STATE OF CONNECTICUT

connecticut siting council
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

September 25, 2023

Kenneth C. Baldwin, Esq. Robinson \& Cole LLP
280 Trumbull Street
Hartford, CT 06103-3597
kbaldwin@rc.com
RE: TS-VER-134-230731 - Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 169 Hampden Road, Stafford, Connecticut. Request for Project Change.

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) is in receipt of the correspondence dated September 20, 2023 regarding a project change for the above-referenced tower share request approved by the Council on August 17, 2023.

Pursuant to Condition No. 1 of the Council's August 17, 2023 tower share approval, the request to install three model MT6413-77A antennas, three model RF4461d-13A remote radio heads (RRHs), and three model RT4423-48A RRHs due to the unavailability of the approved antenna and RRH models is hereby approved.

This approval applies only to the project change referenced in the correspondence dated September 20, 2023.

Please be advised that deviations from the standards established by the Council in the tower share approval are enforceable under the provisions of Connecticut General Statutes $\S 16-50 \mathrm{u}$.

Thank you for your attention and cooperation.
Sincerely,

Melanie A. Bachman
Executive Director
MAB/ANM/lm
c: The Honorable Salviero Titus, First Selectperson, Town of Stafford (staffordtownhall@staffordct,org)

Robinson+Cole

Kenneth C. Baldwin

280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345
Also admitted in Massachusetts and New York

September 20, 2023
Melanie A. Bachman, Esq.
Executive Director/Staff Attorney
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: TS-VER-134-230731 - Cellco Partnership d/b/a Verizon Wireless - 169 Hampden Road, Stafford, Connecticut

Request for Staff Approval of Minor Changes for Equipment Modifications

Dear Attorney Bachman:

On August 17, 2023, the Siting Council approved the above referenced application permitting Cellco Partnership d/b/a Verizon Wireless ("Cellco") to share the telecommunications facility located at 169 Hampden Road in Stafford. Since receiving that approval, Cellco has decided to change certain antenna and remote radio head ("RRH") models and seeks staff approval for these changes.

In lieu of three (3) model MT6407-77A antennas, Cellco will install three (3) model MT6413-77A antennas. Likewise, in lieu three (3) model RF4440d-13A RRHs and three (3) model RF4401-48A RRHs, Cellco will install three (3) RF4461d-13A RRHs and three (3) RT4423-48A RRHs. All new equipment will be installed on Cellco's antenna mounting system.

Enclosed is a revised Structural Analysis Report, a revised Structural Analysis \& Design Report (Mount Analysis), an updated set of project plans, and specifications for the new antennas and RRHs Cellco intends to install. Cellco respectfully requests staff approval of these minor equipment modifications.

Please contact me if you have any questions or need any additional information.

Kenneth C. Baldwin
Attachments
Copy: Tim Parks

P P PAUL J.FORD \& COMPANY

Report Date: July 31, 2023

Client:	Everest Infrastructure Partners Two Allegheny Center Pittsburgh, PA 15212
	Attn: Vince Larson (724) 996-7847 vince.larson@everestinfrastructure.com
	Existing 180-ft Guyed Tower
	1267993
Structure:	Stafford 1 CDT
FCC ASR \#:	596025
Site Name:	169 Hampden Rd
Site Reference \#:	Stafford Springs, Tolland County, CT Site Address: City, County, State: Latitude, Longitude:
	$41.999581^{\circ},-72.355646^{\circ}$
PJF Project:	A13323-0004.002.8700

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the tower stress level.

Analysis Criteria:

This analysis utilizes an ultimate 3-second gust wind speed of 117 mph as required by the 2022 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Proposed Appurtenance Loads:

The structure was analyzed with the loading configuration shown in Table 1 of this report.

Summary of Analysis Results:

Existing Structure:	Pass -58.7%
Existing Foundation:	Pass -91.8%

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Everest Infrastructure Partners. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by:
Paul J. Ford and Company

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Equipment Configuration
3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)
Table 4 - Tower Component Stresses vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 180 ft Guyed tower designed by Rohn in April 1995. Per site photos an additional guy cable was added at the 120' level. Cable sizes were taken from previous analysis by Nudd.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Service Wind Speed:

TIA-222-H
II
117 mph
B
1
1.5 in

50 mph
60 mph

Table 1 - Equipment Configuration

Status	Mounting Level (ft)	Center Line Elevation (ft)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}$	Antenna Model	Mount	Number of Feed Lines	$\begin{array}{\|l} \text { Feed } \\ \text { Line } \\ \text { Size } \\ \text { (in) } \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} \text { Coax } \\ \text { Location } \end{gathered}\right.$	Owner/ Tenant
Existing	179.0	187.0	1	$16 \mathrm{ft} \times 2.5$ " omni whip	-	2	7/8	C	Unk
To be Removed	174.0	174.0	1	-	Generic 3.5' $\times 6$ ' sidearm	-	-	-	Unk
	171.0	175.0	1	DB809DK-Y	Sector Mount	4	$11 / 4$	B	Unk
		171.0	3	$1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}$ RRH					Sprint
			3	APXV9ERR18-C w/ Mount Pipe					
			3	TD-RRH8x20					
			3	DT465B-2XR w/ Mount Pipe					
Future			6	RRH $2 \times 50-800$ w/Notch Filter	(3) Site Pro 1 VFA12-HD	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{array}{ll} 1 & 5 / 8 \\ 1 & 1 / 4 \end{array}$	B	T-Mobile
			3	AIR6449 B41 w/ Mount Pipe					
			3	RADIO 4460 B2/B25 B66_TMO					
			3	$\begin{aligned} & \text { RADIO } 4480 \\ & \text { B71_TMO } \end{aligned}$					
			3	APXVAALL24_43-UNA20 w/ Mount Pipe					
Existing	163.0	167.0	1	PD201	$5^{\prime \prime} \times 2.375^{\prime \prime}$ Pipe Mount	1	7/8	C	Unk

Status	Mounting Level (ft)	Center Line Elevation (ft)	$\left.\begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered} \right\rvert\,$	Antenna Model	Mount	Number of Feed Lines	Feed Line Size (in)$\|$	$\left\|\begin{array}{c} \text { Coax } \\ \text { Location } \end{array}\right\|$	Owner/ Tenant
Proposed	153.0	154.0	3	$\begin{aligned} & \text { MT6413-77A wl } \\ & \text { Mount Pipe } \end{aligned}$	(3) Site Pro 1 VFA12-HD	2	$11 / 4$	B	Verizon
		153.0	3	NHH-65B-R2B w/ Mount Pipe					
			3	NHHSS-65B-R2BT4 w/ Mount Pipe					
			3	B2/B66 RRH ORAN					
			3	RF4461d-13A					
			3	RT4423-48A					
			1	12 OVP					
To be removed	150.0	150.0	-	-	Sector Mount	-	-	-	Unk
Existing	121.0	129.0	1	DB420	Generic 2' x 3' sidearm	1	7/8	C	Unk
Existing	77.0	81.0	1	PD201	$5^{\prime \prime} \times 2.375^{\prime \prime}$ Pipe Mount	1	1/2	C	Unk

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference
Tower Manufacturer Drawings	Rohn, 4/13/1995	B951658/D950801
Tower Inventory	TEP, 2/11/2023	306609.609527
Previous Analysis	Nudd, $9 / 6 / 2021$	$121-23082$

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were maintained in accordance with the TIA-222 Standard.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
3) At the time of analysis, foundation information and/or a site-specific geotechnical report were not available. However, the base design reactions are noted on the original drawings. Assuming the existing foundation was properly designed for this loading, we have compared them to the reactions of this analysis.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J . Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	$\begin{gathered} \text { SF*P_allow } \\ (\mathrm{K}) \end{gathered}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	Pass / Fail
T1	180-160	Leg	Pipe $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \mathrm{XS})$	2	-12.09	62.91	19.2	Pass
T2	160-140	Leg	Pipe $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \mathrm{XS})$	60	-17.95	62.91	28.5	Pass
T3	140-120	Leg	Pipe $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \mathrm{XS})$	116	-18.94	62.91	30.1	Pass
T4	120-100	Leg	Pipe $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \mathrm{XS})$	173	-24.20	62.91	38.5	Pass
T5	100-80	Leg	Pipe 2.875" $\times 0.276^{\prime \prime}$ (2.5 XS)	229	-32.93	101.43	32.5	Pass
T6	80-60	Leg	Pipe $2.875^{\prime \prime} \times 0.276^{\prime \prime}$ (2.5 XS)	287	-32.68	79.98	40.9	Pass
T7	60-40	Leg	Pipe 2.875" $\times 0.203^{\prime \prime}$ (2.5 STD)	319	-35.24	61.33	57.5	Pass
T8	40-20	Leg	Pipe $2.875^{\prime \prime} \times 0.203^{\prime \prime}(2.5$ STD)	352	-36.00	61.33	58.7	Pass
T9	20-4.81771	Leg	Pipe 2.875" $\times 0.276^{\prime \prime}$ (2.5 XS)	385	-35.54	79.98	44.4	Pass
T10	$\begin{gathered} 4.81771- \\ 3.33333 \mathrm{e}-007 \end{gathered}$	Leg	Pipe $2.875^{\prime \prime} \times 0.276^{\prime \prime}(2.5 \mathrm{XS})$	413	-36.40	77.52	46.9	Pass
T1	180-160	Diagonal	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	15	-1.67	6.52	25.6	Pass
T2	160-140	Diagonal	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	114	-1.36	6.52	20.8	Pass
T3	140-120	Diagonal	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	127	-1.20	6.52	18.3	Pass
T4	120-100	Diagonal	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	181	-0.75	6.52	11.5	Pass
T5	100-80	Diagonal	Pipe 1.5 " $\times 0.058^{\prime \prime}$ (16 ga)	238	-1.95	6.52	29.9	Pass
T6	80-60	Diagonal	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	316	-1.57	6.52	24.2	Pass
T7	60-40	Diagonal	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	351	-0.97	6.52	14.8	Pass
T8	40-20	Diagonal	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}$ (16 ga)	361	-0.59	6.52	9.1	Pass
T9	20-4.81771	Diagonal	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	397	-0.83	6.52	$\begin{gathered} 12.8 \\ 13.3(b) \\ \hline \end{gathered}$	Pass
T10	$\begin{gathered} 4.81771- \\ 3.33333 e-007 \end{gathered}$	Horizontal	L $4 \times 4 \times 1 / 4$	421	0.67	62.86	1.1	Pass
T1	180-160	Top Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	4	0.04	9.93	$\begin{gathered} 0.4 \\ 0.7(b) \end{gathered}$	Pass
T2	160-140	Top Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	62	0.46	10.43	$\begin{gathered} 4.4 \\ 7.4 \text { (b) } \\ \hline \end{gathered}$	Pass
T3	140-120	Top Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	118	-0.35	7.33	$\begin{gathered} 4.8 \\ 5.6 \text { (b) } \end{gathered}$	Pass
T4	120-100	Top Girt	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	176	2.42	10.43	$\begin{gathered} 23.2 \\ 38.9(b) \end{gathered}$	Pass
T5	100-80	Top Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	234	-0.57	7.40	$\begin{gathered} 7.7 \\ 9.2 \text { (b) } \end{gathered}$	Pass
T6	80-60	Top Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	291	-0.57	7.40	$\begin{gathered} 7.7 \\ 12.2 \text { (b) } \end{gathered}$	Pass
T7	60-40	Top Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	324	-0.61	7.40	$\begin{gathered} 8.3 \\ 9.9 \text { (b) } \\ \hline \end{gathered}$	Pass
T8	40-20	Top Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	357	-0.62	7.40	$\begin{gathered} 8.4 \\ 10.0 \text { (b) } \end{gathered}$	Pass
T9	20-4.81771	Top Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058$ " (16 ga)	390	-0.62	7.40	$\begin{gathered} 8.4 \\ 10.0(\mathrm{~b}) \\ \hline \end{gathered}$	Pass
T10	$\begin{gathered} 4.81771- \\ 3.33333 \mathrm{e}-007 \end{gathered}$	Top Girt	L $4 \times 4 \times 1 / 4$	415	6.77	62.86	10.8	Pass
T1	180-160	Bottom Girt	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}$ (16 ga)	7	0.42	10.43	$\begin{gathered} 4.0 \\ 6.7 \text { (b) } \end{gathered}$	Pass
T2	160-140	Bottom Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	65	-0.31	7.33	$\begin{gathered} 4.2 \\ 5.0(\mathrm{~b}) \end{gathered}$	Pass
T3	140-120	Bottom Girt	Pipe $1.51 \times 0.058^{\prime \prime}(16 \mathrm{ga})$	121	-0.35	7.33	$\begin{gathered} 4.8 \\ 7.5 \text { (b) } \end{gathered}$	Pass
T4	120-100	Bottom Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	178	-0.42	7.33	5.7	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	$\mathbf{P (K)}$	SF*P_allow (K)	$\%$ Capacity	Pass / Fail
							6.8 (b)	
T5	100-80	Bottom Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	237	-0.57	7.40	$\begin{gathered} 7.7 \\ 10.1(b) \end{gathered}$	Pass
T6	80-60	Bottom Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	294	-0.57	7.40	$\begin{gathered} 7.7 \\ 9.2 \text { (b) } \\ \hline \end{gathered}$	Pass
T7	60-40	Bottom Girt	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	327	-0.61	7.40	$\begin{gathered} 8.3 \\ 9.9(b) \end{gathered}$	Pass
T8	40-20	Bottom Girt	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	360	-0.62	7.40	$\begin{gathered} 8.4 \\ 10.0(\mathrm{~b}) \end{gathered}$	Pass
T9	20-4.81771	Bottom Girt	Pipe 1.5" $\times 0.058{ }^{\prime \prime}$ (16 ga)	391	1.01	9.93	$\begin{gathered} 10.1 \\ 16.2(\mathrm{~b}) \end{gathered}$	Pass
T10	$\begin{gathered} 4.81771- \\ 3.33333 \mathrm{e}-007 \\ \hline \end{gathered}$	Bottom Girt	L $4 \times 4 \times 1 / 4$	419	-0.24	67.37	2.8	Pass
T1	180-160	Guy A@162.523	3/4	432	14.30	36.73	38.9	Pass
T4	120-100	Guy A@119.385	1/2	435	6.36	16.95	37.6	Pass
T5	100-80	Guy A@82.5234	1/2	447	6.07	16.95	35.8	Pass
T1	180-160	Guy B@162.523	3/4	431	14.24	36.73	38.8	Pass
T4	120-100	Guy B@119.385	1/2	434	6.34	16.95	37.4	Pass
T5	100-80	Guy B@82.5234	1/2	443	6.03	16.95	35.6	Pass
T1	180-160	Guy C@162.523	3/4	427	14.40	36.73	39.2	Pass
T4	120-100	Guy C@119.385	1/2	433	6.38	16.95	37.6	Pass
T5	100-80	Guy C@82.5234	1/2	437	6.10	16.95	36.0	Pass
T1	180-160	Top Guy PullOff@162.523	$2 \mathrm{~L} 2 \times 2 \times 1 / 4$ (3/8)	430	4.34	51.56	$\begin{gathered} 8.4 \\ 12.6(b) \\ \hline \end{gathered}$	Pass
T5	100-80	Top Guy PullOff@82.5234	$2 \mathrm{~L} 2 \times 2 \times 1 / 4(3 / 8)$	441	2.89	51.56	$\begin{gathered} 5.6 \\ 8.4(b) \end{gathered}$	Pass
T5	100-80	$\begin{aligned} & \text { Torque Arm } \\ & \text { Top@82.5234 } \\ & \hline \end{aligned}$	C10×15.3	449	2.07	152.75	26.9	Pass
		.					Summary	
						Leg (T8)	58.7	Pass
						Diagonal (T5)	29.9	Pass
						$\begin{gathered} \text { Horizontal } \\ (\mathrm{T} 10) \\ \hline \end{gathered}$	1.1	Pass
						Top Girt (T4)	38.9	Pass
						Bottom Girt (T9)	16.2	Pass
						Guy A (T1)	38.9	Pass
						Guy B (T1)	38.8	Pass
						Guy C (T1)	39.2	Pass
						Top Guy Pull-Off (T1)	12.6	Pass
						Torque Arm Top (T5)	26.9	Pass
						Bolt Checks	38.9	Pass
						RATING =	58.7	Pass

Table 4 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1,2	Base Foundation (Compared w/ Design Loads)	0	91.8	Pass
1,2	Guy Anchor Foundation (Compared w/ Design Loads)	0	50.0	Pass

Structure Rating (max from all components) $=$	$\mathbf{9 1 . 8 \%}$

Notes:

- All structural ratings are per T|A-222-H Section 15.5

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.
2) Foundation capacity determined by comparing analysis reactions to original design reactions.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Tower Input Data

The main tower is a $3 x$ guyed tower with an overall height of 180.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 3.42 ft at the top and tapered at the base.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

1) Tower is located in Tolland County, Connecticut.
2) Tower base elevation above sea level: 1074.00 ft .
3) Basic wind speed of 117.0 mph .
4) Risk Category II.
5) Exposure Category B.
6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
7) Topographic Category: 1.
8) Crest Height: 0.00 ft .
9) Nominal ice thickness of 1.50 in.
10) Ice thickness is considered to increase with height.
11) Ice density of 56 pcf.
12) A wind speed of 50.0 mph is used in combination with ice.
13) Temperature drop of $50^{\circ} \mathrm{F}$.
14) Deflections calculated using a wind speed of 60.0 mph .
15) Pressures are calculated at each section.
16) Stress ratio used in tower member design is 1.05 .
17) Safety factor used in guy design is 0.9524 .
18) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
$\sqrt{ }$ Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
$\sqrt{ } \sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r
$\sqrt{ }$ Retension Guys To Initial Tension Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
$\sqrt{ }$ Autocalc Torque Arm Areas
Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component
$\sqrt{ }$ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
$\sqrt{ }$ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
$\sqrt{ }$ Include Angle Block Shear Check
Use TIA-222-H Bracing Resist.
Exemption
Use TIA-222-H Tension Splice Exemption

Poles

Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No
Appurtenances
Outside and Inside Corner Radii Are
Known

Corner \& Starmount Guved Tower

Face Guyed

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
ft			$f t$			
T1	$180.00-160.00$		$83 P H X$	3.42	1	20.00
T2-T4	$160.00-100.00$		83 PHX	3.42	3	20.00
T5	$100.00-80.00$		84 HX	3.42	1	20.00
T6	$80.00-60.00$		84 H	3.42	1	20.00
T7-T8	$60.00-20.00$		84	3.42	2	20.00
T9	$20.00-4.82$			3.42	1	15.18
T10	$4.82-0.00$	rohn \#80	84 HTB	3.42	1	4.82

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has KBrace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft			Panels		in

tnxTower Report - version 8.1.1.0

Tower								
Section	Tower							
	Elevation	Diagonal Spacing	Bracing Type	Has KBrace End	Has	Horizontals	Top Girt	Offset

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	Diagonal Type	$\begin{aligned} & \text { Diagonal } \\ & \text { Size } \end{aligned}$	Diagonal Grade
$\begin{gathered} \text { T1 } 180.00- \\ 160.00 \end{gathered}$	Pipe	Pipe 2.375" x 0.218" (2 XS)	$\begin{aligned} & \text { A618-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Pipe	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
T2-T4 $160.00-100.00$	Pipe	Pipe 2.375" x 0.218" (2 XS)	A618-50 (50 ksi)	Pipe	Pipe 1.5" $\times 0.058{ }^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T5 100.00- } \\ 80.00 \end{gathered}$	Pipe	$\text { Pipe } 2.875^{\prime \prime} \times 0.276^{\prime \prime}(2.5$ XS)	A618-50 (50 ksi)	Pipe	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
T6 80.00-60.00	Pipe	$\begin{gathered} \text { Pipe } 2.875^{\prime \prime} \times 0.276^{\prime \prime}(2.5 \\ \text { XS }) \end{gathered}$	A618-50 (50 ksi)	Pipe	Pipe 1.5" $\times 0.058{ }^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T7-T8 } \\ 60.00-20.00 \end{gathered}$	Pipe	$\begin{aligned} & \text { Pipe } 2.875^{\prime \prime} \times 0.203^{\prime \prime}(2.5 \\ & \text { STD) } \end{aligned}$	A618-50 (50 ksi)	Pipe	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga) Pipe $1^{\prime \prime} \mathrm{S}^{\prime \prime} 0.058^{\prime \prime}(16 \mathrm{ga})$	A53-B-42 (42 ksi) A53-B-42
T9 20.00-4.82	Pipe	$\begin{gathered} \text { Pipe } 2.875^{\prime \prime} \times 0.276^{\prime \prime}(2.5 \\ \text { XS }) \end{gathered}$	$\begin{aligned} & \text { A618-50 } \\ & \text { (50 ksi) } \end{aligned}$	Pipe	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
T10 4.82-0.00	Pipe	$\begin{gathered} \text { Pipe } 2.875^{\prime \prime} \times 0.276^{\prime \prime}(2.5 \\ \text { XS }) \end{gathered}$	$\begin{aligned} & \text { A618-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angie		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
$\begin{gathered} \text { T1 180.00- } \\ 160.00 \end{gathered}$	Pipe	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	Pipe	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T2-T4 } \\ 160.00-100.00 \end{gathered}$	Pipe	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	Pipe	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T5 } 100.00- \\ 80.00 \end{gathered}$	Pipe	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	A53-B-42	Pipe	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
T6 80.00-60.00	Pipe	Pipe 1.5 " $\times 0.058{ }^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	Pipe	Pipe 1.5" x $0.058^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T7-T8 } \\ 60.00-20.00 \end{gathered}$	Pipe	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	Pipe	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
T9 20.00-4.82	Pipe	Pipe 1.5" $\times 0.058{ }^{\prime \prime}$ (16 ga)	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	Pipe	Pipe 1.5" $\times 0.058{ }^{\prime \prime}(16 \mathrm{ga})$	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$
T10 4.82-0.00	Single Angle	L $4 \times 4 \times 1 / 4$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L $4 \times 4 \times 1 / 4$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	No. of Mid Girts	Mid Girt Type	$\begin{aligned} & \text { Mid Girt } \\ & \text { Size } \end{aligned}$	Mid Gint Grade	Horizontal Type	Horizontal Size	Horizontal Grade
T10 4.82-0.00	None	Single Angle		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L $4 \times 4 \times 1 / 4$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Section Geometry (cont'd)

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors ${ }^{1}$							
			Legs	$\begin{gathered} X \\ \text { Brace } \end{gathered}$	$\begin{gathered} K \\ \text { Brace } \end{gathered}$	Single Diags$x$$Y$	Girts	Horiz.	Sec. Horiz.	Inner Brace
				Diags	Diags					
				X	X		X	X	X	X
$f t$				Y	Y		Y	Y	Y	Y
T1 180.00-	No	No	1	1	1	1	1	1	1	1
160.00				1	1	1	1	1	1	1
T2-T4	No	No	1	1	1	1	1	1	1	1
160.00-				1	1	1	1	1	1	1
100.00										
T5 100.00-	No	No	1	1	1	1	1	1	1	1
80.00				1	1	1	1	1	1	1
T6 80.00-	No	No	1	1	1	1	1	1	1	1
60.00				1	1	1	1	1	1	1
T7-T8	No	No	1	1	1	1	1	1	1	1
60.00-20.00				1	1	1	1	1	1	1
T9 20.00-	No	No	1	1	1	1	1	1	1	1
4.82				1	1	1	1	1	1	1
T10 4.82-	No	No	1	1	1	1	1	1	1	1
0.00				1	1	1	1	1	1	1

'Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	u		u	Net Width Deduct in	U	Net Width Deduct in	U		U	Net Width Deduct in	u	Net Width Deduct in	u
$\begin{gathered} \hline \text { T1 180.00- } \\ 160.00 \end{gathered}$	0.00	1		1		1	0.00	1	0.00	1	0.00	1	0.00	1
$\begin{gathered} \text { T2-T4 } \\ 160.00- \\ 100.00 \end{gathered}$	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1

tnxTower Report - version 8.1.1.0

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Widt Deduct in		Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T5 100.00-	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
80.00 T6 80.00-	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
60.00 $77-\mathrm{T8}$	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
60.00-20.00		1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	${ }^{1}$
T9 20.00-4.82 T10 4.82-0.00	0.00 0.00	1	0.00 0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75

