

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

5/17/2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)

N 41.82733 // W -73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT&T received all the necessary approvals from CSC to move forward with installing AT&T's proposed equipment however the equipment was never installed. Recently AT&T hired my company to install AT&T proposed equipment. There are a few changes from the original proposed plans. AT&T no longer wishes to install a shelter at the location. AT&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber – L98B-002, eight (8) Raycap DC6, four (8) Coax – WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT&T's proposed plans.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT1304

Torrington Wright Road 136 Wright Road Torrington, CT 6757

April 28, 2017

Centerline Communications Project Number: 950012-001

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	4.91 %			

April 28, 2017

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT1304 – Torrington Wright Road

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **136 Wright Road, Torrington, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **136 Wright Road, Torrington, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	700 MHz	2	60
LTE	1900 MHz (PCS)	2	60

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	CCI HPA-65R-BUU-H8	128
А	2	CCI HPA-65R-BUU-H8 (Future)	128
А	3	CCI HPA-65R-BUU-H8 (Future)	128
А	4	CCI HPA-65R-BUU-H8 (Future)	128
В	1	CCI HPA-65R-BUU-H8	128
В	2	CCI HPA-65R-BUU-H8 (Future)	128
В	3	CCI HPA-65R-BUU-H8 (Future)	128
В	4	CCI HPA-65R-BUU-H8 (Future)	128
С	1	CCI HPA-65R-BUU-H8	128
С	2	CCI HPA-65R-BUU-H8 (Future)	128
С	3	CCI HPA-65R-BUU-H8 (Future)	128
С	4	CCI HPA-65R-BUU-H8 (Future)	128

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antonno	Antonno Moleo /		Antenna Gain	Channal	Total TX		
ID	Model	Frequency Bands	(ава)	Count	(W)	FRP(W)	MPF %
Antenna	CCI	700 MHz /		Count	(**)		IVII L. /0
Al	HPA-65R-BUU-H8	1900 MHz (PCS)	13.15 / 14.95	4	240	6,229.75	2.19
Antenna	CCI						
A2	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Antenna	CCI						
A3	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Antenna	CCI						
A4	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Sector A Composite MPE%					2.19		
Antenna	CCI	700 MHz /					
B1	HPA-65R-BUU-H8	1900 MHz (PCS)	13.15 / 14.95	4	240	6,229.75	2.19
Antenna	CCI						
B2	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Antenna	CCI						
B3	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Antenna	CCI						
B4	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
				Se	ector B Com	posite MPE%	2.19
Antenna	CCI	700 MHz /					
C1	HPA-65R-BUU-H8	1900 MHz (PCS)		4	240	6,229.75	2.19
Antenna	CCI						
C2	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Antenna	CCI						
C3	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Antenna	CCI						
C4	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Sector C Composite MPE%						2.19	

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%							
Carrier	MPE%						
AT&T – Max Sector Value	2.19 %						
Verizon Wireless	2.10 %						
Sprint	0.62 %						
Site Total MPE %:	4.91 %						

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	2.19 %
AT&T Sector B Total:	2.19 %
AT&T Sector C Total:	2.19 %
Site Total:	4.91 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT&T _ Max Power Values per Frequency Band / Technology (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
AT&T 700 MHz LTE	2	1,239.23	128	5.99	700 MHz	467	1.28%
AT&T 1900 MHz (PCS) LTE	2	1,875.65	128	9.06	1900 MHz (PCS)	1000	0.91%
						Total:	2.19%

Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	2.19 %
Sector B:	2.19 %
Sector C:	2.19 %
AT&T Maximum Total (per sector):	2.19 %
Site Total:	4.91 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **4.91 %** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767

PROJECT INFORMATION

SCOPE OF WORK: UNMANNED TELECOMMUNICATIONS FACILITY MODIFICATIONS SITE ADDRESS: 136 WRIGHT ROAD TORRINGTON, CT 06757 LATITUDE: 41° 49' 38" N 73° 10' 14" W LONGITUDE: JURISDICTION: NATIONAL, STATE & LOCAL CODES OR ORDINANCES CURRENT USE: TELECOMMUNICATIONS FACILITY PROPOSED USE: TELECOMMUNICATIONS FACILITY DESIGN GUIDELINE: LTE NSB

DRAWING INDEX T-1 TITLE SHEET 2 GN-1 **GENERAL NOTES** 2 A-1 COMPOUND AND EQUIPMENT PLANS 2 **ELEVATIONS AND ANTENNA PLAN** 2 A-2 DETAILS 2 A-3 DETAILS 2 A-4 2 S-1 STRUCTURAL DETAILS E-1 **ELECTRICAL DETAILS AND ONE-LINE DIAGRAM** 2 G-1 **GROUNDING DETAILS AND ONE-LINE DIAGRAM**

SITE NUMBER: CT1304 SITE NAME: TORRINGTON WRIGHT ROAD

136 WRIGHT ROAD TORRINGTON, CT 06757 LITCHFIELD COUNTY

FRAMINGHAM, MA 01701-4681

GADVANCED ENGINEERING GROUP, P.C. Civil Engineering - Site Development - Surveying - Telecom 500 North Broadway East Providence, RI 02914 Phone: (401) 354-2403 Fax: (401) 633-635

CENTERLINE COMMUNICATIONS 95 RYAN DRIVE, SUITE 1 RAYNHAM MA 02767

LITCHFIELD COUNTY

APPROVED By Radu Alecsandru at 5:29 pm, Apr 07, 2017

SHEET NO.

T-1

GENERAL NOTES

1. THE CONTRACTOR SHALL GIVE ALL NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY, MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS, AND LOCAL AND STATE JURISDICTIONAL CODES BEARING ON THE PERFORMANCE OF THE WORK. THE WORK PERFORMED ON THE PROJECT AND THE MATERIALS INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS. AND ORDINANCES.

2. THE ARCHITECT/ENGINEER HAVE MADE EVERY EFFORT TO SET FORTH IN THE CONSTRUCTION AND CONTRACT DOCUMENTS THE COMPLETE SCOPE OF WORK. THE CONTRACTOR BIDDING THE JOB IS NEVERTHELESS CAUTIONED THAT MINOR OMISSIONS OR ERRORS IN THE DRAWINGS AND OR SPECIFICATIONS SHALL NOT EXCUSE SAID CONTRACTOR FROM COMPLETING THE PROJECT AND IMPROVEMENTS IN ACCORDANCE WITH THE INTENT OF THESE DOCUMENTS.

3. THE CONTRACTOR OR BIDDER SHALL BEAR THE RESPONSIBILITY OF NOTIFYING (IN WRITING) THE LESEE/LICENSEE REPRESENTATIVE OF ANY CONFLICTS, ERRORS, OR OMISSIONS PRIOR TO THE SUBMISSION OF CONTRACTOR'S PROPOSAL OR PERFORMANCE OF WORK. IN THE EVENT OF DISCREPANCIES THE CONTRACTOR SHALL PRICE THE MORE COSTLY OR EXTENSIVE WORK, UNLESS DIRECTED IN WRITING OTHERWISE

THE SCOPE OF WORK SHALL INCLUDE FURNISHING ALL MATERIALS FOUIPMENT LABOR AND ALL OTHER MATERIALS AND LABOR DEEMED NECESSARY TO COMPLETE THE WORK/PROJECT AS DESCRIBED HEREIN

5. THE CONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIDS OR PERFORMING WORK TO FAMILIARIZE HIMSELF WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.

6. THE CONTRACTOR SHALL OBTAIN AUTHORIZATION TO PROCEED WITH CONSTRUCTION PRIOR TO STARTING WORK ON ANY ITEM NOT CLEARLY DEFINED BY THE CONSTRUCTION DRAWINGS / CONTRACT DOCUMENTS.

7. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS ACCORDING TO THE MANUFACTURER'S / VENDOR'S SPECIFICATIONS UNLESS NOTED OTHERWISE OR WHERE'LOCAL CODES OR ORDINANCES TAKE PRECEDENCE.

8. THE CONTRACTOR SHALL PROVIDE A FULL SET OF CONSTRUCTION DOCUMENTS AT THE SITE UPDATED WITH THE LATEST REVISIONS AND ADDENDUMS OR CLARIFICATIONS AVAILABLE FOR THE USE BY ALL PERSONNEL INVOLVED WITH THE PROJECT.

THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.

10. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING ALL NECESSARY CONSTRUCTION CONTROL SURVEYS, ESTABLISHING AND MAINTAINING ALL LINES AND GRADES REQUIRED TO CONSTRUCT ALL IMPROVEMENTS AS SHOWN HEREIN

11. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS WHICH MAY BE REQUIRED FOR THE WORK BY THE ARCHITECT/ENGINEER, THE STATE, COUNTY OR LOCAL COVERNMENT AUTHORITY

12. THE CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING IMPROVEMENTS, EASEMENTS, PAVING, CURBING, ETC. DURING CONSTRUCTION. UPON COMPLETION OF WORK, THE CONTRACTOR SHALL REPAIR ANY DAMAGE THAT MAY HAVE OCCURRED DUE TO CONSTRUCTION ON OR ABOUT THE PROPERTY.

13. THE CONTRACTOR SHALL KEEP THE GENERAL WORK AREA CLEAN AND HAZARD FREE DURING CONSTRUCTION AND DISPOSE OF ALL DIRT, DEBRIS, RUBBISH AND REMOVE EQUIPMENT NOT SPECIFIED AS REMAINING ON THE PROPERTY. PREMISES SHALL BE LEFT IN CLEAN CONDITION AND FREE FROM PAINT SPOTS, DUST, OR SMUDGES OF ANY NATURE

14. THE CONTRACTOR SHALL COMPLY WITH ALL OSHA REQUIREMENTS AS THEY APPLY TO THIS PROJECT.

15. THE CONTRACTOR SHALL NOTIFY THE LESEE/LICENSEE REPRESENTATIVE WHERE A CONFLICT OCCURS ON ANY OF THE CONTRACT DOCUMENTS. THE CONTRACTOR IS NOT TO ORDER MATERIAL OR CONSTRUCT ANY PORTION OF THE WORK THAT IS IN CONFLICT UNTIL CONFLICT IS RESOLVED BY THE LESEE/LICENSEE REPRESENTATIVE

16. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS, PROPERTY LINES. ETC. ON THE JOB.

17. ALL UNDERGROUND UTILITY INFORMATION WAS DETERMINED FROM SURFACE INVESTIGATIONS AND EXISTING PLANS OF RECORD. THE CONTRACTOR SHALL LOCATE ALL UNDERGROUND UTILITIES IN THE FIELD PRIOR TO ANY SITE WORK. CALL THE FOLLOWING FOR ALL PRE-CONSTRUCTION NOTIFICATION 72-HOURS PRIOR TO ANY EXCAVATION ACTIVITY: DIG SAFE SYSTEM (MA, ME, NH, RI, VT): 1-888-344-7233 CALL BEFORE YOU DIG (CT): 1-800-922-4455

18. THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL NECESSARY CONSTRUCTION CONTROL SURVEYS AND MAINTAINING ALL LINES AND GRADES REQUIRED TO CONSTRUCT ALL IMPROVEMENTS SHOWN HEREIN.

19. ALL DIMENSIONS SHOWN THUS ± ARE APPROXIMATE. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND ELEVATIONS WHICH EFFECT THE CONTRACTORS WORK, CONTRACTOR TO VERIEY ALL DIMENSIONS WITH PROJECT OWNER PRIOR TO CONSTRUCTION.

20. NORTH ARROW SHOWN ON PLANS REFERS TO APPROXIMATE TRUE NORTH. PRIOR TO THE START OF CONSTRUCTION, ORDERING OR FABRICATING OF ANTENNA MOUNTS, CONTRACTOR SHALL CONSULT WITH PROJECT OWNER'S RF ENGINEER AND FIELD VERIFY ALL ANTENNA SECTOR LOCATIONS AND ANTENNA AZIMUTHS.

21. THE CONTRACTOR AND OR HIS SUB CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS WHICH MAY BE REQUIRED FOR THE WORK BY THE ARCHITECT/ENGINEER, THE STATE, COUNTY OR LOCAL GOVERNMENT AUTHORITY.

22. ANTENNA INSTALLATION SHALL BE CONDUCTED BY FIELD CREWS EXPERIENCED IN THE ASSEMBLY AND ERECTION OF RADIO ANTENNAS, TRANSMISSION LINES AND SUPPORT STRUCTURES.

23. COAXIAL CABLE CONNECTORS AND TRANSMITTER EQUIPMENT SHALL BE PROVIDED BY THE PROJECT OWNER AND IS NOT INCLUDED IN THESE CONSTRUCTION DOCUMENTS. A SCHEDULE OF PROJECT OWNER SUPPLIED MATERIALS IS ATTACHED TO THE BID DOCUMENTS (SEE EXHIBIT 3). ALL OTHER HARDWARE TO BE PROVIDED BY THE CONTRACTOR. CONNECTION HARDWARE SHALL BE STAINLESS STEEL.

24. WHEN "PAINT TO MATCH" IS SPECIFIED FOR ANTENNA CONCEALMENT. PAINT PRODUCT FOR ANTENNA RADOME SHALL BE SHERWIN WILLIAMS COROTHANE II. SURFACE PREPARATION AND APPLICATION SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS AND PROJECT OWNER'S GUIDELINE'S.

25. COORDINATION, LAYOUT, AND FURNISHING OF CONDUIT, CABLE AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.

26. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.

27. ALL (E)ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK. SHALL BE RELOCATED AS DIRECTED BY ENGINEERS. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PIER DRILLING AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CRFW

28. ALL (E)INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES. WHICH INTERFERE WITH THE EXECUTION OF THE WORK. SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK. SUBJECT TO THE APPROVAL OF UTILITY COMPANY ENGINEERING. THE AREAS OF THE PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE EQUIPMENT, DRIVEWAY OR

29. GRAVEL, SHALL BE GRADED TO A UNIFORM SLOPE, FERTILIZED, SEEDED AND COVERED WITH MULCH UNLESS OTHERWISE NOTED. THE CONTRACTOR SHALL ESTABLISH AND MAINTAIN SOIL EROSION AND SEDIMENTATION CONTROLS AT ALL TIMES

30. DURING CONSTRUCTION. PER FCC MANDATE, ENHANCED EMERGENCY (E911) SERVICE IS REQUIRED TO MEET NATIONWIDE STANDARDS

31. FOR WIRELESS COMMUNICATIONS SYSTEMS. PROJECT OWNER'S IMPLEMENTATION REQUIRES DEPLOYMENT OF EQUIPMENT AND ANTENNAS GENERALLY DEPICTED ON THIS PLAN, ATTACHED TO OR MOUNTED IN CLOSE PROXIMITY TO THE BTS RADIO CABINETS. PROJECT OWNER RESERVES THE RIGHT TO MAKE REASONABLE MODIFICATIONS TO E911 EQUIPMENT AND LOCATION AS TECHNOLOGY EVOLVES TO MEET REQUIRED SPECIFICATIONS.

32. APPLICABLE BUILDING CODES: SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.

BUILDING CODE:

2009 INTERNATIONAL BUILDING CODE 2005 CT STATE BUILDING CODE ELECTRICAL CODE: NEC 2014 LIGHTING CODE: NEC 2014

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING STANDARDS:

AMERICAN CONCRETE INSTITUTE (ACI) 318: BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE;

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

MANUAL OF STEEL CONSTRUCTION, ASD, NINTH EDITION;

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-G, STRUCTURAL STANDARDS FOR STEEL

ANTENNA TOWER AND ANTENNA SUPPORTING STRUCTURES: REFER TO ELECTRICAL DRAWINGS FOR SPECIFIC ELECTRICAL STANDARDS.

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS. THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT. THE SPECIFIC REQUIREMENT SHALL GOVERN.

ELECTRICAL AND GROUNDING NOTES

1. ALL ELECTRICAL WORK SHALL CONFORM TO THE REQUIREMENTS OF THE NATIONAL ELECTRICAL CODE (NEC) AS WELL AS APPLICABLE STATE AND LOCAL CODES.

2. ALL ELECTRICAL ITEMS SHALL BE U.L. APPROVED OR LISTED AND PROCURED PER SPECIFICATION REQUIREMENTS.

3. THE ELECTRICAL WORK INCLUDES ALL LABOR AND MATERIAL DESCRIBED BY DRAWINGS AND SPECIFICATION INCLUDING INCIDENTAL WORK TO PROVIDE COMPLETE OPERATING AND APPROVED ELECTRICAL SYSTEM.

4. GENERAL CONTRACTOR SHALL PAY FEES FOR PERMITS, AND IS RESPONSIBLE FOR OBTAINING SAID PERMITS AND COORDINATION OF INSPECTIONS.

5. ELECTRICAL AND TELCO WIRING OUTSIDE A BUILDING AND EXPOSED TO WEATHER SHALL BE IN WATER TIGHT GALVANIZED RIGID STEEL CONDUITS OR SCHEDULE 80 PVC (AS PERMITTED BY CODE) AND WHERE REQUIRED IN LIQUID TIGHT FLEXIBLE METAL OR NONMETALLÍC CONDUITS.

