Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts

July 22, 2014

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 370 West Main Street, Stamford, Connecticut

Dear Ms. Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains fifteen (15) wireless telecommunications antennas at the 80-foot level of the existing 90-foot roof-top tower at 370 West Main Street in Stamford (the "Property"). The tower and Property are owned by Storage Works LLC. The Council approved Cellco's shared use of this tower in 1995. Cellco now intends to replace nine (9) of its existing antennas with three (3) model LNX-6514DS-VTM, 700 MHz antennas; three (3) HBXX-6516DS-VTM, 1900 MHz antennas and three (3) model HBXX-6516DS-VTM, 2100 MHz antennas, at the same 80-foot level on the tower. Included in Attachment 1 are the specifications for the replacement antennas.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to David Martin, Mayor for the City of Stamford.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's proposed antennas will be located at the same 80-foot level on the 90-foot tower.

Robinson+Cole

Melanie A. Bachman July 22, 2014 Page 2

- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A General Power Density table for Cellco's modified facility is included in Attachment_2.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The tower and the building can support Cellco's proposed modifications. (See Structural Evaluation Letter is included in <u>Attachment 3</u>).

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwir

Enclosures Copy to:

David Martin, Mayor Sandy M. Carter

ATTACHMENT 1

Product Specifications

LNX-6514DS-VTM

Andrew® Antenna, 698–896 MHz, 65° horizontal beamwidth, RET compatible

Electrical Specifications

Frequency Band, MHz	698-806	806-896
Gain, dBi	15.7	16.3
Beamwidth, Horizontal, degrees	65	65
Beamwidth, Horizontal Tolerance, degrees	±3	±3
Beamwidth, Vertical, degrees	12.5	11.2
Beam Tilt, degrees	0-10	0-10
USLS, typical, dB	17	18
Front-to-Back Ratio at 180°, dB	32	30
CPR at Boresight, dB	20	20
CPR at Sector, dB	10	10
Isolation, dB	30	30
VSWR Return Loss, dB	1.4 15.6	1.4 15.6
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153
Input Power per Port, maximum, watts	400	400
Polarization	±45°	±45°

Mechanical Specifications

Color Radome Material	Light gray Fiberglass, UV resistant
Connector Interface Location Quantity	7-16 DIN Female Bottom 2
Wind Loading, maximum	617.7 N @ 150 km/h 138.9 lbf @ 150 km/h
Wind Speed, maximum	241.0 km/h 149.8 mph
Antenna Dimensions, L x W x D	1847.0 mm x 301.0 mm x 181.0 mm 72.7 in x 11.9 in x 7.1 in
Net Weight	17.6 kg 38.8 lb

Model with factory installed AISG 2.0 RET LNX-6514DS-A1M

Product Specifications

HBXX-6516DS-VTM

Andrew® Quad Port Teletilt® Antenna, 1710-2180 MHz, 65° horizontal beamwidth, RET compatible

- Each DualPol® array can be independently adjusted for greater flexibility
- Excellent gain, VSWR, front-to-back ratio, and PIM specifications for robust network performance
- · Ideal choice for site collocations and tough zoning restrictions
- · Great solution to maximize network coverage and capacity
- The values presented on this datasheet have been calculated based on N-P-BASTA
 White Paper version 9.6 by the NGMN Alliance

Electrical Specifications

Frequency Band, MHz Gain by all Beam Tilts, average, dBi Gain by all Beam Tilts Tolerance, dB	1710-1880 17.2 ±0.3	1850-1990 17.2 ±0.3	1920-2180 17.5 ±0.5
	0 ° 17.0	0 ° 17.1	0 ° 17.4
Gain by Beam Tilt, average, dBi	5 0 17.3	5 ° 17.4	5 ° 17.7
	10 ° 17.0	10 ° 17.0	10 ° 17.2
Beamwidth, Horizontal, degrees	67	66	64
Beamwidth, Horizontal Tolerance, degrees	±2.7	±2,3	±3.5
Beamwidth, Vertical, degrees	7.5	7.0	6.6
Beamwidth, Vertical Tolerance, degrees	±0.5	±0.4	±0.4
Beam Tilt, degrees	0-10	0-10	0-10
USLS, dB	18	19	19
Front-to-Back Total Power at 180° ± 30°, dB	26	26	26
CPR at Boresight, dB	22	22	22
CPR at Sector, dB	9	9	9
Isolation, dB	30	30	30
VSWR Return Loss, dB	1.4 15.6	1.4 15.6	1.4 15.6
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153
Input Power per Port, maximum, watts	350	350	350
Polarization	±45°	±45°	±45°
Impedance	50 ohm	50 ohm	50 ohm

General Specifications

Antenna Brand Andrew®
Antenna Type DualPol® single band, quad

Band Single band

Brand DualPol® | Teletilt® Operating Frequency Band 1710 – 2180 MHz

Number of Ports, all types

Mechanical Specifications

Color Light gray
Lightning Protection dc Ground

Radiator Material Low loss circuit board Radome Material PVC, UV resistant RF Connector Interface 7-16 DIN Female