Tower Elevation ft	Redundant Horizontal		Redundant Diagonal		Redundant SubDiagonal		Redundant SubHorizontal		Redundant Vertical		Redundant Hip		Redundant Hip Diagonal	
	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00-	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
160.00 T2-T4	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
$\begin{aligned} & 160.00- \\ & 100.00 \end{aligned}$	0.00	0.75	0.00										0.00	0.75
T5 100.00-	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
80.00 T6 80.00-	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
$\begin{aligned} & 60.00 \\ & \mathrm{~T} 7-\mathrm{T} 8 \end{aligned}$	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
60.00-20.00							0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T9 20.00-4.82	0.00 0.00	0.75 0.75	0.00 0.00	0.75 0.75	0.00 0.00	0.75 0.75	0.00 0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75

Tower Section Geometry (cont'd)

Tower Elevation	Connection Offsets							
	Diagonal				K-Bracing			
	$\begin{aligned} & \text { Vert. } \\ & \text { To } \end{aligned}$	$\begin{aligned} & \text { Horiz. } \\ & \text { Top } \end{aligned}$	Vert. Bot.	Horiz. Bot.	$\begin{aligned} & \text { Vert. } \\ & \text { Top } \end{aligned}$	$\begin{gathered} \text { Horiz } \\ \text { Top } \end{gathered}$	$\begin{aligned} & \text { Vert. } \\ & \text { Bot. } \end{aligned}$	Horiz. Bot.
ft	in							
T1 180.00-	0.00	3.50	0.00	3.50	0.00	0.00	0.00	0.00
160.00 T2-T4	0.00	3.50	0.00	3.50	0.00	0.00	0.00	0.00
$\begin{aligned} & 160.00- \\ & 100.00 \end{aligned}$								
$\begin{gathered} \text { T5 100.00- } \\ 80.00 \end{gathered}$	0.00	3.50	0.00	3.50	0.00	0.00	0.00	0.00
T6 80.00-	0.00	3.50	0.00	3.50	0.00	0.00	0.00	0.00
$\begin{aligned} & 60.00 \\ & \text { T7-T8 } \end{aligned}$	0.00	3.50	0.00	3.50	0.00	0.00	0.00	0.00
60.00-20.00								
T9 20.00-4.82	0.00	3.50	0.00	3.50	0.00	0.00 0.00	0.00	0.00
T10 4.82-0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		$\begin{gathered} \text { Bolt Size } \\ \text { in } \\ \hline \end{gathered}$	No.	Bolt Size in		Bolt Size in		Bolt Size in	No.	Bolt Size in		Bolt Size in	No.	Bolt Size in	No.
T1 180.00-	Flange	0.75	4	0.50	1	0.50	1	0.50	1	0.00	0	0.00	0	0.00	0
160.00		A325X													
T2-T4	Flange	0.75	4	0.50	1	0.50	1	0.50	1	0.00	0	0.00	0	0.00	0
$\begin{aligned} & 160.00- \\ & 100.00 \end{aligned}$		A325X	0												
T5 100.00-	Flange	0.75	4	0.50	1	0.50	1	0.50	1	0.00	0	0.00	0	0.00	0
80.00		A325X													
T6 80.00-	Flange	0.75	4	0.50	1	0.50	1	0.50	1	0.00	0	0.00	0	0.00	0
60.00		A325X													
T7-78	Flange	0.75	4	0.50	1	0.50	1	0.50	1	0.00	0	0.00	0	0.00	0
60.00-20.00		A325X													
T9 20.00-4.82	Flange	0.75	4	0.50	1	0.50	1	0.50	1	0.00	0	0.00	0	0.00	0
		A325X													
T10 4.82-0.00	Flange	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0
		A325X													

Guy Data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Guy Elevation
\(\qquad\) ft \& Guy Grade \& \& Guy Size \& Initial Tension \& \% \& \begin{tabular}{l}
Guy Modulus \\
ksi
\end{tabular} \& \begin{tabular}{l}
Guy Weight \\
plf
\end{tabular} \& Lt

ft \& \begin{tabular}{l}
Anchor Radius

ft

 \& Anchor Azimuth Adj. \&

Anchor Elevation

ft
\end{tabular} \& End Fitting Efficiency \%

\hline \multirow[t]{3}{*}{162.523} \& \multirow[t]{3}{*}{EHS} \& A \& 3/4 \& 5.83 \& 10\% \& 24000 \& 1.16 \& 213.08 \& 140.00 \& 0.000 \& 0.00 \& 100\%

\hline \& \& B \& 3/4 \& 5.83 \& 10\% \& 24000 \& 1.16 \& 213.08 \& 140.00 \& 0.000 \& 0.00 \& 100\%

\hline \& \& C \& 3/4 \& 5.83 \& 10\% \& 24000 \& 1.16 \& 213.08 \& 140.00 \& 0.000 \& 0.00 \& 100\%

\hline \multirow[t]{3}{*}{119.385} \& \multirow[t]{3}{*}{EHS} \& A \& 1/2 \& 2.69 \& 10\% \& 23000 \& 0.52 \& 182.36 \& 140.00 \& 0.000 \& 0.00 \& 100\%

\hline \& \& B \& 1/2 \& 2.69 \& 10\% \& 23000 \& 0.52 \& 182.36 \& 140.00 \& 0.000 \& 0.00 \& 100\%

\hline \& \& C \& 1/2 \& 2.69 \& 10\% \& 23000 \& 0.52 \& 182.36 \& 140.00 \& 0.000 \& 0.00 \& 100\%

\hline \multirow[t]{3}{*}{82.5234} \& \multirow[t]{3}{*}{EHS} \& A \& 1/2 \& 2.69 \& 10\% \& 23000 \& 0.52 \& 160.73 \& 140.00 \& 0.000 \& 0.00 \& 100\%

\hline \& \& B \& 1/2 \& 2.69 \& 10\% \& 23000 \& 0.52 \& 160.73 \& 140.00 \& 0.000 \& 0.00 \& 100\%

\hline \& \& C \& 1/2 \& 2.69 \& 10\% \& 23000 \& 0.52 \& 160.73 \& 140.00 \& 0.000 \& 0.00 \& 100\%

\hline
\end{tabular}

Guy Data(cont'd)

Guy Elevation $f t$	Mount Type	Torque-Arm Spread	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
162.523	Corner						
119.385							
82.5234	Corner Torque Arm	6.83	0.000	Channel	A36	Channel	C 10×15.3

Guy Data (cont'd)

Guy Elevation ft	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap.	Pull-Off Grade	Pull-Off Type	Pull-Off Size
162.52	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round			No	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Double Equal Angle	$\begin{gathered} 2 \mathrm{~L} 2 \times 2 \times 1 / 4 \\ (3 / 8) \end{gathered}$
119.39	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round				$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	

tnxTower Report - version 8.1.1.0

180 Ft Guyed Tower Structural Analysis
Project Number 13323-0004.002.8700

Guy Elevation ft	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap.	Pull-Off Grade	Pull-Off Type	Pull-Off Size
$\frac{\pi}{82.52}$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round			No	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Double Equal Angle	$\begin{gathered} 2 \mathrm{~L} 2 \times 2 \times 1 / 4 \\ (3 / 8) \end{gathered}$

Guy Data (cont'd)								
			Cable	Cable	Tower	Tower	Tower	Tower
Guy	Cable Weight	Weight	Weight	Weight	Intercept	Intercept	Intercept	Intercept
Elevation	Weight A	Weight	C	D	A	B	C	D
$f t$	K	K	K	K	ft	$f t$	$f t$	f
162.523	0.25	0.25	0.25		4.43	4.43	4.43	
					3.6	3.6	3.6 sec/pulse	
					sec/pulse	sec/pulse		
119.385	0.09	0.09	0.09		3.16	3.16 3.1	3.1 sec/pulse	
					sec/pulse	sec/pulse		
82.5234	0.08	0.08	0.08		2.47	2.47	2.47	
82.5234	0.08	0.08			2.7	2.7	2.7 sec/pulse	
					sec/pulse	sec/pulse		

Guy Data (cont'd)

Guy Elevation $f t$	Calc K Single Angles	Calc K Solid Rounds	Torque Arm		Pull Off		Diagonal	
			K_{x}	K_{y}	K_{x}	K_{y}	K_{x}	K_{y}
162.523	No	No			1	1	1	1
119.385	No	No			1	1	1	1
82.5234	No	No	1	1	1	1	1	1

Guy Data (cont'd)

Guy Elevation ft	Torque-Arm				Pull Off				Diagonal			
	Bolt Size in	Number	Net Wid Deduct in	U	Bolt Size in	Number	et Wi Deduct in	U	Bolt Size in	Number	Net Wid Deduc in	U
162.523	0.00	0	0.00	1	0.63	2	0.00	0.75	0.63	0	0.00	1
	A325N		0.00	1	A 325 N 0.50	0	0.00	1	A325N 0.63	0	0.00	1
119.385	$\begin{gathered} 0.00 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0	0.00	1	A 325 N	0			A 325 N 0.63	0	0.00	1
82.5234	$\begin{gathered} 0.00 \\ \mathrm{~A} 325 \mathrm{~N} \end{gathered}$	0	0.00	1	$\begin{gathered} 0.63 \\ \mathrm{~A} 325 \mathrm{~N} \\ \hline \end{gathered}$	2	0.00	0.75	$\mathrm{A} 325 \mathrm{~N}$	0	0.00	1

Guy Pressures

Guy Elevation $f t$	Guy Location	z	q_{z}	q_{z} lce	Ice Thickness in
162.523	A	ft	81.26	$p s f$	psf

tnxTower Report - version 8.1.1.0

180 Ft Guyed Tower Structural Analysis
Project Number 13323-0004.002.8700
July 31, 2023
Stafford 1 CDT
Page 18

Guy Elevation ft	Guy Location	z	q_{z}	q_{z}	Ice lce
		$f t$	$p s f$	$p s f$	Thickness in
82.5234	C	59.69	24	4	1.59
	A	41.26	22	4	1.53
	B	41.26	22	4	1.53
	C	41.26	22	4	1.53

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Face Offset in	Lateral Offset (Frac FW)	\#		$\begin{gathered} \text { Clear } \\ \text { Spacin } \\ g \\ \text { in } \\ \hline \end{gathered}$	Width or Diameter in	Perimete r in	Weight plf
$\begin{gathered} \text { LDF6-50A(1- } \\ 1 / 4) \end{gathered}$	B	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	$\begin{gathered} 153.00- \\ 5.00 \end{gathered}$	0.00	-0.25	2	2	$\begin{aligned} & 1.00 \\ & 0.50 \end{aligned}$	1.55		0.60
$\begin{gathered} \text { LDF7-50A(1- } \\ \left.5 / 8^{\prime \prime}\right) \end{gathered}$	B	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 171.00- \\ 5.00 \end{gathered}$	0.00	0.25	3	3	1.00	1.98		0.82
$\begin{aligned} & \text { LDF6-50́A(1- } \\ & 1 / 4) \end{aligned}$	C	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 171.00- \\ 5.00 \end{gathered}$	0.00	0	1	1	1.00	1.55		0.60
$\begin{aligned} & \text { LDF4P- } \\ & \text { 50A(1/2) } \end{aligned}$	C	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 77.00 \\ 5.00 \end{gathered}$	0.00	0.1	1	1	0.63	0.63		0.15
$\begin{aligned} & \text { LDF5- } \\ & \text { 50A(7/8) } \end{aligned}$	C	No	No	Ar (CaAa)	$\begin{gathered} 180.00- \\ 163.00 \end{gathered}$	0.00	0.05	1	1	1.03	1.03		0.33
$\begin{aligned} & \text { LDF5- } \\ & 50 \mathrm{~A}(7 / 8) \end{aligned}$	C	No	No	Ar (CaAa)	$\begin{gathered} 163.00- \\ 5.00 \end{gathered}$	0.00	0.05	2	2	1.03	1.03		0.33
$\begin{aligned} & \text { LDF5- } \\ & 50 \mathrm{~A}(7 / 8) \end{aligned}$	C	No	No	Ar (CaAa)	$\begin{gathered} 180.00- \\ 121.00 \end{gathered}$	0.00	-0.03	1	1	1.03	1.03		0.33
$\begin{aligned} & \text { LDF5- } \\ & \text { 50A(7/8) } \\ & * \pm * * * * \end{aligned}$	C	No	No	Ar (CaAa)	$\begin{gathered} 121.00- \\ 5.00 \end{gathered}$	0.00	-0.03	2	2	1.03	1.03		0.33

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement $f t$	Total Number	$\begin{aligned} & C_{A} A_{A} \\ & \mathrm{ft}^{2} / \mathrm{ft} \end{aligned}$	Weight plf

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation n	Face	A_{R}	A_{F}	$C_{A} A_{A}$ $I n$		f^{2}

tnxTower Report - version 8.1.1.0

180 Ft Guyed Tower Structural Analysis
Project Number 13323-0004.002.8700

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& Face \& A_{R}

$f t^{2}$ \& AF

f^{2} \& $C_{A} A_{A}$

In Face f^{2} \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow{4}{*}{T6} \& \multirow{4}{*}{80.00-60.00} \& C \& 0.000 \& 0.000 \& 11.340 \& 0.000 \& 0.04

\hline \& \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 18.080 \& 0.000 \& 0.07

\hline \& \& C \& 0.000 \& 0.000 \& 12.411 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{17} \& \multirow[t]{2}{*}{60.00-40.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 18.080 \& 0.000 \& 0.07

\hline \& \multirow{3}{*}{40.00-20.00} \& C \& 0.000 \& 0.000 \& 12.600 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{T8} \& \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 18.080 \& 0.000 \& 0.07

\hline \& \multirow{3}{*}{20.00-4.82} \& C \& 0.000 \& 0.000 \& 12.600 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{T9} \& \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 13.560 \& 0.000 \& 0.05

\hline \& \multirow{4}{*}{4.82-0.00} \& C \& 0.000 \& 0.000 \& 9.450 \& 0.000 \& 0.03

\hline \multirow[t]{3}{*}{T10} \& \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio n	Tower Elevation ft	Face or Leg	\qquad	A_{R} f^{2}	A_{F} $f t^{2}$	$C_{A} A_{A}$ In Face $f t^{2}$	\qquad	Weight K
T1	180.00-160.00	A	1.767	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	17.505	0.000	0.23
		C		0.000	0.000	25.498	0.000	0.35
T2	160.00-140.00	A	1.745	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	46.486	0.000	0.58
		C		0.000	0.000	39.080	0.000	0.47
T3	140.00-120.00	A	1.720	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	54.122	0.000	0.65
		C		0.000	0.000	39.252	0.000	0.47
T4	120.00-100.00	A	1.692	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	53.735	0.000	0.64
		C		0.000	0.000	49.044	0.000	0.53
T5	100.00-80.00	A	1.658	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	53.278	0.000	0.63
		C		0.000	0.000	48.443	0.000	0.51
T6	80.00-60.00	A	1.617	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	52.719	0.000	0.61
		C		0.000	0.000	54.276	0.000	0.57
17	60.00-40.00	A	1.564	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	51.994	0.000	0.59
		C		0.000	0.000	54.265	0.000	0.56
T8	40.00-20.00	A	1.486	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	50.940	0.000	0.57
		C		0.000	0.000	52.562	0.000	0.53
T9	20.00-4.82	A	1.360	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	36.933	0.000	0.39
		C		0.000	0.000	37.365	0.000	0.35
T10	4.82-0.00	A	1.155	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure					
Section	Elevation ft	$C P_{x}$ in	$C P_{2}$ in	$\begin{gathered} C P_{x} \\ \text { lce } \\ \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CP}_{2} \\ \text { lce } \\ \text { in } \\ \hline \end{gathered}$
T1	180.00-160.00	1.33	1.57	0.63	1.42
T2	160.00-140.00	2.39	0.97	1.31	1.11
T3	140.00-120.00	2.48	0.46 0.55	1.42	0.72 0.83
T4	120.00-100.00	2.45	0.55	1.44	0.83

Section	Elevation	$C P_{X}$	$C P_{z}$	$C P_{X}$ Ice	$C P_{z}$ Ice
	ft	in	in	in	in
T5	$100.00-80.00$	2.28	0.51	1.30	0.74
T6	$80.00-60.00$	2.55	0.78	1.90	1.65
T7	$60.00-40.00$	2.53	0.81	1.88	1.71
T8	$40.00-20.00$	2.53	0.81	1.91	1.70
T9	$20.00-4.82$	2.46	0.80	1.89	1.62
T10	$4.82-0.00$	0.00	0.00	0.00	0.00

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
T1	3	LDF7-50A(1-5/8")	$\begin{array}{r} 160.00- \\ 171.00 \end{array}$	0.6000	0.3516
T1	4	LDF6-50A(1-1/4)	160.00-	0.6000	0.3516
T1	6	LDF5-50A(7/8)	171.00 $163.00-$	0.6000	0.3516
			180.00		
T1	7	LDF5-50A(7/8)	$\begin{array}{r} 160.00- \\ 163.00 \end{array}$	0.6000	0.3516
T1	8	LDF5-50A(7/8)	$160.00-$ 180.00	0.6000	0.3516
T2	1	LDF6-50A(1-1/4)	$\begin{array}{r} 140.00- \\ 153.00 \end{array}$	0.6000	0.3750
T2	3	LDF7-50A(1-5/8')	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.3750
T2	4	LDF6-50A(1-1/4)	$140.00-$ 160.00	0.6000	0.3750
T2	7	LDF5-50A(7/8)	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.3750
T2	8	LDF5-50A(7/8)	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.3750
T3	1	LDF6-50A(1-1/4)	$120.00-$	0.6000	0.3801
			140.00		
T3	3	LDF7-50A(1-5/8")	$120.00-$ 140.00	0.6000	0.3801
T3	4	LDF6-50A(1-1/4)	120.00-	0.6000	0.3801
T3	7	L.DF5-50A(7/8)	140.00	0.6000	
T3	7	LDF5-50A(718)	$\begin{gathered} 120.00- \\ 140.00 \end{gathered}$	0.6000	0.3801
T3	8	LDF5-50A(7/8)	$121.00-$	0.6000	0.3801
T3			140.00		
T3	9	LDF5-50A(7/8)	$\begin{array}{r} 120.00- \\ 121.00 \end{array}$	0.6000	0.3801
T4	1	LDF6-50A(1-1/4)	100.00-	0.6000	0.3859
			120.00		
T4	3	LDF7-50A(1-5/8')	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	0.6000	0.3859
T4	4	LDF6-50A(1-1/4)	100.00-	0.6000	0.3859
T4	7		120.00 $100.00-$		
14	7	LDF5-50A(7/8)	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	0.6000	0.3859
T4	9	LDF5-50A(7/8)	$100.00-$	0.6000	0.3859
T5			120.00		
15	1	LDF6-50A(1-1/4)	$\begin{aligned} & 80.00- \\ & 100.00 \end{aligned}$	0.6000	0.3606
T5	3	LDF7-50A(1-5/8')	$80.00-$	0.6000	0.3606
			100.00		
T5	4	LDF6-50A(1-1/4)	$80.00-$	0.6000	0.3606
T5	7	LDF5-50A(7/8)	80.00-	0.6000	0.3606
			100.00		
T5	9	LDF5-50A(7/8)	$80.00-1$	0.6000	0.3606

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	No lce	$\begin{aligned} & K_{a} \\ & \text { lce } \end{aligned}$
			100.00		
T6	1	LDF6-50A(1-1/4)	$60.00-$ 80.00	0.6000	0.5440
T6	3	LDF7-50A(1-5/8")	$\begin{array}{r} 60.00- \\ 80.00 \end{array}$	0.6000	0.5440
T6	4	LDF6-50A(1-1/4)	$60.00-$ 80.00	0.6000	0.5440
T6	5	LDF4P-50A(1/2)	$\begin{array}{r} 60.00- \\ 77.00 \end{array}$	0.6000	0.5440
T6	7	LDF5-50A(7/8)	$\begin{array}{r} 60.00- \\ 80.00 \end{array}$	0.6000	0.5440
T6	9	LDF5-50A(7/8)	$\begin{array}{r} 60.00- \\ 80.00 \end{array}$	0.6000	0.5440
T7	1	LDF6-50A(1-1/4)	$40.00-$ 60.00	0.6000	0.5518
T7	3	LDF7-50A(1-5/8")	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.5518
T7	4	LDF6-50A(1-1/4)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.5518
T7	5	LDF4P-50A(1/2)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.5518
T7	7	LDF5-50A(7/8)	40.00 60.00	0.6000	0.5518
T7	9	LDF5-50A(7/8)	40.00-	0.6000	0.5518
T8	1	LDF6-50A(1-1/4)	20.00 40.00	0.6000	0.5632
T8	3	LDF7-50A(1-5/8")	$20.00-$ 40.00	0.6000	0.5632
T8	4	LDF6-50A(1-1/4)	$20.00-$ 40.00	0.6000	0.5632
T8	5	LDF4P-50A(1/2)	$20.00-$ 40.00	0.6000	0.5632
T8	7	LDF5-50A(7/8)	$20.00-$ 40.00	0.6000	0.5632
T8	9	LDF5-50A(7/8)	$20.00-1$	0.6000	0.5632
T9	1	LDF6-50A(1-1/4)	5.00-20.00	0.6000	0.5697
T9	3	LDF7-50A(1-5/8")	5.00-20.00	0.6000	0.5697
T9	4	LDF6-50A(1-1/4)	5.00-20.00	0.6000	0.5697
T9	5	LDF4P-50A(1/2)	5.00-20.00	0.6000	0.5697
T9	7	LDF5-50A(7/8)	$5.00-20.00$ $5.00-20.00$	0.6000 0.6000	0.5697 0.5697
T9	9	LDF5-50A(7/8)	5.00-20.00	0.6000	0.5697

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert ft ft \(f t\)
\end{tabular} \& Azimuth Adjustmen \(t\) \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(\mathrm{tt}^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight
K

\hline $16 \mathrm{ft} \times 2.5$ " omni whip \& B \& From Leg \& \[
$$
\begin{aligned}
& 0.50 \\
& 0.00 \\
& 8.00
\end{aligned}
$$

\] \& 0.000 \& 179.00 \& \[

$$
\begin{gathered}
\text { No lce } \\
\text { 1/2" } \\
\text { Ice } \\
1^{\prime \prime} \text { Ice } \\
2^{\prime \prime} \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
4.00 \\
5.63 \\
7.28 \\
10.62
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
4.00 \\
5.63 \\
7.28 \\
10.62
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.03 \\
& 0.06 \\
& 0.10 \\
& 0.21
\end{aligned}
$$
\]

\hline APXVAALL24_43-UNA20_TIA w/ Mount Pipe \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.000 \& 171.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { lce }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 20.48 \\
& 21.23 \\
& 21.99
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10.87 \\
& 12.39 \\
& 13.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.18 \\
& 0.32 \\
& 0.46
\end{aligned}
$$
\]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& Offsets:
Horz
Lateral
Vert
ft
ft
ft \& Azimuth Adjustmen \(t\) \& Placement
ft \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \multirow{4}{*}{APXVAALL24_43-UNA20_TIA w/ Mount Pipe} \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{171.00} \& $$
\begin{aligned}
& \text { 1" Ice }^{2 "} \text { Ice }
\end{aligned}
$$ \& 23.44 \& 16.29 \& 0.79

\hline \& \& \& 4.00
0.00 \& \& \& No Ice
1/2" \& 20.48
21.23 \& 10.87
12.39 \& 0.18
0.32

\hline \& \& \& 0.00 \& \& \& ice \& 21.99 \& 13.94 \& 0.46

\hline \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{171.00} \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 23.44 \& 16.29 \& 0.79

