

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

January 5, 2024

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 366 Old Long Ridge Road, Stamford, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced address (the "Property"). Cellco's facility consists of antennas and remote radio heads attached to a tower. Equipment associated with the facility is located on the ground adjacent to the tower. The tower was approved by the City of Stamford ("City") in November of 1988. Cellco's shared use of the tower was approved by the Siting Council ("Council") in February of 2015 (TS-VER-135-150112). A copy of the City's tower approval and Council's TS-VER-135-150112 are included in Attachment 1.

Cellco's proposed modification involves the installation of four (4) interference mitigation filters ("Filters") on its existing antenna mounting assembly. The specification sheet for the new Filters is included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Stamford's Chief Elected Official and Land Use Officer.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The Filters will be installed on Cellco's existing antenna mounting assembly.

28589270-v1

Robinson+Cole

Melanie A. Bachman, Esq. January 5, 2024 Page 2

- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new Filters will not result in a change to radio frequency (RF) emissions from the facility. Therefore, no new RF emissions information is included in this filing.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, foundation and antenna mounting assembly can support Cellco's proposed modifications. A copy of the SA and MA are included in <u>Attachment 3</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 4</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 5</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Kunie gmu

Enclosures Copy to:

Caroline Simmons, Mayor Ralph Blessing, Land Use Bureau Chief Long Ridge Fire Company Inc., Property Owner Aleksey Tyurin, Verizon Wireless

ATTACHMENT 1

. 400

ZONING APPEALS BOARD CERTIFICATE

va 3356 23 1 20110

, LECKARD DIFRETA,

zoning enforcement officer for the City of Stanford,

in compliance with Special Act No. 379 of the 1951 General Assembly, hereby cartify that on

Movember 9; 1999 s hearing was held by the Zoning Appeals Soard on the spolication of:

LONG RIDGE FIRE CO., INC.

Appl, \$119-88

for a Special Exception as authorized by Section 19-3.2.a. for a replacement radio antenna tower, 150 feet in height, to be constructed on the Long Ridge Pire Company property located on the west side of Cld Long Ridge Road, in an PA-2 sone, and is known as 366 Old Long Ridge Road.

and that the land attented is owned by and located on the following streets:

MAME

LOCATION

Long Ridge Fire Co., Inc.

back, egits prod tic 380

and that the following is a statement of its findings and approval or rejection.

November 16, 1988

A LIBERT OF THE ANALYSIS AND AND THE ANALYSIS OF THE SECOND SECON

The Board approves this Special Exception as authorized by Section 19-3:2.2: for a replacement radio antenna tower, 150 feet in height, to be constructed on the Long Ridge Fire Company property, subject to the following restriction:

The applicant must adhere to the approved plan which has been signed by Raymond D. Sanborne, Chairman of the Zoning Board of Appeals, and Michael D. Macri, Deputy Zoning Enforcement Officer. Said plan is on file in the office of the Ioning Board of Appeals and is referred to as Proposed Replacement of Radio Antenna Towar, dated 9/12/88.

In rendering the above decision, the Board finds that the proposed use or structure or the proposed extension or alteration of an existing use or structure is in accord with the public convenience and welfare after taking into account, where appropriate:

va 3356 na

(1) the location and nature of the proposed site including its size and configuration, the proposed size, scale and arrangement of structures, drives and parking areas and the proximity of existing dwellings and other structures.

(2) the nature and intensity of the proposed use in relation to its site and the surrounding area. Operations in connection with special exception uses shall not be injurious to the neighborhood, shall be in harmony with the general purpose and intent of the Toning Regulations, and shall not be more objectionable to nearby properties by reason of noise, fumes, vibration, artificial lighting or other potential disturbances to the health, safety or peaceful enjoyment of property than the public necessity demands.

(3) the resulting traffic patterns, the adequacy of existing streets to accommodate the traffic associated with the proposed use, the adequacy of proposed off-street parking and loading, and

use, the adequacy of proposed off-street parking and loading, and the extent to which proposed driveways may cause a safety hazard or traffic nuisance.

(4) the nature of the surrounding area and the oxtent to which the proposed use or feature might impair its present and future development.

(5) the Master Plan of the City of Stanford and all statements of the purpose and intent of these regulations.

The applicant(s) is/are allowed one year from the effective date of this decision in which to obtain a building permit.

Cared at Stamford, Connectatet, thus late day of December, 1988.

Raymond 5.

nairman; Zoning Board of Appeals

京の子を発をいるからた

- Danne B. R. Bet Leonard Diffeta

Zoning Entorsing Officer of the City of Stamford

400

THE LUNG AFFECTED HEREBY LIES IN BLOCK OF THE STAMFORD BLOCK MAN. ACCEIVED HOW HE TOPO ATTEST: LOIS POTITERIANT, TOWN AND GITT CLEAR

The fand hereby affected line in block

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting council@ct.gov
www.ct.gov/csc

February 20, 2015

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: TS-VER-135-150112 - Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 366 Old Long Ridge Road, Stamford, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on February 19, 2015, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures with the following conditions:

- The tower shall be reinforced per the URS Corporation report dated June 13, 2013, and Nextel's
 equipment at 118-foot level of the tower shall be removed as referenced in the structural analysis
 report prepared by URS Corporation dated October 31, 2014 and stamped by Richard Sambor, prior
 to the installation of Cellco's equipment;
- Within 45 days following completion of the equipment installation, Cellco shall provide documentation certified by a professional engineer that its installation complied with the recommendations included in the Structural Analysis Report prepared by URS Corp. dated October 31, 2014 and stamped by Richard Sambor;
- Any deviation from the proposed installation as specified in the original tower share request and supporting materials with the Council shall render this decision invalid;
- Any material changes to the proposed installation as specified in the original tower share request and supporting materials filed with the Council shall require an explicit request for modification to the Council pursuant to Connecticut General Statutes § 16-50aa, including all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65;
- Not less than 45 days after completion of the proposed installation, the Council shall be notified in writing that the installation has been completed;
- Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and
 operated by Cellco shall be removed within 60 days of the date the antenna ceased to function;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council ot less than 60 days prior to the expiration.

CONNECTICUT SITING COUNCIL.
Affirmative Action / Equal Opportunity Employer

This decision is under the exclusive jurisdiction of the Council and applies only to this request for tower sharing dated January 12, 2015. This facility has been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower. Any deviation from the approved tower sharing request is enforceable under the provisions of Connecticut General Statutes § 16-50u.

The proposed shared use is to be implemented as specified in your letter dated January 12, 2015, including the placement of all necessary equipment and shelters within the tower compound.

Please be advised that the validity of this action shall expire one year from the date of this letter.

Thank you for your attention and cooperation.

Very truly yours

Robert Stein Chairman

RS/MP/lm

c: The Honorable David Martin, Mayor, City of Stamford Norman Cole, AICP, Land Use Bureau Chief, City of Stamford Stuart Teitelbaum, Chief, Long Ridge Fire Company

ATTACHMENT 2

KA=6030

TWIN BANDSTOP 900MHZ INTERFERENCE MITIGATION FILTER

The KA-6030 is ideal for co-located 700, 850 and 900 networks. Utilising a 2.6MHz guardband the KA-6030 provides rejection of the 900 UL band while passing 700/850 UL and DL bands. Capable of being used in an outdoor environment the KA-6030 contains two identical bandstop filters, suitable for 2x2 MIMO configuration, offering excellent insertion loss, group delay and rejection.

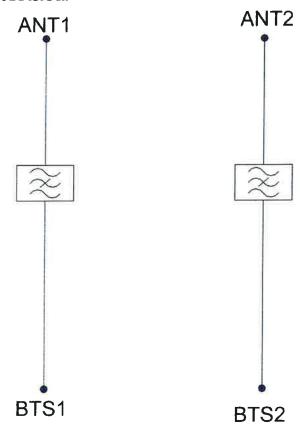
FEATURES

- Passes full 700 and 850 bands
- · Low insertion loss
- Rejection of 900MHz uplink
- DC/AISG pass
- Twin unit
- · Dual twin mounting available

TECHNICAL SPECIFICATIONS

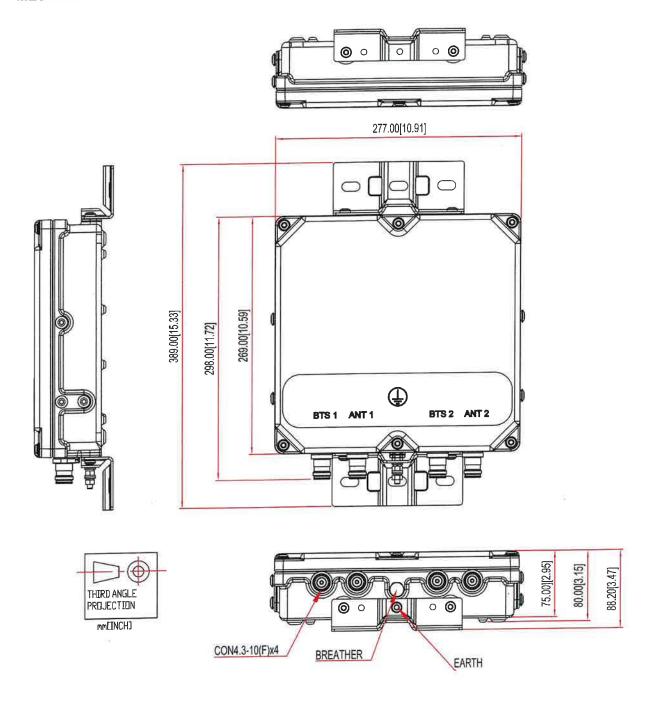
BAND NAME	700 PATH / 850 UPLINK PATH	850 DOWNLINK PATH			
Passband	698 - 849MHz	869 - 891,5MHz			
Insertion loss	0.1dB typical / 0.3dB maximum	0.5dB typical, 1.45dB maximum			
Return loss	24dB typical, 1	8dB minimum			
Maximum input power (Per Port)	100W average	200W average and 66W per 5MHz			
Rejection	53dB minimum @ 8	94.1 - 896.5MHz			
ELECTRICAL					
Impedance	50Oh	ms			
Intermodulation products	-160dBc maximum in UL Band (assuming : -153dBc maximum				
DC / AISG					
Passband	0 - 13î	MHz			
insertion loss	0,3dB ma	ximum			
Return loss	15dB minimum				
Input voltage range	± 33V				
DC current rating	2A continuous, 4A peak				
Compliance	3GPP TS 25.461				
ENVIRONMENTAL					
or further details of environmental cor	npliance, please contact Kaelus.				
Temperature range	-20°C to +60°C	4°F lo +140°F			
Ingress protection	IP67	7			
Altitude	2600m 8				
Lightning protection	RF port: ±5kA maximum (8/20us), IEC 61000-4-5 – Un cîrcuil				
MTBF	>1,000,000	0 hours			
Compliance	ETSI EN 300 019 class 4.1H, R	RoHS, NEBS GR-487-CORE			

Rev 2 Jul 05 2023 KA-6030


MECHANICAL	Maria and Maria and American
Dimensions H x D x W	269 x 277 x 80mm 10,60 x 10,90 x 3,15in (Excluding brackets and connectors)
Weight	8,0 kg 17.8 lbs (no bracket)
Finish	Powder coated, light grey (RAL7035)
Connectors	RF: 4,3-10 (F) x 4
Mounting	Optional pole/wall bracket supplied with two metal clamps 45-178mm diameter poles or custom bracket. See ordering information.

ORDERING INFORMATION

Old Eland III.			
PART NUMBER	CONFIGURATION	OPTIONAL FEATURES	CONNECTORS
KA-6030-2032	TWIN, 2 in / 2 out	DC/AISG PASS	4,3-10 (F)
KA-0030-2032			



ELECTRICAL BLOCK DIAGRAM

MECHANICAL BLOCK DIAGRAM

ATTACHMENT 3

Structural Analysis Report

Location Code: 468119
Site Name: Stamford NW CT
FUZE Project ID: 17123711
Project Name: RF Filter Add

Address: 366 Old Long Ridge Road Stamford, CT 06903

Client:

20 ALEXANDER DRIVE WALLINGFORD, CT 06492

Date: 09/21/2023

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 781-713-4725

Scope of Work:

Centerline Communications was authorized by Verizon Wireless to perform an analysis of the existing 152 ft. self support tower to determine its capacity to support the existing and proposed equipment listed in this report.

Existing & Proposed Equipment:

Carrier	Mounting Level (ft)	Center Line Elevation (ft)	Number of Appurtenances	Antenna Manufacturer	Appurtenance Model	Feed Lines (in)
		162.0	1	Antennae	20' 4-Bay Dipole	
		152.0	1	. .	TMA	1 (4) 7 (2
•	152.0	152.0	1	=	6'x4'' Sch 40 Pipe Mount	(1) 7/8 (1)
		152.0	1	2	4' HP MW	EW180
		152.0	1		4' x 4.5" Pipe Mount	1
	150.0	156.7	1	Decibel	DB563K	(4) 4 (2)
	0.001	150.0	1	-	2' x 3' Side Arm	(1) 1/2
	145.0	145.0	3	Quintel	Q\$66512-2	
		145.0	6	Kaelus	TMA2117F00V1-1	(12)
		145.0	3	-	Side Arm Mount	1-5/8
:=0	140.0	140.0	1	-	4' HP MW	(1)
	140.0	140.0	1	¥	4' x 4.5" Pipe Mount	EW180
		138.0	1	*	6' x 3" Omni	
(2 0)	135.0	135.0	1	Decibel	DB254	(2) 1-5/8
		135.0	2		2' x 3' Side Arm	
		131.0	3	RFS Celwave	APXVSPP18-C-A20	
		131.0	3	Alcatel Lucent	RRH2x50	
-	131.0	131.0	3	Alcatel Lucent	RRH4X45	(3) 1-1/4
-	131.0	131.0	3	RFS Celwave	APXVTM14-ALU-I20	(1) 7/8
		131.0	3	Alcatel Lucent	TD-RRH8x20	
		131.0	3	-	Sector Mount	

		118.0	3	Ericsson	AIR32 KRD901146- 1_B66_B2A				
		118.0	3	Ericsson	AIR6449 B41				
		118.0	3	Ericsson	RADIO 4415 B25				
		118.0	3	Ericsson	RRUS 11 B4				
	115.0	118.0	3	Ericsson	RADIO 4449 B71+B85	(4) 6x12			
-5	115.0	118.0	3	RFS Celwave	APXVAALL24_43- UNA20	Hybrid			
		115.0	3	-	Sector Frames				
		115.0	3	Site Pro 1	SFR-K Kit				
		115.0	3	(#)	Horizontal 10.5'x2.5' std				
		98.0	3	Samsung	MT6407-77A				
		98.0	6	Commscope	JAHH-65B-R3B				
					98.0	3	Samsung	XXDWMM-12.5-65-8T- CBRS	
					98.0	3	Samsung	B2/B66A RRH-BR049 (RFV01UD1A)	2
Verizon Wireless	96.75	98.0	3	Samsung	B5/B13 RRH-BR04C (RFV01UD2A)	(3) 1-5/8 Hybrid			
		98.0	3	Commscope	CBC78T-DS-43-2X				
		98.0	3	RFS Celwave	DB-T1-6Z-8AB-0Z				
		98.0	4	Kaelus	KA-6030				
		98.0	2	Site Pro 1	RRUDSM				
		98.0	3	Site Pro 1	VFA12-HD				
		78.0	1	Antennae	8' 4-Bay Dipole	(1) 7/8			
3 = 0	74.0	74.0	1	3#1	2' x 3' sidearm	(1) //8			
			1	-	GPS	(1) 1/2			
-	58.0	58.0	1	-	2' x 3' sidearm	(1) 1/2			

Note: Proposed equipment shown in bold.

Design Criteria:

Design Codes:

2022 Connecticut State Building Code 2021 International Building Code ASCE 7-16 TIA-222-H Standards

Basic Design Wind Speed (V)	116 mph
Wind Speed with Ice	50 mph
Ice Thickness	1.00 in.
Exposure Category	В
Topographic Category	1
Risk Category	li
Site Soil Class (Assumed)	D – Stiff Soil
Seismic Design Category	В
Spectral Response Acceleration Parameter at a Short Periods, S ₅	0.267 g
Spectral Response Acceleration Parameter at a Period of 1 Second, S1	0.059 g
Short Period Site Coefficient, Fa	1.586
Long Period Site Coefficient, F _v	2.40

^{*}Refer to calculations for additional design criteria.

Conclusion:

Tower Section Capacity (Summary)

Section No.	Elevation ft	Component Type	Size	Critical Element	P Ib	ØP _{allow}	% Capacity	Pass Fall
T1	152 - 140	Leg	P2.375X0.154 (2" STD)	3	-4.58	36.84	12.4	Pass
T2	140 - 135	Leg	P2.875"x0.203" (2.5 STD)	27	-6.87	57.13	12.0	Pass
T3	135 - 130	Leg	P2.875"x0.203" (2.5 STD)	39	-10.73	57.13	18.8	Pass
T4	130 - 125	Leg	P2.875"x0.203" (2.5 STD)	48	-14.44	57.13	25.3	Pass
T 5	125 - 120	Leg	P2.875"x0.203" (2.5 STD)	57	-19.29	57.14	33.8	Pass
T6	120 - 100	Leg	Pipe 2.5 XStr (2.875"ODx0.276")	64	-42.69	58.51	73.0	Pass
T7	100 - 80	Leg	2.875"x0.276" w/ 3.5"x.3" Sleeve (STAMFORD NW CT)	85	-70.80	126.18	56.1	Pass
T8	80 - 73.3333	Leg	3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW CT)	115	-80.30	162.69	49.4	Pass

Т9	73.3333 - 66.6667	Leg	3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW	127	-88.95	162.72	54.7	Pass
T10	66.6667 - 60	Leg	3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW CT)	139	-97.87	162.76	60.1	Pass
T11	60 - 50	Leg	Pipe 4 XStr (4.5"ODx0.337")	151	-108.55	174.28	62.3	Pass
T12	50 - 40	Leg	Pipe 4 XStr (4.5"ODx0.337")	163	-121.11	174.35	69.5	Pas
T13	40 - 30	Leg	4.5"x0.337" w/ 5"x.25" Sleeve (STAMFORD NW CT 30'-40')	175	-133.70	216.57	61.7	Pas
T14	30 - 20	Leg	4.5"x0.337" w/ 5"x.25" Sleeve (STAMFORD NW CT 20'-30')	187	-145.45	245.84	59.2	Pas
T15	20 - 15	Leg	5.5"x0.259" w/ 6"x.25" Sieeve (STAMFORD NW CT 15'-20')	229	-157.37	186.20	84.5	Pas
T16	15 - 9.99999	Leg	5.5"x0.259" w/ (3) 1.5"x.5" Bars (STAMFORD NW CT 0'- 15')	253	-158.54	232.29	68.3	Pas
T17	9.99999 - 0	Leg	5.5"x0.259" w/ (3) 1.5"x.5" Bars (STAMFORD NW CT 0'- 15')	262	-170.03	232.30	73.2	Pas
T1	152 - 140	Diagonal	L1 1/2x1 1/2x1/8	11	-1.15	4.77	24.1 36.2 (b)	Pa
T2	140 - 135	Diagonal	L1 1/2x1 1/2x3/16	31	-1.11	5.28	21.0 22.8 (b)	Pas
T3	135 - 130	Diagonal	L1 1/2x1 1/2x3/16	40	-1.56	4.79	32.6	Pas
T4	130 - 125	Diagonal	L1 1/2x1 1/2x1/4	49	-2.45	5.62	43.6	Pa
T5	125 - 120	Diagonal	L1 1/2x1 1/2x1/4	59	-2.20	5.13	42.8	Pa
	120 - 100	Diagonal	L2x2x1/4	68	-3.90	7.69	50.7	Pa
T6 T7	100 - 80	Diagonal	L2 1/2x2 1/2x1/4	88	-5.07	11.46	44.3 58.4 (b)	Pa
T8	80 - 73.3333	Diagonal	L2 1/2x2 1/2x1/4	119	-5.09	10.61	48.0 60.0 (b)	Pa
T9	73.3333 - 66.6667	Diagonal	L2 1/2x2 1/2x5/16	130	-5.41	11.91	45.5 60.7 (b)	Pa
T10	66.6667 - 60	Diagonal	L2 1/2x2 1/2x5/16	142	-5.33	11.01	48.4 62.6 (b)	Ра
T11	60 - 50	Diagonal	L3x3x1/4	154	-6.21	11.92	52.1 55.5 (b)	Pa
T12	50 - 40	Diagonal	L3x3x5/16	166	-6.42	13.31	48.3 55.9 (b)	Pa
T13	40 - 30	Diagonal	L3x3x3/8	178	-6.49	14.34	45.2 57.9 (b)	Pa
T14	30 - 20	Diagonal	L3x3x5/16	191	-7.51	27.69	27.1 63.6 (b)	Pa
T15	20 - 15	Diagonal	L3 1/2x3 1/2x1/4	236	-6.15	35.18	17.5 58.6 (b)	Pa
T16	15 - 9.99999	Diagonal	L3 1/2x3 1/2x1/4	256	-6.34	14.46	43.9 57.1 (b)	Pa
T17	9.99999 - 0	Diagonal	L3 1/2x3 1/2x5/16	265	-7.23	15.74	45.9	Pas

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 781-713-4725

							63.7 (b)	
T14	30 - 20	Horizontal	L3x3x1/4	204	-2.52	12.55	20.1	Pas
T16	15 - 9.99999	Horizontal	L3x3x1/4	246	-2.75	7.19	38.2	Pa
T7	100 - 80	Secondary Horizontal	L2 1/2x2 1/2x1/4	96	-1.23	15.68	7.8	Pa
T8	80 - 73.3333	Secondary Horizontal	L2 1/2x2 1/2x1/4	126	-1.39	14.15	9.8	Pa
Т9	73.3333 - 66.6667	Secondary Horizontal	L2 1/2x2 1/2x1/4	138	-1.54	12.75	12.1	Pa
T10	66.6667 - 60	Secondary Horizontal	L2 1/2x2 1/2x1/4	150	-1.70	11.55	14.7	Pa
T11	60 - 50	Secondary Horizontal	L2 1/2x2 1/2x1/4	162	-1.88	10.41	18.1	Pa
T12	50 - 40	Secondary Horizontal	L3x3x1/4	174	-2.10	16.03	13.1	Pa
T13	40 - 30	Secondary Horizontal	L3x3x1/4	186	-2.32	14.14	16.4	Pa
T1	152 - 140	Top Girt	L2x2x1/8	5	-0.10	4.07	2.5	Pa
T2	140 - 135	Top Girt	L2x2x1/8	29	-0.12	4.07	2.9	Pa
T14	30 - 20	Redund Horz 1 Bracing	L2x2x1/4	209	-2.52	14.85	17.0	Pa
T15	20 - 15	Redund Horz 1 Bracing	L2x2x1/4	251	-2.95	13.48	21.9	Pa
T14	30 - 20	Redund Diag 1 Bracing	L2x2x1/4	228	-1.47	10.93	13.4	Pa
T15	20 - 15	Redund Diag 1 Bracing	L2x2x1/4	235	-1.58	10.16	15.6	Pa
							Summary	-
						Leg (T15)	84.5	Pas
						Diagonal (T17)	63.7	Pa:
						Horizontal (T16)	38.2	Pa
						Secondary Horizontal (T11)	18.1	Pas
						Top Girt (T2)	2.9	Pas
						Redund Horz 1 Bracing (T15)	21.9	Pas
						Redund Diag 1 Bracing (T15)	15.6	Pas
						Bolt Checks	63.7	Pas
						RATING =	84.5	Pas

Structure Dating (May From All Company)	04.50/
Structure Rating (Max From All Components) =	84.5%

Foundation Capacity (Summary)

TV.	Juliuation Capacity (Juliumaty)	
Component	% Capacity	Pass Fali
Anchor Rods	76.7	Pass
Foundation – Soil Rating	81.8	Pass
	62.2	Pass
Foundation - Structural Rating	62.2	

Foundation Rating (Max From Ail Components) =	81.8%
---	-------

Recommendations:

The existing tower and its foundation <u>have sufficient</u> capacity to support the existing and proposed loading for the final loading configuration.

Reference Documents:

- Structural Analysis Report by Paul J. Ford & Company, dated June 8, 2021
- Lease Exhibit by Centerline Engineering Services, PA, dated August 18, 2023
- Mount Analysis Report by Colliers Engineering and Design, dated 8/1/2023

Assumptions and Limitations:

- The tower and structures were built and maintained with the manufacturer's specifications.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in this report and the referenced drawings.
- Existing appurtenance information obtained from the Structural Analysis Report by Paul J. Ford & Company, dated June 8, 2021 and the Lease Exhibit by Centerline Engineering Services, PA, dated August 18, 2023.

Design Calculations

	TYPE	ELEVATION		TYPE	ELEVATION
20' 4-Bay Di		152	RRUS 4415	B25	115
TMA		152	RRUS 4415	B25	115
6'x4" Sch 40	Pipe	152	Sector Fran	ne Mount	115
4' x 4.5" Plpe		152	Sector Fran	ne Mount	115
4' HP MW	, mann	152	Sector Fram	ne Mount	115
	w/Mount Pipe	150	(3) Site Pro	1 SFR-K	115
2' x 3' sidear		150	10' x 2-1/4"		115
	v/ Mount Pipe	145	10" x 2-1/4"	Pipe Mount	115
	v/ Mount Pipe	145	10" x 2-1/4"		115
(2) TMA2117		145	RADIO 444	THE RESERVE OF THE PARTY OF THE	115
(2) TMA2117		145	RADIO 444		115
(2) TMA2117		145	RADIO 444		115
2' x 3' Side A		145		901146- 1_B66_B2A W/	115
		145	Mount Pipe	WAYNESS FRANCES	
2' x 3' Side A		145	AIR32 KRD	901146- 1_B66_B2A w/	115
2' x 3' Side A		The latest terminal and the la	Mount Pipe		
	v/ Mount Pipe	145	DB-T1-6Z-8	AB-0Z (OVP)	98
4' x 4.5" Plpe	Mount	140		AB-0Z (OVP)	98
4' HP MW		140		AB-0Z (OVP)	98
DB254-A		135		RH-BR049 (RFV01U-D1A)	98
2' x 3' Side A	rm Mount	135		RH-BR049 (RFV01U-D1A)	98
6' x 3" Omn!		135		RH-BR049 (RFV01U-D1A)	98
2' x 3' Side A		135	86/813 RRI	H-BR04C (RFV01U-D2A)	98
APXVSPP18	I-C-A20 w/ Mount Pipe	131		H-BRO4C (RFV01U-D2A)	98
RRH2x50-W	cs	131		H-BR04C (RFV01U-D2A)	98
RRH2x50-W	CS	131	CBC78T-DS		98
RRH2x50-W	CS	131	CBC78T-DS		98
RRH4X45-1	9	131	CBC78T-DS		98
RRH4X45-1		131	Site Pro 1 V		98
RRH4X45-1	,	131	Site Pro 1 V	desirated the control of the control	98
APXVTM14-	ALU-120 w/ Mount Pipe	131	-	ALEXANDER STATE OF THE STATE OF	98
	ALU-I20 w/ Mount Pipe	131	Site Pro 1 V		98
	ALU-I20 w/ Mount Pipe	131		A w/ Pipe Mount	98
TD-RRH8x2		131		A w/ Pipe Mount	98
TD-RRH8x2		131		A w/ Pipe Mount	98
TD-RRH8x2		131	(2) KA-8030		4.000
Sector Fram		131	(2) KA-6030		98
Sector Fram		131	Site Pro 1 F		98
Sector Fram		131	Site Pro 1 F		98
	-C-A20 w/ Mount Pipe	131		12.5-65-8T-CBRS w/	98
	-C-A20 w/ Mount Pipe	131	Mount Pipe		00
		115	Mount Pige	12.5-65-8T-CBRS w/	98
AIR32 KRDS Mount Pipe	01146- 1_866_82A w/	113	- ipopen paper anno y person		98
	1 w/ Mount Pipe	115	Mount Pipe	12.5-65-8T-CBRS w/	80
	w/ Mount Pipe	115	County and on the Substitution of	5B-R38 w/ Mount Pipe	98
	w/ Mount Pipe	115		5B-R35 w/ Mount Pipe	98
		115		5B-R3B w/ Mount Pipe	98
MEAVAANKI Ploe	24_43-U-NA20 w/ Mount	1,0	ACTION OF THE PARTY OF	Service a sharpest representative contractive contract	98
	24_43-U-NA20 w/ Mount	115	BSAMNT-S	The state of the s	98
Pipe			BSAMNT-S		98
	24_43-U-NA20 w/ Mount	115	BSAMNT-SBS-2-2		74
Pipe			2' x 3' sides		74
RRUS 11 B4		115	8' 4-Bay Dig		
RRUS 11 84		115	2' x 3' sidea	rm	58
RRUS 11 84		115	GP8		58
RRUS 4415		115			
	men.	Lines)	-1		
		CVIAD	OL LIST	- N	
				Siz	75
MARK	SI	45	MARK	5.5"x0.259" w/ (3) 1.5"x.5	
1917 01 11 1	P2:375X0:154 (2" STD)		н		

Α		SYMBO	DL LIST	
4	MARK	SIZE	MARK	SIZE
	A	P2.375X0.154 (2" STD)	н	5.5"x0.259" w/ (3) 1.5"x.5" Bars (STAMFORD NW
SHEAR	В	Pipe 2.5 XStr (2.875"ODx0.276")		CT 0'-15')
10 K	C	2.875"x0.276" w/ 3.5"x.3" Sleeve (STAMFORD	1-	L1 1/2x1 1/2x3/16
1011	S.	NW CT)	J	L1 1/2x1 1/2x1/4
TORQ	D	3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW CT)	К	L3 1/2x3 1/2x1/4
50 mph WINE	E	4.5'x0.337" w/ 5"x 25" Sleeve (STAMFORD NW	L	L3 1/2x3 1/2x5/16
50 mpn wine	-	CT 30'-40')	M	L3x3x1/4
A	XIAL	4.5"x0.337" w/ 5"x.25" Sleeve (STAMFORD NW	eTDE!	ICTU

	MATERIAL STRENGTH						
	GRADE	Fv	Fu	GRADE	Fy	Fu	
HEAR	A500-50	50 ksi	62 ksi	A36	38 ksl	58 ksi	

TOWER DESIGN NOTES

- TORQUE 18 klp-ft

 REACTIONS 1. Tower designed for Exposure B to the TIA-222-H Standard.

 2. Tower designed for a 116 mph basic wind in accordance with the TIA-222-H Standard.

 3. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
 - 4. Deflections are based upon a 60 mph wind.
 - 5. Tower Risk Category II.
 - 6. Topographic Category 1 with Crest Height of 0.00 ft

152.0 ft

140.0 ft

135.0 ft

130.0 ft

125.0 ft

120.0 ft

100.0 ft

80.0 ft

73.3 ft

68.7 ft

60.0 ft

50,0_ft

40,0 ft

30.0 ft

20,0 ft

15.0 ft

10.0 ft

0.0 ft

 \triangle

3@4 2

7.07 03

7.58 2

8.09 2

8.59

10.63

13.33

14.01 1.0

14.69

15.7

17.73

18.75

19.26 -

19.77 1 @ 9.99999 N.A NA

20.78

L2x2x1/4

3@10 2

9 @ 6.66667 ×

33

0.0

67

2

5

60

0

Panels @ (ft) Weight (K)

A.N

A N Z

L2 1/2x2 1/2x1/4

12 12X2 172X1H

L2 1/2/2 1/2×5/16

L3x3x1/4

L3x3x5/16

L3x3x3/8

L3x3x5/16

L3x3x1/4 L2x2x1M

N.A.

2

Y.

Horizonlais Sec. Horizonlais

Red. Horizontals Red. Diagonals Face Width (ft)

Diagonals Diagonal Grade

Top Girts

Leg Grade

A36

A500-50

07

ü

L1 1/2x1 1/2x1/8

L2x2x1/8

4

15 14 13 12 P2.875'x0.203" (2.5 STD)

e 0

0 4

2

2 0

2

1.13

112

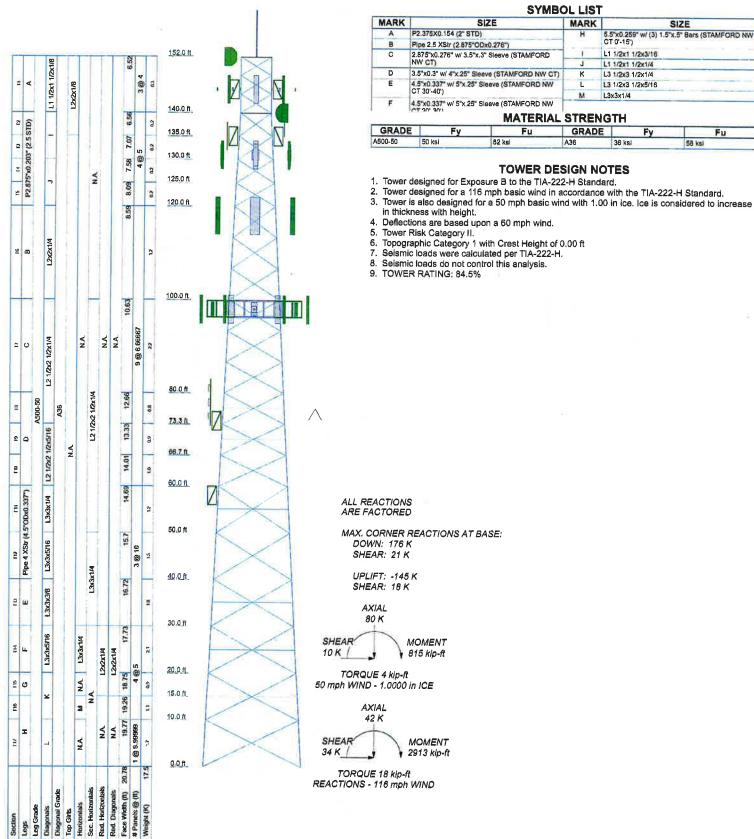
5 ш

ጀ

5 0

I

911


Ξ

Pipe 4 XStr (4.5'ODx0.337')

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379

Phone: (781) 713-4725 FAX:

Stamford NW C7		
Project: 23CLVZ-0009		
Client: Verizon Wireless	Drawn by: jboegel	App'd:
Code: TIA-222-H	Date: 09/21/23	Scale: NTS
Path:		Dwg No. E-1

Centerline Engineering Services, PA Stamford NW CT rojact: 23CLVZ-0009 750 W Center St, Suite 301 Drawn by: jboegel West Bridgewater, MA 02379 Client: Verizon Wireless App'd: Code: TIA-222-H Date: 09/21/23 Scale: NTS Phone: (781) 713-4725 Dwg No. E-1

SYMBOL LIST

MARK

L1 1/2x1 1/2x3/16

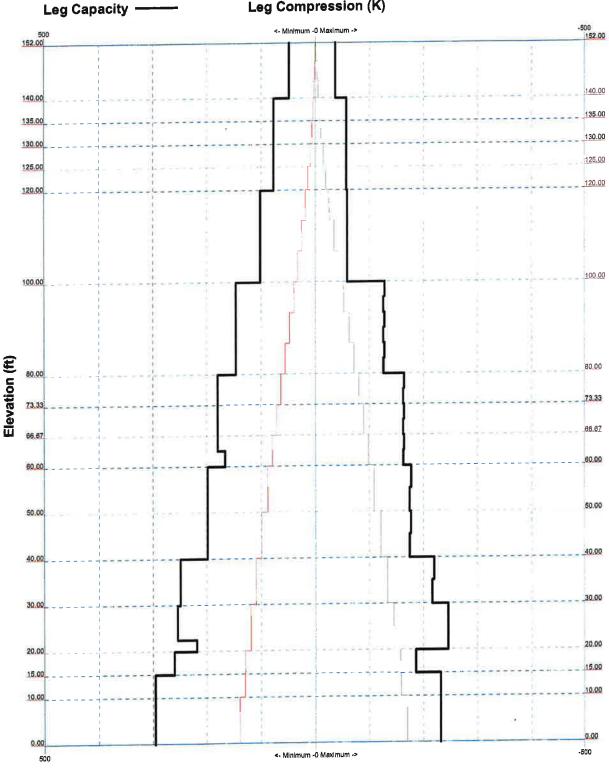
L1 1/2x1 1/2x1/4

L3 1/2x3 1/2x1/4

L3 1/2x3 1/2x5/16

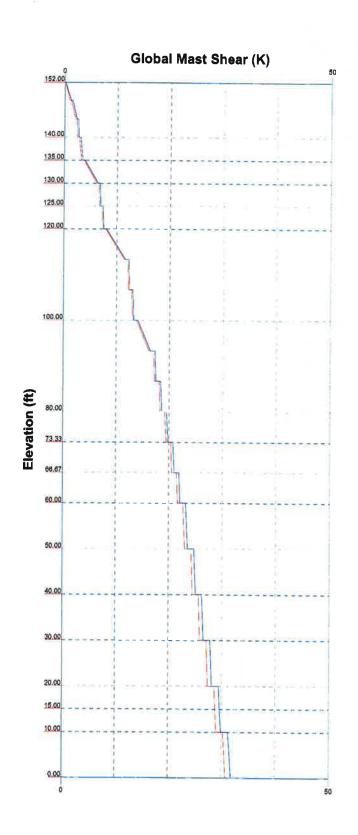
L3x3x1/4

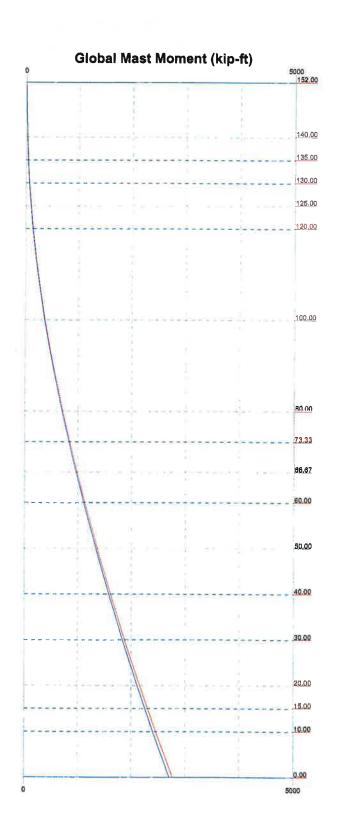
STRENGTH

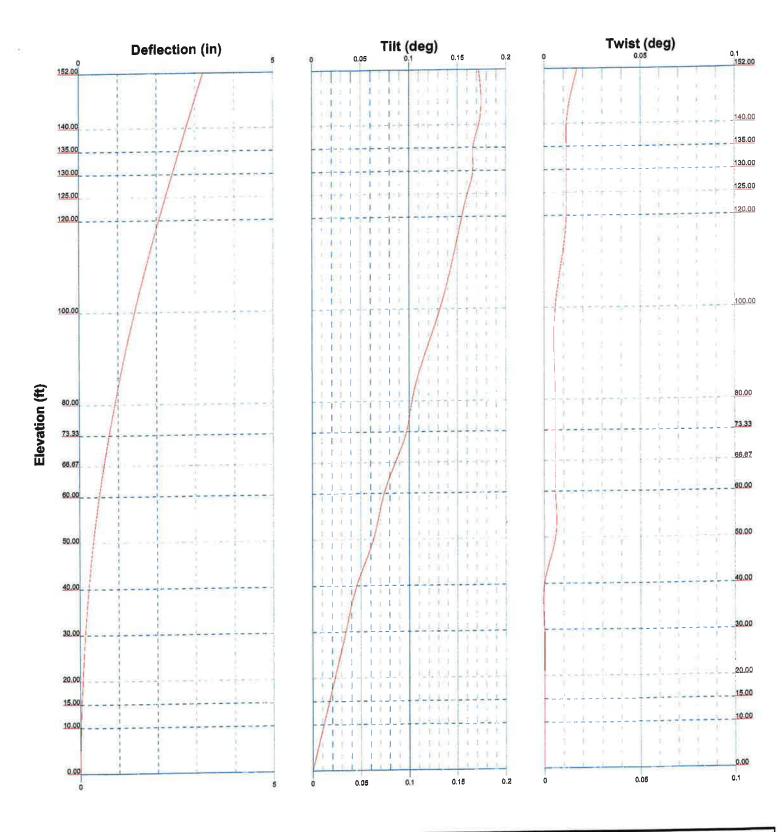

GRADE

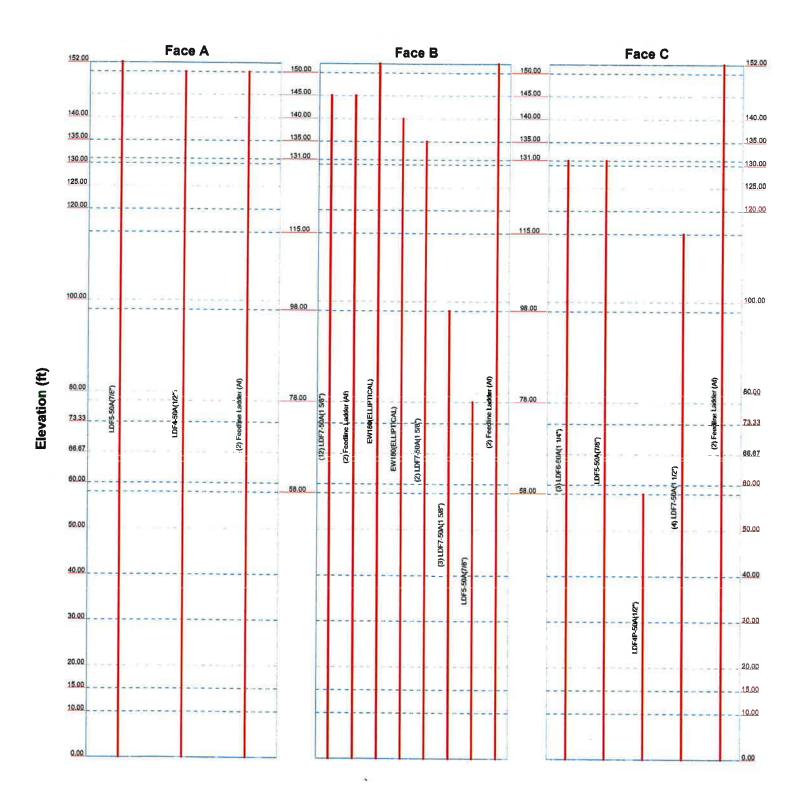
A36

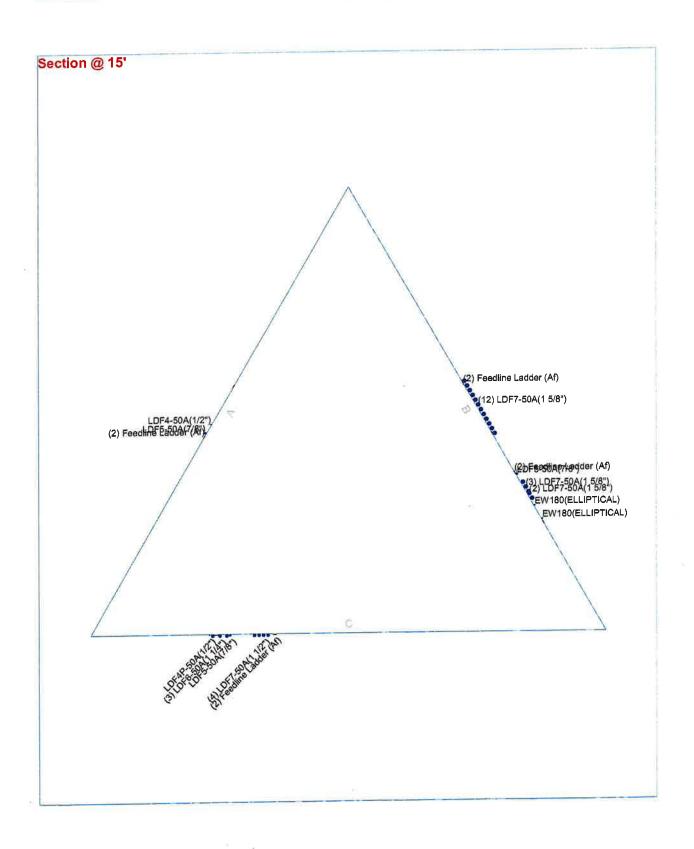
SIZE 5.5"x0.259" w/ (3) 1.5"x.5" Bars (STAMFORD NW CT 0'-15')


58 ksi

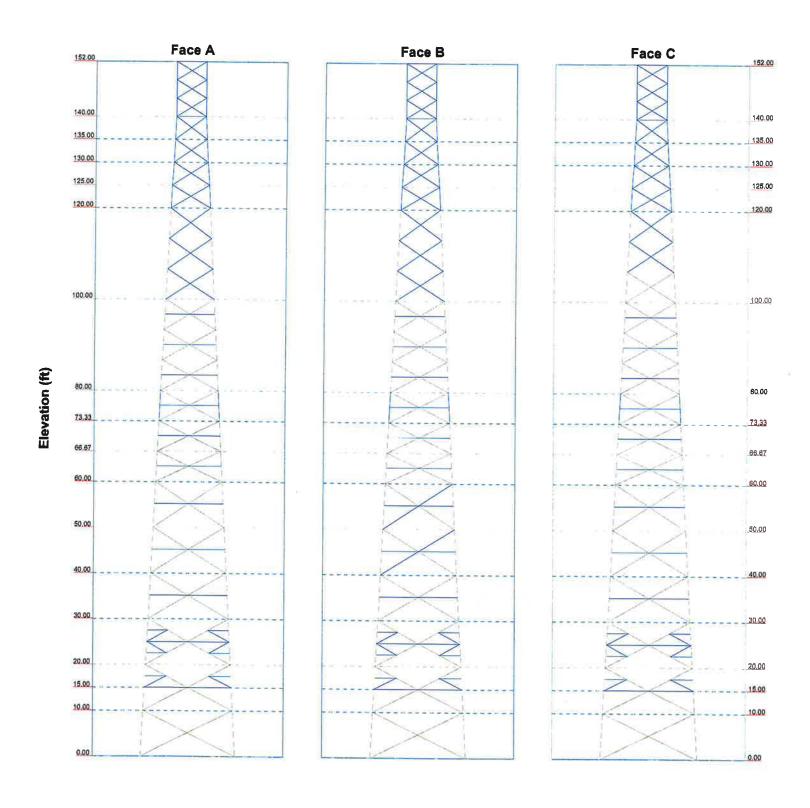

TIA-222-H - 116 mph/50 mph 1.0000 in Ice Exposure B
Leg Compression (K)



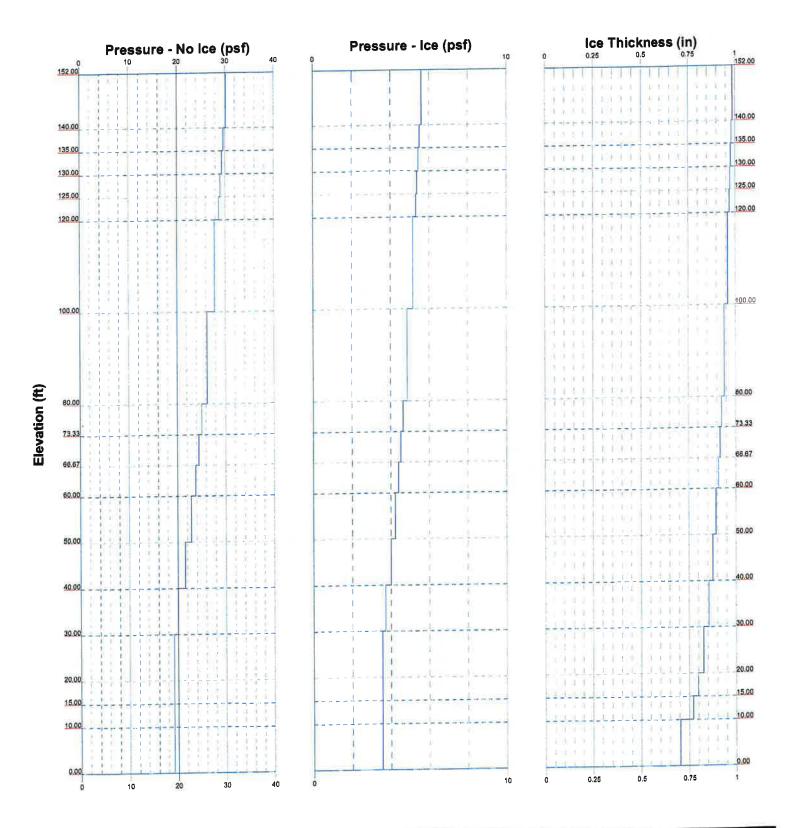



Feed Line Distribution Chart 0' - 152'

Round ______ Flat _____ App in Face _____ App Out Face _____ Truss Leg



Round Flet App In Face App Out Face



	Centerline Engineering Services, I	PA Stamford NW C1	2 1	
	750 W Center St. Suite 301	Project: 23CLVZ-0009		
	West Bridgewater, MA 02379	Client: Verizon Wireless	Drawn by: jboegel	App'd:
. (Phone: (781) 713-4725	Code: TIA-222-H	Date: 09/21/23	Scale: NTS
	FAX:	Path:	and the state of t	Dwg No. E-8

Wind Pressures and Ice Thickness TIA-222-H - 116 mph/50 mph 1.0000 in Ice Exposure B

Centerline Engineering Services, PA 750 W Center St. Suite 201

750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	1 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 152.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 6.52 ft at the top and 20.78 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 438.20 ft.

Basic wind speed of 116 mph.

Risk Category II.

Exposure Category B.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.

