Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts

January 5, 2018

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 720 Quinebaug Road, Thompson, Connecticut

Dear Ms. Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains twelve (12) antennas at the 115-foot level of an existing 125-foot monopole tower at 720 Quinebaug Road in Thompson, Connecticut (the "Property"). The tower and Property are owned by the Quinebaug Volunteer Fire Department ("QVFD"). Cellco's use of the tower was approved by the Council in 2007. Cellco now intends to replace six (6) of its existing antennas with three (3) model JAHH-65B-R3B, 700/2100 MHz antennas and three (3) model JAHH-65B-R3B, 850/1900 MHz antennas, at the same level on the tower. Cellco also intends to install nine (9) remote radio heads ("RRHs") and two (2) HYBRIFLEXTM fiber optic antenna cables. Included in Attachment 1 are specifications for Cellco's replacement antennas, RRHs and HYBRIFLEXTM cables.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Kenneth Beausoleil, First Selectman for the Town of Thompson; Mary Ann Chinatti, Thompson's Director of Planning and Development; and QVFD, the tower and Property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's replacement antennas and RRHs will be installed at the same 115-foot level of the 125-foot tower.

17461475-v1

Robinson+Cole

Melanie A. Bachman, Esq. January 5, 2018 Page 2

- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility (115-foot rad-center) is included behind <u>Attachment 2</u>.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The tower and its foundation can support Cellco's proposed modifications. (*See* Structural Analysis Report included in <u>Attachment 3</u>).

A copy of the parcel map and owner information for the Property is included in <u>Attachment 4</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the owner of the Property is included in <u>Attachment 5</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Enclosures
Copy to:

Kenneth Beausoleil, Thompson First Selectman Mary Ann Chinatti, Thompson's Director of Planning and Development Quinebaug Volunteer Fire Department Tim Parks

ATTACHMENT 1

JAHH-65B-R3B

8-port sector antenna, 2x 698-787, 2x 824-894 and 4x 1695-2360 MHz, 65° HPBW, 3x RET and low bands have diplexers. Internal SBT's on first LB(Port 1) and first HB (Port 5).

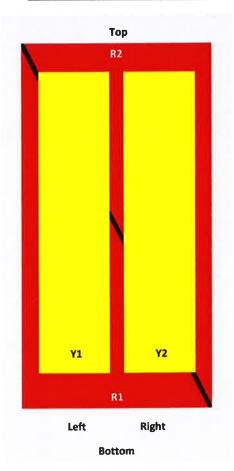
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One RET for 700MHz, one RET for 850MHz, and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO
- Internal filter on low band and interleaved dipole technology providing for attractive, low wind load mechanical package
- Separate RS-485 RET input/output for low and high band

Electrical Specifications

Frequency Band, MHz	698-787	824-894	1695-1880	1850-1990	1920-2200	2300-2360
Gain, dBi	14.5	15.8	18.0	18.4	18.5	18.8
Beamwidth, Horizontal, degrees	67	65	63	63	65	68
Beamwidth, Vertical, degrees	12.4	10.5	5.7	5.2	4.9	4.4
Beam Tilt, degrees	2-14	2-14	0-10	0-10	0-10	0-10
USLS (First Lobe), dB	18	18	20	20	21	23
Front-to-Back Ratio at 180°, dB	32	34	31	35	36	38
Isolation, dB	25	25	25	25	25	25
Isolation, Intersystem, dB	30	30	30	30	30	30
VSWR Return Loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port, maximum, watts	350	350	350	350	350	300
Polarization	±45°	±45°	±45°	±45°	±45°	±45°
Impedance	50 ohm					

Electrical Specifications, BASTA*

riecurcai specifications,	DAJIA					
Frequency Band, MHz	698-787	824-894	1695-1880	1850-1990	1920-2200	2300-2360
Gain by all Beam Tilts, average, dBi	14.3	14.9	17.6	18.1	18.2	18.5
Gain by all Beam Tilts Tolerance, dB	±0.3	±0.5	±0.6	±0.4	±0.5	±0.6
	2 ° 14.3	2° 15.0	0 ° 17.2	0 ° 17.6	0 ° 17.7	0 ° 17.9
Gain by Beam Tilt, average, dBi	8 ° 14.3	8° 14.9	5° 17.6	5 ° 18.2	5° 18.3	5° 18.7
	14 ° 14.3	14 ° 15.4	10 ° 17.6	10 ° 18.2	10 ° 18.3	10 ° 18.7
Beamwidth, Horizontal Tolerance, degrees	±1.2	±1.4	±4	±2.4	±2.9	±2.7
Beamwidth, Vertical Tolerance, degrees	±0.9	±0.5	±0.3	±0.2	±0.3	±0.1
USLS, beampeak to 20° above beampeak, dB	18	17	17	18	19	18
Front-to-Back Total Power at 180° ± 30°, dB	25	24	26	29	27	29
CPR at Boresight, dB	22	23	20	21	21	24
CPR at Sector, dB	11	12	11	11	11	8


^{*} CommScope® supports NGMN recommendations on Base Station Antenna Standards (BASTA). To learn more about the benefits of BASTA, download the whitepaper Time to Raise the Bar on BSAs.

JAHH-65B-R3B

Array Layout

JAHH-65A-R3B JAHH-65B-R3B JAHH-65C-R3B

Array	Freq (MHz)	Conns	RET (SRET)	AISG RET UID
RI	698-798	1-2	1	ANXXXXXXXXXXXXXXXXX
R2	824-894	3-4	2	ANXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Y1	1695-2360	5-6	3	ANxxxxxxxxxxxxxxxxxx
Y2	1695-2360	7-8	1	

View from the front of the antenna

(Sizes of colored boxes are not true depictions of array sizes)

General Specifications

Operating Frequency Band

Antenna Type

Band

Performance Note

1695 - 2360 MHz | 698 - 787 MHz | 824 - 894 MHz

Sector

Multiband

Outdoor usage

Mechanical Specifications

RF Connector Quantity, total

RF Connector Quantity, low band

RF Connector Quantity, high band

RF Connector Interface

8

4

4

4.3-10 Female

JAHH-65B-R3B

Color Light gray

Grounding Type RF connector body grounded to reflector and mounting bracket

Radiator Material Aluminum | Low loss circuit board

Radome Material Fiberglass, UV resistant

Aluminum

RF Connector Location Bottom

Wind Loading, frontal 746.0 N @ 150 km/h 167.7 lbf @ 150 km/h

Wind Loading, lateral 243.0 N @ 150 km/h 54.6 lbf @ 150 km/h

Wind Loading, rear 776.0 N @ 150 km/h 174.5 lbf @ 150 km/h

Wind Speed, maximum 241 km/h | 150 mph

Dimensions

Reflector Material

 Length
 1828.0 mm | 72.0 in

 Width
 350.0 mm | 13.8 in

 Depth
 208.0 mm | 8.2 in

 Net Weight, without mounting kit
 28.7 kg | 63.3 lb

Remote Electrical Tilt (RET) Information

Input Voltage 10-30 Vdc

Internal Bias Tee Port 1 | Port 5

Internal RET High band (1) | Low band (2)

Power Consumption, idle state, maximum 2 W Power Consumption, normal conditions, maximum 13 W

Protocol 3GPP/AISG 2.0 (Single RET)

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 2 female | 2 male

Packed Dimensions

 Length
 1975.0 mm
 | 77.8 in

 Width
 456.0 mm
 | 18.0 in

 Depth
 357.0 mm
 | 14.1 in

 Shipping Weight
 42.0 kg
 | 92.6 lb

Regulatory Compliance/Certifications

Agency

RoHS 2011/65/EU Compliant

China RoHS SJ/T 11364-2006

ISO 9001:2008

Classification

Compliant by Exemption

Above Maximum Concentration Value (MCV)

Designed, manufactured and/or distributed under this quality management system

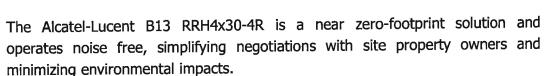
JAHH-65B-R3B

Included Products

BSAMNT-1 — Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note

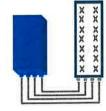

Severe environmental conditions may degrade optimum performance

ALCATEL-LUCENT B13 RRH4X30-4R

Alcatel-Lucent B13 Remote Radio Head 4x30-4R is the newest addition of Remote Radio Head to the extended product line of Alcatel-Lucent's distributed Base Station solutions, aimed at facilitating smooth RF site acquisition and related civil engineering.