\hline \multirow[t]{4}{*}{APXVAALL24_43-UNA20_TIA w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 20.48 \& 10.87 \& 0.18

\hline \& \& \& 0.00 \& \& \& 1/2" \& 21.23 \& 12.39 \& 0.32

\hline \& \& \& 0.00 \& \& \& Ice \& 21.99 \& 13.94 \& 0.46

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{171.00} \& $$
\begin{aligned}
& 1^{\prime \prime} \text { Ice } \\
& 2^{\prime \prime} \text { Ice }
\end{aligned}
$$ \& 23.44 \& 16.29 \& 0.79

\hline \multirow[t]{4}{*}{AIR6449 B41_TIA w/ Mount Pipe} \& \& \& 4.00 \& \& \& No lce \& 5.89 \& 3.28 \& 0.12

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.26 \& 3.74 \& 0.17

\hline \& \& \& 0.00 \& \& \& Ice \& 6.63 \& 4.22 \& 0.22

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{171.00} \& 1"Ice \& 7.41 \& 5.21 \& 0.35

\hline \multirow{4}{*}{AIR6449 B41_TIA w/ Mount Pipe} \& \& \& \& \& \& 2" ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No lce \& 5.89 \& 3.28 \& 0.12

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.26 \& 3.74 \& 0.17

\hline \& \& \& 0.00 \& \& \& Ice \& 6.63 \& 4.22 \& 0.22

\hline \multirow{5}{*}{AIR6449 B41_TIA w/ Mount Pipe} \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{171.00} \& $1{ }^{\prime \prime}$ Ice \& 7.41 \& 5.21 \& 0.35

\hline \& \& \& \& \& \& $2^{\prime \prime}$ lce \& \& \&

\hline \& \& \& 4.00 \& \& \& No lce \& 5.89 \& 3.28 \& 0.12

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.26 \& 3.74 \& 0.17

\hline \& \& \& 0.00 \& \& \& Ice \& 6.63 \& 4.22 \& 0.22

\hline \multirow{5}{*}{$$
\begin{gathered}
\text { RADIO } 4460 \text { B2/B25 } \\
\text { B66_TMO }
\end{gathered}
$$} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{171.00} \& 1 Ice \& 7.41 \& 5.21 \& 0.35

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.14 \& 1.69 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.32 \& 1.85 \& 0.13

\hline \& \& \& 0.00 \& \& \& Ice \& 2.51 \& 2.02 \& 0.16

\hline \multirow{5}{*}{$$
\begin{gathered}
\text { RADIO } 4460 \text { B2/B25 } \\
\text { B66_TMO }
\end{gathered}
$$} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{171.00} \& 1 " Ice \& 2.91 \& 2.39 \& 0.22

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.14 \& 1.69 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.32 \& 1.85 \& 0.13

\hline \& \& \& 0.00 \& \& \& lce \& 2.51 \& 2.02 \& 0.16

\hline \multirow{5}{*}{$$
\begin{gathered}
\text { RADIO 4460 B2/B25 } \\
\text { B66_TMO }
\end{gathered}
$$} \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{171.00} \& 1 " Ice \& 2.91 \& 2.39 \& 0.22

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No lce \& 2.14 \& 1.69 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.32 \& 1.85 \& 0.13

\hline \& \& \& 0.00 \& \& \& Ice \& 2.51 \& 2.02 \& 0.16

\hline \multirow{5}{*}{RADIO 4480 B71_TMO} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{171.00} \& 1 " Ice \& 2.91 \& 2.39 \& 0.22

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.85 \& 1.38 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.06 \& 1.54 \& 0.11

\hline \& \& \& 0.00 \& \& \& Ice \& 3.28 \& 1.71 \& 0.14

\hline \multirow{5}{*}{RADIO 4480 B71_TMO} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{179.00} \& 1 "' Ice \& 3.74 \& 2.07 \& 0.20

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& \& \& \& No lce \& 2.85 \& 1.38 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.06 \& 1.54 \& 0.11

\hline \& \& \& 0.00 \& \& \& Ice \& 3.28 \& 1.71 \& 0.14

\hline \multirow{4}{*}{RADIO 4480 B71_TMO} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{171.00} \& | 1" lce |
| :--- |
| 2 " Ice | \& 3.74 \& 2.07 \& 0.20

\hline \& \& \& 4.00 \& \& \& No lce \& 2.85 \& 1.38 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.06 \& 1.54 \& 0.11

\hline \& \& \& 0.00 \& \& \& Ice \& 3.28 \& 1.71 \& 0.14

\hline \multirow{4}{*}{(2) RRH $2 \times 50-800 \mathrm{w} /$ Notch Filter} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{171.00} \& $$
\begin{aligned}
& 1^{\prime \prime} \text { Ice } \\
& 2^{\prime \prime} \text { Ice }
\end{aligned}
$$ \& 3.74 \& 2.07 \& 0.20

\hline \& \& \& 4.00 \& \& \& Nolce \& 1.73 \& 1.33 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.90 \& 1.48 \& 0.09

\hline \& \& \& 0.00 \& \& \& lce \& 2.07 \& 1.64 \& 0.11

\hline \multirow{5}{*}{(2) RRH $2 \times 50-800 \mathrm{w} /$ Notch Filter} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{171.00} \& 1" Ice \& 2.44 \& 1.97 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No lce \& 1.73 \& 1.33 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.90 \& 1.48 \& 0.09

\hline \& \& \& 0.00 \& \& \& Ice \& 2.07 \& 1.64 \& 0.11

\hline
\end{tabular}

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft	Azimuth Adjustmen t	Placement		$C_{A} A_{A}$ Front f^{2}	$C_{A} A_{A}$ Side $f t^{2}$	Weight K
(2) RRH $2 \times 50-800$ w/Notch Filter	C	From Leg		0.000	171.00	1" Ice	2.44	1.97	0.16
			4.00			2" Ice			
			4.00 0.00			1/2"	1.90	1.48	0.09
			0.00			Ice	2.07	1.64	0.11
						1" Ice	2.44	1.97	0.16
Site Pro 1 VFA12-HD	A	From Leg		0.000	171.00	2" Ice			
			2.00			No Ice	13.20	9.20	0.66
			0.00			1/2"	19.50	14.60	0.80
			0.00			Ice	25.80	19.50	1.01
						1" Ice	38.40	30.80	1.24
Site Pro 1 VFA12-HD	B	From Leg		0.000	171.00	2" Ice			
			2.00			No lce	13.20	9.20	0.66
			0.00			1/2"	19.50	14.60	0.80
			0.00			Ice	25.80	19.50	1.01
						1" Ice	38.40	30.80	1.24
Site Pro 1 VFA12-HD	C	From Leg		0.000	171.00	2" Ice			
			2.00			No lce	13.20	9.20	0.66
			0.00			1/2"	19.50	14.60	0.80
			0.00			Ice	25.80	19.50	1.01
						1' Ice	38.40	30.80	1.24
						2" Ice			
PD201	B	From Leg		0.000	163.00	No Ice	0.68	0.68	0.00
			4.00			1/2"	1.80	1.80	0.01
			4.00			Ice	2.92	2.92	0.02
						1" Ice	5.16	5.16	0.03
						2" Ice			
5" $\times 2.375^{\prime \prime}$ Pipe Mount	B	From Leg	2.00	0.000	163.00	No lce	1.19	1.19	0.02
			0.00			1/2"	1.50	1.50	0.03
			0.00			Ice	1.81	1.81	0.04
						1" Ice	2.46	2.46	0.08
						2" Ice			
NHH-65B-R2B_TIA w/ Mount Pipe	A	From Leg		0.000	153.00			7.00	0.07
			4.00 0.00			No ice 1/2"	8.32 8.88	8.19	0.14
			0.00			Ice	9.40	9.08	0.21
						1" Ice	10.47	10.90	0.39
						2" Ice			
NHH-65B-R2B_TIA w $/$ Mount Pipe	B	From Leg	4.00	0.000	153.00	No lce	8.32	7.00	0.07
			0.00			1/2"	8.88	8.19	0.14
			0.00			Ice	9.40	9.08	0.21
						1" Ice	10.47	10.90	0.39
						2" Ice			
NHH-65B-R2B_TIA w/ Mount Pipe	C	From Leg	4.00	0.000	153.00	No lce	8.32	7.00	0.07
			0.00			1/2"	8.88	8.19	0.14
			0.00			Ice	9.40	9.08	0.21
						1 Ice	10.47	10.90	0.39
						2" Ice			
NHHSS-65B-R2BT4_TIA w/ Mount Pipe	A	From Leg	4.00	0.000	153.00	No lce	8.29	7.02	0.08
			0.00			1/2"	8.84	8.20	0.14
			0.00			Ice	9.37	9.09	0.22
						1" ice 2" Ice	10.44	10.92	0.40
NHHSS-65B-R2BT4_TIA w/ Mount Pipe	B	From Leg	4.00	0.000	153.00	No lce	8.29	7.02	0.08
			0.00			1/2"	8.84	8.20	0.14
			0.00			Ice	9.37	9.09	0.22
						1" Ice	10.44	10.92	0.40
						2" Ice			
NHHSS-65B-R2BT4_TIA w/ Mount Pipe MT6413-77A	C	From Leg	4.00	0.000	153.00	No Ice	8.29	7.02	0.08
			0.00			1/2"	8.84	8.20	0.14
			0.00			lce	9.37	9.09	0.22
						1" Ice	10.44	10.92	0.40
						2" Ice			
	A	From Leg	4.00	0.000	153.00	No lce	3.81	1.46	0.08

tnxTower Report - version 8.1.1.0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
ft \\
ft
\end{tabular} \& \[
\begin{gathered}
\text { Azimuth } \\
\text { Adjustmen } \\
t
\end{gathered}
\] \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f^{2}
\] \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight

K

\hline \multirow{7}{*}{MT6413-77A} \& \multirow{6}{*}{B} \& \multirow{6}{*}{From Leg} \& 0.00 \& \multirow{6}{*}{0.000} \& \multirow{6}{*}{153.00} \& 1/2" \& 4.06 \& 1.65 \& 0.11

\hline \& \& \& 1.00 \& \& \& Ice \& 4.32 \& 1.84 \& 0.13

\hline \& \& \& \& \& \& 1" lce \& 4.86 \& 2.26 \& 0.20

\hline \& \& \& 4.00 \& \& \& Nolce \& 3.81 \& 1.46 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.06 \& 1.65 \& 0.11

\hline \& \& \& 1.00 \& \& \& lce \& 4.32 \& 1.84 \& 0.13

\hline \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{153.00} \& $$
\begin{aligned}
& 1^{\prime \prime} \text { Ice } \\
& 2^{\prime \prime} \text { Ice }
\end{aligned}
$$ \& 4.86 \& 2.26 \& 0.20

\hline \multirow[t]{5}{*}{MT6413-77A} \& \& \& 4.00 \& \& \& No lce \& 3.81 \& 1.46 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.06 \& 1.65 \& 0.11

\hline \& \& \& \multirow[t]{2}{*}{1.00} \& \& \& Ice \& 4.32 \& 1.84 \& 0.13

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{153.00} \& 1 ' Ice \& 4.86 \& 2.26 \& 0.20

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{B2/B66 RRH ORAN} \& \& \& 4.00 \& \& \& No lce \& 1.85 \& 1.24 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.02 \& 1.38 \& 0.10

\hline \& \& \& \multirow[t]{2}{*}{0.00} \& \& \& Ice \& 2.20 \& 1.53 \& 0.12

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{153.00} \& 1" Ice \& 2.57 \& 1.85 \& 0.17

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{4}{*}{B2/B66 RRH ORAN} \& \& \& 4.00 \& \& \& No Ice \& 1.85 \& 1.24 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.02 \& 1.38 \& 0.10

\hline \& \& \& \multirow[t]{2}{*}{0.00} \& \& \& Ice \& 2.20 \& 1.53 \& 0.12

\hline \& \multirow{6}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{153.00} \& 1" Ice \& 2.57 \& 1.85 \& 0.17

\hline \multirow{5}{*}{B2/B66 RRH ORAN} \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.85 \& 1.24 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.02 \& 1.38 \& 0.10

\hline \& \& \& \multirow[t]{2}{*}{0.00} \& \& \& Ice \& 2.20 \& 1.53 \& 0.12

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 2.57 \& 1.85 \& 0.17

\hline \multirow{6}{*}{RF4461d-13A} \& \multirow{5}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{5}{*}{153.00} \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No lce \& 1.85 \& 1.27 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.02 \& 1.41 \& 0.10

\hline \& \& \& 0.00 \& \& \& lce \& 2.20 \& 1.56 \& 0.12

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \& $1{ }^{1 \prime}$ lce \& 2.57 \& 1.88 \& 0.17

\hline \& \multirow{4}{*}{B} \& \& \& \& \multirow{4}{*}{153.00} \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RF4461d-13A} \& \& \& 4.00 \& \& \& No lce \& 1.85 \& 1.27 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.02 \& 1.41 \& 0.10

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& lce \& 2.20 \& 1.56 \& 0.12

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{153.00} \& 1" Ice \& 2.57 \& 1.88 \& 0.17

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{4}{*}{RF4461d-13A} \& \& \& \& \& \& No Ice \& 1.85 \& 1.27 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.02 \& 1.41 \& 0.10

\hline \& \& \& 0.00 \& \& \& lce \& 2.20 \& 1.56 \& 0.12

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{153.00} \& $1{ }^{\prime \prime}$ Ice \& 2.57 \& 1.88 \& 0.17

\hline \multirow{5}{*}{RT4423-48A} \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No lce \& 0.86 \& 0.49 \&

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.97 \& 0.59 \& 0.03

\hline \& \& \& 0.00 \& \& \& Ice \& 1.10 \& 0.69 \& 0.03

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{153.00} \& $1^{\prime \prime}$ Ice \& 1.37 \& 0.92 \& 0.06

\hline \multirow{5}{*}{RT4423-48A} \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No lce \& 0.86 \& 0.49 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.97 \& 0.59 \& 0.03

\hline \& \& \& 0.00 \& \& \& Ice \& 1.10 \& 0.69 \& 0.03

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \& $1{ }^{\prime \prime}$ lce \& 1.37 \& 0.92 \& 0.06

\hline \multirow{6}{*}{RT4423-48A} \& \& \& \& \& \multirow{4}{*}{153.00} \& 2" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No lce \& 0.86 \& 0.49 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.97 \& 0.59 \& 0.03

\hline \& \& \& 0.00 \& \& \& lce \& 1.10 \& 0.69 \& 0.03

\hline \& \multirow{6}{*}{A} \& \multirow{7}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{153.00} \& $1{ }^{1 \prime}$ Ice \& 1.37 \& 0.92 \& 0.06

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{12 OVP} \& \& \& 4.00 \& \& \& No lce \& 3.36 \& 2.19 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.60 \& 2.39 \& 0.06

\hline \& \& \& 0.00 \& \& \& Ice \& 3.84 \& 2.61 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& 4.34 \& 3.05 \& 0.17

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline Site Pro 1 VFA12-HD \& A \& From Leg \& 2.00 \& 0.000 \& 153.00 \& No Ice \& 13.20 \& 9.20 \& 0.66

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& Offsets: Horz Lateral Vert \(f t\) ft \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
-
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\) Side
\[
f t^{2}
\] \& Weight

K

\hline \multirow{6}{*}{Site Pro 1 VFA12-HD} \& \multirow{7}{*}{B} \& \multirow{6}{*}{From Leg} \& 0.00 \& \multirow{6}{*}{0.000} \& \multirow{6}{*}{153.00} \& 1/2" \& 19.50 \& 14.60 \& 0.80

\hline \& \& \& 0.00 \& \& \& Ice \& 25.80 \& 19.50 \& 1.01

\hline \& \& \& 0.0 \& \& \& $$
\begin{aligned}
& 1^{\prime \prime} \text { Ice } \\
& 2^{\prime \prime} \text { Ice }
\end{aligned}
$$ \& 38.40 \& 30.80 \& 1.24

\hline \& \& \& 2.00 \& \& \& No lce \& 13.20 \& 9.20 \& 0.66

\hline \& \& \& 0.00 \& \& \& 1/2" \& 19.50 \& 14.60 \& 0.80

\hline \& \& \& 0.00 \& \& \& Ice \& 25.80 \& 19.50 \& 1.01

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{153.00} \& | 1 " Ice |
| :--- |
| $2^{\prime \prime}$ Ice | \& 38.40 \& 30.80 \& 1.24

\hline \multirow[t]{5}{*}{Site Pro 1 VFA12-HD} \& \multirow[t]{4}{*}{C} \& \& 2.00 \& \& \& No lce \& 13.20 \& 9.20 \& 0.66

\hline \& \& \& 0.00 \& \& \& 1/2" \& 19.50 \& 14.60 \& 0.80

\hline \& \& \& 0.00 \& \& \& Ice \& 25.80 \& 19.50 \& 1.01

\hline \& \& \& 0.0 \& \& \& 1" Ice \& 38.40 \& 30.80 \& 1.24

\hline \& \& \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{153.00} \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{2.375" OD $\times 8^{\prime}$ ' Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \& \& No lce \& 1.90 \& 1.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.73 \& 2.73 \& 0.04

\hline \& \& \& 0.00 \& \& \& lce \& 3.40 \& 3.40 \& 0.06

\hline \& \& \& \& \& \& 1 " Ice \& 4.40 \& 4.40 \& 0.12

\hline \& \& \& \& \multirow{6}{*}{0.000} \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{2.375" OD x 8^{\prime} Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \& \multirow[t]{4}{*}{153.00} \& No lce \& 1.90 \& 1.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.73 \& 2.73 \& 0.04

\hline \& \& \& 0.00 \& \& \& Ice \& 3.40 \& 3.40 \& 0.06

\hline \& \& \& \& \& \& 1" Ice \& 4.40 \& 4.40 \& 0.12

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow{5}{*}{2.375" OD x 8^{\prime} ' Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{153.00} \& No Ice \& 1.90 \& 1.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.73 \& 2.73 \& 0.04

\hline \& \& \& 0.00 \& \& \& lce \& 3.40 \& 3.40 \& 0.06

\hline \& \& \& \& \& \& 1" Ice \& 4.40 \& 4.40 \& 0.12

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline *** \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{4}{*}{138.00} \& No lce \& 0.58 \& 0.58 \& 0.03

\hline \multirow[t]{4}{*}{$3^{\prime} \times 2.375^{\prime \prime}$ Pipe Mount} \& \& \& 1.50
0.00 \& \& \& 1/2"' \& 0.77 \& 0.77 \& 0.03

\hline \& \& \& 0.00 \& \& \& Ice \& 0.97 \& 0.97 \& 0.04

\hline \& \& \& \& \& \& 1" Ice \& 1.39 \& 1.39 \& 0.06

\hline \& \& \& \& \& \& 2" lce \& \& \&

\hline \multirow[t]{5}{*}{DB420} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.00 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{121.00} \& No lce \& 3.33 \& 3.33 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 5.99 \& 5.99 \& 0.04

\hline \& \& \& 8.00 \& \& \& Ice \& 8.66 \& 8.66 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 13.99 \& 13.99 \& 0.07

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{Generic 2' x 3' sidearm} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 1.50 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{121.00} \& No lce \& 1.50 \& 3.00 \& 0.19

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.50 \& 4.00 \& 0.28

\hline \& \& \& 0.00 \& \& \& Ice \& 3.50 \& 5.00 \& 0.36

\hline \& \& \& \& \& \& 1" Ice \& 5.50 \& 7.00 \& 0.54

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{PD201} \& \multirow{5}{*}{B} \& \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{77.00} \& \& \& \&

\hline \& \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \& \& Nolce \& 0.68
1.80 \& 1.80 \& 0.01

\hline \& \& \& 0.00
4.00 \& \& \& 1/2 \& 1.80
2.92 \& 2.92 \& 0.02

\hline \& \& \& 4.00 \& \& \& 1" Ice \& 5.16 \& 5.16 \& 0.03

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{5" $\times 2.375^{\prime \prime}$ Pipe Mount} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 2.00 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{77.00} \& No lce \& 1.19 \& 1.19 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& Ice \& 1.81 \& 1.81 \& 0.04

\hline \& \& \& \& \& \& 1" lce \& 2.46 \& 2.46 \& 0.08

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline *** \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice+1.0 Guy
3	1.2D+1.0W (pattern 1) 0 deg - No Ice+1.0 Guy
4	1.2D+1.0W (pattern 2) 0 deg - No lce+1.0 Guy
5	1.2D+1.0W (pattern 3) 0 deg - No Ice+1.0 Guy
6	1.2D+1.0W (pattern 4) 0 deg - No lce+1.0 Guy
7	1.2 Dead+1.0 Wind 30 deg - No Ice+1.0 Guy
8	1.2D+1.0W (pattern 1) 30 deg - No lce+1.0 Guy
9	1.2D+1.0W (pattern 2) 30 deg - No Ice+1.0 Guy
10	1.2D+1.0W (pattern 3) 30 deg - No Ice+1.0 Guy
11	1.2D+1.0W (pattern 4) 30 deg - No Ice+1.0 Guy
12	1.2 Dead+1.0 Wind 60 deg - No Ice+1.0 Guy
13	1.2D+1.0W (pattern 1) 60 deg - No Ice+1.0 Guy
14	1.2D+1.0W (pattern 2) 60 deg - No lce+1.0 Guy
15	1.2D+1.0W (pattern 3) 60 deg - No lce+1.0 Guy
16	1.2D+1.0W (pattern 4) 60 deg - No lce+1.0 Guy
17	1.2 Dead+1.0 Wind 90 deg - No Ice+1.0 Guy
18	1.2D+1.0W (pattern 1) 90 deg - No Ice+1.0 Guy
19	1.2D+1.0W (pattern 2) 90 deg - No lce+1.0 Guy
20	$1.2 \mathrm{D}+1.0 \mathrm{~W}$ (pattern 3) 90 deg - No lce+1.0 Guy
21	1.2D+1.0W (pattern 4) 90 deg - No Ice+1.0 Guy
22	1.2 Dead+1.0 Wind 120 deg - No Ice+1.0 Guy
23	$1.2 \mathrm{D}+1.0 \mathrm{~W}$ (pattern 1) 120 deg - No Ice+1.0 Guy
24	1.2D+1.0W (pattern 2) 120 deg - No lce+1.0 Guy
25	$1.2 \mathrm{D}+1.0 \mathrm{~W}$ (pattern 3) 120 deg - No lce+1.0 Guy
26	1.2D+1.0W (pattern 4) 120 deg - No Ice+1.0 Guy
27	1.2 Dead+1.0 Wind 150 deg - No Ice+1.0 Guy
28	1.2D+1.0W (pattern 1) 150 deg - No Ice+1.0 Guy
29	1.2D+1.0W (pattern 2) 150 deg - No lce+1.0 Guy
30	1.2D+1.0W (pattern 3) 150 deg - No Ice+1.0 Guy
31	1.2D+1.0W (pattern 4) 150 deg - No Ice+1.0 Guy
32	1.2 Dead+1.0 Wind 180 deg - No lce+1.0 Guy
33	1.2D+1.0W (pattern 1) 180 deg - No Ice+1.0 Guy
34	1.2D+1.0W (pattern 2) 180 deg - No Ice+1.0 Guy
35	1.2D+1.0W (pattern 3) 180 deg - No lice+1.0 Guy
36	1.2D+1.0W (pattern 4) 180 deg - No Ice+1.0 Guy
37	1.2 Dead+1.0 Wind 210 deg - No lce 1.0 Guy
38	1.2D+1.0W (pattern 1) 210 deg - No lce+1.0 Guy
39	1.2D+1.0W (pattern 2) 210 deg - No lce+1.0 Guy
40	1.2D+1.0W (pattern 3) 210 deg - No lce+1.0 Guy
41	1.2D+1.0W (pattern 4) 210 deg - No Ice+1.0 Guy
42	1.2 Dead+1.0 Wind 240 deg - No Ice+1.0 Guy
43	1.2D+1.0W (pattern 1) 240 deg - No lce+1.0 Guy
44	1.2D+1.0W (pattern 2) 240 deg - No Ice+1.0 Guy
45	1.2D+1.0W (pattern 3) 240 deg - No Ice+1.0 Guy
46	1.2D+1.0W (pattern 4) 240 deg - No Ice+1.0 Guy
47	1.2 Dead+1.0 Wind 270 deg - No Ice+1.0 Guy
48	1.2D+1.0W (pattern 1) 270 deg - No lce+1.0 Guy
49	1.2D+1.0W (pattern 2) 270 deg - No lce+1.0 Guy
50	1.2D+1.0W (pattern 3) 270 deg - No Ice+1.0 Guy
51	1.2D+1.0W (pattern 4) 270 deg - No Ice+1.0 Guy
52	1.2 Dead+1.0 Wind 300 deg - No Ice+1.0 Guy
53	1.2D+1.0W (pattern 1) 300 deg - No lce+1.0 Guy
54	1.2D+1.0W (pattern 2) 300 deg - No lce+1.0 Guy
55	1.2D+1.0W (pattern 3) 300 deg - No lce+1.0 Guy
56	$1.2 \mathrm{D}+1.0 \mathrm{~W}$ (pattern 4) 300 deg - No lce +1.0 Guy
57	1.2 Dead+1.0 Wind 330 deg - No lce+1.0 Guy
58	1.2D+1.0W (pattern 1) 330 deg - No Ice+1.0 Guy
59	1.2D+1.0W (pattern 2) 330 deg - No lce+1.0 Guy
60	1.2D+1.0W (pattern 3) 330 deg - No Ice+1.0 Guy
61	1.2D+1.0W (pattern 4) 330 deg - No lce+1.0 Guy
62	1.2 Dead+1.0 Ice+1.0 Temp+Guy
63	1.2 Dead +1.0 Wind 0 deg+1.0 lce+1.0 Temp+1.0 Guy
64	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0 \mathrm{lce}+1.0$ Temp+1.0 Guy
65	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
66	1.2 Dead+1.0 Wind 90 deg+1.0 lce+1.0 Temp+1.0 Guy
67	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0 \mathrm{lce}+1.0$ Temp+1.0 Guy
68	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0 \mathrm{lce}+1.0$ Temp+1.0 Guy
69	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0 \mathrm{lce}+1.0$ Temp+1.0 Guy