Maximum demand-capacity ratio is: 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

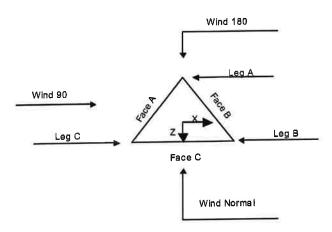
Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- ✓ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt, Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption


Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Centerline Engineering Services, PA 750 W Center St, Suite 301

750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	2 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Triangular Tower

Tower	Section	Geometry
-------	---------	----------

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
				A		ft
75.4	152.00-140.00			6,52	1	12.00
T1	140.00-135.00			6.56	1	5.00
T2	135.00-130.00			7.07	1	5.00
T3	100.00			7.58	1	5.00
T4	130.00-125.00			8.09	1	5.00
T5	125.00-120.00			8.59	1	20.00
T6	120.00-100.00			10.63	i	20.00
T 7	100.00-80.00			12.66	1	6.67
T8	80.00-73.33			13.33	ĩ	6.67
T9	73.33-66.67			14.01	î	6.67
T10	66.67-60.00			14.69	1	10.00
T11	60.00-50.00			15.70	î	10.00
T12	50.00-40.00			16.72	1	10.00
T13	40.00-30.00				1	10.00
T14	30.00-20.00			17.73	1	5.00
T15	20.00-15.00			18.75	1	5.00
T16	15.00-10.00			19.26	1	10.00
T17	10.00-0.00			19.77		10.00

Tower Section Geometry (cont'd)

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	3 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by iboacel

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Giri
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End		J.,	-33
	fì	ft		Panels		in	in
T1	152.00-140.00	4.00	X Brace	No	No	0.0000	0.0000
T2	140.00-135.00	5.00	X Brace	No	No	0.0000	0.0000
T3	135.00-130.00	5.00	X Brace	No	No	0.0000	0.0000
T4	130.00-125.00	5.00	X Brace	No	No	0.0000	0.0000
T5	125.00-120.00	5.00	X Brace	No	No	0.0000	0.0000
T6	120.00-100.00	6.67	X Brace	No	No	0.0000	0.0000
T7	100.00-80.00	6.67	X Brace	No	Yes	0.0000	0.0000
T8	80.00-73.33	6.67	X Brace	No	Yes	0.0000	0.0000
T9	73.33-66.67	6.67	X Brace	No	Yes	0.0000	0.0000
T10	66.67-60.00	6.67	X Brace	No	Yes	0.0000	0.0000
T11	60.00-50.00	10.00	X Brace	No	Yes	0.0000	0.0000
T12	50.00-40.00	10.00	X Brace	No	Yes	0.0000	0.0000
T13	40.00-30.00	10.00	X Brace	No	Yes	0.0000	0.0000
T14	30.00-20.00	5.00	Double K1	No	Yes	0.0000	0.0000
T15	20.00-15.00	5.00	K1 Up	No	Yes	0.0000	0.0000
T16	15.00-10.00	5.00	K Brace Down	No	Yes	0.0000	0.0000
T17	10.00-0.00	10.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation st	Туре	Size	Grade	Туре	Size	Grade
Γ1 152.00-140.00	Pipe	P2.375X0.154 (2" STD)	A500-50	Equal Angle	L1 1/2x1 1/2x1/8	A36
T2 140.00-135.00	Pipe	PO 956110 2021/22 6 0000	(50 ksi)			(36 ksi)
12 140,00-133,00	ripe	P2.875"x0.203" (2.5 STD)	A500-50	Equal Angle	L1 1/2x1 1/2x3/16	A36
ГЗ 135.00-130.00	Pipe	P2.875"x0.203" (2.5 STD)	(50 ksi)	5		(36 ksi)
15 155100-150.00	Tipe	12.875 X0.205 (2.5 STD)	A500-50	Equal Angle	L1 1/2x1 1/2x3/16	A36
T4 130.00-125.00	Pipe	P2.875"x0.203" (2.5 STD)	(50 ksi) A500-50	E 1 4 . 1	* * * * * * * * * * * * * * * * * * * *	(36 ksi)
- 120100-122100	ripe	12.073 X0.203 (2.3 S1D)		Equal Angle	L1 1/2x1 1/2x1/4	A36
rs 125.00-120.00	Pipe	P2.875"x0.203" (2.5 STD)	(50 ksi) A500-50	Emmil Amelia	111/0 11/0 11/1	(36 ksi)
2 122100 120100	ripe	12.075 X0.205 (2.5 \$1D)	(50 ksi)	Equal Angle	L1 1/2x1 1/2x1/4	A36
6 120.00-100.00	Pipe	Pipe 2.5 XStr	A500-50	Daniel Amelia	7.000.174	(36 ksi)
0 120100 100100	ripo	(2.875"ODx0,276")	(50 ksi)	Equal Angle	L2x2x1/4	A36
T7 100.00-80.00	Arbitrary Shane		A500-50	Thereal Amelia	1.0.1/00.1/01/4	(36 ksi)
	. wormany primpe	Sleeve (STAMFORD NW CT)	(50 ksi)	Equal Angle	L2 1/2x2 1/2x1/4	A36
T8 80.00-73.33	Arbitrary Shape		A500-50	Equal Angle	1.0.1/00.1/01/4	(36 ksi)
10 00,00 . 5(55	Attornary Dinapo	(STAMFORD NW CT)	(50 ksi)	Equal Angle	L2 1/2x2 1/2x1/4	A36
T9 73.33-66.67	Arbitrary Shane	3.5"x0.3" w/ 4"x.25" Sleeve	A500-50	Enval Anala	1.2.1/22.1/26/16	(36 ksi)
23 10100 00101	anomary bhape	(STAMFORD NW CT)	(50 ksi)	Equal Angle	L2 1/2x2 1/2x5/16	A36
Γ10 66.67 - 60.00	Arbitrary Shape		A500-50	Equal Angle	1.2.1/2-2.1/2-5/16	(36 ksi)
	initially bimpe	(STAMFORD NW CT)	(50 ksi)	Equal Angle	L2 1/2x2 1/2x5/16	A36
T11 60.00-50.00	Pipe	Pipe 4 XStr (4.5"ODx0.337")	A500-50	Equal Angle	L3x3x1/4	(36 ksi)
		1 po (1100 (410 ODA0.557)	(50 ksi)	Edual Wildie	L3X3X1/4	A36
T12 50.00-40.00	Pipe	Pipe 4 XStr (4.5"ODx0,337")	A500-50	Equal Angle	L3x3x5/16	(36 ksi)
		11p0 11100 (115 ODA01557)	(50 ksi)	Equal Aligie	L3X3X3/10	A36
T13 40.00-30.00	Arbitrary Shape	4.5"x0.337" w/ 5"x.25" Sleeve	A500-50	Equal Angle	L3x3x3/8	(36 ksi) A36
		(STAMFORD NW CT 30'-40')	(50 ksi)	Edual Vilgie	L3X3X3/6	(36 ksi)
Γ14 30.00-20.00	Arbitrary Shape	4.5"x0.337" w/ 5"x.25" Sleeve	A500-50	Equal Angle	L3x3x5/16	A36
	,	(STAMFORD NW CT 20'-30')	(50 ksi)	Eduar Village	L3X3X3/10	
15 20.00-15.00	Arbitrary Shane	5.5"x0.259" w/ 6"x.25" Sleeve	A500-50	Equal Angle	L3 1/2x3 1/2x1/4	(36 ksi) A36
		(STAMFORD NW CT 15'-20')	(50 ksi)	Edger Wilkie	□J 1/4XJ 1/4X1/4	
Γ16 15.00-10.00	Arbitrary Shape	5.5"x0.259" w/ (3) 1.5"x.5"	A500-50	Equal Angle	L3 1/2x3 1/2x1/4	(36 ksi) A36
	, <u>F</u> -	Bars (STAMFORD NW CT	(50 ksi)	Edge Wilkle	₩J 1/4AJ 1/4A1/4	(36 ksi)
		0'-15')	(DO Mai)			(30 KSI)

tnxTower Stamford NW CT 4 of 52 Project Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX: Page 4 of 52 Date 15:14:50 09/21/23 Designed by jboegel

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
T17 10.00-0.00	Arbitrary Shape	5.5"x0.259" w/ (3) 1.5"x.5" Bars (STAMFORD NW CT 0'-15')	A500-50 (50 ksi)	Equal Angle	L3 1/2x3 1/2x5/16	A36 (36 ksi)

	(cont'd)					
Tower Elevation	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
r1 152.00-140.00	Equal Angle	L2x2x1/8	A36 (36 ksi)	Solid Round		A36 (36 ksi)
2 140.00-135.00	Equal Angle	L2x2x1/8	A36 (36 ksi)	Solid Round		A36 (36 ksi)

	Tower Section Geometry (cont'd)											
Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade					
ft	Girts	mercia		A36	Equal Angle	L3x3x1/4	A36					
T14 30.00-20.00	None	Flat Bar		(36 ksi)	Equal Milgie	DONORII	(36 ksi)					
r15 20.00-15.00	None	Flat Bar		A36 (36 ksi)	Equal Angle	L3x3x1/4	A36 (36 ksi)					
T16 15.00-10.00	None	Flat Bar		A36 (36 ksi)	Equal Angle	L3x3x1/4	A36 (36 ksi)					

	Tower Section Geometry (cont'd)											
Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade						
ſì				A 41 (A)		A572-50						
T7 100.00-80.00	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)	Solid Round		(50 ksi)						
T8 80.00-73.33	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)	Solid Round		A572-50 (50 ksi)						
T9 73.33-66.67	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)	Solid Round		À572-50 (50 ksi)						
T10 66.67-60.00	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)	Solid Round		A572-50 (50 ksi)						
T11 60.00-50.00	Equal Angle	L2 1/2x2 1/2x1/4	A36 (36 ksi)	Solid Round		A572-50 (50 ksi)						
T12 50.00-40.00	Equal Angle	L3x3x1/4	A36 (36 ksi)	Solid Round		A572-50 (50 ksi)						
T13 40.00-30.00	Equal Angle	L3x3x1/4	A36 (36 ksi)	Solid Round		A572-50 (50 ksi)						

tnxTower	Job	Stamford NW CT	Page 5 of 52
Centerline Engineering Services, PA 750 W Center St, Suite 301	Project	23CLVZ-0009	Date 15:14:50 09/21/23
West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:	Client	Verizon Wireless	Designed by jboegel

	Tower Section Geometry (cont'd)											
Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor							
T14	A36	Horizontal (1)	Equal Angle	L2x2x1/4	1							
30.00-20.00	(36 ksi)	Diagonal (1)	Equal Angle	L2x2x1/4	Ĩ							
T15	A36	Horizontal (1)	Equal Angle	L2x2x1/4	1							
20.00-15.00	(36 ksi)	Diagonal (1)	Equal Angle	L2x2x1/4	í							

			Tower Section Geometry (cont'd)									
Tower Elevation	Gusset Area (per face)	Gusset Thickness in	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing Redundants			
T1	0.00	0.1875	A36	1	1	1.05	36.0000	36.0000	36.0000			
152.00-140.00 T2 140.00-135.00	0.00	0.1875	(36 ksi) A36 (36 ksi)	Ĩ	1	1.05	36.0000	36,0000	36.0000			
T3 135.00-130.00	0.00	0.2500	(36 ksi) A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T4 130.00-125.00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T5 125.00-120.00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T6 120.00-100.00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T7 100.00-80.00	0.00	0.2500	A36 (36 ksi)	E	1	1.05	36.0000	36.0000	36.0000			
T8 80.00-73.33	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
r9 73.33-66.67	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T10 66.67-60.00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T11 60.00-50.00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T12 50.00-40.00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T13 40.00-30.00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T14 30.00-20.00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T15 20.00-15.00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
T16 15,00-10,00	0.00	0.2500	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000			
17 10.00-0.00	0.00	0.2500	A36 (36 ksi)	1	ĭ	1.05	36.0000	36.0000	36.0000			

Centerline Engineering Services, PA 750 W Center St. Suite 301

750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job	Stamford NW CT	Page 6 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Tower Section Geometry (cont'd)

			K Factors ¹									
Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	Legs	X Brace Diags X	K Brace Diags X	Single Diags X	Girts X	Horiz.	Sec. Horiz. X	Inner Brace X		
ſt	11110100			Y	Y	Y	Y	Y	<u> </u>	Y		
Tl	Yes	No	1	1	1	1	I	1	1	1		
152.00-140.00				1	1	1	1	1	1	1		
T2	Yes	No	1	1	1	1	1	1	1			
140.00-135.00				1	1	1	ı	1	1			
T3	Yes	No	1	1	1	1	1	1	1			
135.00-130.00				1	1	1	1	1	1	1		
T4	Yes	No	1	1	1	1	1	1	1	1		
130.00-125.00				1	1	1	1	1	1	1		
T5	Yes	No	1	1	1	1	1	1	1	1		
125.00-120.00	1 05			1	1	1	1	1	1	- 1		
T6	Yes	No	1	1	1	1	1	1	1	1		
120.00-100.00	105			1	1	1	1	1	1	1		
T7	No	No	1	1	1	1	1	1	1	1		
100.00-80.00	140	110	350	1	1	1	1	1	0.5	1		
T8	No	No	1	1	1	1	1	1	1	1		
80.00-73.33	140	110	-	1	1	1	1	1	0.5	1		
T9	No	No	1	1	1	1	1	1	1	1		
73.33-66.67	140	110	-	1	1	1	1	1	0.5	1		
73.33-00.07 T10	No	No	1	î.	1	1	1	1	1	1		
66.67-60.00	140	110	•	1	1	1	1	1	0.5	1		
	No	No	1	î	1	1	1	1	1	1		
T11	INO	140	•	î.	1	1	1	1	0.5	1		
60.00-50.00	No	No	1	Ť.	ī	1	1	1	1	1		
T12	1/10	110	1	î	1	1	1	1	0.5	1		
50.00-40.00	Ma	No	1	i	ī	- 1	1	1	1	1		
T13	No	INO	1	1	í	1	1	1	0.5	1		
40.00-30.00	31.	No	1	1	i	1	1	1	1	1		
T14	No	INO	ı	i	î	1	1	0.5	1	1		
30.00-20.00		3.7	4	1	1	1	1	1	1	1		
T15	Yes	No	*	Ť	1	ř	i	1	1	1		
20.00-15.00		NT-	2	1	1	î	î	1	1	1		
T16	Yes	'No	2	1	1	16	1	1	1	1		
15.00-10.00			•	1	1	i	160	i	1	1		
T17	Yes	No	1	1	1	i	i	î	1	1		
10.00-0.00				1 /			-	un the V facts		d 1 1		

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation fi	Leg		Diagor	ral	Top G	irt	Botton	Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontai
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
52.00-140.00 T2 40.00-135.00	0.0000	E	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Job		Page
	Stamford NW CT	7 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Tower Elevation ft	Leg		Diagonal		Top G	Top Girt		Bottom Girt		Girt	Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T3 135.00-130.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 130.00-125.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 125.00-120.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 120.00-100.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 100.00-80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 80.00-73.33	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 73.33-66.67	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 66.67-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 60.00-50.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T12 50.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T13 40.00-30.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T14 30.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T15 20.00-15.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T16 15.00-10.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T17 10.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation fl	Redund Horizo		Reduna Diago		Redundant Sub-Diagonal		Redundant Sub-Horizontal		Redundant Vertical		Redundant Hip		Redundant Hip Diagonal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 152.00-140.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 140.00-135.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 135.00-130.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 130.00-125.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 125.00-120.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 120.00-100.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 100.00-80.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 80.00-73.33	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.25
T9 73.33-66.67	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 0.75
T10 66.67-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 60.00-50.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75

Centerline Engineering

Services, PA
750 W Center St, Suite 301
West Bridgewater, MA 02379
Phone: (781) 713-4725
FAX:

Job	Stamford NW CT	Page 8 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Tower Elevation	Reduna Horizo		Reduna Diago		Redund Sub-Diag		Redur Sub-Hor		Redundan	t Vertical	Redundo	int Hip	Redunda Diago	
fi	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T12	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
50.00-40.00 T13	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
40.00-30.00 T14	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
30.00-20.00 T15	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
20.00-15.00 T16	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
15.00-10.00 T17 10.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagon	al	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hor	izontal
Elevation st	Connection Type														
Ji	Type	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1	Flange	0.6250	4	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
152.00-140.00	Tango	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	0.7500	0	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-135.00	Linigo	A325N	Ŭ	A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	0.7500	0	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
135.00-130.00	Linigo	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	0.7500	0	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
130.00-125.00	rtange	A325N		A325N	1000	A325N		A325N		A325N		A325N		A325N	
T5	Flange	0.6250	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
125.00-120.00	riange	A325N	7	A325N		A325N		A325N		A325N		A325N		A325N	
T6	Flange	0.7500	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00	riange	A325N	7	A325N	7.	A325N		A325N		A325N		A325N		A325N	
T7	Flange	0.8750	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.5000	0	0.5000	2
100.00-80.00	Flange	A325N	7	A325X		A325N		A325N		A325N		A325N		A325N	
	171 mmm	0.7500	0	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.5000	0	0.5000	2
T8 80.00-73.33	Flange	A325N	U	A325X		A325N	Ü	A325N		A325N		A325N		A325N	
650 50 00 cc c5	Clause	0.7500	0	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.5000	0	0.5000	2
T9 73.33-66.67	Flange	A325N	U	A325X	-	A325N	v	A325N	-	A325N		A325N		A325N	
=10	51	0.8750	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.5000	0	0.5000	2
T10	Flange	A325N	4	A325N	1.6.	A325N	v	A325N		A325N		A325N		A325N	
66.67-60.00	21	0.7500	0	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.5000	0	0.5000	2
T11	Flange	A325N	V	A325N	> 200	A325N	v	A325N		A325N		A325N		A325N	
60.00-50.00			4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.5000	0	0.5000	2
T12	Flange	1.0000	4	A325N		A325N	v	A325N		A325N		A325N		A325N	
50.00-40.00	•51	A325N	0	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.5000	0	0.5000	2
T13	Flange	0.7500	U	A325N		A325N	U	A325N	•	A325N		A325N		A325N	
40.00-30.00		A325N	4	0.6250	Ĭ ²	0.6250	0	0.6250	0	0.6250	0	0.5000	2	0.6250	0
T14	Flange	1.0000	4	A325N	L	A325N	v	A325N	v	A325N	•	A325N	_	A325N	
30.00-20.00		A325N	Α.	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	1	0.6250	0
T15	Flange	0.7500	0		1	A325N	U	A325N	v	A325N	U	A325N	-	A325N	
20.00-15.00		A325N	Α.	A325X	1	0.6250	0	0.6250	0	0.6250	0	0.6250	1	0.6250	0
T16	Flange	0.7500	0	0.6250	ī	A325N	U	A325N	v	A325N	v	A325N	•	A325N	
15.00-10.00		A325N		A325X		I AJZJIN		AJ2JIY		Unganti		1 1100011			

tnxTower	Job	Stamford NW CT	Page 9 of 52
Centerline Engineering Services, PA 750 W Center St, Suite 301	Project	23CLVZ-0009	Date 15:14:50 09/21/23
West Bridgewater, M.A 02379 Phone: (781) 713-4725 FAX:	Cilent	Verizon Wireless	Designed by jboegel

Tower Elevation ft	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size	No.	Bolt Size	No.	Balt Size	No.	Bolt Size	No.						
T17 10.00-0.00	Flange	0.7500 A325N	0	0.6250 A325X	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.5000 A325N	0	0.6250 A325N	0

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
			Calculation				(= , ,						PU
LDF5-50A(7/ 8")	A	No	No	Ar (CaAa)	152.00 - 0.00	0.0000	-0.05	1	1	1.0900	1.0900		0.33
LDF4-50A(1/ 2")	Α	No	No	Ar (CaAa)	150.00 - 0.00	0.0000	-0.03	1	1	0.6300	0.6300		0.15
Feedline Ladder (Af) ***	A	No	No	Af (CaAa)	150.00 - 0.00	0.0000	0	2	2	24.5000 0.5000	1.5000		1.80
LDF7-50A(1 5/8")	В	No	No	Ar (CaAa)	145.00 - 0.00	0.0000	0	12	12	0.5000	1.9800		0.82
Feedline Ladder (Af)	В	No	No	Af (CaAa)	145.00 - 0.00	0.0000	0	2	2	24.5000 0.5000	1.5000		1.80
EW180(ELLI PTICAL)	В	No	No	Ar (CaAa)	152.00 - 0.00	0.0000	0.25	1	ı	0.7800	0.7800		0.15
EW180(ELLI PTICAL)	В	No	No	Ar (CaAa)	140.00 - 0.00	0.0000	0.22	1	1	0.7800	0.7800		0.15
LDF7-50A(1 5/8")	В	No	No	Ar (CaAa)	135.00 - 0.00	0.0000	0.2	2	2	0.5000	1.9800		0.82
LDF7-50A(1 5/8")	В	No	No	Ar (CaAa)	98.00 - 0.00	0.0000	0.18	3	3	0.5000	1.9800		0.82
LDF5-50A(7/ 8")	В	No	No	Ar (CaAa)	78.00 - 0.00	0.0000	0.15	1	1	0.5000	1.0900		0.33
Feedline Ladder (Af) ***	В	No	No	Af (CaAa)	152.00 - 0.00	0.0000	0.2	2	2	24.5000 0.5000	1.5000		1.80
LDF6-50A(1 1/4")	С	No	No	Ar (CaAa)	131.00 - 0.00	0.0000	0.25	3	3	1.5500	1.5500		0.66
LDF5-50A(7/ 8")	С	No	No	Ar (CaAa)	131.00 - 0.00	0.0000	0.23	1	1	1.0900	1.0900		0.33
LDF4P-50A(1 /2")	С	No	No	Ar (CaAa)	58.00 - 0.00	0.0000	0.27	1	1	0.6300	0.6300		0.15
LDF7-50A(1 1/2")	С	No	No	Ar (CaAa)	115.00 - 0.00	0.0000	0.17	4	4	0.5000	1.5000		0.82
Feedline Ladder (Af)	С	No	No	Af (CaAa)	152.00 - 0.00	0.0000	0.2	2	2	24.5000 0.5000	1.5000		1.80

Feed Line/Linear Appurtenances - Entered As Area

Centerline Engineering

Services, PA
750 W Center St, Suite 301
West Bridgewater, MA 02379
Phone: (781) 713-4725
FAX:

Job	Stamford NW CT	Page 10 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Face	Allow	Exclude	Component	Placement	Total	$C_A A_A$	Weight
	or Leg	Shield	From Torque	Туре	ft	Number	ft²/ft	plf
			Calculation					

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$ Out Face	Weight
Section	Elevation		- 61	ft²	In Face ft²	Out Face ft²	K
	ft		ft ²		6.938	0.000	0.04
T 1	152.00-140.00	Α	0.000	0.000		0.000	0.11
		В	0.000	0.000	21.316 6.000	0.000	0.04
		C	0.000	0.000	3.360	0.000	0.02
T2	140.00-135.00	Α	0.000	0.000	17.660	0.000	0.09
		В	0.000	0.000	2.500	0.000	0.02
		C	0.000	0.000	3.360	0.000	0.02
T3	135.00-130.00	A	0.000	0.000 0.000	19.640	0.000	0.02
		В	0.000		3.074	0.000	0.02
		C	0.000	0.000	3.360	0.000	0.02
T4	130.00-125.00	A	0.000	0.000	19.640	0.000	0.09
		В	0.000	0.000	5.370	0.000	0.03
		C	0.000	0.000		0.000	0.03
T5	125.00-120.00	Α	0.000	0.000	3.360	0.000	0.02
		В	0.000	0.000	19.640		0.03
		C	0.000	0.000	5.370	0.000	0.03
T6	120.00-100.00	Α	0.000	0.000	13.440	0.000	0.38
		В	0.000	0.000	78.560	0.000 0.000	0.38
		C	0.000	0.000	30.480		0.17
T7	100.00-80.00	Α	0.000	0.000	13,440	0.000	0.42
		В	0.000	0.000	89.252	0.000	0.42
		C	0.000	0.000	33.480	0.000	0.18
T8	80.00-73.33	Α	0.000	0.000	4.480	0.000	0.03
		В	0.000	0.000	30.655	0.000	
		C	0.000	0.000	11.160	0.000	0.06
T9	73.33-66.67	Α	0.000	0.000	4.480	0.000	0.03 0.15
		В	0.000	0.000	30.873	0.000	
		C	0.000	0.000	11.160	0.000	0.06 0.03
T10	66.67-60.00	Α	0.000	0.000	4.480	0.000	0.03
		В	0.000	0.000	30.873	0.000	
		C	0.000	0.000	11.160	0.000	0.06
T11	60.00-50.00	Α	0.000	0.000	6.720	0.000	0.04
		B C	0.000	0.000	46.310	0.000	0.22
		С	0.000	0.000	17.244	0.000	0.09
T12	50.00-40.00	Α	0.000	0.000	6.720	0.000	0.04
		В	0.000	0.000	46.310	0.000	0.22
		C	0.000	0.000	17.370	0.000	0.09
T13	40.00-30.00	Α	0.000	0.000	6.720	0.000	0.04
		B	0.000	0.000	46.310	0.000	0.22
		C	0.000	0.000	17.370	0.000	0.09
T14	30.00-20.00	Α	0.000	0.000	6.720	0.000	0.04
***		В	0.000	0.000	46.310	0.000	0.22
		C	0.000	0.000	17.370	0.000	0.09
T15	20.00-15.00	Α	0.000	0.000	3.360	0.000	0.02
110	20.00	В	0.000	0.000	23.155	0.000	0.11
		C	0.000	0.000	8.685	0.000	0.05
T16	15.00-10.00	A	0.000	0.000	3.360	0.000	0.02
		В	0.000	0.000	23.155	0.000	0.11

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	11 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
ft			ft^2	ft ²	ft²	fi ³	K
		С	0.000	0.000	8.685	0.000	0.05
T17	10.00-0.00	Α	0.000	0.000	6.720	0.000	0.04
		В	0.000	0.000	46.310	0.000	0.22
		C	0.000	0.000	17.370	0.000	0.09

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
	fi	Leg	in	ft²	ft²	ft ²	ft²	K
T1	152.00-140.00	A	0.986	0.000	0.000	15.223	0.000	0.15
		В		0.000	0.000	38.186	0.000	0.39
		C		0.000	0.000	10.734	0.000	0.11
T2	140.00-135.00	Α	0.980	0.000	0.000	7.282	0.000	0.07
		В		0.000	0.000	31.330	0.000	0.32
		C		0.000	0.000	4,461	0.000	0.05
T3	135.00-130.00	Α	0.977	0.000	0.000	7.267	0.000	0.03
		В		0.000	0.000	36.006	0.000	0.36
		C		0.000	0.000	6.047	0.000	0.36
T4	130.00-125.00	Ā	0.973	0.000	0.000	7.252	0.000	
		В	0.575	0.000	0.000	35.971		0.07
		č		0.000	0.000		0.000	0.36
T5	125.00-120.00	Ā	0.969	0.000		12.406	0.000	0.12
		В	0.707	0.000	0.000	7.237	0.000	0.07
		C		0.000	0.000	35.936	0.000	0.36
T6	120.00-100.00	A	0.959	0.000	0.000	12.388	0.000	0.12
10	120,00 100,00	В	0.737	0.000	0.000	28.780	0.000	0.27
		C		0.000	0.000	143.366	0.000	1.43
T7	100.00-80.00	A	0.940		0.000	68.146	0.000	0.65
1,	100.00-00.00		0.940	0.000	0.000	28.475	0.000	0.27
		B C		0.000	0.000	164.332	0.000	1.60
T8	80.00-73,33		0.005	0.000	0.000	73.935	0.000	0.70
10	00.00-73,33	A	0.925	0.000	0.000	9.412	0.000	0.09
		В		0.000	0.000	56.737	0.000	0.55
TO	72.22.66.67	C		0.000	0.000	24.522	0.000	0.23
T9	73.33-66.67	A	0.916	0.000	0.000	9.367	0.000	0.09
		В		0.000	0.000	57.194	0.000	0.55
T) (0	*********	Ç		0.000	0.000	24.452	0.000	0.23
T10	66.67-60.00	Α	0.907	0.000	0.000	9.319	0.000	0.09
		В		0.000	0.000	57.051	0.000	0.54
		C		0.000	0.000	24.377	0.000	0.23
T11	60.00-50.00	Α	0.895	0.000	0.000	13.876	0.000	0.13
		В		0.000	0.000	85.277	0.000	0.81
		C		0.000	0.000	38.344	0.000	0.35
T12	50.00-40.00	Α	0.877	0.000	0.000	13.734	0.000	0.12
		В		0.000	0.000	84.860	0.000	0.80
		C		0.000	0.000	38.572	0.000	0.35
T13	40.00-30.00	Α	0.855	0.000	0.000	13.560	0.000	0.12
		В		0.000	0.000	84.348	0.000	0.78
		C		0.000	0.000	38.259	0.000	0.34
T14	30.00-20.00	Α	0.827	0.000	0.000	13.334	0.000	0.12
		В		0.000	0.000	83.684	0.000	0.76
		C		0.000	0.000	37.853	0.000	0.70
T15	20.00-15.00	Ā	0.798	0.000	0.000	6.551	0.000	0.06
		В	2	0.000	0.000	41.502	0.000	0.06
		č		0.000	0.000	18.719	0.000	0.16
T16	15.00-10.00	Ä	0.771	0.000	0.000	6.445	0.000	0.16
	-3100 10100	В	3.771	0.000	0.000	6.445 41,192		
		č		0.000	0.000		0.000	0.36
		C		0.000	0,000	17.048	0.000	0.15

Centerline Engineering

Services, PA
750 W Center St, Suite 301
West Bridgewater, MA 02379
Phone: (781) 713-4725
FAX:

Job	Stamford NW CT	Page 12 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Tower	Tower	Face	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
Section	Elevation	or Leg	in	ft²	ft ²	ft²	ft²	K
T17	10.00-0.00	Δ	0.704	0.000	0.000	12.351	0.000	0.10
117	10,00-0,00	D D	0.7.0.	0.000	0.000	80.801	0.000	0.69
		Č		0.000	0,000	32.936	0.000	0.28

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP _X Ice	CP _z Ice
	fl	in	in	in	in
T1	152.00-140.00	1.6869	-3,1968	1.2010	-2.3809
T2	140.00-135.00	4.0561	-5.0691	3.6574	-4.1573
T3	135.00-130.00	5.5855	-5.2251	4.8515	-3.9890
T4	130.00-125.00	4.1661	-4.5075	2.5474	-2.8061
T5	125.00-120.00	4.3545	-4.7247	2,6631	-2.9443
T6	120.00-120.00	3.4413	-4.5091	1.5783	-2.4507
T7	100.00-100.00	4.2111	-3.8694	2.6345	-2.0910
T8	80.00-73.33	4.8289	-4.0356	3,4439	-2.2328
	73.33-66.67	5.0746	-4.1490	3.7534	-2,3168
T9	66.67-60.00	5.2014	-4.2625	3.8501	-2,4000
T10	60.00-50.00	5.4990	-4.4093	3.6944	-2.0863
Tl1	50.00-30.00	5.5417	-4.4513	3,6592	-2.0544
T12	40.00-30.00	5.6964	-4.5853	3.7662	-2.1799
T13	30.00-20.00	5.0251	-4.1237	3.3825	-2.0530
T14	20.00-20.00	5.4110	-4.4111	3.5948	-2,2621
T15		4.4284	-3.7550	3.6748	-2.1154
T16 T17	15.00-10.00 10.00-0.00	5.4789	-4.5889	4.4414	-2.7233

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	1ce
T1	1	LDF5-50A(7/8")	140.00 -	0.6000	0.6000
*1			152.00	000000000000000000000000000000000000000	Carronana
Ti	2	LDF4-50A(1/2")	140.00 -	0.6000	0.6000
- 1			150.00		0.7000
TI	3	Feedline Ladder (Af)	140.00 -	0.6000	0.6000
			150.00	0.0000	0.6000
T1	5	LDF7-50A(1 5/8")	140.00 -	0.6000	0.6000
		100000	145.00	0.6000	0.6000
T1	6	Feedline Ladder (Af)	140.00 - 145.00	0.0000	0.0000
			500555	0.6000	0.6000
T 1	8	EW180(ELLIPTICAL)	152.00	0,0000	0.0000
	1.2	Feedline Ladder (Af)	1874-04-04-07-07-07-07-07-07-07-07-07-07-07-07-07-	0,6000	0.6000
Т1	13	reedine Ladder (A1)	152.00	0,000	
T1	19	Feedline Ladder (Af)		0,6000	0.6000
11	15	1 oddinio Eucles (* 11)	152.00		
T2	1	LDF5-50A(7/8")	135.00 -	0.6000	0.6000
12	**	,	140.00		NETHEROXX
Т2	2	LDF4-50A(1/2")		0.6000	0.6000
1-	1	` '	140.00	1	

Job		Page
	Stamford NW CT	13 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by

Tower	Feed Line	Description	Feed Line	K _a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T2	-3	Feedline Ladder (Af)	2000E-0000CC	0.6000	0.6000
Т2	5	LDF7-50A(1 5/8")	140.00 135.00 - 140.00	0.6000	0.6000
T2	6	Feedline Ladder (Af)	135.00 - 140.00	0.6000	0.6000
T2	8	EW180(ELLIPTICAL)	135.00 - 140.00	0.6000	0.6000
T2	9	EW180(ELLIPTICAL)	135.00 - 140.00	0.6000	0.6000
T2	13	Feedline Ladder (Af)	135.00 - 140.00	0.6000	0.6000
T2	19	Feedline Ladder (Af)	135.00 - 140.00	0.6000	0.6000
Т3	1	LDF5-50A(7/8")	130.00 - 135.00	0.6000	0.6000
Т3	2	LDF4-50A(1/2")	130.00 - 135.00	0.6000	0.6000
T3	3	Feedline Ladder (Af)	130.00 - 135.00	0.6000	0.6000
T3	5	LDF7-50A(1 5/8")	130.00 - 135.00	0.6000	0.6000
T3	6	Feedline Ladder (Af)	130.00 - 135.00	0.6000	0.6000
T3	8	EW180(ELLIPTICAL)	130.00 - 135.00	0.6000	0.6000
T3	9	EW180(ELLIPTICAL)	130.00 - 135.00	0.6000	0.6000
T3 T3	10	LDF7-50A(1 5/8")	130.00 - 135.00	0.6000	0.6000
T3	13	Feedline Ladder (Af)	130.00 - 135.00	0.6000	0.6000
T3	15 16	LDF6-50A(1 1/4")	130.00 - 131.00	0.6000	0.6000
T3	19	LDF5-50A(7/8")	130.00 - 131.00	0.6000	0,6000
T4	1	Feedline Ladder (Af)	130.00 - 135.00	0.6000	0.6000
T4	2	LDF5-50A(7/8")	125.00 - 130.00	0.6000	0.6000
T4	3	LDF4-50A(1/2") Feedline Ladder (Af)	125.00 - 130.00	0.6000	0.6000
T4	5	LDF7-50A(1 5/8")	125.00 - 130.00	0.6000	0.6000
T4	6	Feedline Ladder (Af)	125.00 - 130.00	0.6000	0.6000
T4	8	EW180(ELLIPTICAL)	125.00 - 130.00	0.6000	0.6000
T4	9	EW180(ELLIPTICAL)	125.00 - 130.00	0.6000	0.6000
T4	10	LDF7-50A(1 5/8")	125.00 - 130.00 125.00 -	0.6000	0.6000
T4	13	Feedline Ladder (Af)	130.00 125.00 -	0.6000	0.6000
T4	15	LDF6-50A(1 1/4")	130.00 125.00 -	0.6000	0.6000
T4	16	LDF5-50A(7/8")	130.00 125.00 -	0.6000	0.6000
T4	19	Feedline Ladder (Af)	130.00 125.00 -	0.6000	0.6000
I		Zaudor (Al)	130.00	0.000	0.0000

Job	Stamford NW CT	Page 14 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T5	1	LDF5-50A(7/8")	120.00 -	0.6000	0.6000
		1 DE4 604(1/2")	125.00 120.00 -	0.6000	0.6000
T5	2	LDF4-50A(1/2")	125.00	0.0000	31000
T5	3	Feedline Ladder (Af)	120.00 -	0.6000	0.6000
, ,		150000	125.00		0.4000
T5	5	LDF7-50A(1 5/8")	120.00 -	0.6000	0.6000
		Feedline Ladder (Af)	125.00 120.00 -	0.6000	0.6000
T5	6	Feedine Ladder (A1)	125.00	0.000	
T5	8	EW180(ELLIPTICAL)	120.00 -	0.6000	0.6000
			125.00	0.6000	0.6000
T5	9	EW180(ELLIPTICAL)	120.00 - 125.00	0.6000	0.0000
77.5	10	LDF7-50A(1 5/8")	120.00 -	0.6000	0.6000
T5	10	LD1 / 50/1(15/5)	125.00	******	
T5	13	Feedline Ladder (Af)	120.00 -	0.6000	0.6000
			125.00 120.00 -	0.6000	0.6000
T5	15	LDF6-50A(1 1/4")	125.00	0,0000	0.0000
T5	16	LDF5-50A(7/8")	120.00 -	0.6000	0.6000
13	10		125.00		
T5	19	Feedline Ladder (Af)	120.00 -	0.6000	0.6000
		1 DES 50 A (7/9")	125.00 100.00 -	0.6000	0.6000
T6	1	LDF5-50A(7/8")	120.00	0.0000	877
Т6	2	LDF4-50A(1/2")	100.00 -	0.6000	0.6000
1	_		120.00	0.0000	0.6000
Т6	3	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
77.0	5	LDF7-50A(1 5/8")	410.00	0.6000	0.6000
Т6	,	ED1 /-50/1(1 5/6 /	120.00		V5-125-4362
T6	6	Feedline Ladder (Af)		0.6000	0.6000
			120.00 100.00 -	0.6000	0.6000
T6	8	EW180(ELLIPTICAL)	120.00	0,0000	0.0000
Т6	9	EW180(ELLIPTICAL)		0.6000	0.6000
1			120.00		0.0000
T6	10	LDF7-50A(1 5/8")	100.00 -	0.6000	0.6000
		E No Today (A.D.	120.00 100.00 -	0.6000	0.6000
T6	13	Feedline Ladder (Af)	120.00	0.0000	0.000
Т6	15	LDF6-50A(1 1/4")	100.00 -	0.6000	0.6000
1			120.00	0.4000	0.6000
Т6	16	LDF5-50A(7/8")	100.00 - 120.00	0.6000	0.0000
	18	LDF7-50A(1 1/2")		0.6000	0.6000
T6	10	EDI /-50/1(1 1/2)	115.00		
T6	19	Feedline Ladder (Af)	100.00 -	0.6000	0.6000
153500		4 B B 4 40 1 42 (BIII)	120.00	0.6000	0.6000
T7				0.6000	0.6000
T7			80.00 - 100.00	0.6000	0.6000
T7		LDF7-50A(1 5/8")	80.00 - 100.00	0.6000	0.6000
T7	6	Feedline Ladder (Af)	80.00 - 100.00	0.6000 0.6000	0.6000 0.6000
T7	8	EW180(ELLIPTICAL) EW180(ELLIPTICAL)	80.00 - 100.00	0.6000	0.6000
T7			80.00 - 100.00		0.6000
T7		LDF7-50A(1.5/8")	80.00 - 98.00	0.6000	0,6000
T7	13	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000 0.6000
T7			80.00 - 100.00	0.6000 0.6000	
T7	16	LDF5-50A(7/8")	190,00 - 100,00	0,0000	1 3,0000

Job		Page
	Stamford NW CT	15 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section Record No. Segment Elev. No Ice Ice T7 18 LDF7-50A(1 1/2") 80.00 - 100.00 0.6000 0.6000 T7 19 Feedline Ladder (Af) 80.00 - 100.00 0.6000 0.6000 T8 1 LDF5-50A(7/8") 73.33 - 80.00 0.6000 0.6000 T8 2 LDF4-50A(1/2") 73.33 - 80.00 0.6000 0.6000 T8 3 Feedline Ladder (Af) 73.33 - 80.00 0.6000 0.6000 T8 3 Feedline Ladder (Af) 73.33 - 80.00 0.6000 0.6000	Tower	Feed Line	Description	Food Time	v	Tr'
T7			Description	Feed Line Segment Elev	K _a No Ice	K _a
Trans.com			LDF7-50A(1 1/2")			
T8		19				
T8						
T8 8 8 EWI80(ELIPTICAL) 73.33 - 80.00 0.6000 0.6000 18 18 10 LDF7-50A(1 5/8") 73.33 - 80.00 0.6000 0.6000 1.6000 0.6000 0.6000 0.6000 0.6000 1.6000 1.6000 1.6000 1.6000 1.6000 0.6000 0.6000 0.6000 1.6000 1.6000 1.6000 1.6000 0.6000 0.6000 0.6000 0.6000 0.6000 1.6000 1.6000 1.6000 1.6000 0.6000 0.6000 0.6000 0.6000 0.6000 1.6000 0		2			0.6000	0.6000
T8 8 8 EWI80(ELIPTICAL) 73.33 - 80.00 0.6000 0.6000 18 18 10 LDF7-50A(1 5/8") 73.33 - 80.00 0.6000 0.6000 1.6000 0.6000 0.6000 0.6000 0.6000 1.6000 1.6000 1.6000 1.6000 1.6000 0.6000 0.6000 0.6000 1.6000 1.6000 1.6000 1.6000 0.6000 0.6000 0.6000 0.6000 0.6000 1.6000 1.6000 1.6000 1.6000 0.6000 0.6000 0.6000 0.6000 0.6000 1.6000 0		3	Feedline Ladder (Af)		100000000000000000000000000000000000000	0.6000
T8			LDF7-50A(1 5/8")			0.6000
T8				10/10/00/00/01		
T8		9				
T8		2000				
T8				1,000,000,000,000		
T8	T8	12	LDF5-50A(7/8")			
T8		13	Feedline Ladder (Af)			
T8 18 18 18 18 19 Feedline Ladder (Af) 73.33 - 80.00 0.6000 0.6000 0.6000 T9 19 11 11 12 157-50A(11/2") 173.33 - 80.00 0.6000 0.			LDF6-50A(1 1/4")			
T8			LDF5-50A(7/8")	73.33 - 80.00	1. Tel. (Sept. 2001)	
T9			LDF7-50A(1 1/2")		0.6000	0.6000
T9 2						
Teedline Ladder (Af) 66.67 - 73.33 0.6000 0.6000				F-112339541623		500 St. C.
T9			Eggdira Laddar (1/2")			
T9						
T9 8 EW180(ELLIPTICAL) 66.67 - 73.33 0.6000 0.6000			Feedline Ladder (A.D.			2.00 mm (200 W/000)
T9 9						
T9					04/02/03/03/03	
T9					1-2-3-3-5-1-1-1-1	10,000,000,000
T9	T9				57-11-5-500-5476	A2012 C 225 W 100 C
T9		12				
T9			Feedline Ladder (Af)		A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
T9		0.512		66.67 - 73.33		
T9			LDF5-50A(7/8")	66.67 - 73.33	0.6000	0.6000
T10			LDF7-50A(1 1/2")		0.6000	0.6000
T10		147.53.14	Feedline Ladder (Af)			C-900000 - 17 17 1
T10						CAROLOGICA CO. 6
T10			Eggding Ladder (A.S.		Sec. 2 + 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
T10						
T10			Feedline Ladder (Af)		200000000000000000000000000000000000000	
T10 9 EW180(ELLIPTICAL) 60.00 - 66.67 0.6000 0.6000 T10 10 11 LDF7-50A(1 5/8") 60.00 - 66.67 0.6000 0.6000 T10 12 LDF5-50A(7/8") 60.00 - 66.67 0.6000 0.6000 T10 13 Feedline Ladder (Af) 60.00 - 66.67 0.6000 0.6000 T10 15 LDF6-50A(1 1/4") 50.00 - 66.67 0.6000 0.6000 T10 18 LDF7-50A(1 1/2") 60.00 - 66.67 0.6000 0.6000 T10 19 Feedline Ladder (Af) 60.00 - 66.67 0.6000 0.6000 T11 1 2 LDF5-50A(7/8") 50.00 - 60.00 0.6000 0.6000 T11 2 LDF4-50A(1/2") 50.00 - 60.00 0.6000 0.6000 T11 3 Feedline Ladder (Af) 50.00 - 60.00 0.6000 0.6000 T11 4 EW180(ELLIPTICAL) 50.00 - 60.00 0.6000 0.6000 T11 8 EW180(ELLIPTICAL) 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 1 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 1 13 Feedline Ladder (Af) 50.00 - 60.00 0.6000 0.6000 T11 1 15 LDF6-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 1 15 LDF6-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 1 16 LDF5-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 1 16 LDF5-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 1 16 LDF5-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 1 16 LDF5-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 1 17 LDF4-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 1 17 LDF4-50A(1 1/4") 50.00 - 58.00 0.6000 0.6000 T11 1 17 LDF4-50A(1 1/4") 50.00 - 58.00 0.6000 0.6000 0.6000 T11 1 17 LDF4-50A(1 1/4") 50.00 - 58.00 0.6000 0.6000 0.6000 0.6000 T11 1 17 LDF4-50A(1 1/4") 50.00 - 58.00 0.600			EW180(ELLIPTICAL)		2080909090000	
T10 T10 T10 T10 T11 T10 T11 T10 T11 T10 T10	T10		EW180(ELLIPTICAL)		12 Sec. 14 Sec. 15 Sec. 16 Sec	
T10	T10				50 70 20 20 20 20	
T10		11			The Proposition Control of the Control	
T10				60.00 - 66.67	0.6000	
T10					0.6000	000000000000000000000000000000000000000
T10						
T10				2535515361		
T11	3.3		LDF7-50A(1 1/2")			
T11	55.					
T11						
T11			Feedline Ladder (Aft			
T11		5				
T11 8 EW180(ELLIPTICAL) 50.00 - 60.00 0.6000 0.6000 T11 9 EW180(ELLIPTICAL) 50.00 - 60.00 0.6000 0.6000 T11 10 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 11 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 T11 12 LDF5-50A(7/8") 50.00 - 60.00 0.6000 0.6000 T11 13 Feedline Ladder (Af) 50.00 - 60.00 0.6000 0.6000 T11 15 LDF6-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 16 LDF5-50A(7/8") 50.00 - 60.00 0.6000 0.6000 T11 17 LDF4P-50A(1/2") 50.00 - 58.00 0.6000 0.6000			Feedline Ladder (Af)		100000000000000000000000000000000000000	
T11 9 EW180(ELLIPTICAL) 50.00 - 60.00 0.6000 0.6000 T11 1 10 LDF7-50A(1 5/8") 50.00 - 60.00 0.6000 0.6000 0.6000 T11 11 12 LDF5-50A(7/8") 50.00 - 60.00 0.6000 0.6000 0.6000 T11 13 Feedline Ladder (Af) 50.00 - 60.00 0.6000 0.6000 0.6000 T11 15 LDF6-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 0.6000 T11 16 LDF5-50A(7/8") 50.00 - 60.00 0.6000 0.6000 T11 17 LDF4P-50A(1/2") 50.00 - 58.00 0.6000 0.6000 0.6000 T11 17 LDF4P-50A(1/2") 50.00 - 58.00 0.6000 0.6000		8				ACCOSTNATA
T11						
T11				T 4 00 4 75 75 75 75 75 75 75 75 75 75 75 75 75		
T11 12 LDF5-50A(7/8") 50.00 - 60.00 0.6000 0.6000						
T11 13 Feedline Ladder (Af) 50.00 - 60.00 0.6000 0.6000 T11 15 LDF6-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 16 LDF5-50A(7/8") 50.00 - 60.00 0.6000 0.6000 T11 17 LDF4P-50A(1/2") 50.00 - 58.00 0.6000 0.6000			LDF5-50A(7/8")			
T11 15 LDF6-50A(1 1/4") 50.00 - 60.00 0.6000 0.6000 T11 16 LDF5-50A(7/8") 50.00 - 60.00 0.6000 0.6000 T11 17 LDF4P-50A(1/2") 50.00 - 58.00 0.6000 0.6000				50.00 - 60.00	0.6000	
T11 17 LDF4P-50A(1/2") 50.00 - 58.00 0.6000 0.6000						
T11						
LDF/-50A(1 1/2") 50.00 - 60.00 0.6000 0.6000						
	ш	18]	LDF/-50A(1 1/2")	50.00 - 60.00	0.6000	0.6000

Centerline Engineering

Services, PA
750 W Center St, Suite 301
West Bridgewater, MA 02379
Phone: (781) 713-4725
FAX:

Job	Stamford NW CT	Page 16 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.		Segment Elev.	No Ice	Ice
T11	19	Feedline Ladder (Af)	50.00 - 60.00	0.6000	0.6000
T12	1	LDF5-50A(7/8")	40.00 - 50.00	0.6000	0.6000
T12		LDF4-50A(1/2")	40.00 - 50.00	0.6000	0.6000
T12	2 3	Feedline Ladder (Af)	40.00 - 50.00	0.6000	0.6000
T12	5	LDF7-50A(1 5/8")	40.00 - 50.00	0.6000	0.6000
T12	6	Feedline Ladder (Af)	40.00 - 50.00	0.6000	0.6000
T12	8	EW180(ELLIPTICAL)	40.00 - 50.00	0.6000	0.6000
T12	9	EW180(ELLIPTICAL)	40.00 - 50.00 40.00 - 50.00	0.6000	0.6000
T12	10	LDF7-50A(1 5/8")	40.00 - 50.00	0.6000	0.6000
T12	11	LDF7-50A(1 5/8") LDF5-50A(7/8")	40.00 - 50.00	0.6000	0.6000
T12	12	Feedline Ladder (Af)	40.00 - 50.00	0,6000	0.6000
T12	13 15	LDF6-50A(1 1/4")	40.00 - 50.00	0.6000	0.6000
T12 T12	16	LDF5-50A(7/8")	40.00 - 50.00	0.6000	0.6000
T12	17	LDF4P-50A(1/2")	40.00 - 50.00	0.6000	0.6000
T12	18	LDF7-50A(1 1/2")	40.00 - 50.00	0.6000	0.6000
T12	19	Feedline Ladder (Af)	40.00 - 50.00	0.6000	0.6000
T13	1	LDF5-50A(7/8")	30.00 - 40.00	0.6000	0.6000
T13	2	LDF4-50A(1/2")	30.00 - 40.00	0.6000	0.6000
T13	3	Feedline Ladder (Af)	30.00 - 40.00	0.6000	0.6000
T13	5	LDF7-50A(1 5/8")	30.00 - 40.00	0.6000	0.6000
T13	6	Feedline Ladder (Af)	30.00 - 40.00	0.6000	0.6000
T13	- 8	EW180(ELLIPTICAL)	30.00 - 40.00	0.6000	0.6000
T13	9	EW180(ELLIPTICAL)	30.00 - 40.00	0.6000	0.6000
T13	10	LDF7-50A(1 5/8")	30.00 - 40.00 30.00 - 40.00	0.6000	0.6000
T13	11	LDF7-50A(1 5/8")	30.00 - 40.00	0.6000	0.6000
T13	12	LDF5-50A(7/8") Feedline Ladder (Af)	30.00 - 40.00	0.6000	0.6000
T13	13	LDF6-50A(1 1/4")	30.00 - 40.00	0.6000	0.6000
T13	15 16	LDF5-50A(7/8")	30.00 - 40.00	0.6000	0.6000
T13 T13	17	LDF4P-50A(1/2")	30.00 - 40.00	0.6000	0.6000
T13	18	LDF7-50A(1 1/2")	30.00 - 40.00	0.6000	0.6000
T13	19	Feedline Ladder (Af)	30.00 - 40.00	0.6000	0.6000
T14	1	LDF5-50A(7/8")	20.00 - 30.00	0.6000	0.6000
T14	2	LDF4-50A(1/2")	20.00 - 30.00	0.6000	0.6000
T14	3	Feedline Ladder (Af)	20.00 - 30.00	0.6000	0.6000
T14	5	LDF7-50A(1 5/8")	20.00 - 30.00	0.6000	0.6000
T14	6	Feedline Ladder (Af)	20.00 - 30.00	0.6000	0.6000
T14	8	EW180(ELLIPTICAL)	20.00 - 30.00	0.6000	0.6000
T14	9	EW180(ELLIPTICAL)	20.00 - 30.00 20.00 - 30.00	0.6000	0.6000
T14	10	LDF7-50A(1 5/8") LDF7-50A(1 5/8")	20.00 - 30.00	0.6000	0.6000
T14	11	LDF5-50A(1 3/8")	20.00 - 30.00	0.6000	0.6000
T14	12 13	Feedline Ladder (Af)	20.00 - 30.00	0.6000	0.6000
T14 T14	15	LDF6-50A(1 1/4")	20.00 - 30.00	0.6000	0.6000
T14	16	LDF5-50A(7/8")	20.00 - 30.00	0.6000	0.6000
T14	17	LDF4P-50A(1/2")	20.00 - 30.00	0.6000	0.6000
T14	18	LDF7-50A(1 1/2")	20.00 - 30.00	0.6000	0.6000
T14	19	Feedline Ladder (Af)	20.00 - 30.00	0.6000	0.6000
T15	ı	LDF5-50A(7/8")	15.00 - 20.00	0.6000	0.6000
T15	2	LDF4-50A(1/2")	15.00 - 20.00	0.6000	0.6000
T15	3	Feedline Ladder (Af)	15.00 - 20.00	0.6000	0.6000
T15	5	LDF7-50A(1 5/8")	15.00 - 20.00	0.6000	0.6000
T15	6	Feedline Ladder (Af)		0.6000	0.6000
T15	8	EW180(ELLIPTICAL)		0.6000	0.6000
T15	9	EW180(ELLIPTICAL)	15.00 - 20.00	0.6000	0.6000
T15	10	LDF7-50A(1 5/8") LDF7-50A(1 5/8")	15.00 - 20.00	0.6000	0.6000
T15	11 12	LDF5-50A(1 5/8")	15.00 - 20.00	0.6000	0.6000
T15 T15	12	Feedline Ladder (Af)		0,6000	0.6000
	13	574042			0.6000
T15	15	LDF6-50A(1 1/4")	15.00 - 20.00	0.6000	0.6000

