

PROJECT NARRATIVE

April 22, 2022

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Request of DISH Wireless LLC for an Order to Approve the Shared Use of an Existing Tower 5 High Ridge Park Road, Stamford, CT 06905 Latitude: 41'06'46.1" / Longitude: -73'32'18.2"

Dear Ms. Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, DISH Wireless LLC ("DISH") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by DISH of an existing telecommunication tower at 5 High Ridge Park Road in Stamford (the "Property"). The existing 155.9-foot monopole is owned by American Tower Corporation ("ATC"). The underlying property is owned by Cellco Partnership. DISH requests that the Council find that the proposed shared use of the ATC tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. A copy of this filing is being sent to Caroline Simmons, Mayor for the City of Stamford, Bharat Gami, City of Stamford Chief Building Official, and Cellco Partnership as the property owner.

Background

This facility was originally approved by the Council under Docket No. 45 on September 14, 1984. A copy of this decision is included in this filing. The existing ATC facility consists of a 155.9-foot monopole located within an existing leased area. T-Mobile currently maintains antennas at the 160 and 132-foot levels. AT&T Mobility currently maintains antennas at the 152-foot level. Verizon Wireless currently maintains antennas at the 143-foot level. Sprint Nextel currently maintains antennas at the 133, 120, and 75-foot levels. Sensus USA Inc. currently maintains antennas at the 105-foot level. Equipment associated with these antennas are located at various positions within the tower and compound.

DISH is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. DISH and ATC have agreed to the proposed shared use of the 5 High Ridge Park Road tower pursuant to mutually acceptable terms and conditions. Likewise, DISH and ATC have agreed to the proposed installation of equipment cabinets on the ground within the existing compound. ATC has authorized DISH to apply for all necessary permits and approvals that may be required to share the existing tower. (See attached Letter of Authorization)

DISH proposes to install three (3) antennas, (1) Tower platform mount, (6) Remote radio units at the 94-foot level along with, (1) over voltage protection device (OVP) and (1) Hybrid cable. DISH will install an equipment cabinet on a 5'x7' equipment platform. DISH's Construction Drawings provide project specifications for all proposed site improvement locations. The construction drawings also include specifications for DISH's proposed antenna and groundwork.

C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." DISH respectfully submits that the shared use of the tower satisfies these criteria.

A. Technical Feasibility. The existing ATC tower is structurally capable of supporting DISH's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support DISH's proposed loading. A copy of the Structural Report has been included in this application.

B. Legal Feasibility. Under C.G.S. § 16-50aa, the Council has been authorized to issue order approving the shared use of an existing tower such as the ATC tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.

C. Environmental Feasibility. The proposed shared use of the ATC tower would have a minimal environmental effect for the following reasons:

1. The proposed installation will have no visual impact on the area of the tower. DISH's equipment cabinet would be installed within the existing facility compound. DISH's shared use of this tower therefore will not cause any significant change or alteration in the physical or environmental characteristics of the existing site.

2. Operation of DISH's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that DISH's proposed facility will operate well within the FCC RF emissions safety standards.

3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the ATC facility other than periodic maintenance. The proposed shared use of the ATC tower, would, therefore, have a minimal environmental effect, and is environmentally feasible.

D. **Economic Feasibility**. As previously mentioned, DISH has entered into an agreement with ATC for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.

E. **Public Safety Concerns.** As discussed above, the tower is structurally capable of supporting DISH's full array of three (3) antennas, (1) Tower platform mount, (6) Remote radio units, (1) over voltage protection device (OVP) and (1) Hybrid cable and all related equipment. DISH is not aware of any public safety concerns relative to the proposed sharing of the existing ATC tower.

Conclusion

For the reasons discussed above, the proposed shared use of the existing ATC tower at 5 High Ridge Park Road satisfies the criteria stated in C.G.S. §16-50aa and advances the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the prosed shared use.

Sincerely,

David Hoogasian

David Hoogasian Project Manager

LETTER OF AUTHORIZATION

LETTER OF AUTHORIZATION

I, Margaret Robinson, Senior Counsel for American Tower*, owner/operator of the tower facility located at the address identified above (the "Tower Facility"), do hereby authorize **DISH WIRELESS L.L.C.**, its successors and assigns, and/or its agent, **NETWORK BUILDING + CONSULTING** (collectively, the "Licensee") to act as American Tower's non-exclusive agent for the sole purpose of filing and consummating any land-use or building permit application(s) as may be required by the applicable permitting authorities for Licensee's telecommunications' installation.

We understand that this application may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by Licensee only of conditions related to Licensee's installation and any such conditions of approval or modifications will be Licensee's sole responsibility.

Project Number	Site Address	Customer Site Number	Tower Number	Site Name
13685414	5 High Ridge Park Road, Stamford CT	NJJER01080B	302515	SMFR - North
13685427	1069 Connecticut Avenue, Bridgeport CT	NJJER01130A	302469	Bridgeport CT 2
13688395	25 Meridian Ridge Drive, Newton CT	NJJER01081B	302518	Newtown CT 3
13699598	100 Old Redding Road, Redding CT	NJJER01161A	302522	Redding
13699607	22 Titicus Mtn Road, New Fairfield CT	NJJER01162A	88014	New Fairfield
13700310	2 SUNNY LANE, Westport CT	NJJER01082B	411189	CRANBURYSU CT
13700315	515 Morehouse Road, Easton CT	NJJER01097B	207956	Easton
13700320	100 Pocono Road, Brookfield CT	NJJER01099B	209271	Brookfield 2
13700322	320 Old Stagecoach Road, Ridgefield CT	NJJER01100B	209115	Ridgefield 2
13705673	20 Post Office Lane, Westport CT	NJJER01139B	302511	WSPT - South

*American Tower includes all affiliates and subsidiaries of American Tower Corporation.

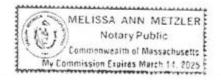
13709691	180A Bayberry Lane, Westport CT	NJJER01140B	310968	WSPT- WESTPORT REBUILD CT
13709692	1000 Trumbull Avenue, Bridgeport CT	NJJER01150B	383598	Tartaglia
13710333	168 Catoona Lane, Stamford CT	NJJER01123B	88018	Stamford (Katoona)
13712876	23 Stonybrook Road, Stratford CT	NJJER02048A	283420	STONEYBROOK RD CT
13735391	15 Soundview Avenue, Shelton CT	NJJER02055A	415438	Brownson Country Club CT

Print Name: Margaret Robinson Senior Counsel, American Tower*

LETTER OF AUTHORIZATION

DISH WIRELESS L.L.C., its successors and assigns, and/or its agent, NETWORK BUILDING + CONSULTING

NOTARY BLOCK


Commonwealth of MASSACHUSETTS

County of Middlesex

This instrument was acknowledged before me by Margaret Robinson, Senior Counsel for American Tower*, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same.

WITNESS my hand and official seal, this 19th day of November 2021.

NOTARY SEAL

Notary Public My Commission Expires: March 14, 2025

10 Presidential Way • Woburn, MA 01801 • 781.926.4500 Office • 781.926.4555 Fax • www.americantower.com

ORIGINAL FACILITY APPROVAL

DOCKET NO. 45

AN APPLICATION SUBMITTED BY THE SOUTHERN NEW	•	CONNECTICUT SITING
ENGLAND TELEPHONE COMPANY FOR A CERTIFICATE	-	
OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC	•	COUNCIL
NEED FOR THE CONSTRUCTION, MAINTENANCE AND	•	COMOIL
OPERATION OF FACILITIES TO PROVIDE CFLITTIAR		
SERVICE IN FAIRFIELD COUNTY.	:	September 14, 1984

DECISION AND ORDER

Pursuant to the foregoing opinion, the Council hereby directs that a certificate of environmental compatibility and public need as required by section 16-50k of the General Statutes of Connecticut, revisions of 1958, revised to 1983, as amended, be issued to the Southern New England Telephone Company for the construction, operation, and maintenance of a telecommunications tower and associated equipment to provide cellular service at each of the following sites:

Kaechele Place, Bridgeport, Connecticut; Connecticut Avenue, Norwalk, Connecticut; Nells Rock Road, Shelton, Connecticut; Newfield Avenue, Stamford, Connecticut; and Bayberry Lane, (former Nike site), Westport, Connecticut.

The facilities shall be constructed, operated, and maintained as specified in the Council's record on this matter, and subject to the following conditions:

- The towers shall be no taller than necessary to provide the proposed service, and in no event shall exceed
 - a) 167' at the Bridgeport site,
 b) 167' at the Norwalk site,
 c) 189.5' at the Shelton site,
 d) 167' at the Stamford site,
 - e) 117' at the Westport site;
- A fence not lower than eight feet shall surround each tower and its associated equipment;
- 3. The applicant or its successor shall notify the Council if and when directional antennas or any other equipment is added to any of these facilities;

- 4. The applicant or its successor shall permit, in accordance with representations made by it during the proceeding, public or private entities to share space on the facilities, for due consideration received, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing;
- Unless necessary to comply with condition number six, below, no lights shall be installed on any of these towers;
- The facilities shall be constructed in accordance with all applicable federal, state, and municipal laws and regulations;
- 7. The applicant shall submit a development and management plan (D&M) for the Bridgeport, Stamford, and Westport sites pursuant to sections 16-50j-85 through 16-50j-87 of the regulations of state agencies, except that irrelevant items in section 16-50j-86 need only be identified as such. The D&M plans shall include appropriate evergreen screening of the sites, erosion control measures, reseeding plans, and tree removal plans. The applicant shall consult with the Stamford Environmental Protection Board in the preparation of a drainage and erosion control plan for the Stamford tower. The applicant shall comply with the reporting requirements of section 16-50j-87 for all sites;
- Construction activities shall take place during daylight working hours;
- 9. This decision and order shall be void and the towers and associated equipment approved herein shall be dismantled and

removed, or reapplication for any new use shall be made to the Connecticut Siting Council before any such new use is made, if the towers do not provide or permanently cease to provide cellular service following completion of construction;

10. This decision and order shall be void if all construction authorized is not completed within three years of the issuance of this decision.

Pursuant to section 16-50p of the General Statutes, we hereby direct that a copy of the opinion and decision and order be served on each person listed below. A notice of the issuance shall be published in the Bridgeport Post, the Norwalk Hour, the Stamford Advocate, and the Shelton Suburban News, and the Westport News.

The parties to this proceeding are

The Southern New England (Applicant) Telephone Company Room 314 227 Church Street New Haven, Connecticut 06506 Attention: Mr. Peter J. Tyrrell (its attorney) Senior Attorney Rolnick Observatory represented by: 52 Sawyer Road Fairfield, Connecticut Frederick H. Bump Director Mr. Adam Norton 40 Highland Road Westport, Connecticut 06880 Representative John Wayne Fox (service waived) 13 Apple Tree Drive Stamford, Connecticut 06906 Mr. George C. Lenfest 4 Highland Road Westport, Connecticut

Mr. William Seiden First Selectman Town of Westport 110 Myrtle Avenue P.O. Box 549 Westport, Connecticut 06881 Mr. Arthur L. Schimel 174 Bayberry Lane Westport, Connecticut Mr. Seymour Bendremer 11 Apache Trail Westport, Connecticut Ms. Gladys Floch 32 Woody Lane Westport, Connecticut Ms. Helen S. Cohen 15 Highland Road Westport, Connecticut Mr. Jack Braverman Westport, Connecticut Westport, Connecticut Westport, Connecticut Mr. Allen Witt 3 Apache Trail Westport, Connecticut

Ms. Gayle Shiller 5 Apache Trail Westport, Connecticut

(service waived)

(service waived)

represented by:

Mary D. Mix, Esquire 830 Post Road - East Suite 100 Westport, Connecticut 06880

(service waived)

(service waived)

226 Bayberry Lane

Mr. Kevin Gavin 191 Bayberry Lane

Mr. A.B. Beiser

12 Highland Road Westport, Connecticut

Mr. Edward V. Polusky 4 Hooper Road

Ms. Lois Schine

Mrs. Ronnie Hammer 3 Hooper Road Westport, Connecticut		
Mr. Paul Rosenblatt 7 Apache Trail Westport, Connecticut	(service waived)	
Mr. Henry J. Wolfson 179 Bayberry Lane Westport, Connecticut	(service waived)	
Mr. Melvin H. Barr Planning Director Town of Westport 110 Myrtle Avenue P.O. Box 549 Westport, Connecticut O	(service waived) 881	
Mr. Mark Infeld 6 Apache Trail Westport, Connecticut	(service waived)	
Ms. Barbara Saipe Representative Town Meeting Member District #8 Town Hall P.O. Box 549 Westport, Connecticut O	(service waived)	
Ms. Peggy Goldenberg 201 Bayberry Lane Westport, Connecticut	(service waived)	
Ms. Martha Hauhuth Board of Selectman Town Hall P.O. Box 549 Westport, Connecticut O6	(service waived) 81	
Ms. Meg Coffee 32 Otter Trail Westport, Connecticut	(service waived)	

.

.

-5-

4

Contraction of the second secon

-

•,

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut, this 14th day of September, 1984.

Council Members

Vote Cast

Gloria Dibble Pond Chairperson

Yes

Commissioner John Downey

Designee: Commissioner Peter G. Boucher

Commissioner Stanley Pac Ower Fred J. Ddd

Mort/imer A. Gelston

Janez 1

Colin C. Tait

Absent

Absent

Yes

Yes

Yes

Yes

Yes

ies

Absent

STATE OF CONNECTICUT) COUNTY OF HARTFORD ; ss. New Britain, September 14, 1984

I hereby certify that the foregoing is a true and correct copy of the decision and order issued by the Connecticut Siting Council, State of Connecticut.

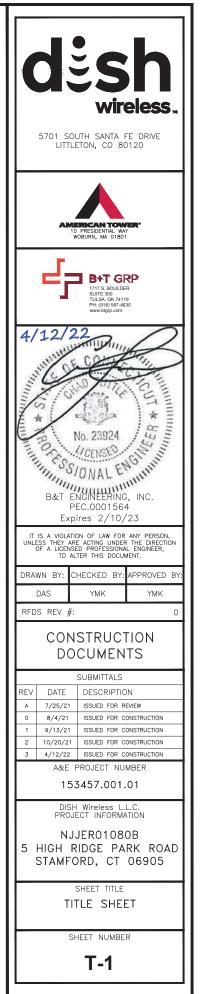
ATTEST:

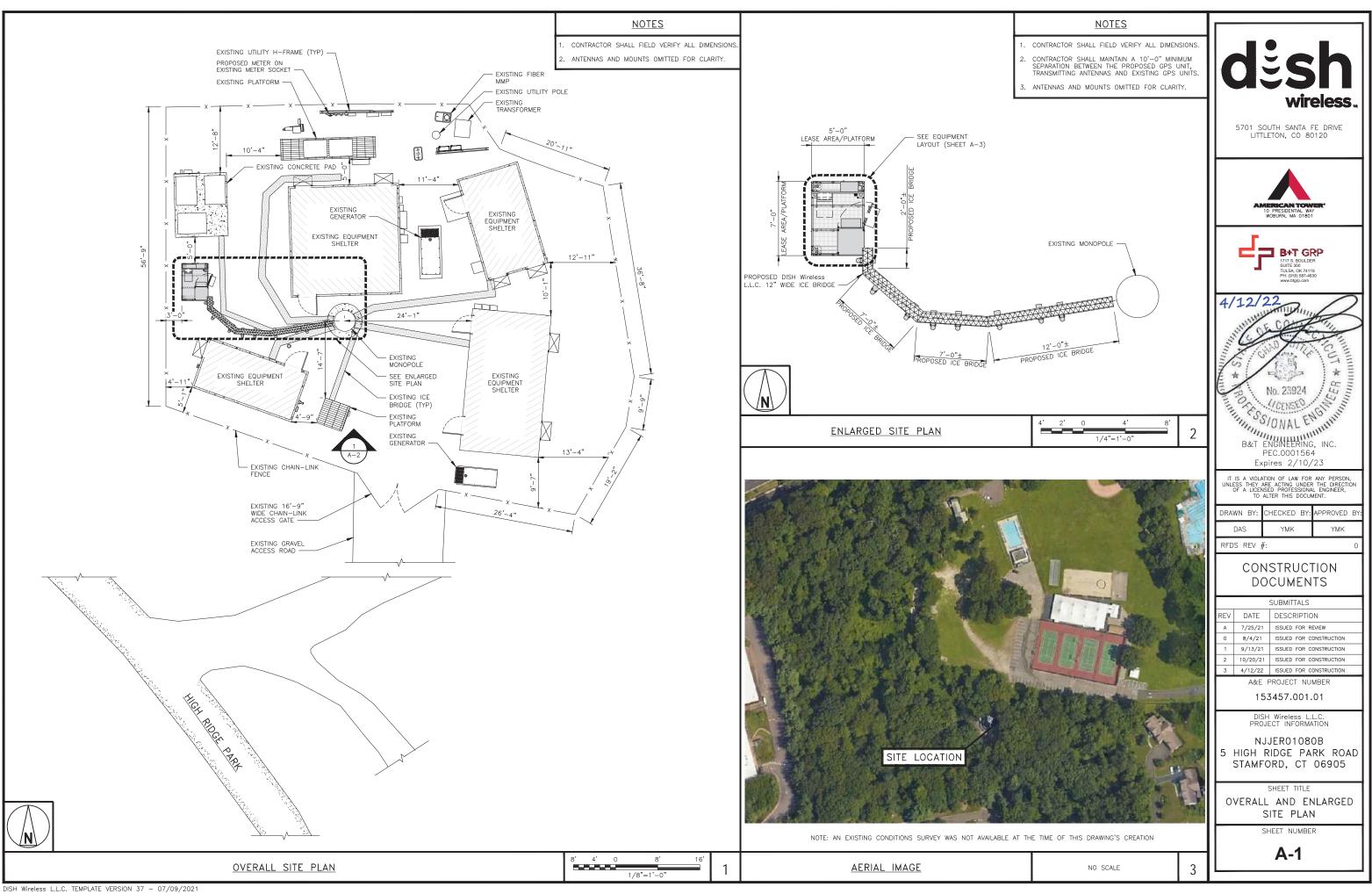
Ŧ

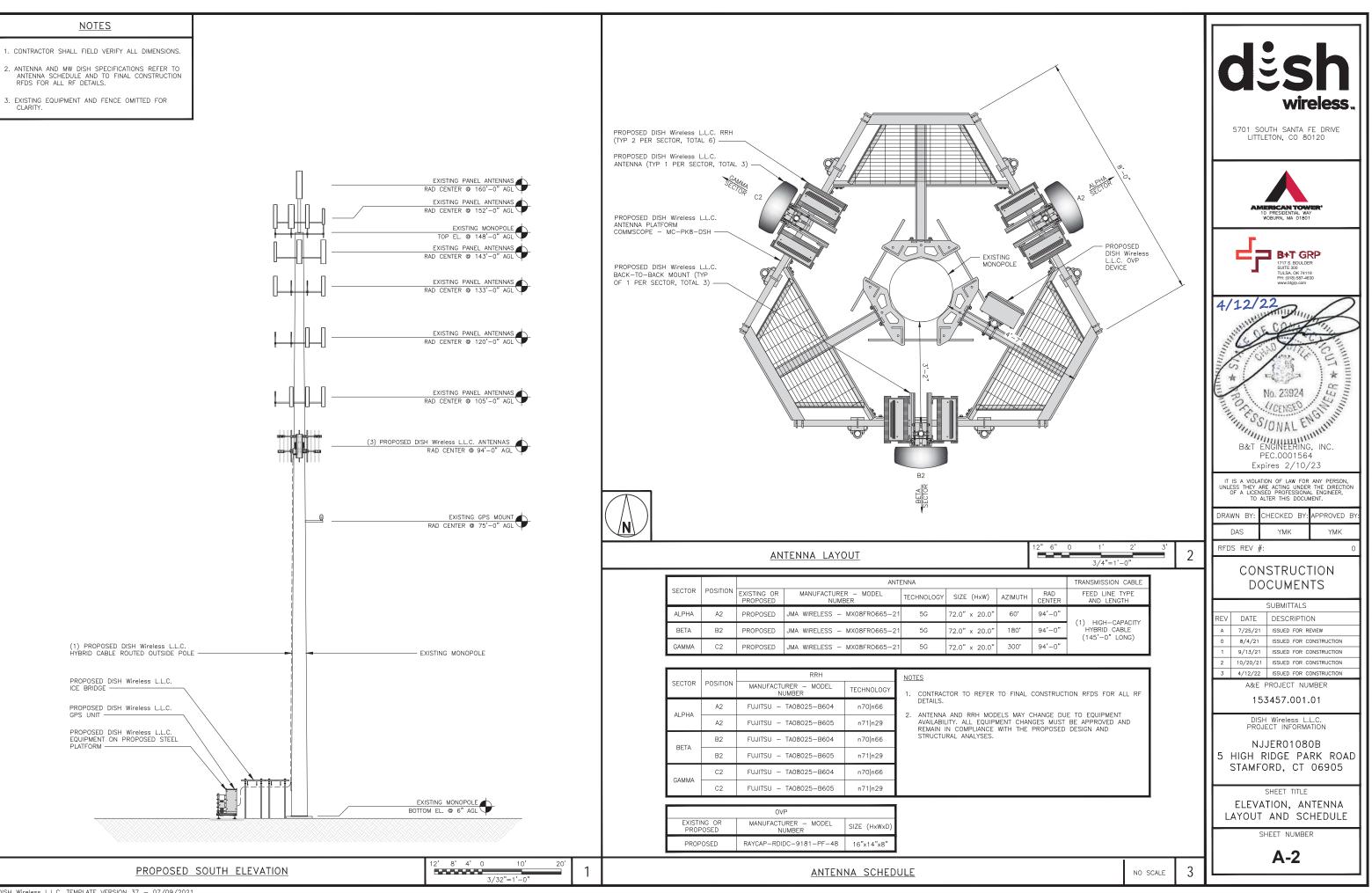
Christopher S. Wood, Executive Director Connecticut Siting Council

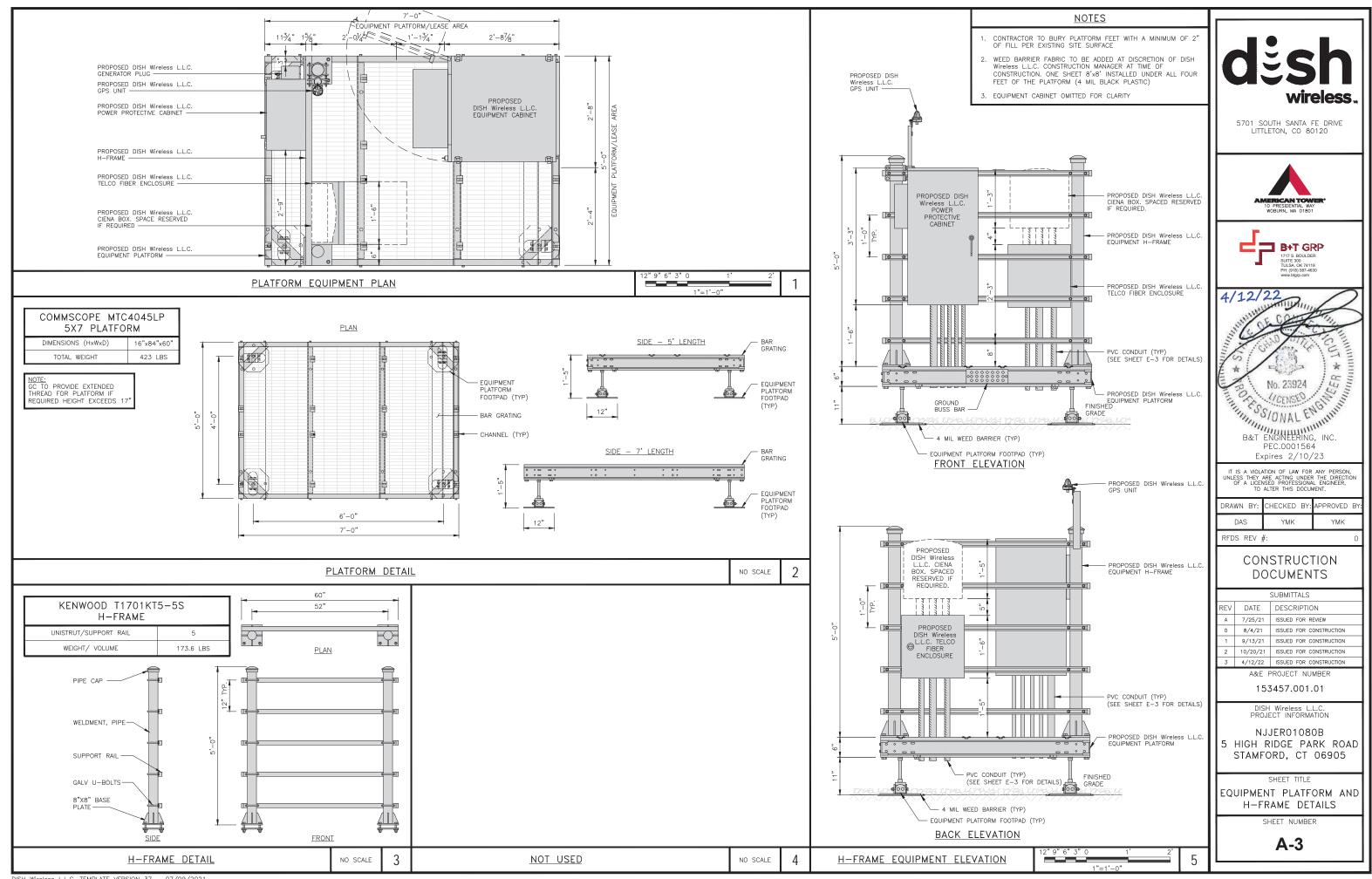
ENGINEERING DRAWINGS

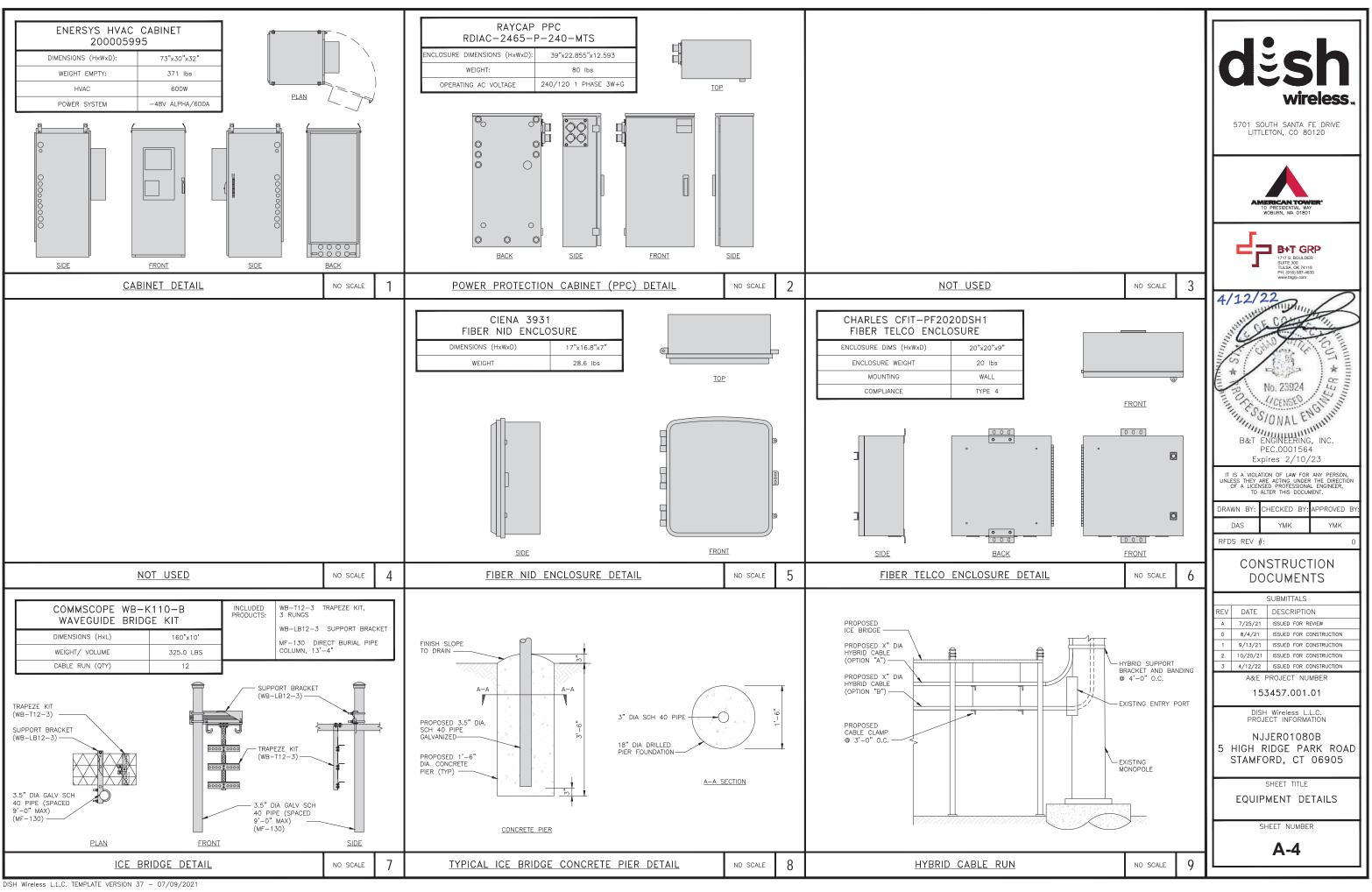
			SITE INF	ORMATION	
			PROPERTY OWNER: ADDRESS:	CELLCO PARTNERSHIP VERIZON WIRELESS P.O. BOX 2549	APF
	DESN	THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN ELIGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED REVIEW UNDER 47 U.S.C. 1455(A) AS A MODIFICATION OF AN EXISTING WIRELESS TOWER THAT INVOLVES THE COLLOCATION REMOVAL AND/OR REPLACEMENT OF TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL CHANGE UNDER CFR 1.61000 (B)(7).	TOWER TYPE:	ADDISON, TX 75001 MONOPOLE	тои
		UNDER CFR 1.01000 (B)(/).	TOWER CO SITE ID:	302515	100
		SCOPE OF WORK	TOWER APP NUMBER:	13685414	
		THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:	COUNTY:	FAIRFIELD	SIT
	wireless	TOWER SCOPE OF WORK: • INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)	LATITUDE (NAD 83):	41'06'46.1"N 41.112800	
		 INSTALL (1) PROPOSED TOWER PLATFORM MOUNT INSTALL PROPOSED JUMPERS INSTALL (6) PROPOSED RRUS (2 PER SECTOR) 	LONGITUDE (NAD 83):	73 32'18.2" W -73.538400	
	DISH Wireless L.L.C. SITE ID:	INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) INSTALL (1) PROPOSED HYBRID CABLE	ZONING JURISDICTION:	CONNECTICUT SITING COUNCIL	SITI
	NJJER01080B	GROUND SCOPE OF WORK: • INSTALL (1) PROPOSED METAL PLATFORM • INSTALL (1) PROPOSED ICE BRIDGE	ZONING DISTRICT:	COMMERCIAL	COI
		INSTALL (1) PROPOSED PPC CABINET INSTALL (1) PROPOSED EQUIPMENT CABINET	PARCEL NUMBER: OCCUPANCY GROUP:	E 011Z 2648 U	RF
_	DISH Wireless L.L.C. SITE ADDRESS:	INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT INSTALL (1) PROPOSED TELCO-FIBER BOX	CONSTRUCTION TYPE:	U II-B	KF
5	HIGH RIDGE PARK ROAD	INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED FIBER NID (IF REQUIRED) INSTALL (1) PROPOSED METER CANISTER	POWER COMPANY:	EVERSOURCE ELECTRIC	
	STAMFORD, CT 06905	NOTE: THE SCOPE OF THIS PROJECT DOES NOT INCLUDE MODIFICATIONS TO THE TOWER STRUCTURE OR FOUNDATION. A SEPARATE BUILDING PERMIT APPLICATION WILL BE SUBMITTED FOR ANY TOWER MODIFICATIONS.	TELEPHONE COMPANY:	CROWN CASTLE FIBER	
	CONNECTICUT CODE COMPLIANCE	SITE PHOTO		DIREC	TIO
THE FOLLOWIN	ALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF G CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO		CR-527 [LIVINGSTON A	ROSELAND, NJ 07068 ON BECKE VE]. TAKE RAMP (RIGHT) ONTO I	-280.
BE CONSTRUED CODE TYPE BUILDING MECHANICAL ELECTRICAL	D TO PERMIT WORK NOT CONFORMING TO THESE CODES: <u>CODE</u> 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS		I-95 [NEW JERSEY TPK STRAIGHT ONTO RAMP [(RIGHT) ONTO CENTRAL MERGE ONTO HUTCHINS PKWY]. AT EXIT 35, KEI	JERSEY TPKE]. ŠTAY ÓN I-95 [E] (LAST). ENTERING NEW YORK [3]. TAKE RAMP (RIGHT) ONTO I PARK AVE. KEEP RIGHT ONTO I ON RIVER PKWY N. ENTERING C EP RIGHT ONTO RAMP. KEEP LE RM RD]. TURN LEFT (NORTH) OI	 STAY 87 [N RAMP. ONNEC FT TO
	SHEET INDEX			VICINI	ΓY Ν
SHEET NO.	SHEET TITLE		- Marva In		
T-1	TITLE SHEET				
A-1 A-2	OVERALL AND ENLARGED SITE PLAN ELEVATION, ANTENNA LAYOUT AND SCHEDULE		Hora Contraction	7	
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS		Opper Rd	and the second	
A-4 A-5	EQUIPMENT DETAILS EQUIPMENT DETAILS		Ru as	șe.	1
A-6	EQUIPMENT DETAILS		an Ro)	/
E-1 E-2	ELECTRICAL/FIBER ROUTE PLAN AND NOTES ELECTRICAL DETAILS		Mill-Ra 137		
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	UNDERGROUND SERVICE ALERT CBYD 811	- P	/	8
G-1 G-2	GROUNDING PLANS AND NOTES GROUNDING DETAILS	UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455		St	amford
G-3	GROUNDING DETAILS	WWW.CBYD.COM	Tum		
RF-1	RF CABLE COLOR CODE		Pa		
GN-1 GN-2	LEGEND AND ABBREVIATIONS RF SIGNAGE	GENERAL NOTES	Ruge	n	
GN-3 GN-4	GENERAL NOTES GENERAL NOTES	THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL		2 No	wel Là
GN-5	GENERAL NOTES	DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPUSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.		take In	
		11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED		Inter	
		CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE		avale Rd	
		PROCEEDING WITH THE WORK.	NO SCALE		

