CC CROWN CASTLE

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

July 6, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for AT&T - 876402 175 Stafford Street, Stafford, CT 06419 Latitude: 41° 59′ 13.38″ / Longitude: -72° 15′ 40.78″

Dear Ms. Bachman:

AT&T currently maintains nine (9) antennas at the 136-foot mount on the existing 150-foot Monopole Tower, located at 175 Stafford Street, Stafford, CT. The property is owned by Harry and Nancy Pragl and the Tower is owned by Crown Castle. AT&T now intends to remove and replace six (6) existing antennas with six (6) new antennas. The new antennas will be installed at the 136-ft level of the tower. AT&T is also proposes tower mount modifications as shown on the enclosed Mount Analysis.

The facility was approved by the Connecticut Siting Council in Docket No. 212 on June 3, 2002. The approval was given with conditions which this exempt modification follows.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mary Mitta, First Selectwoman for the Town of Stafford, David Perkins, Zoning Enforcement Officer, Mr. and Mrs. Pragl as the property owners and Crown Castle is the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

The Foundation for a Wireless World. CrownCastle.com Melanie A. Bachman

Page 2

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba. Sincerely,

Anne Marie Zsamba Site Acquisition Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

Attachments

cc:

The Honorable Mary Mitta, First Selectwoman (*via email only to staffordtownhall@staffordct.org*) Stafford Town Hall 1 Main Street Stafford Springs, CT 06076

David Perkins, Zoning Enforcement Official (*via email only to zoning@staffordct.org*) Stafford Town Hall 1 Main Street Stafford Springs, CT 06076

Harry & Nancy Pragl (via email only to hpragl@cox.net) PO Box 154 B Staffordville, CT 06077

Crown Castle, Tower Owner

Dear Mr. & Mrs. Pragl:

Attached please find AT&T's exempt modification application that is being submitted to the Connecticut Siting Council, today July 6, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com Dear First Selectwoman Mitta:

Attached please find AT&T's exempt modification application that is being submitted to the Connecticut Siting Council, today July 6, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com Dear Mr. Perkins:

Attached please find AT&T's exempt modification application that is being submitted to the Connecticut Siting Council, today July 6, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

Exhibit A

Original Facility Approval

DOCKET NO. 212 - Sprint Spectrum, L.P. d/b/a Sprint PCS application for a Certificate of Environmental Compatibility and	}	Connecticut
Public Need for the construction, maintenançe, and operation of a cellular telecommunications facility adjacent to 156 Stafford Street	}	Siting
or 159 Stafford Street, Stafford, Connecticut.	}	Council

June 3, 2002

}

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility at the proposed alternate D (deer stand) site located at 159 Stafford Street, in Stafford, Connecticut, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Sprint Spectrum d/b/a Sprint PCS for the construction, maintenance, and operation of a wireless telecommunications facility at the proposed alternate D (deer stand) site located at 159 Stafford Street Stafford, Connecticut. We deny certification of the proposed prime site and alternate A, B, and C sites located off Stafford Street, Stafford, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas for Sprint PCS, and other telecommunications entities, both public and private, but such tower shall not exceed a height of 150 feet above ground level including all appurtenances.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include: a final site plan(s) for development of the proposed alternate site including a compound reduced in size, the location and specifications for the tower foundation, antennas, equipment and foundation for equipment, security fence, access road to be no closer than 25 feet to any inland wetlands, and utility line that shall be underground; construction plans for site clearing, tree trimming, water drainage, and erosion and sedimentation controls consistent with the <u>Connecticut Guidelines for Soil Erosion and Sediment Control</u>, as amended; landscaping; and provisions for the prevention and containment of spills and/or other discharge into adjacent inland wetlands.
- 3. The Certificate Holder shall not construct during the months of May, June, and July for the protection of a State species of special concern, the whip-poor-wills (Caprimulgus vociferus).
- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall provide electromagnetic radio frequency power density measurements within sixty days following commencement of commercial operation.
- 6. The Certificate Holder shall provide the Council with a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.

Docket No. 212 Decision and Order Page 2

- 7. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 8. Following completion of construction, if the facility does not initially provide or permanently ceases to provide wireless services this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment within sixty days, or reapply for any continued or new use to the Council before any such use is made.
- 9. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 10. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in <u>The Hartford Courant</u>, <u>Stafford Reminder</u> and the <u>Journal Inquirer</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant

Sprint Spectrum, d/b/a Sprint PCS

Thomas J. Regan, Esq. Brown, Rudnick, Freed & Gesmer, P.C. CityPlace 1, 38th Floor 185 Asylum Street Hartford, CT 06103-3402

Intervenor

Citizens for Neighborhood Preservation

Glen E. Coe, Esq. Lewis B. Rome, Esq. Rome McGuigan Sabanosh, P.C. Attorneys At Law One State Street Hartford, CT 06103-3101

<u>Party</u>

Town of Stafford

Gordon J. Frassinelli, Jr. First Selectman Town of Stafford Warren Memorial Town 1 Main Street, P.O. Box 11 Stafford Springs, CT 06076

CERTIFICATION

The undersigned members of the Connecticut Siting Council (Council) hereby certify that they have heard this case, or read the record thereof, in Docket No. 212 - Sprint Spectrum, L.P. d/b/a Sprint PCS application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a wireless telecommunications facility adjacent to 156 Stafford Street or 159 Stafford Street, Stafford, Connecticut, and voted as follows to approve the alternate D (deer stand) site at 159 Stafford Street, and deny the prime site (156 Stafford Street), and alternate sites A, B and C:

Council Members

Mortimer A. Gelston, Chairman

Commissioner Donald W ownes

Designee: Gerald). Heffernan

Commissioner Arthur J. Rocque, Jr. Designee: Brian J. Emerick

Brian O'Neill

Pamela B. Katz Daniel P. Lynch.

Philip Ashton T.

Colin C. Tait

Edward S. Wilensky

z んしゃ

Dated at New Britain, Connecticut, June 3, 2002.

Lisiting/dockets/212/cempkg.doc.pg, 7

Vote Cast

Yes

Yes

·: . .

Yes

Yes

Yes

Yes

Yes

Yes

Yes

STATE OF CONNECTICUT)
ss. New Britain, Connecticut	:
COUNTY OF HARTFORD)

I hereby certify that the foregoing is a true and correct copy of the Findings of Fact, Opinion, and Decision and Order issued by the Connecticut Siting Council, State of Connecticut.

ATTEST:

S. Derek Phelps **Executive Director Connecticut Siting Council**

I certify that a copy of the Findings of Fact, Opinion, and Decision and Order in Docket No. 212 has been forwarded by Certified First Class Return Receipt Requested mail on June 5, 2002, to all parties and intervenors of record as listed on the attached service list, dated January 18, 2002.

ATTEST:

Gwenn R. Gregory Secretary II Connecticut Siting Council

Exhibit B

Property Card

175 STAFFORD ST

Location	175 STAFFORD ST	Mblu	30//12//
Acct#	00142200	Owner	PRAGL HARRY J+NANCY C
Assessment	\$182,420	Appraisal	\$260,600
PID	1596	Building Count	1

Current Value

Appraisal					
Valuation Year	Improvements	Land	Total		
2015	\$198,700	\$61,900	\$260,600		
Assessment					
Valuation Year	Improvements	Land	Total		
2015	\$139,090	\$43,330	\$182,420		

Owner of Record

Owner	PRAGL HARRY J+NANCY C	Sale Price	\$0
Co-Owner		Certificate	1
Address	PO BOX 154 B	Book & Page	340/ 409
	STAFFORDVILLE, CT 06077	Sale Date	09/03/1998
		Instrument	

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
PRAGL HARRY J+NANCY C	\$0	1	340/ 409		09/03/1998

Building Information

Building 1 : Section 1

	Building Attributes	
Less Depreciation:	\$183,700	
Replacement Cost		
Building Percent Good:	83	
Replacement Cost:	\$221,292	
Living Area:	2,295	
Year Built:	1972	

Field	Description
Style	Colonial
Model	Residential
Grade:	C+
Occupancy	1
Exterior Wall 1	Aluminum Sidng
Exterior Wall 2	Brick
Roof Structure	Gambrel
Roof Cover	Asphalt
Interior Wall 1	Drywall
Interior Wall 2	
Interior FIr 1	Hardwood
Interior FIr 2	
Heat Fuel	Oil
Heat Type:	Hot Water
АС Туре:	None
Total Bedrooms:	4
Full Bthrms:	1
Half Baths:	1
Extra Fixtures	0
Total Rooms:	8
Bath Style:	Average
Kitchen Style:	Average
Num Kitchens	1
Fireplaces	1
Extra Openings	
Prefab Fpl(s)	
Attic Type	None
Bsmt Type	Full
Bsmt Garage(s)	0
Fin Bsmnt	0
Fn. Bmt. Qual.	
Unfin Area	0

Building Photo

(http://images.vgsi.com/photos2/StaffordCTPhotos//\00\00\94/84.jpg)

Building Layout

(http://images.vgsi.com/photos2/StaffordCTPhotos//Sketches/1596_1596.jj

	<u>Legend</u>		
Code	Description	Gross Area	Living Area
BAS	First Floor	1,337	1,337
FNS	Finished 90% Story	1,064	958
BSM	Basement	1,337	0
FGR	Garage	576	0
FOP	Open Porch	39	0
		4,353	2,295

•

Extra Features

Extra Features

<u>Legend</u>

۲

No Data for Extra Features

Land Use		Land Line Valuation		
Use Code	101	Size (Acres)	3.98	
Description	Res Dwelling	Frontage		
Zone	AA	Depth		
Neighborhood	240	Assessed Value	\$43,330	
Alt Land Appr	No	Appraised Value	\$61,900	
Category				

Outbuildings

Outbuildings						<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
BRN6	2S Barn w/ Bsmt			748 S.F.	\$15,000	1

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2018	\$198,700	\$61,900	\$260,600		
2017	\$198,700	\$61,900	\$260,600		
2016	\$198,700	\$61,900	\$260,600		

Assessment									
Valuation Year	Improvements	Land	Total						
2018	\$139,090	\$43,330	\$182,420						
2017	\$139,090	\$43,330	\$182,420						
2016	\$139,090	\$43,330	\$182,420						

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

- 20
- 21.

DocuSign Envelope ID: BE22CC48-D760-480C-A6F7-005044DCA122

CROWN CASTLE USA INC. SITE ACTIVITY REQUIREMENTS:

- 15. 16. 17. 18.

- GENERAL NOTES:

ELECTRICAL INSTALLATION NOTES:

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTUNG UNDER THE DIRECTL ON A LICENSED RECEISSIONAL ENGINEER, TO ALLER THIS DOCIMENT. SHEET NUMBER

0

T-2

DocuSign Envelope ID: BE22CC48-D760-480C	-A6F7-00	05044D0	CA122																	
							FINAL EQUI (VERIFY WIT	РМЕ Н С	INT URF	SCHEDU RENT RF	JLE DS)									
	ALPHA		ANTENNA			1	BADIO			DIPLEXER			тма	1	SURGE PROTECTION	1	CABI	rs		CROWN
	POSITION	TECH.	STATUS/MANUFACTURER MODEL	AZIMUTH	RAD	gTY.	STATUS/MODEL	LOCATION	1 OTY.	STATUS	LOCATION	QTY.	STATUS	gTr.	STATUS/MODEL	QTY.	STATUS/TYPE	SIZE	LENGTH	
	A1	UMTS	(E) POWERWAVE TECH 7770	30'	138'-0"	-	-	-	2	(E)	GROUND	2	(E)	-	-	2	(E) COAX	1-5/8	188'-0"	3 CORPORTE PARK DRVE, SCITE 101 CLITTON PARK, NJ 12056
	A2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
			00 00												04)	3	(N) DC	3/4"	188'-0"	-
	A3	LTE	OPA65R-BUSDA	30.	138'-0"	'	(N) 4478 B14	TOWER	-	-	-	-	-	1	DC9-48-60-24-8C-EV	1	(N) FIBER	3/8"	188'-0"	Arre to OPTH ARDAD CONTACT
		ITE (BC	(N) CCI	107	178'-0	1	(N) 8843 B2/866A	TOWER		_	_	_	_		(5) 000-48-60-18-85	2	(E) DC	3/4"	188'-0"	AT&T SITE NUMBER: CIVI256
		CIE/50	DMP85R-BU8DA	30	138-0	1	(N) 4449 B5/B12	TOWER		-	-	-	-	Ľ	(c) 008-48-60-18-8P	1	(E) FIBER	3/8"	188'-0"	BU #: 876402
	BETA																			175 STAFFORD STREET
	B1	UMITS	(E) POWERMAVE TECH 7770	160'	138'-0"	· -	-	-	2	(E)	GROUND	2	(E)	-	-	2	(E) COAX	1-5/8	188'-0"	STAFFORD, CT 06077 EXISTING 150-0" MONOPOLF
	82	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	83	LTE	(N) CCI OPA65R-BU6DA	160"	138'-0"	• ,	(N) 4478 B14	TOWER	-	-	-	-	-	-	-	-	-	-	-]
	84	ITE/NG	(N) CCI	1607	138'-0"	. 1	(N) 8843 B2/886A	TOWER						_					_	1
		212/50	DMP65R-BU6DA		138-0	1	(N) 4449 B5/B12	TOWER			_	-					_	_	_	ISSUED FOR:
	GAMMA																			ματ τουτική Ουτική Ουτική Ουτική Γιαι Για Για <thγια< <="" td=""></thγια<>
	C1	UMITS	(E) POWERWAVE TECH 7770	280'	138'-0"	· -	-	-	2	(E)	GROUND	2	(E)	-	-	2	(E) COAX	1-5/8	188'0"	
	C2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Constant Con
	C3	LTE	(N) CCI OPA65R-BU8DA	280	138'-0"	•	(N) 4478 B14	TOWER	-	-	-	-	-	-	-	-	-	-	-	
	C4	LTE/5G	(N) CCI DMP65R-BU8DA	280"	138'-0"	1	(N) 8843 B2/866A (N) 4449 B5/B12	TOWER TOWER	-	-	-	-	-	-	-	-	-	-	-	23524 23524
	<u>NOTE:</u> (E) - E (N) - N	KISTING EW																		

IT IS A VIOLATION OF LAWFOR ANT PERSON, UNLESS THEY ARE ACTING DADES THE DIRECTION OF A LOTINGD BY MENSIONAL ENGINEER, TO ALTER THIS DOCIMENT.

REVISION:

sheet number:

TINAL EQUIPMENT SCHEDULE

STRUCTURAL STEEL NOTES 1. ALL DETAILING, FARICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE ASC SPECIFICATIONS, LATEST EDITION, 2. ALL STRUCTURAL STEEL ELEMENTS SHALL CONFORM TO THE FOLLOWING REQUIREMENTS. SENERAL NOTES ION TO THE MODIFICATIONS REPRESENTED IN THESE DRAWINGS ARE BASED ON THE STRUCTURAL DOCUMENTS INDIVIDED IN THE STRUCTURAL DOCUMENTS TABLE. THE CONTRACTOR SHALL ORTAIN AND BECOME SAMILIAD WITH ALL DESCRIPTION DOCUMENTS. WIDED IN COMMENTER OF THE REFERENCED DOCUMENTS CROWN MATERIAL SPECIFICATIONS CAMMERS ACTM ARE UN RELYFIND THE PROS ASTM ARS URLEUS STUDIED THEREORY ROTIN ASTM ARS URLEUS STUDIED THEREORY NOTD ASTM ARS IN NOTD ASTM ARS IN MOREORY NATIN ASTM ARS IN MOREORY POD PROJECT NUMBER: 30-63609 DATED: 04/28/2020 MOUNT ANALYSIS POD ROWER OF DESIGN AL MODIFICATIONS MUST ET INSTALLES TO BINNO'THE TOWER INTO CONFORMANCE WITH ALL APPLICATE CODES COVERING CODES COVERING CODES ULINATE VINCES/RECONS ULINATE VINCES/RECONS ULINATE VINCES/RECONS VINCE STELLES STRUCTING CASS BOOLOGIE CODES TRUCTING CASS ULINATE VINCES STRUCTING S ALL CONNECTIONS INCT FULLY INTERACE ON THEIR ARAGE SHALL BE ETAILED. ALL CONNECTIONS INCT FULLY INTERACE ON THEIR ARAGE SHALL BE ETAILED BY THE ARARCECTOR IN ALL CONNECTIONS INCT FULLY INTERACE ON THEIR ARAGE SHALL BE ETAILED BY THE ARARCECTOR IN COUNTED SHALL INTERVIEW DOSTING STRUCTURE ARE DIRECTORS IN THE ARARCECTOR IN COUNTED SHALL INTERVIEW DOSTING STRUCTURE ARE DIRECTORS INTERVIEW DOSTING CONNECTIONS INTERVIEW DOSTING STRUCTURE ARE DIRECTORS INTERVIEWED BY THE COUNTER SHALL INTERVIEWED BY THE ARAGE SHALL INTERVIEWED BY THE ARAGE ALL DORDED STRUET, SUBJECT TO IN BOTTOM CONNECTION INTERVIEWED BY THE ARAGE ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTERVIEWED ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTERVIEWED ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTERVIEWED ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTERVIEWED ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTERVIEWED ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTERVIEWED ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTERVIEWED ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS AND ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE. ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET, SUBJECT ON THE ARAGE DIRECTORS INTO ANY ADDRESS ALL DORDED STRUET 1044 E TURKEVFOOT LAKE RD. SUITE 206 AKRON, OHIO 44812 830-961-7482 Benchmanner and State Personal Pers AT&T RAWING INDICE THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF CROWN AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIED WITHOUT THE EXPRESS WRITTEN CONSENT OF CROWN. MODIFICATION DRAWING CHEROLOGIA PEN.0032793 . . 2793 E PRO. De Description Ro DATE SITE INFORMATION: STAFFORD/PRAGYL/SSUSA (10128067) Lustratection. THE CONTRACTOR SHALL VERY ALL DRIVENEED IN AND CONTINUE VISION TO BOOM Rendron CREENER WATERBACK. ALL MARINELTURES: INSTITUCTIONS SHALL BE FOLLOWED DACTLY: ANY CONTINUE VISION BEODRIES WITTER HE CONTRACTOR SUBJECTIONS OF THE CONTRACT AND ANY CONTRACTOR AND ANY CONTRACT HE CONTRACTOR SUBJECTIONS OF THE CONTRACT AND ANY CONTRACT AND ANY CONTRACT AND ANY AND ANY CONTRACTOR SUBJECT ANY CONTRACT ANY CONTRACT AND ANY CONTRACT AND ANY AND ANY CONTRACTOR SUBJECT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACTOR ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACTOR ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT AND ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT AND ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT ANY CONTRACT MED ANY CONTRACT ANY CON 175 STAFFORD ST. STAFFORD, CT 06077 876402 ALLOWABLE ANGLE COPE BOLT SCHEDULE WORKABLE GAGES BOLT STANDARD SHORT MINE EDEE SPACING DIAMETER HOLE SLOT DISTANCE SPACING J/Z 3/16 3/16/61/16 T/6 1/2 S/R 11/36 11/16/78 1-3/18 11/16/78 J/4 13/36 13/36/61 1-1/4 2-1/4 LEG COPED ANGLE DO NOT COPE BEYOND THIS LINE OC NUMBE COPED ANGLE DRAWN BY łŦ TAI JOC 1 Ĺ - DIMENSIONS GIVEN IN INCHES. -9.-SHEET TITLE -1.34L 7/8 13/16 13/16x1-1/8 1-1/16 1-1/16x1-5/16 1-1/2 2-5/8 1-3/4 3 BOLT HOLE-MATCH EXISTING WHEN APPLICABLE NOTES DISTA THE NICE DIMENSIONS GIVEN IN INCHES. SHORT SLOT HOLES SHALL ONLY BE USED WHEN OEPICTED ON ALL DIMENSIONS REPRESENTED IN THE ABOVE TABLES ARE AISC MINIMUM REQUIREMENTS, CONTRACTOR SHALL VERIFY EXISTING CONDITIONS IN FIELD AND NOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED. 0 6 N-01 THE DIMENSIONS PROVIDED ARE MINIMUM REQUIREMENTS A ACTUAL DIMENSIONS OF PROPOSED MEMBERS WITHIN THESE DRAWINGS MAY VARY FROM THE ALSC MINIMUM REQUIREMENT.

DocuSign Envelope ID: BE22CC48-D760-480C-A6F7-005044DCA122

DocuSign Envelope ID: BE22CC48-D760-480C-A6F7-005044DCA122

		2		and the second se			CTIE
BEFORE CONS	STRUCTION	DURING CD	NSTRUCTION	AFTER CO	NSTRUCTION	CAS	SILE
CONSTRUCTION/INSTALLATION INSPECTION AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM	CONSTRUCTION/INSTALLATION INSPECTION AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM	CONSTRUCTION/INSTALLATION INSPECTION AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM	PLANE REPLAND IN	D
x	MODIFICATION INSPECTION CHECKLIST DWG	x	CONSTRUCTION INSPECTION	×	MODIFICATION INSPECTOR REDLINE OR RECORD DRAWING(S)	NOWER OF	L DESIGN
-	ENGINEER OF RECORD APPROVED SHOP DRAWINGS	14	FOUNDATION INSPECTION	- 24	POST INSTALLED ANCHOR ROD PULL-OUT TESTING	1088 6. TURKEYFOOT UN SUITE 206 AKRON, DHIC 820-961-7482	AKE RD.
÷	FABRICATION INSPECTION	*	CONCRETE COMP. STRENGTH AND SUUMP TEST	×	PHOTOGRAPHS	CANIDA	
x	MATERIAL TEST REPORT	÷.	POST INSTALLED ANCHOR ROD VERIFICATION	ADDITIONAL TESTING AND INSPECTION			T&T
	FABRICATOR NDE INSPECTION		BASE PLATE GROUT VERIFICATION		2		~
-	NOE REPORT OF MONOPOLE BASEPLATE (AS	1	THIRD PARTY CERTIFIED WELD INSPECTION			THESE DOCUMENTS ARE CONFI ARE THE SOLE PROPERTY OF CRO NOT BE REPRODUCED, DISSEN	FIDENTIAL AND ROWN AND MA EMINATED OR
x	PACKING SLIP		EARTHWORK LIFT AND IDENSITY (REPORT REQUIRED)			WRITTEN CONSENT OF C	CROWN.
ADDITIONAL TESTING AND INSPECTION		x.		MODIFICATION DR	RAWING		
			GUY WIRE TENSION REPORT			UNITE CONVC	ma
		x	GC AS-BUILT DOCUMENTS			Stor Chieron	New Market
		ADDITIONAL TESTING AND INSPECTION				• PEN.0032793	•
IBAL: THE MODIFICATION INSPECTION IS A VEIJAL INSPECTION MODIFICATION AND A REVIEW OF CONSTRUCTION INSP REVORTS TO BRUILE THE INSTALLATION WAS CONSTRU- DE SUBJECT THE INSPECTION IS TO A SUBJECT THE MODI SECOND OF THE ENVIRONMENT OF RECORD. THE MODIFICATION INSPECTION IS TO CONFIRM INSTAL AND WORKMARKING ONLY AND ENT A REVIEW OF THE MODIFICATION IN MODIFICATION INSPECTION IS TO A REVIEW OF THE INSPECTION IS TO CONFIRM INSTAL AND WORKMARKING ONLY AND ENT A REVIEW OF THE MODIFICATION MODIFICATION INSPECTION	IN OF TOWER PECTION AND OTHER CITED IN ACCORDANCE IFICATION ORAWINGS, AS	REVIEW THE REQUIREMENT OF THE WORK WITH THE MI INSPECTOR TO OH-STE MODIFICATION INSPECTO BETTER UNDERSTAND ALL INSPECT THE GC SHALL PERFORM AND REV ACCORDANCE WITH RE REQUIRE	E MODIFICATION NOPECTION CHECKLIST D DEVELOP A SCHEDULE TO CONDUCT NO, INCLUONE FOUNDATION INSPECTIONS ION AND TESTING REQUIREMENTS SRD THE TEST AND INSPECTION RESULTS IN	MODIFICATION TWO WAYS CORRECT FALLI THE ORIGINAL MODIFICATIO MAY WORK W	INSPECTOR TO COORDINATE A REMEDIATION PLAN IN ONE OF NG ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENT IN UNDECTION, OR, WITH TOWER GUMERS A SPECIAL, THE GC	1-1-1-	her-
СРЕССТОУИТ REDUCE WITH THE DECK WITH THE DEGINE THE. THE. TO DRUGHE CHAT THE REQUESTION THE MODIFICATION INFORMATION RECOMMUNICATION AND COORDINATION INFORMATION RECOMMUNICATION AND COORDINATION INFORMATION RECOMMUNICATION AND COORDINATION INFORMATION RECOMMUNICATION AND COORDINATION INFORMATION RECOMMUNICATION INFORMATION INFORMATION RECOMMUNICATION INFORMATION REVIEW THE REQUIREMENT OF THE MODIFICATION INFORMATION MODIFICATION INFORMATION AND TEST COORDINATION INFORMATION RECOMMUNICATION INFORMATION REVIEW THE REQUIREMENT OF THE MODIFICATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATION INFORMATIONS, AND SUBMITTION THE MODIFICATION INFORMATION INFORMATIONS, AND SUBMITTION THE MODIFICATION INFORMATION INFORMATIO	ENDORMATION DESIGN ENDORMERSING OF THE BLI MODIFICATION RESIGN BEO MECORA AT ALL UNDON MORENTION ARE AND THE MODIFICATION NIS AS SOON AS A PO OR MICH THE GOODINGTON AS MICH THE GOOD AS A SOON AS MICH THE GOOD AS AS MICH THE GOOD AS MICH THE GOOD AS MICH THE ALL SIMPLET MICH THE ALL SIMPLET MICH THE ALL SIMPLET MICH THE DOLUMENTS DURING HE MICH THE MICH THE ALL SIMPLET	OHIOLUT: ECOMMENDIATION: TI CISLOGENTA INIT THE CIP M MEDIATIONIC CONTRICTION CONTRICUCION CONT		MODIFICATION VERIFICATION NEWS 1. TOWER OWNER TODORECTION 2. MARINE AND 3. MARINE AND 4. MARINE AND 4. MARINE AND 4. MARINE AND 5. BETWEET THE TO BE TAKEN A 4. PREDICTION 5. BETWEET THE 5. BETWE		STIT UNDERNAMING STAFFORD/PRAGYL (10128067) IN STAFFORD/PRAGYL (10128067) IN STAFFORD PR STAFFORD PR S	N ¹ (L/SSUSA) 2045996 14 14 14 14 14 14 14 14 14 14 14 14 14
EPECTORESES AND INTERF REDUCES WITH THE ENGINE THEM. THEM. TO DOLUMENTAT THE REQUEREMENT OF THE MODIFICATION INTERFECTOR ESTIMATION AND COORDINATION INTERFECTOR ESTIMATION AND COORDINATION INTERFECTOR ESTIMATION AND COORDINATION INTERFECTORS INTE	E MOGRICUTORI DESIGN E MOGRICUTORI DESIGN NOVARESHA O TALL SE VIECOSCI AL AL LICON INFERENTIA ALL LICON INFERENTIA ALL ALLOTTER MOGRICUTORI NO AL TERMONICATION NO AL TERMONICATION NO AL TERMONICATION NOTATION OF AL SEMERAL NEWTONICA SE ADDRESS NUMERICA AL SEMERAL NEWTONICA SE ADDRESS DUCTION ESTIC SECTION ESTIC NUMERICA AL SEMERAL NETELLATION OR	CHROLIT: ECOMPENDIATIONS: IT IT SUBJECTS IN THE COMPL MICHAELANDING: IT IT SUBJECTS IN THE MICHAELANDING MICHAELANDING INT HE COMPL MICHAELANDING INTERPENDING IT IS CAN MODIFICATION HIPE THE ENTRE PROJECT. IT WAY BE EXPERISION OF ANY	AND CAN AND AND AND AND AND AND AND AND AND A	MODERCATION VERTIFICATION REST 1. TOVER DWW MODERCATTON 4. VERTIFICATION 4. VERTIFICATION 4	III II III BURGHEND WAR AS UNT CONDUCT A VERIFICATION INSPECTION RETORE: RETORE: RETORE: RETORE: RETORE: RESONE: THE RENT TO COROLCT A VERIFICATION INSPECTION ACQUARY AND COMPLETENS: OF PERIFICATION INSPECTION ACQUARY AND COMPLETENS: OF PERIFICATION INSPECTION ACQUARY AND COMPLETENS: OF PERIFICATION INSPECTION ACQUARY INTO INSPECTION	ANY DATE C DESC STREWORDHAATION STAFFORD/PRAGYL (10128067) JSTREWORD 3716 NUMBER: OKANIN REF: OKANIN R	N L/SSUSA 30-67996 10 30-67996 10 57 10 10 10 10 10 10 10 10 10 10

Docu Sign Certificate Of Completion Envelope Id: BE22CC48D760480CA6F7005044DCA122 Status: Completed Subject: Please DocuSign: CTV1258_876402_STAFFORD_PRAGYL_SSUSA_AT&T 5G NR Upgrade FCD_REV 0_6.24.20.pdf Source Envelope: Signatures: 10 Document Pages: 15 Envelope Originator: Certificate Pages: 3 Initials: 0 Whitney Sealover AutoNav: Enabled 2000 Corporate Drive EnvelopeId Stamping: Enabled Canonsburg, PA 15317 Whitney.Sealover@crowncastle.com IP Address: 162.254.108.200 Time Zone: (UTC-05:00) Eastern Time (US & Canada) Record Tracking Status: Original 6/24/2020 2:07:49 PM Holder: Whitney Sealover Location: DocuSign Whitney.Sealover@crowncastle.com Signer Events Signature Timestamp Maribel Dentinger Sent: 6/24/2020 2:09:42 PM Maribel Desting Viewed: 6/24/2020 6:18:45 PM maribel.dentinger@crowncastle.com Crown Castle International Corp. Signed: 6/24/2020 6:18:59 PM Security Level: Email, Account Authentication (None) Signature Adoption: Drawn on Device Using IP Address: 162.254.108.200 Electronic Record and Signature Disclosure: Accepted: 9/20/2018 8:56:27 AM ID: 50d48a2f-ee52-4b02-9a1f-3c3a14f58c3b In Person Signer Events Signature Timestamp Editor Delivery Events Status Timestamp Agent Delivery Events Status Timestamp Intermediary Delivery Events Status Timestamp Certified Delivery Events Status Timestamp Carbon Copy Events Status Timestamp Witness Events Signature Timestamp Notary Events Signature Timestamp Envelope Summary Events Status Timestamps Hashed/Encrypted 6/24/2020 2:09:42 PM Envelope Sent Certified Delivered 6/24/2020 6:18:45 PM Security Checked Signing Complete Security Checked 6/24/2020 6:18:59 PM Completed Security Checked 6/24/2020 6:18:59 PM Payment Events Status Timestamps Electronic Record and Signature Disclosure

Electronic Record and Signature Disclosure created on: 9/19/2018 4:13:40 PM Parties agreed to: Maribel Dentinger

ELECTRONIC RECORD AND SIGNATURE DISCLOSURE

In order to provide more efficient and faster service, Crown Castle ("we", "us" or "company") is pleased to announce the use of DocuSign, Inc. ("DocuSign") electronic signing system. The terms for providing such documents for execution and various other documents and records to you electronically through DocuSign are set forth below. Please read the information below carefully and if you can satisfactorily access this information electronically and agree to these terms, please confirm your agreement by clicking the "I agree" button at the bottom of this document. Getting paper copies

At any time, you may request from us a paper copy of any document for execution or other document or record provided or made available electronically to you by us. You will be able to download and print documents we send to you through the DocuSign system during and immediately after each signing session and, if you elect to create a DocuSign signer account, you may access them for a limited period of time thereafter. To request paper copies of documents previously provided by us to you electronically, send an e-mail to <u>esignature@CrownCastle.com</u>, requesting the subject paper copies and stating your e-mail address, name, US Postal address and telephone number.

Withdrawing your consent to receive and/or execute documents electronically

If you elect to receive documents for execution and various other documents and records from us electronically, you may at any time change your mind and tell us that thereafter you want to receive such documents only in page format. To withdraw your consent to electronic delivery and execution of documents, use the DocuSign Withdraw Consent' form on the signing page of a DocuSign envelope, instead of signing it. Thereafter, you will no longer be able to use the DocuSign system to electronically receive and execute documents or other records from us. You may also send an e-mail to <u>esignature@CrowCastle_com</u> stating that you are withdrawing your consent to electronic delivery and execution of documents through the DocuSign system and stating your e-mail address, name, US Postal Address, and telephone number

Consequences of withdrawing consent to receive and/or execute documents electronically If you elect to receive documents for execution and various other documents and other records only in paper format, it will slow the speed at which we can complete the subject transactions because of the increased delivery time. Documents for execution, and other documents and records may be sent to you electronically Unless you tell us otherwise in accordance with the procedures described herein, we may provide documents for execution, and other documents and records electronically to you through the DocuSign system during the course of our relationship with you. To reduce the chance of you inadvertently not receiving any document for execution or other document or record, we prefer to provide all documents for execution, and other documents and records by the same method and to the same address that you have given us. If you do not agree with this process, please let us know as described below

How to contact Crown Castle

You may contact us to let us know of any changes related to contacting you electronically, to request paper copies of documents for execution and other documents and records from us, and to withdraw your prior consent to receive documents for execution and other documents and records electronically as follows:

To contact us by phone call: 724-416-2000

To contact us by email, send messages to: esignature@CrownCastle.com

To contact us by paper mail, send correspondence to

Crown Castle 2000 Corporate Drive

Canonsburg, PA 15317

To advise Crown Castle and DocuSign of your new e-mail address

To let us know of a change to the e-mail address where we should send documents for execution and other documents and records to you, you must send an email message to <u>esignature@CrownCastle.com</u> and stat om and state your previous e-mail address and your new e-mail address.

In addition, you must notify DocuSign, Inc. to arrange for your new email address to be reflected in your DocuSign account by following the process for changing e-mail in the DocuSign system.

Required flaru	wale and softwale
Browsers:	Internet Explorer® 11 (Windows only); Windows Edge Current Version; Mozilla Firefox Current Version; Safari™ (Mac OS only) 6.2 or above; Google Chrome Current Version; Note : Pre- release (e.g., beta) versions of operating systems and browsers are not supported.
Mobile Signing:	Apple iOS 7.0 or above; Android 4.0 or above
PDF Reader:	Acrobat® Reader or similar software may be required to view and print PDF files
Screen Resolution:	1024 x 768

Enabled	
Security	Allow per session cookies
Settings:	

Settings: These minimum requirements are subject to change. If these requirements change, you will be asked to re-accept the disclosure. Pre-release (e.g. beta) versions of operating systems and browsers are not supported. Acknowledging your access and consent to receive documents electronically Please confirm that you were able to access this disclosure electronically (which is similar to the manner in which we will deliver documents for execution and other documents and records) and that you were able to print this disclosure on paper or electronically save it for your future reference and access or that you were able to e-mail this disclosure to an address where you will be able to print it on paper or save it for your future reference and access. Further, if you consent to receiving documents for execution and other documents and records in electronic format on the terms described above, please let us know by clicking the "I agree" button below. By checking the 'I agree' box, I confirm that:

- You can access and read this Electronic Record and Signature Disclosure; and
 As a recipient, you can read, electronically sign and act upon this message, and you agree not to forward it or any other DocuSign e-mail communications. In the event another party needs to be added to the DocuSign communication, you must make a request to the e-mail originator.

Exhibit D

Structural Analysis Report

Date: July 1, 2020

Denice Nicholson Crown Castle 3 Corporate Dr Clifton Park, NY 12065	Paul J. Ford ar 250 E. Broad S Columbus, OH 614-221-6679	Paul J. Ford and Company 250 E. Broad St., Ste 600 Columbus, OH 43215 614-221-6679				
Subject:	Structural Analysis Report					
Carrier Designation:	<i>AT&T Mobility</i> Co-Locate Carrier Site Number: Carrier Site Name:	CTV1258 Stafford - Stafford ST				
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:	876402 Stafford/Pragyl/SSUSA 605420 1848626 517113 Rev. 0				
Engineering Firm Designation:	Paul J. Ford and Company Project Number:	37520-0857.001.7805 Revised				
Site Data:	175 Stafford Street, STAFFORD, Tolland Cou Latitude <i>41° 59' 13.38''</i> , Longitude -72° <i>15' 40</i> 150 Foot - Monopole Tower	unty, CT).78"				

Dear Denice Nicholson,

Paul J. Ford and Company is pleased to submit this **"Structural Analysis Report"** to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity 88.3%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

tion (. Milles

Nathan C. Miller, E.I. Structural Designer nmiller@pauljford.com

JX.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Component Stresses vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 150 ft Monopole tower mapped by TEP in December of 2007.

The tower has been modified per reinforcement drawings prepared by Paul J. Ford and Company in June of 2013. Reinforcement consist of base plate stiffeners.

2) ANALYSIS CRITERIA

TIA-222 Revision: Risk Category:	TIA-222-H II
Wind Speed:	125 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	1 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		1	cci antennas	DMP65R-BU6D w/ Mount Pipe		
		2	cci antennas	DMP65R-BU8D w/ Mount Pipe		
		1	cci antennas	OPA65R-BU6D w/ Mount Pipe		
1		2	cci antennas	OPA65R-BU8D w/ Mount Pipe		
	138.0	3	ericsson	RRUS 4449 B5/B12	1	
		3	ericsson	RRUS 4478 B14	5	3/4
136.0		3	ericsson	RRUS 8843 B2/B66A	2	3/8
		3	powerwave technologies	7770.00 w/ Mount Pipe	6	1-5/8
		6	powerwave technologies	LGP21401		
		1	raycap	DC6-48-60-18-8F		
		1	raycap	DC9-48-60-24-8C-EV		
		3	commscope	VSR-MS-B		
	136.0	3	tower mounts	P2.5 x 12.5' Face Member		
	130.0	9	commscope	XP-2025		
		1	tower mounts	T-Arm Mount [TA 602-3]		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		6	alcatel lucent	800MHZ 2X50W RRH			
		3	alcatel lucent	PCS 1900MHZ 4X45W- 65MHZ			
	152.0	3	alcatel lucent	TD-RRH8X20-25			
150.0	102.0	3	commscope	NNVV-65B-R4 w/ Mount Pipe	1 3	7/8 1-1/4	1
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe			
	150.0	1	tower mounts	Platform Mount [LP 1201- 1]	01-		
		3	alcatel lucent	B13 RRH 4X30			
		3	alcatel lucent	B66A RRH4X45			
127.0	127.0	6	commscope	SBNHH-1D65B w/ Mount Pipe	2	1-5/8	1
		2	raycap	RXXDC-3315-PF-48			
		1	tower mounts	Miscellaneous [NA 507-1]	-		
		1	tower mounts	Platform Mount [LP 303-1]			
		1	lucent	KS24019-L112A			
75.0	75.0	1	tower mounts	Side Arm Mount [SO 701- 1]	1	1/2	1

 Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	TEP, 131001.876402.01G, 04/12/2013	2194187	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	TEP, 072309, 02/22/2008 (Mapping)	2208777	CCISITES
4-TOWER MANUFACTURER DRAWINGS	TEP, 072309, 12/02/2007 (Mapping)	2175539	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	PJF, 37513-0912A, 06/13/2013	3888429	CCISITES
4-POST-MODIFICATION INSPECTION	SGS, 145336, 09/10/2014	5639214	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 Standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) The structure was modified in conformance with the referenced modification drawings as shown in the referenced post modification inspection.
- 4) The manufacturer drawings are not available at the time of this analysis. Therefore, we have assumed the steel yield strength(s) (Fy) as per the following:
 - a. Pole Shaft: ASTM A572 Gr 65
 - b. Anchor rods: ASTM A615 (Fu = 100 ksi, Fy = 75 ksi)
 - c. Base Plate: ASTM A572 Gr 50

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	150 - 123	Pole	TP22.69x17x0.25	1	-10.38	1065.50	29.9	Pass
L2	123 - 85	Pole	TP28.36x21.6105x0.375	2	-15.81	2003.63	48.4	Pass
L3	85 - 44	Pole	TP36.86x27.0303x0.4063	3	-24.02	2808.54	51.6	Pass
L4	44 - 0	Pole	TP42.53x35.0535x0.4375	4	-36.93	3590.34	57.1	Pass
							Summary	
						Pole (L4)	57.1	Pass
						Rating =	57.1	Pass

Table 4 - Section Capacity (Summary)

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	62.2	Pass
1	Base Plate	0	74.2	Pass
1	Base Foundation Structural Steel	0	88.3	Pass
1	Base Foundation Soil Interaction	0	43.0	Pass

Structure Rating (max from all components) =	88.3%
--	-------

Notes:

• All structural ratings are per TIA-222-H Section 15.5

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The monopole and its foundation have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

	MATERIAL STRENGTH					
GRADE	Fy	Fu	GRADE	Fy	Fι	
A572 - 65	65 ksi	80 ksi				

TOWER DESIGN NOTES

- 1. Tower is located in Tolland County, Connecticut.
- 2. Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard. 4. Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to

increase in thickness with height.