Job		Page
	Stamford NW CT	17 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by iboegel

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.		Segment Elev.	No Ice	Ice
T15	17	LDF4P-50A(1/2")	15.00 - 20.00	0.6000	0.6000
T15	18	LDF7-50A(1 1/2")	15.00 - 20.00	0.6000	0.6000
T15	19	Feedline Ladder (Af)	15.00 - 20.00	0.6000	0.6000
T16	1	LDF5-50A(7/8")	10.00 - 15.00	0.6000	0.6000
T16	2	LDF4-50A(1/2")	10.00 - 15.00	0.6000	0.6000
T16	3	Feedline Ladder (Af)	10.00 - 15.00	0.6000	0.6000
T16	5	LDF7-50A(1 5/8")	10.00 - 15.00	0.6000	0.6000
T16	6	Feedline Ladder (Af)	10.00 - 15.00	0.6000	0.6000
T16	8	EW180(ELLIPTICAL)	10.00 - 15.00	0.6000	0.6000
T16	9	EW180(ELLIPTICAL)	10.00 - 15.00	0,6000	0.6000
T16	10	LDF7-50A(1 5/8")	10.00 - 15.00	0.6000	0.6000
T16	11	LDF7-50A(1 5/8")	10.00 - 15.00	0.6000	0.6000
T16	12	LDF5-50A(7/8")	10.00 - 15.00	0.6000	0.6000
T16	13	Feedline Ladder (Af)	10.00 - 15.00	0.6000	0.6000
T16	15	LDF6-50A(1 1/4")	10.00 - 15.00	0.6000	0.6000
T16	16	LDF5-50A(7/8")	10.00 - 15.00	0.6000	0.6000
T16	17	LDF4P-50A(1/2")	10.00 - 15.00	0.6000	0.6000
Т16	18	LDF7-50A(1 1/2")	10.00 - 15.00	0.6000	0.6000
T16	19	Feedline Ladder (Af)	10.00 - 15.00	0.6000	0.6000
T17	1	LDF5-50A(7/8")	0.00 - 10.00	0.6000	0.6000
T17	2	LDF4-50A(1/2")	0.00 - 10.00	0.6000	0.6000
T17	3	Feedline Ladder (Af)	0.00 - 10.00	0.6000	0.6000
T17	5	LDF7-50A(1 5/8")	0.00 - 10.00	0.6000	0.6000
T17	6	Feedline Ladder (Af)	0.00 - 10.00	0.6000	0.6000
T17	8	EW180(ELLIPTICAL)	0.00 - 10.00	0.6000	0.6000
T17	9	EW180(ELLIPTICAL)	0.00 - 10.00	0.6000	0.6000
T17	10	LDF7-50A(1 5/8")	0.00 - 10.00	0.6000	0.6000
T17	11	LDF7-50A(1 5/8")	0.00 - 10.00	0.6000	0.6000
T17	12	LDF5-50A(7/8")	0.00 - 10.00	0.6000	0.6000
T17	13	Feedline Ladder (Af)	0.00 - 10.00	0.6000	0.6000
T17	15	LDF6-50A(1 1/4")	0.00 - 10.00	0.6000	0.6000
T17	16	LDF5-50A(7/8")	0.00 - 10.00	0.6000	0.6000
T17	17	LDF4P-50A(1/2")	0.00 - 10.00	0.6000	0.6000
T17	18	LDF7-50A(1 1/2")	0.00 - 10.00	0.6000	0.6000
T17	19	Feedline Ladder (Af)	0.00 - 10.00	0.6000	0.6000

D	isc	re	te	T	OW	/er	La	ad	s

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C₁A₁ Side	Weigh
			fi fi fi	0	fi		ft²	fl^2	K
20' 4-Bay Dipole	C	From Face	1.00	0.0000	152.00	No Ice	4.00	4.00	0.06
			0.00 10.00			1/2" Ice 1" Ice	6.00 8.00	6.00 8.00	0.10 0.14
TMA	C	From Leg	0.50	0.0000	152.00	No Ice	1.50	1.50	0.05
			0.00			1/2" Ice	2.00	2.00	0.07
			0.00			1" Ice	3.00	3.00	0.07
6'x4" Sch 40 Pipe	C	From Leg	0.50	0.0000	152.00	No Ice	1.96	1.96	0.06
			0.00			1/2" Ice	2.62	2.62	0.08
باد باد باد			0.00			1" Ice	3.00	3.00	0.10

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
300	Stamford NW CT	18 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert						
			ft ft	٥	ft		ft²	ft²	K
			ft	0.0000	150.00	No Ice	19.19	4.03	0.13
DB563K-TT w/Mount Pipe	Α	From Leg	3.00	0.0000	150.00	1/2" Ice	20.22	6.95	0.23
			0.00			1" Ice	21.27	9.91	0.35
		- ,	7.00	0.0000	150.00	No Ice	1.50	3.00	0.19
2' x 3' sidearm	A	From Leg	1.50	0.0000	150.00	1/2" Ice	2.50	4.00	0.28
			0.00 0.00			1" Ice	3.50	5.00	0.36
***		T I	0.50	0.0000	152.00	No Ice	1.19	1.19	0.04
4' x 4.5" Pipe Mount	C	From Leg	0.50 0.00	0.0000	132.00	1/2" Ice	1.58	1.58	0.06
			0.00			1" Ice	1.84	1.84	0.07
***			3.00	0.0000	145.00	No Ice	8.37	8.46	0.14
QS66512-2 w/ Mount Pipe	Α	From Leg	3.00	0.0000	145.00	1/2" Ice	8.93	9.66	0.21
			0.00			1" Ice	9.46	10.55	0.30
	-	Francis Torre	0.00 3.00	0.0000	145.00	No Ice	8.37	8.46	0.14
QS66512-2 w/ Mount Pipe	В	From Leg	0.00	0.0000	145.00	1/2" Ice	8.93	9.66	0.21
			0.00			1" Ice	9.46	10.55	0.30
	-	E I or	3.00	0.0000	145.00	No Ice	8.37	8.46	0.14
QS66512-2 w/ Mount Pipe	C	From Leg	0.00	0.0000	1-12100	1/2" Ice	8.93	9.66	0.21
			0.00			1" Ice	9.46	10.55	0.30
		Erom Lag	3.00	0.0000	145.00	No Ice	0.30	0.83	0.02
(2) TMA2117F00V1-1	Α	From Leg	0.00	0.0000	112.00	1/2" Ice	0.37	0.95	0.02
			0.00			1" Ice	0.45	1.07	0.03
	В	From Leg	3.00	0.0000	145.00	No Ice	0.30	0.83	0.02
(2) TMA2117F00V1-1	В	Lioni reg	0.00	0.0000		1/2" Ice	0.37	0.95	0.02
			0.00			1" Ice	0.45	1.07	0.03
(D) (T) (1 01 (T) (O) (1 1	С	From Leg	3.00	0.0000	145.00	No Ice	0.30	0.83	0.02
(2) TMA2117F00V1-1	C	FIOIII Leg	0.00	0.0000		1/2" Ice	0.37	0.95	0.02
			0.00			1" Ice	0.45	1.07	0.03
01 01 01 1 A 3 forms	Α	From Leg	1.50	0.0000	145.00	No Ice	1.78	2.97	0.11
2' x 3' Side Arm Mount	A	FIOIII Leg	0.00	0,000		1/2" Ice	2.24	3.57	0.13
			0.00			1" Ice	2.75	4.19	0.16
0) 01511 A Manuat	В	From Leg	1.50	0.0000	145.00	No Ice	1.78	2.97	0.11
2' x 3' Side Arm Mount	ь	I Tom Leg	0.00	0.00		1/2" Ice	2.24	3.57	0.13
			0.00			1" Ice	2.75	4.19	0.16
21 21 Side Asses Mount	С	From Leg	1.50	0.0000	145.00	No Ice	1.78	2.97	0.11
2' x 3' Side Arm Mount	·	110111 208	0.00			1/2" Ice	2.24	3.57	0.13
			0.00			1" Ice	2.75	4.19	0.16
ofe afe afe	_		0.50	0.0000	140.00	No Ice	1.19	1.19	0.04
4' x 4.5" Pipe Mount	В	From Leg	0.50	0.0000	140.00	1/2" Ice	1.58	1.58	0.06
			0.00 0.00			1" Ice	1.84	1.84	0.07
***							1 44	1 77	0.02
6' x 3" Omni	В	From Leg	3.00	0.0000	135.00	No Ice	1.77	1.77	0.02
			0.00			1/2" Ice	2.13	2.13	0.04
			3.00		40-00	1" Ice	2.49 1.50	2.49 3.00	0.03
2' x 3' Side Arm Mount	В	From Leg	1.50	0.0000	135.00	No Ice		4.00	0.19
			0.00 0.00			1/2" Ice 1" Ice	2.50 3.50	5.00	0.36
***			0.00					4.40	A A *
DB254-A	C	From Leg	3.00	0.0000	135.00	No Ice	1.10	1.10	0.01
₩ ₩ ₩ # # # # # # # # # # # # # # # # #	-	J	0.00			1/2" Ice	1.98	1.98	0.01
			0.00			1" Ice	2.86	2.86	0.02
2' x 3' Side Arm Mount	С	From Leg	1.50	0.0000	135.00	No Ice	1.50	3.00	0.19
2 / J Dido / Hitt Haddie	_		0.00			1/2" Ice	2.50	4.00	0.28
			0.00			1" Ice	3.50	5.00	0.36

Job		Page
	Stamford NW CT	19 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Face	Offset	Offsets:	Azimuth	Placement		C_AA_A	$C_A A_A$	Weigh
	or	Туре	Horz	Adjustment			Front	Side	3
	Leg		Lateral						
			Vert	О	Δ		62	0.7	
			ft ft	Ü	ft		ft^2	ft²	K
			ft						
APXVSPP18-C-A20 w/	A	From Leg	4.00	0.0000	131.00	No Ice	8.26	6.95	0.08
Mount Pipe			0.00			1/2" Ice	8.82	8.13	0.15
			0.00			1" Ice	9.35	9.02	0.23
APXVSPP18-C-A20 w/	В	From Leg	4.00	0.0000	131.00	No Ice	8.26	6.95	0.08
Mount Pipe			0.00			1/2" Ice	8.82	8.13	0.15
A DATE (CIDE) OF A DATE (_	_	0.00			1" Ice	9.35	9.02	0.23
APXVSPP18-C-A20 w/	C	From Leg	4.00	0.0000	131.00	No Ice	8.26	6.95	0.08
Mount Pipe			0.00			1/2" Ice	8.82	8.13	0.15
DDII2 - 60 WGG			0.00			1" Ice	9.35	9.02	0.23
RRH2x50-WCS	Α	From Leg	4.00	0.0000	131.00	No Ice	4.91	2.70	0.08
			0.00			1/2" Ice	5.23	3.00	0.11
DBH250 WCS	ъ.		0.00			1" Ice	5.55	3.30	0.14
RRH2x50-WCS	В	From Leg	4.00	0.0000	131.00	No Ice	4.91	2.70	0.08
			0.00			1/2" Ice	5.23	3.00	0.11
RRH2x50-WCS	C	F I	0.00	0.0000		1" Ice	5.55	3.30	0.14
Idd12x30-WCS		From Leg	4.00	0.0000	131.00	No Ice	4.91	2.70	0.08
			0.00 0.00			1/2" Ice	5.23	3.00	0.11
RRH4X45-19	A	From Leg	4.00	0.0000	121.00	1" Ice	5.55	3.30	0.14
144111111111111111111111111111111111111	A	110m Leg	0.00	0.0000	131.00	No Ice	2.31	2.38	0.06
			0.00			1/2" Ice	2.52	2.58	0.08
RRH4X45-19	В	From Leg	4.00	0.0000	121.00	1" Ice	2.73	2.79	0.11
144.21.01)	2	Trom Leg	0.00	0.0000	131.00	No Ice	2.31	2.38	0.06
			0.00			1/2" Ice	2.52	2.58	0.08
RRH4X45-19	С	From Leg	4.00	0.0000	131.00	1" Ice	2.73 2.31	2.79	0.11
	_	TIOM LOG	0.00	0.0000	131.00	No Ice 1/2" Ice	2.52	2.38	0.06
			0.00			1/2" Ice	2.52	2.58 2.79	0.08
PXVTM14-ALU-I20 w/	Α	From Leg	4.00	0.0000	131.00	No Ice	6.58		0.11
Mount Pipe		110111 205	0.00	0.0000	131.00	1/2" Ice	7.03	4.96 5.75	0.08
1			0.00			1" Ice	7.03 7.47	6.47	0.13
PXVTM14-ALU-I20 w/	В	From Leg	4.00	0.0000	131.00	No Ice	6.58	4.96	0.19
Mount Pipe			0.00	010000	151.00	1/2" Ice	7.03	5.75	0.08 0.13
_			0.00			1" Ice	7.47	6.47	0.13
PXVTM14-ALU-I20 w/	C	From Leg	4.00	0.0000	131.00	No Ice	6.58	4.96	0.19
Mount Pipe		·	0.00		101100	1/2" Ice	7.03	5.75	0.08
			0.00			1" Ice	7.47	6.47	0.19
TD-RRH8x20	Α	From Leg	4.00	0.0000	131.00	No Ice	3.70	1.29	0.07
			0.00			1/2" Ice	3.95	1.46	0.09
			0.00			1" Ice	4.20	1.64	0.12
TD-RRH8x20	В	From Leg	4.00	0.0000	131.00	No Ice	3.70	1.29	0.07
			0.00			1/2" Ice	3.95	1.46	0.09
			0.00			I" Ice	4.20	1,64	0.12
TD-RRH8x20	C	From Leg	4.00	0.0000	131.00	No Ice	3.70	1.29	0.07
			0.00			1/2" Ice	3.95	1.46	0.09
5		_	0.00			1" Ice	4.20	1.64	0.12
Sector Frame Mount	Α	From Leg	2.00	0.0000	131.00	No Ice	15.35	14.00	0.56
			0.00			1/2" Ice	21.29	20.81	0.74
Castas Every Manual			0.00			1" Ice	27.23	27.62	0.92
Sector Frame Mount	В	From Leg	2.00	0.0000	131.00	No Ice	15.35	14.00	0.56
			0.00			1/2" Ice	21.29	20.81	0.74
Santor Transa Massat	0	F	0.00	0.444		1" Ice	27.23	27.62	0.92
Sector Frame Mount	C	From Leg	2.00	0.0000	131.00	No Ice	15.35	14.00	0.56
			0.00			1/2" Ice	21.29	20.81	0.74
***			0.00			1" Ice	27.23	27.62	0.92
AIR32 KRD901146-	A	F 7	4.00	0.0007					
	Α	From Leg	4.00 0.00	0.0000	115.00	No Ice	11.39	5.90	0.11
366_B2A w/ Mount Pipe						1/2" Ice	11.88	6.56	0.19

Job	Stamford NW CT	Page 20 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg	71	Lateral						
			Vert		ft		ft^2	ft²	K
			ft ft		jı		jι	<i>J</i> •	**
									0.00
			3.00			1" Ice	12.33	7.24	0.28
AIR32 KRD901146-	В	From Leg	4.00	0.0000	115.00	No Ice	11.39	5.90 6.56	$0.11 \\ 0.19$
1_B66_B2A w/ Mount Pipe			0.00			1/2" Ice 1" Ice	11.88 12.33	7.24	0.28
	_		3.00	0.0000	115.00	No Ice	11.39	5.90	0.11
AIR32 KRD901146-	C	From Leg	4.00	0.0000	115.00	1/2" Ice	11.88	6.56	0.19
I_B66_B2A w/ Mount Pipe			0.00 3.00			1" Ice	12.33	7.24	0.28
ATRICAGO DAS ANTANAS Pinas		From Lag	4.00	0.0000	115.00	No Ice	6.93	4.39	0.13
AIR6449 B41 w/ Mount Pipe	Α	From Leg	0.00	0.0000	110.00	1/2" Ice	7.77	5.45	0.19
			3.00			1" Ice	8.52	6.35	0.26
AIR6449 B41 w/ Mount Pipe	В	From Leg	4.00	0.0000	115.00	No Ice	6.93	4.39	0.13
AIR6449 B41 W/ Mount Pipe	D	Trom 20g	0.00			1/2" Ice	7.77	5.45	0.19
			3.00			1" Ice	8.52	6.35	0.26
AIR6449 B41 w/ Mount Pipe	C	From Leg	4.00	0.0000	115.00	No Ice	6.93	4.39	0.13
AIRO449 B41 W Mosaus Lipe	•		0.00			1/2" Ice	7.77	5.45	0.19
			3.00			1" Ice	8.52	6.35	0.26
APXVAARR24_43-U-NA20	Α	From Leg	4.00	0.0000	115.00	No Ice	20.24	10.79	0.16
w/ Mount Pipe			0.00			1/2" Ice	20.89	12.21	0.29
•			3.00			1" Ice	21.55	13.49	0.44
APXVAARR24_43-U-NA20	В	From Leg	4.00	0.0000	115.00	No Ice	20.24	10.79	0.16 0.29
w/ Mount Pipe			0.00			1/2" Ice	20.89	12.21 13.49	0.44
•			3.00		115.00	1" Ice	21.55 20.24	10.79	0.16
APXVAARR24_43-U-NA20	C	From Leg	4.00	0.0000	115.00	No Ice 1/2" Ice	20.24	12.21	0.29
w/ Mount Pipe			0.00			1" Ice	21.55	13.49	0.44
			3.00	0.0000	115.00	No Ice	2.83	1.18	0.05
RRUS 11 B4	Α	From Leg	4.00	0.0000	113.00	1/2" Ice	3.04	1.33	0.07
			0.00 3.00			1" Ice	3.26	1.48	0.10
		Europ I om	4.00	0.0000	115.00	No Ice	2.83	1.18	0.05
RRUS 11 B4	В	From Leg	0.00	0.0000	112.00	1/2" Ice	3.04	1.33	0.07
			3.00			1" Ice	3.26	1.48	0.10
DDIE 11 D4	С	From Leg	4.00	0.0000	115.00	No Ice	2.83	1.18	0.05
RRUS 11 B4	C	I IOIII DOB	0.00	•,		1/2" Ice	3.04	1.33	0.07
			3.00			1" Ice	3.26	1.48	0.10
RRUS 4415 B25	Α	From Leg	4.00	0.0000	115.00	No Ice	1.64	0.68	0.04
KK03 413 B23			0.00			1/2" Ice	1.80	0.79	0.06
			3,00			1" Ice	1.97	0.91	0.07
RRUS 4415 B25	В	From Leg	4.00	0.0000	115.00	No Ice	1.64	0.68	0.04
20100 1101 ===			0.00			1/2" Ice	1.80	0.79	0.06
			3.00			1" Ice	1.97	0.91	0.07 0.04
RRUS 4415 B25	C	From Leg	4.00	0.0000	115.00	No Ice	1.64	0.68	0.04
			0.00			1/2" Ice	1.80 1.97	0.79 0.91	0.07
		_	3.00	0.0000	115.00	1" Ice No Ice	15.35	14.00	0.56
Sector Frame Mount	Α	From Leg	2.00	0.0000	115.00	1/2" Ice	21.29	20.81	0.74
			0.00			1" Ice	27.23	27.62	0.92
	_		0.00	0.0000	115.00	No Ice	15.35	14.00	0.56
Sector Frame Mount	В	From Leg	2.00	0.0000	115.00	1/2" Ice	21.29	20.81	0.74
			0.00 0.00			1" Ice	27.23	27.62	0.92
g . For March	-	From Leg	2.00	0.0000	115.00	No Ice	15.35	14.00	0.56
Sector Frame Mount	C	rioin Leg	0.00	0,0000	110100	1/2" Ice	21.29	20.81	0.74
			0.00			1" Ice	27.23	27.62	0.92
***				0.0000	00.00	Ma I	3.12	2.65	0.05
XXDWMM-12.5-65-8T-CBR	Α	From Leg	4.00	0.0000	98.00	No Ice 1/2" Ice	3.12	3.60	0.03
S w/ Mount Pipe			0.00			1/2" Ice	3.96 4.69	4.40	0.12
	_	T *	0.00	0.0000	98.00	No Ice	3.12	2,65	0.05
XXDWMM-12.5-65-8T-CBR	В	From Leg	4.00	0.0000	20,00	, 10 100	J.12		

Job		Page
	Stamford NW CT	21 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C _A A _A Side	Weigh
	Leg		Lateral						X
			Vert ft	0	Ω		o?	07	17
			ft		ft		ft²	ft²	K
S w/ Mount Pipe			0,00			1/2" Ice	3.96	3.60	0.08
			0.00			1" Ice	4.69	4.40	0.08
XXDWMM-12.5-65-8T-CBR	C	From Leg	4.00	0.0000	98.00	No Ice	3.12	2.65	0.12
S w/ Mount Pipe		0,	0.00		7 0.00	1/2" Ice	3.96	3.60	0.08
			0.00			1" Ice	4.69	4.40	0.12
(2) JAHH-65B-R3B w/	Α	From Leg	4.00	0.0000	98.00	No Ice	9.35	7.65	0.09
Mount Pipe			0.00			1/2" Ice	9.92	8.83	0.16
(0) (1) (1)			0.00			1" Ice	10.46	9.73	0.25
(2) JAHH-65B-R3B w/	В	From Leg	4.00	0.0000	98.00	No Ice	9.35	7.65	0.09
Mount Pipe			0.00			1/2" Ice	9.92	8.83	0.16
(2) TATUL CED DOD	-		0.00			1" Ice	10.46	9.73	0.25
(2) JAHH-65B-R3B w/	C	From Leg	4.00	0.0000	98.00	No Ice	9.35	7.65	0.09
Mount Pipe			0.00			1/2" Ice	9.92	8.83	0.16
BSAMNT-SBS-2-2	Α	F I	0.00	0.0000		1" Ice	10.46	9.73	0.25
B3AMIN1-3B3-2-2	А	From Leg	4.00	0.0000	98.00	No Ice	0.11	0.34	0.07
			0.00			1/2" Ice	0.16	0.42	0.07
BSAMNT-SBS-2-2	В	From Leg	0.00 4.00	0.0000	00.00	I" Ice	0.21	0.50	0.08
30.1.mm 1 325 2 2	Ь	From Leg	0.00	0.0000	98.00	No Ice	0.11	0.34	0.07
			0.00			1/2" Ice	01.0	0.42	0.07
BSAMNT-SBS-2-2	С	From Leg	4.00	0.0000	06 00	1" Ice	0.21	0.50	0.08
	·	Trom Log	0.00	0.0000	98.00	No Ice 1/2" Ice	0.11	0.34	0.07
			0.00			1/2 Ice 1" Ice	0.16 0.21	0.42	0.07
DB-T1-6Z-8AB-0Z (OVP)	Α	From Leg	4.00	0.0000	98.00	No Ice	0.21	0.50 0.27	0.08
(/		- 10111 108	0.00	0.0000	20.00	1/2" Ice	0.42	0.27	$0.01 \\ 0.01$
			0.00			1" Ice	0.50	0.41	0.01
DB-T1-6Z-8AB-0Z (OVP)	В	From Leg	4.00	0.0000	98.00	No Ice	0.34	0.27	0.01
		•	0.00		7 0.00	1/2" Ice	0.42	0.34	0.01
			0.00			1" Ice	0.50	0.41	0.01
DB-T1-6Z-8AB-0Z (OVP)	C	From Leg	4.00	0.0000	98.00	No Ice	0.34	0.27	0.01
			0.00			1/2" Ice	0.42	0.34	0.01
			0.00			1" Ice	0.50	0.41	0.01
B2/B66A RRH-BR049	Α	From Leg	4.00	0.0000	98.00	No Ice	1.88	1,25	0.08
(RFV01U-D1A)			0.00			1/2" Ice	2.05	1.39	0.10
DODGGA DDII DDGAG	_		0.00			1" Ice	2.22	1.54	0.12
B2/B66A RRH-BR049	В	From Leg	4.00	0.0000	98.00	No Ice	1.88	1.25	0.08
(RFV01U-D1A)			0.00			1/2" Ice	2.05	1.39	0.10
P2/D444 PD1/ PD040			0.00			1" Ice	2.22	1.54	0.12
B2/B66A RRH-BR049	C	From Leg	4.00	0.0000	98.00	No Ice	1.88	1.25	0.08
(RFV01U-D1A)			0.00			1/2" Ice	2.05	1.39	0.10
B5/B13 RRH-BR04C		Enoma I	0.00	0.0000		1" Ice	2.22	1.54	0.12
(RFV01U-D2A)	A	From Leg	4.00	0.0000	98.00	No Ice	1.88	1.01	0.07
(Id Voic-DZA)			0.00			1/2" Ice	2.05	1.14	0.09
B5/B13 RRH-BR04C	В	From Leg	0.00 4.00	0.0000	00.00	1" Ice	2.22	1.28	0.11
(RFV01U-D2A)	ь	1 tom Leg	0.00	0.0000	98.00	No Ice	1.88	1.01	0.07
(10 1010 2211)			0.00			1/2" Ice 1" Ice	2.05	1.14	0.09
B5/B13 RRH-BR04C	С	From Leg	4.00	0.0000	98.00		2.22	1.28	0.11
(RFV01U-D2A)	~	-10 105	0.00	0.0000	90.00	No Ice 1/2" Ice	1.88	1.01	0.07
;,			0.00			1" Ice	2.05 2.22	1.14	0.09
CBC78T-DS-43-2X	Α	From Leg	4.00	0.0000	98.00	No Ice	0.37	1.28 0.51	0.11
		2-6	0.00	0.0000	70.00	1/2" Ice	0.37	0.60	0.02
			0.00			1" Ice	0.43	0.60	0.03
CBC78T-DS-43-2X	В	From Leg	4.00	0.0000	98.00	No Ice	0.37	0.70	0.04
		-	0.00		, 5.50	1/2" Ice	0.45	0.60	0.02
			0.00			l" Ice	0.53	0.70	0.03
CBC78T-DS-43-2X	C	From Leg							

		12
Job	Stamford NW CT	Page 22 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	$C_A A_A$ Side	Weight
	Leg		Lateral						
			Vert ft	٥	fi		ft^2	ft^2	K
			ft		,,,		,	J	
			0.00			1/2" Ice	0.45	0.60	0.03
			0.00			1" Ice	0.53	0.70	0.04
Site Pro 1 VFA12-HD	Α	From Leg	2.00	0.0000	98.00	No Ice	13.20	9.20	0.66
She i to i vi Aiz-iiD			0.00			1/2" Ice	19.50	14.60	0.80
			0.00			1" Ice	25.80	20.00	1.01
Site Pro 1 VFA12-HD	В	From Leg	2.00	0.0000	98.00	No Ice	13.20	9.20	0.66
			0.00			1/2" Ice	19.50	14.60	0.80
			0.00		00.00	1" Ice	25.80	20.00	1.01 0.66
Site Pro 1 VFA12-HD	C	From Leg	2.00	0.0000	98.00	No Ice	13.20	9.20	0.80
			0.00			1/2" Ice	19.50 25.80	14.60 20.00	1.01
			0.00	0.0000	00.00	1" Ice	4.71	2.43	0.10
MT6407-77A w/ Pipe Mount	Α	From Leg	4.00	0.0000	98.00	No Ice 1/2" Ice	5.01	2.84	0.14
			0.00			1" Ice	5.31	3.26	0.14
_	_		0.00	0.0000	98.00	No Ice	4.71	2.43	0.10
MT6407-77A w/ Pipe Mount	В	From Leg	4.00	0.0000	90.00	1/2" Ice	5.01	2.84	0.14
			0.00 0.00			1" Ice	5.31	3.26	0.18
	-	F T	4.00	0.0000	98.00	No Ice	4.71	2.43	0.10
MT6407-77A w/ Pipe Mount	С	From Leg	0.00	0.0000	70,00	1/2" Ice	5.01	2.84	0.14
			0.00			1" Ice	5.31	3.26	0.18
(0) 77 1 (0)00		From Lag	2.00	0.0000	98.00	No Ice	0.77	0.28	0.03
(2) KA-6030	В	From Leg	0.00	0,0000	70.00	1/2" Ice	0.88	0.35	0.03
			0.00			1" Ice	1.00	0.43	0.04
(2) V A 6020	С	From Leg	2.00	0.0000	98.00	No Ice	0.77	0.28	0.03
(2) KA-6030	C	TIOIII LCg	0.00	0.0000		1/2" Ice	0.88	0.35	0.03
			0.00			1" Ice	1.00	0.43	0.04
Site Pro 1 RRUDSM	В	From Leg	1.00	0.0000	98.00	No Ice	1.13	1.13	0.04
Site Fig 1 KKODSM	2	110111 208	0.00			1/2" Ice	1.69	1.69	0.09
			0.00			1" Ice	2.25	2.25	0.13
Site Pro 1 RRUDSM	С	From Leg	1.00	0.0000	98.00	No Ice	1.13	1.13	0.04
Bite 110 1 Texeboni	_		0.00			1/2" Ice	1.69	1.69	0.09
			0.00			1" Ice	2.25	2.25	0.13
***				0.0000	74.00	Ma Iso	4.00	4.00	0.06
8' 4-Bay Dipole	С	From Leg	3.00	0.0000	74.00	No Ice 1/2" Ice	6.00	6.00	0.10
			0.00			1" Ice	8.00	8.00	0.14
	_		4.00 1.50	0.0000	74.00	No Ice	1.50	3.00	0.19
2' x 3' sidearm	C	From Leg	0.00	0.0000	74.00	1/2" Ice	2.50	4.00	0.28
			0.00			1" Ice	3.50	5.00	0.36
ate ate ate			0.00			1 100	2.00		
***	С	From Leg	3.00	0.0000	58.00	No Ice	0.15	0.15	0.01
GPS	C	FIOIII LEE	0.00	0.0000	20.00	1/2" Ice	0.24	0.24	0.02
			0.00			1" Ice	0.31	0.31	0.02
21 v. 21 sidenem	С	From Leg	1.50	0.0000	58.00	No Ice	1.50	3.00	0.19
2' x 3' sidearm	C	Trom Dog	0.00			1/2" Ice	2.50	4.00	0.28
			0.00			1" Ice	3.50	5.00	0.36
मुंद अ्षेत अ्षेत				0.0000	115.00	No Ice	6.83	3.11	0.07
(3) Site Pro 1 SFR-K	C	None		0.0000	115.00	1/2" Ice	8.01	3.65	0.11
						1" Ice	9.19	4.19	0.16
461 6 4 (41) 71 77	-	Eron Lac	4.00	0.0000	115.00	No Ice	2.25	2.25	0.08
10' x 2-1/4" Pipe Mount	С	From Leg	0.00	0,0000	115.00	1/2" Ice	3.28	3.28	0.10
			0.00			1" Ice	4.32	4.32	0.12
101 - 2 1/48 Pi 34	С	From Leg	4.00	0.0000	115.00	No Ice	2.25	2.25	0.08
10' x 2-1/4" Pipe Mount	C	Lion reg	0.00	0,000		1/2" Ice	3.28	3.28	0.10
			0.00			1" Ice	4.32	4.32	0.12
10' x 2-1/4" Pipe Mount	С	From Leg	4.00	0.0000	115.00	No Ice	2.25	2.25	0.08
10 x 2-1/4 Pipe Mount	-	TIOM FOR	.,,,,						

Job		Page
	Stamford NW CT	23 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh
			ft ft	۰	ft		ft²	fi²	K
			0.00			1/2" Ice	3.28	3.28	0.10
			0.00			I" Ice	4.32	4.32	0.12
RADIO 4449 B71+B85	Α	From Leg	4.00	0.0000	115.00	No Ice	1.64	1.31	0.07
			0.00			1/2" Ice	1.80	1.46	0.09
			3.00			1" Ice	1.97	1.61	0.11
RADIO 4449 B71+B85	В	From Leg	4.00	0.0000	115.00	No Ice	1.64	1.31	0.07
			0.00			1/2" Ice	1.80	1.46	0.09
			3.00			1" Ice	1.97	1.61	0.11
RADIO 4449 B71+B85	C	From Leg	4.00	0.0000	115.00	No Ice	1.64	1.31	0.07
		_	0.00			1/2" Ice	1.80	1.46	0.09
			3.00			1" Ice	1.97	1.61	0.11

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	٥	۰	ft	ft		ft ²	K
4' HP MW	С	Paraboloid w/Shroud (HP)	From Leg	1.00 0.00 0.00	0.0000		152.00	4.00	No Ice 1/2" Ice I" Ice	12.57 13.10 13.63	0.12 0.19 0.26
*** 4' HP MW	В	Paraboloid	From	1.00	0.0000		140.00	4.00	No Ice	12,57	0.12
		w/Shroud (HP)	Leg	0.00	0.0000		170,00	4.00	1/2" Ice I" Ice	13.10	0.12 0.19 0.26

Discrete Appulteriance Flessules - NO ICE $G_H = 0.850$	nce Pressures - No Ice GH = 0.850
---	-----------------------------------

Description	Aiming Azimuth	Weight	Offset _a	Offset _z	z	K.	q.	C _A A _C Front	C_AA_C Side
	o	K	ſì	ſŧ	ft		psf	ſt²	st2
20' 4-Bay Dipole	180.0000	0.06	0.00	2.88	162.00	1.134	31	4.00	4.0
TMA	240.0000	0.05	-3.69	2.13	152.00	1.114	30	1.50	1.5
6'x4" Sch 40 Pipe	240.0000	0.06	-3.69	2.13	152.00	1.114	30	1.96	1.9
DB563K-TT w/Mount	0.0000	0.13	0.00	-6.77	157.00	1.124	31	19.19	4.0
Pipe					20.1100			*****	7.0
2' x 3' sidearm	0.0000	0.19	0.00	-5.27	150.00	1.110	30	1.50	3.0
4' x 4.5" Pipe Mount	240.0000	0.04	-3.69	2.13	152.00	1.114	30	1.19	1.1
QS66512-2 w/ Mount	0.0000	0.14	0.00	-6.78	145.00	1.099	30	8.37	8.4
Pipe	1 1		707.2	0110	1.75.10,5	1,000	30	.0.27	0.4
QS66512-2 w/ Mount	120.0000	0.14	5.87	3.39	145.00	1.099	30	8.37	8.4
Pipe	1 1		100	3.33	1,12,00	1.055	201	0.57	0.4
QS66512-2 w/ Mount	240.0000	0.14	-5.87	3.39	145.00	1.099	30	8.37	8.4
Pipe	1	20.7.2.3	2.07	3.55	145.00	1.022	30	0.57	0.4
TMA2117F00V1-1	0.0000	0.04	0.00	-6.78	145.00	1.099	30	0.59	1.6
TMA2117F00V1-1	120.0000	0.04	5.87	3.39	145.00	1.099	30	0.59	1.6

T		Page
Job	Stamford NW CT	24 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Aiming	Weight	Offset _x	Offset _z	Z	K _z	q ₌	C_AA_C	C_AA_C
Description	Azimuth		<i>,,,</i>					Front	Side ft²
	0	K	ft	ft	ft	1.000	psf	ft ² 0.59	1.67
TMA2117F00V1-1	240.0000	0.04	-5.87	3.39	145.00	1.099	30 30	1.78	2.97
2' x 3' Side Arm Mount	0.0000	0.11	0.00	-5.28	145.00	1.099	30	1.78	2.97
2' x 3' Side Arm Mount	120.0000	0.11	4.57	2.64	145.00	1.099	30	1.78	2.97
2' x 3' Side Arm Mount	240.0000	0.11	-4.57	2.64	145.00	1.088	30	1.19	1.19
4' x 4.5" Pipe Mount	120.0000	0.04	3.71	2.14	140.00	1.083	30	1.77	1.77
6' x 3" Omni	120.0000	0.02	6.13	3.54	138.00 135.00	1.077	29	1.50	3.00
2' x 3' Side Arm Mount	120.0000	0.19	4.83	2.79 3.54	135.00	1.077	29	1.10	1.10
DB254-A	240.0000	0.01	-6.13	2.79	135.00	1.077	29	1.50	3.00
2' x 3' Side Arm Mount	240.0000	0.19	-4.83 0.00	-8.32	131.00	1.067	29	8.26	6.95
APXVSPP18-C-A20 w/	0.0000	0.08	0.00	-0.32	151.00	1.007		1745.00	College
Mount Pipe APXVSPP18-C-A20 w/	120.0000	0.08	7.20	4.16	131.00	1.067	29	8.26	6.95
Mount Pipe	120.000								6.05
APXVSPP18-C-A20 w/	240.0000	0.08	-7.20	4.16	131.00	1.067	29	8.26	6.95
Mount Pipe					333	_			2.70
RRH2x50-WCS	0.0000	0.08	0.00	-8.32	131.00	1.067	29	4.91	2.70
RRH2x50-WCS	120.0000	0.08	7.20	4.16	131.00	1.067	29	4.91	2.70 2.70
RRH2x50-WCS	240.0000	0.08	-7.20	4.16	131.00	1.067	29	4.91	2.38
RRH4X45-19	0.0000	0.06	0.00	-8.32	131.00	1.067	29	2.31 2.31	2.38
RRH4X45-19	120.0000	0.06	7.20	4.16	131.00	1.067	29 29	2.31	2.38
RRH4X45-19	240.0000	0.06	-7.20	4.16	131.00	1.067	29	6.58	4.96
APXVTM14-ALU-I20	0.0000	0.08	0.00	-8.32	131.00	1.067	29	0.56	4.50
w/ Mount Pipe	622000000000000		1222		121.00	1.067	29	6.58	4.96
APXVTM14-ALU-120	120.0000	0.08	7.20	4.16	131.00	1.067	29	0.55	-4120
w/ Mount Pipe			= 00	4.16	121.00	1.067	29	6.58	4.96
APXVTM14-ALU-I20	240.0000	0.08	-7.20	4.16	131.00	1.007	-42	0.50	=316(5)
w/ Mount Pipe	252000	0.05	0.00	0 22	131.00	1.067	29	3.70	1.29
TD-RRH8x20	0.0000	0.07	0.00	1		1.067	29	3.70	1.29
TD-RRH8x20	120.0000	0.07	7.20	13/5	131.00	1.067	29	3.70	1.29
TD-RRH8x20	240.0000	0.07	-7.20 0.00		7,000	1.067	29	15.35	14.00
Sector Frame Mount	0.0000	0.56	5.47	1 1985		1.067	29	15.35	14.00
Sector Frame Mount	120.0000	0.56	-5.47	102/006	111111111111111111111111111111111111111	1.067	29	15.35	14.00
Sector Frame Mount	240.0000	0.56 0.11	0.00	CD2232	118.00	1.036	28	11.39	5.90
AIR32 KRD901146-	0.0000	0.11	0.00	-7.20	110100				
1_B66_B2A w/ Mount									
Pipe	120,0000	0.11	8.01	4.63	118.00	1.036	28	11.39	5.90
AIR32 KRD901146-	120.0000	0.11	0,01	""					
1_B66_B2A w/ Mount	1								70000
Pipe	240,0000	0.11	-8.01	4.63	118.00	1.036	28	11.39	5.90
AIR32 KRD901146-	240.0000	0,111	"						
1_B66_B2A w/ Mount							200		
Pipe AIR6449 B41 w/ Mount	0.0000	0.13	0.00	-9.25	118.00	1.036	28	6.93	4.39
	0.0000	0.12				10.000.00			
Pipe AIR6449 B41 w/ Mount	120,0000	0.13	8.01	4.63	118.00	1.036	28	6.93	4.39
Pipe	120.000								
AIR6449 B41 w/ Mount	240.0000	0.13	-8.01	4.63	118.00	1.036	28	6.93	4.39
Pipe						W23835		-0.04	10.70
APXVAARR24_43-U-N	0.0000	0.16	0.00	-9.25	118.00	1.036	28	20.24	10.79
A20 w/ Mount Pipe							•	20.24	10.79
APXVAARR24_43-U-N	120.0000	0.16	8.01	4.63	118.00	1.036	28	20,24	10.79
A20 w/ Mount Pipe		~					20	20.24	10.79
APXVAARR24_43-U-N	240.0000	0.16	-8.01	4.63	118.00	1.036	28	20.24	10.79
A20 w/ Mount Pipe				537644				2 02	1,18
RRUS 11 B4	0.0000	0.05					28		1.18
RRUS 11 B4	120.0000	0.05					28		1.18
RRUS 11 B4	240.0000	0.05					28 28		
RRUS 4415 B25	0.0000	0.04	0.00	-9.25			28 28		
RRUS 4415 B25	120.0000								
RRUS 4415 B25	240.0000								
Sector Frame Mount	0.0000	0.56	0.00	-7.25	115.00	1.028	1 40	12.22	1.77.00

Job		Page
	Stamford NW CT	25 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Aiming	Weight	$Offset_{\pi}$	Offset=	Z	K _z	q_z	C_AA_C	C_AA_C
	Azimuth	K	fì			·		Front	Side
Sector Frame Mount	120.0000	0.56	6,28	ft 3.63	ft 115,00	1.028	psf	ft ²	ft²
Sector Frame Mount	240,0000	0.56	-6.28	3.63	115.00	1.028	28 28	15.35	14.00
XXDWMM-12.5-65-8T-	0.0000	0.05	0.00	-10.25	98.00	0.983	28	15.35	14.00
CBRS w/ Mount Pipe				10.25	56.00	0.565	- 4/	3.12	2.65
XXDWMM-12.5-65-8T-	120.0000	0.05	8.88	5.13	98.00	0.983	27	3.12	266
CBRS w/ Mount Pipe	1		0.00	0.13	20.00	0.763	2/	3.12	2.65
XXDWMM-12.5-65-8T-	240.0000	0.05	-8.88	5.13	98.00	0.983	27	3.12	2.65
CBRS w/ Mount Pipe	******	2000			20.00	0,703		3.12	2.03
JAHH-65B-R3B w/	0.0000	0.18	0.00	-10.25	98.00	0.983	27	18.70	15.29
Mount Pipe					7	0.505		10.70	13.29
JAHH-65B-R3B w/	120.0000	0.18	8.88	5.13	98.00	0.983	27	18.70	15.29
Mount Pipe			150/7740		- 1			10.70	13.23
JAHH-65B-R3B w/	240.0000	0.18	-8.88	5.13	98.00	0.983	27	18.70	15.29
Mount Pipe	12/10/99/110050				1		- 1	201/1/8	
BSAMNT-SBS-2-2	0.0000	0.07	0.00	-10.25	98.00	0.983	27	0.11	0.34
BSAMNT-SBS-2-2	120.0000	0.07	8.88	5.13	98.00	0.983	27	0.11	0.34
BSAMNT-SBS-2-2	240.0000	0.07	-8.88	5.13	98.00	0.983	27	0.11	0.34
DB-T1-6Z-8AB-0Z	0.0000	0.01	0.00	-10.25	98.00	0.983	27	0.34	0.27
(OVP)									7777
DB-T1-6Z-8AB-0Z	120.0000	0.01	8.88	5.13	98.00	0.983	27	0.34	0.27
(OVP) DB-T1-6Z-8AB-0Z	240,0000				1	0.00			
(OVP)	240.0000	0.01	-8.88	5.13	98.00	0.983	27	0.34	0.27
B2/B66A RRH-BR049	0.0000			İ		i	1		
(RFV01U-D1A)	0.0000	0.08	0.00	-10.25	98.00	0.983	27	1.88	1.25
B2/B66A RRH-BR049	120.0000	0.00	2 00		54752				
(RFV01U-D1A)	120.0000	0.08	8.88	5.13	98.00	0.983	27	1.88	1.25
B2/B66A RRH-BR049	240.0000	0.08	0.00	5.10	00.00				
(RFV01U-D1A)	240.0000	0.08	-8.88	5.13	98.00	0.983	27	1.88	1.25
B5/B13 RRH-BR04C	0.0000	0.07	0.00	10.26	00.00	0.000			
(RFV01U-D2A)	0.0000	0.07	0.00	-10.25	98.00	0.983	27	1.88	1.01
B5/B13 RRH-BR04C	120.0000	0.07	8.88	5.13	98.00	0.000	27		
(RFV01U-D2A)	12010000	0.07	0.00	3,13	96.00	0.983	27	1.88	1.01
B5/B13 RRH-BR04C	240.0000	0.07	-8.88	5.13	98.00	0.983	27	1.00	1.01
(RFV01U-D2A)		5.57	0.00	5.15	26.00	0.963	2/	1.88	1.01
CBC78T-DS-43-2X	0.0000	0.02	0.00	-10.25	98.00	0.983	27	0.37	0.51
CBC78T-DS-43-2X	120.0000	0.02	8.88	5.13	98.00	0.983	27	0.37	0.51 0.51
CBC78T-DS-43-2X	240.0000	0.02	-8.88	5.13	98.00	0.983	27	0.37	0.51
Site Pro 1 VFA12-HD	0.0000	0.66	0.00	-8.25	98.00	0.983	27	13.20	9.20
Site Pro 1 VFA12-HD	120.0000	0.66	7.15	4.13	98.00	0.983	27	13.20	9,20
Site Pro 1 VFA12-HD	240.0000	0.66	-7.15	4.13	98.00	0.983	27	13.20	9.20
MT6407-77A w/ Pipe	0.0000	0.10	0.00	-10.25	98.00	0.983	27	4.71	2.43
Mount			0.000	- 1				"'-"	2,13
MT6407-77A w/ Pipe	120.0000	0.10	8.88	5.13	98.00	0.983	27	4.71	2.43
Mount	0.000								171132
MT6407-77A w/ Pipe	240.0000	0.10	-8.88	5.13	98.00	0.983	27	4.71	2.43
Mount									
KA-6030	120.0000	0.06	7.15	4.13	98.00	0.983	27	1.54	0.56
KA-6030	240.0000	0.06	-7.15	4.13	98.00	0.983	27	1.54	0.56
Site Pro 1 RRUDSM Site Pro 1 RRUDSM	120.0000	0.04	6.28	3.63	98.00	0.983	27	1.13	1.13
8' 4-Bay Dipole	240.0000	0.04	-6.28	3.63	98.00	0.983	27	1.13	1.13
2' x 3' sidearm	240.0000	0.06	-9.23	5.33	78.00	0.921	25	4.00	4.00
GPS Sidearm	240.0000	0.19	-7.93	4.58	74.00	0.907	25	1.50	3.00
2' x 3' sidearm	240.0000	0.01	10.04	5.80	58.00	0.846	23	0.15	0.15
Site Pro 1 SFR-K	240.0000	0.19	-8.75	5.05	58.00	0.846	23	1.50	3.00
10' x 2-1/4" Pipe Mount	0.0000	0.20	0.00	0.00	115.00	1.028	28	20.49	9.33
10' x 2-1/4" Pipe Mount	240.0000 240.0000	0.08	-8.01	4.63	115.00	1.028	28	2.25	2.25
10' x 2-1/4" Pipe Mount	240.0000	0.08	-8.01	4.63	115.00	1.028	28	2.25	2.25
RADIO 4449 B71+B85	0.0000	0.08 0.07	-8.01	4.63	115.00	1.028	28	2.25	2.25
RADIO 4449 B71+B85	120.0000	0.07	0.00	-9.25	118.00	1.036	28	1.64	1.31
1 10 1115 111505	120.0000	0.071	8.01	4.63	118.00	1.036	28	1.64	1.31

Centerline Engineering

Services, PA
750 W Center St, Suite 301
West Bridgewater, MA 02379
Phone: (781) 713-4725
FAX:

Tues		Page
Job	Stamford NW CT	26 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Aiming Azimuth	Weight K	$Offset_x$	Offset _z ft	z ft	K ₂	q₂ psf	C _A A _C Front ft²	C _A A _C Side ft²
RADIO 4449 B71+B85	240,0000 Sum Weight:	0.07 12.77	-8.01	4.63	118.00	1.036	28	1.64	1.31