Supporting 2Tx/4Tx MIMO and 4-way Rx diversity, Alcatel-Lucent B13 RRH4x30-4R allows operators to have a compact radio solution to deploy LTE in the 700U band (700 MHz, 3GPP band 13), providing them with the means to achieve high capacity, high quality and high coverage with minimum site requirements.

The Alcatel-Lucent B13 RRH4x30-4R product has four transmit RF paths, offering the possibility to **select, via software only, 2Tx or 4Tx MIMO configurations** with either 2x60 W or 4x30 W RF output power. It supports also 4-way Rx diversity and up to 10MHz instantaneous bandwidth.


Its compactness and slim design makes the Alcatel-Lucent B13 RRH4x30-4R easy to install close to the antenna: operators can therefore locate this Remote Radio Head where RF design conditions are deemed ideal, minimizing trade-offs between available sites and RF optimum sites, together with reducing the RF feeder needs and installation costs.

- Supporting LTE in 700 MHz band (700U, 3GPP band 13)
- LTE 2Tx or 4Tx MIMO (SW switchable)
- Output power: Up to 2x60W or 4x30W
- 10MHz LTE carrier with 4Rx Diversity
- Convection-cooled (fan-less)
- Supports AISG 2.0 ALD devices (RET, TMA) through RS485 or RF ports

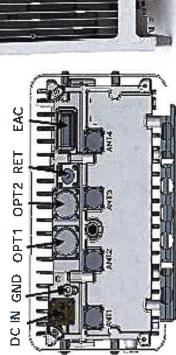
BENEFITS

- Compact to reduce additional footprint when adding LTE in 700U band
- MIMO scheme operation selection (2Tx or 4Tx) by software only
- Improves downlink spectral efficiency through MIMO4
- Increases LTE coverage thanks to 4Rx diversity capability and best in class Rx sensitivity
- Flexible mounting options: Pole or Wall

4x30W with 4T4R or 2x60W with 2T4R

Can be switched between modes via SW w/o site visit

TECHNICAL SPECIFICATIONS


	Features & performance
Number of TX/RX paths	4 duplexed (either 4T4R or 2T4R by SW)
Fraguency band	U700 (C) (3GPP bands 13): DL: 746 - 756 MHz / UL: 777 - 787 MHz
Instantamous bandwidth - #carriers	19MHz – 1 LTE carrier (in 10MHz occupied bandwidth)
LTE carrier bandwidth	10 MHz
RF autput power	2x60W or 4x30W (by SW)
Name figure – RX Diversity scheme	2 dB typ. (<2.5 dB max) – 2 or 4 way Rx diversity
Sizes (HxWxD) in mm (in.) Volume in L Weight in kg [ib] (w/o mounting HW)	550 x 305 x 230 (21.6" x 12.0" x 9") (with solar shield) 38 (with solar shield) 26 (57.2) (with solar shield)
OC voitage range DC power consumption	-40.5 to -57V at full performance, -38 to -57V with relaxation on power consumption 550W typical @100% RF load (in 2Tx or 4TX mode)
Environmental conditions Wind load (Q150km/h or 93mph)	-40°C (-40°F) /+55°C (+131°F) IP65 Frontal:<200N / Lateral :<150N
Antenna porta	4 ports 7/16 DIN female (50 ohms) VSWR < 1.5
CPR1 ports	2 CPRI ports (HW ready for Rate7, 9.8 Gbps) SFP single mode dual fiber
ALSS Interfaces	1 AISG2.0 output (RS485) Integrated Smart Bias Tees (x2)
Miss Interfaces	4 external alarms (1 connector) – 4 RF Tx & 4 RF Rx monitor ports - 1 DC connector (2 pins)
Installation conditions	Pole and wall mounting
Regulatory compliance	3GPP 36.141 / 3GPP 36.113 / GR-1089-CORE / GR-3108-CORE / UL 60950-1 / FCC Part 27

www.alcatel-lucent.com Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks of Alcatel-Lucent. All other trademarks are the property of their respective owners. The information presented is subject to change without notice, Alcatel-Lucent assumes no responsibility for inaccuracies contained herein, Copyright © 2014 Alcatel-Lucent. All Rights Reserved

AHCA AirScale RRH 4T4R B5 160W

Supported Frequency bands	3GPP band 5	
Frequencies	DL 869-894MHz, UL 824-849MHz	
Number of TX/RX paths/pipes	4TX/4RX	DC IN
Instantaneous Bandwidth IBW	25MHz (Full Band)	
Occupied Bandwidth OBW	25MHz (Full Band)	Ž.
Output Power	4T4R @ 40W / 2T4R @ 60vV	
RF Sharing	LTE, WCDMA, LTE + NB-IOT supported	
256 QAM Back Off	No backoff at 40W and 0.8dB at 60W.	
Supply Voltage / Voltage Range	DC-48V / -36V to -60V	F
Typical Power Consumption	365W [50% ETSI Busy Hour Load at 4TX @ 40M]	J
,	529W [100% RF Load at 4 TX @ 40M]	4
	574W [100% RF Load at 4 TX @ 40W with SBT and AISG ON]	Omeration
Antenna Ports	4 Ports, 4.3-10+	Height xv
Optical Ports	2x CPRI 9.8 Gbps	
ALD Control Interfaces	AISG3.0 from ANT 1,2, 3, 4 and RET Power supply ANT1 and ANT3)	Volume (
Other Interfaces	External Alarm MCR-26 Serial corrector (4 inputs, 1 Output) DC Circular Power Connector	Ingress p

Operational Temperature Range	-40°C to 55°C (with solar cover)
Dimensions fram) Height x width x depth	337 x 295 x 165 (radio only) 13.3" x 11.7" x 6.5" 428 x 324 x 208 (with bracket and enclosure) 16.9" x 12.8" x 8.2"
Volume (liters)	16.5
Weight (kg)	16/ 35.3 lb - w/o bracket
Ingress protection class	19e3
Installation options	Pole or Wall, Vertical or Horizontal Book Mount
Surge protection	Class II 5 kk

B66a RRH4x45W

Datasheet		
Radio Technology FDD-LTE		
Feature description: • Remote Radio Head 4x45W or 2x90W Switchable via SW	Power Output	4 x 45 W or 2x90W (SW Switchable) w/o fans
	IBW	70MHz
	OBW	60 MHz
	RF Sharing	LTE
	Mass/Volume	25.8kg/56.9 lb Weight 655H x 299W x 182D mm 25.8"x11.8"x7.2" 29.7L / 35.5L
	Antenna Conf.	4Tx/4Rx
	Temperature	-40 to 55 °C
	IP class	IP65
- S	Input Power	DC 48 V
HI I	Cooling	Natural Convection
	Mounting	Wall, Pole mount
	BBU connection	2x 9.8Gbps SFP(Rate 7 HW ready)

B66a RRH 4x45 – Interfaces

Power:

Max power: 816W (add 58W for AISG)

Breaker size: 25A

Max distance with 6ga power feed and 5.5V drop: 284 feet

RF Interfaces:

4.3/10 Connectors

No monitoring ports(Spectrum analyzer SW takes place of monitoring ports)

AISG:

Two Smart Bias-T

One AISG port

© Nokia 2016

B66 Details

- Max power for a single carrier is:
- 2x60W for 10,15,20 MHz carrier
- 2x40W for 5 MHz carrier
- Multi- Carrier Support with AWS-1 carriers: 15.1
- Multi- Carrier Support with AWS-3 carriers: 16.2

Carrier power: Multi-carrier

- Assuming 2 Tx power can be assigned per carrier subject to 40W max for 5Mhz, 60W for larger in 2T, cut that power in half for 4T
- Example: B4 (20Mhz) and AWS3 (10MHz)
- Power can be varied between those two carriers, can go 60W for 20 MHz carrier, 30W for 10 MHz carrier to use the 90W in 2T.
- It could be 45/45 for 20Mhz/10Mhz if desired.

Product Description

RES' HYBRIFLEX Remote Radio Head (RRH) hybrid feeder cabling solution combines optical fiber and DC power for RRHs in a single lightweight aluminum corrugated cable, making it the world's most innovative solution for RRH deployments.

