

56 Prospect Street, P.O. Box 270 Hartford, CT 06103

Kathleen M. Shanley Manager – Transmission Siting

Tel: (860) 728-4527

January 10, 2022

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification

Ekonk CSP Sterling

389 Ekonk Hill Road, Sterling, CT 06354

Latitude: 41-39-49.23 N / Longitude: 71-50-56.45 W

Dear Ms. Bachman:

The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") currently maintains multiple antennas at various mounting heights on an existing 140-foot self-support tower located at 389 Ekonk Hill Road in Sterling. See Attachment A, Parcel Map and Property Card. The tower and property are owned by the State of Connecticut and utilized by the Department of Emergency Services and Public Protection ("DESPP"). Eversource and DESPP have entered into an agreement allowing the modification of Eversource's equipment on the Connecticut State Police tower. See Attachment B, Letter of Authorization. Eversource plans to remove and replace two 12-inch by 12-inch panel antennas with one 26-inch by 17-inch broadband log periodic antenna to be mounted on a new 1-foot stand-off mount at 109 feet above ground level ("AGL"). The existing cabling will be reused for the new antenna. There will be no changes to the area of the fenced compound, the tower or the existing antennas and equipment currently mounted on the tower. The tower and existing and proposed equipment are depicted on Attachment C, Construction Drawings, dated October 15, 2021 and Attachment D, Structural Analysis, dated August 26, 2021. The Connecticut Siting Council approved the self-support tower at this location in Docket No. 157 in March 1993.

The proposed installation is part of Eversource's continued investment in upgrading its communications infrastructure. The current network consists of a combination of fiber and wireless backhaul networks that includes a 900 MHz private radio network which is augmented by cellular services, when possible. These systems are now nearing capacity and require enhancement. The addition of the new 450 MHz base station at this site will provide communications to additional field units to help manage system capacity while providing connectivity to the existing radio network and cellular systems.

Please accept this letter as notification, pursuant to Regulations of Connecticut State Agencies ("R.C.S.A.") §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A §

16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this notice is being delivered to Lincoln A. Cooper, First Selectman for the Town of Sterling and Melissa Gil, Zoning Enforcement Officer for the Town of Sterling via private carrier. Proof of delivery is attached. See Attachment E, Proof of Delivery of Notice.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2):

- 1. There will be no change to the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard as shown in the attached Radio Frequency Emissions Report, dated October 6, 2021 (<u>Attachment F</u> Power Density Report).
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Eversource respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2). One original and two copies of this notice and a check in the amount of \$625 are enclosed.

Communications regarding this Notice of Exempt Modification should be directed to Kathleen Shanley at (860) 728-4527.

By:

Kathleen M. Shanley

Manager – Transmission Siting

cc: Honorable Lincoln A. Cooper, First Selectman, Town of Sterling Melissa Gil, Zoning Enforcement Officer, Town of Sterling DESPP

Attachments

- A. Parcel Map and Property Card
- B. Letter of Authorization
- C. Construction Drawings
- D. Structural Analysis
- E. Proof of Delivery of Notice
- F. Power Density Report

RESIDENTIAL PROPERTY RECORD CARD 2016

TOWN OF STERLING

Printed: March 9, 2016

Card: 1 of 1 Map ID: 00025400 Situs: 389 EKONK HILL RD Class: State **CURRENT OWNER GENERAL INFORMATION** Living Units 0 CONNECTICUT STATE OF Neighborhood 200 Alternate ld 03633-034-0007 389 EKONK HILL ROAD Vol / Pg 14/540 STERLING CT 06377 District Zoning Class 400

Property Notes

FORMER FIRE TOWER

CTS SITE # 49 800-842-0200 ASK

Land Information							
Туре		Size	Influence Factors	Influence %	Value		
Primary	AC	0.2000			25,600		

Total Acres: .2 Spot: Location:

Assessment Information					
Assessed	Appraised	Cost	Income		
17,920	25,600	25,600	0	25,600	
12,750	18,210	18,210	0	18,210	
30,670	43,810	43,810	0	43,810	
	Assessed 17,920 12,750	Assessed Appraised 17,920 25,600 12,750 18,210	Assessed Appraised Cost 17,920 25,600 25,600 12,750 18,210 18,210	Assessed Appraised Cost Income 17,920 25,600 25,600 0 12,750 18,210 18,210 0	

Value Flag COST APPROACH Gross Building: Manual Override Reason
Base Date of Value 10-01-2012
Effective Date of Value 10-01-2016

Entrance Information						
Date 02/28/07	ID	Entry Code	Source			
	AS	Exterior	Other			

Permit Information	
Price Purpose	% Complet

	Sales/Ownership History					
Transfer Date	Price Type	Validity	Deed Reference Deed Type	Grantee		

RESIDENTIAL PROPERTY RECORD CARD 2016

TOWN OF STERLING

Printed: March 9, 2016

Card: 1 of 1

Situs: 389 EKONK HILL RD Parcel Id: 00025400 Class: State **Dwelling Information** Style Year Built Story height Eff Year Built Attic Year Remodeled **Exterior Walls Amenities** Masonry Trim x Color In-law Apt No Basement # Car Bsmt Gar Basement FBLA Size X **FBLA Type** Rec Rm Size X Rec Rm Type **Heating & Cooling Fireplaces Heat Type** Stacks **Fuel Type Openings** System Type Pre-Fab Room Detail **Bedrooms** Full Baths Family Rooms Half Baths **Extra Fixtures Kitchens Total Rooms** Kitchen Type Bath Type Kitchen Remod Bath Remod Adjustments Int vs Ext **Unfinished Area** Cathedral Ceiling X **Unheated Area Grade & Depreciation** Grade C Market Adj Functional Condition CDU AVERAGE Economic Cost & Design 0 % Good Ovr % Complete **Dwelling Computations** Base Price % Good **Plumbing** % Good Override Basement **Functional** Heating Economic Attic % Complete 0 Other Features **C&D Factor** Adj Factor Subtotal Additions **Ground Floor Area Total Living Area** Dwelling Value **Building Notes**

ID Code Description Are A SH1 WORKSHOP

	Outbuilding Data							
Туре	Size 1 Size 2	Area	Qty Yr Blt	Grade	Condition	Value		
Wkshp	18 x 50	900	1 2000	Α	3	18,210		

Condominium / Mobile Home Information				
Complex Name Condo Model				
Unit Number Unit Level Unit Parking Model (MH)	Unit Location Unit View Model Make (MH)			

Addition Details							
Line #	Low	1st	2nd	3rd	Value		

STATE OF CONNECTICUT DEPARTMENT OF EMERGENCY SERVICES AND PUBLIC PROTECTION

April 7, 2020

Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Le

<u>Letter of Authorization</u> –

Co-location on Connecticut State Police tower

Property address:

Ekonk Hill Road, Sterling, CT

Latitude: 41-39-49.29" Longitude: 71-50-56.47"

To Whom It May Concern:

Eversource Energy (Eversource) has an Agreement with the Connecticut Department of Emergency Services and Public Protection (DESPP) to co-locate its communications equipment on the DESPP tower located at Ekonk Hill Road, Sterling, Connecticut.

Eversource shall be required by the terms of the agreement to seek and obtain all necessary permits and approvals. As a duly authorized representative of the DESPP, permission is hereby granted to Eversource and agents thereof, for the purpose of consummating any applications necessary to gain the required approvals from the State of Connecticut.

Any fees or charges associated with all applications or permits and any conditions placed on the applicant shall be the sole responsibility of Eversource.

Yours truly.

Brian Benito

Planning Specialist

State Of Connecticut

Department of Emergency Services and Public Protection

CTS Unit

860-685-8297

brian.benito@ct.gov

Re: Eversource - Ekonk CSP - upgrades/updates under 4RF 450 MHz project

Northgraves, Clayton < Clayton.Northgraves@ct.gov>

To Khan, Zarak

(i) You replied to this message on 1/5/2022 10:54 AM.

EVERSOURCE IT NOTICE - EXTERNAL EMAIL SENDER **** Don't be quick to click! ****

Do not click on links or attachments if sender is unknown or if the email is unexpected from someone you know, and never provide a user ID or password. Report suspicious emails by selecting 'Report Phish' or forwarding to SPAMFEEDBACK@EVERSOURCE.COM for analysis by our cyber security team.

Greetings, you may proceed, but please contact our network control center (NCC) in advance of work at this site. Or, notify me and I will notify the NCC.

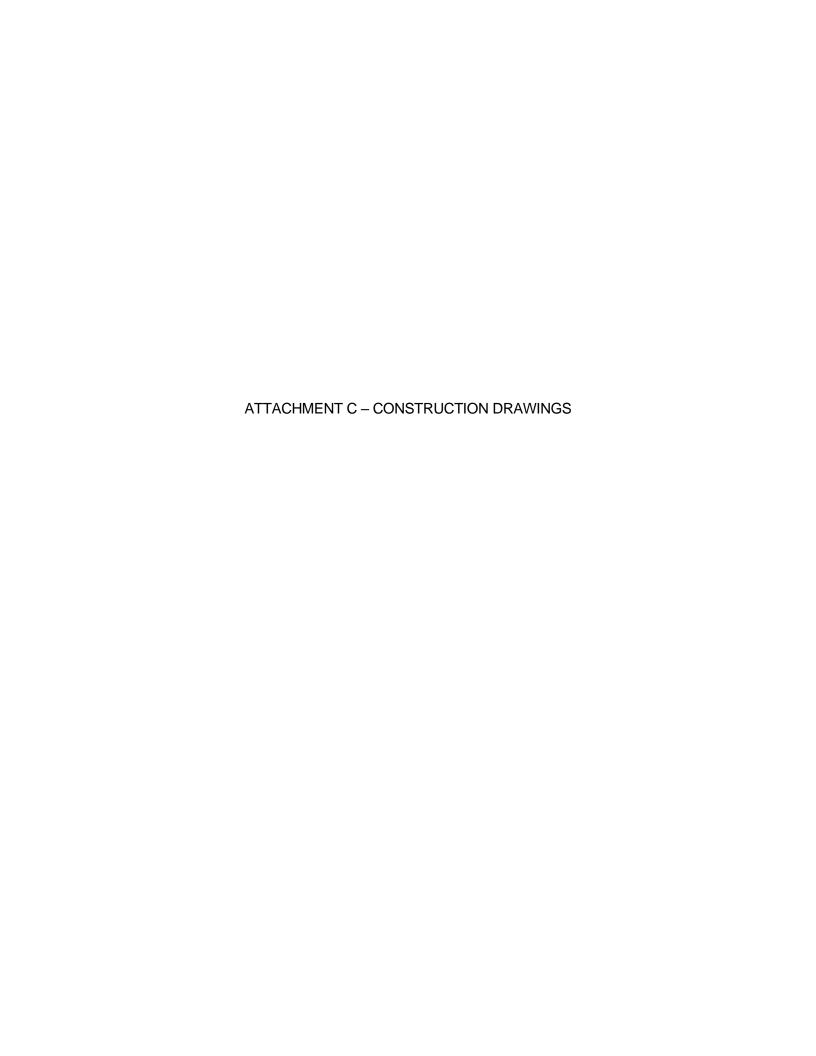
Best, Clayton

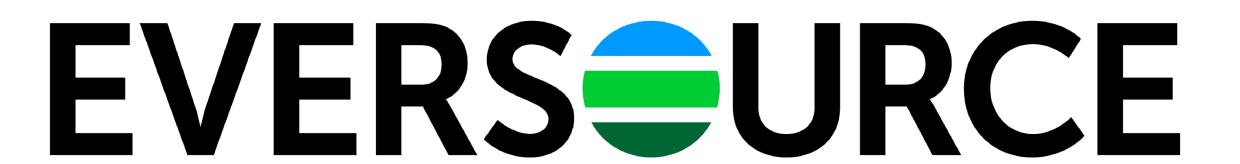
On Jan 4, 2022, at 11:54, Khan, Zarak < zarak.khan@eversource.com > wrote:

EXTERNAL EMAIL: This email originated from outside of the organization. Do not click any links or open any attachments unless you trust the sender and know the content is safe. Hi Clayton,

I wanted to reach out again and request that LOA for Ekonk that was requested previously, as talks between ES and DESSP have been moving forward in the right direction in the last couple of months.

As mentioned previously Replacing the current 2 panel antenna and putting in a directional Yagi antenna. Space and loading is expected to reduce. Structural is done, but no additional space will be taken on the tower.

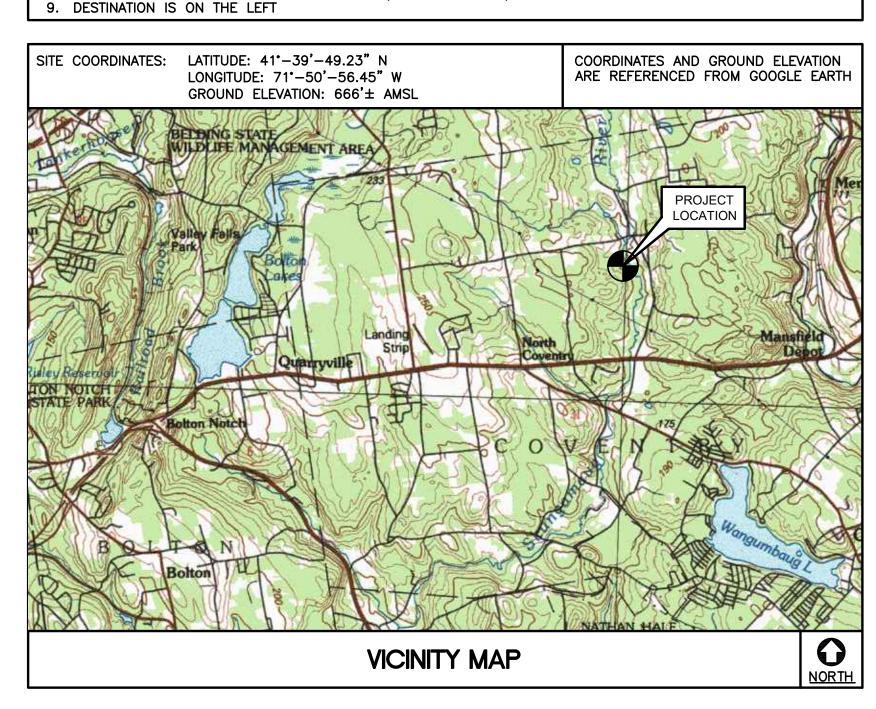

Please let me know if you have any questions.


Thanks,

Zarak Khan

EVERS⊕URCE | Telecommunications Engineering

Cell: 214-986-7861 Office: 860-665-6135


EKONK CSP STERLING 389 EKONK HILL ROAD STERLING, CT 06354

GENERAL NOTES

- I. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "H" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- F. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- S. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES. RULES OR REGULATIONS WITH NO INCREASE IN COSTS.

- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE EVERSOURCE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 19. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

SITE DIRECTIONS FROM: 107 SELDEN STREET TO: 389 EKONK HILL ROAD STERLING, CT 06354 BERLIN, CT 06037 START OUT GOING SOUTH ON SELDEN ST TOWARD ELM ST. 0.40 MI. 2.86 MI. TURN LEFT ONTO DEMING RD/CT-160. CONTINUE TO FOLLOW CT-160. TURN LEFT ONTO CROMWELL AVE/CT-3. CONTINUE TO FOLLOW CT-3 N. 6.09 MI. 4. MERGE ONTO CT-2 E TOWARD NORWICH 32.8 MI. 16.0 MI. MERGE ONTO I-395 N VIA EXIT 28 N TOWARD PROVIDENCE. 0.19 MI. 6. TAKE THE CT-14A EXIT, EXIT 29, TOWARD PLAINFIELD/ONECO 3.28 MI. TURN RIGHT ONTO PLAINFIELD PIKE/STATE ROUTES 49 & 14A/CT-14A. 8. TURN RIGHT ONTO STATE ROUTES 49 & 14A/EKONK HILL RD/CT-49 1.77 MI.

PROJECT SUMMARY

THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:

1. REMOVE (2) 12"X12" PANEL ANTENNAS (108-FT AGL + 110-FT AGL)

2. INSTALL (1) KATHREIN CL6-450B ANTENNA ON THE EXISTING PIPE-MOUNT AT 109-FT AGL. TO BE INSTALLED AT 270° AZIMUTH.

3. PROPOSED ANTENNA TO USE EXISTING 7/8" CABLE.

4. REMOVE AND REPLACE EXISTING STAND-OFF MOUNT

SITE NAME:

SITE ADDRESS:

389 EKONK HILL ROAD STERLING, CT 06354

APPLICANT:

EVERSOURCE
107 SELDEN STREET BERLIN, CT 06037

CONTACT PERSON:

ZARAK KHAN (PROJECT MANAGER) EVERSOURCE

ENGINEER OF RECORD: CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD RD.

CARLO F. CENTORE, PE (203) 488-0580 EXT. 122

BRANFORD, CT 06405

PROJECT COORDINATES: LATITUDE: 41°-39'-49.23" N
LONGITUDE: 71°-50'-56.45" W
GROUND ELEVATION: 666'± AMSL

SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

SHEET INDEX							
SHT. NO.	DESCRIPTION	RE'					
T-1	TITLE SHEET	0					
N-1	GENERAL NOTES AND SPECIFICATIONS	0					
C-1	SITE LOCATION PLAN AND ANTENNA DETAIL	0					
C-2	SITE PLAN AND ELEVATION	0					
C-3	ANTENNA PLANS AND ELEVATIONS	0					

JOB NO. 21082.10

TITLE
SHEET

08/27/21

AS NOTED

389 ST

Sheet No. 1 of

SCALE:

NOTES AND SPECIFICATIONS

DESIGN BASIS:

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

- 1. DESIGN CRITERIA:
- RISK CATEGORY II (BASED ON IBC TABLE 1604.5)
- ULTIMATE DESIGN SPEED: 145 MPH (Vult)
 (EXPOSURE B/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

SITE NOTES

- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL
- 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

GENERAL NOTES

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "H" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND IT'S COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS, ARE TO BE BROUGHT TO THE ATTENTION OF THE SITE OWNER'S CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 18. CONTRACTOR SHALL COMPLY WITH OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 19. THE COUNTY/CITY/TOWN WILL MAKE PERIODIC FIELD OBSERVATION AND INSPECTIONS TO MONITOR THE INSTALLATION, MATERIALS, WORKMANSHIP AND EQUIPMENT INCORPORATED INTO THE PROJECT TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, CONTRACT DOCUMENTS AND APPROVED SHOP DRAWINGS.
- 20. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.

STRUCTURAL STEEL

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- A. STRUCTURAL STEEL (W SHAPES)——ASTM A992 (FY = 50 KSI)
 B. STRUCTURAL STEEL (OTHER SHAPES)——ASTM A36 (FY = 36 KSI
- B. STRUCTURAL STEEL (OTHER SHAPES) --- ASTM A36 (FY = 36 KSI)
 C. STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B,
 (FY = 46 KSI)
- D. STRUCTURAL HSS (ROUND SHAPES)——ASTM A500 GRADE B, (FY = 42 KSI)
- E. PIPE———ASTM A53 (FY = 35 KSI)
 F. CONNECTION BOLTS———ASTM A325—N
- G. U-BOLTS---ASTM A36
- H. ANCHOR RODS——ASTM F 1554
 I. WELDING ELECTRODE——ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405 www.CentekEng.com

ONK CSP STERLING 9 EKONK HILL ROAD TERLING, CT 06354

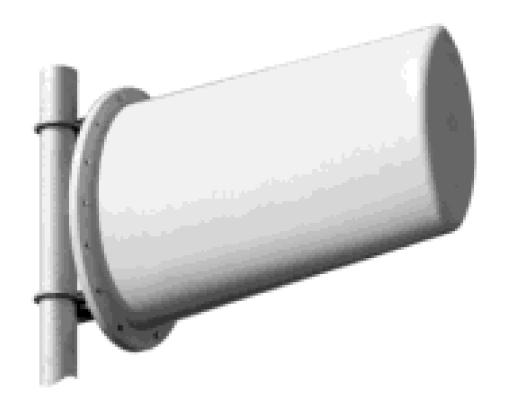
389 ST

Ш

Щ

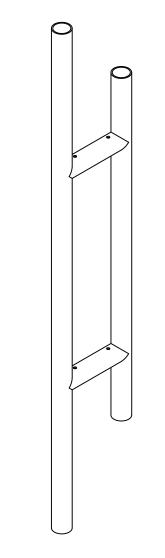
DATE: 08/27/21

SCALE: AS NOTED


JOB NO. 21082.10

Ш

GENERAL NOTES
AND
SPECIFICATIONS



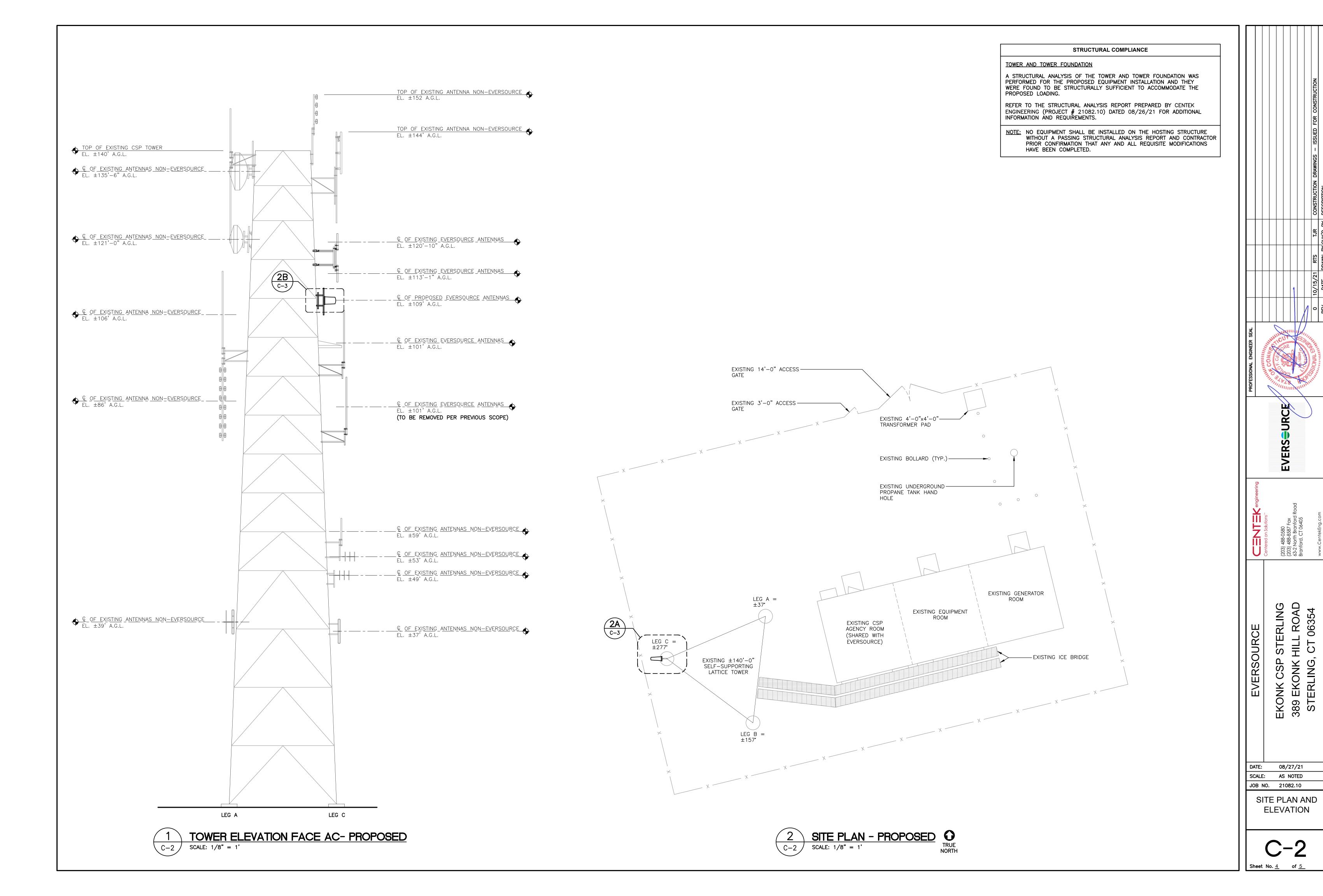
Sheet No. 2 of

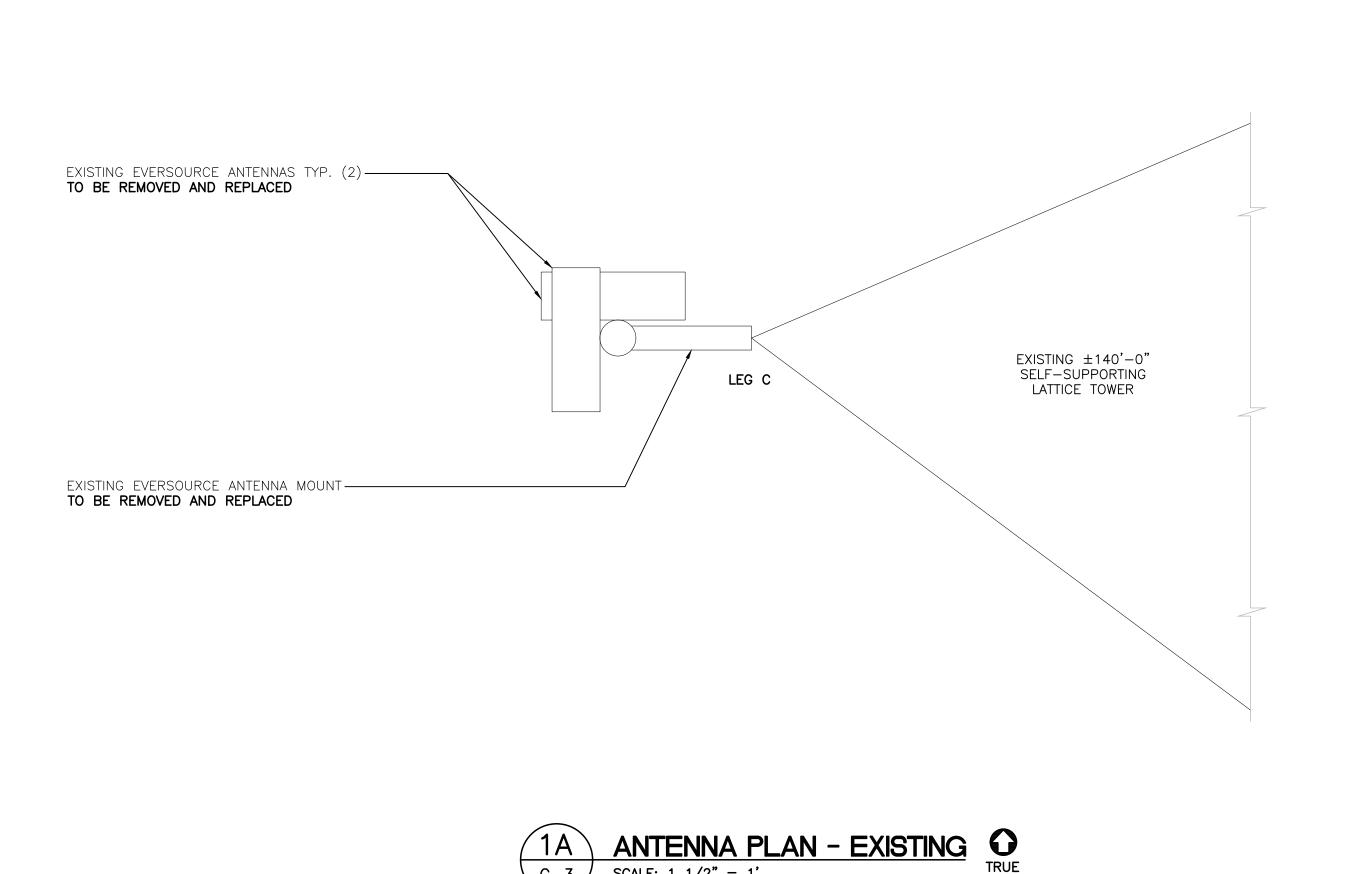
AI DHA	/BETA/GAMMA ANTENNA				
EQUIPMENT	DIMENSIONS	WEIGHT			
MAKE: KATHREIN MODEL: CL6-450B	26"L x 17"W	±22 LBS.			
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH EVERSOURCE CONSTRUCTION MANAGER PRIOR TO ORDERING.					