Discrete Appurtenance Pressures - With Ice $G_H = 0.850$

Description	Aiming	Weight	Offset _x	Offset _z	z	K _z	q_z	C _A A _C Front	C _A A _C Side	l_z
	Azimuth	P.	fi	ft	ρ		psf	ft ²	ft²	in
	۰	K		2.88	162.00	1.134	6	7.99	7.99	0.9966
20' 4-Bay Dipole	180.0000	0.14	0.00	2.13	152.00	1.114	6	2,98	2.98	0.9903
TMA	240.0000	0.07	-3.69		152.00	1.114	6	2.99	2.99	0.9903
6'x4" Sch 40 Pipe	240.0000	0.10	-3.69	2.13		1.124	6	21.26	9.87	0.9935
DB563K-TT w/Mount	0.0000	0.35	0.00	-6.77	157.00	1.124	ı "	21.20	2.07	0.5555
Pipe						1 110	6	3.48	4.98	0.9890
2' x 3' sidearm	0.0000	0.36	0.00	-5.27	150.00	1.110	6	1.83	1.83	0.9903
4' x 4.5" Pipe Mount	240.0000	0.07	-3.69	2.13	152.00	1.114		9.44	10.52	0.9856
OS66512-2 w/ Mount	0.0000	0.29	0.00	-6.78	145.00	1.099	6	9.44	10.52	0.5050
Pipe								6.44	10.52	0.9856
QS66512-2 w/ Mount	120.0000	0.29	5.87	3.39	145.00	1.099	6	9.44	10.52	0.5650
Pipe				_	1000				10.50	0.0056
QS66512-2 w/ Mount	240.0000	0.29	-5.87	3,39	145.00	1.099	6	9.44	10.52	0.9856
Pipe									200	0.0056
TMA2117F00V1-1	0.0000	0.07	0.00	-6.78	145.00	1.099	6	0.90	2.14	0.9856
TMA2117F00V1-1	120.0000	0.07	5.87	3.39	145.00	1.099	6	0.90	2.14	0.9856
	240.0000	0.07	-5.87	3.39	145.00	1.099	.6	0.90	2.14	0.9856
TMA2117F00V1-1	0.0000	0.16	0.00	-5.28	145.00	1.099	6	2.74	4.17	0.9856
2' x 3' Side Arm Mount	120.0000	0.16	4.57	2,64	145.00	1.099	6	2.74	4.17	0.9856
2' x 3' Side Arm Mount		0.16	-4.57	2.64	145.00	1.099	6	2.74	4.17	0.9856
2' x 3' Side Arm Mount	240.0000	0.10	3.71	2.14	140.00	1.088	6	1.83	1.83	0.9822
4' x 4.5" Pipe Mount	120.0000		6.13	3.54	138.00	1.083	6	2.48	2,48	0.9807
6' x 3" Omni	120.0000	0.05		2.79	135.00	1.077	5	3.46	4.96	0.9786
2' x 3' Side Arm Mount	120.0000	0.36	4.83		135.00	1.077	5	2.82	2,82	0.9786
DB254-A	240.0000	0.02	-6.13	3.54	135.00	1.077	5	3.46	4.96	0.9786
2' x 3' Side Arm Mount	240.0000	0.36	-4.83	2.79			5	9.32	8.98	0.9757
APXVSPP18-C-A20 w/	0.0000	0.22	0.00	-8.32	131.00	1.067	ا ا	7.32	0.70	0.5721
Mount Pipe							اءِ ا	9.32	8.98	0.9757
APXVSPP18-C-A20 w/	120.0000	0.22	7.20	4.16	131.00	1.067	5	9.32	0,20	0.2737
Mount Pipe				J			اء ا	0.00	0.00	0.9757
APXVSPP18-C-A20 w/	240,0000	0.22	-7.20	4.16	131.00	1.067	5	9.32	8.98	0.9757
Mount Pipe	-5-230000000					(0.08600)		9797		0.0555
RRH2x50-WCS	0,0000	0.14	0.00	-8.32	131.00	1.067	5	5.54	3.29	0.9757
RRH2x50-WCS	120.0000	0.14	7.20	4.16	131.00	1.067	5	5.54	3.29	0.9757
	240,0000	0.14		4.16	131.00	1.067	5	5.54	3.29	0.9757
RRH2x50-WCS	0.0000	0.11	0.00	-8.32	131.00	1.067	5	2.72	2.78	0.9757
RRH4X45-19	120,0000	0.11	7.20	4.16	131.00	1.067	5	2.72	2.78	0.9757
RRH4X45-19		0.11	-7.20	4.16	131.00	1.067	5	2.72	2.78	0.9757
RRH4X45-19	240.0000	0.11	26000	-8.32	131.00		5	7.45	6.44	0.9757
APXVTM14-ALU-I20	0.0000	0.19	0.00	-0.52	151.00	1.007			33831813	
w/ Mount Pipe		0.10	7.20	4.16	131.00	1.067	5	7.45	6.44	0.9757
APXVTM14-ALU-I20	120.0000	0.19	7.20	4.10	131.00	1.007		,,,,		
w/ Mount Pipe				4.16	121.00	1.067	5	7,45	6.44	0,9757
APXVTM14-ALU-I20	240.0000	0.19	-7.20	4.16	131.00	1.067	ر ا	7,45	9.5.	015721
w/ Mount Pipe			1000000			1.00	_ ا	4.18	1,63	0.9757
TD-RRH8x20	0.0000	0.12		-8.32	131.00	1.067	5		1.63	0.9757
TD-RRH8x20	120.0000	0.12		4.16		1.067	5	4.18		0.9757
TD-RRH8x20	240.0000	0.12	-7.20	4.16			5	4.18	1.63	0.9757
Sector Frame Mount	0.0000	0.92	0.00	-6.32		1.067	5	26.94	27.29	
Sector Frame Mount	120.0000	0.92		3.16	131.00	1.067	5	26.94	27.29	0.9757
Sector Frame Mount	240.0000	0,92		3.16	131.00			26.94	27.29	0.9757
AIR32 KRD901146-	0.0000					1.036	5	12.30	7.19	0.9655

Job		Page
	Stamford NW CT	27 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Aiming Azimuth	Weight	Offset _x	Offset _z	Z	K _z	q ₌	C₁Ac Front	C₁A _C Side	tz
	۰	K	ft	ft	ft		psf	ft ²	stae ft²	in
1_B66_B2A w/ Mount									- 4	
Pipe AIR32 KRD901146- 1_B66 B2A w/ Mount	120.0000	0.28	8.01	4.63	118.00	1.036	5	12.30	7.19	0.9655
Pipe AIR32 KRD901146- 1_B66_B2A w/ Mount	240.0000	0.28	-8.01	4.63	118.00	1.036	5	12.30	7.19	0.9655
Pipe AIR6449 B41 w/ Mount Pipe	0.0000	0.26	0.00	-9.25	118.00	1.036	5	8.47	6.29	0.9655
AIR6449 B41 w/ Mount Pipe	120.0000	0.26	8.01	4.63	118.00	1.036	5	8.47	6.29	0.9655
AIR6449 B41 w/ Mount Pipe	240.0000	0.26	-8.01	4.63	118.00	1.036	5	8.47	6.29	0.9655
APXVAARR24_43-U-N A20 w/ Mount Pipe	0.0000	0.43	0.00	-9.25	118,00	1.036	5	21.50	13.41	0.9655
APXVAARR24_43-U-N A20 w/ Mount Pipe	120.0000	0.43	8.01	4.63	118.00	1.036	5	21.50	13.41	0.9655
APXVAARR24_43-U-N A20 w/ Mount Pipe RRUS 11 B4	240.0000	0.43	-8.01	4.63	118.00	1.036	5	21.50	13.41	0.9655
RRUS 11 B4	0.0000	0.09	0.00	-9.25	118.00	1.036	5	3.24	1.47	0.9655
RRUS 11 B4	120.0000	0.09	8.01	4.63	118.00	1.036	5	3.24	1.47	0.9655
RRUS 4415 B25	0.0000	0.09	-8.01	4.63	118.00	1.036	5	3.24	1.47	0.9655
RRUS 4415 B25	120.0000	0.07	0.00	-9.25	118.00	1.036	5	1.96	0.90	0.9655
RRUS 4415 B25	240.0000	0.07 0.07	8.01	4.63	118.00	1.036	5	1.96	0.90	0.9655
Sector Frame Mount	0.0000	0.07	-8.01	4.63	118.00	1.036	5	1.96	0.90	0.9655
Sector Frame Mount	120.0000	0.91	0.00 6.28	-7.25	115.00	1.028	5	26.79	27.12	0.9630
Sector Frame Mount	240.0000	0.91	-6.28	3.63	115.00 115.00	1.028	5	26.79	27.12	0.9630
XXDWMM-12.5-65-8T-	0.0000	0.12	0.00	-10.25	98.00	1.028 0.983	5	26.79	27.12	0.9630
CBRS w/ Mount Pipe XXDWMM-12.5-65-8T-	120.0000	0.12	8.88	5.13	98.00	0.983	5	4.61	4.32	0.9477 0.9477
CBRS w/ Mount Pipe XXDWMM-12.5-65-8T-	240.0000	0.12	-8.88	5.13	98.00	0.983	5	4.61	4.32	0.9477
CBRS w/ Mount Pipe JAHH-65B-R3B w/ Mount Pipe	0.0000	0.48	0.00	-10.25	98.00	0.983	5	20.80	19.28	0.9477
JAHH-65B-R3B w/ Mount Pipe	120.0000	0.48	8.88	5.13	98.00	0.983	5	20.80	19.28	0.9477
JAHH-65B-R3B w/ Mount Pipe	240.0000	0.48	-8.88	5.13	98.00	0.983	5	20.80	19.28	0.9477
BSAMNT-SBS-2-2	0.0000	0.07	0.00	-10.25	98.00	0.983	5	0.21	0.49	0.9477
BSAMNT-SBS-2-2 BSAMNT-SBS-2-2	120.0000	0.07	8.88	5.13	98.00	0.983	5	0.21	0.49	0.9477
DB-T1-6Z-8AB-0Z	240.0000	0.07	-8.88	5.13	98.00	0.983	5	0.21	0.49	0.9477
OVP) DB-T1-6Z-8AB-0Z	120.0000	0.01	0.00	-10.25	98.00	0.983	5	0.49	0.40	0.9477
(OVP) DB-T1-6Z-8AB-0Z	240.0000	0.01	-8.88	5.13	98.00 98.00	0.983	5	0.49	0.40	0.9477 0.9477
(OVP) B2/B66A RRH-BR049	0.0000	0.12	0.00	-10.25	98.00	0.983	5	2.20	1.53	0.9477
RFV01U-D1A) B2/B66A RRH-BR049	120.0000	0.12	8.88	5.13	98.00	0.983	5	2.20	1.53	0.9477
RFV01U-D1A) 32/B66A RRH-BR049 RFV01U-D1A)	240.0000	0.12	-8.88	5.13	98.00	0.983	5	2.20	1.53	0.9477
35/B13 RRH-BR04C RFV01U-D2A)	0.0000	0.10	0.00	-10.25	98.00	0.983	5	2.20	1.27	0.9477
35/B13 RRH-BR04C RFV01U-D2A)	120.0000	0.10	8.88	5.13	98.00	0.983	5	2.20	1.27	0.9477
35/B13 RRH-BR04C	240.0000	0.10	-8.88	5.13	98.00	0.983	5	2.20	1.27	0.9477

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

-		Page
Job	Stamford NW CT	28 of 52
Project	Stamford NW CT 23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Aiming	Weight	Offset _x	Offset _z	2	K ₂	q=	C _A A _C Front	C _A A _C Side	t _z
-	Azimuth						_	ft ²	ft ²	in
ļ.	٥	K	ft	ft	ft		psf	Jr		in
(RFV01U-D2A)						0.000	-	0.52	0.69	0.9477
CBC78T-DS-43-2X	0.0000	0.03	0,00	-10.25	98.00	0.983	5	0.52	0.69	0.9477
CBC78T-DS-43-2X	120.0000	0.03	8.88	5.13	98.00	0.983	ء ا	0.52		0.9477
CBC78T-DS-43-2X	240.0000	0.03	-8.88	5.13	98.00	0.983	3	25.14		0.9477
Site Pro 1 VFA12-HD	0.0000	0.99	0.00	-8.25	98.00	0.983	3	25.14		0.9477
Site Pro 1 VFA12-HD	120.0000	0.99	7.15	4.13	98.00	0.983	3	25.14		0.9477
Site Pro 1 VFA12-HD	240.0000	0.99	-7.15	4.13	98.00	0.983	3	5.28		0.9477
MT6407-77A w/ Pipe	0.0000	0.17	0.00	-10.25	98.00	0.983	ا ا	3.28	3,22	0.5477
Mount					00.00	0.001	5	5.28	3.22	0.9477
MT6407-77A w/ Pipe	120.0000	0.17	8.88	5.13	98.00	0.983	,	3.26	3.22	0.5477
Mount				- 10	00.00	0.983	5	5.28	3.22	0.9477
MT6407-77A w/ Pipe	240.0000	0.17	-8.88	5.13	98.00	0.963	ر ا	5.26	3.22	0.5177
Mount					00.00	0.983	5	1.98	0.84	0.9477
KA-6030	120.0000	0.08	7.15	4.13	98.00	0.983	3	1.98		
KA-6030	240.0000	0.08	-7.15	4.13	98.00		ء ا	2.19		
Site Pro 1 RRUDSM	120.0000	0.13	6.28	3.63	98.00	0.983	5	2.19		0.9477
Site Pro 1 RRUDSM	240.0000	0.13	-6.28	3.63		0.983] ,	7.71	7.71	0.9264
8' 4-Bay Dipole	240.0000	0.14	-9.23	5.33	78.00	0.921 0.907	5	3.34		0.9215
2' x 3' sidearm	240.0000	0.35	-7.93	4.58	74.00	0.907	3	0.30		
GPS	240.0000	0.02	-10.04	5.80	58.00		4	3.30		0,8993
2' x 3' sidearm	240.0000	0.34	-8.75	5.05	58.00	0.846	7	27.31	12.45	0,9630
Site Pro 1 SFR-K	0.0000	0.47	0.00	0.00		1.028] 5	4.24		0.9630
10' x 2-1/4" Pipe Mount	240.0000	0.12	-8.01	4.63	115.00	1.028] 3	4.24		
10' x 2-1/4" Pipe Mount	240.0000	0.12	-8.01	4.63	115.00	1.028] 3	4.24		
10' x 2-1/4" Pipe Mount	240.0000	0.12	-8.01	4.63	115.00	1.028	5			
RADIO 4449 B71+B85	0.0000	0.11	0.00	-9.25	118.00	1.036		1.96		
RADIO 4449 B71+B85	120.0000	0.11	8.01	4.63	118.00	1.036		1.96		- 11
RADIO 4449 B71+B85	240.0000	0.11	-8.01	4.63	118.00	1.036	ر ا	1.90	1.00	0.7055
	Sum	23.45							l	
	Weight:									

Discrete Appurtenance Pressures - Service $G_H = 0.850$

Description	Aiming Azimuth	Weight	$Offset_x$	Offset _z	z	Kz	q:	C _A A _C Front	C₁Ac Side
	Azimun	K	ft	ft	ft		psf	ft ²	ft²
20' 4-Bay Dipole	180.0000	0.06	0.00	2.88	162.00	1.134	9	4.00	4.00
TMA	240,0000	0.05	-3.69	2.13	152.00	1.114	9	1.50	1.50
5'x4" Sch 40 Pipe	240,0000	0.06	-3.69	2.13	152.00	1.114	9	1.96	1.96
DB563K-TT w/Mount	0.0000	0.13	0.00	-6.77	157.00	1.124	9	19.19	4.03
Pipe									2.00
2' x 3' sidearm	0.0000	0.19	0.00	-5.27	150.00	1.110	9	1.50	3.00
4' x 4.5" Pipe Mount	240.0000	0.04	-3.69	2.13	152.00	1.114	9	1.19	1.19
OS66512-2 w/ Mount	0.0000	0.14	0.00	-6.78	145.00	1.099	8	8.37	8.46
Pipe QS66512-2 w/ Mount	120.0000	0.14	5.87	3.39	145.00	1.099	8	8.37	8.46
Pipe QS66512-2 w/ Mount	240.0000	0.14	-5.87	3.39	145.00	1.099	8	8.37	8.46
Pipe	0.0000	0.04	0.00	-6.78	145.00	1.099	8	0.59	1.67
TMA2117F00V1-1	0.0000	0.04	5.87	3.39	145.00	1.099	8	0.59	1.67
TMA2117F00V1-1	120.0000	0.04	-5.87	3.39	145.00	1.099	8	0.59	1.67
TMA2117F00V1-1	240.0000		0.00	-5.28	145.00	1.099	8	1.78	2.97
2' x 3' Side Arm Mount	0.0000	0.11	4.57	2.64	145.00	1.099	8	1.78	2.97
2' x 3' Side Arm Mount	120.0000	0.11		2.64	145.00	1.099	8	1.78	2.97
2' x 3' Side Arm Mount	240.0000	0.11	-4.57	2.14	140.00	1.088	8	1.19	1.19
4' x 4.5" Pipe Mount	120.0000	0.04	3.71	3.54	138.00	1.083	8	1.77	1.77
6' x 3" Omni 2' x 3' Side Arm Mount	120.0000 120.0000	0.02 0.19	6.13 4.83	2.79	135.00	1.077	8	1.50	3.00

Job		Page
	Stamford NW CT	29 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Aiming	Weight	Offset _x	Offset:	Z	K _z	q=	C_AA_C	C_AA_C
	Azimuth	K	ft	ft	ft		2 1	Front ft ²	Side
DB254-A	240.0000	0.01	-6.13	3.54	135.00	1.077	psf 8	1.10	ft² 1.10
2' x 3' Side Arm Mount	240.0000	0.19	-4.83	2.79	135.00	1.077	8	1.50	3.00
APXVSPP18-C-A20 w/	0.0000	0.08	0.00	-8.32	131.00	1.067	8	8.26	6.95
Mount Pipe	i l								51,2
APXVSPP18-C-A20 w/	120.0000	0.08	7.20	4.16	131.00	1.067	8	8.26	6.95
Mount Pipe									
APXVSPP18-C-A20 w/	240.0000	0.08	-7.20	4.16	131.00	1.067	8	8.26	6.95
Mount Pipe	100000000					200.007.000		North Control	2000
RRH2x50-WCS	0.0000	0.08	0.00	-8.32	131.00	1.067	8	4.91	2.70
RRH2x50-WCS	120.0000	0.08	7.20	4.16	131.00	1.067	8	4.91	2.70
RRH2x50-WCS	240.0000	0.08	-7.20	4.16	131.00	1.067	8	4.91	2.70
RRH4X45-19	0.0000	0.06	0.00	-8.32	131.00	1.067	8	2.31	2.38
RRH4X45-19 RRH4X45-19	120.0000	0.06	7.20	4.16	131.00	1.067	8	2.31	2.38
APXVTM14-ALU-I20	240.0000	0.06	-7.20	4.16	131.00	1.067	8	2.31	2.38
w/ Mount Pipe	0.0000	0.08	0.00	-8.32	131.00	1.067	8	6.58	4.96
APXVTM14-ALU-I20	120.0000	0.00						-27771144	
w/ Mount Pipe	120.0000	0.08	7.20	4.16	131.00	1.067	8	6.58	4.96
APXVTM14-ALU-I20	240.0000	0.08	220	4.5		20202	_	-	
w/ Mount Pipe	240,0000	0.08	-7.20	4.16	131.00	1.067	8	6.58	4.96
TD-RRH8x20	0.0000	0.07	0.00	0.00	121.00				2000
TD-RRH8x20	120.0000	0.07	7.20	-8.32	131.00	1.067	8	3.70	1.29
TD-RRH8x20	240.0000	0.07	-7.20	4.16 4.16	131.00	1.067	8	3.70	1.29
Sector Frame Mount	0.0000	0.56	0.00	-6.32	131.00	1.067	8	3.70	1.29
Sector Frame Mount	120.0000	0.56	5.47	3.16	131.00 131.00	1.067	8	15.35	14.00
Sector Frame Mount	240.0000	0.56	-5.47	3.16	131.00	1.067 1.067	8	15.35	14.00
AIR32 KRD901146-	0.0000	0.11	0.00	-9.25	118.00	1.036	8	15.35	14.00
1_B66_B2A w/ Mount		٠١	0,00	-7.23	118.00	1.030	9	11.39	5.90
Pipe		- 1	1		- 1	1		1	
AIR32 KRD901146-	120.0000	0.11	8.01	4.63	118.00	1.036	8	11.39	5.90
1_B66_B2A w/ Mount					110.00	1.050	١	11	5.90
Pipe		- 1				- 1	- 1		
AIR32 KRD901146-	240.0000	0.11	-8.01	4.63	118.00	1.036	8	11.39	5.90
1_B66_B2A w/ Mount		- 1	- 1				1		3.50
Pipe					- 1		- 1		- 1
AIR6449 B41 w/ Mount	0.0000	0.13	0.00	-9.25	118.00	1.036	8	6.93	4.39
Pipe			- 1						
AIR6449 B41 w/ Mount	120.0000	0.13	8.01	4.63	118.00	1.036	8	6.93	4.39
Pipe								- 1	100461
AIR6449 B41 w/ Mount	240.0000	0.13	-8.01	4,63	118.00	1.036	8	6.93	4.39
Pipe									
APXVAARR24_43-U-N	0.0000	0.16	0.00	-9.25	118.00	1.036	8	20.24	10.79
A20 w/ Mount Pipe							(5)	- 1	
APXVAARR24_43-U-N	120.0000	0.16	8.01	4.63	118.00	1.036	8	20.24	10.79
A20 w/ Mount Pipe	240.0000	0.44	/		175003220	50000000			
APXVAARR24_43-U-N	240.0000	0.16	-8.01	4.63	118.00	1.036	8	20.24	10.79
A20 w/ Mount Pipe RRUS 11 B4	0.0000	0.00							
RRUS 11 B4	0.0000	0.05	0.00	-9.25	118.00	1.036	8	2.83	1.18
RRUS 11 B4	120.0000	0.05	8.01	4.63	118.00	1.036	8	2.83	1.18
RRUS 4415 B25	240.0000	0.05	-8.01	4.63	118.00	1.036	8	2.83	1.18
RRUS 4415 B25	0.0000 120.0000	0.04	0.00	-9.25	118.00	1.036	8	1.64	0.68
RRUS 4415 B25	240.0000		8.01	4.63	118.00	1.036	8	1.64	0.68
Sector Frame Mount	0.0000	0.04	-8.01	4.63	118.00	1.036	8	1.64	0.68
Sector Frame Mount	120.0000	0.56 0.56	0.00	-7.25	115.00	1.028	8	15.35	14.00
Sector Frame Mount	240.0000	0.56	6.28	3.63	115.00	1.028	8	15.35	14.00
XXDWMM-12.5-65-8T-	0.0000	0.56	-6.28	3,63	115.00	1.028	8	15.35	14.00
CBRS w/ Mount Pipe	0.0000	0.05	0.00	-10.25	98.00	0.983	8	3.12	2.65
XXDWMM-12.5-65-8T-	120.0000	0.05	8.88	5.13	00.00	0.000			241142
CBRS w/ Mount Pipe		0.05	0.00	2.12	98.00	0.983	8	3.12	2.65
XXDWMM-12.5-65-8T-	240.0000	0.05	-8.88	5.13	98.00	0.983	8	2.18	2.00
		0.00	-0.00	2.13	20.00	0.783	8	3.12	2.65

Job	Stamford NW CT	Page 30 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Description	Aiming	Weight	$Offset_x$	Offset _z	Z	K _z	q:	C_AA_C	C_AA_C
Description	Azimuth	,, с.д	0),,,,,	-332				Front	Side
	0	K	ft	ft	ft		psf	ft²	ft²
CBRS w/ Mount Pipe					20.00	0.000	8	18,70	15.29
JAHH-65B-R3B w/	0.0000	0.18	0.00	-10.25	98.00	0.983	8	18.70	13.29
Mount Pipe					00.00	0.002	8	18.70	15.29
JAHH-65B-R3B w/	120.0000	0.18	8.88	5.13	98.00	0.983	٥	18.70	13.29
Mount Pipe					00.00	0.983	8	18.70	15.29
JAHH-65B-R3B w/	240.0000	0.18	-8.88	5.13	98.00	0.983	٥	16.70	13.27
Mount Pipe			0.00	10.35	98.00	0.983	8	0.11	0.34
BSAMNT-SBS-2-2	0.0000	0.07	0.00	-10.25	98.00	0.983	8	0.11	0.34
BSAMNT-SBS-2-2	120.0000	0.07	8.88	5.13	98.00	0.983	8	0.11	0.34
BSAMNT-SBS-2-2	240.0000	0.07	-8.88	5.13 -10.25	98.00	0.983	8	0.34	0.27
DB-T1-6Z-8AB-0Z	0.0000	0.01	0.00	-10.23	98.00	0.763	٥	0.54	0.27
(OVP)	4.50 0000	0.01	8.88	5.13	98.00	0.983	8	0.34	0.27
DB-T1-6Z-8AB-0Z	120.0000	0.01	8.80	3.13	96.00	0.765	ı .	0.5 /	
(OVP)		0.01	0.00	5.13	98.00	0.983	8	0.34	0.27
DB-T1-6Z-8AB-0Z	240.0000	0.01	-8.88	3.13	90.00	0,765	٥	0.5	5,2
(OVP)		0.00	0.00	-10.25	98.00	0.983	8	1.88	1.25
B2/B66A RRH-BR049	0.0000	0.08	0.00	-10.25	26.00	0.703	, o	1.00	
(RFV01U-D1A)		0.08	8.88	5.13	98.00	0,983	8	1.88	1.25
B2/B66A RRH-BR049	120.0000	0.08	0.00	ر ۱.۱ د	76.00	0,505	Ü		- 1
(RFV01U-D1A)	240,0000	0.00	-8.88	5.13	98.00	0.983	8	1.88	1.25
B2/B66A RRH-BR049	240.0000	0.08	-0.00	3.13	96,00	0.505	Ü	1.00	
(RFV01U-D1A)	0.0000	0.07	0.00	-10.25	98.00	0.983	8	1.88	1.01
B5/B13 RRH-BR04C	0.0000	0.07	0.00	-10.23	76.00	0.505	Ĭ		6
(RFV01U-D2A)		0.07	8.88	5.13	98.00	0.983	8	1.88	1.01
B5/B13 RRH-BR04C	120.0000	0.07	0.00	3.13	96.00	0.705	Ů	1,00	
(RFV01U-D2A)	242 222	0.07	-8.88	5.13	98.00	0.983	8	1.88	1.01
B5/B13 RRH-BR04C	240.0000	0.07	-0.00	3,13	75.00	0.505			
(RFV01U-D2A)	0,000	0.03	0.00	-10.25	98.00	0.983	8	0.37	0.51
CBC78T-DS-43-2X	0.0000	0.02 0.02	8,88	5.13	98.00	0.983	8	0.37	0.51
CBC78T-DS-43-2X	120.0000	0.02	-8.88	5.13	98.00	0.983	8	0.37	0.51
CBC78T-DS-43-2X	240.0000	0.66	0.00	-8.25	98.00	0.983	8	13.20	9.20
Site Pro 1 VFA12-HD	0.0000 120.0000	0.66	7.15	4.13	98.00	0.983	8	13.20	9.20
Site Pro 1 VFA12-HD		0.66	-7.15	4.13	98.00	0.983	8	13.20	9.20
Site Pro 1 VFA12-HD	240.0000 0.0000	0.00	0.00	-10.25	98.00	0.983	8	4.71	2.43
MT6407-77A w/ Pipe	0.0000	0.10	0,00	-10.25	70.00	31,5 4=			
Mount	120,0000	0.10	8.88	5.13	98.00	0.983	8	4.71	2.43
MT6407-77A w/ Pipe	120.0000	0.10	0.00	3.13	, , , , ,				
Mount	240.0000	0.10	-8.88	5.13	98.00	0.983	8	4.71	2.43
MT6407-77A w/ Pipe	240.0000	0.10	-0.00	2,12	, 0,111				
Mount	120,0000	0.06	7.15	4.13	98.00	0.983	8	1.54	0.56
KA-6030	240.0000	0.06	-7.15	4.13	98.00	0.983	8	1.54	0.56
KA-6030	120,0000	0.00	6.28	3.63	98.00	0.983	8	1.13	1.13
Site Pro 1 RRUDSM	240.0000	0.04	-6.28	3.63	98.00	0.983	8	1.13	1.13
Site Pro 1 RRUDSM	240.0000	0.04	-9.23	5,33	78.00	0.921	7	4.00	4.00
8' 4-Bay Dipole	240.0000	0.00	-7.93	4.58	74.00	0.907	7	1.50	3.00
2' x 3' sidearm	240.0000	0.19	-10.04	5.80	58.00	0.846	7	0.15	0.15
GPS	240.0000	0.19	-8.75	5.05		0.846	7	1.50	3.00
2' x 3' sidearm	0.0000	0.19	0.00				8		9.33
Site Pro 1 SFR-K	240.0000	0.20	-8.01	4.63	115.00	1.028	8		2.25
10' x 2-1/4" Pipe Mount	240.0000	0.08	-8.01	4.63	115.00	1.028	8	2.25	2.25
10' x 2-1/4" Pipe Mount	240.0000	0.08	-8.01	4.63	115.00	1.028	8		2.25
10' x 2-1/4" Pipe Mount	0.0000	0.03	0.00	-9.25	118.00	1.036	8	1.64	1.31
RADIO 4449 B71+B85	120.0000	0.07	8.01	4.63	118.00	1.036	8	1.64	1.31
RADIO 4449 B71+B85	240.0000	0.07	-8.01	4.63	118.00	1.036	8	1.64	1.31
RADIO 4449 B71+B85	240.0000 Sum	12.77	0.01						
	Weight:	12.77							

Centerline Engineering Services, PA 750 W Center St, Suite 30/

750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	31 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Dish Pressures - No Ice

Elevation	Dish	Aiming	Weight	Offset _x	Offselz	K _z	A _A	q _z
ft	Description	Azimuth	K	ft	fi		ft²	psf
	4' HP MW 4' HP MW	240.0000 120.0000 Sum Weight:	- 1	-4.13 4.15	2.38 2.39			30 30

Dish Pressures - With Ice

Elevation	Dish	Aiming	Weight	Offset _x	Offset <u>:</u>	K _z	A _A	q _z	t _z
ft	Description	Azimuth	K	ft	ft		fi²	psf	in
	4' HP MW 4' HP MW	240.0000 120.0000 Sum Weight:	0.26 0.26 0.52		2.38 2.39			6 6	0.9903 0.9822

Dish Pressures - Service

Elevation	Dish	Aiming	Weight	Offset _x	Offsetz	K ₂	A _A	q₌
ft	Description	Azimuth	K	fl	ft		ſt²	psf
	4' HP MW 4' HP MW	240.0000 120.0000 Sum Weight:		-4.13 4.15	2.38 2.39	1.114 1.088	12.57 12.57	

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	z	Moments, M,	Moments, M.	
	K	K	K	kip-fl	kip-ft	kip-ft
Leg Weight	6.06			133	State of the latest state	710
Bracing Weight	11.44		W 10 10	N. A. S. Prince	ALTERNATION OF THE PARTY OF	4 1 15
Total Member Self-Weight	17.50		THE BEST OF	4.93	-0.35	
Total Weight	35.38			4.93	-0.35	
Wind 0 deg - No Ice		-0.02	-32.33	-2769,46	-1.75	
Wind 30 deg - No Ice	DIE NE	16.22	-28.14	-2424.58	-1399.75	
Wind 60 deg - No Ice	Second of the	27.93	-16.17	-1399.79	-2417.00	= 1(35)
Wind 90 deg - No Ice	1850 - T. J. J.	31.28	-0.00	1.29	-2704.86	Christian Co.
Wind 120 deg - No Ice		27.46	15.83	1357.58	-2350.83	0.88
Wind 150 deg - No Ice	MINNEY IIN	13.48	23.54	2077.89	-1177.81	12.38
Wind 180 deg - No Ice		0.02	30.23	2648.70	-0.13	-5.48
Wind 210 deg - No Ice	THE RESIDENCE TO	-16.09	28.11	2430.52	1381.18	-17.48
Wind 240 deg - No Ice	23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-29.70	17.10	1458.29	2521.77	-8.43
Wind 270 deg - No Ice	ST THE STATE OF	-31,28	-0.05	1.40	2702.93	4.91
Wind 300 deg - No Ice		-25.68	-14.90	-1299.36	2242.78	
Wind 330 deg - No Ice		-13.60	-23.56	-2070.53	1194.99	-12.43
Member Ice	14.24	11 11 11 11	CATALOG STATE			
Total Weight Ice	73.12	1 2 2	1 1 2 2 3 3	10.22	-13.27	

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job	Stamford NW CT	Page 32 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
Case		X	Z	Moments, M _x	Moments, M _z	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 0 deg - Ice		-0.00	-8.85	-758.41	-13.58	
Wind 30 deg - Ice	The state of the s	4.48	-7.75			
Wind 60 deg - Ice	(2) -35	7.97	-4.60			
Wind 90 deg - Ice	JAN 19 100	8.62	-0.00			
Wind 120 deg - Ice	The state of the s	7.39	4.25	379.90		
Wind 150 deg - Ice	4 E 3	3.85	6.69	603.40		
Wind 180 deg - Ice		0.00	8.50	757.20		
Wind 210 deg - Ice	2 8 2 5 7 10	-4.46	7.75	684.81	374.36	
Wind 240 deg - Ice	3 3 4 3 5	-8.27	4.75	418.86	698.81	
Wind 270 deg - Ice	100000000000000000000000000000000000000	-8.62	-0.01	9.54	742.01	
	13 10 7 7 PE	-7.09	-4.09		614.36	-0.87
Wind 300 deg - Ice	10 D 20 11 15	-3.88	-6.70		330.83	-3.51
Wind 330 deg - Ice	35.38	And in case of the last of the	FR. 5 - 3 1 - 5	4.93	-0.35	
Total Weight	50,56	-0.01	-9.11	-776.83	5,65	1.54
Wind 0 deg - Service		4.57	-7.93		-388.08	4.94
Wind 30 deg - Service	15 al 1 al 19	7.87			-674,57	
Wind 60 deg - Service		8.81	V.		-755.64	-1.38
Wind 90 deg - Service	THE SUL	7.73	11			
Wind 120 deg - Service	W-198-198	3.80				
Wind 150 deg - Service		0.01	8.52		6.10	
Wind 180 deg - Service	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7.92			
Wind 210 deg - Service	W 16 15 6 1	-4.53			716.35	
Wind 240 deg - Service	F1 20 F 11 3	-8.37	-0.01			
Wind 270 deg - Service	Control of the second	-8.81				
Wind 300 deg - Service	18 Jan 1 30	-7.23				
Wind 330 deg - Service		-3.83	-6.64	-579.99	342.09	-3,3

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18	1.2 Dead+1.0 Wind 240 deg - No Ice	
19	0.9 Dead+1.0 Wind 240 deg - No Ice	
20	1.2 Dead+1.0 Wind 270 deg - No Ice	
21	0.9 Dead+1.0 Wind 270 deg - No Ice	
22	1.2 Dead+1.0 Wind 300 deg - No Ice	
23	0.9 Dead+1.0 Wind 300 deg - No Ice	
24	1.2 Dead+1.0 Wind 330 deg - No Ice	
25	0.9 Dead+1.0 Wind 330 deg - No Ice	185
26	1.2 Dead+1.0 Ice+1.0 Temp	

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	33 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Comb. No.	Description	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
T1	152 - 140	Leg	Max Tension	15	2.72	-0.07	0.00
			Max. Compression	2	-4.58	-0.00	0.00
			Max. Mx	14	0.51	0.13	0.00
			Max. My	24	0.67	-0.08	0.13
			Max. Vy	6	-0.25	0.00	0.00
			Max. Vx	12	-0.34	0.00	0.00
		Diagonal	Max Tension	5	1.13	0.00	0.00
			Max. Compression	4	-1.15	0.00	0.00
			Max. Mx	27	0.23	0.01	-0.00
			Max. My	12	0.13	0.00	-0.00
			Max. Vy	27	-0.01	0.01	-0.00
			Max. Vx	12	0.00	0.00	0.00
		Top Girt	Max Tension	18	0.09	0.00	0.00
			Max. Compression	7	-0.10	0.00	0.00
			Max. Mx	26	0.00	-0.04	0.00
			Max. My	26	0.00	0.00	0.00
			Max. Vy	26	-0.02	0.00	0.00
	1		Max. Vx	26	-0.00	0.00	0.00
T2	140 - 135	Leg	Max Tension	15	4.74	0.02	-0.00
			Max. Compression	2	-6.87	0.12	-0.01
			Max. Mx	22	3.88	-0.14	-0.01
			Max. My	4	-0.65	-0.01	-0.17
			Max. Vy	22	-0.14	0.02	-0.00
			Max. Vx	16	0.18	0.01	-0.02
		Diagonal	Max Tension	21	1.07	0.00	0.00
			Max. Compression	20	-1.11	0.00	0.00
			Max. Mx	28	0.15	0.01	0.00
			Max. My	29	-0.29	0.01	0.00
			Max. Vy	28	0.01	0.01	0.00

Job	Stamford NW CT	Page 34 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
NO.	Ji	Турс		Comb.	K	kip-ft	kip-ft
_			Max. Vx	29	-0.00	0.00	0.00
		Top Girt	Max Tension	14	0.03	0.00	0.00
		Top and	Max. Compression	3	-0.04	0.00	0.00
			Max. Mx	26	-0.02	-0.04	0.00
			Max. My	26	-0.01	0.00	0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	26	0.00	0.00	0.00
Т3	135 - 130	Leg	Max Tension	15	7.10	-0.14	0.01
13	155 150	6	Max. Compression	2	-10.73	0.28	-0.01
			Max. Mx	22	4.79	0.35	-0.00
			Max. My	20	-2.15	-0.02	0.34
			Max. Vy	22	0.68	-0.32	-0.00
			Max. Vx	16	-0.63	-0.02	0.28
		Diagonal	Max Tension	6	1.52	0.00	0.00
		-	Max. Compression	18	-1.56	0.00	0.00
			Max. Mx	28	0.34	0.01	-0.00
			Max. My	38	0.34	0.01	0.00
			Max. Vy	28	0.01	0.01	-0.00
			Max. Vx	38	-0.00	0.00	0.00
T4	130 - 125	Leg	Max Tension	15	9.78	-0.31	0.01
	150 125	· ·	Max. Compression	2	-14.44	-0.10	-0.01
			Max. Mx	14	9.18	-0.32	0.01
			Max. My	16	-2.87	-0.02	0.28
			Max. Vy	22	-0.11	-0.32	-0.00
			Max. Vx	16	0.11	-0.02	0.28
		Diagonal	Max Tension	7	2.34	0.00	0.00
			Max. Compression	18	-2.45	0.00	0.00
			Max. Mx	29	0.58	0.02	0.00
			Max. My	27	-0.65	0.01	-0.00
			Max. Vy	29	0.02	0.02	0.00
			Max. Vx	27	0.00	0.00	0.00
T5	125 - 120	Leg	Max Tension	7	14.05	0.13	-0.00
1.0		•	Max. Compression	2	-19.29	0.35	0.01
			Max. Mx	6	13.36	-0.40	-0.01
			Max. My	12	-3.40	-0.03	-0.46
			Max. Vy	6	0.13	-0.40	-0.01
			Max. Vx	16	-0.14	-0.03	0.44
		Diagonal	Max Tension	18	2.32	0.00	0.00
			Max. Compression	7	-2.20	0.00	0.00
			Max. Mx	27	0.64	0.02	-0.00
			Max. My	34	-0.41	0.02	0.00
			Max. Vy	29	0.02	0.02	-0.00
			Max. Vx	34	-0.00	0.00	0.00
Т6	120 - 100	Leg	Max Tension	7	33.13	0.13	-0.01
10	120 200	ū	Max. Compression	18	-42.69	0.17	0.01
			Max. Mx	6	16.75	0.93	-0.01
			Max. My	12	- 5.32	-0.05	0.99
			Max. Vy	6	0.97	-0.67	-0.01
			Max. Vx	24	-0.97	-0.05	0.61
		Diagonal	Max Tension	8	4.11	0.00	0.00
		_ 8-	Max. Compression	8	-4.10	0.00	0.00
			Max. Mx	35	1.11	0.04	-0.01
			Max. My	20	-4.07	0.00	0.01
			Max. Vy	34	0.03	0.03	0.01
			Max. Vx	32	0.00	0.00	0.00
Т7	100 - 80	Leg	Max Tension	7	56.11	0.12	-0.00
1/	100 - 00		Max. Compression	18	-70.80	-0.27	0.00
			Max. Mx	18	-52.24	0.37	0.00
			Max. My	16	-5.63	-0.02	-0.42
			Max. Vy	6	0.56	-0.35	-0.00
			Max. Vx	16	-0.46	0.01	0.13

Job	4	Page
	Stamford NW CT	35 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by iboegel

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
		Diagonal	Max Tension	8	4.83	0.00	0.00
		ū	Max. Compression	18	-5.07	0.00	0.00
			Max. Mx	35	1.17	0.07	
			Max. My	18			-0.01
			•		-4.93	0.00	0.01
			Max. Vy	29	0.04	0.07	-0.01
		C 1	Max. Vx	35	0.00	0.00	0.00
		Secondary Horizontal	Max Tension	7	0.59	0.00	0.00
			Max. Compression	18	-0.63	0.02	0.01
			Max. Mx	33	-0.00	0.06	0.01
			Max. My	29	-0.00	0.06	0.01
			Max. Vy	33	-0.04	0.06	10.0
			Max. Vx	29	0.00	0.00	0.00
T8	80 - 73.3333	Leg	Max Tension	7	64.21	0.17	-0.00
			Max. Compression	18	-80.30	-0.26	0.01
			Max. Mx	18	-79.89	0.48	
			Max. My	4			0.00
			•		-7.95	-0.05	-0.25
			Max. Vy	18	-0.25	0.48	0.00
		D' 1	Max. Vx	25	-0.20	-0.04	0.23
		Diagonal	Max Tension	21	4.96	0.04	-0.00
			Max. Compression	8	-5.09	0.00	0.00
			Max. Mx	35	1.59	0.06	-0.01
			Max. My	34	1.60	0.06	0.01
			Max. Vy	29	0.04	0.06	-0.01
			Max. Vx	34	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	4	0.33	0.00	0.00
		Horizontal	V 6 .	_			
			Max. Compression	5	-0.26	0.00	0.00
			Max. Mx	35	0.10	0.05	0.01
			Max. My	29	0.02	0.04	0.01
			Max. Vy	35	-0.04	0.05	0.01
			Max. Vx	29	0.00	0.00	0.00
Г9	73.3333 - 66.6667	Leg	Max Tension	7	71.71	0.16	-0.00
	03,030,		Max. Compression	18	-88.95	-0.37	0.00
			Max. Mx	18	-88.90	0.51	0.00
			Max. My	16	-9.17	-0.07	0.31
			Max. Vy	18	0.27	0.51	0.00
			Max, Vx	16	-0.14	-0.07	0.31
		Diagonal	Max Tension	8	5.02	0.00	
		- 1-801141					0.00
			Max. Compression	18	-5.41	0.00	0.00
			Max. Mx	35	1.12	0.09	-0.01
			Max. My	35	-2.00	0.08	0.01
			Max. Vy	33	0.05	0.09	-0.01
		12	Max. Vx	35	0.00	0.00	0.00
		Secondary Horizontal	Max Tension	16	0.36	0.03	0.00
		- (ತಿ.ವ್ ಕಪ್ಪಡಗಾ ಗೆ ಅಧಿಕರ್ಣ	Max. Compression	5	-0.29	0.00	0.00
			Max. Mx	33	-0.01	0.07	0.01
			Max. My	34	-0.03	0.07	0.01
			Max. Vy	33	-0.04	0.07	0.01
			Max. Vx	34	-0.00	0.00	0.00
10	66.6667 - 60	Leg	Max Tension	7	79.41	0.24	
							-0.00
			Max. Compression	18	-97.87	-0.44	0.01
			Max. Mx	18	-97.83	0.58	-0.00
			Max. My	5	-6.67	-0.06	-0.33
			Max. Vy	18	0.31	0.58	-0.00
			Max. Vx	5	0.15	-0.06	-0.33
		Diagonal	Max Tension	8	5.17	0.00	0.00
		J	Max. Compression	18	-5.33	0.00	0.00

Job	Stamford NW CT	Page 36 of 52		
Project	23CLVZ-0009	Date 15:14:50 09/21/23		
Client	Verizon Wireless	Designed by jboegel		

Section	Elevation	Component	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.	ft	Туре		Comb.	K	kip-ft	kip-ft
			Max. My	32	-0.66	0.06	-0.01
			Max. Vy	29	0.05	0.07	-0.01
			Max. Vx	32	-0.00	0.00	0.00
		Secondary	Max Tension	16	0.43	0.03	0.00
		Horizontal	Wax Telision				
		Horizontai	Max. Compression	5	-0.35	0.00	0.00
			Max. Mx	35	0.11	0.05	0.01
			Max. My	29	0.02	0.05	0.01
			Max. Vy	35	-0.04	0.05	0.01
			Max. Vx	29	0.00	0.00	0.00
T11	60 - 50	Leg	Max Tension	7	88.55	0.29	-0.01
		•	Max. Compression	18	-108.55	-0.77	0.01
			Max. Mx	18	-108.47	1.02	0.00
			Max. My	16	-10.36	-0.16	0.86 0.00
			Max. Vy	18	0.37	1.02 -0.16	0.86
			Max. Vx	16	-0.25	0.07	-0.00
		Diagonal	Max Tension	9	5.80 -6.21	0.00	0.00
			Max. Compression	18	1.03	0.13	0.01
			Max. Mx	35	-6.18	0.01	0.02
			Max. My	18 29	0.06	0.13	-0.01
			Max. Vy Max. Vx	35	0.00	0.00	0.00
		0 1	Max Tension	4	0.49	0.00	0.00
		Secondary	Max Tension	7	0.47	0,00	
		Horizontal	Max. Compression	17	-0.41	0.03	0.01
			Max. Mx	34	-0.04	0.08	0.01
			Max. My	29	-0.02	0.08	0.01
			Max. Vy	34	-0.05	0.08	0.01
			Max. Vx	29	0.00	0.00	0.00
T12	50 - 40	Leg	Max Tension	7	99.31	0.49	-0.01
112	30 - 40	2-6	Max. Compression	18	-121.11	-0.63	0.01
			Max. Mx	18	-121.03	1.11	0.00
			Max. My	16	-10.82	-0.16	0.86
			Max. Vy	18	-0.41	1.11	0.00
			Max. Vx	16	0.26	-0.16	0.86
		Diagonal	Max Tension	9	5.83	0.10	0.01 0.00
			Max. Compression	18	-6.42	0.00 0.14	-0.02
			Max. Mx	18	5.48 5.03	0.14	0.02
			Max. My	18 29	0.07	0.12	0.01
			Max. Vy	35	-0.00	0.00	0.00
			Max. Vx Max Tension	16	0.55	0.06	0.00
		Secondary	Max rension	10	0.55	0.00	****
		Horizontal	Max. Compression	5	-0.46	0.00	0.00
			Max. Mx	34	0.20	0.08	0.02
			Max. My	6	-0.34	0.05	0.02
			Max. Vy	34	-0.06	0.08	0.02
			Max. Vx	29	0.00	0.00	0.00
TT10	40 - 30	Leg	Max Tension	7	109.92	0.46	-0.01
T13	40 - 30	Log	Max. Compression	18	-133.70	-1.62	-0.01
			Max. Mx	18	-133.70	-1.62	-0.01
			Max. My	16	-12.03	-0.23	0.73
			Max. Vy	18	0.59	1.29	0.00
			Max. Vx	16	-0.22	-0.23	0.73
		Diagonal	Max Tension	9	6.04	0.11	0.00
		0	Max. Compression	18	-6.49	0.00	0.00
			Max. Mx	29	0.82	0.20	-0.02
			Max. My	35	-2.57	0.17	0.02
			Max. Vy	29	0.08	0.20	-0.02
			Max. Vx	35	0.00	0.00	0.00
		Secondary	Max Tension	16	0.65	0.05	0.00

		^\
Job		Page
	Stamford NW CT	37 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by iboegel

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis	Minor Ax
	J*	Type		Loaa Comb.	K	Moment	Moment
		Horizontal		Como.		kip-ft	kip-ft
			Max. Compression	5	-0.55	0.00	0.00
			Max. Mx	34	-0.11	0.13	0.02
			Max. My	29	-0.09	0.13	0.02
			Max. Vy	34	-0.06	0.13	0.02
			Max. Vx	29	0.00	0.00	
T14	30 - 20	Leg	Max Tension	7	119.66	1.19	0.00
		8	Max. Compression	18	-145.45		0.01
			Max. Mx	35	-60.88	1.35	-0.02
		50	Max. My		100000000	-2.45	0.00
			Max. Vy	16	-12.48	-0.23	0.73
			Max. Vx	18	-1.46	2.01	0.02
		Diagonal	Max Tension	4	0.26	-0.19	-0.32
		Diagonai		7	6.64	0.05	0.00
			Max. Compression	18	-7.51	0.00	0.00
			Max. Mx	18	5.73	0.12	-0.00
			Max. My	35	0.68	0.04	-0.01
			Max. Vy	35	0.04	0.08	-0.01
		TT ' t - 1	Max. Vx	29	-0.00	0.00	0.00
		Horizontal	Max Tension	16	0.43	0.07	0.03
			Max. Compression	5	-0.38	0.00	0.00
			Max. Mx	29	0.24	0.09	0.06
			Max. My	29	0.25	0.09	0.06
			Max. Vy	29	-0.06	0.09	0.06
			Max. Vx	29	-0.01	0.00	0.00
		Redund Horz 1 Bracing	Max Tension	18	1.46	0.00	0.00
			Max. Compression	7	-1.19	0.00	0.00
			Max. Mx	26	0.04	-0.02	0.00
			Max. My	26	0.70	0.00	0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	26	-0.00	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	7	0.68	0.00	0.00
			Max. Compression	18	-0.97	0.00	0.00
			Max. Mx	26	-0.14	-0.02	0.00
			Max. My	26	-0.15	0.00	0.00
			Max. Vy	26	0.02	0.00	0.00
			Max, Vx	26	-0.00	0.00	0.00
Γ15	20 - 15	Leg	Max Tension	7	129.58	1.81	-0.01
			Max. Compression	18	-157.37	2.72	
			Max. Mx	18	-157.37	2.72	0.03
			Max. My	5	-137.37 -9.50		0.03
			Max. Vy	18		0.05	0.47
			Max. Vx	4	-1.99	2.72	0.03
		Diagonal	Max Tension		-0.38	0.17	-0.42
		Diagonal		18	6.11	0.15	-0.00
			Max. Compression Max. Mx	19	-6.15	0.00	0.00
				18	6.11	0.15	-0.00
			Max. My	35	-0.81	0.03	-0.01
			Max. Vy	18	0.05	0.15	-0.00
		Redund Lines 1	Max. Vx	35	0.00	0.00	0.00
		Redund Horz 1 Bracing	Max Tension	18	1.77	0.00	0.00
			Max. Compression	7	-1.51	0.00	0.00
			Max. Mx	26	0.69	-0.02	0.00
			Max. My	26	0.69	0.00	0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	26	0.00	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	7	0.87	0.00	0.00
		-	Max. Compression	18	-1.16	0.00	0.00

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job	Ct. C. HARM CT	Page 38 of 52
	Stamford NW CT	
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
				Comb.		0.00	-0.00
			Max. My	26	-0.52	0.00	0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	26	0.00	-0.11	0.00
T16	15 - 9.99999	Leg	Max Tension	7	130.11		0.02
			Max. Compression	18	-158.54	0.13	0.02
			Max. Mx	35	-64.72	0.95	-1.21
			Max. My	5	-9.77	-0.08	-0.00
			Max. Vy	33	-0.25	-0.35	-0.00
			Max. Vx	5	0.39	-0.08	0.00
		Diagonal	Max Tension	19	5.96	0.00	0.00
			Max. Compression	18	-6.34	0.00	
			Max. Mx	26	-1.26	-0.17	0.00
			Max. My	26	-1.27	0.00	-0.01
			Max. Vy	26	-0.06	0.00	0.00
		Horizontal	Max. Vx	26	0.00	0.00	0.00
			Max Tension	6	0.61	0.06	0.03
			Max. Compression	19	-0.44	0.00	0.00
			Max. Mx	35	-0.00	0.16	0.06
			Max. My	38	0.05	0.16	0.06
			Max. Vy	35	0.07	0.16	0.06
			Max. Vx	35	-0.01	0.00	0.00
T17	9,99999 - 0	Leg	Max Tension	7	139.68	-0.28	-0.02
11/	9.97777 - 0	206	Max. Compression	18	-170.03	0.00	0.00
			Max. Mx	35	-70.82	0.95	0.00
			Max. My	5	-10.13	-0.08	-1.21
			Max. Vy	22	-0.11	-0.30	-0.01
			Max. Vx	5	-0.22	-0.08	-1.21
		Diagonal	Max Tension	20	6.65	0.00	0.00
		Diagonai	Max. Compression	18	-7.23	0.00	0.00
			Max. Mx	18	5.87	0.19	0.03
			Max. My	34	3.16	0.14	0.03
			Max. Vy	34	0.08	0.14	0.03
			Max. Vx	34	-0.00	0.00	0.00

