

Together with Nextel

10 Industrial Ave, Suite 3 Mahwah, NJ 07430 Phone: (845)499-4712 Jennifer Notaro Real Estate Consultant

October 14, 2014

Hand Delivered

Ms. Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

CC to Property Owner Long Ridge Fire Department 366 Old Long Ridge Road Stamford, CT 06901

RE: Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 366 Old Long Ridge Road Stamford, CT 06901 . Known to Sprint Spectrum L.P. as site CT03XC328.

Dear Ms. Bachman:

In order to accommodate technological changes, implement Code Division Multiple Access ("CDMA") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the state of Connecticut, Sprint Spectrum L.P. plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and its attachments is being sent to the chief elected official of the municipality in which affected cell site is located.

CDMA employs Spread-Spectrum technology and special coding scheme to allow multiple users to be multiplexed over the same physical channel.

LTE is a new high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modification as defined Connecticut General Statues ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for the R.C.S.A. Section 16-50j-72(b)(2).

- 1. The height of the overall structure will not be affected.
- 2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound.
- 3. The proposed changes will not increase the noise level at the existing facility by 6 decibels or more.
- 4. Radio Frequency power density may increase due to the use of one or more CDMA transmissions. Moreover, LTE will utilize additional radio frequencies newly licensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons Sprint Spectrum L.P. respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (201)-704-8157 or email JArdis@transcendwireless.com with questions concerning this matter. Thank you for your consideration.

Sincerely,

Jennifer Ardis Real Estate Consultant

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility

Site ID: CT03XC328

Stamford Fire Department

366 Old Long Ridge Road Stamford, CT 06903

October 14, 2014

EBI Project Number: 62145487

October 14, 2014

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site: CT03XC328 - Stamford Fire Department

Site Total: <u>40.09%</u> - MPE% in full compliance

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at **366 Old Long Ridge Road, Stamford, CT**, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band (850 MHz Band) is approximately 567 μ W/cm², and the general population exposure limit for the 1900 MHz and 2500 MHz bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at **366 Old Long Ridge Road, Stamford, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 4 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
- 2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation.
- 3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTM14-C-I20. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. The RFS APXVTM14-C-I20 has a 15.9 dBd gain value at its main lobe at 2500 MHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline for the proposed antennas is **128 feet** above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

L I	Site ID	CT03XC328	- Stamford Fire	Department	1											
	Site Addresss	366 Old Long Ri			1											
	Site Type	0	elf Support Tow													
				-	-											
							Sector 1									
												1				
						Power										_
						Out Per			Antenna Gain							Power
Antenna						Channel	Number of	•	(10 db	Antenna	analysis		Cable Loss	Additional		Density
	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	reduction)	Height (ft)	height	Cable Size	. ,	Loss (dB)	ERP	Percentage
1a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	5.9	128	122	1/2 "	0.5	0	277.39	0.67%
1a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	3.4	128	122	1/2 "	0.5	0	39.00	0.17%
1B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	128	122	1/2 "	0.5	0	138.69	0.59%
												Sector to	otal Power L	ensity Value:	1.43%	
							Sector 2									
						Power										_
						Out Per			Antenna Gain							Power
Antenna			р. II. т.				Number of	•	(10 db	Antenna	analysis	6 I I 6	Cable Loss		500	Density
	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	reduction)	Height (ft)	height	Cable Size		Loss (dB)	ERP	Percentage
2a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	5.9	128	122	1/2 "	0.5	0	277.39	0.67%
2a 2B	RFS RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20 20	1	20	3.4 5.9	128	122 122	1/2 " 1/2 "	0.5	0	39.00 138.69	0.17%
ZB	RFS	APXVTMM14-C-120	KKH	2500 MHz	CDMA / LTE	20	2	40	5.9	128	122			0 Density Value:	1.43%	0.59%
												Sector to	otal Power L	ensity value:	1.43%	
							Sector 3									
						Power										
						Out Per			Antenna Gain							Power
Antenna						Channel	Number of	Composite	(10 db	Antenna	analysis		Cable Loss	Additional		Density
	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	reduction)	Height (ft)	height	Cable Size		Loss (dB)	ERP	Percentage
3a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	5.9	128	122	1/2 "	0.5	0	277.39	0.67%
					,					-				-		
3a		APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTF	20	1	20	3.4	128	122	1/2 "	0.5	0	39.00	0.17%
3a 3B	RFS	APXVSPP18-C-A20 APXVTMM14-C-120	RRH RRH	850 MHz 2500 MHz	CDMA / LTE CDMA / LTE	20 20	1 2	20 40	3.4 5.9	128 128	122 122	1/2 " 1/2 "	0.5	0	39.00 138.69	0.17%

Site C	Composite MPE %
Carrier	MPE %
Sprint	4.28%
Nextel	4.03%
AT&T	14.91%
T-Mobile	7.32%
EMCC	
City of Stamford	
AirTouch	9.55%
SkyTel	Per field measurement baseline for
Fire Dept.	these antennas listed in CSC
Gardella Trans.	database
Hoffman Fuel	
Pronet	
Total Site MPE %	40.09%

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are **4.28%** (**1.43%** from sector **1**, **1.43%** from sector **2** and **1.43%** from sector **3**) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **40.09%** of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director

EBI Consulting 21 B Street Burlington, MA 01803

DETAILED STRUCTURAL ANALYSIS AND EVALUATION OF AN EXISTING 152' SELF SUPPORTING LATTICE TOWER FOR PROPOSED ANTENNA ARRANGEMENTS

Site I.D:	(Verizon)	Stamford NW
	(AT&T)	CT5047
	(Sprint)	CT03XC328

Address: 366 Old Long Ridge Road Stamford, CT

Verizon Wireless 99 East River Drive East Hartford, Connecticut 06108 prepared for

500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT. 06067

1 International Blvd. Suite 800 Mahwah, NJ. 07495

prepared by

URS CORPORATION 500 ENTERPRISE DRIVE, SUITE 3B ROCKY HILL, CT 06067 TEL. 860-529-8882

> (Sprint) 36928702.00000 (Verizon) 36922268.00000 (AT&T) 36922483.00000

> > July 15, 2014

TABLE OF CONTENTS

- **1. EXECUTIVE SUMMARY**
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS
- 6. DRAWINGS AND DATA
 - TOWER AND FOUNDATION REINFORCED DRAWINGS
 - (FROM URS CORPORATION MODIFICATION DESIGN/PASSING ANALYSIS DATED 6/13/2013)
 - TNX TOWER INPUT / OUTPUT SUMMARY
 - TNX TOWER FEEDLINE DISTRIBUTION CHART
 - TNX TOWER FEEDLINE PLAN
 - TNX TOWER DETAILED OUTPUT
 - ANCHOR BOLT EVALUATION
 - FOUNDATION EVALUATION

1. EXECUTIVE SUMMARY

This report summarizes the structural re-analysis of the modified existing 152' self-supporting lattice tower located at 366 Old Long Ridge Road, in Stamford, CT. The analysis was conducted in accordance with the 2005 Connecticut State Building Code and the TIA/EIA-222-F standard for a basic wind velocity of 85 mph (fastest mile) and 74 mph (fastest mile) concurrent with 0.50" ice. The antenna loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report.

The proposed antenna modifications are as follows:

Proposed Antenna and Mount	Carrier	Antenna Center Elevation
<u>Remove:</u> (12) Decibel DB844H90E-XY Panel Antennas (3) T-Frame Mounts (12) 1 1/4 Coaxial Cable	Nextel (Existing)	118'
 (6) Amphenol LPA-80063-4CF Panel Antennas (3) Amphenol BXA-171063-8BF-EDIN-2 Panel Antennas (3) Amphenol BXA 171063-12CF-EDIN-2 Panel Antennas (3) Amphenol BXA-70063-6CF-2 Panel Antennas (18) 1 5/8" Coaxial Cables 	Verizon (Previously Proposed)	98'
Install (3) RFS APXVSPP18-C-A20 Panel Antennas (3) 800 MHz RRH Units (3) 1900 MHz RRH Units (3) Hybriflex Cables	Sprint (Previously Proposed)	128'
 (3) RFS APXV9TM14 Panel Antennas (3) RRH Units (1) Fiber Optic Cable (27) 8' Jumper Cables (2) Decibel LNX 8543DS, A4M Banel 	Sprint (Proposed)	128'
 (2) Decibel LNX-8513DS-A1M Panel Antennas (Alpha Sector) (4) Decibel LNX-6514DS-A1M Panel Antenans (Beta and Gamma Sector) (6) RRH Units (6) HBXX-6517DS-A2M Panel Antennas (1) Raycap DB-T1-6Z-8AB-0Z Distribution Box 	Verizon (Proposed)	98'

The results of the analysis indicate that the proposed modified tower structure and the proposed modified foundation components are in compliance with the proposed loadings. The proposed modified tower structure and proposed modified foundation components are considered structurally adequate with the wind classification specified above and all the existing and proposed antenna loading.

1. EXECUTIVE SUMMARY - continued

The analysis results presented herewith are based upon the previous tower modification proposed by URS Corporations' tower modification analysis report, project 36922268, signed and sealed on June 13, 2013. No installation of proposed antennas, mounts, cables of accessories shall occur prior to the completion of the tower and foundation modifications specified in the June 13, 2013 report. A copy of the reinforced drawings are included with this report.

This analysis is based on:

- 1) The tower structure's theoretical capacity, not including any assessment of the condition of the tower.
- 2) Original tower geometry, structural member sizes and foundation information obtained from manufacturer's design documents prepared by ROHN Industries, Engineering File No. 24269DB, dated May 16, 1989.
- 3) Subsurface Investigation Report from Goldberg-Zoino & Associates Inc., dated December 14, 1988.
- 4) Completion of subsequent tower reinforcements:
 - Drawings SS-1 'Tower Foundation Reinforcement, Elevation, Sections and Details' and drawing SS-2 'Foundation Plan, Section and Notes' prepared by Tectonic Engineering Consultants P.C; on behalf of AT&T Wireless, PCS, LLC; dated April 23, 2002.
 - Drawing S-1 'Structural Details' prepared by Diversified Technology Consultants (dtc), on behalf of Nextel Communications, dated June 11, 2002.
 - Tower reinforcement drawings sheets 1 thru 5, entitled '2007 Modifications Tower Rework For a 153' ROHN SSV Tower' Long Ridge, CT., prepared by Vertical Structures on behalf of Motorola, dated May 24, 2007.
 - Tower inventory and mapping report prepared by CSB Communications, Inc., on behalf of Verizon Wireless/URS Corporation, dated July 20, 2008.
- 5) Geotechnical report from Dr. Clarence Welti, P.E., Geotechnical Engineering, dated December 12, 2012.
- 6) Modification design/passing analysis performed by URS for Sprint, Verizon, and AT&T, dated June 13, 2013.
- 7) Verizon RFDS, dated May 5, 2014
- 8) Sprint flat file for proposed antenna inventory, obtained via e-mail dated July 11, 2014.
- 9) Antenna and mount configuration as specified within Section 2 and 6 of this report.
- 10) Coax cable orientation as specified in section 6 of this report.

1. EXECUTIVE SUMMARY - continued

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the assumption of the antenna and mount configuration as well as the physical condition of the tower. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

Sincerely,

STANDE CONAL **URS** Corporation Richard A. Sambor, P.E. Senior Structural Engineer لمد cc: ICA - URS CF/Book

2. INTRODUCTION

The subject tower is located at 366 Old Long Ridge Road, in Stamford, CT. The structure is an existing 152' self supporting three-legged steel tapered lattice tower designed and manufactured by ROHN.

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) 20' 4-Bay Dipole	(existing)	12' Pipe Mount	162'	(1) 7/8"
(1) Decibel DB563K Directional Omni with 22"x22"x6" Filter Box	(existing)	3' Stand-off	156.70'	(2) 1-5/8"
(1) 4' HP Dish with Radome	(existing)	4" Dish Mount	152'	(1) 7/8" Elliptical
(1) 30"x3" Omni Whip with 20"x6"x8" Filter Box	(existing)	3' Stand-off	151.25'	(2) 1-1/4"
(1) 12'x3" Decibel Omni Whip	(existing)	4' Stand-off	144'	(1) 7/8"
(3) Powerwave 7770 panel antennas and (6) Powerwave LGP21401 TMA's	AT&T (existing)	Pipe Leg Mount	143'	(6) 1 5/8"
(3) Powerwave P65-16-XLH- RR Antennas (6) Erricson RRUS-11 RRU's (1) Raycap DC6-48-60-0-1B Surge Arrestor	AT&T (Proposed)	(3) Valmont CWT01 Mounts	145'	3" Flex Conduit (3) 1 5/8"
(1) Decibel DB563K Directional Omni	(existing)	3' Stand-off	141.70'	(1) 1-1/4"
(1) 4' HP Dish with Radome	(existing)	4" Dish Mount	140'	(1) 7/8" Elliptical
(1) 6'x3" Decibel Omni Whip	(existing)	3' Stand-off	138'	(2) 1-5/8"
(1) 2' HP Dish with Radome	(existing)	4" Dish Mount	136.5'	(1) 7/8" Elliptical
(1) Decibel DB495 Corner Reflector	(existing)	Leg Mount	135'	(1) 1/2"
(1) 8'x2" Decibel Omni Whip	(existing)	off Boom Gate listed above	133'	(1) 7/8"
(3) RFS APXV9TM14 Pane Antennas (3) RRH Units	Sprint (Proposed)	See Below Mount	128'	(1) Fiber Optic Cable (27) 8' Jumper Cables
(3) RFS APXVSPP18-C-A20 (3) 800 MHz RRH's (3) 1900 MHz RRH's	Sprint (Previously Proposed)	(3) 11' Boom Gates	128'	(3) Hybriflex Cables
(1) Decibel DB254 Corner Reflector	(existing)	Leg Mount	122'	(1) 1/2"
(3) RFS APX16DWV-S-E- ACU Panel Antennas (3) TMAs	T-Mobile (existing)	Leg Mount	108'	(12) 1-5/8" (2 rows of 6)
(1) 10'x2" Decibel Omni Whip	(existing)	3' Stand-off	101'	(1) 7/8"
(1) 8' 4-Bay Dipole	(existing)	3' Stand-off	101'	(1) 7/8"
(1) 8' 4-Bay Dipole	(existing)	3' Stand-off	101'	(1) 7/8"
(1) 20'x3" Omni Whip	(existing)	3' Stand-off	101'	(1) 7/8"

The inventory is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
 (2) Decibel LNX-8513DS- A1M Panel Antennas (Alpha Sector) (4) Decibel LNX-6514DS- A1M Panel Antenans (Beta and Gamma Sector) (6) RRH Units (6) HBXX-6517DS-A2M Panel Antennas (1) Raycap DB-T1-6Z-8AB- 0Z Distribution Box 	Verizon (Proposed)	See Below Mount	98'	(1) 1 1/4" Hybrid Cable
(3) ALU RRH's (1) Raycap DB-T1-6Z-8AB- 0Z Distribution Box	Verizon (Previously Proposed)	(3) 13' T-frames	98'	(1) 1 1/4" Hybrid Cable
(1) 4'x3" Omni Whip	(existing)	3' Stand-off	79'	(1) 1-1/4"
(1) 8' 2-Bay Dipole	(existing)	3' Stand-off	78'	(1) 7/8"
(1) 3' Kathrein Yagi with Radome	(existing)	same as listed above	72'	(1) 1/2"
(1) GPS antenna	Sprint (existing)	2' Stand-off	58'	(1) 1/2"
(1) 1.2M Dish	(existing)	4' Stand-off	45'	(1) 1/4"

Notes:

- 1) Omni-whip antenna centerline elevations based on antenna size and respective mount height.
- 2) Refer to Section 6 Tower Feed Line Plan for coaxial cable locations.

This structural re-analysis of the communications tower modification design was performed by URS Corporation (URS) for Verizon and Sprint. The purpose of this analysis was to investigate the structural integrity of the modified tower and reinforced foundation with its existing and proposed antenna loads. The analysis was conducted to evaluate stress on the modified tower and the effect of forces to the modified foundation of the tower resulting from existing and proposed antenna arrangements.

The analysis results presented herewith are based upon previous tower modification proposed by URS Corporations' tower modification analysis report, project 36922268, signed and sealed on June 13, 2013.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the 2005 Connecticut State Building Code, TIA/EIA-222-F - Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, and the American Institute of Steel Construction (AISC) Manual of Steel Construction – Allowable Stress Design (ASD).

The analysis was conducted using TNX Tower 6.1.3.1. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Basic Wind Speed:

•	Fairfield County; v = 85 mph (fastest mile)	[Section 16 of TIA/EIA-222-F-1996]
٠	Stamford; v = 105mph (3 second gust) equivalent to 85mph (fastest mile)	[Appendix K, 2005 Connecticut State Building Code Supplement]

Loading Cases:

Load Condition 1 = 85 mph (fastest mile) Wind Load (without ice) + Tower Dead Load Load Condition 2 = 74 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

Please note that wind pressure is a function of velocity squared. Under Load Condition 2, a 25 percent reduction in wind pressure is allowed by code to account for the unlikelihood of the full wind pressure and ice load occurring at the same time. The same results may be achieved by utilizing a lower wind pressure without taking the 25 percent reduction, as shown above.

The TIA/EIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

Stresses on the modified tower structure were evaluated to compare with the allowable stress in accordance with AISC. The results of the analysis indicate that the calculated stresses under the proposed loading are **BELOW** the allowable stresses (see tables below). The modified tower foundation has sufficient capacity to resist the proposed uplift forces. The tower anchor bolts were found to be within the allowable limits.

TABLE 1: Tower Base Reactions:

For detailed proposed tower reactions, see drawing no. E-1 in section 6 of this report.

Base Reactions	Proposed Reactions
Axial Load (kips)	31
Shear per Leg (kips)	23
Total Shear (kips)	43
Uplift per Leg (kips)	189
Comp.per Leg (kips)	220
O.T. Moment (ft-kips)	3784

TABLE 2: Tower Component Stress vs. Capacity Summary:

Component/ (Section No.)	Existing Component Size	Controlling Component/Elevation	Stress (% capacity)	Pass/Fail
Tower Leg (T15)	ROHN 5 X-STR w/ (3) 1.5"x0.5" Bars	Compression / 15'-20'	92.4 %	Pass
Diagonal (T15)	L3 1/2x3 1/2x1/4	Compression / 15'-20'	97.7 %	Pass
Horizontal (T16)	L2 7/8x2 7/8x1/4	Compression/10'-15'	77.4 %	Pass
Secondary Horizontal (T13)	L3x3x3/16	Compression/30'-40'	88.4 %	Pass
Top Girt (T1)	L2x2x1/8	Compression/140'-152'	10.0 %	Pass
Red. Horiz. Bracing (T15)	L2x2x1/4	Compression/15'-20'	34.9 %	Pass
Red. Diag. Bracing (T15)	L2x2x1/4	Compression/15'-20'	26.8 %	Pass
Bolt Checks		Statistics of the		14
Diagonal (T10)	0.500" dia A325X	Bolt Shear / 60'-67'	97.7 %	Pass
Anchor Bolts	(4) 1" dia A193 GR-7, A320 GR L7	Min Area per ASCE 10-97	96 %	Pass

TABLE 3: Foundation Summary

Foundation	Component	(% capacity/FOS)	Pass/Fail	Comments:
Drilled Concrete Caisson with Concrete Block Reinforcement & Grouted Rock Anchor	Uplift	92.3 % / 2.17	Pass	Min. F.O.S of 2.0 req'd per IBC 2003 Section 3108.4.2

5. CONCLUSIONS AND RECOMMENDATIONS

The results of the analysis indicate that the proposed modified tower structure and the proposed modified foundation components are in compliance with the proposed loadings. The proposed modified tower structure and proposed modified foundation components are considered structurally adequate with the wind classification specified above and all the existing and proposed antenna loading.

The analysis results presented herewith are based upon the previous tower modification proposed by URS Corporations' tower modification analysis report, project 36922268, signed and sealed on June 13, 2013. No installation of proposed antennas, mounts, cables of accessories shall occur prior to the completion of the tower and foundation modifications specified in the June 13, 2013 report. A copy of the reinforced drawings are included with this report.

Limitations/Assumptions:

This report is based on the following:

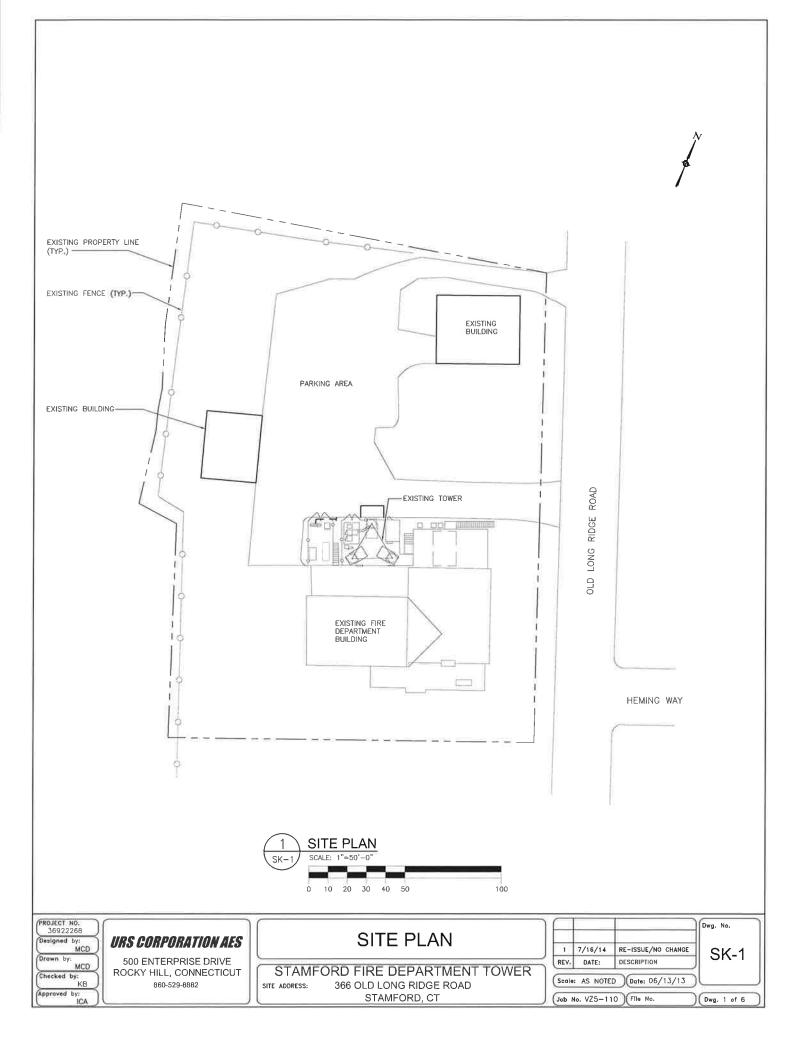
- 1) Tower inventory as listed in this report.
- 2) Tower is properly installed and maintained.
- 3) All members are as specified in the original design documents and are in good condition.
- 4) All required members are in place.
- 5) All bolts are in place and are properly tightened.
- 6) Tower is in plumb condition.
- 7) All member protective coatings are in good condition.
- 8) All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9) Foundations were properly constructed to support original design loads as specified in the original design documents.
- 10) All coaxial cable is installed as specified in Section 6 of this report

URS is not responsible for any modifications completed prior to or hereafter in which URS is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

URS hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact URS. URS disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:


The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1; it is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

6. DRAWINGS AND DATA

34

.

TOWER AND FOUNDATION REINFORCEMENT DRAWINGS

STRUCTURAL NOTES

- SOIL BEARING CAPACITY OF 5,000 PSF USED FOR FOUNDATION DESIGN. GENERAL CONTRACTOR RESPONSIBLE FOR VERIFYING BEARING CAPACITIES. ALL SURFACES MUST BE FREE OF STANDING WATER PRIOR TO PLACING 1.
- 2
- COMPACTED GRAVEL FILL PER CONNECTICUT DOT STANDARD SPEC. SECTION $\rm M_{*}02_{*}01$ AND ASTM D1557. 3.
- 4. CONTACT THE ENGINEER IF GROUND WATER IS IN ENCOUNTERED AND DEWATERING IS REQUIRED. CONCRETE

SOIL

- 1, ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318 AND THE SPECIFICATION CAST-IN-PLACE CONCRETE.
- ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 3000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE, CONCRETE SHALL BE AIR ENTRAINED TO (4% TO 6%) AND SLUMP OF 3" TO 5".
- A REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE, WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD, UNO.
- 4. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
 - CONCRETE EXPOSED TO EARTH OR WEATHER:

- A CHAMFER 3/4" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4,2.4.
- 6. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS, NO REBAR SHALL BE CUT WITHOUT PRIOR ENGINEERING APPROVAL WHEN DRILLING
- 7. COLD WEATHER CONCRETE PLACING SHALL BE IN ACCORDANCE WITH ACI-306.
- 8. NO FOOTING SHALL BE PLACED ON FROZEN GROUND. UNCURED CONCRETE SHALL BE PROTECTED AGAINST FROST.
- 9. APPLY NON-SLIP BROOM FINISH IMMEDIATELY AFTER TROWEL FINISHING. FOUNDATION NOTES
- A SOIL BEARING CAPACITY OF 5000 PSF WAS USED FOR THE FOUNDATION DESIGN. THE GENERAL CONTRACTOR IS TO CONFIRM THE EXISTING SOIL BEARING PRESSURE. 1.
- The LADING SHALL BEAR ON EXISTING UNDISTURBED ORGANIC FREE SOIL, ALL UNSUITABLE SOIL SHALL BE REMOVED AS DIRECTED BY THE ENGINEER AND REPLACED WITH COMPACTED GRAVEL PLACED IN 8" LAYERS AND COMPACTED TO 95% OF MODIFIED OPTIMUM DENISTY. ALL FOOTINGS TO BE A MINIMUM OF 3'-6" BELOW FINISH GRADE UNLESS OTHERWISE NOTED. EXCEPT WHERE ROCK OR LEDGE OCCURS, PIN FOUNDATION TO ROCK. 2.
- 3
- FOUNDATION TO ROCK. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE, THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS, NO REBAR SHALL BE CUT WITHOUT PRIOR ENGINEERING APPROVAL WHEN DRILLING HOLES IN CONCRETE,

ű,

PRO

Dro Chi

STRUCTURAL STEEL MATERIAL:

STRUCTURAL STEEL SHALL CONFORM TO ALL REQUIREMENTS OF THE 1999 AISC-LRFD SPECIFICATION, AS REFERENCED IN THE CODE,

UNLESS OTHERWISE NOTED, ALL STEEL WILL BE GALVANIZED IN ACCORDANCE WITH ASTM 123 AFTER FABRICATION, TOUCH UP ALL DAMAGED GALVANIZED STEEL WITH APPROVED COLD ZINC, "GALVANOX", "DRY GALV", "ZINC-TI", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURERS GUIDELINES, TOUCH-UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD.

SHOP AND ERECTION DRAWINGS SHALL BE SUBMITTED FOR ALL STRUCTURAL STEEL WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, SUBMIT 2 SETS OF PRINTS FOR THE ENGINEER REVIEW,

EXISTING DIMENSIONS OF STRUCTURE SHOWN ON THESE DOCUMENTS ARE NOT GUARANTEED, CONTRACTOR SHALL TAKE FIELD DIMENSIONS AS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK AND SHALL ASSUME FULL RESPONSIBILITY FOR THEIR ACCURACY, WHEN SHOP DRAWINGS BASED ON FIELD MEASUREMENT ARE SUBMITTED FOR REVIEW, DIMENSIONS ARE PROVIDED FOR THE ENGINEER'S REFERENCE ONLY.

CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 5/16" AND MINIMUM OF (2) 3/4" BOLTS,

ALL BOLT HOLES WILL BE DRILLED OR PUNCHED, WITH BURRS REMOVED PRIOR TO COATING.

MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.

THE OMISSION OF ANY MATERIAL THAT WAS SHOWN ON THE CONTRACT DRAWINGS SHALL NOT RELIEVE THE CONTRACTOR OF PROVIDING THE SAME.

ALL WELDING SHALL BE DONE BY A CERTIFIED WELDER IN ACCORDANCE WITH AWS STANDARDS, USING E70XX ELECTRODES UNLESS OTHERWISE NOTED. WHERE WELD SIZES ARE NOT SHOWN, PROVDE THE MINIMUM SIZES PER "PREQUALIFIED WELDED JOINTS" TABLES IN AISC "MANUAL OF STEEL CONSTRUCTION", NINTH EDITION.

CONNECTIONS / FIELD ASSEMBLY:

BOLTED CONNECTIONS: UNLESS OTHERWISE NOTED, ALL JOINTS ARE BEARING TYPE, REQUIRING 3/4" DIA. A325-N BOLTS, A563 NUTS AND F436 WASHERS, ALL GALVANIZED, BEVELED WASHERS SHALL BE USED ON BEAM FLANGES HAVING A SLOPE GREATER THAN 1:20.

NON-STRUCTURAL CONNECTIONS, SUCH AS FOR STEEL GRATING, MAY USE 5/8" DIA. GALVANIZED ASTM A307 BOLTS, UNLESS OTHERWISE NOTED.

STRUCTURE IS DESIGNED TO BE LEVEL AND PLUMB, SELF-SUPPORTING AND STABLE AFTER WORK IS COMPLETED.

COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK

IF WELDING GALVANIZED MATERIALS, USE PRECAUTIONS & PROCEDURES PER AWS D1.1

INSPECTIONS:

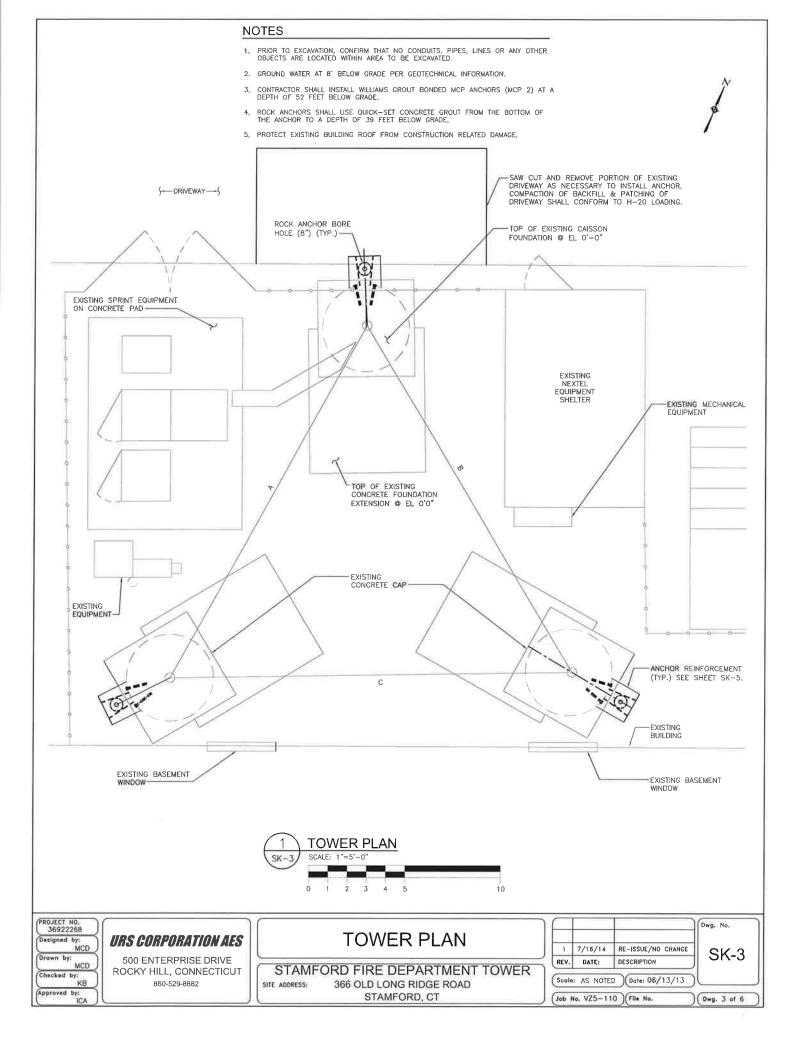
SPECIAL INSPECTIONS REQUIRED PER THE 2005 CONNECTICUT STATE BUILDING CODE FOR STRUCTURAL STEEL WORK

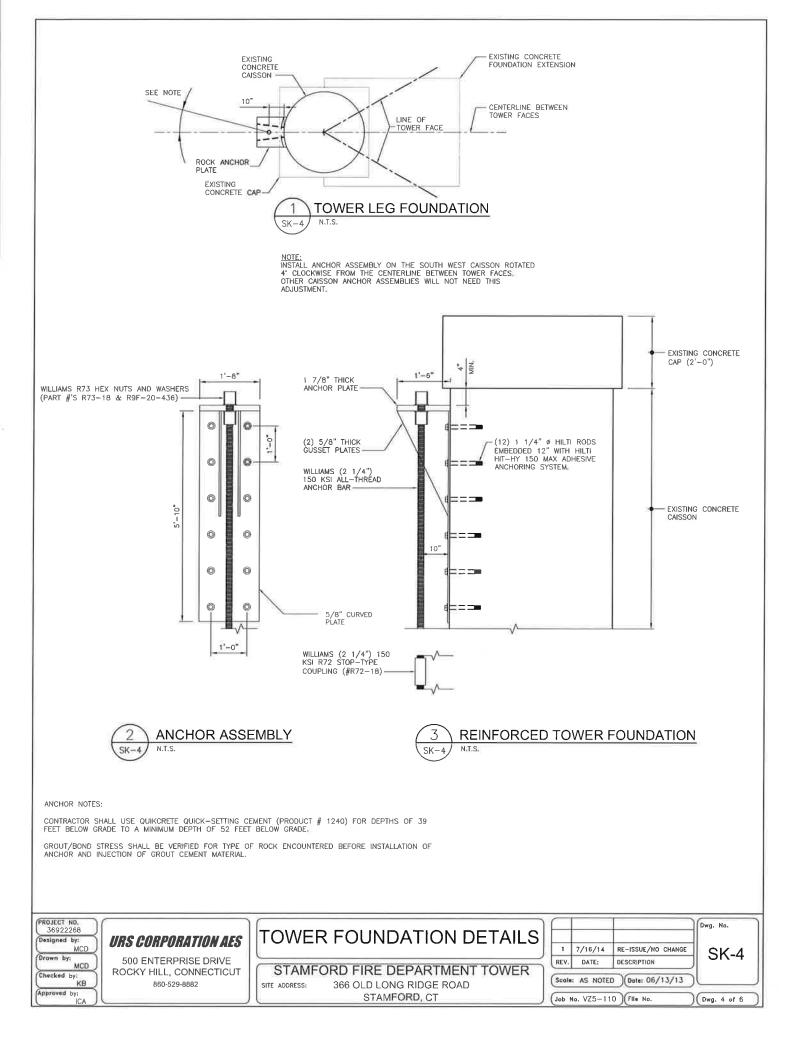
OWNER WILL SUPPLY THE SERVICES OF A SPECIAL INSPECTOR AND TESTING AGENTS AS REGUIRED. CONTRACTOR SHALL COORDINATE INSPECTIONS OF FABRICATOR'S AND ERECTOR'S WORK AND MATERIALS TO MEET THE REQUIREMENTS OF THE STATEMENT OF SPECIAL INSPECTIONS FOR THIS PROJECT.

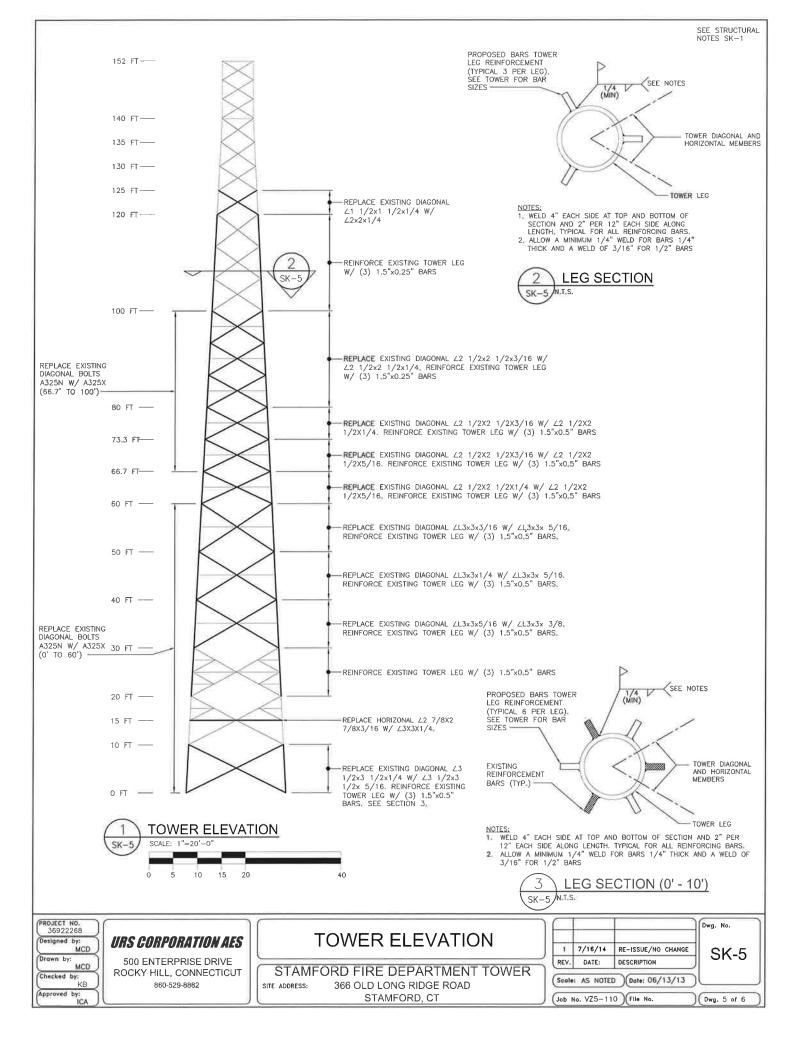
COPIES OF TESTING AND INSPECTION REPORTS WILL BE PROVIDED TO THE OWNER, BUILDING OFFICIAL, ENGINEER OF RECORD AND CONTRACTOR.

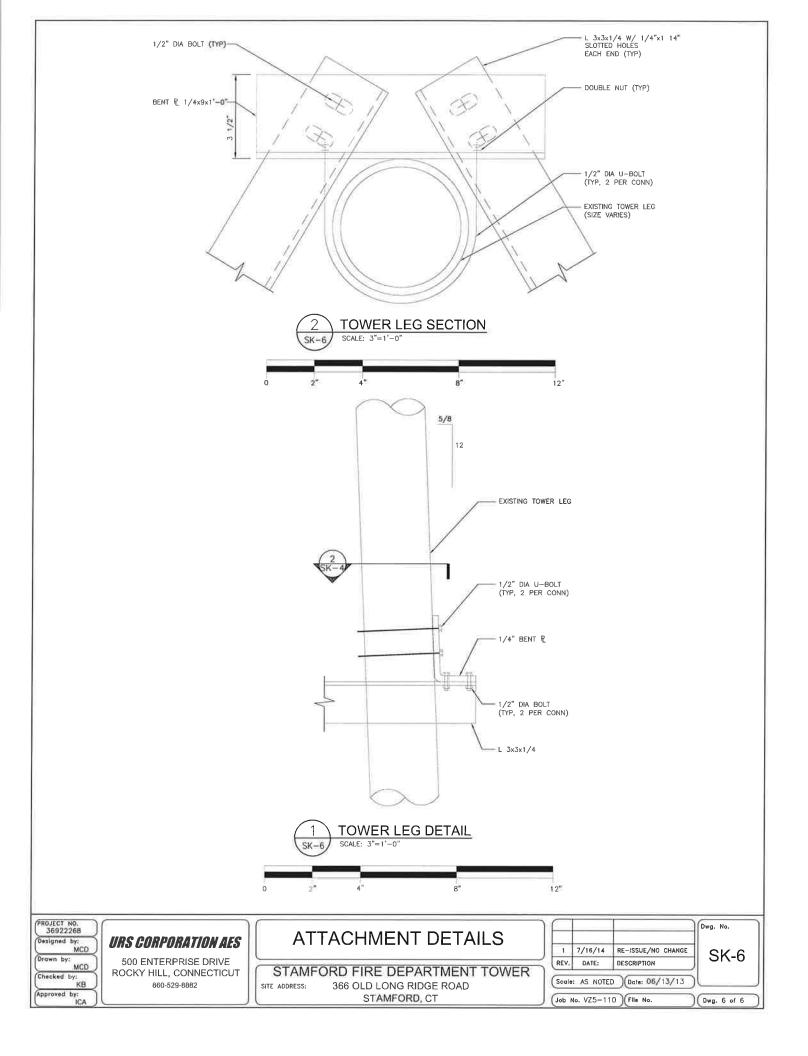
FOUNDATION WORK / REPLACEMENT OF TOWER MEMBERS AND BOLTS

THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE STRUCTURAL INTEGRITY OF THE TOWER WHILE MEMBERS ARE REPLACED.


ONLY ONE MEMBER PER TOWER FACE SHALL BE REPLACED AT A TIME.


THE CONTRACTOR SHALL PREPARE AND MINIMIZE THE TIME THAT MEMBERS ARE NOT CONNECTED TO THE TOWER.


ALL MEMBERS SHALL BE LEFT FULLY CONNECTED AT THE END OF THE WORK DAY,


THE CONTRACTOR SHALL BE AWARE OF WEATHER AND WIND CONDITIONS AND NOT PERFORM REPLACEMENT IN A WIND.

PROJECT NO. 36922268 Designed by:	URS CORPORATION AES	GENERAL NOTES	1E			Dwg. No.
Drawn by: MCD	500 ENTERPRISE DRIVE		REV	7/16/14 DATE:	RE-ISSUE/NO CHANGE DESCRIPTION	SK-2
Checked by: KB	ROCKY HILL, CONNECTICUT 860-529-8882	STAMFORD FIRE DEPARTMENT TOWER	Sca	e: AS NOTE	Date: 06/13/13	j
Approved by: ICA		STAMFORD, CT	dob	No. V25-11	0)(File No.	(Dwg. 2 of 6

TNX TOWER INPUT / OUTPUT SUMMARY

T BASE: UTLIT :: -189 K SHEAR: 23 K

MAX. CORNER REACTIONS A7 DOWN: 220 K SHEAR: 26 K
--

30 0 ft

TYPE	ELEVATION		ELEVATION
20' 4-Bay Dipole (Unknown)	162	(2) DB960H90E-M (Sprint)	128
DB563K-CR (Unknown)	156,701	DB254-A (Unknown)	122
4:x4" Pipe Mount (Unknown)	152	APX16DWV-16DWV-S-E-ACU w/ Mount (T-Mohile)	108
4 W/Radome (Unknown) Deenskue vis // I-I	152	TMA (T-Mohile)	400
UBBUJANTE-TP" (UNKNOWN) Silter Box 337-437-426-411-44-440-4	140	APX16DWV-16DWV-S-F-ACILw/ Morint	108
riller box 22 x22 x6 (Unknown) 3' Sidearm (Unknown)	149 149		00-
Filter Box 20"x6"x8" (Unknown)	148.5	TMA (T-Mobile)	108
3' Sidearm (Unknown)	148.5	APX16DWV-16DWV-S-E-ACU w/ Mount	108
12'x2 1/2" STD Pipe Mount (Unknown)	146	(1-Mobile)	
12' x 3" Dia Omni (Unknawn)	144	TMA (T-Mobile)	108
4'x3" Pipe Mount (ATT)	143	20' x 3" Dia Omni (Unknown)	101
4'x3" Pipe Mount (ATT)	143	2" Dia 10" Omni (Unknown)	101
(T12) (ATT)	143	8 4+Bay Dipole (Unknown)	101
(T1V) (V12)	143	8 4-Bay Dipole (Unknown)	101
7770 (ATE)	143	Valmont 13' Lintuninis T. Econo Material	8 8
(2) LPG 21401 TMA (ATT)	143	Valmont 13' Lichtweight T-Frank Venzon)	00
(2) LPG 21401 TMA (ATT)	143	Variance 13 Lightwork Instants (venzon)	80
(2) LPG 21401 TMA (ATT)	143	REH American Burneyan - 1 and Venturity	90
P65-16-XLH-RR (ATT)	143	(upper to the second se	8 8
P65-16-XLH-RR (ATT)	143	RDH (/editor)	8
P65-16-XLH-RR (ATT)	143		8 8
(2) RRUS-11 (ATT)	143	LANCOSISUON IIM (VERZON - LIE)	5
(2) RRUS-11 (ATT)	143	INX-6514DS-T4M (VERSON - LTE)	R 8
(2) RRUS-11 (ATT)	143	RH 240-700 (Verizon - I TE)	8 8
4'x3" Pipe Mount (ATT)	143	RH 240-700 Nerizon - LTEV	8 8
4'x3" Pripe Mount (ATT)	143	RH 2x40-700 IVenizon - LTE)	1 37
4 x3 Pipe Mount (A1.L)	143	LNX-85130S-VTM (Verizon + 850MHz)	86
4 x3 Pripe Mount (ALL)	143	LNX-6514DS-T4M (Verizon - 850MHz)	86
PERSONATION (University)	142	LNX-6514DS-T4M (Verizon - 850MHz)	8
	141,701	HBXX-6517DS-VTM (Verizon - PCS)	8
a without (Unividual)	120	HBXX-6517DS-VTM (Verizon - PCS)	88
4' Side Mount Standoff (1) (Linknown)	137	HBXX-6517DS-VTM (Venzon - PCS)	88
2' w/Radome (Unknown)	136.5	Panasonio RRH 1900MHZ (Verizon - PCS)	86
4'x4" Pine Mount (Unknown)	135	Panasonic RRH 1900MHZ (Verizon - PCS)	8
DB495-A (Unknown)	135	Panasonic RRH 1900MHZ (Venzon - PCS)	88
3' Sidearm (Unknown)	133.5	HBXX-6517DS-VTM (Verizon - AWS)	98
4' Side Mount Standoff (1) [Unknown]	133	HBXX-6517DS-VTM (Verizon - AWS)	88
2" Dia 8' Omni (Unknown)	133	HBXX-6517DS-VTM (Verizon - AWS)	8
APXV9TM14-120 (Sprint)	128	RH_ZX40-AWS (Vertzon - AWS)	8
APXV9TM14-120 (Sprint)	128	DLI SYLD SWE VIEWOOL SWEET	8 8
APXV9TM14-120 (Sprint)	128	DR-T1-67-84B-07 Menteev	95 BD
800 MHz Filter (Sprint)	128	* Siriare Macant	20 05 5
800 MHz Filter (Sprint)	128	3' Sidearm (Unknown)	95.5
800 MHz Filter (Sprint)	128	3" Sidearm (Unknown)	95.5
RRH (Sprint)	128	3' Sidearm (Unknown)	94.5
	128	3' Sidearm (Unknown)	89.5
KKH (Sprint) ADV/SED4.6 / A20/Marineiro Dino (Sector)	128	4' x 3" DIA Omni (Unknown)	79
AFXVSFF18-C-AZU W/ MOUNTING FIPE (Sprint) APXV/SDD18-C-A20 w/ Mounting Pipe (Sprint)	126	8' 2-Bay Dipole (Unknown)	78
	071	3' Sidearm (Unknown)	72.5
AFXVSPF16-C-AZU W/ Mounting Pipe (Sprint) (3) 11' Room Gale w/3 - 2 3/8" Dire (Tanered)	128	3' Sidearm (Unknown)	72.5
(Sprint)	071	Scala Yagi w/ Radome (Unknown)	72
RRH (Sprint)	128	GPS (Sprint)	58
RRH (Sprint)	128	2' Sidearm (Sprint)	25
RRH (Sprint)	128	1.2M (Unkniswn)	45
(2) DB980H90E-M (Sprint)	128	4'x4" Stand-off (Unknown)	44
(2) DB980H90E-M (Sprint)	128		
KK	SIZE	×	SIZE
A Rohn 5 STD w/ (3) 1,5"x0.5" Bars	¹⁰	D L1 3/4x1 3/4x3/16	

	\triangleleft		
		A 1 5X	A MIX
	NA AHA /	$\Lambda / \Lambda / \Lambda$	- XIX N
Y Y Y Y Y	$\vee \forall \pm \vee$	a ya shekara	V V
	AAAA	(Λ, Λ)	NAN.
			NAV
			V

100,0 ft

C 0	0.5	0 5	0.5	53	. n		51	2.0	0 1	0 1	91	84	۲۱	5.0	11	01	5 O	0.71 (X) 17.9
3 @ 3'84444	6 4 83333	L.	362				∠9999'9 ® 6					3 © 10			4 60 2		01@1	(11) @ slane9 #
9075'9	9295'9	S290'L	7.5625	S290'8	8'2052	10'2625		2109'24	13,3021	P1	6269.91	6269'91	6269'94	6269'21	8077,81	19.2604	£187.01	Face Width (ft) 20,7813
														4/1×2	гл×		,A,N	slenogeid beA
							"V"N							4/1×2	гл×		'Y'N	Red. Horizontals
			V	N			91/8×8×87	"Y N		er3×3×3\16	"V"N		91/6×6×6J			.A.N		Sec. Horizontals
							"Y'N							L3x3x3/16	"V"N	Э	A.N	Ronizontals
8/1×2×2×1/8										.А.N								Top Girts
								9£A										Diagonal Grade
8/1×2/1 1/2×1/19	91/E×3/16	LX2/117	С	a	P\lx2x2	1	L2 1/2×2 1/2×1/4		91/9	72/1 Z×Z/1 Z7		91/5×5×51	8/E×E×E1	91/5×5×51	₽/L×2	r3 1/5×3 1/3	F3 1/5×3 1/5×2/10	slenogeiO
								0S-272A										Leg Grade
QTS S NHOR		OTS 5	ROHN 2,			<-Str w/ (3) 1,5"x0,25" Bars	Kohn 2,5 J	" Bars	5"0ׄS"L (E) /M	42-X E nrtoA		2.5° Bars	Rohn 4 X-Sư w/ (3) א. B-X			A	8	รอิจา
41	12	C1	ы	51	91		74	142	30.2	0411	361	04	EIT	b)T	398.2	911	281	Section

73.3 ft

66.7 ft

60.0 ft

50.0 ft

40 0 ft

æ

Ъ

MATERIAL STRENGTH Fu GRADE

65 ksi

Æ

50 ksi

GRADE A572-50

80 O Ĥ

36 ksi

dard.

