JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport WRITER'S DIRECT DIAL: (203) 337-4157 E-Mail Address: jkohler@cohenandwolf.com

September 18, 2014

Attorney Melanie Bachman
Acting Executive Director Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification
 Town of Stratford/T-Mobile co-location
 T-Mobile Site ID CT11872D
 900 Longbrook Road, Stratford CT

Dear Attorney Bachman:

This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, the Town of Stratford owns the existing telecommunications tower and related facility on the Stratford Police Department building, 900 Longbrook Road, Stratford Connecticut (latitude 41.20177, longitude -73.12885). T-Mobile intends to add three antennas and related equipment at this existing rooftop facility in Stratford ("Stratford Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the Mayor, John A. Harkins. The City of Stratford also owns the property.

The existing Stratford Facility consists of a rooftop mounted 50 foot guyed tower and associated compound area on the top of the Police Department building. T-Mobile plans to add three antennas and three remote radio units (RRUS) mounted on the rooftop facility at a centerline of 47 feet (79 feet AGL). (See the plans revised to September 15, 2014 attached hereto as Exhibit A). The existing rooftop facility is structurally capable of supporting TMobile's proposed use, as indicated in the structural certification dated September 12, 2014 and attached hereto as Exhibit B.

September 18, 2014
Site ID CT11872D
Page 2

The planned modifications to the Stratford Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's proposed antennas and equipment will be installed at the 47 foot level. The enclosed plans confirm that the proposed modification will not increase the height of the rooftop facility.
2. The installation of the T-Mobile replacement equipment in the existing rooftop compound area, as reflected on Sheet A-1 of the attached plans, will not require an extension of the site boundaries. T-Mobile's proposed equipment will be located entirely within the existing compound area.
3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated September 16, 2014 T-Mobile's operations would add 22.65% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 39.22% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement antennas and equipment at the Strafford Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

Sincerely,

cc: Mayor John A. Harkins, Town of Stratford
Elizabeth Jamieson, Transcend Wireless

EXHIBIT A

STRUCTURAL ANALYSIS REPORT

For
CT11872D
CT872/STRATFORD PD_GT
900 LONGBROOK ROAD STRATFORD, CT 06614
Antennas Mounted to the Tower

Prepared for:

Transcend Wireless

Dated: September 12, 2014

1600 Osgood Street Bldg. 20N Suite 3090
North Andover, MA 01845
(P) 978.557.5553 (F) 978.336.5586
www.hudsondesigngroupllc.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by T-Mobile to conduct a structural evaluation of the 50' guyed tower supporting the existing and proposed TMobile's antennas located at elevation 79' above ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of T-Mobile's existing and proposed antennas listed below.

Record drawings of the existing tower prepared by Radian Communication Services, dated June 21, 2005, were available for our use. The previous structural analysis report prepared by Tectonic Consultants, dated June 25, 2012, was also available and obtained for our use.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing tower is in conformance with the ANSI/TIA-222-F Standard for the loading considered under the criteria listed in this report. The tower structure is rated at $\mathbf{8 7 . 6 \%}$ - (Guys at EL.69.8' Controlling).

APPURTANENCES CONFIGURATION:

Tenant	Appurtenances	Elev.	Mount
	20^{\prime} Omni	92^{\prime}	T-Frame
	16^{\prime} Omni	90^{\prime}	T-Frame
	6^{\prime} Dipole	80^{\prime}	T-Frame
T-Mobile	(6) AlR 21 Antennas	79^{\prime}	T-Frame
T-Mobile	(3) TMA	79^{\prime}	T-Frame
T-Mobile	(3) LNX-6515DS-VTM Antennas	79^{\prime}	T-Frame
T-Mobile	(3) RRUS-11	79^{\prime}	T-Frame
	(2) 3' Yagi	74^{\prime}	Tower Leg
	3^{\prime} Yagi	68^{\prime}	Tower Leg
	Ground Plane Omni	64^{\prime}	Side Mount Standoff
	3^{\prime} Yagi	62^{\prime}	Tower Leg

*Proposed T-Mobile Appurtenances shown in Bold.

T-MOBILE EXISTING/PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
T-Mobile	(24) $7 / 8^{\prime \prime}$ Cables	$\mathbf{7 9}$	Tower Face
T-Mobile	(1) $75 / 8^{\prime \prime}$ Cable	$\mathbf{7 9}$	Tower Face

*Proposed T-Mobile Appurtenances shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Notes/Comments
Legs	26.2%	$67-82$	PASS	
Diagonals	42.4%	$52-67$	PASS	
Top Girts	16.2%	$52-67$	PASS	
Bottom Girts	17.8%	$32-37$	PASS	
Mid Girts	0.5%	$32-37$	PASS	
Guy A	87.6%	69.8	PASS	Controlling
Guy B	82.2%	69.8	PASS	
Guy C	83.0%	69.8	PASS	
Torque Arm	40.9%	69.8	PASS	

DESIGN CRITERIA:

1. EIA/TIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: Fairfield Wind Load: 90 mph (fastest mile)

110 mph (3 second gust)
Nominal lce Thickness: 0.5 inch
2. Approximate height above grade to proposed antennas: 79'
Calculations and referenced documents are attached

ASSUMPTIONS:

1. The tower geometry, member sizes and material strength are as indicated in the record drawings of the existing tower prepared by Radian Communication Services, dated June 21, 2005.
2. The appurtenances configuration is as stated in the previous structural analysis report prepared by Tectonic Consultants, dated June 25, 2012. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
3. The tower and supports are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
4. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
5. All prior structural modification, if any, are assumed to be as per the data supplied (if available), and installed properly.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas and RRHs be mounted on the existing Tframe supported by the tower.

