STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

Jennifer Palumbo Real Estate Consultant Sprint 48 Spruce Street Oakland, NJ 07436

RE: **EM-SPRINT-143-120925** – Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 136 Wright Road, Torrington, Connecticut.

Dear Ms. Palumbo:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Not less than 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated September 19, 2012. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Linda Roberts

Executive Director

LR/CDM/laf

c: The Honorable Ryan J. Bingham, Mayor, City of Torrington Martin Connor, City Planner, City of Torrington Crown Castle USA, Inc.

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

September 27, 2012

The Honorable Ryan J. Bingham Mayor Torrington Municipal Building 140 Main Street Torrington, CT 06790-5245

EM-SPRINT-143-120925 - Sprint Spectrum L.P. notice of intent to modify an existing RE: telecommunications facility located at 136 Wright Road, Torrington, Connecticut. Dear Mayor Bingham:

The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

If you have any questions or comments regarding this proposal, please call me or inform the Council by October 11, 2012.

Thank you for your cooperation and consideration.

Very truly yours,

Linda Roberts

Executive Director

LR/laf

Enclosure: Notice of Intent

Martin Connor, City Planner, City of Torrington

EM-SPRINT-143-120925

~ORIGINAL~

Together with Nextel

48 Spruce Street Oakland, NJ 07436 Phone: (845) 499-4712 Jennifer Palumbo

RECEIVED SEP 2 5 2012

CONNECTICUT SITING COUNCIL

September 19, 2012

Hand Delivered

Ms. Linda Roberts Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 136 Wright Road, Torrington, CT 06790. Known to Sprint Spectrum L.P. as site CT33XC078.

Dear Ms. Roberts:

In order to accommodate technological changes, implement Code Division Multiple Access ("CDMA") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the state of Connecticut, Sprint Spectrum L.P. plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and its attachments is being sent to the chief elected official of the municipality in which affected cell site is located.

CDMA employs Spread-Spectrum technology and special coding scheme to allow multiple users to be multiplexed over the same physical channel. LTE is a new high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

As part of the project the new multi-mode 800/1900 antenna will replace existing antennas. These antennas will provide more flexibility for optimization by allowing fast and easy electrical tilt adjustment from remote location and will enable the transmission of multiple technologies from a single antenna. As Sprint Nextel's network evolves to meet the demands of its customers, it is essential for Sprint Nextel to install modern

equipment and antennas in order to provide reliable wireless voice and data services. The proposed equipment will include multi-mode radios that will allow Sprint Nextel to transmit at different frequencies using different technologies, including LTE technology. Likewise, the proposed antennas are quad-pole multi-band high gain antennas that will allow Sprint to operate using its multiple frequency bands and technologies, including LTE technology. The proposed equipment and antennas will improve the reliability, coverage and capacity of Sprint Nextel's voice and data networks across Sprint Nextel's various FCC licensed frequency bands and significantly increase the data speeds of Sprint Nextel's network by utilizing the latest LTE technology. Without the proposed modifications Sprint Nextel will be unable to provide reliable wireless voice and data service using the latest technologies.

Sprint Spectrum L.P. will have an interim (testing) period during the modification/installation prior to the final configuration. This antenna configuration is shown on the attached drawings of the planned modifications. Also included is the power density calculation reflecting the change in Sprint's operations at the site and documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modification as defined Connecticut General Statues ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for the R.C.S.A. Section 16-50j-72(b)(2).

- 1. The height of the overall structure will not be affected.
- 2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound.
- 3. The proposed changes will not increase the noise level at the existing facility by 6 decibels or more.
- 4. Radio Frequency power density may increase due to the use of one or more CDMA transmissions. Moreover, LTE will utilize additional radio frequencies newly licensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons Sprint Spectrum L.P. respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (845)-499-4712 or email JPalumbo@Transcendwireless.com with questions concerning this matter. Thank you for your consideration.

Sincerely,

Jennifer Palumbo Real Estate Consultant

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Sprint Existing Facility

Site ID: CT33XC078

Long Eddy / Wright Property 136 Wright Road Torrington, CT 06790

August 30, 2012

Fax: (781) 273.3311

August 30, 2012

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Emissions Values for Site CT33XC078 - Long Eddy / Wright Property

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 136 Wright Road, Torrington, CT, for the purpose of determining whether the emissions from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band is approximately 567 μ W/cm², and the general population exposure limit for the PCS band is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Fax: (781) 273.3311

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 136 Wright Road, Torrington, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario. Actual values seen from this site will be dramatically less than those shown in this report. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 2 CDMA Carriers (1900 MHz) were considered for each sector of the proposed installation.
- 2) 1 CDMA Carrier (850 MHz) was considered for each sector of the proposed installation
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
- 5) The antenna used in this modeling is the RFS APXVSPP18-C-A20. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario.

- 6) The antenna mounting height centerline of the proposed antennas is **147.4 feet** above ground level (AGL)
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

Tel: (781) 273.2500

Fax: (781) 273.3311

	Site Addresss Site Type	CT33XC078 - 136 Wright	CT33XC078 - Long Eddy / Wright Property 136 Wright Road, Torrington, CT 06790 Monopole	right Property on, CT 06790													
							Sector 1	r.1									
Antenna Number	Antenna Number Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss Additional	Additional	Q.	Power Density	Power Density
1a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	2	40		147.4	141.4	1/2"	9 900		1386 9474 24 93832	24 93832	2 49383%
1a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	147.4	141.4	1/2"	0.5		389.96892 7.011923	7.011923	1 23667%
												Sector tota	I Power De	Sector total Power Density Value:	3.731%		
							Sector 2	r 2									
Antenna			-		3	AND RESTREET AND RESTREET	Company of the American Company	j č		Antenna	DOMESTIC OF THE PARTY OF THE PA		Cable Loss Additional	Additional		Power Density	Power Density
Number	Number Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	g	Height (ft)		Cable Size	(dB)	Loss	ERP		Percentage
2a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	147.4	141.4	1/2"	0.5	0	386.9474 24.93832	24.93832	2.49383%
												Sector tota	Il Power Der	Sector total Power Density Value:	3.731%	10707701	1.23007/8
							Sector 3	r3									33. 0
Antenna						Power Out Per Channel	Number of Commette	Commonite	Antenna Gain in direction of sample	Antenna	analucie		louding the state of the state	Add:#:000	Talas Off	Power	Power
Number	Ante		Radio Type	Frequency Band	Technology		Channels	Power	2300	Height (ft)	ESCALA	Cable Size	(dB)	Loss	ERP	Value	Percentage
3a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	2	40	15.9	147.4	141.4	1/2"	0.5	0	1386.9474	24.93832	2.49383%
3a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	147.4	141.4	1/2 "	0.5	0	389.96892 7.011923	7.011923	1.23667%
								THE PROPERTY OF THE PERSON OF	CONTRACTOR STATEMENT	SECTION OF STREET	SERVICE STREET, STREET	Contactor total	I Daniel Dan	and the latest	101000	SPOSOCONESSION CONTROL SESSO	SHOWSHORNSHIP SHOWSHIP OF SHOWSHIP

Sprint 11.192% Verizon Wireless 19.240%
Total Site MPE % 30.432%

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the Sprint facility are 11.192% (3.731% from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is 30.432% of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803

Fax: (781) 273.3311

DWG#

A01

C01

C01A

C02

C02A

C03

C03A

C04

C04A

C04B

C04C

C06

C06A

C07

C07A

C07B

C07C

E01

COVER SHEET

COMPOUND PLAN

EQUIPMENT PLANS

ELEVATION

SITE DETAILS

RF SCHEDULF

RF DATA SHEET

GENERAL NOTES 1 OF 2

GENERAL NOTES 2 OF 2

FINAL ANTENNA PLAN (ALL SECTORS)

RRH PLANS & DETAILS (ALL SECTORS)

AAV DRAWINGS - KEY & EQUIPMENT PLAN

AAV DRAWINGS - COVER SHEET

AAV DRAWINGS - SITE PHOTOS

ELECTRICAL & GROUNDING DETAILS

AAV DRAWINGS - DETAILS

ELECTRICAL NOTES

APPRO	VALS	
PRINT REPRESENTATIVES	DATE	APPROVED APPROVED AS NOTED DISAPPROVED REVISE
PRINT RF ENGINEER	DATE	
TE OWNER	DATE	
	DATE	