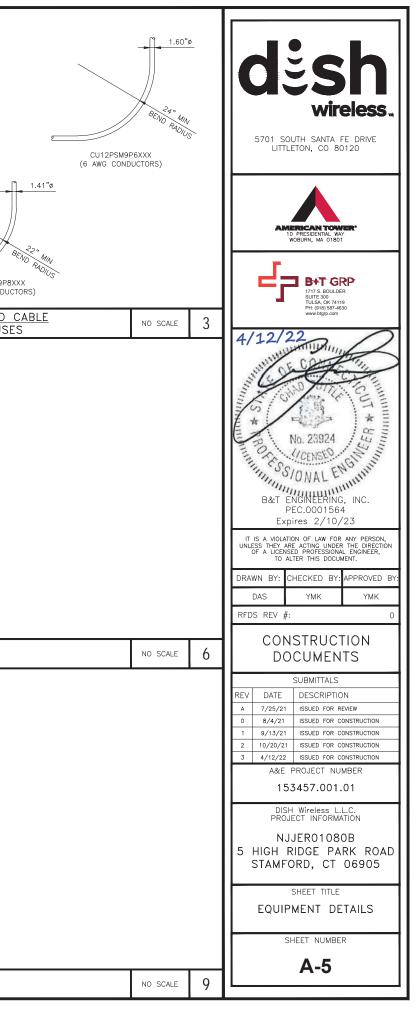

PROJECT DIRECTORY

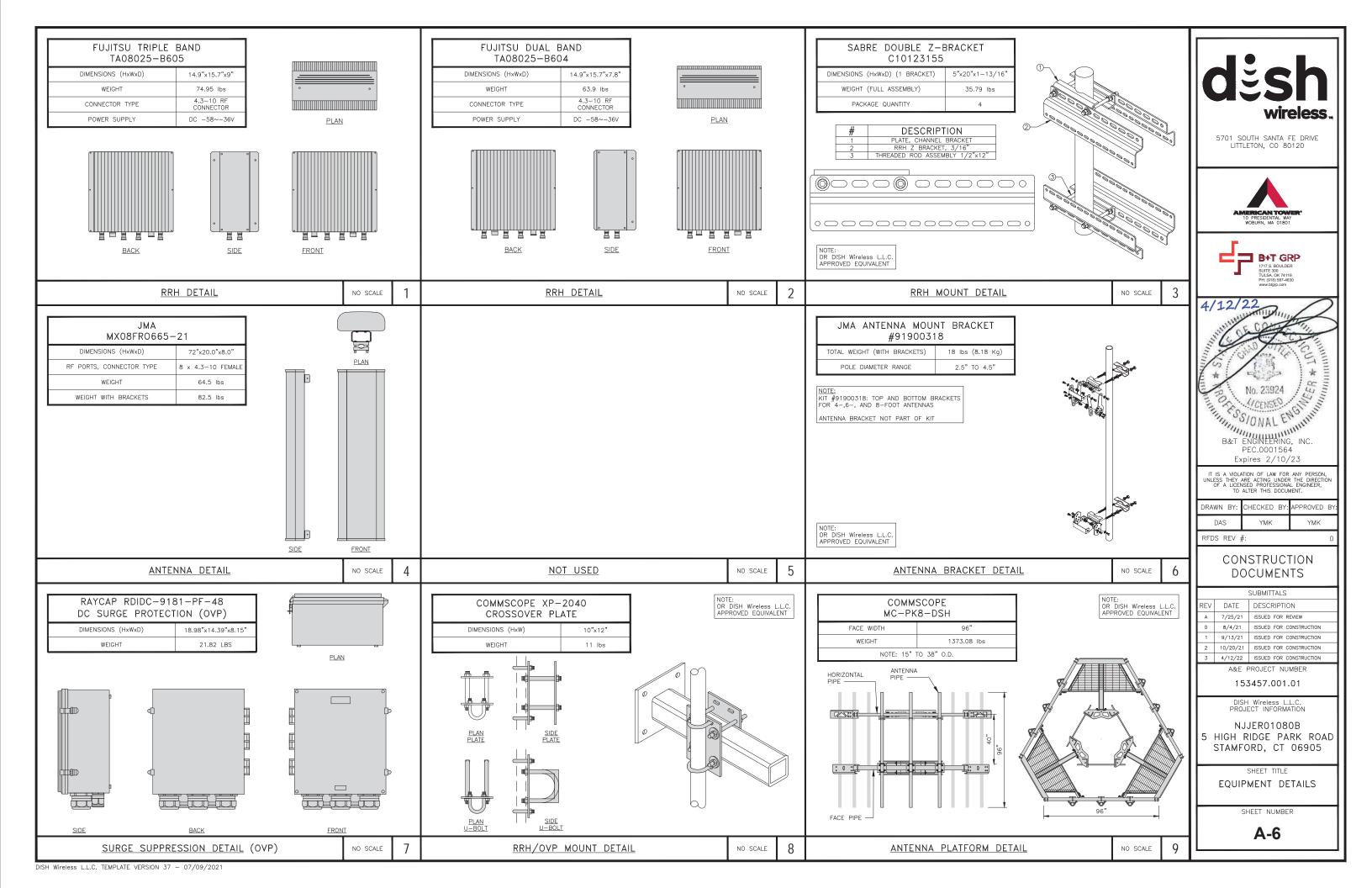

APPLICANT:	DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
TOWER OWNER:	AMERICAN TOWER CORPORATION 10 PRESIDENTIAL WAY WOBURN, MA 01801 (781) 926-4500
SITE DESIGNER:	B+T GROUP 1717 S. BOULDER AVE, SUITE 300 TULSA, OK 74119 (918) 587-4630
SITE ACQUISITION:	STEVEN LINGARD STEVEN.LINGARD@DISH.COM
CONST. MANAGER:	VICTOR CORREA VICTOR.CORREA@DISH.COM
RF ENGINEER:	MURUGABIRAN JAYAPAL MURUGABIRAN.JAYAPAL@DISH.COM

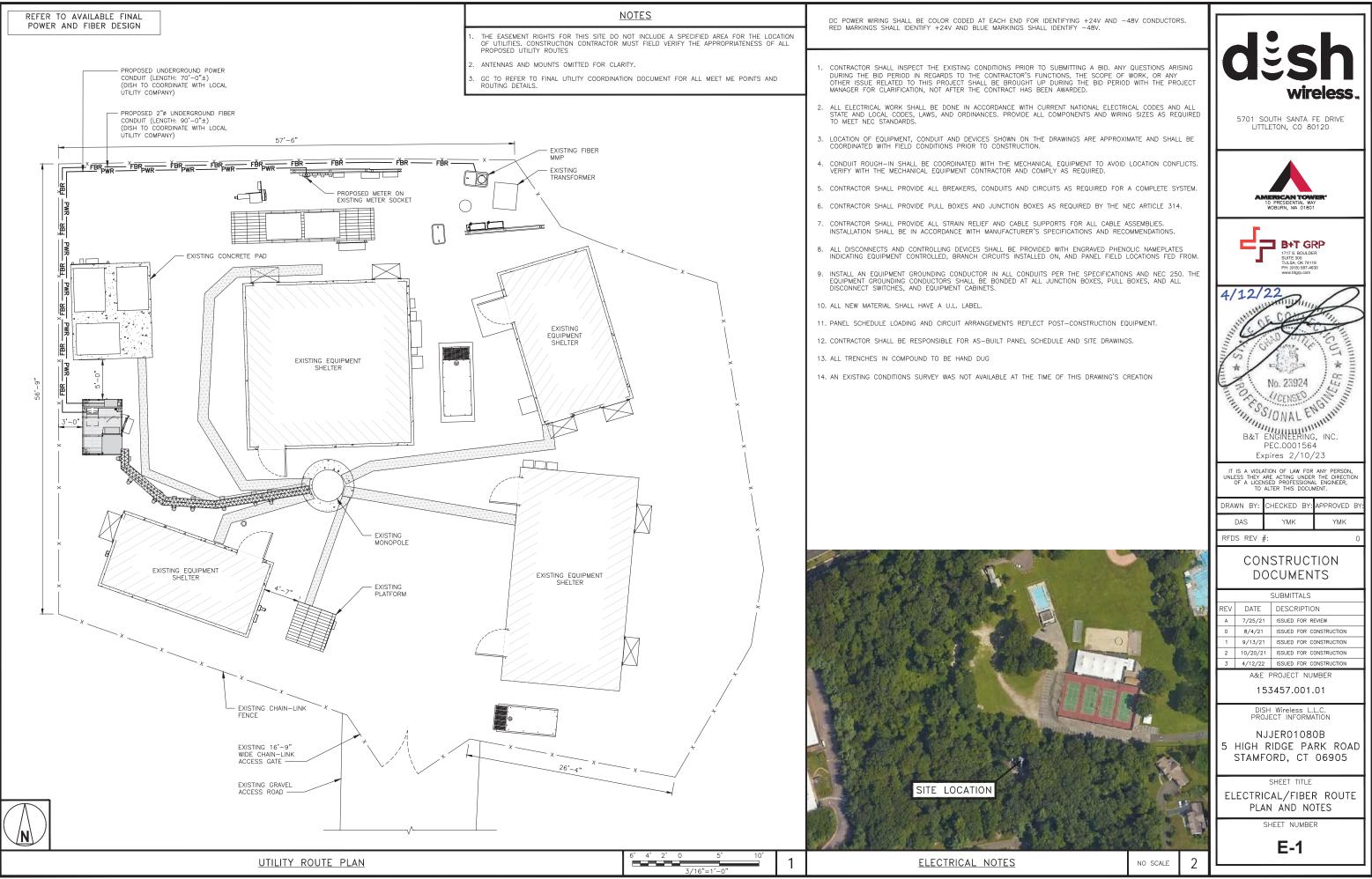

DNS

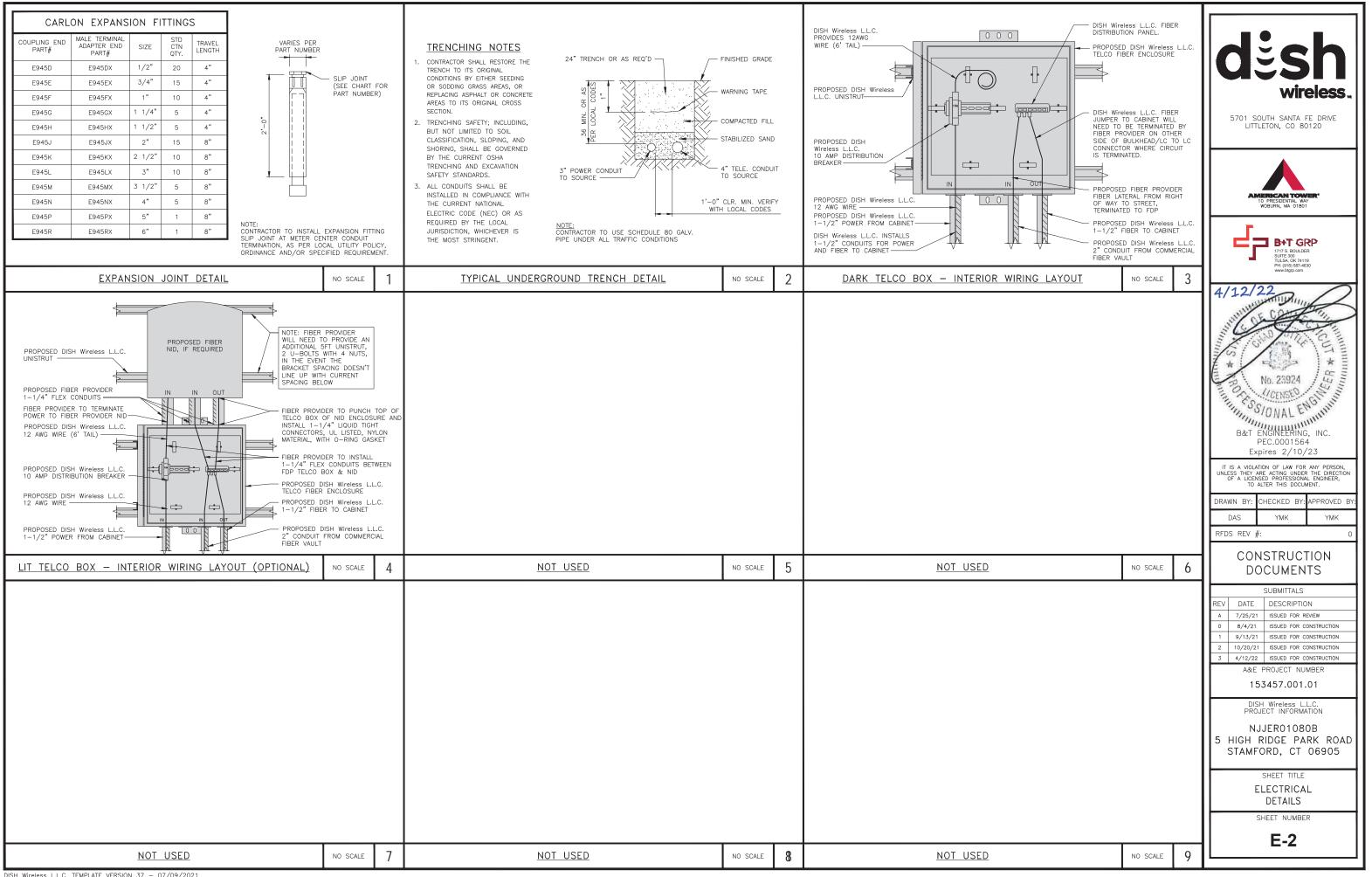

RM RD (EAST). TURN RIGHT (SOUTH-WEST) ONTO). AT EXIT 17B, STAY ON I-280 (NORTH). TAKE W JERSEY TPKE] (NORTH). AT EXIT 3, STAY ON AY ON I-95 [US-1] (EAST). AT EXIT 3, KEEP [MAJOR DEEGAN EXPY]. AT EXIT 4, TAKE RAMP . TAKE RAMP (LEFT) ONTO CROSS COUNTY PKWY. :CITCUT. ROAD NAME CHANGES TO CT-15 [MERRITT D STAY ON RAMP. BEAR LEFT (EAST) ONTO BUXTON TURN OF RIVER RD. ARRIVE 5 HIGH RIDGE PARK,

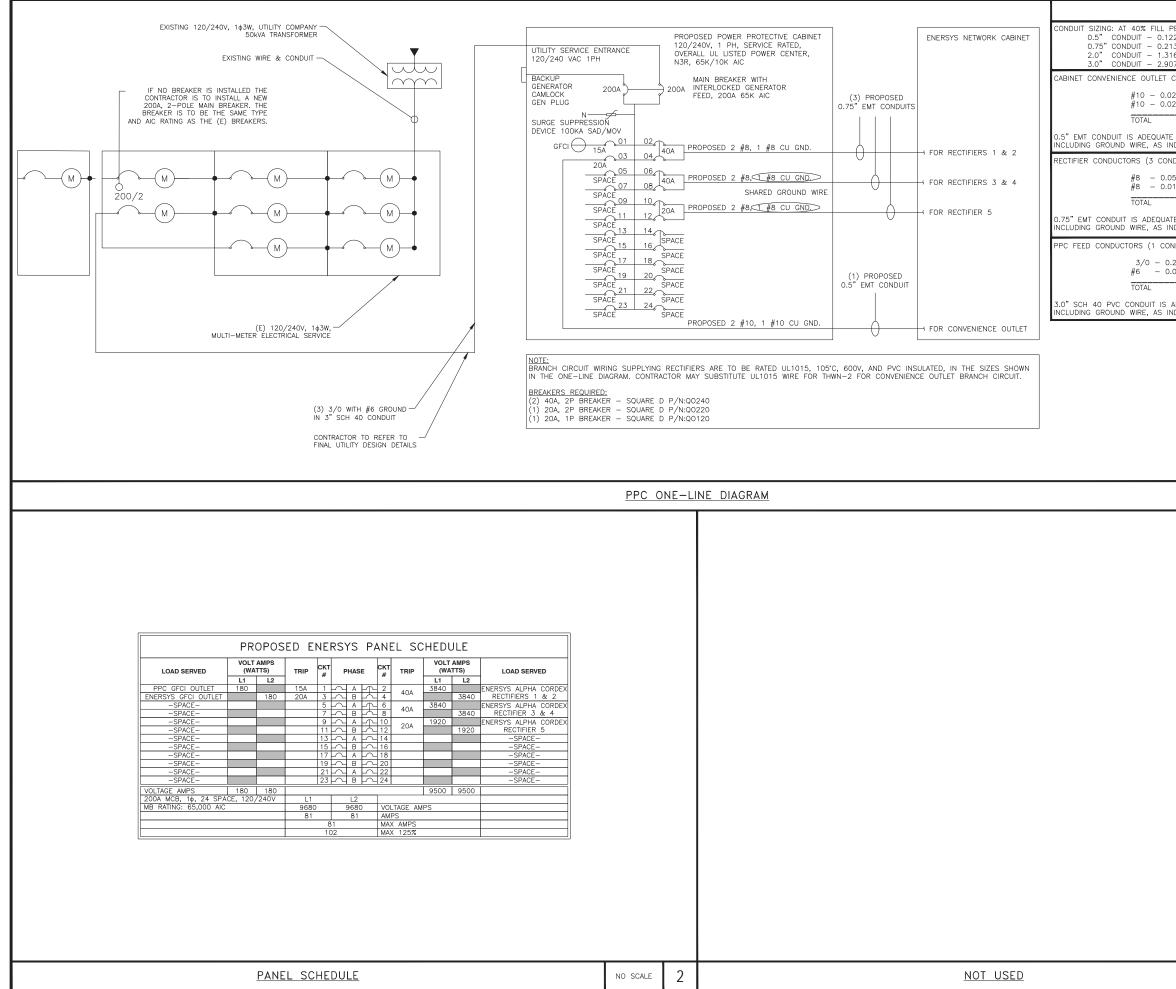


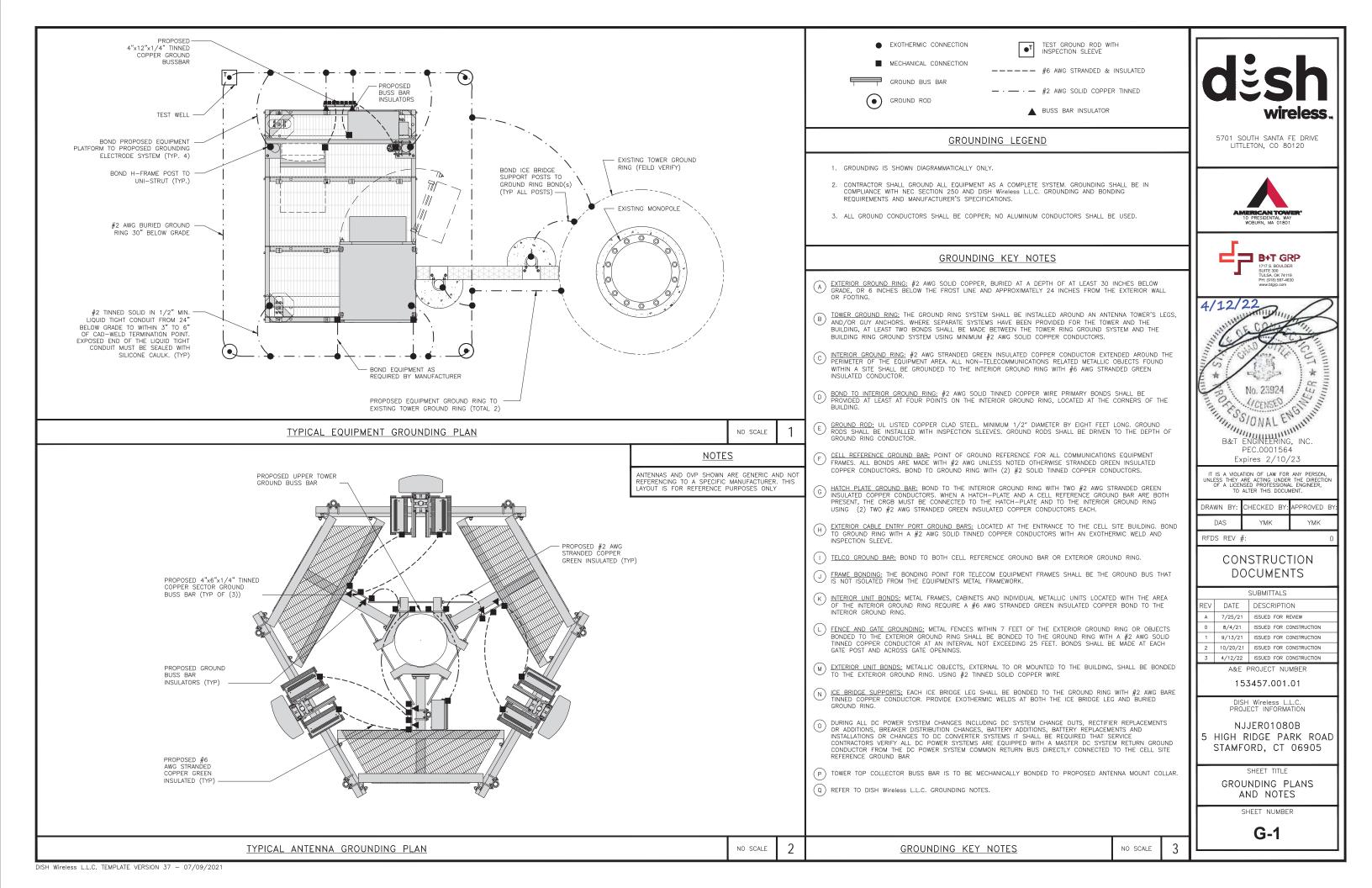


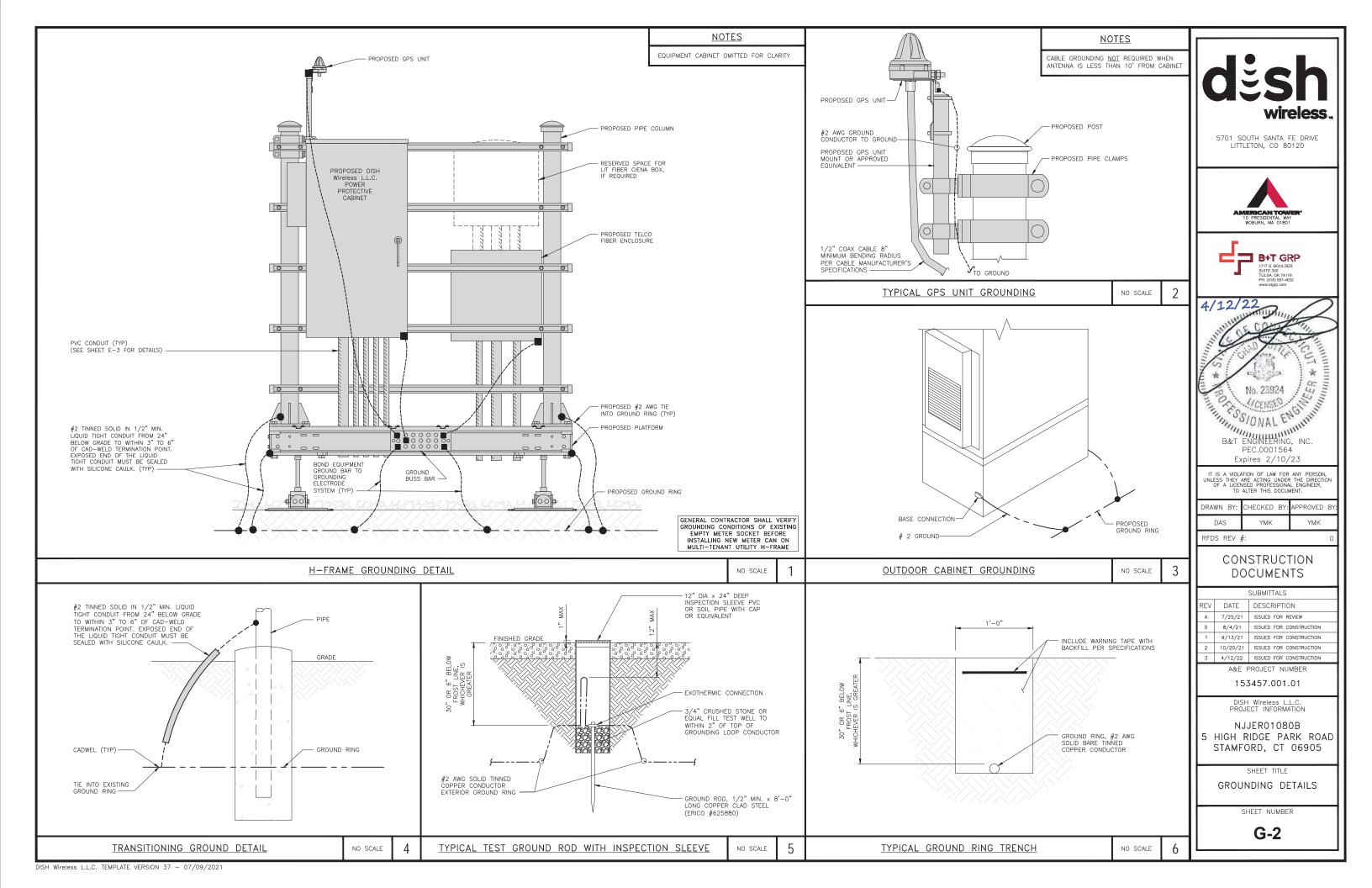


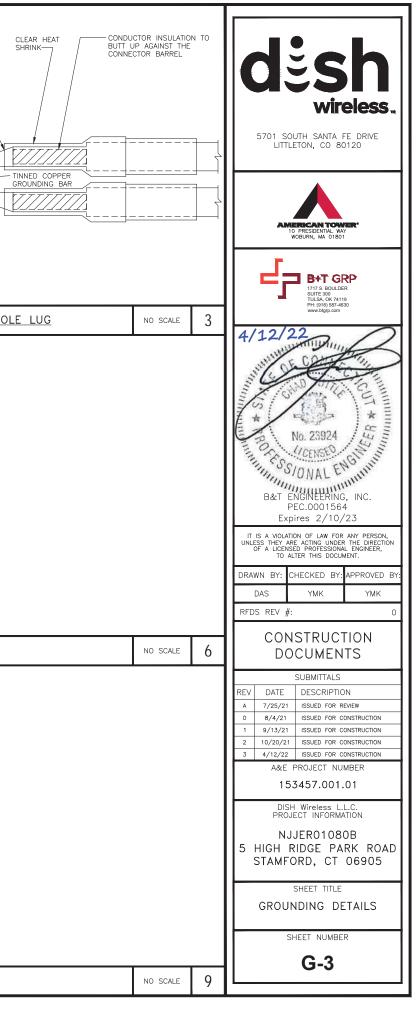





PCTEL GPSGL-TMG-SPI-40NCB DIMENSIONS (DIAXH) MM/INCH 81x184mm 3.2"x7.25" WEIGHT W/ACCESSORIES 075 lbs CONNECTOR N-FEMALE FREQUENCY RANGE 1590 ± 30MHz			MINIMUM OF 75% OR 270' IN ANY DIRECTION GPS COPS UNIT COPS UNIT CO			CU12PSM6P4XXX (4 AWG CONDUCTORS)
<u>GPS_DETAIL</u>	NO SCALE	1	GPS MINIMUM SKY VIEW REQUIREMENTS	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUSE
NOT USED	NO SCALE	4	NOT USED	NO SCALE	5	NOT USED
NOT USED	NO SCALE	7	<u>NOT USED</u>	NO SCALE	8	NOT USED
DISH Wireless L.L.C. TEMPLATE VERSION 37 - 07/09/2021					I	l