Reference HDG's Latest Construction Drawings for all component and connection requirements (attached).

ONGOING AND PERIODIC INSPTECTION AND MAINTENANCE:

After the Contractor has successfully completed the installation and the work has been accepted, the Owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

Photo 1: Photo illustrating the Tower with Appurtenances shown.

CALCULATIONS

32.0 ft

52.0 f
37.0 ft

TYPE	ELEVATION	TYPE	ELEVATION
Omni $21 / 2^{\prime \prime} \times 20^{\prime}$	82	Andrew LNX-6515DS-VTM wfmount	79
Omni $21 / 22^{\prime \prime} 1^{\prime} 6^{\prime}$	82	pipe	
6' Dipole	80	Ericsson RRUS-11	79
SM 409-3 (T-MOBILE- existing)	79	Ericsson RRUS-11	79
(2) Air 21 antenna wimount pipe	79	Ericsson RRUS-11	79
(2) Air 21 antenna wimount pipe	79	3' Yagi antenna	74
(2) Air 21 antenna w/mount pipe	79	3' Yagi antenna	74
Style 3 TMA	79	3' Yagi antenna	68
Style 3 TMA	79	3' Yagi antenna	62
Style 3 TMA	79	Pirod 6' Side Mount Standoff (1)	61
Andrew LNX-6515DS-VTM w/mount pipe (T-MOBILE - proposed)	79	Ground Plane Omni	61
Andrew LNX-6515DS-VTM w/mount pipe	79		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-42	42 ksi	60 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.
. Tower designed for a 90 mph basic wind in accordance with the TIA/EIA-222-F Standard.
2. Tower is also designed for a 78 mph basic wind with 0.50 in ice.
3. Deflections are based upon a 50 mph wind.
4. TOWER RATING: 87.6%

Hudson Design Group, LLC
1600 Osgood Street, Building 20 North, Suite 3090
Client: T-MOBILE

ThXTOWEF	Job	PT11872D	Stratford, CT

Tower Input Data

The main tower is a $3 x$ guyed tower with an overall height of 82.00 ft above the ground line.
The base of the tower is set at an elevation of 32.00 ft above the ground line.
The face width of the tower is 3.42 ft at the top and tapered at the base.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Fairfield County, Connecticut.
Basic wind speed of 90 mph .
Nominal ice thickness of 0.5000 in .
Ice density of 56 pcf .
A wind speed of 78 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
Pressures are calculated at each section.
Safety factor used in guy design is 2 .
Stress ratio used in tower member design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	$f t$			ft		$f t$
T1	82.00-67.00			3.42	1	15.00
T2	67.00-52.00			3.42	1	15.00
T3	52.00-37.00			3.42	1	15.00
T4	37.00-32.00			3.42	1	5.00

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft			Panels		in

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg Type	Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 82.00-67.00	Pipe	P2.5×.276	A572-42	Pipe	P1.5x.120	A36

tnxTower	Job	CT11872D	Stratford, CT	$\begin{aligned} & \text { Page } \\ & 2 \text { of } 9 \end{aligned}$
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Project 50 ft Guyed Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 18:24:34 09/11/14 } \end{array}$
	Client		BILE	Designed by kw

Tower Elevation $f t$	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	Diagonal Type	$\begin{aligned} & \text { Diagonal } \\ & \text { Size } \end{aligned}$	Diagonal Grade
			(42 ksi)			(36 ksi)
T2 67.00-52.00	Pipe	P2.5x. 276	$\begin{aligned} & \text { A572-42 } \\ & (42 \mathrm{ksi}) \end{aligned}$	Pipe	P1.5x. 120	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T3 52.00-37.00	Pipe	P2.5x. 276	$\begin{aligned} & \text { AS72-42 } \\ & (42 \mathrm{ksi}) \end{aligned}$	Pipe	P1.5x. 120	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 37.00-32.00	Pipe	P2.5x. 276	$\begin{gathered} \text { A572-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	Pipe		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Top Girt Type	$\begin{gathered} \text { Top Girt } \\ \text { Size } \end{gathered}$	Top Girt Grade	$\begin{aligned} & \text { Bottom Girt } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \text { Bottom Girt } \\ \text { Size } \end{gathered}$	Bottom Girt Grade
T1 82.00-67.00	Pipe	P1.5x. 120	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	P1.5x. 120	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T2 67.00-52.00	Pipe	P1.5x. 120	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	P1.5x. 120	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T3 52.00-37.00	Pipe	P1.5x. 120	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	P1.5x, 120	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 37.00-32.00	Equal Angle	L3x3x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L3 $3 \times 3 \times 16$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	No. of Mid Girts	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
T4 37.00-32.00	2	Equal Angle	L3x3x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Guy Data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Guy Elevation \\
\(f t\)
\end{tabular} \& Guy Grade \& \& Guy Size \& Initial Tension
\[
l b
\] \& \% \& Guy Modulus
\[
k s i
\] \& \begin{tabular}{l}
Guy Weight \\
plf
\end{tabular} \& \(L_{u}\)