SITE ID: CT33XC078 SITE NAME: LONG EDDY / WRIGHT PROPERTY

THE STRUCTURAL ENGINEERING CONCERNING THE STRUCTURAL STABILITY OF THE TOWER/POLE, FOUNDATION, ANTENNAS, MOUNTS AND ALL ASSOCIATED ANCILLARY RADIO EQUIPMENT IS BEING COMPLETED BY OTHERS. KMB DESIGN GROUP, LLC HAS NOT BEEN REQUESTED TO PERFORM ANY STRUCTURAL ANALYSIS SERVICES TO VERIFY THAT THE TOWER/POLE AND/OR FOUNDATION IS CAPABLE OF SUPPORTING THE PROPOSED EQUIPMENT DEPICTED WITHIN THESE SIGNED AND SEALED DRAWINGS. FURTHERMORE KMB DESIGN GROUP, LLC HAS NOT BEEN REQUESTED O PHYSICALLY CONFIRM THE EXISTING MOUNT CONFIGURATION AND PERFORM A STRUCTURAL ANALYSIS TO VERIFY THAT THE EXISTING, INTERIM AND PROPOSED ANTENNAS, MOUNTS AND ALL ASSOCIATED ANCILLARY RADIO EQUIPMENT CAN BE SAFELY SUPPORTED. SIGNED AND SEALED DRAWINGS REVISED TO STATE "ISSUED FOR CONSTRUCTION" SHALL BE PROVIDED TO THE PROFESSIONAL ENGINEERS RESPONSIBLE FOR THE STRUCTURAL ANALYSIS OF THE TOWER/POLE, ANTENNAS, MOUNTS AND ALL ASSOCIATED ANCILLARY RADIO EQUIPMENT. KMB DESIGN GROUP, LLC SHALL BE NOTIFIED SHOULD THE STRUCTURAL ANALYSIS RESULT IN SOME ELEMENTS NOT BEING STRUCTURALLY CAPABLE OF SUPPORTING THE PROPOSED DESIGN DEPICTED. THE CONTRACTOR SHALL NOT COMMENCE CONSTRUCTION WITHOUT OBTAINING (A) A SIGNED AND SEALED COPY OF THE PLANS "ISSUED FOR CONSTRUCTION"; (B) STRUCTURAL ANALYSIS REPORT STATING THAT THE TOWER/POLE/FOUNDATION IS CAPABLE OF SUPPORTING THE PROPOSED LOADING REFERENCING THE SIGNED AND SEALED PLANS BY KMB DESIGN GROUP, LLC; (C) SPRINT PLATFORM ANALYSIS STATING THAT THE SPRINT PLATFORM IS CAPABLE OF SUPPORTING THE PROPOSED DESIGN AS REFERENCED WITHIN THE SIGNED AND SEALED PLANS BY KMB DESIGN GROUP, LLC.

BLOCK: 2

ZONING JURISDICTION: TBD

TORRINGTON, CT 06790 LITCHFIELD COUNTY

STRUCTURE HEIGHT: ±151'-6" (TOP OF EXISTING MONOPOLE)

GLOBAL SIGNAL ACQUISITIONS II LLC

SITE ADDRESS: 136 WRIGHT ROAD

PROPERTY OWNER:

LATITUDE: LONGITUDE:

Stephen A. Bray

CT LICENSE: 26657

8/10/12

332.1492

136 WRIGHT ROAD TORRINGTON, CT 06790 LITCHFIELD COUNTY

CT33XC078

ROJECT	TYPE:
	NET

NETWORK VISION

COVER

SHEET

04-02-12

NETWORK VISION CONSTRUCTION DRAWINGS

LOCATION MAP

DRAWING INDEX

CODES & STANDARDS DRAWING TITLES These documents are in compliance & all construction to be in accordance with the following codes & standards as applicable: State Building Code: 2005 Connecticut Supplement 2003 International Building Code 2003 International Residential Code 2003 International Existing Building Code 2003 International Mechanic Code **EQUIPMENT & ANTENNA SPECIFICATIONS** 2003 International Plumbing Code EXISTING ANTENNA PLAN (ALL SECTORS) 2003 International Energy Conservation Code (re-adopted with changes) INTERIM ANTENNA PLAN (ALL SECTORS)

2005 National Electrical Code (NFPA-70)

- DEPART 1 INTERNATIONAL BLVD, MAHWAH, NJ 07495 TAKE 3RD EXIT FROM ROUNDABOUT INTERNATIONAL BLVD ONTO LEISURE LN.
- TAKE RAMP ONTO STATE HIGHWAY 17 (RT-17 N). CONTINUE ON I-287 N.
- TAKE THE I-87 S/I-287/NEW YORK STATE THRUWAY SOUTH/TAPPAN ZEE BR/NEW YORK CITY EXIT ONTO NEW YORK STATE THRUWAY SOUTH (I-287 E, I-87 S) (PARTIAL
- KEEP RIGHT ONTO NEW YORK STATE THRUWAY SOUTH (I-87 S) TOWARD RT-119/SAW MILL PKWY NORTH/SAW MILL PKWY SOUTH/NEW YORK CITY/ELMSFORD
- TAKE EXIT #9E/I-84 E/DANBURY ONTO I-84 E. TAKE EXIT #20/CT-8 N/TORRINGTON TO THE LEFT ONTO
- TAKE EXIT #44/CT-4/DOWNTOWN TORRINGTON/US-202. CONTINUE ON CHRISTOPHER RD TOWARD CT-8
- 13. TURN LEFT ONTO E ELM ST (CT-4). 14. TURN RIGHT ONTO WRIGHT RD

ICC/ANSI A117.1-2003 Assessible and Usable Buildings and Facilities **DRIVING DIRECTIONS** TAKE EXIT #8A/RT-119/SAW MILL PKWY NORTH/ELMSFORD ONTO SAW MILL PKY NORTH, SAW MILL RIVER PKY N TOWARD SAW MILL RIVER PKWY NORTH/KATONAH. TAKE LEFT RAMP ONTO I-684 N TOWARD BREWSTER.

APPLICANT: SPRINT-NEXTEL 6200 SPRINT PARKWAY OVERLAND PARK, KS 66251 ENGINEER: KMB DESIGN GROUP, LLC 1800 ROUTE 34, SUITE 209 WALL, NJ 07719 KEITH DRENNAN - PROJECT MANAGER (732) 280-5623 POWER COMPANY CONNECTICUT LIGHT & POWER

SITE INFORMATION

PROJECT INFORMATION:

PROJECT DIRECTORY

41° 49' 38.34" -73° 10' 13.87" DATUM: NAD 83

P.O. BOX 270 HARTFORD, CT 06141-0270 (800) 286-2000

CONSTRUCTION MANAGER: TODD AMANN (914) 715-9363

AERIAL VIEW

Alcatel · Lucent

REVISION DESCRIPTION

DRAWN CHKD.

Stephen A. Bray

PROFESSIONAL ENGINEER

CT LICENSE: 26657

8/10/12

04-02-12

332.1492

136 WRIGHT ROAD TORRINGTON, CT 06790

CT33XC078

NETWORK VISION

ELEVATION

C₀₂A

print_332.1000_Alcater-Lucent\332.1492_CT33XC078_136 Wright Road\332.1492_CAD\332.1492_Constructiom\332.1492.C03.dwg, 8/10/2012 11:18:09 AM, mduffy

JLS DRAWN CHKD. BY BY

Stephen A. Bray

04-02-12

8/10/12

printl_332.1000_Alcatel-Lucent\332.1492_CT33XC078_136 Wright Road\332.1492_CAD\332.1492_Constructiom\332.1492.C09A.dwg, 8/10/2012 11:18:18 AM, mduffy

Alcatel · Lucent

Stephen A. Bray

332.1492

136 WRIGHT ROAD TORRINGTON, CT 06790 LITCHFIELD COUNTY

NETWORK VISION

04-02-12

8/10/12

(ALL SECTORS)

C04B

Sprint[®]

Alcatel · Lucent

REVISION DESCRIPTION

Stephen A. Bray

CT LICENSE: 26657

8/10/12

332.1492

136 WRIGHT ROAD TORRINGTON, CT 06790 LITCHFIELD COUNTY

CT33XC078

NETWORK VISION

04-02-12

RRH PLANS & DETAILS

C04C

Date: June 06, 2012

James Williams Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject:

Structural Analysis Report

Carrier Designation:

Sprint PCS Co-Locate - Interim Load

Carrier Site Number:

CT33XC078

Crown Castle Designation:

Crown Castle BU Number:

876373

Crown Castle Site Name: LONG EDDY / WRIGHT PROPERTY

Crown Castle JDE Job Number: 189144 Crown Castle Work Order Number: 498952 Crown Castle Application Number: 151573 Rev. 1

Engineering Firm Designation: Crown Castle Project Number:

498952

Site Data:

136 Wright Rd., TORRINGTON, Litchfield County, CT Latitude 41° 49' 38.34", Longitude -73° 10' 13.97"

148 Foot - Monopole Tower

Dear James Williams.

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 498952, in accordance with application 151573, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

This analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code requirements based upon a wind speed of 80 mph fastest mile.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at Crown Castle appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Jesse J. Fresch, EIT / MRC

Respectfully submitted by:

Reza Jenabzadeh, P.E.

