

March 17, 2016

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile / L700 Crown Site BU: 801487

T-Mobile Site ID: CTHA160A 848 East Street, Suffield, CT 06078

Latitude: 41° 57′ 25.2″ / Longitude: -72° 37′ 32.6″

Dear Ms. Bachman:

T-Mobile currently maintains three (3) antennas at the 164 foot level of the existing 165 foot monopole at 848 East Street in Suffield, CT. The Tower Owner is Crown Castle and the Property Owner is the Town of Suffield. T-Mobile now intends to replace all antennas with six (6) new antennas, keep all coax, remove RET cable, add one (1) Hybrid cable, replace all TMA with three (3) new TMAs, add six (6) RRUs and remove one (1) cabinet.

This facility was approved by the Town of Suffield in File #740 on May 1, 2000. This approval included the condition(s) that:

- 1. The heights of the respective mono-pole towers, including antennae, shall not exceed 199-feet (Site A); 120-feet (Site B); and 174-fee (Site C);
- 2. Each tower shall be certified as "self-collapsing" by a Connecticut registered professional engineer;
- 3. Details drawings are to be submitted with each request for building permits for both towers and related facilities;
- 4. FCC licenses shall be produced prior to the issuance of the permits for the company leasing space on the towers;
- 5. The Zoning Enforcement Officer shall review each proposal for zoning conformance prior to the issuance of the building permits;
- 6. All utilities are to be underground;
- 7. Site plans are to be revised.

This modification complies with the aforementioned condition(s).

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In

The Foundation for a Wireless World.

accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to The Honorable Melissa M. Mack, First Selectman for the Town of Suffield for both the town Mayor notification and the Property Owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Kimberly Myl.

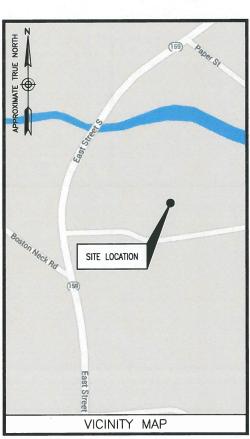
Sincerely,

Kimberly Myl
Real Estate Specialist
Crown Castle
1200 MacArthur Boulevard, Suite 200
Mahwah, New Jersey 07430
201-236-9069
kimberly.myl@crowncastle.com

#### Attachments:

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report


Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

Melanie A. Bachman March 17, 2016 Page 3

cc: The Honorable Melissa M. Mack, First Selectman for the Town of Suffield Town Hall
83 Mountain Road
Suffield, CT 06078

T-MOBILE NORTHEAST LLC

T-MOBILE SITE #: CTHA160A CROWN CASTLE BU #: 801487 SITE NAME: CT SUFFIELD 3 CAC **848 EAST STREET** SUFFIELD, CT 06078 HARTFORD COUNTY



**ENGINEER** 

DEWBERRY ENGINEERS INC. 600 PARSIPPANY ROAD
SUITE 301
PARSIPPANY, NJ 07054

CONTACT: BRYAN HUFF PHONE #: (973) 576-0147

CONSTRUCTION

CROWN CASTLE
3 CORPORATE PARK DRIVE, SUITE 101
CLIFTON PARK, NY 12065

CONTACT: PATRICIA PELON PHONE #: (518) 373-3507

CONSULTANT TEAM

SITE NAME: CT SUFFIELD 3 CAC

> SITE NUMBER: CTHA160A

TOWER OWNER:

CROWN CASTLE
3 CORPORATE PARK DRIVE, SUITE 101
CLIFTON PARK, NY 12065

APPLICANT/DEVELOPER:

T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002

COORDINATES:

LATITUDE: 41'-57'-25.2" N (NAD83) LONGITUDE: 72°-37'-32.6" W (NAD83) (PER CROWN CASTLE)

> CONFIGURATION 701D\_WU21

PROJECT SUMMARY

SITE ADDRESS: 848 EAST STREET SUFFIELD, CT 06078 HARTFORD COUNTY

## PROJECT DIRECTORY

- REMOVE AND REPLACE (3) EXISTING ANTENNAS WITH (6) NEW ANTENNAS
- REMOVE AND REPLACE (6) EXISTING TMA'S WITH (3) NEW TMA'S.
- INSTALL (6) NEW RRU'S.
- INSTALL (1) NEW HYBRID CABLE.
- REMOVE (1) EXISTING RET CABLE.
- REMOVE (1) EXISTING EQUIPMENT CABINET AT GRADE.

SCOPE OF WORK

THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER.

A.D.A. COMPLIANCE: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION.

| SHT.<br>NO. | DESCRIPTION                     |
|-------------|---------------------------------|
| T-1         | TITLE SHEET                     |
|             |                                 |
| G-1         | GENERAL NOTES                   |
| 100         |                                 |
| C-1         | COMPOUND PLAN & EQUIPMENT PLANS |
| C-2         | ANTENNA LAYOUTS & ELEVATIONS    |
| C-3         | CONSTRUCTION DETAILS            |
|             |                                 |
| E-1         | GROUNDING NOTES & DETAILS       |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
|             |                                 |
| 9           | SHEET INDEX                     |
|             | JIILLI INDLA                    |

# T - Mobile

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002



CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065

## CTHA160A **CT SUFFIELD 3 CAC**

|   | ONSTR    | RUCTION         | DRAWINGS |
|---|----------|-----------------|----------|
| Н |          | 4 11 11 1       |          |
| Н |          |                 |          |
| L |          |                 |          |
| Н |          |                 |          |
| H |          |                 |          |
| 0 | 03/16/16 | ISSUED AS FINAL |          |
| Α |          | ISSUED FOR REV  |          |



Dewberry Engineers Inc.

SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710



CONNECTICUT LICENSE NO. 0023222 T IS A VIOLATION OF LAW FOR ANY PERSON, UNLES' THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

| DRAWN BY: | RA |
|-----------|----|

REVIEWED BY: BSH

PROJECT NUMBER 50066258

> 50078120 JOB NUMBER:

GHN

SITE ADDRESS:

CHECKED BY:

848 EAST STREET SUFFIELD, CT 06078 HARTFORD COUNTY

SHEET TITLE

TITLE SHEET

SHEET NUMBER

\_\_\_\_

FROM BLOOMFIELD, CT:

HEAD NORTHEAST ON GRIFFIN RD S TOWARD W NEWBERRY RD. TURN RIGHT ONTO DAY HILL RD. USE THE RIGHT 2 LANES TO TURN RIGHT ONTO CT—75 S. USE THE LEFT 2 LANES TO TURN LEFT ONTO THE INTERSTATE 91 N RAMP TO SPRINGFIELD. MERGE ONTO I-91 N. TAKE EXIT 42 FOR CT-159 TOWARD WINDSOR LOCKS. TURN LEFT ONTO LAWNACRE RD. CONTINUE ONTO CT-159 N/S MAIN ST. TURN RIGHT ONTO EAST STREET. SITE WILL BE ON THE LEFT.

#### **GENERAL NOTES:**

- 1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: PROJECT MANAGEMENT CROWN CASTLE CONTRACTOR — GENERAL CONTRACTOR (CONSTRUCTION)
  OWNER — T-MOBILE
  OEM — ORIGINAL EQUIPMENT MANUFACTURER
- PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF PROJECT
- ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE
- ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- DRAWINGS PROVIDED HERE ARE NOT TO SCALE UNLESS OTHERWISE NOTED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY PROJECT MANAGEMENT.
- CONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. CONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. CONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING
- THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF
- CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 12. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 13. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- 14. CONTRACTOR SHALL NOTIFY DEWBERRY 48 HOURS IN ADVANCE OF POURING CONCRETE, OR BACKFILLING TRENCHES, SEALING ROOF AND WALL PENETRATIONS & POST DOWNS, FINISHING NEW WALLS OR FINAL ELECTRICAL CONNECTIONS FOR ENGINEER REVIEW.
- 15. CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK.
  ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. CONTRACTOR
  SHALL NOTIFY PROJECT MANAGEMENT OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING
- 16. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY CONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE.
- 17. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

#### SITE WORK GENERAL NOTES:

- 1. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND ON REAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO:
- A) FALL PROTECTION
- C) ELECTRICAL SAFETY
- TRENCHING & EXCAVATION.
- 3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, TOP SOIL AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, OWNER AND/OR LOCAL UTILITIES.
- 6. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION.
- 7. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE T-MOBILE SPECIFICATION FOR SITE
- 8. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE TRANSMISSION EQUIPMENT
- NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION, SEE SOIL COMPACTION NOTES.
- 11. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION.
- 12. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL JURISDICTION'S GUIDELINES FOR EROSION AND SEDIMENT CONTROL

#### **ELECTRICAL INSTALLATION NOTES:**

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE LOCAL CODES.
- CONTRACTOR SHALL MODIFY EXISTING CABLE TRAY SYSTEM AS REQUIRED TO SUPPORT RF AND TRANSPORT CABLING TO THE NEW BTS EQUIPMENT. CONTRACTOR SHALL SUBMIT MODIFICATIONS TO PROJECT MANAGEMENT
- CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC AND TELCORDIA.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC
- 6. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS.
- EACH END OF EVERY POWER, POWER PHASE CONDUCTOR (I.E., HOTS), GROUNDING, AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC & OSHA, AND MATCH EXISTING INSTALLATION REQUIREMENTS.
- 8. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING, AND BRANCH CIRCUIT ID NUMBERS (I.E., PANELBOARD AND CIRCUIT ID'S).
- PANELBOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS.
- 10. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.
- 11. POWER, CONTROL, AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 'C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.
- 12. POWER PHASE CONDUCTORS (I.E., HOTS) SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL.) PHASE CONDUCTOR COLOR CODES SHALL CONFORM WITH THE NEC & OSHA AND MATCH EXISTING INSTALLATION REQUIREMENTS.
- 13. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (SIZE 6 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION, CLASS B STRANDED COPPER CABLE RATED FOR 90°C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM
- 14. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED OUTDOORS, OR BELOW GRADE, SHALL BE SINGLE CONDUCTOR #2 AWG SOLID TINNED COPPER CABLE, UNLESS OTHERWISE SPECIFIED.
- 15. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT, SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90°C (WET AND DRY) OPERATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED. UNLESS OTHERWISE SPECIFIED.
- 16. ALL POWER AND POWER GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRENUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRENUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75°C (90°C IF AVAILABLE).
- 17. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA,
- 18. NEW RACEWAY OR CABLE TRAY WILL MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.
- ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40, OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR
- ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 21. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE
- 22. RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERGROUND; DIRECT BURIED, IN AREAS OF OCCASIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED CONCRETE IN AREAS OF HEAVY VEHICLE TRAFFIC.
- 23. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 24. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SETSCREW FITTINGS ARE NOT ACCEPTABLE.
- 25. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.
- 26. CABINETS, BOXES, AND WIREWAYS TO MATCH THE EXISTING INSTALLATION WHERE POSSIBLE
- 27. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS. OR NEMA
- EPOXY-COATED SHEET STEEL, SHALL MEET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.
- 29. METAL RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED, OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1: AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER
- 30. NONMETALLIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 31. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM PROJECT MANAGEMENT BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 32. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY.

#### **CONCRETE AND REINFORCING STEEL NOTES:**

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN-PLACE CONCRETE.
- ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS, UNLESS NOTED
  OTHERWISE. A HIGHER STRENGTH (4000 PSI) MAY BE USED. ALL CONCRETING WORK SHALL BE DONE IN
  ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
- REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE (UNO). SPLICES SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD, UNO.
- THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN

CONCRETE CAST AGAINST EARTH.......3 IN. CONCRETE EXPOSED TO EARTH OR WEATHER: #6 AND LARGER ......2 IN. #5 AND SMALLER & WWF......1 1/2 IN. CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE GROUND: 

- A CHAMFER 3/4" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.
- INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS. ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL.
- CONCRETE CYLINDER TEST IS NOT REQUIRED FOR SLAB ON GRADE WHEN CONCRETE IS LESS THAN 50 CUBIC YARDS (IBC 1905.6.2.3) IN THAT EVENT THE FOLLOWING RECORDS SHALL BE PROVIDED BY THE CONCRETE SUPPLIER;
- SUPPLIER;

  (A) RESULTS OF CONCRETE CYLINDER TESTS PERFORMED AT THE SUPPLIER'S PLANT,

  (B) CERTIFICATION OF MINIMUM COMPRESSIVE STRENGTH FOR THE CONCRETE GRADE SUPPLIED.

  FOR GREATER THAN 50 CUBIC YARDS THE GC SHALL PERFORM THE CONCRETE CYLINDER TEST.
- AS AN ALTERNATIVE TO ITEM 7, TEST CYLINDERS SHALL BE TAKEN INITIALLY AND THEREAFTER FOR EVERY 50 YARDS OF CONCRETE FROM EACH DIFFERENT BATCH PLANT.
- EQUIPMENT SHALL NOT BE PLACED ON NEW PADS FOR SEVEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY CYLINDER TESTS THAT COMPRESSIVE STRENGTH HAS BEEN ATTAINED.

#### STRUCTURAL STEEL NOTES:

- ALL STEEL WORK SHALL BE PAINTED OR GALVANIZED IN ACCORDANCE WITH THE DRAWINGS UNLESS NOTED OTHERWISE. STRUCTURAL STEEL SHALL BE ASTM—A-36 UNLESS OTHERWISE NOTED ON THE SITE SPECIFIC DRAWINGS. STEEL DESIGN, INSTALLATION AND BOLTING SHALL BE PERFORMED IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) "MANUAL OF STEEL CONSTRUCTION".
- ALL WELDING SHALL BE PERFORMED USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUCHED UP.
- BOLTED CONNECTIONS SHALL BE ASTM A325 BEARING TYPE (3/4%) CONNECTIONS AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE.
- NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIA. ASTM A 307 BOLTS UNLESS NOTED
- INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS, ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL
- CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR ENGINEER REVIEW & APPROVAL ON PROJECTS REQUIRING STRUCTURAL STEEL.
- 7. ALL STRUCTURAL STEEL WORK SHALL BE DONE IN ACCORDANCE WITH AISC SPECIFICATIONS.

#### **CONSTRUCTION NOTES:**

- CONTRACTOR SHALL FIELD VERIFY SCOPE OF WORK, T-MOBILE ANTENNA PLATFORM LOCATION AND ANTENNAS TO BE REPLACED.
  - COORDINATION OF WORK: CONTRACTOR SHALL COORDINATE RF WORK AND PROCEDURES WITH PROJECT MANAGEMENT.
- CABLE LADDER RACK:
  CONTRACTOR SHALL FURNISH AND INSTALL CABLE LADDER RACK, CABLE TRAY, AND CONDUIT AS REQUIRED TO SUPPORT CABLES TO THE NEW BTS LOCATION.
- GROUNDING OF ALL EQUIPMENT AND ANTENNAS IS NOT CONSIDERED PART OF THE SCOPE OF THIS PROJECT AND IS THE RESPONSIBILITY OF THE OWNER AND CONTRACTOR AT THE TIME OF CONSTRUCTION. ALL EQUIPMENT AND ANTENNAS TO BE INSTALLED AND GROUNDED IN ACCORDANCE WITH GOVERNING BUILDING CODE, MANUFACTURER RECOMMENDATIONS AND OWNER SPECIFICATIONS.