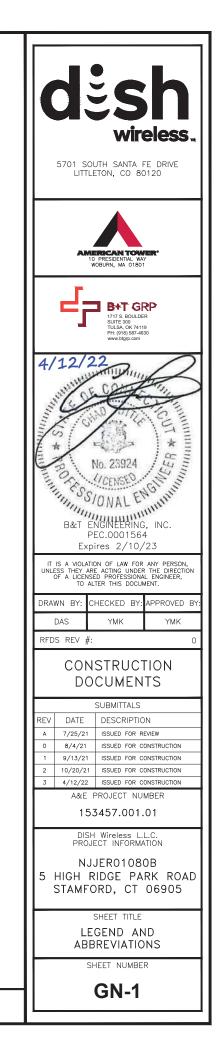






NOTES PER NEC CHAPTER 9, TABLE 4,			
122 SQ. IN AREA 213 SQ. IN AREA			
316 SQ. IN AREA 907 SQ. IN AREA			n žsn
CONDUCTORS (1 CONDUIT): US			
.0211 SQ. IN X 2 = 0.0422 SQ .0211 SQ. IN X 1 = 0.0211 SQ			wireless.
			5701 SOUTH SANTA FE DRIVE
TE TO HANDLE THE TOTAL OF (3 INDICATED ABOVE.	9) WIRES,		LITTLETON, CO 80120
ONDUITS): USING UL1015, CU.	IN		
.0552 SQ. IN X 2 = 0.1103 SQ .0131 SQ. IN X 1 = 0.0131 SQ	. IN <bare gro<="" td=""><td>UND</td><td></td></bare>	UND	
= 0.1234 SC ATE TO HANDLE THE TOTAL OF (AMERICAN TOWER'
INDICATED ABOVE.			10 PRESIDENTIAL WAY WOBURN, MA 01801
ONDUIT): USING THWN, CU. 0.2679 SQ. IN X 3 = 0.8037 S	O. IN		T.
0.0507 SQ. IN X 1 = 0.0507 S	Q. IN <ground< td=""><td></td><td></td></ground<>		
= 0.8544 S ADEQUATE TO HANDLE THE TOT		s,	SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.bgr.com
INDICATED ABOVE.	()/ mixto	· ·	
			4/12/22
			State State
			A CONTRACTOR
			5
			No. 23924 / 55 -
			UCENSED ST
			BAT ENGNATERING INC
	NO SCALE	1	B&T ENGINEERING, INC. PEC.0001564
			PEC.0001564 Expires 2/10/23
			IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY:
			DAS YMK YMK
			RFDS REV #: 0
			CONSTRUCTION
			DOCUMENTS
			SUBMITTALS
			REV DATE DESCRIPTION A 7/25/21 ISSUED FOR REVIEW
			0 8/4/21 ISSUED FOR CONSTRUCTION 1 9/13/21 ISSUED FOR CONSTRUCTION
			2 10/20/21 ISSUED FOR CONSTRUCTION
			3 4/12/22 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER
			153457.001.01
			DISH Wireless L.L.C. PROJECT INFORMATION
			NJJER01080B
			5 HIGH RIDGE PARK ROAD STAMFORD, CT 06905
			SHEET TITLE
			ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
			SHEET NUMBER
	,		E-3
	NO SCALE	3	

	 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO G BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BC THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRAC THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	LARGER. SS WITH IPOUND IDUCTOR DLTED ON TOR. S		TOOTHED EXTERIOR TWO-HOLE SHRINK LIV BUTT	JCTOR INSULATIC		EXTERNAL TOOTHED TOOTHED 3/8" DIA x1 1/2" S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT U 1/16" MINIMUM SPACING
	TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO H
	NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) CHORE LONG BARREL LUG (TYP) TIN COATED SOLID COPPER BUS BAR CHERRY INSULATOR INSTALLED IF REQUIRED	WASHER (TYP) MASHER (TYP)					
F	LUG DETAIL	NO SCALE	4	<u>NOT_USED</u>	NO SCALE	5	<u>NOT USED</u>
	NOT USED	NO SCALE	7	NOT USED NO SCALE 8			<u>NOT USED</u>


		/4" TAPE WIDTHS WITH 3/4" SPACING		OPTIONAL (N2 ORANGE
LOW-BAND RRH (600 MHz N71 BASEBAND) + (850 MHz N26 BAND) + (700 MHz N29 BAND) - OPTIONAL PER MARKET ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BAND)	ALPHA RRH PORT 1 + SLANT PORT 2 - SLANT PORT 3 + SLANT PORT 4 - SLANT RED RED RED RED ORANGE ORANGE RED RED ORANGE ORANGE RED ORANGE ORANGE ORANGE ORANGE ORANGE	PORT 1 PORT 2 PORT 3 PORT 4 PORT 1 PORT 1 + SLANT - SLANT + SLANT - SLANT - SLANT BLUE BLUE BLUE BLUE GREEN GREEN ORANGE ORANGE BLUE BLUE ORANGE ORANGE WHITE (-) PORT ORANGE ORANGE ORANGE (WHITE)	GREEN GREEN	CBRS TECH (3 GHz) YELLOW
MID-BAND RRH (AWS BANDS N66+N70) ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	RED RED RED RED PURPLE PURPLE RED RED (LE GREEN GREEN	ALPHA SECTOR RED COLOR_IDENT
HYBRID/DISCREET CABLES INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS. EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS. EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS. EXAMPLE 3 – MAIN COAX WITH GROUND MOUNTED RRHs.	EXAMPLE 1 EXAMPLE 2 RED BLUE BLUE GREEN ORANGE PURPLE	EXAMPLE 3 CANISTER COAX#1 COAX #2 (ALPHA) (ALPHA) RED RED RED RED RED CONTRACTOR TO REFER TO F CONSTRUCTION RFDS FOR AL FINAL RFDS IS IN NEXSYSON	L RD DETAILS.	
FIBER JUMPERS TO RRHS LOW-BAND HHR FIBER CABLES HAVE SECTOR STRIPE ONLY.	RED RED ORANGE PURPLE	OW BAND RRH MID BAND RRH LOW BAND RRH BLUE BLUE GREEN ORANGE PURPLE ORANGE	MID BAND RRH GREEN PURPLE	
POWER CABLES TO RRHS LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	CORANGE PURPLE	OW BAND RRH MID BAND RRH LOW BAND RRH BLUE BLUE GREEN ORANGE PURPLE ORANGE	MID BAND RRH GREEN PURPLE	<u>NOT USEI</u>
RET MOTORS AT ANTENNAS RET CONTROL IS HANDLED BY THE MID-BAND RRH WHEN ONE SET OF RET PORTS EXIST ON ANTENNA. SEPARATE RET CABLES ARE USED WHEN ANTENNA PORTS PROVIDE INPUTS FOR BOTH LOW AND MID BANDS.	ANTENNA 1 ANTENNA 1 MID BAND LOW BAND IN IN RED RED PURPLE ORANGE	ANTENNA 1 ANTENN	N	
MICROWAVE RADIO LINKS LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO. MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S.	FORWARD AZIMUTH OF 0-120 DEGREES PRIMARY SECONDARY WHITE WHITE RED WHITE WHITE WHITE WHITE WHITE WHITE WHITE	FORWARD AZIMUTH OF 120-240 DEGREES FORWARD AZIMUTH PRIMARY SECONDARY PRIMARY SECOND WHITE WHITE BLUE BLUE WHITE WHITE BLUE WHITE WHITE BLUE WHITE WHITE WHITE WHITE	E N E N	

TOR	AWS (N66+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANT/RRH WHITE GAMMA SECTOR	_	STO1 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
	NO SCALE	2	1717 S. BOULDER SUTTE 300 TULSA, OK 74119 PH: (1018) 557-4630 www.bigpp.com
			No. 23924 No. 23924 No. 23924 ENGINEERING, INC. PEC.0001564 Expires 2/10/23 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNGER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: DAS YMK YMK RFDS REV #: 0 CONSTRUCTION
	NO SCALE	3	DOCUMENTS
			SUBMITTALS REV DATE DESCRIPTION A 7/25/21 ISSUED FOR REVIEW 0 8/4/21 ISSUED FOR CONSTRUCTION 1 9/13/21 ISSUED FOR CONSTRUCTION 2 10/20/21 ISSUED FOR CONSTRUCTION 3 4/12/22 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 153457.001.01 DISH WIRELESS L.L.C. PROJECT INFORMATION NJJER01080B 5 HIGH RIDGE PARK ROAD STAMFORD, CT 06905 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER SHEET NUMBER
	NO SCALE	4	

EXOTHERMIC CONNECTION	•	AB ABV	ANCHOR BOLT ABOVE	IN INT	INCH INTERIOR
MECHANICAL CONNECTION		ABV	ABOVE ALTERNATING CURRENT	LB(S)	POUND(S)
BUSS BAR INSULATOR		ADDL	ADDITIONAL	LF	LINEAR FEET
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM		AFF	ABOVE FINISHED FLOOR	LTE	LONG TERM EVOLUTION
TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	и Ю т	AFG	ABOVE FINISHED GRADE	MAS	MASONRY
EXOTHERMIC WITH INSPECTION SLEEVE		AGL AIC	ABOVE GROUND LEVEL AMPERAGE INTERRUPTION CAPACITY	MAX MB	MAXIMUM MACHINE BOLT
		ALUM	ALUMINUM	MECH	MECHANICAL
GROUNDING BAR		ALT	ALTERNATE	MFR	MANUFACTURER
GROUND ROD		ANT	ANTENNA	MGB	MASTER GROUND BAR
TEST GROUND ROD WITH INSPECTION SLEEVE	∰ ⊺	APPROX ARCH	APPROXIMATE ARCHITECTURAL	MIN	
SINGLE POLE SWITCH	\$	ATS	AUTOMATIC TRANSFER SWITCH	MISC MTL	MISCELLANEOUS METAL
	\downarrow	AWG	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
DUPLEX RECEPTACLE		BATT	BATTERY	MW	MICROWAVE
	\downarrow	BLDG BLK	BUILDING BLOCK	NEC	NATIONAL ELECTRIC CODE
DUPLEX GFCI RECEPTACLE	(CFC)	BLKG	BLOCKING	NM NO.	NEWTON METERS NUMBER
FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS	48-T8	ВМ	BEAM	#	NUMBER
		BTC	BARE TINNED COPPER CONDUCTOR	" NTS	NOT TO SCALE
SMOKE DETECTION (DC)	(SD)	BOF CAB	BOTTOM OF FOOTING CABINET	OC	ON-CENTER
		CANT	CANTILEVERED	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
EMERGENCY LIGHTING (DC)		CHG	CHARGING	OPNG P/C	OPENING PRECAST CONCRETE
SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW		CLG	CEILING	PCS	PERSONAL COMMUNICATION SERVICES
LED-1-25A400/51K-SR4-120-PE-DDBTXD		CLR	CLEAR	PCU	PRIMARY CONTROL UNIT
CHAIN LINK FENCE	x x x x	COL COMM	COLUMN COMMON	PRC	PRIMARY RADIO CABINET
WOOD/WROUGHT IRON FENCE	-000000	CONC	CONCRETE	PP	POLARIZING PRESERVING
WALL STRUCTURE		CONSTR	CONSTRUCTION	PSF PSI	POUNDS PER SQUARE FOOT POUNDS PER SQUARE INCH
LEASE AREA		DBL	DOUBLE	PT	PRESSURE TREATED
PROPERTY LINE (PL)		DC DEPT	DIRECT CURRENT DEPARTMENT	PWR	POWER CABINET
SETBACKS		DF	DOUGLAS FIR	QTY	QUANTITY
		DIA	DIAMETER	RAD RECT	RADIUS RECTIFIER
ICE BRIDGE		DIAG	DIAGONAL	REF	REFERENCE
CABLE TRAY		DIM DWG	DIMENSION DRAWING	REINF	REINFORCEMENT
WATER LINE	w w w w w	DWG	DOWEL	REQ'D	REQUIRED
UNDERGROUND POWER	UGP UGP UGP UGP	EA	EACH	RET	REMOTE ELECTRIC TILT
UNDERGROUND TELCO	UGT UGT UGT UGT	EC	ELECTRICAL CONDUCTOR	RF RMC	RADIO FREQUENCY RIGID METALLIC CONDUIT
OVERHEAD POWER	OHP OHP OHP	EL.		RRH	REMOTE RADIO HEAD
OVERHEAD TELCO	OHT OHT OHT	ELEC EMT	ELECTRICAL ELECTRICAL METALLIC TUBING	RRU	REMOTE RADIO UNIT
UNDERGROUND TELCO/POWER		ENG	ENGINEER	RWY	RACEWAY
ABOVE GROUND POWER	AGP AGP AGP AGP	EQ	EQUAL	SCH SHT	SCHEDULE SHEET
ABOVE GROUND TELCO	AGT AGT AGT AGT	EXP	EXPANSION	SIAD	SMART INTEGRATED ACCESS DEVICE
ABOVE GROUND TELCO/POWER	—— AGT/P —— AGT/P —— AGT/P ——	EXT	EXTERIOR EACH WAY	SIM	SIMILAR
		FAB	FABRICATION	SPEC	SPECIFICATION
WORKPOINT	W.P.	FF	FINISH FLOOR	SQ SS	SQUARE STAINLESS STEEL
SECTION REFERENCE	$\left(\begin{array}{c} XX \\ X-X \end{array}\right)$	FG	FINISH GRADE	STD	STANDARD
		FIF	FACILITY INTERFACE FRAME FINISH(ED)	STL	STEEL
		FLR	FLOOR	TEMP	TEMPORARY
DETAIL REFERENCE		FDN	FOUNDATION	ТНК ТМА	THICKNESS TOWER MOUNTED AMPLIFIER
	X-X	FOC	FACE OF CONCRETE	TN	TOE NAIL
		FOM FOS	FACE OF MASONRY FACE OF STUD	TOA	TOP OF ANTENNA
		FOW	FACE OF WALL	TOC	TOP OF CURB
		FS	FINISH SURFACE	TOF	TOP OF FOUNDATION TOP OF PLATE (PARAPET)
1		FT	FOOT	TOP TOS	TOP OF PLATE (PARAPET) TOP OF STEEL
		FTG GA	FOOTING GAUGE	TOW	TOP OF WALL
		GA	GAUGE GENERATOR	TVSS	TRANSIENT VOLTAGE SURGE SUPPRESSION
		GFCI	GROUND FAULT CIRCUIT INTERRUPTER	TYP	
		GLB	GLUE LAMINATED BEAM	UG UL	UNDERGROUND UNDERWRITERS LABORATORY
		GLV	GALVANIZED	UNO	UNLESS NOTED OTHERWISE
		GPS GND	GLOBAL POSITIONING SYSTEM GROUND	UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
		GSM	GLOBAL SYSTEM FOR MOBILE	UPS	UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
		HDG	HOT DIPPED GALVANIZED	VIF	VERIFIED IN FIELD
		HDR	HEADER	w w/	WIDE WITH
		HGR HVAC	HANGER HEAT/VENTILATION/AIR CONDITIONING	WD	WOOD
		HVAC	HEIGHT	WP	WEATHERPROOF
		IGR	INTERIOR GROUND RING	WT	WEIGHT
		+			
1	LEGEND	1			ABBREVIATIONS
1		1			

ANCHOR BOLT

IN INCH

SIGN TYPES				
TYPE	COLOR	COLOR CODE PURPOSE		
INFORMATION	GREEN	"INFORMATIONAL SIGN" TO NOTIFY OTHERS OF SITE OWNERSHIP & CONTACT NUMBER AND POTENTIAL RF EXPOSURE.		
NOTICE	BLUE	"NOTICE BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)		
CAUTION	YELLOW	"CAUTION BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)		
WARNING	ORANGE/RED	"WARNING BEYOND THIS POINT" RF FIELDS AT THIS SITE EXCEED FCC RULES FOR HUMAN EXPOSURE. FAILURE TO OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS COULD RESULT IN SERIOUS INJURY. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)		

SIGN PLACEMENT:

- RF SIGNAGE PLACEMENT SHALL FOLLOW THE RECOMMENDATIONS OF AN EXISTING EME REPORT, CREATED BY A THIRD PARTY PREVIOUSLY AUTHORIZED BY DISH Wireless L.L.C.
- INFORMATION SIGN (GREEN) SHALL BE LOCATED ON EXISTING DISH Wireless L.L.C EQUIPMENT. A) IF THE INFORMATION SIGN IS A STICKER, IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C EQUIPMENT CABINET. B) IF THE INFORMATION SIGH IS A METAL SIGN IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C H-FRAME WITH A SECURE ATTACH METHOD.
- IF EME REPORT IS NOT AVAILABLE AT THE TIME OF CREATION OF CONSTRUCTION DOCUMENTS; PLEASE CONTACT DISH Wireless L.L.C. CONSTRUCTION MANAGER FOR FURTHER INSTRUCTION ON HOW TO PROCEED.

NOTES:

- 1. FOR DISH Wireless L.L.C. LOGO. SEE DISH Wireless L.L.C. DESIGN SPECIFICATIONS (PROVIDED BY DISH Wireless L.L.C.)
- 2. SITE ID SHALL BE APPLIED TO SIGNS USING "LASER ENGRAVING" OR ANY OTHER WEATHER RESISTANT METHOD (DISH Wireless L.L.C. APPROVAL REQUIRED)
- 3. TEXT FOR SIGNAGE SHALL INDICATE CORRECT SITE NAME AND NUMBER AS PER DISH Wireless L.L.C. CONSTRUCTION MANAGER RECOMMENDATIONS.
- 4. CABINET/SHELTER MOUNTING APPLICATION REQUIRES ANOTHER PLATE APPLIED TO THE FACE OF THE CABINET WITH WATER PROOF POLYURETHANE ADHESIVE
- 5. ALL SIGNS WILL BE SECURED WITH EITHER STAINLESS STEEL ZIP TIES OR STAINLESS STEEL TECH SCREWS
- 6. ALL SIGNS TO BE 8.5"x11" AND MADE WITH 0.04" OF ALUMINUM MATERIAL

INF	ORMATION	dish wireless.
This is area wit	5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120	
-	signs and barriers beyond this point. Wireless L.L.C. NOC at 1-866-624-6874	AMERICAN TOWER* 10 PRESIDENTIAL WAY WOBURN, MA 01801 B+T GRPP 177 5 BOULDER SUITE 300 TYT 5 BOULDER SUITE 300 SUILSA, 0K 74119
Site ID:	PURPOSES ONLY	4/12/22 4/12/22
	A WARNING	B&T ENCINEERING, INC. PEC.0001564 Expires 2/10/23 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THE DOCUMENT,
	Transmitting Antenna(s)	DRAWN BY: CHECKED BY: APPROVED BY: DAS YMK YMK RFDS REV #: 0 CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION
S ONLY		A 7/25/21 ISSUED FOR REVIEW 0 8/4/21 ISSUED FOR CONSTRUCTION 1 9/13/21 ISSUED FOR CONSTRUCTION 2 10/20/21 ISSUED FOR CONSTRUCTION
FOR REFERENCE PURPOSES	Radio frequency fields beyond this point No EXCEED the FCC Occupational exposure limit. State of the formation of the point of the point. State of the point of the point.	3 4/12/22 I ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 153457.001.01
		DISH Wireless L.L.C. PROJECT INFORMATION NJJER01080B 5 HIGH RIDGE PARK ROAD
THIS SIGN IS	Site ID: SI SIH	STAMFORD, CT 06905
Ê	dish	RF SIGNAGE SHEET NUMBER
		GN-2

<u>RF SIGNAGE</u>

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELSS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS LL.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

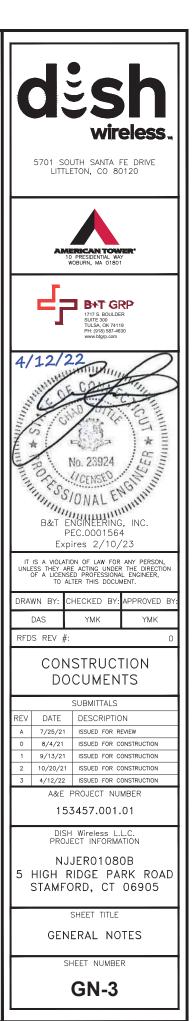
5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.


10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE, NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6 DRAWINGS:

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3

ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

1 1 ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT 42 CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

5 EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

6 ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE. PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

8 TIE WRAPS ARE NOT ALLOWED.

ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH 12 TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NFC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, LLC. AND THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE

16. GRADE PVC CONDUIT 18. OCCURS OR FLEXIBILITY IS NEEDED. 19 SCREW FITTINGS ARE NOT ACCEPTABLE. 20 NEC. 21 (WIREMOLD SPECMATE WIREWAY). 22. 23 DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. 25. EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. 28 WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.

17

- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH WIRELESS, LLC.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT

EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

9 ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10 USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12.

COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. 13.

14 ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR

15 APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. 16.

17 MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR

GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED 19 THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" 20. NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE 21 TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM. THE BUILDING STEEL COLUMNS. LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

STRUCTURAL STEEL NOTES:

STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC 3SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS.?

2. STRUCTURAL STEEL ROLLED SHAPES. PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS:

ASTM A-572, GRADE 50 - ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE

B. ASTM A-36 - ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED OTHERWISE.

- C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
- D. ASTM A-325. TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS
- ASTM F-1554 07 ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE

ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123, EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.

4. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER® RECOMMENDATIONS

5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.

CONNECTIONS:

ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.

ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.

C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.

IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNING/WELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY.

E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE.

F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE.

G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING ½?BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD G GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.

THE CONTRACTOR SHALL PROVIDE ADEQUATE SHORING AND/OR BRACING WHERE REQUIRED DURING CONSTRUCTION UNTIL ALL CONNECTIONS ARE COMPLETE.

ANY FIELD CHANGES OR SUBSTITUTIONS SHALL HAVE PRIOR APPROVAL FROM THE ENGINEER, AND DISH WIRELESS L.L.C. PROJECT MANAGER IN WRITING

ENGINEERING:

STRUCTURAL ANALYSIS

MOUNT ANALYSIS

Structural Evaluation

	Structural Evaluation		
ATC Site	302515	Reviewed By:	
Number & Name	SMFR - North, CT		
Carrier Site Number	NJJER01080B		
& Name	NJJER01080B		11.
Site Location	5 High Ridge Park Road Stamford, CT 06905-1403, Fairfield County 41.1128 N / 73.5384 W	LILLE KAUSHA	NECTICUT
Tower Description	155.9 ft Monopole	E. D. Burger	2K Month
Basic Wind Speed	116 mph (3-second gust)	E*K TREE	
Basic Wind w/ Ice	50 mph (3-second gust) w/1" radial ice concurrent	= 20 32593	0 433
Applicable Code	ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code	ESSIONAL	ENGINUTIT
Evaluation Results:	•		
The loading in the tak	bles below was evaluated with respect to the tower and foundation		
re-evaluation shall be	loading is added, or if actual loading is different from these tables, e required. This tower and foundation <i>are adequate</i> to support the		
below loads in confor	mance with specified requirements.	Created By:	Hussamaltahan

Existing and Reserved Equipment

Γ

Elev. ¹ (ft)	Qty	Equipment	Mount Type	Lines	Carrier
	3	Ericsson Radio 4449 B71 B85A	. /=	(2) 1 1/4" (1.25"-	
	3	Ericsson RRUS 4415 B25	Leg/Flush	31.8mm) Fiber	
160.0	.0 3 RFS APXVAARR24_43-U-NA20 Flush (1 1 Raycap DC6-48-60-18-8F (1 1 Raycap DC6-48-60-0-8F (24" Height) (1 3 Kathrein Scala 80010965 (1 3 Ericsson RRUS 11 (Band 12) (55 lb) (1 3 Ericsson RRUS 32 (50.8 lbs) (1 3 Ericsson RRUS 32 B66 (1 3 Ericsson RRUS 32 B2 Platform with Handrails	(3) 1 1/4" Hybriflex Cable (1) 1 5/8" Hybriflex	T-MOBILE		
	1	Raycap DC6-48-60-18-8F			
	1	Raycap DC6-48-60-0-8F (24" Height)			
	3	Kathrein Scala 80010965			
	3	Ericsson RRUS 11 (Band 12) (55 lb)			
	3	Ericsson RRUS 32 (50.8 lbs)		(2) 0.39" (10mm)	/4" (1.25"- nm) Fiber 4" Hybriflex Cable 8" Hybriflex 9" (10mm) er Trunk " (19.7mm) AWG 6 1/4" Coax " conduit " conduit 5/8" Coax
	3	Ericsson RRUS 32 B66			
152.0	3	Ericsson RRUS 32 B2	Diatform with Handrails	(6) 0.78" (19.7mm) 8 AWG 6 (12) 1 1/4" Coax	
152.0	3	Powerwave Allgon 7770.00			
	3	Quintel QS66512-2			
	3	CCI OPA-65R-LCUU-H6		(1) 3" conduit	
	1	Raycap DC6-48-60-18-8F (23.5" Height)			
	6	Powerwave Allgon LGP21401			
	6	Kaelus DBC0061F1V51-2			
	3	Ericsson RRUS 4478 B14			
	4	Samsung B2/B66A RRH-BR049			
	4	Samsung RT4401-48A			
	4	Samsung Outdoor CBRS 20W RRH –Clip-on Antenna	Triangular Low Profile		
	4	Commscope CBC78T-DS-43-2X	Platform	(6) 1 5/8" Coax	
143.0	3.0 4	Samsung B5/B13 RRH-BR04C		(2) 1 5/8" Hybriflex	VERIZON WIRELESS
	4	Commscope JAHH-45B-R3B			
	4	Commscope JAHH-65B-R3B	1		
	1	Antel BXA-80080/6CF	Law Drafila Dlatf		
	1	Antel BXA-70063/6CF 2°	Low Profile Platform		

ATC Tower Services, Inc. 3500 Regency Parkway, Suite 100 - Cary, NC 27518 – 919-468-0112 Office – 919-466-5414 Fax - www.americantower.com

Existing and Reserved Equipment

Elev. ¹ (ft)	Qty	Equipment	Mount Type	Lines	Carrier	
	1	Amphenol Antel BXA-80063-6BF-EDIN-X				
	2	RFS DB-T1-6Z-8AB-0Z				
			Triangular Low Profile Platform			
	3	KMW KMDAPS2040000 (E-F Band)				
133.0	3	KMW AM-X-WM-17-65-00T (48")	Low Profile Platform	-	SPRINT NEXTEL	
	9 Decibel DB844H90E-XY					
	3	Ericsson Air6449 B41		(1) 1 1/4" (1.25"-		
132.0	3	Ericsson AIR-32 B2A/B66Aa	Low Profile Platform	31.8mm) Fiber (2) 1 5/8" Hybriflex	T-MOBILE	
	3	Alcatel-Lucent 4x40W RRH (91 lb)				
	3	Alcatel-Lucent 800 MHz 2X50W RRH w/ Filter		(4) 1 1/4" Hybriflex		
120.0	3	Alcatel-Lucent RRH2x50-08	Law Duafila Dlatfama	Cable		
120.0	3	Commscope DT465B-2XR	Low Profile Platform	(1) 1" (25.4mm)	SPRINT NEXTEL	
	3	RFS APXVSPP18-C-A20		Hybrid		
	3 Alcatel-Lucent TD-RRH8x20-25 w/ Solar Shield					
105.0	1	Antel BCD-87010 4°	Stand-Off	(1) 7/8" Coax	SENSUS USA INC.	
75.0	1	PCTEL GPS-TMG-HR-26N	Stand-Off	(2) 1/2" (22)		
75.0	1	PCTEL GPS-TMG-HR-26N	Stand-Off	(2) 1/2" Coax	SPRINT NEXTEL	

Equipment to be Removed

Elev. ¹ (ft) Qty	Equipment	Mount Type	Lines	Carrier	
No loading was considered as removed as part of this analysis.					

Proposed Equipment

Elev. ¹ (ft)	Qty	Equipment	Mount Type	Lines	Carrier
	1	Commscope RDIDC-9181-PF-48			
94.0	3	Fujitsu TA08025-B605	Triangular Platform with	(1) 1.75" (44.5mm)	DISH WIRELESS L.L.C.
94.0	3	Fujitsu TA08025-B604	Handrails	Hybrid	DISH WIRELESS L.L.C.
	3	JMA Wireless MX08FRO665-21			

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed coax inside the pole shaft.

This report was prepared for American Tower Corporation by

Antenna Mount Analysis Report

ATC Site Name	:	SMFR - North
ATC Asset Number	:	302515
Engineering Number	:	13685414_C8_04
Mount Elevation	:	95.67 ft
Carrier	:	Dish Wireless L.L.C.
Carrier Site Name	:	NJJER01080B
Carrier Site Number	:	NJJER01080B
Site Location	:	5 High Ridge Park Road
		Stamford, CT 06905-1403
		41.11275, -73.53835278
County	:	Fairfield
Date	:	March 22, 2022
Max Usage	:	47%
Result	:	Contingent Pass* *See conclusion for requirements

Prepared By: Gunjan Donode Telamon Tower Engineering, PLLC Reviewed By: William Holt, P.E. Telamon Tower Engineering, PLLC

Digitally signed by William Holt Date: 2022.03.22 19:41:08 -04'00'

Table of Contents

Introduction
Supporting Documents
Analysis
Conclusion
Antenna Loading
Structure Usages
Equipment Layout Plan View
Equipment Layout Front Elevation View
Standard Conditions
Calculations Attached

Introduction

The proposed equipment is to be mounted to the proposed Commscope MC-PK8-DSH Platform w/ Support Rails. This proposed mounting configuration was analyzed using RISA-3D, a commercially available finite element analysis software package. A selection of input and output from our analysis is attached to the end of this report.