6. BURIED CONDUIT SHALL BE SCHEDULE 40 PVC.

7. ELECTRICAL WIRING SHALL BE COPPER WITH TYPE XHHW, THWN, OR THHN INSULATION.

8. RUN ELECTRICAL CONDUIT OR CABLE BETWEEN ELECTRICAL UTILITY DEMARCATION POINT AND PROJECT OWNER CELL SITE PPC AS INDICATED ON THIS DRAWING. PROVIDE FULL LENGTH PULL ROPE. COORDINATE INSTALLATION WITH UTILITY COMPANY.

9. RUN TELCO CONDUIT OR CABLE BETWEEN TELEPHONE UTILITY DEMARCATION POINT AND PROJECT OWNER CELL SITE TELCO CABINET AND BTS CABINET AS INDICATED ON THIS DRAWING. PROVIDE FULL LENGTH PULL ROPE AND GREENLEE CONDUIT MEASURING TAPE IN EACH INSTALLED TELCO CONDUIT.

10. WHERE CONDUIT BETWEEN BTS AND PROJECT OWNER CELL SITE PPC AND BETWEEN BTS AND PROJECT OWNER CELL SITE TELCO SERVICE CABINET ARE UNDERGROUND USE PVC, SCHEDULE 40 CONDUIT. ABOVE THE GROUND PORTION OF THESE CONDUITS SHALL BE PVC CONDUIT.

11. ALL FOUIPMENT LOCATED OUTSIDE SHALL HAVE NEMA 3R ENCLOSURE.

12. PPC SUPPLIED BY PROJECT OWNER.

13. GROUNDING SHALL COMPLY WITH NEC ART. 250. ADDITIONALLY, GROUNDING, BONDING AND LIGHTNING PROTECTION SHALL BE DONE IN ACCORDANCE WITH "T-MOBILE BTS SITE GROUNDING STANDARDS".

14. GROUND COAXIAL CABLE SHIFLDS MINIMUM AT BOTH ENDS USING MANUFACTURERS COAX CABLE GROUNDING KITS SUPPLIED BY PROJECT OWNER

			ABBREVIATIONS								
		AGL	ABOVE GRADE LEVEL	G.C.	GEN	IERAI		RF	RADIO FREQUENCY		
		AWG	AMERICAN WIRE GAUGE	MGB	MAS	STER	GROUND BUS				
		BCW	BARE COPPER WIRE	MIN	MIN	мим	I	TBD	TO BE DETERMINED		
		BTS	BASE TRANSCEIVER STATION	(P)	PRC	POS	ED/NEW	TBR	TO BE REMOVED		
		(E)	EXISTING	N.T.S.	NOT	то	SCALE	TBRR	TO BE REMOVED		
		EG	EQUIPMENT GROUND	REF	REF	ERE	NCE		AND REPLACED		
		EGR	EQUIPMENT GROUND RING	REQ	REC	UIRE	D	TYP	TYPICAL		
		(F)	FUTURE								
	NO.	DATE	REVISIONS		BY	снк					
Set at at a	0	03/01/17	ISSUED FOR REVIEW		AAB	MRC			NOTES		
σιαί	1	03/16/17	3/16/17 REVISION			MRC	GENERAL NOTES				
	2	04/05/17	REVISION		AAB	MRC					
550 COCHITUATE ROAD, SUITE 13, FRAMINGHAM, MA 01701-4681							SHEET NO.		GN-1		

CENTERLINE COMMUNICATIONS 95 RYAN DRIVE, SUITE 1 RAYNHAM MA 02767

SITE NUMBER: CT1304

136 WRIGHT ROAD TORRINGTON, CT 06757 LITCHFIELD COUNTY

SITE NAME: TORRINGTON WRIGHT ROAD

15. USE #6 COPPER STRANDED WIRE WITH GREEN COLOR INSULATION FOR ABOVE GRADE GROUNDING (UNLESS OTHERWISE SPECIFIED) AND #2 SOLID TINNED BARE COPPER WIRE FOR BELOW GRADE GROUNDING AS INDICATED ON THE DRAWING.

16. ALL GROUND CONNECTIONS TO BE BURNDY HYGROUND COMPRESSION TYPE CONNECTORS OR CADWELD EXOTHERMIC WELD. DO NOT ALLOW BARE COPPER WIRE TO BE IN CONTACT WITH GALVANIZED STEEL.

17. ROUTE GROUNDING CONDUCTORS ALONG THE SHORTEST AND STRAIGHTEST PATH POSSIBLE, EXCEPT AS OTHERWISE INDICATED. GROUNDING LEADS SHOULD NEVER BE BENT AT RIGHT ANGLE. ALWAYS MAKE AT LEAST 12" RADIUS BENDS. #6 WIRE CAN BE BENT AT 6" RADIUS WHEN NECESSARY. BOND ANY METAL OBJECTS WITHIN 6 FEET OF PROJECT OWNER EQUIPMENT OR CABINET TO MASTER GROUND BAR OR GROUNDING RING.

18. CONNECTIONS TO GROUND BARS SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO ALL LOCATIONS.

19. BOND ANTENNA MOUNTING BRACKETS, COAXIAL CABLE GROUND KITS, AND ALNA TO EGB PLACED NEAR THE ANTENNA LOCATION.

20. APPLY OXIDE INHIBITING COMPOUND TO ALL COMPRESSION TYPE GROUND CONNECTIONS.

21. CONTRACTOR SHALL PROVIDE AND INSTALL OMNI DIRECTIONAL ELECTRONIC MARKER SYSTEM (EMS) BALLS OVER EACH GROUND ROD AND BONDING POINT BETWEEN EXISTING TOWER/ (E) MONOPOLE GROUNDING RING AND EQUIPMENT GROUNDING RING.

22. CONTRACTOR SHALL TEST COMPLETED GROUND SYSTEM AND RECORD RESULTS FOR PROJECT CLOSE-OUT DOCUMENTATION. 5 OHMS MAXIMUM RESISTANCE REQUIRED.

23.CONTRACTOR SHALL CONDUCT ANTENNA, COAX, AND LNA RETURN-LOSS AND DISTANCE- TO-FAULT MEASUREMENTS (SWEEP TESTS) AND RECORD RESULTS FOR PROJECT CLOSE OUT.

HALF SIZE PRINT THIS DRAWING IS SCALEABLE AT HALF THE NOTED SCALE

HALF SIZE PRINT

& B	.O.M.			
azimuth	RAD CTR (AGL)	FIBER/POWER LENGTH	FEEDERS	MECHANICAL DOWNTILT
o	128±	145±	FIBER/DC POWER	0°
o.	128±	145±	FIBER/DC POWER	o.
0.	128±	145±	FIBER/DC POWER	o.
o.	128±	145±	FIBER/DC POWER	ď
120°	128±	145±	FIBER/DC POWER	o.
120°	128±	145±	FIBER/DC POWER	ۍ
120°	128±	145±	FIBER/DC POWER	o.
120*	128±	145±	FIBER/DC POWER	o
240°	128±	145±	FIBER/DC POWER	o
240°	128±	145±	FIBER/DC POWER	o
240	128±	145±	FIBER/DC POWER	0°
240	128±	145±	FIBER/DC POWER	0°

			SHEET NO.	A-4			
ION	AAB	MRC	DETAILS				
SION	AAB	MRC					
R REVIEW	AAB	MRC					
VISIONS	BY	снк					

				S-1			
ION	AAB	MRC					
ION	AAB	MRC	STRUCTURAL DETAILS				
R REVIEW	AAB	MRC					
ISIONS	BY	снк					

-(P) SURGE ARRESTOR (RAYCAP DC6-48-60-18-8C) MOUNTED (ON (P) PIPE, TYP. OF (1)

3 (A-3)

GENERAL ELECTRICAL NOTES

SPECIFICATIONS. AND THE SPECIFICATIONS DETAILED IN THESE PLANS.

DISCREPANCIES.

OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA).

8. ALL CONDUIT INSTALLED MAY BE SURFACE MOUNTED UNLESS OTHERWISE NOTED.

10. ALL "CONDUIT ONLY" (CO.) INSTALLATIONS SHALL HAVE A 3/8" PULL WIRE OR ROPE.

11. CONTRACTOR SHALL PROVIDE AT&T MOBILITY MANAGER WITH ONE SET OF COMPLETE ELECTRICAL 'AS INSTALLED' DRAWINGS AT THE COMPLETION OF THE JOB, SHOWING ACTUAL DIMENSIONS, ROISI1NGS, AND CIRCUITS,

SMALLER SHALL BE SOLID.

19. CONTRACTOR SHALL PATCH, REPAIR, AND PAINT ANY AREA THAT HAS BEEN DAMAGED IN THE COURSE OF THE ELECTRICAL WORK

22. PENETRATIONS IN FIRE RATED WALLS SHALL BE SEALED IN ACCORDANCE WITH ALL APPLICABLE CODES.

23. ALL MATERIALS SHALL BE U.L. LISTED

. Feedtrical metallic turing shall have ul larel fittings shall be gland ring compression type fait shall be used only for interior runs.

25. ALL ELECTRICAL EQUIPMENT SHALL BE LABELED WITH PERMANENT ENGRAVED PLASTIC LABELS.

26. CONTRACTOR SHALL COORDINATE THE ELECTRICAL SERVICE ATTN AT&T MOBILITY' AND LOCAL UTILITY.

PROPERLY ANCHORED 3/4" (MIN.) PVC CONDUIT.

36. GROUNDING CONDUCTORS SHALL HAVE A MINIMUM BENDING RADIUS OF 8". 37. ALL CONNECTIONS TO GROUND PLATES SHALL BE CAD WELDED TO THE CENTER OF THE PLATE. ALL DETAILS SHOWING CONNECTIONS TO GROUND RODS ARE ALSO VALID FOR SIMILAR CONNECTIONS TO GROUND PLATES.

	NO.	DATE	REVISIONS	BY	снк				
æt	0	03/01/17	ISSUED FOR REVIEW						
	1	03/16/17	REVISION	AAB	MRC				
	2	04/05/17	REVISION	AAB	MRC				
, SUITE 13,						SHEET NO	E 1		
701-4681						SHEET NO.	C-1		

- 1. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH ALL GOVERNING STATE, COUNTY AND LOCAL CODES, O.S.H.A.. NEC 2008, NFPA P70, AT&T MOBILITY
- 2. SUBMITTAL OF BID INDICATES CONTRACTOR IS COGNIZANT OF ALL JOB SITE CONDITIONS AND WORK TO BE PERFORMED UNDER THIS CONTRACT.
- 3. CONTRACTOR SHALL PERFORM ALL VERIFICATION, OBSERVATION, TESTS, AND EXAMINATION WORK PRIOR TO THE ORDERING OF THE ELECTRICAL EQUIPMENT AND THE ACTUAL CONSTRUCTION. CONTRACTOR SHALL ISSUE A WRITTEN NOTICE OF ALL FINDINGS TO THE PROJECT MANAGER LISTING ALL MALFUNCTIONS. FAULTY EQUIPMENT, AND
- 4. THESE PLANS ARE DIAGRAMMATIC ONLY, FOLLOW AS CLOSELY AS POSSIBLE. CONTRACTOR SHALL ENSURE THAT ACCESS TO EQUIPMENT IS MAINTAINED IN ACCORDANCE WITH MANUFACTURER SPECIFICATIONS AND ALL APPLICABLE CODES.
- 5. EACH CONDUCTOR OF EVERY SYSTEM SHALL BE PERMANENTLY TAGGED IN EACH PANELBOARD, PULLBOX. J -- BOX, SWITCH BOX, ETC.. IN COMPLIANCE WITH
- 6. CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS, INSURANCE, FOURPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, FTC., FOR A COMPLETE AND PROPERLY OPERATIVE STEM, ENERGIZED THROUGHOUT AND AS INDICATED ON DRAWINGS. AS SPECIFIED HEREIN AND/OR AS OTHERWISE REQUIRED.
- 7. ALL MATERIALS AND EQUIPMENT SHALL BE NEW AND IN PERFECT CONDITION WHEN INSTALLED AND SHALL BE OF THE BEST GRADE AND OF THE SAME MANUFACTURER 7. ALL WHER TOR EACH CLASS OR GROUP OF EQUIPMENT, MATERIALS SHALL BE LISTED AND SHOLL BE OF THE BESI GROUP AND OF THE SAME MANDACIONER THROUGHOUT FOR EACH CLASS OR GROUP OF EQUIPMENT, MATERIALS SHALL BE LISTED AND APPROVED BY UNDERWRITER'S LABORATORY AND SHALL BEAR THE INSPECTION LABEL 'J' WHERE SUBJECT TO SUCH APPROVAL MATERIALS SHALL MEET WITH APPROVAL OF ALL GOVERNING BODIES NANING JURISDICTION. MATERIALS SHALL BE MANUFACTURED IN ACCORDANCE WITH APPLICABLE STANDARDS ESTABLISHED BY ANSI. NEMA, IEEE, AND NFPA.
- 9. COMPLETE JOB SHALL BE GUARANTEED FOR A PERIOD OF ONE (1) YEAR AFTER THE DATE OF JOB ACCEPTANCE BY OWNER. ANY WORK, MATERIAL OR EQUIPMENT FOUND TO BE FAULTY DURING THAT PERIOD SHALL BE CORRECTED AT ONCE. UPON WRITTEN NOTIFICATION, AT THE EXPENSE OF THE CONTRACTOR.
- 12. ALL BROCHURES. OPERATING MANUALS. CATALOGS, SHOP DRAWINGS. ETC. SHALL BE TURNED OVER TO OWNER AT JOB COMPLETION.
- 13. POWER WIRE AND CABLE CONDUCTORS SHALL BE COPPER #12 AWG MINIMUM UNLESS SPECIFICALLY NOTED OTHERWISE ON DRAWINGS. CONDUCTORS #10 AWG AND
- 14. ALL CONDUCTORS LARGER THAN 110 AWG SHALL BE STRANDED COPPER WITH THWN 600V INSULATION. UNLESS NOTED OTHERWISE.
- 15. ALL MATING SURFACES OF GROUND CONNECTIONS SHALL BE CLEANED SMOOTH AND COATED WITH ANTIOXIDANT PRIOR TO ATTACHMENT.
- 16. ALL GROUND CONNECTIONS BELOW GRADE MUST BE EXOTHERMICALLY WELDED (CAD WELD OR APPROVED EQUAL)
- 17. ALL EXTERIOR GROUNDING CONDUCTORS SHALL BE 2 AND SOLID TINNED BARE COPPER WIRE UNLESS NOTED OTHERWISE.
- 18. ALL CIRCUIT BREAKERS, FUSES AND ELECTRICAL EQUIPMENT SHALL HAVE AN INTERRUPTING RATING NOT LESS THE MAXIMUM SHORT CIRCUIT CURRENT TO WHICH THEY MAY BE SUBJECTED, AND A MINIMUM OF 10,000 A.I.C. COORDINATE SHORT CIRCUIT REQUIREMENTS WITH LOCAL UTILITY COMPANY.
- DRILLING HOLES INTO CONCRETE WHETHER FOR FASTENING OR ANCHORING PURPOSES, OR PENETRATIONS THROUGH THE FLOOR FOR CONDUIT RUNS, M PIPE RUNS, ETC., IT MUST BE CLEARLY UNDERSTOOD THAT TENDONS AND/OR REINFORCING STEEL WILL NOT BE DRILLED INTO, CUT OR DAMAGED UNDER ANY CIRCUMSTANCES.
- 21. LOCATION OF TENDONS AND/OR REINFORCING STEEL ARE NOT DEFINITELY KNOWN AND, THEREFORE, MUST BE SEARCHED FOR BY APPROPRIATE METHODS AND EQUIPMENT VIA X-RAY OR OTHER DEVICES THAT CAN ACCURATELY LOCATE THE REINFORCING AND/OR STEEL TENDONS.
- 24. CONDUIT: a. Rigid conduit shall be u.l label galvanized zinc coated with zinc interior and shall be used when installed in or under concrete slabs, in contact with the earth, under public roadways. In Masonry walls or exposed on building exterior, rigid conduit in contact with earth shall be 1/2 lapped wrapped with hunts wrap process no.
- D. ELECTING METALLIC TORING SHALL HAVE U.L LISTED LABEL AND MAY BE USED WHERE PERMITTED BY CODE, FITTINGS SHALL BE 'UAKE' OR 'SQUEEZE' TYPE, SEAL TIGHT FLEXIBLE CONDUIT. ALL CONDUIT SHALL NAVE FULL SIZE GROUND WIRE d. CONDUIT SHALL NAVE FULL SIZE GROUND WIRE MALL STATUS MAY BE SURFACE MOUNTED IN CELLINGS OR WALLS UNLESS INDICATED OTHERWISE. CONDUIT SHALL RUN PARALLEL OR AT RIGHT ANGLES TO CELLING, FLOOR OR BEAMS. VERIFY EXACT ROUTING OF ALL EXPOSED CONDUIT WITH ENGINEER PROR TO INSTALLING.
- 27. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE GROUNDED AS REQUIRED BY NEC AND ALL APPLICABLE CODES.
- 28, GROUNDING SYSTEM RESISTANCE SHALL NOT EXCEED 5 OHMS, IF THE RESISTANCE VALUE IS EXCEEDED, NOTIFY THE OWNER FOR FURTHER INSTRUCTION ON METHODS FOR REDUCING THE RESISTANCE VALUE. CONTRACTOR SHALL SUBMIT TO THE PROJECT MANAGER ALL TEST REPORTS AND ONE COMPLETE SET OF PRINTS SHOWING 'INSTALLED WORK
- 29. UPON COMPLETION OF WORK, CONDUCT CONTINUITY, AND FALL OF POTENTIAL GROUNDING TESTS FOR APPROVAL SUBMIT TEST REPORTS TO PROJECT MANAGER. CLEAN PREMISES OF ALL DEBRIS RESULTING FROM WORK AND LEAVE WORK IN A COMPLETE AND UNDAMAGED CONDITION.
- 30. ALL EXPOSED GROUND WIRES ROUTED ALONG THE SIDE OF EQUIPMENT SHELTERS OR ROUTED OVER CONCRETE FOUNDATIONS OR OTHER EXISIING STRUCTURES SHALL BE INSTALLED IN
- 31. CONTRACTOR SHALL NOT DISTURB EXISTING GROUNDING SYSTEM. ANY DAMAGE SHALL BE REPAIRED IMMEDIATELY AT NO ADDITIONAL COST.
- 32. ALL ELEMENTS OF ICE BRIDGE AND AT&T MOBILITY UTILITY BACKBOARD MUST BE BONDED AND JUMPERED TO GROUNDED COMPONENTS OF THESE SYSTEMS.
- 33. ALL INTERIOR CABLES AND WIRING SHALL BE NEATLY ROUTED IN OVERHEAD LADDER RACK AND FASTENED TO LADDER RACK.
- 34. ALL GROUNDING CONDUCTORS SHALL BE ROUTED DOWNWARDS FROM POINT OF ORIGIN TO TERMINATION POINT (GROUND BAR, GROUND RING, ETC.
- 35. GROUNDING CONDUCTORS SHALL NOT REVERSE DIRECTION (EXCEPT HALD & BURIED GROUND RINGS). OTHER EXCEPTIONS NEED TO BE APPROVED BY AT&T MOBILITY CONSTRUCTION MANAGER PRIOR TO INSTALLATION.