Engineer II

tnxTower Report - version 6.0.4.0

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

- Table 1 Proposed Antenna and Cable Information
- Table 2 Existing and Reserved Antenna and Cable Information
- Table 3 Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Components vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 148 ft Monopole tower designed by SUMMIT in June of 2000. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no ice, 28.1 mph with 1 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	alcatel lucent	800 EXTERNAL NOTCH FILTER			-
148.0	147.0	9	rfs celwave	ACU-A20-N	3	1-1/4	-
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe			
		3	alcatel lucent	1900MHz RRH (25MHz)			
145.0	145.0	3	alcatel lucent	800MHZ RRH	_	_	_
0.0	0.0	1	tower mounts	Collar Mount [SO 102-3]	-	-	-

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
148.0	148.0	6	decibel	DB980H90E-M w/ Mount Pipe	6	1-5/8	1
		1	tower mounts	Platform Mount [LP 601-1]			
		1	antel	BXA-171063-8BF-2 w/ Mount Pipe			
		2	antel	BXA-171085-8BF-EDIN-2 w/ Mount Pipe	6	1-5/8	2
138.0	138.0	3	antel	BXA-70063-6CF-2 w/ Mount Pipe			
		2	antel	LPA-80063/6CF w/ Mount Pipe			
		4	antel	LPA-80080/6CF w/ Mount Pipe	12	1-5/8	1
		1	tower mounts	Platform Mount [LP 601-1]			
	84.0	1	rfs celwave	PD1109E			
79.0	79.0	1	tower mounts	Side Arm Mount [SO 701-1]	1	1/2	1
		1	gps	GPS_A			
45.0	45.0	1	tower mounts	Side Arm Mount [SO 701-1]	1	1/2	1

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		1	gps	GPS_A			
16.0	16.0	1	tower mounts	Side Arm Mount ISO 701-11	1	1/2	1

Notes:

- 1) Existing Equipment
- 2) Reserved Equipment

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
148	148	12	dapa	48000 PCS Panel	-	-
140	140	12	dapa	48000 PCS Panel	-	-
130	130	12	dapa	48000 PCS Panel	-	-
120	120	12	dapa	48000 PCS Panel	-	-
76	76	1	generic	GPS Antenna	-	-

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Clarence Welti Associates, Inc.	1531964	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Summit Manufacturing, LLC	1634518	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Summit Manufacturing, LLC	1631601	CCISITES
4-TOWER STRUCTURAL ANALYSIS REPORTS	Paul J. Ford and Company	1533032	CCISITES

3.1) Analysis Method

tnxTower (version 6.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	148 - 116.5	Pole	TP29.481x24x0.2188	1	-4.98	953.24	43.1	Pass
L2	116.5 - 80.25	Pole	TP35.351x28.391x0.25	2	-9.13	1415.67	72.3	Pass
L3	80.25 - 39.75	Pole	TP41.898x34.068x0.3125	3	-15.89	2097.24	80.3	Pass
L4	39.75 - 0	Pole	TP48.19x40.3595x0.375	4	-26.37	2958.67	80.9	Pass
							Summary	
						Pole (L4)	80.9	Pass
						Rating =	80.9	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

		· · · · · · · · · · · · · · · · · · ·		
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	64.2	Pass
1	Base Plate	0	66.6	Pass
1	Base Foundation Soil Interaction	0	71.7	Pass

 707-1080	
Structure Rating (max from all components) =	80.9%

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the existing, reserved, and proposed loads. No modifications are required at this time.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

Section	4	3	2	-	
Length (ft)	45.00	45.00	40.00	31.50	
Number of Sides	18	18	18	18	
Thickness (in)	0.3750	0.3125	0.2500	0.2188	
Socket Length (ft)		5.25	4.50	3.75	
Top Dia (in)	40.3595	34.0680	28.3910	24.0000	
Bot Dia (in)	48.1900	41.8980	35.3510	29.4810	
Grade		A607-65		A607-60	
Weight (K) 19.1	8.0	5.7	3.4	2.0	
26 K SHEAR 22 K / MOM. 2326 I TORQUE 1 kip-ft REACTIONS - 80 mph WIND	AXIAL 46 K SHEAR 4 K / MOME 4 W / 409 ki TORQUE 0 kip-ft 28 mph WIND - 1.0000 in ICE AXIAL	39.8 ft		116.5 R	
	p-ft	. De	GR Too in 1	Lightnin Lig	

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
Lightning Rod 1" x 5'	148	Collar Mount [SO 102-3]	145	
(2) DB980H90E-M w/ Mount Pipe	148	(2) LPA-80063/6CF w/ Mount Pipe	138	
(2) DB980H90E-M w/ Mount Pipe	148	(2) LPA-80080/6CF w/ Mount Pipe	138	
(2) DB980H90E-M w/ Mount Pipe	148	(2) LPA-80080/6CF w/ Mount Pipe	138	
APXVSPP18-C-A20 w/ Mount Pipe	148	BXA-70063-6CF-2 w/ Mount Pipe	138	
800 EXTERNAL NOTCH FILTER	148	BXA-171085-8BF-EDIN-2 w/ Mount	138	
(3) ACU-A20-N	148	Pipe		
APXVSPP18-C-A20 w/ Mount Pipe	148	BXA-70063-6CF-2 w/ Mount Pipe	138	
800 EXTERNAL NOTCH FILTER	148	BXA-171085-8BF-EDIN-2 w/ Mount	138	
(3) ACU-A20-N	148	Pipe		
APXVSPP18-C-A20 w/ Mount Pipe	148	BXA-70063-6CF-2 w/ Mount Pipe	138	
800 EXTERNAL NOTCH FILTER	148	BXA-171063-8BF-2 w/ Mount Pipe	138	
(3) ACU-A20-N	148	Platform Mount [LP 601-1]	138	
Platform Mount [LP 601-1]	148	PD1109E	79	
1900MHz RRH (25MHz)	145	Side Arm Mount [SO 701-1]	79	
800MHZ RRH	145	GPS_A	45	
1900MHz RRH (25MHz)	145	Side Arm Mount [SO 701-1]	45	
800MHZ RRH	145	GPS_A	16	
		Side Arm Mount [SO 701-1]	16	
1900MHz RRH (25MHz)	145			
800MHZ RRH	145			

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A607-60	60 ksi	75 ksi	A607-65	65 ksi	80 ksi

TOWER DESIGN NOTES

- Tower is located in Litchfield County, Connecticut.

 Tower designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard.

 Tower is also designed for a 28 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.

 The Research County Designed for a 50 mph wind.
- OWER RATING: 80.9%

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

- Tower is located in Litchfield County, Connecticut.
- Basic wind speed of 80 mph. 4)
- Nominal ice thickness of 1.0000 in. 5)
- Ice thickness is considered to increase with height. 6)
- 7) Ice density of 56.00 pcf.
- A wind speed of 28 mph is used in combination with ice. 8)
- Temperature drop of 50 °F. 9)
- Deflections calculated using a wind speed of 50 mph. 10)
- A non-linear (P-delta) analysis was used. 11)
- Pressures are calculated at each section. 12)
- Stress ratio used in pole design is 1.333. 13)
- 14) Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals **Use Moment Magnification**

- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component Triangulate Diamond Inner Bracing

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- Consider Feedline Torque Include Angle Block Shear Check Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	148.00-116.50	31.50	3.75	18	24.0000	29.4810	0.2188	0.8750	A607-60 (60 ksi)
L2	116.50-80.25	40.00	4.50	18	28.3910	35.3510	0.2500	1.0000	A607-65 (65 ksi)
L3	80.25-39.75	45.00	5.25	18	34.0680	41.8980	0.3125	1.2500	A607-65 (65 ksi)
L4	39.75-0.00	45.00		18	40.3595	48.1900	0.3750	1.5000	A607-65 (65 ksi)

Tap	ered	Pole	Pro	perties
-----	------	------	-----	---------

Section	Tip Dia.	Area	T	r	С	I/C	J	lt/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	24.3702	16.5116	1179.7676	8.4423	12.1920	96.7657	2361.0876	8.2574	3.8390	17.55
	29.9358	20.3171	2197.9387	10.3881	14.9763	146.7607	4398.7696	10.1605	4.8037	21.96
L2	29.4915	22.3299	2234.1018	9.9901	14.4226	154.9025	4471.1433	11.1671	4.5568	18.227
	35.8963	27.8526	4335.5365	12.4609	17.9583	241.4223	8676.7779	13.9290	5.7818	23.127
L3	35.3886	33.4812	4819.7890	11.9832	17.3065	278.4952	9645.9201	16.7438	5.4460	17.427
	42.5443	41.2476	9011.9791	14.7629	21.2842	423.4120	18035.816 4	20.6277	6.8240	21.837
L4	41.9098	47.5916	9612.8164	14.1945	20.5026	468.8578	19238.281	23.8003	6.4433	17.182
	48.9334	56.9118	16438.724 6	16.9743	24.4805	671.5023	32899.079 8	28.4613	7.8214	20.857