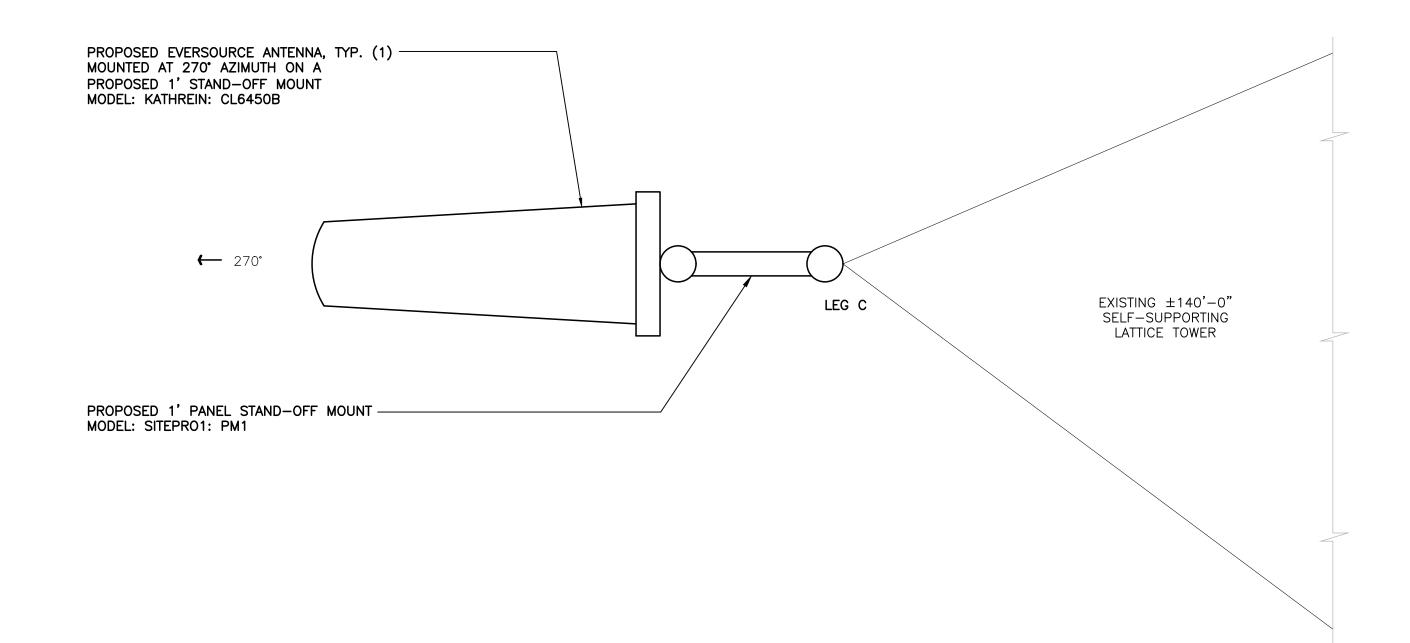
1 PROPOSED ANTENNA DETAIL
C-1 SCALE: NOT TO SCALE

			PARTS LIST			
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	1	X-PM1	PM1 STANDOFF MOUNT WELDMENT	1'	43.30	43.30

2 1' PANEL STAND-OFF MOUNT
C-1 SCALE: NOT TO SCALE

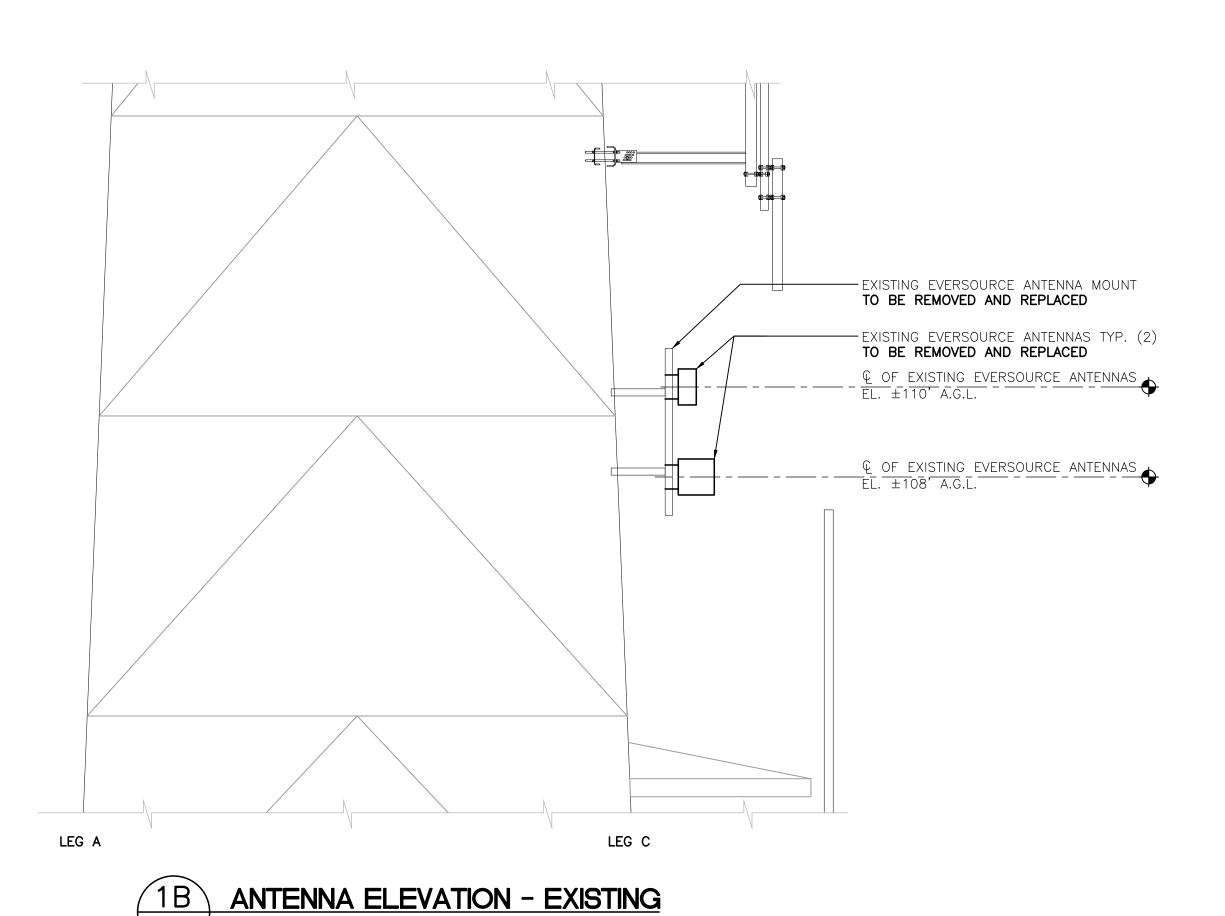


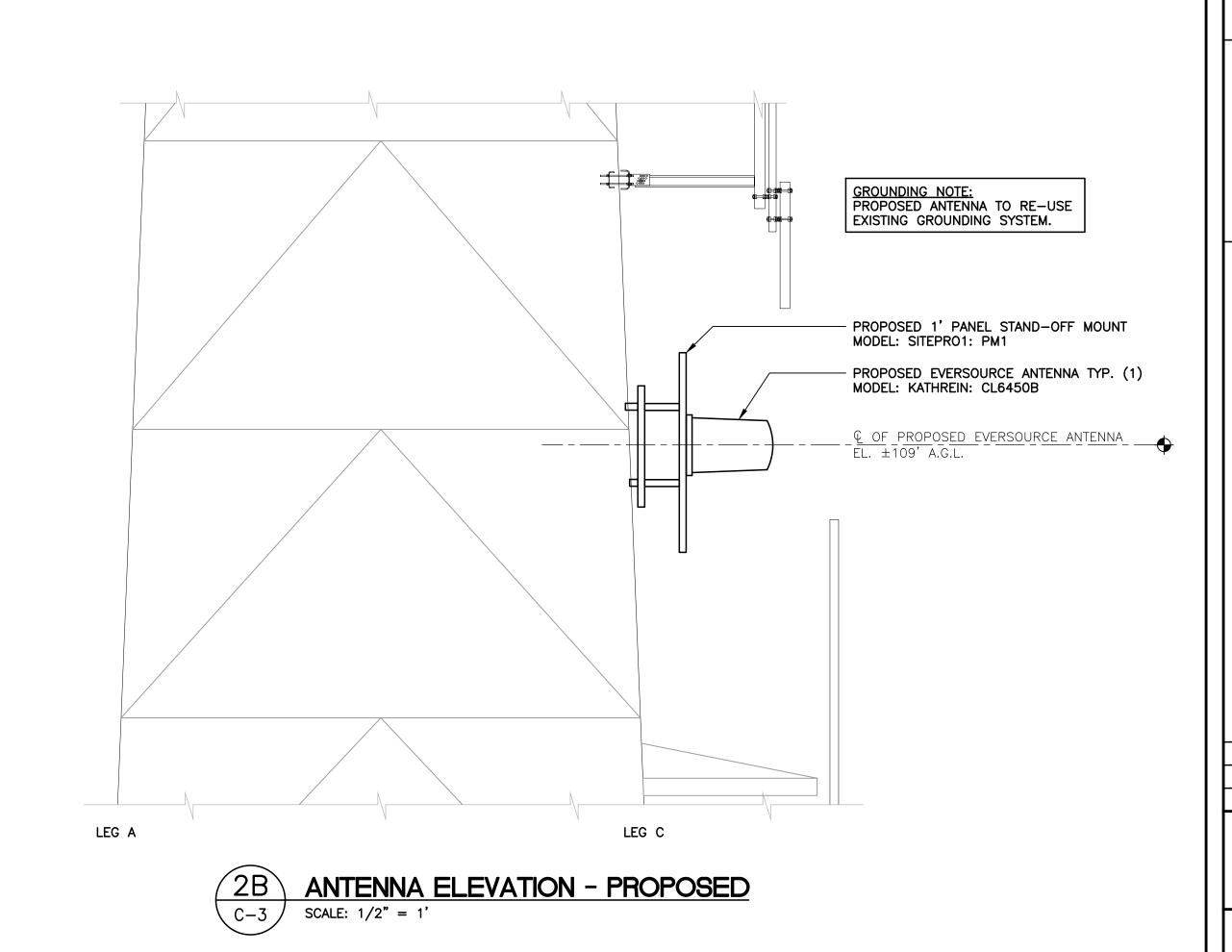

EVERSOURCE


EKONK CSP STERLING 389 EKONK HILL ROAD STERLING, CT 06354

DATE: 08/27/21
SCALE: AS NOTED JOB NO. 21082.10

SITE LOCATION PLAN, ANTENNA AND MOUNTING DETAIL





SCALE: 1/2" = 1'

A III EKONK CSP STERLING 389 EKONK HILL ROAD STERLING, CT 06354 EVERSOURCE 08/27/21 SCALE: AS NOTED JOB NO. 21082.10 ANTENNA PLANS AND **ELEVATIONS**

Centered on Solutions™

Structural Analysis Report

140' Existing Lattice Tower

Eversource Antenna Installation

CSP Tower Ref: #49

389 Ekonk Hill Road Sterling, CT

CENTEK Project No. 21082.10

Date: August 26, 2021

Max Stress Ratio = 99%

Prepared for:

Eversource 107 Selden Street Berlin, CT 06037

Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- TOWER LOADING
- TOWER CAPACITY
- FOUNDATION AND ANCHORS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- tnxTower INPUT/OUTPUT SUMMARY
- tnxTower FEED LINE PLAN
- tnxTower FEED LINE DISTRIBUTION
- tnxTower DETAILED OUTPUT
- tnxTower INPUT/OUTPUT SUMMARY (REV.F FOR TWIST AND SWAY)
- tnxTower DETAILED OUTPUT (REV.F FOR TWIST AND SWAY)
- ANCHOR BOLT ANALYSIS
- FOUNDATION ANALYSIS

TABLE OF CONTENTS TOC-1

Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

Introduction

The purpose of this report is to summarize the results of the non-linear, P-∆ structural analysis of the antenna installation by Eversource on the existing lattice tower located in Sterling, Connecticut.

The host tower is a 140-ft, three legged, lattice tower originally designed and manufactured by Stainless Inc. project no. 358813TP dated October 24, 1995. The tower geometry, structure member sizes and foundation information were taken from a previous structural analysis report prepared by AECOM job no. EVS-011 60627154 dated November 25, 2020. The tower has been previously reinforced. All previous reinforcements are assumed to be installed. See Primary Assumptions Section below for detailed reinforcement reference reports.

Antenna and appurtenance inventory was taken from the aforementioned structural analysis and information provided by Eversource.

The tower consists of six (6) vertical sections consisting of steel pipe legs conforming to ASTM A500-50 and steel angle lateral bracing conforming to ASTM A36. The vertical tower sections are connected by bolted flange plates with the diagonal and horizontal bracing to pipe legs consisting of bolted connections. The width of the tower face is 11.8-ft at the top and 23.0-ft at the bottom.

Antenna and Appurtenance Summary

The existing and proposed loads considered in the analysis consist of the following:

- Tower:
 - Antenna: One (1) lightning rod pipe mounted to the top of the tower.
- CSP
 - Antenna: One (1) 20-ft Omni-directional antenna, one (1) 3-ft panel antenna, two (2) AP14-850 panel antennas, one (1) TMA and one (1) junction box mounted on (1) 4-ft sector mount with an elevation of 137.5-ft AGL.
 - <u>Cables:</u> Six (6) 1-5/8" \varnothing , two (2) 7/8" \varnothing and one (1) 1/2" \varnothing cables running on a leg/face of the existing tower as specified in Section 3 of this report.
- CSP:
 - Antenna: One (1) AP14-850 panel antenna (inverted) mounted on (1) 6-ft side arm mount with an elevation of 137.5-ft AGL.
 - <u>Cables:</u> Two (2) 1-5/8" \varnothing cables running on a leg/face of the existing tower as specified in Section 3 of this report.
- CSP:
 - Antenna: One (1) 10-ft microwave dish pipe mounted with an elevation of 135-ft AGL. Cables: One (1) WEP65 elliptical cable running on a leg/face of the existing tower as specified in Section 3 of this report.
- CSP
 - Antenna: One (1) 3-ft microwave dish pipe mounted with an elevation of 135-ft AGL. Cables: One (1) WEP65 elliptical cable running on a leg/face of the existing tower as specified in Section 3 of this report.

Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

CSP:

<u>Antenna:</u> One (1) 20-ft dipole pipe mounted with an elevation of 134.5-ft AGL. <u>Cables:</u> One (1) 1-5/8" Ø cables running on a leg/face of the existing tower as specified in Section 3 of this report.

CSP:

Antenna: Two (2) 20-ft Omni-directional antennas (one upright and one inverted) mounted on (1) 6-ft side arm with an elevation of 133-ft AGL.

Cables: Two (2) 1-5/8" Ø cables running on a leg/face of the existing tower as specified in Section 3 of this report.

CSP:

Antenna: One (1) 8-ft microwave dish pipe mounted with an elevation of 132-ft AGL. Cables: One (1) WEP65 elliptical cable running on a leg/face of the existing tower as specified in Section 3 of this report.

CSP:

Antenna: One (1) 3-ft microwave dish pipe mounted with an elevation of 125-ft AGL. <u>Cables:</u> One (1) WEP65 elliptical cable running on a leg/face of the existing tower as specified in Section 3 of this report.

CSP:

Antenna: One (1) 8-ft microwave dish pipe mounted with an elevation of 121-ft AGL. <u>Cables:</u> One (1) WEP65 elliptical cable running on a leg/face of the existing tower as specified in Section 3 of this report.

CSP:

Antenna: Three (3) 8-ft panel antennas and one (1) TMA mounted on (1) sector frame with an elevation of 121-ft AGL.

<u>Cables:</u> Three (3) 7/8" Ø cables running on a leg/face of the existing tower as specified in Section 3 of this report

Eversource:

Antenna: Two (2) ANT220F2 Omni-directional antennas (one upright and one inverted) mounted on (1) 4-ft side arm with an elevation of 117-ft AGL.

<u>Cables:</u> Two (2) 7/8" \varnothing cables running on a leg/face of the existing tower as specified in Section 3 of this report.

CSP:

Antenna: One (1) 10-ft Omni-directional antenna and one (1) 3-ft yagi mounted on (1) 6-ft sector mount with an elevation of 100-ft AGL.

<u>Cables:</u> Two (2) 7/8" Ø cables running on a leg/face of the existing tower as specified in Section 3 of this report

CSP

Antenna: One (1) 20-ft Omni-directional antenna and one (1) 20-ft dipole (inverted) mounted on (1) 6-ft side arm with an elevation of 96-ft AGL.

<u>Cables:</u> Two (2) 7/8" \varnothing cables running on a leg/face of the existing tower as specified in Section 3 of this report.

Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

CSP:

Antenna: One (1) 6-ft microwave dish pipe mounted with an elevation of 95-ft AGL. Cables: One (1) WEP65 elliptical cable running on a leg/face of the existing tower as specified in Section 3 of this report

CSP:

Antenna: One (1) 20-ft Omni-directional antenna mounted on (1) 6-ft sector mount with an elevation of 87-ft AGL.

<u>Cables:</u> One (1) 7/8" \varnothing cable running on a leg/face of the existing tower as specified in Section 3 of this report

CSP:

Antenna: One (1) single dipole antenna pipe mounted with an elevation of 83-ft AGL. Cables: One (1) 1/2" \varnothing cable running on a leg/face of the existing tower as specified in Section 3 of this report

CSP:

Antenna: One (1) 7-ft Omni-directional antenna mounted on (1) 6-ft side arm with an elevation of 59-ft AGL.

<u>Cables:</u> Two (2) 7/8" \varnothing cables running on a leg/face of the existing tower as specified in Section 3 of this report

CSP:

Antenna: One (1) single dipole antenna pipe mounted with an elevation of 58-ft AGL. Cables: One (1) 1/2" \varnothing cable running on a leg/face of the existing tower as specified in Section 3 of this report

CSP:

Antenna: One (1) 3-ft yagi antenna leg mounted with an elevation of 53-ft AGL. Cables: One (1) 1/2" \varnothing cable running on a leg/face of the existing tower as specified in Section 3 of this report

CSP·

Antenna: One (1) single dipole antenna pipe mounted with an elevation of 52-ft AGL. Cables: One (1) 1/2" \varnothing cable running on a leg/face of the existing tower as specified in Section 3 of this report

Eversource (Existing To Remain):

<u>Cables:</u> Two (2) $7/8" \varnothing$ cables running on a leg/face of the existing tower as specified in Section 3 of this report to 109-ft.

Eversource (Existing To be Removed):

Antenna: Two (2) 1'x1' panel antennas mounted with an elevation of 109-ft AGL.

Eversource (Proposed):

Antenna: One (1) Scala CL6-450B log-periodic antenna pipe mounted with an elevation of 109-ft AGL.

Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All coax cables should be routed as specified in section 3 of this report.
- All previous reinforcements per the below listed structural analysis and modification reports are assumed to be installed.
 - Structural report prepared by AECOM Corp for Eversource project no. EVS-011 / 60627154 dated 11/25/20.

Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

<u>Analysis</u>

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst case loading condition. The tower is considered as loaded by concentric forces along the tower, and the model assumes that the tower members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed with no ice and the applicable wind and ice combination to determine stresses in members as per guidelines of TIA-222-H entitled "Structural Standard for Antenna Support Structures, Antennas and Small Wind Turbine Support Structures", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Load and Resistance Factor Design (LRFD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix N of the CSBC¹ and the wind speed data available in the TIA-222-H Standard.

Tower Loading

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA-222-H, gravity loads of the tower structure and its components, and the application of 1.0" radial ice on the tower structure and its components.

Load Cases:	Load	Case	<u>1</u> ;	145	mph	(Risk	Cat III)

wind speed w/ no ice plus gravity load – used in calculation of tower stresses and rotation.

Load Case 2; 50 mph wind speed w/ [Ar

1.00" radial ice plus gravity load – used in calculation of tower stresses.

Load Case 3; 90 mph wind speed w/ 0.5" radial ice plus gravity load – used in calculation of tower twist and

[Annex B of TIA-222-H]

Building Code]

[Appendix N of the 2018 CT

[TIA-222-F used for calculation of tower twist and sway per the requirements of the CSP]

sway.

¹ The 2015 International Building Code as amended by the 2018 Connecticut State Building Code (CSBC).

Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

Tower Capacity

Tower stresses were calculated utilizing the structural analysis software tnxTower.

Calculated stresses were found to be within allowable limits.

Tower Section	Elevation	Stress Ratio (percentage of capacity)	Result
Leg (T4)	50.0' - 75.0'	96.4%	PASS
Diagonal (T5)	25.0' – 50.0'	98.9%	PASS
Horizontal (T6)	0.0' - 25.0'	82.9%	PASS

The tower combined deflection was found to be within allowable limits.

Deflection Criteria	Proposed (degrees)	Allowable (degrees)	Result
Sway (Tilt)	0.409	n/a	n/a
Twist	0.311	n/a	n/a
Combined	0.72	0.75	PASS

TIA-222-F standard used for calculation of tower twist and sway per the requirements of the CSP.

Foundation and Anchors

The existing foundation consists of three (4) 4-ft diameter x 4.5-ft long reinforced concrete piers supported on a 36-ft square x 2-ft thick mat. The base of the tower is connected to the foundation by means of (6) 1.75° anchor bolts per leg embedded into the concrete foundation structure.

The tower reactions developed from the governing Load Case were used in the verification of the foundation and anchor bolts:

Load Effect	Proposed Tower Reactions
Leg Shear	42 kips
Leg Compression	327 kips
Leg Tension	287 kips
Base Moment	6,217 ft-kips
Base Shear	47 kips

Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

The anchor bolts were found to be within allowable limits.

Tower Section	Component	Stress Ratio (percentage of capacity)	Result
Anchor Bolts	Combined Compression and Shear	74%	PASS

The foundation was found to be within allowable limits.

Foundation	Design Limit	(percentage of capacity)	Result
Reinforced Concrete	Overturning	46%	PASS
Pad and Piers	Bearing	26%	PASS

Conclusion

This analysis shows that the subject tower <u>is adequate</u> to support the proposed antenna configuration.

The analysis is based, in part, on the information provided to this office by Pyramid. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

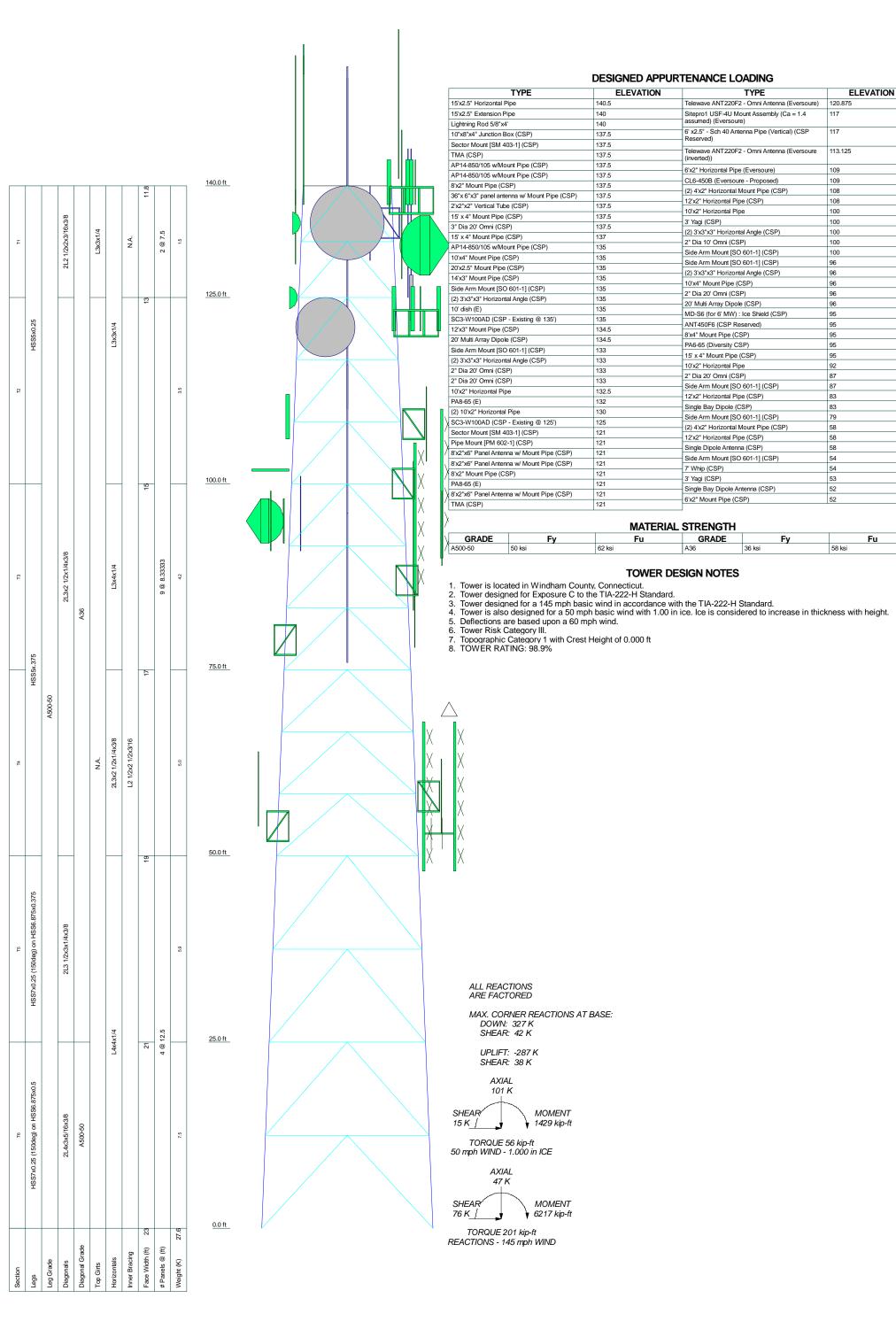
Timothy J. Lynn, PE Structural Engineer

Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> Existing Structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance
 with generally accepted engineering principles and practices. Centek Engineering, Inc.
 is not responsible for the conclusions, opinions and recommendations made by others
 based on the information we supply.


Structural Analysis - 140-ft Lattice Tower #49 Sterling Antenna Installation – Eversource Sterling, CT August 26, 2021

<u>GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM</u>

tnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, tnxTower, formerly RISA Tower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

tnxTower Features:

- tnxTower can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-G (2005) standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD 9th Edition or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, guy anchor and stress plots.
- tnxTower contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.