It was developed to reduce installation complexity and costs at Cellular sites. HYBRIFLEX allows mobile operators deploying an RRH architecture to standardize the RRH installation process and eliminate the need for and cost of cable grounding. HYBRIFLEX combines optical fiber (multi-mode or single-mode) and power in a single corrugated cable. It eliminates the need for junction boxes and can connect multiple RRHs with a single feeder. Standard RFS CELLFLEX® accessories can be used with HYBRIFLEX cable. Both pre-connectorized and on-site options are available.

Features/Benefits

- Aluminum corrugated armor with outstanding bending characteristics minimizes installation time and enables mechanical protection and shielding
- Same accessories as 1 5/8" coaxial cable
- Outer conductor grounding Eliminates typical grounding requirements and saves on installation costs
- Lightweight solution and compact design Decreases tower loading
- Robust cabling Eliminates need for expensive cable trays and ducts
- Installation of tight bundled fiber optic cable pairs directly to the RRH Reduces CAPEX and wind load by eliminating need for interconnection
- Optical fiber and power cables housed in single corrugated cable Saves CAPEX by standardizing RRH cable installation and reducing installation requirements
- Outdoor polyethylene jacket Ensures long-lasting cable protection

Figure 1: HYBRIFLEX Series

PE/UV external jacket

Optical cable (pair) with an internal jacket

an internal jacket Figure 3: Construction Detail

Aluminum OC

Power cable with

Technical Specifications

Outer Conductor Armor	Corrugated Aluminum	[mm (in)]	46.5 (1.83)
Jacket:	Polyethylene, PE	[mm (in)]	50.3 (1.98)
UV-Protection	Individual and External Jacket	100000000000000000000000000000000000000	Yes
Main Vinter and			
Weight, Approximate		[kg/m (lb/ft)]	1 9 (1.30)
Minimum Bending Radius	Single Bending	[mm (in)]	200 (8)
Minimum Bending Radius		[mm (in)]	500 (20)
Recommended/Maximum		[m (ft)]	1.0 / 1.2 (3.25 / 4.0)
Simple Countries	5. St		
DC-Resistance Outer Con-	ductor Armor	[Ω/km (Ω/1000ft)]	068 (0.205)
DC-Resistance Power Cab		[Ω/km (Ω/1000fu)]	
The Table Training		1	
Version			Single-mode ONI3
Quantity, Fiber Count			16 (8 pairs)
Core/Clad		um;	50/125
Primary Coating (Acrylate)	7	μm	245
Primary Coating (Acrylate) Buffer Diameter, Nominal		Carried (Carried of the Carried of t	900
Buffer Diameter, Nominal		[µm]	
	cet, Nominal	μm) [μm]	900
Buffer Diameter, Nominal Secondary Protection, Jack Minimum Bending Radius	set, Nominal	[µm] [µm] [mm (in)]	900 2.0 (0.08)
Buffer Diameter, Nominal Secondary Protection, Jack	ket, Nominal ith 850nm	(µm) (µm) (mm (in)) (mm (in))	900 2.0 (0.08) 104 (4.1)
Buffer Diameter, Nominal Secondary Protection, Jack Minimum Bending Radius Insertion Loss @ waveleng	ket, Nominal ith 850nm ith 1310nm	μm] (μm) (mm (in)) (mm (in)) dB/km	900 2.0 (0.08) 104 (4.1) 3.0
Buffer Diameter, Nominal Secondary Protection, Jack Minimum Bending Radius Insertion Loss @ waveleng Insertion Loss @ waveleng	ket, Nominal ith 850nm ith 1310nm	μm] (μm) (mm (in)) (mm (in)) dB/km	900 2.0 (0.08) 104 (4.1) 3.0 1.0

12 C 2 1 2 2 4 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2		
Size (Power)	[mm (AWG)]	8 4 (8)
Quaritity, Wire Count (Power)		16 (8 pairs)
Size (Alarm)	[mm (AVVG)]	0.8 (18)
Quantity, Wire Count (Alarm)		4 (2 pairs)
Туре	0	UV protected
Strands		19
Primary Jacket Diameter, Nominal	[mm (in/)	6.8 (0.27)
Standards (Meets or exceeds)		NFPA 130, ICEA S-95-658 UL Type XHHW-2, UL 44 UL-LS L:mited Smoke, UL VW-1 IEEE-383 (1974), IEEE1202/FT4
		RoH's Compliant
		RoHS Compliant

Installation Temperature	[°C (°F)]	-40 to +65 (-40 to 149)
Operation Temperature	[°C /°F)]	-40 to +65 (-40 to 149)
This data is provisional and subject to change	*	

RFS The Clear Choice®

HB158-1-08U8-58J18

Ray: 21

Print Date: 27.6.2012

information contained in the present datasheet is subject to confirmation at time of ordering