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _t	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals
ft	ft²	in				Diagonais in	in
L1 148.00-			1	1	1		
116.50 L2 116.50-			4	4	4		
80.25			1	1	7		
L3 80.25-			1	1	1		
39.75							
L4 39.75-0.00			1	11	1		

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		C _A A _A	Weight
LDC7 FOA/4 F/0!!)	Leg	Al-	la side Dele	ft			ft²/ft	plf
LDF7-50A(1-5/8")	Α	No	Inside Pole	148.00 - 0.00	6	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
15444 4 0040114 1451/						4" Ice	0.00	0.82
HB114-1-0813U4-M5J(Α	No	CaAa (Out Of	148.00 - 0.00	1	No Ice	0.00	1.20
1 1/4")			Face)			1/2" Ice	0.00	2.45
						1" lce	0.00	4.30
						2" lce	0.00	9.85
						4" lce	0.00	28.27
HB114-1-0813U4-M5J(Α	No	CaAa (Out Of	148.00 - 0.00	2	No Ice	0.15	1.20
1 1/4")			Face)			1/2" Ice	0.25	2.45
						1" Ice	0.35	4.30
						2" Ice	0.55	9.85
*						4" Ice	0.95	28.27
LDF7-50A(1-5/8")	В	No	CaAa (Out Of	138.00 - 0.00	4	No Ice	0.00	0.82
			Face)			1/2" Ice	0.00	2.33
			·			1" Ice	0.00	4.46
						2" lce	0.00	10.54
						4" Ice	0.00	30.04
LDF7-50A(1-5/8")	В	No	CaAa (Out Of	138.00 - 0.00	2	No Ice	0.20	0.82
			Face)			1/2" Ice	0.30	2.33
			•			1" Ice	0.40	4.46
						2" lce	0.60	10.54
						4" Ice	1.00	30.04
LDF7-50A(1-5/8")	В	No	Inside Pole	138.00 - 0.00	12	No Ice	0.00	0.82
, ,						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
						4" Ice	0.00	0.82

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
*	Leg			ft			ft²/ft	plf
LDF4-50A(1/2")	С	No	Inside Pole	79.00 - 0.00	1	No Ice	0.00	0.15
, ,						1/2" Ice	0.00	0.15
						1" Ice	0.00	0.15
						2" Ice	0.00	0.15
*						4" Ice	0.00	0.15
LDF4-50A(1/2")	Α	No	CaAa (Out Of	45.00 - 0.00	1	No Ice	0.06	0.15
			Face)			1/2" Ice	0.16	0.84
						1" lce	0.26	2.14
						2" lce	0.46	6.58
*						4" Ice	0.86	22.78
LDF4-50A(1/2")	В	No	Inside Pole	16.00 - 0.00	1	No Ice	0.00	0.15
						1/2" Ice	0.00	0.15
						1" lce	0.00	0.15
						2" Ice	0.00	0.15
						4" Ice	0.00	0.15

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation		9	2	In Face	Out Face	
<u>n</u>	ft		ft²	ft ²	ft ²	ft ²	K
L1	148.00-116.50	Α	0.000	0.000	0.000	9.702	0.27
		В	0.000	0.000	0.000	8.514	0.32
		С	0.000	0.000	0.000	0.000	0.00
L2	116.50-80.25	Α	0.000	0.000	0.000	11.165	0.31
		В	0.000	0.000	0.000	14.355	0.54
		С	0.000	0.000	0.000	0.000	0.00
L3	80.25-39.75	Α	0.000	0.000	0.000	12.804	0.35
		В	0.000	0.000	0.000	16.038	0.60
		С	0.000	0.000	0.000	0.000	0.01
L4	39.75-0.00	Α	0.000	0.000	0.000	14.747	0.34
		В	0.000	0.000	0.000	15.741	0.59
		С	0.000	0.000	0.000	0.000	0.01

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness	_	_	In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	148.00-116.50	Α	1.181	0.000	0.000	0.000	24.580	0.66
		В		0.000	0.000	0.000	18.669	0.93
		С		0.000	0.000	0.000	0.000	0.00
L2	116.50-80.25	Α	1.140	0.000	0.000	0.000	28.287	0.76
		В		0.000	0.000	0.000	31.477	1.57
		С		0.000	0.000	0.000	0.000	0.00
L3	80.25-39.75	Α	1.074	0.000	0.000	0.000	32.462	0.83
		В		0.000	0.000	0.000	34.499	1.69
		С		0.000	0.000	0.000	0.000	0.01
L4	39.75-0.00	Α	1.000	0.000	0.000	0.000	40.365	0.86
		В		0.000	0.000	0.000	32.820	1.56
		С		0.000	0.000	0.000	0.000	0.01

Feed	I ine	Center	of Pr	essiire
LECU		Celle	U	CSSUIC

Section	Elevation	CP _X	CPz	CP _X Ice	CPz Ice
	ft	in	in	in	in
L1	148.00-116.50	0.2878	-0.2006	0.4664	-0.4175
L2	116.50-80.25	0.4075	-0.1307	0.6683	-0.3076
L3	80.25-39.75	0.4207	-0.1458	0.7019	-0.3603
L4	39.75-0.00	0.4266	-0.2152	0.6956	-0.5863

	ì	S	C	rei	te.	Т	O	W	er	Lo	ad	S
_	4	•	•				v	ŦŦ	VI.	_	/uu	•

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C₄A₄ Front	C₄A₄ Side	Weight
			ft ft ft	o	ft		ft²	ft²	Κ
Lightning Rod 1" x 5'	С	From Leg	0.00 0.00 2.50	0.0000	148.00	No Ice 1/2" Ice 1" Ice	0.50 1.02 1.43 2.06	0.50 1.02 1.43 2.06	0.03 0.03 0.04 0.07
***						2" Ice 4" Ice	3.45	3.45	0.17
(2) DB980H90E-M w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.04 4.50 4.95 5.87 8.05	3.62 4.48 5.22 6.74 10.00	0.03 0.06 0.11 0.22 0.55
(2) DB980H90E-M w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	148.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.04 4.50 4.95 5.87 8.05	3.62 4.48 5.22 6.74 10.00	0.03 0.06 0.11 0.22 0.55
(2) DB980H90E-M w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	148.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.04 4.50 4.95 5.87 8.05	3.62 4.48 5.22 6.74 10.00	0.03 0.06 0.11 0.22 0.55
APXVSPP18-C-A20 w/ Mount Pipe	Α	From Leg	4.00 0.00 -1.00	0.0000	148.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	8.50 9.15 9.77 11.03 13.68	6.95 8.13 9.02 10.84 14.85	0.08 0.15 0.22 0.41 0.91
800 EXTERNAL NOTCH FILTER	Α	From Leg	4.00 0.00 -1.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.77 0.89 1.02 1.30 1.97	0.37 0.46 0.56 0.79 1.34	0.01 0.02 0.02 0.04 0.11
(3) ACU-A20-N	Α	From Leg	4.00 0.00 -1.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.08 0.12 0.17 0.30 0.67	0.14 0.19 0.25 0.40 0.80	0.00 0.00 0.00 0.01 0.04
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.00 0.00 -1.00	0.0000	148.00	No Ice 1/2" Ice	8.50 9.15 9.77	6.95 8.13 9.02	0.08 0.15 0.22