	Centek Engineering Inc.	^{Job:} 2	1082.10		
ı				Tower #49 Sterling	1
ı	Branford, CT 06405	Client:	Eversource	Drawn by: TJL	App'd:
ı	Phone: (203) 488-0580	Code:	TIA-222-H	Date: 08/26/21	Scale: NT
ı		Path:		•	Dwg No. E-

Fu

Feed Line Plan

Flat _____ App In Face ____

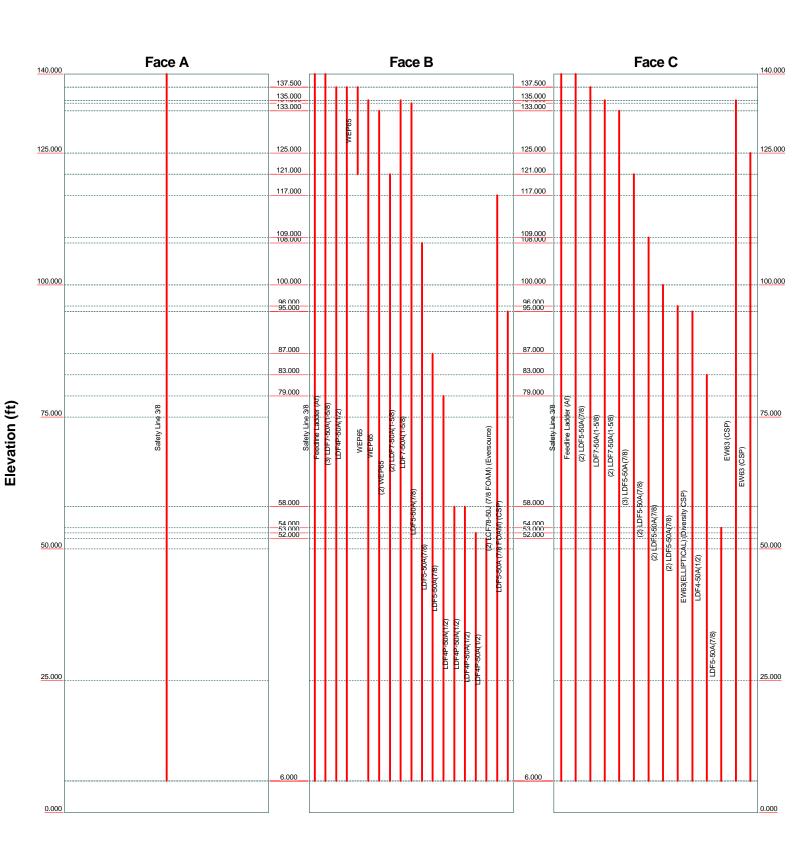
__ Round ___

App Out Face

LDFS-50A (7/8 FOAM) (CSP)

DFT-50A (7/8 FOAM) (CSP)

DFT-50A (7/8 FOAM) (Eversource)


DFT-50A (7/8 FOAM) (Eversource)

DFT-50A (7/8 FOAM) (Eversource)

Centek Engineering Inc.
63-2 North Branford Rd.
Branford, CT 06405
Phone: (203) 488-0580
FAX: (203) 488-8587

^{Job:} 21082.10							
Project: 140-ft Lattice	Project: 140-ft Lattice Tower #49 Sterling						
Client: Eversource	Drawn by: TJL	App'd:					
Code: TIA-222-H	Date: 08/26/21	Scale: NTS					
Path:		Dwg No. F					

Round _____ Flat ____ App In Face ____ App Out Face ____ Truss Leg

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587
63-2 North Branford Rd.
Branford, CT 06405
Phone: (203) 488-0580
FAX: (203) 488-8587

^{Job:} 21082.10		
Project: 140-ft Lattice 7	Tower #49 Sterling	7
	Drawn by: TJL	App'd:
Code: TIA-222-H		Scale: NTS
Path:		Dwg No. E-

Centek Engineering Inc.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	1 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Evereouree	Designed by
	Eversource	TJL

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 140.000 ft above the ground line.

The base of the tower is set at an elevation of 0.000 ft above the ground line.

The face width of the tower is 11.800 ft at the top and 23.000 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Windham County, Connecticut.

Tower base elevation above sea level: 0.000 ft.

Basic wind speed of 145 mph.

Risk Category III.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1. Crest Height: 0.000 ft.

Nominal ice thickness of 1.000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

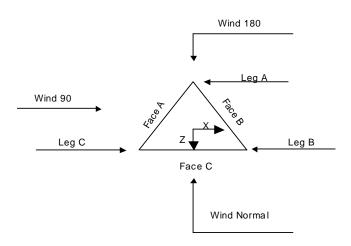
Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile

 √ Include Bolts In Member Capacity

 √ Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned
- Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- ✓ Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component
- √ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs


- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	2 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Eversource	Designed by TJL

Triangular Tower

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	140.000-125.000			11.800	1	15.000
T2	125.000-100.000			13.000	1	25.000
T3	100.000-75.000			15.000	1	25.000
T4	75.000-50.000			17.000	1	25.000
T5	50.000-25.000			19.000	1	25.000
T6	25.000-0.000			21.000	1	25.000

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	140.000-125.000	7.500	K Brace Down	No	Yes	0.000	0.000
T2	125.000-100.000	8.333	K Brace Down	No	Yes	0.000	0.000
T3	100.000-75.000	8.333	K Brace Down	No	Yes	0.000	0.000
T4	75.000-50.000	8.333	K Brace Down	No	Yes	0.000	0.000
T5	50.000-25.000	12.500	K Brace Down	No	Yes	0.000	0.000
T6	25.000-0.000	12.500	K Brace Down	No	Yes	0.000	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	3 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1	Pipe	HSS5x0.25	A500-50	Double Angle	2L2 1/2x2x3/16x3/8	A36
140.000-125.000			(50 ksi)			(36 ksi)
T2	Pipe	HSS5x0.25	A500-50	Double Angle	2L3x2 1/2x1/4x3/8	A36
125.000-100.000			(50 ksi)			(36 ksi)
T3	Pipe	HSS5x.375	A500-50	Double Angle	2L3x2 1/2x1/4x3/8	A36
100.000-75.000			(50 ksi)			(36 ksi)
T4 75.000-50.000	Pipe	HSS5x.375	A500-50	Double Angle	2L3x2 1/2x1/4x3/8	A36
			(50 ksi)			(36 ksi)
T5 50.000-25.000 A	Arbitrary Shape	HSS7x0.25 (150deg) on	A500-50	Double Angle	2L3 1/2x3x1/4x3/8	A36
		HSS6.875x0.375	(50 ksi)	_		(36 ksi)
T6 25.000-0.000 A	Arbitrary Shape	HSS7x0.25 (150deg) on	A500-50	Double Angle	2L4x3x5/16x3/8	A500-50
		HSS6.875x0.5	(50 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T1	None	Flat Bar		A36	Single Angle	L3x3x1/4	A36
140.000-125.000				(36 ksi)			(36 ksi)
T2	None	Flat Bar		A36	Single Angle	L3x3x1/4	A36
125.000-100.000				(36 ksi)			(36 ksi)
T3	None	Flat Bar		A36	Single Angle	L3x4x1/4	A36
100.000-75.000				(36 ksi)			(36 ksi)
T4 75.000-50.000	None	Flat Bar		A36	Double Angle	2L3x2 1/2x1/4x3/8	A36
				(36 ksi)	•		(36 ksi)
T5 50.000-25.000	None	Flat Bar		A36	Single Angle	L4x4x1/4	A36
				(36 ksi)			(36 ksi)
T6 25.000-0.000	None	Flat Bar		A36	Single Angle	L4x4x1/4	A36
				(36 ksi)			(36 ksi)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft			Graae			
T2	Equal Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
125.000-100.000	_		(36 ksi)			(36 ksi)
Т3	Equal Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
100.000-75.000			(36 ksi)			(36 ksi)
T4 75.000-50.000	Equal Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T5 50.000-25.000	Equal Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T6 25.000-0.000	Equal Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	4 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Eversource	Designed by TJL

Tower Section Geometry (cont'd)									
Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in					in	in	in
T1 140.000-125.0 00	0.000	0.000	A36 (36 ksi)	1	1	1	39.700	Mid-Pt	Mid-Pt
T2 125.000-100.0	0.000	0.000	A36 (36 ksi)	1	1	1	44.850	Mid-Pt	Mid-Pt
00 T3 100.000-75.00	0.000	0.000	A36 (36 ksi)	1	1	1	47.620	Mid-Pt	Mid-Pt
0 T4 75.000-50.000	0.000	0.000	A36 (36 ksi)	1	1	1	50.560	Mid-Pt	Mid-Pt
T5 50.000-25.000	0.000	0.000	A36 (36 ksi)	1.05	1	1.05	65.300	Mid-Pt	Mid-Pt
T6 25.000-0.000	0.000	0.000	A36 (36 ksi)	1.05	1	1.05	67.950	Mid-Pt	Mid-Pt

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	1	1	1	1
140.000-125.0 00				1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
125.000-100.0 00				1	1	1	1	1	1	1
T3	Yes	Yes	1	1	1	1	1	1	1	1
100.000-75.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
75.000-50.000				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
50.000-25.000				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	1	1	1
25.000-0.000				1	1	1	1	1	1	1

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	5 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Tower Elevation ft	Leg		eg Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
·	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 140.000-125.0 00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T2 125.000-100.0	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
00 T3 100.000-75.00 0	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T4 75.000-50.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T5 50.000-25.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T6 25.000-0.000	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

Tower Elevation	Redundant Horizontal			Redundant Diagonal		Redundant Sub-Diagonal		Redundant Sub-Horizontal		t Vertical	Redundo	ınt Hip	Redundo	
ft	Ποτιζοι	110112011lai Diagoi		чиі	Sub-Diagonai		Sub-110112011lai						Diagonal	
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
140.000-125.0														
00														
T2	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
125.000-100.0														
00	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T3	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
100.000-75.00														
T4	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
75.000-50.000		0.73	0.000	0.73	0.000	0.73	0.000	0.73	0.000	0.73	0.000	0.73	0.000	0.73
75.000-50.000 T5	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
50.000-25.000		0.75	0.000	0.73	0.000	0.73	0.000	0.75	0.000	0.75	0.000	0.73	0.000	0.73
T6	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
25.000-0.000	0.000	0.75	0.000	0.73	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.73	0.000	0.73
23.000-0.000	1		1		l									

Tower	Leg	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1	Flange	0.750	0	0.750	1	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
140.000-125.0	_	A325X		A325X		A325N		A325N		A325N		A325X		A325N	
00															

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	6 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Tower	Leg	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T2	Flange	0.750	6	0.750	1	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
125.000-100.0		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
00															
T3	Flange	0.750	6	0.750	1	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
100.000-75.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
0															
T4	Flange	0.750	6	0.750	1	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
75.000-50.000		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T5	Flange	1.000	6	1.000	1	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
50.000-25.000		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T6	Flange	1.000	8	1.000	1	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
25.000-0.000		A325X		A325X		A325X		A325N		A325N		A325X		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation		ft	in	(Frac FW)		Row	in	in	in	plf
Safety Line 3/8	A	No	No	Ar (CaAa)	140.000 - 6.000	0.000	0.49	1	1	0.375	0.375		0.22
Safety Line 3/8	В	No	No	Ar (CaAa)	140.000 - 6.000	0.000	0.49	1	1	0.375	0.375		0.22
Safety Line 3/8	C	No	No	Ar (CaAa)	140.000 - 6.000	0.000	0.49	1	1	0.375	0.375		0.22
Feedline Ladder (Af)	В	No	No	Af (CaAa)	140.000 - 6.000	-1.000	0.42	1	1	3.000	3.000		8.40
Feedline Ladder (Af)	С	No	No	Af (CaAa)	140.000 - 6.000	-1.000	-0.42	1	1	3.000	3.000		8.40
LDF7-50A(1- 5/8)	В	No	No	Ar (CaAa)	137.500 - 6.000	-1.000	0.3	3	3	0.500	1.980		0.82
LDF5-50A(7/ 8)	C	No	No	Ar (CaAa)	137.500 - 6.000	-1.000	-0.32	2	2	0.500	1.030		0.33
LDF4P-50A(1 /2)	В	No	No	Ar (CaAa)	137.500 - 6.000	-1.000	0.33	1	1	0.500	0.630		0.15
LDF7-50A(1- 5/8)	С	No	No	Ar (CaAa)	135.000 - 6.000	-1.000	-0.48	1	1	0.500	1.980		0.82
WEP65	В	No	No	Af (CaAa)	137.500 - 121.000	-1.000	0.44	1	1	1.584	1.584		0.53
WEP65	В	No	No	Af (CaAa)	135.000 - 6.000	-1.000	0.47	1	1	1.584	1.584		0.53
WEP65	В	No	No	Af (CaAa)	133.000 - 6.000	-1.000	0.475	1	1	1.584	1.584		0.53
WEP65	В	No	No	Af (CaAa)	121.000 - 6.000	-1.000	0.44	2	2	1.584	1.584		0.53
LDF7-50A(1- 5/8)	В	No	No	Ar (CaAa)	135.000 - 6.000	-1.000	0.455	2	2	0.500	1.980		0.82
LDF7-50A(1- 5/8)	В	No	No	Ar (CaAa)	134.500 - 6.000	-1.000	0.455	1	1	0.500	1.980		0.82
LDF7-50A(1- 5/8)	C	No	No	Ar (CaAa)	133.000 - 6.000	-1.000	-0.46	2	2	0.500	1.980		0.82
LDF5-50A(7/ 8)	C	No	No	Ar (CaAa)	121.000 - 6.000	-1.000	-0.435	3	3	1.030	1.030		0.33

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	7 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
			Calculation										
LDF5-50A(7/ 8)	В	No	No	Ar (CaAa)	108.000 - 6.000	-1.000	0.43	1	1	0.500	1.030		0.33
LDF5-50A(7/	C	No	No	Ar (CaAa)	109.000 - 6.000	-1.000	-0.415	2	2	0.500	1.030		0.33
LDF5-50A(7/	C	No	No	Ar (CaAa)	100.000 - 6.000	-1.000	-0.405	2	2	0.500	1.030		0.33
LDF5-50A(7/ 8)	В	No	No	Ar (CaAa)	87.000 - 6.000	-1.000	0.41	1	1	0.500	1.030		0.33
LDF5-50A(7/ 8)	C	No	No	Ar (CaAa)	96.000 - 6.000	-1.000	-0.395	2	2	0.500	1.030		0.33
EW63(ELLIP TICAL) (Diversity CSP)	С	No	No	Af (CaAa)	95.000 - 6.000	-1.000	-0.37	1	1	0.500	2.010		0.51
LDF4-50A(1/ 2)	C	No	No	Ar (CaAa)	83.000 - 6.000	-1.000	-0.36	1	1	0.625	0.625		0.15
LDF5-50A(7/ 8)	В	No	No	Ar (CaAa)	79.000 - 6.000	-1.000	0.38	1	1	0.500	1.030		0.33
LDF4P-50A(1 /2)	В	No	No	Ar (CaAa)	58.000 - 6.000	-1.000	0.37	1	1	0.500	0.630		0.15
LDF5-50A(7/ 8)	C	No	No	Ar (CaAa)	54.000 - 6.000	-1.000	-0.34	1	1	0.500	1.030		0.33
LDF4P-50A(1 /2)	В	No	No	Ar (CaAa)	58.000 - 6.000	-1.000	0.35	1	1	0.500	0.630		0.15
LDF4P-50A(1 /2)	В	No	No	Ar (CaAa)	53.000 - 6.000	-1.000	0.34	1	1	0.500	0.630		0.15
LDF4P-50A(1 /2) ****Proposed ****	В	No	No	Ar (CaAa)	52.000 - 6.000	-1.000	0.34	1	1	0.500	0.630		0.15
* CSP Add Dishes													
EW63 (CSP)	C	No	No	Af (CaAa)	135.000 - 6.000	-1.000	-0.3	1	1	1.574	1.574		0.51
EW63 (CSP) * EVS	C	No	No	Af (CaAa)	125.000 - 6.000	-1.000	-0.28	1	1	1.574	1.574		0.51
Proposed (2020													
Inventory) LCF78-50J (7/8 FOAM) (Eversource)	В	No	No	Ar (CaAa)	117.000 - 6.000	-1.000	0.32	2	2	1.100	1.100		0.53
LDF5-50A (7/8 FOAM) (CSP)	В	No	No	Ar (CaAa)	95.000 - 6.000	-1.000	0.28	1	1	1.090	1.090		0.33

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
T1	140.000-125.000	A	0.000	0.000	0.563	0.000	0.00
		В	0.000	0.000	30.166	0.000	0.20
		C	0.000	0.000	18.409	0.000	0.16

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	8 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
T2	125.000-100.000	A	0.000	0.000	0.938	0.000	0.01
		В	0.000	0.000	74.614	0.000	0.41
		C	0.000	0.000	54.899	0.000	0.35
T3	100.000-75.000	A	0.000	0.000	0.938	0.000	0.01
		В	0.000	0.000	83.008	0.000	0.44
		C	0.000	0.000	76.107	0.000	0.40
T4	75.000-50.000	A	0.000	0.000	0.938	0.000	0.01
		В	0.000	0.000	88.378	0.000	0.46
		C	0.000	0.000	80.080	0.000	0.41
T5	50.000-25.000	A	0.000	0.000	0.938	0.000	0.01
		В	0.000	0.000	93.355	0.000	0.47
		C	0.000	0.000	82.243	0.000	0.42
T6	25.000-0.000	A	0.000	0.000	0.713	0.000	0.00
		В	0.000	0.000	70.950	0.000	0.36
		C	0.000	0.000	62.505	0.000	0.32

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
T1	140.000-125.000	A	1.322	0.000	0.000	4.527	0.000	0.04
		В		0.000	0.000	67.804	0.000	0.84
		C		0.000	0.000	44.307	0.000	0.57
T2	125.000-100.000	A	1.300	0.000	0.000	7.438	0.000	0.07
		В		0.000	0.000	172.793	0.000	1.98
		C		0.000	0.000	139.585	0.000	1.57
T3	100.000-75.000	A	1.268	0.000	0.000	7.276	0.000	0.07
		В		0.000	0.000	198.652	0.000	2.22
		C		0.000	0.000	204.627	0.000	2.09
T4	75.000-50.000	A	1.226	0.000	0.000	7.067	0.000	0.07
		В		0.000	0.000	215.540	0.000	2.35
		C		0.000	0.000	213.806	0.000	2.13
T5	50.000-25.000	A	1.165	0.000	0.000	6.761	0.000	0.06
		В		0.000	0.000	233.545	0.000	2.44
		C		0.000	0.000	215.521	0.000	2.09
T6	25.000-0.000	Α	1.044	0.000	0.000	4.678	0.000	0.04
		В		0.000	0.000	167.938	0.000	1.65
		C		0.000	0.000	155.361	0.000	1.42

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	140.000-125.000	17.643	10.633	22.904	13.226
T2	125.000-100.000	26.025	15.958	33.901	19.421
T3	100.000-75.000	32.508	19.354	42.716	24.213
T4	75.000-50.000	36.269	21.482	48.354	27.276
T5	50.000-25.000	31.446	19.172	48.675	27.935
T6	25.000-0.000	26.592	16.354	43.085	24.857

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	9 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	•	Segment Elev.	No Ice	Ice
T1	1	Safety Line 3/8	125.00 -	0.6000	0.6000
		•	140.00		
T1	2	Safety Line 3/8	125.00 -	0.6000	0.6000
		Ž	140.00		
T1	3	Safety Line 3/8	125.00 -	0.6000	0.6000
		·	140.00		
T1	4	Feedline Ladder (Af)	125.00 -	0.6000	0.6000
			140.00		
T1	5	Feedline Ladder (Af)	125.00 -	0.6000	0.6000
			140.00		
T1	7	LDF7-50A(1-5/8)	125.00 -	0.6000	0.6000
			137.50		
T1	8	LDF5-50A(7/8)	125.00 -	0.6000	0.6000
T. 1	0	I DE4D 50 A (1/0)	137.50	0.6000	0.6000
T1	9	LDF4P-50A(1/2)	125.00 -	0.6000	0.6000
T1	10	LDF7-50A(1-5/8)	137.50 125.00 -	0.6000	0.6000
11	10	LDF7-30A(1-3/8)	135.00	0.0000	0.0000
Т1	11	WEP65	125.00 -	0.6000	0.6000
1 1	11	WEI 03	137.50	0.0000	0.0000
T1	12	WEP65	125.00 -	0.6000	0.6000
		,, <u>, , , , , , , , , , , , , , , , , ,</u>	135.00	0.0000	0.0000
Т1	13	WEP65	125.00 -	0.6000	0.6000
			133.00		
T1	15	LDF7-50A(1-5/8)	125.00 -	0.6000	0.6000
			135.00		
T1	16	LDF7-50A(1-5/8)	125.00 -	0.6000	0.6000
			134.50		
T1	17	LDF7-50A(1-5/8)	125.00 -	0.6000	0.6000
T. 1	26	FWG	133.00	0.6000	0.6000
T1	36	EW63	125.00 -	0.6000	0.6000
Т2	1	Safety Line 3/8	135.00 100.00 -	0.6000	0.6000
12	1	Safety Line 3/8	125.00	0.0000	0.0000
Т2	2	Safety Line 3/8	100.00 -	0.6000	0.6000
1-	_	Sarety Zine Sie	125.00	0.0000	0.0000
Т2	3	Safety Line 3/8	100.00 -	0.6000	0.6000
			125.00		
T2	4	Feedline Ladder (Af)	100.00 -	0.6000	0.6000
			125.00		
T2	5	Feedline Ladder (Af)	100.00 -	0.6000	0.6000
		• 	125.00		
T2	7	LDF7-50A(1-5/8)	100.00 -	0.6000	0.6000
T-2	0	I DES 50 4/7/01	125.00	0.000	0.000
T2	8	LDF5-50A(7/8)	100.00 - 125.00	0.6000	0.6000
Т2	9	LDF4P-50A(1/2)	100.00 -	0.6000	0.6000
12	7	LDI 41 -30A(1/2)	125.00	0.0000	0.0000
Т2	10	LDF7-50A(1-5/8)	100.00 -	0.6000	0.6000
		= : = = = = = = = = = = = = = = = = = =	125.00		
T2	11	WEP65	121.00 -	0.6000	0.6000
			125.00		
T2	12	WEP65	100.00 -	0.6000	0.6000
			125.00		
T2	13	WEP65	100.00 -	0.6000	0.6000
I			125.00		

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	10 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Evereouree	Designed by
	Eversource	TJL

				1	
Tower	Feed Line	Description	Feed Line	K_a	K_a
Section T2	Record No.	WEP65	Segment Elev. 100.00 -	No Ice 0.6000	1ce 0.6000
12	14	WEI 03	121.00	0.0000	0.0000
T2	15	LDF7-50A(1-5/8)	100.00 -	0.6000	0.6000
			125.00		
T2	16	LDF7-50A(1-5/8)	100.00 -	0.6000	0.6000
ma.	15	I DET 50 4 (1.5 (0))	125.00	0.6000	0.6000
T2	17	LDF7-50A(1-5/8)	100.00 -	0.6000	0.6000
Т2	18	LDF5-50A(7/8)	125.00 100.00 -	0.6000	0.6000
12	10	LDI'3-30A(7/8)	121.00	0.0000	0.0000
Т2	19	LDF5-50A(7/8)	100.00 -	0.6000	0.6000
			108.00		
T2	20	LDF5-50A(7/8)	100.00 -	0.6000	0.6000
			109.00		
T2	36	EW63	100.00 -	0.6000	0.6000
Т2	27	EW63	125.00 100.00 -	0.6000	0.6000
12	37	EWOS	125.00	0.0000	0.0000
Т2	39	LCF78-50J (7/8 FOAM)	100.00 -	0.6000	0.6000
12	37	20170 303 (7/010/11/1)	117.00	0.0000	0.0000
Т3	1	Safety Line 3/8	75.00 - 100.00	0.6000	0.6000
Т3	2	Safety Line 3/8	75.00 - 100.00	0.6000	0.6000
Т3	3	Safety Line 3/8	75.00 - 100.00	0.6000	0.6000
T3	4	Feedline Ladder (Af)	75.00 - 100.00	0.6000	0.6000
T3	5	Feedline Ladder (Af)	75.00 - 100.00	0.6000	0.6000
T3 T3	7 8	LDF7-50A(1-5/8) LDF5-50A(7/8)	75.00 - 100.00 75.00 - 100.00	0.6000 0.6000	0.6000 0.6000
T3	9	LDF3-50A(7/8) LDF4P-50A(1/2)		0.6000	0.6000
T3	10	LDF7-50A(1-5/8)	75.00 - 100.00	0.6000	0.6000
T3	12	WEP65	75.00 - 100.00	0.6000	0.6000
Т3	13	WEP65	75.00 - 100.00	0.6000	0.6000
Т3	14	WEP65	75.00 - 100.00	0.6000	0.6000
Т3	15	LDF7-50A(1-5/8)	75.00 - 100.00	0.6000	0.6000
T3	16	LDF7-50A(1-5/8)	75.00 - 100.00	0.6000	0.6000
T3	17	LDF7-50A(1-5/8)	75.00 - 100.00	0.6000	0.6000
T3 T3	18 19	LDF5-50A(7/8) LDF5-50A(7/8)	75.00 - 100.00 75.00 - 100.00	0.6000 0.6000	0.6000 0.6000
T3	20	LDF5-50A(7/8)	75.00 - 100.00	0.6000	0.6000
T3	21	LDF5-50A(7/8)	75.00 - 100.00	0.6000	0.6000
Т3	22	LDF5-50A(7/8)	75.00 - 87.00	0.6000	0.6000
T3	23	LDF5-50A(7/8)	75.00 - 96.00	0.6000	0.6000
Т3	24	EW63(ELLIPTICAL)	75.00 - 95.00	0.6000	0.6000
T3	25	LDF4-50A(1/2)	75.00 - 83.00	0.6000	0.6000
T3	26	LDF5-50A(7/8)	75.00 - 79.00	0.6000	0.6000
T3 T3	36 37	EW63 EW63	75.00 - 100.00 75.00 - 100.00	0.6000 0.6000	0.6000 0.6000
T3	39	LCF78-50J (7/8 FOAM)	75.00 - 100.00	0.6000	0.6000
T3	42	LDF5-50A (7/8 FOAM)	75.00 - 95.00	0.6000	0.6000
T4	1	Safety Line 3/8	50.00 - 75.00	0.6000	0.6000
T4	2	Safety Line 3/8		0.6000	0.6000
T4	3	Safety Line 3/8		0.6000	0.6000
T4	4	Feedline Ladder (Af)		0.6000	0.6000
T4	5	Feedline Ladder (Af)		0.6000	0.6000
T4	7	LDF7-50A(1-5/8)		0.6000	0.6000
T4 T4	8	LDF5-50A(7/8) LDF4P-50A(1/2)		0.6000 0.6000	0.6000 0.6000
T4	10	LDF7-50A(1/2)	50.00 - 75.00	0.6000	0.6000
T4	12	WEP65	50.00 - 75.00	0.6000	0.6000
T4	13	WEP65	50.00 - 75.00	0.6000	0.6000
T4	14	WEP65	50.00 - 75.00	0.6000	0.6000
T4	15	LDF7-50A(1-5/8)		0.6000	0.6000
T4	16	LDF7-50A(1-5/8)	50.00 - 75.00	0.6000	0.6000

