

10 INDUSTRIAL AVE,
SUITE 3
MAHWAH NJ 07430

PHONE: 201.684.0055
FAX: 201.684.0066

March 4, 2022

Members of the Siting Council
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
157/169 Hampden Road, Stafford Springs, CT 06076
Latitude: 41.595861
Longitude: -72.212016
T-Mobile Site#: CTHA830A - Sprint Keep Project - Refile with revised plans

Dear Ms. Bachman:

T-Mobile/Sprint currently maintains six (6) antennas at the 171-foot level of the existing 180-foot Guyed Tower at 169 Hampden Road, Stafford Springs, Connecticut. The 180-foot Guyed Tower is owned and operated by Everest Infrastructure. The ground space is owned by BJM IRA Joint Ventures. T-Mobile now intends to remove all Sprint equipment including antennas, cables, and ground equipment. T-mobile will be adding six (6) antennas. The new antennas will be installed at the same 171-foot level. The new antennas support 5G services.

Planned Modifications:

Tower:

Remove

(6) Sprint Antennas

(12) Sprint RRHs

All Sprint Hybrid Cables

Install New:

(3) APXVAALL24 43-U-NA20 Antennas

(3) AIR6449 Antennas

(3) Ericsson Radio 4480 B71+B85

(3) Ericsson 4460 B25+B66

(3) 6/24 Hybrid Cables

Ground:

Install New:

- (1) B160 Cabinet
- (1) Enclosure 6160
- (1) 48 KW Diesel Fueled Back-up Generator

To Be Removed:

All Sprint Ground Equipment

The earliest Siting Council submission was from May 31, 2011. The original building permit for the tower construction was unavailable but attached is a permit application from June 24, 2011

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-SOj-73, a copy of this letter is being sent to First Selectman - Sal Titus, Elected Official, and David Perkins, Zoning Enforcement Officer, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Eric Breun

Transcend Wireless

Cell: 201-658-7728

Email: ebreun@transcendwireless.com

Attachments

cc: Sal Titus - as First Selectman of Stafford
David Perkins - Zoning Enforcement Officer
Everest Infrastructure Partnership - Tower Owner
BJM IRA Joint Venture - Land Owner

ERIC BREUN
2016587728
10 INDUSTRIAL AVE
MAHWAH NJ 07430

1LBS 1 OF 1
ERIC BREUN
2016587728
1 INTERNATIONAL BLVD.
MAHWAH NJ 07495

SHIP TO:
FIRST SELECTMAN SAL TITUS
1 MAIN STREET
STAFFORD CT 06076

UPS GROUND

TRACKING #: 1Z V25 742 03 9307 2394

BILLING: P/P

Reference #1: CTHA830A

XOL 22.02.16

NU45 10.04.02/2022*

1LBS 1 OF 1

SHIP TO:
DAVID PERKINS ZEO
1 MAIN STREET
STAFFORD CT 06076

UPS GROUND

TRACKING #: 1Z V25 742 03 9701 7633

BILLING: P/P

Reference #1: CTHA830A

XOL 22.01.26

NU45 10.04.02/2022*

Hello, your package has been delivered.

Delivery Date: Thursday, 03/03/2022

Delivery Time: 11:00 AM

Left At: OFFICE

Signed by: DADault

TRANSCEND WIRELESS

Tracking Number: [1ZV257420393072394](#)

FIRST SELECTMAN SAL TITUS

1 MAIN STREET

STAFFORD, CT 06076

US

Number of Packages: 1

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: CTHA830A

Hello, your package has been delivered.

Delivery Date: Thursday, 03/03/2022

Delivery Time: 11:00 AM

Left At: OFFICE

Signed by: DADault

TRANSCEND WIRELESS

Tracking Number: [1ZV257420397017633](#)

DAVID PERKINS ZEO

1 MAIN STREET

STAFFORD, CT 06076

US

Number of Packages: 1

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: CTHA830A

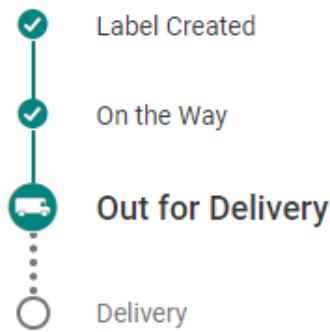
Your shipment from

TRANSCEND WIRELESS

Estimated delivery

Monday, March 07 between 9:15 A.M. - 11:15 A.M. [?](#)

Ship To


EVEREST INFRASTRUCTURE PARTNERS
2 ALLEGHENY CENTER
NOVA TOWER 2
SUITE 703
ALLEGHENY, PA 15212 US

Your shipment from

TRANSCEND WIRELESS

Estimated delivery

Today, March 03 by 7:00 P.M.

Ship To

BJM IRA JOINT VENTURE
60 HARRY STREET
CONSHOHOCKEN, PA 19428 US

Location 169 HAMPDEN RD

Mblk 23 / 60 / /

Acct# 00109700

Owner BJM IRA JOINT VENTURE

Assessment \$260,140

Appraisal \$473,800

PID 1227

Building Count 1

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2020	\$115,700	\$358,100	\$473,800
Assessment			
Valuation Year	Improvements	Land	Total
2020	\$80,990	\$179,150	\$260,140

Owner of Record

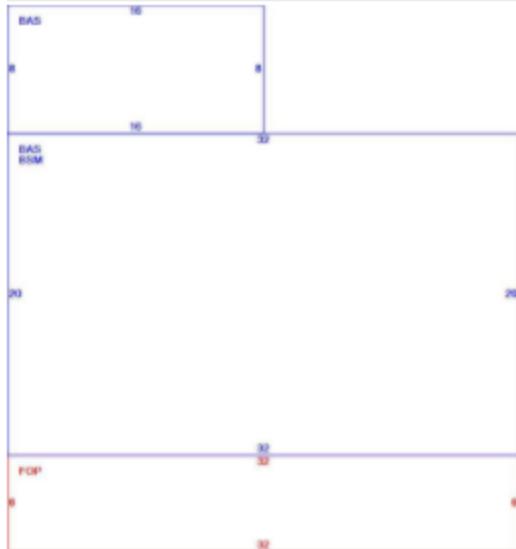
Owner	BJM IRA JOINT VENTURE	Sale Price	\$525,000
Co-Owner		Certificate	
Address	60 HARRY ST CONSHOHOCKEN , PA 19428	Book & Page	704/159
		Sale Date	11/10/2021
		Instrument	0G

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
BJM IRA JOINT VENTURE	\$525,000		704/159	0G	11/10/2021
ANGELO MICHAEL+SHELLY M	\$0		0595/0005	01	09/24/2012
ANGELO MICHAEL	\$0		0595/0002	01	09/24/2012
ANGELO MICHAEL J	\$0	1	0326/0545		03/31/1995

Building Information

Building 1 : Section 1


Year Built: 1999
Living Area: 768
Replacement Cost: \$91,353
Building Percent Good: 87
Replacement Cost
Less Depreciation: \$79,500

Building Attributes	
Field	Description
STYLE	Single Family
MODEL	Comm/Ind
Grade	C
Stories:	1
Occupancy	1.00
Exterior Wall 1	Logs
Exterior Wall 2	
Roof Structure	Gable
Roof Cover	Asph/F Gls/Cmp
Interior Wall 1	Drywall/Sheet
Interior Wall 2	
Interior Floor 1	Average
Interior Floor 2	
Heating Fuel	Gas
Heating Type	Forced Hot Air
AC Type	None
Struct Class	
Bldg Use	SFD - Comm
Total Bedrooms	2
Total Baths	1

Building Photo

Building Layout

1st Floor Use:	
Heat/AC	None
Frame Type	Wood Frame
Baths/Plumbing	Average
Ceiling/Wall	Ceil & Wall
Rooms/Prths	Average
Wall Height	8.00
Num Fixtures	

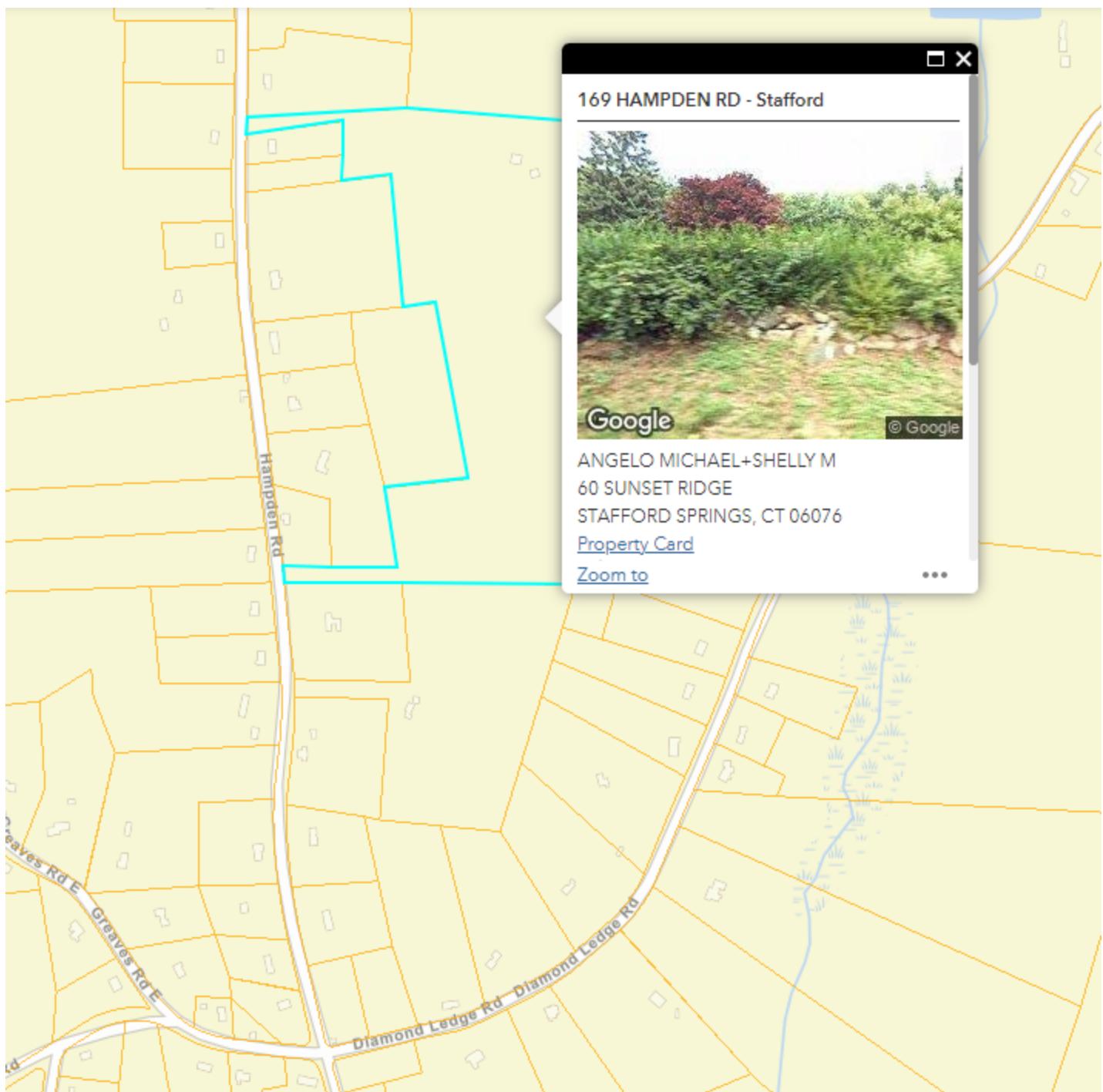
Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	768	768
BSM	Basement	640	0
FOP	Open Porch	192	0
		1,600	768

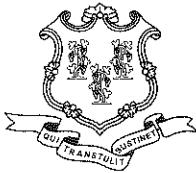
Extra Features

Extra Features					Legend
Code	Description	Size	Value	Bldg #	
FPL	Com Fireplace	1.00 UNITS	\$1,700	1	

Land

Land Use		Land Line Valuation	
Use Code	101C	Size (Acres)	43.54
Description	SFD - Comm	Frontage	
Zone		Depth	
Neighborhood	502	Assessed Value	\$179,150
Alt Land Appr	No	Appraised Value	\$358,100
Category			


Outbuildings


Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
FGR2	Garage w/ Loft			1024.00 S.F.	\$18,600	1
FGR2	Garage w/ Loft			676.00 S.F.	\$12,300	1
FN3	FENCE-6' CHAIN			150.00 L.F.	\$900	1
FCP	Carport			384.00 S.F.	\$2,700	1

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2019	\$99,100	\$376,400	\$475,500
2018	\$99,100	\$376,400	\$475,500
2017	\$99,100	\$376,400	\$475,500

Assessment			
Valuation Year	Improvements	Land	Total
2019	\$69,370	\$176,000	\$245,370
2018	\$69,370	\$176,000	\$245,370
2017	\$69,370	\$176,000	\$245,370

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

May 31, 2011

Mark Hulshart, Principal
Hulshart & Associates, LLC
3009 Federal Hill Drive
Falls Church, VA 22044

RE: **EM-SPRINT-134-110505** – Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 169 Hampden Road, Stafford, Connecticut.

Dear Mr. Hulshart:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Not less than 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated April 29, 2011. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Linda Roberts
Executive Director

LR/CDM/laf

c: The Honorable Michael P. Krol, First Selectman, Town of Stafford
Wendell Avery, Zoning Enforcement Officer, Town of Stafford
Michael Angelo

CT33xCS53

V 11-02-90 Town of Stafford

BUILDING PERMIT

Building Official

1 Main Street - Town Hall
Stafford Springs, CT 06076

Tel. (860) 684-1775 • Fax: (860) 684-1768

"A certificate of Use or Occupancy is required upon completion of new work, alteration or change of use." Separate permits are required for plumbing, heating and electrical

Date:

License:

Expiration Date:

Estimated Cost: \$14,000

Fee: 196.10

Map: 23/060

Lot:

Permit #: 15906

Location of Construction: 169 Hampden Road, Stafford CT 06075

Owner's Name & Address: Sprint c/o Black & Veatch Corporation
30150 Telegraph Road, Suite 420, Bingham Farms, MI 48025

Contractor's Name & Address: Overland Contracting Inc.

8400 Ward Parkway, Kansas City MO 64114

Signature of Applicant, Homeowner, Agent

Telephone Number

Building Official Signature

Date

(248) 594-9330
(248) 613-3973 (cell)

6-7-11

Describe Nature of Work: Add fuel cell & storage cabinets on 6' x 9' concrete pad inside existing lease area.

TYPE	FOUNDATIONS		ROOF TYPE	FOOTING		FRAMING	SIZE	SPAN
Single Family	Thickness		Gable	Size		Joist		
Two Family	Concrete slab		Hip	Stone		2 nd Floor		
Apt House	Concrete Blocks		Gambrel	Concrete		Rafter		
Agricultural	Piers		Truss	Drains		Girder		
Accessory	Stone		Flat	Depth		Column		
Office			Roof Pitch			Sill		
Factory	CONSTRUCTION			CHIMNEYS		Post		
Gas Station	Frame		ROOFING	N/A		Size / Flues		
Commercial	X Masonry		Asphalt Shingle	Stone		Stud		
Demolition	I.C.F.		Wood Shingle	Brick				
Other:	Other:		Built-up	Block		Species & Grade		
			Other:	Factory Built				
Number of Rooms	EXTERIOR			Fire Place				
Number of Bathrooms	Clapboard or Wood Shingle		Cellar	N/A				
Number of Bedrooms	Vinyl		Whole	Built to Conform to:				
Insulation	Masonry		Part	Residential Code (IRC)				
Ceiling	Other		None	Commercial Code (IBC)				
Walls			Slab					
Floors			Other	F.M. Approval				

SWIMMING POOL: Above Ground In Ground Fence N/A

Building Official Comments / Special Conditions

Work shall not proceed until the inspector has inspected and approved the various stages of construction. Final inspection is required upon completion of work. Permit will become null and void if construction work is not started within six months of the date the permit is issued. Permit grants the right to entry to any official from the building, health, or zoning departments during normal business hours for the purpose of inspection. If signed by other than the owner, applicant attests compliance with CGS20-388B and has authorization by owner to apply for this permit.

Now part of **T Mobile**™

SPRINT ID: CT33XC553

SITE ID: CTHA830A

157 HAMPDEN RD

STAFFORD SPRINGS, CT 06076

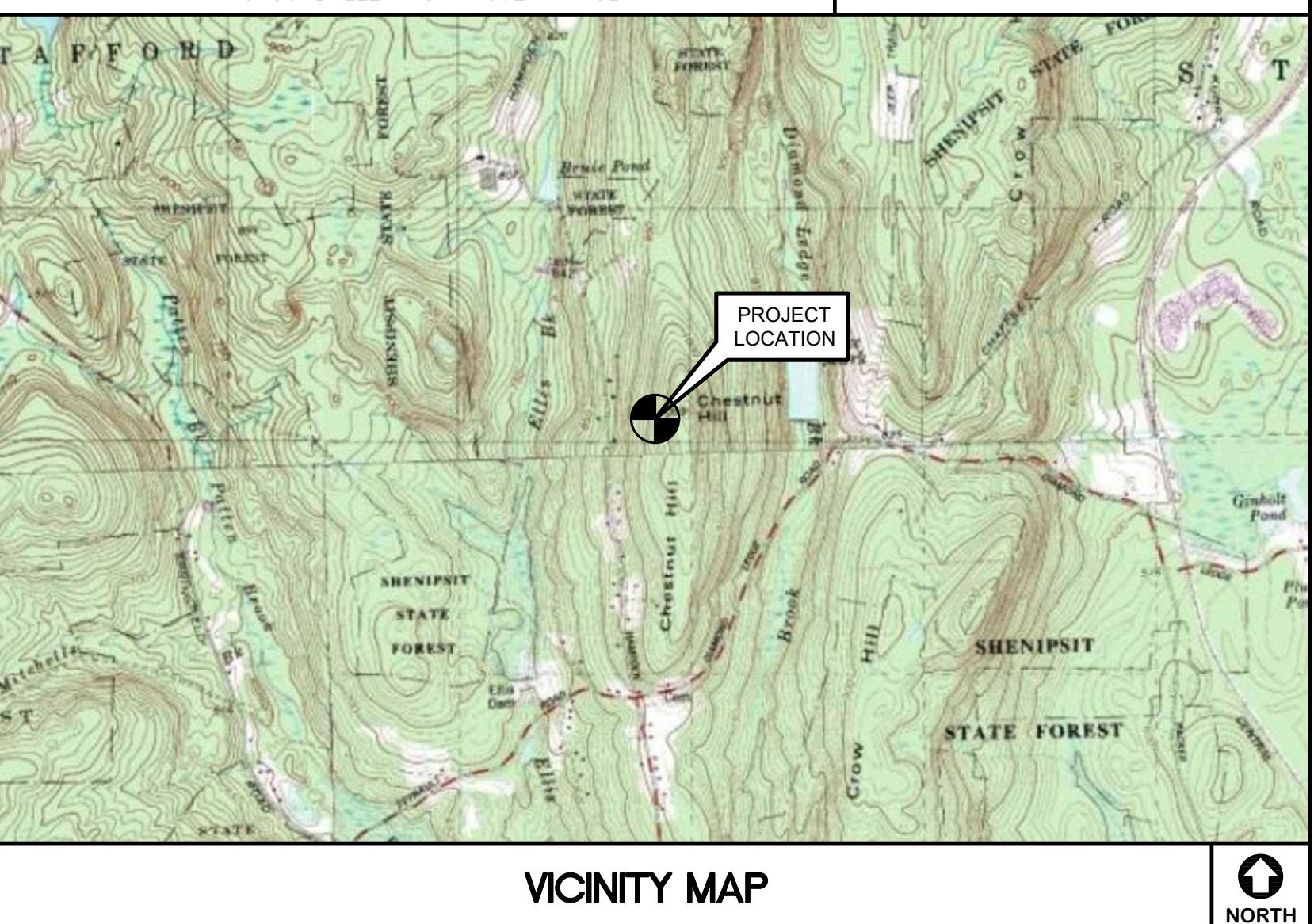
T-MOBILE RAN TEMPLATE (PROVIDED BY RFDS)
67E5A998E 6160

T-MOBILE A+L TEMPLATE (PROVIDED BY RFDS)
67E5998E_1xAIR+1OP

GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSING' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSING ITEMS.
- CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

SITE DIRECTIONS


FROM: 35 GRIFFIN ROAD SOUTH
BLOOMFIELD, CT 06002

TO: 157 HAMPDEN RD
STAFFORD SPRINGS, CT 06076

- GET ON I-91 S IN WINDSOR FROM DAY HILL RD. 4.30 MI.
- MERGE ONTO I-91 S. 3.60 MI.
- TAKE EXIT 35A FOR I-291 TOWARD MANCHESTER. 0.60 MI.
- CONTINUE ONTO I-291 E. 5.60 MI.
- USE THE LEFT LANE TO MERGE ONTO I-84 E TOWARD BOSTON. 8.50 MI.
- TAKE EXIT 67 FOR CT-31. 0.30 MI.
- TURN RIGHT ONTO CT-31 S. 0.20 MI.
- TURN LEFT ONTO LOEHR RD. 1.00 MI.
- TURN LEFT ONTO MOUNTAIN SPRING RD/ REED RD. 0.70 MI.
- TURN LEFT ONTO OLD POST RD. DESTINATION WILL BE ON THE LEFT. 0.07 MI.

SITE COORDINATES: LATITUDE: 41°-59'-58.61" N
LONGITUDE: 72°-21'-20.16" W
GROUND ELEVATION: 1062± AMSL

SITE COORDINATES REFERENCED FROM
SPRINT AIRSPACE REPORT DATED JUNE
26, 2015.

PROJECT SUMMARY

THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:

- REMOVE EXISTING SPRINT EQUIPMENT
- REMOVE EXISTING STEEL BEAMS AND GRATING AT GRADE
- INSTALL (1) APXVAALL24_43-U-NA20 ANTENNA PER SECTOR. TOTAL (3)
- INSTALL (1) ERICSSON AIR6449 B41 ANTENNA PER SECTOR TOTAL (3)
- INSTALL (1) RADIO 4480 B71+B85 PER SECTOR. TOTAL OF (3)
- INSTALL (1) RADIO 4460 B25+B66 PER SECTOR. TOTAL OF (3)
- INSTALL 150A CIRCUIT BREAKER
- REMOVE ALL EXISTING HYBRID, INSTALL (3) 6/24 4AWG HYBRIDS
- INSTALL (1) T-MOBILE POWER ENCLOSURE 6160
- INSTALL (1) T-MOBILE BATTERY CABINET B160
- INSTALL 48KW DIESEL FUELED BACK-UP GENERATOR
- INSTALL (1) 200A AUTOMATIC TRANSFER SWITCH MOUNTED TO NEW 2' EQUIPMENT FRAME
- RELOCATE EXISTING ANTENNA MOUNTS TO NEW ANTENNA FRAMES.
- INSTALL (1) 9' MAST PER SECTOR FOR POS. 1 ANTENNA, TOTAL OF (3)
- INSTALL (3) NEW ANTENNA FRAMES

PROJECT SUMMARY (STRUCTURAL)

FOR REQUIRED STRUCTURAL MODIFICATIONS, SEE SHEET(S) S-1 FOR ADDITIONAL DETAILS. NEW ANTENNA MOUNTS/FRAMES TO BE INSTALLED

PROJECT INFORMATION

SPRINT ID: CT33XC553
SITE ID: CTHA830A

SITE ADDRESS: 157 HAMPDEN RD
STAFFORD SPRINGS, CT 06076

APPLICANT: T-MOBILE NORTHEAST, LLC
35 GRIFFIN ROAD SOUTH
BLOOMFIELD, CT 06002

CONTACT PERSON: KYLE RICHERS
TRANSCEND WIRELESS,
(908) 447-4716

ENGINEER OF RECORD: CENTEK ENGINEERING, INC.
63-2 NORTH BRANFORD RD.
BRANFORD, CT 06405

CARLO F. CENTORE, PE
(203) 488-0580 EXT. 122

PROJECT COORDINATES: LATITUDE: 41°-59'-58.61" N
LONGITUDE: 72°-21'-20.16" W
GROUND ELEVATION: 1062± AMSL

SITE COORDINATES REFERENCED
FROM SPRINT AIRSPACE REPORT
DATED JUNE 26, 2015.

SHEET INDEX

SHT. NO.	DESCRIPTION	REV.
T-1	TITLE SHEET	3
N-1	GENERAL NOTES AND SPECIFICATIONS	3
C-1	SITE LOCATION PLAN	3
C-2	COMPOUND PLAN AND ELEVATION	3
C-3	EQUIPMENT PLANS	3
C-4	ANTENNA PLANS AND ELEVATIONS	3
C-5	TYPICAL EQUIPMENT DETAILS	3
C-6	TYPICAL EQUIPMENT DETAILS	3
S-1	STRUCTURAL DETAILS	3
E-1	ELECTRICAL RISER DIAGRAM AND CONDUIT ROUTING	3
E-2	TYPICAL ELECTRICAL DETAILS	3
E-3	ELECTRICAL SPECIFICATIONS	3

**SPRINT ID: CT33XC553
SITE ID: CTHA830A
157 HAMPDEN RD
STAFFORD SPRINGS, CT 06076**

DATE: 04/22/21
SCALE: AS NOTED
JOB NO.: 21005.22

TITLE
SHEET

T-1

Sheet No. 1 of 12

PROFESSIONAL ENGINEER SEAL	
DATE	04/22/21
REV.	0
T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 www.CenterEng.com	

NOTES AND SPECIFICATIONS

DESIGN BASIS:

VERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY
THE 2018 CONNECTICUT STATE BUILDING CODE.

DESIGN CRITERIA:
RISK CATEGORY II (BASED ON IBC TABLE 1604.5)
ULTIMATE DESIGN SPEED (TOWER STRUCTURE): 123 MPH (Vasd)
(EXPOSURE B / IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10)

NOTE NOTES

THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.

ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.

THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.

CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

GENERAL NOTES

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND IT'S COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 9. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS, ARE TO BE BROUGHT TO THE ATTENTION OF THE SITE OWNER'S CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTEANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 19. CONTRACTOR SHALL COMPLY WITH OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 20. THE COUNTY/CITY/TOWN WILL MAKE PERIODIC FIELD OBSERVATION AND INSPECTIONS TO MONITOR THE INSTALLATION, MATERIALS, WORKMANSHIP AND EQUIPMENT INCORPORATED INTO THE PROJECT TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, CONTRACT DOCUMENTS AND APPROVED SHOP DRAWINGS.
- 21. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE CONCEALED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE

STRUCTURAL STEEL

ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)

- A. STRUCTURAL STEEL (W SHAPES)---ASTM A992 (FY = 50 KSI)
- B. STRUCTURAL STEEL (OTHER SHAPES)---ASTM A36 (FY = 36 KSI)
- C. STRUCTURAL HSS (RECTANGULAR SHAPES)---ASTM A500 GRADE B, (FY = 46 KSI)
- D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B, (FY = 42 KSI)
- E. PIPE---ASTM A53 (FY = 35 KSI)
- F. CONNECTION BOLTS---ASTM A325-N
- G. U-BOLTS---ASTM A36
- H. ANCHOR RODS---ASTM F 1554
- I. WELDING ELECTRODE---ASTM E 70XX

CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.

STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.

PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.

FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.

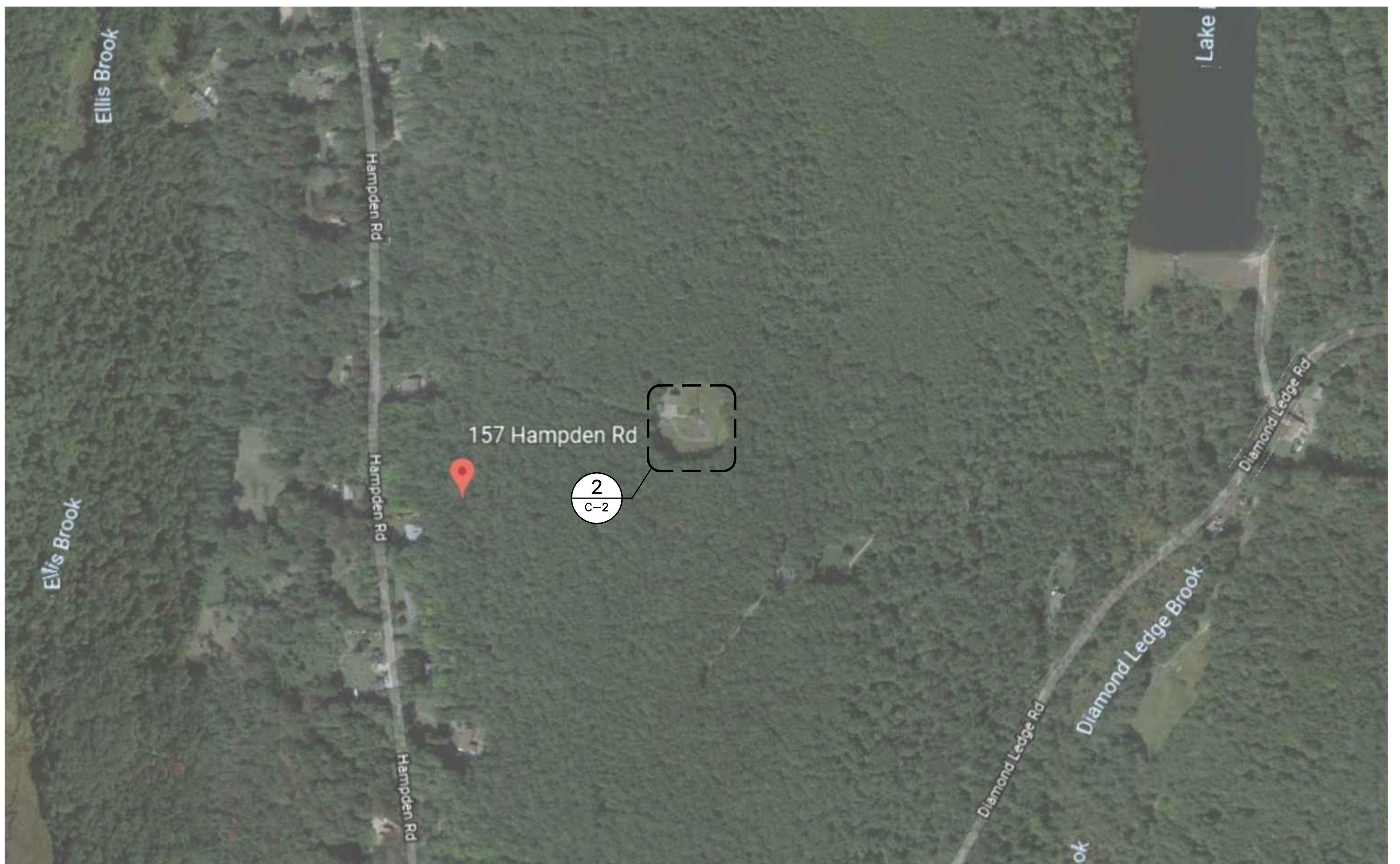
INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.

AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.

ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.

ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".

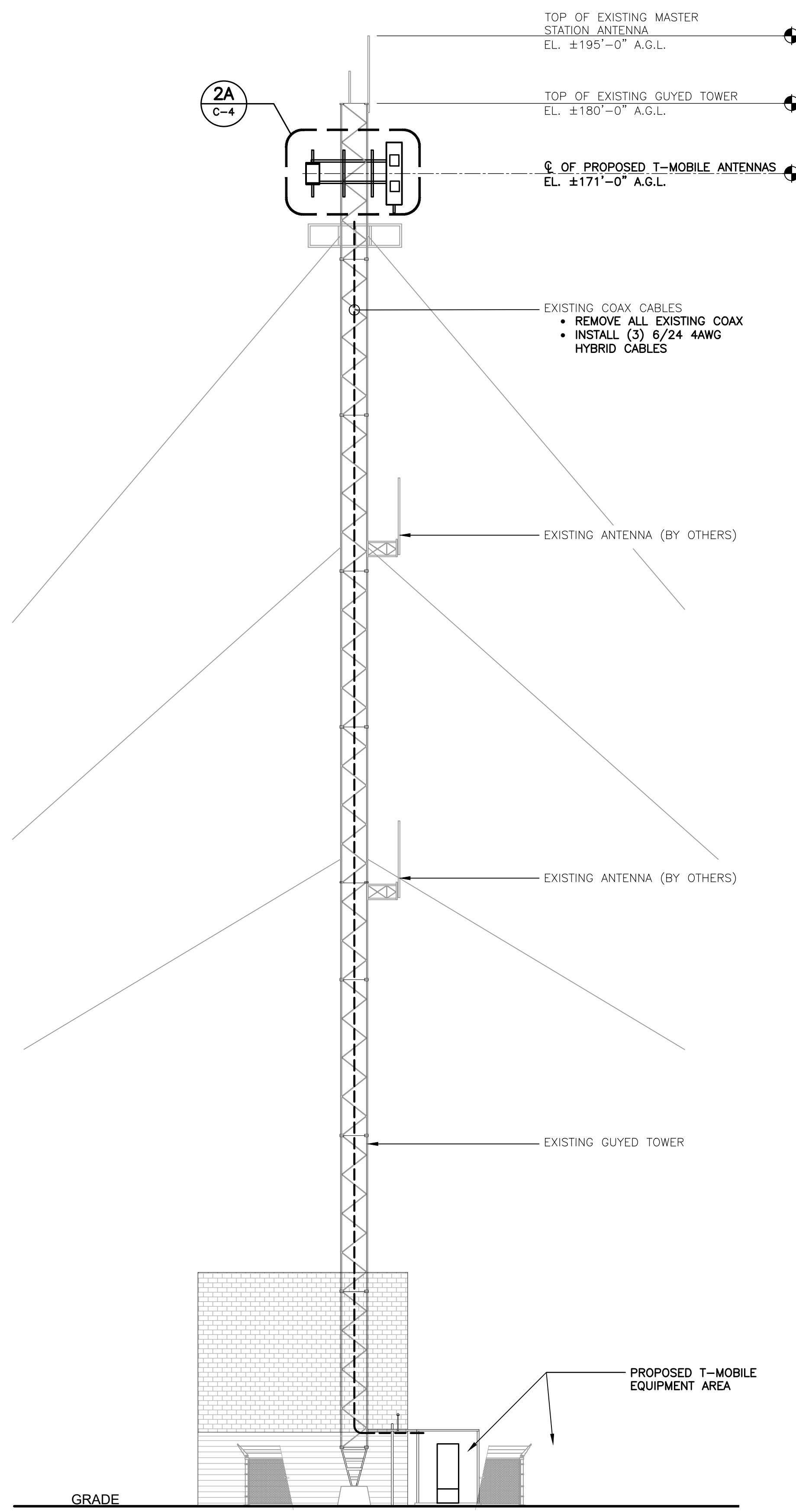
- 0. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 1. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 2. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 3. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 4. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 5. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 6. FABRICATE BEAMS WITH MILL CAMBER UP.
- 7. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 8. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 9. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 0. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

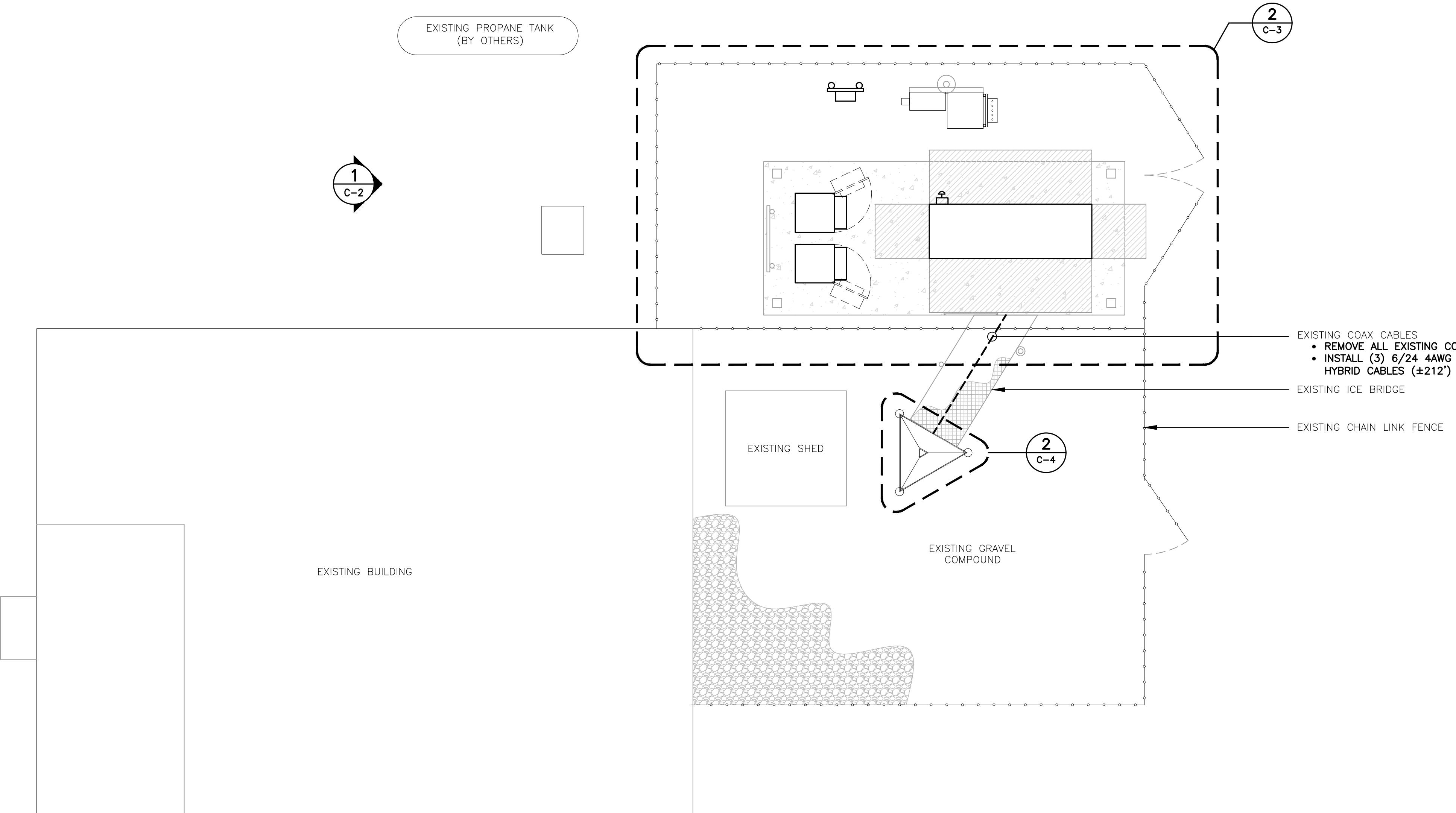

T-MOBILE NORTHEAST LLC		CENTEK engineering Centered on Solutions sm		Sprint Now part of T-Mobile		T-SPRING ID: CTHA830A SITE ID: CT33XC553 157 HAMPTON RD STAFFORD SPRINGS, CT 06076		(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405		www.CentekEng.com	
DATE:	04/22/21	SCALE:	AS NOTED	JOB NO.	21005.22	REV.	DATE	DRAWN BY	CHK'D BY		
GENERAL NOTES AND SPECIFICATIONS										N-1	
Sheet No. 2 of 12											