Product Specifications

HBXX-6516DS-VTM

RF Connector Location

Bottom

RF Connector Quantity, total

4

Wind Loading, maximum

419.0 N @ 150 km/h 94.2 lbf @ 150 km/h

Wind Speed, maximum

241.0 km/h | 149.8 mph

Dimensions

 Depth
 166.0 mm
 | 6.5 in

 Length
 1294.0 mm
 | 50.9 in

 Width
 305.0 mm
 | 12.0 in

 Net Weight
 13.9 kg
 | 30.6 lb

Remote Electrical Tilt (RET) Information

Model with Factory Installed AISG 1.1 Actuator HBXX-6516DS-R2M Model with Factory Installed AISG 2.0 Actuator HBXX-6516DS-A2M RET System Teletilt®

Regulatory Compliance/Certifications

Agency

RoHS 2011/65/EU China RoHS SJ/T 11364-2006

ISO 9001:2008

Classification

Compliant by Exemption

Above Maximum Concentration Value (MCV)

Designed, manufactured and/or distributed under this quality management system

Included Products

600899A-2 — Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

ATTACHMENT 2

STAMFORD WEST, CT **Cumulative Power Density** Site Name:

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissable Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
VZW PCS	1970	15	334	5010	80	0.2815	1.0	28.15%
VZW Cellular	698	6	363	3267	80	0.1836	0.57933333	31.69%
VZW AWS	2145	_	1750	1750	80	0.0983	1.0	9.83%
VZW 700	869	-	721	721	80	0.0405	0.46533333	8.71%
Total Percentage	ntage of Ma	ximum P	of Maximum Permissible Exposure	e Expos	ure			78.38%

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used.

ATTACHMENT 3

Centered on Solutions

April 24, 2014

Mr. Tom Nolan Verizon Wireless 99 East River Drive East Hartford, CT 06108

Re: Structural Evaluation Letter ~ Antenna Upgrade Verizon Wireless Site Ref ~ Stamford West 370 West Main Street Stamford, CT 06902

Centek Project No. 14067.006 Rev 1

Dear Mr. Nolan,

Centek Engineering, Inc. has reviewed the proposed Verizon Wireless antenna upgrade at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing 40-ft +/- lattice tower and the 54-ft +/- tall host building, upon which it rests, to support the proposed modified antenna configuration. The existing antenna installation consists of three (3) antenna sectors with a total of fifteen (15) panel antennas, pipe mounted to existing Sector V-Frames attached to the lattice tower. The review considered the effects of wind load, dead load, ice load and seismic forces in accordance with the 2005 Connecticut State Building Code as amended by the 2009 Connecticut State Supplement.

The existing, proposed, and future Verizon Wireless loads considered in this analysis consist of the following:

Verizon (Existing to Remain):

Antennas: Six (6) Andrew DB844G65ZAXY panel antennas, three (3) Alcatel-Lucent RH_2X40-AWS Remote Radio Heads, three (3) Alcatel-Lucent RH_2x40-700 Remote Radio Heads, three (3) RFS DB-E1-3B-8AB-OZ sector distribution boxes, and one (1) RFS DB-T1-6Z-8AB-OZ main distribution box, pipe mounted to the existing Sector V-Frames with a RAD center elevation of 80-ft +/- AGL.

<u>Coax:</u> Eighteen (18) 1-5/8-in dia. coaxial cables routed within existing roof mounted cable tray. One (1) 1-5/8" dia. Hybriflex Fiber feeder cable routed from the existing Verizon Wireless equipment room to the main distribution box. Three (3) 1-1/4" dia. Hybriflex Fiber jumper cables routed from the main distribution box to the sector distribution box.

Verizon (Existing to Remove):

Antennas: Three (3) Antel BXA-171063-8BF panel antennas, three (3) Rymsa MG D3-800T0 panel antennas, and three (3) Antel BXA-70063-6CF panel antennas, pipe mounted to the existing Sector V-Frames with a RAD center elevation of 80-ft +/- AGL.

Verizon (Proposed):

<u>Antennas:</u> Three (3) Andrew LNX-6514DS-VTM panel antennas, and six (6) Andrew HBXX-6516DS-VTM panel antennas, pipe mounted to the existing Sector V-Frames with a RAD center elevation of 80-ft +/- AGL.

CENTEK engineering, INC. Structural Evaluation Letter Verizon Wireless ~ Stamford West 370 West Main Street Stamford, CT 06902

The proposed antenna installation meets the requirements of the 2005 Connecticut State Building Code considering the basic wind speed (3-second gust) of 105 mph as required in Appendix K of the Connecticut supplement per Table 1609.3.1 considering Exposure Category C. Our findings are based on the assumption that the hosting structure, all structural members and appurtenances were properly designed, detailed, fabricated, installed and have been properly maintained since erection.

In conclusion, the proposed Verizon antenna upgrade will not negatively impact the structural integrity of the existing antenna support structure or host building. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

Carlo F. Centore, PE

Principal ~ Structural Engineer