March 27, 2017

Charles McGuirt Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277 (704) 405-6607		B+1 Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630 btwo@btgrp.com
Subject:	Structural Analysis Report	
Carrier Designation:	AT&T Mobility Co-Locate	
	Carrier Site Number:	CT1304
	Carrier Site Name:	Torrington Wright Road
Crown Castle Designation:	Crown Castle BU Number:	876373
	Crown Castle Site Name:	Long Eddy / Wright Property
	Crown Castle JDE Job Number:	427346
	Crown Castle Work Order Number:	1381942
	Crown Castle Application Number:	378332 Rev. 2
Engineering Firm Designation:	B+T Group Project Number:	89028.006.01
Site Data:	136 Wright Rd., Torrington, Litchfiel Latitude <i>41° 49' 38.34''</i> , Longitude -7 148 Foot - Monopole Tower	d County, CT 3° 10' 13.97''

Dear Charles McGuirt,

B+*T Group* is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1016487, in accordance with application 378332, revision 2.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Existing + SLA Equipment + Proposed Equipment Note: See Table 1 and Table 2 for the proposed and existing loading, respectively.

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 120 mph converted to a nominal 3-second gust wind speed of 93 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Exposure Category B and Risk Category II were used in this analysis.

All equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at *B*+*T Group* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by: B+T Engineering, Inc.

John Landon Project Engineer Scott S. Vance, P.E. Engineer of Record COA: PEC.0001564 Expires: 02/10/2018

Sufficient Capacity

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

- Table 1 Proposed Antenna and Cable Information
- Table 2 Existing Antenna and Cable Information
- Table 3 Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary) Table 6 – Tower Components vs. Capacity 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 148 ft. Monopole tower designed by Summit manufacturing in June of 2000. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F.This tower has been modified by B+T Group in February of 2014 and those modifications are incorporated in our Analysis.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a 3-second gust wind speed of 93 mph with no ice, 40 mph with 0.75 inch ice thickness and 60 mph under service loads, exposure category B with topographic category 1 and crest height of 0 feet.

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note	
	128.0	108.0	3	CCI Antennas	HPA-65R-BUU-H8			
129.0			120.0	129.0	9	Ericsson	RRU-11	5
128.0	120.0	2	Raycap	DC6-48-60-18-8F	1	3/8		
		1		Sector Mount [SM 406-3]				

Table 1 - Proposed Antenna and Cable Information

Table 2 – Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note		
1 10 0	4.40.0	3	Alcatel Lucent	TME-1900MHz RRH (65MHz)					
149.0	149.0	3	Alcatel Lucent	TME-800MHZ RRH			1		
		1		Pipe Mount [PM 601-3]					
	4.40.0	3	Alcatel Lucent	800 EXTERNAL NOTCH FILTER					
148.0	149.0	149.0	149.0	9	Rfs Celwave	ACU-A20-N	3	1-1/4	1
		3	Rfs Celwave	APXVSPP18-C-A20					
	148.0	1		Platform Mount [LP 712-1]					
	138.0	1	Antel	BXA-171063-8BF-2					
		2	Antel	BXA-171085-8BF-EDIN-2		1-5/8			
129.0		3	Antel	BXA-70063-6CF-2	18		1		
130.0		2	Antel	LPA-80063/6CF			'		
		4	Antel	LPA-80080/6CF					
		1		Platform Mount [LP 712-1]					
		12	CCI Antennas	HPA-65R-BUU-H8					
		3	Ericsson	KRF 102 361/1					
		9	Ericsson	RRU-11	8	3/4			
128.0	128.0	6	Ericsson	RRUS 12-B2	3	5/16	2		
		6	Ericsson	RRUS A2	2	3/8			
		3	Ericsson	RRUS E2 B29					
		3	Ericsson	RRUS-32 B30					

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		4	Raycap	DC6-48-60-18-8F			
70.0	84.0	1	Rfs Celwave	PD1109E	1	1/2	1
79.0	79.0	1		Side Arm Mount [SO 701-1]	I		
45.0	45.0 45.0 1		Gps	GPS_A	1	1/2	1
45.0	45.0	5.0 1 Side Arm Mount [SO 701-1]	l	1/2			
12.0	12.0	1	Gps	GPS_A	1	4 4/0	1
13.0	13.0	1		Side Arm Mount [SO 701-1]		1/2	

Notes:

1) 2) Existing Equipment

SLA Equipment; Considered in This Analysis

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
1 1 0	1/0	12	Dapa	48000 PCS Panel		
140	140	1	Generic	14' LP Platform		
140	140	12	Dapa	48000 PCS Panel		
140 140		1	Generic	14' LP Platform		
120	120	12	Dapa	48000 PCS Panel		
130 130		1	Generic	14' LP Platform		
120	120	12	Dapa	48000 PCS Panel		
120 120		1	Generic	14' LP Platform		
76	76	1	Generic	GPS Antenna		
10	10	1	Generic	GPS Stand-on Mount] -	

Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Online Application	AT&T Mobility Co-locate, Revision# 2	378332	CCI Sites
Tower Manufacturer Drawing	Summit, Date: 06/23/2000	1631601	CCI Sites
Tower Modification Drawing	B+T Group, Project No. 89028.003.01	4491592	CCI Sites
Post Modification Inspection	TEP, Project No. 52429.14747	5215998	CCI Sites
Foundation Drawing	Summit, Job No. 10185	1634518	CCI Sites
Geotech Report	Clerence Welti Assoc., Inc., Date: 05/12/2000	1531964	CCI Sites
Antenna Configuration	Crown CAD Package	Date: 03/06/2017	CCI Sites

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) Mount areas and weights are assumed based on photographs provided.

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	148 - 116.5	Pole	TP29.48x24x0.219	1	-11.599	1273.620	35.3	Pass
L2	116.5 - 98.5	Pole	TP32.175x28.39x0.25	2	-14.888	1751.620	58.2	Pass
L3	98.5 - 80.25	Pole	TP35.35x32.175x0.434	3	-17.904	2235.790	60.3	Pass
L4	80.25 - 70.5	Pole	TP36.547x34.067x0.487	4	-22.445	2653.470	63.4	Pass
L5	70.5 - 39.75	Pole	TP41.9x36.547x0.591	5	-30.635	3874.320	56.6	Pass
L6	39.75 - 31.75	Pole	TP42.666x40.361x0.643	6	-37.154	4394.700	56.3	Pass
L7	31.75 - 17.75	Pole	TP45.102x42.666x0.626	7	-42.513	4539.090	59.7	Pass
L8	17.75 - 14.25	Pole	TP45.711x45.102x0.728	8	-44.114	4902.000	56.7	Pass
L9	14.25 - 0	Pole	TP48.19x45.711x0.619	9	-50.195	4669.620	64.0	Pass
							Summary	
						Pole (L9)	64.0	Pass
						Rating =	64.0	Pass

Table 5 - Section Capacity (Summary)

Table 6 - Tower Component Stresses vs. Capacity – LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rod Bracket	Base	77.4	Pass
1	Anchor Rods	Base	50.9	Pass
1	Base Plate	Base	49.5	Pass
1	Base Foundation(Structure)	Base	48.7	Pass
1	Base Foundation (Soil Interaction)	Base	76.9	Pass

Structure Rating (max from all components) =	77.4%
--	-------

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the final load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
Top Hat (E)	149.5	(3) RRU-11 (P)	128	
TME-1900MHz RRH (65MHz) (E)	149	(3) RRU-11 (P)	128	
TME-1900MHz RRH (65MHz) (E)	149	(2) DC6-48-60-18-8F (P)	128	
TME-1900MHz RRH (65MHz) (E)	149	(4) HPA-65R-BUU-H8 w/ Mount Pipe	128	
TME-800MHZ RRH (E)	149	(ATISLA)		
TME-800MHZ RRH (E)	149	(4) HPA-65R-BUU-H8 w/ Mount Pipe	128	
TME-800MHZ RRH (E)	149	(SLA)		
Pipe Mount [PM 601-3] (E)	149	(4) HPA-65R-BUU-H8 w/ Mount Pipe	128	
APXVSPP18-C-A20 w/ Mount Pipe (E)	148		128	
APXVSPP18-C-A20 w/ Mount Pipe (E)	148	RRUS E2 B29 (SLA)	120	
APXVSPP18-C-A20 w/ Mount Pipe (E)	148		120	
(3) ACU-A20-N (E)	148	(3) RPU-11 (SLA)	120	
(3) ACU-A20-N (E)	148	(3) RRU-11 (SLA)	128	
(3) ACU-A20-N (E)	148		120	
800 EXTERNAL NOTCH FILTER (E)	148	(3) RR0-11 (SLA)	120	
800 EXTERNAL NOTCH FILTER (E)	148	RRUS-32 B30 (SLA)	120	
800 EXTERNAL NOTCH FILTER (E)	148		120	
(2) 6' x 2" Mount Pipe (E)	148	RRUS-32 B30 (SLA)	128	
(2) 6' x 2" Mount Pipe (E)	148	(2) DC6 48 60 48 85 (SLA)	120	
(2) 6' x 2" Mount Pipe (E)	148	(2) DC6-48-60-18-6F (SLA)	120	
Platform Mount [LP 712-1] (E-12'/TIA)	148	(2) PRUS 12 P2 (SLA)	120	
BXA-70063-6CF-2 w/ Mount Pipe (E)	138	(2) RRUS 12-B2 (SLA)	120	
BXA-70063-6CF-2 w/ Mount Pipe (E)	138	(2) RRUS 12-B2 (SLA)	120	
BXA-70063-6CF-2 w/ Mount Pipe (E)	138		120	
BXA-171085-8BF-EDIN-2 w/ Mount	138	(2) RRUS A2 (SLA)	120	
Pipe (E)		(2) RRUS A2 (SLA)	120	
BXA-171085-8BF-EDIN-2 w/ Mount	138	(2) KRUS A2 (SLA)	120	
Pipe (E)		KRF 102 361/1 (SLA)	120	
BXA-171063-8BF-2 w/ Mount Pipe (E)	138	KRF 102 301/1 (SLA)	120	
(2) LPA-80063/6CF w/ Mount Pipe (E)	138	Sector Mount (SM 406 21 (P)	120	
(2) LPA-80080/6CF w/ Mount Pipe (E)	138		70	
(2) LPA-80080/6CF w/ Mount Pipe (E)	138	PD1109E (E) Side Arm Mount (SO 701.11 (E)	79	
Platform Mount [LP 712-1] (E)	138	Side Arm Mount [SO 701-1] (E)	19	
HPA-65R-BUU-H8 w/ Mount Pipe (ATIP)	128	Side Arm Mount [SO 701-1] (E)	45	
HPA-65R-BUU-H8 w/ Mount Pipe (P)	128	GPS_A (E-CL/TIA)	13	
HPA-65R-BUU-H8 w/ Mount Pipe (P)	128	Side Arm Mount [SO 701-1] (E-Mount	13	
(3) RRU-11 (P)	128	Ht./TIA)		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A607-60	60 ksi	75 ksi	44.81049ksi	45 ksi	60 ksi
A607-65	65 ksi	80 ksi	44.910822ksi	45 ksi	60 ksi
41.599417ksi	42 ksi	57 ksi	41.277494ksi	41 ksi	56 ksi
41.661197ksi	42 ksi	57 ksi	43.725232ksi	44 ksi	59 ksi
44.711572ksi	45 ksi	60 ksi			

TOWER DESIGN NOTES

- Tower is located in Litchfield County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.
 Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard.
- 4. Tower is also designed for a 40 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- ALL REACTIOI5. Deflections are based upon a 60 mph wind.

ARE FACTORI6. Tower Structure Class II.

- Topographic Category 1 with Crest Height of 0.000 ft
 TOWER RATING: 64%
- AXIAL

88 K

5 K (

 \bigcirc

TORQUE 1 kip-ft

REACTIONS - 93 mph WIND

Г	B+T Group	^{Job:} 89028.006.01 - L	ONG EDDY WRIGH	IT PROPERTY, CT (BU# 87637
	1717 S.Boulder, Suite 300	Project:		
B+T GRP	Tulsa OK 74119	Client: Crown Castle	^{Drawn by:} Pavan Pai	App'd:
	Phone: (918) 587-4630	^{Code:} TIA-222-G	Date: 03/23/17	Scale: NTS
	FAX: (918) 295-0265	Path: Classif Power Device States 225/15H 18028 191223 Loss Edd Winds For	SeetPaultAnand-OCDTox (00) 0188028 (00) 01 LONG EDDY WRIGHT PROPERTY CT A	Dwg No. E-1

Г	B+T Group	^{Job:} 89028.006.01 - L	ONG EDDY WRIGH	IT PROPERTY, CT (BU# 87637
22	1717 S.Boulder, Suite 300	Project:		
B+T GRP	Tulsa OK 74119	Client: Crown Castle	^{Drawn by:} Pavan Pai	App'd:
	Phone: (918) 587-4630	^{Code:} TIA-222-G	Date: 03/23/17	Scale: NTS
	FAX: (918) 295-0265	Path:	*	Dwg No. E-4

TIA-222-G - Service - 60 mph

Г	B+T Group	^{Job:} 89028.006.01 - L	ONG EDDY WRIGH	HT PROPERTY, CT (BU# 87637
	1717 S.Boulder, Suite 300	Project:		
B+T GRP	Tulsa OK 74119	Client: Crown Castle	^{Drawn by:} Pavan Pai	App'd:
	Phone: (918) 587-4630	^{Code:} TIA-222-G	Date: 03/23/17	Scale: NTS
FAX: (918) 295-0265		Path:	Determined According to a stategy on an upped poly marght property of a	Dwg No. E-5

Feed Line Distribution Chart 0' - 148'

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Г	B+T Group	^{Job:} 89028.006.01 - L	ONG EDDY WRIGH	IT PROPERTY, CT (BU# 87637
	1717 S.Boulder, Suite 300	Project:		
B+T GRP	Tulsa OK 74119	Client: Crown Castle	^{Drawn by:} Pavan Pai	App'd:
	Phone: (918) 587-4630	^{Code:} TIA-222-G	Date: 03/23/17	Scale: NTS
	FAX: (918) 295-0265	Path:	-	Dwg No. E-7

Elevation (ft)

Round

tnxTower	Јов 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)	Page 1 of 19
B+T Group 1717 S.Boulder, Suite 300	Project	Date 15:42:42 03/23/17
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Pavan Pai

Tower Input Data

There is a pole section.

