technology providing for attractive, low wind load mechanical package

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2180	2300-2360
Gain, dBi	13.6	13.7	16.5	16.9	17.1	17.6
Beamwidth, Horizontal, degrees	66	61	70	65	62	61
Beamwidth, Vertical, degrees	17.6	15.9	7.1	6.6	6.2	5.5
Beam Tilt, degrees	0-18	0-18	0-10	0-10	0-10	0-10
USLS, dB	16	13	13	13	12	12
Front-to-Back Ratio at 180°, dB	25	27	28	28	27	29
CPR at Boresight, dB	20	16	20	23	17	20
CPR at Sector, dB	10	5	11	6	1	4
Isolation, dB	25	25	25	25	25	25
Isolation, Intersystem, dB	30	30	30	30	30	30
VSWR \| Return Loss, dB	1.5 \| 14.0	$1.5 \mid 14.0$	1.5 \| 14.0	1.5 \| 14.0	1.5 \| 14.0	1.5 \| 14.0
PIM, 3rd Order, $2 \times 20 \mathrm{~W}, \mathrm{dBc}$	-153	-153	-153	-153	-153	-153
Input Power per Port, maximum, watts	350	350	350	350	350	300
Polarization	$\pm 45^{\circ}$					
Impedance	50 ohm					

Electrical Specifications, BASTA*

Frequency Band, MHz
Gain by all Beam Tilts, average, dBi
Gain by all Beam Tilts Tolerance, dB

Gain by Beam Tilt, average, dBi

Beamwidth, Horizontal Tolerance, degrees
Beamwidth, Vertical Tolerance, degrees
USLS, dB
Front-to-Back Total Power at $180^{\circ} \pm 30^{\circ}, \mathrm{dB}$
CPR at Boresight, dB
CPR at Sector, dB

698-806

13.1 806-896 1695-1880 1850-1990 1920-2180 2300-236
$\begin{array}{lllll}13.1 & 16.1 & 16.5 & 16.7 & 17.2\end{array}$

± 0.5	± 0.5	± 0.5	± 0.3	± 0.5	± 0.4

$0^{\circ}{ }^{\circ} 13.40^{\circ}\left|13.4 \quad 0^{\circ}\right| 16.0 \quad 0^{\circ}{ }^{\circ}\left|16.3 \quad 0^{\circ}{ }^{\circ}\right| 16.5 \quad 0^{\circ}{ }^{\circ} \mid 17.0$
$9 \circ\left|13.1 \quad 9^{\circ}\right| 13.1 \quad 5^{\circ}\left|16.2 \quad 5^{\circ}\right| 16.5 \quad 5^{\circ}\left|16.8 \quad 5^{\circ}\right| 17.3$
$18^{\circ}\left|12.7 \quad 18^{\circ}\right| 12.7 \quad 10^{\circ}\left|16.1 \quad 10^{\circ}\right| 16.5 \quad 10^{\circ}\left|16.6 \quad 10^{\circ}{ }^{\circ}\right| 16.9$

| ± 3.1 | ± 5.4 | ± 2.8 | ± 4 | ± 6.6 | ± 4.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll} \pm 1.8 & \pm 1.4 & \pm 0.3 & \pm 0.4 & \pm 0.5 & \pm 0.3\end{array}$

15	14	15	15	15	14

22	21	26	26	24	25

22	16	22	25	21	22

* CommScope ${ }^{\circledR}$ supports NGMN recommendations on Base Station Antenna Standards (BASTA). To learn more about the benefits of BASTA, download the whitepaper Time to Raise the Bar on BSAs.

General Specifications

Antenna Brand	Andrew $®$
Antenna Type	DualPol® multiband with internal RET
Band	Multiband
Brand	DualPol ${ }^{\circledR}$ \| Teletilt®
Operating Frequency Band	$1695-2360 \mathrm{MHz}$ \| $698-896 \mathrm{MHz}$

Mechanical Specifications

Color	Light gray
Lightning Protection	dc Ground
Radiator Material	Aluminum I Low loss circuit board
Radome Material	Fiberglass, UV resistant
RF Connector Interface	$7-16$ DIN Female
RF Connector Location	Bottom
RF Connector Quantity, total	6
Wind Loading, maximum	$445.0 \mathrm{~N} \mathrm{@} 150 \mathrm{~km} / \mathrm{h}$
	100.0 lbf @ $150 \mathrm{~km} / \mathrm{h}$
Wind Speed, maximum	$241.4 \mathrm{~km} / \mathrm{h} \mathrm{I} 150.0 \mathrm{mph}$