Sheet No. of

NOTE:
ALL COAX LENGTHS TO BE MEASURED
AND VERIFIED IN FIELD BEFORE ORDERING

ANTENNA SCHEDULE


SECTOR	EXISTING/PROPOSED	ANTENNA	SIZE (INCHES) (L x W x D)	ANTENNA Q HEIGHT	AZIMUTH	(E/P) RRU (QTY)	(E/P) TMA (QTY)	(QTY) PROPOSED COAX (LENGTH)
A1	PROPOSED	RFS-APXVAALL24_43-U-NA20	95.9 x 24 x 8.5	171'	0°	(P) RADIO 4480 B71+B85 (1), (P) RADIO 4460 B25+B66 (1)		(1) 6/24 4AWG HYBRID CABLE (±210')
A2	PROPOSED	ERICSSON-AIR6449 B41	33.1 x 20.6 x 8.6	171'	0°			
B1	PROPOSED	RFS-APXVAALL24_43-U-NA20	95.9 x 24 x 8.5	171'	120°	(P) RADIO 4480 B71+B85 (1), (P) RADIO 4460 B25+B66 (1)		(1) 6/24 4AWG HYBRID CABLE (±210')
B2	PROPOSED	ERICSSON-AIR6449 B41	33.1 x 20.6 x 8.6	171'	120°			
C1	PROPOSED	RFS-APXVAALL24_43-U-NA20	95.9 x 24 x 8.5	171'	240°	(P) RADIO 4480 B71+B85 (1), (P) RADIO 4460 B25+B66 (1)		(1) 6/24 4AWG HYBRID CABLE (±210')
C2	PROPOSED	ERICSSON-AIR6449 B41	33.1 x 20.6 x 8.6	171'	240°			


1 SITE LOCATION PLAN
C-1 SCALE: NOT TO SCALE

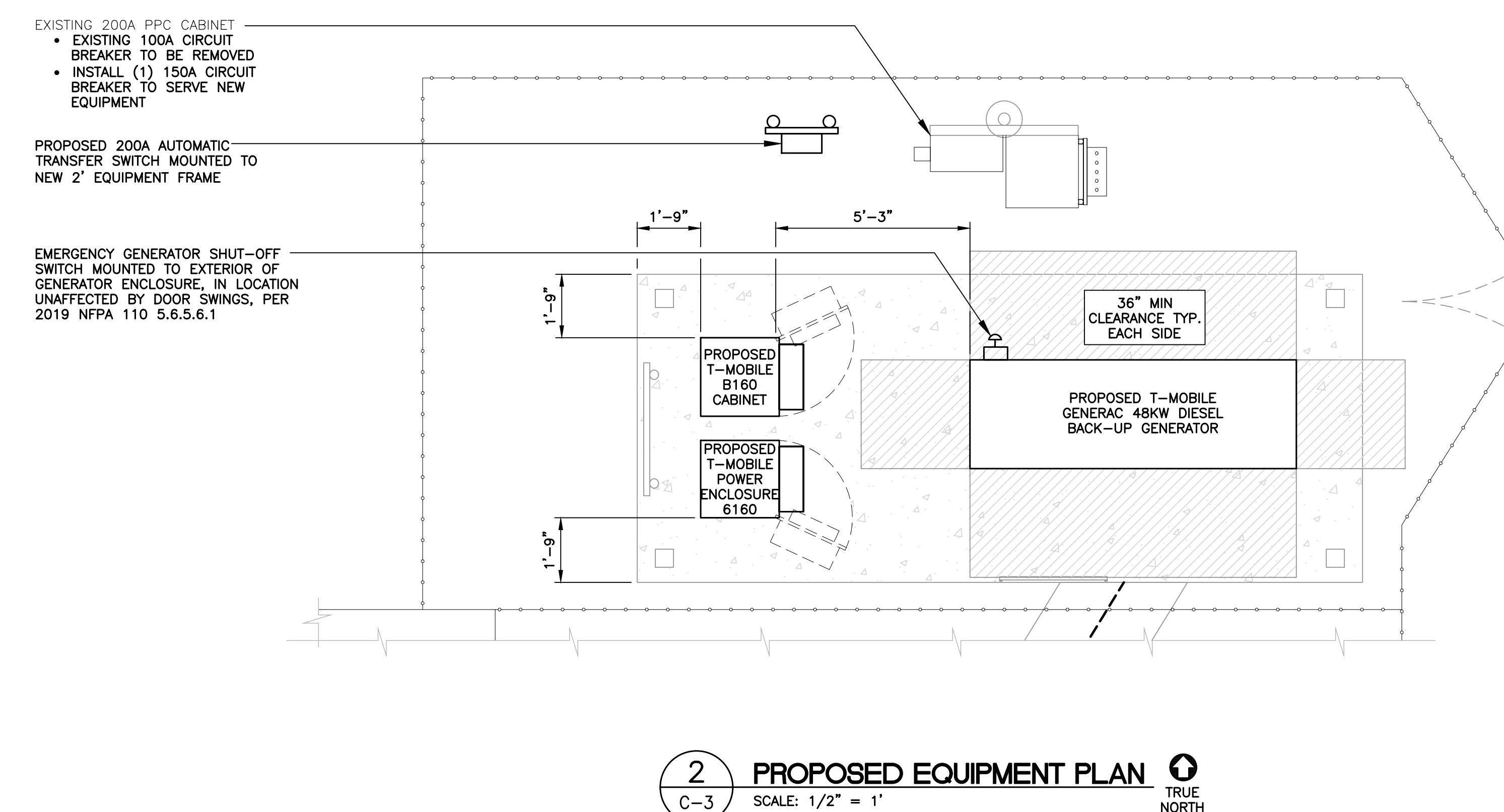
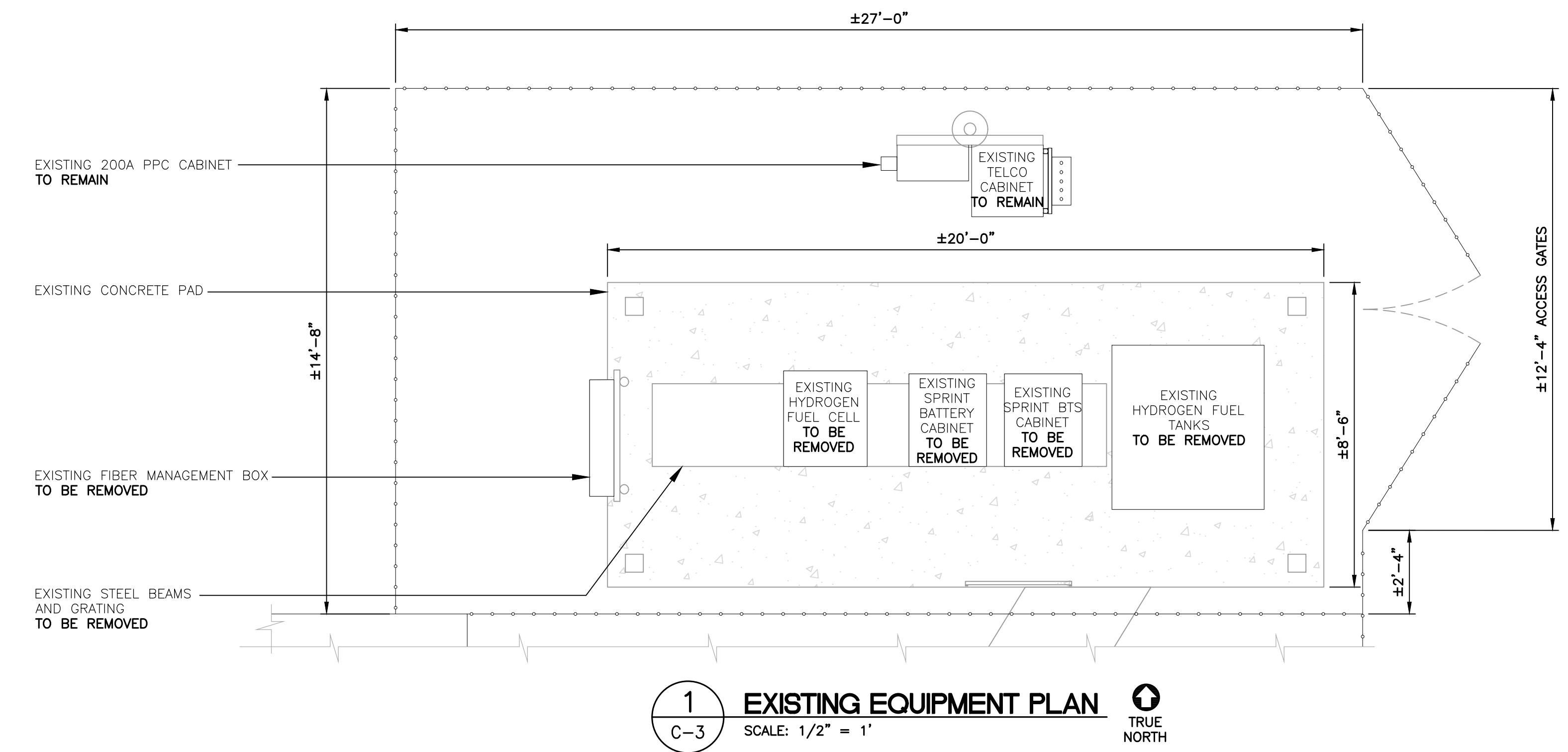
TRUE
NORTH

T-MOBILE NORTHEAST LLC		CENTEK engineering Centered on Solutions™ (203) 484-5880 Fox (203) 484-5881 Fox 632 North Branford Road Branford, CT 06405 www.CentekEng.com		Sprint T-Mobile Transcend Wireless		PROFESSIONAL ENGINEER SEAL STATE OF CONNECTICUT LAW OFFICES OF THE ATTORNEY GENERAL PROFESSIONAL ENGINEER REV. DATE DRAWN BY CHKD BY		
SPRINT ID: CT33XC553		SITE ID: CTHA830A		3 12/07/21 2 10/12/21 0 09/29/21 0 08/30/21		RTS ANC RTS ANC RTS ANC RTS ANC		
157 HAMPDEN RD STAFFORD SPRINGS, CT 06076								
DATE: 04/22/21	SCALE: AS NOTED	JOB NO. 21005.22						
SITE LOCATION PLAN								
C-1								
Sheet No. 3 of 12								

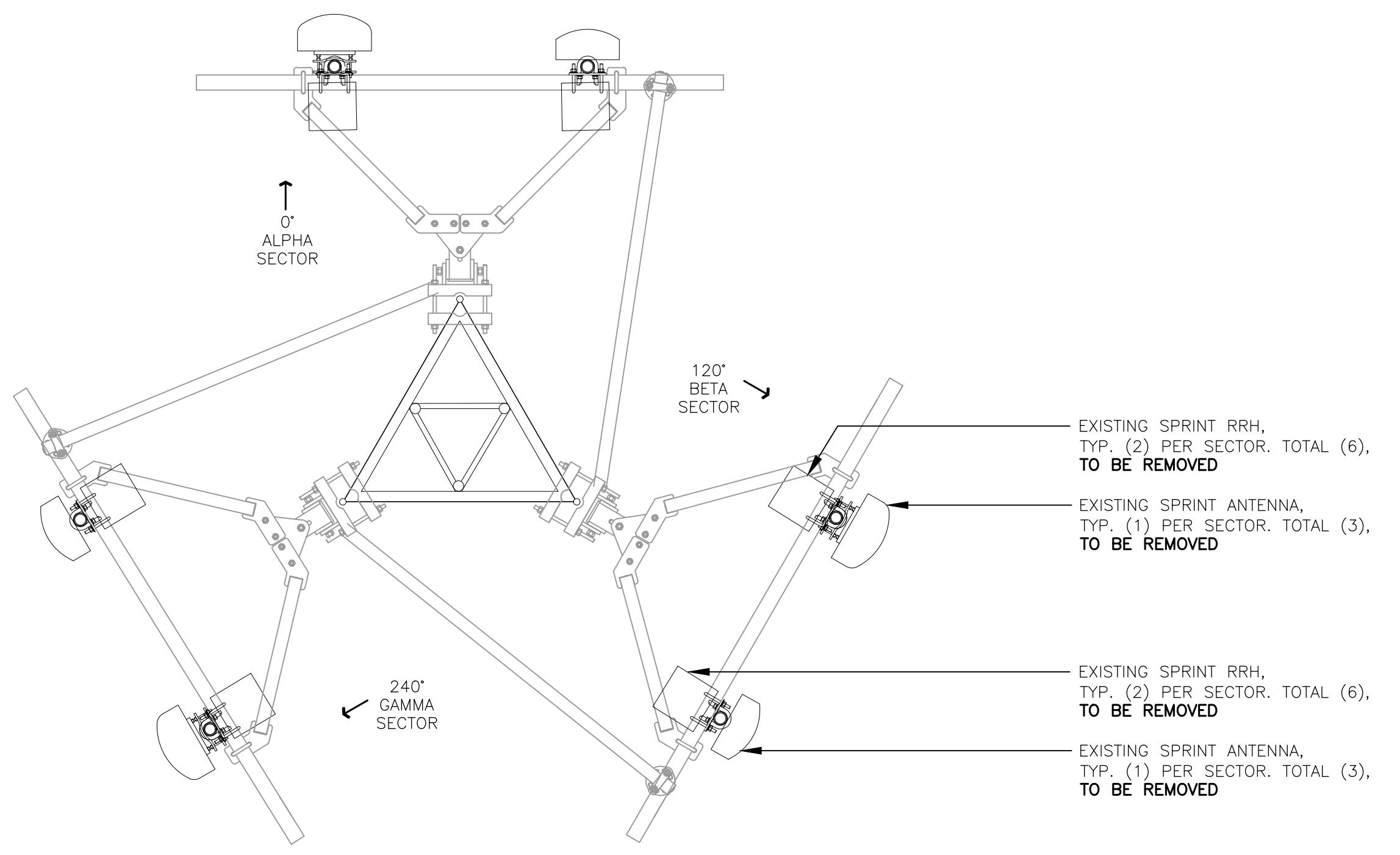
1 C-2 **EAST ELEVATION - PROPOSED**
SCALE: 3/32" = 1'



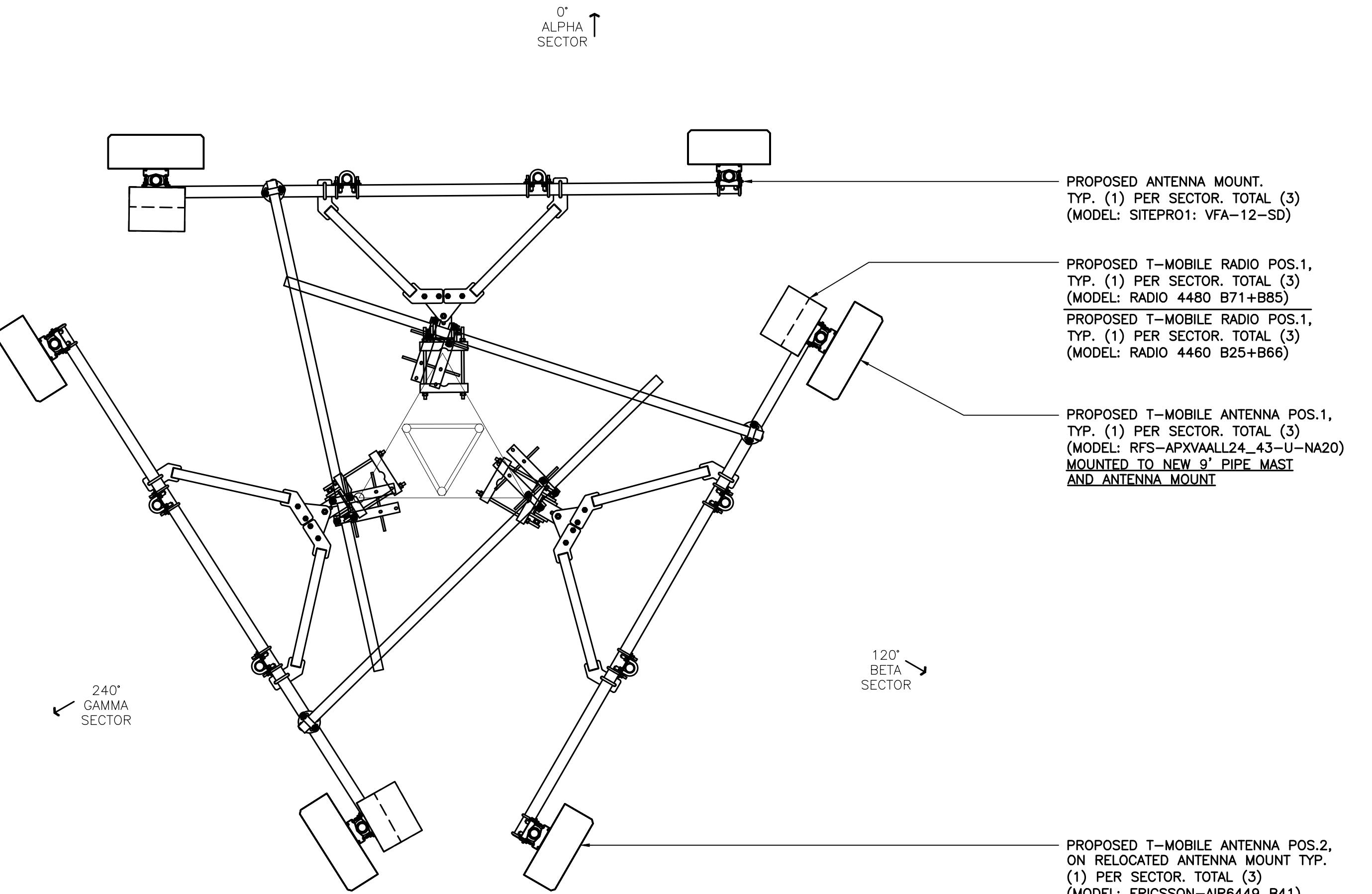
2
C-2

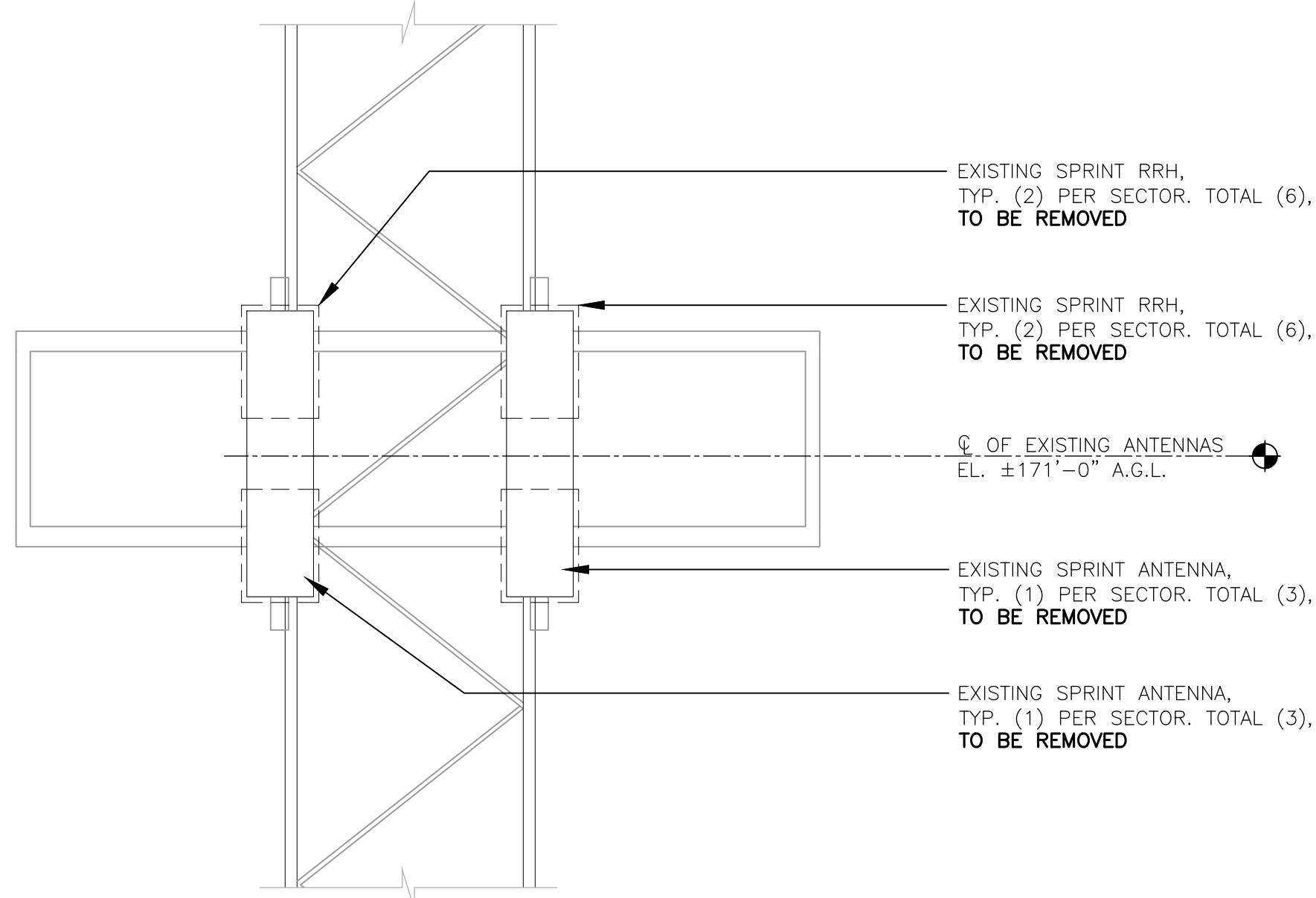


COMPOUND PLAN - PROPOSED

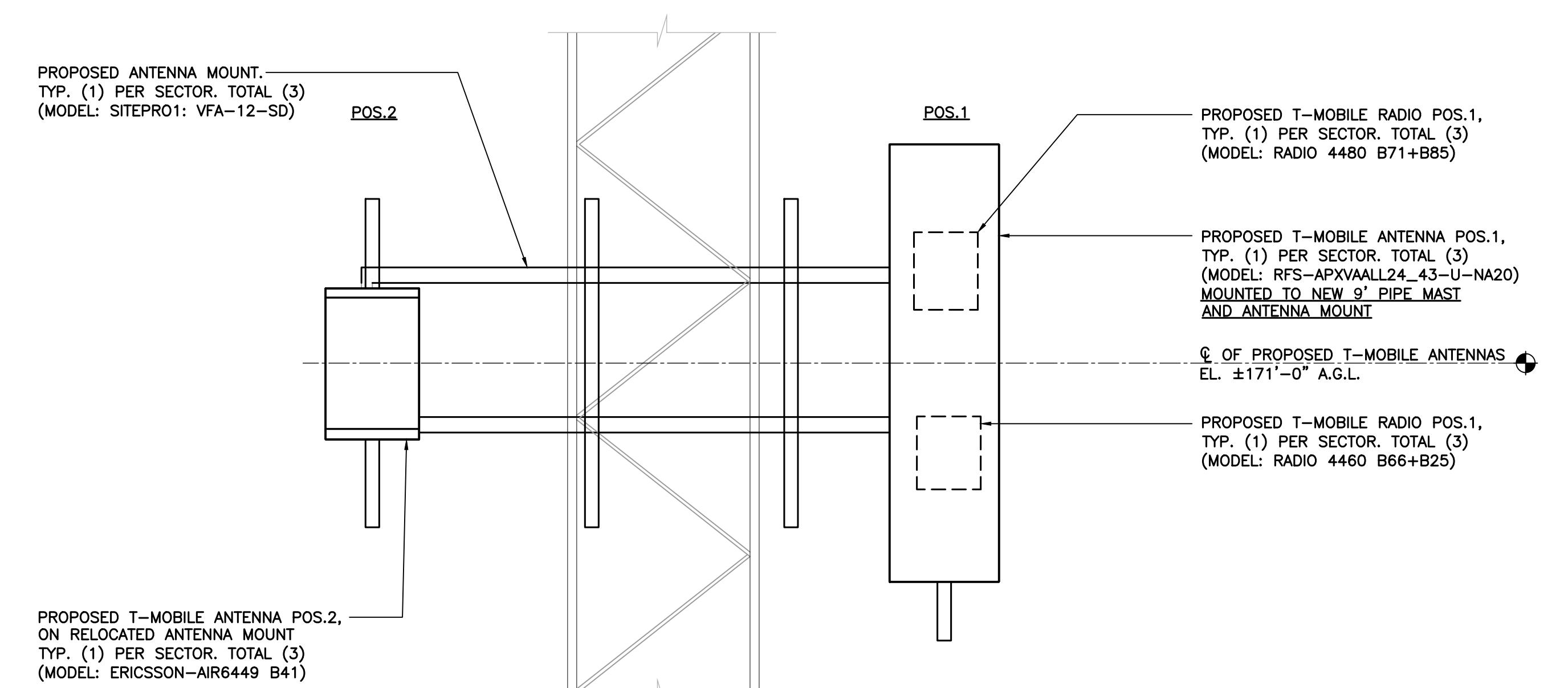
SCALE: 1/4" = 1'



TRUE
NORTH


T-MOBILE NORTHEAST LLC		CENtek engineering Centered on Solutions™	
SPRINT ID: CT33XC553 SITE ID: CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076		(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405 	
DATE:	04/22/21	REV.	DATE
SCALE:	AS NOTED	DRAWN BY	CHK'D BY
JOB NO.	21005.22	DESCRIPTION	
COMPOUND PLAN AND ELEVATION			
Sheet No. 4 of 12			


T-MOBILE NORTHEAST LLC		CENTEK engineering Centered on Solutions™		Sprint T-Mobile		T-Mobile	
SPRINT ID: CT33XC553		(203) 484-5380	(203) 484-5380	Fox	Brantford Road	10/12/21	RTS
SITE ID: CTHA830A		63-2 North Brantford Road	Brantford, CT 06405			09/29/21	RTS
157 HAMPDEN RD						08/30/21	RTS
STAFFORD SPRINGS, CT 06076							
DATE: 04/22/21							
SCALE: AS NOTED							
JOB NO. 21005.22							
EQUIPMENT PLANS							
C-3							
Sheet No. 5							
of 12							


1 ANTENNA PLAN - EXISTING
C-4 SCALE: 1/2" = 1'
TRUE NORTH

2 ANTENNA PLAN - PROPOSED
C-4 SCALE: 1/2" = 1'
TRUE NORTH

1A ANTENNA ELEVATION - EXISTING
C-4 SCALE: 1/2" = 1'
TRUE NORTH

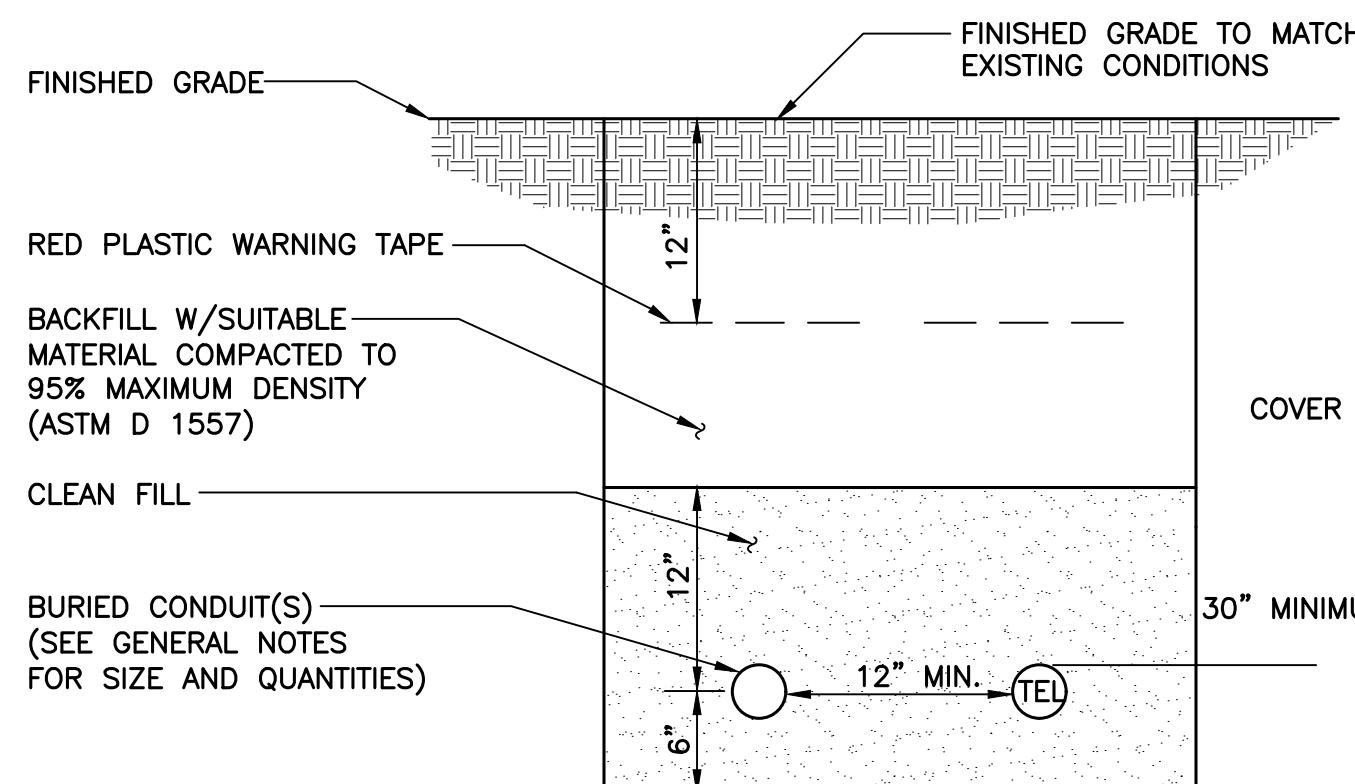
2A ANTENNA ELEVATION - PROPOSED
C-4 SCALE: 1/2" = 1'
TRUE NORTH

PROFESSIONAL ENGINEER SEAL	DATE DRAWN BY	CHKD BY
3 12/07/21 RTS	2 10/12/21 ANC	
2 09/29/21 RTS	0 08/30/21 RTS	
0 08/30/21 RTS		
		REV. DATE

TRANSFERRED TO T-Mobile
Sprint
T-Mobile
T-Mobile

CENTEK engineering
Centered on Solutions™
(203) 484-5880 Fox
(203) 484-5881 Brantford Road
Brantford, CT 06405
www.CentekEng.com

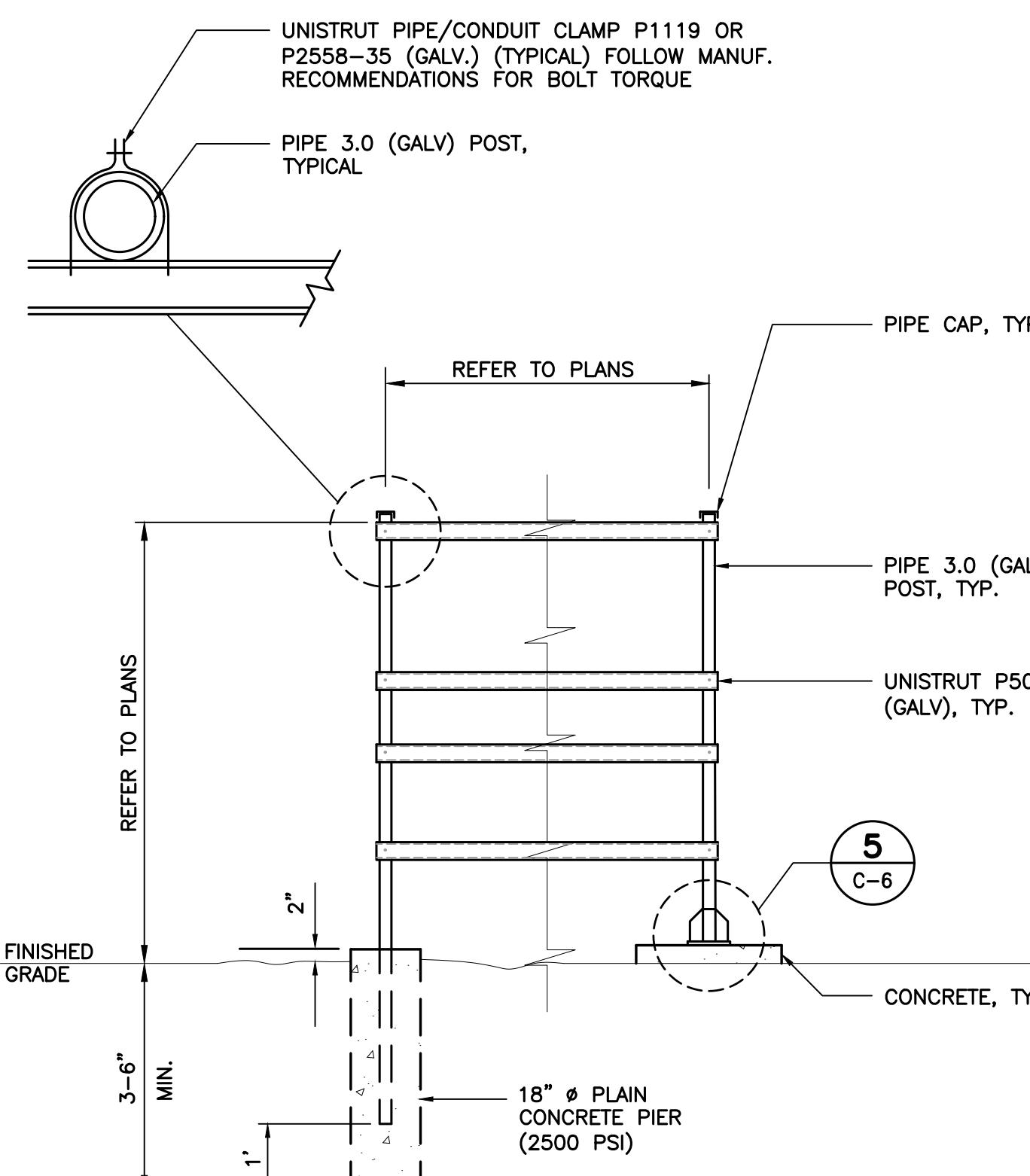
SPRINT ID: CT33XC553
SITE ID: CTHA830A
157 HAMPTON RD
STAFFORD SPRINGS, CT 06076


DATE: 04/22/21
SCALE: AS NOTED
JOB NO. 21005.22

ANTENNA PLANS
AND ELEVATIONS

C-4

Sheet No. 6 of 12

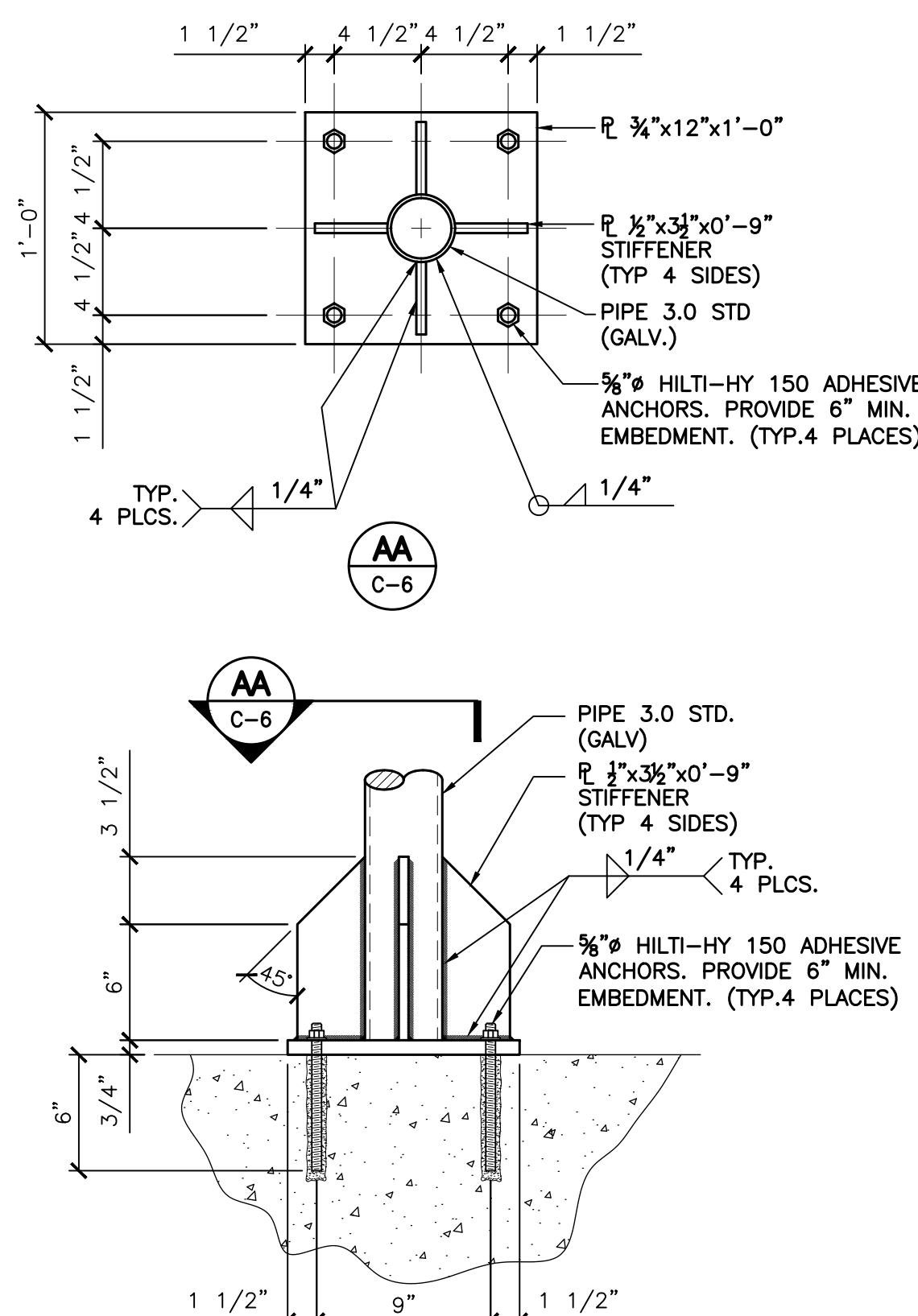


NOTES:

