March 24, 2020

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile:
 806953 - T-Mobile Site ID: CT11071E
 69 Guinea Road, Stamford Connecticut
 Latitude: $\mathbf{4 1}^{\circ} \mathbf{6}^{\mathbf{\prime}} \mathbf{6 . 3 5}{ }^{\prime \prime}$ / Longitude: $-\mathbf{7 3}^{\circ} \mathbf{3 5} \mathbf{~}^{\prime} \mathbf{4 1 . 4 5 \prime \prime}$

Dear Ms. Bachman:
T-Mobile currently maintains nine (9) antennas at the 116 -foot mount on the existing 160 -foot Monopole Tower, located at 69 Guinea Road, Stamford, CT. The tower is owned by Crown Castle and the property is owned by the Girl Scouts of Connecticut, Inc. T-Mobile now intends to replace six (6) existing antennas with three (3) new $1900 / 2100 \mathrm{MHz}$ antennas and three (3) new $600 / 700 \mathrm{MHz}$ antennas. The new antennas will be installed at the $116-\mathrm{ft}$ level of the tower. T-Mobile is also proposing tower mount modifications. As shown on the enclosed mount analysis.

The facility was approved by the Connecticut Siting Council on April 2, 1998 in Docket No. 180. The approval was given with conditions which this proposed exempt modification complies with.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § $16-50 \mathrm{j}-73$, a copy of this letter is being sent electronically to David Martin, Mayor for the City of Stamford, David Woods, Deputy Director of Planning, Crown Castle as the tower owner, and Girl Scouts of Connecticut, Inc., the property owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

Page 2

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,

Anne Marie Zsamba
Real Estate Specialist
3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
(201) 236-9224

AnneMarie.Zsamba@crowncastle.com

Attachments
cc:
David Martin, Mayor (via email to mayorsoffice@stamfordct.gov)
City of Stamford
Stamford Government Center
888 Washington Blvd. $-10^{\text {th }}$ Floor
Stamford, CT 06901
David W. Woods, Deputy Director of Planning (via email to dwoods@stamfordct.gov)
City of Stamford
Stamford Government Center
888 Washington Blvd. $-7^{\text {th }}$ Floor
Stamford, CT 06901
Girl Scouts of Connecticut, Inc.
Michele Velez, Director of Property Services (via email to mvelez@gsofct.org)
340 Washington Street
Hartford, CT 06106
Crown Castle, Tower Owner

From:	$\underline{\text { Zsamba, Anne Marie }}$
To:	$\underline{\text { mvelez@gsofct.org }}$
Subject:	Notice of Exempt Modification Submission to the Connecticut Siting Council - 69 Guinea Road, Stamford CT
Date:	Tuesday, March 24, 2020 1:47:00 PM
Attachments:	EM-T-MOBILE 69 GUINEA RD STAMFORD 806953 CT11071E 2.pdf

Good afternoon Ms. Velez,

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council, today March 24, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,
Anne Marie Zsamba

ANNE MARIE ZSAMBA
Network Real Estate Specialist
T: (201) 236-9224
M: (518) 350-3639
F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
CrownCastle.com

From:	Zsamba, Anne Marie
To:	"mayorsoffice@stamfordct.gov"
Subject:	Notice of Exempt Modification Submission to the Connecticut Siting Council - 69 Guinea Road, Stamford CT
Date:	Tuesday, March 24, 2020 1:45:00 PM
Attachments:	EM-T-MOBILE 69 GUINEA RD STAMFORD 806953 CT11071E 2.pdf

Good afternoon Mayor Martin,

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council, today March 24, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,
Anne Marie Zsamba

ANNE MARIE ZSAMBA
Network Real Estate Specialist
T: (201) 236-9224
M: (518) 350-3639
F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
CrownCastle.com

From:	Zsamba, Anne Marie
To:	dwoods@stamfordct.gov
Subject:	Notice of Exempt Modification Submission to the Connecticut Siting Council - 69 Guinea Road, Stamford CT
Date:	Tuesday, March 24, 2020 1:46:00 PM
Attachments:	EM-T-MOBILE 69 GUINEA RD STAMFORD 806953 CT11071E 2.pdf

Good afternoon Mr. Woods,

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council, today March 24, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt.

Thank you.

Best,
Anne Marie Zsamba

ANNE MARIE ZSAMBA

Network Real Estate Specialist
T: (201) 236-9224
M: (518) 350-3639
F: (724) 416-6112
CROWN CASTLE
3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
CrownCastle.com

Exhibit A

Original Facility Approval

Governor Ned Lamont

CONNECTICUT SITING COUNCIL

Home About Us Pending Matters Decisions Forms Contact Us

Filing Guides

Meetings \& Minutes
Public Participation
Audio Link to New Britain Hearing Rooms
Programs \& Services
Telecommunications Database
Maps
Publications
Other Resources
Statutes \& Regulations
Frequently Asked Questions

Melanie Bachman,
Executive Director

NOTICE TO USERS

The Connecticut Siting Council posts filed documents to this site as a public service. The Council disclaims any liability for the content of submissions made by parties, intervenors, public while the Council seeks to be complet while the Council seeks to be complete in its postings, the Council urges users of this site to confirm with the submitter the completeness of the postings made The posting of any document does not constitute or imply endorsement by the Connecticut Siting Council. Finally, the
Connecticut Siting Council assumes no Connecticut Siting Council assumes no responsibility for the use of documents posted on this site.
For further information about the proper use of material posted on this site, please see the State of Connecticut disclaimer.

DOCKET NO. 180 - Cellco Partnership d/b/a Bell Atlantic Mobile application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telecommunications tower and associated equipment located immediately north of the Merritt Parkway off Guinea Road (prime and alternate one sites), or 141 Den Road (alternate two site) in Stamford, Connecticut.

Connecticut Siting Council

April 2, 1998

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications tower and equipment buildings at the proposed prime site in Stamford, Connecticut, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Bell Atlantic Mobile (BAM) for the construction, operation, and maintenance of a telecommunications tower, associated equipment, and buildings at the proposed prime site, located within a 28 -acre parcel at Guinea Road, Stamford, Connecticut. We find the effects on scenic resources and adjacent land uses of the first alternate site and second alternate site to be significant, and therefore deny certification of these sites.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of BAM, Springwich Cellular Limited Partnership (Springwich), Sprint PCS (Sprint), and Nextel Communications of the Mid-Atlantic, Inc. (Nextel); and such tower shall not exceed a height of 160 feet above ground level (AGL).
2. The Certificate Holder shall prepare a Development and Management (D\&M) Plan for this site in compliance with Sections $16-50 j-75$ through 16-50j-77 of the Regulations of Connecticut State Agencies. The D\&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include: adjustment of the tower location within the leased parcel to protect a nearby stream and minimize grade; a final site plan(s) for site development to include the location and specifications for the tower foundation, antennas, equipment buildings, emergency generator and fuel tank, security fence, access road, and utility line; construction plans for site clearing, tree trimming, water drainage, and erosion and sedimentation controls consistent with the Connecticut Guidelines for Soil Erosion and Sediment Control, as amended; provisions for the tower finish that may include painting; and provisions for the prevention and containment of spills and/or other discharge into surface water and ground water bodies.
3. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
4. The Certificate Holder shall provide the Council a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
6. If the facility does not initially provide, or permanently ceases to provide cellular services following completion of construction, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapplication for any continued or new use shall be made to the Council before any such use is made.
7. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
8. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The Hartford Courant and Stamford Advocate.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

APPLICANT
Bell Atlantic Mobile

ITS REPRESENTATIVE

Kenneth C. Baldwin, Esq.
Brian C. S. Freeman, Esq.
Robinson \& Cole
One Commercial Plaza
Hartford, CT 06103-3597
Mr. David S. Malko, P.E.
Jennifer Young Gaudet
Bell Atlantic Mobile
20 Alexander Drive
Wallingford, CT 06492

INTERVENORS

Sprint Spectrum, L.P. d/b/a Sprint PCS

ITS REPRESENTATIVE

Elias A. Alexiades

John W. Knuff
Harris, Beach \& Wilcox, LLP
147 North Broad Street
Milford, CT 06460
Nextel Communications of the Mid-Atlantic, Inc.d/b/a Nextel
Communications
Christopher B. Fisher, Esq.
Cuddy, Feder \& Worby, Esq.
90 Maple Avenue
White Plains, NY 10601
Springwich Cellular Limited Partnership Peter J. Tyrrell, Esq.
General Counsel
500 Enterprise Drive
Rocky Hill, CT 06067-3900

PARTIES

Charles H. Nobs, Maurice Lucas, and Ben and Myrna Raphan

ITS REPRESENTATIVE
Jeffrey J. Mirman, Esq.
Levy \& Droney, P.C.
P.O. Box 887

Farmington, CT 06034

Exhibit B

Property Card

69 GUINEA ROAD

Location	69 GUINEA ROAD	Mblu	002/6848///
Acct\#	002-6848	Owner	GIRL SCOUTS OF CONNECTICUT INC
Assessment	\$1,028,420	Appraisal	\$1,469,120
PID	24323	ding Count	1

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2019	\$461,570	\$1,007,550	\$1,469,120
Assessment			
Valuation Year	Improvements	Land	Total
2019	\$323,130	\$705,290	\$1,028,420

Owner of Record

Owner	GIRL SCOUTS OF CONNECTICUT INC	Sale Price	$\$ 0$
Co-Owner		Book \& Page	$9322 / 0308$
Address	340 WASHINGTON STREET	Sale Date	$04 / 16 / 2008$
	HARTFORD, CT 06106-3317	Instrument	25

Ownership History

Ownership History				
Owner	Sale Price	Book \& Page	Instrument	Sale Date
GIRL SCOUTS OF CONNECTICUT INC	\$0	9322/0308	25	04/16/2008
GIRL SCOUT COUNCIL SW CT INC	\$0	4405/0321		05/12/1995
SOUTHWESTERN CT GIRL SCT	\$0	1035/0131	25	12/29/1964

Building Information

Building 1 : Section 1

Year Built:	1963
Living Area:	1,960

Field	Description
Style	Ranch
Model	Residential
Grade:	C+
Stories:	1 Story
Occupancy	1
Exterior Wall 1	Cement fiberbd
Exterior Wall 2	
Roof Structure:	Gable/Hip
Roof Cover	Asph/F Gls/Cmp
Interior Wall 1	Drywall
Interior Wall 2	
Interior Flr 1	Hardwood
Interior Flr 2	
Heat Fuel	Electric
Heat Type:	Electr Basebrd
AC Type:	Central
Total Bedrooms:	00
Total Bthrms:	1
Total Half Baths:	0
Total Xtra Fixtrs:	3
Total Rooms:	4
Bath Style:	Average
Kitchen Style:	Typical
Fireplace Msnry.	
Fpl. Gas/Prefab	1
Fpl. Outdoor	
Fpl. Addnl. Open	
Usrffld 105	
Usrffld 106	
Bsmt. Garage	
Num Park	
Fireplaces	
Usrffld 108	
Usrffld 101	
Usffld 102	
Usffld 100	
Usrffld 300	
Usrfld 301	

Building Photo

(http://images.vgsi.com/photos/StamfordCTPhotos/^00111194179.jpg)
Building Layout

(http://images.vgsi.com/photos/StamfordCTPhotos//Sketches/24323_2432:

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	1,960	1,960
RP2	Porch Covered	392	0
UBM	Basement, Unfinished	1,960	0
WD1	Deck, Wood	252	0
		4,564	1,960

Extra Features Legend				
Code	Description	Size	Value	Bldg \#
RP2	Porch Coverd	1056.00 S.F	\$28,050	1
RP2	Porch Coverd	756.00 S.F	\$20,080	1
RP2	Porch Coverd	672.00 S.F	\$17,850	1
RP2	Porch Coverd	216.00 S.F	\$5,740	1
RP2	Porch Coverd	176.00 S.F	\$4,670	1

Land

Land Use		Land Line Valuation	
Use Code	901	Size (Acres)	16.86
Description	Exmpt Res MDL-01	Depth	
Zone	RA3	Assessed Value	\$705,290
Neighborhood	1100	Appraised Value	\$1,007,550
Alt Land Appr	No		
Category			

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
FC1	Shed Wood			240.00 S.F.	\$2,880	1
MS1	Misc Structure			528.00 S.F.	\$3,170	1
WD1	Wood Deck			252.00 S.F.	\$5,480	1
CEL1	Cell Tower			1.00 SITES	\$146,250	1

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2018	\$461,570	\$1,007,550	\$1,469,120
2017	\$461,570	\$1,007,550	\$1,469,120
2016	\$438,650	\$995,580	\$1,434,230

Assessment			
Valuation Year	Improvements	Land	Total
2018	\$323,130	\$705,290	\$1,028,420
2017	\$323,130	\$705,290	\$1,028,420
2016	\$307,060	\$696,910	\$1,003,970

Exhibit C

Construction Drawings

	$2 \amalg$ $0 \leftrightarrows$ 0 0 0 0	－	H＇TOdONON „0‥09I 9NLLSIXG $\varepsilon 0690$ Lつ＇＇ণצOHNVLS वY V＇ヨNIก〇 69 © C NGC £૬6908：\＃Пя GILOILLS								

（1）TOWER ELEVATION

足弟－								
		Θ	（）	（1）	¢			
	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$							
		陦	（10910	㕩	踉	4	（1）	（141）

Exhibit D

Structural Analysis Report

Date: June 28, 2019
Darcy Tarr
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277

F
BLACK \& VEATCH
Building a world of difference. Black \& Veatch Corp.
6800 W. 115th St., Suite 2292
Overland Park, KS 66211
(913) 458-6909

Subject:	Structural Analysis Report	
Carrier Designation:	T-Mobile Co-Locate Carrier Site Number: Carrier Site Name:	CT11071E Stamford/ MP X32/ Den Rd.
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:	$\begin{aligned} & 806953 \\ & \text { BRG } 2044 \text { (A) } 943097 \\ & 559199 \\ & 1747502 \\ & 479803 \text { Rev. } 0 \end{aligned}$
Engineering Firm Designation:	Black \& Veatch Corp. Project Number:	400087
Site Data:	69 Guinea Rd(Camp Rocky Craig), Stamford, Fairfield County, CT Latitude $41^{\circ} 6^{\prime} 6.35^{\prime \prime}$, Longitude - $73^{\circ} 35^{\prime} 41.45{ }^{\prime \prime}$ 160 Foot - Monopole Tower	

Dear Darcy Tarr,
Black \& Veatch Corp. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration
Sufficient Capacity - 66.3\%
This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Kanchanaporn Rattanachan / Justin Vibbert
Respectfully submitted by:
Joshua J. Riley, P.E. Professional Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC7
4.1) Recommendations
5) APPENDIX A
tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 160 ft Monopole tower designed by Valmont Microflect.
The tower has been modified multiple times in the past to accommodate additional loading.
The tower has been modified per reinforcement drawings prepared by Aero Solutions LLC, in August of 2009. Reinforcement consists of addition of base plate stiffeners. This modification has not been considered due to a lack of a post modification inspection report.

The tower was later modified per reinforcement drawings prepared by Paul J. Ford \& Company in October of 2012. Reinforcement consisted of addition of flat plate reinforcement from 1.75^{\prime} to 16.75^{\prime} and 77^{\prime} to 82 '. It also consists of the installation of transition stiffeners. Refer to Modification Inspection report by Tower Engineering Professionals, Inc. in August of 2013. These modifications were found to be ineffective.

The tower was later modified per reinforcement drawings prepared by Paul J. Ford \& Company in April of 2014. Reinforcement consisted of addition of flat plate reinforcement from 12.25^{\prime} to $32.25^{\prime}, 32.33^{\prime}$ to 52.33^{\prime}, and 78.5^{\prime} to 88.5^{\prime}. Refer to Modification Inspection Report by Sinnott Gering and Schmitt Towers, Inc. in August of 2014. The 78.5^{\prime} to 88.5^{\prime} reinforcements were found to be effective and all others were found to be ineffective.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	120 mph
Exposure Category:	B
Topographic Factor:	1
Ice Thickness:	1.500 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{array}{\|l} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
118.0	118.0	1	site pro 1	HRK 12 [NA 507-1]	10	1-5/8
		3	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe		
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe		
		3	ericsson	RADIO 4449 B12/B71		
		3	rfs celwave	APXVAARR24 43-U-NA20 w/ Mount Pipe		
		1	cci tower mounts	Platform Mount [LP 712-1]		
	116.0	3	ericsson	KRY 112 144/1		

Table 2-Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of ontennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
157.0	158.0	3	alcatel lucent	TD-RRH8x20-25		
	3	argus technologies	LLPX310R-V1 w/ Mount Pipe			

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	$\begin{array}{\|c} \text { Feed } \\ \text { Line } \\ \text { Size (in) } \end{array}$
		1	box enclosures and assembly	BEN-92P	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{gathered} 1 / 8 \\ 17 / 64 \end{gathered}$
		3	nokia	FWHR	1	1/2
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{gathered} 5 / 8 \\ 7 / 8 \\ 1-1 / 4 \end{gathered}$
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe		
	157.0	1	cci tower mounts	Platform Mount [LP 713-1]		
		9	rfs celwave	ACU-A20-N		
154.0	155.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER	-	-
		3	alcatel lucent	800MHZ RRH		
	154.0	1	cci tower mounts	Pipe Mount [PM 601-3]		
	153.0	3	alcatel lucent	$1900 \mathrm{MHz} \mathrm{RRH} \mathrm{(65MHz)}$		
149.0	151.0	3	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe	$\begin{gathered} 12 \\ 4 \\ 2 \\ 1 \end{gathered}$	$\begin{gathered} 1-5 / 8 \\ 5 / 8 \\ 3 / 8 \\ 2 " \text { conduit } \end{gathered}$
		3	ericsson	RRUS 32		
		3	ericsson	RRUS 4478 B5		
		3	ericsson	RRUS12/RRUS A2		
		3	kmw communications	$\begin{aligned} & \text { EPBQ-654L8H6-L2 } \\ & \text { w/ Mount Pipe } \end{aligned}$		
		3	powerwave technologies	7770.00 w/ Mount Pipe		
	149.0	1	cci tower mounts	Platform Mount [LP 713-1]		
		3	ericsson	RRUS 11		
		6	powerwave technologies	LGP21401		
		6	powerwave technologies	LGP21901		
		2	raycap	DC6-48-60-18-8F		
139.0	142.0	3	alcatel lucent	B13 RRH 4X30	13	1-5/8
		3	alcatel lucent	B66A RRH4X45		
		6	andrew	DB846F65ZAXY w/ Mount Pipe		
		6	commscope	JAHH-65B-R3B w/ Mount Pipe		
		1	rfs celwave	DB-T1-6Z-8AB-0Z		
	139.0	1	cci tower mounts	Platform Mount [LP 713-1]		
84.0	84.0	1	gps	GPS_A	-	-
40.0	40.0	1	andrew	GPS-QBW-20N	-	-
		1	cci tower mounts	Pipe Mount [PM 601-1]		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	FDH Velocitel	1104116	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Valmont Industries, Inc.	1104113	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Valmont Microflect	823122	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Aero Solutions LLC	1251715	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Paul J. Ford \& Company	3332716	CCISITES
4-POST-MODIFICATION INSPECTION	Tower Engineering Professionals	4015064	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Paul J. Ford \& Company	4837035	CCISITES
4-POST-MODIFICATION INSPECTION	Sinnott Gering and Schmitt		
Towers, Inc.	5577141	CCISITES	
4-EXPOSURE CATEGORY/TOPOGRAPHIC FACTOR	Crown Castle	6124352	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.
tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are presented in Appendix C.

3.2) Assumptions

1) Tower and structures were built and maintained in accordance with the manufacturer's specifications.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
3) The wind loading EPA of the panel antennas has been analyzed and determined by the tower owner. Verification of its accuracy is outside the scope of this structural analysis/design. Black \& Veatch does not assume any responsibility for its accuracy.
4) The wind loading Exposure Category and Topographic Category for this site have been analyzed and determined by the tower owner. Black \& Veatch does not assume any responsibility for its accuracy.
5) This analysis was performed under the assumption that all information provided to Black \& Veatch is current and correct. This is to include site data, appurtenance loading,
tower/foundation details, and geotechnical data. The loading on the structure is based on CAD level drawings and carrier orders provided by the owner. If any of this information is not current and correct, this report should be considered obsolete and further analysis will be required.

This analysis may be affected if any assumptions are not valid or have been made in error. Black \& Veatch Corp. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) (Monopole Tower)

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass I Fail
160-155	Pole	TP20.801×19.6x0.25	Pole	2.2\%	Pass
155-150	Pole	TP22.002x20.801×0.25	Pole	5.9\%	Pass
150-145	Pole	TP23.203x22.002×0.25	Pole	13.4\%	Pass
145-140	Pole	TP24.404×23.203×0.25	Pole	19.7\%	Pass
140-135	Pole	TP25.605x24.404×0.25	Pole	29.8\%	Pass
135-130	Pole	TP26.806x25.605×0.25	Pole	37.7\%	Pass
130-125	Pole	TP28.007×26.806x0.25	Pole	44.8\%	Pass
125-120	Pole	TP29.208x28.007×0.25	Pole	51.2\%	Pass
120-116	Pole	TP31.29x29.208×0.25	Pole	57.0\%	Pass
116-111	Pole	TP30.867×29.669x0.3438	Pole	42.4\%	Pass
111-106	Pole	TP32.065 30.867×0.3438	Pole	46.4\%	Pass
106-101	Pole	TP33.263×32.065x0.3438	Pole	50.1\%	Pass
101-96	Pole	TP34.461×33.263x0.3438	Pole	53.4\%	Pass
96-91	Pole	TP35.659x34.461×0.3438	Pole	56.5\%	Pass
91-86	Pole	TP36.857x35.659x0.3438	Pole	59.3\%	Pass
86-85.75	Pole + Reinf.	TP36.917x36.857x0.5125	Reinf. 5 Tension Rupture	56.6\%	Pass
85.75-81	Pole + Reinf.	TP38.055×36.917×0.5063	Reinf. 5 Tension Rupture	58.8\%	Pass
81-80.75	Pole	TP38.115 38.055×0.3438	Pole	62.1\%	Pass
80.75-80.5	Pole	TP38.175×38.115×0.3438	Pole	62.2\%	Pass
80.5-79	Pole	TP39.912×38.175×0.3438	Pole	63.0\%	Pass
79-72.25	Pole	TP39.467×37.847×0.4063	Pole	54.0\%	Pass
$\begin{gathered} 72.25- \\ 67.25 \end{gathered}$	Pole	TP40.667x39.467x0.4063	Pole	55.6\%	Pass
$\begin{aligned} & 67.25- \\ & 62.25 \end{aligned}$	Pole	TP41.867×40.667x0.4063	Pole	57.2\%	Pass
$\begin{gathered} 62.25- \\ 57.25 \end{gathered}$	Pole	TP43.067×41.867x0.4063	Pole	58.6\%	Pass
$\begin{gathered} 57.25- \\ 52.25 \end{gathered}$	Pole	TP44.268x43.067x0.4063	Pole	60.0\%	Pass
$\begin{gathered} 52.25- \\ 49.83 \end{gathered}$	Pole	TP44.848x44.268x0.4063	Pole	60.7\%	Pass
$\begin{array}{r} 49.83- \\ 49.58 \\ \hline \end{array}$	Pole	TP44.908x44.848x0.4063	Pole	60.7\%	Pass
$\begin{array}{r} 49.58- \\ 44.58 \end{array}$	Pole	TP46.109x44.908x0.4063	Pole	62.1\%	Pass
44.58-43	Pole	TP48.088×46.109x0.4063	Pole	62.5\%	Pass
43-35.33	Pole	TP47.516x45.675×0.4375	Pole	59.5\%	Pass
$\begin{gathered} 35.33 \\ 32.25 \end{gathered}$	Pole	TP48.256x47.516x0.4375	Pole	60.2\%	Pass
32.25-32	Pole	TP48.317×48.256x0.4375	Pole	60.2\%	Pass

$32-27$	Pole	TP49.517x48.317x0.4375	Pole	61.2%	Pass
$27-22$	Pole	TP50.718x49.517x0.4375	Pole	62.2%	Pass
$22-17$	Pole	TP5 $1.918 \times 50.718 \times 0.4375$	Pole	63.2%	Pass
$17-15.5$	Pole	TP52.278 51.918×0.4375	Pole	63.4%	Pass
$15.5-15.25$	Pole	TP52.338 $\times 52.278 \times 0.4375$	Pole	63.5%	Pass
$15.25-$					
14.75	Pole	TP52.458x52.338x0.4375	Pole	63.6%	Pass
$14.75-14.5$	Pole	TP52.518x52.458x0.4375	Pole	63.6%	Pass
$14.5-9.5$	Pole	TP53.719x52.518x0.4375	Pole	64.6%	Pass
$9.5-4.5$	Pole	TP54.92x53.719x0.4375	Pole	65.5%	Pass
$4.5-0$	Pole	TP56x54.92x0.4375	Pole	66.3%	Pass
				Summary	
			Pole	66.3%	Pass
			Overall	66.3%	Pass

Table 5 - Tower Component Stresses vs. Capacity (Monopole Tower) - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	55.8	Pass
	Base Plate		38.8	Pass
1	Base Foundation	0	20.8	Pass
	Base Foundation Soil Interaction		62.1	Pass
Structure Rating (max from all components) =				66.3\%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity. Rating per TIA-222-H Section 15.5.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Section	42	41	403236		34	333	323180	30	282726	25	24	23	222	21	20	㛵 1711	11515	14	13	12	1110	9	8	7	6	5	4	3	2	1	
Length (ft)	4.50	5.00	5.000025	5.00	5.00	5.000.	25. 08	7.8725	5.000 .2542	5.00	5.00	5.00	5.00		6.7625	(1) $5^{5} 5.750$.	2. 55.00	5.00	5.00	5.00	5.00	5.0®. 67	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
Number of Sides	12	12	12 12an	212	12	1212	121212	$2 \quad 12$	$12 \quad 1212$	12	12	12	12	12	12	性 12 12	1212	12	12	12	1212	212	12	12	12	12	12	12	12	12	
Thickness (in)	0.4375	0.4375	0.43 amas	\$. 4375	0.4375	0.43654	4.4 .78753	33750.4063	0.408300600930	30.4063	0.4063	0.4063	0.40634	40630	30.34380 .3	343\%063	${ }^{253438}$	0.3438	0.3438	0.3438	0.340843	380.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	
Socket Length (ft)								6.67							5.75							4.67									
Top Dia (in)	54.9195	553.7190	52.54 Bxa	880.717	49.517	\|48.34882		24xatar	22546.1086	44.99845489483	43.06	1.8673	340.6671	39.46370		88.174389	.1485C036.8	\%35.6591\|34	34.4611	33.2631	32.0650	30.889 ¢6 6	$69 ¢ 9.2082$	28.00722	26.8062	25.605	24.4041	23.2031	22.0021	20.801	19.6000
Bot Dia (in)	56.00	. 91		88.918	50.717	49.5488*	4.9.185051	516248.0880	46.1980	26	3.06	1.86	40.66		9.912 38.	Hase 56.8	. P6BC8571\| $^{\text {a }}$	35.65	34.461	33.263	32.08686	67031.2900	29.20822	28.007	26.806	25.605	24.404	23.203	22.002	120.8010	
Grade															A572	2-65															
Weight (K) 27.7	1.2	1.3	1.3 contu. 4	41.2	1.2	1.20	0. 10.71 .7	-7 1.7	1.000 .5	1.0	0.9	0.9	0.9	1.1	1.1	O\|	1.00	$0 . \mid 00.7$	0.7	0.6	0.6	0.60 .6	$6 \quad 0.7$	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3

ALL REACTIONS ARE FACTORED

TORQUE 0 kip-ft 50 mph WIND - 1.5000 in ICE

TORQUE 2 kip-ft REACTIONS - 120 mph WIND

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

1) Tower is located in Fairfield County, Connecticut.
2) Tower base elevation above sea level: 220.00 ft .
3) Basic wind speed of 120 mph .
4) Risk Category II.
5) Exposure Category B.
6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
7) Topographic Category: 1.
8) Crest Height: 0.00 ft .
9) Nominal ice thickness of 1.5000 in.
10) Ice thickness is considered to increase with height.
11) Ice density of 56 pcf.
12) A wind speed of 50 mph is used in combination with ice.
13) Temperature drop of $50^{\circ} \mathrm{F}$.
14) Deflections calculated using a wind speed of 60 mph .
15) TIA-222-H Annex S.
16) A non-linear (P-delta) analysis was used.
17) Pressures are calculated at each section.
18) Stress ratio used in pole design is 1.05 .
19) Tower analysis based on target reliabilities in accordance with Annex S.
20) Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\text {es }}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
21) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs

Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
\checkmark Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned \checkmark Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
\checkmark Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
Autocalc Torque Arm Areas
Add IBC . 6D+W Combination
Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
\checkmark Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption

Poles

$\sqrt{ }$ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	$160.00-155.00$	5.00	0.00	12	19.6000	20.8010	0.2500	1.0000	A572-65

tnxTower Report - version 8.0.5.0

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L2	155.00-150.00	5.00	0.00	12	20.8010	22.0021	0.2500	1.0000	(65 ksi)
									A572-65
									(65 ksi)
L3	150.00-145.00	5.00	0.00	12	22.0021	23.2031	0.2500	1.0000	A572-65
									(65 ksi)
L4	145.00-140.00	5.00	0.00	12	23.2031	24.4041	0.2500	1.0000	A572-65
									(65 ksi)
L5	140.00-135.00	5.00	0.00	12	24.4041	25.6051	0.2500	1.0000	A572-65
									(65 ksi)
L6	135.00-130.00	5.00	0.00	12	25.6051	26.8062	0.2500	1.0000	A572-65
									(65 ksi)
L7	130.00-125.00	5.00	0.00	12	26.8062	28.0072	0.2500	1.0000	A572-65
									(65 ksi)
L8	125.00-120.00	5.00	0.00	12	28.0072	29.2082	0.2500	1.0000	A572-65
									(65 ksi)
L9	120.00-111.33	8.67	4.67	12	29.2082	31.2900	0.2500	1.0000	A572-65
									(65 ksi)
L10	111.33-111.00	5.00	0.00	12	29.6690	30.8670	0.3438	1.3750	A572-65
									(65 ksi)
L11	111.00-106.00	5.00	0.00	12	30.8670	32.0650	0.3438	1.3750	A572-65
									(65 ksi)
L12	106.00-101.00	5.00	0.00	12	32.0650	33.2631	0.3438	1.3750	A572-65
									(65 ksi)
L13	101.00-96.00	5.00	0.00	12	33.2631	34.4611	0.3438	1.3750	A572-65
									(65 ksi)
L14	96.00-91.00	5.00	0.00	12	34.4611	35.6591	0.3438	1.3750	A572-65
									(65 ksi)
L15	91.00-86.00	5.00	0.00	12	35.6591	36.8571	0.3438	1.3750	A572-65
									(65 ksi)
L16	86.00-85.75	0.25	0.00	12	36.8571	36.9170	0.5125	2.0500	
									(65 ksi)
L17	85.75-81.00	4.75	0.00	12	36.9170	38.0551	0.5062	2.0250	A572-65
									(65 ksi)
L18	81.00-80.75	0.25	0.00	12	38.0551	38.1150	0.3438	1.3750	A572-65
									(65 ksi)
L19	80.75-80.50	0.25	0.00	12	38.1150	38.1749	0.3438	1.3750	A572-65
									(65 ksi)
L20	80.50-73.25	7.25	5.75	12	38.1749	39.9120	0.3438	1.3750	A572-65
									(65 ksi)
L21	73.25-72.25	6.75	0.00	12	37.8468	39.4670	0.4063	1.6250	A572-65
									(65 ksi)
L22	72.25-67.25	5.00	0.00	12	39.4670	40.6671	0.4063	1.6250	A572-65
									(65 ksi)
L23	67.25-62.25	5.00	0.00	12	40.6671	41.8673	0.4063	1.6250	A572-65
									(65 ksi)
L24	62.25-57.25	5.00	0.00	12	41.8673	43.0674	0.4063	1.6250	A572-65
									(65 ksi)
L25	57.25-52.25	5.00	0.00	12	43.0674	44.2675	0.4063	1.6250	A572-65
									(65 ksi)
L26	52.25-49.83	2.42	0.00	12	44.2675	44.8484	0.4063	1.6250	A572-65
									(65 ksi)
L27	49.83-49.58	0.25	0.00	12	44.8484	44.9084	0.4063	1.6250	A572-65
									(65 ksi)
L28	49.58-44.58	5.00	0.00	12	44.9084	46.1086	0.4063	1.6250	A572-65
									(65 ksi)
L29	44.58-36.33	8.25	6.67	12	46.1086	48.0880	0.4063	1.6250	A572-65
									(65 ksi)
L30	36.33-35.33	7.67	0.00	12	45.6753	47.5162	0.4375	1.7500	A572-65
									(65 ksi)
L31	35.33-32.25	3.08	0.00	12	47.5162	48.2565	0.4375	1.7500	A572-65
									(65 ksi)
L32	32.25-32.00	0.25	0.00	12	48.2565	48.3165	0.4375	1.7500	A572-65
									(65 ksi)
L33	32.00-27.00	5.00	0.00	12	48.3165	49.5171	0.4375	1.7500	A572-65
									(65 ksi)
L34	27.00-22.00	5.00	0.00	12	49.5171	50.7176	0.4375	1.7500	A572-65
									(65 ksi)
L35	22.00-17.00	5.00	0.00	12	50.7176	51.9181	0.4375	1.7500	A572-65
									(65 ksi)

| Section | Elevation | Section
 Length
 $f t$ | Splice
 Length
 ft | Number
 of
 Sides | Top
 Diameter
 in | Bottom
 Diameter
 in | Wall
 Thickness
 in | Bend
 Radius |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | |

Tapered Pole Properties

Section	$\begin{gathered} \text { Tip Dia. } \\ \text { in } \end{gathered}$	Area $i n^{2}$	$\begin{gathered} 1 \\ i n^{4} \end{gathered}$	$\begin{gathered} r \\ \text { in } \end{gathered}$	$\begin{gathered} \text { C } \\ \text { in } \\ \hline \end{gathered}$	$\begin{aligned} & 1 / C \\ & i n^{3} \end{aligned}$	$\underset{i n^{4}}{J}$	$\begin{gathered} I t / Q \\ i n^{2} \end{gathered}$	$\begin{aligned} & \text { w } \\ & \text { in } \end{aligned}$	w/t
L1	20.2032	15.5768	744.4315	6.9273	10.1528	73.3228	1508.4200	7.6664	4.5828	18.331
	21.4466	16.5436	891.8307	7.3573	10.7749	82.7690	1807.0908	8.1422	4.9047	19.619
L2	21.4466	16.5436	891.8307	7.3573	10.7749	82.7690	1807.0908	8.1422	4.9047	19.619
	22.6900	17.5104	1057.5054	7.7872	11.3971	92.7875	2142.7926	8.6181	5.2266	20.906
L3	22.6900	17.5104	1057.5054	7.7872	11.3971	92.7875	2142.7926	8.6181	5.2266	20.906
	23.9334	18.4772	1242.5239	8.2172	12.0192	103.3783	2517.6902	9.0939	5.5484	22.194
L4	23.9334	18.4772	1242.5239	8.2172	12.0192	103.3783	2517.6902	9.0939	5.5484	22.194
	25.1768	19.4441	1447.9539	8.6472	12.6413	114.5413	2933.9472	9.5698	5.8703	23.481
L5	25.1768	19.4441	1447.9539	8.6472	12.6413	114.5413	2933.9472	9.5698	5.8703	23.481
	26.4202	20.4109	1674.8639	9.0771	13.2635	126.2766	3393.7282	10.0456	6.1922	24.769
L6	26.4202	20.4109	1674.8639	9.0771	13.2635	126.2766	3393.7282	10.0456	6.1922	24.769
	27.6636	21.3777	1924.3214	9.5071	13.8856	138.5841	3899.1969	10.5215	6.5141	26.056
L7	27.6636	21.3777	1924.3214	9.5071	13.8856	138.5841	3899.1969	10.5215	6.5141	26.056
	28.9070	22.3445	2197.3950	9.9371	14.5077	151.4638	4452.5181	10.9973	6.8359	27.344
L8	28.9070	22.3445	2197.3950	9.9371	14.5077	151.4638	4452.5181	10.9973	6.8359	27.344
	30.1504	23.3114	2495.1526	10.3670	15.1299	164.9158	5055.8556	11.4731	7.1578	28.631
L9	30.1504	23.3114	2495.1526	10.3670	15.1299	164.9158	5055.8556	11.4731	7.1578	28.631
	32.3056	24.9872	3072.8897	11.1123	16.2082	189.5883	6226.5076	12.2979	7.7157	30.863
L10	31.7520	32.4594	3562.9622	10.4985	15.3686	231.8345	7219.5273	15.9755	7.0301	20.451
	31.8347	33.7855	4017.7105	10.9273	15.9891	251.2777	8140.9708	16.6282	7.3511	21.385
L11	31.8347	33.7855	4017.7105	10.9273	15.9891	251.2777	8140.9708	16.6282	7.3511	21.385
	33.0749	35.1115	4509.5937	11.3562	16.6097	271.5037	9137.6595	17.2808	7.6722	22.319
L12	33.0749	35.1115	4509.5937	11.3562	16.6097	271.5037	9137.6595	17.2808	7.6722	22.319
	34.3152	36.4376	5040.0701	11.7851	17.2303	292.5127	$\begin{gathered} 10212.548 \\ 6 \end{gathered}$	17.9335	7.9932	23.253
L13	34.3152	36.4376	5040.0701	11.7851	17.2303	292.5127	$\begin{gathered} 10212.548 \\ 6 \end{gathered}$	17.9335	7.9932	23.253
	35.5555	37.7636	5610.5969	12.2140	17.8508	314.3045	$\begin{gathered} 11368.590 \\ 4 \end{gathered}$	18.5861	8.3143	24.187
L14	35.5555	37.7636	5610.5969	12.2140	17.8508	314.3045	$\begin{gathered} 11368.590 \\ 4 \end{gathered}$	18.5861	8.3143	24.187
	36.7957	39.0896	6222.6314	12.6429	18.4714	336.8793	${ }_{3}^{12608.738}$	19.2387	8.6354	25.121
L15	36.7957	39.0896	6222.6314	12.6429	18.4714	336.8793	$\begin{gathered} 12608.738 \\ 3 \end{gathered}$	19.2387	8.6354	25.121
	38.0360	40.4157	6877.6307	13.0718	19.0920	360.2369	$\begin{gathered} 13935.944 \\ 5 \end{gathered}$	19.8914	8.9564	26.055
L16	37.9765	59.9776	10112.409	13.0114	19.0920	529.6683	$\begin{gathered} 20490.483 \\ 6 \end{gathered}$	29.5192	8.5042	16.594
	38.0385	60.0765	$\begin{array}{r} 10162.492 \\ \hline \end{array}$	13.0328	19.1230	531.4278	$\begin{gathered} 20591.964 \\ 3 \end{gathered}$	29.5678	8.5203	16.625
L17	38.0407	59.3540	$\begin{gathered} 10043.730 \\ 5 \end{gathered}$	13.0350	19.1230	525.2174	$\begin{gathered} 20351.321 \\ 1 \end{gathered}$	29.2123	8.5370	16.863
	39.2189	61.2093	$\begin{gathered} 11015.300 \\ 9 \end{gathered}$	13.4425	19.7125	558.7968	$\begin{gathered} 22319.985 \\ 9 \end{gathered}$	30.1254	8.8420	17.466
L18	39.2763	41.7417	7577.0535	13.5007	19.7125	384.3774	15353.164	20.5440	9.2775	26.989