$f t$ \& | Anchor Radius |
| :--- |
| ft | \& Anchor Azimuth Adj. \& | Anchor Elevation |
| :--- |
| $f t$ | \& End Fitting Efficiency \%

\hline \multirow[t]{3}{*}{69.8194} \& \multirow[t]{3}{*}{EHS} \& A \& 7/16 \& 2080.00 \& 10\% \& 21000 \& 0.399 \& 77.06 \& 60.75 \& 0.0000 \& 20.00 \& 100\%

\hline \& \& B \& 7/16 \& 2080.00 \& 10\% \& 21000 \& 0,399 \& 64.70 \& 54.42 \& 0.0000 \& 32.00 \& 100\%

\hline \& \& C \& 7/16 \& 2080.00 \& 10\% \& 21000 \& 0.399 \& 64.90 \& 54.67 \& 0.0000 \& 32.00 \& 100\%

\hline
\end{tabular}

Guy Data(cont'd)							
Guy	Mount	Torque-Arm	Torque-Arm	Torque-Arm	Torque-Arm	Torque-Arm	Torque-Arm Size
Elevation $f t$	Type	Spread	Leg Angle	Style	Grade	Type	
		f	-				

InxTower	Job	CT11872D	Stratford, CT	$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \text { of } 9 \end{aligned}$
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	50 ft Guyed Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 18:24:34 09/11/14 } \end{array}$
	Client		OBILE	Designed by kw

Guy Elevation ft	$\begin{aligned} & \text { Mount } \\ & \text { Type } \end{aligned}$	Torque-Arm Spread	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
69.8194	Torque Arm	6.83	0.0000	Channel	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Channel	C12×20.7

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \\ \hline \end{gathered}$	Allow Shield	Component Type	Placement \qquad $f t$	Total Number	Number Per Row	Clear Spacing in	Width or Diameter \qquad in	Perimeter in	Weight plf
7/8	A	Yes	Ar (CfAe)	61.00-32.00	1	1	1.1100	1.1100		0.54
7/8	A	Yes	Ar (CfAe)	62.00-32.00	1	1	1.1100	1.1100		0.54
7/8	A	Yes	Ar (CfAe)	68.00-32.00	1	1	1.1100	1.1100		0.54
7/8	A	Yes	Ar (CfAe)	74.00-32.00	1	1	1.1100	1.1100		0.54
7/8	A	Yes	Ar (CfAe)	74.00-32.00	1	1	1.1100	1.1100		0.54
7/8	A	Yes	Ar (CfAe)	79.00-32.00	24	12	1.1100	1.1100		0.54
$\begin{aligned} & \text { (T-MOBILE - existing) } \\ & 15 / 8 \text { Fiber Cable } \\ & \text { (T-MOBILE - existing) } \end{aligned}$	A	Yes	Ar (CfAe)	79.00-32.00	1	1	1.9800	1.9800		1.04
7/8	A	Yes	Ar (CfAe)	82.00-32.00	2	2	1.1100	1.1100		0.54
Safety Line 3/8	A	Yes	Ar (CfAe)	82.00-32.00	1	1	0.3750	0.3750		0.22

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\) Side \(f t^{2}\) \& Weight

$l b$

\hline Omni $21 / 2^{\prime \prime} \times 20^{\prime}$ \& B \& From Leg \& \[
$$
\begin{gathered}
4.00 \\
0.00 \\
10.00
\end{gathered}
$$

\] \& 0.0000 \& 82.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{1} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.00 \\
& 7.03
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.00 \\
& 7.03
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 40.00 \\
& 76.96
\end{aligned}
$$
\]

\hline Omni $21 / 2^{\prime \prime} \times 16^{\prime}$ \& B \& From Leg \& \[
$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 8.00
\end{aligned}
$$

\] \& 0.0000 \& 82.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.00 \\
& 5.63
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.00 \\
& 5.63
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 35.00 \\
& 64.63
\end{aligned}
$$
\]

\hline $6{ }^{6}$ Dipole \& A \& From Leg \& \[
$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 80.00 \& No Ice $1 / 2^{\text {" }}$ Ice \& \[

$$
\begin{aligned}
& 0.90 \\
& 1.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.90 \\
& 1.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.00 \\
& 22.49
\end{aligned}
$$
\]

\hline ************ \& \& \& \& \& \& \& \& \&

\hline $$
\begin{gathered}
\text { SM 409-3 } \\
\text { (T-MOBILE - existing) }
\end{gathered}
$$ \& A \& None \& \& 0.0000 \& 79.00 \& No Ice

$$
1 / 2^{11} \text { Ice }
$$ \& \& \[

$$
\begin{aligned}
& 22.47 \\
& 31.99
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1035.00 \\
& 1500.00
\end{aligned}
$$
\]