5. Deflections are based upon a 60 mph wind.

6. Tower Risk Category II. Topographic Category 1 with Crest Height of 0.00 ft
 TIA-222-H Annex S
 TOWER RATING: 57.1%

P	F
PJFLog	go

AXIAL 66 K

TORQUE 0 kip-ft

AXIAL 37 K

TORQUE 1 kip-ft

MOMENT

MOMENT

2198 kip-ft

684 kip-ft

Paul J. Ford and Compa 250 E. Broad St., Ste 600 Columbus, OH 43215 Phone: 614-221-6679 FAX:

ıny	^{, pon:} 150-Ft. Monopole Stafford/Pragy/SSUSA				
)	Project: PJF 37520-0857 BU	876402			
	^{Client:} Crown Castle	^{Drawn by:} Nathan Miller	App'd:		
	^{Code:} TIA-222-H	^{Date:} 05/15/20	Scale: NTS		
	Path:	-	Dwg No. E-		

APPENDIX A

TNXTOWER OUTPUT

Tower Input Data

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in Tolland County, Connecticut.
- 2) Tower base elevation above sea level: 962.00 ft.
- 3) Basic wind speed of 125 mph.
- 4) Risk Category II.
- 5) Exposure Category B.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.00 ft.
- 9) Nominal ice thickness of 2.0000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) TIA-222-H Annex S.
- 16) A non-linear (P-delta) analysis was used.
- 17) Pressures are calculated at each section.
- 18) Stress ratio used in pole design is 1.05.
- 19) Tower analysis based on target reliabilities in accordance with Annex S.
- 20) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- 21) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios ✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity	Distribute Leg Loads As Uniform Assume Legs Pinned ✓ Assume Rigid Index Plate ✓ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tensio ✓ Bypass Mast Stability Checks ✓ Use Azimuth Dish Coefficients ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas	n Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation √ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption
Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric	Add IBC .6D+W Combination Sort Capacity Reports By Comp Triangulate Diamond Inner Brac Treat Feed Line Bundles As Cyl Ignore KL/ry For 60 Deg. Angle	Poles Poles V Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	150.00-123.00	27.00	2.75	18	17.0000	22.6900	0.2500	1.0000	A572 - 65 (65 ksi)
L2	123.00-85.00	40.75	3.50	18	21.6105	28.3600	0.3750	1.5000	A572-65 (65 ksi)
L3	85.00-44.00	44.50	4.50	18	27.0303	36.8600	0.4063	1.6250	À572-65 (65 ksi)
L4	44.00-0.00	48.50		18	35.0535	42.5300	0.4375	1.7500	À572-65

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	lt/Q	W	w/t
	in	in²	in⁴	in	in	in ³	in4	in²	in	
L1	17.2237	13.2911	471.1170	5.9463	8.6360	54.5527	942.8540	6.6468	2.5520	10.208
	23.0015	17.8061	1132.7992	7.9662	11.5265	98.2776	2267.0890	8.9048	3.5534	14.214
L2	22.3485	25.2755	1439.9945	7.5386	10.9781	131.1696	2881.8838	12.6402	3.1434	8.383
	28.7396	33.3091	3295.7296	9.9347	14.4069	228.7608	6595.7958	16.6577	4.3314	11.55
L3	28.1697	34.3300	3074.3930	9.4515	13.7314	223.8953	6152.8313	17.1683	4.0423	9.95
	37.3660	47.0048	7891.5876	12.9411	18.7249	421.4493	15793.559 1	23.5069	5.7724	14.209
L4	36.2311	48.0686	7277.0016	12.2887	17.8072	408.6557	14563 <u>.</u> 578 5	24.0389	5.3994	12.342
	43.1186	58.4507	13083.881 2	14.9428	21.6052	605.5883	26184.978 5	29.2309	6.7153	15.349

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
ft	(per face)	in		A_r		Spacing	Spacing	Spacing
	ft²					Diagonals	Horizontals	Redundants
						in	in	in
L1 150.00-			1	1	1			
123.00								
L2 123.00-			1	1	1			
85.00								
L3 85.00-			1	1	1			
44.00								
L4 44 00-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Componen	Placement	Total		CAAA	Weight
Description	or	Shield	From	t	ft	Number		ft²/ft	nlf
	Lea	emola	Torque	Type	n	, tunnoor		10,110	μ
	3		Calculation	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
HB114-08U3M12-	С	No	No	Inside Pole	150.00 - 0.00	1	No Ice	0.00	0.68
XXXF(7/8)							1/2" Ice	0.00	0.68
. ,							1" Ice	0.00	0.68
HB114-1-08U4-	С	No	No	Inside Pole	150.00 - 0.00	3	No Ice	0.00	1.08
M5F(1-1/4)							1/2" Ice	0.00	1.08
							1" Ice	0.00	1.08

FB-L98B-002-	С	No	No	Inside Pole	136.00 - 0.00	1	No Ice	0.00	0.06
75000(3/8)							1/2" Ice	0.00	0.06
							1" I ce	0.00	0.06
FB-L98B-002-	С	No	No	Inside Pole	136.00 - 0.00	1	No Ice	0.00	0.06
XXX(3/8)							1/2" Ice	0.00	0.06
							1" I ce	0.00	0.06
WR-VG86ST-	С	No	No	Inside Pole	136.00 - 0.00	2	No Ice	0.00	0.58
BRD(3/4)							1/2" Ice	0.00	0.58
	_						1" Ice	0.00	0.58
WR-VG86ST-	С	No	No	Inside Pole	136.00 - 0.00	3	No Ice	0.00	0.58
BRD(3/4)							1/2" Ice	0.00	0.58
	-					-	1" Ice	0.00	0.58
FXL 1873 PE(1-	С	No	No	Inside Pole	136.00 - 0.00	6	No Ice	0.00	0.67
5/8)							1/2" Ice	0.00	0.67
.	~						1" Ice	0.00	0.67
2" (Nominal)	С	No	No	Inside Pole	136.00 - 0.00	1	No Ice	0.00	0.72
Conduit							1/2" Ice	0.00	0.72
***							1" Ice	0.00	0.72
	~	NI-	N.	In side Dala	407.00 0.00	~	Nie Iee	0.00	4.00
HB158-1-0808-	C	INO	INO	Inside Pole	127.00 - 0.00	2		0.00	1.30
20110(1-2/8)							1/2° ICe	0.00	1.30

tnxTower Report - version 8.0.5.0

Description	Face or Leg	Allow Shield	Exclude From Torque Calculatior	Componen t Type	Placement ft	Total Number		C _A A _A ft²/ft	Weight plf
***							1" Ice	0.00	1.30
LDF4-50A(1/2)	С	No	No	Inside Pole	75.00 - 0.00	1	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	0.15 0.15 0.15

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation		ft²		In Face	Out Face	K
n	ft			ft²	ft²	ft²	
L1	150.00-123.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.22
L2	123.00-85.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.54
L3	85.00-44.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.59
L4	44.00-0.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.64

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness	ft²		In Face	Out Face	ĸ
n	ft	Leg	in		ft²	ft²	ft²	
L1	150.00-123.00	Α	0.979	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.22
L2	123.00-85.00	А	0.953	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.54
L3	85.00-44.00	Α	0.908	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.59
L4	44.00-0.00	А	0.814	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.64

Feed Line Center of Pressure

Section	Elevation ft	CP _X in	CP _z C in lo		CP _z Ice
1.1	150 00 102 00	0.0000	0.0000	<u>In</u>	
12	123 00-85 00	0.0000	0.0000	0.0000	0.0000
L3	85.00-44.00	0.0000	0.0000	0.0000	0.0000
L4	44.00-0.00	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	lce
			Elev.		

Discrete Tower Loads											
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft	Azimuth Adjustmen t	Placement ft		C _A A _A Front ft ²	C _A A _A Side ft ²	Weight K		
NNVV-65B-R4 w/ Mount Pipe	A	From Leg	4.00 0.00 2.00	0.0000	150.00	No Ice 1/2" Ice	7.55 8.04 8.53	4.23 4.67 5.12	0.11 0.20 0.30		
NNVV-65B-R4 w/ Mount Pipe	В	From Leg	4.00 0.00 2.00	0.0000	150.00	1" Ice No Ice 1/2" Ice	7.55 8.04 8.53	4.23 4.67 5.12	0.11 0.20 0.30		
NNVV-65B-R4 w/ Mount Pipe	С	From Leg	4.00 0.00 2.00	0.0000	150.00	1" Ice No Ice 1/2" Ice	7.55 8.04 8.53	4.23 4.67 5.12	0.11 0.20 0.30		
APXVTM14-ALU-I20 w/ Mount Pipe	А	From Leg	4.00 0.00 2.00	0.0000	150.00	No Ice 1/2" Ice	4.09 4.48 4.88	2.86 3.23 3.61	0.08 0.13 0.19		
APXVTM14-ALU-I20 w/ Mount Pipe	В	From Leg	4.00 0.00 2.00	0.0000	150.00	No Ice 1/2" Ice	4.09 4.48 4.88	2.86 3.23 3.61	0.08 0.13 0.19		
APXVTM14-ALU-I20 w/ Mount Pipe	С	From Leg	4.00 0.00 2.00	0.0000	150.00	No Ice 1/2" Ice	4.09 4.48 4.88	2.86 3.23 3.61	0.08 0.13 0.19		
(2) 800MHZ 2X50W RRH	Α	From Leg	4.00 0.00 2.00	0.0000	150.00	No Ice 1/2" Ice	2.13 2.32 2.51	1.77 1.95 2.13	0.05 0.07 0.10		
(2) 800MHZ 2X50W RRH	В	From Leg	4.00 0.00 2.00	0.0000	150.00	1" Ice No Ice 1/2" Ice	2.13 2.32 2.51	1.77 1.95 2.13	0.05 0.07 0.10		
(2) 800MHZ 2X50W RRH	С	From Leg	4.00 0.00 2.00	0.0000	150.00	1" Ice No Ice 1/2" Ice	2.13 2.32 2.51	1.77 1.95 2.13	0.05 0.07 0.10		
PCS 1900MHZ 4X45W- 65MHZ	A	From Leg	4.00 0.00 2.00	0.0000	150.00	No Ice 1/2" Ice	2.32 2.53 2.74	2.24 2.44 2.65	0.06 0.08 0.11		
PCS 1900MHZ 4X45W- 65MHZ	В	From Leg	4.00 0.00 2.00	0.0000	150.00	No Ice 1/2" Ice	2.32 2.53 2.74	2.24 2.44 2.65	0.06 0.08 0.11		
PCS 1900MHZ 4X45W- 65MHZ	С	From Leg	4.00 0.00 2.00	0.0000	150.00	No Ice 1/2" Ice	2.32 2.53 2.74	2.24 2.44 2.65	0.06 0.08 0.11		
TD-RRH8X20-25	A	From Leg	4.00 0.00 2.00	0.0000	150.00	No Ice 1/2" Ice	4.05 4.30 4.56	1.53 1.71 1.90	0.07 0.10 0.13		
TD-RRH8X20-25	В	From Leg	4.00 0.00 2.00	0.0000	150.00	1" Ice No Ice 1/2" Ice	4.05 4.30 4.56	1.53 1.71 1.90	0.07 0.10 0.13		
TD-RRH8X20-25	С	From Leg	4.00 0.00 2.00	0.0000	150.00	1" Ice No Ice 1/2" Ice	4.05 4.30 4.56	1.53 1.71 1.90	0.07 0.10 0.13		
Platform Mount [LP 1201- 1]	С	None		0.0000	150.00	1" Ice No Ice 1/2"	18.38 22.11	18.38 22.11	2.10 2.65		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement ft		C _A A _A Front ft ²	C _A A _A Side ft ²	Weight K
						Ice	25.87	25.87	3.26
(2) 2.375" OD x 5' Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	150.00	No Ice 1/2" Ice 1" Ice	1.19 1.50 1.81	1.19 1.50 1.81	0.02 0.03 0.04
(2) 2.375" OD x 5' Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	150.00	No Ice 1/2" Ice 1" Ice	1.19 1.50 1.81	1.19 1.50 1.81	0.02 0.03 0.04
(2) 2.375" OD x 5' Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	150.00	No Ice 1/2" Ice 1" Ice	1.19 1.50 1.81	1.19 1.50 1.81	0.02 0.03 0.04
DMP65R-BU8D w/ Mount Pipe	A	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice	15.89 16.81 17.76	7.89 8.74 9.60	0.14 0.25 0.38
DMP65R-BU6D w/ Mount Pipe	В	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice	11.96 12.70 13.46	5.97 6.63 7.30	0.11 0.20 0.30
DMP65R-BU8D w/ Mount Pipe	С	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	15.89 16.81 17.76	7.89 8.74 9.60	0.14 0.25 0.38
OPA65R-BU8D w/ Mount Pipe	А	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	18.33 19.06 19.81	10.34 11.86 13.41	0.11 0.23 0.37
OPA65R-BU6D w/ Mount Pipe	В	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	12.25 13.00 13.76	6.05 6.71 7.39	0.09 0.18 0.27
OPA65R-BU8D w/ Mount Pipe	С	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	18.33 19.06 19.81	10.34 11.86 13.41	0.11 0.23 0.37
7770.00 w/ Mount Pipe	A	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
7770.00 w/ Mount Pipe	В	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
7770.00 w/ Mount Pipe	С	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
RRUS 4449 B5/B12	A	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	1.97 2.14 2.33	1.41 1.56 1.73	0.07 0.09 0.11
RRUS 4449 B5/B12	В	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice	1.97 2.14 2.33	1.41 1.56 1.73	0.07 0.09 0.11
RRUS 4449 B5/B12	С	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice	1.97 2.14 2.33	1.41 1.56 1.73	0.07 0.09 0.11
RRUS 4478 B14	А	From Leg	4.00 0.00	0.0000	136.00	No Ice 1/2"	2.02 2.20	1.25 1.40	0.06 0.08

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft	Azimuth Adjustmen t	Placement ft		C _A A _A Front ft ²	C _A A _A Side ft ²	Weight K
			ft 2.00			Ice	2.39	1.55	0.10
RRUS 4478 B14	В	From Leg	4.00 0.00 2.00	0.0000	136.00	1" Ice No Ice 1/2" Ice	2.02 2.20 2.39	1.25 1.40 1.55	0.06 0.08 0.10
RRUS 4478 B14	С	From Leg	4.00 0.00 2.00	0.0000	136.00	1" Ice No Ice 1/2" Ice	2.02 2.20 2.39	1.25 1.40 1.55	0.06 0.08 0.10
RRUS 8843 B2/B66A	А	From Leg	4.00 0.00 2.00	0.0000	136.00	1" Ice No Ice 1/2" Ice	1.64 1.80 1.97	1.35 1.50 1.65	0.07 0.09 0.11
RRUS 8843 B2/B66A	В	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice	1.64 1.80 1.97	1.35 1.50 1.65	0.07 0.09 0.11
RRUS 8843 B2/B66A	С	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice	1.64 1.80 1.97	1.35 1.50 1.65	0.07 0.09 0.11
(2) LGP21401	A	From Leg	4.00 0.00 2.00	0.0000	136.00	1" Ice No Ice 1/2" Ice	1.10 1.24 1.38	0.35 0.44 0.54	0.01 0.02 0.03
(2) LGP21401	В	From Leg	4.00 0.00 2.00	0.0000	136.00	1" ICe No Ice 1/2" Ice	1.10 1.24 1.38	0.35 0.44 0.54	0.01 0.02 0.03
(2) LGP21401	С	From Leg	4.00 0.00 2.00	0.0000	136.00	1" Ice No Ice 1/2" Ice	1.10 1.24 1.38	0.35 0.44 0.54	0.01 0.02 0.03
DC6-48-60-18-8F	A	From Leg	4.00 0.00 2.00	0.0000	136.00	1" Ice No Ice 1/2" Ice	1.21 1.89 2.11	1.21 1.89 2.11	0.03 0.05 0.08
DC9-48-60-24-8C-EV	A	From Leg	4.00 0.00 2.00	0.0000	136.00	No Ice 1/2" Ice	2.74 2.96 3.20	4.78 5.06 5.35	0.03 0.06 0.10
T-Arm Mount [TA 602-3]	С	None		0.0000	136.00	No Ice 1/2" Ice	13.40 16.44 19.70	13.40 16.44 19.70	0.77 1.00 1.29

(2) SBNHH-1D65B w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice 1" Ice	4.09 4.49 4.89	3.30 3.68 4.07	0.07 0.13 0.20
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice	4.09 4.49 4.89	3.30 3.68 4.07	0.07 0.13 0.20
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice	4.09 4.49 4.89	3.30 3.68 4.07	0.07 0.13 0.20
B13 RRH 4X30	A	From Leg	4.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice	2.06 2.24 2.43	1.32 1.48 1.64	0.06 0.07 0.09
B13 RRH 4X30	В	From Leg	4.00 0.00	0.0000	127.00	No Ice 1/2"	2.06 2.24	1.32 1.48	0.06 0.07

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement ft		C _A A _A Front ft ²	C _A A _A Side ft ²	Weight K
			0.00			Ice	2.43	1.64	0.09
B13 RRH 4X30	В	From Leg	4.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice	2.06 2.24 2.43	1.32 1.48 1.64	0.06 0.07 0.09
B66A RRH4X45	А	From Leg	4.00 0.00	0.0000	127.00	1" Ice No Ice 1/2"	2.58 2.79	1.63 1.81	0.07
			0.00			Ice 1" Ice	3.01	2.00	0.11
B66A RRH4X45	В	From Leg	4.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice	2.58 2.79 3.01	1.63 1.81 2.00	0.07 0.09 0.11
B66A RRH4X45	В	From Leg	4.00 0.00 0.00	0.0000	127.00	1" Ice No Ice 1/2" Ice	2.58 2.79 3.01	1.63 1.81 2.00	0.07 0.09 0.11
RXXDC-3315-PF-48	В	From Leg	4.00 0.00	0.0000	127.00	1" Ice No Ice 1/2"	3.01 3.23	1.96 2.15	0.02 0.05
RXXDC-3315-PF-48	В	From Leg	4.00 0.00	0.0000	127.00	Ice 1" Ice No Ice 1/2"	3.46 3.01 3.23	2.35 1.96 2.15	0.08 0.02 0.05
	_		0.00			Ice 1" Ice	3.46	2.35	0.08
Platform Mount [LP 303-1]	С	None		0.0000	127.00	No Ice 1/2" Ice 1" Ice	14.69 18.01 21.34	14.69 18.01 21.34	1.25 1.57 1.94
Miscellaneous [NA 507-1]	С	None		0.0000	127.00	No Ice 1/2" Ice	4.56 6.39 8.18	4.56 6.39 8.18	0.25 0.31 0.40
(2) 2.375" OD x 5' Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice	1.19 1.50 1.81	1.19 1.50 1.81	0.02 0.03 0.04
(2) 2.375" OD x 5' Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice	1.19 1.50 1.81	1.19 1.50 1.81	0.02 0.03 0.04
(2) 2.375" OD x 5' Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	127.00	1" Ice No Ice 1/2" Ice 1" Ice	1.19 1.50 1.81	1.19 1.50 1.81	0.02 0.03 0.04
KS24019-L112A	С	From Leg	4.00 0.00 0.00	0.0000	75.00	No Ice 1/2" Ice	0.14 0.20 0.26	0.14 0.20 0.26	0.01 0.01 0.01
Side Arm Mount [SO 701- 1]	С	None		0.0000	75.00	No Ice 1/2" Ice 1" Ice	0.85 1.14 1.43	1.67 2.34 3.01	0.07 0.08 0.09

Tower Pressures - No Ice

G_H = 1.100

Section	Z	Kz	q_z	A _G	F	A _F	A _R	A _{leq}	Leg	$C_A A_A$	$C_A A_A$
Elevation	ft		psf	ft²	а	ft²	ft²	ft²	%	In	Out
ft					С					Face	Face
					е					ft²	ft²
L1 150.00-	135.85	1.079	37.61	45.253	Α	0.000	45.253	45.253	100.00	0.000	0.000
123.00					В	0.000	45.253		100.00	0.000	0.000
					С	0.000	45.253		100.00	0.000	0.000
L2 123.00-	103.46	0.998	34.74	80.890	Α	0.000	80.890	80.890	100.00	0.000	0.000
85.00					В	0.000	80.890		100.00	0.000	0.000
					С	0.000	80.890		100.00	0.000	0.000
L3 85.00-	64.01	0.87	30.19	111.95	Α	0.000	111.957	111.957	100.00	0.000	0.000
44.00				7	В	0.000	111.957		100.00	0.000	0.000
					С	0.000	111.957		100.00	0.000	0.000
L4 44.00-0.00	21.51	0.7	24.72	145.47	Α	0.000	145.475	145.475	100.00	0.000	0.000
				5	В	0.000	145.475		100.00	0.000	0.000
					С	0.000	145.475		100.00	0.000	0.000

Tower Pressure - With Ice

 $G_{H} = 1.100$

Section	Z	Kz	qz	tz	A _G	F	A _F	A _R	A _{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation	ft		psf	in	ft²	а	ft²	ft ²	ft ²	%	In	Out
ft						С					Face	Face
						е					ft²	ft²
L1 150.00-	135.85	1.079	6.02	0.9792	49.660	Α	0.000	49.660	49.660	100.00	0.000	0.000
123.00						В	0.000	49.660		100.00	0.000	0.000
						С	0.000	49.660		100.00	0.000	0.000
L2 123.00-	103.46	0.998	5.56	0.9529	87.091	Α	0.000	87.091	87.091	100.00	0.000	0.000
85.00						В	0.000	87.091		100.00	0.000	0.000
						С	0.000	87.091		100.00	0.000	0.000
L3 85.00-44.00	64.01	0.87	4.83	0.9082	118.468	Α	0.000	118.468	118.468	100.00	0.000	0.000
						в	0.000	118.468		100.00	0.000	0.000
						С	0.000	118.468		100.00	0.000	0.000
L4 44.00-0.00	21.51	0.7	3.96	0.8144	152.135	Α	0.000	152.135	152.135	100.00	0.000	0.000
						в	0.000	152,135		100.00	0.000	0.000
						С	0.000	152.135		100.00	0.000	0.000

Tower Pressure - Service

 $G_{H} = 1.100$

Section	Z	Kz	q_z	A _G	F	A _F	A_R	A _{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation	π		pst	ħ²	а	<i>ft</i> ²	tt²	tt²	%	In	Out
ft					C					Face	Face
					е					ft²	ft ²
L1 150.00-	135.85	1.079	8.16	45.253	Α	0.000	45.253	45.253	100.00	0.000	0.000
123.00					В	0.000	45.253		100.00	0.000	0.000
					C	0.000	45.253		100.00	0.000	0.000
L2 123.00-	103.46	0.998	7.54	80.890	A	0.000	80.890	80.890	100.00	0.000	0.000
85.00					В	0.000	80.890		100.00	0.000	0.000
					C	0.000	80.890		100.00	0.000	0.000
L3 85.00-	64.01	0.87	6.55	111.95	A	0.000	111.957	111.957	100.00	0.000	0.000
44.00				7	В	0.000	111.957		100.00	0.000	0.000
					C	0.000	111.957		100.00	0.000	0.000
L4 44.00-0.00	21.51	0.7	5.36	145.47	А	0.000	145.475	145.475	100.00	0.000	0.000
				5	В	0.000	145.475		100.00	0.000	0.000
					С	0.000	145.475		100.00	0.000	0.000

Load Combinations

Description

Comb.

No. 1 Dead Only

tnxTower Report - version 8.0.5.0

Comb.	Description
No.	
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	
24	
25	
20	
27	1.2 Dead+1.0 Wind 20 deg+1.0 ice+1.0 remp
20	1.2 Dead+1.0 Wind 50 deg+1.0 log+1.0 remp
29	1.2 Dead+1.0 Wind 00 deg+1.0 log+1.0 Temp
21	1.2 Dead+1.0 Wind 120 deg+1.0 le+1.0 remp
30	1.2 Dead+1.0 Wind 150 deg+1.0 lost 1.0 Temp
32	1.2 Dead+1.0 Wind 180 deg+1.0 loe+1.0 Temp
34	1.2 Dead+1.0 Wind 100 deg+1.0 lee+1.0 Temp
35	1.2 Dead+1.0 Wind 210 dea+1.0 Lea+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 lce+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 lce+1.0 Temp
38	1.2 Dead+1.0 Wind 330 dea+1.0 lee+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 dea - Service
46	Dead+Wind 210 dea - Service
47	Dead+Wind 240 dea - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load	ĸ	Moment	Moment
No.				Comb.		kip-ft	kip-ft
L1	150 - 123	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-19.83	-1.94	1.03
			Max. Mx	8	-10.37	-173.60	0.84
			Max. My	2	-10.38	-1.86	172.48
			Max. Vy	8	12.42	-173.60	0.84
			Max. Vx	2	-12.37	-1.86	172.48
			Max. Torque	6			1.74
L2	123 - 85	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-26.27	-2.10	1.11
			Max. Mx	8	-15.81	-678.41	0.05
			Max. My	2	-15.81	-1.10	675.62
			Max. Vý	8	14.66	-678.41	0.05
			Max. Vx	2	-14.62	-1.10	675.62

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load	ĸ	Moment	Moment
No.				Comb.		kip-ft	kip-ft
			Max. Torque	10			1.33
L3	85 - 44	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-35.68	-2.09	1.10
			Max. Mx	8	-24.02	-1313.54	-0.86
			Max. My	2	-24.03	-0.19	1308.98
			Max. Vy	8	17.05	-1313.54	-0.86
			Max, Vx	2	-17.01	-0.19	1308.98
			Max. Torque	10			1.32
L4	44 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.03	-2.06	1.08
			Max. Mx	8	-36.93	-2197.62	-1.96
			Max. My	2	-36.93	0.89	2190.99
			Max. Vy	8	19.29	-2197.62	-1.96
			Max. Vx	2	-19.25	0.89	2190.99
			Max. Torque	10			1.29

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	50.03	0.00	-0.00
	Max. H _x	20	36.94	19.25	0.02
	Max. H _z	3	27.71	0.02	19.21
	Max. M _x	2	2190.99	0.02	19.21
	Max. M _z	8	2197.62	-19.25	-0.02
	Max. Torsion	10	1.29	-16.68	-9.63
	Min. Vert	9	27.71	-19.25	-0.02
	Min. H _×	8	36.94	-19.25	-0.02
	Min. H _z	15	27.71	-0.02	-19.21
	Min. M _x	14	-2190.21	-0.02	-19.21
	Min. M _z	20	-2194.74	19.25	0.02
	Min. Torsion	22	-1.28	16.68	9.63

Tower Mast Reaction Summary

l and	Martical	Chase	Chaser	Ou vo ut vunction ov		Tanan
Load Combination	K	Snear _x K	Snearz K	Moment, M_x	Moment, M _z	kip-ft
				kip-ft	kip-ft	
Dead Only	30.79	-0.00	0.00	-0.28	-1.04	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	36.94	-0.02	-19.21	-2190.99	0.89	0.60
0.9 Dead+1.0 Wind 0 deg - No Ice	27.71	-0.02	-19.21	-2152.16	1.26	0.57
1.2 Dead+1.0 Wind 30 deg - No Ice	36.94	9.61	-16.63	-1896.79	-1097.68	-0.06
0.9 Dead+1.0 Wind 30 deg -	27.71	9.61	-16.63	-1862.99	-1077.79	-0.08
1.2 Dead+1.0 Wind 60 deg -	36.94	16.66	-9.59	-1093.91	-1902.50	-0.71
0.9 Dead+1.0 Wind 60 deg -	27.71	16.66	-9.59	-1074.37	-1868.31	-0.72
1.2 Dead+1.0 Wind 90 deg -	36.94	19.25	0.02	1.96	-2197.62	-1.16
0.9 Dead+1.0 Wind 90 deg -	27.71	19.25	0.02	2.03	-2158.16	-1.15
1.2 Dead+1.0 Wind 120 deg	36.94	16.68	9.63	1097.20	-1904.80	-1.29
0.9 Dead+1.0 Wind 120 deg	27.71	16.68	9.63	1077.81	-1870.59	-1.27
1.2 Dead+1.0 Wind 150 deg	36.94	9.65	16.65	1898.35	-1101.70	-1.08
0.9 Dead+1.0 Wind 150 deg - No Ice	27.71	9.65	16.65	1864.72	-1081.77	-1.04

tnxTower Report - version 8.0.5.0

Load Combination	Vertical K	Shear _x K	Shear₂ K	Overturning Moment, M _x kip-ft	Overturning Moment, Mz kip-ft	Torque kip-ft
1.2 Dead+1.0 Wind 180 deg	36.94	0.02	19.21	2190.21	-3.78	-0.58
- No Ice 0.9 Dead+1.0 Wind 180 deg - No Ice	27.71	0.02	19.21	2151.59	-3.35	-0.54
1.2 Dead+1.0 Wind 210 deg - No Ice	36.94	-9.61	16.63	1896.03	1094.78	0.07
0.9 Dead+1.0 Wind 210 deg - No Ice	27.71	-9.61	16.63	1862.43	1075.69	0.09
1.2 Dead+1.0 Wind 240 deg - No Ice	36.94	-16.66	9.59	1093.16	1899.60	0.69
0.9 Dead+1.0 Wind 240 deg - No Ice	27.71	-16.66	9.59	1073.83	1866.21	0.70
1.2 Dead+1.0 Wind 270 deg - No Ice	36.94	-19.25	-0.02	-2.71	2194.74	1.14
0.9 Dead+1.0 Wind 270 deg - No Ice	27.71	-19.25	-0.02	-2.57	2156.08	1.13
1.2 Dead+1.0 Wind 300 deg - No Ice	36.94	-16.68	-9.63	-1097.96	1901.94	1.28
0.9 Dead+1.0 Wind 300 deg - No Ice	27.71	-16.68	-9.63	-1078.36	1868.52	1.26
1.2 Dead+1.0 Wind 330 deg - No Ice	36.94	-9.65	-16.65	-1899.12	1098.83	1.09
0.9 Dead+1.0 Wind 330 deg - No Ice	27.71	-9.65	-16.65	-1865.28	1079.68	1.06
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	50.03 50.03	-0.00 -0.01	0.00 -4.83	1.08- 555.42-	-2.06 -0.84	0.00 0.14
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	50.03	2.41	-4.18	-480.46	-279.23	-0.04
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 60	50.03	4.19	-2.41	-277.08	-483.41	-0.21
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	50.03	4.85	0.01	0.22	-558.65	-0.32
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	50.03	4.20	2.43	277.15	-484.81	-0.34
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	50.03	2.43	4.19	479.50	-281.66	-0.28
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	50.03	0.01	4.83	553.05	-3.64	-0.14
1.2 Dead+1.0 Wind 210	50.03	-2.41	4.18	478.09	274.75	0.04
1.2 Dead+1.0 Wind 240	50.03	-4.19	2.41	274.72	478.93	0.20
1.2 Dead+1.0 Wind 270	50.03	-4.85	-0.01	-2.59	554.17	0.32
1.2 Dead+1.0 Wind 300	50.03	-4.20	-2.43	-279.51	480.33	0.34
1.2 Dead+1.0 Wind 330	50.03	-2.43	-4.19	-481.86	277.18	0.28
Dead+Wind 0 deg - Service	30.79	-0.00	-4.17	-471.01	-0.68	0.13
Dead+Wind 30 deg - Service	30.79 30.79	2.08	-3.61	-407.70 -235.23	-236.67 -409.56	-0.02
Dead+Wind 90 deg - Service	30.79	4.18	0.00	0.18	-473.03	-0.25
Dead+Wind 120 deg -	30.79	3.62	2.09	235.46	-410.06	-0.28
Dead+Wind 150 deg -	30.79	2.09	3.61	407.56	-237.54	-0.23
Dead+Wind 180 deg - Service	30.79	0.00	4.17	470.37	-1.69	-0.12
Dead+Wind 210 deg - Service	30.79	-2.08	3.61	407.06	234.30	0.02
Dead+Wind 240 deg - Service	30.79	-3.62	2.08	234.59	407.19	0.16
Dead+Wind 270 deg - Service	30.79	-4.18	-0.00	-0.82	470.66	0.25
Dead+Wind 300 deg - Service	30.79	-3.62	-2.09	-236.10	407.69	0.28
Dead+Wind 330 deg - Service	30.79	-2.09	-3.61	-408.20	235.17	0.23

Solution Summary

	Sur	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	'' PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	ĸ	K	ĸ	ĸ	
1	0.00	-30.79	0.00	0.00	30.79	-0.00	0.002%
2	-0.02	-36.94	-19.21	0.02	36.94	19.21	0.010%
3	-0.02	-27 71	-19 21	0.02	27 71	19.21	0.008%
4	9.61	36.94	-16 63	-9.61	36.94	16.63	0.000%
5	9.61	_27 71	-16.63	-9.61	27 71	16.63	0.000%
6	16.66	36.94	9.59	-16.66	36.94	9 59	0.000%
7	16.66	_27 71	_0 50	-16.66	27 71	9.50	0.000%
8	10.00	-36.94	-9.99	_10.00	36.94	_0.02	0.000%
0	10.25	-30.34	0.02	10.25	27 71	-0.02	0.003%
10	15.25	36.04	0.02	-13.23	26.04	-0.02	0.000%
10	16.00	-30.94	9.03	16.00	27 71	-9.03	0.000 %
11	10.00	-27.71	9.03	-10.00	27.71	-9.03	0.000%
12	9.65	-30.94	10.00	-9.65	30.94	-10.05	0.000%
13	9.65	-27.71	16.65	-9.65	27.71	-16.65	0.000%
14	0.02	-36.94	19.21	-0.02	36.94	-19.21	0.010%
15	0.02	-27.71	19.21	-0.02	27.71	-19.21	0.008%
16	-9.61	-36.94	16.63	9.61	36.94	-16.63	0.000%
17	-9.61	-27.71	16.63	9.61	27.71	-16.63	0.000%
18	-16.66	-36.94	9.59	16.66	36.94	-9.59	0.000%
19	-16.66	-27.71	9.59	16.66	27.71	-9.59	0.000%
20	-19.25	-36.94	-0.02	19.25	36.94	0.02	0.005%
21	-19.25	-27.71	-0.02	19.25	27.71	0.02	0.008%
22	-16.68	-36.94	-9.63	16.68	36.94	9.63	0.000%
23	-16,68	-27,71	-9.63	16.68	27,71	9.63	0.000%
24	-9.65	-36.94	-16.65	9.65	36.94	16.65	0.000%
25	-9.65	-27.71	-16.65	9.65	27.71	16.65	0.000%
26	0.00	-50.03	0.00	0.00	50.03	-0.00	0.001%
27	-0.01	-50.03	4 83	0.01	50.03	4 83	0.001%
28	2 4 1	-50.03	4 18	2 41	50.03	4 18	0.001%
29	4 19	-50.03	-2 41	-4 19	50.03	2 41	0.001%
30	4.15	-50.03	0.01	-4.85	50.03	_0.01	0.001%
31	4.00	-50.03	2 / 3	4.00	50.03	2/3	0.001%
32	4.20	-50.03	2.4J 1 10	-4.20	50.03	-2.43	0.001%
32	2.43	-50.03	4.13	-2.43	50.03	4.13	0.001%
33	0.01	-50.03	4.03	-0.01	50.03	-4.03	0.001%
34 25	-2.41	-00.00	4.10 2.44	2.41 4.40	50.03	-4.10	0.001%
30	-4.19	-50.03	2.41	4.19	50.03	-2.41	0.001%
30	-4.85	-50.03	-0.01	4.85	50.03	0.01	0.001%
37	-4.20	-50.03	-2.43	4.20	50.03	2.43	0.001%
38	-2.43	-50.03	-4.19	2.43	50.03	4.19	0.001%
39	-0.00	-30.79	-4.17	0.00	30.79	4.17	0.002%
40	2.08	-30.79	3.61	-2.08	30.79	3.61	0.002%
41	3.62	-30.79	-2.08	-3.62	30.79	2.08	0.002%
42	4.18	-30.79	0.00	-4.18	30.79	-0.00	0.002%
43	3.62	-30.79	2.09	-3.62	30.79	-2.09	0.002%
44	2.09	-30.79	3.61	-2.09	30.79	-3.61	0.002%
45	0.00	-30.79	4.17	-0.00	30.79	-4.17	0.002%
46	-2.08	-30.79	3.61	2.08	30.79	-3.61	0.002%
47	-3.62	-30.79	2.08	3.62	30.79	-2.08	0.002%
48	-4.18	-30.79	-0.00	4.18	30.79	0.00	0.002%
49	-3.62	-30.79	-2.09	3.62	30.79	2.09	0.002%
50	-2 09	-30.79	-3.61	2.09	30.79	3 61	0.002%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.0000001	0.0000001
2	Yes	18	0.00011330	0.00011685
3	Yes	18	0.00007271	0.00009157
4	Yes	24	0.0000001	0.00008834
5	Yes	23	0.0000001	0.00011042
6	Yes	24	0.0000001	0.00009037
7	Yes	23	0.0000001	0.00011315
8	Yes	19	0.00006322	0.00009598

9	Yes	18	0.00007268	0.00013298
10	Yes	24	0.0000001	0.00008668
11	Yes	23	0.0000001	0.00010834
12	Yes	24	0.0000001	0.00009064
13	Yes	23	0.0000001	0.00011347
14	Yes	18	0.00011330	0.00012103
15	Yes	18	0.00007271	0.00009451
16	Yes	24	0.0000001	0.00008843
17	Yes	23	0.0000001	0.00011091
18	Yes	24	0.0000001	0.00008660
19	Yes	23	0.0000001	0.00010842
20	Yes	19	0.00006322	0.00009983
21	Yes	18	0.00007268	0.00013803
22	Yes	24	0.0000001	0.00009089
23	Yes	23	0.0000001	0.00011393
24	Yes	24	0.0000001	0.00008673
25	Yes	23	0.0000001	0.00010858
26	Yes	11	0.0000001	0.00001239
27	Yes	20	0.00009145	0.00002763
28	Yes	20	0.00009134	0.00005326
29	Yes	20	0.00009134	0.00005485
30	Yes	20	0.00009146	0.00002836
31	Yes	20	0.00009129	0.00005189
32	Yes	20	0.00009125	0.00005457
33	Yes	20	0.00009135	0.00002741
34	Yes	20	0.00009120	0.00005169
35	Yes	20	0.00009119	0.00005051
36	Yes	20	0.00009134	0.00002797
37	Yes	20	0.00009123	0.00005461
38	Yes	20	0.00009127	0.00005160
39	Yes	18	0.00009128	0.00002624
40	Yes	18	0.00009119	0.00003024
41	Yes	18	0.00009119	0.00003421
42	Yes	18	0.00009130	0.00002726
43	Yes	18	0.00009117	0.00002758
44	Yes	18	0.00009115	0.00003422
45	Yes	18	0.00009125	0.00002617
46	Yes	18	0.00009113	0.00003107
47	Yes	18	0.00009112	0.00002782
48	Yes	18	0.00009123	0.00002701
49	Yes	18	0.00009112	0.00003503
50	Yes	18	0.00009114	0.00002778

Maximum Tower Deflections - Service Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
L1	150 - 123	25.4854	42	1.5067	0.0041
L2	125.75 - 85	18.0599	42	1.3800	0.0030
L3	88.5 - 44	8.7410	42	0.9655	0.0013
L4	48.5 - 0	2.6009	42	0.4956	0.0005

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft
150.00	NNVV-65B-R4 w/ Mount Pipe	42	25.4854	1.5067	0.0041	29601
136.00	DMP65R-BU8D w/ Mount Pipe	42	21.1246	1.4449	0.0034	10571
127.00	(2) SBNHH-1D65B w/ Mount	42	18.4243	1.3893	0.0031	6515
	Pipe					
75.00	KS24019-L112A	42	6.1915	0.7998	0.0009	4546

Maximum Tower Deflections - Design Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
L1	150 - 123	118.2904	8	7.0000	0.0188
L2	125.75 - 85	83.8779	8	6.4077	0.0140
L3	88.5 - 44	40.6341	8	4.4904	0.0060
L4	48.5 - 0	12.0923	10	2.3053	0.0022

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	<i>Tilt</i>	Twist	Radius of Curvature ft
150.00	NNVV-65B-R4 w/ Mount Pipe	8	118.2904	7.0000	0.0188	6598
136.00	DMP65R-BU8D w/ Mount Pipe	8	98.0833	6.7096	0.0158	2354
127.00	(2) SBNHH-1D65B w/ Mount Pipe	8	85.5676	6.4510	0.0143	1448
75.00	KS24019-L112A	8	28.7878	3.7213	0.0041	987

Compression Checks

Pole Design Data

Section	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in²	ĸ	ĸ	P_u
									ϕP_n
L1	150 - 123 (1)	TP22.69x17x0.25	27.00	0.00	0.0	17.346	-10.38	1014.76	0.010
						3			
L2	123 - 85 (2)	TP28.36x21.6105x0.375	40.75	0.00	0.0	32.619	-15.81	1908.22	0.008
						1			
L3	85 - 44 (3)	TP36.86x27.0303x0.4063	44.50	0.00	0.0	45.723	-24.02	2674.80	0.009
						1			
L4	44 - 0 (4)	TP42.53x35.0535x0.4375	48.50	0.00	0.0	58.450	-36.93	3419.37	0.011
						7			

Pole Bending Design Data

Section No.	Elevation ft	Size	M _{ux} kip-ft	φ Μ _{nx} kip-ft	Ratio M _{ux} ϕM_{nx}	M _{uy} kip-ft	φM _{ny} kip-ft	$\frac{Ratio}{M_{uy}}{\phi M_{ny}}$
L1	150 - 123 (1)	TP22.69x17x0.25	174.08	577.27	0.302	0.00	577.27	0.000
L2	123 - 85 (2)	TP28.36x21.6105x0.375	678.41	1357.87	0.500	0.00	1357.87	0.000
L3	85 - 44 (3)	TP36.86x27.0303x0.4063	1313.55	2468.18	0.532	0.00	2468.18	0.000
L4	44 - 0 (4)	TP42.53x35.0535x0.4375	2198.21	3738.54	0.588	0.00	3738.54	0.000

Pole Shear Design Data

Section No.	Elevation ft	Size	Actual V _u K	¢V₀ K	Ratio V _u ∳V _n	Actual T _u kip-ft	φT _n kip-ft	$\frac{Ratio}{T_u}}{\phi T_n}$
L1	150 - 123 (1)	TP22.69x17x0.25	12.39	304.43	0.041	1.74	582.80	0.003
L2	123 - 85 (2)	TP28.36x21.6105x0.375	14.66	572.47	0.026	1.18	1373.93	0.001
L3	85 - 44 (3)	TP36.86x27.0303x0.4063	17.06	802.44	0.021	1.30	2491.88	0.001
L4	44 - 0 (4)	TP42.53x35.0535x0.4375	19.30	1025.81	0.019	1.29	3781.39	0.000

Pole Interaction Design Data

Section No.	Elevation ft	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
		ϕP_n	ϕM_{nx}	ϕM_{ny}	φVn	ϕT_n	Ratio	Ratio	
L1	150 - 123 (1)	0.010	0.302	0.000	0.041	0.003	0.314	1.050	4.8.2
L2	123 - 85 (2)	0.008	0.500	0.000	0.026	0.001	0.509	1.050	4.8.2
L3	85 - 44 (3)	0.009	0.532	0.000	0.021	0.001	0.542	1.050	4.8.2
L4	44 - 0 (4)	0.011	0.588	0.000	0.019	0.000	0.599	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	150 - 123	Pole	TP22.69x17x0.25	1	-10.38	1065.50	29.9	Pass
L2	123 - 85	Pole	TP28.36x21.6105x0.375	2	-15.81	2003.63	48.4	Pass
L3	85 - 44	Pole	TP36 86x27 0303x0 4063	3	-24.02	2808.54	51.6	Pass
L4	44 - 0	Pole	TP42 53x35 0535x0 4375	4	-36.93	3590.34	57.1	Pass
							Summary	
						Pole (L4)	57.1	Pass
						RATING =	57.1	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Site Info		
	BU #	876402
Si	te Name	Stafford/Pragyl/SSUSA
	Order #	517113 Rev. 0

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
l _{ar} (in)	1.25

Applied Loads	
Moment (kip-ft)	2198.21
Axial Force (kips)	36.93
Shear Force (kips)	19.30
* TIA 222 // Castien 45 5 Am	- 1:1

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 51.03" BC

Base Plate Data

57.53" OD x 1.75" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

(12) 18"H x 6"W x 1"T, Notch: 0.75" plate: Fy= 50 ksi ; weld: Fy= 80 ksi horiz. weld: 0.49" groove, 45° dbl bevel, 0.5" fillet vert. weld: 0.375" fillet

Pole Data

42.53" x 0.4375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_c = 175.25	φPn_c = 268.39	Stress Rating
Vu = 1.61	φVn = 120.77	62.2%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	35.04	(Roark's Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	74.2%	Pass
Stiffener Summary		
Horizontal Weld:	54.4%	Pass
Vertical Weld:	35.3%	Pass
Plate Flexure+Shear:	11.2%	Pass
Plate Tension+Shear:	46.7%	Pass
Plate Compression:	48.0%	Pass
Pole Summary		
Punching Shear:	9.4%	Pass

Pier and Pad Foundation

BU # :	876402
Site Name:	Stafford/Pragyl/SS
App. Number:	517113 Rev. 0

TIA-222 Revision: Tower Type:

Н Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	

Superstructure Analysis	Reaction	S
Compression, P _{comp} :	37	kips
Base Shear, Vu_comp:	19	kips
Moment, M _u :	2198	ft-kips
Tower Height, H :	150	ft
BP Dist. Above Fdn, bp_{dist}:	3.5	in

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	354.11	19.00	5.1%	Pass
Bearing Pressure (ksf)	44.55	2.14	4.8%	Pass
Overturning (kip*ft)	5457.58	2346.04	43.0%	Pass
Pier Flexure (Comp.) (kip*ft)	5165.60	2283.50	42.1%	Pass
Pier Compression (kip)	17184.96	66.16	0.4%	Pass
Pad Flexure (kip*ft)	1228.11	812.05	63.0%	Pass
Pad Shear - 1-way (kips)	674.44	136.62	19.3%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.029	16.5%	Pass
Flexural 2-way (Comp) (kip*ft)	1478.36	1370.10	88.3%	Pass

*Rating per TIA-222-H Section 15.5

Soil Rating*:	43.0%
Structural Rating*:	88.3%

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier :	6	ft
Ext. Above Grade, E :	0.5	ft
Pier Rebar Size, Sc :	11	
Pier Rebar Quantity, mc :	26	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt :	7	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

Pad Properties		
Depth, D :	7	ft
Pad Width, W :	22	ft
Pad Thickness, T :	3	ft
Pad Rebar Size (Bottom), Sp :	10	
Pad Rebar Quantity (Bottom), mp :	7	
Pad Clear Cover, cc_{pad}:	3	in

Material Properties			
Rebar Grade, Fy :	60	ksi	
Concrete Compressive Strength, F'c:	3	ksi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties		
Total Soil Unit Weight, $oldsymbol{\gamma}_{\mathbb{C}}$	116	pcf
Ultimate Gross Bearing, Qult:	59.400	ksf
Cohesion, Cu :	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	45	degrees
SPT Blow Count, N _{blows} :	100	
Base Friction, μ :	0.5	
Neglected Depth, N:	3.30	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw :	N/A	ft

<--Toggle between Gross and Net

ASCE 7 HAZARD TOOL

Location

962 ft with respect to North American Vertical Datum of 1988 (NAVD 88)
41.98705
-72.261328
ASCE/SEI 7-10
11
D - Stiff Soil

Ice Details

Thickness	1.00 in.
Concurrent Temperature	5 F
Gust Speed	50 mph

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain.

Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Data Source

ASCE/SEI 7-10, Figs. 10-2 through 10-8, incorporating errata of March 31, 2013

Exhibit E

Mount Analysis

Date: May 5, 2020

Charlotte, NC 28277

6325 Ardrey Kell Rd., Suite 600

Darcy Tarr

Crown Castle

POD Group 1033 E Turkeyfoot Lake Rd. Suite 206 Akron, OH 44312 (330) 961.7432 mhoudeshell@podgrp.com

704-405-6589		mhoudeshell@podgrp.com
Subject:	Mount Modification Analysis Repo	rt
Carrier Designation:	AT&T Carrier Site Number: Carrier Site Name: FA Number:	CTV1258 STAFFORD – STAFFORD ST 10128067
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Order Number:	876402 STAFFORD/PRAGYL/SSUSA 605420 517113 Rev. 0
Engineering Firm Designation:	POD Report Designation:	20-63936
Site Data:	175 Stafford St., Stafford, Tolland Latitude 41°59'13.38" Longitude 7	County, CT 06077 2°15'40.78"
Structure Information:	Tower Height & Type: Mount Elevation: Mount Type:	150 ft Monopole 136 ft 12.5 ft T-Arm

Dear Darcy Tarr,

POD Group is pleased to submit this "Mount Modification Report" to determine the structural integrity of AT&T's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

12.5 ft T-arm (Individual Sector) (Alpha)	Sufficient
12.5 ft T-arm (Individual Sector) (Beta)	Sufficient
12.5 ft T-arm (Individual Sector) (Gamma)	Sufficient

The analysis has been performed in accordance with the TIA-222-H Standard based upon an ultimate 3-second gust wind speed of 117 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount structural analysis prepared by: Julianna Murphy

Summer OF CONNE Respectfully submitted by: 5/5/20 TATEOF 793 PEN.C. *SSIONALENG* Jason G. Cheronis, P.E. Connecticut PE #: PEN.0032793

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 – Final Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 – Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Alpha) 4.1) Recommendations (Alpha) Table 4 - AT&T Specification (Alpha) Table 5 - Mount Component Stresses vs. Capacity (Beta) 4.2) Recommendations (Beta) Table 6 –AT&T Specification (Beta) Table 7 - Mount Component Stresses vs. Capacity (Gamma) 4.3) Recommendations (Gamma) Table 8 – AT&T Specification (Gamma)

5) DISCLAIMER OF WARRANTIES

6) APPENDIX A

Wire Frame and Rendered Models (Alpha)

7) APPENDIX B

Software Input Calculations (Alpha)

8) APPENDIX C

Software Analysis Output (Alpha)

9) APPENDIX D

Additional Calculations (Alpha)

10) APPENDIX E

Wire Frame and Rendered Models (Beta)

11) APPENDIX F

Software Input Calculations (Beta)

12) APPENDIX G

Software Analysis Output (Beta)

13) APPENDIX H

Additional Calculations (Beta)

14) APPENDIX I

Wire Frame and Rendered Models (Gamma)

15) APPENDIX J Software Input Calculations (Gamma)

16) APPENDIX K Software Analysis Output (Gamma)

17) APPENDIX L

Additional Calculations (Gamma)

18) APPENDIX M

ATC Wind Printout

19) APPENDIX N

Modification Manufacturer Part Specification Sheets

20) APPENDIX O

Mount Modification Design Drawings (MDD)

1) INTRODUCTION

This mount is an existing 12.5 ft t-arm mount. This mount is installed at the 136 ft elevation on 3 sector(s) of the 150 ft Monopole.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	117 mph
Exposure Category:	В
Topographic Factor at Base:	1.000
Topographic Factor at Mount:	1.000
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Seismic S _s :	0.176
Seismic S ₁ :	0.055
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	250 lb

Table 1 - Final Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer Antenna Model		Mount / Modification Details	Note
		1	CCI	DMP65R-BU6D		
		2	CCI	DMP65R-BU8D		
		1	CCI	OPA65R-BU6D		
		2	CCI	OPA65R-BU8D		
		3	Powerwave	7770		
136	138	3	Ericsson	RRUS 4449 B5/B12	12.5 ft T-Arm	
		3	Ericsson	RRUS 4478 B14		
		3	Ericsson	RRUS 8843 B2/B66A		
		6	Powerwave	LGP21401		
		1	Raycap	DC6-48-60-18-8F		
		1	Raycap	DC9-48-60-24-8C-EV		

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	-	Crown Castle App ID: 517113 Rev. 0 Dated: 04/27/2020	Crown Castle
RFDS	-	AT&T RFDS #: CTV1258 Dated: 03/25/2020	Crown Castle
Manufacturer Specifications	-	Commscope Part Number: VSR-MS-B Date: 6/11/2013	CommScope
Modification Drawings		POD Group Project #: 20-63936 Date: 5/5/2020	POD Group

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases. Selected output from the analysis are included in the Appendices.

A tool internally developed, using Microsoft Excel, by POD Group, was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the calculations is/are included in Appendices B, F, and J.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision B). In addition, this analysis is in accordance with AT&T's mount technical directive.

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed, and maintained in good condition in accordance with its original design, TIA Standards, and/or manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The weight of the mount was increased 10% in the analysis to account for connections, coax, and jumpers.
- 5) Member sizes have been assumed from photos of the site and experience with similar mounting systems. If the sizes assumed in this report differ from the actual member sizes, POD Group shall be contacted immediately, and the results of the analysis shall be considered null and void.
- 6) All structural members shall be verified in accordance with AT&T Mount Technical Directive.
- 7) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 8) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 9) Steel grades have been assumed as follows, unless noted otherwise:

a.	Plate	ASTM A36 (GR 36)
b.	HSS (Rectangular)	ASTM 500 (GR B-46)
c.	Pipe	ASTM A53 (GR 35)
d.	Connection Bolts	ASTM A325

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and POD should be allowed to review any new information to determine its effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

Table 3 - Me	ount Component S	Stresses vs. Capacity	v (12.5 ft T-Arm) (Alpha)
--------------	------------------	-----------------------	---------------------------

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe	MP ALPHA3	136	73.2	Pass
	Standoff		136	57.8	Pass
	Face	FACE	136	51.2	Pass
	Connection		136	38.0	Pass
	Stabilizer		136	37.0	Pass
	Standoff Pipe	SPIPE	136	5.3	Pass
	Vertical	VERT	136	1.0	Pass
1	Flange Plate	-	-	41.9	Pass
1	Flange Bolts	-	-	13.9	Pass

Structure Rating (max from all components) = 73.2%
--

Notes:

¹⁾ See additional documentation in "Appendix D – Additional Calculations (Alpha)" for calculations supporting the % capacity

4.1) Recommendations (Alpha)

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

- 1. Stabilizer Kit, Commscope P/N: VSR-MS-B
- 2. 12.5 ft P2.5 STD Face Member
- 3. Cross Over Kits, Commscope P/N: XP-2025

Engineering detail drawings have been provided in Appendix O – Mount Modification Design Drawings. Connection from the mount to the tower and local stresses on the tower are sufficient.

Wind Speed (mph)	Ice Thickness (in)	Height (ft)	Exposure	Class	Торо	# of Pipes	Allowable EPA per Pipe (ft sq.)	Allowable Weight per Sector (Ibs)
117	1.4	136	В	11	1	3	25.85	2814

Table 4 – AT&T Specification (Alpha)

Table 5 - Mount Component Stresses vs. Capacity (12.5 ft T-Arm) (Beta)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail	
	Mount Pipe MP ALPHA		136	71.8	Pass	
	Standoff	STANDOFF	136	50.4	Pass	
	Connection	CONNECTION	136	49.2	Pass	
	Face	FACE	136	47.8	Pass	
	Stabilizer	Stabilizer2	136	47.0	Pass	
	Vertical	VERT	136	1.0	Pass	
1	Flange Plate	-	-	39.4	Pass	
1	Flange Bolts	-	-	12.1	Pass	

Structure Rating (max from all components) =	71.8%
--	-------

Notes:

1) See additional documentation in "Appendix H – Additional Calculations (Beta)" for calculations supporting the % capacity

4.2) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

- 1. Stabilizer Kit, Commscope P/N: VSR-MS-B
- 2. 12.5 ft P2.5 STD Face Member
- 3. Cross Over Kits, Commscope P/N: XP-2025

Engineering detail drawings have been provided in Appendix O – Mount Modification Design Drawings. Connection from the mount to the tower and local stresses on the tower are sufficient.

Wind Speed (mph)	Ice Thickness (in)	Height (ft)	Exposure	Class	Торо	# of Pipes	Allowable EPA per Pipe (ft sq.)	Allowable Weight per Sector (Ibs)
117	1,4	136	В	II	1	3	25.85	2814

Table 6 – AT&T Specification (Beta)

Table 7 - Mount Component Stresses vs. Capacity (12.5 ft T-Arm) (Gamma)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe	MP ALPHA3	136	74.6	Pass
	Standoff	STANDOFF	136	53.3	Pass
	Face	FACE	136	53.1	Pass
	Connection	CONNECTION	136	51.0	Pass
	Stabilizer	Stabilizer2	136	47.3	Pass
	Vertical	VERT	136	1.0	Pass
1	Flange Plate	-	-	41.3	Pass
1	Flange Bolts	-	-	13.3	Pass

Structure Rating (max from all components) =	74.6%
Notes:	

 See additional documentation in "Appendix L – Additional Calculations (Gamma)" for calculations supporting the % capacity

4.3) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

- 1. Stabilizer Kit, Commscope P/N: VSR-MS-B
- 2. 12.5 ft P2.5 STD Face Member
- 3. Cross Over Kits, Commscope P/N: XP-2025

Engineering detail drawings have been provided in Appendix O – Mount Modification Design Drawings. Connection from the mount to the tower and local stresses on the tower are sufficient.

Wind Speed (mph)	Ice Thickness (in)	Height (ft)	Exposure	Class	Торо	# of Pipes	Allowable EPA per Pipe (ft sq.)	Allowable Weight per Sector (lbs)
117	1,4	136	В	II	1	3	25.85	2814

Table 8 – AT&T Specification
5) DISCLAIMER OF WARRANTIES

POD Group has not performed a site visit to the structure to verify the member sizes or antenna/coax loading unless noted otherwise. If the existing conditions are not as represented in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the structure or foundation. This report does not replace a full structure inspection. The structure, foundations, and mounting systems are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by POD Group in connection with this Structural Analysis are limited to a computer analysis of the structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

POD Group does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing structure. POD Group provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed structure. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from POD Group, but are beyond the scope of this report.

POD Group makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this structure. POD Group will not be responsible whatsoever, for or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of POD Group pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Wire Frame and Rendered Models (Alpha)

APPENDIX B

Software Input Calculations (Alpha)

	POD Job #	20-63609
1	Site Number	876402
3	Site Name	STAFFORD/PRAGYL/SSUSA

General Site Information

Mount Type	MF	Risk Category	II.	I (seismic)	1
V (Wind Speed)	117	I(ice)	1	Sms	0.282
Zs	857			Sm1	0.132
ti	1.5	Ss	0.176	Sds	0.188
Vi	50	S1	0.055	Sd1	0.088
Kzt	1	Soil Site Class	D (assumed)	Seismic Desi	gn Category
Exposure	В	Fa	1.600		В
zg	1200	Fv	2.400	Seismic Anal	ysis Not Required
α	7			R	2 TIA-222-H 16.7
Kmin	0.7	Tower Type	Monopole	As	1 TIA-222-H 16.7
G _H	1	Tower Height	150	Cs, Min	0.03 TIA-222-H 2.7.7.1.1
Ke	0.97			Cs	0.093866667 TIA-222-H 2.7.7.1.1
κ _D	0.95				
Ka	0.9				

Appurtenance Information

Model	Shielded	% Shielded	Centerline	Spacing (in)	# on MP 1	# on MP 2	# on MP 3	# on MP 4
DMP65R-BU6D			138	50				
DMP65R-BU8D			138	60			1	
OPA65R-BU6D			138	50				
OPA65R-BU8D			138	60		1		
	7770		138	40	1			
RRUS 4449 B5/B12			138				1	
RRUS 4478 B14			138			1		
RRUS 8843 B2/B66A			138				1	
LGP21401			138		2			
DC6-48-60-18-8F			139		1			
DC9-48-60-24-8C-EV			139					

Mount Information

Elevation (ft)	136
K ₂	1.08
Kiz	1.15
tiz	1.73

	Length (ft)	Width (in)	Centerline		
Mount Pipes	6	2.375	138		
Round Members				Frame	# of
Member	Length (ft)	Width (in)		Member	Members
Face	12.5	3.5		Yes	1
Vertical Pipe	1	4		Yes	1
Standoff Pipe	2.25	2.375		Yes	1
New Face	12.5	2.875		Yes	1
Flat Members					

Flat Members											
Member	Length (ft)	Width (in)	Shape	А	в	с	D		Fra Me	ne nber	# of Members
Standoff	3	4	Square HSS		4	0.25	4		Yes		1
Stabilizer	3.876	5.4	Channel		3.7	5.4	0.188	0.188	No		2
Connection	0.917	6	Channel		3.5	6	0.25	0.25	No		1

Version 2.2

Appurtenance Wind C	Calculations												Wind F	arca (Kinc)			
Model	Height)	Width Dep	th Weigh	nt (lbs)	Kz	gz (b/ft ₂) (E	PA) _N (ft ²)	(EPA) _r (ft ²)		Front	Side	Alpha	a Beta	Gan	nma	
DMP65R-BU6D	71.2	20.7	7.7	89.3		1.08	34.97	11.93	4.4	8	0.41	7	0.156	0.352	0.352	0.156	
DMP65R-BU8D	96.0	20.7	7.7	105.6		1.08	34.97	15.86	5.9	5	0.55	5	0.208	0.468	0.468	0.208	
OPA65R-BU6D	71.2	21.0	7.8	63.5		1.08	34.97	12.22	4.5	4	0.42	7	0.159	0.360	0.360	0.159	
OPA65R-BU8D	96.0	21.0	7.8	76.5		1.08	34.97	16.28	7.3	8	0.56	9	0.258	0.491	0.491	0.258	
7770	55.0	11.0	5.0	35.0		1.08	34.97	3.42	1.5	6	0.12	D	0.055	0.103	0.103	0.055	
RRUS 4449 B5/B12	17.9	13.2	9.4	71.0		1.08	34.97	1.77	1.2	7	0.06	2	0.044	0.058	0.058	0.044	
RRUS 4478 B14	16.5	13.4	7.7	59.9		1.08	34.97	1.66	0.9	5	0.05	в	0.033	0.052	0.052	0.033	
RRUS 8843 B2/B66A	14.9	13.2	10.9	72.0		1.08	34.97	1.48	1.2	2	0.05	2	0.043	0.049	0.049	0.043	
LGP21401	14.2	6.7	5.4	22.0		1.08	34.97	0.71	0.5	8	0.02	5	0.020	0.024	0.024	0.020	
DC6-48-60-18-8F	31.3	11.0	11.0	32.8		1.09	35.04	1.09	1.2	1	0.03	в	0.042	0.039	0.039	0.042	
DC9-48-60-24-8C-EV	31.4	10.3	10.3	26.2		1.09	35.04	1.03	1.1	5	0.03	6	0.040	0.037	0.037	0.040	
Appurtenance Ice Cal	culations													Wind F	area (Kins)		
Model	tiz (in)	Height Wid	th Depth	Weig	ht (lbs)	Kiz	az	(lb/ft ₂)	(EPA) _N (ft ²)	(EPA),(ft [*])		Front	Side	Alpha	a Beta	a G	amma
DMP65R-BU6D	1 73	74.66	24.16	11.16	284 73		1 15	6 39	13.1	4 61	1		0.084	0.039	0.073	0.073	0.039
DMP65R-BU8D	1.73	99.46	24.16	11.16	373 37		1 15	6 39	17.2	6 80	2		0.110	0.051	0.096	0.075	0.05
OPA65B-BU6D	1.73	74.66	24.46	11.26	288 57		1 15	6.39	13.4	3 618	8		0.086	0.039	0.074	0.074	0.039
OPA65R-BU8D	1 73	99.46	24.46	11.26	378 32		1 15	6 39	11.1	8 589	- 9		0.071	0.038	0.063	0.063	0.039
7770	1.73	58.46	14.46	8.46	133.80		1.15	6.39	4.3	1 2.5	3		0.028	0.016	0.025	0.025	0.016
RRUS 4449 B5/B12	1.73	21.36	16.65	12.90	76.49		1.15	6.39	1.5	6 1.2	1		0.010	0.008	0.009	0.009	0.008
RRUS 4478 B14	1.73	19.96	16.86	11.16	66.57		1.15	6.39	1.4	8 0.98	8		0.009	0.006	0.009	0.009	0.006
RRUS 8843 B2/B66A	1.73	18.36	16.66	14.36	72.91		1.15	6.39	1.3	4 1.16	5		0.009	0.007	0.008	0.008	0.007
LGP21401	1.73	17.66	10.16	8.86	34.89		1.15	6.39	0.7	9 0.69	9		0.005	0.004	0.005	0.005	0.004
DC6-48-60-18-8F	1.73	34.71	14.46	14.46	112.72		1.15	6.40	2.2	0 2.20	D		0.014	0.014	0.014	0.014	0.014
DC9-48-60-24-8C-EV	1.73	34.87	13.71	13.71	105.52		1.15	6.40	2.0	9 2.09	Ð		0.013	0.013	0.013	0.013	0.013
Round Members			Wind Cal	culations								1	ce Calculatio	ns			
Member	q2(lb/ft ⁴) /	Ar C	Rrf	Cas	EPA	(ft°) Loai	d (k/ft)		Width (in)	Weight (k/ft)	q ₂ (lb/ft ²)	Arice	Rrfice	e Cas	EPA	(ft°) Lo	oad (k/ft)
Face	34.82	3.65	34.90	0.78	1.59	4.09	0.011		6.9	6 0.02	1 6.3	5	7.25	1.05	1.59	10.89	0.006
Vertical Pipe	34.82	0.33	39.89	0.78	1.59	0.37	0.013		7.4	6 0.03	1 6.3	5	0.62	1.05	1.59	0.93	0.006
Standoff Pipe	34.82	0.45	23.68	0.78	1.59	0.50	0.008		5.8	3 0.02	1 6.3	5	1.09	1.05	1.59	1.64	0.005
Flat Members																	
	111 10-12	Win	d Calculations								111 10-63		ce Calculatio	ns _			
Member	q _z (ib/π) /	At Cas	EPA	Load	(k/ft)				Width (in)	Weight (k/ft)	$q_2(1b/\pi^2)$	Arice	Rrfice	e Cas	EPA	Lo	oad (k/ft)
Standoff	34.82	1.00	1.59	1.43	0.017				7.4	6 0.02	2 6.3	5	1.86	1.05	1.59	2.80	0.006
Appurtenance Seismi	c Calculation	ns															
Model	Weight S	Sds ρ	Cs	As	Ev	Eh											
DMP65R-BU6D	89.3	0.188	1.000	0.094	1.000	0.003	0.008										
DMP65R-BU8D	105.6	0.188	1.000	0.094	1.000	0.004	0.010										
OPA65R-BU6D	63.5	0.188	1.000	0.094	1.000	0.002	0.006										
OPA65R-BU8D	76.5	0.188	1.000	0.094	1.000	0.003	0.007										
7770	35.0	0.188	1.000	0.094	1.000	0.001	0.003										
RRUS 4449 B5/B12	71.0	0.188	1.000	0.094	1.000	0.003	0.007										
RRUS 4478 B14	59.9	0.188	1.000	0.094	1.000	0.002	0.006										
RRUS 8843 B2/B66A	72.0	0.188	1.000	0.094	1.000	0.003	0.007										
LGP21401	22.0	0.188	1.000	0.094	1.000	0.001	0.002										
DC6-48-60-18-8F	32.8	0.188	1.000	0.094	1.000	0.001	0.003										
DC9-48-60-24-8C-EV	26.2	0.188	1.000	0.094	1.000	0.001	0.002										

Version 2.1

APPENDIX C

Software Analysis Output (Alpha)

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torq	Куу	Kzz	Cb	Function
1	FACE	PIPE 3.0	12.5			Lbyy		-				Lateral
2	VERT	PIPE 3.5	1			Lbyy						Lateral
3	STANDOFF	HSS4X4X4	3			Lbyy						Lateral
4	SPIPE	PIPE 2.0	2.25			Lbyy						Lateral
5	MP ALPHA1	PIPE 2.0	6			Lbyy						Lateral
6	MP ALPHA2	PIPE 2.0	8			Lbyy						Lateral
7	MP ALPHA3	PIPE 2.0	6			Lbyy						Lateral
8	MODFACE	PIPE 2.5	12.5			Lbyy						Lateral

Cold Formed Steel Design Parameters

_		Labe	Shape	Length	Lbyy[ft]	Lbzz[ft]	Lcomp to	Lcomp bo	L-torque[ft]	Kyy	Kzz	Cb	R	a[ft]	Funct
	1	STABILIZ	MTC3405	3.876			Lbyy								Lateral
	2	STABILIZ	MTC3405	3.876			Lbyy								Lateral
	3	Connection	MTC3405	1.34			Lbyy								Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List	Materia	Design R
1	FACE	N1	N2			PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical
2	VERT	N6	N5			PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical
3	STANDOFF	N4	N7			HSS4X4X4	Beam	SquareTube	A500 Gr.B Rect	Typical
4	SPIPE	N10	N11			PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical
5	MP ALPHA1	N19	N21			PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical
6	MP ALPHA2	N22	N23			PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical
7	MP ALPHA3	N18	N20			PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical
8	1	N3	N4			RIGID	None	None	RIGID	Typical
9	2	N8	N9			RIGID	None	None	RIGID	Typical
10	3	N15	N12			RIGID	None	None	RIGID	Typical
11	4	N17	N14			RIGID	None	None	RIGID	Typical
12	5	N16	N13			RIGID	None	None	RIGID	Typical
13	MODFACE	N24	N25			PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical
14	6	N29	N26			RIGID	None	None	RIGID	Typical
15	7	N31	N28			RIGID	None	None	RIGID	Typical
16	8	N30	N27			RIGID	None	None	RIGID	Typical
17	STABILIZER1	N37	N34		90	MTC340502	Beam	None	CF (A36)	Typical
18	9	N37	N39			RIGID	None	None	RIGID	Typical
19	12	N33	N36			RIGID	None	None	RIGID	Typical
20	STABILIZER2	N38	N35		90	MTC340501	Beam	None	CF (A36)	Typical
21	13	N38	N40			RIGID	None	None	RIGID	Typical
22	Connection	N34	N35		90	MTC340501	Beam	None	CF (A36)	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	Analysis	Inactive	Seismic
1	FACE					•	Yes		-		None
2	VERT						Yes				None
3	STANDOFF						Yes				None
4	SPIPE						Yes				None
5	MP ALPHA1						Yes				None
6	MP ALPHA2						Yes				None
7	MP ALPHA3						Yes				None
8	1		000000				Yes	** NA **			None
9	2						Yes	** NA **			None

May 5, 2020 2:24 PM Checked By:___

Member Advanced Data (Continued)

	Label	I Release	J Release	Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	.Analysis	Inactive	Seismic
10	3						Yes	** NA **			None
11	4						Yes	** NA **			None
12	5						Yes	** NA **			None
13	MODFACE						Yes	Default			None
14	6						Yes	** NA **			None
15	7						Yes	** NA **			None
16	8						Yes	** NA **			None
17	STABILIZER1						Yes	Default			None
18	9						Yes	** NA **			None
19	12						Yes	** NA **			None
20	STABILIZER2						Yes	Default			None
21	13						Yes	** NA **			None
22	Connection						Yes				None

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5	Density[k/ft^3]	Yie l d[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.25	65	1.15
8	A913 Gr.65	29000	11154	.3	.65	.49	65	1.1	80	1.1

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5 F)	Density[k/ft^3]	Yie l d[ksi]	Fu[ksi]
1	A653 SS Gr33	29500	11346	.3	.65	.49	33	45
2	A653 SS Gr50/1	29500	11346	.3	.65	.49	50	65
3	CF (A36)	29000	11154	.3	.65	.49	36	58

Member Point Loads (BLC 1 : Wind Load (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	285	7.5
2	MP ALPHA3	Y	277	5.5
3	MP ALPHA1	Y	06	4.667
4	SPIPE	Y	038	2.25
5	MP ALPHA1	Y	05	3
6	MP ALPHA2	Y	058	5
7	MP ALPHA3	Y	114	3
8	MP ALPHA1	Y	06	1.333
9	MP ALPHA2	Y	285	2.5
10	MP ALPHA3	Ý	277	.5

Member Point Loads (BLC 2 : Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Z	038	7.5
2	MP ALPHA3	Z	053	5.5
3	MP ALPHA1	Z	018	4.667
4	SPIPE	Z	033	2.25
5	MP ALPHA1	Z	044	3
6	MP ALPHA2	Z	06	5

Member Point Loads (BLC 2 : Dead Load) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
7	MP ALPHA3	Z	143	3
8	MP ALPHA1	Z	018	1.333
9	MP ALPHA2	Z	038	2.5
10	MP ALPHA3	Z	053	.5

Member Point Loads (BLC 3 : Live Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	FACE	Z	5	0

Member Point Loads (BLC 4 : Ice Wind Load (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	036	7.5
2	MP ALPHA3	Y	055	5.5
3	MP ALPHA1	Y	014	4.667
4	SPIPE	Y	014	2.25
5	MP ALPHA1	Y	01	3
6	MP ALPHA2	Y	009	5
7	MP ALPHA3	Y	019	3
8	MP ALPHA1	Y	014	1.333
9	MP ALPHA2	Y	036	2.5
10	MP ALPHA3	Y	055	.5

Member Point Loads (BLC 5 : Ice Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Z	189	7.5
2	MP ALPHA3	Z	187	5.5
3	MP ALPHA1	Z	067	4.667
4	SPIPE	Z	113	2.25
5	MP ALPHA1	Z	07	3
6	MP ALPHA2	Z	067	5
7	MP ALPHA3	Z	149	3
8	MP ALPHA1	Z	067	1.333
9	MP ALPHA2	Z	- 189	2.5
10	MP ALPHA3	Z	187	.5

Member Point Loads (BLC 6 : Wind Load (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	213	7.5
2	MP ALPHA2	Х	123	7.5
З	MP ALPHA3	Y	203	5.5
4	MP ALPHA3	Х	117	5.5
5	MP ALPHA1	Y	045	4.667
6	MP ALPHA1	Х	026	4.667
7	SPIPE	Y	034	2.25
8	SPIPE	Х	02	2.25
9	MP ALPHA1	Y	041	3
10	MP ALPHA1	Х	024	3
11	MP ALPHA2	Y	045	5
12	MP ALPHA2	Х	026	5
13	MP ALPHA3	Y	093	3
14	MP ALPHA3	Х	053	3
15	MP ALPHA1	Y	045	1.333
16	MP ALPHA1	X	026	1.333
17	MP ALPHA2	Y	213	2.5
18	MP ALPHA2	X	123	2.5

Member Point Loads (BLC 6 : Wind Load (30)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
19	MP ALPHA3	Y	203	.5
20	MP ALPHA3	X	117	.5

Member Point Loads (BLC 7 : Ice Wind Load (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	027	7.5
2	MP ALPHA2	Х	016	7.5
3	MP ALPHA3	Y	041	5.5
4	MP ALPHA3	Х	024	5.5
5	MP ALPHA1	Y	011	4.667
6	MP ALPHA1	X	006	4.667
7	SPIPE	Y	012	2.25
8	SPIPE	Х	007	2.25
9	MP ALPHA1	Y	008	3
10	MP ALPHA1	Х	005	3
11	MP ALPHA2	Y	007	5
12	MP ALPHA2	X	004	5
13	MP ALPHA3	Y	015	3
14	MP ALPHA3	X	009	3
15	MP ALPHA1	Y	011	1.333
16	MP ALPHA1	X	006	1.333
17	MP ALPHA2	Y	027	2.5
18	MP ALPHA2	Х	016	2.5
19	MP ALPHA3	Y	041	.5
20	MP ALPHA3	X	024	.5

Member Point Loads (BLC 8 : Wind Load (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	084	7.5
2	MP ALPHA2	Х	145	7.5
3	MP ALPHA3	Y	074	5.5
4	MP ALPHA3	Х	128	5.5
5	MP ALPHA1	Y	018	4.667
6	MP ALPHA1	Х	031	4.667
7	SPIPE	Y	021	2.25
8	SPIPE	Х	036	2.25
9	MP ALPHA1	Y	021	3
10	MP ALPHA1	Х	037	3
11	MP ALPHA2	Y	02	5
12	MP ALPHA2	Х	034	5
13	MP ALPHA3	Y	047	3
14	MP ALPHA3	Х	081	3
15	MP ALPHA1	Y	018	1.333
16	MP ALPHA1	Х	031	1.333
17	MP ALPHA2	Y	084	2.5
18	MP ALPHA2	X	145	2.5
19	MP ALPHA3	Y	074	.5
20	MP ALPHA3	Х	128	.5

Member Point Loads (BLC 9 : Ice Wind Load (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	012	7.5
2	MP ALPHA2	Х	02	7.5
3	MP ALPHA3	Y	016	5.5
4	MP ALPHA3	Х	029	5.5

Member Point Loads (BLC 9 : Ice Wind Load (60)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
5	MP ALPHA1	Y	005	4.667
6	MP ALPHA1	Х	008	4.667
7	SPIPE	Y	007	2.25
8	SPIPE	Х	012	2.25
9	MP ALPHA1	Y	005	3
10	MP ALPHA1	X	008	3
11	MP ALPHA2	Y	004	5
12	MP ALPHA2	Х	006	5
13	MP ALPHA3	Y	008	3
14	MP ALPHA3	X	014	3
15	MP ALPHA1	Y	005	1.333
16	MP ALPHA1	Х	008	1.333
17	MP ALPHA2	Y	012	2.5
18	MP ALPHA2	Х	02	2.5
19	MP ALPHA3	Y	016	.5
20	MP ALPHA3	X	029	.5

Member Point Loads (BLC 10 : Wind Load (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	129	7.5
2	MP ALPHA3	Х	104	5.5
3	MP ALPHA1	Х	027	4.667
4	SPIPE	Х	042	2.25
5	MP ALPHA1	Х	04	3
6	MP ALPHA2	Х	033	5
7	MP ALPHA3	Х	087	3
8	MP ALPHA1	Х	027	1.333
9	MP ALPHA2	X	129	2.5
10	MP ALPHA3	X	104	.5

Member Point Loads (BLC 11 : Ice Wind Load (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	X	019	7.5
2	MP ALPHA3	Х	026	5.5
3	MP ALPHA1	Х	008	4.667
4	SPIPE	Х	014	2.25
5	MP ALPHA1	Х	009	3
6	MP ALPHA2	Х	006	5
7	MP ALPHA3	X	015	3
8	MP ALPHA1	Х	008	1.333
9	MP ALPHA2	Х	019	2.5
10	MP ALPHA3	X	026	.5

Member Point Loads (BLC 12 : Wind Load (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.084	7.5
2	MP ALPHA2	Х	145	7.5
3	MP ALPHA3	Y	.074	5.5
4	MP ALPHA3	Х	128	5.5
5	MP ALPHA1	Y	.018	4.667
6	MP ALPHA1	Х	031	4.667
7	SPIPE	Y	.021	2.25
8	SPIPE	Х	036	2.25
9	MP ALPHA1	Y	.021	3
10	MP ALPHA1	X	037	3

Member Point Loads (BLC 12 : Wind Load (120)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
11	MP ALPHA2	Y	.02	5
12	MP ALPHA2	Х	034	5
13	MP ALPHA3	Y	.047	3
14	MP ALPHA3	Х	081	3
15	MP ALPHA1	Y	.018	1.333
16	MP ALPHA1	Х	031	1.333
17	MP ALPHA2	Y	.084	2.5
18	MP ALPHA2	Х	145	2.5
19	MP ALPHA3	Ý	.074	.5
20	MP ALPHA3	X	128	.5

Member Point Loads (BLC 13 : Ice Wind Load (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.012	7.5
2	MP ALPHA2	Х	02	7.5
3	MP ALPHA3	Y	.016	5.5
4	MP ALPHA3	X	029	5.5
5	MP ALPHA1	Y	.005	4.667
6	MP ALPHA1	Х	008	4.667
7	SPIPE	Y	.007	2.25
8	SPIPE	Х	012	2.25
9	MP ALPHA1	Y	.005	3
10	MP ALPHA1	Х	008	3
11	MP ALPHA2	Y	.004	5
12	MP ALPHA2	Х	006	5
13	MP ALPHA3	Y	.008	3
14	MP ALPHA3	X	014	3
15	MP ALPHA1	Y	.005	1.333
16	MP ALPHA1	Х	008	1.333
17	MP ALPHA2	Y	.012	2.5
18	MP ALPHA2	X	02	2.5
19	MP ALPHA3	Y	.016	.5
20	MP ALPHA3	X	029	.5

Member Point Loads (BLC 14 : Wind Load (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.213	7.5
2	MP ALPHA2	Х	123	7.5
3	MP ALPHA3	Y	.203	5.5
4	MP ALPHA3	Х	117	5.5
5	MP ALPHA1	Y	.045	4.667
6	MP ALPHA1	Х	026	4.667
7	SPIPE	Y	.034	2.25
8	SPIPE	Х	02	2.25
9	MP ALPHA1	Y	.041	3
10	MP ALPHA1	Х	024	3
11	MP ALPHA2	Y	.045	5
12	MP ALPHA2	Х	026	5
13	MP ALPHA3	Y	.093	3
14	MP ALPHA3	Х	053	3
15	MP ALPHA1	Y	.045	1.333
16	MP ALPHA1	Х	026	1.333
17	MP ALPHA2	Y	.213	2.5
18	MP ALPHA2	Х	123	2.5
19	MP ALPHA3	Y	.203	.5
20	MP ALPHA3	Х	117	.5

Member Point Loads (BLC 15 : Ice Wind Load (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.027	7.5
2	MP ALPHA2	Х	016	7.5
3	MP ALPHA3	Y	.041	5.5
4	MP ALPHA3	Х	024	5.5
5	MP ALPHA1	Y	.011	4.667
6	MP ALPHA1	Х	006	4.667
7	SPIPE	Y	.012	2.25
8	SPIPE	Х	007	2.25
9	MP ALPHA1	Y	.008	3
10	MP ALPHA1	X	005	3
11	MP ALPHA2	Y	.007	5
12	MP ALPHA2	Х	004	5
13	MP ALPHA3	Y	.015	3
14	MP ALPHA3	Х	009	3
15	MP ALPHA1	Y	.011	1.333
16	MP ALPHA1	X	006	1.333
17	MP ALPHA2	Y	.027	2.5
18	MP ALPHA2	X	016	2.5
19	MP ALPHA3	Y	.041	.5
20	MP ALPHA3	X	024	.5

Member Point Loads (BLC 16 : Wind Load (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.285	7.5
2	MP ALPHA3	Y	.277	5.5
3	MP ALPHA1	Y	.06	4.667
4	SPIPE	Y	.038	2.25
5	MP ALPHA1	Y	.05	3
6	MP ALPHA2	Y	.058	5
7	MP ALPHA3	Y	.114	3
8	MP ALPHA1	Y	.06	1.333
9	MP ALPHA2	Y	.285	2.5
10	MP ALPHA3	Y	.277	.5

Member Point Loads (BLC 17 : Ice Wind Load (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.036	7.5
2	MP ALPHA3	Y	.055	5.5
3	MP ALPHA1	Y	.014	4.667
4	SPIPE	Y	.014	2.25
5	MP ALPHA1	Y	.01	3
6	MP ALPHA2	Y	.009	5
7	MP ALPHA3	Y	.019	3
8	MP ALPHA1	Y	.014	1.333
9	MP ALPHA2	Y	.036	2.5
10	MP ALPHA3	Y	.055	.5

Member Point Loads (BLC 18 : Wind Load (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.213	7.5
2	MP ALPHA2	Х	.123	7.5
3	MP ALPHA3	Y	.203	5.5
4	MP ALPHA3	Х	.117	5.5
5	MP ALPHA1	Y	.045	4.667
6	MP ALPHA1	X	.026	4.667

Member Point Loads (BLC 18 : Wind Load (210)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
7	SPIPE	Y	.034	2.25
8	SPIPE	Х	.02	2.25
9	MP ALPHA1	Y	.041	3
10	MP ALPHA1	Х	.024	3
11	MP ALPHA2	Y	.045	5
12	MP ALPHA2	Х	.026	5
13	MP ALPHA3	Y	.093	3
14	MP ALPHA3	Х	.053	3
15	MP ALPHA1	Y	.045	1.333
16	MP ALPHA1	Х	.026	1.333
17	MP ALPHA2	Y	.213	2.5
18	MP ALPHA2	Х	.123	2.5
19	MP ALPHA3	Y	.203	.5
20	MP ALPHA3	Х	.117	.5

Member Point Loads (BLC 19 : Ice Wind Load (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.027	7.5
2	MP ALPHA2	Х	.016	7.5
3	MP ALPHA3	Y	.041	5.5
4	MP ALPHA3	Х	.024	5.5
5	MP ALPHA1	Y	.011	4.667
6	MP ALPHA1	Х	.006	4.667
7	SPIPE	Y	.012	2.25
8	SPIPE	Х	.007	2.25
9	MP ALPHA1	Y	.008	3
10	MP ALPHA1	Х	.005	3
11	MP ALPHA2	Y	.007	5
12	MP ALPHA2	Х	.004	5
13	MP ALPHA3	Y	.015	3
14	MP ALPHA3	Х	.009	3
15	MP ALPHA1	Y	.011	1.333
16	MP ALPHA1	Х	.006	1.333
17	MP ALPHA2	Y	.027	2.5
18	MP ALPHA2	X	.016	2.5
19	MP ALPHA3	Y	.041	.5
20	MP ALPHA3	Х	.024	.5

Member Point Loads (BLC 20 : Wind Load (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.084	7.5
2	MP ALPHA2	Х	.145	7.5
3	MP ALPHA3	Y	.074	5.5
4	MP ALPHA3	Х	.128	5.5
5	MP ALPHA1	Y	.018	4.667
6	MP ALPHA1	Х	.031	4.667
7	SPIPE	Y	.021	2.25
8	SPIPE	Х	.036	2.25
9	MP ALPHA1	Y	.021	3
10	MP ALPHA1	Х	.037	3
11	MP ALPHA2	Y	.02	5
12	MP ALPHA2	Х	.034	5
13	MP ALPHA3	Y	.047	3
14	MP ALPHA3	Х	.081	3
15	MP ALPHA1	Y	.018	1.333
16	MP ALPHA1	X	.031	1.333

Member Point Loads (BLC 20 : Wind Load (240)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
17	MP ALPHA2	Y	.084	2.5
18	MP ALPHA2	Х	.145	2.5
19	MP ALPHA3	Y	.074	.5
20	MP ALPHA3	Х	.128	.5