Comb.	
No.	
70	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy
71	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy
72	1.2 Dead+1.0 Wind 270 deg+1.0 lce+1.0 Temp+1.0 Guy
73	1.2 Dead+1.0 Wind 300 deg+1.0 lce+1.0 Temp+1.0 Guy
74	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy
75	Dead+Wind 0 deg - Service+Guy
76	Dead+Wind 30 deg - Service+Guy
77	Dead+Wind 60 deg - Service+Guy
78	Dead+Wind 90 deg - Service+Guy
79	Dead+Wind 120 deg - Service+Guy
80	Dead+Wind 150 deg - Service+Guy
81	Dead+Wind 180 deg - Service+Guy
82	Dead+Wind 210 deg - Service+Guy
83	Dead+Wind 240 deg - Service+Guy
84	Dead+Wind 270 deg - Service+Guy
85	Dead+Wind 300 deg - Service+Guy
86	Dead+Wind 330 deg - Service+Guy

	Maximum Reactions				
Location	Condition	Gov. Load Comb.	$\begin{gathered} \text { Vertical } \\ K \end{gathered}$	$\underset{K}{\text { Horizontal, } X}$	$\begin{gathered} \text { Horizontal, } Z \\ K \end{gathered}$
Mast	Max. Vert	71	102.08	0.38	-0.18
	Max. H_{x}	50	48.05	1.09	0.01
	Max. Hz_{z}	5	47.03	0.00	1.11
	Max. M ${ }_{\text {x }}$	1	0	0.00	0.00
	Max. $\mathrm{M}_{\mathbf{z}}$	1	0	0.00	0.00
	Max. Torsion	37	1	0.50	-0.90
	Min. Vert	1	42.25	0.00	0.00
	Min. H_{x}	20	48.08	-1.08	-0.00
	Min. $\mathrm{Hz}_{\mathbf{z}}$	35	48.49	0.01	-1.07
	Min. M_{x}	1	0	0.00	0.00
	Min. $\mathrm{M}_{\mathbf{z}}$	1	0	0.00 -0.53	0.00
	Min. Torsion	7	-1 -1.67	-0.53 -2.15	1.25
Guy C@140f	Max. Vert	42	-1.67	-2.15	1.25
Azimuth 240 deg		42	-1.67	-2.15	1.25
	$\text { Max. } \mathrm{H}_{\mathrm{z}}$	65	-16.63	-19.10	11.03
	Min. Vert	12	-18.59	-18.35	10.59
	Min. H_{x}	65	-16.63	-19.10	11.03
	Min. $\mathrm{Hz}_{\mathbf{z}}$	42	-1.67	-2.15	1.25
Guy B @ 140 ft	Max. Vert	22	-1.82	2.35	1.35
Azimuth 120 deg	Max. H_{x}	73	-16.45	18.95	10.94
	Max. H_{z}	73	-16.45	18.95	10.94
	Min. Vert	52	-18.32	18.07	10.44 1.35
	Min. H_{x}	22	-1.82	2.35	1.35
	Min. H_{z}	22	-1.82	2.35	1.35 -2.66
Guy A@140 ft	Max. Vert	2	-1.78	0.01	-2.66
Azimuth 0 deg		72	-13.59	0.50	-18.39
	Max. H_{z}	2	-1.78	0.01	-2.66
	Min. Vert	32	-18.40	-0.01	-20.95
	Min. H_{x}	66	-13.60	-0.50	-18.39 -21.98
	Min. $\mathrm{Hz}_{\mathbf{z}}$	69	-16.57	-0.00	-21.98

Tower Mast Reaction Summary

180 Ft Guyed Tower Structural Analysis
July 31, 2023
Project Number 13323-0004.002.8700

	Vertical K	Shear K	Shear K	Overtuming Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	42.25	-0.00	-0.00	0	0	0
1.2 Dead+1.0 Wind 0 deg No Ice+1.0 Guy	48.81	-0.01	-1.00		0	0
1.2D+1.0W (patterm 1) 0 deg - No lce 1.0 Guy	48.97	-0.01	-0.43	0	0	0
$1.2 \mathrm{D}+1.0 \mathrm{~W}$ (pattem 2) 0 deg - No Ice+1.0 Guy	48.74	-0.01	-1.02	0	0	0
1.2D+1.0W (pattern 3) 0 deg - No Ice+1.0 Guy	47.03	-0.00	-1.11	0	0	0
1.2D+1.0W (pattern 4) 0 deg - No Ice+1.0 Guy	46.60	-0.01	-1.05	0	0	0
1.2 Dead+1.0 Wind 30 deg No Ice +1.0 Guy	49.57	0.53	-0.88	0	0	1
$\begin{aligned} & \text { 1.2D+1.0W (pattern 1) } 30 \\ & \text { deg - No Ice }+1.0 \text { Guy } \end{aligned}$	49.63	0.23	-0.37	0	0	1
$\begin{aligned} & \text { 1.2D+1.0W (pattem 2) } 30 \\ & \text { deg - No Ice }+1.0 \text { Guy } \end{aligned}$	49.36	0.54	-0.90	0	0	1
1.2D+1.0W (pattern 3) 30 deg - No lee +1.0 Guy	48.10	0.57	-0.99	0	0	1
$\begin{aligned} & \text { 1.2D+1.0W (pattern 4) } 30 \\ & \text { deg - No Ice }+1.0 \text { Guy } \end{aligned}$	47.95	0.53	-0.92	0	0	1
1.2 Dead+1.0 Wind 60 deg No Ice+1.0 Guy	49.28	0.89	-0.52	0	0	0
1.2D+1.0W (pattern 1) 60 deg - No Ice+1.0 Guy	49.23	0.38	-0.23	0	0	0
$\begin{aligned} & \text { 1.2D+1.0W (pattern 2) } 60 \\ & \text { deg - No Ice } 1.0 \text { Guy } \end{aligned}$	49.10	0.91	-0.53	0	0	0
$\begin{aligned} & \text { 1.2D+1.0W (pattern } 3 \text {) } 60 \\ & \text { deg - No Ice } 1.0 \text { Guy } \end{aligned}$	48.54	0.97	-0.56	0	0	0
$\begin{aligned} & \text { 1.2D+1.0W (pattern 4) } 60 \\ & \text { deg - No Ice }+1.0 \text { Guy } \end{aligned}$	48.55	0.90	-0.53	0	0	0
1.2 Dead+1.0 Wind 90 deg No Ice+1.0 Guy	49.50	0.98	-0.02	0	0	0
1.2D+1.0W (pattern 1) 90 deg - No Ice+1.0 Guy	49.56	0.41	-0.02	0	0	0
$\begin{aligned} & \text { 1.2D+1.0W (pattern 2) } 90 \\ & \text { deg - No Ice }+1.0 \text { Guy } \end{aligned}$	49.32	1.00	-0.02	0	0	0
$\begin{aligned} & \text { 1.2D+1.0W (pattem 3) } 90 \\ & \text { deg - No Ice } 1.0 \text { Guy } \end{aligned}$	48.08	1.08	-0.00	0	0	0
$\begin{aligned} & \text { 1.2D+1.0W (pattern 4) } 90 \\ & \text { deg - No Ice+1.0 Guy } \end{aligned}$	47.89	1.01	-0.00	0	0	0
1.2 Dead+1.0 Wind 120 deg - No Ice+1.0 Guy	48.81	0.86	0.50	0	0	0
$\begin{aligned} & \text { 1.2D+1.0W (pattern 1) } 120 \\ & \text { deg - No Ice }+1.0 \text { Guy } \end{aligned}$	48.97	0.37	0.21	0	0	0
$\begin{aligned} & \text { 1.2D }+1.0 \mathrm{~W} \text { (pattern 2) } 120 \\ & \text { deg - No Ice }+1.0 \text { Guy } \end{aligned}$	48.74	0.87	0.51	0	0	0
$\begin{aligned} & \text { 1.2D }+1.0 \mathrm{~W} \text { (pattern } 3 \text {) } 120 \\ & \text { deg }-\mathrm{No} \text { Ice }+1.0 \text { Guy } \end{aligned}$	47.05	0.95	0.55	0	0	0
$\begin{aligned} & \text { 1.2D+1.0W (pattem 4) } 120 \\ & \text { deg - No lce }+1.0 \text { Guy } \end{aligned}$	46.60	0.90	0.52	0	0	0
1.2 Dead+1.0 Wind 150 deg - No lce+1.0 Guy	49.24	0.43	0.78	0	0	0
$\begin{aligned} & \text { 1.2D }+1.0 \mathrm{~W} \text { (pattern 1) } 150 \\ & \text { deg }- \text { No lce }+1.0 \text { Guy } \end{aligned}$	49.30	0.17	0.33	0	0	0
1.2D+1.0W (pattern 2) 150 deg - No Ice +1.0 Guy	49.10	0.44	0.79	0	0	0
$\begin{aligned} & \text { 1.2D }+1.0 \mathrm{~W}(\text { pattem } 3 \text {) } 150 \\ & \text { deg }- \text { No Ice }+1.0 \text { Guy } \end{aligned}$	47.97	0.49	0.86	0	0	0
1.2D+1.0W (pattern 4) 150 deg - No Ice +1.0 Guy	47.77	0.46	0.80	0	0	0
1.2 Dead+1.0 Wind 180 deg - No Ice +1.0 Guy	49.21	-0.01	0.98	0	0	0
$\begin{aligned} & \text { 1.2D }+1.0 \mathrm{~W} \text { (pattern 1) } 180 \\ & \text { deg }- \text { No Ice }+1.0 \text { Guy } \end{aligned}$	49.16	-0.00	0.42	0	0	0
$\text { 1.2D+1.0W (pattern 2) } 180$ deg - No Ice+1.0 Guy	49.04	-0.00	1.00	0	0	0
1.2D+1.0W (pattern 3) 180 deg - No lce+1.0 Guy	48.49	-0.01	1.07	0	0	0

180 Ft Guyed Tower Structural Analysis
Project Number 13323-0004.002.8700
July 31, 2023
Stafford 1 CDT
Page 30

Load Combination	Vertical \qquad	Shear K	Shear ${ }_{2}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
$\begin{aligned} & \text { 1.2 Dead+1.0 Wind } 150 \\ & \text { deg+1.0 Ice+1.0 Temp+1.0 } \end{aligned}$	101.73	0.16	0.28	0	0	0
$\begin{aligned} & \text { Guy } \\ & \text { 1.2 Dead+1.0 Wind } 180 \\ & \text { deg+1.0 Ice+1.0 Temp+1.0 } \end{aligned}$	101.42	-0.03	0.34	0	0	0
Guy 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0	101.74	-0.23	0.32	0	0	0
Guy 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0	102.08	-0.38	0.18	0	0	0
$\begin{aligned} & \text { Guy } \\ & \text { 1.2 Dead+1.0 Wind } 270 \\ & \text { deg+1.0 Ice+1.0 Temp+1.0 } \end{aligned}$	101.72	-0.40	-0.01	0	0	0
$\begin{aligned} & \text { Guy } \\ & \text { 1.2 Dead+1.0 Wind } 300 \\ & \text { deg+1.0 Ice+1.0 Temp+1.0 } \end{aligned}$	101.40	-0.33	-0.19	0	0	0
Guy 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0	101.72	-0.20	-0.33	0	0	0
Guy Dead+Wind 0 deg - Service+Guy	42.43	-0.00	-0.28	0	0	0
Dead+Wind 30 deg Service+Guy	42.39	0.14	-0.25	0	0	0
Dead+Wind 60 deg Service+Guy	42.36	0.24	-0.14	0	0	0
Dead+Wind 90 deg Service+Guy	42.39	0.27	-0.00	0	0	0
Dead+Wind 120 deg Service+Guy	42.43	0.23	0.14	0	0	0
Dead+Wind 150 deg Service+Guy	42.39	0.12	0.21	0	0	0
Dead+Wind 180 deg Service+Guy	42.36	-0.00	0.27	0	0	0
Dead+Wind 210 deg Service+Guy	42.39	-0.15	0.25	0	0	0
Dead+Wind 240 deg Service+Guy	42.43	-0.26	0.14	0	0	0
Dead+Wind 270 deg Service+Guy	42.39	-0.28	-0.00	0	0	0
Dead+Wind 300 deg - . Service+Guy	42.35	-0.23	-0.13	0	0	0
Dead+Wind 330 deg Service+Guy	42.39	-0.13	-0.22	0	0	0

Solution Summary

Load Comb.	Sum of Applied Forces			Sum of Reactions			\% Error
	$P X$	PY	$P Z$	$P X$	PY	$P Z$	
	K	K	K	K	K	K	
1	0.00	-15.80	0.00	0.00	15.80	0.00	0.001\%
2	0.02	-18.77	-15.19	-0.02	18.77	15.19	0.001\%
3	0.02	-18.77	-13.86	-0.02	18.77	13.86	0.001\%
4	0.02	-18.77	-14.11	-0.02	18.77	14.11	0.001\%
5	0.01	-18.77	-13.13	-0.01	18.77	13.13	0.001\%
6	0.02	-18.77	-13.59	-0.02	18.77	13.59	0.002\%
7	7.75	-18.66	-13.45	-7.75	18.66	13.44	0.001\%
8	7.05	-18.66	-12.24	-7.05	18.66	12.24	0.001\%
9	7.19	-18.66	-12.48	-7.19	18.66	12.48	0.001\%
10	6.71	-18.66	-11.63	-6.71	18.66	11.63	0.001\%
11	6.95	-18.66	-12.06	-6.95	18.66	12.06	0.001\%
12	13.34	-18.55	-7.73	-13.34	18.55	7.73	0.001\%
13	12.15	-18.55	-7.05	-12.15	18.55	7.05	0.001\%
14	12.38	-18.55	-7.18	-12.38	18.55	7.18	0.001\%
15	11.55	-18.55	-6.68	-11.55	18.55	6.68	0.002\%

tnxTower Report - version 8.1.1.0

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	PZ	$P X$ K	PY	$\begin{gathered} P Z \\ K \end{gathered}$	
Comb.	K	K	K	K	K		
16	11.96	-18.55	-6.94	-11.96	18.55	6.93	0.001\%
17	15.20	-18.66	-0.02	-15.20	18.66	0.02	0.001\%
18	13.86	-18.66	-0.02	-13.86	18.66	0.02	0.001\%
19	14.12	-18.66	-0.02	-14.12	18.66	0.02	0.001\%
20	13.14	-18.66	-0.01	-13.14	18.66	0.01	0.001\%
21	13.60	-18.66	-0.02	-13.60	18.66	0.02	0.001\%
22	13.07	-18.77	7.56	-13.07	18.77	-7.56	0.001\%
23	11.92	-18.77	6.90	-11.92	18.77	-6.90	0.001\%
24	12.14	-18.77	7.02	-12.14	18.77	-7.02	0.001\%
25	11.31	-18.77	6.54	-11.31	18.77	-6.54	0.001\%
26	11.68	-18.77	6.76	-11.68	18.77	-6.76	0.002\%
27	7.22	-18.66	12.56	-7.22	18.66	-12.56	0.001\%
28	6.61	-18.66	11.50	-6.61	18.66	-11.50	0.000\%
29	6.72	-18.66	11.69	-6.72	18.66	-11.69	0.001\%
30	6.25	-18.66	10.85	-6.25	18.66	-10.85	0.001\%
31	6.43	-18.66	11.19	-6.43	18.66	-11.19	0.002\%
32	-0.02	-18.55	15.05	0.02	18.55	-15.05	0.001\%
33	-0.02	-18.55	13.74	0.02	18.55	-13.74	0.001\%
34	-0.02	-18.55	13.99	0.02	18.55	-13.99	0.001\%
35	-0.01	-18.55	13.02	0.01	18.55	-13.02	0.001\%
36	-0.02	-18.55	13.47	0.02	18.55	-13.47	0.001\%
37	-7.75	-18.66	13.45	7.75	18.66	-13.45	0.001\%
38	-7.05	-18.66	12.24	7.05	18.66	-12.24	0.001\%
39	-7.19	-18.66	12.48	7.19	18.66	-12.48	0.001\%
40	-6.71	-18.66	11.63	6.70	18.66	-11.63	0.001\%
41	-6.95	-18.66	12.06	6.95	18.66	-12.06	0.001\%
42	-13.46	-18.77	7.80	13.46	18.77	-7.80	0.001\%
43	-12.25	-18.77	7.10	12.25	18.77	-7.10	0.001\%
44	-12.49	-18.77	7.24	12.49	18.77	-7.24	0.001\%
45	-11.65	-18.77	6.74	11.65	18.77	-6.74	0.001\%
46	-12.06	-18.77	7.00	12.06	18.77	-7.00	0.002\%
47	-15.20	-18.66	0.02	15.20	18.66	-0.02	0.001\%
48	-13.86	-18.66	0.02	13.86	18.66	-0.02	0.001\%
49	-14.12	-18.66	0.02	14.12	18.66	-0.02	0.000\%
50	-13.14	-18.66	0.01	13.14	18.66	-0.01	0.001\%
51	-13.60	-18.66	0.02	13.60	18.66	-0.02	0.001\%
52	-12.95	-18.55	-7.49	12.95	18.55	7.49	0.001\%
53	-11.82	-18.55	-6.84	11.82	18.55	6.84	0.001\%
54	-12.04	-18.55	-6.96	12.04	18.55	6.96	0.001\%
55	-11.21	-18.55	-6.48	11.21	18.55	6.48	0.001\%
56	-11.58	-18.55	-6.70	11.58	18.55	6.70	0.001\%
57	-7.22	-18.66	-12.56	7.22	18.66	12.56	0.001\%
58	-6.61	-18.66	-11.50	6.61	18.66	11.50	0.000\%
59	-6.72	-18.66	-11.69	6.72	18.66	11.69	0.001\%
60	-6.25	-18.66	-10.85	6.25	18.66	10.85	0.001\%
61	-6.43	-18.66	-11.19	6.43	18.66	11.19	0.002\%
62	0.00	-61.00	0.00	-0.00	61.00	-0.00	0.000\%
63	0.00	-61.13	-6.64	-0.00	61.13	6.64	0.002\%
64	3.37	-61.00	-5.84	-3.37	61.00	5.84	0.002\%
65	5.84	-60.86	-3.38	-5.84	60.86	3.38	0.001\%
66	6.64	-61.00	-0.00	-6.63	61.00	0.00	0.002\%
67	5.65	-61.13	3.27	-5.65	61.13	-3.27	0.002\%
68	3.25	-61.00	5.63	-3.25	61.00	-5.63	0.002\%
69	-0.00	-60.86	6.62	0.00	60.86	-6.62	0.001\%
70	-3.37	-61.00	5.84	3.37	61.00	-5.84	0.002\%
71	-5.86	-61.13	3.39	5.86	61.13	-3.39	0.002\%
72	-6.64	-61.00	0.00	6.63	61.00	-0.00	. 0.001%
73	-5.64	-60.86	-3.26	5.64	60.86	3.26	0.001\%
74	-3.25	-61.00	-5.63	3.25 -0.00	61.00 15.83	5.63 3.99	0.001\%
75	0.00	-15.83	-3.99 -3.54	-0.00	15.83	3.54	0.001\%
76	2.04	-15.80	-3.54	-3.51	15.77	2.03	0.001\%
77	3.51 4.00	-15.77	-0.00	-4.00	15.80	0.00	0.001\%
79	3.44	-15.83	1.99	-3.44	15.83	-1.99	0.001\%
80	1.90	-15.80	3.30	-1.90	15.80	-3.30	0.001\%
81	-0.00	-15.77	3.96	0.00	15.77	-3.96	0.001\%
82	-2.04	-15.80	3.54	2.04	15.80	-3.54	0.001\%
83	-3.54	-15.83	2.05	3.54	15.83	-2.05	0.001\%
84	-4.00	-15.80	0.00	4.00	15.80	-0.00	0.001\%

	Sum of Applied Forces					Sum of Reactions		
Load	$P X$	$P Y$	$P Z$	$P X$	$P Y$	$P Z$	\% Error	
Comb.	K	K	K	K	K	K		
85	-3.41	-15.77	-1.97	3.41	15.77	1.97	0.001%	
86	-1.90	-15.80	-3.30	1.90	15.80	3.30	0.001%	

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	7	0.00000001	0.00007965
2	Yes	15	0.00000001	0.00006832
3	Yes	15	0.00000001	0.00007848
4	Yes	15	0.00000001	0.00006178
5	Yes	13	0.00000001	0.00006221
6	Yes	12	0.00000001	0.00006578
7	Yes	15	0.00000001	0.00004681
8	Yes	15	0.00000001	0.00005448
9	Yes	15	0.00000001	0.00004190
10	Yes	13	0.00000001	0.00006943
11	Yes	13	0.00000001	0.00003975
12	Yes	12	0.00000001	0.00006677
13	Yes	11	0.00000001	0.00004380
14	Yes	12	0.00000001	0.00006909
15	Yes	12	0.00000001	0.00009887
16	Yes	12	0.00000001	0.00007193
17	Yes	15	0.00000001	0.00004486
18	Yes	15	0.00000001	0.00005193
19	Yes	15	0.00000001	0.00003966
20	Yes	13	0.00000001	0.00006965
21	Yes	13	0.00000001	0.00003937
22	Yes	15	0.00000001	0.00006706
23	Yes	15	0.00000001	0.00007690
24	Yes	15	0.00000001	0.00006114
25	Yes	13	0.00000001	0.00006399
26	Yes	12	0.00000001	0.00006463
27	Yes	14	0.00000001	0.00009850
28	Yes	15	0.00000001	0.00004378
29	Yes	14	0.00000001	0.00009069
30	Yes	13	0.00000001	0.00006131
31	Yes	12	0.00000001	0.00009292
32	Yes	12	0.00000001	0.00006197
33	Yes	11	0.00000001	0.00004562
34	Yes	12	0.00000001	0.00006424
35	Yes	12	0.00000001	0.00009304
36	Yes	12	0.00000001	0.00006669
37	Yes	15	0.00000001	0.00004603
38	Yes	15	0.00000001	0.00005368
39	Yes	15	0.00000001	0.00004118
40	Yes	13	0.00000001	0.00006793
41	Yes	13	0.00000001	0.00003842
42	Yes	15	0.00000001	0.00007451
43	Yes	15	0.00000001	0.00008643
44	Yes	15	0.00000001	0.00006476
45	Yes	13	0.00000001	0.00006811
46	Yes	12	0.00000001	0.00007216
47	Yes	15	0.00000001	0.00004359
48	Yes	15	0.00000001	0.00005045
49	Yes	15	0.00000001	0.00003928
50	Yes	13	0.00000001	0.00006657
51	Yes	13	0.00000001	0.00003770
52	Yes	12	0.00000001	0.00006161
53	Yes	11	0.00000001	0.00004261
54	Yes	12	0.0000000 .1	0.00006396
55	Yes	12	0.00000001	0.00009233
56	Yes	12	0.00000001	0.00006644
57	Yes	14	0.00000001	0.00009705
58	Yes	15	0.00000001	0.00004317

tnxTower Report - version 8.1.1.0

			0.00000001	0.00008930
59	Yes	14	0.000000001	0.00005937
60	Yes	13	0.00000001	0.00009092
61	Yes	12	0.00000001	0.00000422
62	Yes	9	0.0000001	0.00008720
63	Yes	12	0.00000001	0.00008337
64	Yes	12	0.00000001	0.00006926
65	Yes	12	0.00000001	0.00000207
66	Yes	12	0.00000001	0.0006076
67	Yes	12	0.00000001	0.00005515
68	Yes	12	0.00000001	0.00006344
69	Yes	12	0.00000001	0.00008467
70	Yes	12	0.00000001	0.00009733
71	Yes	12	0.00000001	0.00007869
72	Yes	12	0.00000001	0.00006508
73	Yes	12	0.00000001	0.00007044
74	Yes	12	0.00000001	0.00005235
75	Yes	11	0.00000001	0.00005316
76	Yes	11	0.00000001	0.00005148
77	Yes	11	0.00000001	0.00004801
78	Yes	11	0.00000001	0.00004845
79	Yes	11	0.00000001	0.0000368
80	Yes	11	0.00000001	0.00004815
81	Yes	11	0.00000001	0.00005254
82	Yes	11	0.00000001	0.00006393
83	Yes	11	0.00000001	0.00005168
84	Yes	11	0.00000001	0.00005047
85	Yes	11	0.00000001	0.00004437
86	Yes	11		

Maximum Tower Deflections - Service Wind

\(\left.$$
\begin{array}{cccccc}\begin{array}{c}\text { Section } \\
\text { No. }\end{array} & \text { Elevation } & \begin{array}{c}\text { Horz. } \\
\text { Deflection } \\
\text { in }\end{array}
$$ \& \begin{array}{c}Gov.