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement	741S	C _A A _A Front	C _A A _A Side	Weight
	Log		Vert ft ft	e o	ft		ft²	ft²	κ
			ft						
						1" Ice	11.03	10.84	0.41
						2" lce	13.68	14.85	0.91
800 EXTERNAL NOTCH	В	From Los	4.00	0.0000	440.00	4" Ice	0.77	0.07	0.04
FILTER	Ð	From Leg	4.00 0.00	0.0000	148.00	No Ice 1/2"	0.77 0.89	0.37 0.46	0.01 0.02
TIETEK			-1.00			ice	1.02	0.46	0.02
			1.00			1" Ice	1.30	0.79	0.02
						2" Ice	1.97	1.34	0.11
						4" Ice			
(3) ACU-A20-N	В	From Leg	4.00	0.0000	148.00	No Ice	0.08	0.14	0.00
			0.00			1/2"	0.12	0.19	0.00
			-1.00			Ice	0.17	0.25	0.00
						1" Ice 2" Ice	0.30	0.40	0.01
						4" Ice	0.67	0.80	0.04
APXVSPP18-C-A20 w/	С	From Leg	4.00	0.0000	148.00	No Ice	8.50	6.95	0.08
Mount Pipe	_		0.00	5.5555	, , , , , ,	1/2"	9.15	8.13	0.15
•			-1.00			Ice	9.77	9.02	0.22
						1" Ice	11.03	10.84	0.41
						2" Ice 4" Ice	13.68	14.85	0.91
800 EXTERNAL NOTCH	С	From Leg	4.00	0.0000	148.00	No Ice	0.77	0.37	0.01
FILTER			0.00			1/2"	0.89	0.46	0.02
			-1.00			Ice	1.02	0.56	0.02
						1" Ice	1.30	0.79	0.04
						2" Ice	1.97	1.34	0.11
(3) ACU-A20-N	С	From Leg	4.00	0.0000	148.00	4" Ice	0.08	0.44	0.00
(3) ACO-AZO-N	C	rioni Leg	0.00	0.0000	146.00	No Ice 1/2"	0.08	0.14 0.19	0.00 0.00
			-1.00			Ice	0.12	0.15	0.00
						1" Ice	0.30	0.40	0.01
						2" Ice	0.67	0.80	0.04
						4" Ice			
Platform Mount [LP 601-1]	С	None		0.0000	148.00	No Ice	28.47	28.47	1.12
						1/2"	33.59	33.59	1.51
						lce 1" lce	38.71 48.95	38.71	1.91 2.69
						2" Ice	69.43	48.95 69.43	4.26
						4" Ice	05.40	05.40	4.20
*** 1900MHz RRH (25MHz)	Α	From Log	2.00	0.0000	445.00		0.04	2.00	0.00
1900W112 KK11 (25W112)	^	From Leg	2.00 0.00	0.0000	145.00	No Ice 1/2"	2.91 3.14	3.80 4.06	0.09 0.12
			0.00			Ice	3.39	4.34	0.12
			0.00			1" Ice	3.91	4.91	0.24
						2" Ice	5.05	6.15	0.45
	_					4" Ice			
800MHZ RRH	Α	From Leg	2.00	0.0000	145.00	No Ice	2.49	2.07	0.05
			0.00			1/2"	2.71	2.27	0.07
			0.00			Ice 1" Ice	2.93 3.41	2.48 2.93	0.10 0.16
						2" Ice	4.46	3.93	0.32
						4" lce	-110	0.00	0.02
1900MHz RRH (25MHz)	В	From Leg	2.00	0.0000	145.00	No Ice	2.91	3.80	0.09
			0.00			1/2"	3.14	4.06	0.12
			0.00			Ice	3.39	4.34	0.15
						1" Ice	3.91	4.91	0.24
						2" Ice	5.05	6.15	0.45
800MHZ RRH	В	From Leg	2.00	0.0000	145.00	4" Ice No Ice	2.49	2.07	0.05
OOOMI IZ TATALI	D	i ioni Leg	0.00	0.0000	140.00	1/2"	2.4 9 2.71	2.07 2.27	0.05
			0.00			lce	2.93	2.48	0.10
						1" Ice	3.41	2.93	0.16
						2" Ice	4.46	3.93	0.32
4000MIL BBIL (0=1***)	_					4" Ice			
1900MHz RRH (25MHz)	С	From Leg	2.00	0.0000	145.00	No Ice	2.91	3.80	0.09

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	fť²	К
			0.00			1/2"	3.14	4.06	0.12
			0.00			Ice	3.39	4.34	0.15
						1" Ice	3.91	4.91	0.24
						2" Ice	5.05	6.15	0.45
800MHZ RRH	С	From Leg	2.00	0.0000	145.00	4" Ice No Ice	2.49	2.07	0.05
000WH 12 TYTYT	C	i ioni Leg	0.00	0.0000	145.00	1/2"	2.49	2.07	0.05
			0.00			Ice	2.93	2.48	0.07
						1" Ice	3.41	2.93	0.16
						2" Ice	4.46	3.93	0.32
0 11 1700 100 11	_					4" Ice			
Collar Mount [SO 102-3]	С	None		0.0000	145.00	No Ice	3.00	3.00	0.08
						1/2"	3.48	3.48	0.11
						Ice 1" Ice	3.96 4.92	3.96 4.92	0.14 0.20
						2" Ice	6.84	6.84	0.20
						4" Ice	0.01	0.01	0.02

(2) LPA-80063/6CF w/	Α	From Leg	4.00	0.0000	138.00	No Ice	10.58	10.67	0.05
Mount Pipe			0.00 0.00			1/2"	11.24	11.93	0.14
			0.00			lce 1" lce	11.87 13.16	12.91 14.92	0.24 0.48
						2" Ice	15.16	19.16	1.09
						4" Ice	10.07	10.10	1.00
(2) LPA-80080/6CF w/	В	From Leg	4.00	0.0000	138.00	No Ice	4.56	10.73	0.05
Mount Pipe			0.00			1/2"	5.11	11.99	0.11
			0.00			Ice	5.61	12.97	0.19
						1" Ice 2" Ice	6.65 8.83	14.98 19.22	0.36 0.86
						4" Ice	0.03	19.22	0.00
(2) LPA-80080/6CF w/	С	From Leg	4.00	0.0000	138.00	No Ice	4.56	10.73	0.05
Mount Pipe			0.00			1/2"	5.11	11.99	0.11
			0.00			Ice	5.61	12.97	0.19
						1" Ice	6.65	14.98	0.36
						2" Ice 4" Ice	8.83	19.22	0.86
BXA-70063-6CF-2 w/	Α	From Leg	4.00	0.0000	138.00	No Ice	7.97	5.80	0.04
Mount Pipe		J	0.00			1/2"	8.61	6.95	0.10
			0.00			Ice	9.22	7.82	0.17
						1" Ice	10.46	9.60	0.34
						2" Ice 4" Ice	13.07	13.37	0.80
BXA-171085-8BF-EDIN-2	Α	From Leg	4.00	0.0000	138.00	No Ice	3.18	3.35	0.03
w/ Mount Pipe			0.00	0.0000	100.00	1/2"	3.56	3.97	0.06
			0.00			Ice	3.96	4.60	0.10
						1" Ice	4.85	5.89	0.19
						2" Ice	6.77	8.89	0.49
BXA-70063-6CF-2 w/	В	From Leg	4.00	0.0000	138.00	4" Ice No Ice	7.97	5.80	0.04
Mount Pipe		. rom Log	0.00	0.0000	100.00	1/2"	8.61	6.95	0.10
·			0.00			lce	9.22	7.82	0.17
						1" Ice	10.46	9.60	0.34
						2" Ice	13.07	13.37	0.80
BXA-171085-8BF-EDIN-2	В	From Leg	4.00	0.0000	138.00	4" Ice No Ice	3.18	3.35	0.03
w/ Mount Pipe	U	i ioni Leg	0.00	0.0000	130.00	1/2"	3.16	3.35 3.97	0.03
			0.00			Ice	3.96	4.60	0.10
						1" Ice	4.85	5.89	0.19
						2" Ice	6.77	8.89	0.49
BVA 70063 CCE 9!	_	From !	4.00	0.0000	400.00	4" Ice	7.67	F 22	0.01
BXA-70063-6CF-2 w/ Mount Pipe	С	From Leg	4.00 0.00	0.0000	138.00	No Ice	7.97	5.80	0.04
mount i ipe			0.00			1/2" Ice	8.61 9.22	6.95 7.82	0.10 0.17
			0.00			1" Ice	10.46	9.60	0.17
						2" Ice	13.07	13.37	0.80

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	κ
BXA-171063-8BF-2 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	138.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	3.18 3.56 3.96 4.85 6.77	3.35 3.97 4.60 5.89 8.89	0.03 0.06 0.10 0.19 0.49
Platform Mount [LP 601-1]	С	None		0.0000	138.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	28.47 33.59 38.71 48.95 69.43	28.47 33.59 38.71 48.95 69.43	1.12 1.51 1.91 2.69 4.26
PD1109E	Α	From Leg	2.00 0.00 5.00	0.0000	79.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.85 3.92 5.01 6.43 9.09	2.85 3.92 5.01 6.43 9.09	0.02 0.04 0.07 0.14 0.38
Side Arm Mount [SO 701- 1]	A	From Leg	1.00 0.00 0.00	0.0000	79.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.85 1.14 1.43 2.01 3.17	1.67 2.34 3.01 4.35 7.03	0.07 0.08 0.09 0.12 0.18
GPS_A	С	From Leg	2.00 0.00 0.00	0.0000	45.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.30 0.37 0.46 0.65 1.15	0.30 0.37 0.46 0.65 1.15	0.00 0.00 0.01 0.02 0.08
Side Arm Mount [SO 701- 1]	С	From Leg	1.00 0.00 0.00	0.0000	45.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.85 1.14 1.43 2.01 3.17	1.67 2.34 3.01 4.35 7.03	0.07 0.08 0.09 0.12 0.18
GPS_A	A	From Leg	2.00 0.00 0.00	0.0000	16.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.30 0.37 0.46 0.65 1.15	0.30 0.37 0.46 0.65 1.15	0.00 0.00 0.01 0.02 0.08
Side Arm Mount [SO 701- 1]	A	From Leg	1.00 0.00 0.00	0.0000	16.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.85 1.14 1.43 2.01 3.17	1.67 2.34 3.01 4.35 7.03	0.07 0.08 0.09 0.12 0.18