# T · Mobile

T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002



CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065

## CTHA160A CT SUFFIELD 3 CAC

| ( | CONST    | RUCTION         | DRAWINGS |
|---|----------|-----------------|----------|
|   |          |                 |          |
|   |          | No. 6           |          |
|   |          |                 |          |
|   |          | College Control |          |
|   | C 4 1 2  | 200             |          |
|   |          |                 |          |
| 0 | 03/16/16 | ISSUED AS FINA  | L        |
| Α | 03/15/16 | ISSUED FOR RE   | MEW      |



Dewberry Engineers Inc.

600 PARSIPPANY ROAD SUITE 301 PARSIPPANY N.I 07054 PHONE: 973.739.9400 FAX: 973.739.9710



DRAWN BY

PROJECT NUMBER:

SITE ADDRESS:

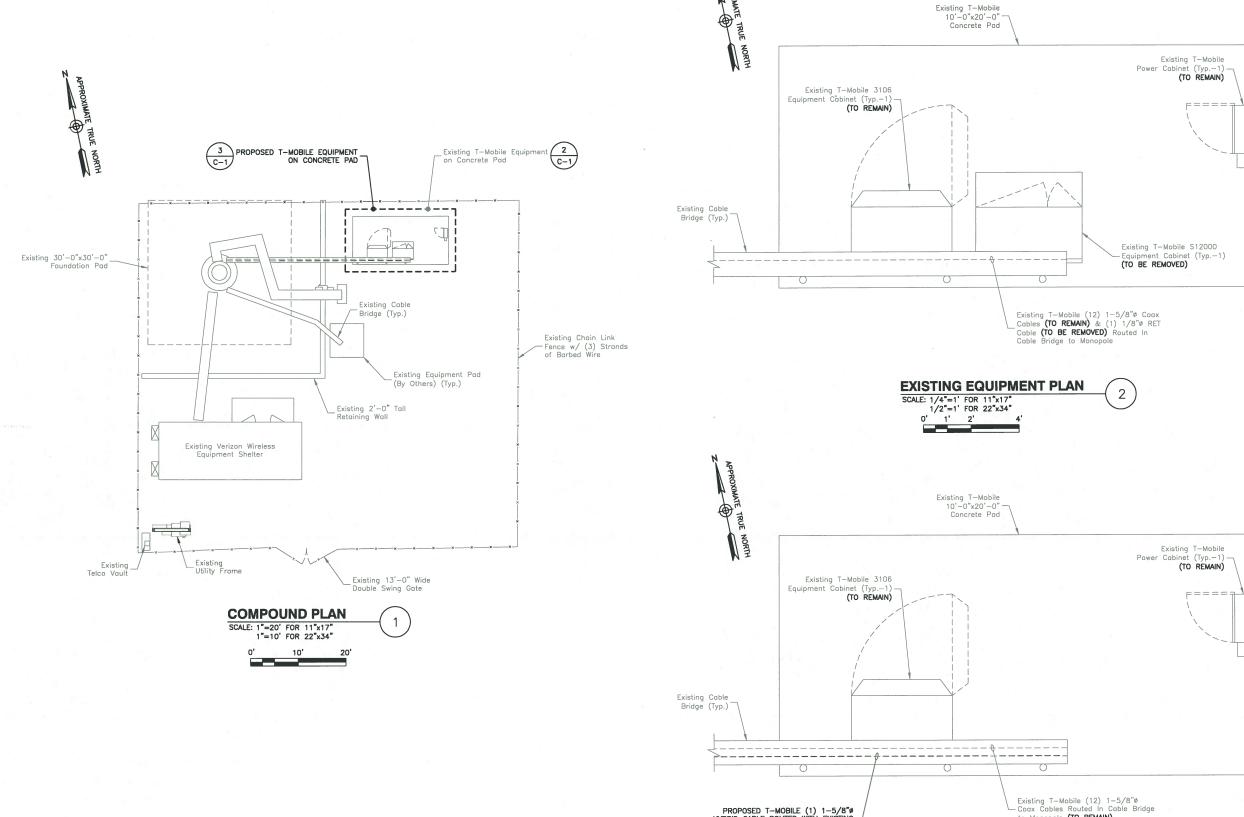
REVIEWED BY: BSH

T IS A VIOLATION OF LAW FOR ANY PERSON, UNLES: THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

RA

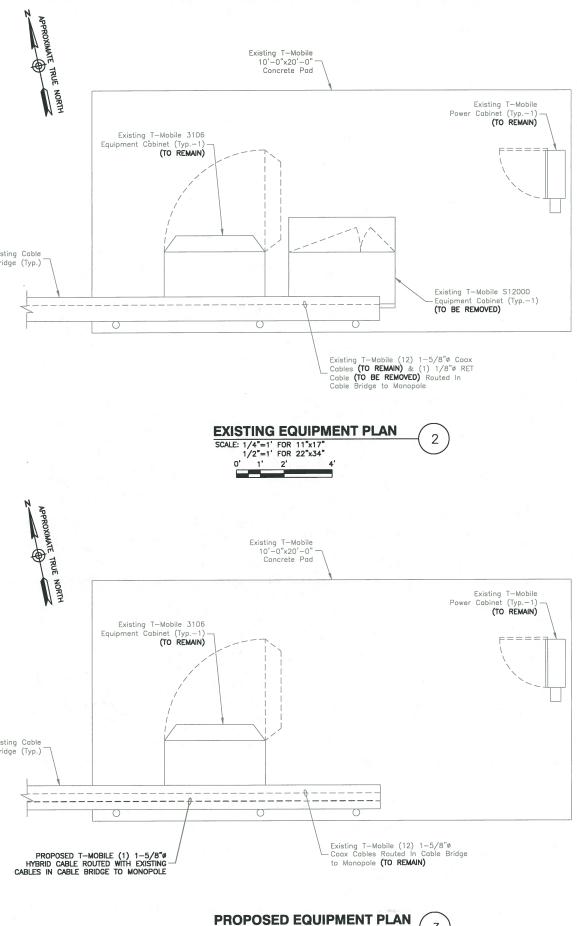
50066258

CHECKED BY: GHN


50078120

848 EAST STREET SUFFIELD, CT 06078 HARTFORD COUNTY

SHEET TITLE


GENERAL NOTES

SHEET NUMBER



#### NOTES:

- 1. NORTH ARROW SHOWN AS APPROXIMATE.
- 2. NOT ALL INFORMATION IS SHOWN FOR CLARITY.
- ALL PROPOSED EQUIPMENT, INCLUDING ANTENNAS, RRU'S, COAX, ETC., SHALL BE MOUNTED IN ACCORDANCE WITH THE TOWER STRUCTURAL ANALYSIS BY PAUL J. FORD AND COMPANY DATED MARCH 03, 2016.



SCALE: 1/4"=1' FOR 11"x17" 1/2"=1' FOR 22"x34" 0' 1' 2'

T - Mobile

T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002



CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065

## CTHA160A CT SUFFIELD 3 CAC

| ( | CONST    | RUCTION DRAWINGS  |
|---|----------|-------------------|
| H |          |                   |
| H |          |                   |
|   |          |                   |
| H |          |                   |
|   |          |                   |
| 0 | 03/16/16 | ISSUED AS FINAL   |
| Α | 03/15/16 | ISSUED FOR REVIEW |



Dewberry Engineers Inc.

600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710



RA

GHN

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLES THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

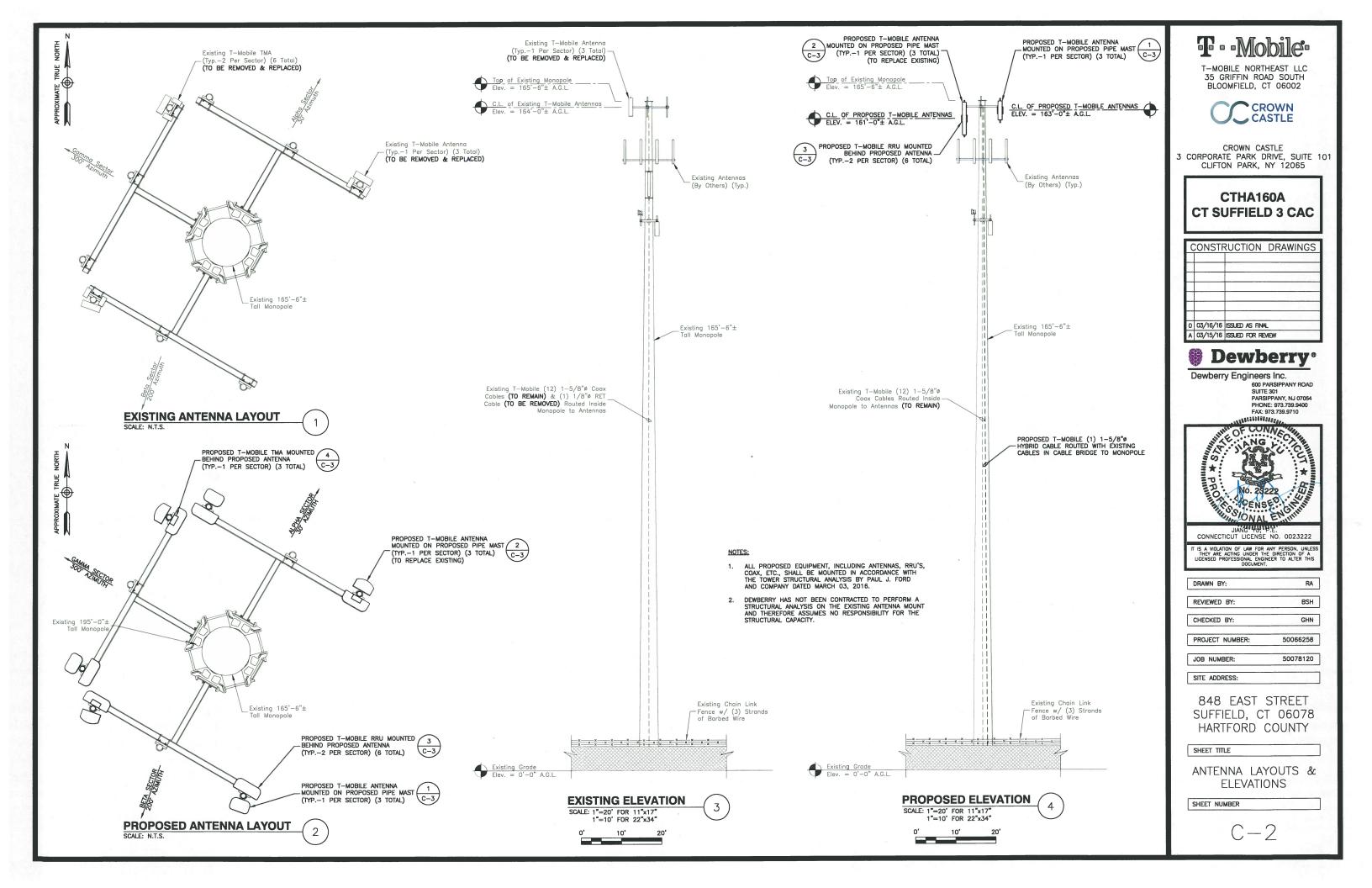
DRAWN BY:

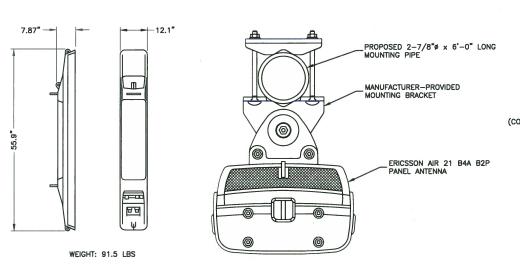
REVIEWED BY: BSH

CHECKED BY:

PROJECT NUMBER: 50066258

JOB NUMBER: 50078120

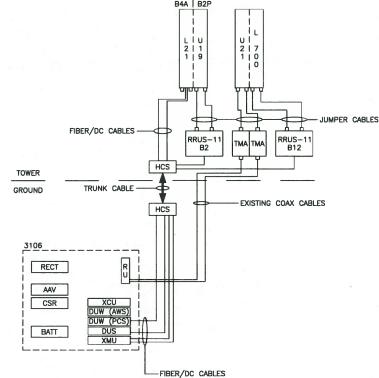

SITE ADDRESS:


848 EAST STREET SUFFIELD, CT 06078 HARTFORD COUNTY

SHEET TITLE

COMPOUND PLAN & EQUIPMENT PLANS

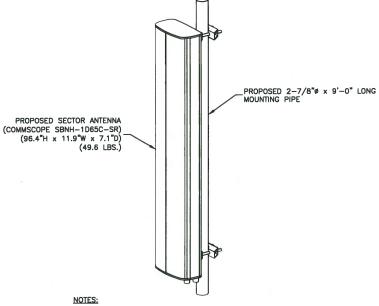
SHEET NUMBER






#### NOTES:

- 1. MOUNT ANTENNAS PER MANUFACTURER'S RECOMMENDATIONS.
- GROUND ANTENNAS AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS.
- 3. CONFIRM REQUIRED ANTENNAS WITH THE LATEST RFDS.






**SITE CONFIGURATION 701D WU21** 

SCALE: N.T.S.





- 1. MOUNT ANTENNAS PER MANUFACTURER'S RECOMMENDATIONS.
- GROUND ANTENNAS AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS.
- 3. CONFIRM REQUIRED ANTENNAS WITH THE LATEST RFDS.

# ISOMETRIC ANTENNA DETAIL 2

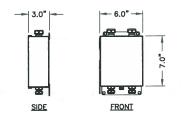


PROPOSED ANTENNA MOUNTING PIPE

1. MOUNT EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS.

MOUNT PROPOSED RRU TO PIPE MAST WITH ESK 107-2810/1-IN MOUNTING BRACKET

ERICSSON RRUS-11 B12/B2


- GROUND EQUIPMENT AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS.
- 3. CONFIRM REQUIRED EQUIPMENT WITH THE LATEST RFDS.

RRUS-11 - REMOTE RADIO UNIT

ADIO UNIT

SPECIFICATIONS:

HEIGHT: 20.0"
WIDTH: 17.0"
DEPTH: 7.0"
WEIGHT: 50.7 LBS



ERICSSON KRY 112 144/1

#### NOTE

- 1. MOUNT EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS.
- 2. GROUND EQUIPMENT AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS.
- 3. CONFIRM REQUIRED EQUIPMENT WITH THE LATEST RFDS.

DUAL-PORT TMA DETAIL
SCALE: N.T.S.

