STATEOF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

VIA ELECTRONIC MAIL

September 5, 2018
Kyle Richers
Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, NJ 07430
RE: EM-T-MOBILE-135-180808 - T-Mobile notice of intent to modify an existing telecommunications facility located at 652 Glenbrook Road, Stamford, Connecticut.

Dear Mr. Richers:

The Connecticut Siting Council (Council) is in receipt of your correspondence of August 30, 2018 submitted in response to the Council's August 15, 2018 notification of an incomplete request for exempt modification with regard to the above-referenced matter.

The submission renders the request for exempt modification complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.
Sincerely,

Melanie A. Bachman
Executive Director
MAB/FC/emr

August 15, 2018

STATEOFCONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

Kyle Richers
Transcend Wireless
10 Industrial Avenue, Suite 3
Mahwah, New Jersey 07430
RE: EM-T-MOBILE -135-180808 - T-Mobile notice of intent to modify an existing telecommunications facility located at 652 Glenbrook Road, Stamford, Connecticut.

Dear Mr. Richers:
The Connecticut Siting Council (Council) received a notice of intent to modify the above-referenced facility on August 8, 2018.

According to Section 16-50j-71 of the Regulations of Connecticut State Agencies, "...any modification, as defined in Section 16-50j-2a of the Regulations of Connecticut State Agencies, to an existing tower site, except as specified in Sections $16-50 \mathrm{j}-72$ and $16-50 \mathrm{j}-88$ of the Regulations of Connecticut State Agencies, may have a substantial adverse environmental effect."

Staff has reviewed this exempt modification request for completeness and has identified the following deficiencies in the Structural Analysis Report dated July 2, 2018 that was submitted with the above referenced notice; as follows:

- The structural analysis does not account for equipment proposed by Sprint in a Structural Analysis Report dated July 10, 2018, as specified in an Exempt Modification notice received by the Council on August 6, 2018 and available on the Council's website using the following link: https://www.ct.gov/csc/lib/csc/ems/stamford/glenbrookrd/sprint/em-sprint-135180806 filing glenbrookrd.pdf
- The structural analysis does not indicate the percentage maximum water tower stress capacity.

Therefore, the exempt modification request is incomplete at this time. The Council recommends that Transcend Wireless provide a Structural Analysis Report that accounts for the above items on or before September 14, 2018. If additional time is needed to gather the requested information, please submit a written request for an extension of time prior to September 14, 2018.

This notice of incompletion shall have the effect of tolling the Federal Communications Commission (FCC) 60-day timeframe in accordance with Paragraph 217 of the FCC Wireless Infrastructure Report and Order issued on October 21, 2014 (FCC 14-153).

Thank you for your attention to this matter. Should you have any questions, please feel free to contact me at 860-8272951.

Sincerely,

MAB/RDM/IN

C: \quad The Honorable David Martin, Mayor, City of Stamford Ralph Blessing, Land Use Bureau Chief, City of Stamford

Robidoux, Evan

From:	Kyle Richers krichers@transcendwireless.com
Sent:	Thursday, August 30, 2018 8:16 PM
To:	Robidoux, Evan
Cc:	CSC-DL Siting Council; 'Dan Reid'; 'Jenn Dupont'
Subject:	RE: Council Incomplete Letter for EM-T-MOBILE-135-180808
Attachments:	$18058.59-$ CT11334A Structural Analysis Rev0 18.08.30.pdf

Please see the attached revised structural analysis per the comments from CSC. Let me know if you will need new hard copies provided to the CSC office.

Thank you,

Kyle Richers
Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, New Jersey 07430
908-447-4716
krichers@transcendwireless.com

From: Robidoux, Evan
Sent: Thursday, August 16, 2018 4:25 PM
To: 'krichers@transcendwireless.com'
Cc: CSC-DL Siting Council
Subject: Council Incomplete Letter for EM-T-MOBILE-135-180808

Please see the attached correspondence.