Supporting Documents

Structural Data	Site Photos, dated December 7, 2021 Assembly Drawing by Commscope, Document #MC-PK8-DSH, Rev. A, dated March 17, 2021 Assembly Drawing by Andrew, Part #XP-197-S, Rev. A, dated April 27, 2011
Previous Analyses	Tower SA by ATC, Engineering #13678030_C3_02, dated July 1, 2021
Construction Drawings	CDs by Dish Wireless, Project #153457.001.01, Rev. 2, dated October 20, 2021
Loading Data	ATC Application, Project #13685414, Revision #1

<u>Analysis</u>

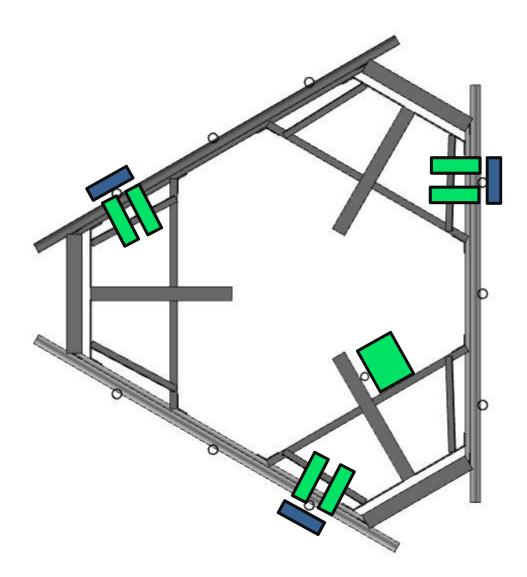
Codes	ТІА-222-Н
Basic Wind Speed	116 mph, V _{ult} (3-Second Gust)
Basic Wind Speed w/ Ice	50 mph (3-Second Gust) w/ 1" Radial Ice (Escalating)
Exposure Category	В
Topographic Factor Procedure:	Method 2
Feature:	Flat
Crest Height (H):	0 ft
Crest Length (L):	0 ft
Risk Category	II
Maintenance Live Load	L _M : 500 lb
Spectral Response	S _s : 0.26; S ₁ : 0.06; Site Class: D

Conclusion

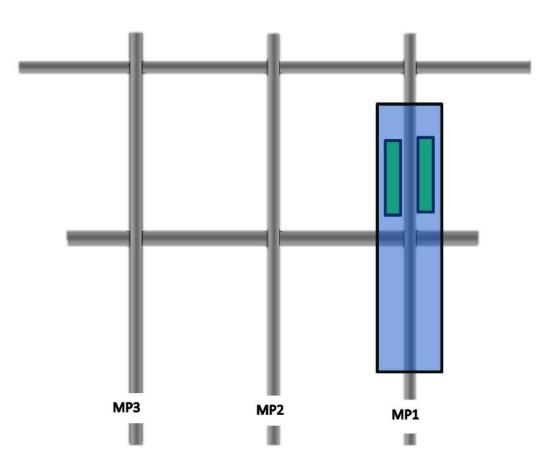
Based on the analysis, the antenna mount meets the requirements per the applicable codes listed above. The mounting configuration considered in this analysis will be capable of supporting the referenced loading pursuant to referenced standards once the following scope is executed:

- Install (1) Commscope MC-PK8-DSH Platform Mount at ±94'-0" elevation.
- Install (3) Commscope MT54696, 9 ft. long mount pipes included in the Commscope MC-PK8-DSH platform mount kit at each sector of the platform mount (9 Total) as shown.
- Install (1) 5ft. long, Pipe 2 STD, A53 Gr. B, mount pipe at alpha sector of the platform mount (1 total) as shown. Connect to stand-off horizontal HSS tube with (1) Andrew XP-197-S crossover plate kit (1 total).
- All mount pipes are to be installed equidistant from each other as shown in the assembly drawings.
- Install existing and proposed antennas such that they are vertically centered on the platform base horizontal. Install existing and proposed RRUS behind the antennas.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.


Antenna Loading

Elevation (ft)		Antennas		
Mount	Rad.	#	Name	
	3	Jma Wireless MX08FRO665-21		
	04.0	1	Raycap RDIDC-9181-PF-48	
95.7	95.7 94.0	3	Fujitsu TA08025-B605	
		3	Fujitsu TA08025-B604	


Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Tower to Mount Connection	47%	Pass
Stand-Off Horizontals	43%	Pass
Bracing Members	34%	Pass
Mount Pipes	12%	Pass
Support Rail	12%	Pass
Platform Base	7%	Pass

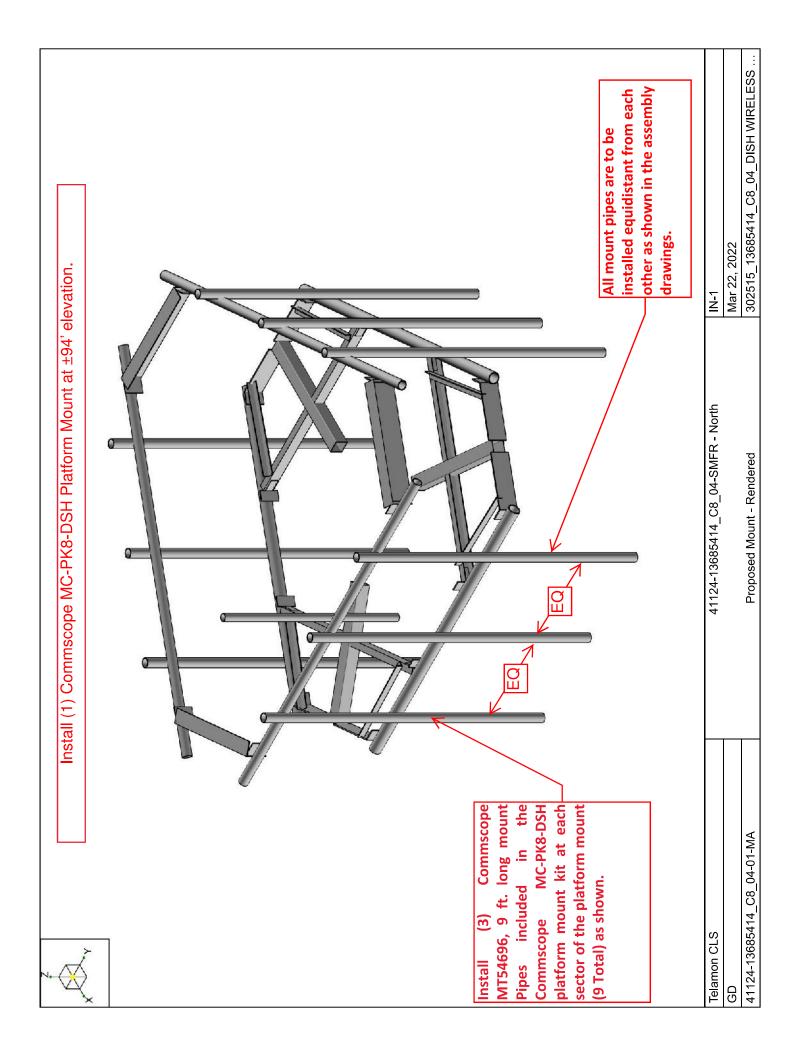
Equipment Layout Plan View

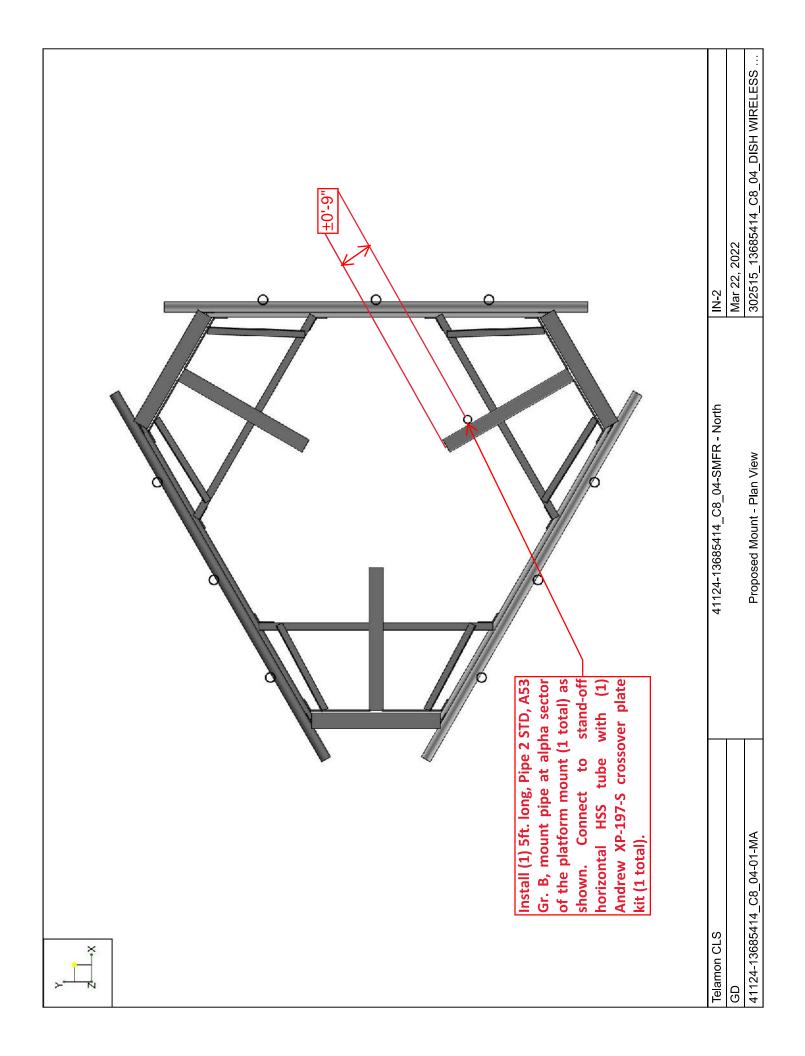
Equipment Layout Front Elevation View

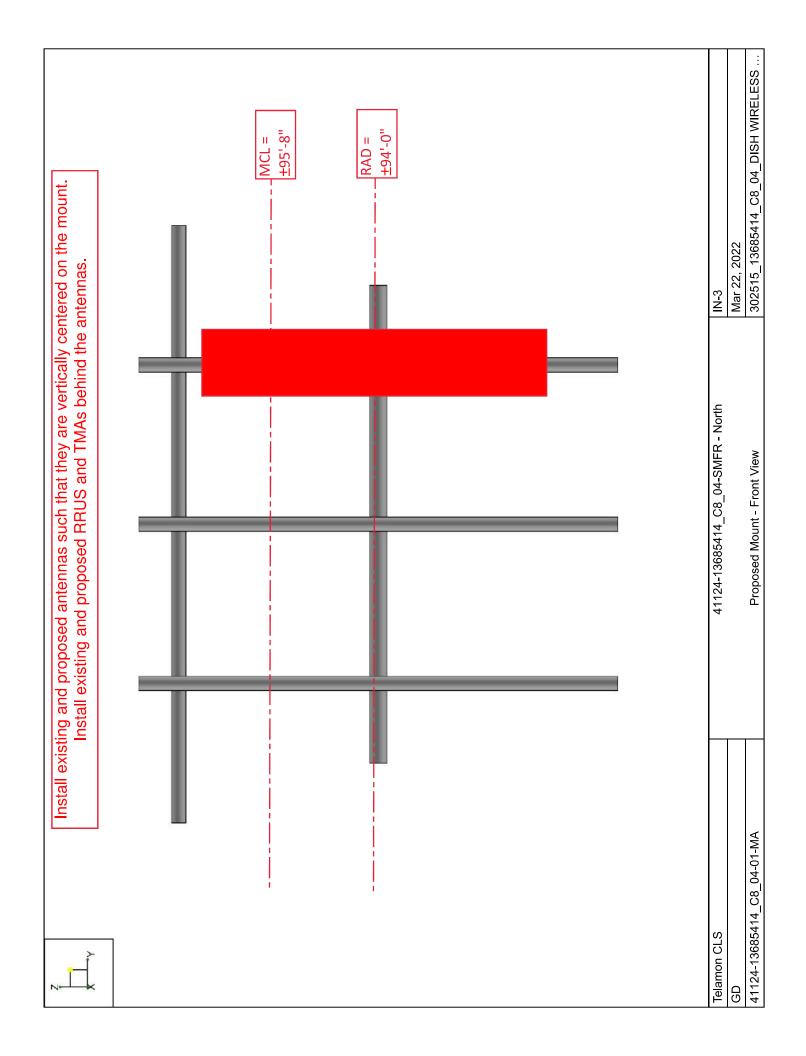
Total #	Equipment	Mount Pipe Position
3	Jma Wireless MX08FRO665-21	P1
1	Raycap RDIDC-9181-PF-48	Stand-off (Alpha)
3	Fujitsu TA08025-B605	P1
3	Fujitsu TA08025-B604	P1

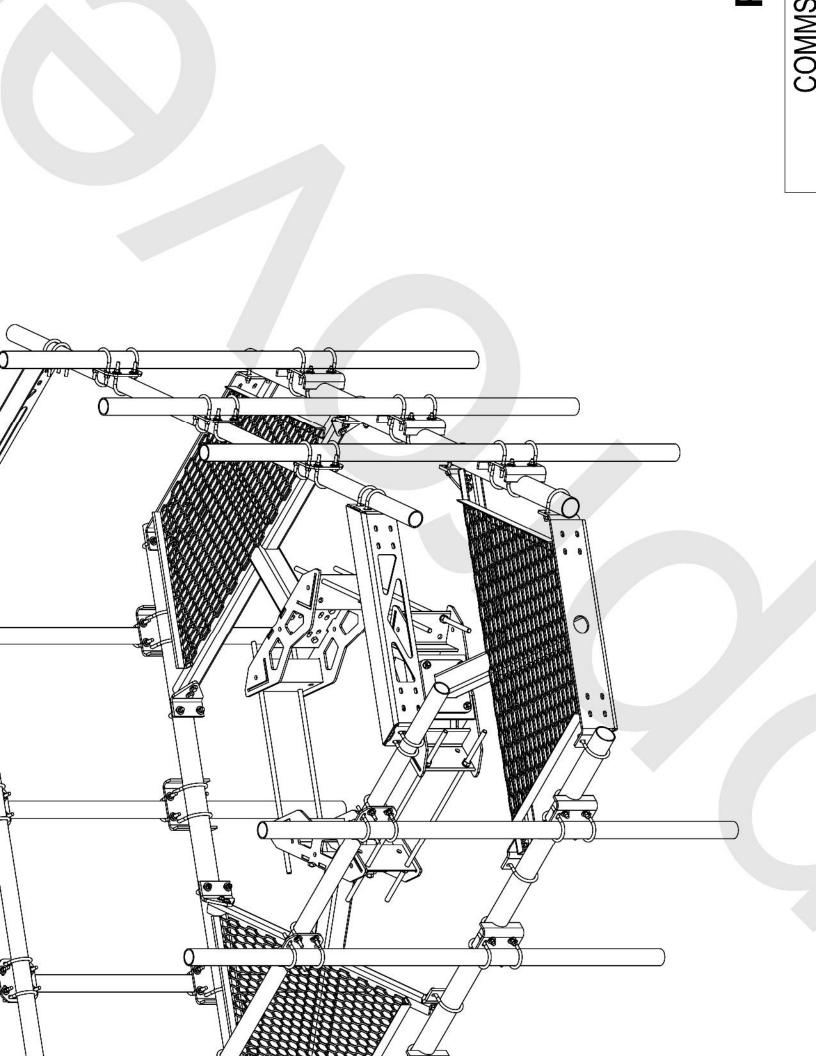
Standard Conditions

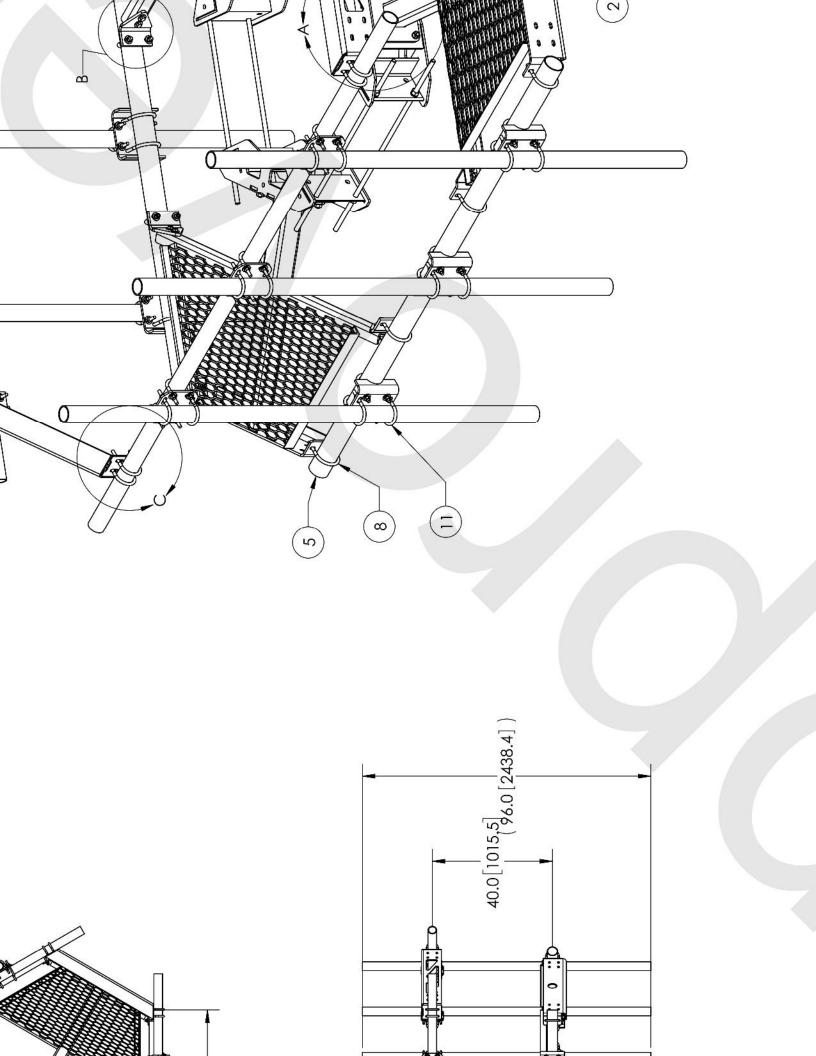
This analysis is inclusive of the antenna supporting frames/mounts and all recorded connections that will support the equipment listed in this report. It considers only the theoretical capacity of structural components and it is not a condition assessment. The validity of the analysis may be dependent on the accuracy of structural information supplied by others. The client is responsible for verifying this information. If any provided information is revised after completion of this analysis, Telamon Tower Engineering, PLLC should be notified immediately to revise results.

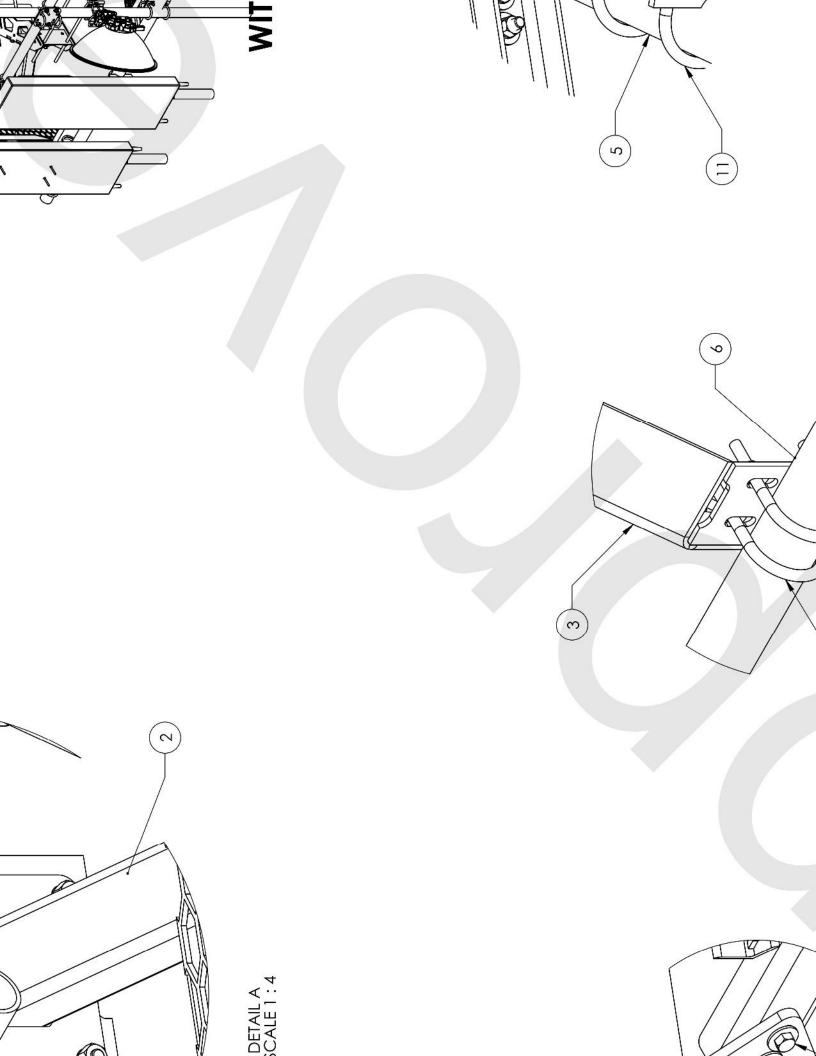

This analysis assumes the following:

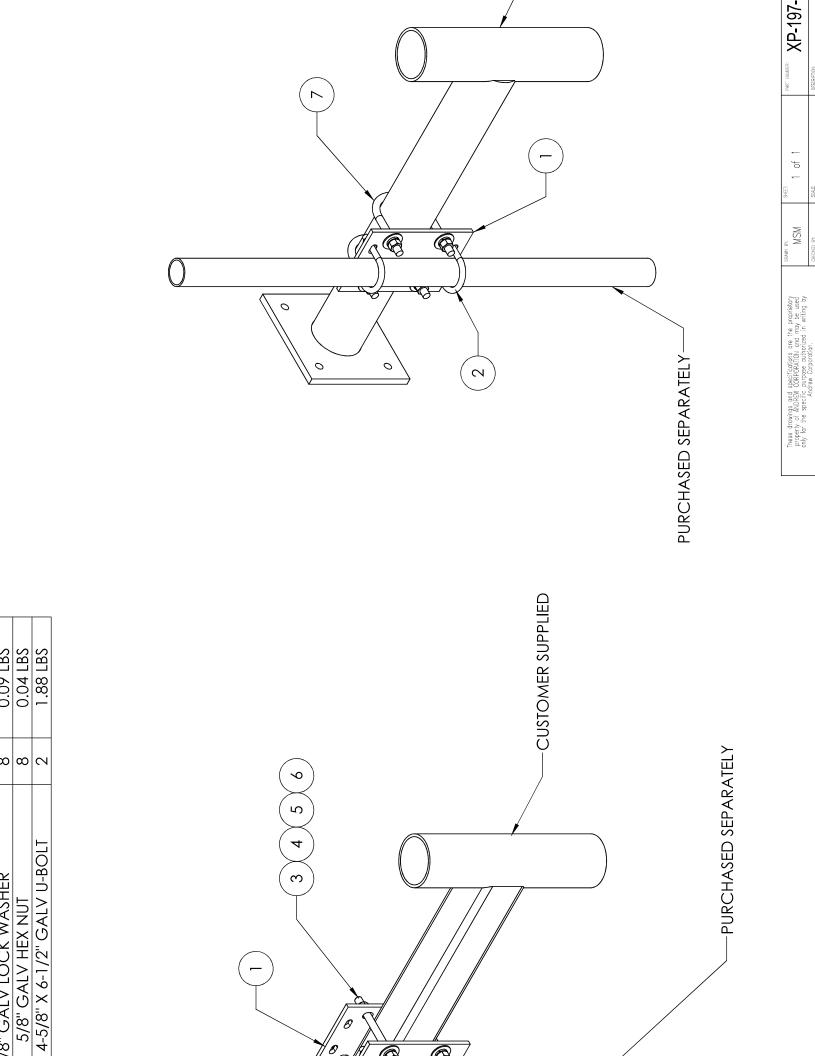

- 1. The tower or other superstructure and mounts (if existing) were properly constructed as per the original design and have been properly maintained in accordance with applicable code standards.
- 2. Member sizes and strengths are accurate as supplied or are assumed as stated in the calculations.
- **3.** In the absence of sufficient design information, all welds and connections are assumed to develop at least the capacity of the connected member, unless otherwise stated in this analysis.
- 4. All prior structural modifications, if any, are assumed to be correctly installed and fully effective.
- 5. The loading configuration is complete and accurate as supplied and/or as modeled in the previous analysis. All appurtenances are assumed to be properly installed and supported as per manufacturer requirements.
- **6.** Some conservative assumptions may be used regarding appurtenances and their projected areas based on careful interpretation of data supplied, previous experience and standard industry practice.
- **7.** Installation of all equipment and steel should be confirmed not to cause tower conflicts nor impede the tower climbing pegs.


All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of the report. All opinions and conclusions contained herein are subject to revision based upon receipt of new or updated information. All services are provided exercising a level of care and diligence equivalent to the standard of our profession. No warranty or guarantee, either expressed or implied, is offered. All services are confidential in nature and this report will not be released to any other party without the client's consent. The use of this analysis is limited to the expressed purpose for which it was commissioned and it may not be reused, copied or disseminated for any other purpose without consent from Telamon Tower Engineering, PLLC.


All services were performed, results obtained and recommendations made in accordance with generally accepted engineering principles and practices. Telamon Tower Engineering, PLLC is not responsible for the conclusions, opinions or recommendations made by others based on the information supplied in this analysis.


It is not possible to have the fully detailed information necessary to perform a complete and thorough analysis of every structural sub-component of an existing structure. The structural analysis by Telamon Tower Engineering, PLLC verifies the adequacy of the primary members of the structure. Telamon Tower Engineering, PLLC provides a limited scope of service in that we cannot verify the adequacy of every weld, bolt, gusset, etc.



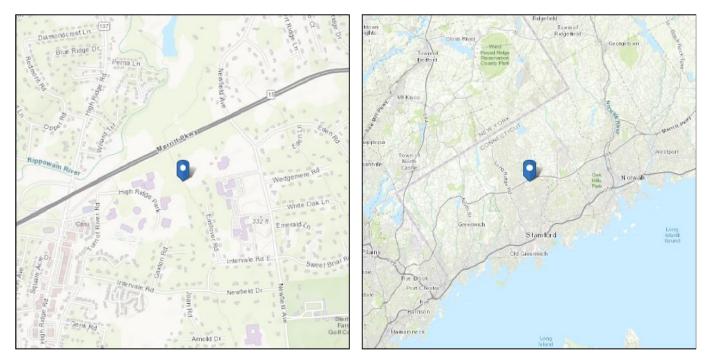


Wind & Ice Loading	<i>.</i> 00	I	
Nominal Mount Elevation (AGL), z _{mount}	96 ft	Ka	06.0
Nominal Rad Elevation (AGL), z _{fad}	94 ft	РЧ	0.95
Elevation AMSL (ft)	227 ft	Кe	0.99
TIA Standard	н	Kz	0.98
Basic Wind Speed, V _{ult} (bare)	116 mph	К _{zt}	1.00
Basic Wind Speed, V (ice)	50 mph	Ks	1.00
Design Ice Thickness, t _i	1 in	t _{iz}	1.11 in
Exposure Category	В	Ч ^р	1.00
Risk Category	=	q _z (bare)	31.7 psf
Seismic Response Coeff., C _s	0.14	q _z (ice)	5.9 psf

ğ	500 lb	1_M1	1_M2	1_M3		
Live Loading	At Mount Pipes, L _M 500 lb			Joint Labels Considered		

Member [Member Distributed Loading			
Section Set Labe	Shane Label	۴A	F _A (Ib/ft)	Ice Wt.
		Bare	ce	(Ib/ft)
Side Channel	C3X2X.188	16.06	1.40	7.63
Channel Conn. Plate 2	PL2.38X0.375	11.31	2.45	3.90
Offset End Plate	PL 6"X0.375"	28.51	4.36	7.03
Angle Grating Supports	L2X2X4	09.6	1.31	4.87
Channel Conn. Plate 1	PL 6"X0.375"	28.51	4.36	7.03
Face Horizontal Pipe	PIPE 3.0	9.98	3.03	6.27
Support Rail	PIPE_2.5	8.20	2.70	5.42
SR Conn Plate	PL6X1/4	28.51	4.36	6.92
SR Conn Angle	Custom 6.63x4.46	31.50	1.62	11.00
Offset Arm	HSS4X4X2	19.00	1.44	8.43
Stand-Off Mount Pipe	PIPE_2.0	6.77	2.44	4.74
MOUNT_PIPE_2.5	PIPE 2.5	8.20	2.70	5.42

	ce) (Ib)	F	39.11	8.18	6.78	6.78
	F _A (Io	z	74.68	12.98	4.45	3.98
	Weight EPA _A (Bare) (ft ²) EPA _A (Ice) (ft ²) F _A (Bare) (Ib) F _A (Ice) (Ib)	T	166.39	30.25	27.83	0.98 0.76 1.29 14.66 27.83
	F _A (Bé	z	1 1 <td>14.66</td>	14.66		
	Ice) (ft2)	F		1.29		
	EPA _A (z		0.76		
	are) (ft²)	F	5.87	1.07	Image: Second relation of the second relation of th	0.98
	EPA _A (B	z	12.49	1.87	0.60	0.52
	Weight	(q)	163.87	36.20	43.77	40.93
	Chang		Flat	Flat	Flat	Flat
	Weight	(Ib)	64.5	21.9	22	63.9
	Depth	(li)	∞			7.9
	Width	(ii)	20	14	15	15
	Height	(ii)	72	16	15.7	15.7
	240° Joints	2	3_A1B			
	240°	1		3_R1TT		
ces	120° Joints	2	2_A1B		1 1 </td <td></td>	
Appurtenances	120°	1	2_A1T	1 1	2_R1TT	
Appul	0° Joints	2	1_A1B			
		4	1_A1T	1_M	1_R1TT	1_R1TT
	Total	Qty. Override				
	zimuth	。240。	Ţ		Ţ	4
	Qty. per A	• 120	1		1	1
	tor (ide 0			0.5	0.5
	Area Fac	Front S			0.5	0.5 0.5
	Swap Vidth &	Depth			Þ	Þ
	Azimuth Rad Elev. Swap Area Factor Qty. per Azimuth Total	(t)				
	zimuth R	າລະແດ (ລຸ 'ມ				
	Ctatue A					
		-				
	Appurtenance	Model	MX08FR0665-21	RDIDC-9181-PF-48	TA08025-B605	TA08025-B604


ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Default (see
Section 11.4.3)

 Elevation:
 226.51 ft (NAVD 88)

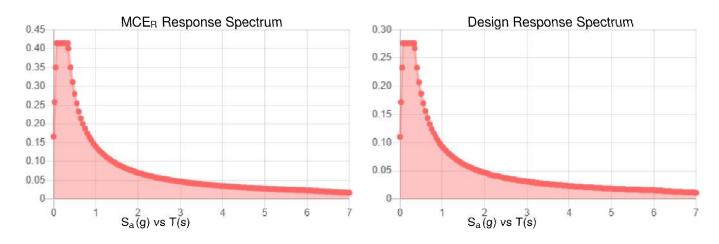
 Latitude:
 41.11275

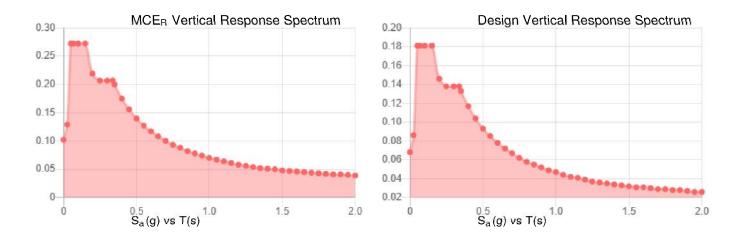
 Longitude:
 -73.538353

Wind

Results:

Wind Speed	116 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	90 Vmph
100-year MRI	97 Vmph


Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Tue Mar 22 2022


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Default (see Se	ection 11.4.3)	
S _S :	0.26	S _{D1} :	0.093
S ₁ :	0.058	Τ∟ :	6
F _a :	1.592	PGA :	0.156
F _v :	2.4	PGA M :	0.233
S _{MS} :	0.414	F _{PGA} :	1.487
S _{M1} :	0.14	l _e :	1
S _{DS} :	0.276	C _v :	0.821
Seismic Design Category	В		