tnxTower Report - version 8.0.5.0

Section	Tip Dia. in	Area $i n^{2}$	$\stackrel{I}{i n^{4}}$	$\begin{aligned} & r \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { in } \end{aligned}$	$\begin{aligned} & I / C \\ & i n^{3} \end{aligned}$	$\underset{i n^{4}}{J}$	$\begin{gathered} I t / Q \\ i i^{2} \end{gathered}$	$\begin{aligned} & \text { w } \\ & \text { in } \end{aligned}$	w/t
L19	39.3383	41.8080	7613.2166	13.5221	19.7436	385.6050	$\begin{gathered} 6 \\ 15426.440 \\ 9 \end{gathered}$	20.5766	9.2936	27.036
	39.3383	41.8080	7613.2166	13.5221	19.7436	385.6050	$\begin{gathered} 15426.440 \\ 9 \end{gathered}$	20.5766	9.2936	27.036
L20	39.4003	41.8743	7649.4953	13.5435	19.7746	386.8345	$\begin{gathered} 15499.951 \\ 3 \end{gathered}$	20.6093	9.3096	27.083
	39.4003	41.8743	7649.4953	13.5435	19.7746	386.8345	$\begin{gathered} 15499.951 \\ 3 \end{gathered}$	20.6093	9.3096	27.083
L21	41.1987	43.7971	8752.3577	14.1654	20.6744	423.3424	$\begin{gathered} 17734.649 \\ 5 \end{gathered}$	21.5556	9.7752	28.437
	40.4674	48.9769	8763.1762	13.4037	19.6046	446.9951	$\begin{gathered} 17756.570 \\ 7 \end{gathered}$	24.1049	9.0542	22.287
L22	40.7159	51.0963	9950.7610	13.9837	20.4439	486.7351	$\begin{gathered} 20162.939 \\ 6 \end{gathered}$	25.1481	9.4884	23.356
	40.7159	51.0963	9950.7610	13.9837	20.4439	486.7351	$\begin{gathered} 20162.939 \\ 6 \end{gathered}$	25.1481	9.4884	23.356
L23	41.9584	52.6663	$\begin{gathered} 10896.442 \\ 4 \end{gathered}$	14.4134	21.0656	517.2631	$\begin{gathered} 22079.146 \\ 4 \end{gathered}$	25.9207	9.8100	24.148
	41.9584	52.6663	$\begin{gathered} 10896.442 \\ 4 \end{gathered}$	14.4134	21.0656	517.2631	$\begin{gathered} 22079.146 \\ 4 \end{gathered}$	25.9207	9.8100	24.148
L24	43.2009	54.2362	$\begin{gathered} 11900.218 \\ 1 \end{gathered}$	14.8430	21.6872	548.7198	$\begin{gathered} 24113.068 \\ 3 \end{gathered}$	26.6934	10.1317	24.94
	43.2009	54.2362	$\begin{gathered} 11900.218 \\ 1 \end{gathered}$	14.8430	21.6872	548.7198	$\begin{gathered} 24113.068 \\ 3 \end{gathered}$	26.6934	10.1317	24.94
L25	44.4433	55.8061	$\begin{gathered} 12963.819 \\ 1 \end{gathered}$	15.2727	22.3089	581.1049	$\begin{gathered} 26268.212 \\ 2 \end{gathered}$	27.4661	10.4533	25.731
	44.4433	55.8061	$\begin{gathered} 12963.819 \\ 1 \end{gathered}$	15.2727	22.3089	581.1049	$\begin{gathered} 26268.212 \\ 2 \end{gathered}$	27.4661	10.4533	25.731
L26	45.6858	57.3761	$\begin{gathered} 14088.978 \\ 8 \end{gathered}$	15.7023	22.9306	614.4186	$\begin{gathered} 28548.090 \\ 8 \end{gathered}$	28.2387	10.7750	26.523
	45.6858	57.3761	$\begin{gathered} 14088.978 \\ 8 \end{gathered}$	15.7023	22.9306	614.4186	$\begin{gathered} 28548.090 \\ 8 \end{gathered}$	28.2387	10.7750	26.523
L27	46.2872	58.1359	$\begin{gathered} 14656.178 \\ 0 \end{gathered}$	15.9103	23.2315	630.8758	$\begin{gathered} 29697.390 \\ 1 \end{gathered}$	28.6127	10.9306	26.906
	46.2872	58.1359	$\begin{gathered} 14656.178 \\ 0 \end{gathered}$	15.9103	23.2315	630.8758	$\begin{gathered} 29697.390 \\ 1 \end{gathered}$	28.6127	10.9306	26.906
L28	46.3493	58.2144	$\begin{gathered} 14715.625 \\ 7 \end{gathered}$	15.9318	23.2626	632.5884	$\begin{gathered} 29817.847 \\ 2 \end{gathered}$	28.6514	10.9467	26.946
	46.3493	58.2144 59.7843	$\begin{gathered} 14715.625 \\ 7 \end{gathered}$	15.9318 16.3614	23.2626	632.5884	$\begin{gathered} 29817.847 \\ 2 \end{gathered}$	28.6514	10.9467	26.946
L29	47.5918	59.7843	$\begin{gathered} 15938.580 \\ 9 \end{gathered}$	16.3614	23.8842	667.3264	$\begin{gathered} 32295.886 \\ 1 \end{gathered}$	29.4240	11.2683	27.737
	47.5918	59.7843	$\begin{gathered} 15938.580 \\ 9 \end{gathered}$	16.3614	23.8842	667.3264	$\begin{gathered} 32295.886 \\ 1 \end{gathered}$	29.4240	11.2683	27.737
L30	49.6411	62.3737	$\begin{gathered} 18100.549 \\ 3 \end{gathered}$	17.0701	24.9096	726.6500	$\begin{gathered} 36676.620 \\ 2 \end{gathered}$	30.6984	11.7988	29.043
	48.7894	63.7288	$\begin{gathered} 16646.557 \\ 0 \end{gathered}$	16.1951	23.6598	703.5796	$\begin{gathered} 33730.437 \\ 7 \end{gathered}$	31.3654	11.0685	25.299
L31	49.0380	66.3220	$\begin{gathered} 18762.550 \\ 8 \end{gathered}$	16.8542	24.6134	762.2911	$\begin{gathered} 38018.014 \\ 7 \end{gathered}$	32.6417	11.5618	26.427
	49.0380	66.3220	$\begin{gathered} 18762.550 \\ 8 \end{gathered}$	16.8542	24.6134	762.2911	$\begin{gathered} 38018.014 \\ 7 \end{gathered}$	32.6417	11.5618	26.427
L32	49.8044	67.3650	$\begin{gathered} 19661.685 \\ 7 \end{gathered}$	17.1192	24.9969	786.5664	$\begin{gathered} 39839.905 \\ 8 \end{gathered}$	33.1550	11.7602	26.881
	49.8044	67.3650	$\begin{gathered} 19661.685 \\ 7 \end{gathered}$	17.1192	24.9969	786.5664	$\begin{gathered} 39839.905 \\ 8 \end{gathered}$	33.1550	11.7602	26.881
L33	49.8666	67.4495	$\begin{gathered} 19735.823 \\ 7 \end{gathered}$	17.1407	25.0280	788.5513	$\begin{gathered} 39990.129 \\ 4 \end{gathered}$	33.1966	11.7763	26.917
	49.8666	67.4495	$\begin{gathered} 19735.823 \\ 7 \end{gathered}$	17.1407	25.0280	788.5513	$\begin{gathered} 39990.129 \\ 4 \end{gathered}$	33.1966	11.7763	26.917
L34	51.1095	69.1408	$\begin{gathered} 21257.963 \\ 1 \end{gathered}$	17.5705	25.6498	828.7759	$\begin{gathered} 43074.396 \\ 5 \end{gathered}$	34.0290	12.0981	27.653
	51.1095	69.1408	$\begin{gathered} 21257.963 \\ 1 \end{gathered}$	17.5705	25.6498	828.7759	$\begin{gathered} 43074.396 \\ 5 \end{gathered}$	34.0290	12.0981	27.653
L35	52.3524	70.8321	$\begin{gathered} 22856.420 \\ 9 \end{gathered}$	18.0003	26.2717	870.0011	$\begin{gathered} 46313.305 \\ 5 \end{gathered}$	34.8614	12.4198	28.388
	52.3524	70.8321	$\begin{gathered} 22856.420 \\ 9 \end{gathered}$	18.0003	26.2717	870.0011	$\begin{gathered} 46313.305 \\ 5 \end{gathered}$	34.8614	12.4198	28.388
	53.5953	72.5234	24533.064	18.4301	26.8936	912.2269	49710.639	35.6938	12.7416	29.124

tnxTower Report - version 8.0.5.0

Section	$\begin{gathered} \text { Tip Dia. } \\ \text { in } \end{gathered}$	Area $i n^{2}$	$\stackrel{I}{i n^{4}}$	$\begin{gathered} r \\ \text { in } \end{gathered}$	$\begin{aligned} & C \\ & \text { in } \end{aligned}$	$\begin{aligned} & I / C \\ & i n^{3} \end{aligned}$	$\underset{i n^{4}}{J}$	$\begin{gathered} I t / Q \\ i n^{2} \end{gathered}$	$\begin{aligned} & w \\ & \text { in } \end{aligned}$	w/t
L36	53.5953	72.5234	$\begin{gathered} 0 \\ 24533.064 \\ 0 \end{gathered}$	18.4301	26.8936	912.2269	$\begin{gathered} 0 \\ 49710.639 \\ 0 \end{gathered}$	35.6938	12.7416	29.124
L37	53.9682	73.0307	$\begin{gathered} 25051.581 \\ 0 \end{gathered}$	18.5590	27.0802	925.0897	$\begin{gathered} 50761.295 \\ 0 \end{gathered}$	35.9435	12.8381	29.344
	53.9682	73.0307	$\begin{gathered} 25051.581 \\ 0 \end{gathered}$	18.5590	27.0802	925.0897	$\begin{gathered} 50761.295 \\ 0 \end{gathered}$	35.9435	12.8381	29.344
L38	54.0303	73.1153	$\begin{gathered} 25138.705 \\ 7 \end{gathered}$	18.5805	27.1113	927.2423	$\begin{gathered} 50937.833 \\ 3 \end{gathered}$	35.9851	12.8542	29.381
	54.0303	73.1153	$\begin{gathered} 25138.705 \\ 7 \end{gathered}$	18.5805	27.1113	927.2423	$\begin{gathered} 50937.833 \\ 3 \end{gathered}$	35.9851	12.8542	29.381
L39	54.1546	73.2844	$\begin{gathered} 25313.557 \\ 8 \end{gathered}$	18.6235	27.1734	931.5550	$\begin{gathered} 51292.130 \\ 9 \end{gathered}$	36.0684	12.8863	29.455
	54.1546	73.2844	$\begin{gathered} 25313.557 \\ 8 \end{gathered}$	18.6235	27.1734	931.5550	$\begin{gathered} 51292.130 \\ 9 \end{gathered}$	36.0684	12.8863	29.455
L40	54.2167	73.3690	$\begin{gathered} 25401.288 \\ 5 \end{gathered}$	18.6450	27.2045	933.7151	$\begin{gathered} 51469.897 \\ 0 \end{gathered}$	36.1100	12.9024	29.491
	54.2167	73.3690	$\begin{gathered} 25401.288 \\ 5 \end{gathered}$	18.6450	27.2045	933.7151	$\begin{gathered} 51469.897 \\ 0 \end{gathered}$	36.1100	12.9024	29.491
L41	55.4596	75.0603	$\begin{gathered} 27198.709 \\ 8 \end{gathered}$	19.0748	27.8264	977.4418	$\begin{gathered} 55111.959 \\ 9 \end{gathered}$	36.9424	13.2242	30.227
	55.4596	75.0603	$\begin{gathered} 27198.709 \\ 8 \end{gathered}$	19.0748	27.8264	977.4418	$\begin{gathered} 55111.959 \\ 9 \end{gathered}$	36.9424	13.2242	30.227
L42	56.7025	76.7515	$\begin{gathered} 29078.983 \\ 4 \end{gathered}$	19.5046	28.4483	1022.1693	$\begin{gathered} 58921.904 \\ 1 \end{gathered}$	37.7748	13.5459	30.962
	56.7025	76.7515	$\begin{gathered} 29078.983 \\ 4 \end{gathered}$	19.5046	28.4483	1022.1693	$\begin{gathered} 58921.904 \\ 1 \end{gathered}$	37.7748	13.5459	30.962
	57.8211	78.2737	$\begin{gathered} 30843.610 \\ 8 \end{gathered}$	19.8914	29.0080	1063.2795	$\begin{gathered} 62497.517 \\ 6 \end{gathered}$	38.5239	13.8355	31.624

Tower Elevation $f t$	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset GradeAdjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
$\begin{gathered} \text { L1 160.00- } \\ 155.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L2 } 155.00- \\ 150.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L3 } 150.00- \\ 145.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L4 145.00- } \\ 140.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L5 140.00- } \\ 135.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L6 } 135.00- \\ 130.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L7 130.00- } \\ 125.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L8 } 125.00- \\ 120.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L9 120.00- } \\ 111.33 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L10 111.33- } \\ 111.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L11 111.00- } \\ 106.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L12 106.00- } \\ 101.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L13 101.00- } \\ 96.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L14 96.00- } \\ 91.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L15 } 91.00- \\ 86.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L16 86.00- } \\ 85.75 \end{gathered}$			1	1	0.973888			
$\begin{gathered} \text { L17 85.75- } \\ 81.00 \end{gathered}$			1	1	0.976445			

tnxTower Report - version 8.0.5.0

160 Ft Monopole Tower Structural Analysis

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
$\begin{gathered} \text { L18 81.00- } \\ 80.75 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L19 80.75- } \\ 80.50 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L20 80.50- } \\ 73.25 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L21 73.25- } \\ 72.25 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L22 72.25- } \\ 67.25 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L23 67.25- } \\ 62.25 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L24 } 62.25- \\ 57.25 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L25 57.25- } \\ 52.25 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L26 52.25- } \\ 49.83 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L27 } 49.83- \\ 49.58 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L28 } 49.58- \\ 44.58 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L29 44.58- } \\ 36.33 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L30 } 36.33- \\ 35.33 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L31 35.33- } \\ 32.25 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L32 32.25- } \\ 32.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L33 32.00- } \\ 27.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L34 } 27.00- \\ 22.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L35 22.00- } \\ 17.00 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L36 17.00- } \\ 15.50 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L37 15.50- } \\ 15.25 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L38 15.25- } \\ 14.75 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L39 14.75- } \\ 14.50 \end{gathered}$			1	1	1			
$\begin{gathered} \text { L40 14.50- } \\ 9.50 \end{gathered}$			1	1	1			
L41 9.50-4.50			1	1	1			
L42 4.50-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | Sector | Exclude
 From
 Torque | Componen
 Calculation | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

tnxTower Report - version 8.0.5.0

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf
			(CaAa)	1.75			0.000			
MK SR 2	A	No	Surface Af (CaAa)	$\begin{gathered} 82.00- \\ 77.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.0000	9.5000	10.21
MK SR 2	B	No	Surface Af (CaAa)	$\begin{gathered} 82.00- \\ 77.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.0000	9.5000	10.21
MK SR 2	C	No	Surface Af (CaAa)	$\begin{gathered} 82.00- \\ 77.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.0000	9.5000	10.21
CCI-AFP-060100	A	No	Surface Af (CaAa)	$\begin{gathered} 32.25- \\ 12.25 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	20.42
CCI-AFP-060100	B	No	Surface Af (CaAa)	$\begin{gathered} 32.25- \\ 12.25 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	20.42
CCI-AFP-060100	C	No	Surface Af (CaAa)	$\begin{gathered} 32.25- \\ 12.25 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	20.42
CCI-AFP-060100	A	No	Surface Af (CaAa)	$\begin{gathered} 52.33 \\ 32.33 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	20.42
CCI-AFP-060100	B	No	Surface Af (CaAa)	$\begin{gathered} 52.33- \\ 32.33 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	20.42
CCI-AFP-060100	C	No	Surface Af (CaAa)	$\begin{gathered} 52.33- \\ 32.33 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	20.42
CCI-AFP-060100	A	No	Surface Af (CaAa)	$\begin{gathered} 88.50- \\ 78.50 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	0.00
CCI-AFP-060100	B	No	Surface Af (CaAa)	$\begin{gathered} 88.50- \\ 78.50 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	0.00
CCI-AFP-060100	C	No	Surface Af (CaAa)	$\begin{gathered} 88.50- \\ 78.50 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	0.00

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} f t$	Weight plf

$\begin{gathered} \text { 004U8X- } \\ 32125 \mathrm{E} 2 \mathrm{G}(1 / 8) \end{gathered}$	C	No	No	Inside Pole	157.00-0.00	1	No Ice	0.00	0.01
							1/2" Ice	0.00	0.01
							1 " Ice	0.00	0.01
							2" Ice	0.00	0.01
7919A(17/64)	C	No	No	Inside Pole	157.00-0.00	4	No Ice	0.00	0.03
							1/2" Ice	0.00	0.03
							1" Ice	0.00	0.03
							2 " Ice	0.00	0.03
LDF4-50A(1/2)	C	No	No	Inside Pole	157.00-0.00	1	No Ice	0.00	0.15
							1/2" Ice	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15
$\begin{aligned} & \text { HB058-M12- } \\ & \text { XXXF(5/8) } \end{aligned}$	C	No	No	Inside Pole	157.00-0.00	1	No Ice	0.00	0.24
							1/2" Ice	0.00	0.24
							1" Ice	0.00	0.24
							2" Ice	0.00	0.24
$\begin{gathered} \text { TYPE SOOW } \\ \text { 12/9(7/8) } \end{gathered}$	C	No	No	Inside Pole	157.00-0.00	1	No Ice	0.00	0.51
							$1 / 2 \text { " Ice }$	0.00	0.51
							1 ' Ice	0.00	0.51
							2" Ice	0.00	0.51
$\begin{gathered} \text { HB114-1-0813U4- } \\ \text { M5J(1-1/4) } \end{gathered}$	C	No	No	Inside Pole	157.00-0.00	3	No Ice	0.00	1.20
							1/2" Ice	0.00	1.20
							1" Ice	0.00	1.20
							2" Ice	0.00	1.20

$\begin{aligned} & \text { FB-L98B-002- } \\ & 75000(3 / 8) \end{aligned}$	C	No	No	Inside Pole	149.00-0.00	1	No Ice	0.00	0.06
							1/2" Ice	0.00	0.06
							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
WR-VG82STBRDA(5/8)	C	No	No	Inside Pole	149.00-0.00	2	No Ice	0.00	0.31
							1/2" Ice	0.00	0.31

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
$\begin{aligned} & \text { FB-L98B-002- } \\ & 75000(3 / 8) \end{aligned}$	C	No	No	Inside Pole	149.00-0.00	1	1" Ice	0.00	0.31
							2" Ice	0.00	0.31
							No Ice	0.00	0.06
							1/2" Ice	0.00	0.06
							1 " Ice	0.00	0.06
	C	No					2" Ice	0.00	0.06
WR-VG82STBRDA(5/8)			No	Inside Pole	149.00-0.00	2	No Ice	0.00	0.31
							1/2" Ice	0.00	0.31
							1" Ice	0.00	0.31
							2" Ice	0.00	0.31
2" innerduct conduit	C	No	No	Inside Pole	149.00-0.00	1	No Ice	0.00	0.20
							1/2" Ice	0.00	0.20
							1 " Ice	0.00	0.20
							2" Ice	0.00	0.20
LCF158-50JA-A0(1-5/8)	C	No	No	Inside Pole	149.00-0.00	12	No Ice	0.00	0.80
							1/2" Ice	0.00	0.80
							1 " Ice	0.00	0.80
							2" Ice	0.00	0.80

561(1-5/8)	C	No	No	Inside Pole	139.00-0.00	12	No Ice	0.00	1.35
							1/2" Ice	0.00	1.35
							1 " Ice	0.00	1.35
							2" Ice	0.00	1.35
$\begin{aligned} & \text { HB158-1-08U8- } \\ & \text { S8J18(1-5/8) } \end{aligned}$	C	No	No	Inside Pole	139.00-0.00	1	No Ice	0.00	1.30
							1/2" Ice	0.00	1.30
							1" Ice	0.00	1.30
							2" Ice	0.00	1.30

LDF7-50A(1-5/8)	C	No	No	Inside Pole	116.00-0.00	6		0.00	0.82
							1/2" Ice	0.00	0.82
							1 " Ice	0.00	0.82
							2" Ice	0.00	0.82
MLE Hybrid 9Power/18Fiber RL 2(1-5/8)	C	No	No	Inside Pole	116.00-0.00	1	No Ice	0.00	1.07
							1/2" Ice	0.00	1.07
							1" Ice	0.00	1.07
							2" Ice	0.00	1.07
$\begin{gathered} \text { HCS } 6 \times 12 \\ \text { 4AWG(1-5/8) } \end{gathered}$	C	No	No	Inside Pole	116.00-0.00	3	No Ice	0.00	2.40
							1/2" Ice	0.00	2.40
							1" Ice	0.00	2.40
							2" Ice	0.00	2.40

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
n
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
f t^{2} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$
\] \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{160.00-155.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{155.00-150.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{150.00-145.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.07

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{145.00-140.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.08

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{140.00-135.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.15

\hline
\end{tabular}

tnxTower Report - version 8.0.5.0

160 Ft Monopole Tower Structural Analysis

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& Face \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
f t^{2} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$
\] \& Weight

K

\hline \multirow[t]{3}{*}{L6} \& \multirow[t]{3}{*}{135.00-130.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.17

\hline \multirow[t]{3}{*}{L7} \& \multirow[t]{3}{*}{130.00-125.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.17

\hline \multirow[t]{3}{*}{L8} \& \multirow[t]{3}{*}{125.00-120.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.17

\hline \multirow[t]{3}{*}{L9} \& \multirow[t]{3}{*}{120.00-111.33} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.325 \& 0.000 \& 0.35

\hline \multirow[t]{3}{*}{L10} \& \multirow[t]{3}{*}{111.33-111.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.012 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L11} \& \multirow[t]{3}{*}{111.00-106.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L12} \& \multirow[t]{3}{*}{106.00-101.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L13} \& \multirow[t]{3}{*}{101.00-96.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L14} \& \multirow[t]{3}{*}{96.00-91.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L15} \& \multirow[t]{3}{*}{91.00-86.00} \& A \& 0.000 \& 0.000 \& 2.280 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 2.280 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 2.468 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L16} \& \multirow[t]{3}{*}{86.00-85.75} \& A \& 0.000 \& 0.000 \& 0.228 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.228 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.237 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L17} \& \multirow[t]{3}{*}{85.75-81.00} \& A \& 0.000 \& 0.000 \& 4.885 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 4.885 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 5.063 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L18} \& \multirow[t]{3}{*}{81.00-80.75} \& A \& 0.000 \& 0.000 \& 0.366 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.366 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.376 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L19} \& \multirow[t]{3}{*}{80.75-80.50} \& A \& 0.000 \& 0.000 \& 0.366 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.366 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.376 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L20} \& \multirow[t]{3}{*}{80.50-73.25} \& A \& 0.000 \& 0.000 \& 3.759 \& 0.000 \& 0.04

\hline \& \& B \& 0.000 \& 0.000 \& 3.759 \& 0.000 \& 0.04

\hline \& \& C \& 0.000 \& 0.000 \& 4.031 \& 0.000 \& 0.37

\hline \multirow[t]{3}{*}{L21} \& \multirow[t]{3}{*}{73.25-72.25} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.037 \& 0.000 \& 0.05

\hline \multirow[t]{3}{*}{L22} \& \multirow[t]{3}{*}{72.25-67.25} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L23} \& \multirow[t]{3}{*}{67.25-62.25} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L24} \& \multirow[t]{3}{*}{62.25-57.25} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L25} \& \multirow[t]{3}{*}{57.25-52.25} \& A \& 0.000 \& 0.000 \& 0.080 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.080 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.268 \& 0.000 \& 0.24

\hline \multirow[t]{3}{*}{L26} \& \multirow[t]{3}{*}{52.25-49.83} \& A \& 0.000 \& 0.000 \& 2.420 \& 0.000 \& 0.05

\hline \& \& B \& 0.000 \& 0.000 \& 2.420 \& 0.000 \& 0.05

\hline \& \& C \& 0.000 \& 0.000 \& 2.511 \& 0.000 \& 0.16

\hline \multirow[t]{3}{*}{L27} \& \multirow[t]{3}{*}{49.83-49.58} \& A \& 0.000 \& 0.000 \& 0.250 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 0.250 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.259 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L28} \& \multirow[t]{3}{*}{49.58-44.58} \& A \& 0.000 \& 0.000 \& 5.000 \& 0.000 \& 0.10

\hline \& \& B \& 0.000 \& 0.000 \& 5.000 \& 0.000 \& 0.10

\hline \& \& C \& 0.000 \& 0.000 \& 5.188 \& 0.000 \& 0.34

\hline
\end{tabular}

tnxTower Report - version 8.0.5.0

160 Ft Monopole Tower Structural Analysis

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
n
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)

$f t^{2}$ \& AF

ft^{2} \& $C_{A} A_{A}$ In Face ft ${ }^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
f t^{2} \\
\hline
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L29} \& \multirow[t]{3}{*}{44.58-36.33} \& A \& 0.000 \& 0.000 \& 8.247 \& 0.000 \& 0.17

\hline \& \& B \& 0.000 \& 0.000 \& 8.247 \& 0.000 \& 0.17

\hline \& \& C \& 0.000 \& 0.000 \& 8.556 \& 0.000 \& 0.55

\hline \multirow[t]{3}{*}{L30} \& \multirow[t]{3}{*}{36.33-35.33} \& A \& 0.000 \& 0.000 \& 1.000 \& 0.000 \& 0.02

\hline \& \& B \& 0.000 \& 0.000 \& 1.000 \& 0.000 \& 0.02

\hline \& \& C \& 0.000 \& 0.000 \& 1.038 \& 0.000 \& 0.07

\hline \multirow[t]{3}{*}{L31} \& \multirow[t]{3}{*}{35.33-32.25} \& A \& 0.000 \& 0.000 \& 3.003 \& 0.000 \& 0.06

\hline \& \& B \& 0.000 \& 0.000 \& 3.003 \& 0.000 \& 0.06

\hline \& \& C \& 0.000 \& 0.000 \& 3.119 \& 0.000 \& 0.21

\hline \multirow[t]{3}{*}{L32} \& \multirow[t]{3}{*}{32.25-32.00} \& A \& 0.000 \& 0.000 \& 0.250 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 0.250 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.259 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L33} \& \multirow[t]{3}{*}{$32.00-27.00$} \& A \& 0.000 \& 0.000 \& 5.000 \& 0.000 \& 0.10

\hline \& \& B \& 0.000 \& 0.000 \& 5.000 \& 0.000 \& 0.10

\hline \& \& C \& 0.000 \& 0.000 \& 5.188 \& 0.000 \& 0.34

\hline \multirow[t]{3}{*}{L34} \& \multirow[t]{3}{*}{27.00-22.00} \& A \& 0.000 \& 0.000 \& 5.000 \& 0.000 \& 0.10

\hline \& \& B \& 0.000 \& 0.000 \& 5.000 \& 0.000 \& 0.10

\hline \& \& C \& 0.000 \& 0.000 \& 5.188 \& 0.000 \& 0.34

\hline \multirow[t]{3}{*}{L35} \& \multirow[t]{3}{*}{22.00-17.00} \& A \& 0.000 \& 0.000 \& 5.000 \& 0.000 \& 0.10

\hline \& \& B \& 0.000 \& 0.000 \& 5.000 \& 0.000 \& 0.10

\hline \& \& C \& 0.000 \& 0.000 \& 5.188 \& 0.000 \& 0.34

\hline \multirow[t]{3}{*}{L36} \& \multirow[t]{3}{*}{17.00-15.50} \& A \& 0.000 \& 0.000 \& 2.333 \& 0.000 \& 0.04

\hline \& \& B \& 0.000 \& 0.000 \& 2.333 \& 0.000 \& 0.04

\hline \& \& C \& 0.000 \& 0.000 \& 2.390 \& 0.000 \& 0.11

\hline \multirow[t]{3}{*}{L37} \& \multirow[t]{3}{*}{15.50-15.25} \& A \& 0.000 \& 0.000 \& 0.417 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 0.417 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.426 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L38} \& \multirow[t]{3}{*}{15.25-14.75} \& A \& 0.000 \& 0.000 \& 0.833 \& 0.000 \& 0.02

\hline \& \& B \& 0.000 \& 0.000 \& 0.833 \& 0.000 \& 0.02

\hline \& \& C \& 0.000 \& 0.000 \& 0.852 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{L39} \& \multirow[t]{3}{*}{14.75-14.50} \& A \& 0.000 \& 0.000 \& 0.417 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 0.417 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.426 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L40} \& \multirow[t]{3}{*}{14.50-9.50} \& A \& 0.000 \& 0.000 \& 5.583 \& 0.000 \& 0.10

\hline \& \& B \& 0.000 \& 0.000 \& 5.583 \& 0.000 \& 0.10

\hline \& \& C \& 0.000 \& 0.000 \& 5.752 \& 0.000 \& 0.33

\hline \multirow[t]{3}{*}{L41} \& \multirow[t]{3}{*}{9.50-4.50} \& A \& 0.000 \& 0.000 \& 3.333 \& 0.000 \& 0.05

\hline \& \& B \& 0.000 \& 0.000 \& 3.333 \& 0.000 \& 0.05

\hline \& \& C \& 0.000 \& 0.000 \& 3.333 \& 0.000 \& 0.28

\hline \multirow[t]{3}{*}{L42} \& \multirow[t]{3}{*}{4.50-0.00} \& A \& 0.000 \& 0.000 \& 1.833 \& 0.000 \& 0.03

\hline \& \& B \& 0.000 \& 0.000 \& 1.833 \& 0.000 \& 0.03

\hline \& \& C \& 0.000 \& 0.000 \& 1.833 \& 0.000 \& 0.24

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
\(n\)
\end{tabular} \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Ice Thickness in \& AR

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{160.00-155.00} \& A \& \multirow[t]{3}{*}{1.491} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.678 \& 0.000 \& 0.03

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{155.00-150.00} \& A \& \multirow[t]{3}{*}{1.486} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.673 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{150.00-145.00} \& A \& \multirow[t]{3}{*}{1.481} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.668 \& 0.000 \& 0.09

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{145.00-140.00} \& A \& \multirow[t]{3}{*}{1.476} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.663 \& 0.000 \& 0.10

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{140.00-135.00} \& A \& \multirow[t]{3}{*}{1.471} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.658 \& 0.000 \& 0.17

\hline \multirow[t]{3}{*}{L6} \& \multirow[t]{3}{*}{135.00-130.00} \& A \& \multirow[t]{3}{*}{1.465} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.653 \& 0.000 \& 0.18

\hline
\end{tabular}

tnxTower Report - version 8.0.5.0

160 Ft Monopole Tower Structural Analysis
Project Number 400087, Order 479803, Revision 0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& lce
Thickness
in \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
{f t^{2}}^{2} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$
\] \& Weight

$$
K
$$

\hline \multirow[t]{3}{*}{L7} \& \multirow[t]{3}{*}{130.00-125.00} \& A \& \multirow[t]{3}{*}{1.459} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.647 \& 0.000 \& 0.18

\hline \multirow[t]{3}{*}{L8} \& \multirow[t]{3}{*}{125.00-120.00} \& A \& \multirow[t]{3}{*}{1.454} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.641 \& 0.000 \& 0.18

\hline \multirow[t]{3}{*}{L9} \& \multirow[t]{3}{*}{120.00-111.33} \& A \& \multirow[t]{3}{*}{1.445} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 2.830 \& 0.000 \& 0.38

\hline \multirow[t]{3}{*}{L10} \& \multirow[t]{3}{*}{111.33-111.00} \& A \& \multirow[t]{3}{*}{1.440} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.109 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L11} \& \multirow[t]{3}{*}{111.00-106.00} \& A \& \multirow[t]{3}{*}{1.436} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.624 \& 0.000 \& 0.25

\hline \multirow[t]{3}{*}{L12} \& \multirow[t]{3}{*}{106.00-101.00} \& A \& \multirow[t]{3}{*}{1.429} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.617 \& 0.000 \& 0.25

\hline \multirow[t]{3}{*}{L13} \& \multirow[t]{3}{*}{101.00-96.00} \& A \& \multirow[t]{3}{*}{1.422} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.610 \& 0.000 \& 0.25

\hline \multirow[t]{3}{*}{L14} \& \multirow[t]{3}{*}{96.00-91.00} \& A \& \multirow[t]{3}{*}{1.415} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.602 \& 0.000 \& 0.25

\hline \multirow[t]{3}{*}{L15} \& \multirow[t]{3}{*}{91.00-86.00} \& A \& \multirow[t]{3}{*}{1.407} \& 0.000 \& 0.000 \& 2.654 \& 0.000 \& 0.03

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.654 \& 0.000 \& 0.03

\hline \& \& C \& \& 0.000 \& 0.000 \& 4.249 \& 0.000 \& 0.28

\hline \multirow[t]{3}{*}{L16} \& \multirow[t]{3}{*}{86.00-85.75} \& A \& \multirow[t]{3}{*}{1.403} \& 0.000 \& 0.000 \& 0.265 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.265 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.345 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L17} \& \multirow[t]{3}{*}{85.75-81.00} \& A \& \multirow[t]{3}{*}{1.399} \& 0.000 \& 0.000 \& 5.741 \& 0.000 \& 0.07

\hline \& \& B \& \& 0.000 \& 0.000 \& 5.741 \& 0.000 \& 0.07

\hline \& \& C \& \& 0.000 \& 0.000 \& 7.248 \& 0.000 \& 0.30

\hline \multirow[t]{3}{*}{L18} \& \multirow[t]{3}{*}{81.00-80.75} \& A \& \multirow[t]{3}{*}{1.395} \& 0.000 \& 0.000 \& 0.441 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.441 \& 0.000 \& 0.01

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.520 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L19} \& \multirow[t]{3}{*}{80.75-80.50} \& A \& \multirow[t]{3}{*}{1.394} \& 0.000 \& 0.000 \& 0.441 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.441 \& 0.000 \& 0.01

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.520 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L20} \& \multirow[t]{3}{*}{80.50-73.25} \& A \& \multirow[t]{3}{*}{1.387} \& 0.000 \& 0.000 \& 4.573 \& 0.000 \& 0.08

\hline \& \& B \& \& 0.000 \& 0.000 \& 4.573 \& 0.000 \& 0.08

\hline \& \& C \& \& 0.000 \& 0.000 \& 6.857 \& 0.000 \& 0.44

\hline \multirow[t]{3}{*}{L21} \& \multirow[t]{3}{*}{73.25-72.25} \& A \& \multirow[t]{3}{*}{1.380} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.315 \& 0.000 \& 0.05

\hline \multirow[t]{3}{*}{L22} \& \multirow[t]{3}{*}{72.25-67.25} \& A \& \multirow[t]{3}{*}{1.374} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.562 \& 0.000 \& 0.25

\hline \multirow[t]{3}{*}{L23} \& \multirow[t]{3}{*}{67.25-62.25} \& A \& \multirow[t]{3}{*}{1.364} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.551 \& 0.000 \& 0.25

\hline \multirow[t]{3}{*}{L24} \& \multirow[t]{3}{*}{62.25-57.25} \& A \& \multirow[t]{3}{*}{1.353} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.540 \& 0.000 \& 0.25

\hline \multirow[t]{3}{*}{L25} \& \multirow[t]{3}{*}{57.25-52.25} \& A \& \multirow[t]{3}{*}{1.341} \& 0.000 \& 0.000 \& 0.101 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.101 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.630 \& 0.000 \& 0.25

\hline \multirow[t]{3}{*}{L26} \& \multirow[t]{3}{*}{52.25-49.83} \& A \& 1.332 \& 0.000 \& 0.000 \& 3.065 \& 0.000 \& 0.07

\hline \& \& B \& \& 0.000 \& 0.000 \& 3.065 \& 0.000 \& 0.07

\hline \& \& C \& \& 0.000 \& 0.000 \& 3.800 \& 0.000 \& 0.19

\hline \multirow[t]{3}{*}{L27} \& \multirow[t]{3}{*}{49.83-49.58} \& A \& 1.328 \& 0.000 \& 0.000 \& 0.316 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.316 \& 0.000 \& 0.01

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.392 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L28} \& \multirow[t]{3}{*}{49.58-44.58} \& A \& 1.321 \& 0.000 \& 0.000 \& 6.321 \& 0.000 \& 0.15

\hline \& \& B \& \& 0.000 \& 0.000 \& 6.321 \& 0.000 \& 0.15

\hline \& \& C \& \& 0.000 \& 0.000 \& 7.830 \& 0.000 \& 0.40

\hline \multirow[t]{3}{*}{L29} \& \multirow[t]{3}{*}{44.58-36.33} \& A \& 1.301 \& 0.000 \& 0.000 \& 10.393 \& 0.000 \& 0.25

\hline \& \& B \& \& 0.000 \& 0.000 \& 10.393 \& 0.000 \& 0.25

\hline \& \& C \& \& 0.000 \& 0.000 \& 12.848 \& 0.000 \& 0.65

\hline
\end{tabular}

tnxTower Report - version 8.0.5.0

160 Ft Monopole Tower Structural Analysis
CCI BU No 806953
Project Number 400087, Order 479803, Revision 0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& Face or Leg \& \qquad \& AR

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
\mathrm{C}_{A} A_{A} \\
\text { In Face } \\
\mathrm{ft}^{2} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
f t^{2} \\
\hline
\end{gathered}
$$
\] \& Weight

K

\hline \multirow[t]{3}{*}{L30} \& \multirow[t]{3}{*}{36.33-35.33} \& A \& \multirow[t]{3}{*}{1.286} \& 0.000 \& 0.000 \& 1.260 \& 0.000 \& 0.03

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.260 \& 0.000 \& 0.03

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.558 \& 0.000 \& 0.08

\hline \multirow[t]{3}{*}{L31} \& \multirow[t]{3}{*}{35.33-32.25} \& A \& \multirow[t]{3}{*}{1.278} \& 0.000 \& 0.000 \& 3.771 \& 0.000 \& 0.09

\hline \& \& B \& \& 0.000 \& 0.000 \& 3.771 \& 0.000 \& 0.09

\hline \& \& C \& \& 0.000 \& 0.000 \& 4.675 \& 0.000 \& 0.24

\hline \multirow[t]{3}{*}{L32} \& \multirow[t]{3}{*}{32.25-32.00} \& A \& \multirow[t]{3}{*}{1.272} \& 0.000 \& 0.000 \& 0.314 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.314 \& 0.000 \& 0.01

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.387 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L33} \& \multirow[t]{3}{*}{$32.00-27.00$} \& A \& \multirow[t]{3}{*}{1.261} \& 0.000 \& 0.000 \& 6.261 \& 0.000 \& 0.15

\hline \& \& B \& \& 0.000 \& 0.000 \& 6.261 \& 0.000 \& 0.15

\hline \& \& C \& \& 0.000 \& 0.000 \& 7.709 \& 0.000 \& 0.39

\hline \multirow[t]{3}{*}{L34} \& \multirow[t]{3}{*}{27.00-22.00} \& A \& \multirow[t]{3}{*}{1.238} \& 0.000 \& 0.000 \& 6.238 \& 0.000 \& 0.15

\hline \& \& B \& \& 0.000 \& 0.000 \& 6.238 \& 0.000 \& 0.15

\hline \& \& C \& \& 0.000 \& 0.000 \& 7.663 \& 0.000 \& 0.39

\hline \multirow[t]{3}{*}{L35} \& \multirow[t]{3}{*}{22.00-17.00} \& A \& \multirow[t]{3}{*}{1.210} \& 0.000 \& 0.000 \& 6.210 \& 0.000 \& 0.15

\hline \& \& B \& \& 0.000 \& 0.000 \& 6.210 \& 0.000 \& 0.15

\hline \& \& C \& \& 0.000 \& 0.000 \& 7.607 \& 0.000 \& 0.39

\hline \multirow[t]{3}{*}{L36} \& \multirow[t]{3}{*}{17.00-15.50} \& A \& \multirow[t]{3}{*}{1.188} \& 0.000 \& 0.000 \& 2.987 \& 0.000 \& 0.06

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.987 \& 0.000 \& 0.06

\hline \& \& C \& \& 0.000 \& 0.000 \& 3.399 \& 0.000 \& 0.14

\hline \multirow[t]{3}{*}{L37} \& \multirow[t]{3}{*}{15.50-15.25} \& A \& \multirow[t]{3}{*}{1.181} \& 0.000 \& 0.000 \& 0.535 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.535 \& 0.000 \& 0.01

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.603 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L38} \& \multirow[t]{3}{*}{15.25-14.75} \& A \& \multirow[t]{3}{*}{1.178} \& 0.000 \& 0.000 \& 1.069 \& 0.000 \& 0.02

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.069 \& 0.000 \& 0.02

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.206 \& 0.000 \& 0.05

\hline \multirow[t]{3}{*}{L39} \& \multirow[t]{3}{*}{14.75-14.50} \& A \& \multirow[t]{3}{*}{1.175} \& 0.000 \& 0.000 \& 0.534 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.534 \& 0.000 \& 0.01

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.602 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L40} \& \multirow[t]{3}{*}{14.50-9.50} \& A \& \multirow[t]{3}{*}{1.152} \& 0.000 \& 0.000 \& 7.254 \& 0.000 \& 0.15

\hline \& \& B \& \& 0.000 \& 0.000 \& 7.254 \& 0.000 \& 0.15

\hline \& \& C \& \& 0.000 \& 0.000 \& 8.460 \& 0.000 \& 0.39

\hline \multirow[t]{3}{*}{L41} \& \multirow[t]{3}{*}{$9.50-4.50$} \& A \& \multirow[t]{3}{*}{1.092} \& 0.000 \& 0.000 \& 4.425 \& 0.000 \& 0.08

\hline \& \& B \& \& 0.000 \& 0.000 \& 4.425 \& 0.000 \& 0.08

\hline \& \& C \& \& 0.000 \& 0.000 \& 4.425 \& 0.000 \& 0.31

\hline \multirow[t]{3}{*}{L42} \& \multirow[t]{3}{*}{4.50-0.00} \& A \& \multirow[t]{3}{*}{0.974} \& 0.000 \& 0.000 \& 2.369 \& 0.000 \& 0.04

