Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^0]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^1]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^2]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^3]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^4]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^5]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^6]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^7]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^8]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^9]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^10]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^11]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^12]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^13]Adam Wolfrey, Consultant
c/o New Cingular Wireless, PCS LLC(AT\&T)
Centerline Communications LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Phone: 508-667-3100
awolfrey@clinellc.com

5/17/2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Tower of Sharing Application // Site Number: CT1304

136 Wright Road Torrington, CT 06757 (Site Name: Torrington Wright Road)
N 41.82733 // W-73.170519

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently has rights from to install three (12) antennas at the 128 foot level of the existing 150 foot monopole tower at 136 Wright Road in Torrington CT. The monopole is managed by Crown Castle International. The property is also owned by James N Wright and/or Carol E Surv. In 03/18/12 a request for revision was sent to the CSC. In 2012, AT\&T received all the necessary approvals from CSC to move forward with installing AT\&T's proposed equipment however the equipment was never installed. Recently AT\&T hired my company to install AT\&T proposed equipment. There are a few changes from the original proposed plans. AT\&T no longer wishes to install a shelter at the location. AT\&T current proposed plans involve install three (12) Antennas. eighteen (18) remote radio units, two (2) Fiber - L98B-002, eight (8) Raycap DC6, four (8) Coax - WR-VG86ST. Please reference the construction drawing attached dated 04/05/17 for further details regarding AT\&T's proposed plans.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § for construction that constitutes a "Tower Share Filing". In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Elinor C. Carbone, Mayor for the City of Torrington, as well as the tower owner and the ground owner, Crown Castle International and James N Wright and/or Carol E Surv.

AT\&T was original approved for twelve (12) antennas on 2/07/2014. AT\&T was further approved for changes in from the original proposed work on 04/08/14. Attached to accommodate this filing are construction drawings dated 04/05/2017 by AEG Advanced Engineering Group, a structural analysis dated 3/27/2017 by B+T Group and an Emissions Analysis Report dated 04/28/2017.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by B+T Group dated 3/27/2017.
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes as an "Tower Share Filing".

Sincerely,

[^14]
Radio Frequency Emissions Analysis Report

AT\&T Existing Facility
Site ID: CT1304
Torrington Wright Road
136 Wright Road
Torrington, CT 6757

April 28, 2017

Centerline Communications Project Number: 950012-001

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{4 . 9 1} \%$

April 28, 2017
AT\&T Mobility - New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite 550-13\&14
Framingham, MA 06040

Emissions Analysis for Site: CT1304 - Torrington Wright Road

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT\&T facility located at $\mathbf{1 3 6}$ Wright Road, Torrington, CT, for the purpose of determining whether the emissions from the Proposed AT\&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT\&T Wireless antenna facility located at $\mathbf{1 3 6}$ Wright Road, Torrington, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT\&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	700 MHz	2	60
LTE	$1900 \mathrm{MHz}(\mathrm{PCS})$	2	60

Table 1: Channel Data Table

The following antennas listed in Table 2 were used in the modeling for transmission in the 700 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	CCI HPA-65R-BUU-H8	128
A	2	CCI HPA-65R-BUU-H8 (Future)	128
A	3	CCI HPA-65R-BUU-H8 (Future)	128
A	4	CCI HPA-65R-BUU-H8 (Future)	128
B	1	CCI HPA-65R-BUU-H8	128
B	2	CCI HPA-65R-BUU-H8 (Future)	128
B	3	CCI HPA-65R-BUU-H8 (Future)	128
B	4	CCI HPA-65R-BUU-H8 (Future)	128
C	1	CCI HPA-65R-BUU-H8	128
C	2	CCI HPA-65R-BUU-H8 (Future)	128
C	3	CCI HPA-65R-BUU-H8 (Future)	128
C	4	CCI HPA-65R-BUU-H8 (Future)	128

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT\&T configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	$\begin{gathered} 700 \mathrm{MHz} \text { / } \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	13.15 / 14.95	4	240	6,229.75	2.19
Antenna A2	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	Future Antenna	N/A	N/A	N/A	N/A	N/A
Antenna A3	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	Future Antenna	N/A	N/A	N/A	N/A	N/A
Antenna A4	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Sector A Composite MPE\%							2.19
Antenna B1	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	$\begin{gathered} 700 \mathrm{MHz} \text { / } \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	13.15 / 14.95	4	240	6,229.75	2.19
Antenna B2	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	Future Antenna	N/A	N/A	N/A	N/A	N/A
$\begin{aligned} & \text { Antenna } \\ & \text { B3 } \end{aligned}$	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	Future Antenna	N/A	N/A	N/A	N/A	N/A
Antenna B4	HPA-65R-BUU-H8	Future Antenna	N/A	N/A	N/A	N/A	N/A
Sector B Composite MPE\%							2.19
Antenna C1	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	$\begin{gathered} 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$		4	240	6,229.75	2.19
Antenna	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	Future Antenna	N/A	N/A	N/A	N/A	N/A
$\begin{gathered} \text { Antenna } \\ \text { C3 } \end{gathered}$	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	Future Antenna	N/A	N/A	N/A	N/A	N/A
$\begin{gathered} \text { Antenna } \\ \text { C } 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	Future Antenna	N/A	N/A	N/A	N/A	N/A
Sector C Composite MPE\%							2.19

Table 3: AT\&T Emissions Levels

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT\&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each AT\&T Sector as well as the composite MPE value for the site.

Site Composite MPE \%	
Carrier	MPE \%
AT\&T - Max Sector Value	$\mathbf{2 . 1 9} \%$
Verizon Wireless	2.10%
Sprint	0.62%
Site Total MPE \%:	$\mathbf{4 . 9 1} \%$

Table 4: All Carrier MPE Contributions

AT\&T Sector A Total:	2.19%
AT\&T Sector B Total:	2.19%
AT\&T Sector C Total:	2.19%
Site Total:	

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT\&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

AT\&T _Max Power Values per Frequency Band / Technology (All Sectors)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
AT\&T 700 MHz LTE	2	1,239.23	128	5.99	700 MHz	467	1.28\%
AT\&T 1900 MHz (PCS) LTE	2	1,875.65	128	9.06	1900 MHz (PCS)	1000	0.91\%

Table 6: AT\&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT\&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT\&T Sector	Power Density Value (\%)
Sector A:	2.19%
Sector B:	2.19%
Sector C:	2.19%
AT\&T Maximum Total (per sector):	2.19%
Site Total:	4.91%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is 4.91% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767

4. THE SCOPE OF MORR SHAL MCLUDE FURNSHMG AL

5. THE Conracior shul vir it job sif pror io The
 6. HE Contacion stal obia Auliorzaion To proced
 ClEERIY DEFNE
7. THE CONTRACTOR SHALL MSTALL ALL EQuMMENT AND MATRRMLS

-. THE CONTRECTOR SHALL LUPEENSE AND DRECC THE PROECT

 MROVEENSS AS SHOWH HEREIII

4. THE Conrracor Stal courly wit All osta reurement

 OR CoNSTRUC AN Poorion of the work thar in in

20 Mort arpou show on plan perers to approxmite tuve

22. AITENA WSTALATOO SHAL BE CONDOCIED PH FELD CREWS

26. AA UTHIM Mork Shal de in Accoronce wit local unum

ELECTRICAL AND GROUNDING NOTES

 THE EOUHMENT, RRVEWHV OR

30. DURING CONSTRUCTION. PER FCC MANDATE, ENHANCED EMERGENC
(E911) SERVCE IS REOURED TO MEE NATONWIDE STANDAROS 31. For wielss coumucanon syirus pracc omers

 Specifications.
32. APPLICABLE BULDING CODES

UBBCONTRACTOR'S WORK SHALL COMPIY WTH ALL APPLCABLE
AATONL, STATE, ANO LOCAL COOES AS ADOPTED BY THE LOCAL
 BULDING COOE:
009 ITIERNATONAL BULDING CODE

SUBCONTRACTOR'S WORK SHALL COMPLY WTH THE LATEST EDTION OF
THE FOLOWNGG STANDARD:
AMERCAN CONCRETE NSTITUTE (ACI) 318 ; BULDING CODE
REQUREMENS FOR STRUCTURAL CONCRIE;
MERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)
MANUAL OF STEEL CONSTRUCTION, ASD, NNTH EDTION;
IEECOMMUNICATONS INOUSTRY ASSOOCATION (TAA) 222-6,
STRUCTURAL STANOARDS FOR STELL
ANTENNA TOWER AND ANTENNA SUPPORTNG STRUCTURES: REFER
TO ELECTRRCAL DRAWINGS FOR SPECIFCC ELECTRICAL STANDAROS.

15. USE \#6 COPPER STRANDED WRE WIH GREEN COLOR
ISSUATION FOR ABOVE GRADE GROUNOING (UNESSS OTHE
 DRAWING. 16. ALL GROUND CONNECTIONS TO BE BURNOY HYGROUND
COMPRSSION TPE CONECTORS OR CAOWELD EXOHHERMCC WELD. COMPRESSION TPE CONNECTORS OR CADWELD EXOTHERMC WED
OO NOT ALLOW EARE COPPER WRE TO BE N CONTACT WTH
GALVAIZE STEEL. Galvanzed Steel.

$$
\begin{aligned}
& \begin{array}{l}
\text { 17. ROUTE GROUNDNG CONOUCTORS ALONG THE SHORTEST AND } \\
\text { STRAIGHIEST PATH POSSIBEE, EXCETT AS OTHERWIS INDCAIED. }
\end{array}
\end{aligned}
$$

 18. CONNECTONS TO GROUNO BARS SHAL BE MADE WTH TWO
HOLECOPRESIIN TPE OPPER LUGS. APPLY OXIE INHBTING
COMPOUND TO ALL LOCATINS. 19. BoND ANIENNA MOUNTING BRACKETS, COAXAL CABLE GROUND
KIS, AND ALLA TO EGB PLACED NEAR THE ANIENNA LOCATION. 20. APPLY OXIDE INHIBIING COMPOUND TO ALL COMPRESSION
TTPE GROUND CONNECTONS. 21. CONTRACTOR SHAL PROODE AND INSTAL OMNN DIRECTONA
EEECTRONC MAREER SYSTEM (EMS) BALS OVER EACH GROUND ROD AND BONOING POINT BETWEEN EXISTING TOWER/ (E)
MONOPOLE GROUNONG RING ANO EQUIPMENT GROUNONG RING.