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	11 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	I DE7 50 A (1.5/0)	Segment Elev.	No Ice	Ice
T4 T4	17 18	LDF7-50A(1-5/8) LDF5-50A(7/8)	50.00 - 75.00 50.00 - 75.00	0.6000 0.6000	0.6000 0.6000
T4	19	LDF5-50A(7/8)	50.00 - 75.00	0.6000	0.6000
T4	20	LDF5-50A(7/8)	50.00 - 75.00	0.6000	0.6000
T4	21	LDF5-50A(7/8)	50.00 - 75.00	0.6000	0.6000
T4	22	LDF5-50A(7/8)	50.00 - 75.00	0.6000	0.6000
T4	23	LDF5-50A(7/8)	50.00 - 75.00	0.6000	0.6000
T4	24	EW63(ELLIPTICAL)	50.00 - 75.00	0.6000	0.6000
T4	25	LDF4-50A(1/2)	50.00 - 75.00	0.6000	0.6000
T4 T4	26 27	LDF5-50A(7/8)	50.00 - 75.00	0.6000	0.6000
T4	28	LDF4P-50A(1/2) LDF5-50A(7/8)	50.00 - 58.00 50.00 - 54.00	0.6000 0.6000	0.6000 0.6000
T4	29	LDF4P-50A(1/2)	50.00 - 54.00	0.6000	0.6000
T4	30	LDF4P-50A(1/2)	50.00 - 53.00	0.6000	0.6000
T4	31	LDF4P-50A(1/2)	50.00 - 52.00	0.6000	0.6000
T4	36	EW63	50.00 - 75.00	0.6000	0.6000
T4	37	EW63	50.00 - 75.00	0.6000	0.6000
T4	39	LCF78-50J (7/8 FOAM)	50.00 - 75.00	0.6000	0.6000
T4	42	LDF5-50A (7/8 FOAM)	50.00 - 75.00	0.6000	0.6000
T5	1	Safety Line 3/8	25.00 - 50.00	0.6000	0.6000
T5	2	Safety Line 3/8	25.00 - 50.00	0.6000	0.6000 0.6000
T5 T5	3 4	Safety Line 3/8 Feedline Ladder (Af)	25.00 - 50.00 25.00 - 50.00	0.6000 0.6000	0.6000
T5	5	Feedline Ladder (Af)	25.00 - 50.00 25.00 - 50.00	0.6000	0.6000
T5	7	LDF7-50A(1-5/8)	25.00 - 50.00	0.6000	0.6000
T5	8	LDF5-50A(7/8)	25.00 - 50.00	0.6000	0.6000
T5	9	LDF4P-50A(1/2)	25.00 - 50.00	0.6000	0.6000
T5	10	LDF7-50A(1-5/8)	25.00 - 50.00	0.6000	0.6000
T5	12	WEP65	25.00 - 50.00	0.6000	0.6000
T5	13	WEP65	25.00 - 50.00	0.6000	0.6000
T5	14	WEP65	25.00 - 50.00	0.6000	0.6000
T5	15	LDF7-50A(1-5/8)	25.00 - 50.00	0.6000	0.6000
T5 T5	16 17	LDF7-50A(1-5/8) LDF7-50A(1-5/8)	25.00 - 50.00 25.00 - 50.00	0.6000 0.6000	0.6000 0.6000
T5	18	LDF7-50A(1-5/8) LDF5-50A(7/8)	25.00 - 50.00 25.00 - 50.00	0.6000	0.6000
T5	19	LDF5-50A(7/8)	25.00 - 50.00	0.6000	0.6000
T5	20	LDF5-50A(7/8)	25.00 - 50.00	0.6000	0.6000
T5	21	LDF5-50A(7/8)	25.00 - 50.00	0.6000	0.6000
T5	22	LDF5-50A(7/8)	25.00 - 50.00	0.6000	0.6000
T5	23	LDF5-50A(7/8)	25.00 - 50.00	0.6000	0.6000
T5	24	EW63(ELLIPTICAL)	25.00 - 50.00	0.6000	0.6000
T5	25	LDF4-50A(1/2)	25.00 - 50.00	0.6000	0.6000
T5 T5	26 27	LDF5-50A(7/8) LDF4P-50A(1/2)	25.00 - 50.00 25.00 - 50.00	0.6000 0.6000	0.6000 0.6000
T5	28	LDF4P-50A(1/2) LDF5-50A(7/8)	25.00 - 50.00 25.00 - 50.00	0.6000	0.6000
T5	29	LDF4P-50A(1/2)	25.00 - 50.00 25.00 - 50.00	0.6000	0.6000
T5	30	LDF4P-50A(1/2)	25.00 - 50.00	0.6000	0.6000
T5	31	LDF4P-50A(1/2)	25.00 - 50.00	0.6000	0.6000
T5	36	EW63	25.00 - 50.00	0.6000	0.6000
T5	37	EW63	25.00 - 50.00	0.6000	0.6000
T5	39	LCF78-50J (7/8 FOAM)	25.00 - 50.00	0.6000	0.6000
T5	42	LDF5-50A (7/8 FOAM)	25.00 - 50.00	0.6000	0.6000
T6	1	Safety Line 3/8	6.00 - 25.00	0.6000	0.6000
T6 T6	2 3	Safety Line 3/8 Safety Line 3/8	6.00 - 25.00 6.00 - 25.00	0.6000 0.6000	0.6000 0.6000
T6	4	Feedline Ladder (Af)	6.00 - 25.00	0.6000	0.6000
T6	5	Feedline Ladder (Af)	6.00 - 25.00	0.6000	0.6000
T6	7	LDF7-50A(1-5/8)	6.00 - 25.00	0.6000	0.6000
Т6	8	LDF5-50A(7/8)	6.00 - 25.00	0.6000	0.6000
T6	9	LDF4P-50A(1/2)	6.00 - 25.00	0.6000	0.6000
T6	10	LDF7-50A(1-5/8)	6.00 - 25.00	0.6000	0.6000
T6	12	WEP65	6.00 - 25.00	0.6000	0.6000

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	12 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T6	13	WEP65	6.00 - 25.00	0.6000	0.6000
T6	14	WEP65	6.00 - 25.00		0.6000
Т6	15	LDF7-50A(1-5/8)		0.6000	0.6000
Т6	16	LDF7-50A(1-5/8)	6.00 - 25.00	0.6000	0.6000
Т6	17	LDF7-50A(1-5/8)	6.00 - 25.00	0.6000	0.6000
Т6	18	LDF5-50A(7/8)	6.00 - 25.00	0.6000	0.6000
T6	19	LDF5-50A(7/8)	6.00 - 25.00	0.6000	0.6000
T6	20	LDF5-50A(7/8)	6.00 - 25.00	0.6000	0.6000
T6	21	LDF5-50A(7/8)	6.00 - 25.00	0.6000	0.6000
T6	22	LDF5-50A(7/8)	6.00 - 25.00	0.6000	0.6000
T6	23	LDF5-50A(7/8)	6.00 - 25.00	0.6000	0.6000
T6	24	EW63(ELLIPTICAL)	6.00 - 25.00	0.6000	0.6000
Т6	25	LDF4-50A(1/2)	6.00 - 25.00	0.6000	0.6000
Т6	26	LDF5-50A(7/8)	6.00 - 25.00	0.6000	0.6000
T6	27	LDF4P-50A(1/2)	6.00 - 25.00	0.6000	0.6000
Т6	28	LDF5-50A(7/8)	6.00 - 25.00	0.6000	0.6000
Т6	29	LDF4P-50A(1/2)	6.00 - 25.00	0.6000	0.6000
Т6	30	LDF4P-50A(1/2)	6.00 - 25.00	0.6000	0.6000
Т6	31	LDF4P-50A(1/2)	6.00 - 25.00	0.6000	0.6000
Т6	36	EW63	6.00 - 25.00	0.6000	0.6000
T6	37	EW63	6.00 - 25.00	0.6000	0.6000
Т6	39	LCF78-50J (7/8 FOAM)	6.00 - 25.00	0.6000	0.6000
Т6	42	LDF5-50A (7/8 FOAM)	6.00 - 25.00	0.6000	0.6000

_		_	
	COLOTO	LOWAR	2246
		Tower	I CAUS
		101101	LUGGU

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft ft	0	ft		ft ²	ft ²	K
LEG B LOADING									
3" Dia 20' Omni (CSP)	В	From Leg	1.000 0.000	0.000	137.500	No Ice 1/2" Ice	4.000 6.000	4.000 6.000	0.06 0.10
2'x2"x2" Vertical Tube	В	From Leg	13.500	0.000	137.500	1" Ice No Ice	8.000 0.522	8.000 0.522	0.14 0.01
(CSP)	D	Enough Loo	0.000 4.500	0.000	137.500	1/2" Ice 1" Ice	0.674 0.833 4.421	0.674 0.833 4.421	0.01
15' x 4" Mount Pipe (CSP)	В	From Leg	1.500 0.000 0.000	0.000	137.500	No Ice 1/2" Ice 1" Ice	4.421 8.296 9.858	4.421 8.296 9.858	0.18 0.23 0.28
10"x8"x4" Junction Box (CSP)	В	From Leg	1.500 0.000 3.500	0.000	137.500	No Ice 1/2" Ice 1" Ice	0.667 0.770 0.881	0.333 0.415 0.504	0.01 0.02 0.02
Sector Mount [SM 403-1] (CSP)	В	From Leg	3.000 0.000 0.500	0.000	137.500	No Ice 1/2" Ice 1" Ice	10.220 14.320 18.420	7.050 10.130 13.210	0.29 0.42 0.55
TMA (CSP)	В	From Leg	3.000 0.000 0.500	0.000	137.500	No Ice 1/2" Ice 1" Ice	0.600 0.704 0.815	0.407 0.497 0.593	0.01 0.02 0.02
AP14-850/105 w/Mount Pipe (CSP)	В	From Leg	3.000 6.000 3.000	0.000	137.500	No Ice 1/2" Ice 1" Ice	10.758 11.457 12.147	8.136 9.799 11.158	0.08 0.16 0.25

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	13 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Fyrananina	Designed by
	Eversource	TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft ²	K
			ft		J		Je	J	
AP14-850/105 w/Mount Pipe	В	From Leg	3.000	0.000	137.500	No Ice	10.758	8.136	0.08
(CSP)			1.000 3.000			1/2" Ice 1" Ice	11.457 12.147	9.799 11.158	0.16 0.25
8'x2" Mount Pipe	В	From Leg	3.000	0.000	137.500	No Ice	1.900	1.900	0.23
(CSP)	Ь	Trom Leg	-1.000	0.000	137.500	1/2" Ice	2.728	2.728	0.04
,			3.000			1" Ice	3.401	3.401	0.06
36"x 6"x3" panel antenna w/	В	From Leg	3.000	0.000	137.500	No Ice	2.250	2.041	0.03
Mount Pipe			0.000			1/2" Ice	2.541	2.511	0.06
(CSP) ***			3.000			1" Ice	2.842	2.998	0.09
14'x3" Mount Pipe	В	From Face	3.000	0.000	135.000	No Ice	4.134	4.134	0.11
(CSP)			5.000			1/2" Ice	6.338	6.338	0.14
	_		0.000	0.000	125.000	1" Ice	7.792	7.792	0.18
Side Arm Mount [SO 601-1]	В	From Face	0.000	0.000	135.000	No Ice	1.220	6.300	0.16
(CSP)			5.000 0.000			1/2" Ice 1" Ice	1.850 2.480	8.610 10.920	0.20 0.23
(2) 3'x3"x3" Horizontal Angle	В	From Face	0.000	0.000	135.000	No Ice	0.900	0.075	0.23
(CSP)	ь	1 Ioin 1 acc	5.000	0.000	133.000	1/2" Ice	1.120	0.112	0.02
(651)			0.000			1" Ice	1.348	0.156	0.03
20'x2.5" Mount Pipe	В	From Face	3.500	0.000	135.000	No Ice	5.750	5.750	0.12
(CSP)			5.000			1/2" Ice	7.782	7.782	0.16
			0.000			1" Ice	9.831	9.831	0.21
AP14-850/105 w/Mount Pipe	В	From Face	3.500	0.000	135.000	No Ice	10.759	8.141	0.08
(CSP)			5.000			1/2" Ice	11.457	9.799	0.16
***			-10.000			1" Ice	12.147	11.158	0.25
10'x4" Mount Pipe	В	From Face	0.000	0.000	135.000	No Ice	2.953	2.953	0.13
(CSP)			0.000			1/2" Ice	5.238	5.238	0.16
***			0.000			1" Ice	5.846	5.846	0.19
Sector Mount [SM 403-1]	В	From Leg	3.000	0.000	121.000	No Ice	10.220	7.050	0.29
(CSP)	ь	110III Leg	0.000	0.000	121.000	1/2" Ice	14.320	10.130	0.42
(CSI)			0.500			1" Ice	18.420	13.210	0.55
8'x2"x6" Panel Antenna w/	В	From Leg	3.000	0.000	121.000	No Ice	2.904	8.938	0.06
Mount Pipe			6.000			1/2" Ice	3.921	10.450	0.12
(CSP)			2.500			1" Ice	4.952	11.986	0.18
8'x2"x6" Panel Antenna w/	В	From Leg	3.000	0.000	121.000	No Ice	2.904	8.938	0.06
Mount Pipe			1.000			1/2" Ice	3.921	10.450	0.12
(CSP)	ъ.		2.500	0.000	121 000	1" Ice	4.952	11.986	0.18
8'x2" Mount Pipe	В	From Leg	3.000	0.000	121.000	No Ice	1.900	1.900	0.03
(CSP)			-1.000 2.500			1/2" Ice 1" Ice	2.728 3.401	2.728 3.401	0.04 0.06
8'x2"x6" Panel Antenna w/	В	From Leg	3.000	0.000	121.000	No Ice	2.904	8.938	0.06
Mount Pipe	ь	110III Leg	-6.000	0.000	121.000	1/2" Ice	3.921	10.450	0.12
(CSP)			2.500			1" Ice	4.952	11.986	0.18
TMA	В	From Leg	3.000	0.000	121.000	No Ice	0.600	0.407	0.01
(CSP)		Č	3.000			1/2" Ice	0.704	0.497	0.02
			2.500			1" Ice	0.815	0.593	0.02
***	D	E 7	2.000	0.000	100.000	NI. T	0.000	0.000	0.01
(2) 4'x2" Horizontal Mount	В	From Leg	2.000	0.000	108.000	No Ice	0.866	0.866	0.01
Pipe (CSP)			0.000			1/2" Ice 1" Ice	1.111 1.365	1.111 1.365	0.02 0.03
12'x2" Horizontal Pipe	В	From Leg	4.000	0.000	108.000	No Ice	2.850	2.850	0.03
(CSP)	ъ	110m Leg	0.000	0.000	100.000	1/2" Ice	4.078	4.078	0.04
(===)			0.000			1" Ice	5.323	5.323	0.09

Side Arm Mount [SO 601-1]	В	From Leg	0.000	45.000	100.000	No Ice	1.220	6.300	0.16

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	14 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft	0	ft		ft ²	ft²	K
			ft ft						
(CSP)			0.000			1/2" Ice 1" Ice	1.850 2.480	8.610 10.920	0.20 0.23
(2) 3'x3"x3" Horizontal Angle (CSP)	В	From Leg	3.000 0.000	45.000	100.000	No Ice 1/2" Ice	0.900 1.120	0.900 1.120	0.01 0.02
3' Yagi (CSP)	В	From Leg	0.000 6.000 0.000	45.000	100.000	1" Ice No Ice 1/2" Ice	1.348 2.083 3.787	1.348 2.083 3.787	0.03 0.03 0.05
2" Dia 10' Omni (CSP)	В	From Leg	0.000 6.000 0.000 -6.000	0.000	100.000	1" Ice No Ice 1/2" Ice 1" Ice	5.517 2.000 3.030 4.060	5.517 2.000 3.030 4.060	0.09 0.01 0.03 0.04
***						1 100	4.000	4.000	
Side Arm Mount [SO 601-1] (CSP)	В	From Leg	0.000 0.000 0.000	45.000	87.000	No Ice 1/2" Ice 1" Ice	1.220 1.850 2.480	6.300 8.610 10.920	0.16 0.20 0.23
2" Dia 20' Omni (CSP)	В	From Leg	1.000 0.000	0.000	87.000	No Ice 1/2" Ice	4.000 6.025	4.000 6.025	0.02 0.05
***			6.000			1" Ice	8.067	8.067	0.10
12'x2" Horizontal Pipe (CSP)	В	From Leg	1.000 0.000 0.000	0.000	83.000	No Ice 1/2" Ice 1" Ice	2.850 4.078 5.323	2.850 4.078 5.323	0.04 0.07 0.09
Single Bay Dipole (CSP)	В	From Leg	1.000 0.000	0.000	83.000	No Ice 1/2" Ice	5.400 9.240	5.400 9.240	0.03 0.04
***			12.500			1" Ice	13.080	13.080	0.05
(2) 4'x2" Horizontal Mount Pipe	В	From Leg	2.000 0.000	90.000	58.000	No Ice 1/2" Ice	0.866 1.111	0.866 1.111	0.01 0.02
(CSP) 12'x2" Horizontal Pipe (CSP)	В	From Leg	0.000 4.000 0.000	90.000	58.000	1" Ice No Ice 1/2" Ice	1.365 2.850 4.078	1.365 2.850 4.078	0.03 0.04 0.07
Single Dipole Antenna (CSP)	В	From Leg	0.000 6.000 0.000	90.000	58.000	1" Ice No Ice 1/2" Ice	5.323 5.400 9.240	5.323 5.400 9.240	0.09 0.03 0.04
***			0.000			1" Ice	13.080	13.080	0.05
3' Yagi (CSP)	В	From Leg	1.000	0.000	53.000	No Ice 1/2" Ice	2.083 3.787	2.083 3.787	0.03 0.05
***			0.000			1" Ice	5.517	5.517	0.09
6'x2" Mount Pipe (CSP)	В	From Leg	1.000 0.000 0.000	0.000	52.000	No Ice 1/2" Ice 1" Ice	1.425 1.925 2.294	1.425 1.925 2.294	0.02 0.03 0.05
Single Bay Dipole Antenna (CSP)	В	From Leg	1.000 0.000 6.000	0.000	52.000	No Ice 1/2" Ice 1" Ice	5.400 9.240 13.080	5.400 9.240 13.080	0.03 0.04 0.05
***			0.000			1 ICE	13.080	13.000	0.03
LEG A LOADING 15' x 4" Mount Pipe (CSP)	A	From Leg	1.500 0.000 7.500	0.000	137.000	No Ice 1/2" Ice 1" Ice	4.422 8.296 9.858	4.422 8.296 9.858	0.18 0.23 0.28
*** Side Arm Mount [SO 601-1] (CSP)	A	From Leg	0.000 0.000	90.000	133.000	No Ice 1/2" Ice	1.220 1.850	6.300 8.610	0.16 0.20
(2) 3'x3"x3" Horizontal Angle	A	From Leg	0.000 3.000	90.000	133.000	1" Ice No Ice	2.480 0.900	10.920 0.900	0.23 0.01

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	15 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Eversource	Designed by
	LVG130d10 C	TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert						
			ft ft	0	ft		ft ²	ft ²	K
(CSP)			ft 0.000			1/2" Ice	1.120	1.120	0.02
(CSF)			0.000			1" Ice	1.120	1.120	0.02
2" Dia 20' Omni	Α	From Leg	3.000	0.000	133.000	No Ice	4.000	4.000	0.02
(CSP)	••	Trom Deg	0.000	0.000	155.000	1/2" Ice	6.025	6.025	0.05
(===)			13.000			1" Ice	8.067	8.067	0.10
2" Dia 20' Omni	Α	From Leg	3.000	0.000	133.000	No Ice	4.000	4.000	0.02
(CSP)		•	0.000			1/2" Ice	6.025	6.025	0.05
			-13.000			1" Ice	8.067	8.067	0.10
***			4.000	0.000	121 000				0.00
Pipe Mount [PM 602-1]	Α	From Leg	1.000	0.000	121.000	No Ice	5.250	5.250	0.09
(CSP)			0.000			1/2" Ice	6.500	6.500	0.12
***			0.000			1" Ice	7.750	7.750	0.14
Side Arm Mount [SO 601-1]	A	From Leg	0.000	90.000	96.000	No Ice	1.220	6.300	0.16
(CSP)			0.000			1/2" Ice	1.850	8.610	0.20
,			0.000			1" Ice	2.480	10.920	0.23
(2) 3'x3"x3" Horizontal Angle	Α	From Leg	3.000	90.000	96.000	No Ice	0.900	0.900	0.01
(CSP)			0.000			1/2" Ice	1.120	1.120	0.02
			0.000			1" Ice	1.348	1.348	0.03
2" Dia 20' Omni	A	From Leg	3.000	0.000	96.000	No Ice	4.000	4.000	0.02
(CSP)			0.000			1/2" Ice	6.025	6.025	0.05
			10.000			1" Ice	8.067	8.067	0.10
20' Multi Array Dipole	Α	From Leg	3.000	0.000	96.000	No Ice	5.400	5.400	0.03
(CSP)			0.000			1/2" Ice	9.240	9.240	0.04
401 4113 5 51			-10.000	0.000	0 < 000	1" Ice	13.080	13.080	0.05
10'x4" Mount Pipe	Α	From Face	0.000	0.000	96.000	No Ice	3.061	3.061	0.13
(CSP)			-5.000 0.000			1/2" Ice 1" Ice	5.238 5.846	5.238 5.846	0.16 0.19
***			0.000			1 100	3.040	3.040	0.17

LEG C LOADING	C	Enom I ao	0.000	0.000	140,000	No Ioo	4.313	4 212	0.09
15'x2.5" Extension Pipe	С	From Leg	0.000 0.000	0.000	140.000	No Ice 1/2" Ice	5.845	4.313 5.845	0.09
			7.500			1" Ice	7.394	7.394	0.12
Lightning Rod 5/8"x4'	C	From Leg	0.000	0.000	140.000	No Ice	0.250	0.250	0.10
Eightining Rod 5/6 X4	C	Trom Leg	0.000	0.000	140.000	1/2" Ice	0.664	0.664	0.01
			17.000			1" Ice	0.973	0.973	0.01

12'x3" Mount Pipe	C	From Leg	1.000	0.000	134.500	No Ice	3.545	3.545	0.12
(CSP)			0.000			1/2" Ice	5.438	5.438	0.15
			0.000	0.000	121 500	1" Ice	6.692	6.692	0.19
20' Multi Array Dipole	C	From Leg	1.000	0.000	134.500	No Ice	5.400	5.400	0.03
(CSP)			0.000			1/2" Ice	9.240	9.240	0.04
***			13.000			1" Ice	13.080	13.080	0.05
6'x2" Horizontal Pipe	C	From Leg	1.000	0.000	109.000	No Ice	1.425	0.007	0.02
(Eversoure)	C	Trom Leg	0.000	0.000	102.000	1/2" Ice	1.925	0.039	0.03
(0.000			1" Ice	2.294	0.070	0.05
CL6-450B	C	From Leg	1.000	0.000	109.000	No Ice	3.683	1.700	0.03
(Eversoure - Proposed)	-	- 3	0.000			1/2" Ice	3.926	1.865	0.06
			0.000			1" Ice	4.176	2.037	0.09

MD-S6 (for 6' MW) : Ice	C	From Leg	3.000	0.000	95.000	No Ice	1.667	0.800	0.44
Shield			0.000			1/2" Ice	2.237	1.081	0.61
(CSP)			7.000			1" Ice	2.815	1.370	0.79
8'x4" Mount Pipe (CSP)	C	From Leg	1.000	0.000	95.000	No Ice	2.369	2.369	0.09
			0.000			1/2" Ice	3.840	3.840	0.11

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	16 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft²	ft²	K
			0.000			1" Ice	4.333	4.333	0.14
15' x 4" Mount Pipe	C	From Leg	1.000	0.000	95.000	No Ice	4.596	4.596	0.18
(CSP)			0.000			1/2" Ice	8.296	8.296	0.23
***			0.000			1" Ice	9.858	9.858	0.28
Side Arm Mount [SO 601-1]	C	From Leg	0.000	0.000	79.000	No Ice	1.220	6.300	0.16
(CSP)	Ü	110111 206	0.000	0.000	77.000	1/2" Ice	1.850	8.610	0.20
(-2-)			0.000			1" Ice	2.480	10.920	0.23

Side Arm Mount [SO 601-1]	C	From Leg	0.000	0.000	54.000	No Ice	1.220	6.300	0.16
(CSP)		Č	0.000			1/2" Ice	1.850	8.610	0.20
			0.000			1" Ice	2.480	10.920	0.23
7' Whip	C	From Leg	3.000	0.000	54.000	No Ice	1.744	1.744	0.04
(CSP)		_	0.000			1/2" Ice	2.599	2.599	0.05
			5.000			1" Ice	3.294	3.294	0.08

MISCL MPs inside tower*									
15'x2.5" Horizontal Pipe	В	From Leg	0.000	0.000	140.500	No Ice	4.313	0.014	0.09
			0.000			1/2" Ice	5.845	0.084	0.12
			0.000			1" Ice	7.394	0.154	0.16
10'x2" Horizontal Pipe	A	From Leg	0.000	0.000	132.500	No Ice	2.375	0.009	0.04
			0.000			1/2" Ice	3.403	0.047	0.05
			0.000			1" Ice	4.448	0.084	0.08
(2) 10'x2" Horizontal Pipe	В	From Leg	0.000	0.000	130.000	No Ice	2.375	0.009	0.04
			0.000			1/2" Ice	3.403	0.047	0.05
	_	_	0.000			1" Ice	4.448	0.084	0.08
10'x2" Horizontal Pipe	В	From Leg	0.000	0.000	100.000	No Ice	2.375	0.009	0.04
			0.000			1/2" Ice	3.403	0.047	0.05
101 2011	ъ.	Б. Т	0.000	0.000	02.000	1" Ice	4.448	0.084	0.08
10'x2" Horizontal Pipe	В	From Leg	0.000	0.000	92.000	No Ice	2.375	0.009	0.04
			0.000			1/2" Ice	3.403	0.047	0.05
Proposed			0.000			1" Ice	4.448	0.084	0.08
Sitepro1 USF-4U Mount	A	From Leg	0.000	0.000	117.000	No Ice	2.483	5.145	0.17
Assembly ($Ca = 1.4$ assumed)	А	110III Leg	0.000	0.000	117.000	1/2" Ice	3.247	6.910	0.17
(Eversoure)			0.000			1" Ice	4.029	8.675	0.47
Telewave ANT220F2 - Omni	Α	From Leg	3.000	0.000	120.875	No Ice	1.029	1.029	0.01
Antenna	• •	Trom Leg	0.000	0.000	120.070	1/2" Ice	1.290	1.290	0.02
(Eversoure)			0.000			1" Ice	1.560	1.560	0.03
Telewave ANT220F2 - Omni	Α	From Leg	3.000	0.000	113.125	No Ice	1.029	1.029	0.01
Antenna		Č	0.000			1/2" Ice	1.290	1.290	0.02
(Eversoure (inverted)) *			0.000			1" Ice	1.560	1.560	0.03
ANT450F6	C	From Leg	3.000	0.000	95.000	No Ice	1.900	1.900	0.01
(CSP Reserved)		8	0.000			1/2" Ice	2.728	2.728	0.02
			0.000			1" Ice	3.401	3.401	0.04
6' x2.5" - Sch 40 Antenna	A	From Leg	3.000	0.000	117.000	No Ice	1.693	1.693	0.04
Pipe (Vertical)		J	0.000			1/2" Ice	2.088	2.088	0.05
(CSP Reserved)			0.000			1" Ice	2.460	2.460	0.06

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	17 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Eversource	Designed by TJL

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft ²	K
PA8-65 (E)	A	Paraboloid w/Radome	From Leg	3.000 -3.000 0.000	Worst		121.000	8.000	No Ice 1/2" Ice 1" Ice	50.270 51.292 52.314	0.29 0.55 0.81
10' dish (E)	A	Paraboloid w/Radome	From Leg	2.000 0.000 0.000	Worst		135.000	10.000	No Ice 1/2" Ice 1" Ice	78.540 79.850 81.170	0.70 0.41 0.77
PA8-65 (E)	В	Paraboloid w/Radome	From Leg	1.000 0.000 0.000	Worst		132.000	8.000	No Ice 1/2" Ice 1" Ice	50.270 51.292 52.314	0.77 0.29 0.55 0.81
PA6-65 (Diversity CSP)	C	Paraboloid w/Radome	From Leg	1.000 0.000 0.000	Worst		95.000	6.000	No Ice 1/2" Ice 1" Ice	28.270 29.050 29.831	0.09 0.24 0.39
SC3-W100AD (CSP - Existing @ 135')	С	Paraboloid w/o Radome	From Leg	0.250 0.000 0.000	Worst		135.000	3.000	No Ice 1/2" Ice 1" Ice	7.070 7.470 7.860	0.04 0.08 0.12
SC3-W100AD (CSP - Existing @ 125')	С	Paraboloid w/o Radome	From Leg	0.250 0.000 0.000	Worst		125.000	3.000	No Ice 1/2" Ice 1" Ice	7.070 7.470 7.860	0.04 0.08 0.12

222-H Verification Constants

Constant	Value
\mathbf{K}_{d}	0.85
Ice Thickness Importance Factor	1.15
$\mathrm{Z}_{\scriptscriptstyle\mathrm{g}}$	900
α	9.5
$K_{ m zmin}$	0.85
K_{c}	n/a
$K_{\rm t}$	1
f	1
K _e	1

222-H Section Verification ArRr By Element

Section	Elem.	Size	С	С	F	e	e	A_r	A_r	A_rR_r	A_rR_r
Elevation	Num.			w/Ice	а		w/Ice		w/Ice		w/Ice
					c						
ft					e			ft^2	ft^2	ft^2	ft^2
T1	1	HSS5x0.25	70.012	36.904	C	0.137	0.237	6.257	9.564	2.776	5.566
140.000-125.00											
0											
	1	HSS5x0.25	70.012	36.904	Α	0.137	0.237	6.257	9.564	2.776	5.566
	2	HSS5x0.25	70.012	36.904	C	0.137	0.237	6.257	9.564	2.776	5.566
	2	HSS5x0.25	70.012	36.904	В	0.137	0.237	6.257	9.564	2.776	5.566
	3	HSS5x0.25	70.012	36.904	В	0.137	0.237	6.257	9.564	2.776	5.566
	3	HSS5x0.25	70.012	36.904	Α	0.137	0.237	6.257	9.564	2.776	5.566
					Α		Sum:	12.513	19.128	5.551	11.133
					В			12.513	19.128	5.551	11.133
					C			12.513	19.128	5.551	11.133
T2	22	HSS5x0.25	68.817	36.07	C	0.13	0.219	10.428	15.850	4.648	9.163

