

10 Industrial Ave, Suite 3 Mahwah, NJ 07430 Phone: (845)499-4712 Jennifer Notaro Real Estate Consultant

8/25/14

Hand Delivered

Ms. Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

CC to Property Owner Becker, LLC 951 Beaver Dam Road Stratford, CT 06614

RE: Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 627 Honeyspot Road, Stratford, CT 07068. Known to Sprint Spectrum L.P. as site CT60XC969.

Dear Ms. Bachman:

In order to accommodate technological changes, implement Code Division Multiple Access ("CDMA") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the state of Connecticut, Sprint Spectrum L.P. plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and its attachments is being sent to the chief elected official of the municipality in which affected cell site is located.

CDMA employs Spread-Spectrum technology and special coding scheme to allow multiple users to be multiplexed over the same physical channel.

LTE is a new high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modification as defined Connecticut General Statues ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for the R.C.S.A. Section 16-50j-72(b)(2).

- 1. The height of the overall structure will not be affected.
- 2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound.
- 3. The proposed changes will not increase the noise level at the existing facility by 6 decibels or more.
- 4. Radio Frequency power density may increase due to the use of one or more CDMA transmissions. Moreover, LTE will utilize additional radio frequencies newly licensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons Sprint Spectrum L.P. respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (845)-499-4712 or email Months of English Notaro@Transcendwireless.com with questions concerning this matter. Thank you for your consideration.

Sincerely,

Jennifer Notaro Real Estate Consultant

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility

Site ID: CT60XC969

Com-Tronics

627 Honeyspot Road Stratford, CT 06615

July 15, 2014

EBI Project Number: 62143791

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

July 15, 2014

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site: CT60XC969 - Com-Tronics

Site Total: 87.75% - MPE% in full compliance

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 627 Honeyspot Road, Stratford, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band (850 MHz Band) is approximately 567 μ W/cm², and the general population exposure limit for the 1900 MHz and 2500 MHz bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 627 Honeyspot Road, Stratford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 4 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
- 2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation
- 3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTM14-C-I20. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. The RFS APXVTM14-C-I20 has a 15.9 dBd gain value at its main lobe at 2500 MHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline for the proposed antennas is **72 feet** above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

Site ID																	
Sector 1 Sector 2 Sector 1		Site ID	CT60	XC969 - Com-Tr	onics												
Sector 1		Site Addresss	627 Honeysp	ot Road, Stratfo	rd, CT, 06615												
Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power Out Fer Out Fer Out Fer Channel Number of Composite (10 db Antenna analysis Cable Loss Additional Percental Power Density Value: 4.88% Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power Po		Site Type		Monopole													
Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power Out Fer Out Fer Out Fer Channel Number of Composite (10 db Antenna analysis Cable Loss Additional Percental Power Density Value: 4.88% Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power Po																	
Antenna Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Channels Channels Power Composite (10 db Antenna analysis height Cable Loss Additional Loss (dB) Loss (dB								Sector 1									
Antenna Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Channels Channels Power Composite (10 db Antenna analysis height Cable Loss Additional Loss (dB) Loss (dB																	
Antenna Mumber Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Channels Power Power Out Per Out Per Out Per Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power Power Power Radio Type Frequency Band Technology (Watts) Channels Power Radio Type Power Power Radio Type Power Power Radio Type Requency Band Radio Type Frequency Band Radio Type Frequency Band Radio Type Frequency Band Radio Type Radio Type Requency Band Radio Type Representation Radio Type Requency Band Rad							Dower										
Antenna Make Antenna Model Radio Type Frequency Band I 1900 MHz CDMA / LTE 20 1 20 3.4 72 66 1/2" 0.5 0 33.00 0.57% Sector 2 Antenna Make Antenna Model Radio Type Frequency Band I 1900 MHz CDMA / LTE 20 1 20 3.4 72 66 1/2" 0.5 0 27.39 1.29% Sector total Power Density Value: 4.88% Sector 12 20 3.4 72 66 1/2" 0.5 0 33.00 0.57% Additional Loss (dB) ERP Power Power Reduction Height (ft) height Cable Size (dB) Loss (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Power Reduction Height (ft) height Cable Size (dB) L										Antenna Gain							Power
Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction Height (ft) height Cable Size (dB) Loss (dB) ERP Percenta	Antenna							Number of	Composite			analysis		Cable Loss	Additional		
1a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA/LTE 20 4 80 5.9 72 66 1/2 " 0.5 0 277.39 2.29% 1a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA/LTE 20 1 20 3.4 72 66 1/2 " 0.5 0 39.00 0.57% 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 5.9 72 66 1/2 " 0.5 0 39.00 0.57% Sector 2 Sector 2 Antenna Gain Antenna Make Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Channels Power reduction) Height (ft)		Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology			•	,			Cable Size			FRP	Percentage
1a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 3.4 72 66 1/2 0.5 0 39.00 0.57% 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 72 66 1/2 0.5 0 138.69 2.02% Sector total Power Density Value: 4.88% Sector 2 Power Out Per Channel Number of Composite (10 db Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction) Height (ft) height (Cable Size (dB) Loss (. ,							. ,			
Sector 2 Sector 3 Sector 4								1									
Power Out Per Channel Number of Composite Channel Number of Channel Power Power Channel Number of Channel Power Channel Number of Channel	1B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	72	66	1/2 "	0.5	0	138.69	2.02%
Antenna Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction) Height (ft) height Cable Size (dB) Loss (dB) ERP Percenta 2a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA/LTE 20 4 80 5.9 72 66 1/2" 0.5 0 277.39 2.29% 2a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA/LTE 20 1 20 3.4 72 66 1/2" 0.5 0 39.00 0.57% 2B RFS APXVSPP18-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 5.9 72 66 1/2" 0.5 0 138.69 2.02% Sector total Power Density Value: 4.88%										•			Sector to	otal Power D	Density Value:	4.88%	
Antenna Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction) Height (ft) height Cable Size (dB) Loss (dB) ERP Percenta 2a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA/LTE 20 4 80 5.9 72 66 1/2" 0.5 0 277.39 2.29% 2a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA/LTE 20 1 20 3.4 72 66 1/2" 0.5 0 39.00 0.57% 2B RFS APXVSPP18-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 5.9 72 66 1/2" 0.5 0 138.69 2.02% Sector total Power Density Value: 4.88%		Sector 2															
Antenna Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channel Power reduction Height (ft) hei	Sector 2																
Antenna Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channel Power (Channels Power reduction) Height (ft) height (ft																	
Antenna Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channel Power (Channels Power reduction) Height (ft) height (ft							D										
Antenna Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction) Height (ft) height Cable Size (dB) Loss (dB										Antonna Gain							Dower
Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power reduction Height (ft) height (f	Antonna							Number of	Composito			analysis		Cable Loce	Additional		
2a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA/LTE 20 4 80 5.9 72 66 1/2 " 0.5 0 277.39 2.29% 2a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA/LTE 20 1 20 3.4 72 66 1/2 " 0.5 0 39.00 0.57% 2B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 5.9 72 66 1/2 " 0.5 0 138.69 2.02% Sector total Power Density Value:		Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology			•	,			Cable Size			FDD	•
2a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 3.4 72 66 1/2 " 0.5 0 39.00 0.57% 2B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 72 66 1/2 " 0.5 0 138.69 2.02% Sector total Power Density Value: 4.88%							,	1						. ,			
2B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 5.9 72 66 1 / 2 " 0.5 0 138.69 2.02% Sector total Power Density Value: 4.88%																	
Sector total Power Density Value: 4.88%	-																
Sector 3						,								otal Power D	Density Value:	4.88%	
Sector 3		·															
		1						Sector 3	ı	1	1		1	1			1
Power							Power										
Out Per Antenna Gain Power										Antenna Gain							Power
	Antenna							Number of	Composite			analysis		Cable Loss	Additional		Density
		Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology			•				Cable Size			FRP	Percentage
3a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA/LTE 20 4 80 5.9 72 66 1/2" 0.5 0 277.39 2.29%																	
3a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 3.4 72 66 1/2 0.5 0 39.00 0.57%								1	20		72	66		0.5	0		
3B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 5.9 72 66 1/2" 0.5 0 138.69 2.02%							20	2	40	5.9	72	66		0.5	0	138.69	
Sector total Power Density Value: 4.88%													Sector to	otal Power D	ensity Value	4 88%	

Site C	Composite MPE %
Carrier	MPE %
Sprint	14.63%
Field Measurements for all other systems	73.12%
Total Site MPE %	87.75%

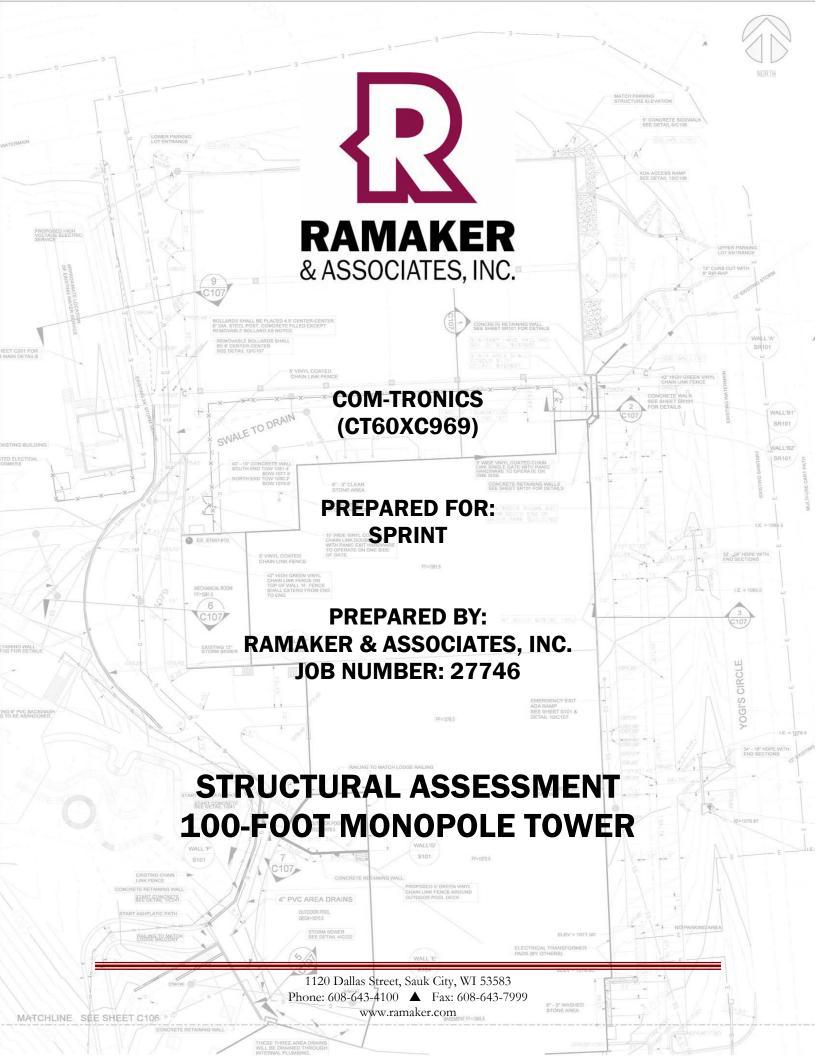
Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are 14.63% (4.88% from sector 1, 4.88% from sector 3) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **87.75**% of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.


Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803

COM-TRONICS (CT60XC969)

SITE: COM-TRONICS (CT60XC969)

627 Honeyspot Road

Stratford, Fairfield County, CT 06615

PREPARED FOR: Sprint

CONTACT PERSON: Mike Kithcart

Transcend Wireless

48 Spruce Street, Oakland, NJ 07436

PREPARED BY: Ramaker & Associates, Inc.

1120 Dallas Street

Sauk City, Wisconsin 53583 Telephone: (608) 643-4100 Facsimile: (608) 643-7999

RAMAKER JOB NUMBER: 27746

DATE OF REPORT ISSUANCE: July 22, 2014

Thomas E. Moore

Thoma E More

Project Engineer

James R. Skowronski Supervising Engineer <u>7/22/14</u> Date

Date

TABLE OF CONTENTS

3	ECUTIVE SUMMARY	EXECU1
4	RODUCTION	INTROD
	2.1 PROJECT INFORMATION 2.2 PURPOSE OF REPORT 2.3 SCOPE OF SERVICES	
5	DEL DEVELOPMENT	MODEL
IATION	3.1 INTRODUCTION 3.2 EXISTING STRUCTURE INFORMATION 3.3 TOWER LOADING 3.4 WIND AND ICE LOAD	3.3
7	ALYSIS RESULTS	ANALYS
	4.1 ANALYSIS RESULTS4.2 BASE REACTIONS4.3 MOUNT ASSESSMENT	
9	1ITATIONS	LIMITA
10	FERENCES	REFERE

LIST OF APPENDICES

- A. TOWER FIGURES
- **B. TOWER CALCULATIONS**
- C. MOUNT CALCULATIONS

SECTION 1 EXECUTIVE SUMMARY

This report summarizes the structural analysis conducted by Ramaker & Associates for Sprint, who intends to install additional equipment on an existing tower.

The Sprint proposed loading includes installing three (3) RFS APXVTM14-C-120 panel antennas and three (3) Alcatel-Lucent TD-RRH8x20 units on the existing three (3) T-Arms at a centerline elevation of 72-feet AGL. The proposed antennas shall be fed with one (1) hybrid cable, which is to be routed on the inside of the pole.

Tower modifications are required. Plates shall be bolted onto the exterior face of the pole and additional anchor rods are required. Details of the modifications are shown in the attached drawings.

Results of our tower analysis show that the modified tower will be stressed to a maximum of 93.2 percent of capacity and the foundation will be stressed to 95.2 percent of capacity.

Results of our mount assessment show that by engineering calculation and inspection, the antenna and RRH mounting structure is capable of supporting the existing and proposed Sprint 2.5 equipment deployment without causing an overstress condition in the antenna and RRH mounting structure.

In summary, the tower will pass and the mounting structure will pass the TIA-222-G code requirements under proposed loading conditions.

SECTION 2 INTRODUCTION

2.1 PROJECT INFORMATION

This report summarizes the structural analysis conducted by Ramaker & Associates, Inc. (RAMAKER) for Transcend Wireless on behalf of Sprint, who intends to install additional equipment on an existing tower.

2.2 PURPOSE OF REPORT

The analysis activities of this report were conducted for the purposes of creating and analyzing a model of the subject structure under the required loading conditions. Base reactions from the resulting model were also determined for tower foundation and support development. Recommendations regarding the analysis results, loading configuration, and structural modifications are also provided.

2.3 SCOPE OF SERVICES

RAMAKER developed a finite element model (FEM) of the tower, using tnxTower, for member force, joint deflection, and structure reaction determinations. Subsequently, this report was drafted to provide our engineering recommendations. All information contained herein is valid only for the described structure configuration and loading conditions. RAMAKER reserves the right to modify our recommendations should alterations to the tower loading occur.

SECTION 3 MODEL DEVELOPMENT

3.1 INTRODUCTION

RAMAKER developed a FEM of the tower superstructure. Required static loads consisting of the antenna configuration, wind forces, ice loads, and linear appurtenances (including cable loads) were then applied to the FEM. As a result, all member forces, allowable capacities, and base reactions were computed. Additionally, potentially overstressed members were identified.

3.2 EXISTING STRUCTURE INFORMATION

Tower information was gathered from a previous structural analysis performed by KMB Design Group (KMB), KMB ID# 332.1539, dated March 6, 2013. A previous structural report performed by Hudson Design Group, LLC (HDG), site number CT2112, dated June 16, 2011.

3.3 TOWER LOADING

RAMAKER understands that the tower loading to be used for this analysis will consist of the existing and proposed antenna, mount, and cable configurations as shown in the following chart:

Elevation	Appurtenance	Mount	Coax	Owner	Status	
102	(6) Kathrein Scala 800 10504	(3) T-Arms	(12) 7/8	Unknown	Existing	
	(6) Allgon 7770					
	(12) Powerwave LGP 21401 TMA's					
92	(3) KMW AM-X-CD-16-65-00T-RET	Platform w/Handrail	(12) 7/8	Unknown	Existing	
	(3) Ericsson RRUS-11					
	(1) Raycap DC6-48-60-18-8F					
	(3) Rymsa MG D3-800T0					
82	(3) Andrew LNX-6512DS-T4M	Platform w/Handrail	(12) 7/8	Unknown	Existing	
	(6) Decibel DB846F65ZAXY					
74	(3) Alcatel-Lucent 800 MHz RRH	Collar Mount				
74	(6) Alcatel-Lucent 1900 MHz RRH	Collai Mount	(3) Hybrid	Sprint	Existing	
	(3) RFS APXVSPP18-C-A20			Эрппс		
	(3) RFS APXVTM14-C-120		(1) Hybrid	1) Hybrid		
72	(3) Argus LLPX310R	(3) T-Arms	(6) 1-1/4	Clearwire		
	(1) 2'x2'x8" Junction Box	(3) I-AIIIIS	(0) 1-1/4	Clearwire	Cyloting	
	(2) Dragonwave 1' Dish w/ Radome		(2) 1/2	Unknown	Existing	
	(1) Andrew 3' Dish w/ Radome		(3) 1/2	OTIKITOWIT		
58	(3) EMS DR65-12-05DBL	Collar Mount	(12) 1-1/4	Unknown	Existing	

COM-TRONICS (CT60XC969)

Elevation	Appurtenance	Mount	Coax	Owner	Status
	(1) 20' Omni				
20	(2) 12' Omni	T-Arm w/	(6) 1/4*	Unknown	Existing
28	(3) 10' Omni	(2) Stand-offs			
	(1) GPS Antenna		(1) 1/4*		

^{*}Coax not supported by tower

3.4 WIND AND ICE LOAD

Wind forces used in model development are in compliance with the TIA-222-G Standard. These guidelines call for an analysis to be performed, which assumes a basic wind speed (3-second gust) of 85 miles-per-hour (mph) without ice in Fairfield County. The tower is also designed for a 38 mph basic wind speed with 0.75-inch of radial ice. The tower was analyzed using the following parameters: Structure Class II, Topographic Category I, and Exposure Category C.

SECTION 4 ANALYSIS RESULTS

4.1 ANALYSIS RESULTS

The tower superstructure was analyzed with the combined existing and proposed antenna loading with and without radial ice. The computed maximum tower member stress capacities are as follows:

Component Type	Percent Capacity
Section 1	36.2
Section 2	88.3
Section 3	69.1
Reinforcing	93.2
RATING =	93.2

4.2 BASE REACTIONS

The computed maximum reactions under the corresponding maximum moment are as follows:

Load Type	Previous Analysis Reactions	Proposed Model
Axial (k)	18	27.7
Shear (k)	20	23.5
Moment (k-ft)	1420	1641.7

The proposed model reactions are all greater than the reactions determined in the previous analysis by KMB. The foundation was analyzed under proposed loading conditions and determined to be at 95.2 percent of capacity.

COM-TRONICS (CT60XC969)

4.3 MOUNT ASSESSMENT

By engineering calculation and inspection, the antenna mounting structure is capable of supporting the existing and proposed Sprint 2.5 equipment deployment without causing an overstress condition in the antenna mounting structure.

This assessment is inclusive of the entire antenna mounting structure, including tower platforms, arms, and all other aspects of the mounting structure that will support the Sprint 2.5 equipment deployment. This assessment assumes that the mounting structure(s) has been installed correctly, is free from deterioration, and is maintained properly.

SECTION 5 LIMITATIONS

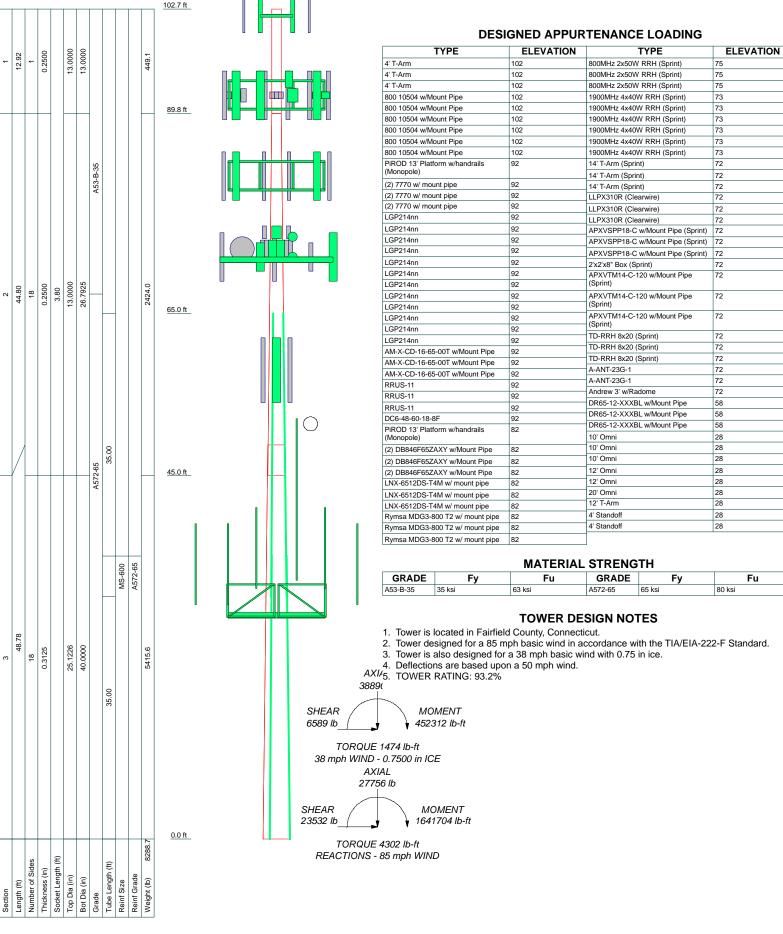
The recommendations contained within this report were developed using general project information provided by the owner, tower manufacturer, general field observations, reference information and laboratory testing data, as applicable. All recommendations pertain only to the proposed tower construction, location, and loading as described in this report. RAMAKER assumes no responsibility for failures caused by factors beyond our control. These include but are not limited to the following:

- 1. Missing, corroding, and/or deteriorating members
- 2. Improper manufacturing and/or construction
- 3. Improper maintenance

RAMAKER assumes no responsibility for modifications completed prior to or hereafter in which RAMAKER was not directly involved. These modifications include but are not limited to the following:

- 1. Replacing or strengthening bracing members
- 2. Reinforcing or extending vertical members
- 3. Installing or removing antenna mounting gates or side arms
- 4. Changing loading configurations

Furthermore, RAMAKER hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations and conclusions are based on the information contained and set forth herein. If you are aware of any information contrary to that contained herein, or if you are aware of any defects arising from the original design, material, fabrication and erection deficiencies, you should disregard this report and immediately contact RAMAKER. RAMAKER isn't liable for any representation, recommendation or conclusion not expressly stated herein.


The tower owner is responsible for verifying that the existing loading on the tower is consistent with the loading applied to the tower within this report.

SECTION 6 REFERENCES

- 1. 2003 International Building Code.
- 2. Telecommunications Industries Association, <u>Structural Standard for Antenna Supporting Structures and Antennas</u>, TIA Standard ANSI/TIA-222-F 1996, Washington, D.C.

APPENDIX A

TOWER FIGURES

APPENDIX B TOWER CALCULATIONS

tnx1	<i>Sower</i>

Ramaker & Associates, Inc.

1120 Dallas Street Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

Job		Page
	Com-Tronics (CT60XC969)	1 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut.

Basic wind speed of 85 mph.

Nominal ice thickness of 0.7500 in.

Ice density of 56 pcf.

A wind speed of 38 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.333.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Top	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	102.70-89.78	12.92	0.00	Round	13.0000	13.0000	0.2500		A53-B-35
									(35 ksi)
L2	89.78-44.98	44.80	3.80	18	13.0000	26.7925	0.2500	1.0000	A572-65
									(65 ksi)
L3	44.98-0.00	48.78		18	25.1226	40.0000	0.3125	1.2500	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in^3	in^4	in^2	in	
L1	13.0000	10.0138	203.6400	4.5135	6.5000	31.3292	406.7253	5.0039	0.0000	0
	13.0000	10.0138	203.6400	4.5135	6.5000	31.3292	406.7253	5.0039	0.0000	0
L2	13.2005	10.1171	207.7854	4.5263	6.6040	31.4636	415.8441	5.0595	1.8480	7.392
	27.2058	21.0615	1874.6054	9.4226	13.6106	137.7314	3751.6774	10.5327	4.2755	17.102
L3	26.6870	24.6085	1913.7269	8.8076	12.7623	149.9518	3829.9719	12.3066	3.8716	12.389
	40.6171	39.3650	7833.4959	14.0891	20.3200	385.5067	15677.2994	19.6863	6.4900	20.768

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing
							Diagonals	Horizontals
ft	ft^2	in					in	in
L1 102.70-89.78				1	1	1.02		
L2 89.78-44.98				1	1	1.02		
L3 44.98-0.00				1	1	1.02		

tnxT	<i>'ower</i>

Ramaker & Associates, Inc. 1120 Dallas Street Sauk City, WI 53583

Job		Page
	Com-Tronics (CT60XC969)	2 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

				Ро	le Reinfo	orcing Data					
Height Above Base ft	Segment Length ft	No. of Segments	Offset in	Grade	Туре	Size	Unbraced Length ft	K	Bolt Hole Dia. in	Bolts per Row	Shear Lag Factor U
0.00	35.00	3	0.0000	A572-65 (65 ksi)	Flat Bar	MS-600	1.36	0.80	1.2500	1	1.000
30.00	35.00	3	0.0000	A572-65 (65 ksi)	Flat Bar	MS-600	1.36	0.80	1.2500	1	1.000

Description	Sector	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weigh
		• •	ft				in	in	plf

1 1/4	В	Surface Ar	72.00 - 20.00	3	3	0.000	1.5500		0.66
(Sprint)		(CaAa)				0.000			
1 1/4	C	Surface Ar	72.00 - 20.00	3	3	0.000	1.5500		0.66
(Sprint)		(CaAa)				0.000			
1/2	C	Surface Ar	72.00 - 20.00	2	2	0.000	0.5800		0.25
(Sprint) ******		(CaAa)				0.000			
MS-600	A	Surface Ar (CaAa)	67.00 - 33.50	1	1	0.000	1.0000		20.4
MS-600	В	Surface Ar	67.00 - 33.50	1	1	0.000	1.0000		20.4
1115 000	Б	(CaAa)	07.00 33.30	•		0.000	1.0000		20.1
MS-600	C	Surface Ar	67.00 - 33.50	1	1	0.000	1.0000		20.4
		(CaAa)				0.000			
MS-600	A	Surface Ar	33.50 - 0.00	1	1	0.000	1.0000		20.4
		(CaAa)				0.000			
MS-600	В	Surface Ar	33.50 - 0.00	1	1	0.000	1.0000		20.4
		(CaAa)				0.000			
MS-600	C	Surface Ar	33.50 - 0.00	1	1	0.000	1.0000		20.4
		(CaAa)				0.000			

	Feed Line/Linear Appurtenances - Entered As Area										
Description	Face	Allow	Component	Placement	Total		$C_A A_A$	Weigh			
	or	Shield	Type		Number						
	Leg			ft			ft²/ft	plf			
7/8	С	No	Inside Pole	102.00 - 20.00	12	No Ice	0.00	0.54			
						1/2" Ice	0.00	0.54			
						1" Ice	0.00	0.54			

7/8	C	No	Inside Pole	92.00 - 20.00	12	No Ice	0.00	0.54			
						1/2" Ice	0.00	0.54			
						1" Ice	0.00	0.54			

7/8	В	No	Inside Pole	82.00 - 20.00	12	No Ice	0.00	0.54			
						1/2" Ice	0.00	0.54			
						1" Ice	0.00	0.54			
1/2	C	No	Inside Pole	72.00 - 20.00	1	No Ice	0.00	0.25			

Ramaker & Associates, Inc. 1120 Dallas Street

Job		Page
	Com-Tronics (CT60XC969)	3 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Description	Face	Allow	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	Type		Number			
	Leg			ft			ft²/ft	plf
(Sprint)						1/2" Ice	0.00	0.25
						1" Ice	0.00	0.25

1 1/4	A	No	Inside Pole	58.00 - 20.00	12	No Ice	0.00	0.66
						1/2" Ice	0.00	0.66
						1" Ice	0.00	0.66

1 5/8	C	No	Inside Pole	72.00 - 20.00	1	No Ice	0.00	1.04
						1/2" Ice	0.00	1.04
						1" Ice	0.00	1.04