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.369 \& 0.000 \& 0.04

\hline \& \& C \& \& 0.000 \& 0.000 \& 2.369 \& 0.000 \& 0.25

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{z}$	$C P_{X}$ lce	$C P_{z}$ lce
	ft	in	in	in	in
L1	$160.00-155.00$	0.1651	0.1584	0.9175	0.8799
L2	$155.00-150.00$	0.1651	0.1584	0.9265	0.8885
L3	$150.00-145.00$	0.1651	0.1584	0.9345	0.8961
L4	$145.00-140.00$	0.1651	0.1584	0.9414	0.9028
L5	$140.00-135.00$	0.1651	0.1584	0.9475	0.9086
L6	$135.00-130.00$	0.1651	0.1584	0.9528	0.9137
L7	$130.00-125.00$	0.1651	0.1584	0.9573	0.9180
L8	$125.00-120.00$	0.1651	0.1584	0.9612	0.9217
L9	$120.00-111.33$	0.1651	0.1584	0.9654	0.9258
L10	$111.33-111.00$	0.1653	0.1585	0.9690	0.9292
L11	$111.00-106.00$	0.1653	0.1585	0.9673	0.9276
L12	$106.00-101.00$	0.1653	0.1585	0.9691	0.9293
L13	$101.00-96.00$	0.1653	0.1585	0.9703	0.9304
L14	$96.00-91.00$	0.1653	0.1585	0.9709	0.9311
L15	$91.00-86.00$	0.1135	0.1088	0.7105	0.6813
L16	$86.00-85.75$	0.0872	0.0836	0.5641	0.5409
L17	$85.75-81.00$	0.0829	0.0795	0.5361	0.5141
L18	$81.00-80.75$	0.0617	0.0592	0.4443	0.4261
L19	$80.75-80.50$	0.0618	0.0593	0.4446	0.4264
L20	$80.50-73.25$	0.1115	0.1069	0.6878	0.6596

tnxTower Report - version 8.0.5.0

Section	Elevation	$C P_{x}$	$C P_{z}$	$C P_{x}$ lce in	$C P_{z}$ lce in
	ft	in	in	0.9309	
	L21	$73.25-72.25$	0.1654	0.1586	0.9707
L22	$72.25-67.25$	0.1653	0.1586	0.9655	0.9259
L23	$67.25-62.25$	0.1653	0.1586	0.9632	0.9237
L24	$62.25-57.25$	0.1653	0.1585	0.9602	0.9208
L25	$57.25-52.25$	0.1632	0.1565	0.9452	0.9064
L26	$52.25-49.83$	0.0911	0.0873	0.5494	0.5269
L27	$49.83-49.58$	0.0913	0.0876	0.5503	0.5277
L28	$49.58-44.58$	0.0919	0.0881	0.5517	0.5291
L29	$44.58-36.33$	0.0933	0.0895	0.5544	0.5317
L30	$36.33-35.33$	0.0936	0.0897	0.5561	0.5333
L31	$35.33-32.25$	0.0950	0.0911	0.5573	0.5344
L32	$32.25-32.00$	0.0943	0.0904	0.5515	0.5288
L33	$32.00-27.00$	0.0948	0.0909	0.5512	0.5286
L34	$27.00-22.00$	0.0958	0.0919	0.5497	0.5271
L35	$22.00-17.00$	0.0967	0.0928	0.5461	0.5237
L36	$17.00-15.50$	0.0792	0.0760	0.4390	0.4210
L37	$15.50-15.25$	0.0766	0.0734	0.4222	0.4049
L38	$15.25-14.75$	0.0766	0.0735	0.4219	0.4045
L39	$14.75-14.50$	0.0767	0.0736	0.4215	0.4042
L40	$14.50-9.50$	0.0842	0.0808	0.4511	0.4326
L41	$9.50-4.50$	0.0000	0.0000	0.0000	0.0000
L42	$4.50-0.00$	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L1	1	Safety Line 3/8	$\begin{array}{r} 155.00- \\ 160.00 \end{array}$	1.0000	1.0000
L2	1	Safety Line 3/8	$\begin{array}{r} 150.00- \\ 155.00 \end{array}$	1.0000	1.0000
L3	1	Safety Line 3/8	$\begin{aligned} & 145.00- \\ & 150.00 \end{aligned}$	1.0000	1.0000
L4	1	Safety Line 3/8	$\begin{array}{r} 140.00-0 \\ 145.00 \end{array}$	1.0000	1.0000
L5	1	Safety Line 3/8	$\begin{array}{r} 135.00- \\ 140.00 \end{array}$	1.0000	1.0000
L6	1	Safety Line 3/8	$\begin{array}{r} 130.00 \\ 135.00 \end{array}$	1.0000	1.0000
L7	1	Safety Line 3/8	$\begin{array}{r} 125.00- \\ 130.00 \end{array}$	1.0000	1.0000
L8	1	Safety Line 3/8	$\begin{array}{r} 120.00- \\ 125.00 \end{array}$	1.0000	1.0000
L9	1	Safety Line 3/8	$\begin{array}{r} 111.33- \\ 120.00 \end{array}$	1.0000	1.0000
L11	1	Safety Line 3/8	$\begin{array}{r} 106.00- \\ 111.00 \end{array}$	1.0000	1.0000
L12	1	Safety Line 3/8	$\begin{array}{r} 101.00- \\ 106.00 \end{array}$	1.0000	1.0000
L13	1	Safety Line 3/8	$\begin{aligned} & 96.00- \\ & 101.00 \end{aligned}$	1.0000	1.0000
L14	1	Safety Line 3/8	$\begin{array}{r} 91.00- \\ 96.00 \end{array}$	1.0000	1.0000
L15	1	Safety Line 3/8	$\begin{array}{r} 86.00- \\ 91.00 \end{array}$	1.0000	1.0000
L15	40	CCI-AFP-060100	$\begin{array}{r} 86.00 \\ 88.50 \end{array}$	1.0000	1.0000
L15	41	CCI-AFP-060100	$\begin{array}{r} 80.00 \\ 86.00 \\ 88.50 \end{array}$	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L15	42	CCI-AFP-060100	$\begin{array}{r} 86.00- \\ 88.50 \end{array}$	1.0000	1.0000
L16	1	Safety Line 3/8	$\begin{array}{r} 85.75- \\ 86.00 \end{array}$	1.0000	1.0000
L16	40	CCI-AFP-060100	$\begin{array}{r} 85.75- \\ 86.00 \end{array}$	1.0000	1.0000
L16	41	CCI-AFP-060100	$\begin{array}{r} 85.75- \\ 86.00 \end{array}$	1.0000	1.0000
L16	42	CCI-AFP-060100	$85.75-$ 86.00	1.0000	1.0000
L17	1	Safety Line 3/8	$\begin{array}{r} 81.00- \\ 85.75 \end{array}$	1.0000	1.0000
L17	31	MK SR 2	$81.00-$ 82.00	1.0000	1.0000
L17	32	MK SR 2	$\begin{array}{r} 81.00- \\ 82.00 \end{array}$	1.0000	1.0000
L17	33	MK SR 2	$\begin{array}{r} 81.00- \\ 82.00 \end{array}$	1.0000	1.0000
L17	40	CCI-AFP-060100	$\begin{array}{r} 81.00- \\ 85.75 \end{array}$	1.0000	1.0000
L17	41	CCI-AFP-060100	$\begin{array}{r} 81.00- \\ 85.75 \end{array}$	1.0000	1.0000
L17	42	CCI-AFP-060100	$\begin{array}{r} 81.00- \\ 85.75 \end{array}$	1.0000	1.0000
L18	1	Safety Line 3/8	$\begin{array}{r} 80.75- \\ 81.00 \end{array}$	1.0000	1.0000
L18	31	MK SR 2	$80.75-$ 81.00	1.0000	1.0000
L18	32	MK SR 2	$80.75-$ 81.00	1.0000	1.0000
L18	33	MK SR 2	$80.75-$ 81.00	1.0000	1.0000
L18	40	CCI-AFP-060100	$80.75-$ 81.00	1.0000	1.0000
L18	41	CCI-AFP-060100	$80.75-$ 81.00	1.0000	1.0000
L18	42	CCI-AFP-060100	$\begin{array}{r} 80.75- \\ 81.00 \end{array}$	1.0000	1.0000
L19	1	Safety Line 3/8	$\begin{array}{r} 80.50- \\ 80.75 \end{array}$	1.0000	1.0000
L19	31	MK SR 2	$\begin{array}{r} 80.50- \\ 80.75 \end{array}$	1.0000	1.0000
L19	32	MK SR 2	$\begin{array}{r} 80.50- \\ 80.75 \end{array}$	1.0000	1.0000
L19	33	MK SR 2	$\begin{array}{r} 80.50- \\ 80.75 \end{array}$	1.0000	1.0000
L19	40	CCI-AFP-060100	$\begin{array}{r} 80.50- \\ 80.75 \end{array}$	1.0000	1.0000
L19	41	CCI-AFP-060100	$\begin{array}{r} 80.50- \\ 80.75 \end{array}$	1.0000	1.0000
L19	42	CCI-AFP-060100	$\begin{array}{r} 80.50- \\ 80.75 \end{array}$	1.0000	1.0000
L20	1	Safety Line 3/8	$73.25-$ 80.50	1.0000	1.0000
L20	31	MK SR 2	$77.00-$ 80.50	1.0000	1.0000
L20	32	MK SR 2	$\begin{array}{r} 77.00- \\ 80.50 \end{array}$	1.0000	1.0000
L20	33	MK SR 2	77.00 80.50	1.0000	1.0000
L20	40	CCI-AFP-060100	$\begin{array}{r} 78.50- \\ 80.50 \end{array}$	1.0000	1.0000
L20	41	CCI-AFP-060100	$\begin{array}{r} 78.50- \\ 80.50 \end{array}$	1.0000	1.0000
L20	42	CCI-AFP-060100	$\begin{array}{r} 78.50- \\ 80.50 \end{array}$	1.0000	1.0000
L22	1	Safety Line 3/8	$\begin{array}{r} 67.25- \\ 72.25 \end{array}$	1.0000	1.0000
L23	1	Safety Line 3/8	$62.25-$	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
			67.25		
L24	1	Safety Line 3/8	$57.25-$ 62.25	1.0000	1.0000
L25	1	Safety Line 3/8	$\begin{array}{r} 52.25- \\ 57.25 \end{array}$	1.0000	1.0000
L25	37	CCI-AFP-060100	$\begin{array}{r} 52.25- \\ 52.33 \end{array}$	1.0000	1.0000
L25	38	CCI-AFP-060100	$\begin{array}{r} 52.25- \\ 52.33 \end{array}$	1.0000	1.0000
L25	39	CCI-AFP-060100	$\begin{array}{r} 52.25- \\ 52.33 \end{array}$	1.0000	1.0000
L26	1	Safety Line 3/8	$\begin{array}{r} 49.83- \\ 52.25 \end{array}$	1.0000	1.0000
L26	37	CCI-AFP-060100	$\begin{array}{r} 49.83- \\ 52.25 \end{array}$	1.0000	1.0000
L26	38	CCI-AFP-060100	$\begin{array}{r} 49.83- \\ 52.25 \end{array}$	1.0000	1.0000
L26	39	CCI-AFP-060100	$\begin{array}{r} 49.83- \\ 52.25 \end{array}$	1.0000	1.0000
L27	1	Safety Line 3/8	$\begin{array}{r} 49.58- \\ 49.83 \end{array}$	1.0000	1.0000
L27	37	CCI-AFP-060100	$\begin{array}{r} 49.58- \\ 49.83 \end{array}$	1.0000	1.0000
L27	38	CCI-AFP-060100	$\begin{array}{r} 49.58- \\ 49.83 \end{array}$	1.0000	1.0000
L27	39	CCI-AFP-060100	$\begin{array}{r} 49.58- \\ 49.83 \end{array}$	1.0000	1.0000
L28	1	Safety Line 3/8	$\begin{array}{r} 44.58- \\ 49.58 \end{array}$	1.0000	1.0000
L28	37	CCI-AFP-060100	$\begin{array}{r} 44.58- \\ 49.58 \end{array}$	1.0000	1.0000
L28	38	CCI-AFP-060100	$\begin{array}{r} 44.58- \\ 49.58 \end{array}$	1.0000	1.0000
L28	39	CCI-AFP-060100	$\begin{array}{r} 44.58- \\ 49.58 \end{array}$	1.0000	1.0000
L29	1	Safety Line 3/8	$\begin{array}{r} 36.33- \\ 44.58 \end{array}$	1.0000	1.0000
L29	37	CCI-AFP-060100	$\begin{array}{r} 36.33- \\ 44.58 \end{array}$	1.0000	1.0000
L29	38	CCI-AFP-060100	$\begin{array}{r} 36.33- \\ 44.58 \end{array}$	1.0000	1.0000
L29	39	CCI-AFP-060100	$\begin{array}{r} 36.33 \\ 44.58 \end{array}$	1.0000	1.0000
L31	1	Safety Line 3/8	$\begin{array}{r} 32.25- \\ 35.33 \end{array}$	1.0000	1.0000
L31	37	CCI-AFP-060100	$\begin{array}{r} 32.33- \\ 35.33 \end{array}$	1.0000	1.0000
L31	38	CCI-AFP-060100	$\begin{array}{r} 32.33- \\ 35.33 \end{array}$	1.0000	1.0000
L31	39	CCI-AFP-060100	$\begin{array}{r} 32.33- \\ 35.33 \end{array}$	1.0000	1.0000
L32	1	Safety Line 3/8	$\begin{array}{r} 32.00- \\ 32.25 \end{array}$	1.0000	1.0000
L32	34	CCI-AFP-060100	$\begin{array}{r} 32.00- \\ 32.25 \end{array}$	1.0000	1.0000
L32	35	CCI-AFP-060100	$\begin{array}{r} 32.00- \\ 32.25 \end{array}$	1.0000	1.0000
L32	36	CCI-AFP-060100	$\begin{array}{r} 32.00- \\ 32.25 \end{array}$	1.0000	1.0000
L33	1	Safety Line 3/8	$27.00-$ 32.00	1.0000	1.0000
L33	34	CCI-AFP-060100	$\begin{array}{r} 27.00- \\ 32.00 \end{array}$	1.0000	1.0000
L33	35	CCI-AFP-060100	$\begin{array}{r} 27.00- \\ 32.00 \end{array}$	1.0000	1.0000
L33	36	CCI-AFP-060100	$\begin{array}{r} 27.00-0 \\ 32.00 \end{array}$	1.0000	1.0000
L34	1	Safety Line 3/8	$\begin{array}{r} 22.00- \\ 27.00 \end{array}$	1.0000	1.0000

tnxTower Report - version 8.0.5.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L34	34	CCI-AFP-060100	$\begin{array}{r} 22.00 \\ 27.00 \end{array}$	1.0000	1.0000
L34	35	CCI-AFP-060100	$\begin{array}{r} 22.00- \\ 27.00 \end{array}$	1.0000	1.0000
L34	36	CCI-AFP-060100	$\begin{array}{r} 22.00- \\ 27.00 \end{array}$	1.0000	1.0000
L35	1	Safety Line 3/8	$\begin{array}{r} 17.00- \\ 22.00 \end{array}$	1.0000	1.0000
L35	34	CCI-AFP-060100	$\begin{array}{r} 17.00- \\ 22.00 \end{array}$	1.0000	1.0000
L35	35	CCI-AFP-060100	$\begin{array}{r} 17.00- \\ 22.00 \end{array}$	1.0000	1.0000
L35	36	CCI-AFP-060100	$\begin{array}{r} 17.00- \\ 22.00 \end{array}$	1.0000	1.0000
L36	1	Safety Line 3/8	$\begin{array}{r} 15.50- \\ 17.00 \end{array}$	1.0000	1.0000
L36	28	MK SR 1	$\begin{array}{r} 15.50- \\ 16.75 \end{array}$	1.0000	1.0000
L36	29	MK SR 1	$\begin{array}{r} 15.50- \\ 16.75 \end{array}$	1.0000	1.0000
L36	30	MK SR 1	$\begin{array}{r} 15.50- \\ 16.75 \end{array}$	1.0000	1.0000
L36	34	CCI-AFP-060100	$\begin{array}{r} 15.50- \\ 17.00 \end{array}$	1.0000	1.0000
L36	35	CCI-AFP-060100	$\begin{array}{r} 15.50- \\ 17.00 \end{array}$	1.0000	1.0000
L36	36	CCI-AFP-060100	$\begin{array}{r} 15.50- \\ 17.00 \end{array}$	1.0000	1.0000
L37	1	Safety Line 3/8	$\begin{array}{r} 15.25- \\ 15.50 \end{array}$	1.0000	1.0000
L37	28	MK SR 1	$\begin{array}{r} 15.25- \\ 15.50 \end{array}$	1.0000	1.0000
L37	29	MK SR 1	$\begin{array}{r} 15.25- \\ 15.50 \end{array}$	1.0000	1.0000
L37	30	MK SR 1	$15.25-$ 15.50	1.0000	1.0000
L37	34	CCI-AFP-060100	$\begin{array}{r} 15.25- \\ 15.50 \end{array}$	1.0000	1.0000
L37	35	CCI-AFP-060100	$\begin{array}{r} 15.25- \\ 15.50 \end{array}$	1.0000	1.0000
L37	36	CCI-AFP-060100	$\begin{array}{r} 15.25- \\ 15.50 \end{array}$	1.0000	1.0000
L38	1	Safety Line 3/8	$\begin{array}{r} 14.75- \\ 15.25 \end{array}$	1.0000	1.0000
L38	28	MK SR 1	$\begin{array}{r} 14.75- \\ 15.25 \end{array}$	1.0000	1.0000
L38	29	MK SR 1	$\begin{array}{r} 14.75 \\ 15.25 \end{array}$	1.0000	1.0000
L38	30	MK SR 1	$\begin{array}{r} 14.75- \\ 15.25 \end{array}$	1.0000	1.0000
L38	34	CCI-AFP-060100	$\begin{array}{r} 14.75- \\ 15.25 \end{array}$	1.0000	1.0000
L38	35	CCI-AFP-060100	$\begin{array}{r} 14.75- \\ 15.25 \end{array}$	1.0000	1.0000
L38	36	CCI-AFP-060100	$\begin{array}{r} 14.75- \\ 15.25 \end{array}$	1.0000	1.0000
L39	1	Safety Line 3/8	$\begin{array}{r} 14.50- \\ 14.75 \end{array}$	1.0000	1.0000
L39	28	MK SR 1	$\begin{array}{r} 14.50- \\ 14.75 \end{array}$	1.0000	1.0000
L39	29	MK SR 1	$\begin{array}{r} 14.50- \\ 14.75 \end{array}$	1.0000	1.0000
L39	30	MK SR 1	$\begin{array}{r} 14.50- \\ 14.75 \end{array}$	1.0000	1.0000
L39	34	CCI-AFP-060100	$\begin{array}{r} 14.50- \\ 14.75 \end{array}$	1.0000	1.0000
L39	35	CCI-AFP-060100	$\begin{array}{r} 14.50- \\ 14.75 \end{array}$	1.0000	1.0000
L39	36	CCI-AFP-060100	14.50-1	1.0000	1.0000

160 Ft Monopole Tower Structural Analysis

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No lce } \end{gathered}$	$\begin{aligned} & \hline K_{a} \\ & I c e \end{aligned}$
L40	1	Safety Line 3/8	$\begin{array}{r} 14.75 \\ 10.00- \\ 14.50 \end{array}$	1.0000	1.0000
L40	28	MK SR 1	9.50-14.50	1.0000	1.0000
L40	29	MK SR 1	9.50-14.50	1.0000	1.0000
L40	30	MK SR 1	9.50-14.50	1.0000	1.0000
L40	34	CCI-AFP-060100	$\begin{array}{r} 12.25 \\ 14.50 \end{array}$	1.0000	1.0000
L40	35	CCI-AFP-060100	$\begin{array}{r} 12.25 \\ 14.50 \end{array}$	1.0000	1.0000
L40	36	CCI-AFP-060100	$\begin{array}{r} 12.25- \\ 14.50 \end{array}$	1.0000	1.0000
L41	28	MK SR 1	4.50-9.50	1.0000	1.0000
L41	29	MK SR 1	4.50-9.50	1.0000	1.0000
L41	30	MK SR 1	4.50-9.50	1.0000	1.0000
L42	28	MK SR 1	1.75-4.50	1.0000	1.0000
$\llcorner 42$	29	MK SR 1	1.75-4.50	1.0000	1.0000
L42	30	MK SR 1	1.75-4.50	1.0000	1.0000

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& \begin{tabular}{l}
$C_{A} A_{A}$ Front

$f t^{2}$

 \&

$C_{A} A_{A}$ Side

$f t^{2}$
\end{tabular} \& Weight

K

\hline \multirow[t]{4}{*}{Platform Mount [LP 713-1]} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{157.00} \& No Ice \& 31.27 \& 31.27 \& 1.51

\hline \& \& \& \& \& \& 1/2" \& 39.68 \& 39.68 \& 1.93

\hline \& \& \& \& \& \& Ice \& 48.09 \& 48.09 \& 2.35

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 64.91 \& 64.91 \& 3.19

\hline \multirow[t]{5}{*}{4'x2" Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{157.00} \& No lce \& 0.87 \& 0.87 \& 0.01

\hline \& \& \& 6.00 \& \& \& 1/2" \& 1.11 \& 1.11 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 1.36 \& 1.36 \& 0.03

\hline \& \& \& \& \& \& 1" Ice \& 1.90 \& 1.90 \& 0.06

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{4'x2" Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{157.00} \& No Ice \& 0.87 \& 0.87 \& 0.01

\hline \& \& \& -2.00 \& \& \& 1/2" \& 1.11 \& 1.11 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 1.36 \& 1.36 \& 0.03

\hline \& \& \& \& \& \& 1" Ice \& 1.90 \& 1.90 \& 0.06

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{4'x2" Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{157.00} \& No Ice \& 0.87 \& 0.87 \& 0.01

\hline \& \& \& -2.00 \& \& \& 1/2" \& 1.11 \& 1.11 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 1.36 \& 1.36 \& 0.03

\hline \& \& \& \& \& \& 1" Ice \& 1.90 \& 1.90 \& 0.06

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{4'x3"x3"x3/16" Horizontal Angle} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{157.00} \& No Ice \& 1.20 \& 0.07 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.49 \& 0.11 \& 0.03

\hline \& \& \& \multirow[t]{3}{*}{2.00} \& \& \& Ice \& 1.78 \& 0.16 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 2.39 \& 0.27 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{4'x3"x3"x3/16" Horizontal Angle} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Face} \& 3.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{157.00} \& No Ice \& 1.20 \& 0.07 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.49 \& 0.11 \& 0.03

\hline \& \& \& \multirow[t]{3}{*}{2.00} \& \& \& Ice \& 1.78 \& 0.16 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 2.39 \& 0.27 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{4}{*}{4'x3"x3"x3/16" Horizontal Angle} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Face} \& 3.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{157.00} \& No lce \& 1.20 \& 0.07 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.49 \& 0.11 \& 0.03

\hline \& \& \& 2.00 \& \& \& Ice \& 1.78 \& 0.16 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 2.39 \& 0.27 \& 0.09

\hline
\end{tabular}

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement ft		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
APXVTM14-ALU-I20 w/ Mount Pipe	A	From Leg	$\begin{gathered} 4.00 \\ -6.00 \\ 1.00 \end{gathered}$	0.0000	157.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 4.09 \\ & 4.48 \\ & 4.88 \\ & 5.71 \end{aligned}$	$\begin{aligned} & 2.86 \\ & 3.23 \\ & 3.61 \\ & 4.40 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.13 \\ & 0.19 \\ & 0.33 \end{aligned}$
APXVTM14-ALU-I20 w/ Mount Pipe	B	From Leg	$\begin{aligned} & 4.00 \\ & 6.00 \\ & 1.00 \end{aligned}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 4.09 \\ & 4.48 \\ & 4.88 \\ & 5.71 \end{aligned}$	$\begin{aligned} & 2.86 \\ & 3.23 \\ & 3.61 \\ & 4.40 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.13 \\ & 0.19 \\ & 0.33 \end{aligned}$
APXVTM14-ALU-I20 w/ Mount Pipe	C	From Leg	$\begin{gathered} 4.00 \\ -6.00 \\ 1.00 \end{gathered}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 4.09 \\ & 4.48 \\ & 4.88 \\ & 5.71 \end{aligned}$	$\begin{aligned} & 2.86 \\ & 3.23 \\ & 3.61 \\ & 4.40 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.13 \\ & 0.19 \\ & 0.33 \end{aligned}$
APXVSPP18-C-A20 w/ Mount Pipe	A	From Leg	$\begin{gathered} 4.00 \\ -2.00 \\ 1.00 \end{gathered}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 4.60 \\ & 5.05 \\ & 5.50 \\ & 6.44 \end{aligned}$	$\begin{aligned} & 4.01 \\ & 4.45 \\ & 4.89 \\ & 5.82 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.16 \\ & 0.23 \\ & 0.42 \end{aligned}$
APXVSPP18-C-A20 w/ Mount Pipe	B	From Leg	$\begin{aligned} & 4.00 \\ & 2.00 \\ & 1.00 \end{aligned}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 4.60 \\ & 5.05 \\ & 5.50 \\ & 6.44 \end{aligned}$	$\begin{aligned} & 4.01 \\ & 4.45 \\ & 4.89 \\ & 5.82 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.16 \\ & 0.23 \\ & 0.42 \end{aligned}$
APXVSPP18-C-A20 w/ Mount Pipe	C	From Leg	$\begin{aligned} & 4.00 \\ & 2.00 \\ & 1.00 \end{aligned}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 4.60 \\ & 5.05 \\ & 5.50 \\ & 6.44 \end{aligned}$	$\begin{aligned} & 4.01 \\ & 4.45 \\ & 4.89 \\ & 5.82 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.16 \\ & 0.23 \\ & 0.42 \end{aligned}$
LLPX310R-V1 w/ Mount Pipe	A	From Leg	$\begin{aligned} & 4.00 \\ & 2.00 \\ & 1.00 \end{aligned}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 4.54 \\ & 4.89 \\ & 5.25 \\ & 6.01 \end{aligned}$	$\begin{aligned} & 2.98 \\ & 3.53 \\ & 4.09 \\ & 5.24 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.08 \\ & 0.13 \\ & 0.23 \end{aligned}$
LLPX310R-V1 w/ Mount Pipe	B	From Leg	$\begin{gathered} 4.00 \\ -6.00 \\ 1.00 \end{gathered}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 4.54 \\ & 4.89 \\ & 5.25 \\ & 6.01 \end{aligned}$	$\begin{aligned} & 2.98 \\ & 3.53 \\ & 4.09 \\ & 5.24 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.08 \\ & 0.13 \\ & 0.23 \end{aligned}$
LLPX310R-V1 w/ Mount Pipe	C	From Leg	$\begin{aligned} & 4.00 \\ & 6.00 \\ & 1.00 \end{aligned}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 4.54 \\ & 4.89 \\ & 5.25 \\ & 6.01 \end{aligned}$	$\begin{aligned} & 2.98 \\ & 3.53 \\ & 4.09 \\ & 5.24 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.08 \\ & 0.13 \\ & 0.23 \end{aligned}$
(3) ACU-A20-N	A	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 0.07 \\ & 0.10 \\ & 0.15 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.16 \\ & 0.21 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.01 \end{aligned}$
(3) ACU-A20-N	B	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 0.07 \\ & 0.10 \\ & 0.15 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.16 \\ & 0.21 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.01 \end{aligned}$
(3) ACU-A20-N	C	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	157.00	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 0.07 \\ & 0.10 \\ & 0.15 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.16 \\ & 0.21 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.01 \end{aligned}$
TD-RRH8x20-25	A	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 1.00 \end{aligned}$	0.0000	157.00	$\begin{gathered} \text { No Ice } \\ \text { 1/2" } \\ \text { Ice } \\ 1 " \text { Ice } \end{gathered}$	$\begin{aligned} & 4.05 \\ & 4.30 \\ & 4.56 \\ & 5.10 \end{aligned}$	$\begin{aligned} & 1.53 \\ & 1.71 \\ & 1.90 \\ & 2.30 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.10 \\ & 0.13 \\ & 0.20 \end{aligned}$

160 Ft Monopole Tower Structural Analysis

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline \multirow{5}{*}{(2) LGP21401} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& 2.00 \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& Ice \& 6.61 \& 5.71 \& 0.16

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 7.49 \& 7.16 \& 0.29

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.10 \& 0.35 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.24 \& 0.44 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 1.38 \& 0.54 \& 0.03

\hline \multirow{4}{*}{(2) LGP21401} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{149.00} \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 1.69 \& 0.77 \& 0.05

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.10 \& 0.35 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.24 \& 0.44 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 1.38 \& 0.54 \& 0.03

\hline \multirow{5}{*}{(2) LGP21401} \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 1.69 \& 0.77 \& 0.05

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.10 \& 0.35 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.24 \& 0.44 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 1.38 \& 0.54 \& 0.03

\hline \multirow{5}{*}{RRUS 4478 B5} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 1.69 \& 0.77 \& 0.05

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.84 \& 1.06 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.01 \& 1.20 \& 0.08

\hline \& \& \& 2.00 \& \& \& Ice \& 2.19 \& 1.34 \& 0.09

\hline \multirow{5}{*}{RRUS 4478 B5} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 2.57 \& 1.66 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.84 \& 1.06 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.01 \& 1.20 \& 0.08

\hline \& \& \& 2.00 \& \& \& Ice \& 2.19 \& 1.34 \& 0.09

\hline \multirow{5}{*}{RRUS 4478 B5} \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 2.57 \& 1.66 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.84 \& 1.06 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.01 \& 1.20 \& 0.08

\hline \& \& \& 2.00 \& \& \& Ice \& 2.19 \& 1.34 \& 0.09

\hline \multirow{5}{*}{DC6-48-60-18-8F} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 2.57 \& 1.66 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 1.00 \& \& \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.46 \& 1.46 \& 0.04

\hline \& \& \& 0.00 \& \& \& Ice \& 1.64 \& 1.64 \& 0.06

\hline \multirow{5}{*}{DC6-48-60-18-8F} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 2.04 \& 2.04 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 1.00 \& \& \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.46 \& 1.46 \& 0.04

\hline \& \& \& 0.00 \& \& \& Ice \& 1.64 \& 1.64 \& 0.06

\hline \multirow{5}{*}{RRUS12/RRUS A2} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 2.04 \& 2.04 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 3.14 \& 1.84 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.36 \& 2.01 \& 0.10

\hline \& \& \& 2.00 \& \& \& Ice \& 3.59 \& 2.20 \& 0.13

\hline \multirow{7}{*}{RRUS12/RRUS A2} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 4.07 \& 2.59 \& 0.20

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 3.14 \& 1.84 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.36 \& 2.01 \& 0.10

\hline \& \& \& 2.00 \& \& \& Ice \& 3.59 \& 2.20 \& 0.13

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 4.07 \& 2.59 \& 0.20

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RRUS12/RRUS A2} \& \& \& 4.00 \& \& \& No Ice \& 3.14 \& 1.84 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.36 \& 2.01 \& 0.10

\hline \& \& \& 2.00 \& \& \& Ice \& 3.59 \& 2.20 \& 0.13

\hline \& \multirow{6}{*}{A} \& \multirow{6}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{149.00} \& 1" Ice \& 4.07 \& 2.59 \& 0.20

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RRUS 11} \& \& \& 4.00 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.99 \& 1.33 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 3.21 \& 1.49 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& 3.66 \& 1.83 \& 0.15

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{2}{*}{RRUS 11} \& \& \& 4.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{149.00} \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.99 \& 1.33 \& 0.07

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& Offset Type \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& \multicolumn{2}{|l|}{Placement} \& \(C_{A} A_{A}\) Front \& \begin{tabular}{l}
\[
C_{A} A_{A}
\] \\
Side
\end{tabular} \& Weight

K

\hline \multirow{7}{*}{B66A RRH4X45} \& \multirow{7}{*}{C} \& \multirow{7}{*}{From Leg} \& 0.00 \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{139.00} \& 1/2" \& 2.79 \& 1.81 \& 0.08

\hline \& \& \& \multirow[t]{2}{*}{3.00} \& \& \& Ice \& 3.01 \& 2.00 \& 0.10

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 3.48 \& 2.40 \& 0.16

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.58 \& 1.63 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.79 \& 1.81 \& 0.08

\hline \& \& \& \multirow[t]{3}{*}{3.00} \& \& \& Ice \& 3.01 \& 2.00 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& 3.48 \& 2.40 \& 0.16

\hline \multirow{5}{*}{B13 RRH 4X30} \& \multirow{6}{*}{A} \& \& \& \& \& 2 ' Ice \& \& \&

\hline \& \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{139.00} \& No Ice \& 2.06 \& 1.32 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.24 \& 1.48 \& 0.07

\hline \& \& \& \multirow[t]{3}{*}{3.00} \& \& \& Ice \& 2.43 \& 1.64 \& 0.09

\hline \& \& \& \& \& \& 1 " Ice \& 2.84 \& 2.00 \& 0.14

\hline \multirow{6}{*}{B13 RRH 4X30} \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{139.00} \& No Ice \& 2.06 \& 1.32 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.24 \& 1.48 \& 0.07

\hline \& \& \& \multirow[t]{3}{*}{3.00} \& \& \& Ice \& 2.43 \& 1.64 \& 0.09

\hline \& \& \& \& \& \& 1 " Ice \& 2.84 \& 2.00 \& 0.14

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{B13 RRH 4X30} \& \multirow[t]{6}{*}{C} \& \multirow[t]{6}{*}{From Leg} \& 4.00 \& \multirow[t]{6}{*}{0.0000} \& \multirow[t]{6}{*}{139.00} \& No Ice \& 2.06 \& 1.32 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.24 \& 1.48 \& 0.07

\hline \& \& \& \multirow[t]{4}{*}{3.00} \& \& \& Ice \& 2.43 \& 1.64 \& 0.09

\hline \& \& \& \& \& \& 1 " Ice \& 2.84 \& 2.00 \& 0.14

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{Platform Mount [LP 712-1]} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{118.00} \& No Ice \& 24.53 \& 24.53 \& 1.34

\hline \& \& \& \& \& \& 1/2" \& 29.94 \& 29.94 \& 1.65

\hline \& \& \& \& \& \& Ice \& 35.35 \& 35.35 \& 1.96

\hline \& \& \& \& \& \& 1" Ice \& 46.17 \& 46.17 \& 2.58

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{HRK 12 [NA 507-1]} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 0.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{118.00} \& No Ice \& 4.80 \& 4.80 \& 0.26

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.70 \& 6.70 \& 0.31

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 8.60 \& 8.60 \& 0.37

\hline \& \& \& \& \& \& 1" Ice \& 12.40 \& 12.40 \& 0.47

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{6'x2" Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{118.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 1 " Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{6'x2" Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{118.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 1 " Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{6'x2" Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{118.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 0.00 \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 1 " Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{APXVAARR24_43-U-NA20 w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{118.00} \& No Ice \& 14.69 \& 6.87 \& 0.19

\hline \& \& \& -6.00 \& \& \& 1/2" \& 15.46 \& 7.55 \& 0.31

\hline \& \& \& 0.00 \& \& \& Ice \& 16.23 \& 8.25 \& 0.46

\hline \& \& \& \& \& \& 1 " Ice \& 17.82 \& 9.67 \& 0.79

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{APXVAARR24_43-U-NA20 w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{118.00} \& No Ice \& 14.69 \& 6.87 \& 0.19

\hline \& \& \& -6.00 \& \& \& 1/2" \& 15.46 \& 7.55 \& 0.31

\hline \& \& \& 0.00 \& \& \& Ice \& 16.23 \& 8.25 \& 0.46

\hline \& \& \& \& \& \& 1" Ice \& 17.82 \& 9.67 \& 0.79

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{APXVAARR24_43-U-NA20 w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{118.00} \& No Ice \& 14.69 \& 6.87 \& 0.19

\hline \& \& \& -6.00 \& \& \& 1/2" \& 15.46 \& 7.55 \& 0.31

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 16.23 \& 8.25 \& 0.46

\hline \& \& \& \& \& \& 1 " Ice \& 17.82 \& 9.67 \& 0.79

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline AIR 32 B2A/B66AA w/ Mount Pipe \& A \& From Leg \& $$
\begin{gathered}
4.00 \\
-2.00 \\
0.00
\end{gathered}
$$ \& 0.0000 \& 118.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice } \\
2 \text { 2" Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 6.75 \\
& 7.20 \\
& 7.65 \\
& 8.57
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.07 \\
& 6.87 \\
& 7.58 \\
& 9.06
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.15 \\
& 0.21 \\
& 0.28 \\
& 0.44
\end{aligned}
$$
\]

\hline AIR 32 B2A/B66AA w/ Mount Pipe \& B \& From Leg \& \[
$$
\begin{gathered}
4.00 \\
-2.00 \\
0.00
\end{gathered}
$$

\] \& 0.0000 \& 118.00 \& | No Ice |
| :--- |
| 1/2" |
| Ice |
| 1" Ice |
| 2" Ice | \& \[

$$
\begin{aligned}
& 6.75 \\
& 7.20 \\
& 7.65 \\
& 8.57
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.07 \\
& 6.87 \\
& 7.58 \\
& 9.06
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.15 \\
& 0.21 \\
& 0.28 \\
& 0.44
\end{aligned}
$$
\]

\hline AIR 32 B2A/B66AA w/ Mount Pipe \& C \& From Leg \& $$
\begin{gathered}
4.00 \\
-2.00 \\
0.00
\end{gathered}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 6.75 \\
& 7.20 \\
& 7.65 \\
& 8.57
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.07 \\
& 6.87 \\
& 7.58 \\
& 9.06
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.15 \\
& 0.21 \\
& 0.28 \\
& 0.44
\end{aligned}
$$
\]

\hline ERICSSON AIR 21 B2A B4P w/ Mount Pipe \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 6.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 6.33 \\
& 6.78 \\
& 7.21 \\
& 8.12
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.64 \\
& 6.43 \\
& 7.13 \\
& 8.59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.11 \\
& 0.17 \\
& 0.23 \\
& 0.38
\end{aligned}
$$
\]

\hline ERICSSON AIR 21 B2A B4P w/ Mount Pipe \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 6.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 6.33 \\
& 6.78 \\
& 7.21 \\
& 8.12
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.64 \\
& 6.43 \\
& 7.13 \\
& 8.59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.11 \\
& 0.17 \\
& 0.23 \\
& 0.38
\end{aligned}
$$
\]

\hline ERICSSON AIR 21 B2A B4P w/ Mount Pipe \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 6.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 6.33 \\
& 6.78 \\
& 7.21 \\
& 8.12
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.64 \\
& 6.43 \\
& 7.13 \\
& 8.59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.11 \\
& 0.17 \\
& 0.23 \\
& 0.38
\end{aligned}
$$
\]

\hline RADIO 4449 B12/B71 \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 1.65 \\
& 1.81 \\
& 1.98 \\
& 2.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.30 \\
& 1.44 \\
& 1.60 \\
& 1.92
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.09 \\
& 0.11 \\
& 0.16
\end{aligned}
$$
\]

\hline RADIO 4449 B12/B71 \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 1.65 \\
& 1.81 \\
& 1.98 \\
& 2.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.30 \\
& 1.44 \\
& 1.60 \\
& 1.92
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.09 \\
& 0.11 \\
& 0.16
\end{aligned}
$$
\]

\hline RADIO 4449 B12/B71 \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 1.65 \\
& 1.81 \\
& 1.98 \\
& 2.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.30 \\
& 1.44 \\
& 1.60 \\
& 1.92
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.09 \\
& 0.11 \\
& 0.16
\end{aligned}
$$
\]

\hline KRY 112 144/1 \& A \& From Leg \& $$
\begin{array}{r}
4.00 \\
0.00 \\
-2.00
\end{array}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 0.35 \\
& 0.43 \\
& 0.51 \\
& 0.70
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.17 \\
& 0.23 \\
& 0.30 \\
& 0.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.01 \\
& 0.01 \\
& 0.02 \\
& 0.03
\end{aligned}
$$
\]

\hline KRY 112 144/1 \& B \& From Leg \& $$
\begin{array}{r}
4.00 \\
0.00 \\
-2.00
\end{array}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 0.35 \\
& 0.43 \\
& 0.51 \\
& 0.70
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.17 \\
& 0.23 \\
& 0.30 \\
& 0.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.01 \\
& 0.01 \\
& 0.02 \\
& 0.03
\end{aligned}
$$
\]

\hline KRY 112 144/1 \& C \& From Leg \& $$
\begin{gathered}
4.00 \\
0.00 \\
-2.00
\end{gathered}
$$ \& 0.0000 \& 118.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 0.35 \\
& 0.43 \\
& 0.51 \\
& 0.70
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.17 \\
& 0.23 \\
& 0.30 \\
& 0.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.01 \\
& 0.01 \\
& 0.02 \\
& 0.03
\end{aligned}
$$
\]

\hline 3'x2" Horizontal Pipe \& C \& From Leg \& $$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 84.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.58 \\
& 0.77 \\
& 0.97 \\
& 1.42
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.01 \\
& 0.04 \\
& 0.07 \\
& 0.13
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.01 \\
& 0.02 \\
& 0.02 \\
& 0.05
\end{aligned}
$$
\]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
ft \\
ft
\end{tabular} \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

\hline \multirow{6}{*}{GPS_A} \& \multirow{6}{*}{C} \& \multirow{6}{*}{From Leg} \& \& \multirow{6}{*}{0.0000} \& \multirow{6}{*}{84.00} \& 2" Ice \& \& \&

\hline \& \& \& 3.00 \& \& \& No Ice \& 0.26 \& 0.26 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.32 \& 0.32 \& 0.00

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 0.39 \& 0.39 \& 0.01

\hline \& \& \& \& \& \& 1" Ice \& 0.56 \& 0.56 \& 0.02

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{5}{*}{Pipe Mount [PM 601-1]} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 1.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{40.00} \& No Ice \& 3.00 \& 0.90 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.74 \& 1.12 \& 0.08

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 4.48 \& 1.34 \& 0.09

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.96 \& 1.78 \& 0.12

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{GPS-QBW-20N} \& \multirow[t]{6}{*}{A} \& \multirow[t]{6}{*}{From Leg} \& 1.00 \& \multirow[t]{6}{*}{0.0000} \& \multirow[t]{6}{*}{40.00} \& No Ice \& 0.13 \& 0.13 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.18 \& 0.18 \& 0.00

\hline \& \& \& \multirow[t]{4}{*}{0.00} \& \& \& Ice \& 0.23 \& 0.23 \& 0.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.37 \& 0.37 \& 0.01

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline *** \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Load Combinations