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	18 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

Section	Elem.	Size	С	С	F	e	e	A_r	A_r	A_rR_r	A_rR_r
Elevation	Num.			w/Ice	a		w/Ice		w/Ice		w/Ice
					c			a ?	a.2	a.2	a 2
ft					е			ft ²	ft ²	ft ²	ft ²
125.000-100.00											
0	22	11005 0.25	60.017	26.07		0.12	0.210	10.420	15.050	4.640	0.162
	22 23	HSS5x0.25	68.817	36.07	A	0.13	0.219		15.850	4.648	
	23 23	HSS5x0.25 HSS5x0.25	68.817 68.817	36.07 36.07	C B	0.13 0.13	0.219 0.219	10.428 10.428	15.850 15.850	4.648 4.648	9.163 9.163
	23 24	HSS5x0.25	68.817	36.07	В	0.13	0.219	10.428	15.850	4.648 4.648	9.163
	24	HSS5x0.25	68.817	36.07	A	0.13	0.219	10.428	15.850	4.648 4.648	9.163
	24	nsssx0.23	08.817	36.07	A	0.13	0.219 Sum:	20.856	31.701	4.048 9.296	
					В		Suiii.	20.856	31.701	9.296	18.326
					C			20.856	31.701	9.296	18.326
Т3	61	HSS5x.375	67.02	34.83	C	0.12	0.202	10.428	15.716	4.687	9.034
100.000-75.000	0.1	11000.11070	07.02	5		0.12	0.202	1020	101,10		7.00.
100.000 75.000	61	HSS5x.375	67.02	34.83	Α	0.12	0.202	10.428	15.716	4.687	9.034
	62	HSS5x.375	67.02	34.83	C	0.12	0.202	10.428	15.716	4.687	9.034
	62	HSS5x.375	67.02	34.83	В	0.12	0.202	10.428	15.716	4.687	9.034
	63	HSS5x.375	67.02	34.83	В	0.12	0.202	10.428	15.716	4.687	9.034
	63	HSS5x.375	67.02	34.83	A	0.12	0.202	10.428	15.716	4.687	9.034
					A		Sum:	20.856	31.432	9.375	18.069
					В			20.856	31.432	9.375	18.069
					C			20.856	31.432	9.375	18.069
T4	100	HSS5x.375	64.688	33.244	C	0.113	0.188	10.428	15.541	4.763	8.897
75.000-50.000											
	100	HSS5x.375	64.688	33.244	Α	0.113	0.188		15.541	4.763	8.897
	101	HSS5x.375	64.688	33.244	C	0.113	0.188	10.428	15.541	4.763	8.897
	101	HSS5x.375	64.688	33.244	В	0.113	0.188	10.428	15.541	4.763	8.897
	102	HSS5x.375	64.688	33.244	В	0.113	0.188	10.428	15.541	4.763	8.897
	102	HSS5x.375	64.688	33.244	A	0.113	0.188	10.428	15.541	4.763	8.897
					A		Sum:	20.856	31.082	9.526	17.795
					В			20.856	31.082	9.526	17.795
m.e					C		C	20.856	31.082	9.526 0.000	17.795
T5 50.000-25.000					A B		Sum:	0.000 0.000	0.000 0.000	0.000	0.000 0.000
30.000-25.000					С			0.000	0.000	0.000	0.000
T6 25.000-0.000					A		Sum:	0.000	0.000	0.000	0.000
10 23.000-0.000					В		Suill.	0.000	0.000	0.000	0.000
					C			0.000	0.000	0.000	0.000
					C			0.000	0.000	0.000	0.000
			1			ll					

222-H Section Verification Tables - No Ice

Section	Z_{wind}	Z_{ice}	K_z	K_h	K_{zt}	t_z	q_z	F	е	A_rR_r
Elevation								а		
								c		2
ft	ft	ft				in	psf	e		ft^2
T1 140.000-125.000	132.500		1.343	1	1		61	Α	0.137	5.551
								В	0.137	5.551
								C	0.137	5.551
T2 125.000-100.000	112.500		1.297	1	1		59	Α	0.13	9.296
								В	0.13	9.296
								C	0.13	9.296
T3 100.000-75.000	87.500		1.231	1	1		56	Α	0.12	9.375
								В	0.12	9.375
								C	0.12	9.375
T4 75.000-50.000	62.500		1.146	1	1		52	Α	0.113	9.526

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	19 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Section	Zwind	Zice	K_z	K_h	K_{zt}	t_z	q_z	F	e	A_rR_r
Elevation								a		
								c		2
ft	ft	ft				in	psf	e		ft ²
								В	0.113	9.526
								C	0.113	9.526
T5 50.000-25.000	37.500		1.029	1	1		47	A	0.125	0.000
								В	0.125	0.000
								C	0.125	0.000
T6 25.000-0.000	12.500		0.85	1	1		39	A	0.123	0.000
								В	0.123	0.000
								C	0.123	0.000

222-H Section Verification Tables - Ice

Section	Z_{wind}	Z_{ice}	K_z	K_h	K_{zt}	t_z	q_z	F	e	A_rR_r
Elevation								a		
								c		. 2
ft	ft	ft				in	psf	e		ft ²
T1 140.000-125.000	132.500	132.500	1.343	1	1	1.322	7	A	0.237	19.003
								В	0.237	19.003
								C	0.237	19.003
T2 125.000-100.000	112.500	112.500	1.297	1	1	1.300	7	A	0.219	31.327
								В	0.219	31.327
								C	0.219	31.327
T3 100.000-75.000	87.500	87.500	1.231	1	1	1.268	7	A	0.202	31.914
								В	0.202	31.914
								C	0.202	31.914
T4 75.000-50.000	62.500	62.500	1.146	1	1	1.226	6	A	0.188	32.346
								В	0.188	32.346
								C	0.188	32.346
T5 50.000-25.000	37.500	37.500	1.029	1	1	1.165	6	A	0.175	11.138
								В	0.175	11.138
								C	0.175	11.138
T6 25.000-0.000	12.500	12.500	0.85	1	1	1.044	5	A	0.166	10.622
								В	0.166	10.622
								C	0.166	10.622

222-H Section Verification Tables - Service

Section	Z_{wind}	Z_{ice}	K_z	K_h	K_{zt}	t_z	q_z	F	e	A_rR_r
Elevation								а		
								c		2
ft	ft	ft				in	psf	e		ft ²
T1 140.000-125.000	132.500		1.343	1	1		11	A	0.137	7.087
								В	0.137	7.087
								C	0.137	7.087
T2 125.000-100.000	112.500		1.297	1	1		10	A	0.13	11.800
								В	0.13	11.800
								C	0.13	11.800
T3 100.000-75.000	87.500		1.231	1	1		10	A	0.12	11.787
								В	0.12	11.787
								C	0.12	11.787
T4 75.000-50.000	62.500		1.146	1	1		9	A	0.113	11.779
								В	0.113	11.779
								C	0.113	11.779
T5 50.000-25.000	37.500		1.029	1	1		8	A	0.125	0.000
								В	0.125	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	20 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Eversource	Designed by
	Eversource	TJL

Section	Zwind	Zice	K_z	K_h	K_{zt}	t_z	q_z	F	е	A_rR_r
Elevation								а		
ft	ft	ft				in	psf	c e		ft ²
J.	Ji	Ji					PiJ	C	0.125	0.000
T6 25.000-0.000	12.500		0.85	1	1		7	A	0.123	0.000
								В	0.123	0.000
								C	0.123	0.000

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	10.13					
Bracing Weight	17.42					
Total Member Self-Weight	27.55			21.83	-42.43	
Total Weight	38.78			21.83	-42.43	
Wind 0 deg - No Ice		0.00	-74.69	-6288.85	-42.43	174.95
Wind 30 deg - No Ice		36.24	-62.77	-5354.70	-3146.57	200.65
Wind 60 deg - No Ice		61.02	-35.23	-3020.58	-5312.04	152.70
Wind 90 deg - No Ice		70.13	0.00	21.83	-6090.79	61.10
Wind 120 deg - No Ice		63.65	36.75	3136.37	-5436.97	-31.01
Wind 150 deg - No Ice		34.49	59.74	5173.69	-3016.86	
Wind 180 deg - No Ice		0.00	69.16	6003.95	-42.43	-174.95
Wind 210 deg - No Ice		-36.24	62.77	5398.37	3061.71	-200.65
Wind 240 deg - No Ice		-65.81	38.00	3228.53	5511.73	-152.70
Wind 270 deg - No Ice		-70.13	0.00	21.83	6005.93	
Wind 300 deg - No Ice		-58.86	-33.98	-2928.42	5067.56	
Wind 330 deg - No Ice		-34.49	-59.74	-5130.02	2932.00	111.19
Member Ice	28.31					
Total Weight Ice	93.46			100.78	-184.39	
Wind 0 deg - Ice		0.00	-15.20	-1175.05	-184.39	49.16
Wind 30 deg - Ice		7.45	-12.91	-992.97	-815.87	55.42
Wind 60 deg - Ice		12.64	-7.30	-521.77	-1262.67	44.11
Wind 90 deg - Ice		14.43	0.00	100.78	-1415.46	21.04
Wind 120 deg - Ice		12.76	7.37	722.74	-1261.67	-4.94
Wind 150 deg - Ice		7.20	12.47	1162.29	-797.26	-29.66
Wind 180 deg - Ice		0.00	14.57	1340.53	-184.39	-49.16
Wind 210 deg - Ice		-7.45	12.91	1194.53	447.08	-55.42
Wind 240 deg - Ice		-13.19	7.62	741.35	925.12	-44.11
Wind 270 deg - Ice		-14.43	0.00	100.78	1046.67	-21.04
Wind 300 deg - Ice		-12.21	-7.05	-503.16	861.65	4.94
Wind 330 deg - Ice	38.78	-7.20	-12.47	-960.74	428.47	29.66
Total Weight	38./8	0.00	12.00	21.83	-42.43	20.06
Wind 0 deg - Service		0.00	-13.00	-1097.26	-9.93	29.96
Wind 30 deg - Service		6.31	-10.93	-934.61	-551.54	34.36
Wind 60 deg - Service		10.63	-6.14	-527.56	-929.71	26.15
Wind 90 deg - Service		12.21	0.00	3.48	-1065.76	
Wind 120 deg - Service		11.08	6.40	546.86	-951.10	-5.31
Wind 150 deg - Service		6.01	10.41	903.10	-529.33	-19.04
Wind 180 deg - Service		0.00	12.05	1047.96	-9.93	-29.96
Wind 210 deg - Service		-6.31	10.93	941.57	531.67	-34.36
Wind 240 deg - Service		-11.45	6.61	562.64	958.57	-26.15
Wind 270 deg - Service		-12.21	0.00	3.48	1045.89	-10.46
Wind 300 deg - Service		-10.26	-5.92	-511.78	882.51	5.31
Wind 330 deg - Service		-6.01	-10.41	-896.14	509.46	19.04

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	21 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Eversource	Designed by TJL

Load Combinations

Comb.	Description
No.	Безсприон
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29 30	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	22 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
T1	140 - 125	Leg	Max Tension	7	3.26	-0.82	-0.06
			Max. Compression	31	-8.15	0.09	0.05
			Max. Mx	14	-0.55	3.13	0.78
			Max. My	20	-1.59	-0.04	4.56
			Max. Vy	14	2.40	-2.13	0.78
		D:1	Max. Vx	8	-3.31	-0.04	2.37
		Diagonal	Max Tension	25 24	10.65 -10.80	0.00 0.00	0.00
			Max. Compression Max. Mx	30	-10.80 1.11	0.00	0.00
			Max. My	30	-0.36	0.00	0.00
			Max. Vy	30	0.06	0.00	0.00
			Max. Vx	32	-0.00	0.00	0.00
		Horizontal	Max Tension	14	7.51	0.03	0.02
		Homzontar	Max. Compression	2	-7.61	0.03	0.02
			Max. Mx	29	-0.60	0.08	0.02
			Max. My	12	-6.98	0.03	0.02
			Max. Vy	29	0.06	0.08	0.02
			Max. Vx	31	-0.00	0.00	0.00
		Top Girt	Max Tension	15	2.09	0.02	0.01
		- · P ·	Max. Compression	2	-2.14	0.03	0.01
			Max. Mx	29	-0.32	0.07	0.02
			Max. My	31	0.15	0.06	0.02
			Max. Vy	29	0.06	0.07	0.02
			Max. Vx	31	-0.00	0.00	0.00
T2	125 - 100	Leg	Max Tension	7	41.90	0.11	-0.29
		C	Max. Compression	10	-49.42	0.76	-0.06
			Max. Mx	22	9.88	2.38	-0.57
			Max. My	20	-2.96	-0.02	3.32
			Max. Vy	22	-1.06	-0.84	-0.42
			Max. Vx	10	-1.41	-0.69	1.71
		Diagonal	Max Tension	25	16.12	0.00	0.00
			Max. Compression	24	-16.38	0.00	0.00
			Max. Mx	30	2.01	0.24	0.00
			Max. My	32	-0.71	0.00	0.01
			Max. Vy	30	-0.09	0.00	0.00
			Max. Vx	32	-0.00	0.00	0.00
		Horizontal	Max Tension	24	10.87	0.04	-0.00
			Max. Compression	25	-10.75	0.03	-0.00
			Max. Mx	29	-0.38	0.11	0.00
			Max. My	18	0.52	0.02	-0.03
			Max. Vy	29	-0.07	0.11	0.00
			Max. Vx	18	0.00	0.02	-0.03
		Inner Bracing	Max Tension	17	0.01	0.00	0.00
			Max. Compression	12	-0.02	0.00	0.00
			Max. Mx	26	-0.01	-0.07	0.00
			Max. My	10	0.01	0.00	-0.00
			Max. Vy	26	-0.04	0.00	0.00
т2	100 75	Laa	Max. Vx	10	0.00	0.00	0.00
Т3	100 - 75	Leg	Max Tension	7	92.43	-0.50	-0.20
			Max. Compression	10	-106.17	0.51	-0.06
			Max. Mx	6 24	55.62 -3.65	1.09 -0.04	-0.11 -1.79
			Max. My			-0.04	
			Max. Vy	6 12	0.71 0.92	-1.03 -0.04	-0.11
		Diagonal	Max. Vx Max Tension	12 25	0.92 19.10	-0.04 0.00	-1.19 0.00
		Diagoliai	Max Tension Max. Compression		-19.10 -19.44		
			1	24		0.00	0.00
			Max. Mx	30	3.07	0.29	0.00
			Max. My	27	0.69	0.00	-0.01 0.00
			Max. Vy Max. Vx	30 27	-0.10 0.00	0.00 0.00	0.00
		Horizontal	Max. vx Max Tension	24		0.06	-0.00
		HUHZUHU	IVIAN I CHSIOH	∠4	13.78	0.00	-0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	23 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	K	kip-ft	kip-ft
			Max. Compression	3	-13.71	0.06	0.02
			Max. Mx	29	-0.71	0.16	0.01
			Max. My	18	-0.49	0.03	-0.05
			Max. Vy	29	-0.09	0.16	0.01
			Max. Vx	18	0.01	0.03	-0.05
		Inner Bracing	Max Tension	17	0.01	0.00	0.00
		_	Max. Compression	24	-0.02	0.00	0.00
			Max. Mx	26	-0.01	-0.09	0.00
			Max. My	2	0.01	0.00	-0.00
			Max. Vy	26	-0.05	0.00	0.00
			Max. Vx	10	0.00	0.00	0.00
T4	75 - 50	Leg	Max Tension	7	149.66	-0.53	-0.25
		C	Max. Compression	10	-169.02	0.73	-0.10
			Max. Mx	3	-164.82	0.74	-0.26
			Max. My	4	-11.68	-0.02	-1.13
			Max. Vy	22	-0.32	-0.52	0.06
			Max. Vx	4	-0.69	-0.01	-0.78
		Diagonal	Max Tension	3	20.66	0.00	0.00
		Diagonar	Max. Compression	2	-21.12	0.00	0.00
			Max. Mx	30	3.54	0.33	0.00
			Max. My	27	0.76	0.00	-0.01
			Max. Vy	30	-0.11	0.00	0.00
			Max. Vx	27	0.00	0.00	0.00
		Horizontal	Max Tension	24	15.57	-0.12	0.00
		понгонат	Max. Compression	3	-15.93	-0.12	-0.02
			Max. Mx	29	-0.90	-0.13	-0.02
				18	-2.02	-0.27	
			Max. My				0.04
			Max. Vy	29	0.13	-0.27	-0.00
		I D	Max. Vx	18	-0.01	-0.04	0.04
		Inner Bracing	Max Tension	17	0.01	0.00	0.00
			Max. Compression	2	-0.02	0.00	0.00
			Max. Mx	26	-0.01	-0.11	0.00
			Max. My	18	0.01	0.00	-0.00
			Max. Vy	26	-0.05	0.00	0.00
m.=		-	Max. Vx	18	0.00	0.00	0.00
T5	50 - 25	Leg	Max Tension	7	198.30	-1.20	-0.43
			Max. Compression	18	-224.13	1.20	0.43
			Max. Mx	19	-188.63	1.33	0.42
			Max. My	4	-13.05	-0.03	-1.72
			Max. Vy	19	-0.33	1.33	0.42
			Max. Vx	4	0.56	-0.03	-1.72
		Diagonal	Max Tension	3	27.63	0.00	0.00
			Max. Compression	2	-28.12	0.00	0.00
			Max. Mx	32	5.33	0.55	0.00
			Max. My	27	1.21	0.00	-0.02
			Max. Vy	32	-0.13	0.00	0.00
			Max. Vx	27	0.00	0.00	0.00
		Horizontal	Max Tension	2	17.38	0.15	0.02
			Max. Compression	3	-18.35	0.13	0.02
			Max. Mx	29	-1.22	0.26	0.01
			Max. My	18	-2.30	0.03	-0.06
			Max. Vy	29	-0.12	0.26	0.01
			Max. Vx	18	0.01	0.03	-0.06
		Inner Bracing	Max Tension	17	0.01	0.00	0.00
		D.u.eg	Max. Compression	2	-0.03	0.00	0.00
			Max. Mx	26	-0.01	-0.13	0.00
			Max. My	18	0.01	0.00	-0.00
			Max. Vy	26	0.05	0.00	0.00
			Max. Vx	18	0.00	0.00	0.00
T6	25 - 0	Leg	Max Tension	7	257.72	-1.44	-0.29

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	24 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client		Designed by
	Eversource	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axi Moment kip-ft
			Max. Mx	19	-255.42	1.54	0.27
			Max. My	4	-16.08	-0.05	-1.72
			Max. Vy	19	0.35	1.54	0.27
			Max. Vx	4	-0.50	-0.05	-1.72
		Diagonal	Max Tension	3	28.87	0.00	0.00
		· ·	Max. Compression	2	-29.50	0.00	0.00
			Max. Mx	27	6.38	0.73	0.00
			Max. My	35	-1.73	0.00	-0.03
			Max. Vy	27	-0.17	0.00	0.00
			Max. Vx	35	0.01	0.00	0.00
		Horizontal	Max Tension	2	19.28	0.17	0.02
			Max. Compression	3	-20.07	0.14	0.02
			Max. Mx	29	-1.31	0.26	0.00
			Max. My	18	-2.53	0.05	-0.06
			Max. Vy	29	0.11	0.24	0.01
			Max. Vx	18	0.01	0.05	-0.06
		Inner Bracing	Max Tension	17	0.01	0.00	0.00
			Max. Compression	2	-0.03	0.00	0.00
			Max. Mx	26	-0.01	-0.15	0.00
			Max. My	18	0.00	0.00	-0.00
			Max. Vy	26	-0.05	0.00	0.00
			Max. Vx	18	0.00	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	327.38	38.17	-17.65
	Max. H _x	18	327.38	38.17	-17.65
	Max. H _z	5	-252.33	-29.08	16.25
	Min. Vert	7	-287.12	-34.50	15.44
	Min. H _x	7	-287.12	-34.50	15.44
	Min. H _z	18	327.38	38.17	-17.65
Leg B	Max. Vert	10	323.14	-34.80	-20.98
	Max. H _x	23	-275.12	30.97	18.79
	Max. H _z	25	-238.41	23.86	22.10
	Min. Vert	23	-275.12	30.97	18.79
	Min. H _x	10	323.14	-34.80	-20.98
	Min. Hz	12	270.71	-25.35	-22.70
Leg A	Max. Vert	2	322.77	4.35	41.20
	Max. H _x	22	158.72	8.04	19.41
	Max. H _z	2	322.77	4.35	41.20
	Min. Vert	15	-282.08	-4.44	-36.89
	Min. H _x	11	-141.66	-8.87	-19.15
	Min. Hz	15	-282.08	-4.44	-36.89

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	38.78	0.00	0.00	21.84	-42.44	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	25 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Eversource	Designed by TJL

Load Combination	Vertical	Shear _x	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M _z	Torque
125 11087 101	K	<u>K</u>	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 0 deg - No Ice	46.54	0.00	-74.69	-6120.11	-51.38	175.18
0.9 Dead+1.0 Wind 0 deg - No Ice	34.90	0.00	-74.69	-6124.07	-38.59	175.12
1.2 Dead+1.0 Wind 30 deg - No Ice	46.54	36.24	-62.77	-5210.11	-3074.57	200.89
0.9 Dead+1.0 Wind 30 deg - No Ice	34.90	36.24	-62.77	-5214.44	-3060.51	200.83
1.2 Dead+1.0 Wind 60 deg - No Ice	46.54	61.02	-35.23	-2938.62	-5186.63	152.90
0.9 Dead+1.0 Wind 60 deg - No Ice	34.90	61.02	-35.23	-2943.92	-5171.68	152.85
1.2 Dead+1.0 Wind 90 deg - No Ice	46.54	70.13	-0.00	26.27	-5948.75	61.19
0.9 Dead+1.0 Wind 90 deg - No Ice	34.90	70.13	-0.00	19.71	-5933.48	61.17
1.2 Dead+1.0 Wind 120 deg - No Ice	46.54	63.65	36.75	3061.34	-5308.07	-31.06
0.9 Dead+1.0 Wind 120 deg - No Ice	34.90	63.65	36.75	3053.48	-5293.09	-31.05
1.2 Dead+1.0 Wind 150 deg - No Ice	46.54	34.49	59.74	5052.02	-2952.81	-111.34
0.9 Dead+1.0 Wind 150 deg - No Ice	34.90	34.49	59.74	5043.30	-2938.82	-111.30
1.2 Dead+1.0 Wind 180 deg - No Ice	46.54	-0.00	69.16	5859.53	-51.28	-175.17
0.9 Dead+1.0 Wind 180 deg - No Ice	34.90	-0.00	69.16	5850.46	-38.52	-175.11
1.2 Dead+1.0 Wind 210 deg - No Ice	46.54	-36.24	62.77	5262.93	2971.96	-200.89
0.9 Dead+1.0 Wind 210 deg - No Ice	34.90	-36.24	62.77	5254.12	2983.45	-200.83
1.2 Dead+1.0 Wind 240 deg - No Ice	46.54	-65.81	38.00	3148.04	5355.49	-152.91
0.9 Dead+1.0 Wind 240 deg - No Ice	34.90	-65.81	38.00	3140.14	5365.99	-152.86
1.2 Dead+1.0 Wind 270 deg - No Ice	46.54	-70.13	-0.00	26.32	5846.71	-61.19
0.9 Dead+1.0 Wind 270 deg - No Ice	34.90	-70.13	-0.00	19.74	5856.99	-61.17
1.2 Dead+1.0 Wind 300 deg - No Ice	46.54	-58.86	-33.98	-2852.49	4934.80	31.05
0.9 Dead+1.0 Wind 300 deg - No Ice	34.90	-58.86	-33.98	-2857.83	4945.47	31.05
1.2 Dead+1.0 Wind 330 deg - No Ice	46.54	-34.49	-59.74	-4999.75	2850.39	111.34
0.9 Dead+1.0 Wind 330 deg - No Ice	34.90	-34.49	-59.74	-5004.17	2861.95	111.30
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	101.22 101.22	0.00 0.00	0.00 -15.20	105.47 -1132.91	-193.57 -193.78	0.00 49.30
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	101.22	7.45	-12.91	-956.46	-806.86	55.58
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	101.22	12.64	-7.30	-499.28	-1241.20	44.24
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	101.22	14.43	0.00	105.51	-1390.19	21.11
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	101.22	12.76	7.37	709.89	-1240.42	-4.96
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	101.22	7.20	12.47	1137.22	-789.27	-29.75

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	26 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 180	101.22	0.00	14.57	1309.88	-193.66	-49.30
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	101.22	-7.45	12.91	1167.56	419.42	-55.58
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	101.22	-13.19	7.62	727.46	883.33	-44.25
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	101.22	-14.43	0.00	105.59	1002.78	-21.11
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	101.22	-12.21	-7.05	-481.74	823.45	4.95
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	101.22	-7.20	-12.47	-926.14	401.84	29.75
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	38.78	0.00	-13.00	-1050.01	-42.52	29.99
Dead+Wind 30 deg - Service	38.78	6.31	-10.93	-891.55	-569.94	34.39
Dead+Wind 60 deg - Service	38.78	10.63	-6.14	-495.53	-938.67	26.17
Dead+Wind 90 deg - Service	38.78	12.21	0.00	21.86	-1071.79	10.47
Dead+Wind 120 deg - Service	38.78	11.08	6.40	551.29	-959.49	-5.32
Dead+Wind 150 deg - Service	38.78	6.01	10.41	899.27	-549.07	-19.06
Dead+Wind 180 deg - Service	38.78	0.00	12.05	1040.11	-42.52	-29.99
Dead+Wind 210 deg - Service	38.78	-6.31	10.93	935.35	484.81	-34.39
Dead+Wind 240 deg - Service	38.78	-11.45	6.61	566.10	900.10	-26.18
Dead+Wind 270 deg - Service	38.78	-12.21	0.00	21.87	986.78	-10.48
Dead+Wind 300 deg - Service	38.78	-10.26	-5.92	-480.77	828.06	5.31
Dead+Wind 330 deg - Service	38.78	-6.01	-10.41	-855.54	464.05	19.06

Solution Summary

	Su	m of Applied Forces	5		Sum of Reaction	es .	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-38.78	0.00	0.00	38.78	0.00	0.000%
2	0.00	-46.54	-74.69	-0.00	46.54	74.69	0.000%
3	0.00	-34.90	-74.69	-0.00	34.90	74.69	0.000%
4	36.24	-46.54	-62.77	-36.24	46.54	62.77	0.000%
5	36.24	-34.90	-62.77	-36.24	34.90	62.77	0.000%
6	61.02	-46.54	-35.23	-61.02	46.54	35.23	0.000%
7	61.02	-34.90	-35.23	-61.02	34.90	35.23	0.000%
8	70.13	-46.54	0.00	-70.13	46.54	0.00	0.000%
9	70.13	-34.90	0.00	-70.13	34.90	0.00	0.000%
10	63.65	-46.54	36.75	-63.65	46.54	-36.75	0.000%
11	63.65	-34.90	36.75	-63.65	34.90	-36.75	0.000%
12	34.49	-46.54	59.74	-34.49	46.54	-59.74	0.000%
13	34.49	-34.90	59.74	-34.49	34.90	-59.74	0.000%
14	-0.00	-46.54	69.16	0.00	46.54	-69.16	0.000%
15	-0.00	-34.90	69.16	0.00	34.90	-69.16	0.000%
16	-36.24	-46.54	62.77	36.24	46.54	-62.77	0.000%
17	-36.24	-34.90	62.77	36.24	34.90	-62.77	0.000%
18	-65.81	-46.54	38.00	65.81	46.54	-38.00	0.000%
19	-65.81	-34.90	38.00	65.81	34.90	-38.00	0.000%
20	-70.13	-46.54	0.00	70.13	46.54	0.00	0.000%
21	-70.13	-34.90	0.00	70.13	34.90	0.00	0.000%
22	-58.86	-46.54	-33.98	58.86	46.54	33.98	0.000%
23	-58.86	-34.90	-33.98	58.86	34.90	33.98	0.000%
24	-34.49	-46.54	-59.74	34.49	46.54	59.74	0.000%
25	-34.49	-34.90	-59.74	34.49	34.90	59.74	0.000%
26	0.00	-101.22	0.00	0.00	101.22	0.00	0.000%
27	0.00	-101.22	-15.20	0.00	101.22	15.20	0.000%
28	7.45	-101.22	-12.91	-7.45	101.22	12.91	0.000%

Centek Engineering Inc. 63-2 North Branford Rd.