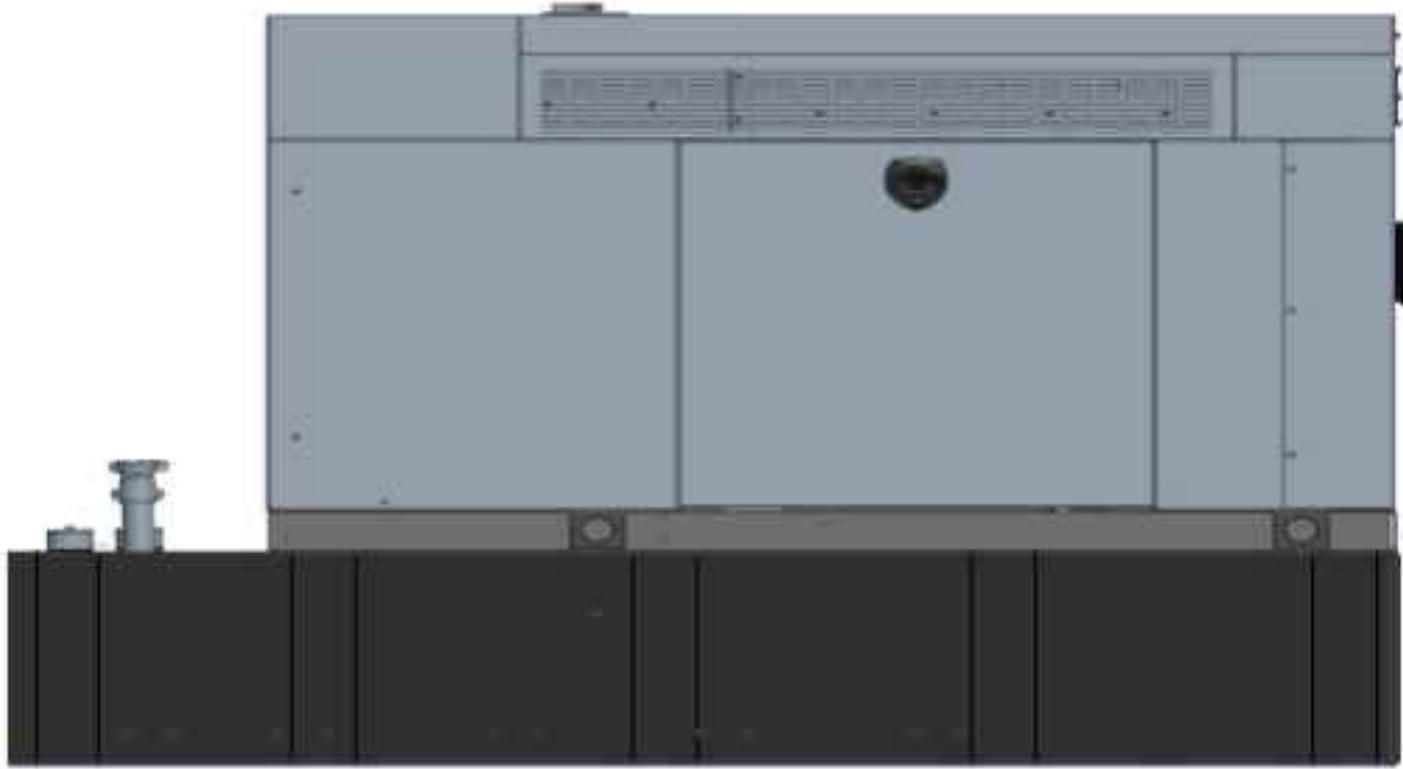
1. THE CLEAN FILL SHALL PASS THROUGH A 3/8" MESH SCREEN AND SHALL NOT CONTAIN SHARP STONES. OTHER BACKFILL SHALL NOT CONTAIN ASHES, CINDERS, SHELLS, FROZEN MATERIAL, LOOSE DEBRIS OR STONES LARGER THAN 2" IN MAXIMUM DIMENSION.
2. WHERE EXISTING UTILITIES ARE LIKELY TO BE ENCOUNTERED, CONTRACTOR SHALL HAND DIG AND PROTECT EXISTING UTILITIES

1 TYPICAL ELECTRICAL/TEL TRENCH DETAILS

4 **TYPICAL FRAME MOUNTING DETAIL**
C-6 SCALE: NOT TO SCALE


SIGN NAME: REGULATORY, NFPA 704 HAZARD ID

DESCRIPTION: MOUNT ON GENERATOR ACCESS DOOR.
CONSULT WITH GENERATOR MANUFACTURER MSDS SHEET FOR BLUE AND RES POSITIONS


NOTES:

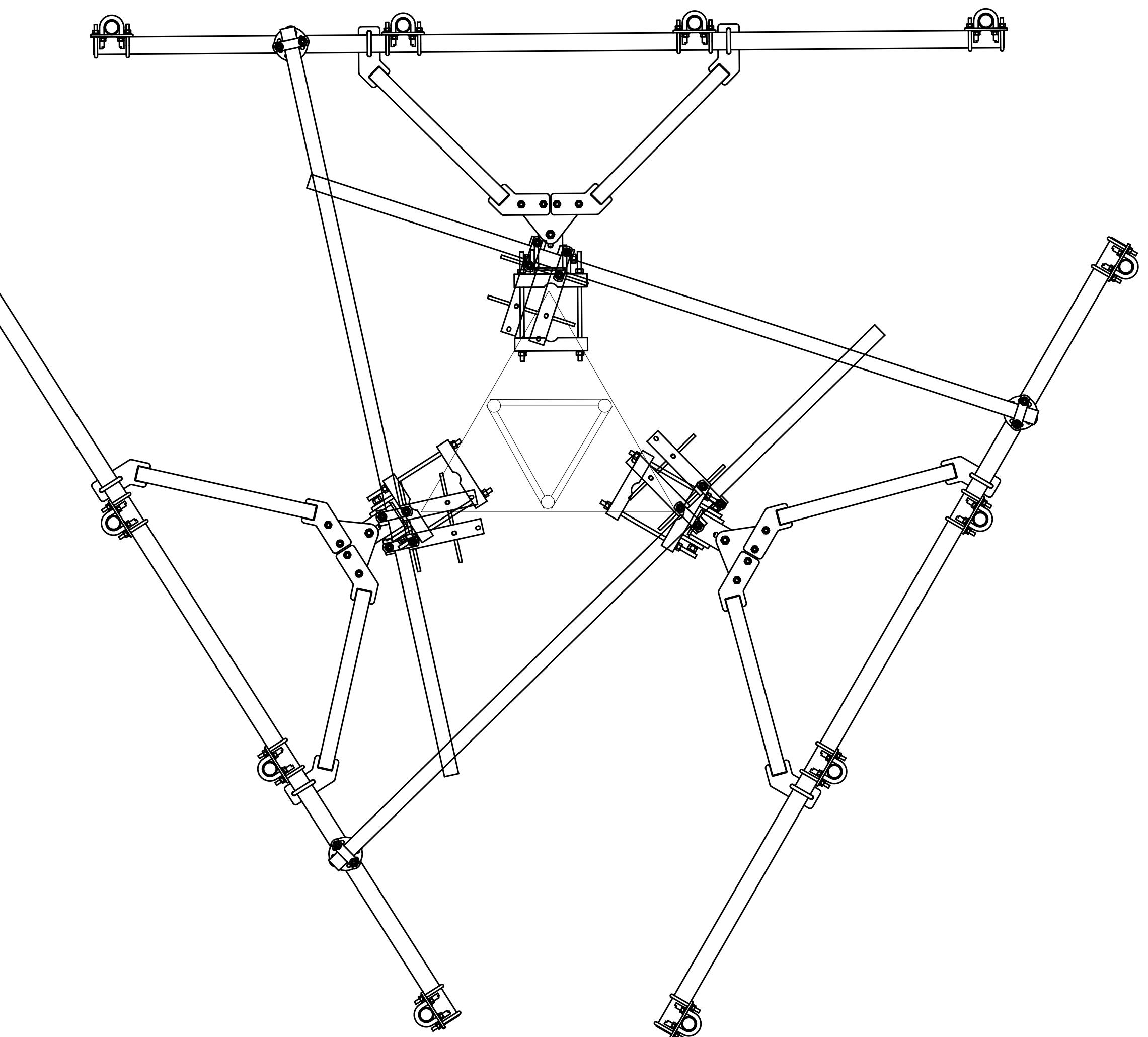
- 1) SIGNS EXPOSED TO WEATHER SHOULD BE CHECKED ANNUALLY FOR READABILITY.
- 2) SIGNS MUST BE UPDATED IF CHEMICAL STORAGE OR HAZARD INFORMATION FOR THE LOCATION CHANGES.
- 3) THE GC MUST REVIEW WITH LOCAL JURISDICTION WHEN FILLING FOR PERMITS, AS EACH JURISDICTION MAY HAVE DIFFERENT REQUIREMENTS AND COMPLY WITH POSTING REQUIREMENTS OR DIRECTIVES FROM THE LOCAL JURISDICTION.

2 NFPA 704 DIAMOND SIGNAGE DETAIL
C-6 SCALE: NOT TO SCALE

5 **FRAME TO CONCRETE CONNECTION DETAIL**
C-6 SCALE: NOT TO SCALE

Backup Power Generator						
Equipment	Power Generated	Fuel	Model Number	Fuel Tank Size (Gal)	Dimensions	Weight
MAKE: GENERAC MODEL: RD48	48 KW, AC	DIESEL	7194	229	103.4" L x 35.0" W x 91.7" H	2915 LBS.

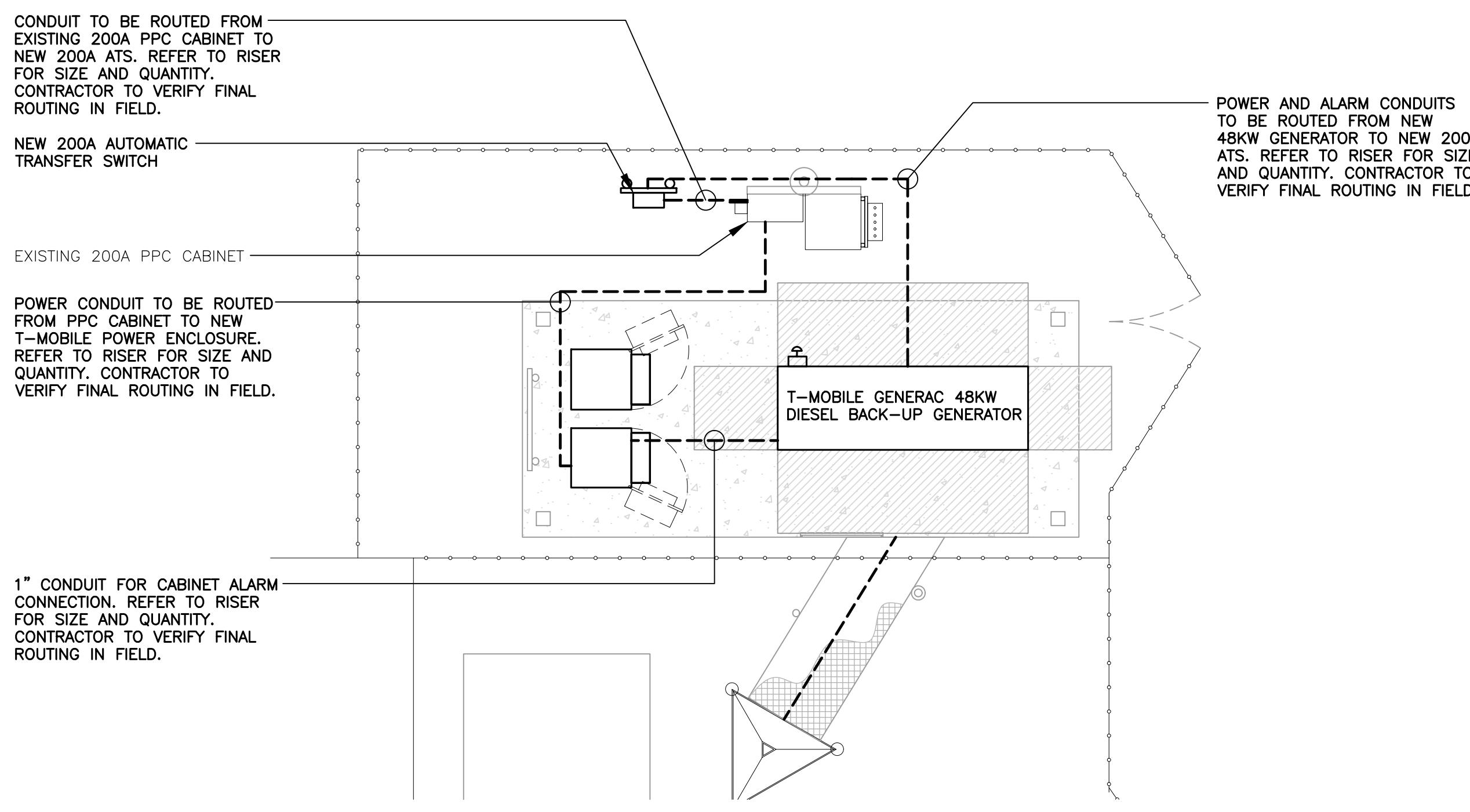
3 **PROPOSED GENERATOR DETAIL**


AUTOMATIC TRANSFER SWITCH					
EQUIPMENT	PHASE	VOLTAGE	ENCLOSURE	AMP	DIMENSIONS
MAKE: GENERAC MODEL: RXSC200A3	1-PHASE	120/240	NEMA-3R	200	17.3" L x 12.5" W

6 AUTOMATIC TRANSFER SWITCH DETAIL

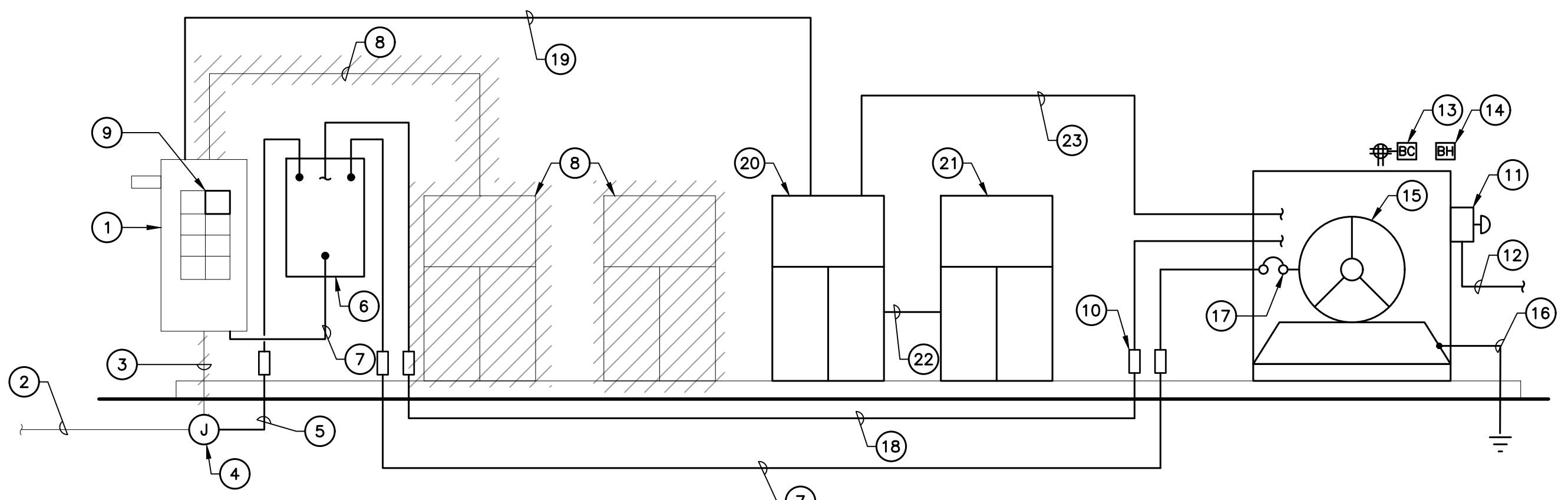
SCALE: NOT TO SCALE

T-MOBILE NORTHEAST LLC		CEN TEK engineering Centered on Solutions	
SPRINT ID: CT33XC553		SITE ID: CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076	
DATE:	04/22/21	(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405	www.CentekEng.com
SCALE:	AS NOTED		
JOB NO.	21005.22		
TYPICAL EQUIPMENT DETAILS			
C-6			



SITEPRO1: VFA-12-SD

1
S-1 **TYPICAL ANTENNA MOUNT DETAIL**
SCALE: NOT TO SCALE


T-MOBILE NORTHEAST LLC		CENTEK engineering Centered on Solutions™		Sprint ▶ T-Mobile		T-Mobile		Professional Engineer Seal	
SPRINT ID: CT33XC553		(203) 484-5880	Fax	3	12/07/21	RTS	TUR	CONSTRUCTION DRAWINGS - REVISED PER GENERATOR LOCATION	
SITE ID: CTHA830A		63-2 North Bradford Road		2	10/12/21	ANC	TUR	CONSTRUCTION DRAWINGS - REVISED COORDINATES PER AIRSPACE REPORT	
157 HAMPDEN RD		Branford, CT 06405		0	09/29/21	RTS	TUR	CONSTRUCTION DRAWINGS - REVISED STRUCTURAL COMPLIANCE NOTE	
STAFFORD SPRINGS, CT 06076					08/30/21	RTS	TUR	CONSTRUCTION DRAWINGS - REVISED PER NEW RFDS	
							REV.	DRAWN BY CHKD BY	DESCRIPTION
							DATE		

DATE:	04/22/21
SCALE:	AS NOTED
JOB NO.	21005.22
STRUCTURAL DETAILS	
S-1	

1 **ELECTRICAL CONDUIT ROUTING PLAN**
E-1 SCALE: $1/4"$ = 1'

RISER DIAGRAM NOTES	RISER DIAGRAM NOTES
<ul style="list-style-type: none"> 1 EXISTING PPC CABINET TO REMAIN. 2 EXISTING POWER CONDUIT AND CONDUCTORS PREVIOUSLY SERVING EXISTING PANEL. 3 SECTION OF CONDUIT AND CONDUCTORS TO BE REMOVED. 4 JUNCTION BOX SIZED PER NEC. 5 EXTEND EXISTING CONDUITS AND CONDUCTORS TO NEW ATS. 6 NEW 200A, 2 SOURCE AUTOMATIC TRANSFER SWITCH. 7 (3) #3/0 AWG, (1) #6 AWG GROUND, 2-1/2" CONDUIT. 8 EXISTING CABINETS AND ASSOCIATED CONDUITS, CONDUCTORS AND CIRCUIT BREAKERS TO BE REMOVED 9 NEW 150A/2P CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 10 EXPANSION COUPLING TYPICAL. 11 REMOTE GENERATOR SHUT OFF SWITCH IN BREAK GLASS ENCLOSURE MOUNTED TO EXTERIOR OF GENERATOR ENCLOSURE PER 2019 NFPA 110 5.6.5.6.1. 12 3/4" CONDUIT AND CONDUCTORS REQUIRED FOR PROPER OPERATION OF EMERGENCY GENERATOR SHUT OFF SWITCH. 	<ul style="list-style-type: none"> 13 GENERATOR BATTERY CHARGER AND CONVENIENCE GFCI OUTLET WIRED TO EXISTING PANEL. OUTLET TO BE MOUNTED IN WEATHERPROOF ENCLOSURE. 14 GENERATOR BLOCK HEATER WIRED TO EXISTING PANEL SERVING T-MOBILE EQUIPMENT. 15 EMERGENCY BACK UP GENERATOR. 16 GENERATOR GROUNDING PER NEC AND MANUFACTURER'S REQUIREMENTS. BOND TO EXISTING GROUNDING SYSTEM. (MINIMUM OF (1) #2 AWG GROUND) 17 GENERATOR OUTPUT CIRCUIT BREAKER. 18 1" CONDUIT FOR GENERATOR CONTROL AND SIGNAL WIRING. 19 (1) 1/0 AWG, (1) #6 AWG GROUND, 1-1/2" CONDUIT. 20 NEW T-MOBILE EQUIPMENT CABINET 21 NEW T-MOBILE BATTERY CABINET 22 DC CONDUIT AND CONDUCTORS FOR BATTERY CABINET CONNECTION PER MANUFACTURERS SPECIFICATIONS. 23 1" CONDUIT FOR CABINET ALARM CONNECTION

2 **ELECTRICAL RISER DIAGRAM**
E-1 SCALE: NOT TO SCALE

DATE: 04/22/21	
SCALE: AS NOTED	
JOB NO. 21005.22	
ELECTRICAL RISER DIAGRAM AND CONDUIT ROUTING	
<p>SPRINT ID: CT33XC553 SITE ID: CTHA830A 157 HAMPTON RD STAFFORD SPRINGS, CT 06076</p>	
<p>Sheet No. 10 of 12</p> <p>1</p>	
<p>PROFESSIONAL ENGINEER SEAL</p> <p>STATE OF CONNECTICUT CHARTERED PROFESSIONAL ENGINEER LICENSING BOARD REGISTRATION NO. 16694 EXPIRES 12/31/2025</p> <p>Sprint part of T-Mobile</p>	
REV.	DATE DRAWN BY CHK'D BY DESCRIPTION
0	08/30/21 RTS TJR CONSTRUCTION DRAWINGS – REVISED PER NEW RFDS
1	09/29/21 RTS TJR CONSTRUCTION DRAWINGS – REVISED STRUCTURAL COMPLIANCE NOTE
2	10/12/21 ANC TJR CONSTRUCTION DRAWINGS – REVISED COORDINATES PER AIRSPACE REPORT
3	02/07/21 RTS TJR CONSTRUCTION DRAWINGS – REVISED PER GENERATOR LOCATION
<p>www.CenteKEng.com</p>	

ELECTRICAL SPECIFICATIONS

SECTION 16010

1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- M. SHOP DRAWINGS:
 - 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
 - 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- N. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

SECTION 16111

1.01. CONDUITS

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

CONDUIT SCHEDULE SECTION 16111			
CONDUIT TYPE	NEC REFERENCE	APPLICATION	MIN. BURIAL DEPTH (PER NEC TABLE 300.5) ²
EMT	ARTICLE 358	INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS	N/A
RMC, RIGID GALV. STEEL	ARTICLE 344, 300.5, 300.50	ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.	6 INCHES
PVC, SCHEDULE 40	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES
PVC, SCHEDULE 80	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES
LIQUID TIGHT FLEX, METAL	ARTICLE 350	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A
FLEX. METAL	ARTICLE 348	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A

¹ PHYSICAL DAMAGE IS SUBJECT TO THE AUTHORITY HAVING JURISDICTION.

² UNDERGROUND CONDUIT INSTALLED UNDER ROADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HAVE MINIMUM DEPTH OF 24".

³ WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2' OF CONCRETE EXTENDING DOWN TO ROCK.

SECTION 16123

1.01. CONDUCTORS

- A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION). 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:

LINE	COLOR	COLOR
A	BLACK	BROWN
B	RED	ORANGE
C	BLUE	YELLOW
N	CONTINUOUS WHITE	GREY
G	CONTINUOUS GREEN	GREEN WITH YELLOW STRIPE

- B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

SECTION 16130

1.01. BOXES

- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

SECTION 16140

1.01. WIRING DEVICES

- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
 - 1. 15 MINUTE TIMER SWITCH - INTERMATIC #FF15M (INTERIOR LIGHTS)
 - 2. DUPLEX RECEPTACLE - P&S #2095 (GFCI) SPECIFICATION GRADE
 - 3. SINGLE POLE SWITCH - P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
 - 4. DUPLEX RECEPTACLE - P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES - ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

SECTION 16170

1.01. DISCONNECT SWITCHES

- A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

SECTION 16190

1.01. SEISMIC RESTRAINT

- A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

SECTION 16195

1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT

- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT.
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

SECTION 16450

1.01. GROUNDS

- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.

C. GROUNDING OF PANELBOARDS:

- 1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT CORROSION.
- 2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).

D. EQUIPMENT GROUNDING CONDUCTOR:

- 1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.
- 3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME RACEWAY(S).

E. CELLULAR GROUNDING SYSTEM:

- CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

- 1. GROUND BARS
- 2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED).
- 3. ANTENNA GROUND CONNECTIONS AND PLATES.

- F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.

- G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

SECTION 16470

1.01. DISTRIBUTION EQUIPMENT

- A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

SECTION 16477

1.01. FUSES

- A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

SECTION 16960

1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

- A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.

TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.

THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:

- 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
- 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
- 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.

SECTION 16961

1.01. TESTS BY CONTRACTOR

- A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.

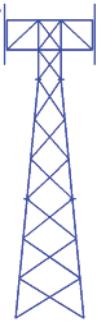
- B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE CONNECTED TO THE PANELBOARDS SO THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.

- C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.

CENTEK
engineering
Centered on Solutions™

SPRINT ID: CT33XC553
SITE ID: CTHA830A
157 HAMPDEN RD
STAFFORD SPRINGS, CT 06076

DATE: 04/22/21
SCALE: AS NOTED
JOB NO.: 21005.22


ELECTRICAL
SPECIFICATION

E-3

FRED A. NUDD CORPORATION

1743 ROUTE 104, BOX 577
ONTARIO, NY 14519
(315) 524-2531 FAX (315) 524-4249
www.nuddtowers.com

Mark LeGault
Cordless Data Transfer, Inc.
600 Old Hartford Road
Colchester, CT 06415
September 6, 2021

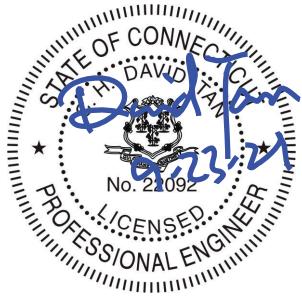
Fred A. Nudd Job Number: 121-23082

Location: 169 Hampden Road, Stafford Springs, CT 06076, Tolland County

Subject: Structural Analysis of a 180 ft Guyed Tower

Fred A. Nudd Corporation has completed a structural analysis of an existing 180 ft guyed tower. The tower was originally designed by Rohn Industries, to #80 specifications. The tower analysis was completed considering TIA-222-G design standards, which is the enforced design standard of the 2015 International Building Code, including 2018 Connecticut State Building Code. Tower dimensions have been taken from drawings by Rohn Industries, File Number 32343PH, dated April 17, 1995. Design criteria per each analysis are noted on the following page. The tower is assumed to be in good, undamaged and equivalent to as new condition and has been maintained / inspected per criteria by TIA-222.

The purpose of this analysis is to determine the structure's ability to support new Sprint equipment installed at a rad center of 171 ft above ground level (AGL). The new equipment to be installed, which included antennas, coax, mounts and associated hardware are listed on the following page in the appurtenance loading table.


Results of the analysis indicate the tower will be able to support the design loads noted in the appurtenance loading table on the following pages when considering the existing and proposed loading. Specific section design loads, capacities and stress ratios are provided on the following pages. Maximum member usage was found to be 93%.

The tower base foundation was analyzed based on dimensions provided by CDT and assumed geotechnical values. The anchors were analyzed by comparing the reactions from this analysis to the original design loads. Based on comparison to the calculated results and comparison to the original design reaction, it is reasonable to expect to expect the foundations have adequate capacity to support the existing and proposed loading noted above.

In conclusion, the tower superstructure can support the existing and proposed equipment noted above. The tower substructure is expected to be able to support this loading as well.

We trust this report satisfies your needs. Please contact us with any questions or concerns regarding this report.

Best Regards,

Fred. A. Nudd Corporation

Code Design Criteria

ANSI/TIA-222-G

Windspeed = 97 mph, 3-Second Gust, V_{asd} / 123 mph, 3-Second Gust, V_{ult}

Structure Class = II

Topographic Category = 1

Exposure = B

Radial Ice = 1.0 inch

Ice Windspeed = 50 mph, 3-Second Gust

$S_s < 1.0$, thus seismic loading does not need to be considered

Appurtenance Loading – Existing and To Remain on Tower

Height (ft)	Appurtenance	Mount	Coax (in)
180	(1) Station Master Antenna	Leg	(2) 7/8 (1) 1-1/4
179	(1) Decibel DB809	Side Arm	(1) 1-1/4
177	(1) Decibel DB809	Boom	(1) 7/8
163	(1) Celwave PD201	Pipe	(1) 7/8
150	--	Frame / Boom	--
127	(1) Decibel DB420	Side Arm	(1) 7/8
83	(1) Celwave PD201	Pipe	(1) 1/2

- Height measurement taken as distance from top of base foundation to center of appurtenance.

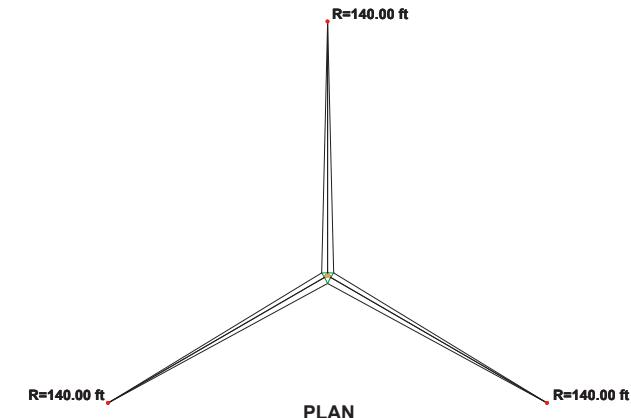
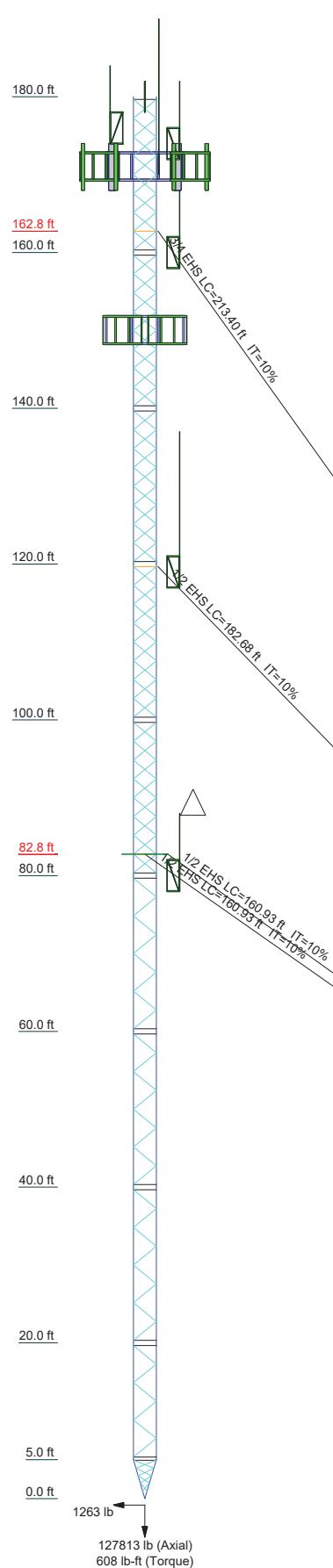
Appurtenance Loading – Final Equipment Configuration For Sprint

Height (ft)	Carrier	Appurtenance	Mount	Coax (in)
171	Sprint	(3) RFS APXVAALL24_43-U-NA20 (3) Ericsson AIR6449 B41 (3) Ericsson Radio 4460 B25+B86 (3) Ericsson Radio 4480 B71 B85	(3) V-Frame	(3) 6/24 4AWG Hybrid

- Height measurement taken as distance from top of base foundation to center of appurtenance.
- The proposed coax can be installed on any tower face.

Maximum Member Usage

Member	Percentage
Leg	78
Diagonal	35
Horizontal	93
Guys	50
Splice/Connection Bolts	93



- Percentage equal to or less than 100% denote member stress levels are satisfactory for loading.
- Percentage greater than 100% indicates member strengthening is required.

Foundation Usage

Design Load	Original Design or Calculated Capacity (kips)	Analysis (kips)	Percentage
Base Axial	150.0 (Calculated)	127.8	88
Anchor Uplift	26.8 (Original Design)	19.4	54
Anchor Shear	32.4 (Original Design)	26.6	61

- The anchor percentages are divided by 1.35 to account for unfactored to factored load comparison
- Percentage less than 100% denote foundation is satisfactory for loading
- Percentage greater than 100% indicates foundation analysis is required

Section	T10	T9	T8	T7	T6	T5	T4	T3	T2	T1
Legs	P2.5x276		P2.5x203		P2.5x276		P2.5x276		P2.5x218	
Leg Grade										
Diagonals										
Diagonal Grade										
Top Girls	N.A.									
Bottom Girls	N.A.									
Top Guy Pull-Offs										
Face Width (ft)										
# Panels @ (ft)	A	6 @ 2.38889								
Weight (lb)	5184.5	430.6	496.1	456.1	568.3	997.5	542.9	499.7	532.0	532.0

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 5/8x4'	180	Ericsson AIR6449 B41	171
Station Master Antenna	180	Ericsson Radio 4460 B25+B66	171
Decibel DB809	179	Ericsson Radio 4480 B71+B85A	171
Side Arm	179	RFS APXVAALL24_43-U-NA20	171
Decibel DB809	177	Ericsson AIR6449 B41	171
Side Arm	177	Ericsson Radio 4460 B25+B66	171
12 ft Boom / Frame (Sprint)	171	Ericsson Radio 4480 B71+B85A	171
12 ft Boom / Frame (Sprint)	171	Celwave PD201	163
12 ft Boom / Frame (Sprint)	171	12 ft Boom / Frame	150
RFS APXVAALL24_43-U-NA20	171	12 ft Boom / Frame	150
Ericsson AIR6449 B41	171	12 ft Boom / Frame	150
Ericsson Radio 4460 B25+B66	171	Decibel DB420	127
Ericsson Radio 4480 B71+B85A	171	Side Arm	127
RFS APXVAALL24_43-U-NA20	171	Celwave PD201	83

SYMBOL LIST

MARK	SIZE	MARK	SIZE
A	5 @ 0.983333		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A500-50	50 ksi	62 ksi	A36M-45	45 ksi	60 ksi

TOWER DESIGN NOTES

1. Tower is located in Tolland County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-G Standard.
3. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft.
8. TOWER RATING: 93.1%

ALL REACTIONS ARE FACTORED

Job: 121-23082	Project: 180 ft Rohn #80 - Stafford Springs CT	App'd:
Client: CDT	Drawn by:	
Code: TIA-222-G	Date: 09/06/21	Scale: NTS
Phone: TIA-222-G	Path:	Dwg No. E-1
FAX:		

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 1 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Tower Input Data

The main tower is a 3x guyed tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 3.42 ft at the top and tapered at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Tolland County, Connecticut.

Basic wind speed of 97 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

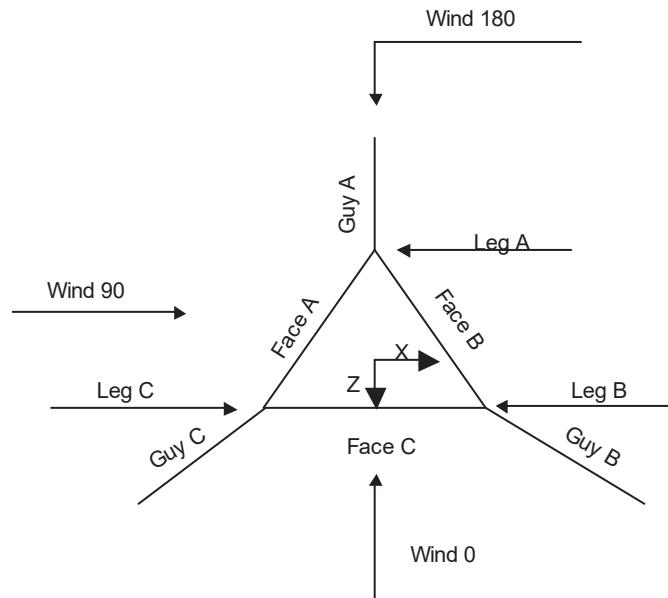
A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

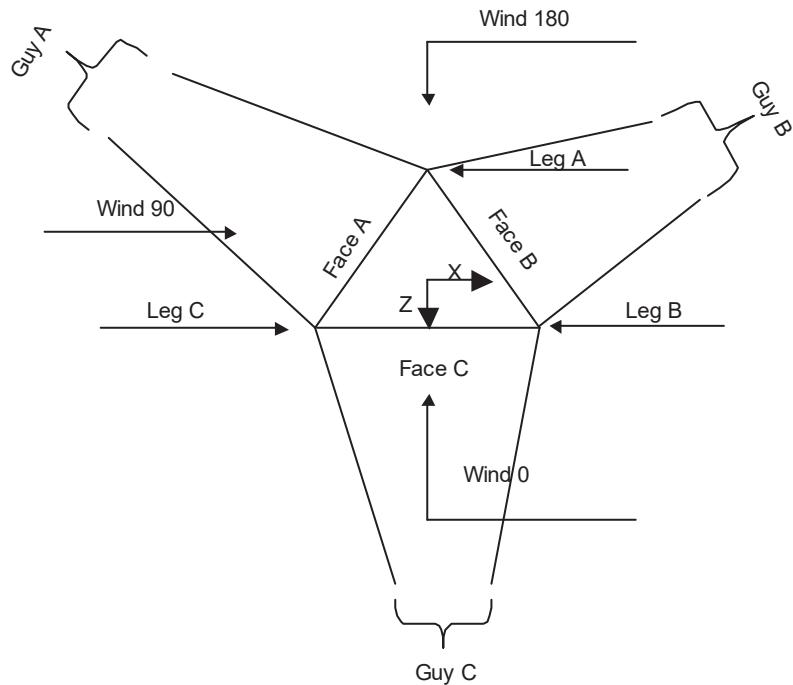
Pressures are calculated at each section.