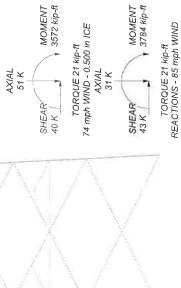
ŝ

Tower is located in Fairfield County. Connecticut.
 Tower is located in Fairfield County. Connecticut.
 Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F.
 Tower is also designed for a 74 mph basic wind with 0.50 in Ice.
 Deflections are based upon a 50 mph wind.
 TOWER RATING: 97.7%

58 ksi

152 0 ft

140_0 ft

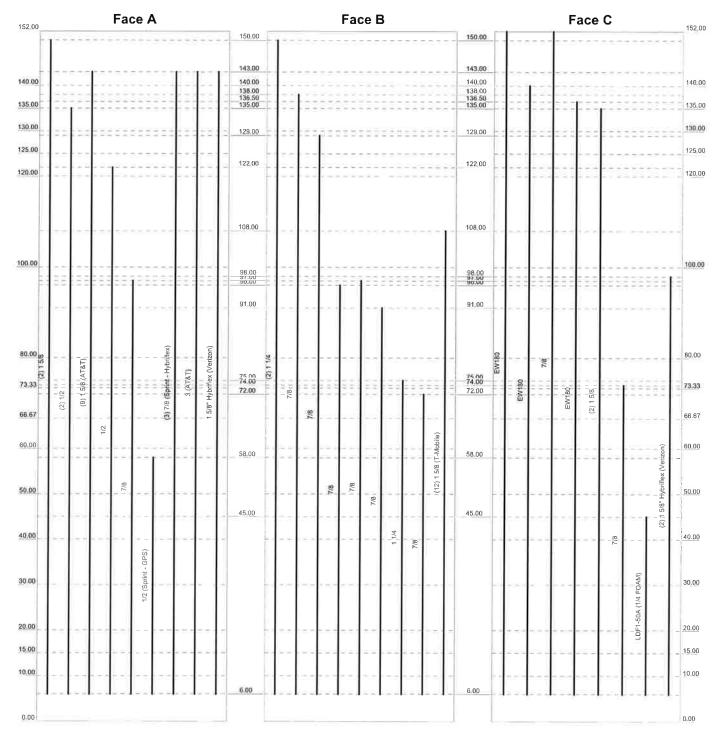

135,0 ft

130.0 ft

125.0 ft

120.0 Ĥ

20.0 ft 15.0 ft 10.0 ft 0.0 ft


TNX TOWER FEEDLINE DISTRIBUTION CHART

Feed Line Distribution Chart

0' - 152'

App In Face

, App Out Face Truss Leg

URS Corporation	^{lob:} 152' ROHN SSV Tower		
	Project: 366 Old Long Ridge Road, Stamford, CT		
Rocky Hill, CT 06067	Client: Verizion, Sprint and AT&T / S.A. Evaluation	Drawn by: MCD	App'd:
Phone: 860-529-8882	Code: TIA/EIA-222-F	Date: 07/15/14	Scale: NTS
FAX: 860-529-3991	Path: Chambled Belle Complite An activities Series Stitues Acres 351 and Series 3	California	Dwg No. E-7

Elevation (ft)

Round

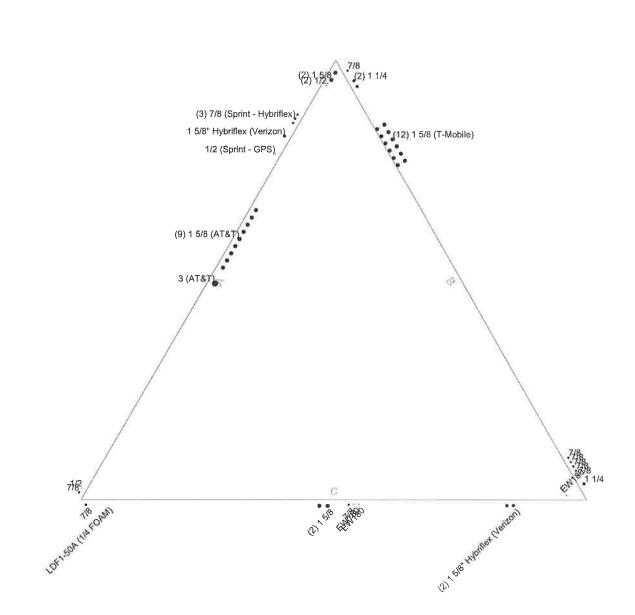
Flat

TNX TOWER FEEDLINE PLAN

(Sprint) 36928702.00000 (Verizon) 36922268.00000 (AT&T) 36922483.00000

152' SSV Lattice Tower Stamford, CT

7/15/2014


Feed Line Plan

App Out Face

App In Face

Round

Flat

^{Job:} 152' ROHN SSV Tower		
Project: 366 Old Long Ridge Road, Stamford, C Client: Verizion, Sprint and AT&T / S.A. Evaluation	Drawn by: MCD	App'd:
Code: TIA/EIA-222-F	Date: 07/15/14	
	Project: 366 Old Long Ridge Road, Stamford, CT Client: Verizion, Sprint and AT&T / S.A. Evaluation	Project: 366 Old Long Ridge Road, Stamford, CT Client: Verizion, Sprint and AT&T / S.A. Evaluation Drawn by: MCD Code: TIA/EIA-222-F Date: 07/15/14

TNX TOWER DETAILED OUTPUT

tnxTower	Job 152' ROHN SSV Tower	Page 1 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project 366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 152.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 6.52 ft at the top and 20.78 ft at the base.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut.

Basic wind speed of 85 mph.

Nominal ice thickness of 0.500 in.

Ice density of 56 pcf.

A wind speed of 74 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

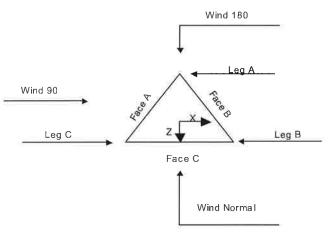
Stress ratio used in tower member design is 1.333.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- ✓ Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz
 Use Special Wind Profile
- ✓ Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section
- ✓ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination


- Distribute Leg Loads As Uniform Assume Legs Pinned
- ✓ Assume Rigid Index Plate
- ✓ Use Clear Spans For Wind Area
 ✓ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
 Bypass Mast Stability Checks
 Use Azimuth Dish Coefficients
- ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends
- ✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules

- ✓ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
- ✓ All Leg Panels Have Same Allowable Offset Girt At Foundation
- ✓ Consider Feedline Torque Include Angle Block Shear Check

Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

tnxTower	lob 152' ROHN SS	/ Tower 2 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project 366 Old Long Ridge Roa	d, Stamford, CT Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T	/ S.A. Evaluation Designed by MCD

Triangular Tower

Tower Section Geometry									
Tower	Tower	Assembly	Description	Section	Number	Section			
Section	Elevation	Database		Width	of	Length			
					Sections				
	ft			ft		ft			
T1	152.00-140.00			6.52	1	12.00			
T2	140.00-135.00			6.56	1	5.00			
Т3	135.00-130.00			7.06	1	5.00			
Τ4	130.00-125.00			7.56	1	5.00			
Т5	125,00-120,00			8.06	1	5.00			
Т6	120.00-100.00			8.56	1	20.00			
Т7	100.00-80.00			10.56	1	20.00			
T8	80.00-73.33			12.60	1	6.67			
T9	73.33-66.67			13.30	1	6.67			
T10	66.67-60.00			14.00	1	6.67			
T11	60.00-50.00			14.70	1	10.00			
T12	50.00-40.00			15.70	1	10.00			
T13	40.00-30.00			16.70	1	10,00			
T14	30.00-20.00			17.70	1	10.00			
T15	20.00-15.00			18.77	1	5.00			
T16	15.00-10.00			19.26	1	5.00			
T17	10.00-0.00			19.78	1	10.00			

to Tanana	Job		Page
tnxTower		152' ROHN SSV Tower	3 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project	366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Giri
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	152.00-140.00	3.94	X Brace	No	Yes	1,000	1,000
T2	140_00-135.00	4.83	X Brace	No	Yes	1.000	1.000
Т3	135.00-130.00	5.00	X Brace	No	No	0.000	0.000
Т4	130.00-125.00	5.00	X Brace	No	No	0.000	0.000
Т5	125.00-120.00	5.00	X Brace	No	No	0.000	0.000
T6	120.00-100.00	6.67	X Brace	No	No	0.000	0.000
T7	100.00-80.00	6,67	X Brace	No	Yes	0.000	0.000
Т8	80.00-73.33	6.67	X Brace	No	No	0.000	0.000
Т9	73.33-66.67	6.67	X Brace	No	Yes	0.000	0.000
T10	66.67-60.00	6.67	X Brace	No	Yes	0.000	0.000
T11	60.00-50.00	10.00	X Brace	No	No	0.000	0.000
T12	50.00-40.00	10.00	X Brace	No	Yes	0.000	0.000
T13	40.00-30.00	10.00	X Brace	No	Yes	0.000	0.000
T14	30.00-20.00	5.00	Double K1	No	Yes	0.000	0.000
T15	20.00-15.00	5.00	K1 Up	No	Yes	0.000	0.000
T16	15.00-10.00	5.00	K Brace Down	No	Yes	0.000	0.000
T17	10.00-0.00	10.00	X Brace	No	No	0.000	0.000

Tower Section Geometry (cont'd)

Tower Elevation	Leg	Leg Size	Leg	Diagonal	Diagonal	Diagonal
ft	Туре	Size	Grade	Туре	Size	Grade
T1 152 00-140 00	Pipe	ROHN 2 STD	A572-50	Single Angle	L1 1/2x1 1/2x1/8	A36
			(50 ksi)			(36 ksi)
Γ2 140,00-135.00	Pipe	ROHN 2.5 STD	A572-50	Single Angle	L1 1/2x1 1/2x3/16	A36
			(50 ksi)			(36 ksi)
ГЗ 135.00-130.00	Pipe	ROHN 2.5 STD	A572-50	Single Angle	L1 1/2x1 1/2x3/16	A36
			(50 ksi)			(36 ksi)
74 130 00-125.00	Pipe	ROHN 2.5 STD	A572-50	Single Angle	L1 1/2x1 1/2x1/4	A36
			(50 ksi)			(36 ksi)
5 125.00-120.00	Pipe	ROHN 2.5 STD	A572-50	Single Angle	L1 3/4x1 3/4x3/16	A36
			(50 ksi)			(36 ksi)
r6 120.00-100.00	Arbitrary Shape	Rohn 2.5 X-Str w/ (3)	A572-50	Single Angle	L2x2x1/4	A36
		1.5"x0.25" Bars	(50 ksi)			(36 ksi)
T7 100.00-80.00	Arbitrary Shape	Rohn 2.5 X-Str w/ (3)	A572-50	Single Angle	L2 1/2x2 1/2x1/4	A36
		1.5"x0.25" Bars	(50 ksi)			(36 ksi)
T8 80.00-73.33	Arbitrary Shape	Rohn 3 X-Str w/ (3) 1.5"x0.5"	A572-50	Single Angle	L2 1/2x2 1/2x1/4	A36
		Bars	(50 ksi)			(36 ksi)
T9 73.33-66.67	Arbitrary Shape	Rohn 3 X-Str w/ (3) 1.5"x0.5"	A572-50	Single Angle	L2 1/2x2 1/2x5/16	A36
		Bars	(50 ksi)			(36 ksi)
T10 66.67-60.00	Arbitrary Shape	Rohn 3 X-Str w/ (3) 1 5"x0.5"	A572-50	Single Angle	L2 1/2x2 1/2x5/16	A36
		Bars	(50 ksi)			(36 ksi)
T11 60.00-50.00	Arbitrary Shape	Rohn 4 X-Str w/ (3) 1.5"x0.5"	A572-50	Single Angle	L3x3x5/16	A36
		Bars	(50 ksi)			(36 ksi)
T12 50.00-40.00	Arbitrary Shape	Rohn 4 X-Str w/ (3) 1.5"x0.5"	A572-50	Single Angle	L3x3x5/16	A36
		Bars	(50 ksi)			(36 ksi)
T13 40.00-30.00	Arbitrary Shape	Rohn 4 X-Str w/ (3) 1.5"x0.5"	A572-50	Single Angle	L3x3x3/8	A36
		Bars	(50 ksi)			(36 ksi)
T14 30.00-20.00	Arbitrary Shape	Rohn 4 X-Str w/ (3) 1.5"x0.5"	A572-50	Single Angle	L3x3x5/16	A36
		Bars	(50 ksi)			(36 ksi)
Г15 20.00-15 00	Arbitrary Shape	Rohn 5 STD w/ (3) 1.5"x0.5"	A572-50	Single Angle	L3 1/2x3 1/2x1/4	A36
		Bars	(50 ksi)			(36 ksi)
T16 15.00-10.00	Arbitrary Shape	Rohn 5 STD w/ (3) 1.5"x0.5"	A572-50	Single Angle	L3 1/2x3 1/2x1/4	A36
		Bars	(50 ksi)			(36 ksi)
T17 10.00-0.00	Arbitrary Shape	Rohn 5 STD w/ (6) 1.5"x0.5"	A572-50	Single Angle	L3 1/2x3 1/2x5/16	A36

4 T	Job		Page
tnxTower		152' ROHN SSV Tower	4 of 55
UPS Comparation	Project		Date
URS Corporation 500 Enterprise Drive, Suite 3B		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Tower Elevation ft	Leg Type	Leg Size	0		Diagonal Size	Diagona Grade
		Bars	(50 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 152.00-140.00	Single Angle	L2x2x1/8	A36	Single Angle		A36
			(36 ksi)			(36 ksi)
T2 140 00-135 00	Single Angle	L2x2x1/8	A36	Single Angle		A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Туре	Size	Grade
	Mid						
ft	Girts						
Γ14 30.00-20.00	None	Flat Bar		A36	Single Angle	L3x3x3/16	A36
				(36 ksi)			(36 ksi)
Γ15 20.00-15.00	None	Flat Bar		A36	Single Angle	L2.875x2.875x0.25	A36
				(36 ksi)			(36 ksi)
Г16 15.00-10.00	None	Flat Bar		A36	Single Angle	L2.875x2.875x0.25	A36
				(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary [,] Horizontal Type	Secondary [,] Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft			Oruue			
T7 100.00-80.00	Single Angle	L3x3x3/16	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T9 73 33-66.67	Single Angle	L3x3x3/16	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T10 66.67-60.00	Single Angle	L3x3x3/16	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T12 50.00-40.00	Single Angle	L3x3x3/16	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T13 40.00-30.00	Single Angle	L3x3x3/16	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

4 T	Job	Page
tnxTower	152' ROHN SSV Tower	5 of 55
UPS Computing	Project	Date
URS Corporation 500 Enterprise Drive, Suite 3B	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluatio	n Designed by MCD

Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor
ſî					
T14	A36	Horizontal (1)	Equal Angle	L2x2x1/4	1
30.00-20.00	(36 ksi)	Diagonal (1)	Equal Angle	L2x2x1/4	1
T15	A36	Horizontal (1)	Equal Angle	L2x2x1/4	1
20.00-15.00	(36 ksi)	Diagonal (1)	Equal Angle	L2x2x1/4	1

Tower Section Geometry (cont'd)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing
							Diagonals	Horizontals
ft	_fl ²	in					in	in
T1	0.00	0.000	A36	1	1	1	36.000	36.000
152.00-140.00			(36 ksi)					
Τ2	0.00	0.000	A36	1	1	1	36.000	36,000
140.00-135.00			(36 ksi)					
T3	0.00	0.000	A36	1	1	1	36.000	36.000
135.00-130.00			(36 ksi)					
T4	0.00	0.000	A36	1	1	1	36.000	36.000
130.00-125.00			(36 ksi)					
T5	0.00	0.000	A36	1	1	1	36.000	36.000
125.00-120.00			(36 ksi)					
Т6	0.00	0.000	A36	1	1	1	36.000	36.000
120.00-100.00			(36 ksi)					
Τ7	0.00	0.000	A36	1	1	1	36.000	36,000
100.00-80.00			(36 ksi)					
T8 80.00-73.33	0.00	0.000	A36	1	1	1	36.000	36,000
			(36 ksi)					
T9 73.33-66.67	0.00	0.000	A36	1	1	1	36.000	36.000
			(36 ksi)					
T10	0.00	0.000	A36	1	1	1	36.000	36.000
66.67-60.00			(36 ksi)					
T11	0.00	0.000	A36	1	1	1	36.000	36,000
60.00-50.00			(36 ksi)					
T12	0.00	0.000	A36	1	1	1	36.000	36.000
50.00-40.00			(36 ksi)					
T13	0.00	0.000	A36	1	1	1	36.000	36.000
40.00-30.00			(36 ksi)					
T14	0.00	0.000	A36	1	1	1	36.000	36.000
30.00-20.00			(36 ksi)					
T15	0.00	0.000	A36	1	1	1	36.000	36.000
20.00-15.00			(36 ksi)					
T16	0.00	0.000	A36	1	1	1	36.000	36.000
15.00-10.00			(36 ksi)					
T17 10.00-0.00	0.00	0,000	A36	1	1	1	36.000	36.000
			(36 ksi)					

Tower Section Geometry (cont'd)

K Factors

tnxTower	Job 152' ROHN SSV Tower	Page 6 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project 366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz	Inner Brace
	Angles	Rounds		Х	Х	X	X	X	X	X
fi				Y	<u>Y</u>	Y	Y	Y	Y	Y
T1	Yes	No	1	1	1	1	1	1	1	1
152.00-140.00				1	1	1	1	1	1	1
Τ2	Yes	No	1	1	1	1	1	1	1	1
140.00-135.00				1	1	1	1	1	1	1
Т3	Yes	No	1	1	1	1	1	1	1	1
135.00-130.00				1	1	1	1	1	1	1
T4	Yes	No	1	1	1	1	1	1	1	1
130.00-125.00				1	1	1	1	1	1	1
T5	Yes	No	1	1	1	1	1	1	1	1
125.00-120.00				1	1	1	1	1	1	1
T6	Yes	No	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
Τ7	Yes	No	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
Т8	Yes	No	1	1	1	1	1	1	1	1
80.00-73.33				1	1	1	1	1	1	1
Т9	Yes	No	1	1	1	1	1	1	1	1
73.33-66.67				1	1	1	1	1	1	1
T10	Yes	No	1	1	1	1	1	1	1	1
66.67-60.00				1	1	1	1	1	1	1
T11	Yes	No	1	1	1	1	1	1	1	1
60.00-50.00				1	1	1	1	1	1	1
T12	Yes	No	1	1	1	1	1	1	1	1
50.00-40.00				1	1	1	1	1	1	1
T13	Yes	No	1	1	1	1	1	1	1	1
40.00-30.00				1	1	1	1	1	1	1
T14	Yes	No	1	1	1	1	1	1	1	1
30.00-20.00				1	1	1	1	1	1	1
T15	Yes	No	1	1	1	1	1	1	1	1
20.00-15.00				1	1	1	1	1	1	1
T16	Yes	No	1	1	1	1	1	1	1	1
15.00-10.00				1	1	1	1	1	1	1
T17	Yes	No	1	1	1	1	1	1	1	1
10.00-0.00				1	1	1	1	1	1	1

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	Diagonal Top Girt Bottom Girt Mid Gir		Girt	Long Ho	rizontal	Short Horizontal					
2	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 152.00-140.00	0.000	I	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T2 140.00-135.00	0.000	Ĩ.	0.000	0.75	0.000	0.75	0.000	0.75	0,000	0.75	0,000	0.75	0.000	0.75
T3 135.00-130.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0:75	0.000	0.75
T4 130.00-125.00	0,000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

Job		Page
	152' ROHN SSV Tower	7 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client	Variation Sprint and ATRT / S.A. Evaluation	Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	orizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T5 125.00-120.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T6 120.00-100.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T7 100.00-80.00	0,000	1	0,000	0.75	0.000	0.75	0,000	0,75	0,000	0.75	0.000	0.75	0,000	0.75
T8 80.00-73.33	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T9 73.33-66.67	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T10 66.67-60.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0,75	0.000	0.75	0.000	0.75	0.000	0.75
T11 60.00-50.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T12 50.00-40.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T13 40.00-30.00	0.000	1	0,000	0,75	0,000	0,75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0,75
T14 30.00-20.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0,000	0.75	0.000	0,75
T15 20.00-15.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T16 15.00-10.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T17 10.00-0.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontai
	21	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1	Flange	0.000	0	0.500	1	0.500	1	0.625	0	0.625	0	0.625	0	0.625	0
152.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	0.625	4	0.500	1	0.500	1	0.000	0	0.625	0	0.625	0	0.625	0
140.00-135.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	0.625	0	0.500	1	0.625	0	0.000	0	0.625	0	0.625	0	0.625	0
135.00-130.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	0.625	0	0.500	1	0.625	0	0.000	0	0.625	0	0.625	0	0.625	0
130.00-125.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
Т5	Flange	0.625	0	0.500	1	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
125.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6	Flange	0.625	4	0.500	1	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
Τ7	Flange	0.750	4	0.500	1	0,625	0	0.625	0	0.625	0	0.625	0	0.500	2
100.00-80.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Г8 80.00-73.33	Flange	0.875	4	0.500	1	0.625	0	0.000	0	0.625	0	0.625	0	0.625	0
		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Г9 73.33-66.67	Flange	0.875	0	0.500	1	0.625	0	0.000	0	0.625	0	0.625	0	0.500	2
		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T10	Flange	0.875	0	0.500	1	0.625	0	0.625	0	0.625	0	0.625	0	0.500	2
66.67-60.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	

tnxTower

Job		Page
	152' ROHN SSV Tower	8 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client		Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
Elevation	Connection														
ft	Туре														
		Bolt Size	No.	Bolt Size	No_	Bolt Size	No.	Bolt Size	No.	Bolt Size	No,	Bolt Size	No.	Bolt Size	No,
		in		in		in		111		in		în		în	
T11	Flange	0.875	4	0.625	1	0.625	0	0.000	0	0.625	0	0.625	0	0.625	0
60.00-50.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T12	Flange	0.875	0	0.625	1	0.625	0	0.625	0	0.625	0	0.625	0	0.500	2
50.00-40.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T13	Flange	1,000	4	0.625	1	0.625	0	0.000	0	0.625	0	0,625	0	0.500	2
40.00-30.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T14	Flange	1.000	0	0.625	1	0.625	0	0.625	0	0.625	0	0.500	2	0.625	0
30.00-20.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T15	Flange	1.000	4	0.625	1	0.625	0	0.000	0	0.625	0	0.625	0	0.625	0
20.00-15.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T16	Flange	1.000	0	0.625	1	0.625	0	0.625	0	0.625	0	0.625	1	0.625	0
15.00-10.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T17 10.00-0.00	Flange	1.000	0	0.625	1	0.625	0	0.625	0	0.625	0	0.625	0	0,625	0
		A325N		A325X		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		71	ft	in	(Frac FW)		Row	in	in	in	klf
1 1/4	В	Yes	Ar (CfAe)	150.00 - 6.00	2.000	-0.44	2	2	1.550	1.550		0.001
1 5/8	А	Yes	Ar (CfAe)	150.00 - 6.00	-2.000	0.47	2	2	1.980	1.980		0.001
1/2	А	Yes	Ar (CfAe)	135.00 - 6.00	-2.000	0.45	2	2	0.580	0.580		0.000
EW180	С	Yes	Af (CfAe)	152.00 - 6,00	2.000	-0.04	1	1	0.590	0.590	2.006	0.000
EW180	С	Yes	Af (CfAe)	140.00 - 6.00	2.000	-0.05	1	1	0.590	0.590	2.006	0.000
1 5/8	А	Yes	Ar (CfAe)	143.00 - 6.00	-2.000	0.1	9	9	1.980	1.980		0.001
(AT&T)												
7/8	С	Yes	Ar (CfAe)	152.00 - 6.00	2.000	-0.03	1	1	1.110	1.110		0.001
EW180	С	Yes	Af (CfAe)	136.50 - 6.00	-2.000	-0.46	1	1	0,590	0.590	2.006	0.000
1 5/8	С	Yes	Ar (CfAe)	135.00 - 6.00	2.000	0.02	2	2	1.980	1,980		0.001
7/8	В	Yes	Ar (CfAe)	138.00 - 6.00	2.000	0.41	1	1	1.110	1.110		0.001
1/2	А	Yes	Ar (CfAe)	122.00 - 6.00	2.000	-0.48	1	1	0.580	0.580		0.000
7/8	В	Yes	Ar (CfAe)	129.00 - 6.00	2.000	0.42	1	1	1.110	1.110		0.001
7/8	В	Yes	Ar (CfAe)	96.00 - 6.00	2.000	0.43	1	1	1,110	1.110		0.001
7/8	А	Yes	Ar (CfAe)	97.00 - 6.00	2.000	-0.49	1	1	1.110	1.110		0.001
7/8	В	Yes	Ar (CfAe)	97.00 - 6.00	2.000	0.44	1	1	1,110	1.110		0.001
7/8	В	Yes	Ar (CfAe)	91.00 - 6.00	2.000	0.45	1	1	1.110	1.110		0.001
1 1/4	В	Yes	Ar (CfAe)	75.00 - 6.00	2.000	0.47	1	1	1.550	1.550		0.001
7/8	В	Yes	Ar (CfAe)	72.00 - 6.00	2,000	-0.47	1	1	1.110	1.110		0.001
7/8	С	Yes	Ar (CfAe)	74.00 - 6.00	2,000	0.49	1	1	1.110	1.110		0.001
1/2	А	Yes	Ar (CfAe)	58.00 - 6.00	2,000	0.28	1	1	0.580	0.580		0.000
(Sprint - GPS)			. ,									
LDF1-50A (1/4 FOAM)	С	Yes	Ar (CfAe)	45.00 - 6.00	2.000	0.45	1	1	0.350	0.350		0.000
1 5/8 (T-Mobile)	В	Yes	Ar (CfAe)	108.00 - 6.00	0.000	-0.3	12	6	1:980	1.980		0.001
7/8 (Sprint -	А	Yes	Ar (CfAe)	143.00 - 6.00	2.000	0.36	3	3	1.110	1.110		0.001
Hybriflex) 1 5/8" Hybriflex	С	Yes	Ar (CfAe)	98.00 - 6.00	2.000	-0.35	2	2	1.625	1.625		0.000
(Verizon) 3 (AT&T)	А	Yes	Ar (CfAe)	143.00 - 6.00	-2.000	0	1	1	3.010	3,010		0.002

tnxTower	Job		Page
IIIX I OWEI		152' ROHN SSV Tower	9 of 55
URS Corporation	Project		Date
500 Enterprise Drive, Suite 3B		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Rocky Hill, CT 06067	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991		Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg			ft	in	(Frac FW)		Row	in	în	in	klf
1 5/8" Hybriflex (Verizon)	А	Yes	Ar (CfAe)	143.00 - 6.00	2.000	0.32	1	1	1,625	1.625		0.000

~

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation		a 2		In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
T1	152.00-140.00	А	9.746	0,000	0.000	0.000	0.060
		В	2.583	0.000	0.000	0.000	0.013
		С	1.110	0.590	0.000	0.000	0.008
T2	140.00-135.00	А	12.394	0.000	0.000	0.000	0.075
		В	1.569	0.000	0.000	0.000	0,008
		С	0.463	0.565	0.000	0.000	0.004
T3	135.00-130.00	А	12,877	0.000	0.000	0.000	0.078
		В	1.754	0.000	0.000	0.000	0.009
		С	2.112	0.737	0.000	0.000	0.015
Τ4	130.00-125.00	А	12.877	0.000	0.000	0.000	0.078
		В	2.124	0.000	0.000	0.000	0.011
		С	2.112	0.737	0.000	0.000	0.015
T5	125.00-120.00	А	12.974	0.000	0.000	0.000	0.078
		В	2.217	0.000	0.000	0.000	0.012
		С	2.112	0.737	0.000	0.000	0.015
Т6	120.00-100.00	А	52.475	0.000	0.000	0.000	0.316
		В	16.787	0.000	0.000	0.000	0.148
		С	8.450	2.949	0.000	0.000	0.061
T 7	100.00-80.00	А	54.047	0.000	0.000	0.000	0.325
		В	32.737	0.000	0.000	0.000	0.321
		Ĉ	13.325	2,949	0,000	0.000	0.069
Т8	80.00-73.33	Ă	18.108	0.000	0.000	0.000	0.109
		В	11.621	0.000	0.000	0.000	0,111
		õ	4.684	0.983	0.000	0.000	0.024
T9	73.33-66.67	Ã	18.108	0.000	0.000	0.000	0.109
		В	12.760	0.000	0.000	0.000	0.117
		ĉ	5.239	0.983	0,000	0.000	0.027
T10	66.67-60.00	Ă	18.108	0.000	0.000	0.000	0.109
* 1 0	00107 00100	В	12.883	0.000	0.000	0.000	0.118
		C	5.239	0.983	0.000	0.000	0.027
T11	60.00-50.00	Ă	27.549	0.000	0.000	0.000	0.165
111	00.00 50.00	В	19.325	0.000	0.000	0.000	0.177
		C	7.858	1.475	0.000	0.000	0.040
T12	50.00-40.00	Ă	27.646	0,000	0.000	0.000	0.166
112	50.00-40.00	B	19.325	0.000	0.000	0.000	0.177
		C	8.004	1.475	0.000	0.000	0.041
T13	40.00-30.00	A	27.646	0.000	0.000	0.000	0.166
115	40.00-30.00	B	19.325	0.000	0.000	0.000	
		С		1.475	0.000		0.177
TD 1 4	20.00.20.00		8.150			0.000	0.041
T14	30.00-20.00	A	27.646	0.000	0.000	0.000	0.166
		В	19.325	0.000	0.000	0.000	0.177
TT1 6	20.00.16.00	С	8.150	1.475	0,000	0.000	0.041
T15	20.00-15.00	A	13.823	0.000	0.000	0.000	0.083
		В	9.662	0.000	0.000	0.000	0.088
(B)1 (1 = 0.0 + 0.00	С	4.075	0.737	0.000	0.000	0.020
T16	15.00-10.00	A	13.823	0.000	0.000	0.000	0.083
		В	9.662	0.000	0.000	0.000	0.088
		C	4.075	0.737	0.000	0.000	0.020

tnxTower	Job	152' ROHN SSV Tower	Page 10 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project	366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
T17	10.00-0.00	А	11.058	0.000	0.000	0.000	0.066
		В	7.730	0.000	0.000	0.000	0.071
		С	3.260	0.590	0.000	0.000	0.016

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness	<i>a</i>)	<i>a</i> ?	In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft ²	ft ²	K
T1	152,00-140.00	A	0.500	14.913	0.000	0.000	0.000	0.150
		В		4.250	0.000	0.000	0.000	0.038
		С		2.110	1.257	0.000	0.000	0.029
T2	140.00-135.00	А	0.500	19.060	0.000	0.000	0.000	0.191
		В		2.652	0.000	0.000	0.000	0.024
		С		0.879	1.204	0.000	0.000	0.018
T3	135.00-130.00	А	0.500	19.719	0.483	0.000	0.000	0.199
		В		3.004	0.000	0.000	0.000	0.027
		С		3.363	1.571	0.000	0.000	0.047
Τ4	130.00-125.00	А	0.500	19.719	0.483	0.000	0.000	0.199
		В		3.708	0.000	0.000	0.000	0.033
		Ē		3.363	1.571	0.000	0.000	0.047
Т5	125.00-120.00	Ă	0.500	19.982	0.483	0.000	0.000	0.201
12	120100 120100	В	0.200	3.883	0.000	0.000	0.000	0.034
		C		3.363	1.571	0.000	0.000	0.047
T6	120.00-100.00	A	0.500	81.508	1.933	0.000	0.000	0.816
10	120.00-100.00	B	0.500	27.453	0.000	0.000	0.000	0.383
		C		13.450	6,283	0.000	0.000	0.187
Т7	100.00-80.00	A	0.500	84.498	1.933	0.000	0.000	0.187
1 /	100.00-00.00	B	0.500	53.070	0.000		0.000	
				21.325		0.000		0.818
T 0	00 00 72 22	С	0.500		6.283	0.000	0.000	0.242
T8	80.00-73.33	A	0.500	28.342	0.644	0.000	0.000	0.282
		В		18.982	0.000	0.000	0.000	0.284
		С		7.517	2.094	0.000	0,000	0.084
T9	73.33-66.67	A	0.500	28.342	0.644	0.000	0.000	0.282
		В		20.982	0.000	0.000	0.000	0.302
		С		8,572	2,094	0.000	0.000	0.093
T10	66.67-60.00	А	0.500	28.342	0.644	0.000	0.000	0.282
		В		21.217	0.000	0.000	0.000	0.304
		С		8.572	2.094	0.000	0.000	0.093
T11	60.00-50.00	A	0.500	43.566	0.967	0.000	0.000	0.430
		В		31,825	0.000	0.000	0.000	0.455
		С		12.858	3.141	0.000	0.000	0.139
T12	50.00-40.00	А	0.500	43.829	0.967	0.000	0.000	0.432
		В		31,825	0.000	0.000	0.000	0.455
		С		13.421	3.141	0.000	0.000	0.142
T13	40.00-30.00	А	0.500	43.829	0.967	0.000	0.000	0.432
		В		31.825	0.000	0.000	0.000	0.455
		С		13.983	3.141	0.000	0.000	0.145
T14	30.00-20.00	Ă	0.500	43.829	0.967	0.000	0.000	0.432
		В	0.000	31.825	0.000	0.000	0.000	0.455
		C		13.983	3.141	0.000	0.000	0.145
T15	20.00-15.00	A	0.500	21.915	0.483	0.000	0.000	0.216
71 <i>2</i>	20:00-15.00	B	0.500	15.913	0.485	0.000	0.000	0.218
		В С		6.992				
T16	15 00 10 00		0.500	21.915	1.571	0.000	0.000	0.072
110	15.00-10.00	A	0.500		0.483	0.000	0.000	0.216
		В		15.913	0,000	0.000	0.000	0.228
	10.00.0.00	С	0.500	6.992	1.571	0.000	0.000	0.072
T17	10.00-0.00	A	0.500	17.532	0.387	0.000	0.000	0.173

A	Job		Page
tnxTower		152' ROHN SSV Tower	11 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project	366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Tower	Tower	Face	Ice	AR	AF	C_{AA}	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	0
	ft	Leg	în	ft^2	ft^2	ft^2	ft^2	K
		В		12.730	0.000	0.000	0.000	0.182
		С		5.593	1.257	0.000	0.000	0.058

			g				
Section	Elevation	Face	A _R	A_R	A_F	AF	
	ft		ft^2	$Ice ft^2$	ft^2	Ice ft^2	
T1	152.00-140.00	А	0.000	0.829	0.847	1.296	
	152.00 110.00	B	0.000	0.236	0.224	0.369	
		Ĉ	0.000	0.206	0.148	0.321	
T2	140.00-135.00	Ă	0.000	1.097	1,173	1.804	
		В	0.000	0.153	0.148	0.251	
		С	0.000	0,138	0.097	0.227	
T3	135.00-130.00	А	0.000	0.816	0.780	1.224	
		В	0.000	0.121	0,106	0.182	
		С	0.000	0.216	0.173	0.324	
T4	130.00-125.00	Ā	0.000	0.799	0.764	1 199	
		В	0.000	0.147	0.126	0.220	
		Ĉ	0.000	0.212	0.169	0.318	
T5	125.00-120.00	Ă	0.000	0.796	0.883	1.393	
10	120100 120100	В	0.000	0.151	0.151	0.264	
		C	0.000	0.208	0.194	0.364	
T6	120.00-100.00	Ă	0.000	2.546	3.203	5.093	
10	120.00 100.00	В	0.000	0.838	1.025	1.676	
		Č	0.000	0.653	0.696	1.306	
T7	100.00-80.00	A	0.000	3.575	5.927	9.479	
17	100.00-00.00	В	0.000	2.195	3.590	5.820	
		C	0.000	1.211	1.785	3.210	
Т8	80.00-73.33	A	0.000	0.815	1.273	2.037	
10	00.00-75.55	B	0.000	0.534	0.817	1.334	
		C	0.000	0.286	0.398	0.715	
Т9	73.33-66.67	A	0.000	1.169	1.939	3.103	
19	13.33-00.07	B	0.000	0.846	1.366	2.246	
		C	0.000	0.452	0.666	1.201	
T10	66.67-60.00	A	0.000	1.161	1.927		
110	00.07-00.00	B				3.085	
		С	0.000	0.850	1.371	2.258	
TT 1	(0.00 50.00		0.000	0.450	0.662	1.194	
T11	60,00-50.00	A	0.000	0.888	1.649	2,665	
		B C	0.000	0.635	1.157	1.905	
TT10	E0.00.40.00		0.000	0.336	0.559	1.007	
T12	50.00-40.00	A	0.000	1.251	2.316	3.752	
		B	0.000	0.889	1.619	2.666	
T 1 2	40.00.00.00	С	0.000	0.486	0.794	1.457	
T13	40.00-30.00	A	0.000	1.237	2.290	3.711	
		В	0.000	0.879	1.601	2.636	
		С	0.000	0.496	0.797	1.488	
T14	30.00-20.00	А	0.000	2.823	4,241	6.872	
		В	0.000	2.006	2.964	4.882	
m 1 <i>c</i>		С	0.000	1.132	1.476	2.755	
T15	20.00-15.00	A	0.000	1,215	1.891	3.064	
		В	0.000	0.863	1.322	2.177	
		С	0,000	0,487	0.658	1.228	
T16	15,00-10.00	А	0.000	0.792	1.566	2.537	
		В	0.000	0.562	1.095	1.803	
		С	0.000	0.317	0.545	1.017	

tnxTower	Job		Page 12 of 55
maromen		152' ROHN SSV Tower	12 01 55
URS' Corporation 500 Enterprise Drive, Suite 3B	Project	366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section	Elevation	Face	AR	A_R	A_F	A_F
				Ice		Ice
	ft		ft^2	ft^2	ft^2	ft^2
Т17	10.00-0.00	А	0.000	0.333	0.719	1.165
		В	0.000	0.237	0.503	0.828
		С	0.000	0.133	0.250	0.467

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	152.00-140.00	-1.168	-6.466	-1.039	-6.056
Т2	140.00-135.00	-3.510	-9.595	-3.192	-9.377
Т3	135.00-130.00	-3.602	-9.703	-3.126	-9.159
Т4	130.00-125.00	-3.308	-9.965	-2.696	-9.324
Т5	125.00-120.00	-3.395	-9.914	-2.882	-9.288
T6	120.00-100.00	-2.757	-11.477	-2.645	-11.603
Т7	100.00-80.00	-0.030	-10.890	0.398	-10.741
Т8	80.00-73.33	0.533	-12,636	1.204	-12.438
Т9	73.33-66.67	0.548	-10,990	1.057	-10.763
T10	66.67-60.00	0.539	-11.491	1.066	-11.293
T11	60.00-50.00	0.541	-14,249	1.157	-14.566
T12	50.00-40.00	0.354	-13.399	0.747	-13.601
T13	40.00-30.00	0.233	-13.935	0.477	-14.021
T14	30.00-20.00	0.170	-12.079	0.350	-11.682
T15	20.00-15.00	0.158	-12.925	0.360	-12.689
T16	15.00-10.00	0.142	-12.724	0.358	-12.884
T17	10.00-0.00	0.084	-8.205	0.251	-9.099

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	0	ft		ft^2	ft^2	Κ
20' 4-Bay Dipole (Unknown)	С	From Face	0.50 0.000 0.000	0.0000	162.00	No Ice 1/2" Ice	3.15 5.67	3.15 5.67	0.032 0.042
DB563K-CR (Unknown)	В	From Leg	3.00 0.000 0.000	0.0000	156.70	No Ice 1/2" Ice	19.01 19.99	19.01 19.99	0.050 0.163
4'x4" Pipe Mount (Unknown)	С	From Leg	0.50 0.000 0.000	0.0000	152.00	No Ice 1/2" Ice	1.32 1.58	1.32 1.58	0.044 0.057
DB803KHE-YP (Unknown)	А	From Leg	3.00 0.000 0.000	0.0000	151.25	No Ice 1/2" Ice	0.55 0.76	0,55 0,76	0.006 0.011
3' Sidearm (Unknown)	В	From Leg	1.50 0.000 0.000	0.0000	149.00	No Ice 1/2" Ice	3.43 4.34	3.43 4.34	0.089 0.122
ter Box 22"x22"x6"	В	From Leg	1.50	0.0000	149.00	No lce	4.71	1.28	0.025

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	13 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Face Offset Offsets: Azimuth Placement Description $C_A A_A$ $C_A A_A$ Weight Horz Adjustment Front Side Туре or Leg Lateral Vert 0 ft ft^2 ft² ft Κ ft ft (Unknown) 1/2" Ice 0.000 5.00 1.47 0.051 0.000 From Leg 1.50 0.0000 3' Sidearm Α 148.50 No Ice 5.90 5.90 0.130 (Unknown) 0:000 1/2" Ice 6.60 6.60 0.146 0.000 Filter Box 20"x6"x8" А From Leg 1.50 0.0000 148.50 No Ice 1.17 1.56 0.020 (Unknown) 0.000 1/2" Ice 1.34 1.74 0.032 0,000 12'x2 1/2" STD Pipe Mount С From Face 0.00 0.0000 146.00 No Ice 3.45 3.45 0.069 (Unknown) 0.000 1/2" Ice 4.68 4.68 0.095 0.000 12' x 3" Dia Omni С 4.00 0.0000 From Leg 144.00 No Ice 3.60 3.60 0.035 (Unknown) 0.000 1/2" Ice 4.83 4.83 0.061 0.000 4'x3" Pipe Mount А 0.50 0.0000 143.00 No Ice 1.11 1.11 0.030 From Leg (AT&T) 0.000 1/2" Ice 1.36 1.36 0.041 0.000 4'x3" Pipe Mount В From Leg 0.50 0.0000143.00 No Ice 1.11 1.11 0.030 (AT&T) 0.000 1/2" Ice 1.36 1.36 0.041 0.0004'x3" Pipe Mount 0.0000 С From Leg 0.50 143.00 No Ice 1.11 1.11 0.030 0.000 (AT&T) 1/2" Ice 1.36 1.36 0.041 0.000 7770 A From Leg 1.00 0.0000143.00 No Ice 5.88 2.93 0.035 (AT&T) 0.0001/2" Ice 6.31 3.27 0.068 0.0007770 В From Leg 1.00 0.0000 143.00 No Ice 5.88 2.93 0.035 (AT&T)0.000 1/2" Ice 6.31 3.27 0.068 0.000 7770 С From Leg 1,00 0.0000 143.00 No Ice 5.88 2.93 0.035 (AT&T) 0.000 1/2" Ice 6.31 3.27 0.068 0.000 (2) LPG 21401 TMA Α From Leg 0.50 0.0000 143.00 No Ice 0.95 0.37 0.018 (AT&T)0.000 1/2" Ice 1.09 0.48 0.023 0.000 (2) LPG 21401 TMA 0.0000 143.00 0.95 0.37 В From Leg 0.50 No Ice 0.018 (AT&T)0.000 1/2" lce 1.09 0.48 0.023 0.000 (2) LPG 21401 TMA С From Leg 0.50 0.0000 143.00 No Ice 0.95 0.37 0.018 (AT&T)0.000 1/2" Ice 1.09 0.48 0.023 0.000 P65-16-XLH-RR 0.0000 А From Face 1.00 143.00 No Ice 8.40 4.70 0.050 (ATT) -1.000 1/2" Ice 8.95 5.15 0.097 0.000 P65-16-XLH-RR В From Face 1.00 0.0000 143.00 No lce 8.40 4.70 0.050 (ATT) -1.000 1/2" Ice 8.95 5.15 0.097 0.000 P65-16-XLH-RR С 0.0000 4.70 From Face 1.00 143.00 No Ice 8.40 0.050 1/2" lce (ATT) -1.0008.95 5.15 0.097 0.000 (2) RRUS-11 From Leg 1.00 0.0000 143.00 No lce 2.94 0.055 А 1.25 (ATT) 1.000 1/2" Ice 3.17 1.41 0.074 0.000 (2) RRUS-11 A From Leg 1.00 0.0000 143.00 No Ice 2.94 1.25 0.055 1.000 1/2" Ice (ATT) 3.17 1.41 0.074 0.000 (2) RRUS-11 0.0000 143.00 2.94 0.055 А 1.00 No Ice 1.25 From Leg

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	14 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Face Offset Offsets: Weight Description Azimuth Placement $C_A A_A$ $C_A A_A$ Horz Туре Adjustment Front Side OF Lateral Leg Vert ft² ft ft^2 Κ ft ft ft 1/2" Ice (ATT) 1.000 3.17 1.41 0.074 0.000 4'x3" Pipe Mount Α 0.08 0.0000 From Leg 143.00 No Ice 1.11 0.030 1 < 11(AT&T) 1.0001/2" Ice 1.36 1.36 0.041 0.000 4'x3" Pipe Mount В From Leg 1.00 0.0000 143.00 No Ice 1.11 1.11 0.030 (AT&T) 1.000 1/2" Ice 1.36 0.041 1.36 0.000 4'x3" Pipe Mount From Leg С 1.00 0.0000 0.030 143.00 No Ice 1.11 1.11 (AT&T)1.000 1/2" Ice 1.36 1.36 0.041 0.000 4'x4" Pipe Mount В From Leg 0.50 0.0000 142.00 No Ice 1.32 1.32 0.044 (Unknown) 0.000 1/2" Ice 1.58 1.58 0.057 0.000 DB563K-CR С 4.00 0.0000 19.01 From Leg 141.70 No Ice 19.01 0.050 0.000 (Unknown) 1/2" Ice 19.99 19.99 0.163 0.000 6' x 3" Dia Omni A From Leg 3.00 0.0000 138.00 No Ice 1.77 1.77 0.020 (Unknown) 0.000 1/2" Ice 2.13 0.033 2.13 0.000 4' Side Mount Standoff (1) 0.0000 С From Leg 2.00 137.00 No Ice 2.72 2.72 0.050 (Unknown) 0.000 1/2" Ice 4.91 4.91 0.089 0.000 4'x4" Pipe Mount В From Leg 0.50 0.0000 135.00 No Ice 1.32 1.32 0.044 1/2" Ice (Unknown) 0.000 1.58 1.58 0.057 0.000 DB495-A С 0.00 0.0000 135.00 0.010 From Leg No Ice 2.35 235 (Unknown) 0.000 1/2" Ice 4.23 4.23 0.013 0.000 3' Sidearm А From Leg 1.50 0.0000 133.50 No Ice 5.90 5.90 0.130 6.60 (Unknown) 0.000 1/2" Ice 6.60 0.146 0.000 4' Side Mount Standoff (1) С From Leg 2.00 0.0000 133.00 No Ice 2.72 2.72 0.050 0.000 (Unknown) 1/2" Ice 4.91 4,91 0.089 0.000 2" Dia 8' Omni 0.0000 A From Leg 4.50 133.00 No Ice 2.00 2.00 0.005 (Unknown) 0.000 1/2" Ice 3.03 3.03 0.018 0.000 (2) DB980H90E-M From Leg 3.00 0.0000 128.00 3.80 2.19 А No Ice 0.009 0.000 (Sprint) 1/2" Ice 4.18 2.56 0.029 0.000 (2) DB980H90E-M 0.0000 В From Leg 3.00 128.00 No Ice 3.80 2.19 0.009 (Sprint) 0.000 1/2" Ice 4.18 2.56 0.029 0.000 (2) DB980H90E-M С From Leg 3.00 0.0000 128.00 No Ice 3.80 2.19 0.009 (Sprint) 0.000 1/2" Ice 4.18 2.56 0.029 0.000 APXV9TM14-120 0.0000 A From Leg 3.00 128.00 No Ice 6.90 3.61 0.067 (Sprint) 0.000 1/2" Ice 7.35 3.97 0.106 0.000 APXV9TM14-120 В From Leg 3.00 0.0000 128.00 6.90 No Ice 3.61 0.067 (Sprint) 0.000 1/2" lce 7.35 3.97 0.106 0.000 APXV9TM14-120 С From Leg 3.00 0.0000128.00 No Ice 6.90 3.61 0.067 0.000 (Sprint) 1/2" Ice 7.35 3.97 0.106 0.000 800 MHz Filter From Leg 3.00 0.0000 Α 128.00 0.52 0.38 0.005 No Ice