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, 2 K
I C	Max. Vert	18	176.03	18.35	-10.31
Leg C	Max. H _x	18	176.03	18.35	-10.31
	Max. H _z	7	-144.59	-15.68	8.78
	Min. Vert	7	-144.59	-15.68	8.78
	Min. H _x	7	-144.59	-15.68	8.78
	Min. H _z	18	176.03	18.35	-10.31
	Max. Vert	10	165.01	-16.97	<i>-</i> 9.76
Leg B	Max. H _x	23	-133.42	14.29	8.22
	Max. H _z	23	-133.42	14.29	8.22
	Min. Vert	23	-133.42	14.29	8.22
	Min. H _x	10	165.01	-16.97	-9.76
	Min. H ₂	10	165.01	-16.97	-9.76
- ·	Max. Vert	2	167.97	0.16	19. 94
Leg A	Max. H _x	20	14.02	2.76	1.14
	Max. H _z	2	167.97	0.16	19.94
	Min. Vert	15	-136.53	-0.16	-16.81
	Min. H _x	9	10.57	-2.76	0.84
	Min. H _z	15	-136.53	-0.16	-16.81

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	39 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
----------	-----------	-----------------------	---------------	--------------------	--------------------

Tower Mast Reaction Summary

Load Combination	Vertical	Shear.	Shear _z	Overturning Moment, M _x	Overturning Moment, M ₋	Torque
	K	K	K	kip-fi	kip-ft	kip-ft
Dead Only	35.38	0.00	0.00	4.93	-0.35	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	42.46	-0.02	-32.33	-2768.16	-1.82	5.48
0.9 Dead+1.0 Wind 0 deg - No Ice	31.84	-0.02	-32.33	-2769.64	-1.71	5.48
1.2 Dead+1.0 Wind 30 deg - No Ice	42.46	16.22	-28.14	-2423.39	-1399.70	17.54
0.9 Dead+1.0 Wind 30 deg - No Ice	31.84	16.22	-28.14	-2424.87	-1399.60	17.54
1.2 Dead+1.0 Wind 60 deg - No Ice	42.46	27.93	-16.17	-1398.70	-2416.88	8.68
0.9 Dead+1.0 Wind 60 deg - No Ice	31.84	27.93	-16.17	-1400.18	-2416.78	8.68
1.2 Dead+1.0 Wind 90 deg - No Ice	42.46	31.28	-0.00	2.28	-2704.69	-4.91
0.9 Dead+1.0 Wind 90 deg - No Ice	31.84	31.28	-0.00	0.80	-2704.59	-4.91
1.2 Dead+1.0 Wind 120 deg - No Ice	42.46	27.46	15.83	1358.41	-2350.62	0.88
0.9 Dead+1.0 Wind 120 deg - No Ice	31.84	27.46	15.83	1356.93	-2350.52	0.88
1.2 Dead+1.0 Wind 150 deg - No Ice	42.46	13.48	23.54	2078.66	-1177.76	12.38
0.9 Dead+1.0 Wind 150 deg - No Ice	31.84	13.48	23.54	2077.19	-1177.66	12.38
1.2 Dead+1.0 Wind 180 deg - No Ice	42.46	0.02	30.23	2649.47	-0.20	-5.48
0.9 Dead+1.0 Wind 180 deg - No Ice	31.84	0.02	30.23	2647.99	-0.10	-5.48
1.2 Dead+1.0 Wind 210 deg - No Ice	42.46	-16.09	28.11	2431.30	1380.99	-17.48
0.9 Dead+1.0 Wind 210 deg - No Ice	31.84	-16.09	28.11	2429.82	1381.09	-17.48
1.2 Dead+1.0 Wind 240 deg - No Ice	42.46	-29.70	17.10	1459.12	2521.42	-8.43
0.9 Dead+1.0 Wind 240 deg - No Ice	31.84	-29.70	17.10	1457.64	2521.53	-8.43
1.2 Dead+1.0 Wind 270 deg - No Ice	42.46	-31.28	-0.05	2.39	2702.62	4.91
0.9 Dead+1.0 Wind 270 deg - No Ice	31.84	-31.28	-0.05	0.91	2702.72	4.91
1.2 Dead+1.0 Wind 300 deg - No Ice	42.46	-25.68	-14.90	-1298.26	2242.52	-1.13
0.9 Dead+1.0 Wind 300 deg - No Ice	31.84	-25.68	-14.90	-1299.74	2242.63	-1.13
1.2 Dead+1.0 Wind 330 deg - No Ice	42.46	-13.60	-23.56	-2069.33	1194.80	-12.43
0.9 Dead+1.0 Wind 330 deg - No Ice	31.84	-13.60	-23.56	-2070.81	1194.90	-12.43
.2 Dead+1.0 Ice+1.0 Temp .2 Dead+1.0 Wind 0 deg+1.0	80.19 80.19	0.00 -0.00	0.00 -8.85	11.21 -757.37	-13.34 -13.66	0.00 0.54

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
100	Stamford NW CT	40 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M ₋	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
Ice+1.0 Temp		4.40	7.75	-664.13	-404.55	4.46
1.2 Dead+1.0 Wind 30 deg+1.0	80.19	4.48	-7.75	-004.13	-404.55	
Ice+1.0 Temp		7.07	-4.60	-389.93	-708.18	2.76
1.2 Dead+1.0 Wind 60 deg+1.0	80.19	7.97	-4.00	-307.73	700:10	
Ice+1.0 Temp	22.10	0.63	-0.00	10.45	-768.83	-0.46
1.2 Dead+1.0 Wind 90 deg+1.0	80.19	8.62	-0.00	10.45	, 00.02	
Ice+1.0 Temp	22.12	7.39	4.25	380.85	-658.52	0.82
1.2 Dead+1.0 Wind 120	80.19	7.39	4.23	500.05	000.02	
deg+1.0 Ice+1.0 Temp	00.10	3.85	6.69	604.35	-353.83	3.50
1.2 Dead+1.0 Wind 150	80.19	3.83	0.09	004.55	22270-	
deg+1.0 Ice+1.0 Temp	90.10	0.00	8.50	758.15	-13.27	-0.54
1.2 Dead+1.0 Wind 180	80.19	0.00	6.50	700120		
deg+1.0 Ice+1.0 Temp	80.19	-4,46	7.75	685.75	374.27	-4.44
1.2 Dead+1.0 Wind 210	80.19	-4.40	7.75	000111		
deg+1.0 Ice+1.0 Temp	80.19	-8.27	4.75	419.81	698.68	-2.71
1.2 Dead+1.0 Wind 240	80.19	-0.27	,2			
deg+1.0 Ice+1.0 Temp	80.19	-8.62	-0.01	10.53	741.90	0.46
1.2 Dead+1.0 Wind 270	00.19	-0.02				
deg+1.0 Ice+1.0 Temp	80.19	-7.09	-4.09	-351.03	614.25	-0.87
1.2 Dead+1.0 Wind 300	60.19	7.07				
deg+1.0 Ice+1.0 Temp	80.19	-3.88	-6.70	-582.44	330.74	-3.51
1.2 Dead+1.0 Wind 330	80.19	5.00				
deg+1.0 Ice+1.0 Temp	35.38	-0.01	-9.11	-776.35	-0.74	1.54
Dead+Wind 0 deg - Service	35.38	4.57	-7.93	-679.25	- 394.44	4.94
Dead+Wind 30 deg - Service	35.38	7.87	-4.55	-390.66	-680.91	2.44
Dead+Wind 60 deg - Service	35.38	8.81	-0.00	3.91	-76 1.97	-1.38
Dead+Wind 90 deg - Service	35.38	7.73	4.46	385.84	-662.25	0.25
Dead+Wind 120 deg - Service	35.38	3.80	6.63	588.69	-331.93	3.49
Dead+Wind 150 deg - Service	35.38	0.01	8.52	749.45	-0.29	-1.54
Dead+Wind 180 deg - Service	35.38	-4.53	7.92	688.00	388.70	-4.92
Dead+Wind 210 deg - Service Dead+Wind 240 deg - Service	35.38	-8.37	4.82	414.20	709.89	-2.37
	35.38	-8.81	-0.01	3.94	760.92	1.38
Dead+Wind 270 deg - Service Dead+Wind 300 deg - Service	35.38	-7.23	-4.20	-362.37	631.35	-0.32
Dead+Wind 300 deg - Service	35.38	-3.83	-6.64	-579.54	336.27	-3.50

Solution Summary

	Sur	n of Applied Forces	8		Sum of Reaction		
T I	PX	PY	PZ	PX	PY	PZ	% Erro
Load	K	K	K	K	K	K	
Comb.		-35,38	0.00	0.00	35.38	0.00	0.000%
1	0.00	-33.36 -42.46	-32.33	0.02	42.46	32.33	0.000%
2	-0.02		-32.33	0.02	31.84	32,33	0.000%
3	-0.02	-31.84	-28.14	-16.22	42.46	28.14	0.000%
4	16.22	-42.46	-28.14 -28.14	-16.22	31.84	28.14	0.000%
5	16.22	-31.84		-27.93	42.46	16.17	0.000%
6	27.93	-42.46	-16.17	-27.93	31.84	16.17	0.000%
7	27.93	-31.84	-16.17		42.46	0.00	0.000%
8	31.28	-42.46	-0.00	-31.28		0.00	0.000%
9	31.28	-31.84	-0.00	-31.28	31.84	-15.83	0.000%
10	27.46	-42.46	15.83	-27.46	42.46		0.000%
11	27.46	-31.84	15.83	-27.46	31.84	-15.83	0.0009
12	13.48	-42.46	23.54	-13.48	42.46	-23.54	
13	13.48	-31.84	23.54	-13.48	31.84	-23.54	0.000%
14	0.02	-42.46	30.23	-0.02	42.46	-30.23	0.000%
15	0.02	-31.84	30.23	-0.02	31.84	-30.23	0.000%
16	-16.09	-42.46	28.11	16.09	42.46	-28.11	0.000%
17	-16.09	-31.84	28.11	16.09	31.84	-28.11	0.000%

Centerline Engineering

Services, PA
750 W Center St, Suite 301
West Bridgewater, MA 02379
Phone: (781) 713-4725
FAX:

Job		Page
	Stamford NW CT	41 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by

	Su	m of Applied Force			Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
18	-29.70	-42.46	17.10	29.70	42.46	-17.10	0.000%
19	-29.70	-31.84	17.10	29.70	31.84	-17.10	0.000%
20	-31.28	-42.46	-0.05	31.28	42.46	0.05	0.000%
21	-31.28	-31.84	-0.05	31.28	31.84	0.05	0.000%
22	-25.68	-42.46	-14.90	25.68	42.46	14.90	0.000%
23	-25.68	-31.84	-14.90	25.68	31.84	14.90	0.000%
24	-13.60	-42.46	-23.56	13.60	42.46	23.56	0.000%
25	-13.60	-31.84	-23.56	13.60	31.84	23.56	0.000%
26	0.00	-80.19	0.00	0.00	80.19	0.00	0.000%
27	-0.00	-80.19	-8.85	0.00	80.19	8.85	0.000%
28	4.48	-80.19	-7.75	-4.48	80.19	7.75	0.000%
29	7.97	- 80.19	-4.60	-7.97	80.19	4.60	0.000%
30	8.62	-80.19	-0.00	-8.62	80.19	0.00	0.000%
31	7.39	-80.19	4.25	-7.39	80.19	-4.25	0.000%
32	3.85	-80.19	6.69	-3.85	80.19	-6.69	0.000%
33	0.00	-80.19	8.50	-0.00	80.19	-8.50	0.000%
34	-4.46	-80.19	7.75	4.46	80.19	-7.75	0.000%
35	-8.27	-80.19	4.75	8.27	80.19	-4.75	0.000%
36	-8.62	-80.19	-0.01	8.62	80.19	0.01	0.000%
37	-7.09	-80.19	-4.09	7.09	80.19	4.09	0.000%
38	-3.88	-80.19	-6.70	3.88	80.19	6.70	0.000%
39	-0.01	-35.38	-9.11	0.01	35.38	9,11	0.000%
40	4.57	-35.38	-7.93	-4.57	35.38	7.93	0.000%
41	7.87	-35.38	-4.55	-7.87	35.38	4.55	0.000%
42	8.81	-35.38	-0.00	-8.81	35.38	0.00	0.000%
43	7.73	-35.38	4.46	-7.73	35.38	-4.46	0.000%
44	3.80	-35.38	6.63	-3.80	35.38	-6.63	0.000%
45	0.01	-35.38	8.52	-0.01	35.38	-8.52	0.000%
46	-4.53	-35.38	7.92	4.53	35.38	-7.92	0.000%
47	-8.37	-35.38	4.82	8.37	35.38	-4.82	0.000%
48	-8.81	-35.38	-0.01	8.81	35.38	0.01	0.000%
49	-7.23	-35.38	-4.20	7.23	35.38	4.20	0.000%
50	-3.83	-35.38	-6.64	3.83	35.38	6.64	0.000%

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	(9)	0
T1	152 - 140	3.205	47	0.1737	0.0144
T2	140 - 135	2.765	47	0.1704	0.0121
T3	135 - 130	2.585	47	0.1685	0.0117
T4	130 - 125	2.407	47	0.1657	0.0109
T5	125 - 120	2.230	47	0.1617	0.0103
T6	120 - 100	2.059	47	0.1564	0.0096
T7	100 - 80	1.433	47	0.1310	0.0076
T8	80 - 73.3333	0.914	47	0.1040	0.0058
T9	73.3333 - 66.6667	0.767	47	0.0953	0.0051
T10	66.6667 - 60	0.633	47	0.0860	0.0046
T11	60 - 50	0.512	47	0.0762	0.0040
T12	50 - 40	0.354	47	0.0621	0.0032
T13	40 - 30	0.232	47	0.0473	0.0026
T14	30 - 20	0.136	47	0.0350	0.0020
T15	20 - 15	0.068	47	0.0227	0.0013
T16	15 - 9.99999	0.039	47	0.0166	0.0010
T17	9.99999 - 0	0.018	47	0.0111	0.0006

Centerline Engineering Services, PA 750 W Center St. Suite 301

750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
100	Stamford NW CT	42 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load	5723	
	ft	in	Comb.	8	

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
o.		Load Comb.	în	۰	0	ft
152.00	4' HP MW	47	3.205	0.1737	0.0144	263327
	DB563K-TT w/Mount Pipe	47	3.131	0.1732	0.0138	263327
150.00	OS66512-2 w/ Mount Pipe	47	2.948	0.1720	0.0123	188091
145.00	4' HP MW	47	2.765	0.1704	0.0121	112655
140.00		47	2.585	0.1685	0.0117	109736
135.00	6' x 3" Omni	47	2.442	0.1663	0.0111	177651
131.00 115.00	APXVSPP18-C-A20 w/ Mount Pipe AIR32 KRD901146- 1_B66_B2A	47	1.893	0.1505	0.0090	51164
98.00	w/ Mount Pipe XXDWMM-12.5-65-8T-CBRS w/	47	1.376	0.1283	0.0075	43282
	Mount Pipe	47	0.781	0.0962	0.0052	4 21 7 7
74.00	8' 4-Bay Dipole	47	0.478	0.0734	0.0038	44487
58.00	GPS		0.776		THE RESERVE THE PARTY OF THE PA	

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist	
No.	g.	Deflection in	Load Comb.	0	ø	
T1	152 - 140	11.313	18	0.6115	0.0513	
T2	140 - 135	9.765	18	0.6010	0.0431	
T3	135 - 130	9.128	18	0.5940	0.0416	
T4	130 - 125	8.500	18	0.5841	0.0388	
T5	125 - 120	7.878	18	0.5701	0.0365	
T6	120 - 100	7.273	18	0.5512	0.0340	
T7	100 - 80	5.064	18	0.4622	0.0272	
T8	80 - 73.3333	3.234	18	0.3671	0.0206	
T9	73.3333 - 66.6667	2.714	18	0.3366	0.0182	
T10	66.6667 - 60	2.239	18	0.3037	0.0163	
	60 - 50	1.812	18	0.2692	0.0142	
T11	50 - 40	1.253	18	0.2194	0.0114	
T12	40 - 30	0.824	18	0.1674	0.0091	
T13		0.483	18	0.1238	0.0071	
T14	30 - 20	0.240	18	0.0805	0.0047	
T15	20 - 15	0.139	18	0.0587	0.0035	
T16	15 - 9.99999		18	0.0392	0.0022	
T17	9.99999 - 0	0.065	10	0.02/2	0.0022	

Critical Deflections and Radius of Curvature - Design Wind

				mit.	The state of	Radius of
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Curvature
		Load Comb.	in	۰	0	ft
152.00 150.00	4' HP MW DB563K-TT w/Mount Pipe	18 18	11.313 11.054	0.6115 0.6101	0.0513 0.0490	85581 85581

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	43 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load Comb.	in	۰		Curvature ft
145.00	QS66512-2 w/ Mount Pipe	18	10.408	0.6061	0.0438	61130
140.00	4' HP MW	18	9.765	0.6010	0.0431	35596
135.00	6' x 3" Omni	18	9.128	0.5940	0.0416	31664
131.00	APXVSPP18-C-A20 w/ Mount Pipe	18	8.625	0.5864	0.0394	52152
115.00	AIR32 KRD901146- 1_B66_B2A w/ Mount Pipe	18	6.689	0.5304	0.0318	14630
98.00	XXDWMM-12.5-65-8T-CBRS w/ Mount Pipe	18	4.863	0.4527	0.0266	12337
74.00	8' 4-Bay Dipole	18	2.764	0.3397	0.0184	11908
58.00	GPS GPS	18	1.692	0.2592	0.0134	12581

Bolt	Design	Data
------	--------	------

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt	Allowable Load	Ratio Load	Allowable Ratio	Criteria	
					in .	Dons	per Boll K	per Bolt K	Allowable		
T1	152	Leg	A325N	0.6250	4	0.68	20.34	0.033	1	Bolt Tension	
		Diagonal	A325N	0.5000	1	1.13	3.13	0.362	1	Member Block Shear	
		Top Girt	A325N	0.5000	1	0.09	4.13	0.023	1	Member Bearing	
T2	140	Diagonal	A325N	0.5000	1	1.07	4.69	0.228	1	Member Block Shear	
		Top Girt	A325N	0.5000	1	0.12	4.13	0.029	1	Member Bearing	
Т3	135	Diagonal	A325N	0.5000	1	1.52	4.69	0.325	19	Member Block Shear	
T4	130	Diagonal	A325N	0.5000	1	2.34	6.25	0.374	1	Member Block Shear	
T5	125	Leg	A325N	0.6250	4	3.51	20.34	0.173	1	Bolt Tension	
		Diagonal	A325N	0.5000	1	2.32	6.25	0.371	4	Member Block Shear	
Т6	120	Leg	A325N	0.7500	4	8.28	30.10	0.275	1	Bolt Tension	
		Diagonal	A325N	0.5000	1	4.11	8.27	0.497	1	Gusset Bearing	
T7	100	Leg	A325N	0.8750	4	14.01	41.56	0.337	1	Bolt Tension	
		Diagonal	A325X	0.5000	1	4.83	8.27	0.584	1	Member Bearing	
		Secondary Horizontal	A325N	0.5000.	2	0.61	8.70	0.071	1	Member Block Shear	
T8	80	Diagonal	A325X	0.5000	1	4.96	8.27	0.600	1	Member Bearing	
		Secondary Horizontal	A325N	0.5000	2	0.70	8.70	0.080	1	Member Block Shear	
Т9	73.3333	Diagonal	A325X	0.5000	1	5.02	8.27	0.607	1	Gusset Bearing	
		Secondary Horizontal	A325N	0.5000	2	0.77	8.70	0.089	1	Member Block Shear	
T10	66.6667	Leg	A325N	0.8750	4	19.83	41.56	0.477	1	Bolt Tension	
		Diagonal	A325N	0.5000	1	5.17	8.27	0.626	1	Gusset Bearing	
T11		Secondary Horizontal	A325N	0.5000	2	0.85	8.70	0.098	1	Member Block Shear	
T11	60	Diagonal	A325N	0.6250	1	5.80	10.44	0.555	1	Gusset Bearing	
		Secondary Horizontal	A325N	0.5000	2	0.94	8.70	0.108	1	Member Block Shear	

Centerline Engineering Services, PA 750 W Center St, Suite 301

750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page 44 of 50
	Stamford NW CT	44 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
IVO.	ft	1970		in	Bolts	per Bolt K	per Bolt K	Allowable		
T12	50	Leg	A325N	1.0000	4	24.80	54.52	0.455	1	Bolt Tension
112		Diagonal	A325N	0.6250	1	5.83	10.44	0.559	1	Gusset Bearing
		Secondary	A325N	0.5000	2	1.05	8.84	0.119	1	Bolt Shear
T13	40	Horizontal Diagonal	A325N	0.6250	1	6.04	10.44	0.579	1	Gusset Bearing
113	10	Secondary	A325N	0.5000	2	1.16	8.84	0.131	1	Bolt Shear
T14	30	Horizontal Leg	A325N	1.0000	4	29.83	54.52	0.547	1	Bolt Tension
111		Diagonal	A325N	0.6250	1	6.64	10.44	0.636	1	Gusset Bearing
		Horizontal	A325N	0.5000	2	1.26	8.84	0.143	1	Bolt Shear
T15	20	Diagonal	A325X	0.6250	1	6.11	10.44	0.586	1	Member Bearing
	15	Diagonal	A325X	0.6250	1	5.96	10.44	0.571	1	Gusset Bearing
T16	15	Horizontal	A325N	0.6250	1	2.75	10.44	0.263	1	Member Bearing
T17	9.99999	Diagonal	A325X	0.6250	1	6.65	10.44	0.637	1	Gusset Bearing

Compression Checks

			-
Leg Design	Data	(Compression)

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
No.	fi		ft	fi		in ²	K	K	ΦP_n
T1	152 - 140	P2.375X0.154 (2" STD)	12.00	4.00	61.0 K=1.00	1.0745	-4.58	36.84	0.124
T2	140 - 135	P2.875"x0.203" (2.5 STD)	5.01	5.01	63.4 K=1.00	1.7040	-6.87	57.13	0.120
T3	135 - 130	P2.875"x0.203" (2.5 STD)	5.01	5.01	63.4 K=1.00	1.7040	-10.73	57.13	0.188
T4	130 - 125	P2.875"x0.203" (2.5 STD)	5.01	5.01	63.4 K=1.00	1.7040	-14.44	57.13	0.253
T5	125 - 120	P2.875"x0.203" (2.5 STD)	5.01	5.01	63.4 K=1.00	1.7040	-19.29	57.14	0.338
T6	120 - 100	Pipe 2.5 XStr (2.875"ODx0.276")	20.03	6.68	86.7 K=1.00	2.2535	-42.69	58.51	0.730
Т7	100 - 80	2.875"x0.276" w/ 3.5"x.3" Sleeve (STAMFORD NW	20.03	3.43	45.3 K=1.00	3.2590	-70.80	126.18	0.561
Т8	80 - 73.3333	CT) 3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW CT)	6.68	3.43	37.1 K=1.00	3.9980	-80.30	162.69	0.494
Т9	73.3333 - 66.6667	3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW CT)	6.68	3.42	37.1 K=1.00	3.9980	-88.95	162.72	0.547
T10	66.6667 - 60	3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW CT)	6.68	3.42	37.0 K=1.00	3.9980	-97.87	162.76	0.601
T11	60 - 50	Pipe 4 XStr	10.02	5.17	42.1	4.4074	-108.55	174.28	0.623

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	45 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio
	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_u}$
	~	(4.5"ODx0.337")			K=1.00				./
T12	50 - 40	Pipe 4 XStr (4.5"ODx0.337")	10.02	5.17	42.0 K=1.00	4.4074	-121.11	174.35	0.695 1
T13	40 - 30	4.5"x0.337" w/ 5"x.25" Sleeve (STAMFORD NW CT 30'-40')	10.02	5.16	43.5 K=1.00	5.5270	-133.70	216.57	0.617 1
T14	30 - 20	4.5"x0.337" w/ 5"x.25" Sleeve (STAMFORD NW CT 20'-30')	10.02	2.50	20.9 K=1.00	5.6410	-145.45	245.84	0.592
T15	20 - 15	5.5"x0.259" w/ 6"x.25" Sleeve (STAMFORD NW CT 15'-20')	5.01	2.50	67.4 K=4.00	5.7700	-157.37	186.20	0.845
T16	15 - 9.99999	5.5"x0.259" w/ (3) 1.5"x,5" Bars (STAMFORD NW CT 0'-15')	5.01	5.01	57.3 K=2.00	6.5614	-158.54	232.29	0.683 1
T17	9.99999 - 0	5.5"x0.259" w/ (3) 1.5"x.5" Bars (STAMFORD NW CT 0'-15')	10.02	10.02	57.3 K=1.00	6.5614	-170.03	232.30	0.732 1

 $^{^{1}}P_{u}/_{\phi}P_{n}$ controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	fl		in ²	K	K	ϕP_n
T1	152 - 140	L1 1/2x1 1/2x1/8	7.68	3.62	146.8 K=1.00	0.3594	-1.15	4.77	0.241
T2	140 - 135	L1 1/2x1 1/2x3/16	8.45	4.13	169.0 K=1.00	0.5273	-1.11	5.28	0,210 1
Т3	135 - 130	L1 1/2x1 1/2x3/16	8.87	4.34	177.5 K=1.00	0.5273	-1.56	4.79	0.326 1
T4	130 - 125	L1 1/2x1 1/2x1/4	9.30	4.55	187.1 K=1.00	0.6875	-2.45	5.62	0.436 ¹
T5	125 - 120	L1 1/2x1 1/2x1/4	9.73	4.76	195.8 K=1.00	0.6875	-2.20	5.13	0.428 1
T6	120 - 100	L2x2x1/4	12.26	6.09	186.8 K=1.00	0.9380	-3.90	7.69	0.507 1
T7	100 - 80	L2 1/2x2 1/2x1/4	14.01	7.05	172.4 K=1.00	1.1900	-5.07	11.46	0.443 1
T8	80 - 73.3333	L2 1/2x2 1/2x1/4	14.61	7.33	179.1 K=1.00	1.1900	-5.09	10.61	0.480 ¹
T9	73.3333 - 66.6667	L2 1/2x2 1/2x5/16	15.21	7.63	187.3 K=1.00	1.4600	-5.41	11.91	0.455 1
T10	66.6667 - 60	L2 1/2x2 1/2x5/16	15.82	7.94	194.9 K=1.00	1.4600	-5.33	11.01	0.484 1
T11	60 - 50	L3x3x1/4	18.19	9.17	186.0 K=1.00	1.4400	-6.21	11.92	0.521 1
T12	50 - 40	L3x3x5/16	19.05	9.60	195.7 K=1.00	1.7800	-6.42	13.31	0.483 1
T13	40 - 30	L3x3x3/8	19.92	10.04	205.2 K=1.00	2.1100	-6,49	14.34	0.452 1

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
300	Stamford NW CT	46 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section	Elevation	Size	L	L_{μ}	Kl/r	A	P_w	ϕP_n	Ratio P_u	
No. ft	ft		ft	fi		in ²	K	K	φP,,	
T14	30 - 20	KL/R > 200 (C) - 178 L3x3x5/16	10.63	10.42	135.7 K=1.00	1.7800	-7.51	27.69	0.271	
T15	20 - 15	L3 1/2x3 1/2x1/4	10.63	10.14	115.8 K=1.04	1.6900	-6.15	35.18	0.175	
T16	15 - 9.99999	L3 1/2x3 1/2x1/4	11.08	10.58	182.9 K=1.00	1.6900	-6.34	14.46	0.439	
T17	9.99999 - 0	L3 1/2x3 1/2x5/16	22.61	11.21	194.9 K=1.00	2.0900	-7.23	15.74	0.459	

 $^{{}^{1}}P_{u}/\phi P_{n}$ controls

		Horizon	tal De	sign	Data (Comp	ressior)	
Section	Elevation	Size	L	Lu	Kl/r	A	P_{ν}	φP _n	Ratio P _u
No.	ft		ft	ft		in ²	K	K	ϕP_n
T14	30 - 20	L3x3x1/4	18.24	13.41	181.2 K=0.50	1.4400	-2.52	12.55	0.201
T16	15 - 9.99999	L3x3x1/4	19.26	9.28	239.4 K=1.00	1.4400	-2.75	7.19	0.382 1
		KL/R > 200 (C) - 246							

 $^{^{1}}P_{u}$ / ϕP_{n} controls

Secondary Horizontal Design Data (Compression	Secondary Horizon	tal Design Data	(Compressi	on
---	-------------------	-----------------	------------	----

Section	Elevation	Size	L	L_{u}	Kl/r	A	P_u	φ <i>P</i> ,,	Ratio P"
No_*	ft		fì	ft		in ²	K	K	ϕP_n
T7	100 - 80	L2 1/2x2 1/2x1/4	12.31	6.03	147.4 K=1.00	1.1900	-1.23	15.68	0.078
T8	80 - 73.3333	L2 1/2x2 1/2x1/4	12.99	6.35	155.2 K=1.00	1.1900	-1.39	14.15	0.098
T 9	73.3333 - 66.6667	L2 1/2x2 1/2x1/4	13.66	6.69	163.4 K=1.00	1.1900	-1.54	12.75	0.121
T10	66.6667 - 60	L2 1/2x2 1/2x1/4	14.34	7.03	171.7 K=1.00	1.1900	-1.70	11.55	0.147
T11	60 - 50	L2 1/2x2 1/2x1/4	15.18	7.40	180.9 K=1.00	1.1900	-1.88	10.41	0.181
T12	50 - 40	L3x3x1/4	16.19	7.91	160.3 K=1.00	1.4400	-2.10	16.03	0.131
T13	40 - 30	L3x3x1/4	17.21	8.42	170.7 K=1.00	1.4400	-2.32	14.14	0.164

Job Page tnxTower Stamford NW CT 47 of 52 Project Centerline Engineering Services, PA 23CLVZ-0009 15:14:50 09/21/23 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX: Client Designed by Verizon Wireless

jboegel

 $^{^{1}}$ P_{u} / ϕP_{u} controls

	Top Girt Design Data (Compression)										
Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio		
	ft		ft	fi		in^2	K	K	φP,,		
Т1	152 - 140	L2x2x1/8	6.52	6.11	184.5 K=1.00	0.4844	-0.10	4.07	0.025		
T2	140 - 135	L2x2x1/8	6.56	6.11	184.5 K=1.00	0.4844	-0.12	4.07	0.029 1		

 $^{^{1}}$ P_{u} / ϕP_{u} controls

		Redundant Ho	orizonta	ıl (1)	Desig	n Data	(Comp	oressio	n)
Section No.	Elevation	Size	Ĺ	L_{u}	Kl/r	A	P_{ν}	ϕP_n	Ratio P _u
	fl		ſŧ	ft		in?	K	K	φP
T14	30 - 20	L2x2x1/4	4.56	4.38	134.4 K=1.00	0.9380	-2.52	14.85	0.170
T15	20 - 15	L2x2x1/4	4.81	4.60	141.1 K=1.00	0.9380	-2.95	13.48	0.219

 $^{^{1}}P_{u}/\phi P_{n}$ controls

		Redundant	Diagonal	(1) [Design	Data	(Comp	ressior	1)
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
	ft		ft	ft		in²	K	K	$\frac{P_u}{\Phi P}$
T14	30 - 20	L2x2x1/4	5.31	5.11	156.7 K=1.00	0.9380	-1.47	10.93	0.134
T15	20 - 15	L2x2x1/4	5.54	5.30	162.6 K=1.00	0.9380	-1.58	10.16	0.156

 $^{^{1}}$ $P_{"}$ / $\phi P_{"}$ controls

Tension Checks

Leg Design Data (Tension)

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job	Stamford NW CT	Page 48 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
No.	fŧ		ft	ft		in²	K	K	φP.,
T1	152 - 140	P2.375X0.154 (2" STD)	12.00	4.00	61.0	1.0745	2.72	48.35	0.056
T2	140 - 135	P2.875"x0.203" (2.5 STD)	5.01	5.01	63.4	1.7040	4.74	76.68	0.062 1
Т3	135 - 130	P2.875"x0.203" (2.5 STD)	5.01	5.01	63.4	1.7040	7.10	76.68	0.093
T4	130 - 125	P2.875"x0.203" (2.5 STD)	5.01	5.01	63.4	1.7040	9.78	76.68	0.128
T5	125 - 120	P2.875"x0.203" (2.5 STD)	5.01	5.01	63.4	1.7040	14.05	76.68	0.183 1
Т6	120 - 100	Pipe 2.5 XStr (2.875"ODx0.276")	20.03	6.68	86.7	2.2535	33.13	101.41	0.327 1
T7	100 - 80	2.875"x0.276" w/ 3.5"x.3" Sleeve (STAMFORD NW	20.03	3.25	42.9	3.2590	56.11	146.66	0.383 1
T8	80 - 73.3333	CT) 3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW CT)	6.68	3.25	35.2	3.9980	64.21	179.91	0.357 1
Т9	73.3333 - 66.6667	3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW CT)	6.68	3.26	35.3	3.9980	71.71	179.91	0.399 1
T10	66.6667 - 60	3.5"x0.3" w/ 4"x.25" Sleeve (STAMFORD NW CT)	6.68	3.26	35.3	3.9980	79.41	179.91	0.441 1
T11	60 - 50	Pipe 4 XStr (4.5"ODx0.337")	10.02	4.84	39.3	4.4074	88.55	198.34	0.446 1
T12	50 - 40	Pipe 4 XStr (4.5"ODx0.337")	10.02	4.85	39.4	4.4074	99.31	198.34	0.501 1
T13	40 - 30	4.5"x0.337" w/ 5"x.25" Sleeve (STAMFORD NW	10.02	4.86	41.0	5.5270	109.92	248.72	0.442 1
T14	30 - 20	CT 30'-40') 4.5"x0.337" w/ 5"x.25" Sleeve (STAMFORD NW	10.02	2.50	20.9	5.6410	119.66	253.85	0.471 1
T15	20 - 15	CT 20'-30') 5.5"x0.259" w/ 6"x.25" Sleeve (STAMFORD NW	5.01	2.50	16.9	5.7700	129.58	259.65	0.499 1
T16	15 - 9.99999	CT 15'-20') 5.5"x0.259" w/ (3) 1.5"x.5" Bars (STAMFORD NW CT	5.01	5.01	28.6	6.5614	130.11	295.26	0.441
T17	9.99999 - 0	0'-15') 5.5"x0.259" w/ (3) 1.5"x.5" Bars (STAMFORD NW CT 0'-15')	10.02	10.02	57.3	6,5614	139.68	295.26	0.473

 $^{^{1}}P_{u}/\phi P_{n}$ controls

		Diag	gonal I	Desig	n Dat	a (Tens	sion)		
Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
No.	fi		ft	ft		in ²	K	K	фР,
T1	152 - 140	L1 1/2x1 1/2x1/8	7.68	3.62	96.1	0.2109	1.13	9.18	0.123
T2	140 - 135	L1 1/2x1 1/2x3/16	8.45	4.13	111.3	0.3076	1.07	13.38	0.080 1

Centerline Engineering Services, PA 750 W Center St, Suite 301

750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	49 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section No.	Elevation	Size	L	L_{ii}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ΦP_n
T3	135 - 130	L1 1/2x1 1/2x3/16	8.87	4.34	116.8	0.3076	1.52	13.38	0.114
T4	130 - 125	L1 1/2x1 1/2x1/4	9.30	4.55	124.5	0.3984	2.34	17.33	0.135 1
T5	125 - 120	L1 1/2x1 1/2x1/4	9.73	4.76	130.2	0.3984	2.32	17.33	0.134 1
Т6	120 - 100	L2x2x1/4	11.70	5.81	116.5	0.5863	4.11	25.50	0.161 1
T7	100 - 80	L2 1/2x2 1/2x1/4	13.42	6.76	105.5	0.7753	4.83	33.73	0.143 1
T8	80 - 73.3333	L2 1/2x2 1/2x1/4	14.61	7.33	114.4	0.7753	4.96	33.73	0.147
Т9	73.3333 - 66.6667	L2 1/2x2 1/2x5/16	15.21	7.63	120.4	0.9485	5.02	41.26	0.122 1
T10	66.6667 - 60	L2 1/2x2 1/2x5/16	15.82	7.94	125.2	0.9485	5.17	41.26	0.125
T11	60 - 50	L3x3x1/4	18.19	9.17	118.4	0.9394	5.80	40.86	0.142 1
T12	50 - 40	L3x3x5/16	19.05	9.60	125.0	1.1592	5.83	50.43	0.116 ¹
T13	40 - 30	L3x3x3/8	19.92	10.04	132.0	1.3716	6.04	59.66	0.101
T14	30 - 20	L3x3x5/16	10.63	10.42	135.7	1.1592	6.64	50.43	0.132 1
T15	20 - 15	L3 1/2x3 1/2x1/4	10.63	10.14	114.3	1.1269	6.11	49.02	0.125 1
T16	15 - 9.99999	L3 1/2x3 1/2x1/4	11.08	10.58	119.1	1.1269	5.96	49.02	0.122 1
T17	9.99999 - 0	L3 1/2x3 1/2x5/16	22.61	11.21	125.9	1.3917	6.65	60.54	0.110 1

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Harimantal	Danis	Data	/ T
Horizontal	Design	Data	(Tension)

Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_u	ϕP_n	Ratio
	ft		ft	ft		in²	K	K	ΦΡ.,
T14	30 - 20	L3x3x1/4	18.24	13.41	173.0	0.9628	2.52	41.88	0.060
T16	15 - 9.99999	L3x3x1/4	19.26	9.28	181.9	0.9394	2.75	40.86	0.067 1

 $^{^{1}}$ P_{u} / ϕP_{u} controls

Secondary Horizontal Design Data (Tension)

Centerline Engineering Services, PA 750 W Center St, Suite 301

750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job	Stamford NW CT	Page 50 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section	Elevation	Size	L	L_{μ}	KUr	A	P_u	ϕP_n	Ratio P _u
No.	ft		ft	ft		in²	K	K	ϕP_n
T7	100 - 80	L2 1/2x2 1/2x1/4	11.64	5.69	177.6	0.7753	1.23	33.73	0.036
Т8	80 - 73.3333	L2 1/2x2 1/2x1/4	12.99	6.35	198.1	0.7753	1.39	33.73	0.041 1
Т9	73.3333 - 66.6667	L2 1/2x2 1/2x1/4	13.66	6.69	208.7	0.7753	1.54	33.73	0.046 1
T10	66.6667 - 60	L2 1/2x2 1/2x1/4	14.34	7.03	219.3	0.7753	1.70	33.73	0.050 1
T11	60 - 50	L2 1/2x2 1/2x1/4	15.18	7.40	231.0	0.7753	1.88	33.73	0.056 1
T12	50 - 40	L3x3x1/4	16.19	7.91	204.1	0.9628	2.10	41.88	0.050 1
T13	40 - 30	L3x3x1/4	17.21	8.42	217.3	0.9628	2.32	41.88	0.055 1

¹ P_u / ϕP_n controls

	Top Girt Design Data (Tension)								
Section	Elevation	Size	L	L_{μ}	Kl/r	A	P_u	ϕP_n	Ratio P _u
No.	ft		ft	ft		in ²	K	K	ϕP_n
Tl	152 - 140	L2x2x1/8	6.52	6.11	121.1	0.3047	0.09	13.25	0.007
T2	140 - 135	L2x2x1/8	6.56	6.11	121.1	0.3047	0.12	13.25	0.009 1

 $^{^{1}}P_{\mu}$ / ϕP_{n} controls

		Redundant	Horizo	ntal (1) De:	sign Da	ata (Te	nsion)	
Section	Elevation	Size	L	L_{ν}	Kl/r	A	P_u	ϕP_n	Ratio P _u
No.	fl		ft	ft		in ²	K	K	$\phi P_{\scriptscriptstyle M}$
T14	30 - 20	L2x2x1/4	4.56	4.38	86.3	0.9380	2.52	30.39	0.083
T15	20 - 15	L2x2x1/4	4.81	4.60	90.6	0.9380	2.95	30.39	0.097

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Redundant Diagonal (1) Design Data (Tension)

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job		Page
	Stamford NW CT	51 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section No.	Elevation	Size	L	$L_{\scriptscriptstyle \sf H}$	Kl/r	A	P_{u}	ϕP_n	Ratio
	ft		ft	ft		in^2	K	K	φP
T14	30 - 20	L2x2x1/4	5.31	5.11	100.6	0.9380	1.47	30.39	0.048 1
T15	20 - 15	L2x2x1/4	5.54	5.30	104.4	0.9380	1.58	30.39	0.052

¹ P_u / ϕP_n controls

Section Capacity Table

T1 152-140 Leg P2.375X0.154 (2" STD) 3 -4.58 36.84 12.4 T2 140-135 Leg P2.875'x0.203" (2.5 STD) 27 -6.87 57.13 12.0 T3 135-130 Leg P2.875'x0.203" (2.5 STD) 39 -10.73 57.13 18.8 T4 130-125 Leg P2.875'x0.203" (2.5 STD) 48 -14.44 57.13 25.3 T5 125-120 Leg P2.875'x0.203" (2.5 STD) 48 -14.44 57.13 25.3 T6 120-100 Leg P2.875'x0.203" (2.5 STD) 57 -19.29 57.14 33.8 T6 120-100 Leg P2.875'x0.203" (2.5 STD) 57 -19.29 57.14 33.8 T6 120-100 Leg P2.875'x0.203" (2.5 STD) 57 -19.29 57.14 33.8 T6 120-100 Leg P2.875'x0.203" (2.5 STD) 57 -19.29 57.14 33.8 T8 80-73.3333 Leg 2.875'x0.203" (2.5 STD) 57 -19.29 57.14 33.8 Sleeve (STAMFORD NW CT) Sleeve (STAMFORD NW CT) T8 80-73.3333 Leg 3.5'x0.3" w/4"x.25" Sleeve 115 -80.30 162.69 49.4 (STAMFORD NW CT) T9 73.3333 Leg 3.5'x0.3" w/4"x.25" Sleeve 127 -88.95 162.72 54.7 (STAMFORD NW CT) T10 66.6667 (STAMFORD NW CT) T11 60-50 Leg 3.5'x0.3" w/4"x.25" Sleeve 127 -88.95 162.76 60.1 (STAMFORD NW CT) T12 50-40 Leg Pipe 4 XStr (4.5"ODx0.33"") 151 -108.55 174.28 62.3 T13 40-30 Leg 4.5'x0.33" w/5"x.25" Sleeve 175 -133.70 216.57 61.7 (STAMFORD NW CT 30-40") T14 30-20 Leg 4.5'x0.33" w/5"x.25" Sleeve 175 -133.70 216.57 61.7 (STAMFORD NW CT 15'-20") T15 20-15 Leg 5.5'x0.259" w/ (3) 1.5'x.5" Bars (25 -170.03 232.30 73.2 (STAMFORD NW CT 15'-20") T16 15-9.99999 Leg 5.5'x0.259" w/ (3) 1.5'x.5" Bars (25 -170.03 232.30 73.2 (STAMFORD NW CT 0'-15") T1 152-140 Diagonal L1 1/2x1 1/2x1/8 11 -1.15 4.77 24.1 T2 140-135 Diagonal L1 1/2x1 1/2x1/8 11 -1.15 4.77 24.1 T2 140-135 Diagonal L1 1/2x1 1/2x1/4 59 -2.20 5.13 42.8 T6 120-100 Diagonal L2 1/2x2 1/2x1/4 88 -5.07 11.46 44.3 T8 80-73.3333 Diagonal L2 1/2x2 1/2x1/4 88 -5.07 11.46 44.3 T8 80-73.3333 Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 60.00 (b) T1 100-80 Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 60.00 (b) T1 100-66.6667 Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 60.7 (b) T1 100-60.66.667 Diagonal L2 1/2x2 1/2x5/16 142 -5.33 11.01 48.8 T1 100-66.6667 Diagonal L2 1/2x2 1	ection	Elevation	Component	Size	Critical	P	$ olimits_{allow} $	%	Pass
T2 140-135					Element	K	K	Capacity	Fail
T3						-4.58	36.84	12.4	Pass
T4					27	-6.87	57.13	12.0	Pass
T5			_	P2.875"x0.203" (2.5 STD)	39	-10.73	57.13	18.8	Pass
T6			_	P2.875"x0.203" (2.5 STD)	48	-14.44	57.13	25.3	Pass
To 120 - 100 Leg				P2.875"x0.203" (2.5 STD)	57	-19.29	57.14	33.8	Pass
T8			Leg	1	64	-42.69	58.51		Pass
TS 80 - 73.3333			Leg		85	-70.80	126.18	56.1	Pass
T9 73.3333 - Leg 3.5"x0.3" w/4"x.25" Sleeve 127 -88.95 162.72 54.7 (STAMFORD NW CT) T10 66.6667 - 60	Т8	80 - 73.3333	Leg	3.5"x0.3" w/ 4"x.25" Sleeve	115	-80.30	162.69	49.4	Pass
T10 66.6667 - 60	Т9		Leg	3.5"x0.3" w/ 4"x.25" Sleeve	127	-88.95	162.72	54.7	Pass
Til 60 - 50		66.6667 - 60	Leg	3.5"x0.3" w/ 4"x.25" Sleeve	139	-97.87	162.76	60.1	Pass
T12 50 - 40		60 - 50	Leg		151	-108.55	174.28	62.3	Pass
T13	Γ12	50 - 40	Leg						Pass
T14	Γ13	40 - 30		4.5"x0.337" w/ 5"x.25" Sleeve					Pass
T15	Γ14	30 - 20	Leg	4.5"x0.337" w/ 5"x.25" Sleeve	187	-145.45	245.84	59.2	Pass
T16 15 - 9.99999	15	20 - 15	Leg	5.5"x0.259" w/ 6"x.25" Sleeve	229	-157.37	186.20	84.5	Pass
T17 9.99999 - 0	16	15 - 9.99999	Leg	5.5"x0.259" w/ (3) 1.5"x.5" Bars	253	-158.54	232.29	68.3	Pass
T1 152 - 140 Diagonal L1 1/2x1 1/2x1/8 11 -1.15 4.77 24.1 T2 140 - 135 Diagonal L1 1/2x1 1/2x3/16 31 -1.11 5.28 21.0 22.8 (b) T3 135 - 130 Diagonal L1 1/2x1 1/2x3/16 40 -1.56 4.79 32.6 T4 130 - 125 Diagonal L1 1/2x1 1/2x1/4 49 -2.45 5.62 43.6 T5 125 - 120 Diagonal L1 1/2x1 1/2x1/4 59 -2.20 5.13 42.8 T6 120 - 100 Diagonal L2x2x1/4 68 -3.90 7.69 50.7 T7 100 - 80 Diagonal L2 1/2x2 1/2x1/4 88 -5.07 11.46 44.3 T8 80 - 73.3333 Diagonal L2 1/2x2 1/2x1/4 119 -5.09 10.61 48.0 T9 73.3333 Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 66.6667 T10 66.6667 Diagonal L2 1/2x2 1/2x5/16 142 -5.33 11.01 48.4	17	9.99999 - 0	Leg	5.5"x0.259" w/ (3) 1.5"x.5" Bars	262	-170.03	232.30	73.2	Pass
T2 140 - 135 Diagonal L1 1/2x1 1/2x3/16 31 -1.11 5.28 21.0 22.8 (b) T3 135 - 130 Diagonal L1 1/2x1 1/2x3/16 40 -1.56 4.79 32.6 4	Γ1	152 - 140	Diagonal		11	-1.15	4.77		Pass
T3	Γ2	140 - 135	Diagonal	L1 1/2x1 1/2x3/16	31	-1.11	5.28	21.0	Pass
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		135 - 130	Diagonal	L1 1/2x1 1/2x3/16	40	-1.56	4 79		Pass
T5 125 - 120 Diagonal L1 1/2x1 1/2x1/4 59 -2.20 5.13 42.8 T6 120 - 100 Diagonal L2x2x1/4 68 -3.90 7.69 50.7 T7 100 - 80 Diagonal L2 1/2x2 1/2x1/4 88 -5.07 11.46 44.3 T8 80 - 73.3333 Diagonal L2 1/2x2 1/2x1/4 119 -5.09 10.61 48.0 T9 73.3333 - Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 66.6667 T10 66.6667 Diagonal L2 1/2x2 1/2x5/16 142 -5.33 11.01 48.4		130 - 125							Pass
T6 120 - 100 Diagonal L2x2x1/4 68 -3.90 7.69 50.7 T7 100 - 80 Diagonal L2 1/2x2 1/2x1/4 88 -5.07 11.46 44.3 T8 80 - 73.3333 Diagonal L2 1/2x2 1/2x1/4 119 -5.09 10.61 48.0 T9 73.3333 - Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 66.6667 T10 66.6667 - Diagonal L2 1/2x2 1/2x5/16 142 -5.33 11.01 48.4	Γ5	125 - 120							Pass
T7 100 - 80 Diagonal L2 1/2x2 1/2x1/4 88 -5.07 11.46 44.3 T8 80 - 73.3333 Diagonal L2 1/2x2 1/2x1/4 119 -5.09 10.61 48.0 T9 73.3333 - Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 66.6667	Γ6								Pass
T8 80 - 73.3333 Diagonal L2 1/2x2 1/2x1/4 119 -5.09 10.61 48.0 T9 73.3333 - Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 66.6667	Γ7								
T9 73.3333 - Diagonal L2 1/2x2 1/2x5/16 130 -5.09 10.61 48.0 60.0 (b) T9 73.3333 - Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 66.6667 T10 66.6667 - Diagonal L2 1/2x2 1/2x5/16 142 -5.33 11.01 48.4			5	DE 1/2/2 1/2/1/7	00	-5.07	11.40		Pass
T10 66.6667 Diagonal L2 1/2x2 1/2x5/16 130 -5.41 11.91 45.5 60.7 (b) T10 66.6667 - 60 Diagonal L2 1/2x2 1/2x5/16 142 -5.33 11.01 48.4 T11 60.50 Diagonal Diagonal C2 1/2x2 1/2x5/16 142 -5.33 11.01 48.4	r8	80 - 73.3333	Diagonal	L2 1/2x2 1/2x1/4	119	-5.09	10.61	48.0	Pass
T10 66.6667 - 60 Diagonal L2 1/2x2 1/2x5/16 142 -5.33 11.01 48.4 T11 60.50 50 50 62.6 (b)	Г9		Diagonal	L2 1/2x2 1/2x5/16	130	-5.41	11.91	45.5	Pass
	10		Diagonal	L2 1/2x2 1/2x5/16	142	-5.33	11.01	48.4	Pass
5355174 134 -6.21 11.92 52.1	11	60 - 50	Diagonal	L3x3x1/4	154	-6.21	11.92	62.6 (b) 52.1	Pass

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Phone: (781) 713-4725 FAX:

Job	Stamford NW CT	Page 52 of 52
Project	23CLVZ-0009	Date 15:14:50 09/21/23
Client	Verizon Wireless	Designed by jboegel