Evan Robidoux
Clerk Typist
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Centered on Solutions" ${ }^{\text {" }}$

Structural Analysis Report

$$
\begin{array}{r}
\text { 60-ft Tall Existing Roof Mounted } \\
\text { Water Tank } \\
\text { Proposed T-Mobile } \\
\text { Antenna Upgrade }
\end{array}
$$

Site Ref: CT11334A

652 Glenbrook Road Stamford, CT CENTEK Project No. 18058.59

$$
\text { Date: August 30, } 2018
$$

Prepared for:
T-Mobile USA
35 Griffin Road
Bloomfield, CT 06002

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- DESIGN LOADING
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS \& SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- WIND LOAD CALCULATION
- WATER TANK ANALYSIS

SECTION 4 - REFERENCE MATERIAL

- RF DATA SHEET
- EQUIPMENT CUT SHEETS

Introduction

The purpose of this report is to summarize the results of the structural analysis of the equipment upgrade proposed by T-Mobile on the existing host roof mounted water tank located in Stamford, CT.
The host structure is a $60-\mathrm{ft}$ tall roof mounted water tank. The antennas are mounted to the water tank catwalk.

Antenna and Appurtenance Summary

The existing, proposed and future loads considered in this analysis consist of the following:

- AT\&T (Existing):

Antennas: Three (3) Powerwave 7770 panel antennas, three (3) Kathrein 800-10965 and three (3) CCI HPA-65R-BUU-H6 pipe mounted to the water tank façade with a RAD center elevation of $100-\mathrm{ft}$ above grade.
Appurtenances: Six (6) Powerwave LGP21401 TMAs, three (3) Ericsson RRUS-11 remote radio heads, three (3) Ericsson RRUS-32 B2 remote radio units, three (3) Ericsson RRUS-32 remote radio units, three (3) Ericsson B14 4478 remote radio units and three (3) Raycap DC-6 surge arrestors pipe mounted to the water tank façade.

- Sprint (Existing/Reserved):

Antennas: Three (3) Commscope NNVV-65B-R4 panel antennas, three (3) Nokia AAHC panel antennas, three (3) 1900 MHz 4 X 45 W RRHs, six (6) 800 MHz 2 X 50 W RRHs and one (1) 2' dish mounted on steel frames attached to the façade of the water tank with a rad center antenna elevation of $+/-93-\mathrm{ft}$ AGL.

- T-Mobile (Existing to Remain):

Antennas: Three (3) Ericsson AIR21 panel antennas and three (3) TMAs mounted on steel frames attached to the handrail/façade of the water tank with a rad center antenna elevation of $+/-85-\mathrm{ft}$ AGL.

- T-Mobile (Existing to Remove):

Antennas: Three (3) Ericsson AIR21 panel antennas, three (3) Andrew LNX6515DS panel antennas and three (3) Ericsson RRUS-11 remote radio units mounted on steel frames attached to the handrail/façade of the water tank with a rad center antenna elevation of +/-85-ft AGL.

- T-Mobile (Proposed):

Antennas: Three (3) Ericsson AIR32 panel antennas, three (3) RFS APXVAARR24-43AN20 panel antennas and three (3) Ericsson 4449 B71_B12 remote radio units mounted on steel frames attached to the handrail/façade of the water tank with a rad center antenna elevation of +/- 85-ft AGL.

Design Loading

Loading was determined per the requirements of the 2015 International Building Code and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Wind Speed:

$$
\text { Vult = } 120 \mathrm{mph}(\text { Risk Cat } 3)
$$

[Appendix N of the 2016 CT Building Code]

Results

A proposed antenna mount frame for Alpha and Gamma sectors was designed. Existing mount connections were reviewed for the proposed antenna configuration.

Component	Stress Ratio (percentage of capacity)	Result
Water Tank Leg	67.6%	PASS

Conclusion

This analysis shows that the existing water tank is adequate to support the proposed modified antenna configuration.
The analysis is based, in part, on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.
Please feel free to call with any questions or comments.
Respectfully Submitted by:

Standard Conditions for Furnishingof Professional Engineering Serviceson Existing structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 \& ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

二NT二人 engineering	Subject：	Water Tank Analysis
Centered on Solutions ${ }^{-}$moncentekeng．com	Location：	Stamford，CT
Branford，CTO6405 F：（203）488－8587	Rev．0：08／30／18	Prepared by：T．J．L；Checked by：C．F．C． Job No． 18058.59