\hline (2) Air 21 antenna w/mount pipe \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 79.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.74 \\
& 7.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.60 \\
& 6.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 101.90 \\
& 158.52
\end{aligned}
$$
\]

\hline (2) Air 21 antenna w/mount pipe \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 79.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.74 \\
& 7.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.60 \\
& 6.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 101.90 \\
& 158.52
\end{aligned}
$$
\]

\hline (2) Air 21 antenna w/mount pipe \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 79.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 6.74 \\
& 7.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.60 \\
& 6.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 101.90 \\
& 158.52
\end{aligned}
$$
\]

\hline Style 3 TMA \& A \& From Leg \& \[
$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 79.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 0.78 \\
& 0.90
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.21 \\
& 0.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.30 \\
& 15.86
\end{aligned}
$$
\]

\hline
\end{tabular}

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CT11872D	Stratford, CT	$\begin{aligned} & \text { Page } 4 \text { of } 9 \end{aligned}$
	Project	50 ft Gu	ed Tower	$\begin{array}{\|l\|} \text { Date } \\ \text { 18:24:34 09/11/14 } \end{array}$
	Client		BILE	Designed by kw

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$ f	Azimuth Adjustment -	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A A}$ Side $f t^{2}$	Weight
Style 3 TMA	B	From Leg	4.00	0.0000	79.00	No Ice	0.78	0.21	11.30
			0.00 0.00			$1 / 2^{\prime \prime}$ Ice	0.90	0.30	15.86
Style 3 TMA	C	From Leg	4.00	0.0000	79.00	No Ice	0.78	0.21	11.30
			0.00			$1 / 2^{\text {1 }}$ Ice	0.90	0.30	15.86
			0.00						

Andrew LNX-6515DS-VTM w/mount pipe (T-MOBLLE - proposed)	A	From Leg	4.00	0.0000	79.00	No Ice	11.72	10.28	102.41
			0,00			1/2" Ice	12.44	11.81	196.22
			0.00						
Andrew LNX-6515DS-VTM w/mount pipe	B	From Leg	4.00	0.0000	79.00	No Ice	11.72	10.28	102.41
			0.00			1/2" Ice	12.44	11.81	196.22
			0.00						
Andrew LNX-6515DS-VTM w/mount pipe	C	From Leg	4.00	0.0000	79.00	No Ice	11.72	10.28	102.41
			0.00			1/2' Ice	12.44	11.81	196.22
			0.00						
Ericsson RRUS-11	A	From Leg	3.00	0.0000	79.00	No Ice	3.26	1.38	50.70
			0.00			$1 / 2^{\prime \prime}$ Ice	3.50	1.56	71.57
			0.00						
Ericsson RRUS-11	B	From Leg	3.00	0.0000	79.00	No Ice	3.26	1.38	50.70
			0.00			1/2" Ice	3.50	1.56	71.57
			0.00						
Ericsson RRUS-11	C	From Leg	3.00	0.0000	79.00	No Ice	3.26	1.38	50.70
			0.00			$1 / 2^{\prime \prime}$ Ice	3.50	1.56	71.57
			0.00						

3' Yagi antenna	A	From Leg	2.00	0.0000	74.00	No Ice	0.70	0.35	10.00
			0.00			1/2" Ice	0.95	0.48	36.35
			0.00						
$3{ }^{1}$ Yagi antenna	B	From Leg	2.00	0.0000	74.00	No Ice	0.70	0.35	10.00
			0.00			$1 / 2^{\prime \prime}$ Ice	0.95	0.48	36.35
			0.00						
3' Yagi antenna	C	From Leg	2.00	0.0000	68.00	No Ice	0.70	0.35	10.00
			0.00			$1 / 2^{\prime \prime}$ Ice	0.95	0.48	36.35
			0.00						
3' Yagi antenna	C	From Leg	2.00	0.0000	62.00	No Ice	0.70	0.35	10.00
			0.00			$1 / 2^{\prime \prime}$ Ice	0.95	0.48	36.35
			0.00						
Pirod 6' Side Mount Standoff (1)	B	From Leg	3.00	0.0000	61.00	No Ice	4.97	4.97	70.00
			0.00			$1 / 2^{\prime \prime}$ Ice	6.12	6.12	130.00
			0.00						
Ground Plane Omni	B	From Leg	6.00	0.0000	61.00	No Ice	1.90	1.90	25.00
			0.00			$1 / 2^{\prime \prime}$ Ice	2.70	2.70	39.00
			3.00						

Load Combinations

Comb. No.	Description	
1	Dead Only	
2	Dead+Wind 0 deg - No Ice+Guy	
3	Dead+Wind 30 deg - No Ie+Guy	
4	Dead+Wind 60 deg - No Iee+Guy	

tnxTower Hudson Design Group, LLC	Job	CT11872D	Stratford, CT	$\text { Page } 5 \text { of } 9$
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090	50 ft Guyed Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 18:24:34 09/11/14 } \end{array}$
$\begin{gathered} \text { North Andover, MA } 01845 \\ \text { Phone: (978) 557-5553 } \\ \text { FAX: (978) 226-5586 } \end{gathered}$	Client	T-MOBILE		Designed by kw