Comb.	
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp

Comb. No.	Description
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	160-155	Pole	Max Tension	8	0.00	0.00	0.00
			Max. Compression	26	-7.23	2.25	-0.76
			Max. Mx	20	-3.07	10.17	-0.33
			Max. My	14	-3.07	0.69	-9.72
			Max. Vy	20	-3.73	10.17	-0.33
			Max. Vx	14	3.74	0.69	-9.72
			Max. Torque	2			1.10
L2	155-150	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-9.17	2.28	-0.78
			Max. Mx	20	-4.00	32.62	-0.34
			Max. My	14	-4.00	0.70	-32.21
			Max. Vy	20	-4.82	32.62	-0.34
			Max. Vx	14	4.83	0.70	-32.21
			Max. Torque	2			1.10
L3	150-145	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-18.21	2.17	-0.74
			Max. Mx	20	-7.66	82.75	-0.33
			Max. My	14	-7.66	0.69	-82.40
			Max. Vy	20	-10.08	82.75	-0.33
			Max. Vx	14	10.09	0.69	-82.40
			Max. Torque	2			1.10
L4	145-140	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-18.94	2.21	-0.77
			Max. Mx	20	-8.12	134.21	-0.34
			Max. My	14	-8.12	0.71	-133.90
			Max. Vy	20	-10.50	134.21	-0.34
			Max. Vx	14	10.51	0.71	-133.90
			Max. Torque	2			1.05
L5	140-135	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-27.89	3.01	-1.25
			Max. Mx	20	-11.58	219.50	-0.73
			Max. My	14	-11.58	1.20	-218.84
			Max. Vy	20	-16.15	219.50	-0.73
			Max. Vx	14	16.12	1.20	-218.84
			Max. Torque	14			-1.35
L6	135-130	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-28.79	3.05	-1.29
			Max. Mx	20	-12.22	301.31	-0.94
			Max. My	14	-12.22	1.42	-300.47
			Max. Vy	20	-16.58	301.31	-0.94
			Max. Vx	14	16.55	1.42	-300.47
			Max. Torque	14			-1.35
L7	130-125	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-29.71	3.10	-1.33
			Max. Mx	20	-12.89	385.29	-1.15
			Max. My	14	-12.89	1.64	-384.27
			Max. Vy	20	-17.02	385.29	-1.15

160 Ft Monopole Tower Structural Analysis
CCI BU No 806953
Project Number 400087, Order 479803, Revision 0

Sectio n n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft	
L8	125-120	Pole	Max. Vx	14	16.98	1.64	$\begin{gathered} -384.27 \\ -1.35 \end{gathered}$	
			Max. Torque	14				
			Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-30.67	3.13	-1.37	
			Max. Mx	20	-13.60	471.45	-1.36	
			Max. My	14	-13.60	1.86	-470.26	
			Max. Vy	20	-17.46	471.45	-1.36	
		Pole	Max. Vx	14	17.43	1.86	$\begin{gathered} -470.26 \\ -1.35 \end{gathered}$	
			Max. Torque	14				
L9	$\begin{gathered} 120- \\ 111.333 \end{gathered}$		Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-39.25	3.66	-1.69	
			Max. Mx	20	-17.84			
			Max. My	14	-17.84	2.35	-548.37	
			Max. Vy	20	-21.60	549.85	-1.71	
			Max. Vx	14	21.57	2.35	-548.37	
			Max. Torque	14			-1.57	
L10	$\begin{gathered} 111.333- \\ 111 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-41.21	3.70	-1.73	
			Max. Mx	20	-19.25	659.16	-1.93	
			Max. My	14	-19.25	2.57	-657.51	
			Max. Vy	20	-22.13	659.16	-1.93	
			Max. Vx	14	22.10	2.57	-657.51	
			Max. Torque	$\begin{array}{cc}14 & \\ 1 & 0.00\end{array}$			-1.57	
L11	111-106	Pole	Max Tension				0.00	0.00
			Max. Compression	26	-42.51	3.74	-1.78	
			Max. Mx	20	-20.28	770.95	-2.14	
			Max. My	14	-20.28	2.79	-769.14	
			Max. Vy	20	-22.60	770.95	-2.14	
			Max. Vx	14	22.57	2.79	-769.14	
			Max. Torque	14			-1.57	
L12	106-101	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-43.84	3.78	-1.82	
			Max. Mx	20	-21.35	885.06	-2.35	
			Max. My	14	-21.35	3.01	-883.08	
			Max. Vy	20	-23.06	885.06	-2.35	
			Max. Vx	14	23.03	3.01	-883.08	
			Max. Torque	14			-1.57	
L13	101-96	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-45.21	3.81	-1.86	
			Max. Mx	20	-22.45	1001.50	-2.56	
			Max. My	14	-22.45	3.23	-999.35	
			Max. Vy	20	-23.53	1001.50	-2.56	
			Max. Vx	14	23.50	3.23	$\begin{gathered} -999.35 \\ -1.57 \end{gathered}$	
			Max. Torque	$\begin{array}{cc}14 & \\ 1 & 0.00\end{array}$				
L14	96-91	Pole	Max Tension				0.00	0.00
			Max. Compression	26	-46.61	3.84	-1.90	
			Max. Mx	20	-23.59	1120.27	-2.78	
			Max. My	14	-23.59	3.45	-1117.96	
			Max. Vy	20	-24.00	1120.27	-2.78	
			Max. Vx	14	23.97	3.45	-1117.96-1.57	
			Max. Torque	14				
L15	91-86	Pole	Max Tension	1	0.00	0.00	-1.57	
			Max. Compression	26	-48.13	3.86	-1.94	
			Max. Mx	20	-24.76	1241.38	-2.99	
			Max. My	14	-24.76	3.66	-1238.91	
			Max. Vy	20	-24.47	1241.38	-2.99	
			Max. Vx	14	24.44	3.66	-1238.91	
			Max. Torque	$\begin{array}{cc}14 & \\ 1 & 0.00\end{array}$			-1.57	
L16	86-85.75	Pole	Max Tension				0.00	0.00
			Max. Compression	26	-48.23	3.87	-1.94	
			Max. Mx	20	-24.84	1247.50	-3.00	
			Max. My	14	-24.84	3.68	-1245.02	
			Max. Vy	20	-24.49	1247.50	-3.00	
			Max. Vx	14	24.46	3.68	-1245.02	
			Max. Torque	14			-1.57	
L17	85.75-81	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-50.24	4.04	-2.07	

160 Ft Monopole Tower Structural Analysis

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L18	81-80.75	Pole	Max. Mx	20	-26.34	1365.07	-3.24
			Max. My	14	-26.32	3.94	-1362.82
			Max. Vy	20	-25.01	1365.07	-3.24
			Max. Vx	14	25.14	3.94	-1362.82
			Max. Torque	14			-1.60
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.33	4.05	-2.07
			Max. Mx	20	-26.41	1371.33	-3.25
			Max. My	14	-26.40	3.95	-1369.10
			Max. Vy	20	-25.04	1371.33	-3.25
		Pole	Max. Vx	14	25.17	3.95	-1369.10-1.60
			Max. Torque	14			
L19	80.75-80.5		Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.43	4.05	-2.07
			Max. Mx	20	-26.48	1377.59	-3.27
			Max. My	14	-26.47	3.96	-1375.40
			Max. Vy	20	-25.07	1377.59	-3.27
			Max. Vx	14	25.20	3.96	$\begin{gathered} -1375.40 \\ -1.60 \end{gathered}$
		Pole	Max. Torque	14			
L20	80.5-73.25		Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.94	4.05	-2.08
			Max. Mx	20	-26.86	1415.29	-3.34
			Max. My	14	-26.85	4.04	-1413.30
			Max. Vy	20	-25.22	1415.29	-3.34
			Max. Vx	14	25.36	4.04	-1413.30
			Max. Torque	14			$\begin{gathered} -1.60 \\ 0.00 \end{gathered}$
L21	$\begin{gathered} 73.25- \\ 72.25 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	
			Max. Compression	26	-54.82	4.05	-2.12
			Max. Mx	20	-29.78	1588.09	-3.68
			Max. My	14	-29.77	4.39	-1587.00
			Max. Vy	20	-25.99	1588.09	-3.68
			Max. Vx	14	26.12	4.39	$\begin{gathered} -1587.00 \\ -1.60 \end{gathered}$
			Max. Torque	14			
L22	$\begin{gathered} 72.25 \\ 67.25 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-56.53	4.05	-2.14
			Max. Mx	20	-31.20	1719.14	-3.94
			Max. My	14	-31.19	4.64	-1718.71
			Max. Vy	20	-26.46	1719.14	-3.94
			Max. Vx	14	26.59	4.64	$\begin{gathered} -1718.71 \\ -1.60 \end{gathered}$
			Max. Torque	14			
L23	$\begin{gathered} 67.25- \\ 62.25 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-58.28	4.05	-2.17
			Max. Mx	20	-32.65	1852.53	-4.19
			Max. My	14	-32.64	4.89	-1852.77
			Max. Vy	20	-26.93	1852.53	-4.19
			Max. Vx	14	27.06	4.89	-1852.77
			Max. Torque	14			-1.60
L24	$\begin{gathered} 62.25- \\ 57.25 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-60.07	4.05	-2.20
			Max. Mx	20	-34.13	1988.25	-4.44
			Max. My	14	-34.12	5.15	-1989.15
			Max. Vy	20	-27.39	1988.25	-4.44
			Max. Vx	14	27.52	5.15	-1989.15
			Max. Torque	14			-1.60
L25	$\begin{gathered} 57.25- \\ 52.25 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-61.91	4.05	-2.23
			Max. Mx	20	-35.66	2126.26	-4.69
			Max. My	14	-35.65	5.40	-2127.84
			Max. Vy	20	-27.84	2126.26	-4.69
			Max. Vx	14	27.98	5.40	-2127.84
			Max. Torque	14			-1.59
L26	$\begin{gathered} 52.25- \\ 49.83 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-63.06	4.05	-2.24

160 Ft Monopole Tower Structural Analysis
CCI BU No 806953
Project Number 400087, Order 479803, Revision 0

160 Ft Monopole Tower Structural Analysis

Maximum Reactions

Location	Condition	Gov. Load	Vertical Comb.	Horizontal, X K	Horizontal, Z K
Pole	Max. Vert	26	90.85	0.00	-0.00
	Max. H_{x}	20	59.41	32.30	-0.05
	Max. H_{z}	2	59.41	-0.05	32.31
	Max. M_{x}	2	3696.43	-0.05	32.31
	Max. M_{z}	8	3699.37	-32.30	0.05

tnxTower Report - version 8.0.5.0

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, X } \\ K \end{gathered}$	Horizontal, Z K
	Max. Torsion	2	1.58	-0.05	32.31
	Min. Vert	11	44.56	-27.95	-16.12
	Min. H_{x}	8	59.41	-32.30	0.05
	Min. Hz_{z}	14	59.41	0.05	-33.77
	Min. M_{x}	14	-3752.36	0.05	-33.77
	Min. M_{z}	20	-3702.30	32.30	-0.05
	Min. Torsion	14	-1.59	0.05	-33.77

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	49.51	0.00	0.00	0.40	1.13	0.00
1.2 Dead+1.0 Wind 0 deg -	59.41	0.05	-32.31	-3696.43	-5.03	-1.58
No Ice						
0.9 Dead+1.0 Wind 0 deg -	44.56	0.05	-32.31	-3651.35	-5.34	-1.54
No Ice						
1.2 Dead+1.0 Wind 30 deg -	59.41	16.19	-28.01	-3204.36	-1854.58	-1.27
No Ice						
0.9 Dead+1.0 Wind 30 deg -	44.56	16.19	-28.01	-3165.29	-1832.25	-1.25
No Ice						
1.2 Dead+1.0 Wind 60 deg -	59.41	29.26	-16.92	-1881.00	-3254.33	-0.63
No Ice						
0.9 Dead+1.0 Wind 60 deg -	44.56	29.26	-16.92	-1858.33	-3215.23	-0.62
No Ice						
1.2 Dead+1.0 Wind 90 deg -	59.41	32.30	-0.05	-5.96	-3699.37	0.18
No Ice						
0.9 Dead+1.0 Wind 90 deg -	44.56	32.30	-0.05	-6.02	-3654.48	0.17
No Ice						
1.2 Dead+1.0 Wind 120 deg	59.41	27.95	16.12	1843.38	-3200.33	0.95
- No Ice						
0.9 Dead+1.0 Wind 120 deg	44.56	27.95	16.12	1820.70	-3161.54	0.92
- No Ice						
1.2 Dead+1.0 Wind 150 deg	59.41	16.11	27.96	3198.94	-1843.36	1.47
- No Ice						
0.9 Dead+1.0 Wind 150 deg	44.56	16.11	27.96	3159.68	-1821.18	1.43
- No Ice						
1.2 Dead+1.0 Wind 180 deg	59.41	-0.05	33.77	3752.36	7.94	1.59
- No lce						
0.9 Dead+1.0 Wind 180 deg	44.56	-0.05	33.77	3706.74	7.47	1.56
- No Ice						
1.2 Dead+1.0 Wind 210 deg	59.41	-16.19	28.01	3205.41	1857.49	1.28
- No lce						
0.9 Dead+1.0 Wind 210 deg	44.56	-16.19	28.01	3166.06	1834.38	1.27
- No Ice						
1.2 Dead+1.0 Wind 240 deg	59.41	-28.00	16.20	1854.61	3209.71	0.63
- No Ice						
0.9 Dead+1.0 Wind 240 deg	44.56	-28.00	16.20	1831.78	3170.06	0.62
- No Ice						
1.2 Dead+1.0 Wind 270 deg	59.41	-32.30	0.05	7.01	3702.30	-0.20
- No Ice						
0.9 Dead+1.0 Wind 270 deg	44.56	-32.30	0.05	6.78	3656.62	-0.18
- No Ice						
1.2 Dead+1.0 Wind 300 deg	59.41	-29.21	-16.84	-1869.79	3250.79	-0.97
- No Ice						
0.9 Dead+1.0 Wind 300 deg	44.56	-29.21	-16.84	-1847.26	3210.99	-0.94
- No Ice						
1.2 Dead+1.0 Wind 330 deg	59.41	-16.11	-27.96	-3197.91	1846.27	-1.47
- No Ice						
0.9 Dead+1.0 Wind 330 deg	44.56	-16.11	-27.96	-3158.92	1823.31	-1.43
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	90.85	-0.00	0.00	2.10	4.05	0.00
1.2 Dead+1.0 Wind 0	90.85	0.01	-7.90	-960.71	2.87	-0.42
deg+1.0 Ice+1.0 Temp						

Load Combination	Vertical	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	90.85	3.96	-6.85	-832.39	-478.72	-0.32
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	90.85	6.86	-3.97	-480.99	-831.85	-0.14
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	90.85	7.89	-0.01	0.83	-959.30	0.09
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	90.85	6.83	3.94	482.47	-829.52	0.29
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	90.85	3.94	6.84	835.42	-476.34	0.41
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	90.85	-0.01	7.92	966.22	5.62	0.42
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	90.85	-3.96	6.85	836.80	487.21	0.32
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	90.85	-6.84	3.96	484.85	839.39	0.14
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	90.85	-7.89	0.01	3.58	967.80	-0.09
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	90.85	-6.85	-3.95	-478.61	838.97	-0.29
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	90.85	-3.94	-6.84	-831.01	484.83	-0.41
Dead+Wind 0 deg - Service	49.51	0.01	-7.61	-864.03	-0.31	-0.37
Dead+Wind 30 deg - Service	49.51	3.81	-6.59	-748.97	-432.79	-0.30
Dead+Wind 60 deg - Service	49.51	6.89	-3.98	-439.56	-760.15	-0.15
Dead+Wind 90 deg - Service	49.51	7.61	-0.01	-1.09	-864.16	0.04
Dead+Wind 120 deg -	49.51	6.58	3.79	431.34	-747.47	0.22
Service Dead+Wind 150 deg -	49.51	3.79	6.58	748.31	-430.17	0.34
Service						
Dead+Wind 180 deg Service	49.51	-0.01	7.95	877.78	2.72	0.37
Dead+Wind 210 deg Service	49.51	-3.81	6.59	749.83	435.20	0.30
Dead+Wind 240 deg Service	49.51	-6.59	3.81	433.97	751.39	0.15
Dead+Wind 270 deg Service	49.51	-7.61	0.01	1.94	866.57	-0.04
Dead+Wind 300 deg Service	49.51	-6.88	-3.97	-436.94	761.05	-0.22
Dead+Wind 330 deg Service	49.51	-3.79	-6.58	-747.46	432.58	-0.34

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	$P Z$	PX	PY	$P Z$	
Comb.	K	K	K	K	K	K	
1	0.00	-49.51	0.00	0.00	49.51	0.00	0.000\%
2	0.05	-59.41	-32.31	-0.05	59.41	32.31	0.000\%
3	0.05	-44.56	-32.31	-0.05	44.56	32.31	0.000\%
4	16.19	-59.41	-28.01	-16.19	59.41	28.01	0.000\%
5	16.19	-44.56	-28.01	-16.19	44.56	28.01	0.000\%
6	29.26	-59.41	-16.92	-29.26	59.41	16.92	0.000\%
7	29.26	-44.56	-16.92	-29.26	44.56	16.92	0.000\%
8	32.30	-59.41	-0.05	-32.30	59.41	0.05	0.000\%
9	32.30	-44.56	-0.05	-32.30	44.56	0.05	0.000\%
10	27.95	-59.41	16.12	-27.95	59.41	-16.12	0.000\%
11	27.95	-44.56	16.12	-27.95	44.56	-16.12	0.000\%
12	16.11	-59.41	27.96	-16.11	59.41	-27.96	0.000\%
13	16.11	-44.56	27.96	-16.11	44.56	-27.96	0.000\%
14	-0.05	-59.41	33.77	0.05	59.41	-33.77	0.000\%
15	-0.05	-44.56	33.77	0.05	44.56	-33.77	0.000\%
16	-16.19	-59.41	28.01	16.19	59.41	-28.01	0.000\%
17	-16.19	-44.56	28.01	16.19	44.56	-28.01	0.000\%
18	-28.00	-59.41	16.20	28.00	59.41	-16.20	0.000\%

tnxTower Report - version 8.0.5.0

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	$P Z$	$P X$	PY	$P Z$	
Comb.	K	K	K	K	K	K	
19	-28.00	-44.56	16.20	28.00	44.56	-16.20	0.000\%
20	-32.30	-59.41	0.05	32.30	59.41	-0.05	0.000\%
21	-32.30	-44.56	0.05	32.30	44.56	-0.05	0.000\%
22	-29.21	-59.41	-16.84	29.21	59.41	16.84	0.000\%
23	-29.21	-44.56	-16.84	29.21	44.56	16.84	0.000\%
24	-16.11	-59.41	-27.96	16.11	59.41	27.96	0.000\%
25	-16.11	-44.56	-27.96	16.11	44.56	27.96	0.000\%
26	0.00	-90.85	0.00	0.00	90.85	-0.00	0.000\%
27	0.01	-90.85	-7.90	-0.01	90.85	7.90	0.000\%
28	3.96	-90.85	-6.85	-3.96	90.85	6.85	0.000\%
29	6.86	-90.85	-3.97	-6.86	90.85	3.97	0.000\%
30	7.89	-90.85	-0.01	-7.89	90.85	0.01	0.000\%
31	6.83	-90.85	3.94	-6.83	90.85	-3.94	0.000\%
32	3.94	-90.85	6.84	-3.94	90.85	-6.84	0.000\%
33	-0.01	-90.85	7.92	0.01	90.85	-7.92	0.000\%
34	-3.96	-90.85	6.85	3.96	90.85	-6.85	0.000\%
35	-6.84	-90.85	3.96	6.84	90.85	-3.96	0.000\%
36	-7.89	-90.85	0.01	7.89	90.85	-0.01	0.000\%
37	-6.85	-90.85	-3.95	6.85	90.85	3.95	0.000\%
38	-3.94	-90.85	-6.84	3.94	90.85	6.84	0.000\%
39	0.01	-49.51	-7.61	-0.01	49.51	7.61	0.000\%
40	3.81	-49.51	-6.59	-3.81	49.51	6.59	0.000\%
41	6.89	-49.51	-3.98	-6.89	49.51	3.98	0.000\%
42	7.61	-49.51	-0.01	-7.61	49.51	0.01	0.000\%
43	6.58	-49.51	3.79	-6.58	49.51	-3.79	0.000\%
44	3.79	-49.51	6.58	-3.79	49.51	-6.58	0.000\%
45	-0.01	-49.51	7.95	0.01	49.51	-7.95	0.000\%
46	-3.81	-49.51	6.59	3.81	49.51	-6.59	0.000\%
47	-6.59	-49.51	3.81	6.59	49.51	-3.81	0.000\%
48	-7.61	-49.51	0.01	7.61	49.51	-0.01	0.000\%
49	-6.88	-49.51	-3.97	6.88	49.51	3.97	0.000\%
50	-3.79	-49.51	-6.58	3.79	49.51	6.58	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00068950
3	Yes	5	0.00000001	0.00031327
4	Yes	6	0.00000001	0.00090912
5	Yes	6	0.00000001	0.00030180
6	Yes	6	0.00000001	0.00093988
7	Yes	6	0.00000001	0.00031181
8	Yes	5	0.00000001	0.00029608
9	Yes	5	0.00000001	0.00010719
10	Yes	6	0.00000001	0.00093330
11	Yes	6	0.00000001	0.00031098
12	Yes	6	0.00000001	0.00089962
13	Yes	6	0.00000001	0.00029886
14	Yes	5	0.00000001	0.00082638
15	Yes	5	0.00000001	0.00037865
16	Yes	6	0.00000001	0.00094663
17	Yes	6	0.00000001	0.00031498
18	Yes	6	0.00000001	0.00092180
19	Yes	6	0.00000001	0.00030583
20	Yes	5	0.00000001	0.00034915
21	Yes	5	0.00000001	0.00013653
22	Yes	6	0.00000001	0.00091365
23	Yes	Yes	6	0.00000001
24	Yes	Yes	6	0.00030259
25	Yes	Yes	7	0.00094133
26			0.00031378	
27	28			0.00069477
			0.00000001	0.00092366
			0.00013335	

29	Yes	7	0.00000001	0.00013378
30	Yes	6	0.00000001	0.00091918
31	Yes	7	0.00000001	0.00013452
32	Yes	7	0.00000001	0.00013402
33	Yes	6	0.00000001	0.00093338
34	Yes	7	0.00000001	0.00013748
35	Yes	7	0.00000001	0.00013718
36	Yes	6	0.00000001	0.00093811
37	Yes	7	0.00000001	0.00013547
38	Yes	7	0.00000001	0.00013583
39	Yes	5	0.00000001	0.00006780
40	Yes	5	0.00000001	0.00024316
41	Yes	5	0.00000001	0.00026297
42	Yes	5	0.00000001	0.00005746
43	Yes	5	0.00000001	0.00026282
44	Yes	5	0.00000001	0.00023995
45	Yes	5	0.00000001	0.00006930
46	Yes	5	0.00000001	0.00027102
47	Yes	5	0.00000001	0.00025255
48	Yes	5	0.00000001	0.00005803
49	Yes	5	0.00000001	0.00024826
50	Yes	5	0.00000001	0.00026979

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz. Deflection No.	ft	Gov. Load Comb.	Tilt

tnxTower Report - version 8.0.5.0

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
	$f t$	$0.5-4.5$	0.078	41	0.0784
L41	$4.5-0$	0.017	41	0.0368	\circ
L42					0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	
$f t$		Comb.	in	\circ	0	Radius of Curvature $f t$
157.00	Platform Mount [LP 713-1]	49	23.469	1.3856	0.0040	63777
154.00	Pipe Mount [PM 601-3]	49	22.601	1.3837	0.0038	50494
149.00	Platform Mount [LP 713-1]	49	21.161	1.3741	0.0034	20649
139.00	Platform Mount [LP 713-1]	49	18.334	1.3258	0.0027	8300
118.00	Platform Mount [LP 712-1]	49	12.957	1.1009	0.0015	5232
84.00	3'x2" Horizontal Pipe	45	6.359	0.7386	0.0007	6198
40.00	Pipe Mount [PM 601-1]	41	1.421	0.3294	0.0002	9842

\(\left.$$
\begin{array}{cccccc}\hline \text { Section } & \text { Elevation } & \begin{array}{c}\text { Horz. } \\
\text { Deflection } \\
\text { in }\end{array}
$$ \& \begin{array}{c}Gov.

Load

Comb.\end{array} \& Comilt \& Tilt\end{array}\right]\)| Twist |
| :---: |
| |
| L1 |

tnxTower Report - version 8.0.5.0

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
	$f t$	0.332	6	\circ	\circ
L41	$9.5-4.5$	0.074	6	0.3356	0.0002
L42	$4.5-0$			0.1574	0.0001

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	。	o	
157.00	Platform Mount [LP 713-1]	6	100.372	5.9082	0.0172	17813
154.00	Pipe Mount [PM 601-3]	6	96.677	5.9013	0.0164	13756
149.00	Platform Mount [LP 713-1]	6	90.537	5.8636	0.0144	5157
139.00	Platform Mount [LP 713-1]	6	78.474	5.6620	0.0115	2003
118.00	Platform Mount [LP 712-1]	6	55.501	4.7127	0.0064	1246
84.00	3'x2" Horizontal Pipe	6	27.252	3.1671	0.0029	1460
40.00	Pipe Mount [PM 601-1]	6	6.090	1.4119	0.0009	2298

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	ft		ft	ft		$i n^{2}$	K	K	ϕP_{n}
	(18)	8				0			
L19	$\begin{gathered} 80.75-80.5 \\ (19) \end{gathered}$	TP38.1749×38.115×0.343	0.25	0.00	0.0	$\begin{gathered} 41.874 \\ 3 \end{gathered}$	-26.48	2449.65	0.011
L20	$\begin{gathered} 80.5-73.25 \\ (20) \end{gathered}$	$\begin{gathered} \text { TP39.912×38.1749x0.343 } \\ 8 \end{gathered}$	7.25	0.00	0.0	$\begin{gathered} 42.272 \\ 2 \end{gathered}$	-26.86	2472.92	0.011
L21	$\begin{gathered} 73.25-72.25 \\ (21) \end{gathered}$	$\begin{gathered} \mathrm{TP} 39.467 \times 37.8468 \times 0.406 \\ 3 \end{gathered}$	6.75	0.00	0.0	$\begin{gathered} 51.096 \\ 3 \end{gathered}$	-29.78	2989.13	0.010
L22	$\begin{gathered} 72.25-67.25 \\ (22) \end{gathered}$	$\begin{gathered} \text { TP40.6671×39.467×0.406 } \\ 3 \end{gathered}$	5.00	0.00	0.0	$\begin{gathered} 52.666 \\ 3 \end{gathered}$	-31.18	3080.98	0.010
L23	$\begin{gathered} 67.25-62.25 \\ (23) \end{gathered}$	$\begin{gathered} \text { TP41.8673×40.6671×0.40 } \\ 63 \end{gathered}$	5.00	0.00	0.0	$\begin{gathered} 54.236 \\ 2 \end{gathered}$	-32.63	3172.82	0.010
L24	$62.25-57.25$ (24)	TP43.0674×41.8673×0.40 63	5.00	0.00	0.0	$\begin{gathered} 55.806 \\ 1 \end{gathered}$	-34.12	3264.66	0.010
L25	$\begin{gathered} 57.25-52.25 \\ (25) \end{gathered}$	$\begin{gathered} \text { TP44.2675×43.0674×0.40 } \\ 63 \end{gathered}$	5.00	0.00	0.0	$\begin{gathered} 57.376 \\ 1 \end{gathered}$	-35.65	3356.50	0.011
L26	$\begin{gathered} 52.25-49.83 \\ (26) \end{gathered}$	TP44.8484×44.2675×0.40 63	2.42	0.00	0.0	$\begin{gathered} 58.135 \\ 9 \end{gathered}$	-36.57	3400.95	0.011
L27	$\begin{gathered} 49.83-49.58 \\ (27) \end{gathered}$	TP44.9084×44.8484×0.40 63	0.25	0.00	0.0	$\begin{gathered} 58.214 \\ 4 \end{gathered}$	-36.68	3405.54	0.011
L28	$49.58-44.58$ (28)	$\begin{aligned} & \text { TP46.1086x44.9084×0.40 } \\ & 63 \end{aligned}$	5.00	0.00	0.0	$\begin{gathered} 59.784 \\ 3 \end{gathered}$	-38.60	3497.38	0.011
L29	$\begin{gathered} 44.58- \\ 36.3333(29) \end{gathered}$	TP48.088×46.1086x0.406 3	8.25	0.00	0.0	$\begin{gathered} 60.280 \\ 4 \end{gathered}$	-39.22	3526.41	0.011
L30	$\begin{gathered} 36.3333- \\ 35.3333(30) \end{gathered}$	TP47.5162×45.6753×0.43 75	7.67	0.00	0.0	$\begin{gathered} 66.322 \\ 1 \end{gathered}$	-44.06	3879.84	0.011
L31	$\begin{aligned} & 35.3333- \\ & 32.25(31) \end{aligned}$	$\begin{gathered} \text { TP48.2565×47.5162×0.43 } \\ 75 \end{gathered}$	3.08	0.00	0.0	$\begin{gathered} 67.365 \\ 0 \end{gathered}$	-45.35	3940.85	0.012
L32	$\begin{gathered} 32.25-32 \\ (32) \end{gathered}$	TP48.3165×48.2565×0.43 75	0.25	0.00	0.0	$\begin{gathered} 67.449 \\ 5 \end{gathered}$	-45.47	3945.80	0.012
L33	32-27(33)	$\begin{gathered} \text { TP49.5171×48.3165×0.43 } \\ 75 \end{gathered}$	5.00	0.00	0.0	$\begin{gathered} 69.140 \\ 8 \end{gathered}$	-47.60	4044.74	0.012
L34	27-22 (34)	$\begin{gathered} \text { TP50.7176×49.5171×0.43 } \\ 75 \end{gathered}$	5.00	0.00	0.0	$\begin{gathered} 70.832 \\ 1 \end{gathered}$	-49.77	4143.68	0.012
L35	22-17 (35)	$\begin{gathered} \text { TP51.9181×50.7176×0.43 } \\ 75 \end{gathered}$	5.00	0.00	0.0	$\begin{gathered} 72.523 \\ 4 \end{gathered}$	-51.97	4242.62	0.012
L36	17-15.5 (36)	$\begin{aligned} & \text { TP52.2783×51.9181×0.43 } \\ & 75 \end{aligned}$	1.50	0.00	0.0	$\begin{gathered} 73.030 \\ 7 \end{gathered}$	-52.68	4272.30	0.012
L37	$\begin{gathered} 15.5-15.25 \\ (37) \end{gathered}$	$\begin{gathered} \text { TP52.3383 } \times 52.2783 \times 0.43 \\ 75 \end{gathered}$	0.25	0.00	0.0	$\begin{gathered} 73.115 \\ 3 \end{gathered}$	-52.82	4277.25	0.012
L38	$15.25-14.75$ (38)	$\begin{gathered} \text { TP52.4584×52.3383×0.43 } \\ 75 \end{gathered}$	0.50	0.00	0.0	$\begin{gathered} 73.284 \\ 4 \end{gathered}$	-53.06	4287.14	0.012
L39	$\begin{gathered} 14.75-14.5 \\ (39) \end{gathered}$	$\begin{gathered} \text { TP52.5184×52.4584×0.43 } \\ 75 \end{gathered}$	0.25	0.00	0.0	$\begin{gathered} 73.369 \\ 0 \end{gathered}$	-53.18	4292.09	0.012
L40	14.5-9.5 (40)	TP53.719×52.5184×0.437	5.00	0.00	0.0	$\begin{gathered} 75.060 \\ 3 \end{gathered}$	-55.42	4391.03	0.013
L41	9.5-4.5 (41)	$\begin{gathered} \text { TP54.9195 } 53.719 \times 0.437 \\ 5 \end{gathered}$	5.00	0.00	0.0	$\begin{gathered} 76.751 \\ 5 \end{gathered}$	-57.53	4489.96	0.013
L42	4.5-0 (42)	TP56x54.9195x0.4375	4.50	0.00	0.0	$\begin{gathered} 78.273 \\ 7 \end{gathered}$	-59.40	4579.01	0.013

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio $M_{u x}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
ft			kip-ft	kip-ft	${ }_{\phi} M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
L1	160-155 (1)	TP20.801x19.6x0.25	10.23	508.14	0.020	0.00	508.14	0.000
L2	155-150 (2)	TP22.0021x20.801x0.25	32.69	559.87	0.058	0.00	559.87	0.000
L3	150-145 (3)	TP23.2031x22.0021x0.25	82.84	612.89	0.135	0.00	612.89	0.000
L4	145-140 (4)	TP24.4041x23.2031x0.25	134.30	667.00	0.201	0.00	667.00	0.000
L5	140-135 (5)	TP25.6051x24.4041x0.25	219.80	722.04	0.304	0.00	722.04	0.000
L6	135-130 (6)	TP26.8062x25.6051x0.25	301.74	777.82	0.388	0.00	777.82	0.000
L7	130-125 (7)	TP28.0072x26.8062x0.25	385.85	834.16	0.463	0.00	834.16	0.000
L8	125-120 (8)	TP29.2082x28.0072x0.25	472.14	890.88	0.530	0.00	890.88	0.000
L9	120-111.333	TP31.29x29.2082x0.25	550.69	936.40	0.588	0.00	936.40	0.000

tnxTower Report - version 8.0.5.0

Section No.	Elevation ft	Size	$\begin{gathered} M_{u x} \\ \text { kip-ft } \end{gathered}$	$\phi M_{n x}$	Ratio $M_{u x}$	$M_{u y}$ kip-ft	$\phi M_{n y}$ kip-ft	Ratio $M_{u y}$
					$\phi M_{n x}$			$\phi M_{n y}$
L10	$\begin{gathered} 111.333-111 \\ (10) \end{gathered}$	TP30.867x29.669x0.3438	660.13	1506.34	0.438	0.00	1506.34	0.000
L11	111-106 (11)	TP32.065x30.867x0.3438	772.05	1606.85	0.480	0.00	1606.85	0.000
L12	106-101 (12)	TP33.2631×32.065×0.343	886.30	1708.83	0.519	0.00	1708.83	0.000
L13	101-96 (13)	TP34.4611×33.2631×0.34 38	1002.87	1812.13	0.553	0.00	1812.13	0.000
L14	96-91 (14)	$\begin{gathered} \text { TP35.6591×34.4611×0.34 } \\ 38 \end{gathered}$	1121.77	1916.55	0.585	0.00	1916.55	0.000
L15	91-86 (15)	$\begin{gathered} \text { TP36.8571×35.6591×0.34 } \\ 38 \end{gathered}$	1243.00	2021.91	0.615	0.00	2021.91	0.000
L16	$\begin{gathered} 86-85.75 \\ (16) \end{gathered}$	$\begin{gathered} \text { TP36.917x36.8571×0.512 } \\ 5 \end{gathered}$	1249.13	3264.29	0.383	0.00	3264.29	0.000
L17	$\begin{gathered} 85.75-81 \\ (17) \end{gathered}$	TP38.0551×36.917×0.506 3	1366.85	3432.41	0.398	0.00	3432.41	0.000
L18	$\begin{gathered} 81-80.75 \\ (18) \end{gathered}$	TP38.115×38.0551×0.343 8	1373.11	2133.36	0.644	0.00	2133.36	0.000
L19	$80.75-80.5$ (19)	TP38.1749×38.115×0.343 8	1379.38	2138.68	0.645	0.00	2138.68	0.000
L20	$80.5-73.25$ (20)	TP39.912×38.1749×0.343 8	1417.13	2170.66	0.653	0.00	2170.66	0.000
L21	$73.25-72.25$ (21)	TP39.467x37.8468×0.406 3	1590.14	2839.37	0.560	0.00	2839.37	0.000
L22	$\begin{gathered} 72.25-67.25 \\ (22) \end{gathered}$	$\begin{gathered} \text { TP40.6671×39.467×0.406 } \\ 3 \end{gathered}$	1721.41	2983.96	0.577	0.00	2983.96	0.000
L23	$67.25-62.25$ (23)	TP41.8673×40.6671×0.40 63	1855.86	3129.88	0.593	0.00	3129.88	0.000
L24	$\begin{gathered} 62.25-57.25 \\ (24) \end{gathered}$	$\begin{gathered} \text { TP43.0674×41.8673×0.40 } \\ 63 \end{gathered}$	1992.63	3276.97	0.608	0.00	3276.97	0.000
L25	$57.25-52.25$ (25)	TP44.2675×43.0674×0.40 63	2131.70	3425.04	0.622	0.00	3425.04	0.000
L26	$\begin{gathered} 52.25-49.83 \\ (26) \end{gathered}$	TP44.8484×44.2675×0.40 63	2199.93	3497.01	0.629	0.00	3497.01	0.000
L27	$\begin{gathered} 49.83-49.58 \\ (27) \end{gathered}$	$\begin{gathered} \text { TP44.9084×44.8484×0.40 } \\ 63 \end{gathered}$	2207.02	3504.46	0.630	0.00	3504.46	0.000
L28	$\begin{gathered} 49.58-44.58 \\ (28) \end{gathered}$	TP46.1086×44.9084×0.40 63	2350.38	3653.68	0.643	0.00	3653.68	0.000
L29	$\begin{gathered} 44.58- \\ 36.3333(29) \end{gathered}$	TP48.088×46.1086×0.406 3	2396.31	3700.96	0.647	0.00	3700.96	0.000
L30	$\begin{gathered} 36.3333- \\ 35.3333(30) \end{gathered}$	$\begin{gathered} \text { TP47.5162×45.6753×0.43 } \\ 75 \end{gathered}$	2624.25	4255.33	0.617	0.00	4255.33	0.000
L31	$\begin{aligned} & 35.3333- \\ & 32.25(31) \end{aligned}$	$\begin{gathered} \text { TP48.2565×47.5162×0.43 } \\ 75 \end{gathered}$	2718.00	4361.67	0.623	0.00	4361.67	0.000
L32	$\begin{gathered} 32.25-32 \\ (32) \end{gathered}$	TP48.3165×48.2565×0.43 75	2725.65	4370.30	0.624	0.00	4370.30	0.000
L33	32-27 (33)	$\begin{gathered} \text { TP49.5171×48.3165×0.43 } \\ 75 \end{gathered}$	2879.98	4543.38	0.634	0.00	4543.38	0.000
L34	27-22 (34)	$\begin{gathered} \text { TP50.7176×49.5171×0.43 } \\ 75 \end{gathered}$	3036.98	4717.04	0.644	0.00	4717.04	0.000
L35	22-17(35)	$\begin{gathered} \text { TP51.9181×50.7176×0.43 } \\ 75 \end{gathered}$	3196.65	4891.11	0.654	0.00	4891.11	0.000
L36	17-15.5 (36)	$\begin{gathered} \text { TP52.2783×51.9181×0.43 } \\ 75 \end{gathered}$	3245.09	4943.38	0.656	0.00	4943.38	0.000
L37	15.5-15.25	$\begin{aligned} & \text { TP52.3383×52.2783×0.43 } \\ & 75 \end{aligned}$	3253.18	4952.09	0.657	0.00	4952.09	0.000
L38	$\begin{gathered} 15.25-14.75 \\ (38) \end{gathered}$	TP52.4584×52.3383×0.43 75	3269.40	4969.52	0.658	0.00	4969.52	0.000
L39	$\begin{gathered} 14.75-14.5 \\ (39) \end{gathered}$	$\begin{gathered} \text { TP52.5184×52.4584×0.43 } \\ 75 \end{gathered}$	3277.53	4978.23	0.658	0.00	4978.23	0.000
L40	14.5-9.5 (40)	TP53.719×52.5184×0.437	3441.35	5152.57	0.668	0.00	5152.57	0.000
L41	9.5-4.5 (41)	TP54.9195 $\times 53.719 \times 0.437$ 5	3607.55	5326.86	0.677	0.00	5326.86	0.000
L42	4.5-0 (42)	TP56x54.9195x0.4375	3758.83	5483.53	0.685	0.00	5483.53	0.000