Load Combinations

Comb.	Description
No.	Description
1	Dood Only
2	Dead Only Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 60 deg - No ice
5	Dead+Wind 90 deg - No Ice
6	Dead+Wind 120 deg - No ice
7	Dead+Wind 150 deg - No Ice
8	Dead+Wind 130 deg - No Ice
9	Dead+Wind 210 deg - No ice
10	Dead+Wind 240 deg - No Ice
11	Dead+Wind 270 deg - No Ice
12	Dead+Wind 300 deg - No Ice
13	Dead+Wind 330 deg - No Ice
14	Dead+Ice+Temp
15	Dead+Wind 0 deg+Ice+Temp
16	Dead+Wind 30 deg+Ice+Temp
17	Dead+Wind 60 deg+lce+Temp
18	Dead+Wind 90 deg+lce+Temp
19	Dead+Wind 120 deg+Ice+Temp
20	Dead+Wind 150 deg+lce+Temp
21	Dead+Wind 180 deg+Ice+Temp
22	Dead+Wind 210 deg+Ice+Temp
23	Dead+Wind 240 deg+Ice+Temp
24	Dead+Wind 270 deg+Ice+Temp
25	Dead+Wind 300 deg+Ice+Temp
26	Dead+Wind 330 deg+Ice+Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 30 deg - Service
29	Dead+Wind 60 deg - Service
30	Dead+Wind 90 deg - Service
31	Dead+Wind 120 deg - Service
32	Dead+Wind 150 deg - Service
33	Dead+Wind 180 deg - Service
34	Dead+Wind 210 deg - Service
35	Dead+Wind 240 deg - Service
36	Dead+Wind 270 deg - Service
37	Dead+Wind 300 deg - Service
38	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
L1	148 - 116.5	Pole	Max Tension	14	0.00	0.00	-0.00
			Max. Compression	14	-13.49	-0.66	0.84
			Max. Mx	5	-5.06	-229.30	0.05
			Max. My	2	-4.98	-0.07	238.53
			Max. Vy	5	11.26	-229.30	0.05
			Max. Vx	2	-11.78	-0.07	238.53
			Max. Torque	8			0.03
L2	116.5 - 80.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-20.77	-2.10	0.87
			Max. Mx	5	-9.19	-688.62	0.12
			Max. My	2	-9.13	-0.27	716.27
			Max. Vy	5	14.61	-688.62	0.12
			Max. Vx	2	-15.14	-0.27	716.27
			Max. Torque	13			-0.14
L3	80.25 - 39.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-31.14	-3.93	1.38
			Max. Mx	5	-15.92	-1348.34	0.41

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. My	2	-15.89	-0.54	1395.88
			Max. Vy	5	18.34	-1348.34	0.41
			Max. Vx	2	-18.83	-0.54	1395.88
			Max. Torque	12			-0.64
L4	39.75 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	14	-45.64	-5.80	1.68
			Max. Mx	5	-26.38	-2256.82	0.13
			Max. My	2	-26.37	-0.25	2326.45
			Max. Vý	5	21.96	-2256.82	0.13
			Max. Vx	2	-22.43	-0.25	2326.45
			Max. Torque	12			-0.76

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	Κ	K	K
		Comb.			
Pole	Max. Vert	16	45.64	-1.87	3.29
	Max. H _x	11	26.39	21.94	0.01
	Max. H _z	2	26.39	0.01	22.41
	Max. M _x	2	2326.45	0.01	22.41
	Max. M _z	5	2256.82	-21.94	-0.01
	Max. Torsion	6	0.75	-19.01	-11.21
	Min. Vert	1	26.39	0.00	0.00
	Min. H _x	5	26.39	-21.94	-0.01
	Min. H _z	8	26.39	-0.01	-22.41
	Min. M _x	8	-2325.21	-0.01	-22.41
	Min. M _z	11	-2255.33	21.94	0.01
	Min. Torsion	12	-0.76	19.01	11.21

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	12	12		Moment, M _x	Moment, M _z	
	<u> </u>	K	K	kip-ft	kip-ft	kip-ft
Dead Only	26.39	0.00	0.00	-0.61	-0.72	0.00
Dead+Wind 0 deg - No Ice	26.39	-0.01	-22.41	-2326.45	-0.25	0.26
Dead+Wind 30 deg - No Ice	26.39	10.96	-19.40	-2014.66	-1128.28	-0.14
Dead+Wind 60 deg - No Ice	26.39	19.00	-11.19	-1163.20	-1954.27	-0.50
Dead+Wind 90 deg - No Ice	26.39	21.94	0.01	-0.13	-2256.82	-0.72
Dead+Wind 120 deg - No Ice	26.39	19.01	11.21	1162.80	-1954.76	-0.75
Dead+Wind 150 deg - No Ice	26.39	10.98	19.41	2013.90	-1129.12	-0.58
Dead+Wind 180 deg - No Ice	26.39	0.01	22.41	2325.21	-1.23	-0.26
Dead+Wind 210 deg - No Ice	26.39	-10.96	19.40	2013.41	1126.79	0.14
Dead+Wind 240 deg - No Ice	26.39	-19.00	11.19	1161.95	1952.78	0.50
Dead+Wind 270 deg - No Ice	26.39	-21.94	-0.01	-1.11	2255.33	0.72
Dead+Wind 300 deg - No Ice	26.39	-19.01	-11.21	-1164.05	1953.27	0.76
Dead+Wind 330 deg - No Ice	26.39	-10.98	-19.41	-2015.15	1127.64	0.59
Dead+Ice+Temp	45.64	0.00	-0.00	-1.68	-5.80	0.00
Dead+Wind 0	45.64	-0.00	-3.80	-408.38	-5.77	0.08
deg+lce+Temp						
Dead+Wind 30	45.64	1.87	-3.29	-353.84	-204.55	-0.03
deg+lce+Temp						
Dead+Wind 60	45.64	3.25	-1.90	-204.94	-350.10	-0.13
deg+lce+Temp						*****
Dead+Wind 90	45.64	3.75	0.00	-1.58	-403.42	-0.20
deg+lce+Temp		••	0.00		100.12	0.20
Dead+Wind 120	45.64	3.25	1.90	201.74	-350.22	-0.22
deg+lce+Temp	10.01	0.20	1.00	201.74	000.22	0.22
Dead+Wind 150	45.64	1.88	3.30	350.55	-204.76	-0.17
deg+lce+Temp	10.01	1.00	0.00	000.00	204.70	-0.17

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	K	K	κ	kip-ft	kip-ft	kip-ft
Dead+Wind 180	45.64	0.00	3.80	404.97	-6.01	-0.08
deg+lce+Temp						
Dead+Wind 210	45.64	-1.87	3.29	350.43	192.77	0.03
deg+lce+Temp						
Dead+Wind 240	45.64	-3.25	1.90	201.53	338.32	0.13
deg+lce+Temp						
Dead+Wind 270	45.64	-3.75	-0.00	-1.82	391.64	0.20
deg+lce+Temp						
Dead+Wind 300	45.64	-3.25	-1.90	-205.15	338.44	0.22
deg+lce+Temp						
Dead+Wind 330	45.64	-1.88	-3.30	-353.96	192.98	0.17
deg+lce+Temp						
Dead+Wind 0 deg - Service	26.39	-0.00	-8.75	-910.23	-0.55	0.10
Dead+Wind 30 deg - Service	26.39	4.28	-7.58	-788.27	-441.70	-0.06
Dead+Wind 60 deg - Service	26.39	7.42	-4.37	-455.27	-764.69	-0.20
Dead+Wind 90 deg - Service	26.39	8.57	0.00	-0.43	-882.99	-0.28
Dead+Wind 120 deg -	26.39	7.42	4.38	454.35	-764.89	-0.30
Service						
Dead+Wind 150 deg -	26.39	4.29	7.58	787.21	-442.03	-0.23
Service						
Dead+Wind 180 deg -	26.39	0.00	8.75	908.98	-0.94	-0.10
Service						
Dead+Wind 210 deg -	26.39	-4.28	7.58	787.02	440.21	0.05
Service						
Dead+Wind 240 deg -	26.39	-7.42	4.37	454.02	763.20	0.20
Service						
Dead+Wind 270 deg -	26.39	-8.57	-0.00	-0.82	881.50	0.28
Service						
Dead+Wind 300 deg -	26.39	-7.42	-4.38	-455.60	763.39	0.30
Service						
Dead+Wind 330 deg -	26.39	-4.29	-7.58	-788.46	440.54	0.23
Service						