4

|       | DESIGN CONFIGURATION |                         |                   |             |              |                   |                   |                 |
|-------|----------------------|-------------------------|-------------------|-------------|--------------|-------------------|-------------------|-----------------|
|       | ANTENNAS             |                         | COAX              |             | HYBRID       | COAX/HYBRID       | TMA               | RRU             |
|       | EXISTING             | PROPOSED                | EXISTING PROPOSED |             | PROPOSED     | LÉNGTH            | PROPOSED          | PROPOSED        |
|       |                      | ERICSSON AIR 21 B4A B2P | (A) 4 E /D"4      |             |              | 047' 0"           | -                 | (1) RRUS-11 B2  |
| ALPHA | RFS APX16PV-16PVL    | COMMSCOPE SBNH-1D65C-SR | (4) 1-5/8"ø       | -           |              | 213'-0"           | (1) KRY 112 144/1 | (1) RRUS-11 B12 |
|       | _                    | ERICSSON AIR 21 B4A B2P | - (4) 1-5/8°ø     |             | (4) 4 5 (8"4 | 047' 6"           |                   | (1) RRUS-11 B2  |
| BETA  | RFS APX16PV-16PVL    | COMMSCOPE SBNH-1D65C-SR |                   | (1) 1-5/8"ø | 213'-0"      | (1) KRY 112 144/1 | (1) RRUS-11 B12   |                 |
|       |                      | ERICSSON AIR 21 B4A B2P | 4.5 - 4-8.        | - B         |              | 213'-0"           | -                 | (1) RRUS-11 B2  |
| GAMMA | RFS APX16PV-16PVL    | COMMSCOPE SBNH-1D65C-SR | (4) 1-5/8"ø       |             |              |                   | (1) KRY 112 144/1 | (1) RRUS-11 B12 |

# T - Mobile

T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002



CROWN CASTLE
3 CORPORATE PARK DRIVE, SUITE 101
CLIFTON PARK, NY 12065

## CTHA160A CT SUFFIELD 3 CAC

|        | ONIOTE   | LIOTION        | DDAWNIOC |
|--------|----------|----------------|----------|
| $\Box$ | UNST     | KUCHUN         | DRAWINGS |
|        |          |                |          |
|        |          |                |          |
|        |          |                |          |
| П      |          |                |          |
| Н      |          |                |          |
| Н      |          |                |          |
| Н      |          |                |          |
| Ш      | 1.       |                |          |
| 0      | 03/16/16 | ISSUED AS FINA | L        |
| Α      | 03/15/16 | ISSUED FOR RE  | MEW      |
|        |          |                |          |



Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710



| DOLL |
|------|
|      |

CHECKED BY: GHN

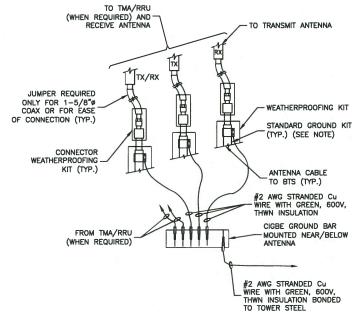
PROJECT NUMBER: 50066258

JOB NUMBER: 50078120

SITE ADDRESS:

848 EAST STREET SUFFIELD, CT 06078 HARTFORD COUNTY

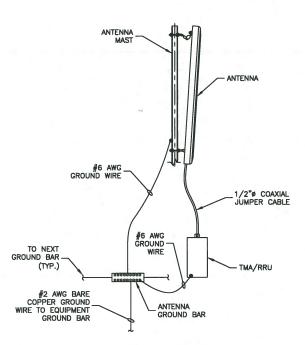
SHEET TITLE


CONSTRUCTION DETAILS

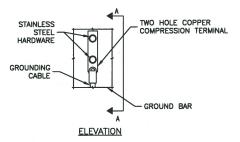
SHEET NUMBER

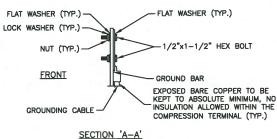
C-3

#### **GROUNDING NOTES:**


- THE CONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ). THE SITE—SPECIFIC (UL, LP), OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE CONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE ENGINEER FOR RESOLUTION.
- 2. ALL GROUND FLECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION. ACL GROUND ELECTROPE STEMS (INCOLONING IELECOMMUNICATION AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS, ALL AVAILABLE GROUNDING ELECTROPES SHALL BE CONNECTED TOGETHER IN ACCORDANCE WITH THE NEC.
- THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. USE OF OTHER METHODS MUST BE PRE-APPROVED BY THE
- THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS ON TOWER SITES AND 10 OHMS OR LESS ON ROOFTOP SITES. WHEN ADDING ELECTRODES, CONTRACTOR SHALL MAINTAIN A MINIMUM DISTANCE BETWEEN THE ADDED ELECTRODE AND ANY OTHER EXISTING ELECTRODE EQUAL TO THE BURIED LENGTH OF THE ROD. IDEALLY, CONTRACTOR SHALL STRIVE TO KEEP THE SEPARATION DISTANCE EQUAL TO TWICE THE BURIED LENGTH OF THE RODS.
- THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 8 AWG COPPER WIRE AND UL APPROVED
- METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO TRANSMISSION EQUIPMENT.
- Connections to the ground bus shall not be doubled up or stacked. Back—to—back connections on opposite sides of the ground bus are permitted.
- ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- USE OF 90" BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45" BENDS CAN BE ADEQUATELY SUPPORTED. IN ALL CASES, BENDS SHALL BE MADE WITH A MINIMUM BEND RADIUS OF 8
- EACH INTERIOR TRANSMISSION CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH 6 AWG STRANDED, GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRE UNLESS NOTED OTHERWISE IN THE DETAILS. EACH OUTDOOR CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE BURIED GROUND RING WITH 2 AWG SOLID TIN-PLATED COPPER WIRE UNLESS NOTED OTHERWISE IN THE OFTAILS OF THE PLATE OF THE PLATE OF THE PLATE OF THE OTHERWISE IN THE OFTAILS.
- ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE 2 AWG SOLID TIN-PLATED COPPER UNLESS OTHERWISE INDICATED.
- . EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. CONNECTIONS TO ABOVE GRADE UNITS SHALL BE MADE WITH EXOTHERMIC WELDS WHERE PRACTICAL OR WITH 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STAINLESS STEEL HARDWARE, INCLUDING SET SCREWS. HIGH PRESSURE CRIMP CONNECTORS MAY ONLY BE USED WITH WRITTEN PERMISSION FROM T-MOBILE MARKET BEDDESENTATIVE
- EXOTHERMIC WELDS SHALL BE PERMITTED ON TOWERS ONLY WITH THE EXPRESS APPROVAL OF THE TOWER MANUFACTURER OR THE CONTRACTORS STRUCTURAL ENGINEER.
- 15. ALL WIRE TO WIRE GROUND CONNECTIONS TO THE INTERIOR GROUND RING SHALL BE FORMED USING HIGH PRESS CRIMPS OR SPLIT BOLT CONNECTORS WHERE INDICATED IN THE DETAILS.
- ON ROOFTOP SITES WHERE EXOTHERMIC WELDS ARE A FIRE HAZARD COPPER COMPRESSION CAP CONNECTORS MAY BE USED FOR WIRE TO WIRE CONNECTORS. 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STAINLESS STEEL HARDWARE, INCLUDING SET SCREWS SHALL BE USED FOR CONNECTION TO ALL ROOFTOP TRANSMISSION EQUIPMENT AND
- 17. COAX BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR USING TWO-HOLE MECHANICAL TYPE BRASS CONNECTORS AND STAINLESS STEEL LANGUAGE.
- 18. APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE)
  SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND
  CONNECTIONS.
- ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- BOND ALL METALLIC OBJECTS WITHIN 6 FT OF THE BURIED GROUND RING WITH 2 AWG SOLID TIN-PLATED COPPER GROUND CONDUCTOR. DURING EXCAVATION FOR NEW GROUND CONDUCTORS, IF EXISTING GROUND CONDUCTORS ARE ENCOUNTERED, BOND EXISTING GROUND CONDUCTORS TO NEW CONDUCTORS.
- 22. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUTS, METAL SUPPORT CLIPS OR SLEEYES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G., NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT WITH LISTED BONDING FITTINGS.



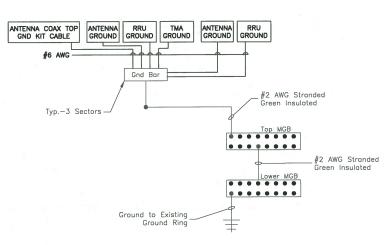

#### NOTE:


DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE.

## **CONNECTION OF GROUND WIRES** TO GROUNDING BAR (CIGBE)



**TYPICAL ANTENNA GROUNDING DETAIL** SCALE: N.T.S






#### NOTES:

- 1. DOUBLING UP OR STACKING OF CONNECTIONS IS NOT PERMITTED.
- 2. OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATIONS.

**TYPICAL GROUND BAR MECHANICAL CONNECTION DETAIL** 



#### NOTES:

- BOND ANTENNA GROUNDING KIT CABLE TO TOP CIGBE
- 2. BOND ANTENNA GROUNDING KIT CABLE TO BOTTOM CIGBE.
- 3. SCHEMATIC GROUNDING DIAGRAM IS TYPICAL FOR EACH SECTOR.
- VERIFY EXISTING GROUND SYSTEM IS INSTALLED PER T-MOBILE

**SCHEMATIC GROUNDING DIAGRAM** 

# T. Mobile

T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002



CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065

## CTHA160A CT SUFFIELD 3 CAC

|   | ( | CONSTR   | RUCTION DRAWINGS  |
|---|---|----------|-------------------|
|   |   |          |                   |
| 1 |   |          |                   |
|   | Ш |          |                   |
|   | Ш | 500      |                   |
|   | Н |          |                   |
|   | Н |          |                   |
|   | 0 | 03/16/16 | ISSUED AS FINAL   |
|   | Ā |          | ISSUED FOR REVIEW |
|   |   |          |                   |

# Dewberry\*

Dewberry Engineers Inc. 600 PARSIPPANY ROAD

SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973,739,9400 FAX: 973.739.9710



CONNECTICUT LICENSE NO. 0023222

T IS A VIOLATION OF LAW FOR ANY PERSON, UNLES: THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT.

DRAWN BY: RA REVIEWED BY: BSH

CHECKED BY: GHN

PROJECT NUMBER: 50066258

50078120

SITE ADDRESS:

JOB NUMBER:

848 EAST STREET SUFFIELD, CT 06078 HARTFORD COUNTY

SHEET TITLE

**GROUNDING NOTES** & DETAILS

SHEET NUMBER





Date: March 03, 2016

Charles Trask Crown Castle 3530 Toringdon Wa, Suite 300 Charlotte, NC 28277 980.209.8228

Paul J. Ford and Company 250 E. Broad Street, Suite 600 Columbus, OH 43215 614.221.6679

jsommer@pjfweb.com

Subject:

Structural Analysis Report

Carrier Designation:

T-Mobile Co-Locate

Carrier Site Number: CTHA160A Carrier Site Name:

Suffield/Stony Brook

Crown Castle Designation:

Crown Castle BU Number: Crown Castle Site Name:

801487

Crown Castle JDE Job Number: **Crown Castle Work Order Number:**  CT SUFFIELD 3 CAC 801487 365816

**Crown Castle Application Number:** 

1202045 333732 Rev. 3

Engineering Firm Designation:

Paul J. Ford and Company Project Number: 37516-0632.002.7805

848 East Street, Suffield, Hartford County, CT Latitude 41° 57' 25.2", Longitude -72° 37' 32.6"

165.5 Foot - Monopole Tower

Dear Charles Trask,

Site Data:

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 879354, in accordance with application 333732, revision 3.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

**Sufficient Capacity** 

The structural analysis was performed for this tower in accordance with the requirements of the 2005 Connecticut Building Code and the TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Jonathan Sommer, El

Structural Designer





Date: March 03, 2016

Charles Trask Crown Castle 3530 Toringdon Wa, Suite 300 Charlotte, NC 28277 980.209.8228 Paul J. Ford and Company 250 E. Broad Street, Suite 600 Columbus, OH 43215 614.221.6679

jsommer@pjfweb.com

**Subject:** Structural Analysis Report

Carrier Designation: T-Mobile Co-Locate

Carrier Site Number: CTHA160A

Carrier Site Name: Suffield/Stony Brook

Crown Castle Designation: Crown Castle BU Number: 801487

Crown Castle Site Name: CT SUFFIELD 3 CAC 801487

Crown Castle JDE Job Number:365816Crown Castle Work Order Number:1202045Crown Castle Application Number:333732 Rev. 3

Engineering Firm Designation: Paul J. Ford and Company Project Number: 37516-0632.002.7805

Site Data: 848 East Street, Suffield, Hartford County, CT

Latitude 41° 57′ 25.2″, Longitude -72° 37′ 32.6″

165.5 Foot - Monopole Tower

Dear Charles Trask,

*Paul J. Ford and Company* is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 879354, in accordance with application 333732, revision 3.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

**Sufficient Capacity** 

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

The structural analysis was performed for this tower in accordance with the requirements of the 2005 Connecticut Building Code and the TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

We at *Paul J. Ford and Company* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Jonathan Sommer, El Structural Designer

#### **TABLE OF CONTENTS**

## 1) INTRODUCTION

## 2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing and Reserved Antenna and Cable Information

## 3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

#### 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Components vs. Capacity

4.1) Recommendations

#### 5) APPENDIX A

tnxTower Output

#### 6) APPENDIX B

Base Level Drawing

## 7) APPENDIX C

**Additional Calculations** 

#### 1) INTRODUCTION

The structural analysis was performed for this tower in accordance with the requirements of the 2005 Connecticut Building Code and the TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

## 2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

**Table 1 - Proposed Antenna and Cable Information** 

| Mounting<br>Level (ft) | Flevation | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model                            | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) | Note |
|------------------------|-----------|--------------------------|-------------------------|------------------------------------------|----------------------------|---------------------------|------|
|                        | 163.0     | 3                        | ericsson                | ERICSSON AIR 21 B4A<br>B2P w/ Mount Pipe |                            |                           |      |
|                        |           | 3                        | ericsson                | RRUS 11 B2                               |                            |                           |      |
| 164.0                  |           | 3                        | commscope               | SBNH-1D65C-SR w/<br>Mount Pipe           | 1                          | 1-5/8                     | -    |
|                        | 161.0     | 3                        | ericsson                | KRY 112 144/1                            |                            |                           |      |
|                        |           | 3                        | ericsson                | RRUS 11 B12                              |                            |                           |      |