Section	Elevation	Component	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
No.	ft	Туре		Etement			55.5 (b)	
				166	-6.42	13.31	48.3	Pass
T12	50 - 40	Diagonal	L3x3x5/16	166	-0.42	13.51	55.9 (b)	1 1100
				170	-6.49	14.34	45.2	Pass
T13	40 - 30	Diagonal	L3x3x3/8	178	-0.49	14.34	57.9 (b)	1 1133
			70.0.5/1/	191	-7.51	27.69	27.1	Pass
T14	30 - 20	Diagonal	L3x3x5/16	191	-7.31	27.09	63.6 (b)	1 455
			1 2 1 /2 -2 1 /2-1 /4	236	-6.15	35.18	17.5	Pass
T15	20 - 15	Diagonal	L3 1/2x3 1/2x1/4	230	-0.15	33.10	58.6 (b)	
			I 2 1/2-2 1/2-1/4	256	-6.34	14.46	43.9	Pass
T16	15 - 9.99999	Diagonal	L3 1/2x3 1/2x1/4	250	-0,54	11110	57.1 (b)	
		P11	L3 1/2x3 1/2x5/16	265	-7.23	15.74	45.9	Pass
T17	9.99999 - 0	Diagonal	L3 1/2x3 1/2x3/10	203	,,25	22	63.7 (b)	
		TT	L3x3x1/4	204	-2.52	12.55	20.1	Pass
T14	30 - 20	Horizontal	L3x3x1/4 L3x3x1/4	246	-2.75	7.19	38.2	Pass
T16	15 - 9.99999	Horizontal	L2 1/2x2 1/2x1/4	96	-1.23	15.68	7.8	Pass
T7	100 - 80	Secondary Horizontal	L2 1/2x2 1/2x1/4 L2 1/2x2 1/2x1/4	126	-1.39	14.15	9.8	Pass
T8	80 - 73.3333	Secondary Horizontal	L2 1/2x2 1/2x1/4	138	-1.54	12.75	12.1	Pass
Т9	73.3333 -	Secondary Horizontal	L2 1/2A2 1/2A1/7	130				
	66.6667	G day Hodenstal	L2 1/2x2 1/2x1/4	150	-1.70	11.55	14.7	Pass
T10	66.6667 - 60	Secondary Horizontal Secondary Horizontal	L2 1/2x2 1/2x1/4	162	-1.88	10.41	18.1	Pass
T11	60 - 50	Secondary Horizontal	L3x3x1/4	174	-2.10	16.03	13.1	Pass
T12	50 - 40	Secondary Horizontal	L3x3x1/4	186	-2.32	14.14	16.4	Pass
T13	40 - 30	Top Girt	L2x2x1/8	5	-0.10	4.07	2.5	Pass
T1	152 - 140	Top Girt	L2x2x1/8	29	-0.12	4.07	2.9	Pass
T2	140 - 135	Redund Horz 1	L2x2x1/4	209	-2.52	14.85	17.0	Pass
T14	30 - 20	Bracing	DDADK1/					
T1 5	20 - 15	Redund Horz 1	L2x2x1/4	251	-2.95	13.48	21.9	Pass
T15	20 - 13	Bracing						
T14	30 - 20	Redund Diag 1	L2x2x1/4	228	-1.47	10.93	13.4	Pass
114	30 - 20	Bracing						
T15	20 - 15	Redund Diag 1	L2x2x1/4	235	-1.58	10.16	15.6	Pass
113	20 - 15	Bracing						
		Dittomb					Summary	
						Leg (T15)	84.5	Pass
						Diagonal	63.7	Pass
						(T17)		_
						Horizontal	38.2	Pass
						(T16)		-
						Secondary	18.1	Pass
						Horizontal		
						(T11)	2.2	-
						Top Girt	2.9	Pass
						(T2)	21.2	
						Redund	21.9	Pass
						Horz 1		
						Bracing		
						(T15)	1.0 .	
						Redund	15.6	Pass
						Diag 1		
						Bracing		
						(T15)	co =	
						Bolt Checks	63.7	Pass
						RATING =	84.5	Pass

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Tel: (781)-713-4725

Job: Project: Client:

Stamford NW CT	
23CLVZ-0009	
Verizon Wireless	

Engineer:	JB
Date:	9/21/2023
Sheet:	1 of 1

SST Anchor Rod Check (TIA-H)

Anchor Rod Information

Grout Considered?: Clear Distance, I_{ar}: Quanity Per Leg:

Diameter:

Rod Material: Strength (Fu):

Yield (Fy):

NO		
1	in	
4		
1	in	
F1554	Gr. 105	
125	lkai	

ksi

105

Reactions

Compression, P_{uc}: Comp Shear, V_{uc}: Tension, P_{ut}: Tension Shear, V_{ut}:

176.0	kips
21.0	kips
145.0	kips
18.0	kips

Capacity Results

Anchor Rod Results

Interaction Equations for lar \leq 1(d)

 $(Puc/\phi cRnc) + [Vu/\phi cRnvc]^2 \le 1.0$

$$R_{nt} = FuA_n = 75.75$$
 kips
 $R_{nc} = F_yA_n = 63.63$ kips
 $R_{nv} = 0.5F_vA_g = 49.09$ kips

Rnvc =
$$0.6F_yA_n/2$$
 19.09 kips
 $R_{nb} = F_{cr}A_n = 63.34$ kips
 $M_n = F_yZ = 11.86$ ksi

_	
φ _t =[0.75
ф,=[0.75
ф_=	1.0
Ф.=Г	0.9

Anchor Rod Stress Ratio=

76.7%

Good

Centerline Engineering Services, PA 750 W Center St, Suite 301 West Bridgewater, MA 02379 Tel: (781)-713-4725

Job: Project: Client:

Stamford NW CT 23CLVZ-0009 Verizon Wireless

JB Engineer: 9/21/2023 Date: 1 of 1 Sheet:

Self Support Drilled Pier Analysis Summary (TIA-H)

Analysis Reactions

Moment, M: Axial, P: Shear, V:

Uplift. Comp. kip-ft 1.0 1.0 176.0 145.0 kips 18.0 kips 21.0

Material Properties

Rebar Strength, F'y: Concrete Strength, fc: Dry Concrete Density, δ_c:

Г	60	ksi
	4.0	ksi
	150	pcf

Pier Properties

Depth, D: 21.0 Ext. Above Grade, E: 0.5 4.5 Diameter, d: 15 Rebar Quantity, R_q: Rebar Size, Rs: 8 3.00 Clear Cover, cc: 4 Tie Size, T_s: 8.0 10.0 ksf

Groundwater Depth, Dgw: Ultimate Gross End Bearing

Soil	P	'n	o	er	ti	es

Layer	Top (ft)	Bottom (ft)	Thickness (ft)	Soil Unit Weight (pcf)	Cohesion (ksf)	Friction Angle (deg)	Ult. Skin Friction - Comp (ksf)	Ult. Skin Friction - Uplift (ksf)	SPT Blow Count (N)
	0.0	5.0	5.0	120	0.00	0	0.000	0.000	0
	5.0	8.0	3.0	120	0.00	30	0.820	0.820	0
	8.0	13.5	5.5	120	0.00	30	0.820	0.820	0
<u>3</u>	13.5	21.0	7.5	130	0.00	36	0.820	0.820	0

Foundation Analysis Results

Soil Lateral Capacity

Dv=0 (ft): Soil Safety Factor: Max Moment (kip-ft): Rating:

Comp. Uplift 11.71 11.7 3.11 3.1 708.4 708.42 40.7% 40.7%

Soil Vertical Capacity

Skin Friction (kips): End Bearing (kips): Wt. of Conc. (kips): Total Cap. (kips): Axial (kips):

Rating:

Comp. Uplift. 139.1 139.1 119.3 34.5 46.1 173.7 258.4 222.1 145.0 79.5% 81.8%

Reinforced Concrete Flexure Capacity

Comp. Uplift 11.2 Critical Depth (ft): 11.96 706.2 Critical Mom. (k-ft): 707.85 1,080.5 1431.09 Critical Mom. Cap.: 47.1% 62.2% Rating:

Reinforced Concrete Shear Capacity

Comp. Uplift Critical Depth (ft): 17.55 17.6 35.3 Critical Shear: 41.16 246.6 272.57 Critical Shear Cap.: 14.4% 13.6% Rating:

Soil Rating: Structural Rating:

31.8%	GOOD
22 29/	GOOD

Colliers Engineering & Design CT, PC 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis

SMART Tool Project #: 10208065 Colliers Engineering & Design CT, PC Project #: 23777220

August 1, 2023

Site Information

Site ID:

5000386730-VZW / STAMFORD NW CT

Site Name:

STAMFORD NW CT

Carrier Name:

Verizon Wireless

Address:

366 Old Long Ridge Rd Stamford, Connecticut 06903

Fairfield County

Latitude:

41.153111°

Longitude:

-73.592703°

Structure Information

Tower Type:

152-Ft Self Support

Mount Type:

12.50-Ft Sector Frame

FUZE ID # 17123711

Analysis Results

Sector Frame: 42.7% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements: Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Lauren Luzier

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks	
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 1477020, dated March 16, 2021	
Construction Drawings	On Air Engineering LLC, Site ID: STAMFORD NW CT, dated February 17, 2020	
Previous Antenna Mount Analysis	Maser Consulting Connecticut Project #: 21777625A, dated May 11, 2021	
Post Modification Inspection Report	Colliers Engineering & Design Project #: 21777625, dated July 7, 2023	
Filter Add Scope	Provided by Verizon Wireless	

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H
	2022 Connections

2022 Connecticut State Building Code (CSBC),	Effective October 1, 2022
--	---------------------------

Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), VULT:	120 mph
	Ice Wind Speed (3-sec. Gust):	50 mph
	Doolog Ing Thisley and	4 00 1

Design Ice Thickness:	1.00 in
Risk Category:	H
Exposure Category:	В
Topographic Category:	1
Topographic Feature Considered:	N/A
Topographic Method:	N/A
Ground Elevation Factor, K _e :	0.984

Seismic Parameters:	S _s :	0.261 g
	S₁·	0.059.0

Maintenance Parameters:	Wind Speed (3-sec. Gust):	30 mph
	Maintenance Live Load Ly	250 lbc

Maintenance Live Load, Lv:	250 lbs.
Maintenance Live Load, Lm:	500 lbs.

Analysis Software: RISA-3D (V17)

August 1, 2023 Site ID: 5000386730-VZW / STAMFORD NW CT Page | 3

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
96.75 98.00		4	KAelus	KA-6030	Added
	3	Samsung	MT6407-77A		
	96.75 98.00	6	Commscope	JAHH-65B-R3B	
		3	Samsung	XXDWMM-12.5-65-8T-CBRS	
		3	Samsung	B5/B13 RRH-BR04C	Retained
	3	3	Samsung	B2/B66A RRH-BR049	
		3	Commscope	CBC78T-DS-43-2X	
		3	RFS Celwave	DB-T1-6Z-8AB-0Z *	

^{*} Equipment to be flush mounted directly to the Self Support. They are not mounted on mounts and are not included in this mount analysis.

The recent PMI reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Colliers Engineering & Design and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design to verify deviation will not adversely impact the analysis.
- Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity
 of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate 0

ASTM A36 (Gr. 36)

HSS (Rectangular) 0

ASTM 500 (Gr. B-46)

Pipe 0

ASTM A53 (Gr. B-35)

Threaded Rod 0

F1554 (Gr. 36)

Bolts

ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design.

Analysis Results:

Component	Utilization %	Pass/Fail
Face Horizontal	27.0 %	Pass
Standoff Horizontal	13.1 %	Pass
Standoff Diagonal	8.7 %	Pass
Standoff Vertical	11.3 %	Pass
Standoff Plate	42.7 %	Pass
Tieback	17.4 %	Pass
Antenna Pipe	41.5 %	Pass
Mount Connection	13.9 %	Pass

Structure Rating – (Controlling Utilization of all Components)	42.7%
--	-------

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipes Excluded		Mount Pipes Included		
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	
0	14.2	10.7	23.3	19.8	
0.5	22.3	17.9	35.3	30.9	
1	29.8	24.6	46.6	41.4	

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector(s).
- Ka factors included in (EPA)a calculations

August 1, 2023 Site ID: 5000386730-VZW / STAMFORD NW CT Page I 5

Requirements:

The existing mounts are **SUFFICIENT** for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

Contractor shall install the proposed filter units on new Site Pro 1 Dual Swivel Mount Kit (Part #: RRUDSM or EOR approved equivalent) in the location shown in the placement diagrams.

Contractor shall record all dimensions and member sizes requested in the Mount Geometry Verification Requirements section of the Mount Analysis report. Contractor shall provide the requested information to Colliers Engineering & Design for structural verification while on site. Contact EOR if these documents are not available to the general contractor.

Contractor shall inspect climbing facilities and safety climb, if present, and ensure they are in good condition. Contractor shall install safety climb wire rope guides in locations where wire rope is rubbing against the mount or mount-to-tower connection steel. Wire brush clean any observed corrosion and protect with two (2) coats of cold galvanization (Zinga or Zinc Kote). Contractor shall provide photos of wire rope guide installation as part of PMI documents. Contact EOR if additional guidance is required.

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Analysis Calculations

Mount Desktop - Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000386730

SMART Project #: 10208065

Fuze Project ID: 17123711

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

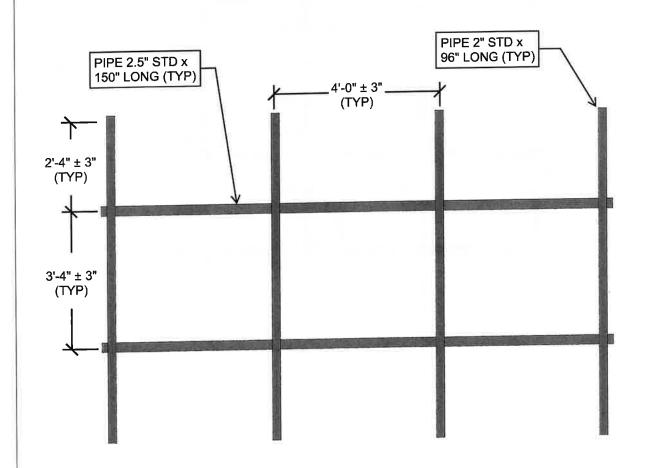
- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - o Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.


- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

 The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below. 		
\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.		
OR		
\square The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.		
Special Instructions / Validation as required from the MA or any other information the contractor		
deems necessary to share that was identified:		
Contractor shall record all dimensions and member sizes requested in the Mount Geometry Verification Requirements section of the Mount Analysis report. Contractor shall provide the requested information to Colliers Engineering & Design for structural verification while on site. Contact EOR if these documents are not available to the general contractor.		
Contractor shall inspect climbing facilities and safety climb, if present, and ensure they are in good condition. Contractor shall install safety climb wire rope guides in locations where wire rope is rubbing against the mount or mount-to-tower connection steel. Wire brush clean any observed corrosion and protect with two (2) coats of cold galvanization (Zinga or Zinc Kote). Contractor shall provide photos of wire rope guide installation as part of PMI documents. Contact EOR if additional guidance is required.		
additional galdance is a specific and a specific an		
Response:		
Special Instruction Confirmation:		
\square The contractor has read and acknowledges the above special instructions.		
\square All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.		
☐ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.		

☐ The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.				
Comments:				
Contractor certifies tha	t the climbing facility	/ safety climb was not damaged prior to starting work:		
	l No			
Contractor certifies no	new damage created	during the current installation:		
□Yes□	l No			
Contractor to certify the	e condition of the safe	ety climb and verify no damage when leaving the site:		
☐ Safety Climb i	n Good Condition	☐ Safety Climb Damaged		
Certifying Individual:				
Company: Employee Name: Contact Phone: Email: Date:				

MOUNT FRONT VIEW

MOUNT GEOMETRY VERIFICATION

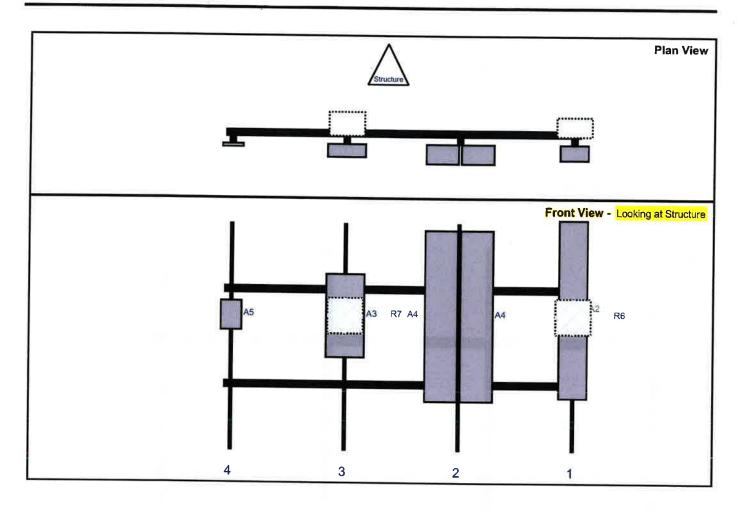
CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND MEMBER SIZES SHOWN IN THIS SKETCH. DOCUMENT ALL VARIATIONS OR DEVITIONS VIA PHOTOS AND SKETCHS AND PROVIDE TO THE EOR FOR EVALUATION.

Sector:

A

Structure Type: Self Support

Colliers Engineering & Design


Mount Elev:

96.75

10208065

Page: 1

8/1/2023

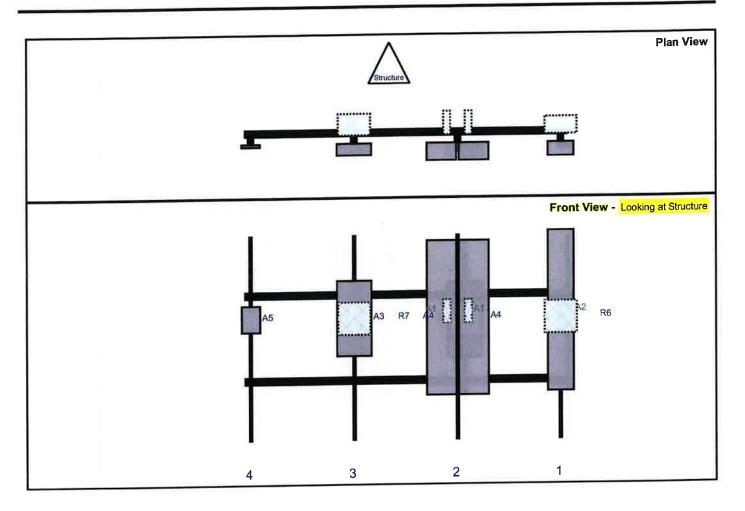
		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Fm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	HBXX-6517DS-A2M	74.9	12	147	1	a	Front	36	0	Retained	12/16/2021
R6	B5/B13 RRH-BR04C	15	15	147	1	а	Behind	39	0	Retained	12/16/2021
A4	JAHH-65B-R3B	72	13.8	99	2	а	Front	39	7.5	Retained	12/16/2021
A4	JAHH-65B-R3B	72	13.8	99	2	b'	Front	39	-7.5	Retained	12/16/2021
A3	MT6407-77A	35.1	16.1	51	3	а	Front	39	0	Retained	12/16/2021
R7	B2/B66A RRH-BR049	15	15	51	3	а	Behind	39	0	Retained	12/16/2021
A5	XXDWMM-12.5-65	12.3	8.7	3	4	а	Front	39	0	Retained	12/16/2021
M1	CBC78T-DS-43-2X	6.4	6.9	Bull '	Membe	er	4 74	AHTE J	WED	Retained	12/16/2021

Sector:

В

Structure Type: Self Support

10208065


8/1/2023

Mount Elev:

96.75

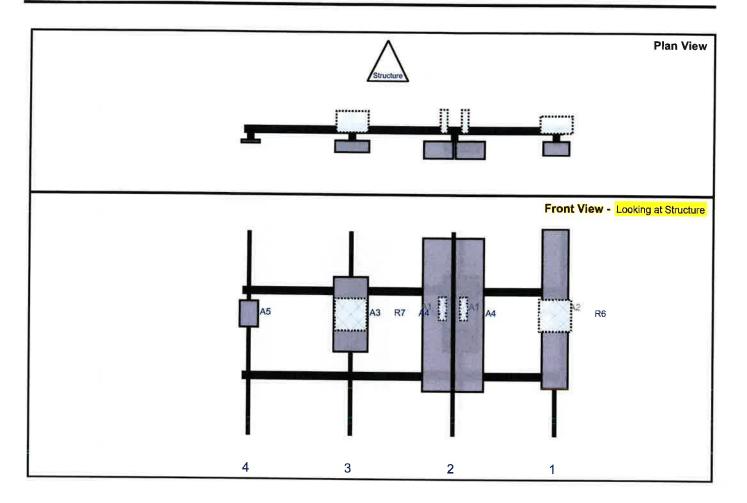
Page: 2

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T _s	H Off	Status	Validation
A2	HBXX-6517DS-A2M	74.9	12	147	1	а	Front	36	0	Retained	12/16/2021
R6	B5/B13 RRH-BR04C	15	15	147	1	а	Behind	39	0	Retained	12/16/2021
A4	JAHH-65B-R3B	72	13.8	99	2	а	Front	39	7.5	Retained	12/16/2021
A4	JAHH-65B-R3B	72	13.8	99	2	b	Front	39	-7.5	Retained	12/16/2021
A1	KA-6030	10.6	3.2	99	2	9	Behind	36	5	Added	
A1	KA-6030	10.6	3.2	99	2	b	Behind	36	-5	Added	
A3	MT6407-77A	35.1	16.1	51	3	а	Front	39	0	Retained	12/16/2021
R7	B2/B66A RRH-BR049	15	15	51	3	а	Behind	39	0	Retained	12/16/2021
A5	XXDWMM-12.5-65	12.3	8.7	3	4	а	Front	39	0	Retained	12/16/2021

Sector:

Mount Elev:

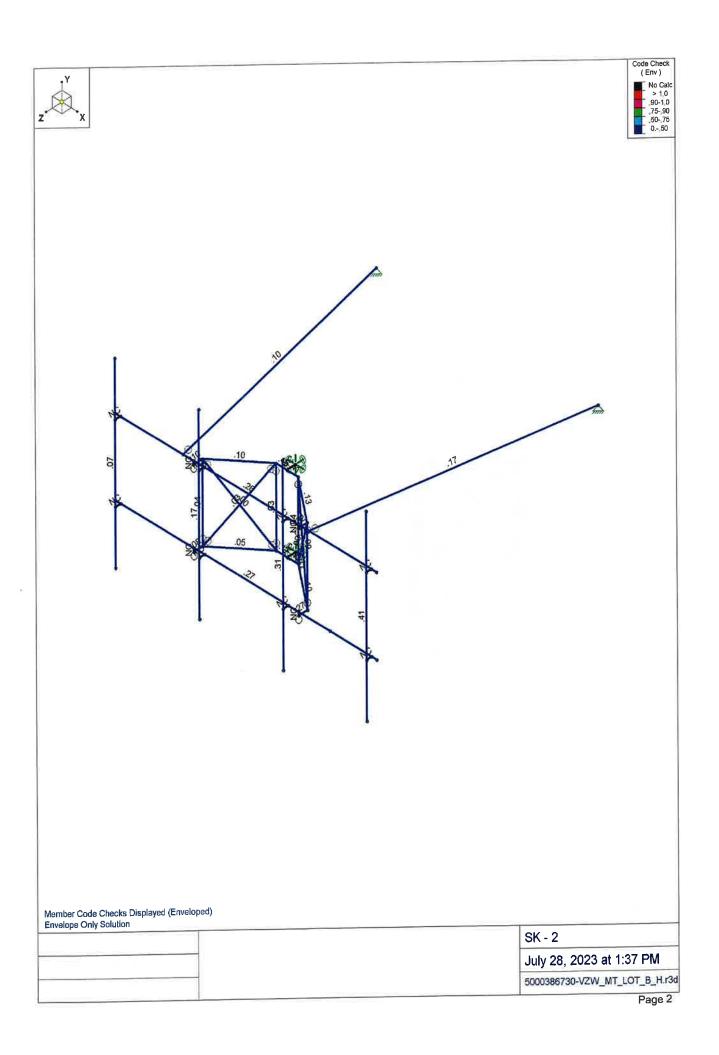
Structure Type: Self Support

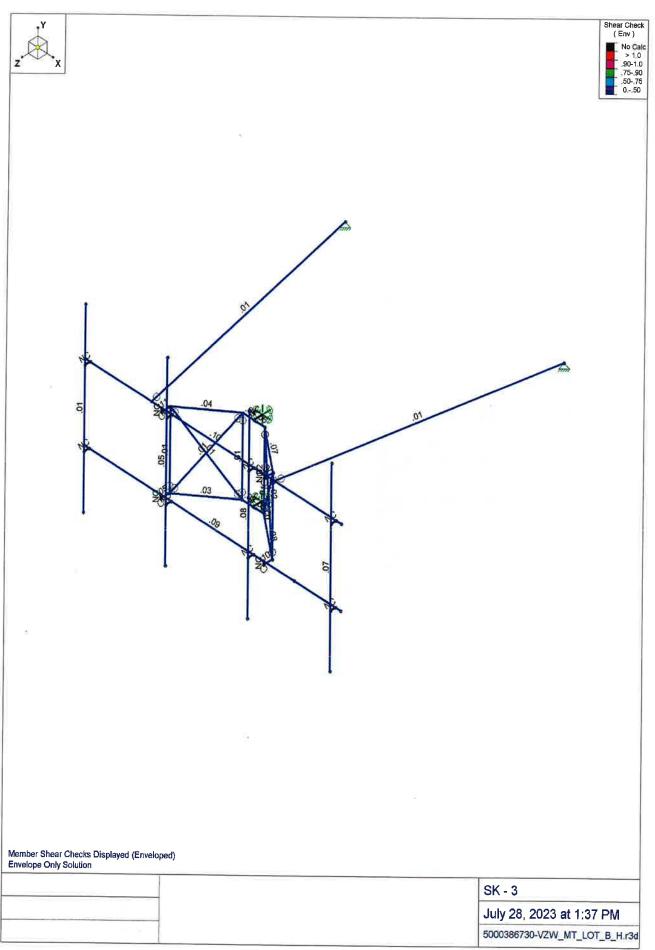

96.75

10208065

8/1/2023

Page: 3




		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Fm L.	#	Pos V	Pos	$\text{Frm } T_{\mathfrak{g}}$	H Off	Status	Validation
A2	HBXX-6517DS-A2M	74.9	12	147	1	а	Front	36	0	Retained	12/16/2021
R6	B5/B13 RRH-BR04C	15	15	147	1	а	Behind	39	0	Retained	12/16/2021
A4	JAHH-65B-R3B	72	13.8	99	2	а	Front	39	7.5	Retained	12/16/2021
A4	JAHH-65B-R3B	72	13.8	99	2	ь	Front	39	-7.5	Retained	12/16/2021
A1	KA-6030	10.6	3.2	99	2	b	Behind	36	5	Added	
A1	KA-6030	10.6	3.2	99	2	С	Behind	36	-5	Added	Щини
А3	MT6407-77A	35.1	16.1	51	3	а	Front	39	0	Retained	12/16/2021
R7	B2/B66A RRH-BR049	15	15	51	3	а	Behind	39	0	Retained	12/16/2021
A5	XXDWMM-12.5-65	12.3	8.7	3	4	а	Front	39	0	Retained	12/16/2021

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point 42	Distribut	Area(Me.	Surface(
1	Antenna D	None					42	100		
2	Antenna Di	None	+				42			
3	Antenna Wo (0 Deg)	None					42		-	
4	Antenna Wo (30 Deg)	None	_		-		42			
5	Antenna Wo (60 Deg)	None	-				42	WATER TO SERVICE		
6	Antenna Wo (90 Deg)	None					42			
7	Antenna Wo (120 Deg)	None	-	-			42			
8	Antenna Wo (150 Deg)	None	-				42			
9	Antenna Wo (180 Deg)	None	-				42			7.1
10	Antenna Wo (210 Deg)	None	-	-			42			
11	Antenna Wo (240 Deg)	None	+	-			42			
12	Antenna Wo (270 Deg)	None	_				42			
13	Antenna Wo (300 Deg)	None	-	-			42			
14	Antenna Wo (330 Deg)	None					42			
15	Antenna Wi (0 Deg)	None					42			
16	Antenna Wi (30 Deg)	None	-	-			42			
17	Antenna Wi (60 Deg)	None	-	-			42			
18	Antenna Wi (90 Deg)	None		-			42			
19	Antenna Wi (120 Deg)	None	-				42			
20	Antenna Wi (150 Deg)	None		-			42			
21	Antenna Wi (180 Deg)	None	+				42			
22	Antenna Wi (210 Deg)	None	4				42			
23	Antenna Wi (240 Deg)	None	-		-		42	+		
24	Antenna Wi (270 Deg)	None	_				42	-	_	
25	Antenna Wi (300 Deg)	None					42			
26	Antenna Wi (330 Deg)	None					42			
27	Antenna Wm (0 Deg)	None		-		2-X I		-		-
28	Antenna Wm (30 Deg)	None					42		-	
29	Antenna Wm (60 Deg)	None					42	-		
30	Antenna Wm (90 Deg)	None					-	_	_	_
31	Antenna Wm (120 Deg)	None	1				42	4		
32	Antenna Wm (150 Deg)	None					42		-	
33	Antenna Wm (180 Deg)	None				_	42			
34	Antenna Wm (210 Deg)	None						+		1
35	Antenna Wm (240 Deg)	None		1		201	42	-	+	-
36	Antenna Wm (270 Deg)	None				-	42			
37	Antenna Wm (300 Deg)	None				a maria	42		 	
38	Antenna Wm (330 Deg)	None					42	-		
39	Structure D	None		-1				28		
40	Structure Di	None						56	-	_
41	Structure Wo (0 Deg)	None			-	-	-	56	-	
42	Structure Wo (30 Deg)	None			-	_	-	56	1	
43	Structure Wo (60 Deg)	None						56	-	
44	Structure Wo (90 Deg)	None					-		+	
45	Structure Wo (120 Deg)	None		1				56	-	1
46	Structure Wo (150 Deg)	None						56		1
47	Structure Wo (180 Deg)	None						56		
48	Structure Wo (210 Deg)	None						56	-	
49	Structure Wo (240 Deg)	None						56		1
50	Structure Wo (270 Deg)	None						56		
51	Structure Wo (300 Deg)	None						56	-	
52	Structure Wo (330 Deg)	None				h	+	56		
53	Structure Wi (0 Deg)	None						56	-	
54	Structure Wi (30 Deg)	None	140		-			56	-	
55	Structure Wi (60 Deg)	None						56	-	1
56	Structure Wi (90 Deg)	None		2 10				56		-
57	Structure Wi (120 Deg)	None					-	56		-
58	Structure Wi (150 Deg)	None	1 2 2 2 2					56	-	+
59	Structure Wi (180 Deg)	None						56	-	1
60	Structure Wi (210 Deg)	None						56	1.	

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Dietribut	Aron/Me	Curfored
61	Structure Wi (240 Deg)	None	// Cidvity	Clavity	Z Gravity	JOHN	Point	56	.Area(Me.	Surface(
62	Structure Wi (270 Deg)	None						56		
63	Structure Wi (300 Deg)	None						56		
64	Structure Wi (330 Deg)	None						56		
65	Structure Wm (0 Deg)	None						56		
66	Structure Wm (30 Deg)	None						56		
67	Structure Wm (60 Deg)	None						56		
68	Structure Wm (90 Deg)	None						56		
69	Structure Wm (120 Deg)	None						56		
70	Structure Wm (150 Deg)	None						56		CONTRACT OF
71	Structure Wm (180 Deg)	None						56		
72	Structure Wm (210 Deg)	None						56		
73	Structure Wm (240 Deg)	None						56		
74	Structure Wm (270 Deg)	None						56		
75	Structure Wm (300 Deg)	None						56		
76	Structure Wm (330 Deg)	None						56		
77	Lm1	None					1	30		
78	Lm2	None				_	1			
79	Lv1	None	T 1				1			
80	Lv2	None					1			
81	Antenna Ev	None			_		42			
82	Antenna Eh (0 Deg)	None					28	- T		
83	Antenna Eh (90 Deg)	None					28			
84	Structure Ev	ELY				33				
85	Structure Eh (0 Deg)	ELZ	1		03		V			1117
86	Structure Eh (90 Deg)	ELX	.03		00	201	Sept.	100		- 126

Load Combinations

_	Description S	PDelta	SB		BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	В	Fa	R	Fa	R	Fa	В	En	D	En
1	1.2D+1.0Wo (0 D Y	Υ	1	1.2	39	1.2	3	1	41	1		T		1.6.	1	1 0.	Τ.	1 0.	۳.	.r a	D.,	ra.
2	1.2D+1.0Wo (30 Y	Y		1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Y	Y	1		39	1.2	5	1	43	1			1	1	1	1			1	1		
4	1.2D+1.0Wo (90 Y	Υ	1		39	1.2	6	1	44	1					100	100	10		100	1		
5	1.2D+1.0Wo (120 Y	Υ	1	_	39	1.2	7	1	45	1			+									
6	1.2D+1.0Wo (150Y	Y	1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180Y	Y	1	1.2	39	1.2	9	1	47	1	1		+	-			\vdash		-	-		
8	1.2D+1.0Wo (210Y	Υ		1.2	39	1.2	10	1	48	1			+	100					\vdash			
9	1.2D+1.0Wo (240Y	Y	1		39	1.2	11	1	49	1	-		+-	-	-	-	-	-	+			-
10	1.2D+1.0Wo (270Y	Y	1		39	1.2	12	1	50	1		H	1			CE ST				-		-
11	1.2D+1.0Wo (300Y	Y	1		39	1.2	13	1	51	1					-							
12	1.2D+1.0Wo (330Y	Y	1		39	1.2	14	1	52	1						1				-	- :	
13	1.2D + 1.0Di + 1.0Y	Y	_	1.2	39	1.2	2	1	40	1	15	1	53	4	-		-	_	-			
14	1.2D + 1.0Di + 1.0Y	Y		1.2	39	1.2	2	1	40	1	16	-	54	_	-			100		100	==),	
15	1.2D + 1.0Di + 1.0Y	Y	1 1		39	1.2	2	1	40	1	17	-	55		-	-	-		-		-	-
16	1.2D + 1.0Di + 1.0Y	Y	1	_	39	1.2	2	1	40	1	18		56		-						_	
17	1.2D + 1.0Di + 1.0Y	Y	1	_	39	1.2	2	1	40	1	19		57									
18	1.2D + 1.0Di + 1.0Y	Y		1.2	39	1.2	2	1	40	1	20	1	58						-		-	
19	1.2D + 1.0Di + 1.0.,Y	Ÿ		1.2	39	1.2	2	1	40	1	21	_					-				-	
20	1.2D + 1.0Di + 1.0Y	Y		1.2	39	1.2	2	1	40		_	1	59									
21	1.2D + 1.0Di + 1.0Y	Y		1.2	39	1.2	2	1		1	22	1	60		-							
22	1.2D + 1.0Di + 1.0Y	Y		1.2	39	1.2	2	1	40	_	23	_	61	_							_	
23	1.2D + 1.0Di + 1.0Y	Y		1.2	39	1.2	2	1	40	1	24		62									_
24	1.2D + 1.0Di + 1.0Y	Y		1.2	39	1.2	2		40	1	25		63					_		_		-
25	1.2D + 1.5Lm1 + Y	Y		1.2	39	1.2	77	1	40	1	26		64	1	100							
	1.2D + 1.5Lm1 + Y	Y		1.2	39			1.5	27	1	65	1	Н									
27	1.2D + 1.5Lm1 + Y	Y				1.2	77	1.5	28	1	66	1										
28	1.2D + 1.5Lm1 + Y	Y		1.2	39 39	1.2	77	1.5	29	1	67	1										
29	1.2D + 1.5Lm1 + Y	Y				1.2	77	1.5	30	1	68	1							- 1			
	1.2D + 1.5Lm1 + Y	Y		1.2	39	1.2	77	1.5	31	1	69	1	-									
31	1.2D + 1.5Lm1 + Y	Y		1.2		1.2	77	1.5	32	1	70	1										
	1.2D + 1.5Lm1 + Y	Y		1.2		1.2	77	1.5	33	1	71	1										
JZ	TALL TALLET	Y	1 1	1.2	39	1.2	77	1.5	34	1	72	1						1				

Load Combinations (Continued)

Load Combinations	COMM	ucu,	120,00		- SHIPSAN	21-121	+104.7.7.1	104400	1744 91 144		-		_		_	-	_			
Description S	PDelta	SBF					BLC		BLC	Fa	В	Fa	В	Fa.	.B	.Fa.,	В	-at	Sr	·a
33 1.2D + 1.5Lm1 + Y	Υ	1 1	_	1.2	_77	1.5		1	73	1					-				+	
34 1.2D + 1.5Lm1 + Y	Υ	1 1	2 39	1.2	77	1.5		1	74	_				_			\vdash	-	-	
35 1.2D + 1.5Lm1 + Y	Y	1 1	2 39	1.2	77	1.5		1	75	1	_			_	-	-	\vdash	-	+	-
36 1.2D + 1.5Lm1 + Y	Υ	1 1	2 39	1.2	77	1.5	38	1	76	1		_			-			-	+	_
37 1.2D + 1.5Lm2 + Y	Υ	1 1	.2 39	1.2	78	1.5	27	1	65	1			_	_	-			-	+	-
38 1.2D + 1.5Lm2 + Y	Y	1 1	2 39	1.2	78	1.5		1	66	1								_	-	
39 1.2D + 1.5Lm2 + Y	Y	1 1	.2 39	1.2	78	1.5	29	1	67	1	_			_	-	_			-	-
40 1.2D + 1.5Lm2 + Y	Y	1 1 1	.2 39	1.2	78	1.5	30	1	68	1							\vdash	_	-	
41 1.2D + 1.5Lm2 + Y	Υ	11	.2 39	1.2	78	1.5	31	1	69	1					1	<u>. </u>			-	
42 1.2D + 1.5Lm2 + Y	Y	111	.2 39	1.2	78	1.5	32	1	70	1							Ш	_	4	
43 1.2D + 1.5Lm2 + Y	Y	11	.2 39	1.2	78	1.5	33	1	71	1								_	_	
44 1.2D + 1.5Lm2 + Y	Y	111		1.2	78	1.5	34	1	72	1							Ш		4	
45 1.2D + 1.5Lm2 + Y	Y	11		1.2	78	1.5	35	1	73	1						_	Ш		_	
46 1.2D + 1.5Lm2 + Y	Y	11		1.2	78	1.5	36	1	74	1									_	
47 1.2D + 1.5Lm2 + Y	Y	111		1.2	78	1.5	37	1	75	1									_	
48 1.2D + 1.5Lm2 + Y	Y	111		1.2	78	1.5	38	1	76	1										
49 1.2D + 1.5Lv1 Y	Ÿ	1 1		1.2	79	1.5													_	
50 1.2D + 1.5Lv2 Y	Y	111		1.2	80	1.5														
51 1.4D Y	Y	111		1.4																
01 1.10	Y	11		1.2	81	1	ELY	1	82	1	83		Ε	1	Ε					
	Y	111		1.2	81	1	ELY	1	82	.866	83	.5	E	.86	6E	.5				
	Y	11		1.2	81	1	ELY		82	.5	83	.866	E	.5	E	.866				
	Ý	11		1.2	81	1	ELY	-	82		-	1	_	_		1				
00	Y	11		1.2	81	1	ELY	-	82	5	83	.866	E.,	5	E.,	.866				
	- T	1 1	-	1.2	81	1	ELY			8.										
	7107	11		1.2	81	1	ELY		82		83				E.,					
58 1.2D + 1.0Ev + 1Y	Y	1 1		1.2	81	1	ELY		82							5			\neg	
59 1.2D + 1.0Ev + 1 Y	Y	1 1		1.2	81	1	ELY		82							8				
60 1.2D + 1.0Ev + 1Y				1.2	81	1	ELY		82			-1				-1				
61 1.2D + 1.0Ev + 1Y	Y	1 1		1.2		1	ELY		82	5						8				
62 1.2D + 1.0Ev + 1 Y	Y			1.2	81	1	ELY		82							5				
63 1.2D + 1.0Ev + 1Y	Y	1 1			81	-1	ELY		-		83		Ε	1	Ε.,					
64 0.9D - 1.0Ev + 1.0Y	Y		9 39	.9		-1	ELY		82	.866		_			_					
65 0.9D - 1.0Ev + 1.0Y	Y		9 39	.9	81	_			1							.866			T	
66 0.9D - 1.0Ev + 1.0Y	Y		9 39	.9	81	-1	ELY	_	_			1				1			\top	
67 0.9D - 1.0Ev + 1.0Y	Υ		9 39	.9	81	-1	and the second second		_	5						.866		-	\neg	
68 0.9D - 1.0Ev + 1.0Y	Y		9 39	.9	81	-1	ELY	-	-	0	03	5	F	- 8	F	.5			\neg	
69 0.9D - 1.0Ev + 1.0Y	Y		9 39	.9	81	-1	ELY				83				E.				1	\neg
70 0.9D - 1.0Ev + 1.0Y	Y		9 39	.9	81	-1	ELY		and the books							5		1	-	
71 0.9D - 1.0Ev + 1.0., Y	Y		9 39	.9	81	-1	ELY	100	10000000	0.	03	5	E	0.		J	\vdash		+	
72 0.9D - 1.0Ev + 1.0Y	Υ		9 39	.9	81	-1	ELY	-		5						8		-	-	-
73 0.9D - 1.0Ev + 1.0Y	Υ		9 39	9_	81	-1	ELY		100000	-		-1				-1			-	
74 0.9D - 1.0Ev + 1.0Y	Y		9 39	.9	81	-1	ELY		82							8				
75 0.9D - 1.0Ev + 1.0Y	Y	11.	9 39	.9	81	-1	ELY	-1	82	.86	983	-,5	E	1.00	ų⊏.	5	Ш			

Joint Coordinates and Temperatures

	Label	X [ft]	Y Iftl	Z [ft]	Temp [F]	Detach From Diap.
4	N1	0	0	Ò	0	
2	N2	0	3.333333	0	0	
3	N3	6.25	0.145833	2.380208	0	
	N4	-6.25	0.145833	2.380208	0	
5	N5	6.25	3,479167	2.380208	0	
	N6	-6.25	3,479167	2.380208	0	
6	N7	-6	0.145833	2.380208	0	
-	N8	-6	3,479167	2.380208	0	
9	N9	-2	0.145833	2.380208	0	
10	N10	-2	3,479167	2.380208	0	
11	N11	2	0.145833	2.380208	0	
	N12	2	3,479167	2.380208	0	
12	N13	6	0.145833	2.380208	0	713
13	N14	6	3,479167	2.380208	0	
15	N15	-6	0.145833	2.630208	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap.
16	N16	-6	3.479167	2.630208	0	Detaon From Diap
17	N17	-2	0.145833	2.630208	0	
18	N18	-2	3.479167	2.630208	0	
19	N19	2	0.145833	2.630208	0	
20	N20	2	3.479167	2.630208	0	
21	N21	6	0.145833	2.630208	0	
22	N22	6	3.479167	2.630208	0	
23	N23	-2.5	0	2.380208	0	
24	N24	-2.5	3.333333	2.380208	0	
25	N25	2.5	0	2.380208	0	
26	N26	2.5	3.333333	2.380208	0	
27	N27	-2.5	0	1.958333	0	
28	N28	-2.5	3.333333	1.958333	0	
29	N29	2.5	0	1.958333	0	
30	N30	2.5	3.333333	1.958333	0	
31	N31	0	0	0.416667	0	
32	N32	0	3.333333	0.416667	Ö	
33	N33	-0.53125	0.555555	0.416667	0	
34	N34	-0.53125	3.333333	0.416667	0	
35	N35	0.53125	0.55555	0.416667	0	+
36	N36	0.53125	3.333333	0.416667	0	-
37	N37	-6	5.8125	The state of the s		
38	N38	-2	5.8125	2.630208	0	
39	N39	2	5.8125	2.630208		
40	N40	6	5.8125	2.630208	0	+
41	N41	-6	-2.1875	2.630208	0	
42	N42	-0		2.630208	0	
43	N43	2	-2.1875	2.630208	0	
44	N44	6	-2.1875	2.630208	0	
45	N45	-2.5	-2.1875	2.630208	0	
46	N46	-2.5	3.333333	2.005208	0	
47	N47		0.145833	2.380208	0	
48	N48	-2.5	3.479167	2.380208	0	
49	N49	2.5	0.145833	2.380208	0	
50	N50	2.5	3.479167	2.380208	0	
51		-3	3.479167	2.380208	0	
52	N51	3	3.479167	2.380208	0	0
	N54	4	0.145833	2.380208	0	
53	N56	-5.333333	3.479167	-9.237604	0	
54	N57	5.333333	3.479167	-9.237604	0	HAVE FREE TO SEE

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design L	Material	Design	A [in2]	lvv [in4]	Izz [in4]	J [in4]
1	Face Horizontal	PIPE 2.5	None	None	Q235	Typical	1.61	1.45	1.45	2.89
2	Standoff Horizontal	PIPE 2.0	None	None	Q235	Typical	1.02	.627	.627	1.25
3	Standoff Diagonal	SR 0.75	None	None	Q235	Typical	.442	.016	.016	.031
4	Standoff Vertical	SR 0.625	None	None	Q235	Typical	.307	.007	.007	.015
5	Standoff Plate	PL5/8X3.5	None	None	Q235	Typical	2.188	.071	2.233	.253
6	Tieback	PIPE 2.0	None	None	Q235	Typical	1.02	.627	.627	1.25
7	Antenna Pipe	PIPE 2.0	None	None	Q235	Typical	1.02	.627	.627	1.25

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E.	.Densitv/k/ft	Yield[ksi]	Rv	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1 1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3
7	Q235	29000	11154	.3	.65	.49	35	1.5	58	1.2

Member Primary Data

	Label	1 Joint	J Joint	K Joint	Rotate(de	Section/Shape	Type	Design List	Material	Design Rule Typical
1	M1	N4	N3			Face Horizont	None	None	Q235	Typical
2	M2	N6	N5			Face Horizont	None	None	Q235	
3	M3	N28	N34			Standoff Hori	None	None	Q235	Typical
4	M4	N27	N33			Standoff Hori	None	None	Q235	Typical
5	M5	N29	N35			Standoff Hori	None	None	Q235	Typical
6	M6	N30	N36			Standoff Hori	None	None	Q235	Typical
7	M7	N33	N28			Standoff Diag	None	None	Q235	Typical
8	M8	N34	N27			Standoff Diag	None	None	Q235	Typical
9	M9	N35	N30			Standoff Diag	None	None	Q235	Typical
10	M10	N29	N36			Standoff Diag	None	None	Q235	Typical
11	M11	N27	N28			Standoff Verti	None	None	Q235	Typical
12	M12	N33	N34			Standoff Verti	None	None	Q235	Typical
13	M13	N35	N36			Standoff Verti	None	None	Q235	Typical
14	M14	N29	N30			Standoff Verti	None	None	Q235	Typical
15	M15	N24	N28		90	Standoff Plate	None	None	Q235	Typical
16	M16	N23	N27		90	Standoff Plate	None	None	Q235	Typical
17	M17	N25	N29		90	Standoff Plate	None	None	Q235	Typical
18	M18	N26	N30		90	Standoff Plate	None	None	Q235	Typical
19	M19	N34	N32		90	Standoff Plate	None	None	Q235	Typical
20	M20	N36	N32		90	Standoff Plate	None	None	Q235	Typical
21	M21	N33	N31		90	Standoff Plate	None	None	Q235	Typical
22	M22	N35	N31		90	Standoff Plate	None	None	Q235	Typical
23	M23	N50	N56			Tieback	None	None	Q235	Typical
24	M24	N51	N57		STOP I	Tieback	None	None	Q235	Typical
25	MP1A	N40	N44			Antenna Pipe	None	None	Q235	Typical
26	MP2A	N39	N43			Antenna Pipe	None	None	Q235	Typical
	MP3A	N38	N42			Antenna Pipe	None	None	Q235	Typical
27	MP4A	N37	N41			Antenna Pipe	None	None	Q235	Typical
28	M29	N7	N15			RIGID	None	None	RIGID	Typical
29 30	M30	N8	N16			RIGID	None	None	RIGID	Typical
	M31	N10	N18			RIGID	None	None	RIGID	Typical
31	M32	N9	N17			RIGID	None	None	RIGID	Typical
32		N12	N20	-		RIGID	None	None	RIGID	Typical
33	M33	N11	N19		+	RIGID	None	None	RIGID	Typical
34	M34	N14	N22	-	+	RIGID	None	None	RIGID	Typical
35	M35		N21			RIGID	None	None	RIGID	Typical
36	M36	N13	N1	-		RIGID	None	None	RIGID	Typical
37	M37	N31	N2		+	RIGID	None	None	RIGID	Typical
38	M38	N32			+	RIGID	None	None	RIGID	Typical
39	M39	N24	N47	1.70.171.10	3000	RIGID	None	None	RIGID	Typical
40	M40	N23	N46	-	-	RIGID	None	None	RIGID	Typical
41	M41	N26	N49	-		RIGID	None	None	RIGID	Typical
42	M42	N25	N48	-	-	RIGID	None	None	RIGID	Typical
43	M43 M44	N32 N31	N2 N1	-		RIGID	None	None	RIGID	Typical

Member Advanced Data

	Lab at	I Release	J Release	I Offsetfinl	J Offset[in]	T/C Only	Physical	Defl Ratio Options	Analysis	Inactive	Seismi
4	Label	1 Release	J Kelease	TOTTOOLINE	o one and	•	Yes	** NA **			None
1-	M1						Yes	** NA **			None
2	M2			_			Yes	** NA **			None
3	M3										None
4	M4						Yes	** NA **			
5	M5						Yes	** NA **			None
6	M6					113	Yes	** NA **			None
7	M7	BenPIN	BenPIN			Euler Bu	Yes	** NA **			None
8		BenPIN	BenPIN			Euler Bu	Yes	** NA **			None
	M8		BenPIN			Euler Bu		** NA **			None
9	M9	BenPIN				Euler Bu.	Yes	** NA **			None
10	M10	BenPIN	BenPIN			Luiei Du.		** NA **			None
11	M11	BenPIN	BenPIN				Yes				
12	M12	BenPIN	BenPIN				Yes	** NA **			None
13	M13	BenPIN	BenPIN				Yes	** NA **			None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offsetfin1	T/C Only	Physical	Defl Ratio Options	Analysis	Inactive	Seismi
14	M14	BenPIN	BenPIN				Yes	** NA **	Tuldiyolo	HIGGITO	None
15	M15						Yes	** NA **			None
16	M16						Yes	** NA **		815	None
17	M17						Yes	** NA **			None
18	M18	1	0				Yes	** NA **			None
19	M19						Yes	** NA **			None
20	M20						Yes	** NA **			None
21	M21						Yes	** NA **			None
22	M22						Yes	** NA **	-		None
23	M23	BenPIN		-5/4/			Yes	** NA **			None
24	M24	BenPIN					Yes	** NA **			None
25	MP1A						Yes	** NA **			None
26	MP2A						Yes	** NA **			None
27	MP3A						Yes	** NA **			None
28	MP4A				THE PERSON		Yes	** NA **		177	None
29	M29						Yes	** NA **			None
30	M30						Yes	** NA **			None
31	M31						Yes	** NA **			None
32	M32						Yes	** NA **	Link		None
33	M33						Yes	** NA **			None
34	M34				1 2.0		Yes	** NA **			None
35	M35						Yes	** NA **			None
36	M36						Yes	** NA **	TIES.		None
37	M37						Yes	** NA **		Inactive	None
38	M38						Yes	** NA **		Inactive	None
39	M39		000000				Yes	** NA **		madavo	None
40	M40		000000				Yes	** NA **			None
41	M41		000000				Yes	** NA **		-	None
42	M42		000000				Yes	** NA **			None
43	M43						Yes	** NA **			None
44	M44					ii .	Yes	** NA **	L E		None