Load

Comb.\end{array} \& Tilt\end{array}\right]\)| Twist |
| :---: |
| |
| T1 |

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature ft
179.00	$16 \mathrm{ft} \times 2.5$ " omni whip	77	1.10	0.047	0.133	199237
171.00	APXVAALL24_43-U-NA20_TIA w/ Mount Pipe	77	1.01	0.041 0.037	0.131 0.128	110687
163.00	PD201	77	0.92	0.037	0.128	59187
162.52	Guy	77	0.92	0.037	0.128	195314
153.00	NHH-65B-R2B_TIA w/ Mount Pipe	77	0.83	0.037	0.124 0.115	195314
138.00	3' $\times 2.375^{\prime \prime}$ Pipe Mount	77	0.69	0.043 0.038	0.115 0.101	43699
121.00	DB420	77	0.50	0.038	0.099	40747
119.39	Guy	77	0.48	0.037	0.043	34247
82.52	Guy	77	0.28	0.003	0.043 0.040	40442
77.00	PD201	77	0.28	0.001	0.040	40442

tnxTower Report - version 8.1.1.0

Maximum Tower Deflections - Design Wind

| Section
 No. | Elevation | Horz.
 Deflection
 in | Gov.
 Load
 Comb. | Tilt | o |
| :---: | :---: | :---: | :---: | :---: | :---: | | ft | $180-160$ | 5.98 | 43 | 0.311 |
| :---: | :---: | :---: | :---: | :---: |
| T1 | $160-140$ | 4.57 | 43 | 0.266 |
| T2 | $140-120$ | 3.43 | 8 | 0.273 |
| T3 | $120-100$ | 2.24 | 38 | 0.217 |
| T4 | $100-80$ | 1.57 | 16 | 0.141 |
| T5 | $80-60$ | 1.28 | 16 | 0.071 |
| T6 | $60-40$ | 1.39 | 15 | 0.037 |
| T7 | $40-20$ | 1.37 | 15 | 0.057 |
| T8 | $20-4.81771$ | 0.84 | 15 | 0.1449 |
| T9 | $4.81771-$ | 0.18 | 15 | 0.177 |
| T10 | $3.33333 \mathrm{e}-007$ | | | |
| | | | | 0.277 |
| | | | | 0.174 |

Critical Deflections and Radius of Curvature - Design Wind						
Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature ft
179.00	$16 \mathrm{ft} \times 2.5$ " omni whip	43	5.91	0.308	0.506	41227
171.00	APXVAALL24_43-U-NA20_TIA w/ Mount Pipe	43	5.33	0.284	0.499	22904
163.00	PD201	43	4.77	0.269	0.490	12200
162.52	Guy	43	4.74	0.268	0.489	11930
153.00	$\underset{\text { Pipe }}{\text { NHH-65B-R2B_TIA }} \mathbf{w} /$ Mount	43	4.14	0.268	0.475	15427
138.00	3 ' x 2.375" Pipe Mount	8	3.31	0.271	0.445	9366
121.00	DB420	38	2.29	0.221	0.395	6888
119.39	Guy	38	2.20	0.215	0.388	6575
82.52	Guy	16	1.29	0.079	0.180	8148
77.00	PD201	16	1.28	0.062	0.170	9549

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	180	Leg	A325X	0.75	4	1.00	30.10	0.033	1	Bolt Tension
		Diagonal	A325X	0.50	1	1.47	5.92	0.248	1.05	Member Bearing
		Top Girt	A325X	0.50	1	0.04	5.92	0.007	1	Member Bearing
		Bottom Girt	A325X	0.50	1	0.42	5.92	0.071	1.05	Member Bearing
		Top Guy PullOff@162.523	A325N	0.63	2	2.17	16.45	0.132	1.05	Member Block Shear
T2	160	Leg	A325X	0.75	4	1.47	30.10	0.049	1.05	Boit Tension
		Diagonal	A325X	0.50	1	1.18	5.92	0.199	1.05	Member Bearing
		Top Girt	A325X	0.50	1	0.46	5.92	0.078	1.05	Member Bearing
		Bottom Girt	A325X	0.50	1	0.31	5.92	0.053	1.05	Member Bearing
T3	140	Leg	A325X	0.75	4	1.68	30.10	0.056	1.05	Bolt Tension

tnxTower Report - version 8.1.1.0

Guy Design Data

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	Elevation	Size	Initial Tension K	Breaking Load K	Actual T_{μ} K	$\begin{gathered} \text { Allowable } \\ \phi T_{n} \\ K \\ \hline \end{gathered}$	Required S.F.	Actual S.F.
T1	$\frac{162.52(A)}{}$	3/4 EHS	5.83	58.30	14.30	36.73	0.952	2.446
	$\begin{gathered} (432) \\ 162.52(B) \\ (431) \end{gathered}$	3/4 EHS	5.83	58.30	14.24	36.73	0.952	2.457

tnxTower Report - version 8.1.1.0

180 Ft Guyed Tower Structural Analysis
July 31, 2023
Project Number 13323-0004.002.8700

Section No.	Elevation ft	Size	$\begin{gathered} \text { Initial } \\ \text { Tension } \\ K \\ \hline \end{gathered}$	Breaking Load K	Actual T_{u} K	Allowable ϕT_{n} K	Required S.F.	Actual S.F.
T4	$\begin{gathered} 162.52(C) \\ (427) \end{gathered}$	3/4 EHS	5.83	58.30	14.40	36.73	0.952	2.429
	$\begin{gathered} 119.39(A) \\ (435) \end{gathered}$	1/2 EHS	2.69	26.90	6.36	16.95	0.952	2.536
	$\begin{gathered} 119.39(B) \\ (434) \end{gathered}$	1/2 EHS	2.69	26.90	6.34	16.95	0.952	2.545
T5	$\begin{gathered} 119.39 \text { (C) } \\ (433) \end{gathered}$	1/2 EHS	2.69	26.90	6.38	16.95	0.952	2.531
	$\begin{gathered} 82.52(A) \\ (447) \end{gathered}$	1/2 EHS	2.69	26.90	6.07	16.95	0.952	2.657
	$\begin{gathered} 82.52(A) \\ (448) \end{gathered}$	1/2 EHS	2.69	26.90	5.99	16.95	0.952	2.697
	$\begin{gathered} 82.52(B) \\ (443) \end{gathered}$	1/2 EHS	2.69	26.90	6.03	16.95	0.952	2.674
	$\begin{gathered} 82.52 \text { (B) } \\ (444) \end{gathered}$	1/2 EHS	2.69	26.90	6.03	16.95	0.952	2.677
	$\begin{gathered} 82.52(C) \\ (436) \end{gathered}$	1/2 EHS	2.69	26.90	6.00	16.95	0.952	2.690
	$\begin{gathered} 82.52 \text { (C) } \\ (437) \end{gathered}$	1/2 EHS	2.69	26.90	6.10	16.95	0.952	2.645

Compression Checks

Leg Design Data (Compression)										
Section No.	Elevation ft	Size	L $f t$	$\begin{gathered} L_{u} \\ f t \end{gathered}$	$\mathrm{K} / \mathrm{/r}$	A i^{2}	Mast Stability index	$\begin{gathered} P_{u} \\ K \end{gathered}$	$\begin{gathered} \phi P_{n} \\ k \end{gathered}$	$\begin{aligned} & \text { Ratio } \\ & P_{u} \\ & \hline \phi P_{n} \end{aligned}$
T1	180-160	$\begin{aligned} & \text { Pipe } 2.375^{\prime \prime} \mathrm{x} \\ & 0.218^{\prime \prime}(2 \mathrm{XS}) \end{aligned}$	20.00	2.41	$\begin{gathered} 37.7 \\ K=1.00 \end{gathered}$	1.48	1.00	-12.09	59.91	$\frac{\varphi P_{n}^{1}}{0.202^{1}}$
T2	160-140	$\begin{aligned} & \text { Pipe } 2.375^{\prime \prime} x \\ & 0.218^{\prime \prime}(2 \mathrm{XS}) \end{aligned}$	20.00	2.41	$\begin{gathered} 37.7 \\ K=1.00 \end{gathered}$	1.48	1.00	-17.95	59.91	0.300^{1}
T3	140-120	$\begin{aligned} & \text { Pipe } 2.375^{\prime \prime} \mathrm{x} \\ & 0.218^{\prime \prime}(2 \mathrm{XS}) \end{aligned}$	20.00	2.41	$\begin{gathered} 37.7 \\ K=1.00 \end{gathered}$	1.48	1.00	-18.94	59.91	0.316^{1}
T4	120-100	$\begin{aligned} & \text { Pipe } 2.375^{\prime \prime} \mathrm{x} \\ & 0.218^{\prime \prime}(2 \mathrm{XS}) \end{aligned}$	20.00	2.41	$\begin{gathered} 37.7 \\ K=1.00 \end{gathered}$	1.48	1.00	-24.20	59.91	0.404^{1}
T5	100-80	$\begin{gathered} \text { Pipe } 2.875^{\prime \prime} \times \\ 0.276^{\prime \prime}(2.5 \mathrm{XS}) \end{gathered}$	20.00	0.11	$\begin{gathered} 1.5 \\ K=1.00 \end{gathered}$	2.25	0.95	-32.93	96.60	0.341^{1}
T6	80-60	$\begin{gathered} \text { Pipe } 2.875^{\prime \prime} \mathrm{x} \\ 0.276 \mathrm{k}(2.5 \mathrm{XS}) \end{gathered}$	20.00	2.41	$\begin{gathered} 62.6 \\ K=2.00 \end{gathered}$	2.25	1.00	-32.68	76.17	0.429^{1}
T7	60-40	$\begin{gathered} \text { Pipe } 2.875^{\prime \prime} \times \\ 0.203^{\prime \prime}(2.5 \text { STD }) \end{gathered}$	20.00	2.41	$\begin{aligned} & 61.0 \\ & K=2.00 \end{aligned}$	1.70	1.00	-35.24	58.41	0.603^{1}
T8	40-20	$\begin{gathered} \text { Pipe } 2.875^{\prime \prime} \mathrm{x} \\ 0.203 \text { " } 2.5 \mathrm{STD} \text {) } \end{gathered}$	20.00	2.41	$\begin{gathered} 61.0 \\ K=2.00 \end{gathered}$	1.70	1.00	-36.00	58.41	0.616^{1}
T9	20-4.81771	$\begin{gathered} \text { Pipe } 2.875^{\prime \prime} \times \\ 0.276^{\prime \prime}(2.5 \times S) \end{gathered}$	15.18	2.41	$\begin{gathered} 62.6 \\ K=2.00 \end{gathered}$	2.25	1.00	-35.54	76.17	0.467^{1}
T10	$\begin{gathered} 4.81771- \\ 3.33333 e-007 \end{gathered}$	$\begin{gathered} \text { Pipe } 2.875^{\prime \prime} \times \\ 0.276^{\prime \prime}(2.5 \times S) \end{gathered}$	5.21	1.38	$\begin{gathered} 17.9 \\ K=1.00 \end{gathered}$	2.25	0.78	-36.40	77.52	0.469^{41}

* DL controls
${ }^{1} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Compression)

Section	Elevation	Size	L	L_{u}	$\mathrm{Kl/r}$	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	f		$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
T1	180-160	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}$ (16 ga)	3.72	3.72	$\begin{gathered} 87.5 \\ K=1.00 \end{gathered}$	0.26	-1.67	6.21	0.268^{1}
T2	160-140	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.72	3.72	$\begin{gathered} 87.5 \\ K=1.00 \end{gathered}$	0.26	-1.36	6.21	0.219°
T3	140-120	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.72	3.72	$\begin{gathered} 87.5 \\ K=1.00 \end{gathered}$	0.26	-1.20	6.21	0.193^{1}
T4	120-100	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.72	3.72	$\begin{gathered} 87.5 \\ K=1.00 \end{gathered}$	0.26	-0.75	6.21	0.120^{1}
T5	100-80	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.72	3.72	$\begin{gathered} 87.5 \\ K=1.00 \end{gathered}$	0.26	-1.95	6.21	0.314^{1}
T6	80-60	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.72	3.72	$\begin{gathered} 87.5 \\ K=1.00 \end{gathered}$	0.26	-1.57	6.21	0.254^{1}
T7	60-40	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.72	3.72	$\begin{gathered} 87.5 \\ K=1.00 \end{gathered}$	0.26	-0.97	6.21	0.156^{1}
T8	40-20	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.72	3.72	$\begin{gathered} 87.5 \\ \mathrm{~K}=1.00 \end{gathered}$	0.26	-0.59	6.21	0.096^{1}
T9	20-4.81771	Pipe 1.5" $\times 0.058$ " (16 ga)	3.72	3.72	$\begin{gathered} 87.5 \\ K=1.00 \end{gathered}$	0.26	-0.83	6.21	0.134^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_{μ}	K/r	A	P_{u}	ϕP_{\square}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	ft		$f t$	f		$i \mathrm{in}^{2}$	K	K	ϕP_{n}
T10	$\begin{gathered} 4.81771- \\ 3.33333 \mathrm{e}-007 \end{gathered}$	L $4 \times 4 \times 1 / 4$	2.51	2.27	$\begin{gathered} 34.3 \\ K=1.00 \end{gathered}$	1.94	-0.67	65.06	$0^{0.010^{\circ}}$

* DL controls
${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		$i \mathrm{n}^{2}$	K	K	ϕP_{n}
T1	180-160	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	$\begin{gathered} 75.7 \\ K=1.00 \end{gathered}$	0.26	-0.03	6.99	0.004^{1}
T2	160-140	Pipe 1.5' $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	$\begin{gathered} 75.7 \\ K=1.00 \end{gathered}$	0.26	-0.31	6.99	0.045^{1}
T3	140-120	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	$\begin{gathered} 75.7 \\ K=1.00 \end{gathered}$	0.26	-0.35	6.99	0.050^{1}
T4	120-100	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	$\begin{gathered} 75.7 \\ K=1.00 \end{gathered}$	0.26	-0.42	6.99	0.060^{1}
T5	100-80	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	$\begin{gathered} 74.7 \\ K=1.00 \end{gathered}$	0.26	-0.57	7.05	0.081^{1}
T6	80-60	Pipe 1.5' $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	$\begin{gathered} 74.7 \\ K=1.00 \end{gathered}$	0.26	-0.57	7.05	0.081^{1}
T7	60-40	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	$\begin{gathered} 74.7 \\ K=1.00 \end{gathered}$	0.26	-0.61	7.05	0.087^{1}
T8	40-20	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.18	$\begin{gathered} 74.7 \\ K=1.00 \end{gathered}$	0.26	-0.62	7.05	0.088^{1}
T9	20-4.81771	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	74.7	0.26	-0.62	7.05	0.088^{1}

[^0]

* DL controls
${ }^{1} P_{u} / \phi P_{n}$ controls

Bottom Girt Design Data (Compression)

Section No.	Elevation ft	Size	L ft	L_{u} ft	Kl/r	A $i n^{2}$	$\begin{gathered} P_{u} \\ K \end{gathered}$	ϕP_{n} K	$\begin{aligned} & \text { Ratio } \\ & P_{u} \\ & \hline \end{aligned}$
T1	180-160	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.22	$\begin{gathered} 75.7 \\ K=1.00 \end{gathered}$	0.26	-0.21	6.99	0.030^{71}
T2	160-140	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.22	$\begin{gathered} 75.7 \\ K=1.00 \end{gathered}$	0.26	-0.31	6.99	0.045^{1}
T3	140-120	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.22	$\begin{gathered} 75.7 \\ K=1.00 \end{gathered}$	0.26	-0.35	6.99	0.050^{1}
T4	120-100	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	$\begin{gathered} 75.7 \\ K=1.00 \end{gathered}$	0.26	-0.42	6.99	0.060^{1}
T5	100-80	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	$\begin{gathered} 74.7 \\ K=1.00 \end{gathered}$	0.26	-0.57	7.05	0.081^{1}
T6	80-60	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.18	$\begin{gathered} 74.7 \\ K=1.00 \end{gathered}$	0.26	-0.57	7.05	$0.081{ }^{1}$
T7	60-40	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.18	$\begin{gathered} 74.7 \\ K=1.00 \end{gathered}$	0.26	-0.61	7.05	0.087^{1}
T8	40-20	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	$\begin{gathered} 74.7 \\ K=1.00 \end{gathered}$	0.26	-0.62	7.05	0.088^{1}
T9	20-4.81771	Pipe 1.5' $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	$\begin{gathered} 74.7 \\ K=1.00 \end{gathered}$	0.26	-0.62	7.05	0.088^{1}
T10	$\begin{gathered} 4.81771- \\ 3.33333 e-007 \end{gathered}$	L $4 \times 4 \times 1 / 4$	0.71	0.47	$\begin{gathered} 7.1 \\ K=1.00 \end{gathered}$	1.94	-0.24	67.37	$0.004^{* 1}$

* DL controls
${ }^{1} P_{u} / \phi P_{n}$ controls

Top Guy Pull-Off Design Data (Compression)

Section No.	Elevation ft	Size	L ft	L_{u} ft	K / T	A $i n^{2}$	P_{u} K	ϕP_{n} K	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \\ \hline \end{gathered}$
T5	100-80	$2 \mathrm{~L} 2 \times 2 \times 1 / 4(3 / 8)$ 2L 'a' > 18.36 in - 441	3.42	3.18	$\begin{gathered} 104.9 \\ K=1.00 \end{gathered}$	1.88	-1.79	43.61	0.041^{1}

[^1]
Top Guy Pull-Off Bending Design Data

180 Ft Guyed Tower Structural Analysis

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio $M_{u x}$	$M_{u y}$ kip-ft	$\phi M_{n y}$ kip-ft	Ratio $M_{u y}$
	ft		kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
T5	100-80	2L. $2 \times 2 \times 1 / 4$ (3/8)	0	2	0.000	0	3	0.000

Top Guy Pull-Off Interaction Design Data

Section No.	Elevation ft	Size	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \end{gathered}$	Ratio $\frac{M_{u x}}{\phi M_{n x}}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \phi M_{n y} \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
T5	100-80	$2 \mathrm{~L} 2 \times 2 \times 1 / 4(3 / 8)$	0.041	0.000	0.000	$\begin{gathered} 0.041^{1} \\ \end{gathered}$	1.050	4.8.1

${ }^{1} P_{u} / \phi P_{n}$ controls

Torque-Arm Top Design Data

Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
No.	ft		ft	ft		$i n^{2}$	K	K	ϕP_{n}
T5	100-80 (438)	C10x15.3	3.42	3.30	$\begin{gathered} 55.5 \\ K=1.00 \end{gathered}$	4.49	-0.19	123.71	0.001
T5	100-80 (439)	C10x15.3	3.42	3.30	$\begin{gathered} 55.5 \\ K=1.00 \end{gathered}$	4.49	-0.11	123.71	0.001
T5	100-80 (445)	C10x15.3	3.42	3.30	$\begin{gathered} 55.5 \\ K=1.00 \end{gathered}$	4.49	-0.25	123.71	0.002
T5	100-80 (446)	C10x15.3	3.42	3.30	$\begin{gathered} 55.5 \\ K=1.00 \end{gathered}$	4.49	-0.50	123.71	0.004
T5	100-80 (449)	C10x15.3	3.42	3.30	$\begin{gathered} 55.5 \\ K=1.00 \end{gathered}$	4.49	-0.29	123.71	0.002
T5	100-80 (450)	C10x15.3	3.42	3.30	$\stackrel{55.5}{K=1.00}$	4.49	-0.44	123.71	0.004

Torque-Arm Top Bending Design Data								
Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio $M_{u x}$	$M_{u y}$	$\phi M_{n y}$	Ratio $\mathrm{May}^{\mathbf{M a y}}$
	$f t$		kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
T5	100-80 (438)	C10×15.3	-8	42	0.188	0	5	0.000
T5	100-80(439)	C10x15.3	-8	42	0.185	0	5	0.000
T5	100-80(445)	C10x15.3	-8	42	0.185	0	5	0.000
T5	100-80(446)	C10x15.3	-8	42	0.187	0	5	0.000
T5	100-80 (449)	C10x15.3	-8	42	0.185	0	5	0.000 0.000
T5	100-80 (450)	C10×15.3	-8	42	0.185	0	5	0.000

Torque-Arm Top Interaction Design Data

Section No.	Elevation	Size	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \phi M_{n x} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \phi M_{n y} \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
T5	100-80 (438)	C10×15.3	0.001	0.188	0.000	0.189	1.050	4.8 .1
T5	100-80 (439)	C10x15.3	0.001	0.185	0.000	0.186	1.050	4.8.1

180 Ft Guyed Tower Structural Analysis
July 31, 2023
Project Number 13323-0004.002.8700
Stafford 1 CDT
Page 40

Section No.	Elevation $f t$	Size	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ratio } \\ & M_{u x} \\ & \hline \phi M_{n x} \end{aligned}$	$\begin{gathered} \text { Ratio } \\ M_{u \gamma} \\ \hline \phi M_{n y} \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
T5	100-80 (445)	C10x15.3	0.002	0.185	0.000	0.186	1.050	4.8 .1
T5	100-80 (446)	C10×15.3	0.004	0.187	0.000	0.189	1.050	4.8 .1
T5	100-80(449)	C10x15.3	0.002	0.185	0.000	0.186	1.050	4.8 .1
T5	100-80 (450)	C10×15.3	0.004	0.185	0.000	0.186	1.050	4.8 .1