Solution Summary

36.77.75.44		n of Applied Force		got transcent of the control of the	Sum of Reactio	ns	
Load	PX	PY	PΖ	PX	PY	PZ	% Error
Comb.	K	K	K	K	Κ	K	
1	0.00	-26.39	0.00	0.00	26.39	0.00	0.000%
2 3	-0.01	-26.39	-22.41	0.01	26.39	22.41	0.000%
	10.96	-26.39	-19.40	-10.96	26.39	19.40	0.000%
4	19.00	-26.39	-11.19	-19.00	26.39	11.19	0.000%
5	21.94	-26.39	0.01	-21.94	26.39	-0.01	0.000%
6	19.01	-26.39	11.21	-19.01	26.39	-11.21	0.000%
7	10.98	-26.39	19.41	-10.98	26.39	-19.41	0.000%
8	0.01	-26.39	22.41	-0.01	26.39	-22.41	0.000%
9	-10.96	-26.39	19.40	10.96	26.39	-19.40	0.000%
10	-19.00	-26.39	11.19	19.00	26.39	-11.19	0.000%
11	-21.94	-26.39	-0.01	21.94	26.39	0.01	0.000%
12	-19.01	-26.39	-11.21	19.01	26.39	11.21	0.000%
13	-10.98	-26.39	-19.41	10.98	26.39	19.41	0.000%
14	0.00	-45.64	0.00	-0.00	45.64	0.00	0.000%
15	-0.00	-45.64	-3.80	0.00	45.64	3.80	0.000%
16	1.87	-45.64	-3.29	-1.87	45.64	3.29	0.000%
17	3.25	-45.64	-1.90	-3.25	45.64	1.90	0.000%
18	3.75	-45.64	0.00	-3.75	45.64	-0.00	0.000%
19	3.25	-45.64	1. 9 0	-3.25	45.64	-1.90	0.000%
20	1.88	-45.64	3.30	-1.88	45.64	-3.30	0.000%
21	0.00	-45.64	3.80	-0.00	45.64	-3.80	0.000%
22	-1.87	-45.64	3.29	1.87	45.64	-3.29	0.000%
23	-3.25	-45.64	1.90	3.25	45.64	-1.90	0.000%
24	-3.75	-45.64	-0.00	3.75	45.64	0.00	0.000%
25	-3.25	-45.64	-1.90	3.25	45.64	1.90	0.000%
26	-1.88	-45.64	-3.30	1.88	45.64	3.30	0.000%
27	-0.00	-26.39	-8.75	0.00	26.39	8.75	0.000%
28	4.28	-26.39	-7.58	-4.28	26.39	7.58	0.000%

	Sur	n of Applied Force	s		Sum of Reaction	าร		
Load	PX	PY	PZ	PX	PY	PZ	% Error	
Comb.	K	K	K	K	K	K		
29	7.42	-26.39	-4.37	-7.42	26.39	4.37	0.000%	
30	8.57	-26.39	0.00	-8.57	26.39	-0.00	0.000%	
31	7.42	-26.39	4.38	-7.42	26.39	-4.38	0.000%	
32	4.29	-26.39	7.58	-4.29	26.39	-7.58	0.000%	
33	0.00	-26.39	8.75	-0.00	26.39	-8.75	0.000%	
34	-4.28	-26.39	7.58	4.28	26.39	-7.58	0.000%	
35	-7.42	-26.39	4.37	7.42	26.39	-4.37	0.000%	
36	-8.57	-26.39	-0.00	8.57	26.39	0.00	0.000%	
37	-7.42	-26.39	-4.38	7.42	26.39	4.38	0.000%	
38	-4.29	-26.39	-7.58	4.29	26.39	7.58	0.000%	

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00017830
2 3	Yes	5	0.0000001	0.00064784
4	Yes	5	0.0000001	0.00064667
5	Yes	4	0.0000001	0.00028708
6	Yes	5	0.0000001	0.00063815
7	Yes	5	0.0000001	0.00065266
8	Yes	4	0.0000001	0.00018502
9	Yes	5	0.00000001	0.00064726
10	Yes	5	0.0000001	0.00063973
11	Yes	4	0.0000001	0.00029449
12	Yes	5	0.00000001	0.00064848
13	Yes	5	0.0000001	0.00064268
14	Yes	4	0.0000001	0.00003381
15	Yes	5	0.0000001	0.00017045
16	Yes	5	0.0000001	0.00020109
17	Yes	5	0.0000001	0.00019946
18	Yes	5	0.0000001	0.00016755
19	Yes	5	0.00000001	0.00019642
20	Yes	5	0.00000001	0.00019892
21	Yes	5	0.00000001	0.00016826
22	Yes	5	0.00000001	0.00019284
23	Yes	5	0.00000001	0.00019056
24	Yes	5	0.00000001	0.00016231
25	Yes	5	0.00000001	0.00019364
26	Yes	5	0.00000001	0.00019509
27	Yes	4	0.00000001	0.00006109
28	Yes	5	0.00000001	0.00007543
29	Yes	5	0.00000001	0.00007498
30	Yes	4	0.0000001	0.00007923
31	Yes	5	0.00000001	0.00007300
32	Yes	5	0.00000001	0.00007646
33	Yes	4	0.0000001	0.00006144
34	Yes	5	0.00000001	0.00007507
35	Yes	5	0.0000001	0.00007322
36	Yes	4	0.00000001	0.00007966
37	Yes	5	0.00000001	0.00007528
38	Yes	5	0.00000001	0.00007413

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	o
L1	148 - 116.5	36.292	27	2.0891	0.0008
L2	120.25 - 80.25	24.455	27	1.9202	0.0008
L3	84.75 - 39.75	12.035	27	1.3557	0.0007
L4	45 - 0	3.370	27	0.6832	0.0003

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
148.00	Lightning Rod 1" x 5'	27	36.292	2.0891	0.0008	25157
145.00	1900MHz RRH (25MHz)	27	34.976	2.0774	0.0008	25157
138.00	(2) LPA-80063/6CF w/ Mount Pipe	27	31.919	2.0476	0.0009	12578
79.00	PD1109E	27	10.411	1.2530	0.0007	3320
45.00	GPS_A	27	3.370	0.6832	0.0003	2893
16.00	GPS_A	27	0.754	0.2380	0.0001	7956

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	۰
L1	148 - 116.5	92.616	2	5.3335	0.0019
L2	120.25 - 80.25	62.429	2	4.9029	0.0019
L3	84.75 - 39.75	30.739	2	3.4626	0.0018
L4	45 - 0	8.611	2	1.7459	0.0007

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	۰	ft
148.00	Lightning Rod 1" x 5'	2	92.616	5.3335	0.0023	10004
145.00	1900MHz RRH (25MHz)	2	89.260	5.3038	0.0023	10004
138.00	(2) LPA-80063/6CF w/ Mount Pipe	2	81.466	5.2279	0.0023	5001
79.00	PD1109E	2	26.593	3.2005	0.0018	1308
45.00	GPS A	2	8.611	1.7459	0.0007	1134
16.00	GPS_A	2	1.926	0.6083	0.0002	3116

Compression Checks

Pole Design Data										
Section No.	Elevation	Size	L	Lu	Kl/r	Fa	Α	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in²	K	ĸ	Pa
L1	148 - 116.5 (1)	TP29.481x24x0.2188	31.50	0.00	0.0	36.000	19.8641	-4.98	715.11	0.007
L2	116.5 - 80.25 (2)	TP35.351x28.391x0.25	40.00	0.00	0.0	39.000	27.2313	-9.13	1062.02	0.009
L3	80.25 - 39.75 (3)	TP41.898x34.068x0.3125	45.00	0.00	0.0	39.000	40.3415	-15.89	1573.32	0.010
L4	39.75 - 0 (4)	TP48.19x40.3595x0.375	45.00	0.00	0.0	39.000	56.9118	-26.37	2219.56	0.012

Pole Bending Design Data

Section No.	Elevation ft	Size	Actual M _x kip-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	Ratio f _{bx} F _{bx}	Actual M _y kip-ft	Actual f _{by} ksi	Allow. F _{by} ksi	Ratio f _{by} F _{bv}
L1	148 - 116.5 (1)	TP29.481x24x0.2188	238.53	20.407	36.000	0.567	0.00	0.000	36.000	0.000
L2	116.5 - 80.25 (2)	TP35.351x28.391x0.25	716.27	37.252	39.000	0.955	0.00	0.000	39.000	0.000
L3	80.25 - 39.75 (3)	TP41.898x34.068x0.3125	1395.8 8	41.365	39.000	1.061	0.00	0.000	39.000	0.000
L4	39.75 - 0 (4)	TP48.19x40.3595x0.375	2326.4 6	41.575	39.000	1.066	0.00	0.000	39.000	0.000

Section No.	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
740.	ft		V K	ksi	F _v ksi	$\frac{f_{v}}{F_{v}}$	ı kip-ft	f _{vt} ksi	F _{vt} ksi	$\frac{f_{vt}}{F_{vt}}$
L1	148 - 116.5 (1)	TP29.481x24x0.2188	11.78	0.593	24.000	0.049	0.03	0.001	24.000	0.000
L2	116.5 - 80.25 (2)	TP35.351x28.391x0.25	15.14	0.556	26.000	0.043	0.14	0.004	26.000	0.000
L3	80.25 - 39.75 (3)	TP41.898x34.068x0.3125	18.83	0.467	26.000	0.036	0.27	0.004	26.000	0.000
L4	39.75 - 0 (4)	TP48.19x40.3595x0.375	22.43	0.394	26.000	0.031	0.26	0.002	26.000	0.000