Data Accessed:

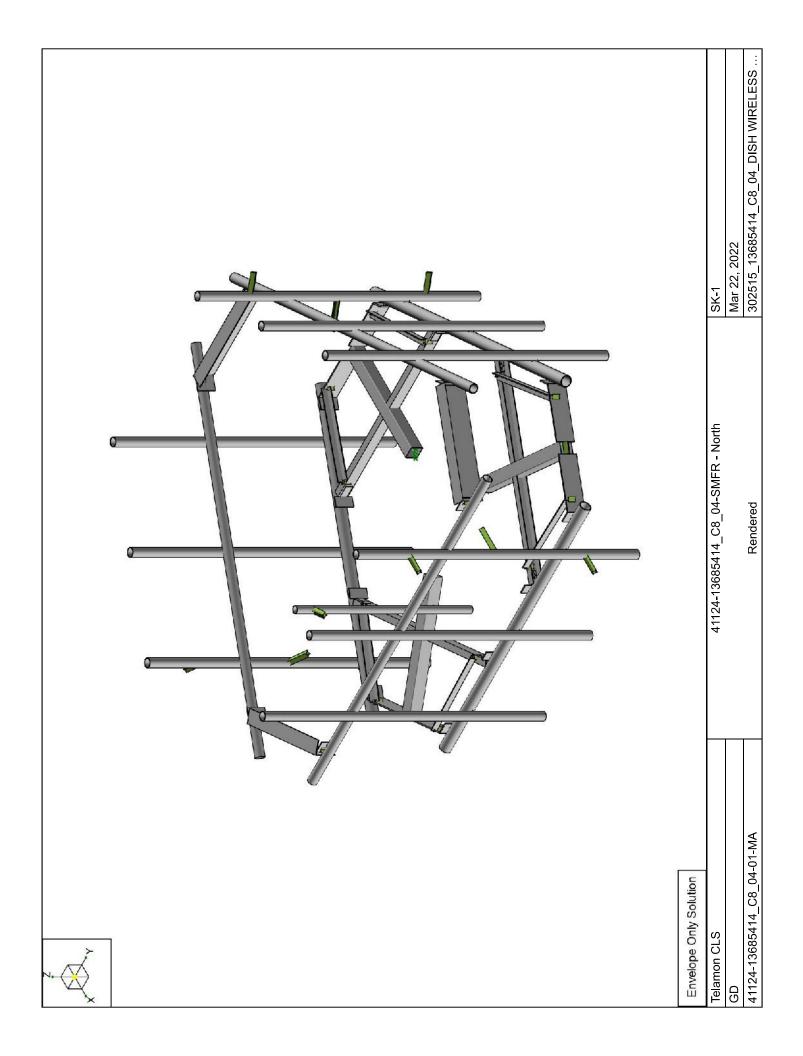
Tue Mar 22 2022

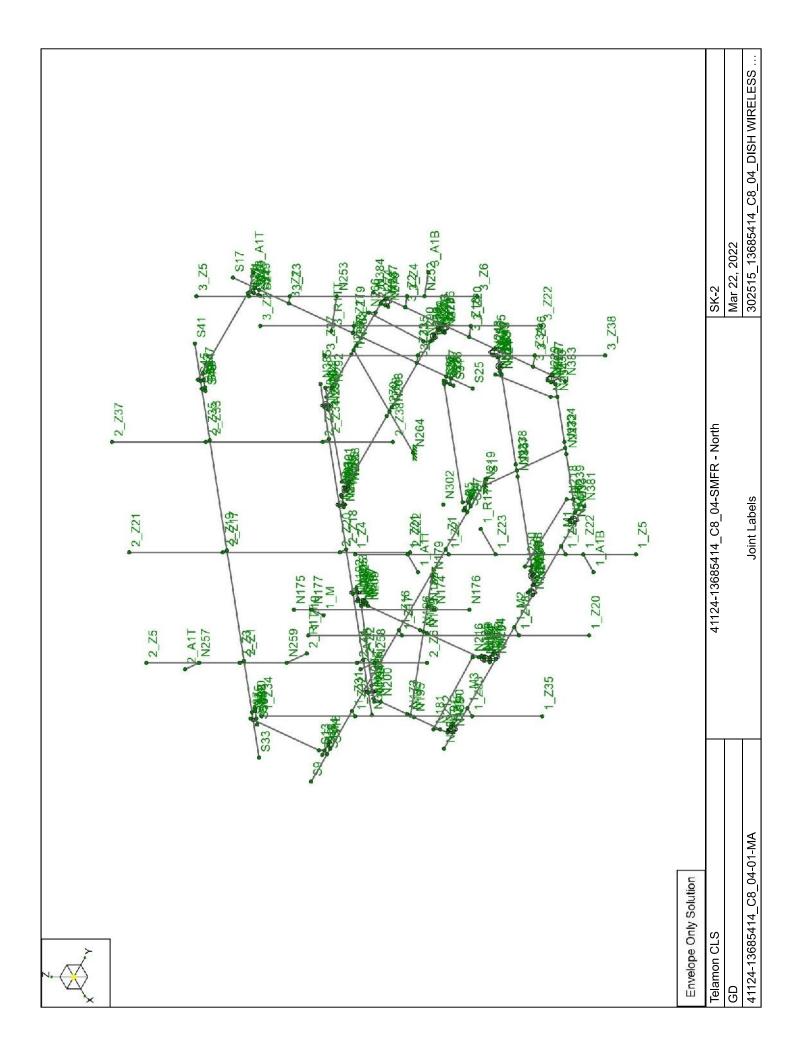
Date Source:

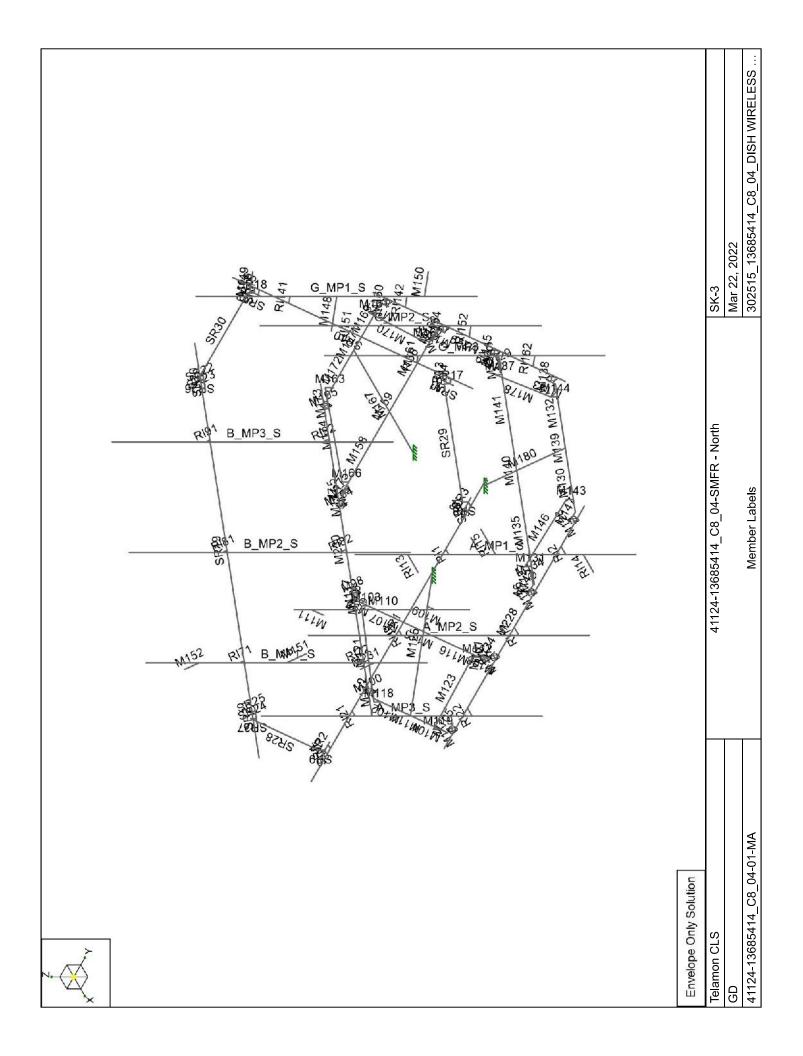
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

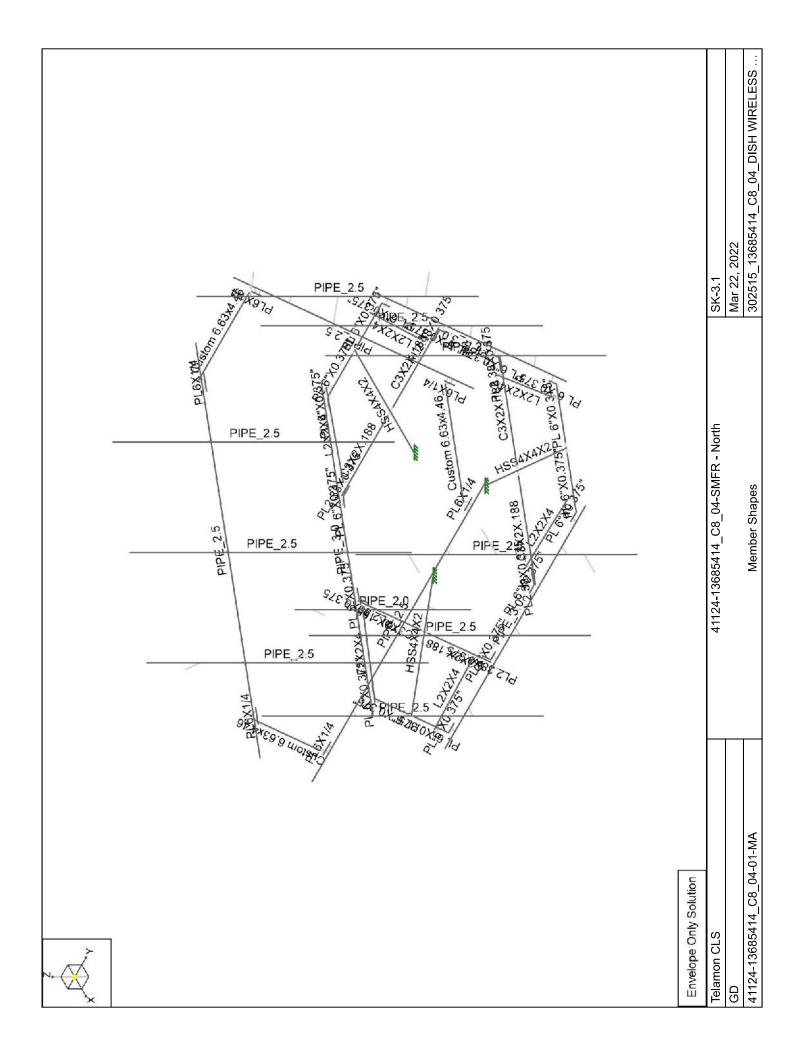
Results:

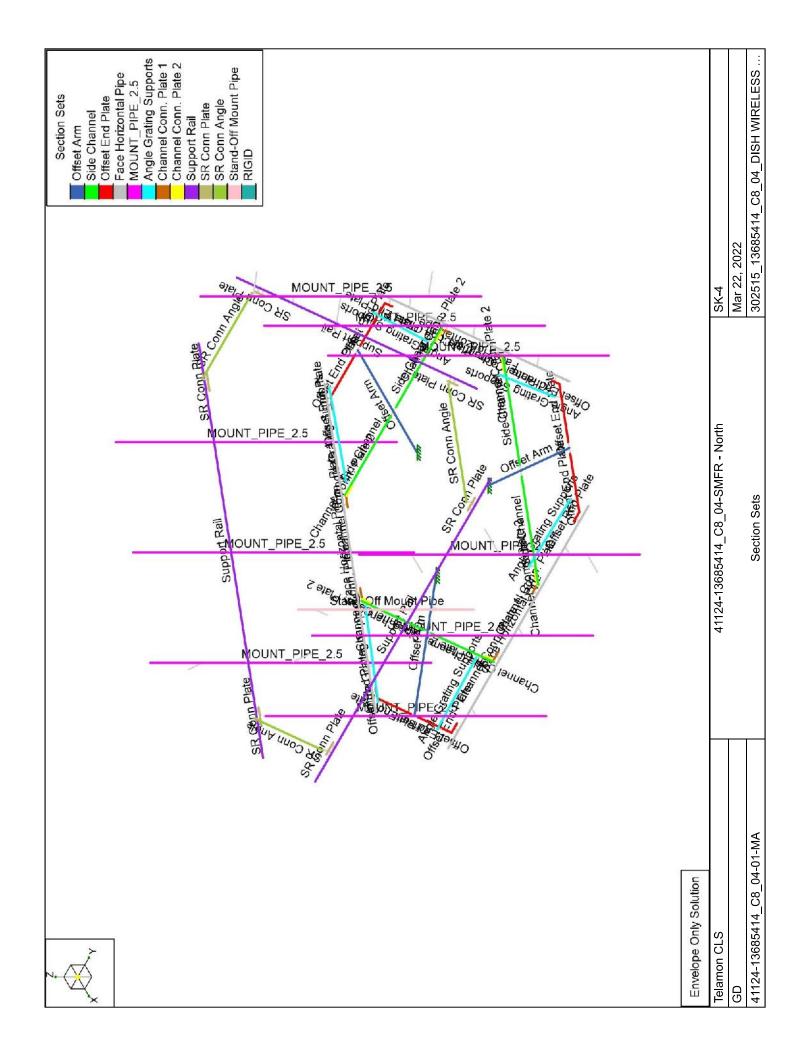
i loodiitoi	
Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Tue Mar 22 2022

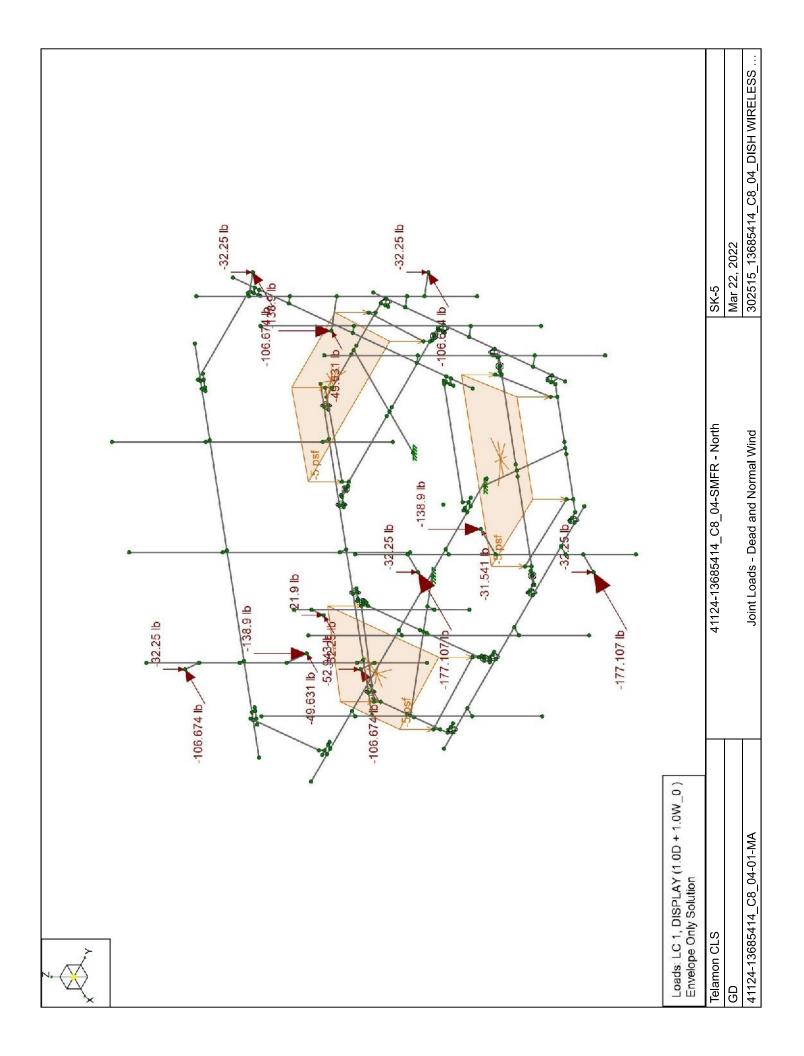

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

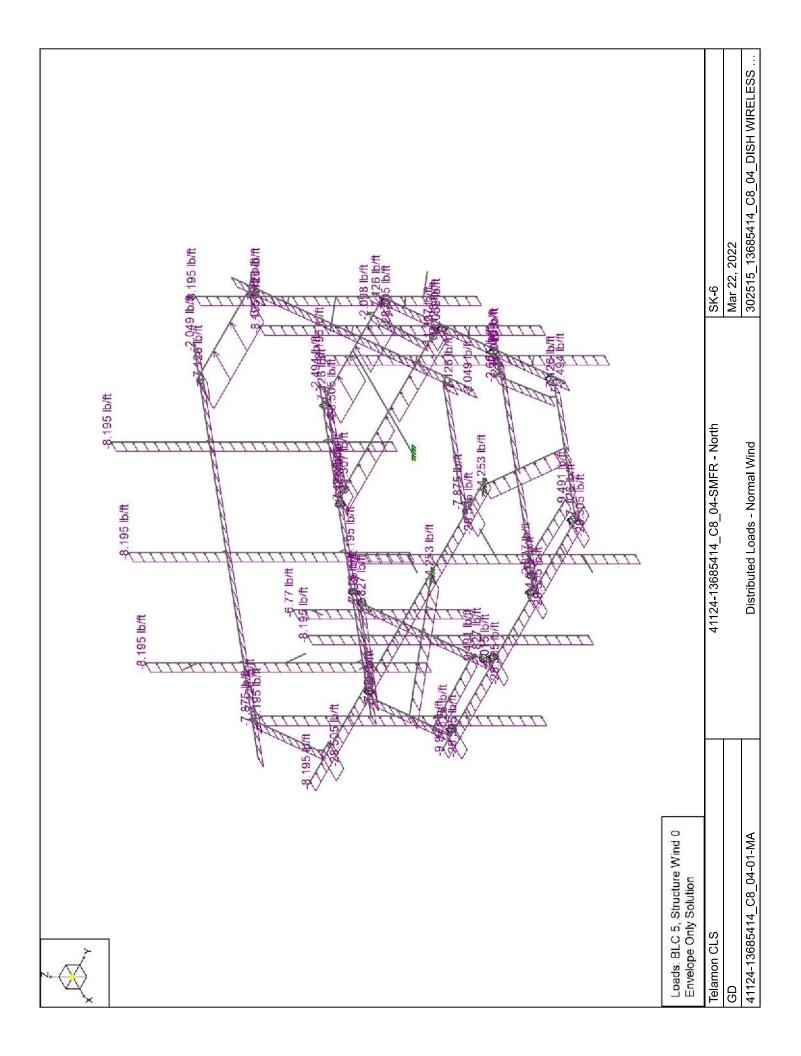

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

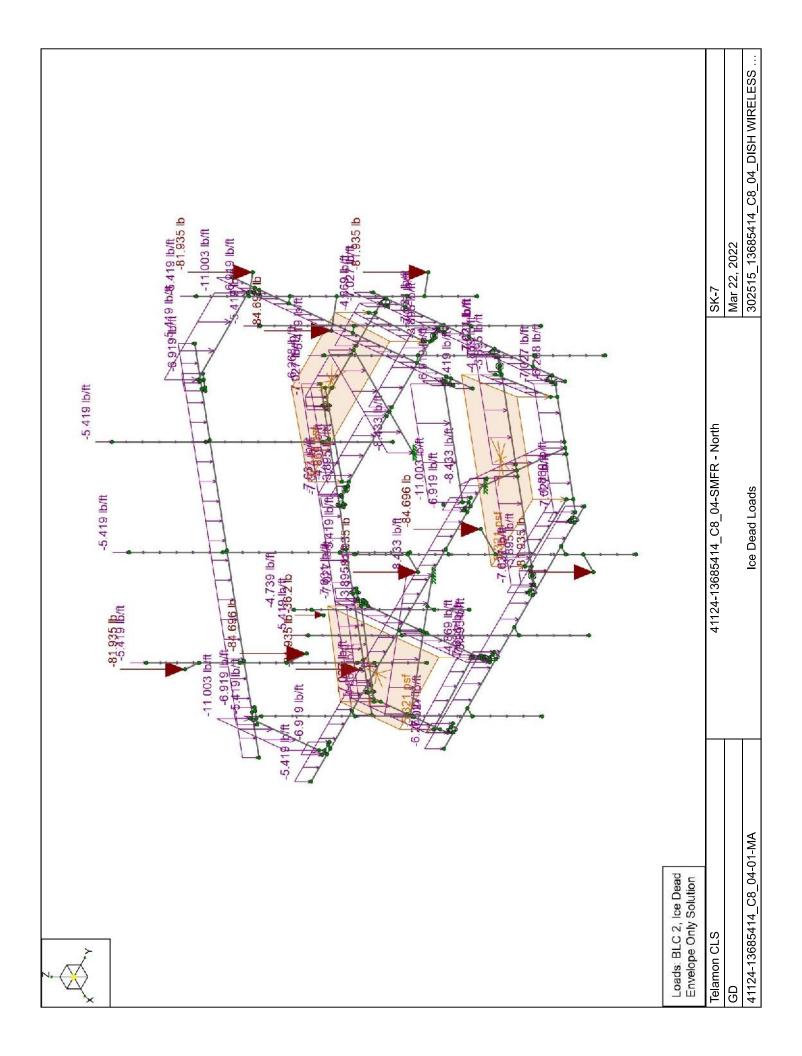

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

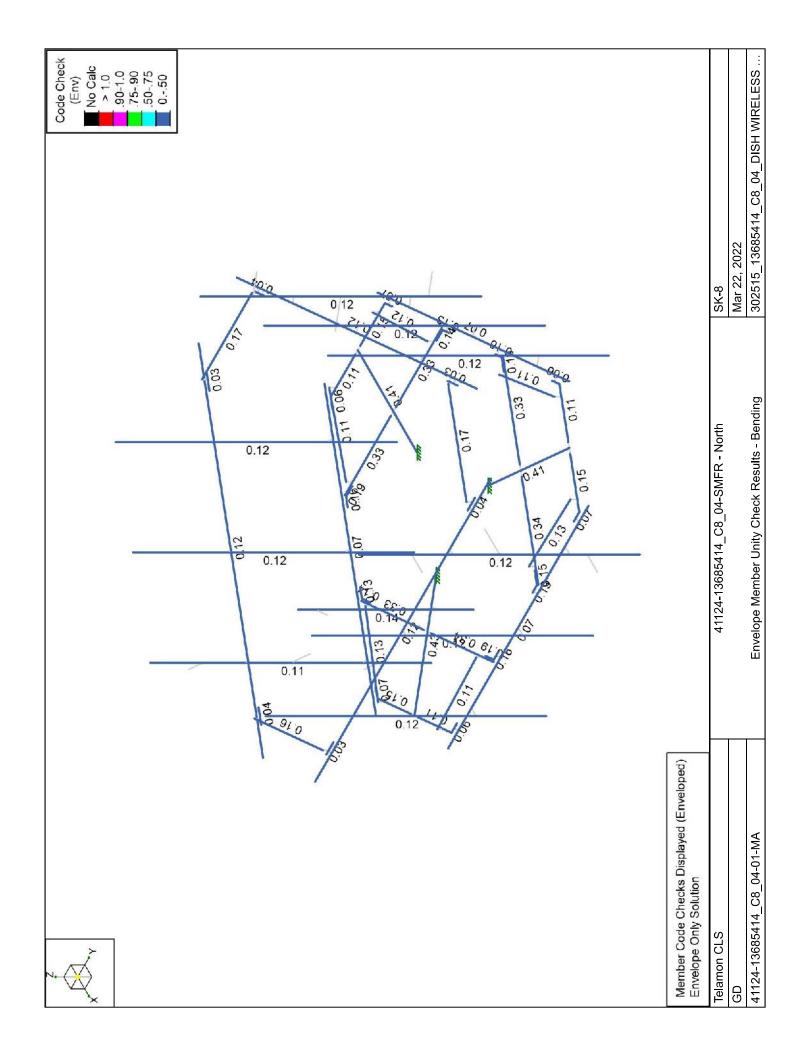

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

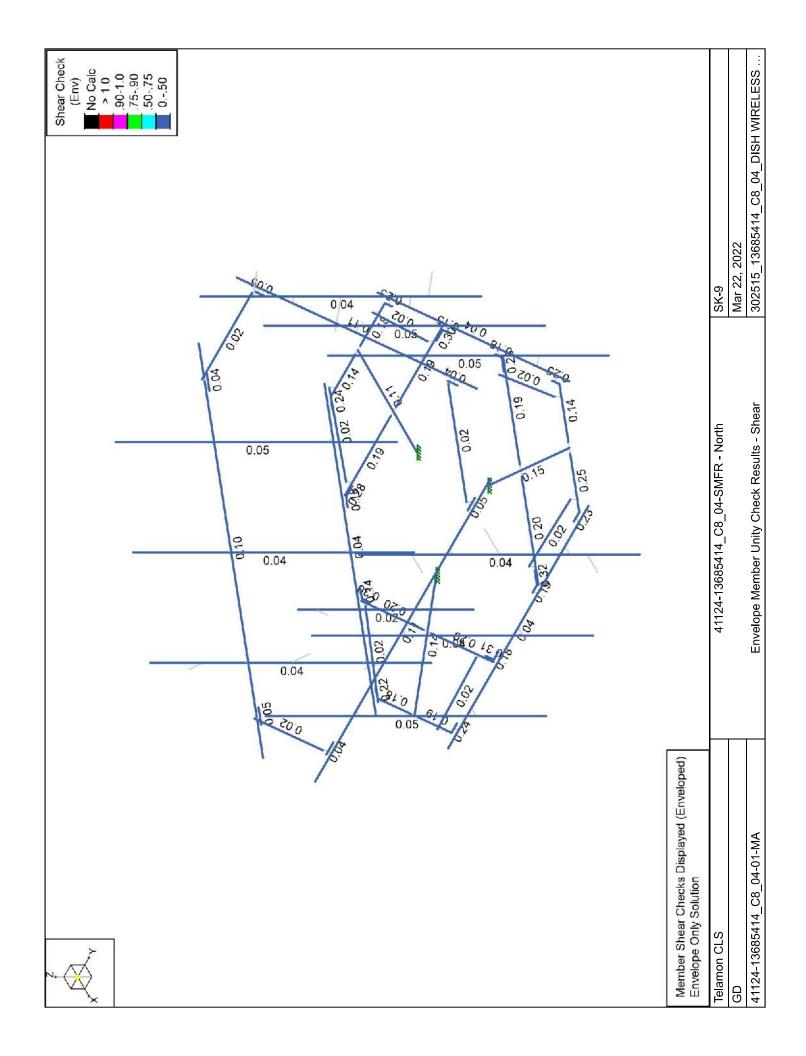

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.