Radio Frequency Systems

ATTACHMENT 2

Site Name: Guinebaug (Thompson) CALC. CALC. MAX. PERMISS. FRACTION PERMISS.		General	Power	Density					
125° MAX. CALC. MAX. PERMISS. FRACTION CARRIER # OF CHAN. WATTS ERP HEIGHT DENS FREQ. EXP. MPE 1 100 133 155 0.0022 0.2000 0.11% 1 100 90 465 0.0051 0.3100 0.14% 2 565 130 880 0.0068 0.2000 0.44% 2 875 130 1900 0.049 1.000 0.44% 4 525 130 1900 0.049 1.000 0.44% 8 0 1 1771 130 1900 0.049 1.000 0.49% 8 1 1771 130 1.000 0.049 0.00% 0.49% 0.49% 8 0 0 0 115 0.000 1970 0.49% 0.18% 8 0 0 0 0 0 0.000 1970 0.49	Site Name: Quinebaug (Thompson)								
CARCIER # OF CHAN. WATTS ERP HEIGHT DENS FREQ. FRACTION 1 100 133 155 0.0022 0.2000 0.11% 1 100 133 155 0.0022 0.2000 0.11% 1 100 90 465 0.0051 0.2000 0.14% 2 565 130 880 0.0068 0.2000 0.44% 2 875 130 880 0.0064 0.5867 0.11% 4 525 130 880 0.006 0.49% 1 1771 130 1300 0.0491 1.000 0.49% 1 1771 130 130 0.0491 1.000 0.49% 1 1771 115 0.000 1970 1.000 0.49% 1 1 115 0.1009 869 0.5793 17.41% 1 1 1 1 0.000 0.4973 11.28%	Tower Height: 125'								
CARRIER # OF CHAN. WATTS ERP HEIGHT POWER FREQ. EXP. MPE 1 100 133 155 0.0022 0.2000 0.11% 1 100 90 465 0.0051 0.200 0.14% 1 100 70 33.9 0.0088 0.200 0.46% 2 565 130 880 0.0084 0.200 0.44% 2 875 130 880 0.0064 0.5867 0.45% 3 1 2 875 130 1900 0.049 1.000 0.41% 4 525 130 180 0.049 1.000 0.49% 1 1771 130 734 0.041 0.49% 0.69% 1 1771 130 734 0.041 1.000 0.49% 1 1 1771 115 0.000 1970 0.5793 11.25% 1 1 7 </td <td></td> <td></td> <td></td> <td></td> <td>CALC.</td> <td></td> <td>MAX.</td> <td>-</td> <td></td>					CALC.		MAX.	-	
1 100 133 155 0.0022 0.2000 0.11% 100 100 465 0.0051 0.3100 0.16% 1100 2 565 130 880 0.0088 0.2000 0.44% 100 2 875 130 1900 0.0496 0.046% 0.2867 0.41% 100 100 0.0496 0.0	A B B B B B B B B B B B B B B B B B B B	# OF CHAN	WATTS FRP	HEIGHT	POWER	FRFO	PERMISS. EXP.		Total
1 100 90 465 0.0051 0.16% 0.16% 1 100 70 33.9 0.0088 0.2000 0.44% 0.285 130 880 0.0264 0.5867 0.45% 0.45% 0.285 130 880 0.0264 0.5867 0.41% 0.283 130 880 0.0491 1.0000 0.41% 0.283 130 1900 0.0491 1.0000 0.49% 0.285 1.0000 0.49% 0.0491 1.0000 0.49% 0.0491 1.0000 0.49% 0.0491 1.0000 0.49% 0.0491 1.0000 0.49% 0.0491 1.0000 0.49% 0.0491 1.0000 0.49% 0.0491 1.0000 0.049% 0		-	100	133	155	0.0022	0.2000	0.11%	
FD 1 100 70 33.9 0.0088 0.2000 0.44% 5 2 565 130 880 0.0264 0.5867 0.45% 5 2 875 130 880 0.0264 0.5867 0.41% 5 1 2 875 130 1900 0.0499 1.0000 0.41% 6 1 1 1771 130 734 0.0491 1.000 0.49% 9 503 115 0.0000 1970 0.4893 0.85% S 1 3710 115 0.1031 869 0.5793 17.26% S 1 7771 115 0.1039 869 0.5793 17.28% S 1 7771 115 0.0561 746 0.4973 11.28% *Source: Siting Council * * * * * * * *	*Quinebaug FD		100	06	465	0.0051	0.3100	0.16%	
5 565 130 880 0.0264 0.5867 0.45% 5 2 875 130 1900 0.0409 1.0000 0.41% 5 1 2 875 130 1900 0.0409 1.0000 0.41% 6 1 2 130 180 0.0066 0.5867 0.11% 8 1 1 1771 130 734 0.0491 1.0000 0.49% 9 503 115 0.0000 1970 1.0000 0.00% 1 7771 115 0.1009 869 0.5793 17.4% S 1 7771 115 0.1009 869 0.5793 17.4% *Source: Siting Council 1 2063 115 0.0561 746 0.4973 11.28% *Source: Stimp Council 1 2063 115 0.0561 746 0.4973 11.28%	*Quinebaug FD	П	100	70	33.9	0.0088	0.2000	0.44%	
5 875 130 1900 0.0409 1.0000 0.41% 1 283 130 880 0.0066 0.5867 0.11% 1 4 525 130 1900 0.0491 1.0000 0.49% 1 1 1771 130 734 0.0491 1.0000 0.49% 1 0 0 115 0.0000 1970 0.493 0.85% UIAT 3 503 115 0.0000 1970 1.0000 0.09% LTE 1 3710 115 0.1009 869 0.5793 17.4% S 1 7771 115 0.1009 869 0.5793 17.1% *Source: Siting Council 1 2063 115 0.0561 746 0.4973 11.28% *Source: Siting Council 2 0.0561 746 0.4973 11.28%	*AT&T UMTS	2	565	130	880	0.0264	0.5867	0.45%	
Source: Siting Council 1 283 130 880 0.0066 0.5867 0.11% 4 525 130 1900 0.0491 1.0000 0.49% 0.49% 3 1 1771 130 734 0.0414 0.4893 0.85% LTE 0 0 115 0.0000 1970 1.0000 0.00% LTE 3 503 115 0.1031 869 0.5793 21.25% S 1 7771 115 0.1009 869 0.5793 17.3% 1 7771 115 0.2113 2145 1.0000 21.13% *Source: Siting Council *Source: Siting Council *O.561 746 0.4973 11.28%	*AT&T UMTS	2	875	130	1900	0.0409	1.0000	0.41%	
S 4 525 130 0.0491 1.0000 0.49% S 1 1771 130 734 0.0414 0.4893 0.85% S 0 0 115 0.0000 1970 1.0000 0.00% LTE 3 503 115 0.1039 869 0.5793 21.25% S 1 3710 115 0.0109 869 0.5793 17.41% S 1 7771 115 0.2113 2145 1.0000 21.13% * Source: Siting Council 1 2063 115 0.0561 746 0.4973 11.28% * Source: Siting Council 1 2063 1 1 1 1	*AT&T GSM	T	283	130	880	0.0066	0.5867	0.11%	
S 1771 130 734 0.0414 0.4893 0.85% S 0 0 0 115 0.0000 1970 1.0000 0.00% Ilular 9 503 115 0.0031 869 0.5793 21.25% INS 1 3770 115 0.1009 869 0.5793 17.41% AS 1 7771 115 0.2113 2145 1.0000 21.13% N Source: Siting Council *Source: Siting Council 1 2063 115 0.0561 746 0.4973 11.28%	*AT&T GSM	4	525	130	1900	0.0491	1.0000	0.49%	
Source: Siting Council 0 0 115 0.0000 1970 1.0000 0.00% Source: Siting Council 0 0 0 115 0 0.0000 17.41% 17.41% Source: Siting Council 1 3710 115 0 0.0561 746 0.4973 11.28%	*AT&T LTE	1	1771	130	734	0.0414	0.4893	0.85%	
Source: Siting Council 9 503 115 0.1231 869 0.5793 21.25% 1 3710 115 0.1009 869 0.5793 17.41% 1 7771 115 0.0109 869 0.5793 17.41% 1 7771 115 0.2113 2145 1.0000 21.13% 1 2063 115 0.0561 746 0.4973 11.28%	Verizon PCS	0	0	115	0.000	1970	1.0000	%00.0	
Source: Siting Council 1 3710 115 0.1009 869 0.5793 17.41% 1777 115 0.2113 2145 1.0000 21.13% 17.28% 11.28%	Verizon Cellular	6	503	115	0.1231	869	0.5793	21.25%	
* Source: Siting Council * Source Siting Council * Sou	Verizon 850 LTE	_	3710	115	0.1009	869	0.5793	17.41%	
* Source: Siting Council * Source Siting Council * Sou	Verizon AWS	_	7771	115	0.2113	2145	1.0000	21.13%	
	Verizon 700	_	2063	115	0.0561	746	0.4973	11.28%	
* Source: Siting Council									74.1%
	* Source: Siting Council								

ATTACHMENT 3

STRUCTURAL ANALYSIS REPORT 125' MONOPOLE TOWER THOMPSON, CONNECTICUT

Prepared for Verizon Wireless

Verizon Site: 468550_Quinebaug

August 16, 2017

APT Project #CT1411102

STRUCTURAL ANALYSIS REPORT 125' MONOPOLE TOWER THOMPSON, CONNECTICUT

prepared for Verizon Wireless

EXECUTIVE SUMMARY:

All-Points Technology Corporation, P.C. (APT) performed a structural analysis of this 125-foot monopole tower located at 720 Quinebaug Road in Thompson, Connecticut. The analysis was performed for Verizon Wireless's proposed replacement of six of their twelve panel antennas and installation of nine remote radio heads (RRHs) and two power/fiber distribution boxes (D-boxes). Two hybrid power/fiber lines are to be installed inside the pole.

Our analysis indicates the tower and foundation meet the requirements of TIA-222 and the Connecticut State Building Code with the proposed equipment changes.

INTRODUCTION:

A structural analysis of this communications tower was performed by APT for Verizon Wireless. The tower is located at the Quinebaug Fire Station in Thompson, Connecticut. APT previously visited the tower site on July 12, 2006 to perform a final inspection of the newly installed monopole tower. We revisited the site on July 26, 2017 to record the current inventory. This analysis also relied on information provided by others, which included design drawings and calculations by Valmont Communications, Project No. QU12139 dated December 22, 2005, and antenna loading proposed by Verizon Wireless.

The structure is a 125-foot, 16-sided, 3-section tapered steel monopole manufactured by Valmont Structures. According to Valmont design drawings, the tower is designed to support four 12-panel antenna arrays, one SD110 and two DB404 antennas.

The analysis was conducted using the following antenna inventory (proposed equipment changes shown in **bold** text):

Carrier	Antenna	Elev.	Mount	Feed Lines
Town	10' 8-bay dipole, 20' 4-bay dipole, 10' omni	123'	On platform below	(3) 7/8"
AT&T	(6) 800-10121, (1) AM-X-CD-17-65, (2) 800-	123'	13' low-profile platform	(12) 1-5/8",
	10764 panels, (3) RRHs, (6) TMAs, (6)			(2) power,
	diplexers, (1) D-box			(1) fiber
Verizon	(6) LPA-80080/6, (6) JAHH-65B-R3B panels,	115'	13' low-profile platform	(12) 1-5/8",
	(9) RRHs, (2) D-boxes 1			(2) hybrid

All-Points Technology Corporation

¹Currently twelve panel antennas, six diplexers and twelve lines installed.