Table 2 - Existing and Reserved Antenna and Cable Information

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model                         | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) | Note |
|------------------------|-------------------------------------|--------------------------|-------------------------|---------------------------------------|----------------------------|---------------------------|------|
|                        |                                     | 6                        | remec                   | S20057A-1                             |                            |                           |      |
| 164.0                  | 164.0                               | 3                        | rfs celwave             | APX16PV-16PVL w/<br>Mount Pipe        | 1                          | 1/8                       | 3    |
|                        |                                     | 1                        | tower mounts            | T-Arm Mount [TA 602-3]                | 12                         | 1-5/8                     | 1    |
|                        |                                     | 3                        | antel                   | BXA-171063-12BF w/<br>Mount Pipe      |                            |                           |      |
|                        | 153.0                               | 1                        | antel                   | BXA-70080-6CF-EDIN-4<br>w/ Mount Pipe | -                          | -                         | 3    |
|                        |                                     | 2                        | rfs celwave             | APX75-866514-CT2 w/<br>Mount Pipe     |                            |                           |      |
|                        |                                     | 3                        | alcatel lucent          | RRH2X60-AWS                           |                            | 1-5/8                     |      |
| 153.0                  |                                     | 3                        | alcatel lucent          | RRH2X60-PCS                           |                            |                           | 2    |
|                        |                                     | 3                        | alcatel lucent          | RRH2x60-700                           | 2                          |                           |      |
|                        |                                     | 6                        | commscope               | SBNHH-1D65B w/ Mount<br>Pipe          | 2                          |                           |      |
|                        |                                     | 2                        | rfs celwave             | DB-T1-6Z-8AB-0Z                       |                            |                           |      |
|                        |                                     | 6                        | antel                   | LPA-80080/6CF w/ Mount<br>Pipe        | 12                         | 1-5/8                     |      |
|                        |                                     | 1                        | tower mounts            | Platform Mount [LP 304-1]             |                            |                           | 1    |
| 145.0                  | 145.0                               | 3                        | kathrein                | 742 213 w/ Mount Pipe                 | 6                          | 1-5/8                     |      |
| 140.0                  | 143.0                               | 1                        | tower mounts            | Pipe Mount [PM 601-3]                 |                            | 1-5/0                     |      |

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer       | Antenna Model             | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) | Note |
|------------------------|-------------------------------------|--------------------------|-------------------------------|---------------------------|----------------------------|---------------------------|------|
|                        | 138.0                               | 1                        | dragonwave                    | A-ANT-18G-2-C             |                            |                           |      |
| 136.0                  |                                     | 1                        | dragonwave                    | A-ANT-23G-1-C             | 3                          | 1/2                       | 1    |
|                        | 136.0                               | 2                        | dragonwave                    | HORIZON COMPACT           |                            |                           |      |
|                        |                                     | 1                        | samsung<br>telecommunications | WIMAX DAP HEAD            |                            |                           |      |
|                        |                                     | 1                        | tower mounts                  | Pipe Mount [PM 601-3]     |                            |                           |      |
|                        |                                     | 1                        | tower mounts                  | Side Arm Mount [SO 104-3] |                            |                           |      |
|                        | 134.0                               | 1                        | kathrein                      | 840 10054 w/ Mount Pipe   |                            |                           |      |

Notes:

- 1) Existing Equipment
- 2) Reserved Equipment
- 3) Equipment To Be Removed

#### 3) ANALYSIS PROCEDURE

**Table 3 - Documents Provided** 

| Document                                 | Remarks                                                   | Reference | Source   |
|------------------------------------------|-----------------------------------------------------------|-----------|----------|
| 4-GEOTECHNICAL REPORTS                   | Clough, Harbour & Associates<br>LLP, 8961.07.07, 5/19/200 | 2373668   | CCISITES |
| 4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS | FWT, 21283000, 5/25/20000                                 | 1118795   | CCISITES |
| 4-TOWER MANUFACTURER DRAWINGS            | FWT, 21283000, 5/25/20000                                 | 961597    | CCISITES |

#### 3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

#### 3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

## 4) ANALYSIS RESULTS

**Table 4 - Section Capacity (Summary)** 

| Section No. | Elevation (ft)    | Component<br>Type | Size                   | Critical<br>Element | P (K)  | SF*P_allow<br>(K) | %<br>Capacity | Pass / Fail |
|-------------|-------------------|-------------------|------------------------|---------------------|--------|-------------------|---------------|-------------|
| L1          | 165.5 -<br>136.83 | Pole              | TP24.279x17x0.1875     | 1                   | -4.75  | 720.46            | 60.0          | Pass        |
| L2          | 136.83 - 95.5     | Pole              | TP34.4x23.0992x0.3125  | 2                   | -10.46 | 1698.78           | 73.2          | Pass        |
| L3          | 95.5 - 47         | Pole              | TP46.06x32.6322x0.375  | 3                   | -19.84 | 2732.81           | 70.9          | Pass        |
| L4          | 47 - 0            | Pole              | TP57.275x43.7899x0.375 | 4                   | -25.00 | 2975.59           | 73.7          | Pass        |
|             |                   |                   |                        |                     |        |                   | Summary       |             |
|             |                   |                   |                        |                     |        | Pole (L4)         | 73.7          | Pass        |
|             |                   |                   |                        |                     |        | Rating =          | 73.7          | Pass        |

Table 5 - Tower Component Stresses vs. Capacity – LC7

|       | mponioni on cocco ici               |                |            |             |
|-------|-------------------------------------|----------------|------------|-------------|
| Notes | Component                           | Elevation (ft) | % Capacity | Pass / Fail |
| 1     | Anchor Rods                         | 0              | 70.5       | Pass        |
| 1     | Base Plate                          | 0              | 35.4       | Pass        |
| 1     | Base Foundation<br>Steel            | 0              | 45.0       | Pass        |
| 1     | Base Foundation<br>Soil Interaction | 0              | 38.0       | Pass        |

| Structure Rating (max from all components) = | 73.7% |
|----------------------------------------------|-------|
|----------------------------------------------|-------|

Notes:

## 4.1) Recommendations

The monopole and its foundation have sufficient capacity to carry the existing, reserved, and proposed loads. No modifications are required at this time.

<sup>1)</sup> See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

# APPENDIX A TNXTOWER OUTPUT

## **Tower Input Data**

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

- 1) Tower is located in Hartford County, Connecticut.
- 2) Basic wind speed of 85 mph.
- 3) Nominal ice thickness of 0.7500 in.
- 4) Ice density of 56 pcf.
- 5) A wind speed of 38 mph is used in combination with ice.
- 6) Temperature drop of 50 °F.
- 7) Deflections calculated using a wind speed of 50 mph.
- 8) A non-linear (P-delta) analysis was used.
- 9) Pressures are calculated at each section.
- 10) Stress ratio used in pole design is 1.333.
- 11) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## **Options**

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
   Always Use Max Kz
   Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Špans For Wind Area
  Use Clear Spans For KL/r
  Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption
Use TIA-222-G Tension Splice Exemption

#### Poles

 Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

## **Tapered Pole Section Geometry**

| Section | Elevation     | Section<br>Length | Splice<br>Length | Number<br>of | Top<br>Diameter | Bottom<br>Diameter | Wall<br>Thickness | Bend<br>Radius | Pole Grade          |
|---------|---------------|-------------------|------------------|--------------|-----------------|--------------------|-------------------|----------------|---------------------|
|         | ft            | ft                | ft               | Sides        | in              | in                 | in                | in             |                     |
| L1      | 165.50-136.83 | 28.67             | 3.17             | 18           | 17.0000         | 24.2790            | 0.1875            | 0.7500         | A572-65<br>(65 ksi) |
| L2      | 136.83-95.50  | 44.50             | 4.50             | 18           | 23.0992         | 34.4000            | 0.3125            | 1.2500         | A572-65<br>(65 ksi) |
| L3      | 95.50-47.00   | 53.00             | 6.00             | 18           | 32.6322         | 46.0600            | 0.3750            | 1.5000         | A572-65<br>(65 ksi) |
| L4      | 47.00-0.00    | 53.00             |                  | 18           | 43.7899         | 57.2750            | 0.3750            | 1.5000         | À572-65<br>(65 ksi) |

## **Tapered Pole Properties**

| Section | Tip Dia. | Area    | 1         | r      | С       | I/C             | J         | It/Q   | W      | w/t    |
|---------|----------|---------|-----------|--------|---------|-----------------|-----------|--------|--------|--------|
|         | in       | in²     | in⁴       | in     | in      | in <sup>3</sup> | in⁴       | in²    | in     |        |
| L1      | 17.2623  | 10.0055 | 357.3078  | 5.9684 | 8.6360  | 41.3742         | 715.0858  | 5.0037 | 2.6620 | 14.197 |
|         | 24.6535  | 14.3375 | 1051.3254 | 8.5525 | 12.3337 | 85.2398         | 2104.0342 | 7.1701 | 3.9431 | 21.03  |

| Section | Tip Dia. | Area    | 1         | r       | С       | I/C             | J         | It/Q    | W      | w/t    |
|---------|----------|---------|-----------|---------|---------|-----------------|-----------|---------|--------|--------|
|         | in       | in²     | in⁴       | in      | in      | in <sup>3</sup> | in⁴       | in²     | in     |        |
| L2      | 24.2730  | 22.6015 | 1482.6447 | 8.0893  | 11.7344 | 126.3505        | 2967.2404 | 11.3029 | 3.5155 | 11.249 |
|         | 34.9307  | 33.8105 | 4963.4065 | 12.1011 | 17.4752 | 284.0257        | 9933.3440 | 16.9085 | 5.5044 | 17.614 |
| L3      | 34.2933  | 38.3942 | 5047.2690 | 11.4513 | 16.5772 | 304.4711        | 10101.179 | 19.2007 | 5.0833 | 13.555 |
|         |          |         |           |         |         |                 | 3         |         |        |        |
|         | 46.7705  | 54.3766 | 14338.262 | 16.2182 | 23.3985 | 612.7861        | 28695.391 | 27.1935 | 7.4466 | 19.857 |
|         |          |         | 5         |         |         |                 | 7         |         |        |        |
| L4      | 46.0156  | 51.6746 | 12305.273 | 15.4123 | 22.2453 | 553.1639        | 24626.738 | 25.8422 | 7.0470 | 18.792 |
|         |          |         | 6         |         |         |                 | 8         |         |        |        |
|         | 58.1586  | 67.7252 | 27702.083 | 20.1995 | 29.0957 | 952.1023        | 55440.618 | 33.8690 | 9.4204 | 25.121 |
|         |          |         | 9         |         |         |                 | 8         |         |        |        |

| Tower<br>Elevation | Gusset<br>Area<br>(per face) | Gusset<br>Thickness | Gusset Grade Adjust. Factor<br>A <sub>f</sub> | Adjust.<br>Factor<br>A <sub>r</sub> | Weight Mult. | Double Angle<br>Stitch Bolt<br>Spacing<br>Diagonals | Double Angle<br>Stitch Bolt<br>Spacing<br>Horizontals | Double Angle<br>Stitch Bolt<br>Spacing<br>Redundants |
|--------------------|------------------------------|---------------------|-----------------------------------------------|-------------------------------------|--------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| ft                 | ft <sup>2</sup>              | in                  |                                               |                                     |              | Diagoriais<br>in                                    | in                                                    | in                                                   |
| L1 165.50-         |                              |                     | 1                                             | 1                                   | 1            |                                                     |                                                       |                                                      |
| 136.83             |                              |                     |                                               |                                     |              |                                                     |                                                       |                                                      |
| L2 136.83-         |                              |                     | 1                                             | 1                                   | 1            |                                                     |                                                       |                                                      |
| 95.50              |                              |                     |                                               |                                     |              |                                                     |                                                       |                                                      |
| L3 95.50-          |                              |                     | 1                                             | 1                                   | 1            |                                                     |                                                       |                                                      |
| 47.00              |                              |                     |                                               |                                     |              |                                                     |                                                       |                                                      |
| L4 47.00-0.00      |                              |                     | 1                                             | 1                                   | 1            |                                                     |                                                       |                                                      |

# Feed Line/Linear Appurtenances - Entered As Area

| Description         | Face      | Allow<br>Shield | Component     | Placement     | Total<br>Number |          | $C_A A_A$ | Weight |
|---------------------|-----------|-----------------|---------------|---------------|-----------------|----------|-----------|--------|
|                     | or<br>Leg | Sriieia         | Type          | ft            | Number          |          | ft²/ft    | plf    |
| AL7-50(1-5/8")      | C         | No              | Inside Pole   | 164.00 - 0.00 | 12              | No Ice   | 0.00      | 0.52   |
| 7.2. 33(1.3/3)      | •         |                 |               |               |                 | 1/2" Ice | 0.00      | 0.52   |
|                     |           |                 |               |               |                 | 1" Ice   | 0.00      | 0.52   |
| MLE Hybrid          | С         | No              | Inside Pole   | 164.00 - 0.00 | 1               | No Ice   | 0.00      | 1.07   |
| 9Power/18Fiber RL   |           |                 |               |               |                 | 1/2" Ice | 0.00      | 1.07   |
| 2(1-5/8'')<br>***   |           |                 |               |               |                 | 1" Ice   | 0.00      | 1.07   |
| AVA7-50(1-5/8")     | С         | No              | Inside Pole   | 153.00 - 0.00 | 12              | No Ice   | 0.00      | 0.72   |
| 711711 00(1 0/0 )   | Ū         | 110             | 1110100 1 010 | 100.00 0.00   |                 | 1/2" Ice | 0.00      | 0.72   |
|                     |           |                 |               |               |                 | 1" Ice   | 0.00      | 0.72   |
| HB158-1-08U8-S8J18( | С         | No              | Inside Pole   | 153.00 - 0.00 | 2               | No Ice   | 0.00      | 1.30   |
| 1-5/8'')            | _         |                 |               |               |                 | 1/2" Ice | 0.00      | 1.30   |
| ,                   |           |                 |               |               |                 | 1" Ice   | 0.00      | 1.30   |
| ***                 |           |                 |               |               |                 |          |           |        |
| LCF158-50J(1-5/8")  | С         | No              | Inside Pole   | 145.00 - 0.00 | 6               | No Ice   | 0.00      | 0.92   |
| , ,                 |           |                 |               |               |                 | 1/2" Ice | 0.00      | 0.92   |
|                     |           |                 |               |               |                 | 1" Ice   | 0.00      | 0.92   |
| ***                 |           |                 |               |               |                 |          |           |        |
| FSJ4-50B(1/2")      | С         | No              | CaAa (Out Of  | 136.00 - 0.00 | 1               | No Ice   | 0.05      | 0.14   |
|                     |           |                 | Face)         |               |                 | 1/2" Ice | 0.15      | 0.76   |
|                     |           |                 |               |               |                 | 1" Ice   | 0.25      | 2.00   |
| FSJ4-50B(1/2")      | С         | No              | CaAa (Out Of  | 136.00 - 0.00 | 2               | No Ice   | 0.00      | 0.14   |
|                     |           |                 | Face)         |               |                 | 1/2" Ice | 0.00      | 0.76   |
| ***                 |           |                 |               |               |                 | 1" Ice   | 0.00      | 2.00   |