 $\sqrt{}$

SR Members Are Concentric

This tower is designed using the TIA-222-G standard. The following design criteria apply:

> Tower is located in Litchfield County, Connecticut. Basic wind speed of 93 mph. Structure Class II. Exposure Category B. Topographic Category 1. Crest Height 0.000 ft. Nominal ice thickness of 0.750 in. Ice thickness is considered to increase with height. Ice density of 56.000 pcf. A wind speed of 40 mph is used in combination with ice. Temperature drop of 50.000 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules Assume Legs Pinned Consider Moments - Horizontals Calculate Redundant Bracing Forces Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Members in FEA Use Clear Spans For Wind Area Use Moment Magnification SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable Retension Guys To Initial Tension Use Code Safety Factors - Guys Offset Girt At Foundation Escalate Ice Bypass Mast Stability Checks Consider Feed Line Torque Use Azimuth Dish Coefficients Include Angle Block Shear Check Always Use Max Kz Use Special Wind Profile Project Wind Area of Appurt. Use TIA-222-G Bracing Resist. Exemption Include Bolts In Member Capacity Use TIA-222-G Tension Splice Exemption Autocalc Torque Arm Areas Leg Bolts Are At Top Of Section Add IBC .6D+W Combination Poles Secondary Horizontal Braces Leg Sort Capacity Reports By Component Include Shear-Torsion Interaction Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow Treat Feed Line Bundles As Cylinder SR Members Have Cut Ends Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Top	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	148.000-116.50	31.500	3.750	18	24.000	29.480	0.219	0.875	A607-60
	0								(60 ksi)
L2	116.500-98.500	21.750	0.000	18	28.390	32.175	0.250	1.000	A607-65
									(65 ksi)

tnxTower		Page 2 of 19	
	876373)		
B+T Group 1717 S.Boulder, Suite 300	Project	Date 15:42:42 03/23/17	
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Pavan Pai	

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L3	98.500-80.250	18.250	4.500	18	32.175	35.350	0.434	1.736	41.599417ksi (42 ksi)
L4	80.250-70.500	14.250	0.000	18	34.067	36.547	0.487	1.947	41.661197ksi (42 ksi)
L5	70.500-39.750	30.750	5.250	18	36.547	41.900	0.591	2.365	44.711572ksi (45 ksi)
L6	39.750-31.750	13.250	0.000	18	40.361	42.666	0.643	2.573	44.81049ksi (45 ksi)
L7	31.750-17.750	14.000	0.000	18	42.666	45.102	0.626	2.506	44.910822ksi (45 ksi)
L8	17.750-14.250	3.500	0.000	18	45.102	45.711	0.728	2.911	41.277494ksi (41 ksi)
L9	14.250-0.000	14.250		18	45.711	48.190	0.619	2.475	43.725232ksi (44 ksi)

	Tapered Pole Properties										
Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t	
	in	in^2	in^4	in	in	in ³	in^4	in^2	in		
L1	24.370	16.512	1179.768	8.442	12.192	96.766	2361.088	8.257	3.839	17.55	
	29.935	20.316	2197.713	10.388	14.976	146.751	4398.319	10.160	4.803	21.959	
L2	29.491	22.329	2233.892	9.990	14.422	154.893	4470.723	11.167	4.557	18.227	
	32.671	25.332	3261.812	11.333	16.345	199.564	6527.916	12.668	5.223	20.891	
L3	32.671	43.726	5565.479	11.268	16.345	340.507	11138.281	21.867	4.899	11.287	
	35.895	48.100	7408.540	12.395	17.958	412.553	14826.827	24.055	5.458	12.575	
L4	35.388	51.890	7392.471	11.921	17.306	427.161	14794.670	25.950	5.139	10.555	
	37.111	55.723	9154.622	12.802	18.566	493.082	18321.290	27.867	5.575	11.452	
L5	37.111	67.480	11022.014	12.764	18.566	593.663	22058.531	33.747	5.392	9.119	
	42.546	77.526	16713.430	14.665	21.285	785.214	33448.852	38.770	6.334	10.712	
L6	41.911	81.096	16162.580	14.100	20.503	788.285	32346.427	40.556	5.971	9.282	
	43.325	85.803	19143.219	14.918	21.674	883.214	38311.628	42.910	6.377	9.913	
L7	43.325	83.582	18662.634	14.924	21.674	861.042	37349.825	41.799	6.407	10.228	
	45.798	88.424	22097.930	15.789	22.912	964.478	44224.937	44.221	6.836	10.913	
L8	45.798	102.493	25497.284	15.753	22.912	1112.845	51028.117	51.256	6.657	9.148	
	46.416	103.899	26561.387	15.969	23.221	1143.846	53157.724	51.960	6.764	9.295	
L9	46.416	88.564	22750.786	16.008	23.221	979.745	45531.507	44.291	6.956	11.241	
	48.933	93.434	26713.350	16.888	24.481	1091.208	53461.849	46.726	7.392	11.946	

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in				in	in	in
L1	°		1	1	1			
148.000-116.5								
00								
L2			1	1	1			
116.500-98.50								
0								
L3			1	1	0.962717			
98.500-80.250								
L4			1	1	0.968696			
80.250-70.500								
L5			1	1	0.953422			
70.500-39.750								

tnxTower	Јо ь 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)	Page 3 of 19
B+T Group 1717 S.Boulder, Suite 300	Project	Date 15:42:42 03/23/17
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Pavan Pai

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing	Spacing	Spacing
						Diagonals	Horizontals	Redundants
ft	ft ²	in				in	in	in
L6			1	1	0.958861			
39.750-31.750								
L7			1	1	0.963264			
31.750-17.750								
L8			1	1	0.983373			
17.750-14.250								
L9			1	1	1.01129			
14.250-0.000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weight
			ft				in	in	klf
/> LDF7-50A(1-5/8) (E) **/>**	В	Surface Ar (CaAa)	138.000 - 0.000	6	6	-0.350 -0.200	1.980		0.001
LDF4-50A(1/2) (E) **/>**	А	Surface Ar (CaAa)	45.000 - 0.000	1	1	-0.210 -0.200	0.630		0.000
CCI 8.5" x 1.25" Plate (E)	В	Surface Af (CaAa)	14.250 - 0.000	1	1	$0.000 \\ 0.000$	8.500	19.500	0.000
CCI 8.5" x 1.25" Plate (E) **/>**	С	Surface Af (CaAa)	14.250 - 0.000	1	1	0.000 0.000	8.500	19.500	0.000
CCI 8.5" x 1.25" Plate (E)	А	Surface Af (CaAa)	70.500 - 14.250	1	1	$0.000 \\ 0.000$	8.500	19.500	0.000
CCI 8.5" x 1.25" Plate (E)	В	Surface Af (CaAa)	70.500 - 14.250	1	1	$0.000 \\ 0.000$	8.500	19.500	0.000
CCI 8.5" x 1.25" Plate (E) **/>**	С	Surface Af (CaAa)	70.500 - 14.250	1	1	$0.000 \\ 0.000$	8.500	19.500	0.000
CCI 6" x 1" Plate (E)	А	Surface Af (CaAa)	98.500 - 70.500	1	1	$0.000 \\ 0.000$	6.000	14.000	0.000
CCI 6" x 1" Plate (E)	В	Surface Af (CaAa)	98.500 - 70.500	1	1	$0.000 \\ 0.000$	6.000	14.000	0.000
CCI 6" x 1" Plate (E) **/>**	С	Surface Af (CaAa)	98.500 - 70.500	1	1	$0.000 \\ 0.000$	6.000	14.000	0.000
CCI 6.5" x 1.25" Plate (E)	А	Surface Af (CaAa)	17.750 - 0.000	1	1	0.000 0.000	6.500	15.500	0.000
CCI 6.5" x 1.25" Plate (E) **/>**	В	Surface Af (CaAa)	17.750 - 0.000	1	1	0.000 0.000	6.500	15.500	0.000
Safety Line 3/8 (E) **/>**	А	Surface Ar (CaAa)	148.000 - 0.000	1	1	-0.210 -0.200	0.375		0.000

Feed Line/Linear Appurtenances - Entered As Area

Job 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)

Page 4 of 19

Date

B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265 Project

Client

Crown Castle

Designed by Pavan Pai

15:42:42 03/23/17

Description	Face	Allow	Component	Component Placement			$C_A A_A$	Weight
	or	Shield	Type		Number			
	Leg			ft			ft²/ft	klf
HB114-1-0813U4-M5J(1	Α	No	Inside Pole	148.000 - 0.000	3	No Ice	0.000	0.001
-1/4)						1/2" Ice	0.000	0.001
(E)						1" Ice	0.000	0.001
LDF7-50A(1-5/8)	В	No	Inside Pole	138.000 - 0.000	12	No Ice	0.000	0.001
(E)						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
/>								
L98B-002-XXX DB(3/8	С	No	Inside Pole	128.000 - 0.000	1	No Ice	0.000	0.000
)						1/2" Ice	0.000	0.000
(P)						1" Ice	0.000	0.000
WR-VG86ST-BRD(3/4)	С	No	Inside Pole	128.000 - 0.000	5	No Ice	0.000	0.001
(P)						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
ATCB-B01-060(5/16)	С	No	Inside Pole	128.000 - 0.000	3	No Ice	0.000	0.000
(SLA)						1/2" Ice	0.000	0.000
						1" Ice	0.000	0.000
L98B-002-XXX_DB(3/8	С	No	Inside Pole	128.000 - 0.000	2	No Ice	0.000	0.000
)						1/2" Ice	0.000	0.000
(SLA)						1" Ice	0.000	0.000
WR-VG86ST-BRD(3/4)	С	No	Inside Pole	128.000 - 0.000	8	No Ice	0.000	0.001
(SLA)						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
/>								
LDF4-50A(1/2)	С	No	Inside Pole	79.000 - 0.000	1	No Ice	0.000	0.000
(E)						1/2" Ice	0.000	0.000
						1" Ice	0.000	0.000
/>								
LDF4-50A(1/2)	В	No	Inside Pole	13.000 - 0.000	1	No Ice	0.000	0.000
(E-Ht./TIA)						1/2" Ice	0.000	0.000
						1" Ice	0.000	0.000
/>								

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	-
	ft		ft^2	ft^2	ft^2	ft^2	Κ
L1	148.000-116.500	А	0.000	0.000	1.181	0.000	0.120
		В	0.000	0.000	25.542	0.000	0.317
		С	0.000	0.000	0.000	0.000	0.092
L2	116.500-98.500	А	0.000	0.000	0.675	0.000	0.069
		В	0.000	0.000	21.384	0.000	0.266
		С	0.000	0.000	0.000	0.000	0.144
L3	98.500-80.250	А	0.000	0.000	18.934	0.000	0.070
		В	0.000	0.000	39.931	0.000	0.269
		С	0.000	0.000	18.250	0.000	0.146
L4	80.250-70.500	А	0.000	0.000	10.116	0.000	0.037
		В	0.000	0.000	21.333	0.000	0.144
		С	0.000	0.000	9.750	0.000	0.079
L5	70.500-39.750	А	0.000	0.000	45.046	0.000	0.118
		В	0.000	0.000	80.094	0.000	0.454
		С	0.000	0.000	43.563	0.000	0.250
L6	39.750-31.750	А	0.000	0.000	12.137	0.000	0.032
		В	0.000	0.000	20.837	0.000	0.118
		С	0.000	0.000	11.333	0.000	0.065
L7	31.750-17.750	А	0.000	0.000	21.240	0.000	0.056
		В	0.000	0.000	36.465	0.000	0.207
		С	0.000	0.000	19.833	0.000	0.114

tnxTower	Јоь 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)	Page 5 of 19
B+T Group 1717 S.Boulder, Suite 300	Project	Date 15:42:42 03/23/17
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Pavan Pai

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	Κ
L8	17.750-14.250	А	0.000	0.000	9.102	0.000	0.014
		В	0.000	0.000	12.908	0.000	0.052
		С	0.000	0.000	4.958	0.000	0.028
L9	14.250-0.000	Α	0.000	0.000	16.870	0.000	0.057
		В	0.000	0.000	52.554	0.000	0.212
		С	0.000	0.000	20.188	0.000	0.116

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A n	4	CA	CA	Weight
Section	Elevation	or	Thickness	21_R	21 _F	In Face	Out Face	weight
Section	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	Κ
L1	148.000-116.500	A	1.723	0.000	0.000	12.035	0.000	0.259
		В		0.000	0.000	41.188	0.000	0.805
		С		0.000	0.000	0.000	0.000	0.092
L2	116.500-98.500	А	1.688	0.000	0.000	6.877	0.000	0.148
		В		0.000	0.000	34.483	0.000	0.674
		С		0.000	0.000	0.000	0.000	0.144
L3	98.500-80.250	А	1.657	0.000	0.000	31.030	0.000	0.383
		В		0.000	0.000	58.958	0.000	0.905
		С		0.000	0.000	24.298	0.000	0.384
L4	80.250-70.500	А	1.629	0.000	0.000	16.577	0.000	0.205
		В		0.000	0.000	31.498	0.000	0.483
		С		0.000	0.000	12.981	0.000	0.207
L5	70.500-39.750	А	1.579	0.000	0.000	66.124	0.000	0.738
		В		0.000	0.000	111.074	0.000	1.570
		С		0.000	0.000	53.272	0.000	0.731
L6	39.750-31.750	А	1.512	0.000	0.000	19.716	0.000	0.221
		В		0.000	0.000	28.897	0.000	0.408
		С		0.000	0.000	13.860	0.000	0.190
L7	31.750-17.750	А	1.457	0.000	0.000	33.480	0.000	0.352
		В		0.000	0.000	49.803	0.000	0.671
		С		0.000	0.000	23.913	0.000	0.312
L8	17.750-14.250	А	1.395	0.000	0.000	12.976	0.000	0.123
		В		0.000	0.000	17.090	0.000	0.202
		С		0.000	0.000	5.935	0.000	0.076
L9	14.250-0.000	А	1.286	0.000	0.000	27.778	0.000	0.282
		В		0.000	0.000	65.256	0.000	0.768
		С		0.000	0.000	20.497	0.000	0.290

Feed Line Center of Pressure

Section	Elevation	CP _v	CP_{π}	CP _v	CP_{π}
Section	<u>Dictanton</u>		012	Ice	Ice
	ft	in	in	in	in
L1	148.000-116.500	0.397	-0.863	0.193	-0.942
L2	116.500-98.500	0.538	-1.134	0.354	-1.212
L3	98.500-80.250	0.318	-0.670	0.227	-0.766
L4	80.250-70.500	0.327	-0.690	0.235	-0.795
L5	70.500-39.750	0.288	-0.622	0.198	-0.753
L6	39.750-31.750	0.267	-0.645	0.067	-0.780
L7	31.750-17.750	0.274	-0.662	0.085	-0.802
L8	17.750-14.250	0.227	-1.095	0.078	-1.198
L9	14.250-0.000	0.984	-0.857	0.699	-1.092

turTower	Job	Page	
that ower	89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)	6 of 19	
B+T Group 1717 S.Boulder, Suite 300	Project	Date 15:42:42 03/23/17	
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Pavan Pai	

			Uniora	ing i a	
T	E. J.L.	Denvirting	E. J.L.	V	V
Tower	Feed Line	Description	Feed Line		$\mathbf{\Lambda}_a$
Section	Recora No.		Segment Elev.	No Ice	Ice
LI	3	LDF [*] /-50A(1-5/8)	116.50 -	1.0000	1.0000
			138.00	1 0000	1 0000
LI	32	Safety Line 3/8	116.50 -	1.0000	1.0000
			148.00	1 0000	1 0000
L3	3	LDF/-50A(1-5/8)	80.25 - 98.50	1.0000	1.0000
L3	25	CCI 6" x 1" Plate	80.25 - 98.50	1.0000	1.0000
L3	26	CCI 6" x 1" Plate	80.25 - 98.50	1.0000	1.0000
L3	27	CCI 6" x 1" Plate	80.25 - 98.50	1.0000	1.0000
L3	32	Safety Line 3/8	80.25 - 98.50	1.0000	1.0000
L5	3	LDF7-50A(1-5/8)	39.75 - 70.50	1.0000	1.0000
L5	14	LDF4-50A(1/2)	39.75 - 45.00	1.0000	1.0000
L5	21	CCI 8.5" x 1.25" Plate	39.75 - 70.50	1.0000	1.0000
L5	22	CCI 8.5" x 1.25" Plate	39.75 - 70.50	1.0000	1.0000
L5	23	CCI 8.5" x 1.25" Plate	39.75 - 70.50	1.0000	1.0000
L5	32	Safety Line 3/8	39.75 - 70.50	1.0000	1.0000
L7	3	LDF7-50A(1-5/8)	17.75 - 31.75	1.0000	1.0000
L7	14	LDF4-50A(1/2)	17.75 - 31.75	1.0000	1.0000
L7	21	CCI 8.5" x 1.25" Plate	17.75 - 31.75	1.0000	1.0000
L7	22	CCI 8.5" x 1.25" Plate	17.75 - 31.75	1.0000	1.0000
L7	23	CCI 8.5" x 1.25" Plate	17.75 - 31.75	1.0000	1.0000
L7	32	Safety Line 3/8	17.75 - 31.75	1.0000	1.0000
L8	3	LDF7-50A(1-5/8)	14.25 - 17.75	1.0000	1.0000
L8	14	LDF4-50A(1/2)	14.25 - 17.75	1.0000	1.0000
L8	21	CCI 8.5" x 1.25" Plate	14.25 - 17.75	1.0000	1.0000
L8	22	CCI 8.5" x 1.25" Plate	14.25 - 17.75	1.0000	1.0000
L8	23	CCI 8.5" x 1.25" Plate	14.25 - 17.75	1.0000	1.0000
L8	29	CCI 6.5" x 1.25" Plate	14.25 - 17.75	1.0000	1.0000
L8	30	CCI 6.5" x 1.25" Plate	14.25 - 17.75	1.0000	1.0000
L8	32	Safety Line 3/8	14.25 - 17.75	1.0000	1.0000
L9	3	LDF7-50A(1-5/8)	0.00 - 14.25	1.0000	1.0000
L9	14	LDF4-50A(1/2)	0.00 - 14.25	1.0000	1.0000
L9	18	CCI 8.5" x 1.25" Plate	0.00 - 14.25	1.0000	1.0000
L9	19	CCI 8.5" x 1.25" Plate	0.00 - 14.25	1.0000	1.0000
L9	29	CCI 6.5" x 1.25" Plate	0.00 - 14.25	1.0000	1.0000
L9	30	CCI 6.5" x 1.25" Plate	0.00 - 14.25	1.0000	1.0000
L9	32	Safety Line 3/8	0.00 - 14.25	1.0000	1.0000