CONDITION ASSESSMENT:

- General Observations: The tower, a 16-sided tapered steel monopole, appeared to be in sound condition. No signs of movement or overstress of the tower were observed.
- Antenna Connections: Antenna mounting hardware was in good condition, with corrosion resistant hardware and galvanized members prevalent.
- Base Plate: Base plate and anchor bolts appeared to be in good condition. No loose or missing nuts were observed.
- Foundation: Visible concrete appeared to be in good condition.

STRUCTURAL ANALYSIS:

Methodology:

The structural analysis was done in accordance with TIA-222-G (TIA), <u>Structural Standard for Antenna Supporting Structures and Antennas</u> and the Connecticut State Building Code.

The analysis was conducted using a 3-second gust wind speed of 100 miles per hour with no ice and 40-mph with ³/₄" radial ice in accordance with the TIA-222-G standard. The following additional design criteria were used:

Structure Class:

III (essential communications facility)

Exposure Category:

 \mathbf{B}

Topographic Category:

1

Analysis Results:

Our analysis determined the tower will support the proposed antennas and associated equipment. The following table summarizes the capacity of the monopole based on combined axial and bending stresses:

Elevation	Capacity
86'-125'	57%
39'-86'	59%
0'-39'	66%
Base plate	60%

All-Points Technology Corporation

August 16, 2017 Page 3 APT Project #CT1411102

The base foundation was evaluated from original Valmont drawings. The foundation was determined to be adequately sized to support the proposed changes.

Factored base reactions imposed were calculated to be as follows:

Axial:

25.5 kips

Total Shear:

20.8 kips

Overturning Moment:

1852 ft-kips

CONCLUSIONS AND SUGGESTIONS:

As detailed above, our analysis indicates that the existing 125' monopole tower located at 720 Quinebaug Road in Thompson, Connecticut meets the requirements of TIA-222 and the Connecticut State Building Code with Verizon Wireless's proposed equipment changes.

LIMITATIONS:

This report is based on the following:

- 1. Tower is properly installed and maintained.
- 2. All members are in an undeteriorated condition.
- 3. Tower is in plumb condition.

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

- 1. Adding or relocating antennas.
- 2. Installing antenna mounts or waveguide cables.
- 3. Extending tower.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Appendix A

Tower Schematic

125.0 ft 39.50 4.50 9 85.5 ft 0.2813 28.3602 39.4860 16 39.4 ft 6461.8 SHEAR 9 3141 lb 25506 lb SHEAR 20821 lb 0.0 ft Number of Sides Thickness (in) Socket Length Top Dia (in) Bot Dia (in) Weight (lb) Grade

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
20' 4-Bay Dipole	123	13' low-profile platform	121
10' x 1" omni whip	123	(2) LPA-80080/6	115
20' x 2" omni whip	123	(2) LPA-80080/6	115
(2) 800-10121	123	(2) LPA-80080/6	115
(2) 800-10121	123	(2) JAHH-65B-R3B	115
(2) 800-10121	123	(2) JAHH-65B-R3B	115
AM-X-CD-17-65	123	(2) JAHH-65B-R3B	115
800-10764	123	ALU RRH2x60-700 w/bracket	115
800-10764	123	ALU RRH2x60-700 w/bracket	115
(2) LGP2140X TMA	123	ALU RRH2x60-700 w/bracket	115
(2) LGP2140X TMA	123	ALU RRH2x90-AWS w/bracket	115
(2) LGP2140X TMA	123	ALU RRH2x90-AWS w/bracket	115
(2) LGP2190X Diplexer	123	ALU RRH2x90-AWS w/bracket	115
(2) LGP2190X Diplexer	123	Nokia RRH4x40-850 w/bracket	115
(2) LGP2190X Diplexer	123	Nokia RRH4x40-650 w/bracket	115
Ericsson RRUS-11	123	Nokia RRH4x40-850 w/bracket	115
Ericsson RRUS-11	123	Raycap RDC-3315-PF-48 J-box	115
Ericsson RRUS-11	123	Raycap RDC-3315-PF-48 J-box	115
Raycap DC6-48-60-18-8F surge 123 suppressor		13' low-profile platform	113

MATERIAL STRENGTH

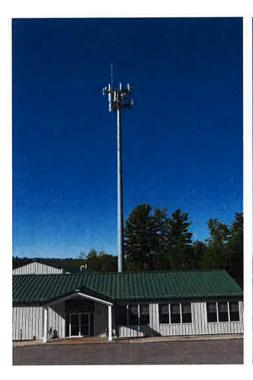
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

ALL REACTIONS ARE FACTORED

AXIAL 51807 lb

> MOMENT 285382 lb-ft

TORQUE 255 lb-ft 40 mph WIND - 0.7500 in ICE AXIAL

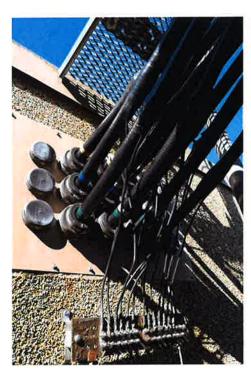

MOMENT 1852148 lb-ft

TORQUE 1550 lb-ft REACTIONS - 100 mph WIND

All-Points Technology Corporation	n Job: 125' Monopo	ole Tower				
116 Grandview Road	Project: CT1411102 Q	Project: CT1411102 Quinebaug				
Conway, NH 03818	Client: Verizon	Drawn by: Rob Adair	App'd:			
Phone: (603) 496-5853	Code: TIA-222-G	Date: 08/16/17	Scale:			
FAX: (603) 447-2124	Path: ZiSharediel Officeubbio Ven	Dwg No.				

Appendix B

Photographs


Overview photos of 125' monopole tower.

Photos of existing equipment on tower.

Photos taken by All-Points Technology Corporation, P.C. on July 26, 2017.

Photos of Verizon's existing feed lines at shelter.

Photo of Verizon's existing feed lines and ice bridge to tower.

Photos taken by All-Points Technology Corporation, P.C. on July 26, 2017.

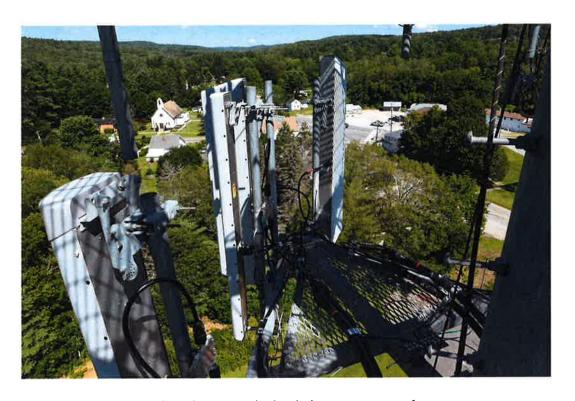


Photo of tower base and base plate.

Photos taken by All-Points Technology Corporation, P.C. on July 26, 2017.

Photo of Verizon's typical existing antennas and mounts.

Photos of Verizon's typical existing antennas and mounts.

Appendix C

Calculations

All-Points Technology Corporation

116 Grandview Road Conway, NH 03818 Phone: (603) 496-5853 FAX: (603) 447-2124

Job	125' Monopole Tower	Page 1 of 5
Project	CT1411102 Quinebaug	Date 15:55:42 08/16/17
Client	Verizon	Designed by Rob Adair

Tower Input Data

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 100 mph.

Structure Class III.

Exposure Category B.