Design Wind Load on Water Tanks：

Wind Speed＝	$\mathrm{V}:=120$	mph	（User Input）	
Exposure Category＝	Exp ：＝C		（User Input）	
Importance Factor $=$	$l:=1.15$		（User Input）	（AWWA D100－05 Sec．3．1．4）
Commponent $=$	Tank Roof		（User Input）	
Type of Surface＝	TOS ：＝DC		（User Input）	（AWWA D100－05 Table 2）
Height Above Grade＝	$\mathrm{Z}:=100 \mathrm{ft}$		（User Input）	
Area $=$	A ：$=72$ sf		（User Input）	
t Tank to Centroid＝	$\mathrm{D}_{1}:=60 \mathrm{ft}$		（User Input）	

Nominal Height of the Atmospheric Boundary Layer＝
 3－Sec Gust Speed Power Law Exponent＝

Exposure Coefficient＝

Velocity Pressure $=$

Force Coefficient $=$

Gust Effect Factor＝

Wind Pressure＝

Wind Force＝

Overturning Moment＠Base＝
$z g:=\left\lvert\, \begin{aligned} & 1200 \text { if } \operatorname{Exp}=B=900 \\ & 900 \text { if } \operatorname{Exp}=C \\ & 700 \text { if } \operatorname{Exp}=D\end{aligned}\right.$
$\alpha:=\left\lvert\, \begin{aligned} & 7 \text { if } \operatorname{Exp}=\mathrm{B} \\ & 9.5 \text { if } \operatorname{Exp}=\mathrm{C} \\ & 11.5 \text { if } \operatorname{Exp}=\mathrm{D}\end{aligned} \quad=9.5\right.$

$q_{z}:=0.00256 \cdot K_{z} \cdot V^{2} \cdot I=53.65$
$C_{f}=0.5$
$\mathrm{G}:=1.0$
$P_{w}:=q_{z} \cdot G \cdot C_{f}=27$
$F_{1}:=P_{w} \cdot A=1932$
lbs
$M_{1}:=F_{1} \cdot D_{1}=115893$
psf
$\mathrm{ft} \cdot \mathrm{lbs}$
$\mathrm{V}:=120$
Exp ：＝C
I ：＝ 1.15
$D_{1}:=60 \quad f t$
（User Input）
（User Input）
（User Input）
AWWA D100－05 Sec．3．1．4）
（AWWA D100－05 Table 2）
（User Input）

二NT $=\mathrm{K}$ engineering	Subject:	Water Tank Analysis
	Location:	Stamford, CT
	Rev. 0: 08/30/18	Prepared by: T.J.L; Checked by: C.F.C. Job No. 18058.59

Commponent $=$	TankWall	(User Input)	
Type of Surface $=$	TOS $:=$ Cyl	(User Input)	(AWWA D100-05
Teighte 2)			
Area $=$	$\mathrm{Z}:=92 \mathrm{ft}$	(User Input)	
A $:=398 \mathrm{sf}$	(User Input)		

$z g:=\left\lvert\, \begin{aligned} & 1200 \text { if Exp }=\text { B }=900 \\ & 900 \text { if Exp }=\text { C } \\ & 700 \text { if Exp = D }\end{aligned}\right.$
$\alpha:=\left\lvert\, \begin{aligned} & 7 \text { if } \operatorname{Exp}=\mathrm{B} \\ & 9.5 \text { if Exp }=\mathrm{C} \\ & 11.5 \text { if Exp = D }\end{aligned}\right.$
$\mathrm{K}_{\mathrm{z}}:=\left\lvert\, \begin{aligned} & 2.01\left(\frac{\mathrm{z}}{\mathrm{zg}}\right)^{\left(\frac{2}{\alpha}\right)} \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg}=1.24 \\ & 2.01\left(\frac{15}{\mathrm{zg}}\right)^{\left(\frac{2}{\alpha}\right)} \quad \text { if } \mathrm{Z}<15\end{aligned}\right.$
$\mathrm{q}_{\mathrm{z}}:=0.00256 \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{V}^{2} \cdot \mathrm{I}=52.72$
$C_{f}=0.6$
$G:=1.0$
$P_{w}:=q_{z} \cdot G \cdot C_{f}=32$
psf
lbs
$M_{2}:=F_{2} \cdot D_{2}=667252$
ft.lbs
(AWWA D100-05
Eq. 3-2)
(AWWA D100-05 Table 2)
(AWWA D100-05 Sec.3.1.4)
(AWWA D100-05 Eq.3.1)

C三NT二人 engineering	Subject：	Water Tank Analysis
	Location：	Stamford，CT
	Rev．0：08／30／18	Prepared by：T．J．L；Checked by：C．F．C． Job No． 18058.59