Job		Page
	152' ROHN SSV Tower	15 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C₁A₄ Side	Weight
	Leg	21	Lateral						
			Vert	8			- 2	- 3	
			ft ft	0	ft		ft^2	ft^2	K
			ft						
(Sprint)			0.000			1/2" Ice	0.65	0.50	0.009
			0.000						
800 MHz Filter	В	From Leg	3.00	0.0000	128.00	No Ice	0.52	0.38	0.005
(Sprint)			0.000 0.000			1/2" Ice	0.65	0.50	0.009
800 MHz Filter	С	From Leg	3.00	0.0000	128.00	No Ice	0.52	0.38	0.005
(Sprint)	U	TTOM DOB	0.000	0.0000	120,00	1/2" Ice	0.65	0.50	0.009
			0.000						
RRH	А	From Leg	3.00	0.0000	128.00	No Ice	2.25	1.23	0.050
(Sprint)			0.000			1/2" Ice	2.45	1.39	0.067
RRH	В	From Leg	0.000 3.00	0.0000	128.00	No Ice	2.25	1,23	0.050
(Sprint)	D	From Leg	0.000	0.0000	128.00	1/2" Ice	2.45	1.39	0.050
(0.000				A. 10		0.007
RRH	С	From Leg	3.00	0.0000	128.00	No Ice	2.25	1.23	0.050
(Sprint)			0.000			1/2" Ice	2.45	1.39	0.067
	0	F I	0.000	0.0000	100.00	NT 1	1.10	1.10	0.010
DB254-A (Unknown)	С	From Leg	0.00 0.000	0.0000	122.00	No Ice 1/2" Ice	1.10 1.98	1.10 1.98	0.010 0.013
(UIIKIIOWII)			0.000			1/2 100	1.90	1.90	0.015
PX16DWV-16DWV-S-E-A	А	From Leg	0.50	0.0000	108.00	No Ice	6.70	3.27	0.073
CU w/ Mount		0	0.000			1/2" Ice	7.13	3.86	0,122
(T-Mobile)			0.000						
TMA	А	From Leg	0.25	0.0000	108.00	No Ice	1.06	0.45	0.020
(T-Mobile)			$0.000 \\ 0.000$			1/2" Ice	1.21	0.57	0.027
PX16DWV-16DWV-S-E-A	В	From Leg	0.50	0.0000	108.00	No Ice	6.70	3.27	0.073
CU w/ Mount	5	TION LOB	0.000	0.0000	100.00	1/2" Ice	7.13	3.86	0.122
(T-Mobile)			0.000						
TMA	В	From Leg	0.25	0.0000	108.00	No Ice	1.06	0.45	0.020
(T-Mobile)			0.000			1/2" Ice	1.21	0.57	0.027
PX16DWV-16DWV-S-E-A	С	From Leg	0.000 0.50	0.0000	108.00	No Ice	6.70	3.27	0.073
CU w/ Mount	C	FIOID Leg	0.000	0.0000	108.00	1/2" Ice	7.13	3.86	0.073
(T-Mobile)			0.000			172 100	7.15	5.00	0.122
TMA	С	From Leg	0.25	0.0000	108.00	No Ice	1.06	0.45	0.020
(T-Mobile)			0.000			1/2" Ice	1.21	0.57	0.027
011 D: 101 O		D	0.000	0.0000	101.00				
2" Dia 10' Omni (Unknown)	А	From Leg	3.00 0.000	0.0000	101.00	No Ice 1/2" Ice	2.00	2.00	0.025
(UIKIIOWII)			0.000			1/2 100	3,02	3.02	0.041
8' 4-Bay Dipole	В	From Leg	3.00	0.0000	101.00	No Ice	1.50	1.50	0.025
(Unknown)		Ð	0.000			1/2" Ice	2.70	2.70	0.033
			0.000						
8' 4-Bay Dipole	С	From Leg	3.00	0.0000	101.00	No Ice	1.50	1.50	0.025
(Unknown)			0.000			1/2" Ice	2.70	2.70	0.033
20' x 3" Dia Omni	В	From Leg	0.000 3.00	0.0000	101.00	No Ice	6.00	6.00	0.050
(Unknown)		TOUL FOR	0.000	0.0000	101.00	1/2" Ice	8.03	8.03	0.093
()			0.000				0,05	0.00	0.075
Valmont 13' Lightweight	А	From Leg	1.25	0.0000	98.00	No Ice	10.60	10.60	0.255
T-Frame			0.000			1/2" Ice	16.80	16.80	0,359
(Verizon)	D	F	0.000	0.0000	08.00	N I Y	10.00	10.70	0.255
Valmont 13' Lightweight T-Frame	В	From Leg	1.25 0.000	0.0000	98.00	No Ice	10.60	10.60	0.255
(Verizon)			0.000			1/2" Ice	16.80	16.80	0.359
Valmont 13' Lightweight	С	From Leg	1.25	0.0000	98.00	No Ice	10.60	10.60	0.255

1.	Job		Page
		152' ROHN SSV Tower	16 of 55
ſ	Project		Date
		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral						
			Vert	0	ft		ft^2	ft^2	K
			ft ft		<i>J1</i>		SJ1	<i>J1</i>	Λ
T-Frame						1/2" Ice	16.80	16.80	0.359
(Verizon)			0.000				10100	10100	01000
RRH	А	From Leg	1.25	0.0000	98.00	No Ice	2.25	1,23	0.050
(Verizon)			6.000			1/2" Ice	2.45	1.39	0.067
	_		0.000						
RRH	В	From Leg	1.25	0.0000	98.00	No Ice	2.25	1.23	0.050
(Verizon)			6.000 0.000			1/2" Ice	2.45	1.39	0.067
RRH	С	From Leg	1,25	0.0000	98.00	No Ice	2.25	1.23	0.050
(Verizon)	Ũ	i iom beg	6.000	0.0000	20.00	1/2" Ice	2.45	1.39	0.067
			0.000						
DB-T1-6Z-8AB-0Z	А	None		0.0000	98.00	No Ice	5.35	2.40	0.044
(Verizon)		_				1/2" Ice	5.75	2.72	0.073
3' Sidearm	A	From Leg	1.50	0.0000	95.50	No Ice	3.58	3.58	0.124
(Vacant)			0.000 0.000			1/2" Ice	5.01	5.01	0.167
3' Sidearm	В	From Leg	1.50	0.0000	95.50	No Ice	3.58	3.58	0.124
(Unknown)	0	TIOM Leg	0.000	0.0000	25.50	1/2" Ice	5.01	5.01	0.124
()			0.000					0101	01107
3' Sidearm	С	From Leg	1.50	0.0000	95.50	No Ice	3.58	3.58	0.124
(Unknown)			0.000			1/2" Ice	5.01	5.01	0.167
			0.000						
3' Sidearm	А	From Leg	1.50	0.0000	94.50	No lce	3.58	3.58	0.124
(Unknown)			$0.000 \\ 0.000$			1/2" Ice	5.01	5.01	0.167
3' Sidearm	В	From Leg	1.50	0.0000	89.50	No Ice	3.58	3,58	0.124
(Unknown)	Б	TION DEE	0.000	0.0000	07.50	1/2" Ice	5.01	5.01	0.124
()			0.000						01107
4' x 3" DIA Omni	А	From Leg	3.00	0.0000	79.00	No Ice	1.00	1.00	0.015
(Unknown)			0.000			1/2" Ice	1.25	1,25	0.024
	a	D T	0.000	0.0000	70.00		1.60	1 (0	0.010
8' 2-Bay Dipole	С	From Leg	3.00 0.000	0.0000	78.00	No Ice	1.60	1.60	0.018
(Unknown)			0.000			1/2" Ice	2.88	2.88	0.023
3' Sidearm	А	From Leg	1.50	0.0000	72.50	No Ice	3,58	3.58	0.124
(Unknown)			0.000	010000	7 210 0	1/2" Ice	5.01	5.01	0.167
			0.000						
3' Sidearm	С	From Leg	1.50	0.0000	72.50	No Ice	3.58	3.58	0.124
(Unknown)			0.000			1/2" Ice	5.01	5.01	0.167
Coole Veni/ Dedame	٨	Energy Law	0.000	0.0000	72.00	NI- 1	2.70	0.70	0.016
Scala Yagi w/ Radome (Unknown)	А	From Leg	3.00 0.000	0.0000	72.00	No lce 1/2" Ice	2.78 5.00	2.78 5.00	0.016 0.021
(Olikilowil)			0.000			172 100	5.00	5.00	0.021
GPS	С	From Leg	2.00	0.0000	58.00	No Ice	1.00	1.00	0.010
(Sprint)		U	0.000			1/2" Ice	1.50	1.50	0.015
			0.000						
2' Sidearm	С	From Leg	1.00	0.0000	57.00	No Ice	2.09	2.09	0.069
(Sprint)			0.000			1/2" Ice	3.20	3.20	0.092
4'x4" Stand-off	С	From Leg	0.000 0.50	0.0000	44.00	No Ice	0.47	0.47	0.061
(Unknown)	C	From Leg	0.000	0.0000	44.00	1/2" Ice	0.47	0.47	0.061
(Oukiowii)			0.000			112 100	0.95	0.30	0.000
APXVSPP18-C-A20 w/	А	From Leg	3.00	0.0000	128.00	No Ice	5.93	4.61	0.026
Mounting Pipe		0	0.000			1/2" Ice	6.39	4.99	0.066
(Sprint)			0.000						
APXVSPP18-C-A20 w/	В	From Leg	3.00	0.0000	128.00	No Ice	5.93	4.61	0.026
Mounting Pipe			0.000			1/2" Ice	6.39	4.99	0.066

tran Toman	Job	Page
tnxTower	152' ROHN SSV Tower	17 of 55
URS Corporation	Project	Date
500 Enterprise Drive, Suite 3B	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert ft	o	ft		ft^2	ft ²	K
			ft ft						
(Sprint)			0.000						
APXVSPP18-C-A20 w/ Mounting Pipe	С	From Leg	3.00 0.000	0.0000	128,00	No Ice 1/2" Ice	5,93 6.39	4.61 4.99	0,026 0.066
(Sprint) (3) 11' Boom Gate w/3 - 2	А	None	0.000	0.0000	128.00	No Ice	35.30	35.30	1.750
3/8" Pipe (Tapered) (Sprint)	А	INOUIC		0,0000	128,00	1/2" Ice	46.40	46.40	2.400
RRH	А	From Leg	3.00	0.0000	128.00	No lce	2.25	1.23	0.050
(Sprint)			0.000 0.000			1/2" Ice	2.45	1.39	0.067
RRH	В	From Leg	3.00	0.0000	128.00	No Ice	2.25	1.23	0.050
(Sprint)			0.000 0.000			1/2" Ice	2.45	1.39	0.067
RRH	С	From Leg	3,00	0.0000	128.00	No Ice	2.25	1.23	0.050
(Sprint)			0.000			1/2" Ice	2.45	1.39	0.067
LNX-8513DS-VTM	А	From Leg	0.000 3.00	0.0000	98.00	No lce	8.38	5.41	0.039
(Verizon - LTE)		20g	6.000	0.0000	. 0.00	1/2" Ice	8.93	5.86	0.039
	P		0.000	0.0000	00.00		0.20	<i></i>	0.005
LNX-6514DS-T4M (Verizon - LTE)	В	From Leg	3.00 6.000 0.000	0.0000	98.00	No Ice 1/2" Ice	8.38 8.93	5.41 5.86	0.038 0.089
LNX-6514DS-T4M	С	From Leg	3.00	0.0000	98.00	No Ice	8.38	5.41	0.038
(Verizon - LTE)			6.000 0.000			1/2" Ice	8.93	5.86	0.089
RH 2x40-700	А	From Leg	3.00	0.0000	98.00	No Ice	2.12	1.77	0.060
(Verizon - LTE)		5	6.000 0.000			1/2" Ice	2.32	1.97	0.077
RH_2x40-700	В	From Leg	3.00	0.0000	98.00	No Ice	2.12	1.77	0.060
(Verizon - LTE)			6.000 0.000			1/2" Ice	2.32	1.97	0.077
RH_2x40-700	С	From Leg	3.00	0.0000	98.00	No Ice	2.12	1.77	0.060
(Verizon - LTE)			6.000 0.000			1/2" Ice	2.32	1.97	0.077
LNX-8513DS-VTM	А	From Leg	3.00	0.0000	98.00	No Ice	8.38	5.41	0.039
(Verizon - 850MHz)			3.000 0.000			1/2" Ice	8.93	5.86	0.090
LNX-6514DS-T4M	В	From Leg	3.00	0.0000	98.00	No Ice	8.38	5.41	0.038
(Verizon - 850MHz)		-	3,000			1/2" lce	8.93	5.86	0.089
LNX-6514DS-T4M	С	From Leg	0.000 3.00	0.0000	98.00	No Ice	8,38	5.41	0.038
(Verizon - 850MHz)	2		3.000	0,000	20,00	1/2" Ice	8,93	5.86	0.089
HBXX-6517DS-VTM	А	From Leg	3.00	0.0000	98,00	No Ice	8,74	6.11	0.058
(Verizon - PCS)			-3.000 0.000			1/2" Ice	9.31	6.82	0.119
HBXX-6517DS-VTM (Verizon - PCS)	В	From Leg	3.00 -3.000	0.0000	98.00	No Ice 1/2" Ice	8.74 9.31	6.11 6.82	0=058 0.119
TIDVV CONTRA	C	Enour Law	0.000	0.0000	00.00	NI- 3	0.74	6.1.1	0.055
HBXX-6517DS-VTM (Verizon - PCS)	С	From Leg	3.00 -3.000 0.000	0.0000	98.00	No lce 1/2" lce	8.74 9.31	6.11 6.82	0.058 0.119
anasonic RRH 1900MHZ	А	From Leg	3.00	0.0000	98.00	No Ice	2.49	3.06	0.090
(Verizon - PCS)	- *		-3.000 0.000			1/2" Ice	2.71	3.30	0.117
anasonic RRH 1900MHZ	В	From Leg	3.00	0.0000	98.00	No Ice	2.49	3.06	0.090

tnxTower

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

- ji	Job		Page
		152' ROHN SSV Tower	18 of 55
	Project		Date
		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Vert				- 2	- 1	
			ft ft ft	0	ft		ft^2	ft^2	K
			0.000						
Panasonic RRH 1900MHZ (Verizon - PCS)	С	From Leg	3.00 -3.000 0.000	0.0000	98.00	No Ice 1/2" Ice	2.49 2.71	3.06 3.30	0.090 0.117
HBXX-6517DS-VTM (Verizon - AWS)	А	From Leg	3.00 -6.000	0.0000	98.00	No Ice 1/2" Ice	8.74 9.31	6.11 6.82	0.058 0.119
HBXX-6517DS-VTM (Verizon - AWS)	В	From Leg	0.000 3.00 -6.000	0.0000	98.00	No Ice 1/2" Ice	8.74 9.31	6.11 6.82	0.058 0.119
HBXX-6517DS-VTM (Verizon - AWS)	С	From Leg	0.000 3.00 -6.000	0.0000	98.00	No Ice 1/2" Ice	8.74 9.31	6.11 6.82	0.058 0.119
RH_2X40-AWS (Verizon - AWS)	А	From Leg	0.000 3.00 -6.000	0.0000	98.00	No Ice 1/2" Ice	2,52 2.75	1.59 1.80	0.044 0.061
RH_2X40-AWS (Verizon - AWS)	В	From Leg	0,000 3,00 -6.000	0.0000	98.00	No Ice 1/2" Ice	2.52 2.75	1.59 1.80	0.044 0.061
RH_2X40-AWS (Verizon - AWS)	С	From Leg	0.000 3.00 -6.000	0.0000	98.00	No Ice 1/2" Ice	2.52 2.75	1.59 1.80	0.044 0.061
DB-T1-6Z-8AB-0Z (Verizon)	А	None	0.000	0.0000	98.00	No Ice 1/2" Ice	5.35 5.75	2.40 2.72	0.044 0.073

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	K
4' w/Radome	С	Paraboloid	From	0.50	Worst		152.00	4.00	No Ice	12.57	0.140
(Unknown)		w/Radome	Leg	$0.000 \\ 0.000$					1/2" Ice	13.10	0.282
4' w/Radome	в	Paraboloid	From	0.50	Worst		140.00	4.00	No Ice	12,57	0.140
(Unknown)		w/Radome	Leg	$0.000 \\ 0.000$					1/2" lce	13,10	0.282
2' w/Radome	в	Paraboloid	From	0.50	Worst		136.50	2.00	No Ice	3.14	0.070
(Unknown)		w/Radome	Leg	$0.000 \\ 0.000$					1/2" Ice	3.41	0.282
1.2M	С	Paraboloid w/o	From	4.00	Worst		45.00	4.00	No Ice	12.17	0.165
(Unknown)		Radome	Leg	$0.000 \\ 0.000$					1/2" Ice	13.09	0.232

Tower Pressures - No Ice

 $G_H = 1.132$

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	19 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client	Variation Soviet and ATRT / S.A. Evaluation	Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Section	Z	Kz	q_z	A _G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					a				%	In	Out
		, i			С					Face	Face
ft	ft		ksf	ft^2	е	ft ²	ft ²	ft^2		ft^2	ft^2
T1	146.00	1.529	0.028	80.875	A	5.763	14.496	4.750	23.45	0.000	0.000
152.00-140.00					B	6.385	7.333		34.62	0.000	0.000
					C	7.052	5.860		36.79	0.000	0.000
T2	137.50	1.503	0.028	35.262	A	1.897	14.794	2.400	14.38	0.000	0.000
140.00-135.00					В	2.922	3.969		34,83	0.000	0.000
					C	3.538	2.862		37.49	0.000	0.000
T3	132.50	1.488	0.028	37.762	A	1.362	15.277	2.400	14.42	0.000	0.000
135.00-130.00					B	2.036	4.154		38.77	0.000	0.000
		1			C	2.707	4.512		33.24	0.000	0.000
T4	127.50	1.471	0.027	40.262	A	1.484	15.277	2,400	14.32	0.000	0.000
130.00-125.00					В	2.122	4.524		36.11	0.000	0.000
					C	2.816	4.512		32.75	0.000	0.000
T5	122.50	1.455	0.027	42,762	A	1.865	15,374	2.400	13.92	0.000	0.000
125.00-120.00					В	2.597	4.616		33.27	0.000	0.000
					C	3,291	4.512		30,75	0.000	0,000
T6	110.00	1.411	0.026	199.956	A	25.390	52.475	17.420	22.37	0.000	0.000
120,00-100.00					В	27.568	16.787		39.27	0.000	0.000
					С	30.846	8.450		44.33	0,000	0.000
T7	90.00	1.332	0.025	240.373	A	35.931	54.047	17.421	19.36	0.000	0.000
100.00-80.00					В	38,269	32.737		24,53	0,000	0.000
					C	43.023	13.325		30.92	0.000	0.000
T8 80.00-73.33	76.67	1.272	0.024	89.625	A	11,125	18-108	6.544	22.39	0.000	0,000
					В	11.581	11.621		28.21	0.000	0.000
					C	12.983	4.684		37.04	0.000	0.000
T9 73 33-66 67	70.00	1.24	0.023	94,278	A	13.997	18.108	6.544	20.38	0.000	0.000
					B	14.570	12.760		23.95	0.000	0.000
	(2.2.2)				C	16.253	5.239		30.45	0.000	0.000
T10	63.33	1.205	0.022	98.930	A	14.448	18.108	6.544	20.10	0.000	0.000
66.67-60.00					B	15.004	12.883		23.47	0.000	0,000
7711	55.00	1.1.67	0.001	157 (07	C	16.696	5.239	11.0(1	29.84	0,000	0.000
T11	55.00	1.157	0.021	157.607	A	18.395	27.549	11.261	24.51	0.000	0.000
60.00-50.00					B	18.887	19.325		29.47	0.000	0.000
1710	15.00	1.002	0.000	1/7/07	C	20.960	7.858	11.0(1	39.08	0.000	0.000
T12	45.00	1.093	0.020	167.607	A	22.039	27.646	11.261	22.66	0.000	0.000
50.00-40.00		í			B	22.736	19,325		26.77	0.000	0.000
T12	25.00	1.017	0.010	177 (07	C	25:035	8.004	11.2(1	34.08	0.000	0.000
T13 40.00-30.00	35.00	1.017	0.019	177.607	A B	22.749	27.646	11,261	22.35	0.000	0.000
40.00-30.00					В С	23.438	19.325		26.33	0.000	0.000
T14	25.00	1	0.018	187.973		25.716	8.150	11.264	33.25	0.000	0.000
T14 30.00-20.00	25.00	1	0.018	187.975	A B	27.625	27.646	11.264	20.38	0.000	0.000
30.00-20.00					в С	28.901	19.325		23.36	0.000	0.000 0.000
TIE	17.50	1	0.018	98.650	Ă	31.864 7.352	8.150	6 204	28.15 23.19	0.000 0.000	0.000
T15 20.00-15.00	17.50	1	0.018	96.030	B	7.352	20.216 16.056	6.394	25.19	0.000	0.000
20.00-13.00					а С	9.321	10.050		32.31	0.000	0.000
T16	12.50	1	0.018	101-177	A	9.321	20.218	6.395	21.77	0.000	0.000
15.00-10.00	12.30	1	0.010	101-177	B	9.133	16.057	0.393	24.90	0.000	0.000
12:00-10:00					в С	9.624	10.057		24.90	0.000	0.000
T17 10.00-0.00	5.00	1	0.018	209.955	A	26.348	11.058	14,290	38.20	0.000	0.000
11/10/00-0/00	5.00	1	0.010	207.933	B	26.548	7.730	14,290	41.67	0.000	0.000
					Б С	20.304	3.260		46.60	0.000	0.000
					C	27.400	5.200		40.00	0.000	0.000

Tower Pressure - With Ice

wer	Jop	152' ROHN SSV Tower	Page 20 of 55
oration rive, Suite 3B	Project	366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
CT 06067 529-8882 29-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section	Z	Kz	q_z	t_Z	AG	F	AF	A _R	Alue	Leg	$C_A A_A$	$C_A A_A$
Elevation	2	TZ	Чz	ιz	лG	a	Δ _F	AR	Alug	Leg %	In	Out
Dieranon						c				70	Face	Face
ft	ft		ksf	in	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
TI	146.00	1.529	0.021	0.500	81.875	Α	5.314	25.065	6.750	22,22	0,000	0.000
152.00-140.00						В	6.240	14.995		31.79	0.000	0.000
						С	7,545	12.885		33,04	0.000	0.000
T2	137.50	1.503	0.021	0.500	35.679	Α	1.267	23.069	3.235	13.29	0.000	0,000
140_00-135.00						В	2,819	7.605		31.03	0.000	0.000
						С	4.047	5.846		32.69	0.000	0.000
T3	132,50	1.488	0.021	0.500	38.179	A	1.402	23.566	3.235	12.95	0.000	0.000
135.00-130.00						В	1.960	7.546		34.03	0.000	0.000
						С	3.389	7.809		28.88	0.000	0.000
T4	127.50	1.471	0.020	0.500	40,679	A	1.532	23.653	3,235	12.84	0.000	0.000
130.00-125.00						В	2,028	8.294		31.34	0.000	0.000
						С	3.501	7.884		28.41	0.000	0.000
T5	122,50	1.455	0,020	0.500	43.179	A	1.838	23,991	3.235	12.52	0.000	0.000
125.00-120.00						В	2.484	8.537		29.35	0.000	0.000
						С	3,955	7.959		27.15	0.000	0.000
T6	110.00	1.411	0.020	0.500	201.625	А	27.659	84.548	19.646	17.51	0.000	0.000
120,00-100.00						В	29.143	32,202		32.02	0.000	0.000
						С	35,795	18.383		36.26	0.000	0,000
T7 100.00-80.00	90.00	1.332	0.018	0.500	242.042	A	36.539	90.140	19.647	15.51	0.000	0.000
						В	38.265	60.093		19,97	0,000	0.000
						С	47.157	29.332		25.69	0.000	0.000
T8 80.00-73.33	76.67	1.272	0.018	0.500	90,181	A	11.747	29.868	7.286	17.51	0.000	0.000
						В	11.806	20.790		22.35	0.000	0,000
FD 70 00 (((7)	50.00	1.04	0.015	0.500	0.4.00.4	С	14.520	9.573		30.24	0.000	0.000
T9 73.33-66.67	70.00	1.24	0.017	0.500	94.834	A	14.219	30,710	7.286	16.22	0.000	0.000
						B	14.432	23.674		19.12	0.000	0.000
T10 (((T (0 00)	(2.22)	1.005	0.017	0.500	00.407	С	17.571	11,657		24.93	0.000	0.000
T10 66.67-60.00	63.33	1.205	0.017	0.500	99,487	A	14.677	30.882	7.286	15.99	0.000	0,000
						B	14.859	24.068		18.72	0.000	0.000
T11 60.00-50.00	55.00	1.157	0.016	0.500	158.442	C	18.017	11,824	12 274	24.42	0.000	0.000
111 00.00-30.00	55.00	19137	0.010	0.500	158.442	A B	19.458 19.252	45.605 34.118	12.374	19.02	0.000	0.000
						С	23.290	15.450		23.19 31.94	0.000	0.000
T12 50.00-40.00	45.00	1.093	0.015	0.500	168,442	A	22.682	46.943	12.374	17.77	0.000	0.000 0.000
112 30.00-40.00	45.00	1.095	0.015	0.500	100.442	B	22.802	35.301	12.374	21.30	0.000	0.000
						С	27.152	17.300		27.84	0.000	0.000
T13 40.00-30.00	35.00	1.017	0.014	0.500	178.442	A	27.132	47.185	12.374	17.53	0.000	0.000
115 40.00-50.00	55.00	1.01/	0.014	0.500	170.442	B	23.408	35.539	12,374	20.95	0.000	0.000
		- D.				C	23.310	18.080		26.93	0.000	0.000
T14 30.00-20.00	25.00	1	0.014	0.500	188.807	A	27.074	48.891	12.377	16.29	0.000	0.000
114 50,00-20,00	25,00	1	0.014	0.500	100.007	B	28.097	37.704	12.577	18.81	0.000	0.000
						С	33.366	20.736		22.88	0.000	0.000
T15 20.00-15.00	17.50	1	0.014	0.500	99.068	A	6.662	31.260	7.228	19.06	0.000	0.000
115 20 00-15.00	17.50	1	0,014	0.500	22.000	B	7.066	25.609	1.220	22.12	0.000	0.000
						C	9.585	17.065		27.12	0.000	0.000
T16 15.00-10.00	12.50	1	0.014	0.500	101.594	A	8.665	31.692	7.230	17.91	0.000	0.000
1015100-10100	12.50	1	0.014	01500	1011074	B	8.916	25,919	1.230	20.75	0.000	0.000
						Č	11.272	17.244		25.35	0.000	0.000
T17 10.00-0.00	5.00	1	0.014	0.500	210,789	Ă	27.401	20.849	15.403	31.92	0.000	0.000
	5.00	1	0 0 L-F	0.500	1,01,01	B	27.352	16.144	10-100	35.41	0.000	0.000
						C	28.969	9.110		40.45	0.000	0.000
1						~	20.707	7.110		40.45	0.000	0.000

Tower	Pressure -	Service
-------	------------	---------

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
ver		152' ROHN SSV Tower	21 of 55
ation	Project		Date
e, Suite 3B		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
06067 9-8882	Client	Maniping Operint and ATAT (O.A. Fushingting	Designed by
-8882 -3991		Verizion, Sprint and AT&T / S.A. Evaluation	MCD

$G_H = 1.132$

Section	Z	Kz	q_z	AG	F	A _F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation		~	1.	Ŭ	a			1-5	%	In	Out
					С					Face	Face
ft	ft		ksf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	146.00	1.529	0.010	80.875	A	5.763	14.496	4.750	23.45	0.000	0.000
152.00-140.00					B	6.385	7.333		34.62	0.000	0.000
					C	7.052	5.860		36.79	0.000	0,000
T2	137.50	1.503	0.010	35.262	A	1.897	14.794	2.400	14.38	0.000	0.000
140.00-135.00					B	2.922	3.969		34.83	0.000	0.000
					C	3.538	2.862		37.49	0.000	0.000
Т3	132.50	1.488	0.010	37.762	A	1.362	15.277	2.400	14.42	0.000	0.000
135.00-130.00					В	2,036	4.154		38.77	0.000	0.000
					C	2.707	4.512		33,24	0.000	0.000
T4	127.50	1.471	0.009	40.262	A	1.484	15.277	2.400	14.32	0.000	0.000
130.00-125:00					B	2.122	4.524		36.11	0.000	0.000
				10 17 (0)	C	2.816	4.512		32.75	0.000	0.000
T5	122.50	1,455	0.009	42,762	A	1.865	15.374	2.400	13.92	0.000	0.000
125.00-120.00					B	2.597	4.616		33.27	0.000	0.000
	110.00		0.000	100.056	C	3.291	4.512	15 400	30.75	0,000	0.000
T6	110.00	1.411	0.009	199.956	A	25.390	52.475	17.420	22.37	0.000	0.000
120.00-100.00					B	27.568	16.787		39.27	0.000	0.000
T77	00.00	1 2 2 2	0.000	240 272	C	30.846	8.450	17 401	44.33	0.000	0.000
T7	90.00	1.332	0.009	240.373	A	35.931	54.047	17.421	19.36	0.000	0.000
100.00-80.00					B C	38.269	32.737		24.53	0,000	0.000
T8 80.00-73.33	76.67	1.272	0.008	89.625		43.023 11.125	13.325 18,108	6.544	30.92 22.39	0.000	0.000 0.000
18 80.00-73.33	/0.0/	1.272	0.008	89,025	A B	11.125		0.544	22.39	0.000 0.000	0.000
					C	12.983	11.621 4.684		37.04	0.000	0.000
T9 73.33-66.67	70.00	1.24	0.008	94.278	A	12.985	18.108	6.544	20.38	0.000	0.000
19 75.55-00.07	70.00	1.24	0.008	74.2/0	B	13.997	12.760	0.544	20.38	0.000	0.000
					C	16.253	5.239		30.45	0.000	0.000
T10	63.33	1.205	0.008	98.930	A	14.448	18.108	6.544	20.10	0.000	0.000
66.67-60.00	05.55	1.205	0.000	70.750	B	15.004	12.883	0.544	23.47	0.000	0.000
00.07-00.00					C	16.696	5.239		29.84	0.000	0.000
T11	55.00	1.157	0.007	157.607	Ă	18.395	27.549	11,261	24.51	0.000	0.000
60,00-50.00	20100	1.1.0 /	01007	10/100/	B	18.887	19,325	111201	29.47	0.000	0.000
00100 50.00					Č	20.960	7.858		39.08	0.000	0.000
T12	45.00	1.093	0.007	167.607	Ă	22.039	27.646	11.261	22.66	0.000	0.000
50.00-40.00					В	22.736	19.325		26.77	0.000	0.000
					С	25.035	8.004		34.08	0.000	0.000
T13	35.00	1.017	0.007	177.607	A	22.749	27.646	11.261	22.35	0.000	0.000
40.00-30.00					В	23.438	19.325		26.33	0.000	0.000
					С	25.716	8,150		33.25	0.000	0.000
T14	25.00	15	0.006	187.973	Α	27.625	27.646	11.264	20.38	0.000	0.000
30.00-20.00					В	28.901	19.325		23.36	0.000	0.000
					С	31.864	8.150		28.15	0.000	0.000
T15	17.50	1	0.006	98.650	А	7.352	20.216	6.394	23.19	0.000	0.000
20.00-15.00					В	7.921	16.056		26.67	0.000	0.000
					С	9.321	10.469		32.31	0.000	0.000
T16	12.50	1	0.006	101.177	Α	9.153	20.218	6.395	21.77	0.000	0.000
15.00-10.00					В	9.624	16.057		24.90	0.000	0.000
					С	10.911	10,470		29.91	0.000	0.000
T17 10.00-0.00	5.00	1	0.006	209.955	А	26.348	11,058	14.290	38.20	0.000	0.000
					В	26.564	7.730		41.67	0.000	0.000
	Ü				С	27.406	3.260		46.60	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

	n
tnx I	Tower

URS Corporation 500 Enterprise Drive, Suite 3B
Rocky Hill, CT 06067
Phone: 860-529-8882
FAX: 860-529-3991

ıxTower	Job	152' ROHN SSV Tower	Page 22 of 55
RS Corporation terprise Drive, Suite 3B	Project	366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
cky Hill, CT 06067 one: 860-529-8882 4X: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section Elevation ft T1 152.00-140.00 T2 140.00-135.00 T3 135.00-130.00 T4 130.00-125.00	Add Weight <u>K</u> 0.081 0.088 0.102 0.105	Self Weight <u>K</u> 0.335 0,211 0.184	F a c e A B C A B C A C A	e 0.251 0.17 0.16 0.473 0.195 0.182	<i>C_F</i> 2.436 2.701 2.736 1.937 2.611	R _R 0.602 0.585 0.583			A_E ft^2 14,490	F <u>K</u> 1.131	w klf 0.094	Ctrl _* Face
ft T1 152.00-140.00 T2 140.00-135.00 T3 135.00-130.00 T4	<i>K</i> 0.081 0.088 0.102	<u>К</u> 0.335 0,211	c e A B C A B C	0.17 0.16 0.473 0.195	2.701 2.736 1.937	0.585 0.583			14,490			
T1 152.00-140.00 T2 140.00-135.00 T3 135.00-130.00 T4	0.081 0.088 0.102	0.335	e A B C A B C	0.17 0.16 0.473 0.195	2.701 2.736 1.937	0.585 0.583			14,490			A
T1 152.00-140.00 T2 140.00-135.00 T3 135.00-130.00 T4	0.081 0.088 0.102	0.335	A B C A B C	0.17 0.16 0.473 0.195	2.701 2.736 1.937	0.585 0.583			14,490			A
152.00-140.00 T2 140.00-135.00 T3 135.00-130.00 T4	0.088 0.102	0.211	B C A B C	0.17 0.16 0.473 0.195	2.701 2.736 1.937	0.585 0.583				1.1.51	0.074	
T2 140.00-135.00 T3 135.00-130.00 T4	0.102		C A B C	0.16 0.473 0.195	2.736 1.937	0.583	1.1		10.673			
140.00-135.00 T3 135.00-130.00 T4	0.102		A B C	0.473 0.195	1.937		1	î	10.468			
140.00-135.00 T3 135.00-130.00 T4	0.102		B C	0.195		0.684	î	i i	12.020	0.733	0.147	А
T3 135.00-130.00 T4		0.184	С		1 261	0.589	្ន	i	5.261	0,755	0.1 47	
135.00-130.00 T4		0.184			2.659	0.587	i i	i	5.218			
135.00-130.00 T4		01101		0.441	1.989	0.669	- G	i	11.583	0.718	0.144	А
T4	0.105		В	0.164	2.721	0.584		Î.	4.461	0.710	0.111	71
	0.105		Ē	0.191	2.626	0.589	- î	i i	5.363			
		0.219	Ā	0.416	2.033	0.658	1	i i	11.542	0,723	0.145	А
		0.2.0	B	0.165	2.717	0,584	- ii	i i	4.763	0,725	0.115	11
			C	0.182	2.657	0.587	i	i.	5.464			
Т5	0,106	0.212	Ā	0.403	2.058	0.653	1	i i	11,902	0.746	0.149	А
125.00-120.00			В	0.169	2.704	0.585	- î.	1	5.296	0,10	011 15	
			C	0.182	2.656	0.587	1	1	5.940			
Т6	0.525	1.382	Ā	0,389	2,085	0.647	i	1	59,358	3.657	0,183	А
120.00-100.00			В	0.222	2.525	0.595	1	1	37,557		01100	
			С	0.197	2,608	0.59	1	1	35.829			
Т7	0.716	2.073	A	0.374	2.117	0.641	i	i	70.601	4.170	0.208	А
100.00-80.00	A.8.0 1.14		В	0.295	2,308	0.615	1	1	58.385		0.200	
			С	0.234	2.485	0.598	1	1	50,992			
Т8	0.244	0.721	A	0.326	2.229	0.624	i		22,430	1.332	0.200	А
80.00-73.33			В	0,259	2.411	0.604	1	1	18.603	1004	0.200	
			С	0.197	2.606	0.59	i	1	15.746			
T9	0.253	0.972	Α	0.341	2.194	0.629	Î	1	25,390	1.446	0.217	А
73.33-66.67			В	0.29	2.323	0.613	1	1	22,390			
			С	0.228	2,505	0.597	1	- î	19.378			
T10	0.254	0.998	Α	0,329	2,222	0.625	1	1	25.770	1.445	0.217	А
66,67-60.00			В	0.282	2.345	0.611	1	1	22.870			
			С	0.222	2.525	0.595	1	1	19.813			
T11	0.383	1,354	Α	0.292	2.319	0.613	1	1	35,292	1,983	0,198	А
60.00-50.00			В	0,242	2.46	0.6	1	1	30.481			
			С	0.183	2.654	0.587	1	1	25,573			
T12	0.384	1.565	Α	0.296	2.306	0.615	1	1	39.036	2.060	0.206	А
50.00-40.00			В	0.251	2.435	0.602	1	1	34.372			
			С	0.197	2.606	0.59	1	1	29.756			
T13	0.384	1.741	Α	0.284	2.34	0.611	1	1	39.642	1.976	0.198	Α
40.00-30.00			В	0.241	2.465	0.6	1	1	35,025			
			С	0.191	2.627	0.589	1	1	30.513			
T14	0.384	2.026	A	0.294	2.312	0.614	1	1	44.602	2,160	0.216	А
30.00-20.00			В	0.257	2.418	0,604	1	1	40.565			
			C	0.213	2.554	0.593	1	1	36,698			
T15	0.192	0.907	A	0.279	2.352	0.61	1	1	19,680	0.970	0.194	A
20.00-15.00			В	0.243	2.459	0.6	1	1	17,556			
			C	0.201	2,594	0.591	I.	1	15.503			
T16	0.192	0,995	A	0.29	2.322	0.613	1	1	21,546	1.048	0.210	А
15.00-10.00			В	0.254	2.426	0.603	1	1	19.304			
			C	0.211	2,559	0.593	1	1	17.117			
T17	0.154	1.983	A	0.178	2.671	0.586	1	1	32.830	1:836	0.184	А
10.00-0.00			В	0,163	2,723	0.584	1	1	31.075			
			C	0.146	2.786	0.581	1	1	29,300			
Sum Weight:	4.545	17.879						OTM	1981.158	28,133		
									kip-ft	10		

Tower Forces - No Ice - Wind 45 To Face

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	23 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client		Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	w	Ctrl
Elevation	Weight	Weight	a	Ŭ			27	~~~~				Face
	Ū	Ŭ	с									
ft	K	K	e						ft^2	K	klf	
T1	0.081	0.335	A	0.251	2,436	0.602	0.825	1	13.481	1.052	0.088	A
152.00-140.00			B	0.17	2.701	0.585	0.825	1	9,555			
			C	0,16	2.736	0,583	0.825	1	9.234			
T2	0.088	0.211	A	0.473	1.937	0.684	0.825	1	11,688	0,713	0.143	A
140.00-135.00			B	0,195	2.611	0.589	0,825	1	4.750			
772	0.102	0.194	C	0.182	2,659	0.587	0.825		4.599	0.702	0.1.41	
T3 135.00-130.00	0.102	0.184	A B	0.441 0.164	1.989 2.721	0.669	0.825	1	11.345	0.703	0.141	A
135.00-150.00			C	0.164	2.626	0.589	0.825	1	4,104 4.889			
T4	0.105	0,219	A	0.191	2.020	0.589	0.825	1	11.282	0,707	0.141	А
130.00-125.00	0.105	0.215	B	0.165	2.033	0.584	0.825	1	4.392	0.707	0.141	
150.00 125.00			C	0.182	2,657	0.587	0.825	Ť	4.972			
T5	0.106	0.212	Ă	0.403	2.058	0.653	0.825	í	11.576	0.726	0.145	А
125.00-120.00		0.2.1	B	0.169	2,704	0.585	0.825	i	4,841	0.120	01110	
			Ċ	0.182	2.656	0.587	0.825	î	5.364			
Т6	0.525	1.382	A	0.389	2.085	0.647	0.825	1	54.915	3,383	0.169	A
120.00-100.00			В	0.222	2.525	0.595	0.825	1	32,733			
· · · · ·			C	0.197	2.608	0.59	0.825	1	30.431			
T7	0.716	2.073	A	0.374	2.117	0.641	0.825	1	64.313	3.798	0.190	A
100.00-80.00			В	0.295	2,308	0.615	0.825	1	51.688			
			C	0.234	2.485	0.598	0.825	1	43.463			
T8	0,244	0.721	A	0.326	2.229	0.624	0.825	1	20.483	1.216	0.182	A
80.00-73.33			В	0.259	2.411	0.604	0.825	1	16.576			
			C	0.197	2.606	0.59	0.825	1	13.474			
T9	0.253	0.972	A	0.341	2.194	0.629	0.825	1	22.940	1.307	0,196	A
73.33-66.67			B	0.29	2,323	0.613	0.825		19.840			
710	0.254	0.000	C	0.228	2,505	0.597	0.825	1	16.534	1 202	0.107	
T10 66.67-60.00	0.254	0.998	A B	0.329 0.282	2.222 2.345	0.625 0.611	0.825		23,241	1,303	0.195	A
00.07-00.00			C	0.282	2.545	0.595	0.825 0.825	1	20.244 16.892			
T11	0.383	1.354	A	0.222	2.323	0.593	0.825		32.073	1.802	0.180	А
60.00-50.00	0.505	1.554	B	0.292	2.315	0.015	0.825	1	27.176	1.002	0.100	A
00.00 50,00			Ĉ	0.183	2.654	0.587	0.825	i i	21.905	1		
T12	0.384	1.565	Ă	0.296	2.306	0.615	0.825	i î	35.179	1.856	0.186	А
50.00-40.00			В	0.251	2,435	0.602	0.825	1	30.393		01100	
			С	0.197	2.606	0.59	0.825	1	25.375			
T13	0.384	1.741	A	0.284	2.34	0.611	0.825	1	35.661	1.777	0.178	Α
40.00-30.00			В	0.241	2,465	0.6	0.825	1	30.923			
			С	0.191	2.627	0.589	0.825	1	26.013			
T14	0.384	2.026	Α	0,294	2,312	0.614	0.825	-1	39.768	1,926	0.193	А
30.00-20.00			В	0.257	2.418	0.604	0.825	1	35.508			
			С	0.213	2.554	0.593	0.825	1	31,122			
T15	0.192	0.907	A	0.279	2.352	0.61	0.825	. <u>I</u>	18.394	0.906	0.181	A
20.00-15.00			В	0.243	2.459	0.6	0.825	1	16.170			
		0.00-	C	0,201	2,594	0,591	0.825	1	13,872			
T16	0.192	0.995	A	0.29	2.322	0.613	0.825	1	19.944	0.970	0.194	А
15.00-10.00			B	0.254	2,426	0.603	0.825	1	17.620			
	0.164	1.000	C	0.211	2.559	0.593	0.825	1	15.208	1 4440	0.1.00	
T17 10.00-0.00	0.154	1,983	A	0.178	2.671	0.586	0.825	4	28.219	1.578	0.158	А
10,00-0.00			B C	0.163	2.723 2.786	0.584 0.581	0.825	1	26.427			
Sum Weight:	4.545	17.879	U	0.146	2.100	0.581	0.825	OTM	24.504 1833.925	25,724		
Sum weight:	4.545	1/0/9						OTM	1833.925 kip-ft	23.124		
									Kipen			

Tower Forces - No Ice - Wind 60 To Face

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page	
	152' ROHN SSV Tower	24 of 55	
Project		Date	
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14	
Client	Marinian Orgint and ATAT (O.A. Furtheritan	Designed by	
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD	

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	W	Ctrl
Elevation	Weight	Weight	а								1	Face
			С									
ft	K	K	e						ft^2	K	klf	
T1	0.081	0.335	A	0.251	2.436	0.602	0.8	1	13.337	1,041	0.087	A
152.00-140.00			B	0.17	2.701	0.585	0.8	1	9.396			
	0.000	0.011	C	0,16	2.736	0.583	0.8	1	9,058	0.710	0.1.40	
T2	0.088	0.211	A	0.473	1.937	0.684	0.8	1	11.641	0.710	0.142	А
140,00-135,00			B	0.195	2,611	0.589	0.8	1	4.677			
77.2	0.102	0.104	C	0.182	2.659	0.587	0.8		4.510	0.701	0.1.40	
T3 135.00-130.00	0 102	0.184	A	0.441	1.989	0.669	0.8	1	11.311	0.701	0.140	A
135.00-130.00			B	0.164	2,721	0.584	0.8		4.054	1		
	0.105	0.010	C	0.191	2,626	0.589	0.8		4.822	0.704	0.1.11	
T4	0.105	0,219	A	0.416	2,033	0.658	0,8	I	11.245	0.704	0,141	А
130_00-125_00			B	0.165	2.717	0.584	0.8		4,339			
TE	0.100	0.212	C	0.182	2.657	0.587	0.8	1	4.901	0.700	0.146	
T5	0.106	0.212	A	0.403	2.058	0.653	0.8		11,529	0.723	0.145	A
125.00-120.00			B	0.169	2,704	0.585	0.8		4.776			
TT (0.525	1 202	C	0.182	2,656	0.587	0.8		5.282	2.244	0.1/7	
T6 120,00-100.00	0.525	1,382	A	0.389	2.085	0.647	0.8	4	54.281	3,344	0.167	A
120,00-100,00			B	0.222	2.525 2.608	0.595 0.59	0.8	1	32.044			
Т7	0,716	2,073	C	0.197 0.374	2.008	0.641	0.8 0.8	1	29.660 63.415	3.745	0.107	
100.00-80.00	0,710	2,075	A B					1		3,743	0.187	A
100.00-80.00				0.295	2.308	0.615	0.8		50.732			
TO	0.244	0.721	C	0.234	2,485	0,598	0.8		42.387	1 200	0.100	
T8	0.244	0.721	A	0.326	2.229	0.624	0.8		20.205	1.200	0.180	А
80.00-73,33			B	0.259	2,411	0.604	0.8		16.286			
TO	0.252	0.072	C	0.197	2.606	0.59	0.8	1	13.149	1 207	0.102	
T9	0.253	0,972	A	0.341	2.194	0.629	0.8		22.591	1_287	0.193	А
73.33-66.67			B	0.29	2.323	0,613	0.8	1 2	19.476			
T10	0.254	0.008	C	0.228	2.505	0.597	0.8	1	16.127	1 392	0.102	
T10 66.67-60.00	0.254	0,998	A	0.329	2.222 2.345	0,625	0.8	4	22,880	1.283	0.192	A
00.07-00.00			B	0.282		0.611	0.8	1	19.869			
771.1	0.202	1 254	C	0.222	2.525	0.595	0.8	1	16.474	1 777	0.179	
T11 60.00-50.00	0.383	1.354	A B	0.292	2.319 2.46		0.8	1	31.613 26.704	1.777	0,178	A
60.00-50.00			в С	0.242	2.654	0.6 0.587	0.8 0.8	1				
T12	0.384	1.565	A	0.183 0.296	2.034	0.387	0.8	1	21.381 34.628	1.827	0.183	А
50.00-40.00	0,364	2006-1	B	0.290	2.300	0.602	0.8	1	29.825	1.027	0.165	A
50.00-40.00			С	0.197	2.435	0.002	0.8	1	29.823			
T13	0.384	1.741	A	0.197	2.000	0.611	0.8	1	35.092	1.749	0.175	А
40.00-30.00	0.364	1.741	B	0.284	2.34	0.611	0.8	1	30.337	1.749	0.175	A
40.00-30.00			Б С	0.241	2.627	0.589	0.8	i	25.370			
T14	0.384	2,026	A	0.191	2.027	0.589	0.8	1	39.077	1.892	0.189	А
30.00-20.00	0,004	2,020	B	0.257	2.418	0.604	0.8	1	34.785	1.072	0.107	A
30.00-20.00			С	0.237	2.554	0.593	0.8	÷.	30.325			
T15	0.192	0.907	A	0.279	2.354	0.595	0.8	i	18.210	0.897	0.179	А
20.00-15.00	0.192	0.907	B	0.273	2.352	0.01	0.8	i	15.972	0.057	0.179	A
20.00-13.00			В С		2.439	0.591	0.8					
T16	0.192	0.995		0.201 0.29	2.394	0.591	0.8	1	13.639 19.715	0.959	0.192	А
15.00-10.00	0.192	0.993	A B	0.29	2.322	0.603	0.8	1	19.715	0.939	0.192	А
13.00-10.00						0.593						
T17	0,154	1.983	C	0.211 0.178	2.559 2.671	0.593	0.8		14.935	1-542	0.154	A
T17	0.134	1.765	A				0.8	1	27.560	1.542	0.1.54	А
10.00-0.00			B C	0.163	2.723	0.584	0.8		25.763			
Same Miles	1 5 45	17.070	L	0.146	2.786	0.581	0.8	OTM	23.819	25.200		
Sum Weight:	4.545	17.879						OTM	1812,892	25.380		
1		J							kip-ft			