Topographic Category 1.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 40 mph is used in combination with ice.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	125.00-85.50	39.50	4.50	16	21.0370	29.7250	0.1875	0.7500	A572-65 (65 ksi)
L2	85.50-39.42	50.58	5.58	16	28.3602	39.4860	0.2813	1.1250	A572-65 (65 ksi)
L3	39.42-0.00	45.00		16	37.6954	47.5932	0.3125	1.2500	À572-65 (65 ksi)

Monopole Base Plate Data

Base Plate D	ata
Anchor bolt grade	A615-75
Anchor bolt size	2.2500 in
Number of bolts	12
Embedment length	84.0000 in
\mathbf{f}_{c}	4 ksi
Grout space	2.0000 in
Base plate grade	A572-60
Base plate thickness	2.2500 in
Bolt circle diameter	55.0000 in
Outer diameter	61.0000 in
Inner diameter	46.0000 in
Base plate type	Plain Plate

Feed Line/Linear Appurtenances

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		71	ſt			ft²/ft	plf
1 5/8	A	No	Inside Pole	123.00 - 6.00	12	No Ice	0.00	1.04
						1/2" Ice	0.00	1.04
						1" Ice	0.00	1.04

All-Points Technology Corporation

116 Grandview Road Conway, NH 03818 Phone: (603) 496-5853 FAX: (603) 447-2124

Job		Page
	125' Monopole Tower	2 of 5
Project	CT1411102 Quinebaug	Date 15:55:42 08/16/17
Client	Verizon	Designed by Rob Adair

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg	Billetti	Type	ft	712		ft²/ft	plf
5/16" Fiberoptic cable	A	No	Inside Pole	123.00 - 6.00	1	No Ice	0.00	0.25
•						1/2" Ice	0.00	0.25
						1" Ice	0.00	0.25
5/8 power	Α	No	Inside Pole	123.00 - 6.00	2	No Ice	0.00	0.40
						1/2" Ice	0.00	0.40
						1" Ice	0.00	0.40
1 5/8	Α	No	Inside Pole	115.00 - 6.00	12	No Ice	0.00	1.04
						1/2" Ice	0.00	1.04
						1" Ice	0.00	1.04
1-1/4" Hybrid	Α	No	Inside Pole	115.00 - 6.00	2	No Ice	0.00	0.66
fiber-power cable						1/2" Ice	0.00	0.66
F						1" Ice	0.00	0.66
7/8	C	No	Inside Pole	123.00 - 6.00	3	No Ice	0.00	0.54
						1/2" Ice	0.00	0.54
						1" Ice	0.00	0.54
Safety Line 3/8	Α	No	CaAa (Out Of	125.00 - 12.00	1	No Ice	0.04	0.22
,			Face)			1/2" Ice	0.14	0.75
			-/			1" Ice	0.24	1.28

Discrete Tower Loads

	Description	Face	Offset	Offsets:	Azimuth	Placement		C_AA_A	$C_A A_A$	Weight
		or	Туре	Horz	Adjustment			Front	Side	
		Leg		Lateral						
				Vert				0.2	o2	**
_				ft	0.0	ft		ft²	ft ²	lb
	20' 4-Bay Dipole	C	From Face	4.00	0.0000	123.00	No Ice	4.00	4.00	55.00
				0.00			1/2" Ice	6.00	6.00	100.00
				10.00			1" Ice	8.00	8.00	145.00
	10' x 1" omni whip	В	From Face	4.00	0.0000	123.00	No Ice	1.00	1.00	40.00
				0.00			1/2" Ice	2.02	2.02	49.26
				5.00			1" Ice	3.05	3.05	64.89
	20' x 2" omni whip	Α	From Face	4.00	0.0000	123.00	No Ice	4.00	4.00	45.00
				0.00			1/2" Ice	6.03	6.03	75.77
				10.00			1" Ice	8.07	8.07	119.12
	(2) 800-10121	C	From Face	4.00	0.0000	123.00	No Ice	5.16	3.29	50.00
				0.00			1/2" Ice	5.51	3.64	82.91
				0.00			1" Ice	5.87	3.99	120.59
	(2) 800-10121	В	From Face	4.00	0.0000	123.00	No Ice	5.16	3.29	50.00
				0.00			1/2" Ice	5.51	3.64	82.91
				0.00			1" Ice	5.87	3.99	120.59
	(2) 800-10121	Α	From Face	4.00	0.0000	123.00	No Ice	5.16	3.29	50.00
				0.00			1/2" Ice	5.51	3.64	82.91
				0.00			1" Ice	5.87	3.99	120.59
	AM-X-CD-17-65	Α	From Face	4.00	0.0000	123.00	No Ice	11.31	6.80	50.00
				0.00			1/2" Ice	11.93	7.38	111.39
				0.00			1" Ice	12.55	7.98	180.36
	800-10764	В	From Face	4.00	0.0000	123.00	No Ice	5.87	3.39	45.00
				0.00			1/2" Ice	6.23	3.74	81.53
				0.00			1" Ice	6.60	4.10	123.00
	800-10764	C	From Face	4.00	0.0000	123.00	No Ice	5.87	3.39	45.00
				0.00			1/2" Ice	6.23	3.74	81.53
				0.00			1" Ice	6.60	4.10	123.00
	(2) LGP2140X TMA	Α	From Face	3.50	0.0000	123.00	No Ice	1.08	0.36	20.00
	•			0.00			1/2" Ice	1.21	0.45	27.13
				0.00			1" Ice	1.35	0.56	36.14
	(2) LGP2140X TMA	В	From Face	3.50	0.0000	123.00	No Ice	1.08	0.36	20.00
	. ,			0.00			1/2" Ice	1.21	0.45	27.13
				0.00			1" Ice	1.35	0.56	36.14

All-Points Technology

Corporation
116 Grandview Road
Conway, NH 03818
Phone: (603) 496-5853
FAX: (603) 447-2124

Υ		Page
Job	125' Monopole Tower	3 of 5
Project	CT1411102 Quinebaug	Date 15:55:42 08/16/17
Client	Verizon	Designed by Rob Adair

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	C_AA_A Side	Weight
	Leg	- <i>JF</i> -	Lateral						
	Ü		Vert				3.2	(21	-
			ft	0	ft		fi²	ft ²	lb
(2) LGP2140X TMA	C	From Face	3.50	0.0000	123.00	No Ice	1.08	0.36	20.00
			0.00			1/2" Ice	1.21	0.45	27.13
			0.00		100.00	1" Ice	1.35	0.56	36.14
(2) LGP2190X Diplexer	Α	From Face	3.50	0.0000	123.00	No Ice	0.23	0.11	6.00
			0.00			1/2" Ice	0.29	0.15	8.41
	_		0.00	0.0000	122.00	1" Ice	0.36	0.21 0.11	11.91 6.00
(2) LGP2190X Diplexer	В	From Face	3.50	0.0000	123.00	No Ice 1/2" Ice	0.23 0.29	0.11	8.41
			0.00			1" Ice	0.29	0.13	11.91
(2) I CD2100Y Di-1	C	From Face	0.00 3.50	0.0000	123.00	No Ice	0.23	0.11	6.00
(2) LGP2190X Diplexer	C	From Face	0.00	0.0000	123.00	1/2" Ice	0.29	0.11	8.41
			0.00			1" Ice	0.36	0.21	11.91
Ericsson RRUS-11	Α	From Face	3.50	0.0000	123.00	No Ice	2.79	1.02	55.00
Eficsson KKUS-11	A	Fioni Face	0.00	0.0000	125.00	1/2" Ice	3.00	1.16	75.86
			0.00			1" Ice	3.21	1.30	99.77
Ericsson RRUS-11	В	From Face	3.50	0.0000	123.00	No Ice	2.79	1.02	55.00
Enesson RROS-11	ь	110III 1 acc	0.00	0.0000	123.00	1/2" Ice	3.00	1.16	75.86
			0.00			1" Ice	3.21	1.30	99.77
Ericsson RRUS-11	C	From Face	3.50	0.0000	123.00	No Ice	2.79	1.02	55.00
Lifesson RROB-11		11011111100	0.00	0.000		1/2" Ice	3.00	1.16	75.86
			0.00			1" Ice	3.21	1.30	99.77
Raycap DC6-48-60-18-8F	C	From Face	1.00	0.0000	123.00	No Ice	0.74	0.74	30.00
surge suppressor	Ŭ	110111 - 1100	0.00			1/2" Ice	1.20	1.20	44.34
per Be pupp reposi			0.00			1" Ice	1.37	1.37	60.93
13' low-profile platform	С	None		0.0000	121.00	No Ice	7.80	6.75	1100.00
TO 10 N Protito Pintrolini						1/2" Ice	8.70	7.54	1848.74
						1" Ice	9.61	8.33	2616.93
(2) LPA-80080/6	C	From Face	4.00	0.0000	115.00	No Ice	4.32	8.63	25.00
(=) =======			0.00			1/2" Ice	4.76	9.08	73.26
			0.00			1" Ice	5.21	9.55	127.51
(2) LPA-80080/6	В	From Face	4.00	0.0000	115.00	No Ice	4.32	8.63	25.00
			0.00			1/2" Ice	4.76	9.08	73.26
			0.00			1" Ice	5.21	9.55	127.51
(2) LPA-80080/6	Α	From Face	4.00	0.0000	115.00	No Ice	4.32	8.63	25.00
			0.00			1/2" Ice	4.76	9.08	73.26
			0.00			1" Ice	5.21	9.55	127.51
(2) JAHH-65B-R3B	Α	From Face	4.00	0.0000	115.00	No Ice	9.11	5.98	65.00
			0.00			1/2" Ice	9.58	6.44	123.08
			0.00			1" Ice	10.05	6.91	187.45
(2) JAHH-65B-R3B	В	From Face	4.00	0.0000	115.00	No Ice	9.11	5.98	65.00
			0.00			1/2" Ice	9.58	6.44	123.08
			0.00			1" Ice	10.05	6.91	187.45
(2) JAHH-65B-R3B	C	From Face	4.00	0.0000	115.00	No Ice	9.11	5.98	65.00
			0.00			1/2" Ice	9.58	6.44	123.08
			0.00			1" Ice	10.05	6.91	187.45
ALU RRH2x60-700	Α	From Face	3.50	0.0000	115.00	No Ice	3.35	2.02	60.00
w/bracket			0.00			1/2" Ice	3.60	2.25	83.19
	_		0.00		445.00	1" Ice	3.87	2.49	110.02
ALU RRH2x60-700	В	From Face	3.50	0.0000	115.00	No Ice	3.35	2.02	60.00
w/bracket			0.00			1/2" Ice	3.60	2.25	83.19
ATTI DDITO CO BOO		Е	0.00	0.0000	115.00	1" Ice No Ice	3.87 3.35	2.49 2.02	110.02 60.00
ALU RRH2x60-700	C	From Face	3.50	0.0000	115.00	No ice 1/2" Ice		2.02	83.19
w/bracket			0.00			1" Ice	3.60		
41 11 DD110 00 1 117C		F F	0.00	0.0000	115.00	No Ice	3.87 2.58	2.49 1.63	110.02 80.00
ALU RRH2x90-AWS	Α	From Face	3.50	0.0000	115.00	No ice 1/2" Ice	2.58 2.79	1.81	100.47
w/bracket			0.00 0.00			1" Ice	3.01	2.00	124.06
			13 1313			1 100	3.411	4.00	124.00
ALU RRH2x90-AWS	В	From Face	3.50	0.0000	115.00	No Ice	2.58	1.63	80.00