Dimensions

Depth	180.0 mm \| 7.1 in
Length	1409.0 mm \| 55.5 in
Width	301.0 mm \| 11.9 in
Net Weight	$15.2 \mathrm{~kg} \mathrm{\mid} 33.5 \mathrm{lb}$

Remote Electrical Tilt (RET) Information

Input Voltage	$10-30 \mathrm{Vdc}$
Power Consumption, idle state, maximum	2.0 W
Power Consumption, normal conditions, maximum	13.0 W
Protocol	3GPP/AISG 2.0 (Multi-RET)
RET Interface	8 -pin DIN Female \| 8-pin DIN Male
RET Interface, quantity	1 female \| 1 male
RET System	Teletilt®

Regulatory Compliance/Certifications

Agency

RoHS 2011/65/EU
China RoHS SJ/T 11364-2006
ISO 9001:2008

Classification

Compliant by Exemption
Above Maximum Concentration Value (MCV)
Designed, manufactured and/or distributed under this quality management system

50

Included Products

BSAMNT-1 - Wide Profile Antenna Downtilt Mounting Kit for 2.4-4.5 in (60-115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11860A
CT860/CL\&P Trumbull 48 Quail Trail
Trumbull, CT 06611
November 22, 2016
EBI Project Number: 6216005487

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{2 . 5 0} \%$

November 22, 2016

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11860A - CT860/CL\&P Trumbull

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{4 8}$ Quail Trail, Trumbull, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is approximately 467 $\mu \mathrm{W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{4 8}$ Quail Trail, Trumbull, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 UMTS channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
4) 2 LTE channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
5) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
6) Since all radios are ground mounted there are additional cabling losses accounted for. For each ground mounted RF path the following losses were calculated. 0.84 dB of additional cable loss for all ground mounted 700 MHz Channels, 1.55 dB of additional cable loss for all ground mounted 1900 MHz channels and 1.59 dB of additional cable loss for all ground mounted 2100 MHz channels. This is based on manufacturers Specifications for 105 feet of $1-5 / 8$ " coax cable on each path.
7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
8) For the following calculations the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antennas used in this modeling are the Commscope SBNHH-1D65A for $700 \mathrm{MHz}, 1900$ MHz (PCS) and 2100 MHz (AWS) channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Commscope SBNHH-1D65A has a maximum gain of $\mathbf{1 4 . 7} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz and a maximum gain of $\mathbf{1 0 . 9}$ dBd at its main lobe at 700 MHz . The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
10) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 0 5}$ feet above ground level (AGL).
11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
12) All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:		A	Sector:	B	Sector:	C
Antenna \#:		1	Antenna \#:	1	Antenna \#:	1
Make / Model:		$\begin{aligned} & \text { nmscope } \\ & \text { HH-1D65A } \end{aligned}$	Make / Model:	Commscope SBNHH-1D65A	Make / Model:	Commscope SBNHH-1D65A
Gain:		. 7 dBd	Gain:	14.7 dBd	Gain:	14.7 dBd
Height (AGL):		105	Height (AGL):	105	Height (AGL):	105
Frequency Bands		$\begin{aligned} & 0 \mathrm{MHz} / \\ & \mathrm{MHz} \text { (PCS) } \\ & \mathrm{MHz} \text { (AWS } \end{aligned}$	Frequency Bands	$\begin{gathered} 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ 2100 \mathrm{MHz} \text { (AWS) } \end{gathered}$	Frequency Bands	$700 \mathrm{MHz} /$ $1900 \mathrm{MHz}(\mathrm{PCS}) /$ 2100 MHz (AWS)
Channel Count		9	Channel Count	9	Channel Count	9
Total TX Power(W):		330	Total TX Power(W):	330	Total TX Power(W):	330
ERP (W):		466.23	ERP (W):	6,466.23	ERP (W):	6,466.23
Antenna A1 MPE\%		2.50	Antenna B1 MPE\%	2.50	Antenna C1 MPE\%	2.50
Site Composite MPE\%					T-Mobile Sector A T	2.50 \%
Carrier		MPE\%			T-Mobile Sector B T	l: $\quad 2.50 \%$
T-Mobile (Per Sector Max)		2.50 \%			T-Mobile Sector C T	l: 2.50%
No Additional Carriers Per CSC Active Database		NA			Site T	2.50 \%

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	2.50%
Sector B:	2.50%
Sector C:	2.50%
T-Mobile Per Sector	
Maximum:	2.50%
Site Total:	2.50%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 . 5 0 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

[^0]: cc: Timothy M. Herbst, First Selectman, Town of Trumbull Eversource Energy