Commponent $=$
Type of Surface $=$
Height Above Grade $=$
Area $=$

Distance from Bot Tank to Centroid＝

Nominal Height of the Atmospheric Boundary Layer＝

3－Sec Gust Speed Power Law Exponent＝

Exposure Coefficient $=$
Velocity Pressure $=$
Force Coefficient $=$
Gust Effect Factor $=$
Wind Pressure $=$
Wind Force Top $=$
Overturning Moment＠Base $=$
＠ ＠ase＝
$z g:=\left\lvert\, \begin{aligned} & 1200 \text { if } \operatorname{Exp}=B=900 \\ & 900 \text { if } \operatorname{Exp}=C \\ & 700 \text { if } \operatorname{Exp}=D\end{aligned}\right.$
$\alpha:=\left\lvert\, \begin{aligned} & 7 \text { if } \operatorname{Exp}=\mathrm{B} \\ & 9.5 \text { if } \mathrm{Exp}=\mathrm{C} \\ & 11.5 \text { if } \mathrm{Exp}=\mathrm{D}\end{aligned}\right.$
$\mathrm{K}_{\mathrm{z}}:=\left\lvert\, \begin{aligned} & 2.01\left(\frac{\mathrm{Z}}{\mathrm{zg}}\right)^{\left(\frac{2}{\alpha}\right)} \quad \text { if } 15 \leq \mathrm{Z} \leq \mathrm{zg}=1.27 \\ & 2.01\left(\frac{15}{\mathrm{zg}}\right)^{\left(\frac{2}{\alpha}\right)} \quad \text { if } \mathrm{Z}<15\end{aligned}\right.$
$q_{z}:=0.00256 \cdot K_{z} \cdot V^{2} \cdot I=53.65$
$C_{f}=0.6$
$\mathrm{G}:=1.0$
$P_{w}:=q_{z} \cdot G \cdot C_{f}=32 \quad p s f$
$F_{5}:=P_{w} \cdot A=97$
$M_{5}:=F_{5} \cdot H_{L e g} \cdot D_{5}=77262$
Tank Steel Riser
TOS ：＝Cyl
$\mathrm{Z}:=100$
ft
$\mathrm{A}:=3$
$\mathrm{D}_{5}:=20$
ft
（User Input）
（User Input）
（User Input）
（User Input）
（AWWA D100－05 Table2）

C三NT二人 engineering	Subject：	Water Tank Analysis
	Location：	Stamford，CT
	Rev．0：08／30／18	Prepared by：T．J．L；Checked by：C．F．C． Job No． 18058.59

C三NT二人 engineering	Subject：	Water Tank Analysis
	Location：	Stamford，CT
	Rev．0：08／30／18	Prepared by：T．J．L；Checked by：C．F．C． Job No． 18058.59

C三NT二人 engineering	Subject：	Water Tank Analysis
	Location：	Stamford，CT
	Rev．0：08／30／18	Prepared by：T．J．L；Checked by：C．F．C． Job No． 18058.59

C三NT二人 engineering	Subject：	Water Tank Analysis
	Location：	Stamford，CT
	Rev．0：08／30／18	Prepared by：T．J．L；Checked by：C．F．C． Job No． 18058.59

Commponent $=$
Type of Surface $=$
Height Above Grade $=$
Area
Distance from Bot Tank to Centroid $=$

Nominal Height of the Atmospheric Boundary Layer＝

3－Sec Gust Speed Power Law Exponent＝

Exposure Coefficient＝

Cables
TOS ：＝Cyl
$\mathrm{Z}:=50 \quad \mathrm{ft}$
$A:=0.51 \frac{\mathrm{sf}}{\mathrm{ft}}$
（Three 1－5／8＂dia cable exposed Typ．of 2 legs）
$D_{9}:=20 \mathrm{ft}$
$z g:=\left\lvert\, \begin{aligned} & 1200 \text { if } \operatorname{Exp}=B=900 \\ & 900 \text { if } \operatorname{Exp}=C \\ & 700 \text { if } \operatorname{Exp}=D\end{aligned}\right.$
$\alpha:=\left\lvert\, \begin{aligned} & 7 \text { if } \operatorname{Exp}=\mathrm{B} \\ & 9.5 \text { if } \operatorname{Exp}=\mathrm{C} \\ & 11.5 \text { if } \operatorname{Exp}=\mathrm{D}\end{aligned} \quad=9.5\right.$