Basic Load Cases

		a (
	BLC Description		Z Gravity	Nodal	Distributed	Area(Member)
1	Dead	DL	-1	13		3
2		RL		13	64	3
3	BLC 1 Transient Area Loads	None			15	
4	BLC 2 Transient Area Loads	None			15	
5	Structure Wind 0°	None			63	
6	Structure Wind 30°	None			98	
7	Structure Wind 45°	None			128	
8	Structure Wind 60°	None			126	
9	Structure Wind 90°	None			49	
10	Structure Wind 120°	None			126	
11	Structure Wind 135°	None			128	
12	Structure Wind 150°	None			98	
13	Structure Wind 180°	None			63	
14 15	Structure Wind 210°	None			98	
	Structure Wind 225°	None			128	
16 17	Structure Wind 240°	None			126	
18	Structure Wind 270°	None			49	
19	Structure Wind 300° Structure Wind 315°	None None			126 128	
20	Structure Wind 330°	None			98	
20	Structure Wind w/ Ice 0°	None			63	
22	Structure Wind w/ Ice 0	None			98	
23	Structure Wind w/ Ice 30 Structure Wind w/ Ice 45°	None			128	
24	Structure Wind w/ Ice 40°	None			120	
25	Structure Wind w/ Ice 00°	None			49	
26	Structure Wind w/ Ice 90 Structure Wind w/ Ice 120°	None			126	
27	Structure Wind W/Ice 125°	None			120	
28	Structure Wind w/ Ice 150°	None			98	
29	Structure Wind w/ Ice 180°	None			63	
30	Structure Wind w/ Ice 210°	None			98	
31	Structure Wind w/ Ice 215°	None			128	
32	Structure Wind w/ Ice 240°	None			126	
33	Structure Wind w/ Ice 270°	None			49	
34	Structure Wind w/ Ice 300°	None			126	
35	Structure Wind w/ Ice 315°	None			128	
36	Structure Wind w/ Ice 330°	None			98	
37	Antenna Wind 0°	None		13	00	
38	Antenna Wind 30°	None		26		
39	Antenna Wind 45°	None		26		
40	Antenna Wind 60°	None		26		
41	Antenna Wind 90°	None		13		
42	Antenna Wind 120°	None		26		
42 43	Antenna Wind 135°	None		26		
44	Antenna Wind 150°	None		26		
45	Antenna Wind 180°	None		13		
46	Antenna Wind 210°	None		26		
47	Antenna Wind 225°	None		26		
48	Antenna Wind 240°	None		26		
49	Antenna Wind 270°	None		13		
50	Antenna Wind 300°	None		26		
51	Antenna Wind 315°	None		26		
52	Antenna Wind 330°	None		26		
53	Antenna Wind w/ Ice 0°	None		13		
54	Antenna Wind w/ Ice 30°	None		26		
55	Antenna Wind w/ Ice 45°	None		26		

Basic Load Cases (Continued)

	BLC Description	Category	Z Gravity	Nodal	Distributed	Area(Member)
56	Antenna Wind w/ Ice 60°	None		26		
56 57	Antenna Wind w/ Ice 90°	None		13		
58	Antenna Wind w/ Ice 120°	None		26		
59	Antenna Wind w/ Ice 135°	None		26		
60	Antenna Wind w/ Ice 150°	None		26		
61	Antenna Wind w/ Ice 180°	None		13		
62 63	Antenna Wind w/ Ice 210°	None		26		
63	Antenna Wind w/ Ice 225°	None		26		
64	Antenna Wind w/ Ice 240°	None		26		
65	Antenna Wind w/ Ice 270°	None		13		
66	Antenna Wind w/ Ice 300°	None		26		
67	Antenna Wind w/ Ice 315°	None		26		
68	Antenna Wind w/ Ice 330°	None		26		
69 70	Seismic X	ELX		13	64	
70	Seismic Y	ELY		13	64	
71	Seismic Z	ELZ		13	64	
72	Maintenance Live 500 (1)	OL1		1		
73	Maintenance Live 500 (2)	OL2		1		
74	Maintenance Live 500 (3)	OL3		1		

Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	DISPLAY (1.0D + 1.0W_0°)	Yes	Y	DL	1	37	1				
2	1.4D	Yes	Y	DL	1.4						
3	<u>1.2D + 1.0W_0°</u>	Yes	Y	DL	1.2	5	1	37	1		
4	1.2D + 1.0W 30°	Yes	Y	DL	1.2	6	1	38	1		
5	1.2D + 1.0W_45°	Yes	Y	DL	1.2	7	1	39	1		
6	1.2D + 1.0W 60°	Yes	Y	DL	1.2	8	1	40	1		
7	1.2D + 1.0W_90°	Yes	Y	DL	1.2	9	1	41	1		
8	1.2D + 1.0W 120°	Yes	Y	DL	1.2	10	1	42	1		
9	<u> 1.2D + 1.0W_135°</u>	Yes	Y	DL	1.2	11	1	43	1		
10	1.2D + 1.0W 150°	Yes	Y	DL	1.2	12	1	44	1		
11	1.2D + 1.0W 180°	Yes	Y	DL	1.2	13	-1	45	-1		
12	1.2D + 1.0W 210°	Yes	Y	DL	1.2	14	-1	46	-1		
13	1.2D + 1.0W 225°	Yes	Y	DL	1.2	15	-1	47	-1		
14	1.2D + 1.0W 240°	Yes	Y	DL	1.2	16	-1	48	-1		
15	1.2D + 1.0W 270°	Yes	Y	DL	1.2	17	-1	49	-1		
16	1.2D + 1.0W 300°	Yes	Y	DL	1.2	18	-1	50	-1		
17	1.2D + 1.0W 315°	Yes	Y	DL	1.2	19	-1	51	-1		
18	1.2D + 1.0W 330°	Yes	Y	DL	1.2	20	-1	52	-1		
19	1.2D + 1.0Di + 1.0Wi 0°	Yes	Y	DL	1.2	21	1	53	1	RL	1
20	1.2D + 1.0Di + 1.0Wi 30°	Yes	Y	DL	1.2	22	1	54	1	RL	1
21	1.2D + 1.0Di + 1.0Wi 45°	Yes	Y	DL	1.2	23	1	55	1	RL	1
22	1.2D + 1.0Di + 1.0Wi 60°	Yes	Y	DL	1.2	24	1	56	1	RL	1
23	1.2D + 1.0Di + 1.0Wi 90°	Yes	Y	DL	1.2	25	1	57	1	RL	1
24	1.2D + 1.0Di + 1.0Wi 120°	Yes	Y	DL	1.2	26	1	58	1	RL	1
25	1.2D + 1.0Di + 1.0Wi 135°	Yes	Y	DL	1.2	27	1	59	1	RL	1
26	1.2D + 1.0Di + 1.0Wi 150°	Yes	Y	DL	1.2	28	1	60	1	RL	1
27	1.2D + 1.0Di + 1.0Wi 180°	Yes	Y	DL	1.2	29	-1	61	-1	RL	1
28	1.2D + 1.0Di + 1.0Wi 210°	Yes	Y	DL	1.2	30	-1	62	-1	RL	1
29	1.2D + 1.0Di + 1.0Wi 225°	Yes	Y	DL	1.2	31	-1	63	-1	RL	1
30	1.2D + 1.0Di + 1.0Wi 240°	Yes	Y	DL	1.2	32	-1	64	-1	RL	1
31	1.2D + 1.0Di + 1.0Wi 270°	Yes	Y	DL	1.2	33	-1	65	-1	RL	1
32	1.2D + 1.0Di + 1.0Wi 300°	Yes	Y	DL	1.2	34	-1	66	-1	RL	1
33	1.2D + 1.0Di + 1.0Wi 315°	Yes	Y	DL	1.2	35	-1	67	-1	RL	1

Load Combinations (Continued)

Description Solve P-Delta BLC Factor B						
		Factor	BLC	Factor	BLC	Factor
34 1.2D + 1.0Di + 1.0Wi 330° Yes Y DL 1.2	36	-1	68	-1	RL	1
	ELX	-1	ELY			
36 1.2D + 1.0Ev + 1.0Eh 30° Yes Y DL 1.255 I	ELX	-0.866	ELY	0.5		
37 1.2D + 1.0Ev + 1.0Eh 45° Yes Y DL 1.255 I	ELX	-0.707	ELY	0.707		
38 1.2D + 1.0Ev + 1.0Eh 60° Yes Y DL 1.255 H	ELX	-0.5	ELY	0.866		
	ELX		ELY	1		
	ELX	0.5	ELY	0.866		
		0.707	ELY			
		0.866		0.5		
	ELX	1	ELY			
		0.866	ELY	-0.5		
		0.707		-0.707		
	ELX	0.5	ELY	-0.866		
	ELX	010	ELY			
	ELX	-0.5	ELY			
		-0.707		-0.707		
		-0.866		-0.5		
	ELX	-1	ELY			
		-0.866		0.5		
		-0.707		0.707		
	ELX	-0.5	ELY			-
	ELX	-0.5	ELY			
	ELX	0.5	ELY			
		0.707	ELY			
		0.866		0.5		
		1	ELY			
		0.866				
		0.707	ELY ELY			
		0.707	ELY			
		0.5				
	ELX	0.5	ELY			
	ELX	-0.5	ELY	-0.866		
		-0.707				
		-0.866		-0.5	014	4 5
67 <u>1.2D + 1.5Lm 1 + 1.0Wm 0°</u> Yes Y DL 1.2	5	0.07	37	0.07	OL1	1.5
68 1.2D + 1.5Lm 1 + 1.0Wm 30° Yes Y DL 1.2	6	0.07	38	0.07	OL1	1.5
69 1.2D + 1.5Lm 1 + 1.0Wm 45° Yes Y DL 1.2 70 1.2D + 1.5Lm 1 + 1.0Wm 40° Yes Y DL 1.2	7	0.07	39	0.07	OL1	1.5
70 1.2D + 1.5Lm 1 + 1.0Wm 60° Yes Y DL 1.2	8	0.07	40	0.07	OL1	1.5
71 1.2D + 1.5Lm 1 + 1.0Wm 90° Yes Y DL 1.2	9	0.07	41	0.07	OL1	1.5
	10	0.07	42	0.07	OL1	1.5
	11	0.07	43	0.07	OL1	1.5
	12	0.07	44	0.07	OL1	1.5
	13	-0.07	45	-0.07		1.5
	14	-0.07	46	-0.07	OL1	1.5
	15	-0.07	47	-0.07	OL1	1.5
	16	-0.07	48	-0.07	OL1	1.5
	17	-0.07	49	-0.07	OL1	1.5
	18	-0.07	50	-0.07	OL1	1.5
81 1.2D + 1.5Lm 1 + 1.0Wm 315° Yes Y DL 1.2	19	-0.07	51	-0.07	OL1	1.5
	20	-0.07	52	-0.07	OL1	1.5
82 1.2D + 1.5Lm 1 + 1.0Wm 330° Yes Y DL 1.2	5	0.07	37	0.07	OL2	1.5
82 1.2D + 1.5Lm 1 + 1.0Wm 330° Yes Y DL 1.2 83 1.2D + 1.5Lm 2 + 1.0Wm 0° Yes Y DL 1.2	0			0.07	OL2	1.5
82 1.2D + 1.5Lm 1 + 1.0Wm 330° Yes Y DL 1.2 83 1.2D + 1.5Lm 2 + 1.0Wm 0° Yes Y DL 1.2 84 1.2D + 1.5Lm 2 + 1.0Wm 30° Yes Y DL 1.2	6	0.07	38	0.07		
82 1.2D + 1.5Lm 1 + 1.0Wm 330° Yes Y DL 1.2 83 1.2D + 1.5Lm 2 + 1.0Wm 0° Yes Y DL 1.2 84 1.2D + 1.5Lm 2 + 1.0Wm 30° Yes Y DL 1.2 85 1.2D + 1.5Lm 2 + 1.0Wm 45° Yes Y DL 1.2		0.07	38 39	0.07	OL2	1.5
82 1.2D + 1.5Lm 1 + 1.0Wm 330° Yes Y DL 1.2 83 1.2D + 1.5Lm 2 + 1.0Wm 0° Yes Y DL 1.2 84 1.2D + 1.5Lm 2 + 1.0Wm 30° Yes Y DL 1.2	6					
82 1.2D + 1.5Lm 1 + 1.0Wm 330° Yes Y DL 1.2 83 1.2D + 1.5Lm 2 + 1.0Wm 0° Yes Y DL 1.2 84 1.2D + 1.5Lm 2 + 1.0Wm 30° Yes Y DL 1.2 85 1.2D + 1.5Lm 2 + 1.0Wm 45° Yes Y DL 1.2	6 7	0.07	39	0.07	OL2	1.5

Load Combinations (Continued)

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
89	1.2D + 1.5Lm 2 + 1.0Wm 135°	Yes	Y	DL	1.2	11	0.07	43	0.07	OL2	1.5
90	1.2D + 1.5Lm 2 + 1.0Wm 150°	Yes	Y	DL	1.2	12	0.07	44	0.07	OL2	1.5
91	1.2D + 1.5Lm <u>2 + 1.0Wm 180°</u>	Yes	Y	DL	1.2	13	-0.07	45	-0.07	OL2	1.5
92	1.2D + 1.5Lm 2 + 1.0Wm 210°	Yes	Y	DL	1.2	14	-0.07	46	-0.07	OL2	1.5
93	<u> 1.2D + 1.5Lm_2 + 1.0Wm_225°</u>	Yes	Y	DL	1.2	15	-0.07	47	-0.07	OL2	1.5
94	1.2D + 1.5Lm 2 + 1.0Wm 240°	Yes	Y	DL	1.2	16	-0.07	48	-0.07	OL2	1.5
95	1.2D + 1.5Lm_2 + 1.0Wm_270°	Yes	Y	DL	1.2	17	-0.07	49	-0.07	OL2	1.5
96	<u> 1.2D + 1.5Lm 2 + 1.0Wm 300°</u>	Yes	Y	DL	1.2	18	-0.07	50	-0.07	OL2	1.5
97	1.2D + 1.5Lm_2 + 1.0Wm_315°	Yes	Y	DL	1.2	19	-0.07	51	-0.07	OL2	1.5
98	1.2D + 1.5Lm 2 + 1.0Wm 330°	Yes	Y	DL	1.2	20	-0.07	52	-0.07	OL2	1.5
99	<u> 1.2D + 1.5Lm_3 + 1.0Wm_0°</u>	Yes	Y	DL	1.2	5	0.07	37	0.07	OL3	1.5
100	1.2D + 1.5Lm 3 + 1.0Wm 30°	Yes	Y	DL	1.2	6	0.07	38	0.07	OL3	1.5
101	<u> 1.2D + 1.5Lm_3 + 1.0Wm_45°</u>	Yes	Y	DL	1.2	7	0.07	39	0.07	OL3	1.5
102	1.2D + 1.5Lm 3 + 1.0Wm 60°	Yes	Y	DL	1.2	8	0.07	40	0.07	OL3	1.5
103	1.2D + 1.5Lm_3 + 1.0Wm_90°	Yes	Y	DL	1.2	9	0.07	41	0.07	OL3	1.5
104	<u> 1.2D + 1.5Lm 3 + 1.0Wm 120°</u>	Yes	Y	DL	1.2	10	0.07	42	0.07	OL3	1.5
105	1.2D + 1.5Lm_3 + 1.0Wm_135°	Yes	Y	DL	1.2	11	0.07	43	0.07	OL3	1.5
106	1.2D + 1.5Lm 3 + 1.0Wm 150°	Yes	Y	DL	1.2	12	0.07	44	0.07	OL3	1.5
107	<u> 1.2D + 1.5Lm_3 + 1.0Wm_180°</u>	Yes	Y	DL	1.2	13	-0.07	45	-0.07	OL3	1.5
108	1.2D + 1.5Lm 3 + 1.0Wm 210°	Yes	Y	DL	1.2	14	-0.07	46	-0.07	OL3	1.5
109	1.2D + 1.5Lm_3 + 1.0Wm_225°	Yes	Y	DL	1.2	15	-0.07	47	-0.07	OL3	1.5
110	1.2D + 1.5Lm 3 + 1.0Wm 240°	Yes	Y	DL	1.2	16	-0.07	48	-0.07	OL3	1.5
111	1.2D + 1.5Lm_3 + 1.0Wm_270°	Yes	Y	DL	1.2	17	-0.07	49	-0.07	OL3	1.5
112	1.2D + 1.5Lm 3 + 1.0Wm 300°	Yes	Y	DL	1.2	18	-0.07	50	-0.07	OL3	1.5
113	1.2D + 1.5Lm_3 + 1.0Wm_315°	Yes	Y	DL	1.2	19	-0.07	51	-0.07	OL3	1.5
114	1.2D + 1.5Lm_3 + 1.0Wm_330°	Yes	Y	DL	1.2	20	-0.07	52	-0.07	OL3	1.5

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft ³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
3	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.4	65	1.3
8	A500 Gr. C RND	29000	11154	0.3	0.65	0.527	46	1.5	62	1.2
9	A53 Gr.A	29000	11154	0.3	0.65	0.49	30	1.5	48	1.2

Hot Rolled Steel Section Sets

Label		Shape	Туре	Design List	Material	Design Rule	Area [in ²]	lyy [in⁴]	lzz [in⁴]	J [in⁴]
1	Offset Arm	HSS4X4X2	Beam	None	A500 Gr.B Rect	Typical	1.77	4.4	4.4	6.91
2	Side Channel	C3X2X.188	Beam	None	A36 Gr.36	Typical	1.339	0.562	2.4	0.015
3	Offset End Plate	PL 6"X0.375"	Beam	None	A36 Gr.36	Typical	2.25	0.026	6.75	0.101
4	Face Horizontal Pipe	PIPE 3.0	Beam	None	A500 Gr. C RND	Typical	2.07	2.85	2.85	5.69
5	MOUNT PIPE 2.5	PIPE 2.5	None	None	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
6	Angle Grating Supports	L2X2X4	Beam	None	A36 Gr.36	Typical	0.944	0.346	0.346	0.021
7	Channel Conn. Plate 1	PL 6"X0.375"	Beam	None	A36 Gr.36	Typical	2.25	0.026	6.75	0.101
8	Channel Conn. Plate 2	PL2.38X0.375	Beam	None	A36 Gr.36	Typical	0.893	0.01	0.421	0.038
9	Support Rail	PIPE 2.5	Beam	None	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
10	SR Conn Plate	PL6X1/4	Beam	None	A36 Gr.36	Typical	1.5	0.008	4.5	0.03
11	SR Conn Angle	Custom 6.63x4.46	Beam	None	A36 Gr.36	Typical	1.705	3.561	7.467	0.034
12	Stand-Off Mount Pipe	PIPE_2.0	None	None	A53 Gr.B	Typical	1.02	0.627	0.627	1.25

Hot Rolled Steel Design Parameters

_		Acci Design i di dificters						
	Label	Shape	Length [in]	Lb y-y [in]	Lb z-z [in]	Channel Conn.	a [in]	Function
1	M156	Side Channel	31.35			N/A	N/A	Lateral
2	M158	Side Channel	31.35			N/A	N/A	Lateral
3	M168	Channel Conn. Plate 2	4.15			N/A	N/A	Lateral
4	M169	Offset End Plate	16.8			N/A	N/A	Lateral
5	M170	Angle Grating Supports	27.562			N/A	N/A	Lateral
6	M171	Offset End Plate	3.7			N/A	N/A	Lateral
7	M172	Offset End Plate	16.8			N/A	N/A	Lateral
8	M173	Offset End Plate	3.7			N/A	N/A	Lateral
9	M174	Angle Grating Supports	27.562			N/A	N/A	Lateral
10	M175	Channel Conn. Plate 2	4.15			N/A	N/A	Lateral
11	M176	Channel Conn. Plate 1	3.03			N/A	N/A	Lateral
12	M177	Channel Conn. Plate 1	3.03			N/A	N/A	Lateral
13	M228	Face Horizontal Pipe	96	29	32	N/A	N/A	Lateral
14	M229	Face Horizontal Pipe	96	29	32	N/A	N/A	Lateral
15	M230	Face Horizontal Pipe	96	29	32	N/A	N/A	Lateral
16	SR1	Support Rail	120	98	32	N/A	N/A	Lateral
17	SR2	SR Conn Plate	5			N/A	N/A	Lateral
18	SR3	SR Conn Plate	5			N/A	N/A	Lateral
19	SR10	Support Rail	120	98	32	N/A	N/A	Lateral
20	SR11	SR Conn Plate	5			N/A	N/A	Lateral
21	SR12	SR Conn Plate	5			N/A	N/A	Lateral
22	SR19	Support Rail	120	98	32	N/A	N/A	Lateral
23	SR20	SR Conn Plate	5			N/A	N/A	Lateral
24	SR21	SR Conn Plate	5			N/A	N/A	Lateral
25	SR28	SR Conn Angle	34.262			N/A	N/A	Lateral
26	SR29	SR Conn Angle	34.262			N/A	N/A	Lateral
27	SR30	SR Conn Angle	34.262			N/A	N/A	Lateral
28	M167	Offset Arm	40.63			N/A	N/A	Lateral
29	M110	Stand-Off Mount Pipe	60			N/A	N/A	Lateral
30	A MP1 S	MOUNT PIPE 2.5	96			N/A	N/A	Lateral
31	A MP2 S	MOUNT_PIPE_2.5	96			N/A	N/A	Lateral
32	A MP3 S	MOUNT PIPE 2.5	96			N/A	N/A	Lateral
33	B_MP1_S	MOUNT_PIPE_2.5	96			N/A	N/A	Lateral
34	B MP2 S	MOUNT PIPE 2.5	96			N/A	N/A	Lateral
35	B MP3 S	MOUNT_PIPE_2.5	96			N/A	N/A	Lateral
36	G MP1 S	MOUNT PIPE 2.5	96			N/A	N/A	Lateral
37	G MP2 S	MOUNT_PIPE_2.5	96			N/A	N/A	Lateral
38	G MP3 S	MOUNT PIPE 2.5	96			N/A	N/A	Lateral
39	M99	Channel Conn. Plate 2	4.15			N/A	N/A	Lateral
40	M102	Offset End Plate	16.8			N/A	N/A	Lateral
<u>41</u> 42	M104	Offset End Plate	16.8			N/A	N/A	Lateral
42 43	M105	Offset End Plate	3.7			N/A	N/A	Lateral Lateral
<u>43</u> 44	M107	Side Channel Channel Conn. Plate 2	<u>31.35</u> 4.15			N/A N/A	N/A	Lateral
44 45	M108 M116		31.35			N/A N/A	N/A N/A	
45 46	M116 M117	Side Channel Channel Conn. Plate 1	31.35			N/A N/A	N/A N/A	Lateral Lateral
40	M117 M121	Angle Grating Supports	27.562			N/A N/A	N/A	Lateral
47 48	M122	Offset End Plate	3.7			N/A N/A	N/A N/A	Lateral
40	M122	Angle Grating Supports	27.562			N/A N/A	N/A	Lateral
49 50	M124	Channel Conn. Plate 1	3.03			N/A N/A	N/A N/A	Lateral
51	M124	Offset Arm	40.63			N/A N/A	N/A	Lateral
52	M125	Channel Conn. Plate 2	4.15			N/A N/A	N/A	Lateral
53	M130	Offset End Plate	16.8			N/A N/A	N/A	Lateral
54	M130	Offset End Plate	16.8			N/A N/A	N/A	Lateral
55	M133	Offset End Plate	3.7			N/A N/A	N/A	Lateral
55	101100		5.1					Latera

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length [in]	Lb y-y [in]	Lb z-z [in]	Channel Conn.	a [in]	Function
56	M135	Side Channel	31.35			N/A	N/A	Lateral
57	M136	Channel Conn. Plate 2	4.15			N/A	N/A	Lateral
58	M141	Side Channel	31.35			N/A	N/A	Lateral
59	M142	Channel Conn. Plate 1	3.03			N/A	N/A	Lateral
60	M146	Angle Grating Supports	27.562			N/A	N/A	Lateral
61	M147	Offset End Plate	3.7			N/A	N/A	Lateral
62	M178	Angle Grating Supports	27.562			N/A	N/A	Lateral
63	M179	Channel Conn. Plate 1	3.03			N/A	N/A	Lateral
64	M180	Offset Arm	40.63			N/A	N/A	Lateral

Member Advanced Data

	Label	l Release	J Release	Physical	Deflection Ratio Options	Seismic DR
1	M153	0000X0		Yes	** NA **	None
2	M154		000XX0	Yes	** NA **	None
3	M155	0000X0		Yes	** NA **	None
4	M156			Yes	N/A	None
5	M157			Yes	** NA **	None
6	M158			Yes	N/A	None
7	M159			Yes	** NA **	None
8	M160		000XX0	Yes	** NA **	None
9	M161			Yes	** NA **	None
10	M162			Yes	** NA **	None
11	M163			Yes	** NA **	None
12	M164		000XX0	Yes	** NA **	None
13	M165		000XX0	Yes	** NA **	None
14	M166			Yes	** NA **	None
15	M168			Yes	N/A	None
16	M169			Yes	N/A	None
17	M170			Yes	N/A	None
18	M171			Yes	N/A	None
19	M172			Yes	N/A	None
20	M173			Yes	N/A	None
21	M174			Yes	N/A	None
22	M175			Yes	N/A	None
23	M176			Yes	N/A	None
24	M177			Yes	Default	None
25	M228			Yes	Default	None
26	M229			Yes	Default	None
27	M230			Yes	Default	None
28	SR1			Yes	Default	None
29	SR2			Yes	N/A	None
30	SR3			Yes	N/A	None
31	SR4			Yes	** NA **	None
32	SR5			Yes	** NA **	None
33	SR6			Yes	** NA **	None
34	SR7			Yes	** NA **	None
35	SR8			Yes	** NA **	None
36	SR9			Yes	** NA **	None
37	SR10			Yes	Default	None
38	SR11			Yes	N/A	None
39	SR12			Yes	N/A	None
40	SR13			Yes	** NA **	None
41	SR14			Yes	** NA **	None
42	SR15			Yes	** NA **	None
43	SR16			Yes	** NA **	None

Member Advanced Data (Continued)