Tower Forces - No Ice - Wind 90 To Face

tnx	Tower
tnx	Tower

URS Corporation 500 Enterprise Drive, Suite 3B	
Rocky Hill, CT 06067	
Phone: 860-529-8882	
FAX: 860-529-3991	

T	Job		Page
Tower		152' ROHN SSV Tower	25 of 55
Componation	Project		Date
Corporation rise Drive, Suite 3B		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Hill, CT 06067 : 860-529-8882 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Face
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} 135,00-130.00 \\ T4 \\ 0,105 \\ 0,219 \\ A \\ 0,105 \\ 0,219 \\ A \\ 0,219 \\ A \\ 0,416 \\ 2,033 \\ 0,658 \\ 0,85 \\ 0,85 \\ 0,85 \\ 1 \\ 11,319 \\ 0,85 \\ 1 \\ 4,445 \\ 1 \\ 1,319 \\ 0,709 \\ 0,142 \\ 0,85 \\ 1 \\ 1,319 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,709 \\ 0,142 \\ 0,85 \\ 1 \\ 1,319 \\ 0,005 \\ 0,85 \\ 1 \\ 1,622 \\ 0,729 \\ 0,146 \\ 0,85 \\ 1 \\ 1,622 \\ 0,729 \\ 0,146 \\ 0,85 \\ 1 \\ 0,85 \\ 1 \\ 0,85 \\ 1 \\ 0,85 \\ 1 \\ 0,85 \\ 1 \\ 0,85 \\ 1 \\ 0,85 \\ 1 \\ 0,193 \\ 0,193 \\ 0,185 \\ 0,185 \\ 0,185 \\ 0,193 \\ 0,185 \\ 0,185 \\ 0,185 \\ 0,185 \\ 0,185 \\ 0,193 \\ 0,185 $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} 130,00-125,00 \\ & & & & & B \\ & & & & C \\ T5 \\ 0,106 \\ 125,00-120,00 \\ & & & & B \\ 0,106 \\ 125,00-120,00 \\ & & & & B \\ 0,169 \\ C \\ 0,182 \\ 2,656 \\ 0,587 \\ 0,85 \\ 0,85 \\ 0,85 \\ 1 \\ 0,85 \\ 0,85 \\ 1 \\ 11,622 \\ 0,729 \\ 0,146 \\ 0,85 \\ 1 \\ 10,85 \\ 0,85 \\ 1 \\ 10,85 \\ 0,85 \\ 1 \\ 10,85 \\ 0,85 \\ 1 \\ 10,85 \\ 1 \\ 0,193 \\ 100,00-80,00 \\ 1 \\ 100,00-80,00 \\ 1 \\ 100,00-80,00 \\ 1 \\ 100,00-80,00 \\ 1 \\ 100,00-80,00 \\ 1 \\ 100,00-80,00 \\ 1 \\ 100,00-80,00 \\ 1 \\ 100,00-80,00 \\ 1 \\ 1 \\ 100,00-80,00 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} 125.00-120.00 \\ & & & & & B \\ & & & & C \\ & & & & & C \\ & & & & & 0.169 \\ & & & & & C \\ & & & & 0.182 \\ & & & & 0.182 \\ & & & & 2.656 \\ & & & 0.587 \\ & & & 0.85 \\ \hline & & & 1 \\ & & & 5.446 \\ & & & 5.550 \\ \hline & & & & 3.422 \\ & & & 0.222 \\ & & & 2.525 \\ & & 0.595 \\ \hline & & & 0.85 \\ \hline & & & & 3.422 \\ & & & & 0.711 \\ \hline & & & & B \\ & & & 0.222 \\ & & & & 0.595 \\ \hline & & & & & 0.85 \\ \hline & & & & & 0.222 \\ \hline & & & & & 0.197 \\ \hline & & & & & 0.716 \\ \hline & & & & & & 0.716 \\ \hline & & & & & & 0.374 \\ \hline & & & & & 0.374 \\ \hline & & & & & 0.273 \\ \hline & & & & & & 0.234 \\ \hline & & & & & & 0.234 \\ \hline & & & & & & & 0.234 \\ \hline & & & & & & & 0.234 \\ \hline & & & & & & & 0.234 \\ \hline & & & & & & & & 0.234 \\ \hline & & & & & & & & 0.85 \\ \hline & & & & & & & & 0.234 \\ \hline & & & & & & & & & 0.85 \\ \hline & & & & & & & & & 0.234 \\ \hline & & & & & & & & & & 0.85 \\ \hline & & & & & & & & & & & & 0.85 \\ \hline & & & & & & & & & & & & & & & & & &$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
120,00-100,00 B 0.222 2.525 0.595 0.85 1 33,422 T7 0.716 2.073 A 0.374 2.117 0.641 0,85 1 31.202 T7 0.716 2.073 A 0.374 2.117 0.641 0,85 1 65.211 3.851 0.193 100.00-80,00 B 0.295 2.308 0.615 0.85 1 52.645 0.193 T8 0.244 0.721 A 0.326 2.229 0.624 0.85 1 20.761 1.233 0.185 80.00-73.33 B 0.259 2.411 0.604 0.85 1 16.865	A
T7 0.716 2.073 A 0.374 2.117 0.641 0.85 1 31.202 100.00-80.00 B 0.295 2.308 0.615 0.85 1 65.211 3.851 0.193 100.00-80.00 B 0.295 2.308 0.615 0.85 1 52.645 52.645 T8 0.244 0.721 A 0.326 2.229 0.624 0.85 1 20.761 1.233 0.185 80.00-73.33 B 0.259 2.411 0.604 0.85 1 16.865 1	
T7 0.716 2.073 A 0.374 2.117 0.641 0.85 1 65.211 3.851 0.193 100.00-80,00 B 0.295 2.308 0.615 0.85 1 52.645 5 C 0.234 2.485 0.598 0.85 1 44,538 5 T8 0.244 0.721 A 0.326 2.229 0.624 0.85 1 20.761 1.233 0.185 80.00-73.33 B 0.259 2.411 0.604 0.85 1 16.865 5	
100.00-80.00 B 0.295 2.308 0.615 0.85 1 52.645 C 0.234 2.485 0.598 0.85 1 44,538 T8 0.244 0.721 A 0.326 2.229 0.624 0.85 1 20.761 1.233 0.185 80.00-73.33 B 0.259 2.411 0.604 0.85 1 16.865	A
C 0.234 2.485 0.598 0.85 1 44,538 T8 0.244 0.721 A 0.326 2.229 0.624 0.85 1 20.761 1.233 0.185 80.00-73.33 B 0.259 2.411 0.604 0.85 1 16.865	
80.00-73.33 B 0.259 2.411 0.604 0.85 1 16.865	
	A
C 0.197 2.606 0.59 0.85 1 13.798	
T9 0.253 0.972 A 0.341 2.194 0.629 0.85 1 23.290 1.327 0.199	A
73.33-66.67 B 0.29 2.323 0.613 0.85 1 20.204	
TIO 0.254 0.000 C 0.228 2.505 0.597 0.85 1 16.940	
T10 0.254 0.998 A 0.329 2.222 0.625 0.85 1 23.603 1.323 0.198 66.67-60.00 B 0.282 2.345 0.611 0.85 1 20.619 1.323 0.198	A
66.67-60.00 B 0.282 2.345 0.611 0.85 1 20.619 C 0.222 2.525 0.595 0.85 1 17.309	
T11 0.383 1.354 A 0.292 2.319 0.613 0.85 1 32.532 1.828 0.183	A
60.00-50.00 B 0.242 2.46 0.6 0.85 1 27.648	
C 0.183 2.654 0.587 0.85 1 22.429	
T12 0.384 1.565 A 0.296 2.306 0.615 0.85 1 35.730 1.885 0.189	A
50,00-40.00 B 0.251 2,435 0.602 0,85 1 30.962	
C 0.197 2.606 0.59 0.85 1 26.001	
T13 0.384 1.741 A 0.284 2.34 0.611 0.85 1 36.230 1.806 0.181	A
40.00-30.00 B 0,241 2,465 0.6 0.85 1 31.509	
C 0.191 2.627 0.589 0.85 1 26.656	
T14 0.384 2.026 A 0.294 2,312 0.614 0.85 I 40.458 1.959 0,196	A
30,00-20.00 B 0.257 2.418 0.604 0.85 1 36.230	
C 0.213 2.554 0.593 0.85 1 31.918	
T15 0.192 0.907 A 0.279 2.352 0.61 0.85 I 18.577 0.915 0.183	A
20.00-15.00 B 0.243 2.459 0.6 0.85 1 16.368	
C 0.201 2.594 0.591 0.85 1 14.105 T16 0.192 0.995 A 0.29 2.322 0.613 0.85 1 20.173 0.981 0.196	
T16 0.192 0.995 A 0.29 2.322 0.613 0.85 1 20.173 0.981 0.196 15.00-10.00 B 0.254 2.426 0.603 0.85 1 17.861 0.196	A
C 0.211 2.559 0.593 0.85 1 15.480	
T17 0.154 1.983 A 0.178 2.671 0.586 0.85 1 28.878 1.615 0.162	A
10.00-0.00 B 0.163 2.723 0.584 0.85 1 27.091	
C 0.146 2.786 0.581 0.85 1 25.189	
Sum Weight: 4.545 17.879 OTM 1854,958 26.068	
kip-ft	

Tower Forces - With Ice - Wind Normal To Face

tnx1

URS Corporation 500 Enterprise Drive, Suite 3B
Rocky Hill, CT 06067
Phone: 860-529-8882
FAX: 860-529-3991

	Job		Page
Tower		152' ROHN SSV Tower	26 of 55
Corporation	Project		Date
rise Drive, Suite 3B		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Hill, CT 06067	Client		Designed by
: 860-529-8882 860-529-3991		Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	w	Ctrl.
Elevation	Weight	Weight	a	Ŭ	Ur I	31 K	27	DR	III E	1		Face
	0	0	с									
ft	K	K	е						ft^2	. <i>K</i>	klf	
T1	0.218	0.649	A	0.371	2.124	0.64	1	1	21.361	1.090	0,091	A
152.00-140.00			В	0.259	2.41	0.604	1	1	15.302			
			С	0,25	2,439	0.602	1	1	15,298			
T2	0.232	0.358	A	0.682	1.776	0.807	1	1	19.890	0.834	0.167	A
140.00-135.00			B	0.292	2.317	0.614	1	1	7.485			
	0.070	0.000	C	0.277	2.358	0.609	1	1	7.609	0.001	0.1.77	
T3	0.273	0.298	A	0.654	1.78	0.788	1	1	19,975	0.831	0,166	A
135.00-130.00			B	0.249	2.441 2.314	0.602	1	1	6.500			
T4	0.279	0.226	C	0.293	1.793	0.614 0.765	1	1	8,183	0.914	0.162	
130.00-125.00	0,279	0.336	A B	0.619 0.254	2.426	0.703	1	1	19.638 7.028	0.814	0.163	A
130.00-123.00			Б С	0.234	2.351	0.603	1	1	8.310			
T5	0.282	0.344	A	0.598	1.805	0.752	i	1	19.891	0.820	0.164	A
125.00-120.00	0,202	0.544	B	0.255	2.422	0.603	- î.	i	7.634	0.020	0.104	
120.00 120.00			Č	0.276	2.362	0.609	í	î	8,800			
Т6	1.386	2.086	Ă	0.557	1.837	0.728	i	Î.	89.206	3,632	0.182	A
120.00-100.00			B	0.304	2.285	0.617		i	49.018	21032	01102	
			C	0.269	2.383	0.607	ű.	1	46.950			
T7	1.901	3.212	Α	0.523	1.871	0.71	1	1	100.512	3.936	0.197	A
100.00-80.00			В	0.406	2.052	0.654	1	1	77.579			
			С	0.316	2,254	0.621	1	1	65.370			
T8	0.649	1.038	Α	0.461	1.955	0.679	1	1	32.016	1.251	0.188	A
80.00-73.33			В	0.361	2.145	0.637	1	- I	25.042			
			С	0.267	2.387	0,606	1	1	20.325			
Т9	0.676	1.409	А	0.474	1.936	0.684	1	1	35,240	1.329	0.199	A
73.33-66.67			В	0.402	2.06	0.652	1	1	29.875			
			С	0,308	2,274	0.618	1	1	24.780			
T10	0.678	1.450	А	0.458	1.961	0.677	1	1	35.582	1.320	0.198	A
66.67-60.00			В	0,391	2.082	0.648	1	1	30.457			
			С	0.3	2.296	0.616	1	1	25.299			
T11	1.025	1.856	A	0.411	2.043	0.656		1	49.375	1.834	0.183	A
60.00-50.00			B	0.337	2,203	0.628		1	40.673			
TT10	1.020	2 2 1 2	С	0,245	2,454	0.6			32.568	1.072	0.107	
T12 50.00-40.00	1.030	2.213	A B	0,413 0.345	2,038 2.183	0.657 0.631	4	1	53,530	1.873	0.187	A
50.00-40.00			Б С	0.343	2.185	0.606		1	45.066 37.627			
T13	1.032	2.411	A	0.396	2.073	0.65		공	54.070	1.790	0.179	А
40.00-30.00	1.052	2.711	B	0.331	2.217	0.626	i		45.758	1,790	0.175	А
40.00-50.00			C	0.257	2.416	0.604	- i	1	38.721			
T14	1.032	2.946	Ă	0.402	2.059	0.653	÷.	Ť	58.978	1.908	0.191	А
30.00-20.00	11032	210 10	В	0.349	2.175	0.632	1	Ť	51.924	1,000	0.171	
			c	0.287	2.332	0.612	1	î	46.054			
T15	0.516	1.349	Ă	0.383	2.099	0.645	1	1	26.816	0.884	0.177	А
20.00-15.00			В	0.33	2.22	0.625	1	1	23.084			
			С	0.269	2.382	0.607	1	1	19.941			
T16	0.516	1.476	Α	0.397	2.07	0.65	1	1	29.280	0.952	0,190	А
15.00-10.00			В	0.343	2.188	0.63	1	1	25.244			
			С	0,281	2.349	0,61	1	1	21.794			
T17	0.413	2.705	Α	0.229	2.502	0.597	1	1	39.842	1.566	0.157	А
10.00-0.00			В	0.206	2.575	0.592	1	1	36.905			
			С	0.181	2.662	0.587	1	1	34,314			
Sum Weight:	12.139	26.137						OTM	1945.221	26.664		
									kip-ft			

Tower Forces - With Ice - Wind 45 To Face

tnxTo

URS Corporation	
500 Enterprise Drive, Suite 3B	
Rocky Hill, CT 06067	
Phone: 860-529-8882	
FAX: 860-529-3991	

1	Job		Page
ower		152' ROHN SSV Tower	Fower 27 of 55 Date 11:46:06 07/15/14 Designed by Designed by
un quation	Project		Date
rporation Drive, Suite 3B		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
l, CT 06067	Client		Designed by
0-529-8882)-529-3991	J	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

1	Section	Add	Self	F	e	C_F	R_R	D_F	D_R	AE	F	w	Ctrl.
	Elevation	Weight	Weight	a	C	UF	INR.	Dr		116	1	WV III	Face
	Bieration	in eight	in eight	c									1 400
	ft	K	Κ	e						ft^2	K	klf	
ł	Tl	0,218	0.649	Α	0.371	2.124	0.64	0.825	1	20,431	1.043	0.087	A
	152.00-140.00			В	0.259	2.41	0.604	0.825	1	14.210			
				C	0.25	2,439	0.602	0.825	1	13.978			
	T2	0.232	0.358	A	0.682	1.776	0.807	0.825	1	19.668	0.825	0.165	A
1	140.00-135.00			В	0,292	2.317	0.614	0.825	1	6.992			
				C	0.277	2.358	0.609	0.825	1	6.901			
	T3	0.273	0.298	A	0.654	1.78	0.788	0.825	1	19.729	0.821	0.164	A
ł	135.00-130.00			B	0.249	2.441	0.602	0.825	1	6.157			
	T4	0.279	0.226	C	0.293 0.619	2.314	0.614 0.765	0.825 0.825	1	7.590	0.901	0.171	
	130,00-125.00	0.279	0.336	A B	0.819	1.793 2.426	0.765	0.825	1	19.370 6.673	0.803	0.161	A
	130,00-123.00			Б С	0.234	2.420	0.605	0.825	1	7.697			
	Т5	0.282	0.344	A	0.28	1.805	0.752	0.825	1	19.570	0.807	0.161	А
	125.00-120.00	0.202	0.544	B	0.255	2.422	0.603	0.825	Ē	7.199	0.807	0.101	^
	125.00-120.00			č	0.235	2.362	0.609	0.825	î	8.108			
	Т6	1,386	2.086	A	0.557	1.837	0.728	0.825	1	84.365	3.435	0.172	A
	120.00-100.00	1500	21000	В	0.304	2.285	0.617	0.825	i î	43,918	5	0.172	
				C	0.269	2.383	0.607	0.825	Î.	40.686			
	T7	1.901	3.212	Α	0.523	1.871	0.71	0.825	1	94.118	3.685	0.184	А
	100,00-80.00			В	0.406	2.052	0,654	0.825	1	70.882			
				С	0.316	2.254	0.621	0.825	1	57,118			
	Т8	0.649	1.038	Α	0.461	1.955	0.679	0.825	1	29.960	1,171	0.176	A
	80.00-73,33			В	0.361	2.145	0.637	0.825	E	22,975			
				С	0.267	2.387	0.606	0.825	1	17.784			
	T9	0.676	1.409	Α	0.474	1.936	0.684	0.825	1	32.751	1.235	0.185	А
	73.33-66.67			В	0.402	2.06	0.652	0.825	1	27.349			
				С	0.308	2.274	0.618	0.825	1	21.705			
	T10	0.678	1.450	А	0.458	1.961	0.677	0.825	1	33.014	1.225	0.184	А
	66.67-60.00			В	0.391	2.082	0.648	0.825	1	27.857			
				С	0.3	2.296	0.616	0.825	1	22.146			
	T11	1.025	1.856	A	0.411	2.043	0.656	0.825	1	45.970	1.707	0.171	А
	60.00-50.00			B	0.337	2.203	0.628	0.825	1	37.304			
	T10	1.020	2 2 1 2	C	0.245	2,454	0.6	0.825	1	28.492	1 724	0.172	
	T12 50.00-40.00	1.030	2.213	A B	0.413 0.345	2.038 2.183	0.657	0.825	1	49.561	1.734	0.173	А
	50.00-40.00			в С	0.345	2.185	0.631 0.606	0.825	1	41.076			
	T13	1.032	2.411	A	0.204	2.073	0.000	0.825	1	32.876 49.973	1.655	0.165	А
	40.00-30.00	1.052	2,711	B	0.331	2.217	0.626	0.825	1	41.643	1,055	0.105	^
	10.00 50.00			Č	0.257	2.416	0.604	0.825	î	33.855			
	T14	1.032	2,946	Ă	0.402	2.059	0.653	0.825	1	54.240	1.755	0.175	А
	30.00-20.00		21210	B	0.349	2.175	0.632	0.825	1	47.007	1,55	9.175	
	20000			Ĉ	0.287	2.332	0.612	0.825	i	40,215			
	T15	0.516	1.349	Ă	0.383	2.099	0.645	0.825	i	25.650	0.846	0,169	А
	20.00-15.00			В	0.33	2,22	0.625	0.825	i	21.847			
				С	0.269	2.382	0.607	0.825	1	18.264			
	T16	0.516	1.476	A	0.397	2.07	0.65	0.825	1	27.763	0.903	0.181	А
	15.00-10.00			В	0.343	2.188	0.63	0.825	1	23.684			
				С	0.281	2.349	0.61	0.825	1	19.821			
	T17	0.413	2.705	А	0.229	2.502	0.597	0.825	1	35.047	1.378	0.138	А
	10,00-0.00			В	0.206	2.575	0.592	0.825	1	32.118			
				С	0.181	2.662	0.587	0.825	1	29.244			
	Sum Weight:	12,139	26.137						OTM	1845.630	25.026		
										kip-ft			

Tower Forces - With Ice - Wind 60 To Face

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	28 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client		Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	w	Ctrl.
Elevation	Weight	Weight	a	Ű		118	Dr	DR	112			Face
		0	c									
ft	K	K	e						ft^2	K	klf	
T1	0.218	0.649	A	0.371	2.124	0.64	0.8	1	20,298	1.036	0.086	A
152.00-140.00			В	0.259	2.41	0.604	0.8	1	14.054			
			C	0.25	2.439	0.602	0.8	1	13,790			
T2	0.232	0.358	A	0.682	1.776	0.807	0.8	1	19.636	0.824	0.165	A
140.00-135.00			B	0.292	2.317	0.614	0.8	1	6.922			
			C	0.277	2.358	0.609	0.8	1	6.799			
Т3	0.273	0.298	A	0.654	1.78	0.788	0.8	1	19,694	0.819	0.164	A
135.00-130.00			B	0,249	2.441	0.602	0.8	1	6,108			
	0.270	0.227	C	0.293	2.314	0.614	0.8	1	7.505	0.001	0.1/0	
T4 130.00-125.00	0.279	0,336	A	0.619	1.793	0.765	0.8	1	19,331	0,801	0,160	A
130.00-125.00			B C	0.254	2.426 2.351	0.603	0.8		6.622			
T5	0,282	0.344	A	0.28 0.598	1.805	0.61 0.752	0.8 0.8	Î	7.610	0.805	0.161	
125.00-120.00	0,202	0.344	B	0.398	2.422	0.603	0.8	1	7.137	0.803	0.101	A
125.00-120.00			C	0.235	2.362	0.609	0.8	1	8.009			
Т6	1.386	2.086	A	0.557	1.837	0.728	0.8	i i	83.674	3.407	0.170	А
120.00-100.00	1.500	2.000	B	0.304	2.285	0.617	0.8	l î	43,189	5.407	0,170	А
120,00 100.00			c	0.269	2.383	0.607	0.8	i î	39.791			
T7	1.901	3.212	Ā	0.523	1.871	0.71	0.8	i	93.204	3,650	0.182	А
100.00-80.00	10.01	-	B	0.406	2.052	0.654	0.8	1	69.926	5,050	0.102	
			C	0,316	2.254	0.621	0.8	1	55.939			
Т8	0.649	1.038	A	0.461	1.955	0.679	0.8	1	29,667	1.159	0.174	А
80.00-73.33			В	0.361	2.145	0.637	0.8	1	22.680			
			C	0.267	2.387	0.606	0,8	I	17.421			
Т9	0.676	1.409	A	0.474	1.936	0.684	0,8	1	32.396	1.222	0.183	Α
73,33-66.67			В	0.402	2.06	0.652	0.8	1	26.989			
			C	0,308	2.274	0,618	0.8	1	21.266			
T10	0.678	1.450	A	0,458	1.961	0.677	0.8	1	32.647	1.211	0.182	А
66.67-60.00			В	0.391	2.082	0.648	0.8	1	27,485			
			C	0.3	2,296	0.616	0.8	12	21.696			
T11	1.025	1.856	A	0.411	2.043	0.656	0.8	I.	45.483	1.689	0.169	А
60.00-50.00			B	0_337	2,203	0,628	0.8	I	36.823			
	1 0 2 0		C	0.245	2.454	0.6	0.8	1	27,910			
T12	1.030	2.213	A	0.413	2.038	0.657	0.8	1	48.994	1.714	0.171	А
50.00-40.00			B	0.345	2.183	0.631	0.8		40.505			
T13	1.032	2.411	C A	0.264 0.396	2.396 2.073	0.606 0.65	0.8 0.8	5	32,197	1.635	0.164	
40.00-30.00	1.052	2,411	B	0.396	2.073	0.63	0.8		49.388 41.055	1.035	0.104	A
40.00-30.00			Б С	0.331	2.217	0.604	0.8	1	33.160			
T14	1.032	2.946	A	0.402	2.059	0.653	0.8	1 T	53.563	1.733	0.173	А
30.00-20.00	1.052	2.540	B	0.349	2.175	0.632	0.8	i	46.305	1.755	0.175	~
50.00-20.00			C	0.287	2.332	0.632	0.8	1	39,381			
T15	0,516	1,349	Ă	0.383	2.099	0.645	0.8	i	25.484	0.840	0.168	А
20.00-15.00	01010	1.5 15	В	0.33	2.22		0.8	i i	21_671	0.010	0.100	<i>/</i>
20.00 12.00			Č	0,269	2.382	0.607	0.8	î	18.024			
T16	0.516	1.476	Ă	0.397	2.07	0.65	0.8	1	27.547	0.896	0.179	А
15.00-10.00	510 10		B	0,343	2.188	0.63	0.8	1	23.461	0.070		
			Č	0.281	2.349	0.61	0.8	1	19.539			
T17	0.413	2.705	Ă	0.229	2.502	0.597	0.8	1	34,362	1,351	0.135	А
10.00-0.00			В	0.206	2.575	0.592	0.8	1	31.434	046.21		
			C	0.181	2.662	0.587	0.8	1	28.520			
Sum Weight:	12,139	26,137	2					OTM	1831.402	24.792		
2									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Job		Page 29 of 55
	152' ROHN SSV Tower	20 01 00
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client		Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	w	Ctrl.
Elevation	Weight	Weight	a	C		11%	Dr	DR	ITE .			Face
	6	0	с									
ft	K	K	е						ft^2	K	klf	
T1	0.218	0.649	Α	0.371	2,124	0.64	0.85	1	20.564	1.049	0.087	A
152.00-140.00			В	0.259	2.41	0.604	0.85	1	14.366			
			C	0.25	2,439	0,602	0.85	1	14.167			
T2	0.232	0.358	A	0.682	1.776	0.807	0.85	1	19.700	0.826	0.165	A
140.00-135.00			В	0,292	2.317	0.614	0.85	1	7.063			
			C	0.277	2.358	0.609	0.85	1	7.002			
T3	0.273	0.298	A	0.654	1.78	0.788	0.85	1	19.764	0.822	0.164	A
135.00-130.00			B	0.249	2.441	0.602	0.85	1	6,206			
Τ4	0.279	0.336	C	0.293 0.619	2,314	0.614	0.85		7.675	0.804	0.171	
T4 130.00-125.00	0.279	0.330	A B	0.254	1,793 2.426	0.765	0.85 0.85	1	19.408 6.724	0.804	0,161	A
130.00-123.00			с С	0.234	2.420	0.603	0.85	1	7.785			
Т5	0.282	0.344	A	0.28	1.805	0.752	0.85	i	19.616	0.809	0.162	A
125.00-120.00	0.202	0.544	B	0.255	2.422	0.603	0.85	1	7.261	0.007	0.102	
125.00-120.00			Č	0.235	2,362	0.609	0.85	i	8.207			
Т6	1.386	2.086	Ă	0.557	1.837	0.728	0.85	î	85.057	3.463	0.173	A
120.00-100.00			B	0.304	2,285	0.617	0.85	Î.	44.647	51105	0.775	
			С	0.269	2,383	0.607	0.85	1	41.581			
T7	1.901	3.212	Α	0.523	1.871	0.71	0.85	1	95.031	3.721	0,186	A
100.00-80.00			В	0.406	2.052	0.654	0.85	1	71.839			
			С	0.316	2.254	0.621	0.85	1	58.297			
Т8	0.649	1.038	Α	0.461	1,955	0.679	0.85	1	30,254	1,182	0.177	A
80.00-73.33			В	0.361	2.145	0.637	0.85	1	23.271			
			С	0.267	2,387	0.606	0.85	1	18.147			
Т9	0.676	1.409	A	0.474	1,936	0,684	0.85	1	33.107	1.248	0.187	A
73.33-66.67			В	0.402	2.06	0.652	0.85	1	27.710			
7710	0.670	1.450	C	0.308	2.274	0.618	0.85	1	22,144	1 000	0.107	
T10 66,67-60.00	0.678	1.450	A	0.458	1,961	0.677	0.85	L L	33.381	1.239	0.186	A
00.07-00.00			B C	0.391 0.3	2.082 2.296	0.648 0.616	0.85 0.85	1	28.228 22.597			
T11	1.025	1.856	A	0.3	2.290	0.616	0.85		46.456	1.725	0.173	A
60.00-50.00	1,025	1.050	B	0.337	2,203	0.628	0.85	1	37.785	1.725	0.175	^
00.00 50 00			C	0.245	2.454	0.020	0.85	i î	29.074			
T12	1.030	2.213	Ă	0.413	2.038	0.657	0.85	i î	50.128	1.754	0.175	А
50.00-40.00			В	0.345	2.183	0.631	0.85	1	41.646			
			С	0.264	2.396	0.606	0.85	1	33.555			
T13	1.032	2.411	Α	0.396	2.073	0.65	0.85	L.	50,558	1.674	0.167	A
40.00-30.00			В	0.331	2.217	0.626	0.85	1	42.231			
			С	0,257	2,416	0.604	0.85	I	34,550			
T14	1.032	2.946	А	0.402	2.059	0.653	0.85	1	54.917	1.777	0.178	А
30.00-20.00			В	0.349	2.175	0.632	0.85	1	47.709			
			С	0.287	2.332	0.612	0.85	- 1	41.049			
T15	0.516	1.349	A	0.383	2.099	0.645	0.85		25.817	0.851	0.170	A
20.00-15.00			В	0.33	2.22	0.625	0.85	1	22.024			
TT1 (0.516	1.477	С	0.269	2.382	0.607	0.85	1	18.504	0.010	0.100	
T16	0.516	1.476	A	0.397	2.07	0.65	0.85	1	27.980	0,910	0.182	А
15.00-10.00			B	0.343	2.188	0.63	0.85	공	23.907			
T17	0.413	2 705	C	0.281	2.349	0.61	0.85	1	20.103	1 405	0.140	
T17 10.00-0.00	0.413	2.705	A	0.229	2.502	0.597	0.85	1	35,732	1,405	0.140	А
10.00-0.00			B C	0.206 0.181	2.575 2.662	0.592 0.587	0.85	1	32.802 29.968			
Sum Weight:	12,139	26,137		0.101	2.002	0.387	0.03	OTM	1859.857	25.260		
oun weight.	12,137	20,137						UIM	kip-ft	25.200		
									Kip-It			

Tower Forces - Service - Wind Normal To Face

T	Job	Page
tnxTower	152' ROHN SSV Tower	30 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project 366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	w	Ctrl
Elevation	Weight	Weight	a	C C	CF	N _R	D_F	D_R	AE	1.	W	Face
Dictation	in eight	in orgini	c									Tucc
ft	K	K	е						ft^2	K	klf	
T1	0.081	0.335	A	0.251	2.436	0.602	1	1	14.490	0.391	0.033	A
152.00-140.00			В	0.17	2,701	0.585	1	1	10.673			
			C	0.16	2.736	0.583	1	1	10.468			
T2	0.088	0.211	A	0,473	1.937	0.684	1	1	12.020	0_254	0,051	A
140.00-135.00			В	0.195	2.611	0.589	1	1	5.261			
	6 1 7 8	0.101	C	0.182	2.659	0.587	1	1	5.218			
T3	0.102	0.184	A	0.441	1.989	0,669			11,583	0.248	0.050	A
135_00-130_00			B	0,164	2.721	0.584	1	1	4.461			
T4	0.105	0,219	C	0.191	2.626	0,589			5.363	0.250	0.060	
130.00-125.00	0.105	0,219	A B	0.416 0.165	2.033 2.717	0.658 0.584	1	1	11.542 4.763	0.250	0,050	A
130.00-123.00			В С	0.103	2.657	0.584	1	1	4.763			
Т5	0.106	0.212	A	0.182	2.057	0.587	1		11.902	0.258	0.052	A
125.00-120.00	0.100	0,212	B	0,403	2.038	0.585	1	1	5.296	0,236	0,052	A
125,00-120,00			C	0.182	2.656	0.587	1	1	5.940			
Т6	0.525	1,382	Ă	0.389	2.085	0.647	1	1.1	59.358	1.265	0.063	A
120.00-100.00	0.525	1,502	B	0.222	2.525	0.595	i	1	37.557	1.205	0.005	
120.00 100.00			Č	0.197	2.608	0.59	i	í	35.829			
Т7	0.716	2,073	Ă	0,374	2.117	0.641	î	î	70.601	1.443	0.072	A
100.00-80.00	4/4		B	0.295	2.308	0.615	ĩ	i	58.385		323.1	
			C	0,234	2.485	0.598	î	i i	50,992			
Т8	0.244	0.721	Α	0.326	2.229	0.624	1	1	22,430	0.461	0.069	A
80.00-73.33			В	0.259	2.411	0.604	1	1	18.603			
			С	0.197	2.606	0.59	1	1	15.746			
Т9	0.253	0,972	Α	0.341	2.194	0.629	Ť	1	25.390	0.500	0.075	A
73.33-66.67			В	0,29	2.323	0.613	1	1	22,390			
			С	0.228	2.505	0,597	1	1	19.378			
T10	0.254	0.998	Α	0.329	2.222	0,625	1	1	25.770	0.500	0.075	A
66.67-60.00			В	0.282	2.345	0,611	1	1	22.870			
			С	0.222	2,525	0.595	1	1	19.813			
T11	0.383	1.354	А	0.292	2,319	0.613	1	1	35.292	0.686	0.069	A
60.00-50.00			В	0.242	2.46	0.6	1	1	30.481			
			С	0.183	2.654	0.587	L.	- 1.	25,573			
T12	0,384	1,565	A	0.296	2.306	0.615		1	39.036	0.713	0.071	A
50.00-40.00			B	0.251	2,435	0.602	1	-	34,372			P
T13	0.384	1.741	C	0,197 0.284	2.606 2.34	0.59 0.611	1	1	29.756	0.694	0.068	
40.00-30.00	0.364	1.741	A B	0.284	2.54	0.611	1	1	39.642 35.025	0.684	0.008	A
40.00-30.00			ь С	0.191	2.627	0.589		- ÷	30.513			
T14	0.384	2.026	A	0.294	2.312	0.589	i i	1	44.602	0.747	0.075	А
30.00-20.00	0,504	2:020	B	0.257	2.418	0.604	÷.	- G	40,565	0.747	0.075	Λ
30.00 20.00			C	0.213	2.554	0.593	i.		36.698			
T15	0.192	0.907	Ă	0.279	2.352	0.61	i	1	19.680	0.335	0.067	А
20.00-15.00	0.172	0.207	B	0.243	2.459	0.6	i	4	17,556	0.555	0.007	
10100			C	0.201	2.594	0.591	i	- i	15.503			
T16	0.192	0.995	Ă	0.29	2.322	0.613	i	1	21.546	0.363	0.073	А
15.00-10.00		11	B	0.254	2.426	0.603	ĩ	1	19.304	0.00		
			Ĉ	0.211	2.559	0.593	1	1	17.117			
T17	0,154	1,983	Ă	0,178	2.671	0.586	1	1	32.830	0.635	0.064	А
10.00-0.00			В	0.163	2.723	0.584	Ē	1	31.075			
			C	0,146	2.786	0.581	1	ũ.	29.300			
Sum Weight:	4.545	17.879					100	OTM	685.522	9.735		
Ŭ									kip-ft			

Tower Forces - Service - Wind 45 To Face

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	31 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client		Designed by
1	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	W	Ctrl,
Elevation	Weight	Weight	a			~	i i	Â	2			Face
			c									
ft	K	K	е						ft^2	K	klf	
T1	0.081	0.335	A	0.251	2.436	0.602	0.825	1	13,481	0.364	0.030	A
152.00-140.00			B	0.17	2,701	0.585	0.825	1	9.555			
TO	0.000	0.011	C	0.16	2.736	0.583	0.825	1	9.234	0.245	0.040	
T2	0.088	0.211	A	0.473	1.937	0.684	0.825	1	11.688	0.247	0.049	А
140.00-135.00			B C	0.195	2.611	0.589	0.825		4.750			
Т3	0.102	0.184	A	0.182 0.441	2,659 1.989	0.587 0.669	0.825	1	4.599 11.345	0,243	0.049	А
135.00-130.00	0.102	0.164	B	0.441	2.721	0.584	0.825	i	4.104	0,245	0.049	A
155.00-150.00			C	0.104	2.626	0.589	0.825	- ÷	4.889			
T4	0.105	0.219	A	0.416	2.020	0.658	0.825	1	11.282	0.245	0.049	А
130_00-125.00	0.105	0.219	B	0.165	2.717	0.584	0.825	i î	4.392	0.245	0.047	~
150.00-125.00			Č	0.182	2.657	0.587	0.825	i î	4,972			
Т5	0.106	0.212	A	0.403	2.058	0.653	0.825	i	11.576	0,251	0.050	А
125.00-120.00	0.100	0.212	B	0.169	2.704	0.585	0.825	î	4.841	0,251	0,050	
			Ē	0.182	2.656	0.587	0.825	î	5,364			
Т6	0.525	1.382	A	0.389	2.085	0.647	0.825	1	54.915	1.171	0.059	А
120.00-100.00			В	0.222	2.525	0.595	0.825	1	32.733			
			C	0.197	2.608	0.59	0.825	1	30.431			
Т7	0.716	2.073	A	0.374	2,117	0.641	0.825	Î.	64.313	1,314	0.066	А
100.00-80.00			В	0.295	2.308	0.615	0.825	1	51.688	10		
			C	0.234	2.485	0.598	0.825	1	43.463			
Т8	0.244	0.721	A	0.326	2.229	0.624	0.825	1	20,483	0.421	0.063	А
80.00-73.33			В	0.259	2.411	0,604	0.825	1	16.576			
			C	0.197	2.606	0.59	0,825	1	13.474			
T9	0.253	0.972	A	0.341	2.194	0.629	0.825	1	22.940	0.452	0.068	Α
73.33-66.67			В	0.29	2.323	0.613	0.825	1	19.840			
			C	0,228	2,505	0,597	0.825	1	16.534			
T10	0,254	0.998	A	0,329	2.222	0.625	0.825	1	23.241	0.451	0.068	A
66.67-60.00			В	0.282	2.345	0.611	0.825	1	20.244			
			C	0.222	2.525	0,595	0.825	1	16.892			
T11	0.383	1.354	A	0.292	2.319	0.613	0.825	1	32.073	0.624	0,062	А
60.00-50.00		(i i i i i i i i i i i i i i i i i i i	B	0.242	2.46	0.6	0.825		27.176			
71.3	0.204	1.575	C	0.183	2.654	0.587	0.825		21.905	0.642	0.064	
T12 50.00-40.00	0,384	1.565	A B	0.296 0.251	2.306 2.435	0.615	0.825 0.825		35.179	0.642	0.064	А
50.00-40.00			В С	0.231	2.435	0.602	0.825	1	30,393 25,375			
T13	0.384	1.741	A	0.284	2.34	0.611	0.825	1	35.661	0.615	0.062	А
40.00-30.00	0.564	1,741	B	0.241	2.465	0.6	0.825	4	30.923	0.015	0.002	A
40.00-50.00			C	0.191	2.627	0.589	0.825		26.013			
T14	0.384	2.026	A	0.294	2.312	0.614	0.825	î.	39.768	0.666	0.067	А
30,00-20.00	0.001	2.020	B	0.257	2.418	0.604	0.825	1	35.508	0.000	0.007	
50100 20.00			č	0.213	2.554	0.593	0.825	1	31.122			
T15	0.192	0.907	Ā	0.279	2.352	0.61	0.825	î	18,394	0.314	0.063	А
20.00-15.00			В	0.243	2.459	0.6	0.825	1	16.170			
			Č	0.201	2,594	0.591	0.825	1	13.872			
T16	0.192	0.995	Ă	0.29	2.322	0.613	0.825	1	19.944	0.336	0.067	А
15.00-10.00			B	0.254	2.426	0.603	0.825	1	17.620		220	
			Ĉ	0.211	2.559	0.593	0.825	1	15.208			
T17	0.154	1.983	A	0,178	2.671	0.586	0.825	1	28.219	0.546	0.055	А
10.00-0.00			В	0.163	2.723	0.584	0.825	1	26.427			
			С	0.146	2.786	0.581	0.825	1	24.504			
Sum Weight:	4.545	17.879				~		OTM	634,576	8.901		
-									kip-ft			

Tower Forces - Service - Wind 60 To Face

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	32 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client		Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
ft	K	Κ	с е						ft^2	K	klf	
T1	0.081	0.335	A	0.251	2.436	0.602	0.8	1	13.337	0,360	0.030	A
152.00-140.00			В	0.17	2,701	0,585	0.8	1	9,396	25		
			C	0.16	2.736	0.583	0.8	E	9.058			
T2	0.088	0.211	A	0.473	1.937	0.684	0.8	I	11.641	0.246	0.049	A
140.00-135.00			В	0,195	2.611	0.589	0.8	1	4.677			
			C	0,182	2.659	0.587	0,8	1	4.510			
T3	0.102	0,184	A	0.441	1.989	0,669	0.8	1	11.311	0.243	0.049	A
135.00-130.00			В	0.164	2.721	0.584	0.8	1	4.054			
			C	0.191	2.626	0.589	0.8	1	4.822			
T4	0.105	0.219	A	0.416	2.033	0.658	0.8	1	11.245	0.244	0.049	A
130.00-125.00			B	0.165	2.717	0.584	0.8	1	4.339			
	0.100	0.010	C	0,182	2.657	0.587	0.8		4.901	0.050	0.050	
T5	0.106	0.212	A	0.403	2.058	0.653	0.8	1	11.529	0.250	0.050	A
125.00-120.00			B	0.169	2.704	0.585	0.8		4.776			
TT	0.525	1.382	C	0.182	2.656	0.587	0.8	1	5,282	1 1 6 7	0.050	
T6 120.00-100.00	0.525	1.382	A B	0.389	2.085	0.647 0.595	0.8 0.8	1	54.281	1.157	0.058	A
120.00-100.00			В С	0.222 0.197	2.525 2.608	0.595	0.8	1	32.044 29.660			
Т7	0.716	2.073	A	0.197	2.008	0.59	0.8	$\hat{1}$	63.415	1.296	0.065	A
100.00-80.00	0.710	2.075	B	0.374	2.308	0.615	0.8	1	50.732	1.290	0.005	A
100.00-80.00			C	0.233	2.485	0.598	0.8	1	42.387			
Т8	0.244	0.721	Ă	0.326	2.229	0.624	0.8	1	20.205	0.415	0,062	A
80.00-73.33	0.244	0.721	B	0.259	2.411	0.604	0.8	i	16.286	0.415	0.002	А
00.00 75.55			C	0.197	2.606	0.59	0.8	î	13.149			
Т9	0.253	0.972	Ă	0.341	2.194	0.629	0.8	1	22.591	0.445	0.067	A
73.33-66.67	01203	01772	B	0.29	2.323	0.613	0.8	1	19.476	0.110	0.007	
1.525			C	0.228	2.505	0.597	0.8	1	16.127			
T10	0.254	0.998	A	0.329	2.222	0.625	0.8	1	22.880	0.444	0.067	А
66.67-60.00			В	0,282	2.345	0.611	0.8	1	19.869			
			С	0.222	2.525	0,595	0.8	1	16.474			
T11	0.383	1.354	Α	0.292	2.319	0.613	0.8	1	31.613	0.615	0.061	Α
60.00-50.00		0.000	В	0.242	2.46	0.6	0.8	1	26,704		10	
			С	0.183	2.654	0.587	0.8	1	21.381			
T12	0.384	1.565	Α	0.296	2.306	0.615	0.8	1	34.628	0.632	0.063	А
50.00-40.00			В	0.251	2.435	0.602	0.8	1	29.825			
			С	0.197	2.606	0.59	0.8	1	24.749			
T13	0,384	1.741	Α	0.284	2.34	0.611	0.8	1	35.092	0.605	0.061	А
40.00-30.00			В	0.241	2.465	0.6	0.8	1	30.337			
			С	0.191	2.627	0.589	0.8	1	25.370			
T14	0.384	2.026	Α	0.294	2.312	0.614	0.8	1	39.077	0.655	0.065	А
30.00-20.00			В	0.257	2.418	0.604	0.8	1	34.785			
			С	0.213	2.554	0.593	0.8	1	30.325			
T15	0.192	0.907	A	0.279	2.352	0.61	0.8	1	18.210	0.310	0.062	А
20.00-15.00			В	0,243	2.459	0,6	0.8		15.972			
			С	0.201	2.594	0.591	0.8	1	13.639			
T16	0,192	0.995	A	0.29	2.322	0.613	0.8	1	19.715	0.332	0.066	A
15.00-10.00			B	0.254	2.426	0.603	0.8	1	17.379			
			C	0.211	2.559	0.593	0.8	1	14.935		0.075	
T17	0.154	1.983	A	0.178	2.671	0.586	0.8		27.560	0.533	0,053	А
10.00-0.00			B	0.163	2.723	0.584	0.8		25.763			
			С	0.146	2.786	0.581	0.8	1	23.819			
Sum Weight:	4.545	17.879						OTM	627,298	8.782		