$q_{z}:=0.00256 \cdot K_{z} \cdot V^{2} \cdot I=46.37$
$C_{f}=0.6$
$\mathrm{G}:=1.0$
$P_{w}:=q_{z} \cdot G \cdot C_{f}=28 \quad$ psf
$\mathrm{F}_{\mathrm{g}}:=\mathrm{P}_{\mathrm{w}} \cdot \mathrm{A}=14$
$M_{g}:=F_{g} \cdot H_{L e g} \cdot D_{g} \cdot 2=22702$
（User Input）
（User Input）
（User Input）
（User Input）
（AWWA D100－05 Table2）
（ACSE 7－02
Table 6－2）
（ACSE 7－02
Table 6－2）
（ACSE 7－02
Table 6－3）
（AWWA D100－05 Eq．3－2）
（AWWA D100－05 Table 2）
（AWWA D100－05 Sec．3．1．4）
（AWWA D100－05 Eq．3．1）

Weights:

Weight of Water $=$
Weight of Tank Shell =
Weight of Tank Leg =
Weight of Bracing =
Weight of Catwalk=
Weight of Misc. $=$
Weight of $A T \& T=$
Weight of Sprt =
Weight of $\mathrm{TMO}=$

Total Weight $=$
$\mathrm{W}_{\text {water }}:=60000 \cdot$ gal $\cdot 62.4 \cdot \mathrm{pcf}=500500 \mathrm{lb} \quad$ Assumed 60,0000 Tank
$\mathrm{W}_{\text {shell }}:=25000 \cdot \mathrm{lb}$
$W_{\text {Leg }}:=19.57 \cdot$ in $^{2} \cdot 490 \cdot$ pcf $\cdot \mathrm{H}_{\text {Leg }} \cdot \mathrm{ft} \cdot 4=10655 \mathrm{lb}$
$\mathrm{W}_{\text {bracing }}:=3000 \cdot \mathrm{lb}$
$\mathrm{W}_{\text {catwalk }}:=1250 \cdot \mathrm{lb}$
$W_{\text {misc }}:=10000 \cdot \mathrm{lb}$
$\mathrm{W}_{\text {ATT }}:=2200 \cdot \mathrm{lb}$
$\mathrm{W}_{\text {Sprt }}:=1500 \cdot \mathrm{lb}$
$\mathrm{W}_{\mathrm{TMo}}:=2000 \cdot \mathrm{lb}$
Assumed 1/4" Thick Plate
$\mathrm{W}_{\text {tot }}:=\mathrm{W}_{\text {water }}+\mathrm{W}_{\text {shell }}+\mathrm{W}_{\text {Leg }}+\mathrm{W}_{\text {bracing }}+\mathrm{W}_{\text {catwalk }}+\mathrm{W}_{\text {misc }}+\mathrm{W}_{\text {ATT }}+\mathrm{W}_{\text {Sprt }}+\mathrm{W}_{\text {TMo }}=556105 \mathrm{lb}$