44 SR17 Yes "NA ** None 45 SR18 Yes Default None 46 SR19 Yes Default None 48 SR20 Yes NA None 49 SR22 Yes "NA ** None 50 SR23 Yes "NA ** None 51 SR24 Yes "NA ** None 52 SR26 Yes "NA ** None 53 SR26 Yes "NA ** None 54 SR27 Yes "NA ** None 55 SR28 Yes NA None 56 SR29 Yes NA None 57 SR30 Yes NA None 58 M167 Yes NA None 59 M110 Yes NA None 51 M12 Yes "NA ** None 52 SR29 Yes NA None 53 SR20 Yes NA None 54 M167 Yes NA None 55 SR29 Yes NA None <		Label	I Release	J Release	Physical	Deflection Ratio Options	Seismic DR
45 SR18 Yes "NA" None 46 SR19 Yes Default None 47 SR20 Yes NA None 48 SR21 Yes NA None 50 SR23 Yes **NA ** None 51 SR26 Yes **NA ** None 52 SR26 Yes **NA ** None 54 SR26 Yes **NA ** None 54 SR27 Yes **NA ** None 54 SR28 Yes NA None 58 SR29 Yes **NA ** None 58 SR29 Yes **NA ** None <	11						
46 SR19 Yes Default Nna None 47 SR20 Yes NA None 48 SR21 Yes NA None 50 SR23 Yes "NA ** None 51 SR24 Yes "NA ** None 52 SR25 Yes "NA ** None 53 SR26 Yes "NA ** None 54 SR27 Yes "NA ** None 55 SR28 Yes NA None 56 SR29 Yes N/A None 57 SR30 Yes N/A None 58 M167 Yes "NA ** None 59 M109 Yes "NA ** None 60 M110 Yes "NA ** None 61 M111 Yes "NA ** None 62 R12 Yes "NA ** None							
47 SR20 Yes NA None 48 SR21 Yes "NA" None 49 SR23 Yes "NA" None 51 SR23 Yes "NA" None 51 SR24 Yes "NA" None 52 SR25 Yes "NA" None 53 SR26 Yes "NA" None 54 SR27 Yes "NA Mone 56 SR28 Yes NA Mone 56 SR29 Yes NA Mone 57 SR30 Yes NA Mone 58 M109 Yes "NA Mone 58 M109 Yes "NA None 61 M111 Yes "NA None 62 R11 Yes "NA None 63 R11 Yes "NA None 64 A M							
48 SR21 Yes N/A None 50 SR23 Yes **NA** None 51 SR24 Yes **NA** None 52 SR26 Yes **NA** None 52 SR26 Yes **NA** None 54 SR27 Yes **NA** None 55 SR28 Yes **NA** None 56 SR29 Yes N/A None 57 SR30 Yes N/A None 58 M167 Yes N/A None 59 M109 Yes **NA** None 60 M110 Yes **NA** None 61 M111 Yes **NA** None 62 R12 Yes **NA** None 63 R11 Yes **NA** None 64 A MP1 S Yes **NA** None <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
49 SR22 Yes ** NA ** None 51 SR23 Yes ** NA ** None 52 SR26 Yes ** NA ** None 53 SR26 Yes ** NA ** None 54 SR27 Yes ** NA ** None 54 SR27 Yes ** NA ** None 54 SR28 Yes NA None 55 SR28 Yes NA None 56 SR29 Yes NA None 57 SR30 Yes NA None 59 M109 Yes ** NA ** None 61 M111 Yes ** NA ** None 62 R1 Yes ** NA ** None 63 R11 Yes ** NA ** None 64 A M13 Yes ** NA ** None 65 R112 Yes ** NA ** None							
50 SR23 Yes ** NA ** None 51 SR24 Yes ** NA ** None 52 SR25 Yes ** NA ** None 54 SR26 Yes ** NA ** None 54 SR28 Yes ** NA ** None 55 SR28 Yes N/A None 56 SR29 Yes N/A None 57 SR30 Yes N/A None 58 M167 Yes Default None 59 M109 Yes ** NA ** None 61 M110 Yes ** NA ** None 62 R12 Yes ** NA ** None 63 R11 Yes ** NA ** None 64 A MP1 S Yes ** NA ** None 65 R12 Yes ** NA ** None 66 R11 Yes ** NA ** N							
51 SR24 Yes ***NA** None 52 SR25 Yes ***NA** None 53 SR26 Yes ***NA** None 54 SR27 Yes ***NA** None 55 SR28 Yes N/A None 56 SR29 Yes N/A None 57 SR30 Yes N/A None 58 M167 Yes Default None 59 M109 Yes **NA** None 60 M110 Yes **NA** None 61 M111 Yes **NA** None 62 R12 Yes **NA** None 63 R11 Yes **NA** None 64 A MP1 S Yes **NA** None 65 R112 Yes **NA** None 66 R11 Yes **NA** None							
52 SR26 Yes ** NA ** None 54 SR26 Yes ** NA ** None 55 SR28 Yes *' NA ** None 56 SR29 Yes N/A None 57 SR30 Yes N/A None 58 M167 Yes N/A None 59 M109 Yes *' NA ** None 60 M110 Yes *' NA ** None 61 M111 Yes *' NA ** None 62 R12 Yes *' NA ** None 63 R11 Yes *' NA ** None 63 R112 Yes *' NA ** None 64 A MP2 S Yes *' NA ** None 65 R112 Yes *' NA ** None 66 R111 Yes *' NA ** None 67 A MP2 S Yes *' NA **							
53 SR26 Yes **** None 64 SR27 Yes **NA ** None 55 SR28 Yes N/A None 56 SR29 Yes N/A None 57 SR30 Yes N/A None 58 M167 Yes Default None 59 M109 Yes **NA ** None 60 M110 Yes **NA ** None 61 M111 Yes **NA ** None 62 Rl1 Yes **NA ** None 63 R11 Yes **NA ** None 64 A MP1 S Yes **NA ** None 65 R112 Yes **NA ** None 66 R111 Yes **NA ** None 67 A MP2 S Yes **NA ** None 68 R13 Yes *NA ** None						** NA **	
54 SR27 Yes *** None 55 SR28 Yes NA None 56 SR29 Yes NA None 57 SR30 Yes NA None 57 SR30 Yes NA None 58 M167 Yes Default None 60 M110 Yes **NA** None 61 M111 Yes **NA** None 62 R12 Yes **NA** None 63 R11 Yes **NA** None 64 A MP1 S Yes **NA** None 65 R12 Yes **NA** None 66 R111 Yes **NA** None 67 A MP2 S Yes **NA** None 68 R12 Yes **NA** None 69 R144 Yes *NA** None							
55 SR28 Yes N/A None 56 SR29 Yes N/A None 57 SR30 Yes N/A None 58 M167 Yes Default None 59 M109 Yes **NA ** None 60 M110 Yes **NA ** None 61 M111 Yes **NA ** None 62 R12 Yes **NA ** None 63 R11 Yes **NA ** None 64 A MP1 S Yes **NA ** None 65 R112 Yes **NA ** None 66 R111 Yes **NA ** None 67 A MP2 S Yes **NA ** None 68 R13 Yes **NA ** None 70 R15 Yes **NA ** None 71 R122 Yes **NA ** None							
56 SR29 Yes N/A None 57 SR30 Yes N/A None 58 M167 Yes Default None 59 M109 Yes **NA ** None 60 M110 Yes **NA ** None 61 M111 Yes **NA ** None 62 R12 Yes **NA ** None 63 R11 Yes **NA ** None 64 A MP1 S Yes **NA ** None 65 R112 Yes **NA ** None 66 R11 Yes **NA ** None 68 R13 Yes **NA ** None 69 R114 Yes **NA ** None 70 R15 Yes **NA ** None 71 R122 Yes **NA ** None 73 A MP3 S Yes **NA ** None <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
57 SR30 Yes Default None 58 M107 Yes Default None 60 M109 Yes **NA ** None 60 M110 Yes **NA ** None 61 M111 Yes **NA ** None 62 Rl2 Yes **NA ** None 63 R11 Yes **NA ** None 64 A MP1 S Yes **NA ** None 65 R112 Yes **NA ** None 66 R111 Yes **NA ** None 67 A MP2 S Yes **NA ** None 68 R113 Yes **NA ** None 69 R114 Yes **NA ** None 71 R122 Yes **NA ** None 72 R121 Yes **NA ** None 73 A MP3 S Yes **NA **							
58 M167 Yes Default None 59 M109 Yes ** NA ** None 60 M110 Yes ** NA ** None 61 M111 Yes ** NA ** None 61 M111 Yes ** NA ** None 62 R12 Yes ** NA ** None 63 R11 Yes ** NA ** None 64 A P1 S Yes ** NA ** None 65 R112 Yes ** NA ** None 66 R111 Yes ** NA ** None 67 A MP2_S Yes ** NA ** None 68 R13 Yes ** NA ** None 69 R14 Yes ** NA ** None 71 R122 Yes ** NA ** None 71 R12 Yes ** NA ** None 73 A MP3 S Yes ** NA **							
59 M109 Yes ** NA ** None 60 M110 Yes ** NA ** None 61 M111 Yes ** NA ** None 62 R12 Yes ** NA ** None 63 R11 Yes ** NA ** None 64 A MP1 S Yes ** NA ** None 65 R112 Yes ** NA ** None 66 R111 Yes ** NA ** None 67 A MP2 S Yes ** NA ** None 68 R113 Yes ** NA ** None 69 R14 Yes ** NA ** None 70 R15 Yes ** NA ** None 71 R122 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 R172 Yes ** NA ** None 75 R171 Yes ** NA							
60 M110 Yes ** NA ** None 61 M111 Yes ** NA ** None 62 RI2 Yes ** NA ** None 63 RI1 Yes ** NA ** None 64 A P1 S Yes ** NA ** None 65 RI12 Yes ** NA ** None 66 RI11 Yes ** NA ** None 67 A MP2 S Yes ** NA ** None 68 RI13 Yes ** NA ** None 69 RI14 Yes ** NA ** None 70 RI22 Yes ** NA ** None 71 RI22 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 78 RI81 Yes *							
61 M111 Yes ** NA ** None 62 Rl2 Yes ** NA ** None 63 Rl1 Yes ** NA ** None 64 A MP1 S Yes ** NA ** None 65 Rl12 Yes ** NA ** None 66 R111 Yes ** NA ** None 67 A MP2 S Yes ** NA ** None 68 R113 Yes ** NA ** None 69 R14 Yes ** NA ** None 70 R15 Yes ** NA ** None 71 R121 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 R172 Yes ** NA ** None 75 R171 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 R182 Yes **							
62 RI2 Yes ** NA ** None 63 RI1 Yes ** NA ** None 64 A MP1 S Yes ** NA ** None 65 RI12 Yes ** NA ** None 66 RI11 Yes ** NA ** None 67 A MP2 S Yes ** NA ** None 68 RI13 Yes ** NA ** None 69 RI14 Yes ** NA ** None 70 RI5 Yes ** NA ** None 71 RI22 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 RI72 Yes ** NA ** None 75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 RI82 Yes ** NA ** None 78 RI92 Yes *							
63 RI1 Yes ** NA ** None 64 A MP1 S Yes ** NA ** None 65 R112 Yes ** NA ** None 66 R111 Yes ** NA ** None 67 A MP2 S Yes ** NA ** None 68 R113 Yes ** NA ** None 69 R144 Yes ** NA ** None 69 R115 Yes ** NA ** None 70 R15 Yes ** NA ** None 71 R122 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 R172 Yes ** NA ** None 75 R171 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 R182 Yes ** NA ** None 78 R191 Yes							
64 A MP1 S Yes ** NA ** None 65 RI12 Yes ** NA ** None 66 RI11 Yes ** NA ** None 67 A MP2 S Yes ** NA ** None 68 RI13 Yes ** NA ** None 69 RI14 Yes ** NA ** None 70 RI5 Yes ** NA ** None 71 RI22 Yes ** NA ** None 72 RI21 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 RI72 Yes ** NA ** None 75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 78 RI81 Yes ** NA ** None 78 B MP2 S Yes ** NA ** None 80 RI92 Yes							
66 Rl12 Yes ** NA ** None 66 Rl11 Yes ** NA ** None 67 A MP2 S Yes ** NA ** None 68 Rl13 Yes ** NA ** None 69 Rl14 Yes ** NA ** None 70 Rl15 Yes ** NA ** None 71 Rl22 Yes ** NA ** None 72 Rl21 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 Rl72 Yes ** NA ** None 75 Rl71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 Rl82 Yes ** NA ** None 78 Rl91 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 81 Rl91 Yes <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
66 RI11 Yes ** NA ** None 67 A MP2 S Yes ** NA ** None 68 RI13 Yes ** NA ** None 69 RI14 Yes ** NA ** None 70 RI5 Yes ** NA ** None 71 RI22 Yes ** NA ** None 72 RI21 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 RI72 Yes ** NA ** None 75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 78 RI81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes						** NA **	
67 A. MP2_S Yes ** NA ** None 68 R113 Yes ** NA ** None 69 R114 Yes ** NA ** None 70 R115 Yes ** NA ** None 71 R122 Yes ** NA ** None 71 R122 Yes ** NA ** None 73 A. MP3 S Yes ** NA ** None 73 A. MP3 S Yes ** NA ** None 74 R172 Yes ** NA ** None 75 R171 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 R182 Yes ** NA ** None 78 R181 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 R192 Yes ** NA ** None 81 R191 Yes ** NA ** None 82 B MP3 S Yes ** NA **							
68 RI13 Yes ** NA ** None 69 RI14 Yes ** NA ** None 70 RI15 Yes ** NA ** None 71 RI22 Yes ** NA ** None 71 RI21 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 RI72 Yes ** NA ** None 74 RI72 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 78 RI81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes							
69 RI14 Yes ** NA ** None 70 RI15 Yes ** NA ** None 71 RI22 Yes ** NA ** None 72 RI21 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 RI72 Yes ** NA ** None 75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 RI82 Yes ** NA ** None 78 RI81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 81 Ri91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G MP1 S Yes							
70 R115 Yes ** NA ** None 71 R122 Yes ** NA ** None 72 R121 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 R172 Yes ** NA ** None 74 R172 Yes ** NA ** None 75 R171 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 R182 Yes ** NA ** None 78 R181 Yes ** NA ** None 78 R192 Yes ** NA ** None 78 R192 Yes ** NA ** None 80 R192 Yes ** NA ** None 81 R191 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 R1142 Yes ** NA ** None 84 R1141 Yes ** NA ** Non							
71 RI22 Yes ** NA ** None 72 RI21 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 RI72 Yes ** NA ** None 75 RI71 Yes ** NA ** None 75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 78 RI81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 R142 Yes ** NA ** None 84 R1141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RH2 Yes ** NA **							
72 RI21 Yes ** NA ** None 73 A MP3 S Yes ** NA ** None 74 RI72 Yes ** NA ** None 75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 RI82 Yes ** NA ** None 78 RI81 Yes ** NA ** None 78 RI81 Yes ** NA ** None 78 RI92 Yes ** NA ** None 80 R192 Yes ** NA ** None 81 R191 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 R1142 Yes ** NA ** None 84 R141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** <							None
73 A MP3 S Yes ** NA ** None 74 RI72 Yes ** NA ** None 75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 RI82 Yes ** NA ** None 78 RI81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 R1141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI162 Yes ** NA ** None 89 RI162 Yes ** NA **	71				Yes		
74 RI72 Yes ** NA ** None 75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 RI82 Yes ** NA ** None 78 RI81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 R1141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 R152 Yes ** NA ** None 87 R161 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 89 R1162 Yes ** NA ** None 90 R1161 Yes ** NA **							
75 RI71 Yes ** NA ** None 76 B MP1 S Yes ** NA ** None 77 RI82 Yes ** NA ** None 78 RI81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI161 Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA **	73						None
76 B MP1 S Yes ** NA ** None 77 RI82 Yes ** NA ** None 78 RI81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI161 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 90 R1161 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA **	74	RI72			Yes		None
77 RI82 Yes ** NA ** None 78 RI81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI161 Yes ** NA ** None 88 G MP2 S ** NA ** None 90 RI162 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M	75	RI71			Yes		
78 Rl81 Yes ** NA ** None 79 B MP2 S Yes ** NA ** None 80 Rl92 Yes ** NA ** None 81 Rl91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 Rl142 Yes ** NA ** None 84 Rl141 Yes ** NA ** None 85 G_MP1 S Yes ** NA ** None 86 Rl152 Yes ** NA ** None 86 Rl151 Yes ** NA ** None 87 Rl151 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 90 Rl161 Yes ** NA ** None 91 G_MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None 94 M150 Yes	76	B MP1 S			Yes		None
79 B MP2 S Yes ** NA ** None 80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI151 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None None 93 M149 Yes ** NA ** <td>77</td> <td>RI82</td> <td></td> <td></td> <td>Yes</td> <td></td> <td>None</td>	77	RI82			Yes		None
80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI151 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes	78	RI81			Yes	** NA **	None
80 RI92 Yes ** NA ** None 81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI151 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes	79	B MP2 S			Yes	** NA **	None
81 RI91 Yes ** NA ** None 82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI151 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None					Yes	** NA **	None
82 B MP3 S Yes ** NA ** None 83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G MP1 Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI151 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None	81				Yes	** NA **	None
83 RI142 Yes ** NA ** None 84 RI141 Yes ** NA ** None 85 G_MP1 S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI151 Yes ** NA ** None 88 G_MP2 S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G_MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None						** NA **	
84 RI141 Yes ** NA ** None 85 G_MP1_S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI151 Yes ** NA ** None 88 G_MP2_S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G_MP3_S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None						** NA **	
85 G_MP1_S Yes ** NA ** None 86 RI152 Yes ** NA ** None 87 RI151 Yes ** NA ** None 88 G_MP2_S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G_MP3_S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None							
86 RI152 Yes ** NA ** None 87 RI151 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None							
87 RI151 Yes ** NA ** None 88 G MP2 S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G_MP3_S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None						** NA **	
88 G MP2 S Yes ** NA ** None 89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G MP3 S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None							
89 RI162 Yes ** NA ** None 90 RI161 Yes ** NA ** None 91 G_MP3_S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None							
90 RI161 Yes ** NA ** None 91 G_MP3_S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None							
91 G_MP3_S Yes ** NA ** None 92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None		RI161					
92 M148 Yes ** NA ** None 93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None							
93 M149 Yes ** NA ** None 94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None							
94 M150 Yes ** NA ** None 95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None							
95 M151 Yes ** NA ** None 96 M152 Yes ** NA ** None							
96 M152 Yes ** NA ** None							
						** NA **	
	97	M132 M231			Yes	** NA **	None
97 M251 Tes NA None 98 M98 OOOXXO Yes ** NA ** None				000880		** NA **	

Member Advanced Data (Continued)

	Label	l Release	J Release	Physical	Deflection Ratio Options	Seismic DR
99	M99			Yes	N/A	None
100	M100		000XX0	Yes	** NA **	None
101	M101	0000X0	000/010	Yes	** NA **	None
102	M102	0000/10		Yes	N/A	None
103	M102			Yes	** NA **	None
103	M104			Yes	N/A	None
105	M104			Yes	N/A N/A	None
105	M105	0000X0		Yes	** NA **	None
107	M107	000000		Yes		
					N/A	None
108	M108			Yes	N/A	None
109	M112		0.000/0/0	Yes	** NA **	None
110	M113		OOOXXO	Yes	** NA **	None
111	M114			Yes	** NA **	None
112	M115			Yes	** NA **	None
113	M116			Yes	N/A	None
114	M117			Yes	N/A	None
115	M118			Yes	** NA **	None
116	M119			Yes	** NA **	None
117	M120		000XX0	Yes	** NA **	None
118	M121			Yes	N/A	None
119	M122			Yes	N/A	None
120	M123			Yes	N/A	None
121	M124			Yes	Default	None
122	M125			Yes	Default	None
123	M126		000XX0	Yes	** NA **	None
124	M127		000/010	Yes	N/A	None
125	M128		000XX0	Yes	** NA **	None
126	M129	0000000	000///0	Yes	** NA **	None
127	M130	0000/10		Yes	N/A	None
128	M131			Yes	** NA **	None
129	M132			Yes	N/A	None
130	M132			Yes	N/A N/A	None
131	M134	0000X0		Yes	** NA **	None
	M135	000000		Yes	NA N/A	None
132 133	M135				N/A N/A	
				Yes	** NA **	None
134	M137		000000	Yes		None
135	M138		000XX0	Yes	** NA **	None
136	M139			Yes	** NA **	None
137	M140			Yes	** NA **	None
138	M141			Yes	N/A	None
139	M142			Yes	N/A	None
140	M143			Yes	** NA **	None
141	M144			Yes	** NA **	None
142	M145		OOOXXO	Yes	** NA **	None
143	M146			Yes	N/A	None
144	M147			Yes	N/A	None
145	M178			Yes	N/A	None
146	M179			Yes	Default	None
147	M180			Yes	Default	None

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N264	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N179	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N219	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Envelope Node Reactions

	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N264	max	396.893	3	1268.856	15	1541.466	19	367.528	7	3126.564	19	1408.019	7
2		min	-431.319	11	-1271.098	7	156.287	11	-231.336	15	-38.717	11	-1411.36	15
3	N179	max	1166.539	18	762.282	16	1648.374	30	117.163	6	180.515	4	1461.454	18
4		min	-1149.686	10	-788.363	8	212.921	6	-2866.138	30	-1999.671	108	-1464.039	10
5	N219	max	1121.226	4	659.728	13	1546.291	24	2639.246	24	39.344	17	1412.883	12
6		min	-1108.648	12	-632.137	5	160.633	16	-39.971	16	-2083.625	73	-1415.976	4
7	Totals:	max	2468.875	3	2446.259	15	4304.544	25						
8		min	-2468.872	11	-2446.269	7	1553.164	65						

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Member	Shape								phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft	1 Cb Ean
1	M125	HSS4X4X2	0.431		16	0.135	0			70076.661		8240.413	8240.413	2.148H1-1b
2	M167	HSS4X4X2	0.413	0	5	0.111	0	z		70076.661		8240.413	8240.413	2.043H1-1b
3	M180	HSS4X4X2	0.412	-	11	0.149	0			70076.661		8240.413	8240.413	2.076H1-1b
4	M135	C3X2X.188	0.338	2.805		0.202				35601.592		1703.262	4482.883	1.736H1-1b
5	M116	C3X2X.188	0.336	2.805		0.198	5.28			35601.592			4482.883	1.715H1-1b
6	M107	C3X2X.188	0.334	2.805		0.195				35601.592			4482.883	1.732H1-1b
7	M141	C3X2X.188	0.332	2.805		0.188		z	27	35601.592	43393.709		4482.883	1.693H1-1b
8	M158	C3X2X.188	0.33	2.805		0.187	5.28			35601.592		1703.262	4482.883	1.693H1-1b
9	M156	C3X2X.188	0.33	2.805		0.193				35601.592		1703.262	4482.883	1.735H1-1b
10	M108	PL2.38X0.375	0.192	4.15		0.31				26764.08	28917	225.914	1433.8	1.481H1-1b
11	M175	PL2.38X0.375	0.186	4.15		0.278	1.507			26764.08	28917	225.914	1433.8	1.483H1-1b
12	M136	PL2.38X0.375	0.186	4.15	4	0.28	1.507			26764.08	28917	225.914	1433.8	1.482H1-1b
13	SR29	Custom 6.63x4.46	0.166	34.262		0.019	34.262	z	11	21261.769		1867.777	3812.791	1.5 H2-1
14	SR30	Custom 6.63x4.46	0.166	34.262				z	6	21261.769		1867.777	3812.791	1.5 H2-1
15	M124	PL 6"X0.375"	0.165	2.025		0.176	0	v		69913.767		569.7	9112.5	2.312H1-1b
16	M179	PL 6"X0.375"	0.164	2.025		0.183	0	ý	5	69913.767	72900	569.7	9112.5	2.312H1-1b
17	M177	PL 6"X0.375"	0.164	2.025	6	0.183	0	v	16	69913.767	72900	569.7	9112.5	2.312H1-1b
18	SR28	Custom 6.63x4.46	0.163	34.262	8	0.019	34.262	z	16	21261.769	55242	1867.777	3812.791	1.5 H2-1
19	M130	PL 6"X0.375"	0.148	3.625		0.252			69	20811.089		569.7	9112.5	1.937H1-1b
20	M169	PL 6"X0.375"	0.148	3.625		0.18	3.625	ý	15	20811.089	72900	569.7	9112.5	1.922H1-1b
21	M102	PL 6"X0.375"	0.148	3.625	8	0.177	3.625	y	10	20811.089		569.7	9112.5	1.987 H1-1b
22	M127	PL2.38X0.375	0.147	4.15	13	0.323	1.507	y	69	26764.08	28917	225.914	1433.8	1.504H1-1b
23	M168	PL2.38X0.375	0.142	4.15	7	0.303	1.507	y	31	26764.08	28917	225.914	1433.8	1.499H1-1b
24	M99	PL2.38X0.375	0.14	4.15	18	0.304	1.507	y	26	26764.08	28917	225.914	1433.8	1.5 H1-1b
25	M110	PIPE 2.0	0.135	48	11	0.02	48		12	23808.54	32130	1871.625	1871.625	1 H1-1b
26	M142	PL 6"X0.375"	0.126	2.025	6	0.151	0	у		69913.767	72900	569.7	9112.5	2.312H1-1b
27	M117	PL 6"X0.375"	0.126	2.025		0.145	0	y		69913.767		569.7	9112.5	2.312H1-1b
28	M176	PL 6"X0.375"	0.126	2.025	16	0.149	0	y		69913.767	72900	569.7	9112.5	2.312H1-1b
29	M146	L2X2X4	0.125	0	18		27.562			23418.129		690.934	1576.849	1.5 H2-1
30	M121	L2X2X4	0.125	0	7	0.021	27.562	y		23418.129		690.934	1576.849	1.5 H2-1
31	M170	L2X2X4	0.125		13		27.562	y		23418.129		690.934	1576.849	1.5 H2-1
-	B_MP2_S		0.122	71.747			71.747			30038.461		3596.25	3596.25	1 H1-1b
	G_MP2_S			71.747			71.747			30038.461	50715	3596.25	3596.25	1 H1-1b
34	A_MP2_S		0.121	71.747		0.045	71.747			30038.461		3596.25	3596.25	1 H1-1b
35	SR19	PIPE_2.5	0.119	92.211	-		106.737			29383.363		3596.25	3596.25	1 H1-1b
	B_MP3_S		0.118	32.337			71.747			30038.461		3596.25	3596.25	1 H1-1b
	G_MP3_S		0.117	32.337			71.747			30038.461	50715	3596.25	3596.25	1 H1-1b
38	SR10	PIPE 2.5	0.117	92.211			106.737			29383.363		3596.25	3596.25	1 H1-1b
39	SR1	PIPE_2.5	0.117	92.211		0.106	106.737			29383.363		3596.25	3596.25	1 H1-1b
	A_MP3_S		0.117	32.337			71.747			30038.461	50715	3596.25	3596.25	1 H1-1b
	A_MP1_S		0.115	71.747	-		71.747			30038.461	50715	3596.25	3596.25	1 H1-1b
	G_MP1_S		0.115	71.747			<u>71.747</u>			30038.461	50715	3596.25	3596.25	1 H1-1b
43	M172	PL 6"X0.375"	0.114	16.8	3	0.141	3.625	у	7	20811.089	72900	569.7	9112.5	1.528H1-1b

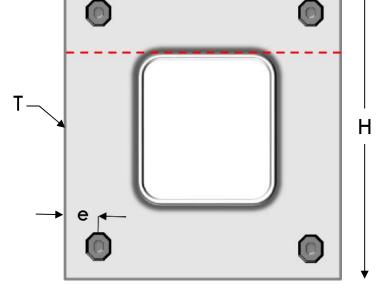
Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Loc[in]	Diı				phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft]	Cb	Eqn
44	M132	PL 6"X0.375"	0.114	16.8	8	0.141	3.625	у	12	20811.089	72900	569.7	9112.5	1.526	H1-1b
45	3_MP1_S	PIPE_2.5	0.113	71.747	11	0.042	71.747		16	30038.461	50715	3596.25	3596.25	1	H1-1b
46	M104	PL 6"X0.375"	0.112	16.8	14	0.195	3.625	y	11:	20811.089	72900	569.7	9112.5	1.527	H1-1b
47	M123	L2X2X4	0.112	0	16	0.023	0	y	31	23418.129	30585.6	690.934	1576.849	1.5	H2-1
48	M178	L2X2X4	0.111	0	11	0.023	0	ý		23418.129		690.934	1576.849	1.5	H2-1
49	M174	L2X2X4	0.11	0	5	0.023	0	y	19	23418.129	30585.6	690.934	1576.849	1.5	H2-1
50	M228	PIPE 3.0	0.073	34.863	9	0.038	89.432		69	81515.988	85698	7555.5	7555.5	1	H1-1b
51	M230	PIPE_3.0	0.07	34.863	14	0.036	48		6	81515.988	85698	7555.5	7555.5	1	H1-1b
52	M229	PIPE 3.0	0.07	34.863	3	0.036	48		11	81515.988	85698	7555.5	7555.5	1	H1-1b
53	M147	PL 6"X0.375"	0.069	0	3	0.226	0	y	3	68492.221	72900	569.7	9112.5	2.551	H1-1b
54	M171	PL 6"X0.375"	0.069	0	14	0.227	0	y	14	68492.221	72900	569.7	9112.5	2.551	H1-1b
55	M122	PL 6"X0.375"	0.069	0	8	0.221	0	у	8	68492.221	72900	569.7	9112.5	2.551	H1-1b
56	M105	PL 6"X0.375"	0.064	2.181	18	0.236	0	y	11	68492.221	72900	569.7	9112.5	2.553	H1-1b
57	M173	PL 6"X0.375"	0.064	2.181	7	0.244	0	y	16	68492.221	72900	569.7	9112.5	2.553	H1-1b
58	M133	PL 6"X0.375"	0.064	2.181	12	0.248	0	ý	5	68492.221	72900	569.7	9112.5	2.553	H1-1b
59	SR21	PL6X1/4	0.037	1	9	0.047	3.237	y	9	37748.526	48600	253.125	6075	1.717	H1-1b
60	SR3	PL6X1/4	0.037	1	4	0.047	3.237	y	3	37748.526	48600	253.125	6075	1.715	H1-1b
61	SR12	PL6X1/4	0.037	1	15	0.047	3.237	y	14	37748.526	48600	253.125	6075	1.715	H1-1b
62	SR2	PL6X1/4	0.031	1	9	0.038	1	y	10	37748.526	48600	253.125	6075	1.74	H1-1b
63	SR20	PL6X1/4	0.031	4	14	0.039	4	y	15	37748.526	48600	253.125	6075	1.773	H1-1b
64	SR11	PL6X1/4	0.031	4	3	0.04	4	y	5	37748.526	48600	253.125	6075	1.775	H1-1b

ARAMETERS	
evision	Н

CES FROM R3D							
er Label	M125						
End Label	I						
Fx, Ibs	-465.6						
Fy, Ibs	1648.2						
Fz, Ibs	-1353.3						
Mx, Ibs-ft	-491.5						
My, Ibs-ft	-1464.0						
Mz, Ibs-ft	3249.5						

IBER PROPERTIES							
ember Type	Square/Rect. HSS						
ember Shape	HSS4X4X1/8						
mber Grade	A500-46 Gr.B Rect.						
te Weld Size, in	3/16						


E PROPERTIES							
uantity	4						
istance (e), in	1.00						
ameter (ØDb), in	0.625						
Grade	A325						
ght (H), in	9.00						
dth (W), in	9.00						
kness (T), in	0.63						
Grade	A36						

NALYSIS	
and (Vu), k	0.61
city (ORnv), k	13.81
mand (Tu), k	4.44
acity (ØRnt), k	20.34
tilization	4.4%
Utilization	21.8%
Utilization	5.0%

NALYSIS	
and (Mu), k-in	13.31
city (ΦMn), k-in	28.48
tilization	46.7%

PASS

PASS

MATE	PPO	DEDT	IES
MAIE	FNU	FENI	5

Standoff Member - Yield Strength (Fy), ksi	46
Standoff Member - Ultimate Strength (Fu), ksi	58
Bolt - Yield Strength (Fy), ksi	92
Bolt - Tensile Strength (Fu), ksi	120
Plate - Yield Strength (Fy), ksi	36
Plate - Ultimate Strength (Fu), ksi	58

POWER DENSITY STUDY

THE REAL PROPERTY IN THE REAL PROPERTY INTO THE REAL PR

PINNACLE TELECOM GROUP

Professional and Technical Services

ANTENNA SITE FCC RF Compliance Assessment and Report for Municipal Submission

Prepared for:

Site ID: Site Address:

Latitude: Longitude: Structure type: Report date:

Compliance Conclusion:

Dish Wireless, LLC

NJJERO1080B 5 High Ridge Park Road Stamford, CT

N 41.11275 W 73.53835 Monopole December 6, 2021

Dish Wireless, LLC will be in compliance with the rules and regulations as described in OET Bulletin 65, following the implementation of the proposed mitigation as detailed in the report.

14 Ridgedale Avenue - Suite 260 • Cedar Knolls, NJ 07927 • 973-451-1630

Contents

Introduction and Summary	3
Antenna and Transmission Data	5
Compliance Analysis	11
Compliance Conclusion	19

Certification

Appendix A. Documents Used to Prepare the Analysis

Appendix B. Background on the FCC MPE Limit

Appendix C. Proposed Signage

Appendix D. Summary of Expert Qualifications

Introduction and Summary

At the request of Dish Wireless, LLC ("Dish"), Pinnacle Telecom Group has performed an independent expert assessment of radiofrequency (RF) levels and related FCC compliance for proposed wireless base station antenna operations on an existing monopole located at 5 High Ridge Park Road in Stamford, CT. Dish refers to the antenna site by the code "NJJER01080B", and its proposed operation involves directional panel antennas and transmission in the 600 MHz, 2000 MHz, and 2100 MHz frequency bands licensed to it by the FCC.

The FCC requires all wireless antenna operators to perform an assessment of potential human exposure to radiofrequency (RF) fields emanating from all the transmitting antennas at a site whenever antenna operations are added or modified, and to ensure compliance with the Maximum Permissible Exposure (MPE) limit in the FCC's regulations. In this case, the compliance assessment needs to take into account the RF effects of other existing antenna operations at the site by AT&T, Sprint and T-Mobile. Note that FCC regulations require any future antenna collocators to assess and assure continuing compliance based on the cumulative effects of all then-proposed and then-existing antennas at the site.

This report describes mathematical analyses of potential RF exposure levels associated with the antennas. The analyses both at street level and on the subject roof employ standard FCC mathematical models for calculating the effects of the antennas in a very conservative manner, in order to overstate the RF levels and to ensure "safe-side" conclusions regarding compliance with the FCC limit for safe continuous exposure of the general public.

The results of a compliance assessment can be described in layman's terms by expressing the calculated RF levels as simple percentages of the FCC MPE limit. If the normalized reference for that limit is 100 percent, then calculated RF levels higher than 100 percent indicate the MPE limit is exceeded and there is a need to mitigate the potential exposure. On the other hand, calculated RF levels consistently below 100 percent serve as a clear and sufficient demonstration of compliance with the MPE limit. We can (and will) also describe the overall worst-case result via the "plain-English" equivalent "times-below-the-limit" factor.

The result of the RF compliance assessment in this case is as follows:

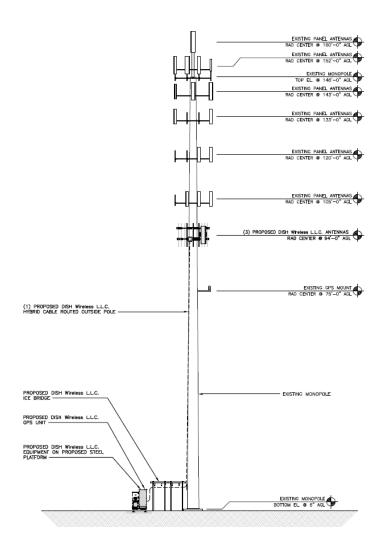
- At street level, the conservatively calculated maximum RF level from the combination of proposed and existing antenna operations at the site is 5.3461 percent of the FCC general population MPE limit well below the 100-percent reference for compliance. In other words, the worst-case calculated RF level intentionally and significantly overstated by the calculations is still more than 15 times below the FCC limit for safe, continuous exposure of the general public.
- A supplemental analysis of the RF levels at the same height as the Dish antennas indicate that the FCC MPE limit is potentially exceeded. Therefore, it is recommended that two Caution signs be installed six feet below the antennas. In addition, NOC Information signs are to be installed at the base of the monopole.
- The results of the calculations, along with the proposed mitigation, combine to satisfy the FCC requirements and associated guidelines on RF compliance at street level around the site and on the subject roof. Moreover, because of the significant conservatism incorporated in the analysis, RF levels actually caused by the antennas will be lower than these calculations indicate.

The remainder of this report provides the following:

- relevant technical data on the proposed Dish antenna operations at the site, as well as on the other existing antenna operations;
- a description of the applicable FCC mathematical model for calculating RF levels, and application of the relevant technical data to that model;
- analysis of the results of the calculations against the FCC MPE limit, and the compliance conclusion for the site.

In addition, four Appendices are included. Appendix A provides information on the documents used to prepare the analysis. Appendix B provides background on the FCC MPE limit. Appendix C details the proposed mitigation to satisfy the FCC requirements and associated guidelines on RF compliance. Appendix D provides

a summary of the qualifications of the expert certifying FCC compliance for this site.


ANTENNA AND TRANSMISSION DATA

The plan and elevation views that follow, extracted from the site drawings, illustrate the mounting positions of the Dish antennas at the site.

Plan View:

Elevation View:

The table that follows summarizes the relevant data for the proposed Dish antenna operations. Note that the "Z" height references the centerline of the antenna.

Ant. ID	Carrier	Antenna Manufacturer	Antenna Model	Туре	Freq (MHz)	Ant. Dim. (ft.)	Total ERP (watts)	Z (ft)	Ant. Gain (dBd)	B/W	Azimuth	EDT	MDT
0	Dish	JMA Wireless	MX08FRO665-21	Panel	600	6	1637	94	11.46	68	60	2	0
0	Dish	JMA Wireless	MX08FRO665-21	Panel	2000	6	6011	94	16.16	62	60	2	0
0	Dish	JMA Wireless	MX08FRO665-21	Panel	2100	6	7567	94	16.66	64	60	2	0
0	Dish	JMA Wireless	MX08FRO665-21	Panel	600	6	1637	94	11.46	68	180	2	0
0	Dish	JMA Wireless	MX08FRO665-21	Panel	2000	6	6011	94	16.16	62	180	2	0
0	Dish	JMA Wireless	MX08FRO665-21	Panel	2100	6	7567	94	16.66	64	180	2	0
6	Dish	JMA Wireless	MX08FRO665-21	Panel	600	6	1637	94	11.46	68	300	2	0
6	Dish	JMA Wireless	MX08FRO665-21	Panel	2000	6	6011	94	16.16	62	300	2	0
6	Dish	JMA Wireless	MX08FRO665-21	Panel	2100	6	7567	94	16.66	64	300	2	0

The area below the antennas, at street level, is of interest in terms of potential "uncontrolled" exposure of the general public, so the antenna's vertical-plane emission characteristic is used in the calculations, as it is a key determinant of the relative amount of RF emissions in the "downward" direction.

By way of illustration, Figure 1 that follows shows the vertical-plane radiation pattern of the proposed antenna model in the 600 MHz frequency band. In this type of antenna radiation pattern diagram, the antenna is effectively pointed at the three o'clock position (the horizon) and the relative strength of the pattern at different angles is described using decibel units.

Note that the use of a decibel scale to describe the relative pattern at different angles actually serves to significantly understate the actual focusing effects of the antenna. Where the antenna pattern reads 20 dB the relative RF energy emitted at the corresponding downward angle is 1/100th of the maximum that occurs in the main beam (at 0 degrees); at 30 dB, the energy is only 1/1000th of the maximum.

Finally, note that the automatic pattern-scaling feature of our internal software may skew side-by-side visual comparisons of different antenna models, or even different parties' depictions of the same antenna model.