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	0	ft		ft^2	ft^2	K
Top Hat	С	None		0.000	149.500	No Ice	3.000	3.000	0.081

Shielding Factor Ka

Job 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)

Page 7 of 19

Date

B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265 Project

Client

Crown Castle

Designed by Pavan Pai

15:42:42 03/23/17

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Type	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			vert ft	0	ft		ft ²	ft ²	K
			ft		Ji		Ji	Ji	п
			ft						
(E)						1/2" Ice	3.480	3.480	0.111
						1" Ice	3.960	3.960	0.141
/>			• • • • •	0.000	1.40.000			0.055	0.070
TME-1900MHz RRH	А	From Leg	2.000	0.000	149.000	No Ice	2.313	2.375	0.060
(63MHZ)			0.000			1/2 ICC	2.317	2.381	0.084
TMF-1900MHz RRH	в	From Leg	2 000	0.000	149 000	No Ice	2.728	2.794	0.060
(65MHz)	D	110III Leg	0.000	0.000	119.000	1/2" Ice	2.517	2.581	0.084
(E)			0.000			1" Ice	2.728	2.794	0.111
TME-1900MHz RRH	С	From Leg	2.000	0.000	149.000	No Ice	2.313	2.375	0.060
(65MHz)		-	0.000			1/2" Ice	2.517	2.581	0.084
(E)			0.000			1" Ice	2.728	2.794	0.111
TME-800MHZ RRH	А	From Leg	2.000	0.000	149.000	No Ice	2.134	1.773	0.053
(E)			0.000			1/2" Ice	2.320	1.946	0.074
	P	F I	0.000	0.000	1 40 000	1" Ice	2.512	2.127	0.098
IME-800MHZ KKH	в	From Leg	2.000	0.000	149.000	No Ice	2.134	1.//3	0.053
(E)			0.000			1/2 ICe	2.520	1.940	0.074
TME 800MHZ PPH	C	From Lag	2 000	0.000	149.000	No Ice	2.312	2.127	0.098
(E)	C	FIOIDLeg	0.000	0.000	149.000	1/2" Ice	2.134	1.775	0.033
			0.000			1" Ice	2.520	2 127	0.098
Pipe Mount [PM 601-3]	С	None	0.000	0.000	149.000	No Ice	4.390	4.390	0.195
(E)						1/2" Ice	5.480	5.480	0.237
						1" Ice	6.570	6.570	0.280
/>									
APXVSPP18-C-A20 w/	Α	From Leg	4.000	0.000	148.000	No Ice	8.262	6.946	0.083
Mount Pipe			0.000			1/2" Ice	8.822	8.127	0.151
(E)	-		1.000			1" Ice	9.346	9.021	0.227
APXVSPP18-C-A20 w/	В	From Leg	4.000	0.000	148.000	No Ice	8.262	6.946	0.083
Mount Pipe			0.000			1/2" Ice	8.822	8.127	0.151
(E)	C	From Lag	1.000	0.000	148.000	No Ice	9.340	9.021	0.227
Mount Pine	C	FIOILLEG	4.000	0.000	148.000	1/2" Ice	8.202	8 127	0.151
(E)			1 000			1" Ice	9 346	9 021	0.227
(3) ACU-A20-N	А	From Leg	4.000	0.000	148.000	No Ice	0.067	0.117	0.001
(E)			0.000			1/2" Ice	0.104	0.162	0.002
			1.000			1" Ice	0.148	0.215	0.004
(3) ACU-A20-N	В	From Leg	4.000	0.000	148.000	No Ice	0.067	0.117	0.001
(E)			0.000			1/2" Ice	0.104	0.162	0.002
	_		1.000			1" Ice	0.148	0.215	0.004
(3) ACU-A20-N	С	From Leg	4.000	0.000	148.000	No Ice	0.067	0.117	0.001
(E)			0.000			1/2" Ice	0.104	0.162	0.002
200 EVTEDNAL NOTCH		Erom Log	1.000	0.000	148.000	I" Ice	0.148	0.215	0.004
FILTER	A	FIOII Leg	4.000	0.000	148.000	1/2" Ice	0.000	0.321	0.011
(F)			1.000			1" Ice	0.703	0.398	0.017
800 EXTERNAL NOTCH	В	From Leg	4.000	0.000	148.000	No Ice	0.660	0.321	0.011
FILTER			0.000			1/2" Ice	0.763	0.398	0.017
(E)			1.000			1" Ice	0.873	0.483	0.024
800 EXTERNAL NOTCH	С	From Leg	4.000	0.000	148.000	No Ice	0.660	0.321	0.011
FILTER		-	0.000			1/2" Ice	0.763	0.398	0.017
(E)			1.000			1" Ice	0.873	0.483	0.024
(2) 6' x 2" Mount Pipe	А	From Leg	4.000	0.000	148.000	No Ice	1.425	1.425	0.022
(E)			0.000			1/2" Ice	1.925	1.925	0.033
(2) (1 y 2") Marrie Dia	Р	Enors I	1.000	0.000	140.000	I" Ice	2.294	2.294	0.048
(2) of $x \ge 1$ Mount Pipe	В	From Leg	4.000	0.000	148.000	1/0" L	1.425	1.425	0.022
(E)			0.000			1/2 ice	1.923	1.923	0.033

Job 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)

Crown Castle

Page 8 of 19

.

Date

B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Project

Client

Designed by Pavan Pai

15:42:42 03/23/17

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	Κ
			1.000			1" Ice	2.294	2.294	0.048
(2) 6' x 2" Mount Pipe	С	From Leg	4.000	0.000	148.000	No Ice	1.425	1.425	0.022
(E)			0.000			1/2" Ice	1.925	1.925	0.033
Distance Manuel [1 D 712 1]	C	News	1.000	0.000	149.000	I" Ice	2.294	2.294	0.048
Platform Mount [LP /12-1]	C	None		0.000	148.000	No Ice	24.530	24.530	1.335
(E-12/11A)						1/2" Ice	29.940	29.940	1.040
/>						1 100	50.500	00.000	1.500
BXA-70063-6CF-2 w/ Mount	А	From Leg	4.000	0.000	138.000	No Ice	7.806	5.801	0.042
Pipe			0.000			1/2" Ice	8.357	6.953	0.103
(E)			0.000			1" Ice	8.872	7.819	0.171
BXA-70063-6CF-2 w/ Mount	в	From Leg	4.000	0.000	138.000	No Ice	7.806	5.801	0.042
Pipe			0.000			1/2" Ice	8.357	6.953	0.103
(E)	C	E I	0.000	0.000	120.000	I" Ice	8.872	7.819	0.171
BXA-/0063-6CF-2 W/ Mount	C	From Leg	4.000	0.000	138.000	No Ice	/.806	5.801	0.042
Pipe (F)			0.000			1/2" Ice	8.33/	0.955	0.103
(E) BYA 171085 8BE EDIN 2	۸	From Lag	4.000	0.000	138.000	No Ice	3 170	3 3 5 3	0.171
w/ Mount Pine	A	FIOILLeg	4.000	0.000	138.000	1/2" Ice	3 5 5 5	3 971	0.029
(E)			0.000			1" Ice	3 930	4 595	0.001
BXA-171085-8BF-EDIN-2	в	From Leg	4 000	0.000	138 000	No Ice	3 179	3 353	0.029
w/ Mount Pipe	2	TTOIL LOG	0.000	0.000	120.000	1/2" Ice	3.555	3.971	0.061
(E)			0.000			1" Ice	3.930	4.595	0.099
BXA-171063-8BF-2 w/	С	From Leg	4.000	0.000	138.000	No Ice	3.179	3.353	0.029
Mount Pipe		-	0.000			1/2" Ice	3.555	3.971	0.061
(E)			0.000			1" Ice	3.930	4.595	0.099
(2) LPA-80063/6CF w/	А	From Leg	4.000	0.000	138.000	No Ice	9.831	10.215	0.052
Mount Pipe			0.000			1/2" Ice	10.400	11.384	0.145
(E)			0.000			1" Ice	10.933	12.269	0.246
(2) LPA-80080/6CF w/	В	From Leg	4.000	0.000	138.000	No Ice	4.564	10.259	0.046
Mount Pipe			0.000			1/2" Ice	5.105	11.427	0.113
	C	E I	0.000	0.000	120.000	I" Ice	5.612	12.312	0.18/
(2) LPA-80080/6CF W/	C	From Leg	4.000	0.000	138.000	NO ICE	4.564	10.259	0.046
(E)			0.000			1/2" Ice	5.105	11.427	0.113
(E) Platform Mount [LP 712-1]	C	None	0.000	0.000	138 000	No Ice	24 530	24 530	0.107
(F)	C	INOILE		0.000	138.000	1/2" Ice	24.550	24.330	1.555
						1" Ice	35 350	35 350	1.040
/>						1 100	55.550	55.550	1.900
HPA-65R-BUU-H8 w/	А	From Leg	4.000	0.000	128.000	No Ice	13.213	9.582	0.100
Mount Pipe		-	0.000			1/2" Ice	13.899	11.052	0.196
(AT&TP)			0.000			1" Ice	14.587	12.496	0.303
HPA-65R-BUU-H8 w/	В	From Leg	4.000	0.000	128.000	No Ice	13.213	9.582	0.100
Mount Pipe			0.000			1/2" Ice	13.899	11.052	0.196
(P)	-		0.000			1" Ice	14.587	12.496	0.303
HPA-65R-BUU-H8 w/	С	From Leg	4.000	0.000	128.000	No Ice	13.213	9.582	0.100
Mount Pipe			0.000			1/2" Ice	13.899	11.052	0.196
(P)		Enon Lee	0.000	0.000	129.000	I" Ice	14.58/	12.496	0.303
(3) KRU-11	A	From Leg	4.000	0.000	128.000	1/2" Lee	1.039	1.262	0.044
(P)			0.000			1/2 ICe	1.602	1.410	0.000
(3) RPU-11	R	From Leg	4 000	0.000	128 000	No Ice	1.972	1.300	0.078
(P)	U	110111 Leg	0.000	0.000	120.000	1/2" Ice	1.059	1.202	0.044
(*)			0.000			1" Ice	1.972	1.566	0.078
(3) RRU-11	С	From Leg	4,000	0.000	128 000	No Ice	1.639	1.262	0.044
(P)	-		0.000	0.000	120.000	1/2" Ice	1.802	1.410	0.060
(-)			0.000			1" Ice	1.972	1.566	0.078

Job 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)

Crown Castle

Page 9 of 19

Date

B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Project

Client

Designed by Pavan Pai

15:42:42 03/23/17

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Type	Horz	Adjustment			Front	Side	
	Leg		Lateral						
			Vert				. 2	. 3	
			ft	0	ft		ft^2	ft^2	K
			ft						
	-		ft	0.000	120.000		0.015	0.015	0.010
(2) DC6-48-60-18-8F	В	From Leg	4.000	0.000	128.000	NO ICE	0.917	0.91/	0.019
(P)			0.000			1/2 Tee	1.458	1.458	0.037
		Erom Log	0.000	0.000	128.000	I ICe	12 212	1.045	0.037
(4) IIF A-05K-BUU-II8 W/ Mount Pine	A	FIOIII Leg	4.000	0.000	128.000	1/2" Ice	13.213	9.362	0.100
$(\Delta T \& T_{}SI \Delta)$			0.000			1" Ice	14 587	12 496	0.190
(4) HPA-65R-BUIU-H8 w/	в	From Leg	4 000	0.000	128 000	No Ice	13 213	9 582	0.100
Mount Pipe	Б	r toin Leg	0.000	0.000	120.000	1/2" Ice	13 899	11.052	0.196
(SLA)			0.000			1" Ice	14.587	12.496	0.303
(4) HPA-65R-BUU-H8 w/	С	From Leg	4.000	0.000	128.000	No Ice	13.213	9.582	0.100
Mount Pipe		0	0.000			1/2" Ice	13.899	11.052	0.196
(SLA)			0.000			1" Ice	14.587	12.496	0.303
RRUS E2 B29	А	From Leg	4.000	0.000	128.000	No Ice	3.145	1.285	0.060
(SLA)			0.000			1/2" Ice	3.365	1.438	0.083
			0.000			1" Ice	3.592	1.600	0.110
RRUS E2 B29	В	From Leg	4.000	0.000	128.000	No Ice	3.145	1.285	0.060
(SLA)			0.000			1/2" Ice	3.365	1.438	0.083
			0.000			1" Ice	3.592	1.600	0.110
RRUS E2 B29	С	From Leg	4.000	0.000	128.000	No Ice	3.145	1.285	0.060
(SLA)			0.000			1/2" Ice	3.365	1.438	0.083
(2) DDI 11		Enour Las	0.000	0.000	129.000	I" Ice	3.592	1.600	0.110
(5) KKU-11 (SLA)	A	From Leg	4.000	0.000	128.000	1/2" Loo	1.039	1.202	0.044
(SLA)			0.000			1/2" Ice	1.802	1.410	0.060
(3) PPII 11	в	From Lag	4.000	0.000	128.000	No Ice	1.972	1.300	0.078
(SLA)	Б	FIOIII Leg	0.000	0.000	128.000	1/2" Ice	1.039	1 410	0.044
(BERI)			0.000			1" Ice	1.002	1.566	0.000
(3) RRU-11	С	From Leg	4.000	0.000	128.000	No Ice	1.639	1.262	0.044
(SLA)	-		0.000			1/2" Ice	1.802	1.410	0.060
			0.000			1" Ice	1.972	1.566	0.078
RRUS-32 B30	А	From Leg	4.000	0.000	128.000	No Ice	3.314	2.424	0.077
(SLA)		-	0.000			1/2" Ice	3.558	2.638	0.105
			0.000			1" Ice	3.809	2.860	0.136
RRUS-32 B30	В	From Leg	4.000	0.000	128.000	No Ice	3.314	2.424	0.077
(SLA)			0.000			1/2" Ice	3.558	2.638	0.105
	-		0.000			1" Ice	3.809	2.860	0.136
RRUS-32 B30	С	From Leg	4.000	0.000	128.000	No Ice	3.314	2.424	0.077
(SLA)			0.000			1/2" Ice	3.558	2.638	0.105
DC(49 (0 19 9E		Enour Los	0.000	0.000	129.000	I" Ice	3.809	2.860	0.136
SLA)	A	FIOIII Leg	4.000	0.000	128.000	1/2" Ice	0.917	1 458	0.019
(SLA)			0.000			172 ICC	1.438	1.438	0.057
(2) DC6-48-60-18-8F	в	From Leg	4 000	0.000	128 000	No Ice	0.917	0.917	0.019
(SLA)	Б	110111 208	0.000	0.000	120.000	1/2" Ice	1 458	1 4 5 8	0.037
(2=1)			0.000			1" Ice	1.643	1.643	0.057
DC6-48-60-18-8F	С	From Leg	4.000	0.000	128.000	No Ice	0.917	0.917	0.019
(SLA)		C C	0.000			1/2" Ice	1.458	1.458	0.037
			0.000			1" Ice	1.643	1.643	0.057
(2) RRUS 12-B2	А	From Leg	4.000	0.000	128.000	No Ice	3.143	1.282	0.058
(SLA)			0.000			1/2" Ice	3.363	1.434	0.081
	_	_	0.000			1" Ice	3.590	1.595	0.108
(2) RRUS 12-B2	В	From Leg	4.000	0.000	128.000	No Ice	3.143	1.282	0.058
(SLA)			0.000			1/2" Ice	3.363	1.434	0.081
(a) DBUG 12 D2	C	Enour I	0.000	0.000	120.000	I" Ice	5.590	1.595	0.108
(2) KKUS 12-B2	U	From Leg	4.000	0.000	128.000	1/2" Loc	3.143	1.282	0.058
(SLA)			0.000			1/2 ICC 1" Ice	3.505	1.434	0.081
			0.000			1 100	5.590	1.373	0.108