Stress ratio used in tower member design is 1.


Safety factor used in guy design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options


Consider Moments - Legs	Distribute Leg Loads As Uniform	Use ASCE 10 X-Brace Ly Rules
Consider Moments - Horizontals	Assume Legs Pinned	✓ Calculate Redundant Bracing Forces
Consider Moments - Diagonals	✓ Assume Rigid Index Plate	Ignore Redundant Members in FEA
Use Moment Magnification	✓ Use Clear Spans For Wind Area	SR Leg Bolts Resist Compression
✓ Use Code Stress Ratios	✓ Use Clear Spans For KL/r	✓ All Leg Panels Have Same Allowable
✓ Use Code Safety Factors - Guys	✓ Retension Guys To Initial Tension	Offset Girt At Foundation
Escalate Ice	Bypass Mast Stability Checks	✓ Consider Feed Line Torque
Always Use Max Kz	✓ Use Azimuth Dish Coefficients	Include Angle Block Shear Check
Use Special Wind Profile	✓ Project Wind Area of Appur.	Use TIA-222-G Bracing Resist. Exemption
✓ Include Bolts In Member Capacity	✓ Autocalc Torque Arm Areas	Use TIA-222-G Tension Splice Exemption
✓ Leg Bolts Are At Top Of Section	Add IBC .6D+W Combination	Poles
✓ Secondary Horizontal Braces Leg	Sort Capacity Reports By Component	Include Shear-Torsion Interaction
Use Diamond Inner Bracing (4 Sided)	✓ Triangulate Diamond Inner Bracing	Always Use Sub-Critical Flow
SR Members Have Cut Ends	Treat Feed Line Bundles As Cylinder	Use Top Mounted Sockets
SR Members Are Concentric	Ignore KL/ry For 60 Deg. Angle Legs	Pole Without Linear Attachments
		Pole With Shroud Or No Appurtenances
		Outside and Inside Corner Radii Are Known

Phone: FAX:	Job 121-23082	Page 2 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Corner & Starmount Guyed Tower

Phone: FAX:	Job 121-23082	Page 3 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Face Guyed

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
				ft		ft
T1	180.00-160.00			3.42	1	20.00
T2	160.00-140.00			3.42	1	20.00
T3	140.00-120.00			3.42	1	20.00
T4	120.00-100.00			3.42	1	20.00
T5	100.00-80.00			3.42	1	20.00
T6	80.00-60.00			3.42	1	20.00
T7	60.00-40.00			3.42	1	20.00
T8	40.00-20.00			3.42	1	20.00
T9	20.00-5.00			3.42	1	15.00
T10	5.00-0.00			3.42	1	5.00

Tower Section Geometry (cont'd)

Phone: FAX:	Job	121-23082	Page 4 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client	CDT	Designed by

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End Panels	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft				in	in
T1	180.00-160.00	2.42	CX Brace	No	Yes	4.0000	4.0000
T2	160.00-140.00	2.42	CX Brace	No	Yes	4.0000	4.0000
T3	140.00-120.00	2.42	CX Brace	No	Yes	4.0000	4.0000
T4	120.00-100.00	2.42	CX Brace	No	Yes	4.0000	4.0000
T5	100.00-80.00	2.42	CX Brace	No	Yes	4.0000	4.0000
T6	80.00-60.00	2.42	K Brace Left	No	Yes	4.0000	4.0000
T7	60.00-40.00	2.42	K Brace Left	No	Yes	4.0000	4.0000
T8	40.00-20.00	2.42	K Brace Left	No	Yes	4.0000	4.0000
T9	20.00-5.00	2.39	K Brace Left	No	Yes	4.0000	4.0000
T10	5.00-0.00	0.98	X Brace	No	Yes	1.0000	0.0000

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 180.00-160.00	Pipe	P2x.218	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T2 160.00-140.00	Pipe	P2x.218	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T3 140.00-120.00	Pipe	P2x.218	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T4 120.00-100.00	Pipe	P2x.218	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T5 100.00-80.00	Pipe	P2.5x.276	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T6 80.00-60.00	Pipe	P2.5x.276	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T7 60.00-40.00	Pipe	P2.5x.203	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T8 40.00-20.00	Pipe	P2.5x.203	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T9 20.00-5.00	Pipe	P2.5x.276	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T10 5.00-0.00	Pipe	P2.5x.276	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 180.00-160.00	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T2 160.00-140.00	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T3 140.00-120.00	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T4 120.00-100.00	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T5 100.00-80.00	Pipe	ROHN TS1.5x16 ga	A36M-45	Pipe	ROHN TS1.5x16 ga	A36M-45

tnxTower Phone: FAX:	Job 121-23082								Page 6 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT								Date 19:45:40 09/06/21
	Client CDT								Designed by

Tower Elevation ft	Calc K Single Angles	Calc K Solid Rounds	Legs	K Factors ¹								
				X Brace Diags		K Brace Diags		Single Diags		Girts		Horiz.
				X	Y	X	Y	X	Y	X	Y	Sec. Horiz.
T3	No	Yes	1	1	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1	1	
T4	No	Yes	1	1	1	1	1	1	1	1	1	
120.00-100.00				1	1	1	1	1	1	1	1	
T5	No	Yes	1	1	1	1	1	1	1	1	1	
100.00-80.00				1	1	1	1	1	1	1	1	
T6	No	Yes	1	1	1	1	1	1	1	1	1	
80.00-60.00				1	1	1	1	1	1	1	1	
T7	No	Yes	1	1	1	1	1	1	1	1	1	
60.00-40.00				1	1	1	1	1	1	1	1	
T8	No	Yes	1	1	1	1	1	1	1	1	1	
40.00-20.00				1	1	1	1	1	1	1	1	
T9 20.00-5.00	No	Yes	1	1	1	1	1	1	1	1	1	
T10 5.00-0.00	No	Yes	1	1	1	1	1	1	1	1	1	
				1	1	1	1	1	1	1	1	

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U								
T1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
180.00-160.00														
T2	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
160.00-140.00														
T3	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
140.00-120.00														
T4	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
120.00-100.00														
T5	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
100.00-80.00														
T6 80.00-60.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T7 60.00-40.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T8 40.00-20.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T9 20.00-5.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T10 5.00-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75

tnxTower Phone: FAX:	Job 121-23082	Page 7 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Tower Elevation ft	Redundant Horizontal		Redundant Diagonal		Redundant Sub-Diagonal		Redundant Sub-Horizontal		Redundant Vertical		Redundant Hip Diagonal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00-160.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 160.00-140.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 140.00-120.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 120.00-100.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 100.00-80.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 80.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 60.00-40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 40.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 20.00-5.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 5.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	Bolt Size in	No.										
T1 180.00-160.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 160.00-140.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 140.00-120.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 120.00-100.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 100.00-80.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 80.00-60.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 60.00-40.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 40.00-20.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 20.00-5.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10 5.00-0.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Guy Data

tnxTower Phone: FAX:	Job 121-23082										Page 8 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT										Date 19:45:40 09/06/21
	Client CDT										Designed by

Guy Elevation ft	Guy Grade	Guy Size	Initial Tension lb	% Modulus	Guy Weight ksi	L _u plf	Anchor Radius ft	Anchor Azimuth Adj. °	Anchor Elevation ft	End Fitting Efficiency %	
82.75	EHS	A	1/2	2690.00	10%	21000	0.517	160.79	140.00	0.0000	0.00
		B	1/2	2690.00	10%	21000	0.517	160.79	140.00	0.0000	0.00
		C	1/2	2690.00	10%	21000	0.517	160.79	140.00	0.0000	100%
162.75	EHS	A	3/4	5830.00	10%	19000	1.155	213.21	140.00	0.0000	0.00
		B	3/4	5830.00	10%	19000	1.155	213.21	140.00	0.0000	100%
		C	3/4	5830.00	10%	19000	1.155	213.21	140.00	0.0000	100%
119.667	EHS	A	1/2	2690.00	10%	21000	0.517	182.52	140.00	0.0000	0.00
		B	1/2	2690.00	10%	21000	0.517	182.52	140.00	0.0000	100%
		C	1/2	2690.00	10%	21000	0.517	182.52	140.00	0.0000	100%

Guy Data (cont'd)

Guy Elevation ft	Mount Type	Torque-Arm Spread ft	Torque-Arm Leg Angle °	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
82.75	Torque Arm	7.00	0.0000	Channel	A36 (36 ksi)	Channel	C10x15.3
162.75	Strap						
119.667	Strap						

Guy Data (cont'd)

Guy Elevation ft	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap.	Pull-Off Grade	Pull-Off Type	Pull-Off Size
82.75	A572-50 (50 ksi)	Solid Round			No	A36 (36 ksi)	Equal Angle	L1 1/2x1 1/2x3/16
162.75	A572-50 (50 ksi)	Solid Round			No	A36 (36 ksi)	Flat Bar	3x1/2
119.67	A572-50 (50 ksi)	Solid Round			No	A36 (36 ksi)	Flat Bar	3x1/2

Guy Data (cont'd)

Guy Elevation ft	Cable Weight A lb	Cable Weight B lb	Cable Weight C lb	Cable Weight D lb	Tower Intercept A ft	Tower Intercept B ft	Tower Intercept C ft	Tower Intercept D ft
82.75	83.13	83.13	83.13		2.47	2.47	2.47	
162.75	246.25	246.25	246.25		2.7 sec/pulse 4.44	2.7 sec/pulse 4.44	2.7 sec/pulse 4.44	
119.667	94.37	94.37	94.37		3.6 sec/pulse 3.17	3.6 sec/pulse 3.17	3.6 sec/pulse 3.17	
					3.1 sec/pulse	3.1 sec/pulse	3.1 sec/pulse	

tnxTower Phone: FAX:	Job 121-23082							Page 9 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT							Date 19:45:40 09/06/21
	Client CDT							Designed by

Guy Data (cont'd)

Guy Elevation ft	Calc K Single Angles	Calc K Solid Rounds	Torque Arm		Pull Off		Diagonal	
			K _x	K _y	K _x	K _y	K _x	K _y
82.75	No	No	1	1	1	1	1	1
162.75	No	No			1	1	1	1
119.667	No	No			1	1	1	1

Guy Data (cont'd)

Guy Elevation ft	Torque-Arm				Pull Off				Diagonal			
	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U
82.75	0.7500	2	0.0000	1	0.0000	0	0.0000	1	0.6250	0	0.0000	1
	A325N				A325N				A325N			
162.75	0.6250	0	0.0000	0.75	0.0000	0	0.0000	1	0.6250	0	0.0000	1
	A325N				A325N				A325N			
119.667	0.6250	0	0.0000	0.75	0.0000	0	0.0000	1	0.6250	0	0.0000	1
	A325N				A325N				A325N			

Guy Pressures

Guy Elevation ft	Guy Location	z		q _z psf	q _z Ice psf	Ice Thickness in	
		ft	ft			psf	psf
82.75	A	41.38		16	4	2.0457	
	B	41.38		16	4	2.0457	
	C	41.38		16	4	2.0457	
162.75	A	81.38		19	5	2.1889	
	B	81.38		19	5	2.1889	
	C	81.38		19	5	2.1889	
119.667	A	59.83		17	5	2.1226	
	B	59.83		17	5	2.1226	
	C	59.83		17	5	2.1226	

Guy-Mast Forces (Excluding Wind) - No Ice

Guy Elevation ft	Guy Location	Chord Angle °	Guy Tension Top Bottom lb	F _x	F _y	F _z	M _x	M _y	M _z
				lb	lb	lb	lb-ft	lb-ft	lb-ft
82.75	A	30.9442	2732.74 2690.00	-58.96	1435.72	-2324.46	-2901.19	8254.77	-5025.01
	A	30.9442	2732.74	58.96	1435.72	-2324.46	-2901.19	-8254.77	5025.01

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082								Page 10 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT								Date 19:45:40 09/06/21
	Client CDT								Designed by

<i>Guy Elevation</i>	<i>Guy Location</i>	<i>Chord Angle</i>	<i>Guy Tension Top Bottom lb</i>	<i>F_x</i>	<i>F_y</i>	<i>F_z</i>	<i>M_x</i>	<i>M_y</i>	<i>M_z</i>
<i>ft</i>		°		<i>lb</i>	<i>lb</i>	<i>lb</i>	<i>lb-ft</i>	<i>lb-ft</i>	<i>lb-ft</i>
162.75	B	30.9442	2690.00						
		30.9442	2732.74	2042.53	1435.72	1111.17	5802.38	8254.77	0.00
			2690.00						
		30.9442	2732.74	1983.56	1435.72	1213.30	-2901.19	-8254.77	-5025.01
			2690.00						
	C	30.9442	2732.74	-1983.56	1435.72	1213.30	-2901.19	8254.77	5025.01
		30.9442	2732.74	-2042.53	1435.72	1111.17	5802.38	-8254.77	0.00
			2690.00						
			Sum:	0.00	8614.30	0.00	-0.00	0.00	0.00
			5830.00	6017.80	0.00	4640.87	-3830.96	-9163.58	0.00
119.667	B	49.6993	5830.00						
		49.6993	6017.80	3317.71	4640.87	1915.48	4581.79	0.00	-7935.89
			5830.00						
	C	49.6993	6017.80	-3317.71	4640.87	1915.48	4581.79	-0.00	7935.89
			5830.00						
			Sum:	0.00	13922.62	-0.00	0.00	0.00	0.00
119.667	A	40.9250	2690.00						
		40.9250	2751.81	0.00	1829.52	-2055.57	-3612.45	0.00	0.00
			2690.00						
	B	40.9250	2751.81	1780.17	1829.52	1027.78	1806.22	0.00	-3128.47
			2690.00						
		40.9250	2751.81	-1780.17	1829.52	1027.78	1806.22	-0.00	3128.47
			Sum:	0.00	5488.55	-0.00	0.00	0.00	0.00

Guy-Mast Forces (Excluding Wind) - Ice									
<i>Guy Elevation</i>	<i>Guy Location</i>	<i>Chord Angle</i>	<i>Guy Tension Top Bottom lb</i>	<i>F_x</i>	<i>F_y</i>	<i>F_z</i>	<i>M_x</i>	<i>M_y</i>	<i>M_z</i>
<i>ft</i>		°		<i>lb</i>	<i>lb</i>	<i>lb</i>	<i>lb-ft</i>	<i>lb-ft</i>	<i>lb-ft</i>
82.75	A	30.9442	6764.07	-140.46	3882.09	-5537.35	-7844.65	19664.57	-13587.33
			6195.76						
		30.9442	6764.07	140.46	3882.09	-5537.35	-7844.65	-19664.57	13587.33
			6195.76						
		30.9442	6764.07	4865.72	3882.09	2647.03	15689.29	19664.57	0.00
	B		6195.76						
		30.9442	6764.07	4725.26	3882.09	2890.32	-7844.65	-19664.57	-13587.33
			6195.76						
		30.9442	6764.07	-4725.26	3882.09	2890.32	-7844.65	19664.57	13587.33
			6195.76						
	C	30.9442	6764.07	-4865.72	3882.09	2647.03	15689.29	-19664.57	0.00
			6195.76						
		30.9442	6764.07	4865.72	3882.09	2647.03	15689.29	-19664.57	0.00
			6195.76						
			Sum:	0.00	23292.56	0.00	-0.00	0.00	0.00
162.75	A	49.6993	11880.60	0.00	9458.73	-7188.96	-18676.62	0.00	0.00
			10415.60						
	B	49.6993	11880.60	6225.82	9458.73	3594.48	9338.31	0.00	-16174.43
			10415.60						
119.667	A	49.6993	11880.60	-6225.82	9458.73	3594.48	9338.31	-0.00	16174.43
			10415.60						
	C	49.6993	11880.60	0.00	28376.19	-0.00	0.00	0.00	0.00
			6244.19		5040.37	-5026.50	-9952.40	0.00	0.00

tnxTower Phone: FAX:	Job 121-23082								Page 11 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT								Date 19:45:40 09/06/21
	Client CDT								Designed by

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom lb	F_x	F_y	F_z	M_x	M_y	M_z
ft		°	lb	lb	lb	lb-ft	lb-ft	lb-ft	lb-ft
	B	40.9250	7118.36 6244.19	4353.08	5040.37	2513.25	4976.20	0.00	-8619.04
	C	40.9250	7118.36 6244.19 Sum:	-4353.08 0.00	5040.37	2513.25	4976.20	-0.00	8619.04
				15121.11	-0.00	0.00	0.00	0.00	0.00

Guy-Mast Forces (Excluding Wind) - Service

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom lb	F_x	F_y	F_z	M_x	M_y	M_z
ft		°	lb	lb	lb	lb	lb-ft	lb-ft	lb-ft
82.75	A	30.9442	2732.74 2690.00	-58.96	1435.72	-2324.46	-2901.19	8254.77	-5025.01
	A	30.9442	2732.74 2690.00	58.96	1435.72	-2324.46	-2901.19	-8254.77	5025.01
	B	30.9442	2732.74 2690.00	2042.53	1435.72	1111.17	5802.38	8254.77	0.00
	B	30.9442	2732.74 2690.00	1983.56	1435.72	1213.30	-2901.19	-8254.77	-5025.01
	C	30.9442	2732.74 2690.00	-1983.56	1435.72	1213.30	-2901.19	8254.77	5025.01
	C	30.9442	2732.74 2690.00	-2042.53	1435.72	1111.17	5802.38	-8254.77	0.00
			Sum:	0.00	8614.30	0.00	-0.00	0.00	0.00
162.75	A	49.6993	6017.80 5830.00	0.00	4640.87	-3830.96	-9163.58	0.00	0.00
	B	49.6993	6017.80 5830.00	3317.71	4640.87	1915.48	4581.79	0.00	-7935.89
	C	49.6993	6017.80 5830.00	-3317.71	4640.87	1915.48	4581.79	-0.00	7935.89
			Sum:	0.00	13922.62	-0.00	0.00	0.00	0.00
119.667	A	40.9250	2751.81 2690.00	0.00	1829.52	-2055.57	-3612.45	0.00	0.00
	B	40.9250	2751.81 2690.00	1780.17	1829.52	1027.78	1806.22	0.00	-3128.47
	C	40.9250	2751.81 2690.00	-1780.17	1829.52	1027.78	1806.22	-0.00	3128.47
			Sum:	0.00	5488.55	-0.00	0.00	0.00	0.00

Guy-Tensioning Information

Temperature At Time Of Tensioning																	
Guy Elevation	H	V	0 F		20 F		40 F		60 F		80 F		100 F				
			Initial Tension lb	Intercept ft													
82.75	A	138.02	82.75	3555	1.87	3263	2.04	2975	2.23	2690	2.47	2411	2.75	2140	3.10	1881	3.52
	B	138.02	82.75	3555	1.87	3263	2.04	2975	2.23	2690	2.47	2411	2.75	2140	3.10	1881	3.52
	C	138.02	82.75	3555	1.87	3263	2.04	2975	2.23	2690	2.47	2411	2.75	2140	3.10	1881	3.52

 <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 12 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Temperature At Time Of Tensioning																	
Guy Elevation	H ft	V ft	0 F		20 F		40 F		60 F		80 F		100 F		120 F		
			Initial Tension lb	Intercept ft													
162.75	A	138.03	162.75	6822	3.80	6489	3.99	6158	4.20	5830	4.44	5505	4.69	5185	4.98	4869	5.30
	B	138.03	162.75	6822	3.80	6489	3.99	6158	4.20	5830	4.44	5505	4.69	5185	4.98	4869	5.30
	C	138.03	162.75	6822	3.80	6489	3.99	6158	4.20	5830	4.44	5505	4.69	5185	4.98	4869	5.30
119.667	A	138.03	119.67	3359	2.54	3134	2.72	2911	2.93	2690	3.17	2473	3.44	2260	3.76	2053	4.14
	B	138.03	119.67	3359	2.54	3134	2.72	2911	2.93	2690	3.17	2473	3.44	2260	3.76	2053	4.14
	C	138.03	119.67	3359	2.54	3134	2.72	2911	2.93	2690	3.17	2473	3.44	2260	3.76	2053	4.14

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	# Per Row	# Per Row	Clear Width or Diameter in	Perimeter in	Weight plf
Feedline Ladder (Af)	C	No	No	Ar (CaAa)	171.50 - 6.00	0.1000	0	1	1	3.0000	3.0000	8.40
Safety Line 3/8	A	No	No	Ar (CaAa)	180.00 - 6.00	0.0000	0	1	1	0.3750	0.3750	0.22
4AWG	C	No	No	Ar (CaAa)	171.00 - 6.00	0.1000	0	3	3	1.5500	1.2500	0.66
1 1/4	B	No	No	Ar (CaAa)	180.00 - 6.00	0.1000	0	1	1	1.5500	1.5500	0.66
7/8	B	No	No	Ar (CaAa)	180.00 - 6.00	0.1000	0	2	2	1.1100	1.1100	0.54
1 1/4	B	No	No	Ar (CaAa)	179.00 - 6.00	0.1000	0	1	1	1.5500	1.5500	0.66
7/8	B	No	No	Ar (CaAa)	177.00 - 6.00	0.1000	0	1	1	1.1100	1.1100	0.54
7/8	B	No	No	Ar (CaAa)	163.00 - 6.00	0.1000	0	1	1	1.1100	1.1100	0.54
7/8	B	No	No	Ar (CaAa)	127.00 - 6.00	0.1000	0	1	1	1.1100	1.1100	0.54
1/2	B	No	No	Ar (CaAa)	83.00 - 6.00	0.1000	0	1	1	0.5800	0.5800	0.25

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation ft	Face	A_R ft ²	A_F ft ²	$C_A A_A$ In Face ft ²	$C_A A_A$ Out Face ft ²	Weight lb
T1	180.00-160.00	A	0.000	0.000	0.750	0.000	4.40
		B	0.000	0.000	12.705	0.000	58.14
		C	0.000	0.000	7.575	0.000	118.38
T2	160.00-140.00	A	0.000	0.000	0.750	0.000	4.40
		B	0.000	0.000	15.080	0.000	69.60
		C	0.000	0.000	13.500	0.000	207.60
T3	140.00-120.00	A	0.000	0.000	0.750	0.000	4.40
		B	0.000	0.000	15.857	0.000	73.38
		C	0.000	0.000	13.500	0.000	207.60
T4	120.00-100.00	A	0.000	0.000	0.750	0.000	4.40
		B	0.000	0.000	17.300	0.000	80.40
		C	0.000	0.000	13.500	0.000	207.60
T5	100.00-80.00	A	0.000	0.000	0.750	0.000	4.40
		B	0.000	0.000	17.474	0.000	81.15

Phone: FAX:	Job 121-23082	Page 13 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Tower Section	Tower Elevation ft	Face	A_R ft ²	A_F ft ²	$C_A A_A$ In Face ft ²	$C_A A_A$ Out Face ft ²	Weight lb
T6	80.00-60.00	C	0.000	0.000	13.500	0.000	207.60
		A	0.000	0.000	0.750	0.000	4.40
		B	0.000	0.000	18.460	0.000	85.40
T7	60.00-40.00	C	0.000	0.000	13.500	0.000	207.60
		A	0.000	0.000	0.750	0.000	4.40
		B	0.000	0.000	18.460	0.000	85.40
T8	40.00-20.00	C	0.000	0.000	13.500	0.000	207.60
		A	0.000	0.000	0.750	0.000	4.40
		B	0.000	0.000	18.460	0.000	85.40
T9	20.00-5.00	C	0.000	0.000	13.500	0.000	207.60
		A	0.000	0.000	0.525	0.000	3.08
		B	0.000	0.000	12.922	0.000	59.78
T10	5.00-0.00	C	0.000	0.000	9.450	0.000	145.32
		A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation ft	Face or Leg	Ice Thickness in	A_R ft ²	A_F ft ²	$C_A A_A$ In Face ft ²	$C_A A_A$ Out Face ft ²	Weight lb
T1	180.00-160.00	A	2.356	0.000	0.000	10.175	0.000	161.65
		B		0.000	0.000	60.891	0.000	988.84
		C		0.000	0.000	26.757	0.000	542.23
T2	160.00-140.00	A	2.327	0.000	0.000	10.058	0.000	158.03
		B		0.000	0.000	72.489	0.000	1188.73
		C		0.000	0.000	47.634	0.000	951.92
T3	140.00-120.00	A	2.294	0.000	0.000	9.926	0.000	153.99
		B		0.000	0.000	75.718	0.000	1234.28
		C		0.000	0.000	47.279	0.000	938.14
T4	120.00-100.00	A	2.256	0.000	0.000	9.774	0.000	149.42
		B		0.000	0.000	82.100	0.000	1331.65
		C		0.000	0.000	46.872	0.000	922.43
T5	100.00-80.00	A	2.211	0.000	0.000	9.594	0.000	144.12
		B		0.000	0.000	82.391	0.000	1315.87
		C		0.000	0.000	46.391	0.000	904.09
T6	80.00-60.00	A	2.156	0.000	0.000	9.375	0.000	137.76
		B		0.000	0.000	89.195	0.000	1394.52
		C		0.000	0.000	45.804	0.000	881.90
T7	60.00-40.00	A	2.085	0.000	0.000	9.089	0.000	129.71
		B		0.000	0.000	86.986	0.000	1326.15
		C		0.000	0.000	45.040	0.000	853.49
T8	40.00-20.00	A	1.981	0.000	0.000	8.674	0.000	118.45
		B		0.000	0.000	83.771	0.000	1229.76
		C		0.000	0.000	43.931	0.000	813.03
T9	20.00-5.00	A	1.815	0.000	0.000	5.607	0.000	71.06
		B		0.000	0.000	55.042	0.000	758.28
		C		0.000	0.000	29.513	0.000	525.36
T10	5.00-0.00	A	1.545	0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 14 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Section	Elevation	CP _X	CP _Z	CP _X Ice	CP _Z Ice
	ft	in	in	in	in
T1	180.00-160.00	2.0412	0.2146	1.0873	-0.1960
T2	160.00-140.00	2.2538	1.0865	1.4658	0.2052
T3	140.00-120.00	2.3486	1.0054	1.5807	0.1577
T4	120.00-100.00	2.4452	0.8398	1.7304	0.0607
T5	100.00-80.00	2.3896	0.7955	1.6353	0.0432
T6	80.00-60.00	2.8228	0.7978	3.3469	-0.1024
T7	60.00-40.00	2.8228	0.7978	3.3739	-0.0831
T8	40.00-20.00	2.8228	0.7978	3.4105	-0.0524
T9	20.00-5.00	2.7009	0.7633	3.2969	0.0033
T10	5.00-0.00	0.0000	0.0000	0.0000	0.0000

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
T1	1	Feedline Ladder (Af)	160.00 - 171.50	0.6000	0.2306
T1	2	Safety Line 3/8	160.00 - 180.00	0.6000	0.2306
T1	3	4AWG	160.00 - 171.00	0.6000	0.2306
T1	4		160.00 - 180.00	0.6000	0.2306
T1	5		160.00 - 180.00	0.6000	0.2306
T1	6		160.00 - 179.00	0.6000	0.2306
T1	7		160.00 - 177.00	0.6000	0.2306
T1	8		160.00 - 163.00	0.6000	0.2306
T2	1	Feedline Ladder (Af)	140.00 - 160.00	0.6000	0.2622
T2	2	Safety Line 3/8	140.00 - 160.00	0.6000	0.2622
T2	3	4AWG	140.00 - 160.00	0.6000	0.2622
T2	4		140.00 - 160.00	0.6000	0.2622
T2	5		140.00 - 160.00	0.6000	0.2622
T2	6		140.00 - 160.00	0.6000	0.2622
T2	7		140.00 - 160.00	0.6000	0.2622
T2	8		140.00 - 160.00	0.6000	0.2622
T3	1	Feedline Ladder (Af)	120.00 - 140.00	0.6000	0.2688
T3	2	Safety Line 3/8	120.00 - 140.00	0.6000	0.2688
T3	3	4AWG	120.00 - 140.00	0.6000	0.2688
T3	4		120.00 -	0.6000	0.2688

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 15 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_a No Ice	K_a Ice
T3	5		140.00 120.00 - 140.00	0.6000	0.2688
T3	6		1 1/4 120.00 - 140.00	0.6000	0.2688
T3	7		7/8 120.00 - 140.00	0.6000	0.2688
T3	8		7/8 120.00 - 140.00	0.6000	0.2688
T3	9		7/8 120.00 - 127.00	0.6000	0.2688
T4	1	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.2712
T4	2	Safety Line 3/8	100.00 - 120.00	0.6000	0.2712
T4	3		4AWG 100.00 - 120.00	0.6000	0.2712
T4	4		1 1/4 100.00 - 120.00	0.6000	0.2712
T4	5		7/8 100.00 - 120.00	0.6000	0.2712
T4	6		1 1/4 100.00 - 120.00	0.6000	0.2712
T4	7		7/8 100.00 - 120.00	0.6000	0.2712
T4	8		7/8 100.00 - 120.00	0.6000	0.2712
T4	9		7/8 100.00 - 120.00	0.6000	0.2712
T5	1	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.2579
T5	2	Safety Line 3/8	80.00 - 100.00	0.6000	0.2579
T5	3		4AWG 80.00 - 100.00	0.6000	0.2579
T5	4		1 1/4 80.00 - 100.00	0.6000	0.2579
T5	5		7/8 80.00 - 100.00	0.6000	0.2579
T5	6		1 1/4 80.00 - 100.00	0.6000	0.2579
T5	7		7/8 80.00 - 100.00	0.6000	0.2579
T5	8		7/8 80.00 - 100.00	0.6000	0.2579
T5	9		7/8 80.00 - 100.00	0.6000	0.2579
T5	10		1/2 80.00 - 83.00	0.6000	0.2579
T6	1	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.4759
T6	2	Safety Line 3/8	60.00 - 80.00	0.6000	0.4759
T6	3		4AWG 60.00 - 80.00	0.6000	0.4759
T6	4		1 1/4 60.00 - 80.00	0.6000	0.4759
T6	5		7/8 60.00 - 80.00	0.6000	0.4759
T6	6		1 1/4 60.00 - 80.00	0.6000	0.4759
T6	7		7/8 60.00 - 80.00	0.6000	0.4759
T6	8		7/8 60.00 - 80.00	0.6000	0.4759
T6	9		7/8 60.00 - 80.00	0.6000	0.4759
T6	10		1/2 60.00 - 80.00	0.6000	0.4759
T7	1	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.4858
T7	2	Safety Line 3/8	40.00 - 60.00	0.6000	0.4858
T7	3		4AWG 40.00 - 60.00	0.6000	0.4858
T7	4		1 1/4 40.00 - 60.00	0.6000	0.4858
T7	5		7/8 40.00 - 60.00	0.6000	0.4858
T7	6		1 1/4 40.00 - 60.00	0.6000	0.4858
T7	7		7/8 40.00 - 60.00	0.6000	0.4858
T7	8		7/8 40.00 - 60.00	0.6000	0.4858
T7	9		7/8 40.00 - 60.00	0.6000	0.4858
T7	10		1/2 40.00 - 60.00	0.6000	0.4858
T8	1	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.5004
T8	2	Safety Line 3/8	20.00 - 40.00	0.6000	0.5004
T8	3		4AWG 20.00 - 40.00	0.6000	0.5004

Phone: FAX:	Job 121-23082	Page 16 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
T8	4		1 1/4	20.00 - 40.00	0.6000
T8	5		7/8	20.00 - 40.00	0.6000
T8	6		1 1/4	20.00 - 40.00	0.6000
T8	7		7/8	20.00 - 40.00	0.6000
T8	8		7/8	20.00 - 40.00	0.6000
T8	9		7/8	20.00 - 40.00	0.6000
T8	10		1/2	20.00 - 40.00	0.6000
T9	1	Feedline Ladder (Af)		6.00 - 20.00	0.6000
T9	2	Safety Line 3/8		6.00 - 20.00	0.6000
T9	3		4AWG	6.00 - 20.00	0.6000
T9	4		1 1/4	6.00 - 20.00	0.6000
T9	5		7/8	6.00 - 20.00	0.6000
T9	6		1 1/4	6.00 - 20.00	0.6000
T9	7		7/8	6.00 - 20.00	0.6000
T9	8		7/8	6.00 - 20.00	0.6000
T9	9		7/8	6.00 - 20.00	0.6000
T9	10		1/2	6.00 - 20.00	0.6000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Vert ft ft ft	Azimuth Adjustment °	Placement ft	C _{AA} Front	C _{AA} Side	Weight lb	
Lightning Rod 5/8x4'	C	None		0.0000	180.00	No Ice 1/2" Ice 1" Ice	0.25 0.66 0.97	0.25 0.66 0.97	31.00 33.82 39.29
12 ft Boom / Frame	A	From Leg	2.00 0.00 0.00	0.0000	150.00	No Ice 1/2" Ice 1" Ice	18.00 22.00 26.00	9.00 11.00 13.00	500.00 650.00 800.00
12 ft Boom / Frame	B	From Leg	2.00 0.00 0.00	0.0000	150.00	No Ice 1/2" Ice 1" Ice	18.00 22.00 26.00	9.00 11.00 13.00	500.00 650.00 800.00
12 ft Boom / Frame	C	From Leg	2.00 0.00 0.00	0.0000	150.00	No Ice 1/2" Ice 1" Ice	18.00 22.00 26.00	9.00 11.00 13.00	500.00 650.00 800.00
Station Master Antenna	B	From Leg	0.50 0.00 0.00	0.0000	180.00	No Ice 1/2" Ice 1" Ice	3.64 4.21 4.78	3.64 4.21 4.78	10.20 30.00 50.00
Decibel DB809	C	From Leg	3.00 0.00 0.00	0.0000	179.00	No Ice 1/2" Ice 1" Ice	3.68 4.93 6.21	3.68 4.93 6.21	27.00 60.90 104.80
Side Arm	C	From Leg	2.00 0.00 0.00	0.0000	179.00	No Ice 1/2" Ice 1" Ice	4.97 6.12 7.27	4.97 6.12 7.27	70.00 130.00 190.00
Decibel DB809	B	From Leg	3.00 0.00 0.00	0.0000	177.00	No Ice 1/2" Ice 1" Ice	3.68 4.93 6.21	3.68 4.93 6.21	27.00 60.90 104.80
Side Arm	B	From Leg	2.00 0.00 0.00	0.0000	177.00	No Ice 1/2" Ice 1" Ice	4.97 6.12 7.27	4.97 6.12 7.27	70.00 130.00 190.00
Celwave PD201	B	From Leg	3.00	0.0000	163.00	No Ice	1.18	1.18	4.00

tnxTower Phone: FAX:	Job	121-23082	Page 17 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client	CDT	Designed by

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment	Placement	C _{AA} Front	C _{AA} Side	Weight
				°	ft	ft ²	ft ²	lb
Celwave PD201	B	From Leg	0.00 0.00 3.00 0.00 0.00	0.0000	83.00	1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice	2.09 3.02 1.18 2.09 3.02	16.80 36.90 4.00 16.80 36.90
Decibel DB420	B	From Leg	0.00 0.00 3.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice	5.19 7.19 9.20 5.19 7.19	35.00 83.50 147.80 35.00 83.50
Side Arm	B	From Leg	2.00 0.00 0.00	0.0000	127.00	No Ice 1/2" Ice 1" Ice	4.97 6.12 7.27	70.00 130.00 190.00
12 ft Boom / Frame (Sprint)	A	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	18.00 22.00 26.00	500.00 650.00 800.00
12 ft Boom / Frame (Sprint)	B	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	18.00 22.00 26.00	500.00 650.00 800.00
12 ft Boom / Frame (Sprint)	C	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	18.00 22.00 26.00	500.00 650.00 800.00
RFS APXVAALL24_43-U-NA20	A	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	20.27 20.88 21.50	149.90 262.00 382.00
Ericsson AIR6449 B41	A	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	5.68 5.95 6.22	104.00 143.00 187.00
Ericsson Radio 4460 B25+B66	A	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	2.56 2.74 2.93	109.00 134.00 163.00
Ericsson Radio 4480 B71+B85A	A	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	2.85 3.04 3.24	84.00 106.00 131.00
RFS APXVAALL24_43-U-NA20	B	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	20.27 20.88 21.50	149.90 262.00 382.00
Ericsson AIR6449 B41	B	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	5.68 5.95 6.22	104.00 143.00 187.00
Ericsson Radio 4460 B25+B66	B	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	2.56 2.74 2.93	109.00 134.00 163.00
Ericsson Radio 4480 B71+B85A	B	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	2.85 3.04 3.24	84.00 106.00 131.00
RFS APXVAALL24_43-U-NA20	C	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	20.27 20.88 21.50	149.90 262.00 382.00
Ericsson AIR6449 B41	C	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	5.68 5.95 6.22	104.00 143.00 187.00
Ericsson Radio 4460 B25+B66	C	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	2.56 2.74 2.93	109.00 134.00 163.00
Ericsson Radio 4480 B71+B85A	C	From Leg	2.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	2.85 3.04 3.24	84.00 106.00 131.00