Tower Forces - Service - Wind 90 To Face

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	33 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client		Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
C.	V	77	С						<i>c</i> ²		.16	
ft	<u>K</u>	K	e	0.051	0.406	0.000	0.05		ft^2	K	klf	
T1	0.081	0.335	A	0.251	2.436	0.602	0.85	1	13.625	0.368	0.031	A
152.00-140.00			B	0.17	2.701	0,585	0.85	1	9.715			
Т2	0.088	- 0.211	C	0.16 0.473	2.736	0.583 0.684	0.85	1	9.410	0.249	0.050	
140.00-135.00	0.066	0.211	A B	0.473	2.611	0.084	0.85	1	11.736 4.823	0.248	0,050	A
140.00-133.00			C	0.193	2.659	0.589	0.85		4.623			
Т3	0,102	0,184	Ă	0.182	1.989	0.669	0.85	1	11.379	0.244	0.049	A
135.00-130.00	0,102	0,104	B	0.164	2.721	0.584	0.85	i i	4.155	0.244	0.049	
155.00-150.00			C	0.191	2.626	0.589	0.85	1	4.957			
T4	0.105	0.219	Ă	0.416	2.033	0.658	0.85	Î Î	11.319	0.245	0.049	A
130.00-125.00	0.100	0.219	B	0.165	2.717	0.584	0.85	l î	4.445	0.245	0.042	
			Ĉ	0.182	2.657	0.587	0.85	i î	5.042			
Т5	0.106	0.212	Ā	0.403	2.058	0.653	0.85	- F	11.622	0.252	0.050	A
125.00-120.00			В	0.169	2.704	0.585	0,85	î	4.906	01202	01020	
			С	0.182	2.656	0.587	0.85	1	5.446			
Т6	0.525	1,382	A	0.389	2.085	0.647	0.85	1	55.550	1.184	0.059	A
120.00-100.00			В	0.222	2.525	0.595	0.85	1	33.422			
			С	0.197	2.608	0.59	0.85	1	31.202			
T7	0.716	2.073	A	0.374	2.117	0.641	0.85	1	65.211	1,333	0.067	A
100.00-80.00			В	0.295	2.308	0.615	0.85	1	52,645			
			C	0.234	2.485	0.598	0.85	1	44.538			
Т8	0.244	0.721	A	0.326	2.229	0.624	0.85	1	20.761	0.427	0.064	A
80.00-73.33			В	0.259	2.411	0.604	0.85	1	16.865			
			C	0.197	2.606	0.59	0.85	1	13,798			
Т9	0,253	0.972	A	0.341	2.194	0.629	0.85	1	23.290	0.459	0.069	A
73.33-66.67			В	0.29	2.323	0.613	0.85	1	20.204			
			C	0.228	2.505	0.597	0.85	1	16.940			
T10	0.254	0.998	A	0.329	2.222	0.625	0.85	1	23.603	0.458	0.069	A
66.67-60.00			B	0.282	2,345	0.611	0.85	1	20,619			
	0.000		C	0.222	2.525	0.595	0.85	1	17.309			
T11	0.383	1.354	A	0.292	2.319	0.613	0.85	1	32,532	0.633	0.063	А
60.00-50.00			B	0.242	2.46	0.6	0.85	1	27.648			
TT10	0.204	1.5(5	C	0.183	2.654	0.587	0.85	1	22.429	0.650	0.067	
T12 50.00-40.00	0.384	1.565	A	0.296	2.306 2.435	0.615	0.85	1	35.730	0.652	0,065	A
50.00-40.00			B	0.251	2,435	0.602	0.85	1	30.962			
T13	0.384	1.741	C A	0.197 0.284	2.606	0.59 0.611	0.85 0.85	1	26.001	0.625	0.0(2	
40.00-30.00	0.364	1.741	B	0.284	2.34	0.611	0.85	1	36.230 31.509	0.625	0.062	A
40.00-30.00			Б С	0.241	2.403	0.589	0.85	1	26.656			
T14	0.384	2.026	A	0.191	2.312	0.589	0.85	i	40.458	0.678	0.068	А
30.00-20.00	0,504	2:020	B	0.254	2.418	0.604	0.85	i	36.230	0.078	0.000	A
50.00-20.00			Ĉ	0.213	2.554	0.593	0.85	i	31.918			
T15	0.192	0.907	Ă	0.279	2.352	0.61	0.85	i	18,577	0.317	0.063	А
20.00-15.00	0.152	0.707	В	0.243	2.459	0.6	0.85	1	16.368	0.517	0.003	л
20.00-10.00			C	0.243	2.594	0.591	0.85	i i	14.105			
Т16	0.192	0.995	Ă	0.29	2,322	0.613	0.85	1	20,173	0.339	0.068	А
15.00-10.00	5.172	5.775	B	0.254	2.426	0.603	0.85	1	17.861	0.007	0.000	~
10.00 10.00			C	0.211	2.559	0.593	0.85	1	15.480			
T17	0.154	1.983	A	0.178	2.671	0.595	0.85	î	28.878	0.559	0.056	А
10.00-0.00	0,120,1		B	0.163	2.723	0.584	0.85	1	27.091	0.557	0.050	
			Č	0.146	2.786	0.581	0.85	1	25.189			
Sum Weight:	4.545	17.879						OTM	641.854	9.020		
0.00									kip-ft			

Force Totals

	Job	Page
tnxTower	152' ROHN SSV Tower	34 of 55
URS Corporation	Project	Date
500 Enterprise Drive, Suite 3B	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	Sum of Torques
Cube	10,000	X	Z	Moments, M_x	Moments, M ₂	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	7.490	State - State - State	And the state	and the second second	inp p	
Bracing Weight	10.389	No. S				
Total Member Self-Weight	17.879	THE CASE OF THE OWNER	garda ya "Ji	-14.558	2.671	사이 그 것은 것
Total Weight	30.749		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-14.558	2.671	STONE THE T
Wind 0 deg - No Ice	S. L. 2 8. 24	-0.048	-43.134	-3775.457	9.785	-7.307
Wind 30 deg - No Ice	Contamination (1997)	20.365	-35.543	-3158.744	-1790.387	-15.502
Wind 45 deg - No Ice		28.582	-28.763	-2564.776	-2521,905	-17.923
Wind 60 deg - No Ice		34.725	-20.149	-1804.714	-3073.679	-19.004
Wind 90 deg - No Ice	22003	40.813	0.048	-7.444	-3595.766	-18.421
Wind 120 deg - No Ice	· MARK SAL	37.157	21.608	1872.052	-3226.516	-14.022
Wind 135 deg - No Ice	1.12087.1.1108	28.650	28.831	2545.720	-2531.966	-7.659
Wind 150 deg - No Ice		20.448	35.591	3136.741	-1802.709	-2.919
Wind 180 deg - No Ice	And the second second	0.048	40.381	3578.075	-4,443	7.251
Wind 210 deg - No Ice	International	-20.365	35.543	3129.627	1795.729	15.502
Wind 225 deg - No Ice	51-32-13	-28.582	28.763	2535.659	2527.247	17.923
Wind 240 deg - No Ice Wind 270 deg - No Ice	201 3185	-37.109	21.526	1859.730	3224.744	21.329
Wind 270 deg - No Ice Wind 300 deg - No Ice		-40.813	-0.048	-21.672	3601.108	18.421
		-34.773	-20.232	-1817.036	3086.135	11.753
Wind 315 deg - No Ice Wind 330 deg - No Ice	Post in March	-28.650 -20.448	-28.831	-2574.837 -3165.858	2537.308 1808.050	7.659
Member Ice	8.258	-20.446	-35.591	-3103.838	1808.050	2.919
Total Weight Ice	51.144	The second state		-33,540	1.392	VIE TALALS
Wind 0 deg - Ice	51,144	-0.037	-40.072	-3559.413	6.889	-6.505
Wind 30 deg - Ice	Sal TE TORTON	19.202	-33.469	-3010.359	-1699.969	-14.952
Wind 45 deg - Ice	S. Charles Barrier	27.009	-27.151	-2452.399	-2397.481	-17.613
Wind 60 deg - Ice	35 85 1 K 16	32.890	-19.068	-1734.806	-2926.306	-18.992
Wind 90 deg - Ice	- Store Barrow	38.468	0.037	-28.043	-3410.851	-18.619
Wind 120 deg - Ice	THE REAL PROVIDE	34.549	20.068	1734.157	-3030.374	-14.048
Wind 135 deg - Ice	1 ST - W	27.061	27.203	2393.093	-2405.255	-8.397
Wind 150 deg - Ice		19.266	33.506	2948.776	-1709.491	-3.667
Wind 180 deg - Ice	LA DAR TITLEY	0.037	38.200	3378.513	-4.106	6.519
Wind 210 deg - Ice	z.44461 E./>	-19.202	33,469	2943.279	1702.752	14.952
Wind 225 deg - Ice	PP P Bund	-27.009	27.151	2385.319	2400.264	17.613
Wind 240 deg - Ice	Sec. 2	-34.512	20.004	1724.635	3027.660	20.553
Wind 270 deg - Ice		-38.468	-0.037	-39.037	3413.634	18.619
Wind 300 deg - Ice		-32.927	-19.132	-1744.328	2934.586	12.473
Wind 315 deg - Ice		-27.061	-27.203	-2460.174	2408.038	8.397
Wind 330 deg - Ice		-19.266	-33.506	-3015.856	1712.274	3.667
Total Weight	30.749	(특성 : 홍영 21 M		-14.558	2.671	
Wind 0 deg - Service		-0.017	-14.925	-1301.532	5.017	-2.528
Wind 30 deg - Service	1112-1123	7.047	-12.299	-1088.136	-617.880	-5.364
Wind 45 deg - Service	5.70 H	9.890	-9.953	-882,611	-871.001	-6.202
Wind 60 deg - Service	5.500.000	12.016	-6.972	-619.614	-1061.926	-6.576
Wind 90 deg - Service		14.122	0.017	2.279	-1242,579	-6.374
Wind 120 deg - Service	S.C.D. S.C.R.	12.857	7.477	652.623	-1114,811	-4.852
Wind 135 deg - Service	1436.5 4.5	9.913	9.976	885.726	-874.482	-2.650
Wind 150 deg - Service Wind 180 deg - Service		7.075	12.315 13.973	1090.232	-622.144	-1.010
Wind 210 deg - Service		0.017 -7.047		1242.943	0.094	2.509
Wind 210 deg - Service Wind 225 deg - Service		-7.047	12.299 9.953	1087.770	622.990	5.364
Wind 225 deg - Service	dia dia dia 1	-9.890	7.448	882.245 648.360	876.111	6.202
Wind 270 deg - Service		-12.841	-0.017		1117.459	7.380
Wind 300 deg - Service	Norse Mineria	-14.122	-7.001	-2.645	1247.689	6.374
Wind 315 deg - Service		-9.913	-9.976	-623.878 -886.093	1069.498 879.592	4.067 2.650
Wind 330 deg - Service		-7.075	-12.315	-1090.598	627.254	Charles and the second s
TING 330 Meg - BELVICE	Constant of the second second	-7.073	-12.513	-1090.398	027.234	1.010

tnxT	ower
------	------

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	35 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Load Combinations

0.1		
Comb		Description
No.	Dead Only	
1		
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 45 deg - No Ice	
5	Dead+Wind 60 deg - No Ice	
6	Dead+Wind 90 deg - No Ice	
7	Dead+Wind 120 deg - No Ice	
8	Dead+Wind 135 deg - No Ice	
9	Dead+Wind 150 deg - No Ice	
10	Dead+Wind 180 deg - No Ice	
11	Dead+Wind 210 deg - No Ice	
12	Dead+Wind 225 deg - No Ice	
13	Dead+Wind 240 deg - No Ice	
14	Dead+Wind 270 deg - No Ice	
15	Dead+Wind 300 deg - No Ice	
16	Dead+Wind 315 deg - No Ice	
17	Dead+Wind 330 deg - No Ice	
18	Dead+Ice+Temp	
19	Dead+Wind 0 deg+Ice+Temp	
20	Dead+Wind 30 deg+Ice+Temp	
21	Dead+Wind 45 deg+lce+Temp	
22 23	Dead+Wind 60 deg+Ice+Temp	
23 24	Dead+Wind 90 deg+Ice+Temp	
24 25	Dead+Wind 120 deg+Ice+Temp Dead+Wind 135 deg+Ice+Temp	
25	Û Î	
20	Dead+Wind 150 deg+Ice+Temp Dead+Wind 180 deg+Ice+Temp	
28	Dead+Wind 210 deg+Ice+Temp	
28	Dead+Wind 225 deg+Ice+Temp	
30	Dead+Wind 240 deg+Ice+Temp	
31	Dead+Wind 240 deg+Ice+Temp	
32	Dead+Wind 300 deg+Ice+Temp	
33	Dead+Wind 315 deg+Ice+Temp	
34	Dead+Wind 330 deg+Ice+Temp	
35	Dead+Wind 0 deg - Service	
36	Dead+Wind 30 deg - Service	
37	Dead+Wind 45 deg - Service	
38	Dead+Wind 60 deg - Service	
39	Dead+Wind 90 deg - Service	
40	Dead+Wind 120 deg - Service	
41	Dead+Wind 135 deg - Service	
42	Dead+Wind 150 deg - Service	
43	Dead+Wind 180 deg - Service	
44	Dead+Wind 210 deg - Service	
45	Dead+Wind 225 deg - Service	
46	Dead+Wind 240 deg - Service	
47	Dead+Wind 270 deg - Service	
48	Dead+Wind 300 deg - Service	
49	Dead+Wind 315 deg - Service	
50	Dead+Wind 330 deg - Service	
20	2 to this so deg berrie	

Section	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft

tnxTower

	Job		Page
		152' ROHN SSV Tower	36 of 55
Î	Project		Date
		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi. Moment
101	<i>,</i>)r -		Comb.	K	kip-ft	kip-ft
T1	152 - 140	Leg	Max Tension	15	5.558	-0.129	0.081
		8	Max. Compression	2	-7.018	0.380	0.130
			Max. Mx	2	-7.018	0.380	0.130
			Max. My	17	-0.575	-0.005	-0.502
			Max. Vy	2	-2.890	0.380	0.130
			Max. Vx	8	1.088	-0.077	-0.403
		Diagonal	Max Tension	6	1.915	0.000	0.000
		Diagonat	Max, Compression	14	-1.935	0.000	0.000
			Max. Mx	26	1.468	0.006	0.000
				20	-0.355	0.000	0.000
			Max. My Max. Viv	26	-0.333	0.001	0.002
			Max. Vy				
			Max. Vx	11	-0.000	0.001	0.002
		Top Girt	Max Tension	2	0,287	0.000	0,000
			Max. Compression	10	-0.284	0.000	0.000
			Max. Mx	18	0.005	-0.019	0.000
			Max. My	27	0.131	0.000	0.000
			Max. Vy	18	0.012	0.000	0.000
			Max, Vx	27	0.000	0,000	0.000
T2	140 - 135	Leg	Max Tension	10	10.129	0.260	0.008
			Max. Compression	2	-12.229	-0.030	-0.005
			Max. Mx	2	-7.168	0.598	0.130
			Max. My	9	-0.615	0.019	-0.516
			Max. Vy	2	-2,909	-0.030	-0.005
			Max. Vx	8	1.202	0.003	0.065
		Diagonal	Max Tension	14	2.776	0.000	0.000
		U	Max. Compression	14	-2.788	0.000	0.000
			Max. Mx	23	0.688	0.008	-0.001
			Max. My	6	-2.778	0.002	-0.003
			Max. Vy	23	0.008	0.008	-0.001
			Max. Vx	23	0.001	0.000	0.000
		Top Girt	Max Tension	7	0.144	0.000	0.000
		TOP GIT	Max. Compression	15	-0.157	0.000	0.000
			Max. Mx	18	-0.024	-0.019	0.000
			Max. My	21	0.056	0.000	0.001
			Max. Vy	18	0.012	0.000	0.001
			Max. Vy	21			
T 2	125 120	T			0.000	0.000	0.000
Т3	135 - 130	Leg	Max Tension	10	12.213	0.024	0.005
			Max. Compression	2	-14.620	0.472	0.024
			Max. Mx	10	12.009	-0.508	-0.026
			Max, My	14	-1.337	-0.017	-0.510
			Max. Vy	10	0.166	-0.508	-0.026
			Max. Vx	14	0.203	-0.017	-0.510
		Diagonal	Max Tension	14	2.604	0.000	0.000
			Max. Compression	14	-2.612	0.000	0.000
			Max. Mx	24	1.618	0.010	-0.001
			Max. My	24	-0.148	0.008	-0.002
			Max. Vy	33	0.008	0.009	0.001
			Max. Vx	24	0.001	0.000	0.000
Τ4	130 - 125	Leg	Max Tension	15	17.210	-0.503	-0.025
		Ť	Max. Compression	2	-20.859	0.346	0.002
			Max, Mx	15	17.210	0.821	-0.025
			Max. My	11	-1.256	-0.013	-0.810
			Max. Vy	10	-0-671	-0.508	-0.026
			Max. Vx	14	-0.669	-0.017	-0.510
		Diagonal	Max Tension	14	3.424	0.000	0.000
		Diagonai	Max Compression	14	-3.479	0.000	0.000
			Max. Mx	33	2.686	0.012	-0.001
			Max, My	32	-2,654	0.007	0.002
			Max. Vy	33	0.010	0.012	-0.001
		_	Max. Vx	32	-0.001	0.000	0.000
T5	125 - 120	Leg	Max Tension	10	23.212	-0.385	-0.003

wer

Job		Page
	152' ROHN SSV Tower	37 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section No.	Elevation ft	Component Туре	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax Moment
110		1)[0		Comb.	Κ	kip-ft	kip-ft
			Max. Compression	2	-27,981	-0.043	0.015
			Max. Mx	5	22.904	-0.385	0.009
			Max. My	6	-2.015	-0.019	0,364
			Max. Vy	10	-0.111	-0.385	-0.003
			Max, Vx	6	0.109	-0.019	0.364
		Diagonal	Max Tension	14	3.945	0.000	0.000
		Diagonai	Max. Compression	14	-3.948	0.000	0.000
			Max. Mx	33	2,689	0.017	-0.001
			Max. My	27	-3.392	0.008	-0.003
			Max. Vy	33	0.012	0.017	-0.001
			Max. Vx	27	0.001	0.000	0.000
Т6	120 - 100	Leg	Max Tension	10	47.129	0.040	0.003
10	120 - 100	Leg	Max. Compression	2			
					-53,902	0.958	-0.016
			Max. Mx	10	46.998	-0.987	0.018
			Max. My	6	-2.798	-0.020	0.989
			Max. Vy	32	0.295	-0.940	-0.037
			Max. Vx	11	-0.313	-0.014	0.955
		Diagonal	Max Tension	11	4.531	0,000	0.000
			Max. Compression	11	-4.607	0.000	0,000
			Max. Mx	19	3.474	0.031	0.003
			Max. My	28	-4.386	0.010	-0.007
			Max. Vy	33	0.018	0.028	0.003
			Max. Vx	28	0.002	0.000	0.000
Т7	100 - 80	Leg	Max Tension	10	76.836	0.263	0.022
			Max, Compression	2	-88.559	0.063	0.012
			Max. Mx	5	55.183	1.240	0.019
			Max. My	6	-3.662	0.017	-1.447
			Max. Vy	10	-1.124	-0.987	0.018
			Max. Vx	6	1.237	-0.020	0.989
		Diagonal	Max Tension	11	6.897	0.000	0.000
			Max. Compression	11	-6.923	0.000	0.000
			Max. Mx	19	5.149	0.066	0.004
			Max. My	21	-5.607	0.015	0.008
			Max. Vy	19	-0.029	0.066	0.004
			Max. Vx	21	-0.002	0.000	0.000
		Secondary Horizontal	Max Tension	2	1,536	0.000	0.000
			Max. Compression	2	-1.536	0.000	0.000
			Max. Mx	18	0.148	-0.121	0.000
			Max. My	30	1.465	0.000	0.004
			Max. Vy	18	0.039	0.000	0.000
			Max. Vx	30	-0.001	0.000	0.000
Т8	80 - 73.3333	Leg	Max Tension	10	87.346	-0.116	-0.009
			Max. Compression	2	-100.326	0,188	0.010
			Max. Mx	27	78,260	-0.411	-0,011
			Max, My	6	-5.146	-0.023	0.544
			Max. Vy	27	0.115	-0.411	-0.011
			Max. Vx	6	-0.112	-0.023	0.544
		Diagonal	Max Tension	11	6.790	0.000	0.000
		Diagonai					
			Max. Compression	11 32	-6.848	0.000	0.000
			Max. Mx Max. Mu		5.175	0.050	-0.006
			Max. My Max. Vu	22	-5.623	0.025	0.008
			Max. Vy	32	0.028	0.050	-0.006
		_	Max. Vx Max Tension	22 10	-0.002 96.963	0.000 -0.225	0.000 -0.009
Т9	73.3333 -	Leg					
Т9	73.3333 - 66.6667	Leg		2	111.007	0.244	0.007
Т9		Leg	Max. Compression	2	-111.296	-0.246	0.006
Т9		Leg	Max. Compression Max. Mx	2	-111.169	0.558	-0.004
Т9		Leg	Max. Compression				

· T	Job		Page
tnxTower		152' ROHN SSV Tower	38 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project	366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
IVO_{+}	11	Type		Comb.	K		
		Discourd	Mary Transform			kip-ft	kip-ft
		Diagonal	Max Tension	11	7.057	0.000	0.000
			Max. Compression	28	-7.190	0.000	0.000
			Max, Mx	19	5,166	0,077	0.007
			Max. My	30	-0.097	0.062	-0.009
			Max. Vy	33	0,035	0.074	0.007
			Max. Vx	30	-0.002	0.000	0.000
		Secondary Horizontal	Max Tension	2	1.930	0.000	0.000
		Honzontar	Max. Compression	2	-1.930	0.000	0.000
			Max. Mx	18	0.176	-0.149	0.000
			Max. My	30	1.843	0.000	0.005
			Max, Vy	18	0.044	0.000	0.000
			Max. Vx	30	-0.001	0,000	0.000
T10	66.6667 - 60	Leg	Max Tension	10	106.572	0.091	-0.005
110	00.0007 - 00	Leg	Max. Compression	2	-122.542	0.251	-0.025
			Max. Max. Mx	19	-120.507	0.802	-0.025
			Max. My	14	-6.801	-0.020	-0.604
			Max. Vy	2	-0,317	0.720	-0.005
			Max. Vx	14	0.275	-0.020	-0.604
		Diagonal	Max Tension	28	7.191	0.000	0.000
			Max. Compression	11	-7.178	0.000	0.000
			Max. Mx	33	4,605	0.066	-0.007
			Max. My	21	-6.367	0.029	0.014
			Max. Vy	33	0.035	0.066	-0.007
			Max, Vx	21	-0.003	0.000	0.000
		Secondary Horizontal	Max Tension	2	2.125	0.000	0.000
		Honzomai	Man Carriera	2	2 125	0.000	0.000
			Max. Compression		-2.125	0.000	0.000
			Max. Mx	18	0.198	-0.165	0.000
			Max. My	30	2.038	0.000	0.005
			Max. Vy	18	0.046	0.000	0.000
			Max. Vx	30	-0.001	0.000	0.000
T11	60 - 50	Leg	Max Tension	10	118.266	-0.291	0.016
			Max. Compression	2	-135.919	0.162	0.172
			Max. Mx	27	107.705	-0.669	0.010
			Max. My	17	-5.452	-0.048	0.994
			Max. Vy	27	-0.171	-0.669	0.010
			Max, Vx	13	0.140	-0.157	-0.784
		Diagonal	Max Tension	11	8.153	0.000	0.000
			Max. Compression	28	-8.503	0.000	0.000
			Max, Mx	32	5.594	0.131	-0.012
			Max. My	22	-7.288	0.071	0.012
				32	0.048	0.131	-0.012
			Max. Vy Max - Vy	22			
T10	50 40	т	Max, Vx Max Tanaian		-0.003	0.000	0.000
T12	50 - 40	Leg	Max Tension	10	132.090	-0.285	-0.138
			Max. Compression	2	-151.941	-0.230	0.164
			Max. Mx	19	-149.459	1.174	-0.293
			Max. My	17	-6.287	-0.056	1.608
			Max. Vy	19	0.561	1.174	-0.293
			Max. Vx	17	-0,556	-0.056	1.608
		Diagonal	Max Tension	28	8.601	0.000	0.000
			Max. Compression	11	-8,569	0.000	0.000
			Max. Mx	19	6.857	0.109	0.011
			Max. My	30	0.314	0.085	-0.014
			Max. Vy	32	0.048	0.107	0.011
			Max. Vx	30	-0.003	0.000	0.000
		Secondary	Max. VX Max Tension		2.635		
		Horizontal		2		0.000	0.000
			Max. Compression	2	-2.635	0.000	0.000
			Max. Mx	18	0.240	-0.210	0.000

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page		
	152' ROHN SSV Tower	39 of 55		
Project		Date		
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14		
Client	Variation Service and ATRT / S.A. Evolution	Designed by		
 	Verizion, Sprint and AT&T / S.A. Evaluation	MCD		

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax Moment
		21		Comb.	K	kip-ft	kip-ft
			Max. Vy	18	-0.052	0.000	0.000
			Max. Vx	30	-0.001	0.000	0.000
T13	40 - 30	Leg	Max Tension	15	145.569	-0.041	0.076
			Max. Compression	2	-167.671	-1.860	-0.084
			Max. Mx	32	133.936	2.168	-0.072
			Max. My	17	-6.650	-0.056	1.608
			Max. Vy	2	0.640	1.269	0.069
			Max. Vx	14	-0.534	-0.053	-1.429
		Diagonal	Max Tension	11	8.824	0.000	0.000
		Diagonai	Max. Compression	28	-9.333	0.000	0.000
			Max. Max. Mx	32	6.074	0.181	-0.015
			Max. My	21	-8.725	0.101	0.022
			Max. Vy	32	0.061	0.181	-0.015
				21			
		C	Max. Vx		-0.004	0.000	0.000
		Secondary Horizontal	Max Tension	2	2.908	0,000	0,000
			Max. Compression	2	-2.908	0.000	0.000
			Max. Mx	18	0.242	-0.237	0.000
			Max. My	31	2.387	0.000	0.007
			Max. Vy	18	0.055	0.000	0.000
			Max. Vx	31	-0.002	0.000	0.000
C14	30 - 20	Leg	Max Tension	15	157.929	1.363	-0.080
		-	Max. Compression	2	-182.598	1.873	-0.035
			Max. Mx	19	-179.462	-5.753	0.006
			Max. My	14	-9.140	-0.173	-1.318
			Max. Vy	19	3.165	2.153	-0.031
			Max. Vx	14	0.607	-0.238	-1.007
		Diagonal	Max Tension	4	9.038	0.048	-0.003
		Bound	Max. Compression	13	-9.591	0.000	0.000
			Max, Mx	19	7.427	0.129	-0.005
			Max. My	28	-8.589	-0.005	-0.008
			Max. Vy	19	-0.045	0.129	-0.005
			Max. Vy Max. Vx	28	-0.002	0.000	0.000
		Horizontal	Max Tension	28	3.167	0.000	0.000
		HUHZUIKai		2	-3.167	0.040	
			Max. Compression Max. Mx	32			0.027
					1.663	0.048	0.034
			Max. My	22	1.655	0.046	0.036
			Max. Vy	32	0.035	0.048	0.034
			Max. Vx	22	-0.005	0.000	0.000
		Redund Horz 1 Bracing	Max Tension	2	3.167	0.000	0.000
			Max. Compression	2	-3.167	0.000	0.000
			Max. Mx	33	2,364	-0.013	0.000
			Max. My	31	2.617	0.000	0.000
			Max. Vy	33	0.012	0.000	0.000
			Max. Vx	31	-0.000	0.000	0.000
		Redund Diag 1 Bracing	Max Tension	2	1,847	0,000	0.000
			Max. Compression	2	-1.847	0.000	0.000
			Max. Mx	34	0.919	-0.016	0.000
			Max. My	30	0.511	0.000	0.001
			Max. Vy	34	0.012	0.000	0.000
			Max, Vx	30	-0.000	0.000	0.000
15	20 - 15	Leg	Max Tension	15	170.161	2.994	-0.023
		U	Max. Compression	2	-197.172	4.273	0.037
			Max. Mx	19	-191.572	-5.753	0.006
			Max. My	14	-10.050	-0.238	-1.007
			Max. Vy	19	-3.908	4.006	0.033
			Max. Vx	6	0.587	0.147	0.796
		Diagonal	Max Tension	11	8.854	0.153	0.003

<i>tnxTower</i>	
-----------------	--

Anna Tanu an	Job	Page
tnxTower	152' ROHN SSV Tower	40 of 55
URS Corporation	Project	Date
500 Enterprise Drive, Suite 3B	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Rocky Hill, CT 06067	Client	Designed by
Phone: 860-529-8882 FAX: 860-529-3991	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Section	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Ax
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max, Mx	13	6.756	0.162	0.003
			Max, My	21	-8.187	-0.105	0.007
			Max. Vy	30	-0.050	0.156	0.005
			Max. Vx	27	0.002	0.000	0.000
		Redund Horz 1 Bracing	Max Tension	2	3.419	0.000	0,000
		8	Max. Compression	2	-3.419	0.000	0.000
			Max. Mx	33	0.980	-0.015	0.000
			Max, My	20	2.982	0.000	0.000
			Max. Vy	33	0.012	0.000	0.000
			Max. Vx	20	-0.000	0.000	0.000
		Redund Diag 1	Max Tension	2	1,985	0.000	0.000
		Bracing	May Communication	2	1 0.95	0.000	0.000
			Max. Compression Max. Mx	2	-1.985	0.000	0.000
			· · · · · · · · · · · · · · · · · · ·	20	0.854	-0.018	0.000
			Max. My	30	0.029	0.000	0.001
			Max. Vy	20	0.013	0.000	0.000
	1.5 1.0	-	Max, Vx	30	-0.000	0.000	0.000
T16	15 - 10	Leg	Max Tension	15	171.068	-0.662	0.030
			Max. Compression	2	-198.809	0.038	0.005
			Max. Mx	30	-189.630	1.983	-0.045
			Max. My	14	-10.547	-0.113	-1.878
			Max. Vy	32	-0.645	-1,318	0.032
			Max. Vx	14	0.548	-0.113	-1.878
		Diagonal	Max Tension	11	8.416	0,000	0.000
			Max. Compression	28	-9.671	0.000	0.000
			Max, Mx	19	5.399	-0.121	0.000
			Max. My	30	-0.510	0.000	0.004
			Max. Vy	19	0.044	0.000	0.000
			Max. Vx	30	-0.002	0.000	0.000
		Horizontal	Max Tension	2	3.448	0.000	0.000
			Max, Compression	2	-3.448	0.051	0.032
			Max. Mx	19	-0.782	0.116	0.071
			Max. My	29	-3,110	0.112	0.088
			Max. Vy	19	-0.047	0.116	0.071
			Max, Vx	29	0.010	0,000	0.000
T17	10 - 0	Leg	Max Tension	15	183.278	-0.230	-0.050
			Max. Compression	2	-213.234	0.000	-0.000
			Max. Mx	30	-205.599	1.983	-0.045
			Max. My	14	-10.929	-0.113	-1.878
			Max. Vy	30	0.270	1,983	-0.045
			Max. Vy	14	-0.306	-0.113	-1.878
		Diagonal	Max Tension	28	10.450	0.000	0.000
		Diagonal	Max. Compression	28	-9.509	0.000	0.000
			Max. Max	17	-9.509	0.157	
							-0.016
			Max. My	29	6.567	0.122	-0.021
			Max. Vy	34	0.063	0.112	0.019
			Max. Vx	29	-0.004	0.000	0.000

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Leg C	Max. Vert	13	217.548	21.846	-13.310
	Max. H _x	13	217.548	21,846	-13.310
	Max. H _z	21	-167.086	-19.369	12,681

tnxTower

· T	Job	Page
tnxTower	152' ROHN SSV Tower	41 of 55
URS Corporation	Project	Date
500 Enterprise Drive, Suite 3B	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Rocky Hill, CT 06067	Client	Designed by
Phone: 860-529-8882 FAX: 860-529-3991	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.			
	Min. Vert	5	-188,230	-19.265	11,731
	Min. H _x	22	-172.616	-20,296	12.307
	Min. Hz	13	217.548	21.846	-13.310
Leg B	Max. Vert	7	217.978	-21.988	-13,159
	Max. H _x	32	-173.282	20.424	12,173
	Max. Hz	33	-167.812	19.537	12.483
	Min. Vert	15	-189,174	19.414	11.587
	Min. H _x	7	217.978	-21.988	-13.159
	Min. Hz	7	217.978	-21,988	-13-159
Leg A	Max. Vert	2	220,495	-0.201	25.737
	Max. H _x	14	11.455	4.046	0.791
	Max. Hz	2	220.495	-0.201	25.737
	Min. Vert	10	-189,001	0.199	-22,679
	Min. H _x	6	10,662	-4.051	0.731
	Min, H _z	27	-171.327	0.180	-23.800

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M_x	Overturning Moment, Mz	Torque
	Κ	Κ	K	kip-ft	kip-ft	kip-ft
Dead Only	30.749	0.000	-0,000	-14.559	2.671	0.000
Dead+Wind 0 deg - No Ice	30.749	-0.048	-43,126	-3783.801	9.823	-7.312
Dead+Wind 30 deg - No Ice	30.749	20.360	-35.536	-3165.771	-1794.247	-15.544
Dead+Wind 45 deg - No Ice	30.749	28,576	-28,757	-2570.475	-2527.377	-17.976
Dead+Wind 60 deg - No Ice	30.749	34.718	-20.145	-1808.709	-3080.397	-19.068
Dead+Wind 90 deg - No Ice	30.749	40.805	0.048	-7,426	-3603.695	-18.485
Dead+Wind 120 deg - No Ice	30.749	37.150	21.604	1876.168	-3233.642	-14.087
Dead+Wind 135 deg - No Ice	30.749	28.644	28.825	2551,347	-2537.637	-7.717
Dead+Wind 150 deg - No Ice	30,749	20,444	35,583	3143.636	-1806.745	-2.955
Dead+Wind 180 deg - No Ice	30.749	0.048	40.372	3585.932	-4.445	7.255
Dead+Wind 210 deg - No Ice	30.749	-20,362	35,536	3136.489	1799.761	15,546
Dead+Wind 225 deg - No Ice	30.749	-28.577	28.757	2541.243	2532.913	17.988
Dead+Wind 240 deg - No Ice	30.749	-37.102	21.522	1863.798	3231,865	21.401
Dead+Wind 270 deg - No Ice	30.749	-40.805	-0.047	-21.694	3609.044	18.485
Dead+Wind 300 deg - No Ice	30.749	-34.765	-20,227	-1821.054	3092.885	11.814
Dead+Wind 315 deg - No Ice	30.749	-28.643	-28.825	-2580,550	2542.827	7.707
Dead+Wind 330 deg - No Ice	30.749	-20.443	-35.584	-3172.890	1811.967	2.962
Dead+Ice+Temp	51.144	0.000	0.000	-33.639	1.393	-0.000
Dead+Wind 0 deg+Ice+Temp	51.144	-0.037	-40.059	-3571,711	6.960	-6.502
Dead+Wind 30 deg+Ice+Temp	51.144	19,195	-33.457	-3020.844	-1705.774	-15.012
Dead+Wind 45 deg+Ice+Temp	51.144	26,999	-27.141	-2460.936	-2405.703	-17,701
Dead+Wind 60 deg+Ice+Temp	51.144	32,878	-19.061	-1740.833	-2936.390	-19.106
Dead+Wind 90 deg+Ice+Temp	51.144	38.454	0.038	-28.105	-3422,664	-18.759
Dead+Wind 120 deg+Ice+Temp	51,144	34,538	20.062	1740.071	-3040,889	-14.176
Dead+Wind 135 deg+Ice+Temp	51.144	27.052	27.193	2401.402	-2413.671	-8,495
Dead+Wind 150 deg+Ice+Temp	51.144	19.260	33.494	2958.977	-1715,475	-3.736
Dead+Wind 180 deg+Ice+Temp	51.144	0.037	38.185	3390.200	-4.115	6.515
Dead+Wind 210 deg+Ice+Temp	51,144	-19,196	33,457	2953.443	1708.720	15.014
Dead+Wind 225 deg+Ice+Temp	51.144	-27.000	27.141	2393.578	2408.662	17.705
Dead+Wind 240 deg+Ice+Temp	51.144	-34,501	19,998	1730.465	3038.178	20.678
Dead+Wind 270 deg+Ice+Temp	51.144	-38.454	-0.036	-39,150	3425.447	18.759
Dead+Wind 300 deg+Ice+Temp	51.144	-32.915	-19,124	-1750.387	2944.699	12.593
Dead+Wind 315 deg+lce+Temp	51,144	-27.051	-27.193	-2468,733	2416.305	8.489
Dead+Wind 330 deg+Ice+Temp	51.144	-19.259	-33,494	-3026.357	1718.138	3.736
Dead+Wind 0 deg - Service	30.749	-0.017	-14.922	-1318.817	5.144	-2.530
Dead+Wind 30 deg - Service	30.749	7.045	-12.296	-1104.969	-619.123	-5,377

tnxTower	Job 152' ROHN SSV Tower	Page 42 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project 366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead+Wind 45 deg - Service	30.749	9.888	-9,951	-898.987	-872.807	-6.220
Dead+Wind 60 deg - Service	30.749	12.013	-6.971	-635.403	-1064.162	-6.599
Dead+Wind 90 deg - Service	30.749	14.119	0.017	-12.122	-1245,217	-6.400
Dead+Wind 120 deg - Service	30.749	12.855	7.475	639.653	-1117.154	-4.873
Dead+Wind 135 deg - Service	30.749	9.911	9.974	873.285	-876,319	-2.668
Dead+Wind 150 deg - Service	30.749	7,074	12,313	1078.239	-623.417	-1.019
Dead+Wind 180 deg - Service	30.749	0.017	13.970	1231.293	0.208	2.512
Dead+Wind 210 deg - Service	30.749	-7.045	12,296	1075.769	624.494	5.377
Dead+Wind 225 deg - Service	30.749	-9.888	9.951	869.792	878.179	6.222
Dead+Wind 240 deg - Service	30.749	-12.838	7.447	635.376	1120.036	7.404
Dead+Wind 270 deg - Service	30.749	-14,119	-0.016	-17.059	1250,567	6.400
Dead+Wind 300 deg - Service	30.749	-12.030	-6.999	-639.678	1071.980	4,088
Dead+Wind 315 deg - Service	30.749	-9.911	-9.974	-902.476	881.648	2.666
Dead+Wind 330 deg - Service	30.749	-7.074	-12.313	-1107.436	628.750	1.019

Solution Summary

	Su	m of Applied Force			Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
1	0.000	-30,749	0.000	-0.000	30.749	0.000	0.000%
2	-0.048	-30.749	-43.134	0.048	30.749	43.126	0.016%
3	20.365	-30.749	-35.543	-20.360	30.749	35,536	0.017%
4	28,582	-30.749	-28.763	-28.576	30.749	28.757	0.018%
5	34,725	-30.749	-20,149	-34.718	30.749	20.145	0.018%
6	40,813	-30,749	0.048	-40.805	30.749	-0.048	0.017%
7	37.157	-30.749	21.608	-37.150	30.749	-21.604	0.015%
8	28,650	-30.749	28.831	-28.644	30.749	-28.825	0.016%
9	20.448	-30.749	35.591	-20.444	30.749	-35.583	0.017%
10	0.048	-30.749	40.381	-0.048	30.749	-40.372	0.018%
11	-20,365	-30.749	35,543	20.362	30.749	-35.536	0.017%
12	-28.582	-30.749	28.763	28.577	30.749	-28.757	0.016%
13	-37.109	-30,749	21.526	37.102	30,749	-21.522	0.015%
14	-40,813	-30.749	-0.048	40.805	30.749	0.047	0.017%
15	-34,773	-30.749	-20.232	34,765	30.749	20,227	0.018%
16	-28.650	-30.749	-28.831	28,643	30.749	28.825	0.018%
17	-20.448	-30.749	-35.591	20.443	30.749	35.584	0.017%
18	0.000	-51.144	0.000	-0.000	51.144	-0.000	0.000%
19	-0.037	-51.144	-40.072	0.037	51.144	40.059	0.021%
20	19,202	-51.144	-33.469	-19.195	51.144	33.457	0.022%
21	27.009	-51,144	-27.151	-26.999	51,144	27.141	0.022%
22	32.890	-51,144	-19.068	-32.878	51.144	19.061	0.022%
23	38.468	-51.144	0.037	-38,454	51-144	-0.038	0.021%
24	34.549	-51.144	20.068	-34.538	51.144	-20.062	0.020%
25	27.061	-51.144	27.203	-27.052	51.144	-27.193	0.021%
26	19.266	-51,144	33.506	-19.260	51.144	-33.494	0.021%
27	0.037	-51,144	38.200	-0.037	51.144	-38.185	0.022%
28	-19.202	-51.144	33,469	19.196	51.144	-33.457	0.021%
29	-27.009	-51.144	27.151	27.000	51.144	-27.141	0.021%
30	-34,512	-51,144	20.004	34,501	51,144	-19.998	0.020%
31	-38.468	-51.144	-0.037	38.454	51,144	0.036	0.021%
32	-32.927	-51.144	-19.132	32.915	51.144	19,124	0.022%
33	-27.061	-51.144	-27.203	27.051	51.144	27.193	0.022%
34	-19.266	-51.144	-33.506	19.259	51.144	33.494	0.022%
35	-0.017	-30,749	-14.925	0.017	30,749	14.922	0.009%
36	7.047	-30.749	-12.299	-7.045	30.749	12.296	0.009%
37	9.890	-30.749	-9.953	-9.888	30.749	9.951	0.009%
38	12.016	-30.749	-6.972	-12.013	30.749	6.971	0.009%

tnxTower	Job 152' ROHN SSV Tower	Page 43 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project 366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

	Sui	Sum of Applied Forces			Sum of Reactions				
Load	PX	PY	PZ	PX	PY	PZ	% Error		
Comb	K	K	K	K	K	K			
39	14.122	-30.749	0.017	-14.119	30,749	-0.017	0.009%		
40	12,857	-30.749	7,477	-12.855	30.749	-7,475	0.009%		
41	9.913	-30,749	9,976	-9.911	30.749	-9.974	0.009%		
42	7.075	-30.749	12.315	-7.074	30.749	-12.313	0.009%		
43	0.017	-30.749	13.973	-0.017	30,749	-13,970	0.009%		
44	-7.047	-30.749	12.299	7.045	30,749	-12.296	0.009%		
45	-9.890	-30.749	9.953	9.888	30.749	-9.951	0.009%		
46	-12.841	-30.749	7.448	12.838	30.749	-7.447	0.009%		
47	-14.122	-30.749	-0.017	14.119	30.749	0_016	0.009%		
48	-12.032	-30.749	-7.001	12.030	30.749	6.999	0.009%		
49	-9.913	-30.749	-9.976	9.911	30.749	9.974	0.009%		
50	-7.075	-30,749	-12.315	7.074	30,749	12.313	0.009%		

Load	Converged?	Number	Displacement	Force
Combination	8	of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.00017843	0.00035923
3	Yes	4	0.00019246	0.00038685
4	Yes	4	0.00020170	0.00040479
5	Yes	4	0.00020558	0.00041232
6	Yes	4	0.00019300	0.00038744
7	Yes	4	0.00017861	0.00035913
8	Yes	4	0.00018327	0.00036928
9	Yes	4	0.00019279	0.00038798
10	Yes	4	0.00020562	0.00041337
11	Yes	4	0.00019301	0.00038779
12	Yes	4	0.00018342	0.00036882
13	Yes	4	0.00017873	0.00035865
14	Yes	4	0.00019321	0.00038766
15	Yes	4	0.00020558	0.00041281
16	Yes	4	0.00020164	0.00040527
17	Yes	4	0.00019246	0.00038730
18	Yes	4	0.00000001	0.00006344
19	Yes	4	0.00032503	0.00062535
20	Yes	4	0.00033933	0.00065077
21	Yes	4	0.00034836	0.00066761
22	Yes	4	0.00035211	0.00067486
23	Yes	4	0.00033921	0.00065151
24	Yes	4	0.00032558	0.00062535
25	Yes	4	0.00032998	0.00063464
26	Yes	4	0.00033920	0.00065181
27	Yes	4	0.00035151	0.00067604
28	Yes	4	0.00033980	0.00065144
29	Yes	4	0.00033078	0.00063390
30	Yes	4	0.00032608	0.00062450
31	Yes	4	0.00033935	0.00065135
32	Yes	4	0.00035164	0.00067518
33	Yes	4	0.00034763	0.00066794
34	Yes	4	0.00033840	0.00065103
35	Yes	4	0.00000001	0.00037143
36	Yes	4	0.00000001	0.00038077
37	Yes	4	0.00000001	0.00038692
38	Yes	4	0.00000001	0.00038957
39	Yes	4	0.00000001	0.00038073

tnxTower URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991		Job	152' RO	HN SSV Tower	Page 44 of 55
		Project 200 Old Lang Didge Deed Stamford CT			
		Client	Verizion, Sprint an	Designed by MCD	
40	Yes	4	0.00000001	0.00037079	
41	Yes	4	0.0000001	0.00037438	
42	Yes	4	0.0000001	0.00038052	
43	Yes	4	0_00000001	0.00038928	
44	Yes	4	0.0000001	0.00038004	
45	Yes	4	0.0000001	0.00037372	
46	Yes	4	0.0000001	0.00037012	
47	Yes	4	0.0000001	0.00038031	
48	Yes	4	0.0000001	0.00038936	
49	Yes	4	0.0000001	0.00038684	
50	Yes	4	0.0000001	0.00038081	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	o	o
T1	152 - 140	4.165	35	0.2337	0.0047
T2	140 - 135	3.571	35	0.2283	0.0074
Т3	135 - 130	3.325	35	0.2242	0.0099
T4	130 - 125	3.088	35	0.2180	0.0112
T5	125 - 120	2.855	35	0.2098	0.0115
T6	120 - 100	2.630	35	0.1993	0.0117
T7	100 - 80	1.827	35	0.1696	0.0104
T8	80 - 73.3333	1.165	35	0.1272	0.0086
T9	73.3333 - 66.6667	0.981	35	0.1165	0.0078
T10	66.6667 - 60	0.816	35	0.1052	0.0070
T11	60 - 50	0.664	35	0.0932	0.0061
T12	50 - 40	0.470	35	0.0782	0.0051
T13	40 - 30	0.308	35	0.0625	0.0041
T14	30 - 20	0.181	35	0.0461	0.0031
T15	20 - 15	0.087	35	0.0294	0.0021
T16	15 - 10	0.049	35	0.0207	0.0015
T17	10 - 0	0.024	35	0.0118	0.0009

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
162.00	20' 4-Bay Dipole	35	4.165	0.2337	0.0047	Inf
156.70	DB563K-CR	35	4.165	0.2337	0.0047	Inf
152.00	4' w/Radome	35	4.165	0.2337	0.0047	Inf
151.25	DB803KHE-YP	35	4,128	0.2334	0.0043	Inf
149.00	3' Sidearm	35	4.017	0.2326	0.0043	Inf
148.50	3' Sidearm	35	3.992	0,2325	0.0044	Inf
146.00	12'x2 1/2" STD Pipe Mount	35	3.868	0.2315	0.0050	949526
144.00	12' x 3" Dia Omni	35	3.769	0.2306	0.0060	692894
143.00	4'x3" Pipe Mount	35	3.719	0.2301	0.0063	528557
142.00	4'x4" Pipe Mount	35	3.670	0.2295	0.0066	355999
141.70	DB563K-CR	35	3.655	0.2294	0.0067	311557
140.00	4' w/Radome	35	3.571	0.2283	0.0074	142572
138.00	6' x 3" Dia Omni	35	3.472	0.2269	0.0083	65647
137.00	4' Side Mount Standoff (1)	35	3.423	0.2260	0.0089	51056
136.50	2' w/Radome	35	3.398	0.2256	0.0092	46474
135.00	4'x4" Pipe Mount	35	3.325	0.2242	0.0099	39509

tnxTower

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	152' ROHN SSV Tower	45 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client		Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
133.50	3' Sidearm	35	3,253	0,2225	0.0104	39873
133.00	4' Side Mount Standoff (1)	35	3.229	0.2220	0.0106	41094
128.00	(2) DB980H90E-M	35	2.994	0.2151	0.0114	52555
122.00	DB254-A	35	2,719	0.2035	0.0116	32778
108.00	APX16DWV-16DWV-S-E-ACU w/	35	2.131	0.1812	0.0111	33828
	Mount					
101.00	2" Dia 10' Omni	35	1.864	0.1713	0.0105	37510
98,00	Valmont 13' Lightweight T-Frame	35	1.754	0.1659	0.0102	36831
95.50	3' Sidearm	35	1.665	0.1608	0.0100	35076
94.50	3' Sidearm	35	1.630	0.1586	0.0099	34327
89.50	3' Sidearm	35	1.460	0.1473	0.0095	31013
79.00	4' x 3" DIA Omni	35	1.136	0.1255	0.0085	26646
78.00	8' 2-Bay Dipole	35	1.108	0.1238	0.0084	26674
72.50	3' Sidearm	35	0.960	0.1152	0.0077	30090
72.00	Scala Yagi w/ Radome	35	0.947	0.1144	0.0077	30946
58.00	GPS	35	0.622	0.0900	0.0059	28352
57.00	2' Sidearm	35	0.601	0.0884	0.0058	29057
45.00	1.2M	35	0.385	0.0706	0.0046	38242
44.00	4'x4" Stand-off	35	0.369	0.0690	0.0045	37862

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
1.0.	ft	in	Comb.	0	
T1	152 - 140	11.926	2	0.6674	0.0135
T2	140 - 135	10.228	2	0.6520	0.0292
T3	135 - 130	9.527	2	0.6404	0.0351
T4	130 - 125	8.847	2	0.6231	0,0373
T5	125 - 120	8.183	2	0.5999	0.0374
T6	120 - 100	7.539	2	0.5700	0.0369
T7	100 - 80	5.239	2	0.4852	0.0312
T8	80 - 73.3333	3,342	2	0.3643	0.0252
T9	73.3333 - 66.6667	2.816	2	0.3337	0.0227
T10	66.6667 - 60	2.342	2	0.3013	0.0202
T11	60 - 50	1.906	2	0.2671	0.0177
T12	50 - 40	1.349	2	0.2242	0.0148
T13	40 - 30	0.887	2	0.1792	0.0118
T14	30 - 20	0.520	2	0.1321	0.0091
T15	20 - 15	0.249	2	0.0841	0.0060
T16	15 - 10	0.141	2	0.0593	0.0044
T17	10 - 0	0.071	2	0.0339	0.0027