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	. Start Location[ft.%]	End Location(ft,%)
1	M1	Y	-5.426	-5.426	0	%100
2	M2	Y	-5.426	-5.426	0	%100
3	M3	Υ	-4.746	-4.746	0	%100
4	M4	Y	-4.746	-4.746	0	%100
5	M5	Y	-4.746	-4.746	0	%100
6	M6	Y	-4.746	-4.746	0	%100
7	M7	Y	-2.535	-2.535	0	%100
8	M8	Y	-2.535	-2.535	0	%100
9	M9	Y	-2.535	-2.535	0	%100
10	M10	Y	-2.535	-2.535	0	%100
11	M11	Y	-2.365	-2.365	0	%100
12	M12	Y	-2.365	-2.365	0	%100
13	M13	Υ	-2.365	-2.365	0	%100
14	M14	Y	-2.365	-2.365	0	%100
15	M15	Y	-6.352	-6.352	0	%100
16	M16	Υ	-6.352	-6.352	0	%100
17	M17	Υ	-6.352	-6.352	0	%100
18	M18	Υ	-6.352	-6.352	0	%100
19	M19	Υ	-6.352	-6.352	0	%100
20	M20	Y	-6.352	-6.352	0	%100
21	M21	Y	-6.352	-6.352	0	%100
22	M22	Y	-6.352	-6.352	0	%100
23	M23	Υ	-4.746	-4.746	0	%100
24	M24	Υ	-4.746	-4.746	0	%100
25	MP1A	Y	-4.746	-4.746	0	%100
26	MP2A	Y	-4.746	-4.746	0	%100
27	MP3A	Y	-4.746	-4.746	0	%100

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%]
28 MP4A	Y	-4.746	-4.746	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf] 0	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%] %100
1	M1 M1	Z	-8.731	-8.731	0	%100
2	M2	X	0.751	0	0	%100
3		Z	-8.731	-8.731	0	%100
4	M2	X	0	0	0	%100
5	M3	Z	-3.447	-3.447	0	%100
6	M3		0	0.417	0	%100
7	M4	X	-3,447	-3.447	0	%100
8	M4	Z	-3.447	0	0	%100
9	M5	X	-3.447	-3.447	0	%100
10	M5	Z	-3.447	0	0	%100
11	M6	X	-3.447	-3.447	0	%100
12	M6	Z	-3.447	0	0	%100
13	M7	X		-1.966	0	%100
14	M7	Z	-1.966	-1.966	0	%100
15	M8	X	0	-1.966	0	%100
16	M8	Z	-1.966	-1.966	0	%100
17	M9	X	0		0	%100
18	M9	Z	-1.966	-1.966	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	-1.966	-1.966		%100
21	M11	X	0	0	0	%100
22	M11	Z	-1.898	-1.898	0	
23	M12	X	0	0	0	%100
24	M12	Z	-1.898	-1.898	0	%100
25	M13	X	0	0	0	%100
26	M13	Z	-1.898	-1.898	0	%100
27	M14	X	0	0	0	%100
28	M14	Z	-1.898	-1.898	0	%100
29	M15	X	0	0	00	%100
30	M15	Z	0	0	0	%100
31	M16	X	0	0	0	%100
32	M16	Z	0	0	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	-1.898	-1.898	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	-1.898	-1.898	0	%100
41	M21	X	0	0	0	%100
	M21	Z	-1.898	-1.898	0	%100
42	M22	X	0	0	0	%100
43	M22	Z	-1.898	-1.898	0	%100
44		X	0	0	0	%100
45	M23	Ž	28	28	0	%100
46	M23	X	0	0	0	%100
47	M24	Z	28	28	Ö	%100
48	M24		20	0	0	%100
49	MP1A	X	-7.213	-7.213	0	%100
50	MP1A	Z		0	Ö	%100
51	MP2A	X	7 242	-7.213	0	%100
52	MP2A	Z	-7.213	-7.213	0	%100
53	МРЗА	X	0		0	%100
54	MP3A	Z	-7.213	-7.213	0	%100
55	MP4A	X	0	0		%100 %100
56	MP4A	Z	-7.213	-7.213	0	/0 100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location[ft,%]	End Location[ft,%]
1	M1	X	3.274	3.274	0	%100
2	M1	Z	-5.671	-5.671	0	%100
3	M2	X	3.274	3.274	0	%100
4	M2	Z	-5.671	-5.671	0	%100
5	M3	X	.388	.388	0	%100
6	M3	Z	672	672	0	%100
7	M4	X	.388	.388	0	%100
8	M4	Z	672	672	0	%100
9	M5	X	2.726	2.726	0	%100
10	M5	Z	-4.721	-4.721	0	%100
11	M6	X	2.726	2.726	0	%100
12	M6	Z	-4.721	-4.721	0	%100
13	M7	X	.786	.786	0	%100
14	M7	Z	-1.361	-1.361	0	%100
15	M8	X	.786	.786	0	%100
16	M8	Z	-1.361	-1.361	0	%100
17	M9	X	1.131	1.131	0	%100
18	M9	Z	-1.959	-1.959	0	
19	M10	X	1.131			%100
20	M10	Z		1.131	0	%100
21	M11		-1.959	-1.959	0	%100
22	M11	Z	.949	.949	0	%100
23	M12		-1.644	-1.644	0	%100
		X	.949	.949	0	%100
24	M12	Z	-1.644	-1.644	0	%100
25	M13	X	.949	.949	0	%100
26	M13	Z	-1.644	-1.644	0	%100
27	M14	X	.949	.949	0	%100
28	M14	Z	-1.644	-1.644	0	%100
29	M15	X	.237	.237	0	%100
30	M15	Z	411	411	0	%100
31	M16	X	.237	.237	0	%100
32	M16	Z	411	411	0	%100
33	M17	X	.237	.237	0	%100
34	M17	Z	411	411	0	%100
35	M18	X	.237	.237	0	%100
36	M18	Z	411	411	0	%100
37	M19	X	.712	.712	0	%100
38	M19	Z	-1.233	-1.233	0	%100
39	M20	X	.712	.712	0	%100
40	M20	Z	-1.233	-1.233	0	%100 %100
41	M21	X	.712	.712	0	%100 %100
42	M21	Z	-1.233	-1.233	0	%100 %100
43	M22	X	.712			
44	M22	Z	-1.233	.712 -1.233	0	%100 %400
45	M23	X	1.574			%100
46	M23	Z		1.574	0	%100
47	M24	X	-2.727	-2.727	0	%100
48	M24	Z	.369	.369	0	%100
49			638	638	0	%100
	MP1A	X	3.606	3.606	0	%100
50	MP1A	Z	-6.247	-6.247	0	%100
51	MP2A	X	3.606	3.606	0	%100
52	MP2A	Z	-6.247	-6.247	0	%100
53	MP3A	X	3.606	3.606	0	%100
54	MP3A	Z	-6.247	-6.247	0	%100
55	MP4A	X	3.606	3.606	0	%100
56	MP4A	Z	-6.247	-6.247	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft	Start Location[ft.%]	End Location(ft.%)
1	M1	X	1.89	1.89	0	%100
2	M1	Z	-1.091	-1.091	0	%100
3	M2	X	1.89	1.89	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location[ft,%]	End Location It, %
4	M2	Z	-1.091	-1.091	0	%100 %100
5	M3	X	.095	.095	0	%100 %100
6	M3	Z	055	055	0	%100 %100
7	M4	X	.095	.095	0	%100
8	M4	Z	055	055	0	%100 %100
9	M5	X	4.144	4.144	0	
10	M5	Z	-2.393	-2.393	0	%100
11	M6	X	4.144	4.144	0	%100
12	M6	Z	-2.393	-2.393	0	%100
13	M7	X	1.276	1.276	0	%100
14	M7	Z	737	737	0	%100
15	M8	X	1.276	1.276	0	%100
16	M8	Z	737	737	0	%100
17	M9	X	1.873	1.873	0	%100
18	M9	Z	-1.082	-1.082	0	%100
19	M10	X	1.873	1.873	0	%100
20	M10	Z	-1.082	-1.082	0	%100
21	M11	X	1.644	1.644	0	%100
22	M11	Z	949	949	0	%100
23	M12	X	1.644	1.644	0	%100
24	M12	Z	949	949	0	%100
25	M13	X	1.644	1.644	0	%100
26	M13	Z	949	949	0	%100
	M14	X	1.644	1.644	0	%100
27	M14	Z	949	949	0	%100
28		X	1.233	1.233	0	%100
29	M15 M15	Z	712	712	0	%100
30		X	1.233	1.233	0	%100
31	M16	Z	712	712	0	%100
32	M16	X	1.233	1.233	0	%100
33	M17	Z	712	712	0	%100
34	M17	X	1.233	1.233	0	%100
35	M18	Z	712	712	0	%100
36	M18		.411	.411	0	%100
37	M19	X	237	237	0	%100
38	M19	Z	.411	.411	0	%100
39	M20	X	237	237	0	%100
40	M20	Z		.411	0	%100
41	M21	X	.411	237	ŏ	%100
42	M21	Z	237		0	%100
43	M22	X	.411	.411	0	%100
44	M22	Z	237	5.608	0	%100
45	M23	X	5.608		0	%100
46	M23	Z	-3.238	-3.238		%100 %100
47	M24	X	3.519	3.519	0	%100 %100
48	M24	Z	-2.032	-2.032	0	%100 %100
49	MP1A	X	6.247	6.247	0	%100 %100
50	MP1A	Z	-3.606	-3.606	0	
51	MP2A	X	6.247	6.247	0	%100
52	MP2A	Z	-3.606	-3.606	0	%100
53	мР3А	X	6.247	6.247	0	%100
54	MP3A	Z	-3.606	-3.606	0	%100
55	MP4A	X	6.247	6.247	0	%100
56	MP4A	Z	-3.606	-3.606	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location[ft,%]	End Location[ft,%]
4		Y	0	0	0	%100
1	<u>M1</u>	7	0	0	0	%100
2	M1		0	0	0	%100
3	<u>M2</u>			0	0	%100
4	M2		2444	2444	0	%100
5	M3	X	2.114	2.114	0	%100
6	M3	Z	0	0	U	70 100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

7	Member Label M4	Direction	Start Magnitude[lb/ft,F,ksf] 2.114			
8	M4	Z	0	2.114	0	%100 %400
9	M5	X	2.114	2.114	0	%100
10	M5	Z	0	0	0	%100
11	M6	X	2.114	2.114	0	%100 %100
12	M6	Z	0	0	0	%100
13	M7	X	1.769	1.769	0	%100 %100
14	M7	Z	0	0	0	%100
15	M8	X	1.769	1.769	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	1.769	1.769	0	%100 %100
18	M9	Z	0	0	0	%100
19	M10	X	1.769	1.769	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	1.898	1.898	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	1.898	1.898	0	%100 %100
24	M12	Z	0	0	0	%100
25	M13	X	1.898	1.898	0	%100
26	M13	Z	0	0	0	%100
27	M14	X	1.898	1.898	0	%100
28	M14	Z	0	0	0	%100
29	M15	X	1.898	1.898	0	%100 %100
30	M15	Z	0	0	Ö	%100
31	M16	X	1.898	1.898	0	%100
32	M16	Z	0	0	Ö	%100
33	M17	X	1.898	1.898	Ö	%100
34	M17	Z	0	0	Ö	%100
35	M18	X	1.898	1.898	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	0	0	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	6.933	6.933	0	%100
46	M23	Z	0	0	0	%100
47	M24	X	6.933	6.933	0	%100
48	M24	Z	0	0	0	%100
49	MP1A	X	7.213	7.213	0	%100
50	MP1A	Z	0	0	0	%100
51	MP2A	X	7.213	7.213	0	%100
52	MP2A	Z	0	0	0	%100
53	MP3A	X	7.213	7.213	0	%100
54	MP3A	Z	0	0	0	%100
55	MP4A	X	7.213	7.213	0	%100
56	MP4A	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.89	1.89	0	%100
2	M1	Z	1.091	1.091	0	%100
3	M2	X	1.89	1.89	0	%100
4	M2	Z	1.091	1.091	0	%100
5	M3	X	4.144	4.144	0	%100
6	M3	Z	2.393	2.393	0	%100
7	M4	X	4.144	4.144	0	%100
8	M4	Z	2.393	2,393	0	%100
9	M5	X	.095	.095	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	%100
10	M5	Z	.055	.055	0	%100 %100
11	M6	X	.095	.095	0	%100 %100
12	M6	Z	.055	.055	0	
13	M7	X	1.873	1.873	0	%100
14	M7	Z	1.082	1.082	0	%100
15	M8	X	1.873	1.873	0	%100
16	M8	Z	1.082	1.082	0	%100
17	M9	X	1.276	1.276	0	%100
18	M9	Z	.737	.737	0	%100
19	M10	X	1.276	1.276	0	%100
20	M10	Z	.737	.737	0	%100
21	M11	X	1.644	1.644	0	%100
22	M11	Z	.949	.949	0	%100
23	M12	X	1.644	1.644	0	%100
24	M12	Z	.949	.949	0	%100
25	M13	X	1.644	1.644	0	%100
26	M13	Z	.949	.949	0	%100
27	M14	X	1.644	1.644	0	%100
28	M14	Z	.949	.949	0	%100
29	M15	X	1.233	1.233	0	%100
30	M15	Z	.712	.712	0	%100
31	M16	X	1.233	1.233	0	%100
32	M16	Z	.712	.712	0	%100
33	M17	X	1.233	1.233	0	%100
34	M17	Z	.712	.712	0	%100
35	M18	X	1.233	1.233	0	%100
36	M18	Z	.712	.712	0	%100
37	M19	X	.411	.411	0	%100
38	M19	Z	.237	.237	0	%100
39	M20	X	.411	.411	0	%100
40	M20	Z	.237	.237	0	%100
41	M21	X	.411	.411	0	%100
42	M21	Z	.237	.237	0	%100
43	M22	X	.411	.411	0	%100
44	M22	Z	.237	.237	0	%100
45	M23	X	3.519	3.519	0	%100
46	M23	Z	2.032	2.032	0	%100
47	M24	X	5.608	5.608	0	%100
48	M24	Z	3.238	3.238	0	%100
49	MP1A	X	6.247	6.247	0	%100
50	MP1A	Z	3.606	3.606	0	%100
51	MP2A	X	6.247	6.247	0	%100
	MP2A	Z	3.606	3.606	0	%100
52	MP3A	X	6.247	6.247	0	%100
53		Z	3.606	3.606	0	%100
54	MP3A MP4A	X	6.247	6.247	0	%100
55			0.271	3.606	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%]
1	Member Laber	X	3.274	3.274	0	%100
0	M1	Z	5.671	5.671	0	%100
2		X	3.274	3,274	0	%100
3	M2	Ž	5.671	5.671	0	%100
4	M2	- 	2.726	2.726	0	%100
5	M3	^	4.721	4.721	0	%100
6	M3		2.726	2.726	0	%100
7	M4	X		4.721	0	%100
8	M4	Z	4.721	.388	0	%100
9	M5	X	.388		0	%100
10	M5	Z	.672	.672		%100 %100
11	M6	X	.388	.388	0	
12	M6	Z	.672	.672	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

13	Member Label M7	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.		End Location[ft,%]
14		X	1.131	1.131	0	%100
15	M7	Z	1.959	1.959	0	%100
	M8	X	1.131	1.131	0	%100
16	M8	Z	1.959	1.959	0	%100
17 18	M9	X	.786	.786	0	%100
	M9	Z	1.361	1.361	0	%100
19	M10	X	.786	.786	0	%100
20	M10	Z	1.361	1.361	0	%100
21	M11	X	.949	.949	0	%100
22	M11	Z	1.644	1.644	0	%100
23	M12	X	.949	.949	0	%100
24	M12	Z	1.644	1.644	0	%100
25	M13	X	.949	.949	0	%100
26	M13	Z	1.644	1.644	0	%100
27	M14	X	.949	.949	0	%100
28	M14	Z	1.644	1.644	0	%100
29	M15	X	.237	.237	0	%100
30	M15	Z	.411	.411	0	%100
31	M16	X	.237	.237	0	%100
32	M16	Z	.411	.411	0	%100
33	M17	X	.237	.237	0	%100
34	M17	Z	.411	.411	Ö	%100
35	M18	X	.237	.237	0	%100
36	M18	Z	.411	.411	0	%100
37	M19	X	.712	.712	0	%100 %100
38	M19	Z	1.233	1.233	0	%100
39	M20	X	.712	.712	0	%100 %100
40	M20	Z	1.233	1.233	0	%100
41	M21	X	.712	.712	0	%100 %100
42	M21	Z	1.233	1.233	0	%100
43	M22	X	.712	.712	0	%100 %100
44	M22	Z	1.233	1.233	0	%100
45	M23	X	.369	.369	0	
46	M23	Z	.638	.638	0	%100
47	M24	X	1.574	1.574		%100
48	M24	Z	2.727	2.727	0	<u>%100</u>
49	MP1A	X	3.606		0	%100
50	MP1A	Z	6.247	3.606	0	%100
51	MP2A	X	3.606	6.247	0	%100
52	MP2A	Z		3.606	0	%100
53	MP3A	X	6.247	6.247	0	%100
54	MP3A	Z	3.606	3.606	0	%100
55	MP4A		6.247	6.247	0	%100
56	MP4A	X	3.606	3.606	0	%100
00	IVIP4A	Z	6.247	6.247	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	8.731	8.731	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	8.731	8.731	0	%100
5	M3	X	0	0	0	%100 %100
6	M3	Z	3.447	3,447	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	3.447	3.447	0	%100
9	M5	X	0	0	0	%100
10	M5	Z	3.447	3,447	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	3.447	3,447	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	1.966	1.966	0	%100
15	M8	X	0	0	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksfl	End Magnitude[lb/ft	. Start Location[ft,%]	End Location[ft,%
16	M8	Z	1.966	1.966	0	% 100
17	M9	X	0	0	0	%100
18	M9	Z	1.966	1.966	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	1.966	1.966	0	%100
	M11	X	0	0	0	%100
21	M11	Z	1.898	1.898	0	%100
	M12	X	0	0	0	%100
23	M12	Z	1.898	1.898	0	%100
24	M13	X	0	0	0	%100
25	M13	Z	1.898	1.898	0	%100
26		X	0	0	0	%100
27	M14	Z	1.898	1.898	0	%100
28	M14	X	0	0	0	%100
29	M15	Z	0	0	0	%100
30	M15	X	0	0	0	%100
31	M16	Ž	0	0	0	%100
32	M16		0	0	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	0	0	0	%100
36	M18	Z		0	0	%100
37	M19	X	0	1.898	0	%100
38	M19	Z	1.898	0	0	%100
39	M20	X	0	1.898	Ö	%100
40	M20	Z	1.898	0	0	%100
41	M21	X	0	1.898	0	%100
42	M21	Z	1.898		0	%100
43	M22	X	0	0	0	%100
44	M22	Z	1.898	1.898	0	%100 %100
45	M23	X	0	0	0	%100
46	M23	Z	.28	.28	0	%100
47	M24	X	0	0		%100
48	M24	Z	.28	.28	0	%100
49	MP1A	X	0	0	0	%100
50	MP1A	Z	7.213	7.213	0	%100 %100
51	MP2A	X	0	0	0	
52	MP2A	Z	7.213	7.213	0	%100
53	MP3A	X	0	0	0	%100
54	MP3A	Z	7.213	7.213	0	%100
55	MP4A	X	0	0	0	%100
56	MP4A	Z	7.213	7.213	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	er Distributed L	Direction	Start Magnitude[ib/ft,F,ksf]	End Magnitude[lb/ft.,	Start Location[ft,%]	End Location[ft,%]
4 T	Member Label	X	-3.274	-3.274	0	%100
1	M1	Z	5.671	5.671	0	%100
2	M1		-3.274	-3.274	0	%100
3	M2	X	5.671	5.671	0	%100
4	M2	Z		388	0	%100
5	M3	X	388		0	%100
6	M3	Z	.672	.672	0	%100
7	M4	X	388	388		%100
8	M4	Z	.672	.672	0	
9	M5	X	-2.726	-2.726	0	%100
10	M5	Z	4.721	4.721	0	%100
11	M6	X	-2.726	-2.726	0	%100
12	M6	Z	4.721	4.721	0	%100
	M7	X	786	786	0	%100
13		Z	1.361	1.361	0	%100
14	M7	X	786	786	0	%100
15	M8		1,361	1.361	0	%100
16	M8	Z		-1.131	0	%100
17	M9	X	-1.131	1.959	Ů Ů	%100
18	M9	Z	1.959	1.959		70100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

40	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	. Start Location[ft,%]	End Location[ft %]
19	M10	X	-1.131	-1.131	0	%100
20	M10	Z	1.959	1.959	0	%100
21	M11	X	949	949	0	%100
22	M11	Z	1.644	1.644	0	%100
23	M12	X	949	949	0	%100
24	M12	Z	1.644	1.644	0	%100
25	M13	X	949	949	0	%100
26	M13	Z	1.644	1.644	0	%100
27	M14	X	949	949	0	%100
28	M14	Z	1.644	1.644	0	%100
29	M15	X	237	237	0	%100
30	M15	Z	.411	.411	0	%100
31	M16	X	237	237	0	%100
32	M16	Z	.411	.411	0	%100
33	M17	X	237	237	0	%100
34	M17	Z	.411	.411	0	%100
35	M18	X	237	237	0	%100
36	M18	Z	.411	.411	0	%100
37	M19	X	712	712	0	%100
38	M19	Z	1.233	1.233	Ö	%100 %100
39	M20	X	712	712	0	%100 %100
40	M20	Z	1.233	1.233	0	%100
41	M21	X	712	712	0	%100 %100
42	M21	Z	1.233	1.233	0	%100 %100
43	M22	X	712	712	0	%100 %100
44	M22	Z	1.233	1.233	0	%100
45	M23	Х	-1.574	-1.574	0	%100
46	M23	Z	2.727	2.727	0	%100
47	M24	X	369	369	0	%100
48	M24	Z	.638	.638	0	%100
49	MP1A	X	-3.606	-3.606	0	%100
50	MP1A	Z	6.247	6.247	0	%100
51	MP2A	X	-3.606	-3.606	0	%100
52	MP2A	Z	6.247	6.247	0	
53	MP3A	X	-3.606	-3.606	0	%100 %100
54	MP3A	Z	6.247	6.247	0	%100
55	MP4A	X	-3.606	-3.606	0	%100
56	MP4A	Z	6.247	6.247	0	%100 %100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Special Memoritary and Co.	74.59 30		- 3//		
	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	. Start Location[ft.%]	End Location[ft,%
1	M1	X	-1.89	-1.89	0	%100
2	M1	Z	1.091	1.091	0	%100
3	M2	X	-1.89	-1.89	0	%100
4	M2	Z	1.091	1.091	Ö	%100
5	M3	X	095	095	0	%100
6	M3	Z	.055	.055	0	
7	M4	X	095	095	0	%100 %100
8	M4	Z	.055	.055	0	%100
9	M5	X	-4.144	-4.144	0	%100 %100
10	M5	Z	2.393	2.393	0	%100
11	M6	X	-4.144	-4.144	0	%100
12	M6	Z	2.393	2.393	0	%100
13	M7	X	-1.276	-1.276	0	%100 %100
14	M7	Z	.737	.737	0	
15	M8	X	-1.276	-1.276	0	%100
16	M8	Z	.737	.737		%100
17	M9	X	-1.873		0	%100
18	M9	Z		-1.873	0	%100
19	M10		1.082	1.082	0	%100
20		X	-1.873	-1.873	0	%100
	M10	Z	1.082	1.082	0	%100
21	M11	X	-1.644	-1.644	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location(ft,%)
22	M11	Z	.949	.949	0	%100
23	M12	X	-1.644	-1.644	0	%100
24	M12	Z	.949	.949	0	%100
25	M13	X	-1.644	-1.644	0	%100
26	M13	Z	.949	.949	0	%100
27	M14	X	-1.644	-1.644	0	%100
28	M14	Z	.949	.949	0	%100
29	M15	X	-1.233	-1.233	0	%100
30	M15	Z	.712	.712	0	%100
31	M16	- X	-1.233	-1.233	0	%100
32	M16	Z	.712	.712	0	%100
	M17	X	-1.233	-1.233	0	%100
33	M17	Z	.712	.712	0	%100
34		X	-1.233	-1.233	0	%100
35	M18	Z	.712	.712	0	%100
36	M18	X	411	411	0	%100
37	M19	Z	.237	.237	0	%100
38	M19		411	411	0	%100
39	M20	X Z	.237	.237	0	%100
40	M20		411	-,411	0	%100
41	M21	X	.237	.237	0	%100
42	M21	Z		411	0	%100
43	M22	X	411	.237	0	%100
44	M22	Z	.237	-5.608	0	%100
45	M23	X	-5.608		0	%100
46	M23	Z	3.238	3.238	0	%100
47	M24	X	-3.519	-3.519	0	%100
48	M24	Z	2.032	2.032	0	%100
49	MP1A	X	-6.247	-6.247		%100 %100
50	MP1A	Z	3.606	3.606	0	
51	MP2A	X	-6.247	-6.247	0	%100
52	MP2A	Z	3.606	3.606	0	%100
53	MP3A	X	-6.247	-6.247	0	%100
54	MP3A	Z	3.606	3.606	0	%100
55	MP4A	X	-6.247	-6.247	0	%100
56	MP4A	Z	3.606	3.606	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Manhael shal	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	. Start Location[ft,%]	End Location[ft,%
4	Member Label	X	0	0	0	%100
1	M1	Z	0	0	0	%100
2	M1	X	0	0	0	%100
3	M2	Z	0	0	0	%100
4	M2		-2.114	-2.114	0	%100
5	M3	X	0	0	0	%100
6	M3	Z		-2.114	0	%100
7	M4	X	-2.114	0	0	%100
8	M4	Z		-2.114	0	%100
9	M5	X	-2.114	-2.114	0	%100
10	M5	Z	0		0	%100
11	M6	X	-2.114	-2.114	0	%100
12	M6	Z	0	0		%100
13	M7	X	-1.769	-1.769	0	
14	M7	Z	0	0	0	%100 %400
15	M8	X	-1.769	-1.769	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	-1.769	-1.769	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	-1.769	-1.769	0	%100
20	M10	Z	0	0	0	%100
		X	-1.898	-1.898	0	%100
21	M11	Z	0	0	0	%100
22	M11	X	-1.898	-1.898	0	%100
23	M12	Ž	0	0	0	%100
24	M12					

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft	. Start Location(ft.%)	End Location(ft %)
25	M13	X	-1.898	-1.898	0	%100
26	M13	Z	0	0	0	%100
27	M14	X	-1.898	-1.898	0	%100
28	M14	Z	0	0	0	%100
29	M15	X	-1.898	-1.898	0	%100
30	M15	Z	0	0	0	%100
31	M16	X	-1.898	-1.898	0	%100
32	M16	Z	0	0	0	%100
33	M17	X	-1.898	-1.898	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	-1.898	-1.898	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	0	0	0	%100
40 i	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	0	0	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	-6.933	-6.933	0	%100
46	M23	Z	0	0.555	0	%100 %100
47	M24	X	-6.933	-6.933	0	%100
48	M24	Z	0	0.000	0	%100
49	MP1A	X	-7.213	-7.213	0	%100
50	MP1A	Z	0	0	0	%100
51	MP2A	X	-7.213	-7.213	0	
52	MP2A	Z	0	0	0	%100 %100
53	MP3A	X	-7.213	-7.213	0	%100 %100
54	MP3A	Z	0	0	0	%100
55	MP4A	X	-7.213	-7.213	0	%100
56	MP4A	Z	0	0	0	%100 %100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[ib/ft,F,ksf]	End Magnitude[lb/ft	. Start Location[ft,%]	End Location(ft.%)
1	M1	X	-1.89	-1.89	0	%100
2	M1	Z	-1.091	-1.091	Ö	%100
3	M2	X	-1.89	-1.89	0	%100 %100
4	M2	Z	-1.091	-1.091	0	%100
5	M3	X	-4.144	-4.144	0	%100
6	M3	Z	-2.393	-2.393	0	%100
7	M4	X	-4.144	-4.144	0	%100 %100
8	M4	Z	-2.393	-2.393	0	%100
9	M5	X	095	095	0	%100
10	M5	Z	055	055	0	%100
11	M6	X	095	095	0	%100
12	M6	Z	055	055	0	%100
13	M7	X	-1.873	-1.873	0	%100 %100
14	M7	Z	-1,082	-1.082	0	%100 %100
15	M8	X	-1.873	-1.873	0	%100
16	M8	Z	-1.082	-1.082	0	%100
17	M9	X	-1.276	-1.276	0	%100
18	M9	Z	737	737	0	%100
19	M10	X	-1.276	-1.276	0	%100
20	M10	Z	737	737	Ō	%100 %100
21	M11	X	-1.644	-1.644	0	%100 %100
22	M11	Z	949	949	0	%100 %100
23	M12	X	-1.644	-1.644	0	%100 %100
24	M12	Z	949	949	0	%100
25	M13	X	-1.644	-1.644	0	%100
26	M13	Z	949	949	0	%100 %100
27	M14	X	-1.644	-1.644	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	. Start Location[ft,%]	End Location[ft,%]
28	Member Laber	Z	949	949	0	%100
29	M15	X	-1.233	-1.233	0	%100
	M15	Z	712	712	0	%100
30	M16	X	-1.233	-1.233	0	%100
31		Z	712	712	0	%100
32	M16 M17	X	-1.233	-1.233	0	%100
33		Z	712	712	0	%100
34	M17	X	-1.233	-1.233	0	%100
35	M18	Z	712	712	0	%100
36	M18		411	411	0	%100
37	M19	X	237	237	0	%100
38	M19	Z	-,411	-,411	0	%100
39	M20	X	411	237	Ö	%100
40	M20	Z		411	0	%100
41	M21	X	411	237	0	%100
42	M21	Z	237		0	%100
43	M22	X	411	411	0	%100
44	M22	Z	237	237		%100
45	M23	X	-3.519	-3.519	0	%100 %100
46	M23	Z	-2.032	-2.032	0	
47	M24	X	-5.608	-5.608	0	%100
48	M24	Z	-3.238	-3.238	0	%100
49	MP1A	X	-6.247	-6.247	0	%100
50	MP1A	Z	-3.606	-3.606	0	%100
51	MP2A	X	-6.247	-6.247	0	%100
52	MP2A	Z	-3.606	-3.606	0	%100
53	MP3A	X	-6.247	-6.247	0	%100
54	MP3A	Z	-3.606	-3.606	0	%100
	MP4A	X	-6.247	-6.247	0	%100
55 56	MP4A	Z	-3.606	-3.606	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-3.274	-3.274	0	%100
	M1	Z	-5.671	-5.671	0	%100
3	M2	X	-3.274	-3.274	0	%100
4	M2	Z	-5.671	-5.671	0	%100
12.4	M3	X	-2.726	-2.726	0	%100
5	M3	Z	-4.721	-4.721	0	%100
6		X	-2.726	-2,726	0	%100
7	M4	Z	-4.721	-4.721	0	%100
8	M4	X	388	388	0	%100
9	M5	Z	672	672	0	%100
10	M5	X	388	388	0	%100
11	M6	Z	672	672	0	%100
12	M6	X	-1.131	-1,131	0	%100
13	M7	Z	-1.959	-1.959	0	%100
14	M7	X	-1.131	-1.131	0	%100
15	M8	Z	-1.959	-1.959	0	%100
16	M8		786	786	0	%100
17	<u>M9</u>	X		-1.361	Ŏ	%100
18	M9	Z	-1.361	786	0	%100
19	M10	X	786	-1.361	0	%100
20	M10	Z	-1.361	949	0	%100
21	M11	X	949	-1.644	Ö	%100
22	M11	Z	-1.644	-1.044	0	%100
23	M12	X	949	-1.644	0	%100
24	M12	Z	-1.644		0	%100
25	M13	X	949	949	0	%100
26	M13	Z	-1.644	-1.644		%100
27	M14	X	949	949	0	%100
28	M14	Z	-1.644	-1.644	0	%100
29	M15	X	237	237	0	%100
30	M15	Z	411	411	0	% 100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft	Start Location(ft %1	End Location(ft.%)
31	M16	X	237	237	0	%100
32	M16	Z	411	411	0	%100
33	M17	X	237	237	0	%100
34	M17	Z	411	411	0	%100
35	M18	X	237	237	. 0	%100
36	M18	Z	411	411	0	%100
37	M19	X	712	712	0	%100
38	M19	Z	-1.233	-1.233	0	%100
39	M20	X	712	712	0	%100
40	M20	Z	-1.233	-1.233	0	%100
41	M21	X	712	712	0	%100
42	M21	Z	-1,233	-1.233	0	%100
43	M22	X	712	712	0	%100
44	M22	Z	-1.233	-1.233	0	%100
45	M23	X	369	369	Ö	%100 %100
46	M23	Z	638	638	Ō	%100
47	M24	X	-1.574	-1.574	0	%100 %100
48	M24	Z	-2.727	-2.727	Ö	%100
49	MP1A	X	-3.606	-3.606	0	%100
50	MP1A	Z	-6.247	-6.247	Ö	%100
51	MP2A	X	-3.606	-3.606	0	%100 %100
52	MP2A	Z	-6.247	-6.247	Ŏ	%100
53	MP3A	X	-3.606	-3.606	0	%100
54	MP3A	Z	-6.247	-6.247	0	%100
55	MP4A	X	-3.606	-3.606	0	%100 %100
56	MP4A	Z	-6.247	-6.247	0	%100 %100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

1 2 1	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lh/ft	Start Location[ff.%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	-2.69	-2.69	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-2.69	-2.69	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	-1.171	-1.171	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	-1.171	-1.171	0	%100
9	M5	X	0	0	0	%100
10	M5	Z	-1.171	-1.171	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	-1.171	-1.171	0	%100
13	M7	X	0	0	0	%100 %100
14	M7	Z	-1.307	-1.307	0	%100 %100
15	M8	X	0	0	0	%100
16	M8	Z	-1.307	-1.307	0	%100
17	M9	X	0	0	0	%100 %100
18	M9	Z	-1.307	-1.307	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	-1.307	-1.307	0	
21	M11	X	0	0	0	%100 %100
22	M11	Z	-1.351	-1.351	0	
23	M12	X	0	-1.351		%100
24	M12	Z	-1.351	-1.351	0	%100
25	M13	X	0	-1.351		%100
26	M13	Z	-1.351		0	%100
27	M14	X	-1.351	-1.351	0	%100
28	M14	Z		0	0	%100
29	M15	X	-1.351	-1.351	0	%100
30	M15	Z	0	0	0	%100
31	M16		0	0	0	%100
32		X	0	0	0	%100
	M16	Z	0	0	0	%100
33	M17	X	0	0	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	po el com relear	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft	Start Location[ft,%]	End Location[ft,%]
0.1	Member Label	Z	O O	0	0	%100
34	M17	X	0	0	0	%100
35	M18		0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	-1.022	-1.022	0	%100
38	M19	Z	-1.022	0	0	%100
39	M20	X	4.022	-1.022	0	%100
40	M20	Z	-1.022	0	0	%100
41	M21	X	0	-1.022	0	%100
42	M21	Z	-1.022	-1.022	0	%100
43	M22	X	0		0	%100
44	M22	Z	-1.022	-1.022	0	%100 %100
45	M23	X	0	0		%100
46	M23	Z	094	094	0	%100
47	M24	X	0	0	0	%100
48	M24	Z	094	094	0	
49	MP1A	X	0	0	0	%100
50	MP1A	Z	-2.427	-2.427	0	%100
51	MP2A	X	0	0	0	%100
52	MP2A	Z	-2.427	-2.427	0	%100
53	MP3A	X	0	0	0	%100
	MP3A	Z	-2.427	-2.427	0	%100
55	MP4A	X	0	0	0	%100
56	MP4A	Z	-2.427	-2.427	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

		Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location[ft,%]	End Location[ft,9
4	Member Label M1	X	1.009	1.009	0	%100
1	M1	Z	-1,747	-1.747	0	%100
2		X	1.009	1.009	0	%100
3	M2	Z	-1.747	-1.747	0	%100
4	M2	X	,132	.132	0	%100
5	M3	Z	228	228	0	%100
6	M3		.132	.132	0	%100
7	M4	X	228	228	0	%100
8	M4	Z	.926	.926	0	%100
9	M5	X	-1.604	-1.604	0	%100
10	M5	Z	.926	.926	0	%100
11	M6	X	-1.604	-1.604	0	%100
12	M6	Z X		.523	0	%100
13	M7	<u> </u>	.523	905	0	%100
14	M7	Z	905	.523	0	%100
15	M8	X	.523	905	0	%100
16	M8	Z	905	.752	0	%100
17	M9	X	.752	-1.302	0	%100
18	M9	Z	-1.302		0	%100
19	M10	X	.752	.752 -1.302	0	%100
20	M10	Z	-1.302		0	%100
21	M11	X	.675	.675	0	%100
22	M11	Z	-1.17	-1.17		%100
23	M12	X	.675	.675	0	%100
24	M12	Z	-1.17	-1.17	0	%100 %100
25	M13	X	.675	.675	0	%100 %100
26	M13	Z	-1.17	-1.17	0	%100 %100
27	M14	X	.675	.675	0	%100 %100
28	M14	Z	-1.17	-1.17	0	%100 %100
29	M15	X	.127	.127	0	%100 %100
30	M15	Z	22	22	0	
31	M16	X	.127	.127	0	%100
32	M16	Z	22	22	0	%100
33	M17	X	.127	.127	0	%100
34	M17	Z	22	22	0	%100
35	M18	X	.127	.127	0	%100
36	M18	Z	22	22	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft	. Start Location[ft,%]	End Location[ft,%]
37	M19	X	.383	.383	0	%100
38	M19	Z	664	664	0	%100
39	M20	X	.383	.383	0	%100
40	M20	Z	664	664	0	%100
41	M21	X	.383	.383	0	%100
42	M21	Z	664	664	0	%100
43	M22	X	.383	.383	0	%100
44	M22	Z	664	664	0	%100
45	M23	X	.53	.53	0	%100
46	M23	Z	917	917	0	%100
47	M24	X	.124	.124	0	%100
48	M24	Z	-,215	215	0	%100 %100
49	MP1A	X	1.213	1.213	0	%100
50	MP1A	Z	-2.101	-2.101	0	%100
51	MP2A	X	1.213	1,213	0	%100
52	MP2A	Z	-2.101	-2.101	0	%100
53	MP3A	X	1.213	1.213	0	%100
54	MP3A	Z	-2.101	-2.101	0	
55	MP4A	X	1.213	1.213	0	%100 %100
56	MP4A	Z	-2.101	-2.101	0	%100 %100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft.%]	End Location(ff 9
1	M1	X	.582	.582	0	%100
2	M1	Z	336	336	0	%100
3	M2	X	.582	.582	0	%100
4	M2	Z	336	336	0	%100
5	M3	X	.032	.032	0	%100
6	M3	Z	019	019	0	%100
7	M4	X	.032	.032	0	%100
8	M4	Z	019	019	0	%100
9	M5	X	1.408	1.408	0	%100
10	M5	Z	813	813	0	%100
11	M6	X	1.408	1.408	0	%100 %100
12	M6	Z	813	813	0	%100
13	M7	X	.848	.848	0	%100
14	M7	Z	49	49	0	%100 %100
15	M8	X	.848	.848	0	%100
16	M8	Z	49	49	0	%100
17	M9	X	1.246	1.246	0	%100
18	M9	Z	719	719	0	%100 %100
19	M10	X	1.246	1.246	0	%100
20	M10	Z	719	719	0	%100 %100
21	M11	X	1.17	1.17	0	
22	M11	Z	675	675	0	%100
23	M12	X	1.17	1.17	0	%100
24	M12	Z	675	675	0	%100
25	M13	X	1.17	1.17	0	%100
26	M13	Z	675	675		%100
27	M14	X	1.17	1.17	0	%100
28	M14	Z	675	675	0	%100
29	M15	X	.659		0	%100
30	M15	Z	38	.659	0	%100
31	M16	X		38	0	%100
32	M16	Z	.659	.659	0	%100
33	M17	X	38	38	0	%100
34	M17	Z	.659	.659	0	%100
35	M18		38	38	0	%100
36	M18	X	.659	.659	0	%100
37		Z	38	38	0	%100
38	M19	X	.221	.221	0	%100
	M19	Z	128	128	0	%100
39	M20	X	.221	.221	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Manhartabal	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	. Start Location[ft,%]	End Location[ft,%]
40	Member Label M20	Z	128	128	0	%100
40		X	.221	.221	0	%100
41	M21		128	-,128	0	%100
42	M21	Z		.221	0	%100
43	M22	X	.221		Ö	%100
44	M22	Z	128	128		
45	M23	X	1.887	1.887	0	%100
46	M23	Z	-1.089	-1.089	0	%100
	M24	X	1.184	1,184	0	%100
47		Z	684	684	0	%100
48	M24		2.101	2.101	0	%100
49	MP1A	X			0	%100
50	MP1A	Z	-1.213	-1.213		
51	MP2A	X	2.101	2.101	0	%100
52	MP2A	Z	-1.213	-1.213	0	%100
	MP3A	X	2.101	2,101	0	%100
53			-1,213	-1.213	0	%100
54	MP3A	Z			0	%100
55	MP4A	Χ	2.101	2.101		
56	MP4A	Z	-1.213	-1.213	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/f	t Start Location[ft,%]	End Location[ft,%]
1	M1		0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	.718	.718	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	.718	.718	0	%100
8	M4	Z	0	0	0	%100
9	M5	X	.718	.718	0	%100
10	M5	Z	0	0	0	%100
11	M6	X	.718	.718	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	1,176	1.176	0	%100
	M7	Z	0	0	0	%100
14	M8	X	1.176	1.176	0	%100
	M8	Z	0	0	0	%100
16	M9	X	1.176	1.176	0	%100
17	M9	Z	0	0	0	%100
18		X	1.176	1.176	0	%100
19	M10	Z	0	0	0	%100
20	M10	X	1.351	1.351	0	%100
21	M11 M11	Z	0	0	0	%100
22		X	1.351	1.351	0	%100
23	M12	Z	0	0	0	%100
24	M12	X	1.351	1.351	0	%100
25	M13	Z	0	0	0	%100
26	M13	X	1.351	1.351	0	%100
27	M14	Z	0	0	0	%100
28	M14		1.015	1.015	0	%100
29	M15	X	0	0	0	%100
30	M15	Z X	1.015	1.015	0	%100
31	M16		0	0	0	%100
32	M16	Z	1.015	1.015	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	1.015	1.015	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z		0	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0	0	%100 %100
41	M21	X	0	0	0	%100 %100
42	M21	Z	0	U	U	70100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[ib/ft,F,ksf]	End Magnitude[lb/ft	Start Location(ft %)	End Location(ft,%)
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	2.332	2.332	0	%100
46	M23	Z	0	0	0	%100
47	M24	X	2.332	2.332	0	%100
48	M24	Z	0	0	0	%100
49	MP1A	X	2.427	2.427	0	%100
50	MP1A	Z	0	0	0	%100
51	MP2A	X	2.427	2.427	0	%100
52	MP2A	Z	0	0	0	%100
53	MP3A	X	2.427	2,427	0	%100
54	MP3A	Z	0	0	0	%100
55	MP4A	X	2.427	2.427	0	%100
56	MP4A	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

4	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location
1	M1	X	.582	.582	0	%100
2	M1	Z	.336	.336	0	%100
3	M2	X	.582	.582	0	%100
4	M2	Z	.336	.336	0	%100
5	M3	X	1.408	1.408	0	%100
6	M3	Z	.813	.813	0	%100
7	M4	X	1.408	1.408	0	%100
8	M4	Z	.813	.813	0	%100
9	M5	X	.032	.032	0	%100
10	M5	Z	.019	.019	0	%100
11	M6	X	.032	.032	0	%100
12	M6	Z	.019	.019	0	%100
13	M7	X	1.246	1.246	0	%100
14	M7	Z	.719	.719	0	%100
15	M8	X	1.246	1.246	0	%100
16	M8	Z	.719	.719	0	%100
17	M9	X	.848	.848	0	%100
18	M9	Z	.49	.49	0	%100
19	M10	X	.848	.848	0	%100
20	M10	Z	.49	.49	0	%100
21	M11	X	1.17	1.17	0	%100
22	M11	Z	.675	.675	0	%100
23	M12	X	1.17	1.17	0	%100
24	M12	Z	.675	.675	0	%100
25	M13	X	1.17	1.17	0	%100
26	M13	Z	.675	.675	0	%100
27	M14	X	1.17	1.17	0	%100
28	M14	Z	.675	.675	0	%100
29	M15	X	.659	.659	0	%100
30	M15	Z	.38	.38	0	%100
31	M16	X	.659	.659	0	%100
32	M16	Z	.38	.38	0	%100
33	M17	X	.659	.659	0	%100
34	M17	Z	.38	.38	0	%100
35	M18	X	.659	.659	0	%100
36	M18	Z	.38	.38	0	%100
37	M19	X	.221	.221	0	%100
38	M19	Z	.128	.128	0	%100
39	M20	X	.221	.221	0	%100
40	M20	Z	.128	.128	0	%100
41	M21	X	.221	.221	0	%100
42	M21	Z	128	.128	0	%100
43	M22	X	.221	.221	0	%100
14	M22	Z	.128	.128	0	%100
45	M23	X	1.184	1.184	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location[ft,%]	End Location[ft,%]
46	M23	7	.684	.684	0	%100
	M24	X	1.887	1.887	0	%100
47	M24	7	1.089	1.089	0	%100
48	MP1A	Y	2.101	2.101	0	%100
49	MP1A	Ž	1.213	1.213	0	%100
50	MP2A	Y	2.101	2,101	0	%100
51	MP2A	7	1,213	1.213	0	%100
52	MP3A	Y	2.101	2.101	0	%100
53		7	1.213	1.213	0	%100
54	MP3A		2.101	2.101	0	%100
55 56	MP4A MP4A	7	1.213	1.213	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	58 : Structure Wi (Start Magnitude[lb/ft,F,ksf	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%
1	M1	X	1.009	1.009	0	%100
2	M1	Z	1.747	1.747	0	%100
3	M2	X	1.009	1.009	0	%100
4	M2	Z	1.747	1.747	0	%100
5	M3	X	.926	.926	0	%100
6	M3	Z	1.604	1.604	0	%100
7	M4	X	.926	.926	0	%100
8	M4	Z	1.604	1.604	0	%100
9	M5	X	.132	.132	0	%100
10	M5	Z	.228	.228	0	%100
11	M6	X	.132	.132	0	%100
12	M6	Z	.228	.228	0	%100
13	M7	X	.752	.752	0	%100
14	M7	Z	1.302	1.302	0	%100
15	M8	X	.752	.752	0	%100
16	M8	Z	1.302	1.302	0	%100
17	M9	X	.523	.523	0	%100
18	M9	Z	.905	.905	0	%100
19	M10	X	.523	.523	0	%100
20	M10	Z	.905	.905	0	%100
21	M11	X	.675	.675	0	%100
22	M11	Z	1.17	1.17	0	%100
23	M12	X	.675	.675	0	%100
24	M12	Z	1.17	1.17	0	%100
25	M13	X	.675	.675	0	%100
26	M13	Z	1.17	1.17	0	%100
27	M14	X	.675	.675	0	%100
28	M14	Z	1.17	1.17	0	%100
29	M15	X	.127	.127	0	%100
30	M15	Z	.22	.22	0	%100
31	M16	X	.127	.127	0	%100
32	M16	Z	.22	.22	0	%100
33	M17	X	.127	.127	0	%100
34	M17	Z	.22	.22	0	%100
35	M18	X	.127	.127	0	%100
36	M18	Z	.22	.22	0	%100
37	M19	X	.383	.383	0	%100
38	M19	Z	.664	.664	0	%100
39	M20	X	.383	.383	0	%100
40	M20	Z	.664	.664	0	%100
41	M21	X	.383	.383	0	%100
42	M21	Z	.664	.664	0	%100
43	M22	X	.383	.383	0	%100
44	M22	Z	.664	.664	0	%100
45	M23	X	.124	.124	0	%100
46	M23	Z	.215	.215	0	%100
47	M24	X	.53	.53	0	%100
48	M24	Z	.917	.917	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksfl	End Magnitude[lb/ft	Start Location(ft %)	End Location[ft,%]
49	MP1A	X	1.213	1.213	0	%100
50	MP1A	Z	2.101	2.101	0	%100
51	MP2A	X	1.213	1.213	0	%100
52	MP2A	Z	2.101	2.101	0	%100
53	MP3A	X	1.213	1.213	0	%100
54	MP3A	Z	2.101	2.101	0	%100
55	MP4A	X	1.213	1.213	0	%100
56	MP4A	Z	2.101	2.101	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