Member Point Loads (BLC 21 : Ice Wind Load (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.012	7.5
2	MP ALPHA2	Х	.02	7.5
3	MP ALPHA3	Y	.016	5.5
4	MP ALPHA3	Х	.029	5.5
5	MP ALPHA1	Y	.005	4.667
6	MP ALPHA1	Х	.008	4.667
7	SPIPE	Y	.007	2.25
8	SPIPE	Х	.012	2.25
9	MP ALPHA1	Y	.005	3
10	MP ALPHA1	Х	.008	3
11	MP ALPHA2	Y	.004	5
12	MP ALPHA2	Х	.006	5
13	MP ALPHA3	Y	.008	3
14	MP ALPHA3	X	.014	3
15	MP ALPHA1	Y	.005	1.333
16	MP ALPHA1	Х	.008	1.333
17	MP ALPHA2	Y	.012	2.5
18	MP ALPHA2	X	.02	2.5
19	MP ALPHA3	Y	.016	.5
20	MP ALPHA3	Х	.029	.5

Member Point Loads (BLC 22 : Wind Load (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.129	7.5
2	MP ALPHA3	Х	.104	5.5
3	MP ALPHA1	Х	.027	4.667
4	SPIPE	Х	.042	2.25
5	MP ALPHA1	Х	.04	3
6	MP ALPHA2	Х	.033	5
7	MP ALPHA3	Х	.087	3
8	MP ALPHA1	Х	.027	1.333
9	MP ALPHA2	Х	.129	2.5
10	MP ALPHA3	Х	.104	.5

Member Point Loads (BLC 23 : Ice Wind Load (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.019	7.5
2	MP ALPHA3	Х	.026	5.5
3	MP ALPHA1	Х	.008	4.667
4	SPIPE	Х	.014	2.25
5	MP ALPHA1	Х	.009	3
6	MP ALPHA2	Х	.006	5
7	MP ALPHA3	Х	.015	3
8	MP ALPHA1	Х	.008	1.333
9	MP ALPHA2	Х	.019	2.5
10	MP ALPHA3	X	.026	.5

Member Point Loads (BLC 24 : Wind Load (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	084	7.5
2	MP ALPHA2	Х	.145	7.5
3	MP ALPHA3	Y	074	5.5
4	MP ALPHA3	Х	.128	5.5
5	MP ALPHA1	Y	018	4.667
6	MP ALPHA1	X	.031	4.667
7	SPIPE	Y	021	2.25
8	SPIPE	Х	.036	2.25
9	MP ALPHA1	Y	021	3
10	MP ALPHA1	X	.037	3
11	MP ALPHA2	Y	02	5
12	MP ALPHA2	Х	.034	5
13	MP ALPHA3	Y	047	3
14	MP ALPHA3	Х	.081	3
15	MP ALPHA1	Y	018	1.333
16	MP ALPHA1	Х	.031	1.333
17	MP ALPHA2	Y	084	2.5
18	MP ALPHA2	Х	.145	2.5
19	MP ALPHA3	Y	074	.5
20	MP ALPHA3	Х	.128	.5

Member Point Loads (BLC 25 : Ice Wind Load (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	012	7.5
2	MP ALPHA2	X	.02	7.5
3	MP ALPHA3	Y	016	5.5
4	MP ALPHA3	X	.029	5.5
5	MP ALPHA1	Y	005	4.667
6	MP ALPHA1	Х	.008	4.667
7	SPIPE	Y	007	2.25
8	SPIPE	Х	.012	2.25
9	MP ALPHA1	Y	005	3
10	MP ALPHA1	X	.008	3
11	MP ALPHA2	Y	004	5
12	MP ALPHA2	Х	.006	5
13	MP ALPHA3	Y	008	3
14	MP ALPHA3	X	.014	3
15	MP ALPHA1	Y	005	1.333
16	MP ALPHA1	Х	.008	1.333
17	MP ALPHA2	Y	012	2.5
18	MP ALPHA2	X	.02	2.5
19	MP ALPHA3	Y	016	.5
20	MP ALPHA3	X	.029	.5

Member Point Loads (BLC 26 : Wind Load (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	213	7.5
2	MP ALPHA2	Х	.123	7.5
3	MP ALPHA3	Y	203	5.5
4	MP ALPHA3	Х	.117	5.5
5	MP ALPHA1	Y	045	4.667
6	MP ALPHA1	Х	.026	4.667
7	SPIPE	Y	034	2.25
8	SPIPE	Х	.02	2.25
9	MP ALPHA1	Y	041	3
10	MP ALPHA1	Х	.024	3

Member Point Loads (BLC 26 : Wind Load (330)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
11	MP ALPHA2	Y	045	5
12	MP ALPHA2	Х	.026	5
13	MP ALPHA3	Y	093	3
14	MP ALPHA3	Х	.053	3
15	MP ALPHA1	Y	045	1.333
16	MP ALPHA1	Х	.026	1.333
17	MP ALPHA2	Y	213	2.5
18	MP ALPHA2	Х	.123	2.5
19	MP ALPHA3	Ý	203	.5
20	MP ALPHA3	Х	.117	.5

Member Point Loads (BLC 27 : Ice Wind Load (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	027	7.5
2	MP ALPHA2	X	.016	7.5
3	MP ALPHA3	Y	041	5.5
4	MP ALPHA3	Х	.024	5.5
5	MP ALPHA1	Y	011	4.667
6	MP ALPHA1	Х	.006	4.667
7	SPIPE	Y	012	2.25
8	SPIPE	Х	.007	2.25
9	MP ALPHA1	Y	008	3
10	MP ALPHA1	Х	.005	3
11	MP ALPHA2	Y	007	5
12	MP ALPHA2	Х	.004	5
13	MP ALPHA3	Y	015	3
14	MP ALPHA3	Х	.009	3
15	MP ALPHA1	Y	011	1.333
16	MP ALPHA1	Х	.006	1.333
17	MP ALPHA2	Y	027	2.5
18	MP ALPHA2	X	.016	2.5
19	MP ALPHA3	Y	041	.5
20	MP ALPHA3	X	.024	.5

Member Point Loads (BLC 28 : Maintanence (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	019	7.5
2	MP ALPHA3	Y	018	5.5
3	MP ALPHA1	Y	004	4.667
4	SPIPE	Y	003	2.25
5	MP ALPHA1	Y	003	3
6	MP ALPHA2	Y	004	5
7	MP ALPHA3	Y	007	3
8	MP ALPHA1	Y	004	1.333
9	MP ALPHA2	Y	019	2.5
10	MP ALPHA3	Y	018	.5

Member Point Loads (BLC 29 : Maintanence (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	014	7.5
2	MP ALPHA2	Х	008	7.5
3	MP ALPHA3	Y	013	5.5
4	MP ALPHA3	Х	008	5.5
5	MP ALPHA1	Y	003	4.667
6	MP ALPHA1	X	002	4.667

Member Point Loads (BLC 29 : Maintanence (30)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
7	SPIPE	Y	002	2.25
8	SPIPE	Х	001	2.25
9	MP ALPHA1	Y	003	3
10	MP ALPHA1	Х	002	3
11	MP ALPHA2	Y	003	5
12	MP ALPHA2	Х	002	5
13	MP ALPHA3	Y	006	3
14	MP ALPHA3	Х	004	3
15	MP ALPHA1	Y	003	1.333
16	MP ALPHA1	Х	002	1.333
17	MP ALPHA2	Y	014	2.5
18	MP ALPHA2	Х	008	2.5
19	MP ALPHA3	Ý	013	.5
20	MP ALPHA3	X	008	.5

Member Point Loads (BLC 30 : Maintanence (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	006	7.5
2	MP ALPHA2	Х	01	7.5
3	MP ALPHA3	Y	005	5.5
4	MP ALPHA3	Х	008	5.5
5	MP ALPHA1	Y	001	4.667
6	MP ALPHA1	Х	002	4.667
7	SPIPE	Y	001	2.25
8	SPIPE	Х	002	2.25
9	MP ALPHA1	Y	001	3
10	MP ALPHA1	Х	002	3
11	MP ALPHA2	Y	001	5
12	MP ALPHA2	Х	002	5
13	MP ALPHA3	Y	003	3
14	MP ALPHA3	Х	005	3
15	MP ALPHA1	Y	001	1.333
16	MP ALPHA1	Х	002	1.333
17	MP ALPHA2	Y	006	2.5
18	MP ALPHA2	X	01	2.5
19	MP ALPHA3	Y	005	.5
20	MP ALPHA3	X	008	.5

Member Point Loads (BLC 31 : Maintanence (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	008	7.5
2	MP ALPHA3	X	007	5.5
3	MP ALPHA1	Х	002	4.667
4	SPIPE	Х	003	2.25
5	MP ALPHA1	Х	003	3
6	MP ALPHA2	X	002	5
7	MP ALPHA3	Х	006	3
8	MP ALPHA1	X	002	1.333
9	MP ALPHA2	X	008	2.5
10	MP ALPHA3	X	007	.5

Member Point Loads (BLC 32 : Maintanence (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.006	7.5
2	MP ALPHA2	X	01	7.5

Member Point Loads (BLC 32 : Maintanence (120)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
3	MP ALPHA3	Y	.005	5.5
4	MP ALPHA3	Х	008	5.5
5	MP ALPHA1	Y	.001	4.667
6	MP ALPHA1	Х	002	4.667
7	SPIPE	Y	.001	2.25
8	SPIPE	Х	002	2.25
9	MP ALPHA1	Y	.001	3
10	MP ALPHA1	Х	002	3
11	MP ALPHA2	Y	.001	5
12	MP ALPHA2	Х	002	5
13	MP ALPHA3	Y	.003	3
14	MP ALPHA3	Х	005	3
15	MP ALPHA1	Y	.001	1.333
16	MP ALPHA1	Х	002	1.333
17	MP ALPHA2	Y	.006	2.5
18	MP ALPHA2	X	01	2.5
19	MP ALPHA3	Ý	.005	.5
20	MP ALPHA3	X	008	.5

Member Point Loads (BLC 33 : Maintanence (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.014	7.5
2	MP ALPHA2	Х	008	7.5
3	MP ALPHA3	Y	.013	5.5
4	MP ALPHA3	Х	008	5.5
5	MP ALPHA1	Y	.003	4.667
6	MP ALPHA1	Х	002	4.667
7	SPIPE	Y	.002	2.25
8	SPIPE	Х	001	2.25
9	MP ALPHA1	Y	.003	3
10	MP ALPHA1	Х	002	3
11	MP ALPHA2	Y	.003	5
12	MP ALPHA2	Х	002	5
13	MP ALPHA3	Y	.006	3
14	MP ALPHA3	Х	004	3
15	MP ALPHA1	Y	.003	1.333
16	MP ALPHA1	X	002	1.333
17	MP ALPHA2	Y	.014	2.5
18	MP ALPHA2	X	008	2.5
19	MP ALPHA3	Ý	.013	.5
20	MP ALPHA3	X	008	.5

Member Point Loads (BLC 34 : Maintanence (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.019	7.5
2	MP ALPHA3	Y	.018	5.5
3	MP ALPHA1	Y	.004	4.667
4	SPIPE	Y	.003	2.25
5	MP ALPHA1	Y	.003	3
6	MP ALPHA2	Y	.004	5
7	MP ALPHA3	Y	.007	3
8	MP ALPHA1	Y	.004	1.333
9	MP ALPHA2	Y	.019	2.5
10	MP ALPHA3	Y	.018	.5

Member Point Loads (BLC 35 : Maintanence (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.014	7.5
2	MP ALPHA2	Х	.008	7.5
3	MP ALPHA3	Y	.013	5.5
4	MP ALPHA3	Х	.008	5.5
5	MP ALPHA1	Y	.003	4.667
6	MP ALPHA1	Х	.002	4.667
7	SPIPE	Y	.002	2.25
8	SPIPE	Х	.001	2.25
9	MP ALPHA1	Y	.003	3
10	MP ALPHA1	Х	.002	3
11	MP ALPHA2	Y	.003	5
12	MP ALPHA2	Х	.002	5
13	MP ALPHA3	Y	.006	3
14	MP ALPHA3	Х	.004	3
15	MP ALPHA1	Y	.003	1.333
16	MP ALPHA1	Х	.002	1.333
17	MP ALPHA2	Y	.014	2.5
18	MP ALPHA2	X	.008	2.5
19	MP ALPHA3	Y	.013	.5
20	MP ALPHA3	Х	.008	.5

Member Point Loads (BLC 36 : Maintanence (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.006	7.5
2	MP ALPHA2	Х	.01	7.5
3	MP ALPHA3	Y	.005	5.5
4	MP ALPHA3	Х	.008	5.5
5	MP ALPHA1	Y	.001	4.667
6	MP ALPHA1	Х	.002	4.667
7	SPIPE	Y	.001	2.25
8	SPIPE	Х	.002	2.25
9	MP ALPHA1	Y	.001	3
10	MP ALPHA1	Х	.002	3
11	MP ALPHA2	Y	.001	5
12	MP ALPHA2	Х	.002	5
13	MP ALPHA3	Y	.003	3
14	MP ALPHA3	Х	.005	3
15	MP ALPHA1	Y	.001	1.333
16	MP ALPHA1	Х	.002	1.333
17	MP ALPHA2	Y	.006	2.5
18	MP ALPHA2	Х	.01	2.5
19	MP ALPHA3	Y	.005	.5
20	MP ALPHA3	X	.008	.5

Member Point Loads (BLC 37 : Maintanence (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.008	7.5
2	MP ALPHA3	Х	.007	5.5
3	MP ALPHA1	Х	.002	4.667
4	SPIPE	Х	.003	2.25
5	MP ALPHA1	Х	.003	3
6	MP ALPHA2	Х	.002	5
7	MP ALPHA3	Х	.006	3
8	MP ALPHA1	Х	.002	1.333
9	MP ALPHA2	Х	.008	2.5
10	MP ALPHA3	X	.007	.5

Member Point Loads (BLC 38 : Maintanence (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	006	7.5
2	MP ALPHA2	Х	.01	7.5
3	MP ALPHA3	Y	005	5.5
4	MP ALPHA3	Х	.008	5.5
5	MP ALPHA1	Y	001	4.667
6	MP ALPHA1	X	.002	4.667
7	SPIPE	Y	001	2.25
8	SPIPE	Х	.002	2.25
9	MP ALPHA1	Y	001	3
10	MP ALPHA1	X	.002	3
11	MP ALPHA2	Y	001	5
12	MP ALPHA2	Х	.002	5
13	MP ALPHA3	Y	003	3
14	MP ALPHA3	X	.005	3
15	MP ALPHA1	Y	001	1.333
16	MP ALPHA1	X	.002	1.333
17	MP ALPHA2	Y	006	2.5
18	MP ALPHA2	Х	.01	2.5
19	MP ALPHA3	Y	005	.5
20	MP ALPHA3	X	.008	.5

Member Point Loads (BLC 39 : Maintanence (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	014	7.5
2	MP ALPHA2	Х	.008	7.5
3	MP ALPHA3	Y	013	5.5
4	MP ALPHA3	Х	.008	5.5
5	MP ALPHA1	Y	003	4.667
6	MP ALPHA1	Х	.002	4.667
7	SPIPE	Y	002	2.25
8	SPIPE	Х	.001	2.25
9	MP ALPHA1	Y	003	3
10	MP ALPHA1	Х	.002	3
11	MP ALPHA2	Y	003	5
12	MP ALPHA2	Х	.002	5
13	MP ALPHA3	Y	006	3
14	MP ALPHA3	Х	.004	3
15	MP ALPHA1	Y	003	1.333
16	MP ALPHA1	Х	.002	1.333
17	MP ALPHA2	Y	014	2.5
18	MP ALPHA2	Х	.008	2.5
19	MP ALPHA3	Y	013	.5
20	MP ALPHA3	Х	.008	.5

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		N	o Data to Print	•		

Member Distributed Loads (BLC 1 : Wind Load (0))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	01	01	0	0
2	VERT	PY	011	011	0	0
3	STANDOFF	PY	017	017	0	0

Member Distributed Loads (BLC 1 : Wind Load (0)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
4	SPIPE	PY	007	007	0	0
5	MP ALPHA1	PY	007	007	0	0
6	MP ALPHA2	PY	007	007	0	0
7	MP ALPHA3	PY	007	007	0	0
8	MODFACE	PY	01	01	0	0
9	STABILIZER1	PY	017	017	0	0
10	STABILIZER2	PY	017	017	0	0

Member Distributed Loads (BLC 4 : Ice Wind Load (0))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	004	004	0	0
2	VERT	PY	004	004	0	0
3	STANDOFF	PY	004	004	0	0
4	SPIPE	PY	003	003	0	0
5	MP ALPHA1	PY	003	003	0	0
6	MP ALPHA2	PY	003	003	0	0
7	MP ALPHA3	PY	003	003	0	0
8	MODFACE	PY	004	004	0	0
9	STABILIZER1	PY	004	004	0	0
10	STABILIZER2	PY	004	004	0	0

Member Distributed Loads (BLC 5 : Ice Dead Load)

	Member Labe	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	Z	011	011	0	0
2	VERT	Z	012	012	0	0
3	STANDOFF	Z	015	015	0	0
4	SPIPE	Z	009	009	0	0
5	MP ALPHA1	Z	009	009	0	0
6	MP ALPHA2	Z	009	009	0	0
7	MP ALPHA3	Z	009	009	0	0
8	MODFACE	Z	011	011	0	0
9	STABILIZER1	Z	015	015	0	0
10	STABILIZER2	Z	015	015	0	0

Member Distributed Loads (BLC 6 : Wind Load (30))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	009	009	0	0
2	VERT	PY	01	01	0	0
3	STANDOFF	PY	015	015	0	0
4	SPIPE	PY	006	006	0	0
5	MP ALPHA1	PY	006	006	0	0
6	MP ALPHA2	PY	006	006	0	0
7	MP ALPHA3	PY	006	006	0	0
8	FACE	PX	005	005	0	0
9	VERT	PX	005	005	0	0
10	STANDOFF	PX	009	009	0	0
11	SPIPE	PX	004	004	0	0
12	MP ALPHA1	PX	004	004	0	0
13	MP ALPHA2	PX	004	004	0	0
14	MP ALPHA3	PX	004	004	0	0
15	MODFACE	PY	009	009	0	0
16	MODFACE	PX	005	005	0	0
17	STABILIZER1	PY	015	015	0	0
18	STABILIZER1	PX	009	009	0	0
19	STABILIZER2	PY	015	015	0	0

Member Distributed Loads (BLC 6 : Wind Load (30)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
20	STABILIZER2	PX	009	009	0	0

Member Distributed Loads (BLC 7 : Ice Wind Load (30))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	003	003	0	0
2	VERT	PY	003	003	0	0
3	STANDOFF	PY	003	003	0	0
4	SPIPE	PY	003	003	0	0
5	MP ALPHA1	PY	003	003	0	0
6	MP ALPHA2	PY	003	003	0	0
7	MP ALPHA3	PY	003	003	0	0
8	FACE	PX	002	002	0	0
9	VERT	PX	002	002	0	0
10	STANDOFF	PX	002	002	0	0
11	SPIPE	PX	002	002	0	0
12	MP ALPHA1	PX	002	002	0	0
13	MP ALPHA2	PX	002	002	0	0
14	MP ALPHA3	PX	002	002	0	0
15	MODFACE	PY	003	003	0	0
16	MODFACE	PX	002	002	0	0
17	STABILIZER1	PY	003	003	0	0
18	STABILIZER1	PX	002	002	0	0
19	STABILIZER2	PY	003	003	0	0
20	STABILIZER2	PX	002	002	0	0

Member Distributed Loads (BLC 8 : Wind Load (60))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	005	005	0	0
2	VERT	PY	005	005	0	0
3	STANDOFF	PY	009	009	0	0
4	SPIPE	PY	004	004	0	0
5	MP ALPHA1	PY	004	004	0	0
6	MP ALPHA2	PY	004	004	0	0
7	MP ALPHA3	PY	004	004	0	0
8	FACE	PX	009	009	0	0
9	VERT	PX	01	01	0	0
10	STANDOFF	PX	015	015	0	0
11	SPIPE	PX	006	006	0	0
12	MP ALPHA1	PX	006	006	0	0
13	MP ALPHA2	PX	006	006	0	0
14	MP ALPHA3	PX	006	006	0	0
15	MODFACE	PY	005	005	0	0
16	MODFACE	PX	009	009	0	0
17	STABILIZER1	PY	009	009	0	0
18	STABILIZER1	PX	015	015	0	0
19	STABILIZER2	PY	009	009	0	0
20	STABILIZER2	PX	015	015	0	0

Member Distributed Loads (BLC 9 : Ice Wind Load (60))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	_End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	002	002	0	0
2	VERT	PY	002	002	0	0
3	STANDOFF	PY	002	002	0	0
4	SPIPE	PY	002	002	0	0
5	MP ALPHA1	PY	002	002	0	0

Member Distributed Loads (BLC 9 : Ice Wind Load (60)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	.Start Location[ft,%]	End Location[ft,%]
6	MP ALPHA2	PY	002	002	0	0
7	MP ALPHA3	PY	002	002	0	0
8	FACE	PX	003	003	0	0
9	VERT	PX	003	003	0	0
10	STANDOFF	PX	003	003	0	0
11	SPIPE	PX	003	003	0	0
12	MP ALPHA1	PX	003	003	0	0
13	MP ALPHA2	PX	003	003	0	0
14	MP ALPHA3	PX	003	003	0	0
15	MODFACE	PY	002	002	0	0
16	MODFACE	PX	003	003	0	0
17	STABILIZER1	PY	002	002	0	0
18	STABILIZER1	PX	003	003	0	0
19	STABILIZER2	PY	002	002	0	0
20	STABILIZER2	PX	003	003	0	0

Member Distributed Loads (BLC 10 : Wind Load (90))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	01	01	0	0
2	VERT	PX	011	011	0	0
3	STANDOFF	PX	017	017	0	0
4	SPIPE	PX	007	007	0	0
5	MP ALPHA1	PX	007	007	0	0
6	MP ALPHA2	PX	007	007	0	0
7	MP ALPHA3	PX	007	007	0	0
8	MODFACE	PX	01	01	0	0
9	STABILIZER1	PX	017	017	0	0
10	STABILIZER2	PX	017	017	0	0

Member Distributed Loads (BLC 11 : Ice Wind Load (90))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	004	004	0	0
2	VERT	PX	004	004	0	0
3	STANDOFF	PX	004	004	0	0
4	SPIPE	PX	003	003	0	0
5	MP ALPHA1	PX	003	003	0	0
6	MP ALPHA2	PX	003	003	0	0
7	MP ALPHA3	PX	003	003	0	0
8	MODFACE	PX	004	004	0	0
9	STABILIZER1	PX	004	004	0	0
10	STABILIZER2	PX	004	004	0	0

Member Distributed Loads (BLC 12 : Wind Load (120))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.005	.005	0	0
2	VERT	PY	.005	.005	0	0
3	STANDOFF	PY	.009	.009	0	0
4	SPIPE	PY	.004	.004	0	0
5	MP ALPHA1	PY	.004	.004	0	0
6	MP ALPHA2	PY	.004	.004	0	0
7	MP ALPHA3	PY	.004	.004	0	0
8	FACE	PX	009	009	0	0
9	VERT	PX	01	01	0	0
10	STANDOFF	PX	015	015	0	0
11	SPIPE	PX	006	006	0	0

Member Distributed Loads (BLC 12 : Wind Load (120)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
12	MP ALPHA1	PX	006	006	0	0
13	MP ALPHA2	PX	006	006	0	0
14	MP ALPHA3	PX	006	006	0	0
15	MODFACE	PY	.005	.005	0	0
16	MODFACE	PX	009	009	0	0
17	STABILIZER1	PY	.009	.009	0	0
18	STABILIZER1	PX	015	015	0	0
19	STABILIZER2	PY	.009	.009	0	0
20	STABILIZER2	PX	015	015	0	0

Member Distributed Loads (BLC 13 : Ice Wind Load (120))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.002	.002	0	0
2	VERT	PY	.002	.002	0	0
3	STANDOFF	PY	.002	.002	0	0
4	SPIPE	PY	.002	.002	0	0
5	MP ALPHA1	PY	.002	.002	0	0
6	MP ALPHA2	PY	.002	.002	0	0
7	MP ALPHA3	PY	.002	.002	0	0
8	FACE	PX	003	003	0	0
9	VERT	PX	003	003	0	0
10	STANDOFF	PX	003	003	0	0
11	SPIPE	PX	003	003	0	0
12	MP ALPHA1	PX	003	003	0	0
13	MP ALPHA2	PX	003	003	0	0
14	MP ALPHA3	PX	003	003	0	0
15	MODFACE	PY	.002	.002	0	0
16	MODFACE	PX	003	003	0	0
17	STABILIZER1	PY	.002	.002	0	0
18	STABILIZER1	PX	003	003	0	0
19	STABILIZER2	PY	.002	.002	0	0
20	STABILIZER2	PX	003	003	0	0

Member Distributed Loads (BLC 14 : Wind Load (150))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.009	.009	0	0
2	VERT	PY	.01	.01	0	0
3	STANDOFF	PY	.015	.015	0	0
4	SPIPE	PY	.006	.006	0	0
5	MP ALPHA1	PY	.006	.006	0	0
6	MP ALPHA2	PY	.006	.006	0	0
7	MP ALPHA3	PY	.006	.006	0	0
8	FACE	PX	005	005	0	0
9	VERT	PX	005	005	0	0
10	STANDOFF	PX	009	009	0	0
11	SPIPE	PX	004	004	0	0
12	MP ALPHA1	PX	004	004	0	0
13	MP ALPHA2	PX	004	004	0	0
14	MP ALPHA3	PX	004	004	0	0
15	MODFACE	PY	.009	.009	0	0
16	MODFACE	PX	005	005	0	0
17	STABILIZER1	PY	.015	.015	0	0
18	STABILIZER1	PX	009	009	0	0
19	STABILIZER2	PY	.015	.015	0	0
20	STABILIZER2	PX	009	009	0	0

Page 20

Member Distributed Loads (BLC 15 : Ice Wind Load (150))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.003	.003	0	0
2	VERT	PY	.003	.003	0	0
3	STANDOFF	PY	.003	.003	0	0
4	SPIPE	PY	.003	.003	0	0
5	MP ALPHA1	PY	.003	.003	0	0
6	MP ALPHA2	PY	.003	.003	0	0
7	MP ALPHA3	PY	.003	.003	0	0
8	FACE	PX	002	002	0	0
9	VERT	PX	002	002	0	0
10	STANDOFF	PX	002	002	0	0
11	SPIPE	PX	002	002	0	0
12	MP ALPHA1	PX	002	002	0	0
13	MP ALPHA2	PX	002	002	0	0
14	MP ALPHA3	PX	002	002	0	0
15	MODFACE	PY	.003	.003	0	0
16	MODFACE	PX	002	002	0	0
17	STABILIZER1	PY	.003	.003	0	0
18	STABILIZER1	PX	002	002	0	0
19	STABILIZER2	PY	.003	.003	0	0
20	STABILIZER2	PX	002	002	0	0

Member Distributed Loads (BLC 16 : Wind Load (180))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.01	.01	0	0
2	VERT	PY	.011	.011	0	0
3	STANDOFF	PY	.017	.017	0	0
4	SPIPE	PY	.007	.007	0	0
5	MP ALPHA1	PY	.007	.007	0	0
6	MP ALPHA2	PY	.007	.007	0	0
7	MP ALPHA3	PY	.007	.007	0	0
8	MODFACE	PY	.01	.01	0	0
9	STABILIZER1	PY	.017	.017	0	0
10	STABILIZER2	PY	.017	.017	0	0

Member Distributed Loads (BLC 17 : Ice Wind Load (180))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.004	.004	0	0
2	VERT	PY	.004	.004	0	0
3	STANDOFF	PY	.004	.004	0	0
4	SPIPE	PY	.003	.003	0	0
5	MP ALPHA1	PY	.003	.003	0	0
6	MP ALPHA2	PY	.003	.003	0	0
7	MP ALPHA3	PY	.003	.003	0	0
8	MODFACE	PY	.004	.004	0	0
9	STABILIZER1	PY	.004	.004	0	0
10	STABILIZER2	PY	.004	.004	0	0

Member Distributed Loads (BLC 18 : Wind Load (210))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.009	.009	0	0
2	VERT	PY	.01	.01	0	0
3	STANDOFF	PY	.015	.015	0	0
4	SPIPE	PY	.006	.006	0	0
5	MP ALPHA1	PY	.006	.006	0	0
6	MP ALPHA2	PY	.006	.006	0	0

Member Distributed Loads (BLC 18 : Wind Load (210)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
7	MP ALPHA3	PY	.006	.006	0	0
8	FACE	PX	.005	.005	0	0
9	VERT	PX	.005	.005	0	0
10	STANDOFF	PX	.009	.009	0	0
11	SPIPE	PX	.004	.004	0	0
12	MP ALPHA1	PX	.004	.004	0	0
13	MP ALPHA2	PX	.004	.004	0	0
14	MP ALPHA3	PX	.004	.004	0	0
15	MODFACE	PY	.009	.009	0	0
16	MODFACE	PX	.005	.005	0	0
17	STABILIZER1	PY	.015	.015	0	0
18	STABILIZER1	PX	.009	.009	0	0
19	STABILIZER2	PY	.015	.015	0	0
20	STABILIZER2	PX	.009	.009	0	0

Member Distributed Loads (BLC 19 : Ice Wind Load (210))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.003	.003	0	0
2	VERT	PY	.003	.003	0	0
3	STANDOFF	PY	.003	.003	0	0
4	SPIPE	PY	.003	.003	0	0
5	MP ALPHA1	PY	.003	.003	0	0
6	MP ALPHA2	PY	.003	.003	0	0
7	MP ALPHA3	PY	.003	.003	0	0
8	FACE	PX	.002	.002	0	0
9	VERT	PX	.002	.002	0	0
10	STANDOFF	PX	.002	.002	0	0
11	SPIPE	PX	.002	.002	0	0
12	MP ALPHA1	PX	.002	.002	0	0
13	MP ALPHA2	PX	.002	.002	0	0
14	MP ALPHA3	PX	.002	.002	0	0
15	MODFACE	PY	.003	.003	0	0
16	MODFACE	PX	.002	.002	0	0
17	STABILIZER1	PY	.003	.003	0	0
18	STABILIZER1	PX	.002	.002	0	0
19	STABILIZER2	PY	.003	.003	0	0
20	STABILIZER2	PX	.002	.002	0	0

Member Distributed Loads (BLC 20 : Wind Load (240))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.005	.005	0	0
2	VERT	PY	.005	.005	0	0
3	STANDOFF	PY	.009	.009	0	0
4	SPIPE	PY	.004	.004	0	0
5	MP ALPHA1	PY	.004	.004	0	0
6	MP ALPHA2	PY	.004	.004	0	0
7	MP ALPHA3	PY	.004	.004	0	0
8	FACE	PX	.009	.009	0	0
9	VERT	PX	.01	.01	0	0
10	STANDOFF	PX	.015	.015	0	0
11	SPIPE	PX	.006	.006	0	0
12	MP ALPHA1	PX	.006	.006	0	0
13	MP ALPHA2	PX	.006	.006	0	0
14	MP ALPHA3	PX	.006	.006	0	0
15	MODFACE	PY	.005	.005	0	0
16	MODFACE	PX	.009	.009	0	0

Member Distributed Loads (BLC 20 : Wind Load (240)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
17	STABILIZER1	PY	.009	.009	0	0
18	STABILIZER1	PX	.015	.015	0	0
19	STABILIZER2	PY	.009	.009	0	0
20	STABILIZER2	PX	.015	.015	0	0

Member Distributed Loads (BLC 21 : Ice Wind Load (240))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.002	.002	0	0
2	VERT	PY	.002	.002	0	0
3	STANDOFF	PY	.002	.002	0	0
4	SPIPE	PY	.002	.002	0	0
5	MP ALPHA1	PY	.002	.002	0	0
6	MP ALPHA2	PY	.002	.002	0	0
7	MP ALPHA3	PY	.002	.002	0	0
8	FACE	PX	.003	.003	0	0
9	VERT	PX	.003	.003	0	0
10	STANDOFF	PX	.003	.003	0	0
11	SPIPE	PX	.003	.003	0	0
12	MP ALPHA1	PX	.003	.003	0	0
13	MP ALPHA2	PX	.003	.003	0	0
14	MP ALPHA3	PX	.003	.003	0	0
15	MODFACE	PY	.002	.002	0	0
16	MODFACE	PX	.003	.003	0	0
17	STABILIZER1	PY	.002	.002	0	0
18	STABILIZER1	PX	.003	.003	0	0
19	STABILIZER2	PY	.002	.002	0	0
20	STABILIZER2	PX	.003	.003	0	0

Member Distributed Loads (BLC 22 : Wind Load (270))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	.01	.01	0	0
2	VERT	PX	.011	.011	0	0
3	STANDOFF	PX	.017	.017	0	0
4	SPIPE	PX	.007	.007	0	0
5	MP ALPHA1	PX	.007	.007	0	0
6	MP ALPHA2	PX	.007	.007	0	0
7	MP ALPHA3	PX	.007	.007	0	0
8	MODFACE	PX	.01	.01	0	0
9	STABILIZER1	PX	.017	.017	0	0
10	STABILIZER2	PX	.017	.017	0	0

Member Distributed Loads (BLC 23 : Ice Wind Load (270))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	.004	.004	0	0
2	VERT	PX	.004	.004	0	0
3	STANDOFF	PX	.004	.004	0	0
4	SPIPE	PX	.003	.003	0	0
5	MP ALPHA1	PX	.003	.003	0	0
6	MP ALPHA2	PX	.003	.003	0	0
7	MP ALPHA3	PX	.003	.003	0	0
8	MODFACE	PX	.004	.004	0	0
9	STABILIZER1	PX	.004	.004	0	0
10	STABILIZER2	PX	.004	.004	0	0

Member Distributed Loads (BLC 24 : Wind Load (300))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	005	005	0	0
2	VERT	PY	005	005	0	0
3	STANDOFF	PY	009	0	0	
4	SPIPE	PY	004	004	0	0
5	MP ALPHA1	PY	004	004	0	0
6	MP ALPHA2	PY	004	004	0	0
7	MP ALPHA3	PY	004	004	0	0
8	FACE	PX	.009	.009	0	0
9	VERT	PX	.01	.01	0	0
10	STANDOFF	PX	.015	.015	0	0
11	SPIPE	PX	.006	.006	0	0
12	MP ALPHA1	PX	.006	.006	0	0
13	MP ALPHA2	PX	.006	.006	0	0
14	MP ALPHA3	PX	.006	.006	0	0
15	MODFACE	PY	005	005	0	0
16	MODFACE	PX	.009	.009	0	0
17	STABILIZER1	PY	009	009	0	0
18	STABILIZER1	PX	.015	.015	0	0
19	STABILIZER2	PY	009	009	0	0
20	STABILIZER2	PX	.015	.015	0	0

Member Distributed Loads (BLC 25 : Ice Wind Load (300))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	002	002	0	0
2	VERT PY		002	002	0	0
3	STANDOFF	PY	002	002	0	0
4	SPIPE	PY	002	002	0	0
5	MP ALPHA1	PY	002	002	0	0
6	MP ALPHA2	PY	002	002	0	0
7	MP ALPHA3	PY	002	002	0	0
8	FACE	PX	.003	.003	0	0
9	VERT	PX	.003	.003	0	0
10	STANDOFF	PX	.003	.003	0	0
11	SPIPE	PX	.003	.003	0	0
12	MP ALPHA1	PX	.003	.003	0	0
13	MP ALPHA2	PX	.003	.003	0	0
14	MP ALPHA3	PX	.003	.003	0	0
15	MODFACE	PY	002	002	0	0
16	MODFACE	PX	.003	.003	0	0
17	STABILIZER1	PY	002	002	0	0
18	STABILIZER1	PX	.003	.003	0	0
19	STABILIZER2 PY002		002	0	0	
20	STABILIZER2	PX	.003	.003	0	0

Member Distributed Loads (BLC 26 : Wind Load (330))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	009	009	0	0
2	VERT	PY	01	01	0	0
3	STANDOFF	PY	015	015	0	0
4	SPIPE	PY	006	006	0	0
5	MP ALPHA1	PY	006	006	0	0
6	MP ALPHA2	PY	006	006	0	0
7	MP ALPHA3	PY	006	006	0	0
8	FACE	PX	.005	.005	0	0
9	VERT	PX	.005	.005	0	0
10	STANDOFF	PX	.009	.009	0	0

Member Distributed Loads (BLC 26 : Wind Load (330)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
11	SPIPE	PX	.004	.004	0	0
12	MP ALPHA1	PX	.004	.004	0	0
13	MP ALPHA2	PX	.004	.004	0	0
14	MP ALPHA3	PX	.004	.004	0	0
15	MODFACE	PY	009	009	0	0
16	MODFACE	PX	.005	.005	0	0
17	STABILIZER1	PY	015	015	0	0
18	STABILIZER1	PX	.009	.009	0	0
19	STABILIZER2	PY	015	015	0	0
20	STABILIZER2	PX	.009	.009	0	0

Member Distributed Loads (BLC 27 : Ice Wind Load (330))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]			
1	FACE	PY	003	003	0	0			
2	VERT	PY	003	003	0	0			
3	STANDOFF	PY	003	003	0	0			
4	SPIPE	PY	003	003	0	0			
5	MP ALPHA1	PY	003	003 0 0					
6	MP ALPHA2	PY	003	003	0	0			
7	MP ALPHA3	PY	003	003	0	0			
8	FACE	PX	.002	.002	0	0			
9	VERT	PX	.002	.002	0	0			
10	STANDOFF	PX	.002	.002	0	0			
11	SPIPE	PX	.002	.002	0	0			
12	MP ALPHA1	PX	.002	.002	0	0			
13	MP ALPHA2	PX	.002	.002	0	0			
14	MP ALPHA3	PX	.002	.002	0	0			
15	MODFACE	PY	003	003	0	0			
16	MODFACE	PX	.002	.002	0	0			
17	STABILIZER1	PY	003	003	0	0			
18	STABILIZER1	PX	.002	.002	0	0			
19	STABILIZER2	PY	003	003	0	0			
20	STABILIZER2	PX	.002	.002	0	0			

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N7	max	256	14	577	2	2 598	21	-2.224	2	1.813	19	635	14
2		min	-1.015	34	912	20	.881	35	-7.281	21	.255	35	-3.043	34
3	N36	max	1.022	10	1.427	2	.448	3	127	14	.188	4	5.073	17
4		min	401	26	-1.092	20	.156	17	354	36	03	20	-3.68	35
5	Totals:	max	1.073	14	2.004	2	3.023	21						
6		min	-1.073	32	-2.004	20	1.09	2						

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(
1	Wind Load (0)	WĽ	-				10	10		
2	Dead Load	DL			-1.1		10			
3	Live Load	LL					1			
4	Ice Wind Load (0)	OL1					10	10		
5	Ice Dead Load	OL2					10	10		
6	Wind Load (30)	WL					20	20		
7	Ice Wind Load (30)	OL1					20	20		
8	Wind Load (60)	WL					20	20		

May 5, 2020 2:24 PM Checked By:___

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed Area(Me.	. Surface(
9	Ice Wind Load (60)	OL1		•			20	20	
10	Wind Load (90)	WL					10	10	
11	Ice Wind Load (90)	OL1					10	10	
12	Wind Load (120)	WL					20	20	
13	Ice Wind Load (120)	OL1					20	20	
14	Wind Load (150)	WL					20	20	
15	Ice Wind Load (150)	OL1					20	20	
16	Wind Load (180)	WL					10	10	
17	Ice Wind Load (180)	OL1					10	10	
18	Wind Load (210)	WL					20	20	
19	Ice Wind Load (210)	OL1					20	20	
20	Wind Load (240)	WL					20	20	
21	Ice Wind Load (240)	OL1					20	20	
22	Wind Load (270)	WL					10	10	
23	Ice Wind Load (270)	OL1					10	10	
24	Wind Load (300)	WL					20	20	
25	Ice Wind Load (300)	OL1					20	20	
26	Wind Load (330)	WL					20	20	
27	Ice Wind Load (330)	OL1					20	20	
28	Maintanence (0)	OL3					10		
29	Maintanence (30)	OL3					20		
30	Maintanence (60)	OL3					20		
31	Maintanence (90)	OL3					10		
32	Maintanence (120)	OL3					20		
33	Maintanence (150)	OL3					20		
34	Maintanence (180)	OL3					10		
35	Maintanence (210)	OL3					20		
36	Maintanence (240)	OL3					20		
37	Maintanence (270)	OL3					10		
38	Maintanence (300)	OL3					20		
39	Maintanence (330)	OL3					20		
40	Earthquake (x-directi	EL	103						
41	Earthquake (y-directi	EL		103					
42	Earthquake (z-directi	EL			041				

Load Combinations

	Description	Solve	PDelta	S	. В	Fa	В	.Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.4D	Yes	Y		2	1.4																		
2	1.2D + 1.0W(0)	Yes	Y		2	1.2	1	1																
3	1.2D + 1.0Di + 1.0Ŵi(Yes	Y		2	1.2	5	1	4	1														
4	1.2D + 1.5L + 1.0WI(0)	Yes	Y		2	1.2	3	1.5	28	1														
5	1.2D + 1.0W(30)	Yes	Y		2	1.2	6	1																
6	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	7	1														
7	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	29	1														
8	1.2D + 1.0W(60)	Yes	Y		2	1.2	8	1																
9	1 2D + 1 0Di + 1 0Wi(Yes	Y		2	1.2	5	1	9	1														
10	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	30	1														
11	1.2D + 1.0W(90)	Yes	Y		2	1.2	10	1																
12	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	11	1														
13	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	31	1														
14	1.2D + 1.0W(120)	Yes	Y		2	1.2	12	1																
15	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	13	1														
16	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	32	1														
17	1.2D + 1.0W(150)	Yes	Y		2	1.2	14	1																
18	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	15	1														

Load Combinations (Continued)