Tension Checks

Leg Design Data (Tension)									
Section No.	Elevation ft	Size	$\begin{aligned} & L \\ & f t \end{aligned}$	$\begin{aligned} & L_{u} \\ & f t \end{aligned}$	KI/r	$\begin{gathered} A \\ i n^{2} \end{gathered}$	Pu K	ϕP_{n} κ	$$
T1	180-160	Pipe $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2$ XS)	20.00	2.41	37.7	1.48		K 66.48	$\frac{\phi P_{n}}{0.112^{i}}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Tension)									
Section No.	Elevation ft	Size	$\begin{aligned} & L \\ & f t \end{aligned}$	$\begin{gathered} L_{u} \\ f t \end{gathered}$	K/Ir	A	$\begin{gathered} P_{u} \\ K \end{gathered}$	ϕP_{n} K	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
T1	180-160	Pipe 1.5" $\times 0.058$ " (16 ga)	3.72	3.72	87.5	0.26	1.47	9.93	$\frac{\phi P_{n}}{0.148^{1}}$
T2	160-140	Pipe 1.5" x 0.058" (16 ga)	3.72	3.72	87.5	0.26	1.18	9.93	0.118^{1}
T3	140-120	Pipe 1.5" $\times 0.058$ " (16 ga)	3.72	3.72	87.5	0.26	0.82	9.93	0.082^{1}
T4	120-100	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.72	3.72	87.5	0.26	0.60	9.93	$\stackrel{y}{0.0601}$
T5	100-80	Pipe 1.5" ${ }^{\text {x }} 0.058^{\prime \prime}$ (16 ga)	3.72	3.72	87.5	0.26	0.83	9.93	0.0841
T6	80-60	Pipe 1.5" $\times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.72	3.72	87.5	0.26	1.48	9.93	0.149^{1}
T7	60-40	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.72	3.72	87.5	0.26	0.82	9.93	0.0821
T8	40-20	Pipe 1.5" $\times 0.058{ }^{\prime \prime}$ (16 ga)	3.72	3.72	87.5	0.26	0.44	9.93	$0.04{ }^{1}$
T9	20-4.81771	Pipe 1.5" $\times 0.058$ " (16 ga)	3.72	3.72	87.5	0.26	0.82	9.93	

${ }^{1} P_{u} / \phi P_{n}$ controls

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	$K / / r$	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	ft		$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
T10	$\begin{gathered} 4.81771- \\ 3.33333 \mathrm{e}-007 \end{gathered}$	L $4 \times 4 \times 1 / 4$	1.61	1.37	13.2	1.94	0.67	62.86	0.011°

* DL controls
${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	f		ft	ft		$i n^{2}$	K	K	ϕP_{n}
T1	180-160	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	75.7	0.26	0.04	9.93	0.004^{-1}
T2	160-140	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	75.7	0.26	0.46	9.93	0.046^{1}
T3	140-120	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	75.7	0.26	0.35	9.93	0.035^{1}
T4	120-100	Pipe 1.5' $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	75.7	0.26	2.42	9.93	0.244^{1}
T5	100-80	Pipe 1.5" $\times 0.058{ }^{\prime \prime}$ (16 ga)	3.42	3.18	74.7	0.26	0.57	9.93	0.057^{1}
T6	80-60	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.18	74.7	0.26	0.76	9.93	0.076^{1}
T7	60-40	Pipe 1.5 " $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	74.7	0.26	0.61	9.93	0.062^{1}
T8	40-20	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	74.7	0.26	0.62	9.93	0.063^{1}
T9	20-4.81771	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.48	74.7	0.26	0.62	9.93	0.062^{1}
T10	$\begin{gathered} 4.81771- \\ 3.33333 e-007 \end{gathered}$	L $4 \times 4 \times 1 / 4$	3.42	3.18	30.5	1.94	6.77	62.86	0.108^{11}

* DL controls
${ }^{1} P_{u} / \phi P_{n}$ controls

Botom Girt Design Data (Tension)									
Section	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
No.	$f t$		ft	$f t$		$i 7^{2}$	K	K	ϕP_{n}
T1	180-160	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	75.7	0.26	0.42	9.93	0.042^{1}
T2	160-140	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	75.7	0.26	0.31	9.93	0.031^{1}
T3	140-120	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	75.7	0.26	0.47	9.93	0.047^{1}
T4	120-100	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}$ (16 ga)	3.42	3.22	75.7	0.26	0.42	9.93	0.042^{1}
T5	100-80	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	74.7	0.26	0.63	9.93	0.063^{1}
T6	80-60	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.18	74.7	0.26	0.57	9.93	0.057^{1}
T7	60-40	Pipe 1.5" $\times 0.058^{\prime \prime}$ (16 ga)	3.42	3.18	74.7	0.26	0.61	9.93	0.062^{1}

tnxTower Report - version 8.1.1.0

July 31, 2023
180 Ft Guyed Tower Structural Analysis
Stafford 1 CDT
Page 42

Section No.	Elevation ft	Size	L ft	L_{u} ft	KI/r	A $i n^{2}$	P_{u} K	ϕP_{n} K	Ratio P_{u}
T8	40-20	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.18	74.7	0.26	0.62	9.93	$0.063{ }^{1}$
T9	20-4.81771	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	3.42	3.18	74.7	0.26	1.01	9.93	$0.101^{\circ 1}$

" DL controls
${ }^{1} P_{u} / \phi P_{n}$ controls

Top Guy Pull-Off Design Data (Tension)

Section No.	Elevation ft	Size	L ft	L_{u} ft	KI/r	A $i n^{2}$	P_{u} K	ϕP_{n} K	$\begin{aligned} & \text { Ratio } \\ & \frac{P_{u}}{\phi P_{n}} \end{aligned}$
T1	180-160	$\begin{gathered} 2 \mathrm{~L} .2 \times 2 \times 1 / 4(3 / 8) \\ 2 \mathrm{~L} \text { 'a' }>18.60 \mathrm{in}-430 \end{gathered}$	3.42	3.22	63.4	1.13	4.34	49.10	$\frac{\phi P_{n}}{0.088}{ }^{1}$
T5	100-80	$\begin{gathered} 2 \mathrm{~L} 2 \times 2 \times 1 / 4(3 / 8) \\ 2 \mathrm{~L} \text { 'a' }>18.36 \mathrm{in}-441 \end{gathered}$	3.42	3.18	62.6	1.13	2.89	49.10	$0.059{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Guy Pull-Off Bending Design Data

Section No.	Elevation ft	Size	$M_{u x}$ kip-ft	$\phi M_{n x}$ kip-ft	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$\begin{gathered} M_{u y} \\ k i p-f t \end{gathered}$	$\phi M_{n y}$ kip-ft	Ratio M_{Ly}
T1	180-160	$2 \mathrm{~L} 2 \times 2 \times 1 / 4(3 / 8)$	0	2				$\phi M_{n y}$
T5	100-80	$2 \mathrm{~L} 2 \times 2 \times 1 / 4(3 / 8)$	0	2	0.000	0	3	0.000 0.000

Top Guy Pull-Off Interaction Design Data

Section No.	Elevation ft	Size	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \phi M_{n x} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \phi M_{n y} \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
T1	180-160	$2 \mathrm{~L} 2 \times 2 \times 1 / 4(3 / 8)$	0.088	0.000	0.000	0.088^{1}	1.050	$4.8 .1{ }^{\text {\% }}$
T5	100-80	$2 \mathrm{~L} 2 \times 2 \times 1 / 4(3 / 8)$	0.059	0.000	0.000	0.059^{1}	1.050	4.8.1

${ }^{1} P_{u} / \phi P_{n}$ controls

Torque-Arm Top Design Data									
Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		f	$f t$		$i n^{2}$	K	K	${ }_{\phi} P_{n}$
T5	100-80 (438)	C10×15.3	3.42	3.30	55.5	4.49	1.73	145.48	0.012
T5	100-80 (439)	C10x15.3	3.42	3.30	55.5	4.49	1.74	145.48	0.012
T5	100-80(445)	C10x15.3	3.42	3.30	55.5	4.49	2.07	145.48	0.014
T5	100-80 (446)	C10x15.3	3.42	3.30	55.5	4.49	1.97	145.48	0.014

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		ft	ft		$i n^{2}$	K	K	ϕP_{n}
T5	100-80 (449)	C10x15.3	3.42	3.30	55.5	4.49	2.07	145.48	0.014
T5	100-80 (450)	C10x15.3	3.42	3.30	55.5	4.49	1.97	145.48	0.014

Torque-Arm Top Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{aligned} & \text { Ratio } \\ & M_{u x} \\ & \hline \end{aligned}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
	$f t$		kip-ft	kip-ft	$\phi M_{n \mathrm{x}}$	kip-ft	kip-ft	$\phi M_{n y}$
T5	100-80 (438)	C10x15.3	-12	42	0.276	0	5	0.000
T5	100-80 (439)	C10×15.3	-12	42	0.274	0	5	0.000
T5	100-80 (445)	C10x15.3	-12	42	0.275	0	5	0.000
T5	100-80 (446)	C10x15.3	-11	42	0.274	0	5	0.000
T5	100-80 (449)	C10×15.3	-12	42	0.275	0	5	0.000
T5	100-80 (450)	C10x15.3	-12	42	0.275	0	5	0.000

Torque-Arm Top Interaction Design Data

Section No.	Elevation	Size	Ratio P_{u}	Ratio $M_{u x}$	Ratio $M_{u y}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	$f t$		ϕP_{n}	$\phi M_{n x}$				
T5	100-80 (438)	C10x15.3	0.012	0.276	0.000	0.282	1.050	4.8 .1
T5	100-80 (439)	C10x15.3	0.012	0.274	0.000	0.280	1.050	4.8.1
T5	100-80 (445)	C10x15.3	0.014	0.275	0.000	0.282	1.050	4.8.1
T5	100-80 (446)	C10x15.3	0.014	0.274	0.000	0.281	1.050	4.8.1
T5	100-80 (449)	C10x15.3	0.014	0.275	0.000	0.282	1.050	4.8.1
T5	100-80(450)	C10x15.3	0.014	0.275	0.000	0.281	1.050	4.8.1

Section Capacity Table

$\left.\begin{array}{ccccccccc}\text { Section } & \begin{array}{c}\text { Elevation } \\ \text { ft }\end{array} & \begin{array}{c}\text { Component } \\ \text { Type }\end{array} & & \text { Size } & \begin{array}{c}\text { Critical } \\ \text { Element }\end{array} & \begin{array}{c}P \\ K\end{array} & \begin{array}{c}\text { oPallow } \\ \text { Ko. }\end{array} & \begin{array}{c}\text { \% } \\ \text { Capacity }\end{array} \\ \text { No. } & \text { Pass } \\ \text { Fail }\end{array}\right]$
tnxTower Report - version 8.1.1.0

Section No.	$\begin{aligned} & \text { Elevation } \\ & \text { ft } \end{aligned}$	Component Type	Size	Critical Element	$\begin{aligned} & \hline P \\ & K \end{aligned}$	$\emptyset P_{\text {allow }}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	$\begin{gathered} \hline \text { Pass } \\ \text { Fail } \end{gathered}$
T6	80-60	Diagonal	Pipe $1.5^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	316	-1.57	6.52	24.2	Pass
T7	60-40	Diagonal	Pipe 1.5" $\times 0.058$ " (16 ga)	351	-0.97	6.52	14.8	Pass
T8	40-20	Diagonal	Pipe 1.5" $\times 0.058$ " (16 ga)	361	-0.59	6.52	9.1	Pass
T9	20-4.81771	Diagonal	Pipe 1.5" $\times 0.058$ " (16 ga)	397	-0.83	6.52	$\begin{gathered} 12.8 \\ 13.3 \text { (b) } \end{gathered}$	Pass
T10	$\begin{gathered} 4.81771- \\ 3.33333 \mathrm{e}-007 \end{gathered}$	Horizontal	L $4 \times 4 \times 1 / 4$	421	0.67	62.86	1.1	Pass
T1	180-160	Top Girt	Pipe 1.5" x 0.058" (16 ga)	4	0.04	9.93	$\begin{gathered} 0.4 \\ 0.7 \text { (b) } \end{gathered}$	Pass
T2	160-140	Top Girt	Pipe 1.5" $\times 0.058{ }^{\prime \prime}(16 \mathrm{ga})$	62	0.46	10.43	4.4	Pass
T3	140-120	Top Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	118	-0.35	7.33	$\begin{gathered} 7.4 \text { (b) } \\ 4.8 \\ 5.6 \text { (b) } \end{gathered}$	Pass
T4	120-100	Top Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	176	2.42	10.43	$\begin{gathered} 23.2 \\ 38.9 \text { (b) } \end{gathered}$	Pass
T5	100-80	Top Girt	Pipe 1.5" ${ }^{\text {x 0.058" (16 ga) }}$	234	-0.57	7.40	$\begin{gathered} 7.7 \\ 9.2 \text { (b) } \end{gathered}$	Pass
T6	80-60	Top Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	291	-0.57	7.40	$\begin{gathered} 7.7 \\ 12.2 \text { (b) } \end{gathered}$	Pass
T7	60-40	Top Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	324	-0.61	7.40	$\begin{gathered} 8.3 \\ 9.9 \text { (b) } \end{gathered}$	Pass
T8	40-20	Top Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	357	-0.62	7.40	$\begin{gathered} 8.4 \\ 10.0 \text { (b) } \end{gathered}$	Pass
T9	20-4.81771	Top Git	Pipe 1.5" $\times 0.058$ " (16 ga)	390	-0.62	7.40	$\begin{gathered} 8.4 \\ 10.0 \text { (b) } \end{gathered}$	Pass
T10	$\begin{gathered} 4.81771- \\ 3.33333 \mathrm{e}-007 \end{gathered}$	Top Girt	L $4 \times 4 \times 1 / 4$	415	6.77	62.86	10.8	Pass
T1	180-160	Bottorn Girt	Pipe $1.5{ }^{\prime \prime} \times 0.058^{\prime \prime}(16 \mathrm{ga})$	7	0.42	10.43	$\begin{gathered} 4.0 \\ 6.7 \text { (b) } \end{gathered}$	Pass
T2	160-140	Bottorn Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	65	-0.31	7.33	$\begin{gathered} 4.2 \\ 5.0(\mathrm{~b}) \end{gathered}$	Pass
T3	140-120	Bottom Girt	Pipe 1.5" $\times 0.058^{\prime \prime}(16 \mathrm{ga})$	121	-0.35	7.33	$\begin{gathered} 4.8 \\ 7.5 \text { (b) } \end{gathered}$	Pass
T4	120-100	Bottom Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	178	-0.42	7.33	$\begin{gathered} 5.7 \\ 6.8 \text { (b) } \end{gathered}$	Pass
T5	100-80	Bottom Girt	Pipe 1.5" $\times 0.058$ " (16 ga)	237	-0.57	7.40	$\begin{array}{r} 7.7 \\ 10.1 \text { (b) } \end{array}$	Pass
T6	80-60	Bottom Girt	Pipe 1.5" ${ }^{\text {x } 0.058 " ~(16 ~ g a) ~}$	294	-0.57	7.40	$\begin{gathered} 7.7 \\ 9.2 \text { (b) } \end{gathered}$	Pass
T7	60-40	Bottom Girt	Pipe 1.5" ${ }^{\text {x } 0.058 " ~(16 ~ g a) ~}$	327	-0.61	7.40	$\begin{gathered} 8.3 \\ 9.9 \text { (b) } \end{gathered}$	Pass
T8	40-20	Bottom Girt	Pipe 1.5" $\times 0.058 \mathrm{Cl}$ (16 ga)	360	-0.62	7.40	$\begin{gathered} 8.4 \\ 10.0(b) \end{gathered}$	Pass
T9	20-4.81771	Bottom Girt	Pipe 1.5" $\times 0.058 \mathrm{Cl}$ (16 ga)	391	1.01	9.93	$\begin{gathered} 10.1 \\ 16.2 \text { (b) } \end{gathered}$	Pass
T10	$\begin{gathered} 4.81771- \\ 3.333330-007 \end{gathered}$	Bottom Girt	L $4 \times 4 \times 1 / 4$	419	-0.24	67.37	2.8	Pass
T1	180-160	Guy A@162.523	$3 / 4$	432	14.30	36.73	38.9	Pass
T4	120-100	Guy A@119.385	1/2	435	6.36	16.95	37.6	Pass
T5	100-80	Guy A@82.5234	1/2	447	6.07	16.95	35.8	Pass
T1	180-160	Guy B@162.523	3/4	431	14.24	36.73	38.8	Pass
T4	120-100	Guy B@119.385	1/2	434	6.34	16.95	37.4	Pass
T5	100-80	Guy B@82.5234	1/2	443	6.03	16.95	35.6	Pass
T1	180-160	Guy C@162.523	3/4	427	14.40	36.73	39.2	Pass
T4	120-100	Guy C@119.385	1/2	433	6.38	16.95	37.6	Pass
T1	$100-80$ $180-160$	Guy C@82.5234 Top Guy PullOff@162.523	2L $\left.2 \times 2 \times 1 / 4{ }^{1 / 2} 18\right)$	437 430	6.10 4.34	16.95 51.56	$\begin{gathered} 36.0 \\ 8.4 \\ 12.6 \text { (b) } \end{gathered}$	Pass
T5	100-80	Top Guy PuliOff@82.5234	$2 \mathrm{~L} 2 \times 2 \times 1 / 4$ (3/8)	441	2.89	51.56	$\begin{gathered} 5.6 \\ 8.4(b) \end{gathered}$	Pass
T5	100-80	Torque Arm Top@82.5234	C10x15.3	449	2.07	152.75	26.9	Pass
						Leg (T8)	58.7	Pass
						Diagonal (T5) Horizontal (T10)	29.9 1.1	Pass
						Top Girt (T4)	38.9	Pass

tnxTower Report - version 8.1.1.0

Section	Elevation	Component Type	Size	Critical Element	P	$\otimes P_{\text {allow }}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	$\begin{gathered} \hline \text { Pass } \\ \text { Fail } \end{gathered}$
						Bottom Girt (T9)	16.2	Pass
						Guy A (T1)	38.9	Pass
						Guy B (T1)	38.8	Pass
						Guy C (T1)	39.2	Pass
						Top Guy Pull-Off (T1)	12.6	Pass
						Torque Arm Top (T5)	26.9	Pass
						Bolt	38.9	Pass
						Checks RATING =	58.7	Pass

APPENDIX B

BASE LEVEL DRAWING

Feed Line Plan

180 Ft Guyed Tower Structural Analysis	July 31, 2023
Project Number 13323-0004.002.8700	Stafford 1 CDT

APPENDIX C

ADDITIONAL CALCULATIONS

250 E Broad St. Ste 600 - Columbus, OH 43215
Phone $614.221 .6679 \quad$ WWw.pallford.com
Monopole and Tower Foundation Comparison Tool

Apply Capacity Normalization per Section 155
Cormparc Base Shear
Compare Base Axial Compression

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

1) Paul J . Ford and Company has not made a field inspection to verify the tower member sizes or the antenna/coax loading. If the existing conditions are not as represented on these drawings, we should be contacted immediately to evaluate the significance of the deviation.
2) No allowance was made for any damaged, missing, or rusted members. The analysis of this tower assumes that no physical deterioration has occurred in any of the structural components of the tower and that all the tower members have the same load carrying capacity as the day the tower was erected.
3) It is not possible to have all the detailed information to perform a thorough analysis of every structural subcomponent of an existing tower. The structural analysis by Paul J. Ford and Company verifies the adequacy of the main structural members of the tower. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc.
4) The structural integrity of the existing tower foundation can only be verified if exact foundation sizes and soil conditions are known. Paul J. Ford and Company will not accept any responsibility for the adequacy of the existing foundations unless the foundation sizes and a soils report are provided.
5) This tower has been analyzed according to the minimum design wind loads recommended by the Telecommunications Industry Association Standard ANSI/TIA-222-H. If the owner or local or state agencies require a higher design wind load, Paul J. Ford and Company should be made aware of this requirement.
6) The enclosed sketches are a schematic representation of the tower that we have analyzed. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions and for the proper fit and clearance in the field.
7) Miscellaneous items such as antenna mounts etc. have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

MasTec Network Solutions

Structural Analysis \& Design Report

Property Owner N/A
Structural Type
Site Address
Site ID
Site Name STAFFORD 4 CT
Latitude 41.999581
Longitude -72.355636
Verizon Wireless
Client 118 Flanders Road, 3rd Floor
Westborough, MA 01581
Site Type MACRO
Site ID 617359998
Site Name STAFFORD 4 CT
Location Code 780563
Structural Type Proposed Site Pro 1, P/N: VFA12-HD
Nexius Solutions, Inc.
Prepared by 1151 SE Cary Parkway, Suite 101 Cary, NC 27518
Job/Task Number STAFFORD 4 CT/16999206
Email Services@mastec.com
Phone 305-599-1800
Rev 1
Date 08/10/2023
Result Pass (53\%)

Dear Sir / Madam:
Mastec is pleased to submit this Report to determine the structural integrity of the equipment platform.
Referenced documents used for this analysis are listed in the section DOCUMENTS \& REFERENCES. This analysis has been performed in compliance with the:

- 2022 Connecticut State Building Code, (2021 IBC w/ State Amendments)
- ANSI/TIA-222-H w/ Addendums, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures

Detailed design parameters are listed in Table 1. Analysis loading is detailed in Table 2.
Based on our analysis we have determined the following result:

Proposed Sector Mounts Site Pro 1
 Adequate (53\%)

P/N: VFA12-HD

Mastec appreciates the opportunity of providing continued engineering services. Should you have any questions, comments or require additional information, please do not hesitate to contact us.

Sincerely,

Analysis Prepared by: Salman Al Jurdi

Analysis Reviewed by: Raphael Mohamed, P.E.
Raphael.Mohamed@mastec.com
CT PE License No. 25112

DOCUMENTS \& REFERENCES
$>$ CD Drawings, Location Code: 780563, Verizon Site Name: STAFFORD 4 CT, by Nexius, dated 08/7/2023.
$>$ Site Visit Photos and Notes, Location Code: 780563, Verizon Site Name: STAFFORD 4 CT, by Nexius, dated 12/12/2022.
$>$ RFDS, Location Code: 780563, Verizon Site Name: STAFFORD 4 CT, by Verizon, dated 7/27/2023.
DESIGN STANDARDS \& PARAMETERS
TABLE 1 STANDARDS \& DESIGN PARAMETERS

Codes and Standards	
Building Code	2022 Connecticut State Building Code (2021 IBC w/ State Amendments)
TIA Standard	ANSI/TIA-222-H w/ Addendums
Wind Parameters	
Ultimate Wind Speed	117 mph
Nominal Wind Speed with Ice	50 mph
Radial Ice Thickness	1.5 in
Exposure Category	C
Structure Class	II
Topographic Category	1
Seismic Design Parameters*	
Ss	0.174
S_{7}	0.055

RESULTS \& RECOMMENDATIONS

Based on our analysis, it is determined that the proposed mounts (Site Pro 1, P/N: VFA12-HD) to be ADEQUATE to support the proposed loading.

*See construction drawings for proposed mounts.

If the site conditions are different or do not meet requirements, the analysis result would not be valid and Mastec should be notified for re-evaluation.

LOADING

Table 2 - Proposed Antenna Information

Sector	Mount Elev. ft	Ant. Ctr. Elev. ft	Qty	Description	Mount Type	Status
All Sectors	152.8	152.8	3	NHH-65B-R2B	Proposed Site Pro 1, P/N: VFA12-HD	Proposed
			3	NHHSS-65B-R2BT4		
			3	MT6413-77A w/RRU		
			3	B2/B66A RRH ORAN (RF4439d-25A)		
			3	SAMSUNG (RF4461d-13A)		
			1	12 OVP		
			3	CBRS RRH - RT4423-48A		

ANALYSIS

Risa 3D (Version 17), a commercially available analysis software package, was used to create a threedimensional model of the tower and calculate member stresses for required loading cases. Selected output from the analysis is included in APPENDICES.