23.CONTRACTOR SHAL CONDUCT ANTENNA, COAX, AND LNA

11. ALL EQUPMENT LOCATED OUTSIDE SHALL HAVE NEMA $3 R$ ENCLOSURE. 12. PPC SUPPLLED BY PROUECT OWNER.
 14. GROUND COAXAL CABLE SHIEDS MIMMUM AT BOTH ENOS USING
MANUFACTURERS COAX CABLE GROUNDING KITS SUPPLED BY PROUECT

ABBREVIATIONS

AGL	above grade level	g.c.	general contractor	RF	RADIO FREQUENCY
awg	american wire gauge	м ${ }^{\text {cb }}$	master ground bus		
bcw	bare copper wire	MIN	minimum	TBD	to be determined
втS	base transceiver station	(P)	PROPOSED/NEW	TBR	to be removed
(E)	Existing	N.t.s.	not to Scale	TBRR	TO BE REMOVED
EG	EQUIPMENT GROUND	REF	Reference		
EGR	Equipment ground ring	REQ	Required	TrP	trpical

SITE NUMBER: CT1304

CADVANCED ENGINEERING GROUP, P.C Civil Engineering - Site Development - Surveying - Telecommunication 500 North Broadway	CENTERLINE CENTERLINE COMMUNICATIONS 5 RYAN DRIVE, SUITE RAYNHAM, MA 02767	SITE NUMBER: CT1304 SITE NAME: TORRINGTON WRIGHT ROAD 136 WRIGHT ROAD TORRINGTON, CT 06757 LITCHFIELD COUNTY	at\&t 550 COCHITUATE ROAD, SUITE 13, FRAMINGHAM, MA 01701-4681	No.	оптE	Rensions	Br	वнкк	DETAILS	
				\bigcirc	03/01/17	ISSUED For Renew		Mrc		
					03/16/717	Rension		MRC,		
					-405/7			mac		
									SHEET No.	A-4

Subject:

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Structural Analysis Report
AT\&T Mobility Co-Locate
Carrier Site Number:
Carrier Site Name:
Crown Castle BU Number:
Crown Castle Site Name:
Crown Castle JDE Job Number:
Crown Castle Work Order Number:
Crown Castle Application Number:
B+T Group Project Number:

CT1304
Torrington Wright Road
876373
Long Eddy / Wright Property 427346
1381942
378332 Rev. 2
89028.006.01

136 Wright Rd., Torrington, Litchfield County, CT Latitude $41^{\circ} 49^{\prime} 38.34^{\prime \prime}$, Longitude -73 ${ }^{\circ} 10^{\prime} 13.97{ }^{\prime \prime}$
148 Foot - Monopole Tower
Dear Charles McGuirt,
$B+T$ Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1016487, in accordance with application 378332, revision 2.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

```
LC5: Existing + SLA Equipment + Proposed Equipment
Note: See Table 1 and Table 2 for the proposed and existing loading, respectively.
```


Sufficient Capacity

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3 -second gust wind speed of 120 mph converted to a nominal 3 -second gust wind speed of 93 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception \#5 of Section 1609.1.1. Exposure Category B and Risk Category II were used in this analysis.

All equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at $B+T$ Group appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:
B+T Engineering, Inc.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing Antenna and Cable Information
Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 148 ft . Monopole tower designed by Summit manufacturing in June of 2000. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F.This tower has been modified by B+T Group in February of 2014 and those modifications are incorporated in our Analysis.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a 3-second gust wind speed of 93 mph with no ice, 40 mph with 0.75 inch ice thickness and 60 mph under service loads, exposure category B with topographic category 1 and crest height of 0 feet.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
128.0	128.0	3	CCI Antennas	HPA-65R-BUU-H8	51	$\begin{aligned} & 3 / 4 \\ & 3 / 8 \end{aligned}$	--
		9	Ericsson	RRU-11			
		2	Raycap	DC6-48-60-18-8F			
		1	--	Sector Mount [SM 406-3]			

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
149.0	149.0	3	Alcatel Lucent	TME-1900MHz RRH (65MHz)	--	--	1
		3	Alcatel Lucent	TME-800MHZ RRH			
		1	--	Pipe Mount [PM 601-3]			
148.0	149.0	3	Alcatel Lucent	800 EXTERNAL NOTCH FILTER	3	1-1/4	1
		9	Rfs Celwave	ACU-A20-N			
		3	Rfs Celwave	APXVSPP18-C-A20			
	148.0	1	--	Platform Mount [LP 712-1]			
138.0	138.0	1	Antel	BXA-171063-8BF-2	18	1-5/8	1
		2	Antel	BXA-171085-8BF-EDIN-2			
		3	Antel	BXA-70063-6CF-2			
		2	Antel	LPA-80063/6CF			
		4	Antel	LPA-80080/6CF			
		1	--	Platform Mount [LP 712-1]			
128.0	128.0	12	CCI Antennas	HPA-65R-BUU-H8	$\begin{aligned} & 8 \\ & 3 \\ & 2 \end{aligned}$	$\begin{gathered} 3 / 4 \\ 5 / 16 \\ 3 / 8 \end{gathered}$	2
		3	Ericsson	KRF 102 361/1			
		9	Ericsson	RRU-11			
		6	Ericsson	RRUS 12-B2			
		6	Ericsson	RRUS A2			
		3	Ericsson	RRUS E2 B29			
		3	Ericsson	RRUS-32 B30			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		4	Raycap	DC6-48-60-18-8F			
79.0	84.0	1	Rfs Celwave	PD1109E	1	1/2	1
	79.0	1	--	Side Arm Mount [SO 701-1]			
45.0	45.0	1	Gps	GPS_A	1	1/2	1
		1	--	Side Arm Mount [SO 701-1]			
13.0	13.0	1	Gps	GPS_A	1	1/2	1
		1	--	Side Arm Mount [SO 701-1]			

Notes:

1) Existing Equipment
2) SLA Equipment; Considered in This Analysis

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
148	148	12	Dapa	48000 PCS Panel	--	--
		1	Generic	14' LP Platform		
140	140	12	Dapa	48000 PCS Panel	--	--
		1	Generic	14' LP Platform		
130	130	12	Dapa	48000 PCS Panel	--	--
		1	Generic	14' LP Platform		
120	120	12	Dapa	48000 PCS Panel	--	--
		1	Generic	14' LP Platform		
76	76	1	Generic	GPS Antenna	--	--
		1	Generic	GPS Stand-on Mount		

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Online Application	AT\&T Mobility Co-locate, Revision\# 2	378332	CCI Sites
Tower Manufacturer Drawing	Summit, Date: 06/23/2000	1631601	CCI Sites
Tower Modification Drawing	B+T Group, Project No. 89028.003.01	4491592	CCI Sites
Post Modification Inspection	TEP, Project No. 52429.14747	5215998	CCI Sites
Foundation Drawing	Summit, Job No. 10185	1634518	CCI Sites
Geotech Report	Clerence Welti Assoc., Inc., Date: 05/12/2000	1531964	CCI Sites
Antenna Configuration	Crown CAD Package	Date: $03 / 06 / 2017$	CCI Sites

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.
Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) Mount areas and weights are assumed based on photographs provided.

This analysis may be affected if any assumptions are not valid or have been made in error. $\mathrm{B}+\mathrm{T}$ Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	\% Capacity	Pass / Fail
L1	$148-116.5$	Pole	TP29.48x24x0.219	1	-11.599	1273.620	35.3	Pass
L2	$116.5-98.5$	Pole	TP32.175x28.39x0.25	2	-14.888	1751.620	58.2	Pass
L3	$98.5-80.25$	Pole	TP35.35x32.175x0.434	3	-17.904	2235.790	60.3	Pass
L4	$80.25-70.5$	Pole	TP36.547x34.067x0.487	4	-22.445	2653.470	63.4	Pass
L5	$70.5-39.75$	Pole	TP41.9x36.547x0.591	5	-30.635	3874.320	56.6	Pass
L6	$39.75-31.75$	Pole	TP42.666x40.361x0.643	6	-37.154	4394.700	56.3	Pass
L7	$31.75-17.75$	Pole	TP45.102x42.666x0.626	7	-42.513	4539.090	59.7	Pass
L8	$17.75-14.25$	Pole	TP45.711x45.102x0.728	8	-44.114	4902.000	56.7	Pass
L9	$14.25-0$	Pole	TP48.19x45.711x0.619	9	-50.195	4669.620	64.0	Pass
							Summary	
						Pole (L9)	64.0	Pass
						Rating =	64.0	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rod Bracket	Base	77.4	Pass
1	Anchor Rods	Base	50.9	Pass
1	Base Plate	Base	49.5	Pass
1	Base Foundation(Structure)	Base	48.7	Pass
1	Base Foundation (Soil Interaction)	Base	76.9	Pass

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the final load configuration. No modifications are required at this time.

APPENDIX A
TNXTOWER OUTPUT
148.0 ft

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Top Hat (E)	149.5	(3) RRU-11 (P)	128
TME-1900MHz RRH (65MHz) (E)	149	(3) RRU-11 (P)	128
TME-1900MHz RRH (65 MHz) (E)	149	(2) DC6-48-60-18-8F (P)	128
TME-1900MHz RRH (65MHz) (E)	149	(4) HPA-65R-BUU-H8 w/ Mount Pipe (ATI--SLA)	128
TME-800MHZ RRH (E)	149		
TME-800MHZ RRH (E)	149	(4) HPA-65R-BUU-H8 w/ Mount Pipe (SLA)	128
TME-800MHZ RRH (E)	149		
Pipe Mount [PM 601-3] (E)	149	(4) HPA-65R-BUU-H8 w/ Mount Pipe (SLA)	128
APXVSPP18-C-A20 w/ Mount Pipe (E)	148	RRUS E2 B29 (SLA)	128
APXVSPP18-C-A20 w/ Mount Pipe (E)	148	RRUS E2 B29 (SLA)	128
APXVSPP18-C-A20 w/ Mount Pipe (E)	148	RRUS E2 B29 (SLA)	128
(3) ACU-A20-N (E)	148	(3) RRU-11 (SLA)	128
(3) ACU-A20-N (E)	148	(3) RRU-11 (SLA)	128
(3) ACU-A20-N (E)	148	(3) RRU-11 (SLA)	128
800 EXTERNAL NOTCH FILTER (E)	148	RRUS-32 B30 (SLA)	128
800 EXTERNAL NOTCH FILTER (E)	148	RRUS-32 B30 (SLA)	128
800 EXTERNAL NOTCH FILTER (E)	148	RRUS-32 B30 (SLA)	128
(2) $6^{\prime} \times 2$ 2" Mount Pipe (E)	148	DC6-48-60-18-8F (SLA)	128
(2) 6' $\times 2$ " Mount Pipe (E)	148	(2) DC6-48-60-18-8F (SLA)	128
(2) 6' $\times 2$ ' Mount Pipe (E)	148	DC6-48-60-18-8F (SLA)	128
Platform Mount [LP 712-1] (E-12'/TIA)	148	(2) RRUS 12-B2 (SLA)	128
BXA-70063-6CF-2 w/ Mount Pipe (E)	138	(2) RRUS 12-B2 (SLA)	128
BXA-70063-6CF-2 w/ Mount Pipe (E)	138	(2) RRUS 12-B2 (SLA)	128
BXA-70063-6CF-2 w/ Mount Pipe (E)	138	(2) RRUS A2 (SLA)	128
BXA-171085-8BF-EDIN-2 w/ Mount Pipe (E)	138	(2) RRUS A2 (SLA)	128
BXA-171085-8BF-EDIN-2 w/ Mount	138	(2) RRUS A2 (SLA)	128
Pipe (E)		KRF 102 361/1 (SLA)	128
BXA-171063-8BF-2 w/ Mount Pipe (E)	138	KRF 102 361/1 (SLA)	128
(2) LPA-80063/6CF w/ Mount Pipe (E)	138	KRF 102 361/1 (SLA)	128
(2) LPA-80080/6CF w/ Mount Pipe (E)	138	Sector Mount [SM 406-3] (P)	128
(2) LPA-80080/6CF w/ Mount Pipe (E)	138	PD1109E (E)	79
Platform Mount [LP 712-1] (E)	138	Side Arm Mount [SO 701-1] (E)	79
HPA-65R-BUU-H8 w/ Mount Pipe	128	GPS_A (E)	45
(ATI--P)		Side Arm Mount [SO 701-1] (E)	45
HPA-65R-BUU-H8 w/ Mount Pipe (P)	128	GPS_A (E-CL/TIA)	13
HPA-65R-BUU-H8 w/ Mount Pipe (P)	128	Side Arm Mount [SO 701-1] (E-Mount Ht./TIA)	13
(3) RRU-11 (P)	128		

MATERIAL STRENGTH

GRADE								Fy	Fu	GRADE	Fy	Fu
A607-60	60 ksi	75 ksi	44.81049 ksi	45 ksi	60 ksi							
A607-65	65 ksi	80 ksi	44.910822 ksi	45 ksi	60 ksi							
41.599417 ksi	42 ksi	57 ksi	41.277494 ksi	41 ksi	56 ksi							
41.661197 ksi	42 ksi	57 ksi	43.725232 ksi	44 ksi	59 ksi							
44.711572 ksi	45 ksi	60 ksi										

TOWER DESIGN NOTES

1. Tower is located in Litchfield County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-G Standard.
3. Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 40 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
ALL REACTIO^5. Deflections are based upon a 60 mph wind.
ARE FACTORE6. Tower Structure Class II.
5. Topographic Category 1 with Crest Height of 0.000 ft
6. TOWER RATING: 64%

TORQUE 0 kip-ft
40 mph WIND - 0.750 in ICE

AXIAL 50 K

$25 \mathrm{~K} \longrightarrow \quad, 2859 \mathrm{kip}-\mathrm{ft}$
TORQUE 1 kip-ft REACTIONS - 93 mph WIND

B+T Group F 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265		Tob: 89028.006 .01 - LONG EDDY WRIGHT PROPERTY, CT (BU\# 87637 (${ }^{\text {Project: }}$		
		Client: Crown Castle	Drawn by: Pavan Pai	App'd:
		Code: TIA-222-G	Date: 03/23/17	Scale: NTS
		Path:		Dwg No. E-1

Twist (deg)

B+T Group	
B + T GRP	1717 S.Boulder, Suite 300
Tulsa, OK 74119	

Tulsa, OK 74119 Phone: (918) 587-4630
FAX: (918) 295-0265
\qquad
\qquad Flat \qquad App In Face \qquad App Out Face \qquad Truss Leg

$\sqrt{B+T}$	B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Pob: 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU\# 87637		
		Client: Crown Castle	Drawn by: Pavan Pai	App'd:
		Code: TIA-222-G	Date: 03/23/17	Scale: NTS
		Path:		Dwg No. E-7

Tower Input Data

There is a pole section.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in Litchfield County, Connecticut.
Basic wind speed of 93 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.000 ft .
Nominal ice thickness of 0.750 in.
Ice thickness is considered to increase with height.
Ice density of 56.000 pcf.
A wind speed of 40 mph is used in combination with ice.
Temperature drop of $50.000^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^15]Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-G Bracing Resist. Exemption
Use TIA-222-G Tension Splice Exemption Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation $f t$	Section Length $f t$	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	148.000-116.50	31.500	3.750	18	24.000	29.480	0.219	0.875	A607-60
	0								(60 ksi)
L2	116.500-98.500	21.750	0.000	18	28.390	32.175	0.250	1.000	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Section	Elevation $f t$	Section Length $f t$	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L3	98.500-80.250	18.250	4.500	18	32.175	35.350	0.434	1.736	$\begin{aligned} & \text { 41.599417ksi } \\ & (42 \mathrm{ksi}) \end{aligned}$
L4	80.250-70.500	14.250	0.000	18	34.067	36.547	0.487	1.947	$\begin{aligned} & \text { 41.661197ksi } \\ & (42 \mathrm{ksi}) \end{aligned}$
L5	70.500-39.750	30.750	5.250	18	36.547	41.900	0.591	2.365	$\begin{aligned} & 44.711572 \mathrm{ksi} \\ & (45 \mathrm{ksi}) \end{aligned}$
L6	39.750-31.750	13.250	0.000	18	40.361	42.666	0.643	2.573	$\begin{aligned} & 44.81049 \mathrm{ksi} \\ & (45 \mathrm{ksi}) \end{aligned}$
L7	31.750-17.750	14.000	0.000	18	42.666	45.102	0.626	2.506	$\begin{aligned} & 44.910822 \mathrm{ksi} \\ & (45 \mathrm{ksi}) \end{aligned}$
L8	17.750-14.250	3.500	0.000	18	45.102	45.711	0.728	2.911	$\begin{aligned} & \text { 41.277494ksi } \\ & (41 \mathrm{ksi}) \end{aligned}$
L9	14.250-0.000	14.250		18	45.711	48.190	0.619	2.475	$\begin{aligned} & 43.725232 \mathrm{ksi} \\ & (44 \mathrm{ksi}) \end{aligned}$

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	I $i n^{4}$	r in	C in	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w in	
L1	24.370	16.512	1179.768	8.442	12.192	96.766	2361.088	8.257	3.839	17.55
	29.935	20.316	2197.713	10.388	14.976	146.751	4398.319	10.160	4.803	
L2	29.491	22.329	2233.892	9.990	14.422	154.893	4470.723	11.167	4.557	18.227
	32.671	25.332	3261.812	11.333	16.345	199.564	6527.916	12.668	5.223	20.891
L3	32.671	43.726	5565.479	11.268	16.345	340.507	11138.281	21.867	4.899	11.287
	35.895	48.100	7408.540	12.395	17.958	412.553	14826.827	24.055	5.458	12.575
L4	35.388	51.890	7392.471	11.921	17.306	427.161	14794.670	25.950	5.139	10.555
	37.111	55.723	9154.622	12.802	18.566	493.082	18321.290	27.867	5.575	11.452
L5	37.111	67.480	11022.014	12.764	18.566	593.663	22058.531	33.747	5.392	9.119
	42.546	77.526	16713.430	14.665	21.285	785.214	33448.852	38.770	6.334	10.712
L6	41.911	81.096	16162.580	14.100	20.503	788.285	32346.427	40.556	5.971	9.282
	43.325	85.803	19143.219	14.918	21.674	883.214	38311.628	42.910	6.377	9.913
L7	43.325	83.582	18662.634	14.924	21.674	861.042	37349.825	41.799	6.407	10.228
	45.798	88.424	22097.930	15.789	22.912	964.478	44224.937	44.221	6.836	10.913
L8	45.798	102.493	25497.284	15.753	22.912	1112.845	51028.117	51.256	6.657	9.148
	46.416	103.899	26561.387	15.969	23.221	1143.846	53157.724	51.960	6.764	9.295
L9	46.416	88.564	22750.786	16.008	23.221	979.745	45531.507	44.291	6.956	11.241
	48.933	93.434	26713.350	16.888	24.481	1091.208	53461.849	46.726	7.392	11.946

Tower Elevation ft	Gusset Area (per face)	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
148.000-116.5									
00									
L2				1	1	1			
116.500-98.50									
0									
L3				1	1	0.962717			
98.500-80.250									
L4				1	1	0.968696			
80.250-70.500									
L5				1	1	0.953422			
70.500-39.750									

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L6				1	1	0.958861			
39.750-31.750									
L7				1	1	0.963264			
31.750-17.750									
L8				1	1	0.983373			
17.750-14.250									
L9				1	1	1.01129			
14.250-0.000									

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter in	Perimeter

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Component Type	$f t$	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight klf
$\begin{gathered} \text { HB114-1-0813U4-M5J(1 } \\ -1 / 4) \end{gathered}$	A	No	Inside Pole	148.000-0.000	3	No Ice	0.000	0.001
						1/2" Ice	0.000	0.001
(E)						$1{ }^{1 \prime}$ Ice	0.000	0.001
LDF7-50A(1-5/8)	B	No	Inside Pole	138.000-0.000	12	No Ice	0.000	0.001
(E)						1/2" Ice	0.000	0.001
						1 " Ice	0.000	0.001
/>								
L98B-002-XXX_DB(3/8	C	No	Inside Pole	128.000-0.000	1	No Ice	0.000	0.000
)						1/2" Ice	0.000	0.000
(P)						$1{ }^{\prime \prime}$ Ice	0.000	0.000
WR-VG86ST-BRD(3/4)	C	No	Inside Pole	128.000-0.000	5	No Ice	0.000	0.001
(P)						1/2" Ice	0.000	0.001
						$1{ }^{1 \prime}$ Ice	0.000	0.001
ATCB-B01-060(5/16)	C	No	Inside Pole	128.000-0.000	3	No Ice	0.000	0.000
(SLA)						1/2" Ice	0.000	0.000
						1" Ice	0.000	0.000
L98B-002-XXX_DB(3/8	C	No	Inside Pole	128.000-0.000	2	No Ice	0.000	0.000
)						1/2" Ice	0.000	0.000
(SLA)						$1^{\prime \prime}$ Ice	0.000	0.000
WR-VG86ST-BRD(3/4)	C	No	Inside Pole	128.000-0.000	8	No Ice	0.000	0.001
(SLA)						1/2" Ice	0.000	0.001
						$1{ }^{1 \prime}$ Ice	0.000	0.001
/>								
LDF4-50A(1/2)	C	No	Inside Pole	79.000-0.000	1	No Ice	0.000	0.000
(E)						1/2" Ice	0.000	0.000
						$1{ }^{1 \prime}$ Ice	0.000	0.000
/>								
LDF4-50A(1/2)	B	No	Inside Pole	13.000-0.000	1	No Ice	0.000	0.000
(E-Ht./TIA)						1/2" Ice	0.000	0.000
						$1{ }^{\prime \prime}$ Ice	0.000	0.000
/>								

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation $f t$	Face	A_{R} $f t^{2}$	A_{F} $f t^{2}$	$C_{A} A_{A}$ In Face $f t^{2}$	$C_{A} A_{A}$ Out Face $f t^{2}$	Weight K
L1	148.000-116.500	A	0.000	0.000	1.181	0.000	0.120
		B	0.000	0.000	25.542	0.000	0.317
		C	0.000	0.000	0.000	0.000	0.092
L2	116.500-98.500	A	0.000	0.000	0.675	0.000	0.069
		B	0.000	0.000	21.384	0.000	0.266
		C	0.000	0.000	0.000	0.000	0.144
L3	98.500-80.250	A	0.000	0.000	18.934	0.000	0.070
		B	0.000	0.000	39.931	0.000	0.269
		C	0.000	0.000	18.250	0.000	0.146
L4	80.250-70.500	A	0.000	0.000	10.116	0.000	0.037
		B	0.000	0.000	21.333	0.000	0.144
		C	0.000	0.000	9.750	0.000	0.079
L5	70.500-39.750	A	0.000	0.000	45.046	0.000	0.118
		B	0.000	0.000	80.094	0.000	0.454
		C	0.000	0.000	43.563	0.000	0.250
L6	39.750-31.750	A	0.000	0.000	12.137	0.000	0.032
		B	0.000	0.000	20.837	0.000	0.118
		C	0.000	0.000	11.333	0.000	0.065
L7	31.750-17.750	A	0.000	0.000	21.240	0.000	0.056
		B	0.000	0.000	36.465	0.000	0.207
		C	0.000	0.000	19.833	0.000	0.114

Tower Section	Tower Elevation $f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	$f t$		$f t^{2}$	${f t^{2}}^{f t^{2}}$	t^{2}	K	
L8	$17.750-14.250$	A	0.000	0.000	9.102	0.000	0.014
		B	0.000	0.000	12.908	0.000	0.052
		C	0.000	0.000	4.958	0.000	0.028
L9	$14.250-0.000$	A	0.000	0.000	16.870	0.000	0.057
		B	0.000	0.000	52.554	0.000	0.212
		C	0.000	0.000	20.188	0.000	0.116

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation ft	Face or Leg	Ice Thickness in	A_{R} $f t^{2}$	A_{F} $f t^{2}$	$C_{A} A_{A}$ In Face $f t^{2}$	$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ {f t^{2}}^{2} \end{gathered}$	Weight K
L1	148.000-116.500	A	1.723	0.000	0.000	12.035	0.000	0.259
		B		0.000	0.000	41.188	0.000	0.805
		C		0.000	0.000	0.000	0.000	0.092
L2	116.500-98.500	A	1.688	0.000	0.000	6.877	0.000	0.148
		B		0.000	0.000	34.483	0.000	0.674
		C		0.000	0.000	0.000	0.000	0.144
L3	98.500-80.250	A	1.657	0.000	0.000	31.030	0.000	0.383
		B		0.000	0.000	58.958	0.000	0.905
		C		0.000	0.000	24.298	0.000	0.384
L4	80.250-70.500	A	1.629	0.000	0.000	16.577	0.000	0.205
		B		0.000	0.000	31.498	0.000	0.483
		C		0.000	0.000	12.981	0.000	0.207
L5	70.500-39.750	A	1.579	0.000	0.000	66.124	0.000	0.738
		B		0.000	0.000	111.074	0.000	1.570
		C		0.000	0.000	53.272	0.000	0.731
L6	39.750-31.750	A	1.512	0.000	0.000	19.716	0.000	0.221
		B		0.000	0.000	28.897	0.000	0.408
		C		0.000	0.000	13.860	0.000	0.190
L7	31.750-17.750	A	1.457	0.000	0.000	33.480	0.000	0.352
		B		0.000	0.000	49.803	0.000	0.671
		C		0.000	0.000	23.913	0.000	0.312
L8	17.750-14.250	A	1.395	0.000	0.000	12.976	0.000	0.123
		B		0.000	0.000	17.090	0.000	0.202
		C		0.000	0.000	5.935	0.000	0.076
L9	14.250-0.000	A	1.286	0.000	0.000	27.778	0.000	0.282
		B		0.000	0.000	65.256	0.000	0.768
		C		0.000	0.000	20.497	0.000	0.290

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ Ice in	$C P_{Z}$ Ice in
	$f t$	in	in	-0.942	
L1	$148.000-116.500$	0.397	-0.863	0.193	-1.212
L2	$116.500-98.500$	0.538	-1.134	0.354	-0.766
L3	$98.500-80.250$	0.318	-0.670	0.227	-0.795
L4	$80.250-70.500$	0.327	-0.690	0.235	-0.753
L5	$70.500-39.750$	0.288	-0.622	0.198	-0.780
L6	$39.750-31.750$	0.267	-0.645	0.067	-0.802
L7	$31.750-17.750$	0.274	-0.662	0.085	-1.198
L8	$17.750-14.250$	0.227	-1.095	0.078	-1.092
L9	$14.250-0.000$	0.984	-0.857	0.699	

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{gathered} \hline K_{a} \\ \text { Ice } \end{gathered}$
L1	3	LDF7-50A(1-5/8)	$\begin{array}{r} 116.50- \\ 138.00 \end{array}$	1.0000	1.0000
L1	32	Safety Line 3/8	$116.50-$ 148.00	1.0000	1.0000
L3	3	LDF7-50A(1-5/8)	80.25-98.50	1.0000	1.0000
L3	25	CCI 6" x 1" Plate	80.25-98.50	1.0000	1.0000
L3	26	CCI 6" x 1" Plate	80.25-98.50	1.0000	1.0000
L3	27	CCI 6" x 1" Plate	80.25-98.50	1.0000	1.0000
L3	32	Safety Line 3/8	80.25-98.50	1.0000	1.0000
L5	3	LDF7-50A(1-5/8)	39.75-70.50	1.0000	1.0000
L5	14	LDF4-50A(1/2)	39.75-45.00	1.0000	1.0000
L5	21	CCI $8.5{ }^{\prime \prime}$ x $1.25{ }^{\prime \prime}$ Plate	39.75-70.50	1.0000	1.0000
L5	22	CCI $8.5{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	39.75-70.50	1.0000	1.0000
L5	23	CCI $8.5{ }^{\prime \prime}$ x $1.25{ }^{\prime \prime}$ Plate	39.75-70.50	1.0000	1.0000
L5	32	Safety Line 3/8	39.75-70.50	1.0000	1.0000
L7	3	LDF7-50A(1-5/8)	17.75-31.75	1.0000	1.0000
L7	14	LDF4-50A(1/2)	17.75-31.75	1.0000	1.0000
L7	21	CCI $8.5{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	17.75-31.75	1.0000	1.0000
L7	22	CCI $8.55^{\prime \prime}$ x $1.25{ }^{\prime \prime}$ Plate	17.75-31.75	1.0000	1.0000
L7	23	CCI $8.5{ }^{\prime \prime}$ x 1.25" Plate	17.75-31.75	1.0000	1.0000
L7	32	Safety Line 3/8	17.75-31.75	1.0000	1.0000
L8	3	LDF7-50A(1-5/8)	14.25-17.75	1.0000	1.0000
L8	14	LDF4-50A(1/2)	14.25-17.75	1.0000	1.0000
L8	21	CCI $8.5{ }^{\prime \prime}$ x $1.25{ }^{\prime \prime}$ Plate	14.25-17.75	1.0000	1.0000
L8	22	CCI $8.5{ }^{\prime \prime}$ x $1.25{ }^{\prime \prime}$ Plate	14.25-17.75	1.0000	1.0000
L8	23	CCI $8.5{ }^{\prime \prime}$ x $1.25{ }^{\prime \prime}$ Plate	14.25-17.75	1.0000	1.0000
L8	29	CCI 6.5" x $1.25{ }^{\prime \prime}$ Plate	14.25-17.75	1.0000	1.0000
L8	30	CCI $6.5{ }^{\prime \prime}$ x $1.25{ }^{\prime \prime}$ Plate	14.25-17.75	1.0000	1.0000
L8	32	Safety Line 3/8	14.25-17.75	1.0000	1.0000
L9	3	LDF7-50A(1-5/8)	0.00-14.25	1.0000	1.0000
L9	14	LDF4-50A(1/2)	0.00-14.25	1.0000	1.0000
L9	18	CCI $8.5{ }^{\prime \prime}$ x $1.25{ }^{\prime \prime}$ Plate	0.00-14.25	1.0000	1.0000
L9	19	CCI $8.55^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	0.00-14.25	1.0000	1.0000
L9	29	CCI $6.55^{\prime \prime}$ x $1.25{ }^{\prime \prime}$ Plate	0.00-14.25	1.0000	1.0000
L9	30	CCI 6.5" x 1.25" Plate	0.00-14.25	1.0000	1.0000
L9	32	Safety Line 3/8	0.00-14.25	1.0000	1.0000

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
Top Hat	C	None		0.000	149.500	No Ice	3.000	3.000	0.081

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow{4}{*}{| (2) 6' x 2" Mount Pipe |
| :--- |
| (E) |} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& 1.000 \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{148.000} \& 1" Ice \& 2.294 \& 2.294 \& 0.048

\hline \& \& \& 4.000 \& \& \& No Ice \& 1.425 \& 1.425 \& 0.022

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.925 \& 1.925 \& 0.033

\hline \& \& \& 1.000 \& \& \& 1" Ice \& 2.294 \& 2.294 \& 0.048

\hline \multirow[t]{3}{*}{Platform Mount [LP 712-1] (E-12'/TIA)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{148.000} \& No Ice \& 24.530 \& 24.530 \& 1.335

\hline \& \& \& \& \& \& 1/2" Ice \& 29.940 \& 29.940 \& 1.646

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 35.350 \& 35.350 \& 1.956

\hline **/>** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{BXA-70063-6CF-2 w/ Mount Pipe (E)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 7.806 \& 5.801 \& 0.042

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.357 \& 6.953 \& 0.103

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 8.872 \& 7.819 \& 0.171

\hline \multirow[t]{3}{*}{BXA-70063-6CF-2 w/ Mount Pipe (E)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 7.806 \& 5.801 \& 0.042

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.357 \& 6.953 \& 0.103

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.872 \& 7.819 \& 0.171

\hline \multirow[t]{3}{*}{BXA-70063-6CF-2 w/ Mount Pipe (E)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 7.806 \& 5.801 \& 0.042

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 8.357 \& 6.953 \& 0.103

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 8.872 \& 7.819 \& 0.171

\hline \multirow[t]{3}{*}{| BXA-171085-8BF-EDIN-2 w/ Mount Pipe |
| :--- |
| (E) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 3.179 \& 3.353 \& 0.029

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.555 \& 3.971 \& 0.061

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.930 \& 4.595 \& 0.099

\hline \multirow[t]{3}{*}{BXA-171085-8BF-EDIN-2 w/ Mount Pipe (E)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 3.179 \& 3.353 \& 0.029

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.555 \& 3.971 \& 0.061

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.930 \& 4.595 \& 0.099

\hline \multirow[t]{3}{*}{| BXA-171063-8BF-2 w/ Mount Pipe |
| :--- |
| (E) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 3.179 \& 3.353 \& 0.029

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 3.555 \& 3.971 \& 0.061

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.930 \& 4.595 \& 0.099

\hline \multirow[t]{3}{*}{(2) LPA-80063/6CF w/ Mount Pipe (E)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 9.831 \& 10.215 \& 0.052

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 10.400 \& 11.384 \& 0.145

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.933 \& 12.269 \& 0.246

\hline \multirow[t]{2}{*}{(2) LPA-80080/6CF w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 4.564 \& 10.259 \& 0.046

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 5.105 \& 11.427 \& 0.113

\hline (E) \& \& \& 0.000 \& \& \& 1 " Ice \& 5.612 \& 12.312 \& 0.187

\hline \multirow[t]{3}{*}{(2) LPA-80080/6CF w/ Mount Pipe (E)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 4.564 \& 10.259 \& 0.046

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 5.105 \& 11.427 \& 0.113

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.612 \& 12.312 \& 0.187

\hline \multirow[t]{3}{*}{| Platform Mount [LP 712-1] |
| :--- |
| (E) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{138.000} \& No Ice \& 24.530 \& 24.530 \& 1.335

\hline \& \& \& \& \& \& 1/2" Ice \& 29.940 \& 29.940 \& 1.646

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 35.350 \& 35.350 \& 1.956

\hline **/>** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{HPA-65R-BUU-H8 w/
Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 13.213 \& 9.582 \& 0.100

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 13.899 \& 11.052 \& 0.196

\hline (AT\&T--P) \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 14.587 \& 12.496 \& 0.303

\hline \multirow[t]{2}{*}{HPA-65R-BUU-H8 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 13.213 \& 9.582 \& 0.100

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 13.899 \& 11.052 \& 0.196

\hline (P) \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 14.587 \& 12.496 \& 0.303

\hline \multirow[t]{2}{*}{HPA-65R-BUU-H8 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 13.213 \& 9.582 \& 0.100

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 13.899 \& 11.052 \& 0.196

\hline (P) \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 14.587 \& 12.496 \& 0.303

\hline \multirow[t]{3}{*}{| (3) RRU-11 |
| :--- |
| (P) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 1.639 \& 1.262 \& 0.044

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.802 \& 1.410 \& 0.060

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.972 \& 1.566 \& 0.078

\hline \multirow[t]{3}{*}{| (3) RRU-11 |
| :--- |
| (P) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 1.639 \& 1.262 \& 0.044

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 1.802 \& 1.410 \& 0.060

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 1.972 \& 1.566 \& 0.078

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { (3) RRU-11 } \\
& \text { (P) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 1.639 \& 1.262 \& 0.044

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 1.802 \& 1.410 \& 0.060

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.972 \& 1.566 \& 0.078

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
ft \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

\hline \multirow[t]{3}{*}{| (2) DC6-48-60-18-8F |
| :--- |
| (P) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 0.917 \& 0.917 \& 0.019

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.458 \& 1.458 \& 0.037

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.643 \& 1.643 \& 0.057

\hline \multirow[t]{4}{*}{| (4) HPA-65R-BUU-H8 w/ Mount Pipe (AT\&T--SLA) |
| :--- |
| (4) HPA-65R-BUU-H8 w/ |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 13.213 \& 9.582 \& 0.100

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 13.899 \& 11.052 \& 0.196

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 14.587 \& 12.496 \& 0.303

\hline \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 13.213 \& 9.582 \& 0.100

\hline \multirow[t]{2}{*}{(4) HPA-65R-BUU-H8 w/ Mount Pipe (SLA)} \& \& \& 0.000 \& \& \& 1/2" Ice \& 13.899 \& 11.052 \& 0.196

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 14.587 \& 12.496 \& 0.303

\hline (4) HPA-65R-BUU-H8 w/ \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 13.213 \& 9.582 \& 0.100

\hline Mount Pipe \& \& \& 0.000 \& \& \& 1/2" Ice \& 13.899 \& 11.052 \& 0.196

\hline (SLA) \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 14.587 \& 12.496 \& 0.303

\hline \multirow[t]{3}{*}{RRUS E2 B29 (SLA)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 3.145 \& 1.285 \& 0.060

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 3.365 \& 1.438 \& 0.083

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.592 \& 1.600 \& 0.110

\hline \multirow[t]{3}{*}{RRUS E2 B29 (SLA)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 3.145 \& 1.285 \& 0.060

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 3.365 \& 1.438 \& 0.083

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.592 \& 1.600 \& 0.110

\hline \multirow[t]{3}{*}{RRUS E2 B29 (SLA)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 3.145 \& 1.285 \& 0.060

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.365 \& 1.438 \& 0.083

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.592 \& 1.600 \& 0.110

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { (3) RRU-11 } \\
& \text { (SLA) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 1.639 \& 1.262 \& 0.044

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.802 \& 1.410 \& 0.060

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.972 \& 1.566 \& 0.078

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { (3) RRU-11 } \\
& \text { (SLA) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 1.639 \& 1.262 \& 0.044

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.802 \& 1.410 \& 0.060

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 1.972 \& 1.566 \& 0.078

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { (3) RRU-11 } \\
& \text { (SLA) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 1.639 \& 1.262 \& 0.044

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.802 \& 1.410 \& 0.060

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.972 \& 1.566 \& 0.078

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { RRUS-32 B30 } \\
& \text { (SLA) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 3.314 \& 2.424 \& 0.077

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.558 \& 2.638 \& 0.105

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.809 \& 2.860 \& 0.136

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { RRUS-32 B30 } \\
& \text { (SLA) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 3.314 \& 2.424 \& 0.077

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.558 \& 2.638 \& 0.105

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.809 \& 2.860 \& 0.136

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { RRUS-32 B30 } \\
\text { (SLA) }
\end{gathered}
$$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 3.314 \& 2.424 \& 0.077

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.558 \& 2.638 \& 0.105

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.809 \& 2.860 \& 0.136

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { DC6-48-60-18-8F } \\
\text { (SLA) }
\end{gathered}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 0.917 \& 0.917 \& 0.019

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.458 \& 1.458 \& 0.037

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.643 \& 1.643 \& 0.057

\hline \multirow[t]{3}{*}{(2)

$$
\begin{aligned}
& \text { DC6-48-60-18-8F } \\
& \text { (SLA) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 0.917 \& 0.917 \& 0.019

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 1.458 \& 1.458 \& 0.037

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 1.643 \& 1.643 \& 0.057

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { DC6-48-60-18-8F } \\
\text { (SLA) }
\end{gathered}
$$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 0.917 \& 0.917 \& 0.019

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 1.458 \& 1.458 \& 0.037

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.643 \& 1.643 \& 0.057

\hline \multirow[t]{3}{*}{(2) RRUS 12-B2 (SLA)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 3.143 \& 1.282 \& 0.058

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.363 \& 1.434 \& 0.081

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.590 \& 1.595 \& 0.108

\hline \multirow[t]{3}{*}{(2) RRUS 12-B2 (SLA)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 3.143 \& 1.282 \& 0.058

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.363 \& 1.434 \& 0.081

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.590 \& 1.595 \& 0.108

\hline \multirow[t]{3}{*}{(2) RRUS 12-B2 (SLA)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{128.000} \& No Ice \& 3.143 \& 1.282 \& 0.058

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.363 \& 1.434 \& 0.081

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.590 \& 1.595 \& 0.108

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or Leg
\end{tabular} \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
ft \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$ Side $f t^{2}$ \& Weight

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { (2) RRUS A2 } \\
& \text { (SLA) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& 0.000 \& 128.000 \& No Ice \& 2.066 \& 0.498 \& 0.022

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.245 \& 0.607 \& 0.035

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.431 \& 0.724 \& 0.050

\hline \multirow[t]{3}{*}{(2) RRUS A2 (SLA)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& 0.000 \& 128.000 \& No Ice \& 2.066 \& 0.498 \& 0.022

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.245 \& 0.607 \& 0.035

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.431 \& 0.724 \& 0.050

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { (2) RRUS A2 } \\
& \text { (SLA) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& 0.000 \& 128.000 \& No Ice \& 2.066 \& 0.498 \& 0.022

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.245 \& 0.607 \& 0.035

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.431 \& 0.724 \& 0.050

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { KRF } 102361 / 1 \\
\text { (SLA) }
\end{gathered}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& 0.000 \& 128.000 \& No Ice \& 1.939 \& 0.552 \& 0.026

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.112 \& 0.655 \& 0.039

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.294 \& 0.766 \& 0.055

\hline \multirow[t]{3}{*}{KRF 102 361/1 (SLA)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& 0.000 \& 128.000 \& No Ice \& 1.939 \& 0.552 \& 0.026

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.112 \& 0.655 \& 0.039

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.294 \& 0.766 \& 0.055

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { KRF } 102 \text { 361/1 } \\
& \text { (SLA) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.000 \& 0.000 \& 128.000 \& No Ice \& 1.939 \& 0.552 \& 0.026

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.112 \& 0.655 \& 0.039

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.294 \& 0.766 \& 0.055

\hline \multirow[t]{3}{*}{| Sector Mount [SM 406-3] |
| :--- |
| (P) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& 0.000 \& 128.000 \& No Ice \& 19.830 \& 19.830 \& 0.923

\hline \& \& \& \& \& \& 1/2" Ice \& 29.410 \& 29.410 \& 1.326

\hline \& \& \& \& \& \& 1 I' Ice \& 38.990 \& 38.990 \& 1.729

\hline **/>** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| PD1109E |
| :--- |
| (E) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.000 \& 0.000 \& 79.000 \& No Ice \& 2.854 \& 2.854 \& 0.017

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.924 \& 3.924 \& 0.038

\hline \& \& \& 5.000 \& \& \& $1{ }^{1 \prime}$ Ice \& 5.010 \& 5.010 \& 0.066

\hline \multirow[t]{3}{*}{| Side Arm Mount [SO 701-1] |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 1.500 \& 0.000 \& 79.000 \& No Ice \& 0.850 \& 1.670 \& 0.065

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.140 \& 2.340 \& 0.079

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.430 \& 3.010 \& 0.093

\hline \multicolumn{8}{|l|}{**/>** 30.010} \& \&

\hline \multirow[t]{3}{*}{| GPS A |
| :--- |
| (E) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.000 \& 0.000 \& 45.000 \& No Ice \& 0.255 \& 0.255 \& 0.001

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.320 \& 0.320 \& 0.005

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 0.393 \& 0.393 \& 0.010

\hline \multirow[t]{3}{*}{| Side Arm Mount [SO 701-1] |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 1.500 \& 0.000 \& 45.000 \& No Ice \& 0.850 \& 1.670 \& 0.065

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.140 \& 2.340 \& 0.079

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.430 \& 3.010 \& 0.093

\hline **/>** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { GPS_A } \\
(\mathrm{E}-\mathrm{CL} / \mathrm{TIA})
\end{gathered}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.000 \& 0.000 \& 13.000 \& No Ice \& 0.255 \& 0.255 \& 0.001

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.320 \& 0.320 \& 0.005

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 0.393 \& 0.393 \& 0.010

\hline \multirow[t]{3}{*}{Side Arm Mount [SO 701-1] (E-Mount Ht./TIA)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.500 \& 0.000 \& 13.000 \& No Ice \& 0.850 \& 1.670 \& 0.065

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.140 \& 2.340 \& 0.079

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.430 \& 3.010 \& 0.093

\hline
\end{tabular}

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead +1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	

Comb. No.	Description
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+$ 1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component Type	$f t$		Condition	Gov. Load	Axial
				Major Axis Moment kip-ft	Minor Axis Moment kip-ft		
L1	$148-116.5$	Pole	Max Tension	26	0.000	0.000	-0.000
			Max. Compression	26	-32.760	-1.511	0.991
			Max. Mx	8	-11.647	-252.029	0.042
			Max. My	2	-11.599	-0.347	257.981
			Max. Vy	8	17.439	-252.029	0.042
			Max. Vx	2	-17.795	-0.347	257.981
			Max. Torque	5		-0.445	

tnxTower B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{array}{\|l} \begin{array}{l} \text { Job } \\ 89028.006 .01 ~-~ L O N G ~ E D D Y ~ W R I G H T ~ P R O P E R T Y, ~ C T ~(B U \# ~ \\ 876373) \end{array} \\ \hline \end{array}$		$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$
	Project		Date $15: 42: 42 \text { 03/23/17 }$
	Client	Crown Castle	Designed by Pavan Pai

Section No.	Elevation $f t$	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L2	116.5-98.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-38.087	-1.831	1.844
			Max. Mx	8	-14.926	-646.215	0.197
			Max. My	2	-14.888	-0.429	659.990
			Max. Vy	8	18.773	-646.215	0.197
			Max. Vx	2	-19.129	-0.429	659.990
			Max. Torque	5			-0.445
L3	98.5-80.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-42.869	-2.044	2.434
			Max. Mx	8	-17.936	-910.422	0.314
			Max. My	2	-17.904	-0.485	929.142
			Max. Vy	8	19.665	-910.422	0.314
			Max. Vx	2	-20.021	-0.485	929.142
			Max. Torque	5			-0.445
L4	80.25-70.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-49.763	-2.266	3.954
			Max. Mx	8	-22.471	-1199.785	0.735
			Max. My	2	-22.445	-0.543	1223.724
			Max. Vy	8	20.798	-1199.785	0.735
			Max. Vx	2	-21.126	-0.543	1223.724
			Max. Torque	10			0.522
L5	70.5-39.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-61.560	-2.606	5.042
			Max. Mx	8	-30.651	-1750.176	0.977
			Max. My	2	-30.635	-0.653	1782.567
			Max. Vy	8	22.350	-1750.176	0.977
			Max. Vx	2	-22.675	-0.653	1782.567
			Max. Torque	10			0.521
L6	39.75-31.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-70.498	-2.320	5.381
			Max. Mx	8	-37.167	-2052.173	0.844
			Max. My	2	-37.154	-0.355	2089.189
			Max. Vy	8	23.173	-2052.173	0.844
			Max. Vx	2	-23.509	-0.355	2089.189
			Max. Torque	11			0.351
L7	31.75-17.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-77.786	-2.430	5.991
			Max. Mx	8	-42.520	-2381.016	0.844
			Max. My	2	-42.513	-0.271	2422.784
			Max. Vy	8	23.815	-2381.016	0.844
			Max. Vx	2	-24.147	-0.271	2422.784
			Max. Torque	11			0.351
L8	17.75-14.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-79.937	-2.460	6.220
			Max. Mx	8	-44.120	-2464.640	0.845
			Max. My	2	-44.114	-0.250	2507.588
			Max. Vy	8	23.985	-2464.640	0.845
			Max. Vx	2	-24.316	-0.250	2507.588
			Max. Torque	11			0.351
L9	14.25-0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-87.931	-2.889	7.410
			Max. Mx	8	-50.195	-2811.416	1.122
			Max. My	2	-50.195	-0.168	2859.116
			Max. Vy	8	24.655	-2811.416	1.122
			Max. Vx	2	-24.959	-0.168	2859.116
			Max. Torque	11			0.507

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, } X \\ K \end{gathered}$	$\begin{gathered} \text { Horizontal, Z } \\ K \end{gathered}$
Pole	Max. Vert	26	87.931	-0.000	0.000
	Max. H_{x}	20	50.202	24.642	0.010
	Max. H_{z}	2	50.202	0.010	24.946
	Max. M_{x}	2	2859.116	0.010	24.946
	Max. M_{z}	8	2811.416	-24.642	-0.010
	Max. Torsion	11	0.507	-21.346	-12.482
	Min. Vert	19	37.651	21.335	-12.464
	Min. H_{x}	8	50.202	-24.642	-0.010
	Min. H_{z}	14	50.202	-0.010	-24.946
	Min. M_{x}	14	-2855.932	-0.010	-24.946
	Min. M_{z}	20	-2810.135	24.642	0.010
	Min. Torsion	23	-0.505	21.346	12.482

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	$\begin{gathered} \text { Torque } \\ \text { kip-ft } \end{gathered}$
Dead Only	41.835	0.000	0.000	-1.288	-0.507	0.000
1.2 Dead+1.6 Wind 0 deg - No	50.202	-0.010	-24.946	-2859.116	-0.168	0.206
Ice						
0.9 Dead+1.6 Wind 0 deg - No	37.651	0.021	-24.946	-2833.060	-0.019	0.209
Ice						
1.2 Dead+1.6 Wind 30 deg - No	50.202	12.312	-21.598	-2476.071	-1405.588	-0.054
Ice						
0.9 Dead+1.6 Wind 30 deg - No	37.651	12.312	-21.598	-2453.447	-1392.828	-0.050
Ice						
1.2 Dead+1.6 Wind 60 deg - No	50.202	21.335	-12.464	-1429.985	-2434.593	-0.299
Ice						
0.9 Dead+1.6 Wind 60 deg - No	37.651	21.335	-12.464	-1416.751	-2412.612	-0.297
Ice						
1.2 Dead+1.6 Wind 90 deg - No	50.202	24.642	0.010	-1.122	-2811.416	-0.465
Ice						
0.9 Dead+1.6 Wind 90 deg - No	37.651	24.642	0.010	-0.716	-2786.063	-0.464
Ice						
1.2 Dead+1.6 Wind 120 deg -	50.202	21.346	12.482	1427.616	-2435.066	-0.506
No Ice						
0.9 Dead+1.6 Wind 120 deg -	37.651	21.346	12.482	1415.194	-2413.083	-0.507
No Ice						
1.2 Dead+1.6 Wind 150 deg -	50.202	12.330	21.609	2473.358	-1406.406	-0.411
No Ice						
0.9 Dead+1.6 Wind 150 deg -	37.651	12.330	21.609	2451.547	-1393.644	-0.413
No Ice						
1.2 Dead+1.6 Wind 180 deg -	50.202	0.010	24.946	2855.932	-1.112	-0.206
No Ice						
0.9 Dead+1.6 Wind 180 deg -	37.651	0.010	24.946	2830.690	-0.944	-0.209
No Ice						
1.2 Dead+1.6 Wind 210 deg -	50.202	-12.312	21.598	2472.886	1404.309	0.055
No Ice						
0.9 Dead+1.6 Wind 210 deg -	37.651	-12.312	21.598	2451.077	1391.882	0.052
No Ice						
1.2 Dead+1.6 Wind 240 deg -	50.202	-21.335	12.464	1426.798	2433.313	0.301
No Ice						
0.9 Dead+1.6 Wind 240 deg -	37.651	-21.335	12.464	1414.379	2411.666	0.298

tnxTower	Job 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU\# 876373)		$\begin{aligned} & \text { Page } \\ & \\ & \\ & 14 \text { of } 19 \end{aligned}$
B+T Group 1717 S.Boulder, Suite 300	Project		Date $15: 42: 42 \text { 03/23/17 }$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by Pavan Pai

Load Combination	Vertical K	Shear $_{x}$ K	Shear K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
No Ice						
1.2 Dead+1.6 Wind 270 deg -	50.202	-24.642	-0.010	-2.066	2810.135	0.465
No Ice 0.9 Dead+1.6 Wind 270 deg -	37.651	-24.642			2785.115	
No Ice						
1.2 Dead+1.6 Wind 300 deg -	50.202	-21.346	-12.482	-1430.803	2433.784	0.505
No Ice						
0.9 Dead+1.6 Wind 300 deg -	37.651	-21.346	-12.482	-1417.565	2412.134	0.505
No Ice						
1.2 Dead+1.6 Wind 330 deg - No Ice	50.202	-12.330	-21.609	-2476.543	1405.124	0.410
No Ice						
0.9 Dead+1.6 Wind 330 deg -	37.651	-12.330	-21.609	-2453.917	1392.696	0.412
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	87.931	0.000	-0.000	-7.410	-2.889	-0.000
1.2 Dead+1.0 Wind 0 deg +1.0	87.931	-0.003	-4.877	-570.548	-2.832	0.045
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	87.931	2.421	-4.222	-495.059	-281.599	-0.022
Ice+1.0 Temp						
1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$	87.931	4.196	-2.436	-288.956	-485.707	-0.082
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	87.931	4.847	0.003	-7.463	-560.465	-0.121
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	87.931	4.199	2.441	273.994	-485.842	-0.127
1.2 Dead+1.0 Wind 150	87.931	2.426	4.225	479.998	-281.833	-0.099
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	87.931	0.003	4.877	555.352	-3.102	-0.045
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	87.931	-2.421	4.222	479.864	275.666	0.021
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	87.931	-4.196	2.436	273.760	479.774	0.082
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	87.931	-4.847	-0.003	-7.733	554.532	0.121
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	87.931	-4.199	-2.441	-289.190	479.909	0.127
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	87.931	-2.426	-4.225	-495.195	275.899	0.099
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	41.835	-0.002	-5.806	-662.984	-0.422	0.049
Dead+Wind 30 deg - Service	41.835	2.866	-5.027	-574.283	-325.847	-0.012
Dead+Wind 60 deg - Service	41.835	4.966	-2.901	-332.058	-564.105	-0.069
Dead+Wind 90 deg - Service	41.835	5.736	0.002	-1.213	-651.353	-0.108
Dead+Wind 120 deg - Service	41.835	4.968	2.905	329.604	-564.214	-0.118
Dead+Wind 150 deg - Service	41.835	2.870	5.030	571.748	-326.037	-0.096
Dead+Wind 180 deg - Service	41.835	0.002	5.806	660.339	-0.641	-0.049
Dead+Wind 210 deg - Service	41.835	-2.866	5.027	571.639	324.784	0.012
Dead+Wind 240 deg - Service	41.835	-4.966	2.901	329.414	563.042	0.069
Dead+Wind 270 deg - Service	41.835	-5.736	-0.002	-1.432	650.291	0.108
Dead+Wind 300 deg - Service	41.835	-4.968	-2.905	-332.248	563.152	0.118
Dead+Wind 330 deg - Service	41.835	-2.870	-5.030	-574.393	324.974	0.096

Solution Summary

	Sum of Applied Forces			Sum of Reactions			
Load	$P X$	$P Y$	$P Z$	$P X$	$P Y$	$P Z$	\% Error
Comb.	K	K	K	K	K	K	
1	0.000	-41.835	0.000	0.000	41.835	0.000	0.000%
2	-0.010	-50.202	-24.945	0.010	50.202	24.946	0.000%

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	PZ	
Comb.	K	K	K	K	K	K	
3	-0.010	-37.651	-24.945	-0.021	37.651	24.946	0.068\%
4	12.312	-50.202	-21.598	-12.312	50.202	21.598	0.000\%
5	12.312	-37.651	-21.598	-12.312	37.651	21.598	0.000\%
6	21.335	-50.202	-12.464	-21.335	50.202	12.464	0.000\%
7	21.335	-37.651	-12.464	-21.335	37.651	12.464	0.000\%
8	24.642	-50.202	0.010	-24.642	50.202	-0.010	0.000\%
9	24.642	-37.651	0.010	-24.642	37.651	-0.010	0.000\%
10	21.346	-50.202	12.482	-21.346	50.202	-12.482	0.000\%
11	21.346	-37.651	12.482	-21.346	37.651	-12.482	0.000\%
12	12.330	-50.202	21.609	-12.330	50.202	-21.609	0.000\%
13	12.330	-37.651	21.609	-12.330	37.651	-21.609	0.000\%
14	0.010	-50.202	24.945	-0.010	50.202	-24.946	0.000\%
15	0.010	-37.651	24.945	-0.010	37.651	-24.946	0.000\%
16	-12.312	-50.202	21.598	12.312	50.202	-21.598	0.000\%
17	-12.312	-37.651	21.598	12.312	37.651	-21.598	0.000\%
18	-21.335	-50.202	12.464	21.335	50.202	-12.464	0.000\%
19	-21.335	-37.651	12.464	21.335	37.651	-12.464	0.000\%
20	-24.642	-50.202	-0.010	24.642	50.202	0.010	0.000\%
21	-24.642	-37.651	-0.010	24.642	37.651	0.010	0.000\%
22	-21.346	-50.202	-12.482	21.346	50.202	12.482	0.000\%
23	-21.346	-37.651	-12.482	21.346	37.651	12.482	0.000\%
24	-12.330	-50.202	-21.609	12.330	50.202	21.609	0.000\%
25	-12.330	-37.651	-21.609	12.330	37.651	21.609	0.000\%
26	0.000	-87.931	0.000	-0.000	87.931	0.000	0.000\%
27	-0.003	-87.931	-4.876	0.003	87.931	4.877	0.000\%
28	2.421	-87.931	-4.222	-2.421	87.931	4.222	0.000\%
29	4.196	-87.931	-2.436	-4.196	87.931	2.436	0.000\%
30	4.847	-87.931	0.003	-4.847	87.931	-0.003	0.000\%
31	4.199	-87.931	2.441	-4.199	87.931	-2.441	0.000\%
32	2.426	-87.931	4.225	-2.426	87.931	-4.225	0.000\%
33	0.003	-87.931	4.876	-0.003	87.931	-4.877	0.000\%
34	-2.421	-87.931	4.222	2.421	87.931	-4.222	0.000\%
35	-4.196	-87.931	2.436	4.196	87.931	-2.436	0.000\%
36	-4.847	-87.931	-0.003	4.847	87.931	0.003	0.000\%
37	-4.199	-87.931	-2.441	4.199	87.931	2.441	0.000\%
38	-2.426	-87.931	-4.225	2.426	87.931	4.225	0.000\%
39	-0.002	-41.835	-5.806	0.002	41.835	5.806	0.000\%
40	2.866	-41.835	-5.027	-2.866	41.835	5.027	0.000\%
41	4.966	-41.835	-2.901	-4.966	41.835	2.901	0.000\%
42	5.736	-41.835	0.002	-5.736	41.835	-0.002	0.000\%
43	4.968	-41.835	2.905	-4.968	41.835	-2.905	0.000\%
44	2.870	-41.835	5.030	-2.870	41.835	-5.030	0.000\%
45	0.002	-41.835	5.806	-0.002	41.835	-5.806	0.000\%
46	-2.866	-41.835	5.027	2.866	41.835	-5.027	0.000\%
47	-4.966	-41.835	2.901	4.966	41.835	-2.901	0.000\%
48	-5.736	-41.835	-0.002	5.736	41.835	0.002	0.000\%
49	-4.968	-41.835	-2.905	4.968	41.835	2.905	0.000\%
50	-2.870	-41.835	-5.030	2.870	41.835	5.030	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00043366
3	Yes	4	0.00000001	0.00031730

tnxTower B+T Group 1717 S.Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{array}{\|l} \begin{array}{l} \text { Job } \\ 89028.006 .01 ~-~ L O N G ~ E D D Y ~ W R I G H T ~ P R O P E R T Y, ~ C T ~(B U \# ~ \\ 876373) \end{array} \\ \hline \end{array}$		$\begin{array}{ll} \hline \text { Page } \\ & \\ & \\ \hline \end{array}$
	Project		Date $15: 42: 42 \text { 03/23/17 }$
	Client	Crown Castle	Designed by Pavan Pai

4	Yes	5	0.00000001	0.00079841
5	Yes	5	0.00000001	0.00037024
6	Yes	5	0.00000001	0.00078828
7	Yes	5	0.00000001	0.00036582
8	Yes	4	0.00000001	0.00035762
9	Yes	4	0.00000001	0.00018818
10	Yes	5	0.00000001	0.00078296
11	Yes	5	0.00000001	0.00036344
12	Yes	5	0.00000001	0.00079958
13	Yes	5	0.00000001	0.00037101
14	Yes	4	0.00000001	0.00043782
15	Yes	4	0.00000001	0.00025066
16	Yes	5	0.00000001	0.00078717
17	Yes	5	0.00000001	0.00036502
18	Yes	5	0.00000001	0.00078769
19	Yes	5	0.00000001	0.00036605
20	Yes	4	0.00000001	0.00036007
21	Yes	4	0.00000001	0.00019020
22	Yes	5	0.00000001	0.00079337
23	Yes	5	0.00000001	0.00036856
24	Yes	5	0.00000001	0.00078635
25	Yes	5	0.00000001	0.00036438
26	Yes	4	0.00000001	0.00007774
27	Yes	5	0.00000001	0.00052012
28	Yes	5	0.00000001	0.00055675
29	Yes	5	0.00000001	0.00055319
30	Yes	5	0.00000001	0.00051132
31	Yes	5	0.00000001	0.00054205
32	Yes	5	0.00000001	0.00054236
33	Yes	5	0.00000001	0.00050513
34	Yes	5	0.00000001	0.00053536
35	Yes	5	0.00000001	0.00053336
36	Yes	5	0.00000001	0.00050221
37	Yes	5	0.00000001	0.00054469
38	Yes	5	0.00000001	0.00054991
39	Yes	4	0.00000001	0.00006861
40	Yes	4	0.00000001	0.00031988
41	Yes	4	0.00000001	0.00031133
42	Yes	4	0.00000001	0.00006590
43	Yes	4	0.00000001	0.00030492
44	Yes	4	0.00000001	0.00032079
45	Yes	4	0.00000001	0.00006840
46	Yes	4	0.00000001	0.00030614
47	Yes	4	0.00000001	0.00030974
48	Yes	4	0.00000001	0.00006572
49	Yes	4	0.00000001	0.00031661
50	Yes	4	0.00000001	0.00030565

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	o

tnxTower	Job 89028.006.01 - LONG EDDY WRIGHT PROPERTY, CT (BU\# 876373)		$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$
B+T Group 1717 S.Boulder, Suite 300	Project		Date $15: 42: 42 \text { 03/23/17 }$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by Pavan Pai

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	$f t$	in	Comb.	\circ	\circ
L8	$17.75-14.25$	0.235	39	0.124	0.000
L9	$14.25-0$	0.152	39	0.102	0.000

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	\circ	ot
149.500		Top Hat	2	72.472	4.433	0.003
149.000	TME-1900MHz RRH (65MHz)	2	72.472	4.433	0.003	10743
148.000	APXVSPP18-C-A20 w/ Mount Pipe	2	72.472	4.433	0.003	10743
138.000	BXA-70063-6CF-2 w/ Mount Pipe	2	63.199	4.371	0.002	10743
128.000	HPA-65R-BUU-H8 w/ Mount Pipe	2	54.152	4.236	5371	
79.000	PD1109E	2	19.746	2.399	0.002	2684
45.000	GPS_A	2	6.464	1.310	0.001	1896
13.000	GPS_A	2	0.551	0.406	0.000	2204

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
L1	148-116.5 (1)	TP29.48x24x0.219	31.500	0.000	0.0	19.864	-11.599	1273.620	0.009
L2	116.5-98.5 (2)	TP32.175x28.39x0.25	21.750	0.000	0.0	25.332	-14.888	1751.620	0.008
L3	98.5-80.25 (3)	TP35.35x 32.175×0.434	18.250	0.000	0.0	47.022	-17.904	2235.790	0.008
L4	80.25-70.5 (4)	TP36.547x34.067x0.487	14.250	0.000	0.0	55.723	-22.445	2653.470	0.008
L5	70.5-39.75 (5)	TP41.9x36.547x0.591	30.750	0.000	0.0	75.811	-30.635	3874.320	0.008
L6	$39.75-31.75$ (6)	TP42.666x40.361x0.643	13.250	0.000	0.0	85.803	-37.154	4394.700	0.008
L7	$31.75-17.75$ (7)	TP45.102x42.666x0.626	14.000	0.000	0.0	88.424	-42.513	4539.090	0.009
L8	$17.75-14.25$ (8)	TP45.711x45.102x0.728	3.500	0.000	0.0	103.899	-44.114	4902.000	0.009
L9	14.25-0 (9)	TP48.19x45.711x0.619	14.250	0.000	0.0	93.434	-50.195	4669.620	0.011

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$
$f t$			kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
L1	148-116.5 (1)	TP29.48x24x0.219	257.981	749.418	0.344	0.000	749.418	0.000
L2	116.5-98.5 (2)	TP32.175x28.39x0.25	659.991	1149.925	0.574	0.000	1149.925	0.000
L3	98.5-80.25 (3)	TP35.35x32.175x0.434	929.142	1561.742	0.595	0.000	1561.742	0.000
L4	80.25-70.5 (4)	TP36.547x34.067x0.487	1223.725	1956.667	0.625	0.000	1956.667	0.000
L5	70.5-39.75 (5)	TP41.9x36.547x0.591	1782.567	3196.708	0.558	0.000	3196.708	0.000
L6	$39.75-31.75$ (6)	TP42.666x40.361x0.643	2089.192	3769.733	0.554	0.000	3769.733	0.000
L7	$31.75-17.75$ (7)	TP45.102x42.666x0.626	2422.783	4125.800	0.587	0.000	4125.800	0.000
L8	$17.75-14.25$ (8)	TP45.711x45.102x0.728	2507.592	4497.242	0.558	0.000	4497.242	0.000
L9	14.25-0 (9)	TP48.19x45.711x0.619	2859.117	4544.692	0.629	0.000	4544.692	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \end{gathered}$
	$f t$		K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	148-116.5 (1)	TP29.48x24x0.219	17.795	636.808	0.028	0.377	1500.667	0.000
L2	116.5-98.5 (2)	TP32.175x28.39x0.25	19.129	875.812	0.022	0.377	2302.667	0.000
L3	98.5-80.25 (3)	TP35.35x32.175x0.434	20.021	1117.890	0.018	0.377	3127.308	0.000
L4	80.25-70.5 (4)	TP36.547x34.067x0.487	21.126	1326.740	0.016	0.376	3918.117	0.000
L5	70.5-39.75 (5)	TP41.9x36.547x0.591	22.675	1937.160	0.012	0.376	6401.233	0.000
L6	$39.75-31.75$ (6)	TP42.666x40.361x0.643	23.509	2188.250	0.011	0.206	7548.691	0.000
L7	$31.75-17.75$ (7)	TP45.102x42.666x0.626	24.147	2260.670	0.011	0.206	8261.700	0.000
L8	$17.75-14.25$ (8)	TP45.711x45.102x0.728	24.316	2439.940	0.010	0.206	9005.500	0.000
L9	14.25-0 (9)	TP48.19x45.711x0.619	24.959	2326.120	0.011	0.206	9100.500	0.000

Section No.	Elevation	Size	$\begin{gathered} \text { Actual } \\ V_{u} \\ K \end{gathered}$	ϕV_{n}	$\begin{gathered} \hline \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Actual } \\ T_{u} \\ \text { kip-ft } \end{gathered}$	$\begin{gathered} \phi T_{n} \\ k i p-f t \end{gathered}$	$\begin{gathered} \hline \text { Ratio } \\ T_{u} \\ \hline \phi T_{n} \end{gathered}$
	$f t$			K	ϕV_{n}			