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	¢	ft
162.00	20' 4-Bay Dipole	2	11,926	0.6674	0.0135	333631
156.70	DB563K-CR	2	11,926	0.6674	0.0135	333631
152.00	4' w/Radome	2	11.926	0.6674	0.0135	333631
151.25	DB803KHE-YP	2	11.820	0.6667	0.0124	333631

tnx7	ower
616. C I	Unci

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
		152' ROHN SSV Tower	46 of 55
	Project		Date
		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
]	Client		Designed by
		Verizion, Sprint and AT&T / S.A. Evaluation	MCD

Elevation A	Appurtenance	Gov Load Comb	Deflection in	Tilt	Twist	Radius of Curvature ft
149.00	3' Sidearm	2	11.501	0.6643	0.0157	333631
149.00	3' Sidearm	2	11.430	0.6638	0.0164	333631
146.00	12'x2 1/2" STD Pipe Mount	2	11.077	0.6610	0.0208	278026
140.00	12' x 3" Dia Omni	2	10.794	0.6584	0.0208	204933
144.00	4'x3" Pipe Mount	2	10.652	0.6569	0.0256	164838
143.00		2	10.511	0.6554	0.0230	121057
	4'x4" Pipe Mount DB563K-CR	2	10.469	0.6549		
141.70		2	-	0.6520	0.0274	108830
140.00	4' w/Radome		10,228		0.0292	50849
138,00	6' x 3" Dia Omni	2	9,946	0.6479	0.0318	23599
137.00	4' Side Mount Standoff (1)	2	9.805	0.6457	0.0330	18231
136.50	2' w/Radome	2	9.735	0.6444	0.0336	16558
135.00	4'x4" Pipe Mount	2	9.527	0.6404	0.0351	14027
133.50	3' Sidearm	2	9.321	0.6358	0.0361	14151
133.00	4' Side Mount Standoff (1)	2	9,252	0.6342	0.0364	14590
128.00	(2) DB980H90E-M	2	8.579	0.6148	0.0375	18803
122.00	DB254-A	2	7.793	0.5820	0.0371	11542
108.00	APX16DWV-16DWV-S-E-ACU w/ Mount	2	6.110	0.5185	0.0338	11859
101.00	2" Dia 10' Omni	2	5.345	0.4901	0.0315	13182
98.00	Valmont 13' Lightweight T-Frame	2	5.031	0.4747	0.0306	12939
95.50	3' Sidearm	2	4.776	0.4601	0.0298	12310
94.50	3' Sidearm	2	4.675	0.4540	0.0296	12042
89.50	3' Sidearm	2	4.189	0.4217	0.0281	10858
79.00	4' x 3" DIA Omni	2	3.260	0.3593	0.0248	9319
78.00	8' 2-Bay Dipole	2	3.178	0.3546	0.0244	9336
72.50	3' Sidearm	2	2.754	0.3299	0.0224	10556
72.00	Scala Yagi w/ Radome	2	2.718	0.3276	0.0222	10851
58.00	GPS	2	1.786	0.2578	0_0171	9923
57.00	2' Sidearm	2	1,727	0.2534	0.0167	10172
45.00	1.2M	2	1.107	0.2023	0.0133	13326
44.00	4'x4" Stand-off	2	1.061	0.1977	0.0130	13180

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft	~*		in	Bolts	Bolt K	Κ	Allowable		
T1	152	Diagonal	A325N	0,500	1	1,915	2.719	0.704	1.333	Member Bearing
		Top Girt	A325N	0,500	1	0,287	2.719	0.106	1.333	Member Bearing
T2	140	Leg	A325N	0.625	4	1.424	13.435	0.106	1,333	Bolt Tension
		Diagonal	A325N	0.500	1	2.776	4.078	0.681	1,333	Member Bearing
		Top Girt	A325N	0.500	1	0.144	2.719	0.053	1.333	Member Bearing
Т3	135	Diagonal	A325N	0,500	1	2,604	4.078	0.639	1.333	Member Bearing
Τ4	130	Diagonal	A325N	0.500	1	3,479	4,123	0.844	1,333	Bolt Shear
Т5	125	Diagonal	A325N	0.500	1	3,945	4.078	0.967	1.333	Member Bearing
Т6	120	Leg	A325N	0.625	4	7,682	13.499	0.569	1.333	Bolt Tension
		Diagonal	A325N	0.500	1	4.607	4.123	1.117	1.333	Bolt Shear
Т7	100	Leg	A325N	0.750	4	13,969	19,430	0.719	1.333	Bolt Tension
		Diagonal	A325X	0.500	1	6.897	5,438	1.268	1,333	Member Bearing

Job		Page
	152' ROHN SSV Tower	47 of 55
Project		Date
	366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Client		Designed by
	Verizion, Sprint and AT&T / S.A. Evaluation	MCD

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Section No _t	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load K	Ratio Load Allowable	Allowable Ratio	Criteria
		Secondary Horizontal	A325N	0.500	2	0.768	4.123	0.186	1.333	Bolt Shear
Т8	80	Leg	A325N	0.875	4	21.837	26.458	0.825 🖌	1.333	Bolt Tension
		Diagonal	A325X	0.500	1	6.790	5.438	1.249	1.333	Member Bearin
Т9	73.3333	Diagonal	A325X	0.500	1	7.190	5.890	1.221	1.333	Bolt Shear
		Secondary Horizontal	A325N	0.500	2	0.965	4.123	0.234	1.333	Bolt Shear
T10	66.6667	Diagonal	A325X	0.500	1	7.191	5.890	1.221	1.333	Bolt Shear
		Secondary Horizontal	A325N	0,500	2	1.063	4.123	0.258	1.333	Bolt Shear
T11	60	Leg	A325N	0.875	4	29.567	26.458	1.117	1.333	Bolt Tension
		Diagonal	A325X	0.625	1	8.153	8.496	0.960	1.333	Member Bearing
T12	50	Diagonal	A325X	0.625	1	8.601	8,496	1.012	1.333	Member Bearing
		Secondary Horizontal	A325N	0.500	2	1,317	4,123	0.320	1.333	Bolt Shear
T13	40	Leg	A325N	1.000	4	36,392	34.557	1.053	1.333	Bolt Tension
		Diagonal	A325X	0.625	1	9.333	9.204	1.014	1.333	Bolt Shear
		Secondary Horizontal	A325N	0.500	2	1,454	4.123	0.353	1.333	Bolt Shear
T14	30	Diagonal	A325X	0.625	1	9.038	8,496	1.064	1.333	Member Bearing
		Horizontal	A325N	0.500	2	1,584	4.123	0.384	1,333	Bolt Shear
T15	20	Leg	A325N	1.000	4	42.540	34.529	1.232	1.333	Bolt Tension
		Diagonal	A325X	0.625	1	8.854	6.797	1.303	1.333	Member Bearing
T16	15	Diagonal	A325X	0.625	1	8.416	6.797	1.238	1.333	Member Bearing
		Horizontal	A325N	0.625	Ĩ.	3.448	6.443	0.535	1.333	Bolt Shear
T17	10	Diagonal	A325X	0.625	1	10,451	8.496	1.230	1.333	Member Bearing

Compression Checks

Leg Design Data (Compression)

Section No	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	Pa
T1	152 - 140	ROHN 2 STD	12.00	3.94	60.1 K=1.00	22.695	1.075	-7.018	24.386	0.288
Τ2	140 - 135	ROHN 2.5 STD	5.01	4.84	61.3 K=1.00	22.491	1.704	-12.229	38.325	0.319
Т3	135 - 130	ROHN 2.5 STD	5.01	5.01	63.4 K=1.00	22,122	1.704	-14.620	37,698	0.388
T4	130 - 125	ROHN 2.5 STD	5.01	5.01	63-4 K=1-00	22,122	1.704	-20.859	37.698	0.553
Т5	125 - 120	ROHN 2.5 STD	5.01	5.01	63.4	22.122	1.704	-27.981	37.698	0,742

tnxTower	Job	152'	ROHN SSV	Tower	
URS Corporation	Project	366 Old Long	g Ridge Road,	, Stamford,	ст

Client

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991 Verizion, Sprint and AT&T / S.A. Evaluation

Date 11:46:06 07/15/14 Designed by MCD

48 of 55

Page

Section No	Elevation	Size	L	Lu	Kl/r	Fa	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	Pa
					K=1.00					~
Τ6	120 - 100	Rohn 2.5 X-Str w/ (3) 1,5"x0.25" Bars	20.03	6.68	67.8 K=1.00	21.334	3.413	-53.902	72.823	0.740
Τ7	100 - 80	Rohn 2.5 X-Str w/ (3) 1.5"x0.25" Bars	20.03	3.44	35.0 K=1.00	26.516	3,413	-88,559	90.509	0.978
Т8	80 - 73.3333	Rohn 3 X-Str w/ (3) 1.5"x0.5" Bars	6.68	6.68	55.1 K=1.00	23.542	5.275	-100.326	124,180	0.808
Т9	73.3333 - 66.6667	Rohn 3 X-Str w/ (3) 1.5"x0.5" Bars	6.68	3.42	28.2 K=1.00	27,368	5.275	-111.296	144.363	0.771
T10	66.6667 - 60	Rohn 3 X-Str w/ (3) 1.5"x0.5" Bars	6.68	3.42	28.2 K=1.00	27.372	5,275	-122,542	144.385	0.849
T11	60 - 50	Rohn 4 X-Str w/ (3) 1.5"x0.5" Bars	10.02	10.02	69.4 K=1.00	21.056	6,640	-135.919	139.821	0.972
T12	50 - 40	Rohn 4 X-Str w/ (3) 1,5"x0.5" Bars	10.02	5.16	35.7 K=1.00	26,414	6.640	-151.941	175.395	0.866
T13	40 - 30	Rohn 4 X-Str w/ (3) 1.5"x0.5" Bars	10.02	5.15	35.7 K=1.00	26.422	6.640	-167.671	175.450	0.956
T14	30 - 20	Rohn 4 X-Str w/ (3) 1.5"x0.5" Bars	10,02	2.50	17.3 K=1.00	28.573	6.640	-182.598	189.733	0.962
T15	20 - 15	Rohn 5 STD w/ (3) 1.5"x0.5" Bars	5.01	2.50	14.2 K=1.00	28.881	6.555	-197.172	189.312	1.042
T16	15 - 10	Rohn 5 STD w/ (3) 1.5"x0.5" Bars	5.01	5.01	28.4 K=1.00	27.353	6.555	-198,809	179,298	1,109
T17	10 - 0	Rohn 5 STD w/ (6) 1.5"x0.5" Bars	10.02	10.02	56.9 K=1.00	23.237	9.761	-213.234	226.818	0.940

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_{μ}	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	Κ	Κ	P_{a}
T1	152 - 140	L1 1/2x1 1/2x1/8	7.65	3.61	146.2 K=1.00	6.982	0.359	-1.935	2.509	0.771
T2	140 - 135	L1 1/2x1 1/2x3/16	8.35	4.07	166.7 K=1.00	5.376	0,527	-2,788	2,835	0.983
Т3	135 - 130	L1 1/2x1 1/2x3/16	8.86	4.33	177.2 K=1.00	4.755	0.527	-2.612	2,508	1.041
T4	130 - 125	L1 1/2x1 1/2x1/4	9.28	4.54	186.6 K=1.00	4.289	0.688	-3.479	2,949	1,180
T5	125 - 120	L1 3/4x1 3/4x3/16	9.70	4.75	166.1 K=1.00	5.415	0.621	-3.948	3.364	1.174
Т6	120 - 100	L2x2x1/4	12,21	5,94	182,3 K=1.00	4,492	0.938	-4.607	4.213	1_093
Τ7	100 - 80	L2 1/2x2 1/2x1/4	13.96	6.82	166.7 K=1.00	5.372	1.190	-6.830	6.392	1.069
Т8	80 - 73,3333	L2 1/2x2 1/2x1/4	14.57	7.10	173.6 K=1.00	4.958	1.190	-6.848	5.900	1.161
T9	73.3333 - 66.6667	L2 1/2x2 1/2x5/16	15.19	7.41	181.9 K=1.00	4.511	1.460	-7.190	6.586	1.092
T10	66.6667 - 60	L2 1/2x2 1/2x5/16	15.82	7.73	189.7	4.150	1.460	-7.178	6.059	1.185

tnxTower	Job	152' ROHN SSV Tower	Page 49 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project	366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	А	Actual P	Allow. P _a	Ratio P
	fi		ft	ft		ksi	in^2	Κ	Κ	Pa
					K=1.00					6
T11	60 - 50	L3x3x5/16	18.20	8.94	182.2 K=1.00	4.501	1,780	-8.503	8.011	1.061
T12	50 - 40	L3x3x5/16	19.04	9.36	190.8 K=1,00	4.104	1.780	-8.569	7.305	1.173
T13	40 - 30	L3x3x3/8	19.90	9,79	200.2 K=1.00	3.726	2.110	-9,333	7.863	1.187
		KL/R > 200 (C) - 177								*
T14	30 - 20	L3x3x5/16	10.64	10.08	131.2 K=1.00	8.681	1.780	-9.591	15.452	0.621
T15	20 - 15	L3 1/2x3 1/2x1/4	10.64	10.08	115.5 K=1.04	10.922	1.690	-9.619	18.459	0.521
T16	15 - 10	L3 1/2x3 1/2x1/4	11.08	10.49	181.3 K=1.00	4.542	1.690	-9.671	7.676	1.260
T17	10 - 0	L3 1/2x3 1/2x5/16	22.61	11.11	193.2 K=1.00	4.000	2.090	-9.509	8.360	1.137

		Horizon	tal De	sign	Data (O	Compi	ressio	n)		
Section No.	Elevation	Size	L	Lu	Kl/r	F _a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	ĸ	Pa
T14	30 - 20	L3x3x3/16	18.23	17.34	182.5 K=0.82	4.485	1.090	-3.167	4.888	0.648
T16	15 - 10	L2.875x2.875x0.25	19.26	18,38	247.8 K=1.00	2.432	1.375	-3,448	3,343	1.031
		KL/R > 200 (C) - 233								

Secondary Horizontal Design Data (Compression)

Section No	Elevation	Size	L	L_{w}	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	K	ĸ	Pa
Τ7	100 - 80	L3x3x3/16	12.25	11.49	191.9 K=0.83	4.054	1.090	-1.536	4.419	0.348
Т9	73.3333 - 66.6667	L3x3x3/16	13.64	12.82	210.2 K=0.81	3.379	1.090	-1.930	3.683	0.524
T10	66.6667 - 60	L3x3x3/16	14.34	13.52	219.7 K=0.81	3.093	1.090	-2.125	3.371	0.630
T12	50 - 40	L3x3x3/16	16.18	15.29	243.6 K=0.79	2,518	1.090	-2.635	2.744	0.960
T13	40 - 30	L3x3x3/16	17.18	16.29	256.9 K=0.78	2.263	1.090	-2.908	2.467	1.179
		KL/R > 250 (C) - 179								

tnxTower	Job 152' ROHN SSV Tower	Page 50 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project 366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Top Girt Design Data (Compression)

Section No	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in ²	K	K	Pa
T1	152 - 140	L2x2x1/8	6.52	6.11	184.6 K=1.00	4.383	0.484	-0,284	2.123	0.134
T2	140 - 135	L2x2x1/8	6.57	6.12	184.8 K=1.00	4.372	0.484	-0.157	2.117	0.074

Redundant Horizontal (1) Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_a	Ratio P
	ft		ft	ft		ksi	in^2	Κ	ĸ	Pa
T14	30 - 20	L2x2x1/4	4,56	4.28	131.3 K=1.00	8.665	0.938	-3,167	8,127	0.390
T15	20 - 15	L2x2x1/4	4.82	4.50	138.0 K=1.00	7.843	0.938	-3.419	7.357	0.465

Redundant Diagonal (1) Design Data (Compression)										
Section No:	Elevation	Size	L	L_{n}	Kl/r	Fa	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	$-P_{a}$
T14	30 - 20	L2x2x1/4	5.32	4,99	153.3 K=1.00	6.355	0.938	-1.847	5.961	0.310
T15	20 - 15	L2x2x1/4	5.53	5.18	158.9 K=1.00	5.915	0.938	-1.985	5.549	0.358

Tension Checks

Section No.	Elevation	Size	L	L_{a}	Kl/r	F_a	А	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	K	ĸ	Pa
T1	152 - 140	ROHN 2 STD	12.00	3,94	60.1	30.000	1.075	5.558	32.236	0.172
Τ2	140 - 135	ROHN 2.5 STD	5.01	4.84	61.3	30.000	1.704	10.129	51.121	0.198
T3	135 - 130	ROHN 2.5 STD	5.01	5.01	63.4	30.000	1.704	12,214	51,121	0.239
T4	130 - 125	ROHN 2.5 STD	5.01	5.01	63.4	30.000	1.704	17.210	51,121	0.337

tnxTower	Job 152' ROHN SSV Tower	Page 51 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project 366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section No,	Elevation	Size	L	L _u	Kl/r	F_a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	Κ	K	P_a
T5	125 - 120	ROHN 2.5 STD	5.01	5.01	63.4	30.000	1.704	23.212	51,121	0,454
T6	120 - 100	Rohn 2.5 X-Str w/ (3) 1.5"x0.25" Bars	20.03	6.68	67.8	30,000	3,413	47.129	102,402	0.460
Т7	100 - 80	Rohn 2.5 X-Str w/ (3) 1.5"x0.25" Bars	20.03	3.44	35.0	30.000	3.413	76.836	102.402	0.750
Т8	80 - 73 3333	Rohn 3 X-Str w/ (3) 1.5"x0.5" Bars	6.68	6.68	55.1	30.000	5.275	87,346	158_247	0.552
Т9	73.3333 - 66.6667	Rohn 3 X-Str w/ (3) 1.5"x0.5" Bars	6.68	3.42	28.2	30.000	5.275	96.963	158.247	0.613
T10	66.6667 - 60	Rohn 3 X-Str w/ (3) 1.5"x0.5" Bars	6.68	3.42	28.2	30.000	5.275	106.572	158.247	0.673
T11	60 - 50	Rohn 4 X-Str w/ (3) 1.5"x0.5" Bars	10.02	10.02	69.4	30.000	6.640	118.266	199,209	0.594
T12	50 - 40	Rohn 4 X-Str w/ (3) 1.5"x0.5" Bars	10.02	5.16	35.7	30,000	6.640	132.090	199.209	0.663
T13	40 - 30	Rohn 4 X-Str w/ (3) 1.5"x0.5" Bars	10.02	5.15	35.7	30.000	6.640	145.569	199.209	0.731
T14	30 - 20	Rohn 4 X-Str w/ (3) 1.5"x0.5" Bars	10.02	2.50	17.3	30,000	6.640	157.929	199.209	0.793
T15	20 - 15	Rohn 5 STD w/ (3) 1.5"x0.5" Bars	5.01	2.50	14.2	30.000	6.555	170.161	196.650	0,865
T16	15 - 10	Rohn 5 STD w/ (3) 1.5"x0.5" Bars	5.01	5.01	28.4	30.000	6.555	171.068	196.650	0.870
T17	10 - 0	Rohn 5 STD w/ (6) 1.5"x0.5" Bars	10,02	10.02	56.9	30.000	9,761	183.278	292,833	0.626

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	F_{a}	Α	Actual P	Allow.	Ratio
140.	ft		ft	ft		ksi	in^2	r K	P _a K	$\frac{P}{P_{a}}$
T1	152 - 140	L1 1/2x1 1/2x1/8	7.65	3.61	95.8	29.000	0.211	1.915	6.117	0.313
Т2	140 - 135	L1 1/2x1 1/2x3/16	8.35	4.07	109.8	29.000	0.308	2.776	8.921	0,311
Т3	135 - 130	L1 1/2x1 1/2x3/16	8.86	4.33	116.6	29.000	0.308	2.604	8.921	0.292
Т4	130 - 125	L1 1/2x1 1/2x1/4	9.28	4.54	124.2	29.000	0.398	3.424	11.555	0.296
T5	125 - 120	L1 3/4x1 3/4x3/16	9.70	4.75	108.5	29.000	0.378	3.945	10.960	0.360
Т6	120 - 100	L2x2x1/4	12.21	5.94	119.1	29.000	0.586	4,531	17.003	0.266
Т7	100 - 80	L2 1/2x2 1/2x1/4	13.37	6.53	103.5	29.000	0,775	6.897	22.484	0,307
Т8	80 - 73.3333	L2 1/2x2 1/2x1/4	14.57	7.10	112.4	29.000	0.775	6.790	22.484	0.302
Т9	73.3333 - 66.6667	L2 1/2x2 1/2x5/16	15.19	7.41	118.6	29.000	0.949	7.057	27,507	0,257

tnxTower	Job	152' ROHN SSV Tower	Page 52 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project	366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section No	Elevation	Size	L	L_u	Kl/r	F_{a}	A	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in^2	K	K	- Pa
T10	66.6667 - 60	L2 1/2x2 1/2x5/16	15.82	7.73	123.5	29.000	0.949	7,191	27.507	0.261
T11	60 - 50	L3x3x5/16	18.20	8.94	117.9	29.000	1.159	8.153	33,617	0.243
T12	50 - 40	L3x3x5/16	19.04	9.36	123.4	29.000	1.159	8.601	33.617	0.256
T13	40 - 30	L3x3x3/8	19.90	9,79	130,3	29.000	1.372	8,824	39.775	0.222
T14	30 - 20	L3x3x5/16	10.64	10.08	134.3	29.000	1.159	9.038	33.617	0.269
T15	20 - 15	L3 1/2x3 1/2x1/4	10.64	10.08	113.6	29.000	1.127	8.854	32.679	0.271
T16	15 - 10	L3 1/2x3 1/2x1/4	11.08	10.49	118.1	29.000	1.127	8.416	32.679	0.258
T17	10 - 0	L3 1/2x3 1/2x5/16	22.61	11.11	124.8	29.000	1.392	10,451	40.360	0.259

Horizontal Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	Kl/r	F _a	А	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in^2	Κ	Κ	P_a
T14	30 - 20	L3x3x3/16	18.23	17,34	225.8	29.000	0,730	3,167	21.159	0.150
T16	15 - 10	L2.875x2.875x0.25	19.26	18.38	251.1	29.000	0.891	3.448	25.828	0.134

Section No	Elevation	Size	L	L_{ii}	Kl/r	F_{a}	A	Actual P	Allow. Pa	Ratio P
12	ft		ft	ft		ksi	in^2	K	K	P_a
Τ7	100 - 80	L3x3x3/16	12.25	11,49	151.1	29,000	0.730	1.536	21,159	0.073
Т9	73.3333 - 66.6667	L3x3x3/16	13.64	12.82	168.1	29,000	0,730	1.930	21,159	0.091
T10	66.6667 - 60	L3x3x3/16	14.34	13.52	177.0	29.000	0.730	2.125	21,159	0.100
T12	50 - 40	L3x3x3/16	16.18	15.29	199.6	29.000	0.730	2,635	21.159	0.125
T13	40 - 30	L3x3x3/16	17.18	16.29	212.4	29.000	0.730	2.908	21.159	0.137

Top Girt Design Data (Tension)

tnxTower	Job 152' ROHN SSV Tower	Page 53 of 55
URS Corporation 500 Enterprise Drive, Suite 3B	Project 366 Old Long Ridge Road, Stamford, CT	Date 11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section No.	Elevation	Size	L	L_{μ}	Kl/r	F_a	А	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in ²	K	K	P_a
T1	152 - 140	L2x2x1/8	6.52	6.11	121.2	29.000	0.305	0.287	8.836	0.033
T2	140 - 135	L2x2x1/8	6,57	6.12	121.3	29.000	0.305	0.144	8.836	0.016

Redundant Horizontal (1) Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	Kl/r	Fa	A	Actual P	Allow Pa	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	P_{q}
T14	30 - 20	L2x2x1/4	4.56	4,28	84.3	21.600	0.938	3.167	20,261	0.156
T15	20 - 15	L2x2x1/4	4.82	4.50	88.6	21,600	0.938	3.419	20.261	0.169

Redundant Diagonal (1) Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	Kl/r	F _a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	Pa
T14	30 - 20	L2x2x1/4	5.32	4.99	98.4	21.600	0.938	1.847	20.261	0.091
T15	20 - 15	L2x2x1/4	5,53	5.18	102.0	21,600	0.938	1.985	20,261	0.098

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF^*P_{allow} K	% Capacity	Pass Fail
T1	152 - 140	Leg	ROHN 2 STD	3	-7.018	32,507	21.6	Pass
T2	140 - 135	Leg	ROHN 2.5 STD	27	-12.229	51.088	23.9	Pass
Т3	135 - 130	Leg	ROHN 2.5 STD	39	-14.620	50.251	29.1	Pass
Τ4	130 - 125	Leg	ROHN 2.5 STD	48	-20,859	50.251	41.5	Pass
T5	125 - 120	Leg	ROHN 2.5 STD	57	-27.981	50.251	55.7	Pass
T6	120 - 100	Leg	Rohn 2.5 X-Str w/ (3) 1.5"x0.25"	66	-53.902	97.073	55.5	Pass
		-	Bars					
T7	100 - 80	Leg	Rohn 2.5 X-Str w/ (3) 1.5"x0.25" Bars	87	-88.559	120.648	73.4	Pass
Т8	80 - 73.3333	Leg	Rohn 3 X-Str w/ (3) 1.5"x0.5" Bars	117	-100.326	165.532	60.6 61.9 (b)	Pass
Т9	73.3333 - 66.6667	Leg	Rohn 3 X-Str w/ (3) 1.5"x0.5" Bars	126	-111.296	192.436	57.8	Pass
T10	66.6667 - 60	Leg	Rohn 3 X-Str w/ (3) 1.5"x0.5" Bars	138	-122.542	192,465	63.7	Pass
T11	60 - 50	Leg	Rohn 4 X-Str w/ (3) 1.5"x0.5"	150	-135.919	186.381	72,9	Pass

tnxTower

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Page Job 54 of 55 152' ROHN SSV Tower Project Date 366 Old Long Ridge Road, Stamford, CT 11:46:06 07/15/14 Client Designed by Verizion, Sprint and AT&T / S.A. Evaluation MCD

77.4

(T15) Horizontal

Pass

Section	Elevation	Component	Size	Critical	Р	SF*Pallow	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
,			Bars				83.8 (b)	
T12	50 = 40	Leg	Rohn 4 X-Str w/ (3) 1.5"x0.5"	159	-151.941	233.802	65.0	Pass
	50 10	206	Bars	155	1211211	255.002	05.0	1 400
T13	40 - 30	Leg	Rohn 4 X-Str w/ (3) 1.5"x0.5"	171	-167.671	233.875	71.7	Pass
			Bars				79.0 (b)	A MOO
T14	30 - 20	Leg	Rohn 4 X-Str w/ (3) 1:5"x0.5"	183	-182.598	252.914	72.2	Pass
	501 20	Dop	Bars	100	102.090	202.011	1 4 4.	1 400
T15	20 - 15	Leg	Rohn 5 STD w/ (3) 1.5"x0.5"	225	-197.172	252.353	78.1	Pass
		206	Bars	223	197.172	202.000	92.4 (b)	1 405
T16	15 - 10	Leg	Rohn 5 STD w/ (3) 1.5"x0.5"	249	-198.809	239.004	83.2	Pass
	10 10	1000	Bars	2.12	190.009	259.001	00,2	1 400
T17	10 - 0	Leg	Rohn 5 STD w/ (6) 1.5"x0.5"	258	-213.234	302,348	70.5	Pass
117	10 0	LUB	Bars	250	215.251	502,510	10.5	1 0.00
T1	152 - 140	Diagonal	L1 1/2x1 1/2x1/8	7	-1.935	3.345	57.8	Pass
T2	140 - 135	Diagonal	L1 1/2x1 1/2x3/16	31	-2.788	3.779	73.8	Pass
T3	135 - 130	Diagonal	L1 1/2x1 1/2x3/16	40	-2.612	3.343	78.1	Pass
T4	130 - 125	Diagonal	L1 $1/2x1 1/2x1/4$	49	-3.479	3,931	88.5	Pass
T5	125 - 120	Diagonal	L1 3/4x1 3/4x3/16	58	-3.948	4.484	88.1	Pass
T6	120 - 100	Diagonal	L2x2x1/4	72	-4.607	5.616	82.0	Pass
10	120 - 100	Diagonar	DEAZAMA	12	-4.007	5.010	83.8 (b)	1 455
T7	100 - 80	Diagonal	L2 1/2x2 1/2x1/4	93	-6.830	8.521	80.2	Pass
17	100 - 00	Diagonal	L2 1/2A2 1/2A1/4	,,,	-0.050	0.521	95.2 (b)	1 433
Т8	80 - 73.3333	Diagonal	L2 1/2x2 1/2x1/4	123	-6.848	7.864	87.1	Pass
10	00 - 75.5555	Diagonal	Lz 1/2X2 1/2X1/4	125	-0.848	7.004	93.7 (b)	1 485
Т9	73.3333 -	Diagonal	L2 1/2x2 1/2x5/16	132	-7.190	8.780	81.9	Pass
19	66.6667	Diagonal	LZ 1/2XZ 1/2XJ/10	152	-7.190	8.780	91.6 (b)	r 485
T10	66.6667 - 60	Diagonal	L2 1/2x2 1/2x5/16	144	-7.178	8.077	88.9	Pass
110	00.0007 - 00	Diagonal	LZ 1/2X2 1/2XJ/10	144	-7.170	0.077	91.6 (b)	r ass
T11	60 - 50	Diagonal	$L_{2x}^{2x}5/16$	154	-8.503	10.670		Dues
T12	50 - 40		L3x3x5/16	156		10.679 9.738	79.6 88.0	Pass
T12 T13		Diagonal	L3x3x5/16	165	-8.569			Pass
T13 T14	40 - 30	Diagonal	L3x3x3/8	177	-9.333	10.481	89.0	Pass
114	30 - 20	Diagonal	L3x3x5/16	202	-9.591	20.597	46.6	Pass
T15	20 - 15	Discourd	L 2 1/2-2 1/2-1/4	2.41	0.610	24 606	79.8 (b)	D
115	20 - 15	Diagonal	L3 1/2x3 1/2x1/4	241	-9.619	24.606	39.1	Pass
T16	15 10	Discourt	L 2 1/2-2 1/2-1/4	255	0 (7)	10 222	97.7 (b)	D
	15 - 10	Diagonal	L3 1/2x3 1/2x1/4	255	-9.671	10.232	94.5	Pass
T17	10 - 0	Diagonal	L3 1/2x3 1/2x5/16	264	-9.509	11.143	85,3	Pass
TT 1 4	20 20	TT	12 2 2/17	101	2 1 (7	6.516	92.3 (b)	D
T14	30 - 20	Horizontal	L3x3x3/16	191	-3.167	6.516	48.6	Pass
T16	15 - 10	Horizontal	L2.875x2.875x0.25	240	-3.448	4.457	77.4	Pass
Τ7	100 - 80	Secondary Horizontal	L3x3x3/16	95	-1.536	5.891	26.1	Pass
Т9	73.3333 -	Secondary Horizontal	L3x3x3/16	135	-1.930	4,909	39.3	Pass
	66.6667							
T10	66.6667 - 60	Secondary Horizontal	L3x3x3/16	146	-2.125	4.494	47.3	Pass
T12	50 - 40	Secondary Horizontal	L3x3x3/16	167	-2.635	3.658	72.0	Pass
T13	40 - 30	Secondary Horizontal	L3x3x3/16	179	-2.908	3_288	88.4	Pass
T1	152 - 140	Top Girt	L2x2x1/8	4	-0.284	2.830	10.0	Pass
T2	140 - 135	Top Girt	L2x2x1/8	30	-0.157	2.823	5.6	Pass
T14	30 - 20	Redund Horz 1	L2x2x1/4	200	-3.167	10.834	29.2	Pass
		Bracing						
T15	20 - 15	Redund Horz 1	L2x2x1/4	238	-3.419	9.807	34.9	Pass
		Bracing						
T14	30 - 20	Redund Diag 1	L2x2x1/4	216	-1.847	7,946	23.2	Pass
		Bracing				85		
T15	20 - 15	Redund Diag 1	L2x2x1/4	239	-1.985	7.396	26.8	Pass
		Bracing						
		0					Summary	
						Leg (T15)	92.4	Pass
						Diagonal	97.7	Pass
						(T15)	21	* 400

trave Towney	Job		Page
tnxTower		152' ROHN SSV Tower	55 of 55
URS Corporation	Project		Date
500 Enterprise Drive, Suite 3B		366 Old Long Ridge Road, Stamford, CT	11:46:06 07/15/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Verizion, Sprint and AT&T / S.A. Evaluation	Designed by MCD

Section No	Elevation ft	Component Type	Size	Critical Element	P K	SF^*P_{allow} K	% Capacity	Pass Fail
						(T16)		
						Secondary	88.4	Pass
						Horizontal		
						(T13)		
						Top Girt	10.0	Pass
						(T1)		
			3			Redund	34.9	Pass
						Horz 1		
						Bracing		
						(T15)		
						Redund	26.8	Pass
						Diag 1		
						Bracing		
						(T15)		
						Bolt Checks	97.7	Pass
						RATING =	97.7	Pass

Program Version 6.1.3.1 - 3/21/2014 File:C:/Users/Michael_Dalickas/Desktop/VZW-### and TWS-###_Stamford_CT/ERI/150'_ROHN_SSV_Lattice_Stamford_CT_w_Mods.eri

ANCHOR BOLT EVALUATION

URS Job Description	152' ROHN SSV LatticeT Anchor Bolt Analysis	ower, Stamford, CT	Computed by Checked by	VZW,AT&T & Sprint MCD	Page of Sheet 1 of 3 Date 07/15/14 Date
Input Dat	ta				
<u>Max Co</u>	rner Reactions:				
Uplif	ít:	Uplift := 189 kips	user input		
Shea	ar:	Shear := 26 kips	user input		
Com	pression:	Compression := 220 kips	user input		
Use Num Bolt Bolt Thick Thick	Bolt Data: ASTM A-193 GR B7/ASTM ber of Anchor Bolts = N Ultimate Strength: Yield Strength: Modulus: kness of Anchor Bolts ads per Inch: ficient of Friction:	A A-320 GR L7 M = 4 $F_u := 125 \cdot ksi$ $Fy := 105 \cdot ksi$ $E := 29000 \cdot ksi$ D := 1.0in n := 8.0 $\mu := 0.55$	user input user input user input user input user input user input user input	(for baseplate with	grout ASCE 10-97)

URS				Page	of
Job	152' ROHN SSV LatticeTower, Stamford, CT	Project No.	VZW,AT&T & Sprint	Sheet	2 of 3
Description	Anchor Bolt Analysis	Computed by	MCD	Date	07/15/14
		Checked by		Date	

Anchor Bolt Area:

Gross Area of Bolt:

$$A_g := \frac{\pi}{4} D^2$$
 $A_g = 0.785 in^2$

Net Area of Bolt:

$$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2 \qquad A_n = 0.606 \cdot in^2$$

Check Tensile Forces:

Maximum Tensile Force (Gross Area):

AllowableTension :=
$$1.333 \cdot (0.33 \cdot A_g \cdot F_u)$$
 AllowableTension = $43.2 \cdot kips$

Note: 1.333 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):

 $F_{net.area} := 1.333 \cdot (0.60 \cdot A_n \cdot Fy)$ $F_{net.area} = 50.9 \cdot kips$

Note: 1.333 increase allowed per TIA/EIA

Applied Tension:

MaxTension :=
$$\frac{\text{Uplift}}{N}$$
 MaxTension = 47.3 kips

Check Stresses:

$$\frac{\text{MaxTension}}{\text{F}_{\text{net,area}}} = 0.93$$
Condition1 := if $\left(\frac{\text{MaxTension}}{\text{F}_{\text{net,area}}} \le 1.00, \text{"OK"}, \text{"Overstressed"}\right)$
Condition1 = "OK"

URS				Page	of
Job	152' ROHN SSV LatticeTower, Stamford, CT	Project No.	VZW,AT&T & Sprint	Sheet	3 of 3
Description	Anchor Bolt Analysis	Computed by	MCD	Date	07/15/14
		Checked by		Date	

Check Anchor Bolt Area:

Based on the ASCE 10-97 Design of Latticed Steel Transmission Structures

Required Area:

$$A_{s1} := \frac{\text{Uplift}}{\text{Fy}} + \frac{\text{Shear}}{\mu \cdot 0.85 \cdot \text{Fy}} \qquad A_{s1} = 2.3 \cdot \text{in}^2$$
$$A_{s2} := \left| \frac{\text{Shear} - (0.3 \cdot \text{Compression})}{\mu \cdot 0.85 \cdot \text{Fy}} \right| \qquad A_{s2} = 0.8 \cdot \text{in}^2$$

Provided Area:

$$A_{sprovided} := A_n \cdot N$$
 $A_{sprovided} = 2.4 \text{ in}^2$

Condition 2 := if
$$\left(\frac{A_{s1}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
 $\frac{A_{s1}}{A_{sprovided}} = 0.96$

Condition2 = "OK"

Condition3 := if
$$\left(\frac{A_{s2}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
 $\frac{A_{s2}}{A_{sprovided}} = 0.34$
Condition3 = "OK"

FOUNDATION EVALUATION

Job Description	152' ROHN	SSV Lattice Tower Caisson Evaluation		CT Project No. VZW Computed by Checked by	, AT&T & Sprint MCD	Page of Sheet <u>1</u> of <u>2</u> Date <u>07/15/14</u> Date
		FOU	NDATI	ON ANALYSIS	6	
Input Da	ta					
Maximum	Pier Reac	tions:		Material Properties:		
Compression	1:	$C_t := 220 \cdot kips$	user input	Unit Weight of Concrete:	$\gamma c := 150 pcf$	user input
Uplift:		$U_t := 189 \cdot kips$	user input	Unit Weight of Water:	$\gamma w := 62.4 pcf$	user input
Foundatio	on Dimens	ions:		Unit Weight of Soil:	$\gamma s := 120 pcf$	user input
Drilled Caiss	on Length:	$C_{\text{Length}} := 21.0 \cdot \text{ft}$	user input	Allowable Soil Bearing Capacity	$q_s := 10 \text{ ksf}$	user input
Diameter of F	⊃ier:	$d_p := 4.5 ft$	user input	(Allowable Bearing Pressure at Depth 21')		
Extension of Above Grade		$L_{pag} := 0.5 ft$	user input	Water Table Below Grade:	$Wd := 8 \cdot ft$	user input
Conc Pad Le	ngth:	Pad _{Length} := 5.0ft	user input	Average Allowable Shear:	$fl := 410 \cdot psf$	user input
Conc Pad W	idth:	Pad _{Width} := 6ft	user input	Depth Neglected for Skin Friction at Top:	Depthunbond :	= 0.5 ft user input
foundation re	concrete pad	Pad _{Depth} := 5.0ft dimensions based design by Tectonic Wireless, dated 0		Assumed Allowable Soil Bearing Capacity For Conc Pad:	$q_u := 5 ksf$	user input

Loading:

TotalDownLoad :=
$$C_t + \pi \cdot \frac{d_p^2}{4} \cdot \left[L_{pag} \cdot \gamma c + \left[\gamma c \cdot \left(C_{Length} - L_{pag} \right) \right] \right]$$

TotalDownLoad = 270.1 kips

 $PadWeight := Pad_{Length} Pad_{Width} Pad_{Depth} \gamma c \qquad PadWeight = 22.5 \cdot kips$

$$\text{PierWeight} := \pi \cdot \frac{d_p^2}{4} \cdot \left[\left(\text{Wd} + \text{L}_{\text{pag}} \right) \cdot \gamma \text{c} + \left(\text{C}_{\text{Length}} - \text{Wd} - \text{L}_{\text{pag}} \right) \cdot \left(\gamma \text{c} - \gamma \text{w} \right) \right] \qquad \text{PierWeight} = 37.7 \cdot \text{kips}$$

SoilShear := $\pi d_p \cdot \left[fl \cdot (Wd - Depthunbond) + fl \cdot (C_{Length} - Wd - L_{pag}) \right]$

SoilShear = 115.9 kips

URS				Page of
Job Description	152' ROHN SSV Lattice Tower - Stamford, CT Drilled Pier Caisson Evaluation		VZW, AT&T & Sprint	
Description		Computed by Checked by	MCD	Date 07/15/14 Date
Compress	sion Capacity:			
TotalDownLo	$adCapacity := SoilShear + q_{s} \cdot \left(\pi \cdot \frac{d_{p}^{2}}{4}\right) + q_{u'} \left(Pad_{Lenge}\right)$	_h ·Pad _{Width})		
TotalDownLo	adCapacity = 425.0 kips			
CheckDownL	oadCapacity:= if(TotalDownLoad < TotalDownLoadC	Capacity, "Okay", "	No Good")	
CheckDownL	oadCapacity = "Okay"			
<u>Tension C</u>	apacity:			
TotalUpLiftCa	apacity := SoilShear + PierWeight + PadWeight			
TotalUpLiftCa	apacity = 176.1 kips			
Required Saf	ety Factor: $Fs_{reqd} := 2.0$			
CheckUpLift	Capacity:= if $\left[\left(\frac{\text{TotalUpLiftCapacity}}{U_t} \right) \ge 2.0, \text{"Okay", "} \right]$	No Good" Che	ckUpLiftCapacity = "No	o Good''
SafetyFactor _{pt}	$rovided := \frac{TotalUpLiftCapacity}{U_t}$ SafetyFactor _{provided}	= 0.93		
AdditionalUpl	lift := $2 \cdot U_t - TotalUpLiftCapacity$		Addition	nalUplift = 201.9 kip
	se of (1) Rock Anchor (Williams Form Engineering d Concrete Grouting at each caisson anchor. (See f			or Bar (2 1/4"
<u>Check Co</u>	ne Failure:			
ConeFailureCa	apacity := $\frac{\left[\left(C_{\text{Length}} - L_{\text{pag}}\right) \cdot \tan(30\text{deg}) \cdot 2 + d_{\text{p}}\right]^2 \cdot \pi}{4}$	$\frac{L_{\text{Length}} - L_{\text{pag}}}{3} \cdot \gamma s$		
ConeFailureCa	apacity = 511.12 kips			
CheckConeFa	ilureCapacity := $if(U_t < ConeFailureCapacity, "Okay",$	"No Good")		
CheckConeFa	ilureCapacity = "Okay"			
ConeSafetyFa	$ctor_{provided} := \frac{ConeFailureCapacity}{U_t}$			
ConeSafetyFa	$ctor_{provided} = 2.70$			
	el Dalickas\Desktop\VZW-			11:43 <i>I</i>

Job Stamford Ct	Dusis	at No.	Page of
Description MOD Found at . M	Design Com	et No	Sheet of Date Date Reference
· Consider factored. stress design;	uplift for appl	lications not in	roluing allowed
202 Kip X 1.4 = 28	3 4,10		
· Determine Anchor - Pape 18/William	rodi 2 Sorm Engineering	Corp.)	
Use 2/4" (Yield) Pn=FyxAs = (Rupture) Pn=FuxAe=	128 HS: X 4.08:12 X 150KS: X (4.08:12-10	$c_{1,q} = 470 \text{ K.} \text{ p} (a_{1,q})$ $(2 \times 44,07.1n^{2}) \times 0.75 = 3$	5) 67,2 tr.10(0K)
Check 1344" (y:eld) Pn=FyiA3=128 ((Upiure) Pn=FuiAe=15	x2.60;n2 x0.9= 290 atts: x(2.60;n2- (0.2x)	$2.60.1^{\circ})) \times 0.75 = 234$	rip (NG-
· Determine Ancho - Page 10\$11 (Will	r Length: erms Form Engine	ering Corp.) "Thee.	Stress Length
U = 6/3 h.p - 6/ F.S.=0,5	3 kip x 0, t = 306,5 k	p > 283 trip (oth))
Vx I (See attached note; "s" will l			
	12 18 2 KIN LOH!	"Free-Stross Lenst	" = 29 Ft helow
297 H.	P/2031. P(01).		Brich
297 H. $^{\prime\prime}\text{Rock}$ anchor Long $L_{b} = \frac{P}{T(0)(Tw)}$	th'' tw = scopsi	(assumed soil/ro of Shist & Gneiss Dolomin' Limpston	ck condition

)

						29.50446 (rock embedment)	288.26 CAPACITY NEEDED
Kips	162.5164	29.7601	Ξ,			29.50446 (ro	297.1915
	000	1000	1000	1000	1000	1000	
H20 Wt. lb/kip	0	62.4	62.4	62.4	62.4	62.4	
U. WT	120	120	130	140	160	160	
2	00	5.5	7.5	ŝ	S	10	39
Area Ht	161.6681	89.7058	94.1803	28.5738	36.0844	28.8675	
).333333 3.141593 161.6581	0.333333 3.141593	0.333333 3.141593	0.333333 3.141593	0.333333 3.141593	0.333333 3.141593	
1/3 Pi	0.333333	0.333333	0.333333	0.333333	0.333333	0.333333	

$$\frac{1}{200} \frac{1}{54 \text{ inf}(21)} \frac{1}{54 \text{ inf}(21$$

Second Second

Vert Force Eccentricity Moment	202 10 2020	in				
Number of Rows Number of Columns Number of Bolts Bolt Spacing	6 2 12 12	in				
Row Number	1	2	3	4	5	6
Number of Bolts	2	2	2	2	2	2
Dist from Center	30	18	6	-6	-18	-30
A * d^2	1800	648	72	72	648	1800
T	5040	in^2				
S	168	in				
			_			
Shear per Bolt	16.83333	kip				

Tension per Bolt

12.0

kip

Use	Hilti HVA Capsule Achesive Anchoring System Hilti HAS Rod
Diameter	1.25 in
Embedment	18 in
Spacing	12 in
For 3000 ksi concrete	(4.2.1, p. 154)
Allow Tension	33728 lb
Allow Shear	85627.5 lb
Reduction Factors (4.2	2.1, p. 162)
Spacing for Tension	0.75
Spacing for Shear	0.75
Edge Distance Shear	1
Concrete Capacity	
Tension	25.3 kip
Shear	64.2 kip
For 1.25" Diameter HA	AS-E Super Rod
Allow Tension	50.62 kip
Allow Shear	26.08 kip
Governing Capacities	
Tension	25.3 kip
Shear	26.1 kip
Applied Forces	8
Tension	12.0 kip
Shear	16.8 kip
Percent Capacity	
Tension	48%
Shear	65%

Interaction

per Hilti 4.1.8.3	77.2%
per main maioro	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

tint	PROJECT: SITE NAME: SITE CASCADE: SITE ADDRESS: SITE TYPE:	2.5 EQUIPMENT D STAMFORD FIRE D CTO3XC328-A 366 OLD LONG RI STAMFORD, CT OC I 52'-O' SELF SUPP TOWER
AREA MAP	PROJECT DESCRIPTION	SHEET IND
SITE LOCATION Banksville	 INSTALL NEW 2.5 EQUIPMENT IN EXISTING BTS CABINET (1) RECTIFIER SHELF AND (3) RECTIFIERS (1) BASE BAND UNIT INSTALL (2) NEW BATTERY STRINGS IN EXISTING BATTERY CABINET INSTALL (3) PANEL ANTENNAS INSTALL (3) RRH'S ON TOWER INSTALL (1) FIBER CABLE AND (3) SECTOR JUMPERS INSTALL (27) ANTENNA / RRH JUMPERS 	SHT NO:SHEET TITLE:T-ITITLE SHEETSP-1SPRINT SPECIFICATIONSSP-2SPRINT SPECIFICATIONSSP-3SPRINT SPECIFICATIONSA-1SITE PLANA-2EQUIPMENT PLANA-3BUILDING ELEVATION & ANTENNA DETAILSA-4RF DATA SHEETA-5FIBER PLUMBING DIAGRAMA-6CABLE COLOR CODINGA-7ANTENNA & HYBRID CABLE DETAILSA-8EQUIPMENT DETAILSE-1EQUIPMENT UTILITY & GROUNDING PLANE-2GROUNDING DETAILSE-3DC POWER DETAILS & PANEL SCHEDULES
LOCATION MAP	APPLICABLE CODES	
Bd	 ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES. I. INTERNATIONAL BUILDING CODE ANSI/TIA-222 STRUCTURAL STANDARD FOR ANTENNA STRUCTURES NFPA 780 - LIGHTNING PROTECTION CODE NATIONAL ELECTRIC CODE 	
		<image/> <image/>

DE	PLO	YMENT		Sp	print	Тм
e de	EPAR	TMENT			INT PARKWAY ND PARK, KANS	AS 66251
חום		ROAD	Ph	one: 60	as Street, Sauk	TAKER CIATES, INC. City, WI 53583 x: 608-643-7999
063	903				cend V	Vireless
PPC)RT		O/ Certifica I here	AKLANI	D, NJ 07346	1, or report was prepared
INDEX					πy direct supervision and gineer under the laws of tl	
INDLA	REV:	ENGINEER:			WILLING CONN	NINITAL CONTRACTOR
	KLV:	LNGINLLR:		S. S	OFSKO	CAN
	A	JRS JRS		44	18	802
	A	JRS		S I S	<u><u>u</u> 23, 23</u>	Z
	A	JRS		1	2-2-2-2	
	A	JRS		III P	No. 2626	
	A	JRS			CENSE	GININ
FAILS	A	JRS			SSIONAL	ENTITIT
	A	JRS JRS	0			
	A	JRS	Â	Sigi	lature:	B/29/2014 Date:
	A	JRS	\cup			
	A	JRS				
LAN	A	JRS				
	A	JRS				
ULES	A	JRS				
			MARK ISSUE		DESCRIPTION	DATE ORIGOUAL
	1		PHASE	FINAL	1:	55UED 08/29/2014
				STAN C	NFORD FII	
			366		ONG RIDGE RC	DAD
			MARK DATE DESCRIPTION DATE DESCRIPTION DATE DESCRIPTION DATE DESCRIPTION DATE DESCRIPTION DATE DESCRIPTION DATE DESCRIPTION DATE DESCRIPTION DATE 08/29/2014 PROJECT INFORMATION: 3GG OLD LONG RIDGE ROAD STAMFORD, CT 06903 FAIRFIELD COUNTY SHEET TITLE: TITLE SHEET SCALE: NONE PROJECT NONE			
			SHEET	TITLE:	TITLE SHE	ET
			50	CALE:	NONE	
	+		00.5	FOT		
	1		PRO. NUM		290 T	12
	1	1	SHE	BER	-	

SECTION OI 100 - SCOPE OF WORK

R

Ramaker

201.

 (\mathbf{O})

THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE CONSTRUCTION DRAWINGS AND ASSOCIATED OUTLINE SPECIFICATIONS AND THE SITE SPECIFIC WORK ORDER, DESCRIBE THE WORK TO BE PERFORMED BY THIS CONSTRUCTION CONTRACTOR (SUPPLIER).

RELATED DOCUMENT

- A. THE REQUIREMENTS OF EACH SECTION OF THIS SPECIFICATION APPLY TO ALL SECTIONS, INDIVIDUALLY AND COLLECTIVELY
- B. RELATED DOCUMENTS: THE CONTRACTOR SHALL COMPLY WITH THE MOST CURRENT VERSION OF THE FOLLOWING SUPPLEMENTAL REQUIREMENTS FOR INSTALLATION AND TESTING. I. EN-2012-001: (FIBER OPTIC, DC CABLE, AND DC CIRCUIT BREAKER TAGGING STANDARDS)
- 2. TS-0200 (TRANSMISSION ANTENNA LINE ACCEPTANCE STANDARDS) 3.EL-0568: (FIBER TESTING POLICY)
- 4.NP-3 | 2-20 |: (EXTERIOR GROUNDING SYSTEM TESTING) 5.NP-760-500: ETHERNET, MICROWAVE, TESTING AND ACCEPTANCE

SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.

NATIONALLY RECOGNIZED CODES AND STANDARDS: THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING: A. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION

- B. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF
- TELECOMMUNICATIONS EQUIPMENT.
- C. GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR NETWORK TELECOMMUNICATIONS FOUIPMENT
- D. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70
- (NATIONAL ELECTRICAL CODE "NEC") AND NFPA IOI (LIFE SAFETY CODE). AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM)
- F. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE) G. AMERICAN CONCRETE INSTITUTE (ACI)

- H. AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA)
 I. CONCRETE REINFORCING STEEL INSTITUTE (CRSI)
 J. AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO) K. PORTLAND CEMENT ASSOCIATION (PCA)
- L. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA) M.BRICK INDUSTRY ASSOCIATION (BIA)
- N AMERICAN WELDING SOCIETY (AWS)
- O. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
- P. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) Q. DOOR AND HARDWARE INSTITUTE (DHI)
- R. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA) 5. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.

- A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.
- B. COMPANY: "SPRINT", SPRINT NEXTEL CORPORATION AND IT'S OPERATING ENTITIES. C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING
- DIGINEL AND ARE PONSIBLE AND ARE THE PROJECT AND ARE THE PROJECT ROPESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT.
 D. CONTRACTOR: CONSTRUCTION CONTRACTOR, SUPPLIER, CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK.
- E. THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY. A#E. OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK
- CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT.

SITE FAMILIARITY

CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF WORK. NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS

COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT.

THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.

AWINGS REQUIRED AT JOBSITI

THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS FOR WRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.

- A. THE JOBSITE DRAWINGS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS, AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS.
- B. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK

USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.

WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS. THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY COMPANY INVOLVED:

WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY.

ISE OF ELECTRONIC PROJECT MANAGEMENT SYSTEM

CONTRACTOR WILL UTILIZE ITS BEST EFFORTS TO WORK WITH SPRINT ELECTRONIC PROJECT MANAGEMENT SYSTEMS, CONTRACTOR UNDERSTANDS THAT SUFFICIENT INTERNET ACCESS, EQUIVALENT TO "BROADBAND" OR BETTER, IS REQUIRED TO TIMELY AND EFFECTIVELY UTILIZE SPRINT DATA AND DOCUMENT MANAGEMENT SYSTEMS AND AGREES TO MAINTAIN APPROPRIATE CONNECTIONS FOR CONTRACTOR'S STAFE AND OFFICES THAT ARE COMPATIBLE WITH SPRINT DATA AND DOCUMENT MANAGEMENT SYSTEMS

TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSOR'S OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS

ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.

VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS, DO NOT SCALE DRAWINGS.

NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

SECTION 01 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT

COMPANY FURNISHED MATERIALS AND EQUIPMENT TO BE INSTALLED BY THE CONTRACTOR (OFIC) IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS.

RECEIPT OF MATERIAL AND EQUIPMENT: A.THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL

- I. ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT
- 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES. 3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT
- B RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT. REPORT TO
- OPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH
- C.PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING
- D.COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE

DELIVERABLES

A. COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE. B IF APPLICABLE. COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN

ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY

SECTION 01 300 - CELL SITE CONSTRUCTION

A NO WORK SHALL COMMENCE PRIOR TO COMPANY'S ISSUANCE OF THE WORK ORDER B.UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.

- GENERAL REQUIREMENTS FOR CONSTRUCTION: A.CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- B.EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS. C.CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION
- I. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED
- AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY. 2. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL
- OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD.
- D.CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION

- FUNCTIONAL REQUIREMENTS: A.THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK. CONTRACTOR SHALL TAKE ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES.
- B. SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED.
- C.MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES
- D. PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING:

5.INSTALL ABOVE GROUND GROUNDING SYSTEMS, CONDUIT AND BOXES. 6.PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS.

9. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES.

7.INSTALL "H-FRAMES", CABINETS AND PADS AND PLATFORMS AS INDICATED. 8.INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED.

PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION

CONDUITS, AND UNDERGROUND GROUNDING SYSTEM.

BACKHAUL (FIBER, COPPER, OR MICROWAVE).

2. PREPARE GROUND SITES: PROVIDE DE-GRUBBING: AND ROUGH AND FINAL GRADING. AND COMPOUND SURFACE TREATMENTS. 3 MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND

4.INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS

PROVIDE SLABS AND EQUIPMENT PLATFORMS. INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS BARRIERS. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS 16 INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATEORMS ON EXISTING TOWERS AS

10. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS.

CONDUCT ALL REQUIRED TESTS AND INSPECTIONS

b. PDF SCAN OF REDLINES PRODUCED IN THE FIELD

12

17.

19

DELIVERABLES

CLOSFOUT

DOCUMENTATION.

SPECIFICATIONS

STANDARDS

3. CONCRETE BREAK TESTS

4. SITE RESISTANCE TO EARTH TEST

CHEMICAL GROUNDING SYSTEM

4. REINFORCEMENT CERTIFICATIONS

TESTING BY THIRD PARTY AGENCY

B.REQUIRED THIRD PARTY TESTS

STANDARDS

. STRUCTURAL BACKFILL TEST RESULTS . SWEEP AND FIBER TESTS

ANTENNA AZIMUTH AND DOWN-TILT VERIFICATION

8. POST CONSTRUCTION HEIGHT VERIFICATION

AGENCY IS SUBJECT TO APPROVAL BY COMPANY.

AASJTO, AND OTHER METHODS IS NEEDED.

4. REBAR PLACEMENT VERIFICATION WITH REPORT 5. TESTING TENSION STUDY FOR ROCK ANCHORS

INSTALLATION SPECIFICATION HEREIN.

1. COAX SWEEP TESTS PER SPRINT STANDARD TS-0200 2. FIBER TESTS PER SPRINT STANDARD EL-0568

SITE RESISTANCE TO FARTH TEST PER NP-312-201

THE SOIL ROCK AND GROUNDWATER CONDITIONS

5. STRUCTURAL BACKFILL COMPACTION TESTS

REQUIRED.

AND LANDLORDS

NOT LIMITED TO THE FOLLOWING

4. ALL REQUIRED TEST REPORTS.

e FINAL PAYMENT APPLICATION f. REQUIRED FINAL CONSTRUCTION PHOTOS

LISTS OF SUBCONTRACTORS

PROJECT PROGRESS REPORTS

3. PRE-CONSTRUCTION MEETING NOTES.

d.LIEN WAIVERS

SITE PHOTOS

INSTALL CELL SITE RADIOS MICROWAVE GPS COAXIAL MAINLINE ANTENNAS CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED EQUIPMENT

PERFORM, DOCUMENT, AND CLOSE OUT ALL JURISDICTIONAL PERMITTING REQUIREMENTS AND ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES

20. PERFORM ALL ADDITIONAL WORK AS IDENTIFIED IN SCOPE OF SERVICES ATTACHED TO THE SUPPLIER AGREEMENT FOR THIS PROJECT. THIS WORK MAY INCLUDE COMMISSION INTEGRATION, SPECIAL WAREHOUSING, REVERSE LOGISTICS ACTIVITIES, ETC. PERFORM COMMISSIONING AND INTEGRATION ACTIVITIES PER APPLICABLE MOPS.

A. THE CONTRACTOR SHALL PROVIDE ALL REQUIRED TEST REPORTS AND DOCUMENTATION INCLUDED BUT

I. PRODUCT SPECIFICATIONS FOR MATERIALS OR SPECIAL CONSTRUCTION IF REQUESTED BY SPRINT ACTUALIZE ALL CONSTRUCTION RELATED MILESTONES IN SITERRA AND COMPLETE ALL ON-LINE FORMS AND COMPLETE DOCUMENT UP-LOADS, UPLOAD ALL REQUIRED CLOSEOUT DOCUMENTS AND FINAL

3. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT LEFT ON SITE INSIDE BASE OF MAIN RF CABINET IN A PROTECTIVE POUCH.

5. REQUIRED CLOSEOUT DOCUMENTATION INCLUDING BUT NOT LIMITED TO: a. ALL JURISDICTIONAL PERMITTING AND OCCUPANCY INFORMATION

c. ELECTRONIC AS-BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS

a CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS

B PROVIDE ADDITIONAL DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED INTO SMS. I. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS.

SECTION 01 400 - TESTS, INSPECTIONS, SUBMITTALS, AND PROJECT

I<u>FESTS AND INSPECTIONS:</u> A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT

B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING I. COAX SWEEPS AND FIBER TESTS PER TS-0200 (CURRENT VERSION) ANTENNA LINE ACCEPTANCE

2. POST CONSTRUCTION HEIGHT VERIFICATION, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL.

6. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING. 7. ADDITIONAL TESTING AS REQUIRED ELSEWHERE IN THIS SPECIFICATION

SUBMITTALS: A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE

B.UPLOAD THE FOLLOWING TO SITERRA AS APPLICABLE INCLUDING BUT NOT LIMITED TO THE FOLLOWING: . CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING. ... CONCRETE BREAK TESTS AS SPECIFIED HEREIN.

9. ADDITIONAL SUBMITTALS MAY BE REQUIRED FOR SPECIAL CONSTRUCTION OR MINOR MATERIALS C.ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT.

LABORATORY OF ENGINEERS AND SCIENTISTS WHO IS REGULARLY ENGAGED IN FIELD AND LABORATORY TESTING AND ANALYSIS, AGENCY SHALL HAVE BEEN IN BUSINESS A MINIMUM OF FIVE YEARS, AND BE LICENSED AS PROFESSIONAL ENGINEERS IN THE STATE WHERE THE PROJECT IS LOCATED.

I. AGENCY MUST HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING

2. AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED. AND ASSOCIATED HEALTH AND SAFETY ISSUES 3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM,

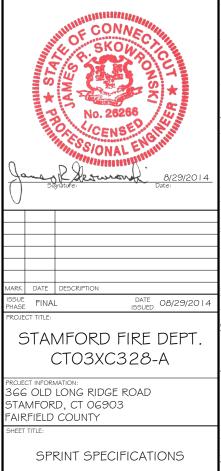
2. CONCRETE CYLINDER BREAK TESTS FOR TOWER PIER AND ANCHORS PER NATIONALLY RECOGNIZED

3. STRUCTURAL SOILS COMPACTION TESTS PER NATIONALLY RECOGNIZED STANDARDS

6. ALL THIRD PARTY TESTS AS REQUIRED BY LOCAL JURISDICTION C.REQUIRED TESTS BY CONTRACTOR

MICROWAVE LINK TESTS PER NP.-760-500
 ANTENNA AZIMUTHS AND DOWN TILT USING ELECTRONIC ALIGNMENT TOOL PER ANTENNA

6580 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**


1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com

48 SPRUCE STREET OAKLAND, NJ 07346

ertification & Seal:

hereby certify that this plan, specification, or report was pre when or under my direct supervision and that I am a duly Licensei onal Engineer under the laws of the State of <u>Connecticut</u>.

29012

SP-1

SCALE: NONE

PROJEC1 NUMBER SHEET

 (\mathbf{O})

- POST CONSTRUCTION HEIGHT VERIFICATION AS REQUIRED HEREWITH IN THE TOWER INSTALLATION SPECIFICATIONS ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY 6
- TESTING AS SPECIFIED HEREWITH IN THE ASPHALT PAVING SPECIFICATIONS.
- FIELD QUALITY CONTROL TESTING AS SPECIFIED HEREWITH IN THE CONCRETE PAVING 7 SPECIFICATIONS.
- TESTING REQUIRED HEREWITH UNDER SPECIFICATIONS FOR AGGREGATE BASE FOR ROADWAYS ALL OTHER TESTS REQUIRED BY LOCAL JURISDICTION
- D.INSPECTIONS BY COMPANY: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN INSPECTION ACTIVITIES, FINAL ACCEPTANCE / PUNCH WALK REVIEW, AND/OR AS A RESULT OF TESTING
- E. SPRINT RESERVES THE RIGHT TO INSPECT THE CONSTRUCTION SITE AT ANY TIME VIA SITE WALKS AND/OR PHOTO REVIEWS, CONTRACTOR SHALL GIVE SPRINT 24 HOURS NOTICE PRIOR TO THE COMMENCEMENT OF THE FOLLOWING CONSTRUCTION ACTIVITIES AND PHOTOGRAPHS OF THE IN-PROGRESS WORK.
- GROUNDING SYSTEM AND BURIED UTILITIES INSTALLATION PRIOR TO EARTH CONCEALMENT DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE
- FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A¢E OR SPRINT REPRESENTATIVE
- 3 COMPACTION OF BACKFUL MATERIALS AGGREGATE BASE FOR ROADS PADS AND ANCHORS ASPHALT PAVING, AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES, BY INDEPENDENT THIRD PARTY AGENCY.
- PRE AND POST CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING FACILITIES. PRIOR TO CONSTRUCTION ACTIVITIES AND AFTER CONSTRUCTION IS COMPLETE, PROVIDE PHOTOGRAPHIC DOCUMENTATION OF ROOF, FLASHINGS, AND PARAPETS, BOTH BEFORE AND AFTER CONSTRUCTION IS COMPLETE.
- TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL PHOTOGRAPHS BY THIRD PARTY AGENCY
- TOWER TOP AND INACCESSIBLE EQUIPMENT (RRUS, ANTENNAS, AND CABLING): PROVIDE PHOTOS OF THE BACKS OF ALL ANTENNAS, RRUS, COMBINERS, FILTERS, FIBER AND DC CABLING, CABLE COLOR CODING, EQUIPMENT GROUNDING AND CONNECTOR WATER PROOFING INCLUDING NAME PLATE AND SERIAL NUMBER FOR ALL SERIALIZED EQUIPMENT.

PROJECT CLOSEOUT: A.FINAL ACCEPTANCE PUNCH WALK AND INSPECTION: AS IDENTIFIED IN THE SCOPE OF SERVICES, SPRINT WILL CONDUCT A FINAL PUNCH WALK OR FINAL DESK TOP PHOTO REVIEW (SITE MODIFICATIONS). PUNCH WALKS MUST BE SCHEDULED IN ADVANCE AS REQUIRED. AT THE PUNCH WALK / REVIEW, SPRINT MAY IDENTIFY CRITICAL DEFICIENCIES WHICH MUST BE CORRECTED PRIOR TO PUTTING SITE ON AIR. MINOR DEFICIENCIES MUST BE CORRECTED WITHIN 30 DAYS EXCEPT AS OTHERWISE REQUIRED. VERIFICATIONS OF CORRECTIONS MAY BE MADE BY COMPANY DURING A REPEAT SITE WALK OR DESK TOP PHOTO REVIEW AT COMPANYS SOLE DISCRETION.

B. CLOSEOUT DOCUMENTATION: ALL CLOSEOUT DOCUMENTATION AND PHOTOGRAPHS SHALL BE UPLOADED PRIOR TO FINAL ACCEPTANCE. SPRINT WILL REVIEW CLOSEOUT DOCUMENTATION FOR PRESENCE AND CONTENT. CLOSEOUT DOCUMENTATION SHALL INCLUDE BUT IS NOT LIMITED TO THE FOLLOWING AS APPLICABLE:

- COAX SWEEP TESTS:
- FIBER TESTS:
- JURISDICTION FINAL INSPECTION DOCUMENTATION REINFORCEMENT CERTIFICATION (MILL CERTIFICATION)
- CONCRETE MIX DESIGN AND PRODUCT DATA (TOWER FOUNDATION)
- LIEN WAIVERS AND RELEASES.
- POST -CONSTRUCTION HEIGHT VERIFICATION
- JURISDICTION CERTIFICATE OF OCCUPANCY ELECTRONIC ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
- I O. STRUCTURAL BACKFILL TEST RESULTS (IF APPLICABLE) I I. CELL SITE UTILITY SETUP
- AS-BUILT REDUKE CONSTRUCTION DRAWINGS (PDF SCAN OF FIELD MARKS)
- 13. AS-BUILT CONSTRUCTION DRAWINGS IN DWG AND PDF FORMATS
- 14 LIST OF SUB CONTRACTORS
- 15. APPROVED PERMITTING DOCUMENTS
- I.G. FINAL SITE PHOTOS UP-LOADED TO SITERRA. INCLUDE THE FOLLOWING AS APPLICABLE: a. TOWER, ANTENNAS, RRUS, AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION LIGHER, ANTENNAS, AND MAINTENE INSTITUTION AND THOTOGRAPHS OF SECTION STACKING, INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAVCABLE LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN; PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR; PHOTOS OF GPS ANTENNA(S); PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERPROOFING - TOP AND BOTTOM; PHOTOS OF COAX GROUNDING--TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER;
- PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWERMONOPPOLE. b. ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION: PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF c. SITE LAYOUT - PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM
- FROM ALL FOUR CORNERS.
- A.FINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE: PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL.

PROJECT PHOTOGRAPHS: A.PROVIDE PROJECT CLOSEOUT GENERAL ARRANGEMENT PHOTOS OF ALL NEW WORK. THE FOLLOWING LIST REPRESENTS MINIMUM REQUIREMENTS AND MINIMUM QUANTITY. ADDITIONAL PHOTOS MAY BE REQUIRED TO ADEQUATELY DOCUMENT THE WORK

- ASR AND RF MPE SIGNAGE (IF NOT IN PLACE, SUPPLIER NOTIFIES EMS FIELD REPRESENTATIVE)
- BACK OF ANTENNAS AND RRUS (I EACH SECTOR) BACK OF ANTENNAS AND RRUS (I EACH SECTOR) CLOSE UP SHOWING WEATHERPROOFING AND GROUNDING (AS REQUIRED). CLOSE-UP OF BACK SIDE OF EACH PERMANENT RRU SHOWING SERIAL NUMBER/BAR CODE.

- VIEW (I EACH SECTOR) ALONG THE AZIMUTH AND TILT OF THE ANTENNAS TOP OF TOWER FROM GROUND, I EACH SECTOR MAINLINE HYBRID CABLE ROUTE DOWN TOWER SHOWING FASTENERS AND SUPPORT MAINLINE/HYBRID CABLE ROUTE ALONG ICE BRIDGE OR IN CABLE TRAY SHOWING FASTENERS AND
- SUPPORT GROUND MOUNTED RRU RACKS (FRONT AND BACK)
- 9. FRONT, SIDE AND BACK ELEVATIONS OF ALL GROUND CABINETS 10. VIEW OF COMPOUND FROM A DISTANCE
- VIEW OF EACH GROUND CABINET (POWER, RF, FIBER SPOOL, PPC POWER, PPC TELCO WITH DOOR OPFN)
- BACKHAUL FIBER MEET-ME-POINT AND CONDUIT ROUTE (MICROWAVE INSTALLATION IF NOT FIBER) 1.3. AAV NETWORK INTERFACE DEVICE OR MICROWAVE RADIO INSTALLATION

CONTRACTOR IS RESPONSIBLE FOR ALL CORRECTIONS TO DEFICIENCIES IDENTIFIED THROUGH TESTING, REVIEW OF SUBMITTALS, INSPECTIONS AND CLOSEOUT REVIEWS.

SECTION OI 500 - PROJECT REPORTING

WEEKLY REPORT

A.CONTRACTOR SHALL REPORT TO SPRINT AT MINIMUM ON A WEEKLY BASIS VIA SITERRA BY UPDATING ALL APPLICABLE POST END KEEPING MILESTONES WITH ACTUAL AND FORECASTED COMPLETION DATES. B. ADDITIONAL REQUIREMENTS FOR REPORTING MAY BE IDENTIFIED ELSEWHERE OR REQUIRED BY THE SCOPE OF SERVICES OR SPRINTS LOCAL MARKET CONSTRUCTION MANAGER. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT

PROJECT CONFERENCE CALLS

SPRINT MAY HOLD PERIODIC PROJECT CONFERENCE CALLS. CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY.

FINAL PROJECT ACCEPTANCE: PRIOR TO SPRINTS FINAL PROJECT ACCEPTANCE. ALL REQUIRED MILESTONE ACTUALS MUST BE UPDATED IN SITERRA AND ALL REQUIRED REPORTING TASKS MUST BE COMPLETE.

SECTION 11 700 - ANTENNA ASSEMBLY, REMOTE RADIO UNITS AND CABLE INSTALLATION

THIS SECTION SPECIFIES INSTALLATION OF ANTENNAS, RRU'S, AND CABLE EQUIPMENT, INSTALLATION, AND TESTING OF COAXIAL FIBER CABLE.

ANTENNAS AND REUS

THE NUMBER AND TYPE OF ANTENNAS AND RRU'S TO BE INSTALLED IS DETAILED ON THE CONSTRUCTION DRAWINGS

HYBRID CABLE WILL BE DC/FIBER AND FURNISHED FOR INSTALLATION AT EACH SITE. CABLE SHALL BE INSTALLED PER THE CONSTRUCTION DRAWINGS AND THE APPLICABLE MANUFACTURER'S REQUIREMENTS.

TURNIGH AND INSTALL 1/2" COAX JUMPER CABLES BETWEEN THE RRU'S AND ANTENNAS. JUMPERS SHALL BE TYPE LDF 4, FLC 12-50, CR 540, OR FXL 540, SUPER-FLEX CABLES ARE NOT ACCEPTABLE. JUMPERS ETWEEN THE RRU'S AND ANTENNAS OR TOWER TOP AMPLIFIERS SHALL CONSIST OF 1/2 INCH FOAM DIELECTRIC, OUTDOOR RATED COAXIAL CABLE, MIN. LENGTH FOR JUMPER SHALL BE 10"-0".

REMOTE ELECTRICAL TILT (RET) CABLES:

MISCELLANEOUS: INSTALL SPLITTERS, COMBINERS, FILTERS PER RF DATA SHEET, FURNISHED BY SPRINT.

THE CONTRACTOR SHALL ASSEMBLE ALL ANTENNAS ONSITE IN ACCORDANCE WITH THE INSTRUCTIONS SUPPLIED BY THE MANUFACTURER. ANTENNA HEIGHT, AZIMUTH, AND FEED ORIENTATION INFORMATION SHALL BE A DESIGNATED ON THE CONSTRUCTION DRAWINGS.

- A. THE CONTRACTOR SHALL POSITION THE ANTENNA ON TOWER PIPE MOUNTS SO THAT THE BOTTOM STRUT IS LEVEL. THE PIPE MOUNTS SHALL BE PLUMB TO WITHIN I DEGREE.
- B.ANTENNA MOUNTING REQUIREMENTS: PROVIDE ANTENNA MOUNTING HARDWARE AS INDICATED ON THE DRAWINGS.

HYBRID CABLE INSTALLATION:

- A. THE CONTRACTOR SHALL ROUTE, TEST, AND INSTALL ALL CABLES AS INDICATED ON THE CONSTRUCTION DRAWINGS AND IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
- B. THE INSTALLED RADIUS OF THE CABLES SHALL NOT BE LESS THAN THE MANUFACTURER'S SPECIFICATIONS FOR BENDING RADII
- C.EXTREME CARE SHALL BE TAKEN TO AVOID DAMAGE TO THE CABLES DURING HANDLING AND INSTALLATION.
 - FASTENING MAIN HYBRID CABLES: ALL CABLES SHALL BE INSTALLED INSIDE MONOPOLE WITH CABLE SUPPORT GRIPS AS REQUIRED BY THE MANUFACTURER.
- 2. FASTENING INDIVIDUAL FIBER AND DC CABLES ABOVE BREAKOUT ENCLOSURE (MEDUSA). WITHIN THE MMBS CABINET AND ANY INTERMEDIATE DISTRIBUTION BOXES:
 - FIBER: SUPPORT FIBER BUNDLES USING 1/2" VELCRO STRAPS OF THE REQUIRED LENGTH AT 18" O.C. STRAPS SHALL BE UV. OIL AND WATER RESISTANT AND SUITABLE FOR INDUSTRIAL INSTALLATIONS AS MANUFACTURED BY TEXTOL OR APPROVED EQUAL.
 - b. DC: SUPPORT DC BUNDLES WITH ZIP TIES OF THE ADEQUATE LENGTH. ZIP TIES TO BE UV STABILIZED, BLACK NYLON, WITH TENSILE STRENGTH AT 12,000 PSI AS MANUFACTURED BY NELCO PRODUCTS OR EQUAL.
- 3. FASTENING JUMPERS: SECURE JUMPERS TO THE SIDE ARMS OR HEAD FRAMES USING STAINLESS STEEL TIE WRAPS OR STAINLESS STEEL BUTTERFLY CLIPS.

4 CABLE INSTALLATION:

- a, INSPECT CABLE PRIOR TO USE FOR SHIPPING DAMAGE, NOTIFY THE CONSTRUCTION MANAGER.
- b. CABLE ROUTING: CABLE INSTALLATION SHALL BE PLANNED TO ENSURE THAT THE LINES WILL BE PROPERLY ROUTED IN THE CABLE ENVELOP AS INDICATED ON THE DRAWINGS. AVOID TWISTING AND CROSSOVERS.
- c. HOIST CABLE USING PROPER HOISTING GRIPS. DO NOT EXCEED MANUFACTURER'S RECOMMENDED MAXIMUM BEND RADIUS.
- 5. GROUNDING OF TRANSMISSION LINES: ALL TRANSMISSION LINES SHALL BE GROUNDED AS INDICATED ON DRAWINGS
- 6. HYBRID CABLE COLOR CODING: ALL COLOR CODING SHALL BE AS REQUIRED IN TS 0200 (CURRENT VERSION)
- HYBRID CABLE LABELING: INDIVIDUAL HYBRID AND DC BUNDLES SHALL BE LABELED ALPHA-NUMERICALLY ACCORDING TO SPRINT CELL SITE ENGINEERING NOTICE EN 2012-001, REV 1

WEATHERPROOFING EXTERIOR CONNECTORS AND HYBRID CABLE GROUND KITS:

A. ALL FIBER & COAX CONNECTORS AND GROUND KITS SHALL BE WEATHERPROOFED.

- B WEATHERPROOFED USING ONE OF THE FOLLOWING METHODS, ALL INSTALLATIONS MUST BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND INDUSTRY BEST PRACTICES.
- COLD SHRINK: ENCOMPASS CONNECTOR IN COLD SHRINK TUBING AND PROVIDE A DOUBLE WRAP OF 2" ELECTRICAL TAPE EXTENDING 2" BEYOND TUBING. PROVIDE 3M COLD SHRINK CXS SERIES OR FOLIAL
- 2. SELF-AMALGAMATING TAPE: CLEAN SURFACES. APPLY A DOUBLE WRAP OF SELF-AMALGAMATING TAPE 2" BEYOND CONNECTOR, APPLY A SECOND WRAP OF SELF-AMALGAMATING TAPE IN OPPOSITE DIRECTION, APPLY DOUBLE WRAP OF 2" WIDE ELECTRICAL TAPE EXTENDING 2" BEYOND THE SFLF-AMALGAMATING TAPE
- 3. 3M SLIM LOCK CLOSURE 716: SUBSTITUTIONS WILL NOT BE ALLOWED.
- 4. OPEN FLAME ON JOB SITE IS NOT ACCEPTABLE

SECTION 1 800 - INSTALLATION OF MULTIMODAL BASE STATIONS (MMBS) AND RELATED EQUIPMENT

SUMMARY:

- A. THIS SECTION SPECIFIES MMBS CABINETS, POWER CABINETS, AND INTERNAL EQUIPMENT INCLUDING BY NOT LIMITED TO RECTIFIERS. POWER DISTRIBUTION UNITS, BASE BAND UNITS, SURGE ARRESTORS, BATTERIES, AND SIMILAR EQUIPMENT FURNISHED BY THE COMPANY FOR INSTALLATION BY THE CONTRACTOR (OFCI).
- B.CONTRACTOR SHALL PROVIDE AND INSTALL ALL MISCELLANEOUS MATERIALS AND PROVIDE ALL LABOR REQUIRED FOR INSTALLATION EQUIPMENT IN EXISTING CABINET OR NEW CABINET AS SHOWN ON DRAWINGS AND AS REQUIRED BY THE APPLICABLE INSTALLATION MOPS.
- C.COMPLY WITH MANUFACTURER'S INSTALLATION AND START-UP REQUIREMENTS.

DC CIRCUIT BREAKER LABELING

QUALITY ASSURANCE

AND FREE FROM DEFECTS.

PROVIDE PRODUCTS BY THE FOLLOWING:

3. UNISTRUT DIVERSIFIED PRODUCTS

3. FASTEN BY MEANS OF WOOD SCREWS ON WOOD.

4. TOGGLE BOLTS ON HOLLOW MASONRY UNITS.

ALLIED TUBE AND CONDUIT

SUPPORTING DEVICES:

2 B-LINE SYSTEM

THOMAS ∉ BETTS

STRUCTURES.

PROJECT.

A.NEW DC CIRCUIT IS REQUIRED IN MMBS CABINET SHALL BE CLEARLY IDENTIFIED AS TO RRU BEING SERVICED

LABELS AND LISTINGS ARE AVAILABLE IN THE INDUSTRY

SECTION 26 100 - BASIC ELECTRICAL REQUIREMENTS

THIS SECTION SPECIFIES BASIC ELECTRICAL REQUIREMENTS FOR SYSTEMS AND COMPONENTS

A.ALL EQUIPMENT FURNISHED UNDER DIVISION 26 SHALL CARRY UL LABELS AND LISTINGS WHERE SUCH

B.MANUFACTURERS OF EQUIPMENT SHALL HAVE A MINIMUM OF THREE YEARS EXPERIENCE WITH THEIR EQUIPMENT INSTALLED AND OPERATING IN THE FIELD IN A USE SIMILAR TO THE PROPOSED USE FOR THIS

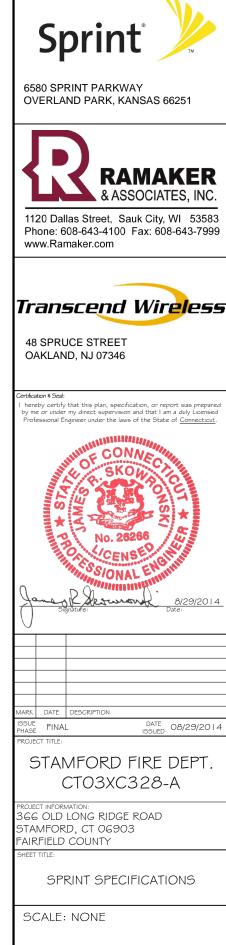
C.MATERIALS AND EQUIPMENT : ALL MATERIALS AND EQUIPMENT SPECIFIED IN DIVISION 26 OF THE SAME TYPE SHALL BE OF THE SAME MANUFACTURER AND SHALL BE NEW, OF THE BEST QUALITY AND DESIGN,

A.MANUFACTURED STRUCTURAL SUPPORT MATERIALS: SUBJECT TO COMPLIANCE WITH REQUIREMENTS,

B FASTENERS: TYPES, MATERIALS, AND CONSTRUCTION FEATURES AS FOLLOWS:

1. EXPANSION ANCHORS: CARBON STEEL WEDGE OR SLEEVE TYPE.

2. POWER-DRIVEN THREADED STUDS: HEAT-TREATED STEEL, DESIGNED SPECIFICALLY FOR THE INTENDED


5. CONCRETE INSERTS OR EXPANSION BOLTS ON CONCRETE OR SOLID MASONRY.

6. MACHINE SCREWS, WELDED THREADED STUDS, OR SPRING-TENSION CLAMPS ON STEEL

7. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE SHALL NOT BE PERMITTED.

8. DO NOT WELD CONDUIT, PIPE STRAPS, OR ITEMS OTHER THAN THREADED STUDS TO STEEL

9. IN PARTITIONS OF LIGHT STEEL CONSTRUCTION, USE SHEET METAL SCREWS.

29012

SP-2

PROJEC1 NUMBER SHEET

SUPPORTING DEVICES

- A. INSTALL SUPPORTING DEVICES TO FASTEN ELECTRICAL COMPONENTS SECURELY AND PERMANENTLY IN ACCORDANCE WITH NEC.
- B. COORDINATE WITH THE BUILDING STRUCTURAL SYSTEM AND WITH OTHER TRADES.
- C. UNLESS OTHERWISE INDICATED ON THE DRAWINGS, FASTEN ELECTRICAL ITEMS AND THEIR SUPPORTING HARDWARE SECURELY TO THE STRUCTURE IN ACCORDANCE WITH THE FOLLOWING:
- ENSURE THAT THE LOAD APPLIED BY ANY FASTENER DOES NOT EXCEED 25 PERCENT OF THE PROOF TEST LOAD.
- 2. USE VIBRATION AND SHOCK-RESISTANT FASTENERS FOR ATTACHMENTS TO CONCRETE SLABS

ELECTRICAL IDENTIFICATION:

- A. UPDATE AND PROVIDE TYPED CIRCUIT BREAKER SCHEDULES IN THE MOUNTING BRACKET, INSIDE DOORS OF AC PANEL BOARDS WITH ANY CHANGES MADE TO THE AC SYSTEM.
- B. BRANCH CIRCUITS FEEDING AVIATION OBSTRUCTION LIGHTING EQUIPMENT SHALL BE CLEARLY IDENTIFIED AS SUCH AT THE BRANCH CIRCUIT PANELBOARD.

SECTION 26 200 - ELECTRICAL MATERIALS AND EQUIPMENT

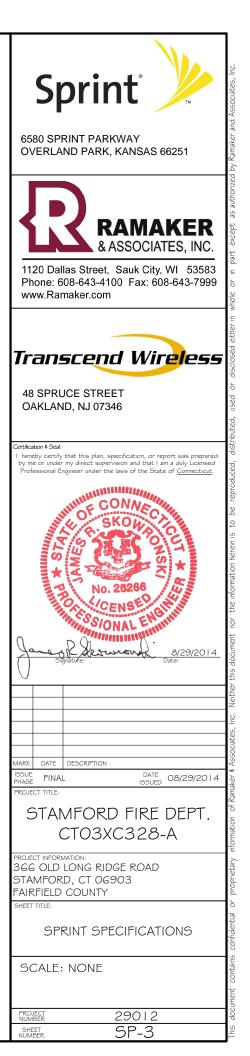
- A. RIGID GALVANIZED STEEL (RGS) CONDUIT SHALL BE USED FOR EXTERIOR LOCATIONS ABOVE GROUND AND IN UNFINISHED INTERIOR LOCATIONS AND FOR UNDERGROUND RUNS. RIGID CONDUIT AND FITTINGS SHALL BE STEEL, COATED WITH ZINC EXTERIOR AND INTERIOR BY THE HOT DIP GALVANIZING PROCESS. CONDUIT SHALL BE PRODUCED TO ANSI SPECIFICATIONS C&O.1, FEDERAL SPECIFICATION WW-C-581 AND SHALL BE LISTED WITH THE UNDERWRITERS' LABORATORIES. FITTINGS SHALL BE THREADED - SET SCREW OR COMPRESSION FITTINGS WILL NOT BE ACCEPTABLE. RGS CONDUITS SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND.
- B. UNDERGROUND CONDUIT IN CONCRETE SHALL BE POLYVINYLCHLORIDE (PVC) SUITABLE FOR DIRECT BURIAL AS APPLICABLE. JOINTS SHALL BE BELLED, AND FLUSH SOLVENT WELDED IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. CONDUIT SHALL BE CARLON ELECTRICAL PRODUCTS OR APPROVED EQUAL.
- C. TRANSITIONS BETWEEN PVC AND RIGID (RGS) SHALL BE MADE WITH PVC COATED METALLIC LONG SWEEP RADIUS ELBOWS.
- D. EMT OR RIGID GALVANIZED STEEL CONDUIT MAY BE USED IN FINISHED SPACES CONCEALED IN WALLS AND CEILINGS. EMT SHALL BE MILD STEEL, ELECTRICALLY WELDED, ELECTRO-GALVANIZED OR HOT-DIPPED GALVANIZED AND PRODUCED TO ANSI SPECIFICATION C80.3, FEDERAL SPECIFICATION WW-C-563, AND SHALL BE UL LISTED. EMT SHALL BE MANUFACTURED BY ALLED, REPUBLIC OR WHEATLAND, OR APPROVED EQUAL. FITTINGS SHALL BE METALLIC COMPRESSION. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE.
- E. LIQUID TIGHT FLEXIBLE METALLIC CONDUIT SHALL BE USED FOR FINAL CONNECTION TO EQUIPMENT. FITTINGS SHALL BE METALLIC GLAND TYPE COMPRESSION FITTINGS, MAINTAINING THE INTEGRITY OF CONDUIT SYSTEM. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE. MAXIMUM LENGTH OF FLEXIBLE CONDUIT SHALL NOT EXCEED G-FEET. LFMC SHALL BE PROTECTED AND SUPPORTED AS REQUIRED BY NEC. MANUFACTURERS OF FLEXIBLE CONDUITS SHALL BE CAROL, ANACONDA METAL HOSE OR UNIVERSAL METAL HOSE, OR APPROVED EQUAL.
- F. MINIMUM SIZE CONDUIT SHALL BE 3/4 INCH (2 I MM).

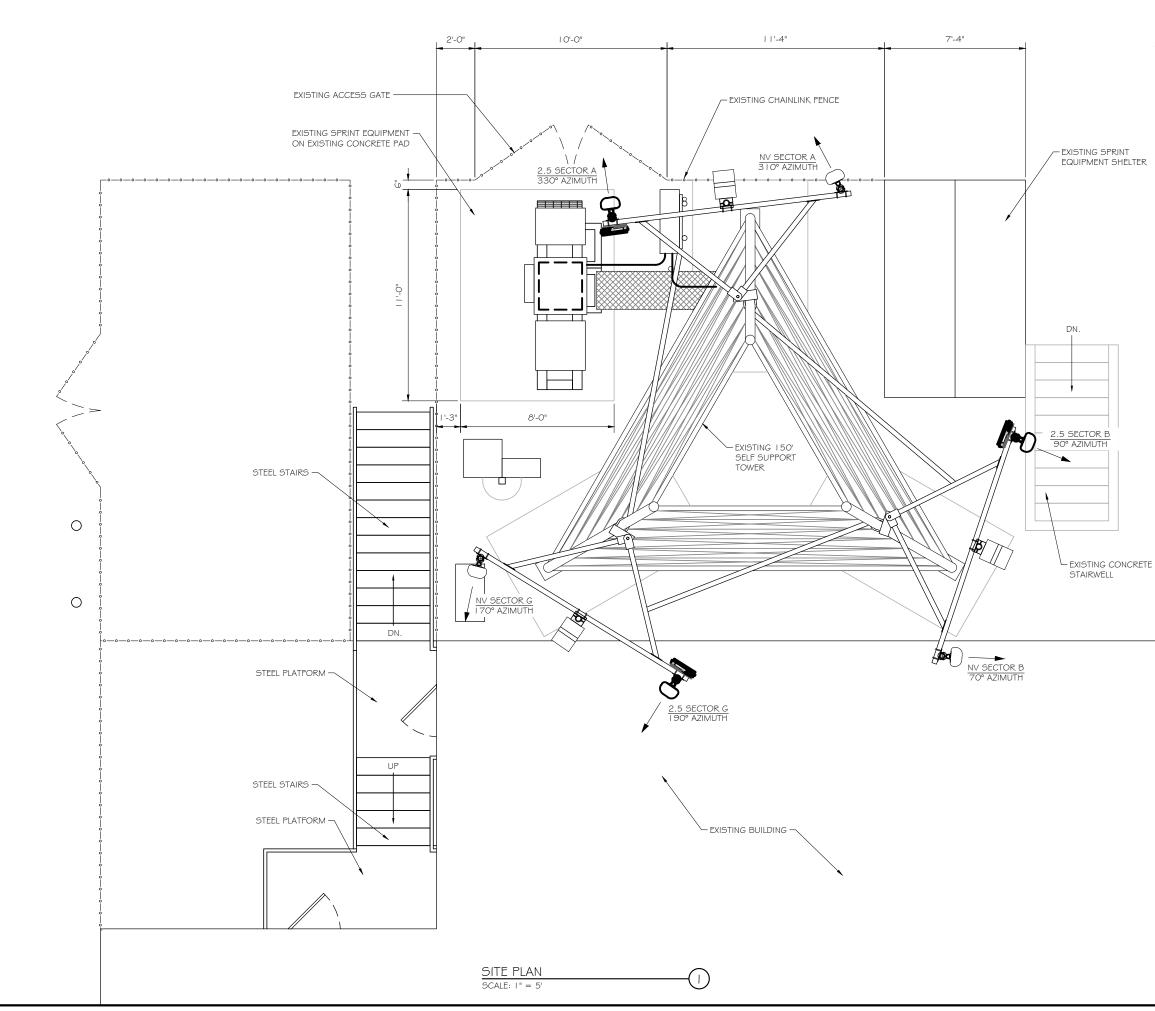
HUBS AND BOXES

- A. AT ENTRANCES TO CABINETS OR OTHER EQUIPMENT NOT HAVING INTEGRAL THREADED HUBS PROVIDE METALLIC THREADED HUBS OF THE SIZE AND CONFIGURATION REQUIRED. HUB SHALL INCLUDE LOCKNUT AND NEOPRENE O-RING SEAL. PROVIDE IMPACT RESISTANT I 05 DEGREE C PLASTIC BUSHINGS TO PROTECT CABLE INSULATION.
- B. CABLE TERMINATION FITTINGS FOR CONDUIT
- 1. CABLE TERMINATORS FOR RGS CONDUITS SHALL BE TYPE CRC BY O-Z/GEDNEY OR EQUAL BY ROXTEC.
- CABLE TERMINATORS FOR LFMC SHALL BE ETCO CL2075; OR MADE FOR THE PURPOSE PRODUCTS BY ROXTEC.
- C. EXTERIOR PULL BOXES AND PULL BOXES IN INTERIOR INDUSTRIAL AREAS SHALL BE PLATED CAST ALLOY, HEAVY DUTY, WEATHERPROOF, DUST PROOF, WITH GASKET, PLATED IRON ALLOY COVER AND STAINLESS STEEL COVER SCREWS, CROUSE-HINDS WAB SERIES OR EQUAL.
- D. CONDUIT OUTLET BODIES SHALL BE PLATED CAST ALLOY WITH SIMILAR GASKET COVERS. OUTLET BODIES SHALL BE OF THE CONFIGURATION AND SIZE SUITABLE FOR THE APPLICATION. PROVIDE CROUSE-HINDS FORM & OR EQUAL.
- E. MANUFACTURER FOR BOXES AND COVERS SHALL BE HOFFMAN, SQUARE "D", CROUSE-HINDS, COOPER, ADALET, APPLETON, O-Z GEDNEY, RACO, OR APPROVED EQUAL.

SUPPLEMENTAL GROUNDING SYSTEM:

- A. FURNISH AND INSTALL A SUPPLEMENTAL GROUNDING SYSTEM TO THE EXTENT INDICATED ON THE DRAWINGS. SUPPORT SYSTEM WITH NON-MAGNETIC STAINLESS STELL CLIPS WITH RUBBER GROMMETS. GROUNDING CONNECTORS SHALL BE TINNED COPPER WIRE, SIZES AS INDICATED ON THE DRAWINGS. PROVIDE STRANDED OR SOLID BARE OR INSULATED CONDUCTORS EXCEPT AS OTHERWISE NOTED.
- B. SUPPLEMENTAL GROUNDING SYSTEM: ALL CONNECTIONS TO BE MADE WITH CAD WELDS, EXCEPT AT EQUIPMENT USE LUGS OR OTHER AVAILABLE GROUNDING MEANS AS REQUIRED BY MANUFACTURER; AT GROUND BARS USE TWO HOLE SPADES WITH NO-OX.
- C. STOLEN GROUND-BARS: IN THE EVENT OF STOLEN GROUND BARS, CONTACT SPRINT CM FOR REPLACEMENT INSTRUCTION USING THREADED ROD KITS.


EXISTING STRUCTURE:


A. EXISTING EXPOSED WIRING AND ALL EXPOSED OUTLETS, RECEPTACLES, SWITCHES, DEVICES, BOXES, AND OTHER EQUIPMENT THAT ARE NOT TO BE UTILIZED IN THE COMPLETED PROJECT SHALL BE REMOVED OR DE-ENERGIZED AND CAPPED IN THE WALL, CEILING, OR FLOOR SO THAT THEY ARE CONCEALED AND SAFE. WALL, CEILING, OR FLOOR SHALL BE PATCHED TO MATCH THE ADJACENT CONSTRUCTION.

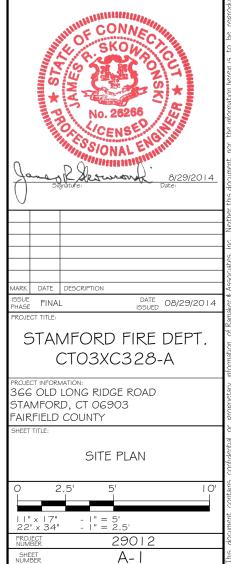
CONDUIT AND CONDUCTOR INSTALLATION:

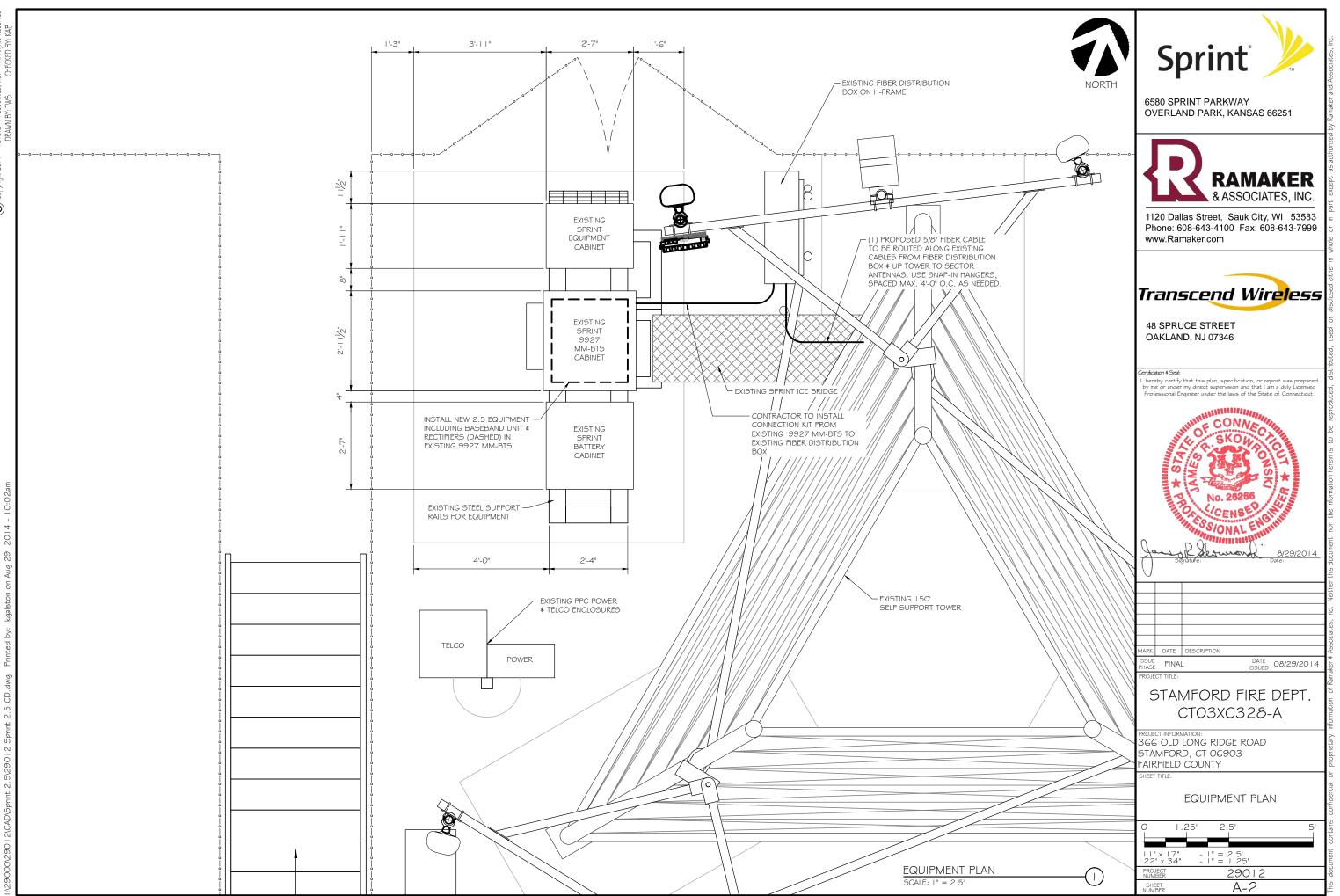
A.CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS, EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MAINER, PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CELLING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.

B.CONDUCTORS SHALL BE PULLED IN ACCORDANCE WITH ACCEPTED GOOD PRACTICE.

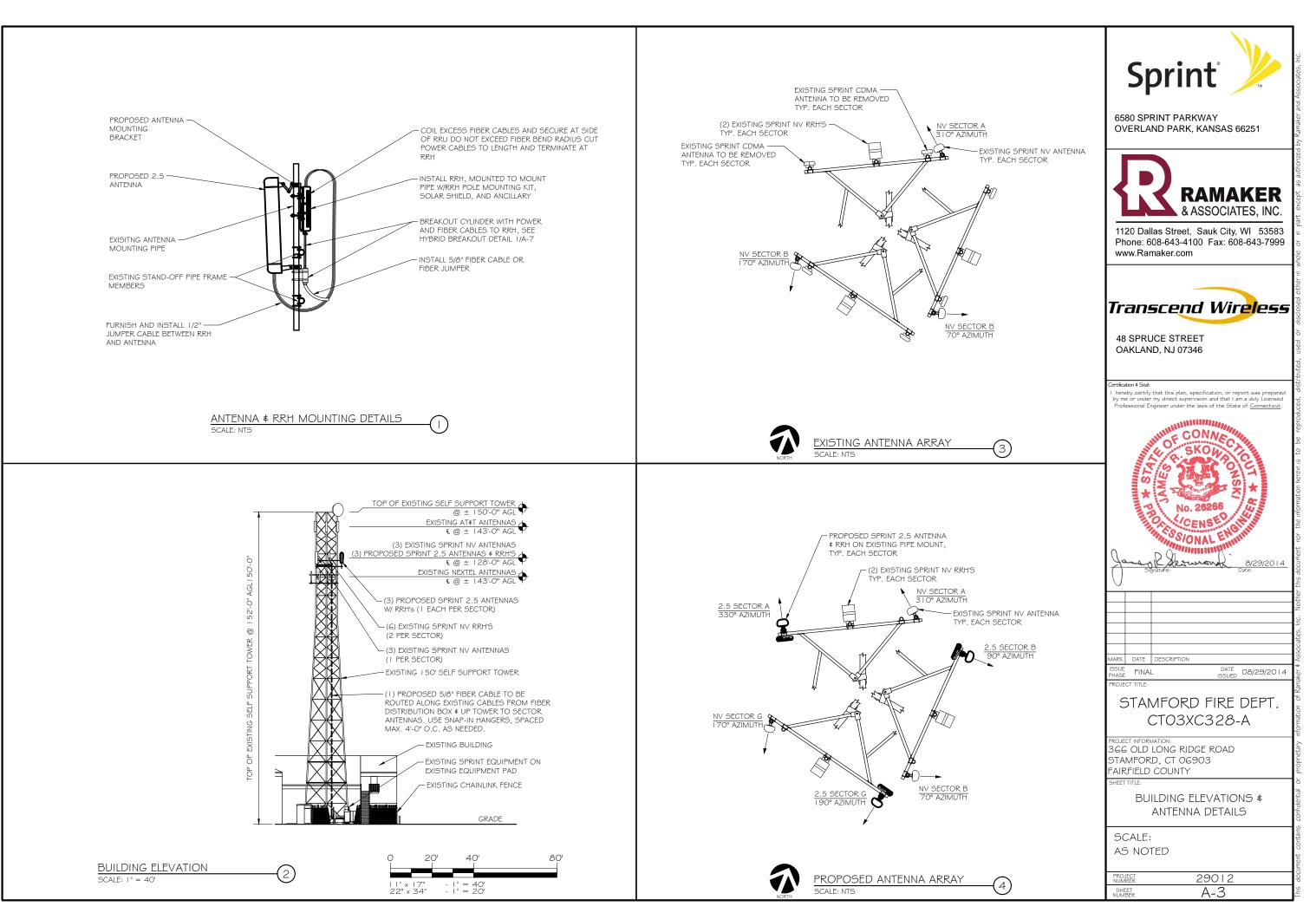
1:\29000\29012\CAD\Sprint 2.5\29012 Sprint 2.5 CD.dwg Printed by: kgalston on Aug 29, 2014 - 10:

6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

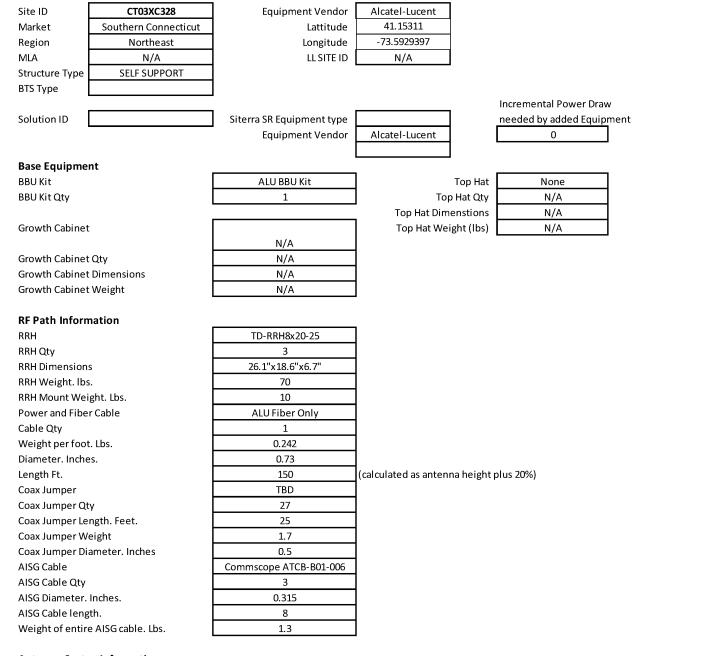

1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999 www.Ramaker.com



48 SPRUCE STREET OAKLAND, NJ 07346


Certification \$ Seal:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of <u>Connecticut</u>.



R Ramake 1.19ht 2014 Copy \odot

RFDS Sheet

General Site Information

Antenna Sector Information

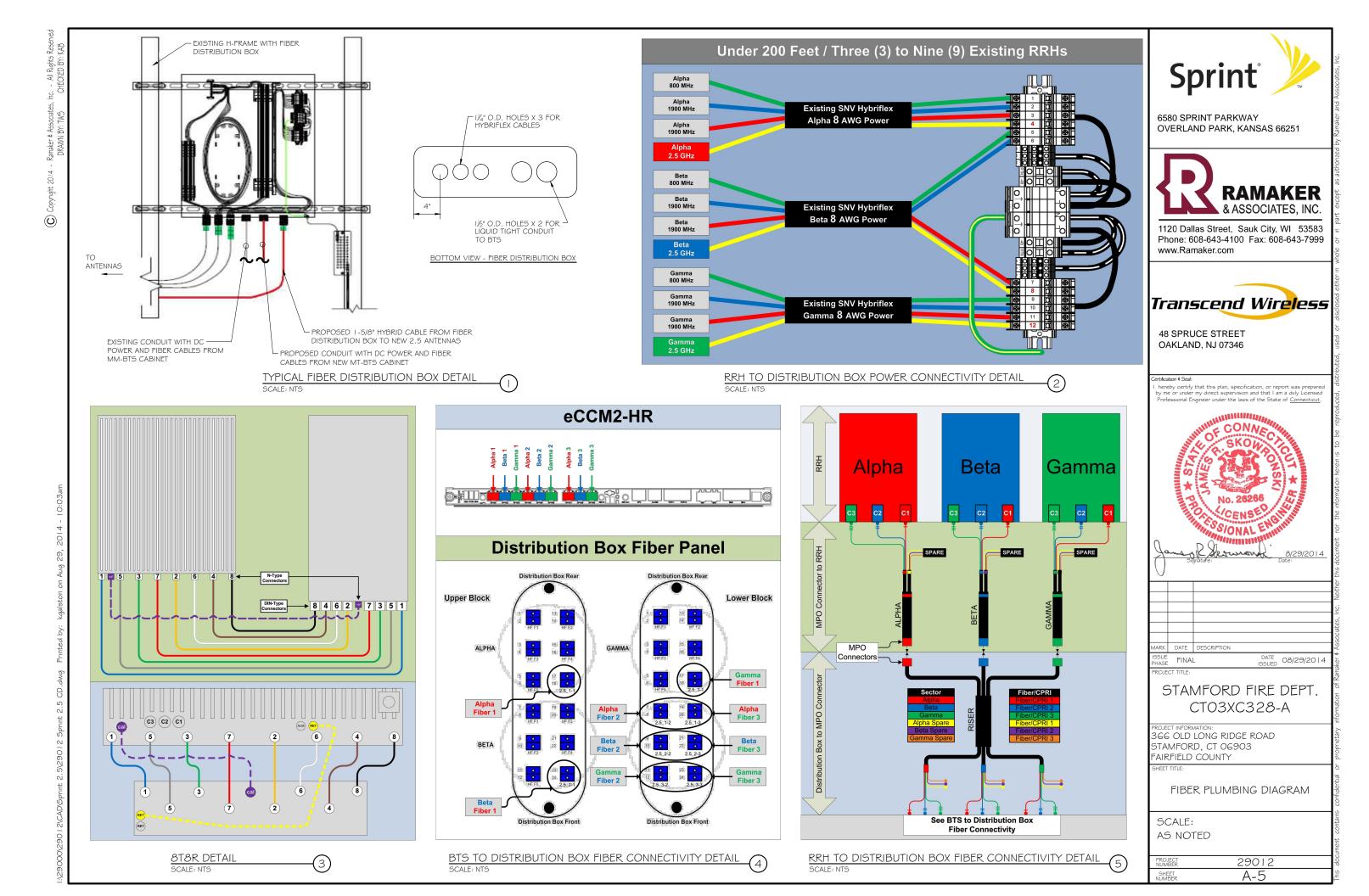
Antenna make/model Antenna qty Antenna Dimensions. Inches Antenna Weight. Lbs Antenna Mounting Kit Weight. Lbs. CL Height Antenna Azimuth Antenna Mechanical Downtilt Antenna etilt

Sector 1	Sector 2	Sector 3
RFS APXV9TM14-ALU-I20	RFS APXV9TM14-ALU-I20	RFS APXV9TM14-ALU-I20
1	1	1
56.3"x12.6"x6.3"	56.3"x12.6"x6.3"	56.3"x12.6"x6.3"
55.12	55.12	55.12
11.5	11.5	11.5
128	128	128
330	90	190
0	0	0
-2	-2	-2

*RFDS SHEET WAS GENERATED BY RAMAKER & ASSOCIATES FROM PLAN OF RECORD (POR) PROVIDED BY SPRINT. CONTRACTOR SHALL VERIFY AND OBTAIN FINAL RFDS FROM SPRINT CONSTRUCTION MANAGER PRIOR TO CONSTRUCTION.

NOTES:

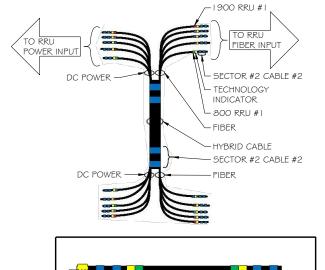
- ENGINEER.
- SPRINT AND NON-SPRINT ANTENNAS
- TOOL OR EQUIVALENT TOOL

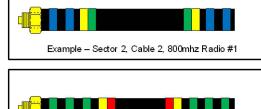

I. GENERAL CONTRACTOR TO FIELD VERIFY AZIMUTH AND C/L HEIGHT AND MECHANICAL DOWNTILT. IF DIFFERENT THAN CALLED OUT BELOW, HALT ANTENNA WORK FOR ONE HOUR, CALL SPRINT RF ENGINEER (OR MANAGER F RF ENGINEER DOES NOT ANSWER, BUT STILL LEAVE A MESSAGE TO RF ENGINEER) USING CONTACT INFORMATION ABOVE FOR FURTHER INSTRUCTIONS. IF SPRINT DOES NOT RESPOND WITHIN ONE HOUR, PLACE 2.5GHZ ANTENNA AT SAME C/L HEIGHT AS I .9GHZ ANTENNA AND EMAIL CORRECT C/L HEIGHT AND AZIMUTH TO SPRINT RF ENGINEER. UPDATE AS-BUILD DRAWING WITH CORRECT C/L HEIGHT, ALSO EMAIL CORRECT I .9GHZ AND 800MHZ ANTENNA C/L HEIGHT, AZIMUTH AND MECHANICAL DOWNTILT TO RF

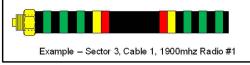
2. AISG TESTS TO VERIPY OPERATION IS TO BE PERFORMED AFTER FINAL INSTALLATION OF ANTENNAS AND AISG CABLES HAVE BEEN CONNECTED. VERIPY OPERATION OF ALL EXISTING SPRINT AISG EQUIPMENT INCLUDING 800MHZ, I.9GHZ AND 2.5GHZ. TEST TO INCLUDE COMPLETE DOWNTILT, AZIMUTH (IF APPLICABLE) AND BEAMWIDTH SWINGS (IF APPLICABLE), DOCUMENT AISG TEST RESULTS IN COAX SWEEP TEST SPREADSHEET.

3. GENERAL CONTRACTOR MUST ENSURE THAT NO OBJECT IS LOCATED WITHIN 45 DEGREES OF LEFT AND RIGHT OF FRONT OF ANTENNA OR 7 DEGREES UP AND DOWN FROM CENTER OF ANTENNA. IF THIS IS NOT POSSIBLE, CONTACT RF ENGINEER FOR FURTHER INSTRUCTION. IN ADDITION, 2.5GHZ ANTENNA IS NOT TO BE PLACED IN FRONT OF ANY OTHER ANTENNA USING THE SAME 45 DEGREE RULE. THIS INCLUDES

4. 2.5GHZ ANTENNA MUST BE AT LEAST 6" FROM 1.9GHZ ANTENNA, 30" FROM 800MHZ ANTENNA AND 30 FROM DUAL BAND 1.9GHZ AND 800MHZ ANTENNA.


5. GENERAL CONTRACT IS REQUIRED TO USE A DIGITAL ALIGNMENT TOOL TO SET AZIMUTH, ROLL AND DOWNTILT, AZIMUTH ACCURACY IS TO BE WITHIN I DEGREE. DOWNTILT AND ROLL (LEFT TO RIGHT TILT) IS TO BE WITHIN O. I. DEGREES. IF FOR SOME REASON THIS ACCURACY CANNOT BE ACHIEVED, UPDATE AS-BUILT DRAWINGS AND EMAIL SPRINT RF ENGINEER WITH AS-BUILT SETTINGS. USE 3Z RF ALIGNMENT



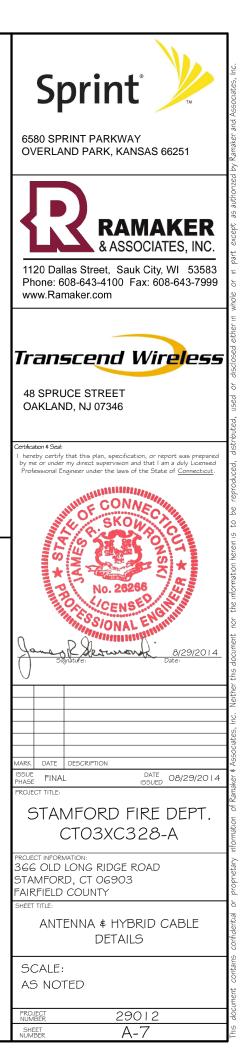

2.5			
FREQUENCY	INDICAT	OR	ID
2500 -1	YEL	WHT	GRN
2500 -2	YEL	WHT	RED
2500 -3	YEL	WHT	BRN
2500 -4	YEL	WHT	BLU
2500 -5	YEL	WHT	SLT
2500 -6	YEL	WHT	ORG
2500 -7	YEL	WHT	WHT
2500 -8	YEL	WHT	PPL

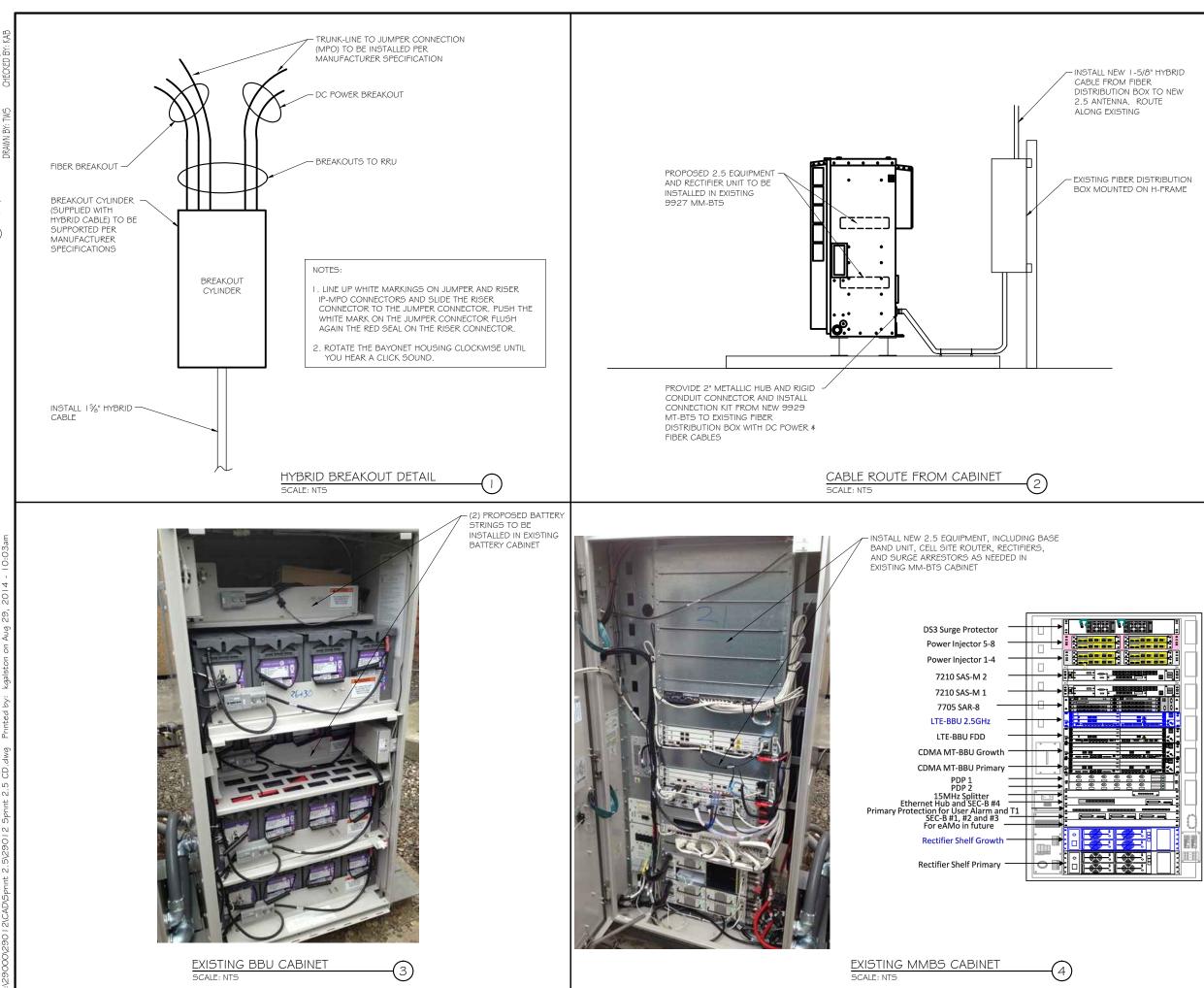
NV FREQUENCY	INDICATOR	ID
800-1	YEL	GRN
1900-1	YEL	RED
1900-2	YEL	BRN
1900-3	YEL	BLU
1900-4	YEL	SLT
800-1	YEL	ORG
RESERVED	YEL	WHT
RESERVED	YEL	PPL

			Second	
Sector	Cable	First Ring	Ring	Third Ring
1 Alpha	1	Green	No Tape	No Tape
1	2	Blue	No Tape	No Tape
1	3	Brown	No Tape	No Tape
1	4	White	No Таре	No Tape
1	5	Red	No Tape	No Таре
1	6	Grey	No Tape	No Таре
1	7	Purple	No Tape	No Tape
1	8	Orange	No Tape	No Tape
2 Beta	1	Green	Green	No Таре
2	2	Blue		No Tape
2	3	Brown	Brown	No Tape
2	4	White	White	No Tape
2	5	Red	Red	No Таре
2	6	Grey	Grey	No Таре
2	7	Purple	Purple	No Tape
2	8	Orange	Orange	No Tape
3 Gamma	1	Green	Green	Green
3	2	Blue		
3	3	Brown	Brown	Brown
3	4	White	White	White
3	5	Red	Red	Red
3	6	Grey	Grey	Grey
3	7	Purple	Purple	Purple
3	8	Orange	Orange	Orange

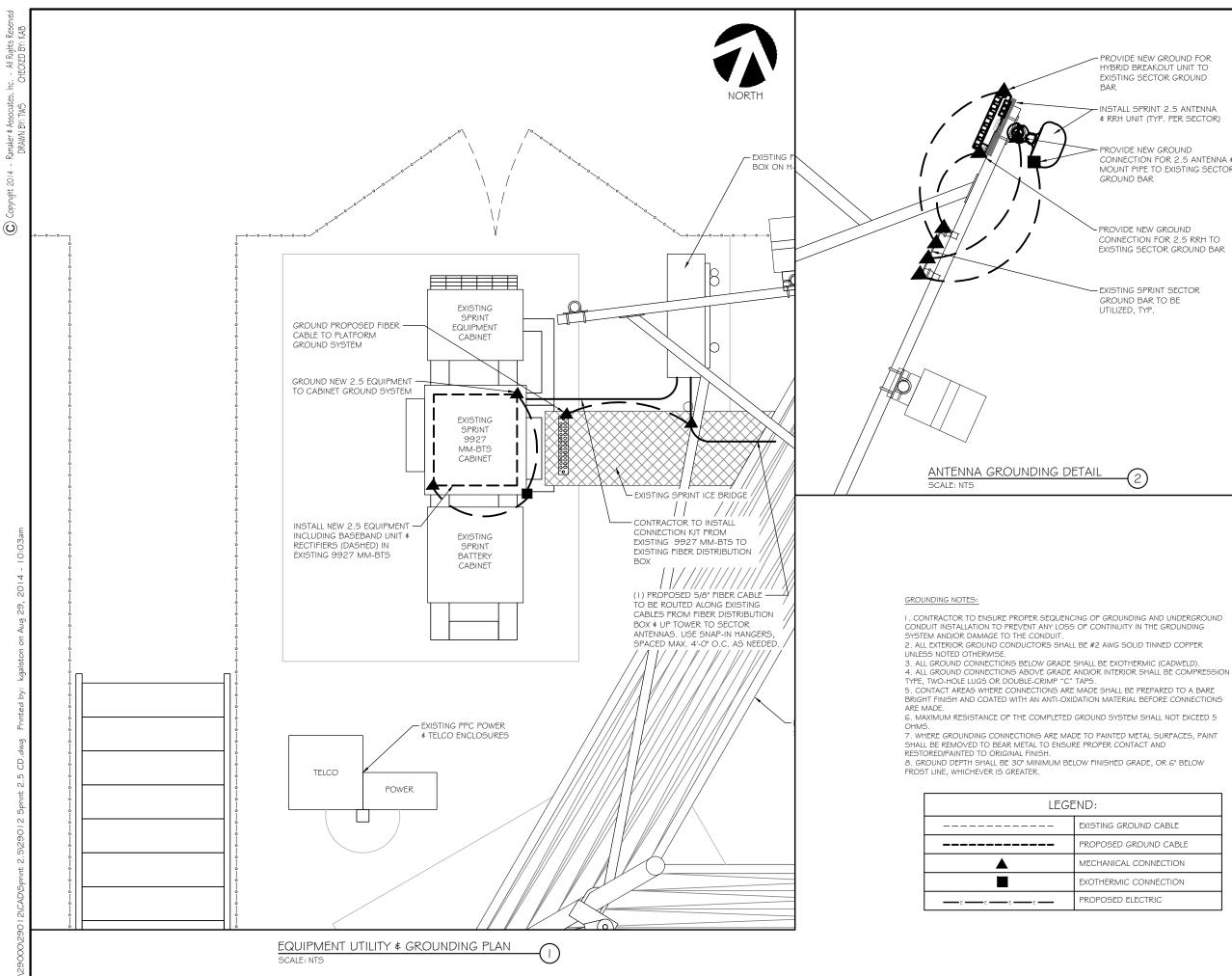
COLOR CODING CHARTS SCALE: NTS

CABLE MARKING NOTES

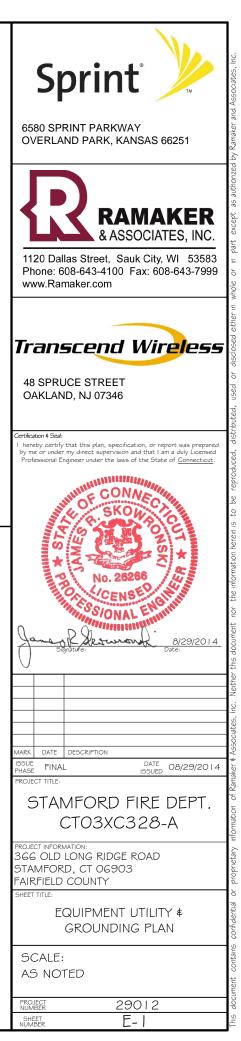

- I. ALL CABLES SHALL BE MARKED WITH 2" WIDE, UV STABILIZED, UL APPROVED TAPE.
- 2. THE FIRST RING SHALL BE CLOSEST TO THE END OF THE CABLE AND SPACED APPROXIMATELY 2" FROM THE END CONNECTOR, WEATHERPROOFING, OR BREAKOUT UNIT. THERE SHALL BE 1' SPACE BETWEEN EACH RING.
- 3. A 2" GAP SHALL SEPARATE THE CABLE COLOR CODE FROM THE FREQUENCY COLOR CODE. THE 2" COLOR RINGS FOR THE FREQUENCY CODE SHALL BE PLACED NEXT TO EACH OTHER WITH NO SPACES.
- 4. THE 2" COLORED TAPE(S) SHALL BE WRAPPED A MINIMUM OF 3 TIMES AROUND THE INDIVIDUAL CABLES, AND THE TAPE SHALL BE KEPT IN THE SAME LOCATION AS MUCH AS POSSIBLE.
- 5. SITES WITH MORE THAN FOUR (4) SECTORS WILL REQUIRE ADDITIONAL RINGS FOR EACH SECTOR, FOLLOWING THE PATTERN. HIGH CAPACITY SITES WILL USE THE SECOND CABLE IDENTIFIED BY BLUE BANDS OF TAPE
- G. HYBRID FIBER CABLE SHALL BE SECTOR IDENTIFIED INSIDE THE CABINET ON FREQUENCY BUNDLES, ON THE SEALTITE, ON THE MAIN LINE UPON EXIT OF SEALTITE, AND BEFORE AND AFTER THE BREAKOUT UNIT (MEDUSA), AS WELL AS BEFORE AND AFTER ANY ENTRANCE OR EXIT.
- 7. HFC "MAIN TRUNK" WILL NOT BE MARKED WITH THE FREQUENCY CODES, AS IT CONTAINS ALL FREQUENCIES.
- 8. INDIVIDUAL POWER PAIRS AND FIBER BUNDLES SHALL BE LABELED WITH BOTH THE CABLE AND FREQUENCY

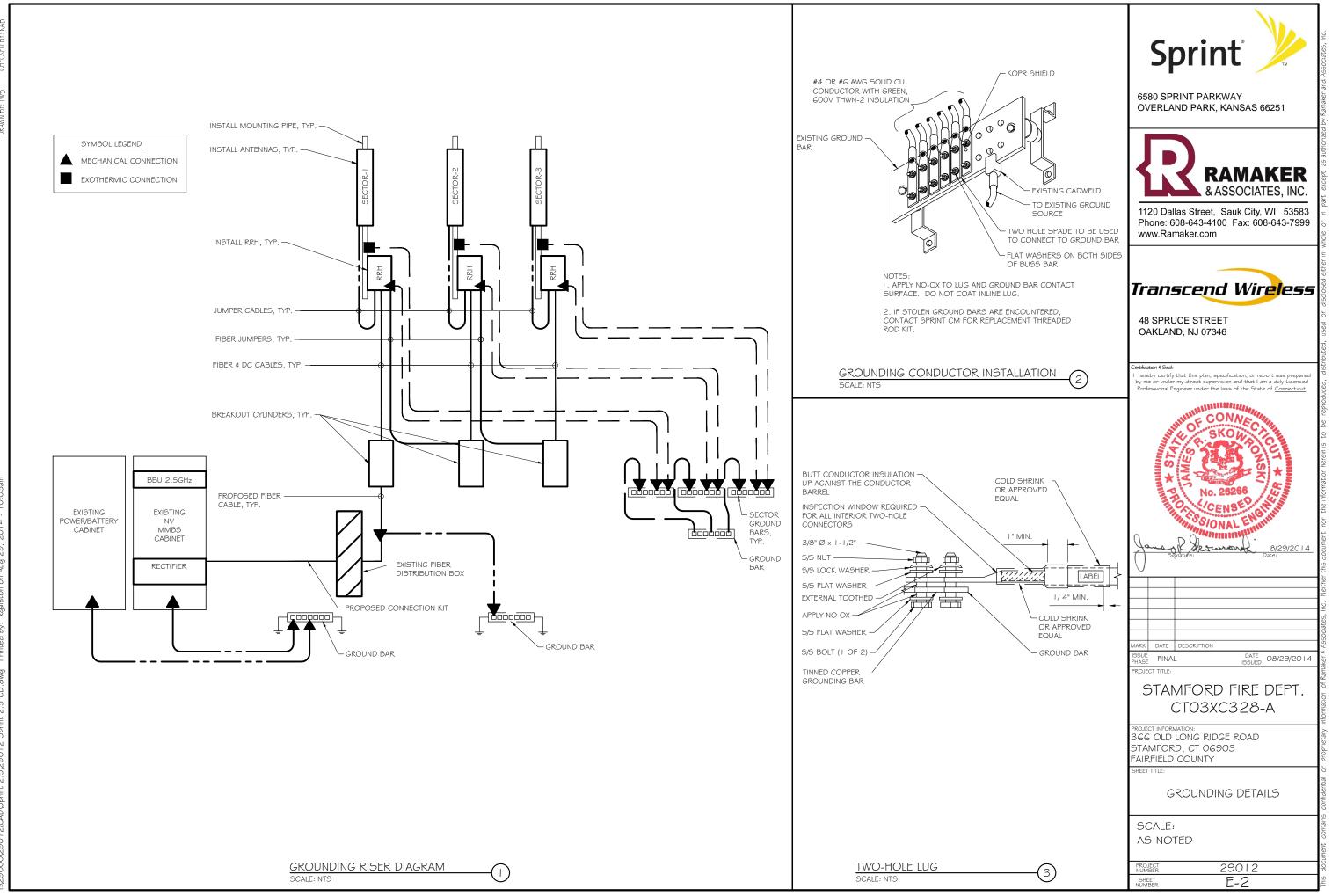


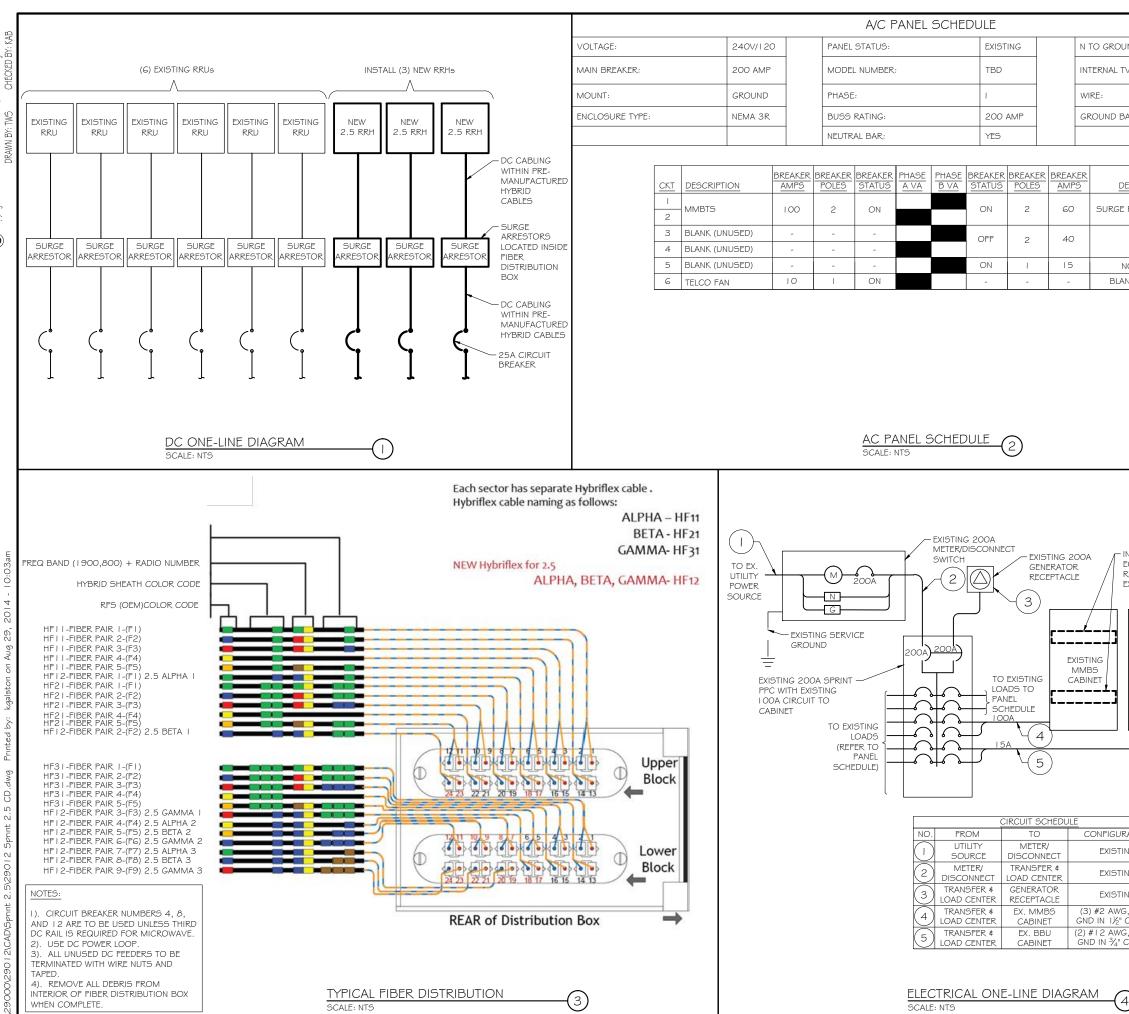
[CABLE	IANUF:RFS					
	Fiber Only		Varies	Use NV Hybriflex	DIAMETER 5/8"		
	Hybriflex		<200'	8 AWG	1-1/4"		RFS: APXV9TM14-ALU
	Hybriflex Hybriflex		225-300' 325-375'	6 AWG 4 AWG	1-1/4" 1-1/4"		
FIBER ONLY (E		RFS HYBRI	FLEX RISER CAE	BLE SCHEDULE			
OWER)	EXISTING DC	MN:HB058-M12	050F				DIMENSIONS, HxWxD:
		12x multi-mode f Bottom:LC	iber pairs, Top:Outdoor	protected connectors,	50 ft		WEIGHT, WITHOUT PRE-MOUNTED BRACKETS:
		Connectors, 5/8	cable, 50 ft				WEIGHT, WITHOUT FRE-MOUNTED DRACKETS:
		MN:HB058-M12			75 ft 100 ft	-	CONNECTOR:
		MN:HB058-M12 MN:HB058-M12			100 ft 125 ft		
		MN:HB058-M12			150 ft	FIBER DIST. (Y.:3
		MN:HB058-M12 MN:HB058-M12			175 ft 200 ft		
8 AWG Power		Hybrid cable					
		MN:HB114-08U	BM12-050F		50 ft	Ø.319[8.10]	
		3x 8 AWG powe connectors & I C	r pairs, 12x multi-mode f connectors. 1 1/4 cable	iber pairs, Outdoor rated		QTY.:6	ក្តី
		MN:HB114-08U	3M12-075F		75 ft		ن ب
		MN:HB114-08U3			100 ft 125 ft		
		MN:HB114-08U3	3M12-150F		150 ft		
		MN:HB114-08U			175 ft 200 ft	Ø1.110[28.19] OVER TAPE	
		MN:HB114-08U	ow 12-200F		200 ft		28.09]
6 AWG Power		Hybrid cable MN:HB114-13U	3M12-225F		225 ft	OVER 0 4 AWG	
			r pairs, 12x multi-mode f connectors. 1 1/4 cable	iber pairs, Outdoor rated	220 Π	4 AWG	
		MN:HB114-13U	3M12-250F	, 220 R	250 ft	1	6.3" H
		MN:HB114-13U3 MN:HB114-13U3			275 ft 300 ft	0.598[15.19] INNER CORE 0.217[5.50]	
4 AWG Power		Hybrid cable	12-000F		JUU IL	I 2 CHANNEL F	IR DIST.
		MN:HB114-21U	3M12-325F		325 ft	RED QTY.:3	
		3x 4 AWG powe connectors & I C	r pairs, 12x multi-mode f connectors. 1 1/4 cable	iber pairs, Outdoor rated , 325 ft		BLACK	19]
		MN:HB114-21U	3M12-350F		350 ft	RED - FILLER	
		MN:HB114-21U	3M12-375F		375 ft	Ø1.110[28.19]	2.5 ANTENNA DETAIL
		RFS HYBR	FLEX JUMPER C	ABLE SCHEDULE		OVER TAPE	SCALE: NTS
FIBER ONLY		Hybrid Jumper c					
		MN:HBF012-M3 5 ft. 3x multi-mo		LC connectors, 1/2 cable	5 ft		
		MN:HBF012-M3			10 ft	BLACK	
		MN:HBF012-M3 SPECIAL INSTA			15 ft	Ø.252[6.40] Ø.1.100 Ø.252[6.40]	
				ENNA SHALL NOT EXCE	ED 15'	6 AWG PVC DC WIRE	
		NOTIFY SPRINT	CM OF ANY DISCREP	PANCY		QTY.:6 <u>8 AWG ≰ 6 AWG</u>	<i>8</i> .6"
8 AWG POWEF	R	Hybrid Jumper c]	
		MN:HBF058-08U		e fiber pairs, Outdoor & LO	5 ft		
		MN:HBF058-08U	cable		10 ft	Ø.217[5.50]	
		MN:HBF058-08U	J1M3-15F1		15 ft	I 2 CHANNEL	
			LLATION NOTE: M 2.5 RRH TO 2.5 ANTE	ENNA SHALL NOT EXCE	'ED 15'	FIBER DIST. QTY.:3	
			CM OF ANY DISCREP				
AWG POWER	R	Hybrid Jumper c					
		MN:HBF058-13U	J1M3-5F1		5 ft		
		5 ft, 1x 6 AWG p connectors, 5/8	ower pair, 3x multi-mode cable	e fiber pairs, Outdoor & LO			SIDE VIEW FRONT VIEW
		MN:HBF058-13U MN:HBF058-13U	J1M3-10F1		10 ft 15 ft	INSULATED EPOXY GLASS ROD	
		SPECIAL INSTA			10 Π	1	
				ENNA SHALL NOT EXCE	ED 15'	FIBER ONLY	
			CM OF ANY DISCREP	PANCY			ō
4 AWG POWEF	R	Hybrid Jumper c MN:HBF078-21U					BOTTOM VIEW
		5 ft, 1x 4 AWG p	ower pair, 3x multi-mode	e fiber pairs, Outdoor & LO	5 ft		
		connectors, 7/8 MN:HBF078-21U			10 ft	1	
		MN:HBF078-21U SPECIAL INSTA	J1M3-15F1 LLATION NOTE:		15 ft	4	
				ENNA SHALL NOT EXCE	ED 15'		ALCATEL-LUCENT: TD-RRH8x20
			CM OF ANY DISCREP				HxWxD = (26.1" x 18.6" x 6.7")
							WEIGHT = 70 lbs.
				CM TO CONFIRI MODEL NUMBE		RISER CABLE ≰ HYBRID/FIBER PARING BOM	
				CABLE CRC	OSS SECTIO	N ∉	
						<u> </u>	•
			DATA SCALE: NTS			()	2.5 RRH DETAIL SCALE: NTS


U-120

56.3" x 12.6" x 6.3" 55.12 lbs (9) MINI-DIN FEMALE/BOTTOM






- PROVIDE NEW GROUND FOR HYBRID BREAKOUT UNIT TO EXISTING SECTOR GROUND BAR
- INSTALL SPRINT 2.5 ANTENNA ≰ RRH UNIT (TYP. PER SECTOR)
- PROVIDE NEW GROUND CONNECTION FOR 2.5 ANTENNA # MOUNT PIPE TO EXISTING SECTOR GROUND BAR
- PROVIDE NEW GROUND CONNECTION FOR 2.5 RRH TO EXISTING SECTOR GROUND BAR
- EXISTING SPRINT SECTOR GROUND BAR TO BE UTILIZED, TYP.

(2)

D:
ISTING GROUND CABLE
OPOSED GROUND CABLE
ECHANICAL CONNECTION
OTHERMIC CONNECTION
OPOSED ELECTRIC

R Ramak : 2014 ight Copyl \odot

3 6500 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 DESCRIPTION CT 7 6500 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 DESCRIPTION CT 7 6 8 PROTECTION 7 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 11 10 11 10 12 10 12 10 12 10 12 12 12 12 12 12 12 12 12 12 13 12 14 12 15 14 15 14 16 16	OUND BOND:	YES	
3 6500 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 DESCRIPTION CT 7 6500 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251 DESCRIPTION CT 7 6 8 PROTECTION 7 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 11 10 11 10 12 10 12 10 12 10 12 12 12 12 12 12 12 12 12 12 13 12 14 12 15 14 15 14 16 16	L TVSS:	YES	Sprint 📈
OVERLAND PARK, KANSAS 66251 OVERLAND PARK, KANSAS 6625 OVERLAND PARK, KANSAS 6625 OVERLAND PARK, KANSAS 6625			
BERNET INTO BENNET BENNET) BAR:	YES	
UNSTALL NEW 2.5 ECUIPMENT AND RECTIFIER UNIT IN EXISTING BBU CABINET Constant UNSTALL NEW 2.5 ECUIPMENT AND RECTIFIER UNIT IN EXISTING MM-BTS Image: Constant UNSTALL NEW 2.5 ECUIPMENT AND RECTIFIER UNIT IN EXISTING MM-BTS Image: Constant UNSTALL NEW 2.5 ECUIPMENT AND RECTIFIER UNIT IN EXISTING MM-BTS Image: Constant UNSTALL NEW 2.5 ECUIPMENT AND RECTIFIER UNIT IN EXISTING MM-BTS Image: Constant UNSTALL NEW 2.5 ECUIPMENT AND RECTIFIER UNIT IN EXISTING BBU CABINET Image: Constant UNSTALL NEW 2.5 ECUIPMENT AND RECTIFIER UNIT IN BBU CABINET Image: Constant UNSTALL NEW 2.5 ECUIPMENT AND RECTIFIER UNIT IN STING FINA MRG (1) #0 CONDUT Image: Constant UNRATION RG (1) #0 CONDUT Image: Constant VALUE CONDUT Image: Constant	GE PROTECTION 7 8 9 CCI 10 NOT LABELED 11		& ASSOCIATES, INC. 1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999
INSTALL NEW 2.5 EQUIPMENT AND RECTIFIER UNIT IN EXISTING BBU CABINET EXISTING BBU CABINET URATION DTING TING TING GG (1) #12 * CONDUIT URATION TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING TING			48 SPRUCE STREET
EQUIPMENT AND RECTIFIER UNIT IN EXISTING BBU CABINET Mo. 28286 (CENSTO BU CENSTONE BBU CABINET Image: Comparison of the second BBU CABINET Mo. 28286 (CENSTONE BU CENSTONE Date: CONDUCT Market Date: COMPTON Date: CONDUCT Market Date: COMPTON Date: CONDUCT Market Date: COMPTON Date: CONDUCT Market Date: COMPTON Date: CONDUCT Market Date: CONDUCT Market Da			I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed
EXISTING BBU CABINET	EQUIPMENT AND RECTIFIER UNIT IN		
STING SHEET TITLE: MG, (1) #8 DC POWER DETAILS ½" CONDUIT & PANEL SCHEDULES WG, (1) #12 SCALE: A" CONDUIT SCALE: AS NOTED PROJECT 24 PROJECT 29012	BBU		Signature: Date:
URATION CTO3XC328-A URATION 366 OLD LONG RIDGE ROAD STING STAMFORD, CT 06903 FAIRFIELD COUNTY SHEET TITLE: DC POWER DETAILS # PANEL SCHEDULES WG, (1) #8 # PANEL SCHEDULES WG, (1) #12 SCALE: 4" CONDUIT AS NOTED PROJECT 29012			ISSUE FINAL DATE O8/29/2014
BTING 3GG OLD LONG RIDGE ROAD STING 3GG OLD LONG RIDGE ROAD STING STAMFORD, CT 06903 FAIRFIELD COUNTY SHEET TITLE: DC POWER DETAILS & PANEL SCHEDULES WG, (1) #8 & PANEL SCHEDULES (1) #0 SCALE: (1) #12 SCALE: (1) #0 AS NOTED			CTO3XC328-A
MG, (1) #8 DC POWER DETAILS & CONDUIT & PANEL SCHEDULES WG, (1) #12 SCALE: A" CONDUIT SCALE: AS NOTED PROJECT PROJECT 29012	GTING		366 OLD LONG RIDGE ROAD STAMFORD, CT 06903 FAIRFIELD COUNTY
A PROJECT 29012	MG, (1) #8 ½° CONDUIT WG, (1) #12 4″ CONDUIT		¢ PANEL SCHEDULES
(4) NUMBER 20012			AS NOTED
	4		NUMBER 20012