ASSUMPTIONS

1) The existing building structure matches the drawings provided by the building owner and has no damage which may reduce the structural capacity of the building.

This analysis may be affected if any assumptions are not valid or have been made in error. Mastec should be notified to determine the effect on the structural integrity of the existing building.

Standard Conditions for Providing Structural Consulting Services on Existing Structures

1. Mounting hardware is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorized by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
2. The structural analysis has been performed assuming that the hardware is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
3. The structural analysis provided is an assessment of the primary load carrying capacity of the hardware. We provided a limited scope of service. In some cases, we cannot verify the capacity of every weld, plate, connection detail, etc. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
4. We cannot be held responsible for mounting hardware that is installed improperly or hardware that is loose or has a tendency of working loose over the lifetime of the mounting hardware. Our analysis has been performed assuming fully tightened connections, and proper installation and symmetry of the mounting hardware per manufacturer's instructions.
5. The structural analysis has been performed using information currently provided by the client and potentially field verified. We have been provided with a mounting arrangement for all telecommunications equipment, including antennas RRH's, TMA's, RRU's, diplexers, surge protection devices, etc. Our analysis has been based upon a particular mounting arrangement. We are not responsible for deviations in the mounting arrangements that may occur over time. If deviations in equipment type or mounting arrangements are proposed, then we should be contacted to revise the recommendations of this structural report.
6. We cannot be held responsible for temporary and unbalanced loads on mounting hardware. Our analysis is based on a particular mounting arrangement or as-build field condition. We are not responsible for the methods and means of how the mounting arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.
7. Steel grade and strength is unknown and cannot be field tested. We cannot be held responsible for equipment manufactured from inferior steel or bolts. Our analysis assumes that standard structural grade steel has been used by the equipment manufacturer for all assembled parts of the mounting apparatus. Acceptable steels and connection components are specified by the American Institute of Steel Construction. It is assumed all welded connections are performed in the shop under the latest American
8. Welding Society Code. No field welds are permitted or assumed for the existing pre-manufactured equipment. In case no accurate info available, following material assumptions were used:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM 500 (GR B-46)
HSS (Round)	ASTM 500 (GR B-42)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325
U-Bolts	SAE 429 Gr.2

Appendix \#1: Loading Parameters and Calculations

ASCE 7 Hazards Report

Address:
No Address at This Location

Standard: ASCE/SEI 7-16 Latitude: 41.999581
Risk Category: ॥
Soil Class: D-Default (see Elevation: 1074.84 ft (NAVD 88)

Wind

Results:

Wind Speed	117 Vmph
10 -year MRI	75 Vmph
25 -year MRI	83 Vmph
50 -year MRI	90 Vmph
100 -year MRI	97 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC. 2-4, and Section 26.5.2
Fri Feb 032023

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic D - Default (see Section 11.4.3)

Site Soil Class:

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.174	$\mathrm{~S}_{\mathrm{D} 1}:$	0.088
$\mathrm{~S}_{1}:$	0.055	$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{~F}_{\mathrm{a}}:$	1.6	$\mathrm{PGA}:$	0.092
$\mathrm{~F}_{\mathrm{V}}:$	2.4	$\mathrm{PGA}_{\mathrm{M}}:$	0.147
$\mathrm{~S}_{\mathrm{MS}}:$	0.279	$\mathrm{~F}_{\mathrm{PGA}}:$	1.6
$\mathrm{~S}_{\mathrm{M} 1}:$	0.132	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.186	$\mathrm{C}_{\mathrm{v}}:$	0.7

Data Accessed:
Fri Feb 032023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMEAICAN SOCIETY OF CIVL ENGINEERS

Ice

Results:

Ice Thickness: $\quad 1.50 \mathrm{in}$.
Concurrent Temperature: 5 F
Gust Speed

Data Source:

Date Accessed:

50 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Fri Feb 032023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

[^2]
STAFFORD 4 CT.xlsm

Member Code Checks Displayed (Enveloped)
Envelope Only Solution

Mastec	STAFFORD 4 CT - MKT 68	BENDING CHECK
SJ		Aug 10, 2023 at 4:01 PM
16999206		STAFFORD 4 CT. 3 sd

Hot Rolled Steel Properties

	Label	E[ksi]	G [ksi]	Nu	Therm (/1.	Density[k/f*^3]	Yield[ksi]	Ry	Fulksi]	Rt
1	A992	29000	11154	. 3	. 65	. 49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	3	65	49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	3	65	49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	3	. 65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	. 3	. 65	. 527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	. 3	. 65	49	35	1.6	60	1.2
7	A1085	29000	11154	3	. 65	49	50	1.4	65	1.3
8	HR8	29000	11154	. 3	. 65	49	36	1.5	58	1.2

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design... A [in2] lyy [in4] Izz [in4] J [in4]				
1	pipe mount	PIPE 2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
2	top rail	PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
3	diagonal bracing	SR 3/4	Column	BAR	A36 Gr. 36	Typical	. 442	. 016	016	. 031
4	gusset plate	PL5/8X3.5	Beam	RECT	A36 Gr. 36	Typical	2.188	. 071	2.233	. 253
5	vertical bracina	SR 5/8 HRA	Column	BAR	A36 Gr. 36	Tvpical	307	. 007	. 007	015
6	bottom rail	PIPE_2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
7	tie-back	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25
8	v-arm	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25
9	connection plate	PL5/8X8	Beam	RECT	A36 Gr. 36	Typical	5	. 163	26.667	. 619
10	RRU-Pipe	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25

Joint Boundary Conditions

	Joint Label	$\mathrm{X}[\mathrm{k} / \mathrm{in}]$	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N12A						
2	N28						
3	N78	Reaction	Reaction	Reaction	Reaction		Reaction
4	N79B	Reaction	Reaction	Reaction	Reaction		Reaction
5	N85B	Reaction	Reaction	Reaction	Reaction		Reaction
6	N86B	Reaction	Reaction	Reaction	Reaction		Reaction

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy ft]	Lbzz[ff]	Lcomp top[ft]	comp b	-tor	Kyy	Kzz	Cb	Function
1	M54	bottom rail	12.5	5.083	5.083	5.083	5.083	5.083				Lateral
2	M6	top rail	12.5	5.083	5.083	5.083	5.083	5.083				Lateral
3	M5	pipe mount	10	3.33	3.33	3.33	3.33	3.33				Lateral
4	M11	v -arm	2.5			Lbyy						Lateral
5	M12	v-arm	2.5			Lbw						Lateral
6	M17	connection ...	417									Lateral
7	M12A	gusset plate	243			Lbyy						Lateral
8	M13	gusset plate	417			Lbyy						Lateral
9	M14	gusset plate	417			Lbw						Lateral
10	M15A	gusset plate	243			Lbyy						Lateral
11	M17A	v -arm	2.5			Lbw						Lateral
12	M18	v -arm	2.5			Lbyy						Lateral
13	M21	connection ...	417									Lateral
14	M22	gusset plate	243			Lbyy						Lateral
15	M23	gusset plate	417			Lbyy						Lateral
16	M24	gusset plate	417			Lbyy						Lateral
17	M25	gusset plate	243			Lbyy						Lateral
18	M34	diagonal bra.	3.667	3.33	3.33	3.33	3.33	3.33	7	7		Lateral

Joint Loads and Enforced Displacements (BLC 42 : Man 1 (500 lbs))

Joint Label		L.D.M	Direction	Magnitude[(k,k-ft), (in, rad). (k) $k^{*} s^{\wedge} 2 / f t$.
		,		
2	N51A	L	Y	-. 5

Joint Label		D.M	Direction	
1	N51A	L	Y	0
2	N63	L	Y	-. 5

Joint Loads and Enforced Displacements (BLC 44 : Man 3 (500 lbs))

Joint Labe		L.D.M	Direction	
1	N63	L		
2	N57			

Joint Loads and Enforced Displacements (BLC 45 : Man 4 (250 (bs))

1 Joint Labe		L.D.M	Direction	Magnitude[(k,k-fti). (in,rad). (k*s*^2/tt.
		L		0
2	N59	L	Y	. 25

Joint Loads and Enforced Displacements (BLC 46 : Man 5 (250 lbs))

Joint Labe		L.D.M	Direction	Magnitudel(k, k-ft). (in, rad). $\left(k^{*} s^{\wedge} 2 / 4 \mathrm{t}\right.$.
1	N57	L		
2	N58	L	Y	. 25

Joint Label		L.D.M	Direction	

M Member Labe		Direction	Magnitude[k. - -ft]	Location[ft\%]
		Y	- 044	\%25
2	M50	Y	-. 025	\%10

Company
Aug 10, 2023
Designer
Job Number
Model Name

Member Point Loads (BLC 1 : Dead) (Continued)

	Member Label	Direction	Magnitude[k. k-ft]	Location[ft.\%]
3	M50	Y	-. 07	\%25
4	M50	Y	-. 023	\%50
5	M47	Y	-. 022	\%10
6	M47	Y	-. 075	\%25
7	M70	Y	-. 032	\% 50
8	M44	Y	-. 044	\%55
9	M50	Y	-. 025	\%71
10	M47	Y	-. 022	\%71

Member Point Loads (BLC 2 : Ice Dead)

	Member Label	Direction	Magnitude[k. k -ft]	Location[ft.\%]
1	M44	Y	-. 059	\%25
2	M50	Y	-. 096	\%10
3	M50	Y	-. 052	\%25
4	M50	Y	-. 029	\%50
5	M47	Y	-. 101	\%10
6	M47	Y	-. 053	\%25
7	M70	Y	-. 101	\%50
8	M44	Y	-. 059	\%55
9	M50	Y	-. 096	\%71
10	M47	Y	-. 101	\%71

Member Point Loads (BLC 3 : Full Wind Antenna 10 Deg))

Member Label		Direction Magnitude[k,k-ft]		Location[ft.\%]
1	M44	Z	-.096	$\% 25$
2	M50	Z	-.155	$\% 10$
3	M50	Z	-.046	$\% 25$
4	M50	Z	-.02	$\% 50$
5	M47	Z	-.165	$\% 10$
6	M47	Z	-.051	$\% 25$
7	M70	Z	-.145	$\% 50$
8	M44	Z	-.096	$\% 55$
9	M50	Z	-.155	$\% 71$
10	M47	Z	-.165	$\% 71$

Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg))

	Member Label	Direction	Magnitude[k.k-ft]	Location[ft.\%]
1	M44	Z	-. 071	\%25
2	M50	Z	-. 124	\%10
3	M50	Z	-. 047	\%25
4	M50	Z	-. 022	\%50
5	M47	Z	-. 131	\%10
6	M47	Z	-. 05	\%25
7	M70	Z	-. 115	\%50
8	M44	Z	-. 071	\%55
9	M50	Z	-. 124	\%71
10	M47	Z	-. 131	\%71
11	M44	X	. 041	\%25
12	M50	X	072	\%10
13	M50	X	. 027	\%25
14	M50	X	. 013	\%50
15	M47	X	. 076	\%10
16	M47	X	. 029	\%25
17	M70	X	. 067	\%50
18	M44	X	. 041	\%55

Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg)) (Continued)

Member Labe		Direction	Magnitude[[k, k-f]	Location[ft\%]
19	M50	X	. 072	\%71
20	M47	X	. 076	\%71

Member Point Loads (BLC 5: Full Wind Antenna (60 Deg))

Member Label		Directio	Magnitudelk.k	Locationfti, \%
1	M44	Z	-. 026	\%25
2	M50	Z	-. 06	\%10
3	M50	Z	-. 034	\%25
4	M50	Z	-. 019	\% 50
5	M47	Z	-. 062	\%10
6	M47	Z	-. 035	\% 25
7	M70	Z	-. 055	\% $\% 5$
8	M44	Z	-. 026	\%71
9	M50	Z	-. 062	\%71
10	M47	Z	-. 045	\%25
11	M44	X	104	\%10
$\frac{12}{13}$	M50	X	. 06	\%25
14	M50	X	. 032	\%50
15	M47	X	107	\%10
16	M47	X	. 061	\%25
17	M70	X	. 095	\% 50
18	M44	X	. 045	\% 57
19	M50	X	. 104	\%71
20	M47	X	. 107	

Member Label		Direction	Magnitude[k, k-fti]	Location[ft.\%]
1	M44	Z	0	\%25
2	M50	Z	0	\%10
3	M50	Z	O	\%25
4	M50	Z	0	\% 50
5	M47	Z	0	\%10
6	M47	Z	0	\% $\% 5$
8	M44	Z	0	\%55
9	M50	Z	0	\%71
10	M47	Z	0	\%71
11	M44	X	. 038	\%25
12	M50	X	108	\%10
13	M50	X	. 076	\%25
$\begin{array}{r}14 \\ 15 \\ \hline\end{array}$	M50	X	. 043	\% 10
15	M47	X	. 076	\%25
17	M70	X	. 098	\%50
18	M44	X	. 038	\%55
19	M50	X	108	\%71
20	M47	X	109	\%71

Member Point Loads (BLC 7 : Full Wind Antenna (120 Deg))

Member Label		Direction	Magnitudelk,k-fll]	.026
1	M44	Z	.06	$\%$
2	M50	\mathbf{Z}	$\% 10$	
3	M50	Z	.034	$\%$
4	M50	\mathbf{Z}	.019	$\% 50$

Company

Mastec

Aug 10, 2023
Designer
SJ
4:01 PM
Job Number
16999206
STAFFORD 4 CT - MKT 68

Member Point Loads (BLC 7 : Full Wind Antenna (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[k, k -ft]	Location[ft.\%]
5	M47	Z	. 062	\%10
6	M47	Z	035	\%25
7	M70	Z	. 055	\%50
8	M44	Z	. 026	\%55
9	M50	Z	. 06	\%71
10	M47	Z	062	\%71
11	M44	X	. 045	\%25
12	M50	X	104	\%10
13	M50	X	. 06	\%25
14	M50	X	032	\%50
15	M47	X	107	\%10
16	M47	X	. 061	\%25
17	M70	X	. 095	\%50
18	M44	X	. 045	\%55
19	M50	X	104	\%71
20	M47	X	107	\%71

Member Point Loads (BLC 8 : Full Wind Antenna (150 Deg))

	Member Label	Direction	Magnitude [k. k -ft]	Location[ft.\%]
1	M44	Z	. 071	\%25
2	M50	Z	. 124	\%10
3	M50	Z	. 047	\%25
4	M50	Z	. 022	\%50
5	M47	Z	131	\%10
6	M47	Z	. 05	\%25
7	M70	Z	. 115	\%50
8	M44	7	. 071	\%55
9	M50	Z	124	\%71
10	M47	Z	. 131	\%71
11	M44	X	. 041	\%25
12	M50	X	. 072	\%10
13	M50	X	. 027	\%25
14	M50	X	. 013	\%50
15	M47	X	. 076	\%10
16	M47	X	. 029	\%25
17	M70	X	. 067	\%50
18	M44	X	. 041	\%55
19	M50	X	. 072	\%71
20	M47	X	076	\%71

Member Point Loads (BLC 15 : Ice Wind Antenna (0 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location [ft.\%]
1	M44	Z	-. 024	\%25
2	M50	Z	-. 038	\%10
3	M50	Z	-. 015	\%25
4	M50	Z	-. 008	\%50
5	M47	Z	-. 04	\%10
6	M47	Z	-. 016	\%25
7	M70	Z	-. 037	\%50
8	M44	Z	-. 024	\%55
9	M50	Z	-. 038	\%71
10	M47	Z	-. 04	\%71

Member Point Loads (BLC 16 : Ice Wind Antenna (30 Deg))

Member Point Loads (BLC 16 : Ice Wind Antenna (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[k.k-ft]	Location [ft.\%]
1	M44	Z	-. 018	\%25
2	M50	Z	-. 031	\%10
3	M50	Z	-. 014	\%25
4	M50	Z	-. 008	\% 50
5	M47	Z	-. 032	\%10
6	M47	Z	-. 015	\%25
7	M70	Z	-. 03	\%50
8	M44	Z	-. 018	\%55
9	M50	Z	-. 031	\%71
10	M47	Z	-. 032	\%71
11	M44	X	. 01	\%25
12	M50	X	018	\%10
13	M50	X	. 008	\%25
14	M50	X	. 005	\%10
16	M47	X	. 017	\%50
18	M 44	X	. 01	\%55
19	M50	X	. 018	\%71
20	M47	X	018	\%71

Member Point Loads (BLC 17 : Ice Wind Antenna (60 Deg))

Member Label		Direction	Magnitude[k. k -ft]	Location[ft.\%]
1	M44	Z	-. 007	\%25
2	M50	Z	-. 016	\%10
3	M50	Z	-. 01	\%25
4	M50	Z	-. 006	\%50
5	M47	Z	-. 016	\%10
6	M47	Z	-. 01	\%25
7	M70	Z	-. 015	\% 50
8	M44	Z	-. 007	\%55
$\frac{9}{10}$	M50	Z	-. 016	\%71
13	M50	X	. 017	\%25
14	M50	X	. 011	\% 50
15	M47	X	. 028	\%10
16	M47	X	. 017	\%25
17	M70	X	. 025	\%50
18	M44	X	. 013	\%55
19	M50	X	. 027	\%71
20	M47	X	. 028	\%71

Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deg))

Member Labe		Direction	Magnitude[k, k - ft$]$	Location[ft.\%]
1	M44	Z	0	\%25
2	M50	Z	0	\%10
3	M50	Z	0	\%25
4	M50	Z	0	\%50
5	M47	Z	0	\%10
6	M47	Z	0	\%25
7	M70	Z	0	\%50
8	M44	Z	0	\%55
9	M50	Z	0	\%71
10	M47	Z	0	\%71

Company
Mastec
Aug 10, 2023
Designer
Job Number
16999206
STAFFORD 4 CT - MKT 68

Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deg))(Continued)

	Member Label	Direction	Magnitude[k.k-ff]	Location[ft.\%]
11	M44	X	. 012	\%25
12	M50	X	. 029	\%10
13	M50	X	021	\%25
14	M50	X	014	\%50
15	M47	X	. 029	\%10
16	M47	X	. 021	\%25
17	M70	X	. 027	\%50
18	M44	X	. 012	\%55
19	M50	X	. 029	\%71
20	M47	X	. 029	\%71

Member Point Loads (BLC 19 : Ice Wind Antenna (120 Deg))

	Member Label	Direction	Magnitudelk. k -ft]	Location[ft \%]
1	M44	Z	. 007	\%25
2	M50	Z	. 016	\%10
3	M50	Z	. 01	\%25
4	M50	Z	. 006	\% 50
5	M47	Z	. 016	\%10
6	M47	Z	. 01	\%25
7	M70	Z	015	\%50
8	M44	Z	. 007	\%55
9	M50	Z	. 016	\%71
10	M47	Z	016	\%71
11	M44	X	013	\%25
12	M50	X	. 027	\%10
13	M50	X	. 017	\%25
14	M50	X	011	\%50
15	M47	X	. 028	\%10
16	M47	X	. 017	\%25
17	M70	X	. 025	\%50
18	M44	X	. 013	\%55
19	M50	X	. 027	\%71
20	M47	X	. 028	\%71

Member Point Loads (BLC 20 : Ice Wind Antenna (150 Deg))

	Member Label	Direction	Magnitude[k.k-ff]	Location[ft.\%]
1	M44	Z	. 018	\%25
2	M50	Z	016	\%10
3	M50	Z	. 01	\%25
4	M50	Z	. 006	\%50
5	M47	Z	016	\%10
6	M47	Z	. 01	\%25
7	M70	Z	. 015	\%50
8	M44	Z	018	\%55
9	M50	Z	016	\%71
10	M47	Z	. 016	\%71
11	M44	X	. 01	\%25
12	M50	X	. 027	\%10
13	M50	X	. 017	\%25
14	M50	X	011	\%50
15	M47	X	028	\%10
16	M47	X	017	\%25
17	M70	X	. 025	\%50
18	M44	X	. 01	\%55
19	M50	X	027	\%71
20	M47	X	. 028	\%71

Member Point Loads (BLC 27: Seismic Antenna (O Dea))

	Mirection	Magnitude $[k, k-f t]$	Location[ft, \%]	
1	Member Label	Z	-.008	$\%$
2	M44	Z	-.005	$\% 40$
3	M50	Z	-.007	$\% 25$
4	M50	Z	-.002	$\%$
5	M50	Z	-.004	$\%$
6	M47	Z	-.007	$\% 25$
7	M47	Z	-.003	$\% 50$

Member Point Loads (BLC 47: Man 6 (250 lbs))							
Member Label					Direction	Magnitude[k.k-ft]	Location $[f t, \%$]
1							

Member Area Loads						
Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitudelksfl
		No Data to Print ...				