Phone: FAX:	Job 121-23082										Page 18 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT										Date 19:45:40 09/06/21
	Client CDT										Designed by

Tower Pressures - No Ice $G_H = 0.850$

Section Elevation	z	K_Z	q_z	A_G	F_a	A_F	A_R	A_{leg}	Leg %	$C_A A_A$ In Face ft^2	$C_A A_A$ Out Face ft^2
ft	ft		psf	ft^2	ft ²	ft^2	ft^2	ft^2			
T1 180.00-160.00	170.00	1.15	24	72.358	A B C	0.806 16.613 16.613	16.613	7.917	45.45	0.750	0.000
T2 160.00-140.00	150.00	1.11	23	72.358	A B C	0.000 16.613 16.613	16.613	7.917	47.65 47.65 47.65	0.750 0.750 0.750	12.705 15.080 13.500
T3 140.00-120.00	130.00	1.065	22	72.358	A B C	0.000 16.613 16.613	16.613	7.917	47.65 47.65 47.65	0.750 0.750 0.750	0.000 0.000 0.000
T4 120.00-100.00	110.00	1.016	21	72.358	A B C	0.806 16.210 16.210	16.210	7.917	46.53 46.53 46.53	0.750 0.750 0.750	17.300 13.500 13.500
T5 100.00-80.00	90.00	0.959	20	73.192	A B C	0.398 18.167 18.167	18.167	9.583	51.62 51.62 51.62	0.750 0.750 0.750	0.000 0.000 0.000
T6 80.00-60.00	70.00	0.892	18	73.192	A B C	0.000 14.273 14.273	14.273	9.583	67.14 67.14 67.14	0.750 0.750 0.750	0.000 0.000 0.000
T7 60.00-40.00	50.00	0.811	17	73.192	A B C	0.000 14.273 14.273	14.273	9.583	67.14 67.14 67.14	0.750 0.750 0.750	0.000 0.000 0.000
T8 40.00-20.00	30.00	0.701	14	73.192	A B C	0.000 14.273 14.273	14.273	9.583	67.14 67.14 67.14	0.750 0.750 0.750	0.000 0.000 0.000
T9 20.00-5.00	12.50	0.7	14	54.894	A B C	0.000 10.892 10.892	10.892	7.188	65.99 65.99 65.99	0.525 12.922 9.450	0.000 0.000 0.000
T10 5.00-0.00	2.50	0.7	14	9.816	A B C	0.000 4.968 4.968	4.968	2.576	51.85 51.85 51.85	0.000 0.000 0.000	0.000 0.000 0.000

Tower Pressure - With Ice $G_H = 0.850$

Section Elevation	z	K_Z	q_z	t_z	A_G	F_a	A_F	A_R	A_{leg}	Leg %	$C_A A_A$ In Face ft^2	$C_A A_A$ Out Face ft^2
ft	ft		psf	in	ft^2	ft ²	ft^2	ft^2	ft^2			
T1 180.00-160.00	170.00	1.15	6	2.3563	80.213	A B C	0.806 0.806 0.806	60.907 60.907 60.907	23.625	38.28 38.28 38.28	10.175 60.891 26.757	0.000 0.000 0.000
T2 160.00-140.00	150.00	1.11	6	2.3270	80.115	A B C	0.000 0.000 0.000	59.107 59.107 59.107	23.430	39.64 39.64 39.64	10.058 72.489 47.634	0.000 0.000 0.000

Phone: FAX:	Job 121-23082										Page 19 of 48	
	Project 180 ft Rohn #80 - Stafford Springs CT										Date 19:45:40 09/06/21	
	Client CDT										Designed by	

Section Elevation	z	Kz	qz	tz	AG	F a c e	AF	AR	Aleg	Leg %	CAAA In Face ft ²	CAAA Out Face ft ²	
ft	ft		psf	in	ft ²		ft ²	ft ²	ft ²				
140.00-120.00	T3	130.00	1.065	6	2.2939	80.005	A	0.000	58.503	23.209	39.67	9.926	0.000
							B	0.000	58.503		39.67	75.718	0.000
							C	0.000	58.503		39.67	47.279	0.000
120.00-100.00	T4	110.00	1.016	6	2.2559	79.878	A	0.806	57.406	22.956	39.44	9.774	0.000
							B	0.806	57.406		39.44	82.100	0.000
							C	0.806	57.406		39.44	46.872	0.000
T5 100.00-80.00		90.00	0.959	5	2.2111	80.562	A	0.398	59.385	24.324	40.69	9.594	0.000
							B	0.398	59.385		40.69	82.391	0.000
							C	0.398	59.385		40.69	46.391	0.000
T6 80.00-60.00		70.00	0.892	5	2.1562	80.379	A	0.000	42.129	23.958	56.87	9.375	0.000
							B	0.000	42.129		56.87	89.195	0.000
							C	0.000	42.129		56.87	45.804	0.000
T7 60.00-40.00		50.00	0.811	4	2.0849	80.141	A	0.000	41.207	23.482	56.99	9.089	0.000
							B	0.000	41.207		56.99	86.986	0.000
							C	0.000	41.207		56.99	45.040	0.000
T8 40.00-20.00		30.00	0.701	4	1.9810	79.795	A	0.000	39.866	22.790	57.17	8.674	0.000
							B	0.000	39.866		57.17	83.771	0.000
							C	0.000	39.866		57.17	43.931	0.000
T9 20.00-5.00		12.50	0.7	4	1.8150	59.431	A	0.000	28.932	16.262	56.21	5.607	0.000
							B	0.000	28.932		56.21	55.042	0.000
							C	0.000	28.932		56.21	29.513	0.000
T10 5.00-0.00		2.50	0.7	4	1.5452	11.177	A	0.000	12.665	5.345	42.20	0.000	0.000
							B	0.000	12.665		42.20	0.000	0.000
							C	0.000	12.665		42.20	0.000	0.000

Tower Pressure - Service

$$G_H = 0.850$$

Section Elevation	z	Kz	qz	AG	F a c e	AF	AR	Aleg	Leg %	CAAA In Face ft ²	CAAA Out Face ft ²	
ft	ft		psf	ft ²		ft ²	ft ²	ft ²				
180.00-160.00	T1	170.00	1.15	9	72.358	A	0.806	16.613	7.917	45.45	0.750	0.000
						B	0.806	16.613		45.45	12.705	0.000
						C	0.806	16.613		45.45	7.575	0.000
160.00-140.00	T2	150.00	1.11	9	72.358	A	0.000	16.613	7.917	47.65	0.750	0.000
						B	0.000	16.613		47.65	15.080	0.000
						C	0.000	16.613		47.65	13.500	0.000
140.00-120.00	T3	130.00	1.065	8	72.358	A	0.000	16.613	7.917	47.65	0.750	0.000
						B	0.000	16.613		47.65	15.857	0.000
						C	0.000	16.613		47.65	13.500	0.000
120.00-100.00	T4	110.00	1.016	8	72.358	A	0.806	16.210	7.917	46.53	0.750	0.000
						B	0.806	16.210		46.53	17.300	0.000
						C	0.806	16.210		46.53	13.500	0.000
100.00-80.00	T5	90.00	0.959	8	73.192	A	0.398	18.167	9.583	51.62	0.750	0.000
						B	0.398	18.167		51.62	17.474	0.000
						C	0.398	18.167		51.62	13.500	0.000
T6 80.00-60.00		70.00	0.892	7	73.192	A	0.000	14.273	9.583	67.14	0.750	0.000
						B	0.000	14.273		67.14	18.460	0.000
						C	0.000	14.273		67.14	13.500	0.000
T7 60.00-40.00		50.00	0.811	6	73.192	A	0.000	14.273	9.583	67.14	0.750	0.000
						B	0.000	14.273		67.14	18.460	0.000
						C	0.000	14.273		67.14	13.500	0.000
T8 40.00-20.00		30.00	0.701	5	73.192	A	0.000	14.273	9.583	67.14	0.750	0.000

tnxTower Phone: FAX:	Job 121-23082										Page 20 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT										Date 19:45:40 09/06/21
	Client CDT										Designed by

Section Elevation	z	K _Z	q _z	A _G	F _a	A _F	A _R	A _{leg}	Leg %	C _A A _A In Face	C _A A _A Out Face
	ft	ft		psf	ft ²	ft ²	ft ²	ft ²		ft ²	ft ²
T9 20.00-5.00	12.50	0.7	5	54.894	B C A B C	0.000 0.000 0.000 0.000 0.000	14.273 14.273 10.892 10.892 10.892	7.188	67.14 67.14 65.99 65.99 65.99	18.460 13.500 0.525 12.922 9.450	0.000 0.000 0.000 0.000 0.000
T10 5.00-0.00	2.50	0.7	5	9.816	A B C	0.000 0.000 0.000	4.968 4.968 4.968	2.576	51.85 51.85 51.85	0.000 0.000 0.000	0.000 0.000 0.000

Tower Forces - No Ice - Wind Normal To Face

Section Elevation	Add Weight	Self Weight	F _a	e	C _F	q _z	D _F	D _R	A _E	F	w	Ctrl. Face
	ft	lb	lb	ce		psf			ft ²	lb	plf	
T1 180.00-160.00	180.92	552.04	A B C	0.241 0.241 0.241	2.466 2.466 2.466	24	1	1	10.487	770.03	38.50	C
T2 160.00-140.00	281.60	499.67	A B C	0.23 0.23 0.23	2.5 2.5 2.5	23	1	1	9.640	805.24	40.26	C
T3 140.00-120.00	285.38	499.67	A B C	0.23 0.23 0.23	2.5 2.5 2.5	22	1	1	9.640	781.62	39.08	C
T4 120.00-100.00	292.40	542.87	A B C	0.235 0.235 0.235	2.483 2.483 2.483	21	1	1	10.232	783.50	39.18	C
T5 100.00-80.00	293.15	676.58	A B C	0.254 0.254 0.254	2.427 2.427 2.427	20	1	1	11.042	764.79	38.24	C
T6 80.00-60.00	297.40	568.31	A B C	0.195 0.195 0.195	2.613 2.613 2.613	18	1	1	8.187	637.07	31.85	C
T7 60.00-40.00	297.40	456.12	A B C	0.195 0.195 0.195	2.613 2.613 2.613	17	1	1	8.187	578.68	28.93	C
T8 40.00-20.00	297.40	456.12	A B C	0.195 0.195 0.195	2.613 2.613 2.613	14	1	1	8.187	500.09	25.00	C
T9 20.00-5.00	208.18	430.56	A B C	0.198 0.198 0.198	2.601 2.601 2.601	14	1	1	6.254	365.55	24.37	C
T10 5.00-0.00	0.00	181.65	A B C	0.506 0.506 0.506	1.892 1.892 1.892	14	1	1	3.420	78.82	15.76	C
Sum Weight:	2433.83	5184.46								6065.40		

Tower Forces - No Ice - Wind 60 To Face

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082										Page 21 of 48	
	Project 180 ft Rohn #80 - Stafford Springs CT										Date 19:45:40 09/06/21	
	Client CDT										Designed by	

Section Elevation	Add Weight	Self Weight	F a c e	e	C _F	q _z	D _F	D _R	A _E	F	w	Ctrl. Face
ft	lb	lb				psf			ft ²	lb	plf	
T1 180.00-160.00	180.92	552.04	A	0.241	2.466	24	0.8	1	10.326	762.08	38.10	C
			B	0.241	2.466		0.8	1	10.326			
			C	0.241	2.466		0.8	1	10.326			
T2 160.00-140.00	281.60	499.67	A	0.23	2.5	23	0.8	1	9.640	805.24	40.26	C
			B	0.23	2.5		0.8	1	9.640			
			C	0.23	2.5		0.8	1	9.640			
T3 140.00-120.00	285.38	499.67	A	0.23	2.5	22	0.8	1	9.640	781.62	39.08	C
			B	0.23	2.5		0.8	1	9.640			
			C	0.23	2.5		0.8	1	9.640			
T4 120.00-100.00	292.40	542.87	A	0.235	2.483	21	0.8	1	10.071	776.43	38.82	C
			B	0.235	2.483		0.8	1	10.071			
			C	0.235	2.483		0.8	1	10.071			
T5 100.00-80.00	293.15	676.58	A	0.254	2.427	20	0.8	1	10.962	761.57	38.08	C
		TA 320.88	B	0.254	2.427		0.8	1	10.962			
			C	0.254	2.427		0.8	1	10.962			
T6 80.00-60.00	297.40	568.31	A	0.195	2.613	18	0.8	1	8.187	637.07	31.85	C
			B	0.195	2.613		0.8	1	8.187			
			C	0.195	2.613		0.8	1	8.187			
T7 60.00-40.00	297.40	456.12	A	0.195	2.613	17	0.8	1	8.187	578.68	28.93	C
			B	0.195	2.613		0.8	1	8.187			
			C	0.195	2.613		0.8	1	8.187			
T8 40.00-20.00	297.40	456.12	A	0.195	2.613	14	0.8	1	8.187	500.09	25.00	C
			B	0.195	2.613		0.8	1	8.187			
			C	0.195	2.613		0.8	1	8.187			
T9 20.00-5.00	208.18	430.56	A	0.198	2.601	14	0.8	1	6.254	365.55	24.37	C
			B	0.198	2.601		0.8	1	6.254			
			C	0.198	2.601		0.8	1	6.254			
T10 5.00-0.00	0.00	181.65	A	0.506	1.892	14	0.8	1	3.420	78.82	15.76	C
			B	0.506	1.892		0.8	1	3.420			
			C	0.506	1.892		0.8	1	3.420			
Sum Weight:	2433.83	5184.46								6047.16		

Section Elevation	Add Weight	Self Weight	F a c e	e	C _F	q _z	D _F	D _R	A _E	F	w	Ctrl. Face
ft	lb	lb				psf			ft ²	lb	plf	
T1 180.00-160.00	180.92	552.04	A	0.241	2.466	24	0.85	1	10.366	764.07	38.20	C
			B	0.241	2.466		0.85	1	10.366			
			C	0.241	2.466		0.85	1	10.366			
T2 160.00-140.00	281.60	499.67	A	0.23	2.5	23	0.85	1	9.640	805.24	40.26	C
			B	0.23	2.5		0.85	1	9.640			
			C	0.23	2.5		0.85	1	9.640			
T3 140.00-120.00	285.38	499.67	A	0.23	2.5	22	0.85	1	9.640	781.62	39.08	C
			B	0.23	2.5		0.85	1	9.640			
			C	0.23	2.5		0.85	1	9.640			
T4 120.00-100.00	292.40	542.87	A	0.235	2.483	21	0.85	1	10.111	778.20	38.91	C
			B	0.235	2.483		0.85	1	10.111			
			C	0.235	2.483		0.85	1	10.111			
T5 100.00-80.00	293.15	676.58	A	0.254	2.427	20	0.85	1	10.982	762.37	38.12	C
		TA 320.88	B	0.254	2.427		0.85	1	10.982			
			C	0.254	2.427		0.85	1	10.982			
T6	297.40	568.31	A	0.195	2.613	18	0.85	1	8.187	637.07	31.85	C

tnxTower Phone: FAX:	Job 121-23082										Page 22 of 48	
	Project 180 ft Rohn #80 - Stafford Springs CT										Date 19:45:40 09/06/21	
	Client CDT										Designed by	

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C _F	q _z psf	D _F	D _R	A _E	F	w	Ctrl. Face
									ft ²	lb	plf	
80.00-60.00			B	0.195	2.613		0.85	1	8.187			
			C	0.195	2.613		0.85	1	8.187			
T7	297.40	456.12	A	0.195	2.613	17	0.85	1	8.187	578.68	28.93	C
60.00-40.00			B	0.195	2.613		0.85	1	8.187			
			C	0.195	2.613		0.85	1	8.187			
T8	297.40	456.12	A	0.195	2.613	14	0.85	1	8.187	500.09	25.00	C
40.00-20.00			B	0.195	2.613		0.85	1	8.187			
			C	0.195	2.613		0.85	1	8.187			
T9 20.00-5.00	208.18	430.56	A	0.198	2.601	14	0.85	1	6.254	365.55	24.37	C
			B	0.198	2.601		0.85	1	6.254			
			C	0.198	2.601		0.85	1	6.254			
T10 5.00-0.00	0.00	181.65	A	0.506	1.892	14	0.85	1	3.420	78.82	15.76	C
			B	0.506	1.892		0.85	1	3.420			
			C	0.506	1.892		0.85	1	3.420			
Sum Weight:	2433.83	5184.46								6051.72		

Tower Forces - With Ice - Wind Normal To Face

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C _F	q _z psf	D _F	D _R	A _E	F	w	Ctrl. Face
									ft ²	lb	plf	
T1	1692.72	3987.87	A	0.769	1.797	6	1	1	53.310	629.26	31.46	C
180.00-160.00			B	0.769	1.797		1	1	53.310			
			C	0.769	1.797		1	1	53.310			
T2	2298.67	3711.87	A	0.738	1.783	6	1	1	49.558	628.55	31.43	C
160.00-140.00			B	0.738	1.783		1	1	49.558			
			C	0.738	1.783		1	1	49.558			
T3	2326.41	3640.14	A	0.731	1.781	6	1	1	48.771	603.81	30.19	C
140.00-120.00			B	0.731	1.781		1	1	48.771			
			C	0.731	1.781		1	1	48.771			
T4	2403.51	3645.41	A	0.729	1.781	6	1	1	48.557	582.70	29.13	C
120.00-100.00			B	0.729	1.781		1	1	48.557			
			C	0.729	1.781		1	1	48.557			
T5	2364.07	3841.79	A	0.742	1.785	5	1	1	50.377	556.88	27.84	C
100.00-80.00			B	0.742	1.785		1	1	50.377			
			C	0.742	1.785		1	1	50.377			
T6	2414.17	1032.51	A	0.524	1.871	5	1	1	29.420	510.64	25.53	C
80.00-60.00		2529.17	B	0.524	1.871		1	1	29.420			
			C	0.524	1.871		1	1	29.420			
T7	2309.35	2319.20	A	0.514	1.882	4	1	1	28.547	458.41	22.92	C
60.00-40.00			B	0.514	1.882		1	1	28.547			
			C	0.514	1.882		1	1	28.547			
T8	2161.24	2180.93	A	0.5	1.901	4	1	1	27.300	389.15	19.46	C
40.00-20.00			B	0.5	1.901		1	1	27.300			
			C	0.5	1.901		1	1	27.300			
T9 20.00-5.00	1354.71	1601.34	A	0.487	1.918	4	1	1	19.615	271.52	18.10	C
			B	0.487	1.918		1	1	19.615			
			C	0.487	1.918		1	1	19.615			
T10 5.00-0.00	0.00	689.01	A	1	2.1	4	1	1	12.665	75.97*	15.19	C
			B	1	2.1		1	1	12.665			
			C	1	2.1		1	1	12.665			
Sum Weight:	19324.86	29179.25			*2.1A _g limit					4706.88		

tnxTower Phone: FAX:	Job 121-23082										Page 23 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT										Date 19:45:40 09/06/21
	Client CDT										Designed by

Tower Forces - With Ice - Wind 60 To Face

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C _F	q _z psf	D _F	D _R	A _E	F	w	Ctrl. Face
T1 180.00-160.00	1692.72	3987.87	A B C	0.769 0.769 0.769	1.797 1.797 1.797	6	0.8 0.8 0.8	1 1 1	53.149 53.149 53.149	627.72	31.39	C
T2 160.00-140.00	2298.67	3711.87	A B C	0.738 0.738 0.738	1.783 1.783 1.783	6	0.8 0.8 0.8	1 1 1	49.558 49.558 49.558	628.55	31.43	C
T3 140.00-120.00	2326.41	3640.14	A B C	0.731 0.731 0.731	1.781 1.781 1.781	6	0.8 0.8 0.8	1 1 1	48.771 48.771 48.771	603.81	30.19	C
T4 120.00-100.00	2403.51	3645.41	A B C	0.729 0.729 0.729	1.781 1.781 1.781	6	0.8 0.8 0.8	1 1 1	48.396 48.396 48.396	581.35	29.07	C
T5 100.00-80.00	2364.07	3841.79	A TA B	0.742 0.742 0.742	1.785 1.785 1.785	5	0.8 0.8 0.8	1 1 1	50.298 50.298 50.298	556.25	27.81	C
T6 80.00-60.00	2414.17	1032.51 2529.17	C A B C	0.742 0.524 0.524 0.524	1.785 1.871 1.871 1.871	5	0.8 0.8 0.8 0.8	1 1 1 1	50.298 29.420 29.420 29.420	510.64	25.53	C
T7 60.00-40.00	2309.35	2319.20	A B C	0.514 0.514 0.514	1.882 1.882 1.882	4	0.8 0.8 0.8	1 1 1	28.547 28.547 28.547	458.41	22.92	C
T8 40.00-20.00	2161.24	2180.93	A B C	0.5 0.5 0.5	1.901 1.901 1.901	4	0.8 0.8 0.8	1 1 1	27.300 27.300 27.300	389.15	19.46	C
T9 20.00-5.00	1354.71	1601.34	A B C	0.487 0.487 0.487	1.918 1.918 1.918	4	0.8 0.8 0.8	1 1 1	19.615 19.615 19.615	271.52	18.10	C
T10 5.00-0.00	0.00	689.01	A B C	1 1 1	2.1 2.1 2.1	4	0.8 0.8 0.8	1 1 1	12.665 12.665 12.665	75.97*	15.19	C
Sum Weight:	19324.86	29179.25			*2.1A _g limit					4703.37		

Tower Forces - With Ice - Wind 90 To Face

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C _F	q _z psf	D _F	D _R	A _E	F	w	Ctrl. Face
T1 180.00-160.00	1692.72	3987.87	A B C	0.769 0.769 0.769	1.797 1.797 1.797	6	0.85 0.85 0.85	1 1 1	53.190 53.190 53.190	628.11	31.41	C
T2 160.00-140.00	2298.67	3711.87	A B C	0.738 0.738 0.738	1.783 1.783 1.783	6	0.85 0.85 0.85	1 1 1	49.558 49.558 49.558	628.55	31.43	C
T3 140.00-120.00	2326.41	3640.14	A	0.731	1.781	6	0.85	1	48.771	603.81	30.19	C

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082										Page 24 of 48	
	Project 180 ft Rohn #80 - Stafford Springs CT										Date 19:45:40 09/06/21	
	Client CDT										Designed by	

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C _F	q _z psf	D _F	D _R	A _E	F	w	Ctrl. Face
140.00-120.00			B	0.731	1.781		0.85	1	48.771			
			C	0.731	1.781		0.85	1	48.771			
T4	2403.51	3645.41	A	0.729	1.781	6	0.85	1	48.436	581.69	29.08	C
120.00-100.00			B	0.729	1.781		0.85	1	48.436			
			C	0.729	1.781		0.85	1	48.436			
T5	2364.07	3841.79	A	0.742	1.785	5	0.85	1	50.317	556.41	27.82	C
100.00-80.00			TA						50.317			
			B	0.742	1.785		0.85	1	50.317			
		1032.51	C	0.742	1.785		0.85	1	50.317			
T6	2414.17	2529.17	A	0.524	1.871	5	0.85	1	29.420	510.64	25.53	C
80.00-60.00			B	0.524	1.871		0.85	1	29.420			
			C	0.524	1.871		0.85	1	29.420			
T7	2309.35	2319.20	A	0.514	1.882	4	0.85	1	28.547	458.41	22.92	C
60.00-40.00			B	0.514	1.882		0.85	1	28.547			
			C	0.514	1.882		0.85	1	28.547			
T8	2161.24	2180.93	A	0.5	1.901	4	0.85	1	27.300	389.15	19.46	C
40.00-20.00			B	0.5	1.901		0.85	1	27.300			
			C	0.5	1.901		0.85	1	27.300			
T9 20.00-5.00	1354.71	1601.34	A	0.487	1.918	4	0.85	1	19.615	271.52	18.10	C
			B	0.487	1.918		0.85	1	19.615			
			C	0.487	1.918		0.85	1	19.615			
T10 5.00-0.00	0.00	689.01	A	1	2.1	4	0.85	1	12.665	75.97*	15.19	C
			B	1	2.1		0.85	1	12.665			
			C	1	2.1		0.85	1	12.665			
Sum Weight:	19324.86	29179.25			*2.1A _g limit					4704.25		

Tower Forces - Service - Wind Normal To Face

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C _F	q _z psf	D _F	D _R	A _E	F	w	Ctrl. Face
T1	180.92	552.04	A	0.241	2.466	9	1	1	10.487	294.62	14.73	C
180.00-160.00			B	0.241	2.466		1	1	10.487			
			C	0.241	2.466		1	1	10.487			
T2	281.60	499.67	A	0.23	2.5	9	1	1	9.640	308.10	15.40	C
160.00-140.00			B	0.23	2.5		1	1	9.640			
			C	0.23	2.5		1	1	9.640			
T3	285.38	499.67	A	0.23	2.5	8	1	1	9.640	299.06	14.95	C
140.00-120.00			B	0.23	2.5		1	1	9.640			
			C	0.23	2.5		1	1	9.640			
T4	292.40	542.87	A	0.235	2.483	8	1	1	10.232	299.78	14.99	C
120.00-100.00			B	0.235	2.483		1	1	10.232			
			C	0.235	2.483		1	1	10.232			
T5	293.15	676.58	A	0.254	2.427	8	1	1	11.042	292.62	14.63	C
100.00-80.00		TA 320.88	B	0.254	2.427		1	1	11.042			
			C	0.254	2.427		1	1	11.042			
T6	297.40	568.31	A	0.195	2.613	7	1	1	8.187	243.75	12.19	C
80.00-60.00			B	0.195	2.613		1	1	8.187			
			C	0.195	2.613		1	1	8.187			
T7	297.40	456.12	A	0.195	2.613	6	1	1	8.187	221.41	11.07	C
60.00-40.00			B	0.195	2.613		1	1	8.187			
			C	0.195	2.613		1	1	8.187			
T8	297.40	456.12	A	0.195	2.613	5	1	1	8.187	191.34	9.57	C

tnxTower Phone: FAX:	Job 121-23082										Page 25 of 48	
	Project 180 ft Rohn #80 - Stafford Springs CT										Date 19:45:40 09/06/21	
	Client CDT										Designed by	

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C _F	q _z psf	D _F	D _R	A _E	F	w	Ctrl. Face
40.00-20.00			B	0.195	2.613		1	1	8.187			
			C	0.195	2.613		1	1	8.187			
T9 20.00-5.00	208.18	430.56	A	0.198	2.601	5	1	1	6.254	139.86	9.32	C
			B	0.198	2.601		1	1	6.254			
			C	0.198	2.601		1	1	6.254			
T10 5.00-0.00	0.00	181.65	A	0.506	1.892	5	1	1	3.420	30.16	6.03	C
			B	0.506	1.892		1	1	3.420			
			C	0.506	1.892		1	1	3.420			
Sum Weight:	2433.83	5184.46								2320.70		

Tower Forces - Service - Wind 60 To Face

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C _F	q _z psf	D _F	D _R	A _E	F	w	Ctrl. Face
T1 180.00-160.00	180.92	552.04	A	0.241	2.466	9	0.8	1	10.326	291.58	14.58	C
			B	0.241	2.466		0.8	1	10.326			
			C	0.241	2.466		0.8	1	10.326			
T2 160.00-140.00	281.60	499.67	A	0.23	2.5	9	0.8	1	9.640	308.10	15.40	C
			B	0.23	2.5		0.8	1	9.640			
			C	0.23	2.5		0.8	1	9.640			
T3 140.00-120.00	285.38	499.67	A	0.23	2.5	8	0.8	1	9.640	299.06	14.95	C
			B	0.23	2.5		0.8	1	9.640			
			C	0.23	2.5		0.8	1	9.640			
T4 120.00-100.00	292.40	542.87	A	0.235	2.483	8	0.8	1	10.071	297.07	14.85	C
			B	0.235	2.483		0.8	1	10.071			
			C	0.235	2.483		0.8	1	10.071			
T5 100.00-80.00	293.15	676.58	A	0.254	2.427	8	0.8	1	10.962	291.38	14.57	C
		TA 320.88	B	0.254	2.427		0.8	1	10.962			
			C	0.254	2.427		0.8	1	10.962			
T6 80.00-60.00	297.40	568.31	A	0.195	2.613	7	0.8	1	8.187	243.75	12.19	C
			B	0.195	2.613		0.8	1	8.187			
			C	0.195	2.613		0.8	1	8.187			
T7 60.00-40.00	297.40	456.12	A	0.195	2.613	6	0.8	1	8.187	221.41	11.07	C
			B	0.195	2.613		0.8	1	8.187			
			C	0.195	2.613		0.8	1	8.187			
T8 40.00-20.00	297.40	456.12	A	0.195	2.613	5	0.8	1	8.187	191.34	9.57	C
			B	0.195	2.613		0.8	1	8.187			
			C	0.195	2.613		0.8	1	8.187			
T9 20.00-5.00	208.18	430.56	A	0.198	2.601	5	0.8	1	6.254	139.86	9.32	C
			B	0.198	2.601		0.8	1	6.254			
			C	0.198	2.601		0.8	1	6.254			
T10 5.00-0.00	0.00	181.65	A	0.506	1.892	5	0.8	1	3.420	30.16	6.03	C
			B	0.506	1.892		0.8	1	3.420			
			C	0.506	1.892		0.8	1	3.420			
Sum Weight:	2433.83	5184.46								2313.72		

Tower Forces - Service - Wind 90 To Face

tnxTower Phone: FAX:	Job	121-23082	Page 26 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client	CDT	Designed by

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C _F	q _z psf	D _F	D _R	A _E ft ²	F lb	w plf	Ctrl. Face
T1 180.00-160.00	180.92	552.04	A	0.241	2.466	9	0.85	1	10.366	292.34	14.62	C
			B	0.241	2.466		0.85	1	10.366			
			C	0.241	2.466		0.85	1	10.366			
T2 160.00-140.00	281.60	499.67	A	0.23	2.5	9	0.85	1	9.640	308.10	15.40	C
			B	0.23	2.5		0.85	1	9.640			
			C	0.23	2.5		0.85	1	9.640			
T3 140.00-120.00	285.38	499.67	A	0.23	2.5	8	0.85	1	9.640	299.06	14.95	C
			B	0.23	2.5		0.85	1	9.640			
			C	0.23	2.5		0.85	1	9.640			
T4 120.00-100.00	292.40	542.87	A	0.235	2.483	8	0.85	1	10.111	297.75	14.89	C
			B	0.235	2.483		0.85	1	10.111			
			C	0.235	2.483		0.85	1	10.111			
T5 100.00-80.00	293.15	676.58	A	0.254	2.427	8	0.85	1	10.982	291.69	14.58	C
			B	0.254	2.427		0.85	1	10.982			
			C	0.254	2.427		0.85	1	10.982			
T6 80.00-60.00	297.40	568.31	A	0.195	2.613	7	0.85	1	8.187	243.75	12.19	C
			B	0.195	2.613		0.85	1	8.187			
			C	0.195	2.613		0.85	1	8.187			
T7 60.00-40.00	297.40	456.12	A	0.195	2.613	6	0.85	1	8.187	221.41	11.07	C
			B	0.195	2.613		0.85	1	8.187			
			C	0.195	2.613		0.85	1	8.187			
T8 40.00-20.00	297.40	456.12	A	0.195	2.613	5	0.85	1	8.187	191.34	9.57	C
			B	0.195	2.613		0.85	1	8.187			
			C	0.195	2.613		0.85	1	8.187			
T9 20.00-5.00	208.18	430.56	A	0.198	2.601	5	0.85	1	6.254	139.86	9.32	C
			B	0.198	2.601		0.85	1	6.254			
			C	0.198	2.601		0.85	1	6.254			
T10 5.00-0.00	0.00	181.65	A	0.506	1.892	5	0.85	1	3.420	30.16	6.03	C
			B	0.506	1.892		0.85	1	3.420			
			C	0.506	1.892		0.85	1	3.420			
Sum Weight:			2433.83	5184.46						2315.46		

Force Totals (Does not include forces on guys)

Load Case	Vertical Forces lb	Sum of Forces X lb	Sum of Forces Z lb	Sum of Torques lb-ft
Leg Weight	3291.20			
Bracing Weight	1893.26			
Total Member Self-Weight	5184.46			
Guy Weight	1520.64			
Total Weight	13827.83	0.00	-9176.89	2299.71
Wind 0 deg - No Ice		4581.61	-7935.58	2883.23
Wind 30 deg - No Ice		7931.63	-4579.33	2694.19
Wind 60 deg - No Ice		9163.22	0.00	1783.25
Wind 90 deg - No Ice		7947.42	4588.45	394.49
Wind 120 deg - No Ice		4581.61	7935.58	-1099.98
Wind 150 deg - No Ice		0.00	9158.66	-2299.71
Wind 180 deg - No Ice		-4581.61	7935.58	-2883.23
Wind 210 deg - No Ice		-7947.42	4588.45	-2694.19
Wind 240 deg - No Ice		-9163.22	0.00	-1783.25
Wind 270 deg - No Ice				

tnxTower Phone: FAX:	Job 121-23082	Page 27 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Load Case	Vertical Forces lb	Sum of Forces X lb	Sum of Forces Z lb	Sum of Torques lb-ft
Wind 300 deg - No Ice		-7931.63	-4579.33	-394.49
Wind 330 deg - No Ice		-4581.61	-7935.58	1099.98
Member Ice	23994.80			
Guy Ice	14889.73			
Total Weight Ice	79026.47			
Wind 0 deg - Ice		0.00	-6549.42	1659.20
Wind 30 deg - Ice		3273.39	-5669.68	1919.06
Wind 60 deg - Ice		5668.92	-3272.95	1664.71
Wind 90 deg - Ice		6546.78	0.00	964.30
Wind 120 deg - Ice		5671.96	3274.71	5.50
Wind 150 deg - Ice		3273.39	5669.68	-954.76
Wind 180 deg - Ice		0.00	6545.90	-1659.20
Wind 210 deg - Ice		-3273.39	5669.68	-1919.06
Wind 240 deg - Ice		-5671.96	3274.71	-1664.71
Wind 270 deg - Ice		-6546.78	0.00	-964.30
Wind 300 deg - Ice		-5668.92	-3272.95	-5.50
Wind 330 deg - Ice		-3273.39	-5669.68	954.76
Total Weight	13827.83			
Wind 0 deg - Service		0.00	-3511.19	879.90
Wind 30 deg - Service		1752.98	-3036.25	1103.16
Wind 60 deg - Service		3034.74	-1752.11	1030.83
Wind 90 deg - Service		3505.96	0.00	682.29
Wind 120 deg - Service		3040.78	1755.60	150.94
Wind 150 deg - Service		1752.98	3036.25	-420.87
Wind 180 deg - Service		0.00	3504.22	-879.90
Wind 210 deg - Service		-1752.98	3036.25	-1103.16
Wind 240 deg - Service		-3040.78	1755.60	-1030.83
Wind 270 deg - Service		-3505.96	0.00	-682.29
Wind 300 deg - Service		-3034.74	-1752.11	-150.94
Wind 330 deg - Service		-1752.98	-3036.25	420.87

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy
3	1.2D+1.6W (pattern 1) 0 deg - No Ice+1.0 Guy
4	1.2D+1.6W (pattern 2) 0 deg - No Ice+1.0 Guy
5	1.2D+1.6W (pattern 3) 0 deg - No Ice+1.0 Guy
6	1.2D+1.6W (pattern 4) 0 deg - No Ice+1.0 Guy
7	1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy
8	1.2D+1.6W (pattern 1) 30 deg - No Ice+1.0 Guy
9	1.2D+1.6W (pattern 2) 30 deg - No Ice+1.0 Guy
10	1.2D+1.6W (pattern 3) 30 deg - No Ice+1.0 Guy
11	1.2D+1.6W (pattern 4) 30 deg - No Ice+1.0 Guy
12	1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy
13	1.2D+1.6W (pattern 1) 60 deg - No Ice+1.0 Guy
14	1.2D+1.6W (pattern 2) 60 deg - No Ice+1.0 Guy
15	1.2D+1.6W (pattern 3) 60 deg - No Ice+1.0 Guy
16	1.2D+1.6W (pattern 4) 60 deg - No Ice+1.0 Guy
17	1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy
18	1.2D+1.6W (pattern 1) 90 deg - No Ice+1.0 Guy
19	1.2D+1.6W (pattern 2) 90 deg - No Ice+1.0 Guy

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 28 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