89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU#

Crown Castle

Page 10 of 19

Designed by

15:42:42 03/23/17

Pavan Pai

Date

876373)

Job

Project

Client

B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Description	Face	Offset Turn s	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or Leg	Туре	поrz Lateral	Aajusimeni			Front	Side	
			Vert						
			ft	0	ft		ft^2	ft^2	Κ
			ft						
(2) DDUS A2	•	Erom Log		0.000	128.000	No Ioo	2.066	0.409	0.022
(2) KRUS A2 (SLA)	A	FIOII Leg	4.000	0.000	128.000	1/2" Ice	2.000	0.498	0.022
(BLA)			0.000			1" Ice	2.245	0.724	0.050
(2) RRUS A2	в	From Leg	4 000	0.000	128.000	No Ice	2.451	0.724	0.030
(SLA)	Б	I tolli Leg	0.000	0.000	120.000	1/2" Ice	2.000	0.498	0.022
(SEIT)			0.000			1" Ice	2 431	0.724	0.050
(2) RRUS A2	С	From Leg	4 000	0.000	128 000	No Ice	2.066	0.498	0.020
(SLA)	c	110111 208	0.000	0.000	120.000	1/2" Ice	2.245	0.607	0.035
(52.1)			0.000			1" Ice	2.431	0.724	0.050
KRF 102 361/1	А	From Leg	4.000	0.000	128.000	No Ice	1.939	0.552	0.026
(SLA)			0.000			1/2" Ice	2.112	0.655	0.039
			0.000			1" Ice	2.294	0.766	0.055
KRF 102 361/1	В	From Leg	4.000	0.000	128.000	No Ice	1.939	0.552	0.026
(SLA)		6	0.000			1/2" Ice	2.112	0.655	0.039
			0.000			1" Ice	2.294	0.766	0.055
KRF 102 361/1	С	From Leg	4.000	0.000	128.000	No Ice	1.939	0.552	0.026
(SLA)		e	0.000			1/2" Ice	2.112	0.655	0.039
			0.000			1" Ice	2.294	0.766	0.055
Sector Mount [SM 406-3]	С	None		0.000	128.000	No Ice	19.830	19.830	0.923
(P)						1/2" Ice	29.410	29.410	1.326
						1" Ice	38.990	38.990	1.729
/>									
PD1109E	Α	From Leg	3.000	0.000	79.000	No Ice	2.854	2.854	0.017
(E)			0.000			1/2" Ice	3.924	3.924	0.038
		F I	5.000	0.000	70.000	1" Ice	5.010	5.010	0.066
Side Arm Mount [SO /01-1]	А	From Leg	1.500	0.000	/9.000	No Ice	0.850	1.670	0.065
(E)			0.000			1/2" Ice	1.140	2.340	0.079
** ~ **			0.000			I" Ice	1.430	3.010	0.093
	C	Enous Las	2 000	0.000	45.000	N. L.	0.255	0.255	0.001
GPS_A	C	From Leg	3.000	0.000	45.000	1/2" L	0.255	0.255	0.001
(E)			0.000			1/2 ICe	0.320	0.320	0.003
Sida Arm Mount [SO 701 1]	C	From Log	1.500	0.000	45 000	No Ice	0.393	0.393	0.010
(E)	C	FIOIII Leg	0.000	0.000	45.000	1/2" Ice	1 140	2 3 4 0	0.003
(E)			0.000			1/2 ICC	1.140	2.340	0.079
/~			0.000			1 ICe	1.450	5.010	0.093
GPS A	Δ	From Leg	3 000	0.000	13 000	No Ice	0.255	0.255	0.001
(F-CL/TIA)	п	r toni Leg	0.000	0.000	15.000	1/2" Ice	0.233	0.235	0.001
(L-CL/11A)			0.000			1" Ice	0.320	0.393	0.003
Side Arm Mount [SO 701-1]	Δ	From Leg	1 500	0.000	13 000	No Ice	0.850	1 670	0.065
(E-Mount Ht /TIA)	17	i ioni Leg	0.000	0.000	15.000	1/2" Ice	1 140	2 340	0.079
(2 mount m. m)			0.000			1" Ice	1 430	3 010	0.093
			0.000			1 100	1.750	5.010	0.075

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	

4

1.2 Dead+1.6 Wind 30 deg - No Ice

tnxTower	Јов 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)	Page 11 of 19
B+T Group 1717 S.Boulder, Suite 300	Project	Date 15:42:42 03/23/17
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Pavan Pai

Comb.	Description	
No.	··· · · · · ·	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 60 deg - No Ice	
7	0.9 Dead+1.6 Wind 60 deg - No Ice	
8	1.2 Dead+1.6 Wind 90 deg - No Ice	
9	0.9 Dead+1.6 Wind 90 deg - No Ice	
10	1.2 Dead+1.6 Wind 120 deg - No Ice	
11	0.9 Dead+1.6 Wind 120 deg - No Ice	
12	1.2 Dead+1.6 Wind 150 deg - No Ice	
13	0.9 Dead+1.6 Wind 150 deg - No Ice	
14	1.2 Dead+1.6 Wind 180 deg - No Ice	
15	0.9 Dead+1.6 Wind 180 deg - No Ice	
16	1.2 Dead+1.6 Wind 210 deg - No Ice	
17	0.9 Dead+1.6 Wind 210 deg - No Ice	
18	1.2 Dead+1.6 Wind 240 deg - No Ice	
19	0.9 Dead+1.6 Wind 240 deg - No Ice	
20	1.2 Dead+1.6 Wind 270 deg - No Ice	
21	0.9 Dead+1.6 Wind 270 deg - No Ice	
22	1.2 Dead+1.6 Wind 300 deg - No Ice	
23	0.9 Dead+1.6 Wind 300 deg - No Ice	
24	1.2 Dead+1.6 Wind 330 deg - No Ice	
25	0.9 Dead+1.6 Wind 330 deg - No Ice	
26	1.2 Dead+1.0 Ice+1.0 Temp	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
33	1.2 Dead + 1.0 Wind 180 deg + 1.0 Ice + 1.0 Temp	
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
30 27	1.2 Dead+1.0 Wind 2/0 deg+1.0 Ide+1.0 Temp	
20	1.2 Dead+1.0 Wind 230 deg+1.0 Let+1.0 Temp	
30	1.2 Dead+1.0 wind o day Source	
40	Dead wind a deg service	
41	Dead wind So day Service	
42	Dead + Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	5	71		Comb.	K	kip-ft	kip-ft
L1	148 - 116.5	Pole	Max Tension	26	0.000	0.000	-0.000
			Max. Compression	26	-32.760	-1.511	0.991
			Max. Mx	8	-11.647	-252.029	0.042
			Max. My	2	-11.599	-0.347	257.981
			Max. Vy	8	17.439	-252.029	0.042
			Max. Vx	2	-17.795	-0.347	257.981
			Max. Torque	5			-0.445

Job 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)

Page 12 of 19

Date

B+T Group 1717 S.Boulder, Suite 300

Project

Client

Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Pavan Pai

15:42:42 03/23/17

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
	5	51		Comb.	K	kip-ft	kip-ft
L2	116.5 - 98.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-38.087	-1.831	1.844
			Max. Mx	8	-14.926	-646.215	0.197
			Max. My	2	-14.888	-0.429	659,990
			Max. Vy	8	18,773	-646.215	0.197
			Max. Vx	2	-19.129	-0.429	659,990
			Max Torque	5	-,,		-0.445
1.3	98 5 - 80 25	Pole	Max Tension	1	0.000	0.000	0.000
20	,	1010	Max Compression	26	-42.869	-2.044	2,434
			Max Mx	8	-17.936	-910 422	0.314
			Max My	2	-17 904	-0.485	929 142
			Max Vy	8	19 665	-910 422	0 314
			Max Vx	2	-20.021	-0.485	929 142
			Max Torque	5	20.021	0.105	-0.445
14	80 25 - 70 5	Pole	Max Tension	1	0.000	0.000	0.000
2.	00.20 ,0.0	1010	Max Compression	26	-49 763	-2 266	3 954
			Max Mx	8	-22.471	-1199 785	0 735
			Max My	2	-22 445	-0 543	1223 724
			Max Vy	8	20.798	-1199 785	0 735
			Max Vx	2	-21.126	-0 543	1223 724
			Max Torque	10	21.120	0.545	0 522
L5	70 5 - 39 75	Pole	Max Tension	1	0.000	0.000	0.000
20	10.0 59.10	1010	Max Compression	26	-61 560	-2 606	5.042
			Max Mx	8	-30 651	-1750 176	0.977
			Max. Mx	2	-30.635	-0.653	1782 567
			Max Vy	8	22 350	-1750 176	0.977
			Max Vy	2	-22.550	-0.653	1782 567
			Max Torque	10	22.070	0.000	0.521
1.6	39 75 - 31 75	Pole	Max Tension	1	0.000	0.000	0.000
LU	59.15 51.15	1010	Max Compression	26	-70 498	-2.320	5 381
			Max Mx	8	-37 167	-2052 173	0.844
			Max. My	2	-37.154	-0.355	2089.189
			Max Vy	8	23 173	-2052 173	0 844
			Max Vx	2	-23 509	-0.355	2089 189
			Max Torque	11	20.000	0.000	0 351
L7	31.75 - 17.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-77.786	-2.430	5.991
			Max. Mx	8	-42.520	-2381.016	0.844
			Max. My	2	-42.513	-0.271	2422.784
			Max. Vv	8	23.815	-2381.016	0.844
			Max. Vx	2	-24.147	-0.271	2422.784
			Max. Torque	11			0.351
L8	17.75 - 14.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-79.937	-2.460	6.220
			Max. Mx	8	-44.120	-2464.640	0.845
			Max. My	2	-44,114	-0.250	2507.588
			Max. Vv	8	23.985	-2464.640	0.845
			Max. Vx	2	-24.316	-0.250	2507.588
			Max. Torque	11			0.351
L9	14.25 - 0	Pole	Max Tension	1	0.000	0.000	0.000
-			Max. Compression	26	-87.931	-2.889	7.410
			Max. Mx	8	-50.195	-2811.416	1.122
			Max. My	2	-50.195	-0.168	2859.116
			Max. Vv	8	24.655	-2811.416	1.122
			Max. Vx	2	-24.959	-0.168	2859.116
			Max. Torque	11			0.507
			ĩ				

Designed by

B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown Castle

Designed by Pavan Pai

15:42:42 03/23/17

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	Κ	Κ	K
		Comb.			
Pole	Max. Vert	26	87.931	-0.000	0.000
	Max. H _x	20	50.202	24.642	0.010
	Max. Hz	2	50.202	0.010	24.946
	Max. M _x	2	2859.116	0.010	24.946
	Max. Mz	8	2811.416	-24.642	-0.010
	Max. Torsion	11	0.507	-21.346	-12.482
	Min. Vert	19	37.651	21.335	-12.464
	Min. H _x	8	50.202	-24.642	-0.010
	Min. Hz	14	50.202	-0.010	-24.946
	Min. M _x	14	-2855.932	-0.010	-24.946
	Min. Mz	20	-2810.135	24.642	0.010
	Min. Torsion	23	-0.505	21.346	12.482

Client

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
Dead Only	41.835	0.000	0.000	-1.288	-0.507	0.000
1.2 Dead+1.6 Wind 0 deg - No	50.202	-0.010	-24.946	-2859.116	-0.168	0.206
Ice						
0.9 Dead+1.6 Wind 0 deg - No Ice	37.651	0.021	-24.946	-2833.060	-0.019	0.209
1.2 Dead+1.6 Wind 30 deg - No Ice	50.202	12.312	-21.598	-2476.071	-1405.588	-0.054
0.9 Dead+1.6 Wind 30 deg - No	37.651	12.312	-21.598	-2453.447	-1392.828	-0.050
1.2 Dead+1.6 Wind 60 deg - No	50.202	21.335	-12.464	-1429.985	-2434.593	-0.299
0.9 Dead+1.6 Wind 60 deg - No	37.651	21.335	-12.464	-1416.751	-2412.612	-0.297
1.2 Dead+1.6 Wind 90 deg - No	50.202	24.642	0.010	-1.122	-2811.416	-0.465
0.9 Dead+1.6 Wind 90 deg - No	37.651	24.642	0.010	-0.716	-2786.063	-0.464
Ice 1.2 Dead+1.6 Wind 120 deg -	50.202	21.346	12.482	1427.616	-2435.066	-0.506
No Ice 0.9 Dead+1.6 Wind 120 deg -	37.651	21.346	12.482	1415.194	-2413.083	-0.507
No Ice 1.2 Dead+1.6 Wind 150 deg -	50.202	12.330	21.609	2473.358	-1406.406	-0.411
No Ice 0.9 Dead+1.6 Wind 150 deg -	37.651	12.330	21.609	2451.547	-1393.644	-0.413
No Ice 1.2 Dead+1.6 Wind 180 deg -	50.202	0.010	24.946	2855.932	-1.112	-0.206
No Ice 0.9 Dead+1.6 Wind 180 deg -	37.651	0.010	24.946	2830.690	-0.944	-0.209
No Ice 1.2 Dead+1.6 Wind 210 deg -	50.202	-12.312	21.598	2472.886	1404.309	0.055
0.9 Dead+1.6 Wind 210 deg -	37.651	-12.312	21.598	2451.077	1391.882	0.052
1.2 Dead+1.6 Wind 240 deg -	50.202	-21.335	12.464	1426.798	2433.313	0.301
0.9 Dead+1.6 Wind 240 deg -	37.651	-21.335	12.464	1414.379	2411.666	0.298

Job

Project

Client

89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)

Page 14 of 19

Date

B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Crown	Castle

Designed by Pavan Pai

15:42:42 03/23/17

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
No Ice						
1.2 Dead+1.6 Wind 270 deg -	50.202	-24.642	-0.010	-2.066	2810.135	0.465
No Ice						
0.9 Dead+1.6 Wind 270 deg -	37.651	-24.642	-0.010	-1.656	2785.115	0.464
No Ice						
1.2 Dead+1.6 Wind 300 deg -	50.202	-21.346	-12.482	-1430.803	2433.784	0.505
No Ice						
0.9 Dead+1.6 Wind 300 deg -	37.651	-21.346	-12.482	-1417.565	2412.134	0.505
No Ice						
1.2 Dead+1.6 Wind 330 deg -	50.202	-12.330	-21.609	-2476.543	1405.124	0.410
No Ice						
0.9 Dead+1.6 Wind 330 deg -	37.651	-12.330	-21.609	-2453.917	1392.696	0.412
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	87.931	0.000	-0.000	-7.410	-2.889	-0.000
1.2 Dead+1.0 Wind 0 deg+1.0	87.931	-0.003	-4.877	-570.548	-2.832	0.045
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	87.931	2.421	-4.222	-495.059	-281.599	-0.022
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	87.931	4.196	-2.436	-288.956	-485.707	-0.082
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	87.931	4.847	0.003	-7.463	-560.465	-0.121
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	87.931	4.199	2.441	273.994	-485.842	-0.127
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	87.931	2.426	4.225	479.998	-281.833	-0.099
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	87.931	0.003	4.877	555.352	-3.102	-0.045
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	87.931	-2.421	4.222	479.864	275.666	0.021
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	87.931	-4.196	2.436	273.760	479.774	0.082
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	87.931	-4.847	-0.003	-7.733	554.532	0.121
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	87.931	-4.199	-2.441	-289.190	479.909	0.127
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	87.931	-2.426	-4.225	-495.195	275.899	0.099
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	41.835	-0.002	-5.806	-662.984	-0.422	0.049
Dead+Wind 30 deg - Service	41.835	2.866	-5.027	-574.283	-325.847	-0.012
Dead+Wind 60 deg - Service	41.835	4.966	-2.901	-332.058	-564.105	-0.069
Dead+Wind 90 deg - Service	41.835	5.736	0.002	-1.213	-651.353	-0.108
Dead+Wind 120 deg - Service	41.835	4.968	2.905	329.604	-564.214	-0.118
Dead+Wind 150 deg - Service	41.835	2.870	5.030	571.748	-326.037	-0.096
Dead+Wind 180 deg - Service	41.835	0.002	5.806	660.339	-0.641	-0.049
Dead+Wind 210 deg - Service	41.835	-2.866	5.027	571.639	324.784	0.012
Dead+Wind 240 deg - Service	41.835	-4.966	2.901	329.414	563.042	0.069
Dead+Wind 270 deg - Service	41.835	-5.736	-0.002	-1.432	650.291	0.108
Dead+Wind 300 deg - Service	41.835	-4.968	-2.905	-332.248	563.152	0.118
Dead+Wind 330 deg - Service	41.835	-2.870	-5.030	-574.393	324.974	0.096

Solution Summary

	Sur	n of Applied Forces	5		Sum of Reaction	s	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	Κ	Κ	Κ	Κ	Κ	K	
1	0.000	-41.835	0.000	0.000	41.835	0.000	0.000%
2	-0.010	-50.202	-24.945	0.010	50.202	24.946	0.000%
tn _r T	ower						
-------------------	---------						
UUN L	0 10 01						

Job 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU#

Page 15 of 19

Date

876373)