1	Member Label	Direction	Start Magnitude[b/ft,F,ksf]			
2	M1	X	0	0	0	%100
	M1	Z	2.69	2.69	0	%100
3 4	M2	X	0	0	0	%100
	M2	Z	2.69	2.69	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	1.171	1.171	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	1.171	1.171	0	%100
9	M5	X	0	0	0	%100
	M5	Z	1.171	1.171	0	%100
11	M6	X	_ 0	0	0	%100
12	M6	Z	1.171	1.171	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	1.307	1.307	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	1.307	1.307	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	1.307	1.307	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	1,307	1.307	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	1.351	1.351	0	%100
23	M12	X	0	0	0	%100
24	M12	Z	1.351	1.351	0	%100
25	M13	X	0	0	0	%100
26	M13	Z	1.351	1.351	0	%100
27	M14	X	0	0	0	%100
28	M14	Z	1.351	1.351	0	%100
29	M15	X	0	0	0	%100
30	M15	Z	0	0	0	%100
31	M16	X	0	0	0	%100
32	M16	Z	0	0	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	1.022	1.022	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	1.022	1.022	0	%100
11	M21	X	0	0	0	%100
12	M21	Z	1.022	1.022	0	%100
13	M22	X	00	0	0	%100
14	M22	Z	1.022	1.022	0	%100
15	M23	X	0	0	0	%100
16	M23	Z	.094	.094	0	%100
17	M24	X	0	0	0	%100
18	M24	Z	.094	.094	0	%100
19	MP1A	X	0	0	0	%100
50	MP1A	Z	2.427	2.427	0	%100
51	MP2A	X	0	0	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Mambas Labol	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%]
F0	Member Label MP2A	7	2.427	2,427	0	%100
52		- Z	2.12.	0	0	%100
53	MP3A		2.427	2.427	0	%100
54	MP3A		2.421	2.421	0	%100
54 55	MP4A	X	0		0	
56	MP4A	Z	2.427	2.427	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	lember Label	Direction	Start Magnitude[lb/ft,F,ksf] -1,009	End Magnitude[lb/ft -1.009	Start Location[ft.%] 0	End Location[ft,% %100
1	M1	X	1.747	1.747	0	%100
2	M1	Z		-1.009	0	%100
3	M2	X	-1.009	1.747	0	%100
4	M2	Z	1.747	132	0	%100
5	M3	X	132	.228	0	%100
6	М3	Z	.228	132	0	%100 %100
7	M4	X	132	.228	0	%100
8	M4	Z	.228		0	%100
9	M5	X	-,926	926		%100
10	M5	Z	1.604	1.604	0	%100
11	M6	X	926	926	0	%100
12	M6	Z	1.604	1.604	0	
13	M7	X	523	523	0	%100
14	M7	Z	.905	.905	0	%100
15	M8	X	523	523	0	%100
16	M8	Z	.905	.905	0 3	%100
17	M9	X	752	752	0	%100
18	M9	Z	1,302	1.302	0	%100
19	M10	X	752	752	0	%100
20	M10	Z	1.302	1.302	0	%100
21	M11	X	675	675	0	%100
22	M11	Z	1.17	1.17	0	%100
23	M12	X	675	675	0	%100
24	M12	Z	1.17	1.17	0	%100
25	M13	X	675	675	0	%100
26	M13	Z	1.17	1.17	0	%100
27	M14	X	675	675	0	%100
28	M14	Z	1.17	1.17	0	%100
29	M15	X	127	127	0	%100
	M15	Z	.22	.22	0	%100
30	M16	X	127	127	0	%100
31		Z	.22	.22	0	%100
32	M16	X	-,127	127	0	%100
33	M17	Z	.22	.22	0	%100
34	M17	X	127	127	0	%100
35	M18	Z	.22	.22	0	%100
36	M18		383	383	0	%100
37	M19	Z	.664	.664	0	%100
38	M19		383	383	0	%100
39	M20	X	.664	.664	0	%100
40	M20	Z	383	383	0	%100
41	M21	X		.664	0	%100
42	M21	Z	.664	383	0	%100
43	M22	X	383	.664	0	%100
44	M22	Z	.664	53	0	%100
45	M23	X	53	.917	0	%100
46	M23	Z	.917	124	0	%100
47	M24	X	124		0	%100 %100
48	M24	Z	.215	.215	0	%100
49	MP1A	X	-1.213	-1.213		%100
50	MP1A	Z	2.101	2.101	0	%100
51	MP2A	X	-1.213	-1.213	0	%100
52	MP2A	Z	2.101	2.101	0	
53	МР3А	X	-1.213	-1.213	0	%100
54	МРЗА	Z	2.101	2.101	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[]b/ft	Start Location(ft %)	End Location[ft,%]
55	MP4A	X	-1.213	-1.213	0	%100
56	MP4A	Z	2.101	2.101	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%]
1	M1	X	582	582	0	%100
2	M1	Z	.336	.336	0	%100
3	M2	X	582	582	0	%100
4	M2	Z	.336	.336	0	%100
5	M3	X	032	032	0	%100
6	<u>M3</u>	Z	.019	.019	0	%100
7	M4	X	032	032	0	%100
8	M4	Z	.019	.019	0	%100
9	M5	X	-1.408	-1.408	0	%100
10	M5	Z	.813	.813	0	%100
11	M6	X	-1.408	-1.408	0	%100
12	M6	Z	.813	.813	0	%100
13	M7	X	848	848	0	%100
14	M7	Z	.49	.49	0	%100
15	<u>M8</u>	X	848	848	0	%100
16	M8	Z	.49	.49	0	%100
17	M9	X	-1.246	-1.246	0	%100
18	M9	Z	.719	.719	0	%100
19	M10	X	-1.246	-1.246	0	%100
20	M10	Z	.719	.719	0	%100
21	M11	X	-1.17	-1.17	0	%100
22	M11	Z	.675	.675	0	%100
23	M12	X	-1.17	-1.17	0	%100
24	M12	Z	.675	.675	0	%100
25	M13	X	-1.17	-1.17	0	%100
26	M13	Z	.675	.675	0	%100
27	M14	X	-1.17	-1.17	0	%100
28	M14	Z	.675	.675	0	%100
29	M15	X	659	659	0	%100
30	M15	Z	.38	.38	0	%100
31	M16	X	659	659	0	%100
32	M16	Z	.38	.38	0	%100
33	M17	X	659	659	0	%100
34	M17	Z	.38	.38	0	%100
35	M18	X	659	659	0	%100
36	M18	Z	.38	.38	0	%100
37	M19	X	221	221	0	%100
38	M19	Z	.128	.128	0	%100
39	M20	X	221	221	0	%100
40	M20	Z	.128	.128	0	%100
41	M21	X	221	221	0	%100
42	M21	Z	.128	.128	0	%100
43	M22	X	221	221	0	%100
44	M22	Z	.128	.128	0	%100
45	M23	X	-1.887	-1.887	0	%100
46	M23	Z	1.089	1.089	0	%100
47	M24	X	-1.184	-1.184	0	%100
48	M24	Z	.684	.684	0	%100
49	MP1A	X	-2.101	-2.101	0	%100
50	MP1A	Z	1.213	1.213	Ö	%100 %100
51	MP2A	X	-2.101	-2.101	0	%100 %100
52	MP2A	Z	1.213	1.213	0	%100 %100
53	MP3A	X	-2.101	-2.101	0	%100
54	MP3A	Z	1.213	1.213	0	%100 %100
55	MP4A	X	-2.101	-2.101	0	%100
56	MP4A	Z	1.213	1.213	0	%100 %100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[π,%]	%100
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	718	0	%100
5	M3	X	718		0	%100
6	M3	Z	0	0	0	%100
7	M4	X	718	718	0	%100 %100
8	M4	Z	0	0	0	%100 %100
9	M5	X	718	718		%100
10	M5	Z	0	0	0	%100 %100
11	M6	X	718	718	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	-1.176	-1.176	0	%100 %100
14	M7	Z	0	0	0	
15	M8	X	-1.176	-1.176	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	-1.176	-1.176	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	-1.176	-1.176	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	-1.351	-1.351	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	-1.351	-1.351	0	%100
	M12	Z	0	0	0	%100
24	M12 M13	X	-1.351	-1.351	0	%100
25	M13	Z	0	0	0	%100
26	M14	X	-1.351	-1.351	0	%100
27	M14	Z	0	0	0	%100
28		X	-1.015	-1.015	0	%100
29	M15	Ž	0	0	0	%100
30	M15	X	-1.015	-1.015	0	%100
31	M16	Z	0	0	0	%100
32	M16		-1.015	-1.015	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	-1.015	-1.015	0	%100
35	M18	X		0	Ö	%100
36	M18	Z	0	0	Ö	%100
37	M19	X	0	0	0	%100
38	M19	Z		0	0	%100
39	M20	X	0	0	Ö	%100
40	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	0		0	%100
43	M22	X	0	0	0	%100 %100
44	M22	Z	0		0	%100 %100
45	M23	X	-2.332	-2.332	0	%100
46	M23	Z	0	0		%100
47	M24	X	-2.332	-2.332	0	%100
48	M24	Z	0	0	0	%100 %100
49	MP1A	X	-2.427	-2.427	0	%100 %100
50	MP1A	Z	0	0	0	
51	MP2A	X	-2.427	-2.427	0	%100
52	MP2A	Z	0	0	0	%100
53	MP3A	X	-2.427	-2.427	0	%100
54	MP3A	Z	0	0	0	%100
55	MP4A	X	-2.427	-2.427	0	%100
56	MP4A	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[ib/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%]
		V	582	582	0	%100
1	<u>M1</u>	7	336	336	0	%100
2	M1			582	0	%100
3	M2	X	582	062	J	70100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

, , , ,	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[]b/ft.	. Start Location[ft %]	End Location(ff %1
4	M2	Z	336	336	0	%100
5	M3	X	-1.408	-1.408	0	%100
6	M3	Z	813	813	0	%100
7	M4	X	-1.408	-1.408	0	%100
8	M4	Z	813	813	0	%100
9	M5	X	032	032	0	%100
10	M5	Z	019	019	0	%100
11	M6	X	032	032	0	%100
12	M6	Z	019	019	0	%100
13	M7	X	-1.246	-1.246	0	%100
14	M7	Z	719	719	0	%100
15	M8	X	-1.246	-1.246	0	%100
16	M8	Z	719	719	0	%100
17	M9	X	848	848	0	%100
18	M9	Z	49	49	0	%100
19	M10	X	848	848	0	%100 %100
20	M10	Z	49	49	0	%100
21	M11	X	-1.17	-1.17	0	%100
22	M11	Z	675	675	0	%100
23	M12	X	-1.17	-1.17	0	%100 %100
24	M12	Z	675	675	0	%100 %100
25	M13	X	-1.17	-1.17	0	
26	M13	Z	675	675	0	%100
27	M14	X	-1.17	-1.17		%100
28	M14	Z	675	675	0	%100
29	M15	X	659	659		%100
30	M15	Z	38	38	0	%100
31	M16	X	659	659		%100
32	M16	Z	38	38	0	%100
33	M17	X	659		0	%100
34	M17	Z	38	659 38	0	%100
35	M18	X	659		0	%100
36	M18	Z	38	659	0	%100
37	M19	X	221	38	0	%100
38	M19	Z	128	221	0	%100
39	M20	X		128	0	%100
40	M20	Z	221 128	221	0	%100
41	M21	X	221	128	0	%100
42	M21	Z		221	0	%100
43	M22	X	128	128	0	%100
44	M22	Ž	221	221	0	%100
45	M23	X	128	128	0	%100
46	M23	Ž	-1.184	-1.184	0	%100
47	M24	X	684	684	0	%100
48	M24	Z	-1.887	-1.887	0	%100
49	MP1A	X	-1.089	-1.089	0	%100
50	MP1A	Z	-2.101	-2.101	0	%100
51	MP2A		-1.213	-1.213	0	%100
52	MP2A	X	-2.101	-2.101	0	%100
53	MP3A	Z	-1.213	-1.213	0	%100
54	MP3A	X	-2.101	-2.101	0	%100
55		Z	-1.213	-1.213	0	%100
56	MP4A	X	-2.101	-2.101	0	%100
30	MP4A	Z	-1.213	-1.213	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location ft %1	End Location(ft %)
1	<u>M1</u>	X	-1.009	-1.009	0	%100
2	M1	Z	-1.747	-1.747	Ů,	%100
3	M2	X	-1.009	-1.009	0	%100
4	M2	Z	-1.747	-1.747	0	%100
5	M3	X	926	926	0	%100
6	M3	Z	-1.604	-1.604	0	%100 %100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft 926	Start Location[ft,%]	%100
7	M4	X	926 -1.604	-1.604	0	%100
8	M4	Z	-1.004	132	0	%100
9	M5	X	132	228	Ö	%100
10	M5	Z	132	132	0	%100
11	M6	X	228	228	Ö	%100
12	M6	Z	752	752	0	%100
13	M7	X	-1.302	-1.302	0	%100
14	M7	Z	752	752	0	%100
15	M8	X -	-1.302	-1.302	Ō	%100
16	M8	Z X	-,523	523	0	%100
17	M9	Z	905	905	0	%100
18	M9	X	523	523	0	%100
19	M10	Z	905	905	0	%100
20	M10	X	675	675	0	%100
21	M11	Z	-1.17	-1.17	0	%100
22	M11	X	675	675	0	%100
23	M12	Z	-1.17	-1.17	0	%100
24	M12	X	675	675	0	%100
25	M13	Z	-1.17	-1.17	0	%100
26	M13	X	675	675	0	%100
27	M14 M14	Z	-1.17	-1.17	0	%100
28	M15	X	127	127	0	%100
29	M15	Z	22	22	0	%100
30	M16	X	127	-,127	0	%100
31	M16	Z	22	22	0	%100
32	M17	X	127	127	0	%100
	M17	Z	22	22	0	%100
34	M18	X	127	127	0	%100
35	M18	Z	22	22	0	%100
37	M19	X	383	383	0	%100
38	M19	Z	664	664	0	%100
39	M20	X	383	383	0	%100
40	M20	Z	664	664	0	%100
41	M21	X	383	383	0	%100
42	M21	Z	664	664	0	%100
43	M22	X	383	383	0	%100
44	M22	Z	664	664	0	%100
45	M23	X	124	124	0	%100
46	M23	Z	215	215	0	%100
47	M24	X	53	53	0	%100
48	M24	Z	917	917	0	%100
49	MP1A	X	-1.213	-1.213	0	%100
50	MP1A	Z	-2.101	-2.101	0	%100
51	MP2A	X	-1.213	-1.213	0	%100
52	MP2A	Ž	-2.101	-2.101	0	%100
53	MP3A	X	-1.213	-1.213	0	%100
54	MP3A	Z	-2.101	-2.101	0	%100
55	MP4A	X	-1.213	-1.213	0	%100
56	MP4A	Z	-2.101	-2.101	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location[ft,%]	End Location[ft,%]
4	M1	X	0	0	0	%100
2		7	546	546	0	%100
_	M1	V	0	0	0	%100
3	M2	7	546	546	0	%100
4	M2		340	0	0	%100
5	M3	X	0	215	0	%100
6	M3		215	210	0	%100
7	M4	X	0	045	0	%100 %100
8	M4	Z	215	215	0	%100 %100
9	M5	X	0	0		70 100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft	. Start Location(ft.%)	End Location[ft %]
10	M5	Z	215	215	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	215	215	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	123	123	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	123	123	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	123	123	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	123	123	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	119	119	0	%100
23	M12	X	0	0	0	%100
24	M12	Z	119	119	0	%100
25	M13	X	0	0	0	%100
26	M13	Z	119	119	0	%100
27	M14	X	0	0	0	%100
28	M14	Z	119	119	Ō	%100
29	M15	X	0	0	0	%100
30	M15	Z	0	0	0	%100
31	M16	X	0	0	0	%100
32	M16	Z	0	0	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	0	0	Ö	%100
35	M18	X	0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	119	119	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	119	119	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	119	119	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	119	119	0	%100
45	M23	X	0	0	0	%100
46	M23	Z	017	017	0	%100
47	M24	X	0	0	0	%100
48	M24	Z	017	017	0	%100
49	MP1A	X	0	0	0	%100
50	MP1A	Z	451	451	0	%100
51	MP2A	X	0	0	0	%100
52	MP2A	Z	451	451	0	%100
53	MP3A	X	0	0	Ö	%100
54	MP3A	Z	451	451	0	%100
55	MP4A	Х	0	0	Ö	%100
56	MP4A	Z	451	451	Ö	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F.ksf]	End Magnitude(lb/ft	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.205	.205	0	%100
2	M1	Z	354	354	0	%100
3	M2	X	.205	.205	0	%100
4	M2	Z	354	354	0	%100
5	M3	X	.024	.024	0	%100
6	M3	Z	042	042	0	%100
7	M4	X	.024	.024	0	%100
8	M4	Z	042	042	0	%100
9	M5	X	.17	.17	0	%100
10	M5	Z	295	295	0	%100
11	M6	X	.17	.17	0	%100
12	M6	Z	295	295	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location[ft,%]	End Location[ft,%
13	M7	X	.049	.049	0	%100
14	M7	Z	085	085	0	%100
15	M8	X	.049	.049	0	%100
16	M8	Z	085	085	0	%100
17	M9	X	.071	.071	0	%100
18	M9	Z	122	122	0	%100
19	M10	X	.071	.071	0	%100
20	M10	Z	122	122	0	%100
21	M11	X	.059	.059	0	%100
22	M11	Z	103	103	0	%100
23	M12	X	.059	.059	0	%100
24	M12	Z	103	103	0	%100
25	M13	X	.059	.059	0	%100
26	M13	Z	103	103	0	%100
27	M14	X	.059	.059	0	%100
28	M14	Z	103	103	0	%100
29	M15	X	.015	.015	0	%100
30	M15	Z	026	026	0	%100
31	M16	X	.015	.015	0	%100
32	M16	Z	026	026	0	%100
33	M17	X	.015	.015	0	%100
34	M17	Z	026	026	0	%100
	M18	X	.015	.015	0	%100
35	M18	Z	026	026	0	%100
36	M19	X	.044	.044	0	%100
37	M19	Z	077	077	0	%100
38	M20	X	.044	.044	0	%100
39	M20	Z	077	077	0	%100
40	M21	X	.044	.044	0	%100
41	M21	Z	077	077	0	%100
42	M22	X	.044	.044	0	%100
43	M22	Z	077	077	0	%100
44	M23	X	.098	.098	0	%100
45		Z	17	17	0	%100
46	M23	X	.023	.023	0	%100
47	M24	Ž	04	04	0	%100
48	M24	X	.225	.225	0	%100
49	MP1A	Z	39	39	0	%100
50	MP1A	X	.225	.225	0	%100
51	MP2A	Z	39	39	0	%100
52	MP2A		.225	.225	0	%100
53	MP3A	X	39	39	0	%100
54	MP3A	Z	.225	.225	0	%100
55 56	MP4A MP4A	Z	39	39	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%]
4	M1	X	.118	.118	0	%100
2	M1	Z	068	068	0	%100
		X	.118	.118	0	%100
3	M2	Z	068	068	0	%100
4	M2	X	.006	.006	0	%100
5	M3	Z	003	003	0	%100
6	M3		.006	.006	0	%100
7	<u>M4</u>	X		003	0	%100
8	M4	Z	003	.259	0	%100
9	<u>M5</u>	X	.259		Ö	%100
10	M5	Z	15	15	0	%100
11	M6	X	.259	.259		%100 %100
12	M6	Z	15	15	0	
13	M7	X	.08	.08	0	%100
14	M7	Z	046	046	0	%100
15	M8	X	.08	.08	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	. Start Location[ft.%]	End Location(ft %)
16	M8	Z	046	046	0	%100
17	M9	X	.117	.117	0	%100
18	M9	Z	068	068	0	%100
19	M10	X	.117	.117	0	%100
20	M10	Z	068	068	0	%100
21	M11	X	.103	.103	0	%100
22	M11	Z	059	059	0	%100
23	M12	X	.103	.103	0	%100
24	M12	Z	059	059	0	%100
25	M13	X	.103	.103	Ō	%100
26	M13	Z	059	059	Ō	%100
27	M14	X	.103	.103	0	%100
28	M14	Z	059	059	0	%100
29	M15	X	.077	.077	0	%100
30	M15	Z	044	044	Ö	%100
31	M16	X	.077	.077	0	%100
32	M16	Z	044	044	Ŏ	%100
33	M17	X	.077	.077	Ö	%100
34	M17	Z	044	044	0	%100
35	M18	X	.077	.077	0	%100 %100
36	M18	Z	044	044	Ö	%100
37	M19	X	.026	.026	0	%100
38	M19	Z	015	015	0	%100
39	M20	X	.026	.026	0	%100 %100
40	M20	Z	015	015	0	%100
41	M21	X	.026	.026	0	%100 %100
42	M21	Z	015	015	0	%100
43	M22	X	.026	.026	0	%100 %100
44	M22	Z	015	015	0	%100
45	M23	X	.351	.351	0	%100
46	M23	Z	202	202	0	%100
47	M24	X	.22	.22	0	%100 %100
48	M24	Z	127	127	0	%100
49	MP1A	X	.39	.39	0	%100
50	MP1A	Z	225	225	0	%100
51	MP2A	X	.39	.39	0	%100 %100
52	MP2A	Z	225	225	0	%100 %100
53	MP3A	X	.39	.39	0	
54	MP3A	Z	225	225		%100
55	MP4A	X	.39	.39	0	%100
56	MP4A	Z	225	225	0	%100
-	TAIL AVA		220	225	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	.132	.132	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	.132	.132	0	%100
8	M4	Z	0	0	0	%100
9	M5	X	.132	.132	0	%100
10	M5	Z	0	0	0	%100
11	M6	X	.132	.132	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	.111	.111	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	.111	.111	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	.111	.111	0	%100
18	M9	Z	0	0	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

rembe			Start Magnitude[lb/ft,F,ksf]			End Location[ft,%]
10	Member Label	Direction	Start Magnitude[ib/it,F,ksi]	.111	0	%100
19	M10	Z	0	0	0	%100
20	M10		.119	.119	0	%100
21	M11	X Z	0	0	0	%100
22	M11		.119	.119	0	%100
23	M12	X	.119	0	0	%100
24	M12	Z	.119	.119	0	%100
25	M13	X	.119	0	0	%100
26	M13	Z		.119	0	%100
27	M14	X	.119	0	0	%100
28	M14	Z	0	.119	0	%100
29	M15	X	.119	0	0	%100 %100
30	M15	Z	0	.119	0	%100
31	M16	X	.119		0	%100
32	M16	Z	0	.119	0	%100 %100
33	M17	X	.119		0	%100 %100
34	M17	Z	0	.119	0	%100 %100
35	M18	X	.119		0	%100 %100
36	M18	Z	0	0		%100 %100
37	M19	X	0	0	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0		%100
41	M21	X	0	0	0	
42	M21	Z	0	0	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100 %100
45	M23	X	.433	.433	0	%100 %100
46	M23	Z	0	0	0	
47	M24	X	.433	.433	0	%100
48	M24	Z	0	0	0	%100
49	MP1A	X	.451	.451	0	%100
50	MP1A	Z	0	0	0	%100
51	MP2A	X	.451	.451	0	%100
52	MP2A	Z	0	0	0	%100
53	MP3A	X	.451	.451	0	%100
54	MP3A	Z	0	0	0	%100
55	MP4A	X	.451	.451	0	%100
56	MP4A	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft.%
1	M1	X	.118	.118	0	%100
2	M1	Z	.068	.068	0	%100
3	M2	X	.118	.118	0	%100
4	M2	Z	.068	.068	0	%100
5	M3	X	.259	.259	0	%100
	M3	Z	.15	.15	0	%100
7	M4	X	.259	.259	0	%100
	M4	Z	,15	.15	0	%100
8	M5	X	.006	.006	0	%100
9	M5	Z	.003	.003	0	%100
10	M6	X	.006	.006	0	%100
11		Z	.003	.003	0	%100
12	M6	X	.117	.117	0	%100
13	M7	Z	.068	.068	0	%100
14	M7	X	.117	.117	0	%100
15	M8	Z	.068	.068	0	%100
16	M8	X	.08	.08	0	%100
17	M9		.046	.046	0	%100
18	M9	Z	.046	.08	0	%100
19	M10	X	.046	.046	0	%100
20	M10	Z		.103	0	%100
21	M11	X	.103	.100	l U	70100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[ib/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft.%]	End Location[ft,%]
22	M11	Z	.059	.059	0	%100
23	M12	X	.103	.103	0	%100
24	M12	Z	.059	.059	0	%100
25	M13	X	.103	.103	0	%100
26	M13	Z	.059	.059	0	%100
27	M14	X	.103	.103	0	%100
28	M14	Z	.059	.059	0	%100
29	M15	X	.077	.077	0	%100
30	M15	Z	.044	.044	0	%100
31	M16	X	.077	.077	0	%100
32	M16	Z	.044	.044	0	%100
33	M17	X	.077	.077	0	%100
34	M17	Z	.044	.044	0	%100
35	M18	X	.077	.077	0	%100
36	M18	Z	.044	.044	Ö	%100
37	M19	X	.026	.026	0	%100
38	M19	Z	.015	.015	0	%100
39	M20	X	.026	.026	0	%100
40	M20	Z	.015	.015	0	%100
41	M21	X	.026	.026	0	%100
42	M21	Z	.015	.015	0	%100
43	M22	X	.026	.026	0	%100
44	M22	Z	.015	.015	0	%100
45	M23	X	.22	.22	0	%100
46	M23	Z	.127	.127	0	%100
47	M24	X	.351	.351	0	%100
48	M24	Z	.202	.202	0	%100
49	MP1A	X	.39	.39	0	%100
50	MP1A	Z	.225	.225	0	
51	MP2A	X	.39			%100
52	MP2A	Z	.225	.39	0	%100
53	MP3A	X	.39	.225	0	%100
54	MP3A	Z	.225	.39	0	%100
55	MP4A	X		.225	0	%100
56	MP4A	Z	.39	.39	0	%100
J0	IVIP4A		.225	.225	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	. Start Location(ft,%)	End Location[ft,%]
1	M1	X	.205	.205	0	%100
2	M1	Z	.354	.354	0	%100
3	M2	X	.205	.205	0	%100
4	M2	Z	.354	.354	0	%100
5	M3	X	.17	.17	0	%100
6	M3	Z	.295	.295	0	%100
7	M4	X	.17	₂ 17	0	%100
8	M4	Z	.295	.295	0	%100
9	M5	X	.024	.024	0	%100
10	M5	Z	.042	.042	0	%100
11	M6	X	.024	.024	0	%100
12	M6	Z	.042	.042	0	%100
13	M7	X	.071	.071	0	%100
14	M7	Z	.122	.122	0	%100
15	M8	X	.071	.071	0	%100
16	M8	Z	.122	.122	0	%100
17	M9	X	.049	.049	0	%100
18	M9	Z	.085	.085	0	%100
19	M10	X	.049	.049	0	%100
20	M10	Z	.085	.085	0	%100
21	M11	X	.059	.059	0	%100
22	M11	Z	.103	.103	0	%100
23	M12	X	.059	.059	0	%100
24	M12	Z	.103	.103	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	Start Location[ft,%]	End Location[ft,%]
25	M13	X	.059	.059	0	%100
26	M13	Z	.103	.103	0	%100
27	M14	X	.059	.059	0	%100
28	M14	Z	.103	.103	0	%100
29	M15	X	.015	.015	0	%100
30	M15	Z	.026	.026	0	%100
31	M16	X	.015	.015	0	%100
32	M16	Z	.026	.026	0	%100
33	M17	X	.015	.015	0	%100
34	M17	Z	.026	.026	0	%100
35	M18	X	.015	.015	0	%100
	M18	Z	.026	.026	0	%100
36	M19	X	.044	.044	0	%100
37		Z	.077	.077	0	%100
38	M19	X	.044	.044	0	%100
39	M20	Z	.077	.077	0	%100
40	M20	X	.044	.044	0	%100
41	M21	Z	.077	.077	0	%100
42	M21		.044	.044	0	%100
43	M22	X	.077	.077	Ö	%100
44	M22	Z	.023	.023	0	%100
45	M23	X	.04	.04	ő	%100
46	M23	Z	.04	.098	0	%100
47	M24	X	.17	.17	0	%100
48	M24	Z		.225	0	%100
49	MP1A	X	.225	.39	0	%100 %100
50	MP1A	Z	.39	.225	0	%100 %100
51	MP2A	X	.225		0	%100
52	MP2A	Z	.39	.39	0	%100
53	MP3A	X	.225	.225		%100
54	MP3A	Z	.39	.39	0	%100 %100
55	MP4A	X	.225	.225	0	
56	MP4A	Z	.39	.39	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	.546	.546	0	%100
3	M2	X	0	0	0	%100
	M2	Z	.546	.546	0	%100
4	M3	X	0	0	0	%100
5	M3	Z	.215	.215	0	%100
6	M4	X	0	0	0	%100
7		Z	.215	.215	0	%100
8	M4	X	0	0	0	%100
9	M5	Z	.215	.215	0	%100
10	M5	X	0	0	0	%100
11	M6	Z	.215	.215	0	%100
12	M6		0	0	0	%100
13	M7	X		.123	0	%100
14	M7	Z	.123	0	0	%100
15	M8	X	0		0	%100
16	M8	Z	.123	.123	0	%100
17	M9	X	0	0	0	%100 %100
18	M9	Z	.123	.123		
19	M10	X	0	0	0	%100
20	M10	Z	.123	.123	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	.119	.119	0	%100
23	M12	X	0	0	0	%100
24	M12	Z	.119	.119	0	%100
25	M13	X	0	0	0	%100
26	M13	Z	.119	.119	0	%100
27	M14	X	0	0	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[ib/ft,F,ksf]	End Magnitude(lb/ft	. Start Location[ft,%]	End Location[ft.%]
28	M14	Z	.119	.119	0	%100
29	M15	X	0	0	0	%100
30	M15	Z	0	0	0	%100
31	M16	X	0	0	0	%100
32	M16	Z	0	0	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	.119	.119	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	.119	.119	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	.119	.119	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	.119	.119	0	%100
45	M23		0	0	0	%100
46	M23	X	.017	.017	0	%100
47	M24	X	0	0	0	%100
48	M24	Z	.017	.017	0	%100
49	MP1A	X	0	0	0	%100
50	MP1A	Z	.451	.451	Ö	%100
51	MP2A	X	0	0	0	%100
52	MP2A	Z	.451	.451	Ö	%100
53	MP3A	X	0	0	0	%100
54	MP3A	Z	.451	.451	Ō	%100
55	MP4A	X	0	0	0	%100
56	MP4A	Z	.451	.451	ŏ	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

-	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft, %]	End Location[ft,%]
1	M1	X	205	205	0	%100
2	M1	Z	.354	.354	0	%100
3	M2	X	205	205	0	%100
4	M2	Z	.354	.354	0	%100
5	M3	X	024	024	0	%100
6	M3	Z	.042	.042	0	%100
7	M4	X	024	024	0	%100
8	M4	Z	.042	.042	0	%100
9	M5	X	17	17	0	%100
10	M5	Z	.295	.295	0	%100
11	M6	X	17	17	0	%100
12	M6	Z	.295	.295	0	%100
13	M7	X	049	049	0	%100
14	M7	Z	.085	.085	0	%100
15	M8	X	049	049	0	%100
16	M8	Z	.085	.085	0	%100
17	M9	X	071	071	0	%100
18	M9	Z	.122	.122	0	%100
19	M10	X	071	071	0	%100
20	M10	Z	.122	.122	0	%100
21	M11	X	059	059	0	%100
22	M11	Z	.103	.103	0	%100
23	M12	X	059	059	0	%100
24	M12	Z	.103	.103	Ō	%100
25	M13	X	059	059	0	%100
26	M13	Z	.103	.103	0	%100
27	M14	X	059	059	0	%100
28	M14	Z	.103	.103	Ö	%100 %100
29	M15	X	015	015	0	%100 %100
30	M15	Z	.026	.026	0	%100 %100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft	Start Location[ft,%]	End Location[ft,%]
31	M16	X	015	015	0	%100
32	M16	Z	.026	.026	0	%100
	M17	X	015	015	0	%100
33	M17	Z	.026	.026	0	%100
34	M18	X	015	015	0	%100
35	M18	Z	.026	.026	0	%100
36	M19	X	044	044	0	%100
37	M19	Z	.077	.077	0	%100
38	M20	X	044	044	0	%100
39		Z	.077	.077	0	%100
40	M20	X	044	044	0	%100
41	M21	Z	.077	.077	0	%100
42	M21	X	044	044	0	%100
43	M22	Z	.077	.077	0	%100
44	M22	X	098	098	0	%100
45	M23	Ž	.17	.17	0	%100
46	M23	X	023	023	0	%100
47	M24	Z	.04	.04	0	%100
48	M24		225	225	0	%100
49	MP1A	X	.39	.39	0	%100
50	MP1A	Z	225	225	0	%100
51	MP2A	X	.39	.39	0	%100
52	MP2A	Z		225	0	%100
53	MP3A	X	225	.39	0	%100
54	MP3A	Z	.39	225	ŏ	%100
55	MP4A	X	225	.39	Ö	%100
56	MP4A	Z	.39	.39		75100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]		. Start Location[ft,%]	End Location[ft,%
4	Member Laber	X	118	118	0	%100
2	M1	Z	.068	.068	0	%100
	M2	X	118	118	0	%100
3	M2	Z	.068	.068	0	%100
4	M3	X	006	006	0	%100
5	M3	Z	.003	.003	0	%100
6	M4	X	006	006	0	%100
7	M4	Z	.003	.003	0	%100
8	M5	X	259	259	0	%100
9		Z	.15	.15	0	%100
10	M5	X	259	259	0	%100
11	M6	Z	.15	.15	0	%100
12	M6	X	08	08	0	%100
13	M7	Z	.046	.046	0	%100
14	M7	X	-,08	08	0	%100
15	M8	Z	.046	.046	0	%100
16	M8		117	117	0	%100
17	M9	X	.068	.068	0	%100
18	M9	Z	117	117	0	%100
19	M10	X	.068	.068	0	%100
20	M10	Z		103	0	%100
21	M11	X	103	.059	0	%100
22	M11	Z	.059	103	0	%100
23	M12	X	103	.059	Ŏ	%100
24	M12	Z	.059	103	0	%100
25	M13	X	103	.059	0	%100
26	M13	Z	.059		0	%100
27	M14	X	103	103	0	%100
28	M14	Z	.059	.059	0	%100
29	M15	X	077	077	0	%100
30	M15	Z	.044	.044		%100
31	M16	X	077	077	0	%100
32	M16	Z	.044	.044		%100 %100
33	M17	X	077	077	0	70100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

-	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft.	. Start Location[ff %]	End Location(# %1
34	M17	Z	.044	.044	0	%100
35	M18	X	077	077	0	%100
36	M18	Z	.044	.044	0	%100
37	M19	X	026	026	0	%100
38	M19	Z	.015	.015	0	%100
39	M20	X	026	026	0	%100
40	M20	Z	.015	.015	0	%100
41	M21	X	026	026	0	%100
42	M21	Z	.015	.015	0	%100
43	M22	X	026	026	0	%100
44	M22	Z	.015	.015	0	%100
45	M23	X	351	351	0	%100
46	M23	Z	.202	.202	0	%100
47	M24	X	22	22	0	%100
48	M24	Z	.127	.127	0	%100
49	MP1A	X	39	39	0	%100
50	MP1A	Z	.225	.225	0	%100
51	MP2A	X	39	39	0	%100
52	MP2A	Z	.225	.225	0	%100
53	MP3A	X	39	39	Ö	%100
54	MP3A	Z	.225	.225	0	%100
55	MP4A	X	39	39	0	%100
56	MP4A	Z	.225	.225	ő	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft	Start Location(# %1	End Location[ft,%
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	132	132	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	132	132	0	%100
8	M4	Z	0	0	0	%100
9	M5	X	132	132	0	%100
10	M5	Z	0	0	0	%100
11	M6	X	132	132	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	111	111	Ō	%100
14	M7	Z	0	0	0	%100
15	M8	X	111	111	0	%100
16	M8	Z	0	0	Ö	%100
17	M9	X	111	111	0	%100
18	M9	Z	0	0	Ö	%100
19	M10	X	111	111	0	%100
20	M10	Z	0	0	0	%100 %100
21	M11	X	119	119	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	119	119	0	%100 %100
24	M12	Z	0	0	Ō	%100 %100
25	M13	X	119	119	0	%100
26	M13	Z	0	0	0	%100
27	M14	X	119	119	0	%100
28	M14	Z	0	0	Ö	%100
29	M15	X	119	119	0	%100
30	M15	Z	0	0	0	%100
31	M16	X	119	119	0	%100
32	M16	Z	0	0	0	%100 %100
33	M17	X	119	119	0	%100 %100
34	M17	Z	0	0	0	
35	M18	X	119	119	0	%100 %100
36	M18	Z	0	119	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	. Start Location[ft,%]	End Location[ft,%]
37	M19	X	0	0	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	0	0	0	%100
43	M22	X	0	0	0	%100
	M22	Z	0	0	0	%100
44	M23	X	433	433	0	%100
45		Z	0	0	0	%100
46	M23	X	433	-,433	0	%100
47	M24	Ž	0	0	0	%100
48	M24		451	451	0	%100
49	MP1A	X		0	0	%100
50	MP1A	Z	0		0	%100
51	MP2A	X	451	451		
52	MP2A	Z	0	0	0	%100
53	MP3A	X	451	451	0	%100
54	MP3A	Z	0	0	0	%100
55	MP4A	X	451	451	0	%100
56	MP4A	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]		Start Location[ft,%]	End Location[ft,%
1	Member Laber M1	X	118	118	0	%100
2	M1	Z	068	068	0	%100
3	M2	X	118	118	0	%100
4	M2	Z	068	068	0	%100
	M3	X	259	259	0	%100
5	M3	Z	15	15	0	%100
6	M4	X	259	259	0	%100
7	M4	Z	15	15	0	%100
8		X	006	006	0	%100
9	M5	Z	003	003	0	%100
10	M5	X	006	006	Ō	%100
11	M6	Ž	003	003	Ö	%100
12	M6	X	117	117	0	%100
13	M7	Z	068	068	0	%100
14	M7	X	117	117	0	%100
15	M8	Z	068	068	0	%100
16	M8		08	08	Ö	%100
17	M9	X	046	046	0	%100
18	M9	Z	08	08	Ö	%100
19	M10	X		046	0	%100
20	M10	Z	046	103	0	%100 %100
21	M11	X	103		0	%100
22	M11	Z	059	059	0	%100 %100
23	M12	X	103	103	0	%100
24	M12	Z	059	059		%100
25	M13	X	103	103	0	%100
26	M13	Z	059	059	0	
27	M14	X	103	103	0	%100
28	M14	Z	059	059	0	%100
29	M15	X	077	077	0	%100
30	M15	Z	044	044	0	%100
31	M16	X	077	077	0	%100
32	M16	Z	044	044	0	%100
33	M17	X	077	077	0	%100
34	M17	Z	044	044	0	%100
35	M18	X	077	077	0	%100
36	M18	Z	044	044	0	%100
37	M19	X	026	026	0	%100
38	M19	Z	015	015	0	%100
39	M20	X	026	026	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitudellb/ft	. Start Location(ft.%)	End Location[ft,%]
40	M20	Z	015	015	0	%100
41	M21	X	026	026	0	%100
42	M21	Z	015	015	0	%100
43	M22	X	026	026	0	%100
44	M22	Z	015	015	0	%100
45	M23	X	22	22	0	%100
46	M23	Z	127	127	0	%100
47	M24	X	351	351	0	%100
48	M24	Z	202	202	0	%100
49	MP1A	X	39	39	0	%100
50	MP1A	Z	225	-,225	0	%100
51	MP2A	X	39	39	0	%100
52	MP2A	Z	225	225	0	%100
53	MP3A	X	39	39	0	%100
54	MP3A	Z	225	225	0	%100
55	MP4A	X	39	39	0	%100
56	MP4A	Z	225	225	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft		
1	M1	X	205	205	0	%100
2	M1	Z	354	354	0	%100
3	M2	X	205	205	0	%100
4	M2	Z	354	-,354	0	%100
5	M3	X	17	17	0	%100
6	M3	Z	295	295	0	%100
7	M4	X	17	17	0	%100
8	M4	Z	295	295	0	%100
9	M5	X	024	024	0	%100
10	M5	Z	042	042	0	%100
11	M6	X	024	024	0	%100
12	M6	Z	042	042	0	%100
13	M7	X	071	071	0	%100
14	M7	Z	122	122	0	%100
15	M8	X	071	071	0	%100
16	M8	Z	122	122	0	%100
17	M9	X	049	049	0	%100
18	M9	Z	085	085	0	%100
19	M10	X	049	049	0	%100
20	M10	Z	-,085	085	0	%100
21	M11	X	059	059	0	%100
22	M11	Z	103	103	0	%100
23	M12	Х	059	059	0	%100
24	M12	Z	103	103	Ö	%100
25	M13	X	059	059	Ō	%100
26	M13	Z	103	103	0	%100
27	M14	X	059	059	0	%100
28	M14	Z	103	103	0	%100
29	M15	X	015	015	0	%100 %100
30	M15	Z	026	026	0	%100
31	M16	X	015	015	0	%100
32	M16	Z	026	026	0	%100
33	M17	X	015	015	0	%100
34	M17	Z	026	026	0	%100
35	M18	X	015	015	0	%100 %100
36	M18	Z	026	026	0	%100
37	M19	X	044	044	0	%100
38	M19	Z	077	077	0	%100 %100
39	M20	X	044	044		
40	M20	Z	077	044	0	%100
41	M21	X	044		0	%100
42	M21	Z	044	044	0	%100
74	1812 1		0//	077	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.	. Start Location[ft.%]	End Location[ft,%]
43	M22	X	044	044	0	%100
44	M22	Z	077	077	0	%100
45	M23	X	023	023	0	%100
46	M23	Z	04	04	0	%100
47	M24	X	098	098	0	%100
48	M24	Z	17	-,17	0	%100
49	MP1A	X	225	225	0	%100
50	MP1A	Z	39	39	0	%100
51	MP2A	X	225	225	0	%100
52	MP2A	Z	39	39	0	%100
53	MP3A	X	-,225	225	0	%100
54	MP3A	Z	39	39	0	%100
55	MP4A	X	225	225	0	%100
56	MP4A	Z	39	39	0	%100

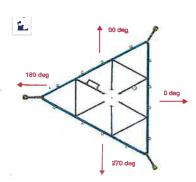
Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft	ILC
1	N1	max	1456.788	33	1026.747	24	1224.065	13	159	69	0	75	.279	32
2	18.1	min	-76.304	3	380.919	69	-11.756	7	431	13	0	1	011	2
3	N2	max	439,401	10	1038.829	18	-73.844	7	161	75	0	75	.27	32
4	INZ	min	-1479.688	28	383.641	75	-1049.424	13	436	18	0	1	012	2
5	N56	max	109.004	10	52.823	18	467.452	12	0	75	0	75	0	75
6	1400	min	-121.532	4	18.509	74	-528.34	6	0	1	0	1	0	1
7	N57	max	254.642	8	52.902	20	1196.535	2	0	75	0	75	0	75
8	1407	min	-241.665	2	18,509	65	-1260.51	8	0	1	0	1	0	1
9	Totals:	max	1219.733	9	2162.366	21	1624.737	1						
10	i otalo.	min	-1219.734	3	802.401	67	-1624.738	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	Shear Check	Lo	phi*Pphi*Mphi*M Eqn
1	M1	PIPE 2.5	.270	8.7	30	.088	8.7	43 1455 50715 3.596 3.596 H1-1b
2	M2	PIPE 2.5	.258	8.7	33	.096	8.7	2 1455 50715 3.596 3.596 H1-1b
3	M3	PIPE 2.0	.099	0	5	.041	0	173112 32130 1.872 1.872 H1-1b
4	M4	PIPE 2.0	.054	0	8	.035	0	133112 32130 1.872 1.872 H1-1b
5	M5	PIPE 2.0	.099	2.5	32	.085	0	333112 32130 1.872 1.872 H1-1b
6	M6	PIPE 2.0	.131	0	3	.072	0	323112 32130 1.872 1.872 H1-1b
7	M7	SR 0.75	.000	4.1	32	.006	4.1	3228631391174 H1
8	M8	SR 0.75	.031	0	14	.012	0	2 2863 1391174 H1
9	M9	SR 0.75	.000	0	75	.014	0	31 2863 1391 174 H1-1a
10	M10	SR 0.75	.087	4.1	31	.018	0	3328631391174 .174 H1
11	M11	SR 0.625	.039	1.6	11	.014	0	322158 9664101 H1-1b
12	M12	SR 0.625	.030	1.6	9	.014	0	8 2158 9664101 .101 H1-1b
13	M13	SR_0.625	.044	1.6	7	.015	0	2 2158 9664101 .101 1 H1-1b
14	M14	SR 0.625	.113	0	2	.016	0	3221589664101 H1
15	M15	PL5/8X3.5	.102	0	3	.106	.422	
16	M16	PL5/8X3.5	.075	.422	20	.053	.422	8 6618 6890897 5.024 H1-1b
17	M17	PL5/8X3.5	.274	0	32	.100	0	1 6618 6890897 5.024 H1-1b
18	M18	PL5/8X3.5	.216	0	25	.121		3 6618 6890897 5.024 H1-1b
19	M19	PL5/8X3.5	.152	.531	13	.040	0 1	6 6759 6890897 5.024 H1-1b
20	M20	PL5/8X3.5	.410	.531	27	.063	0 1	276759 6890897 5.024 H1-1b
21	M21	PL5/8X3.5	.167	.531	14	.021	.531	1 6759 6890897 5.024 H1-1b
	M22	PL5/8X3.5	.427	.531	36	.046	.531	, 256759 6890897 5.024 H1-1b
22	M23	PIPE 2.0	.099	5.9	10	.006	0	22700532130 1.872 1.872 H1-1b
	M24	PIPE 2.0	.174	11	2	.006	0	22700532130 1.872 1.872 H1
24	MP1A	PIPE 2.0	.415	2.3	27	.068	5.6	361491 32130 1.872 1.872 H1-1b
25		PIPE 2.0	.312	2.3	2	.083	2.3	8 1491 32130 1.872 1.872 H1-1b
26	MP2A	PIPE 2.0	.167	2.3	32	.048	4.0	9 1491 32130 1.872 1.872 H1-1b
27	MP3A	PIPE 2.0	.071	2.3	21	.011	2.3	331491 32130 1.872 1.872 H1-1b
28	MP4A	FIFE_Z.U	.07 1					

VzW SMART Tool® Vendor


Client:	Verizon Wireless	Date:	8/1/2023
Site Name:	STAMFORD NW CT		
MDG #:	5000386730		
Fuze ID #:	17123711	Page:	1

Yes

Version 1.01

I. Mount-to-Tower Connection Check

Nodes (labeled per Risa)	Orientation (per graphic of typical platform)		
N1	0		
N2	0		
Marine Contraction			
	A PARTY OF THE PARTY OF THE PARTY.		

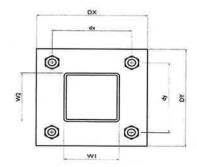
Tower Connection Bolt Checks

Bolt Orientation

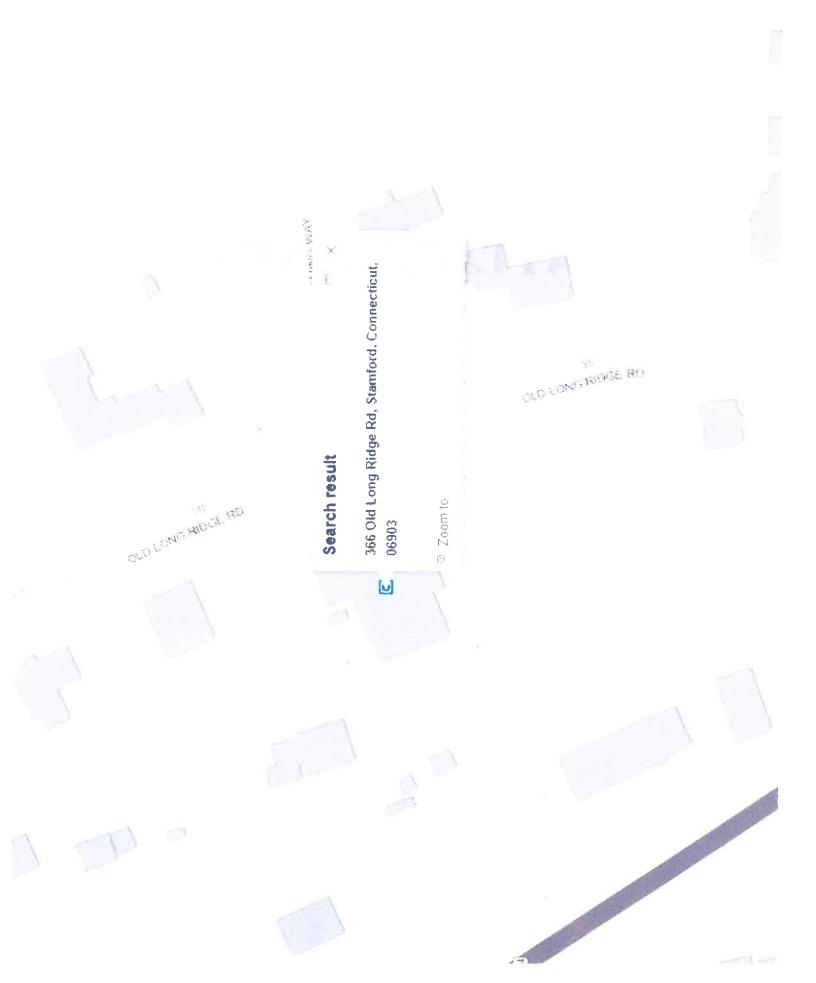
Bolt Quantity per Reaction: d_x (in) (Delta X of typ. bolt config. sketch): d_y (in) (Delta Y of typ. bolt config. sketch):

Bolt Type:

Bolt Diameter (in):
Required Tensile Strength / bolt (kips):
Required Shear Strength / bolt (kips):


Required Shear Strength / bolt (kips): Tensile Capacity / bolt (kips): Shear Capacity / bolt (kips): Bolt Overall Utilization:

Tower Connection Baseplate Checks


	Parallel	
4.83	4	7.5
	12	
	5	
	A307	
	0.5	
	0.7	
	0.6	
	6.6	
	4.0	
	13.9%	

No

Yes

ATTACHMENT 4

State Use 9020 5/11/2023 3:09:42 PM	Assessed 255,720 1,074,100 513,840 STAMFORD, CT	170Ry 17	60 Total 1,843,660 ta Collector or Assessor UE SUMMARY	1,492,440 41,980 734,040 365,320 0 2,633,780 C	CHANGE HISTORY Is	ment Adj Unit Pric Land Value 0 745,556.3 365,320
Card # 1 of 1	CURRENT ASSESSIMENT Code Appraised Assess 21 365,320 20 22 1,534,420 1,0 25 734,040 5	2,633,780 1 OUS ASSESSMENTS (H Year Code Assesse 2022 21 255, 255, 256, 257, 257, 257, 258,	Total 1,843,660 Total 7,843,660 Total This signature acknowledges a visit by a Data Collector or Assessor APPRAISED VALUE SUMMARY	Appraised Bldg. Value (Card) Appraised Xf (B) Value (Bldg) Appraised Ob (B) Value (Bldg) Appraised Land Value Special Land Value Total Appraised Parcel Value	Parcel Value WISIT / Id Type MVS SM SM SM	Notes Location Adjustment
Bldg Name Sec # 1 of 1	Description EX COM LN EX COM BL EX CM OTB	Ass 1	S nount Commint	Batch	Comments VERIZON WILL SWAP 3 ANT REPLACEMENT OF 6 CELLU C/0 25198 10-6-97 INTER AL C/O 22755 6-23-94. SECOND	SECTION Cond. Nbhd. Nhbd Adj 1.00 0100 1.000
549/// Bldg#	STRT / ROAD LOCATION Unpaved Paved AL DATA Agent Nam Roll 2 Common LONG RIDGE FIR Neighborh N STAM:	Assoc Pid# O/U V/I SALE PRICE V U I 0 2	OTHER ASSESSMENT Description Number An	Tracing	Comp Date Comp 0 100 04-19-2022	ND LINE VALUATION 1. Factor Site Index 70 1.83169 C
OI de	OTILITIES STRT/F 6 Septic 3 Unpavec 5 Well 1 Paved 7 14400 B DSSI 11116 Agent 203 Commod Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight Neight N	716 6320 7PAGE SALE DATE 0581 01-14-1953	Amount Code De 1843660.00	1,843,660.00 ASSESSING NEIGHBORHOOD B NOTES	Amount Insp Date % 0 10-01-1996 221,070 10-06-1994	Land Units 0.490 AC
ONG KIUGE KOAU Account #	STAMFORD CT 06903-1133 Census BI 3 Census	. 6	Year Code Description 2012 CAAX Volunteer Fire Company	Total AS AS AS AS AS AS AS A	SPRINT 2 FC1 OWNED BY CITY Permit Id Issue Date Type Description B-21-1245 07-06-2021 NV No Value P-21-442 03-04-2021 NV No Value 76376 01-26-1993 AD 73737 12-09-1993 AD	B Use Code Description Zone Distri District Desc.

ATTACHMENT 5

Certificate of Mailing — Firm