|                                          |                   |                | Disc                                | rete Tov                  | wer Loa   | ds                              |                                        |                                       |                      |
|------------------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|---------------------------------|----------------------------------------|---------------------------------------|----------------------|
| Description                              | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                                 | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|                                          |                   |                | ft<br>ft<br>ft                      | o                         | ft        |                                 | ft <sup>2</sup>                        | ft <sup>2</sup>                       | K                    |
| ***164***                                |                   |                |                                     |                           |           |                                 |                                        |                                       |                      |
| T-Arm Mount [TA 602-3]                   | С                 | None           |                                     | 0.0000                    | 164.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 11.59<br>15.44<br>19.29                | 11.59<br>15.44<br>19.29               | 0.77<br>0.99<br>1.21 |
| SBNH-1D65C-SR w/<br>Mount Pipe           | Α                 | From Face      | 4.00<br>0.00<br>-3.00               | 0.0000                    | 164.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 11.68<br>12.40<br>13.14                | 9.84<br>11.37<br>12.91                | 0.08<br>0.17<br>0.27 |
| SBNH-1D65C-SR w/<br>Mount Pipe           | В                 | From Face      | 4.00<br>0.00<br>-3.00               | 0.0000                    | 164.00    | No Ice<br>1/2"<br>Ice           | 11.68<br>12.40<br>13.14                | 9.84<br>11.37<br>12.91                | 0.08<br>0.17<br>0.27 |
| SBNH-1D65C-SR w/<br>Mount Pipe           | С                 | From Face      | 4.00<br>0.00<br>-3.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 11.68<br>12.40<br>13.14                | 9.84<br>11.37<br>12.91                | 0.08<br>0.17<br>0.27 |
| ERICSSON AIR 21 B4A<br>B2P w/ Mount Pipe | Α                 | From Face      | 4.00<br>0.00<br>-1.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 6.82<br>7.34<br>7.85                   | 5.63<br>6.47<br>7.25                  | 0.11<br>0.17<br>0.23 |
| ERICSSON AIR 21 B4A<br>B2P w/ Mount Pipe | В                 | From Face      | 4.00<br>0.00<br>-1.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 6.82<br>7.34<br>7.85                   | 5.63<br>6.47<br>7.25                  | 0.11<br>0.17<br>0.23 |
| ERICSSON AIR 21 B4A<br>B2P w/ Mount Pipe | С                 | From Face      | 4.00<br>0.00<br>-1.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 6.82<br>7.34<br>7.85                   | 5.63<br>6.47<br>7.25                  | 0.11<br>0.17<br>0.23 |
| KRY 112 144/1                            | Α                 | From Face      | 4.00<br>0.00<br>-3.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 0.41<br>0.50<br>0.59                   | 0.20<br>0.27<br>0.35                  | 0.01<br>0.01<br>0.02 |
| KRY 112 144/1                            | В                 | From Face      | 4.00<br>0.00<br>-3.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 0.41<br>0.50<br>0.59                   | 0.20<br>0.27<br>0.35                  | 0.01<br>0.01<br>0.02 |
| KRY 112 144/1                            | С                 | From Face      | 4.00<br>0.00<br>-3.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 0.41<br>0.50<br>0.59                   | 0.20<br>0.27<br>0.35                  | 0.01<br>0.01<br>0.02 |
| RRUS 11 B12                              | Α                 | From Face      | 4.00<br>0.00<br>-3.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 3.31<br>3.55<br>3.80                   | 1.36<br>1.54<br>1.73                  | 0.05<br>0.07<br>0.10 |
| RRUS 11 B12                              | В                 | From Face      | 4.00<br>0.00<br>-3.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 3.31<br>3.55<br>3.80                   | 1.36<br>1.54<br>1.73                  | 0.05<br>0.07<br>0.10 |
| RRUS 11 B12                              | С                 | From Face      | 4.00<br>0.00<br>-3.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 3.31<br>3.55<br>3.80                   | 1.36<br>1.54<br>1.73                  | 0.05<br>0.07<br>0.10 |
| RRUS 11 B2                               | Α                 | From Face      | 4.00<br>0.00<br>-1.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 3.31<br>3.55<br>3.80                   | 1.36<br>1.54<br>1.73                  | 0.05<br>0.07<br>0.10 |
| RRUS 11 B2                               | В                 | From Face      | 4.00<br>0.00<br>-1.00               | 0.0000                    | 164.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 3.31<br>3.55<br>3.80                   | 1.36<br>1.54<br>1.73                  | 0.05<br>0.07<br>0.10 |
|                                          | _                 |                |                                     |                           |           | 1" Ice                          |                                        |                                       |                      |

С

From Face

4.00

0.0000

164.00

No Ice

3.31

1.36

0.05

RRUS 11 B2

| Description                        | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                                 | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---------------------------------|----------------------------------------|---------------------------------------|----------------------|
|                                    |                   |                | Vert<br>ft<br>ft<br>ft      | 0                         | ft        |                                 | ft²                                    | ft <sup>2</sup>                       | К                    |
|                                    |                   |                | 0.00                        |                           |           | 1/2"<br>Ice<br>1" Ice           | 3.55<br>3.80                           | 1.54<br>1.73                          | 0.07<br>0.10         |
| ***153***                          |                   |                |                             |                           |           | 1 100                           |                                        |                                       |                      |
| Platform Mount [LP 304-1]          | С                 | None           |                             | 0.0000                    | 153.00    | No Ice<br>1/2"<br>Ice           | 17.46<br>22.44<br>27.42                | 17.46<br>22.44<br>27.42               | 1.35<br>1.62<br>1.90 |
| (2) LPA-80080/6CF w/<br>Mount Pipe | Α                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 4.56<br>5.11<br>5.61                   | 10.73<br>11.99<br>12.97               | 0.05<br>0.11<br>0.19 |
|                                    |                   |                | 0.00                        |                           |           | 1" Ice                          | 3.01                                   | 12.97                                 | 0.19                 |
| (2) LPA-80080/6CF w/<br>Mount Pipe | В                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | No Ice<br>1/2"<br>Ice           | 4.56<br>5.11<br>5.61                   | 10.73<br>11.99<br>12.97               | 0.05<br>0.11<br>0.19 |
| (2) LPA-80080/6CF w/<br>Mount Pipe | С                 | From Face      | 4.00<br>0.00                | 0.0000                    | 153.00    | 1" Ice<br>No Ice<br>1/2"        | 4.56<br>5.11                           | 10.73<br>11.99                        | 0.05<br>0.11         |
|                                    |                   |                | 0.00                        |                           |           | lce<br>1" lce                   | 5.61                                   | 12.97                                 | 0.19                 |
| (2) SBNHH-1D65B w/<br>Mount Pipe   | Α                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | No Ice<br>1/2"<br>Ice           | 8.64<br>9.30<br>9.92                   | 7.07<br>8.26<br>9.18                  | 0.07<br>0.14<br>0.21 |
| /-> <b></b>                        | _                 |                |                             |                           |           | 1" Ice                          |                                        |                                       |                      |
| (2) SBNHH-1D65B w/<br>Mount Pipe   | В                 | From Face      | 4.00<br>0.00                | 0.0000                    | 153.00    | No Ice<br>1/2"                  | 8.64<br>9.30                           | 7.07<br>8.26                          | 0.07<br>0.14         |
| ·                                  | •                 |                | 0.00                        | 0.0000                    | 450.00    | Ice<br>1" Ice                   | 9.92                                   | 9.18                                  | 0.21                 |
| (2) SBNHH-1D65B w/<br>Mount Pipe   | С                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 8.64<br>9.30<br>9.92                   | 7.07<br>8.26<br>9.18                  | 0.07<br>0.14<br>0.21 |
| RRH2X60-PCS                        | Α                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | No Ice<br>1/2"<br>Ice           | 2.57<br>2.79<br>3.02                   | 2.01<br>2.22<br>2.43                  | 0.06<br>0.08<br>0.10 |
| RRH2X60-PCS                        | В                 | From Face      | 4.00<br>0.00                | 0.0000                    | 153.00    | 1" Ice<br>No Ice<br>1/2"        | 2.57<br>2.79                           | 2.01<br>2.22                          | 0.06<br>0.08         |
| DDUOY00 DOO                        | 0                 | F F            | 0.00                        | 0.0000                    | 450.00    | Ice<br>1" Ice                   | 3.02                                   | 2.43                                  | 0.10                 |
| RRH2X60-PCS                        | С                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | No Ice<br>1/2"<br>Ice<br>1" Ice | 2.57<br>2.79<br>3.02                   | 2.01<br>2.22<br>2.43                  | 0.06<br>0.08<br>0.10 |
| RRH2X60-AWS                        | Α                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | No Ice<br>1/2"<br>Ice           | 2.19<br>2.40<br>2.61                   | 1.43<br>1.61<br>1.80                  | 0.04<br>0.06<br>0.08 |
| RRH2X60-AWS                        | В                 | From Face      | 4.00<br>0.00                | 0.0000                    | 153.00    | 1" Ice<br>No Ice<br>1/2"        | 2.19<br>2.40                           | 1.43<br>1.61                          | 0.04<br>0.06         |
| DDHOVEO AME                        | С                 | From Food      | 0.00                        | 0.0000                    | 152.00    | Ice<br>1" Ice<br>No Ice         | 2.61                                   | 1.80                                  | 0.08                 |
| RRH2X60-AWS                        | C                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | 1/2"<br>Ice<br>1" Ice           | 2.19<br>2.40<br>2.61                   | 1.43<br>1.61<br>1.80                  | 0.04<br>0.06<br>0.08 |
| RRH2x60-700                        | Α                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | No Ice<br>1/2"<br>Ice           | 3.96<br>4.27<br>4.60                   | 1.82<br>2.08<br>2.36                  | 0.06<br>0.08<br>0.11 |
| RRH2x60-700                        | В                 | From Face      | 4.00<br>0.00<br>0.00        | 0.0000                    | 153.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice | 3.96<br>4.27<br>4.60                   | 1.82<br>2.08<br>2.36                  | 0.06<br>0.08<br>0.11 |
| RRH2x60-700                        | С                 | From Face      | 4.00                        | 0.0000                    | 153.00    | 1" Ice<br>No Ice                | 3.96                                   | 1.82                                  | 0.06                 |

| Description                                | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                                           | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|--------------------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|-------------------------------------------|----------------------------------------|---------------------------------------|----------------------|
|                                            |                   |                | ft<br>ft<br>ft                      | 0                         | ft        |                                           | ft <sup>2</sup>                        | ft <sup>2</sup>                       | K                    |
|                                            |                   |                | 0.00<br>0.00                        |                           |           | 1/2"<br>Ice<br>1" Ice                     | 4.27<br>4.60                           | 2.08<br>2.36                          | 0.08<br>0.11         |
| (2) DB-T1-6Z-8AB-0Z                        | С                 | From Face      | 4.00<br>0.00<br>0.00                | 0.0000                    | 153.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 5.60<br>5.92<br>6.24                   | 2.33<br>2.56<br>2.79                  | 0.04<br>0.08<br>0.12 |
| ***145***<br>Pipe Mount [PM 601-3]         | С                 | None           |                                     | 0.0000                    | 145.00    | No Ice<br>1/2"                            | 4.39<br>5.48                           | 4.39<br>5.48                          | 0.20<br>0.24         |
|                                            |                   |                |                                     |                           |           | Ice<br>1" Ice                             | 6.57                                   | 6.57                                  | 0.28                 |
| 742 213 w/ Mount Pipe                      | Α                 | From Face      | 1.00<br>0.00                        | 0.0000                    | 145.00    | No Ice<br>1/2"                            | 5.37<br>5.95                           | 4.62<br>6.00                          | 0.05<br>0.09         |
| 742 213 w/ Mount Pipe                      | В                 | From Face      | 0.00                                | 0.0000                    | 145.00    | Ice<br>1" Ice<br>No Ice                   | 6.50<br>5.37                           | 6.98<br>4.62                          | 0.15<br>0.05         |
|                                            | _                 |                | 0.00                                | 0.000                     | 0.00      | 1/2"<br>Ice<br>1" Ice                     | 5.95<br>6.50                           | 6.00<br>6.98                          | 0.09<br>0.15         |
| 742 213 w/ Mount Pipe                      | С                 | From Face      | 1.00<br>0.00<br>0.00                | 0.0000                    | 145.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 5.37<br>5.95<br>6.50                   | 4.62<br>6.00<br>6.98                  | 0.05<br>0.09<br>0.15 |
| ***136***<br>Side Arm Mount [SO 104-<br>3] | С                 | None           |                                     | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice                     | 3.30<br>4.13<br>4.96                   | 3.30<br>4.13<br>4.96                  | 0.29<br>0.32<br>0.35 |
| Pipe Mount [PM 601-3]                      | С                 | None           |                                     | 0.0000                    | 136.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 4.39<br>5.48<br>6.57                   | 4.39<br>5.48<br>6.57                  | 0.20<br>0.24<br>0.28 |
| 840 10054 w/ Mount Pipe                    | Α                 | From Face      | 1.00<br>0.00<br>-2.00               | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice<br>1" Ice           | 5.41<br>5.83<br>6.26                   | 2.39<br>2.92<br>3.47                  | 0.05<br>0.09<br>0.13 |
| WIMAX DAP HEAD                             | Α                 | From Face      | 1.00<br>0.00<br>0.00                | 0.0000                    | 136.00    | No Ice<br>1/2"<br>Ice                     | 1.80<br>1.99<br>2.18                   | 0.78<br>0.92<br>1.07                  | 0.03<br>0.04<br>0.06 |
| HORIZON COMPACT                            | Α                 | From Face      | 1.00<br>0.00<br>0.00                | 0.0000                    | 136.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 0.84<br>0.97<br>1.10                   | 0.43<br>0.52<br>0.63                  | 0.01<br>0.02<br>0.03 |
| HORIZON COMPACT                            | С                 | From Face      | 1.00<br>0.00<br>0.00                | 0.0000                    | 136.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 0.84<br>0.97<br>1.10                   | 0.43<br>0.52<br>0.63                  | 0.01<br>0.02<br>0.03 |
| ***                                        |                   |                |                                     |                           |           | 1" Ice                                    |                                        |                                       |                      |

|               |                   |                             |                |                                     | Dishe                 | es                    |           |                     |                              |                      |                      |
|---------------|-------------------|-----------------------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|------------------------------|----------------------|----------------------|
| Description   | Face<br>or<br>Leg | Dish<br>Type                | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |                              | Aperture<br>Area     | Weight               |
|               |                   |                             |                | ft                                  | 0                     | 0                     | ft        | ft                  |                              | ft <sup>2</sup>      | K                    |
| A-ANT-23G-1-C | В                 | Paraboloid<br>w/Shroud (HP) | From<br>Leg    | 1.00<br>0.00<br>2.00                | 0.0000                |                       | 136.00    | 1.27                | No Ice<br>1/2" Ice<br>1" Ice | 1.28<br>1.45<br>1.62 | 0.02<br>0.03<br>0.04 |

| Description   | Face<br>or<br>Leg | Dish<br>Type  | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |          | Aperture<br>Area | Weight |
|---------------|-------------------|---------------|----------------|-----------------------------|-----------------------|-----------------------|-----------|---------------------|----------|------------------|--------|
|               |                   |               |                | Vert<br>ft                  | 0                     | o                     | ft        | ft                  |          | ft²              | K      |
| A-ANT-18G-2-C | С                 | Paraboloid    | From           | 1.00                        | 0.0000                |                       | 136.00    | 2.17                | No Ice   | 3.72             | 0.03   |
|               |                   | w/Shroud (HP) | Leg            | 0.00                        |                       |                       |           |                     | 1/2" Ice | 4.01             | 0.04   |
|               |                   |               | _              | 2.00                        |                       |                       |           |                     | 1" Ice   | 4.30             | 0.05   |
| ***           |                   |               |                |                             |                       |                       |           |                     |          |                  |        |