Member Stress Check:	(Based onAWWAD100-05)	
Commponent $=$	TankLeg (User Input)	
Number of Legs=	$\mathrm{N}_{\text {Leg }}:=4$ (User Input)	
Leg Spread =	$\mathrm{D}_{\text {Leg }}:=19.5 \cdot \mathrm{ft}$ (User Input)	
Area $=$	Area := 19.57.in ${ }^{2}$ (User Input)	
Section Modulus =	$\mathrm{S}:=81.1 \cdot \mathrm{in}^{3}$ (User Input)	
Unbraced Length $=$	$\mathrm{L}:=41 \cdot \mathrm{ft}$ (User Input)	
Radius of Gyration =	$r:=5.9$ in (User Input)	
Effective Length Factor =	$\mathrm{K}:=1 \quad$ (User Input)	
Modulus of Elasticity=	$\mathrm{E}:=29000 \cdot \mathrm{ksi}$ (User Input)	
Material Class=	MC : $2 \quad$ (User Input)	(AWWA D100-05 Table 9)
Allowable Local Bucking Stress =	$\mathrm{F}_{\mathrm{L}}=18 \mathrm{ksi}$	(AWWA D100-05 Sec.3.4.2)
Column Slendeness Ratio $=$	$C_{C}:=\sqrt{\frac{\pi^{2} \cdot E}{F_{L}}}=126.099$	(AWWA D100-05 Eq. 3-10)
Slenderness Reduction Factor =	$\mathrm{K}_{\varphi}:=\left\{\begin{array}{l} 1-0.5 \cdot\left[\frac{\left(\frac{\mathrm{~K} \cdot \mathrm{~L}}{\mathrm{r}}\right)}{\mathrm{C}_{\mathrm{C}}}\right]^{2} \text { if } 25<\frac{\mathrm{K} \cdot \mathrm{~L}}{\mathrm{r}}<\mathrm{C}_{\mathrm{C}}=0.7813 \\ 0.5 \cdot\left(\frac{\mathrm{C}_{\mathrm{C}}}{\frac{\mathrm{~K} \cdot \mathrm{~L}}{r}}\right)^{2} \text { if } \frac{\mathrm{K} \cdot \mathrm{~L}}{r} \geq \mathrm{C}_{\mathrm{C}} \\ 1.0 \text { if } \frac{\mathrm{K} \cdot \mathrm{~L}}{\mathrm{r}} \leq 25 \end{array}\right.$	(AWWA D100-05 Eq. 3-7) (AWWA D100-05 Eq. 3-8) (AWWA D100-05 Eq. 3-9)
Allowable Compressive Stress Due to Axial Load =	$\mathrm{F}_{\mathrm{a}}:=\mathrm{F}_{\mathrm{L}} \cdot \mathrm{K}_{\varphi}=14.064 \cdot \mathrm{ksi}$	(AWWA D100-05 Eq. 3-4)
Allowable Compressive Stress Due to Bending Moment =	$F_{b}:=F_{L}=18 \cdot \mathrm{ksi}$	(AWWA D100-05 Eq. 3-5)
Axial Stress=	$f_{a}:=\frac{W_{\text {tot }}}{\text { Area } \cdot N_{\text {Leg }}}+\frac{M_{\text {ot }} \cdot f \mathrm{ft} \cdot \mathrm{lb}}{\left(\mathrm{D}_{\text {Leg }}{ }^{2} \cdot 2\right)^{0.5} \cdot \text { Area }}=9.504 \mathrm{ksi}$	
Combined Stress Check $=$	Tank_Leg: : if $\left(\frac{f_{a}}{F_{a}} \leq 1.0\right.$, "OK" , "Overstressed" $)$	(AWWA D100-05 Eq. 3-6)
	Tank_Leg = "OK"	
	$\frac{f_{a}}{F_{a}}=67.6 \cdot \%$	

RAN Template:	A\&L Template:	Power System Template:
Custom		

Section 1 - Site Information

---- This section is intentionally blank. -----

Section 3 - Proposed Template Images
67D92DB_2xAIR+10P.JPG

Section 4 - Siteplan Images

----- This section is intentionally blank. -----

Section 5 - RAN Equipment

Existing RAN Equipment		
Template: 702 Cu		
Enclosure	1	2
Endosure Type	RBS 6131	S12000 Outdoor
Baseband	(DUW30 (x2) DUG20 DUS41 RBS6601 (x21)	
Multiplexer	XMU	
Radio	RU22 (x6)	

Proposed RAN Equipment			
Template: 67D92DB Outdoor			
Endosure	1		2
Endosure Type	$\text { RBS } 6131$		Ancillary Equipment
Baseband	DUW30 U1900 (DECOMMISSIONED) \square DUW/30 \squareDUG20 G1900	BB 5216 L2100 L1900 L700 L600	
Hybrid Cable System			Ericsson 6×12 HCS 6AWG $40 \mathrm{~m}(\mathbf{x} 2)$ Ericsson 6×12 HCS 4AWG 60 m
Multiplexer	XMU		
Radio	RU22 (x6)		
RAN Scope of Work:			

RAN Template:	A\&L Template:	Power System Template:
Custom		

Section 6 - A\&L Equipment

Unconnected Equipment:

Scope of Work:

RAN Template:	A\&L Template:	Power System Template:
Custom		

Sector 1 (Proposed) view from behind											
Coverage Type	A - Outdoor Macro										
Antenna	1	2				3		4			
Antenna Model	Occupied Mount (Placeholder)	$\begin{aligned} & \text { RFS - APXVAARR24_43-U- } \\ & \text { NA20 (Octo) } \end{aligned}$				$\begin{aligned} & \text { Ericsson- AlR21 KRC118023- } \\ & \text { 1_B2A_B4P (Quad) } \end{aligned}$		$\begin{aligned} & \text { Ericsson - AlR32 KRD901146- } \\ & \text { 1_B66A_B2A (Octo) } \end{aligned}$			
Azimuth		(60)				(60)		(60)			
M. Tilt		(0)				(0)		(0)			
Height		(85)				(85)		(85)			
Ports		P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
Active Tech.				$\boxed{4700}$ $\boxed{L 600}$	$\boxed{\boxed{400}}$ $\boxed{L 600}$	G1900	U2100)	$\begin{aligned} & L 210 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { L210 } \\ & 0 \end{aligned}$	$\begin{aligned} & L 190 \\ & 0 \end{aligned}$	$\begin{aligned} & L 190 \\ & 0 \end{aligned}$
Dark Tech											
Restricted Tech.											
Decomm. Tech.						U1900)					
E. Tilt											
Cables							Generic Feeder Coax $\left(x^{2}\right)$ Coax Jumper $\left(\mathbf{x}^{2}\right)$				
TMAs							Generic Twin Style 1B - AWS (AtAntenna)				
Diplexers / Combiners \qquad											
Radio				Radi 0 44199 B71+ B12 (At Ante nna)							
Sector Equipment											

Unconnected Equipment:

Scope of Work:

RAN Template:	A\&L Template:	Power System Template:
67D92DB Outdoor	67D92DB_2xAIR+1OP	Custom

Sector 2 (Existing) view from behind					
Address	Address: City, State:		$\begin{array}{ll}\text { Latitude: } & 41.0754840000 \\ \text { Longitude: } & -73.5191410000\end{array}$		
Coverage Type	A-Outdoor Macro)				
Anterna	1		2		3
Antenna Model	(Ericsson-AIR21 KRC118023-1_32P_34A (Quad)		Ericsson- AlR21 KRC118023-1_32A_B4P (Quad)		Andrew-LNX-6515DS-A1M (Dual)
Azimuth	(170)		(170)		(170)
m. Tilt $^{\text {d }}$	(0)		(0)		(0)
Height	(85)		(85)		(85)
Ports	P1	P2	P3	P4	P5
Active Tech.	L2100		(61900)	(U2100)	(700)
Dark Tech			(U1900)		
Restricted Tech.					
Decomm. Tech.					
E. Tilt	(6)		(6)	(6)	(2)
Cables	Fiber Jumper- 15 t .			$1-5 / 8^{\prime \prime} \text { Coax - } 170 \mathrm{ft} \text {. }$ (x4)	Fiber Jumper-15 ft (x2)
tMAs				$\begin{aligned} & \text { Generic Twin Style 1B } \\ & \text { - AWS (AAAntenna) } \end{aligned}$	
Diplexers/ Combiners					
Radio					RRUS11 B12 (At Anterna)
Sector Equipment					
Unconnected Equ Scope of Work:					

RAN Template:	A\&L Template:	Power System Template:
Custom		

Sector 2 (Proposed) view from behind											
Coverage Type	A - Outdoor Macro										
Antenna	1	2				3		4			
Antenna Model	Occupied Mount (Placeholder)	$\begin{aligned} & \text { RFS - APXVAARR24_43-U- } \\ & \text { NA20 (Octo) } \end{aligned}$				$\begin{aligned} & \text { Ericsson - AlR21 KRC118023- } \\ & \text { 1_B2A_B4P (Quad) } \end{aligned}$		$\begin{aligned} & \text { Ericsson - AlR32 KRD901146- } \\ & \text { 1_B66A_B2A (Octo) } \end{aligned}$			
Azimuth		(170)				170		170			
M. Tilt		(0)				(0)		(0)			
Height		(85)				(85)		(85)			
Ports		P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
Active Tech.				$\boxed{4700}$ $\boxed{L 600}$	$\boxed{\boxed{400}}$ $\boxed{L 600}$	G1900	U2100)	$\begin{aligned} & L 210 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { L210 } \\ & 0 \end{aligned}$	$\begin{aligned} & L 190 \\ & 0 \end{aligned}$	$0^{L 190}$
Dark Tech											
Restricted Tech.											
Decomm. Tech.						U1900)					
E. Tilt											
Cables					$\begin{aligned} & \text { Coux } \\ & \text { Jump } \\ & \text { er } \\ & (\times 2) \\ & \hline \end{aligned}$		Generic Feeder Coax ($\mathbf{x} 2)$ Coax Jumper $\left(x_{2}\right)$				
tMAs							Generic Twin Style 1B - AWS (AtAntenna)				
Diplexers / Combiners \qquad											
Radio				Radi Ra49 4449 B71+ B12 (At Ante nna)							
Sector Equipment											