Description	Solve	PDelta	SB	Fa	B	Fa	B	Fa	B	Fa	В	Fa	В	Fa	В	Fa	B	Fa	B	<u>Fa</u>	<u>B</u>	<u>.Fa</u>
19 1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	33	1														
20 1.2D + 1.0W(180)	Yes	Y	2	1.2	16	1																
21 1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	17	1														
22 1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	34	1														
23 1.2D + 1.0W(210)	Yes	Y	2	1.2	18	1																
24 1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	19	1														
25 1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	35	1														
26 1.2D + 1.0W(240)	Yes	Y	2	1.2	20	1																
27 1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	21	1														
28 1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	36	1														
29 1.2D + 1.0W(270)	Yes	Y	2	1.2	22	1																
30 1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	23	1														
31 1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	37	1														
32 1.2D + 1.0W(300)	Yes	Y	2	1.2	24	1																
33 1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	25	1														
34 1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	38	1														
35 1.2D + 1.0W(330)	Yes	Y	2	1.2	26	1																
36 1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	27	1														
37 1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	39	1														
38 1.2D + 1.0E(x) + 1.0E	Yes	Y	2	1.2	40	1	42	1	3	1												
39 1.2D + 1.0E(y) + 1.0E	Yes	Y	2	1.2	41	1	42	1	3	1												
40 1.2D - 1.0E(x) + 1.0E(Yes	Y	2	1.2	40	-1	42	1	3	1												
41 1.2D - 1.0E(y) + 1.0E(Yes	Y	2	1.2	41	-1	42	1	3	1												

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	She	Loc[ft]	Dir	LC	phi*	phi*	phi*	phi*	Eqn
1	MP ALPHA3	PIPE 2.0	.732	.25	4	.080	.25		36	20.8	32.13	1.872	1.872	H1
2	STANDOFF	HSS4X4X4	.578	3	27	.174	3	z	19	134	139	16.1	16 . 1	H1
3	MP ALPHA2	PIPE 2.0	.553	3	27	.146	3		20	14.9	32.13	1.872	1.872	H1
4	FACE	PIPE 3.0	.512	6.25	21	.216	6.25		3	28.2	65 . 2	5.749	5.749	H1
5	MODFACE	PIPE 2.5	.493	3	2	.115	3.125		21	14.5	50.7	3.596	3.596	H1
6	MP ALPHA1	PIPE 2.0	.330	.25	18	.073	.25		15	20.8	32.13	1.872	1.872	H1
7	SPIPE	PIPE 2.0	.053	258	11	.006	.258		11	30.2	32.13	1.872	1.872	H1
8	VERT	PIPE 3.5	.000	.5	5	.000	.5		5	78.43	78.75	7.954	7.954	H1

Envelope AISI S100-16: LRFD Cold Formed Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shea	Loc[Dir	LC	phi*Pn	phi*Tn	phi*M	phi*M	phi*	.phi*	Cb	Egn
1	Connection	MTC340501	.380	.67	17	.230	.67	v	21	107.283	142.028	10.981	19.906	17.9	53.8	.1 <mark>.</mark> 222	H1.2-1
2	STABILIZE	MTC340501	.370	3.876	17	.022	0	z	19	96.37	142.028	10.981	19.906	17.9	53.8	1.534	H1.2-1
3	STABILIZE	MTC340502	.316	0	2	.045	3.876	V	4	20.874	38.653	1.901	2.275	17.6.	25.2	1.887	H1.1-2
APPENDIX D

Additional Calculations (Alpha)

	OF DESIGN
POD Job #	20-63609
Site Number	876402
Site Name	STAFFORD/PRAGYL/SSUSA
Calculations Based on	ТІА-222-Н
Reactions from RISA-3D)
Moment	7.281 ft-kip
Axial	1.015 kips
Shear	0.912 kips
Bolt Information	
Grade	A325
Threads in Shear Plane	Included
Diameter Balt Crasting	0.625 in.
Bolt Spacing	6 IN.
Number of Rous	4
Flance Plate Inforation	
Width	7 875 in
Thickness	0.75 in
Grade	A36
Standoff Information	
Standoff Member	HSS
Flat-Flat	<mark>4</mark> in.
Thickness	0.25 in.
Bolt Calculations	
φ	0.75
A _{nt}	0.226 in ²
A _b	0.307 in ²
Fu	120 ksi
φR _{nV}	13.81 kips
φR _{nt}	20.34 kips
V	0.23 kips
F	7.52 kips
Capacity	13.7%
Flange Plate Calculation	15
φ	0.9
Fy	36 ksi
t _{min}	0.26 in
Z	1.1 in ³
φM _n	35.9 in-kip
 М.	15.0 in-kin
Capacity	11.0%

41.9%

Capacities								
Bolts	13.7%							
Flange Plate	41.9%							

Ver 1.0 - 3/5/2019

Capacity

APPENDIX E

Wire Frame and Rendered Models (Beta)

APPENDIX F

Software Input Calculations (Beta)

POD Job #	20-63609
Site Number	876402
Site Name	STAFFORD/PRAGYL/SSUSA

General Site Information

Mount Type	MF	Risk Category	II.	I (seismic)	1
V (Wind Speed)	117	I(ice)	1	Sms	0.282
Zs	857			Sm1	0.132
ti	1.5	Ss	0.176	Sds	0.188
Vi	50	S1	0.055	Sd1	0.088
Kzt	1	Soil Site Class	D (assumed)	Seismic Desi	gn Category
Exposure	В	Fa	1.600		В
zg	1200	Fv	2.400	Seismic Anal	ysis Not Required
α	7			R	2 TIA-222-H 16.7
Kmin	0.7	Tower Type	Monopole	As	1 TIA-222-H 16.7
G _H	1	Tower Height	150	Cs, Min	0.03 TIA-222-H 2.7.7.1.1
Ke	0.97			Cs	0.093866667 TIA-222-H 2.7.7.1.1
κ _D	0.95				
Ka	0.9				

Appurtenance Information

Model	Shielded	% Shielded	Centerline	Spacing (in)	# on MP 1	# on MP 2	# on MP 3	# on MP 4
DMP65R-BU6D			138	50			1	
DMP65R-BU8D			138	60				
OPA65R-BU6D			138	50		1		
OPA65R-BU8D			138	60				
	7770		138	40	1			
RRUS 4449 B5/B12			138				1	
RRUS 4478 B14			138			1		
RRUS 8843 B2/B66A			138				1	
LGP21401			138		2			
DC6-48-60-18-8F			139					
DC9-48-60-24-8C-EV			139		1			

Mount Information

Elevation (ft)	136
K ₂	1.08
Kiz	1.15
tiz	1.73

	Length (ft)	Width (in)	Centerline		
Mount Pipes	6	2.375	138		
Round Members				Frame	# of
Member	Length (ft)	Width (in)		Member	Members
Face	12.5	3.5		Yes	1
Vertical Pipe	1	4		Yes	1
Standoff Pipe	2.25	2.375		Yes	1
New Face	12.5	2.875		Yes	1
Flat Members					

Member	Length (ft)	Width (in)	Shape	А	в	с	D		Frame Member	# of Members
Standoff	3	4	Square HSS		4	0.25	4		Yes	1
Stabilizer	3.876	5.4	Channel		3.7	5.4	0.188	0.188	No	2
Connection	0.917	6	Channel		3.5	6	0.25	0.25	No	1

Version 2.2

Appurtenance Wind C	Calculations												Wind F	arca (Kinc)			
Model	Height)	Width Dep	th Weigh	nt (lbs)	Kz	gz (l	b/ft ₂) (E	PA) _N (ft ²)	(EPA) _r (ft ²)		Front	Side	Alpha	a Beta	Gan	nma	
DMP65R-BU6D	71.2	20.7	7.7	89.3		1.08	34.97	11.93	4.4	8	0.41	7	0.156	0.352	0.352	0.156	
DMP65R-BU8D	96.0	20.7	7.7	105.6		1.08	34.97	15.86	5.9	5	0.55	5	0.208	0.468	0.468	0.208	
OPA65R-BU6D	71.2	21.0	7.8	63.5		1.08	34.97	12.22	4.5	4	0.42	7	0.159	0.360	0.360	0.159	
OPA65R-BU8D	96.0	21.0	7.8	76.5		1.08	34.97	16.28	7.3	8	0.56	9	0.258	0.491	0.491	0.258	
7770	55.0	11.0	5.0	35.0		1.08	34.97	3.42	1.5	6	0.12	D	0.055	0.103	0.103	0.055	
RRUS 4449 B5/B12	17.9	13.2	9.4	71.0		1.08	34.97	1.77	1.2	7	0.06	2	0.044	0.058	0.058	0.044	
RRUS 4478 B14	16.5	13.4	7.7	59.9		1.08	34.97	1.66	0.9	5	0.05	в	0.033	0.052	0.052	0.033	
RRUS 8843 B2/B66A	14.9	13.2	10.9	72.0		1.08	34.97	1.48	1.2	2	0.05	2	0.043	0.049	0.049	0.043	
LGP21401	14.2	6.7	5.4	22.0		1.08	34.97	0.71	0.5	8	0.02	5	0.020	0.024	0.024	0.020	
DC6-48-60-18-8F	31.3	11.0	11.0	32.8		1.09	35.04	1.09	1.2	1	0.03	в	0.042	0.039	0.039	0.042	
DC9-48-60-24-8C-EV	31.4	10.3	10.3	26.2		1.09	35.04	1.03	1.1	5	0.03	6	0.040	0.037	0.037	0.040	
Appurtenance Ice Cal	culations													Wind F	area (Kins)		
Model	tiz (in)	Height Wid	th Depth	Weig	ht (lbs)	Kiz	az	(lb/ft ₂)	(EPA) _N (ft ²)	(EPA),(ft [*])		Front	Side	Alpha	a Beta	a G	amma
DMP65R-BU6D	1 73	74.66	24.16	11.16	284 73		1 15	6 39	13.1	4 61	1		0.084	0.039	0.073	0.073	0.039
DMP65R-BU8D	1.73	99.46	24.16	11.16	373 37		1 15	6 39	17.2	6 80	2		0.110	0.051	0.096	0.075	0.05
OPA65B-BU6D	1.73	74.66	24.46	11.26	288 57		1 15	6.39	13.4	3 618	8		0.086	0.039	0.074	0.074	0.039
OPA65R-BU8D	1 73	99.46	24.46	11.26	378 32		1 15	6 39	11.1	8 589	- 9		0.071	0.038	0.063	0.063	0.039
7770	1.73	58.46	14.46	8.46	133.80		1.15	6.39	4.3	1 2.5	3		0.028	0.016	0.025	0.025	0.016
RRUS 4449 B5/B12	1.73	21.36	16.65	12.90	76.49		1.15	6.39	1.5	6 1.2	1		0.010	0.008	0.009	0.009	0.008
RRUS 4478 B14	1.73	19.96	16.86	11.16	66.57		1.15	6.39	1.4	8 0.98	8		0.009	0.006	0.009	0.009	0.006
RRUS 8843 B2/B66A	1.73	18.36	16.66	14.36	72.91		1.15	6.39	1.3	4 1.16	5		0.009	0.007	0.008	0.008	0.007
LGP21401	1.73	17.66	10.16	8.86	34.89		1.15	6.39	0.7	9 0.69	9		0.005	0.004	0.005	0.005	0.004
DC6-48-60-18-8F	1.73	34.71	14.46	14.46	112.72		1.15	6.40	2.2	0 2.20	D		0.014	0.014	0.014	0.014	0.014
DC9-48-60-24-8C-EV	1.73	34.87	13.71	13.71	105.52		1.15	6.40	2.0	9 2.09	Ð		0.013	0.013	0.013	0.013	0.013
Round Members			Wind Cal	culations								1	ce Calculatio	ns			
Member	q2(lb/ft ⁴) /	Ar C	Rrf	Cas	EPA	(ft°) Loai	d (k/ft)		Width (in)	Weight (k/ft)	q ₂ (lb/ft ²)	Arice	Rrfice	e Cas	EPA	(ft°) Lo	oad (k/ft)
Face	34.82	3.65	34.90	0.78	1.59	4.09	0.011		6.9	6 0.02	1 6.3	5	7.25	1.05	1.59	10.89	0.006
Vertical Pipe	34.82	0.33	39.89	0.78	1.59	0.37	0.013		7.4	6 0.03	1 6.3	5	0.62	1.05	1.59	0.93	0.006
Standoff Pipe	34.82	0.45	23.68	0.78	1.59	0.50	0.008		5.8	3 0.02	1 6.3	5	1.09	1.05	1.59	1.64	0.005
Flat Members																	
	111 10-12	Win	d Calculations								111 10-63		ce Calculatio	ns _			
Member	q _z (ib/π) /	At Cas	EPA	Load	(k/ft)				Width (in)	Weight (k/ft)	$q_2(1b/\pi^2)$	Arice	Rrfice	e Cas	EPA	Lo	oad (k/ft)
Standoff	34.82	1.00	1.59	1.43	0.017				7.4	6 0.02	2 6.3	5	1.86	1.05	1.59	2.80	0.006
Appurtenance Seismi	c Calculation	ns															
Model	Weight S	Sds ρ	Cs	As	Ev	Eh											
DMP65R-BU6D	89.3	0.188	1.000	0.094	1.000	0.003	0.008										
DMP65R-BU8D	105.6	0.188	1.000	0.094	1.000	0.004	0.010										
OPA65R-BU6D	63.5	0.188	1.000	0.094	1.000	0.002	0.006										
OPA65R-BU8D	76.5	0.188	1.000	0.094	1.000	0.003	0.007										
7770	35.0	0.188	1.000	0.094	1.000	0.001	0.003										
RRUS 4449 B5/B12	71.0	0.188	1.000	0.094	1.000	0.003	0.007										
RRUS 4478 B14	59.9	0.188	1.000	0.094	1.000	0.002	0.006										
RRUS 8843 B2/B66A	72.0	0.188	1.000	0.094	1.000	0.003	0.007										
LGP21401	22.0	0.188	1.000	0.094	1.000	0.001	0.002										
DC6-48-60-18-8F	32.8	0.188	1.000	0.094	1.000	0.001	0.003										
DC9-48-60-24-8C-EV	26.2	0.188	1.000	0.094	1.000	0.001	0.002										

Version 2.1

APPENDIX G

Software Analysis Output (Beta)

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft] Lco	mp bot[ft] I	torg	Kyy	Kzz	Cb	Function
1	FACE	PIPE 3.0	12.5		•	Lbyy						Lateral
2	VERT	PIPE 3.5	1			Lbyy						Lateral
3	STANDOFF	HSS4X4X4	3			Lbyy						Lateral
4	MP ALPHA1	PIPE 2.0	6			Lbyy						Lateral
5	MP ALPHA2	PIPE 2.0	8			Lbyy						Lateral
6	MP ALPHA3	PIPE 2.0	6			Lbyy						Lateral
7	Mod Face	PIPE 2.5	12.5			Lbyy						Lateral

Cold Formed Steel Design Parameters

	Label	Shape	Length	Lbyy[ft]	Lbzz[ft]	Lcomp to	Lcomp boL-torque[ft] Kyy	Kzz	Cb	R	a[ft]	Funct
1	STABILIZ	MTC3405	3.876			Lbyy							Lateral
2	Stabilizer2	MTC3405	3.876			Lbyy							Lateral
3	CONNEC	MTC3405	1.34			Lbyy							Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List	Material	Design R
1	FACE	N1	N2			PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical
2	VERT	N6	N5			PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical
3	STANDOFF	N4	N7			HSS4X4X4	Beam	SquareTube	A500 Gr.B Rect	Typical
4	MP ALPHA1	N19	N21			PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical
5	MP ALPHA2	N22	N23			PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical
6	MP ALPHA3	N18	N20			PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical
7	1	N3	N4			RIGID	None	None	RIGID	Typical
8	3	N15	N12			RIGID	None	None	RIGID	Typical
9	4	N17	N14			RIGID	None	None	RIGID	Typical
10	5	N16	N13			RIGID	None	None	RIGID	Typical
11	Mod Face	N20A	N21A			PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical
12	6	N25	N22A			RIGID	None	None	RIGID	Typical
13	7	N27	N24			RIGID	None	None	RIGID	Typical
14	8	N26	N23A			RIGID	None	None	RIGID	Typical
15	STABILIZER1	N35	N32		90	MTC340502	Beam	None	CF3 (A36)	Typical
16	9	N37	N35			RIGID	None	None	RIGID	Typical
17	12	N30	N33			RIGID	None	None	RIGID	Typical
18	Stabilizer2	N34	N31		90	MTC340501	Beam	None	CF3 (A36)	Typical
19	13	N36	N34			RIGID	None	None	RIĜID	Typical
20	CONNECTION	N32	N31		90	MTC340501	Beam	None	CF3 (A36)	Typical

Member Advanced Data

	Label	I Release	J Release	Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	Analysis	Inactive	Seismic
1	FACE					-	Yes		-		None
2	VERT						Yes				None
3	STANDOFF						Yes				None
4	MP ALPHA1						Yes				None
5	MP ALPHA2						Yes				None
6	MP ALPHA3						Yes				None
7	1		000000				Yes	** NA **			None
8	3						Yes	** NA **			None
9	4						Yes	** NA **			None
10	5						Yes	** NA **			None
11	Mod Face						Yes				None
12	6						Yes	** NA **			None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	.Analysis	Inactive	Seismic
13	7					-	Yes	** NA **			None
14	8						Yes	** NA **			None
15	STABILIZER1						Yes	Default			None
16	9						Yes	** NA **			None
17	12						Yes	** NA **			None
18	Stabilizer2						Yes	Default			None
19	13						Yes	** NA **			None
20	CONNECTION						Yes				None

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.25	65	1.15
8	A913 Gr 65	29000	11154	.3	.65	.49	65	1.1	80	1.1

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5 F)	Density[k/ft^3]	Yie l d[ksi]	Fu[ksi]
1	A653 SS Gr33	29500	11346	.3	.65	.49	33	45
2	A653 SS Gr50/1	29500	11346	.3	.65	.49	50	65
3	CF3 (A36)	29000	11154	.3	.65	.49	36	58

Member Point Loads (BLC 1 : Wind Load (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	214	7
2	MP ALPHA3	Y	209	5.083
3	MP ALPHA1	Y	06	4.667
4	MP ALPHA1	Y	036	4
5	MP ALPHA1	Y	05	3
6	MP ALPHA2	Y	058	5
7	MP ALPHA3	Y	114	3
8	MP ALPHA1	Y	06	1.333
9	MP ALPHA2	Y	214	2.25
10	MP ALPHA3	Y	- 209	917

Member Point Loads (BLC 2 : Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Z	032	7
2	MP ALPHA3	Z	045	5.083
3	MP ALPHA1	Z	018	4.667
4	MP ALPHA1	Z	026	4
5	MP ALPHA1	Z	044	3
6	MP ALPHA2	Z	06	5
7	MP ALPHA3	Z	143	3
8	MP ALPHA1	Z	018	1.333
9	MP ALPHA2	Z	032	2.25
10	MP ALPHA3	Z	045	.917

Member Point Loads (BLC 3 : Live Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	FACE	Z	5	0

Member Point Loads (BLC 4 : Ice Wind Load (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	043	7
2	MP ALPHA3	Y	042	5.083
3	MP ALPHA1	Y	014	4.667
4	MP ALPHA1	Y	013	4
5	MP ALPHA1	Y	01	3
6	MP ALPHA2	Y	009	5
7	MP ALPHA3	Y	019	3
8	MP ALPHA1	Y	014	1.333
9	MP ALPHA2	Y	043	2.25
10	MP ALPHA3	Y	042	.917

Member Point Loads (BLC 5 : Ice Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Z	144	7
2	MP ALPHA3	Z	142	5.083
3	MP ALPHA1	Z	067	4.667
4	MP ALPHA1	Z	106	4
5	MP ALPHA1	Z	07	3
6	MP ALPHA2	Z	067	5
7	MP ALPHA3	Z	149	3
8	MP ALPHA1	Z	067	1.333
9	MP ALPHA2	Z	144	2.25
10	MP ALPHA3	Z	142	.917

Member Point Loads (BLC 6 : Wind Load (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	156	7
2	MP ALPHA2	X	09	7
3	MP ALPHA3	Y	152	5.083
4	MP ALPHA3	X	088	5.083
5	MP ALPHA1	Y	045	4.667
6	MP ALPHA1	Х	026	4.667
7	MP ALPHA1	Y	032	4
8	MP ALPHA1	X	019	4
9	MP ALPHA1	Y	041	3
10	MP ALPHA1	X	024	3
11	MP ALPHA2	Y	045	5
12	MP ALPHA2	X	026	5
13	MP ALPHA3	Y	093	3
14	MP ALPHA3	X	053	3
15	MP ALPHA1	Y	045	1.333
16	MP ALPHA1	X	026	1.333
17	MP ALPHA2	Y	156	2.25
18	MP ALPHA2	X	09	2.25
19	MP ALPHA3	Y	152	.917
20	MP ALPHA3	X	088	.917

Member Point Loads (BLC 7 : Ice Wind Load (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	032	7
2	MP ALPHA2	X	019	7

RISA-3D Version 17.0.2 [T:\...\(20-63936) Mount Modification Design AT&T\RISA\876402 (Beta).r3d] Page 3

Member Point Loads (BLC 7 : Ice Wind Load (30)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
3	MP ALPHA3	Y	031	5.083
4	MP ALPHA3	Х	018	5.083
5	MP ALPHA1	Y	011	4.667
6	MP ALPHA1	X	006	4.667
7	MP ALPHA1	Y	012	4
8	MP ALPHA1	X	007	4
9	MP ALPHA1	Y	008	3
10	MP ALPHA1	Х	005	3
11	MP ALPHA2	Y	007	5
12	MP ALPHA2	X	004	5
13	MP ALPHA3	Y	015	3
14	MP ALPHA3	Х	009	3
15	MP ALPHA1	Y	011	1.333
16	MP ALPHA1	Х	006	1.333
17	MP ALPHA2	Y	032	2.25
18	MP ALPHA2	X	019	2.25
19	MP ALPHA3	Ý	031	.917
20	MP ALPHA3	X	018	.917

Member Point Loads (BLC 8 : Wind Load (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	056	7
2	MP ALPHA2	Х	098	7
3	MP ALPHA3	Y	055	5.083
4	MP ALPHA3	Х	096	5.083
5	MP ALPHA1	Y	018	4.667
6	MP ALPHA1	X	031	4.667
7	MP ALPHA1	Y	02	4
8	MP ALPHA1	Х	034	4
9	MP ALPHA1	Y	021	3
10	MP ALPHA1	X	037	3
11	MP ALPHA2	Y	02	5
12	MP ALPHA2	Х	034	5
13	MP ALPHA3	Y	047	3
14	MP ALPHA3	Х	081	3
15	MP ALPHA1	Y	018	1.333
16	MP ALPHA1	X	031	1.333
17	MP ALPHA2	Y	056	2.25
18	MP ALPHA2	X	098	2.25
19	MP ALPHA3	Y	055	.917
20	MP ALPHA3	X	096	.917

Member Point Loads (BLC 9 : Ice Wind Load (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	013	7
2	MP ALPHA2	Х	022	7
3	MP ALPHA3	Y	013	5.083
4	MP ALPHA3	Х	022	5.083
5	MP ALPHA1	Y	005	4.667
6	MP ALPHA1	Х	008	4.667
7	MP ALPHA1	Y	007	4
8	MP ALPHA1	Х	012	4
9	MP ALPHA1	Y	005	3
10	MP ALPHA1	Х	008	3
11	MP ALPHA2	Y	004	5
12	MP ALPHA2	X	006	5

Member Point Loads (BLC 9 : Ice Wind Load (60)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
13	MP ALPHA3	Y	008	3
14	MP ALPHA3	Х	014	3
15	MP ALPHA1	Y	005	1.333
16	MP ALPHA1	Х	008	1.333
17	MP ALPHA2	Y	013	2.25
18	MP ALPHA2	X	022	2.25
19	MP ALPHA3	Ý	013	.917
20	MP ALPHA3	Х	022	.917

Member Point Loads (BLC 10 : Wind Load (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	079	7
2	MP ALPHA3	Х	078	5.083
3	MP ALPHA1	Х	027	4.667
4	MP ALPHA1	Х	04	4
5	MP ALPHA1	Х	04	3
6	MP ALPHA2	Х	033	5
7	MP ALPHA3	Х	087	3
8	MP ALPHA1	Х	027	1.333
9	MP ALPHA2	X	079	2.25
10	MP ALPHA3	X	078	.917

Member Point Loads (BLC 11 : Ice Wind Load (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	02	7
2	MP ALPHA3	Х	02	5.083
3	MP ALPHA1	Х	008	4.667
4	MP ALPHA1	Х	013	4
5	MP ALPHA1	Х	009	3
6	MP ALPHA2	Х	006	5
7	MP ALPHA3	Х	015	3
8	MP ALPHA1	Х	008	1.333
9	MP ALPHA2	X	02	2.25
10	MP ALPHA3	X	02	.917

Member Point Loads (BLC 12 : Wind Load (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.056	7
2	MP ALPHA2	Х	098	7
3	MP ALPHA3	Y	.055	5.083
4	MP ALPHA3	Х	096	5.083
5	MP ALPHA1	Y	.018	4.667
6	MP ALPHA1	Х	031	4.667
7	MP ALPHA1	Y	.02	4
8	MP ALPHA1	Х	034	4
9	MP ALPHA1	Y	.021	3
10	MP ALPHA1	Х	037	3
11	MP ALPHA2	Y	.02	5
12	MP ALPHA2	Х	034	5
13	MP ALPHA3	Y	.047	3
14	MP ALPHA3	Х	081	3
15	MP ALPHA1	Y	.018	1.333
16	MP ALPHA1	X	031	1.333
17	MP ALPHA2	Y	.056	2.25
18	MP ALPHA2	Х	098	2.25

Member Point Loads (BLC 12 : Wind Load (120)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
19	MP ALPHA3	Y	.055	.917
20	MP ALPHA3	Х	096	.917

Member Point Loads (BLC 13 : Ice Wind Load (120))

_	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.013	7
2	MP ALPHA2	X	022	7
3	MP ALPHA3	Y	.013	5.083
4	MP ALPHA3	Х	022	5.083
5	MP ALPHA1	Y	.005	4.667
6	MP ALPHA1	X	008	4.667
7	MP ALPHA1	Y	.007	4
8	MP ALPHA1	Х	012	4
9	MP ALPHA1	Y	.005	3
10	MP ALPHA1	X	008	3
11	MP ALPHA2	Y	.004	5
12	MP ALPHA2	X	006	5
13	MP ALPHA3	Y	.008	3
14	MP ALPHA3	X	014	3
15	MP ALPHA1	Y	.005	1.333
16	MP ALPHA1	X	008	1.333
17	MP ALPHA2	Y	.013	2.25
18	MP ALPHA2	X	022	2.25
19	MP ALPHA3	Y	.013	.917
20	MP AL PHA3	X	- 022	917

Member Point Loads (BLC 14 : Wind Load (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.156	7
2	MP ALPHA2	Х	09	7
3	MP ALPHA3	Y	.152	5.083
4	MP ALPHA3	Х	088	5.083
5	MP ALPHA1	Y	.045	4.667
6	MP ALPHA1	X	026	4.667
7	MP ALPHA1	Y	.032	4
8	MP ALPHA1	Х	019	4
9	MP ALPHA1	Y	.041	3
10	MP ALPHA1	Х	024	3
11	MP ALPHA2	Y	.045	5
12	MP ALPHA2	Х	026	5
13	MP ALPHA3	Y	.093	3
14	MP ALPHA3	X	053	3
15	MP ALPHA1	Y	.045	1.333
16	MP ALPHA1	Х	026	1.333
17	MP ALPHA2	Y	.156	2.25
18	MP ALPHA2	X	09	2.25
19	MP ALPHA3	Y	.152	.917
20	MP ALPHA3	Х	088	.917

Member Point Loads (BLC 15 : Ice Wind Load (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.032	7
2	MP ALPHA2	Х	019	7
3	MP ALPHA3	Y	.031	5.083
4	MP ALPHA3	X	018	5.083

Member Point Loads (BLC 15 : Ice Wind Load (150)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
5	MP ALPHA1	Y	.011	4.667
6	MP ALPHA1	X	006	4.667
7	MP ALPHA1	Y	.012	4
8	MP ALPHA1	X	007	4
9	MP ALPHA1	Y	.008	3
10	MP ALPHA1	X	005	3
11	MP ALPHA2	Y	.007	5
12	MP ALPHA2	X	004	5
13	MP ALPHA3	Y	.015	3
14	MP ALPHA3	X	009	3
15	MP ALPHA1	Y	.011	1.333
16	MP ALPHA1	X	006	1.333
17	MP ALPHA2	Y	.032	2.25
18	MP ALPHA2	X	019	2.25
19	MP ALPHA3	Y	.031	.917
20	MP ALPHA3	X	018	.917

Member Point Loads (BLC 16 : Wind Load (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.214	7
2	MP ALPHA3	Y	.209	5.083
3	MP ALPHA1	Y	.06	4.667
4	MP ALPHA1	Y	.036	4
5	MP ALPHA1	Y	.05	3
6	MP ALPHA2	Y	.058	5
7	MP ALPHA3	Y	.114	3
8	MP ALPHA1	Y	.06	1.333
9	MP ALPHA2	Y	.214	2.25
10	MP ALPHA3	Ý	.209	.917

Member Point Loads (BLC 17 : Ice Wind Load (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.043	7
2	MP ALPHA3	Y	.042	5.083
3	MP ALPHA1	Y	.014	4.667
4	MP ALPHA1	Y	.013	4
5	MP ALPHA1	Y	.01	3
6	MP ALPHA2	Y	.009	5
7	MP ALPHA3	Y	.019	3
8	MP ALPHA1	Y	.014	1.333
9	MP ALPHA2	Y	.043	2.25
10	MP ALPHA3	Y	.042	.917

Member Point Loads (BLC 18 : Wind Load (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.156	7
2	MP ALPHA2	Х	.09	7
3	MP ALPHA3	Y	.152	5.083
4	MP ALPHA3	Х	.088	5.083
5	MP ALPHA1	Y	.045	4.667
6	MP ALPHA1	Х	.026	4.667
7	MP ALPHA1	Y	.032	4
8	MP ALPHA1	Х	.019	4
9	MP ALPHA1	Y	.041	3
10	MP ALPHA1	X	.024	3

Member Point Loads (BLC 18 : Wind Load (210)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
11	MP ALPHA2	Y	.045	5
12	MP ALPHA2	Х	.026	5
13	MP ALPHA3	Y	.093	3
14	MP ALPHA3	Х	.053	3
15	MP ALPHA1	Y	.045	1.333
16	MP ALPHA1	Х	.026	1.333
17	MP ALPHA2	Y	.156	2.25
18	MP ALPHA2	Х	.09	2.25
19	MP ALPHA3	Y	.152	.917
20	MP ALPHA3	X	.088	.917

Member Point Loads (BLC 19 : Ice Wind Load (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.032	7
2	MP ALPHA2	Х	.019	7
3	MP ALPHA3	Y	.031	5.083
4	MP ALPHA3	Х	.018	5.083
5	MP ALPHA1	Y	.011	4.667
6	MP ALPHA1	Х	.006	4.667
7	MP ALPHA1	Y	.012	4
8	MP ALPHA1	Х	.007	4
9	MP ALPHA1	Y	.008	3
10	MP ALPHA1	Х	.005	3
11	MP ALPHA2	Y	.007	5
12	MP ALPHA2	Х	.004	5
13	MP ALPHA3	Y	.015	3
14	MP ALPHA3	Х	.009	3
15	MP ALPHA1	Y	.011	1.333
16	MP ALPHA1	Х	.006	1.333
17	MP ALPHA2	Y	.032	2.25
18	MP ALPHA2	X	.019	2.25
19	MP ALPHA3	Y	.031	.917
20	MP ALPHA3	X	.018	.917

Member Point Loads (BLC 20 : Wind Load (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.056	7
2	MP ALPHA2	Х	.098	7
3	MP ALPHA3	Y	.055	5.083
4	MP ALPHA3	Х	.096	5.083
5	MP ALPHA1	Y	.018	4.667
6	MP ALPHA1	Х	.031	4.667
7	MP ALPHA1	Y	.02	4
8	MP ALPHA1	Х	.034	4
9	MP ALPHA1	Y	.021	3
10	MP ALPHA1	Х	.037	3
11	MP ALPHA2	Y	.02	5
12	MP ALPHA2	Х	.034	5
13	MP ALPHA3	Y	.047	3
14	MP ALPHA3	Х	.081	3
15	MP ALPHA1	Y	.018	1.333
16	MP ALPHA1	Х	.031	1.333
17	MP ALPHA2	Y	.056	2.25
18	MP ALPHA2	Х	.098	2.25
19	MP ALPHA3	Y	.055	.917
20	MP ALPHA3	X	.096	.917

Member Point Loads (BLC 21 : Ice Wind Load (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.013	7
2	MP ALPHA2	Х	.022	7
3	MP ALPHA3	Y	.013	5.083
4	MP ALPHA3	Х	.022	5.083
5	MP ALPHA1	Y	.005	4.667
6	MP ALPHA1	X	.008	4.667
7	MP ALPHA1	Y	.007	4
8	MP ALPHA1	Х	.012	4
9	MP ALPHA1	Y	.005	3
10	MP ALPHA1	X	.008	3
11	MP ALPHA2	Y	.004	5
12	MP ALPHA2	Х	.006	5
13	MP ALPHA3	Y	.008	3
14	MP ALPHA3	Х	.014	3
15	MP ALPHA1	Y	.005	1.333
16	MP ALPHA1	X	.008	1.333
17	MP ALPHA2	Y	.013	2.25
18	MP ALPHA2	Х	.022	2.25
19	MP ALPHA3	Y	.013	.917
20	MP ALPHA3	X	.022	.917

Member Point Loads (BLC 22 : Wind Load (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.079	7
2	MP ALPHA3	Х	.078	5.083
3	MP ALPHA1	Х	.027	4.667
4	MP ALPHA1	Х	.04	4
5	MP ALPHA1	Х	.04	3
6	MP ALPHA2	Х	.033	5
7	MP ALPHA3	Х	.087	3
8	MP ALPHA1	Х	.027	1.333
9	MP ALPHA2	Х	.079	2.25
10	MP ALPHA3	Х	.078	.917

Member Point Loads (BLC 23 : Ice Wind Load (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.02	7
2	MP ALPHA3	Х	.02	5.083
3	MP ALPHA1	Х	.008	4.667
4	MP ALPHA1	Х	.013	4
5	MP ALPHA1	Х	.009	3
6	MP ALPHA2	Х	.006	5
7	MP ALPHA3	Х	.015	3
8	MP ALPHA1	Х	.008	1.333
9	MP ALPHA2	X	.02	2.25
10	MP ALPHA3	X	.02	.917

Member Point Loads (BLC 24 : Wind Load (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	056	7
2	MP ALPHA2	Х	.098	7
3	MP ALPHA3	Y	055	5.083
4	MP ALPHA3	Х	.096	5.083
5	MP ALPHA1	Y	018	4.667
6	MP ALPHA1	X	.031	4.667

Member Point Loads (BLC 24 : Wind Load (300)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
7	MP ALPHA1	Y	02	4
8	MP ALPHA1	Х	.034	4
9	MP ALPHA1	Y	021	3
10	MP ALPHA1	Х	.037	3
11	MP ALPHA2	Y	02	5
12	MP ALPHA2	Х	.034	5
13	MP ALPHA3	Y	047	3
14	MP ALPHA3	Х	.081	3
15	MP ALPHA1	Y	018	1.333
16	MP ALPHA1	Х	.031	1.333
17	MP ALPHA2	Y	056	2.25
18	MP ALPHA2	Х	.098	2.25
19	MP ALPHA3	Ý	055	.917
20	MP ALPHA3	Х	.096	.917

Member Point Loads (BLC 25 : Ice Wind Load (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	013	7
2	MP ALPHA2	Х	.022	7
3	MP ALPHA3	Y	013	5.083
4	MP ALPHA3	Х	.022	5.083
5	MP ALPHA1	Y	005	4.667
6	MP ALPHA1	Х	.008	4.667
7	MP ALPHA1	Y	007	4
8	MP ALPHA1	Х	.012	4
9	MP ALPHA1	Y	005	3
10	MP ALPHA1	Х	.008	3
11	MP ALPHA2	Y	004	5
12	MP ALPHA2	Х	.006	5
13	MP ALPHA3	Y	008	3
14	MP ALPHA3	Х	.014	3
15	MP ALPHA1	Y	005	1.333
16	MP ALPHA1	X	.008	1.333
17	MP ALPHA2	Y	013	2.25
18	MP ALPHA2	X	.022	2.25
19	MP ALPHA3	Y	013	.917
20	MP ALPHA3	X	.022	.917

Member Point Loads (BLC 26 : Wind Load (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	156	7
2	MP ALPHA2	Х	.09	7
3	MP ALPHA3	Y	152	5.083
4	MP ALPHA3	Х	.088	5.083
5	MP ALPHA1	Y	045	4.667
6	MP ALPHA1	Х	.026	4.667
7	MP ALPHA1	Y	032	4
8	MP ALPHA1	Х	.019	4
9	MP ALPHA1	Y	041	3
10	MP ALPHA1	Х	.024	3
11	MP ALPHA2	Y	045	5
12	MP ALPHA2	Х	.026	5
13	MP ALPHA3	Y	093	3
14	MP ALPHA3	Х	.053	3
15	MP ALPHA1	Y	045	1.333
16	MP ALPHA1	X	.026	1.333

Member Point Loads (BLC 26 : Wind Load (330)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
17	MP ALPHA2	Y	156	2.25
18	MP ALPHA2	Х	.09	2.25
19	MP ALPHA3	Y	152	.917
20	MP ALPHA3	Х	.088	.917

Member Point Loads (BLC 27 : Ice Wind Load (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	032	7
2	MP ALPHA2	X	.019	7
3	MP ALPHA3	Y	031	5.083
4	MP ALPHA3	X	.018	5.083
5	MP ALPHA1	Y	011	4.667
6	MP ALPHA1	Х	.006	4.667
7	MP ALPHA1	Y	012	4
8	MP ALPHA1	Х	.007	4
9	MP ALPHA1	Y	008	3
10	MP ALPHA1	X	.005	3
11	MP ALPHA2	Y	007	5
12	MP ALPHA2	Х	.004	5
13	MP ALPHA3	Y	015	3
14	MP ALPHA3	Х	.009	3
15	MP ALPHA1	Y	011	1.333
16	MP ALPHA1	X	.006	1.333
17	MP ALPHA2	Y	032	2.25
18	MP ALPHA2	X	.019	2.25
19	MP ALPHA3	Y	031	.917
20	MP ALPHA3	X	.018	.917

Member Point Loads (BLC 28 : Maintanence (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	014	7
2	MP ALPHA3	Y	014	5.083
3	MP ALPHA1	Y	004	4.667
4	MP ALPHA1	Y	002	4
5	MP ALPHA1	Y	003	3
6	MP ALPHA2	Y	004	5
7	MP ALPHA3	Y	007	3
8	MP ALPHA1	Y	004	1.333
9	MP ALPHA2	Ý	014	2.25
10	MP ALPHA3	Y	014	.917

Member Point Loads (BLC 29 : Maintanence (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	01	7
2	MP ALPHA2	Х	006	7
3	MP ALPHA3	Y	01	5.083
4	MP ALPHA3	Х	006	5.083
5	MP ALPHA1	Y	003	4.667
6	MP ALPHA1	Х	002	4.667
7	MP ALPHA1	Y	002	4
8	MP ALPHA1	Х	001	4
9	MP ALPHA1	Y	003	3
10	MP ALPHA1	Х	002	3
11	MP ALPHA2	Y	003	5
12	MP ALPHA2	X	002	5

Member Point Loads (BLC 29 : Maintanence (30)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
13	MP ALPHA3	Y	006	3
14	MP ALPHA3	Х	004	3
15	MP ALPHA1	Y	003	1.333
16	MP ALPHA1	Х	002	1.333
17	MP ALPHA2	Y	01	2.25
18	MP ALPHA2	Х	006	2.25
19	MP ALPHA3	Ý	01	.917
20	MP ALPHA3	X	006	.917

Member Point Loads (BLC 30 : Maintanence (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	004	7
2	MP ALPHA2	Х	006	7
3	MP ALPHA3	Y	004	5.083
4	MP ALPHA3	X	006	5.083
5	MP ALPHA1	Y	001	4.667
6	MP ALPHA1	X	002	4.667
7	MP ALPHA1	Y	001	4
8	MP ALPHA1	X	002	4
9	MP ALPHA1	Y	001	3
10	MP ALPHA1	X	002	3
11	MP ALPHA2	Y	001	5
12	MP ALPHA2	X	002	5
13	MP ALPHA3	Y	003	3
14	MP ALPHA3	X	005	3
15	MP ALPHA1	Y	001	1.333
16	MP ALPHA1	X	002	1.333
17	MP ALPHA2	Y	004	2.25
18	MP ALPHA2	X	006	2.25
19	MP ALPHA3	Y	004	.917
20	MP ALPHA3	X	006	.917

Member Point Loads (BLC 31 : Maintanence (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	005	7
2	MP ALPHA3	Х	005	5.083
3	MP ALPHA1	Х	002	4.667
4	MP ALPHA1	Х	003	4
5	MP ALPHA1	Х	003	3
6	MP ALPHA2	Х	002	5
7	MP ALPHA3	Х	006	3
8	MP ALPHA1	Х	002	1.333
9	MP ALPHA2	X	005	2.25
10	MP ALPHA3	Х	005	.917

Member Point Loads (BLC 32 : Maintanence (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.004	7
2	MP ALPHA2	Х	006	7
3	MP ALPHA3	Y	.004	5.083
4	MP ALPHA3	Х	006	5.083
5	MP ALPHA1	Y	.001	4.667
6	MP ALPHA1	Х	002	4.667
7	MP ALPHA1	Y	.001	4
8	MP ALPHA1	Х	002	4

Member Point Loads (BLC 32 : Maintanence (120)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
9	MP ALPHA1	Y	.001	3
10	MP ALPHA1	Х	002	3
11	MP ALPHA2	Y	.001	5
12	MP ALPHA2	Х	002	5
13	MP ALPHA3	Y	.003	3
14	MP ALPHA3	Х	005	3
15	MP ALPHA1	Y	.001	1.333
16	MP ALPHA1	Х	002	1.333
17	MP ALPHA2	Y	.004	2.25
18	MP ALPHA2	Х	006	2.25
19	MP ALPHA3	Y	.004	.917
20	MP ALPHA3	Х	006	.917

Member Point Loads (BLC 33 : Maintanence (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.01	7
2	MP ALPHA2	X	006	7
3	MP ALPHA3	Y	.01	5.083
4	MP ALPHA3	Х	006	5.083
5	MP ALPHA1	Y	.003	4.667
6	MP ALPHA1	Х	002	4.667
7	MP ALPHA1	Y	.002	4
8	MP ALPHA1	Х	001	4
9	MP ALPHA1	Y	.003	3
10	MP ALPHA1	X	002	3
11	MP ALPHA2	Y	.003	5
12	MP ALPHA2	X	002	5
13	MP ALPHA3	Y	.006	3
14	MP ALPHA3	X	004	3
15	MP ALPHA1	Y	.003	1.333
16	MP ALPHA1	X	002	1.333
17	MP ALPHA2	Y	.01	2.25
18	MP ALPHA2	Х	006	2.25
19	MP ALPHA3	Y	.01	.917
20	MP ALPHA3	X	006	.917