# **Tower Pressures - No Ice**

 $G_H = 1.690$ 

| Section       | Z      | $K_Z$ | $q_z$ | $A_G$           | F | $A_F$           | $A_R$           | $A_{leg}$       | Leg    | $C_A A_A$       | $C_A A_A$       |
|---------------|--------|-------|-------|-----------------|---|-----------------|-----------------|-----------------|--------|-----------------|-----------------|
| Elevation     |        |       |       |                 | а |                 |                 |                 | %      | In              | Out             |
|               |        |       |       | _               | С | _               | _               | _               |        | Face            | Face            |
| ft            | ft     |       | psf   | ft <sup>2</sup> | е | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup> |        | ft <sup>2</sup> | ft <sup>2</sup> |
| L1 165.50-    | 150.32 | 1.542 | 29    | 49.311          | Α | 0.000           | 49.311          | 49.311          | 100.00 | 0.000           | 0.000           |
| 136.83        |        |       |       |                 | В | 0.000           | 49.311          |                 | 100.00 | 0.000           | 0.000           |
|               |        |       |       |                 | С | 0.000           | 49.311          |                 | 100.00 | 0.000           | 0.000           |
| L2 136.83-    | 115.19 | 1.429 | 26    | 100.40          | Α | 0.000           | 100.405         | 100.405         | 100.00 | 0.000           | 0.000           |
| 95.50         |        |       |       | 5               | В | 0.000           | 100.405         |                 | 100.00 | 0.000           | 0.000           |
|               |        |       |       |                 | С | 0.000           | 100.405         |                 | 100.00 | 0.000           | 2.106           |
| L3 95.50-     | 70.60  | 1.243 | 23    | 161.32          | Α | 0.000           | 161.328         | 161.328         | 100.00 | 0.000           | 0.000           |
| 47.00         |        |       |       | 8               | В | 0.000           | 161.328         |                 | 100.00 | 0.000           | 0.000           |
|               |        |       |       |                 | С | 0.000           | 161.328         |                 | 100.00 | 0.000           | 2.522           |
| L4 47.00-0.00 | 22.69  | 1     | 19    | 200.90          | Α | 0.000           | 200.908         | 200.908         | 100.00 | 0.000           | 0.000           |
|               |        |       |       | 8               | В | 0.000           | 200.908         |                 | 100.00 | 0.000           | 0.000           |
|               |        |       |       |                 | С | 0.000           | 200.908         |                 | 100.00 | 0.000           | 2.444           |

## **Tower Pressure - With Ice**

 $G_H = 1.690$ 

| Section        | Z      | $K_Z$ | $q_z$ | $t_Z$  | $A_{G}$         | F | $A_F$           | $A_R$           | $A_{leg}$       | Leg    | $C_A A_A$       | $C_A A_A$       |
|----------------|--------|-------|-------|--------|-----------------|---|-----------------|-----------------|-----------------|--------|-----------------|-----------------|
| Elevation      |        |       |       |        |                 | а |                 |                 | -               | %      | In              | Out             |
|                |        |       |       |        |                 | С |                 |                 |                 |        | Face            | Face            |
| ft             | ft     |       | psf   | in     | ft <sup>2</sup> | е | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup> |        | ft <sup>2</sup> | ft <sup>2</sup> |
| L1 165.50-     | 150.32 | 1.542 | 6     | 0.7500 | 52.895          | Α | 0.000           | 52.895          | 52.895          | 100.00 | 0.000           | 0.000           |
| 136.83         |        |       |       |        |                 | В | 0.000           | 52.895          |                 | 100.00 | 0.000           | 0.000           |
|                |        |       |       |        |                 | С | 0.000           | 52.895          |                 | 100.00 | 0.000           | 0.000           |
| L2 136.83-     | 115.19 | 1.429 | 5     | 0.7500 | 105.571         | Α | 0.000           | 105.571         | 105.571         | 100.00 | 0.000           | 0.000           |
| 95.50          |        |       |       |        |                 | В | 0.000           | 105.571         |                 | 100.00 | 0.000           | 0.000           |
|                |        |       |       |        |                 | С | 0.000           | 105.571         |                 | 100.00 | 0.000           | 8.181           |
| L3 95.50-47.00 | 70.60  | 1.243 | 4     | 0.7500 | 167.390         | Α | 0.000           | 167.390         | 167.390         | 100.00 | 0.000           | 0.000           |
|                |        |       |       |        |                 | В | 0.000           | 167.390         |                 | 100.00 | 0.000           | 0.000           |
|                |        |       |       |        |                 | С | 0.000           | 167.390         |                 | 100.00 | 0.000           | 9.797           |
| L4 47.00-0.00  | 22.69  | 1     | 4     | 0.7500 | 206.783         | Α | 0.000           | 206.783         | 206.783         | 100.00 | 0.000           | 0.000           |
|                |        |       |       |        |                 | В | 0.000           | 206.783         |                 | 100.00 | 0.000           | 0.000           |
|                |        |       |       |        |                 | С | 0.000           | 206.783         |                 | 100.00 | 0.000           | 9.494           |

## **Tower Pressure - Service**

 $G_H = 1.690$ 

| Section<br>Elevation | Z      | K <sub>Z</sub> | $q_z$ | $A_{G}$ | F | $A_F$           | $A_R$           | $A_{leg}$       | Leg<br>% | $C_A A_A$  | $C_A A_A$       |
|----------------------|--------|----------------|-------|---------|---|-----------------|-----------------|-----------------|----------|------------|-----------------|
| Elevation            |        |                |       |         | a |                 |                 |                 | %        | In<br>Taba | Out             |
|                      |        |                |       | ft²     | С | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup> |          | Face       | Face            |
| ft                   | ft     |                | psf   |         | е | Τt              | Τt              |                 |          | ft⁴        | ft <sup>2</sup> |
| L1 165.50-           | 150.32 | 1.542          | 10    | 49.311  | Α | 0.000           | 49.311          | 49.311          | 100.00   | 0.000      | 0.000           |
| 136.83               |        |                |       |         | В | 0.000           | 49.311          |                 | 100.00   | 0.000      | 0.000           |
|                      |        |                |       |         | С | 0.000           | 49.311          |                 | 100.00   | 0.000      | 0.000           |
| L2 136.83-           | 115.19 | 1.429          | 9     | 100.40  | Α | 0.000           | 100.405         | 100.405         | 100.00   | 0.000      | 0.000           |
| 95.50                |        |                |       | 5       | В | 0.000           | 100.405         |                 | 100.00   | 0.000      | 0.000           |
|                      |        |                |       |         | С | 0.000           | 100.405         |                 | 100.00   | 0.000      | 2.106           |
| L3 95.50-            | 70.60  | 1.243          | 8     | 161.32  | Α | 0.000           | 161.328         | 161.328         | 100.00   | 0.000      | 0.000           |
| 47.00                |        |                |       | 8       | В | 0.000           | 161.328         |                 | 100.00   | 0.000      | 0.000           |
|                      |        |                |       |         | С | 0.000           | 161.328         |                 | 100.00   | 0.000      | 2.522           |
| L4 47.00-0.00        | 22.69  | 1              | 6     | 200.90  | Α | 0.000           | 200.908         | 200.908         | 100.00   | 0.000      | 0.000           |
|                      |        |                |       | 8       | В | 0.000           | 200.908         |                 | 100.00   | 0.000      | 0.000           |
|                      |        |                |       |         | С | 0.000           | 200.908         |                 | 100.00   | 0.000      | 2.444           |

# **Load Combinations**

| Comb. | Description                 |
|-------|-----------------------------|
| No.   | ·                           |
| 1     | Dead Only                   |
| 2     | Dead+Wind 0 deg - No Ice    |
| 3     | Dead+Wind 30 deg - No Ice   |
| 4     | Dead+Wind 60 deg - No Ice   |
| 5     | Dead+Wind 90 deg - No Ice   |
| 6     | Dead+Wind 120 deg - No Ice  |
| 7     | Dead+Wind 150 deg - No Ice  |
| 8     | Dead+Wind 180 deg - No Ice  |
| 9     | Dead+Wind 210 deg - No Ice  |
| 10    | Dead+Wind 240 deg - No Ice  |
| 11    | Dead+Wind 270 deg - No Ice  |
| 12    | Dead+Wind 300 deg - No Ice  |
| 13    | Dead+Wind 330 deg - No Ice  |
| 14    | Dead+Ice+Temp               |
| 15    | Dead+Wind 0 deg+Ice+Temp    |
| 16    | Dead+Wind 30 deg+Ice+Temp   |
| 17    | Dead+Wind 60 deg+Ice+Temp   |
| 18    | Dead+Wind 90 deg+Ice+Temp   |
| 19    | Dead+Wind 120 deg+Ice+Temp  |
| 20    | Dead+Wind 150 deg+lce+Temp  |
| 21    | Dead+Wind 180 deg+lce+Temp  |
| 22    | Dead+Wind 210 deg+Ice+Temp  |
| 23    | Dead+Wind 240 deg+Ice+Temp  |
| 24    | Dead+Wind 270 deg+lce+Temp  |
| 25    | Dead+Wind 300 deg+Ice+Temp  |
| 26    | Dead+Wind 330 deg+Ice+Temp  |
| 27    | Dead+Wind 0 deg - Service   |
| 28    | Dead+Wind 30 deg - Service  |
| 29    | Dead+Wind 60 deg - Service  |
| 30    | Dead+Wind 90 deg - Service  |
| 31    | Dead+Wind 120 deg - Service |
| 32    | Dead+Wind 150 deg - Service |
| 33    | Dead+Wind 180 deg - Service |
| 34    | Dead+Wind 210 deg - Service |
| 35    | Dead+Wind 240 deg - Service |
| 36    | Dead+Wind 270 deg - Service |
| 37    | Dead+Wind 300 deg - Service |
| 38    | Dead+Wind 330 deg - Service |

| Sectio<br>n<br>No. | Elevation<br>ft   | Component<br>Type | Condition        | Gov.<br>Load<br>Comb. | Force<br>K | Major Axis<br>Moment<br>kip-ft | Minor Axis<br>Moment<br>kip-ft |
|--------------------|-------------------|-------------------|------------------|-----------------------|------------|--------------------------------|--------------------------------|
| L1                 | 165.5 -<br>136.83 | Pole              | Max Tension      | 2                     | 0.00       | -0.00                          | -0.00                          |
|                    |                   |                   | Max. Compression | 14                    | -10.11     | 0.01                           | -0.99                          |
|                    |                   |                   | Max. Mx          | 5                     | -4.80      | -199.59                        | -0.33                          |
|                    |                   |                   | Max. My          | 8                     | -4.75      | -0.00                          | -204.15                        |
|                    |                   |                   | Max. Vy          | 5                     | 13.21      | -199.59                        | -0.33                          |
|                    |                   |                   | Max. Vx          | 8                     | 13.53      | -0.00                          | -204.15                        |
|                    |                   |                   | Max. Torque      | 5                     |            |                                | -1.08                          |
| L2                 | 136.83 -<br>95.5  | Pole              | Max Tension      | 1                     | 0.00       | 0.00                           | 0.00                           |
|                    | 00.0              |                   | Max. Compression | 14                    | -17.05     | 0.50                           | -1.03                          |
|                    |                   |                   | Max. Mx          | 5                     | -10.48     | -822.08                        | -1.62                          |
|                    |                   |                   | Max. My          | 8                     | -10.46     | -1.28                          | -833.48                        |
|                    |                   |                   | Max. Vy          | 5                     | 17.18      | -822.08                        | -1.62                          |
|                    |                   |                   | Max. Vx          | 2                     | -17.35     | 0.57                           | 833.23                         |
|                    |                   |                   | Max. Torque      | 11                    |            |                                | 1.18                           |
| L3                 | 95.5 - 47         | Pole              | Max Tension      | 1                     | 0.00       | 0.00                           | 0.00                           |
| -                  |                   |                   | Max. Compression | 14                    | -27.87     | 0.77                           | -1.17                          |
|                    |                   |                   | Max. Mx          | 5                     | -19.85     | -1720.84                       | -3.58                          |
|                    |                   |                   | Max. My          | 2                     | -19.84     | 1.45                           | 1739.68                        |
|                    |                   |                   | Max. Vý          | 5                     | 21.07      | -1720.84                       | -3.58                          |
|                    |                   |                   | Max. Vx          | 2                     | -21.23     | 1.45                           | 1739.68                        |
|                    |                   |                   | Max. Torque      | 12                    |            |                                | 1.18                           |
| L4                 | 47 - 0            | Pole              | Max Tension      | 1                     | 0.00       | 0.00                           | 0.00                           |
|                    |                   |                   | Max. Compression | 14                    | -43.75     | 1.15                           | -1.37                          |
|                    |                   |                   | Max. Mx          | 5                     | -33.63     | -2947.15                       | -5.74                          |
|                    |                   |                   | Max. My          | 2                     | -33.63     | 2.43                           | 2974.48                        |
|                    |                   |                   | Max. Vý          | 5                     | 25.21      | -2947.15                       | -5.74                          |
|                    |                   |                   | Max. Vx          | 2                     | -25.37     | 2.43                           | 2974.48                        |
|                    |                   |                   | Max. Torque      | 12                    |            |                                | 1.21                           |

## **Maximum Tower Deflections - Service Wind**

| Section | Elevation      | Horz.      | Gov.  | Tilt   | Twist  |
|---------|----------------|------------|-------|--------|--------|
| No.     |                | Deflection | Load  |        |        |
|         | ft             | in         | Comb. | 0      | 0      |
| L1      | 165.5 - 136.83 | 37.593     | 33    | 2.1816 | 0.0054 |
| L2      | 140 - 95.5     | 26.280     | 33    | 1.9523 | 0.0032 |
| L3      | 100 - 47       | 12.618     | 33    | 1.2663 | 0.0012 |
| L4      | 53 - 0         | 3.388      | 33    | 0.6025 | 0.0004 |