<i>Comb. No.</i>	<i>Description</i>
20	1.2D+1.6W (pattern 3) 90 deg - No Ice+1.0 Guy
21	1.2D+1.6W (pattern 4) 90 deg - No Ice+1.0 Guy
22	1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy
23	1.2D+1.6W (pattern 1) 120 deg - No Ice+1.0 Guy
24	1.2D+1.6W (pattern 2) 120 deg - No Ice+1.0 Guy
25	1.2D+1.6W (pattern 3) 120 deg - No Ice+1.0 Guy
26	1.2D+1.6W (pattern 4) 120 deg - No Ice+1.0 Guy
27	1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy
28	1.2D+1.6W (pattern 1) 150 deg - No Ice+1.0 Guy
29	1.2D+1.6W (pattern 2) 150 deg - No Ice+1.0 Guy
30	1.2D+1.6W (pattern 3) 150 deg - No Ice+1.0 Guy
31	1.2D+1.6W (pattern 4) 150 deg - No Ice+1.0 Guy
32	1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy
33	1.2D+1.6W (pattern 1) 180 deg - No Ice+1.0 Guy
34	1.2D+1.6W (pattern 2) 180 deg - No Ice+1.0 Guy
35	1.2D+1.6W (pattern 3) 180 deg - No Ice+1.0 Guy
36	1.2D+1.6W (pattern 4) 180 deg - No Ice+1.0 Guy
37	1.2 Dead+1.6 Wind 210 deg - No Ice+1.0 Guy
38	1.2D+1.6W (pattern 1) 210 deg - No Ice+1.0 Guy
39	1.2D+1.6W (pattern 2) 210 deg - No Ice+1.0 Guy
40	1.2D+1.6W (pattern 3) 210 deg - No Ice+1.0 Guy
41	1.2D+1.6W (pattern 4) 210 deg - No Ice+1.0 Guy
42	1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy
43	1.2D+1.6W (pattern 1) 240 deg - No Ice+1.0 Guy
44	1.2D+1.6W (pattern 2) 240 deg - No Ice+1.0 Guy
45	1.2D+1.6W (pattern 3) 240 deg - No Ice+1.0 Guy
46	1.2D+1.6W (pattern 4) 240 deg - No Ice+1.0 Guy
47	1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy
48	1.2D+1.6W (pattern 1) 270 deg - No Ice+1.0 Guy
49	1.2D+1.6W (pattern 2) 270 deg - No Ice+1.0 Guy
50	1.2D+1.6W (pattern 3) 270 deg - No Ice+1.0 Guy
51	1.2D+1.6W (pattern 4) 270 deg - No Ice+1.0 Guy
52	1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy
53	1.2D+1.6W (pattern 1) 300 deg - No Ice+1.0 Guy
54	1.2D+1.6W (pattern 2) 300 deg - No Ice+1.0 Guy
55	1.2D+1.6W (pattern 3) 300 deg - No Ice+1.0 Guy
56	1.2D+1.6W (pattern 4) 300 deg - No Ice+1.0 Guy
57	1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy
58	1.2D+1.6W (pattern 1) 330 deg - No Ice+1.0 Guy
59	1.2D+1.6W (pattern 2) 330 deg - No Ice+1.0 Guy
60	1.2D+1.6W (pattern 3) 330 deg - No Ice+1.0 Guy
61	1.2D+1.6W (pattern 4) 330 deg - No Ice+1.0 Guy
62	1.2 Dead+1.0 Ice+1.0 Temp+Guy
63	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
64	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy
65	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
66	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
67	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy
68	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy
69	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
70	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy
71	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy
72	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
73	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy
74	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy
75	Dead+Wind 0 deg - Service+Guy
76	Dead+Wind 30 deg - Service+Guy
77	Dead+Wind 60 deg - Service+Guy
78	Dead+Wind 90 deg - Service+Guy
79	Dead+Wind 120 deg - Service+Guy
80	Dead+Wind 150 deg - Service+Guy
81	Dead+Wind 180 deg - Service+Guy

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 29 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

<i>Comb. No.</i>	<i>Description</i>
82	Dead+Wind 210 deg - Service+Guy
83	Dead+Wind 240 deg - Service+Guy
84	Dead+Wind 270 deg - Service+Guy
85	Dead+Wind 300 deg - Service+Guy
86	Dead+Wind 330 deg - Service+Guy

Maximum Reactions

<i>Location</i>	<i>Condition</i>	<i>Gov. Load Comb.</i>	<i>Vertical lb</i>	<i>Horizontal, X lb</i>	<i>Horizontal, Z lb</i>
Mast	Max. Vert	67	127812.69	-372.44	-236.95
	Max. H _x	50	46621.27	1244.32	26.36
	Max. H _z	5	45775.39	3.46	1260.56
	Max. M _x	1	0.00	2.83	7.68
	Max. M _z	1	0.00	2.83	7.68
	Max. Torsion	37	568.04	533.52	-979.26
	Min. Vert	1	40311.38	2.83	7.68
	Min. H _x	20	46641.77	-1235.38	26.14
	Min. H _z	35	46951.51	5.65	-1244.73
	Min. M _x	1	0.00	2.83	7.68
	Min. M _z	1	0.00	2.83	7.68
Guy C @ 140 ft Elev 0 ft Azimuth 240 deg	Min. Torsion	7	-607.59	-587.97	963.13
	Max. Vert	42	-1606.75	-1918.91	1116.87
Guy B @ 140 ft Elev 0 ft Azimuth 120 deg	Max. H _x	42	-1606.75	-1918.91	1116.87
	Max. H _z	65	-19400.68	-23066.76	13312.58
	Min. Vert	65	-19400.68	-23066.76	13312.58
	Min. H _x	65	-19400.68	-23066.76	13312.58
	Min. H _z	42	-1606.75	-1918.91	1116.87
	Max. Vert	22	-1603.72	1920.09	1109.92
	Max. H _x	73	-19279.91	23004.32	13281.15
	Max. H _z	73	-19279.91	23004.32	13281.15
	Min. Vert	73	-19279.91	23004.32	13281.15
	Min. H _x	22	-1603.72	1920.09	1109.92
Guy A @ 140 ft Elev 0 ft Azimuth 0 deg	Min. H _z	22	-1603.72	1920.09	1109.92
	Max. Vert	2	-1603.67	6.51	-2212.55
	Max. H _x	72	-15290.17	674.57	-21684.68
	Max. H _z	2	-1603.67	6.51	-2212.55
	Min. Vert	69	-19396.42	-4.41	-26610.21
Guy A @ 140 ft Elev 0 ft Azimuth 0 deg	Min. H _x	66	-15309.16	-675.25	-21698.91
	Min. H _z	69	-19396.42	-4.41	-26610.21

Tower Mast Reaction Summary

<i>Load Combination</i>	<i>Vertical lb</i>	<i>Shear_x lb</i>	<i>Shear_z lb</i>	<i>Overturning Moment, M_x lb-ft</i>	<i>Overturning Moment, M_z lb-ft</i>	<i>Torque lb-ft</i>
Dead Only	40311.38	-2.83	-7.68	0.00	0.00	14.84
1.2 Dead+1.6 Wind 0 deg - No	47413.57	-3.64	-1118.03	0.00	0.00	510.01

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 30 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Load Combination	Vertical lb	Shear _x lb	Shear _z lb	Overturning Moment, M _x lb-ft	Overturning Moment, M _z lb-ft	Torque lb-ft
Ice+1.0 Guy						
1.2D+1.6W (pattern 1) 0 deg -	47578.39	-3.43	-441.21	0.00	0.00	506.18
No Ice+1.0 Guy						
1.2D+1.6W (pattern 2) 0 deg -	47109.41	-3.20	-1147.07	0.00	0.00	502.51
No Ice+1.0 Guy						
1.2D+1.6W (pattern 3) 0 deg -	45775.39	-3.46	-1260.56	0.00	0.00	476.40
No Ice+1.0 Guy						
1.2D+1.6W (pattern 4) 0 deg -	44687.58	-3.86	-1235.96	0.00	0.00	509.02
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy	47810.71	587.97	-963.13	0.00	0.00	607.59
1.2D+1.6W (pattern 1) 30 deg -	47836.19	253.58	-375.44	0.00	0.00	592.92
No Ice+1.0 Guy						
1.2D+1.6W (pattern 2) 30 deg -	47509.62	595.49	-982.41	0.00	0.00	591.36
No Ice+1.0 Guy						
1.2D+1.6W (pattern 3) 30 deg -	46607.73	630.22	-1077.76	0.00	0.00	566.45
No Ice+1.0 Guy						
1.2D+1.6W (pattern 4) 30 deg -	45937.89	600.91	-1051.13	0.00	0.00	593.12
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy	47566.08	999.65	-591.35	0.00	0.00	508.26
1.2D+1.6W (pattern 1) 60 deg -	47481.56	416.50	-254.65	0.00	0.00	499.98
No Ice+1.0 Guy						
1.2D+1.6W (pattern 2) 60 deg -	47316.84	1011.95	-598.01	0.00	0.00	496.05
No Ice+1.0 Guy						
1.2D+1.6W (pattern 3) 60 deg -	46948.89	1081.53	-638.00	0.00	0.00	469.91
No Ice+1.0 Guy						
1.2D+1.6W (pattern 4) 60 deg -	46671.52	1037.29	-612.68	0.00	0.00	474.86
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy	47857.22	1114.53	-47.82	0.00	0.00	256.64
1.2D+1.6W (pattern 1) 90 deg -	47890.11	438.16	-51.46	0.00	0.00	255.29
No Ice+1.0 Guy						
1.2D+1.6W (pattern 2) 90 deg -	47561.06	1134.78	-43.56	0.00	0.00	250.28
No Ice+1.0 Guy						
1.2D+1.6W (pattern 3) 90 deg -	46641.77	1235.38	-26.14	0.00	0.00	232.88
No Ice+1.0 Guy						
1.2D+1.6W (pattern 4) 90 deg -	45938.21	1198.42	-14.69	0.00	0.00	217.98
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy	47485.60	953.47	543.81	0.00	0.00	-13.11
1.2D+1.6W (pattern 1) 120 deg -	47655.86	367.57	205.43	0.00	0.00	-14.01
No Ice+1.0 Guy						
1.2D+1.6W (pattern 2) 120 deg -	47182.76	978.94	558.59	0.00	0.00	-13.80
No Ice+1.0 Guy						
1.2D+1.6W (pattern 3) 120 deg -	45833.89	1077.47	615.42	0.00	0.00	-13.56
No Ice+1.0 Guy						
1.2D+1.6W (pattern 4) 120 deg -	44698.81	1056.97	603.43	0.00	0.00	-41.12
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy	47850.32	521.79	978.71	0.00	0.00	-268.59
1.2D+1.6W (pattern 1) 150 deg -	47883.97	180.65	394.75	0.00	0.00	-269.86
No Ice+1.0 Guy						
1.2D+1.6W (pattern 2) 150 deg -	47555.00	535.55	994.27	0.00	0.00	-264.66
No Ice+1.0 Guy						
1.2D+1.6W (pattern 3) 150 deg -	46637.01	601.01	1072.63	0.00	0.00	-246.12
No Ice+1.0 Guy						
1.2D+1.6W (pattern 4) 150 deg -	45937.73	592.38	1034.75	0.00	0.00	-282.28
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy	47569.17	-6.08	1150.46	0.00	0.00	-496.64

tnxTower Phone: FAX:	Job 121-23082	Page 31 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Load Combination	Vertical lb	Shear _x lb	Shear _z lb	Overturning Moment, M_x lb-ft	Overturning Moment, M_z lb-ft	Torque lb-ft
1.2D+1.6W (pattern 1) 180 deg - No Ice+1.0 Guy	47485.54	-5.85	477.09	0.00	0.00	-489.77
1.2D+1.6W (pattern 2) 180 deg - No Ice+1.0 Guy	47320.64	-5.77	1164.45	0.00	0.00	-485.75
1.2D+1.6W (pattern 3) 180 deg - No Ice+1.0 Guy	46951.51	-5.65	1244.73	0.00	0.00	-459.02
1.2D+1.6W (pattern 4) 180 deg - No Ice+1.0 Guy	46675.42	-6.02	1193.82	0.00	0.00	-494.99
1.2 Dead+1.6 Wind 210 deg - No Ice+1.0 Guy	47845.36	-533.52	979.26	0.00	0.00	-568.04
1.2D+1.6W (pattern 1) 210 deg - No Ice+1.0 Guy	47872.13	-191.56	396.01	0.00	0.00	-553.36
1.2D+1.6W (pattern 2) 210 deg - No Ice+1.0 Guy	47545.40	-546.39	995.40	0.00	0.00	-552.02
1.2D+1.6W (pattern 3) 210 deg - No Ice+1.0 Guy	46634.04	-611.89	1073.30	0.00	0.00	-527.87
1.2D+1.6W (pattern 4) 210 deg - No Ice+1.0 Guy	45951.86	-603.71	1034.73	0.00	0.00	-555.20
1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy	47464.39	-963.23	544.12	0.00	0.00	-438.58
1.2D+1.6W (pattern 1) 240 deg - No Ice+1.0 Guy	47628.98	-376.76	206.19	0.00	0.00	-433.72
1.2D+1.6W (pattern 2) 240 deg - No Ice+1.0 Guy	47158.54	-988.11	559.09	0.00	0.00	-430.71
1.2D+1.6W (pattern 3) 240 deg - No Ice+1.0 Guy	45816.17	-1086.73	615.67	0.00	0.00	-406.51
1.2D+1.6W (pattern 4) 240 deg - No Ice+1.0 Guy	44703.77	-1066.11	603.14	0.00	0.00	-412.74
1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy	47831.18	-1123.52	-48.00	0.00	0.00	-217.46
1.2D+1.6W (pattern 1) 270 deg - No Ice+1.0 Guy	47862.93	-447.09	-51.37	0.00	0.00	-215.94
1.2D+1.6W (pattern 2) 270 deg - No Ice+1.0 Guy	47535.11	-1143.69	-43.78	0.00	0.00	-211.16
1.2D+1.6W (pattern 3) 270 deg - No Ice+1.0 Guy	46621.27	-1244.32	-26.36	0.00	0.00	-194.54
1.2D+1.6W (pattern 4) 270 deg - No Ice+1.0 Guy	45928.10	-1207.04	-15.11	0.00	0.00	-180.38
1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy	47539.01	-1008.29	-590.32	0.00	0.00	46.84
1.2D+1.6W (pattern 1) 300 deg - No Ice+1.0 Guy	47454.71	-425.35	-253.57	0.00	0.00	48.28
1.2D+1.6W (pattern 2) 300 deg - No Ice+1.0 Guy	47291.48	-1020.47	-597.28	0.00	0.00	48.19
1.2D+1.6W (pattern 3) 300 deg - No Ice+1.0 Guy	46927.75	-1090.02	-637.39	0.00	0.00	47.01
1.2D+1.6W (pattern 4) 300 deg - No Ice+1.0 Guy	46651.02	-1045.95	-611.73	0.00	0.00	77.47
1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy	47790.83	-596.38	-961.20	0.00	0.00	307.89
1.2D+1.6W (pattern 1) 330 deg - No Ice+1.0 Guy	47821.65	-261.48	-373.60	0.00	0.00	309.16
1.2D+1.6W (pattern 2) 330 deg - No Ice+1.0 Guy	47494.50	-602.96	-980.89	0.00	0.00	303.74
1.2D+1.6W (pattern 3) 330 deg - No Ice+1.0 Guy	46590.96	-638.12	-1076.43	0.00	0.00	284.39
1.2D+1.6W (pattern 4) 330 deg - No Ice+1.0 Guy	45913.99	-609.65	-1049.41	0.00	0.00	319.86
1.2 Dead+1.0 Ice+1.0 Temp+Guy	126383.73	-47.09	-4.80	0.00	0.00	48.49
1.2 Dead+1.0 Wind 0 deg+1.0	127752.64	-51.25	-499.95	0.00	0.00	346.27

Load Combination	Vertical lb	Shear _x lb	Shear _z lb	Overturning Moment, M _x lb-ft	Overturning Moment, M _z lb-ft	Torque lb-ft
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 30 deg+1.0	127306.44	183.17	-436.39	0.00	0.00	368.31
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 60 deg+1.0	126904.46	363.43	-248.71	0.00	0.00	263.91
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 90 deg+1.0	127341.30	435.02	1.39	0.00	0.00	102.57
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy	127812.69	372.44	236.95	0.00	0.00	-32.55
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy	127341.45	199.63	408.68	0.00	0.00	-145.88
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy	126905.73	-52.93	471.58	0.00	0.00	-248.05
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy	127309.79	-305.49	409.08	0.00	0.00	-270.40
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy	127757.07	-477.53	237.66	0.00	0.00	-166.00
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy	127283.92	-538.99	2.42	0.00	0.00	-4.10
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy	126859.72	-466.30	-247.84	0.00	0.00	130.43
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy	127280.79	-285.81	-435.68	0.00	0.00	243.95
Dead+Wind 0 deg - Service+Guy	40482.51	-3.30	-298.33	0.00	0.00	131.91
Dead+Wind 30 deg - Service+Guy	40445.68	140.40	-259.06	0.00	0.00	147.91
Dead+Wind 60 deg - Service+Guy	40413.59	246.30	-152.00	0.00	0.00	123.64
Dead+Wind 90 deg - Service+Guy	40444.98	285.99	-6.76	0.00	0.00	70.98
Dead+Wind 120 deg - Service+Guy	40482.00	248.02	137.35	0.00	0.00	9.10
Dead+Wind 150 deg - Service+Guy	40444.90	142.15	242.25	0.00	0.00	-51.07
Dead+Wind 180 deg - Service+Guy	40413.55	-3.50	280.44	0.00	0.00	-97.99
Dead+Wind 210 deg - Service+Guy	40445.84	-149.13	242.15	0.00	0.00	-114.24
Dead+Wind 240 deg - Service+Guy	40482.85	-254.94	137.25	0.00	0.00	-90.27
Dead+Wind 270 deg - Service+Guy	40444.90	-292.85	-6.94	0.00	0.00	-37.39
Dead+Wind 300 deg - Service+Guy	40412.59	-253.06	-152.18	0.00	0.00	25.19
Dead+Wind 330 deg - Service+Guy	40444.65	-147.14	-259.14	0.00	0.00	84.81

Solution Summary

Load Comb.	Sum of Applied Forces			Sum of Reactions			% Error
	PX lb	PY lb	PZ lb	PX lb	PY lb	PZ lb	
1	0.00	-13827.69	0.00	3.31	13816.34	6.81	0.099%
2	-0.00	-16414.60	-16528.82	-0.01	16414.33	16521.12	0.033%
3	-0.00	-16414.60	-14973.46	-0.01	16414.33	14966.09	0.033%
4	-0.00	-16414.60	-15227.90	-0.01	16414.33	15220.11	0.035%
5	-0.00	-16414.60	-14829.26	-0.02	16414.35	14820.72	0.039%

Load Comb.	Sum of Applied Forces			Sum of Reactions			% Error
	PX lb	PY lb	PZ lb	PX lb	PY lb	PZ lb	
6	-0.00	-16414.60	-14534.27	-0.06	16414.40	14518.74	0.071%
7	8251.08	-16289.13	-14291.29	-8252.05	16288.88	14282.57	0.038%
8	7473.40	-16289.13	-12944.31	-7474.31	16288.88	12936.08	0.037%
9	7603.40	-16289.13	-13169.47	-7604.41	16288.87	13160.49	0.041%
10	7401.30	-16289.13	-12819.43	-7402.46	16288.91	12809.59	0.045%
11	7255.95	-16289.13	-12567.67	-7256.41	16288.93	12552.41	0.070%
12	14289.10	-16163.65	-8249.82	-14273.11	16163.34	8241.58	0.078%
13	12942.13	-16163.65	-7472.14	-12929.70	16163.37	7465.87	0.063%
14	13168.89	-16163.65	-7603.06	-13154.33	16163.37	7595.61	0.074%
15	12817.24	-16163.65	-7400.04	-12799.31	16163.36	7390.45	0.093%
16	12566.73	-16163.65	-7255.40	-12547.33	16163.37	7244.66	0.102%
17	16502.16	-16289.13	0.00	-16494.77	16288.87	5.35	0.039%
18	14946.80	-16289.13	0.00	-14939.84	16288.87	5.04	0.039%
19	15206.80	-16289.13	0.00	-15199.97	16288.89	4.97	0.038%
20	14802.60	-16289.13	0.00	-14795.09	16288.92	5.54	0.042%
21	14511.90	-16289.13	0.00	-14500.03	16288.93	7.43	0.064%
22	14314.38	-16414.60	8264.41	-14307.49	16414.32	-8260.44	0.034%
23	12967.40	-16414.60	7486.73	-12960.81	16414.32	-7482.93	0.034%
24	13187.75	-16414.60	7613.95	-13180.75	16414.32	-7609.91	0.036%
25	12842.51	-16414.60	7414.63	-12835.50	16414.36	-7410.59	0.037%
26	12587.04	-16414.60	7267.13	-12574.69	16414.41	-7260.01	0.065%
27	8251.08	-16289.13	14291.29	-8242.73	16288.87	-14287.58	0.039%
28	7473.40	-16289.13	12944.31	-7465.53	16288.87	-12940.81	0.039%
29	7603.40	-16289.13	13169.47	-7595.66	16288.89	-13166.06	0.038%
30	7401.30	-16289.13	12819.43	-7392.74	16288.92	-12815.72	0.042%
31	7255.95	-16289.13	12567.67	-7243.59	16288.94	-12561.14	0.064%
32	0.00	-16163.65	16499.64	0.38	16163.34	-16481.63	0.078%
33	0.00	-16163.65	14944.28	0.32	16163.37	-14930.35	0.063%
34	0.00	-16163.65	15206.13	0.36	16163.36	-15189.76	0.074%
35	0.00	-16163.65	14800.08	0.30	16163.35	-14779.73	0.093%
36	0.00	-16163.65	14510.81	0.19	16163.37	-14488.61	0.102%
37	-8251.08	-16289.13	14291.29	8242.87	16288.88	-14287.68	0.039%
38	-7473.40	-16289.13	12944.31	7465.66	16288.87	-12940.90	0.038%
39	-7603.40	-16289.13	13169.47	7595.81	16288.89	-13166.16	0.037%
40	-7401.30	-16289.13	12819.43	7391.94	16288.90	-12815.39	0.046%
41	-7255.95	-16289.13	12567.67	7243.74	16288.94	-12561.28	0.063%
42	-14314.38	-16414.60	8264.41	14307.59	16414.33	-8260.51	0.034%
43	-12967.40	-16414.60	7486.73	-12960.91	16414.33	-7483.00	0.034%
44	-13187.75	-16414.60	7613.95	-13180.87	16414.32	-7610.00	0.035%
45	-12842.51	-16414.60	7414.63	-12834.88	16414.34	-7410.25	0.040%
46	-12587.04	-16414.60	7267.13	-12574.85	16414.41	-7260.15	0.064%
47	-16502.16	-16289.13	-0.00	16494.89	16288.87	5.27	0.039%
48	-14946.80	-16289.13	-0.00	14939.95	16288.87	4.97	0.038%
49	-15206.80	-16289.13	-0.00	15200.09	16288.89	4.89	0.037%
50	-14802.60	-16289.13	-0.00	14794.36	16288.90	6.06	0.046%
51	-14511.90	-16289.13	-0.00	14500.20	16288.94	7.31	0.063%
52	-14289.10	-16163.65	-8249.82	14273.36	16163.34	8241.28	0.078%
53	-12942.13	-16163.65	-7472.14	12927.93	16163.33	7464.53	0.073%
54	-13168.89	-16163.65	-7603.06	13154.57	16163.37	7595.33	0.073%
55	-12817.24	-16163.65	-7400.04	12799.53	16163.36	7390.23	0.092%
56	-12566.73	-16163.65	-7255.40	12547.49	16163.38	7244.55	0.102%
57	-8251.08	-16289.13	-14291.29	8252.01	16288.88	14282.53	0.038%
58	-7473.40	-16289.13	-12944.31	7474.28	16288.88	12936.06	0.038%
59	-7603.40	-16289.13	-13169.47	7604.38	16288.87	13160.45	0.041%
60	-7401.30	-16289.13	-12819.43	7402.42	16288.91	12809.54	0.045%
61	-7255.95	-16289.13	-12567.67	7256.32	16288.92	12552.42	0.070%
62	-0.00	-81486.45	0.00	4.49	81486.43	0.37	0.006%
63	-0.00	-81664.64	-9039.36	-0.10	81664.55	9026.00	0.016%
64	4514.80	-81486.45	-7819.86	-4511.74	81486.36	7805.18	0.018%
65	7825.27	-81308.26	-4517.92	-7809.37	81308.14	4509.59	0.022%
66	9029.60	-81486.45	0.00	-9017.61	81486.37	4.47	0.016%

Phone: FAX:	Job 121-23082	Page 34 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Load Comb.	Sum of Applied Forces			Sum of Reactions			% Error
	PX lb	PY lb	PZ lb	PX lb	PY lb	PZ lb	
67	7828.31	-81664.64	4519.68	-7817.32	81664.54	-4513.36	0.015%
68	4514.80	-81486.45	7819.86	-4504.88	81486.37	-7811.76	0.016%
69	0.00	-81308.26	9035.84	0.83	81308.15	-9017.98	0.022%
70	-4514.80	-81486.45	7819.86	4503.66	81486.36	-7809.91	0.018%
71	-7828.31	-81664.64	4519.68	7816.72	81664.55	-4513.11	0.016%
72	-9029.60	-81486.45	-0.00	9015.12	81486.36	4.64	0.019%
73	-7825.27	-81308.26	-4517.92	7809.71	81308.15	4508.86	0.022%
74	-4514.80	-81486.45	-7819.86	4511.62	81486.36	7804.94	0.019%
75	0.00	-13857.69	-3952.58	0.01	13857.68	3924.98	0.192%
76	1973.10	-13827.69	-3417.52	-1958.28	13827.66	3393.84	0.194%
77	3416.99	-13797.68	-1972.80	-3392.04	13797.64	1958.47	0.200%
78	3946.21	-13827.69	0.00	-3918.20	13827.66	-0.89	0.195%
79	3423.04	-13857.69	1976.29	-3399.02	13857.68	-1962.39	0.193%
80	1973.10	-13827.69	3417.52	-1959.91	13827.66	-3392.77	0.195%
81	-0.00	-13797.68	3945.60	0.03	13797.64	-3916.76	0.201%
82	-1973.10	-13827.69	3417.52	1959.97	13827.66	-3392.76	0.195%
83	-3423.04	-13857.69	1976.29	3399.08	13857.68	-1962.39	0.192%
84	-3946.21	-13827.69	-0.00	3918.25	13827.66	-0.88	0.195%
85	-3416.99	-13797.68	-1972.80	3392.07	13797.64	1958.49	0.200%
86	-1973.10	-13827.69	-3417.52	1958.30	13827.66	3393.84	0.194%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	75	0.00000001	0.00000000
2	Yes	199	0.00000001	0.00007812
3	Yes	200	0.00000001	0.00007862
4	Yes	196	0.00000001	0.00008039
5	Yes	186	0.00000001	0.00008461
6	Yes	168	0.00000001	0.00007071
7	Yes	192	0.00000001	0.00007800
8	Yes	193	0.00000001	0.00007905
9	Yes	190	0.00000001	0.00008198
10	Yes	182	0.00000001	0.00007938
11	Yes	171	0.00000001	0.00006733
12	Yes	165	0.00000001	0.00006930
13	Yes	166	0.00000001	0.00007569
14	Yes	165	0.00000001	0.00006823
15	Yes	163	0.00000001	0.00006937
16	Yes	162	0.00000001	0.00007875
17	Yes	192	0.00000001	0.00008150
18	Yes	193	0.00000001	0.00008232
19	Yes	191	0.00000001	0.00007788
20	Yes	183	0.00000001	0.00007681
21	Yes	172	0.00000001	0.00006717
22	Yes	199	0.00000001	0.00008056
23	Yes	200	0.00000001	0.00008094
24	Yes	196	0.00000001	0.00008308
25	Yes	187	0.00000001	0.00008135
26	Yes	169	0.00000001	0.00007060
27	Yes	192	0.00000001	0.00008153
28	Yes	193	0.00000001	0.00008243
29	Yes	191	0.00000001	0.00007785
30	Yes	183	0.00000001	0.00007672
31	Yes	172	0.00000001	0.00006679

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 35 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

32	Yes	165	0.00000001	0.00006931
33	Yes	166	0.00000001	0.00007595
34	Yes	165	0.00000001	0.00006839
35	Yes	163	0.00000001	0.00006930
36	Yes	162	0.00000001	0.00007842
37	Yes	192	0.00000001	0.00007970
38	Yes	193	0.00000001	0.00008068
39	Yes	191	0.00000001	0.00007615
40	Yes	182	0.00000001	0.00008173
41	Yes	172	0.00000001	0.00006363
42	Yes	199	0.00000001	0.00007925
43	Yes	200	0.00000001	0.00007967
44	Yes	196	0.00000001	0.00008163
45	Yes	186	0.00000001	0.00008710
46	Yes	169	0.00000001	0.00006731
47	Yes	192	0.00000001	0.00008009
48	Yes	193	0.00000001	0.00008105
49	Yes	191	0.00000001	0.00007657
50	Yes	182	0.00000001	0.00008254
51	Yes	172	0.00000001	0.00006524
52	Yes	165	0.00000001	0.00006868
53	Yes	165	0.00000001	0.00008465
54	Yes	165	0.00000001	0.00006769
55	Yes	163	0.00000001	0.00006892
56	Yes	162	0.00000001	0.00007844
57	Yes	192	0.00000001	0.00007861
58	Yes	193	0.00000001	0.00007959
59	Yes	190	0.00000001	0.00008263
60	Yes	182	0.00000001	0.00008023
61	Yes	171	0.00000001	0.00006903
62	Yes	136	0.00000001	0.00005606
63	Yes	185	0.00000001	0.00001714
64	Yes	181	0.00000001	0.00001743
65	Yes	176	0.00000001	0.00002342
66	Yes	183	0.00000001	0.00002069
67	Yes	186	0.00000001	0.00002111
68	Yes	183	0.00000001	0.00002033
69	Yes	176	0.00000001	0.00002267
70	Yes	181	0.00000001	0.00001772
71	Yes	185	0.00000001	0.00001780
72	Yes	181	0.00000001	0.00001956
73	Yes	176	0.00000001	0.00002269
74	Yes	181	0.00000001	0.00001889
75	Yes	146	0.00000001	0.00009151
76	Yes	146	0.00000001	0.00009215
77	Yes	146	0.00000001	0.00009419
78	Yes	146	0.00000001	0.00009163
79	Yes	146	0.00000001	0.00009042
80	Yes	146	0.00000001	0.00009101
81	Yes	146	0.00000001	0.00009373
82	Yes	146	0.00000001	0.00009055
83	Yes	146	0.00000001	0.00009101
84	Yes	146	0.00000001	0.00009239
85	Yes	146	0.00000001	0.00009459
86	Yes	146	0.00000001	0.00009263

Maximum Tower Deflections - Service Wind

Phone: FAX:	Job	121-23082	Page
	Project	180 ft Rohn #80 - Stafford Springs CT	Date
	Client	CDT	Designed by

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt °	Twist °
T1	180 - 160	1.346	81	0.0851	0.2214
T2	160 - 140	1.001	81	0.0679	0.2035
T3	140 - 120	0.750	77	0.0585	0.1830
T4	120 - 100	0.522	85	0.0447	0.1488
T5	100 - 80	0.381	85	0.0240	0.0968
T6	80 - 60	0.315	85	0.0045	0.0510
T7	60 - 40	0.340	85	0.0016	0.0576
T8	40 - 20	0.321	85	0.0170	0.0560
T9	20 - 5	0.199	85	0.0394	0.0471
T10	5 - 0	0.051	85	0.0471	0.0266

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft
180.00	Lightning Rod 5/8x4'	81	1.346	0.0851	0.2214	128053
179.00	Decibel DB809	81	1.328	0.0842	0.2204	128053
177.00	Decibel DB809	81	1.291	0.0822	0.2183	128053
171.00	12 ft Boom / Frame	81	1.182	0.0766	0.2122	71141
163.00	Celwave PD201	81	1.047	0.0699	0.2059	37932
162.75	Guy	81	1.043	0.0698	0.2057	37491
150.00	12 ft Boom / Frame	81	0.868	0.0628	0.1944	87174
127.00	Decibel DB420	77	0.596	0.0505	0.1628	67311
119.67	Guy	85	0.519	0.0444	0.1481	39316
83.00	Celwave PD201	85	0.319	0.0068	0.0546	37599
82.75	Guy	85	0.318	0.0066	0.0542	37361

Maximum Tower Deflections - Design Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt °	Twist °
T1	180 - 160	8.059	23	0.5411	0.9292
T2	160 - 140	5.924	23	0.4743	0.8489
T3	140 - 120	4.171	23	0.4157	0.7707
T4	120 - 100	2.697	17	0.3199	0.6354
T5	100 - 80	1.932	56	0.2029	0.4268
T6	80 - 60	1.620	56	0.1084	0.2448
T7	60 - 40	1.675	56	0.0537	0.2587
T8	40 - 20	1.526	56	0.0897	0.2375
T9	20 - 5	0.928	56	0.1871	0.1851
T10	5 - 0	0.237	56	0.2200	0.1116

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft

Phone: FAX:	Job	121-23082	Page 37 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client	CDT	Designed by

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft
180.00	Lightning Rod 5/8x4'	23	8.059	0.5411	0.9292	29656
179.00	Decibel DB809	23	7.947	0.5376	0.9250	29656
177.00	Decibel DB809	23	7.724	0.5304	0.9165	29656
171.00	12 ft Boom / Frame	23	7.063	0.5093	0.8911	16476
163.00	Celwave PD201	23	6.221	0.4832	0.8585	8769
162.75	Guy	23	6.196	0.4824	0.8577	8660
150.00	12 ft Boom / Frame	23	5.016	0.4475	0.8142	10909
127.00	Decibel DB420	18	3.155	0.3552	0.6915	8519
119.67	Guy	17	2.678	0.3181	0.6325	5825
83.00	Celwave PD201	56	1.640	0.1204	0.2596	7444
82.75	Guy	56	1.638	0.1193	0.2581	7412

Bolt Design Data

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load per Bolt lb	Ratio Load Allowable	Allowable Ratio	Criteria
T1	180	Leg	A325N	0.7500	4	13.47	29820.60	0.000 ✓	1	Bolt Tension
		Diagonal	A325N	0.5000	1	2081.29	5904.86	0.352 ✓	1	Member Bearing
		Top Girt	A325N	0.5000	1	16.26	5904.86	0.003 ✓	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	361.29	3967.20	0.091 ✓	1	Member Bearing
T2	160	Leg	A325N	0.7500	4	1400.53	29820.60	0.047 ✓	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1158.32	6681.60	0.173 ✓	1	Member Bearing
		Top Girt	A325N	0.5000	1	423.30	5904.86	0.072 ✓	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	310.95	3967.20	0.078 ✓	1	Member Bearing
T3	140	Leg	A325N	0.7500	4	1487.80	29820.60	0.050 ✓	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1693.12	6681.60	0.253 ✓	1	Member Bearing
		Top Girt	A325N	0.5000	1	423.71	5904.86	0.072 ✓	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	423.71	3967.20	0.107 ✓	1	Member Bearing
T4	120	Leg	A325N	0.7500	4	2039.62	29820.60	0.068 ✓	1	Bolt Tension
		Diagonal	A325N	0.5000	1	987.43	6681.60	0.148 ✓	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	525.41	3967.20	0.132 ✓	1	Member Bearing
T5	100	Leg	A325N	0.7500	4	2529.02	29820.60	0.085 ✓	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1740.35	6681.60	0.260 ✓	1	Member Bearing
		Top Girt	A325N	0.5000	1	712.34	5904.86	0.121 ✓	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	712.34	3967.20	0.180 ✓	1	Member Bearing
		Torque Arm Top@82.75	A325N	0.7500	2	2120.69	16077.60	0.132 ✓	1	Member Bearing
T6	80	Leg	A325N	0.7500	4	3428.39	29820.60	0.115 ✓	1	Bolt Tension
		Diagonal	A325N	0.5000	1	2038.00	5904.86	0.345 ✓	1	Member Bearing
		Top Girt	A325N	0.5000	1	856.57	5904.86	0.145 ✓	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	712.58	3967.20	0.180 ✓	1	Member Bearing
T7	60	Leg	A325N	0.7500	4	3357.28	29820.60	0.113 ✓	1	Bolt Tension

tnxTower Phone: FAX:	Job 121-23082	Page 38 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load per Bolt lb	Ratio Load Allowable	Allowable Ratio	Criteria
T8	40	Diagonal	A325N	0.5000	1	1243.24	6681.60	0.186 ✓	1	Member Bearing
		Top Girt	A325N	0.5000	1	775.11	5904.86	0.131 ✓	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	775.11	3967.20	0.195 ✓	1	Member Bearing
		Leg	A325N	0.7500	4	3730.23	29820.60	0.125 ✓	1	Bolt Tension
		Diagonal	A325N	0.5000	1	684.62	6681.60	0.102 ✓	1	Member Bearing
		Top Girt	A325N	0.5000	1	790.25	5904.86	0.134 ✓	1	Member Bearing
T9	20	Bottom Girt	A325N	0.5000	1	790.25	3967.20	0.199 ✓	1	Member Bearing
		Leg	A325N	0.7500	4	3778.39	29820.60	0.127 ✓	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1137.47	5904.86	0.193 ✓	1	Member Bearing
		Top Girt	A325N	0.5000	1	785.32	5904.86	0.133 ✓	1	Member Bearing
T10	5	Bottom Girt	A325N	0.5000	1	3694.05	3967.20	0.931 ✓	1	Member Bearing
		Leg	A325N	0.7500	4	3568.69	29820.60	0.120 ✓	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1671.62	5904.86	0.283 ✓	1	Member Bearing
		Top Girt	A325N	0.5000	1	4009.92	5904.86	0.679 ✓	1	Member Bearing