Pole Shear Design Data

Section No.	Elevation ft	Size	Actual V_{u} K	ϕV_{n} K	Ratio V_{u}	Actual T_{u} kip-ft	ϕT_{n} kip-ft	Ratio T_{u}
					ϕV_{n}	kip	kip-ft	ϕT_{n}
L1	160-155 (1)	TP20.801x19.6x0.25	3.73	290.34	0.013	0.56	524.86	0.001
L2	155-150 (2)	TP22.0021x20.801x0.25	4.83	307.31	0.016	0.56	588.00	0.001
L3	150-145 (3)	TP23.2031x22.0021x0.25	10.09	324.27	0.031	0.56	654.72	0.001
L4	145-140 (4)	TP24.4041x23.2031x0.25	10.51	341.24	0.031	0.56	725.03	0.001
L5	140-135 (5)	TP25.6051x24.4041x0.25	16.18	358.21	0.045	0.56	798.92	0.001
L6	135-130 (6)	TP26.8062x25.6051x0.25	16.61	375.18	0.044	0.56	876.40	0.001
L7	130-125 (7)	TP28.0072x26.8062x0.25	17.05	392.15	0.043	0.56	957.47	0.001
L8	125-120 (8)	TP29.2082x28.0072x0.25	17.49	409.11	0.043	0.56	1042.12	0.001
L9	$\begin{gathered} 120-111.333 \\ \text { (9) } \end{gathered}$	TP31.29x29.2082x0.25	21.63	422.69	0.051	0.56	1112.42	0.001
L10	$\begin{gathered} 111.333-111 \\ (10) \end{gathered}$	TP30.867x29.669x0.3438	22.17	592.93	0.037	0.56	1591.98	0.000
L11	111-106 (11)	TP32.065x30.867x0.3438	22.63	616.21	0.037	0.56	1719.40	0.000
L12	106-101 (12)	TP33.2631×32.065×0.343 8	23.09	639.48	0.036	0.56	1851.72	0.000
L13	101-96 (13)	$\begin{gathered} \text { TP34.4611×33.2631×0.34 } \\ 38 \end{gathered}$	23.56	662.75	0.036	0.56	1988.96	0.000
L14	96-91 (14)	$\begin{gathered} \text { TP35.6591×34.4611×0.34 } \\ 38 \end{gathered}$	24.03	686.02	0.035	0.56	2131.09	0.000
L15	91-86 (15)	TP36.8571×35.6591×0.34 38	24.49	709.29	0.035	0.56	2278.13	0.000
L16	$\begin{gathered} 86-85.75 \\ (16) \end{gathered}$	TP36.917×36.8571×0.512 5	24.52	1054.34	0.023	0.56	3376.27	0.000
L17	$\begin{gathered} 85.75-81 \\ (17) \end{gathered}$	TP38.0551×36.917×0.506 3	25.04	1074.22	0.023	0.56	3548.06	0.000
L18	$81-80.75$ (18)	TP38.115×38.0551×0.343 8	25.08	733.73	0.034	0.56	2437.80	0.000
L19	$\begin{gathered} 80.75-80.5 \\ (19) \end{gathered}$	TP38.1749×38.115×0.343 8	25.11	734.89	0.034	0.56	2445.54	0.000
L20	$\begin{gathered} 80.5-73.25(20) \end{gathered}$	TP39.912×38.1749×0.343 8	25.25	741.88	0.034	0.56	2492.22	0.000
L21	$\begin{gathered} 73.25-72.25 \\ (21) \end{gathered}$	TP39.467×37.8468×0.406 3	26.02	896.74	0.029	0.56	3081.11	0.000
L22	$\begin{gathered} 72.25-67.25 \\ (22) \end{gathered}$	$\begin{gathered} \text { TP40.6671×39.467×0.406 } \\ 3 \end{gathered}$	26.67	924.29	0.029	0.56	3273.35	0.000
L23	$67.25-62.25$ (23)	TP41.8673×40.6671×0.40 63	27.14	951.85	0.029	0.56	3471.41	0.000
L24	$\begin{gathered} 62.25-57.25 \\ (24) \end{gathered}$	TP43.0674×41.8673×0.40 63	27.60	979.40	0.028	0.56	3675.29	0.000
L25	$\begin{gathered} 57.25-52.25 \\ (25) \end{gathered}$	TP44.2675×43.0674×0.40 63	28.06	1006.95	0.028	0.56	3884.98	0.000
L26	$52.25-49.83$ (26)	TP44.8484×44.2675×0.40 63	28.36	1020.29	0.028	0.56	3988.57	0.000
L27	$\begin{gathered} 49.83-49.58 \\ (27) \end{gathered}$	TP44.9084×44.8484×0.40 63	28.38	1021.66	0.028	0.56	3999.34	0.000
L28	$\begin{gathered} 49.58-44.58 \\ (28) \end{gathered}$	TP46.1086×44.9084×0.40 63	28.99	1049.22	0.028	0.56	4217.96	0.000
L29	$\begin{gathered} 44.58- \\ 36.3333(29) \end{gathered}$	TP48.088×46.1086×0.406 3	29.18	1057.92	0.028	0.56	4288.25	0.000
L30	$\begin{array}{r} 36.3333- \\ 35.3333(30) \end{array}$	$\begin{gathered} \text { TP47.5162×45.6753×0.43 } \\ 75 \end{gathered}$	30.25	1163.95	0.026	0.63	4820.13	0.000
L31	$\begin{aligned} & 35.3333- \\ & 32.25(31) \end{aligned}$	$\begin{gathered} \text { TP48.2565×47.5162×0.43 } \\ 75 \end{gathered}$	30.59	1182.26	0.026	0.63	4972.92	0.000
L32	$\begin{gathered} 32.25-32 \\ (32) \end{gathered}$	$\begin{gathered} \text { TP48.3165×48.2565×0.43 } \\ 75 \end{gathered}$	30.61	1183.74	0.026	0.63	4985.42	0.000
L33	32-27 (33)	$\begin{gathered} \text { TP49.5171×48.3165×0.43 } \\ 75 \end{gathered}$	31.15	1213.42	0.026	0.63	5238.56	0.000
L34	27-22 (34)	$\begin{gathered} \text { TP50.7176×49.5171×0.43 } \\ 75 \end{gathered}$	31.68	1243.10	0.025	0.63	5497.98	0.000
L35	22-17 (35)	$\begin{gathered} \text { TP51.9181×50.7176x0.43 } \\ 75 \end{gathered}$	32.22	1272.78	0.025	0.63	5763.67	0.000
L36	17-15.5 (36)	$\begin{gathered} \text { TP52.2783×51.9181×0.43 } \\ 75 \end{gathered}$	32.40	1281.69	0.025	0.63	5844.59	0.000
L37	$\begin{gathered} 15.5-15.25 \\ (37) \end{gathered}$	$\begin{gathered} \text { TP52.3383×52.2783×0.43 } \\ 75 \end{gathered}$	32.41	1283.17	0.025	0.63	5858.14	0.000
L38	15.25-14.75	TP52.4584×52.3383x0.43	32.47	1286.14	0.025	0.63	5885.27	0.000

Section No.	Elevation ft	Size	Actual V_{u} K	$\begin{gathered} \phi V_{n} \\ K \end{gathered}$	Ratio V_{u} ϕV_{n}	Actual T_{u} kip-ft	ϕT_{n} kip-ft	Ratio T_{u} \qquad
	(38)	75						
L39	$\begin{gathered} 14.75-14.5 \\ (39) \end{gathered}$	TP52.5184×52.4584×0.43 75	32.50	1287.63	0.025	0.63	5898.86	0.000
L40	14.5-9.5 (40)	TP53.719x52.5184x0.437 5	33.06	1317.31	0.025	0.63	6173.95	0.000
L41	9.5-4.5 (41)	TP54.9195 $\times 53.719 \times 0.437$ 5	33.46	1346.99	0.025	0.63	6455.31	0.000
L42	4.5-0 (42)	TP56x54.9195x0.4375	33.82	1373.70	0.025	0.63	6713.89	0.000

Pole Interaction Design Data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation
ft \& \[
\begin{gathered}
\hline \text { Ratio } \\
P_{u} \\
\hline \phi P_{n} \\
\hline
\end{gathered}
\] \& Ratio
\[
\frac{M_{u x}}{\phi M_{n x}}
\] \& Ratio
\[
\frac{M_{u y}}{\phi M_{n y}}
\] \& Ratio
\[
\begin{gathered}
V_{u} \\
\hline \phi V_{n}
\end{gathered}
\] \& Ratio
\[
\begin{gathered}
T_{u} \\
\hline \phi T_{n} \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
Comb. \\
Stress \\
Ratio
\end{tabular} \& \begin{tabular}{l}
Allow. \\
Stress Ratio
\end{tabular} \& Criteria \\
\hline L1 \& 160-155 (1) \& 0.003 \& 0.020 \& 0.000 \& 0.013 \& 0.001 \& 0.023 \& 1.050 \& 4.8.2 \\
\hline L2 \& 155-150 (2) \& 0.004 \& 0.058 \& 0.000 \& 0.016 \& 0.001 \& 0.063 \& 1.050 \& 4.8 .2 \\
\hline L3 \& 150-145 (3) \& 0.007 \& 0.135 \& 0.000 \& 0.031 \& 0.001 \& 0.143 \& 1.050 \& 4.8.2 \\
\hline L4 \& 145-140 (4) \& 0.007 \& 0.201 \& 0.000 \& 0.031 \& 0.001 \& 0.209 \& 1.050 \& 4.8.2 \\
\hline L5 \& 140-135 (5) \& 0.010 \& 0.304 \& 0.000 \& 0.045 \& 0.001 \& 0.316 \& 1.050 \& 4.8 .2 \\
\hline L6 \& 135-130 (6) \& 0.010 \& 0.388 \& 0.000 \& 0.044 \& 0.001 \& 0.400 \& 1.050 \& 4.8.2 \\
\hline L7 \& 130-125 (7) \& 0.010 \& 0.463 \& 0.000 \& 0.043 \& 0.001 \& 0.474 \& 1.050 \& 4.8.2 \\
\hline L8 \& 125-120 (8) \& 0.010 \& 0.530 \& 0.000 \& 0.043 \& 0.001 \& 0.542 \& 1.050 \& 4.8.2 \\
\hline L9 \& \[
\begin{gathered}
120-111.333 \\
(9)
\end{gathered}
\] \& 0.013 \& 0.588 \& 0.000 \& 0.051 \& 0.001 \& 0.603 \& 1.050 \& 4.8.2 \\
\hline L10 \& \[
\begin{gathered}
111.333-111 \\
(10)
\end{gathered}
\] \& 0.010 \& 0.438 \& 0.000 \& 0.037 \& 0.000 \& 0.449 \& 1.050 \& 4.8.2 \\
\hline L11 \& 111-106 (11) \& 0.010 \& 0.480 \& 0.000 \& 0.037 \& 0.000 \& 0.492 \& 1.050 \& 4.8.2 \\
\hline L12 \& 106-101 (12) \& 0.010 \& 0.519 \& 0.000 \& 0.036 \& 0.000 \& 0.530 \& 1.050 \& 4.8.2 \\
\hline L13 \& 101-96 (13) \& 0.010 \& 0.553 \& 0.000 \& 0.036 \& 0.000 \& 0.565 \& 1.050 \& 4.8 .2 \\
\hline L14 \& 96-91 (14) \& 0.010 \& 0.585 \& 0.000 \& 0.035 \& 0.000 \& 0.597 \& 1.050 \& 4.8.2 \\
\hline L15 \& 91-86 (15) \& 0.010 \& 0.615 \& 0.000 \& 0.035 \& 0.000 \& 0.626 \& 1.050 \& 4.8.2 \\
\hline L16 \& \[
\begin{gathered}
86-85.75 \\
(16)
\end{gathered}
\] \& 0.007 \& 0.383 \& 0.000 \& 0.023 \& 0.000 \& 0.390 \& 1.050 \& 4.8.2 \\
\hline L17 \& \[
\begin{gathered}
85.75-81 \\
(17)
\end{gathered}
\] \& 0.007 \& 0.398 \& 0.000 \& 0.023 \& 0.000 \& 0.406 \& 1.050 \& 4.8.2 \\
\hline L18 \& \[
\begin{gathered}
81-80.75 \\
(18)
\end{gathered}
\] \& 0.011 \& 0.644 \& 0.000 \& 0.034 \& 0.000 \& 0.656 \& 1.050 \& 4.8.2 \\
\hline L19 \& \[
\begin{gathered}
80.75-80.5 \\
(19)
\end{gathered}
\] \& 0.011 \& 0.645 \& 0.000 \& 0.034 \& 0.000 \& 0.657 \& 1.050 \& 4.8.2 \\
\hline L20 \& \[
\begin{gathered}
80.5-73.25 \\
(20)
\end{gathered}
\] \& 0.011 \& 0.653 \& 0.000 \& 0.034 \& 0.000 \& 0.665 \& 1.050 \& 4.8.2 \\
\hline L21 \& \begin{tabular}{l}
\[
73.25-72.25
\] \\
(21)
\end{tabular} \& 0.010 \& 0.560 \& 0.000 \& 0.029 \& 0.000 \& 0.571 \& 1.050 \& 4.8.2 \\
\hline L22 \& \[
\begin{gathered}
72.25-67.25 \\
(22)
\end{gathered}
\] \& 0.010 \& 0.577 \& 0.000 \& 0.029 \& 0.000 \& 0.588 \& 1.050 \& 4.8.2 \\
\hline L23 \& \[
\begin{gathered}
67.25-62.25 \\
(23)
\end{gathered}
\] \& 0.010 \& 0.593 \& 0.000 \& 0.029 \& 0.000 \& 0.604 \& 1.050 \& 4.8.2 \\
\hline L24 \& \[
\begin{gathered}
62.25-57.25 \\
(24)
\end{gathered}
\] \& 0.010 \& 0.608 \& 0.000 \& 0.028 \& 0.000 \& 0.619 \& 1.050 \& 4.8.2 \\
\hline L25 \& \[
\begin{gathered}
57.25-52.25 \\
(25)
\end{gathered}
\] \& 0.011 \& 0.622 \& 0.000 \& 0.028 \& 0.000 \& 0.634 \& 1.050 \& 4.8.2 \\
\hline L26 \& \[
\begin{gathered}
52.25-49.83 \\
(26)
\end{gathered}
\] \& 0.011 \& 0.629
0.630 \& 0.000 \& 0.028 \& 0.000 \& 0.641 \& 1.050

1.050 \& 4.8.2

\hline L27 \& $$
\begin{gathered}
49.83-49.58 \\
(27)
\end{gathered}
$$ \& 0.011 \& 0.630 \& 0.000 \& 0.028 \& 0.000 \& 0.641 \& 1.050 \& 4.8.2

\hline L28 \& $$
\begin{gathered}
49.58-44.58 \\
(28)
\end{gathered}
$$ \& 0.011 \& 0.643 \& 0.000 \& 0.028 \& 0.000 \& 0.655 \& 1.050 \& 4.8.2

\hline L29 \& $$
\begin{gathered}
44.58- \\
36.3333(29)
\end{gathered}
$$ \& 0.011 \& 0.647 \& 0.000 \& 0.028 \& 0.000 \& 0.659 \& 1.050 \& 4.8.2

\hline L30 \& $$
\begin{gathered}
36.3333- \\
35.3333(30)
\end{gathered}
$$ \& 0.011 \& 0.617 \& 0.000 \& 0.026 \& 0.000 \& 0.629 \& 1.050 \& 4.8.2

\hline L31 \& $$
\begin{aligned}
& 35.3333- \\
& 3275(31)
\end{aligned}
$$ \& 0.012 \& 0.623 \& 0.000 \& 0.026 \& 0.000 \& 0.635 \& 1.050 \& 4.8.2

\hline
\end{tabular}

tnxTower Report - version 8.0.5.0

Section No.	Elevation	Ratio P_{u}	Ratio $M_{u x}$	Ratio $M_{u y}$	Ratio V_{u}	Ratio T_{u}	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	${ }_{\phi} M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L32	$\begin{gathered} 32.25-32 \\ (32) \end{gathered}$	0.012	0.624	0.000	0.026	0.000	0.636	1.050	4.8.2
L33	32-27 (33)	0.012	0.634	0.000	0.026	0.000	0.646	1.050	4.8.2
L34	27-22 (34)	0.012	0.644	0.000	0.025	0.000	0.656	1.050	4.8.2
L35	22-17 (35)	0.012	0.654	0.000	0.025	0.000	0.666	1.050	4.8.2
L36	17-15.5 (36)	0.012	0.656	0.000	0.025	0.000	0.669	1.050	4.8 .2
L37	$\begin{gathered} 15.5-15.25 \\ (37) \end{gathered}$	0.012	0.657	0.000	0.025	0.000	0.670	1.050	4.8.2
L38	$\begin{gathered} 15.25-14.75 \\ (38) \end{gathered}$	0.012	0.658	0.000	0.025	0.000	0.671	1.050	4.8.2
L39	$14.75-14.5$ (39)	0.012	0.658	0.000	0.025	0.000	0.671	1.050	4.8.2
L40	14.5-9.5 (40)	0.013	0.668	0.000	0.025	0.000	0.681	1.050	4.8.2
L41	9.5-4.5 (41)	0.013	0.677	0.000	0.025	0.000	0.691	1.050	4.8.2
L42	4.5-0 (42)	0.013	0.685	0.000	0.025	0.000	0.699	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$ø P_{\text {allow }}$ K	\% Capacity	$\begin{gathered} \text { Pass } \\ \text { Fail } \end{gathered}$
L1	160-155	Pole	TP20.801x19.6x0.25	1	-3.07	1016.19	2.2	Pass
L2	155-150	Pole	TP22.0021×20.801×0.25	2	-4.00	1075.58	6.0	Pass
L3	150-145	Pole	TP23.2031x22.0021x0.25	3	-7.66	1134.97	13.6	Pass
L4	145-140	Pole	TP24.4041×23.2031x0.25	4	-8.12	1194.35	20.0	Pass
L5	140-135	Pole	TP25.6051x24.4041x0.25	5	-11.57	1253.74	30.1	Pass
L6	135-130	Pole	TP26.8062x25.6051x0.25	6	-12.22	1313.13	38.1	Pass
L7	130-125	Pole	TP28.0072x26.8062x0.25	7	-12.89	1372.52	45.2	Pass
L8	125-120	Pole	TP29.2082x28.0072x0.25	8	-13.59	1431.90	51.6	Pass
L9	120-111.333	Pole	TP31.29x29.2082x0.25	9	-17.84	1479.41	57.5	Pass
L10	111.333-111	Pole	TP30.867x29.669x0.3438	10	-19.24	2075.27	42.8	Pass
L11	111-106	Pole	TP32.065x30.867x0.3438	11	-20.27	2156.72	46.8	Pass
L12	106-101	Pole	TP33.2631×32.065x0.3438	12	-21.35	2238.18	50.5	Pass
L13	101-96	Pole	TP34.4611x33.2631x0.3438	13	-22.45	2319.63	53.8	Pass
L14	96-91	Pole	TP35.6591×34.4611×0.3438	14	-23.59	2401.08	56.8	Pass
L15	91-86	Pole	TP36.8571×35.6591×0.3438	15	-24.76	2482.54	59.7	Pass
L16	86-85.75	Pole	TP36.917x36.8571x0.5125	16	-24.84	3690.20	37.2	Pass
L17	85.75-81	Pole	TP38.0551×36.917x0.5063	17	-26.33	3759.78	38.7	Pass
L18	81-80.75	Pole	TP38.115×38.0551×0.3438	18	-26.41	2568.06	62.4	Pass
L19	80.75-80.5	Pole	TP38.1749x38.115x0.3438	19	-26.48	2572.13	62.6	Pass
L20	80.5-73.25	Pole	TP39.912x38.1749x0.3438	20	-26.86	2596.57	63.3	Pass
L21	73.25-72.25	Pole	TP39.467x37.8468x0.4063	21	-29.78	3138.59	54.4	Pass
L22	72.25-67.25	Pole	TP40.6671×39.467x0.4063	22	-31.18	3235.03	56.0	Pass
L23	67.25-62.25	Pole	TP41.8673x40.6671x0.4063	23	-32.63	3331.46	57.5	Pass
L24	62.25-57.25	Pole	TP43.0674×41.8673x0.4063	24	-34.12	3427.89	59.0	Pass
L25	57.25-52.25	Pole	TP44.2675x43.0674x0.4063	25	-35.65	3524.32	60.4	Pass
L26	52.25-49.83	Pole	TP44.8484×44.2675x0.4063	26	-36.57	3571.00	61.0	Pass
L27	49.83-49.58	Pole	TP44.9084×44.8484x0.4063	27	-36.68	3575.82	61.1	Pass
L28	49.58-44.58	Pole	TP46.1086x44.9084x0.4063	28	-38.60	3672.25	62.4	Pass
L29	44.58-36.3333	Pole	TP48.088x46.1086x0.4063	29	-39.22	3702.73	62.8	Pass
L30	$\begin{gathered} 36.3333- \\ 35.3333 \end{gathered}$	Pole	TP47.5162x45.6753x0.4375	30	-44.06	4073.83	59.9	Pass
L31	35.3333-32.25	Pole	TP48.2565×47.5162x0.4375	31	-45.35	4137.89	60.5	Pass
L32	32.25-32	Pole	TP48.3165×48.2565x0.4375	32	-45.47	4143.09	60.6	Pass
L33	32-27	Pole	TP49.5171x48.3165×0.4375	33	-47.60	4246.98	61.6	Pass
L34	27-22	Pole	TP50.7176x49.5171x0.4375	34	-49.77	4350.86	62.5	Pass
L35	22-17	Pole	TP51.9181x50.7176x0.4375	35	-51.97	4454.75	63.5	Pass
L36	17-15.5	Pole	TP52.2783x51.9181×0.4375	36	-52.68	4485.91	63.8	Pass
L37	15.5-15.25	Pole	TP52.3383x52.2783x0.4375	37	-52.82	4491.11	63.8	Pass
L38	15.25-14.75	Pole	TP52.4584×52.3383×0.4375	38	-53.06	4501.50	63.9	Pass
L39	14.75-14.5	Pole	TP52.5184×52.4584x0.4375	39	-53.18	4506.69	63.9	Pass
L40	14.5-9.5	Pole	TP53.719x52.5184x0.4375	40	-55.42	4610.58	64.9	Pass
L41	9.5-4.5	Pole	TP54.9195x53.719x0.4375	41	-57.53	4714.46	65.8	Pass

tnxTower Report - version 8.0.5.0

160 Ft Monopole Tower Structural Analysis

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \varnothing P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	$\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$
L42	4.5-0	Pole	TP56x54.9195x0.4375	42	-59.40	4807.96 Pole (L42) RATING =	66.6 Summary 66.6 66.6	$\begin{aligned} & \text { Pass } \\ & \text { Pass } \\ & \text { Pass } \end{aligned}$

*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Pole Geometry		Site BU: Work Order: \qquad 1747502							
	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	160	48.6667	4.6667	12	19.6	31.29	0.25	Auto	A572-65
2	116	42.75	5.75	12	29.67	39.912	0.34375	Auto	A572-65
3	79	42.6667	6.6667	12	37.85	48.088	0.40625	Auto	A572-65
4	43	43	0	12	45.68	56	0.4375	Auto	A572-65

Reinforcement Configuration

	$\begin{array}{c}\text { Bottom Effective } \\ \text { Elevation (ft) }\end{array}$	$\begin{array}{c}\text { Top Effective } \\ \text { Elevation (ft) }\end{array}$
1	0	15.5
2	78.25	80.75
3	14.75	32.25
4	32.25	49.83
5	81	86
6		
7		
8		
9		
10		

Reinforcement Details

	B (in)	H (in)	Gross Area (in^{2})	Pole Face to Centroid (in)	Bottom Termination Length (in)	Top Termination Length (in)	L_{u} (in)	Net Area (in^{2})	Bolt Hole Size (in)	Reinforcement Material
1	4	0.75	3	0.375	15.000	15.000	15.000	2.063	1.1875	A572-65
2	4	0.75	3	0.375	15.000	15.000	15.000	2.063	1.1875	A572-65
3	6	1	6	0.5	30.000	30.000	16.000	4.750	1.1875	A572-65
4	6	1	6	0.5	30.000	30.000	16.000	4.750	1.1875	A572-65
5	6	1	6	0.5	30.000	30.000	16.000	4.750	1.1875	A572-65

TNX Geometry Input

Increment (ft): 5

	Section	Height (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplier
1	160	- 155	5		12	19.600	20.801	0.25	A572-65	1.000
2	155	- 150	5		12	20.801	22.002	0.25	A572-65	1.000
3	150	- 145	5		12	22.002	23.203	0.25	A572-65	1.000
4	145	- 140	5		12	23.203	24.404	0.25	A572-65	1.000
5	140	- 135	5		12	24.404	25.605	0.25	A572-65	1.000
6	135	- 130	5		12	25.605	26.806	0.25	A572-65	1.000
7	130	- 125	5		12	26.806	28.007	0.25	A572-65	1.000
8	125	- 120	5		12	28.007	29.208	0.25	A572-65	1.000
9	120	- 116	8.6667	4.6667	12	29.208	31.290	0.25	A572-65	1.000
10	116	- 111	5		12	29.669	30.867	0.34375	A572-65	1.000
11	111	- 106	5		12	30.867	32.065	0.34375	A572-65	1.000
12	106	- 101	5		12	32.065	33.263	0.34375	A572-65	1.000
13	101	- 96	5		12	33.263	34.461	0.34375	A572-65	1.000
14	96	- 91	5		12	34.461	35.659	0.34375	A572-65	1.000
15	91	- 86	5		12	35.659	36.857	0.34375	A572-65	1.000
16	86	- 85.75	0.25		12	36.857	36.917	0.5125	A572-65	0.974
17	85.75	- 81	4.75		12	36.917	38.055	0.50625	A572-65	0.976
18	81	- 80.75	0.25		12	38.055	38.115	0.34375	A572-65	1.000
19	80.75	- 80.5	0.25		12	38.115	38.175	0.34375	A572-65	1.000
20	80.5	- 79	7.25	5.75	12	38.175	39.912	0.34375	A572-65	1.000
21	79	- 72.25	6.75		12	37.847	39.467	0.40625	A572-65	1.000
22	72.25	- 67.25	5		12	39.467	40.667	0.40625	A572-65	1.000
23	67.25	- 62.25	5		12	40.667	41.867	0.40625	A572-65	1.000
24	62.25	- 57.25	5		12	41.867	43.067	0.40625	A572-65	1.000
25	57.25	- 52.25	5		12	43.067	44.268	0.40625	A572-65	1.000
26	52.25	- 49.83	2.42		12	44.268	44.848	0.40625	A572-65	1.000
27	49.83	- 49.58	0.25		12	44.848	44.908	0.40625	A572-65	1.000
28	49.58	- 44.58	5		12	44.908	46.109	0.40625	A572-65	1.000
29	44.58	- 43	8.2467	6.6667	12	46.109	48.088	0.40625	A572-65	1.000
30	43	- 35.3333	7.6667		12	45.675	47.516	0.4375	A572-65	1.000
31	35.3333	- 32.25	3.0833		12	47.516	48.256	0.4375	A572-65	1.000
32	32.25	- 32	0.25		12	48.256	48.317	0.4375	A572-65	1.000
33	32	- 27	5		12	48.317	49.517	0.4375	A572-65	1.000
34	27	- 22	5		12	49.517	50.718	0.4375	A572-65	1.000
35	22	- 17	5		12	50.718	51.918	0.4375	A572-65	1.000
36	17	- 15.5	1.5		12	51.918	52.278	0.4375	A572-65	1.000
37	15.5	- 15.25	0.25		12	52.278	52.338	0.4375	A572-65	1.000
38	15.25	- 14.75	0.5		12	52.338	52.458	0.4375	A572-65	1.000
39	14.75	- 14.5	0.25		12	52.458	52.518	0.4375	A572-65	1.000
40	14.5	- 9.5	5		12	52.518	53.719	0.4375	A572-65	1.000
41	9.5	- 4.5	5		12	53.719	54.920	0.4375	A572-65	1.000
42	4.5	- 0	4.5		12	54.920	56.000	0.4375	A572-65	1.000

TNX Section Forces

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
160-155	Pole	TP20.801x19.6x0.25	Pole	2.2\%	Pass
155-150	Pole	TP22.002x20.801x0.25	Pole	5.9\%	Pass
150-145	Pole	TP23.203x22.002x0.25	Pole	13.4\%	Pass
145-140	Pole	TP24.404x23.203x0.25	Pole	19.7\%	Pass
140-135	Pole	TP25.605x24.404x0.25	Pole	29.8\%	Pass
135-130	Pole	TP26.806x25.605x0.25	Pole	37.7\%	Pass
130-125	Pole	TP28.007x26.806x0.25	Pole	44.8\%	Pass
125-120	Pole	TP29.208x28.007x0.25	Pole	51.2\%	Pass
120-116	Pole	TP31.29x29.208x0.25	Pole	57.0\%	Pass
116-111	Pole	TP30.867x29.669x0.3438	Pole	42.4\%	Pass
111-106	Pole	TP32.065x30.867x0.3438	Pole	46.4\%	Pass
106-101	Pole	TP33.263x32.065x0.3438	Pole	50.1\%	Pass
101-96	Pole	TP34.461x33.263x0.3438	Pole	53.4\%	Pass
96-91	Pole	TP35.659x34.461x0.3438	Pole	56.5\%	Pass
91-86	Pole	TP36.857x35.659x0.3438	Pole	59.3\%	Pass
86-85.75	Pole + Reinf.	TP36.917x36.857x0.5125	Reinf. 5 Tension Rupture	56.6\%	Pass
85.75-81	Pole + Reinf.	TP38.055x36.917x0.5063	Reinf. 5 Tension Rupture	58.8\%	Pass
81-80.75	Pole	TP38.115x38.055x0.3438	Pole	62.1\%	Pass
80.75-80.5	Pole	TP38.175x38.115x0.3438	Pole	62.2\%	Pass
80.5-79	Pole	TP39.912x38.175x0.3438	Pole	63.0\%	Pass
79-72.25	Pole	TP39.467x37.847x0.4063	Pole	54.0\%	Pass
72.25-67.25	Pole	TP40.667x39.467x0.4063	Pole	55.6\%	Pass
67.25-62.25	Pole	TP41.867x40.667x0.4063	Pole	57.2\%	Pass
62.25-57.25	Pole	TP43.067x41.867x0.4063	Pole	58.6\%	Pass
57.25-52.25	Pole	TP44.268x43.067x0.4063	Pole	60.0\%	Pass
52.25-49.83	Pole	TP44.848x44.268x0.4063	Pole	60.7\%	Pass
49.83-49.58	Pole	TP44.908x44.848x0.4063	Pole	60.7\%	Pass
49.58-44.58	Pole	TP46.109x44.908x0.4063	Pole	62.1\%	Pass
44.58-43	Pole	TP48.088x46.109x0.4063	Pole	62.5\%	Pass
43-35.33	Pole	TP47.516x45.675x0.4375	Pole	59.5\%	Pass
35.33-32.25	Pole	TP48.256x47.516x0.4375	Pole	60.2\%	Pass
32.25-32	Pole	TP48.317x48.256x0.4375	Pole	60.2\%	Pass
32-27	Pole	TP49.517x48.317x0.4375	Pole	61.2\%	Pass
27-22	Pole	TP50.718x49.517x0.4375	Pole	62.2\%	Pass
22-17	Pole	TP51.918x50.718x0.4375	Pole	63.2\%	Pass
17-15.5	Pole	TP52.278x51.918x0.4375	Pole	63.4\%	Pass
15.5-15.25	Pole	TP52.338x52.278x0.4375	Pole	63.5\%	Pass
15.25-14.75	Pole	TP52.458x52.338x0.4375	Pole	63.6\%	Pass
14.75-14.5	Pole	TP52.518x52.458x0.4375	Pole	63.6\%	Pass
14.5-9.5	Pole	TP53.719x52.518x0.4375	Pole	64.6\%	Pass
9.5-4.5	Pole	TP54.92x53.719x0.4375	Pole	65.5\%	Pass
4.5-0	Pole	TP56x54.92x0.4375	Pole	66.3\%	Pass
				Summary	
			Pole	66.3\%	Pass
			Reinforcement	58.8\%	Pass
			Overall	66.3\%	Pass

Additional Calculations

	Moment of Inertia (in ${ }^{4}$)			Area (in ${ }^{2}$)			\% Capacity*					
	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5
160-155	893	n/a	893	16.52	n/a	16.52	2.2\%					
155-150	1059	n/a	1059	17.49	n/a	17.49	5.9\%					
150-145	1244	n/a	1244	18.45	n/a	18.45	13.4\%					
145-140	1450	n/a	1450	19.42	n/a	19.42	19.7\%					
140-135	1677	n/a	1677	20.38	n/a	20.38	29.8\%					
135-130	1927	n/a	1927	21.35	n/a	21.35	37.7\%					
130-125	2200	n/a	2200	22.31	n/a	22.31	44.8\%					
125-120	2499	n/a	2499	23.28	n/a	23.28	51.2\%					
120-116	2756	n/a	2756	24.05	n/a	24.05	57.0\%					
116-111	4023	n/a	4023	33.74	n/a	33.74	42.4\%					
111-106	4516	n/a	4516	35.06	n/a	35.06	46.4\%					
106-101	5047	n/a	5047	36.39	n/a	36.39	50.1\%					
101-96	5618	n/a	5618	37.71	n/a	37.71	53.4\%					
96-91	6231	n/a	6231	39.03	n/a	39.03	56.5\%					
91-86	6887	n/a	6887	40.36	n/a	40.36	59.3\%					
86-85.75	6921	3263	10183	40.42	18.00	58.42	39.1\%					56.6\%
85.75-81	7587	3460	11047	41.68	18.00	59.68	41.2\%					58.8\%
81-80.75	7623	n/a	7623	41.75	n/a	41.75	62.1\%					
80.75-80.5	7660	n/a	7660	41.81	n/a	41.81	62.2\%					
80.5-79	7880	n/a	7880	42.21	n/a	42.21	63.0\%					
79-72.25	9964	n/a	9964	51.02	n/a	51.02	54.0\%					
72.25-67.25	10911	n/a	10911	52.59	n/a	52.59	55.6\%					
67.25-62.25	11916	n/a	11916	54.16	n/a	54.16	57.2\%					
62.25-57.25	12981	n/a	12981	55.73	n/a	55.73	58.6\%					
57.25-52.25	14108	n/a	14108	57.29	n/a	57.29	60.0\%					
52.25-49.83	14676	n/a	14676	58.05	n/a	58.05	60.7\%					
49.83-49.58	14735	n/a	14735	58.13	n/a	58.13	60.7\%					
49.58-44.58	15960	n/a	15960	59.70	n/a	59.70	62.1\%					
44.58-43	16361	n/a	16361	60.19	n/a	60.19	62.5\%					
43-35.33	18788	n/a	18788	66.23	n/a	66.23	59.5\%					
35.33-32.25	19688	n/a	19688	67.27	n/a	67.27	60.2\%					
32.25-32	19762	n/a	19762	67.35	n/a	67.35	60.2\%					
32-27	21287	n/a	21287	69.04	n/a	69.04	61.2\%					
27-22	22887	n/a	22887	70.73	n/a	70.73	62.2\%					
22-17	24566	n/a	24566	72.42	n/a	72.42	63.2\%					
17-15.5	25085	n/a	25085	72.93	n/a	72.93	63.4\%					
15.5-15.25	25172	n/a	25172	73.01	n/a	73.01	63.5\%					
15.25-14.75	25348	n/a	25348	73.18	n/a	73.18	63.6\%					
14.75-14.5	25435	n/a	25435	73.26	n/a	73.26	63.6\%					
14.5-9.5	27235	n/a	27235	74.95	n/a	74.95	64.6\%					
9.5-4.5	29118	n/a	29118	76.64	n/a	76.64	65.5\%					
4.5-0	30885	n/a	30885	78.16	n/a	78.16	66.3\%					

Note: Section capacity checked in 5 degree increments.
Rating per TIA-222-H Section 15.5.

Site Info	
BU \#	806953
Site Name	BRG 2044 (A) 943097
Order \#	478803 Rev.0

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
I_{ar} (in)	1.0625

$\|$Applied Loads Moment (kip-ft) 3758.83 Axial Force (kips) 59.40 Shear Force (kips) 33.82
${ }^{\text {TTIA-222-H Section 15.5 Applied }}$

Connection Properties	Analysis Results		
Anchor Rod Data	Anchor Rod Summary	(units of kips, kip-in)	
(20) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 64.48" BC	Pu_c = 142.81	фPn_c = 243.75	Stress Rating
	$\mathrm{Vu}=1.69$	$\phi V n=73.13$	55.8\%
Base Plate Data	$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi \mathrm{Mn}=\mathrm{n} / \mathrm{a}$	Pass
70.48" OD x 2.75" Plate (A633-60; Fy=60 ksi, Fu=80 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	22	(Flexural)
N/A	Allowable Stress (ksi):	54	
	Stress Rating:	38.8\%	Pass
Pole Data			
$56 \mathrm{l} \times 0.4375$ " 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)			

Pier and Pad Foundation

BU \# : 806953
Site Name: BRG 2044 (A) 943 App. Number: 479803 Rev. 0

Top \& Bot. Pad Rein. Different?:	$\overline{/}$
Block Foundation?:	$\sqrt{\boldsymbol{V}}$

Superstructure Analysis Reactions		
Compression, $\mathbf{P}_{\text {comp }}:$	59.4	kips
Base Shear, Vu_comp:	33.82	kips
${\text { Moment, } \mathbf{M}_{\mathbf{u}}:}$	3758.83	ft -kips
Tower Height, H:	160	ft
Bolt Circle / Bearing Plate Width, BC:	64.48	in

Foundation Analysis Checks				
	Capacity	Demand	Rating *	Check
Lateral (Sliding) (kips)	194.46	33.82	$\mathbf{1 6 . 6 \%}$	Pass
Bearing Pressure (ksf)	30.34	2.27	$\mathbf{7 . 5 \%}$	Pass
Overturning (kip*t)	6352.61	3944.84	$\mathbf{6 2 . 1 \%}$	Pass
Pad Flexure (kip*ft)	8047.81	1757.30	$\mathbf{2 0 . 8 \%}$	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.002	$\mathbf{1 . 1 \%}$	Pass
Flexural 2-way (Comp) (kip*t)	6537.76	0.00	$\mathbf{0 . 0 \%}$	Pass

*Rating per TIA-222-H Section
15.5

Soil Rating*:	$\mathbf{6 2 . 1 \%}$
Structural Rating*	$\mathbf{2 0 . 8 \%}$

Pad Properties

Pad Properties		
Depth, D:	3.5	ft
Pad Width, W:	26	ft
Pad Thickness, T:	5	ft
Pad Rebar Size (Top), $\mathbf{S p}_{\text {top }}:$	8	
Pad Top Rebar Quantity (Top), $\mathbf{m p}_{\text {top }}:$	18	
Pad Rebar Size (Bottom), Sp:	10	
Pad Rebar Quantity (Bottom), mp:	26	
Pad Clear Cover, $\mathbf{c c}$	pad: $:$	3

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	4	ksi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties		
Total Soil Unit Weight, $\gamma:$	130	pcf
Ultimate Net Bearing, Qnet:	40.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $\varphi:$	40	degrees
SPT Blow Count, N blows:	50	
Base Friction, $\mu:$	0.5	
Neglected Depth, N:	3.33	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	N / A	ft

AMERICAN SOCIETY OF CIVIL ENGINEERS
Address:
No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 220 ft (NAVD 88)
Risk Category: II
Soil Class: D-Stiff Soil
Latitude: 41.101764
Longitude: -73.594847

Ultimate 3-second gust wind speed of 120 mph used per jurisdictional requirements.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class:
D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.253
$\mathrm{~S}_{1}:$	0.07
$\mathrm{~F}_{\mathrm{a}}:$	1.598
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.404
$\mathrm{~S}_{\mathrm{M} 1}:$	0.168

$\mathrm{S}_{\mathrm{DS}}:$	0.269
$\mathrm{~S}_{\mathrm{D} 1}:$	0.112
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.148
$\mathrm{PGA}_{\mathrm{M}}:$	0.222
$\mathrm{~F}_{\mathrm{PGA}}:$	1.505
$\mathrm{I}_{\mathrm{e}}:$	1

Seismic Design Category
 B

Data Accessed:
Date Source:

Wed Jun 262019
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2.
Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
0.75 in.

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Wed Jun 262019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: June 21, 2019
Charles McGuirt
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277
Subject:
Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:

Site Data:

Structure Information

Mount Modification Analysis

T-Mobile Equipment Change-Out Carrier Site Number:

CT11071E Carrier Site Name:

Stamford/MP X32 / Den Rd.

Crown Castle BU Number:
 Crown Castle Site Name: Crown Castle JDE Number: Crown Castle Order Number:

806953
BRG 2044 (A) 943097
559199
479803 Revision 0
MasTec Networks Solutions Project Number: 18809-MOD1
69 Guinea Road (Camp Rocky Craig), Stamford, Fairfield County, CT Latitude: $41^{\circ \circ} 6^{\prime} 6.35^{\prime \prime}$ Longitude: $-73^{\circ} 35^{\prime} 41.45^{\prime \prime}$

Tower Height \& Type:
Mount Elevation:
Mount Width \& Type:
160 ft Monopole
116 ft
12 ft Platform Mount
Dear Charles McGuirt,
MasTec Network Solutions is pleased to submit this "Mount Modification Analysis Report" to determine the structural integrity of T-Mobile's antenna mounting system with the proposed appurtenance and equipment addition on the above mentioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Mount

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: NDN
Respectfully Submitted by:

Raphael I. Mohamed, PE, PEng
Senior Director of Engineering CT PE License No. 25112

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Information

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output
8) APPENDIX D

Additional Calculations
9) APPENDIX E

Modification Drawings

1) INTRODUCTION

This is a 12 ft Platform Mount mapped by Pier Structural Engineering Corp., dated April 15, 2019.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category
Ultimate Wind Speed:
Exposure Category:
Topographic Category:
Ice Thickness:
Wind Speed with Ice:
Seismic Ss:
Seismic S1:
Live Loading Wind Speed:
Live Loading at Mid/End-Points:
Man Live Loading at Mount Pipes

TIA-222-H
II
120 mph
B
1
1.5 in

50 mph
0.253
0.07

30 mph
250 lb
500 lb

Table 1 - Proposed Loading Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	$\begin{gathered} \begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array} \end{gathered}$	Antenna Manufacturer	Antenna Model	Mount / Modification Details
116	118	3	Ericsson	AIR 21 B2A B4P	12-ft Platform
		3	Ericsson	AIR 32 B2A/B66AA	
		3	RFS	APXVAARR24_43-U-NA20	
		3	Ericsson	Radio 4449 B12/B71	
	116	3	Ericsson	KRY 112 144/1	

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-MOUNT ANALYSIS ORDER INFORMATION	CROWN CASTLE	Order No. 479803	CCIsites
4-MOUNT ANALYSIS REPORT	MasTec	8458758	CCIsites
4-MOUNT MAPPING	Pier Structural Engineering Corp.	Project No. 19651-13	On File
4-MODIFICATION DRAWINGS	MasTec	Appendix E	On File

3.1) Analysis Method

RISA-3D (Version 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision C).