05-2 North Branjora Ka. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	27 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

	Su	m of Applied Forces	i		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
29	12.64	-101.22	-7.30	-12.64	101.22	7.30	0.000%
30	14.43	-101.22	0.00	-14.43	101.22	0.00	0.000%
31	12.76	-101.22	7.37	-12.76	101.22	-7.37	0.000%
32	7.20	-101.22	12.47	-7.20	101.22	-12.47	0.000%
33	0.00	-101.22	14.57	0.00	101.22	-14.57	0.000%
34	-7.45	-101.22	12.91	7.45	101.22	-12.91	0.000%
35	-13.19	-101.22	7.62	13.19	101.22	-7.62	0.000%
36	-14.43	-101.22	0.00	14.43	101.22	0.00	0.000%
37	-12.21	-101.22	-7.05	12.21	101.22	7.05	0.000%
38	-7.20	-101.22	-12.47	7.20	101.22	12.47	0.000%
39	0.00	-38.78	-13.00	0.00	38.78	13.00	0.000%
40	6.31	-38.78	-10.93	-6.31	38.78	10.93	0.000%
41	10.63	-38.78	-6.14	-10.63	38.78	6.14	0.000%
42	12.21	-38.78	0.00	-12.21	38.78	0.00	0.000%
43	11.08	-38.78	6.40	-11.08	38.78	-6.40	0.000%
44	6.01	-38.78	10.41	-6.01	38.78	-10.41	0.000%
45	0.00	-38.78	12.05	0.00	38.78	-12.05	0.000%
46	-6.31	-38.78	10.93	6.31	38.78	-10.93	0.000%
47	-11.45	-38.78	6.61	11.45	38.78	-6.61	0.000%
48	-12.21	-38.78	0.00	12.21	38.78	0.00	0.000%
49	-10.26	-38.78	-5.92	10.26	38.78	5.92	0.000%
50	-6.01	-38.78	-10.41	6.01	38.78	10.41	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00000001
3	Yes	4	0.00000001	0.00000001
4	Yes	4	0.00000001	0.00000001
5	Yes	4	0.00000001	0.00000001
6	Yes	4	0.00000001	0.00000001
7	Yes	4	0.00000001	0.00000001
8	Yes	4	0.00000001	0.00000001
9	Yes	4	0.00000001	0.00000001
10	Yes	4	0.00000001	0.00000001
11	Yes	4	0.00000001	0.00000001
12	Yes	4	0.00000001	0.00000001
13	Yes	4	0.00000001	0.00000001
14	Yes	4	0.00000001	0.00000001
15	Yes	4	0.00000001	0.00000001
16	Yes	4	0.00000001	0.00000001
17	Yes	4	0.00000001	0.00000001
18	Yes	4	0.00000001	0.00000001
19	Yes	4	0.00000001	0.00000001
20	Yes	4	0.00000001	0.00000001
21	Yes	4	0.00000001	0.00000001
22	Yes	4	0.00000001	0.00000001
23	Yes	4	0.00000001	0.00000001
24	Yes	4	0.00000001	0.00000001
25	Yes	4	0.00000001	0.00000001
26	Yes	4	0.00000001	0.00000001
27	Yes	4	0.00000001	0.00000001
28	Yes	4	0.00000001	0.00000001
29	Yes	4	0.00000001	0.00000001

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	28 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

30	Yes	4	0.00000001	0.00000001
31	Yes	4	0.00000001	0.00000001
32	Yes	4	0.00000001	0.00000001
33	Yes	4	0.0000001	0.00000001
34	Yes	4	0.00000001	0.00000001
35	Yes	4	0.00000001	0.00000001
36	Yes	4	0.00000001	0.00000001
37	Yes	4	0.00000001	0.00000001
38	Yes	4	0.00000001	0.00000001
39	Yes	4	0.00000001	0.00000001
40	Yes	4	0.00000001	0.00000001
41	Yes	4	0.00000001	0.00000001
42	Yes	4	0.00000001	0.00000001
43	Yes	4	0.0000001	0.00000001
44	Yes	4	0.00000001	0.00000001
45	Yes	4	0.00000001	0.00000001
46	Yes	4	0.00000001	0.00000001
47	Yes	4	0.0000001	0.00000001
48	Yes	4	0.00000001	0.00000001
49	Yes	4	0.00000001	0.00000001
50	Yes	4	0.00000001	0.00000001

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
IVO.	ft	Deflection in	Comb.	0	0
T1	140 - 125	1.415	43	0.080	0.048
T2	125 - 100	1.159	43	0.079	0.043
T3	100 - 75	0.755	43	0.068	0.036
T4	75 - 50	0.417	43	0.053	0.027
T5	50 - 25	0.187	43	0.029	0.018
T6	25 - 0	0.055	47	0.014	0.008

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
140.500	15'x2.5" Horizontal Pipe	43	1.415	0.080	0.048	794853
140.000	15'x2.5" Extension Pipe	43	1.415	0.080	0.048	794853
137.500	3" Dia 20' Omni	43	1.372	0.080	0.047	794853
137.000	15' x 4" Mount Pipe	43	1.363	0.080	0.047	794853
135.000	10' dish	43	1.329	0.080	0.047	794853
134.500	12'x3" Mount Pipe	43	1.320	0.080	0.047	722580
133.000	Side Arm Mount [SO 601-1]	43	1.295	0.080	0.046	567749
132.500	10'x2" Horizontal Pipe	43	1.286	0.079	0.046	529897
132.000	PA8-65	43	1.278	0.079	0.046	496779
130.000	(2) 10'x2" Horizontal Pipe	43	1.244	0.079	0.045	397423
125.000	SC3-W100AD	43	1.159	0.079	0.043	269494
121.000	PA8-65	43	1.091	0.078	0.042	223478
120.875	Telewave ANT220F2 - Omni	43	1.089	0.078	0.042	222381
	Antenna					
117.000	Siteprol USF-4U Mount Assembly	43	1.025	0.076	0.041	193195
	(Ca = 1.4 assumed)					
113.125	Telewave ANT220F2 - Omni	43	0.962	0.075	0.040	170790

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	29 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
	Antenna					
109.000	6'x2" Horizontal Pipe	43	0.895	0.073	0.039	152023
108.000	(2) 4'x2" Horizontal Mount Pipe	43	0.879	0.072	0.038	148079
100.000	Side Arm Mount [SO 601-1]	43	0.755	0.068	0.036	120683
96.000	Side Arm Mount [SO 601-1]	43	0.695	0.066	0.034	105412
95.000	PA6-65	43	0.680	0.066	0.034	101807
92.000	10'x2" Horizontal Pipe	43	0.637	0.064	0.033	92026
87.000	Side Arm Mount [SO 601-1]	43	0.567	0.061	0.031	79324
83.000	12'x2" Horizontal Pipe	43	0.514	0.059	0.030	71436
79.000	Side Arm Mount [SO 601-1]	43	0.464	0.056	0.028	64990
58.000	(2) 4'x2" Horizontal Mount Pipe	43	0.249	0.036	0.021	74439
54.000	Side Arm Mount [SO 601-1]	43	0.217	0.033	0.020	79067
53.000	3' Yagi	43	0.209	0.032	0.019	80247
52.000	6'x2" Mount Pipe	43	0.202	0.031	0.019	81338

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
T1	140 - 125	7.721	19	0.420	0.282
T2	125 - 100	6.376	19	0.418	0.254
T3	100 - 75	4.205	19	0.369	0.208
T4	75 - 50	2.349	19	0.288	0.157
T5	50 - 25	1.074	19	0.160	0.106
T6	25 - 0	0.319	18	0.080	0.047

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
140.500	15'x2.5" Horizontal Pipe	19	7.721	0.420	0.282	281326
140.000	15'x2.5" Extension Pipe	19	7.721	0.420	0.282	281326
137.500	3" Dia 20' Omni	19	7.496	0.421	0.277	281326
137.000	15' x 4" Mount Pipe	19	7.451	0.421	0.276	281326
135.000	10' dish	19	7.272	0.421	0.273	281326
134.500	12'x3" Mount Pipe	19	7.227	0.421	0.272	255751
133.000	Side Arm Mount [SO 601-1]	19	7.092	0.421	0.269	200947
132.500	10'x2" Horizontal Pipe	19	7.048	0.421	0.268	187551
132.000	PA8-65	19	7.003	0.421	0.267	175829
130.000	(2) 10'x2" Horizontal Pipe	19	6.823	0.421	0.263	140663
125.000	SC3-W100AD	19	6.376	0.418	0.254	90126
121.000	PA8-65	19	6.019	0.414	0.246	64170
120.875	Telewave ANT220F2 - Omni Antenna	19	6.008	0.414	0.246	63548
117.000	Sitepro1 USF-4U Mount Assembly $(Ca = 1.4 \text{ assumed})$	19	5.665	0.408	0.240	48788
113.125	Telewave ANT220F2 - Omni Antenna	19	5.324	0.401	0.233	39589
109.000	6'x2" Horizontal Pipe	19	4.966	0.391	0.225	32971
108.000	(2) 4'x2" Horizontal Mount Pipe	19	4.880	0.389	0.223	31687

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	30 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
100.000	Side Arm Mount [SO 601-1]	19	4.205	0.369	0.208	23735
96.000	Side Arm Mount [SO 601-1]	19	3.878	0.359	0.200	20221
95.000	PA6-65	19	3.798	0.356	0.198	19444
92.000	10'x2" Horizontal Pipe	19	3.560	0.348	0.192	17432
87.000	Side Arm Mount [SO 601-1]	19	3.179	0.333	0.182	14868
83.000	12'x2" Horizontal Pipe	19	2.887	0.320	0.174	13302
79.000	Side Arm Mount [SO 601-1]	19	2.610	0.305	0.166	12038
58.000	(2) 4'x2" Horizontal Mount Pipe	19	1.420	0.200	0.123	13779
54.000	Side Arm Mount [SO 601-1]	19	1.241	0.179	0.114	14653
53.000	3' Yagi	19	1.198	0.174	0.112	14876
52.000	6'x2" Mount Pipe	19	1.156	0.169	0.110	15081

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable	•	
T1	140	Diagonal	A325X	0.750	1	10.65	17.94	0.594	1	Member Block Shear
		Horizontal	A325X	0.625	2	3.75	10.26	0.366	1	Member Block Shear
T2	125	Leg	A325X	0.750	6	2.25	30.10	0.075	1	Bolt Tension
		Diagonal	A325X	0.750	1	16.12	25.23	0.639	1	Member Bearing
		Horizontal	A325X	0.625	2	5.44	10.26	0.530	1	Member Block Shear
Т3	100	Leg	A325X	0.750	6	9.58	30.10	0.318	1	Bolt Tension
		Diagonal	A325X	0.750	1	19.10	25.23	0.757	1	Member Bearing
		Horizontal	A325X	0.625	2	6.89	10.26	0.671	1	Member Block Shear
T4	75	Leg	A325X	0.750	6	18.57	30.10	0.617	1	Bolt Tension
		Diagonal	A325X	0.750	1	20.66	25.23	0.819	1	Member Bearing
		Horizontal	A325X	0.625	2	7.79	20.53	0.379	1	Member Block Shear
T5	50	Leg	A325X	1.000	6	28.18	54.52	0.517	1	Bolt Tension
		Diagonal	A325X	1.000	1	27.63	32.54	0.849	1	Member Block Shear
		Horizontal	A325X	0.625	2	8.69	11.62	0.748	1	Member Block Shear
T6	25	Leg	A325X	1.000	8	28.50	54.52	0.523	1	Bolt Tension
		Diagonal	A325X	1.000	1	28.87	43.59	0.662	1	Member Block Shear
		Horizontal	A325X	0.625	2	9.64	11.62	0.829	1	Member Block Shear

Compression Checks

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	31 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

Leg Design Data (Compression)										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	K	K	ϕP_n	
T1	140 - 125	HSS5x0.25	15.016	7.508	53.4 K=1.00	3.489	-8.15	127.48	0.064 1	
T2	125 - 100	HSS5x0.25	25.027	8.342	59.3 K=1.00	3.489	-49.42	121.40	0.407 1	
Т3	100 - 75	HSS5x.375	25.027	8.342	60.7 K=1.00	5.099	-106.17	175.27	0.606 1	
T4	75 - 50	HSS5x.375	25.027	8.342	60.7 K=1.00	5.099	-169.02	175.27	0.964 ¹	
T5	50 - 25	HSS7x0.25 (150deg) on HSS6.875x0.375	25.027	12.513	64.9 K=1.00	10.180	-224.13	336.55	0.666 ¹	
Т6	25 - 0	HSS7x0.25 (150deg) on HSS6.875x0.5	25.027	12.513	65.9 K=1.00	12.538	-293.28	410.59	0.714 1	

¹ P_u / ϕP_n controls

	Diagonal Design Data (Compression)											
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u			
	ft		ft	ft		in^2	K	K	ϕP_n			
T1	140 - 125	2L2 1/2x2x3/16x3/8	9.926	9.337	152.9 K=1.00	1.620	-10.80	18.91	0.571 1			
T2	125 - 100	2L3x2 1/2x1/4x3/8	11.213	10.631	141.3 K=1.00	2.630	-16.35	36.14	0.452 1			
Т3	100 - 75	2L3x2 1/2x1/4x3/8	11.905	11.343	150.5 K=1.00	2.630	-19.44	32.03	$0.607^{\ 1}$			
T4	75 - 50	2L3x2 1/2x1/4x3/8	12.639	12.091	160.2 K=1.00	2.630	-21.12	28.41	0.744 1			
T5	50 - 25	2L3 1/2x3x1/4x3/8	16.327	15.525	174.2 K=1.00	3.130	-28.12	28.44	0.989 1			
Т6	25 - 0	2L4x3x5/16x3/8	16.988	16.209	182.8 K=1.00	4.180	-29.50	34.73	0.849 1			

¹ P_u / ϕP_n controls

	Horizontal Design Data (Compression)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	K	K	ϕP_n	
T1	140 - 125	L3x3x1/4	12.400	5.794	118.7 K=1.01	1.440	-7.61	28.86	0.264 1	
T2	125 - 100	L3x3x1/4	14.333	6.760	133.0	1.440	-10.75	23.29	0.462^{-1}	

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	32 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	_	Designed by
	Eversource	TJL

Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
					_			P_u
ft		ft	ft		in^2	K	K	ϕP_n
				K=0.97				~
100 - 75	L3x4x1/4	16.333	7.760	137.6	1.690	-13.71	25.55	0.537^{-1}
				K=0.96				/
75 - 50	2L3x2 1/2x1/4x3/8	18.333	8.760	136.3	2.630	-15.93	38.71	0.412^{-1}
				K=1.00				✓
	2L 'a' > 44.052 in - 106							•
50 - 25	L4x4x1/4	20.000	9.500	137.9	1.940	-18.35	29.21	$0.628^{\ 1}$
				K=0.96				_
25 - 0	L4x4x1/4	22.000	10.500	149.4	1.940	-20.07	24.89	0.806^{1}
				K=0.94				~
	ft 100 - 75 75 - 50 50 - 25	ft 100 - 75 L3x4x1/4 75 - 50 2L3x2 1/2x1/4x3/8 2L 'a' > 44.052 in - 106 L4x4x1/4	ft ft 100 - 75 L3x4x1/4 16.333 75 - 50 2L3x2 1/2x1/4x3/8 18.333 2L 'a' > 44.052 in - 106 L4x4x1/4 20.000	ft ft ft $100 - 75$ $L3x4x1/4$ 16.333 7.760 $75 - 50$ $2L3x21/2x1/4x3/8$ 18.333 8.760 $50 - 25$ $2L 'a' > 44.052 in - 106$ 20.000 9.500	ft ft ft	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹ P_u / ϕP_n controls

		Тор	Girt Des	ign D	ata (C	ompr	ession)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	140 - 125	L3x3x1/4	11.800	5.692	117.7 K=1.02	1.440	-2.14	29.26	0.073 1

¹ P_u / ϕP_n controls

	Inner Bracing Design Data (Compression)											
Section No.	Elevation	Size	L	L_u	Kl/r	A P_u		ϕP_n	Ratio P _u			
	ft		ft	ft		in^2	K	K	ϕP_n			
T2	125 - 100	L2 1/2x2 1/2x3/16	7.167	7.167	173.7 K=1.00	0.902	-0.01	8.55	0.002 1			
Т3	100 - 75	L2 1/2x2 1/2x3/16	8.167	8.167	198.0 K=1.00	0.902	-0.02	6.59	0.003 1			
T4	75 - 50	L2 1/2x2 1/2x3/16	9.167	9.167	222.2 K=1.00	0.902	-0.02	5.23	0.004 1			
T5	50 - 25	L2 1/2x2 1/2x3/16	10.000	10.000	242.4 K=1.00	0.902	-0.03	4.39	0.006 1			
T6	25 - 0	L2 1/2x2 1/2x3/16	11.000	11.000	266.7 K=1.00	0.902	-0.03	3.63	0.007^{-1}			
		KL/R > 250 (C) - 178							•			

¹ P_u / ϕP_n controls

Tension Checks

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21082.10	33 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	F	Designed by
	Eversource	TJL

	Leg Design Data (Tension)											
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu			
	ft		ft	ft		in^2	K	K	ϕP_n			
T1	140 - 125	HSS5x0.25	15.016	7.508	53.4	3.489	3.26	157.02	0.021 1			
T2	125 - 100	HSS5x0.25	25.027	8.342	59.3	3.489	41.90	157.02	0.267 1			
Т3	100 - 75	HSS5x.375	25.027	8.342	60.7	5.099	92.43	229.47	0.403 1			
T4	75 - 50	HSS5x.375	25.027	8.342	60.7	5.099	149.66	229.47	0.652 1			
T5	50 - 25	HSS7x0.25 (150deg) on HSS6.875x0.375	25.027	12.513	64.9	10.180	198.30	458.10	0.433 1			
Т6	25 - 0	HSS7x0.25 (150deg) on HSS6.875x0.5	25.027	12.513	65.9	12.538	257.72	564.21	0.457 1			

¹ P_u / ϕP_n controls

	Diagonal Design Data (Tension)											
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u			
	ft		ft	ft		in^2	K	K	ϕP_n			
T1	140 - 125	2L2 1/2x2x3/16x3/8	9.926	9.337	145.4	0.969	10.65	42.15	0.253 1			
T2	125 - 100	2L3x2 1/2x1/4x3/8	10.993	10.411	135.6	1.644	16.12	71.53	0.225 1			
Т3	100 - 75	2L3x2 1/2x1/4x3/8	11.905	11.343	147.5	1.644	19.10	71.53	0.267 1			
T4	75 - 50	2L3x2 1/2x1/4x3/8	12.639	12.091	157.0	1.644	20.66	71.53	0.289 1			
T5	50 - 25	2L3 1/2x3x1/4x3/8	16.327	15.525	171.4	1.926	27.63	83.76	0.330 1			
Т6	25 - 0	2L4x3x5/16x3/8	16.988	16.209	156.3	2.608	28.87	121.26	0.238 1			

¹ P_u / ϕP_n controls

		Hor	rizontai	Desig	jn Dat	a (Ter	ision)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	140 - 125	L3x3x1/4	12.400	5.794	116.0	0.939	7.51	40.86	0.184 1
T2	125 - 100	L3x3x1/4	14.333	6.760	89.8	0.939	10.87	40.86	0.266^{-1}

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	34 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Eversource	Designed by
	2101000100	TJL

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
Т3	100 - 75	L3x4x1/4	16.333	7.760	106.5	1.127	13.78	49.02	0.281 1
T4	75 - 50	2L3x2 1/2x1/4x3/8	18.333	8.760	113.8	1.691	15.57	73.57	0.212 1
T5	50 - 25	2L 'a' > 44.052 in - 106 L4x4x1/4	20.000	9.500	93.1	1.314	17.38	57.18	0.304 1
Т6	25 - 0	L4x4x1/4	22.000	10.500	102.7	1.314	19.28	57.18	0.337 1

¹ P_u / ϕP_n controls

	Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	K	K	ϕP_n	
T1	140 - 125	L3x3x1/4	11.800	5.692	110.2	1.440	2.09	46.66	0.045 1	

¹ P_u / ϕP_n controls

		Inner I	Bracin	g Des	ign D	ata (To	ension))		
Section Elevation Size L L_u KU/r A P_u ϕP_n $No.$										
	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$	
T2	125 - 100	L2 1/2x2 1/2x3/16	6.833	6.833	105.4	0.902	0.01	29.22	0.000 1	
Т3	100 - 75	L2 1/2x2 1/2x3/16	7.833	7.833	120.8	0.902	0.01	29.22	0.000 1	
T4	75 - 50	L2 1/2x2 1/2x3/16	8.500	8.500	131.1	0.902	0.01	29.22	0.000 1	
T5	50 - 25	L2 1/2x2 1/2x3/16	9.500	9.500	146.5	0.902	0.01	29.22	0.000 1	
Т6	25 - 0	L2 1/2x2 1/2x3/16	10.500	10.500	162.0	0.902	0.01	29.22	0.000 1	

¹ P_u / ϕP_n controls

Section Capacity Table

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	35 of 35
Project		Date
	140-ft Lattice Tower #49 Sterling	13:49:52 08/26/21
Client	Eversource	Designed by
	Eversource	TJL

Section	Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
T1	140 - 125	Leg	HSS5x0.25	3	-2.68	127.48	7.3	Pass
T2	125 - 100	Leg	HSS5x0.25	23	-49.42	121.40	40.7	Pass
T3	100 - 75	Leg	HSS5x.375	62	-106.17	175.27	60.6	Pass
T4	75 - 50	Leg	HSS5x.375	101	-169.02	175.27	96.4	Pass
T5	50 - 25	Leg	HSS7x0.25 (150deg) on HSS6.875x0.375	139	-224.13	336.55	66.6	Pass
Т6	25 - 0	Leg	HSS7x0.25 (150deg) on HSS6.875x0.5	166	-293.28	410.59	71.4	Pass
T1	140 - 125	Diagonal	2L2 1/2x2x3/16x3/8	12	-10.80	18.91	57.1 59.4 (b)	Pass
T2	125 - 100	Diagonal	2L3x2 1/2x1/4x3/8	30	-16.35	36.14	45.2 63.9 (b)	Pass
Т3	100 - 75	Diagonal	2L3x2 1/2x1/4x3/8	69	-19.44	32.03	60.7 75.7 (b)	Pass
T4	75 - 50	Diagonal	2L3x2 1/2x1/4x3/8	108	-21.12	28.41	74.4 81.9 (b)	Pass
T5	50 - 25	Diagonal	2L3 1/2x3x1/4x3/8	147	-28.12	28.44	98.9	Pass
T6	25 - 0	Diagonal	2L4x3x5/16x3/8	174	-29.50	34.73	84.9	Pass
T1	140 - 125	Horizontal	L3x3x1/4	10	-7.61	28.86	26.4 36.6 (b)	Pass
T2	125 - 100	Horizontal	L3x3x1/4	28	-10.75	23.29	46.2 53.0 (b)	Pass
Т3	100 - 75	Horizontal	L3x4x1/4	67	-13.71	25.55	53.7 67.1 (b)	Pass
T4	75 - 50	Horizontal	2L3x2 1/2x1/4x3/8	106	-15.93	38.71	41.2	Pass
T5	50 - 25	Horizontal	L4x4x1/4	145	-18.35	29.21	62.8 74.8 (b)	Pass
T6	25 - 0	Horizontal	L4x4x1/4	172	-20.07	24.89	80.6 82.9 (b)	Pass
T1	140 - 125	Top Girt	L3x3x1/4	5	-2.14	29.26	7.3	Pass
T2	125 - 100	Inner Bracing	L2 1/2x2 1/2x3/16	35	-0.01	8.55	0.4	Pass
T3	100 - 75	Inner Bracing	L2 1/2x2 1/2x3/16	75	-0.02	6.59	0.5	Pass
T4	75 - 50	Inner Bracing	L2 1/2x2 1/2x3/16	113	-0.02	5.23	0.5	Pass
T5	50 - 25	Inner Bracing	L2 1/2x2 1/2x3/16	151	-0.03	4.39	0.6	Pass
T6	25 - 0	Inner Bracing	L2 1/2x2 1/2x3/16	178	-0.03	3.63	0.7	Pass
		· ·					Summary	
						Leg (T4)	96.4	Pass
						Diagonal (T5)	98.9	Pass
						Horizontal (T6)	82.9	Pass
						Top Girt (T1)	7.3	Pass
						Inner Bracing (T6)	0.7	Pass
						Bolt Checks	84.9	Pass
						RATING =	98.9	Pass

 $Program\ Version\ 8.1.1.0-6/3/2021\ File: J:/Jobs/2108200. WI/10_CSP\ \#49\ Sterling/05_Structural/Backup\ Documentation/Tnxtower/20200710_EVS_H_Ekonk\ Modification\ Analysis.eri$

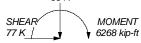
140.0 ft 2L2 1/2x2x3/16x3/8 2 @ 7.5 1,5 125.0 ft HSS5x0.25 100.0 ft 5 2L3x2 1/2x1/4x3/8 A36 9 @ 8.33333 42 HSS5x.375 75.0 ft 7 A500-50 2L3x2 1/2x1/4x3/8 L2 1/2x2 1/2x3/16 Ä. 5.0 50.0 ft 2L3 1/2x3x1/4x3/8 ⋖ 5.9 21 4 @ 12.5 25.0 ft HSS7x0.25 (150deg) on HSS6.875x0.5 2L4x3x5/16x3/8 A500-50 0.0 ft Diagonal Grade # Panels @ (ft) Face Width (ft) Inner Bracing Horizontals Weight (K) Leg Grade Diagonals Top Girts Legs

DESIGNED APPURTENANCE LOADING

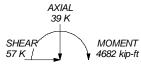
		TENANCE ECADING	=:=://=:=:
TYPE	ELEVATION	TYPE	ELEVATION
15'x2.5" Horizontal Pipe	140.5	TMA (CSP)	121
15'x2.5" Extension Pipe	140	Telewave ANT220F2 - Omni Antenna	120.875
Lightning Rod 5/8"x4'	140	(Eversoure)	
10"x8"x4" Junction Box (CSP)	137.5	Sitepro1 USF-4U Mount Assembly (Ca = 1.4 assumed) (Eversoure)	117
Sector Mount [SM 403-1] (CSP)	137.5	6' x2.5" - Sch 40 Antenna Pipe (Vertical)	117
TMA (CSP)	137.5	(CSP Reserved)	1117
AP14-850/105 w/Mount Pipe (CSP)	137.5	Telewave ANT220F2 - Omni Antenna	113.125
AP14-850/105 w/Mount Pipe (CSP)	137.5	(Eversoure (inverted))	110.120
8'x2" Mount Pipe (CSP)	137.5	6'x2" Horizontal Pipe (Eversoure)	109
36"x 6"x3" panel antenna w/ Mount Pipe	137.5	CL6-450B (Eversoure - Proposed)	109
(CSP)		(2) 4'x2" Horizontal Mount Pipe (CSP)	108
2'x2"x2" Vertical Tube (CSP)	137.5	12'x2" Horizontal Pipe (CSP)	108
15' x 4" Mount Pipe (CSP)	137.5	10'x2" Horizontal Pipe	100
3" Dia 20' Omni (CSP)	137.5	-3' Yaqi (CSP)	100
15' x 4" Mount Pipe (CSP)	137	(2) 3'x3"x3" Horizontal Angle (CSP)	100
AP14-850/105 w/Mount Pipe (CSP)	135	2" Dia 10' Omni (CSP)	100
10'x4" Mount Pipe (CSP)	135	Side Arm Mount [SO 601-1] (CSP)	100
20'x2.5" Mount Pipe (CSP)	135	Side Arm Mount [SO 601-1] (CSP)	96
14'x3" Mount Pipe (CSP)	135	(2) 3'x3"x3" Horizontal Angle (CSP)	96
Side Arm Mount [SO 601-1] (CSP)	135	10'x4" Mount Pipe (CSP)	96
(2) 3'x3"x3" Horizontal Angle (CSP)	135	2" Dia 20' Omni (CSP)	96
10' dish (E)	135	20' Multi Array Dipole (CSP)	96
SC3-W100AD (CSP - Existing @ 135')	135	MD-S6 (for 6' MW) : Ice Shield (CSP)	95
12'x3" Mount Pipe (CSP)	134.5	ANT450F6 (CSP Reserved)	95
20' Multi Array Dipole (CSP)	134.5	8'x4" Mount Pipe (CSP)	95
Side Arm Mount [SO 601-1] (CSP)	133	PA6-65 (Diversity CSP)	95
(2) 3'x3"x3" Horizontal Angle (CSP)	133	15' x 4" Mount Pipe (CSP)	95
2" Dia 20' Omni (CSP)	133	10'x2" Horizontal Pipe	92
2" Dia 20' Omni (CSP)	133	2" Dia 20' Omni (CSP)	87
10'x2" Horizontal Pipe	132.5	Side Arm Mount [SO 601-1] (CSP)	87
PA8-65 (E)	132	12'x2" Horizontal Pipe (CSP)	83
(2) 10'x2" Horizontal Pipe	130	Single Bay Dipole (CSP)	83
SC3-W100AD (CSP - Existing @ 125')	125	Side Arm Mount [SO 601-1] (CSP)	79
Sector Mount [SM 403-1] (CSP)	121	(2) 4'x2" Horizontal Mount Pipe (CSP)	58
Pipe Mount [PM 602-1] (CSP)	121	12'x2" Horizontal Pipe (CSP)	58
8'x2"x6" Panel Antenna w/ Mount Pipe	121	Single Dipole Antenna (CSP)	58
(CSP)		Side Arm Mount [SO 601-1] (CSP)	54
8'x2"x6" Panel Antenna w/ Mount Pipe	121	7' Whip (CSP)	54
(CSP)		3' Yaqi (CSP)	53
8'x2" Mount Pipe (CSP)	121	0 ()	52
PA8-65 (E)	121	Single Bay Dipole Antenna (CSP)	-
8'x2"x6" Panel Antenna w/ Mount Pipe (CSP)	121	6'x2" Mount Pipe (CSP)	52

SYMBOL LIST

	O I III BO	JE 5.0 .	
MARK	SIZE	MARK	SIZE
Α	HSS7x0.25 (150deg) on HSS6.875x0.375		


MATERIAL STRENGTH

۸	GRADE	Fy	Fu	GRADE	Fy	Fu
		50 ksi	62 ksi	A36	36 ksi	58 ksi


SHEAK: 43 K

TOWER DESIGN NOTES

- 1. Tower is located in Windham County, Connecticut.
- Tower designed for a 90 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 90 mph basic wind with 0.50 in ice.
- 4. Deflections are based upon a 90 mph wind.