Guy Design Data								
Section No.	Elevation ft	Size	Initial Tension lb	Breaking Load lb	Actual T_u lb	Allowable ϕT_n lb	Required S.F.	Actual S.F.
T1	162.75 (A) (462)	3/4 EHS	5830.00	58299.91	14593.30	34980.00	1.000	2.397 ✓
	162.75 (B) (461)	3/4 EHS	5830.00	58299.91	14533.50	34980.00	1.000	2.407 ✓
	162.75 (C) (460)	3/4 EHS	5830.00	58299.91	14561.50	34980.00	1.000	2.402 ✓
T4	119.67 (A) (465)	1/2 EHS	2690.00	26900.04	7962.06	16140.00	1.000	2.027 ✓
	119.67 (B) (464)	1/2 EHS	2690.00	26900.04	7983.52	16140.00	1.000	2.022 ✓
	119.67 (C) (463)	1/2 EHS	2690.00	26900.04	7988.98	16140.00	1.000	2.020 ✓
T5	82.75 (A) (453)	1/2 EHS	2690.00	26900.04	7468.01	16140.00	1.000	2.161 ✓
	82.75 (A) (454)	1/2 EHS	2690.00	26900.04	7341.44	16140.00	1.000	2.198 ✓
	82.75 (B) (449)	1/2 EHS	2690.00	26900.04	7466.01	16140.00	1.000	2.162 ✓
	82.75 (B) (450)	1/2 EHS	2690.00	26900.04	7457.48	16140.00	1.000	2.164 ✓
	82.75 (C) (442)	1/2 EHS	2690.00	26900.04	7360.56	16140.00	1.000	2.193 ✓
	82.75 (C) (443)	1/2 EHS	2690.00	26900.04	7480.48	16140.00	1.000	2.158 ✓

tnxTower Phone: FAX:	Job 121-23082	Page 39 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	A	Mast Stability Index	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²		lb	lb	$\frac{P_u}{\phi P_n}$
T1	180 - 160	P2x.218	20.00	2.42	37.8 K=1.00	1.4773	1.00	-16794.20	59870.70	0.281 ¹
T2	160 - 140	P2x.218	20.00	2.42	37.8 K=1.00	1.4773	1.00	-17952.60	59870.70	0.300 ¹
T3	140 - 120	P2x.218	20.00	2.42	37.8 K=1.00	1.4773	1.00	-24463.00	59870.70	0.409 ¹
T4	120 - 100	P2x.218	20.00	2.42	37.8 K=1.00	1.4773	1.00	-30334.60	59870.70	0.507 ¹
T5	100 - 80	P2.5x.276	20.00	2.42	31.4 K=1.00	2.2535	1.00	-41127.00	94363.10	0.436 ¹
T6	80 - 60	P2.5x.276	20.00	2.42	62.8 K=2.00	2.2535	1.00	-41140.60	76028.20	0.541 ¹
T7	60 - 40	P2.5x.203	20.00	2.42	61.2 K=2.00	1.7040	1.00	-44751.00	58302.40	0.768 ¹
T8	40 - 20	P2.5x.203	20.00	2.42	61.2 K=2.00	1.7040	1.00	-45625.30	58302.40	0.783 ¹
T9	20 - 5	P2.5x.276	15.00	2.39	62.0 K=2.00	2.2535	1.00	-45340.60	76530.40	0.592 ¹
T10	5 - 0	P2.5x.276	5.38	1.06	13.7 K=1.00	2.2535	0.78	-47135.30	78031.70	0.604 ¹

¹ $P_u / \phi P_n$ controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$
T1	180 - 160	ROHN TS1.5x16 ga	4.19	3.95	92.8 K=1.00	0.2627	-1998.96	6038.67	0.331 ¹
T2	160 - 140	ROHN TS1.5x16 ga	4.19	3.95	92.8 K=1.00	0.2627	-1158.32	6038.67	0.192 ¹
T3	140 - 120	ROHN TS1.5x16 ga	4.19	3.95	92.8 K=1.00	0.2627	-1693.12	6038.67	0.280 ¹
T4	120 - 100	ROHN TS1.5x16 ga	4.19	3.95	92.8 K=1.00	0.2627	-987.43	6038.67	0.164 ¹
T5	100 - 80	ROHN TS1.5x16 ga	4.19	3.89	91.6 K=1.00	0.2627	-1740.35	6127.23	0.284 ¹
T6	80 - 60	ROHN TS1.5x16 ga	4.19	3.89	91.6 K=1.00	0.2627	-2156.65	6127.23	0.352 ¹
T7	60 - 40	ROHN TS1.5x16 ga	4.19	3.89	91.6 K=1.00	0.2627	-1243.24	6127.23	0.203 ¹
T8	40 - 20	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	-684.62	6127.23	0.112 ¹

tnxTower Phone: FAX:	Job	121-23082	Page
	Project	180 ft Rohn #80 - Stafford Springs CT	Date
	Client	CDT	Designed by

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²	lb	lb	
T9	20 - 5	ROHN TS1.5x16 ga	4.17	3.88	K=1.00 K=1.00	91.2 18.4	0.2627 0.2627	-1101.96 -1043.10	6153.03 10407.00
T10	5 - 0	ROHN TS1.5x16 ga	1.42	0.78	K=1.00				

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²	lb	lb	
T1	180 - 160	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-18.00	7292.66	0.002 ¹
T2	160 - 140	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-310.95	7292.66	0.043 ¹
T3	140 - 120	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-423.71	7292.66	0.058 ¹
T5	100 - 80	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-712.34	7363.82	0.097 ¹
T6	80 - 60	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-712.58	7363.82	0.097 ¹
T7	60 - 40	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-775.11	7363.82	0.105 ¹
T8	40 - 20	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-790.25	7363.82	0.107 ¹
T9	20 - 5	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-785.32	7363.82	0.107 ¹
T10	5 - 0	ROHN TS1.5x16 ga	3.36	3.12	73.5 K=1.00	0.2627	-861.14	7460.76	0.115 ¹

¹ P_u / ϕP_n controls

Bottom Girt Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²	lb	lb	
T1	180 - 160	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-290.88	7292.66	0.040 ¹
T2	160 - 140	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-310.95	7292.66	0.043 ¹
T3	140 - 120	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-423.71	7292.66	0.058 ¹
T4	120 - 100	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-525.41	7292.66	0.072 ¹

tnxTower <i>Phone:</i> <i>FAX:</i>	Job	121-23082	Page 41 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client	CDT	Designed by

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²	lb	lb	
T5	100 - 80	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-712.34	7363.82	0.097 ¹
T6	80 - 60	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-712.58	7363.82	0.097 ¹
T7	60 - 40	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-775.11	7363.82	0.105 ¹
T8	40 - 20	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-790.25	7363.82	0.107 ¹
T9	20 - 5	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-785.32	7363.82	0.107 ¹

¹ P_u / ϕP_n controls

Top Guy Pull-Off Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²	lb	lb	
T5	100 - 80	L1 1/2x1 1/2x3/16	3.42	3.18	130.1 K=1.00	0.5273	-1761.99	7008.98	0.251 ¹

¹ P_u / ϕP_n controls

Top Guy Pull-Off Bending Design Data

Section No.	Elevation	Size	M _{ux}	ϕM _{nx}	Ratio $\frac{M_{ux}}{\phi M_{nx}}$	M _{ay}	ϕM _{ny}	Ratio $\frac{M_{ay}}{\phi M_{ny}}$
	ft		lb-ft	lb-ft		lb-ft	lb-ft	
T5	100 - 80	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000

Top Guy Pull-Off Interaction Design Data

Section No.	Elevation	Size	Ratio $\frac{P_u}{\phi P_n}$	Ratio $\frac{M_{ux}}{\phi M_{nx}}$	Ratio $\frac{M_{ay}}{\phi M_{ny}}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	ft							
T5	100 - 80	L1 1/2x1 1/2x3/16	0.251	0.000	0.000	0.251 ¹	1.000	4.8.1 ✓

¹ P_u / ϕP_n controls

Phone: FAX:	Job	121-23082	Page
	Project	180 ft Rohn #80 - Stafford Springs CT	Date
	Client	CDT	Designed by

Torque-Arm Top Design Data

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²	lb	lb	
T5	100 - 80 (444)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-361.84	122682.00	0.003
T5	100 - 80 (445)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-363.40	122682.00	0.003
T5	100 - 80 (451)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-618.69	122682.00	0.005
T5	100 - 80 (452)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-840.71	122682.00	0.007
T5	100 - 80 (455)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-595.66	122682.00	0.005
T5	100 - 80 (456)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-830.32	122682.00	0.007

Torque-Arm Top Bending Design Data

Section No.	Elevation	Size	M _{ux}	ϕM _{nx}	Ratio $\frac{M_{ux}}{\phi M_{nx}}$	M _{uy}	ϕM _{ny}	Ratio $\frac{M_{uy}}{\phi M_{ny}}$
	ft		lb-ft	lb-ft		lb-ft	lb-ft	
T5	100 - 80 (444)	C10x15.3	-8692.92	41799.58	0.208	0.00	4698.00	0.000
T5	100 - 80 (445)	C10x15.3	-8648.58	41799.58	0.207	-0.00	4698.00	0.000
T5	100 - 80 (451)	C10x15.3	-8633.33	41799.58	0.207	0.00	4698.00	0.000
T5	100 - 80 (452)	C10x15.3	-8553.83	41799.58	0.205	0.00	4698.00	0.000
T5	100 - 80 (455)	C10x15.3	-8619.25	41799.58	0.206	-0.00	4698.00	0.000
T5	100 - 80 (456)	C10x15.3	-8584.00	41799.58	0.205	-0.00	4698.00	0.000

Torque-Arm Top Interaction Design Data

Section No.	Elevation	Size	Ratio $\frac{P_u}{\phi P_n}$	Ratio $\frac{M_{ux}}{\phi M_{nx}}$	Ratio $\frac{M_{uy}}{\phi M_{ny}}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	ft							
T5	100 - 80 (444)	C10x15.3	0.003	0.208	0.000	0.209	1.000	4.8.1 ✓
T5	100 - 80 (445)	C10x15.3	0.003	0.207	0.000	0.208	1.000	4.8.1 ✓
T5	100 - 80 (451)	C10x15.3	0.005	0.207	0.000	0.209	1.000	4.8.1 ✓
T5	100 - 80 (452)	C10x15.3	0.007	0.205	0.000	0.208	1.000	4.8.1 ✓
T5	100 - 80 (455)	C10x15.3	0.005	0.206	0.000	0.209	1.000	4.8.1 ✓
T5	100 - 80 (456)	C10x15.3	0.007	0.205	0.000	0.209	1.000	4.8.1 ✓

Tension Checks

tnxTower Phone: FAX:	Job 121-23082	Page 43 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio
	ft		ft	ft		in ²	lb	lb	P _u / ϕP _n
T1	180 - 160	P2x.218	20.00	2.42	37.8	1.4773	10812.30	66476.60	0.163 ¹ ✓
T2	160 - 140	P2x.218	20.00	2.42	37.8	1.4773	1285.53	66476.60	0.019 ¹ ✓
T3	140 - 120	P2x.218	20.00	2.42	37.8	1.4773	1602.97	66476.60	0.024 ¹ ✓
T4	120 - 100	P2x.218	20.00	2.42	37.8	1.4773	1602.21	66476.60	0.024 ¹ ✓
T5	100 - 80	P2.5x.276	20.00	2.42	31.4	2.2535	1954.27	101409.00	0.019 ¹ ✓

¹ P_u / ϕP_n controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio
	ft		ft	ft		in ²	lb	lb	P _u / ϕP _n
T1	180 - 160	ROHN TS1.5x16 ga	4.19	3.95	92.8	0.2627	2081.29	10641.40	0.196 ¹ ✓
T2	160 - 140	ROHN TS1.5x16 ga	4.19	3.95	92.8	0.2627	1016.06	10641.40	0.095 ¹ ✓
T3	140 - 120	ROHN TS1.5x16 ga	4.19	3.95	92.8	0.2627	1417.73	10641.40	0.133 ¹ ✓
T4	120 - 100	ROHN TS1.5x16 ga	4.19	3.95	92.8	0.2627	852.99	10641.40	0.080 ¹ ✓
T5	100 - 80	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	1199.61	10641.40	0.113 ¹ ✓
T6	80 - 60	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	2038.00	10641.40	0.192 ¹ ✓
T7	60 - 40	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	1089.11	10641.40	0.102 ¹ ✓
T8	40 - 20	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	590.03	10641.40	0.055 ¹ ✓
T9	20 - 5	ROHN TS1.5x16 ga	4.17	3.88	91.2	0.2627	1137.47	10641.40	0.107 ¹ ✓
T10	5 - 0	ROHN TS1.5x16 ga	3.19	1.61	37.8	0.2627	1671.62	10641.40	0.157 ¹ ✓

¹ P_u / ϕP_n controls

Top Girt Design Data (Tension)

tnxTower <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 44 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio
	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$
T1	180 - 160	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	16.26	10641.40	0.002 ¹
T2	160 - 140	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	423.30	10641.40	0.040 ¹
T3	140 - 120	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	423.71	10641.40	0.040 ¹
T5	100 - 80	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	712.34	10641.40	0.067 ¹
T6	80 - 60	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	856.57	10641.40	0.080 ¹
T7	60 - 40	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	775.11	10641.40	0.073 ¹
T8	40 - 20	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	790.25	10641.40	0.074 ¹
T9	20 - 5	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	785.32	10641.40	0.074 ¹
T10	5 - 0	ROHN TS1.5x16 ga	3.36	3.12	73.5	0.2627	4009.92	10641.40	0.377 ¹

¹ P_u / ϕP_n controls

Bottom Girt Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio
	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$
T1	180 - 160	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	361.29	10641.40	0.034 ¹
T2	160 - 140	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	310.95	10641.40	0.029 ¹
T3	140 - 120	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	423.71	10641.40	0.040 ¹
T4	120 - 100	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	525.41	10641.40	0.049 ¹
T5	100 - 80	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	712.34	10641.40	0.067 ¹
T6	80 - 60	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	712.58	10641.40	0.067 ¹
T7	60 - 40	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	775.11	10641.40	0.073 ¹
T8	40 - 20	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	790.25	10641.40	0.074 ¹
T9	20 - 5	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	3694.05	10641.40	0.347 ¹

¹ P_u / ϕP_n controls

Phone: FAX:	Job	121-23082	Page
	Project	180 ft Rohn #80 - Stafford Springs CT	Date
	Client	CDT	Designed by

Top Guy Pull-Off Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$
T1	180 - 160	3x1/2	3.42	3.22	267.9	1.5000	4661.73	48600.00	0.096 ¹
T4	120 - 100	3x1/2	3.42	3.22	267.9	1.5000	3447.08	48600.00	0.071 ¹
T5	100 - 80	L1 1/2x1 1/2x3/16	3.42	3.18	83.6	0.5273	2641.60	17085.90	0.155 ¹

¹ P_u / ϕP_n controls

Top Guy Pull-Off Bending Design Data

Section No.	Elevation	Size	M _{ux}	ϕM _{nx}	Ratio $\frac{M_{ux}}{\phi M_{nx}}$	M _{uy}	ϕM _{ny}	Ratio $\frac{M_{uy}}{\phi M_{ny}}$
	ft		lb-ft	lb-ft	$\frac{\phi M_{nx}}{M_{ux}}$	lb-ft	lb-ft	$\frac{\phi M_{ny}}{M_{uy}}$
T1	180 - 160	3x1/2	0.00	3037.50	0.000	0.00	506.25	0.000
T4	120 - 100	3x1/2	0.00	3037.50	0.000	0.00	506.25	0.000
T5	100 - 80	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000

Top Guy Pull-Off Interaction Design Data

Section No.	Elevation	Size	Ratio $\frac{P_u}{\phi P_n}$	Ratio $\frac{M_{ux}}{\phi M_{nx}}$	Ratio $\frac{M_{uy}}{\phi M_{ny}}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	ft		$\frac{P_u}{\phi P_n}$	$\frac{M_{ux}}{\phi M_{nx}}$	$\frac{M_{uy}}{\phi M_{ny}}$			
T1	180 - 160	3x1/2	0.096	0.000	0.000	0.096 ¹	1.000	4.8.1 ✓
T4	120 - 100	3x1/2	0.071	0.000	0.000	0.071 ¹	1.000	4.8.1 ✓
T5	100 - 80	L1 1/2x1 1/2x3/16	0.155	0.000	0.000	0.155 ¹	1.000	4.8.1 ✓

¹ P_u / ϕP_n controls

Torque-Arm Top Design Data

Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	ϕP _n	Ratio $\frac{P_u}{\phi P_n}$
	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$
T5	100 - 80 (444)	C10x15.3	3.50	3.38	56.9	4.4900	2399.53	145476.00	0.016
T5	100 - 80 (445)	C10x15.3	3.50	3.38	56.9	4.4900	2426.68	145476.00	0.017
T5	100 - 80 (451)	C10x15.3	3.50	3.38	56.9	4.4900	2390.75	145476.00	0.016
T5	100 - 80 (452)	C10x15.3	3.50	3.38	56.9	4.4900	2291.52	145476.00	0.016
T5	100 - 80 (455)	C10x15.3	3.50	3.38	56.9	4.4900	2386.61	145476.00	0.016
T5	100 - 80 (456)	C10x15.3	3.50	3.38	56.9	4.4900	2289.71	145476.00	0.016

Phone: FAX:	Job	121-23082	Page 46 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client	CDT	Designed by

Torque-Arm Top Bending Design Data

Section No.	Elevation ft	Size	M_{ux}	ϕM_{nx}	Ratio $\frac{M_{ux}}{\phi M_{nx}}$	M_{uy}	ϕM_{ny}	Ratio $\frac{M_{uy}}{\phi M_{ny}}$
			lb-ft	lb-ft	$\frac{\phi M_{nx}}{\phi M_{ny}}$	lb-ft	lb-ft	$\frac{\phi M_{ny}}{\phi M_{nx}}$
T5	100 - 80 (444)	C10x15.3	-14881.75	41799.58	0.356	0.00	4698.00	0.000
T5	100 - 80 (445)	C10x15.3	-14800.83	41799.58	0.354	-0.00	4698.00	0.000
T5	100 - 80 (451)	C10x15.3	-14927.50	41799.58	0.357	0.00	4698.00	0.000
T5	100 - 80 (452)	C10x15.3	-14793.08	41799.58	0.354	0.00	4698.00	0.000
T5	100 - 80 (455)	C10x15.3	-14892.92	41799.58	0.356	-0.00	4698.00	0.000
T5	100 - 80 (456)	C10x15.3	-14804.50	41799.58	0.354	-0.00	4698.00	0.000

Torque-Arm Top Interaction Design Data

Section No.	Elevation ft	Size	$\frac{P_u}{\phi P_n}$	$\frac{M_{ux}}{\phi M_{nx}}$	$\frac{M_{uy}}{\phi M_{ny}}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
			$\frac{P_u}{\phi P_n}$	$\frac{M_{ux}}{\phi M_{nx}}$	$\frac{M_{uy}}{\phi M_{ny}}$			
T5	100 - 80 (444)	C10x15.3	0.016	0.356	0.000	0.364	1.000	4.8.1 ✓
T5	100 - 80 (445)	C10x15.3	0.017	0.354	0.000	0.362	1.000	4.8.1 ✓
T5	100 - 80 (451)	C10x15.3	0.016	0.357	0.000	0.365	1.000	4.8.1 ✓
T5	100 - 80 (452)	C10x15.3	0.016	0.354	0.000	0.362	1.000	4.8.1 ✓
T5	100 - 80 (455)	C10x15.3	0.016	0.356	0.000	0.364	1.000	4.8.1 ✓
T5	100 - 80 (456)	C10x15.3	0.016	0.354	0.000	0.362	1.000	4.8.1 ✓

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	ϕP_{allow} lb	% Capacity	Pass Fail
T1	180 - 160	Leg	P2x.218	2	-16794.20	59870.70	28.1	Pass
		Diagonal	ROHN TS1.5x16 ga	29	-1998.96	6038.67	33.1	Pass
		Top Girt	ROHN TS1.5x16 ga	5	-18.00	7292.66	0.4	Pass
		Bottom Girt	ROHN TS1.5x16 ga	7	-290.88	7292.66	4.0	Pass
		Guy A@162.75	3/4	462	14593.30	34980.00	41.7	Pass
		Guy B@162.75	3/4	461	14533.50	34980.00	41.5	Pass
		Guy C@162.75	3/4	460	14561.50	34980.00	41.6	Pass
		Top Guy	3x1/2	457	4661.73	48600.00	9.6	Pass
		Pull-Off@162.75					9.1 (b)	
		Leg	P2x.218	59	-17952.60	59870.70	30.0	Pass
T2	160 - 140	Diagonal	ROHN TS1.5x16 ga	113	-1158.32	6038.67	19.2	Pass
		Top Girt	ROHN TS1.5x16 ga	61	-310.95	7292.66	4.3	Pass
		Bottom Girt	ROHN TS1.5x16 ga	64	-310.95	7292.66	7.2 (b)	
							4.3	Pass

tnxTower Phone: FAX:	Job	121-23082	Page 47 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client	CDT	Designed by

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	ϕP_{allow} lb	% Capacity	Pass Fail	
T3	140 - 120	Leg	P2x.218	116	-24463.00	59870.70	40.9	Pass	
		Diagonal	ROHN TS1.5x16 ga	124	-1693.12	6038.67	28.0	Pass	
		Top Girt	ROHN TS1.5x16 ga	118	-423.71	7292.66	5.8	Pass	
		Bottom Girt	ROHN TS1.5x16 ga	121	-423.71	7292.66	5.8	Pass	
T4	120 - 100	Leg	P2x.218	173	-30334.60	59870.70	50.7	Pass	
		Diagonal	ROHN TS1.5x16 ga	181	-987.43	6038.67	16.4	Pass	
		Bottom Girt	ROHN TS1.5x16 ga	178	-525.41	7292.66	7.2	Pass	
		Guy A@119.667	1/2	465	7962.06	16140.00	49.3	Pass	
T5	100 - 80	Guy B@119.667	1/2	464	7983.52	16140.00	49.5	Pass	
		Guy C@119.667	1/2	463	7988.98	16140.00	49.5	Pass	
		Top Guy	3x1/2	175	3447.08	48600.00	7.1	Pass	
		Pull-Off@119.667					13.2 (b)		
T6	80 - 60	Leg	P2.5x.276	230	-41127.00	94363.10	43.6	Pass	
		Diagonal	ROHN TS1.5x16 ga	240	-1740.35	6127.23	28.4	Pass	
		Top Girt	ROHN TS1.5x16 ga	232	-712.34	7363.82	9.7	Pass	
		Bottom Girt	ROHN TS1.5x16 ga	235	-712.34	7363.82	9.7	Pass	
T7	60 - 40	Guy A@82.75	1/2	453	7468.01	16140.00	46.3	Pass	
		Guy B@82.75	1/2	449	7466.01	16140.00	46.3	Pass	
		Guy C@82.75	1/2	443	7480.48	16140.00	46.3	Pass	
		Top Guy	L1 1/2x1 1/2x3/16	447	-1761.99	7008.98	25.1	Pass	
T8	40 - 20	Pull-Off@82.75							
		Torque Arm	C10x15.3	451	2390.75	145476.00	36.5	Pass	
		Top@82.75							
		Leg	P2.5x.276	287	-41140.60	76028.20	54.1	Pass	
T9	20 - 5	Diagonal	ROHN TS1.5x16 ga	317	-2156.65	6127.23	35.2	Pass	
		Top Girt	ROHN TS1.5x16 ga	289	-712.58	7363.82	9.7	Pass	
		Bottom Girt	ROHN TS1.5x16 ga	292	-712.58	7363.82	9.7	Pass	
							14.5 (b)		
T10	5 - 0	Leg	P2.5x.203	320	-44751.00	58302.40	76.8	Pass	
		Diagonal	ROHN TS1.5x16 ga	350	-1243.24	6127.23	20.3	Pass	
		Top Girt	ROHN TS1.5x16 ga	322	-775.11	7363.82	10.5	Pass	
		Bottom Girt	ROHN TS1.5x16 ga	325	-775.11	7363.82	10.5	Pass	
T10	5 - 0	Leg	P2.5x.203	353	-45625.30	58302.40	78.3	Pass	
		Diagonal	ROHN TS1.5x16 ga	362	-684.62	6127.23	11.2	Pass	
		Top Girt	ROHN TS1.5x16 ga	355	-790.25	7363.82	10.7	Pass	
		Bottom Girt	ROHN TS1.5x16 ga	358	-790.25	7363.82	10.7	Pass	
T10	5 - 0	Leg	P2.5x.276	386	-45340.60	76530.40	59.2	Pass	
		Diagonal	ROHN TS1.5x16 ga	395	-1101.96	6153.03	17.9	Pass	
		Top Girt	ROHN TS1.5x16 ga	388	-785.32	7363.82	10.7	Pass	
		Bottom Girt	ROHN TS1.5x16 ga	392	3694.05	10641.40	34.7	Pass	
T10	5 - 0	Leg	P2.5x.276	413	-47135.30	78031.70	60.4	Pass	
		Diagonal	ROHN TS1.5x16 ga	439	1671.62	10641.40	15.7	Pass	
		Top Girt	ROHN TS1.5x16 ga	416	4009.92	10641.40	37.7	Pass	
							28.3 (b)		
							67.9 (b)		
							Summary		
							Leg (T8)	78.3	Pass

<i>tnxTower</i> <i>Phone:</i> <i>FAX:</i>	Job 121-23082	Page 48 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
	Client CDT	Designed by

<i>Section No.</i>	<i>Elevation ft</i>	<i>Component Type</i>	<i>Size</i>	<i>Critical Element</i>	<i>P lb</i>	<i>ϕP_{allow} lb</i>	<i>% Capacity</i>	<i>Pass Fail</i>
				Diagonal (T1)		35.2		Pass
				Top Girt (T10)		67.9		Pass
				Bottom Girt (T9)		93.1		Pass
				Guy A (T4)	49.3			Pass
				Guy B (T4)	49.5			Pass
				Guy C (T4)	49.5			Pass
				Top Guy Pull-Off (T5)	25.1			Pass
				Torque Arm Top (T5)	36.5			Pass
				Bolt Checks	93.1			Pass
				RATING =	93.1			Pass

Site Name:
Client:
Job Number:
Date:

Hampden Road
CDT
121-23082
9/6/2021

Design Base Loads (Factored) per TIA-222-G

Moment (M_u):	0.0	k-ft
Shear/Leg (V_u):	1.3	k
Compression/Leg (P_u):	127.8	k
Uplift/Leg (T_u):	0.0	k
Diameter of Prismatic Portion of Pier (d):	1.0	ft
Depth to Base of Foundation:	4.0	ft
Pier Height Above Ground (h):	1.7	ft
Length / Width of Pad (w):	5.0	ft
Thickness of Pad (t):	4.0	ft
Depth Below Ground Surface to Water Table (w):	20.0	ft
Unit Weight of Concrete:	150.0	pcf
Unit Weight of Water:	62.4	pcf
Unit Weight of Soil Above Water Table:	120.0	pcf
Unit Weight of Soil Below Water Table:	65.0	pcf
Friction Angle of Uplift from Top of Pad:	30	Degrees
Friction Angle of Uplift from Base of Pad:	30	Degrees
Uplift Angle Started at Top or Base of Pad (T/B):	T	
Ultimate Skin Friction:	0	psf
Ultimate Compressive Bearing Pressure:	10000	psf
Capacity Increase (Due to Transient Loads):	1.00	
Bearing Strength Reduction Factor (ϕ_s):	0.60	
Uplift Strength Reduction Factor (ϕ_u):	0.75	

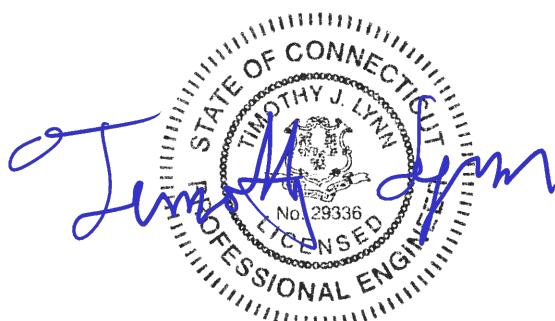
Axial Capacities

Nominal Uplift Capacity per Leg ($\phi_s T_n$):	11.4	k
Nominal Compressive Capacity per Leg ($\phi_s P_n$):	150.0	k
P_u :	131.6	k
$T_u/\phi_s T_n$:	0.00	Result: OK
$P_u/\phi_s P_n$:	0.88	Result: OK

Structural Analysis Report

Antenna Mount Analysis

T-Mobile Site #: CTHA830A


*157 Hampden Road
Stafford Springs, CT*

Centek Project No. 21005.22

Date: May 4, 2021

Rev 1: August 11, 2021

Max Stress Ratio = 70.8%

Prepared for:

***T-Mobile USA
35 Griffin Road
Bloomfield, CT 06002***

CENTEK Engineering, Inc.
Structural Analysis – Mount Analysis
T-Mobile Site Ref. ~ CTHA830A
Stafford Springs, CT
Rev 1 ~ August 11, 2021

Table of Contents

SECTION 1 – REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 – CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 – REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

- RF DATA SHEET, DATED 07/20/2021

August 11, 2021

Mr. Kyle Richers
Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, NJ 07430

Re: Structural Letter ~ Antenna Mount
T-Mobile – Site Ref: CTHA830A
157 Hampden Road
Stafford Springs, CT 06076

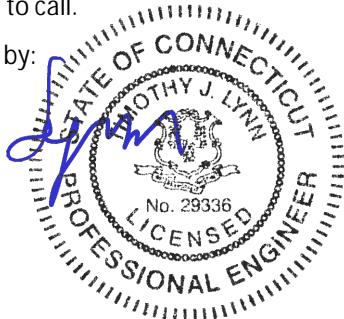
Centek Project No. 21005.22

Dear Mr. Richers,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the proposed mount, consisting of three (3) V-frame sector mounts (SitePro P/N: VFA12) to support the proposed equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G Structural Standards for Steel Antenna Towers and Supporting Structures.

The loads considered in this analysis consist of the following:

- **T-Mobile:**
V-Frames: Three (3) Ericsson AIR6449 panel antennas, three (3) RFS APXVAALL24_43-U-NA20 panel antennas, three (3) Ericsson 4480 remote radio heads and three (3) Ericsson 4460 remote radio heads mounted on three (3) V-Frames with a RAD center elevation of 171-ft +/- AGL.


The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 97 mph for Stafford as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.

Based on our review of the installation, it is our opinion that the subject antenna mount has sufficient capacity to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

Timothy J. Lynn, PE
Structural Engineer

Prepared by:

Fernando J. Palacios
Engineer

CENTEK Engineering, Inc.
Structural Analysis – Mount Analysis
T-Mobile Site Ref. ~ CTHA830A
Stafford Springs, CT
Rev 1 ~ August 11, 2021

Section 2 - Calculations

**Development of Design Heights, Exposure Coefficients,
 and Velocity Pressures Per TIA-222-G**

Wind Speeds

Basic Wind Speed	$V := 97$	mph	(User Input - 2018 CSBC Appendix N)
Basic Wind Speed with Ice	$V_i := 50$	mph	(User Input per Annex B of TIA-222-G)

Input

Structure Type =	Structure_Type := Lattice	(User Input)
Structure Category =	SC := 1	(User Input)
Exposure Category =	Exp := C	(User Input)
Structure Height =	$h := 180$	ft (User Input)
Height to Center of Antennas =	$z := 171$	ft (User Input)
Radial Ice Thickness =	$t_i := 1.00$	in (User Input per Annex B of TIA-222-G)
Radial Ice Density =	$I_d := 56.00$	pcf (User Input)
Topographic Factor =	$K_{zt} := 1.0$	(User Input)
K_a = 1.0		(User Input)
Gust Response Factor =	$G_H = 1.12$	(User Input)

Output

Wind Direction Probability Factor = $K_d := \begin{cases} 0.95 & \text{if Structure_Type = Pole} \\ 0.85 & \text{if Structure_Type = Lattice} \end{cases} = 0.85$ (Per Table 2-2 of TIA-222-G)

(Per Table 2-3 of TIA-222-G)

Importance Factors = $I_{Wind} := \begin{cases} 1 & \text{if SC = 1} \\ 0.87 & \text{if SC = 2} \\ 1.00 & \text{if SC = 3} \\ 1.15 & \text{if SC = 4} \end{cases}$

$I_{Wind_w_Ice} := \begin{cases} 1 & \text{if SC = 1} \\ 0 & \text{if SC = 2} \\ 1.00 & \text{if SC = 3} \\ 1.00 & \text{if SC = 4} \end{cases}$

$I_{Ice} := \begin{cases} 1 & \text{if SC = 1} \\ 0 & \text{if SC = 2} \\ 1.00 & \text{if SC = 3} \\ 1.25 & \text{if SC = 4} \end{cases}$

$$K_{iz} := \left(\frac{z}{33} \right)^{0.1} = 1.179$$

Velocity Pressure Coefficient Antennas = $t_{iz} := 2.0 \cdot t_i \cdot I_{ice} \cdot K_{iz} \cdot K_{zt}^{0.35} = 2.358$

$$Kz := 2.01 \cdot \left(\left(\frac{z}{zg} \right)^\alpha \right) = 1.417$$

Velocity Pressure w/o Ice Antennas = $qz := 0.00256 \cdot K_d \cdot Kz \cdot V^2 \cdot I_{Wind} = 29$

psf

Velocity Pressure with Ice Antennas = $qz_{ice} := 0.00256 \cdot K_d \cdot Kz \cdot V_i^2 \cdot I_{Wind} = 8$

psf

Development of Wind & Ice Load on Antennas

Antenna Data:

Antenna Model =	RFS APXVAALL24_43-U-NA20		
Antenna Shape =	Flat	(User Input)	
Antenna Height =	$L_{ant} := 95.9$	in	(User Input)
Antenna Width =	$W_{ant} := 24.0$	in	(User Input)
Antenna Thickness =	$T_{ant} := 8.5$	in	(User Input)
Antenna Weight =	$WT_{ant} := 150$	lbs	(User Input)
Number of Antennas =	$N_{ant} := 1$		(User Input)
Antenna Aspect Ratio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.0$		
Antenna Force Coefficient =	$Ca_{ant} = 1.27$		

Wind Load (without ice)

Surface Area for One Antenna =	$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 16$	sf
Total Antenna Wind Force Front =	$F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antF} = 658$	lbs
Surface Area for One Antenna =	$SA_{ants} := \frac{L_{ant} \cdot T_{ant}}{144} = 5.7$	sf
Total Antenna Wind Force Side =	$F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ants} = 233$	lbs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz})}{144} = 20.1$	sf
Total Antenna Wind Force w/ Ice Front =	$FI_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 219$	lbs
Surface Area for One Antenna w/ Ice =	$SA_{ICEants} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz})}{144} = 9.2$	sf
Total Antenna Wind Force w/ Ice Side =	$FI_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEants} = 101$	lbs

Gravity Load (without ice)

Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 150$	lbs
Gravity Loads (ice only)		
Volume of Each Antenna =	$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2 \cdot 10^4$	cu in
Volume of Ice on Each Antenna =	$V_{ice} := (L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 2 \cdot 10^4$	cu in
Weight of Ice on Each Antenna =	$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 603$	lbs
Weight of Ice on All Antennas =	$W_{ICEant} \cdot N_{ant} = 603$	lbs

Development of Wind & Ice Load on Antennas
Antenna Data:

Antenna Model =	Ericsson - AIR6449 B41		
Antenna Shape =	Flat	(User Input)	
Antenna Height =	$L_{ant} := 33.1$	in	(User Input)
Antenna Width =	$W_{ant} := 20.5$	in	(User Input)
Antenna Thickness =	$T_{ant} := 8.3$	in	(User Input)
Antenna Weight =	$WT_{ant} := 103$	lbs	(User Input)
Number of Antennas =	$N_{ant} := 1$	(User Input)	
Antenna Aspect Ratio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 1.6$		
Antenna Force Coefficient =	$Ca_{ant} = 1.2$		

Wind Load (without ice)

Surface Area for One Antenna =	$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 4.7$	sf
Total Antenna Wind Force Front =	$F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antF} = 184$	lbs
Surface Area for One Antenna =	$SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} = 1.9$	sf
Total Antenna Wind Force Side =	$F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antS} = 74$	lbs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz})}{144} = 6.6$	sf
Total Antenna Wind Force w/ Ice Front =	$F_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 69$	lbs
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz})}{144} = 3.4$	sf
Total Antenna Wind Force w/ Ice Side =	$F_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 35$	lbs

Gravity Load (without ice)

Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 103$	lbs
Gravity Loads (ice only)		
Volume of Each Antenna =	$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 5632$	cu in
Volume of Ice on Each Antenna =	$V_{ice} := (L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 6778$	cu in
Weight of Ice on Each Antenna =	$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 220$	lbs
Weight of Ice on All Antennas =	$W_{ICEant} \cdot N_{ant} = 220$	lbs

Development of Wind & Ice Load on RRUS's
RRUS Data:

RRUS Model =	Ericsson 4480 B71+B85		
RRUS Shape =	Flat	(User Input)	
RRUS Height =	$L_{RRUS} := 21.8$	in	(User Input)
RRUS Width =	$W_{RRUS} := 15.7$	in	(User Input)
RRUS Thickness =	$T_{RRUS} := 7.5$	in	(User Input)
RRUS Weight =	$WT_{RRUS} := 84$	lbs	(User Input)
Number of RRUS's =	$N_{RRUS} := 1$		
RRUS Aspect Ratio =	$Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.4$		
RRUS Force Coefficient =	$Ca_{RRUS} = 1.2$		

Wind Load (without ice)

Surface Area for One RRUS =	$SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.4$	sf
Total RRUS Wind Force =	$F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 93$	lbs
Surface Area for One RRUS =	$SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.1$	sf
Total RRUS Wind Force =	$F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSS} = 44$	lbs

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} := \frac{(L_{RRUS} + 2 \cdot t_{iz}) \cdot (W_{RRUS} + 2 \cdot t_{iz})}{144} = 3.8$	sf
Total RRUS Wind Force w/ Ice =	$F_{IRRUS} := qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSF} = 39$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} := \frac{(L_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz})}{144} = 2.2$	sf
Total RRUS Wind Force w/ Ice =	$F_{IRRUS} := qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSS} = 23$	lbs

Gravity Load (without ice)

Weight of All RRUSs =	$WT_{RRUS} \cdot N_{RRUS} = 84$	lbs
-----------------------	---------------------------------	-----

Gravity Loads (ice only)

Volume of Each RRUS =	$V_{RRUS} := L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 2567$	cu in
Volume of Ice on Each RRUS =	$V_{ice} := (L_{RRUS} + 2 \cdot t_{iz}) \cdot (W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 4045$	cu in
Weight of Ice on Each RRUS =	$W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot Id = 131$	lbs
Weight of Ice on All RRUSs =	$W_{ICERRUS} \cdot N_{RRUS} = 131$	lbs