Unconnected Equipment:

Scope of Work:

RAN Template:	A\&L Template: 67D92DB Outdoor	Power System Template: Custom

RAN Template:	A\&L Template:	Power System Template:
Custom		

Sector 3 (Proposed) view from behind											
Coverage Type	A - Outdoor Macro										
Antenna	1	2				3		4			
Antenna Model	Occupied Mount (Placeholder)	$\begin{aligned} & \text { RFS - APXVAARR24_43-U- } \\ & \text { NA20 (Octo) } \end{aligned}$				Ericsson - AlR21 KRC118023- 1_B2A_B4P (Quad)		$\begin{aligned} & \text { Ericsson - AlR32 KRD901146- } \\ & \text { 1_B66A_B2A (Octo) } \end{aligned}$			
Azimuth		(300)				(300)		(300)			
M. Tilt		(0)				(0)		(0)			
Height		(85)				(85)		(85)			
Ports		P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
Active Tech.				$\begin{array}{r}\square 1700 \\ \hline 1600 \\ \hline\end{array}$	$\boxed{L 700}$ $\boxed{L 600}$	G1900	U2100	$0^{L 210}$	$0^{L 210}$	$0^{L 190}$	$\begin{aligned} & L 190 \\ & 0 \end{aligned}$
Dark Tech											
Restricted Tech.											
Decomm. Tech.						U1900)					
E. Tilt											
Cables							Generic Feeder Coax $\left(\mathbf{x}^{2}\right)$ Coax Jumper $\left(\mathbf{x}^{2}\right)$				
TMAs							Generic Twin Style 1B - AWS (AtAntenna)				
Diplexers / Combiners \qquad											
Radio				Radi 0 P449 B71+ B12 (At Ante nna)							
Sector Equipment											

Unconnected Equipment:

Scope of Work:

Section 7 - Power Systems Equipment

Existing Power Systems Equipment
---- This section is intentionally blank. -----

Proposed Power Systems Equipment

Dual Slant Polarized Quad Band (8 Port) Antenna, 617-746/617-746/1695-2200/1695$2200 \mathrm{MHz}, 65 \mathrm{deg}, 15 / 15 / 18 / 18 \mathrm{dBi}$, $2.4 \mathrm{~m}(8 \mathrm{ft})$, VET, RET, $0-12^{\circ} / 0-12^{\circ} / 2-12^{\circ} / 2-12^{\circ}$

FEATURES / BENEFITS

This antenna provides a 8 Port multi-band flexible platform for advanced use for flexible use in deployment scenarios for encompassing $600 \mathrm{MHz}, 700 \mathrm{MHz}$, AWS \& PCS applications.
24 Inch Width For Easier Zoning
Θ Field Replaceable (Integrated) AISG RET platform for reduced environmental exposure and long lasting quality
Θ Superior elevation pattern performance across the entire electrical down tilt range
Θ Includes three AISG RET motors - Includes 0.5 m AISG jumper for optional diasy chain of two high band RET motors for one single AISG point of high band tilt control.Low band arrays driven by a single RET motor

Technical Features

LOW BAND LEFT ARRAY (617-746 MHZ) [R1]

Dual Slant Polarized Quad Band (8 Port) Antenna, 617-746/617-746/1695-2200/1695$2200 \mathrm{MHz}, 65 \mathrm{deg}, 15 / 15 / 18 / 18 \mathrm{dBi}$, $2.4 \mathrm{~m}(8 \mathrm{ft})$, VET, RET, $0-12^{\circ} / 0-12^{\circ} / 2-12^{\circ} / 2-12^{\circ}$

ELECTRICAL SPECIFICATIONS

ORDERING INFORMATION
Order No.
APXVAARR24_43-U-NA20