Member Point Loads (BLC 34 : Maintanence (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.014	7
2	MP ALPHA3	Y	.014	5.083
3	MP ALPHA1	Y	.004	4.667
4	MP ALPHA1	Y	.002	4
5	MP ALPHA1	Y	.003	3
6	MP ALPHA2	Y	.004	5
7	MP ALPHA3	Y	.007	3
8	MP ALPHA1	Y	.004	1.333
9	MP ALPHA2	Y	.014	2.25
10	MP ALPHA3	Y	.014	.917

Member Point Loads (BLC 35 : Maintanence (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.01	7
2	MP ALPHA2	Х	.006	7
3	MP ALPHA3	Y	.01	5.083
4	MP ALPHA3	Х	.006	5.083

Member Point Loads (BLC 35 : Maintanence (210)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
5	MP ALPHA1	Y	.003	4.667
6	MP ALPHA1	Х	.002	4.667
7	MP ALPHA1	Y	.002	4
8	MP ALPHA1	Х	.001	4
9	MP ALPHA1	Y	.003	3
10	MP ALPHA1	Х	.002	3
11	MP ALPHA2	Y	.003	5
12	MP ALPHA2	Х	.002	5
13	MP ALPHA3	Y	.006	3
14	MP ALPHA3	Х	.004	3
15	MP ALPHA1	Y	.003	1.333
16	MP ALPHA1	Х	.002	1.333
17	MP ALPHA2	Y	.01	2.25
18	MP ALPHA2	Х	.006	2.25
19	MP ALPHA3	Ý	.01	.917
20	MP ALPHA3	Х	.006	.917

Member Point Loads (BLC 36 : Maintanence (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.004	7
2	MP ALPHA2	Х	.006	7
3	MP ALPHA3	Y	.004	5.083
4	MP ALPHA3	Х	.006	5.083
5	MP ALPHA1	Y	.001	4.667
6	MP ALPHA1	Х	.002	4.667
7	MP ALPHA1	Y	.001	4
8	MP ALPHA1	Х	.002	4
9	MP ALPHA1	Y	.001	3
10	MP ALPHA1	Х	.002	3
11	MP ALPHA2	Y	.001	5
12	MP ALPHA2	Х	.002	5
13	MP ALPHA3	Y	.003	3
14	MP ALPHA3	Х	.005	3
15	MP ALPHA1	Y	.001	1.333
16	MP ALPHA1	Х	.002	1.333
17	MP ALPHA2	Y	.004	2.25
18	MP ALPHA2	X	.006	2.25
19	MP ALPHA3	Y	.004	.917
20	MP ALPHA3	X	006	917

Member Point Loads (BLC 37 : Maintanence (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.005	7
2	MP ALPHA3	Х	.005	5.083
3	MP ALPHA1	Х	.002	4.667
4	MP ALPHA1	Х	.003	4
5	MP ALPHA1	Х	.003	3
6	MP ALPHA2	Х	.002	5
7	MP ALPHA3	Х	.006	3
8	MP ALPHA1	Х	.002	1.333
9	MP ALPHA2	Х	.005	2.25
10	MP ALPHA3	X	.005	.917

Member Point Loads (BLC 38 : Maintanence (300))

N	lember Label	Direction	Magnitude[k,k-ft]	Location[ft,%]

Member Point Loads (BLC 38 : Maintanence (300)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	004	7
2	MP ALPHA2	Х	.006	7
3	MP ALPHA3	Y	004	5.083
4	MP ALPHA3	X	.006	5.083
5	MP ALPHA1	Y	001	4.667
6	MP ALPHA1	X	.002	4.667
7	MP ALPHA1	Y	001	4
8	MP ALPHA1	Х	.002	4
9	MP ALPHA1	Y	001	3
10	MP ALPHA1	X	.002	3
11	MP ALPHA2	Y	001	5
12	MP ALPHA2	X	.002	5
13	MP ALPHA3	Y	003	3
14	MP ALPHA3	X	.005	3
15	MP ALPHA1	Y	001	1.333
16	MP ALPHA1	X	.002	1.333
17	MP ALPHA2	Y	004	2.25
18	MP ALPHA2	X	.006	2.25
19	MP ALPHA3	Y	004	.917
20	MP ALPHA3	X	.006	.917

Member Point Loads (BLC 39 : Maintanence (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	01	7
2	MP ALPHA2	Х	.006	7
3	MP ALPHA3	Y	01	5.083
4	MP ALPHA3	Х	.006	5.083
5	MP ALPHA1	Y	003	4.667
6	MP ALPHA1	Х	.002	4.667
7	MP ALPHA1	Y	002	4
8	MP ALPHA1	Х	.001	4
9	MP ALPHA1	Y	003	3
10	MP ALPHA1	Х	.002	3
11	MP ALPHA2	Y	003	5
12	MP ALPHA2	Х	.002	5
13	MP ALPHA3	Y	006	3
14	MP ALPHA3	X	.004	3
15	MP ALPHA1	Y	003	1.333
16	MP ALPHA1	Х	.002	1.333
17	MP ALPHA2	Y	01	2.25
18	MP ALPHA2	X	.006	2.25
19	MP ALPHA3	Y	01	.917
20	MP ALPHA3	X	.006	.917

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		No	Data to Print			

Member Distributed Loads (BLC 1 : Wind Load (0))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	01	01	0	0
2	VERT	PY	011	011	0	0
3	STANDOFF	PY	017	017	0	0

Member Distributed Loads (BLC 1 : Wind Load (0)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
4	MP ALPHA1	PY	007	007	0	0
5	MP ALPHA2	PY	007	007	0	0
6	MP ALPHA3	PY	007	007	0	0
7	Mod Face	PY	01	01	0	0
8	STABILIZER1	PY	017	017	0	0
9	Stabilizer2	PY	017	017	0	0

Member Distributed Loads (BLC 4 : Ice Wind Load (0))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	004	004	0	0
2	VERT	PY	004	004	0	0
3	STANDOFF	PY	004	004	0	0
4	MP ALPHA1	PY	003	003	0	0
5	MP ALPHA2	PY	003	003	0	0
6	MP ALPHA3	PY	003	003	0	0
7	Mod Face	PY	004	004	0	0
8	STABILIZER1	PY	004	004	0	0
9	Stabilizer2	PY	004	004	0	0

Member Distributed Loads (BLC 5 : Ice Dead Load)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	Z	011	011	0	0
2	VERT	Z	012	012	0	0
3	STANDOFF	Z	015	015	0	0
4	MP ALPHA1	Z	009	009	0	0
5	MP ALPHA2	Z	009	009	0	0
6	MP ALPHA3	Z	009	009	0	0
7	Mod Face	Z	011	011	0	0
8	STABILIZER1	Z	015	015	0	0
9	Stabilizer2	Z	015	015	0	0

Member Distributed Loads (BLC 6 : Wind Load (30))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	009	009	0	0
2	VERT	PY	01	01	0	0
3	STANDOFF	PY	015	015	0	0
4	MP ALPHA1	PY	006	006	0	0
5	MP ALPHA2	PY	006	006	0	0
6	MP ALPHA3	PY	006	006	0	0
7	FACE	PX	005	005	0	0
8	VERT	PX	005	005	0	0
9	STANDOFF	PX	009	009	0	0
10	MP ALPHA1	PX	004	004	0	0
11	MP ALPHA2	PX	004	004	0	0
12	MP ALPHA3	PX	004	004	0	0
13	Mod Face	PY	009	009	0	0
14	Mod Face	PX	005	005	0	0
15	STABILIZER1	PY	015	015	0	0
16	STABILIZER1	PX	009	009	0	0
17	Stabilizer2	PY	015	015	0	0
18	Stabilizer2	PX	009	009	0	0

Member Distributed Loads (BLC 7 : Ice Wind Load (30))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	003	003	0	0

Member Distributed Loads (BLC 7 : Ice Wind Load (30)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
2	VERT	PY	003	003	0	0
3	STANDOFF	PY	003	003	0	0
4	MP ALPHA1	PY	003	003	0	0
5	MP ALPHA2	PY	003	003	0	0
6	MP ALPHA3	PY	003	003	0	0
7	FACE	PX	002	002	0	0
8	VERT	PX	002	002	0	0
9	STANDOFF	PX	002	002	0	0
10	MP ALPHA1	PX	002	002	0	0
11	MP ALPHA2	PX	002	002	0	0
12	MP ALPHA3	PX	002	002	0	0
13	Mod Face	PY	003	003	0	0
14	Mod Face	PX	002	002	0	0
15	STABILIZER1	PY	003	003	0	0
16	STABILIZER1	PX	002	002	0	0
17	Stabilizer2	PY	003	003	0	0
18	Stabilizer2	PX	002	002	0	0

Member Distributed Loads (BLC 8 : Wind Load (60))

	Member Labe	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	005	005	0	0
2	VERT	PY	005	005	0	0
3	STANDOFF	PY	009	009	0	0
4	MP ALPHA1	PY	004	004	0	0
5	MP ALPHA2	PY	004	004	0	0
6	MP ALPHA3	PY	004	004	0	0
7	FACE	PX	009	009	0	0
8	VERT	PX	01	01	0	0
9	STANDOFF	PX	015	015	0	0
10	MP ALPHA1	PX	006	006	0	0
11	MP ALPHA2	PX	006	006	0	0
12	MP ALPHA3	PX	006	006	0	0
13	Mod Face	PY	005	005	0	0
14	Mod Face	PX	009	009	0	0
15	STABILIZER1	PY	009	009	0	0
16	STABILIZER1	PX	015	015	0	0
17	Stabilizer2	PY	009	009	0	0
18	Stabilizer2	PX	015	015	0	0

Member Distributed Loads (BLC 9 : Ice Wind Load (60))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	002	002	0	0
2	VERT	PY	002	002	0	0
3	STANDOFF	PY	002	002	0	0
4	MP ALPHA1	PY	002	002	0	0
5	MP ALPHA2	PY	002	002	0	0
6	MP ALPHA3	PY	002	002	0	0
7	FACE	PX	003	003	0	0
8	VERT	PX	003	003	0	0
9	STANDOFF	PX	003	003	0	0
10	MP ALPHA1	PX	003	003	0	0
11	MP ALPHA2	PX	003	003	0	0
12	MP ALPHA3	PX	003	003	0	0
13	Mod Face	PY	002	002	0	0
14	Mod Face	PX	003	003	0	0
15	STABILIZER1	PY	002	002	0	0

Member Distributed Loads (BLC 9 : Ice Wind Load (60)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
16	STABILIZER1	PX	003	003	0	0
17	Stabilizer2	PY	002	002	0	0
18	Stabilizer2	PX	003	003	0	0

Member Distributed Loads (BLC 10 : Wind Load (90))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	01	01	0	0
2	VERT	PX	011	011	0	0
3	STANDOFF	PX	017	017	0	0
4	MP ALPHA1	PX	007	007	0	0
5	MP ALPHA2	PX	007	007	0	0
6	MP ALPHA3	PX	007	007	0	0
7	Mod Face	PX	01	01	0	0
8	STABILIZER1	PX	017	017	0	0
9	Stabilizer2	PX	017	017	0	0

Member Distributed Loads (BLC 11 : Ice Wind Load (90))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	004	004	0	0
2	VERT	PX	004	004	0	0
3	STANDOFF	PX	004	004	0	0
4	MP ALPHA1	PX	003	003	0	0
5	MP ALPHA2	PX	003	003	0	0
6	MP ALPHA3	PX	003	003	0	0
7	Mod Face	PX	004	004	0	0
8	STABILIZER1	PX	004	004	0	0
9	Stabilizer2	PX	004	004	0	0

Member Distributed Loads (BLC 12 : Wind Load (120))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.005	.005	0	0
2	VERT	PY	.005	.005	0	0
3	STANDOFF	PY	.009	.009	0	0
4	MP ALPHA1	PY	.004	.004	0	0
5	MP ALPHA2	PY	.004	.004	0	0
6	MP ALPHA3	PY	.004	.004	0	0
7	FACE	PX	009	009	0	0
8	VERT	PX	01	01	0	0
9	STANDOFF	PX	015	015	0	0
10	MP ALPHA1	PX	006	006	0	0
11	MP ALPHA2	PX	006	006	0	0
12	MP ALPHA3	PX	006	006	0	0
13	Mod Face	PY	.005	.005	0	0
14	Mod Face	PX	009	009	0	0
15	STABILIZER1	PY	.009	.009	0	0
16	STABILIZER1	PX	015	015	0	0
17	Stabilizer2	PY	.009	.009	0	0
18	Stabilizer2	PX	015	015	0	0

Member Distributed Loads (BLC 13 : Ice Wind Load (120))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	.Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.002	.002	0	0
2	VERT	PY	.002	.002	0	0
3	STANDOFF	PY	.002	.002	0	0
4	MP ALPHA1	PY	.002	.002	0	0

Member Distributed Loads (BLC 13 : Ice Wind Load (120)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
5	MP ALPHA2	PY	.002	.002	0	0
6	MP ALPHA3	PY	.002	.002	0	0
7	FACE	PX	003	003	0	0
8	VERT	PX	003	003	0	0
9	STANDOFF	PX	003	003	0	0
10	MP ALPHA1	PX	003	003	0	0
11	MP ALPHA2	PX	003	003	0	0
12	MP ALPHA3	PX	003	003	0	0
13	Mod Face	PY	.002	.002	0	0
14	Mod Face	PX	003	003	0	0
15	STABILIZER1	PY	.002	.002	0	0
16	STABILIZER1	PX	003	003	0	0
17	Stabilizer2	PY	.002	.002	0	0
18	Stabilizer2	PX	003	003	0	0

Member Distributed Loads (BLC 14 : Wind Load (150))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.009	.009	0	0
2	VERT	PY	.01	.01	0	0
3	STANDOFF	PY	.015	.015	0	0
4	MP ALPHA1	PY	.006	.006	0	0
5	MP ALPHA2	PY	.006	.006	0	0
6	MP ALPHA3	PY	.006	.006	0	0
7	FACE	PX	005	005	0	0
8	VERT	PX	005	005	0	0
9	STANDOFF	PX	009	009	0	0
10	MP ALPHA1	PX	004	004	0	0
11	MP ALPHA2	PX	004	004	0	0
12	MP ALPHA3	PX	004	004	0	0
13	Mod Face	PY	.009	.009	0	0
14	Mod Face	PX	005	005	0	0
15	STABILIZER1	PY	.015	.015	0	0
16	STABILIZER1	PX	009	009	0	0
17	Stabilizer2	PY	.015	.015	0	0
18	Stabilizer2	PX	009	009	0	0

Member Distributed Loads (BLC 15 : Ice Wind Load (150))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.003	.003	0	0
2	VERT	PY	.003	.003	0	0
3	STANDOFF	PY	.003	.003	0	0
4	MP ALPHA1	PY	.003	.003	0	0
5	MP ALPHA2	PY	.003	.003	0	0
6	MP ALPHA3	PY	.003	.003	0	0
7	FACE	PX	002	002	0	0
8	VERT	PX	002	002	0	0
9	STANDOFF	PX	002	002	0	0
10	MP ALPHA1	PX	002	002	0	0
11	MP ALPHA2	PX	002	002	0	0
12	MP ALPHA3	PX	002	002	0	0
13	Mod Face	PY	.003	.003	0	0
14	Mod Face	PX	002	002	0	0
15	STABILIZER1	PY	.003	.003	0	0
16	STABILIZER1	PX	002	002	0	0
17	Stabilizer2	PY	.003	.003	0	0
18	Stabilizer2	PX	002	002	0	0

Member Distributed Loads (BLC 16 : Wind Load (180))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	_End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.01	.01	0	0
2	VERT	PY	.011	.011	0	0
3	STANDOFF	PY	.017	.017	0	0
4	MP ALPHA1	PY	.007	.007	0	0
5	MP ALPHA2	PY	.007	.007	0	0
6	MP ALPHA3	PY	.007	.007	0	0
7	Mod Face	PY	.01	.01	0	0
8	STABILIZER1	PY	.017	.017	0	0
9	Stabilizer2	PY	.017	.017	0	0

Member Distributed Loads (BLC 17 : Ice Wind Load (180))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.004	.004	0	0
2	VERT	PY	.004	.004	0	0
3	STANDOFF	PY	.004	.004	0	0
4	MP ALPHA1	PY	.003	.003	0	0
5	MP ALPHA2	PY	.003	.003	0	0
6	MP ALPHA3	PY	.003	.003	0	0
7	Mod Face	PY	.004	.004	0	0
8	STABILIZER1	PY	.004	.004	0	0
9	Stabilizer2	PY	.004	.004	0	0

Member Distributed Loads (BLC 18 : Wind Load (210))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.009	.009	0	0
2	VERT	PY	.01	.01	0	0
3	STANDOFF	PY	.015	.015	0	0
4	MP ALPHA1	PY	.006	.006	0	0
5	MP ALPHA2	PY	.006	.006	0	0
6	MP ALPHA3	PY	.006	.006	0	0
7	FACE	PX	.005	.005	0	0
8	VERT	PX	.005	.005	0	0
9	STANDOFF	PX	.009	.009	0	0
10	MP ALPHA1	PX	.004	.004	0	0
11	MP ALPHA2	PX	.004	.004	0	0
12	MP ALPHA3	PX	.004	.004	0	0
13	Mod Face	PY	.009	.009	0	0
14	Mod Face	PX	.005	.005	0	0
15	STABILIZER1	PY	.015	.015	0	0
16	STABILIZER1	PX	.009	.009	0	0
17	Stabilizer2	PY	.015	.015	0	0
18	Stabilizer2	PX	.009	.009	0	0

Member Distributed Loads (BLC 19 : Ice Wind Load (210))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.003	.003	0	0
2	VERT	PY	.003	.003	0	0
3	STANDOFF	PY	.003	.003	0	0
4	MP ALPHA1	PY	.003	.003	0	0
5	MP ALPHA2	PY	.003	.003	0	0
6	MP ALPHA3	PY	.003	.003	0	0
7	FACE	PX	.002	.002	0	0
8	VERT	PX	.002	.002	0	0
9	STANDOFF	PX	.002	.002	0	0
10	MP ALPHA1	PX	.002	.002	0	0

Member Distributed Loads (BLC 19 : Ice Wind Load (210)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	_End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
11	MP ALPHA2	PX	.002	.002	0	0
12	MP ALPHA3	PX	.002	.002	0	0
13	Mod Face	PY	.003	.003	0	0
14	Mod Face	PX	.002	.002	0	0
15	STABILIZER1	PY	.003	.003	0	0
16	STABILIZER1	PX	.002	.002	0	0
17	Stabilizer2	PY	.003	.003	0	0
18	Stabilizer2	PX	.002	.002	0	0

Member Distributed Loads (BLC 20 : Wind Load (240))

	Member Labe	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.005	.005	0	0
2	VERT	PY	.005	.005	0	0
3	STANDOFF	PY	.009	.009	0	0
4	MP ALPHA1	PY	.004	.004	0	0
5	MP ALPHA2	PY	.004	.004	0	0
6	MP ALPHA3	PY	.004	.004	0	0
7	FACE	PX	.009	.009	0	0
8	VERT	PX	.01	.01	0	0
9	STANDOFF	PX	.015	.015	0	0
10	MP ALPHA1	PX	.006	.006	0	0
11	MP ALPHA2	PX	.006	.006	0	0
12	MP ALPHA3	PX	.006	.006	0	0
13	Mod Face	PY	.005	.005	0	0
14	Mod Face	PX	.009	.009	0	0
15	STABILIZER1	PY	.009	.009	0	0
16	STABILIZER1	PX	.015	.015	0	0
17	Stabilizer2	PY	.009	.009	0	0
18	Stabilizer2	PX	.015	.015	0	0

Member Distributed Loads (BLC 21 : Ice Wind Load (240))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.002	.002	0	0
2	VERT	PY	.002	.002	0	0
3	STANDOFF	PY	.002	.002	0	0
4	MP ALPHA1	PY	.002	.002	0	0
5	MP ALPHA2	PY	.002	.002	0	0
6	MP ALPHA3	PY	.002	.002	0	0
7	FACE	PX	.003	.003	0	0
8	VERT	PX	.003	.003	0	0
9	STANDOFF	PX	.003	.003	0	0
10	MP ALPHA1	PX	.003	.003	0	0
11	MP ALPHA2	PX	.003	.003	0	0
12	MP ALPHA3	PX	.003	.003	0	0
13	Mod Face	PY	.002	.002	0	0
14	Mod Face	PX	.003	.003	0	0
15	STABILIZER1	PY	.002	.002	0	0
16	STABILIZER1	PX	.003	.003	0	0
17	Stabilizer2	PY	.002	.002	0	0
18	Stabilizer2	PX	.003	.003	0	0

Member Distributed Loads (BLC 22 : Wind Load (270))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	.01	.01	0	0
2	VERT	PX	.011	.011	0	0

Member Distributed Loads (BLC 22 : Wind Load (270)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	_End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
3	STANDOFF	PX	.017	.017	0	0
4	MP ALPHA1	PX	.007	.007	0	0
5	MP ALPHA2	PX	.007	.007	0	0
6	MP ALPHA3	PX	.007	.007	0	0
7	Mod Face	PX	.01	.01	0	0
8	STABILIZER1	PX	.017	.017	0	0
9	Stabilizer2	PX	.017	.017	0	0

Member Distributed Loads (BLC 23 : Ice Wind Load (270))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	.004	.004	0	0
2	VERT	PX	.004	.004	0	0
3	STANDOFF	PX	.004	.004	0	0
4	MP ALPHA1	PX	.003	.003	0	0
5	MP ALPHA2	PX	.003	.003	0	0
6	MP ALPHA3	PX	.003	.003	0	0
7	Mod Face	PX	.004	.004	0	0
8	STABILIZER1	PX	.004	.004	0	0
9	Stabilizer2	PX	.004	.004	0	0

Member Distributed Loads (BLC 24 : Wind Load (300))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	005	005	0	0
2	VERT	PY	005	005	0	0
3	STANDOFF	PY	009	009	0	0
4	MP ALPHA1	PY	004	004	0	0
5	MP ALPHA2	PY	004	004	0	0
6	MP ALPHA3	PY	004	004	0	0
7	FACE	PX	.009	.009	0	0
8	VERT	PX	.01	.01	0	0
9	STANDOFF	PX	.015	.015	0	0
10	MP ALPHA1	PX	.006	.006	0	0
11	MP ALPHA2	PX	.006	.006	0	0
12	MP ALPHA3	PX	.006	.006	0	0
13	Mod Face	PY	005	005	0	0
14	Mod Face	PX	.009	.009	0	0
15	STABILIZER1	PY	009	009	0	0
16	STABILIZER1	PX	.015	.015	0	0
17	Stabilizer2	PY	009	009	0	0
18	Stabilizer2	PX	.015	.015	0	0

Member Distributed Loads (BLC 25 : Ice Wind Load (300))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	002	002	0	0
2	VERT	PY	002	002	0	0
3	STANDOFF	PY	002	002	0	0
4	MP ALPHA1	PY	002	002	0	0
5	MP ALPHA2	PY	002	002	0	0
6	MP ALPHA3	PY	002	002	0	0
7	FACE	PX	.003	.003	0	0
8	VERT	PX	.003	.003	0	0
9	STANDOFF	PX	.003	.003	0	0
10	MP ALPHA1	PX	.003	.003	0	0
11	MP ALPHA2	PX	.003	.003	0	0
12	MP ALPHA3	PX	.003	.003	0	0

Member Distributed Loads (BLC 25 : Ice Wind Load (300)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
13	Mod Face	PY	002	002	0	0
14	Mod Face	PX	.003	.003	0	0
15	STABILIZER1	PY	002	002	0	0
16	STABILIZER1	PX	.003	.003	0	0
17	Stabilizer2	PY	002	002	0	0
18	Stabilizer2	PX	.003	.003	0	0

Member Distributed Loads (BLC 26 : Wind Load (330))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	009	009	0	0
2	VERT	PY	01	01	0	0
3	STANDOFF	PY	015	015	0	0
4	MP ALPHA1	PY	006	006	0	0
5	MP ALPHA2	PY	006	006	0	0
6	MP ALPHA3	PY	006	006	0	0
7	FACE	PX	.005	.005	0	0
8	VERT	PX	.005	.005	0	0
9	STANDOFF	PX	.009	.009	0	0
10	MP ALPHA1	PX	.004	.004	0	0
11	MP ALPHA2	PX	.004	.004	0	0
12	MP ALPHA3	PX	.004	.004	0	0
13	Mod Face	PY	009	009	0	0
14	Mod Face	PX	.005	.005	0	0
15	STABILIZER1	PY	015	015	0	0
16	STABILIZER1	PX	.009	.009	0	0
17	Stabilizer2	PY	015	015	0	0
18	Stabilizer2	PX	.009	.009	0	0

Member Distributed Loads (BLC 27 : Ice Wind Load (330))

	Member Labe	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	003	003	0	0
2	VERT	PY	003	003	0	0
3	STANDOFF	PY	003	003	0	0
4	MP ALPHA1	PY	003	003	0	0
5	MP ALPHA2	PY	003	003	0	0
6	MP ALPHA3	PY	003	003	0	0
7	FACE	PX	.002	.002	0	0
8	VERT	PX	.002	.002	0	0
9	STANDOFF	PX	.002	.002	0	0
10	MP ALPHA1	PX	.002	.002	0	0
11	MP ALPHA2	PX	.002	.002	0	0
12	MP ALPHA3	PX	.002	.002	0	0
13	Mod Face	PY	003	003	0	0
14	Mod Face	PX	.002	.002	0	0
15	STABILIZER1	PY	003	003	0	0
16	STABILIZER1	PX	.002	.002	0	0
17	Stabilizer2	PY	003	003	0	0
18	Stabilizer2	PX	.002	.002	0	0

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N7	max	201	14	.453	2	2.346	21	-2.06	2	1.7	22	.538	14
2		min	961	34	786	20	.803	2	-6.833	21	.209	2	-2.883	34
3	N33	max	.968	10	1.255	2	.446	3	123	20	.172	4	3.788	17

Envelope Joint Reactions (Continued)

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
4		min	37	26	922	20	.131	20	354	36	049	20	-2.703	35
5	Totals:	max	.899	14	1.708	2	2.764	21						
6		min	899	32	-1.708	20	1.037	2						

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed Area(Me	Surface(
1	Wind Load (0)	WĽ		•			10	9	
2	Dead Load	DL			-1.1		10		
3	Live Load	LL					1		
4	Ice Wind Load (0)	OL1					10	9	
5	Ice Dead Load	OL2					10	9	
6	Wind Load (30)	WL					20	18	
7	Ice Wind Load (30)	OL1					20	18	
8	Wind Load (60)	WL					20	18	
9	Ice Wind Load (60)	OL1					20	18	
10	Wind Load (90)	WL					10	9	
11	Ice Wind Load (90)	OL1					10	9	
12	Wind Load (120)	WL					20	18	
13	Ice Wind Load (120)	OL1					20	18	
14	Wind Load (150)	WL					20	18	
15	Ice Wind Load (150)	OL1					20	18	
16	Wind Load (180)	WL					10	9	
17	Ice Wind Load (180)	OL1					10	9	
18	Wind Load (210)	WL					20	18	
19	Ice Wind Load (210)	OL1					20	18	
20	Wind Load (240)	WL					20	18	
21	Ice Wind Load (240)	OL1					20	18	
22	Wind Load (270)	WL					10	9	
23	Ice Wind Load (270)	OL1					10	9	
24	Wind Load (300)	WL					20	18	
25	Ice Wind Load (300)	OL1					20	18	
26	Wind Load (330)	WL					20	18	
27	Ice Wind Load (330)	OL1					20	18	
28	Maintanence (0)	OL3					10		
29	Maintanence (30)	OL3					20		
30	Maintanence (60)	OL3					20		
31	Maintanence (90)	OL3					10		
32	Maintanence (120)	OL3					20		
33	Maintanence (150)	OL3					20		
34	Maintanence (180)	OL3					10		
35	Maintanence (210)	OL3					20		
36	Maintanence (240)	OL3					20		
37	Maintanence (270)	OL3					10		
38	Maintanence (300)	OL3					20		
39	Maintanence (330)	OL3					20		
40	Earthquake (x-directi	EL	103						
41	Earthquake (y-directi	EL		103					
42	Earthquake (z-directi	EL			041				

Load Combinations

	Description	Solve	PDelta	SB	F	а	В	Fa	В	.Fa	В	Fa	В	Fa										
1	1.4D	Yes	Y	2	2 1	.4																		
2	1.2D + 1.0W(0)	Yes	Y	2	2 1	.2	1	1																
3	1.2D + 1.0Di + 1.0Ŵi(Yes	Y		2 1	.2	5	1	4	1														

May 5, 2020 2:43 PM Checked By:___

Load Combinations (Continued)

	Description	Solve	PDelta	S	.B	.Fa	В	.Fa	. В	Fa	. В	.Fa	. B	.Fa	В	Fa	В	Fa	В	Fa	В	.Fa	В	Fa
4	1.2D + 1.5L + 1.0WI(0)	Yes	Y		2	1.2	3	1.5	28	1														
5	1.2D + 1.0W(30)	Yes	Y		2	1.2	6	1																
6	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	7	1														
7	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	29	1														
8	1.2D + 1.0W(60)	Yes	Y		2	1.2	8	1																
9	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	9	1														
10	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	30	1														
11	1.2D + 1.0W(90)	Yes	Y		2	1.2	10) 1																
12	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	11	1														
13	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	31	1														
14	1.2D + 1.0W(120)	Yes	Y		2	1.2	12	2 1																
15	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	13	1														
16	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	32	1														
17	1.2D + 1.0W(150)	Yes	Y		2	1.2	14	1																
18	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	15	1														
19	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	33	1														
20	1.2D + 1.0W(180)	Yes	Y		2	1.2	16	5 1																
21	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	17	1														
22	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	34	1														
23	1.2D + 1.0W(210)	Yes	Y		2	1.2	18	3 1																
24	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	19	1														
25	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	35	1														
26	1.2D + 1.0W(240)	Yes	Y		2	1.2	20	1																
27	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	21	1														
28	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	36	1														
29	1.2D + 1.0W(270)	Yes	Y		2	1.2	22	1																
30	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	23	1														
31	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	37	1														
32	1.2D + 1.0W(300)	Yes	Y		2	1.2	24	1																
33	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	25	1														
34	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	38	1														
35	1.2D + 1.0W(330)	Yes	Y		2	1.2	26	5 1																
36	1.2D + 1.0Di + 1.0Wi(Yes	Y		2	1.2	5	1	27	1														
37	1.2D + 1.5L + 1.0WI(Yes	Y		2	1.2	3	1.5	39	1														
38	1.2D + 1.0E(x) + 1.0E	Yes	Y		2	1.2	40	1	42	1	3	1												
39	1.2D + 1.0E(y) + 1.0E	Yes	Y		2	1.2	41	1	42	1	3	1												
40	1.2D - 1.0E(x) + 1.0E(Yes	Y		2	1.2	40) -1	42	1	3	1												
41	1.2D - 1.0E(y) + 1.0E(Yes	Y		2	1.2	41	-1	42	1	3	1												

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	She	Loc[ft]	Dir	LC	phi*	phi*	phi*	phi*]	Eqn
1	MP ALPHA3	PIPE 2.0	.718	.25	37	.072	.25		25	20.8	32.13	1.872	1.872	F	11
2	STANDOFF	HSS4X4X4	.504	3	27	.165	3	z	22	134	139	16 . 1	16.1	F	11
3	MP ALPHA2	PIPE 2.0	.495	3	25	.113	3		20	14.9	32.13	1.872	1.872	F	-11
4	FACE	PIPE 3.0	.478	6.25	21	.200	6.25		3	28.2	65.2	5.749	5.749	F	-11
5	MP ALPHA1	PIPE 2.0	.426	.25	18	.078	.25		9	20.8	32.13	1.872	1.872	F	-11
6	Mod Face	PIPE 2.5	.404	3	2	.104	3.125		2	14.5	50.7	3.596	3.596	ŀ	-11
7	VERT	PIPE 3.5	.000	.5	5	.000	.5		5	78.43	78.75	7.954	7.954	F	-11

Envelope AISI S100-16: ASD Cold Formed Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shea	Loc[[DirLC	Pn/O	Tn/O	Mnyy/	.Mnzz/	Vny	Vnz	Cb	Egn
1	STABILIZE	MTC340502	.470	0	2	.067	3.876	v 4	13.643	25.717	1.265	1.514	11.6	.16.6	1.853	H1 1-2
2	Stabilizer2	MTC340501	.423	3.876	17	.045	3.876	y 3	62.987	94.496	7.306	13.244	11.8	35.4	1.577	H1.2-1
3	CONNECTI	MTC340501	.492	.67	19	.332	.656	y 22	70.12	94.496	7.306	13.245	11.8	35.4	1.357	F3.1-1
APPENDIX H

Additional Calculations (Beta)

	DD LOF DESIGN
POD Job #	20-63609
Site Number	876402
Site Name	STAFFORD/PRAGYL/SSUSA
Calculations Based on	ТІА-222-Н
Reactions from RISA-3D)
Moment	6.833 ft-kip
Axial	0.961 kips
Shear	0.803 kips
Boit information	1005
Grade	A325
Diameter	
Bolt Spacing	6 in
Number of Rods	4
Flange Plate Inforation	
Width	7.875 in.
Thickness	0.75 in.
Grade	A36
Chan doff Information	
Standojj injormation	1155
Standorr Member	H33
Thickness	0.25 in
Bolt Calculations	
φ	0.75
A _{nt}	0.226 in ²
A _b	0.307 in ²
Fu	120 ksi
φR _{nV}	13.81 kips
φR _{nt}	20.34 kips
V	0.20 kips
F	7.06 kips
Capacity	12.1%
Flange Plate Calculation	15
ф -	0.9
Fy	36 ksi
t _{min}	0.25 in
Z	1.1 in ³
φM _n	35.9 in-kip
Mu	14.1 in-kip
Capacity	39.4%

Capacities							
Bolts	12.1%						
Flange Plate	39.4%						

Ver 1.0 - 3/5/2019

APPENDIX I

Wire Frame and Rendered Models (Gamma)

APPENDIX J

Software Input Calculations (Gamma)

POD Job #	20-63609
Site Number	876402
Site Name	STAFFORD/PRAGYL/SSUSA

General Site Information

Mount Type	MF	Risk Category	II.	I (seismic)	1
V (Wind Speed)	117	I(ice)	1	Sms	0.282
Zs	857			Sm1	0.132
ti	1.5	Ss	0.176	Sds	0.188
Vi	50	S1	0.055	Sd1	0.088
Kzt	1	Soil Site Class	D (assumed)	Seismic Desi	gn Category
Exposure	В	Fa	1.600		В
zg	1200	Fv	2.400	Seismic Anal	ysis Not Required
α	7			R	2 TIA-222-H 16.7
Kmin	0.7	Tower Type	Monopole	As	1 TIA-222-H 16.7
G _H	1	Tower Height	150	Cs, Min	0.03 TIA-222-H 2.7.7.1.1
Ke	0.97			Cs	0.093866667 TIA-222-H 2.7.7.1.1
κ _D	0.95				
Ka	0.9				

Appurtenance Information

Model	Shielded	% Shielded	Centerline	Spacing (in)	# on MP 1	# on MP 2	# on MP 3	# on MP 4
DMP65R-BU6D			138	50				
DMP65R-BU8D			138	60			1	
OPA65R-BU6D			138	50				
OPA65R-BU8D			138	60		1		
	7770		138	40	1			
RRUS 4449 B5/B12			138				1	
RRUS 4478 B14			138			1		
RRUS 8843 B2/B66A			138				1	
LGP21401			138		2			
DC6-48-60-18-8F			139					
DC9-48-60-24-8C-EV			139					

Mount Information

Elevation (ft)	136
K ₂	1.08
Kiz	1.15
tiz	1.73

	Length (ft)	Width (in)	Centerline		
Mount Pipes	6	2.375	138		
Round Members				Frame	# of
Member	Length (ft)	Width (in)		Member	Members
Face	12.5	3.5		Yes	1
Vertical Pipe	1	4		Yes	1
Standoff Pipe	2.25	2.375		Yes	1
New Face	12.5	2.875		Yes	1
Flat Members					

Flat Members										
Member	Length (ft)	Width (in)	Shape	А	в	с	D		Frame Member	# of Members
Standoff	3	4	Square HSS		4	0.25	4		Yes	1
Stabilizer	3.876	5.4	Channel		3.7	5.4	0.188	0.188	No	2
Connection	0.917	6	Channel		3.5	6	0.25	0.25	No	1
										1

Version 2.2

Appurtenance Wind C	Calculations												Wind F	arca (Kinc)			
Model	Height)	Width Dep	th Weigh	nt (lbs)	Kz	gz (l	b/ft ₂) (E	PA) _N (ft ²)	(EPA) _r (ft ²)		Front	Side	Alpha	a Beta	Gan	nma	
DMP65R-BU6D	71.2	20.7	7.7	89.3		1.08	34.97	11.93	4.4	8	0.41	7	0.156	0.352	0.352	0.156	
DMP65R-BU8D	96.0	20.7	7.7	105.6		1.08	34.97	15.86	5.9	5	0.55	5	0.208	0.468	0.468	0.208	
OPA65R-BU6D	71.2	21.0	7.8	63.5		1.08	34.97	12.22	4.5	4	0.42	7	0.159	0.360	0.360	0.159	
OPA65R-BU8D	96.0	21.0	7.8	76.5		1.08	34.97	16.28	7.3	8	0.56	9	0.258	0.491	0.491	0.258	
7770	55.0	11.0	5.0	35.0		1.08	34.97	3.42	1.5	6	0.12	D	0.055	0.103	0.103	0.055	
RRUS 4449 B5/B12	17.9	13.2	9.4	71.0		1.08	34.97	1.77	1.2	7	0.06	2	0.044	0.058	0.058	0.044	
RRUS 4478 B14	16.5	13.4	7.7	59.9		1.08	34.97	1.66	0.9	5	0.05	в	0.033	0.052	0.052	0.033	
RRUS 8843 B2/B66A	14.9	13.2	10.9	72.0		1.08	34.97	1.48	1.2	2	0.05	2	0.043	0.049	0.049	0.043	
LGP21401	14.2	6.7	5.4	22.0		1.08	34.97	0.71	0.5	8	0.02	5	0.020	0.024	0.024	0.020	
DC6-48-60-18-8F	31.3	11.0	11.0	32.8		1.09	35.04	1.09	1.2	1	0.03	в	0.042	0.039	0.039	0.042	
DC9-48-60-24-8C-EV	31.4	10.3	10.3	26.2		1.09	35.04	1.03	1.1	5	0.03	6	0.040	0.037	0.037	0.040	
Appurtenance Ice Cal	culations													Wind F	area (Kins)		
Model	tiz (in)	Height Wid	th Depth	Weig	ht (lbs)	Kiz	az	(lb/ft ₂)	(EPA) _N (ft ²)	(EPA),(ft [*])		Front	Side	Alpha	a Beta	a G	amma
DMP65R-BU6D	1 73	74.66	24.16	11.16	284 73		1 15	6 39	13.1	4 61	1		0.084	0.039	0.073	0.073	0.039
DMP65R-BU8D	1.73	99.46	24.16	11.16	373 37		1 15	6 39	17.2	6 80	2		0.110	0.051	0.096	0.075	0.05
OPA65B-BU6D	1.73	74.66	24.46	11.26	288 57		1 15	6.39	13.4	3 618	8		0.086	0.039	0.074	0.074	0.039
OPA65R-BU8D	1 73	99.46	24.46	11.26	378 32		1 15	6 39	11.1	8 589	- 9		0.071	0.038	0.063	0.063	0.039
7770	1.73	58.46	14.46	8.46	133.80		1.15	6.39	4.3	1 2.5	3		0.028	0.016	0.025	0.025	0.016
RRUS 4449 B5/B12	1.73	21.36	16.65	12.90	76.49		1.15	6.39	1.5	6 1.2	1		0.010	0.008	0.009	0.009	0.008
RRUS 4478 B14	1.73	19.96	16.86	11.16	66.57		1.15	6.39	1.4	8 0.98	8		0.009	0.006	0.009	0.009	0.006
RRUS 8843 B2/B66A	1.73	18.36	16.66	14.36	72.91		1.15	6.39	1.3	4 1.16	5		0.009	0.007	0.008	0.008	0.007
LGP21401	1.73	17.66	10.16	8.86	34.89		1.15	6.39	0.7	9 0.69	9		0.005	0.004	0.005	0.005	0.004
DC6-48-60-18-8F	1.73	34.71	14.46	14.46	112.72		1.15	6.40	2.2	0 2.20	D		0.014	0.014	0.014	0.014	0.014
DC9-48-60-24-8C-EV	1.73	34.87	13.71	13.71	105.52		1.15	6.40	2.0	9 2.09	Ð		0.013	0.013	0.013	0.013	0.013
Round Members			Wind Cal	culations								1	ce Calculatio	ns			
Member	q2(lb/ft ⁴) /	Ar C	Rrf	Cas	EPA	(ft°) Loai	d (k/ft)		Width (in)	Weight (k/ft)	q ₂ (lb/ft ²)	Arice	Rrfice	e Cas	EPA	(ft°) Lo	oad (k/ft)
Face	34.82	3.65	34.90	0.78	1.59	4.09	0.011		6.9	6 0.02	1 6.3	5	7.25	1.05	1.59	10.89	0.006
Vertical Pipe	34.82	0.33	39.89	0.78	1.59	0.37	0.013		7.4	6 0.03	1 6.3	5	0.62	1.05	1.59	0.93	0.006
Standoff Pipe	34.82	0.45	23.68	0.78	1.59	0.50	0.008		5.8	3 0.02	1 6.3	5	1.09	1.05	1.59	1.64	0.005
Flat Members																	
	111 10-12	Win	d Calculations								111 10-61		ce Calculatio	ns _			
Member	q _z (ib/π) /	At Cas	EPA	Load	(k/ft)				Width (in)	Weight (k/ft)	$q_2(1b/\pi^2)$	Arice	Rrfice	e Cas	EPA	Lo	oad (k/ft)
Standoff	34.82	1.00	1.59	1.43	0.017				7.4	6 0.02	2 6.3	5	1.86	1.05	1.59	2.80	0.006
Appurtenance Seismi	c Calculation	ns															
Model	Weight S	Sds ρ	Cs	As	Ev	Eh											
DMP65R-BU6D	89.3	0.188	1.000	0.094	1.000	0.003	0.008										
DMP65R-BU8D	105.6	0.188	1.000	0.094	1.000	0.004	0.010										
OPA65R-BU6D	63.5	0.188	1.000	0.094	1.000	0.002	0.006										
OPA65R-BU8D	76.5	0.188	1.000	0.094	1.000	0.003	0.007										
7770	35.0	0.188	1.000	0.094	1.000	0.001	0.003										
RRUS 4449 B5/B12	71.0	0.188	1.000	0.094	1.000	0.003	0.007										
RRUS 4478 B14	59.9	0.188	1.000	0.094	1.000	0.002	0.006										
RRUS 8843 B2/B66A	72.0	0.188	1.000	0.094	1.000	0.003	0.007										
LGP21401	22.0	0.188	1.000	0.094	1.000	0.001	0.002										
DC6-48-60-18-8F	32.8	0.188	1.000	0.094	1.000	0.001	0.003										
DC9-48-60-24-8C-EV	26.2	0.188	1.000	0.094	1.000	0.001	0.002										