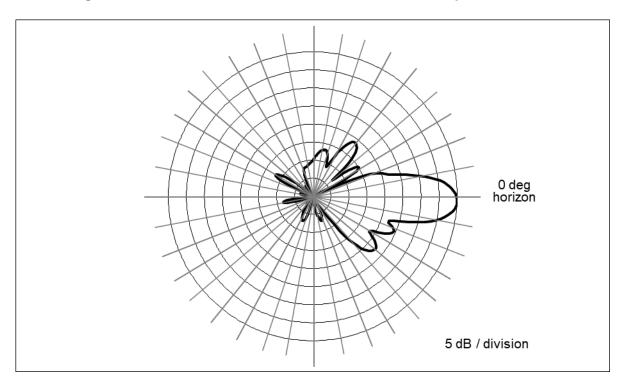


Figure 1. JMA Wireless MX08FRO665-21 – 600 MHz Vertical-plane Pattern

As noted at the outset, there are other existing wireless antenna operations to include in the compliance assessment. For each of the wireless operators, we will conservatively assume operation with maximum channel capacity and at maximum transmitter power per channel to be used by each wireless operator in each of their respective FCC-licensed frequency bands.

The table that follows summarizes the relevant data for the collocated antenna operations.

Carrier	Antenna Manufact urer	Antenna Model	Туре	Freq (MHz)	Total ERP (watts)	Ant. Gain (dBd)	Azimuth
AT&T	Unknown	Unknown	Panel	700	4945	11.25	N/A
AT&T	Unknown	Unknown	Panel	850	2400	11.76	N/A
AT&T	Unknown	Unknown	Panel	1900	5756	15.56	N/A
AT&T	Unknown	Unknown	Panel	2100	5890	15.66	N/A
AT&T	Unknown	Unknown	Panel	2300	4131	16.16	N/A
Sprint	Unknown	Unknown	Panel	800	2168	13.36	N/A
Sprint	Unknown	Unknown	Panel	1900	6168	15.86	N/A
Sprint	Unknown	Unknown	Panel	2500	4669	15.90	N/A
T-Mobile	Unknown	Unknown	Panel	600	3163	12.96	N/A
T-Mobile	Unknown	Unknown	Panel	700	867	13.36	N/A
T-Mobile	Unknown	Unknown	Panel	1900	4123	15.36	N/A
T-Mobile	Unknown	Unknown	Panel	1900	1452	15.60	N/A
T-Mobile	Unknown	Unknown	Panel	2100	4626	15.86	N/A
T-Mobile	Unknown	Unknown	Panel	2100	1419	15.50	N/A
T-Mobile	Unknown	Unknown	Panel	2500	12804	22.35	N/A

COMPLIANCE ANALYSIS

FCC Office of Engineering and Technology Bulletin 65 ("OET Bulletin 65") provides guidelines for mathematical models to calculate the RF levels at various points around transmitting antennas. Different models apply in different areas around antennas, with one model applying to street level around a site, and another applying to the rooftop near the antennas. We will address each area of interest in turn in the subsections that follow.

Street Level Analysis

At street-level around an antenna site (in what is called the "far field" of the antennas), the RF levels are directly proportional to the total antenna input power and the relative antenna gain in the downward direction of interest – and the levels are otherwise inversely proportional to the square of the straight-line distance to the antenna.

Conservative calculations also assume the potential RF exposure is enhanced by reflection of the RF energy from the intervening ground. Our calculations will assume a 100% "perfect", mirror-like reflection, which is the absolute worst-case scenario.

The formula for street-level compliance assessment for any given wireless antenna operation is as follows:

MPE% = (100 * Chans * TxPower * 10 (Gmax-Vdisc/10) * 4) / (MPE * 4π * R²)

where

MPE%	=	RF level, expressed as a percentage of the MPE limit applicable to continuous exposure of the general public
100	=	factor to convert the raw result to a percentage
Chans	=	maximum number of RF channels per sector
TxPower	=	maximum transmitter power per channel, in milliwatts

10 ^(Gmax-Vdisc/10)	=	numeric equivalent of the relative antenna gain in the downward direction of interest; data on the antenna vertical-plane pattern is taken from manufacturer specifications
4	=	factor to account for a 100-percent-efficient energy reflection from the ground, and the squared relationship between RF field strength and power density $(2^2 = 4)$
MPE	=	FCC general population MPE limit
R	=	straight-line distance from the RF source to the point of interest, centimeters

The MPE% calculations are performed out to a distance of 500 feet from the facility to points 6.5 feet (approximately two meters, the FCC-recommended standing height) off the ground, as illustrated in Figure 2, below.

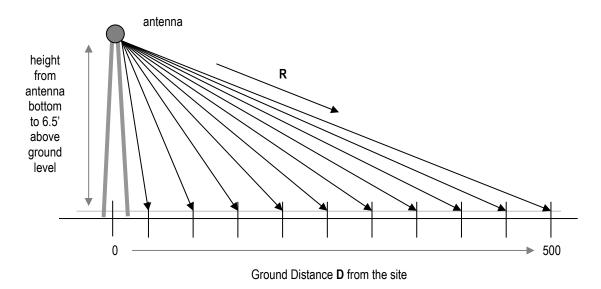


Figure 2. Street-level MPE% Calculation Geometry

It is popularly understood that the farther away one is from an antenna, the lower the RF level – which is generally but not universally correct. The results of MPE% calculations fairly close to the site will reflect the variations in the vertical-plane antenna pattern as well as the variation in straight-line distance to the antenna.

Therefore, RF levels may actually increase slightly with increasing distance within

the range of zero to 500 feet from the site. As the distance approaches 500 feet and beyond, though, the antenna pattern factor becomes less significant, the RF levels become primarily distance-controlled and, as a result, the RF levels generally decrease with increasing distance. In any case, the RF levels more than 500 feet from a wireless antenna site are well understood to be sufficiently low to be comfortably in compliance.

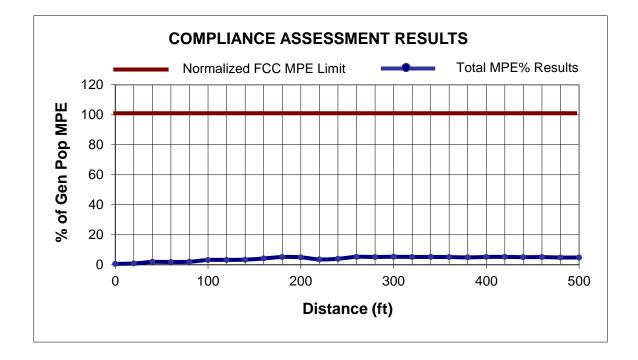
According to the FCC, when directional antennas (such as panels) are used, compliance assessments are based on the RF effect of a single (facing) antenna sector, as the effects of directional antennas pointed away from the point(s) of interest are considered insignificant. If the different parameters apply in the different sectors, compliance is based on the worst-case parameters.

Street level FCC compliance for a collocated antenna site is assessed in the following manner. At each distance point along the ground, an MPE% calculation is made for each antenna operation (including each frequency band), and the sum of the individual MPE% contributions at each point is compared to 100 percent, the normalized reference for compliance with the MPE limit. We refer to the sum of the individual MPE% contributions as "total MPE%", and any calculated total MPE% result exceeding 100 percent is, by definition, higher than the FCC limit and represents non-compliance and a need to mitigate the potential exposure. If all results are consistently below 100 percent, on the other hand, that set of results serves as a clear and sufficient demonstration of compliance with the MPE limit.

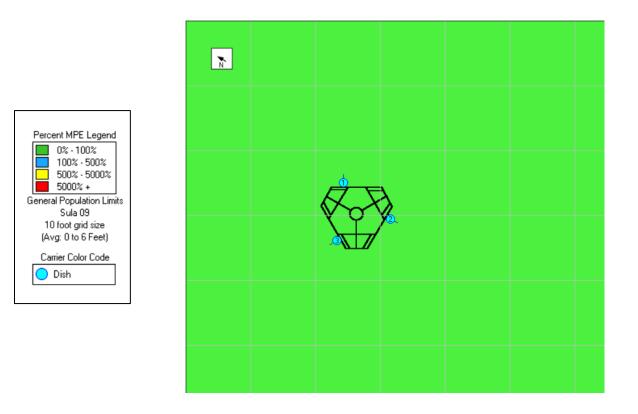
Note that the following conservative methodology and assumptions are incorporated into the MPE% calculations on a general basis:

- 1. The antennas are assumed to be operating continuously at maximum power and maximum channel capacity.
- 2. The power-attenuation effects of shadowing or other obstructions to the line-of-sight path from the antenna to the point of interest are ignored.
- 3. The calculations intentionally minimize the distance factor (R) by assuming a 6'6" human and performing the calculations from the bottom (rather than the centerline) of each operator's lowest-mounted antenna, as applicable.

- 4. The calculations also conservatively take into account, when applicable, the different technical characteristics and related RF effects of the use of multiple antennas for transmission in the same frequency band.
- 5. The RF exposure at ground level is assumed to be 100-percent enhanced (increased) via a "perfect" field reflection from the intervening ground.


The net result of these assumptions is to intentionally and significantly overstate the calculated RF levels relative to the levels that will actually result from the antenna operations – and the purpose of this conservatism is to allow very "safe-side" conclusions about compliance.

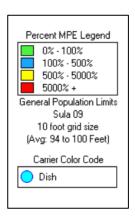
The table that follows provides the results of the MPE% calculations for each antenna operation, with the overall worst-case calculated result highlighted in bold in the last column.

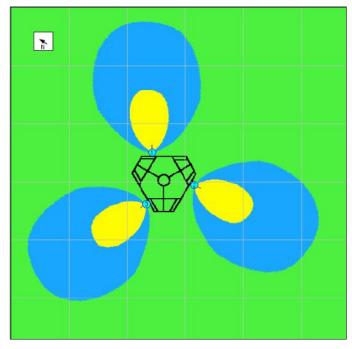

Ground Distance (ft)	Dish 600 MHz MPE%	Dish 2000 MHz MPE%	Dish 2100 MHz MPE%	AT&T MPE%	Sprint MPE%	T-Mobile MPE%	Total MPE%
0	0.0020	0.0029	0.0000	0.1251	0.0431	0.4347	0.6078
20	0.0020	0.0230	0.0130	0.1231	0.0451	0.6292	0.8684
40	0.0068	0.0230	0.0109	0.3602	0.0226	1.4967	1.9280
60	0.0008	0.0014	0.0308	0.5529	0.0220	1.2118	1.8627
80	0.1827	0.0089	0.4766	0.6225	0.1144	0.6307	2.0358
100	0.2341	0.4527	0.7011	0.9273	0.1013	0.7645	3.1810
120	0.1149	0.3686	0.1979	1.2532	0.1916	1.1647	3.2909
140	0.0611	0.0230	0.0419	1.2538	0.2502	1.7733	3.4033
160	0.1226	0.1011	0.0143	1.3266	0.0967	2.5444	4.2057
180	0.1401	0.1790	0.0837	1.3233	0.0519	3.4028	5.1808
200	0.1202	0.0054	0.0165	0.8920	0.0907	3.8747	4.9995
220	0.0909	0.0248	0.0306	0.4995	0.1131	2.8082	3.5671
240	0.0565	0.0810	0.0690	0.3303	0.1370	3.3518	4.0256
260	0.0490	0.0584	0.0404	0.2949	0.1328	4.7196	5.2951
280	0.0894	0.0522	0.0415	0.3257	0.0799	4.6128	5.2015
300	0.1337	0.0712	0.0763	0.3706	0.0369	4.6574	5.3461
320	0.1922	0.0631	0.0795	0.4911	0.0245	4.3678	5.2182
340	0.2657	0.0270	0.0427	0.7096	0.0464	4.1356	5.2270
360	0.2385	0.0242	0.0384	1.0125	0.0837	3.7600	5.1573
380	0.3111	0.0013	0.0056	0.9149	0.0756	3.5953	4.9038
400	0.3984	0.0064	0.0029	1.2281	0.1014	3.4877	5.2249
420	0.3628	0.0058	0.0027	1.5139	0.1164	3.2649	5.2665
440	0.4373	0.0169	0.0161	1.3856	0.1066	3.1029	5.0654
460	0.4013	0.0155	0.0148	1.5888	0.1301	3.0034	5.1539
480	0.4652	0.0084	0.0116	1.4642	0.1199	2.7679	4.8372
500	0.4298	0.0078	0.0107	1.5992	0.1735	2.6664	4.8874

As indicated, the maximum calculated overall RF level is 5.3461 percent of the FCC MPE limit – well below the 100-percent reference for compliance.

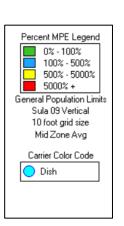
A graph of the overall calculation results, shown below, perhaps provides a clearer *visual* illustration of the relative compliance of the calculated RF levels. The line representing the overall calculation results shows an obviously clear, consistent margin to the FCC MPE limit.

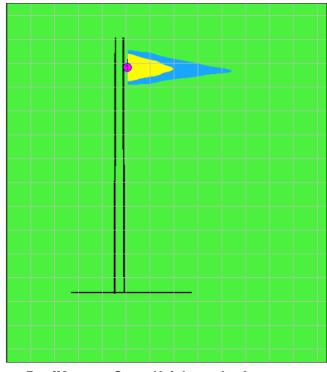
The graphic output for the areas at street level surrounding the site is reproduced on the next page.




Near-field Analysis

The compliance analysis for the same height as the antennas is performed using the RoofMaster program by Waterford Consultants.


RF levels in the near field of an antenna depend on the power input to the antenna, the antenna's length and horizontal beamwidth, the mounting height of the antenna above nearby standing level, and one's position and distance from the antenna. RF levels in front of a directional antenna are higher than they are to the sides or rear, and in any given horizontal direction are inversely proportional to the straight-line distance to the antenna.


The RoofMaster graphic outputs for the same height as the Dish antennas are reproduced on the next page.

RoofMaster – Same Height as the Antennas – Alpha / Beta / Gamma sectors

RoofMaster – Same Height as the Antennas – Alpha / Beta / Gamma sectors

COMPLIANCE CONCLUSION

According to the FCC, the MPE limit has been constructed in such a manner that continuous human exposure to RF fields up to and including 100 percent of the MPE limit is acceptable and safe.

The conservative analysis in this case shows that the maximum calculated RF level from the proposed modifications to the existing antenna operations at the site is 5.3461 percent of the FCC general population MPE limit. At the same height as the antennas, the analysis shows that the calculated RF levels potentially exceed the FCC MPE limit. Per Dish guidelines, and consistent with FCC guidance on rooftop compliance, it is recommended that two Caution signs be six feet below the antennas. In addition, NOC Information signs be installed at the base of the monopole.

The results of the calculations, along with the described RF mitigation, combine to satisfy the FCC's RF compliance requirements and associated guidelines at street level around the site and on the subject roof.

Moreover, because of the extremely conservative calculation methodology and operational assumptions we applied in the analysis, RF levels actually caused by the antennas will be significantly lower than the calculation results here indicate.

Certification

It is the policy of Pinnacle Telecom Group that all FCC RF compliance assessments are reviewed, approved, and signed by the firm's Chief Technical Officer who certifies as follows:

- 1. I have read and fully understand the FCC regulations concerning RF safety and the control of human exposure to RF fields (47 CFR 1.1301 *et seq*).
- 2. To the best of my knowledge, the statements and information disclosed in this report are true, complete and accurate.
- 3. The analysis of site RF compliance provided herein is consistent with the applicable FCC regulations, additional guidelines issued by the FCC, and industry practice.
- 4. The results of the analysis indicate that the subject antenna operations will be in compliance with the FCC regulations concerning the control of potential human exposure to the RF emissions from antennas.

1alle

Daniel C. Collins Chief Teennical Officer Pinnacle Telecom Group, LLC

12/6/21 Date

Appendix A. Documents Used to Prepare the Analysis

RFDS: RFDS-NJJER01080B-Final-20210927-v.0_20210927150542

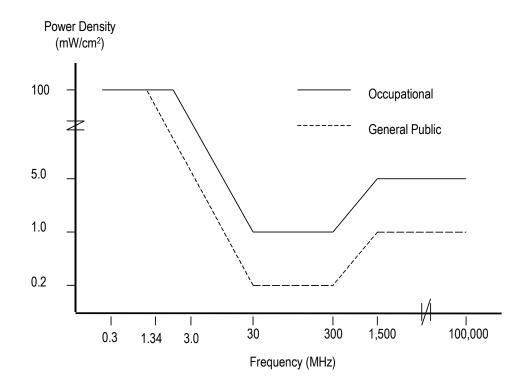
CD: NJJER01080B_FinalStampedCDs_20210913171602

Appendix B. Background on the FCC MPE Limit

As directed by the Telecommunications Act of 1996, the FCC has established limits for maximum continuous human exposure to RF fields.

The FCC maximum permissible exposure (MPE) limits represent the consensus of federal agencies and independent experts responsible for RF safety matters. Those agencies include the National Council on Radiation Protection and Measurements (NCRP), the Occupational Safety and Health Administration (OSHA), the National Institute for Occupational Safety and Health (NIOSH), the American National Standards Institute (ANSI), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA). In formulating its guidelines, the FCC also considered input from the public and technical community – notably the Institute of Electrical and Electronics Engineers (IEEE).

The FCC's RF exposure guidelines are incorporated in Section 1.301 *et seq* of its Rules and Regulations (47 CFR 1.1301-1.1310). Those guidelines specify MPE limits for both occupational and general population exposure.


The specified continuous exposure MPE limits are based on known variation of human body susceptibility in different frequency ranges, and a Specific Absorption Rate (SAR) of 4 watts per kilogram, which is universally considered to accurately represent human capacity to dissipate incident RF energy (in the form of heat). The occupational MPE guidelines incorporate a safety factor of 10 or greater with respect to RF levels known to represent a health hazard, and an additional safety factor of five is applied to the MPE limits for general population exposure. Thus, the general population MPE limit has a built-in safety factor of more than 50. The limits were constructed to appropriately protect humans of both sexes and all ages and sizes and under all conditions – and continuous exposure at levels equal to or below the applicable MPE limits is considered to result in no adverse health effects or even health risk.

The reason for *two* tiers of MPE limits is based on an understanding and assumption that members of the general public are unlikely to have had appropriate RF safety training and may not be aware of the exposures they receive; occupational exposure in controlled environments, on the other hand, is assumed to involve individuals who have had such training, are aware of the exposures, and know how to maintain a safe personal work environment.

The FCC's RF exposure limits are expressed in two equivalent forms, using alternative units of field strength (expressed in volts per meter, or V/m), and power density (expressed in milliwatts per square centimeter, or mW/cm²). The table on the next page lists the FCC limits for both occupational and general population exposures, using the mW/cm² reference, for the different radio frequency ranges.

Frequency Range (F) (MHz)	Occupational Exposure (mW/cm²)	General Public Exposure (mW/cm²)
0.3 - 1.34	100	100
1.34 - 3.0	100	180 / F ²
3.0 - 30	900 / F ²	180 / F ²
30 - 300	1.0	0.2
300 - 1,500	F / 300	F / 1500
1,500 - 100,000	5.0	1.0

The diagram below provides a graphical illustration of both the FCC's occupational and general population MPE limits.

Because the FCC's RF exposure limits are frequency-shaped, the exact MPE limits applicable to the instant situation depend on the frequency range used by the systems of interest.

The most appropriate method of determining RF compliance is to calculate the RF power density attributable to a particular system and compare that to the MPE limit applicable to the operating frequency in question. The result is usually expressed as a percentage of the MPE limit.

For potential exposure from multiple systems, the respective percentages of the MPE limits are added, and the total percentage compared to 100 (percent of the limit). If the result is less than 100, the total exposure is in compliance; if it is more than 100, exposure mitigation measures are necessary to achieve compliance.

Note that the FCC "categorically excludes" all "non-building-mounted" wireless antenna operations whose mounting heights are more than 10 meters (32.8 feet) from the routine requirement to demonstrate compliance with the MPE limit, because such operations "are deemed, individually and cumulatively, to have no significant effect on the human environment". The categorical exclusion also applies to *all* point-to-point antenna operations, regardless of the type of structure they're mounted on. Note that the FCC considers any facility qualifying for the categorical exclusion to be automatically in compliance.

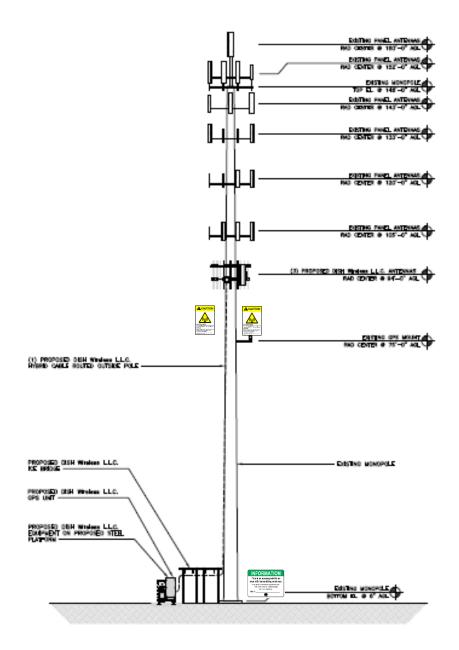
In addition, FCC Rules and Regulations Section 1.1307(b)(3) describes a provision known in the industry as "the 5% rule". It describes that when a specific location – like a spot on a rooftop – is subject to an overall exposure level exceeding the applicable MPE limit, operators with antennas whose MPE% contributions at the point of interest are less than 5% are exempted from the obligation otherwise shared by all operators to bring the site into compliance, and those antennas are automatically deemed by the FCC to satisfy the rooftop compliance requirement.

FCC References on RF Compliance

47 CFR, FCC Rules and Regulations, Part 1 (Practice and Procedure), Section 1.1310 (Radiofrequency radiation exposure limits).

FCC Second Memorandum Opinion and Order and Notice of Proposed Rulemaking (FCC 97-303), In the Matter of Procedures for Reviewing Requests for Relief From State and Local Regulations Pursuant to Section 332(c)(7)(B)(v) of the Communications Act of 1934 (WT Docket 97-192), Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation (ET Docket 93-62), and Petition for Rulemaking of the Cellular Telecommunications Industry Association Concerning Amendment of the Commission's Rules to Preempt State and Local Regulation of Commercial Mobile Radio Service Transmitting Facilities, released August 25, 1997.

FCC First Memorandum Opinion and Order, ET Docket 93-62, *In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation*, released December 24, 1996.


FCC Report and Order, ET Docket 93-62, *In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation*, released August 1, 1996.

FCC Report and Order, Notice of Proposed Rulemaking, Memorandum Opinion and Order (FCC 19-126), Proposed Changes in the Commission's Rules Regarding Human Exposure to Radiofrequency Electromagnetic Fields; Reassessment of Federal Communications Commission Radiofrequency Exposure Limits and Policies, released December 4, 2019.

FCC Office of Engineering and Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 97-01, August 1997.

FCC Office of Engineering and Technology (OET) Bulletin 56, "Questions and Answers About Biological Effects and Potential Hazards of RF Radiation", edition 4, August 1999.

Appendix C. Proposed Signage

NOC information Sign	INFORMATION RELATIONATION RELATION RELATION RELATION RELATION RELATION	Caution Sign	Entrol And
Guidelines Sign	A STORE A LICENTRAL AND A STORE A STORE AND A STORE AN	Warning Sign	
Notice Sign			

Appendix D. Summary of Expert Qualifications

Synopsis:	 40+ years of experience in all aspects of wireless system engineering, related regulation, and RF exposure Has performed or led RF exposure compliance assessments on more than 20,000 antenna sites since the latest FCC regulations went into effect in 1997 Has provided testimony as an RF compliance expert more than 1,500 times since 1997 Have been accepted as an FCC compliance expert in New York, New Jersey, Connecticut, Pennsylvania and more than 40 other states, as well as by the FCC
Education:	 B.E.E., City College of New York (Sch. Of Eng.), 1971 M.B.A., 1982, Fairleigh Dickinson University, 1982 Bronx High School of Science, 1966
Current Responsibilities:	 Leads all PTG staff work involving RF safety and FCC compliance, microwave and satellite system engineering, and consulting on wireless technology and regulation
Prior Experience:	 Edwards & Kelcey, VP – RF Engineering and Chief Information Technology Officer, 1996-99 Bellcore (a Bell Labs offshoot after AT&T's 1984 divestiture), Executive Director – Regulation and Public Policy, 1983-96 AT&T (Corp. HQ), Division Manager – RF Engineering, and Director – Radio Spectrum Management, 1977-83 AT&T Long Lines, Group Supervisor – Microwave Radio System Design, 1972-77
Specific RF Safety / Compliance Experience:	 Involved in RF exposure matters since 1972 Have had lead corporate responsibility for RF safety and compliance at AT&T, Bellcore, Edwards & Kelcey, and PTG While at AT&T, helped develop the mathematical models for calculating RF exposure levels Have been relied on for compliance by all major wireless carriers, as well as by the federal government, several state and local governments, equipment manufacturers, system integrators, and other consulting / engineering firms
Other Background:	 Author, <i>Microwave System Engineering</i> (AT&T, 1974) Co-author and executive editor, <i>A Guide to New Technologies and Services</i> (Bellcore, 1993) National Spectrum Management Association (NSMA) – former three-term President and Chairman of the Board of Directors; was founding member, twice-elected Vice President, long-time member of the Board, and was named an NSMA Fellow in 1991 Have published more than 35 articles in industry magazines

UNDERLYING PROPERTY INFORMATION

EASTOVER ROAD

Location	EASTOVER ROAD	Mblu	004/ 2955/ / /
Acct#	004-2955	Owner	CELLCO PARTNERSHIP
Assessment	\$703,460	Appraisal	\$1,004,930
PID	183864	Building Count	1

Current Value

Appraisal							
Valuation Year Improvements Land Total							
2021	\$412,320	\$592,610	\$1,004,930				
	Assessment						
Valuation Year Improvements Land Total							
2021	\$288,630	\$414,8	30 \$703,460				

Owner of Record

Owner	CELLCO PARTNERSHIP	Sale Price	\$594,710
		B 1 4 B	1051/0050
Co-Owner	VERIZON WIRELESS	Book & Page	4954/0250
Address	P.O. BOX 2549	Sale Date	03/30/1998
		Sale Date	03/30/1990
	ADDISON, TX 75001	Instrument	00

Ownership History

Ownership History				
Owner	Sale Price	Book & Page	Instrument	Sale Date
CELLCO PARTNERSHIP	\$594,710	4954/0250	00	03/30/1998
METRO MOBILE CTS OF FAIRFIELD	\$0	3571/0172	00	05/23/1990

Building Information

Building 1 : Section 1

Year Built: Living Area:	1994 415	L		
Building Attributes				
Field Description				
STYLE		Telephone Bldg		

MODEL	Comm/Ind
Grade	С
Stories:	1
Occupancy	1.00
Exterior Wall 1	Pre-finsh Metl
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	T&G/Rubber
Interior Wall 1	Minimum
Interior Wall 2	
Interior Floor 1	Concrete Slab
Interior Floor 2	
Heating Fuel	Oil
Heating Type	Radiant
АС Туре	None
Struct Class	
Bldg Use	Industrial MDL-94
Total Rooms	
Total Rooms Total Bedrms	00
	00 0
Total Bedrms	
Total Bedrms Total Baths	0
Total Bedrms Total Baths 1st Floor Use:	0 300C
Total Bedrms Total Baths 1st Floor Use: Heat/AC	0 300C None
Total Bedrms Total Baths 1st Floor Use: Heat/AC Frame Type	0 300C None Wood Frame
Total Bedrms Total Baths 1st Floor Use: Heat/AC Frame Type Baths/Plumbing	0 300C None Wood Frame None
Total Bedrms Total Baths 1st Floor Use: Heat/AC Frame Type Baths/Plumbing Ceiling/Wall	0 300C None Wood Frame None Ceil & Mn Wall

Building Photo

(http://images.vgsi.com/photos/StamfordCTPhotos//\00\12\83\35.jpg)

Building Layout

BAS (415 al)

(ParcelSketch.ashx?pid=183864&bid=101949)

	Building Sub-Areas	(sq ft)	<u>Legend</u>
Code	Code Description		Living Area
BAS	First Floor	415	415
		415	415

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use		Land Line Valuation	
Use Code	200	Size (Acres)	3.46
Description	Commercial MDL-94	Depth	
Zone	RA1	Assessed Value	\$414,830
Neighborhood	0100	Appraised Value	\$592,610
Alt Land Appr	No		

Category

Outbuildings

Outbuildings						<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
AP1	Fence Chn Lk			1596.00 L.F.	\$13,770	1
CEL1	Cell Tower			2.00 SITES	\$370,500	1

Valuation History

Appraisal						
Valuation Year	Improvements	Land	Total			
2021	\$412,320	\$592,610	\$1,004,930			
2020	\$412,320	\$592,610	\$1,004,930			
2019	\$412,320	\$592,610	\$1,004,930			

Assessment					
Valuation Year	Improvements	Land	Total		
2021	\$288,630	\$414,830	\$703,460		
2020	\$288,630	\$414,830	\$703,460		
2019	\$288,630	\$414,830	\$703,460		

(c) 2022 Vision Government Solutions, Inc. All rights reserved.

NOTIFICATIONS

Dear Customer,

The following is the proof-of-delivery for tracking number: 776705642236

Delivery Information:			
Status:	Delivered	Delivered To:	Shipping/Receiving
Signed for by:	S.IGNATURE NOT REQ	Delivery Location:	888 WASHINGTON BLVD
Service type:	FedEx 2Day		
Special Handling:	Deliver Weekday		STAMFORD, CT, 06901
		Delivery date:	Apr 29, 2022 11:02
Shipping Information:			
Tracking number:	776705642236	Ship Date:	Apr 27, 2022
		Weight:	1.0 LB/0.45 KG
Recipient: Caroline Simmons - Mayor, Stamford Government Cen 888 Washington Blvd STAMFORD, CT, US, 0690	ter	Shipper: Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824	
Reference	100814		

Dear Customer,

The following is the proof-of-delivery for tracking number: 776705616949

Delivery Information:			
Status:	Delivered	Delivered To:	Shipping/Receiving
Signed for by:	S.IGNATURE NOT REQ	Delivery Location:	888 WASHINGTON BLVD
Service type:	FedEx 2Day		
Special Handling:	Deliver Weekday		STAMFORD, CT, 06901
		Delivery date:	Apr 29, 2022 11:02
Shipping Information: Tracking number:	776705616949	Ship Date:	Apr 27, 2022
		Weight:	1.0 LB/0.45 KG
Recipient: Bharat Gami - Building O Stamford Government Ce 888 Washington Blvd, 7th STAMFORD, CT, US, 06	enter h Floor	Shipper: Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, U	S, 01824
Reference	100814		

USPS Tracking[®]

Track Another Package +

Tracking Number: 9505512322622117685408

Your item has been delivered and is available at a PO Box at 10:45 am on April 29, 2022 in ADDISON, TX 75001.

USPS Tracking $Plus^{ extsf{@}}$ Available \checkmark

⊘ Delivered, PO Box

April 29, 2022 at 10:45 am ADDISON, TX 75001

Get Updates 🗸

Text & Email Updates	\checkmark
Tracking History	\checkmark
USPS Tracking Plus®	\checkmark
Product Information	\checkmark

Remove X