Comb. No.		Description
5	Dead+Wind 90 deg - No Ice+Guy	
6	Dead+Wind 120 deg - No Ice+Guy	
7	Dead+Wind 150 deg - No Ice+Guy	
8	Dead+Wind 180 deg - No Ice+Guy	
9	Dead+Wind 210 deg - No Ice+Guy	
10	Dead+Wind 240 deg - No Ice+Guy	
11	Dead+Wind 270 deg - No Ice+Guy	
12	Dead+Wind 300 deg - No Ice + Guy	
13	Dead+Wind 330 deg - No Ice+Guy	
14	Dead+Ice+Temp+Guy	
15	Dead + Wind 0 deg + Ice + Temp+Guy	
16	Dead + Wind 30 deg + Ice + Temp+Guy	
17	Dead+Wind 60 deg+Ice + Temp+Guy	
18	Dead+Wind 90 deg+Ice + Temp+Guy	
19	Dead+Wind 120 deg+Ice+Temp+Guy	
20	Dead+Wind 150 deg+Ice+Temp+Guy	
21	Dead+Wind 180 deg+Ice+Temp+Guy	
22	Dead + Wind 210 deg + Icc + Temp + Guy	
23	Dead+Wind 240 deg+Ice +Temp+Guy	
24	Dead + Wind 270 deg + Ice + Temp + Guy	
25	Dead + Wind 300 deg + Ice + Temp + Guy	
26	Dead+Wind 330 deg+Ice + Temp + Guy	
27	Dead+Wind 0 deg - Service+Guy	
28	Dead+Wind 30 deg - Service+Guy	
29	Dead+Wind 60 deg - Service+Guy	
30	Dead+Wind 90 deg - Service +Guy	
31	Dead+Wind 120 deg - Service+Guy	
32	Dead+Wind 150 deg - Service+Guy	
33	Dead+Wind 180 deg - Service+Guy	
34	Dead+Wind 210 deg - Service+Guy	
35	Dead+Wind 240 deg - Service + Guy	
36	Dead+Wind 270 deg - Service+Guy	
37	Dead+Wind 300 deg - Service + Guy	
38	Dead+Wind 330 deg - Service+Guy	

	Maximum Reactions				
Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{gathered} \text { Horizontal, } X \\ l b \end{gathered}$	$\begin{gathered} \text { Horizontal, } Z \\ l b \end{gathered}$
Mast	Max. Vert	19	26538.47	-1357.78	-834.79
	Max. H_{x}	11	21326.39	2367.36	26.08
	Max. $\mathrm{H}_{\mathbf{z}}$	2	22525.53	42.47	2307.29
	Max. M_{x}	1	0.00	21.63	-9.23
	Max. M ${ }_{z}$	1	0.00	21.63	-9.23
	Max. Torsion	8	576.25	53.05	-2453.72
	Min. Vert	33	13023.81	21.24	-770.33
	Min. H_{x}	5	21336.11	-2322.25	24.76
	Min. $\mathrm{H}_{\mathbf{z}}$	8	17038.46	53.05	-2453.72
	Min. M_{x}	1	0.00	21.63	-9.23
	Min. M_{z}	1	0.00	21.63	-9.23
	Min. Torsion	16	-448.62	-786.63	1436.02
Guy C @ 54.67 ft Elev 32 ft	Max. Vert	10	-23.35	-19.27	11.11
Azimuth 240 deg					
	Max. H_{x}	10	-23.35	-19.27	11.11
	Max. H_{z}	3	-9734.04	-11835.68	6900.91
	Min. Vert	3	-9734.04	-11835.68	6900.91

HnXTOWer	Job	PT11872D	Stratford, CT

Location	Condition	Gov. Load Comb.	Vertical $l b$	Horizontal, X $l b$	Horizontal, Z Ib
		Min. H_{x}	5	-9697.72	-11868.68
Guy B @ 54.42 ft	Min. H_{z}	10	-23.35	-19.27	6742.47
Elev 32 ft	Max. Vert	6	-24.06	19.75	11.11
Azimuth 120 deg					11.36
	Max. H_{x}	11	-9707.92	11825.02	
	Max. H_{z}	13	-9762.06	11796.08	6717.14
	Min. Vert	13	-9762.06	11796.08	6918.59
	Min. H_{x}	6	-24.06	6918.59	
Guy A @60.75 ft	Min. H_{z}	6	-24.06	19.75	11.36
Elev 20 ft	Max. Vert	2	-80.23	19.75	11.36
Azimuth 0 deg				0.07	-71.61
	Max. H_{x}	24	-5531.33		
	Max. H_{z}	2	-80.23	244.87	-6622.87
	Min. Vert	7	-11388.15	0.07	-71.61
	Min. H_{x}	18	-5562.82	-95.81	-13594.19
	Min. H_{z}	7	-11388.15	-945.31	-6650.19
				-95.81	-13594.19