3.2) Assumptions

1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
2) The configuration of antennas, mounts, and other appurtenances are as specified in Tables 1 and the referenced drawings.
3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
4) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate ASTM A36 (GR 36)
HSS (Rectangular) ASTM 500 (GR B-46)
Pipe ASTM A53 (GR B-35)
Connection Bolts ASTM A325
This analysis may be affected if any assumptions are not valid or have been made in error. MasTec should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 4- Mount Component Stresses vs. Capacity

Notes	Component	Beam No.	Centerline (ft)	\% Capacity	Pass / Fail
1	Handrails	--	116	32.3	Pass
1	Mount Pipe	--		29.4	Pass
1	Support Angle 2	--		15.5	Pass
1	Support Angle 1	--		30.7	Pass
1	Frame Rail	--		47.5	Pass
1	Arm	--		57.9	Pass
1	Corner Angles	--		58.2	Pass
1	Mount to Tower Connection	--		41.0	Pass

	Structure Rating (max from all components) $=$
58.2\%	

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

1. Handrail Kit

Engineering Detail Drawings have been provided in Appendix E- Mount Modification Drawings. Connection from the mount to the tower and local stresses on the tower are sufficient.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

MasTec		Render
NDN	806953 - BRG 2044 (A) 943097	June 20, 2019 at 12:53 PM
18809-MOD1		806953. R3D

MasTec		Member Labels
NDN	806953 - BRG 2044 (A) 943097	June 20, 2019 at 12:53 PM
18809-MOD1		806953. R3D

MasTec		Joint Labels
NDN	806953 - BRG 2044 (A) 943097	June 20, 2019 at 12:54 PM
18809-MOD1		806953. R3D

MasTec		Shapes
NDN	806953 - BRG 2044 (A) 943097	June 20, 2019 at 12:54 PM
18809-MOD1		806953. R3D

Member Code Checks Displayed (Enveloped)
Envelope Only Solution

MasTec		Unity Bending Check
NDN	806953 - BRG 2044 (A) 943097	June 20, 2019 at $12: 55$ PM
18809-MOD1		806953. R3D

Member Shear Checks Displayed (Enveloped)
Envelope Only Solution

MasTec		Shear Check
NDN	806953 - BRG 2044 (A) 943097	June 20, 2019 at 12:56 PM
18809-MOD1		$806953 . R 3 D$

APPENDIX B

SOFTWARE INPUT CALCULATIONS

APPENDIX B

SOFTWARE INPUT CALCULATIONS
MasTec
\square

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (11E.	Density[k/ft.	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	3	65	49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	3	. 65	49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	3	65	49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	3	65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	3	65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	3	65	49	35	1.6	60	1.2
7	A1085	29000	11154	3	65	49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

Label		Type		Design List Material		Design R... A [in2]		lyy [in4] Izz [in4]		J [in4]
1	Corners	L2.5x2.5x4	Beam	Single Angle	A36 Gr. 36	Typical	1.19	692	692	026
2	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	627	627	1.25
3	Mount Pipe	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	627	627	1.25
4	Support Angle 2	L3 $\times 1.75 \times 4$	Beam	Single Angle	A36 Gr. 36	Typical	1.125	266	1.037	022
5	Support Angle 1	L2x2x3	Beam	Single Angle	A36 Gr. 36	Typical	722	271	271	009
6	Frame Rail	C5X6.7	Beam	Channel	A36 Gr. 36	Typical	1.97	47	7.48	055
7	Arm	HSS4X4X3	Beam	Tube	A500 Gr...	Typical	2.58	6.21	6.21	10
8	Corner Angles	L2.5×2.5×4	Beam	Single Angle	A36 Gr. 36	Typical	1.19	692	692	026

Joint Coordinates and Temperatures

	Label	$\mathrm{X}[\mathrm{ft}]$	$\mathrm{Y}[\mathrm{ft}]$	Z [ft]	Temp [F]	Detach From Diap...
1	N1	-0.	0	-1.726923	0	
2	N2	-0.	0	-7.060256	0	
3	N3	-1.495559	0	0.863462	0	
4	N4	-6.114361	0	3.530128	0	
5	N5	1.495559	0	0.863462	0	
6	N6	6.114361	0	3.530128	0	
7	N7	0.229167	0	-7.060256	0	
8	N8	6.228945	0	3.331664	0	
9	N9	-0.229167	0	-7.060256	0	
10	N10	-6.228945	0	3.331664	0	
11	N11	-5.999778	0	3.728592	0	
12	N12	5.999778	0	3.728592	0	
13	N13	1.166667	0	-1.89359	0	
14	N14	2.700774	0	-2.779307	0	
15	N15	-1.166667	0	-1.89359	0	
16	N16	-2.700774	0	-2.779307	0	
17	N17	-1.056563	0	1.957158	0	
18	N18	-1.056563	0	3.728592	0	
19	N19	-2.22323	0	-0.063568	0	
20	N20	-3.757337	0	-0.949285	0	
21	N21	2.22323	0	-0.063568	0	
22	N22	3.757337	0	-0.949285	0	
23	N23	1.056563	0	1.957158	0	
24	N24	1.056563	0	3.728592	0	
25	N25	5.666445	4.666667	3.728592	0	
26	N26	5.666445	-1.666667	3.728592	0	
27	N27	2.249778	4	3.728592	0	
28	N28	2.249778	-1	3.728592	0	
29	N29	-5.666445	4	3.728592	0	
30	N30	-5.666445	-1	3.728592	0	
31	N31	-2.249778	6.5	3.728592	0	
32	N32	-2.249778	-2.75	3.728592	0	

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap...
33	N33	6.062278	4	3.042989	0	
34	N34	6.062278	-1	3.042989	0	
35	N35	4.353945	6.5	0.084069	0	
36	N36	4.353945	-2.75	0.084069	0	
37	N37	0.395833	4.666667	-6.771581	0	
38	N38	0.395833	-1.666667	-6.771581	0	
39	N39	2.104167	4	-3.812661	0	
40	N40	2.104167	-1	-3.812661	0	
41	N41	-6.062278	4.666667	3.042989	0	
42	N42	-6.062278	-1.666667	3.042989	0	
43	N43	-0.395833	4	-6.771581	0	
44	N44	-0.395833	-1	-6.771581	0	
45	N45	-2.104167	6.5	-3.812661	0	
46	N46	-2.104167	-2.75	-3.812661	0	
47	N47	-4.353945	4	0.084069	0	
48	N48	-4.353945	-1	0.084069	0	
49	N49	-0.	0	-1.89359	0	
50	N50	-1.639897	0	0.946795	0	
51	N51	1.639897	0	0.946795	0	
52	N52	6.062278	0	3.042989	0	
53	N53	4.353945	0	0.084069	0	
54	N54	0.395833	0	-6.771581	0	
55	N55	2.104167	0	-3.812661	0	
56	N56	-6.062278	0	3.042989	0	
57	N57	-0.395833	0	-6.771581	0	
58	N58	-2.104167	0	-3.812661	0	
59	N59	-4.353945	0	0.084069	0	
60	N60	5.666445	0	3.728592	0	
61	N61	2.249778	0	3.728592	0	
62	N62	-5.666445	0	3.728592	0	
63	N63	-2.249778	0	3.728592	0	
64	N64	0.229167	3	-7.060256	0	
65	N65	6.228945	3	3.331664	0	
66	N66	-0.229167	3	-7.060256	0	
67	N67	-6.228945	3	3.331664	0	
68	N68	-5.999778	3	3.728592	0	
69	N69	5.999778	3	3.728592	0	
70	N70	5.666445	3	3.728592		
71	N71	2.249778	3	3.728592	0	
72	N72	-5.666445	3	3.728592	O	
73	N73	-2.249778	3	3.728592	0	
74	N74	6.062278	3	3.042989	0	
75	N75	4.353945	3	0.084069	0	
76	N76	0.395833	3	-6.771581	0	
77	N77	2.104167	3	-3.812661	0	
78	N78	-6.062278	3	3.042989	0	
79	N79	-0.395833	3	-6.771581	0	
80	N80	-2.104167	3	-3.812661	0	
81	N81	-4.353945	3	0.084069	0	
82	N82	-1.999778	3	3.728592	0	
83	N83	1.999778	3	3.728592	0	
84	N84	4.228945	3	-0.132438	0	
85	N85	2.229167	3	-3.596155	0	
86	N86	-2.229167	3	-3.596155	0	
87	N87	-4.228945	3	-0.132438	0	
88	N88	-4.999778	3	3.728592	0	
89	N89	4.999778	3	3.728592	0	

	Label	X [ft]	Y [ftl	Z [ft]	Temp [F]	Detach From Diap...
90	N90	5.728945	3	2.465639	0	
91	N91	0.729167	3	-6.194231	0	
92	N92	-0.729167	3	-6.194231	0	
93	N93	-5.728945	3	2.465639	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N3	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N5	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Primary Data

	Label	1 Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N1	N2		180	Arm	Beam	Tube	A500 Gr.B..	Typical
2	M2	N3	N4		180	Arm	Beam	Tube	A500 Gr.B...	Typical
3	M3	N5	N6		180	Arm	Beam	Tube	A500 Gr.B.	Typical
4	M4	N9	N7		180	RIGID	None	None	RIGID	Typical
5	M5	N10	N11		180	RIGID	None	None	RIGID	Typical
6	M6	N12	N8		180	RIGID	None	None	RIGID	Typical
7	M7	N7	N8		180	Frame Rail	Beam	Channel	A36 Gr. 36	Typical
8	M8	N9	N10		180	Frame Rail	Beam	Channel	A36 Gr. 36	Typical
9	M9	N11	N12		180	Frame Rail	Beam	Channel	A36 Gr. 36	Typical
10	M10	N15	N13		90	Support Angle 1	Beam	Single Angle	A36 Gr. 36	Typical
11	M11	N14	N13		90	Support Angle 2	Beam	Single Angle	A36 Gr. 36	Typical
12	M12	N15	N16		90	Support Angle 2	Beam	Single Angle	A36 Gr. 36	Typical
13	M13	N19	N17		180	Support Angle 1	Beam	Single Angle	A36 Gr. 36	Typical
14	M14	N17	N18		90	Support Angle 2	Beam	Single Angle	A36 Gr. 36	Typical
15	M15	N20	N19		90	Support Angle 2	Beam	Single Angle	A36 Gr. 36	Typical
16	M16	N23	N21		180	Support Angle 1	Beam	Single Angle	A36 Gr. 36	Typical
17	M17	N21	N22		90	Support Angle 2	Beam	Single Angle	A36 Gr. 36	Typical
18	M18	N24	N23		90	Support Angle 2	Beam	Single Angle	A36 Gr. 36	Typical
19	M19	N25	N26			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
20	M20	N27	N28			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
21	M21	N29	N30			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
22	M22	N31	N32			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
23	M23	N33	N34			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
24	M24	N35	N36			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
25	M25	N37	N38			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
26	M26	N39	N40			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
27	M27	N41	N42			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
28	M28	N43	N44			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
29	M29	N45	N46			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
30	M30	N47	N48			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
31	M31	N68	N69			Handrails	Beam	Pipe	A53 Gr.B	Typical
32	M32	N65	N64			Handrails	Beam	Pipe	A53 Gr.B	Typical
33	M33	N67	N66			Handrails	Beam	Pipe	A53 Gr.B	Typical
34	M37	N88	N93		90	Corner Angles	Beam	Single Angle	A36 Gr. 36	Typical
35	M38	N92	N91		90	Corner Angles	Beam	Single Anale	A36 Gr. 36	Typical
36	M39	N89	N90		180	Corner Angles	Beam	Single Angle	A36 Gr. 36	Typical

	Joint Label	L.D.M	Direction	Magnitudel(k,k-ft). (in,rad). ($\mathbf{k}^{\star} \mathrm{s}^{\wedge} 2 / f$..
1	N63	L	Y	-. 5

Joint Loads and Enforced Displacements (BLC 43 : Man 2 (500 lbs))

Joint Label			L,D,M	Direction
1	N53	L	Y	Magnitude[(k,k-ft), (in,rad), (k*s^2/f...

	Joint Label	L.D.M	Direction	Magnitude[(k,k-ft), (in,rad). (k*s^2/f
1	N58	L	Y	-. 5

Joint Label		L,D,M	Direction	Magnitudel(k,k-ft), (in,rad), (k*s^2/f..
1	N20	L	Y	-. 25

Member Point Loads (BLC 1: Dead)						
Member Label				Direction	Magnitude[k,k-ft]	Location[ft,\%]
1						

Member Point Loads (BLC 2 : Ice Dead)					
Member Label			Direction	Magnitude[k,k-ftt]	Location[ft,\%]
1					

Member Point Loads (BLC 2 : Ice Dead) (Continued)

Member Label						Direction	Magnitude[k,k-ft]	Location[ft,\%]
10	M30	Y	-.169	$\% 50$				
11	M25	Y	-.452	$\% 50$				
12	M25	Y	-.046	$\% 50$				
13	M23	Y	-.156	$\% 50$				
14	M23	Y	-.01	$\% 50$				
15	M26	Y	-.169					

Member Point Loads (BLC 3 : Full Wind Antenna (0 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]
1	M19	Z	-. 327	\%. 1
2	M21	Z	-. 099	\%3.3
3	M20	Z	-. 105	\%2.8
4	M27	Z	-. 19	\%. 1
5	M28	Z	-. 077	\%3.3
6	M30	Z	-. 083	\%2.8
7	M25	Z	-. 19	\%. 1
8	M23	Z	-. 077	\%3.3
9	M26	Z	-. 083	\%2.8
10	M19	Z	-. 327	\%99.9
11	M21	Z	-. 099	\%96.7
12	M20	Z	-. 105	\%97.2
13	M27	Z	-. 19	\%99.9
14	M28	Z	-. 077	\%96.7
15	M30	Z	-. 083	\%97.2
16	M25	Z	-. 19	\%99.9
17	M23	Z	-. 077	\%96.7
18	M26	Z	-. 083	\%97.2

Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg))

	Member Label	Direction	Magnitude[k.k-ft]	Location[ft,\%]
1	M19	Z	-. 244	\%. 1
2	M21	Z	-. 079	\%3.3
3	M20	Z	-. 085	\%2.8
4	M27	Z	-. 124	\%. 1
5	M28	Z	-. 06	\%3.3
6	M30	Z	-. 066	\%2.8
7	M25	Z	-. 244	\%. 1
8	M23	Z	-. 079	\%3.3
9	M26	Z	-. 085	\%2.8
10	M19	Z	-. 244	\%99.9
11	M21	Z	-. 079	\%96.7
12	M20	Z	-. 085	\%97.2
13	M27	Z	-. 124	\%99.9
14	M28	Z	-. 06	\%96.7
15	M30	Z	-. 066	\%97.2
16	M25	Z	-. 244	\%99.9
17	M23	Z	-. 079	\%96.7
18	M26	Z	-. 085	\%97.2
19	M19	X	141	\%. 1
20	M19	X	005	\%25
21	M21	X	046	\%3.3
22	M21	X	. 001	\%50
23	M20	X	049	\%2.8
24	M27	X	072	\%. 1
25	M27	X	019	\%25
26	M28	X	035	\%3.3

Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg)) (Continued)

Member Label		Direction	Magnitudelk,k-ft]	Location[ft,\%]
27	M28	X	.003	$\% 50$
28	M30	X	.038	$\% 2.8$
29	M25	X	.141	$\% .1$
30	M25	X	.005	$\% 25$
31	M23	X	.046	$\% 3.3$
32	M23	X	.001	$\% 50$
33	M26	X	.049	$\% 2.8$
34	M19	X	.141	$\% 99.9$
35	M21	X	.046	$\% 96.7$
36	M20	X	.049	$\% 97.2$
37	M27	X	.072	$\% 99.9$
38	M28	X	.035	$\% 96.7$
39	M30	X	.038	$\% 97.2$
40	M25	X	.141	$\% 99.9$
41	M23	X	.046	$\% 96.7$
42	M26	X	.049	$\% 97.2$

Member Point Loads (BLC 5 : Full Wind Antenna (60 Deg))

	Member Label	Direction	Magnitude[[,k,k-ft]	Location[ft,\%]
1	M19	Z	-. 095	\%. 1
2	M21	Z	-. 038	\%3.3
3	M20	Z	-. 042	\%2.8
4	M27	Z	-. 095	\%. 1
5	M28	Z	-. 038	\%3.3
6	M30	Z	-. 042	\%2.8
7	M25	Z	-. 164	\%. 1
8	M23	Z	-. 049	\%3.3
9	M26	Z	-. 053	\%2.8
10	M19	Z	-. 095	\%99.9
11	M21	Z	-. 038	\%96.7
12	M20	Z	-. 042	\%97.2
13	M27	Z	-. 095	\%99.9
14	M28	Z	-. 038	\%96.7
15	M30	Z	-. 042	\%97.2
16	M25	Z	-. 164	\%99.9
17	M23	Z	-. 049	\%96.7
18	M26	Z	-. 053	\%97.2
19	M19	X	164	\%. 1
20	M19	X	. 024	\%25
21	M21	X	. 066	\%3.3
22	M21	X	. 004	\%50
23	M20	X	. 072	\%2.8
24	M27	X	164	\%. 1
25	M27	X	. 024	\%25
26	M28	X	. 066	\%3.3
27	M28	X	. 004	\%50
28	M30	X	. 072	\%2.8
29	M25	X	283	\%. 1
30	M25	X	0	\%25
31	M23	X	. 085	\%3.3
32	M23	X	0	\%50
33	M26	X	. 091	\%2.8
34	M19	X	164	\%99.9
35	M21	X	. 066	\%96.7
36	M20	X	. 072	\%97.2
37	M27	X	164	\%99.9

Member Point Loads (BLC 5 : Full Wind Antenna (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
38	M28	X	066	\%96.7
39	M30	X	072	\%97.2
40	M25	X	283	\%99.9
41	M23	X	085	\%96.7
42	M26	X	091	\%97.2

Member Point Loads (BLC 6 : Full Wind Antenna (90 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]
1	M19	Z	0	\%. 1
2	M21	Z	0	\%3.3
3	M20	Z	0	\%2.8
4	M27	Z	0	\%. 1
5	M28	Z	0	\%3.3
6	M30	Z	0	\%2.8
7	M25	Z	0	\%. 1
8	M23	Z	0	\%3.3
9	M26	Z	0	\%2.8
10	M19	Z	0	\%99.9
11	M21	Z	0	\%96.7
12	M20	Z	0	\%97.2
13	M27	Z	0	\%99.9
14	M28	Z	0	\%96.7
15	M30	Z	0	\%97.2
16	M25	Z	0	\%99.9
17	M23	Z	0	\%96.7
18	M26	Z	0	\%97.2
19	M19	X	144	\%. 1
20	M19	X	037	\%25
21	M21	X	069	\%3.3
22	M21	X	006	\%50
23	M20	X	076	\%2.8
24	M27	X	. 281	\%. 1
25	M27	X	009	\%25
26	M28	X	. 091	\%3.3
27	M28	X	. 001	\%50
28	M30	X	098	\%2.8
29	M25	X	281	\%. 1
30	M25	X	. 009	\%25
31	M23	X	. 091	\%3.3
32	M23	X	. 001	\%50
33	M26	X	. 098	\%2.8
34	M19	X	144	\%99.9
35	M21	X	069	\%96.7
36	M20	X	. 076	\%97.2
37	M27	X	281	\%99.9
38	M28	X	. 091	\%96.7
39	M30	X	098	\%97.2
40	M25	X	281	\%99.9
41	M23	X	. 091	\%96.7
42	M26	X	. 098	\%97.2

Member Point Loads (BLC 7 : Full Wind Antenna (120 Deg))

Member Label	Direction Magnitude[k,k-ft]	Location[ft,\%]		
1	M 19	Z	.095	$\% .1$
2	M 21	Z	.038	$\% 3.3$
3	M 20	Z	.042	$\% 2.8$

Member Point Loads (BLC 7 : Full Wind Antenna (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]
4	M27	Z	164	\%. 1
5	M28	Z	049	\%3.3
6	M30	Z	053	\%2.8
7	M25	Z	095	\%. 1
8	M23	Z	038	\%3.3
9	M26	Z	042	\%2.8
10	M19	Z	095	\%99.9
11	M21	Z	038	\%96.7
12	M20	Z	042	\%97.2
13	M27	Z	164	\%99.9
14	M28	Z	049	\%96.7
15	M30	Z	. 053	\%97.2
16	M25	Z	095	\%99.9
17	M23	Z	. 038	\%96.7
18	M26	Z	042	\%97.2
19	M19	X	164	\%. 1
20	M19	X	. 024	\%25
21	M21	X	066	\%3.3
22	M21	X	004	\%50
23	M20	X	. 072	\%2.8
24	M27	X	283	\%. 1
25	M28	X	. 085	\%3.3
26	M30	X	. 091	\%2.8
27	M25	X	164	\%. 1
28	M25	X	. 024	\%25
29	M23	X	. 066	\%3.3
30	M23	X	. 004	\%50
31	M26	X	. 072	\%2.8
32	M19	X	164	\%99.9
33	M21	X	. 066	\%96.7
34	M20	X	. 072	\%97.2
35	M27	X	283	\%99.9
36	M28	X	. 085	\%96.7
37	M30	X	. 091	\%97.2
38	M25	X	164	\%99.9
39	M23	X	. 066	\%96.7
40	M26	X	072	\%97.2

Member Point Loads (BLC 8 : Full Wind Antenna (150 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	M19	Z	. 244	\%. 1
2	M21	Z	079	\%3.3
3	M20	Z	085	\%2.8
4	M27	Z	244	\%. 1
5	M28	Z	079	\%3.3
6	M30	Z	085	\%2.8
7	M25	Z	124	\%. 1
8	M23	Z	. 06	\%3.3
9	M26	Z	066	\%2.8
10	M19	Z	244	\%99.9
11	M21	Z	079	\%96.7
12	M20	Z	. 085	\%97.2
13	M27	Z	244	\%99.9
14	M28	Z	. 079	\%96.7
15	M30	Z	. 085	\%97.2
16	M25	Z	124	\%99.9

Member Point Loads (BLC 8 : Full Wind Antenna (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft.\%]
17	M23	Z	. 06	\%96.7
18	M26	Z	. 066	\%97.2
19	M19	X	141	\%. 1
20	M19	X	. 005	\%25
21	M21	X	046	\%3.3
22	M21	X	. 001	\%50
23	M20	X	. 049	\%2.8
24	M27	X	141	\%. 1
25	M27	X	. 005	\%25
26	M28	X	046	\%3.3
27	M28	X	. 001	\%50
28	M30	X	049	\%2.8
29	M25	X	. 072	\%. 1
30	M25	X	. 019	\%25
31	M23	X	. 035	\%3.3
32	M23	X	. 003	\%50
33	M26	X	. 038	\%2.8
34	M19	X	. 141	\%99.9
35	M21	X	. 046	\%96.7
36	M20	X	. 049	\%97.2
37	M27	X	. 141	\%99.9
38	M28	X	. 046	\%96.7
39	M30	X	. 049	\%97.2
40	M25	X	. 072	\%99.9
41	M23	X	. 035	\%96.7
42	M26	X	. 038	\%97.2

Member Point Loads (BLC 15 : Ice Wind Antenna (0 Deq))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	M19	Z	-. 066	\%. 1
2	M21	Z	-. 023	\%3.3
3	M20	Z	-. 024	\%2.8
4	M27	Z	-. 042	\%. 1
5	M28	Z	-. 019	\%3.3
6	M30	Z	-. 02	\%2.8
7	M25	Z	-. 042	\%. 1
8	M23	Z	-. 019	\%3.3
9	M26	Z	-. 02	\%2.8
10	M19	Z	-. 066	\%99.9
11	M21	Z	-. 023	\%96.7
12	M20	Z	-. 024	\%97.2
13	M27	Z	-. 042	\%99.9
14	M28	Z	-. 019	\%96.7
15	M30	Z	-. 02	\%97.2
16	M25	Z	-. 042	\%99.9
17	M23	Z	-. 019	\%96.7
18	M26	Z	-. 02	\%97.2

Member Point Loads (BLC 16 : Ice Wind Antenna (30 Deg))

Member Label	Direction	Magnitude[k.k-ft]	Location[ft,\%]	
1	M19	Z	-.05	$\% .1$
2	M21	Z	-.018	$\% 3.3$
3	M20	Z	-.02	$\% .8$
4	M27	Z	-.029	$\% 3.3$
5	M28	Z	-.015	$\% 2.8$
6	M30	Z	-.016	

Member Point Loads (BLC 16 : Ice Wind Antenna (30 Deg)) (Continued)

	Member Label	Directio	Magnitude[k,k-ft]	Location[ft, \%]
7	M25	Z	-. 05	\%. 1
8	M23	Z	-. 018	\%3.3
9	M26	Z	-. 02	\%2.8
10	M19	Z	-. 05	\%99.9
11	M21	Z	-. 018	\%96.7
12	M20	Z	-. 02	\%97.2
13	M27	Z	-. 029	\%99.9
14	M28	Z	-. 015	\%96.7
15	M30	Z	-. 016	\%97.2
16	M25	Z	-. 05	\%99.9
17	M23	Z	-. 018	\%96.7
18	M26	Z	-. 02	\%97.2
19	M19	X	. 029	\%. 1
20	M19	X	. 001	\%25
21	M21	X	011	\%3.3
22	M21	X	0	\%50
23	M20	X	011	\%2.8
24	M27	X	. 017	\%. 1
25	M27	X	005	\%25
26	M28	X	009	\%3.3
27	M28	X	002	\%50
28	M30	X	009	\%2.8
29	M25	X	029	\%. 1
30	M25	X	. 001	\%25
31	M23	X	. 011	\%3.3
32	M23	X	0	\%50
33	M26	X	. 011	\%2.8
34	M19	X	029	\%99.9
35	M21	X	. 011	\%96.7
36	M20	X	. 011	\%97.2
37	M27	X	017	\%99.9
38	M28	X	009	\%96.7
39	M30	X	009	\%97.2
40	M25	X	029	\%99.9
41	M23	X	011	\%96.7
42	M26	X	011	\%97.2

Member Point Loads (BLC 17 : Ice Wind Antenna (60 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	M19	Z	-. 021	\%. 1
2	M21	Z	-. 009	\%3.3
3	M20	Z	-. 01	\%2.8
4	M27	Z	-. 021	\%. 1
5	M28	Z	-. 009	\%3.3
6	M30	Z	-. 01	\%2.8
7	M25	Z	-. 033	\%. 1
8	M23	Z	-. 011	\%3.3
9	M26	Z	-. 012	\%2.8
10	M19	Z	-. 021	\%99.9
11	M21	Z	-. 009	\%96.7
12	M20	Z	-. 01	\%97.2
13	M27	Z	-. 021	\%99.9
14	M28	Z	-. 009	\%96.7
15	M30	Z	-. 01	\%97.2
16	M25	Z	-. 033	\%99.9
17	M23	Z	-. 011	\%96.7

Member Point Loads (BLC 17 : Ice Wind Antenna (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[k, k -ft]	Location[ft, \%]
18	M26	Z	-. 012	\%97.2
19	M19	X	036	\%. 1
20	M19	X	. 007	\%25
21	M21	X	016	\%3.3
22	M21	X	. 002	\%50
23	M20	X	017	\%2.8
24	M27	X	036	\%. 1
25	M27	X	007	\%25
26	M28	X	016	\%3.3
27	M28	X	. 002	\%50
28	M30	X	017	\%2.8
29	M25	X	057	\%. 1
30	M25	X	0	\%25
31	M23	X	02	\%3.3
32	M23	X	0	\%50
33	M26	X	021	\%2.8
34	M19	X	036	\%99.9
35	M21	X	016	\%96.7
36	M20	X	. 017	\%97.2
37	M27	X	. 036	\%99.9
38	M28	X	. 016	\%96.7
39	M30	X	017	\%97.2
40	M25	X	057	\%99.9
41	M23	X	02	\%96.7
42	M26	X	. 021	\%97.2

Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deq))

	Member Label	Direction	Magnitude[k, k -ft]	Location[ft, \%]
1	M19	Z	0	\%. 1
2	M21	Z	0	\%3.3
3	M20	Z	0	\%2.8
4	M27	Z	0	\%. 1
5	M28	Z	0	\%3.3
6	M30	Z	0	\%2.8
7	M25	Z	0	\%. 1
8	M23	Z	0	\%3.3
9	M26	Z	0	\%2.8
10	M19	Z	0	\%99.9
11	M21	Z	0	\%96.7
12	M20	Z	0	\%97.2
13	M27	Z	0	\%99.9
14	M28	Z	0	\%96.7
15	M30	Z	0	\%97.2
16	M25	Z	0	\%99.9
17	M23	Z	0	\%96.7
18	M26	Z	0	\%97.2
19	M19	X	034	\%. 1
20	M19	X	. 011	\%25
21	M21	X	017	\%3.3
22	M21	X	. 003	\%50
23	M20	X	019	\%2.8
24	M27	X	058	\%. 1
25	M27	X	003	\%25
26	M28	X	021	\%3.3
27	M28	X	. 001	\%50
28	M30	X	023	\%2.8

Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[k.,k-tt]	Location[ft,\%]
29	M25	X	. 058	\%. 1
30	M25	X	. 003	\%25
31	M23	X	. 021	\%3.3
32	M23	X	. 001	\%50
33	M26	X	. 023	\%2.8
34	M19	X	. 034	\%99.9
35	M21	X	017	\%96.7
36	M20	X	. 019	\%97.2
37	M27	X	. 058	\%99.9
38	M28	X	. 021	\%96.7
39	M30	X	. 023	\%97.2
40	M25	X	. 058	\%99.9
41	M23	X	. 021	\%96.7
42	M26	X	. 023	\%97.2

Member Point Loads (BLC 19 : Ice Wind Antenna (120 Deg))

	Member Label	Direction	Magnitude[k, ,k-ft]	Location[ft,\%]
1	M19	Z	. 021	\%. 1
2	M21	Z	009	\%3.3
3	M20	Z	01	\%2.8
4	M27	Z	. 033	\%. 1
5	M28	Z	. 011	\%3.3
6	M30	Z	. 012	\%2.8
7	M25	Z	. 021	\%. 1
8	M23	Z	. 009	\%3.3
9	M26	Z	. 01	\%2.8
10	M19	Z	021	\%99.9
11	M21	Z	. 009	\%96.7
12	M20	Z	. 01	\%97.2
13	M27	Z	. 033	\%99.9
14	M28	Z	. 011	\%96.7
15	M30	Z	. 012	\%97.2
16	M25	Z	. 021	\%99.9
17	M23	Z	. 009	\%96.7
18	M26	Z	. 01	\%97.2
19	M19	X	. 036	\%. 1
20	M19	X	. 007	\%25
21	M21	X	. 016	\%3.3
22	M21	X	. 002	\%50
23	M20	X	. 017	\%2.8
24	M27	X	. 057	\%. 1
25	M28	X	. 02	\%3.3
26	M30	X	. 021	\%2.8
27	M25	X	. 036	\%. 1
28	M25	X	. 007	\%25
29	M23	X	. 016	\%3.3
30	M23	X	. 002	\%50
31	M26	X	. 017	\%2.8
32	M19	X	. 036	\%99.9
33	M21	X	. 016	\%96.7
34	M20	X	. 017	\%97.2
35	M27	X	. 057	\%99.9
36	M28	X	. 02	\%96.7
37	M30	X	. 021	\%97.2
38	M25	X	. 036	\%99.9
39	M23	X	. 016	\%96.7

Member Label								Direction	Magnitudelk,k-ftl	Location[ft.\%]
40	M26	X	.017	$\% 97.2$						

Member Point Loads (BLC 20 : Ice Wind Antenna (150 Deg))

	Member Label	Directi	Magnitude[k, k -ft]	Location[ft, \%]
1	M19	Z	. 05	\%. 1
2	M21	Z	009	\%3.3
3	M20	Z	01	\%2.8
4	M27	Z	033	\%. 1
5	M28	Z	011	\%3.3
6	M30	Z	012	\%2.8
7	M25	Z	021	\%. 1
8	M23	Z	009	\%3.3
9	M26	Z	01	\%2.8
10	M19	Z	05	\%99.9
11	M21	Z	009	\%96.7
12	M20	Z	01	\%97.2
13	M27	Z	033	\%99.9
14	M28	Z	011	\%96.7
15	M30	Z	012	\%97.2
16	M25	Z	021	\%99.9
17	M23	Z	009	\%96.7
18	M26	Z	. 01	\%97.2
19	M19	X	029	\%. 1
20	M19	X	007	\%25
21	M21	X	016	\%3.3
22	M21	X	002	\%50
23	M20	X	. 017	\%2.8
24	M27	X	. 057	\%. 1
25	M28	X	02	\%3.3
26	M30	X	021	\%2.8
27	M25	X	036	\%. 1
28	M25	X	. 007	\%25
29	M23	X	. 016	\%3.3
30	M23	X	002	\%50
31	M26	X	017	\%2.8
32	M19	X	. 029	\%99.9
33	M21	X	. 016	\%96.7
34	M20	X	. 017	\%97.2
35	M27	X	. 057	\%99.9
36	M28	X	02	\%96.7
37	M30	X	. 021	\%97.2
38	M25	X	. 036	\%99.9
39	M23	X	. 016	\%96.7
40	M26	X	. 017	\%97.2

Member Point Loads (BLC 27 : Seismic Antenna (0 Deg))

Member Label	Direction		Magnitude[k,k-ft]	Location[ft,\%]
1	M 19	Z	-.017	$\% 50$
2	M 19	Z	-.01	$\% 25$
3	M 21	Z	-.012	$\% 50$
4	M 21	Z	-.001	$\% 50$
5	M 20	Z	-.018	$\% 50$
6	M 27	Z	-.017	$\% 50$
7	M 27	Z	-.01	$\% 25$
8	M 28	Z	-.012	$\% 50$
9	M 28	Z	-.001	$\% 50$

Member Point Loads (BLC 27 : Seismic Antenna (0 Deg)) (Continued)

Member Label						Direction	Magnitude[k,k-ftl	Location[ft,\%]
10	M30	\mathbf{Z}	-.018	$\% 50$				
11	M25	Z	-.017	$\% 50$				
13	$M 25$	Z	-.01	$\% 25$				
14	$M 23$	Z	-.012	$\% 50$				
15	$M 23$	Z	-.001	$\% 50$				

Member Point Loads (BLC 28 : Seismic Antenna (90 Deg))

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]	
1	M19	X	.017	$\% 50$
2	M 19	X	.01	$\% 25$
3	M 21	X	.012	$\% 50$
4	M 21	X	.001	$\% 50$
5	M 20	X	.018	$\% 50$
6	M 27	X	.017	$\% 50$
7	M 27	X	.01	$\% 25$
8	M 28	X	.012	$\% 50$
9	M 28	X	.001	$\% 50$
10	M 30	X	.018	$\% 50$
11	M 25	X	.017	$\% 50$
12	M 25	X	.01	$\% 25$
13	M 23	X	.012	$\% 50$
14	M 23	X	.001	$\% 50$
15	M 26	X	.018	$\% 50$

Member Point Loads (BLC 41 : Seismic Vertical Antennas)

Member Label				
1	M 19	Y	Magnitude[k,k-ft]	Location[ft, \%]
2	M 19	Y	-.026	$\% 50$
3	M 21	Y	-.015	$\% 25$
4	M 21	Y	-.018	$\% 50$
5	M 20	Y	-.002	$\% 50$
6	M 27	Y	-.026	$\% 50$
7	M 27	Y	-.026	$\% 50$
8	M 28	Y	-.015	$\% 25$
9	M 28	Y	-.018	$\% 50$
10	M 30	Y	-.002	$\% 50$
11	M 25	Y	-.026	$\% 50$
12	M 25	Y	-.026	$\% 50$
13	M 23	Y	-.015	$\% 25$
14	M 23	Y	-.018	$\% 50$
15	M 26	Y	-.002	$\% 50$

Member Distributed Loads (BLC 2 : Ice Dead)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft,..	End Location[ft, \%]
1	M1	Y	-. 015	-. 015	0	\%100
2	M2	Y	-. 015	-. 015	0	\%100
3	M3	Y	-. 015	-. 015	0	\%100
4	M4	Y	-. 004	-. 004	0	\%100
5	M5	Y	-. 004	-. 004	0	\%100
6	M6	Y	-. 004	-. 004	0	\%100
7	M7	Y	-. 015	-. 015	0	\%100
8	M8	Y	-. 015	-. 015	0	\%100
9	M9	Y	-. 015	-. 015	0	\%100

Member Distributed Loads (BLC 2 : Ice Dead) (Continued)

	Member Label	Direction	Start Magnitudelk/ft.F. . ksfl	End Magnitude[kff.F. .ksfl	Start Locationft..	End Location[ft,\%]
10	M10	Y	-. 009	-. 009	0	\%100
11	M11	Y	-. 011	-. 011	0	\%100
12	M12	Y	-. 011	-. 011	0	\%100
13	M13	Y	-. 009	-. 009	0	\%100
14	M14	Y	-. 011	-. 011	0	\%100
15	M15	Y	-. 011	-. 011	0	\%100
16	M16	Y	-. 009	-. 009	0	\%100
17	M17	Y	-. 011	-. 011	0	\%100
18	M18	Y	-. 011	-. 011	0	\%100
19	M19	Y	-. 008	-. 008	0	\%100
20	M20	Y	-. 008	-. 008	0	\%100
21	M21	Y	-. 008	-. 008	0	\%100
22	M22	Y	-. 008	-. 008	0	\%100
23	M23	Y	-. 008	-. 008	0	\%100
24	M24	Y	-. 008	-. 008	0	\%100
25	M25	Y	-. 008	-. 008	0	\%100
26	M26	Y	-. 008	-. 008	0	\%100
27	M27	Y	-. 008	-. 008	0	\%100
28	M28	Y	-. 008	-. 008	0	\%100
29	M29	Y	-. 008	-. 008	0	\%100
30	M30	Y	-. 008	-. 008	0	\%100
31	M31	Y	-. 008	-. 008	0	\%100
32	M32	Y	-. 008	-. 008	0	\%100
33	M33	Y	-. 008	-. 008	0	\%100
34	M37	Y	-. 011	-. 011	0	\%100
35	M38	Y	-. 011	-. 011	0	\%100
36	M39	Y	-. 011	-. 011	0	\%100

Member Distributed Loads (BLC 9 : Full Wind Members (0 Deg))

	Member Label	Direction	Start Magnitude[l/ft.F. .ksf]	End Magnitude[l/fit.F.ksf]	Start Location[ft...	End Location[ft.\%]
1	M1	Z	0	0	0	\%100
2	M2	Z	-. 016	-. 016	0	\%100
3	M3	Z	-. 016	-. 016	0	\%100
4	M7	Z	-. 007	-. 007	0	\%100
5	M8	Z	-. 007	-. 007	0	\%100
6	M9	Z	-. 027	-. 027	0	\%100
7	M10	Z	-. 011	-. 011	0	\%100
8	M11	Z	-. 012	-. 012	0	\%100
9	M12	Z	-. 012	-. 012	0	\%100
10	M13	Z	-. 003	-. 003	0	\%100
11	M14	Z	0	0	0	\%100
12	M15	Z	-. 012	-. 012	0	\%100
13	M16	Z	-. 003	-. 003	0	\%100
14	M17	Z	-. 012	-. 012	0	\%100
15	M18	Z	0	0	0	\%100
16	M19	Z	-. 008	-. 008	0	\%. 1
17	M20	Z	-. 008	-. 008	0	\%2.8
18	M21	Z	-. 008	-. 008	0	\%3.3
19	M22	Z	-. 008	-. 008	0	\%100
20	M23	Z	-. 008	-. 008	0	\%3.3
21	M24	Z	-. 008	-. 008	0	\%100
22	M25	Z	-. 008	-. 008	0	\%. 1
23	M26	Z	-. 008	-. 008	0	\%2.8
24	M27	Z	-. 008	-. 008	0	\%. 1
25	M28	Z	-. 008	-. 008	0	\%3.3
26	M29	Z	-. 008	-. 008	0	\%100

Company

Member Distributed Loads (BLC 9 : Full Wind Members (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft,	End Location[ft, \%]
27	M30	Z	-. 008	-. 008	0	\%2.8
28	M31	Z	-. 008	-. 008	0	\%100
29	M32	Z	-. 002	-. 002	0	\%100
30	M33	Z	-. 002	-. 002	0	\%100
31	M37	Z	-. 003	-. 003	0	\%100
32	M38	Z	-. 013	-. 013	0	\%100
33	M39	Z	-. 003	-. 003	0	\%100
34	M19	Z	-. 008	-. 008	\%99.9	\%100
35	M20	Z	-. 008	-. 008	\%97.2	\%100
36	M21	Z	-. 008	-. 008	\%96.7	\%100
37	M23	Z	-. 008	-. 008	\%96.7	\%100
38	M25	Z	-. 008	-. 008	\%99.9	\%100
39	M26	Z	-. 008	-. 008	\%97.2	\%100
40	M27	Z	-. 008	-. 008	\%99.9	\%100
41	M28	Z	-. 008	-. 008	\%96.7	\%100
42	M30	Z	-. 008	-. 008	\%97.2	\%100
43	M1	X	0	0	0	\%100
44	M2	X	0	0	0	\%100
45	M3	X	0	0	0	\%100
46	M7	X	0	0	0	\%100
47	M8	X	0	0	0	\%100
48	M9	X	0	0	0	\%100
49	M10	X	0	0	0	\%100
50	M11	X	0	0	0	\%100
51	M12	X	0	0	0	\%100
52	M13	X	0	0	0	\%100
53	M14	X	0	0	0	\%100
54	M15	X	0	0	0	\%100
55	M16	X	0	0	0	\%100
56	M17	X	0	0	0	\%100
57	M18	X	0	0	0	\%100
58	M19	X	0	0	0	\%100
59	M20	X	0	0	0	\%100
60	M21	X	0	0	0	\%100
61	M22	X	0	0	0	\%100
62	M23	X	0	0	0	\%3.3
63	M24	X	0	0	0	\%100
64	M25	X	0	0	0	\%. 1
65	M26	X	0	0	0	\%2.8
66	M27	X	0	0	0	\%. 1
67	M28	X	0	0	0	\%3.3
68	M29	X	0	0	0	\%100
69	M30	X	0	0	0	\%2.8
70	M31	X	0	0	0	\%100
71	M32	X	0	0	0	\%100
72	M33	X	0	0	0	\%100
73	M37	X	0	0	0	\%100
74	M38	X	0	0	0	\%100
75	M39	X	0	0	0	\%100
76	M23	X	0	0	\%96.7	\%100
77	M25	X	0	0	\%99.9	\%100
78	M26	X	0	0	\%97.2	\%100
79	M27	X	0	0	\%99.9	\%100
80	M28	X	0	0	\%96.7	\%100
81	M30	X	0	0	\%97.2	\%100