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	Ratio $M_{u x}$	Ratio $M_{u y}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	Ratio T_{u}	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n X}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	148-116.5 (1)	0.009	0.344	0.000	0.028	0.000	0.354	1.000	4.8.2
L2	116.5-98.5 (2)	0.008	0.574	0.000	0.022	0.000		1.000	4.8.2
L3	98.5-80.25 (3)	0.008	0.595	0.000	0.018	0.000	0.603	1.000	4.8.2
L4	80.25-70.5 (4)	0.008	0.625	0.000	0.016	0.000	0.634	1.000	4.8.2
L5	70.5-39.75 (5)	0.008	0.558	0.000	0.012	0.000	0.566	1.000	4.8.2
L6	$39.75-31.75$ (6)	0.008	0.554	0.000	0.011	0.000	0.563	1.000	4.8.2
L7	$31.75-17.75$ (7)	0.009	0.587	0.000	0.011	0.000	0.597	1.000	4.8.2
L8	$17.75-14.25$ (8)	0.009	0.558	0.000	0.010	0.000	0.567	1.000	4.8.2
L9	14.25-0 (9)	0.011	0.629	0.000	0.011	0.000	0.640	1.000	4.8.2

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} ø P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	Pass Fail
L1	148-116.5	Pole	TP29.48x24x0.219	1	-11.599	1273.620	**	**
L2	116.5-98.5	Pole	TP32.175x28.39x0.25	2	-14.888	1751.620	**	**
L3	98.5-80.25	Pole	TP35.35x32.175x0.434	3	-17.904	2235.790	**	**
L4	80.25-70.5	Pole	TP36.547x34.067x0.487	4	-22.445	2653.470	**	**
L5	70.5-39.75	Pole	TP41.9x36.547x0.591	5	-30.635	3874.320	**	**
L6	39.75-31.75	Pole	TP42.666x40.361x0.643	6	-37.154	4394.700	**	**
L7	31.75-17.75	Pole	TP45.102x42.666x0.626	7	-42.513	4539.090	**	**
L8	17.75-14.25	Pole	TP45.711x45.102x0.728	8	-44.114	4902.000	**	**
L9	14.25-0	Pole	TP48.19x45.711x0.619	9	-50.195	4669.620	**	**
						Pole (L9) RATING =	$\begin{gathered} \text { Summary }_{* *} \\ * * \end{gathered}$	**

**Check Additional Calculations

Program Version 7.0.5.1

APPENDIX B

BASE LEVEL DRAWING

(INSTALLED)
(1) $1 / 2^{n}$ TO 16 FT LEVEL
(18) $1-5 / 8^{\prime \prime}$ TO 138 FT LEVEL
(INSTALLED)
(1) $1 / 2^{\prime \prime}$ TO 45 FT LEVEL
(3) $1-1 / 4$ " TO 148 FT LEVEL

BUSINESS UNIT: 876373

APPENDIX C
ADDITIONAL CALCULATIONS

Rein1

Rein3

Bottom	Top	Qty	Model	Position	T or T\&C	
	0				F	T\&C
					F	T\&C
					F	T\&C
					F	T\&C
					F	T\&C
					F	T\&C
					F	T\&C
					F	T\&C
					F	T\&C

Anchor Rod Information for TIA/EIA-222-F and TIA-222-G-2

Original Anchor Rod Data	
Quantity:	16
Diameter:	2.25
Material:	A615 GR 75
Bolt Circle:	55.0
Bolt Spacing:	6
Bolt Group Area:	63.62
Bolt Group MOIx:	24055

Quantity: \quad First Added Anchor Rod Data		
Diameter:	2.25	in
Material:	A193 B7	
Bolt Circle:	62.0	in
Bolt Group Area:	11.93	in ${ }^{2}$
Bolt Group MOIx:	5732	in ${ }^{4}$
Reactions Seen by First Added AR Group		
Moment:	550.1	kip-ft
Axial:	0.0	kip
Shear:	0.0	kip
First Added AR Capacity Check		
Combined Load:	134.2	kip
Allowable load:	324.8	kip
AR Capacity:	41.3\%	Pass

Design Information	
TIA Code:	G
ASIF:	1.000
Failure:	105\%
eta Factor:	0.50

Third Added Anchor Rod Data		
Quantity: Diameter: Material: Bolt Circle:		in
Bolt Group Area:	0.00	in ${ }^{2}$
Bolt Group MOIx:	0	in ${ }^{4}$
Reactions Seen by Second Added AR Group		
Moment:	0.0	kip-ft
Axial:	0.0	kip
Shear:	0.0	kip
Second Added AR Capacity Check		
Combined Load:	0.0	kip
Allowable load:	0.0	kip
AR Capacity:	0.0\%	

Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F /C
Assumptions: 1) Rod groups at corners. Total \# rods divisible by 4. Maximum total \# of rods = 48 (12 per Corner).
2) Rod Spacing $=$ Straight Center-to-Center distance between any (2) adjacent rods (same corner)
3) Clear space between bottom of leveling nut and top of concrete not exceeding (1)*(Rod Diameter)

Site Data		
BU\#: 876373		
Site Name: LONG EDDY - WRIGHT P App \#: 378332 Revision \# 2		
Anchor Rod Data		
Eta Factor, η	0.5	TIA G (Fig. 4-4)
Qty: Diam: Rod Material: Yield, Fy: Strength, Fu: Bolt Circle:	16	
	2.25	in
	A615-J	
	75	ksi
	100	ksi
	55	in
Anchor Spacing:	6	in

Base Reactions		
TIA Revision:	G	
Factored Moment, Mu:	2308.97098	ft-kips
Factored Axial, Pu:	50.1951	
kips		
Factored Shear, Vu:	24.959102	kips

Anchor Rod Results	
TIA G --> Max Rod (Cu+ Vu/n):	132.2 Kips
Axial Design Strength, $\Phi^{*} F$ AAnet: $^{\text {Anchor Rod Stress Ratio: }}$	260.0 Kips
Anch	50.8% Pass

Plate Data		
W=Side:	54	in
Thick:	2.75	in
Grade:	55	ksi
Clip Distance:	6	in

Base Plate Results	Flexural Check
Base Plate Stress:	24.5 ksi
PL Design Bending Strength, Φ^{*} Fy:	49.5 ksi
Base Plate Stress Ratio:	49.5% Pass

Stiffener Data (Welding at both sides)		
Configuration:	Unstiffened	
Weld Type:		**
Groove Depth:		in **
Groove Angle:		degrees
Fillet H. Weld:		<-- Disregard
Fillet V. Weld:		in
Width:		in
Height:		in
Thick:		in
Notch:		in
Grade:		ksi
Weld str.:		ksi

Pole Data			
Diam:	48.19	in	
Thick:	0.375	in	
Grade:	65	ksi	
\# of Sides:	18	"0" IF Round	

N/A - Unstiffened
Stiffener Results

Horizontal Weld	N/A
Vertical Weld:	N/A
Plate Flex+Shear, $\mathrm{fb} / \mathrm{Fb}+(\mathrm{fv} / \mathrm{Fv})^{\wedge} 2$:	N/A
Plate Tension+Shear, $\mathrm{ft} / \mathrm{Ft}+(\mathrm{fv} / \mathrm{Fv})^{\wedge} 2$:	N/A
Plate Comp. (AISC Bracket):	N/A
Pole Results	
Pole Punching Shear Check:	N/A

[^16]| $\frac{\text { Proj. Number }}{\text { Proj. Name }}$ | $\frac{89028.006 .01}{\text { LONG EDDY / WRIGT PROI }}$ |
| :--- | :--- |
| $\underline{\text { Code }}$ | |

Previously Added Anchor Rods	
Diameter	2.25 in
Grade	A193 Gr B7
Quantity	3
Bolt Circle	62 in

Existing Mfg Anchor Rods	
Diameter	2.25 in
Quantity	16
Bolt Circle	55
	in

Summary Output	
- Anchor Rod Bracket Checks	
Tube Stress:	36.8%
Max. Weld Stress:	77.4%

Analysis Criteria	
Load for Calcs?	Current Load
Current Load	134.2 kips
Capacity	325 kips

Tower Properties

$\mathrm{Fy}_{\text {pole }}=$	60
$\mathrm{Fu}_{\text {pole }}=$	75
$\mathrm{Fy}_{\text {base }}=$	55
$\mathrm{Fu}_{\text {base }}=$	75

Foundation Properties

Type	Pad
Pad Thickness	3.5
f_{c}	3000
Clear Cover	3
Pad Width	24.5
	10
	18

Anchor Rod Bracket Properties

Gusset Properties

Thickness	1.25	inch
Pole to Tube CL	6.8125	inch
Height	54	inch
Width at Tube	4.5625	inch
$F y_{\text {plate }}=$	65	ksi
$F u_{\text {plate }}=$	80	ksi
Gap =	0	inch
Notch $=$	0.75	inch

Pipe/Tube Properties

Size	4 XXS Pipe	
$\mathrm{L}_{\text {pipe }}=$	14	inch
Length Above Gusset		3 inch
$F_{\text {ypipe }}=$	50	ksi
$\mathrm{D}_{\text {pipe }}=$	4.5	inch
$\mathrm{t}_{\text {pipe }}=$	0.674	inch
$\mathrm{A}_{\text {pipe }}=$	8.101300374	inch 2
$\mathrm{I}_{\text {pipe }}=$	15.28366215	inch 4
$\mathrm{r}_{\text {pipe }}=$	1.373524299	inch

Weld Properties

$\mathrm{F}_{\text {EXX }}=$	$70 \mathrm{ksi} \quad$ Weld Material Grade
Load Angle	45 degrees

l	- Bracket to Tube Weld	
Double Bevel+Fillet		

- Bracket to Pole Weld

Weld Type	Double Fillet	
$D_{\text {vpole }}=$	6	Vertical fillet weld size in sixteenths
$H=$	54 inch	Height of vertical weld from base plate

- Gusset to Base Plate Weld

Weld Type	Double Bevel+Fillet	
Bevel Depth	0.5 inch	Bevel depth in inches
	8	Fillet weld size in sixteenths
Fillet Size	8	

Additional Variables

$C_{1}=$	1.00	
$\mathrm{k}_{\mathrm{rt}}=$	0	Electrode Strength Coefficient
$\Psi_{\mathrm{t}}=$	1	Transverse Reinforcement Index:
		Rebar Location Factor:

PROJ ECT	876373 - LONG EDDY / WRI GHT PROPERTY, CT				
SUBJ ECT	Foundation Analysis				
DATE	03-23-17	PAGE	1	OF	1

Monopole Pad \& Pier Foundation Analysis

Design Loads:

Shear:
Moment:
Tower Height:
Tower Weight:

Pad \& Pier Dimensions / Properties:

Pole Diameter at Base:
Bearing Depth:
Pad Width:
Neglected Depth:
Thickness:
Pier Diameter:
Pier Height Above Grade:
BP Dist. Above Pier:
Clear Cover:
Pier Rebar Size:
Pier Rebar Quanity:
Pad Rebar Size:
Pad Rebar Quanity:
Pier Tie Size:
Tie Quanity:
Rebar Yield Strength:
Concrete Strength:
Concrete Unit Weight:

24.5 FT

Elevation Overview

Summary of Results

Req'd Pier Diam.	No Good!
Overturning	76.9%
Shear Capacity	29.6%
Bearing	21.6%
Pad Shear - 1-way	30.7%
Pad Moment Capacity	48.7%

[^0]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^1]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^2]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^3]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^4]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^5]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^6]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^7]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^8]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^9]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^10]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^11]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^12]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^13]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^14]: Adam Wolfrey, Consultant
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 667-3100

[^15]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals
 Use Moment Magnification
 $\sqrt{ }$ Use Code Stress Ratios
 $\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice
 Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

[^16]: ** Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