# **Critical Deflections and Radius of Curvature - Service Wind**

| Elevation | Appurtenance              | Gov.  | Deflection | Tilt   | Twist  | Radius of |
|-----------|---------------------------|-------|------------|--------|--------|-----------|
|           |                           | Load  |            |        |        | Curvature |
| ft        |                           | Comb. | in         | 0      | 0      | ft        |
| 164.00    | T-Arm Mount [TA 602-3]    | 33    | 36.905     | 2.1708 | 0.0053 | 16717     |
| 153.00    | Platform Mount [LP 304-1] | 33    | 31.900     | 2.0866 | 0.0044 | 6686      |
| 145.00    | Pipe Mount [PM 601-3]     | 33    | 28.385     | 2.0106 | 0.0038 | 4076      |
| 138.00    | A-ANT-23G-1-C             | 33    | 25.463     | 1.9261 | 0.0033 | 3318      |
| 136.00    | Side Arm Mount [SO 104-3] | 33    | 24.659     | 1.8983 | 0.0032 | 3310      |

## **Maximum Tower Deflections - Design Wind**

| Section<br>No. | Elevation      | Horz.<br>Deflection | Gov.<br>Load | Tilt   | Twist  |
|----------------|----------------|---------------------|--------------|--------|--------|
|                | ft             | in                  | Comb.        | 0      | 0      |
| L1             | 165.5 - 136.83 | 108.183             | 8            | 6.2762 | 0.0158 |
| L2             | 140 - 95.5     | 75.690              | 2            | 5.6206 | 0.0090 |
| L3             | 100 - 47       | 36.379              | 2            | 3.6500 | 0.0033 |
| L4             | 53 - 0         | 9.776               | 13           | 1.7382 | 0.0011 |

## **Critical Deflections and Radius of Curvature - Design Wind**

| Elevation | Appurtenance              | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|---------------------------|--------------|------------|--------|--------|------------------------|
| ft        |                           | Comb.        | in         | 0      | 0      | ft                     |
| 164.00    | T-Arm Mount [TA 602-3]    | 8            | 106.205    | 6.2456 | 0.0155 | 5954                   |
| 153.00    | Platform Mount [LP 304-1] | 8            | 91.830     | 6.0053 | 0.0130 | 2380                   |
| 145.00    | Pipe Mount [PM 601-3]     | 2            | 81.736     | 5.7877 | 0.0112 | 1449                   |
| 138.00    | A-ANT-23G-1-C             | 2            | 73.341     | 5.5455 | 0.0097 | 1177                   |
| 136.00    | Side Arm Mount [SO 104-3] | 2            | 71.033     | 5.4658 | 0.0093 | 1174                   |

# **Compression Checks**

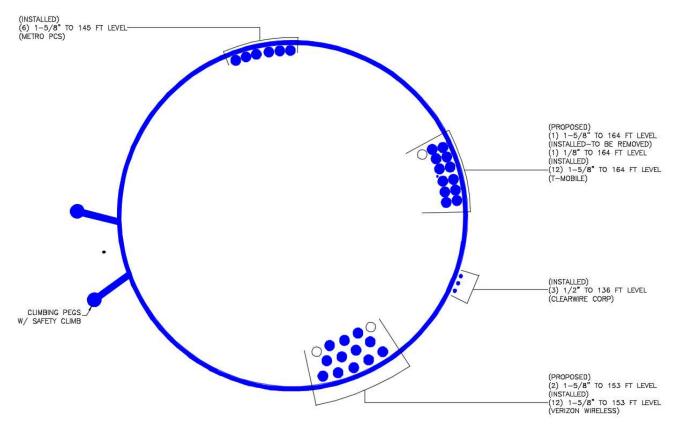
## **Pole Design Data**

| Section | Elevation      | Size                   | L     | $L_u$ | KI/r | $F_a$  | Α       | Actual | Allow.  | Ratio |
|---------|----------------|------------------------|-------|-------|------|--------|---------|--------|---------|-------|
| No.     |                |                        |       |       |      |        |         | P      | $P_a$   | P     |
|         | ft             |                        | ft    | ft    |      | ksi    | in²     | K      | K       | Pa    |
| L1      | 165.5 - 136.83 | TP24.279x17x0.1875     | 28.67 | 0.00  | 0.0  | 39.000 | 13.8585 | -4.75  | 540.48  | 0.009 |
|         | (1)            |                        |       |       |      |        |         |        |         |       |
| L2      | 136.83 - 95.5  | TP34.4x23.0992x0.3125  | 44.50 | 0.00  | 0.0  | 39.000 | 32.6770 | -10.46 | 1274.40 | 0.008 |
|         | (2)            |                        |       |       |      |        |         |        |         |       |
| L3      | 95.5 - 47 (3)  | TP46.06x32.6322x0.375  | 53.00 | 0.00  | 0.0  | 39.000 | 52.5672 | -19.84 | 2050.12 | 0.010 |
| L4      | 47 - 0 (4)     | TP57.275x43.7899x0.375 | 53.00 | 0.00  | 0.0  | 39.000 | 57.2373 | -25.00 | 2232.25 | 0.011 |
|         |                |                        |       |       |      |        |         |        |         |       |

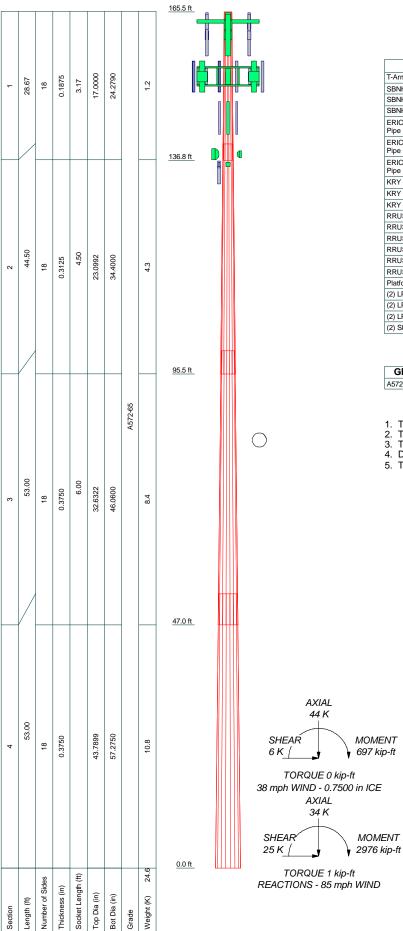
# **Pole Bending Design Data**

| Section | Elevation     | Size                   | Actual       | Actual   | Allow.   | Ratio    | Actual                     | Actual   | Allow.   | Ratio    |
|---------|---------------|------------------------|--------------|----------|----------|----------|----------------------------|----------|----------|----------|
| No.     |               |                        | $M_{\times}$ | $f_{bx}$ | $F_{bx}$ | $f_{bx}$ | $M_{\scriptscriptstyle Y}$ | $f_{by}$ | $F_{by}$ | $f_{by}$ |
|         | ft            |                        | kip-ft       | ksi      | ksi      | $F_{bx}$ | kip-ft                     | ksi      | ksi      | $F_{by}$ |
| L1      | 165.5 -       | TP24.279x17x0.1875     | 204.15       | 30.769   | 39.000   | 0.789    | 0.00                       | 0.000    | 39.000   | 0.000    |
|         | 136.83 (1)    |                        |              |          |          |          |                            |          |          |          |
| L2      | 136.83 - 95.5 | TP34.4x23.0992x0.3125  | 833.48       | 37.712   | 39.000   | 0.967    | 0.00                       | 0.000    | 39.000   | 0.000    |
|         | (2)           |                        |              |          |          |          |                            |          |          |          |
| L3      | 95.5 - 47 (3) | TP46.06x32.6322x0.375  | 1739.8       | 36.466   | 39.000   | 0.935    | 0.00                       | 0.000    | 39.000   | 0.000    |
|         |               |                        | 0            |          |          |          |                            |          |          |          |
| L4      | 47 - 0 (4)    | TP57.275x43.7899x0.375 | 2144.1       | 37.880   | 39.000   | 0.971    | 0.00                       | 0.000    | 39.000   | 0.000    |
|         |               |                        | 2            |          |          |          |                            |          |          |          |

# Pole Shear Design Data


| Section | Elevation | Size               | Actual | Actual    | Allow.    | Ratio              | Actual | Actual   | Allow.   | Ratio    |
|---------|-----------|--------------------|--------|-----------|-----------|--------------------|--------|----------|----------|----------|
| No.     |           |                    | V      | $f_{\nu}$ | $F_{\nu}$ | $f_{\nu}$          | Τ      | $f_{vt}$ | $F_{vt}$ | $f_{vt}$ |
|         | ft        |                    | K      | ksi       | ksi       | $\overline{F_{v}}$ | kip-ft | ksi      | ksi      | $F_{vt}$ |
| L1      | 165.5 -   | TP24.279x17x0.1875 | 13.53  | 0.976     | 26.000    | 0.076              | 0.00   | 0.000    | 26.000   | 0.000    |

| Section<br>No. | Elevation                          | Size                                            | Actual<br>V    | Actual<br>f <sub>v</sub> | Allow.<br>F <sub>v</sub> | Ratio<br>f <sub>v</sub> | Actual<br>T  | Actual<br>f <sub>vt</sub> | Allow.<br>F <sub>vt</sub> | Ratio<br>f <sub>vt</sub> |
|----------------|------------------------------------|-------------------------------------------------|----------------|--------------------------|--------------------------|-------------------------|--------------|---------------------------|---------------------------|--------------------------|
| -              | ft                                 |                                                 | K              | ksi                      | ksi                      | $\overline{F_{v}}$      | kip-ft       | ksi                       | ksi                       | F <sub>vt</sub>          |
| L2             | 136.83 (1)<br>136.83 - 95.5<br>(2) | TP34.4x23.0992x0.3125                           | 17.33          | 0.530                    | 26.000                   | 0.041                   | 0.42         | 0.009                     | 26.000                    | 0.000                    |
| L3<br>L4       | 95.5 - 47 (3)<br>47 - 0 (4)        | TP46.06x32.6322x0.375<br>TP57.275x43.7899x0.375 | 21.25<br>22.90 | 0.404<br>0.400           | 26.000<br>26.000         | 0.031<br>0.030          | 0.99<br>1.00 | 0.010<br>0.009            | 26.000<br>26.000          | 0.000<br>0.000           |


|                | Pole Interaction Design Data |            |                          |                          |                         |                          |                 |                  |           |
|----------------|------------------------------|------------|--------------------------|--------------------------|-------------------------|--------------------------|-----------------|------------------|-----------|
| Section<br>No. | Elevation                    | Ratio<br>P | Ratio<br>f <sub>bx</sub> | Ratio<br>f <sub>by</sub> | Ratio<br>f <sub>v</sub> | Ratio<br>f <sub>vt</sub> | Comb.<br>Stress | Allow.<br>Stress | Criteria  |
|                | ft                           | $P_a$      | F <sub>bx</sub>          | $F_{by}$                 | $F_{v}$                 | $F_{vt}$                 | Ratio           | Ratio            |           |
| L1             | 165.5 -<br>136.83 (1)        | 0.009      | 0.789                    | 0.000                    | 0.076                   | 0.000                    | 0.799           | 1.333            | H1-3+VT 🖊 |
| L2             | 136.83 - 95.5<br>(2)         | 0.008      | 0.967                    | 0.000                    | 0.041                   | 0.000                    | 0.976           | 1.333            | H1-3+VT 🖊 |
| L3             | 95.5 - 47 (3)                | 0.010      | 0.935                    | 0.000                    | 0.031                   | 0.000                    | 0.945           | 1.333            | H1-3+VT 🖊 |
| L4             | 47 - 0 (4)                   | 0.011      | 0.971                    | 0.000                    | 0.030                   | 0.000                    | 0.983           | 1.333            | H1-3+VT 🖊 |

|                | Section Capacity Table |                   |                        |                     |        |                            |               |              |
|----------------|------------------------|-------------------|------------------------|---------------------|--------|----------------------------|---------------|--------------|
| Section<br>No. | Elevation<br>ft        | Component<br>Type | Size                   | Critical<br>Element | P<br>K | SF*P <sub>allow</sub><br>K | %<br>Capacity | Pass<br>Fail |
| L1             | 165.5 - 136.83         | Pole              | TP24.279x17x0.1875     | 1                   | -4.75  | 720.46                     | 60.0          | Pass         |
| L2             | 136.83 - 95.5          | Pole              | TP34.4x23.0992x0.3125  | 2                   | -10.46 | 1698.78                    | 73.2          | Pass         |
| L3             | 95.5 - 47              | Pole              | TP46.06x32.6322x0.375  | 3                   | -19.84 | 2732.81                    | 70.9          | Pass         |
| L4             | 47 - 0                 | Pole              | TP57.275x43.7899x0.375 | 4                   | -25.00 | 2975.59                    | 73.7          | Pass         |
|                |                        |                   |                        |                     |        |                            | Summary       |              |
|                |                        |                   |                        |                     |        | Pole (L4)                  | 73.7          | Pass         |
|                |                        |                   |                        |                     |        | RATING =                   | 73.7          | Pass         |

# APPENDIX B BASE LEVEL DRAWING



# APPENDIX C ADDITIONAL CALCULATIONS



#### **DESIGNED APPURTENANCE LOADING**

| TYPE                                     | ELEVATION | TYPE                          | ELEVATION |
|------------------------------------------|-----------|-------------------------------|-----------|
| T-Arm Mount [TA 602-3]                   | 164       | (2) SBNHH-1D65B w/ Mount Pipe | 153       |
| SBNH-1D65C-SR w/ Mount Pipe              | 164       | (2) SBNHH-1D65B w/ Mount Pipe | 153       |
| SBNH-1D65C-SR w/ Mount Pipe              | 164       | RRH2X60-PCS                   | 153       |
| SBNH-1D65C-SR w/ Mount Pipe              | 164       | RRH2X60-PCS                   | 153       |
| ERICSSON AIR 21 B4A B2P w/ Mount         | 164       | RRH2X60-PCS                   | 153       |
| Pipe                                     |           | RRH2X60-AWS                   | 153       |
| ERICSSON AIR 21 B4A B2P w/ Mount         | 164       | RRH2X60-AWS                   | 153       |
| Pipe                                     |           | RRH2X60-AWS                   | 153       |
| ERICSSON AIR 21 B4A B2P w/ Mount<br>Pipe | 164       | RRH2x60-700                   | 153       |
| KRY 112 144/1                            | 164       | RRH2x60-700                   | 153       |
| KRY 112 144/1                            | 164       | RRH2x60-700                   | 153       |
| KRY 112 144/1                            | 164       | (2) DB-T1-6Z-8AB-0Z           | 153       |
| RRUS 11 B12                              | 164       | Pipe Mount [PM 601-3]         | 145       |
| RRUS 11 B12                              | 164       | 742 213 w/ Mount Pipe         | 145       |
| RRUS 11 B12                              | 164       | 742 213 w/ Mount Pipe         | 145       |
| RRUS 11 B2                               | 164       | 742 213 w/ Mount Pipe         | 145       |
| RRUS 11 B2                               | 164       | Side Arm Mount [SO 104-3]     | 136       |
| RRUS 11 B2                               | 164       | Pipe Mount [PM 601-3]         | 136       |
| Platform Mount [LP 304-1]                | 153       | 840 10054 w/ Mount Pipe       | 136       |
|                                          |           | WIMAX DAP HEAD                | 136       |
| (2) LPA-80080/6CF w/ Mount Pipe          | 153       | HORIZON COMPACT               | 136       |
| (2) LPA-80080/6CF w/ Mount Pipe          | 153       | HORIZON COMPACT               | 136       |
| (2) LPA-80080/6CF w/ Mount Pipe          | 153       | A-ANT-23G-1-C                 | 136       |
| (2) SBNHH-1D65B w/ Mount Pipe            | 153       | A-ANT-18G-2-C                 | 136       |
|                                          |           | A-ANT-100-2-0                 | 100       |

#### **MATERIAL STRENGTH**

| GRADE   | Fy     | Fu     | GRADE | Fy | Fu |
|---------|--------|--------|-------|----|----|
| Δ572-65 | 65 ksi | 8∩ ksi |       |    |    |

#### **TOWER DESIGN NOTES**

- Tower is located in Hartford County, Connecticut.
   Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
   Tower is also designed for a 38 mph basic wind with 0.75 in ice.
   Deflections are based upon a 50 mph wind.