Project

Client

B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

	Sun	n of Applied Forces	1		Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	Κ	Κ	Κ	Κ	Κ	Κ	
3	-0.010	-37.651	-24.945	-0.021	37.651	24.946	0.068%
4	12.312	-50.202	-21.598	-12.312	50.202	21.598	0.000%
5	12.312	-37.651	-21.598	-12.312	37.651	21.598	0.000%
6	21.335	-50.202	-12.464	-21.335	50.202	12.464	0.000%
7	21.335	-37.651	-12.464	-21.335	37.651	12.464	0.000%
8	24.642	-50.202	0.010	-24.642	50.202	-0.010	0.000%
9	24.642	-37.651	0.010	-24.642	37.651	-0.010	0.000%
10	21.346	-50.202	12.482	-21.346	50.202	-12.482	0.000%
11	21.346	-37.651	12.482	-21.346	37.651	-12.482	0.000%
12	12.330	-50.202	21.609	-12.330	50.202	-21.609	0.000%
13	12.330	-37.651	21.609	-12.330	37.651	-21.609	0.000%
14	0.010	-50.202	24.945	-0.010	50.202	-24.946	0.000%
15	0.010	-37.651	24.945	-0.010	37.651	-24.946	0.000%
16	-12.312	-50.202	21.598	12.312	50.202	-21.598	0.000%
17	-12.312	-37.651	21.598	12.312	37.651	-21.598	0.000%
18	-21.335	-50.202	12.464	21.335	50.202	-12.464	0.000%
19	-21.335	-37.651	12.464	21.335	37.651	-12.464	0.000%
20	-24.642	-50.202	-0.010	24.642	50.202	0.010	0.000%
21	-24.642	-37.651	-0.010	24.642	37.651	0.010	0.000%
22	-21.346	-50.202	-12.482	21.346	50.202	12.482	0.000%
23	-21.346	-37.651	-12.482	21.346	37.651	12.482	0.000%
24	-12.330	-50.202	-21.609	12.330	50.202	21.609	0.000%
25	-12.330	-37.651	-21.609	12.330	37.651	21.609	0.000%
26	0.000	-87.931	0.000	-0.000	87.931	0.000	0.000%
27	-0.003	-8/.931	-4.8/6	0.003	87.931	4.8//	0.000%
28	2.421	-8/.951	-4.222	-2.421	87.931	4.222	0.000%
29	4.190	-8/.951	-2.430	-4.196	87.931	2.430	0.000%
21	4.047	-0/.951	0.003	-4.647	87.931	-0.003	0.000%
31	4.199	-6/.951	2.441	-4.199	87.931	-2.441	0.000%
32	0.003	-07.931	4.225	-2.420	87.931	-4.225	0.000%
34	-2 421	-87 931	4.870	2 421	87.931	-4.077	0.000%
35	-4.196	-87 931	2 /36	1 196	87.931	-7.436	0.000%
36	-4.190	-87 931	-0.003	4.190	87 931	0.003	0.000%
37	-4 199	-87 931	-2 441	4 199	87 931	2 441	0.000%
38	-2.426	-87 931	-4 225	2.426	87 931	4 225	0.000%
39	-0.002	-41 835	-5.806	0.002	41.835	5 806	0.000%
40	2.866	-41.835	-5.027	-2.866	41.835	5.027	0.000%
41	4 966	-41 835	-2.901	-4 966	41.835	2.901	0.000%
42	5 736	-41 835	0.002	-5 736	41.835	-0.002	0.000%
43	4.968	-41.835	2.905	-4.968	41.835	-2.905	0.000%
44	2.870	-41.835	5.030	-2.870	41.835	-5.030	0.000%
45	0.002	-41.835	5.806	-0.002	41.835	-5.806	0.000%
46	-2.866	-41.835	5.027	2.866	41.835	-5.027	0.000%
47	-4.966	-41.835	2.901	4.966	41.835	-2.901	0.000%
48	-5.736	-41.835	-0.002	5.736	41.835	0.002	0.000%
49	-4.968	-41.835	-2.905	4.968	41.835	2.905	0.000%
50	-2.870	-41.835	-5.030	2.870	41.835	5.030	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00043366
3	Yes	4	0.00000001	0.00031730

15:42:42 03/23/17

Crown Castle

Designed by Pavan Pai

					Dama				
	turTower	Job			Page				
	uns 1 Ower	89028.006	.01 - LONG EDDY	WRIGHT PROPERTY, CT (B	U# 16 of 19				
			87	76373)					
	_	Project	Project						
	B+T Group				15.10.10 00/00/47				
1	1717 S.Boulder, Suite 30	00			13.42.42 03/23/17				
	Tulsa, OK 74119	Client			Designed by				
	Phone: (918) 587-4630)	Crov	wn Castle	Pavan Pai				
	FAX: (918) 295-0265				i avairi ai				
4	Yes	5	0.00000001	0.00079841					
5	Yes	5	0.00000001	0.00037024					
6	Yes	5	0.00000001	0.00078828					
7	Yes	5	0.0000001	0.00035362					
8	r es Vez	4 1	0.0000001	0.00055762					
9) Vec	4 5	0.0000001	0.00078296					
11	Yes	5	0.00000001	0.00036344					
12	2 Yes	5	0.00000001	0.00079958					
13	3 Yes	5	0.00000001	0.00037101					
14	4 Yes	4	0.00000001	0.00043782					
15	5 Yes	4	0.00000001	0.00025066					
16	5 Yes	5	0.00000001	0.00078717					
17	7 Yes	5	0.00000001	0.00036502					
18	Yes	5	0.00000001	0.00078769					
19	Yes	5	0.00000001	0.00036605					
20	y Yes	4	0.0000001	0.00036007					
21	Yes	4	0.0000001	0.00019020					
22	L I CS	5	0.0000001	0.00079337					
23	, 105 1 Ves	5	0.0000001	0.00078635					
25	5 Yes	5	0.00000001	0.00036438					
26	5 Yes	4	0.00000001	0.00007774					
27	7 Yes	5	0.00000001	0.00052012					
28	3 Yes	5	0.00000001	0.00055675					
29	Yes	5	0.00000001	0.00055319					
30) Yes	5	0.00000001	0.00051132					
31	Yes	5	0.00000001	0.00054205					
32	2 Yes	5	0.00000001	0.00054236					
33	Yes	5	0.00000001	0.00050513					
34	+ Yes	5	0.0000001	0.00053336					
33	Ver	5	0.0000001	0.00055550					
30	7 Yes	5	0.0000001	0 00054469					
38	Yes	5	0.00000001	0.00054991					
39	Yes	4	0.00000001	0.00006861					
40) Yes	4	0.00000001	0.00031988					
41	Yes	4	0.00000001	0.00031133					
42	2 Yes	4	0.00000001	0.00006590					
43	Yes	4	0.00000001	0.00030492					
44	Yes	4	0.00000001	0.00032079					
45	Yes	4	0.00000001	0.00006840					
46	Yes	4	0.0000001	0.00030614					
4/	Yes Voc	4	0.0000001	0.00050974					
48	V_{ec}	4 /	0.0000001	0.00031661					
42) 105) Yes	4	0.0000001	0.00030565					
	, 105	–	0.0000001	0.00050505					

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	148 - 116.5	16.792	39	1.026	0.001
L2	120.25 - 98.5	10.991	39	0.934	0.000
L3	98.5 - 80.25	7.167	39	0.713	0.000
L4	84.75 - 70.5	5.277	39	0.598	0.000
L5	70.5 - 39.75	3.629	39	0.494	0.000
L6	45 - 31.75	1.498	39	0.303	0.000
L7	31.75 - 17.75	0.748	39	0.226	0.000

	89028.006.01 - LONG EDD F WRIGHT PROPERTY, CT (BO# 876373)	17 01 19
B+T Group 1717 S.Boulder, Suite 300	Project	Date 15:42:42 03/23/17
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Pavan Pai

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L8	17.75 - 14.25	0.235	39	0.124	0.000
L9	14.25 - 0	0.152	39	0.102	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
149.500	Top Hat	39	16.792	1.026	0.001	45945
149.000	TME-1900MHz RRH (65MHz)	39	16.792	1.026	0.001	45945
148.000	APXVSPP18-C-A20 w/ Mount Pipe	39	16.792	1.026	0.001	45945
138.000	BXA-70063-6CF-2 w/ Mount Pipe	39	14.643	1.012	0.001	22972
128.000	HPA-65R-BUU-H8 w/ Mount Pipe	39	12.547	0.981	0.001	11486
79.000	PD1109E	39	4.575	0.556	0.000	8161
45.000	GPS_A	39	1.498	0.303	0.000	9508
13.000	GPS_A	39	0.128	0.094	0.000	6796

Maximum Tower Deflections - Design Wind

° 0.003
° 0.003
0.003
0.002
0.001
0.001
0.001
0.000
0.000
0.000
0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
149.500	Top Hat	2	72.472	4.433	0.003	10743
149.000	TME-1900MHz RRH (65MHz)	2	72.472	4.433	0.003	10743
148.000	APXVSPP18-C-A20 w/ Mount Pipe	2	72.472	4.433	0.003	10743
138.000	BXA-70063-6CF-2 w/ Mount Pipe	2	63.199	4.371	0.002	5371
128.000	HPA-65R-BUU-H8 w/ Mount Pipe	2	54.152	4.236	0.002	2684
79.000	PD1109E	2	19.746	2.399	0.001	1896
45.000	GPS_A	2	6.464	1.310	0.000	2204
13.000	GPS_A	2	0.551	0.406	0.000	1575

tnxTower	Јов 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU# 876373)	Page 18 of 19
B+T Group 1717 S.Boulder, Suite 300	Project	Date 15:42:42 03/23/17
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client Crown Castle	Designed by Pavan Pai

Pole Design Data

Section	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P
<i>NO</i> .	ft		ft	ft		in^2	Κ	Κ	$\frac{\Gamma_u}{\phi P_n}$
L1	148 - 116.5 (1)	TP29.48x24x0.219	31.500	0.000	0.0	19.864	-11.599	1273.620	0.009
L2	116.5 - 98.5 (2)	TP32.175x28.39x0.25	21.750	0.000	0.0	25.332	-14.888	1751.620	0.008
L3	98.5 - 80.25 (3)	TP35.35x32.175x0.434	18.250	0.000	0.0	47.022	-17.904	2235.790	0.008
L4	80.25 - 70.5 (4)	TP36.547x34.067x0.487	14.250	0.000	0.0	55.723	-22.445	2653.470	0.008
L5	70.5 - 39.75 (5)	TP41.9x36.547x0.591	30.750	0.000	0.0	75.811	-30.635	3874.320	0.008
L6	39.75 - 31.75 (6)	TP42.666x40.361x0.643	13.250	0.000	0.0	85.803	-37.154	4394.700	0.008
L7	31.75 - 17.75 (7)	TP45.102x42.666x0.626	14.000	0.000	0.0	88.424	-42.513	4539.090	0.009
L8	17.75 - 14.25 (8)	TP45.711x45.102x0.728	3.500	0.000	0.0	103.899	-44.114	4902.000	0.009
L9	14.25 - 0 (9)	TP48.19x45.711x0.619	14.250	0.000	0.0	93.434	-50.195	4669.620	0.011

Pole Bending Design Data

Section	Elevation	Size	M _{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	148 - 116.5 (1)	TP29.48x24x0.219	257.981	749.418	0.344	0.000	749.418	0.000
L2	116.5 - 98.5 (2)	TP32.175x28.39x0.25	659.991	1149.925	0.574	0.000	1149.925	0.000
L3	98.5 - 80.25 (3)	TP35.35x32.175x0.434	929.142	1561.742	0.595	0.000	1561.742	0.000
L4	80.25 - 70.5 (4)	TP36.547x34.067x0.487	1223.725	1956.667	0.625	0.000	1956.667	0.000
L5	70.5 - 39.75 (5)	TP41.9x36.547x0.591	1782.567	3196.708	0.558	0.000	3196.708	0.000
L6	39.75 - 31.75	TP42.666x40.361x0.643	2089.192	3769.733	0.554	0.000	3769.733	0.000
	(6)							
L7	31.75 - 17.75	TP45.102x42.666x0.626	2422.783	4125.800	0.587	0.000	4125.800	0.000
	(7)							
L8	17.75 - 14.25	TP45.711x45.102x0.728	2507.592	4497.242	0.558	0.000	4497.242	0.000
	(8)							
L9	14.25 - 0 (9)	TP48.19x45.711x0.619	2859.117	4544.692	0.629	0.000	4544.692	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{μ}	ϕV_n	Ratio V _u	Actual T_{μ}	ϕT_n	Ratio T _u
	ft		ĸ	Κ	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	148 - 116.5 (1)	TP29.48x24x0.219	17.795	636.808	0.028	0.377	1500.667	0.000
L2	116.5 - 98.5 (2)	TP32.175x28.39x0.25	19.129	875.812	0.022	0.377	2302.667	0.000
L3	98.5 - 80.25 (3)	TP35.35x32.175x0.434	20.021	1117.890	0.018	0.377	3127.308	0.000
L4	80.25 - 70.5 (4)	TP36.547x34.067x0.487	21.126	1326.740	0.016	0.376	3918.117	0.000
L5	70.5 - 39.75 (5)	TP41.9x36.547x0.591	22.675	1937.160	0.012	0.376	6401.233	0.000
L6	39.75 - 31.75	TP42.666x40.361x0.643	23.509	2188.250	0.011	0.206	7548.691	0.000
L7	31.75 - 17.75 (7)	TP45.102x42.666x0.626	24.147	2260.670	0.011	0.206	8261.700	0.000
L8	17.75 - 14.25 (8)	TP45.711x45.102x0.728	24.316	2439.940	0.010	0.206	9005.500	0.000
L9	14.25 - 0 (9)	TP48.19x45.711x0.619	24.959	2326.120	0.011	0.206	9100.500	0.000

	tnxTower	Јоь 89028.00	6.01 - LON(G EDDY 876	WRIGHT 373)	PROPERT	Y, CT (BU#	Page 1	9 of 19
	B+T Group 1717 S.Boulder, Suite 300	Project						Date 15:42:4	42 03/23/17
	Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client		Crowr	n Castle			Designe Pa	d by van Pai
Section	Elevation	Size	Actual	φV	Ratio	Actual	φŢ	Ratio	
No.	ft	512C	V _u K	ψv_n K	$\frac{V_u}{\Phi V_n}$	T _u kip-ft	ψ1 _n kip-ft	$\frac{T_u}{\Phi T_n}$	

 ϕV_n

kip-ft

 ϕT_n

			F	Pole Int	teractio	on Des	ign Da	ta	
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	148 - 116.5 (1)	0.009	0.344	0.000	0.028	0.000	0.354	1.000	4.8.2 🖌
L2	116.5 - 98.5 (2)	0.008	0.574	0.000	0.022	0.000	0.583	1.000	4.8.2 🖌
L3	98.5 - 80.25 (3)	0.008	0.595	0.000	0.018	0.000	0.603	1.000	4.8.2 🖌
L4	80.25 - 70.5 (4)	0.008	0.625	0.000	0.016	0.000	0.634	1.000	4.8.2 🖌
L5	70.5 - 39.75 (5)	0.008	0.558	0.000	0.012	0.000	0.566	1.000	4.8.2 🖌
L6	39.75 - 31.75 (6)	0.008	0.554	0.000	0.011	0.000	0.563	1.000	4.8.2 🖌
L7	31.75 - 17.75 (7)	0.009	0.587	0.000	0.011	0.000	0.597	1.000	4.8.2 🖌
L8	17.75 - 14.25 (8)	0.009	0.558	0.000	0.010	0.000	0.567	1.000	4.8.2 🖌
L9	14.25 - 0 (9)	0.011	0.629	0.000	0.011	0.000	0.640	1.000	4.8.2 🖌

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
No.	ft	Type		Element	Κ	K	Capacity	Fail
L1	148 - 116.5	Pole	TP29.48x24x0.219	1	-11.599	1273.620	**	**
L2	116.5 - 98.5	Pole	TP32.175x28.39x0.25	2	-14.888	1751.620	**	**
L3	98.5 - 80.25	Pole	TP35.35x32.175x0.434	3	-17.904	2235.790	**	**
L4	80.25 - 70.5	Pole	TP36.547x34.067x0.487	4	-22.445	2653.470	**	**
L5	70.5 - 39.75	Pole	TP41.9x36.547x0.591	5	-30.635	3874.320	**	**
L6	39.75 - 31.75	Pole	TP42.666x40.361x0.643	6	-37.154	4394.700	**	**
L7	31.75 - 17.75	Pole	TP45.102x42.666x0.626	7	-42.513	4539.090	**	**
L8	17.75 - 14.25	Pole	TP45.711x45.102x0.728	8	-44.114	4902.000	**	**
L9	14.25 - 0	Pole	TP48.19x45.711x0.619	9	-50.195	4669.620	**	**
							Summary	
						Pole (L9)	**	**
						RATING =	**	**

**Check Additional Calculations

APPENDIX B

BASE LEVEL DRAWING

BUSINESS UNIT: 876373

APPENDIX C

ADDITIONAL CALCULATIONS

			Reinforcement	1						Reinforcement	2			1			R	einforcemei	nt 3		
Bottom	Тор	QTY	Туре	Position	Gap	Ten/Comp	Bottom	Тор	QTY	Туре	Position	Gap	Ten/Comp		Bottom	Тор	QTY	Type	Position	Gap	Ten/Comp
0	14.25	2	CI-XFP-08512	F	0	T&C	0	17.75	2	CI-XFP-06512	F	0	T&C	1	0				F	0	T&C
14.25	31.75	3	CI-XFP-08512	F	0	T&C					F	0	T&C						F	0	T&C
31.75	70.5	3	CI-XFP-08512	F	0	T&C					F	0	T&C						F	0	T&C
70.5	98.5	3	CI-XFP-0601(F	0	T&C					F	0	T&C						F	0	T&C
				F	0	T&C					F	0	T&C						F	0	T&C
				F	0	T&C					F	0	T&C						F	0	T&C
				F	0	T&C					F	0	T&C						F	0	T&C
				F	0	T&C					F	0	T&C						F	0	T&C
				F	0	T&C					F	0	T&C						F	0	T&C

				Original	Reinforced										Control							Equivalent		Equivalent	B	ottom	Тор	
Bottom	Тор	Original	Original	Ultimate	Shaft	Reinf. 1	Reinf. 1	Rein. 1	Reinf. 2	Reinf. 2	Rein. 2	Reinf. 3	Reinf. 3	Rein. 3	Stress		Section			Тор	Bottom	Shaft	Equivalent	Weight	Ele	evation	Elevation	Section
Elevation	Elevation	Thickness	Yield Stress	Stress	Capacity	QTY	Type	Capacity	QTY	Type	Capacity	QTY	Type	Capacity	Ratio	Top Height	Length	Lap Splice	# of Sides	Diameter	Diameter	Thickness	Shaft Fy	Mult.	F	ailure	Failure	Failure %
116.5000	148.0000	0.2188	60	75	35.3%										35.3%	148.0000	31.5000	3.7500	18	24.0000	29.4800	0.2188	60.0	1.00	1			
98.5000	120.2500	0.2500	65	80	58.2%										58.2%	120.2500	21.7500	0.0000	18	28.3901	32.1746	0.2500	65.0	1.00	2			
80.2500	98.5000	0.2500	65	80	48.7%	3	CI-XFP-06010	60.3%							60.3%	98.5000	18.2500	4.5000	18	32.1746	35.3500	0.4340	40.4	0.96	3			
70.5000	84.7500	0.3125	65	80	51.2%	3	CI-XFP-06010	63.4%							63.4%	84.7500	14.2500	0.0000	18	34.0670	36.5475	0.4869	40.5	0.97	4			
39.7500	70.5000	0.3125	65	80	49.2%	3	CI-XFP-08512	56.6%							56.6%	70.5000	30.7500	5.2500	18	36.5475	41.9000	0.5913	43.4	0.95	5			
31.7500	45.0000	0.3750	65	80	49.0%	3	CI-XFP-08512	56.3%							56.3%	45.0000	13.2500	0.0000	18	40.3612	42.6663	0.6433	43.4	0.96	6			
17.7500	31.7500	0.3750	65	80	52.1%	3	CI-XFP-08512	59.7%							59.7%	31.7500	14.0000	0.0000	18	42.6663	45.1020	0.6264	43.5	0.96	7			
14.2500	17.7500	0.3750	65	80	49.7%	3	CI-XFP-08512	56.7%	2	CI-XFP-06512	46.8%				56.7%	17.7500	3.5000	0.0000	18	45.1020	45.7109	0.7277	45.0	0.98	8			
0.0000	14.2500	0.3750	65	80	55.7%	2	CI-XFP-08512	49.4%	2	CI-XFP-06512	64.0%				64.0%	14.2500	14.2500	0.0000	18	45.7109	48.1900	0.6188	42.3	1.01	9			
																									10			
																									11			
																									12			
																									13			
																									14			
																									15			
																									16			
																									17			
																									18			
																									19			
																									20			
																									21			
																									22			
																									23			
																									24			
																									25			
																									26			
																									27			
																									28			
																									29			
																									30			

Rein1										
Bottom	Тор	Qty	Model	Position	Тс	or T&C		1	2	3
0	14.25	2	FP-085125		F	T&C	Γ			
14.25	31.75	3	FP-085125		F	T&C				
31.75	70.5	3	FP-085125		F	T&C				
70.5	98.5	3	FP-060100		F	T&C				
					F	T&C				
					F	T&C				
					F	T&C				
					F	T&C				
					F	T&C				

			Flats (l	Jsed fo	r relativ	ve orien	tation of	only. Ac	tual fla	t numb	ers may	/ vary.)				
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
										1						1
				1						1						1
				1						1						1
				1						1						1

Rein2

Bottom	Тор		Qty	Model	Position	T or T	&C
	0	17.75		2 FP-065125		F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C

1	1

Rein3

Bottom	Тор)	Qty	Model	Position	То	r T&C
	0					F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C
						F	T&C

5500 Flatirons Parkway, Suite 100 Boulder, CO 80301 720-304-6882

Dimensions and Properties														Compression	1			Axial				
																			ASD-9		LR	FD
						Centroid													Allowable			
					Centroid	from Bolt	Web			Flange	Hole			Slender.		Slender.			Axial w/		Design Axial	
	Weight		Moment of	Moment of	from Mating	Hole Center	Thickness		Flange	Thickness	Diameter	Yield Stress	Ultimate	Ratio	Unbraced	Ratio	Unbraced	Allowable	increase	Governing	Strength	Governing
Model	(lb/ft)	Area (in ²)	Inertia (in ⁴)	Inertia (in ⁴)	Edge (in)	(in)	(in)	Width (in)	Width (in)	(in)	(in)	(ksi)	Stress (ksi)	Coefficient	Length (in)	Coefficient	Length (in)	Axial (kip)	(kip)	Axial	(kip)	Axial
CCI-XFP-060100	20.4	6.00	0.50	18.00	0.5	0	1	6	0	0	1.1875	65	80	0.80	16	1.00	16	189.3	252.3	Compress.	285.0	Rupture
CCI-XFP-065125	27.6	8.13	1.06	28.61	0.625	0	1.25	6.5	0	0	1.1875	65	80	0.80	19	1.00	19	260.4	347.2	Compress.	393.8	Rupture
CCI-XFP-085125	36.2	10.63	1.38	63.97	0.625	0	1.25	8.5	0	0	1.1875	65	80	0.80	17	1.00	17	350.9	467.9	Compress.	543.1	Compress.

Site In D: 876373 Name: LONG EDD App. #: 378332 Rev	formation Y - WRIGHT P vision # 2	ROPERTY	Aero Optimizing	Solutio	ONS LLC er Infrastructure	<u>Base</u> Moment: Axial: Shear:	Reactions 2859 50 25	ft-kip kip kip	<u>Design</u> TIA Code: ASIF: Failure:	Information G 1.000 105%	
						Base Plate Type:	Square		eta Factor:	0.50	
Original An	ichor Rod Da	ta	First Added	Anchor Rod [Data	Second Added	Anchor Rod	Data	Third Added	Anchor Rod	Data
Quantity:	16		Quantity:	3		Quantity:			Quantity:		
)iameter:	2.25	in	Diameter:	2.25	in	Diameter:		in	Diameter:		in
1aterial:	A615 GR 75	÷	Material:	A193 B7		Material:			Material:		
olt Circle:	55.0	in	Bolt Circle:	62.0	in	Bolt Circle:		in	Bolt Circle:		in
olt Spacing:	6	in			_			_			
olt Group Area:	63.62	in²	Bolt Group Area:	11.93	in²	Bolt Group Area:	0.00	in²	Bolt Group Area:	0.00	in²
olt Group MOIx:	24055	in⁴	Bolt Group MOIx:	5732	in⁴	Bolt Group MOIx:	0	in⁴	Bolt Group MOIx:	0	in⁴
Reactions Seen b	oy Original AR	Group	Reactions Seen by	First Added	AR Group	Reactions Seen by S	econd Addec	AR Group	Reactions Seen by	Second Adde	d AR Grou
/loment:	2309.0	kip-ft	Moment:	550.1	kip-ft	Moment:	0.0	kip-ft	Moment:	0.0	kip-ft
xial:	50.2	kip	Axial:	0.0	kip	Axial:	0.0	kip	Axial:	0.0	kip
ihear:	25.0	kip	Shear:	0.0	kip	Shear:	0.0	kip	Shear:	0.0	kip
Original AR	Capacity Che	<u>ck</u>	First Added A	AR Capacity Cl	heck	Second Added	AR Capacity	<u>Check</u>	Second Added	AR Capacity	<u>Check</u>
ombined Load:	132.2	kip	Combined Load:	134.2	kip	Combined Load:	0.0	kip	Combined Load:	0.0	kip
llowable load:	259.8	kip	Allowable load:	324.8	kip	Allowable load:	0.0	kip	Allowable load:	0.0	kip
AR Capacity:	50.9%	Pass	AR Capacity:	41.3%	Pass	AR Capacity:	0.0%		AR Capacity:	0.0%	

Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /C

 Assumptions:
 1) Rod groups at corners. Total # rods divisible by 4. Maximum total # of rods = 48 (12 per Corner).

 2) Rod Spacing = Straight Center-to-Center distance between any (2) adjacent rods (same corner)

 3) Clear space between bottom of leveling nut and top of concrete **not** exceeding (1)*(Rod Diameter)

Site Data				Base	Reactions			
BU#:	876373			TIA Revision:	G			
Site Name:	LONG EDD	Y - WRIGHT Pł		Factored Moment. Mu	2308.97098	ft-kips		
App #:	378332 Rev	ision # 2/		Factored Axial, Put	50.1951	kips		
An	chor Rod D	ata		Factored Shear, Vu	24.959102	kips		
Eta Factor, η	0.5	TIA G (Fig. 4-4)		· · ·	•			
Qty:	16							
Diam:	2.25	in		Anchor Rod Results				
Rod Material:	A615-J			TIA G> Max Rod (Cu	ι+ Vu/η):		132.2	Kips
Yield, Fy:	75	ksi		Axial Design Strength,	Φ*Fu*Anet:		260.0	Kips
Strength, Fu:	100	ksi		Anchor Rod Stress Ra	tio:		50.8%	Pass
Bolt Circle:	55	in						
Anchor Spacing:	6	in						
	Plate Data			Base Plate Results		Flexura	I Check	ζ.
W=Side:	54	in		Base Plate Stress:			24.5	ksi
Thick:	2.75	in		PL Design Bending St	rength, Φ*Fy:		49.5	ksi
Grade:	55	ksi		Base Plate Stress Rati	0:		49.5%	Pass
Clip Distance:	6	in						
Stiffener De				N/A - Unstittened				
Sumener Da		at both sides)				N1/A		
Configuration:	Unstiffened	**		Horizontal Weld :		N/A		
vveid Type:		··· **		vertical vveid:		N/A		
Groove Depth:				Plate Flex+Shear, tb/Fb+	(TV/FV)^2:	N/A		
Groove Angle:		aegrees		Plate Lension+Snear, It/F	·t+(tv/Fv)^2:	N/A		
Fillet V. Wold:		< Disregaru		Plate Comp. (AISC Dia	ackel).	IN/A		
<u>Fillet</u> V. Weld. Width:		in in		Pole Results	ook:	Ν/Δ		
Height:		in	Г			IN/A		
Thick:		in		MOX PL Le				
Notch:		in		# Anchors 5t				
Grade:		ksi		at corner= Qty/4	THICKNESS			
Weld str.:		ksi			Anchor, Ty	р.		
						ENED CONFIG	GURATION L	
Pole Data						A	— в.с.	
Diam:	48.19	in						
Thick:	0.375	in					Input Clea	ar Space
Grade:	65	ksi				KV.	at B.C. fe Anchor C	or <u>Single</u> ase
# of Sides:	18	"0" IF Round						
					Pole w/)		
					Anchor Spacin	g Same As		
					Stiffener Spac Except for <u>Sig</u>	ng, <u>nle</u> Corner		
** Nata fra	- inint			death and by several 200	Anchor (Input	Clear Space		
ivole: for complet	e joint penetrati	on groove welds the	e groove	depth must be exactly 1/2 th	e sunener tnickne	ss for calc	ulation pt	nposes

<u>Proj. Number</u>	89028.006.01
<u>Proj. Name</u>	LONG EDDY / WRIGHT PROI
Code	Rev. G

Previously Ad	ded Ancho	<u>r Rods</u>	Existing Mfg A	nchor Rods	5
Diameter	2.25	in	Diameter	2.25	iı
Grade	A193 Gr B7		Quantity	16	
Quantity	3		Bolt Circle	55	iı
Bolt Circle	62	in			
Analysis Crite	ria		Foundation Pre	operties	
Load for Calcs?	Current L	oad	Туре	Pad	
<u> </u>			1		
Current Load	134.2	kips	Pad Thickness	3.5	f
Current Load Capacity	134.2 325	kips kips	Pad Thickness f' _c	3.5 3000	f p
Current Load Capacity	134.2 325	kips kips	Pad Thickness f' _c Clear Cover	3.5 3000 3	f p
Current Load Capacity	134.2 325 ies	kips kips	Pad Thickness f _c Clear Cover Pad Width	3.5 3000 3 24.5	f ii
Current Load Capacity <u>Tower Propert</u> Fy _{pole} =	134.2 325 ies 60	kips kips ksi	Pad Thickness f _c Clear Cover Pad Width	3.5 3000 3 24.5 10	f ii f

Summary Output						
- Anchor Rod Bracket Checks						
Tube Stress:	36.8%					
Max. Weld Stress:	77.4%					

Anchor Rod Bracket Properties

55 ksi

75 ksi

Gusset Properties

 $Fy_{base} =$ Fu_{base} =

Thickness	1.25	inch
Pole to Tube CL	6.8125	inch
Height	54	inch
Width at Tube	4.5625	inch
Fy _{plate} =	65	ksi
Fileine =	00	
· uplate	80	ksi
Gap =	0	ksi inch

Pipe /Tube Properties

2.25 in 16 55 in

3.5 ft 3000 psi 3 inch

24.5 ft

Size	4 XXS Pipe	
L _{pipe} =	14	inch
Length Above Gusset	3	inch
F _{ypipe} =	50	ksi
D _{pipe} =	4.5	inch
t _{pipe} =	0.674	inch
A _{pipe} =	8.101300374	inch ²
I _{pipe} =	15.28366215	inch ⁴
r _{pipe} =	1.373524299	inch

Weld Properties

F _{EXX} =	70	ksi	Weld Material Grade
Load Angle	45	degrees	
- Bracket to Tube	<u>Weld</u>		
Weld Type	Double Beve	l+Fillet	
Fillet Size	6		Vertical fillet weld size in sixteenths
Bevel Depth	0.375	inch	Bevel Depth in inches
I _{vweldpipe} =	11	inch	Length of Vertical Weld to Pipe
- Bracket to Pole	<u>Neld</u>		
Weld Type	Double Fillet		
D _{vpole} =	6		Vertical fillet weld size in sixteenths
H =	54	inch	Height of vertical weld from base plate
- Gusset to Base I	Plate Weld		
Weld Type	Double Beve	l+Fillet	
Bevel Depth	0.5	inch	Bevel depth in inches
Fillet Size	8		Fillet weld size in sixteenths

Additional Variables

C ₁ =	1.00	
k _{rt} =	0	
$\psi_t =$	1	

Electrode Strength Coefficient Transverse Reinforcement Index :

Rebar Location Factor :

Mon	opole Pad & Pie	er Foi	undation Analysis	
Design Loads: Shear: Moment: Tower Height: Tower Weight:	Input factored loads <u>25.0</u> kips <u>2,859.0</u> ft-kips <u>148.0</u> ft <u>50.0</u> kips		Re	v. Type: G
Pad & Pier Dimensions / Properties:				
Pole Diameter at Base: Bearing Depth: Pad Width: Neglected Depth: Thickness: Pier Diameter:	48.19 in 3.5 ft 24.5 ft 3.3 ft 4.0 ft 0.0 ft	24.5 FT		
Pier Height Above Grade: BP Dist. Above Pier: Clear Cover: Pier Rebar Size: Pier Rebar Quanity: Pad Rebar Size: Pad Rebar Quanity: Pier Tie Size:	0.5 ft 3.0 in 3.0 in 10 57 8 26 4		24.5 FT	
Tie Quanity: Rebar Yield Strength: Concrete Strength: Concrete Unit Weight:	7 60000 psi 3000 psi 0.15 kcf		Elevation Overview	
Soil Data: Soil Unit Weight: Ult. Bearing Capacity: Angle of Friction: Cohesion: Passive Pressure:	Allowable Values 0.120 kcf 12.000 ksf 30.000 deg 0.000 ksf 0.000 ksf			
Base Friction:	0.300		Summary of F Req'd Pier Diam.	Results No Good!
** Notes:			Overturning Shear Capacity Bearing Pad Shear - 1-way	76.9% 29.6% 21.6% 30.7%
			Pad Moment Capacity	48.7%