Version 2.1

APPENDIX K

Software Analysis Output (Gamma)

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torg	Kyy	Kzz	Cb	Function
1	FACE	PIPE 3.0	12.5			Lbyy			••			Lateral
2	VERT	PIPE 3.5	1			Lbyy						Lateral
3	STANDOFF	HSS4X4X4	3			Lbyy						Lateral
4	MP ALPHA1	PIPE 2.0	6			Lbyy						Lateral
5	MP ALPHA2	PIPE 2.0	8			Lbyy						Lateral
6	MP ALPHA3	PIPE 2.0	6			Lbyy						Lateral
7	Mod Face	PIPE 2.5	12.5			Lbyy						Lateral

Cold Formed Steel Design Parameters

	Label	Shape	Length	Lbyy[ft]	Lbzz[ft]	Lcomp to	Lcomp bo	.L-torque[ft]	Куу	Kzz	Cb	R	a[ft]	Funct
1	STABILIZ	MTC3405	3.876			Lbyy								Lateral
2	Stabilizer2	MTC3405	3.876			Lbyy								Lateral
3	CONNEC	MTC3405	1.34			Lbyy								Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List	Materia	Design R
1	FACE	N1	N2			PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical
2	VERT	N6	N5			PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical
3	STANDOFF	N4	N7			HSS4X4X4	Beam	SquareTube	A500 Gr.B Rect	Typical
4	MP ALPHA1	N19	N21			PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical
5	MP ALPHA2	N22	N23			PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical
6	MP ALPHA3	N18	N20			PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical
7	1	N3	N4			RIGID	None	None	RIGID	Typical
8	3	N15	N12			RIGID	None	None	RIGID	Typical
9	4	N17	N14			RIGID	None	None	RIGID	Typical
10	5	N16	N13			RIGID	None	None	RIGID	Typical
11	Mod Face	N20A	N21A			PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical
12	6	N25	N22A			RIGID	None	None	RIGID	Typical
13	7	N27	N24			RIGID	None	None	RIGID	Typical
14	8	N26	N23A			RIGID	None	None	RIGID	Typical
15	STABILIZER1	N30	N35		90	MTC340502	Beam	None	CF3 (A36)	Typical
16	9	N28	N30			RIGID	None	None	RIGID	Typical
17	12	N33	N36			RIGID	None	None	RIGID	Typical
18	Stabilizer2	N31	N34		90	MTC340501	Beam	None	CF3 (A36)	Typical
19	14	N29	N31			RIGID	None	None	RIĜID	Typical
20	CONNECTION	N35	N34		90	MTC340501	Beam	None	CF3 (A36)	Typical

Member Advanced Data

	Label	l Release	J Release	Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	.Analysis	Inactive	Seismic
1	FACE						Yes				None
2	VERT						Yes				None
3	STANDOFF						Yes				None
4	MP ALPHA1						Yes				None
5	MP ALPHA2						Yes				None
6	MP ALPHA3						Yes				None
7	1						Yes	** NA **			None
8	3						Yes	** NA **			None
9	4		000000				Yes	** NA **			None
10	5						Yes	** NA **			None
11	Mod Face						Yes				None
12	6						Yes	** NA **			None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	.Analysis	Inactive	Seismic
13	7					-	Yes	** NA **	-		None
14	8						Yes	** NA **			None
15	STABILIZER1						Yes	Default			None
16	9						Yes	** NA **			None
17	12						Yes	** NA **			None
18	Stabilizer2						Yes	Default			None
19	14						Yes	** NA **			None
20	CONNECTION						Yes	Default			None

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5	. Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	49	50	11	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.25	65	1.15
8	A913 Gr 65	29000	11154	.3	.65	.49	65	1.1	80	1.1

Cold Formed Steel Properties

	Labe	E [ksi]	G [ksi]	Nu	Therm (\1E5 F)	Density[k/ft^3]	Yie l d[ksi]	Fu[ksi]
1	A653 SS Gr33	29500	11346	.3	.65	.49	33	45
2	A653 SS Gr50/1	29500	11346	.3	.65	.49	50	65
3	CF3 (A36)	29000	11154	.3	.65	.49	36	58

Member Point Loads (BLC 1 : Wind Load (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	285	7.5
2	MP ALPHA3	Y	277	5.5
3	MP ALPHA1	Y	06	4.667
4	MP ALPHA1	Y	05	3
5	MP ALPHA2	Y	058	5
6	MP ALPHA3	Y	114	3
7	MP ALPHA1	Y	06	1.333
8	MP ALPHA2	Y	285	2.5
9	MP ALPHA3	Y	277	.5

Member Point Loads (BLC 2 : Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Z	038	7.5
2	MP ALPHA3	Z	053	5.5
3	MP ALPHA1	Z	018	4.667
4	MP ALPHA1	Z	044	3
5	MP ALPHA2	Z	06	5
6	MP ALPHA3	Z	143	3
7	MP ALPHA1	Z	018	1.333
8	MP ALPHA2	Z	038	2.5
9	MP ALPHA3	Z	053	.5

Member Point Loads (BLC 3 : Live Load)

Member Label	Direction	Magnitude[k_k-ft]	Location[ft_%]
RISA-3D Version 17.0.2	[T:\\\RISA\8	376402 (Gamma).r3d]	Page 2

Member Point Loads (BLC 3 : Live Load) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	FACE	Z	5	0

Member Point Loads (BLC 4 : Ice Wind Load (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	036	7.5
2	MP ALPHA3	Y	055	5.5
3	MP ALPHA1	Y	014	4.667
4	MP ALPHA1	Y	01	3
5	MP ALPHA2	Y	009	5
6	MP ALPHA3	Y	019	3
7	MP ALPHA1	Y	014	1.333
8	MP ALPHA2	Y	036	2.5
9	MP ALPHA3	Y	055	.5

Member Point Loads (BLC 5 : Ice Dead Load)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Z	189	7.5
2	MP ALPHA3	Z	187	5.5
3	MP ALPHA1	Z	067	4.667
4	MP ALPHA1	Z	07	3
5	MP ALPHA2	Z	067	5
6	MP ALPHA3	Z	149	3
7	MP ALPHA1	Z	067	1.333
8	MP ALPHA2	Z	189	2.5
9	MP ALPHA3	Z	187	.5

Member Point Loads (BLC 6 : Wind Load (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	213	7.5
2	MP ALPHA2	X	123	7.5
3	MP ALPHA3	Y	203	5.5
4	MP ALPHA3	Х	117	5.5
5	MP ALPHA1	Y	045	4.667
6	MP ALPHA1	Х	026	4.667
7	MP ALPHA1	Y	041	3
8	MP ALPHA1	Х	024	3
9	MP ALPHA2	Y	045	5
10	MP ALPHA2	Х	026	5
11	MP ALPHA3	Y	093	3
12	MP ALPHA3	Х	053	3
13	MP ALPHA1	Y	045	1.333
14	MP ALPHA1	Х	026	1.333
15	MP ALPHA2	Y	213	2.5
16	MP ALPHA2	X	123	2.5
17	MP ALPHA3	Y	203	.5
18	MP ALPHA3	X	117	.5

Member Point Loads (BLC 7 : Ice Wind Load (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	027	7.5
2	MP ALPHA2	Х	016	7.5
3	MP ALPHA3	Y	041	5.5
4	MP ALPHA3	Х	024	5.5
5	MP ALPHA1	Y	011	4.667
6	MP ALPHA1	X	006	4.667

Member Point Loads (BLC 7 : Ice Wind Load (30)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
7	MP ALPHA1	Y	008	3
8	MP ALPHA1	X	005	3
9	MP ALPHA2	Y	007	5
10	MP ALPHA2	X	004	5
11	MP ALPHA3	Y	015	3
12	MP ALPHA3	X	009	3
13	MP ALPHA1	Y	011	1.333
14	MP ALPHA1	X	006	1.333
15	MP ALPHA2	Y	027	2.5
16	MP ALPHA2	X	016	2.5
17	MP ALPHA3	Y	041	.5
18	MP ALPHA3	X	024	.5

Member Point Loads (BLC 8 : Wind Load (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	084	7.5
2	MP ALPHA2	X	145	7.5
3	MP ALPHA3	Y	074	5.5
4	MP ALPHA3	X	128	5.5
5	MP ALPHA1	Y	018	4.667
6	MP ALPHA1	X	031	4.667
7	MP ALPHA1	Y	021	3
8	MP ALPHA1	Х	037	3
9	MP ALPHA2	Y	02	5
10	MP ALPHA2	Х	034	5
11	MP ALPHA3	Y	047	3
12	MP ALPHA3	Х	081	3
13	MP ALPHA1	Y	018	1.333
14	MP ALPHA1	Х	031	1.333
15	MP ALPHA2	Y	084	2.5
16	MP ALPHA2	X	145	2.5
17	MP ALPHA3	Y	074	.5
18	MP ALPHA3	X	128	.5

Member Point Loads (BLC 9 : Ice Wind Load (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	012	7.5
2	MP ALPHA2	X	02	7.5
3	MP ALPHA3	Y	016	5.5
4	MP ALPHA3	Х	029	5.5
5	MP ALPHA1	Y	005	4.667
6	MP ALPHA1	Х	008	4.667
7	MP ALPHA1	Y	005	3
8	MP ALPHA1	Х	008	3
9	MP ALPHA2	Y	004	5
10	MP ALPHA2	Х	006	5
11	MP ALPHA3	Y	008	3
12	MP ALPHA3	Х	014	3
13	MP ALPHA1	Y	005	1.333
14	MP ALPHA1	Х	008	1.333
15	MP ALPHA2	Y	012	2.5
16	MP ALPHA2	X	02	2.5
17	MP ALPHA3	Y	016	.5
18	MP ALPHA3	X	029	.5

Member Point Loads (BLC 10 : Wind Load (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	X	129	7.5
2	MP ALPHA3	Х	104	5.5
3	MP ALPHA1	Х	027	4.667
4	MP ALPHA1	Х	04	3
5	MP ALPHA2	Х	033	5
6	MP ALPHA3	Х	087	3
7	MP ALPHA1	Х	027	1.333
8	MP ALPHA2	X	129	2.5
9	MP ALPHA3	Х	104	.5

Member Point Loads (BLC 11 : Ice Wind Load (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	X	019	7.5
2	MP ALPHA3	Х	026	5.5
3	MP ALPHA1	X	008	4.667
4	MP ALPHA1	Х	009	3
5	MP ALPHA2	X	006	5
6	MP ALPHA3	Х	015	3
7	MP ALPHA1	Х	008	1.333
8	MP ALPHA2	X	019	2.5
9	MP ALPHA3	Х	026	.5

Member Point Loads (BLC 12 : Wind Load (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.084	7.5
2	MP ALPHA2	Х	145	7.5
3	MP ALPHA3	Y	.074	5.5
4	MP ALPHA3	X	128	5.5
5	MP ALPHA1	Y	.018	4.667
6	MP ALPHA1	Х	031	4.667
7	MP ALPHA1	Y	.021	3
8	MP ALPHA1	Х	037	3
9	MP ALPHA2	Y	.02	5
10	MP ALPHA2	Х	034	5
11	MP ALPHA3	Y	.047	3
12	MP ALPHA3	Х	081	3
13	MP ALPHA1	Y	.018	1.333
14	MP ALPHA1	X	031	1.333
15	MP ALPHA2	Y	.084	2.5
16	MP ALPHA2	Х	145	2.5
17	MP ALPHA3	Y	.074	.5
18	MP ALPHA3	X	128	.5

Member Point Loads (BLC 13 : Ice Wind Load (120))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.012	7.5
2	MP ALPHA2	Х	02	7.5
3	MP ALPHA3	Y	.016	5.5
4	MP ALPHA3	Х	029	5.5
5	MP ALPHA1	Y	.005	4.667
6	MP ALPHA1	Х	008	4.667
7	MP ALPHA1	Y	.005	3
8	MP ALPHA1	Х	008	3
9	MP ALPHA2	Y	.004	5
10	MP ALPHA2	X	006	5

Member Point Loads (BLC 13 : Ice Wind Load (120)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
11	MP ALPHA3	Y	.008	3
12	MP ALPHA3	Х	014	3
13	MP ALPHA1	Y	.005	1.333
14	MP ALPHA1	Х	008	1.333
15	MP ALPHA2	Y	.012	2.5
16	MP ALPHA2	Х	02	2.5
17	MP ALPHA3	Y	.016	.5
18	MP ALPHA3	Х	029	.5

Member Point Loads (BLC 14 : Wind Load (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.213	7.5
2	MP ALPHA2	Х	123	7.5
3	MP ALPHA3	Y	.203	5.5
4	MP ALPHA3	Х	117	5.5
5	MP ALPHA1	Y	.045	4.667
6	MP ALPHA1	Х	026	4.667
7	MP ALPHA1	Y	.041	3
8	MP ALPHA1	Х	024	3
9	MP ALPHA2	Y	.045	5
10	MP ALPHA2	X	026	5
11	MP ALPHA3	Y	.093	3
12	MP ALPHA3	Х	053	3
13	MP ALPHA1	Y	.045	1.333
14	MP ALPHA1	Х	026	1.333
15	MP ALPHA2	Y	.213	2.5
16	MP ALPHA2	X	123	2.5
17	MP ALPHA3	Y	.203	.5
18	MP ALPHA3	X	117	.5

Member Point Loads (BLC 15 : Ice Wind Load (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.027	7.5
2	MP ALPHA2	X	016	7.5
3	MP ALPHA3	Y	.041	5.5
4	MP ALPHA3	Х	024	5.5
5	MP ALPHA1	Y	.011	4.667
6	MP ALPHA1	Х	006	4.667
7	MP ALPHA1	Y	.008	3
8	MP ALPHA1	Х	005	3
9	MP ALPHA2	Y	.007	5
10	MP ALPHA2	Х	004	5
11	MP ALPHA3	Y	.015	3
12	MP ALPHA3	Х	009	3
13	MP ALPHA1	Y	.011	1.333
14	MP ALPHA1	Х	006	1.333
15	MP ALPHA2	Y	.027	2.5
16	MP ALPHA2	X	016	2.5
17	MP ALPHA3	Y	.041	.5
18	MP ALPHA3	X	024	.5

Member Point Loads (BLC 16 : Wind Load (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.285	7.5
2	MP ALPHA3	Y	.277	5.5

Member Point Loads (BLC 16 : Wind Load (180)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
3	MP ALPHA1	Y	.06	4.667
4	MP ALPHA1	Y	.05	3
5	MP ALPHA2	Y	.058	5
6	MP ALPHA3	Y	.114	3
7	MP ALPHA1	Y	.06	1.333
8	MP ALPHA2	Y	.285	2.5
9	MP ALPHA3	Ý	.277	.5

Member Point Loads (BLC 17 : Ice Wind Load (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.036	7.5
2	MP ALPHA3	Y	.055	5.5
3	MP ALPHA1	Y	.014	4.667
4	MP ALPHA1	Y	.01	3
5	MP ALPHA2	Y	.009	5
6	MP ALPHA3	Y	.019	3
7	MP ALPHA1	Y	.014	1.333
8	MP ALPHA2	Y	.036	2.5
9	MP ALPHA3	Ý	.055	.5

Member Point Loads (BLC 18 : Wind Load (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.213	7.5
2	MP ALPHA2	X	.123	7.5
3	MP ALPHA3	Y	.203	5.5
4	MP ALPHA3	Х	.117	5.5
5	MP ALPHA1	Y	.045	4.667
6	MP ALPHA1	X	.026	4.667
7	MP ALPHA1	Y	.041	3
8	MP ALPHA1	Х	.024	3
9	MP ALPHA2	Y	.045	5
10	MP ALPHA2	X	.026	5
11	MP ALPHA3	Y	.093	3
12	MP ALPHA3	Х	.053	3
13	MP ALPHA1	Y	.045	1.333
14	MP ALPHA1	X	.026	1.333
15	MP ALPHA2	Y	.213	2.5
16	MP ALPHA2	X	.123	2.5
17	MP ALPHA3	Y	.203	.5
18	MP ALPHA3	X	.117	.5

Member Point Loads (BLC 19 : Ice Wind Load (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.027	7.5
2	MP ALPHA2	Х	.016	7.5
3	MP ALPHA3	Y	.041	5.5
4	MP ALPHA3	Х	.024	5.5
5	MP ALPHA1	Y	.011	4.667
6	MP ALPHA1	Х	.006	4.667
7	MP ALPHA1	Y	.008	3
8	MP ALPHA1	Х	.005	3
9	MP ALPHA2	Y	.007	5
10	MP ALPHA2	Х	.004	5
11	MP ALPHA3	Y	.015	3
12	MP ALPHA3	X	.009	3

Member Point Loads (BLC 19 : Ice Wind Load (210)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
13	MP ALPHA1	Y	.011	1.333
14	MP ALPHA1	Х	.006	1.333
15	MP ALPHA2	Y	.027	2.5
16	MP ALPHA2	Х	.016	2.5
17	MP ALPHA3	Y	.041	.5
18	MP ALPHA3	X	.024	.5

Member Point Loads (BLC 20 : Wind Load (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.084	7.5
2	MP ALPHA2	Х	.145	7.5
3	MP ALPHA3	Y	.074	5.5
4	MP ALPHA3	Х	.128	5.5
5	MP ALPHA1	Y	.018	4.667
6	MP ALPHA1	Х	.031	4.667
7	MP ALPHA1	Y	.021	3
8	MP ALPHA1	Х	.037	3
9	MP ALPHA2	Y	.02	5
10	MP ALPHA2	Х	.034	5
11	MP ALPHA3	Y	.047	3
12	MP ALPHA3	Х	.081	3
13	MP ALPHA1	Y	.018	1.333
14	MP ALPHA1	Х	.031	1.333
15	MP ALPHA2	Y	.084	2.5
16	MP ALPHA2	X	.145	2.5
17	MP ALPHA3	Y	.074	.5
18	MP ALPHA3	Х	.128	.5

Member Point Loads (BLC 21 : Ice Wind Load (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.012	7.5
2	MP ALPHA2	X	.02	7.5
3	MP ALPHA3	Y	.016	5.5
4	MP ALPHA3	X	.029	5.5
5	MP ALPHA1	Y	.005	4.667
6	MP ALPHA1	Х	.008	4.667
7	MP ALPHA1	Y	.005	3
8	MP ALPHA1	X	.008	3
9	MP ALPHA2	Y	.004	5
10	MP ALPHA2	Х	.006	5
11	MP ALPHA3	Y	.008	3
12	MP ALPHA3	X	.014	3
13	MP ALPHA1	Y	.005	1.333
14	MP ALPHA1	X	.008	1.333
15	MP ALPHA2	Y	.012	2.5
16	MP ALPHA2	X	.02	2.5
17	MP ALPHA3	Y	.016	.5
18	MP ALPHA3	Х	.029	.5

Member Point Loads (BLC 22 : Wind Load (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.129	7.5
2	MP ALPHA3	Х	.104	5.5
3	MP ALPHA1	Х	.027	4.667
4	MP ALPHA1	Х	.04	3

Member Point Loads (BLC 22 : Wind Load (270)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
5	MP ALPHA2	Х	.033	5
6	MP ALPHA3	Х	.087	3
7	MP ALPHA1	Х	.027	1.333
8	MP ALPHA2	Х	.129	2.5
9	MP ALPHA3	Х	.104	.5

Member Point Loads (BLC 23 : Ice Wind Load (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.019	7.5
2	MP ALPHA3	Х	.026	5.5
3	MP ALPHA1	X	.008	4.667
4	MP ALPHA1	Х	.009	3
5	MP ALPHA2	Х	.006	5
6	MP ALPHA3	Х	.015	3
7	MP ALPHA1	X	.008	1.333
8	MP ALPHA2	X	.019	2.5
9	MP ALPHA3	X	.026	.5

Member Point Loads (BLC 24 : Wind Load (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	084	7.5
2	MP ALPHA2	X	.145	7.5
3	MP ALPHA3	Y	074	5.5
4	MP ALPHA3	Х	.128	5.5
5	MP ALPHA1	Y	018	4.667
6	MP ALPHA1	Х	.031	4.667
7	MP ALPHA1	Y	021	3
8	MP ALPHA1	X	.037	3
9	MP ALPHA2	Y	02	5
10	MP ALPHA2	Х	.034	5
11	MP ALPHA3	Y	047	3
12	MP ALPHA3	X	.081	3
13	MP ALPHA1	Y	018	1.333
14	MP ALPHA1	Х	.031	1.333
15	MP ALPHA2	Y	084	2.5
16	MP ALPHA2	X	.145	2.5
17	MP ALPHA3	Y	074	.5
18	MP ALPHA3	Х	.128	.5

Member Point Loads (BLC 25 : Ice Wind Load (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	012	7.5
2	MP ALPHA2	Х	.02	7.5
3	MP ALPHA3	Y	016	5.5
4	MP ALPHA3	Х	.029	5.5
5	MP ALPHA1	Y	005	4.667
6	MP ALPHA1	Х	.008	4.667
7	MP ALPHA1	Y	005	3
8	MP ALPHA1	Х	.008	3
9	MP ALPHA2	Y	004	5
10	MP ALPHA2	Х	.006	5
11	MP ALPHA3	Y	008	3
12	MP ALPHA3	Х	.014	3
13	MP ALPHA1	Y	005	1.333
14	MP ALPHA1	X	.008	1.333

Member Point Loads (BLC 25 : Ice Wind Load (300)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
15	MP ALPHA2	Y	012	2.5
16	MP ALPHA2	X	.02	2.5
17	MP ALPHA3	Y	016	.5
18	MP ALPHA3	Х	.029	.5

Member Point Loads (BLC 26 : Wind Load (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	213	7.5
2	MP ALPHA2	Х	.123	7.5
3	MP ALPHA3	Y	203	5.5
4	MP ALPHA3	Х	.117	5.5
5	MP ALPHA1	Y	045	4.667
6	MP ALPHA1	Х	.026	4.667
7	MP ALPHA1	Y	041	3
8	MP ALPHA1	Х	.024	3
9	MP ALPHA2	Y	045	5
10	MP ALPHA2	Х	.026	5
11	MP ALPHA3	Y	093	3
12	MP ALPHA3	Х	.053	3
13	MP ALPHA1	Y	045	1.333
14	MP ALPHA1	Х	.026	1.333
15	MP ALPHA2	Y	213	2.5
16	MP ALPHA2	X	.123	2.5
17	MP ALPHA3	Ý	203	.5
18	MP ALPHA3	X	117	5

Member Point Loads (BLC 27 : Ice Wind Load (330))

	Member Labe	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	027	7.5
2	MP ALPHA2	Х	.016	7.5
3	MP ALPHA3	Y	041	5.5
4	MP ALPHA3	Х	.024	5.5
5	MP ALPHA1	Y	011	4.667
6	MP ALPHA1	Х	.006	4.667
7	MP ALPHA1	Y	008	3
8	MP ALPHA1	Х	.005	3
9	MP ALPHA2	Y	007	5
10	MP ALPHA2	Х	.004	5
11	MP ALPHA3	Y	015	3
12	MP ALPHA3	Х	.009	3
13	MP ALPHA1	Y	011	1.333
14	MP ALPHA1	Х	.006	1.333
15	MP ALPHA2	Y	027	2.5
16	MP ALPHA2	X	.016	2.5
17	MP ALPHA3	Y	041	.5
18	MP ALPHA3	X	.024	.5

Member Point Loads (BLC 28 : Maintanence (0))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	019	7.5
2	MP ALPHA3	Y	018	5.5
3	MP ALPHA1	Y	004	4.667
4	MP ALPHA1	Y	003	3
5	MP ALPHA2	Y	004	5
6	MP ALPHA3	Y	007	3

Member Point Loads (BLC 28 : Maintanence (0)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
7	MP ALPHA1	Y	004	1.333
8	MP ALPHA2	Y	019	2.5
9	MP ALPHA3	Y	018	.5

Member Point Loads (BLC 29 : Maintanence (30))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	014	7.5
2	MP ALPHA2	Х	008	7.5
3	MP ALPHA3	Y	013	5.5
4	MP ALPHA3	Х	008	5.5
5	MP ALPHA1	Y	003	4.667
6	MP ALPHA1	Х	002	4.667
7	MP ALPHA1	Y	003	3
8	MP ALPHA1	Х	002	3
9	MP ALPHA2	Y	003	5
10	MP ALPHA2	Х	002	5
11	MP ALPHA3	Y	006	3
12	MP ALPHA3	Х	004	3
13	MP ALPHA1	Y	003	1.333
14	MP ALPHA1	Х	002	1.333
15	MP ALPHA2	Y	014	2.5
16	MP ALPHA2	X	008	2.5
17	MP ALPHA3	Y	013	.5
18	MP ALPHA3	X	008	.5

Member Point Loads (BLC 30 : Maintanence (60))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	006	7.5
2	MP ALPHA2	Х	01	7.5
3	MP ALPHA3	Y	005	5.5
4	MP ALPHA3	Х	008	5.5
5	MP ALPHA1	Y	001	4.667
6	MP ALPHA1	Х	002	4.667
7	MP ALPHA1	Y	001	3
8	MP ALPHA1	Х	002	3
9	MP ALPHA2	Y	001	5
10	MP ALPHA2	Х	002	5
11	MP ALPHA3	Y	003	3
12	MP ALPHA3	Х	005	3
13	MP ALPHA1	Y	001	1.333
14	MP ALPHA1	Х	002	1.333
15	MP ALPHA2	Y	006	2.5
16	MP ALPHA2	Х	01	2.5
17	MP ALPHA3	Y	005	.5
18	MP ALPHA3	Х	008	.5

Member Point Loads (BLC 31 : Maintanence (90))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	008	7.5
2	MP ALPHA3	Х	007	5.5
3	MP ALPHA1	Х	002	4.667
4	MP ALPHA1	Х	003	3
5	MP ALPHA2	Х	002	5
6	MP ALPHA3	Х	006	3
7	MP ALPHA1	X	002	1.333

Member Point Loads (BLC 31 : Maintanence (90)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
8	MP ALPHA2	Х	008	2.5
9	MP ALPHA3	Х	007	.5

Member Point Loads (BLC 32 : Maintanence (120))

_	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.006	7.5
2	MP ALPHA2	Х	01	7.5
3	MP ALPHA3	Y	.005	5.5
4	MP ALPHA3	Х	008	5.5
5	MP ALPHA1	Y	.001	4.667
6	MP ALPHA1	Х	002	4.667
7	MP ALPHA1	Y	.001	3
8	MP ALPHA1	Х	002	3
9	MP ALPHA2	Y	.001	5
10	MP ALPHA2	Х	002	5
11	MP ALPHA3	Y	.003	3
12	MP ALPHA3	Х	005	3
13	MP ALPHA1	Y	.001	1.333
14	MP ALPHA1	Х	002	1.333
15	MP ALPHA2	Y	.006	2.5
16	MP ALPHA2	X	01	2.5
17	MP ALPHA3	Y	.005	.5
18	MP ALPHA3	X	008	.5

Member Point Loads (BLC 33 : Maintanence (150))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.014	7.5
2	MP ALPHA2	Х	008	7.5
3	MP ALPHA3	Y	.013	5.5
4	MP ALPHA3	Х	008	5.5
5	MP ALPHA1	Y	.003	4.667
6	MP ALPHA1	Х	002	4.667
7	MP ALPHA1	Y	.003	3
8	MP ALPHA1	Х	002	3
9	MP ALPHA2	Y	.003	5
10	MP ALPHA2	Х	002	5
11	MP ALPHA3	Y	.006	3
12	MP ALPHA3	Х	004	3
13	MP ALPHA1	Y	.003	1.333
14	MP ALPHA1	Х	002	1.333
15	MP ALPHA2	Y	.014	2.5
16	MP ALPHA2	X	008	2.5
17	MP ALPHA3	Y	.013	.5
18	MP ALPHA3	X	008	.5

Member Point Loads (BLC 34 : Maintanence (180))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.019	7.5
2	MP ALPHA3	Y	.018	5.5
3	MP ALPHA1	Y	.004	4.667
4	MP ALPHA1	Y	.003	3
5	MP ALPHA2	Y	.004	5
6	MP ALPHA3	Y	.007	3
7	MP ALPHA1	Y	.004	1.333
8	MP ALPHA2	Y	.019	2.5

Member Point Loads (BLC 34 : Maintanence (180)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
9	MP ALPHA3	Y	.018	.5

Member Point Loads (BLC 35 : Maintanence (210))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.014	7.5
2	MP ALPHA2	Х	.008	7.5
3	MP ALPHA3	Y	.013	5.5
4	MP ALPHA3	Х	.008	5.5
5	MP ALPHA1	Y	.003	4.667
6	MP ALPHA1	Х	.002	4.667
7	MP ALPHA1	Y	.003	3
8	MP ALPHA1	Х	.002	3
9	MP ALPHA2	Y	.003	5
10	MP ALPHA2	Х	.002	5
11	MP ALPHA3	Y	.006	3
12	MP ALPHA3	Х	.004	3
13	MP ALPHA1	Y	.003	1.333
14	MP ALPHA1	Х	.002	1.333
15	MP ALPHA2	Y	.014	2.5
16	MP ALPHA2	X	.008	2.5
17	MP ALPHA3	Y	.013	.5
18	MP ALPHA3	Х	.008	.5

Member Point Loads (BLC 36 : Maintanence (240))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	.006	7.5
2	MP ALPHA2	Х	.01	7.5
3	MP ALPHA3	Y	.005	5.5
4	MP ALPHA3	X	.008	5.5
5	MP ALPHA1	Y	.001	4.667
6	MP ALPHA1	Х	.002	4.667
7	MP ALPHA1	Y	.001	3
8	MP ALPHA1	Х	.002	3
9	MP ALPHA2	Y	.001	5
10	MP ALPHA2	Х	.002	5
11	MP ALPHA3	Y	.003	3
12	MP ALPHA3	Х	.005	3
13	MP ALPHA1	Y	.001	1.333
14	MP ALPHA1	Х	.002	1.333
15	MP ALPHA2	Y	.006	2.5
16	MP ALPHA2	X	.01	2.5
17	MP ALPHA3	Y	.005	.5
18	MP ALPHA3	Х	.008	.5

Member Point Loads (BLC 37 : Maintanence (270))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Х	.008	7.5
2	MP ALPHA3	Х	.007	5.5
3	MP ALPHA1	Х	.002	4.667
4	MP ALPHA1	Х	.003	3
5	MP ALPHA2	Х	.002	5
6	MP ALPHA3	Х	.006	3
7	MP ALPHA1	Х	.002	1.333
8	MP ALPHA2	X	.008	2.5
9	MP ALPHA3	X	.007	.5

Member Point Loads (BLC 38 : Maintanence (300))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	006	7.5
2	MP ALPHA2	X	.01	7.5
3	MP ALPHA3	Y	005	5.5
4	MP ALPHA3	Х	.008	5.5
5	MP ALPHA1	Y	001	4.667
6	MP ALPHA1	Х	.002	4.667
7	MP ALPHA1	Y	001	3
8	MP ALPHA1	Х	.002	3
9	MP ALPHA2	Y	001	5
10	MP ALPHA2	Х	.002	5
11	MP ALPHA3	Y	003	3
12	MP ALPHA3	Х	.005	3
13	MP ALPHA1	Y	001	1.333
14	MP ALPHA1	Х	.002	1.333
15	MP ALPHA2	Y	006	2.5
16	MP ALPHA2	X	.01	2.5
17	MP ALPHA3	Y	005	.5
18	MP ALPHA3	X	.008	.5

Member Point Loads (BLC 39 : Maintanence (330))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	MP ALPHA2	Y	014	7.5
2	MP ALPHA2	X	.008	7.5
3	MP ALPHA3	Y	013	5.5
4	MP ALPHA3	X	.008	5.5
5	MP ALPHA1	Y	003	4.667
6	MP ALPHA1	X	.002	4.667
7	MP ALPHA1	Y	003	3
8	MP ALPHA1	X	.002	3
9	MP ALPHA2	Y	003	5
10	MP ALPHA2	X	.002	5
11	MP ALPHA3	Y	006	3
12	MP ALPHA3	X	.004	3
13	MP ALPHA1	Y	003	1.333
14	MP ALPHA1	X	.002	1.333
15	MP ALPHA2	Y	014	2.5
16	MP ALPHA2	X	.008	2.5
17	MP ALPHA3	Y	013	.5
18	MP ALPHA3	X	.008	.5

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		No	Data to Print			.

Member Distributed Loads (BLC 1 : Wind Load (0))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	01	01	0	0
2	VERT	PY	011	011	0	0
3	STANDOFF	PY	017	017	0	0
4	MP ALPHA1	PY	007	007	0	0
5	MP ALPHA2	PY	007	007	0	0
6	MP ALPHA3	PY	007	007	0	0
7	Mod Face	PY	01	01	0	0

Member Distributed Loads (BLC 1 : Wind Load (0)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
8	STABILIZER1	PY	017	017	0	0
9	Stabilizer2	PY	017	017	0	0

Member Distributed Loads (BLC 4 : Ice Wind Load (0))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	004	004	0	0
2	VERT	PY	004	004	0	0
3	STANDOFF	PY	004	004	0	0
4	MP ALPHA1	PY	003	003	0	0
5	MP ALPHA2	PY	003	003	0	0
6	MP ALPHA3	PY	003	003	0	0
7	Mod Face	PY	004	004	0	0
8	STABILIZER1	PY	004	004	0	0
9	Stabilizer2	PY	004	004	0	0

Member Distributed Loads (BLC 5 : Ice Dead Load)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	_End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	Z	011	011	0	0
2	VERT	Z	012	012	0	0
3	STANDOFF	Z	015	015	0	0
4	MP ALPHA1	Z	009	009	0	0
5	MP ALPHA2	Z	009	009	0	0
6	MP ALPHA3	Z	009	009	0	0
7	Mod Face	Z	011	011	0	0
8	STABILIZER1	Z	015	015	0	0
9	Stabilizer2	Z	015	015	0	0

Member Distributed Loads (BLC 6 : Wind Load (30))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	009	009	0	0
2	VERT	PY	01	01	0	0
3	STANDOFF	PY	015	015	0	0
4	MP ALPHA1	PY	006	006	0	0
5	MP ALPHA2	PY	006	006	0	0
6	MP ALPHA3	PY	006	006	0	0
7	FACE	PX	005	005	0	0
8	VERT	PX	005	005	0	0
9	STANDOFF	PX	009	009	0	0
10	MP ALPHA1	PX	004	004	0	0
11	MP ALPHA2	PX	004	004	0	0
12	MP ALPHA3	PX	004	004	0	0
13	Mod Face	PY	009	009	0	0
14	Mod Face	PX	005	005	0	0
15	STABILIZER1	PY	015	015	0	0
16	STABILIZER1	PX	009	009	0	0
17	Stabilizer2	PY	015	015	0	0
18	Stabilizer2	PX	- 009	009	0	0

Member Distributed Loads (BLC 7 : Ice Wind Load (30))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	003	003	0	0
2	VERT	PY	003	003	0	0
3	STANDOFF	PY	003	003	0	0
4	MP ALPHA1	PY	003	003	0	0
5	MP ALPHA2	PY	003	003	0	0

Member Distributed Loads (BLC 7 : Ice Wind Load (30)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
6	MP ALPHA3	PY	003	003	0	0
7	FACE	PX	002	002	0	0
8	VERT	PX	002	002	0	0
9	STANDOFF	PX	002	002	0	0
10	MP ALPHA1	PX	002	002	0	0
11	MP ALPHA2	PX	002	002	0	0
12	MP ALPHA3	PX	002	002	0	0
13	Mod Face	PY	003	003	0	0
14	Mod Face	PX	002	002	0	0
15	STABILIZER1	PY	003	003	0	0
16	STABILIZER1	PX	002	002	0	0
17	Stabilizer2	PY	003	003	0	0
18	Stabilizer2	PX	002	002	0	0

Member Distributed Loads (BLC 8 : Wind Load (60))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	005	005	0	0
2	VERT	PY	005	005	0	0
3	STANDOFF	PY	009	009	0	0
4	MP ALPHA1	PY	004	004	0	0
5	MP ALPHA2	PY	004	004	0	0
6	MP ALPHA3	PY	004	004	0	0
7	FACE	PX	009	009	0	0
8	VERT	PX	01	01	0	0
9	STANDOFF	PX	015	015	0	0
10	MP ALPHA1	PX	006	006	0	0
11	MP ALPHA2	PX	006	006	0	0
12	MP ALPHA3	PX	006	006	0	0
13	Mod Face	PY	005	005	0	0
14	Mod Face	PX	009	009	0	0
15	STABILIZER1	PY	009	009	0	0
16	STABILIZER1	PX	015	015	0	0
17	Stabilizer2	PY	009	009	0	0
18	Stabilizer2	PX	015	015	0	0

Member Distributed Loads (BLC 9 : Ice Wind Load (60))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	002	002	0	0
2	VERT	PY	002	002	0	0
3	STANDOFF	PY	002	002	0	0
4	MP ALPHA1	PY	002	002	0	0
5	MP ALPHA2	PY	002	002	0	0
6	MP ALPHA3	PY	002	002	0	0
7	FACE	PX	003	003	0	0
8	VERT	PX	003	003	0	0
9	STANDOFF	PX	003	003	0	0
10	MP ALPHA1	PX	003	003	0	0
11	MP ALPHA2	PX	003	003	0	0
12	MP ALPHA3	PX	003	003	0	0
13	Mod Face	PY	002	002	0	0
14	Mod Face	PX	003	003	0	0
15	STABILIZER1	PY	002	002	0	0
16	STABILIZER1	PX	003	003	0	0
17	Stabilizer2	PY	002	002	0	0
18	Stabilizer2	PX	003	003	0	0

Member Distributed Loads (BLC 10 : Wind Load (90))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	_End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	01	01	0	0
2	VERT	PX	011	011	0	0
3	STANDOFF	PX	017	017	0	0
4	MP ALPHA1	PX	007	007	0	0
5	MP ALPHA2	PX	007	007	0	0
6	MP ALPHA3	PX	007	007	0	0
7	Mod Face	PX	01	01	0	0
8	STABILIZER1	PX	017	017	0	0
9	Stabilizer2	PX	017	017	0	0

Member Distributed Loads (BLC 11 : Ice Wind Load (90))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	004	004	0	0
2	VERT	PX	004	004	0	0
3	STANDOFF	PX	004	004	0	0
4	MP ALPHA1	PX	003	003	0	0
5	MP ALPHA2	PX	003	003	0	0
6	MP ALPHA3	PX	003	003	0	0
7	Mod Face	PX	004	004	0	0
8	STABILIZER1	PX	004	004	0	0
9	Stabilizer2	PX	004	004	0	0

Member Distributed Loads (BLC 12 : Wind Load (120))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.005	.005	0	0
2	VERT	PY	.005	.005	0	0
3	STANDOFF	PY	.009	.009	0	0
4	MP ALPHA1	PY	.004	.004	0	0
5	MP ALPHA2	PY	.004	.004	0	0
6	MP ALPHA3	PY	.004	.004	0	0
7	FACE	PX	009	009	0	0
8	VERT	PX	01	01	0	0
9	STANDOFF	PX	015	015	0	0
10	MP ALPHA1	PX	006	006	0	0
11	MP ALPHA2	PX	006	006	0	0
12	MP ALPHA3	PX	006	006	0	0
13	Mod Face	PY	.005	.005	0	0
14	Mod Face	PX	009	009	0	0
15	STABILIZER1	PY	.009	.009	0	0
16	STABILIZER1	PX	015	015	0	0
17	Stabilizer2	PY	.009	.009	0	0
18	Stabilizer2	PX	015	015	0	0

Member Distributed Loads (BLC 13 : Ice Wind Load (120))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.002	.002	0	0
2	VERT	PY	.002	.002	0	0
3	STANDOFF	PY	.002	.002	0	0
4	MP ALPHA1	PY	.002	.002	0	0
5	MP ALPHA2	PY	.002	.002	0	0
6	MP ALPHA3	PY	.002	.002	0	0
7	FACE	PX	003	003	0	0
8	VERT	PX	003	003	0	0
9	STANDOFF	PX	003	003	0	0
10	MP ALPHA1	PX	003	003	0	0

Member Distributed Loads (BLC 13 : Ice Wind Load (120)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	_End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
11	MP ALPHA2	PX	003	003	0	0
12	MP ALPHA3	PX	003	003	0	0
13	Mod Face	PY	.002	.002	0	0
14	Mod Face	PX	003	003	0	0
15	STABILIZER1	PY	.002	.002	0	0
16	STABILIZER1	PX	003	003	0	0
17	Stabilizer2	PY	.002	.002	0	0
18	Stabilizer2	PX	003	003	0	0

Member Distributed Loads (BLC 14 : Wind Load (150))

	Member Labe	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.009	.009	0	0
2	VERT	PY	.01	.01	0	0
3	STANDOFF	PY	.015	.015	0	0
4	MP ALPHA1	PY	.006	.006	0	0
5	MP ALPHA2	PY	.006	.006	0	0
6	MP ALPHA3	PY	.006	.006	0	0
7	FACE	PX	005	005	0	0
8	VERT	PX	005	005	0	0
9	STANDOFF	PX	009	009	0	0
10	MP ALPHA1	PX	004	004	0	0
11	MP ALPHA2	PX	004	004	0	0
12	MP ALPHA3	PX	004	004	0	0
13	Mod Face	PY	.009	.009	0	0
14	Mod Face	PX	005	005	0	0
15	STABILIZER1	PY	.015	.015	0	0
16	STABILIZER1	PX	009	009	0	0
17	Stabilizer2	PY	.015	.015	0	0
18	Stabilizer2	PX	009	009	0	0