- 5. TOWER RATING: 73.7%



| <sup>Job:</sup> 166-ft Monop | ole / CT SUFFIELD 3 | CAC 80148   |
|------------------------------|---------------------|-------------|
| Project: PJF 37516-06        | 32 / BU 801487      |             |
|                              |                     | App'd:      |
| Code: TIA/EIA-222-F          | Date: 03/03/16      | Scale: NTS  |
| Path:                        |                     | Dwg No. ⊏_1 |

## Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

## TIA Rev F

Site Data

BU#: 801487

Site Name: CT SUFFIELD 3 CAC 8014

App #:

Pole Manufacturer: Other

| Anchor Rod Data |        |     |  |  |  |  |
|-----------------|--------|-----|--|--|--|--|
| Qty:            | 16     |     |  |  |  |  |
| Diam:           | 2.25   | in  |  |  |  |  |
| Rod Material:   | A615-J |     |  |  |  |  |
| Strength (Fu):  | 100    | ksi |  |  |  |  |
| Yield (Fy):     | 75     | ksi |  |  |  |  |
| Bolt Circle:    | 64     | in  |  |  |  |  |

| Plate Data        |       |     |  |  |  |  |
|-------------------|-------|-----|--|--|--|--|
| Diam:             | 70    | in  |  |  |  |  |
| Thick:            | 2.75  | in  |  |  |  |  |
| Grade:            | 60    | ksi |  |  |  |  |
| Single-Rod B-eff: | 11.36 | in  |  |  |  |  |

| Stiffener Da    | nta (Welding a | at both sides) |
|-----------------|----------------|----------------|
| Config:         |                | *              |
| Weld Type:      |                |                |
| Groove Depth:   |                | in **          |
| Groove Angle:   |                | degrees        |
| Fillet H. Weld: |                | < Disregard    |
| Fillet V. Weld: |                | in             |
| Width:          |                | in             |
| Height:         |                | in             |
| Thick:          |                | in             |
| Notch:          |                | in             |
| Grade:          |                | ksi            |
| Weld str.:      |                | ksi            |

| Pole Data          |        |              |  |  |  |
|--------------------|--------|--------------|--|--|--|
| Diam:              | 57.275 | in           |  |  |  |
| Thick:             | 0.375  | in           |  |  |  |
| Grade:             | 65     | ksi          |  |  |  |
| # of Sides:        | 18     | "0" IF Round |  |  |  |
| Fu                 | 80     | ksi          |  |  |  |
| Reinf. Fillet Weld | 0      | "0" if None  |  |  |  |

| Stress Increase Factor |       |  |  |  |
|------------------------|-------|--|--|--|
| ASIF:                  | 1.333 |  |  |  |

| Reactions |      |         |  |  |
|-----------|------|---------|--|--|
| Moment:   | 2976 | ft-kips |  |  |
| Axial:    | 34   | kips    |  |  |
| Shear:    | 25   | kips    |  |  |

If No stiffeners, Criteria: AISC ASD <-Only Applicable to Unstiffened Cases

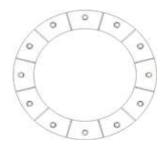
**Anchor Rod Results** 

Maximum Rod Tension: 137.4 Kips
Allowable Tension: 195.0 Kips
Anchor Rod Stress Ratio: 70.5% Pass

| Rigid        |  |  |
|--------------|--|--|
| Service, ASD |  |  |
| Fty*ASIF     |  |  |
| Fty*ASIF     |  |  |

Base Plate ResultsFlexural CheckBase Plate Stress:21.2 ksiAllowable Plate Stress:60.0 ksiBase Plate Stress Ratio:35.4% Pass

| Rigid        |  |  |
|--------------|--|--|
| Service ASD  |  |  |
| 0.75*Fy*ASIF |  |  |
| Y.L. Length: |  |  |
| 28.56        |  |  |


n/a

Stiffener Results

Horizontal Weld: n/a
Vertical Weld: n/a
Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a
Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a
Plate Comp. (AISC Bracket): n/a

**Pole Results** 

Pole Punching Shear Check: n/a





<sup>\*</sup> 0 = none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

<sup>\*\*</sup> Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

#### Foundation Loads:

Pole weight or tower leg compression = 34 (kips)

Horizontal load at top of pier = 25 (kips)

Overturning moment at top of pier = 2976 (ft-kips)

#### Design criteria:

Safety factor against overturning = \_\_\_\_1.5

#### Soil Properties:

Soil density = 120 (pcf)
Allowable soil bearing = 5 (ksf)
Depth to water table = 19 (ft)

#### Dimensions:

Pier shape (round or square) ("R" or "S") Pier width = 7.5 (ft) 0.5 (ft) Pier height above grade = depth to bottom of footing = 6.5 (ft) Footing thickness = 2.5 (ft) Footing width = 30 (ft) Footing length = (ft) 30

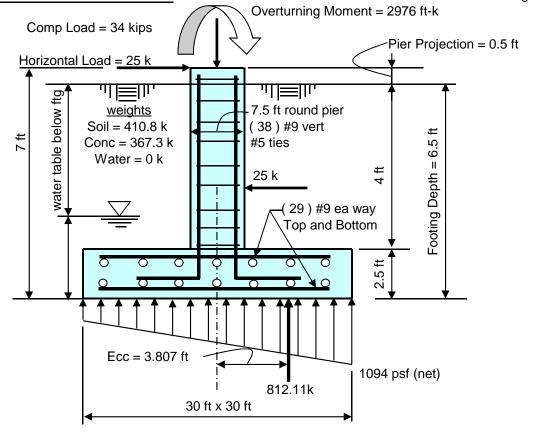
#### Concrete:

Concrete strength =  $\frac{3}{60}$  (ksi) Rebar strength =  $\frac{60}{1.3}$  (ksi)

## Reinforcing Steel:

minimum cover over rebar = 2.5 inches
size of pad rebar = 49 bar
quantity of pad rebar = 29 (ea direction)

## Reinforcing Steel:


size of vert rebar in pier=

vertical rebar quantity = 38

size of pier ties = #5 bar

minimum cover over rebar = 3 inches

Total volume of concrete = 90.7 cu yd



| Summary of analysis results                                                                                                                                              |                                                                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| Maximum Net Soil Bearing = 1.094 ksf<br>Allowable Net Soil Bearing = 5 ksf<br>Soil Bearing Stress Ratio = 0.22 Okay                                                      | Ult Bending Shear Capacity = 110 psi Ult Bending Shear Stress = 26 psi Bending Shear Stress Ratio = 0.24 Okay |  |  |
| Ftg Overturning Resistance = 12182 ft-kips Overturning Moment = 3092 ft-kips Required Overturning Safety Factor = 1.5 Overturning Safety Factor = 3.94 Ratio = 0.38 Okay | Pad Bending Moment Capacity= 3114 ft-k Pad Bending Moment = 1389 ft-k Bending Moment Stress Ratio = 0.45 OK   |  |  |



# RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

# T-Mobile Existing Facility

Site ID: CTHA160A

Suffield/Stony Brook 848 East Street South Suffield, CT 06078

March 11, 2016

EBI Project Number: 6216001504

| Site Compliance Summary |  |  |  |  |
|-------------------------|--|--|--|--|
| COMPLIANT               |  |  |  |  |
| 5.27 %                  |  |  |  |  |
|                         |  |  |  |  |



March 11, 2016

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CTHA160A – Suffield/Stony Brook

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **848 East Street South**, **Suffield**, **CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm<sup>2</sup>). The number of  $\mu$ W/cm<sup>2</sup> calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm<sup>2</sup>). The general population exposure limit for the 700 MHz Band is 467  $\mu$ W/cm<sup>2</sup>, and the general population exposure limit for the PCS and AWS bands is 1000  $\mu$ W/cm<sup>2</sup>. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.



Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

## **CALCULATIONS**

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **848 East Street South, Suffield, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
- 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
- 5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.



- 6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope SBNHH-1D65C-SR for 2100 MHz (AWS) and 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of 15.9 dBd at its main lobe at both 1900 MHz and 2100 MHz. The Commscope SBNHH-1D65C-SR has a maximum gain of 15.3 dBd at its main lobe at 2100 MHz and has a maximum gain of 13.6 dBd at its main lobe at 700 MHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antenna mounting height centerlines of the proposed antennas are **161 & 163 feet** above ground level (AGL).
- 9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.



## **T-Mobile Site Inventory and Power Data**

| Sector:            | A                                 | Sector:            | В                                 | Sector:            | C                                 |
|--------------------|-----------------------------------|--------------------|-----------------------------------|--------------------|-----------------------------------|
| Antenna #:         | 1                                 | Antenna #:         | 1                                 | Antenna #:         | 1                                 |
| Make / Model:      | Ericsson AIR21<br>B4A/B2P         | Make / Model:      | Ericsson AIR21<br>B4A/B2P         | Make / Model:      | Ericsson AIR21<br>B4A/B2P         |
| Gain:              | 15.9 dBd                          | Gain:              | 15.9 dBd                          | Gain:              | 15.9 dBd                          |
| Height (AGL):      | 163                               | Height (AGL):      | 163                               | Height (AGL):      | 163                               |
| Frequency Bands    | 1900 MHz(PCS) /<br>2100 MHz (AWS) | Frequency Bands    | 1900 MHz(PCS) /<br>2100 MHz (AWS) | Frequency Bands    | 1900 MHz(PCS) /<br>2100 MHz (AWS) |
| Channel Count      | 4                                 | Channel Count      | 4                                 | Channel Count      | 4                                 |
| Total TX Power(W): | 120                               | Total TX Power(W): | 120                               | Total TX Power(W): | 120                               |
| ERP (W):           | 4,668.54                          | ERP (W):           | 4,668.54                          | ERP (W):           | 4,668.54                          |
| Antenna A1 MPE%    | 0.68                              | Antenna B1 MPE%    | 0.68                              | Antenna C1 MPE%    | 0.68                              |
| Antenna #:         | 2                                 | Antenna #:         | 2                                 | Antenna #:         | 2                                 |
| Make / Model:      | Commscope<br>SBNHH-1D65C-SR       | Make / Model:      | Commscope<br>SBNHH-1D65C-SR       | Make / Model:      | Commscope<br>SBNHH-1D65C-SR       |
| Gain:              | 15.3 / 13.6 dBd                   | Gain:              | 15.3 / 13.6 dBd                   | Gain:              | 15.3 / 13.6 dBd                   |
| Height (AGL):      | 161                               | Height (AGL):      | 161                               | Height (AGL):      | 161                               |
| Frequency Bands    | 2100 MHz (AWS) /<br>700 MHz       | Frequency Bands    | 2100 MHz (AWS) /<br>700 MHz       | Frequency Bands    | 2100 MHz (AWS) /<br>700 MHz       |
| Channel Count      | 3                                 | Channel Count      | 3                                 | Channel Count      | 3                                 |
| Total TX Power(W): | 150                               | Total TX Power(W): | 150                               | Total TX Power(W): | 150                               |
| ERP (W):           | 4,753.39                          | ERP (W):           | 4,753.39                          | ERP (W):           | 4,753.39                          |
| Antenna A2 MPE%    | 0.83                              | Antenna B2 MPE%    | 0.83                              | Antenna C2 MPE%    | 0.83                              |

| Site Composite MPE% |        |  |  |  |
|---------------------|--------|--|--|--|
| Carrier MPE%        |        |  |  |  |
| T-Mobile            | 1.51   |  |  |  |
| Clearwire           | 0.11 % |  |  |  |
| MetroPCS            | 0.63 % |  |  |  |
| Verizon Wireless    | 3.02 % |  |  |  |
| Site Total MPE %:   | 5.27 % |  |  |  |

| T-Mobile Sector 1 Total: | 1.51 % |
|--------------------------|--------|
| T-Mobile Sector 2 Total: | 1.51 % |
| T-Mobile Sector 3 Total: | 1.51 % |
|                          |        |
| Site Total:              | 5.27 % |

| T-Mobile _per sector             | #<br>Channels | Watts ERP<br>(Per Channel) | Height<br>(feet) | Total Power Density (µW/cm²) | Frequency<br>(MHz) | Allowable<br>MPE<br>(µW/cm²) | Calculated %<br>MPE |
|----------------------------------|---------------|----------------------------|------------------|------------------------------|--------------------|------------------------------|---------------------|
| T-Mobile 1900 MHz (PCS) GSM/UMTS | 2             | 1167.14                    | 163              | 3.40                         | 1900               | 1000                         | 0.34 %              |
| T-Mobile 2100 MHz (AWS) UMTS     | 2             | 1167.14                    | 163              | 3.40                         | 2100               | 1000                         | 0.34 %              |
| T-Mobile 2100 MHz (AWS) LTE      | 2             | 2033.07                    | 161              | 6.08                         | 2100               | 1000                         | 0.61 %              |
| T-Mobile 700 MHz LTE             | 1             | 687.26                     | 161              | 1.03                         | 700                | 467                          | 0.22 %              |
|                                  |               |                            |                  |                              |                    | Total:                       | 1.51%               |

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311



## **Summary**

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

| T-Mobile Sector         | Power Density Value (%) |
|-------------------------|-------------------------|
| Sector 1:               | 1.51 %                  |
| Sector 2:               | 1.51 %                  |
| Sector 3:               | 1.51 %                  |
| T-Mobile Total:         | 1.51 %                  |
|                         |                         |
| Site Total:             | 5.27 %                  |
|                         |                         |
| Site Compliance Status: | COMPLIANT               |

The anticipated composite MPE value for this site assuming all carriers present is **5.27%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

**EBI Consulting** 

21 B Street

Burlington, MA 01803