TORQUE 231 kip-ft 90 mph WIND - 0.500 in ICE

TORQUE 161 kip-ft REACTIONS - 90 mph WIND

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

^{ob:} 21082.10		
Project: 140-ft Lattice To	wer #49 Sterling	
Client: Eversource	Drawn by: TJL	App'd:
Code: TIA/EIA-222-F	Date: 08/26/21	Scale: NTS
Path:	•	Dwg No 4

Centek Engineering Inc. 63-2 North Branford Rd.

05-2 Norm Branjora Ka. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21082.10	1 of 3
Project		Date
	140-ft Lattice Tower #49 Sterling	13:48:25 08/26/21
Client	Eversource	Designed by TJL

Load Combinations

Comb.	Description	
No.		
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+Ice+Temp	
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+Ice+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind 180 deg+Ice+Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg+Ice+Temp	
26	Dead+Wind 330 deg+Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	140 - 125	5.799	31	0.313	0.235
T2	125 - 100	4.785	31	0.311	0.215
T3	100 - 75	3.156	31	0.276	0.171
T4	75 - 50	1.765	31	0.217	0.126
T5	50 - 25	0.806	31	0.121	0.084
T6	25 - 0	0.238	31	0.060	0.037

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580

FAX: (203) 488-8587

Page
2 of 3
Date
ling 13:48:25 08/26/21
Designed by TJL

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	۰	ft
140.500	15'x2.5" Horizontal Pipe	31	5.799	0.313	0.235	416517
140.000	15'x2.5" Extension Pipe	31	5.799	0.313	0.235	416517
137.500	3" Dia 20' Omni	31	5.630	0.313	0.231	416517
137.000	15' x 4" Mount Pipe	31	5.596	0.313	0.231	416517
135.000	10' dish	31	5.460	0.314	0.228	416517
134.500	12'x3" Mount Pipe	31	5.426	0.314	0.228	378651
133.000	Side Arm Mount [SO 601-1]	31	5.325	0.314	0.226	297512
132.500	10'x2" Horizontal Pipe	31	5.291	0.314	0.225	277677
132.000	PA8-65	31	5.257	0.314	0.224	260322
130.000	(2) 10'x2" Horizontal Pipe	31	5.122	0.313	0.222	208258
125.000	SC3-W100AD	31	4.785	0.311	0.215	132876
121.000	PA8-65	31	4.516	0.308	0.208	93657
120.875	Telewave ANT220F2 - Omni Antenna	31	4.508	0.308	0.208	92722
117.000	Sitepro1 USF-4U Mount Assembly $(Ca = 1.4 \text{ assumed})$	31	4.250	0.304	0.202	70688
113.125	Telewave ANT220F2 - Omni Antenna	31	3.995	0.299	0.195	57109
109.000	6'x2" Horizontal Pipe	31	3.726	0.292	0.188	47414
108.000	(2) 4'x2" Horizontal Mount Pipe	31	3.662	0.291	0.186	45540
100.000	Side Arm Mount [SO 601-1]	31	3.156	0.276	0.171	33737
96.000	Side Arm Mount [SO 601-1]	31	2.912	0.269	0.164	28395
95.000	PA6-65	31	2.851	0.267	0.162	27223
92.000	10'x2" Horizontal Pipe	31	2.674	0.261	0.157	24215
87.000	Side Arm Mount [SO 601-1]	31	2.388	0.250	0.147	20450
83.000	12'x2" Horizontal Pipe	31	2.169	0.240	0.140	18188
79.000	Side Arm Mount [SO 601-1]	31	1.961	0.229	0.133	16380
58.000	(2) 4'x2" Horizontal Mount Pipe	31	1.067	0.150	0.097	18500
54.000	Side Arm Mount [SO 601-1]	31	0.932	0.135	0.091	19616
53.000	3' Yagi	31	0.900	0.131	0.089	19898
52.000	6'x2" Mount Pipe	31	0.868	0.128	0.087	20156

Maximum Tower Deflections - Design Wind

Twist	Tilt	Gov.	Horz.	Elevation	Section
		Load	Deflection		No.
0	0	Comb.	in	ft	
0.311	0.409	19	7.612	140 - 125	T1
0.287	0.406	19	6.291	125 - 100	T2
0.232	0.361	19	4.174	100 - 75	T3
0.177	0.284	19	2.353	75 - 50	T4
0.119	0.160	19	1.084	50 - 25	T5
0.054	0.080	19	0.323	25 - 0	T6
	0.160	19	1.084	50 - 25	T5

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page	
	21082.10	3 of 3	
Project		Date	
	140-ft Lattice Tower #49 Sterling	13:48:25 08/26/21	
Client	F	Designed by TJL	
	Eversource		

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load		0		Curvature
ft		Comb.	in		0	ft
140.500	15'x2.5" Horizontal Pipe	19	7.612	0.409	0.311	282524
140.000	15'x2.5" Extension Pipe	19	7.612	0.409	0.311	282524
137.500	3" Dia 20' Omni	19	7.391	0.409	0.307	282524
137.000	15' x 4" Mount Pipe	19	7.347	0.409	0.306	282524
135.000	10' dish	19	7.171	0.409	0.303	282524
134.500	12'x3" Mount Pipe	19	7.126	0.409	0.302	256840
133.000	Side Arm Mount [SO 601-1]	19	6.994	0.409	0.300	201803
132.500	10'x2" Horizontal Pipe	19	6.950	0.409	0.299	188349
132.000	PA8-65	19	6.906	0.409	0.298	176577
130.000	(2) 10'x2" Horizontal Pipe	19	6.730	0.409	0.295	141262
125.000	SC3-W100AD	19	6.291	0.406	0.287	92318
121.000	PA8-65	19	5.943	0.402	0.279	69076
120.875	Telewave ANT220F2 - Omni	19	5.932	0.402	0.279	68508
	Antenna					
117.000	Sitepro1 USF-4U Mount Assembly	19	5.597	0.396	0.271	54550
	(Ca = 1.4 assumed)					
113.125	Telewave ANT220F2 - Omni	19	5.265	0.390	0.262	45315
	Antenna					
109.000	6'x2" Horizontal Pipe	19	4.916	0.381	0.253	38378
108.000	(2) 4'x2" Horizontal Mount Pipe	19	4.832	0.379	0.251	36960
100.000	Side Arm Mount [SO 601-1]	19	4.174	0.361	0.232	27833
96.000	Side Arm Mount [SO 601-1]	19	3.855	0.351	0.223	23121
95.000	PA6-65	19	3.777	0.349	0.221	22079
92.000	10'x2" Horizontal Pipe	19	3.544	0.341	0.214	19442
87.000	Side Arm Mount [SO 601-1]	19	3.170	0.327	0.203	16215
83.000	12'x2" Horizontal Pipe	19	2.884	0.315	0.194	14314
79.000	Side Arm Mount [SO 601-1]	19	2.611	0.301	0.186	12815
58.000	(2) 4'x2" Horizontal Mount Pipe	19	1.431	0.198	0.138	14339
54.000	Side Arm Mount [SO 601-1]	19	1.251	0.178	0.129	15183
53.000	3' Yagi	19	1.208	0.174	0.127	15395
52.000	6'x2" Mount Pipe	19	1.166	0.169	0.124	15586

 $Program\ Version\ 8.1.1.0\ -\ 6/3/2021\ File: J:/Jobs/2108200. WI/10_CSP\ \#49\ Sterling/05_Structural/Backup\ Documentation/Tnxtower/Twist\ and\ Sway/20200710_EVS_H_Ekonk\ Modification\ Analysis.eri$

 Subject: Anchor Bolt Analysis

140-ft Lattice Tower

Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21082.10

(Input From tnxTower)

Anchor Bolt Analysis:

Input Data:

Location:

Rev. 0: 8/25/21

Tower Reactions:

Tension Force = Tension := $287 \cdot \text{kips}$ (Input From tnxTower)

Compression Force = Compression := $327 \cdot \text{kips}$ (Input From tnxTower)

Shear := 42·kips

Anchor Bolt Data:

Shear Force =

ASTMA36 Assumed Number of Anc hor Bolts= (User Input) N := 6Bolt Ultimate Strength = F_{II}:= 58·ksi (User Input) Bolt Yield Strength= (User Input) $F_V := 36 \cdot ksi$ Bolt Modulus = E := 29000·ksi (User Input) Diameter of Anchor Bolts = $D := \, 1.75 {\cdot} in$ (User Input) Threads per Inch = (User Input) n := 5Length from Top of Pier to (User Input) $L_{ar} := 0 \cdot in$ Bottom of Leveling Nut =

Subject:

Location:

Rev. 0: 8/25/21

Anchor Bolt Analysis

140-ft Lattice Tower

Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21082.10

Anchor Bolt Analysis:

Calculated Anchor Bolt Properties:

GrossArea of Bol t=
$$A_g := \frac{\pi}{4} \cdot D^2 = 2.405 \cdot in^2$$

NetArea of Bdt =
$$A_n \coloneqq \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2 = 1.899 \cdot in^2$$

Net Diameter =
$$D_n := \frac{2 \cdot \sqrt{A_n}}{\sqrt{\pi}} = 1.555 \cdot in$$

Radius of Gyration of Bolt =
$$r := \frac{D_n}{4} = 0.389 \cdot in$$

Elastic Section Modulus of Bolt =
$$S_{\chi} \coloneqq \frac{\pi \cdot D_{n}^{3}}{32} = 0.369 \cdot in^{3}$$

Plastic Section Modulus of Bolt =
$$Z_{\chi} := \frac{D_{n}^{\ 3}}{6} = 0.627 \cdot \text{in}^{\ 3}$$

Anchor Bolt Design Strength:

Resistance Factor for Flexure =
$$\phi_f := 0.9$$

$$\mbox{Resistance Factor for Compression} = \qquad \qquad \varphi_{\mbox{\scriptsize C}} \coloneqq 0.9$$

$$\mbox{Resistance Factor for Tension} = \qquad \qquad \varphi_{\mbox{t}} := 0.75$$

Resistance Factor for Shear =
$$\phi_V := 0.75$$

Design Compression Strength =
$$\Phi R_{nc} := \varphi_c \cdot F_v \cdot A_q = 77.9 \cdot k$$

Design Shear Strength (Tension) =
$$\Phi R_{\text{NV}} := \phi_{\text{V}} \cdot 0.5 F_{\text{U}} \cdot A_{\text{g}} = 52.3 \cdot \text{k}$$

Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Anchor Bolt Analysis

140-ft Lattice Tower

Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21082.10

Rev. 0: 8/25/21

Check Anc hor Bolt Tension Force:

$$P_{ut} := \frac{Tension}{N} = 47.8 \cdot kips$$

$$P_{uc} := \frac{Compression}{N} = 54.5 \cdot kips$$

$$V_u := \frac{Shear}{N} = 7 \cdot kips$$

Condition1 := if
$$\left[\left(\frac{P_{ut}}{\Phi R_{nt}} \right)^2 + \left(\frac{V_u}{\Phi R_{nv}} \right)^2 \right] \le 1.00, "OK", "Overstressed"$$

Condition1 = "OK"

$$Condition2 := if \left[\left(\frac{P_{uc}}{\Phi R_{nc}} \right) + \left(\frac{V_u}{\Phi R_{nvc}} \right)^2 \right] \le 1.00, "OK", "Overstressed"$$

Condition2 = "OK"

$$\text{max}\!\!\left[\!\left(\frac{P_{ut}}{\Phi R_{nt}}\right)^{\!2} + \!\left(\frac{V_{u}}{\Phi R_{nv}}\right)^{\!2}, \!\left(\frac{P_{uc}}{\Phi R_{nc}}\right) + \!\left(\frac{V_{u}}{\Phi R_{nvc}}\right)^{\!2}\!\right] = 73.9 \cdot \%$$

Subject: FOUNDATION ANALYSIS

Location: Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 0: 8/26/21 Job No. 21082.10

Pier and Mat Foundation Analysis:

Input Data:

Input Data:			
Tower Data			
Overturning Moment =	$OM := 6217 \cdot ft \cdot kips$	(User Input from tn:	xTower)
Shear Force =	$S_t := 76 \cdot kip$	(User Input from to:	xTower)
Axial Force =	$WT_t := 47 \cdot kip$	(User Input from th	xTower)
Max Compression Force =	$C_t := 327 \cdot kip$	(User Input from to:	xTower)
Max Uplift Force =	$U_t := 287 \cdot kip$	(User Input from to:	xTower)
Tower Height =	$H_t := 140 \cdot ft$	(User Input)	
Tower Width =	$W_t := 23 \cdot ft$	(User Input)	
Tower Position on Foundation (1=offset, 2=centered) =	$Pos_{t} \coloneqq 2$	(User Input)	
Footing Data:			
Overall Depth of Footing =	$D_{f} := 6 \cdot ft$	(User Input)	
Length of Pier =	$L_p := 4.5 \cdot ft$	(User Input)	
Extension of Pier Above Grade =	L _{pag} := 1.0⋅ft	(User Input)	
Diameter of Pier =	$d_p := 4.0 \cdot ft$	(User Input)	
Thickness of Footing =	$T_f := 2.0 \cdot ft$	(User Input)	
Width of Footing =	$W_f := 36 \cdot ft$	(User Input)	
Material Properties:			
Concrete Compressive Strength =	$f_C := 3000 \cdot psi$	(User Input)	
Steel Reinforcment Yield Strength =	f _y := 60000⋅psi	(User Input)	
Internal Friction Angle of Soil =	$\Phi_{S} \coloneqq 34{\cdot}deg$	(User Input)	
Allowable Soil Bearing Capacity=	$q_S := 8000 \cdot psf$	(User Input)	
Unit Weight of Soil =	$\gamma_{\text{soil}} \coloneqq 120 \cdot \text{pcf}$	(User Input)	
Unit Weight of Concrete =	$\gamma_{conc} \coloneqq 150 \cdot pcf$	(User Input)	
Foundation Bouyancy=	Bouyancy := 0	(User Input)	(Yes=1 / No=0)
Depth to Neglect =	n:= 1·ft	(User Input)	
Cohesion of Clay Type Soil =	c := 0·ksf	(User Input)	(Use 0 for Sandy Soil)
Seismic Zone Factor =	Z:= 2	(User Input)	(UBC-1997 Fig 23-2)
Coefficient of Friction Between Concrete =	$\mu := 0.45$	(User Input)	

 Centered on Solutions
 www.centekeng.com

 63-2 North Branford Road
 P: (203) 488-0580

 Branford, CT 06405
 F: (203) 488-8587

Subject:

Location:

Rev. 0: 8/26/21

FOUNDATION ANALYSIS

Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21082.10

Pier Reinforcement:

Pier Reinforcement:			
Bar Size =	BS _{pier} := 9	(User Input)	
Bar Diameter =	d _{bpier} := 1.128⋅in	(User Input)	
Number of Bars =	$NB_{pier} = 10$	(User Input)	
Clear Cover of Reinforcement =	Cvr _{pier} := 3⋅in	(User Input)	
Reinforcement Location Factor =	$\alpha_{\text{pier}} \coloneqq 1.0$	(User Input)	(ACI-2008 12.2.4)
Coating Factor =	$\beta_{\text{pier}} = 1.0$	(User Input)	(ACI-2008 12.2.4)
Concrete Strength Factor =	$\lambda_{pier} = 1.0$	(User Input)	(ACI-2008 12.2.4)
Reinforcement Size Factor =	$\gamma_{\text{pier}} = 1.0$	(User Input)	(ACI-2008 12.2.4)
Diameter of Tie =	$d_{Tie} = 0.375 \cdot in$	(User Input)	
Pad Reinforcement:			
Bar Size =	BS _{top} := 9	(User Input)	(Top of Pad)
Bar Diameter =	d _{btop} := 1.128⋅in	(User Input)	(Top of Pad)
Number of Bars =	$NB_{top} := 37$	(User Input)	(Top of Pad)
Bar Size =	$BS_{bot} := 9$	(User Input)	(Bottom of Pad)
Bar Diameter =	$d_{bbot} := 1.128 \cdot in$	(User Input)	(Bottom of Pad)
Number of Bars =	$NB_{bot} := 37$	(User Input)	(Bottom of Pad)
Clear Cover of Reinforcement =	Cvr _{pad} := 3.0·in	(User Input)	
Reinforcement Location Factor =	$\alpha_{pad} \coloneqq 1.0$	(User Input)	(ACI-2008 12.2.4)
Coating Factor =	$\beta_{\text{pad}} = 1.0$	(User Input)	(ACI-2008 12.2.4)
Concrete Strength Factor =	$\lambda_{pad} = 1.0$	(User Input)	(ACI-2008 12.2.4)
Reinforcement Size Factor =	$\gamma_{\text{pad}} = 1.0$	(User Input)	(ACI-2008 12.2.4)

Calculated Factors:	2
Pier Reinforcement Bar Area =	$A_{bpier} := \frac{\pi \cdot d_{bpier}^2}{4} = 0.999 \cdot in^2$
Pad Top Reinforcement Bar Area =	$A_{btop} := \frac{\pi \cdot d_{btop}^2}{4} = 0.999 \cdot in^2$
Pad Bottom Reinforcement Bar Area =	$A_{bbot} := \frac{\pi \cdot d_{bbot}^2}{4} = 0.999 \cdot in^2$
Coefficient of Lateral Soil Pressure =	$K_p := \frac{1 + \sin(\Phi_s)}{1 - \sin(\Phi_s)} = 3.537$

Load Factor = LF := 1 Subject:

FOUNDATION ANALYSIS

Centered on Solutions www.centekeng.com Branford, CT 06405 F: (203) 488-8587

Location:

Rev. 0: 8/26/21

Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21082.10

Stability of Footing:

Adjusted Concrete Unit Weight =

 $\gamma_c := if(Bouyancy = 1, \gamma_{conc} - 62.4pcf, \gamma_{conc}) = 150 \cdot pcf$

Adjusted Soil Unit Weight =

 $\gamma_s := if(Bouyancy = 1, \gamma_{soil} - 62.4pcf, \gamma_{soil}) = 120 \cdot pcf$

Passive Pressure =

 $P_{pn} := K_p \cdot \gamma_s \cdot n + c \cdot 2 \cdot \sqrt{K_p} = 0.424 \cdot ksf$

 $P_{pt} := K_p \cdot \gamma_s \cdot (D_f - T_f) + c \cdot 2 \cdot \sqrt{K_p} = 1.698 \cdot ksf$

 $P_{top} := if[n < (D_f - T_f), P_{pt}, P_{pn}] = 1.698 \cdot ksf$

 $P_{bot} := K_p \cdot \gamma_s \cdot D_f + c \cdot 2 \cdot \sqrt{K_p} = 2.547 \cdot ksf$

 $P_{ave} := \frac{P_{top} + P_{bot}}{2} = 2.122 \cdot ksf$

 $T_{n} := if \left\lceil n < \left(D_{f} - T_{f}\right), T_{f}, \left(D_{f} - n\right) \right\rceil = 2 \cdot ft$

 $A_n := W_f \cdot T_n = 72 \cdot ft^2$

Ultimate Shear =

 $S_u := P_{ave} \cdot A_p = 152.804 \cdot kip$

Weight of Concrete =

 $WT_{c} := \left| \left(W_{f}^{2} \cdot T_{f} \right) + (4) \cdot \left(\frac{d_{p}^{2} \cdot \pi}{4} L_{p} \right) \right| \cdot \gamma_{c} = 422.729 \cdot \text{kip}$

Weight of Soil Above Footing =

 $WT_{s1} := \left| W_f^2 - (4) \cdot \left(\frac{d_p^2 \cdot \pi}{4} \right) \right| \cdot \left(\left| L_p - L_{pag} - n \right| \right) \right| \cdot \gamma_s = 373.72 \cdot \text{kip}$

Weight of Soil Wedge at Back Face =

 $WT_{S2} := \left| \frac{\left(D_f - n \right)^2 \cdot tan\left(\Phi_S \right)}{2} \cdot W_f \right| \cdot \gamma_S = 36.423 \cdot kip$

Tower Offset =

 $X_{t1} \coloneqq \left\lceil \frac{\mathsf{W}_f}{2} - \frac{\left(\mathsf{W}_t \cdot \cos(30 \cdot \deg)\right)}{2} \right\rceil \qquad \qquad X_{t2} \coloneqq \frac{\mathsf{W}_f}{2} - \frac{\left(\mathsf{W}_t \cdot \cos(30 \cdot \deg)\right)}{3}$

 $X_t := if(Pos_t = 1, X_{t1}, X_{t2}) = 11.36$

 $X_{\text{off1}} := \frac{W_f}{2} - \left[\frac{\left(W_t \cdot \cos(30 \cdot \text{deg})\right)}{3} + X_t \right] = 0$

 $X_{\text{off}} := if(Pos_t = 1, X_{\text{off1}}, X_{\text{off2}})$

 $X_{\text{off}} = 0.\text{ft}$

 $\mathsf{WT}_{tot} \coloneqq 0.9 \mathsf{WT}_c + 0.75 \mathsf{WT}_{s1} + \mathsf{WT}_t = 707.7 \cdot \mathsf{kip}$ Total Weight =

Resisting Moment =

 $M_{r} := \left(WT_{tot}\right) \cdot \frac{W_{f}}{2} + 0.9WT_{t} \cdot \left(\frac{W_{f}}{2} - X_{off}\right) + 0.75\left(S_{u} \cdot \frac{T_{p}}{3}\right) + 0.75WT_{s2} \cdot \left[W_{f} + \frac{\left(D_{f} - n\right) \cdot tan\left(\Phi_{s}\right)}{3}\right] = 14591 \cdot kip \cdot ft$

Overturning Moment =

 $M_{ot} := OM + S_t \cdot (L_p + T_f) = 6711 \cdot kip \cdot ft$

Factor of SafetyActual =

 $FS := \frac{M_r}{M} = 2.17$

Factor of Safety Required =

 $FS_{reg} := 1$ OverTurning_Moment_Check := if($FS \ge FS_{reg}$, "Okay", "No Good")

OverTurning_Moment_Check = "Okay"

Subject:

FOUNDATION ANALYSIS

Location:

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21082.10

Sterling, CT

Rev. 0: 8/26/21

Shear Capacity in Pier:

F: (203) 488-8587

$$S_p := \frac{P_{ave} \cdot A_p + \mu \cdot WT_{tot}}{FS_{rea}} = 471.29 \cdot kips$$

$$Shear_Check := if \Big(S_p > S_t, "Okay", "No Good"\Big)$$

Shear_Check = "Okay"

Bearing Pressure Caused by Footing:

$$\mathsf{Load}_{tot} \coloneqq \mathsf{WT}_c + \mathsf{WT}_{s1} + \mathsf{WT}_t = \mathsf{843} \cdot \mathsf{kip}$$

$$A_{mat} := W_f^2 = 1.296 \times 10^3$$

$$S := \frac{W_f^3}{6} = 7776 \cdot \text{ft}^3$$

$$P_{max} := \frac{Load_{tot}}{A_{mat}} + \frac{M_{ot}}{S} = 1.514 \cdot ksf$$

$$\label{eq:max_pressure_check} \text{Max_Pressure_Check} \coloneqq \text{if} \Big(\text{P}_{\text{max}} < 0.75 \text{q}_{\text{s}}, \text{"Okay"} \,, \text{"No Good"} \Big)$$

Max_Pressure_Check = "Okay"

$$P_{min} := \frac{Load_{tot}}{A_{mat}} - \frac{M_{ot}}{S} = -0.212 \cdot ksf$$

$$\label{eq:min_pressure_check} \begin{aligned} &\text{Min_Pressure_Check} \coloneqq if \!\!\left[\!\!\left(P_{min} \geq 0\right)\!\!\cdot\!\!\left(P_{min} < 0.75q_{\!s}\right), \text{"Okay"}, \text{"No Good"}\!\!\right] \end{aligned}$$

Min_Pressure_Check = "No Good"

$$X_p := \frac{P_{max}}{\frac{P_{max} - P_{min}}{W_f}} \cdot \frac{1}{3} = 10.525$$

$$X_k := \frac{W_f}{6} = 6$$

Since Resultant Force is Not in Kern, Area to which Pressure is Applied Must be Reduced.

$$e := \frac{M_{ot}}{Load_{tot}} = 7.957$$

$$P_{a} := \frac{2 \cdot Load_{tot}}{3 \cdot W_{f} \cdot \left(\frac{W_{f}}{2} - e\right)} = 1.555 \cdot ksf$$

$$q_{adj} := if(P_{min} < 0, P_a, P_{max}) = 1.555 \cdot ksf$$

Subject:

FOUNDATION ANALYSIS

Location: Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 0: 8/26/21 Job No. 21082.10

Concrete Bearing Capacity:

F: (203) 488-8587

Strength Reduction Factor =

 $\Phi_{\rm C} := 0.65$

(ACI-2008 9.3.2.2)

Bearing Strength Between Pier and Pad =

 $P_b := \Phi_c \cdot 0.85 \cdot f_c \cdot \frac{\pi \cdot d_p^2}{4} = 2.999 \times 10^3 \cdot \text{kips}$

(ACI-2008 10.14)

 $\mathsf{Bearing_Check} \coloneqq \mathsf{if}\Big(\mathsf{P}_b > \mathsf{LF} \cdot \mathsf{C}_t, \mathsf{"Okay"}\,, \mathsf{"No}\;\mathsf{Good"}\Big)$

Bearing_Check = "Okay"

Shear Strength of Concrete:

Beam Shear:

(Critical section located at a distance d from the face of Pier)

(ACI 11.3.1.1)

 $\varphi_{\bm{C}} \coloneqq 0.85$

(ACI 9.3.2.5)