Company

Member Distributed Loads (BLC 10 : Full Wind Members (30 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F, ksf]	End Magnitude[kflt, F.ksf]	Start Location[ft,	End Location[ft,\%]
1	M1	Z	-. 005	-. 005	0	\%100
2	M2	Z	-. 005	-. 005	0	\%100
3	M3	Z	-. 019	-. 019	0	\%100
4	M7	Z	-. 018	-. 018	0	\%100
5	M8	Z	0	0	0	\%100
6	M9	Z	-. 018	-. 018	0	\%100
7	M10	Z	-. 007	-. 007	0	\%100
8	M11	Z	-. 004	-. 004	0	\%100
9	M12	Z	-. 014	-. 014	0	\%100
10	M13	Z	-. 007	-. 007	0	\%100
11	M14	Z	-. 004	-. 004	0	\%100
12	M15	Z	-. 014	-. 014	0	\%100
13	M16	Z	0	0	0	\%100
14	M17	Z	-. 004	-. 004	0	\%100
15	M18	Z	-. 004	-. 004	0	\%100
16	M19	Z	-. 007	-. 007	0	\%. 1
17	M20	Z	-. 007	-. 007	0	\%2.8
18	M21	Z	-. 007	-. 007	0	\%3.3
19	M22	Z	-. 007	-. 007	0	\%100
20	M23	Z	-. 007	-. 007	0	\%3.3
21	M24	Z	-. 007	-. 007	0	\%100
22	M25	Z	-. 007	-. 007	0	\%. 1
23	M26	Z	-. 007	-. 007	0	\%2.8
24	M27	Z	-. 007	-. 007	0	\%. 1
25	M28	Z	-. 007	-. 007	0	\%3.3
26	M29	Z	-. 007	-. 007	0	\%100
27	M30	Z	-. 007	-. 007	0	\%2.8
28	M31	Z	-. 005	-. 005	0	\%100
29	M32	Z	-. 005	-. 005	0	\%100
30	M33	Z	0	0	0	\%100
31	M37	Z	-. 009	-. 009	0	\%100
32	M38	Z	-. 009	-. 009	0	\%100
33	M39	Z	0	0	0	\%100
34	M19	Z	-. 007	-. 007	\%99.9	\%100
35	M20	Z	-. 007	-. 007	\%97.2	\%100
36	M21	Z	-. 007	-. 007	\%96.7	\%100
37	M23	Z	-. 007	-. 007	\%96.7	\%100
38	M25	Z	-. 007	-. 007	\%99.9	\%100
39	M26	Z	-. 007	-. 007	\%97.2	\%100
40	M27	Z	-. 007	-. 007	\%99.9	\%100
41	M28	Z	-. 007	-. 007	\%96.7	\%100
42	M30	Z	-. 007	-. 007	\%97.2	\%100
43	M1	X	. 003	. 003	0	\%100
44	M2	X	. 003	. 003	0	\%100
45	M3	X	. 011	. 011	0	\%100
46	M7	X	. 01	. 01	0	\%100
47	M8	X	0	0	0	\%100
48	M9	X	. 01	01	0	\%100
49	M10	X	. 004	. 004	0	\%100
50	M11	X	. 002	. 002	0	\%100
51	M12	X	. 008	. 008	0	\%100
52	M13	X	. 004	004	0	\%100
53	M14	X	. 002	. 002	0	\%100
54	M15	X	. 008	. 008	0	\%100
55	M16	X	0	0	0	\%100
56	M17	X	002	002	0	\%100
57	M18	X	. 002	. 002	0	\%100

Member Distributed Loads (BLC 10 : Full Wind Members (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F.ksfl	End Magnitude[k/ft,F.ksfl	Start Locationfft...	End Location[ft, \%]
58	M19	X	004	004	0	\%100
59	M20	X	004	004	0	\%100
60	M21	X	004	004	0	\%100
61	M22	X	004	004	0	\%100
62	M23	X	004	004	0	\%3.3
63	M24	X	004	004	0	\%100
64	M25	X	004	004	0	\%. 1
65	M26	X	004	004	0	\%2.8
66	M27	X	004	004	0	\%. 1
67	M28	X	004	004	0	\%3.3
68	M29	X	004	004	0	\%100
69	M30	X	004	004	0	\%2.8
70	M31	X	003	003	0	\%100
71	M32	X	003	003	0	\%100
72	M33	X	0	0	0	\%100
73	M37	X	. 005	. 005	0	\%100
74	M38	X	005	. 005	0	\%100
75	M39	X	0	0	0	\%100
76	M23	X	. 004	004	\%96.7	\%100
77	M25	X	. 004	004	\%99.9	\%100
78	M26	X	. 004	. 004	\%97.2	\%100
79	M27	X	. 004	. 004	\%99.9	\%100
80	M28	X	004	004	\%96.7	\%100
81	M30	X	. 004	004	\%97.2	\%100

Member Distributed Loads (BLC 11 : Full Wind Members (60 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft,..	End Location[ft, \%]
1	M1	Z	-. 008	-. 008	0	\%100
2	M2	Z	0	0	0	\%100
3	M3	Z	-. 008	-. 008	0	\%100
4	M7	Z	-. 013	-. 013	0	\%100
5	M8	Z	-. 003	-. 003	0	\%100
6	M9	Z	-. 003	-. 003	0	\%100
7	M10	Z	-. 001	-. 001	0	\%100
8	M11	Z	0	0	0	\%100
9	M12	Z	-. 006	-. 006	0	\%100
10	M13	Z	-. 005	-. 005	0	\%100
11	M14	Z	-. 006	-. 006	0	\%100
12	M15	Z	-. 006	-. 006	0	\%100
13	M16	Z	-. 001	-. 001	0	\%100
14	M17	Z	0	0	0	\%100
15	M18	Z	-. 006	-. 006	0	\%100
16	M19	Z	-. 004	-. 004	0	\%. 1
17	M20	Z	-. 004	-. 004	0	\%2.8
18	M21	Z	-. 004	-. 004	0	\%3.3
19	M22	Z	-. 004	-. 004	0	\%100
20	M23	Z	-. 004	-. 004	0	\%3.3
21	M24	Z	-. 004	-. 004	0	\%100
22	M25	Z	-. 004	-. 004	0	\%. 1
23	M26	Z	-. 004	-. 004	0	\%2.8
24	M27	Z	-. 004	-. 004	0	\%. 1
25	M28	Z	-. 004	-. 004	0	\%3.3
26	M29	Z	-. 004	-. 004	0	\%100
27	M30	Z	-. 004	-. 004	0	\%2.8
28	M31	Z	-. 001	-. 001	0	\%100
29	M32	Z	-. 004	-. 004	0	\%100

Company
MasTec
June 20, 2019
Designer NDN

12:56 PM
Job Number

Member Distributed Loads (BLC 11 : Full Wind Members (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksfl	End Magnitude[k/ft,F.ksfl	Start Locationfft,	End Location[ft, \%]
30	M33	Z	-. 001	-. 001	0	\%100
31	M37	Z	-. 007	-. 007	0	\%100
32	M38	Z	-. 002	-. 002	0	\%100
33	M39	Z	-. 002	-. 002	0	\%100
34	M19	Z	-. 004	-. 004	\%99.9	\%100
35	M20	Z	-. 004	-. 004	\%97.2	\%100
36	M21	Z	-. 004	-. 004	\%96.7	\%100
37	M23	Z	-. 004	-. 004	\%96.7	\%100
38	M25	Z	-. 004	-. 004	\%99.9	\%100
39	M26	Z	-. 004	-. 004	\%97.2	\%100
40	M27	Z	-. 004	-. 004	\%99.9	\%100
41	M28	Z	-. 004	-. 004	\%96.7	\%100
42	M30	Z	-. 004	-. 004	\%97.2	\%100
43	M1	X	014	014	0	\%100
44	M2	X	0	0	0	\%100
45	M3	X	014	014	0	\%100
46	M7	X	023	023	0	\%100
47	M8	X	006	. 006	0	\%100
48	M9	X	006	006	0	\%100
49	M10	X	002	002	0	\%100
50	M11	X	0	0	0	\%100
51	M12	X	011	011	0	\%100
52	M13	X	. 009	. 009	0	\%100
53	M14	X	011	. 011	0	\%100
54	M15	X	011	. 011	0	\%100
55	M16	X	002	002	0	\%100
56	M17	X	0	0	0	\%100
57	M18	X	. 011	. 011	0	\%100
58	M19	X	007	. 007	0	\%100
59	M20	X	007	. 007	0	\%100
60	M21	X	007	007	0	\%100
61	M22	X	007	007	0	\%100
62	M23	X	. 007	. 007	0	\%3.3
63	M24	X	007	. 007	0	\%100
64	M25	X	007	007	0	\%. 1
65	M26	X	007	007	0	\%2.8
66	M27	X	007	007	0	\%. 1
67	M28	X	007	. 007	0	\%3.3
68	M29	X	007	007	0	\%100
69	M30	X	. 007	. 007	0	\%2.8
70	M31	X	002	002	0	\%100
71	M32	X	007	. 007	0	\%100
72	M33	X	002	. 002	0	\%100
73	M37	X	. 012	. 012	0	\%100
74	M38	X	. 003	. 003	0	\%100
75	M39	X	003	003	0	\%100
76	M23	X	007	. 007	\%96.7	\%100
77	M25	X	007	. 007	\%99.9	\%100
78	M26	X	007	007	\%97.2	\%100
79	M27	X	007	. 007	\%99.9	\%100
80	M28	X	007	. 007	\%96.7	\%100
81	M30	X	007	. 007	\%97.2	\%100

Member Distributed Loads (BLC 12 : Full Wind Members (90 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft,	End Location[ft, \%]
1	M1	Z	0	0	0	

Member Distributed Loads (BLC 12 : Full Wind Members (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft.F.ksfl	End Magnitude[k/ft,F.ksfl	Start Location[ft,	End Location[ft, \%]
2	M2	Z	0	0	0	\%100
3	M3	Z	0	0	0	\%100
4	M7	Z	0	0	0	\%100
5	M8	Z	0	0	0	\%100
6	M9	Z	0	0	0	\%100
7	M10	Z	0	0	0	\%100
8	M11	Z	0	0	0	\%100
9	M12	Z	0	0	0	\%100
10	M13	Z	0	0	0	\%100
11	M14	Z	0	0	0	\%100
12	M15	Z	0	0	0	\%100
13	M16	Z	0	0	0	\%100
14	M17	Z	0	0	0	\%100
15	M18	Z	0	0	0	\%100
16	M19	Z	0	0	0	\%. 1
17	M20	Z	0	0	0	\%2.8
18	M21	Z	0	0	0	\%3.3
19	M22	Z	0	0	0	\%100
20	M23	Z	0	0	0	\%3.3
21	M24	Z	0	0	0	\%100
22	M25	Z	0	0	0	\%. 1
23	M26	Z	0	0	0	\%2.8
24	M27	Z	0	0	0	\%. 1
25	M28	Z	0	0	0	\%3.3
26	M29	Z	0	0	0	\%100
27	M30	Z	0	0	0	\%2.8
28	M31	Z	0	0	0	\%100
29	M32	Z	0	0	0	\%100
30	M33	Z	0	0	0	\%100
31	M37	Z	0	0	0	\%100
32	M38	Z	0	0	0	\%100
33	M39	Z	0	0	0	\%100
34	M19	Z	0	0	\%99.9	\%100
35	M20	Z	0	0	\%97.2	\%100
36	M21	Z	0	0	\%96.7	\%100
37	M23	Z	0	0	\%96.7	\%100
38	M25	Z	0	0	\%99.9	\%100
39	M26	Z	0	0	\%97.2	\%100
40	M27	Z	0	0	\%99.9	\%100
41	M28	Z	0	0	\%96.7	\%100
42	M30	Z	0	0	\%97.2	\%100
43	M1	X	. 022	022	0	\%100
44	M2	X	. 005	005	0	\%100
45	M3	X	. 005	005	0	\%100
46	M7	X	. 02	. 02	0	\%100
47	M8	X	. 02	. 02	0	\%100
48	M9	X	0	0	0	\%100
49	M10	X	0	0	0	\%100
50	M11	X	. 004	004	0	\%100
51	M12	X	. 004	. 004	0	\%100
52	M13	X	. 008	008	0	\%100
53	M14	X	. 016	. 016	0	\%100
54	M15	X	. 004	004	0	\%100
55	M16	X	. 008	. 008	0	\%100
56	M17	X	. 004	. 004	0	\%100
57	M18	X	016	016	0	\%100
58	M19	X	. 008	008	0	\%100

Member Distributed Loads (BLC 12 : Full Wind Members (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft.,	End Location[ft, \%]
59	M20	X	. 008	. 008	0	\%100
60	M21	X	008	008	0	\%100
61	M22	X	008	008	0	\%100
62	M23	X	008	008	0	\%3.3
63	M24	X	008	008	0	\%100
64	M25	X	008	008	0	\%. 1
65	M26	X	008	008	0	\%2.8
66	M27	X	008	008	0	\%. 1
67	M28	X	008	008	0	\%3.3
68	M29	X	008	008	0	\%100
69	M30	X	008	008	0	\%2.8
70	M31	X	0	0	0	\%100
71	M32	X	006	006	0	\%100
72	M33	X	006	006	0	\%100
73	M37	X	. 01	. 01	0	\%100
74	M38	X	0	0	0	\%100
75	M39	X	. 01	01	0	\%100
76	M23	X	008	. 008	\%96.7	\%100
77	M25	X	008	008	\%99.9	\%100
78	M26	X	008	. 008	\%97.2	\%100
79	M27	X	008	. 008	\%99.9	\%100
80	M28	X	008	. 008	\%96.7	\%100
81	M30	X	. 008	. 008	\%97.2	\%100

Member Distributed Loads (BLC 13 : Full Wind Members (120 Deg))

	Member Label	Direction	Start Magnitude[k/ft.F. . ksf]	End Magnitude[k/ft. F. .sf]	Start Location[ft.	End Location[ft.\%]
1	M1	Z	. 008	. 008	0	\%100
2	M2	Z	008	008	0	\%100
3	M3	Z	0	0	0	\%100
4	M7	Z	. 003	003	0	\%100
5	M8	Z	013	013	0	\%100
6	M9	Z	. 003	003	0	\%100
7	M10	Z	001	001	0	\%100
8	M11	Z	. 006	. 006	0	\%100
9	M12	Z	0	0	0	\%100
10	M13	Z	. 001	. 001	0	\%100
11	M14	Z	. 006	006	0	\%100
12	M15	Z	0	0	0	\%100
13	M16	Z	. 005	005	0	\%100
14	M17	Z	. 006	006	0	\%100
15	M18	Z	. 006	. 006	0	\%100
16	M19	Z	. 004	. 004	0	\%. 1
17	M20	Z	004	004	0	\%2.8
18	M21	Z	. 004	. 004	0	\%3.3
19	M22	Z	. 004	004	0	\%100
20	M23	Z	. 004	. 004	0	\%3.3
21	M24	Z	. 004	004	0	\%100
22	M25	Z	. 004	004	0	\%. 1
23	M26	Z	. 004	004	0	\%2.8
24	M27	Z	. 004	. 004	0	\%. 1
25	M28	Z	. 004	. 004	0	\%3.3
26	M29	Z	. 004	. 004	0	\%100
27	M30	Z	. 004	. 004	0	\%2.8
28	M31	Z	. 001	001	0	\%100
29	M32	Z	. 001	001	0	\%100
30	M33	Z	004	004	0	\%100

Company

Member Distributed Loads (BLC 13 : Full Wind Members (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location [ft,..	End Location[ft, \%]
31	M37	Z	. 002	. 002	0	\%100
32	M38	Z	002	002	0	\%100
33	M39	Z	007	007	0	\%100
34	M19	Z	004	004	\%99.9	\%100
35	M20	Z	. 004	004	\%97.2	\%100
36	M21	Z	. 004	004	\%96.7	\%100
37	M23	Z	004	004	\%96.7	\%100
38	M25	Z	004	004	\%99.9	\%100
39	M26	Z	004	004	\%97.2	\%100
40	M27	Z	. 004	004	\%99.9	\%100
41	M28	Z	004	004	\%96.7	\%100
42	M30	Z	. 004	004	\%97.2	\%100
43	M1	X	014	014	0	\%100
44	M2	X	014	014	0	\%100
45	M3	X	0	0	0	\%100
46	M7	X	006	006	0	\%100
47	M8	X	. 023	023	0	\%100
48	M9	X	006	006	0	\%100
49	M10	X	002	002	0	\%100
50	M11	X	011	011	0	\%100
51	M12	X	0	0	0	\%100
52	M13	X	. 002	. 002	0	\%100
53	M14	X	. 011	. 011	0	\%100
54	M15	X	0	0	0	\%100
55	M16	X	. 009	. 009	0	\%100
56	M17	X	011	011	0	\%100
57	M18	X	011	. 011	0	\%100
58	M19	X	. 007	. 007	0	\%100
59	M20	X	007	. 007	0	\%100
60	M21	X	007	007	0	\%100
61	M22	X	007	007	0	\%100
62	M23	X	. 007	007	0	\%3.3
63	M24	X	. 007	. 007	0	\%100
64	M25	X	007	007	0	\%. 1
65	M26	X	007	007	0	\%2.8
66	M27	X	007	007	0	\%. 1
67	M28	X	007	007	0	\%3.3
68	M29	X	. 007	007	0	\%100
69	M30	X	007	007	0	\%2.8
70	M31	X	002	002	0	\%100
71	M32	X	002	002	0	\%100
72	M33	X	007	007	0	\%100
73	M37	X	003	. 003	0	\%100
74	M38	X	. 003	. 003	0	\%100
75	M39	X	. 012	. 012	0	\%100
76	M23	X	007	007	\%96.7	\%100
77	M25	X	. 007	. 007	\%99.9	\%100
78	M26	X	007	007	\%97.2	\%100
79	M27	X	007	. 007	\%99.9	\%100
80	M28	X	. 007	007	\%96.7	\%100
81	M30	X	007	007	\%97.2	\%100

Member Distributed Loads (BLC 14 : Full Wind Members (150 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F.ksf]	End Magnitude[k/ft.F.ksf]	Start Location [ft,	End Location[ft.\%]
1	M1	Z	005	005	0	\%100
2	M2	Z	019	019	0	\%100

Company

Member Distributed Loads (BLC 14 : Full Wind Members (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F, ksf]	End Magnitude[kfft,F,ksf]	Start Location[ft,	End Location[ft,\%]
3	M3	Z	. 005	. 005	0	\%100
4	M7	Z	0	0	0	\%100
5	M8	Z	. 018	. 018	0	\%100
6	M9	Z	. 018	. 018	0	\%100
7	M10	Z	. 007	007	0	\%100
8	M11	Z	. 014	. 014	0	\%100
9	M12	Z	004	004	0	\%100
10	M13	Z	0	0	0	\%100
11	M14	Z	. 004	. 004	0	\%100
12	M15	Z	004	004	0	\%100
13	M16	Z	. 007	. 007	0	\%100
14	M17	Z	. 014	. 014	0	\%100
15	M18	Z	. 004	. 004	0	\%100
16	M19	Z	. 007	. 007	0	\%. 1
17	M20	Z	. 007	. 007	0	\%2.8
18	M21	Z	. 007	007	0	\%3.3
19	M22	Z	. 007	. 007	0	\%100
20	M23	Z	. 007	. 007	0	\%3.3
21	M24	Z	. 007	. 007	0	\%100
22	M25	Z	. 007	. 007	0	\%. 1
23	M26	Z	. 007	. 007	0	\%2.8
24	M27	Z	. 007	. 007	0	\%. 1
25	M28	Z	. 007	. 007	0	\%3.3
26	M29	Z	. 007	007	0	\%100
27	M30	Z	. 007	. 007	0	\%2.8
28	M31	Z	. 005	005	0	\%100
29	M32	Z	0	0	0	\%100
30	M33	Z	005	. 005	0	\%100
31	M37	Z	0	0	0	\%100
32	M38	Z	. 009	. 009	0	\%100
33	M39	Z	. 009	. 009	0	\%100
34	M19	Z	. 007	. 007	\%99.9	\%100
35	M20	Z	. 007	. 007	\%97.2	\%100
36	M21	Z	. 007	. 007	\%96.7	\%100
37	M23	Z	. 007	. 007	\%96.7	\%100
38	M25	Z	. 007	. 007	\%99.9	\%100
39	M26	Z	. 007	. 007	\%97.2	\%100
40	M27	Z	. 007	. 007	\%99.9	\%100
41	M28	Z	. 007	. 007	\%96.7	\%100
42	M30	Z	. 007	. 007	\%97.2	\%100
43	M1	X	. 003	. 003	0	\%100
44	M2	X	. 011	. 011	0	\%100
45	M3	X	. 003	. 003	0	\%100
46	M7	X	0	0	0	\%100
47	M8	X	. 01	01	0	\%100
48	M9	X	. 01	. 01	0	\%100
49	M10	X	. 004	. 004	0	\%100
50	M11	X	. 008	. 008	0	\%100
51	M12	X	. 002	. 002	0	\%100
52	M13	X	0	0	0	\%100
53	M14	X	. 002	. 002	0	\%100
54	M15	X	. 002	002	0	\%100
55	M16	X	. 004	. 004	0	\%100
56	M17	X	. 008	008	0	\%100
57	M18	X	. 002	. 002	0	\%100
58	M19	X	. 004	. 004	0	\%100
59	M20	X	. 004	. 004	0	\%100

Company

Member Distributed Loads (BLC 14 : Full Wind Members (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft.F.ksfl	End Magnitude[k/ft,F.ksfl	Start Location [ft.	.End Location[ft, \%l
60	M21	X	004	004	0	\%100
61	M22	X	004	004	0	\%100
62	M23	X	. 004	004	0	\%3.3
63	M24	X	004	004	0	\%100
64	M25	X	004	004	0	\%. 1
65	M26	X	004	004	0	\%2.8
66	M27	X	004	004	0	\%. 1
67	M28	X	004	004	0	\%3.3
68	M29	X	004	004	0	\%100
69	M30	X	004	004	0	\%2.8
70	M31	X	003	003	0	\%100
71	M32	X	0	0	0	\%100
72	M33	X	003	003	0	\%100
73	M37	X	0	0	0	\%100
74	M38	X	005	. 005	0	\%100
75	M39	X	005	005	0	\%100
76	M23	X	004	004	\%96.7	\%100
77	M25	X	004	. 004	\%99.9	\%100
78	M26	X	004	004	\%97.2	\%100
79	M27	X	004	. 004	\%99.9	\%100
80	M28	X	004	. 004	\%96.7	\%100
81	M30	X	004	. 004	\%97.2	\%100

Member Distributed Loads (BLC 21 : Ice Wind Members (0 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F, ksf]	End Magnitude[k/ft,F, ksf]	Start Location[ft...	End Location[ft,\%]
1	M1	Z	0	0	0	\%100
2	M2	Z	-. 004	-. 004	0	\%100
3	M3	Z	-. 004	-. 004	0	\%100
4	M4	Z	-. 003	-. 003	0	\%100
5	M5	Z	-. 001	-. 001	0	\%100
6	M6	Z	-. 001	-. 001	0	\%100
7	M7	Z	-. 002	-. 002	0	\%100
8	M8	Z	-. 002	-. 002	0	\%100
9	M9	Z	-. 007	-. 007	0	\%100
10	M10	Z	-. 004	-. 004	0	\%100
11	M11	Z	-. 004	-. 004	0	\%100
12	M12	Z	-. 004	-. 004	0	\%100
13	M13	Z	-. 001	-. 001	0	\%100
14	M14	Z	0	0	0	\%100
15	M15	Z	-. 004	-. 004	0	\%100
16	M16	Z	-. 001	-. 001	0	\%100
17	M17	Z	-. 004	-. 004	0	\%100
18	M18	Z	0	0	0	\%100
19	M19	Z	-. 004	-. 004	0	\%. 1
20	M20	Z	-. 004	-. 004	0	\%2.8
21	M21	Z	-. 004	-. 004	0	\%3.3
22	M22	Z	-. 003	-. 003	0	\%100
23	M23	Z	-. 004	-. 004	0	\%3.3
24	M24	Z	-. 003	-. 003	0	\%100
25	M25	Z	-. 004	-. 004	0	\%. 1
26	M26	Z	-. 004	-. 004	0	\%2.8
27	M27	Z	-. 004	-. 004	0	\%. 1
28	M28	Z	-. 004	-. 004	0	\%3.3
29	M29	Z	-. 003	-. 003	0	\%100
30	M30	Z	-. 004	-. 004	0	\%2.8
31	M31	Z	-. 003	-. 003	0	\%100

Company

Member Distributed Loads (BLC 21 : Ice Wind Members (0 Deg))(Continued)

	Member Label	Direction	Start Magnitude[k/ft.F.ksfl	End Magnitude[k/ft,F.ksfl	Start Locationfft,	End Location[ft, \%]
32	M32	Z	-. 001	-. 001	0	\%100
33	M33	Z	-. 001	-. 001	0	\%100
34	M37	Z	-. 001	-. 001	0	\%100
35	M38	Z	-. 005	-. 005	0	\%100
36	M39	Z	-. 001	-. 001	0	\%100
37	M19	Z	-. 004	-. 004	\%99.9	\%100
38	M20	Z	-. 004	-. 004	\%97.2	\%100
39	M21	Z	-. 004	-. 004	\%96.7	\%100
40	M23	Z	-. 004	-. 004	\%96.7	\%100
41	M25	Z	-. 004	-. 004	\%99.9	\%100
42	M26	Z	-. 004	-. 004	\%97.2	\%100
43	M27	Z	-. 004	-. 004	\%99.9	\%100
44	M28	Z	-. 004	-. 004	\%96.7	\%100
45	M30	Z	-. 004	-. 004	\%97.2	\%100
46	M1	X	0	0	0	\%100
47	M2	X	0	0	0	\%100
48	M3	X	0	0	0	\%100
49	M4	X	0	0	0	\%100
50	M5	X	0	0	0	\%100
51	M6	X	0	0	0	\%100
52	M7	X	0	0	0	\%100
53	M8	X	0	0	0	\%100
54	M9	X	0	0	0	\%100
55	M10	X	0	0	0	\%100
56	M11	X	0	0	0	\%100
57	M12	X	0	0	0	\%100
58	M13	X	0	0	0	\%100
59	M14	X	0	0	0	\%100
60	M15	X	0	0	0	\%100
61	M16	X	0	0	0	\%100
62	M17	X	0	0	0	\%100
63	M18	X	0	0	0	\%100
64	M19	X	0	0	0	\%100
65	M20	X	0	0	0	\%100
66	M21	X	0	0	0	\%100
67	M22	X	0	0	0	\%100
68	M23	X	0	0	0	\%3.3
69	M24	X	0	0	0	\%100
70	M25	X	0	0	0	\%. 1
71	M26	X	0	0	0	\%2.8
72	M27	X	0	0	0	\%. 1
73	M28	X	0	0	0	\%3.3
74	M29	X	0	0	0	\%100
75	M30	X	0	0	0	\%2.8
76	M31	X	0	0	0	\%100
77	M32	X	0	0	0	\%100
78	M33	X	0	0	0	\%100
79	M37	X	0	0	0	\%100
80	M38	X	0	0	0	\%100
81	M39	X	0	0	0	\%100
82	M23	X	0	0	\%96.7	\%100
83	M25	X	0	0	\%99.9	\%100
84	M26	X	0	0	\%97.2	\%100
85	M27	X	0	0	\%99.9	\%100
86	M28	X	0	0	\%96.7	\%100
87	M30	X	0	0	\%97.2	\%100

Company

Member Distributed Loads (BLC 22 : Ice Wind Members (30 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F, ksf]	End Magnitude[[k/ft,F,ksf]	Start Location[ft,	End Location[ft,\%]
1	M1	Z	-. 001	-. 001	0	\%100
2	M2	Z	-. 002	-. 002	0	\%100
3	M3	Z	-. 005	-. 005	0	\%100
4	M4	Z	-. 003	-. 003	0	\%100
5	M5	Z	-. 001	-. 001	0	\%100
6	M6	Z	-. 001	-. 001	0	\%100
7	M7	Z	-. 003	-. 003	0	\%100
8	M8	Z	0	0	0	\%100
9	M9	Z	-. 005	-. 005	0	\%100
10	M10	Z	-. 003	-. 003	0	\%100
11	M11	Z	-. 002	-. 002	0	\%100
12	M12	Z	-. 004	-. 004	0	\%100
13	M13	Z	-. 002	-. 002	0	\%100
14	M14	Z	-. 001	-. 001	0	\%100
15	M15	Z	-. 004	-. 004	0	\%100
16	M16	Z	0	0	0	\%100
17	M17	Z	-. 002	-. 002	0	\%100
18	M18	Z	-. 001	-. 001	0	\%100
19	M19	Z	-. 003	-. 003	0	\%. 1
20	M20	Z	-. 003	-. 003	0	\%2.8
21	M21	Z	-. 003	-. 003	0	\%3.3
22	M22	Z	-. 003	-. 003	0	\%100
23	M23	Z	-. 003	-. 003	0	\%3.3
24	M24	Z	-. 003	-. 003	0	\%100
25	M25	Z	-. 003	-. 003	0	\%. 1
26	M26	Z	-. 003	-. 003	0	\%2.8
27	M27	Z	-. 003	-. 003	0	\%. 1
28	M28	Z	-. 003	-. 003	0	\%3.3
29	M29	Z	-. 003	-. 003	0	\%100
30	M30	Z	-. 003	-. 003	0	\%2.8
31	M31	Z	-. 003	-. 003	0	\%100
32	M32	Z	-. 001	-. 001	0	\%100
33	M33	Z	0	0	0	\%100
34	M37	Z	-. 002	-. 002	0	\%100
35	M38	Z	-. 004	-. 004	0	\%100
36	M39	Z	-. 001	-. 001	0	\%100
37	M19	Z	-. 003	-. 003	\%99.9	\%100
38	M20	Z	-. 003	-. 003	\%97.2	\%100
39	M21	Z	-. 003	-. 003	\%96.7	\%100
40	M23	Z	-. 003	-. 003	\%96.7	\%100
41	M25	Z	-. 003	-. 003	\%99.9	\%100
42	M26	Z	-. 003	-. 003	\%97.2	\%100
43	M27	Z	-. 003	-. 003	\%99.9	\%100
44	M28	Z	-. 003	-. 003	\%96.7	\%100
45	M30	Z	-. 003	-. 003	\%97.2	\%100
46	M1	X	0	0	0	\%100
47	M2	X	. 001	. 001	0	\%100
48	M3	X	. 003	. 003	0	\%100
49	M4	X	. 002	. 002	0	\%100
50	M5	X	0	0	0	\%100
51	M6	X	0	0	0	\%100
52	M7	X	002	002	0	\%100
53	M8	X	0	0	0	\%100
54	M9	X	. 003	. 003		\%100
55	M10	X	. 002	002	0	\%100
56	M11	X	. 001	. 001	0	\%100
57	M12	X	. 002	. 002	0	\%100

Company

Member Distributed Loads (BLC 22 : Ice Wind Members (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitudelk/ft.F. . ksfl	End Magnitude[k/ft.F.ksfl	Start Locationfft	.End Locationfft.\%]
58	M13	X	. 001	. 001	0	\%100
59	M14	X	0	0	0	\%100
60	M15	X	. 002	. 002	0	\%100
61	M16	X	0	0	0	\%100
62	M17	X	. 001	. 001	0	\%100
63	M18	X	0	0	0	\%100
64	M19	X	002	002	0	\%100
65	M20	X	. 002	. 002	0	\%100
66	M21	X	002	. 002	0	\%100
67	M22	X	002	002	0	\%100
68	M23	X	002	. 002	0	\%3.3
69	M24	X	002	002	0	\%100
70	M25	X	. 002	. 002	0	\%. 1
71	M26	X	002	002	0	\%2.8
72	M27	X	002	. 002	0	\%. 1
73	M28	X	002	. 002	0	\%3.3
74	M29	X	. 002	. 002	0	\%100
75	M30	X	. 002	. 002	0	\%2.8
76	M31	X	001	. 001	0	\%100
77	M32	X	. 001	. 001	0	\%100
78	M33	X	0	0	0	\%100
79	M37	X	001	001	0	\%100
80	M38	X	. 002	. 002	0	\%100
81	M39	X	0	0	0	\%100
82	M23	X	. 002	. 002	\%96.7	\%100
83	M25	X	002	002	\%99.9	\%100
84	M26	X	. 002	. 002	\%97.2	\%100
85	M27	X	. 002	. 002	\%99.9	\%100
86	M28	X	. 002	. 002	\%96.7	\%100
87	M30	X	. 002	. 002	\%97.2	\%100

Member Distributed Loads (BLC 23 : Ice Wind Members (60 Deg))

	Member Label	Direction	Start Magnitude[kft, F., ksf]	End Magnitude[k/ft,F.ksf]	Start Location[ft.,	End Location[ft,\%]
1	M1	Z	-. 001	-. 001	0	\%100
2	M2	Z	-. 001	-. 001	0	\%100
3	M3	Z	-. 002	-. 002	0	\%100
4	M4	Z	-. 002	-. 002	0	\%100
5	M5	Z	0	0	0	\%100
6	M6	Z	0	0	0	\%100
7	M7	Z	-. 003	-. 003	0	\%100
8	M8	Z	-. 001	-. 001	0	\%100
9	M9	Z	-. 002	-. 002	0	\%100
10	M10	Z	-. 001	-. 001	0	\%100
11	M11	Z	-. 001	-. 001	0	\%100
12	M12	Z	-. 002	-. 002	0	\%100
13	M13	Z	-. 001	-. 001	0	\%100
14	M14	Z	-. 001	-. 001	0	\%100
15	M15	Z	-. 002	-. 002	0	\%100
16	M16	Z	-. 001	-. 001	0	\%100
17	M17	Z	-. 001	-. 001	0	\%100
18	M18	Z	-. 001	-. 001	0	\%100
19	M19	Z	-. 002	-. 002	0	\%. 1
20	M20	Z	-. 002	-. 002	0	\%2.8
21	M21	Z	-. 002	-. 002	0	\%3.3
22	M22	Z	-. 002	-. 002	0	\%100
23	M23	Z	-. 002	-. 002	0	\%3.3

Company

Member Distributed Loads (BLC 23 : Ice Wind Members (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft.F.ksfl	End MagnitudeIkft.F.ksfl	Start Locationft	End Location[ft.\%]
24	M24	Z	-. 002	-. 002	0	\%100
25	M25	Z	-. 002	-. 002	0	\%. 1
26	M26	Z	-. 002	-. 002	0	\%2.8
27	M27	Z	-. 002	-. 002	0	\%. 1
28	M28	Z	-. 002	-. 002	0	\%3.3
29	M29	Z	-. 002	-. 002	0	\%100
30	M30	Z	-. 002	-. 002	0	\%2.8
31	M31	Z	-. 001	-. 001	0	\%100
32	M32	Z	-. 001	-. 001	0	\%100
33	M33	Z	0	0	0	\%100
34	M37	Z	-. 001	-. 001	0	\%100
35	M38	Z	-. 002	-. 002	0	\%100
36	M39	Z	-. 001	-. 001	0	\%100
37	M19	Z	-. 002	-. 002	\%99.9	\%100
38	M20	Z	-. 002	-. 002	\%97.2	\%100
39	M21	Z	-. 002	-. 002	\%96.7	\%100
40	M23	Z	-. 002	-. 002	\%96.7	\%100
41	M25	Z	-. 002	-. 002	\%99.9	\%100
42	M26	Z	-. 002	-. 002	\%97.2	\%100
43	M27	Z	-. 002	-. 002	\%99.9	\%100
44	M28	Z	-. 002	-. 002	\%96.7	\%100
45	M30	Z	-. 002	-. 002	\%97.2	\%100
46	M1	X	. 002	. 002	0	\%100
47	M2	X	. 001	. 001	0	\%100
48	M3	X	. 004	004	0	\%100
49	M4	X	. 003	. 003	0	\%100
50	M5	X	. 001	. 001	0	\%100
51	M6	X	. 001	001	0	\%100
52	M7	X	. 004	. 004	0	\%100
53	M8	X	. 001	. 001	0	\%100
54	M9	X	. 003	. 003	0	\%100
55	M10	X	. 002	002	0	\%100
56	M11	X	. 002	. 002	0	\%100
57	M12	X	. 003	. 003	0	\%100
58	M13	X	002	. 002	0	\%100
59	M14	X	. 002	. 002	0	\%100
60	M15	X	. 003	. 003	0	\%100
61	M16	X	. 001	. 001	0	\%100
62	M17	X	. 002	. 002	0	\%100
63	M18	X	. 002	. 002	0	\%100
64	M19	X	. 003	. 003	0	\%100
65	M20	X	. 003	003	0	\%100
66	M21	X	. 003	. 003	0	\%100
67	M22	X	. 003	003	0	\%100
68	M23	X	. 003	. 003	0	\%3.3
69	M24	X	. 003	. 003	0	\%100
70	M25	X	. 003	. 003	0	\%. 1
71	M26	X	. 003	. 003	0	\%2.8
72	M27	X	. 003	. 003	0	\%. 1
73	M28	X	. 003	. 003	0	\%3.3
74	M29	X	. 003	003	0	\%100
75	M30	X	. 003	. 003	0	\%2.8
76	M31	X	. 002	002		\%100
77	M32	X	. 002	002	0	\%100
78	M33	X	. 001	. 001	0	\%100
79	M37	X	. 003	003	0	\%100
80	M38	X	. 003	. 003	0	\%100

Member Distributed Loads (BLC 23 : Ice Wind Members (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft,	End Location[ft,\%]
81	M39	X	001	. 001	0	\%100
82	M23	X	003	003	\%96.7	\%100
83	M25	X	003	003	\%99.9	\%100
84	M26	X	003	003	\%97.2	\%100
85	M27	X	003	. 003	\%99.9	\%100
86	M28	X	003	003	\%96.7	\%100
87	M30	X	003	003	\%97.2	\%100

Member Distributed Loads (BLC 24 : Ice Wind Members (90 Deg))

	Member Label	Direction	Start Magnitude[kft.F. .ksf]	End Magnitude[k/ft.F.ksf]	Start Locationft	.End Location[ft.\%]
1	M1	Z	0	0	0	\%100
2	M2	Z	0	0	0	\%100
3	M3	Z	0	0	0	\%100
4	M4	Z	0	0	0	\%100
5	M5	Z	0	0	0	\%100
6	M6	Z	0	0	0	\%100
7	M7	Z	0	0	0	\%100
8	M8	Z	0	0	0	\%100
9	M9	Z	0	0	0	\%100
10	M10	Z	0	0	0	\%100
11	M11	Z	0	0	0	\%100
12	M12	Z	0	0	0	\%100
13	M13	Z	0	0	0	\%100
14	M14	Z	0	0	0	\%100
15	M15	Z	0	0	0	\%100
16	M16	Z	0	0	0	\%100
17	M17	Z	0	0	0	\%100
18	M18	Z	0	0	0	\%100
19	M19	Z	0	0	0	\%. 1
20	M20	Z	0	0	0	\%2.8
21	M21	Z	0	0	0	\%3.3
22	M22	Z	0	0	0	\%100
23	M23	Z	0	0	0	\%3.3
24	M24	Z	0	0	0	\%100
25	M25	Z	0	0	0	\%. 1
26	M26	Z	0	0	0	\%2.8
27	M27	Z	0	0	0	\%. 1
28	M28	Z	0	0	0	\%3.3
29	M29	Z	0	0	0	\%100
30	M30	Z	0	0	0	\%2.8
31	M31	Z	0	0	0	\%100
32	M32	Z	0	0	0	\%100
33	M33	Z	0	0	0	\%100
34	M37	Z	0	0	0	\%100
35	M38	Z	0	0	0	\%100
36	M39	Z	0	0	0	\%100
37	M19	Z	0	0	\%99.9	\%100
38	M20	Z	0	0	\%97.2	\%100
39	M21	Z	0	0	\%96.7	\%100
40	M23	Z	0	0	\%96.7	\%100
41	M25	Z	0	0	\%99.9	\%100
42	M26	Z	0	0	\%97.2	\%100
43	M27	Z	0	0	\%99.9	\%100
44	M28	Z	0	0	\%96.7	\%100
45	M30	Z	0	0	\%97.2	\%100
46	M1	X	004	004	0	\%100