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation		_		In Face	Out Face	
	ft		ft ²	ft^2	ft^2	ft ²	lb
L1	102.70-89.78	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	93.57
L2	89.78-44.98	A	0.000	0.000	2.202	0.000	552.69
		В	0.000	0.000	14.766	0.000	742.96
		C	0.000	0.000	17.901	0.000	1132.05
L3	44.98-0.00	A	0.000	0.000	4.498	0.000	1116.18
		В	0.000	0.000	16.114	0.000	1129.67
		C	0.000	0.000	19.011	0.000	1336.26

	reea L	ine/Lif	near Appui	tenance	s section	Areas - V	with ice	
Tower	Tower	Face	Ice Thickness	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	in			In Face	Out Face	
	ft	Leg		ft^2	ft^2	ft ²	ft^2	lb
L1	102.70-89.78	Α	0.750	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	93.57
L2	89.78-44.98	Α	0.750	0.000	0.000	5.505	0.000	588.00
		В		0.000	0.000	41.442	0.000	894.91
		C		0.000	0.000	59.041	0.000	1326.83
L3	44.98-0.00	A	0.750	0.000	0.000	11.245	0.000	1188.31
		В		0.000	0.000	44.468	0.000	1309.63
		C		0.000	0.000	60.739	0.000	1555.81

Feed Line Center of Pressure							
Section	Elevation	CP_X	CP_Z	CP_X	CP_Z		
				Ice	Ice		
	ft	in	in	in	in		
L1	102.70-89.78	0.0000	0.0000	0.0000	0.0000		
L2	89.78-44.98	0.3014	0.2573	0.3901	0.4122		
L3	44.98-0.00	0.2428	0.2080	0.3561	0.3780		

Ramaker & Associates, Inc. 1120 Dallas Street

Job		Page
	Com-Tronics (CT60XC969)	4 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

	Discrete Tower Loads												
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh				
			ft ft ft	0	ft		ft ²	ft ²	lb				
4' T-Arm	A	None	V	0.0000	102.00	No Ice 1/2" Ice 1" Ice	2.87 3.33 3.79	0.82 1.02 1.22	83.50 108.55 133.60				
4' T-Arm	В	None		0.0000	102.00	No Ice 1/2" Ice 1" Ice	2.87 3.33 3.79	0.82 1.02 1.22	83.50 108.55 133.60				
4' T-Arm	A	None		0.0000	102.00	No Ice 1/2" Ice	2.87 3.33	0.82 1.02	83.50 108.55				
800 10504 w/Mount Pipe	A	From Face	3.00 -2.00	0.0000	102.00	1" Ice No Ice 1/2" Ice	3.79 3.47 3.84	1.22 3.05 3.68	133.60 38.05 69.36				
800 10504 w/Mount Pipe	A	From Face	0.00 3.00 2.00	0.0000	102.00	1" Ice No Ice 1/2" Ice	4.23 3.47 3.84	4.33 3.05 3.68	106.43 38.05 69.36				
800 10504 w/Mount Pipe	В	From Face	0.00 3.00 -2.00	0.0000	102.00	1" Ice No Ice 1/2" Ice	4.23 3.47 3.84	4.33 3.05 3.68	106.43 38.05 69.36				
800 10504 w/Mount Pipe	В	From Face	0.00 3.00 2.00	0.0000	102.00	1" Ice No Ice 1/2" Ice	4.23 3.47 3.84	4.33 3.05 3.68	106.4 38.05 69.36				
800 10504 w/Mount Pipe	С	From Face	0.00 3.00 -2.00	0.0000	102.00	1" Ice No Ice 1/2" Ice	4.23 3.47 3.84	4.33 3.05 3.68	106.4 38.05 69.36				
800 10504 w/Mount Pipe	С	From Face	0.00 3.00 2.00	0.0000	102.00	1" Ice No Ice 1/2" Ice	4.23 3.47 3.84	4.33 3.05 3.68	106.4 38.05 69.36				
****			0.00			1" Ice	4.23	4.33	106.4				
PiROD 13' Platform w/handrails (Monopole)	С	None		0.0000	92.00	No Ice 1/2" Ice 1" Ice	31.30 40.20 49.10	31.30 40.20 49.10	1822.0 2452.0 3082.0				
(2) 7770 w/ mount pipe	A	From Face	4.00 0.00 0.00	0.0000	92.00	No Ice 1/2" Ice 1" Ice	6.86 7.65 8.30	5.23 6.41 7.25	81.32 138.8 204.2				
(2) 7770 w/ mount pipe	В	From Face	4.00 0.00 0.00	0.0000	92.00	No Ice 1/2" Ice 1" Ice	6.86 7.65 8.30	5.23 6.41 7.25	81.32 138.8 204.2				
(2) 7770 w/ mount pipe	С	From Face	4.00 0.00	0.0000	92.00	No Ice 1/2" Ice	6.86 7.65	5.23 6.41	81.32 138.8				
LGP214nn	A	From Face	0.00 3.00 -6.00	0.0000	92.00	1" Ice No Ice 1/2" Ice	8.30 1.30 1.45	7.25 0.23 0.31	204.2 14.10 21.30				
LGP214nn	A	From Face	0.00 3.00 -6.00	0.0000	92.00	1" Ice No Ice 1/2" Ice	1.62 1.30 1.45	0.40 0.23 0.31	30.39 14.10 21.30				
LGP214nn	В	From Face	0.00 3.00 -6.00	0.0000	92.00	1" Ice No Ice 1/2" Ice	1.62 1.30 1.45	0.40 0.23 0.31	30.39 14.19 21.30				
LGP214nn	В	From Face	0.00 3.00 -6.00	0.0000	92.00	1" Ice No Ice 1/2" Ice	1.62 1.30 1.45	0.40 0.23 0.31	30.39 14.10 21.30				

Ramaker & Associates, Inc. 1120 Dallas Street

Job		Page
	Com-Tronics (CT60XC969)	5 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

	Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
		Leg		Lateral Vert						
				ft ft	٥	ft		ft^2	ft ²	lb
LGP214nn							1" Ice		0.40	30.39
C From Face 0.00 1 T cc 1.62 0.40 0.000 0.	LGP214nn	C	From Face		0.0000	92.00				14.10
CGP214m										21.30
LGP214nn	LCD214pp	C	Enom Eooo		0.0000	02.00				30.39
	LGP214IIII	C	rioiii race		0.0000	92.00				14.10 21.30
LGP214nn										30.39
LGP214nn	LGP214nn	A	From Face		0.0000	92.00				14.10
LGP214nn				5.00				1.45	0.31	21.30
LGP214nn										30.39
	LGP214nn	A	From Face		0.0000	92.00				14.10
LGP214nn										21.30 30.39
LGP214nn	LGP214nn	В	From Face		0.0000	92.00				14.10
LGP214nn	DGI 21 IIII	Б	1 Tom 1 ucc		0.0000	22.00				21.30
							1" Ice	1.62		30.39
LGP214nn	LGP214nn	В	From Face		0.0000	92.00				14.10
LGP214nn C From Face 3.00 0.0000 92.00 No Ice 1.30 0.23										21.30
LGP214nn C From Face 5.00 0.000 92.00 No Ice 1.62 0.40	LCD214mm	C	Enom Eooo		0.0000	02.00				30.39
LGP214nn C From Face 3.00 0.0000 92.00 No Ice 1.62 0.40	LGP214IIII	C	rioiii race		0.0000	92.00				14.10 21.30
LGP214nn C From Face										30.39
AM-X-CD-16-65-00T w/Mount Pipe A From Face 3.00 0.000 92.00 No lee 6.22 5.16 2.00 1/2" lee 7.05 5.83 AM-X-CD-16-65-00T w/Mount Pipe B From Face 3.00 0.0000 92.00 No lee 6.22 5.16 2.00 0.000 92.00 No lee 6.22 5.16 2.00 0.000 92.00 No lee 6.22 5.16 2.00 1/2" lee 7.05 6.53 AM-X-CD-16-65-00T w/Mount Pipe C From Face 3.00 0.0000 92.00 No lee 6.22 5.16 2.00 1/2" lee 7.05 6.53 AM-X-CD-16-65-00T w/Mount Pipe A From Face 3.00 0.0000 92.00 No lee 3.25 1.37 RRUS-11 A From Face 3.00 0.0000 92.00 No lee 3.25 1.37 RRUS-11 B From Face 3.00 0.0000 92.00 No lee 3.25 1.37 RRUS-11 B From Face 3.00 0.0000 92.00 No lee 3.25 1.37 RRUS-11 C From Face 3.00 0.0000 92.00 No lee 3.25	LGP214nn	C	From Face		0.0000	92.00				14.10
AM-X-CD-16-65-00T w/Mount Pipe A							1/2" Ice	1.45	0.31	21.30
AM-X-CD-16-65-00T w/Mount Pipe B From Face 2.00 0.000 92.00 No Ice 6.53 6.53 1 1 1 1 1 1 1 1 1										30.39
AM-X-CD-16-65-00T w/Mount Pipe	1-X-CD-16-65-00T w/Mount Pipe	A	From Face		0.0000	92.00				49.43
AM-X-CD-16-65-00T w/Mount Pipe										102.89 162.74
AM-X-CD-16-65-00T w/Mount Pipe C From Face AM-X-CD-16-65-00T w/Mount Pipe C AM-X-CD-16-65-00T w/Mount Pipe A AM-X-CD-16-65-00T w/Mount Pipe A A A AM-X-CD-16-65-00T w/Mount Pipe A A A AM-X-CD-16-65-00 w/0.000 A AM-X-CD-16-65-00T w/Mount Pipe A A A A A A A A A A A A A A A A A A	/I-X-CD-16-65-00T w/Mount Pine	В	From Face		0.0000	92.00				49.43
AM-X-CD-16-65-00T w/Mount Pipe C From Face 3.00 0.0000 92.00 No Ice 6.62 5.16 AM-X-CD-16-65-00T w/Mount Pipe C From Face 2.00 0.0000 92.00 No Ice 7.50 5.83 RRUS-11 A From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 A From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 B From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 B From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.49 1.55 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.49 1.55 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.49 1.55 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 8.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-11 C From Face 9.00 0.0000 92.00 No Ice 1.47 1.47 RRUS-12 C From Face 9.00 0.0000 92.00 No	THE OBJECT OF THE MAINTAINS THE		1101111400		0.0000	,2.00				102.89
RRUS-11										162.74
RRUS-11 A From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 -2.00	1-X-CD-16-65-00T w/Mount Pipe	C	From Face		0.0000	92.00				49.43
RRUS-11										102.89
1/2" Ice 3.49 1.55 1 1 1 1 1 1 1 1 1	DDIIC 11	A	Енот Есос		0.0000	02.00				162.74 50.71
RRUS-11 B From Face 3.00 0.0000 92.00 No Ice 3.25 1.37	KKUS-11	Α	rioiii race		0.0000	92.00				71.49
RRUS-11 B From Face 3.00 0.0000 92.00 No Ice 3.25 1.37										95.32
RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.74 1.74	RRUS-11	В	From Face		0.0000	92.00				50.71
RRUS-11 C From Face 3.00 0.0000 92.00 No Ice 3.25 1.37 -2.00										71.49
C From Face -2.00		_								95.32
DC6-48-60-18-8F C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47	RRUS-11	C	From Face		0.0000	92.00				50.71
DC6-48-60-18-8F C From Face 3.00 0.0000 92.00 No Ice 1.47 1.47 1.47 1.50 1.50 1/2" Ice 1.67 1.67 1.67 1.50 1" Ice 1.88 1.88 1.88 1.88 1.89 1.89 1.89 1.89										71.49 95.32
1.50 1.67 1.67 1.68 1.88	DC6-48-60-18-8F	C	From Face		0.0000	92.00				32.80
2.00 1" Ice 1.88 1.88	2 60 10 00 10 01	Ü	1101111 400		0.0000	,2.00				50.52
PiROD 13' Platform w/handrails (Monopole) C None 0.0000 82.00 No Ice 1/2" Ice 40.20 40.20 1/2" Ice 40.20 40.20 1" Ice 49.10 49.10 (2) DB846F65ZAXY w/Mount Pipe A From Face 4.00 0.000 82.00 No Ice 7.27 7.82 1/2" Ice 7.88 9.01				2.00			1" Ice	1.88	1.88	70.72
1/2" Ice 40.20 40.20 40.20 1" Ice 49.10 49.1		C	NT.		0.0000	92.00	NI. I	21.20	21.20	1000 0
(2) DB846F65ZAXY w/Mount Pipe A From Face 4.00 0.0000 82.00 No Ice 7.27 7.82 0.00 1/2" Ice 7.88 9.01	15 Platform w/nandrails (Monopole)	C	None		0.0000	82.00				1822.0 2452.0
(2) DB846F65ZAXY w/Mount Pipe A From Face 4.00 0.0000 82.00 No Ice 7.27 7.82 0.00 1/2" Ice 7.88 9.01										3082.0
0.00 1/2" Ice 7.88 9.01	DB846F65ZAXY w/Mount Pipe	A	From Face	4.00	0.0000	82.00				46.55
0.00 1"Top 9.49 0.01		-								113.93
				0.00			1" Ice	8.48	9.91	189.25
(2) DB846F65ZAXY w/Mount Pipe B From Face 4.00 0.0000 82.00 No Ice 7.27 7.82	DB846F65ZAXY w/Mount Pipe	В	From Face		0.0000	82.00				46.55
0.00 1/2" Ice 7.88 9.01										113.93
0.00 1" Ice 8.48 9.91 (2) DB846F65ZAXY w/Mount Pipe C From Face 4.00 0.0000 82.00 No Ice 7.27 7.82	DR9/6E657AVV w/Mount Ding	C	From Eggs		0.0000	82.00				189.25 46.55

Ramaker & Associates, Inc. 1120 Dallas Street

Job		Page
	Com-Tronics (CT60XC969)	6 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert ft ft ft	0	ft		ft²	ft ²	lb
			0.00			1/2" Ice	7.88	9.01	113.93
			0.00			1" Ice	8.48	9.91	189.25
LNX-6512DS-T4M w/ mount pipe	A	From Face	3.00	0.0000	82.00	No Ice 1/2" Ice	6.17	5.07	62.94
			2.00 0.00			1/2 Ice 1" Ice	6.69 7.21	5.80 6.55	116.49 177.09
LNX-6512DS-T4M w/ mount pipe	В	From Face	3.00	0.0000	82.00	No Ice	6.17	5.07	62.94
			2.00			1/2" Ice	6.69	5.80	116.49
			0.00			1" Ice	7.21	6.55	177.09
LNX-6512DS-T4M w/ mount pipe	C	From Face	3.00	0.0000	82.00	No Ice	6.17	5.07	62.94
			2.00			1/2" Ice	6.69	5.80	116.49
Dyman MDC2 900 T2 m/ mount nine	A	Енона Бооо	0.00 3.00	0.0000	82.00	1" Ice	7.21 3.23	6.55	177.09 17.43
Rymsa MDG3-800 T2 w/ mount pipe	A	From Face	-4.00	0.0000	82.00	No Ice 1/2" Ice	3.57	2.47 2.86	39.45
			0.00			1" Ice	3.91	3.27	66.35
Rymsa MDG3-800 T2 w/ mount pipe	В	From Face	3.00	0.0000	82.00	No Ice	3.23	2.47	17.43
,			-4.00			1/2" Ice	3.57	2.86	39.45
			0.00			1" Ice	3.91	3.27	66.35
Rymsa MDG3-800 T2 w/ mount pipe	C	From Face	3.00	0.0000	82.00	No Ice	3.23	2.47	17.43
			-4.00			1/2" Ice	3.57	2.86	39.45
***			0.00			1" Ice	3.91	3.27	66.35
1900MHz 4x40W RRH	A	From Face	1.00	0.0000	73.00	No Ice	2.71	2.61	59.50
(Sprint)	Α	rioiii race	-0.50	0.0000	73.00	1/2" Ice	2.71	2.84	82.62
(Spriit)			0.00			1" Ice	3.20	3.09	108.98
1900MHz 4x40W RRH	В	From Face	1.00	0.0000	73.00	No Ice	2.71	2.61	59.50
(Sprint)			-0.50			1/2" Ice	2.95	2.84	82.62
•			0.00			1" Ice	3.20	3.09	108.98
1900MHz 4x40W RRH	C	From Face	1.00	0.0000	73.00	No Ice	2.71	2.61	59.50
(Sprint)			-0.50			1/2" Ice	2.95	2.84	82.62
1000MH- 4-40W DDH		E E	0.00	0.0000	72.00	1" Ice	3.20	3.09	108.98
1900MHz 4x40W RRH	A	From Face	1.00 0.50	0.0000	73.00	No Ice 1/2" Ice	2.71 2.95	2.61 2.84	59.50 82.62
(Sprint)			0.00			1" Ice	3.20	3.09	108.98
1900MHz 4x40W RRH	В	From Face	1.00	0.0000	73.00	No Ice	2.71	2.61	59.50
(Sprint)			0.50			1/2" Ice	2.95	2.84	82.62
			0.00			1" Ice	3.20	3.09	108.98
1900MHz 4x40W RRH	C	From Face	1.00	0.0000	73.00	No Ice	2.71	2.61	59.50
(Sprint)			0.50			1/2" Ice	2.95	2.84	82.62
800MHz 2x50W RRH		E E	0.00	0.0000	75.00	1" Ice	3.20	3.09	108.98
(Sprint)	A	From Face	1.00 0.00	0.0000	75.00	No Ice 1/2" Ice	2.40 2.61	2.25 2.46	64.00 86.12
(Sprint)			0.00			1" Ice	2.83	2.68	111.30
800MHz 2x50W RRH	В	From Face	1.00	0.0000	75.00	No Ice	2.40	2.25	64.00
(Sprint)			0.00			1/2" Ice	2.61	2.46	86.12
			0.00			1" Ice	2.83	2.68	111.30
800MHz 2x50W RRH	C	From Face	1.00	0.0000	75.00	No Ice	2.40	2.25	64.00
(Sprint)			0.00			1/2" Ice	2.61	2.46	86.12
***			0.00			1" Ice	2.83	2.68	111.30
14' T-Arm	A	None		0.0000	72.00	No Ice	5.80	5.80	336.00
(Sprint)	Α	INOHE		0.0000	72.00	1/2" Ice	9.71	9.71	412.00
(Sprint)						1" Ice	13.62	13.62	488.00
14' T-Arm	В	None		0.0000	72.00	No Ice	5.80	5.80	336.00
(Sprint)						1/2" Ice	9.71	9.71	412.00
						1" Ice	13.62	13.62	488.00
14' T-Arm	C	None		0.0000	72.00	No Ice 1/2" Ice	5.80	5.80	336.00
(Sprint)							9.71	9.71	412.00

Ramaker & Associates, Inc. 1120 Dallas Street

Job		Page
	Com-Tronics (CT60XC969)	7 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
	Leg		Vert ft ft	0	ft		ft ²	ft²	lb
			ft						
						1" Ice	13.62	13.62	488.00
LLPX310R	A	From Face	3.00	0.0000	72.00	No Ice	4.87	1.97	27.56
(Clearwire)			2.00 0.00			1/2" Ice 1" Ice	5.22 5.59	2.24 2.52	53.68 83.80
LLPX310R	В	From Face	3.00	0.0000	72.00	No Ice	3.39 4.87	1.97	27.56
(Clearwire)	ь	1 Ioni 1 acc	2.00	0.0000	72.00	1/2" Ice	5.22	2.24	53.68
(,			0.00			1" Ice	5.59	2.52	83.80
LLPX310R	C	From Face	3.00	0.0000	72.00	No Ice	4.87	1.97	27.56
(Clearwire)			2.00			1/2" Ice	5.22	2.24	53.68
ADVIVEDDIO C. AA. AD'		гг	0.00	0.0000	72.00	1" Ice	5.59	2.52	83.80
APXVSPP18-C w/Mount Pipe	A	From Face	3.00 -7.00	0.0000	72.00	No Ice 1/2" Ice	8.56 9.21	6.95 8.13	82.55 150.82
(Sprint)			0.00			1" Ice	9.21	9.03	227.06
APXVSPP18-C w/Mount Pipe	В	From Face	3.00	0.0000	72.00	No Ice	8.56	6.95	82.55
(Sprint)			-7.00			1/2" Ice	9.21	8.13	150.82
			0.00			1" Ice	9.83	9.03	227.06
APXVSPP18-C w/Mount Pipe	C	From Face	3.00	0.0000	72.00	No Ice	8.56	6.95	82.55
(Sprint)			-7.00			1/2" Ice	9.21	8.13	150.82
2'x2'x8" Box	С	From Face	0.00 1.50	0.0000	72.00	1" Ice	9.83 5.60	9.03 1.87	227.06 50.00
(Sprint)	C	From Face	0.00	0.0000	72.00	No Ice 1/2" Ice	5.92	2.08	82.96
(Зріші)			0.00			1" Ice	6.24	2.30	119.74
NEW			0.00			1 100	0.21	2.50	117.71
APXVTM14-C-120 w/Mount Pipe	A	From Face	3.00	0.0000	72.00	No Ice	7.13	5.24	82.10
(Sprint)			7.00			1/2" Ice	7.92	6.41	139.45
			0.00			1" Ice	8.65	7.45	203.80
APXVTM14-C-120 w/Mount Pipe	В	From Face	3.00	0.0000	72.00	No Ice	7.13	5.24	82.10
(Sprint)			7.00			1/2" Ice	7.92	6.41	139.45
APXVTM14-C-120 w/Mount Pipe	С	From Face	0.00 3.00	0.0000	72.00	1" Ice No Ice	8.65 7.13	7.45 5.24	203.80 82.10
(Sprint)	C	1 Tom 1 ace	7.00	0.0000	72.00	1/2" Ice	7.13	6.41	139.45
(Бріші)			0.00			1" Ice	8.65	7.45	203.80
TD-RRH 8x20	A	From Face	3.00	0.0000	72.00	No Ice	4.32	1.41	66.13
(Sprint)			7.00			1/2" Ice	4.60	1.61	90.06
			-3.00			1" Ice	4.89	1.83	117.33
TD-RRH 8x20	В	From Face	3.00	0.0000	72.00	No Ice	4.32	1.41	66.13
(Sprint)			7.00			1/2" Ice	4.60	1.61	90.06
TD-RRH 8x20	С	From Face	-3.00 3.00	0.0000	72.00	1" Ice No Ice	4.89 4.32	1.83 1.41	117.33 66.13
(Sprint)	C	110m race	7.00	0.0000	72.00	1/2" Ice	4.60	1.61	90.06
(бринг)			-3.00			1" Ice	4.89	1.83	117.33

DR65-12-XXXBL w/Mount Pipe	A	From Face	1.00	0.0000	58.00	No Ice	11.70	9.72	66.35
			0.00			1/2" Ice	12.42	11.23	155.65
	_		0.00			1" Ice	13.15	12.77	254.88
DR65-12-XXXBL w/Mount Pipe	В	From Face	1.00	0.0000	58.00	No Ice	11.70	9.72	66.35
			0.00			1/2" Ice 1" Ice	12.42 13.15	11.23 12.77	155.65 254.88
DR65-12-XXXBL w/Mount Pipe	С	From Face	1.00	0.0000	58.00	No Ice	11.70	9.72	254.88 66.35
DR03-12-AAABE w/Wount i ipc	C	1 Tom 1 acc	0.00	0.0000	36.00	1/2" Ice	12.42	11.23	155.65
			0.00			1" Ice	13.15	12.77	254.88

12' T-Arm	C	None		0.0000	28.00	No Ice	4.70	4.70	333.00
						1/2" Ice	5.33	5.33	400.00
41.0: 1.00	-	G: 10007 0	2.00	0.0000	20.00	1" Ice	5.96	5.96	467.00
4' Standoff	С	Stand-Off Left	2.00	0.0000	28.00	No Ice	2.72	2.72	50.00
			7.00			1/2" Ice	4.91	4.91	89.00

Ramaker & Associates, Inc. 1120 Dallas Street

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

Job		Page
	Com-Tronics (CT60XC969)	8 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C_AA_A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	lb
4' Standoff	С	Stand-Off Right	1.50 2.00 -7.00	0.0000	28.00	1" Ice No Ice 1/2" Ice	7.10 2.72 4.91	7.10 2.72 4.91	128.00 50.00 89.00
10' Omni	C	From Face	1.50 2.00 -10.00	0.0000	28.00	1" Ice No Ice 1/2" Ice	7.10 2.75 3.78	7.10 2.75 3.78	128.00 30.00 50.21
10' Omni	C	From Face	6.00 2.00 10.00	0.0000	28.00	1" Ice No Ice 1/2" Ice	4.83 2.75 3.78	4.83 2.75 3.78	76.96 30.00 50.21
10' Omni	C	From Face	6.00 2.00 6.00	0.0000	28.00	1" Ice No Ice 1/2" Ice	4.83 2.75 3.78	4.83 2.75 3.78	76.96 30.00 50.21
12' Omni	С	From Face	6.00 2.00 -6.00	0.0000	28.00	1" Ice No Ice 1/2" Ice	4.83 3.30 4.53	4.83 3.30 4.53	76.96 35.00 59.18
12' Omni	С	From Face	8.00 2.00 2.50	0.0000	28.00	1" Ice No Ice 1/2" Ice	5.78 3.30 4.53	5.78 3.30 4.53	91.13 35.00 59.18
20' Omni	С	From Face	8.00 2.00 -2.50 14.00	0.0000	28.00	1" Ice No Ice 1/2" Ice 1" Ice	5.78 5.50 7.53 9.58	5.78 5.50 7.53 9.58	91.13 55.00 95.06 147.78

	Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				Vert ft	٥	0	ft	ft		ft ²	lb
A-ANT-23G-1	С	Paraboloid	From	3.00	0.0000		72.00	1.27	No Ice	1.28	14.00
		w/Shroud (HP)	Face	-2.00					1/2" Ice	1.45	21.19
				0.00					1" Ice	1.62	28.37
A-ANT-23G-1	C	Paraboloid	From	3.00	0.0000		72.00	1.27	No Ice	1.28	14.00
		w/Shroud (HP)	Face	-2.00					1/2" Ice	1.45	21.19
				2.50					1" Ice	1.62	28.37
Andrew 3' w/Radome	Α	Paraboloid	From	3.00	0.0000		72.00	3.00	No Ice	7.07	100.00
		w/Radome	Face	-2.00					1/2" Ice	7.47	138.35
				1.00					1" Ice	7.87	176.70

Force Totals

Load	Vertical	Sum of	Sum of	Sum of Overturning	Sum of Overturning	Sum of Torques
Case	Forces	Forces	Forces	Moments, M_x	Moments, Mz	
		X	Z	lb-ft	lb-ft	
	lb	lb	lb			lb-ft
Leg Weight	8288.71					
Bracing Weight	4373.61					

Ramaker & Associates, Inc. 1120 Dallas Street

1120 Dallas Street Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

Job		Page
	Com-Tronics (CT60XC969)	9 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Load	Vertical	Sum of	Sum of	Sum of Overturning	Sum of Overturning	Sum of Torques
Case	Forces	Forces	Forces	Moments, M_x	Moments, M_z	Sum of Torques
Cuse	10,000	X	Z	lb-ft	lb-ft	
	lb	lb	lb	,.	,.	lb-ft
Total Member Self-Weight	12662.32			1886.08	137.00	J. J.
Total Weight	27756.33			1886.08	137.00	
Wind 0 deg - No Ice		8.80	-23469.66	-1594688.42	-505.55	227.49
Wind 30 deg - No Ice		11657.17	-20324.35	-1380720.07	-792543.58	2327.42
Wind 60 deg - No Ice		20203.80	-11775.43	-799373.35	-1373773.94	3773.65
Wind 90 deg - No Ice		23393.38	18.10	3210.51	-1590998.54	4301.58
Wind 120 deg - No Ice		20248.48	11809.44	805622.31	-1377037.24	3690.54
Wind 150 deg - No Ice		11689.11	20423.78	1391744.46	-794873.97	2153.06
Wind 180 deg - No Ice		31.05	23516.71	1601888.94	-2129.37	-10.45
Wind 210 deg - No Ice		-11587.50	20335.66	1385311.26	787730.12	-2121.55
Wind 240 deg - No Ice		-20128.78	11750.50	801319.30	1368573.10	-3653.45
Wind 270 deg - No Ice		-23316.27	4.62	2226.50	1585643.64	-4220.76
Wind 300 deg - No Ice		-20200.14	-11809.17	-801836.12	1373780.85	-3507.19
Wind 330 deg - No Ice		-11655.80	-20382.89	-1384993.94	792717.68	-1965.74
Member Ice	3432.17					
Total Weight Ice	38890.47			4110.63	-33.13	
Wind 0 deg - Ice		1.87	-6576.42	-426516.99	-169.68	125.91
Wind 30 deg - Ice		3271.43	-5695.41	-368828.89	-214134.52	838.12
Wind 60 deg - Ice		5668.96	-3297.55	-211886.65	-371062.67	1319.77
Wind 90 deg - Ice		6560.01	4.09	4410.12	-429488.78	1467.16
Wind 120 deg - Ice		5678.61	3304.25	220595.59	-371767.74	1223.68
Wind 150 deg - Ice		3278.09	5715.97	378549.44	-214620.09	666.62
Wind 180 deg - Ice		6.60	6585.87	435426.22	-514.76	-78.68
Wind 210 deg - Ice		-3256.49	5697.24	377182.33	212977.47	-793.06
Wind 240 deg - Ice		-5653.18	3291.72	219681.17	369844.55	-1294.09
Wind 270 deg - Ice		-6543.63	1.23	4201.01	428226.33	-1450.97
Wind 300 deg - Ice		-5668.18	-3304.72	-212410.01	370939.64	-1182.74
Wind 330 deg - Ice		-3271.14	-5707.85	-369737.13	214047.03	-625.84
Total Weight	27756.33		212121	1886.08	137.00	-0-1
Wind 0 deg - Service		3.05	-8121.81	-550728.95	17.82	78.71
Wind 30 deg - Service		4034.03	-7033.35	-476680.94	-274083.04	805.33
Wind 60 deg - Service		6991.64	-4074.95	-275494.16	-475229.55	1305.76
Wind 90 deg - Service		8095.41	6.26	2255.77	-550404.29	1488.43
Wind 120 deg - Service		7007.10	4086.72	279946.17	-476358.72	1277.00
Wind 150 deg - Service		4045.08	7067.76	482785.34	-274889.40	745.00
Wind 180 deg - Service		10.74	8138.09	555510.21	-544.05	-3.62
Wind 210 deg - Service		-4009.92	7037.27	480559.32	272802.99	-734.10
Wind 240 deg - Service		-6965.68	4066.32	278457.24	473815.46	-1264.17
Wind 200 deg - Service		-8068.73	1.60	1915.28	548936.89	-1460.47
Wind 300 deg - Service		-6990.38	-4086.63	-276346.33	475617.44	-1213.56
Wind 330 deg - Service		-4033.56	-7053.61	-478159.78	274528.79	-680.19

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	

Ramaker & Associates, Inc. 1120 Dallas Street

1120 Dallas Street Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

Job		Page
	Com-Tronics (CT60XC969)	10 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Comb.	Description
No.	
11	Dead+Wind 270 deg - No Ice
12	Dead+Wind 300 deg - No Ice
13	Dead+Wind 330 deg - No Ice
14	Dead+Ice+Temp
15	Dead+Wind 0 deg+Ice+Temp
16	Dead+Wind 30 deg+Ice+Temp
17	Dead+Wind 60 deg+Ice+Temp
18	Dead+Wind 90 deg+Ice+Temp
19	Dead+Wind 120 deg+Ice+Temp
20	Dead+Wind 150 deg+Ice+Temp
21	Dead+Wind 180 deg+Ice+Temp
22	Dead+Wind 210 deg+Ice+Temp
23	Dead+Wind 240 deg+Ice+Temp
24	Dead+Wind 270 deg+Ice+Temp
25	Dead+Wind 300 deg+Ice+Temp
26	Dead+Wind 330 deg+Ice+Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 30 deg - Service
29	Dead+Wind 60 deg - Service
30	Dead+Wind 90 deg - Service
31	Dead+Wind 120 deg - Service
32	Dead+Wind 150 deg - Service
33	Dead+Wind 180 deg - Service
34	Dead+Wind 210 deg - Service
35	Dead+Wind 240 deg - Service
36	Dead+Wind 270 deg - Service
37	Dead+Wind 300 deg - Service
38	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	lb	lb-ft	lb-ft
L1	102.7 - 89.78	Pole	Max Tension	8	0.00	-0.02	-0.00
			Max. Compression	14	-6411.57	-90.59	-220.68
			Max. Mx	5	-3322.88	-28087.39	-109.42
			Max. My	8	-3320.35	-41.17	-28159.77
			Max. Vy	5	6176.71	-28087.39	-109.42
			Max. Vx	8	6178.09	-41.17	-28159.77
			Max. Torque	4			-242.19
L2	89.78 - 44.98	Pole	Max Tension	21	85004.15	344.56	-27896.02
			Max. Compression	14	-17903.09	407.86	-739.61
			Max. Mx	5	142.28	-343160.46	-544.44
			Max. My	8	241.16	-335.93	-345286.11
			Max. Vy	5	16415.67	-304016.26	-544.25
			Max. Vx	8	16542.39	26.23	-305569.31
			Max. Torque	6			-807.98
L3	44.98 - 0	Pole	Max Tension	21	141204.00	-3337.39	-99647.59
			Max. Compression	1	-18764.95	75.19	-1210.64
			Max. Mx	5	-11168.08	-1136738.09	-2178.46
			Max. My	8	-11055.85	-1548.68	-1144416.56
			Max. Vy	5	20038.22	-1136738.09	-2178.46
			Max. Vx	8	20140.94	-1548.68	-1144416.56
			Max. Torque	5			-4299.16
	0 - 35	Reinforcing	Max Tension	7	193765.71	-3735.51	-74.96
		· ·	Max. Compression	13	-203296.99	0.00	-0.00
			Max. Mx	6	166962.28	-4300.55	-15.59
			Max. My	11	191689.46	4.72	147.77

Ramaker & Associates, Inc. 1120 Dallas Street Sauk City, WI 53583

Phone: (608) 643-4100 FAX: (608) 643-7999

Job		Page
	Com-Tronics (CT60XC969)	11 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Section	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	lb	lb-ft	lb-ft
			Max. Vy	6	-150.33	-4300.55	-15.59
			Max. Vx	11	12.42	4.72	147.77
	30 - 65	Reinforcing	Max Tension	7	149715.78	-2501.13	-49.24
		-	Max. Compression	13	-158432.47	2908.99	37.98
			Max. Mx	4	112939.67	4223.82	-33.04
			Max. My	11	130048.51	9.36	127.58
			Max. Vy	6	-825.09	3150.63	22.49
			Max. Vx	11	-28.43	9.36	127.58

		Maximu	um Reactions		
Location	Condition	Gov. Load	Vertical lb	Horizontal, X lb	Horizontal, Z lb
		Comb.	i o	ib	io
Pole	Max. Vert	1	18764.95	-0.46	4.92
	Max. H _x	11	11230.85	19966.10	2.74
	Max. H _z	2	11152.51	-9.85	20100.10
	Max. M _x	2	1139515.73	-9.85	20100.10
	Max. M _z	5	1136738.09	-20028.56	-8.91
	Max. Torsion	11	4220.51	19966.10	2.74
	Min. Vert	21	-85977.73	-6.18	-5998.72
	Min. H _x	5	11185.40	-20028.56	-8.91
	Min. H _z	8	11073.37	-28.76	-20131.31
	Min. M _x	8	-1144416.56	-28.76	-20131.31
	Min. M _z	11	-1133016.26	19966.10	2.74
	Min. Torsion	5	-4299.18	-20028.56	-8.91
Reinf @ Azimuth 90 deg	Max. Vert	5	202706.78	-275.17	4.04
_	Max. H _x	11	-191009.74	4588.25	-4.27
	Max. H _z	7	104055.58	-730.05	1153.54
	Min. Vert	11	-191009.74	4588.25	-4.27
	Min. H _x	18	95004.96	-911.53	3.75
	Min. H _z	3	103726.01	-729.56	-1141.25
Reinf @ Azimuth -30 deg	Max. Vert	13	203296.95	38.05	169.28
C	Max. H _x	3	104568.11	1254.37	118.74
	Max. H _z	11	103492.32	-617.06	1079.09
	Min. Vert	7	-193087.33	-2216.39	-3983.13
	Min. H _x	6	-166295.64	-2568.89	-2718.63
	Min. H _z	7	-193087.33	-2216.39	-3983.13
Reinf @ Azimuth 210 deg	Max. Vert	9	203092.86	44.28	-168.60
_	Max. H _x	7	105720.03	1270.32	-110.82
	Max. H _z	3	-191717.43	-2198.30	3938.40
	Min. Vert	3	-191717.43	-2198.30	3938.40
	Min. H _x	4	-165368.31	-2552.02	2694.69
	Min. H _z	11	104042.90	-621.02	-1082.18

Tower Mast Reaction Summary						
Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead Only Dead+Wind 0 deg - No Ice Dead+Wind 30 deg - No Ice	27756.33 27756.33 27756.33	-0.00 8.80 11657.17	0.00 -23469.66 -20324.35	1896.80 -1633499.67 -1414296.84	140.87 -473.72 -811853.20	0.21 233.62 2331.10

Ramaker & Associates, Inc. 1120 Dallas Street

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

1		Page
Job		Page
	Com-Tronics (CT60XC969)	12 of 17
Project		Date
	27746	16:47:43 07/22/14
Client	0	Designed by
	Sprint	tmoore

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead+Wind 60 deg - No Ice	27756.33	20203.80	-11775.43	-818867.67	-1407243.46	3774.28
Dead+Wind 90 deg - No Ice	27756.33	23393.38	18.10	3276.47	-1629695.89	4301.50
Dead+Wind 120 deg - No Ice	27756.33	20248.48	11809.44	825244.63	-1410581.89	3690.45
Dead+Wind 150 deg - No Ice	27756.33	11689.11	20423.78	1425555.59	-814237.84	2148.32
Dead+Wind 180 deg - No Ice	27756.33	31.05	23516.71	1640857.35	-2134.69	-18.50
Dead+Wind 210 deg - No Ice	27756.33	-11587.50	20335.66	1419057.51	806906.57	-2129.69
Dead+Wind 240 deg - No Ice	27756.33	-20128.78	11750.50	820784.55	1401904.11	-3659.34
Dead+Wind 270 deg - No Ice	27756.33	-23316.27	4.62	2270.39	1624311.81	-4221.30
Dead+Wind 300 deg - No Ice	27756.33	-20200.14	-11809.17	-821316.55	1407216.15	-3504.06
Dead+Wind 330 deg - No Ice	27756.33	-11655.80	-20382.89	-1418729.36	811997.48	-1959.74
Dead+Ice+Temp	38890.47	0.00	-0.00	4383.34	-64.91	1.11
Dead+Wind 0 deg+Ice+Temp	38890.47	1.87	-6576.42	-443069.55	-158.67	128.53
Dead+Wind 30 deg+Ice+Temp	38890.47	3271.43	-5695.41	-383143.31	-222428.12	843.71
Dead+Wind 60 deg+Ice+Temp	38890.47	5668.96	-3297.55	-220111.05	-385447.14	1326.78
Dead+Wind 90 deg+Ice+Temp	38890.47	6560.01	4.09	4574.44	-446138.66	1473.63
Dead+Wind 120 deg+Ice+Temp	38890.47	5678.61	3304.25	229144.86	-386178.36	1227.90
Dead+Wind 150 deg+Ice+Temp	38890.47	3278.09	5715.97	393225.97	-222931.93	667.47
Dead+Wind 180 deg+Ice+Temp	38890.47	6.60	6585.87	452312.15	-516.34	-81.39
Dead+Wind 210 deg+Ice+Temp	38890.47	-3256.49	5697.24	391809.90	221263.43	-798.58
Dead+Wind 240 deg+Ice+Temp	38890.47	-5653.18	3291.72	228197.06	384219.20	-1300.99
Dead+Wind 270 deg+Ice+Temp	38890.47	-6543.63	1.23	4357.84	444864.70	-1457.50
Dead+Wind 300 deg+Ice+Temp	38890.47	-5668.18	-3304.72	-220652.67	385353.14	-1187.20
Dead+Wind 330 deg+Ice+Temp	38890.47	-3271.14	-5707.85	-384084.40	222371.02	-626.92
Dead+Wind 0 deg - Service	27756.33	3.05	-8121.80	-564435.52	-79.66	80.68
Dead+Wind 30 deg - Service	27756.33	4034.03	-7033.35	-488533.09	-281052.46	809.16
Dead+Wind 60 deg - Service	27756.33	6991.64	-4074.95	-282305.65	-487240.84	1310.32
Dead+Wind 90 deg - Service	27756.33	8095.41	6.26	2400.00	-564295.75	1492.36
Dead+Wind 120 deg - Service	27756.33	7007.10	4086.72	287044.90	-488396.59	1279.32
Dead+Wind 150 deg - Service	27756.33	4045.08	7067.76	494963.30	-281878.00	745.08
Dead+Wind 180 deg - Service	27756.33	10.74	8138.08	569512.76	-654.62	-5.69
Dead+Wind 210 deg - Service	27756.33	-4009.92	7037.27	492687.39	279546.00	-737.72
Dead+Wind 240 deg - Service	27756.33	-6965.68	4066.32	285520.94	485597.47	-1268.46
Dead+Wind 270 deg - Service	27756.33	-8068.73	1.60	2051.73	562598.91	-1464.42
Dead+Wind 300 deg - Service	27756.33	-6990.38	-4086.63	-283176.22	487440.05	-1216.25
Dead+Wind 330 deg - Service	27756.33	-4033.56	-7053.61	-490046.62	281310.86	-680.64

Solution Summary

	Su	ım of Applied Forces			Sum of Reactions	1	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	0.00	-27756.33	0.00	0.00	27756.33	-0.00	0.000%
2	8.80	-27756.33	-23469.66	-8.80	27756.33	23469.66	0.000%
3	11657.17	-27756.33	-20324.35	-11657.17	27756.33	20324.35	0.000%
4	20203.80	-27756.33	-11775.43	-20203.80	27756.33	11775.43	0.000%
5	23393.38	-27756.33	18.10	-23393.38	27756.33	-18.10	0.000%
6	20248.48	-27756.33	11809.44	-20248.48	27756.33	-11809.44	0.000%
7	11689.11	-27756.33	20423.78	-11689.11	27756.33	-20423.78	0.000%
8	31.05	-27756.33	23516.71	-31.05	27756.33	-23516.71	0.000%
9	-11587.50	-27756.33	20335.66	11587.50	27756.33	-20335.66	0.000%
10	-20128.78	-27756.33	11750.50	20128.78	27756.33	-11750.50	0.000%
11	-23316.27	-27756.33	4.62	23316.27	27756.33	-4.62	0.000%
12	-20200.14	-27756.33	-11809.17	20200.14	27756.33	11809.17	0.000%
13	-11655.80	-27756.33	-20382.89	11655.80	27756.33	20382.89	0.000%
14	0.00	-38890.47	0.00	-0.00	38890.47	0.00	0.000%
15	1.87	-38890.47	-6576.42	-1.87	38890.47	6576.42	0.000%
16	3271.43	-38890.47	-5695.41	-3271.43	38890.47	5695.41	0.000%
17	5668.96	-38890.47	-3297.55	-5668.96	38890.47	3297.55	0.000%

Ramaker & Associates, Inc. 1120 Dallas Street

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

Job		Page
	Com-Tronics (CT60XC969)	13 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

	Si	um of Applied Forces			Sum of Reactions		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
18	6560.01	-38890.47	4.09	-6560.01	38890.47	-4.09	0.000%
19	5678.61	-38890.47	3304.25	-5678.61	38890.47	-3304.25	0.000%
20	3278.09	-38890.47	5715.97	-3278.09	38890.47	-5715.97	0.000%
21	6.60	-38890.47	6585.87	-6.60	38890.47	-6585.87	0.000%
22	-3256.49	-38890.47	5697.24	3256.49	38890.47	-5697.24	0.000%
23	-5653.18	-38890.47	3291.72	5653.18	38890.47	-3291.72	0.000%
24	-6543.63	-38890.47	1.23	6543.63	38890.47	-1.23	0.000%
25	-5668.18	-38890.47	-3304.72	5668.18	38890.47	3304.72	0.000%
26	-3271.14	-38890.47	-5707.85	3271.14	38890.47	5707.85	0.000%
27	3.05	-27756.33	-8121.81	-3.05	27756.33	8121.80	0.000%
28	4034.03	-27756.33	-7033.35	-4034.03	27756.33	7033.35	0.000%
29	6991.64	-27756.33	-4074.95	-6991.64	27756.33	4074.95	0.000%
30	8095.41	-27756.33	6.26	-8095.41	27756.33	-6.26	0.000%
31	7007.10	-27756.33	4086.72	-7007.10	27756.33	-4086.72	0.000%
32	4045.08	-27756.33	7067.76	-4045.08	27756.33	-7067.76	0.000%
33	10.74	-27756.33	8138.09	-10.74	27756.33	-8138.08	0.000%
34	-4009.92	-27756.33	7037.27	4009.92	27756.33	-7037.27	0.000%
35	-6965.68	-27756.33	4066.32	6965.68	27756.33	-4066.32	0.000%
36	-8068.73	-27756.33	1.60	8068.73	27756.33	-1.60	0.000%
37	-6990.38	-27756.33	-4086.63	6990.38	27756.33	4086.63	0.000%
38	-4033.56	-27756.33	-7053.61	4033.56	27756.33	7053.61	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00004921
3	Yes	5	0.0000001	0.00004564
4	Yes	5	0.0000001	0.00004092
5	Yes	5	0.0000001	0.00001081
6	Yes	5	0.0000001	0.00004806
7	Yes	5	0.0000001	0.00003995
8	Yes	4	0.0000001	0.00004310
9	Yes	5	0.0000001	0.00004281
10	Yes	5	0.0000001	0.00004665
11	Yes	5	0.0000001	0.00000988
12	Yes	5	0.0000001	0.00004158
13	Yes	5	0.0000001	0.00004797
14	Yes	4	0.0000001	0.00000480
15	Yes	5	0.0000001	0.00000944
16	Yes	5	0.0000001	0.00001124
17	Yes	5	0.0000001	0.00001109
18	Yes	5	0.0000001	0.00000983
19	Yes	5	0.0000001	0.00001161
20	Yes	5	0.0000001	0.00001120
21	Yes	5	0.0000001	0.00000961
22	Yes	5	0.0000001	0.00001126
23	Yes	5	0.0000001	0.00001162
24	Yes	5	0.0000001	0.00000975
25	Yes	5	0.0000001	0.00001110
26	Yes	5	0.0000001	0.00001126
27	Yes	4	0.0000001	0.00004092
28	Yes	5	0.0000001	0.00000764
29	Yes	5	0.0000001	0.00000618
30	Yes	4	0.0000001	0.00012044

tnx	Tower

Ramaker & Associates, Inc. 1120 Dallas Street

Job		Page
	Com-Tronics (CT60XC969)	14 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

31	Yes	5	0.0000001	0.00000856
32	Yes	5	0.0000001	0.0000604
33	Yes	4	0.0000001	0.00004025
34	Yes	5	0.0000001	0.00000625
35	Yes	5	0.0000001	0.00000837
36	Yes	4	0.0000001	0.00011466
37	Yes	5	0.0000001	0.00000621
38	Yes	5	0.0000001	0.00000750

Maximum Tower Deflections - Service Wind						
Section	Elevation	Horz.	Gov.	Tilt	Twist	
No.		Deflection	Load			
	ft	in	Comb.	0	0	
L1	102.7 - 89.78	18.835	33	1.7461	0.0076	
L2	89.78 - 44.98	14.154	33	1.6894	0.0073	
L3	48.78 - 0	3.813	32	0.7457	0.0035	

Critical Deflections and Radius of Curvature - Service Wind							
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of	
ft		Load Comb.	in	0	0	Curvature ft	
102.00	4' T-Arm	33	18.575	1.7449	0.0076	7246	
92.00	PiROD 13' Platform w/handrails (Monopole)	33	14.927	1.7082	0.0074	3429	
82.00	PiROD 13' Platform w/handrails (Monopole)	33	11.610	1.5795	0.0069	2736	
75.00	800MHz 2x50W RRH	33	9.547	1.4332	0.0063	2678	
74.50	A-ANT-23G-1	33	9.408	1.4214	0.0062	2674	
73.00	Andrew 3' w/Radome	33	8.998	1.3853	0.0061	2662	
72.00	A-ANT-23G-1	33	8.730	1.3606	0.0060	2654	
58.00	DR65-12-XXXBL w/Mount Pipe	33	5.463	0.9852	0.0045	2547	
28.00	12' T-Arm	32	1.451	0.3454	0.0018	4322	

Maximum Tower Deflections - Design Wind						
Section	Elevation	Horz.	Gov.	Tilt	Twist	
No.		Deflection	Load			
	ft	in	Comb.	0	0	
L1	102.7 - 89.78	54.170	8	5.0231	0.0219	
L2	89.78 - 44.98	40.722	8	4.8607	0.0211	
L3	48.78 - 0	10.983	7	2.1486	0.0101	

	Critical Deflections and Radius of Curvature - Design Wind							
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature		
ft		Load Comb.	in	٥	0	ft		

tnxTower

Ramaker & Associates, Inc.
1120 Dallas Street

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

Job		Page
	Com-Tronics (CT60XC969)	15 of 17
Project		Date
	27746	16:47:43 07/22/14
Client	0.1.	Designed by
	Sprint	tmoore

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
		Load				ft
ft		Comb.	in	•	٥	-
102.00	4' T-Arm	8	53.423	5.0197	0.0219	2559
92.00	PiROD 13' Platform w/handrails (Monopole)	8	42.944	4.9145	0.0213	1210
82.00	PiROD 13' Platform w/handrails (Monopole)	7	33.411	4.5449	0.0197	962
75.00	800MHz 2x50W RRH	7	27.483	4.1247	0.0180	940
74.50	A-ANT-23G-1	7	27.083	4.0909	0.0179	938
73.00	Andrew 3' w/Radome	7	25.904	3.9872	0.0175	933
72.00	A-ANT-23G-1	7	25.134	3.9162	0.0172	930
58.00	DR65-12-XXXBL w/Mount Pipe	7	15.732	2.8374	0.0129	889
28.00	12' T-Arm	7	4.179	0.9961	0.0050	1502

Compression Checks

	Pole Design Data									
Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	$\frac{P}{P_a}$
L1	102.7 - 89.78 (1)	TP13x13x0.25	12.92	0.00	0.0	21.000	10.0138	-3320.21	210290.00	0.016
L2	89.78 - 44.98 (2)	TP26.7925x13x0.25	44.80	0.00	0.0	39.000	16.1707	-10303.80	630658.00	0.016
L3	44.98 - 0 (3)	TP40x25.1226x0.3125	48.78	0.00	0.0	39.000	39.3650	-11050.50	1535240.00	0.007

		Pole I	Bending I	Design	Data					
Section No.	Elevation	Size	Actual M _x	Actual f _{bx}	$Allow.$ F_{bx}	Ratio f_{bx}	Actual M _v	Actual f _{bv}	$Allow.$ F_{bv}	Ratio f_{by}
	ft		lb-ft	ksi	ksi	F_{bx}	lb-ft	ksi	ksi	$\overline{F_{by}}$
L1	102.7 - 89.78 (1)	TP13x13x0.25	28169.17	-10.790	23.100	0.467	0.00	0.000	23.100	0.000
L2	89.78 - 44.98 (2)	TP26.7925x13x0.25	305569.17	-45.290	39.000	1.161	0.00	0.000	39.000	0.000
L3	44.98 - 0 (3)	TP40x25.1226x0.3125	1145075.00	-35.644	39.000	0.914	0.00	0.000	39.000	0.000

Section	Elevation	Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.	Elevation	size	P Rano	f_{bx}	f_{by}	Stress Ratio	Stress Ratio	Criteria
	ft		P_a	F_{bx}	F_{bv}	_		
L1	102.7 - 89.78 (1)	TP13x13x0.25	0.016	0.467	0.000	0.483	1.333	H1-3 🗸
L2	89.78 - 44.98 (2)	TP26.7925x13x0.25	0.016	1.161	0.000	1.178	1.333	H1-3 🖊
L3	44.98 - 0 (3)	TP40x25.1226x0.3125	0.007	0.914	0.000	0.921	1.333	H1-3 🖊

Reinforcing Design Data (Compression)

tnxTower

Ramaker & Associates, Inc. 1120 Dallas Street

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

Job		Page
000	Com-Tronics (CT60XC969)	16 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Section	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual	Allow.	Ratio
No.								P	P_a	P
	ft		ft	ft		ksi	in ²	lb	lb	P_a
L3	35 - 0	MS-600	35.00	1.36	45.4 K=0.80	31.300	6.0000	-202985.00	187801.00	1.081
L3	65 - 30	MS-600	35.00	1.36	45.4 K=0.80	31.300	6.0000	-158432.00	187801.00	0.844

	Reinforcing Bending Design Data									
Section No.	Elevation ft	Size	Actual M _x lb-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	Ratio $\frac{f_{bx}}{F_{by}}$	Actual M _y lb-ft	Actual f _{by} ksi	Allow. F _{by} ksi	$Ratio$ f_{by} F_{bv}
L3 L3	35 - 0 65 - 30	MS-600 MS-600	3667.57 2908.99	-7.335 -5.818	48.750 48.750	0.150 0.119	44.85 37.98	-0.538 -0.456	48.750 48.750	0.011

Section No.	Elevation	Size	Ratio P	Ratio f_{bx}	Ratio f_{by}	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	ft		P_a	F_{bx}	F_{bv}	_		
L3	35 - 0	MS-600	1.081	0.150	0.011	1.242	1.333	H1-3 🗸
L3	65 - 30	MS-600	0.844	0.119	0.009	0.972	1.333	H1-3 🖊

Tension Checks

	Reinforcing Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow.	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P_a
L3	35 - 0	MS-600	35.00	1.36	56.7	40.000	4.7500	193766.00	190000.00	1.020
L3	65 - 30	MS-600	35.00	1.36	56.7	40.000	4.7500	149092.00	190000.00	0.785

	Reinforcing Bending Design Data									
Section No.	Elevation	Size	Actual M _x	Actual f_{bx}	Allow. F_{bx}	Ratio f_{bx}	Actual M _y	$Actual \ f_{by}$	$Allow.$ F_{by}	Ratio f _{by}
	ft		lb-ft	ksi	ksi	F_{bx}	lb-ft	ksi	ksi	F_{by}
L3	35 - 0	MS-600	-3735.51	7.471	48.750	0.153	-74.96	0.900	48.750	0.018
L3	65 - 30	MS-600	-2830.90	5.662	48.750	0.116	-55.64	0.668	48.750	0.014

tuvT	'ower
IIIA I	uwei

Ramaker & Associates, Inc. 1120 Dallas Street

Sauk City, WI 53583 Phone: (608) 643-4100 FAX: (608) 643-7999

Job		Page
	Com-Tronics (CT60XC969)	17 of 17
Project		Date
	27746	16:47:43 07/22/14
Client		Designed by
	Sprint	tmoore

Reinforcing Interaction Design Data									
Section No.	Elevation	Size	Ratio P	Ratio f_{bx}	$Ratio \ f_{by}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria	
	ft		P_a	F_{bx}	F_{by}	_			
L3	35 - 0	MS-600	1.020	0.153	0.018	1.192	1.333	H2-1	
L3	65 - 30	MS-600	0.785	0.116	0.014	0.915	1.333	H2-1 🖊	

	Section Capacity Table										
Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	$SF*P_{allow}$ lb	% Capacity	Pass Fail			
L1	102.7 - 89.78	Pole	TP13x13x0.25	1	-3320.21	280316.56	36.2	Pass			
L2	89.78 - 44.98	Pole	TP26.7925x13x0.25	2	-10303.80	840667.08	88.3	Pass			
L3	44.98 - 0	Pole	TP40x25.1226x0.3125	3	86290.40	2046474.84	69.1	Pass			
	35 - 0	Reinforcing	MS-600	8	-202985.00	250338.72	93.2	Pass			
	65 - 30	Reinforcing	MS-600	5	-158432.00	250338.72	72.9	Pass			
							Summary				
						Pole (L2)	88.3	Pass			
						Reinforcing (L3)	93.2	Pass			
						RATING =	93.2	Pass			

 $Program\ Version\ 6.1.3.1\ -\ 7/25/2013\ File: I:/27700/27746/Structural/Tower/tnx/27746\ rev1.eri$

CAISSON Version 13.00 5:27:08 PM Tuesday, July 22, 2014

Ramaker & Associates, Inc.

* CAISSON - Pier Foundations Analysis and Design - Copyright Power Line Systems, Inc. 1993-2013 *

Project Title: 27746 Project Notes: CT60XC969-A Calculation Method: Full 8CD

****** I N P U T D A T A

Pier Properties

Diameter	of Top of Pier above Ground	-	Steel Yield Strength
(ft)	(ft)	(ksi)	(ksi)
6.00	1.00	4.00	60.00

Soil Properties

Layer	Type	Thickness	Depth at Top of Layer	Density	CU	KP	PHI
		(ft)	(ft)	(lbs/ft^3)	(psf)		(deg)
1	Clay	3.33	0.00	100.0			
2	Sand	0.60	3.33	100.0		3.000	30.00
3	Sand	15.00	3.93	169.0		5.045	42.00

Design (Factored) Loads at Top of Pier

Additional Safety Factor Against	Shear Load	Axial Load	Moment	
Soil Failure	(kips)	(kips)	(ft-k)	
2.10	23.53	27.8	1641.7	

****** R E S U L T S

Calculated Pier Properties

Total	Pressure	Pressure	Weight	Length
End-Bearing	Due To	Due To		
Pressure	Weight	Axial Load		
(psf)	(psf)	(psf)	(kips)	(ft)
3531.7	2550.0	981.7	72.100	17.000

Ultimate Resisting Forces Along Pier

Type	Distance of Top of Layer to Top of Pier	Thickness	Density	CU	KP	Force	Arm
	(ft)	(ft)	(lbs/ft^3)	(psf)		(kips)	(ft)
Clay	1.00	3.33	100.0			0.00	2.67
Sand	4.33	0.60	100.0		3.000	11.76	4.64
Sand	4.93	8.11	169.0		5.045	793.42	9.84
Sand	13.04	3.96	169.0		5.045	-755.25	15.12

Shear and Moments Along Pier

Distance below	Shear	Moment	Shear	Moment
Top of Pier	(with Safety Factor)	(with Safety Factor)	(without Safety Factor)	(without Safety Factor)
(ft)	(kips)	(ft-k)	(kips)	(ft-k)
0.00	49.9	3559.1	23.8	1694.8
1.70	49.9	3644.0	23.8	1735.2
3.40	49.9	3728.9	23.8	1775.6
5.10	31.9	3807.8	15.2	1813.2
6.80	-55.4	3794.1	-26.4	1806.7
8.50	-187.0	3594.3	-89.1	1711.6
10.20	-363.0	3133.0	-172.9	1491.9
11.90	-583.4	2334.9	-277.8	1111.9
13.60	-662.4	1176.4	-315.4	560.2
15.30	-353.4	306.7	-168.3	146.0
17.00	-0.0	0.0	-0.0	0.0

Reinforcement and Capacity

Total	Reinforcement	Usable	Usable
Reinforcement	Area	Axial	Moment
Percent		Capacity	Capacity
	(in^2)	(kips)	(ft-k)
0.40	16.29	27.8	2212.2

US Standard Re-Bars (Select one of the following)

Quantity	Name	Area	Diameter (in)	Spacing (in)
82	#4	0.20	0.500	2.38
53	#5	0.31	0.625	3.68
38	#6	0.44	0.750	5.13
28	#7	0.60	0.875	6.96
21	#8	0.79	1.000	9.28
17	#9	1.00	1.128	11.46
13	#10	1.27	1.270	14.98
11	#11	1.56	1.410	17.71
8	#14	2.25	1.693	24.35

APPENDIX C MOUNT CALCULATIONS

1120 Dallas Street Sauk City, WI 53583 Office: (608) 643-4100 Job: CT60XC969

Project: 27746

By: EDK

Date: 3/24/2014

Wind Load on Antennas TIA-222-G

2.6.9.6 Velocity Pressure

 $q_z = 0.00256 K_z K_{zt} K_d V^2 I$

Occupancy: II Classification of Structures (Table 2-1)

Exposure: C Exposure Category

V: 111 mph Basic Wind Speed (Annex B)

z: 72 ft Height above ground level to the center of the antenna

I: 1.00 Importance Factor (Table 2-3)

K_z: 1.18 Velocity Pressure Coefficient (2.6.5.2)

K_{zt}: 1 Topographic Factor (2.6.6.4)

K_d: 0.95 Wind Direction Probability Factor (Table 2-2)

 $q_z = 35.4 \text{ psf}$

G_h: 1.00 Appurtenances and their Connections

Mount & Antenna Wind Loads

Appurtenance	Height	Width	h/D	Shape	\mathbf{C}_{a}	A_f	$F = q_z G_h C_a A_a$	
HSS4X4X1/8 x 4 ft	48.0 in	4.0 in	12.0	Flat	1.567	1.33 sf	73.9 lb	- 18.5 plf
HSS4X4X1/8 x 12 ft	144.0 in	4.0 in	36.0	Flat	2.000	4.00 sf	283.1 lb	23.6 plf
Pipe2STD x 7 ft	84.0 in	2.4 in	35.3	Round	1.200	1.39 sf	59.0 lb	8.4 plf
PX2F-52	27.2 in	0.0 in	1.0	Generic	0.535	4.03 sf	76.4 lb	
Fiber Box	30.0 in	18.0 in	1.7	Flat	1.200	3.75 sf	159.3 lb	
APXVSPP18-C-A20	72.0 in	11.9 in	6.1	Flat	1.358	5.95 sf	285.7 lb	
LLPX310R	42.4 in	11.8 in	3.6	Flat	1.248	3.48 sf	153.7 lb	
VHLP1-23	15.3 in	0.0 in	1.0	Generic	1.262	1.28 sf	57.1 lb	
VHLP1-23	15.3 in	0.0 in	1.0	Generic	1.262	1.28 sf	57.1 lb	
1900 MHz RRU	23.8 in	13.8 in	1.7	Flat	1.200	2.28 sf	96.8 lb	
1900 MHz RRU	23.8 in	13.8 in	1.7	Flat	1.200	2.28 sf	96.8 lb	
800 MHz RRU	19.2 in	18.5 in	1.0	Flat	1.200	2.48 sf	105.2 lb	
APXVTM14-C-120	55.1 in	11.8 in	4.7	Flat	1.296	4.52 sf	207.2 lb	
TD-RRH8x20	25.4 in	17.5 in	1.5	Flat	1.200	3.09 sf	131.1 lb	

1120 Dallas Street Sauk City, WI 53583

Office: (608) 643-4100

Job: <u>CT60XC969</u>

Project: 27746
By: EDK

Date: 3/24/2014

plf plf plf

Wind Load on Antennas TIA-222-G

2.6.9.6 Velocity Pressure

 $q_z = 0.00256 K_z K_{zt} K_d V^2 I$

Occupancy: II Classification of Structures (Table 2-1)

Exposure: C Exposure Category

V: 111 mph Basic Wind Speed (Annex B)

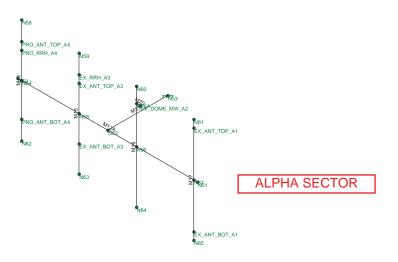
z: 72 ft Height above ground level to the center of the antenna

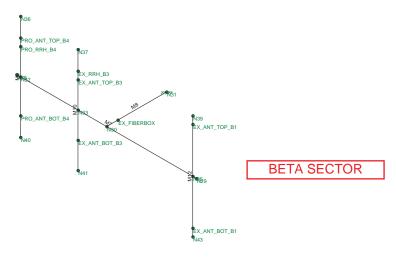
I: 1.00 Importance Factor (Table 2-3)

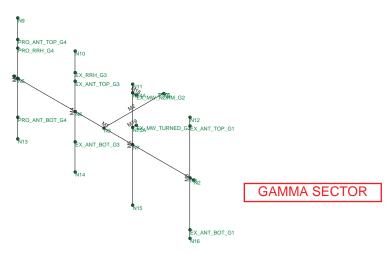
K_z: 1.18 Velocity Pressure Coefficient (2.6.5.2)

K_{zt}: 1 Topographic Factor (2.6.6.4)

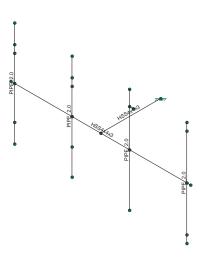
K_d: 0.95 Wind Direction Probability Factor (Table 2-2)

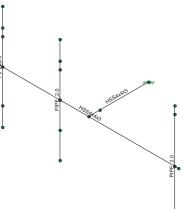

 $q_z = 35.4 \text{ psf}$


G_h: 1.00 Appurtenances and their Connections

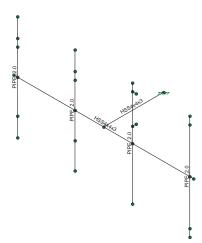

Mount & Antenna Wind Loads

Appurtenance	Height	Depth	h/D	Shape	C_a	A_f	$F = q_z G_h C_a A_a$
HSS4X4X1/8 x 4 ft	48.0 in	4.0 in	12.0	Flat	1.567	1.33 sf	73.9 lb
HSS4X4X1/8 x 12 ft	144.0 in	4.0 in	36.0	Flat	2.000	4.00 sf	283.1 lb
Pipe2STD x 7 ft	84.0 in	2.4 in	35.3	Round	1.200	1.39 sf	59.0 lb
PX2F-52	27.2 in	0.0 in	1.0	Generic	0.242	4.03 sf	34.6 lb
Fiber Box	30.0 in	8.0 in	3.8	Flat	1.256	1.67 sf	74.1 lb
APXVSPP18-C-A20	72.0 in	7.0 in	10.3	Flat	1.509	3.50 sf	187.2 lb
LLPX310R	42.4 in	4.5 in	9.4	Flat	1.479	1.33 sf	69.8 lb
VHLP1-23	15.3 in	0.0 in	1.0	Generic	0.625	1.28 sf	28.3 lb
VHLP1-23	15.3 in	0.0 in	1.0	Generic	0.625	1.28 sf	28.3 lb
1900 MHz RRU	23.8 in	9.0 in	2.7	Flat	1.207	1.48 sf	63.3 lb
1900 MHz RRU	23.8 in	9.0 in	2.7	Flat	1.207	1.48 sf	63.3 lb
800 MHz RRU	19.2 in	10.4 in	1.8	Flat	1.200	1.39 sf	59.2 lb
APXVTM14-C-120	55.1 in	5.9 in	9.3	Flat	1.478	2.26 sf	118.1 lb
TD-RRH8x20	25.4 in	5.7 in	4.5	Flat	1.287	1.01 sf	45.8 lb




Envelope Only Solution

R&A		SK - 1
EDK	CT60XC969	Mar 24, 2014 at 9:45 AM
27746		27746 T-Arm 12.5-4 ae.r3d



ALPHA SECTOR

BETA SECTOR

GAMMA SECTOR

Envelope Only Solution

R&A		SK - 2
EDK	CT60XC969	Mar 24, 2014 at 9:45 AM
27746		27746 T-Arm 12.5-4 ae.r3d

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1	Density[k/f	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.4	58	1.3
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.4	58	1.3
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
7	Q235	29000	11154	.3	.65	.49	34	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	horiz face	HSS4x4x3	Beam	SquareTube	Q235 Typical		6.21	6.21	10
2	EX pipe mount	PIPE 2.0	Beam	Pipe	A53 Gr Typical	1.02	.627	.627	1.25
3	EX standoff	HSS4x4x3	Beam	SquareTube	Q235 Typical	2.58	6.21	6.21	10

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N1	N2		, 0,	horiz face	Beam	SquareTube	Q235	Typical
2	M2	N3	N4			EX standoff	Beam	SquareTube	Q235	Typical
3	M3	N13	N9			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
4	M4	N14	N10			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
5	M5	N15	N11			EX pipe mount	Beam	Pipe .	A53 Gr. B	Typical
6	M6	N16	N12			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
7	M7	N28	N29			horiz face	Beam	SquareTube	Q235	Typical
8	M8	N30	N31			EX standoff	Beam	SquareTube	Q235	Typical
9	M9	N40	N36			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
10	M10	N41	N37			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
11	M12	N43	N39			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
12	M12A	N50	N51			horiz face	Beam	SquareTube	Q235	Typical
13	M13	N52	N53			EX standoff	Beam	SquareTube	Q235	Typical
14	M14	N62	N58			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
15	M15	N63	N59			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
16	M16	N64	N60			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
17	M17	N65	N61			EX pipe mount	Beam	Pipe	A53 Gr. B	Typical
18	M18	N74A	EX_MW			RIGID	None	None	RIGID	Typical
19	M19	N75A	EX_MW_T			RIGID	None	None	RIGID	Typical
20	M20	N76A	EX_DOM			RIGID	None	None	RIGID	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From
1	N1	.25	0	0	0	
2	N2	12.25	0	0	0	
3	N3	6.25	0	0	0	
4	N4	6.25	0	-4	0	
5	N5	.5	0	0	0	
6	N6	4.33333	0	0	0	
7	N7	8.16667	0	0	0	
8	N8	12	0	0	0	
9	N9	.5	3.5	0	0	
10	N10	4.33333	3.5	0	0	
11	N11	8.16667	3.5	0	0	
12	N12	12	3.5	0	0	

Company Designer Job Number Model Name : R&A : EDK : 27746 : CT60XC969

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From
13	N13	.5	-3.5	0	0	
14	N14	4.33333	-3.5	0	0	
15	N15	8.16667	-3.5	0	0	
16	N16	12	-3.5	0	0	
17	EX ANT TOP G1	12	3	0	0	
18	EX ANT BOT G1	12	-3	0	0	
19	EX ANT TOP G3	4.33333	1.75	0	0	
20	EX ANT BOT G3	4.33333	-1.75	0	0	
21	EX RRH G3	4.33333	2.25	0	0	
22	PRO ANT TOP G4	.5	2.25	0	0	
23	PRO ANT BOT G4	.5	-2.25	0	0	
24	PRO RRH G4	.5	1.75	0	0	
25	N28	.25	15	0	0	
26	N29	12.25	15	0	0	
27	N30	6.25	15	0	0	
28	N31	6.25	15	-4	0	
29	N32	.5	15	0	0	
30	N33	4.33333	15	0	0	
31	N35	12	15	0	0	
32	N36	.5	18.5	0	0	
33	N37	4.33333	18.5	0	0	
34	N39	12	18.5	0	0	
35	N40	.5	11.5	0	0	
36	N41	4.33333	11.5	0	0	
37	N43	12	11.5	0	0	
38	EX FIBERBOX	6.25	15	75	0	
39	EX ANT TOP B1	12	18	0	0	
40	EX ANT BOT B1	12	12	0	0	
41	EX ANT TOP B3	4.33333	16.75	0	0	
42	EX ANT BOT B3	4.33333	13.25	0	0	
43	EX RRH B3	4.33333	17.25	0	0	
44	PRO ANT TOP B4	.5	17.25	0	0	
45	PRO ANT BOT B4	.5	12.75	0	0	
46	PRO RRH B4	.5	16.75	0	0	
47	N50	.25	30	0	0	
48	N51	12.25	30	0	0	
49	N52	6.25	30	0	0	
50	N53	6.25	30	-4	0	
51	N54	.5	30	0	0	
52	N55	4.33333	30	0	0	
53	N56	8.16667	30	0	0	
54	N57	12	30	0	0	
_55	N58	.5	33.5	0	0	
56	N59	4.33333	33.5	0	0	
57	N60	8.16667	33.5	0	0	
58	N61	12	33.5	0	0	
59	N62	.5	26.5	0	0	
60	N63	4.33333	26.5	0	0	
61	N64	8.16667	26.5	0	0	
62	N65	12	26.5	0	0	
63	EX ANT TOP A1	12	33	0	0	
64	EX ANT BOT A1	12	27	0	0	
65	EX ANT TOP A3	4.33333	31.75	0	0	
66	EX_ANT_BOT_A3	4.33333	28.25	0	0	
67	EX RRH A3	4.33333	32.25	0	0	
68	PRO ANT TOP A4	.5	32.25	0	0	
69	PRO_ANT_BOT_A4	.5	27.75	0	0	

Company Designer Job Number Model Name

: R&A : EDK : 27746 : CT60XC969

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From
70	PRO RRH A4	.5	31.75	0	0	
71	EX MW NORM G2	8.41667	3	0	0	
72	EX MW TURNED G2	8.16667	1	25	0	
73	N74A	8.16667	3	0	0	
74	N75A	8.16667	1	0	0	
75	EX DOME MW A2	8.41667	32.5	0	0	
76	N76A	8 16667	32.5	0	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	N4	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction	
2	N31	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction	
3	N53	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction	

Joint Loads and Enforced Displacements (BLC 1 : DL)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb
1	EX ANT TOP G1	L	Υ	-57
2	EX ANT TOP G3	L	Υ	-28
3	EX RRH G3	L	Υ	-68
4	PRO ANT TOP G4	L	Υ	-53
5	PRO RRH G4	L	Υ	-66
6	EX ANT TOP B1	L	Υ	-57
7	EX ANT TOP B3	L	Υ	-28
8	EX RRH B3	L	Υ	-68
9	PRO ANT TOP B4	L	Υ	-53
10	PRO RRH B4	L	Υ	-66
11	EX ANT TOP A1	L	Υ	-57
12	EX ANT TOP A3	L	Υ	-28
13	EX RRH A3	L	Υ	-68
14	PRO ANT TOP A4	L	Υ	-53
15	PRO RRH A4	L	Υ	-66
16	EX MW NORM G2	L	Υ	-14
17	EX MW TURNED G2	Ĺ	Υ	-14
18	EX DOME MW A2	Ĺ	Υ	-40
19	EX_FIBERBOX	L	Υ	-45

Joint Loads and Enforced Displacements (BLC 2: WLz)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb
1	EX MW TURNED G2	Ĺ	Z	-28.3
2	EX DOME MW A2	L	Z	-76.4
3	PRO RRH G4	L	Z	-45.8
4	PRO RRH B4	L	Z	-45.8
5	PRO RRH A4	L	Z	-45.8
6	EX MW NORM G2	L	Z	-57.1
7	EX FIBERBOX	L	Z	-74.1
8	EX ANT TOP G3	L	Z	-76.8
9	EX ANT BOT G3	L	Z	-76.8
10	EX ANT TOP B3	L	Z	-76.8
11	EX ANT BOT B3	L	Z	-76.8
12	EX ANT TOP A3	L	Z	-76.8
13	EX ANT BOT A3	Ĺ	Z	-76.8
14	PRO ANT TOP G4	Ĺ	Z	-103.6
15	PRO_ANT_BOT_G4	L	Z	-103.6

Company : R&A
Designer : EDK
Job Number : 27746
Model Name : CT60XC969

Joint Loads and Enforced Displacements (BLC 2: WLz) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb
16	PRO ANT TOP B4	L	Z	-103.6
17	PRO ANT BOT B4	L	Z	-103.6
18	PRO ANT TOP A4	L	Z	-103.6
19	PRO ANT BOT A4	L	Z	-103.6
20	EX RRH G3	L	Z	-105.2
21	EX RRH B3	L	Z	-105.2
22	EX RRH A3	L	Z	-105.2
23	EX ANT TOP G1	L	Z	-142.9
24	EX ANT BOT G1	L	Z	-142.9
25	EX ANT TOP B1	L	Z	-142.9
26	EX ANT BOT B1	L	Z	-142.9
27	EX ANT TOP A1	L	Z	-142.9
28	EX ANT BOT A1	L	Z	-142.9

Joint Loads and Enforced Displacements (BLC 3: WLx)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb
1	EX MW NORM G2	L	X	-28.3
2	EX ANT TOP G3	L	X	-34.9
3	EX ANT BOT G3	L	X	-34.9
4	EX ANT TOP B3	L	X	-34.9
5	EX ANT BOT B3	L	X	-34.9
6	EX ANT TOP A3	L	X	-34.9
7	EX ANT BOT A3	L	X	-34.9
8	EX MW TURNED G2	L	X	-57.1
9	PRO ANT TOP G4	L	X	-59
10	PRO ANT BOT G4	L	X	-59
11	PRO ANT TOP B4	L	X	-59
12	PRO ANT BOT B4	L	X	-59
13	PRO ANT TOP A4	L	X	-59
14	PRO ANT BOT A4	L	X	-59
15	EX RRH G3	L	X	-59.2
16	EX RRH B3	L	X	-59.2
17	EX RRH A3	L	X	-59.2
18	EX DOME MW A2	L	X	-76.4
19	EX ANT TOP G1	L	X	-93.6
20	EX_ANT_BOT_G1	L	X	-93.6
21	EX_ANT_TOP_B1	L	X	-93.6
22	EX ANT BOT B1	L	X	-93.6
23	EX ANT TOP A1	L	X	-93.6
24	EX ANT BOT A1	L	X	-93.6
25	PRO RRH G4	L	X	-131.1
26	PRO RRH B4	L	X	-131.1
27	PRO RRH A4	L	X	-131.1
28	EX FIBERBOX	L	X	-159.3

Member Distributed Loads (BLC 2 : WLz)

	Member Label	Direction	Start Magnitude[End Magnitude[I	Start Location[ft,	.End Location[ft,
1	M3	Z	-8.4	-8.4	0	1.25
2	M4	Ζ	-8.4	-8.4	0	1.75
3	M3	Ζ	-8.4	-8.4	5.75	7
4	M4	Ζ	-8.4	-8.4	5.75	7
5	M5	Ζ	-8.4	-8.4	0	0
6	M9	Ζ	-8.4	-8.4	0	1.25
7	M9	Ζ	-8.4	-8.4	5.75	7
8	M10	Z	-8.4	-8.4	0	1.75

Company : R&A
Designer : EDK
Job Number : 27746
Model Name : CT60XC969

Member Distributed Loads (BLC 2 : WLz) (Continued)

	Member Label	Direction	Start Magnitude[End Magnitude[I	.Start Location[ft,	.End Location[ft,
9	M10	Ζ	-8.4	-8.4	5.75	7
10	M14	Ζ	-8.4	-8.4	0	1.25
11	M14	Ζ	-8.4	-8.4	5.75	7
12	M15	Ζ	-8.4	-8.4	0	1.75
13	M15	Ζ	-8.4	-8.4	5.75	7
14	M16	Ζ	-8.4	-8.4	0	0
15	M1	Ζ	-23.6	-23.6	0	0
16	M7	Ζ	-23.6	-23.6	0	0
17	M12A	Z	-23.6	-23.6	0	0

Member Distributed Loads (BLC 3: WLx)

	Member Label	Direction	Start Magnitude[End Magnitude[I	.Start Location[ft,	End Location[ft,
1	M3	X	-8.4	-8.4	0	0
2	M4	Х	-8.4	-8.4	0	0
3	M5	Χ	-8.4	-8.4	0	0
4	M6	Χ	-8.4	-8.4	0	0
5	M9	X	-8.4	-8.4	0	0
6	M10	X	-8.4	-8.4	0	0
7	M12	X	-8.4	-8.4	0	0
8	M14	X	-8.4	-8.4	0	0
9	M15	X	-8.4	-8.4	0	0
10	M16	X	-8.4	-8.4	0	0
11	M17	X	-8.4	-8.4	0	0
12	M2	X	-18.5	-18.5	0	0
13	M8	X	-18.5	-18.5	0	0
14	M13	X	-18.5	-18.5	0	0

Member Area Loads

 Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]					
No Data to Print											

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(
1	DL .	DĽ		-1	_	19			,	,
2	WLz	WLZ				28		17		
3	WLx	WLX				28		14		
4	LL1	LL					3			
5	LL2	None					3			

Load Combinations

	Description	SoP	S	BLCFa	BLC Fact	or BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa
1	1.4DL	Yes Y		DL 1.4													
2	1.2DL+1.6WLz	Yes Y		DL 1.2	WLZ 1.6												
3	1.2DL-1.6WLz	Yes Y		DL 1.2	WLZ -1.6	6											
4	1.2DL+1.6WLx	Yes Y		DL 1.2	WLX 1.6												
5	1.2DL-1.6WLx	Yes Y		DL 1.2	WLX -1.6	6											
6	1.2DL+1.6(0.75WLz+0.75WLx)	Yes Y		DL 1.2	WLZ 1.2	WLX	1.2										
7	1.2DL+1.6(0.75WLz-0.75WLx)	Yes Y		DL 1.2	WLZ 1.2	WLX	-1.2										
8	1.2DL-1.6(0.75WLz-0.75WLx)	Yes Y		DL 1.2	WLZ -1.2	2 WLX	1.2										
9	1.2DL-1.6(0.75WLz+0.75WLx)	Yes Y		DL 1.2	WLZ -1.2	2 WLX	-1.2										
10	1.2DL+1.5LLend	Yes Y		DL 1.2	LL 1.5												
11	1.2DL+1.5LLmid	Yes Y		DL 1.2	5 1.5												

Company Designer Job Number Model Name

: R&A : EDK : 27746 : CT60XC969

Load Combinations (Continued)

	Description	SoP	. S	BLCFa	a Bl	LC Facto	r BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa l	BLC	Fa
12	1.2DL+1.5LL+10%1.6WLz	Yes Y		DL 1	.2 L	L 1.5	WLZ	.16										
13	1.2DL+1.5LL-10%1.6WLz	Yes Y		DL 1	.2 L	L 1.5	WLZ	16										
14	1.2DL+1.5LL+10%1.6WLx	Yes Y		DL 1	.2 L	L 1.5	WLX	.16										
15	1.2DL+1.5LL-10%1.6WLx	Yes Y		DL 1	.2 L	L 1.5	WLX	16										
16	1.2DL+1.5LL+10%1.6(0.75WLz+0			DL 1	.2 L	L 1.5	WLZ	.12	WLX	.12								
17	1.2DL+1.5LL+10%1.6(0.75WLz-0			DL 1	.2 L	<u>L 1.5</u>	WLZ	.12	WLX	12								
18	1.2DL+1.5LL-10%1.6(0.75WLz-0			DL 1	.2 L	<u>L 1.5</u>	WLZ	12	WLX	.12								
19	1.2DL+1.5LL-10%1.6(0.75WLz+0	Yes Y		DL 1	.2 L	<u>.L 1.5</u>	WLZ	12	WLX	12								
20	1.2DL+1.5LL+10%1.6WLz	Yes Y		DL 1	.2 !	5 1.5	WLZ	.16										
21		Yes Y		DL 1	.2	5 1.5	WLZ	16										
22	1.2DL+1.5LL+10%1.6WLx	Yes Y		DL 1	.2 !	5 1.5	WLX	.16										
23	TIEBET TIGEE TO 70 TIGHTEX	Yes Y		DL 1	.2 !	5 1.5	WLX	16										
24	1.2DL+1.5LL+10%1.6(0.75WLz+0			DL 1	.2 !	5 1.5	WLZ	.12	WLX	.12								
25	1.2DL+1.5LL+10%1.6(0.75WLz-0			DL 1	.2 !	5 1.5	WLZ	.12	WLX	12								
26	1.2DL+1.5LL-10%1.6(0.75WLz-0			DL 1	.2	5 1.5	WLZ	12	WLX	.12								
27	1.2DL+1.5LL-10%1.6(0.75WLz+0	Yes Y		DL 1	.2	5 1.5	WLZ	12	WLX	12								
28	DL	Y		DL '	1													
29	WLz	Y		W	1													
30	WLx	Y		W	1													

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC_
1	N4	max	1535.869	4	1020.18	12	2033.924	2	-1689.099	2	5876.153	4	225.16	5
2		min	-1535.864	5	645.18	3	-2033.932	3	-4076.208	13	-5892.302	5	-2546.689	14
3	N31	max	1560	4	1011.425	14	1921.76	2	-1941.343	2	5799.64	4	-128.552	5
4		min	-1560	5	636.425	5	-1921.76	3	-3972.547	13	-5825.186	5	-2647.352	14
5	N53	max	1521.45	4	1034.58	23	2019.52	2	-1765.52	2	5841.295	4	339.817	5
6		min	-1521.449	5	659.58	4	-2019.521	3	-4137.15	21	-5857.445	5	-2519.584	14
7	Totals:	max	4617.319	4	3066.185	25	5975.204	2						
8		min	-4617.313	5	1941.184	8	-5975.212	3						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [l	phi*Pnt [lb]	phi*Mn y	phi*Mn z	.Cb	Egn
1	M1	HSS4x4x3	.591	6	2	.115	6	Z	3	51442.052	78948	9358.5	9358.5	1	H1-1b
2	M2	HSS4x4x3	.896	4	5	.373	4	У	14	75278.668	78948	9358.5	9358.5	1	H1-1b
3	M3	PIPE 2.0	.361	3.5	4	.037	3.5		4	17855.085	32130	1871.625	1871.625	1	H1-1b
4	M4	PIPE 2.0	.349	3.5	3	.032	3.5		3	17855.085	32130	1871.625	1871.625	1	H1-1b
5	M5	PIPE 2.0	.218	3.5	2	.041	3.5		9	17855.085	32130	1871.625	1871.625	1	H1-1b
6	M6	PIPE 2.0	.371	3.5	3	.024	3.5		3	17855.085	32130	1871.625	1871.625	1	H1-1b
7	M7	HSS4x4x3	.591	6	3	.115	6	z	3	51442.052	78948	9358.5	9358.5	1	H1-1b
8	M8	HSS4x4x3	.882	4	5	.385	4	V	14	75278.668	78948	9358.5	9358.5	1	H1-1b
9	M9	PIPE 2.0	.361	3.5	4	.037	3.5	•	4	17855.085	32130	1871.625	1871.625	1	H1-1b
10	M10	PIPE 2.0	.348	3.5	3	.032	3.5		3	17855.085	32130	1871.625	1871.625	1	H1-1b
11	M12	PIPE 2.0	.370	3.5	3	.024	3.5		3	17855.085	32130	1871.625	1871.625	1	H1-1b
12	M12A	HSS4x4x3	.591	6	2	.115	6	Z	3	51442.052	78948	9358.5	9358.5	1	H1-1b
13	M13	HSS4x4x3	.899	4	5	.370	4	У	14	75278.668	78948	9358.5	9358.5	1	H1-1b
14	M14	PIPE 2.0	.361	3.5	4	.037	3.5		4	17855.085	32130	1871.625	1871.625	1	H1-1b
15	M15	PIPE 2.0	.349	3.5	3	.032	3.5		3	17855.085	32130	1871.625	1871.625	1	H1-1b
16	M16	PIPE 2.0	.227	3.5	9	.036	3.5		3	17855.085	32130	1871.625	1871.625	1	H1-1b
17	M17	PIPE 2.0	.371	3.5	3	.024	3.5		3	17855.085	32130	1871.625	1871.625	1	H1-1b

2.5 EQUIPMENT DEPLOYMENT PROJECT:

SITE NAME: COM-TRONICS

SITE CASCADE: CT60XC969-A

SITE ADDRESS: 627 HONEYSPOT ROAD

STRATFORD, CT 06615

SHEET INDEX

100'-0" MONOPOLE SITE TYPE:

SITE INFORMATION

PROPERTY OWNER:

STRATFORD, CT 06814

SITE ADDRESS:

BECKER LLC BEAVER DAM ROAD

627 HONEYSPOT ROAD STRATFORD CT, 06615

GEOGRAPHIC COORDINATES:

LATITUDE: 41.176686 N, LONGITUDE: -73.146138 W

ZONING JURISDICTION:

STRATFORD

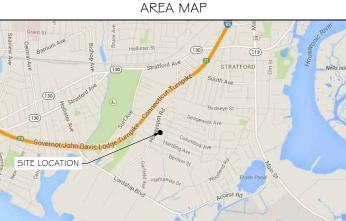
ZONING DISTRICT:

POWER COMPANY:

THE UNITED ILLUMINATING COMPANY I -800-722-5584

AAV PROVIDER:

SPRINT CONSTRUCTION MANAGER:


NAME: GARY WOOD PHONE: (860) 940-9168 E-MAIL: GARY.WOOD@SPRINT.COM

EQUIPMENT SUPPLIER:

ALCATEL-LUCENT 600-700 MOUNTAIN AVENUE MURRAY HILL, NJ 07974 PH.: (908) 508-8080

PLANS PREPARED BY:

RAMAKER \$ ASSOCIATES, INC. CONTACT: KEITH BOHNSACK, PROJECT MANAGER PH.: (608) 643-4100 EMAIL: kbohnsack@ramaker.com

LOCATION MAP

PROJECT DESCRIPTION

- BATTERY CABINET
- MPERS

Barrum Ave B A Hollister St 130 113	
Banum 130 T13 T5 Nets I	INSTALL (I) NEW 9929 MT-BTS CABINET
South Ave	INSTALL (2) NEW BATTERY STRINGS IN EXISTING B
(30) I Stratted Ref. (a) June 1997	INSTALL (3) PANEL ANTENNAS
330 September 20 S	INSTALL (3) RRH'S ON TOWER
The structure of the st	INSTALL (I) HYBRID CABLE AND (2) SECTOR JUM
Governor John Davis Lodge Judan Randing Ave	INSTALL (27) ANTENNA / RRH JUMPERS
E LOCATION Control of the state	
Harmston, Or Hold Frank Pood S	
Aug Access Rd	
Runway 11-29 ①	
lgor I Sikorsky Memorial Airport	

LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.

- 2. ANSI/TIA-222 STRUCTURAL STANDARD FOR ANTENNA STRUCTURES
- 3. NEPA 780 LIGHTNING PROTECTION CODE

	011221 111027			WHAT CONA
SHT NO:	SHEET TITLE:	REV:	ENGINEER:	THINK CONNECTION
T-1	TITLE SHEET	А	JRS	SKOW
SP-I	SPRINT SPECIFICATIONS	А	JRS	764 706
SP-2	SPRINT SPECIFICATIONS	А	JRS	1 50 W (2007) 25 T
SP-3	SPRINT SPECIFICATIONS	А	JRS	***
A- I	SITE PLAN	А	JRS	No. 26266
A-2	TOWER ELEVATIONS \$ ANTENNA DETAILS	А	JRS	CENSE !
A-3	RF DATA SHEET	А	JRS	THE COLONIAL ENGINE
A-4	FIBER PLUMBING DIAGRAM	А	JRS	O ONAL MANUELLA
A-5	CABLE COLOR CODING	А	JRS	Janes Retwork 7/29/2011
A-6	ANTENNA \$ HYBRID CABLE DETAILS	А	JRS	Signature: Date:
A-7	EQUIPMENT DETAILS	А	JRS	
A-8	CABINET DETAILS	А	JRS]
S-I	TOWER REINFORCEMENT PROFILE	А	JRS	
5-2	TOWER REINFORCEMENT DETAILS	А	JRS	
5-3	TOWER REINFORCEMENT PROFILE	А	JRS	
E-I	EQUIPMENT UTILITY & GROUNDING PLAN	А	JRS	MARK DATE DESCRIPTION
E-2	GROUNDING DETAILS	А	JRS	ISSUE FINAL DATE 07/29/20 I
E-3	DC POWER DETAILS # PANEL SCHEDULES	А	JRS	PROJECT TITLE:
				COM TRONICS
				COM-TRONICS
				CT60XC969-A
				PROJECT INFORMATION: 627 HONEYSPOT ROAD
				STRATFORD, CT 06615
				FAIRFIELD COUNTY
				SHEET TITLE:
				TITLE CHEET
				TITLE SHEET
				SCALE: NONE
				JCALL, NONE
]
		-		PROJECT 27746
		-		SHEET T-

Sprint[®]

6580 SPRINT PARKWAY

www.Ramaker.com

48 SPRUCE STREET

OAKLAND, NJ 07346

OVERLAND PARK, KANSAS 66251

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999

Transcend Wir**el**ess

hereby certify that this plan, specification, or report was prepare, by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.

RAMAKER

APPLICABLE CODES

* ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE FOLLOWING CODES AS ADOPTED BY THE

- I. INTERNATIONAL BUILDING CODE
- 4. NATIONAL ELECTRIC CODE

SECTION OI 100 - SCOPE OF WORK

THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE CONSTRUCTION DRAWINGS AND ASSOCIATED OUTLINE SPECIFICATIONS AND THE SITE SPECIFIC WORK ORDER, DESCRIBE THE WORK TO BE PERFORMED BY THIS CONSTRUCTION CONTRACTOR (SUPPLIER).

- A. THE REQUIREMENTS OF EACH SECTION OF THIS SPECIFICATION APPLY TO ALL SECTIONS, INDIVIDUALLY
- B. RELATED DOCUMENTS: THE CONTRACTOR SHALL COMPLY WITH THE MOST CURRENT VERSION OF THE FOLLOWING SUPPLEMENTAL REQUIREMENTS FOR INSTALLATION AND TESTING
- I . EN-2012-001: (FIBER OPTIC, DC CABLE, AND DC CIRCUIT BREAKER TAGGING STANDARDS) 2.TS-0200 (TRANSMISSION ANTENNA LINE ACCEPTANCE STANDARDS)
- 3.EL-0568: (FIBER TESTING POLICY)
- 4.NP-3 | 2-20 |: (EXTERIOR GROUNDING SYSTEM TESTING)
- 5.NP-760-500: ETHERNET, MICROWAVE, TESTING AND ACCEPTANCE

SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.

NATIONALLY RECOGNIZED CODES AND STANDARDS:
THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:

- A. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION
 B. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT.
- C. GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR
- NETWORK TELECOMMUNICATIONS EQUIPMENT.
 D. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70
- (NATIONAL ELECTRICAL CODE "NEC") AND NFPA IOI (LIFE SAFETY CODE). E. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM)
- F. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE)
 G. AMERICAN CONCRETE INSTITUTE (ACI)

- AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA) CONCRETE REINFORCING STEEL INSTITUTE (CRSI)
- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
- K. PORTLAND CEMENT ASSOCIATION (PCA)
- NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)
- M. BRICK INDUSTRY ASSOCIATION (BIA)
- I. AMERICAN WELDING SOCIETY (AWS)
- O. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
- SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) Q DOOR AND HARDWARF INSTITUTE (DHI)
- R. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA)
- S. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.

- DEFINITIONS:

 A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.

 B. COMPANY: "SPRINT"; SPRINT NEXTEL CORPORATION AND IT'S OPERATING ENTITIES.
- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT.
- D. CONTRACTOR: CONSTRUCTION CONTRACTOR, SUPPLIER, CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK.
- . THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK
- F. CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT.

CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS. FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF WORK. NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS.

COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT.

THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK

THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.

- THE JOBSITE DRAWINGS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A\$E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS
- B. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK

THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.

WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY

WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC LITILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

CONTRACTOR:
CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY.

JSE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS: CONTRACTOR WILL UTILIZE ITS BEST EFFORTS TO WORK WITH SPRINT ELECTRONIC PROJECT MANAGEMENT SYSTEMS, CONTRACTOR UNDERSTANDS THAT SUFFICIENT INTERNET ACCESS, EQUIVALENT TO "BROADBAND" OR BETTER, IS REQUIRED TO TIMELY AND EFFECTIVELY UTILIZE SPRINT DATA AND DOCUMENT MANAGEMENT YSTEMS AND AGREES TO MAINTAIN APPROPRIATE CONNECTIONS FOR CONTRACTOR'S STAFF AND OFFICES THAT ARE COMPATIBLE WITH SPRINT DATA AND DOCUMENT MANAGEMENT SYSTEMS

TEMPORARY UTILITIES AND FACILITIES

THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS, TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSOR'S OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.

THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.

VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS.

NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

SECTION O I 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT

FURNISHED MATERIALS: COMPANY FURNISHED MATERIALS AND EQUIPMENT TO BE INSTALLED BY THE CONTRACTOR (OFIC) IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS.

RECEIPT OF MATERIAL AND EQUIPMENT:

A. THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT

- L. ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.
- 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES
- 3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT
- B.RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT, REPORT TO SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH.
- C.PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING.
 D.COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE.

A.COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE. B.IF APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY.

SECTION 01 300 - CELL SITE CONSTRUCTION

A NO WORK SHALL COMMENCE PRIOR TO COMPANYS ISSUANCE OF THE WORK ORDER.
B.UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO

PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.

- GENERAL REQUIREMENTS FOR CONSTRUCTION:

 A.CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- B.EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS.
- C.CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS I IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN
- ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY.

 2. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL
- OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD D.CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE
- PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION

- A THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK. CONTRACTOR SHALL TAKE ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES.
- B. SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED. C.MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES
- D.PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS,
- INCLUDING BUT NOT LIMITED TO THE FOLLOWING:

 I. PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION. 2. PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND
- SURFACE TREATMENTS. 3.MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND BACKHAUL (FIBER, COPPER, OR MICROWAVE). 4.INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS
- CONDUITS. AND UNDERGROUND GROUNDING SYSTEM. 5.INSTALL ABOVE GROUND GROUNDING SYSTEMS, CONDUIT AND BOXES 6.PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS.
- 7.INSTALL "H-FRAMES", CABINETS AND PADS AND PLATFORMS AS INDICATED. 8, INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED.
- 9.ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES.

- LO PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS
- PROVIDE SLABS AND EQUIPMENT PLATFORMS.
- INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS BARRIERS. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER.
- CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS.
- INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON EXISTING TOWERS AS REQUIRED.
- INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED EQUIPMENT.
- CONDUCT ALL REQUIRED TESTS AND INSPECTIONS
- PERFORM, DOCUMENT, AND CLOSE OUT ALL JURISDICTIONAL PERMITTING REQUIREMENTS AND ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES AND LANDLORDS.
- 20. PERFORM ALL ADDITIONAL WORK AS IDENTIFIED IN SCOPE OF SERVICES ATTACHED TO THE SUPPLIER AGREEMENT FOR THIS PROJECT. THIS WORK MAY INCLUDE COMMISSIONING INTEGRATION, SPECIAL WAREHOUSING, REVERSE LOGISTICS ACTIVITIES, ETC. PERFORM COMMISSIONING AND INTEGRATION ACTIVITIES PER APPLICABLE MOPS

- DELIVERABLES:
 A. THE CONTRACTOR SHALL PROVIDE ALL REQUIRED TEST REPORTS AND DOCUMENTATION INCLUDED BUT
- PRODUCT SPECIFICATIONS FOR MATERIALS OR SPECIAL CONSTRUCTION IF REQUESTED BY SPRINT 2. ACTUALIZE ALL CONSTRUCTION RELATED MILESTONES IN SITERRA AND COMPLETE ALL ON-LINE FORMS
- AND COMPLETE DOCUMENT UP-LOADS. UPLOAD ALL REQUIRED CLOSEOUT DOCUMENTS AND FINAL 3. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT LEFT
- ON SITE INSIDE BASE OF MAIN RF CABINET IN A PROTECTIVE POUCH.
- 4 ALL REQUIRED TEST REPORTS
- 5. REQUIRED CLOSEOUT DOCUMENTATION INCLUDING BUT NOT LIMITED TO: a. ALL JURISDICTIONAL PERMITTING AND OCCUPANCY INFORMATION b. PDF SCAN OF REDLINES PRODUCED IN THE FIELD
- c. ELECTRONIC AS-BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS
- d.LIEN WAIVERS
- E. FINAL PAYMENT APPLICATION
- f. REQUIRED FINAL CONSTRUCTION PHOTOS
- CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS h. LISTS OF SUBCONTRACTORS
- B.PROVIDE ADDITIONAL DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED INTO SMS.
 - ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS.
- 2. PROJECT PROGRESS REPORTS
- 3. PRE-CONSTRUCTION MEETING NOTES

SECTION O I 400 - TESTS, INSPECTIONS, SUBMITTALS, AND PROJECT

A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT

- B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING 1. COAX SWEEPS AND FIBER TESTS PER TS-0200 (CURRENT VERSION) ANTENNA LINE ACCEPTANCE
- STANDARDS 2. POST CONSTRUCTION HEIGHT VERIFICATION, AZIMUTH AND DOWNTILT USING ELECTRONIC
- COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL. 3. CONCRETE BREAK TESTS
- SITE RESISTANCE TO EARTH TEST
 STRUCTURAL BACKFILL COMPACTION TESTS
- 6. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING.
- 7. ADDITIONAL TESTING AS REQUIRED ELSEWHERE IN THIS SPECIFICATION.

A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE

- B.UPLOAD THE FOLLOWING TO SITERRA AS APPLICABLE INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
- CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING.
 CONCRETE BREAK TESTS AS SPECIFIED HEREIN.
- CHEMICAL GROUNDING SYSTEM 4 REINFORCEMENT CERTIFICATIONS
- STRUCTURAL BACKFILL TEST RESULTS 6. SWEEP AND FIBER TESTS
- ANTENNA AZIMUTH AND DOWN-TILT VERIFICATION

COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT.

8 POST CONSTRUCTION HEIGHT VERIFICATION ADDITIONAL SUBMITTALS MAY BE REQUIRED FOR SPECIAL CONSTRUCTION OR MINOR MATERIALS C.ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF

- A.EMPLOY AN AGENCY OF ENGINEERS AND SCIENTISTS WHO IS REGULARLY ENGAGED IN FIELD AND LABORATORY TESTING AND ANALYSIS. AGENCY SHALL HAVE BEEN IN BUSINESS A MINIMUM OF FIVE YEARS, AND BE LICENSED AS PROFESSIONAL ENGINEERS IN THE STATE WHERE THE PROJECT IS LOCATED.
- AGENCY IS SUBJECT TO APPROVAL BY COMPANY.

 I. AGENCY MUST HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS.

 2. AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE,
- EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES.

 3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM,
- AASJTO, AND OTHER METHODS IS NEEDED.
 B.REQUIRED THIRD PARTY TESTS:
 - SITE RESISTANCE TO EARTH TEST PER NP-3 | 2-20 |
- 2. CONCRETE CYLINDER BREAK TESTS FOR TOWER PIER AND ANCHORS PER NATIONALLY RECOGNIZED
- 3. STRUCTURAL SOILS COMPACTION TESTS PER NATIONALLY RECOGNIZED STANDARDS REBAR PLACEMENT VERIFICATION WITH REPORT TESTING TENSION STUDY FOR ROCK ANCHORS
- ALL THIRD PARTY TESTS AS REQUIRED BY LOCAL JURISDICTION C.REQUIRED TESTS BY CONTRACTOR
 - COAX SWEEP TESTS PER SPRINT STANDARD TS-0200 2 FIBER TESTS PER SPRINT STANDARD FL-0568
 - . MICROWAVE LINK TESTS PER NP-760-500
- 4. ANTENNA AZIMUTHS AND DOWN TILT USING ELECTRONIC ALIGNMENT TOOL PER ANTENNA INSTALLATION SPECIFICATION HEREIN

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

hereby certify that this plan, specification, or report was provided in which the or under my direct supervision and that I am a duly Lic y me or under my direct supervision and that I am a duly Licensec rofessional Engineer under the laws of the State of Connecticut

DATE 07/29/2014

COM-TRONICS CT60XC969-A

S27 HONEYSPOT ROAD STRATFORD, CT 06615 FAIRFIELD COUNTY

FINIAL

SPRINT SPECIFICATIONS

SCALE: NONE

27746

- POST CONSTRUCTION HEIGHT VERIFICATION AS REQUIRED HEREWITH IN THE TOWER INSTALLATION SPECIFICATIONS ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY
- TESTING AS SPECIFIED HEREWITH IN THE ASPHALT PAVING SPECIFICATIONS FIELD QUALITY CONTROL TESTING AS SPECIFIED HEREWITH IN THE CONCRETE PAVING
- SPECIFICATIONS
- TESTING REQUIRED HEREWITH UNDER SPECIFICATIONS FOR AGGREGATE BASE FOR ROADWAYS
- 9. ALL OTHER TESTS REQUIRED BY LOCAL JURISDICTION
 D.INSPECTIONS BY COMPANY: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN INSPECTION ACTIVITIES, FINAL ACCEPTANCE / PUNCH WALK REVIEW, AND/OR AS A RESULT OF TESTING
- F SPRINT RESERVES THE RIGHT TO INSPECT THE CONSTRUCTION SITE AT ANY TIME VIA SITE WALKS AND/OR PHOTO REVIEWS. CONTRACTOR SHALL GIVE SPRINT 24 HOURS NOTICE PRIOR TO THE COMMENCEMENT OF THE FOLLOWING CONSTRUCTION ACTIVITIES AND PHOTOGRAPHS OF THE IN-PROGRESS WORK, I. GROUNDING SYSTEM AND BURIED UTILITIES INSTALLATION PRIOR TO EARTH CONCEALMENT
 - DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A¢E OR SPRINT REPRESENTATIVE
 - FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A\$E OR SPRINT REPRESENTATIVE.
 - COMPACTION OF BACKFILL MATERIALS AGGREGATE BASE FOR ROADS, PADS, AND ANCHORS ASPHALT PAVING, AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES. BY INDEPENDENT THIRD PARTY AGENCY.
 - PRE AND POST CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING FACILITIES. PRIOR TO CONSTRUCTION ACTIVITIES AND AFTER CONSTRUCTION IS COMPLETE, PROVIDE PHOTOGRAPHIC DOCUMENTATION OF ROOF, FLASHINGS, AND PARAPETS, BOTH BEFORE AND AFTER CONSTRUCTION IS COMPLETE
- TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL PHOTOGRAPHS BY THIRD PARTY AGENCY.
- TOWER TOP AND INACCESSIBLE EQUIPMENT (RRUS, ANTENNAS, AND CABLING): PROVIDE PHOTOS OF THE BACKS OF ALL ANTENNAS, RRUS, COMBINERS, FILTERS, FIBER AND DC CABLING, CABLE COLOR CODING, EQUIPMENT GROUNDING AND CONNECTOR WATER PROOFING INCLUDING NAME PLATE AND SERIAL NUMBER FOR ALL SERIALIZED EQUIPMENT.

- A.FINAL ACCEPTANCE PUNCH WALK AND INSPECTION: AS IDENTIFIED IN THE SCOPE OF SERVICES, SPRINT WILL CONDUCT A FINAL PUNCH WALK OR FINAL DESK TOP PHOTO REVIEW (SITE MODIFICATIONS). PUNCI WALKS MUST BE SCHEDULED IN ADVANCE AS REQUIRED. AT THE PUNCH WALK / REVIEW. SPRINT MAY IDENTIFY CRITICAL DEFICIENCIES WHICH MUST BE CORRECTED PRIOR TO PUTTING SITE ON AIR. MINOR DEFICIENCIES MUST BE CORRECTED WITHIN 30 DAYS EXCEPT AS OTHERWISE REQUIRED. VERIFICATIONS OF CORRECTIONS MAY BE MADE BY COMPANY DURING A REPEAT SITE WALK OR DESK TOP PHOTO REVIEW AT COMPANYS SOLE DISCRETION.

 B.CLOSEOUT DOCUMENTATION: ALL CLOSEOUT DOCUMENTATION AND PHOTOGRAPHS SHALL BE UPLOADED
- PRIOR TO FINAL ACCEPTANCE. SPRINT WILL REVIEW CLOSEOUT DOCUMENTATION FOR PRESENCE AND CONTENT. CLOSEOUT DOCUMENTATION SHALL INCLUDE BUT IS NOT LIMITED TO THE FOLLOWING AS APPLICABLE:
- COAX SWEEP TESTS:
- FIBER TESTS:
 JURISDICTION FINAL INSPECTION DOCUMENTATION
- REINFORCEMENT CERTIFICATION (MILL CERTIFICATION)
 CONCRETE MIX DESIGN AND PRODUCT DATA (TOWER FOUNDATION)
- LIEN WAIVERS AND RELEASES.
 POST -CONSTRUCTION HEIGHT VERIFICATION
- JURISDICTION CERTIFICATE OF OCCUPANCY
 ELECTRONIC ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
- STRUCTURAL BACKFILL TEST RESULTS (IF APPLICABLE)
- CELL SITE UTILITY SETUP
- AS-BUILT REDLINE CONSTRUCTION DRAWINGS (PDF SCAN OF FIELD MARKS)
- 13. AS-BUILT CONSTRUCTION DRAWINGS IN DWG AND PDF FORMATS
- 14. LIST OF SUB CONTRACTORS
- 15. APPROVED PERMITTING DOCUMENTS
- 16. FINAL SITE PHOTOS UP-LOADED TO SITERRA. INCLUDE THE FOLLOWING AS APPLICABLE: a. TOWER, ANTENNAS, RRUS, AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION
 - STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING: PHOTOS OF TOWER COAX/CABLE LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN; PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR, PHOTOS OF GPS ANTENNA(S); PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA: PHOTOS OF COAX WEATHERPROOFING - TOP AND BOTTOM; PHOTOS OF COAX GROUNDING--TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
 - b. ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION; PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF;
 - c. SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS.
 - ALFINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL.

- A.PROVIDE PROJECT CLOSEOUT GENERAL ARRANGEMENT PHOTOS OF ALL NEW WORK. THE FOLLOWING LIST REPRESENTS MINIMUM REQUIREMENTS AND MINIMUM QUANTITY. ADDITIONAL PHOTOS MAY BE REQUIRED TO ADEQUATELY DOCUMENT THE WORK.
- ASR AND RF MPE SIGNAGE (IF NOT IN PLACE, SUPPLIER NOTIFIES EMS FIELD REPRESENTATIVE)
- BACK OF ANTENNAS AND RRUS (I EACH SECTOR)
 BACK OF ANTENNAS AND RRUS (I EACH SECTOR) CLOSE UP SHOWING WEATHERPROOFING AND GROUNDING (AS REQUIRED). CLOSE-UP OF BACK SIDE OF EACH PERMANENT RRU SHOWING SERIAL NUMBER/BAR CODE
- VIEW (I EACH SECTOR) ALONG THE AZIMUTH AND TILT OF THE ANTENNAS
- TOP OF TOWER FROM GROUND, I EACH SECTOR
 MAINLINE HYBRID CABLE ROUTE DOWN TOWER SHOWING FASTENERS AND SUPPORT
- MAINLINE/HYBRID CABLE ROUTE ALONG ICE BRIDGE OR IN CABLE TRAY SHOWING FASTENERS AND
- GROUND MOUNTED RRU RACKS (FRONT AND BACK)
- FRONT, SIDE AND BACK ELEVATIONS OF ALL GROUND CABINETS
- LO VIEW OF COMPOUND FROM A DISTANCE
- 11. VIEW OF EACH GROUND CABINET (POWER, RF, FIBER SPOOL, PPC POWER, PPC TELCO WITH DOOR
- 12. BACKHAUL FIBER MEET-ME-POINT AND CONDUIT ROUTE (MICROWAVE INSTALLATION IF NOT FIBER)
- 13. AAV NETWORK INTERFACE DEVICE OR MICROWAVE RADIO INSTALLATION

CONTRACTOR IS RESPONSIBLE FOR ALL CORRECTIONS TO DEFICIENCIES IDENTIFIED THROUGH TESTING, REVIEW OF SUBMITTALS, INSPECTIONS AND CLOSEOUT REVIEWS.

SECTION O I 500 - PROJECT REPORTING

- A CONTRACTOR SHALL REPORT TO SPRINT AT MINIMUM ON A WEEKLY BASIS VIA SITERRA BY LIPDATING ALL APPLICABLE POST END KEEPING MILESTONES WITH ACTUAL AND FORECASTED COMPLETION DATES, B. ADDITIONAL REQUIREMENTS FOR REPORTING MAY BE IDENTIFIED ELSEWHERE OR REQUIRED BY THE SCOPE
- OF SERVICES OR SPRINTS LOCAL MARKET CONSTRUCTION MANAGER. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT.

SPRINT MAY HOLD PERIODIC PROJECT CONFERENCE CALLS. CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY.

FINAL PROJECT ACCEPTANCE: PRIOR TO SPRINTS FINAL PROJECT ACCEPTANCE. ALL REQUIRED MILESTONE ACTUALS MUST BE UPDATED IN SITERRA AND ALL REQUIRED REPORTING TASKS MUST BE COMPLETE.

SECTION I I 700 - ANTENNA ASSEMBLY, REMOTE RADIO UNITS AND CABLE INSTALLATION

THIS SECTION SPECIFIES INSTALLATION OF ANTENNAS, RRU'S, AND CABLE EQUIPMENT, INSTALLATION, AND TESTING OF COAXIAL FIBER CABLE.

THE NUMBER AND TYPE OF ANTENNAS AND RRU'S TO BE INSTALLED IS DETAILED ON THE CONSTRUCTION DRAWINGS.

HYBRID CABLE WILL BE DC/FIBER AND FURNISHED FOR INSTALLATION AT EACH SITE. CABLE SHALL BE INSTALLED PER THE CONSTRUCTION DRAWINGS AND THE APPLICABLE MANUFACTURER'S REQUIREMENTS

JUMPERS AND CONNECTORS: FURNISH AND INSTALL 1/2" COAX JUMPER CABLES BETWEEN THE RRUS AND ANTENNAS, JUMPERS SHALL BE TYPE LDF 4, FLC 12-50, CR 540, OR FXL 540. SUPER-FLEX CABLES ARE NOT ACCEPTABLE. JUMPERS BETWEEN THE RRU'S AND ANTENNAS OR TOWER TOP AMPLIFIERS SHALL CONSIST OF 1/2 INCH FOAM DIELECTRIC, OUTDOOR RATED COAXIAL CABLE, MIN. LENGTH FOR JUMPER SHALL BE 10"-0".

INSTALL SPLITTERS, COMBINERS, FILTERS PER RF DATA SHEET, FURNISHED BY SPRINT.

THE CONTRACTOR SHALL ASSEMBLE ALL ANTENNAS ONSITE IN ACCORDANCE WITH THE INSTRUCTIONS SUPPLIED BY THE MANUFACTURER. ANTENNA HEIGHT, AZIMUTH, AND FEED ORIENTATION INFORMATION SHALL BE A DESIGNATED ON THE CONSTRUCTION DRAWINGS.

- A. THE CONTRACTOR SHALL POSITION THE ANTENNA ON TOWER PIPE MOUNTS SO THAT THE BOTTOM STRUT IS LEVEL. THE PIPE MOUNTS SHALL BE PLUMB TO WITHIN I DEGREE.
- B.ANTENNA MOUNTING REQUIREMENTS: PROVIDE ANTENNA MOUNTING HARDWARE AS INDICATED ON THE

HYBRID CABLE INSTALLATION:

- A. THE CONTRACTOR SHALL ROUTE, TEST, AND INSTALL ALL CABLES AS INDICATED ON THE CONSTRUCTION DRAWINGS AND IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS
- B THE INSTALLED RADIUS OF THE CABLES SHALL NOT BE LESS THAN THE MANUFACTURER'S SPECIFICATIONS

C.EXTREME CARE SHALL BE TAKEN TO AVOID DAMAGE TO THE CABLES DURING HANDLING AND INSTALLATION.

- I. FASTENING MAIN HYBRID CABLES: ALL CABLES SHALL BE INSTALLED INSIDE MONOPOLE WITH CABLE SUPPORT GRIPS AS REQUIRED BY THE MANUFACTURER.
- 2. FASTENING INDIVIDUAL FIBER AND DC CABLES ABOVE BREAKOUT ENCLOSURE (MEDUSA), WITHIN THE MMBS CABINET AND ANY INTERMEDIATE DISTRIBUTION BOXES:
 - a. FIBER: SUPPORT FIBER BUNDLES USING 1/2" VELCRO STRAPS OF THE REQUIRED LENGTH AT 18" O.C. STRAPS SHALL BE UV, OIL AND WATER RESISTANT AND SUITABLE FOR INDUSTRIAL INSTALLATIONS AS MANUFACTURED BY TEXTOL OR APPROVED EQUAL.
 - b. DC: SUPPORT DC BUNDLES WITH ZIP TIES OF THE ADEQUATE LENGTH. ZIP TIES TO BE UV STABILIZED, BLACK NYLON, WITH TENSILE STRENGTH AT 12,000 PSI AS MANUFACTURED BY NELCO PRODUCTS OR EQUAL.
- 3. FASTENING JUMPERS: SECURE JUMPERS TO THE SIDE ARMS OR HEAD FRAMES USING STAINLESS STEEL TIE WRAPS OR STAINLESS STEEL BUTTERFLY CLIPS.
- 4. CABLE INSTALLATION
 - a. INSPECT CABLE PRIOR TO USE FOR SHIPPING DAMAGE, NOTIFY THE CONSTRUCTION
 - b. CABLE ROUTING: CABLE INSTALLATION SHALL BE PLANNED TO ENSURE THAT THE LINES MILL BE PROPERLY ROUTED IN THE CABLE ENVELOP AS INDICATED ON THE DRAWINGS. AVOID TWISTING AND CROSSOVERS.
 - c. HOIST CABLE USING PROPER HOISTING GRIPS. DO NOT EXCEED MANUFACTURER'S RECOMMENDED MAXIMUM BEND RADIUS
- 5. GROUNDING OF TRANSMISSION LINES: ALL TRANSMISSION LINES SHALL BE GROUNDED AS INDICATED ON DRAWINGS
- 7. HYBRID CABLE LABELING: INDIVIDUAL HYBRID AND DC BUNDLES SHALL BE LABELED ALPHA-NUMERICALLY ACCORDING TO SPRINT CELL SITE ENGINEERING NOTICE - EN 2012-001, REV I

6. HYBRID CABLE COLOR CODING: ALL COLOR CODING SHALL BE AS REQUIRED IN TS 0200 (CURRENT

WEATHERPROOFING EXTERIOR CONNECTORS AND HYBRID CABLE GROUND KITS:

A. ALL FIBER ¢ COAX CONNECTORS AND GROUND KITS SHALL BE WEATHERPROOFED

- B. WEATHERPROOFED USING ONE OF THE FOLLOWING METHODS. ALL INSTALLATIONS MUST BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND INDUSTRY BEST PRACTICES.
- COLD SHRINK: ENCOMPASS CONNECTOR IN COLD SHRINK TUBING AND PROVIDE A DOUBLE WRAP OF " ELECTRICAL TAPE EXTENDING 2" BEYOND TUBING. PROVIDE 3M COLD SHRINK CXS SERIES OR
- 2. SELF-AMALGAMATING TAPE: CLEAN SURFACES, APPLY A DOUBLE WRAP OF SELF-AMALGAMATING TAPE 2" BEYOND CONNECTOR. APPLY A SECOND WRAP OF SELF-AMALGAMATING TAPE IN OPPOSITE DIRECTION. APPLY DOUBLE WRAP OF 2" WIDE ELECTRICAL TAPE EXTENDING 2" BEYOND THE
- 3. 3M SLIM LOCK CLOSURE 716: SUBSTITUTIONS WILL NOT BE ALLOWED.
- 4. OPEN FLAME ON JOB SITE IS NOT ACCEPTABLE

SECTION 1 1 800 - INSTALLATION OF MULTIMODAL BASE STATIONS (MMBS)

SUMMARY

- A. THIS SECTION SPECIFIES MMBS CABINETS, POWER CABINETS, AND INTERNAL EQUIPMENT INCLUDING BY NOT LIMITED TO RECTIFIERS, POWER DISTRIBUTION UNITS, BASE BAND UNITS, SURGE ARRESTORS, BATTERIES, AND SIMILAR EQUIPMENT FURNISHED BY THE COMPANY FOR INSTALLATION BY THE CONTRACTOR (OFCI)
- B.CONTRACTOR SHALL PROVIDE AND INSTALL ALL MISCELLANEOUS MATERIALS AND PROVIDE ALL LABOR REQUIRED FOR INSTALLATION EQUIPMENT IN EXISTING CABINET OR NEW CABINET AS SHOWN ON DRAWINGS AND AS REQUIRED BY THE APPLICABLE INSTALLATION MOPS.

C.COMPLY WITH MANUFACTURER'S INSTALLATION AND START-UP REQUIREMENTS.

DC CIRCUIT BREAKER LABELING

A.NEW DC CIRCUIT IS REQUIRED IN MMBS CABINET SHALL BE CLEARLY IDENTIFIED AS TO RRU BEING SERVICED.

SECTION 26 100 - BASIC ELECTRICAL REQUIREMENTS

THIS SECTION SPECIFIES BASIC ELECTRICAL REQUIREMENTS FOR SYSTEMS AND COMPONENTS

QUALITY ASSURANCE:

- A.ALL EQUIPMENT FURNISHED UNDER DIVISION 26 SHALL CARRY UL LABELS AND LISTINGS WHERE SUCH LABELS AND LISTINGS ARE AVAILABLE IN THE INDUSTRY.
- B.MANUFACTURERS OF EQUIPMENT SHALL HAVE A MINIMUM OF THREE YEARS EXPERIENCE WITH THEIR EQUIPMENT INSTALLED AND OPERATING IN THE FIELD IN A USE SIMILAR TO THE PROPOSED USE FOR THIS
- C.MATERIALS AND EQUIPMENT: ALL MATERIALS AND EQUIPMENT SPECIFIED IN DIVISION 26 OF THE SAME TYPE SHALL BE OF THE SAME MANUFACTURER AND SHALL BE NEW, OF THE BEST QUALITY AND DESIGN, AND FREE FROM DEFECTS.

SUPPORTING DEVICES

- A.MANUFACTURED STRUCTURAL SUPPORT MATERIALS: SUBJECT TO COMPLIANCE WITH REQUIREMENTS, PROVIDE PRODUCTS BY THE FOLLOWING:
- I. ALLIED TUBE AND CONDUIT.
- 2. B-LINE SYSTEM.
- 3. UNISTRUT DIVERSIFIED PRODUCTS.
- 4. THOMAS # BETTS

B.FASTENERS: TYPES, MATERIALS, AND CONSTRUCTION FEATURES AS FOLLOWS

- I. EXPANSION ANCHORS: CARBON STEEL WEDGE OR SLEEVE TYPE.
- 2. POWER-DRIVEN THREADED STUDS: HEAT-TREATED STEEL, DESIGNED SPECIFICALLY FOR THE INTENDED
- 3. FASTEN BY MEANS OF WOOD SCREWS ON WOOD
- 4. TOGGLE BOLTS ON HOLLOW MASONRY UNITS.
- 5. CONCRETE INSERTS OR EXPANSION BOLTS ON CONCRETE OR SOLID MASONRY.
- 6. MACHINE SCREWS, WELDED THREADED STUDS, OR SPRING-TENSION CLAMPS ON STEEL
- 7. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE SHALL NOT BE PERMITTED 8. DO NOT WELD CONDUIT, PIPE STRAPS, OR ITEMS OTHER THAN THREADED STUDS TO STEEL

9. IN PARTITIONS OF LIGHT STEEL CONSTRUCTION, USE SHEET METAL SCREWS.

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

ertification \$ Seal:

hereby certify that this plan, specification, or report was pi by me or under my direct supervision and that I am a duly Lic y me or under my direct supervision and that I am a duly Licensec rofessional Engineer under the laws of the State of Connecticut

DATE 07/29/2014

COM-TRONICS

CT60XC969-A 627 HONEYSPOT ROAD STRATFORD, CT 06615

FAIRFIELD COUNTY

FINIAL

SPRINT SPECIFICATIONS

SCALE: NONE

27746

SUPPORTING DEVICES:

- A. INSTALL SUPPORTING DEVICES TO FASTEN ELECTRICAL COMPONENTS SECURELY AND PERMANENTLY IN
- B. COORDINATE WITH THE BUILDING STRUCTURAL SYSTEM AND WITH OTHER TRADES.
- C. UNLESS OTHERWISE INDICATED ON THE DRAWINGS, FASTEN ELECTRICAL ITEMS AND THEIR SUPPORTING HARDWARE SECURELY TO THE STRUCTURE IN ACCORDANCE WITH THE FOLLOWING
- I. ENSURE THAT THE LOAD APPLIED BY ANY FASTENER DOES NOT EXCEED 25 PERCENT OF
- 2. USE VIBRATION AND SHOCK-RESISTANT FASTENERS FOR ATTACHMENTS TO CONCRETE

ELECTRICAL IDENTIFICATION:

- A. UPDATE AND PROVIDE TYPED CIRCUIT BREAKER SCHEDULES IN THE MOUNTING BRACKET, INSIDE DOORS
- BRANCH CIRCUITS FEEDING AVIATION OBSTRUCTION LIGHTING EQUIPMENT SHALL BE CLEARLY IDENTIFIED AS SUCH AT THE BRANCH CIRCUIT PANELBOARD.

SECTION 26 200 - ELECTRICAL MATERIALS AND EQUIPMENT

- A. RIGID GALVANIZED STEEL (RGS) CONDUIT SHALL BE USED FOR EXTERIOR LOCATIONS ABOVE GROUND AND IN UNFINISHED INTERIOR LOCATIONS AND FOR UNDERGROUND RUNS. RIGID CONDUIT AND FITTINGS SHALL BE STEEL, COATED WITH ZINC EXTERIOR AND INTERIOR BY THE HOT DIP GALVANIZING PROCESS, CONDUIT SHALL BE PRODUCED TO ANSI SPECIFICATIONS CO. I, FEDERAL SPECIFICATION WW-C-58 I AND SHALL BE LISTED WITH THE UNDERWRITERS' LABORATORIES, FITTINGS SHALL BE THREADED - SET SCREW OR COMPRESSION FITTINGS WILL NOT BE ACCEPTABLE. RGS CONDUITS SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND.
- B. UNDERGROUND CONDUIT IN CONCRETE SHALL BE POLYVINY CHLORIDE (PVC) SUITABLE FOR DIRECT BURIAL AS APPLICABLE. JOINTS SHALL BE BELLED, AND FLUSH SOLVENT WELDED IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. CONDUIT SHALL BE CARLON ELECTRICAL PRODUCTS OR APPROVED
- C. TRANSITIONS BETWEEN PVC AND RIGID (RGS) SHALL BE MADE WITH PVC COATED METALLIC LONG SWEEP
- D. FMT OR RIGID GALVANIZED STEEL CONDUIT MAY BE LISED IN FINISHED SPACES CONCEALED IN WALLS AND CEILINGS. EMT SHALL BE MILD STEEL, ELECTRICALLY WELDED, ELECTRO-GALVANIZED OR HOT-DIPPED GALVANIZED AND PRODUCED TO ANSI SPÉCIFICATION C80.3, FEDERAL SPÉCIFICATION WW-C-563, AND SHALL BE UL LISTED. EMT SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND, OR APPROVED EQUAL. FITTINGS SHALL BE METALLIC COMPRESSION. SET SCREW CONNECTIONS SHALL NOT
- LIQUID TIGHT FLEXIBLE METALLIC CONDUIT SHALL BE USED FOR FINAL CONNECTION TO EQUIPMENT. FITTINGS SHALL BE METALLIC GLAND TYPE COMPRESSION FITTINGS, MAINTAINING THE INTEGRITY OF CONDUIT SYSTEM. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE. MAXIMUM LENGTH OF FLEXIBLE CONDUIT SHALL NOT EXCED G-FEET. LFMC SHALL BE PROTECTED AND EXPORTED AS REQUIRED BY NEC. MANUFACTURERS OF FLEXIBLE CONDUITS SHALL BE CAROL, ANACONDA METAL HOSE OR UNIVERSAL METAL HOSE, OR APPROVED EQUAL.
- F. MINIMUM SIZE CONDUIT SHALL BE 3/4 INCH (2 I MM).

HUBS AND BOXES:

- A. AT ENTRANCES TO CABINETS OR OTHER EQUIPMENT NOT HAVING INTEGRAL THREADED HUBS PROVIDE METALLIC THREADED HUBS OF THE SIZE AND CONFIGURATION REQUIRED. HUB SHALL INCLUDE LOCKNUT AND NEOPRENE O-RING SEAL. PROVIDE IMPACT RESISTANT 105 DEGREE C PLASTIC BUSHINGS TO PROTECT CABLE INSULATION.
- B. CABLE TERMINATION FITTINGS FOR CONDUIT
 - CABLE TERMINATORS FOR RGS CONDUITS SHALL BE TYPE CRC BY O-Z/GEDNEY OR EQUAL BY
 - CABLE TERMINATORS FOR LFMC SHALL BE ETCO CL2075; OR MADE FOR THE PURPOSE PRODUCTS BY ROXTEC
- C. EXTERIOR PULL BOXES AND PULL BOXES IN INTERIOR INDUSTRIAL AREAS SHALL BE PLATED CAST ALLOY HEAVY DUTY, WEATHERPROOF, DUST PROOF, WITH GASKET, PLATED IRON ALLOY COVER AND STAINLESS STEEL COVER SCREWS, CROUSE-HINDS WAB SERIES OR EQUAL.
- CONDUIT OUTLET BODIES SHALL BE PLATED CAST ALLOY WITH SIMILAR GASKET COVERS. OUTLET BODIES SHALL BE OF THE CONFIGURATION AND SIZE SUITABLE FOR THE APPLICATION. PROVIDE CROUSE-HINDS FORM 8 OR EQUAL
- E. MANUFACTURER FOR BOXES AND COVERS SHALL BE HOFFMAN, SQUARE "D", CROUSE-HINDS, COOPER, ADALET, APPLETON, O-Z GEDNEY, RACO, OR APPROVED EQUAL.

SUPPLEMENTAL GROUNDING SYSTEM:

- A. FURNISH AND INSTALL A SUPPLEMENTAL GROUNDING SYSTEM TO THE EXTENT INDICATED ON THE DRAWINGS, SUPPORT SYSTEM WITH NON-MAGNETIC STAINLESS STEEL CLIPS WITH RUBBER GROMMETS. GROUNDING CONNECTORS SHALL BE TINNED COPPER WIRE, SIZES AS INDICATED ON THE DRAWINGS. PROVIDE STRANDED OR SOLID BARE OR INSULATED CONDUCTORS EXCEPT AS OTHERWISE NOTED.
- B. SUPPLEMENTAL GROUNDING SYSTEM: ALL CONNECTIONS TO BE MADE WITH CAD WELDS. EXCEPT AT EQUIPMENT USE LUGS OR OTHER AVAILABLE GROUNDING MEANS AS REQUIRED BY MANUFACTURER; AT GROUND BARS USE TWO HOLE SPADES WITH NO-OX.
- C. STOLEN GROUND-BARS: IN THE EVENT OF STOLEN GROUND BARS, CONTACT SPRINT CM FOR REPLACEMENT INSTRUCTION USING THREADED ROD KITS.

EXISTING STRUCTURE:

A. EXISTING EXPOSED WIRING AND ALL EXPOSED OUTLETS, RECEPTACLES, SWITCHES, DEVICES, BOXES, AND OTHER EQUIPMENT THAT ARE NOT TO BE UTILIZED IN THE COMPLETED PROJECT SHALL BE REMOVED OR DE-ENERGIZED AND CAPPED IN THE WALL, CEILING, OR FLOOR SO THAT THEY ARE CONCEALED AND SAFE. WALL, CEILING, OR FLOOR SHALL BE PATCHED TO MATCH THE ADJACENT CONSTRUCTION

CONDUIT AND CONDUCTOR INSTALLATION:

A.CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS, EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED.
CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER, PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON

B.CONDUCTORS SHALL BE PULLED IN ACCORDANCE WITH ACCEPTED GOOD PRACTICE.

6580 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

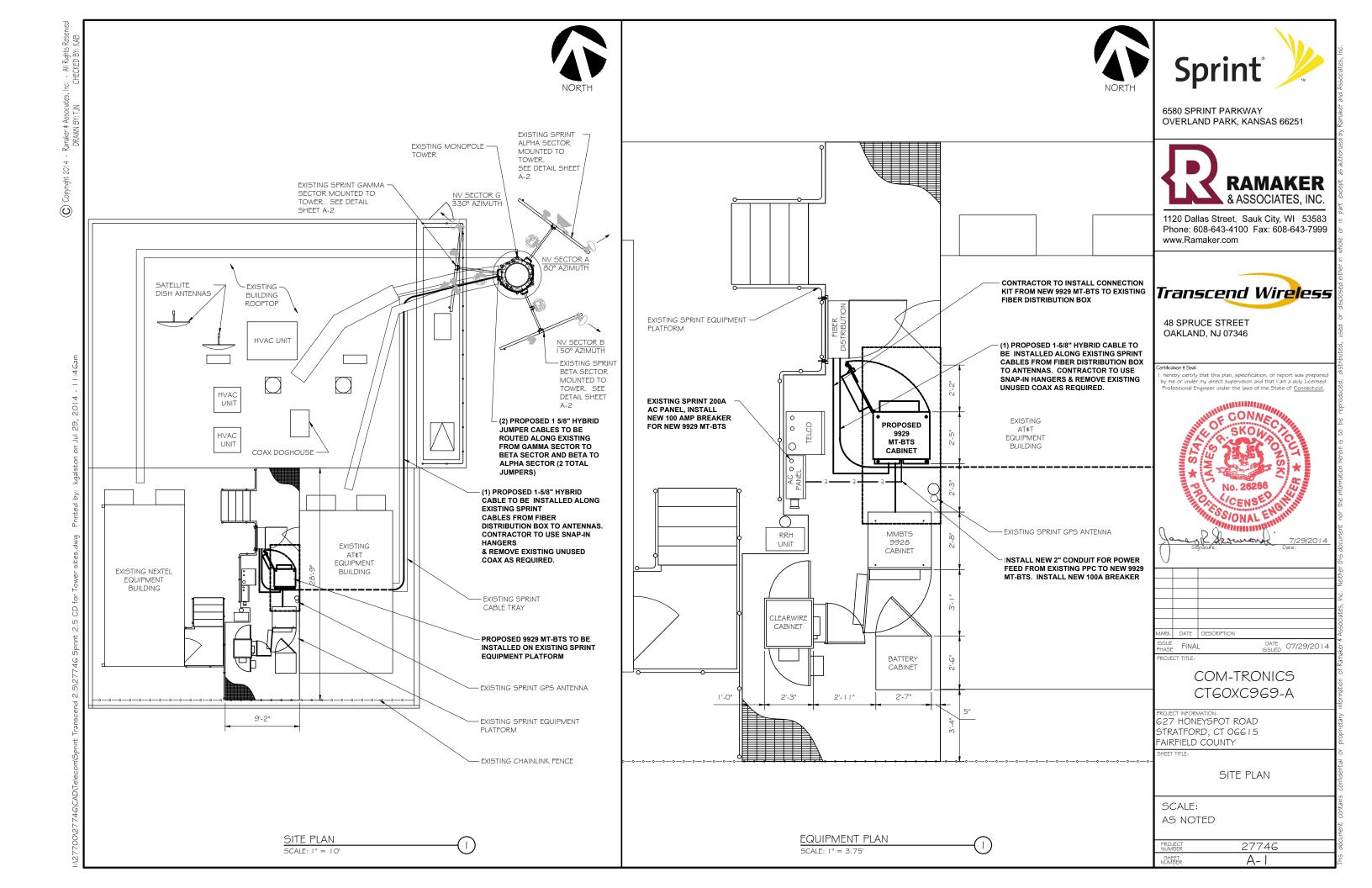
1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

ertification \$ Seal:

hereby certify that this plan, specification, or report was pre y me or under my direct supervision and that I am a duly License. Professional Engineer under the laws of the State of <u>Connecticut</u>

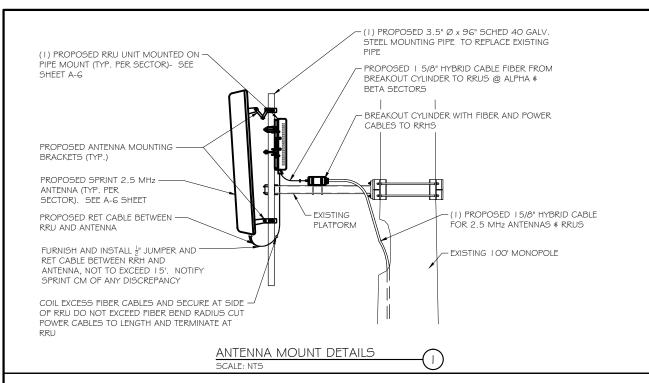
DATE 07/29/2014 FINAL

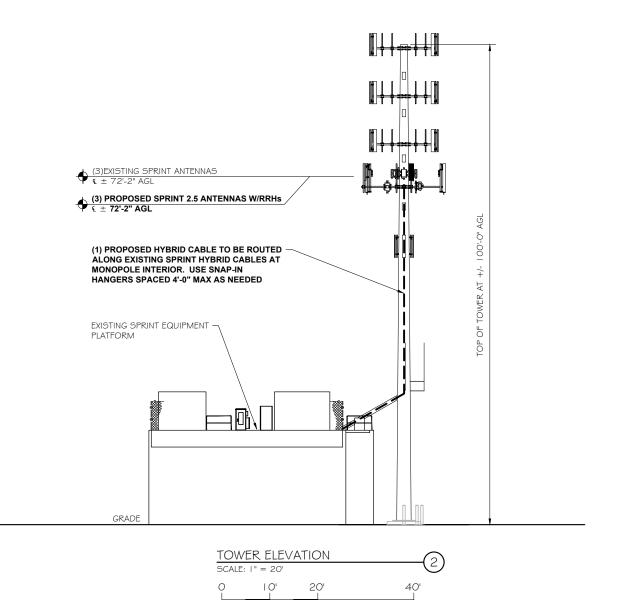

> **COM-TRONICS** CT60XC969-A

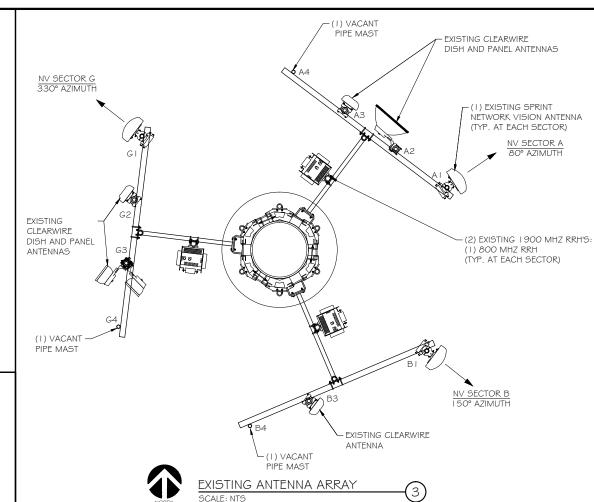
627 HONEYSPOT ROAD STRATFORD, CT 06615 FAIRFIELD COUNTY

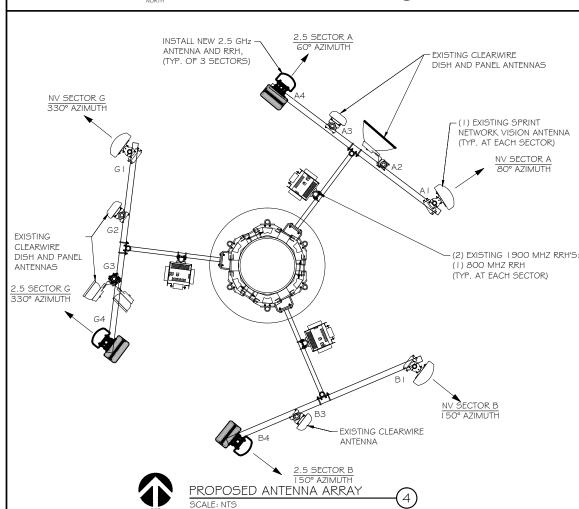
SPRINT SPECIFICATIONS

SCALE: NONE


27746 SP-3 SHEET




C Copyright 2014 - Ramaker & Associates, In



11" x 17" 22" x 34" - I" = 20' - I" = 10'

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

ertification ¢ Seal:

I hereby certify that this plan, specification, or report was prepare, by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Connecticut.

DATE DESCRIPTION

FINAL DATE ISSUED 07/29/2014

COM-TRONICS CT60XC969-A

PROJECT INFORMATION:
627 HONEYSPOT ROAD
STRATFORD, CT 066 I 5
FAIRFIELD COUNTY

TOWER ELEVATIONS & ANTENNA DETAILS

SCALE: AS NOTED

PROJECT 27746

SHEET A-2

RFDS Sheet

General Site Information

CT60XC969 Site ID Market Southern Connecticut Northeast Region MLA N/A Monopole Structure Type **BTS Type**

Equipment Vendor Alcatel-Lucent Lattitude 41.176686 -73.146138 Longitude LL SITE ID N/A

Solution ID

Siterra SR Equipment type **Equipment Vendor** Alcatel-Lucent Incremental Power Draw needed by added Equipment 100

Base Equipment

BBU Kit BBU Kit Qty

Growth Cabinet

ALU BBU Kit 1

ALU Growth Cabinet 9929

75.8" x 35.4" x 37.8"

1000

0.5

Commscope ATCB-B01-006

3

0.315

8 1.3

Top Hat Top Hat Qty Top Hat Dimenstions Top Hat Weight (lbs) None N/A N/A N/A

Growth Cabinet Dimensions Growth Cabinet Weight

Growth Cabinet Qty

RF Path Information

TD-RRH8x20-25 RRH **RRH Qty** 3 26.1"x18.6"x6.7" RRH Dimensions RRH Weight. lbs. 70 TBD RRH Mount Weight. Lbs. **ALU Hybrid Cable** Power and Fiber Cable Cable Qty Weight perfoot. Lbs. 1.6 1.625 Diameter. Inches. Length Ft. 86.4 TBD Coax Jumper Coax Jumper Qty 27 Coax Jumper Length. Feet. 8 Coax Jumper Weight TBD

(calculated as antenna height plus 20%)

Antenna Sector Information

Weight of entire AISG cable. Lbs.

Coax Jumper Diameter. Inches

AISG Cable

AISG Cable Qty

Antenna etilt

AISG Diameter. Inches.

AISG Cable length.

Antenna make/model Antenna qty Antenna Dimensions. Inches Antenna Weight. Lbs Antenna Mounting Kit Weight. Lbs. **CL** Height Antenna Azimuth Antenna Mechanical Downtilt

Sector 1	Sector 2	Sector 3
RFS APXVTM14-C-I20	RFS APXVTM14-C-I20	RFS APXVTM14-C-I20
1	1	1
56.3"x12.6"x6.3"	56.3"x12.6"x6.3"	56.3"x12.6"x6.3"
56	56	<mark>56</mark>
11	11	11
72	72	72
60	150	330
0	0	0
-2	-2	-2

NOTES:

- I. GENERAL CONTRACTOR TO FIELD VERIFY AZIMUTH AND C/L HEIGHT AND MECHANICAL DOWNTILT. IF DIFFERENT THAN CALLED OUT BELOW, HALT ANTENNA WORK FOR ONE HOUR. CALL SPRINT RF ENGINEER (OR MANAGER IF RF ENGINEER DOES NOT ANSWER, BUT STILL LEAVE A MESSAGE TO RF ENGINEER) USING CONTACT INFORMATION ABOVE FOR FURTHER INSTRUCTIONS, IF SPRINT DOES NOT RESPOND WITHIN ONE HOUR. PLACE 2.5GHZ ANTENNA AT SAME C/L HEIGHT AS I .9GHZ ANTENNA AND EMAIL CORRECT C/L HEIGHT AND AZIMUTH TO SPRINT RF ENGINEER. UPDATE AS-BUILD DRAWING WITH CORRECT C/L HEIGHT. ALSO EMAIL CORRECT 1.9GHZ AND 800MHZ ANTENNA C/L HEIGHT, AZIMUTH AND MECHANICAL DOWNTILT TO RF
- 2. AISG TESTS TO VERIFY OPERATION IS TO BE PERFORMED AFTER FINAL INSTALLATION OF ANTENNAS AND AISG CABLES HAVE BEEN CONNECTED. VERIFY OPERATION OF ALL EXISTING SPRINT AISG EQUIPMENT INCLUDING 800MHZ, I.9GHZ AND 2.5GHZ. TEST TO INCLUDE COMPLETE DOWNTILT, AZIMUTH (IF APPLICABLE) AND BEAMWIDTH SWINGS (IF APPLICABLE), DOCUMENT AISG TEST RESULTS IN COAX SWEEP TEST SPREADSHEET.
- 3. GENERAL CONTRACTOR MUST ENSURE THAT NO OBJECT IS LOCATED WITHIN 45 DEGREES OF LEFT AND RIGHT OF FRONT OF ANTENNA OR 7 DEGREES UP AND DOWN FROM CENTER OF ANTENNA. IF THIS IS NOT POSSIBLE, CONTACT RF ENGINEER FOR FURTHER INSTRUCTION. IN ADDITION, 2.5GHZ ANTENNA IS NOT TO BE PLACED IN FRONT OF ANY OTHER ANTENNA SPRINT AND NON-SPRINT ANTENNAS.
- 4. 2.5GHZ ANTENNA MUST BE AT LEAST 6" FROM 1.9GHZ FROM DUAL BAND 1.9GHZ AND 800MHZ ANTENNA
- 5. GENERAL CONTRACT IS REQUIRED TO USE A DIGITAL ALIGNMENT TOOL TO SET AZIMUTH, ROLL AND DOWNTHE, AZIMUTH ACCURACY IS TO BE WITHIN I DEGREE. DOWNTILT AND ROLL (LEFT TO RIGHT TILT) IS TO BE WITHIN O. I DEGREES. IF FOR SOME REASON THIS ACCURACY CANNOT BE ACHIEVED, UPDATE AS-BUILT DRAWINGS AND EMAIL SPRINT RF ENGINEER WITH AS-BUILT SETTINGS. USE 3Z RF ALIGNMENT TOOL OR EQUIVALENT TOOL.

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

ertification # Seal:

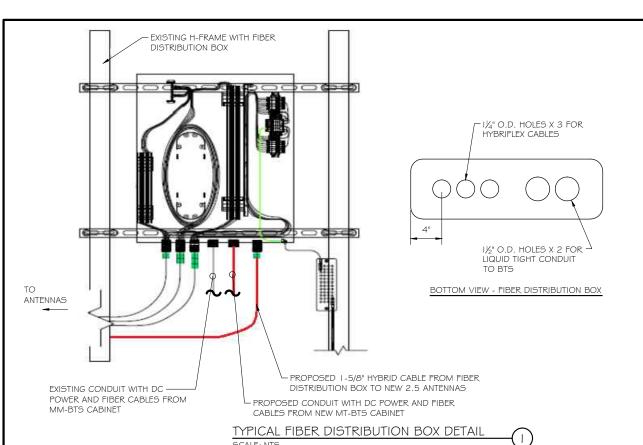
hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.

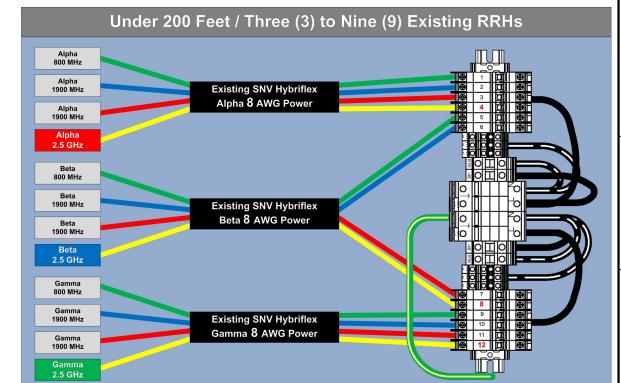
MARK	DATE	DESCRIPTION

SUE FINAL

DATE 07/29/2014

COM-TRONICS CT60XC969-A


PROJECT INFORMATION:
627 HONEYSPOT ROAD STRATFORD, CT 06615 FAIRFIELD COUNTY


RF DATA SHEET

SCALE: AS NOTED

27746 A-3 SHEET

*RFDS SHEET WAS GENERATED BY RAMAKER \$ ASSOCIATES FROM PLAN OF RECORD (POR) PROVIDED BY SPRINT. CONTRACTOR SHALL VERIFY AND OBTAIN FINAL RFDS FROM SPRINT CONSTRUCTION MANAGER PRIOR TO CONSTRUCTION.

RRH TO DISTRIBUTION BOX POWER CONNECTIVITY DETAIL

Gamma Beta Alpha C2 C1 SPARE MPO Connectors

RRH TO DISTRIBUTION BOX FIBER CONNECTIVITY DETAIL

See BTS to Distribution Box

Fiber Connectivity

Sprint

6580 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

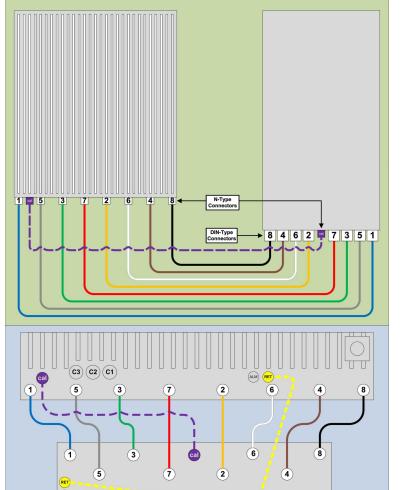


1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

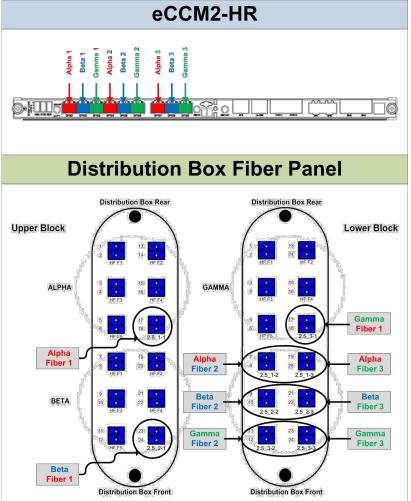
48 SPRUCE STREET OAKLAND, NJ 07346

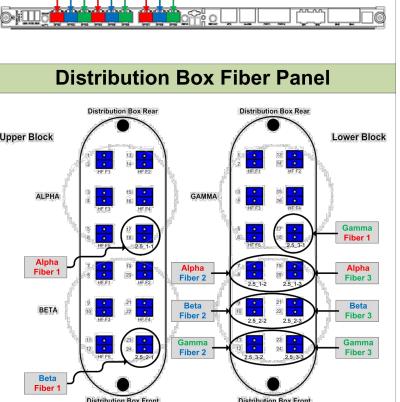
hereby certify that this plan, specification, or report was prepare, by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.

FINAL DATE 07/29/2014


COM-TRONICS CT60XC969-A

PROJECT INFORMATION:
627 HONEYSPOT ROAD STRATFORD, CT 06615 FAIRFIELD COUNTY


FIBER PLUMBING DIAGRAM


SCALE: AS NOTED

27746 SHEET A-4

8T8R DETAIL

BTS TO DISTRIBUTION BOX FIBER CONNECTIVITY DETAIL

2.5 Coaxial Cable Color Code (Radio#1)

			ole Color	Touc (na	αιοπτη	
Sector	Cable	Start at Connector Side	Wrap2	Wrap3	Wrap4	Wrap5
1 Alpha	1	Blue			Yellow	White
1	2	Orange			Yellow	White
1	3	Green			Yellow	White
1	4	Brown			Yellow	White
1	5	Slate			Yellow	White
1	6	White			Yellow	White
1	7	Red			Yellow	White
1	8	Violet			Yellow	White
	Calibration					
1	Cable	Yellow			Yellow	White
2 Beta	1	Blue	Blue		Yellow	White
2	2	Orange	Orange		Yellow	White
2	3	Green	Green		Yellow	White
2	4	Brown	Brown		Yellow	White
2	5	Slate	Slate		Yellow	White
2	6	White	White		Yellow	White
2	7	Red	Red		Yellow	White
2	8	Violet	Violet		Yellow	White
2	Calibration Cable	Yellow	Yellow		Yellow	White
3 Gamma	1	Blue	Blue	Blue	Yellow	White
3	2	Orange	Orange	Orange	Yellow	White
3	3	Green	Green	Green	Yellow	White
3	4	Brown	Brown	Brown	Yellow	White
3	5	Slate	Slate	Slate	Yellow	White
3	6	White	White	White	Yellow	White
3	7	Red	Red	Red	Yellow	White
3	8	Violet	Violet	Violet	Yellow	White
3	Calibration Cable	Yellow	Yellow	Yellow	Yellow	White

2.5 Coaxial Cable Color Code (Radio#2)

2.5 Coaxial Cable Color Code (Radio#2)						
Sector	Cable	Start at Connector Side	Wrap2	Wrap3	Wrap4	Wrap5
1 Alpha	1	Blue			Yellow	Violet
1	2	Orange			Yellow	Violet
1	3	Green			Yellow	Violet
1	4	Brown			Yellow	Violet
1	5	Slate			Yellow	Violet
1	6	White			Yellow	Violet
1	7	Red			Yellow	Violet
1	8	Violet			Yellow	Violet
	Calibration					
1	Cable	Yellow			Yellow	Violet
2 Beta	1	Blue	Blue		Yellow	Violet
2	2	Orange	Orange		Yellow	Violet
2	3	Green	Green		Yellow	Violet
2	4	Brown	Brown		Yellow	Violet
2	5	Slate	Slate		Yellow	Violet
2	6	White	White		Yellow	Violet
2	7	Red	Red		Yellow	Violet
2	8	Violet	Violet		Yellow	Violet
	Calibration					
2	Cable	Yellow	Yellow		Yellow	Violet
3 Gamma	1	Blue	Blue	Blue	Yellow	Violet
3	2	Orange	Orange	Orange	Yellow	Violet
3	3	Green	Green	Green	Yellow	Violet
3	4	Brown	Brown	Brown	Yellow	Violet
3	5	Slate	Slate	Slate	Yellow	Violet
3	6	White	White	White	Yellow	Violet
3	7	Red	Red	Red	Yellow	Violet
3	8	Violet	Violet	Violet	Yellow	Violet
	Calibration					
3	Cable	Yellow	Yellow	Yellow	Yellow	Violet

2.5 COAXIAL CABLE COLOR CODE SCALE: NTS

CABLE MARKING NOTES

- ALL CABLES SHALL BE MARKED WITH 2" WIDE, UV STABILIZED, UL APPROVED TAPE.
- THE FIRST RING SHALL BE CLOSEST TO THE END OF THE CABLE AND SPACED APPROXIMATELY 2" FROM THE END CONNECTOR, WEATHERPROOFING, OR BREAKOUT UNIT, THERE SHALL BE 1" SPACE BETWEEN EACH RING.
- A 2" GAP SHALL SEPARATE THE CABLE COLOR CODE FROM THE FREQUENCY COLOR CODE, THE 2" COLOR RINGS FOR THE FREQUENCY CODE SHALL BE PLACED NEXT TO EACH OTHER WITH NO SPACES.
- 4. THE 2" COLORED TAPE(S) SHALL BE WRAPPED A MINIMUM OF 3 TIMES AROUND THE INDIVIDUAL CABLES, AND THE TAPE SHALL BE KEPT IN THE SAME LOCATION AS MUCH AS POSSIBLE.
- 5. SITES WITH MORE THAN FOUR (4) SECTORS WILL REQUIRE ADDITIONAL RINGS FOR EACH SECTOR, FOLLOWING THE PATTERN. HIGH CAPACITY SITES WILL USE THE SECOND CABLE IDENTIFIED BY BLUE BANDS OF TAPE
- 6. HYBRID FIBER CABLE SHALL BE SECTOR IDENTIFIED INSIDE THE CABINET ON FREQUENCY BUNDLES, ON THE SEALTITE, ON THE MAIN LINE UPON EXIT OF SEALTITE, AND BEFORE AND AFTER THE BREAKOUT UNIT (MEDUSA), AS WELL AS BEFORE AND AFTER ANY ENTRANCE OR EXIT.
- 7. HFC "MAIN TRUNK" WILL NOT BE MARKED WITH THE FREQUENCY CODES, AS IT CONTAINS ALL FREQUENCIES.
- 8. INDIVIDUAL POWER PAIRS AND FIBER BUNDLES SHALL BE LABELED WITH BOTH THE CABLE AND FREQUENCY.

6580 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

ertification \$ Seal:

hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.

FINAL

DATE 07/29/2014

COM-TRONICS CT60XC969-A

PROJECT INFORMATION:
627 HONEYSPOT ROAD STRATFORD, CT 06615 FAIRFIELD COUNTY

CABLE COLOR CODING

SCALE: AS NOTED

27746 SHEET A-5

FIBER ONLY

HYBRID CABLE DC CONDUCTOR SIZE GUIDELINE

ABLE	LENGTH	DC CONDUCTOR	CABLE DIAMETER
iber Only	Varies	Use NV Hybriflex	5/8"
lybriflex	<200'	8 AWG	1-1/4"
lybriflex	225-300'	6 AWG	1-1/4"
lybriflex	325-375'	4 AWG	1-1/4"

RFS HYBRIFLEX RISER CABLE SCHEDULE

FIBER ONLY (EXISTING DC	Hybrid cable	
POWER)	MN:HB058-M12-050F	
	12x multi-mode fiber pairs, Top:Outdoor protected connectors, Bottom:LC Connectors, 5/8 cable, 50 ft	50 ft
	MN:HB058-M12-075F	75 ft
	MN:HB058-M12-100F	100 ft
	MN:HB058-M12-125F	125 ft
	MN:HB058-M12-150F	150 ft
	MN:HB058-M12-175F	175 ft
	MN:HB058-M12-200F	200 ft

8 AWG Power	Hybrid cable	
	MN:HB114-08U3M12-050F	50 ft
	3x 8 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC connectors. 1 1/4 cable, 50 ft	
	MN:HB114-08U3M12-075F	75 ft
	MN:HB114-08U3M12-100F	100 ft
	MN:HB114-08U3M12-125F	125 ft
	MN:HB114-08U3M12-150F	150 ft
	MN:HB114-08U3M12-175F	175 ft
	MN:HB114-08U3M12-200F	200 ft

	3x 6 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC connectors. 1 1/4 cable, 225 ft	22511
	MN:HB114-13U3M12-250F	250 ft
	MN:HB114-13U3M12-275F	275 ft
	MN:HB114-13U3M12-300F	300 ft
4 AWG Power	Hybrid cable	
	MN:HB114-21U3M12-325F	325 ft
	3x 4 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC connectors. 1 1/4 cable, 325 ft	
	MN:HB114-21U3M12-350F	350 ft
	MN:HB114-21U3M12-375F	375 ft

MN:HB114-13U3M12-225F

Hybrid Jumper cable MN:HBF012-M3-5F1

RFS HYBRIFLEX JUMPER CABLE SCHEDULE

5 ft, 3x multi-mode fiber pairs, Outdoor & LC connectors, 1/2 cable

	· ·	
	MN:HBF012-M3-10F1	10 ft
	MN:HBF012-M3-15F1	15 ft
	SPECIAL INSTALLATION NOTE:	
JUMPERS FROM 2.5 RRH TO 2.5 ANTENNA SHALL NOT EX		5'
	NOTIFY SPRINT CM OF ANY DISCREPANCY	
8 AWG POWER	Hybrid Jumper cable	
	MN:HBF058-08U1M3-5F1	
		5 ft
	5 ft, 1x 8 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC connectors, 5/8 cable	
	MN:HBF058-08U1M3-10F1	10 ft
	MN:HBF058-08U1M3-15F1	15 ft
	SPECIAL INSTALLATION NOTE:	
	JUMPERS FROM 2.5 RRH TO 2.5 ANTENNA SHALL NOT EXCEED 1	5'
	NOTIFY SPRINT CM OF ANY DISCREPANCY	

	NOTIFT SPRINT ON OF ANY DISCREPANCE	
6 AWG POWER	Hybrid Jumper cable	
	MN:HBF058-13U1M3-5F1	5 ft
	5 ft, 1x 6 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC	
	connectors, 5/8 cable	
	MN:HBF058-13U1M3-10F1	10 ft
	MN:HBF058-13U1M3-15F1	15 ft
	SPECIAL INSTALLATION NOTE:	
	JUMPERS FROM 2.5 RRH TO 2.5 ANTENNA SHALL NOT EXCEED 1	15'
	NOTIFY SPRINT CM OF ANY DISCREPANCY	
4 AWG POWER	Hybrid Jumper cable	
	MN:HBF078-21U1M3-5F1	5 ft
	5 ft, 1x 4 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC connectors, 7/8 cable	311
	MN:HBF078-21U1M3-10F1	10 ft
	MN:HBF078-21U1M3-15F1	15 ft
	SPECIAL INSTALLATION NOTE:	

NOTIFY SPRINT CM OF ANY DISCREPANCY

JUMPERS FROM 2.5 RRH TO 2.5 ANTENNA SHALL NOT EXCEED 15'

Ø.217[5.50] I 2 CHANNEL FIBER DIST. QTY.:3 Ø. I I 7[2.97] INSULATED EPOXY GLASS ROD FIBER ONLY

Ø.319[8.10] -QTY.:6

Ø1.110[28.19]

OVER TAPE

Ø.598[15.19]

Ø1.110[28.19]

OVER TAPE

INNER CORE

BLACK -

Ø.252[6.40] -6 AWG PVC DC WIRE

QTY.:6

RED -

Ø.217[5.50] 12 CHANNEL FIBER DIST. QTY.:3

4 AWG

8 AWG \$ 6 AWG

-Ø1.106[28.09] OVER CORE

- Ø.2 | 7[5.50] | 2 CHANNEL FIBER DIST

−Ø.094[2.39] FILLER

- BLACK

-Ø1.106[28.09] OVER CORE

*NOTE: SPRINT CM TO CONFIRM HYBRID/FIBER RISER CABLE \$ HYBRID/FIBER JUMPER CABLE MODEL NUMBERS BEFORE PREPARING BOM.

HYBRID CABLE CROSS SECTION \$ DATA

SCALE: NTS

RFS: APXVTM14-C-120

DIMENSIONS, HxWxD:

55.1" x 11.8" x 5.9"

WEIGHT, WITHOUT PRE-MOUNTED BRACKETS:

52.9 lbs.

(9) XX" MINI-DIN FEMALE/BOTTOM CONNECTOR:

ᇳ 11.8"

5.9"

Transcend Wireless

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999

48 SPRUCE STREET OAKLAND, NJ 07346

www.Ramaker.com

Sprint

6580 SPRINT PARKWAY

OVERLAND PARK, KANSAS 66251

ertification \$ Seal:

hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.

FINAL

COM-TRONICS CT60XC969-A

DATE 07/29/2014

PROJECT INFORMATION:
627 HONEYSPOT ROAD STRATFORD, CT 06615 FAIRFIELD COUNTY

ANTENNA \$ HYBRID CABLE DETAILS

SCALE: AS NOTED

27746 SHEET A-6

17.5" SIDE VIEW FRONT VIEW

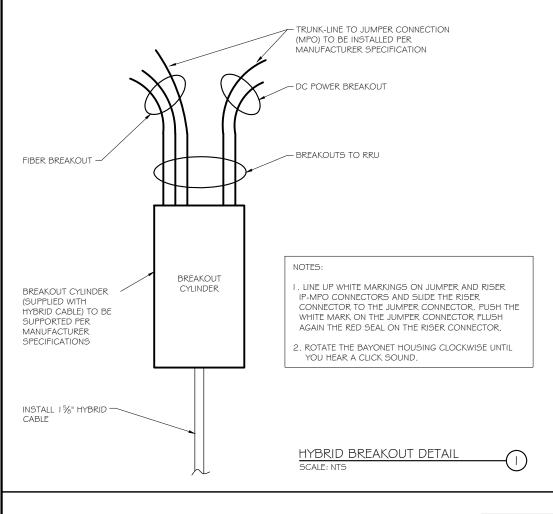
2.5 ANTENNA DETAIL

SCALE: NTS

000 BOTTOM VIEW

ALCATEL-LUCENT: TD-RRH8x20

 $HxWxD = (25.3" \times 17.5" \times 5.7")$

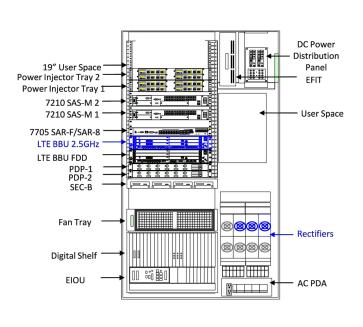

WEIGHT = 66.13 lbs.

2.5 RRH DETAIL

SCALE: NTS

PROVIDE 2" METALLIC HUB AND RIGID -CONDUIT CONNECTOR AND INSTALL CONNECTION KIT FROM NEW 9929 MT-BTS TO EXISTING FIBER
DISTRIBUTION BOX WITH DC POWER \$ FIBER CABLES PROPOSED 2.5 EQUIPMENT AND RECTIFIER UNIT TO BE INSTALLED IN NEW 2.5 9929 MT-BTS EXISTING FIBER DISTRIBUTION -BOX MOUNTED ON ROOF TOP EQUIPMENT PLATFORM INSTALL CONNECTION KIT FROM NEW 9929 MT-BTS TO EXISTING INSTALL CONNECTION KIT -FROM NEW 9929 MT-BTS MM-BTS TO EXISTING FIBER DISTRIBUTION BOX EXISTING AT&T EQUIPMENT SHELTER INSTALL NEW 1-5/8" HYBRID — CABLE FROM FIBER DISTRIBUTION BOX TO NEW 2.5 ANTENNA. ROUTE - EXISTING ROOF TOP ALONG EXISTING CABLE TRAY EXISTING ROOF TOP 9/0 П

CABLE ROUTE FROM CABINET


SCALE: NTS

EXISTING BBU CABINET

(2) PROPOSED BATTERY STRINGS TO BE INSTALLED IN EXISTING BATTERY CABINET

(4)

EXISTING MMBS CABINET SCALE: NTS

Sprint

6580 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

ertification \$ Seal:

hereby certify that this plan, specification, or report was prepare, by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.

FINAL

DATE | 07/29/2014

COM-TRONICS CT60XC969-A

PROJECT INFORMATION:
627 HONEYSPOT ROAD STRATFORD, CT 06615 FAIRFIELD COUNTY

EQUIPMENT DETAILS

SCALE: AS NOTED

27746 SHEET A-7

ALCATEL-LUCENT 9929 MULTI TECHNOLOGY BTS

OUTDOOR CABINET

In order to help network operators to improve TCO for distributed radio based sites with extended battery backup requirements, Alcatel-Lucent proposes the 9929 Multi Technology Outdoor Cabinet for CDMA/LTE/WCDMA multi-standard configurations

AT THE SPEED OF IDEAS™

9929 MT-BTS OUTDOOR CABINET

- The 9929 MT-BTS cabinet is designed to provide, in a single footprint, a full site support with a capability to host 3G and 4G Telecom equipment with internal power and battery support.
- The 9929 MT-BTS Outdoor Cabinet offers 17.5 U of user space capable of hosting 19" rack based telecom equipment and rectification. The 9929 MT-BTS supports distributed RF deployment scenarios with the hosting of Digital base band unit and transport equipment.
- The 9929 MT-BTS cabinet can host up of 2 strings of batteries.
- The 9929 MT-BTS is AC powered and can deliver up to 10.5kW of -48V DC power thanks to its internal N+1 redundant rectifier.
- The 19" modules could have either front-back or side-side cooling. The cabinet uses direct air-cooling (fresh air filter) technology on front door to provide 8000 W of cooling capacity. A wide temperature operating range (-40°C to +50°C full operation) allows the deployment of this cabinet in various locations.
- The 9929 MT-BTS cabinet is compliant with Zone 4 earthquake regulations.
- As an matter of example the following configuration is supported by the cabinet:
- ✓ Distributed configuration: AC configuration with up to 10.5kW DC Power, up to 3 baseband units, 2U service aggregation router, 2U of microwave transport equipment, up to 2 battery of 190AH.

------Alcatel·Lucent 💋

FEATURES

- Can host BBU(s) for CDMA/WCDMA/LTE
- Supports standard 19" Telecom equipment
- Uses Direct Air Cooling (no air conditioning) with fan speed control based upon temperature
- Support of up to two 190 Ah or up to two 145AH battery strings that can provide backup for 8 hours for up to 2375 W, or 4 hour backup for up to 4150
- Convenience AC outlet (2)

TECHNICAL SPECIFICATIONS

INTERFACE:

- ¬ CPRI (up to 9 RRH modules)
- ¬ Backhaul (Gigabit Ethernet or T1)
- ¬ External user alarms (up to 32 user alarms)
- ¬ AC Power input
- ¬ DC Power input for RRH (up to 9 RRH's)

PHYSICAL DIMENSIONS

- ¬ Height: 1617 mm (63.65 in)
- ¬ Width: 800 mm (31.5 in)
- ¬ Depth: 900 mm (35.5 in)

WEIGHT

- ¬ 197 kg (434 lbs) unloaded
- ¬ Up to 725 kg (1600 lbs) fully loaded

POWER

Power supply:

- ¬ -48 VDC
- ¬ 230V AC (single phase or 3 phases)
- ¬ up to 10.5kW DC -48V output power
- ¬ Rectifier redundancy N+1

SUPPORTED TELECOM EQUIPMENT

- ¬ LTE 9926 BBU
- ¬ CDMA 9926 BBU
- ¬ WDMA 9926 BBU
- ¬ SAR Aggregation router ¬ Microwave Indoor Unit

OPERATING ENVIRONMENT

- ¬ Outdoor temperature range: -40°C to +50°C
- ¬ Enclosure:
- ¬ IP55 (International Protection rating)
- ¬ Zone 4 Earthquake

- ¬ UL 60950-1 / CAN/CSA C22.2 No. 60950-1-07
- ¬ EN50272-2

EMC& ENVIRONNEMENTAL CONDITIONS

- ¬ GR-487-CORE
- ¬ GR-1089-CORE

9929 Multi Technology Outdoor BTS ALCATEL-LUCENT DATA SHEET

- ¬ Direct Air Cooling

STANDARDS COMPLIANCY

- ¬ UL 50/50E CSA C22.2 No. 94.1- 07/94.2-07
- ¬ EIA-310-D

- ¬ FCC Part 15 class B
- ¬ GR-63-CORE,

PROPOSED 9929 MT-BTS OUTDOOR CABINET

COM-TRONICS CT60XC969-A PROJECT INFORMATION:
627 HONEYSPOT ROAD

Sprint

6580 SPRINT PARKWAY

www.Ramaker.com

48 SPRUCE STREET

OAKLAND, NJ 07346

ertification \$ Seal:

OVERLAND PARK, KANSAS 66251

1120 Dallas Street, Sauk City, WI 53583

Phone: 608-643-4100 Fax: 608-643-7999

Transcend Wireless

hereby certify that this plan, specification, or report was prepare by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.

RAMAKER

STRATFORD, CT 06615 FAIRFIELD COUNTY

FINAL

CABINET DETAILS

DATE 07/29/2014

SCALE: AS NOTED

27746

A-8 SHEET

BOLTED SPLICE

89.78

END (3) PLATE MS-600

67-0

TOP OF LAP SPLICE

46,78

BOTTOM OF LAP SPLICE

44.98

END (3) PLATE MS-600

35-6

START (3) PLATE MS-600

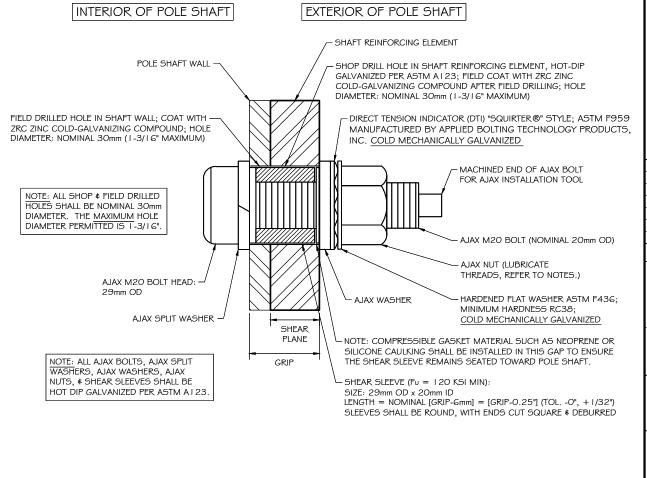
32-0

NEW ANCHOR BOLTS & BRACKETS

TOWER ELEVATION

SCALE: I" = 20'

TOP OF TOWER


£ ± 102.70' AGL

NEW SABRE FLAT PLATE REINFORCING				
ELEVATION	FLAT #	FLAT PLATE		
0'-6" TO 35'-6"	6, 12 \$ 18	MS-600 (3 PLATES)		
32'-0" TO 67'-0"	4, 10 \$ 16	MS-600 (3 PLATES)		

I. ALL BOLTS SHALL BE AJAX M20 BOLTS WITH HIGH STRENGTH SHEAR SLEEVES (ASTM A5 I 9 WITH MIN. Fu= I 05 KSI). CONTACT SUPPLIER FOR MATERIAL (PLATE & BOLTS) & INSTALLATION PROCEDURES.
2. CONTACT SABRE TOWERS & POLES MODIFICATION DEPARTMENT FOR SUPPLY & INSTALLATION PRICING OF MODIFICATION MATERIAL. CONTACT: MICHAEL J. BURNETT - MJBURNETT@SABREINDUSTRIES.COM

NOTES:

- I. ALL STRUCTURAL BOLTS SHALL BE INSTALLED \$ TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC "SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- 2. ALL STRUCTURAL BOLTS SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- 3. ALL AJAX M20 BOLTS WITH SHEAR SLEEVES SHALL BE PRETENSIONED & TIGHTENED UNTIL THE DIRECT TENSION INDICATOR (DTI) WASHERS SHOW THAT THE PROPER BOLT TENSION HAS BEEN REACHED. SEE NOTES & DETAIL BELOW FOR THE USE OF DIRECT TENSION INDICATOR (DTI) WASHERS WITH THE AJAX M20 BOLTS.
- 4. ALL AJAX BOLTS SHALL BE INSTALLED USING DIRECT TENSION INDICATORS (DTI's) & HARDNESS WASHERS. DTI's SHALL BE THE "SQUIRTER ®" STYLE, MADE TO ASTM F959 LATEST REVISION; & HARDENED WASHERS SHALL CONFORM TO ASTM F436 & HAVE A HARDNESS OF RC 38 OR HIGHER

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

fication & Seal:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.

DATE DESCRIPTION

DATE DESCRIPTION

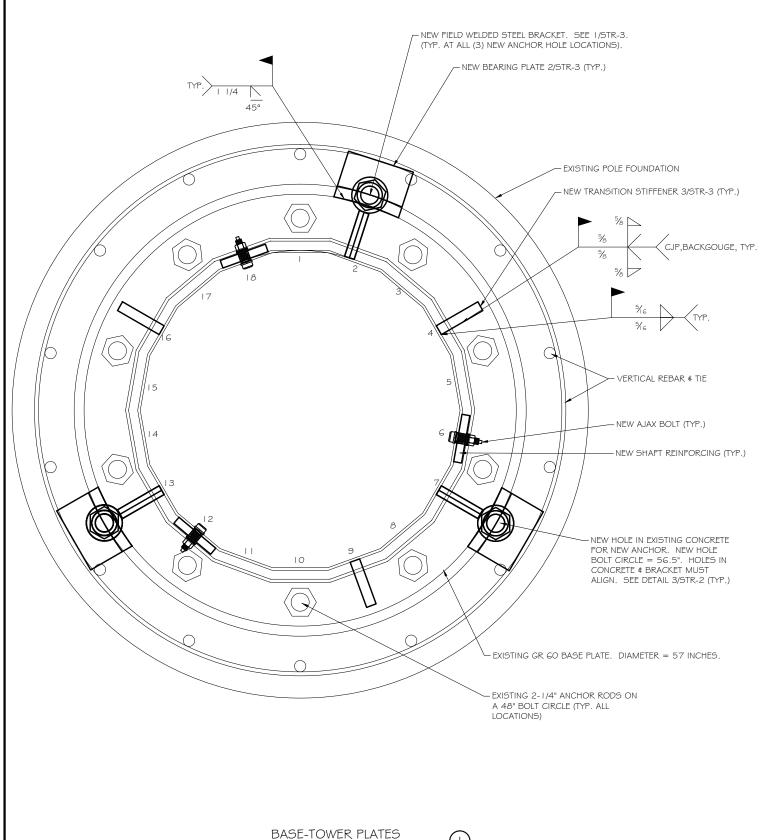
DATE ISSUED 07/29/2014

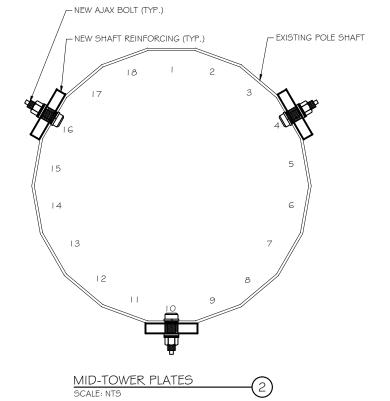
COM-TRONICS CT60XC969-A

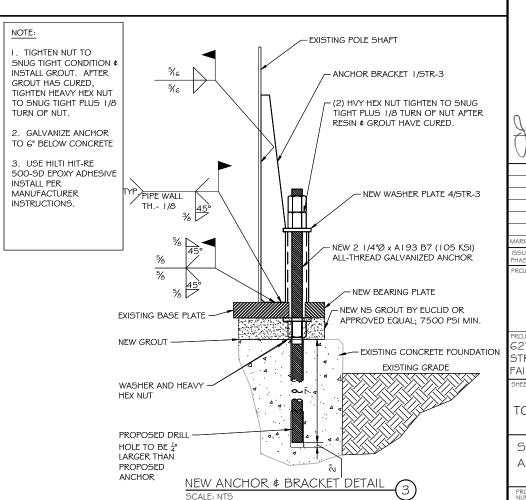
627 HONEYSPOT ROAD STRATFORD, CT 066 | 5 FAIRFIELD COUNTY

ice: iiice;

TOWER REINFORCEMENT PROFILE


SCALE: AS NOTED


PROJECT 27746
SHEET SHEET S- I


TYPICAL AJAX BOLT DETAIL SCALE: NTS

I. ALL WELD ELECTRODES SHALL BE E80XX.

2. PROVIDE NON-SHRINK GROUT (NS GROUT BY EUCLID OR APPROVED EQUAL; 7500 PSI MIN.) BELOW NEW BEARING PLATES. GROUT SHALL BE INSTALLED TIGHT UNDER NEW BEARING PLATES WITH NO VOIDS REMAINING BETWEEN TOP OF EXISTING CONCRETE \$ UNDERSIDE OF NEW BEARING PLATES.

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

Certication 4 Sea:

I hereby certify that this plan, specification, or report was prepare, by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Connecticut.

CONV

No. 26266
CENSE
Signature:

7/29/20
Date:

DATE DESCRIPTION
FINAL DATE O7/29/2014
TITILE:

COM-TRONICS CT60XC969-A

PROJECT INFORMATION:
627 HONEYSPOT ROAD
STRATFORD, CT 066 | 5
FAIRFIELD COUNTY

TOWER REINFORCEMENT DETAILS

SCALE: AS NOTED

PROJECT 27746
SHEET S-2

GENERAL NOTES

- IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY ALL EXISTING CONDITIONS AND DIMENSIONS PRIOR TO FABRICATION AND CONSTRUCTION.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING AND NEW COAXIAL CABLES AND OTHER EQUIPMENT DURING CONSTRUCTION.
- 3. ANY EXISTING ATTACHMENTS AND/OR PROJECTIONS ON THE POLE THAT MAY INTERFERE WITH THE INSTALLATION OF THE REINFORCING SYSTEM WILL HAVE TO BE REMOVED, AND/OR RELOCATED, AND/OR REPLACED AND RE-INSTALLED AFTER THE REINFORCING IS SUCCESSFULLY COMPLETED. THE CONTRACTOR SHALL IDENTIFY AND COORDINATE THESE ITEMS PRIOR TO CONSTRUCTION WITH THE OWNER, TESTING AGENCY, AND ENGINEER.

STRUCTURAL STEEL

 STRUCTURAL STEEL MATERIALS, FABRICATIONS, DETAILING, AND WORKMANSHIP SHALL CONFORM TO THE LATEST ADDITION OF THE FOLLOWING REFERENCE STANDARDS:

RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS OF THE ENGINEERING FOUNDATION

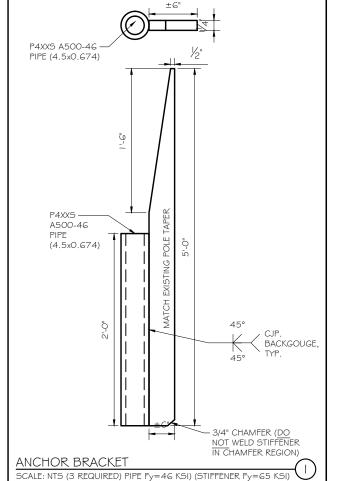
BY THE AMERICAN INSTITUTION OF STEEL CONSTRUCTION (AISC):

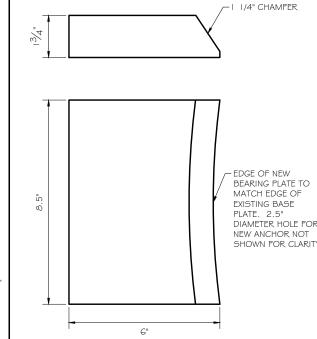
- A. "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS."
 B. "SPECIFICATIONS FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS," AS APPROVED BY THE
- C, "CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES" (PARAGRAPH 4.2.1 SPECIFICALLY EXCLUDED).

BY THE AMERICAN WELDING SOCIETY (AWS):

- A. "STRUCTURAL WELDING CODE STEEL DI.I."
- B. "SYMBOLS FOR WELDING AND NON-DESTRUCTIVE TESTING."
- ANY MATERIAL OR WORKMANSHIP WHICH IS OBSERVED TO BE DEFECTIVE OR INCONSISTENT WITH THE CONTRACT DOCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE CONTRACTORS EXPENSE.
- 3. TIGHTEN ALL STRUCTURAL BOLTS, INCLUDING THE AJAX M20 BOLTS WITH SHEAR SLEEVES, ACCORDING TO THE REQUIREMENTS OF THE AISC "TURN OF THE NUT" METHOD. TIGHTEN BOLTS 1/3 TURN PAST THE SNUG TIGHT CONDITION AS DEFINED BY AISC.
- 4. WELDED CONNECTIONS SHALL CONFORM TO THE LATEST REVISED CODE OF THE AMERICAN WELDING SOCIETY, AWS DI.I. ALL WELD ELECTRODES SHALL BE E80XX UNLESS NOTED OTHERWISE ON THE DRAWINGS.
- ALL WELDED CONNECTIONS SHALL BE MADE BY WELDERS CERTIFIED BY AWS. CONTRACTOR SHALL SUBMIT WELDERS'
 CERTIFICATION AND QUALIFICATION DOCUMENTATION TO THE OWNER'S TESTING AGENCY FOR REVIEW AND APPROVAL
 PRIOR TO CONSTRUCTION.
- 6. STRUCTURAL STEEL PLATES SHALL CONFORM TO ASTM A572 GRADE 65 (FY = 65 KSI MIN.) UNLESS NOTED OTHERWISE ON THE DRAWINGS.
- 7. SURFACES OF EXISTING STEEL SHALL BE PREPARED AS REQUIRED FOR FIELD WELDING PER AWS.
 UNLESS OTHERWISE NOTED, ALL STEEL MEMBERS SHALL BE HOT-DIP GALVANIZED, AFTER FABRICATION, IN ACCORDANCE WITH ASTM A L 23.

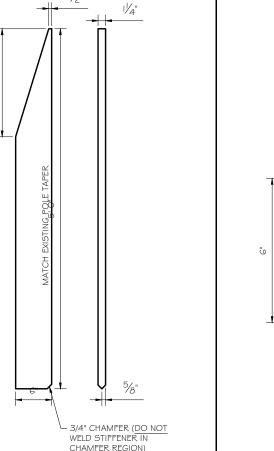
BASE PLATE GROUT

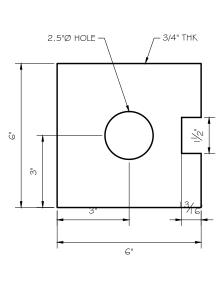

- I. NEW GROUT FOR THE POLE BASE SHALL BE NON-SHRINK, NON-METALLIC, GROUT (EUCO NS GROUT BY EUCLID, OR APPROVED EQUAL) WITH A 7500 PSI MINIMUM COMPRESSIVE STRENGTH, PVC DRAINAGE PIPES SHALL BE PROVIDED FROM INSIDE THE POLE SHAFT OUT THROUGH THE GROUT SPACE UNDER THE BASE PLATE IN ORDER TO ALLOW MOISTURE TO ADEQUATELY DRAIN FROM THE INTERIOR OF THE POLE SHAFT. CONTRACTOR SHALL FOLLOW GROUT MANUFACTURE'S SPECIFICATIONS FOR COLD WEATHER GROUTING PROCEDURES (IF NECESSARY).
- GROUT SHALL BE INSTALLED TIGHT UNDER BASE PLATE WITH NO VOIDS REMAINING BETWEEN TOP OF EXISTING
 CONCRETE AND UNDERSIDE OF EXISTING BASE PLATE (EXCEPT FOR DRAIN PIPES). GROUT COMPLETELY SOLID (EXCEPT
 FOR DRAIN PIPES) UNDER ENTIRE SURFACE OF BASE PLATE FROM OUTSIDE EDGE TO INSIDE EDGE.


TOUCH-UP OF GALVANIZING

I. THE CONTRACTOR SHALL TOUCH-UP ANY AND/OR ALL AREAS OF GALVANIZING ON THE EXISTING STRUCTURE OR NEW COMPONENTS THAT ARE DAMAGED OR ABRADED DURING CONSTRUCTION. GALVANIZED SURFACES DAMAGED DURING TRANSPORTATION OR ERECTION AND ASSEMBLY AS WELL AS ANY AND ALL ABRASIONS, CUTS, FIELD DRILLING, AND ALL FIELD WELDING SHALL BE TOUCHED UP WITH TWO (2) COATS OF ZRC-BRAND ZINC-RICH COLD GALVANIZING COMPOUND. FILM THICKNESS PER COAT SHALL BE: WET 3.0 MILS; DRY I.5 MILS. APPLY PER ZRC (MANUFACTURER) RECOMMENDED PROCEDURES. CONTACT ZRC AT I-800-831-3275 FOR PRODUCT INFORMATION.

PERPETUAL INSPECTION AND MAINTENANCE BY THE OWNER


- I. AFTER THE CONTRACTOR HAS SUCCESSFULLY COMPLETED THE INSTALLATION OF THE MONOPOLE REINFORCING SYSTEM AND THE WORK HAS BEEN ACCEPTED BY THE OWNER, THE OWNER WILL BE RESPONSIBLE FOR THE LONG TERM AND PERPETUAL INSPECTION AND MAINTENANCE OF THE POLE AND REINFORCING SYSTEM.
- 2. THE OWNER SHALL REFER TO TIA-222-G, SECTION 14 AND ANNEX J FOR RECOMMENDATIONS FOR MAINTENANCE AND INSPECTION. THE FREQUENCY OF THE INSPECTION AND MAINTENANCE INTERVALS IS TO BE DETERMINED BY THE OWNER BASED UPON ACTUAL SITE AND ENVIRONMENTAL CONDITIONS.


BEARING PLATE

SCALE: NTS (3 REQUIRED) (Fy=60 KSI)

TRANSITION STIFFENER

SCALE: NTS (3 REQUIRED) (Fy=65 KSI)

WASHER PLATE

SCALE: NTS (3 REQUIRED) (Fy=50 KSI)

4

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

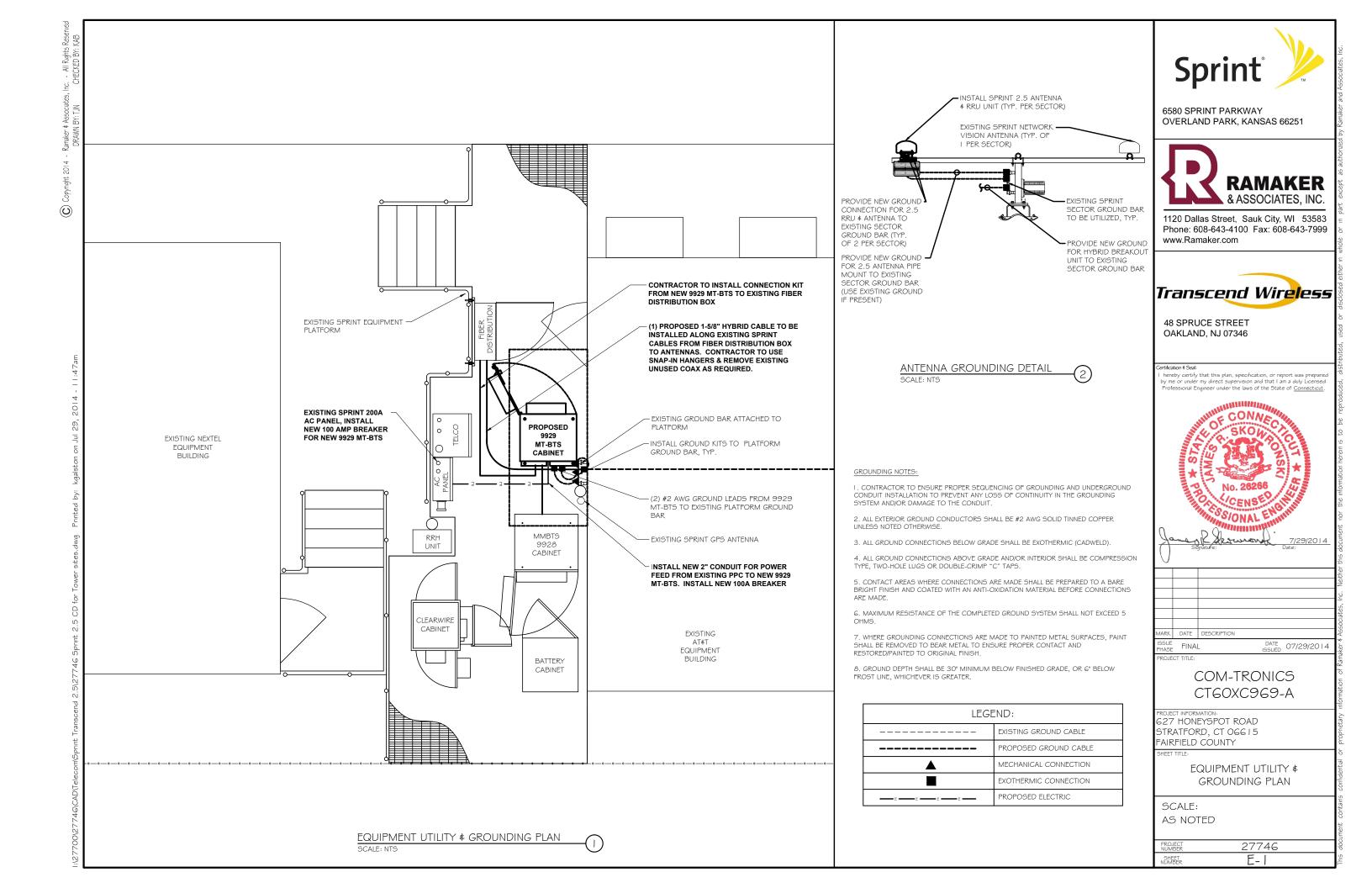
fication ¢ Seal:

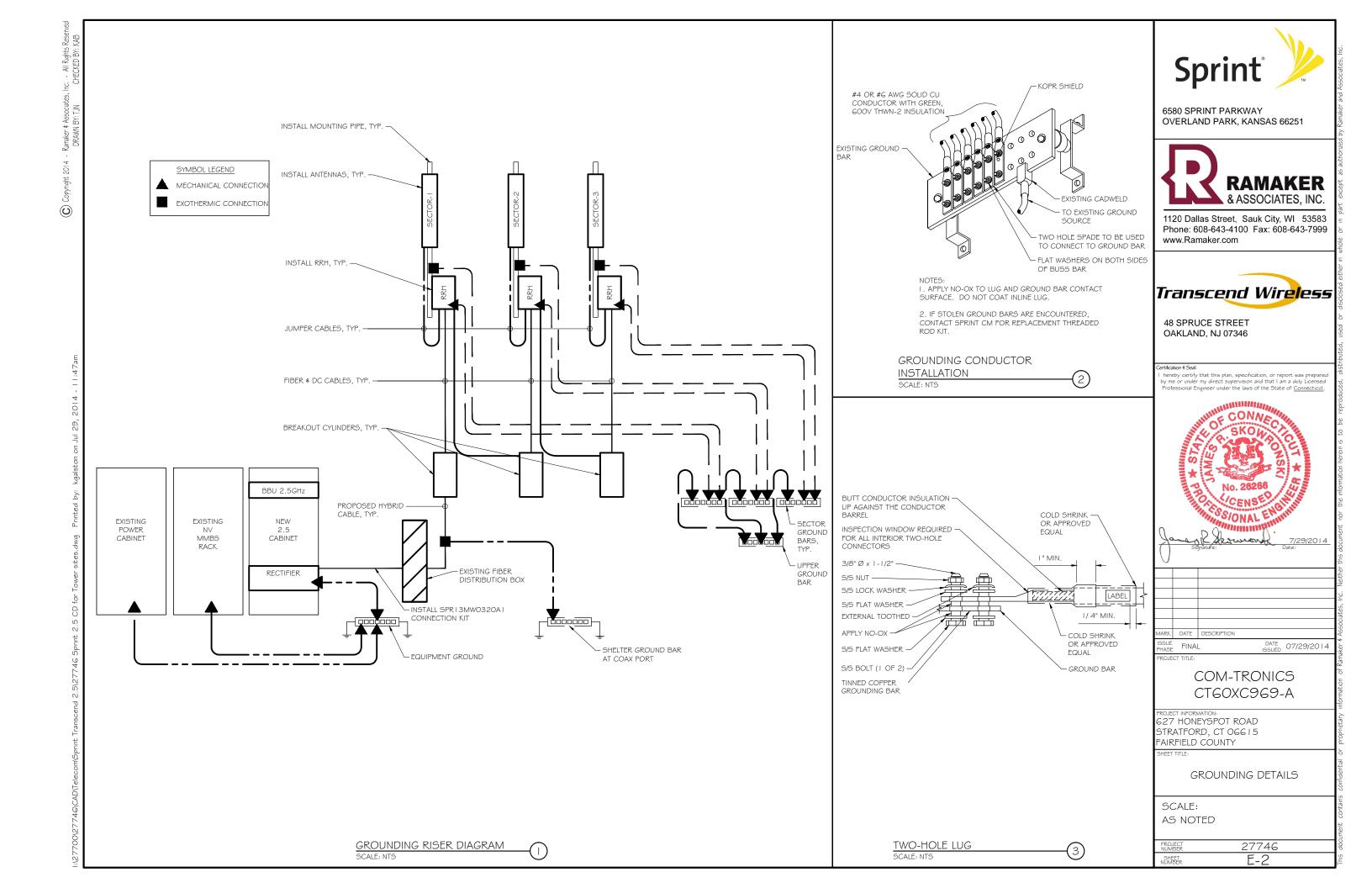
hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.

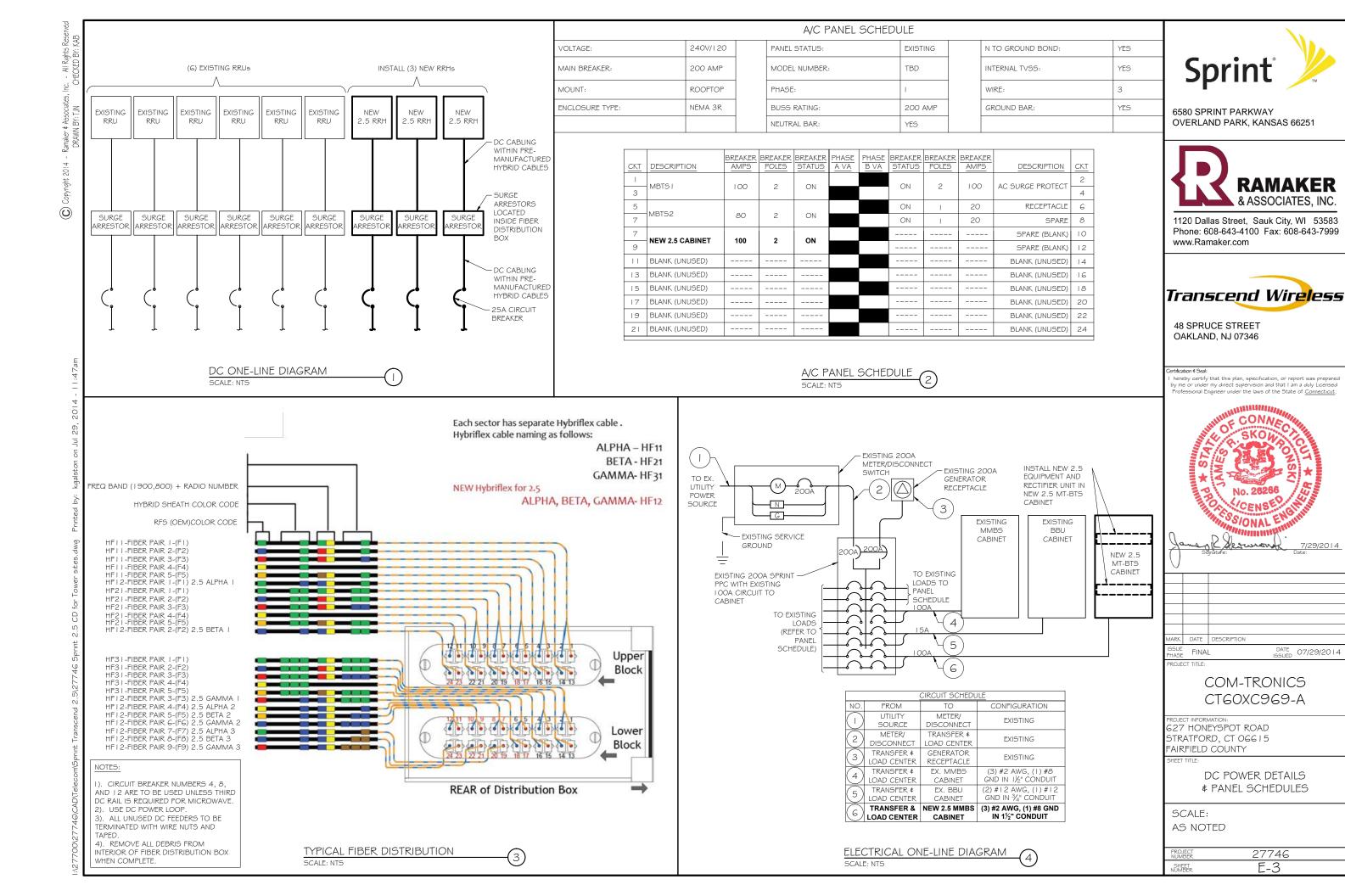
ARK DATE DESCRIPTION

SSUE FINAL DATE ISSUED 07/29/2014

ROBERT TITLE.


COM-TRONICS CT60XC969-A


PROJECT INFORMATION:
627 HONEYSPOT ROAD
STRATFORD, CT 066 | 5
FAIRFIELD COUNTY


STRUCTURAL NOTES & TOWER REINFORCEMENT DETAILS

SCALE: AS NOTED

PROJECT 27746
SHEET SUMBER S-3