BLC Description		Category	X Gravity	Grav	Z Gravity	Joint	Point	Distribut.	ArealMe.	Surfacel...
1	Dead	None		-1			10			
2	Ice Dead	None					10	67		
3	Full Wind Antenna (0 Deg)	None					10			
4	Full Wind Antenna (30 Deg)	None					20			
5	Full Wind Antenna (60 Deq)	None					20			
6	Full Wind Antenna (90 Deg)	None					20			
7	Full Wind Antenna (120 Deq)	None					20			
8	Full Wind Antenna (150 Deg)	None					20			
9	Full Wind Members (0 Deq)	None						74		
10	Full Wind Members (30 Deg)	None						74		
11	Full Wind Members (60 Deq)	None						74		
12	Full Wind Members (90 Deg)	None						74		
13	Full Wind Members (120 Deq)	None						74		
14	Full Wind Members (150 Deg)	None						74		

Company
Designer
Job Number
Model Name

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	z Gravity	Joint	Point	Distribut.	Area(Me.	Surface
15	Ice Wind Antenna (0 Deq)	None					10			
16	Ice Wind Antenna (30 Deg)	None					20			
17	Ice Wind Antenna (60 Deq)	None					20			
18	Ice Wind Antenna (90 Deg)	None					20			
19	Ice Wind Antenna (120 Deq)	None					20			
20	Ice Wind Antenna (150 Deg)	None					20			
21	Ice Wind Members (0 Dea)	None						138		
22	Ice Wind Members (30 Deg)	None						138		
23	lce Wind Members (60 Deq)	None						138		
24	Ice Wind Members (90 Deg)	None						138		
25	Ice Wind Members (120 Deq)	None						138		
26	Ice Wind Members (150 Deg)	None						138		
27	Seismic Antenna (0 Deq)	None					7			
28	Seismic Antenna (90 Deg)	None					7			
29	Seismic Members (0 Dea)	None		-. 037	-. 093					
30	Seismic Members (30 Deg)	None	046	-. 037	-. 081					
31	Seismic Members (60 Deq)	None	. 081	-. 037	-. 046					
32	Seismic Members (90 Deg)	None	. 093	-. 037						
33	Seismic Members (120 Deg)	None	081	-. 037	046					
34	Seismic Members (150 Deg)	None	. 046	-. 037	081					
35	Seismic Members (180 Deq)	None		-. 037	. 093					
36	Seismic Members (210 Deg)	None	-. 046	-. 037	. 081					
37	Seismic Members (240 Deq)	None	-. 081	-. 037	. 046					
38	Seismic Members (270 Deg)	None	-. 093	-. 037						
39	Seismic Members (300 Deq)	None	-. 081	-. 037	-. 046					
40	Seismic Members (330 Deg)	None	-. 046	-. 037	-. 081					
41	Seismic Vertical Antennas	None					7			
42	Man 1 (500 lbs)	None				2				
43	Man 2 (500 lbs)	None				2				
44	Man 3 (500 lbs)	None				2				
45	Man $4(250 \mathrm{lbs})$	None				2				
46	Man 5 (250 lbs)	None				2				
47	Man 6 (250 lbs)	None				1	1			

Load Combinations

													ac.	BLCF	Fac.	BLCF	Fac.	BLCF	Fac.	BLCF	Fac.. ${ }^{\text {B }}$	BLCFac.
1	1.4D	Yes	Y	1	1.4																	
2	$1.2 \mathrm{D}+1.0 \mathrm{~W} 0^{\circ}$	Yes	Y	1	1.2	3	1	9	1													
3	$1.2 \mathrm{D}+1.0 \mathrm{~W} 30^{\circ}$	Yes	Y	1	1.2	4	1	10	1													
4	$1.2 \mathrm{D}+1.0 \mathrm{~W} 60^{\circ}$	Yes	Y	1	1.2	5	1	11	1													
5	$1.2 \mathrm{D}+1.0 \mathrm{~W} 90^{\circ}$	Yes	Y	1	1.2	6	1	12	1													
6	$1.2 \mathrm{D}+1.0 \mathrm{~W} 120^{\circ}$	Yes	Y	1	1.2	7	1	13	1													
7	$1.2 \mathrm{D}+1.0 \mathrm{~W} 150^{\circ}$	Yes	Y	1	1.2	8	1	14	1													
8	$1.2 \mathrm{D}+1.0 \mathrm{~W} 180^{\circ}$	Yes	Y	1	1.2	3	-1	9	-1													
9	$1.2 \mathrm{D}+1.0 \mathrm{~W} 210^{\circ}$	Yes	Y	1	1.2	4	-1	10	-1													
10	$1.2 \mathrm{D}+1.0 \mathrm{~W} 240^{\circ}$	Yes	Y	1	1.2	5	-1	11	-1													
11	$1.2 \mathrm{D}+1.0 \mathrm{~W} 270^{\circ}$	Yes	Y	1	1.2	6	-1	12	-1													
12	$1.2 \mathrm{D}+1.0 \mathrm{~W} 300^{\circ}$	Yes	Y	1	1.2	7	-1	13	-1													
13	1.2D + 1.0W 330°	Yes	Y	1	1.2	8	-1	14	-1													
14	1.2D + 1.0Di + 1.0Wi 0°	Yes	Y	1	1.2	2	1	15	1	21	1											
15	1.2D + 1.0Di + 1.0Wi 3 ..	Yes	Y	1	1.2	2	1	16	1	22	1											
16	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 6 .$.	Yes	Y	1	1.2	2	1	17	1	23	1											
17	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 9 .$.	Yes	Y	1	1.2	2	1	18	1	24	1											
18	1.2D + 1.0Di + 1.0Wi 1..	Yes,	Y	1	1.2	2	1	19	1	25	1											
19	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 1 .$.	Yes,	Y	1	1.2	2	1	20	1	26	1											

Load Combinations (Continued)

Description																							
20	1.2D + 1.0Di + 1.0Wi 1..	Yes	Y	1	1.2	2	1	15	-1	21	-1												
21	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 2 .$.	Yes	Y	1	1.2	2	1	16	-1	22	-1												
22	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 2$..	Yes	Y	1	1.2	2	1	17	-1	23	-1												
23	1.2D + 1.0Di + 1.0Wi 2 .	Yes	Y	1	1.2	2	1	18	-1	24	-1												
24	1.2D + 1.0Di + 1.0Wi 3..	Yes	Y	1	1.2	2	1	19	-1	25	-1												
25	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 3 .$.	Yes	Y	1	1.2	2	1	20	-1	26	-1												
26	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ - $1+1.0 \ldots$	Yes	Y	1	1.2	3	. 068	9	. 068	42	1.5												
27	$1.2 \mathrm{D}+1.5 \mathrm{Lm} \quad 1+1.0 \ldots$	Yes	Y	1	1.2	4	. 068	10	. 068	42	1.5												
28	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 1+1.0 \ldots$	Yes	Y	1	1.2	5	. 068	11	. 068	42	1.5												
29	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$-1+1.0...	Yes	Y	1	1.2	6	. 068	12	. 068	42	1.5												
30	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$-1+1.0...	Yes	Y	1	1.2	7	. 068	13	. 068	42	1.5												
31	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $1+1.0 \ldots$	Yes	Y	1	1.2	8	. 068	14	. 068	42	1.5												
32	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ - $1+1.0 \ldots$	Yes	Y	1	1.2	3	- 068	9	. 068	42	1.5												
33	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $1+1.0 . .$.	Yes	Y	1	1.2	4	- 068	10	. 068	42	1.5												
34	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $1+1.0 \ldots$	Yes	Y	1	1.2	5	. 068	11	. 068	42	1.5												
35	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 1+1.0 . .$.	Yes	Y	1	1.2	6	-. 068	12	. 068	42	1.5												
36	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ - $1+1.0 \ldots$	Yes	Y	1	1.2	7	- 068	13	. 068	42	1.5												
37	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _1+1.0...	Yes	Y	1	1.2	8	-. 068	14	- 068	42	1.5												
38	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0$..	Yes	Y	1	1.2	3	. 068	9	. 068	43	1.5												
39	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 .$.	Yes	Y	1	1.2	4	. 068	10	. 068	43	1.5												
40	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 \ldots$	Yes	Y	1	1.2	5	. 068	11	. 068	43	1.5												
41	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 \ldots$	Yes	Y	1	1.2	6	. 068	12	. 068	43	1.5												
42	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 \ldots$	Yes	Y	1	1.2	7	. 068	13	. 068	43	1.5												
43	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ 2 $2+1.0 \ldots$	Yes	Y	1	1.2	8	. 068	14	. 068	43	1.5												
44	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 \ldots$	Yes	Y	1	1.2	3	- 068	9	. 068	43	1.5												
45	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 \ldots$	Yes	Y	1	1.2	4	-. 068	10	. 068	43	1.5												
46	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \ldots$	Yes	Y	1	1.2	5	. 068	11	- 068	43	1.5												
47	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 \ldots$	Yes	Y	1	1.2	6	-. 068	12	. 068	43	1.5												
48	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 \ldots$	Yes	Y	1	1.2	7	-. 068	13	. 068	43	1.5												
49	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 \ldots$	Yes	Y	1	1.2	8	-. 068	14	. 068	43	1.5												
50	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 3+1.0 \ldots$	Yes	Y	1	1.2	3	. 068	9	. 068	44	1.5												
51.	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \ldots$	Yes	Y	1	1.2	4	. 068	10	. 068	44	1.5												
52	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \ldots$	Yes	Y	1	1.2	5	. 068	11	. 068	44	1.5												
53	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 3+1.0 \ldots$	Yes	Y	1	1.2	6	. 068	12	. 068	44	1.5												
54	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 3+1.0 \ldots$	Yes	Y	1	1.2	7	. 068	13	. 068	44	1.5												
55	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 3+1.0 \ldots$	Yes	Y	1	1.2	8	. 068	14	. 068	44	1.5												
56	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \ldots$	Yes	Y	1	1.2	3	-. 068	9	. 068	44	1.5												
57	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 3+1.0 \ldots$	Yes	Y	1	1.2	4	-. 068	10	. 068	44	1.5												
58	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 3+1.0 \ldots$	Yes	Y	1	1.2	5	-. 068	11	. 068	44	1.5												
59	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 3+1.0 \ldots$	Yes	Y	1	1.2	6	-. 068	12	. 068	44	1.5												
60	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 3+1.0 \ldots$	Yes	Y	1	1.2	7	-. 068	13	. 068	44	1.5												
61	1.2D + 1.5Lm_3+1.0...	Yes	Y	1	1.2	8	-. 068	14	. 068	44	1.5												
62	1.2D + 1.5Lv 10°	Yes	Y	1	1.2	45	1.5																
63	1.2D + 1.5LV 130°	Yes	Y	1	1.2	45	1.5																
64	$1.2 \mathrm{D}+1.5 \mathrm{LV} 160^{\circ}$	Yes	Y	1	1.2	45	1.5																
65	$1.2 \mathrm{D}+1.5 \mathrm{LV} 190^{\circ}$	Yes	Y	1	1.2	45	1.5																
66	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ _ 1120°	Yes	Y	1	1.2	45	1.5																
67	1.2D + 1.5Lv 1150°	Yes	Y	1	1.2	45	1.5																
68	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ - 1180°	Yes	Y	1	1.2	45	1.5																
69	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ _ 1210°	Yes	Y	1	1.2	45	1.5																
70	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-1240^{\circ}$	Yes	Y	1	1.2	45	1.5																
71	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ _ 1270°	Yes	Y	1	1.2	45	1.5																
72	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ _ 1300°	Yes	Y	1	1.2	45	1.5																
7.3	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ _ 1330°	Yes	Y	1	1.2	45	1.5																
74	$1.2 \mathrm{D}+1.5 \mathrm{LV} 20^{\circ}$	Yes	Y	1	1.2	46	1.5																
75	$1.2 \mathrm{D}+1.5 \mathrm{LV} 230^{\circ}$	Yes	Y	1	1.2	46	1.5																
76	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 260^{\circ}$	Yes	Y	1	1.2	46	1.5																

Company
Mastec
Designer

Load Combinations (Continued)

Description
So..P... S... BLCFac. BLCFac.. BLCFac...BLCFac.. BLCFac...BLCFac.. BLCFac.. BLCFac., BLCFac, BLCFac..

77
78
79

79	$1.2 \mathrm{D}+1.5 \mathrm{LV}$ _2 150°	Yes Y		1	1.2	46	1.5
80	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2$	180°	Yes	Y		1	1.2

81	$1.2 \mathrm{D}+1.5 \mathrm{Lv} _2$	210°	Yes	Y		1	1.2	46

83	$1.2 \mathrm{D}+1.5 \mathrm{Lv} _2$	270°	Yes	Y		1	1.2	46

85	$1.2 \mathrm{D}+1.5 \mathrm{LV} 2330^{\circ}$	Yes	Y		1	1.2	46	1.5
86	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 30^{\circ}$	Yes	Y		1	1.2	47	1.5
87	$1.2 \mathrm{D}+1.5 \mathrm{LV} 3$	30°	Yes	Y		1	1.2	47

90	$1.20+1.5 L \mathrm{LV} 3120^{\circ}$	Y	1	1.2	47	1.5
91	$1.2 \mathrm{D}+1.5 \mathrm{Lv}=3150^{\circ}$	Yes Y	1	1.2	47	1.5
92	$1.2 \mathrm{D}+1.5 \mathrm{LV}$ - 3180°	Yes	1	1.2	47	1.5

93	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-3210^{\circ}$	Yes	Y	1	1.2	47	1.5
94	$1.2 \mathrm{D}+1.5 \mathrm{LV}$ 3 240°	Yes	Y	1	1.2	47	1.5

95	$1.2 \mathrm{D}+1.5 \mathrm{Lv} _3270^{\circ}$	Yes	Y		1	1.2	47	1.5
96	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3300^{\circ}$	Yes	Y		1	1.2	47	1.5
97	$1.2 \mathrm{D}+1.5 \mathrm{LV} 3330^{\circ}$	Yes	Y	1	1.2	47	1.5	

98	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	1.2	27	1	28		29	1	41	1										
99	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	12	27	. 866	28	5	30	1	41	1										
100	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	1.2	27	5	28	. 866	31	1	41	1										
101	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	1.2	27		28	1	32	1	41	1										
102	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	1.2	27	-. 5	28	. 866	33	1	41	1										
103	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	1.2	27	. 866	28	5	34	1	41	1										
104	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	1.2	27	-1	28		35	1	41	1										
105	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	1.2	27	. 866	28	-. 5	36	1	41	1										
106	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$	Yes	Y	1	1.2	27	$-.5$	28	. 866	37	1	41	1										
107	1.2D +1.0EV +1.0 EH .	Yes	Y	1	1.2	27		28	-1	38	1	41	1										
108	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	1.2	27	5	28	. 866	39	1	41	1										
109	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH}$.	Yes	Y	1	1.2	27	. 866	28	-. 5	40	1	41	1										

Envelope Joint Reactions

Joint			$X[k]$	LC	$\mathrm{Y}[\mathrm{k}]$	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	
1	N78	max	1.142	11	1.157	17	752	13	-. 535	7	0	109	. 212	30
2		min	-1.547	29	512	11	-2.155	7	-1.209	14	0	1	-. 061	74
3	N79B	max	1.506	35	1.148	23	1.917	25	-. 554	6	0	109	251	29
4		min	-. 561	5	. 513	6	-. 25	6	-1.241	23	0	1	-. 076	74
5	N85B	max	. 294	5	. 061	23	1.136	5	-. 021	85	0	109	118	28
6		min	-. 275	11	. 016	5	-1.078	11	-. 098	17	0	1	. 008	74
7	N86B	max	2	5	. 06	19	. 807	5	-. 021	85	0	109	. 12	29
8		min	-. 216	11	017	74	-. 869	11	-. 097	17	0	1	008	74
9	Totals:	max	1.562	11	2.407	17	1.865	2						
10		min	-1.562	5	1.102	11	-1.865	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

Member		Shape	Code C... Loc[ff] LC Sh					ir LC phi*Pnc [k]		$\frac{\text { phi*Pnt [k] }}{50.715}$	**Mn y - ...phi*Mnz-		Cb Eqn		
1	M54	PIPE 2.5	. 239	8.854	36	. 071	8.724			3.596	3.596	1	H1-1b		
2	M6	PIPE 2.5	282	8.854	6	. 094	3.776	2	41.05		50.715	3.596	3.596	1	H1-1b
3	M5	PIPE 2.5	126	6.667	85	025	3.333	85	46.315	50.715	3.596	3.596	1	H1-1b	
4	M11	PIPE 2.0	. 227	. 052	5	054	. 99	18	29.81	32.13	1.872	1.872	1...	H1-1b	
5	M12	PIPE_2.0	. 152	234	29	068	2.448	31	29.81	32.13	1.872	1.872	2.	H1-1b	

Member			Code C... Loclft] LC Shear				Loc[ft]	Dir LC phi*Pnc [k]			phi*Pnt [k] phi*Mn V -		$\frac{\text { phi*Mn } 2 . . .}{27}$	Cb	Eqn		
6	M17	PL5/8X8	. 253	. 417	17	. 181					H1-1b						
7	M12A	PL5/8X3.5	000	243	14	. 000	0	z	25	69.904			70.875	923	5.168	1	H1-1b
8	M13	PL5/8X3.5	045	247	11	. 017	247	V	7	68.066	70.875	923	5.168	2.	H1-1b		
9	M14	PL5/8X3.5	. 058	247	29	. 025	247	v	30	68.067	70.875	923	5.168	$2 .$.	H1-1b		
10	M15A	PL5/8X3.5	000	243	20	. 000	0	z	25	69.904	70.875	923	5.168	1	H1-1b		
11	M17A	PIPE 2.0	182	052	35	. 055	. 99		24	29.81	32.13	1.872	1.872	2	H1-1b		
12	M18	PIPE 2.0	152	234	35	. 068	2.448		29	29.81	32.13	1.872	1.872	2	H1-1b		
13	M21	PL5/8X8	249	417	23	. 178	0	v	28	155.571	162	2.109	27	1.	H1-1b		
14	M22	PL5/8X3.5	000	243	35	. 000	051	v	12	69.904	70.875	923	5.168	2.	H1-1b		
15	M23	PL5/8X3.5	. 038	247	12	013	247	v	12	68.066	70.875	923	5.168	2	H1-1b		
16	M24	PL5/8X3.5	057	247	35	. 025	247	\checkmark	29	68.067	70.875	923	5.168	2	H1-1b		
17	M25	PL5/8X3.5	000	051	35	. 000	0	z	16	69.904	70.875	923	5.168	$2 .$.	H1-1b		
18	M34	SR 3/4	054	0	58	. 011	3.667		29	4.484	14.314	179	179	1	H1-1 ${ }^{\text {* }}$		
19	M35	SR 3/4	000	0	09	011	0		35	4.484	14.314	179	179	1	H1-1a		
20	M36	SR 3/4	086	3.667	29	. 019	3.667		5	4.484	14.314	179	179	1	$\mathrm{H}^{1-1} \mathrm{~b}^{*}$		
21	M37	SR 3/4	000	0	109	. 015	0		11	4.484	14.314	179	179	1	H1-1a		
22	M44	PIPE 2.5	219	6.667	34	. 037	3.333		26	46.315	50.715	3.596	3.596	1	H1-1b		
23	M47	PIPE 2.5	133	3.333	8	. 033	6.667		28	46.315	50.715	3.596	3.596	1	H1-1b		
24	M50	PIPE_2.5	124	3.333	8	. 022	3.333		7	46.315	50.715	3.596	3.596	1	H1-1b		
25	M59	SR 5/8_HRA	056	0	23	026	0		29	3.122	9.94	104	104	2	H1-1b		
26	M60	SR 5/8_HRA	097	2.771	3	. 004	0		28	3.122	9.94	104	104	2	H1-1b*		
27	M61	SR 5/8_HRA	090	2.771	2	. 002	0		2	3.122	9.94	104	104	2	H1-1b*		
28	M62	SR 5/8_HRA	109	2.771	35	. 023	0		29	3.122	9.94	104	104	2	H1-1b		
29	M65A	PL5/8X3.5	263	5	58	. 029	5	v	9	66.866	70.875	923	5.168	1	H1-1b		
30	M66A	PL5/8X3.5	530	0	29	. 066	0	v	6	66.866	70.875	923	5.168	1.	H1-1b		
31	M63A	PL5/8X3.5	257	5	51	. 027	5	v	50	66.866	70.875	923	5.168	1	H1-1b		
32	M64A	PL5/8X3.5	. 524	0	35	. 064	0	v	35	66.866	70.875	923	5.168	1.	H1-1b		
33	M66C	PIPE 2.0	072	6.582	17	. 059	6.582		28	19.112	32.13	1.872	1.872	2.	H1-1b		
34	M67A	PIPE 2.0	066	6.582	17	. 060	6.582		29	19.112	32.13	1.872	1.872	2	H1-1b		
35	M70	PIPE 2.0	048	2.5	8	015	1.25		8	23.809	32.13	1.872	1.872	1.	H1-1b		

verizon ${ }^{\vee}$

SITE NAME: STAFFORD 4 CT SITE ID: 617359998 169 HAMPDEN ROAD STAFFORD, CT 06076

PROUECT SUMMARY

x^{2}

9. NTTM (3) PRocoses susum
B. NTTNL (3) Propocese Suscmic cmis rey (rT423-4a)

 12 mstuu new vivin mer

PROMECT INFORMATION	
ste	Swrome 4
SIE D :	a17ssom
Stie nomess	
npucw:	
comint resome	MCHAE HUMPHREMS (CONSTRUCTON MNUCER) (560) 560-8410
smaxer of recome	Covir ixilivilicin CARIO F. CENTORE, PE
sfre comennure	LATIURE: $41^{\circ} 50^{\circ} 58.40^{\circ}$

8HEET NDEX		
suter . .	orsamprom	Rex.
${ }^{T-1}$	mes stur	4
		,
c-1		4
c-2		4
c-s	Tmack bummer demis	4
c-4	trick Exumer deme	4
c-s	Convor mesturno Deenc	4
n-1	Hecawrel PMU No Notrs	4
E-1		4
E-2	EECTrack schemic onemum	4
E-s	Eectracl camamome pus	4
E-		4
E-5	Track aicmich otnls	4
E-6	Escrucu secancanow	4

15

$>$

percn base

gIE NOTE

3.

CEEFAL NOTES
Nu wom sul

 Nom

" (

19.

25.
2. Mackumed

2.

notes:

PVC CONDUTT PENEIRATION
(2 DETALL IN GYPSUM WALIBOAR DETALL IN GYF

Maw

E CONOU HOW 9 N. DUW (OR SWULR) Stres conour

3.

METAL PIPE THROUCH CONCREIE
(3)

METAL FIPE THROUGH CONCREIE
SCOLE NOT/ TO SCAIL OR BLOCK WALL

PIPE AND CONDUIT PENEIRATION
(4) DETALL \mathbb{N} N

 Both sime of hoor muliz

> 5- 5 PIPE AND CONDUIT PENEIRATION
DETALL \mathbb{N} CONCREIE OR MASONRY
SCNE NOT TO SCNE DETALL \mathbb{N} CONCRETE OR MASONRY

208 \%. 20010.00
$\underset{\text { CONDUUTT }}{\text { PENETIC }}$
PENETRATIS
DETAALS
C-5

EFCTFICAL SPECFECATONS
SECTON 16010
A

2 new sit

Locu UTIUT courpens siwl Prover TiE Folumme:

1.02. cevew reanmeners

N. Stuop dommmas

SECTON NOHI

a.

CONDUT SCHEDUL SECTION 18 mm			
conour me		umbenow	隹
ar	Ance 358		N/A
Rav, Regat cuv.			0 mchis
pra, schimur to			18 uctus
prac, schibue so			18 \#chms
Loun Mex mix	ntole soo		N/n
rex mexich	NTECEE 348		N/A
'misru zua is	Sert mit And		

$\frac{\text { SECTON } 16123}{1.01}$

 SeCCION 16130
-

SECTION 18TO

sechavy

SECTOON NEDS

gection 1 CASO

a.
c. Councum of pnesowes:

 SECTON 18470

ECHION 1647

CWE SNNE

a harre to conmer dewnmes for dexis no schevis.

CCTOW 12080
paber arctracel restwo fran

SECTON 109091

C-band 64T64R
Gen 2
700/850 4T4R Macro 320W ORU - New Filter (RF446ld-13A)
Specifications

* 5 MHz supporting in $\mathrm{BI} 3(700 \mathrm{MHz}$) depends on 3GPP std. and UE capability External filters in interferer and victim sides for Mexican boarder to support $5 \mid \mathrm{MHz}$ service need to be considered
(c) Samsumg Electronics. All Rights Reserved. Conlidential and Proprietary

SAMSUNG

Samsung
 Micro Radio
 CBRS(N48)
 4T4R Micro Radio

Samsung's CBRS 4T4R Micro Radio provides mobile
operators with a cost-effective solution to fill coverage
gaps encountered when Macro Radios are in use.

Model Code
 RT4423-48B(AC)

Dual Personality

The new CBRS Radio supports existing CPRI and advanced eCPRI interfaces providing installation options for both legacy LTE and NR network equipment.

High Capacity

The number of carriers required varies according to site(region). Supporting multiple carriers is essential to customers as they seek to utilize all frequencies available to them.
The new CBRS radio can support up to 5 carriers which is and increase of 3 carriers over the capacity of the previous CBRS product.

O-RAN Compliant

A standardized O-RAN radio supports implementing cost-effective networks capable of enhanced data throughput without compromising existing or new network investments.
Samsung O-RAN products ensure state-of-the-art O-RAN technology will accelerate efforts for creating solid O-RAN ecosystems.

Compact and Easy Installation

New CBRS RU is compact in it's design with a volume of 6 L and weighing only about 7 kg .
This compact design allows for various installation options including, tower, rooftop, pole, wall and shroud.
A clip on antenna is available providing flexibility to installation requirements.

C Technical Specifications

Item	Specification
Tech	LTE / NR
Band	B48, n48 / TDD
Frequency Band	$3,550-3,700 \mathrm{MHz}$
RF Power	20 W (5 W x 4 Ports)
IBW/OBW	$150 \mathrm{MHz} / 100 \mathrm{MHz}$
Installation	Pole, Wall, Side by side (max 3 radio)
Size/ Weight	[Radio] w/o Clip-on antenna : $8.7 \times 11.8 \times 3.6$ inch, $5.97 \mathrm{~L}, 7 \mathrm{~kg}$ w/ Clip-on antenna : $8.7 \times 11.8 \times 5.0$ inch, $8.42 \mathrm{~L}, 8.5 \mathrm{~kg}$ *AC and $D C$ type have same size and weight [Bracket Weight] Tilting \& Swivel (EP97-02038A) : 2.51 kg Fixed (EP97-02037A) : 1.31kg Side by side (EP97-02089A) : 8.0kg

[^0]: tnxTower Report - version 8.1.1.0

[^1]: ${ }^{1} P_{u} / \phi P_{n}$ controls

[^2]: The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

 ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.
 In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmiess ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