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear r_{x} lb	Shear x_{x} $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	13199.70	-21.63	9.23	0.00	0.00	9.26
Dead+Wind 0 deg - No	22525.53	-42.47	-2307.29	0.00	0.00	358.77
Ice+Guy						
Dead+Wind 30 deg - No	20641.36	1159.23	-2018.79	0.00	0.00	410.06
Ice+Guy						
Dead+Wind 60 deg - No	16302.36	2059.94	-1220.50	0.00	0.00	422.84
Ice+Guy						
Dead+Wind 90 deg - No	21336.11	2322.25	-24.76	0.00	0.00	130.43
Ice+Guy						
Dead+Wind 120 deg - No	23910.15	1947.32	1178.09	0.00	0.00	-98.00
Ice+Guy						
Dead+Wind 150 deg - No	22175.96	1088.46	2092.29	0.00	0.00	-292.72
Ice+Guy						
Dead+Wind 180 deg - No	17038.46	-53.05	2453.72	0.00	0.00	-576.25
Ice+Guy						
Dead+Wind 210 deg - No	22131.64	-1148.26	2059.30	0.00	0.00	-333.72
Ice+Guy						
Dead+Wind 240 deg - No	23884.12	-2000.87	1157.88	0.00	0.00	-246.05
Ice+Guy						
Dead+Wind 270 deg - No	21326.39	-2367.36	-26.08	0.00	0.00	-101.65
Ice+Guy						
Dead + Wind 300 deg - No	16311.50	-2116.06	-1203.38	0.00	0.00	39.39
Ice+Guy						
Dead+Wind 330 deg - No	20664.76	-1238.01	-2018.53	0.00	0.00	214.72
Ice+Guy						
Dead+Ice+Temp+Guy	19182.94	-37.25	3.72	0.00	0.00	12.95
Dead+Wind 0	25504.33	-58.01	-1646.15	0.00	0.00	368.78
deg+Ice+Temp+Guy						
Dead+Wind 30	24537.18	786.63	-1436.02	0.00	0.00	448.62
deg+lce+Temp+Guy Dead+Wind 60						
	22576.56	1422.99	-854.34	0.00	0.00	372.84
deg+Ice+Temp+Guy						

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CT11872D	Stratford, CT	Page 7 of 9
	Project	50 ft G	ed Tower	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 18:24:34 09/11/14 } \end{array}$
	Client		OBILE	Designed by kw

Load Combination	Vertical lb	Shear x_{x} $l b$	Shear z_{z} lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead+Wind 90 deg+Ice+Temp+Guy	24840.92	1620.43	-16.07	0.00	0.00	120.21
Dead+Wind 120 deg+Ice+Temp+Guy	26538.47	1357.78	834.79	0.00	0.00	-81.26
Dead + Wind 150 deg+Ice+Temp+Guy	25516.42	746.00	1477.65	0.00	0.00	-256.64
Dead+Wind 180 deg+Ice+Temp+Guy	22698.14	-59.01	1721.24	0.00	0.00	-490.11
Dead+Wind 210 deg+Ice+Temp+Guy	25433.55	-839.60	1446.50	0.00	0.00	-400.10
Dead+Wind 240 deg+Ice + Temp+Guy	26465.02	-1443.06	814.54	0.00	0.00	-273.24
Dead+Wind 270 deg+Ice+Temp+Guy	24796.74	-1697.02	-17.11	0.00	0.00	-88.74
Dead+Wind 300 deg+Ice+Temp+Guy	22586.49	-1507.99	-842.51	0.00	0.00	55.39
Dead+Wind 330 deg+Ice+Temp+Guy	24560.19	-894.86	-1433.48	0.00	0.00	199.09
Dead+Wind 0 deg Service+Guy	13459.72	-22.71	-753.02	0.00	0.00	96.86
Dead+Wind 30 deg Service+Guy	13431.38	353.71	-650.77	0.00	0.00	107.29
Dead+Wind 60 deg Service+Guy	13355.76	629.79	-371.78	0.00	0.00	87.75
Dead+Wind 90 deg Service+Guy	13241.44	731.63	9.12	0.00	0.00	46.73
Dead+Wind 120 deg Service+Gụy	13144.97	631.22	390.21	0.00	0.00	-1.78
Dead+Wind 150 deg Service + Guy	13053.43	355.62	668.87	0.00	0.00	-46.59
Dead + Wind 180 deg Service+Guy	13023.81	-21.24	770.33	0.00	0.00	-80.46
Dead+Wind 210 deg Service+Guy	13059.77	-398.33	667.85	0.00	0.00	-91.48
Dead+Wind 240 deg Service+Guy	13155.33	-674.27	389.06	0.00	0.00	-71.08
Dead+Wind 270 deg Service+Guy	13254.56	-775.05	8.67	0.00	0.00	-28.53
Dead+Wind 300 deg Service+Guy	13367.38	-674.09	-371.98	0.00	0.00	18.69
Dead+Wind 330 deg Service+Guy	13437.64	-398.82	-650.86	0.00	0.00	63.13

Solution Summary

Load Comb.	Sum of Applied Forces			Sum of Reactions			\% Error
	PX	PY	PZ	PX	PY	PZ	
	$1 b$	$1 b$	$1 b$	$1 b$	$l b$	$7 b$	
1	0.00	-5727.63	0.00	0.03	5727.62	0.21	0.004\%
2	-0.26	-5738.10	-14182.42	0.25	5738.07	14182.34	0.001\%
3	7091.46	-5715.31	-12278.34	-7091.47	5715.25	12278.04	0.002\%
4	12282.22	-5695.46	-7089.67	-12282.39	5695.45	7089.27	0.003\%
5	14183.09	-5727.63	0.16	-14182.92	5727.57	-0.03	0.001\%
6	12287.61	-5759.77	7093.07	-12287.33	5759.66	-7092.88	0.002\%
7	7091.90	-5739.94	12278.78	-7091.68	5739.86	-12278.62	0.002\%
8	0.26	-5717.16	14176.53	0.42	5717.15	-14176.49	0.004\%
9	-7091.46	-5739.94	12278.34	7091.24	5739.86	-12278.19	0.002\%

tnxTower Hudson Design Group, LLC	Job	CT11872D	Stratford, CT	$\begin{aligned} & \text { Page } 8 \text { of } 9 \end{aligned}$
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090	50 ft Guyed Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 18:24:34 09/11/14 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	T-MOBILE			Designed by kw

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	PZ	
Comb.	$l b$	$l b$	$1 b$	Ib	$l b$	16	
10	-12287.32	-5759.79	7092.62	12287.05	5759.68	-7092.43	0.002\%
11	-14183.09	-5727.62	-0.16	14182.92	5727.57	0.28	0.001\%
12	-12282.50	-5695.48	-7090.13	12282.77	5695.46	7089.50	0.004\%
13	-7091.90	-5715.31	-12278.78	7091.90	5715.24	12278.48	0.002\%
14	0.00	-9845.02	0.00	0.01	9845.02	0.13	0.001\%
15	-0.63	-9870.82	-12663.78	0.63	9870.76	12663.54	0.002\%
16	6337.08	-9814.68	-10965.21	-6337.09	9814.65	10965.06	0.001\%
17	10977.42	-9765.76	-6334.19	-10977.42	9765.74	6333.85	0.002\%
18	12674.57	-9845.03	0.39	-12674.47	9845.00	-0.31	0.001\%
19	10980.13	-9924.24	6336.48	-10979.95	9924.17	-6336.34	0.001\%
20	6338.16	-9875.37	10966.30	-6338.02	9875.32	-10966.21	0.001\%
21	0.63	-9819.23	12661.45	-0.30	9819.19	-12661.24	0.002\%
22	-6337.08	-9875.36	10965.21	6336.94	9875.32	-10965.12	0.001\%
23	-10979.44	-9924.29	6335.35	10979.25	9924.22	-6335.22	0.001\%
24	-12674.57	-9845.02	-0.39	12674.47	9844.99	0.47	0.001\%
25	-10978.11	-9765.81	-6335.31	10978.17	9765.79	633484	0.003\%
26	-6338.16	-9814.68	-10966.30	6338.16	9814.65	10966.15	0.001\%
27	-0.08	-5730.86	-4377.29	0.08	5730.85	4376.98	0.004\%
28	2188.72	-5723.83	-3789.61	-2188.78	5723.82	3789.32	0.004\%
29	3790.81	-5717.70	-2188.17	-3790.56	5717.69	2188.04	0.004\%
30	4377.50	-5727.63	0.05	-4377.46	5727.63	0.01	0.001\%
31	3792.47	-5737.55	2189.22	-3792.37	5737.54	-2189.12	0.002\%
32	2188.86	-5731.43	3789.75	-2188.79	5731.42	-3789.69	0.001\%
33	0.08	-5724.39	4375.47	-0.07	5724.39	-4375.25	0.003\%
34	-2188.72	-5731.43	3789.61	2188.65	5731.42	-3789.56	0.001\%
35	-3792.38	-5737.55	2189.08	3792.29	5737.55	-2188.99	0.002\%
36	-4377.50	-5727.62	-0.05	4377.46	5727.62	0.10	0.001\%
37	-3790.90	-5717.70	-2188.31	3790.65	5717.70	2188.18	0.004\%
38	-2188.86	-5723.82	-3789.75	2188.91	5723.82	3789.47	0.004\%

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz Deflection in	Gov. Load Comb.	Tilt	0

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist -	Radius of Curvature $f t$
82.00	Omni $21 / 2^{\prime \prime} \times 20^{\prime}$	33	0.998	0.1040	0.0385	65624
80.00	6^{1} Dipole	33	0.954	0.1013	0.0367	65624
79.00	SM 409-3	33	0.932	0.1000	0.0357	65624
74.00	$3{ }^{1}$ Yagi antenna	33	0.824	0.0938	0.0317	41015
69.82	Guy	33	0.738	0.0898	0.0295	27380
68.00	3 ' Yagi antenna	33	0.703	0.0886	0.0290	25662
62.00	3 ' Yagi antenna	33	0.598	0.0872	0.0297	56823
61.00	Pirod 6' Side Mount Standoff (1)	33	0.581	0.0873	0.0300	83506

Thx TMOWer	Job	PT11872D	Stratford, CT

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \\ \hline \end{gathered}$	Component Type	Size	Critical Element	$\begin{gathered} P \\ I b \end{gathered}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$	$\%$ Capacity	$\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$
T1	82-67	Leg	P2.5x. 276	3	-18049.50	68948.49	26.2	Pass
'T2	67-52	Leg	P2.5x. 276	47	-14706.30	58516.83	25.1	Pass
T3	52-37	Leg	P2.5x. 276	75	-13874.50	58098.14	23.9	Pass
T4	37-32	Leg	P2.5x. 276	102	-11795.60	70683.79	16.7	Pass
T1	82-67	Diagonal	P1.5x. 120	13	-4365.28	12871.63	33.9	Pass
T2	67-52	Diagonal	P1.5x. 120	70	-3990.11	9417.08	42.4	Pass
T3	52-37	Diagonal	P1.5x. 120	83	-1603.19	9370.23	17.1	Pass
T1	82-67	Top Girt	P1.5x. 120	6	-250.71	10813.11	2.3	Pass
T2	67-52	Top Girt	P1.5x. 120	50	-1752.39	10813.11	16.2	Pass
T3	52-37	Top Girt	P1.5x. 120	78	-266.61	10813.11	2.5	Pass
T4	37-32	Top Girt	L3x3x3/16	104	1176.95	31384.15	3.8	Pass
T1	82-67	Bottom Girt	P1.5x. 120	7	-1650.44	10813.11	15.3	Pass
T2	67-52	Bottom Girt	P1.5x. 120	54	-401.20	10813.11	3.7	Pass
T3	52-37	Bottom Girt	P1.5x. 120	80	1510.80	14979.45	10.1	Pass
T4	37-32	Bottom Girt	L3x3x3/16	107	-764.77	30321.75	17.8	Pass
T4	37-32	Mid Girt	L3 $\times 3 \times 3 / 16$	113	-118.91	21804.95	0.5	Pass
T1	82-67	Guy A@69.8194	7/16	123	9108.11	10400.00	87.6	Pass
T1	82-67	Guy B@,69.8194	7/16	120	8549.42	10400.00	82.2	Pass
T1	82-67	Guy C@,69.8194	7/16	116	8627.04	10400.00	83.0	Pass
T1	82-67	Torque Arm Top@69.8194	C12x20.7	126	-4221.81	102657.52	40.9	Pass
							Summary	
						Leg (T1)	26.2	Pass
						Diagonal (T2)	42.4	Pass
						Top Girt (T2)	16.2	Pass
						Bottom Girt (T4)	17.8	Pass
						Mid Girt (T4)	0.5	Pass
						Guy A (T1)	87.6	Pass
						Guy B (T1)	82.2	Pass
						Guy C (T1)	83.0	Pass
						Torque Arm Top (T1)	40.9	Pass
						RATING =	87.6	Pass

EXHIBIT C

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11872D
Stratford PD Guyed Tower
900 Longbrook Road
Stratford, CT 06614
September 16, 2014
EBI Project Number: 62144962

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	39.22%

environmental | engineering | due diligence

September 16, 2014

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11872D - Stratford PD Guyed Tower

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 900 Longbrook Road, Stratford, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 900 Longbrook Road, Stratford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
environmental | engineering | due diligence
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of $\mathbf{1 5 . 9} \mathbf{~ d B d}$ at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6} \mathbf{~ d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is 79 feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

EBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson ATR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	79	Height (AGL):	79	Height (AGL):	79
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\text { PCS }) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	2	Channel Count	2	\# PCS Channels:	2
Total TX Power:	120	Total TX Power:	120	\# AWS Chammels:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A1 MPE\%	3.15	Antenna B1 MPE\%	3.15	Antenna C1 MPE\%	3.15
Antenna \#:	2	Antenna \#:	2	Antenna\#:	2
Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AlR21 } \\ \text { B4A/B2P } \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	79	Height (AGL):	79	Height (AGL):	79
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power:	120	Total TX Power:	120	Total TX Power:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A2 MPE\%	3.15	Antenna B2 MPE\%	3.15	Antemaa C2 MPE\%	3.15
Antenna \#:	3	Antenna \#:	3	Antenna \#:	3
Make / Model:	Commscope LNX-6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX-6515DS-VTM
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	79	Height (AGL):	79	Height (AGL):	79
Frequency Bands	700 Mhz	Frequency Bands	700 Mhz	Frequency Bands	700 Mhz
Chamel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	445.37	ERP (W):	445.37	ERP (W):	445.37
Antenna A3 MPE\%	1.25	Antenna B3 MPE\%	1.25	Antenna C3 MPE\%	1.25
	Site Composite MPE\%			T-Mobile Sector 1 Total:	1: 7.55%
	Carrier	MPE\%		T-Mobile Sector 2 Total:	I: $\quad 7.55 \%$
	T-Mobile	22.65		T-Mobile Sector 3 Total:	I: 7.55%
	SPD - Omni	1.70\%		Site Total:	1: 39.22%

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	7.55%
Sector 2:	7.55%
Sector 3:	7.55%
T-Mobile Total:	22.65%
Site Total:	39.22%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{3 9 . 2 2} \%$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