	Pol	<u>e Inter</u>	action	Design	า Data	
atio	Ratio	Patio	Potio	Potio	Comb	_

Section No.	Elevation	Ratio P	Ratio f _{bx}	Ratio f _{by}	Ratio f _v	Ratio f _{vt}	Comb. Stress	Allow. Stress	Criteria
	ft	Pa	$\overline{F_{bx}}$	F _{by}	$\overline{F_{v}}$	F _{vt}	Ratio	Ratio	
L1	148 - 116.5 (1)	0.007	0.567	0.000	0.049	0.000	0.574	1.333	H1-3+VT ✔
L2	116.5 - 80.25 (2)	0.009	0.955	0.000	0.043	0.000	0.964	1.333	H1-3+VT 🗸
L3	80.25 - 39.75 (3)	0.010	1.061	0.000	0.036	0.000	1.071	1.333	H1-3+VT ✔
L4	39.75 - 0 (4)	0.012	1.066	0.000	0.031	0.000	1.078	1.333	H1-3+VT ✔

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
L1	148 - 116.5	Pole	TP29.481x24x0.2188	1	-4.98	953.24	43.1	Pass
L2	116.5 - 80.25	Pole	TP35.351x28.391x0.25	2	-9.13	1415.67	72.3	Pass
L3	80.25 - 39.75	Pole	TP41.898x34.068x0.3125	3	-15.89	2097.24	80.3	Pass
L4	39.75 - 0	Pole	TP48.19x40.3595x0.375	4	-26.37	2958.67	80.9	Pass
							Summary	
						Pole (L4)	80.9	Pass
						RATING =	80.9	Pass

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 876373 TOWER ID: C_BASELEVEL

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Block Foundation

Checks capacity of monolithic block foundation for a monopole tower per TIA/EIA-222-F

W CROMY

BU #: 876373 Site Name: LONG EDDY / WRIGHT PRC App No.: 151573 rev1

	kips	ft*kips	Ħ	kips	ñ
	22.00	2326.00	148.00	26.00	48.19
Design Reactions	Shear, S:	Moment, M:	Height, H:	Weight, Wt:	Base Diameter, BD:

	a	ž.	Ħ	Ħ	ft	ri.	in
	9.0	0.0	24.5	3.5	0.5	84.0	3.0
Equadation Dimonoione	- callidation Differialons	Deput, D .	Block Width, W:	Neglected Depth, N:	Ext. Above Grade, E:	Anchor Steel Length, Lst:	Clear Cover, cc:

	0.120 kcf	6.000 ksf	32.00 deg	0.000 ksf	0.000 kcf	0.4	1
Soil Properties	Soil Unit Weight, y:	Allowable Bearing, Bc:	Int. Angle of Friction, Φ :	Cohesion, Co:	Passive Pressure, Pp.	Base Friction, µ:	Seismic Zone, z:

	psi	psi	kcf	
	60000	3000	0.150	
Material Properties	Rebar Yield Strength, Fy:	Concrete Strength, F'c.	Concrete Density, 5c:	

		21
	8	27
Rebar Properties	Pad Rebar Size, sp:	Rebar Quanity, mp:

Design Checks				
	Capacity/	Demands/		
	Availability	Limits	Check	%
Shear (ksf)	67.58	22.00	οĶ	32.6%
Overturning (ff*kips):	3364.93	2414.00	òK	71.7%
Bearing (ksf):	6.00	1.75	OK	29.2%
Shear - 1-Way (kips):	1433.17	545.07	ò	38.0%
Pad Rebar Area (in²);	21.21	12.70	οĶ	N/A
Bar Spacing (in):	10.04	18 > Bs > 2	š	N/A
Development Length (in):	144.00	42.72	OK	N/A

Modification Checks			
	Capacity/	Demands/	
	Availibility	Limits	Check
Minimum Extra Thickness (in):	0.00	00.0	Not Used
Pad Rebar Area-short (in ²):	8.84	0.55	Not Used
Pad Rebar Area-long (in2):	2.21	0.55	Not Used
Pad Rebar Spacing-short (in2):	14.37	18 > Bs > 2	Not Used
Pad Rebar Spacing-long (in2):	71.06	18 > Bs > 2	Not Used
End Cap Width (in):	0.00	0.00	Not Used
End Cap Rebar Area (in2):	4.81	0.00	Not Used
EC Rebar Spacing (in):	-1.73	18 > Bs > 2	Not Used
Tie Spacing (in):	14.66	288 > s > 4.5	Not Used
Dowel Area (in2):	8.84	0.00	Not Used
Dowel Embedment (in):	15.00	6.00	Not Used
Shear Strength of Cone (kips):	59.53	23.86	Not Used
Dowel Edge Distance (in):	12.00	14.51	Not Used
Dowel Spacing (in):	30.00	30.00	Not Used
Dowel Edge Distance (vert) (in):	24.00	14.51	Not Used
Dowel Devel. Length (in):	-3.00	15.38	Not Used

	ļi	¥	per side, top & bottom	0	per side	0	per side	0		in	lin
	0	24.5	7	8	4	20	9	20	2	15	12
	End Cap Width, Wec:	Revised Width, Wx:	EC Rebar Size, Sec:	EC Rebar Quanity, mec:	EC Tie Size, Sect:	Tie Quanity, mect.	EC Dowel Size, Secd:	Dowel Quanity, mecd:	Rows of Dowels, Nd:	Dowel Depth, decd:	Edge Distance, eecd:
	in	#		2	2		0				
	0	4	9	20	5	7	20				
S	Thickness, Te:	d Thickness, Tx:	Rebar Size, Se:	anity (long), me:	nity (short), mex:	Jowel Size, Sed:	el Quanity, med:				

Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /G

Assumptions: 1) Rod groups at corners. Total # rods divisible by 4. Maximum total # of rods = 48 (12 per Corner).

2) Rod Spacing = Straight Center-to-Center distance between any (2) adjacent rods (same corner)

3) Clear space between bottom of leveling nut and top of concrete not exceeding (1)*(Rod Diameter)

Site Data

BU#: 876373

Site Name: LONG EDDY / WRIGHT P.
App #: 151573 rev1

, трр и.	101010160	1
And	ata	
Qty:	16	
Diam:	2.25	in
Rod Material:	A615-J	
Yield, Fy:	75	ksi
Strength, Fu:	100	ksi
Bolt Circle:	55	in
Anchor Spacing:	6	in

Base	Base Reactions							
TIA Revision:	F							
Unfactored Moment, M:	2326	ft-kips						
Unfactored Axial, P:	26	kips						
Unfactored Shear, V:	22	kips						

Anchor Rod Results

TIA F --> Maximum Rod Tension 125.2 Kips
Allowable Tension: 195.0 Kips
Anchor Rod Stress Ratio: 64.2%

Plate Data		
W=Side:	54	in
Thick:	2.75	in
Grade:	55	ksi
Clip Distance:	4]in

Base Plate Results	Flexural Check
Base Plate Stress:	36.6 ksi
Allowable PL Bending Stress:	55.0 ksi
Base Plate Stress Ratio:	66.6%

PL Ref. Data
Yield Line (in):
28.18
Max PL Length:
28.18

Analysis date: 6/6/2012

Stiffener	Data	(Welding	at both sides)
	_		

Configuration:	Unstiffened	
Weld Type:		**
Groove Depth:		in **
Groove Angle:		degrees
Fillet H. Weld:		< Disregard
Fillet V. Weld:		in
Width:		in
Height:		in
Thick:		in
Notch:		in
Grade:		ksi
المرامل ملما		1!

Horizontal Weld :	N/A
Vertical Weld:	N/A
Plate Flex+Shear, fb/Fb+(fv/Fv)^2:	N/A
Plate Tension+Shear, ft/Ft+(fv/Fv)^2:	N/A
Plate Comp. (AISC Bracket):	N/A
Polo Populto	

Pole Results

N/A - Unstiffened Stiffener Results

Pole Punching Shear Check: N/A

Pole Data		
Diam:	48.19	in
Thick:	0.375	in
Grade:	65	ksi
# of Sides:	18	"0" IF Round

Max PL Length Yield Line St 5t 5t THICKNESS 4 Anchor, Typ. STIFFENED CONFIGURATION ASSUMED IN TOOL B.C. Input Clear Space at B.C. for Single Anchor Cose Pole w/ DIAM = D Anchor Spacing Same As Stiffener Spacing, Except for Signle Corner Anchor (Input Clear Space)

Stress	Increase	Factor	
ASD ASIF:	1.333		

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes