Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

January 8, 2024

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification

7 Broadway Avenue Extension, Stonington (Mystic), Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas on an existing water tank and related equipment on the ground, near the base of the water tank. The water tank is owned by Planeta Properties and is managed by SBA. In April of 2011, Cellco received its first Siting Council ("Council") approval for proposed modification to its then – existing wireless facility. Since that time, the Council has approved antenna installations and modifications for AT&T, Metro PCS, and other wireless carriers. Cellco's use of the water tank was approved by the Town of Stonington in May of 2005. Cellco's first facility modification filing was approved by the Council in April 2011. A copy of the Town's 2005 approval for Cellco and the Council's 2011 approval of EM-VER-137-110322 are included in Attachment 1.1

Cellco now intends to modify its facility by installing three (3) new antennas and six (6) interference mitigation filters ("Filters") on Cellco's existing antenna platform and mounting assemblies. A set of project plans showing Cellco's proposed facility modifications and the new antenna and Filter specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Stonington's Chief Elected Official and Land Use Officer. A copy of this letter is being sent to the owner of the Property.

28593822-v1

¹ The Council has been approving wireless facilities modifications for Cellco and others since 2009 and continues to exercise jurisdiction over the wireless installations at the Property.

Robinson+Cole

Melanie A. Bachman, Esq. January 8, 2024 Page 2

The planned modifications to the Cellco facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure. Cellco's new antennas and RRHs will be installed at the same height (93' above grade) on the 155-foot water tank.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas and RRHs will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Included in <u>Attachment 3</u> is a Calculated Radio Frequency Emissions Report demonstrating that the proposed modified facility will comply with the FCC safety standards. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis ("MA"), the existing water tank, tank foundation and antenna mounts can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

Danielle Chesebrough, First Selectman Clifton Iler, AICP Town Planner Planeta Properties, Property Owner Aleksey Tyurin

ATTACHMENT 1

Town of Stonington Building Permit

•				
Pern	'nt	Νı	ım	ber:

B-2005-475

Permit Date: 9/2/2005			
This permit is hereby granted to:	Planeta Properties - owi	ner; Cellco Partnership -	- applicant
	99 East River Drive		**
	E. Hartford CT 06108		
For the purpose of: addition shelter	of panel antenna onto ex	risting water tank. Insta	llation of equipment
In compliance with the	ne state provisions of the Bas	ic Building Code of the Stat	e of Connecticut
Property Location 7 Broadwa	y Ave. Ext.	Mystic	
Assessor's Map: 174	Block: 22	Lot: 1	Sub Lot:
Special Conditions or Stipulations	NA		
In accordance with the application	dated: 8/19/2005		
-	Date: 9/2/200		
Building Fee: \$402.00	Paid: 🏻		

June of State and in the Muchiner

Town Of Stonington 152 Elm Street Stonington, Connecticut 06178 (860) 535-5075 • Fax (860) 535 : 1023

Date of Final Inspection: August 7, 2006

CERTIFICATE OF USE AND OCCUPANCY

This is to certify that the building located on:

7 Broadway Ave. Ext., Mystic

constructed as addition of panel antenna onto existing water tank; installation of equipment shelter

> for Planete Properties - owner. Cellco Partnership - applicant

under Building Permit No. B-2005-475 dated 9/2/2005

conforms substantially to the requirements of the 1996 edition of the BOCA National Building Code, and the 1999 Connecticut Supplement, the State of Connecticut Public Health Code and is hereby approved for use and/or occupaticy as indicated below:

Temporary Occupancy in accordance with Section 118.2

Permanent Occupancy in accordance with Section 118.0 __X

Use Group (Article 3) U/Construction [yoe 5B]

Any additional work, structural, plumbing, heating or electrical will require new permits and a new certificate of occupancy. The above captioned structure may not be on supied for a period of more than thirty days from time of completion of such new work without a new distificate of occupancy.

Wayne from

8/17/06 Date

Construction Services of Branford, LLC 63-3 North Branford Road Branford, CT 06405 (203) 488-0712

F To: 5 - Mahere

A From: Grian

X Date: 7/13 Pages: 2

860 717-5762

ZONING PERMIT

TOWN OF STONINGTON

PLANNING & ZONING COMMISSION

DATE ISSUED: August 19, 2005

NO. **05-328 ZON**

NAME OF OWNER / APPLICANT: Planeta Properties / Cellco Partnership

LOCATION OF PROPERTY: 7 Broadway Ave. Ext., Mystic, CT 06355

MAP: **174**

BLOCK:

22

LOT: 1

ZONE: M-1

PERMITTED ACTIVITY: Cell tower antennas.

STIPULATIONS OR SPECIAL CONDITIONS:

1. To be constructed in strict compliance with PZ0522SPA approval, 6/21/05.

APPROVED BY:

CONSTRUCTION MAY NOT PROCEED UNTIL A BUILDING PERMIT HAS BEEN OBTAINED

THIS PERMIT MUST BE PROMINENTLY POSTED ON THE PREMISES

THIS PERMIT IS VALID FOR 1 YEAR

Applicant may publish **Notice** of this approval as per Public Act No. 03-144

TOWN OF STONINGTON

CERTIFICATE OF ZONING COMPLIANCE

December 28, 2006

Permit No. 05-328 ZON

This Certificate is hereby granted

To: Planata Properties

of: 7 Broadway Avenue Extension, Mystic, CT 06855

for: Cell Tower Antenna Installation

This is to certify that the property listed below has been inspected and substantially complies with the Town of Stonington Zaning Regulations.

Property Location:

7 Broadway Avenue Extension, Mystic, CT 06355

Assessor's Map

174 Block 22 Lot 1

Zone: M-1

Comments:

As per PZ0522SPA approval.

Zoning Official

Date 12-28-06

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

April 7, 2011

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103

RE: EM-VER-137-110322 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 7 Broadway Extension, Stonington, Connecticut.

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Not less than 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated March 21, 2011. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Executive Director

LR/CDM/laf

 The Honorable Ed Haberek Jr., First Selectman, Town of Stonington Jason Vincent, Town Planner, Town of Stonington Planeta Properties

ATTACHMENT 2

STE NAME: MYSTIC SOUTH CT

| 1883,023 | DA | 1883,023 | D

Tectonic The second secon

HE PURCHES NO THOSE WAS THOSE

Verizon

WBS#: VT-00081527-C.9111 MDG#: 5000244749

7 DROADWAY AVENUE EXT MYSTIC, CT 06355	PIS P	Mechinism	
TOWN OF STONINGTON	ğ	מליברעון וומא	
NEW LONDON	ī	TITLE SHEET	
174-22-1			
41.349570	5	DETAIL SITE PLAN & ELEVATION	
-71.983740	C-2	ANTENNA ORIENTATIONS	
5'± AMSL	2-0	ANTENNA DETAILS & DIAGRAMS	
CT9563			
PLANETA PROPERTIES 7 BROADWAY AVE, EXT. STONINGTON, CT 05355	Ш		
VERIZON WIRELESS 118 FLANDERS RD WESTBOROUCH, MA 01581			
ANDREW LEONE ALEONEOSIRUCIURECDOHSULIING,NET			
Z			
MATION			
AN EXISTING WATER TANK			
PANEL ANTENNAS DIPLEXERS	SE	SHEET INDEX	

CONTRACTOR PMI REQUIREMENTS	QUIREMENTS
PMI ACCESSED AT:	HTIPS://PIM.VZVISMART.COM
SMART TOON VENDOR PROJECT NUMBER:	10210419
VZW LOCATION CODE (PSLC):	468402
***PMI AND REQUIREMENTS ALSO EMBEDDED IN MOUNT ANALYSIS REPORT	IN MOUNT ANALYSIS REPO
MOUNT MODIFICATION REQUIRED	ON
VZW APPROVED SWART KIT VENDORS	KIT VENDORS
RECERT TO MOUNT MODIFICATION DIAWNINGS PAGE FOR VZW SMART KIT APPROVED VENDORS	S PAGE FOR VZW SMART KII DRS

Period Company of the	AUMICIPALITY: COUNTY: IAX MAP NUMBE STRUCTURE COORDINATES. GROUND ELEVALI SEA SITE: PROPERTY OWNE
Manual Grands Co. St. St. St. St. St. St. St. St. St. St	
Market Car	TO
Marke D. O. C.	
Myrths, Cl. 3.	1
Since and Since Si	
T THE STATE OF	РКОРЕКТУ ОМ
100	
	à.
Annual Control of the	APPLICANT:
and the second	CONTACT:
Section O	
Omittee	SITE INFO
	PROJECT
an in Aller	THE PROPOSED CONSISTS OF:
VICINITY MAP	REMOVE (6)

ROM THE WESTBORDOUGH OFFICE, METOE, CINED 1-495 N. AND FOLLOW (GG./1.
S TOWARD PROVIDES
KEED RICHT AT THE FOUNT TO STAY ON 1-55 S (34.3 M). TAKE EXIT SO FOR
CI-27 TORMED BESTIC (0.31 MF TURK LEFT ONED CI-27 S (1.51 M), 100M
WALL ONLY WILLOW ST. WHICH FURIES LELY AND DECOMES BROKENING MIC. 1150.
STEER RICHT DATO BECAMINA AST EXT. SHE WILL BE ON THE LEFT

DUNIY	NEW LONDON	
AX MAP NUMBER:	174-22-1	
TRUCTURE CORDINATES:	41.349570'	
ROUND ELEVATION:	5'±. AMSL	
BA SITE:	C19563	
ROPERTY OWNER:	PLANETA PROPERTIES 7 BROADWAY AVE, EXT. STONINGTON, CT 06355	
PPLICANT:	VERIZON YIRELESS 11B FLANDERS RD VESTBOROUGH, MA 015B1	
CONTACTS	ANDREW LEONE ALEONEGSIRUCIURECIONSULINGAET	
SITE INFORMATION	NO	
PROJECT INFORMATION	MATION	
HE PROPOSED WORK O	HE PROPOSED WORK ON AN EXISTING WATER TANK CONSISTS OF:	
REMOVE (6) EXISTING PAREMOVE (3) EXISTING DISTRIBUTION OF THEMOVE (9) EXISTING RICHADOR (1) PROPOSED INSTALL (4) PROPOSED INSTALL (6) PROPOSED	EXISTING PANEL ANTENNAS SKSTING DIFFEREN EXISTING ROPE EXISTING ROPE EXISTING DOOK CABLE PROPOSED ANTENAÇABI UNIS	

L	DESCRIPTION	REV NO:	KEVISION DATE:	PIMI ACCE
-	TITLE SHEET	-	12/18/23	SMART TO
100	DETAIL SITE PLAN & ELEVATION	-	12/18/23	A IMA***
2	ANTENNA ORIENTATIONS	-	12/18/23	MOUNT
0	ANTENNA DETAILS & DIAGRAMS	-	12/10/25	REDTER!
1 1		H		
			1	
		-		
1 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Н	The second secon	
L.	EEL INDEX			
	SET OF PLANS SHALL NOT DE UTILIZED AS CONSTRUCTION UMENTS UNTIL ALL ITEMS OF CONCERN HAVE DEEN ADDRESSED EXXH. OF THE DRAWINGS 4/OS BFEN PRIVISIO AND ISSUED. "FOR	S CONSTRUC RE DEEN ADD	TION PRESSED FED "FOR	

7 BEDAUMAY AVENUE EXT TOWN OF STONINGTON NEW LONDON COUNTY CT 06355 SHOTT THE

TITLE SHEET

Ξ

NOTE SEMENTE AND AT DROVILE EMPORATE

NOTE SEMENTE AND AT DROVILE EMPORATE

MYSTIC SOUTH CT

INMINISTED ALEDATOR OR ADOMEST TO A CANADAR OF A LICESON DESCRIPTION OF A LAW SIRPLOYER IS A YOU'RE OF THE STALL OF CONCENTRATION LIM.

C-band 64T64R

Gen 2

Gen 2: Higher conducted power radio with reduced size/volume/weight vs Gen 1 and also SOC embedded for flexibility to support new features

※ Preliminary Design: External appearance and mechanical design can be subject to change Gan 2. 64764R C-band MMU Dimensions.

400 x 734 x 140 mm (15.75 x 28.90 x 5.51 lnch)	26kg (57.3 lb)	
Size (WxHxD)	Weight	

Samsung Electronics All Rights Reserved.

Item	Gen 2 64T64R (MT6413-77A)
Air Technology	NR n77/fdD
Frequency	3700 ~ 3980 MHz
WBI	200 MHz
WBO	200 MHz
Carrier Bandwidth	27(HW ready)/40/50/30/10/1 MHz
# of Carriers	2 carriers
Layer	DL:16L UL:16RX (8L)
RF Chain	64T64R
Antenna Configuration	4V16H with 192 AE
EIRP	80.5 dBm @320W (55 dBm + 25.5 dBi)
Conductive Power	320W
Spectrum Analyzer	TX/RX support
RX Sensitivity	Typical -97.8dBm @(1fky, 18.35MHz with 30kHz,51R8s)
Modulation	DL 256QAM support, (DL 1024QAM with 1-2dB power back-off)
Function Split	DL/UL option 7-2x
Input Power	-48 VDC (-38 VDC to -57 VDC)
Power Consumption	1,287W (100% load, room temp.)
Size (WHD)	440 x 734 x 140 mm (15.75 x 28.90 x 5.51 inch)
Volume	41.11
Weight	26kg (57.3 lb)
Operating Temperature	-40°C - 55°C (w/o solar load)
Coaling	Natural convection
	3GPP 38.104
	FCC 47 CFR 27.53 : < -13d8m/MHz
Unwanted Emission	< -40 dBm/MHz @ above 4 GHz <-50 dBm /MHz @ 4,040 ~ 4,050 MHz, <-50 dBm /MHz @ above 4,050 MHz
Optic Interface	15km, 4 ports (25Gbps x 4), SFP28, single mode, Bi-di (Option: Duplex)
Mounting Options	Pole, wall
NB-IoT	Not support
External Alarm	4RX
Fronthaul Interface	eCPRI

SAMSUNG

AWS/PCS MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A

Points of Differentiation

Continuous Migration

Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4×40W or 2×60W (B66) 4×60W or 2×80W
IBW/OBW	(B25) 65MHz/30MHz (B66) DL90MHz, UL70MHz/60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Brand New Features in a Compact Size

Sarnsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

Same as an incumbent radio volume

700/850 4T4R Macro 320W ORU - New Filter (RF4461d-13A)

Specifications

BMHz supporting in BI3(700MHz) depends on 3GPP std. and UE capability.
 External filters in interferer and victim sides for Mexican boarder to support 5MHz service need to be considered
 Finger guard is not needed.

Item	Speci	Specification
Air Interface	LTE, NR(HW	LTE, NR(HW resource ready)
Band	Band13 (700MHz)	Band5 (850MHz)
	DL: 746~756MHz	DL: 869~894MHZ
riednency	UL 777~787MHz	UL: 824~849MHz
	TOMHZ	25MHz
WBO	10MHz	25MHz
Carrier Bandwidth	LTE/NR 5=/10MHz	LTE 5/10MHz
# of carriers	22	3C
Total # of carriers	4C + B1	4C + B13 (SDL) 1C
RF Chain	414R/214 212R+21	4T4R/2T4R/2T2R/1T2R 2T2R+2T2R bi-sector
	Tota	Total: 320W
RF Output Power	4 x 40W or 2 x 60W	4 x 40W or 2 x 60W
Spectrum Analyzer		TX/RX Support
RX Sensitivity	Typ104.5dBm	Typ104.5dBm @1Rx (25RBs 5MHz)
Modulation	256QAM support, (1024QA	256QAM support, (1024QAM with 1~2d8 power back-off)
Input Power	-48VDC (-38	SVDC to -57VDC)
Power Consumption	1,165 Watt @ 100% R	1,165 Watt @ 100% RF load, room temperature
Stze (WHD)	380 x 380 x 260 mm (380 x 380 x 260 mm (14.96 x 14.96 x 10.23 Inch)
Volume	~	37.5 L
Weight (W/o Solar Shield & finger quard)	35.9 k	35.9 kg (79.1 lb)
Operating Temperature	-40°C (-40°F) ~ 55°C (~ 55°C (131°F) (Without solar load)
Cooling	Natural	Natural convection
	3GPP 36.104	3GPP 36.104
Unwanted Emission	FCC 47 CFR 27.53 c), f)	FCC 47 CFR 22.917
		-69 d8m/100 kHz per path @ 896 ~901MHz
CPRI Cascade	Not	Not supported
Optic Interface	20km, 2 ports (9.8Gbps x 2), SFP.	20km, 2 ports (9.8Gbps x 2), SFP+, single mode, Duplex (Option: Bi-di)
RET & TMA Interface	Ā	AISG 3.0
8ias-T	4 ports (2	4 ports (2 ports per band)
Mounting Options	Po	Pole, wall
N8-10T	2G8+2I8 or 4I8	2SA+2G8 or 2GB+2I8 or 4GB
PIM Cancellation	Ø.	Support
# of antenna port		7
External Alarm		7
Fronthaul Interface	Opt. 8 CPRI / Opt. 7-2x sele	Opt. 8 CPRI / Opt. 7-2x selectable (not simultaneous support)
CPRI compression	ON	Not Support

ATTACHMENT 3

C Squared Systems, LLC
65 Dartmouth Drive
Auburn, NH 03032
(603) 644-2800
support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

Mystic South CT 7 Broadway Avenue Ext, Mystic, CT 06355

January 4, 2024

Table of Contents

1. Introduction	
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits	1
3. RF Exposure Prediction Methods	
4. Antenna Inventory	3
5. Calculation Results	4
6. Conclusion	6
7. Statement of Certification	6
Attachment A: References	
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)	
Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns	10
<u>List of Figures</u>	
Figure 1: Graph of General Population % MPE vs. Distance	4
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)	9
List of Tables	
Table 1: Proposed Antenna Inventory	
Table 2: Maximum Percent of General Population Exposure Values	
Table 4: FCC Limits for Maximum Permissible Exposure	8

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of Verizon's antenna arrays to be mounted at 93' on an existing Water tank located at 7 Broadway Avenue Ext in Mystic, CT. The coordinates of the water tank are 41° 20' 58.45" N, 71° 57' 49.45" W.

Verizon is proposing the following:

- 1) Install six (6) multi-band antennas, one (1) per sector to support its commercial LTE network.
- 2) Install three (3) C-Band antenna, one (1) per sector.

This report considers the planned antenna configuration for Verizon¹ as well as existing antenna configuration for AT&T², DISH³, T-Mobile⁴ to derive the resulting % MPE of its proposed modification.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

Mystic South CT 1 January 4, 2024

¹ As referenced to Verizon's Radio Frequency Design Sheet updated 09/05/2023.

² As referenced to AT&T's Connecticut Siting Council Notice of Exempt Modification – 7 Broadway Avenue Extension, Mystic, Connecticut, dated 09/21/2022

³ As referenced to DISH Connecticut Siting Council Tower Share Application – 7 Broadway Avenue, Mystic, Connecticut, dated 02/02/2023

⁴ As referenced to T-Mobile's Connecticut Siting Council Notice of Exempt Modification – 7 Broadway Avenue Extension, Mystic, Connecticut, dated 8/03/2022

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density =
$$\left(\frac{GRF^2 \times 1.64 \times ERP}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

$$R = \text{Radial Distance} = \sqrt{\left(H^2 + V^2\right)}$$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor (GRF) of 1.6

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

Operator	Sector / Call Sign	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)	
		700	160	13.4	3500		66.4				
		850	160	13.5	3582	SBNHH-1D65A	61	0	161	4.64 93 2.46 93	
	Alpha /	1900	160	16.7	7484	3DINTH-1D03A	64.7	U	0 4.04		93
		2100	240	17.2	12595		62				
		3700	320	25.5	113540	MT6413-77A	-	0	2.46	93	
		700	160	13.4	3500		68	0			
		850	160	13.5	3582	SBNHH-1D65A	65.5		0	4.64	02
Verizon	Beta / 120°	1900	160	16.7	7484	SDNHH-ID05A	66.2			4.04	93
	120	2100	240	17.2	12595	95	63				
		3700	320	25.5	113540	MT6413-77A	MT6413-77A 105	0	2.46	93	
		700	160	13.4	3500		68				
		850	160	13.5	3582	SBNHH-1D65A	65.5	0	4.64	93	
	Gamma / 225°	1900	160	16.7	7484	SDINDH-ID05A	66.2	U	4.04		
	263	2100	240	17.2	12595		63				
		3700	320	25.5	113540	MT6413-77A	105	0	2.46	93	

Table 1: Proposed Antenna Inventory⁵⁶

Mystic South CT 3 January 4, 2024

⁵ Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 09/05/2023,

⁶ Transmit power assumes 0 dB of cable loss.

5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within \pm 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (17.83% of the General Population limit) is calculated to occur at a horizontal distance of 481 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 800 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 481 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm²)	Limit (mW/cm²)	% MPE
AT&T 6GHz	1	1.0	140.0	481	0.000000	1.000	0.00%
AT&T LTE 1900 MHz	1	160.0	140.0	481	0.000645	1.000	0.06%
AT&T LTE 2100 MHz	1	240.0	140.0	481	0.001341	1.000	0.13%
AT&T LTE 2300 MHz	1	100.0	140.0	481	0.000346	1.000	0.03%
AT&T LTE 722 MHz	1	160.0	67.0	481	0.002838	0.481	0.59%
AT&T LTE 739 MHz	1	160.0	140.0	481	0.001511	0.493	0.31%
AT&T LTE 763 MHz	1	160.0	140.0	481	0.001287	0.509	0.25%
AT&T LTE 850 MHz	1	160.0	140.0	481	0.001316	0.567	0.23%
DISH 5G 1900 MHz	1	160.0	140.0	481	0.000144	1.000	0.01%
DISH 5G 2100 MHz	1	160.0	140.0	481	0.000104	1.000	0.01%
DISH 5G 600 MHz	1	120.0	140.0	481	0.000853	0.400	0.21%
T-Mobile GSM 1900 MHz	1	80.0	117.0	481	0.000079	1.000	0.01%
T-Mobile LTE 1900 MHz	1	80.0	117.0	481	0.000079	1.000	0.01%
T-Mobile LTE 2100 MHz	1	160.0	117.0	481	0.005264	1.000	0.53%
T-Mobile LTE 600 MHz	1	160.0	117.0	481	0.002147	0.400	0.54%
T-Mobile LTE 700 MHz	1	160.0	117.0	481	0.002323	0,467	0.50%
T-Mobile LTE/5G 2500 MHz	1	240.0	117.0	481	0.054060	1.000	5.41%
Verizon 5G 3700 MHz	1	320.0	93.0	481	0.069604	1.000	6.96%
Verizon LTE 1900 MHz	11	160.0	93.0	481	0.003890	1.000	0.39%
Verizon LTE 2100 MHz	1	240.0	93.0	481	0.004867	1.000	0.49%
Verizon LTE 750 MHz	1	160.0	93.0	481	0.002633	0.500	0.53%
Verizon LTE 850/5G MHz	1	160.0	93.0	481	0.003563	0.567	0.63%
						Total	17.83%

Table 2: Maximum Percent of General Population Exposure Values⁷

-

⁷ In the case where antenna pattern data was unavailable from the manufacturer, generic antenna pattern was used based on the frequency, bandwidth and gain of the antenna

6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be 17.83% of the FCC limit (General Population/Uncontrolled). This maximum cumulative percent of MPE value is calculated to occur 481 feet away from the site.

7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By:

Ram Acharya

RF Engineer

C Squared Systems, LLC

January 3, 2024

Date

Reviewed/Approved By:

Martin Lavin Senior RF Engineer C Squared Systems, LLC

Main of Fam

January 4, 2024 Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure8

		- E		
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/ f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	S#65	5 5 2	f/300	6
1500-100,000	<u>#</u> }	**	5	6

(B) Limits for General Population/Uncontrolled Exposure9

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500		; **	f/1500	30
1500-100,000	₩.	(2)	1.0	30

f = frequency in MHz * Plane-wave equivalent power density

Table 3: FCC Limits for Maximum Permissible Exposure

Mystic South CT 8 January 4, 2024

Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁹ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns

750 MHz

Manufacturer: COMMSCOPE

Model #: SBNHH-1D65A

Frequency Band: 698-806 MHz

Gain: 13.4 dBi

Vertical Beamwidth: 17.6° Horizontal Beamwidth: 66.4°

Polarization: ±45°

Dimensions (L x W x D): 55.63" x 11.85" x 7.1"

885 MHz

Manufacturer: COMMSCOPE

Model #: SBNHH-1D65A

Frequency Band: 806-896 MHz

Gain: 13.5 dBi

Vertical Beamwidth: 15.9°

Horizontal Beamwidth: 61°

Polarization: ±45°

Dimensions (L x W x D): 55.63" x 11.85" x 7.1"

1900 MHz

Manufacturer: COMMSCOPE

Model #: SBNHH-1D65A

Frequency Band: 1850-1990 MHz

Gain: 16.7 dBi

Vertical Beamwidth: 6.6° Horizontal Beamwidth: 64.7°

Polarization: ±45°

Dimensions (L x W x D): 55.63" x 11.85" x 7.1"

2100 MHz

Manufacturer: COMMSCOPE

Model #: SBNHH-1D65A

Frequency Band: 1920-2200 MHz

Gain: 17.2 dBi

Vertical Beamwidth: 6.2° Horizontal Beamwidth: 62°

Polarization: ±45°

Dimensions (L x W x D): 55.63" x 11.85" x 7.1"

ATTACHMENT 4

Date: October 17, 2023

Structural Analysis Report

Carrier:

Verizon Wireless

Project ID:

16244602

Site Name:

Mystic South CT

Site Data:

7 Broadway Avenue Ext, Mystic, CT 06355

Latitude 41° 20' 58.45", Longitude -71° 57' 49.46"

156 Foot Water Tank

Tectonic Project Number:

11863.003

Tectonic Engineering Consultants, Geologists & Land Surveyors, D.P.C., Inc. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation to be:

Structure:

Sufficient - 93.3%

Foundation:

Conditionally Sufficient - 85.8%*

This analysis has been performed in accordance with the 2022 Connecticut State Building Code and the 2021 International Building Code based upon an ultimate 3-second gust wind speed of 140 mph per Appendix P as required for use in the ANSI/TIA-222-H-1-2019 Standard. Exposure Category C with a maximum topographic factor, Kzt, of 1.0 and Risk Category III were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with this analysis for the determined available structural capacity to be effective.

We at Tectonic appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or any other projects, please give us a call.

Structural analysis prepared by: John-Fritz Julien / Ian Marinaccio

Respectfully submitted by:

Tectonic Engineering Consultants, Geologists & Land Surveyors, D.P.C., Inc. PEN.0028473

Edward N. lamiceli, P.E. Managing Director - Structural

1279 Route 300 | Newburgh, NY 12550 845,567,6656 Tel | 845,567,8703 Fax

Project Contact Info

^{*}The existing foundation will have sufficient capacity to support the load configurations once the modifications in the report below have been implemented.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Final Verizon Wireless Load Configurations

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Table 4 - Tower Component Stresses vs. Capacity

4.1) Result/Conclusions

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

The evaluation of the existing water tank tower structure and its ability to support the proposed Verizon Wireless load configurations and existing loads. The water tank tower structure was previously analyzed and reinforced by All-Points Technology in 2021. The water tank tower structure is analyzed under risk category III as required per AWWA Standards.

2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-H

Risk Category:

Ш

Wind Speed:

140 mph ultimate 3-second gust

per the town of Mystic, CT

Exposure Category:

Ċ

Topographic Factor:

1.0

Ice Thickness:

1.0 in 50 mph

Wind Speed with Ice: Service Wind Speed:

60 mph

Seismic S₁ / S_s:

0.053 / 0.191

Table 1 - Final Verizon Wireless Load Configurations

Mounting Level (ft)			Antenna Model	Number of Feed Lines	Feed Line Size (in)	Notes	
		3	Samsung	MT6413-77A	J		
		3	Samsung	B2/B66A RRH ORAN] -	-	1
93'-0"	Verizon	3	Samsung	B5/B13 RRH ORAN			
	Wireless	6	CommScope	SBNHH-1D65A	3	6x12	2
Š		3	Raycap	OVP Distribution Box]	Hybrid	

Notes:

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Prepared By	Dated	
Prev. Structural Analysis	All-Points Technology Corporation/ Verizon	10/26/2016	
Prev. Structural Analysis	All-Points Technology Corporation/T-Mobile	05/10/2021	
Foundation Investigation Report	KM Consulting Engineering, Inc.	01/04/2022	
Mount Mapping Report and Inventory	Nexius	03/18/2022	
Geotechnical Engineering Report	Atlantic Consulting & Engineering	05/05/2022	
Prev. Mount Analysis	Hudson Design Group/AT&T	05/06/2022	
Structural Analysis Report	Palu J. Ford & Company		
Tower Analysis Report	Tectonic Engineering	06/21/2023	
RFDS	Verizon Wireless	09/05/2023	
Preliminary Construction Drawings	Tectonic Engineering	10/12/2023	

Proposed Verizon Wireless equipment to be mounted on the face of the tower.

²⁾ Existing equipment.

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- Tower and structures were built and maintained in accordance with the manufacturer's specifications.
- 2) The proposed configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Table 1.
- The AT&T load configurations are based on the previous tower analysis report by Hudson Design Group, referenced above.
- 4) The Dish Wireless load configurations are based on the previous tower analysis by Tectonic Engineering, referenced above.
- 5) The tower geometry is based solely on the previous analysis report by All-Points Technology, referenced above. The previously proposed diagonal modifications have been considered as installed in this analysis. The material grades used in this report are as follows:

Pipe Leg:

A7-33

Solid Rod Diagonals:

A36 (modified) & A7-33

W-Beam Girts:

A7-33

Anchor Rods:

A36

6) The previously proposed foundation modifications by Paul J. Ford & Company have been considered in this analysis.

This analysis is solely for the supporting tower structure, and it may be affected if any assumptions are not valid or have been made in error. Tectonic should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	138 - 117	Leg	P18x.25	3	-40.06	382.85	10.5	Pass
T2	117 - 92	Leg	P18x.25	20	-73.78	370.54	19.9	Pass
Т3	92 - 65	Leg	P18x.25	36	-112.37	363.76	30.9	Pass
T4	65 - 35	Leg	P18x.25	52	-156.01	352.88	44.2	Pass
T5	35 - 0	Leg	P18x.25	68	-206.61	333.09	62.0	Pass
T1	138 - 117	Diagonal (modified)	1	11	21.77	23.33	93.3	Pass
T2	117 - 92	Diagonal (modified)	1 1/8	32	29.16	32.21	90.5	Pass
Т3	92 - 65	Diagonal (modified)	1 3/8	48	34.88	48.11	72.5	Pass
T4	65 - 35	Diagonal (modified)	1 1/2	57	38.04	57.26	66.4	Pass
T5	35 - 0	Diagonal (modified)	1 5/8	73	43.62	67.20	64.9	Pass
T1	138 - 117	Top Girt	W8x35	6	-8.99	171.77	5.2	Pass
T2	117 - 92	Top Girt	W8x35	24	-18.09	146.09	12.4	Pass
T3	92 - 65	Top Girt	W8x35	40	-22.59	117.23	19.3	Pass
T4	65 - 35	Top Girt	W10x68	53	-25.94	279.70	9.3	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T5	35 - 0	Top Girt	W10x68	69	-29.03	227.12	12.8	Pass
							Summary	
						Leg (T5)	62.0	Pass
					Diagonal (T1)	93.3	Pass	
						Top Girt (T3)	19.3	Pass
				i i		Rating =	93.3	Pass

Table 4 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
	Anchor Rods	0	40.3	Pass
2	Base Foundation	0	85.8	Pass

Structure Rating (max from all components) =	93.3%

Notes:

See additional documentation in "Appendix A" for calculations supporting the % capacity consumed.

1) 2) See Results / Conclusions below supporting the % capacity consumed.

4.1) Results / Conclusions

The tower and its anchors have sufficient capacity to support the proposed Verizon Wireless load configurations.

The previous analysis by Paul J. Ford & Company referenced the above proposed that the tank be filled with 333 kips of sand or other material to resist the existing foundation in uplift. The maximum leg compression with the proposed weight does not exceed the allowable bearing capacity of 271 kips per the geotechnical report by Atlantic Consulting & Engineering referenced above. Additionally, the existing anchor rods have sufficient reserved capacity to support the lateral and uplift loading. We conclude that the foundation will be adequate to support the proposed configurations upon modification.

APPENDIX A TNXTOWER OUTPUT

Tectonic ¹	Tectonic		ower Structural Anal	ysis
	1279 Route 300 Newburgh, NY 12550	Project: 11863.003_M; Client: Verizon Wirele	ss Drawn by: Ian Marinaccio	App'd:
HART CAN SERVICES SHAPE CON SERVED	Phone: (845) 567-6656	Code: TIA-222-H	Date: 10/16/23	Scale: NTS
	FAX: (845) 567-8703	Path:	n in the second	Dwg No. E-1

Tectonic	Tectonic 1279 Route 300	Project: 11863.003_Mystic South CT					
Newburgh, NY 12550 Client: Verizon Wireless Drawn by: Ian Marinaccio	Drawn by: Ian Marinaccio	App'd:					
	Phone: (845) 567-6656	Code: TIA-222-H	Date: 10/16/23	Scale: NTS			
	FAX: (845) 567-8703	Path:	Dwg No. E-1				

Fu

58 ksl

Tower Input Data

The main tower is a 4x free standing tower with an overall height of 138.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 20.00 ft at the top and 36.00 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New London County, Connecticut.
- Tower base elevation above sea level: 2.00 ft.
- Basic wind speed of 140 mph.
- Risk Category III.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.00 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- Seismic calculations are in accordance with TIA-222-H-1.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
 Use Code Safety Factors Guys
 Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section

 Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r Retension Guys To Initial Tension
- ✓ Bypass Mast Stability Checks
 ✓ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

- Add IBC .6D+W Combination

 √ Sort Capacity Reports By Component
 Triangulate Diamond Inner Bracing
- √ Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules

 ✓ Calculate Redundant Bracing Forces
 Ignore Redundant Members in FEA
 SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Square Tower

Tower Section Geometry									
Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length			
	ft			ft		ft			
T1	138.00-117.00			20.00	1	21.00			
T2	117.00-92.00			22.43	1	25.00			
T3	92.00-65.00			25.33	4	27.00			
T4	65.00-35.00			28.46	1	30.00			
T5	35.00-0.00			31.94	i	35.00			

Tower Section Geometry (cont'd)										
Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girl Offset			
	ft	ft		Panels		in	in			
T1	138.00-117.00	21.00	TX Brace	No	Yes	0.00	0.00			
T2	117.00-92.00	25.00	TX Brace	No	Yes	0.00	0.00			
T3	92.00-65.00	27.00	TX Brace	No	Yes	0.00	0.00			
T4	65.00-35.00	30.00	TX Brace	No	Yes	0.00	0.00			
T5	35.00-0.00	35.00	TX Brace	No	Yes	0.00	0.00			

	Tower Section Geometry (cont'd)								
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade			
T1 138.00- 117.00	Pipe	P18x.25	A7-33 (33 ksi)	Solid Round	1	A7-33 (33 ksi)			
T2 117.00- 92.00	Pipe	P18x.25	A7-33 (33 ksi)	Solid Round	1 1/8	A36 (36 ksi)			
T3 92.00-65.00	Pipe	P18x.25	A7-33 (33 ksi)	Solid Round	1 3/8	A36 (36 ksi)			
T4 65.00-35.00	Pipe	P18x.25	A7-33 (33 ksi)	Solid Round	1 1/2	A36 (36 ksi)			

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
T5 35.00-0.00	Pipe	P18x.25	A7-33 (33 ksi)	Solid Round	1 5/8	A36 (36 ksi)

Tower Section Geometry (cont'd)							
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade	
T1 138.00- 117.00	Wide Flange	W8x35	A7-33 (33 ksi)	Solid Round		A36 (36 ksi)	
T2 117.00- 92.00	Wide Flange	W8x35	A7-33 (33 ksi)	Solid Round		A36 (36 ksi)	
92.00 F3 92.00-65.00	Wide Flange	W8x35	A7-33 (33 ksi)	Solid Round		A36 (36 ksi)	
74 65.00-35.00	Wide Flange	W10x68	A7-33 (33 ksi)	Solid Round		` A36 (36 ksi)	
T5 35.00-0.00	Wide Flange	W10x68	A7-33 (33 ksi)	Solid Round		A36 (36 ksl)	

Tower Section Geometry (cont'd)								
Tower Elevation ft	No. of Mid Girts	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontai Grade	
T1 138.00-	None	Flat Bar		A36 (36 ksi)	Wide Flange	W8x35	A7-33 (33 ksi)	
117.00 T2 117.00- 92.00	None	Flat Bar		(36 ksi) (36 ksi)	Wide Flange	W8x35	`A7-33 [°] (33 ksi)	
3 92.00-65.00	None	Flat Bar		` A36 [′] (36 ksi)	Wide Flange	W8x35	A7-33 (33 ksi)	
4 65.00-35.00	None	Flat Bar		` A36 ´	Wide Flange	W10x68	`A7-33 [°] (33 ksi)	
T5 35.00-0.00	None	Flat Bar		(36 ksi) A36 (36 ksi)	Wide Flange	W10x68	A7-33 (33 ksi)	

	Tower Section Geometry (cont'd)										
Tower Elevation	Gusset Area (per face)	Gusset Thickness in	Gusset Grade A	Adjust. Factor Aı	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in		
ft	0.00	0.00	A36	1	1	1	36.00	36.00	36.00		
T1 138.00- 117.00 T2 117.00-	0.00	0.00	(36 ksi) A36	1	1	1	36.00	36.00	36.00		
92.00 T3 92.00-	0.00	0.00	(36 ksi) A36	1	1	1	36.00	36.00	36.00		
65.00 T4 65.00-	0.00	0.00	(36 ksi) A36	1	1	1	36.00	36.00	36.00		
35.00 F5 35.00-0.00	0.00	0.00	(36 ksi) A36 (36 ksi)	1	1	1	36.00	36.00	36.00		

Tower Section Geometry (cont'd)

		100				K Fac	ctors1			
Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
ft	Angles	Rounds		X	X	X	X	X	X	X
T1 138.00-	No	No	4	1	1	4	- 1		1	Y 4
117.00			•	i	1	4	1	1	1	4
T2 117.00-	No	No	1	i	1	4	1	1	1	- 2
92.00				i	4	i	i	4	1	4
T3 92.00-	No	No	1	i	4	1	i	1	1	1
65.00				1	1	1	i	1	i	4
T4 65.00-	No	No	1	1	4	1	- i	i	1	
35.00				1	4	į.	i	1	1	4
T5 35.00-	No	No	1	1	1	9	i	1	1	4
0.00				1	1	1	1	1	4	4

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Bottor	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	orizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 138.00- 117.00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T2 117.00- 92.00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T3 92.00- 65.00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T4 65.00- 35.00	0.00	1	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T5 35.00-0.00	0.00	1_	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75

Tower Elevation ft	Redund Horizon		Redun Diago		Redundan Diagoi		Redunda Horiz		Redur Vert		Redund	ant Hip	Redund Diago	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 138.00- 117.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T2 117.00- 92.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T3 92.00- 65.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T4 65.00- 35.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T5 35.00-0.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75

Tower Section Geometry (cont'd)

Tower Elevation	11000405-000			Diagor	nal	Тор G	irt	Bottom Girt		Mid Girt		Long Horizontal		Shor Horizor	
π	туре	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		In In	
T1 138.00-	Flange	0.00 A325N	0	2.00 A325N	2	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0
117.00 T2 117.00-	Flange	0.00 A325N	0	2.00 A325N	2	0.63 A325N	0=	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0
92.00 T3 92.00-	Flange	0.00	0	2.00 A325N	2	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0
65.00 T4 65.00-	Flange	A325N 0.00	0	2.00	2	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0
35.00 T5 35.00-0.00	Flange	A325N 1.25 A36	4	A325N 2.00 A325N	2	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0	0.63 A325N	0

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Offset	Lateral Offset	#			Diameter	Perimete r	Weight
	Leg		Torque Calculation	Туре	ft	in	(Frac FW)		Row	g in	in	in	plf
*Dish Power	В	No	No	Ar (CaAa)	138.00 - 0.00	0.00	0.5	3	3	0.00	0.94		0.58
DC	В	No	No	Ar (CaAa)	138.00 - 0.00	0.00	0.5	3	3	0.00	0.33		0.15
*AT&T LDF7-50A(1-	D	No	No	Ar (CaAa)	138.00 - 0.00	0.00	0.5	12	4	1.98	1.98		0.82
5/8) 2.25" Fiber Duct	D	No	No	Ar (CaAa)	138.00 - 0.00	0.00	0.5	1	1	2.25	2.25		0.25
Climbing Ladder	D	No	No	Ar (CaAa)	138.00 - 0.00	0.00	0.5	1	1	1.00	1.00		7.90
*TMO LDF7-50A(1- 5/8)	С	No	No	Ar (CaAa)	117.00 - 0.00	0.00	0.5	6	6	1.98	1.98		0.82
5/6) LDF6-50A(1- 1/4)	С	No	No	Ar (CaAa)	117.00 - 0.00	0.00	0.5	3	3	1.55	1.55		0.60
HC- 24LCSM6GA B-XXXF(1")	С	No	No	Ar (CaAa)	117.00 - 0.00	0.00	0.5	1	1	0.99	0.99		0.71
*VZW HL- 9612XXX(1- 1/2")	Α	No	No	Ar (CaAa)	93.00 - 0.00	0.00	0.5	3	3	1.49	1.49		1.87

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_{F}	C _A A _A In Face	C_AA_A Out Face	Weigh
Sectio n	Elevation ft		ft ²	ft ²	ft ²	ft²	K
T1	138.00-117.00	Α	0.000	0.000	0.000	0.000	0.00
	100.00 111.00	В	0.000	0.000	7.988	0.000	0.05
		č	0.000	0.000	0.000	0.000	0.00
		Ď	0.000	0.000	56.721	0.000	0.38
T2	117.00-92.00	Ä	0.000	0.000	0.448	0.000	0.01
12	117.00-32.00	В	0.000	0.000	9.510	0.000	0.05
		č	0.000	0.000	43.807	0.000	0.19
		Ď	0.000	0.000	67.525	0.000	0.45
T3	92.00-65.00	Ā	0.000	0.000	12.093	0.000	0.15
13	92,00-03.00	B	0.000	0.000	10.271	0.000	0.06
		Č	0.000	0.000	47.312	0.000	0.20
		Ď	0.000	0.000	72.927	0.000	0.49

Tower Sectio	Tower Elevation	Face	A _R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft²	K
T4	65.00-35.00	Α	0.000	0.000	13.437	0.000	0.17
		В	0.000	0.000	11.412	0.000	0.07
		С	0.000	0.000	52.569	0.000	0.22
		D	0.000	0.000	81.030	0.000	0.54
T5	35.00-0.00	Α	0.000	0.000	15.677	0.000	0.20
		В	0.000	0.000	13,314	0.000	0.08
		С	0.000	0.000	61.331	0.000	0.26
		D	0.000	0.000	94.535	0.000	0.63

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft²	ft ²	ft ²	K
T1	138.00-117.00	Α	1.316	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	29.382	0.000	0.24
		С		0.000	0.000	0.000	0.000	0.00
		D		0.000	0.000	72.258	0.000	1.93
T2	117.00-92.00	Α	1.291	0.000	0.000	1.355	0.000	0.02
		В		0.000	0.000	34.526	0.000	0.27
		С		0.000	0.000	121.156	0.000	1.46
		D		0.000	0.000	85.535	0.000	2.27
T3	92.00-65.00	Α	1.254	0.000	0.000	36.267	0.000	0.48
		В		0.000	0.000	36.603	0.000	0.29
		С		0.000	0.000	130.046	0.000	1.54
		D		0.000	0.000	91.641	0.000	2.42
T4	65.00-35.00	Α	1.199	0.000	0.000	39.758	0.000	0.52
		В		0.000	0.000	39.513	0.000	0.30
		С		0.000	0.000	143.143	0.000	1.65
		D		0.000	0.000	100.578	0.000	2.64
T5	35.00-0.00	Α	1.079	0.000	0.000	45.033	0.000	0.56
		В		0.000	0.000	43.187	0.000	0.32
		С		0.000	0.000	163.603	0.000	1.79
		D		0.000	0.000	114.205	0.000	2.96

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CPz
	ft	in	in	lce	lce
- Table 1			in	in	in
11	138.00-117.00	-16.56	15.20	-11.72	11.45
T2	117.00-92.00	-12.13	32.61	-2.36	38.42
T3	92.00-65.00	-15.11	29.83	-6.19	32.35
T4	65.00-35.00	-15.68	31.03	-6.77	34.58
T5	35.00-0.00	-17.56	34.69	-8.00	38.60

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K₃ Ice
T1	2	Power	117.00 -	0.6000	0.6000
T1	3	DC	138.00 117.00 - 138.00	0.6000	0.6000
T1,	5	LDF7-50A(1-5/8)		0.6000	0.6000

			F	- v - 1	V
Tower	Feed Line Record No.	Description	Feed Line Segment	K₃ No Ice	K₃ Ice
Section	Record IVO.		Ĕlev.		
		2.25" Fiber Duct	138.00 117.00 -	0.6000	0.6000
T1	6	2,25" Fiber Duct	138.00	0.0000	0.0000
T1	7	Climbing Ladder	117.00 -	0.6000	0.6000
то	ا ا	Power	138.00 92.00 -	0,6000	0.6000
T2	2	1 GWCI	117.00		
T2	3	DC	92.00 - 117.00	0.6000	0.6000
T2	5	LDF7-50A(1-5/8)	92.00 -	0.6000	0.6000
			117.00	0.6000	0.6000
T2	6	2.25" Fiber Duct	92.00 - 117.00	0.0000	0.0000
T2	7	Climbing Ladder	92.00 -	0.6000	0.6000
то	9	LDF7-50A(1-5/8)	117.00 92.00 -	0.6000	0.6000
T2	ا ا		117.00		0.0000
T2	10	LDF6-50A(1-1/4)	92.00 - 117.00	0.6000	0.6000
T2	11	HC-24LCSM6GAB-	92.00 -	0.6000	0.6000
		XXXF(1")	117.00 92.00 -	0.6000	0.6000
T2	14	HL-9612XXX(1-1/2")	93.00		
Т3	2	Power	65.00 -	0.6000	0.6000
Т3	3	DC	92.00 65.00 -	0.6000	0.6000
13			92.00	0.0000	0.6000
Т3	5	LDF7-50A(1-5/8)	65.00 - 92.00	0.6000	0.6000
ТЗ	6	2.25" Fiber Duct	65.00 -	0.6000	0.6000
		Climbing Ladder	92.00 65.00 -	0.6000	0.6000
Т3	7	Cliffibling Lauder	92.00		
Т3	9	LDF7-50A(1-5/8)	65.00 - 92.00	0.6000	0.6000
ТЗ	10	LDF6-50A(1-1/4)	65.00 -	0.6000	0.6000
13			92.00	0.6000	0.6000
T3	11	HC-24LCSM6GAB- XXXF(1")	65.00 - 92.00	0.8000	0.0000
T3	14	HL-9612XXX(1-1/2")	65.00 -	0.6000	0.6000
T4	2	Power	92.00 35.00 -	0.6000	0.6000
Т4		·	65.00		0.0000
T4	3	DC	35.00 - 65.00	0.6000	0.6000
T4	5	LDF7-50A(1-5/8)	35.00 -	0.6000	0.6000
		2.25" Fiber Duct	65.00 35.00 -	0.6000	0.6000
T4	6	2.25 Fiber Duct	65.00		
T4	7	Climbing Ladder	35.00 - 65.00	0.6000	0.6000
T4	9	LDF7-50A(1-5/8)	35.00 -	0.6000	0.6000
14		•	65.00	0.6000	0.6000
T4	10	LDF6-50A(1-1/4)	35.00 - 65.00	0.6000	0.6000
T4	11	HC-24LCSM6GAB-	35.00 -	0.6000	0.6000
<u> </u>	14	XXXF(1") HL-9612XXX(1-1/2")	65.00 35.00 -	0.6000	0.6000
T4	14	112-3012///(1-1/2)	65.00		
T5	2	Power DC	0.00 - 35.00 0.00 - 35.00	0.6000 0.6000	0.6000 0.6000
T5 T5		LDF7-50A(1-5/8)	0.00 - 35.00	0.6000	0.6000
T5	6	2.25" Fiber Duct	0.00 - 35.00	0.6000 0.6000	0.6000 0.6000
T5 T5	II	Climbing Ladder LDF7-50A(1-5/8)	0.00 - 35.00 0.00 - 35.00	0.6000	0.6000
T5	10	LDF6-50A(1-1/4)	0.00 - 35.00	0.6000	0.6000
Т5	11	HC-24LCSM6GAB- XXXF(1")	0.00 - 35.00	0.6000	0.6000
Т5	14	. 1	0.00 - 35.00	0.6000	0.6000

User Defined Loads - Seismic

Description	Elevation	Offset From	Azimuth Angle	Ε _ν	E _{hx}	E _{hz}	En
	ft	Centroid ft	9	κ	K	K	K
CCISeismic Tower Section 1	127.50	0.00	0.0000	0.29	0.00	0.00	0.82
CCISeismic Tower Section 2	104.50	0.00	0.0000	0.25			
CCISeismic Tower Section 3	78.50	0.00	0.0000		0.00	0.00	0.80
CCISeismic Tower Section 4	50.00			0.40	0.00	0.00	0.69
CCISeismic Tower Section 5		0.00	0.0000	0.61	0.00	0.00	0.67
	17.50	0.00	0.0000	0.71	0.00	0.00	0.27
CCISeismic miscl Dipole	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic pipe mounts 2" STD Pipe (2.375 OD)x4'-0"	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic pipe mounts 4" STD Pipe (4.5 OD)x5'-0"	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic jma wireless MX08FRO665-21 w/ Mount Pipe	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic jma wireless MX08FRO665-21 w/ Mount	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
Pipe							
CCISeismic jma wireless MX08FRO665-21 w/ Mount Pipe	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic fujitsu TA08025- B605	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic fujitsu TA08025- B605	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic fujitsu TA08025- B605	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic fujitsu TA08025- B604	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic fujitsu TA08025- B604	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic fujitsu TA08025- B604	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic raycap RDIDC- 9181-PF-48	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic raycap RDIDC- 9181-PF-48	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic raycap RDIDC- 9181-PF-48	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic (2) L3X3	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic (2) L3X3	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic (2) L3X3	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic Top	152.50	0.00	0.0000	0.42	0.00	0.00	1.40
CCISeismic Middle	138.00	.0,00	0.0000				
CCISeismic Bottom	133.50			0.64	0.00	0.00	1.94
CCISeismic Catwalk		0.00	0.0000	0.42	0.00	0.00	1.23
	140.00	0.00	0.0000	0.20	0.00	0.00	0.60
CCISeismic powerwave technologies 7770.00 w/ Mount Pipe	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic quintel	140.00	0.00	0.0000	0.00	0.00	0.00	0.04
technology QS46512-2 w/ Mount Pipe	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic cci antennas DMP65R-BU4D w/ Mount	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
Pipe							
CCISeismic ericsson RRUS 32 B2	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic (2) powerwave technologies LGP21401	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic (2) kaelus DBC0061F1V51-2	140.00	0.00	0.0000	0.00	0.00	0.00	0.01

Description	Elevation	Offset From	Azimuth Angle	E _v	E _{hx}	E _{hz}	E _h
	ft	Centroid ft	۰	K	K	К	Κ
CCISeismic raycap DC6-48-	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
60-18-8F CCISeismic raycap DC2-48- 60-0-9E	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic miscl Jsource	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
FMB CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
4449 B5/B12 CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
4426 B66 CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
4415 B25 CCISeismic powerwave technologies 7770.00 w/	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
Mount Pipe CCISeismic quintel technology QS46512-2 w/	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
Mount Pipe CCISeismic cci antennas DMP65R-BU4D w/ Mount	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
Pipe CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
32 B2 CCISeismic (2) powerwave	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
technologies LGP21401 CCISeismic (2) kaelus	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
DBC0061F1V51-2 CCISeismic raycap DC6-48-	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
60-18-8F CCISeismic raycap DC2-48-	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
60-0-9E CCISeismic miscl Jsource	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
FMB CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
4449 B5/B12 CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
4426 B66 CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
4415 B25 CCISeismic powerwave technologies 7770.00 w/	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
Mount Pipe CCISeismic quintel technology QS46512-2 w/	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
Mount Pipe CCISeismic cci antennas DMP65R-BU4D w/ Mount	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
Pipe CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
32 B2 CCISeismic (2) powerwave	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
technologies LGP21401 CCISeismic (2) kaelus	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
DBC0061F1V51-2 CCISeismic raycap DC6-48-	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
60-18-8F CCISeismic raycap DC2-48-	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
60-0-9E CCISeismic miscl Jsource	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
FMB CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
4449 B5/B12 CCISeismic ericsson RRUS	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
4426 B66 CCISeismic ericsson RRUS 4415 B25	140.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic (3) mount pipes 6' x 2.5" STD Pipe	140.00	0.00	0.0000	0.00	0.00	0.00	0.01

Description	Elevation	Offset From Centroid	Azimuth Angle	E _v	E _{hx}	E _{hz}	E _h
0010 1 1 10	ft	ft	•	K	K	K	κ
CCISeismic (3) mount pipes 6' x 2.5" STD Pipe	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic (3) mount pipes 6' x 2.5" STD Pipe	140.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson AIR 6449 B41 w/ Mount Pipe	117.00	0.00	0.0000	0.01	0.00	0.00	0.01
CCISeismic rfs celwave APXVAALL24_43-U-NA20 w/ Mount Pipe	117.00	0.00	0.0000	0.01	0.00	0.00	0.02
CCISeismic rfs celwave APX16DWV-16DWV-S-E- A20 TIA w/ Mount Pipe	117.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson RADIO 4449 B71+B85	117.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson RRUS 4426 B66	117.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson RRUS 4415	117.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic ericsson AIR 6449 B41 w/ Mount Pipe	117.00	0.00	0.0000	0.01	0.00	0.00	0.01
CCISeismic rfs celwave APXVAALL24_43-U-NA20 w/ Mount Pipe	117.00	0.00	0.0000	0.01	0.00	0.00	0.02
CCISeismic rfs celwave APX16DWV-16DWV-S-E- A20_TIA w/ Mount Pipe	117.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson RADIO 4449 B71+B85	117.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson RRUS 4426 B66	117.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson RRUS 4415	117.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic ericsson AIR 6449 B41 w/ Mount Pipe	117.00	0.00	0.0000	0.01	0.00	0.00	0.01
CCISeismic rfs celwave APXVAALL24_43-U-NA20 w/ Mount Pipe	117.00	0.00	0.0000	0.01	0.00	0.00	0.02
CCISeismic rfs celwave APX16DWV-16DWV-S-E- A20_TIA w/ Mount Pipe	117.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson RADIO 4449 B71+B85	117.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson RRUS 4426 B66	117.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic ericsson RRUS 4415	117.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic samsung telecommunications MT6413- 77A w/ Mount Pipe	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic samsung telecommunications B2/B66 RRH ORAN	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic samsung telecommunications B13/B5 RRH ORAN	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic (2) commscope SBNHH-1D65A_TIA w/ Mount	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
Pipe CCISeismic raycap OVP- Distribution Box	93.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic samsung elecommunications MT6413- 77A w/ Mount Pipe	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic samsung telecommunications B2/B66 RRH ORAN	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
CCISeismic samsung telecommunications B13/B5	93.00	0.00	0.0000	0.00	0.00	0.00	0.01

Description	Elevation	Offset From	Azimuth Angle	E _ν	E _{hx}	E _{hz}	Eh
	ft	Centroid ft		K	K	К	_K
RRH ORAN CCISeismic (2) commscope SBNHH-1D65A_TIA w/ Mount	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
Pipe CCISeismic raycap OVP-	93.00	0.00	0.0000	0.00	0.00	0.00	0.00
Distribution Box CCISeismic samsung telecommunications MT6413-	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
77A w/ Mount Pipe CCISeismic samsung telecommunications B2/B66	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
RRH ORAN CCISeismic samsung telecommunications B13/B5	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
RRH ORAN CCISeismic (2) commscope SBNHH-1D65A_TIA w/ Mount	93.00	0.00	0.0000	0.00	0.00	0.00	0.01
Pipe CCISeismic raycap OVP-	93.00	0.00	0.0000	0.00	0.00	0.00	0.00
Distribution Box CCISeismic 4' Dish CCISeismic (3) Power From	140.00 127.50	0.00 0.00	0.0000 0.0000	0.01 0.00	0.00 0.00	0.00 0.00	0.02 0.00
0 to 138 (117ft to138ft) CCISeismic (3) Power From	104.50	0.00	0.0000	0.00	0.00	0.00	0.00
0 to 138 (92ft to117ft) CCISeismic (3) Power From	78.50	0.00	0.0000	0.00	0.00	0.00	0.00
0 to 138 (65ft to92ft) CCISeismic (3) Power From	50.00	0.00	0.0000	0.00	0.00	0.00	0.00
0 to 138 (35ft to65ft) CCISeismic (3) Power From	17.50	0.00	0.0000	0.00	0.00	0.00	0.00
0 to 138 (0ft to35ft) CCISeismic (3) DC From 0 to	127.50	0.00	0.0000	0.00	0.00	0.00	0.00
138 (117ft to138ft) CCISeismic (3) DC From 0 to 138 (92ft to117ft)	104.50	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic (3) DC From 0 to 138 (65ft to92ft)	78.50	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic (3) DC From 0 to 138 (35ft to65ft)	50.00	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic (3) DC From 0 to 138 (0ft to35ft)	17.50	0.00	0.0000	0.00	0.00	0.00	0.00
CCISeismic (12) andrew LDF7-50A(1-5/8) From 0 to 138 (117ft to138ft)	127.50	0.00	0.0000	0.01	0.00	0.00	0.02
CCISeismic (12) andrew LDF7-50A(1-5/8) From 0 to	104.50	0.00	0.0000	0.01	0.00	0.00	0.02
138 (92ft to117ft) CCISeismic (12) andrew LDF7-50A(1-5/8) From 0 to	78.50	0.00	0.0000	0.01	0.00	0.00	0.02
138 (65ft to92ft) CCISeismic (12) andrew LDF7-50A(1-5/8) From 0 to	50.00	0.00	0.0000	0.01	0.00	0.00	0.01
138 (35ft to65ft) CClSeismic (12) andrew LDF7-50A(1-5/8) From 0 to	17.50	0.00	0.0000	0.01	0.00	0.00	0.01
138 (0ft to35ft) CCISeismic miscl 2.25" Fiber Duct From 0 to 138 (117ft	127.50	0.00	0.0000	0.00	0.00	0.00	0.00
to 138ft) CCISeismic miscl 2.25" Fiber Duct From 0 to 138 (92ft	104.50	0.00	0.0000	0.00	0.00	0.00	0.00
to117ft) CCISeismic miscl 2.25" Fiber Duct From 0 to 138 (65ft	78.50	0.00	0.0000	0.00	0.00	0.00	0.00
to92ft) CCISeismic miscl 2.25" Fiber Duct From 0 to 138 (35ft to65ft)	50.00	0.00	0.0000	0.00	0.00	0.00	0.00

Description	Elevation	Offset From Centroid	Azimuth Angle	E _v	E _{hx}	E _{hz}	E _h
	ft	ft	0	K	K	K	K
CCISeismic miscl 2.25" Fiber	17.50	0.00	0.0000	0.00	0.00	0.00	0.00
Duct From 0 to 138 (0ft to35ft)	407.50						
CCISeismic miscl Climbing Ladder From 0 to 138 (117ft	127.50	0.00	0.0000	0.01	0.00	0.00	0.02
to138ft)							
CCISeismic miscl Climbing	104.50	0.00	0.0000	0.01	0.00	0.00	0.02
Ladder From 0 to 138 (92ft			5,555	0.01	0.00	0.00	0.02
to117ft)							
CCISeismic miscl Climbing	78.50	0.00	0.0000	0.01	0.00	0.00	0.01
Ladder From 0 to 138 (65ft to 1092ft)							
CCISeismic miscl Climbing	50.00	0.00	0.0000	0.01	0.00	0.00	0.01
Ladder From 0 to 138 (35ft		0.00	0.0000	0.01	0.00	0.00	0.01
to65ft)							
CCISeismic miscl Climbing	17.50	0.00	0.0000	0.01	0.00	0.00	0.00
Ladder From 0 to 138 (0ft							
to35ft) CCISeismic (6) andrew LDF7-	104.50	0.00	0.0000	0.00	0.00	0.00	0.04
50A(1-5/8) From 0 to 117	104.50	0.00	0.0000	0.00	0.00	0.00	0.01
(92ft to117ft)							
CCISeismic (6) andrew LDF7-	78.50	0.00	0.0000	0.01	0.00	0.00	0.01
50A(1-5/8) From 0 to 117							
(65ft to92ft) CCISeismic (6) andrew LDF7-	50.00	0.00	0.0000	0.04			
50A(1-5/8) From 0 to 117	50.00	0.00	0.0000	0.01	0.00	0.00	0.01
(35ft to65ft)							
CCISeismic (6) andrew LDF7-	17.50	0.00	0.0000	0.01	0.00	0.00	0.00
50A(1-5/8) From 0 to 117 (0ft							
to35ft)	404.50	0.00					
CCISeismic (3) andrew LDF6- 50A(1-1/4) From 0 to 117	104.50	0.00	0.0000	0.00	0.00	0.00	0.00
(92ft to117ft)							
CCISeismic (3) andrew LDF6-	78.50	0.00	0.0000	0.00	0.00	0.00	0.00
50A(1-1/4) From 0 to 117							0.00
(65ft to92ft)	F0 00						
CCISeismic (3) andrew LDF6- 50A(1-1/4) From 0 to 117	50.00	0.00	0.0000	0.00	0.00	0.00	0.00
(35ft to65ft)							
CCISeismic (3) andrew LDF6-	17.50	0.00	0.0000	0.00	0.00	0.00	0.00
50A(1-1/4) From 0 to 117 (0ft			2.000	0.55	0.00	0.00	0.00
to35ft)							
CCISeismic rosenberger leoni	104.50	0.00	0.0000	0.00	0.00	0.00	0.00
HC-24LCSM6GAB-XXXF(1") From 0 to 117 (92ft to 117ft)							
CCISeismic rosenberger leoni	78.50	0.00	0.0000	0.00	0.00	0.00	0.00
HC-24LCSM6GAB-XXXF(1")			0.000	0.00	0.00	0.00	0,00
From 0 to 117 (65ft to92ft)							
CCISeismic rosenberger leoni	50.00	0.00	0.0000	0.00	0.00	0.00	0.00
HC-24LCSM6GAB-XXXF(1") From 0 to 117 (35ft to65ft)							
CCISeismic rosenberger leoni	17.50	0.00	0.0000	0.00	0.00	0.00	0.00
HC-24LCSM6GAB-XXXF(1")	11.00	0.00	0.0000	0.00	0.00	0.00	0.00
From 0 to 117 (0ft to35ft)							
CCISeismic (3) rosenberger	92.50	0.00	0.0000	0.00	0.00	0.00	0.00
leoni HL-9612XXX(1-1/2") From 0 to 93 (92ft to93ft)							
CCISeismic (3) rosenberger	78.50	0.00	0.0000	0.01	0.00	0.00	0.04
leoni HL-9612XXX(1-1/2")	70.00	0.00	0.0000	0.01	0.00	0.00	0.01
From 0 to 93 (65ft to 92ft)							
CCISeismic (3) rosenberger	50.00	0.00	0.0000	0.01	0.00	0.00	0.01
leoni HL-9612XXX(1-1/2")							
From 0 to 93 (35ft to65ft) CCISeismic (3) rosenberger	17 FO	0.00	0.0000	0.04	0.55		
leoni HL-9612XXX(1-1/2")	17.50	0.00	0.0000	0.01	0.00	0.00	0.00
From 0 to 93 (0ft to35ft)							

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft	•	ft		ft²	ft²	Κ
Dipole	A	From Face	0.00	0.0000	140.00	No Ice	1.59	1.59	0.04
Dibole	^	7 (011) 1 200	3.00 0.00			1/2" lce 1" lce	2.46 2.83	2.46 2.83	0.06 0.08
2" STD Pipe (2.375	Α	From Face	0.00	0.0000	140.00	No Ice	0.87	0.87	0.01
OD)x4'-0"			0.00			1/2" Ice	1.11 1.36	1.11 1.36	0.02 0.03
			0.00			1" lce	1.00	1.00	
" STD Pipe (4.5 OD)x5'-0"	D	From Leg	0.00	0.0000	140.00	No Ice	1.31	1.31	0.05
01B11p0 (1.0 0B)/10 0	_	ŭ	0.00			1/2"	2.08 2.40	2.08 2.40	0.07 0.09
×			0.00			Ice 1" Ice	2.40	2.40	0.03
Dish MX08FRO665-21 w/	Α	From Leg	0.00	0.0000	140.00	No ice	12.96	7.77	0.09
Mount Pipe	^	1 Toni Log	0.00			1/2"	13.67	9.05	0.19
Mount ipo			0.00			Ice 1" Ice	14.34	10.19	0.29
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Б	Erom I an	0.00	0.0000	140.00	No Ice	12.96	7.77	0.09
MX08FRO665-21 w/ Mount Pipe	В	From Leg	0.00	0.0000	.40.50	1/2"	13.67	9.05	0.19
Mount Pipe			0.00			lce 1" lce	14.34	10.19	0.29
MX08FRO665-21 w/	С	From Leg	0.00	0.0000	140.00	No Ice	12.96	7.77	0.09
Mount Pipe			0.00 0.00			1/2" Ice 1" Ice	13.67 14.34	9.05 10.19	0.19 0.29
T100005 B005	٨	Erom I on	0.00	0.0000	140.00	No Ice	1.96	1.19	0.07
TA08025-B605	Α	From Leg	0.00	0.0000	, 10.00	1/2"	2.14	1.33	0.09
			0.00			Ice 1" Ice	2.32	1.48	0.11
TA08025-B605	В	From Leg	0.00	0.0000	140.00	No Ice	1.96	1.19	0.07
			0.00 0.00			1/2" Ice 1" Ice	2.14 2.32	1.33 1.48	0.09 0.11
TA 00005 DC05	С	From Leg	0.00	0.0000	140.00	No Ice	1.96	1.19	0.07
TA08025-B605	C	i ioni ceg	0.00	0.000		1/2"	2.14	1.33	0.09
			0.00			Ice 1" Ice	2.32	1.48	0.11
TA08025-B604	Α	From Leg	0.00	0.0000	140.00	No Ice 1/2"	1.96 2.14	1.03 1.17	0.08
			0.00 0.00			Ice	2.32	1.31	0.10
T. 00000 D.004	Б	From Leg	0.00	0.0000	140.00	1" Ice No Ice	1.96	1.03	0.06
TA08025-B604	В	From Leg	0.00	0.0000	1-0.00	1/2"	2.14	1.17	0.08
			0.00			Ice 1" Ice	2.32	1.31	0.10
TA08025-B604	С	From Leg	0.00	0.0000	140.00	No Ice	1.96	1.03	0.06
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	J	0.00 0.00			1/2" Ice	2.14 2.32	1.17 1.31	0.08 0.10
DDID 0 0404 DE 40		Erom Loc	0.00	0.0000	140.00	1" Ice No Ice	1.87	1.07	0.02
RDIDC-9181-PF-48	Α	From Leg	0.00	0.0000	1-10.00	1/2"	2.04	1.20	0.04
			0.00			Ice 1" Ice	2.21	1.35	0.06
RDIDC-9181-PF-48	В	From Leg	0.00	0.0000	140.00	No Ice	1.87	1.07	0.02
KDIDO-3101-111-40	_		0.00			1/2"	2.04	1.20	0.04 0.06
			0.00			Ice 1" Ice	2.21	1.35	0.00
DDIDC 0494 DE 49	С	From Leg	0.00	0.0000	140.00	No Ice	1.87	1.07	0.02
RDIDC-9181-PF-48	C	i ioni Leg	0.00	0.0000		1/2"	2.04	1.20	0.04
			0.00			ice 1" ice	2.21	1.35	0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	κ
(2) L3X3	Α	From Leg	0.00 0.00 0.00	0.0000	140.00	No Ice 1/2" Ice 1" Ice	0.50 0.98 1.46	0.50 0.98 1.46	0.04 0.07 0.10
(2) L3X3	В	From Leg	0.00 0.00 0.00	0.0000	140.00	No Ice 1/2" Ice	0.50 0.98 1.46	0.50 0.98 1.46	0.04 0.07 0.10
(2) L3X3	С	From Leg	0.00 0.00 0.00	0.0000	140.00	1" Ice No Ice 1/2" Ice 1" Ice	0.50 0.98 1.46	0.50 0.98 1.46	0.04 0.07 0.10
*									
Тор	Α	None		0.0000	152.50	No Ice 1/2" Ice 1" Ice	111.00 111.00 111.00	111.00 111.00 111.00	10.65 10.65 10.65
Middle	Α	None		0.0000	138.00	No Ice 1/2" Ice 1" Ice	508.00 508.00 508.00	508.00 508.00 508.00	16.29 16.29 16.29
Bottom	Α	None		0.0000	133.50 =	No Ice 1/2" Ice 1" Ice	111.00 111.00 111.00	111.00 111.00 111.00	10.65 10.65 10.65
Catwalk *	Α	N one		0.0000	140.00	No Ice 1/2" Ice 1" Ice	102.90 102.90 102.90	102.90 102.90 102.90	4.96 4.96 4.96
AT&T									
7770.00 w/ Mount Pipe	Α	From Leg	0.00 0.00 0.00	0.0000	140.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
QS46512-2 w/ Mount Pipe	Α	From Leg	0.00 0.00 0.00	0.0000	140.00	No Ice 1/2" Ice 1" Ice	5.79 6.21 6.62	5.88 6.58 7.25	0.12 0.18 0.24
DMP65R-BU4D w/ Mount Pipe	Α	From Leg	0.00 0.00 0.00	0.0000	140.00	No Ice 1/2" Ice 1" Ice	8.52 8.96 9.42	4.69 5.31 5.93	0.09 0.15 0.22
RRUS 32 B2	Α	From Leg	0.00 0.00 0.00	0.0000	140.00	No Ice 1/2" Ice	2.71 2.93 3.16	1.66 1.85 2.04	0.05 0.07 0.10
(2) LGP21401	Α	From Leg	0.00 0.00 0.00	0.0000	140.00	1" Ice No Ice 1/2" Ice	1.10 1.24 1.38	0.21 0.27 0.35	0.01 0.02 0.03
(2) DBC0061F1V51-2	Α	From Leg	0.00 0.00 0.00	0.0000	140.00	1" Ice No Ice 1/2" Ice	0.43 0.52 0.61	0.41 0.50 0.59	0.03 0.03 0.04
DC6-48-60-18-8F	Α	From Leg	0.00 0.00 0.00	0.0000	140.00	1" Ice No Ice 1/2" Ice	0.92 1.46 1.64	0.92 1.46 1.64	0.02 0.04 0.06
DC2-48-60-0-9E	Α	From Leg	0.00 0.00 0.00	0.0000	140.00	1" Ice No Ice 1/2" Ice	0.93 1.05 1.18	0.56 0.66 0.77	0.02 0.02 0.04
						1" Ice			

tnxTower Report - version 8.1.1.0

Description	Face	Offset	Offsets:	Azimuth	Placement		C _A A _A	$C_A A_A$	Weight
Boomprio	or Leg	Type	Horz Lateral	Adjustmen t			Front	Side	
			Vert ft ft ft	۰	ft		ft²	ft²	К
			0.00			1/2"	1.34	0.91	0.03
			0.00			lce 1" lce	1.48	1.04	0.04
RRUS 4449 B5/B12	Α	From Leg	0.00	0.0000	140.00	No Ice	1.97	1.41 1.56	0.07 0.09
			0.00 0.00			1/2" Ice 1" Ice	2.14 2.33	1.73	0.11
RRUS 4426 B66	Α	From Leg	0.00	0.0000	140.00	No Ice	1.64	0.73	0.05
NNOS 4420 200	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00 0.00			1/2" Ice	1.80 1.97	0.84 0.97	0.06 0.08
				0.0000	140.00	1" Ice No Ice	1.64	0.68	0.04
RRUS 4415 B25	Α	From Leg	0.00 0.00	0.0000	140.00	1/2"	1.80	0.79	0.06
			0.00			Ice 1" Ice	1.97	0.91	0.07
7770.00 w/ Mount Pipe	В	From Leg	0.00	0.0000	140.00	No Ice	5.75	4.25	0.06
7770.00 W/ Modific 1 po	_		0.00			1/2"	6.18	5.01	0.10
			0.00			lce 1" lce	6.61	5.71	0.16 0.12
QS46512-2 w/ Mount Pipe	В	From Leg	0.00	0.0000	140.00	No Ice 1/2"	5.79 6.21	5.88 6.58	0.12
			0.00 0.00			Ice 1" Ice	6.62	7.25	0.24
DMP65R-BU4D w/ Mount	В	From Leg	0.00	0.0000	140.00	No Ice	8.52	4.69	0.09
Pipe		110111209	0.00			1/2"	8.96	5.31	0.15
1 1,50			0.00			Ice 1" Ice	9.42	5.93	0.22
RRUS 32 B2	В	From Leg	0.00	0.0000	140.00	No Ice	2.71	1.66	0.05
			0.00 0.00			1/2" Ice 1" Ice	2.93 3.16	1.85 2.04	0.07 0.10
(0) 1 0001101		From Leg	0.00	0.0000	140.00	No ice	1.10	0.21	0.01
(2) LGP21401	В	Floin Leg	0.00	0.0000	7 10.00	1/2"	1.24	0.27	0.02
			0.00			lce 1" lce	1.38	0.35	0.03
(2) DBC0061F1V51-2	В	From Leg	0.00	0.0000	140.00	No Ice	0.43	0.41	0.03 0.03
			0.00 0.00			1/2" ice	0.52 0.61	0.50 0.59	0.04
	_		0.00	0.0000	140.00	1" ice No ice	0.92	0.92	0.02
DC6-48-60-18-8F	В	From Leg	0.00 0.00	0.0000	140.00	1/2"	1.46	1.46	0.04
			0.00			Ice 1" Ice	1.64	1.64	0.06
DC2-48-60-0-9E	В	From Leg	0.00	0.0000	140.00	No Ice	0.93	0.56	0.02
B02 10 00 0 01		· ·	0.00			1/2" Ice	1.05 1.18	0.66 0.77	0.02 0.04
				0.0000	140.00	1" Ice No Ice	1.20	0.80	0.02
Jsource FMB	В	From Leg	0.00	0.0000	140.00	1/2"	1.34	0.91	0.02
			0.00 0.00			Ice 1" Ice	1.48	1.04	0.04
RRUS 4449 B5/B12	В	From Lea	0.00	0.0000	140.00	No Ice	1.97	1.41	0.07
RRUS 4449 B3/B12	В	1 form Log	0.00	0.0000		1/2"	2.14	1.56	0.09
			0.00			Ice 1" Ice	2.33	1.73	0.11
RRUS 4426 B66	В	From Leg	0.00	0.0000	140.00	No Ice	1.64	0.73	0.05 0.06
			0.00 0.00			1/2" Ice	1.80 1.97	0.84 0.97	0.08
_L	-	C !	0.00	0.0000	140.00	1" Ice No Ice	1.64	0.68	0.04
RRUS 4415 B25	В	From Leg	0.00 0.00	0.0000	1-0.00	1/2"	1.80	0.79	0.06
			0.00			Ice 1" Ice	1.97	0.91	0.07
7770.00 w/ Mount Pipe	С	From Leg	0.00	0.0000	140.00	No Ice	5.75	4.25	0.06
		J	0.00			1/2"	6.18	5.01	0.10

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weigh
	3	9	Vert ft ft		ft		ft²	ft²	К
			ft						
0040540 0 444			0.00			Ice 1" Ice	6.61	5.71	0.16
QS46512-2 w/ Mount Pipe	С	From Leg	0.00	0.0000	140.00	No Ice	5.79	5.88	0.12
			0.00			1/2"	6.21	6.58	0.18
			0.00			lce	6.62	7.25	0.24
DMP65R-BU4D w/ Mount	С	From Leg	0.00	0.0000	140.00	1" Ice No Ice	8.52	4.69	0.09
Pipe			0.00	0.0000	110.00	1/2"	8.96	5.31	0.15
-			0.00			Ice	9.42	5.93	0.22
						1" Ice			
RRUS 32 B2	С	From Leg	0.00	0.0000	140.00	No Ice	2.71	1.66	0.05
			0.00			1/2"	2.93	1.85	0.07
			0.00			Ice	3.16	2.04	0.10
(2) LGP21401	С	F1	0.00	0.0000		1" Ice			
(2) LGP21401	C	From Leg	0.00	0.0000	140.00	No Ice	1.10	0.21	0.01
			0.00			1/2"	1.24	0.27	0.02
			0.00			Ice	1.38	0.35	0.03
(2) DBC0061F1V51-2	С	From Leg	0.00	0.0000	140.00	1" Ice No Ice	0.43	0.41	0.03
(=, = = = = = : : : : = = =	•	r rom Log	0.00	0.0000	140.00	1/2"	0.43	0.41	0.03
			0.00			lce	0.61	0.59	0.03
						1" Ice	0.01	0.00	0.04
DC6-48-60-18-8F	С	From Leg	0.00	0.0000	140.00	No Ice	0.92	0.92	0.02
			0.00			1/2"	1.46	1.46	0.04
			0.00			Ice	1.64	1.64	0.06
DC2 48 60 0 0E	_					1" lce			
DC2-48-60-0-9E	С	From Leg	0.00	0.0000	140.00	No Ice	0.93	0.56	0.02
			0.00			1/2"	1.05	0.66	0.02
			0.00			ice	1.18	0.77	0.04
Jsource FMB	С	From Leg	0.00	0.0000	140.00	1" Ice No Ice	1.20	0.80	0.00
	•	r rom Log	0.00	0.0000	140.00	1/2"	1.34	0.80	0.02 0.03
			0.00			lce	1.48	1.04	0.03
						1" Ice	1.40	1.04	0.04
RRUS 4449 B5/B12	С	From Leg	0.00	0.0000	140.00	No Ice	1.97	1.41	0.07
			0.00			1/2"	2.14	1.56	0.09
			0.00			Ice	2.33	1.73	0.11
RRUS 4426 B66	С	E	0.00			1" Ice			
KK03 4420 B00	C	From Leg	0.00	0.0000	140.00	No Ice	1.64	0.73	0.05
			0.00 0.00			1/2"	1.80	0.84	0.06
			0.00			Ice 1" Ice	1.97	0.97	80.0
RRUS 4415 B25	С	From Leg	0.00	0.0000	140.00	No Ice	1.64	0.68	0.04
			0.00	0.0000	140.00	1/2"	1.80	0.79	0.04
			0.00			Ice	1.97	0.91	0.07
						1" Ice		0.0 1	0.07
(3) 6' x 2.5" STD Pipe	Α	From Leg	0.00	0.0000	140.00	No Ice	1.72	1.72	0.03
			0.00			1/2"	2.09	2.09	0.05
			0.00			Ice	2.46	2.46	0.06
(3) 6' x 2.5" STD Pipe	В	F 1	0.00			1" Ice			
(3) 0 X 2.5 STD Fipe	В	From Leg	0.00	0.0000	140.00	No ice	1.72	1.72	0.03
			0.00 0.00			1/2"	2.09	2.09	0.05
			0.00			Ice	2.46	2.46	0.06
(3) 6' x 2.5" STD Pipe	С	From Leg	0.00	0.0000	140.00	1" Ice No Ice	1.72	1.72	0.03
	_		0.00	0.0000	140.00	1/2"	2.09	2.09	0.05
			0.00			ice	2.46	2.46	0.06
						1" Ice		10	0.00
TMO									
AIR 6449 B41 w/ Mount	Α	From Face	0.00	0.0000	117.00	No Ice	6.90	4.32	0.13
Pipe			0.00			1/2"	7.74	5.37	0.19
			0.00			Ice	8.49	6.28	0.26
DVI/AALLOA AO LINIAGO	Α.	F =	0.00	0.0000		1" Ice			
PXVAALL24_43-U-NA20 w/ Mount Pipe	Α	From Face	0.00	0.0000	117.00	No Ice	20.24	10.63	0.15
w would ripe			0.00			1/2"	20.89	12.06	0.28

tnxTower Report - version 8.1.1.0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	- 0		Vert ft ft	•	ft		ft²	ft²	K
			0.00			Ice	21.55	13.34	0.43
			0.00			1" Ice			
APX16DWV-16DWV-S-E-	Α	From Face	0.00	0.0000	117.00	No Ice	6.82	3.52	0.06 0.11
A20_TIA w/ Mount Pipe			0.00 0.00			1/2" Ice 1" Ice	7.28 7.72	4.29 4.98	0.17
RADIO 4449 B71+B85	Α	From Face	0.00	0.0000	117.00	No Ice	1.64	1.31	0.07
KADIO 4449 BY 11800	,,		0.00			1/2"	1.80	1.46	0.09 0.11
			0.00			lce 1" lce	1.97	1.61	0.11
DDUC 4426 B66	Α	From Face	0.00	0.0000	117.00	No Ice	1.64	0.73	0.05
RRUS 4426 B66	^	1101111 200	0.00			1/2"	1.80	0.84	0.06
			0.00			Ice 1" Ice	1.97	0.97	0.08
		From Face	0.00	0.0000	117.00	No Ice	1.64	0.68	0.04
RRUS 4415	Α	From Face	0.00	0.0000	117.50	1/2"	1.80	0.79	0.06
			0.00			lce 1" lce	1.97	0.91	0.07
AIR 6449 B41 w/ Mount	В	From Face	0.00	0.0000	117.00	No Ice	6.90	4.32	0.13
Pipe			0.00			1/2" Ice	7.74 8.49	5.37 6.28	0.19 0.26
			0.00			1" lce	0.43	0.20	0.20
APXVAALL24_43-U-NA20	В	From Face	0.00	0.0000	117.00	No Ice	20.24	10.63	0.15
w/ Mount Pipe	_		0.00			1/2"	20.89	12.06	0.28 0.43
			0.00			Ice 1" Ice	21.55	13.34	0.43
APX16DWV-16DWV-S-E-	В	From Face	0.00	0.0000	117.00	No ice	6.82	3.52	0.06
A20 TIA w/ Mount Pipe		1101111 400	0.00			1/2"	7.28	4.29	0.11
A20_TIA W/ Mount Pipe			0.00			lce 1" ice	7.72	4.98	0.17
	_	F F	0.00	0.0000	117.00	No Ice	1.64	1.31	0.07
RADIO 4449 B71+B85	В	From Face	0.00	0.0000	117.00	1/2"	1.80	1.46	0.09
			0.00			lce 1" lce	1.97	1.61	0.11
RRUS 4426 B66	В	From Face	0.00	0.0000	117.00	No Ice	1.64	0.73	0.05 0.06
			0.00			1/2" Ice	1.80 1.97	0.84 0.97	0.08
			0.00			1" ice			
RRUS 4415	В	From Face	0.00	0.0000	117.00	No Ice	1.64	0.68	0.04
14100 1110			0.00			1/2"	1.80 1.97	0.79 0.91	0.06 0.07
			0.00			ice 1" ice	1.81	0.51	0.07
AID C440 B44 w/ Mount	D	From Face	0.00	0.0000	117.00	No Ice	6.90	4.32	0.13
AIR 6449 B41 w/ Mount Pipe	U	1 101111 400	0.00			1/2"	7.74	5.37	0.19
i ipo			0.00			Ice 1" Ice	8.49	6.28	0.26
4 TO 14 44 1 04 40 11 NA 70	D	From Face	0.00	0.0000	117.00	No Ice	20.24	10.63	0.15
APXVAALL24_43-U-NA20 w/ Mount Pipe	D	From Face	0.00	0.0000		1/2"	20.89	12.06	0.28
W/ Would't ipe			0.00			lce 1" lce	21.55	13.34	0.43
- DV440D144440D144440 F	D	From Face	0.00	0.0000	117.00	No Ice	6.82	3.52	0.06
APX16DWV-16DWV-S-E- A20_TIA w/ Mount Pipe	D	From race	0.00	0.0000		1/2"	7.28	4.29	0.11
AZU_TIA W/ WIOUTILT The			0.00			Ice 1" Ice	7.72	4.98	0.17
RADIO 4449 B71+B85	D	From Face	0.00	0.0000	117.00	No Ice	1.64	1.31	0.07
RADIO 4443 DI 17000	_		0.00			1/2"	1.80	1.46	0.09 0.11
			0.00			lce 1" lce	1.97	1.61	0.11
DDITE 4406 DEE	D	From Face	0.00	0.0000	117.00	No Ice	1.64	0.73	0.05
RRUS 4426 B66	J	1 101111 200	0.00			1/2"	1.80	0.84	0.06
			0.00			Ice 1" Ice	1.97	0.97	80.0
DDU0 4445	D	From Face	0.00	0.0000	117.00	No Ice	1.64	0.68	0.04
RRUS 4415	U	I IUIII ACC	0.00	7.3000		1/2"	1.80	0.79	0.06
			0.00			ice	1.97	0.91	0.07

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	٥	ft		ft²	ft²	κ
			ft			1" lce			
VZW						i ice			
MT6413-77A w/ Mount Pipe	Α	From Face	0.00 0.00	0.0000	93.00	No Ice 1/2"	5.12 5.95	3.36 4.38	0.09 0.13
			0.00			Ice	6.68	5.25	0.18
B2/B66 RRH ORAN	Α	From Face	0.00	0.0000	93.00	1" lce No lce	1.87	1.25	0.07
			0.00	0.0000	00.00	1/2"	2.03	1.39	0.07
			0.00			Ice	2.21	1.54	0.11
B13/B5 RRH ORAN	Α	From Face	0.00	0.0000	00.00	1" Ice	4.07	4.40	
2 :0,20 : 0,0	^	i iomii ace	0.00	0.0000	93.00	No Ice 1/2"	1.87	1.13	0.07
			0.00			lce	2.03 2.21	1.27 1.41	0.09
						1" Ice	2.21	1.41	0.11
(2) SBNHH-1D65A_TIA w/	Α	From Face	0.00	0.0000	93.00	No Ice	6.19	5.25	0.05
Mount Pipe			0.00			1/2"	6.64	6.04	0.11
			0.00			Ice	7.07	6.74	0.17
OVP-Distribution Box	Α	From Face	0.00	0.0000	93.00	1" lce No lce	2.51	1.64	0.02
			0.00	0.0000	93.00	1/2"	2.71	1.81	0.03 0.05
			0.00			Ice	2.92	1.98	0.03
						1" Ice	2.02	1.50	0.00
MT6413-77A w/ Mount	В	From Face	0.00	0.0000	93.00	No Ice	5.12	3.36	0.09
Pipe			0.00			1/2"	5.95	4.38	0.13
			0.00			Ice	6.68	5.25	0.18
B2/B66 RRH ORAN	В	From Face	0.00	0.0000	93.00	1" Ice	1.87	4.05	0.07
	_		0.00	0.0000	93.00	No Ice 1/2"	2.03	1.25 1.39	0.07
			0.00			ice	2.03	1.59	0.09 0.11
						1" Ice		1.04	0.11
B13/B5 RRH ORAN	В	From Face	0.00	0.0000	93.00	No ice	1.87	1.13	0.07
			0.00			1/2"	2.03	1.27	0.09
			0.00			lce	2.21	1.41	0.11
(2) SBNHH-1D65A_TIA w/	В	From Face	0.00	0.0000	93.00	1" Ice No Ice	6.19	5.25	0.05
Mount Pipe			0.00	0.0000	55.00	1/2"	6.64	6.04	0.05
			0.00			lce	7.07	6.74	0.17
OVE Distribution B	-					1" Ice		,	•
OVP-Distribution Box	В	From Face	0.00	0.0000	93.00	No Ice	2.51	1.64	0.03
			0.00 0.00			1/2"	2.71	1.81	0.05
			0.00			lce 1" Ice	2.92	1.98	80.0
MT6413-77A w/ Mount	D	From Face	0.00	0.0000	93.00	No Ice	5.12	3.36	0.09
Pipe			0.00		00.00	1/2"	5.95	4.38	0.03
			0.00			Ice	6.68	5.25	0.18
BO/BCC BBU OBAN	-					1" Ice			
B2/B66 RRH ORAN	D	From Face	0.00	0.0000	93.00	No Ice	1.87	1.25	0.07
			0.00			1/2"	2.03	1.39	0.09
			0.00			lce	2.21	1.54	0.11
B13/B5 RRH ORAN	D	From Face	0.00	0.0000	93.00	1" Ice No Ice	1.87	1.13	0.07
			0.00	0.0000	00.00	1/2"	2.03	1.27	0.07
			0.00			lce	2.21	1.41	0.11
/2\ CDNUU 4DCEA TIA		E E				1" Ice			
(2) SBNHH-1D65A_TIA w/ Mount Pipe	D	From Face	0.00	0.0000	93.00	No Ice	6.19	5.25	0.05
wount ripe			0.00			1/2"	6.64	6.04	0.11
			0.00			lce	7.07	6.74	0.17
OVP-Distribution Box	D	From Face	0.00	0.0000	93.00	1" Ice No Ice	2.51	1.64	0.03
			0.00	2.220	00.00	1/2"	2.71	1.81	0.03
			0.00			Ice	2.92	1.98	0.03
						1" Ice			

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weigh
				ft	0	0	ft	ft		ft ²	K
		Paraboloid	From	0.00	0.0000		140.00	4.00	No Ice	12.57	0.14
4' Dish	D			0.00	0.0000				1/2" Ice	13.10	0.28
		w/Shroud (HP)	Leg	0.00					1" Ice	13.62	0.42

Load Combinations

	Load Combinations
Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 45 deg - No Ice
5	0.9 Dead+1.0 Wind 45 deg - No Ice
6	1.2 Dead+1.0 Wind 90 deg - No Ice
7	0.9 Dead+1.0 Wind 90 deg - No Ice
8	1.2 Dead+1.0 Wind 135 deg - No Ice
9	0.9 Dead+1.0 Wind 135 deg - No Ice
10	1.2 Dead+1.0 Wind 180 deg - No Ice
11	0.9 Dead+1.0 Wind 180 deg - No Ice
12	1.2 Dead+1.0 Wind 225 deg - No Ice
13	0.9 Dead+1.0 Wind 225 deg - No Ice
14	1.2 Dead+1.0 Wind 270 deg - No Ice
15	0.9 Dead+1.0 Wind 270 deg - No Ice
16	1.2 Dead+1.0 Wind 315 deg - No Ice
17	0.9 Dead+1.0 Wind 315 deg - No Ice
18	1.2 Dead+1.0 Ice+1.0 Temp
19	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
20	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp
21	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
22	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp
23	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
24	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp
25	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
26	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 45 deg - Service
29	Dead+Wind 90 deg - Service
30	Dead+Wind 135 deg - Service
31	Dead+Wind 180 deg - Service
32	Dead+Wind 225 deg - Service
33	Dead+Wind 270 deg - Service
34	Dead+Wind 315 deg - Service
35	1.2 Dead+1.0 Ev+1.0 Eh 0 deg
36	0.9 Dead-1.0 Ev+1.0 Eh 0 deg
37	1.2 Dead+1.0 Ev+1.0 Eh 45 deg
38	0.9 Dead-1.0 Ev+1.0 Eh 45 deg
39	1.2 Dead+1.0 Ev+1.0 Eh 90 deg
40	0.9 Dead-1.0 Ev+1.0 Eh 90 deg
41	1.2 Dead+1.0 Ev+1.0 Eh 135 deg
42	0.9 Dead-1.0 Ev+1.0 Eh 135 deg
43	1.2 Dead+1.0 Ev+1.0 Eh 180 deg
44	0.9 Dead-1.0 Ev+1.0 Eh 180 deg
45	1.2 Dead+1.0 Ev+1.0 Eh 225 deg
46	0.9 Dead-1.0 Ev+1.0 Eh 225 deg
47	1.2 Dead+1.0 Ev+1.0 Eh 270 deg
48	0.9 Dead-1.0 Ev+1.0 Eh 270 deg
49	1.2 Dead+1.0 Ev+1.0 Eh 315 deg

Comb. No.		Description	10.
50	0.9 Dead-1.0 Ev+1.0 Eh 315 deg		

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
T1	138 - 117	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	4	-40.06	0.36	-0.17
			Max. Mx	4	-13.57	5.75	-0.42
			Max. My	8	-26.52	-0.37	5.54
			Max. Vy	4	-1.43	-0.00	0.00
			Max. Vx	8	-1.33	0.00	0.00
		Diagonal	Max Tension	2	21.77	0.00	0.00
		Top Girt	Max Tension	1	0.00	0.00	0.00
		•	Max. Compression	2	-8.99	0.00	0.00
			Max. Mx	21	-2.07	3.12	0.00
			Max. My	25	-0.96	0.00	-0.18
			Max. Vv	21	0.62	0.00	0.00
			Max. Vx	25	0.02		-
T2	117 - 92	Leg	Max Tension	5	10.66	0.00	0.00
-		Log	Max. Compression	16		-1.89	-0.42
					-73.78	6.20	0.58
			Max. Mx	4	3.97	-6.75	-0.45
			Max. My	17	-30.11	0.26	6.99
			Max. Vy	4	-1.71	-1.99	-0.42
		D:	Max. Vx	8	1.84	0.31	-6.97
		Diagonal	Max Tension	2	29.16	0.00	0.00
		Top Girt	Max Tension	1	0.00	0.00	0.00
			Max. Compression	2	-18.09	0.00	0.00
			. Max. Mx	21	-3.01	3.90	0.00
			Max. My	25	-2.99	0.00	-0.23
			Max. Vy	21	-0.70	0.00	0.00
			Max. Vx	25	0.04	0.00	0.00
T3	92 - 65	Leg	Max Tension	17	37.87	-6.71	0.50
		·	Max. Compression	16	-112.37	3.18	0.48
			Max. Mx	4	31.91	-6.75	-0.45
			Max. My	17	-34.33	0.26	6.99
			Max. Vy	4	-0.97	-6.75	-0.45
			Max. Vx	8	-1.05	0.31	-6.97
		Diagonal	Max Tension	2	34.88	0.00	
		Top Girt	Max Tension	1			0.00
		rop Circ	Max. Compression	2	0.00	0.00	0.00
			Max. Mx		-22.59	0.00	0.00
				18	-0.45	4.92	0.00
			Max. My	25	-3.65	0.00	-0.29
			Max. Vy	18	-0.78	0.00	0.00
T4	65 - 35	1	Max. Vx	25	0.05	0.00	0.00
14	00 - 30	Leg	Max Tension	17	69.77	-4.65	0.53
			Max. Compression	16	-156.01	6.59	0.84
			Max. Mx	4	60.51	-8.33	-0.73
			Max. My	17	-41.17	0.21	8.29
			Max. Vy	4	1.07	-8.33	-0.73
			Max. Vx	8	1.13	0.10	-8.25
		Diagonal	Max Tension	6	38.04	0.00	0.00
		Top Girt	Max Tension	1	0.00	0.00	0.00
		·	Max. Compression	6	-25.94	0.00	0.00
			Max. Mx	18	-0.61	10.58	0.00
			Max. My	25			
			Max. Vy		-4 .41	0.00	-0.61
			Max. Vx	18 25	-1.49	0.00	0.00
T5	35 - 0	l ea		25	0.09	0.00	0.00
	33 - 0	Leg	Max Tension	17	104.44	-8.18	0.86
			Max. Compression	16	-206.61	0.00	-0.00
			Max. Mx	4	95.42	-8.33	-0.73
			Max. My	17	-47.19	0.21	8.29
			Max. Vy	4	-1.14	-8.33	-0.73
			Max. Vx	17	1.17	0.21	8.29
		Diagonal	Max Tension	6	43.62	0.00	0.00
		Top Girt	Max Tension	1			

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
NO.			Max. Compression	6	-29.03	0.00	0.00 0.00
			Max. Mx Max. Mv	18 22	-1.17 -3.64	13.02 0.00	-0.75
			Max. Vy	18	-1.63	0.00	0.00
			Max. Vx	22	0.09	0.00	0.00

	Max	imur	n Rea	ctions
--	-----	------	-------	--------

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, I K
	Maria Mark	Comb.	206.37	12.53	-12.42
Leg D	Max. Vert	12	206.37	12.53	-12.42
	Max. H _x	12	-90.01	-7.72	34.28
	Max. H _z	3 5 7	-90.01 -145.86	-30.86	29.36
	Min. Vert	5		-35.04	7.36
	Min. H _x	-	-89.36	12.53	-12.42
	Min. H _z	12	206.37	-12.54	-12.42
Leg C	Max. Vert	8	206.47		7.41
	Max. H _x	15	-89.85	34.96	32.38
	Max. H _z	3	-90.69	8.69	28.98
	Min. Vert	17	-147.22	31.41	
	Min. H _x	8	206.47	-12.54	-12.42
	Min. H _z	8	206.47	-12.54	-12.42
Leg B	Max. Vert	4	204.91	-12.35	12.46
9 -	Max. H _x	15	-90.53	32.04	-8.93
	Max. Hz	4	204.91	-12.35	12.46
	Min. Vert	13	-146.83	29.09	-31.02
	Min. H _x	4	204.91	-12.35	12.46
	Min. H _z	11	-91.18	8.74	-32.30
Leg A	Max. Vert	16	206.51	12.43	12.55
Leg A	Max. H _x	16	206.51	12.43	12.55
	Max. H _z	16	206.51	12.43	12.55
	Min. Vert	9	-147.19	-28.77	-31.63
	Min. H _x	7	-90.01	-32.12	-8.88
	Min. H _z	11	-90.47	-7.76	-34.21

Tower Mast Reaction Summary

Load	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overtuming Moment, M₂	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	112.78	0.00	-0.00	27.36	28.42	-0.00
1.2 Dead+1.0 Wind 0 deg -	135.34	0.05	-84.61	-8330.90	26.06	-71.69
No Ice 0.9 Dead+1.0 Wind 0 deg -	101.51	0.05	-84.61	-8332.34	17.88	-71.73
No Ice 1.2 Dead+1.0 Wind 45 deg -	135.34	63.89	-64.56	-6197.75	-6121.64	65.70
No Ice 0.9 Dead+1.0 Wind 45 deg -	101.51	63.89	-64.56	-6200.83	-6125.07	65.70
No Ice 1.2 Dead+1.0 Wind 90 deg -	135.34	85.16	-0.05	24.80	-8282.62	111.33
No Ice 0.9 Dead+1.0 Wind 90 deg -	101.51	85,16	-0.05	16.92	-8284.42	111.37
No Ice 1.2 Dead+1.0 Wind 135 deg	135.34	64.01	64.77	6293.66	-6138.04	101.52
- No Ice 0.9 Dead+1.0 Wind 135 deg	101.51	64.01	64.77	6280.21	-6141.48	101.52
- No Ice 1.2 Dead+1.0 Wind 180 deg	135.34	0.04	84.50	8381.64	27.19	71.82
- No Ice 0.9 Dead+1.0 Wind 180 deg	101.51	0.04	84.50	8366.61	19.03	71.86

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
- No Ice	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 225 deg - No Ice	135.34	-63.79	64.45	6248.61	6174.91	-65.69
0.9 Dead+1.0 Wind 225 deg - No Ice	101.51	-63.79	64.45	6235.19	6161.24	-65.69
1.2 Dead+1.0 Wind 270 deg - No Ice	135.34	-85.05	-0.04	25.92	8335.93	-111.46
0.9 Dead+1.0 Wind 270 deg - No Ice	101.51	-85.05	-0.04	18.06	8320.62	-111.50
1.2 Dead+1.0 Wind 315 deg - No Ice	135.34	-64.11	-64.68	-6214.25	6220.03	-101.54
0.9 Dead+1.0 Wind 315 deg - No Ice	101.51	-64.11	-64.68	-6217.30	6206.31	-101.53
1.2 Dead+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 0	194.95 194.95	0.00 0.02	-0.00 -14.50	207.64 -1155.54	94.20 91.86	-0.00 -7.02
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 45	194.95	11.20	-11.27	-827.30	-933.19	14.32
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	194.95	15.41	-0.02	205.90	-1314.94	26.16
1.2 Dead+1.0 Wind 135 deg+1.0 lce+1.0 Temp	194.95	11.21	11.29	1246.43	-933.78	14.38
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	194.95	-0.00	14.49	1569.87	94.57	7.09
1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp	194.95	-11.19	11.25	1241.76	1120.39	-14.30
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	194.95	-15.39	0.00	208.43	1502.17	-26.17
1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp	194.95	-11.22	-11.27	-827.97	1125.14	-14.37
Dead+Wind 0 deg - Service	112.78	0.01	-15.55	-1509.71	27.00	-13.35
Dead+Wind 45 deg - Service	112.78	11.74	-11.86	-1117.68	-1102.88	12.02
Dead+Wind 90 deg - Service	112.78	15.65	-0.01	25.93	-1500.02	20.58
Dead+Wind 135 deg - Service	112.78	11.76	11.90	1178.10	-1105.87	18.74
Dead+Wind 180 deg - Service	112.78	0.01	15.53	1561.83	27.20	13.38
Dead+Wind 225 deg - Service Dead+Wind 270 deg -	112.78	-11.72	11.84	1169.83	1157.12	-12.03
Service Dead+Wind 315 deg -	112.78	-15.63	-0.01	26.12	1554.27	-20.60
Service 1.2 Dead+1.0 Ev+1.0 Eh 0	112.78 139.79	-11.78 0.00	-11.89	-1120.69	1165.42	-18.74
teg 0.9 Dead-1.0 Ev+1.0 Eh 0	97.05	0.00	-9.27 -9.27	-1080.35 -1087.13	33.51	0.06
deg I.2 Dead+1.0 Ev+1.0 Eh 45	139.79	6.56	-9.27 -6.56	-1087.13 -754.51	25.32	0.05
leg 0.9 Dead-1.0 Ev+1.0 Eh 45	97.05	6.56	-6.56	-754.51 -761.60	-753.22	-0.00
leg I.2 Dead+1.0 Ev+1.0 Eh 90	139.79	9.27	0.00	32.43	-760.64 -1079.07	-0.00 -0.05
leg).9 Dead-1.0 Ev+1.0 Eh 90	97.05	9.27	0.00	24.44	-1079.07	-0.05
leg I.2 Dead+1.0 Ev+1.0 Eh 135	139.79	6.56	6.56	820.37	-753.22	0.01
leg).9 Dead-1.0 Ev+1.0 Eh 135	97.05	6.56	6.56	811.00	-760.64	0.01
leg .2 Dead+1.0 Ev+1.0 Eh 180	139.79	0.00	9.27	1146.23	33.50	-0.06
leg 1.9 Dead-1.0 Ev+1.0 Eh 180	97.05	0.00	9.27	1136.53	25.23	-0.06
leg .2 Dead+1.0 Ev+1.0 Eh 225	139.79	-6.56	6.56	820.39	821.68	0.00
leg .9 Dead-1.0 Ev+1.0 Eh 225	97.05	-6.56	6.56	811.00	811.97	0.00
leg .2 Dead+1.0 Ev+1.0 Eh 270	139.79	-9.27	0.00	32.42	1147.51	0.05

Load Comb

Load	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead-1.0 Ev+1.0 Eh 270	97.05	-9.27	0.00	24.44	1137.49	0.04
deg 1.2 Dead+1.0 Ev+1.0 Eh 315	139.79	-6.56	-6.56	-754.51	821.66	-0.01
deg 0.9 Dead-1.0 Ev+1.0 Eh 315	97.05	-6.56	-6.56	-761.60	811.96	-0.01

Sur	n of Applied Force	S		Sum of Reaction	าร	
PX	PY	PZ	PX	PY	PZ	% Error
K	K	K	K	K	K	
0.00	-112.78	0.00	-0.00	112.78	0.00	0.000%
	-135.34	-84.61	-0.05	135.34	84.61	0.000%
0.05	A. SONOTON (A.	-84.61	-0.05	101.51	84.61	0.000%
0.05	-101.51	150000000000000000000000000000000000000	-63.89	135.34	64.56	0.000%
63.89	-135.34	-64.56	-63.89	101.51	64.56	0.000%
63.89	-101.51	-64.56	10.000	135.34	0.05	0.000%
85.16	-135.34	-0.05	-85.16	650 1070 1000	0.05	0.000%
85.16	-101.51	-0.05	-85.16	101.51	12172555	(CTC-010000129)C
64.01	-135.34	64.77	-64.01	135.34	-64.77	0.000%
64.01	-101.51	64.77	-64.01	101.51	-64.77	0.000%
0.04	405.04	94 ED	-0.04	135 34	-84.50	0.000%

Solution Summary

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	, 3	of Cycles	Tolerance	Tolerance
1	Yes	6	0.00000001	0.00003756
2	Yes	7	0.00000001	0.00005633
3	Yes	7	0.00000001	
4	Yes	4		0.00008312
5	Yes	4	0.00000001	0.00003906
6	Yes		0.00000001	0.00003357
7	Yes	7 7	0.00000001	0.00014489
8	Yes		0.00000001	0.00043688
9	Yes	4	0.00000001	0.00003924
10		4	0.00000001	0.00003374
11	Yes Yes	7	0.00000001	0.00004592
		7	0.00000001	0.00007327
12	Yes	4	0.00000001	0.00003926
13	Yes	4	0.00000001	0.00003373
14	Yes	7	0.00000001	0.00013482
15	Yes	7	0.0000001	0.00043989
16	Yes	4	0.0000001	0.00003934
17	Yes	4	0.00000001	0.00003379
18	Yes	6	0.00000001	0.00009682
19	Yes	6	0.0000001	0.00006806
20	Yes	5	0.0000001	0.00010835
21	Yes	5	0.00000001	0.00085129
22	Yes	5	0.00000001	0.00018761
23	Yes	7	0.00000001	0.00075979
24	Yes	5	0.00000001	0.00013061
25	Yes	6	0.00000001	0.00063416
26	Yes	5	0.00000001	0.00017688
27	Yes	5	0.00000001	0.00044948
28	Yes	5	0.00000001	0.00051403
29	Yes	5	0.00000001	0.00079725
30	Yes	5	0.00000001	0.00048594
31	Yes	5	0.00000001	0.00044720
32	Yes	5	0.00000001	0.00049852
33	Yes	5	0.00000001	0.00078417
34	Yes	5	0.00000001	0.00047104
35	Yes	6	0.00000001	0.00066883
36	Yes	6	0.00000001	0.00090102
37	Yes	6	0.00000001	0.00001652
38	Yes	5	0.00000001	0.00028748
39	Yes	7	0.00000001	0.00028748
40	Yes	7	0.00000001	0.00003759
41	Yes	6	0.00000001	0.00001864
42	Yes	5	0.00000001	
43	Yes	6	0.00000001	0.00027546
44	Yes	5		0.00069324
45	Yes	6	0.00000001	0.00098422
46	Yes	7	0.00000001	0.00001212
47	Yes	7	0.00000001	0.00000797
48			0.00000001	0.00003283
	Yes	7	0.00000001	0.00001557
49	Yes	6	0.00000001	0.00074219
50	Yes	5	0.0000001	0.00027397

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	۰	۰
T1	138 - 117	0.76	34	0.0030	0.0189
T2	117 - 92	0.64	34	0.0043	0.0182
T3	92 - 65	0.49	30	0.0056	0.0151
T4	65 - 35	0.33	30	0.0052	0.0110
T5	35 - 0	0.17	28	0.0034	0.0062

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o		ft
152.50	Тор	34	0.76	0.0030	0.0189	684927
	4' Dish	34	0.76	0.0030	0.0189	684927
140.00	Middle	34	0.76	0.0030	0.0189	684927
138.00	Bottom	34	0.73	0.0033	0.0187	684927
133.50		34	0.70	0.0037	0.0185	326159
127.50	CCISeismic Tower Section 1	34	0.64	0.0043	0.0182	180422
117.00	AIR 6449 B41 w/ Mount Pipe	30	0.57	0.0051	0.0170	Inf
104.50	CCISeismic Tower Section 2		0.49	0.0056	0.0153	242125
93.00	MT6407-77A w/ Mount Pipe	30		0.0056	0.0152	236536
92.50	CCISeismic (3) rosenberger leoni HL-9612XXX(1-1/2") From 0 to	30	0.49	0.0036	0.0102	200000
	93 (92ft to93ft)					
78.50	CCISeismic Tower Section 3	30	0.41	0.0056	0.0131	388698
50.00	CCISeismic Tower Section 4	30	0.25	0.0045	0.0087	876110
17.50	CCISeismic Tower Section 5	28	0.09	0.0018	0.0031	Inf

Maximum Tower Deflections - Design Wind

Section	Flevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection in	Load Comb.	0	0
T1	138 - 117	3.76	16	0.0176	0.0465
T2	117 - 92	3,15	8	0.0273	0.0515
. —	92 - 65	2.34	8	0.0339	0.0445
T3	92 - 05 65 - 35	1.56	8	0.0312	0.0334
T4 T5	35 - 0	0.78	8	0.0203	0.0190

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection in	Tilt	Twist	Radius of Curvature ft
ft		Comb.		0.0470	0.0465	147051
152.50	Тор	16	3.76	0.0176		147051
140.00	4' Dish	16	3.76	0.0176	0.0465	
138.00	Middle	16	3.76	0.0176	0.0465	147051
133.50	Bottom	16	3.64	0.0198	0.0481	147051
	CCISeismic Tower Section 1	16	3.47	0.0227	0.0499	70024
127.50		8	3.15	0.0273	0.0515	39024
117.00	AIR 6449 B41 w/ Mount Pipe	8	2.75	0.0316	0.0493	313678
104.50	CCISeismic Tower Section 2	•		0.0338	0.0449	41925
93.00	MT6407-77A w/ Mount Pipe	8	2.37	•	0.0447	41036
92.50	CCISeismic (3) rosenberger leoni HL-9612XXX(1-1/2") From 0 to 93 (92ft to93ft)	8	2.35	0.0338	0.0447	41030
	CCISeismic Tower Section 3	8	1.93	0.0336	0.0391	63812
78.50		8	1.16	0.0266	0.0265	112091
50.00	CCISeismic Tower Section 4	0	0.38	0.0108	0.0097	145785
17.50	CCISeismic Tower Section 5	ŏ	0.30	0.0100	0.0001	MARKET BEING THE PARTY NAMED IN

Bolt Design Data

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.	_	Type	Grade		Of	Load	Load	Load	Ratio	o.nona
	ft			in	Bolts	per Bolt	per Bolt	Allowable		
						K	K	, morrabic		
T1	138	Diagonal	A325N	2.00	2	10.89	141.37	0.077	1	Bolt Shear
T2	117	Diagonal	A325N	2.00	2	14.58	141.37	0.103	1	Bolt Shear
Т3	92	Diagonal	A325N	2.00	2	17.44	141.37	0.123	î	Bolt Shear
T4	65	Diagonal	A325N	2.00	2	19.02	141.37	0.135	i	Bolt Shear
T5	35	Leg	A36	1.25	4	26.11	42.16	0.619	i	Bolt Tension
		Diagonal	A325N	2.00	2	21.81	141.37	0.154	1	Bolt Shear

Compression Checks

		Leg	Design I	Data	(Comp	ressi	on)		
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φ P _n	Ratio Pu
	ft		ft	ft		in ²	K	K	φPa
T1	138 - 117	P18x.25	21.07	21.07	40.3 K=1.00	13.94	-40.06	382.85	0.105 1
T2	117 - 92	P18x.25	25.08	25.08	48.0 K=1.00	13.94	-73.78	370.54	0.199 ¹
T3	92 - 65	P18x.25	27.09	27.09	51.8 K=1.00	13.94	-112.37	363.76	0.309 1
T4	65 - 35	P18x.25	30.10	30.10	57.6 K=1.00	13.94	-156.01	352.88	0.442 1
T5	35 - 0	P18x.25	35.12	35.12	67.1 K=1.00	13.94	-206.61	333.09	0.620 1

¹ P_u / ϕP_n controls

		Top Gi	rt Desig	n Dat	a (Cor	npres	sion)		
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	φP _n
T1	138 - 117	W8x35	20.00	18.50	109.4 K=1.00	10.30	-8.99	171.77	0.052 1
T2	117 - 92	W8x35	22.43	20.93	123.8 K=1.00	10.30	-18.09	146.09	0.124 1
T3	92 - 65	W8x35	25.33	23.83	140.9 K=1.00	10.30	-22.59	117.23	0.193 ¹
T4	65 - 35	W10x68	28.46	26.96	124.9 K=1.00	20.00	-25.94	279.70	0.093 1
T5	35 - 0	W10x68	31.94	30.44	141.0 K=1.00	20.00	-29.03	227.12	0.128 ¹

 $^{^{1}}$ P $_{u}$ / $_{\phi}$ P $_{n}$ controls

Tension Checks

Leg Design Data (Tension)

Section	Elevation	Size	L	Lu	KI/r	Α	Pu	ϕP_n	Ratio P _u
No.	ft		ft	ft		in²	K	K	φP _n
T2 T3 T4 T5	117 - 92 92 - 65 65 - 35 35 - 0	P18x.25 P18x.25 P18x.25 P18x.25	25.08 27.09 30.10 35.12	25.08 27.09 30.10 35.12	48.0 51.8 57.6 67.1	13.94 13.94 13.94 13.94	10.66 37.87 69.77 104.44	414.04 414.04 414.04 414.04	0.026 ¹ 0.091 ¹ 0.169 ¹ 0.252 ¹

 $^{^{1}}$ $_{P}$ $_{u}$ / $_{\phi}P_{n}$ controls

		Diag	onal De	sign l	Data (1	<u> Tensio</u>	on)		
Section	Elevation	Size	L	Lu	Kl/r	Α	Pu	φP _n	Ratio Pu
No.	ft		ft	ft		in²	K	K	ϕP_n
T1	138 - 117	1	29.88	27.77	1332.9	0.79	21.77	23.33	0.933
	117 - 92	1 1/8	34.61	32.44	1383.9	0.99	29.16	32.21	0.905
T2		1 3/8	38.14	36.02	1257.4	1.48	34.88	48.11	0.725
T3	92 - 65		42.61	40.49	1295.8	1.77	38.04	57.26	0.664
T4 T5	65 - 35 35 - 0	1 1/2 1 5/8	48.82	46.67	1378.4	2.07	43.62	67.20	0.649

¹ P_u / ϕP_n controls

		Тор	Girt Des	sign D	ata (1	<u> Tensio</u>	n)		
Section	Elevation	Size	L	Lu	Kl/r	Α	Pu	φPn	Ratio Pu
No.	ft		ft	ft		in²	K	K	ϕP_n
		W8x35	22.43	20.93	123.8	10.30	1.11	305.91	0.004
T2	117 - 92	W8x35	25.33	23.83	140.9	10.30	1.69	305.91	0.006
T3	92 - 65		28.46	26.96	124.9	20.00	2.34	594.00	0.004
T4 T5	65 - 35 35 - 0	W10x68 W10x68	31.94	30.44	141.0	20.00	3.10	594.00	0.005

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Section	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
No.			P18x.25	3	-40.06	382.85	10.5	Pass
T1	138 - 117	Leg	P18x.25	20	-73.78	370.54	19.9	Pass
T2	117 - 92	Leg	P18x.25	36	-112.37	363.76	30.9	Pass
Т3	92 - 65	Leg	P18x.25	52	-156.01	352.88	44.2	Pass
T4	65 - 35	Leg	P18x.25	68	-206.61	333.09	62.0	Pass
T5	35 - 0	Leg	1	11	21.77	23.33	93.3	Pass
T1	138 - 117	Diagonal	1 1/8	32	29.16	32.21	90.5	Pass
T2	117 - 92	Diagonal	1 3/8	48	34.88	48.11	72.5	Pass
Т3	92 - 65	Diagonal		57	38.04	57.26	66.4	Pass
T4	65 - 35	Diagonal	1 1/2	73	43.62	67.20	64.9	Pass
T5	35 - 0	Diagonal	1 5/8	6	-8.99	171.77	5.2	Pass
T1	138 - 117	Top Girt	W8x35	24	-18.09	146.09	12.4	Pass
T2	117 - 92	Top Girt	W8x35		-22.59	117.23	19.3	Pass
T3	92 - 65	Top Girt	W8x35	40	-25.94	279.70	9.3	Pass
T4	65 - 35	Top Girt	W10x68	53	-25.94 -29.03	275.70	12.8	Pass
T5	35 - 0	Top Girt	W10x68	69	-29.03	221.12	Summary	. 400
						Log (TE)	62.0	Pass
						Leg (T5) Diagonal	93.3	Pass

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
						Top Girt	19.3	Pass
						(T3)	00.0	_
						RATING =	93.3	Pass

APPENDIX B BASE LEVEL DRAWING

Feed Line Plan

_____ Round _____ Flet _____ App In Face _____ App Out Fac

Tectonic	1279 Route 300	Project: 11863.003_Mystic	r Structural Analysis South CT	
THE PERSON NAMED IN	Newburgh, NY 12550	Client: Verizon Wireless	Drawn by: John-Fritz Julien	App'd:
l	Phone: (845) 567-6656	Code: TIA-222-H	Date: 10/16/23	Scale: NTS
		Path:	and beginning the part of the last test the committee of	Dwg No. E-7

APPENDIX C ADDITIONAL CALCULATIONS

	Fower	Sprea	Tower Spread Footing Analysis	Analysis			
Soil Daramatore		-		ľ			
	1000	1.		ŭ,	aram	eters	
Dackill unit weignt (Y):	0.120 KCI	-		Unit		0.150 kcf	
Allowable bearing pressure (4/3 q all):	4 K	kst		Comp.stre	Comp. strength (f _c '):	3.0 ksi	
Geotech Safety factor (for bearing)	2 (8	(assumed)					
Height of pier or footing above grade:	1.00 ft				Steel Parameters	rs.	
Soil friction angle (Φ):	30.0			Yield str	Yield strenath (f.):	60 kei	
Sliding coefficient (tanō):	0.30	Γ			.0.1.0.	Du Co	
Phi(s) (For bearing on rock or soll)	0.75			Ţ	oads at Top of	Pier	
Phi (s) (For Friction or lateral resistance of soil)	0.75				Shear: 1	18lk	
Net bearing pressure (q net):	8.00 ksf	Ļ			Vertical*: 29	290.25 k	Case 1 - Compression
Depth of footing below existing grade:	5.50 ft				\vdash	0 k	
Oltmate bearing pressure (q uit):	6.50 ksf				Cons	iders 333 kips of	Considers 333 kips of surcharge added
01			Dimensions				
acitor S	Width	Height	Depth	Volume	Arm	Walcht	Recieting Moment
Section	(¥)	€	(tf)	(ft^3)	€	(k)	(ff-k)
Concrete in pier (circular, centered on ftg)	0.00	0.00	00'0	00:0	4.75	0.00	0.00
Concrete in footing	9.50	6.50	3.50	294.13	4.75	44.12	209.57
Soil above Tooting	00 07			0.00	4.75	0.00	0.00
Segue	12.68		5.50	589.54	4.75	70.74	336.04
					0.00	0.00	0.00
Vertical load at top of pier					4.75	290.25	1378.69
Totals:						405.11	1924.29
ovingend lies							
At Doct Description							
At rest riessure				Notes:			
Kp.	67	307					
At Grade		KSI		1) Sliding or	oefficient consei	vatively assume	 Sliding coefficient conservatively assumed based on similar soils
At 1 op of Footing	-0.30	KST					
At Bottom of Footing	1.65	kst					
VTI NIGHTS	l						
SIADILII							
Overturning Moment	10000						
Overturning moment:	117.0 ft-k	J					
Resisting Moment from Passive Pressure:	0.0 ft-k						
Factor of safety:	12.34 O.K	Ϋ́	6.1%				
Silding							
Sliding resistance from friction:	91.15 k						
Sliding resistance from passive pressure:	0						
Factor of safety:	5.06 O.K	<u>۲</u>	-9.7%				
SOIL BEARING PRESSURE							
Base Area	90.25 sq ft	ų.					
Max Pressure from Compression	4.49 bsf						
Factor of safety:	1.45 O.K.	¥	69.1%				
			TELEVISION OF THE PERSON OF TH				

Soil Parameters				Conc	Concrete Parameters	si	
Backfill unit weight (y):	0.120 kcf			Unit weight (y):	0.	0.150 kcf	
Allowable bearing pressure (q all):	3 ksf			Comp.streng		3.0 ksi	
Geotech Safety factor (for bearing)	2 (as	2 (assumed)					
Height of pier or footing above grade:	1.00 ft			Ste	ameters		
Soil friction angle (Ф):	30.0			Yield strength (f _s):		60 ksi	
Sliding coefficient (tan5):	0.30						
Phi(s) (For bearing on rock or soil)	0.75			Loa	op of Pie	_	
Phi (s) (For Friction or lateral resistance of soil)	0.75					43 K	
Net bearing pressure (q net):	6.00 ksf			^	Vertical: 0	š	Case 2 - Uplift
Depth of footing below existing grade: Ultimate bearing pressure (q ult):	5.50 ft 5.00 ksf				Uplift: 63.	75 k ers 333 kips of	63.75 k Considers 333 kips of surcharge added
		Dir	Dimensions				
	Width	Height	Depth	Volume	Arm	Weight	Resisting Moment
Section	(#)	(#)	(#)	(ff-v3)	(£)	(k)	(ft-k)
Concrete in pier (circular, centered on ftg)	0.00	00.0	00'0	00'0	4.75	00.0	00.00
Concrete in footing	9.50	6.50	3.50	294.13	4.75	44.12	209.57
Soil above footing				00.0	4.75	00.00	0.00
Edges	12.68		5.50	589.54	4.75	70.74	336.04
Corners					0.00	00.00	0.00
Vertical load at top of pier					4.75	0.00	0.00
Totals:						114.86	545.60
Carrotte II December 1							
anscall lice				1			
At Kest Pressure	1			Notes:			
Kp							
At Grade		KSI		oo Bulgiis ().	emcient conserv	atively assume	T) silding coefficient conservatively assumed based on similar solls
At Top of Footing		KST					
At Bottom of Footing	1.65	kst					
STABILITY							
Upliff							
Wc, Weight of Concrete		SC					
Wr, Soil Resistance		Sd					
Uplift Design Strength	103.38 kips	sd					
Factor of safety:	1.62 O.K	.K.	61.7%				
Sliding							
Sliding resistance from friction:							
Sliding resistance from passive pressure:	21.9375 K						
Factor of safety	1.17 O.K	Y.	85.8%				

Self Support Anchor Rod Capacity

Site Info		
	WO#	11863.003
Site	Name	Mystic South CT

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	Yes
l _{ar} (in)	0

Applied Loads		7 - No. of the Co.
	Comp.	Uplift
Axial Force (kips)	290.25	63.75
Shear Force (kips)	18.00	43.00

Considered Eccentricity	
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000

^{*}Anchor Rod Eccentricity Applied

Connection Properties	A	nalysis Results	
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
(4) 1-1/4" ø bolts (A36 N; Fy=36 ksi, Fu=58 ksi)	Pu_t = 15.94	φPn_t = 42.15	Stress Rating
l _{ar} (in): 0	Vu = 10.75	φVn = 26.69	40.3%
	Mu = n/a	φMn = n/a	Pass

SEISMIC CALCULATIONS

Tower Det	ails		
Tower Type: Height, h: Effective Seismic Weight, W: Amplification Factor, A _s :	Self-Support 138 112.75 1.0	ft kips	2,7.8.1
Seismic Base	Shear		
Response Modification Factor, R:	3	7	
		_	
w _a :	28.0000	ft	
w ₀ :	36.0000	ft	
W ₁ :	85.1221	kips	
Weight of Structure and Appurtenances within top 5%, W ₂ :	48.4421	kips	
K _f :	4540	ft	
F _a :	5.3288	hz	
Approximate Fundamental Period Self-Support, T _a :	0.1877	s	2.7,7.1.3.2
Seismic Response Coefficient, C	0.0822		2.7.7.1.1
Seismic Response Coefficient Max 1, C _{smax}	0.1847		2.7.7.1.1
Seismic Response Coefficient Max 2, C _{smax}	N/A		2.7.7.1.1
Seismic Response Coefficient Min 1, C _{smin}	0.0300		2.7.7.1.1
Seismic Response Coefficient Min 2, C _{smin}	N/A		2.7.7.1.1
Controlling Seismic Response Coefficient, C _{sc}	0.0822		
Seismic Base Shear, V	9.271	kips	2.7.7.1.1
Vertical Distributio	n Factors		A CONTRACTOR
Period Related Exponent, k:	1.000 10763.09		

			To	wer Section Load	ls .			
Section Number	Length	Top Height	Mid Height, h	Section Weight, w.	w _i h _i k	Ç.,	Ēm	F _w
	21.00	138.00	127.50	7.4408	948.71	0.0881	0.8172	0.2937
2	25.00	117.00	104,50	8.8413	923.92	0.0858	0.7958	0.3489
2	27.00	92.00	78.50	10.2339	803.36	0.0746	0.6920	0.4039
3			50.00	15.5097	775.49	0.0721	0.5680	0.6121
4	30.00	65.00			317.01	0.0295	0.2731	0.7149
5	35.00	35.00	17.50	18.1150	317.01	0,0233	0.6191	017 4 15

	Discrete Loa	dy				
Name	h,	We	w _i h,	C,	FW	F _n
miscl Dipole	140.00	0.0400	5.60	0.0005	0.0048	0.0016
pipe mounts 2" STD Pipe (2:375 OD)x4"-0" Dipe mounts 4" STD Pipe (4:5 OD)x5'-0"	140,00	0,0100	1,40	0,0001	0.0012	0,0004
ma wireless MX08FRO665-21 w/ Mount Pipe	140.00 140.00	0.0500	7.00	0.0007	0.0050	0.0020
ma wireless MX08FR0565-21 w/ Mount Pipe	140.00	0.0900	12,60	0,0012	0.0109	0.0036
ma wireless MX08FRO665-21 w/ Mount Pipe	140,00	0.0900	12.60	0,0012	0.0109	0.0036
ujitsu TA08025-B605	140.00	0.0700	9.80	0:0009	0.0084	0.0028
ujitsu TA08025-8605	140_00	0,0700	9,80	0.0009	0,0084	0,0028
ujitsu TA08025-B604	140.00 140.00	0.0700	9.80 8.40	0.0009	0.0084	0.0028
ujitsu TA08025-8604	140.00	0.050D	8.40	0.0008	0.0072	0,0024
ujitsu TA08025-8604	140.00	0.0600	8.40	0,0008	0.0072	0.0024
aycap RDIDC-9161-PF-48	140.00	0.0200	2.80	0.0003	0.0024	0,0008
pycap RDIDC-9181-PF-48 Pycap RDIDC-9181-PF-48	140.00	0,0200	2,80	0,0003	0.0024	0,0008
L3X3	140.00 140.00	0.0200	2.80 9.80	0.0003	0.0024	0.0008
2) L3X3	140.00	0.0700	9.80	0.0009	0.0084	0.0028
2) L3X3	140,00	0.0700	9.80	0,0009	0.0084	0.0028
op	152.50	10.6530	1624.58	0.1509	1.3993	0.4204
Middle Rottom	138.00	15,2920	2248.30	0.2089	1,9366	0,6430
Patwalk	133.50 140.00	10.6530 4.9600	1422.18	0.1321	1.2250	0.4204
owerwave technologies 7770.00 w/ Mount Pipe	140.00	0.0600	594,40 8.40	0.0645	0.5981	0.1958
uintel technology QS46512-2 w/ Mount Pipe	140,00	0.1200	16 80	0,0016	0.0072	0.0024
antennas DMP65R-BU4D w/ Mount Pipe	140.00	0.0900	12.60	0.0012	0.0109	0.0036
icsson RRUS 32 B2 powerwave technologies LGP21401	140.00	0,0500	7.00	0,0007	0,0060	0,0020
) kaelus DBC0061F1V51-2	140.00	0.0200	2.80	0.0003	0.0024	0.0008
rycap DC6-48-60-1 8-8 F	140.00	0.0600	8.40 2.80	-0.0008 0.0003	0.0072	0.0024
ycap DC2-48-60-0-9E	140.00	0.0200	2.80	0.0003	0.0024	0.0008
iscl Isource FMB	140.00	0.0200	2.80	0.0003	0.0024	0.0008
icsson RRUS 4449 85/B12	140,00	0,0700	9.80	0,0009	0.0084	0,0028
icsson RRUS 4426 866 icsson RRUS 4415 B25	140.00	0.0500	7.00	0.0007	0.0060	0.0020
Owerways technologies 7770,00 w/ Mount Pipe	140,00	0.0400	5.60	0.0005	0.0048	0,0016
vintel technology QS46512-2 w/ Mount Pipe	140,00	0.0600	8.40 16.80	0.0008	0.0072	0,0024
i notennas DMP65R-BUAD w/ Mount Pipe	140 00	0.0968	12.60	0.0013	0.0109	0.0026
icsson RRUS 32 B2	140,00	0.0500	7.00	0.0007	0.0060	0,0020
powerwave technologies LGP21401 kaelus DBC0061F1V51-2	140:00	0.0200	2.80	0.0003	0.0024	0.0008
ycap DC6-48-60-18-8F	140.00	0.0600	8,40	0.0008	0.0072	0,0024
ycap DC2-48-50-0-9E	140:00 140.00	0.0200 0.0200	2.80 2.80	0.0003	0.0024	8000.0
iscl Jsource FM8	140.00	0.0200	2.80	0.0003	0.0024	0,0008
icsson RRUS 4449 B5/B12	140.00	0.0700	9.80	0.0009	0.0084	0.0028
icsson RRUS 4426 B66	140.00	0.0500	7.00	0.0007	0:0060	0.0020
icsson RRUS 4415 825 Swerwave technologies 7770.00 w/ Mount Pipe	140,00	0.0400	5,60	0.0005	0.0048	0.0016
intel technology QS46512-2 w/ Mount Pipe	140.00 140.00	0.0600	8.40	0.0008	0.0072	0.0024
antennas DMP65R-BU4D w/ Mount Pipe	140.00	0.1200 0.0900	16.80 12.60	0.0016 9.0012	0.0145 0.0109	0.0047
icsson RRUS 32 B2	140,00	0.0500	7.00	0.0007	0.0109	0.0020
powerwaye technologies LGP21401	140.00	9.0200	2.80	0.0003	0.0024	0.0008
kaelus DBC0061F1V51-2	140,00	0.0600	8.40	8000.0	0.0072	0.0024
ycap DC6-48-60-18-8F ycap DC2-48-60-0-9E	140.00	0.0200	2.80	6000.0	0.0024	0.0008
sci Jsource FMB	140.00	0.0200	2.80	0.0003	0,0024	0.0008
PECON RRIES 4449 RS/R12	140.00	0.0700	9.80	0.0003	0:0024	0.0008
csson RRUS 4426 B66	140:00	0.0500	7.00	0.0003	0.0060	0.0028
csson RRUS 4415 B25	140,00	0.0400	5,60	0.0005	0.0048	0.0016
mount pipes 6' x 2.5" STD Pipe mount pipes 6' x 2.5" STD Pipe	140:00	0.0900	12.60	0.0012	0.0109	0.0036
mount pipes 6' x 2.5" STD Pipe	140.00	0.0900	12,60	0.0012	0.0109	0.0036
csson AIR 6449 B41 w/ Mount Pipe	140.00 117.00	0.0900	12.60	0.0014	0.0109	0.0036
celwave APXVAALL24_43-U-NA20 w/ Mount Pipe	117.00	0.1500	15-21 17.55	0.0014	0.0131 0.0151	0.0051
celwave APX16DWV-16DWV-S-E-A20_TIA w/ Mount Pipe	117.00	0.0600	7.02	0.0007	0.0050	0.0024
csson RADIO 4449 B71+B85	117.00	0.0700	8.19	0.0008	0.0071	0.0028
asson RRUS 4426 B66 asson RRUS 4415	117.00	0.0500	5.85	0.0005	0.0050	0.0020
2550n RRUS 4415 CSSON AIR 6449 B41 w/ Mount Pipe	117.00	0.0400	4.68	0.0004	0.0040	0.0016
celwave APXVAALL24_43-U-NAZO w/ Mount Pipe	117.00 117.00	0.1300 0.1500	15.21 17.55	0,0014 0.0016	0.0131	0.0051
celwave APX16DWV-16DWV-S-E-A20_TIA.w/ Mount Pipe	117.00	0.0600	7.02	0.0007	0.0050	0.0059
sson RADIO 4449 B71+B85	117.00	0.0700	8.19	0.0008	0.0071	0.0028
CSSON RRUS 4426 B66	117-00	0.0500	5,85	0.0005	0.0050	0.0020
CSSON RRUS 4425	117.00	0.0400	4.68	0.0004	0,0040	0.0016
csson AIR 6449 841 w/ Mount Pipe celwave APXVAAL124_43-U-NA20 w/ Mount Pipe	117.00	0.1300	15.21	0.0014	0.0131	0.0051
celwave APX16DWV-16DWV-S-E-A20_TIA w/ Mount Pipe	117.00	0.1500	7.02	0.0016	0.0151	0.0059
reson RADIO 4449 B71+B85	117.00	0.0500	7.02 8.19	0.0007	0.0060	0.0024
csson RRUS 4426 B66	117.00	0.0500	5.85	0.0005	D-0050	0.0028
csson RRUS 4415						

		0.0000	6.51	0.0005	0.0056	0.0028
amsung telecommunications 82/866 RRH ORAN	93,00	0.0700		0.0006	0.0056	0.0028
amsung telecommunications 813/85 RRH ORAN	93.00	0.0700	6.51			0.0039
2) commscope SBNHH-ID6SA_TIA w/ Mount Pipe	93.00	0.1000	9.30	6,9609	0.0080	
aycap OVP-Distribution Box	93.00	0.0300	2.79	0.0003	0.0024	0.0012
samsung telecommunications MT6413-77A w/ Mount Pipe	93.00	0.0900	8.37	8000.0	0.0072	0.0036
amsung telecommunications B2/B66 RRH ORAN	93.00	0.0700	6.51	0.0006	0.0056	0.0028
	93.00	0.0700	6.51	0.0005	0.0056	0.0028
amoung telecommunications 813/85 RRH ORAN	93.00	0.1000	9.30	0.0009	0.0080	0.0039
(2) commscope SBNHH-1D65A_TIA w/ Mount Pipe	93.00	0.0300	2.79	0.0003	0.0024	0.0012
aycap OVP-Distribution Box	93.00	0.0900	8.37	0.0008	0.0072	0.0036
samsung telecommunications MT6413-77A w/ Mount Pipe			6.51	0.0006	0.0056	0.0028
amsung telecommunications 82/866 RRH ORAN	93.00	0.0700	- ARREAGE	0.0006	0.0056	0.0028
samsung telecommunications B13/B5 RRH ORAN	93.00	0.0700	6.51		0.0080	0.0039
2) commscope SBNHH-1D65A_TIA w/ Mount Pipe	93.00	0.1000	9.30	0.0009		
aycap OVP-Distribution Box	93.00	0.0300	2.79	0.0003	0.0024	0.0012
	140.00	0.1400	19.60	0.0018	0.0169	0.0055
4' Dish						

		Linear Loads						
Name	Start Height	End Height	h,	w.	w _k h _e	С.	Fac	Fin
3) Power From 0 to 138	117.00	138.00	127,50	0.0365	4.55	0.0004	0,0040	0.001
3) Power From 0 to 138	92,00	117.00	104.50	0.0435	4.55	0.0004	0.0039	0.001
3) Power From 0 to 138	65,00	92.00	78.50	0.0470	3.69	0.0003	0.0032	0.001
3) Power From 0 to 138	35,00	65,00	50.00	0.0522	2.61	0.0002	0.0022	0.002
3) Power From 0 to 138	0.00	35.00	17.50	0.0609	1.07	0.0001	0.0009	0.002
3) DC From 0 to 138	117.00	138.00	127.50	0.0095	1 20	0.0001	0.0010	0.000
3) DC From 0 to 138	92.00	117.00	104.50	0.0113	1.18	0.0001	0.0010	0.000
3) DC From 0 to 138	65,00	92.00	78.50	0.0122	0.95	0.0001	0.0008	0.000
3) DC From 0 to 138	35.00	65.00	50.00	0.0135	0.68	0.0001	0.0008	0.000
3) DC From 0 to 138	0,00	35.00	17,50	0.0158	0.28	0.0000	0.0007	0,000
12) andrew LDF7-50A(1-5/8) From 0 to 138	117.00	138.00	127.50	0.2066	26.35	0.0024	0.0002	0.008
12) andrew LDF7-50A(1-5/8) From 0 to 138	92,00	117.00	104.50	0.2460	25.71	0.0024	0.0221	0.009
(2) andrew LDF7-50A(1-5/8) From 0 to 138	65,00	92.00	78.50	0.2657	20.86	0.0019	0.0180	
12) andrew LDF7-50A(1-5/8) From 0 to 138	35.00	65.00	50.00	0.2952	14.76	0.0014	0.0100	0.010
(2) andrew LDF7-S0A(1-5/8) From 0 to 138	0.00	35.00	17.50	0.3444	6.03	0.0006	0.0052	0.01
nisci 2.25" Fiber Duct From 0 to 138	117.00	138.00	127.50	0.0053	0.67	0.0001	0.0005	0.000
nisci 2.25° Fiber Duct From 0 to 138	92.00	117.00	104.50	0.0063	0.65	0.0001	0.0006	
niscl 2,25" Fiber Duct From 0 to 138	65.00	92.00	78.50	0.0068	0.53	0.0000	0.0005	0.000
viscl 2.25" Fiber Duct From 9 to 138	35.00	65.00	50.00	0.0075	0.38	0.0000	0.0003	
iscl 2,25" Fiber Duct From 0 to 138	0.00	35.00	17.50	0.0083	0.15	0.0000	0.0001	0.000
risci Climbing Ladder From 0 to 138	117.00	138.00	127.50	0.1659	21.15	0.0020	0.0182	
iscl Climbing Ladder From 0 to 138	92.00	117.00	104.50	0.1975	20.64	0.0020	0.0178	0.008
isci Climbing Ladder From 0 to 138	65.00	92.00	78.50	0.2133	16.74	0.0016	0.0178	0.007
iscl Climbing Ladder From 0 to 138	35.00	65.00	50.00	0.2370	11,85	0.0011	0.0102	0.009
Isci Climbing Ladder From 0 to 138	0.00	35.00	17.50	0.2765	4.84	0.0004	0.0042	
andrew LDF7-50A(1-5/8) From 0 to 117	92.00	117.00	104.50	0.1230	12.85	0.0012	0.0042	0.010
) andrew LDF7-50A(1-5/8) From 0 to 117	65.00	92.00	78.50	0.1328	10.43	0.0012	0.0090	0,004
andrew LDF7-50A(1-5/8) From 0 to 117	35.00	65.00	50.00	0.1476	7.38	0.0007	0.0064	0.005
) andrew LDF7-50A(1-5/8) From 0 to 117	0.00	35.00	17.50	0.1722	3.01	0.0007	0.0084	
andrew LDF6-50A(1-1/4) From 0 to 117	92.00	117.00	104-50	0.0450	4.70	0.0004	0.0028	0.006
) andrew LDF6-50A(1-1/4) From 0 to 117	65.00	92.00	78.50	0.0486	3.82	0.0004	0.0041	0.001
) andrew LDF6-50A(1-1/4) From 0 to 117	35,00	65.00	50.00	0.0540	2.70	E000-0	0.0023	0.001
) andrew LDF6-50A(1-1/4) From 0 to 117	0.00	35.00	17.50	0.0630	1.10	0.0003	0.0023	0.002
senberger leoni HC-24LCSM6GAB-XXXF(1") From 0 to 117	92.00	117.00	104.50	0.0177	1.85	0.0002	0.0009	0.002
senberger leoni HC-24LCSM6GAB-XXXF(1") From 0 to 117	65.00	92.00	78.50	0.0177	1.50	0.0002	0.0013	0.000
senberger leoni HC-24LCSM6GAB-XXXF(1") From 0 to 117	35,00	65.00	50.00	0.0212	1.06	0.0001	0.0009	
senberger leani HC-24LCSM6GAB-XXXF(1") From 0 to 117	0.00	35.00	17.50	0.0212	0.43	9,0000	0.0009	0.000
rosenberger leoni HL-9612XXX(1-1/2") From 0 to 93	92.00	93.00	92-50	0,0056	0.52	0.0000	0.0004	0,001
rosenberger leoni Ht-9612XXX(1-1/2") From 0 to 93	65.00	92.00	78.50	0.1512	11.87	0.0011	0.0102	0.000
rosenberger leani HL-9612XXX(1-1/2") From 0 to 93	35,00	65.00	50.00	0.1512	8.40	0.0001	0.0102	0.006
rosenberger leoni HL-9612XXX(1-1/2") From 0 to 93	0:00	35.00	17.50	0.1960	3.43	0.0003	0.0072	0.006

Risk Cat. II Risk Cat. III Risk Risk Risk Risk Risk Risk Risk Risk		Basic	Design Wine (mph)	Basic Design Wind Speeds, V (mph)	ls, V	Allow	Allowable Stress Design Wind Speeds, V _{usd} (mph)	s Design V, V_{asd}	/ind	Ground	MCE Ground Accelerations	round	Wind-Borne Debris Region ^t	e Debris	Hurricane-
n 115 125 130 135 89 9 11 110 120 130 135 85 9 11 110 120 130 85 9 11 110 120 125 130 85 9 11 120 125 130 85 8 9 115 125 130 135 89 9 11 125 135 140 89 9 11 125 135 140 89 9 12 125 135 140 89 9 11 120 130 140 89 9 11 115 125 130 140 89 9 11 115 125 130 135 85 9 11 110 120 130 135 85 9 110 110 120	Municipality	Risk Cat. I	Risk Cat. II	Risk Cat.	Risk Cat.	Risk Cat. I	Risk Cat. II	Risk Cat.	Risk Cat.	P_g (pst)	<i>S</i> _S (g)	<i>S_I</i> (g)	Risk Cat. III Occup. I-2	Risk Cat. IV	rrone Region
110 120 135 85 95 95 95 95 95 95 9	notice .	115	125	130	135	68	0.7	101	105	35	0.184	0.054			Yes
on 110 115 125 130 85 85 80 115 125 130 85 85 80 115 125 130 135 89 9 9 115 125 135 140 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	rford	110	120	130	135	85	93	101	105	30	0.189	0.055			Yes
on 110 120 125 130 85 9 y 115 125 130 135 89 9 y 115 125 130 135 89 9 y 115 125 135 140 89 9 a 115 125 135 140 89 9 a 115 125 135 140 89 9 id 110 115 125 130 85 8 id 110 120 130 135 85 9 id 110 120 130 135 85 9 ster 110 120 130 135 85 9 in 110 120 130 135 85 9 in 110 120 130 135 85 140 in 110 120 130 <	tland	110	115	125	130	85	68	76	101	35	0.167	0.054			
y 115 125 130 135 89 9 y 115 125 130 81 8 y 115 125 135 140 89 9 vorth 115 125 135 140 89 9 a 115 125 135 140 89 9 id 115 125 135 140 89 9 id 110 115 125 130 85 9 id 110 125 135 140 89 9 id 110 120 130 135 85 9 site 110 120 130 135 85 9 bury 110 120 130 135 85 9 ifield 110 120 130 135 85 140 89 ifield 110 120 130 </td <td>winton</td> <td>110</td> <td>120</td> <td>125</td> <td>130</td> <td>85</td> <td>93</td> <td>97</td> <td>101</td> <td>35</td> <td>0.177</td> <td>0.054</td> <td></td> <td></td> <td>Yes</td>	winton	110	120	125	130	85	93	97	101	35	0.177	0.054			Yes
y 115 125 130 81 8 y 115 125 135 140 89 9 vorth 115 125 135 140 89 9 a 115 125 135 140 89 9 a 120 130 140 140 89 9 id 115 125 135 140 89 9 id 110 115 125 130 85 85 id 110 120 130 135 85 9 seter 110 120 130 135 85 9 bury 110 120 130 135 85 9 seter 110 120 130 135 85 1 in 110 120 130 135 85 1 in 110 120 130 135	oron	115	125	130	135	68	67	101	105	30	0.200	0.055			Yes
orth 115 125 135 140 89 69 69 69 6140 115 125 135 140 89 69 69 6140 115 125 135 135 89 69 69 69 69 69 69 69 69 69 69 69 69 69	11	105	115	125	130	81	86	16	101	40	0.184	0.054			
orth 115 125 135 140 89 9 115 125 135 135 89 9 120 130 140 140 93 1 115 125 135 130 89 9 d 110 115 125 130 89 9 ster 110 120 130 135 85 9 ough 110 120 130 135 85 9 ough 110 120 130 135 85 9 ough 110 120 130 135 85 9 own 110 120 130 135 85 9 own 110 120 130 135 85 9 ckd 110 120 130 135 85 9 own 110 120 130 135 85 9 ckd 110 120 130 135 85 9 ick 110 120 130 135 85 9 ckd 110 120 130 135 85 9 ick 110 115 125 130 85	lingly	115	125	135	140	89	16	105	108	35	0.186	0.055			Yes
115 125 135 185 89 9 120 130 140 140 93 1 115 125 135 140 89 9 110 115 125 130 85 9 9 115 125 135 140 89 9 9 9 115 125 135 140 89 9	lingworth	115	125	135	140	68	62	105	108	30	0.210	0.055			Yes
120 130 140 93 140 115 125 135 140 89 99 99 99 99 99 99 9	oanon	115	125	135	135	68	26	105	105	30	0.196	0.055			Yes
Id 115 125 135 140 89 9 Id 110 115 125 130 85 85 In 115 125 135 140 89 9 In 115 125 135 140 89 9 ster 110 120 130 135 85 9 Id 110 120 130 135 85 9 ough 110 120 130 135 85 9 ough 110 120 130 135 85 9 ough 110 120 130 135 85 9 own 110 120 130<	lyard	120	130	140	140	93	101	108	108	30	0.190	0.053			Yes
H 110 115 125 130 85 85 H 115 125 135 140 89 <t< td=""><td>pon</td><td>115</td><td>125</td><td>135</td><td>140</td><td>68</td><td>26</td><td>105</td><td>108</td><td>30</td><td>0.190</td><td>0.054</td><td></td><td></td><td>Yes</td></t<>	pon	115	125	135	140	68	26	105	108	30	0.190	0.054			Yes
tet 115 125 135 140 89 64 64 64 64 64 64 64 64 64 64 64 64 64	chfield	110	115	125	130	85	68	62	101	35	0.178	0.054			
tet 115 125 135 140 89 tet 110 120 130 135 85 85 90 90 90 90 90 90 90 90 90 90 90 90 90	me	115	125	135	140	68	62	105	108	30	0.207	0.054			Yes
110 120 130 135 85 110 120 130 135 85 110 125 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 115 125 130 85 110 115 125 130 85 110 115 125 130 85 110 125 130	dison	115	125	135	140	68	62	105	108	30	0.206	0.054	Type B	Type B	x es
110 120 130 135 85 110 125 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 4 110 115 125 130 85 4 110 115 125 130 85 4 110 115 125 130 85 4 110 125 130 85 4 110 125 130 85 8 135 85 85	nchester	110	120	130	135	85	93	101	105	30	0.190	0.055			z- - -
110 125 130 135 85 110 120 130 135 85 110 120 130 130 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 4 110 115 125 130 85 4 110 115 125 130 85 110 125 130 85	ınsfield	110	120	130	135	85	93	101	105	35	0.186	0.055			r.es
110 120 130 135 85 130 130 130 85 130 130 85 130 130 130 85 130 130 135 85 130 130 135 85 130 130 135 85 130 130 135 85 130 130 135 130	ırlborough	110	125	130	135	85	62	101	105	30	0.205	0.056			Yes
110 120 130 85 85 140 110 120 130 130 85 85 140 120 130 135 85 140 120 130 135 85 140 120 120 130 135 85 140 120 120 130 135 85 140 110 120 130 135 85 140 110 120 130 135 85 140 110 120 130 135 85 140 110 120 130 135 85 140 110 120 130 135 85 140 110 120 130 135 85 140 110 120 130 135 85 140 110 115 125 130 85 140 110 115 125 130 85 140 110 115 125 130 85 140 110 115 125 130 85 140 110 125 130 135 85 140 110 115 125 130 135 85 140 110 115 125 130 135 85 140 110 115 125 130 135 85 140 140 140 140 140 140 140 140 140 140	riden	110	120	130	135	85	93	101	105	30	0.203	0.055			Yes
leld 110 120 130 135 85 own 110 120 130 135 85 own 110 120 130 135 85 le 120 120 130 135 85 le 120 125 130 85 ck 110 115 125 130 85 itain 110 120 130 135 85 irifield 110 120 130 135 85 irifield 110 115 125 130 85 irifield 110 115 125 130 85 irifierd 110 125 130 85 85	ddlebury	110	120	130	130	85	93	101	101	35	0.194	0.054			Yes
own 110 120 130 135 85 110 120 130 135 85 1e 120 120 130 135 85 le 120 125 135 140 93 le 120 125 135 140 93 lock 110 115 125 130 85 train 110 120 130 135 85 naan 110 120 130 135 85 irifield 110 115 125 130 85 ven 110 115 125 130 85 ven 110 125 130 85	ddlefield	110	120	130	135	85	93	101	105	30	0.209	0.055			Yes
le 110 120 130 135 85 le 110 120 130 135 85 le 110 120 130 135 85 look 120 120 130 135 85 le 110 110 115 125 130 85 le 110 125 130 135 85 le 110 125 130 130 135 85 le 110 125 85 le 110 125 85 le 110 125 85 le 110 125 85	ddletown	110	120	130	135	85	93	101	105	30	0.209	0.056			Yes
110 120 130 135 85 120 125 135 140 93 110 115 125 130 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 115 125 130 85 110 125 130 135 85	lford	110	120	130	135	85	93	101	105	30	0.202	0.053	Type B	Type B	Yes
120 125 135 140 93 110 115 125 130 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 115 125 130 85 110 125 130 135 85 110 125 130 135 85	onroe	110	120	130	135	85	93	101	105	30	0.208	0.055			Yes
110 115 125 130 85 110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 115 125 130 85 110 115 125 130 85 110 125 130 135 85	ontville	120	125	135	140	93	76	105	108	30	0.198	0.054			Yes
110 120 130 135 85 110 120 130 135 85 110 120 130 135 85 110 115 125 130 85 110 115 125 130 85 110 125 130 135 85	orris	110	115	125	130	85	68	97	101	35	0.182	0.054			
110 120 130 135 85 110 120 130 135 85 110 115 125 130 85 110 115 125 130 85 110 125 130 135 85	ngatuck	110	120	130	135	85	93	101	105	30	0.197	0.054			Yes
110 120 130 135 85 110 115 125 130 85 110 115 125 130 85 110 125 130 135 85	ew Britain	110	120	130	135	85	93	101	105	30	0.195	0.055			Yes
110 115 125 130 85 110 115 125 130 85 110 125 130 135 85	ew Canaan	110	120	130	135	85	93	101	105	30	0.252	0.058			Yes
110 115 125 130 85 110 125 130 135 85	ew Fairfield	110	115	125	130	85	86	97	101	30	0.219	0.056			
110 125 130 135 85	ew Hartford	110	115	125	130	85	86	62	101	35	0.172	0.054			
	New Haven	110	125	130	135	85	6	101	105	30	0.201	0.054	Type B	Type B	.‱
93	ew London	120	130	140	140	93	101	108	108	30	0.191	0.053	Type B	Type A	Yes

Site Soil Class:

Results:

S _s :	0.185	S _{D1} :	0.083
S ₁ :	0.052	T _L :	6
F _a :	1.6	PGA:	0.101
F _v :	2.4	PGA M:	0.161
S _{MS} :	0.295	F _{PGA} :	1.598
S _{M1} :	0.124	l _e :	1.25
S _{DS} :	0.197	C_v :	0.7

Seismic Design Category: B

Data Accessed:

Fri Oct 13 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:

1.00 in.

Concurrent Temperature:

15 F

Gust Speed

50 mph

Data Source:

Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed:

Fri Oct 13 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Colliers Engineering & Design CT, P.C. 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis-VZW

SMART Tool Project #: 10210419 Colliers Engineering & Design CT, P.C. Project #: 20777371 (Rev. 1)

September 29, 2023

Site Information

Site ID:

5000244749-VZW / Mystic South CT

Site Name: Carrier Name: Mystic South CT Verizon Wireless

Address:

7 Broadway Avenue Ext

Mystic, Connecticut 06355

New London County

Latitude:

41.34957°

Longitude:

-71.96374°

Structure Information

Tower Type:

154-Ft Water Tank

Mount Type:

(12) 7-Ft Pipe Mount

FUZE ID # 16244602

Analysis Results

Pipe Mount: 29.6% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Frank Centone

September 29, 2023 Site ID: 5000244749-VZW / Mystic South CT Page | 2

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 324425, dated September 5, 2023
Mount Mapping Report	Tower Engineering Professionals, Site ID: 468402, dated March 11, 2021

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H
----------------------	----------------

2022 Connecticut State Building Code (CSBC), Effective October 1, 2022

Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), Viut:	140 mph
------------------	--	---------

Ice Wind Speed (3-sec. Gust):	50 mph
Design Ice Thickness:	1.00 in
Risk Category:	III
Exposure Category:	С
Topographic Category:	1
Topographic Feature Considered:	N/A
Topographic Method:	N/A
Ground Elevation Factor, Ke:	1.000

Seismic Parameters:	S _s :	0.191 g

S₁: 0.053 g

Maintenance Parameters: Wind Speed (3-sec. Gust): N/A
Maintenance Load, Lv: N/A

Maintenance Load, Lv: N/A
Maintenance Load, Lm: N/A

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
92.50 93.00	6	Andrew	SBNHH-1D65A	Retained	
	3	Samsung	MT6413-77A		
	92.50	3	Samsung	RF4461d-13A	Added
		3	Samsung	RF4439d-25A	

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- 1. All engineering services are performed on the basis that the information provided to Colliers Engineering & Design and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity
 of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.

September 29, 2023 Site ID: 5000244749-VZW / Mystic South CT Page | 4

7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate 0

ASTM A36 (Gr. 36)

HSS (Rectangular) 0

ASTM 500 (Gr. B-46) ASTM A53 (Gr. B-35)

Pipe 0

Threaded Rod 0

F1554 (Gr. 36)

Bolts

ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design.

Analysis Results:

Component	Utilization %	Pass/Fail
Mount Pipe	29.5%	Pass
Connection Check	29.6%	Pass

Structure Rating – (Controlling Utilization of all Components)	29.6%
--	-------

BASELINE mount weight per SBA agreement: 307.44 lbs

Increase in mount weight due to Verizon loading change per SBA agreement: No Change

The weights listed above include 3 sectors.

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipe	s Excluded	Mount Pipe	s Included
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	0.0	0.0	4.5	4.5
0.5	0.0	0.0	6.4	6.4
1	0.0	0.0	8.3	8.3

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector(s).
- Ka factors included in (EPA)a calculations

Requirements:

The existing mounts are SUFFICIENT for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

N/A

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

September 29, 2023 Site ID: 5000244749-VZW / Mystic South CT Page | 5

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations

Mount Desktop - Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000244749

SMART Project #: 10210419

Fuze Project ID: 16244602

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - o Photos showing the climbing facility and safety climb if present.

- Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

•	The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
	☐ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
	OR
	☐ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Specia	I Instructions / Validation as required from the MA or any other information the contractor
deems	necessary to share that was identified:
<mark>Issue:</mark>	
N/A	
Respo	nse:
<u>Specia</u>	I Instruction Confirmation:
	\square The contractor has read and acknowledges the above special instructions.
	\square All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.
	☐ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.

☐ The material ut approval is include	tilized was approved by a SMART Tool engineering vendor as an "equivalent" and this ed as part of the contractor submission.
Comments:	
Contractor certifies that	t the climbing facility / safety climb was not damaged prior to starting work:
	No s
Contractor certifies no r	new damage created during the current installation:
□ Yes □	No
Contractor to certify the	condition of the safety climb and verify no damage when leaving the site:
☐ Safety Climb in	n Good Condition ☐ Safety Climb Damaged
Certifying Individual:	
Company: Employee Name: Contact Phone: Email: Date:	

Sector:

Mount Elev:

92.50

Structure Type: Water Tank

10210419

9/26/2023

Page: 1

Model	Height (in)	Width (in)	H Dist Frm L,	Pipe #	Pipe Pos V	Ant Pos	C. Ant Frm T.	Ant H Off	Status	Validation
	55	11.9	154	1	а	Front	42	0	Retained	03/11/2021
	15	15	154	1	а	Behind	24	0	Added	
	28.9	15.8	82	3	а	Front	42	0	Added	
20 E PER E PER E	55	11.9	26	4	а	Front	42	0	Retained	03/11/2021
RF4439d-25A	15	15	26	4	а	Behind	24	0	Added	
	Model SBNHH-1D65A RF4461d-13A MT6413-77A SBNHH-1D65A RF4439d-25A	Model (in) SBNHH-1D65A 55 RF4461d-13A 15 MT6413-77A 28.9 SBNHH-1D65A 55	Model (in) (in) SBNHH-1D65A 55 11.9 RF4461d-13A 15 15 MT6413-77A 28.9 15.8 SBNHH-1D65A 55 11.9	Model (in) (in) Fm L SBNHH-1D65A 55 11.9 154 RF4461d-13A 15 15 154 MT6413-77A 28.9 15.8 82 SBNHH-1D65A 55 11.9 26	Model (in) (in) Fm L. # SBNHH-1D65A 55 11.9 154 1 RF4461d-13A 15 15 154 1 MT6413-77A 28.9 15.8 82 3 SBNHH-1D65A 55 11.9 26 4	Model (in) (in) Frm L. # Pos V SBNHH-1D65A 55 11.9 154 1 a RF4461d-13A 15 15 154 1 a MT6413-77A 28.9 15.8 82 3 a SBNHH-1D65A 55 11.9 26 4 a	Model (in) (in) Frm L. # Pos V Pos V SBNHH-1D65A 55 11.9 154 1 a Front RF4461d-13A 15 15 154 1 a Behind MT6413-77A 28.9 15.8 82 3 a Front SBNHH-1D65A 55 11.9 26 4 a Behind	Model (in) (in) Fm L, street # Pos V Pos Frm T. SBNHH-1D65A 55 11.9 154 1 as Front 42 RF4461d-13A 15 15 154 1 as Behind 24 MT6413-77A 28.9 15.8 82 3 as Front 42 SBNHH-1D65A 55 11.9 26 4 as Behind 24	Model (in) (in) Fm L, result # Pos V Pos Pos Print Fm T, result H Off SBNHH-1D65A 55 11.9 154 1 a Front 42 0 RF4461d-13A 15 15 154 1 a Behind 24 0 MT6413-77A 28.9 15.8 82 3 a Front 42 0 SBNHH-1D65A 55 11.9 26 4 a Behind 24 0	Model (in) (in) Fm L. # Pos V Pos V Fm T. H Off Status SBNHH-1D65A 55 11.9 154 1 a Front 42 0 Retained RF4461d-13A 15 15 154 1 a Behind 24 0 Added MT6413-77A 28.9 15.8 82 3 a Front 42 0 Added SBNHH-1D65A 55 11.9 26 4 a Behind 24 0 Retained

Structure: 5000244749-VZW - Mystic South CT

Sector:

Mount Elev:

92.50

9/26/2023

Structure Type: Water Tank

10210419

Colliers Engineering & Design

Page: 2

Ref#	Model	Height (in)	Width (in)	H Dist Frm L,	Pipe #	Pipe Pos V	Ant Pos	C. Ant	Ant H Off	Status	Validation
A2	SBNHH-1D65A	55	11.9	154	1	а	Front	42	0	Retained	03/11/2021
R8	RF4461d-13A	15	15	154	1	а	Behind	24	0	Added	
A7	MT6413-77A	28.9	15.8	82	3	а	Front	42	0	Added	
A2	SBNHH-1D65A	55	11.9	26	4	а	Front	42	0	Retained	03/11/2021
R9	RF4439d-25A	15	15	26	4	а	Behind	24	0	Added	

Sector: **C** 9/26/2023

Structure Type: Water Tank

92.50

Mount Elev:

10210419

Page: 3

Ref#	Model	Height (in)	Width (in)	H Dist Frm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant Frm T.	Ant H Off	Status	Validation
A2	SBNHH-1D65A	55	11.9	154	1	а	Front	42	0	Retained	03/11/2021
R8	RF4461d-13A	15	15	154	1	а	Behind	24	0	Added	
A7	MT6413-77A	28.9	15.8	82	3	а	Front	42	0	Added	
-	SBNHH-1D65A	55	11.9	26	4	а	Front	42	0	Retained	03/11/2021
A2 R9	RF4439d-25A	15	15	26	4	a	Behind	24	0	Added	Nie Silvin

V3.0 Updated on 6-31-2020

			FCC#
	Antenna Mount Mapping For	rm (PATENT PENDING)	N/A
	ISBA	Mapping Date:	2021
Tower Owner: Site Name:	Mystic South CT	Tower Type:	her 3.75
Site Number or ID:	468402	Tower Height (FL):	3.5
Mapping Contractor:	Tower Engineering Professionals	Mount Elevation (FL): and is to be used only for the specific customer it was intended for. R	

Mapping Contractor: Tower Engineering Professionals Mount Elevation (FL): 93.5

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for, Reproduction, transmission, publication modification or disdosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10,48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

1054		A-lay @ IXd
(1) 1/4 FN (1) 1/4 A1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Begn
	00 5	1 ,

Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	cometries [Unit = Inches] Mount Pipe Size & Length	Vertical Offset Dimension	Horizontal Offset "C1, C2, C3, etc
77	2.4"x7-0"Tx0.154"TH	45,00	0.00	C1	2.4"x7'-0"Tx0.154"TH	45.00	0.00
	2.4"x7"-0"Tx0.154"TH	45.00	72.00		2.4"x7"-0"Tx0.154"TH	45.00	72.00
A2 A3	2.4"x7"-0"Tx0.154"TH	45.00	128.00	C3	2.4"x7'-0"Tx0.154"TH	45.00	128,00
	2.4"x7"-0"Tx0.154"TH	45.00	154.00	C4	2.4"x7"-0"Tx0.154"TH	45.00	154.00
A4 A5	2.4 x7-0 1x0.154 111	15.05	-	C5			
				C6			
A6 B1	2.4"x7'-0"Tx0.154"TH	45.00	0.00	D1			
B2	2.4"x7"-0"Tx0.154"TH	45.00	72.00	D2			
B3	2.4"x7'-0"Tx0.154"TH	45.00	128.00	D3			
B4	2.4"x7'-0"Tx0.154"TH	45.00	154.00	D4			
85	A/ 1111111			D5			
86				D6			
.00	Distance between bottom re	il and mour	t CL elevati	on (dim d). Unit is inches. See 'Mount Elev Ref' tab f	or details.	0.00
-	Dietance from	ton of hotto	m support r	all to low	est tip of ant./egpt. of Carrier above. (N/A	it > 10 it.j	
	Distance from t	op of bottor	n support r	ail to high	est tip of ant./eqpt. of Carrier below. (N/A	if > 10 ft.)	
	Distance in the	Please ent	er addition	al infomat	tion or comments below.		

Tower Face Width at Mount Elev. (ft.): 30 Tower Leg Size or Pole Shaft Diameter at Mount Elev. (in.): 18

	Enter antenn	a model. I	f not label	ed, enter '	'Unknown"	.x	Mountin [Units are incl	g Locations nes and deg		Photos antenna
Ants, Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (Ft.)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz, Offset "h" (Use "-" if Ant, is behind)	Antenna Azimuth (Degrees)	Photo Numbe
					Sector A					
Antis										
Ant _{1b}	SBNHH-1D65A	11.85	7.10	72.87	from Ra	94.25	36,00	7.50	15.00	100
Antic	B66A RRH4x45	11.80	7.20	25.80	1) FH 1 5/	94,5833	32,00	8.00		101
Ant _{2a}										100
Ant _{2b}	LNX-6514DS-A1M	11.85	7.11	80.63	from Ra	94.75	30.00	7.00	15.00	103
Ant _{2c}	B13 RRH4x30	12.00	9.00	21.60	1) FH 1 5/	95.25	24.00	6.50		103
Ant _{3a}				1						
Ant _{3b}	SBNHH-1D65A	11.85	7.10	72.87	from Ra	94.25	36.00	7.50	15,00	104
Ant _{3c}	B25 RRH4x30	11.97	7.18	21.20	1) FH 15/	95.2083	24.50	6.50		105
Ant _{4a}										400
Ant _{4b}	BXA-80080-4CF	11.20	5.90	48.20	d from Ra	93,9167	40.00	9.00	15.00	106
Ant _{4c}	FD9R 6604/2C-3L	5.25	1.50	7.50	d from Ra	94,9167	28.00	4.50		107
Antsa										_
Ant _{5b}										-
Ant _{5c}										-
Ant on Standoff	RRFDC-3315-PF-48	15.73	10.30	28.93) HY 1 1/-	1"				102
Ant on Standoff	FD9R 6604/2C-3L	5.25	1.50	7.50	from Ra	dio				
Ant on Tower										
Ant on Tower		-								

Anto	21	Arta 기원 Arta 경	Anta Anta	Ante g	Ants:
188	ă 🗀	ğ	ž L	å	
Anthi		Anta	Anto	Ante	Antse
<u> </u>	C2 C3	04	8		

Mou	unt Azimuti	(Degre	e)	Tower Lea Az	imuth (Degree)	7					Sector					
	for Each S				:h Sector	Ant _{1a}		T		T	Sector			1	T	T
Sector A:	15.00	_	Leg A:	330.00	Deg	Ant _{1b}	SBNHH-1D65A	11.85	7.10	72.87	from Ra	94.25	36.00	7.50	140.00	65
Sector 8:	105.00 285.00		Leg B:	60.00	Deg	Ant _{1c}	B66A RRH4x45	11.80	7.20	25.80	1) FH 15,	94.5833	32.00	8.00	17.5	67
Sector C: Sector D:	263.00	Deg	Leg C: Leg D:	150.00 240.00	Deg	Ant _{2a}	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				4					
Jector D.	-	-		ility Information	Deg	Ant _{2h}	LNX-6514DS-A1M	11.85	7.11	80.63	from Ra	_	30.00	7.00	140.00	75
.ocation:	330.00	Deg	oning : ec	On Leg A		Ant _{3a}	B13 RRH4x30	12.00	9.00	21.60	2) FH 1 5)	95.25	24.00	6.50		77
	Corro	sion Typ	e:	Good condition.		Antab	SBNHH-1D65A	11.85	7.10	72.87	from Ra	94.25	36.00	7.50	140.00	- 01
Climbing Facility	А	ccess:		Climbing path was u	unobstructed.	Ant _{3c}	825 RRH4x30	11.97	7.18	21.20	1) FH 1 5/	_	24.50	6.50	140.00	81
, ,	Cor	ndition:		Good condition.		Ant _{4a}					-			1 0.50		- 55
	3	· III	TN.			Ant _{4b}	BXA-80080-4CF	11.20	5.90	48.20	from Ra	93.9167	40.00	9.00	140.00	85
	n r	4111	Ш	П		Ant _{4c}	FD9R 6604/2C-3L	5.25	1.50	7.50	from Ra	94.9167	28.00	4.50		86
		Mill	H			Ant _{Sa}										
ĺ	Ĺ,IIII	,111	TIL	The state of the s	an:	Ant _{5b}				-	-			-		
			17		Ī	Ant on				-						_
1	ПП	1	Hr	П	CONNECTION TO CAMEN WEST		RRFDC-3315-PF-48	15.73	10.30	28.93) HY 1 1/4	1"				69
	****	1111	111		(A/Y IL A 12 LL')	Ant on Standoff	FD9R 6604/2C-3L	5.25	1.50	7.50	from Ra	dio				79
С		1	111	—	į.	Ant on	The state of the s	100							100	
-	200		1	out:	CF at /Do IF CAME? FOR	Tower		-				1				
9	J, L	.011	I a	L. Transco		Ant on Tower										
											Sector C			-		-
						Antia				-						
Ĺ	J		٦	Ų		Ant _{1b}	SBNHH-1D65A	11.85	7.10	72.87	I from Ra	94.25	36.00	7.50	260.00	93
		O	111			Ant _{1c}	B66A RRH4x45	11.80	7.20	25.80	1) FH 1 5/	94.5833	32.00	8.00		94
Γ	1 [٦ ,-		, n		Ant ₂₆	LNX-6514DS-A1M	11.85	744	00.53	100	01.75		-		
1			7	-		Ant _{2c}	B13 RRH4x30	12.00	7.11 9.00	80.63	1) FH 1 5/	94.75 95.25	30.00 24.00	7.00	260.00	96
		\vdash				Ant _{3a}		12.00	3.00	21.00	2/11/23/	33.23	24.00	6.50		97
,2		' [7	3 F 4 (3 P.C)	Ť	Ant _{3b}	SBNHH-1D65A	11.85	7.10	72.87	from Ra	94.25	36.00	7.50	260.00	98
		1	/		MARCH 1990-000 (2015)	Ant _{3c}	B25 RRH4x30	11.97	7.18	21.20	1) FH 1 5/	95.2083	24.50	6.50		98
	1 [T		TOTAL FACE TO UP OF DISTRICT OF A STATE OF A	Ant _{4a}		1		-				25 17	27	
5	-		₹ 5		1.000	Arriab.	BXA-80080-4CF	11.20	5.90	48.20	_	93.9167	40.00	9.00	260.00	99
4	1	-			1	Ant _{4c}	FD9R 6604/2C-3L	5.25	1.50	7.50	from Ra	94.9167	28.00	4.50		99
TIL EZUS DIE	5	"	7	ভ	COUNTY OF CHARLES AND	Antsh					-			50		
		K	C. Face	20.07 (SHANO)		Antsc	- 7 - 7		- 1							-
n			m	Ĥ	_	Ant on	RRFDC-3315-PF-48	15.73	10.30	28.93	1111/2 1/4	.				
1			7 h	- I		Standoff Ant on	MIN DC 3313 11 48	13.75	10.50	20.73) HY 1 1/4	-		-		95
1	A.		4	*		Standoff	FD9R 6604/2C-3L	5.25	1.50	7.50	from Rac	lio				
-	-		الما	<u> </u>		Ant on				1						
						Ant on			-							-
						Tower									3	
						Ant			-		Sector D					
						Ant _{1b}			-345			_				
						Antic						-				-
						Ant _{2a}	77.775	1111								
						Ant _{2b}										
						Ant _{2c}	ore Eyes P									
						Ant _{3a}										
						Ant _{3b}										
						Ant _{4a}										
						Ant _{4b}		OT LESS	70 V V							
						Ant _{4c}										
						Ant _{Sa}						-		133		
						Ant _{5b}										
						Ant _{5c}										
						Ant on Standoff										
						Ant on									-	
						Standoff										
						Ant on Tower										
						Ant on										
						Tower			- 1	1		- 1				

Photo #

1	
2	
3	
4	
5	
6	
7	
8	

Mapping Notes

- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.
- 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.

 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.
- 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.
 6. Please measure and report the size and length of all existing antenna mounting pipes.

- Please measure and report the antenna information for all sectors.
 Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

Standard Conditions

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

MASER

			V3.0	Updated on 8-31	2020
	Antenna Mount Mapping For	m (DATENT DENDING)	VANAGA	3.55	FCC#
STORES OF BUILDING	Automia modifi (napping i oi	III (FAIERI FERDING)			N/A
ower Owner:	SBA	Mapping Date:		3/11/2	2021
ite Name:	Mystic South CT	Tower Type:		Oth	
ite Number or ID:	468402	Tower Height (Ft.):		153.	
lapping Contractor:	Tower Engineering Professionals	Mount Elevation (FL):	-	93.	_

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein its considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

Please Insert Sketches of the Antenna Mount

Side View Raycop

() (2) 15/8" x 5/8" x 1/4" L UMSHA -/(1) 1/2" B T.R. 7" (-(

Q. (2) 1 5/4" x 5/4 x /4" x 4" Unistict

3: PL 4"x 9" x 3/4" ~ 1(4) "/2" & Balts 6"(-(

A: 24"0 x2'-0" Pipe

C1: 0"
C2: 72"
C3: 128"
C4: 154"

: Colliers Engineering & Design

Sept 26, 2023 2:43 PM Checked By:__

: Mount Analysis

Basic Load Cases

1	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut.	.Area(Me.	Surface(
2	Antenna D	None					24			
_	Antenna Di	None					24			
3	Antenna Wo (0 Deg)	None					24			
4	Antenna Wo (30 Deg)	None					24			
5	Antenna Wo (60 Deg)	None	4				24			
6	Antenna Wo (90 Deg)	None					24			
7	Antenna Wo (120 Deg)	None					24			
8	Antenna Wo (150 Deg)	None					24			
9	Antenna Wo (180 Deg)	None					24			
10	Antenna Wo (210 Deg)	None					24			
11	Antenna Wo (240 Deg)	None					24			
12	Antenna Wo (270 Deg)	None					24			
13	Antenna Wo (300 Deg)	None					24			
14	Antenna Wo (330 Deg)	None					24			
15	Antenna Wi (0 Deg)	None					24			
16	Antenna Wi (30 Deg)	None					24			
17	Antenna Wi (60 Deg)	None					24			
18	Antenna Wi (90 Deg)	None					24		74	
19	Antenna Wi (120 Deg)	None					24			
20	Antenna Wi (150 Deg)	None					24			
21	Antenna Wi (180 Deg)	None					24			
22	Antenna Wi (210 Deg)	None					24			
23	Antenna Wi (240 Deg)	None					24			
24	Antenna Wi (270 Deg)	None					24			
25	Antenna Wi (300 Deg)	None					24			
26	Antenna Wi (330 Deg)	None					24			
27	Antenna Wm (0 Deg)	None					24			
28	Antenna Wm (30 Deg)	None					24			
29	Antenna Wm (60 Deg)	None					24			
30	Antenna Wm (90 Deg)	None					24			
31	Antenna Wm (120 Deg)	None		X Total			24			
32	Antenna Wm (150 Deg)	None					24			
33	Antenna Wm (180 Deg)	None					24			
34	Antenna Wm (210 Deg)	None					24			
35	Antenna Wm (240 Deg)	None					24			
36	Antenna Wm (270 Deg)	None					24			
37	Antenna Wm (300 Deg)	None					24			
38	Antenna Wm (330 Deg)	None					24			
39	Structure D	None		-1						
40	Structure Di	None						3		
41	Structure Wo (0 Deg)	None						6		
42	Structure Wo (30 Deg)	None						6		
43	Structure Wo (60 Deg)	None						6		
44	Structure Wo (90 Deg)	None						6		
45	Structure Wo (120 Deg)	None						6		
46	Structure Wo (150 Deg)	None						6		
47	Structure Wo (180 Deg)	None						6		
48	Structure Wo (210 Deg)	None						6		
49	Structure Wo (240 Deg)	None						6		
50	Structure Wo (270 Deg)	None						6		
51	Structure Wo (300 Deg)	None						6		
52	Structure Wo (330 Deg)	None						6		
53	Structure Wi (0 Deg)	None						6		
54	Structure Wi (30 Deg)	None						6		
55	Structure Wi (60 Deg)	None						6		
56	Structure Wi (90 Deg)	None						6		
57	Structure Wi (120 Deg)	None						6		
								U		

Colliers Engineering & Design

Sept 26, 2023 2:43 PM Checked By:__

Mount Analysis

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point		Area(Me.	.Surface(
59	Structure Wi (180 Deg)	None						6	-	
60	Structure Wi (210 Deg)	None		ST. 2				6		
61	Structure Wi (240 Deg)	None						6		
62	Structure Wi (270 Deg)	None						6		
63	Structure Wi (300 Deg)	None						6		
64	Structure Wi (330 Deg)	None			DEATH OF THE			6		
65	Structure Wm (0 Deg)	None						6		
66	Structure Wm (30 Deg)	None		11		غصيث		6		
67	Structure Wm (60 Deg)	None						6		
68	Structure Wm (90 Deg)	None						6		
69	Structure Wm (120 Deg)	None						6		
70	Structure Wm (150 Deg)	None						6		MIN.
71	Structure Wm (180 Deg)	None						6		
72	Structure Wm (210 Deg)	None					04	6		
73	Structure Wm (240 Deg)	None						6		
74	Structure Wm (270 Deg)	None	7 1 10					6		-
75	Structure Wm (300 Deg)	None						6		
76	Structure Wm (330 Deg)	None						6	-	
77	Lm1	None					1	-		-
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					24			-
82	Antenna Eh (0 Deg)	None			15 linx		16			-
83	Antenna Eh (90 Deg)	None					16	-		
84	Structure Ev	ELY								
85	Structure Eh (0 Deg)	ELZ			03					
86	Structure Eh (90 Deg)	ELX	.03							-

Load Combinations

	Description	So	P	S	BLC	Fac	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac.										
1	1.2D+1.0Wo (0 Deg)	Yes	Y		1	1.2	39	1.2	3	1	41	1							_				\vdash	
2	1.2D+1.0Wo (30 D				1	1.2	39	1.2	4	1	42	1							-		-			
3	1.2D+1.0Wo (60 D	Yes	Y		1	1.2	39	1.2	5	1	43	1						_	_	_	_		\vdash	
4	1.2D+1.0Wo (90 D	Yes	Y		1	1.2	39	1.2	6	1	44	1							-				-	
5	1.2D+1.0Wo (120	Yes	Y		1			1.2	7	1	45	_1_			_				-				\vdash	
6	1.2D+1.0Wo (150	Yes	Y		1	1.2		1.2		1	46	1				_	-		+				-	
7	1.2D+1.0Wo (180	Yes	Υ		1	1.2				1	47	_1_		_	-				-			100		2 - 30
8	1.2D+1.0Wo (210				1	1.2		1.2		1	48	1					_		-		-		-	
9	1.2D+1.0Wo (240				1	1.2	_	1.2		1	49	_1_			-				\vdash		1		\vdash	
	1.2D+1.0Wo (270				1	1.2		1.2		1	50	1					_		-				-	
	1.2D+1.0Wo (300				1	1.2		1.2		1	51	1_					_	_	-	-				
12	1.2D+1.0Wo (330	Yes	Y		1	_	_	1.2	14	1_	52	_1_				_	-		+-				-	
13	1.2D + 1.0Di + 1.0	Yes	Y		1			1.2		_1_	40	_1_	15	1	53	1								
	1.2D + 1.0Di + 1.0				1			1.2		1	40	_1_	16	1	54	1	-		-		-		+-	
	1.2D + 1.0Di + 1.0				1			1.2	2	1	40	1	17	_1_	55	1		-						=3.1
16	1.2D + 1.0Di + 1.0	Yes	Y		1			1.2		1	40	1	18	1	56	1			-	-	1			
17	1.2D + 1.0Di + 1.0				1			1.2		1	40	1	19	1	57	4			-	-	-	_	\vdash	
18	1.2D + 1.0Di + 1.0				1			1.2		1	40	1	20	_1_	58	1	-		-	-		-	-	
19	1.2D + 1.0Di + 1.0				1			1.2		1	40	1	21	1	59	4	-	- 71			100	NA.		110)
20	1.2D + 1.0Di + 1.0				1			1.2		1	40	1	22	1	60	1			+-	-	1	-	-	
21	1.2D + 1.0Di + 1.0				1			1.2		1	40	1	23	1	61	4	-		+					7
22	1.2D + 1.0Di + 1.0				1	_		1.2		1	40	1	24	1	62	1	-		+-	-				
23	1.2D + 1.0Di + 1.0				1	1.2	_	1.2	2	1	40	1	25	1	63	1		-	-	100				
24	1.2D + 1.0Di + 1.0				1	1.2		1.2	2	1	40	1	26	1	64		-		-		-	_		-
25	1.2D + 1.5Lm1 + 1				1			1.2	77	_	_	1	65	1					-	-				148
26	1.2D + 1.5Lm1 + 1	Yes	Y	10	11	1.2	39	1.2	77	1.5	28	1.	66	_1_	_			-	4		_			

Colliers Engineering & Design

Mount Analysis

Sept 26, 2023 2:43 PM Checked By:_

Load Combinations (Continued)

							CANTR	577	-		-	_	-	-	_	_	_		_					_
27	Description	So.	P	S	BLC	Fac.	BLC	Fac	BLC	Fac.	BLC	Fac	BLC	Fac.	.BL	CFac.	BLC	Fac	BLO	CFac.	BLC	Fac.	BLC	Fac
27	1.2D + 1.5Lm1 + 1.	. 1100	Y		1	1.2	39	1.2	. 77	1.5	29	1	67	1										
28	1.2D + 1.5Lm1 + 1.		-		1	1.2	-	1.2	-	_	30		68					10						
29	1.2D + 1.5Lm1 + 1.		1		1	1.2	-	_	-		31	-	69	_										
30	1.2D + 1.5Lm1 + 1.		-		1	1.2	-	1.2	_		32	1	70	1										
31	1.2D + 1.5Lm1 + 1.	1	1		1	1.2	-		_	1.5	33	1	71	1										
32	1.2D + 1.5Lm1 + 1.	1011			1	1.2	-		77	1.5	34	1	72	1				KI						
33	1.2D + 1.5Lm1 + 1	_	-		1	1.2	_	1.2	77	1.5	35	1	73	1										
34	1.2D + 1.5Lm1 + 1.		-		1	1.2	39	1.2	77	1.5	36	1	74	1							10			1000
35	1.2D + 1.5Lm1 + 1		Y		1	1.2	39	1.2	77	1.5	37	1	75	1										
36	1.2D + 1.5Lm1 + 1	100			1	1.2	39	1.2	77	1.5	38	1	76	1						100				
37	1.2D + 1.5Lm2 + 1		Y		1	1.2	39	1.2	78	1.5	27	1	65	1										
38	1.2D + 1.5Lm2 + 1	_	Y		1	1.2	39	1.2	78	1.5	28	1	66	1										
39	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39	1.2	78	1.5	29	1	67	1										
40	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39	1.2	78	1.5	30	1	68	1										
41	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39	1.2	78		31	1	69	1										
42	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39	1.2		1.5		1	70	1										
43	1.2D + 1.5Lm2 + 1.,	Yes	Υ		1	1.2	39	1.2		1.5		1	71	1										
44	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39	1.2		1.5		1	72	1	1		100	TO S	113					170
45	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39	1.2	78	1.5	_	1	73	1										
46	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39	1.2	78	1.5	_	1	74	1	9.0							100		
47	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39	1.2	_	1.5	_	1	75	1			-		_				-	
48	1.2D + 1.5Lm2 + 1	Yes	Υ		1	1.2	39	1.2	78	1.5	-	1	76	1	J. R	C-				200				
49	1.2D + 1.5Lv1	Yes	Υ		1	1.2	39	1.2	79	1.5	00	<u> </u>	70	-								-	- 4	
50	1.2D + 1.5Lv2	Yes	Y		1	1.2	39	1.2		1.5			1379		100						200	-		
51	1.4D	Yes	Ÿ		1	1.4	39	1.4	00	1.0				_				-Cirrus						-
52	1.2D + 1.0Ev + 1.0	Yes	Y		1	1.2	39	1.2	81	1	ELY	1	82	1	83		ELZ	1	ELX					
53		Yes	Ÿ		1	1.2	39	1.2	81		ELY	1	82	.866		.5	ELZ		Part Park		-			
54	Ultra-	Yes	Υ		1	1.2	39		81		ELY	1	82	.5	83	.866				.866				
55	1.2D + 1.0Ev + 1.0	Yes	Ÿ		1	1.2	39	1.2	81		ELY	1	82	.υ	83	1	ELZ	5	ELX		-	-12-1		
56	1.2D + 1.0Ev + 1.0	Yes	Ÿ		1	1.2	39	1.2	81		ELY	1	82	5		.866				_		-	\rightarrow	_
57	1.2D + 1.0Ev + 1.0	Yes	Ÿ		1	1.2	39	1.2	81		ELY	1		866	83	.5	ELZ		ELX		-	-	\rightarrow	-
58	1.2D + 1.0Ev + 1.0	Yes	Ÿ		1	1.2	39	1.2	81		ELY	1	82 82	_		.0	ELZ		_	.5	_	_	-	
59		Yes	Ÿ	-	1	1.2	39	1.2	81		ELY	1	_	-1 866	83	-		<u> </u>	ELX	_	-	-	_	
		Yes	Y	-	1	1.2	39	1.2	81	-	ELY	1	82			5 Bee	$\overline{}$	866	-		-		_	
_		Yes	Ÿ	_	1	1.2	39	1.2	81	_	ELY	1	82	5	83	866	$\overline{}$	5		866	-		-	
	1.2D + 1.0Ev + 1.0	Yes	Ý	_	1	1.2	39	1.2	81		ELY		82		83	-1	ELZ		ELX	-1	-	-	\rightarrow	
	4.00	Yes	Ÿ	_	1	1.2	39	1.2		_	ELY	1	82	.5	83	866				866			-	
	0.9D - 1.0Ev + 1.0	Yes	Y		1	.9	$\overline{}$	_	81			1	82	_	83	5	ELZ	_		5	_	_	\rightarrow	
		Yes	Ÿ	_	1		39	.9	81		ELY	-1	82	1	83		ELZ		ELX		_			
	0.9D - 1.0Ev + 1.0	Yes	Y		-	.9	39	.9	81	-	ELY	-1	82	.866	83	-	-	.866	-	.5	_		_	
		Yes	Y		1	.9	39	.9	81	_	ELY	-1	82	.5	83	.866		~	ELX	.866				
	0.00	Yes	Y	_	1	.9	39	.9	81		ELY	-1	82	_	83	1	ELZ	_	ELX	1				
		Yes	Y	_	1	.9	39	.9	81		ELY	-1	82	5	83	.866	200			_				
	0.00		$\overline{}$	_	1	.9	39	.9	81	_	ELY	-1		866			_	866		.5			\Box	
	0.00	Yes	Y		1	.9	39	.9	81	_	ELY	-1	82	-1	83		ELZ		ELX					
_	0.00	Yes	Y		1	.9	39	.9	81	$\overline{}$	ELY	-1	_	866			-	.866	-	5				
		Yes	Y	_	1	.9	39	.9	81	_	ELY	-1	82	5	83	866	_	-	-	866				
		Yes	Y	_	1	.9	39	.9	81	_	ELY	-1	82		83		ELZ		ELX	-1				
		Yes	Y	_	1	.9	39	.9	81		ELY	-1	82	.5		866	Acres and the		Section 18 Section 18	866				Cu.
75	0.9D - 1.0Ev + 1.0	Yes	<u>Y </u>		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	5	ELZ	.866	ELX	5				

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap.
1	N1	0	0	0	0	Dotaci i Toni Diap.
2	N2	0	-7	0	0	
3	N3	0	-3.666667	0	0	
4	N4	0	-3.666667	-0.104167	0	9 24 477471
5	N5	0	-4.625	0	0	

Company Designer Job Number Model Name

: Colliers Engineering & Design

Sept 26, 2023 2:43 PM Checked By:

: Mount Analysis

Joint Coordinates and Temperatures (Continued)

	Vicaccov	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
• 1	Label	1 0	-4.625	-0.104167	0	
6	N6	-6	0	0	0	
7	N7	-6	-7	0	0	
8	N8	-6	-3.666667	0	0	
9	N9	-6	-3.666667	-0.104167	0	
10	N10	-6	-4.625	0	0	
11	N11	-6	-4.625	-0.104167	0	
12	N12 N13	-10.666667	0	0	0	
13	N13	-10.666667	-7	0	0	
14	N15	-10.666667	-3.666667	0	0	
15	N16	-10.666667	-3.666667	-0.104167	0	
16	N17	-10.666667	-4.625	0	0	
17 18	N18	-10.666667	-4.625	-0.104167	0	

Hot Rolled Steel Section Sets

HOL Kolled Steel Sect	on octo					11 640 70 760	N 200.00	793 Seet Supple	rosmazorezan
Label	Shape	Type	Design Lis	t Material	Design R	A [in2]	Ivy [in4]	Izz [in4]	J [in4]
1 Mount Pipe	PIPE 2.0	Column		A53 Gr. E	Typical	1.02	.627	.627	1.25
1 Wount Fipe	111 = 2.0								

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List		Design Rules
4	MP1A	N1	N2			Mount Pipe	Column	Pipe	A53 Gr. B	Typical
1		N3	N4			RIGID	None	None	RIGID	Typical
2	M2		N6			RIGID	None	None	RIGID	Typical
3	M3	N5					Column	Pipe	A53 Gr. B	Typical
4	MP3A	N7	N8	_		RIGID	None	None	RIGID	Typical
5	M5	N9	N10			The state of the s	None	None	RIGID	Typical
6	M6	N11	N12			RIGID		Pipe	A53 Gr. B	
7	MP4A	N13	N14			THE CATTER SPEC	Column		THE RESERVE OF THE PARTY OF THE	Typical
8	M8	N15	N16			RIGID	None	None	RIGID	
9	M9	N17	N18			RIGID	None	None	RIGID	Typical

Member Advanced Data

10111		I Pelesso	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic.
	Label	I Release	J Kelease	TOMBOUTH		- SACESTI - SACE	Yes	** NA **			None
1_	MP1A_						Yes	** NA **			None
2	M2						Yes	** NA **			None
3	M3						Yes	** NA **			None
4	MP3A						Yes	** NA **			None
5	M5							** NA **			None
6	M6						Yes	** NA **			None
7	MP4A						Yes	47.77.77.7			None
8	M8				House	NO. OF	Yes	** NA **			
9	M9						Yes	** NA **			None

Member Point Loads (BLC 1 : Antenna D)

	Marsharland	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	Member Label	V	-28.65	2.5
1	MP3A	My	014	2.5
	MP3A	Mz	0	2.5
3	MP3A	V	-28.65	4.5
	MP3A	My	014	4.5
5	MP3A	Mz	0	4.5
3	MP3A	V	-79.1	2
	MP1A	My	.04	2
8	MP1A	Mz	0	2
9	MP1A	IVIZ		

: Colliers Engineering & Design

Comers Engineering & Desi

Mount Analysis

Sept 26, 2023 2:43 PM Checked By:____

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
10	MP4A	Y	-74.7	2
11	MP4A	My	.037	2
12	MP4A	Mz	0	2
13	MP1A	Y	-16.75	2
14	MP1A	Mv	008	2
15	MP1A	Mz	0	2
16	MP1A	Y	-16.75	5
17	MP1A	Mv	008	5
18	MP1A	Mz	0	5
19	MP4A	Y	-16.75	2
20	MP4A	Mv	008	2
21	MP4A	Mz	0	2
22	MP4A	Y	-16.75	5
23	MP4A	Mv	008	5
24	MP4A	Mz	0	5

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Y	-33.316	2.5
2	MP3A	Mv	017	2.5
3	MP3A	Mz	0	2.5
4	MP3A	Y	-33.316	4.5
5	MP3A	My	017	4.5
6	MP3A	Mz	0	4.5
7	MP1A	Y	-50.809	2
8	MP1A	Mv	.025	2
9	MP1A	Mz	0	2
10	MP4A	Y	-50,28	2
11	MP4A	My	.025	2
12	MP4A	Mz	0	2
13	MP1A	Y	-52.928	2
14	MP1A	My	026	2
15	MP1A	Mz	0	2
16	MP1A	Y	-52.928	5
17	MP1A	My	026	5
18	MP1A	Mz	0	5
19	MP4A	Y	-52.928	2
20	MP4A	Mv	026	2
21	MP4A	Mz	0	2
22	MP4A	Y	-52.928	5
23	MP4A	My	026	5
24	MP4A	Mz	0	5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	2.5
2	MP3A	Z	-101.208	2.5
3	MP3A	Mx	0	2.5
4	MP3A	X	0	4.5
5	MP3A	Z	-101.208	4.5
6	MP3A	Mx	0	4.5
7	MP1A	X	0	2
8	MP1A	Z	-99.873	2
9	MP1A	Mx	0	2
10	MP4A	X	0	2
11	MP4A	7	-82.782	2
12	MP4A	Mx	02.702	2
13	MP1A	X	0	2

Company Designer Job Number Colliers Engineering & Design

Sept 26, 2023 2:43 PM Checked By:__

: Mount Analysis

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
14	MP1A	Z	-157.019	2
15	MP1A	Mx	0	2
16	MP1A	X	0	5
17	MP1A	7	-157.019	5
18	MP1A	Mx	0	5
19	MP4A	X	0	2
20	MP4A	Z	-157.019	2
21	MP4A	Mx	0	2
22	MP4A	X	0	5
	MP4A	Z	-157.019	5
23	MP4A	Mx	0	5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	42.826	2.5
2	MP3A	Z	-74.176	2.5
3	MP3A	Mx	021	2.5
4	MP3A	X	42.826	4.5
5	MP3A	7.	-74.176	4.5
6	MP3A	Mix	021	4.5
7	MP1A	X	45.964	2
8	MP1A	Z	-79.612	2
9	MP1A	Mx	.023	2
10	MP4A	X	37.986	2
11	MP4A	Z	-65.794	2
12	MP4A	Mx	.019	2
	MP1A	X	71.78	2
13	MP1A	Z	-124.327	2
14 15	MP1A	Mx	036	2
	MP1A	X	71.78	5
16	MP1A	Ž	-124.327	5
17	MP1A	Mx	036	5
18	MP4A	X	71.78	2
19	MP4A	Ž	-124.327	2
20	MP4A	Mx	036	2
21	MP4A	X	71.78	5
22	MP4A	7	-124.327	5
23	MP4A	Mx	036	5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	47.231	2.5
2	MP3A	Z	-27.269	2.5
3	MP3A	Mx	024	2.5
4	MP3A	X	47.231	4.5
5	MP3A	Z	-27.269	4.5
6	MP3A	Mx	024	4.5
7	MP1A	X	65.852	2
8	MP1A	Z	-38.02	2
	MP1A	Mx	.033	2
9	MP4A	X	54	2
10	MP4A	7	-31.177	2
	MP4A	Mx	.027	2
12	MP1A	X	101.016	2
	MP1A	Z	-58.321	2
14	MP1A	Mx	051	2
15	MP1A	X	101.016	5
17	MP1A	Z	-58.321	5

Colliers Engineering & Design

Sept 26, 2023 2:43 PM Checked By:_

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

Mount Analysis

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP1A	Mx	-,051	5
19	MP4A	X	101.016	2
20	MP4A	Z	-58.321	2
21	MP4A	Mx	051	2
22	MP4A	X	101.016	5
23	MP4A	7	-58.321	5
23 24	MP4A	Mx	051	5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	38.98	2.5
2	MP3A	Z	0	2.5
3	MP3A	Mx	019	2.5
4	MP3A	X	38.98	4.5
5	MP3A	Z	0	4.5
6	MP3A	Mx	019	4.5
7	MP1A	X	68.095	2
8	MP1A	Z	0	2
9	MP1A	Mx	.034	2
10	MP4A	X	55.544	2
11	MP4A	Z	0	2
12	MP4A	Mx	.028	2
13	MP1A	X	103.184	2
14	MP1A	Z	0	2
15	MP1A	Mx	052	2
16	MP1A	X	103.184	5
17	MP1A	Z	0	5
18	MP1A	Mx	052	5
19	MP4A	X	103.184	2
20	MP4A	Z	0	2
21	MP4A	Mx	052	2
22	MP4A	X	103.184	5
23	MP4A	Z	0	5
24	MP4A	Mx	052	5

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	47.231	2.5
2	MP3A	Z	27.269	2.5
3	MP3A	Mx	024	2.5
4	MP3A	X	47.231	4.5
5	MP3A	Z	27.269	4.5
6	MP3A	Mx	024	4.5
7	MP1A	X	65.852	2
8	MP1A	Z	38.02	2
9	MP1A	Mx	.033	2
10	MP4A	X	54	2
11	MP4A	Z	31.177	2
12	MP4A	Mx	.027	2
13	MP1A	X	101.016	2
14	MP1A	Z	58.321	2
15	MP1A	Mx	051	2
16	MP1A	X	101.016	5
17	MP1A	Z	58.321	5
18	MP1A	Mx	051	5
19	MP4A	X	101.016	2
20	MP4A	Z	58.321	2
21	MP4A	Mx	051	2

Colliers Engineering & Design

Sept 26, 2023 2:43 PM Checked By:__

: Mount Analysis

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
22	MP4A	X	101.016	5
22	MP4A	7	58.321	5
23	The state of the s	Mx	051	5
24	MP4A	IVIA		

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	42.826	2.5
2	MP3A	7	74,176	2.5
2	MP3A	Mx	021	2.5
3	MP3A	X	42.826	4.5
4	MP3A	7	74.176	4.5
5	MP3A	Mx	021	4.5
6	MP1A	X	45.964	2
7	MP1A	Z	79.612	2
8	MP1A	Mx	.023	2
9		X	37.986	2
10	MP4A	Z	65.794	2
11	MP4A	Mx	.019	2
12	MP4A	X	71.78	2
13	MP1A	Z	124.327	2
14	MP1A		036	2
15	MP1A	Mx X	71.78	5
16	MP1A	Z	124.327	5
17	MP1A		036	5
18	MP1A	Mx	71.78	2
19	MP4A	X	124.327	2
20	MP4A	Z		2
21	MP4A	Mx	036	5
22	MP4A	X	71.78	5
23	MP4A	Z	124.327	5
24	MP4A	Mx	036	J J

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	0	2.5
2	MP3A	Z	101.208	2.5
	MP3A	Mx	0	2.5
3	MP3A	X	0	4.5
	MP3A	Z	101.208	4.5
5	MP3A	Mx	0	4.5
6	MP1A	X	0	2
7	MP1A	Z	99.873	2
9	MP1A	Mx	0	2
	MP4A	X	0	2
10	MP4A	Z	82.782	2
11	MP4A	Mx	0	2
12	MP1A	X	0	2
13	MP1A	Z	157.019	2
14	MP1A	Mx	0	2
15	MP1A	X	0	5
16	MP1A	Ž	157.019	5
17	MP1A	Mx	0	5
18	MP4A	X	0	2
19	MP4A	Z	157.019	2
20	MP4A	Mx	0	2
21	MP4A	X	0	5
22	MP4A	Z	157.019	5
23	MP4A	Mx	0	5

Sept 26, 2023 2:43 PM Checked By:__

: : Mount Analysis

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location(ft,%)
1	MP3A	X	-42.826	2.5
2	MP3A	Z	74.176	2.5
3	MP3A	Mx	.021	2.5
4	MP3A	X	-42.826	4.5
5	MP3A	Z	74.176	4.5
6	MP3A	Mx	.021	4.5
7	MP1A	X	-45.964	2
8	MP1A	Z	79.612	2
9	MP1A	Mx	023	2
10	MP4A	X	-37.986	2
11	MP4A	Z	65.794	2
12	MP4A	Mx	-,019	2
13	MP1A	X	-71.78	2
14	MP1A	Z	124.327	2
15	MP1A	Mx	.036	2
16	MP1A	X	-71.78	5
17	MP1A	Z	124.327	5
18	MP1A	Mx	.036	5
19	MP4A	X	-71.78	2
20	MP4A	Z	124.327	2
21	MP4A	Mx	.036	2
22	MP4A	X	-71.78	5
23	MP4A	Z	124.327	5
24	MP4A	Mx	.036	5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-47.231	2.5
2	MP3A	Z	27.269	2.5
3	MP3A	Mx	.024	2.5
4	MP3A	X	-47.231	4.5
5	MP3A	Z	27.269	4.5
6	MP3A	Mx	.024	4.5
7	MP1A	X	-65.852	2
8	MP1A	Z	38.02	2
9	MP1A	Mx	033	2
10	MP4A	X	-54	2
11	MP4A	Z	31.177	2
12	MP4A	Mx	027	2
13	MP1A	X	-101.016	2
14	MP1A	Z	58.321	2
15	MP1A	Mx	.051	2
16	MP1A	X	-101.016	5
17	MP1A	Z	58.321	5
18	MP1A	Mx	.051	5
19	MP4A	X	-101.016	2
20	MP4A	Z	58.321	2
21	MP4A	Mx	.051	2
22	MP4A	X	-101.016	5
23	MP4A	Z	58.321	5
24	MP4A	Mx	.051	5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-38.98	2.5
2	MP3A	Z	0	2.5
3	MP3A	Mx	.019	2.5
4	MP3A	X	-38.98	4.5

Sept 26, 2023 2:43 PM Checked By:__

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

Mount Analysis

-	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
	MP3A	7	0	4.5
5	MP3A	Mx	.019	4.5
6	MP1A	X	-68.095	2
7	MP1A	Z	0	2
8	MP1A	Mx	034	2
9	MP4A	X	-55.544	2
10	MP4A	Z	0	2
11	MP4A	Mx	028	2
12	MP1A	X	-103.184	2
13	The state of the s	Z	0	2
14	MP1A	Mx	.052	2
15	MP1A	X	-103.184	5
16	MP1A	Z	0	5
17	MP1A	Mx	.052	5
18	MP1A	X	-103.184	2
19	MP4A	Z	0	2
20	MP4A	Mx	.052	2
21	MP4A	X	-103.184	5
22	MP4A	Z	0	5
23	MP4A		.052	5
24	MP4A	Mx	.002	

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-47.231	2.5
2	MP3A	Z	-27.269	2.5
3	MP3A	Mx	.024	2.5
4	MP3A	X	-47.231	4.5
5	MP3A	Z	-27.269	4.5
6	MP3A	Mx	.024	4.5
7	MP1A	X	-65.852	2
8	MP1A	Z	-38.02	2
9	MP1A	Mx	033	2
10	MP4A	X	-54	2
11	MP4A	Z	-31.177	2
12	MP4A	Mx	027	2
13	MP1A	X	-101.016	2
14	MP1A	Z	-58.321	2
15	MP1A	Mx	.051	2
16	MP1A	X	-101.016	5
17	MP1A	Z	-58.321	5
18	MP1A	Mx	.051	5
19	MP4A	X	-101.016	2
20	MP4A	Z	-58.321	2
	MP4A	Mx	.051	2
21	MP4A	X	-101.016	5
22	MP4A	Z	-58,321	5
23	MP4A	Mx	.051	5

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 1	MP3A	X	-42.826	2.5
	MP3A	7	-74.176	2.5
	MP3A	Mx	.021	2.5
3	MP3A	X	-42.826	4.5
4	MP3A	7	-74.176	4.5
5	MP3A	Mx	.021	4.5
6	MP1A	X	-45,964	2
8	MP1A	7	-79.612	2

Colliers Engineering & Design

Mount Analysis

Sept 26, 2023 2:43 PM Checked By:___

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP1A	Mx	023	2
10	MP4A	X	-37.986	2
11	MP4A	Z	-65.794	2
12	MP4A	Mx	019	2
13	MP1A	X	-71.78	2
14	MP1A	Z	-124,327	2
15	MP1A	Mx	.036	2
16	MP1A	X	-71.78	5
17	MP1A	Z	-124,327	5
18	MP1A	Mx	.036	5
19	MP4A	X	-71.78	2
20	MP4A	Z	-124.327	2
21	MP4A	Mx	.036	2
22	MP4A	X	-71.78	5
23	MP4A	Z	-124.327	5
24	MP4A	Mx	.036	5

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	2.5
2	МР3А	Z	-14.956	2.5
3	MP3A	Mx	0	2.5
4	MP3A	X	0	4.5
5	MP3A	Z	-14.956	4.5
6	MP3A	Mx	0	4.5
7	MP1A	X	0	2
8	MP1A	Z	-15.521	2
9	MP1A	Mx	0	2
10	MP4A	X	0	2
11	MP4A	Z	-15.521	2
12	MP4A	Mx	0	2
13	MP1A	X	0	2
14	MP1A	Z	-22.668	2
15	MP1A	Mx	0	2
16	MP1A	X	0	5
17	MP1A	Z	-22.668	5
18	MP1A	Mx	0	5
19	MP4A	X	0	2
20	MP4A	Z	-22.668	2
21	MP4A	Mx	0	2
22	MP4A	X	0	5
23	MP4A	Z	-22.668	5
24	MP4A	Mx	, 0	5

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	6,405	2.5
2	MP3A	Z	-11.094	2.5
3	MP3A	Mx	003	2.5
4	MP3A	X	6.405	4.5
5	MP3A	Z	-11.094	4.5
6	MP3A	Mx	003	4.5
7	MP1A	X	7.199	2
8	MP1A	Z	-12.469	2
9	MP1A	Mx	.004	2
10	MP4A	X	7.176	2
11	MP4A	Z	-12.429	2
12	MP4A	Mx	.004	2

Sept 26, 2023 2:43 PM Checked By:_

Mount Analysis

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
13	MP1A	X	10.442	2
14	MP1A	Z	-18.087	2
15	MP1A	Mx	005	2
16	MP1A	X	10.442	5
17	MP1A	7	-18.087	5
18	MP1A	Mx	005	5
19	MP4A	X	10.442	2
20	MP4A	Z	-18.087	2
	MP4A	Mx	005	2
21	MP4A	X	10.442	5
22	MP4A	7	-18.087	5
23	MP4A	Mx	005	5

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	7.38	2.5
2	MP3A	Z	-4.261	2.5
3	MP3A	Mx	004	2.5
4	MP3A	X	7.38	4.5
5	MP3A	Z	-4.261	4.5
	MP3A	Mx	004	4.5
7	MP1A	X	10.524	2
	MP1A	Z	-6.076	2
9	MP1A	Mx	.005	2
10	MP4A	X	10.402	2
11	MP4A	Z	-6.006	2
	MP4A	Mx	.005	2
12	MP1A	X	14.998	2
13	MP1A	Z	-8.659	2
14	MP1A	Mx	007	2
15	MP1A	X	14.998	5
16	MP1A	Z	-8.659	5
17	MP1A	Mx	007	5
18	MP4A	X	14.998	2
19		Z	-8.659	2
20	MP4A	Mx	007	2
21	MP4A	X	14.998	5
22	MP4A	Z	-8.659	5
23 24	MP4A MP4A	Mx	007	5

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
4 1	MP3A	X	6.376	2.5
	MP3A	7	0	2.5
2	MP3A	Mx	003	2.5
3		X	6.376	4.5
4	MP3A	Z	0	4.5
5	MP3A	Mx	003	4.5
6	MP3A	X	11.029	2
1	MP1A	Z	0	2
8	MP1A	Mx	.006	2
9	MP1A	X	10.841	2
10	MP4A	7	0	2
11	MP4A	Mx	.005	2
12	MP4A	IVIX	15.535	2
13	MP1A	Z	0	2
14	MP1A		008	2
15	MP1A	Mx		5
16	MP1A	X	15.535	

; Colliers Engineering & Design

: Mount Analysis

Sept 26, 2023 2:43 PM Checked By:___

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP1A	Z	0	5
18	MP1A	Mx	008	5
19	MP4A	X	15.535	2
20	MP4A	Z	0	2
21	MP4A	Mx	008	2
22	MP4A	X	15.535	5
23	MP4A	Z	0	5
24	MP4A	Mx	008	5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	7.38	2.5
2	MP3A	Z	4.261	2.5
3	MP3A	Mx	004	2.5
4	MP3A	X	7.38	4.5
5	MP3A	Z	4.261	4.5
6	MP3A	Mx	004	4.5
7	MP1A	X	10.524	2
8	MP1A	Z	6.076	2
9	MP1A	Mx	.005	2
10	MP4A	X	10.402	2
11	MP4A	Z	6.006	2
12	MP4A	Mx	.005	2
13	MP1A	X	14.998	2
14	MP1A	Z	8.659	2
15	MP1A	Mx	007	2
16	MP1A	X	14.998	5
17	MP1A	Z	8.659	5
18	MP1A	Mx	007	5
19	MP4A	X	14.998	2
20	MP4A	Z	8.659	2
21	MP4A	Mx	007	2
22	MP4A	X	14.998	5
23	MP4A	Z	8.659	5
24	MP4A	Mx	007	5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP3A	X	6.405	2.5
2	MP3A	Z	11.094	2.5
3	MP3A	Mx	003	2.5
4	MP3A	X	6.405	4.5
5	MP3A	Z	11.094	4.5
6	MP3A	Mx	003	4.5
7	MP1A	X	7.199	2
8	MP1A	Z	12.469	2
9	MP1A	Mx	.004	2
10	MP4A	X	7.176	2
11	MP4A	Z	12.429	2
12	MP4A	Mx	.004	2
13	MP1A	X	10.442	2
14	MP1A	Z	18.087	2
15	MP1A	Mx	005	2
16	MP1A	X	10.442	5
17	MP1A	Z	18.087	5
18	MP1A	Mx	005	5
19	MP4A	X	10.442	2
20	MP4A	Z	18.087	2

Sept 26, 2023 2:43 PM Checked By:_

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

Mount Analysis

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP4A	Mx	005	2
22	MP4A	X	10.442	5
	MP4A	7	18.087	5
23	MP4A	Mx	005	5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	2.5
2	MP3A	Z	14.956	2.5
3	MP3A	Mx	0	2.5
4	MP3A	X	0	4.5
5	MP3A	Z	14.956	4.5
6	MP3A	Mx	0	4.5
7	MP1A	X	0	2
8	MP1A	Z	15.521	2
9	MP1A	Mx	0	2
10	MP4A	X	0	2
11	MP4A	Z	15.521	2
12	MP4A	Mx	0	2
13	MP1A	X	0	2
14	MP1A	Z	22.668	2
15	MP1A	Mx	0	2
16	MP1A	X	0	5
17	MP1A	Z	22.668	5
18	MP1A	Mx	0	5
19	MP4A	X	0	2
20	MP4A	Z	22.668	2
	MP4A	Mx	0	2
21	MP4A	X	0	5
	MP4A	Z	22.668	5
23	MP4A	Mx	0	5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP3A	X	-6.405	2.5
2	MP3A	Z	11.094	2.5
3	MP3A	Mx	.003	2.5
4	MP3A	X	-6.405	4.5
5	MP3A	Z	11.094	4.5
6	MP3A	Mx	.003	4.5
7	MP1A	X	-7.199	2
8	MP1A	Z	12.469	2
9	MP1A	Mx	004	2
10	MP4A	X	-7.176	2
11	MP4A	Z	12.429	2
12	MP4A	Mx	004	2
13	MP1A	X	-10.442	2
14	MP1A	Z	18.087	2
15	MP1A	Mx	.005	2
16	MP1A	X	-10.442	5
17	MP1A	Z	18.087	5
18	MP1A	Mx	.005	5
19	MP4A	X	-10.442	2
20	MP4A	Z	18.087	2
21	MP4A	Mx	.005	2
22	MP4A	X	-10.442	5
23	MP4A	Z	18.087	5
24	MP4A	Mx	.005	5

: : Mount Analysis

Sept 26, 2023 2:43 PM Checked By:

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-7.38	2.5
2	MP3A	Z	4.261	2.5
3	MP3A	Mx	.004	2.5
4	MP3A	X	-7.38	4.5
5	MP3A	Z	4.261	4.5
6	MP3A	Mx	.004	4.5
7	MP1A	X	-10.524	2
8	MP1A	Z	6.076	2
9	MP1A	Mx	005	2
10	MP4A	X	-10.402	2
11	MP4A	Z	6.006	2
12	MP4A	Mx	005	2
13	MP1A	X	-14.998	2
14	MP1A	Z	8.659	2
15	MP1A	Mx	.007	2
16	MP1A	X	-14.998	5
17	MP1A	Z	8.659	5
18	MP1A	Mx	.007	5
19	MP4A	X	-14.998	2
20	MP4A	Z	8.659	2
21	MP4A	Mx	.007	2
22	MP4A	X	-14.998	5
23	MP4A	Z	8.659	5
24	MP4A	Mx	.007	5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location(ft,%)
1	MP3A	X	-6.376	2.5
2	MP3A	Z	0	2.5
3	MP3A	Mx	.003	2.5
4	MP3A	X	-6.376	4.5
5	MP3A	Z	0	4.5
6	MP3A	Mx	.003	4.5
7	MP1A	X	-11.029	2
8	MP1A	Z	0	2
9	MP1A	Mx	006	2
10	MP4A	X	-10.841	2
11	MP4A	Z	0	2
12	MP4A	Mx	005	2
13	MP1A	X	-15.535	2
14	MP1A	Z	0	2
15	MP1A	Mx	.008	2
16	MP1A	X	-15.535	5
17	MP1A	Z	0	5
18	MP1A	Mx	.008	5
19	MP4A	X	-15.535	2
20	MP4A	Z	0	2
21	MP4A	Mx	.008	2
22	MP4A	X	-15.535	5
23	MP4A	Z	0	5
24	MP4A	Mx	.008	5

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP3A	X	-7.38	2.5
2	MP3A	Z	-4.261	2.5
3	MP3A	Mx	.004	2.5
4	MP3A	X	-7.38	4.5

Colliers Engineering & Design

Sept 26, 2023 2:43 PM Checked By:___

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

Mount Analysis

	Manhadahal	Direction	Magnitude[ib.k-ft]	Location[ft,%]
-	Member Label MP3A	7	-4.261	4.5
5		Mx	.004	4.5
6	MP3A	X	-10.524	2
7	MP1A	Z	-6.076	2
8	MP1A	Mx	005	2
9	MP1A	X	-10.402	2
10	MP4A	Z	-6.006	2
11	MP4A		005	2
12	MP4A	Mx		2
13	MP1A	X	-14.998	2
14	MP1A	Z	-8.659	2
15	MP1A	Mx	.007	5
16	MP1A	X	-14.998	
17	MP1A	Z	-8.659	5
18	MP1A	Mx	.007	5
19	MP4A	X	-14.998	2
20	MP4A	Z	-8.659	2
21	MP4A	Mx	.007	2
22	MP4A	X	-14.998	5
	MP4A	Z	-8.659	5
23 24	MP4A	Mx	.007	5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-6.405	2.5
	MP3A	Z	-11.094	2.5
2	MP3A	Mx	.003	2.5
3	MP3A	X	-6.405	4.5
4	MP3A	Z	-11.094	4.5
5	MP3A	Mx	.003	4.5
6	MP1A	X	-7.199	2
7	MP1A	Z	-12.469	2
8	MP1A MP1A	Mx	004	2
9	MP4A	X	-7.176	2
10	MP4A	Z	-12.429	2
11	MP4A	Mx	004	2
12	MP1A	X	-10.442	2
13		Ž	-18.087	2
14	MP1A	Mx	.005	2
15	MP1A	X	-10.442	5
16	MP1A	7	-18.087	5
17	MP1A	Mx	.005	5
18	MP1A	X	-10.442	2
19	MP4A	Ž	-18.087	2
20	MP4A		.005	2
21	MP4A	Mx	-10.442	5
22	MP4A	X	-18.087	5
23	MP4A		.005	5
24	MP4A	Mx	1,000	

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Politi Loads (DLO 27 .	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	Member Label	X	0	2.5
1	MP3A	7	-4.647	2.5
2	MP3A	Mx	0	2.5
3	MP3A	IVIX	0	4.5
4	MP3A	-	-4.647	4.5
5	MP3A		-4.047	4.5
6	MP3A	Mx	0	2
7	MP1A	X	0	2
8	MP1A	Z	-4.586	

Mount Analysis

Sept 26, 2023 2:43 PM Checked By:____

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP1A	Mx	0	2
10	MP4A	X	0	2
11	MP4A	Z	-3.801	2
12	MP4A	Mx	0	2
13	MP1A	X	0	2
14	MP1A	Z	-7.21	2
15	MP1A	Mx	0	2
16	MP1A	X	Ö	5
17	MP1A	Z	-7.21	5
18	MP1A	Mx	0	5
19	MP4A	X	0	2
20	MP4A	7	-7.21	2
21	MP4A	Mx	0	2
22	MP4A	X	0	5
23	MP4A	7	-7.21	5
24	MP4A	Mx	0	5

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	1.966	2.5
2	MP3A	Z	-3.406	2.5
3	MP3A	Mx	000983	2.5
4	MP3A	X	1.966	4.5
5	MP3A	Z	-3.406	4.5
6	MP3A	Mx	000983	4.5
7	MP1A	X	2.111	2
8	MP1A	Z	-3.656	2
9	MP1A	Mx	.001	2
10	MP4A	X	1.744	2
11	MP4A	Z	-3.021	2
12	MP4A	Mx	.000872	2
13	MP1A	X	3.296	2
14	MP1A	Z	-5.709	2
15	MP1A	Mx	002	2
16	MP1A	X	3.296	5
17	MP1A	Z	-5.709	5
18	MP1A	Mx	002	5
19	MP4A	X	3.296	2
20	MP4A	Z	-5.709	2
21	MP4A	Mx	002	2
22	MP4A	X	3.296	5
23	MP4A	Z	-5.709	5
24	MP4A	Mx	002	5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	2.169	2.5
2	MP3A	Z	-1.252	2.5
3	MP3A	Mx	001	2.5
4	MP3A	X	2.169	4.5
5	MP3A	Z	-1.252	4.5
6	MP3A	Mx	-,001	4.5
7	MP1A	X	3.024	2
8	MP1A	7	-1.746	2
9	MP1A	Mx	.002	2
10	MP4A	X	2.48	2
11	MP4A	7	-1.432	2
12	MP4A	Mx	.001	2

: Colliers Engineering & Design

: Mount Analysis

Sept 26, 2023 2:43 PM Checked By:

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
10		X	4.638	2
13	MP1A	2	-2.678	2
14	MP1A		002	2
15	MP1A	Mx		5
16	MP1A	X	4.638	
17	MP1A	Z	-2.678	5
18	MP1A	Mx	-,002	5
19	MP4A	X	4.638	2
	MP4A	7	-2.678	2
20		Mx	002	2
21	MP4A	IVIA	4.638	5
22	MP4A	^	-2.678	5
23	MP4A			5
24	MP4A	Mx	002	

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	1.79	2.5
	MP3A	7	0	2.5
2	MP3A	Mx	000895	2.5
3		X	1.79	4.5
4	MP3A	Z	0	4.5
5	MP3A	Mx	000895	4.5
6	MP3A	X	3.127	2
7	MP1A	Ž	0	2
8	MP1A	Mx	.002	2
9	MP1A	X	2.55	2
10	MP4A	Z	0	2
11	MP4A		.001	2
12	MP4A	Mx	4.738	2
13	MP1A	X	4.730	2
14	MP1A	Z		2
15	MP1A	Mx	002	5
16	MP1A	X	4.738	5
17	MP1A	Z	0	5
18	MP1A	Mx	002	2
19	MP4A	X	4.738	
20	MP4A	Z	0	2
21	MP4A	Mx	002	2
22	MP4A	X	4.738	5
23	MP4A	Z	0	5
24	MP4A	Mx	002	5

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

Mami	as Labol	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	per Label P3A	X	2.169	2.5
		7	1,252	2.5
	P3A	Mx	001	2.5
·	P3A	X	2.169	4.5
	P3A	7	1.252	4.5
0	P3A	NA.	001	4.5
0	P3A	Mx	3.024	2
7 N	P1A	X		2
8 N	P1A	Z	1.746	2
9 N	P1A	Mx	.002	2
10 N	P4A	X	2.48	2
	P4A	Z	1.432	
	P4A	Mx	.001	2
	P1A	X	4.638	
	P1A	Z	2.678	2
17	P1A	Mx	002	2
10	IP1A	X	4.638	5

Mount Analysis

Sept 26, 2023	
2:43 PM	
Checked By:	

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP1A	Z	2.678	5
18	MP1A	Mx	002	5
19	MP4A	X	4.638	2
20	MP4A	Z	2.678	2
21	MP4A	Mx	002	2
22	MP4A	X	4.638	5
23	MP4A	Z	2.678	5
24	MP4A	Mx	002	5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	1.966	2.5
2	MP3A	Z	3.406	2.5
3	MP3A	Mx	000983	2.5
4	MP3A	X	1.966	4.5
5	MP3A	Z	3.406	4.5
6	MP3A	Mx	000983	4.5
7	MP1A	X	2.111	2
8	MP1A	Z	3.656	2
9	MP1A	Mx	.001	2
10	MP4A	X	1.744	2
11	MP4A	Z	3.021	2
12	MP4A	Mx	.000872	2
13	MP1A	X	3.296	2
14	MP1A	Z	5.709	2
15	MP1A	Mx	002	2
16	MP1A	X	3.296	5
17	MP1A	Z	5.709	5
18	MP1A	Mx	002	5
19	MP4A	X	3.296	2
20	MP4A	Z	5.709	2
21	MP4A	Mx	002	2
22	MP4A	X	3.296	5
23	MP4A	Z	5.709	5
24	MP4A	Mx	002	5

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	2.5
2	MP3A	Z	4.647	2.5
3	MP3A	Mx	0	2.5
4	MP3A	X	0	4.5
5	MP3A	Z	4.647	4.5
6	MP3A	Mx	0	4.5
7	MP1A	X	0	2
8	MP1A	Z	4.586	2
9	MP1A	Mx	0	2
10	MP4A	X	0	2
11	MP4A	Z	3.801	2
12	MP4A	Mx	0	2
13	MP1A	X	0	2
14	MP1A	Z	7.21	2
15	MP1A	Mx	0	2
16	MP1A	X	0	5
17	MP1A	Z	7.21	5
18	MP1A	Mx	0	5
19	MP4A	X	0	2
20	MP4A	Ž	7.21	2

Sept 26, 2023 2:43 PM Checked By:_

: Mount Analysis

Member Point Loads (BLC 33: Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
21	MP4A	Mx	0	2
21 22	MP4A	X	0	5
23	MP4A	Z	7.21	5
24	MP4A	Mx	0	5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-1.966	2.5
2	MP3A	Z	3.406	2.5
3	MP3A	Mx	.000983	2.5
4	MP3A	X	-1.966	4.5
5	MP3A	Z	3.406	4.5
6	MP3A	Mx	.000983	4.5
7	MP1A	X	-2.111	2
8	MP1A	Z	3.656	2
9	MP1A	Mx	001	2
10	MP4A	X	-1.744	2
11	MP4A	Z	3.021	2
12	MP4A	Mx	000872	2
13	MP1A	X	-3.296	2
14	MP1A	Z	5.709	2
15	MP1A	Mx	.002	2
16	MP1A	X	-3.296	5
17	MP1A	Z	5.709	5
18	MP1A	Mx	.002	5
19	MP4A	X	-3.296	2
20	MP4A	Z	5.709	2
21	MP4A	Mx	.002	2
22	MP4A	X	-3.296	5
23	MP4A	Z	5.709	5
24	MP4A	Mx	.002	5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-2.169	2.5
2	MP3A	Z	1.252	2.5
3	MP3A	Mx	.001	2.5
4	MP3A	X	-2.169	4.5
5	MP3A	Z	1.252	4.5
6	MP3A	Mx	.001	4.5
7	MP1A	X	-3.024	2
8	MP1A	Z	1.746	2
9	MP1A	Mx	002	2
10	MP4A	X	-2.48	2
11	MP4A	Z	1.432	2
12	MP4A	Mx	001	2
13	MP1A	X	-4.638	2
14	MP1A	Z	2.678	2
15	MP1A	Mx	.002	2
16	MP1A	X	-4.638	5
17	MP1A	Z	2.678	5
18	MP1A	Mx	.002	5
19	MP4A	X	-4.638	2
20	MP4A	Z	2.678	2
21	MP4A	Mx	.002	2
22	MP4A	X	-4.638	5
23	MP4A	Z	2.678	5
24	MP4A	Mx	.002	5

: Colliers Engineering & Design

Mount Analysis

Sept 26, 2023 2:43 PM Checked By:___

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-1.79	2.5
2	MP3A	Z	0	2.5
3	MP3A	Mx	.000895	2.5
4	MP3A	X	-1.79	4.5
5	MP3A	Z	0	4.5
6	MP3A	Mx	.000895	4.5
7	MP1A	X	-3.127	2
8	MP1A	Z	0	2
9	MP1A	Mx	002	2
10	MP4A	X	-2.55	2
11	MP4A	Z	0	2
12	MP4A	Mx	001	2
13	MP1A	X	-4.738	2
14	MP1A	Z	0	2
15	MP1A	Mx	.002	2
16	MP1A	X	-4.738	5
17	MP1A	Z	0	5
18	MP1A	Mx	.002	5
19	MP4A	X	-4.738	2
20	MP4A	Z	0	2
21	MP4A	Mx	.002	2
22	MP4A	X	-4.738	5
23	MP4A	Z	0	5
24	MP4A	Mx	.002	5

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	-2.169	2.5
2	MP3A	Z	-1.252	2.5
3	MP3A	Mx	.001	2.5
4	MP3A	X	-2.169	4.5
5	MP3A	Z	-1.252	4.5
6	MP3A	Mx	.001	4.5
7	MP1A	X	-3.024	2
8	MP1A	Z	-1.746	2
9	MP1A	Mx	002	2
10	MP4A	X	-2.48	2
11	MP4A	Z	-1.432	2
12	MP4A	Mx	001	2
13	MP1A	X	-4.638	2
14	MP1A	Z	-2.678	2
15	MP1A	Mx	.002	2
16	MP1A	X	-4.638	5
17	MP1A	Z	-2.678	5
18	MP1A	Mx	.002	5
19	MP4A	Х	-4.638	2
20	MP4A	Z	-2.678	2
21	MP4A	Mx	.002	2
22	MP4A	X	-4.638	5
23	MP4A	Z	-2.678	5
24	MP4A	Mx	.002	5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-1.966	2.5
2	MP3A	Z	-3.406	2.5
3	MP3A	Mx	.000983	2.5
4	MP3A	X	-1.966	4.5

Sept 26, 2023 2:43 PM Checked By:_

: Mount Analysis

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP3A	Z	-3.406	4.5
6	MP3A	Mx	.000983	4.5
7	MP1A	X	-2.111	2
8	MP1A	Z	-3.656	2
9	MP1A	Mx	001	2
10	MP4A	X	-1.744	2
11	MP4A	Z	-3.021	2
12	MP4A	Mx	000872	2
13	MP1A	X	-3.296	2
14	MP1A	Z	-5.709	2
15	MP1A	Mx	.002	2
16	MP1A	X	-3.296	5
17	MP1A	Z	-5.709	5
18	MP1A	Mix	.002	5
19	MP4A	X	-3.296	2
20	MP4A	Z	-5.709	2
21	MP4A	Mx	.002	2
22	MP4A	X	-3.296	5
23	MP4A	Z	-5.709	5
24	MP4A	Mx	.002	5

Member Point Loads (BLC 77: Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4	M2	Y	-500	0

Member Point Loads (BLC 78: Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 1	M2	Y	-500	%50

Member Point Loads (BLC 79: Lv1)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 M2	Y	-250	0

Member Point Loads (BLC 80 : Lv2)

Member	Point Loads (BLC 00 .	- V 2./			
	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]	
4	M2		-250	%50	
1	IVIZ				

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Y	0	2.5
2	MP3A	My	0	2.5
3	MP3A	Mz	0	2.5
4	MP3A	Y	0	4.5
5	MP3A	My	0	4.5
6	MP3A	Mz	0	4.5
7	MP1A	Y	0	2
8	MP1A	My	0	2
9	MP1A	Mz	0	2
10	MP4A	Y	0	2
11	MP4A	My	0	2
12	MP4A	Mz	0	2
13	MP1A	Y	0	2
14	MP1A	My	0	2
15	MP1A	Mz	0	2
16	MP1A	Y	0	5
17	MP1A	My	0	5

Sept 26, 2023 2:43 PM Checked By:

: : Mount Analysis

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP1A	Mz	0	5
19	MP4A	Y	0	2
20	MP4A	Mv	o o	2
21	MP4A	Mz	0	2
22	MP4A	Y	Ō	5
23	MP4A	Mv	l ö	5
24	MP4A	Mz	0	5

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Z	86	2.5
2	MP3A	Mx	0	2.5
3	MP3A	Z	86	4.5
4	MP3A	Mx	0	4.5
5	MP1A	Z	-2.373	2
6	MP1A	Mx	0	2
7	MP4A	Z	-2.241	2
8	MP4A	Mx	0	2
9	MP1A	Z	502	2
10	MP1A	Mx	0	2
11	MP1A	Z	502	5
12	MP1A	Mx	0	5
13	MP4A	Z	502	2
14	MP4A	Mx	0	2
15	MP4A	Z	502	5
16	MP4A	Mx	0	5

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	.86	2.5
2	MP3A	Mx	00043	2.5
3	MP3A	X	.86	4.5
4	MP3A	Mx	00043	4.5
5	MP1A	X	2.373	2
6	MP1A	Mx	.001	2
7	MP4A	X	2.241	2
8	MP4A	Mx	.001	2
9	MP1A	X	.502	2
10	MP1A	Mx	000251	2
11	MP1A	X	.502	5
12	MP1A	Mx	000251	5
13	MP4A	X	.502	2
14	MP4A	Mx	000251	2
15	MP4A	X	.502	5
16	MP4A	Mx	000251	5

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[ib/ft,F,ksf]	Start Location(ft.	End Location(ft
1	MP1A	Y	-5.685	-5.685	0	%100
2	MP3A	Y	-5.685	-5.685	0	%100
3	MP4A	Υ	-5.685	-5.685	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.F.ksf]	Start Location(ft	End Location(ft
1	MP1A	X	0	0	0	%100
2	MP1A	Z	-12.684	-12.684	0	%100

: Mount Analysis

Sept 26, 2023 2:43 PM Checked By:_

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft,F,ksf)	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	
3	MP3A	X	0	0	0	%100
4	MP3A	7	-12.684	-12.684	0	%100
5	MP4A	X	0	0	0	%100
6	MP4A	7	-12.684	-12.684	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft,
1 1	MP1A	X	6.342	6.342	0	%100
2	MP1A	7	-10.985	-10.985	0	%100
2	MP3A	X	6.342	6.342	0	%100
7	MP3A	7	-10.985	-10.985	0	%100
4	MP4A	X	6.342	6.342	0	%100
6	MP4A	7	-10.985	-10.985	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

Member Label	Direction	Start Magnitude(lb/ft F.ksfl	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft
	X		10.985	0	%100
	7		-6.342	0	%100
	X		10.985	0	%100
	7		-6.342	0	%100
	Y		10.985	0	%100
	7		-6.342	0	%100
	Member Label MP1A MP1A MP3A MP3A MP4A MP4A	MP1A X MP1A Z MP3A X MP3A Z MP4A X	MP1A X 10.985 MP1A Z -6.342 MP3A X 10.985 MP3A Z -6.342 MP4A X 10.985	MP1A X 10.985 10.985 MP1A Z -6.342 -6.342 MP3A X 10.985 10.985 MP3A Z -6.342 -6.342 MP4A X 10.985 10.985 MP4A X 10.985 10.985	MP1A X 10.985 0 MP1A Z -6.342 -6.342 0 MP3A X 10.985 10.985 0 MP3A Z -6.342 -6.342 0 MP3A Z -6.342 -6.342 0 MP4A X 10.985 10.985 0

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

nber Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft
	X		12.684	0	%100
	7	0	0	0	%100
	×		12.684	0	%100
	7		0	0	%100
	Y		12.684	0	%100
	7		0	0	%100
1	MP1A MP1A MP3A MP3A MP4A MP4A	MP1A X MP1A Z MP3A X MP3A Z MP4A X	MP1A X 12.684 MP1A Z 0 MP3A X 12.684 MP3A Z 0 MP4A X 12.684	MP1A X 12.684 12.684 MP1A Z 0 0 MP3A X 12.684 12.684 MP3A Z 0 0 MP4A X 12.684 12.684	MP1A X 12.684 12.684 0 MP1A Z 0 0 0 MP3A X 12.684 12.684 0 MP3A Z 0 0 0 MP4A X 12.684 12.684 0

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude(lb/ft,F,ksf)	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft,
1	MP1A	X	10.985	10.985	0	%100
2	MP1A	7	6.342	6.342	0	%100
2	MP3A	X	10.985	10.985	0	%100
4	MP3A	7	6.342	6.342	0	%100
4	MP4A	Y	10.985	10.985	0	%100
5	MP4A	7	6.342	6.342	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft.
4	MP1A	X	6.342	6.342	0	%100
2	MP1A	7	10.985	10.985	0	%100
2	MP3A	Y	6.342	6.342	0	%100
1	MP3A	7	10.985	10.985	0	%100
4	MP4A	Y	6.342	6.342	0	%100
5 6	MP4A	7	10.985	10.985	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft,
	MP1A	X	O CLEAR MAGGINESCOPE THE THEORY	0	0	%100
	MP1A	7	12.684	12.684	0	%100
2	The state of the s	V	0	0	0	%100
3	MP3A	7	12.684	12.684	0	%100
4	MP3A		12.007	12,007		

Sept 26, 2023 2:43 PM Checked By:__

Mount Analysis

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitudelib/ft.F.ksfl	Start Location[ft	End Locationift
5	MP4A	X	0	0	0	%100
6	MP4A	Z	12.684	12.684	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F.ksf]	Start Location(ft.	End Location(ft
1	MP1A	X	-6.342	-6.342	0	%100
2	MP1A	Z	10.985	10.985	0	%100
3	MP3A	X	-6.342	-6.342	0	%100
4	MP3A	Z	10.985	10.985	0	%100
5	MP4A	X	-6.342	-6.342	0	%100
6	MP4A	Z	10.985	10.985	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft,F,ksf)	Start Location[ft	.End Location(ft
1	MP1A	X	-10.985	-10.985	0	%100
2	MP1A	Z	6.342	6.342	0	%100
3	MP3A	X	-10.985	-10.985	0	%100
4	MP3A	Z	6.342	6.342	0	%100
5	MP4A	X	-10.985	-10.985	0	%100
6	MP4A	Z	6.342	6.342	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude(lb/ft,F,ksfl	End Magnitude(lb/ft,F,ksfl	Start Location(ft.	End Location[ft
1	MP1A	X	-12.684	-12.684	0	%100
2	MP1A	Z	0	0	0	%100
3	MP3A	X	-12.684	-12.684	0	%100
4	MP3A	Z	0	0	0	%100
5	MP4A	X	-12.684	-12.684	0	%100
6	MP4A	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft,F,ksfl	Start Location(ft.	End Location(ft
1	MP1A	X	-10.985	-10.985	0	%100
2	MP1A	Z	-6.342	-6.342	0	%100
3	MP3A	X	-10.985	-10.985	0	%100
4	MP3A	Z	-6.342	-6.342	0	%100
5	MP4A	X	-10.985	-10.985	0	%100
6	MP4A	Z	-6.342	-6.342	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksfl	Start LocationIft.	End Location(ft
1	MP1A	X	-6.342	-6.342	0	%100
2	MP1A	Z	-10.985	-10.985	0	%100
3	MP3A	X	-6.342	-6.342	0	%100
4	MP3A	Z	-10.985	-10.985	0	%100
5	MP4A	X	-6.342	-6.342	0	%100
6	MP4A	Z	-10.985	-10.985	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(ft.	End Location[ft,
1	MP1A	X	0	0	0	%100
2	MP1A	Z	-3.355	-3.355	0	%100
3	MP3A	X	0	0	0	%100
4	MP3A	Z	-3.355	-3.355	0	%100
5	MP4A	X	0	0	0	%100
6	MP4A	Z	-3.355	-3.355	0	%100

Sept 26, 2023 2:43 PM Checked By:_

Mount Analysis

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	.End Location[ft
4 [MP1A	X	1.677	1.677	0	%100
2	MP1A	7	-2.905	-2.905	0	%100
2	MP3A	Y	1.677	1,677	0	%100
3	MP3A	7	-2.905	-2.905	0	%100
4		V	1.677	1.677	0	%100
6	MP4A MP4A	1 7	-2.905	-2.905	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[ib/ft,F,ksf]	Start Location[ft.	End Location[ft,
1	MP1A	X	2.905	2.905	0	%100
2	MP1A	7	-1.677	-1.677	0	%100
2	MP3A	Y	2,905	2.905	0	%100
4	MP3A	7	-1.677	-1.677	0	%100
4	MP4A	Y	2.905	2.905	0	%100
6	MP4A	7	-1.677	-1.677	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	.End Location[ft,
4	MP1A	Y	3.355	3.355	0	%100
-	MP1A	7	0	0	0	%100
2		- ×	3.355	3.355	0	%100
3	MP3A		0.000	0.000	0	%100
4	MP3A	<u>Z</u>	3.355	3.355	0	%100
5	MP4A	<u> </u>		0.000	0	%100
6	MP4A	Z	0	0	U	70100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Mambau Labal	Direction	Start Magnitude[lb/ft.F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	.End Location[ft
4	Member Label MP1A	Y	2.905	2.905	0	%100
2	MP1A	7	1.677	1.677	0	%100
2		\ \ \ \ \ \ \	2.905	2.905	0	%100
3	MP3A	7	1.677	1.677	0	%100
4	MP3A	\ \ \ \ \ \	2.905	2.905	0	%100
5	MP4A		1.677	1.677	0	%100
6	MP4A		1.011	1.01		

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

End Magnitude[lb/ft,F,ksf] 1,677		
	0	%100
2.905	0	%100
1.677	0	%100
2.905	0	%100
1.677	0	%100
	0	%100
i	2.905	

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	March en Labal	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F.ksf]	Start Location[ft.	End Location[ft
4	Member Label MP1A	Y	Otal Magnitude (127 127 129 1	0	0	%100
-	MP1A	7	3.355	3,355	0	%100
2		V	0.355	0	0	%100
3	MP3A	7	3.355	3.355	0	%100
4	MP3A	\ \ \ \ \ \	0.555	0	0	%100
5	MP4A		3.355	3.355	0	%100
6	MP4A	1 4	3.300	0.000		

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft
4	MP1A	X	-1.677	-1.677	0	%100
3	MP1A	7	2.905	2.905	0	%100
	WIFTA		2.000			

Sept 26, 2023 2:43 PM Checked By:__

Mount Analysis

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft,F,ksfl	Start LocationIft.	End Locationift.
3	MP3A	X	-1.677	-1.677	0	%100
4	MP3A	Z	2.905	2.905	0	%100
5	MP4A	X	-1.677	-1.677	0	%100
6	MP4A	Z	2.905	2.905	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(ft	End Location[ft
1	MP1A	X	-2.905	-2.905	T 0	%100
2	MP1A	Z	1.677	1,677	0	%100
3	MP3A	X	-2.905	-2.905	0	%100
4	MP3A	Z	1.677	1.677	0	%100
5	MP4A	X	-2,905	-2.905	0	%100
6	MP4A	Z	1.677	1.677	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Locationiff
1	MP1A	X	-3.355	-3.355	0	%100
2	MP1A	Z	0	0	0	%100
3	MP3A	X	-3.355	-3.355	0	%100
4	MP3A	Z	0	0	0	%100
5	MP4A	X	-3.355	-3.355	0	%100
6	MP4A	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location(ft
1	MP1A	X	-2.905	-2.905	0	%100
2	MP1A	Z	-1.677	-1.677	0	%100
3	MP3A	X	-2.905	-2.905	0	%100
4	MP3A	Z	-1.677	-1.677	0	%100
5	MP4A	X	-2.905	-2.905	0	%100
6	MP4A	Z	-1.677	-1.677	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(ft	End Location[ft
1	MP1A	X	-1.677	-1.677	0	%100
2	MP1A	Z	-2.905	-2.905	0	%100
3	MP3A	X	-1.677	-1.677	0	%100
4	MP3A	Z	-2.905	-2.905	0	%100
5	MP4A	X	-1.677	-1.677	0	%100
6	MP4A	Z	-2.905	-2.905	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F.ksf]	End Magnitude(lb/ft,F.ksfl	Start Location(ft	End Location[ft,
1	MP1A	X	0	0	0	%100
2	MP1A	Z	582	582	0	%100
3	MP3A	X	0	0	0	%100
4	MP3A	Z	582	582	0	%100
5	MP4A	X	0	0	0	%100
6	MP4A	Z	582	582	Ŏ	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(ft	.End Location(ft
1	MP1A	X	.291	.291	0	%100
2	MP1A	Z	504	504	0	%100
3	MP3A	X	.291	.291	0	%100
4	MP3A	Z	504	504	0	%100

Mount Analysis

Sept 26, 2023 2:43 PM Checked By:_

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[ib/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft
E	MP4A	X	.291	.291	0	%100
0	MP4A	7	504	504	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft
4	MP1A	X	.504	.504	0	%100
2	MP1A	7	291	-,291	0	%100
2	MP3A	V V	.504	.504	0	%100
3		1 2	291	291	0	%100
4	MP3A		.504	.504	0	%100
5	MP4A		291	291	0	%100
6 1	MP4A		23			

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

Mambar Labol	Direction	Start Magnitudellh/ft F ksfl	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft
	Direction			0	%100
	1 7	0	0	0	%100
		582	582	0	%100
	1 2	.502	0	0	%100
	- Z	592	582	0	%100
		,362	0	0	%100
	Member Label MP1A MP1A MP3A MP3A MP4A MP4A	MP1A X MP1A Z MP3A X MP3A Z MP4A X	MP1A X .582 MP1A Z 0 MP3A X .582 MP3A Z 0 MP4A X .582	MP1A X .582 .582 MP1A Z 0 0 MP3A X .582 .582 MP3A Z 0 0 MP4A X .582 .582	MP1A X .582 .582 0 MP1A Z 0 0 0 MP3A X .582 .582 0 MP3A Z 0 0 0 MP4A X .582 .582 0

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Manufact Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	.End Location[ft,.
4 1	Member Label MP1A	Direction	.504	.504	0	%100
2		1 2	.291	.291	0	%100
2	MP1A		.504	.504	0	%100
3	MP3A		.291	.291	0	%100
4	MP3A	- Z	.504	.504	0	%100
5	MP4A	1 2	.291	.291	0	%100
6	MP4A	1 4	.231	.201		

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[ib/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	
4	MP1A	X	.291	.291	0	%100
2	MP1A	7	.504	.504	0	%100
2		- Z	.291	.291	0	%100
3	MP3A	+	.504	.504	0	%100
4	MP3A	<u> </u>		.291	0	%100
5	MP4A	<u> </u>	.291	.504	0	%100
6	MP4A	Z	,504	.504		70100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

NO G N N N	******		End Magnitude(lb/ft,F,ksf)	Start Location[ft.	End Location[ft,
	V	O O	0	0	%100
	7	582	.582	0	%100
	Y	0	0	0	%100
	7	582	.582	0	%100
	\ \ \ \ \ \	0	0	0	%100
	7	582	.582	0	%100
	Member Label MP1A MP1A MP3A MP3A MP4A MP4A	Member Label Direction MP1A X MP1A Z MP3A X MP3A Z MP4A X	Member Label Direction Start Magnitude[ib/ft,F,ksf] MP1A X 0 MP1A Z .582 MP3A X 0 MP3A Z .582 MP4A X 0	Member Label Direction Start Magnitude[lb/ft,F,ksf] End Magnitude[lb/ft,F,ksf] MP1A X 0 0 MP1A Z .582 .582 MP3A X 0 0 MP3A Z .582 .582 MP4A X 0 0	MP1A X 0 0 0 MP1A Z .582 .582 0 MP3A X 0 0 0 MP3A Z .582 .582 0 MP4A X 0 0 0 MP4A X 0 0 0

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	.End Location[ft
4	MP1A	I Y	291	291	0	%100
2	MP1A	7	.504	.504	0	%100
2		\ \ \ \ \ \	291	291	0	%100
3	MP3A	1 2	.504	.504	0	%100
4	MP3A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	291	291	0	%100
5	MP4A	1-4-		.504	0	%100
6	MP4A		.504	.304		,,,,,,,

Colliers Engineering & Design

Sept 26, 2023 2:43 PM Checked By:_

: Mount Analysis

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location(ft
1	MP1A	X	504	504	0	%100
2	MP1A	Z	.291	.291	0	%100
3	MP3A	X	504	504	0	%100
4	MP3A	Z	.291	.291	0	%100
5	MP4A	Х	504	504	0	%100
6	MP4A	Z	.291	.291	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft,F,ksf)	Start Location(ft.	End Location[ft,
1	MP1A	X	582	582	0	%100
2	MP1A	Z	0	0	0	%100
3	MP3A	X	-,582	582	0	%100
4	MP3A	Z	0 100 200	0	0	%100
5	MP4A	X	582	582	0	%100
6	MP4A	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(ft.	End Location[ft
1	MP1A	X	504	504	0	%100
2	MP1A	Z	291	291	0	%100
3	MP3A	X	504	504	0	%100
4	MP3A	Z	-,291	291	0	%100
5	MP4A	X	504	504	0	%100
6	MP4A	Z	291	291	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft
1	MP1A	X	291	291	0	%100
2	MP1A	Z	504	504	0	%100
3	MP3A	X	291	291	0	%100
4	MP3A	Z	504	504	0	%100
5	MP4A	X	291	291	0	%100
6	MP4A	Z	504	504	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitudelksfl
		No	Data to Print		ALIGNIUS STOLE	mogmoognog

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N4	max	534.079	10	2352.178	1	758,504	1	0	75	.073	10	0	75
2		min	-534.079	4	-1831.339	7	-736.725	7	0	1	073	4	0	1
3	N6	max	170.825	4	1995.614	7	234.024	7	0	75	.034	10	0	75
4		min	-170.825	10	-2187.903	1	-255.802	1	0	1	034	4	0	1
5	N10	max	201.299	11	815.152	1	295.488	1	0	75	.048	11	0	75
6		min	-201.299	3	-744.13	7	-388.538	7	0	1	048	3	0	1
7	N12	max	29.942	5	842.045	7	102.286	19	0	75	.017	11	0	75
8		min	-29.942	9	-717.237	1	-4.282	1	0	1	017	3	0	1
9	N16	max	499.605	10	2241.152	1	709.38	1	0	75	.076	10	0	75
10		min	-499.605	4	-1745.418	7	-692.007	7	0	1	076	4	0	1
11	N18	max	148.902	4	1904.413	7	206.396	7	0	75	.036	10	0	75
12	- vani	min	-148.902	10	-2082.157	1	-223.77	1	0	1	036	4	0	1
13	Totals:	max	880.707	10	1171.185	34	1279.519	1						
14	ne de	min	-880.707	4	315.889	67	-1279.519	7			2			

Sept 26, 2023 2:43 PM Checked By:_

: Mount Analysis

Envelope AISC 15th(360-16): LRFD Steel Code Checks

		Member	Shape	Code C	Locifti	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	phi*Mn z	Cb	Egn
ſ	4	MP1A						3.719		1	17855.085	32130	1.872	1.872	1	H1-10
-	-	MP3A	PIPE 2.0				.027			8	17855.085	32130	1.872	1.872	1	H1-1b
-	-	MP4A	PIPE 2.0		3.646			4.667	-		17855.085		1.872	1.872	1	H1-1b

VzW SMART Tool[©] Vendor

Client:	Verizon Wireless	Date: 9/29/20	23
Site Name:	MYSTIC SOUTH CT		
MDG #:	5000244749		
Fuze ID #:	16244602	Page: 1	
		Version	1.01

I. Mount-to-Tower Connection Check

Custom Orientation Requirea

Nodes	Orientation
labeled per Risa)	(per graphic of typical platform)
N4	
N6	0
N10	0
N12	0
N18	0
N16	0
	A CONTRACTOR OF THE
	ورويس الاقتار والأجرانان الأ
والوالانواق	

Tower Connection Bolt Checks

Bolt Orientation

Bolt Quantity per Reaction:

 d_x (in) (Delta X of typ. bolt config. sketch): d_y (in) (Delta Y of typ. bolt config. sketch): Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips):
Required Shear Strength / bolt (kips):
Tensile Capacity / bolt (kips):
Shear Capacity / bolt (kips):
Bolt Overall Utilization:

Tower Connection Baseplate Checks

Yes Parallel

Yes

(Horizont	at)
2.875	
0.5	
A307	
0.5	
0.0	
1.2	
6.6	
4.0	
29.6%	

No

ATTACHMENT 5

Map Block Lot

174-22-1

Building # 1

PID

8983

Account

00664600

Property Information

Property Location	7 BROADWAY AVE EXT						
Owner	PLANETA PROPERTIES						
Co-Owner							
D. M. A. I. Junean	PO BOX 218						
Mailing Address	MYSTIC	СТ	06355-0218				
Land Use	4000	INDUSTRIAL M	-96				
Land Class	Į.						
Zoning Code	M-1						
Census Tract	7053						

Neighborhood	3500	
Acreage	4.3	
Utilities		
Lot Setting/Desc	Suburban	Level
Book / Page	0409/0933	
Additional Info		

Primary Construction Details

Year Built	1950
Building Desc.	INDUSTRIAL M-96
Building Style	Industrial
Building Grade	Ave/Good
Stories	1
Оссирапсу	1
Exterior Walls	Brick/Masonry
Exterior Walls 2	Pre-finsh Metl
Roof Style	Flat
Roof Cover	Tar & Gravel
Interior Walls	Minim/Masonry
Interior Walls 2	Drywall/Sheet
Interior Floors 1	Concr Abv Grad
Interior Floors 2	Carpet

Heating Fuel	Oil
Heating Type	Steam
АС Туре	None
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	
Total Rooms	0
Bath Style	NA
Kitchen Style	NA
Fin Bsmt Area	
Fin Bsmt Quality	
Bsmt Gar	
Fireplaces	

(*Industrial / Commercial Details)

(111445 2141)	
Building Use	Ind/Comm
Building Condition	AV
Sprinkler %	
Heat / AC	NONE
Frame Type	MASONRY
Baths / Plumbing	AVERAGE
Ceiling / Wall	CEIL & MIN WL
Rooms / Prtns	AVERAGE
Wall Height	14
First Floor Use	4000
Foundation	

Report Created On

3/23/2022

Map Block Lot

174-22-1

Building # 1

PID

8983 Account

00664600

	mary (A							
Item	App	raised	Assessed	Subarea Type	Gross Area	ı (sq ft)	Living Area (sq ft	
Buildings	2529700		1770800	Office, (Average)	3700		3700	
Extras	49900	_	35000	First Floor	62973		62973	
Improvements				Loading Platform, Finishe	d 240		0	
Outbuildings	259000		181200	Porch, Open	80		0	
Land	740300		518200	Warehouse	5000		3250	
Total	3578900		2505200					
Outbuilding an	nd Extra F	eatures	77.					
Туре		Description	n					
PAVING-ASPHALT		48000.00 S.	F					
ELEVATED TANK	ELEVATED TANK 75000.00 GALS		ALS					
FENCE-8' CHAIN		218.00 L.F.						
W/LIGHTS ETC		64.00 S.F.						
FENCE-6' CHAIN		288.00 L.F,						
SHED FRAME		42.00 S.F.						
SPRINKLERS-WET		64683.00 S.I						
WET/CONCEALED		6786.00 S.F.						
DRY		777.00 S.F.						
LOAD LEVELERS		2.00 UNITS		Total Area	71993		69923	
Sales History								
Owner of Record				Book/ Page Sale	e Date	Sale Price		
PLANETA PROPERT	TES			0409/0933 10/2	20/1997	0		
PLANETA EDWARD	J			0221/0680 12/2	29/1978	0		

ATTACHMENT 6

Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here Postmark with Date of Receipt.			
Kenneth C. Baldwin, Esq. Robinson & Cole LLP	67, 2222 2, 23, 23, 23, 23, 23, 23, 23, 23		Postmark with Date	of Receipt.	3175-1	E
280 Trumbull Street Hartford, CT 06103		01/08/2024 US POSTAGE \$003/1/99 ZIR 06103 041L12:03937 USPS				
	Postmaster, per (name of receiving employee)					
	DA.					
USPS [®] Tracking Number Firm-specific Identifier	(Name) Street, C	Address ity, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1.	Danielle Chesebroug					,
	Town of Storington			m-		
	Stonington, CT 063	78	1			
2.	Clifton Iler, AICP To					
	Town of Stonington					
	152 Elm Street	70	-			
	Stonington, CT 063 Planeta Properties	/8				
3.	PO Box 218					
	Mystic, CT 06355-0	2218				
4.						

_						
5.						
6.						