Member Distributed Loads (BLC 15 : Ice Wind Load (150))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.003	.003	0	0
2	VERT	PY	.003	.003	0	0
3	STANDOFF	PY	.003	.003	0	0
4	MP ALPHA1	PY	.003	.003	0	0
5	MP ALPHA2	PY	.003	.003	0	0
6	MP ALPHA3	PY	.003	.003	0	0
7	FACE	PX	002	002	0	0
8	VERT	PX	002	002	0	0
9	STANDOFF	PX	002	002	0	0
10	MP ALPHA1	PX	002	002	0	0
11	MP ALPHA2	PX	002	002	0	0
12	MP ALPHA3	PX	002	002	0	0
13	Mod Face	PY	.003	.003	0	0
14	Mod Face	PX	002	002	0	0
15	STABILIZER1	PY	.003	.003	0	0
16	STABILIZER1	PX	002	002	0	0
17	Stabilizer2	PY	.003	.003	0	0
18	Stabilizer2	PX	002	002	0	0

Member Distributed Loads (BLC 16 : Wind Load (180))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.01	.01	0	0
2	VERT	PY	.011	.011	0	0

Member Distributed Loads (BLC 16 : Wind Load (180)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	_End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
3	STANDOFF	PY	.017	.017	0	0
4	MP ALPHA1	PY	.007	.007	0	0
5	MP ALPHA2	PY	.007	.007	0	0
6	MP ALPHA3	PY	.007	.007	0	0
7	Mod Face	PY	.01	.01	0	0
8	STABILIZER1	PY	.017	.017	0	0
9	Stabilizer2	PY	.017	.017	0	0

Member Distributed Loads (BLC 17 : Ice Wind Load (180))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.004	.004	0	0
2	VERT	PY	.004	.004	0	0
3	STANDOFF	PY	.004	.004	0	0
4	MP ALPHA1	PY	.003	.003	0	0
5	MP ALPHA2	PY	.003	.003	0	0
6	MP ALPHA3	PY	.003	.003	0	0
7	Mod Face	PY	.004	.004	0	0
8	STABILIZER1	PY	.004	.004	0	0
9	Stabilizer2	PY	.004	.004	0	0

Member Distributed Loads (BLC 18 : Wind Load (210))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.009	.009	0	0
2	VERT	PY	.01	.01	0	0
3	STANDOFF	PY	.015	.015	0	0
4	MP ALPHA1	PY	.006	.006	0	0
5	MP ALPHA2	PY	.006	.006	0	0
6	MP ALPHA3	PY	.006	.006	0	0
7	FACE	PX	.005	.005	0	0
8	VERT	PX	.005	.005	0	0
9	STANDOFF	PX	.009	.009	0	0
10	MP ALPHA1	PX	.004	.004	0	0
11	MP ALPHA2	PX	.004	.004	0	0
12	MP ALPHA3	PX	.004	.004	0	0
13	Mod Face	PY	.009	.009	0	0
14	Mod Face	PX	.005	.005	0	0
15	STABILIZER1	PY	.015	.015	0	0
16	STABILIZER1	PX	.009	.009	0	0
17	Stabilizer2	PY	.015	.015	0	0
18	Stabilizer2	PX	.009	.009	0	0

Member Distributed Loads (BLC 19 : Ice Wind Load (210))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.003	.003	0	0
2	VERT	PY	.003	.003	0	0
3	STANDOFF	PY	.003	.003	0	0
4	MP ALPHA1	PY	.003	.003	0	0
5	MP ALPHA2	PY	.003	.003	0	0
6	MP ALPHA3	PY	.003	.003	0	0
7	FACE	PX	.002	.002	0	0
8	VERT	PX	.002	.002	0	0
9	STANDOFF	PX	.002	.002	0	0
10	MP ALPHA1	PX	.002	.002	0	0
11	MP ALPHA2	PX	.002	.002	0	0
12	MP ALPHA3	PX	.002	.002	0	0

Member Distributed Loads (BLC 19 : Ice Wind Load (210)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	_End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
13	Mod Face	PY	.003	.003	0	0
14	Mod Face	PX	.002	.002	0	0
15	STABILIZER1	PY	.003	.003	0	0
16	STABILIZER1	PX	.002	.002	0	0
17	Stabilizer2	PY	.003	.003	0	0
18	Stabilizer2	PX	.002	.002	0	0

Member Distributed Loads (BLC 20 : Wind Load (240))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.005	.005	0	0
2	VERT	PY	.005	.005	0	0
З	STANDOFF	PY	.009	.009	0	0
4	MP ALPHA1	PY	.004	.004	0	0
5	MP ALPHA2	PY	.004	.004	0	0
6	MP ALPHA3	PY	.004	.004	0	0
7	FACE	PX	.009	.009	0	0
8	VERT	PX	.01	.01	0	0
9	STANDOFF	PX	.015	.015	0	0
10	MP ALPHA1	PX	.006	.006	0	0
11	MP ALPHA2	PX	.006	.006	0	0
12	MP ALPHA3	PX	.006	.006	0	0
13	Mod Face	PY	.005	.005	0	0
14	Mod Face	PX	.009	.009	0	0
15	STABILIZER1	PY	.009	.009	0	0
16	STABILIZER1	PX	.015	.015	0	0
17	Stabilizer2	PY	.009	.009	0	0
18	Stabilizer2	PX	.015	.015	0	0

Member Distributed Loads (BLC 21 : Ice Wind Load (240))

	Member Labe	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	.002	.002	0	0
2	VERT	PY	.002	.002	0	0
3	STANDOFF	PY	.002	.002	0	0
4	MP ALPHA1	PY	.002	.002	0	0
5	MP ALPHA2	PY	.002	.002	0	0
6	MP ALPHA3	PY	.002	.002	0	0
7	FACE	PX	.003	.003	0	0
8	VERT	PX	.003	.003	0	0
9	STANDOFF	PX	.003	.003	0	0
10	MP ALPHA1	PX	.003	.003	0	0
11	MP ALPHA2	PX	.003	.003	0	0
12	MP ALPHA3	PX	.003	.003	0	0
13	Mod Face	PY	.002	.002	0	0
14	Mod Face	PX	.003	.003	0	0
15	STABILIZER1	PY	.002	.002	0	0
16	STABILIZER1	PX	.003	.003	0	0
17	Stabilizer2	PY	.002	.002	0	0
18	Stabilizer2	PX	.003	.003	0	0

Member Distributed Loads (BLC 22 : Wind Load (270))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	.01	.01	0	0
2	VERT	PX	.011	.011	0	0
3	STANDOFF	PX	.017	.017	0	0
4	MP ALPHA1	PX	.007	.007	0	0

Member Distributed Loads (BLC 22 : Wind Load (270)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
5	MP ALPHA2	PX	.007	.007	0	0
6	MP ALPHA3	PX	.007	.007	0	0
7	Mod Face	PX	.01	.01	0	0
8	STABILIZER1	PX	.017	.017	0	0
9	Stabilizer2	PX	.017	.017	0	0

Member Distributed Loads (BLC 23 : Ice Wind Load (270))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PX	.004	.004	0	0
2	VERT	PX	.004	.004	0	0
3	STANDOFF	PX	.004	.004	0	0
4	MP ALPHA1	PX	.003	.003	0	0
5	MP ALPHA2	PX	.003	.003	0	0
6	MP ALPHA3	PX	.003	.003	0	0
7	Mod Face	PX	.004	.004	0	0
8	STABILIZER1	PX	.004	.004	0	0
9	Stabilizer2	PX	.004	.004	0	0

Member Distributed Loads (BLC 24 : Wind Load (300))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	005	005	0	0
2	VERT	PY	005	005	0	0
3	STANDOFF	PY	009	009	0	0
4	MP ALPHA1	PY	004	004	0	0
5	MP ALPHA2	PY	004	004	0	0
6	MP ALPHA3	PY	004	004	0	0
7	FACE	PX	.009	.009	0	0
8	VERT	PX	.01	.01	0	0
9	STANDOFF	PX	.015	.015	0	0
10	MP ALPHA1	PX	.006	.006	0	0
11	MP ALPHA2	PX	.006	.006	0	0
12	MP ALPHA3	PX	.006	.006	0	0
13	Mod Face	PY	005	005	0	0
14	Mod Face	PX	.009	.009	0	0
15	STABILIZER1	PY	009	009	0	0
16	STABILIZER1	PX	.015	.015	0	0
17	Stabilizer2	PY	009	009	0	0
18	Stabilizer2	PX	.015	.015	0	0

Member Distributed Loads (BLC 25 : Ice Wind Load (300))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	002	002	0	0
2	VERT	PY	002	002	0	0
3	STANDOFF	PY	002	002	0	0
4	MP ALPHA1	PY	002	002	0	0
5	MP ALPHA2	PY	002	002	0	0
6	MP ALPHA3	PY	002	002	0	0
7	FACE	PX	.003	.003	0	0
8	VERT	PX	.003	.003	0	0
9	STANDOFF	PX	.003	.003	0	0
10	MP ALPHA1	PX	.003	.003	0	0
11	MP ALPHA2	PX	.003	.003	0	0
12	MP ALPHA3	PX	.003	.003	0	0
13	Mod Face	PY	002	002	0	0
14	Mod Face	PX	.003	.003	0	0

Member Distributed Loads (BLC 25 : Ice Wind Load (300)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	Start Location[ft,%]	End Location[ft,%]
15	STABILIZER1	PY	002	002	0	0
16	STABILIZER1	PX	.003	.003	0	0
17	Stabilizer2	PY	002	002	0	0
18	Stabilizer2	PX	.003	.003	0	0

Member Distributed Loads (BLC 26 : Wind Load (330))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	009	009	0	0
2	VERT	PY	01	01	0	0
3	STANDOFF	PY	015	015	0	0
4	MP ALPHA1	PY	006	006	0	0
5	MP ALPHA2	PY	006	006	0	0
6	MP ALPHA3	PY	006	006	0	0
7	FACE	PX	.005	.005	0	0
8	VERT	PX	.005	.005	0	0
9	STANDOFF	PX	.009	.009	0	0
10	MP ALPHA1	PX	.004	.004	0	0
11	MP ALPHA2	PX	.004	.004	0	0
12	MP ALPHA3	PX	.004	.004	0	0
13	Mod Face	PY	009	009	0	0
14	Mod Face	PX	.005	.005	0	0
15	STABILIZER1	PY	015	015	0	0
16	STABILIZER1	PX	.009	.009	0	0
17	Stabilizer2	PY	015	015	0	0
18	Stabilizer2	PX	009	009	0	0

Member Distributed Loads (BLC 27 : Ice Wind Load (330))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,	. Start Location[ft,%]	End Location[ft,%]
1	FACE	PY	003	003	0	0
2	VERT	PY	003	003	0	0
3	STANDOFF	PY	003	003	0	0
4	MP ALPHA1	PY	003	003	0	0
5	MP ALPHA2	PY	003	003	0	0
6	MP ALPHA3	PY	003	003	0	0
7	FACE	PX	.002	.002	0	0
8	VERT	PX	.002	.002	0	0
9	STANDOFF	PX	.002	.002	0	0
10	MP ALPHA1	PX	.002	.002	0	0
11	MP ALPHA2	PX	.002	.002	0	0
12	MP ALPHA3	PX	.002	.002	0	0
13	Mod Face	PY	003	003	0	0
14	Mod Face	PX	.002	.002	0	0
15	STABILIZER1	PY	003	003	0	0
16	STABILIZER1	PX	.002	.002	0	0
17	Stabilizer2	PY	003	003	0	0
18	Stabilizer2	PX	.002	.002	0	0

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N7	max	.2	14	.541	2	2.413	21	-2.14	2	1 723	19	1.218	17
2		min	-1.025	34	877	20	.84	35	-7.02	21	.357	35	-2.508	37
З	N36	max	1.034	10	1.409	2	.445	3	127	2	.204	4	4.19	17
4		min	39	26	-1.073	20	.166	17	352	33	.001	23	-3.093	35
5	Totals:	max	1.023	14	1.95	2	2.84	24						

Envelope Joint Reactions (Continued)

	Joint	X [k]	LC	Y [k]	LC	Z [k]	LC MX [k-ft]	LC	MY [k-ft] LC	MZ [k-ft]	LC
6		min -1.023	32	-1.95	20	1.04	5				

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed Area(Me	. Surface(
1	Wind Load (0)	WĽ		•	-		9	9	
2	Dead Load	DL			-1.1		9		
3	Live Load	LL					1		
4	Ice Wind Load (0)	OL1					9	9	
5	Ice Dead Load	OL2					9	9	
6	Wind Load (30)	WL					18	18	
7	Ice Wind Load (30)	OL1					18	18	
8	Wind Load (60)	WL					18	18	
9	Ice Wind Load (60)	OL1					18	18	
10	Wind Load (90)	WL					9	9	
11	Ice Wind Load (90)	OL1					9	9	
12	Wind Load (120)	WL					18	18	
13	Ice Wind Load (120)	OL1					18	18	
14	Wind Load (150)	WL					18	18	
15	Ice Wind Load (150)	OL1					18	18	
16	Wind Load (180)	WL					9	9	
17	Ice Wind Load (180)	OL1					9	9	
18	Wind Load (210)	WL					18	18	
19	Ice Wind Load (210)	OL1					18	18	
20	Wind Load (240)	WL					18	18	
21	Ice Wind Load (240)	OL1					18	18	
22	Wind Load (270)	WL					9	9	
23	Ice Wind Load (270)	OL1					9	9	
24	Wind Load (300)	WL					18	18	
25	Ice Wind Load (300)	OL1					18	18	
26	Wind Load (330)	WL					18	18	
27	Ice Wind Load (330)	OL1					18	18	
28	Maintanence (0)	OL3					9		
29	Maintanence (30)	OL3					18		
30	Maintanence (60)	OL3					18		
31	Maintanence (90)	OL3					9		
32	Maintanence (120)	OL3					18		
33	Maintanence (150)	OL3					18		
34	Maintanence (180)	OL3					9		
35	Maintanence (210)	OL3					18		
36	Maintanence (240)	OL3					18		
37	Maintanence (270)	OL3					9		
38	Maintanence (300)	OL3					18		
39	Maintanence (330)	OL3					18		
40	Earthquake (x-directi	EL	103						
41	Earthquake (y-directi	EL		103					
42	Earthquake (z-directi	EL			041				

Load Combinations

	Description	Solve	PDelta	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. В	.Fa	В	Fa	В	Fa
1	1.4D	Yes	Y		2	1.4																		
2	1.2D + 1.0W(0)	Yes	Y		2	1.2	1	1																
3	1.2D + 1.0Di + 1.0Ŵi(Yes	Y		2	1.2	5	1	4	1														
4	1.2D + 1.5L + 1.0WI(0)	Yes	Y		2	1.2	3	1.5	28	1														
5	1.2D + 1.0W(30)	Yes	Y		2	1.2	6	1																

Load Combinations (Continued)

	Description	Solve	PDelta	SB	.Fa	.В	.Fa	. В	Fa	.В	Fa	В	Fa	в	Fa	В	.Fa	. B	Fa	. B	.Fa	В	Fa
6	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	7	1														
7	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	29	1														
8	1.2D + 1.0W(60)	Yes	Y	2	1.2	8	1																
9	1.2D + 1.0Di + 1.0Wí(Yes	Y	2	1.2	5	1	9	1														
10	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	30	1														
11	1.2D + 1.0W(90)	Yes	Y	2	1.2	10	1																
12	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	11	1														
13	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	31	1														
14	1.2D + 1.0W(120)	Yes	Y	2	1.2	12	1																
15	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	13	1														
16	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	32	1														
17	1.2D + 1.0W(150)	Yes	Y	2	1.2	14	1																
18	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	15	1														
19	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	33	1														
20	1.2D + 1.0W(180)	Yes	Y	2	1.2	16	1																
21	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	17	1														
22	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	34	1														
23	1.2D + 1.0W(210)	Yes	Y	2	1.2	18	1																
24	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	19	1														
25	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	35	1														
26	1.2D + 1.0W(240)	Yes	Y	2	1.2	20	1																
27	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	21	1														
28	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	36	1														
29	1.2D + 1.0W(270)	Yes	Y	2	1.2	22	1																
30	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	23	1														
31	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	37	1														
32	1.2D + 1.0W(300)	Yes	Y	2	1.2	24	1																
33	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	25	1														
34	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	38	1														
35	1.2D + 1.0W(330)	Yes	Y	2	1.2	26	1																
36	1.2D + 1.0Di + 1.0Wi(Yes	Y	2	1.2	5	1	27	1														
37	1.2D + 1.5L + 1.0WI(Yes	Y	2	1.2	3	1.5	39	1														
38	1.2D + 1.0E(x) + 1.0E	Yes	Y	2	1.2	40	1	42	1	3	1												
39	1.2D + 1.0E(y) + 1.0E	Yes	Y	2	1.2	41	1	42	1	3	1												
40	1.2D - 1.0E(x) + 1.0E(Yes	Y	2	1.2	40	-1	42	1	3	1												
41	1.2D - 1.0E(y) + 1.0E(Yes	Y	2	1.2	41	-1	42	1	3	1												

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	She	Loc[ft]	Dir	LC	phi*	phi*	phi*	phi*	Eqn
1	MP ALPHA3	PIPE 2.0	.746	.25	4	.079	.25		25	20.8	32.13	1.872	1.872	H1
2	MP ALPHA2	PIPE 2.0	.558	3	24	.107	3		28	14.9	32.13	1.872	1.872	H1
3	STANDOFF	HSS4X4X4	.533	3	33	.166	3	z	19	134	139	16.1	16.1	H1
4	FACE	PIPE 3.0	.531	6.25	21	.223	6.25		3	28 . 2	65.2	5.749	5.749	H1
5	Mod Face	PIPE 2.5	.452	3	2	.113	3.125		3	14.5	50.7	3.596	3.596	H1
6	MP ALPHA1	PIPE 2.0	.304	.25	12	.072	.25		15	20.8	32.13	1.872	1.872	H1
7	VERT	PIPE 3.5	.000	.5	5	.000	.5		5	78.43	78.75	7.954	7.954	H1

Envelope AISI S100-16: ASD Cold Formed Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shea	Loc[[DirLC	Pn/O	Tn/O	Mnyy/	Mnzz/	Vny	Vnz	Cb	Egn
1	STABILIZE	MTC340502	.510	0	20	.071	3.876	y 22	13.643	25.717	1.265	1.514	11.6.	.16.6	2.083	H1.2-1
2	Stabilizer2	MTC340501	.470	3.876	17	.031	3.876	y 36	62.987	94.496	7.306	13.244	11.8	35.4	1.518	H1.2-1
3	CONNECTI	MTC340501	.473	1.34	17	.343	.656	y 21	70.12	94.496	7.306	13.244	11.8	.35.4	1.175	H1.2-1

APPENDIX L

Additional Calculations (Gamma)
	DD R OF DESIGN								
POD Job # 20-63609									
Site Number	876402								
Site Name	STAFFORD/PRAGYL/SSUSA								
Calculations Based on	ТІА-222-Н								
Reactions from RISA-3D)								
Moment	7.172 ft-kip								
Axial	0.996 kips								
Shear	0.862 kips								
Bolt Information	1005								
Grade	A325								
Diameter	0.625 in								
Bolt Spacing	6 in.								
Number of Rods	4								
Flange Plate Inforation									
Width	7.875 in.								
Thickness	0.75 in.								
Grade	A36								
Chan doff Information									
Standojj injornation	1155								
Standorr Member	HSS 4 in								
Thickness	0.25 in								
Bolt Calculations									
ф	0.75								
A _{nt}	0.226 in ²								
A _b	0.307 in ²								
Fu	120 ksi								
φR _{nV}	13.81 kips								
φR _{nt}	20.34 kips								
V	0.22 kips								
F	7.41 kips								
Capacity	13.3%								
Flange Plate Calculation	15								
φ	0.9								
Fy	36 ksi								
t _{min}	0.26 in								
Z	1.1 in ³								
φM _n	35.9 in-kip								
Mu	14.8 in-kip								

41.3%

Capacities	
Bolts	13.3%
Flange Plate	41.3%

Ver 1.0 - 3/5/2019

Capacity

APPENDIX M

ATC Wind Printout

4/27/2020

Search Information

Address:	175 Stafford St, Union, CT 06076, USA
Coordinates:	41.9890821, -72.262686
Elevation:	857 ft
Timestamp:	2020-04-27T19:33:54.741Z
Hazard Type:	Wind

ASCE 7-16

MRI 10-Year	75 mph
MRI 25-Year	83 mph
MRI 50-Year	90 mph
MRI 100-Year	. 97 mph
Risk Category I	108 mph
Risk Category II	117 mph
Risk Category III	126 mph
Risk Category IV	131 mph

You are in a wind-borne debris region if you are also within 1 mile of the coastal mean high water line.

MRI 10-Year	77 mph
MRI 25-Year	
MRI 50-Year	93 mph
MRI 100-Year	100 mph
Risk Category I	113 mph
Risk Category II	124 mph
Risk Category III-IV	🛕 134 mph
If the structure under con healthcare facility and you mile of the coastal mean you are in a wind-borne d other occupancy, use the	isideration is a u are also within 1 high water line, debris region. If tRisk Category II

ASCE 7-10

ASCE 7-05

ASCE 7-05 Wind Speed

 water line.
 other occupancy, use the Risk Category II

 basic wind speed contours to determine if you are in a wind-borne debris region.

 The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

99 mph

APPENDIX N

Mount Manufacturer Part Specification Sheets

	8	7	6	5	4	3		2	1	
ITEM	PART NO.	DESCRIPTION	QTY.	WEIGHT				REVISIONS		
1	MTC328601	10-50 RRU Mount Weldment	3	29.99 LBS		REV. Z	ONE	DESCRIPTION	BY	DATE 06/11/13
2	MT38240	5/8" X 40" GALV THREADED ROD) 6	3.46 LBS				INTIME NELEMOE		00/11/13
3	GWF-05	5/8" GALV FLAT WASHER	36	0.06 LBS						
4	GWL-05	5/8" GALV LOCK WASHER	12	0.03 LBS						
5	GN-05	5/8" GALV HEX NUT	12	0.08 LBS						
6	MTC340501	Mount Channel	3	23.34 LBS						
7	MTC340502	Support Arm	6	29.88 LBS						
8	MTC340503	Mount Channel	6	5.39 LBS			\frown			
9	GB-0520A	5/8" X 2" GALV BOLT KIT (A325)	12	0.27 LBS			(1)		_	
10	GUB-4240	1/2" X 2-1/2" X 4" GALV U-BOLT	12	0.56 LBS			\smile \			
11	GB-04205	1/2" X 2" GALV BOLT KIT	48	0.16 LBS					,	~
12	GWF-04	1/2" GALV FLAT WASHER	48	0.03 LBS				\setminus ///	$\sqrt{4}$ $\sqrt{5}$ $/$	'/
										>
•	¥9		\$50 [12 10 [25 10 [25	70.0 4.0	ORDER PIPE SEPARATELY ORDER CRU KITS SEPAR	OSSOVER	2	8	- 9 9	
				Þ		50en 97	902	NC 1007		
					These drawings and specifications are the proprieto of Commiscope inc. and may be used only for the	ny property MSM	1 of 2	VSR-MS-B		
NC	DTES:				ALL DIMENSIONS ARE IN MODES IN C.	oreano en TP	NTS	Mananale T-Arm Reinforcement Kit		
	1. ALL ME	ETRIC DIMENSIONS ARE I	n bracke	TS.	TOLERANCES UNLESS OTHERWISE SPECIFIE		MDA:	Static Trip ACCENTRY DEAMANC		
	2. FIT MC	NOPOLES 10" - 50".			.x = ± .12 ANGLES .XX = ± .06 FRACTIONS	±1/32 06/11/13	AJ6	ASSEMBLY UKAWING		
1	3. PRE C	UT ALLTHREAD AS NEED!	ED FOR P	OLE OD.	.XOX= ± .03 REMOVE BURRS AND BREAK EDGES .00	ь Д	GALV A123	L COMM	SCOPE"	,
					DO NOT SCALE THIS PRINT	ī /	421.17 LBS	Hickory, NC 2860	02 U.S.A.	

APPENDIX O

Mount Manufacturer Design Drawings (MDD)

		MODIFICATION INS	SPECTION CHECKLIST			
BEFORE CI	BEFORE CONSTRUCTION DURING CONSTRUCTION				INTRUCTION	
CONSTRUCTION/INSTALLATION INSPECTION AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM	CONSTRUCTION/INSTALLATION INSPECTION AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM	CONSTRUCTION/INSTALLATION INSPECTION AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM	
x	MODIFICATION INSPECTION CHECKLIST DWG	x	CONSTRUCTION INSPECTION	x	MODIFICATION INSPECTOR REDLINE OR RECORD DRAWING(S)	
,	ENGINEER OF RECORD APPROVED SHOP DRAWINGS		FOUNDATION INSPECTION		POST INSTALLED ANCHOR ROD PULL-OUT TESTING	1033 E. TURKEYFOOT LAKE RD. SUITE 206 AKRON, OHIO 44312 330-961-7432
	FABRICATION INSPECTION	•	CONCRETE COMP. STRENGTH AND SLUMP TEST	x	PHOTOGRAPHS	CARRIER:
x	MATERIAL TEST REPORT		POST INSTALLED ANCHOR ROD VERIFICATION	ADDITIONAL TESTING AND INSPECTION		🛛 😂 Δτ&τ
	FABRICATOR NDE INSPECTION		BASE PLATE GROUT VERIFICATION			
	NDE REPORT OF MONOPOLE BASEPLATE (AS REQUIRED)		THIRD PARTY CERTIFIED WELD INSPECTION			ARE THE SOLE PROPERTY OF CROWN AND N NOT BE REPRODUCED, DISSEMINATED OF
x	PACKING SLIP		EARTHWORK LIFT AND DENSITY (REPORT REQUIRED)	1		REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF CROWN.
ADDITIONAL TESTING AND INSPECTION		x	ON SITE COLD GALVANIZING VERIFICATION	-		MODIFICATION DRAWING
			GUY WIRE TENSION REPORT			
		x	GC AS-BUILT DOCUMENTS			
		ADDITIONAL TESTING AND INSPECTION	1	-		
2001CATION INSPECTION NOTES: NERAL: THE MONITORIN INSPECTION (IA AVIGALA LINEGE HENDRICATION NOTES: AVIGALA LINEGE HENDRICATION NOTES: AVIGALATION WAS CORE HENDRICATION AND A REINVERY CONSTITUTION IN KEPORTS TO ENSURE THE INSTALLATION WAS CORE WITH THE CONTRACTOR DOLUMENTS. NAMELY THE M DESIGNED BY THE ENNIREE TO IN STALLATION WAS CORE ADD WORKMANSHIP ONLY AN IS NOT A REVIEW ON ADD WORKMANSHIP ONLY AN IS NOT A REVIEW ON THE MODIFICATION DESIGNION IS TO A REVIEW ON ADD WORKMANSHIP ONLY AN IS NOT A REVIEW ON HENDRICATION INSPECTION IS OF THE STRUCT EFFECTIVESS AND INTENT RESIDES WITH THE END INSPECTIVE REGIMENTATION OF THE STRUCT MARCHING THE REQUIREMENT OF THE MODIFICATION INSPECTIVE REGIMENTATION OF THE MODIFICATION INSPECTIVE REGIMENTATION OF THE MODIFICATION INSPECTIVE REGIMENTATION IN SECTION IS REQUIRED TO CON- INSPECTIVE REGIMENTATION IN SECTION IS REQUIRED TO CON- INSPECTIONS DISCUSS ANY SITE SPECIFIC INSPECTION IS RECOVERED TO CON- INSPECTIONS DISCUSS ANY SITE SPECIFIC INSPECTION IS REPORTED FOR CONCELL INSPECTIONS DISCUSS ANY SITE SPECIFIC INSPECTION IS REPORTED FOR CONCELL INSPECTIONS DISCUSS ANY SITE SPECIFIC INSPECTION IS REPORTED FOR CONCELL INSPECTIONS DISCUSS ANY SITE SPECIFIC INSPECTION IS DESIGNABLE FOR CONTRACTOR INSPECTION IS DESIGNABLE FOR INSPECTION IS DESIGNABLE FOR CONTRACTOR INSPECTION	TUDIOT TOWES INFORMATION MAD OTHER RUTCIO NA CODENANCE DISTICTION RANDON ACCOMPANCE DISTICTION RANDON RESEAN TALLATION CONFIGURATION THE MODIFICATION DESIGN NUMBER FOR ALL INFORMATION RESEAN INFORMATION RESEAN INFORMATION RESEAN SOLARD THE MODIFICATION ATTIVIL EF ROGINAL RESEAN TALLET THE GC AS SOON AS A POINT OF A STE INFORMATION RESEAN INFORMATION CONFIGURATION INFORMATION CONF	REVIEW THE REQUIREMENT OF TH WORK WITH THE MINISPECTOR TO DNSITE MODER/LATION INSPECTIC ENTER UNDERSTAND ALL INSPECT THE COMMENDATIONS ENTER UNDERSTAND ALL INSPECTOR THE COMMENDATIONS: INT SUBGESTED THAT THE COMMENDATIONS: INT SUBGESTED THAT THE COMMENDATIONS: THE COMMENDATIONS: THE SUBGESTED THAT THE COMMENDATIONS: THE COMMENDATIONS: THE COMMENDATIONS: THE SUBGESTED THAT THE COMMENDATIONS: THE COMMENDATION SUBJECT TO SUBJECT	E MODIFICATION INSPECTION OFECULIST DOPENDA SCHEDULE TO CONDUCT INS, INCLUING FORMATION INSPECTIONS ION AND TESTING REQUIREMENTS STATUSTICS THE STATE MODIFICATION INSPECTION WERTS OF THE MODIFICATION INSPECTION WERTS OF THE MODIFICATION INSPECTION INSPECTION AT DV WHEN THE STE WILL BE EXTONDATE OF THE MODIFICATION INSPECTION TO A CONTRACT COLLECT THE MODIFICATION RAY TO WILL DISK TO AND AND RAY TO AND AND AND AND AND RAY TO AND	INSPECTION TY MODIFICATION TWO WARS: CORRECT FAILIN MODIFICATION MAY WORK W MODIFICATION VERIFICATION INSPECT TO VERIFICATION INSPECT TO VERIFICATION INSPECT TO VERIFICATION INSPECT TO VERIFICATION INSPECT TO VERIFICATION INSPECT MODIFICATION CONTROLLING REPORT FOR REPORT FOR REPORT FOR TO REFORM THE REQUIRED PHOTOS OF REPORT FOR TO REFORM THE PHOTOGRAPHIC PHOTOGRAPH	ALED MODIFICATION INSPECTION, THE GC SHALL WORK WITH INSPECTION TO CORMINE TA INFORMATION CONTAINING THE ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN INSPECTION TO CORMINE TA INSPECTION SCIENTIAL TO INFORMATION INSPECTION OR, WITH TOKEN CONKIETS APPROVAL, THE GC INTER THE INSPECTION OF AUTOMATION INSPECTION INSPECTION OR, WITH TOKEN CONKIETS APPROVAL, THE GC INTER THE INSPECTION OF AUTOMATION INSPECTION INSPECTION AND INSPECTION MODIFICATION INSPECTION INSPECTION INSPECTION INSPECTION REPORTS INSPECTION INSPECTION REPORTS TO AUTOMATION INSPECTION INSPECTION INSPECTION REPORTS IN A THE ORIGINAL OF AN INSPECTION INSPECTION REPORTS IN AUTOMATION INSPECTION INSPECTION INSPECTION REPORTS IN AUTOMATION INSPECTION INSPECTION REPORTS IN AUTOMATION INSPECTION INSPECTION REPORTS IN AUTOMATION INSPECTION INSPECTION REPORTS IN AUTOMATION INSPECTION INSPECTION AUTOMATION INSPECTION REPORTS IN INSPECTION INSPECTION REPORTS IN AUTOMATION INSPECTION INSPECTION INSPECTION REPORTS IN AUTOMATION INSPECTION REPORTS IN INSPECTION INSPECTION INSPECTION REPORTS IN AUTOMATION INSPECTION REPORTS IN AUTOMATION	REV. DATE DESCRIPTION
INSPECTIONS, AND SUBMITTING THE MODIFICATION VERAL CONTRACTOR: THE GC IS REQUIRED TO CONTACT THE MODIFICATION RECEIVING A PO OR PAYMENT FOR THE MODIFICATION TURKNEY PROJECT TO:	INSPECTION REPORT. IN INSPECTOR AS SOON AS IN INSTALLATION OR	MODIFICATION INSPECTION WILLE DELAYS, THE TOWER GWARE SHAL LOSS OR DEPOSITS AND/OR OTHER DELAY INCURRED BY EITHER PARTY THE DELAY CANCELLATION IS CAU MAY COMPROMISE THE SAFETY OF	SE CONDUCTED, AND EITHER ARTY CANCELS OR I NOT BE RESPONSIBLE FOR ANY COSTS, FEES, I PENALTIES RELATE TO THE CANCELLATION OR FOR ANY TIME. EXCEPTIONS MAY BE MADE IN SED BY WEATHER OR OTHER CONDITIONS THAT THE PARTIES INVOLVED.	POST CONDITION FINAL INFIELD C COMPLETE DEN	N PHOTOGRAPHS ONDITION ANY OTHER PHOTOS DEEMED RELEVANT TO SHOW TALS OF MODIFICATIONS TAKEN MANDER/ATIONS TAKEN EROM THE GROUND SHALL PS	CHECKLIST
		CORRECTION OF FAILING MODIFICATIO	N INSPECTION:	CONSIDERED IN	ADEQUATE.	MI-01
		 IF THE MODIFICATION INSTALLATIC 	ON WOULD FAIL THE MODIFICATION			

Exhibit F

Power Density/RF Emissions Report

RF EMISSIONS COMPLIANCE REPORT

Crown Castle on behalf of AT&T Mobility, LLC

Crown Castle Site Order Number: 517113 Crown Castle Site BU Number: 876402 Crown Castle Site Name: STAFFORD/PRAGYL/SSUSA AT&T Mobility, LLC Site FA Number: 10128067 AT&T Mobility, LLC Site ID: CTV1258 AT&T Mobility, LLC Site Name: STAFFORD - STAFFORD ST

> 175 Stafford Street Stafford, CT 6/15/2020

Report Status:

AT&T Mobility, LLC is Compliant

Michael Fischer, P.E. Registered Professional Engineer (Electrical) Connecticut License Number 33928 Expires January 31, 2021

Signed 15 June 2020

Prepared By:

Site Safe, LLC

Vienna, VA 22182

Engineering Statement in Re: Electromagnetic Energy Analysis Crown Castle Stafford, CT

My signature on the cover of this document indicates:

That I am registered as a Professional Engineer in the jurisdiction indicated; and

That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Site Safe, LLC in Vienna, Virginia; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Crown Castle on behalf of AT&T Mobility, LLC (see attached Site Summary and Carrier documents) and that AT&T Mobility, LLC's installation involves communications equipment, antennas and associated technical equipment at a location referred to as "STAFFORD/PRAGYL/SSUSA" ("the site"); and

That AT&T Mobility, LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT&T Mobility, LLC and shown on the worksheet and that worst-case 100% duty cycle has been assumed; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radio frequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio frequency energy must utilize the standards set by the FCC, which is the federal agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," which defines situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and 2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of AT&T Mobility, LLC's operating frequencies as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT&T Mobility, LLC operation is no more than 5.242% of the maximum permissible exposure limits in any accessible area on the ground; and

That it is understood per FCC Guidelines and OET 65 Appendix A, that regardless of the existent radio frequency environment, only those licensees whose contributions exceed 5% of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any non-compliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 6.983% of the maximum in any accessible area up to two meters above the ground per OET 65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET 65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier(s) and frequency range(s) indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding radio frequency safety; and

In summary, it is stated here that the proposed operation at the site will not result in exposure of the public to excessive levels of radio frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307(b), and that AT&T Mobility, LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals and approved contractor personnel trained in radio frequency safety and that this instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower or in the immediate proximity of the antennas.

Crown Castle STAFFORD/PRAGYL/SSUSA Site Summary

Carrier	Area Maximum Percentage MPE
AT&T Mobility, LLC	0.160 %
AT&T Mobility, LLC (Proposed)	1.238 %
AT&T Mobility, LLC (Proposed)	1.165 %
AT&T Mobility, LLC (Proposed)	0.511 %
AT&T Mobility, LLC (Proposed)	0.547 %
AT&T Mobility, LLC (Proposed)	1.140 %
AT&T Mobility, LLC (Proposed)	0.481 %
Sprint	0.148 %
Sprint	0.291 %
Sprint	0.247 %
Verizon Wireless	0.673 %
Verizon Wireless	0.382 %

Composite Site MPE:

6.983 %

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm²
Maximum power density at ground level:	0.90948	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.16050	%

					On A	xis	Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
Powerwave	7770	138	30	547	0.272504	0.048089	0.430622	0.075992	
Powerwave	7770	138	160	547	0.272504	0.048089	0.430622	0.075992	
Powerwave	7770	138	280	547	0.272504	0.048089	0.430622	0.075992	

Frequency:	2100	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	12.38041	µW/cm²
Highest percentage of Maximum Permissible Exposure:	1.23804	%

					On /	Axis	Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
CCI Antennas	DMP65R-BU8D	138	30	5250	5.605023	0.560502	6.795583	0.679558	
CCI Antennas	DMP65R-BU6D	138	160	4788	4.565022	0.456502	5.761505	0.576151	
CCI Antennas	DMP65R-BU8D	138	280	5250	5.605023	0.560502	6.795583	0.679558	

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	11.64882	µW/cm²
Highest percentage of Maximum Permissible Exposure:	1.16488	%

					On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
CCI Antennas	DMP65R-BU8D	138	30	4170	4.455029	0.445503	5.632127	0.563213	
CCI Antennas	DMP65R-BU6D	138	160	4075	5.171780	0.517178	6.082987	0.608299	
CCI Antennas	DMP65R-BU8D	138	280	4170	4.455029	0.445503	5.632127	0.563213	

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm²
Maximum power density at ground level:	2.89720	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.51127	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
CCI Antennas	DMP65R-BU8D	138	30	2885	0.854727	0.150834	1.591403	0.280836
CCI Antennas	DMP65R-BU6D	138	160	2239	0.920438	0.162430	1.682330	0.296882
CCI Antennas	DMP65R-BU8D	138	280	2885	0.854727	0.150834	1.591403	0.280836

Frequency:	737	MHz
Maximum Permissible Exposure (MPE):	491.33	µW/cm²
Maximum power density at ground level:	2.68700	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.54688	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
CCI Antennas	DMP65R-BU8D	138	30	2692	0.824267	0.167761	1.524933	0.310366
CCI Antennas	DMP65R-BU6D	138	160	2400	0.987268	0.200936	1.280528	0.260623
CCI Antennas	DMP65R-BU8D	138	280	2692	0.824267	0.167761	1.524933	0.310366

Frequency:	2300	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm ²
Maximum power density at ground level:	11.39795	µW/cm²
Highest percentage of Maximum Permissible Exposure:	1.13980	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
CCI	OPA65R-BU8D	138	30	2661	5.593181	0.559318	5.637653	0.563765
CCI	OPA65R-BU6D	138	160	2661	5.638193	0.563819	5.894866	0.589487
CCI	OPA65R-BU8D	138	280	2661	5.593181	0.559318	5.637653	0.563765

Frequency:	763	MHz
Maximum Permissible Exposure (MPE):	508.67	µW/cm²
Maximum power density at ground level:	2.44620	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.48090	%

					On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
CCI	OPA65R-BU8D	138	30	3229	0.988949	0.194420	1.490630	0.293047	
CCI	OPA65R-BU6D	138	160	2450	1.021686	0.200856	1.060500	0.208486	
CCI	OPA65R-BU8D	138	160	3229	0.988949	0.194420	1.490630	0.293047	

Sprint STAFFORD/PRAGYL/SSUSA Carrier Summary

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	1.48339	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.14834	%

					On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
RFS	APXVTM14-C-I20	152	10	3469	0.549120	0.054912	1.027179	0.102718	
RFS	APXVTM14-C-I20	152	140	3469	0.549120	0.054912	1.027179	0.102718	
RFS	APXVTM14-C-I20	152	250	3469	0.549120	0.054912	1.027179	0.102718	

Sprint STAFFORD/PRAGYL/SSUSA Carrier Summary

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm²
Maximum power density at ground level:	1.64821	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.29086	%

					On Axis		Are	rea	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
RFS	APXVTM14-C-I20	152	10	3855	0.610133	0.107671	1.141309	0.201407	
RFS	APXVTM14-C-I20	152	140	3855	0.610133	0.107671	1.141309	0.201407	
RFS	APXVTM14-C-I20	152	250	3855	0.610133	0.107671	1.141309	0.201407	

Sprint STAFFORD/PRAGYL/SSUSA Carrier Summary

Frequency:	2500	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	2.46823	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.24682	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Commscope	NNVV-65B-R4	152	10	5372	1.771566	0.177157	2.433347	0.243335
Commscope	NNVV-65B-R4	152	140	5372	1.771566	0.177157	2.433347	0.243335
Commscope	NNVV-65B-R4	152	250	5372	1.771566	0.177157	2.433347	0.243335

Verizon Wireless STAFFORD/PRAGYL/SSUSA Carrier Summary

Frequency:	2100	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm ²
Maximum power density at ground level:	6.73487	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.67349	%

					On Axis		Are	a	
Antenna Make	Model	Height (feet)	eight Orientation feet) (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
ANDREW	SBNHH-1D65B	127	0	7732	4.232496	0.423250	6.451710	0.645171	
ANDREW	SBNHH-1D65B	127	120	7732	4.232496	0.423250	6.451710	0.645171	
ANDREW	SBNHH-1D65B	127	240	7732	4.232496	0.423250	6.451710	0.645171	

Verizon Wireless STAFFORD/PRAGYL/SSUSA Carrier Summary

Frequency:	700	MHz
Maximum Permissible Exposure (MPE):	466.67	µW/cm²
Maximum power density at ground level:	1.78351	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.38218	%

					On Axis		Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	SBNHH-1D65B	127	0	2043	0.935129	0.200385	1.505944	0.322702
ANDREW	SBNHH-1D65B	127	120	2043	0.935129	0.200385	1.505944	0.322702
ANDREW	SBNHH-1D65B	127	240	2043	0.935129	0.200385	1.505944	0.322702