All-Points Technology Corporation

116 Grandview Road Conway, NH 03818 Phone: (603) 496-5853 FAX: (603) 447-2124

Ť		Page
Job	125' Monopole Tower	4 of 5
Project	CT1411102 Quinebaug	Date 15:55:42 08/16/17
Client	Verizon	Designed by Rob Adair

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	200		Vert ft	۰	ft		ft²	ft²	lb
			0.00			1" Ice	3.01	2.00	124.06
ALU RRH2x90-AWS	С	From Face	3.50	0.0000	115.00	No Ice	2.58	1.63	80.00
w/bracket			0.00			1/2" Ice	2.79	1.81	100.47
			0.00			1" Ice	3.01	2.00	124.06
Nokia RRH4x40-850	Α	From Face	3.50	0.0000	115.00	No Ice	1.28	0.72	40.00
w/bracket			0.00			1/2" Ice	1.43	0.83	51.28
			0.00			1" Ice	1.58	0.95	64.79
Nokia RRH4x40-850	В	From Face	3.50	0.0000	115.00	No Ice	1.28	0.72	40.00
w/bracket			0.00			1/2" Ice	1.43	0.83	51.28
			0.00			1" Ice	1.58	0.95	64.79
Nokia RRH4x40-850	С	From Face	3.50	0.0000	115.00	No Ice	1.28	0.72	40.00
w/bracket			0.00			1/2" Ice	1.43	0.83	51.28
			0.00			1" Ice	1.58	0.95	64.79
Raycap RDC-3315-PF-48	Α	From Face	1.00	0.0000	115.00	No Ice	2.51	1.64	30.00
J-box			0.00			1/2" Ice	2.71	1.81	52.86
5 55.1			0.00			1" Ice	2.91	1.98	78.84
Raycap RDC-3315-PF-48	С	From Face	1.00	0.0000	115.00	No Ice	2.51	1.64	30.00
J-hox			0.00			1/2" Ice	2.71	1.81	52.86
2 John			0.00			1" Ice	2.91	1.98	78.84
13' low-profile platform	С	None		0.0000	113.00	No Ice	7.80	6.75	1100.00
Prome pressor						1/2" Ice	8.70	7.54	1848.74
						1" Ice	9.61	8.33	2616.93

Solution Summary

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L1	125 - 85.5	11.570	13	0.8072	0.0044
L2	90 - 39.4167	6.053	13	0.6370	0.0015
L3	45 - 0	1.506	13	0.3066	0.0004

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
ft		Load Comb.	in	0	۰	fi
123.00	20' 4-Bay Dipole	13	11.236	0.7987	0.0042	52384
121.00	13' low-profile platform	13	10.902	0.7901	0.0040	52384
115.00	(2) LPA-80080/6	13	9.908	0.7642	0.0034	26192
113.00	13' low-profile platform	13	9.579	0.7553	0.0033	21826

All-Points Technology

Corporation
116 Grandview Road
Conway, NH 03818
Phone: (603) 496-5853
FAX: (603) 447-2124

Job		Page
	125' Monopole Tower	5 of 5
Project	CT1411102 Quinebaug	Date 15:55:42 08/16/17
Client	Verizon	Designed by Rob Adair

Section Capacity Table

Section	Elevation 4	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
No:	Ji			Diement				
L1	125 - 85.5	Pole	TP29.725x21.037x0.1875	1	-7469.89	177078.00	56.6	Pass
L2	85.5 - 39.4167	Pole	TP39.486x28.3602x0.2813	2	-15069.90	625305.00	59.0	Pass
L3	39.4167 - 0	Pole	TP47,5932x37.6954x0.3125	3	-25491.00	1318890.00	65.8	Pass
22	2311127						Summary	
						Pole (L3)	65.8	Pass
						Base Plate	59.5	Pass
						RATING =	65.8	Pass

All-Points Technology Corp., P.C.

116 Grandview Road Conway, NH 03818 (603) 496-5853

Client:

Verizon Wireless

Job: Calculated By: Quinebaug, CT

R. Adair

Job No.:

CT1411102

Date:

16-Aug-17

Program assumes:

Mat is square in plan view.

Water table is **above top** of mat.

Unit weight of concrete = 150 pcf
Submerged unit weight of concrete = 87.6 pcf
Unit weight of soil = 100 pcf
Submerged unit weight of soil = 37.6 pcf

d = Diameter of round pier

Information to be provided:

Pier is round or square in plan dimension ("R" or "S")		Shape =	R
OTM = Overturning Moment to be resisted		OTM =	1852 ft-kips
H = Height from ground surface to top of mat (if buried)		H =	4.5 ft.
w = depth to water table	OK	w =	4.5 ft.
P = Projection of pier above mat		P =	5.0 ft.
y = Thickness of mat		y =	3.5 ft.
x = Width of mat		x =	20.0 ft.