 $d := T_f - Cvr_{pad} - d_{bbot} = 19.872 \cdot in$

$$FL := LF \cdot \frac{C_t}{W_f^2} = 0.252 \cdot ksf$$

$$V_{req} := FL \cdot (X_t - .5 \cdot d_p - d) \cdot W_f = 69.982 \cdot kips$$

$$V_{Avail} := \phi_{C} \cdot 2 \cdot \sqrt{f_{C} \cdot psi} \cdot W_{f} \cdot d = 799 \cdot kip$$

 $Beam_Shear_Check := if \Big(V_{\mbox{req}} < V_{\mbox{Avail}}, "Okay" \ , "No \ Good" \Big)$

Beam_Shear_Check = "Okay"

Punching Shear:

(Critical Section Located at a distance of d/2 from the face of pier)

(ACI 11.11.1.2)

(ACI-2008 11.2.1.1)

Critical Perimeter of Punching Shear =

 $b_0 := (d_0 + d) \cdot \pi = 17.8$

Area Included Inside Perimeter =

$$A_{bo} := \frac{\pi \cdot (d_p + d)^2}{4} = 25.1$$

Required Shear Strength =

$$V_{req} := FL \cdot \left(W_f^2 - A_{bo}\right) = 321 \cdot kips$$

Available Shear Strength =

$$V_{Avail} := \Phi_{c} \cdot 4 \cdot \sqrt{f_{c} \cdot psi} \cdot b_{o} \cdot d = 789.1 \cdot kip$$

(ACI-2008 11.11.2.1)

 $Punching_Shear_Check := if \Big(v_{req} < v_{Avail}, "Okay" \, , "No \; Good" \, \Big)$

Punching_Shear_Check = "Okay"

Subject:

FOUNDATION ANALYSIS

Location:

Rev. 0: 8/26/21

Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21082.10

Steel Reinforcement in Pad:

F: (203) 488-8587

Required Reinforcement for Bending:

Strength Reduction Factor =

$$\varphi_m \coloneqq .90$$

(ACI-2008 9.3.2.1)

Maximum Moment in Pad =

 $\mathsf{M}_{max} \! := 1700 \! \cdot \! \mathsf{kip} \! \cdot \! \mathsf{ft}$

(User Input)

Design Moment =

$$M_{n} := \frac{\text{LF-M}_{max}}{\varphi_{m}} = 1.889 \times 10^{3} \cdot \text{kips-ft}$$

$$\beta := \begin{bmatrix} 0.85 & \text{if} & 2500 \cdot psi \leq f_C \leq 4000 \cdot psi \\ 0.65 & \text{if} & f_C > 8000 \cdot psi \\ \hline \\ 0.85 - \boxed{\left(\frac{f_C}{psi} - 4000\right)}_{1000} \\ 0.5 \end{bmatrix} & \text{otherwise} \end{cases}$$
 (ACI-200810.2.7.3)

$$b_{eff} := W_t \cdot cos(30 \cdot deg) + d_p = 287.023 \cdot in$$

$$A_s := \frac{M_n}{\left(f_y \cdot d\right)} = 19.011 \cdot in^2$$

$$a := \frac{A_s \cdot f_y}{\beta \cdot f_c \cdot b_{eff}} = 1.558 \cdot in$$

$$A_S := \frac{M_n}{f_y \cdot \left(d - \frac{a}{2}\right)} = 19.786 \cdot in^2$$

$$\rho := \frac{A_S}{b_{\text{eff}} d} = 0.04163 \cdot \text{in}$$

Subject:

FOUNDATION ANALYSIS

Location:

Rev. 0: 8/26/21

Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21082.10

F: (203) 488-8587

Required Reinforcement for Temperature and Shrinkage:

 $\rho_{Sh} := \begin{bmatrix} .0018 & \text{if} & f_y \ge 60000 \cdot psi & = 0.0018 \\ .0020 & \text{otherwise} \end{bmatrix}$ (ACI -2008 7.12.2.1)

Check Bottom Bars:

$$As := if \left(\rho \ge \rho_{Sh}, A_S, \rho_{Sh} \cdot \frac{b_{eff}}{2} \cdot d \right) = 19.8 \cdot in^2$$

$$As_{prov} := A_{bbot} \cdot NB_{bot} = 37 \cdot in^2$$

 $Pad_Reinforcement_Bot := if(As_{prov} > As, "Okay", "No Good")$

Pad_Reinforcement_Bot = "Okay"

Check top Bars:

$$As := if \left(\rho \geq \rho_{Sh}, A_S, \rho_{Sh} \cdot \frac{b_{eff}}{2} \cdot d \right) = 19.8 \cdot in^2$$

$$As_{prov} := A_{btop} \cdot NB_{top} = 37 \cdot in^2$$

 $Pad_Reinforcement_Top := if\Big(As_{prov} > As, "Okay", "No Good"\Big)$

Pad_Reinforcement_Top = "Okay"

Developement Length Pad Reinforcement:

Bar Spacing =

$$\mathsf{B}_{\mathsf{SPad}} \coloneqq \frac{\mathsf{W}_{\mathsf{f}} - 2 \cdot \mathsf{Cvr}_{\mathsf{pad}} - \mathsf{NB}_{\mathsf{bot}} \cdot \mathsf{d}_{\mathsf{bbot}}}{\mathsf{NB}_{\mathsf{bot}} - 1} = 10.67 \cdot \mathsf{in}$$

Spacing or Cover Dimension =

$$c := if \left(Cvr_{pad} < \frac{B_{sPad}}{2}, Cvr_{pad}, \frac{B_{sPad}}{2} \right) = 3 in$$

Transverse Reinforcement Index =

$$k_{tr} = 0$$

(ACI-2008 12.2.3)

$$L_{dbt} \coloneqq \frac{3 \cdot f_y \alpha_{pad} \cdot \beta_{pad} \cdot \gamma_{pad} \cdot \lambda_{pad}}{40 \cdot \sqrt{f_c \cdot psi} \cdot \frac{c + k_{tr}}{d_{bbot}}} \cdot d_{bbot} = 34.8 \cdot in$$

Minimum Development Length =

$$L_{dbmin} := 12 \cdot in$$

(ACI-2008 12.2.1)

Available Length in Pad =

$$L_{Pad} := \frac{W_f}{2} - \frac{W_t}{2} - Cvr_{pad} = 75 \cdot in$$

 $Lpad_Check := if(L_{Pad} > L_{dbt}, "Okay", "No Good")$

 $L_{dbtCheck} \coloneqq \textit{if} \Big(L_{dbt} \geq L_{dbmin}, \texttt{"Use L.dbt"} \;, \texttt{"Use L.dbmin"} \, \Big) = \texttt{"Use L.dbt"}$

Lpad_Check = "Okay"

Subject:

FOUNDATION ANALYSIS

Sterling, CT

P: (203) 488-0580 Location: F: (203) 488-8587

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 0: 8/26/21

Job No. 21082.10

Steel Reinforcement in Pier:

$$A_p := \frac{\pi \cdot d_p^2}{4} = 1809.56 \cdot in^2$$

$$A_{smin} := 0.01 \cdot 0.5 \cdot A_p = 9.05 \cdot in^2$$

(ACI-2008 10.8.4 & 10.9.1)

$$A_{sproy} := NB_{pier} \cdot A_{bpier} = 9.99 \cdot in^2$$

$$Steel_Area_Check := if \Big(A_{\mbox{sprov}} > A_{\mbox{smin}}, "Okay", "No \mbox{ Good"} \Big)$$

Steel_Area_Check = "Okay"

$$B_{\text{SPier}} := \frac{d_{\text{p}} \cdot \pi}{NB_{\text{pier}}} - d_{\text{bpier}} = 13.952 \cdot \text{in}$$

$$Diam_{cage} := d_p - 2 \cdot Cvr_{pier} = 42 \cdot in$$

$$M_p := S_t \cdot (L_p) \cdot LF = 4104 \cdot in \cdot kips$$

Pier Check evaluated from outside program and results are listed below;

$$(D \ N \ n \ P_u \ M_{XU}) = (48 \ 10 \ 9 \ 435.891 \ 4.104 \times 10^3)$$

$$\left(\Phi P_n \Phi M_{xn} f_{sp} \rho \right) := (0 \ 0 \ 0)$$

$$(\Phi P_n \Phi M_{xn} f_{sp} \rho) := \Phi P'_n (D, N, n, P_u, M_{xu})^T$$

$$\left(\varphi P_{n} \ \varphi M_{\text{XN}} \ f_{\text{SP}} \ \rho \right) = \left(2.075 \times 10^{3} \ 1.954 \times 10^{4} \ -45.187 \ 5.526 \times 10^{-3} \right)$$

Axial_Load_Check = "Okay"

Bending_Check :=
$$if(\phi M_{xn} \ge M_{xij}, "Okay", "No Good")$$

Bending_Check = "Okay"

Subject:

FOUNDATION ANALYSIS

Location:

Rev. 0: 8/26/21

Sterling, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21082.10

Development Length Pier Reinforcement:

F: (203) 488-8587

Available Length in Foundation:

$$L_{pier} := L_p - Cvr_{pier} = 51 \cdot in$$

$$L_{pad} := T_f - Cvr_{pad} = 21 \cdot in$$

<u>Tension:</u> (ACI-2008 12.2.3)

 $\text{Spacing or Cover Dimension} = \\ c := \text{if} \left(\text{Cvr}_{pier} < \frac{\text{B}_{sPier}}{2}, \text{Cvr}_{pier}, \frac{\text{B}_{sPier}}{2} \right) = 3 \text{ in}$

Transverse Reinforcement = $k_{tr} = 0$ (ACI-2008 12.2.3)

$$L_{dbt} \coloneqq \frac{3 \cdot f_y \alpha_{pier} \cdot \beta_{pier} \cdot \gamma_{pier} \cdot \lambda_{pier}}{40 \cdot \sqrt{f_c \cdot psi} \cdot \left(\frac{c + k_{tr}}{d_{bpier}}\right)} \cdot d_{bpier} = 34.85 \cdot in$$

Minimum Development Length =

Pier reinforcement bars are standard 90 degree hooks and therefore developement in the pad is computed as follows:

$$L_{dh} := \frac{1200 \cdot d_{bpier}}{\sqrt{\frac{f_c}{psi}}} \cdot .7 = 17.299 \cdot in \tag{ACI 12.2.1}$$

$$L_{db} := max\!\!\left(L_{dbt}, L_{dbmin}\right) = 34.846 \cdot in$$

$$\textit{L}_{tension_Check} \coloneqq \textit{if} \Big(\textit{L}_{pier} + \textit{L}_{pad} > \textit{L}_{dbt}, \texttt{"Okay"}\,, \texttt{"No Good"} \Big)$$

Compression: (ACI-2008 12.3.2)

$$L_{dbc1} \coloneqq \frac{.02 \cdot d_{bpier} \cdot f_y}{\sqrt{f_c \cdot psi}} = 24.713 \cdot in$$

$$L_{dbmin} := 0.0003 \cdot \frac{in^2}{lb} \cdot (d_{bpier} \cdot f_y) = 20.304 \cdot in$$

$$L_{dbc} := if(L_{dbc1} \ge L_{dbmin}, L_{dbc1}, L_{dbmin}) = 24.713 \cdot in$$

nart dEx carbon-neutral velope shipping

^ ::-- -np of FedEx Express® shipping label here

RIGIN ID:EFBA (203) 562-9885 SHIPPING JOSEPH MERRITT CO. 30 HAMILTON STREET SHIP DATE: 11JAN22 ACTWGT: 1.00 LB MAN CAD: 0517347/CAFE3509

NEW HAVEN, CT 065115920 UNITED STATES US

BILL THIRD PARTY

** HONORABLE LINCOLN A. COOPER TOWN OF STERLING 1183 PLAINFIELD PIKE

ONECO CT 06373

REF: S0422311

1RK# 6437 3911 1720

WED - 12 JAN 4:30P PRIORITY OVERNIGHT

06373 ст-us BDL

FedEx Express

Part # 156148-434 RIT2 01/14 .

Align bottom of peel-and-stick airbill or pouch here.

Tef: S0422311 (cap:

Date: 11Jan22 Wgt: 1.00 LBS

SHIPPING: SPECIAL:

0.00 0.00

HANDLING: 100.00 TOTAL:

Svcs: PRIORITY OVERNIGHT TRCK: 6437 3911 1730

ORIGIN ID:EFBA (203) 562-9885 SHIPPING JOSEPH MERRITT CO.) HAMILTON STREET

SHIP DATE: 11JAN22 ACTWGT: 1.00 LB MAN CAD: 0517347/CAFE3509

NEW HAVEN, CT 065115920 UNITED STATES US

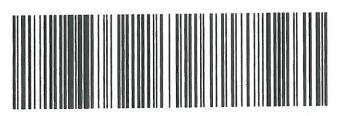
BILL THIRD PARTY

MELISSA GIL TOWN OF STERLING 1183 PLAINFIELD PIKE

ONECO CT 06373

REF: S0422311

FedEx Express: 1211828121181


15 6437 3911 1730

WED - 12 PRIORITY OVERNIGHT

GONA

06373 CT-US BDL

Part # 155148-434 RITZ 01/1/4 a

Ref: Uep: Date: 11Jan22 Wgt: 1.00 LBS SHIPPING: SPECIAL: 0.00 0.00

DV:

HANDLING: 100.00 TOTAL: 0.00

Svcs: PRIORITY OVERNIGHT TRCK: 6437 3911 1741

RIGIN ID:EFBA (203) 562-9885 HIPPING 'OSEPH MERRITI CO. UU HAMILTON STREET

SHIP DATE: 11JAN22 ACTWGT: 1.00 LB MAN CAD: 0517347/CAFE3509

HAVEN, CT 065115920

BILL THIRD PARTY

DEPT OF ENERGY SERV & PUBLIC PRO. 1111 COUNTRY CLUB ROAD

MIDDLETOWN CT 06457

REF:

FedEx Express Antolicities of the Contract of

TRKI 6437 3911 1741

WED - 12 JAN 10:30A PRIORITY OVERNIGHT

00 BDLA

06457 ст-us BDL

Part # 156148-434 RIT2 01/14

Ref: S0422311

Date: 11Jan22 Wgt: 3.00 LBS

SHIPPING: SPECIAL: HANDLING: 0.00 0.00 0.00

200.00 TOTAL:

Svcs: PRIORITY OVERNIGHT TRCK: 6437 3911 1752

MICJN ID:EFBA (203) 562-9885 SHIPPING TOSEPH MERRITT CO. D HAMILTON STREET

SHIP DATE: 11JAN22 ACTWGT: 3.00 LB MAN CAD: 0517347/CAFE3509

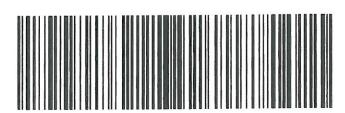
NEW HAVEN, CT 065115920 UNITED STATES US

BILL THIRD PARTY

CONNECTICUT SITING COUNCIL 10 FRANKLIN SQUARE

NEW BRITAIN CT 06051

REF: S0422311


FedEx Express:

IRK# 6437 3911 1752

WED - 12 JAN 10:30A PRIORITY OVERNIGHT

06051 CT-US BDL

Calculated Radio Frequency Emissions Report

ES-056

389 Ekonk Hill Road

Sterling, CT 06354

Table of Contents

1. Introduction	1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits	2
3. Power Density Calculation Methods	3
4. Antenna Configuration for % MPE Calculations	3
5. Measurement Procedure	4
6. Surveyed and Calculated % MPE Results	5
7. Conclusion	7
8. Statement of Certification	7
Attachment A: References	8
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)	9
Attachment C: Eversource Antenna Data Sheet and Electrical Patterns	11
List of Tables	
Table 1: Survey Information	
Table 2: Eversource Antenna Configuration (Recently Installed & Proposed)	
Table 3: Instrumentation Information	
Table 4: Measured and Calculated % MPE Results	
Table 5: FCC Limits for Maximum Permissible Exposure (MPE)	9
List of Figures	
Figure 1: View of ES-056 Ekonk	1
Figure 2: Measurement Points – Zoom In	6
Figure 3: All Measurement Points	
Figure 4: Graph of FCC Limits for Maximum Permissible Exposure (MPE)	10

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed Eversource installation on the tower at 389 Ekonk Hill Road in Sterling, CT. The proposal consists in part of a directional antenna for its 450 MHz communications system.

By way of background, this office prepared a compliance report dated 12/18/2020 regarding Eversource's 220 MHz equipment (proposed at the time), which has since been installed. That analysis considered % MPE (Maximum Permissible Exposure) measurements around the existing tower to determine FCC compliance of the facility in addition to the worst-case calculated % MPE values for the (proposed at the time) 220 MHz equipment.

This report considers the results of that previous report, along with the currently proposed 450 MHz installation. Based upon a comparison of a recent structural analysis and one prepared as part of the 220 MHz installation, it is understood that no additional equipment (other than the recently installed 220 MHz equipment) has been added to the tower since the time % MPE measurements were recorded.

Site Address	389 Ekonk Hill Road
Latitude	41° 39' 49.5" N
Longitude	71° 50' 56.3" W
Site Elevation AMSL	672'
Survey Engineer	Marc Salas
Survey Date/Time	6/25/2020; 12:00 PM – 1:00 PM

Table 1: Survey Information

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

ES-056 Ekonk 2 October 6, 2021

3. Power Density Calculation Methods

The calculated power density results were generated using the following formula as outlined in FCC bulletin OET 65, and Connecticut Siting Council recommendations:

Power Density =
$$\left(\frac{1.6^2 \times 1.64 \times ERP}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power = $1.64 \times ERP$

R = Radial Distance = $\sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna

V = Vertical Distance from radiation center of antenna

Ground reflection factor of 1.6

Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and full power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. As a result, the calculated power density and corresponding % MPE levels reported below are much higher than the actual levels will be from the final installation.

4. Antenna Configuration for % MPE Calculations

Table 2 below lists the technical details of the recently installed and proposed Eversource installation. These parameters are applied to the above calculation methods in order to calculate the % MPE values of the equipment. Any receive-only antennas have not been included in the table as they are irrelevant in terms of the % MPE calculations.

Operator	Antenna Model	TX Freq. (MHz)	Ant Gain (dBd)	Power ERP (Watts)	Number of Channels	Vertical Beamwidth	Length (ft)	Antenna Centerline Height (ft)
Eversource (recently installed)	Telewave ANT220F2	217	2.5	124	4	38°	3.67	113.1
Eversource (proposed)	Scala CL6-450B	451.625	6.5	45	1	60°	2.17	109

Table 2: Eversource Antenna Configuration (Recently Installed & Proposed) 1 2

ES-056 Ekonk 3 October 6, 2021

¹ Transmit power assumes 0 dB of cable loss.

² Transmit antenna height listed for the proposed installation is based on the proposed antenna referenced in the CENTEK Engineering Structural Analysis report dated August 26, 2021 (Rev. 0).

5. Measurement Procedure

Frequencies from 300 KHz to 50 GHz were measured using the Narda Probe EA 5091, E-Field, shaped, FCC probe in conjunction with the NBM550 survey meter. The EA 5091 probe is "shaped" such that in a mixed signal environment (i.e.: more than one frequency band is used in a particular location), it accurately measures the percent of MPE.

From FCC OET Bulletin No. 65 - Edition 97-01 — "A useful characteristic of broadband probes used in multiple-frequency RF environments is a frequency-dependent response that corresponds to the variation in MPE limits with frequency. Broadband probes having such a "shaped" response permit direct assessment of compliance at sites where RF fields result from antennas transmitting over a wide range of frequencies. Such probes can express the composite RF field as a percentage of the applicable MPEs".

Probe Description - As suggested in FCC OET Bulletin No. 65 - Edition 97-01, the response of the measurement instrument should be essentially isotropic, (i.e., independent of orientation or rotation angle of the probe). For this reason, the Narda EA 5091 probe was used for these measurements.

Sampling Description - At each measurement location, a spatially averaged measurement is collected over the height of an average human body. The NBM550 survey meter performs a time average measurement while the user slowly moves the probe over a distance range of 20 cm to 200 cm (about 6 feet) above ground level. The results recorded at each measurement location include average values over the spatial distance.

Instrumentation Information - A summary of specifications for the equipment used is provided in the table below.

Manufacturer	Narda Microwave	Narda Microwave						
Probe	EA 5091, Serial# 01116	EA 5091, Serial# 01116						
Calibration Date	May 2020							
Calibration Interval	24 Months							
Meter	NBM550, Serial# E-100	69						
Calibration Date	May 2020							
Calibration Interval	24 Months							
Probe Specifications	Frequency Range Field Measured Standard Measurement Range							
1 tobe opecifications	300 KHz-50 GHz	Electric Field	U.S. FCC 1997 Occupational/Controlled	0.2 – 600 % of Standard				

Table 3: Instrumentation Information

Instrument Measurement Uncertainty - The total measurement uncertainty of the NARDA measurement probe and meter is no greater than ± 3 dB (0.5% to 6%), ± 1 dB (6% to 100%), ± 2 dB (100% to 600%). The factors which contribute to this include the probe's frequency response deviation, calibration uncertainty, ellipse ratio, and isotropic response³. Every effort is taken to reduce the overall uncertainty during measurement collection including pointing the probe directly at the likely highest source of emissions.

ES-056 Ekonk 4 October 6, 2021

³ For further details, please refer to Narda Safety Test Solutions NBM550 Probe Specifications, pg. 64 http://www.narda-sts.us/pdf_files/DataSheets/NBM-Probes_DataSheet.pdf

6. Surveyed and Calculated % MPE Results

Measured and calculated results and a description of each survey location are detailed in the table below. Measurements were recorded on June 25, 2020 between 12:00 PM and 1:00 PM. The calculated % MPE contribution from the recently installed and proposed equipment was then added to the measured % MPE values in the "Composite % MPE" column. These calculated values incorporate the antenna pattern of the antenna model specified by Eversource to determine the "Off Beam Loss" factor shown in the power density formula from Section 3. All % MPE values are in reference to the FCC Uncontrolled/General Population exposure limit.

Table 4 below lists 11 measurements recorded in the vicinity of the tower. The highest spatially averaged measurement was 9.75% (Average Uncontrolled / General Population MPE) and was recorded at Location 1 by the compound access gate. The highest composite (measured + calculated) % MPE value is calculated to be 9.85% (Average Uncontrolled / General Population) and is calculated to occur at the same location (location #1).

Meas. Location	Location Description	Latitude	Longitude	Dist. From Site (feet)	Measured % MPE (Uncontrolled / General)	Calculated % MPE (Eversource 220 MHz)	Calculated % MPE (Eversource Proposed 450 MHz)	Composite % MPE (Uncontrolled / General)
1	Compound access gate	41.6638	-71.8489	32	9.75%	0.09%	0.01%	9.85%
2	NW corner of fenced compound	41.6638	-71.8492	57	6.42%	0.08%	0.03%	6.53%
3	SW corner of fenced compound	41.6636	-71.8491	77	2.83%	0.05%	0.05%	2.93%
4	South middle of fenced compound	41.6636	-71.8489	60	< 1.00%	0.08%	0.03%	< 1.11%
5	SE corner of fenced compound	41.6636	-71.8487	82	2.60%	0.04%	0.05%	2.70%
6	Near NE corner of fenced compound	41.6639	-71.8488	81	4.02%	0.05%	0.05%	4.11%
7	Along access road	41.6641	-71.8481	272	< 1.00%	0.54%	0.05%	< 1.59%
8	Access road gate	41.6646	-71.8466	723	< 1.00%	0.15%	0.01%	< 1.16%
9	Near 419 Ekonk Hill Road mailbox	41.6624	-71.8463	880	3.34%	0.11%	0.01%	3.45%
10	Near 396 Ekonk Hill Road	41.6642	-71.8462	777	3.62%	0.13%	0.01%	3.76%
11	Southern Intersection of Still Road and Shelton Road	41.6660	-71.8469	1006	1.16%	0.09%	0.01%	1.25%

Table 4: Measured and Calculated % MPE Results 45

_

⁴ Due to measurement uncertainty at low levels (See Table 3), any readings outside the measurement range of the probe (< 1.00 % FCC General Population/Uncontrolled MPE) are noted as such.

⁵ Measured and calculated % MPE values listed are rounded to two decimal points and the composite % MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not identically match the total composite values reflected in the table.

Figures 2 and 3 below are aerial views⁶ of the tower location and the surrounding area, along with the measurement locations listed in Table 4.

Figure 2: Measurement Points – Zoom In

Figure 3: All Measurement Points

-

⁶ Map showing location of telecommunications facility and the surrounding area. *Google Earth*, https://earth.google.com/web/.

7. Conclusion

A number of accessible areas around the tower at 389 Ekonk Hill Road in Sterling, CT were surveyed and found to be well within the mandated General Population/Uncontrolled limits for Maximum Permissible Exposure, as delineated in the Federal Communications Commission's Radio Frequency exposure rules published in 47 CFR 1.1307(b)(1)-(b)(3).

The highest spatially averaged % MPE measurement of all surveyed points based on the 1997 FCC standard for exposure to the general population is 9.75% MPE. This measurement was recorded at Location 1 by the compound access gate.

The highest composite (measured + calculated) power density is **9.85% of the FCC General Population MPE limit** with the recently installed 220 MHz and proposed 450 MHz Eversource equipment is calculated to also occur at Location 1 by the compound access gate.

The above analysis concludes that RF exposure at ground level around the tower, both currently and with the proposed antenna installation, will be below the maximum power density limits as outlined by the FCC in the OET Bulletin 65 Ed. 97-01.

As noted previously, the calculated % MPE levels are more conservative (higher) than the actual levels will be from the finished installation.

8. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, IEEE Std. C95.1, and IEEE Std. C95.3.

Ketth Wellante

October 6, 2021

Report Prepared By: Keith Vellante

Keith Vellante
Director of RF Services
C Squared Systems, LLC

Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

<u>IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz</u> IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure⁷

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure⁸

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz * Plane-wave equivalent power density

Table 5: FCC Limits for Maximum Permissible Exposure (MPE)

ES-056 Ekonk 9 October 6, 2021

⁷ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure

⁸ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

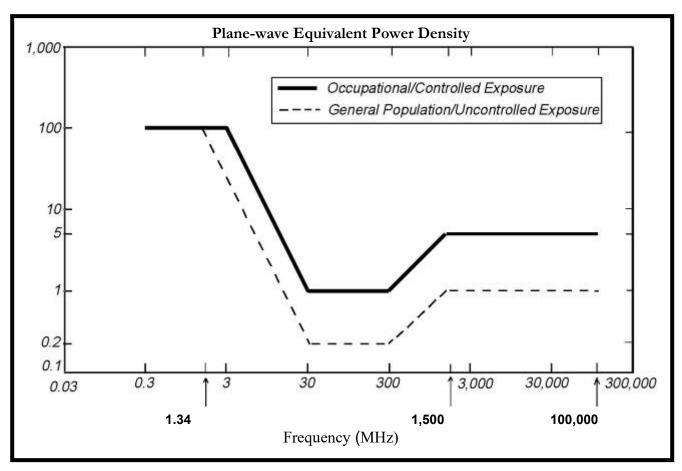


Figure 4: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

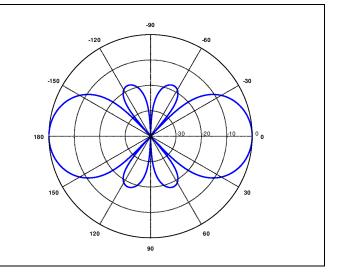
Attachment C: Eversource Antenna Data Sheet and Electrical Patterns

217 MHz

Manufacturer: Telewave

Model #: ANT220F2

Frequency Band: 195 - 260 MHz


Gain: 2.5 dBd

Vertical Beamwidth: 38°

Horizontal Beamwidth: 360°

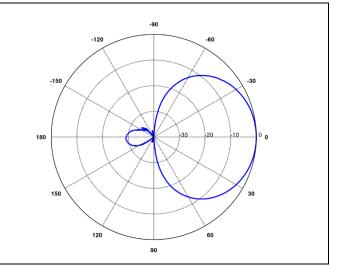
Polarization: Vertical-Polarization

Length: 3.6'

451.625 MHz

Manufacturer: Kathrein-Scala

Model #: CL6-450B


Frequency Band: 400 - 512 MHz

Gain: 6.5 dBd

Vertical Beamwidth: 60° Horizontal Beamwidth: 86°

Polarization: Vertical-Polarization

Length: 2.17'