Company

Member Distributed Loads (BLC 24 : Ice Wind Members (90 Deg))(Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft,	End Location[ft, \%]
47	M2	X	. 003	. 003	0	\%100
48	M3	X	003	003	0	\%100
49	M4	X	003	003	0	\%100
50	M5	X	001	001	0	\%100
51	M6	X	001	001	0	\%100
52	M7	X	004	004	0	\%100
53	M8	X	004	004	0	\%100
54	M9	X	002	002	0	\%100
55	M10	X	002	002	0	\%100
56	M11	X	003	003	0	\%100
57	M12	X	003	003	0	\%100
58	M13	X	. 002	002	0	\%100
59	M14	X	. 003	. 003	0	\%100
60	M15	X	003	003	0	\%100
61	M16	X	. 002	002	0	\%100
62	M17	X	003	003	0	\%100
63	M18	X	. 003	. 003	0	\%100
64	M19	X	. 004	. 004	0	\%100
65	M20	X	004	004	0	\%100
66	M21	X	. 004	004	0	\%100
67	M22	X	. 003	003	0	\%100
68	M23	X	004	004	0	\%3.3
69	M24	X	. 003	. 003	0	\%100
70	M25	X	004	004	0	\%. 1
71	M26	X	. 004	004	0	\%2.8
72	M27	X	004	004	0	\%. 1
73	M28	X	. 004	. 004	0	\%3.3
74	M29	X	. 003	. 003	0	\%100
75	M30	X	. 004	. 004	0	\%2.8
76	M31	X	002	002	0	\%100
77	M32	X	. 001	001	0	\%100
78	M33	X	. 001	001	0	\%100
79	M37	X	. 002	. 002	0	\%100
80	M38	X	. 003	003	0	\%100
81	M39	X	002	002	0	\%100
82	M23	X	004	004	\%96.7	\%100
83	M25	X	. 004	004	\%99.9	\%100
84	M26	X	004	004	\%97.2	\%100
85	M27	X	. 004	004	\%99.9	\%100
86	M28	X	004	004	\%96.7	\%100
87	M30	X	004	004	\%97.2	\%100

Member Distributed Loads (BLC 25 : Ice Wind Members (120 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F.ksf]	End Magnitude[k/ft,F.ksf]	Start Location [ft,	End Location[ft, \%]
1	M1	Z	001	001	0	\%100
2	M2	Z	002	002	0	\%100
3	M3	Z	001	001	0	\%100
4	M4	Z	002	002	0	\%100
5	M5	Z	0	0	0	\%100
6	M6	Z	0	0	0	\%100
7	M7	Z	. 001	. 001	0	\%100
8	M8	Z	003	003	0	\%100
9	M9	Z	002	002	0	\%100
10	M10	Z	. 001	. 001	0	\%100
11	M11	Z	002	002	0	\%100
12	M12	Z	001	001	0	\%100

Company

Member Distributed Loads (BLC 25 : Ice Wind Members (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F.ksf]	End Magnitude[k/ft,F, ksf]	Start Location[ft	End Location[ft,\%]
13	M13	Z	. 001	. 001	0	\%100
14	M14	Z	001	001	0	\%100
15	M15	Z	. 001	. 001	0	\%100
16	M16	Z	001	001	0	\%100
17	M17	Z	. 002	002	0	\%100
18	M18	Z	. 001	001	0	\%100
19	M19	Z	. 002	002	0	\%. 1
20	M20	Z	. 002	002	0	\%2.8
21	M21	Z	. 002	002	0	\%3.3
22	M22	Z	. 002	002	0	\%100
23	M23	Z	. 002	002	0	\%3.3
24	M24	Z	002	002	0	\%100
25	M25	Z	. 002	. 002	0	\%. 1
26	M26	Z	002	002	0	\%2.8
27	M27	Z	. 002	002	0	\%. 1
28	M28	Z	002	002	0	\%3.3
29	M29	Z	. 002	002	0	\%100
30	M30	Z	002	002	0	\%2.8
31	M31	Z	. 001	. 001	0	\%100
32	M32	Z	0	0	0	\%100
33	M33	Z	. 001	. 001	0	\%100
34	M37	Z	. 001	001	0	\%100
35	M38	Z	. 002	. 002	0	\%100
36	M39	Z	. 001	001	0	\%100
37	M19	Z	002	002	\%99.9	\%100
38	M20	Z	002	002	\%97.2	\%100
39	M21	Z	. 002	. 002	\%96.7	\%100
40	M23	Z	002	002	\%96.7	\%100
41	M25	Z	. 002	. 002	\%99.9	\%100
42	M26	Z	. 002	002	\%97.2	\%100
43	M27	Z	. 002	002	\%99.9	\%100
44	M28	Z	. 002	. 002	\%96.7	\%100
45	M30	Z	. 002	. 002	\%97.2	\%100
46	M1	X	. 002	002	0	\%100
47	M2	X	004	004	0	\%100
48	M3	X	. 001	001	0	\%100
49	M4	X	. 003	003	0	\%100
50	M5	X	. 001	. 001	0	\%100
51	M6	X	. 001	001	0	\%100
52	M7	X	001	001	0	\%100
53	M8	X	. 004	. 004	0	\%100
54	M9	X	. 003	003	0	\%100
55	M10	X	. 002	002	0	\%100
56	M11	X	. 003	. 003	0	\%100
57	M12	X	. 002	. 002	0	\%100
58	M13	X	. 001	001	0	\%100
59	M14	X	. 002	. 002	0	\%100
60	M15	X	. 002	002	0	\%100
61	M16	X	. 002	002	0	\%100
62	M17	X	. 003	003	0	\%100
63	M18	X	. 002	. 002	0	\%100
64	M19	X	. 003	. 003	0	\%100
65	M20	X	. 003	. 003	0	\%100
66	M21	X	003	003	0	\%100
67	M22	X	. 003	. 003	0	\%100
68	M23	X	003	003	0	\%3.3
69	M24	X	. 003	. 003	0	\%100

Company
MasTec
June 20, 2019
Designer
Job Number
NDN
12:56 PM
Model Name

Member Distributed Loads (BLC 25 : Ice Wind Members (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft.F.ksfl	End Magnitude[k/ft.F.ksfl	Start Locationfft..	.End Location[ft.\%]
70	M25	X	. 003	003	0	\%. 1
71	M26	X	003	003	0	\%2.8
72	M27	X	003	003	0	\%. 1
73	M28	X	003	003	0	\%3.3
74	M29	X	003	003	0	\%100
75	M30	X	003	003	0	\%2.8
76	M31	X	002	002	0	\%100
77	M32	X	001	001	0	\%100
78	M33	X	002	002	0	\%100
79	M37	X	001	001	0	\%100
80	M38	X	003	003	0	\%100
81	M39	X	. 003	003	0	\%100
82	M23	X	. 003	003	\%96.7	\%100
83	M25	X	003	003	\%99.9	\%100
84	M26	X	003	003	\%97.2	\%100
85	M27	X	003	003	\%99.9	\%100
86	M28	X	. 003	. 003	\%96.7	\%100
87	M30	X	003	003	\%97.2	\%100

Member Distributed Loads (BLC 26 : Ice Wind Members (150 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F, ksf]	End Magnitude[k/ft.F.ksf]	Start Location[ft.,	End Location[ft,\%]
1	M1	Z	. 001	. 001	0	\%100
2	M2	Z	005	005	0	\%100
3	M3	Z	. 002	. 002	0	\%100
4	M4	Z	. 003	. 003	0	\%100
5	M5	Z	. 001	001	0	\%100
6	M6	Z	001	. 001	0	\%100
7	M7	Z	0	0	0	\%100
8	M8	Z	. 003	003	0	\%100
9	M9	Z	. 005	005	0	\%100
10	M10	Z	. 003	003	0	\%100
11	M11	Z	. 004	004	0	\%100
12	M12	Z	. 002	002	0	\%100
13	M13	Z	0	0	0	\%100
14	M14	Z	. 001	001	0	\%100
15	M15	Z	. 002	. 002	0	\%100
16	M16	Z	. 002	002	0	\%100
17	M17	Z	. 004	004	0	\%100
18	M18	Z	. 001	001	0	\%100
19	M19	Z	. 003	003	0	\%. 1
20	M20	Z	. 003	. 003	0	\%2.8
21	M21	Z	. 003	003	0	\%3.3
22	M22	Z	. 003	003	0	\%100
23	M23	Z	. 003	. 003	0	\%3.3
24	M24	Z	. 003	. 003	0	\%100
25	M25	Z	. 003	. 003	0	\%. 1
26	M26	Z	. 003	003	0	\%2.8
27	M27	Z	. 003	. 003	0	\%. 1
28	M28	Z	. 003	. 003	0	\%3.3
29	M29	Z	. 003	. 003	0	\%100
30	M30	Z	. 003	. 003	0	\%2.8
31	M31	Z	. 003	. 003	0	\%100
32	M32	Z	0	0	0	\%100
33	M33	Z	. 001	. 001	0	\%100
34	M37	Z	. 001	. 001	0	\%100
35	M38	Z	. 004	004	0	\%100

Company

Member Distributed Loads (BLC 26 : Ice Wind Members (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksfl	End Magnitude[k/ft.F.ksfl	Start Locationfft,	End Location[ft.\%]
36	M39	Z	002	. 002	0	\%100
37	M19	Z	003	003	\%99.9	\%100
38	M20	Z	003	003	\%97.2	\%100
39	M21	Z	003	003	\%96.7	\%100
40	M23	Z	003	003	\%96.7	\%100
41	M25	Z	003	003	\%99.9	\%100
42	M26	Z	003	003	\%97.2	\%100
43	M27	Z	003	003	\%99.9	\%100
44	M28	Z	003	003	\%96.7	\%100
45	M30	Z	003	003	\%97.2	\%100
46	M1	X	0	0	0	\%100
47	M2	X	. 003	003	0	\%100
48	M3	X	. 001	001	0	\%100
49	M4	X	002	002	0	\%100
50	M5	X	0	0	0	\%100
51	M6	X	0	0	0	\%100
52	M7	X	0	0	0	\%100
53	M8	X	. 002	002	0	\%100
54	M9	X	003	003	0	\%100
55	M10	X	. 002	002	0	\%100
56	M11	X	002	002	0	\%100
57	M12	X	. 001	001	0	\%100
58	M13	X	0	0	0	\%100
59	M14	X	0	0	0	\%100
60	M15	X	. 001	001	0	\%100
61	M16	X	001	001	0	\%100
62	M17	X	. 002	002	0	\%100
63	M18	X	0	0	0	\%100
64	M19	X	002	002	0	\%100
65	M20	X	002	002	0	\%100
66	M21	X	002	002	0	\%100
67	M22	X	002	002	0	\%100
68	M23	X	. 002	. 002	0	\%3.3
69	M24	X	. 002	. 002	0	\%100
70	M25	X	002	002	0	\%. 1
71	M26	X	002	002	0	\%2.8
72	M27	X	002	002	0	\%. 1
73	M28	X	002	002	0	\%3.3
74	M29	X	. 002	002	0	\%100
75	M30	X	. 002	. 002	0	\%2.8
76	M31	X	001	001	0	\%100
77	M32	X	0	0	0	\%100
78	M33	X	001	001	0	\%100
79	M37	X	0	0	0	\%100
80	M38	X	. 002	. 002	0	\%100
81	M39	X	001	001	0	\%100
82	M23	X	. 002	002	\%96.7	\%100
83	M25	X	002	002	\%99.9	\%100
84	M26	X	. 002	. 002	\%97.2	\%100
85	M27	X	. 002	. 002	\%99.9	\%100
86	M28	X	. 002	002	\%96.7	\%100
87	M30	X	. 002	002	\%97.2	\%100

Company

Member Area Loads

$\begin{array}{|cccccc}\text { Joint A } & \text { Joint B } & \text { Joint C } & \text { Joint D } & \text { Direction } & \text { Distribution }\end{array}$ Magnitude[ksf] $]$

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut.	Area(Me..	Surface(...
1	Dead	None		-1			15			
2	Ice Dead	None					15	36		
3	Full Wind Antenna (0 Deq)	None					18			
4	Full Wind Antenna (30 Deg)	None					42			
5	Full Wind Antenna (60 Deg)	None					42			
6	Full Wind Antenna (90 Deg)	None					42			
7	Full Wind Antenna (120 Deg)	None					40			
8	Full Wind Antenna (150 Deg)	None					42			
9	Full Wind Members (0 Deg)	None						81		
10	Full Wind Members (30 Deg)	None						81		
11	Full Wind Members (60 Deg)	None						81		
12	Full Wind Members (90 Deg)	None						81		
13	Full Wind Members (120 Deg)	None						81		
14	Full Wind Members (150 Deg)	None						81		
15	Ice Wind Antenna (0 Deq)	None					18			
16	Ice Wind Antenna (30 Deg)	None					42			
17	Ice Wind Antenna (60 Deg)	None					42			
18	Ice Wind Antenna (90 Deg)	None					42			
19	Ice Wind Antenna (120 Deg)	None					40			
20	Ice Wind Antenna (150 Deg)	None					40			
21	Ice Wind Members (0 Deg)	None						87		
22	Ice Wind Members (30 Deg)	None						87		
23	Ice Wind Members (60 Deg)	None						87		
24	Ice Wind Members (90 Deg)	None						87		
25	Ice Wind Members (120 Deg)	None						87		
26	Ice Wind Members (150 Deg)	None						87		
27	Seismic Antenna (0 Deg)	None					15			
28	Seismic Antenna (90 Deg)	None					15			
29	Seismic Members (0 Deq)	None		-. 054	-. 135					
30	Seismic Members (30 Deg)	None	067	-. 054	-. 116					
31	Seismic Members (60 Deq)	None	116	-. 054	-. 067					
32	Seismic Members (90 Deg)	None	135	-. 054	-8.239e-...					
33	Seismic Members (120 Deg)	None	116	-. 054	. 067					
34	Seismic Members (150 Deg)	None	067	-. 054	116					
35	Seismic Members (180 Deg)	None	1.648e-17	-. 054	. 135					
36	Seismic Members (210 Deg)	None	-. 067	-. 054	116					
37	Seismic Members (240 Deg)	None	-. 116	-. 054	067					
38	Seismic Members (270 Deg)	None	-. 135	-. 054	2.472e-17					
39	Seismic Members (300 Deg)	None	-. 116	-. 054	-. 067					
40	Seismic Members (330 Deg)	None	-. 067	-. 054	-. 116					
41	Seismic Vertical Antennas	None					15			
42	Man 1 (500 lbs)	None				1				
43	Man 2 (500 lbs)	None				1				
44	Man 3 (500 lbs)	None				1				
45	Man 4 (250 lbs)	None				1				
46	Man 5 (250 lbs)	None				1				
47	Man 6 (250 lbs)	None				1				

	Description S			B...		B.								B...									
1	1.4D	Yes	Y	1	1.4																		
2	$1.2 \mathrm{D}+1.0 \mathrm{~W} 0^{\circ}$	Yes	Y	1	1.2	3	1	9	1														
3	$1.2 \mathrm{D}+1.0 \mathrm{~W} 30^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	4	1	10	1														
4	$1.2 \mathrm{D}+1.0 \mathrm{~W} 60^{\circ}$ Y	Yes	Y	1	1.2	5	1	11	1														
5	$1.2 \mathrm{D}+1.0 \mathrm{~W} 90^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	6	1	12	1														
6	$1.2 \mathrm{D}+1.0 \mathrm{~W} 120^{\circ}$	Yes	Y	1	1.2	7	1	13	1														
7	$1.2 \mathrm{D}+1.0 \mathrm{~W} 150^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	8	1	14	1														
8	$1.2 \mathrm{D}+1.0 \mathrm{~W} 180^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	3	-1	9	-1														
9	$1.2 \mathrm{D}+1.0 \mathrm{~W} 210^{\circ}$	Yes	Y	1	1.2	4	-1	10	-1														
10	$1.2 \mathrm{D}+1.0 \mathrm{~W} 240^{\circ}$	Yes	Y	1	1.2	5	-1	11	-1														
11	$1.2 \mathrm{D}+1.0 \mathrm{~W} 270^{\circ}$	Yes	Y	1	1.2	6	-1	12	-1														
12	$1.2 \mathrm{D}+1.0 \mathrm{~W} 300^{\circ}$	Yes	Y	1	1.2	7	-1	13	-1														
13	$1.2 \mathrm{D}+1.0 \mathrm{~W} 330^{\circ}$	Yes	Y	1	1.2	8	-1	14	-1														
14	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 0^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	15	1	21	1												
15	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 30^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	16	1	22	1												
16	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 60^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	17	1	23	1												
17	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 90^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	18	1	24	1												
18	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 120^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	19	1	25	1												
19	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 150^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	20	1	26	1												
20	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 180^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	15	-1	21	-1												
21	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 210^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	16	-1	22	-1												
22	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 240^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	17	-1	23	-1												
23	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 270^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	18	-1	24	-1												
24	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 300^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	19	-1	25	-1												
25	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 330^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	20	-1	26	-1												
26	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 0^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	3	. 066	9	. 066	42	1.5												
27	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 30^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	4	. 066	10	. 066	42	1.5												
28	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 60^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	5	. 066	11	. 066	42	1.5												
29	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 90^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	6	. 066	12	. 066	42	1.5												
30	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 120^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	7	. 066	13	. 066	42	1.5												
31	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} \mathrm{150}{ }^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	8	. 066	14	. 066	42	1.5												
32	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 180^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	3	-.0...	9	-.0...	42	1.5												
33	$1.2 \mathrm{D}+1.5 \mathrm{Lm}-1+1.0 \mathrm{Wm} 210^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	4	-.0...	10	-.0...	42	1.5												
34	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 240^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	5	-.0...	11	-.0...	42	1.5												
35	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 270^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	6	-.0...	12	-.0...	42	1.5												
36	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 300^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	7	-.0...	13	-.0...	42	1.5												
37	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 330^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	8	-.0...	14	-.0...	42	1.5												
38	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 0^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	3	. 066	9	. 066	43	1.5												
39	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 30^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	4	. 066	10	. 066	43	1.5												
40	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 60^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	5	. 066	11	. 066	43	1.5												
41	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 90^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	6	. 066	12	. 066	43	1.5												
42	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 120^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	7	. 066	13	. 066	43	1.5												
43	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 150^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	8	. 066	14	. 066	43	1.5												
44	$1.2 \mathrm{D}+1.5 \mathrm{Lm}=2+1.0 \mathrm{Wm} 180^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	3	-.0...	9	-.0...	43	1.5												
45	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 210^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	4	-.0...	10	-.0...	43	1.5												
46	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 240^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	5	-.0...	11	-.0...	43	1.5												
47	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 270^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	6	-.0...	12	-.0...	43	1.5												
48	$1.2 \mathrm{D}+1.5 \mathrm{Lm}=2+1.0 \mathrm{Wm} 300^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	7	-.0...	13	-.0...	43	1.5												
49	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 330^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	8	-.0...	14	-.0...	43	1.5												
50	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _3+1.0Wm $0^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	3	. 066	9	. 066	44	1.5												
51	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _3 + 1.0Wm $30^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	4	. 066	10	. 066	44	1.5												
52	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _3+1.0 \mathrm{Wm} 60^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	5	. 066	11	. 066	44	1.5												
53	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _3+1.0 \mathrm{Wm} 90^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	6	. 066	12	. 066	44	1.5												
54	$1.2 \mathrm{D}+1.5 \mathrm{Lm}=3+1.0 \mathrm{Wm} 120^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	7	. 066	13	. 066	44	1.5												
55	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _3+1.0 \mathrm{Wm} \mathrm{150}{ }^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	8	. 066	14	. 066	44	1.5												
56	$1.2 \mathrm{D}+1.5 \mathrm{Lm}=3+1.0 \mathrm{Wm} 180^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	3	-.0...	9	-.0...	44	1.5												

Company Designer Job Number

Load Combinations (Continued)

	Description			S... B.	Fa.									B.	Fa...	B...	Fa...	B...	Fa..		Fa..	B... Fa...
57	1.2D + 1.5Lm_3 + $1.0 \mathrm{Wm} 210^{\circ}$	Yes	Y	1	1.2	4	-.0...	10	-.0...	44	1.5											
58	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \mathrm{Wm} \mathrm{240}$	Yes	Y	1	1.2	5	-.0...	11	-.0..	44	1.5											
59	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \mathrm{Wm} 270^{\circ}$	Yes	Y	1	1.2	6	-.0...	12	-.0..	44	1.5											
60	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \mathrm{Wm} 300^{\circ}$	Yes	Y	1	1.2	7	-.0...	13	-.0..	44	1.5											
61	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _3 + 1.0Wm 330°	Yes	Y	1	1.2	8	-.0...	14	-.0..	44	1.5											
62	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ - 10°	Yes	Y	1	1.2	45	1.5															
63	$1.2 \mathrm{D}+1.5 \mathrm{LV}-130^{\circ}$	Yes	Y	1	1.2	45	1.5															
64	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-160^{\circ}$	Yes	Y	1	1.2	45	1.5															
65	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-190^{\circ}$	Yes	Y	1	1.2	45	1.5															
66	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ - 1120°	Yes	Y	1	1.2	45	1.5															
67	$1.2 \mathrm{D}+1.5 \mathrm{LV}-1150^{\circ}$	Yes	Y	1	1.2	45	1.5															
68	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ - 1180°	Yes	Y	1	1.2	45	1.5															
69	$1.2 \mathrm{D}+1.5 \mathrm{LV}-1210^{\circ}$	Yes	Y	1	1.2	45	1.5															
70	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ - 1240°	Yes	Y	1	1.2	45	1.5															
71	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-1270^{\circ}$	Yes	Y	1	1.2	45	1.5															
72	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-1300^{\circ}$	Yes	Y	1	1.2	45	1.5															
73	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 1330^{\circ}$	Yes	Y	1	1.2	45	1.5															
74	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 20^{\circ}$	Yes	Y	1	1.2	46	1.5															
75	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 230^{\circ}$	Yes	Y	1	1.2	46	1.5															
76	$1.2 \mathrm{D}+1.5 \mathrm{Lv} _260^{\circ}$	Yes	Y	1	1.2	46	1.5															
77	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 290^{\circ}$	Yes	Y	1	1.2	46	1.5															
78	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ 2 2120°	Yes	Y	1	1.2	46	1.5															
79	$1.2 \mathrm{D}+1.5 \mathrm{LV} 2150^{\circ}$	Yes	Y	1	1.2	46	1.5															
80	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ 2 2180°	Yes	Y	1	1.2	46	1.5															
81	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2210^{\circ}$	Yes	Y	1	1.2	46	1.5															
82	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ 2 240°	Yes	Y	1	1.2	46	1.5															
83	$1.2 \mathrm{D}+1.5 \mathrm{LV} 2270^{\circ}$	Yes	Y	1	1.2	46	1.5															
84	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 22300^{\circ}$	Yes	Y	1	1.2	46	1.5															
85	$1.2 \mathrm{D}+1.5 \mathrm{LV} 2330^{\circ}$	Yes	Y	1	1.2	46	1.5															
86	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ _ 30°	Yes	Y	1	1.2	47	1.5															
87	$1.2 \mathrm{D}+1.5 \operatorname{Lv} 330^{\circ}$	Yes	Y	1	1.2	47	1.5															
88	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ 3 360°	Yes	Y	1	1.2	47	1.5															
89	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 390^{\circ}$	Yes	Y	1	1.2	47	1.5															
90	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3120^{\circ}$	Yes	Y	1	1.2	47	1.5															
91	$1.2 \mathrm{D}+1.5 \mathrm{LV} 3150^{\circ}$	Yes	Y	1	1.2	47	1.5															
92	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3180^{\circ}$	Yes	Y	1	1.2	47	1.5															
93	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3210^{\circ}$	Yes	Y	1	1.2	47	1.5															
94	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3240^{\circ}$	Yes	Y	1	1.2	47	1.5															
95	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-3270^{\circ}$	Yes	Y	1	1.2	47	1.5															
96	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 33300^{\circ}$	Yes	Y	1	1.2	47	1.5															
97	$1.2 \mathrm{D}+1.5 \mathrm{LV}-3330^{\circ}$	Yes	Y	1	1.2	47	1.5															
98	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 0^{\circ}$	Yes	Y	1	1.2	27	1	28		29	1	40	1									
99	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 30^{\circ}$	Yes	Y	1	1.2	27	866	28	. 5	30	1	40	1									
100	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 60^{\circ}$	Yes	Y	1	1.2	27	. 5	28	. 866	31	1	40	1									
101	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} \mathrm{90}$	Yes	Y	1	1.2	27		28	1	32	1	40	1									
102	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 120^{\circ}$	Yes	Y	1	1.2	27	-. 5	28	. 866	33	1	40	1									
103	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 150^{\circ}$	Yes	Y	1	1.2	27	-.8...	28	. 5	34	1	40	1									
104	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 180^{\circ}$	Yes	Y	1	1.2	27	-1	28		35	1	40	1									
105	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 210^{\circ}$	Yes	Y	1	1.2	27	-.8...	28	-. 5	36	1	40	1									
106	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 240^{\circ}$	Yes	Y	1	1.2	27	-. 5	28	-.8..	37	1	40	1									
107	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 270^{\circ}$	Yes	Y	1	1.2	27		28	-1	38	1	40	1									
108	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 300^{\circ}$	Yes	Y	1	1.2	27	. 5	28	-.8...	39	1	40	1									
109	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 330^{\circ}$	Yes	Y	1	1.2	27	866	28	-. 5	40	1	40	1									

Envelope Joint Reactions

Joint			X [k]	LC Y [k]		LC Z [k]		LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N3	max	1.613	10	2.49	22	1.031	4	-. 235	4	666	13	-. 358	
2		min	-1.754	4	322	4	-. 949	10	-3.54	22	-. 665	7	-6.32	22
3	N1	max	744	11	2.474	14	1.781	2	7.183	14	558	5	332	5
4		min	-. 744	5	355	8	-1.944	8	. 559	8	-. 556	11	-. 271	11
5	N5	max	1.83	12	2.49	18	1.134	2	-. 214	12	. 684	9	6.231	18
6		min	-1.689	6	322	12	-1.053	8	-3.696	19	-. 683	3	372	12
7	Totals:	max	3.83	11	7.022	14	3.658	2						
8		min	-3.83	5	2.608	8	-3.658	8						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Mem...	Shape	Code Check	Loc[ft]	LC	Shear C.	Loc[ft]	Dir	LC	phi*...phi**...phi*...phi*..	Cb	Eqn
1	M1	HSS4X4X3	. 571	0	14	. 095	. 167	V	16	95.2..106...12.6..12.6.	.2.237	H1
2	M2	HSS4X4X3	. 575	0	22	. 096	0	y	24	95.2...106...12.6...12.6.	.2.236	H1.
3	M3	HSS4X4X3	. 579	0	18	. 094	167	V	20	95.2..106...12.6..12.6.	.2.236	H1..
4	M7	C5X6.7	468	12	21	. 276	3.75	y	24	29.6..63.8..1.6048.226	1	H1..
5	M8	C5X6.7	466	12	20	. 273	3.75	V	16	29.6..63.8..1.6048.226	1	H1..
6	M9	C5X6.7	475	12	15	275	3.75	y	25	29.6..63.8..1.6048.226	1	H1..
7	M10	L2x2x3	306	1.167	10	. 052	1.167	z	15	17.8.23.3...5581.239	1.432	H2..
8	M11	L3x1.75x4	120	0	3	. 027	1.771	z	14	30.9.36.45.6552.324	1.656	H2.
9	M12	L3x1.75x4	127	1.771	5	. 025	0	z	14	30.9.36.45.6552.324	1.658	H2..
10	M13	L2x2x3	306	1.167	6	. 051	1.167	y	23	17.8.23.3... 5581.239	1.438	H2.
11	M14	L3x1.75x4	153	1.771	13	. 025	0	z	22	30.9.36.45.6552.324	1.661	H2.
12	M15	L3x1.75x4	140	0	7	. 027	1.771	z	22	30.9.36.45.6552.324	1.656	H2..
13	M16	L2x2x3	. 307	1.167	2	. 051	1.167	V	19	17.8..23.3... 5581.239	1.436	H2..
14	M17	L3x1.75×4	155	1.771	9	. 025	0	z	18	30.9.36.45.6552.324	1.658	H 2
15	M18	L3x1.75x4	145	0	3	. 027	1.771	Z	18	30.9.36.45.6552.324	1.661	H2..
16	M19	PIPE 2.0	292	4.618	8	. 044	4.618		9	19.8.32.131.8721.872	2.933	H1
17	M20	PIPE 2.0	284	3.958	11	. 067	3.958		13	23.8.32.131.8721.872	1.668	H1..
18	M21	PIPE_2.0	288	3.958	17	. 070	3.958		6	23.8.32.131.8721.872	1.719	H1..
19	M22	PIPE 2.0	261	6.456	5	. 061	6.456		9	11.4.32.131.8721.872	3.551	H1..
20	M23	PIPE_2.0	278	3.958	14	. 067	1.042		2	23.8.32.131.8721.872	1.715	H1..
21	M24	PIPE 2.0	239	6.456	13	. 058	6.456		5	11.4.32.131.8721.872	4.28	H1.
22	M25	PIPE 2.0	294	4.618	4	. 043	1.715		5	19.8.32.131.8721.872	1.217	H1
23	M26	PIPE 2.0	260	3.958	7	. 064	1.042		9	23.8.32.131.8721.872	1.637	H1..
24	M27	PIPE 2.0	293	4.618	12	. 043	1.715		13	19.8.32.131.8721.872	1.215	H1.
25	M28	PIPE 2.0	280	3.958	22	. 068	2.5		10	23.8.32.131.8721.872	1.708	H1..
26	M29	PIPE_2.0	241	6.456	10	. 058	6.456		13	11.4.32.131.8721.872	2.898	H1.
27	M30	PIPE 2.0	257	3.958	3	. 064	1.042		5	23.8.32.131.8721.872	1.665	H
28	M31	PIPE 2.0	300	11	3	317	11		2	6.83132 .131 .8721 .872	3.425	H3..
29	M32	PIPE 2.0	298	11	11	. 319	11		10	6.831132 .131 .8721 .872	3.469	H3..
30	M33	PIPE 2.0	302	1	12	. 323	1		6	6.831132 .131 .8721 .872	3.616	H3..
31	M37	L2.5x 2.5×4	. 582	1.458	6	. 066	0	z	6	35.9..38.5..1.1142.537	1.618	H2.
32	M38	L2.5x2.5x4	579	1.458	10	. 065	0	Z	10	35.9..38.5..1.1142.537	1.617	H2..
33	M39	L2.5x2.5x4	. 573	0	2	. 065	1.458	y	2	35.9..38.5..1.1142.537	1.602	H2..

APPENDIX D

ADDITIONAL CALCUATIONS

Bolt Calcuations:

Bolt Size:	$5 / 8$	in
\# Bolts:	4	
Plate Width:	8	in
Plate Height:	8	in
Bolt H Gap:	6	in
Bolt V Gap:	6	in
Plate T:	0.75	in
Bolt Grade:	A 325 N	
Fu		
bolt	120	ksi
r:	4.243	in $^{\text {J: }}$
72.000	$\mathrm{in}^{4} / \mathrm{in}^{2}$	
Bolt Area, Normal:	0.307	
Bolt Area, Net Tensile:	0.226	in^{2}

Allowable Shear:	12.4	kip
Allowable Tension:	20.3	kip

Tension Capacity:	35.8%
Shear Capacity:	41.0%
Combined Capacity:	19.9%

Bolt Capacity:	41.0%

Plate Calculations:

Horizontal Member Height:	4	in
Horizontal Member Width:	4	in
Plate Grade:	A36	
Plate Fy:	36	ksi

$\mathrm{Mx}=$	1.752	k^{*} in
$\mathrm{Mz}=$	14.488	k^{*} in

$\mathrm{Zx}=$	1.125	in^{3}
$\mathrm{Zz}=$	1.125	in^{3}

$\varnothing \mathrm{Mpy}(\mathrm{X})=$	36.450	$\mathrm{k}-\mathrm{in}$
$\varnothing \mathrm{Mpx}(\mathrm{X})=$	36.450	$\mathrm{k}-\mathrm{in}$

Address:

No Address at This Location

ASCE 7 Hazards Report

Wind

Results:

Wind Speed:
10-year MRI
25-year MRI
50-year MRI
100-year MRI
Data Source:

117 Vmph
76 Vmph
85 Vmph
90 Vmph
97 Vmph
ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of March 12, 2014

Fri May 172019

Date Accessed:

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class:
D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.253
$\mathrm{~S}_{1}:$	0.07
$\mathrm{~F}_{\mathrm{a}}:$	1.598
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.404
$\mathrm{~S}_{\mathrm{M} 1}:$	0.168

$\mathrm{S}_{\mathrm{DS}}:$	0.269
$\mathrm{~S}_{\mathrm{D} 1}:$	0.112
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.148
$\mathrm{PGA}_{\mathrm{M}}:$	0.222
$\mathrm{~F}_{\mathrm{PGA}}:$	1.505
$\mathrm{I}_{\mathrm{e}}:$	1

Seismic Design Category
 B

Data Accessed:
Date Source:

Fri May 172019
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2.
Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Ice

Results

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
0.75 in .

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Fri May 172019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX E

MODIFICATION DRAWINGS

TECOMMENDATIONS:
ENFALLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED THE EFFICIENCY AND EFFECTIVENESS OF DELLVERING A MI REPORT: - ITIS SUGGESTED TAAT THE GC PROVIDE A MIIIMUM OF 5 BUSIINESS DAYS
NOTICE. PREFERABLY 10 , TO THE MIINSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED.

- THE GC AND MINSPECOR COORDINATE CLOSELY THROUGHOUT THE
ENTIRE PROJECT. - ENTIRE ARONECT.
- WHEN POSSIBLE IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR
ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS.
- IT AMY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR TO
CONOUCTING THE FOUNDATION INSPECTIONS TO ALLOW FOUNDATION

 DISPOSAL WHEN THE MI INSPECTOR IS ON SITE.
CANCELLATION OR DELAYS IN SCHEDULED MI: IF THE GC AND MI INSPECTOR AGREE TO A DATE ON WHHCH THE MI WILL BE

					$\sum_{亏}^{5}$

RAPHAELI. MOHAMED, PE.PENg
SENIOR DIRECTOR OF EEGINEERING
 0

 THE CONTRACTORIS ATTESTING THAT HE HAS SUFFIIIIENT
EXPERIENCE, ABLITY, AND KNWLEOE OF TE WORK TO
EE
PERORMED AND IS PROPERLY LLCENSED AND REGISTERED TO
\qquad THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING ALL

$$
\begin{aligned}
& \text { BE RESOLVED BEFORE THE CONTRACTOR MAY PROCEED WITH THE } \\
& \text { PROJECT. } \\
& \text { ANY WORK PERFORMED WITHOUT A PREFABRICATION MAPPING II } \\
& \text { DONE AT THE RISK OF THE CONTRACTOR ANDIOR FABRICATOR. }
\end{aligned}
$$

 DRAWINGS, THE MANOFACTURER SPECIICATIONS SHALL GOVERN.
 MATERIALS SHALL BE WARRANTED FOR ONE YEAR FROM

 . THE CONTRACTOR IS RESPONSIBLE FOR ALL CONSTRUCTION MEANS THE CONTRACTOR IS RESPONSIBLE FOR ALL CONSTRUCTION MEAN,
AND METHODS. INCLUDING BUT NOT LIMTED TO. ERETON PLANS, CONSTRUCTION OF THE RROPOSED WORS SHALL MEET ANSIIASSE
A10.48, OSHA, AND GENERAL INDUSTRY STANDARDE. ALLRIGGING
PLANS SHALL AD A

MODIFICATION MATERIALS

MODIFICATION MATERIALS				
SCOPE	SHAPE	GRADE	YIELD STRENGTH (Fy)	ULTIMATE STRENGTH (Fu)
ALL	PIPE	A53 GR. B	35 KSI	60 KSI

Exhibit F

Power Density/RF Emissions Report

Transcom Engineering, Inc.

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility
Site ID: CT11071E
Stamford/ MP X32/ Den Rd
70 Guinea Road (Girl Scout Camp)
Stamford, CT 06903
June 12, 2019

Transcom Engineering Project Number: 737001-0153

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 3 . 3 2 \%}$

Transcom Engineering, Inc.

June 12, 2019
T-MOBILE
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 6009

Emissions Analysis for Site: CT11071E - Stamford/ MP X32/ Den Rd

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at 70 Guinea Road (Girl Scout Camp), Stamford, CT, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(\mathrm{~b})(1)-(\mathrm{b})(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the $600 \mathrm{MHz} \& 700 \mathrm{MHz}$ bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Transcom Engineering, Inc.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Transcom Engineering, Inc.

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at 70
Guinea Road (Girl Scout Camp), Stamford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	$1900 \mathrm{MHz}(\mathrm{PCS})$	4	40
LTE	$2100 \mathrm{MHz}($ AWS $)$	2	60
GSM	$1900 \mathrm{MHz}($ PCS $)$	1	15
UMTS	$2100 \mathrm{MHz}($ AWS $)$	1	40
LTE / 5G NR	600 MHz	2	40
LTE	700 MHz	2	20

Table 1: Channel Data Table

Transcom Engineering, Inc.

The following antennas listed in Table 2 were used in the modeling for transmission in the $600 \mathrm{MHz}, 700$ $\mathrm{MHz}, 1900 \mathrm{MHz}(\mathrm{PCS})$ and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	Ericsson AIR32 B66A / B2A	118
A	2	Ericsson AIR21 B2A/B4P	118
A	3	RFS APXVAARR24_43-U-NA20	118
B	1	Ericsson AIR32 B66A / B2A	118
B	2	Ericsson AIR21 B2A/B4P	118
B	3	RFS APXVAARR24_43-U-NA20	118
C	1	Ericsson AIR32 B66A / B2A	118
C	2	Ericsson AIR21 B2A/B4P	118
C	3	RFS APXVAARR24 43-U-NA20	118

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all $\mathbf{2 1 0 0} \mathbf{~ M H z}$ (AWS) UMTS radios are ground mounted the following cable loss values were used. or each ground mounted $\mathbf{2 1 0 0} \mathbf{~ M H z}$ (AWS) UMTS radio there was $\mathbf{1 . 5 8} \mathbf{d B}$ of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for 149 feet of $\mathbf{1 - 5 / 8}$ " coax.

Transcom Engineering, Inc.

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

$\begin{gathered} \text { Antenna } \\ \text { ID } \\ \hline \end{gathered}$	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
$\begin{gathered} \text { Antenna } \\ \text { A1 } \\ \hline \end{gathered}$	Ericsson AIR32 B66A / B2A	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \\ & \hline \end{aligned}$	15.85 / 15.85	6	280	10,768.57	3.08
$\begin{gathered} \hline \text { Antenna } \\ \text { A2 } \\ \hline \end{gathered}$	Ericsson AIR21 B2A/B4P	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	15.9 / 15.9	2	55	1,665.15	0.48
Antenna A3	RFS APXVAARR24_43-U-NA20	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	12.95 / 13.35	4	120	2,443.03	1.66
Sector A Composite MPE\%							5.22
Antenna	Ericsson AIR32 B66A / B2A	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \\ & \hline \end{aligned}$	15.85 / 15.85	6	280	10,768.57	3.08
$\begin{gathered} \text { Antenna } \\ \text { B2 } \end{gathered}$	$\begin{gathered} \text { Ericsson } \\ \text { AIR21 B2A/B4P } \end{gathered}$	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	15.9 / 15.9	2	55	1,665.15	0.48
$\begin{gathered} \text { Antenna } \\ \text { B3 } \\ \hline \end{gathered}$	$\begin{gathered} \text { RFS } \\ \text { APXVAARR24_43-U-NA20 } \end{gathered}$	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	12.95 / 13.35	4	120	2,443.03	1.66
Sector B Composite MPE\%							5.22
Antenna $\mathrm{C} 1$	Ericsson AIR32 B66A / B2A	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \\ & \hline \end{aligned}$	15.85 / 15.85	6	280	10,768.57	3.08
Antenna $\mathrm{C} 2$	$\begin{gathered} \text { Ericsson } \\ \text { AIR21 B2A/B4P } \\ \hline \end{gathered}$	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \\ & \hline \end{aligned}$	15.9 / 15.9	2	55	1,665.15	0.48
Antenna C3	RFS APXVAARR24_43-U-NA20	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	12.95 / 13.35	4	120	2,443.03	1.66
Sector C Composite MPE\%							5.22

Table 3: T-MOBILE Emissions Levels

Transcom Engineering, Inc.

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE\%	
Carrier	MPE\%
T-MOBILE - Max Per Sector Value	$\mathbf{5 . 2 2} \%$
Sprint	2.29%
AT\&T	2.81%
Verizon Wireless	2.81%
Metricom	0.00%
Nextel	0.19%
Site Total MPE \%:	$\mathbf{1 3 . 3 2} \%$

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	5.22%
T-MOBILE Sector B Total:	5.22%
T-MOBILE Sector C Total:	5.22%
Site Total:	

Table 5: Site MPE Summary

Transcom Engineering, Inc.

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _Frequency Band / Technology Max Power Values (Per Sector)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	$\begin{aligned} & \text { Allowable } \\ & \text { MPE } \\ & \left(\mu W / \mathbf{c m}^{2}\right) \end{aligned}$	Calculated \% MPE
T-Mobile 1900 MHz (PCS) LTE	4	1,538.37	118	17.64	1900 MHz (PCS)	1000	1.76\%
T-Mobile 2100 MHz (AWS) LTE	2	2,307.55	118	13.23	2100 MHz (AWS)	1000	1.32\%
T-Mobile 1900 MHz (PCS) GSM	1	583.57	118	1.67	1900 MHz (PCS)	1000	0.17\%
T-Mobile 2100 MHz (AWS) UMTS	1	1,081.58	118	3.10	2100 MHz (AWS)	1000	0.31\%
T-Mobile 600 MHz LTE / 5G NR	2	788.97	118	4.52	600 MHz	400	1.13\%
T-Mobile 700 MHz LTE	2	432.54	118	2.48	700 MHz	467	0.53\%
						Total:	5.22\%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Transcom Engineering, Inc.

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (\%)
Sector A:	5.22%
Sector B:	5.22%
Sector C:	5.22%
T-MOBILE Maximum	5.22%
Total (per sector):	
Site Total:	13.32%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 3 . 3 2} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Transcom Engineering, Inc
PO Box 1048
Sterling, MA 01564