Mass of tower and appurtenances (below)

Results:

Component	<u>Mass</u>	Moment Arm	Moment Resist.
Pier	28.9 kips	10 ft.	288.6 ft-kips
Overburden	215.5 kips	10 ft.	2154.9 ft-kips
Mat	122.6 kips	10 ft.	1226.4 ft-kips

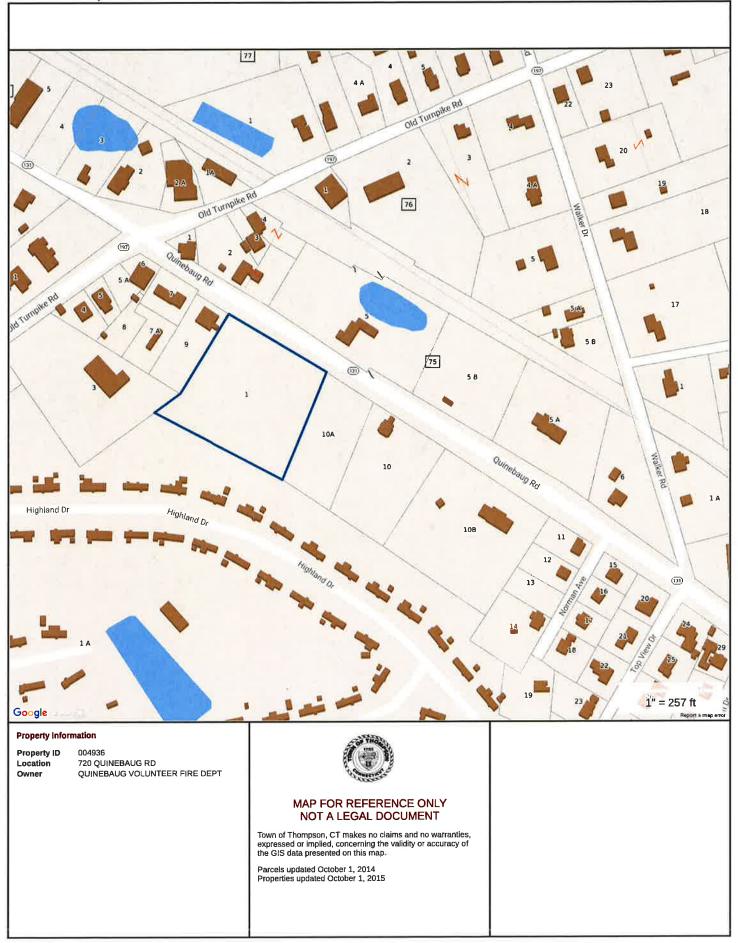
Overturning Moment Resistance =

3669.90 ft-kips

Factor of Safety =

1.98

SATISFACTORY


d =

7.0 ft.

Concrete Quantity =

65.4 c.y.

ATTACHMENT 4

720 QUINEBAUG RD

Location 720 QUINEBAUG RD

Mblu 3/81/1//

Acct# 004936

Owner QUINEBAUG VOLUNTEER

FIRE DEPT

Assessment \$761,100

Appraisal \$1,087,200

PID 144

Building Count 1

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2015	\$949,200	\$138,000	\$1,087,200
	Assessment		
Valuation Year	Improvements	Land	Total
2015	\$664,500	\$96,600	\$761,100

Owner of Record

Owner

QUINEBAUG VOLUNTEER FIRE DEPT

Sale Price

\$0

Co-Owner Address

P O BOX 144

Certificate

Book & Page 0368/0336

QUINEBAUG, CT 06262

Sale Date

12/19/1997

Ownership History

	Ownership Hist	ory		
Owner	Sale Price	Certificate	Book & Page	Sale Date
QUINEBAUG VOLUNTEER FIRE DEPT	\$0		0368/0336	12/19/1997

Building Information

Building 1: Section 1

Year Built:

2005

Living Area:

4,500

Replacement Cost:

\$815,062

Building Percent

87

Good:

Replacement Cost

Less Depreciation:

\$709,100

cess bepreciation	4,03/100
Bu	ilding Attributes
Field	Description
STYLE	Fire Station
MODEL	Ind/Comm

Grade	Good +10	
Stories:	1	
Occupancy	1	
Exterior Wall 1	Pre-finsh Metl	
Exterior Wall 2		
Roof Structure	Steel Frm/Trus	
Roof Cover	Metal/Tin	
Interior Wall 1	Drywall/Sheet	
Interior Wall 2		
Interior Floor 1	Concr Abv Grad	
Interior Floor 2	Vinyl/Asphalt	
Heating Fuel	Oil	
Heating Type	Hydro air	
AC Type	Central	
Bldg Use	MUN FIRE	
Total Rooms	03	
Total Bedrms	0	
Total Baths	0	
1st Floor Use:		
Heat/AC	NONE	
Frame Type	STEEL	
Baths/Plumbing	AVERAGE	
Ceiling/Wall	CEIL & WALLS	
Rooms/Prtns	AVERAGE	
Wall Height	12	
% Comn Wall	o .	

Building 1: Section 2

Year Built:

2005

Living Area:

0

Replacement Cost:

\$255,156

Building Percent

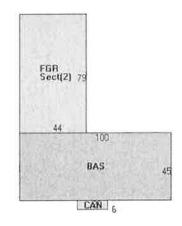
87

Good:

Replacement Cost

Less Depreciation:

\$222,000

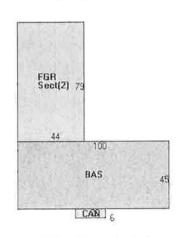

Building A	ttributes : Section 2 of 2
Field	Description
STYLE	Fire Station
MODEL	Ind/Comm
Grade	Good +10
Stories:	1
Occupancy	1

Building Photo

 $(http://images.vgsi.com/photos/ThompsonCTPhotos//\00\00\45) is a complex of the complex of the$

Building Layout

	Building Sub-Areas	(sq ft)	Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	4,500	4,500
CAN	Canopy	120	0
		4,620	4,500


Building Photo

(http://images.vgsi.com/photos/ThompsonCTPhotos//default.jp

Building Layout

Exterior Wall 1	Pre-finsh Metl
Exterior Wall 2	
Roof Structure	Steel Frm/Trus
Roof Cover	Metal/Tin
Interior Wall 1	Drywall/Sheet
Interior Wall 2	
Interior Floor 1	Concr Abv Grad
Interior Floor 2	Dirt/None
Heating Fuel	Oil
Heating Type	Hydro air
АС Туре	Central
Bldg Use	MUN FIRE
Total Rooms	03
Total Bedrms	0
Total Baths	0
1st Floor Use:	
Heat/AC	NONE
Frame Type	STEEL
Baths/Plumbing	AVERAGE
Ceiling/Wall	CEIL & WALLS
Rooms/Prtns	AVERAGE
Wall Height	20
% Comn Wall	0

	Building Sub-Areas	(sq ft)	<u>Legend</u>
Code	Description	Gross Area	Living Area
FGR	Garage	3,476	0
		3,476	0

Extra Features

Extra Features	<u>Legena</u>
No Data for Extra Features	

Land

Land Use

Use Code 9032
Description MUN FIRE
Zone R40
Neighborhood
Alt Land Appr No
Category

Land Line Valuation

 Size (Acres)
 2.4

 Frontage
 305

 Depth
 0

 Assessed Value
 \$96,600

 Appraised Value
 \$138,000

Outbuildings

		Ou	tbuildings			Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bidg #
PAV1	PAVING-ASPHALT			10000 S.F.	\$13,400	1
SHD1	SHED FRAME			392 S.F.	\$4,700	1

Valuation History

	Appraisal		
Valuation Year	Improvements	Land	Total
2016	\$949,200	\$138,000	\$1,087,200
2014	\$949,200	\$138,000	\$1,087,200
2013	\$954,200	\$142,300	\$1,096,500

	Assessment		
Valuation Year	Improvements	Land	Total
2016	\$664,500	\$96,600	\$761,100
2014	\$664,500	\$96,600	\$761,100
2013	\$668,000	\$99,600	\$767,600

⁽c) 2016 Vision Government Solutions, Inc. All rights reserved.

ATTACHMENT 5

	TOTAL NO. TOTAL NO. of Pieces Listed by Sender of Pieces Received at Post Office™	Affix Stamp Here Postmark with Date of Receipt.	of Receipt.		
280 Trumbull Street Hartford, CT 06103	6)	STATION N	neopost 01/05/2016 US POST	A Element	.38
	Postmaster, per (name of receiving-employee)	BUSTOS SO MAY		STATE OF STA	ZIP 05103
USPS® Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
	Kenneth Beausoleil, First Selectman Town of Thompson 8 Is Riverside Drive North Grosvenordale, CT 06255				
2.	Mary Ann Chinatti, Director of Planning and Development Town of Thompson 815 Riverside Drive North Grosvenordale, CT 06255		11		
3.	Quinebaug Volunteer Fire Department P.O. Box 144 Quinebaug, CT 06262			(#):	
4.	S				T T
5.			3		o
9			6		
PS Form 3665 . January 2017 (Page of) PSN 7530) PSN 7530-17-000-5549			See	See Reverse for Instructions