Development of Wind & Ice Load on RRUS's

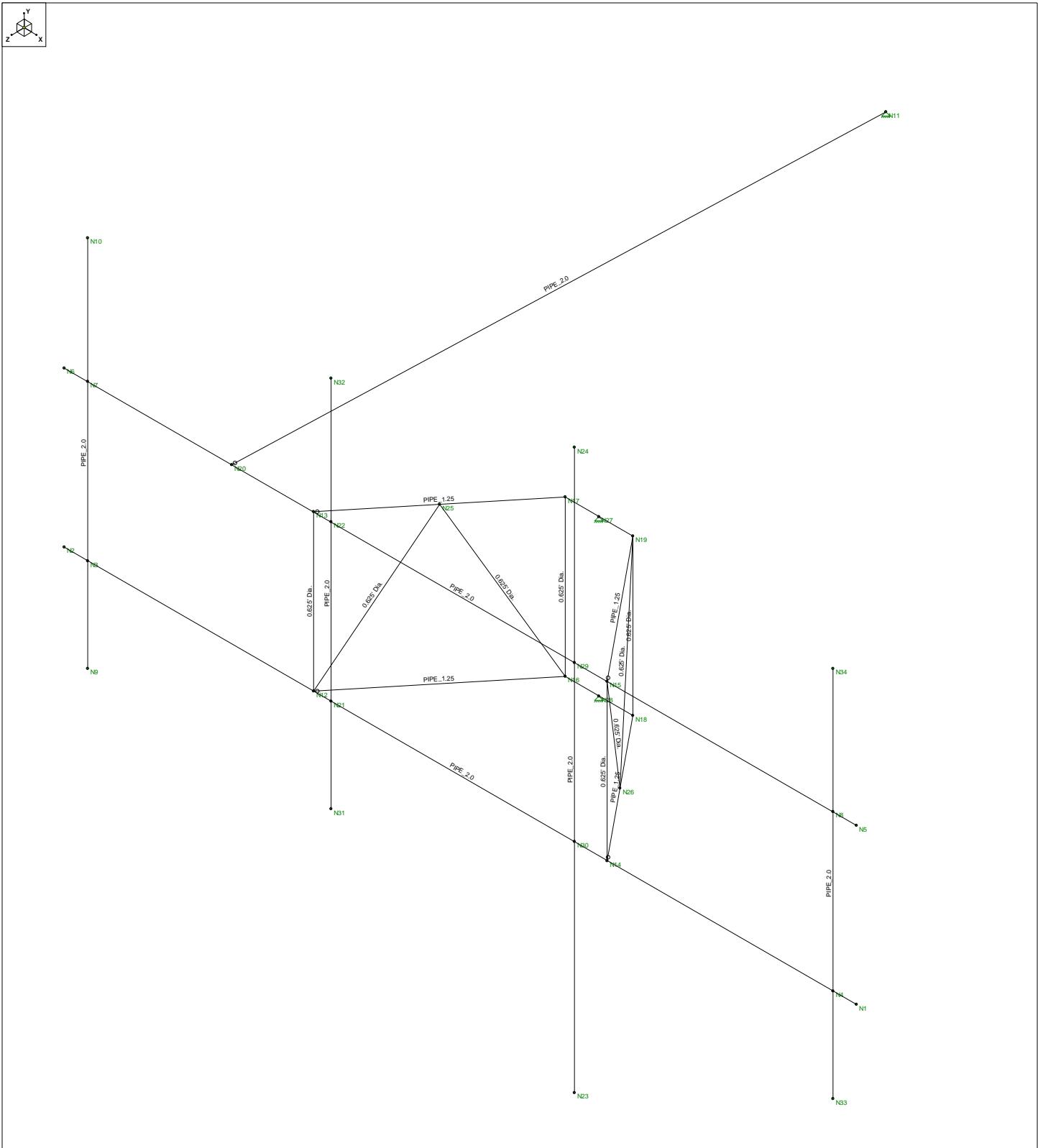
RRUS Data:

RRUS Model =	Ericsson 4460 B25+B66		
RRUS Shape =	Flat	(User Input)	
RRUS Height =	$L_{RRUS} := 19.6$	in	(User Input)
RRUS Width =	$W_{RRUS} := 15.7$	in	(User Input)
RRUS Thickness =	$T_{RRUS} := 12.1$	in	(User Input)
RRUS Weight =	$WT_{RRUS} := 109$	lbs	(User Input)
Number of RRUS's =	$N_{RRUS} := 1$		
RRUS Aspect Ratio =	$Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.2$		
RRUS Force Coefficient =	$Ca_{RRUS} = 1.2$		

Wind Load (without ice)

Surface Area for One RRUS =	$SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.1$	sf
Total RRUS Wind Force =	$F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 83$	lbs
Surface Area for One RRUS =	$SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.6$	sf
Total RRUS Wind Force =	$F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSS} = 64$	lbs

Wind Load (with ice)


Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} := \frac{(L_{RRUS} + 2 \cdot t_{iz}) \cdot (W_{RRUS} + 2 \cdot t_{iz})}{144} = 3.4$	sf
Total RRUS Wind Force w/ Ice =	$F_{IRRUS} := qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSF} = 36$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} := \frac{(L_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz})}{144} = 2.8$	sf
Total RRUS Wind Force w/ Ice =	$F_{IRRUS} := qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSS} = 29$	lbs

Gravity Load (without ice)

Weight of All RRUSs =	$WT_{RRUS} \cdot N_{RRUS} = 109$	lbs
-----------------------	----------------------------------	-----

Gravity Loads (ice only)

Volume of Each RRUS =	$V_{RRUS} := L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 3723$	cu in
Volume of Ice on Each RRUS =	$V_{ice} := (L_{RRUS} + 2 \cdot t_{iz}) \cdot (W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 4624$	cu in
Weight of Ice on Each RRUS =	$W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot Id = 150$	lbs
Weight of Ice on All RRUSs =	$W_{ICERRUS} \cdot N_{RRUS} = 150$	lbs

Envelope Only Solution

Centek Engineering

FJP

21005.22

CTHA830A

Member Framing

Aug 11, 2021 at 3:49 PM

Mount.R3D

fł `cVUŁA cXY 'GYH]b[g

P [äÜ[] ^ åÅc^m[] Ö[] å^	ØEÖÖAFI c@H EEEFÖKÖSÜØÖ
Öäb • öÜcä- } ^•• N	Y^•• Ö@ : ææ^•^D
ÜÜQÖÖ[} } ^&ç } Ö[] å^	ØEÖÖAFI c@H EEEFÖKÖUÖ
Ö[] åÅÖ[] { ^ åÅc^m[] Ö[] å^	ØEÖÖAFI c@H EEEFÖKÖUÖ
Y [[åÅÖ[] å^	ØEÖÖAFI c@H EEEFÖKÖUÖ
Y [[åÅV^ [] ^ æç ^	ŁAFEEÖ
Ö[} & ^ç Å[] å^	ØEÖÖAFI EEEF
T æ [}] ^ Å[] å^	ØEÖÖAFI EEEFÖKÖUÖ
ÖF { å ^ { Å[] å^	ØEÖÖAFI FEEFÖKÖUÖÅÖ ååä *
Üçä- ^•• Åc^m[] Ö[] å^	ØEÖÖAFI c@H EEEFÖKÖUÖ
Öäb • öÜcä- } ^•• N	Y^•• Ö@ : ææ^•^D

Þ { à^ Á ÁU@ ÆU^* ã } •	I
Ü^* ã } ÁU@ æã * ÁU&^* { ^ } ã } D	I
Óææ ÁO[^ { } ÁT^* c@ å	Óææ ÁO[c@ * { æã }
Úæ{ ^ ÁU@ cæðæ&{ ÁU@ ÓCD	Ú{
Ó[{ &^* c ÁUd^* • ÁO[&	Ú^&c@ * ^ æ
W^* ÁO[ææ{ ^ å ÁU^* &ã } • N	Ý^*
W^* ÁO[ææ{ ^ å ÁU^* &ã } • ÁU@ ææ N	Þ[
Óææ ÁO[ã * Á ã } ã * N	Þ[
W, ^ * ^ å ÁO[&^* ÁY ã } ã * N	Ý^*
T ã ÁF ÆOæ ÁOæ ÆU@ æã * N	Þ[
Ó[{ &^* c ÁU^* åæ ÁU^* c	ÜÖÓæU' ÚÖV' ÆÜVT ÆFÍ
T ã Á ÁUc^* ÁU[ÁO[^ { }	F
T ã Á ÁUc^* ÁU[ÁO[^ { }	I

fł̄ `cVUŁ'A cXY 'GYħib[għżejj 7 cbħi bi YX

Ü^ä{ ÅÖ[å^	DEÖÖÄ E€
Ü^ä{ ÅÖæ^Å ^çæ{ } ÅGÖ	P[dÖ] c ^å
ÖäåÅæ^ÅY ^ä @N	Y^•
ÖäÅY	E€G
ÖäÅZ	E€G
VÄÅç^&D	P[dÖ] c ^å
VÄÅç^&D	P[dÖ] c ^å
ÜÄY	H
ÜÄZ	H
ÖäÅç] EÄY	EÍ
ÖäÅç] EÄZ	EÍ
ÜÖF	F
ÜÖÜ	F
ÜF	F
VÄÅç^&D	I
Üä\Åæ	Ä ÅQ
ÖläæÖæc	Uc@!
U{ ÅZ	F
U{ ÅY	F
ÖäÅZ	F
ÖäÅY	F
Ü@ÅZ	F
Ü@ÅY	F

<chFc``YX`GhYY`Dfc cdYfHJYg

Sæði	Óæs•ð	Óæs•ð	þ	V@{ ÁPÍH Ö•ð	Þ	Þ	Þ	Ü	Ø	Üc
F	ÓHÍ ÁO:ÞH	GJEEE	FFFÍ	Þ	ÞÍ	ÞJ	ÞÍ	FĚ	Í	FĘ
G	ÓTÍ GÓ:ÞE	GJEEE	FFFÍ	Þ	ÞÍ	ÞJ	Í€	FÈ	Í	FĘ
H	ÓEJG	GJEEE	FFFÍ	Þ	ÞÍ	ÞJ	Í€	FÈ	Í	FĘ
I	ÓE EÓ:ÞG	GJEEE	FFFÍ	Þ	ÞÍ	ÞJ	IG	FÈ	Í	FĘ
Í	ÓE EÓ:ÞÍ	GJEEE	FFFÍ	Þ	ÞÍ	ÞJ	ÍÍ	FĘ	Í	FĘ
Í	ÓE HÓ:ÞÓ	GJEEE	FFFÍ	Þ	ÞÍ	ÞJ	ÍÍ	FĚ	Í	FĘ

<chFc``YX`GhYY`GYW`cb`GYIg

S&E	Ù@ ² ^	V^ ¹ ^	Ö@ ⁰ ^	Å@ ⁰ ^	T@ ¹ ^	Ö@ ⁰ ^	Å@ ⁰ ^	G@ ⁰ ^	Q@ ¹ ^	A@ ¹ ^	Q@ ¹ ^	A@ ¹ ^	R@ ¹ ^
F	Ø@ ⁰ ^	Å@ ⁰ ^	Ú@ ⁰ ^	Ø@ ⁰ ^	Ø@ ¹ ^	{ }	Ú@ ¹ ^	Ø@ ¹ ^	Ø@ ¹ ^	F@ ⁰ ^	È@ ⁰ ^	È@ ⁰ ^	F@ ⁰ ^
G	G@ ⁰ ^	Å@ ⁰ ^	Ú@ ⁰ ^	Ø@ ⁰ ^	Ø@ ¹ ^	{ }	Ú@ ¹ ^	Ø@ ¹ ^	Ø@ ¹ ^	F@ ⁰ ^	È@ ⁰ ^	È@ ⁰ ^	F@ ⁰ ^
H	F@ ⁰ ^	Å@ ⁰ ^	Ú@ ⁰ ^	F@ ⁰ ^	Ø@ ¹ ^	{ }	Ú@ ¹ ^	Ø@ ¹ ^	Ø@ ¹ ^	È@ ¹ ^	È@ ¹ ^	H@ ⁰ ^	H@ ⁰ ^
I	U@ ⁰ ^	d@ ¹ ^	*@ ¹ ^	F@ ⁰ ^	Å@ ⁰ ^	^	Ú@ ⁰ ^	F@ ⁰ ^	Ø@ ¹ ^	È@ ⁰ ^	È@ ⁰ ^	I@ ⁰ ^	I@ ⁰ ^
Í	Ù@ ⁰ ^	æ@ ¹ ^	é@ ¹ ^	Å@ ⁰ ^	Ú@ ⁰ ^	Ø@ ⁰ ^	Ú@ ¹ ^	Ø@ ¹ ^	Ø@ ¹ ^	F@ ⁰ ^	È@ ⁰ ^	È@ ⁰ ^	F@ ⁰ ^
Í	È@ ⁰ ^	Å@ ⁰ ^	^	ä@ ¹ ^	Ø@ ¹ ^	{ }	Ó@ ⁰ ^	Ø@ ¹ ^	Ø@ ¹ ^	È@ ⁰ ^	È@ ⁰ ^	È@ ⁰ ^	È@ ⁰ ^

<chFc ``YX'GhYY '8 Yg]] b'DUfUa YhYfg

<chFc ``YX'GhYY '8 Ygjj b 'DUFUa YhYfg fT cbhjbi YXŁ

A Ya VYf'DfJa Ufm8 UU

ສັ່ນ	ກົງຈັກ	ກົງຈັກ	ສັ່ນຈັກ	ູ້ຈັກ	ຸ່ງ&ດັກ	ວັນ	ເອົາ	ເກົ້າ	ຕັກ	ອົາ	ເກົ້າ
F	TF	ພG	ພF		ການູ້າ	ດ້າ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
G	TG	ພI	ພI		ການູ້າ	ດ້າ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
H	TH	ພGE	ພFF		ຸ້າສັ່ນ	ດ້າ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
I	TI	ພFH	ພF		ຸ້ດັກ*ສີ	ຸ້ດັກ*ສີ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
Í	TÍ	ພFG	ພF		ຸ້ດັກ*ສີ	ຸ້ດັກ*ສີ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
Î	TÎ	ພFI	ພFI		ຸ້ດັກ*ສີ	ຸ້ດັກ*ສີ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
Ï	TÏ	ພF	ພFJ		ຸ້ດັກ*ສີ	ຸ້ດັກ*ສີ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
Ì	TÌ	ພFH	ພFG		ີ	ກີ	ດ້າ	ດ້າ	ດ້າ	ດ້າ	ດ້າ
J	TJ	ພF	ພF		ີ	ກີ	ດ້າ	ດ້າ	ດ້າ	ດ້າ	ດ້າ
F€	TF€	ພFG	ພG		ີ	ກີ	ດ້າ	ດ້າ	ດ້າ	ດ້າ	ດ້າ
FF	TFF	ພG	ພF		ີ	ກີ	ດ້າ	ດ້າ	ດ້າ	ດ້າ	ດ້າ
FG	TFG	ພFJ	ພG		ີ	ກີ	ດ້າ	ດ້າ	ດ້າ	ດ້າ	ດ້າ
FH	TFH	ພG	ພF		ີ	ກີ	ດ້າ	ດ້າ	ດ້າ	ດ້າ	ດ້າ
FI	TFI	ພFJ	ພF		ີ	ກີ	ດ້າ	ດ້າ	ດ້າ	ດ້າ	ດ້າ
FÍ	TFÍ	ພF	ພF		ີ	ກີ	ດ້າ	ດ້າ	ດ້າ	ດ້າ	ດ້າ
FÎ	TFÎ	ພF€	ພJ		ອັດັກ	ດ້າ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
FÏ	TFÏ	ພG	ພGH		ອັດັກ	ດ້າ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
FÌ	TFÌ	ພF	ພFJ		ູ້ອັດັກ	ດ້າ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
FJ	TFJ	ພF	ພF		ູ້ອັດັກ	ດ້າ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
GE	TGE	ພHG	ພHF		ອັດັກ	ດ້າ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ
GF	TGF	ພH	ພHF		ອັດັກ	ດ້າ	ູ້າ	ເດີ	ຫົວ	ດ້າ	ເດີ

>c]bh7ccfX]bUhYg 'UbX'HYa dYfUi fYg

Šešiųjų	Ypatyba	Ypatyba	Zpatyba	Vairpatyba	Överläggning
F	PF	FGHÍ	É	GEGHEGJ	€
G	PG	EHÍ	É	GEGHEGJ	€
H	PH	€	É	GEGHEGJ	€
I	PI	FG	É	GEGHEGJ	€
Í	PÍ	FGHÍ	H	GEGHEGJ	€
Î	PÎ	EHÍ	H	GEGHEGJ	€
Ï	PÏ	€	H	GEGHEGJ	€

>cJbh7ccfXJbUhYgUbXHYa dYfUi fYg fVcbhbi YXŁ

Šešių	Y ¹ ž ² č ³	Y ¹ ž ² č ³	Z ¹ ž ² č ³	V ¹ ž ² č ³	Ö ¹ ž ² č ³	
Ì	þì	FG	H	g ¹ g ² g ³ J	€	
J	þJ	€	ß	g ¹ g ² g ³ J	€	
F€	þF€	€	í	g ¹ g ² g ³ J	€	
FF	þFF	g ¹ í	H	ß ð i j ð i f	€	
FG	þFG	h ¹ h ² g ¹	ë	g ¹ g ² g ³ J	€	
FH	þFH	h ¹ h ² g ¹	H	g ¹ g ² g ³ J	€	
FI	þFI	í ð i i i g	ë	g ¹ g ² g ³ J	€	
FÍ	þFÍ	í ð i i i g	H	g ¹ g ² g ³ J	€	
FÍ	þFÍ	í ð i i i f	ë	ð ð ð ð ð ð	€	
FÍ	þFÍ	í ð i i i f	H	ð ð ð ð ð ð	€	
FÍ	þFÍ	í ð i i g ð	ë	ð ð ð ð ð ð	€	
FJ	þFJ	í ð i o g ð	H	ð ð ð ð ð ð	€	
G€	þG€	g ¹ fi h h h	H	g ¹ g ² g ³ J	€	
GF	þGF	h ð ð ð i i i	ë	g ¹ g ² g ³ J	€	
GG	þGG	h ð ð ð i i i	H	g ¹ g ² g ³ J	€	
GH	þGH	í ð h h h h	ß	g ¹ g ² g ³ J	€	
G	þG	í ð h h h h	í	g ¹ g ² g ³ J	€	
G	þG	í ð i i i i	H	f ð ð f g	€	
G	þG	í ð i h f	ë	f ð ð f f	€	
G	þG	í ð	H	ð ð	€	
G	þG	í ð	ë	ð ð	€	
GI	þGI	í ð h h h	H	g ¹ g ² g ³ J	€	
H€	þH€	í ð h h h	ë	g ¹ g ² g ³ J	€	
HF	þHF	h ð ð i i i	ß	g ¹ g ² g ³ J	€	
HG	þHG	h ð ð i i i	í	g ¹ g ² g ³ J	€	
HH	þHH	FG	ß	g ¹ g ² g ³ J	€	
H	þH	FG	í	g ¹ g ² g ³ J	€	

>cJbh6 ci bXUfm7cbXJhcbg

A Ya VYf'DcJbh@UXg'f6 @7 '& 8 YUX'@UXL

T ^{ à^{\circ} Á Æ Ó }		Ö Æ ^{ a^{\circ} }	T æ } Æ á^{\circ} Ä Ë É	Š Ë ^{ a^{\circ} }
F	T Æ	Ý	Å G	Æ
G	T Æ	Ý	Å G	H
H	T Æ	Ý	Å Í	Æ
I	T Æ	Ý	Å Í	Í Ë
Í	T Æ	Ý	Å Ú	H

A Ya VYf'DcJbh@UXg'f6 @& '8 YUX@UXLfVcbHbi YXŁ

T^æ{ à! Ässæv^æ} Öä^ä&ä^ä} T æ^æ { ä^ä Ä^ä Ässæv^æ} Š^š &ä^ä} Žet^ä á

A Ya VYf'DcJbh@UXqfb @ ' : -W@UXL

T ^æ { à ^æ Å ^æ }		Ö ^ä { ä ^ä }		T ^ɛ { è ^ɛ Å ^ɛ }		Š ^š { š ^š }	
F	T F̄	Ý		Å F̄		È	
G	T F̄	Ý		Å F̄		H	
H	T F̄	Ý		Å €G		Ě	
I	T F̄	Ý		Å €G		Ï È	
Í	T F̄	Ý		Å Í		H	
Î	T F̄	Ö		Å EH		Î	

A Ya VYf Dc Jbh@UXq f6 @7 ' : ' K JbX'k Jh 'W'Lz

T ^{ à^{\wedge} Á^{\wedge} Ä^{\wedge} Ö^{\wedge} }		Ö Ä		T Æ ß á		Š Ÿ Ž Č á	
F	T F Í	Ý		Æ F Í		É	
G	T F Í	Ý		Æ F Í		H	
H	T F Í	Ý		Æ F		Ě	
I	T F Í	Ý		Æ F		Í Ě	
Í	T F Í	Ý		Æ G		H	
Í	T F Í	Ý		Æ G H		Í	

A Ya VYf Dc lbh@UXq f6 @) ; K bX L L

T ^{ à^; Ää; Å }	Ö ö & ä ä	T æ } ß ß Å ß É Éá	Š š & š š } Ž ž Á Á
F	T F ï	Ý	Ę H
G	T F ï	Ý	Ę H
H	T F ï	Ý	Ę F ï
I	T F ï	Ý	Ę F ï
Í	T F ï	Ý	Ę I
Î	T F ï	Ý	Ę I

À Ya VYf Dc lbh@UXq f6 @7 * : K l b X k H 3 W N

T ^{ à^; Á^; Ä^; Å^; Å^ }		Ö ä & ö }		T æ } ß à^; Ä ß; Å á		Š š & š }	
F	T F ï	Z	ß E H	ß E	É		
G	T F ï	Z	ß E H	ß E	H		
H	T F ï	Z	ß E F	ß E	É		
I	T F ï	Z	ß E F	ß E	Í ß		
Í	T F ï	Z	ß E I	ß E	H		
Í	T F ï	Z	ß E U	ß E	Í		

A Y a V Y f D c l b h @ C U X g f 6 @ Y + ; K l b X N

	T à Á É Ó Ú	Ö Å Æ	T Æ Ú Å Æ É	Š Ÿ Ž Č Á
F	T Æ	Z	ÉJG	Ě
G	T Æ	Z	ÉJG	H
H	T Æ	Z	ÉGJ	Ě
I	T Æ	Z	ÉGU	Í Ě
Í	T Æ	Z	ÉI H	H
Í	T Æ	Z	ÉIH	Í

A Ya VYf'8Jghf]Vi hYX'@UXg'f6 @' (: K JbX'k Jh 'W'LŁ

F	T F̄	Ý	EEH	EEH	EEH	€	€
G	T F̄i	Ý	EEH	EEH	EEH	€	€
H	T Í	Ý	EEH	EEH	EEH	€	€
I	T I	Ý	EEH	EEH	EEH	€	€
Í	T Í	Ý	EEH	EEH	EEH	€	€
Î	T Î	Ý	EEH	EEH	EEH	€	€
Ï	T H	Ý	EEH	EEH	EEH	€	€
Í	T ØE	Ý	EEH	EEH	EEH	€	€
J	T GF	Ý	EEH	EEH	EEH	€	€

A Ya VYf'8 Jglf Vi hYX @ UXg f6 @Y) : K JbX'LŁ

T <small>á</small> T <small>á</small> T <small>á</small>		Ö <small>ö</small> Ö <small>ö</small>		Ü <small>ü</small> Ü <small>ü</small>		À <small>à</small> À <small>à</small> À <small>à</small>		Ó <small>ó</small> Ó <small>ó</small> Ó <small>ó</small>	
F	TFÍ	Ý	EEJ	EEJ	EEJ	€	€	€	€
G	TFÍ	Ý	EEJ	EEJ	EEJ	€	€	€	€
H	TÍ	Ý	EEJ	EEJ	EEJ	€	€	€	€
I	TI	Ý	EEJ	EEJ	EEJ	€	€	€	€
Í	TÍ	Ý	EEJ	EEJ	EEJ	€	€	€	€
Î	TÎ	Ý	EEJ	EEJ	EEJ	€	€	€	€
Ï	TH	Ý	EEJ	EEJ	EEJ	€	€	€	€
Ì	TGE	Ý	EEJ	EEJ	EEJ	€	€	€	€
J	TGF	Ý	EEJ	EEJ	EEJ	€	€	€	€

A Ya VYf '8 Jglf]Vi hYX @ UXg f6 @* K JbX'k JH =WNL

T ¹ à ¹ Á ¹ Ă ¹		Ö ¹ Ă ¹ & Ă ¹		Ú ¹ Ă ¹ Ó ¹ Á ¹ Ă ¹		É ¹ à ¹ Ă ¹ Ó ¹ Á ¹ Ă ¹		Ó ¹ à ¹ Ă ¹ Ó ¹ Á ¹ Ă ¹		Ú ¹ Ă ¹ Ó ¹ & Ă ¹ Ž ¹ Ă ¹ Á ¹		Ó ¹ à ¹ Ă ¹ & Ă ¹ Ž ¹ Ă ¹ Á ¹	
F	TG	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
G	TF	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
H	TÍ	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
I	TI	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
Í	TÍ	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
Î	TFÍ	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
Ï	TÍ	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
Ì	TÎ	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
J	TFI	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
F€	TJ	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
FF	TFG	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
FG	TFH	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
FH	FFF	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
FI	TF€	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
FÍ	TG€	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		
FÎ	TGF	Z	EEH	Z	EEH	Z	EEH	Z	EEH	Z	EEH		

A Ya VYf '8 Jgkf]Vi hYX @ UXg f6 @7 +. K JbX N

T ^ { à ^ { Á } } S e t ^ { }		Ö ã ^ { & q } }		Ú c e o Á A ^ { e } } ã à ^ { à ^ { Z } } D e t ^ { E } • - á		Ó) à Á A ^ { e } } ã à ^ { à ^ { Z } } D e t ^ { E } • - á		Ú c e o ß S e e t ^ { }		Z e Á Á á		Ó) à Á S e e t ^ { } Z e Á Á á	
F	T G	Z	EEJ	EEJ		€		€		€		€	
G	T F	Z	EEJ	EEJ		€		€		€		€	
H	T Í	Z	EEJ	EEJ		€		€		€		€	
I	T I	Z	EEJ	EEJ		€		€		€		€	
Í	T Í	Z	EEJ	EEJ		€		€		€		€	
Í	T F Í	Z	EEJ	EEJ		€		€		€		€	

A Ya VYf'8JgkfJVi hYX'@UXg'fb @7'+'K JbX'Nf7 c bhjbi YXŁ

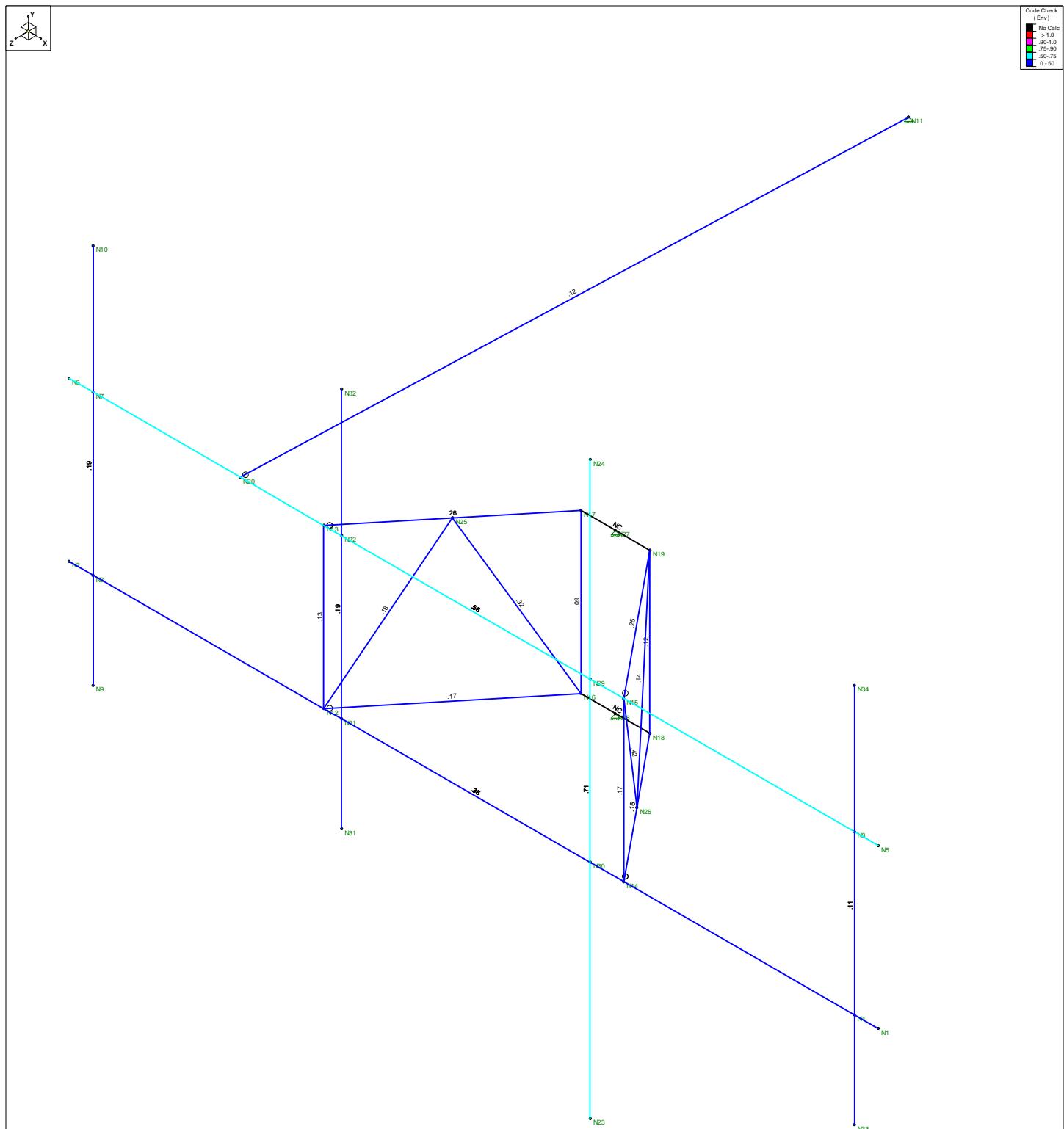
T ^À	T ^Á	T ^Ã	T ^É	T ^Í	T ^Ó	T ^Ó	T ^Ó	T ^Ó
Í	T Í	Z	EEJ	EEJ	EEJ	€	€	€
Ì	T Ì	Z	EEJ	EEJ	EEJ	€	€	€
J	T FI	Z	EEJ	EEJ	EEJ	€	€	€
F€	T J	Z	EEJ	EEJ	EEJ	€	€	€
FF	T FG	Z	EEJ	EEJ	EEJ	€	€	€
FG	T FH	Z	EEJ	EEJ	EEJ	€	€	€
FH	T FF	Z	EEJ	EEJ	EEJ	€	€	€
FI	T F€	Z	EEJ	EEJ	EEJ	€	€	€
FÍ	T G€	Z	EEJ	EEJ	EEJ	€	€	€
FÍ	T GF	Z	EEJ	EEJ	EEJ	€	€	€

6 UgW@UX'7 UgYg

@UX7ca VjbUhJcbg

9bj YcdY>cJbhFYUWJcbg

Rāc	YÄá	ŠO	YÄá	ŠO	ZÄá	ŠO	T YÄéá	ŠO	T YÄéá	ŠO	T ZÄéá	ŠO
F	PFF	{ å	EEG	Í	EGF	F	EG	I	€	Í	€	Í
G		{ å	EI	G	EFI	Í	EII	F	€	F	€	F
H	PÄ	{ å	EII	I	FEI	Í	EFG	G	€	Í	€	Í
I		{ å	EII	G	EII	G	EIIJ	I	€	F	€	F
Í	PÄ	{ å	EIJ	Í	EII	H	FEEG	H	€	Í	€	Í
Í		{ å	EII	F	EIF	Í	EII	I	€	F	€	F
I	VICÄK	{ å	€	Í	FEIJ	Í	€	F				
I		{ å	EII	F	EII	G	EII	I				


9bj YcdY>cJbh8Jgd`UWYa YbIg

R á c	Y Á á	Š O	Y Á á	Š O	Z Á á	Š O	Y Ä U cæs)	Ä E S O	Y Ä U cæs)	Ä E S O	Z Ä U cæs)	Ä E S O		
F	PF	{ æ	EÍÍ	F	E E H	H	ØÍÍ	Í	FØÍÍ^H	H	ØØÍÍ^H	F	FØI H^H	H
G		{ ä	E Æ J Æ	Í	E Æ H	Í	E Æ €	F	E Æ E F H ^H	Í	E Æ E Æ Æ ^E G	Í	E Æ E Æ Æ ^E G	Í
H	PG	{ æ	EÍÍ	F	E E Æ	Í	E Æ F Æ	I	I E Æ ^H	Í	F E F ^E G	I	G E J ^H	H

9bj YcdY>cJbh8Jgd`UWYa YbIg`fVcbhJbi YXŁ

9bj YcdY>cJbh8Jgd`UWYa YbIg'fV cbhJbi YXŁ

9bj YcdY5=G7 %h f1 *\$!%\$L @F:8 GhYY7cXY7\ YWg

Member Code Checks Displayed (Enveloped) Envelope Only Solution

Centek Engineering		
FJP	CTHA830A	Aug 11, 2021 at 3:52 PM
21005.22	Member Unity Check	Mount.R3D

RAN Template: 67E5A998E 6160	A&L Template: 67E5998E_1xAIR+1OP
--	--

Section 1 - Site Information

Site ID: CTHA830A
Status: Draft
Version: 1
Project Type: Sprint Retain
Approved: Not Approved
Approved By: Not Approved
Last Modified: 7/9/2021 4:16:47 PM
Last Modified By: Michael.Low1@T-Mobile.com

Site Name: CTHA830A
Site Class: Monopole
Site Type: Structure Non Building
Plan Year: 2021
Market: CONNECTICUT CT
Vendor: Ericsson
Landlord: Not Specified

Latitude: 41.99961388
Longitude: -72.35560000
Address: 157 Hampden Rd
City, State: Stafford Springs, CT
Region: NORTHEAST

RAN Template: 67E5A998E 6160

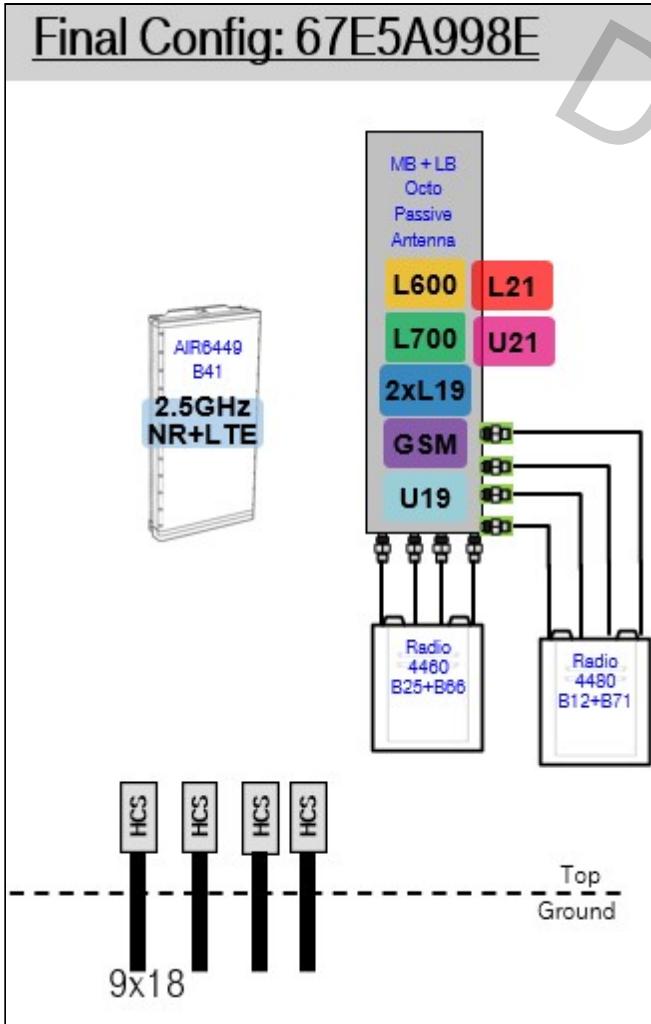
AL Template: 67E5998E_1xAIR+1OP

Sector Count: 3

Antenna Count: 6

Coax Line Count: 0

TMA Count: 0


RRU Count: 6

Section 2 - Existing Template Images

----- This section is intentionally blank. -----

Section 3 - Proposed Template Images

67E5A998E.jpg

Notes:

Section 4 - Siteplan Images

----- This section is intentionally blank. -----

DRAFT

RAN Template: 67E5A998E 6160	A&L Template: 67E5998E_1xAIR+1OP
---------------------------------	-------------------------------------

Section 5 - RAN Equipment

Existing RAN Equipment

----- This section is intentionally blank. -----

Proposed RAN Equipment

Template: 67E5A998E 6160

Enclosure	1	2	3
Enclosure Type	Enclosure 6160	RBS 6601	B160
Baseband	BB 6648 L700 L600 N600	BB 6648 L2500 N2500 L2100 L1900	DUG20 G1900
Transport System	CSR IXRe V2 (Gen2)		
Functionality Groups	Ericsson Hybrid Trunk 6/24 4AWG *Select Length* (x 3)		

RAN Scope of Work:

CT33XC553

Existing & planned azimuth: 0 / 120 / 240

Existing 200A service

SA @ 66%

Antenna - omni to be researched - Fire Dept possible

Generator needed - space is available

RAN Template: 67E5A998E 6160	A&L Template: 67E5998E_1xAIR+1OP
---------------------------------	-------------------------------------

Section 6 - A&L Equipment

Existing Template: Custom
Proposed Template: 67E5998E_1xAIR+1OP

Sector 1 (Proposed) view from behind						
Coverage Type	A - Outdoor Macro					
Antenna	1			2		
Antenna Model	RFS - APXVAALL24_43-U-NA20 (Octo)			Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO)		
Azimuth	0			0		
M. Tilt	0			0		
Height	171			171		
Ports	P1	P2	P3	P4	P5	P6
Active Tech.	L700 N600	L700 N600	L2100 G1900	L2100 G1900	L2500 N2500	L2500 N2500
Dark Tech.						
Restricted Tech.						
Decomm. Tech.						
E. Tilt	(2)	(2)	(2)	(2)	(2)	(2)
Cables	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)		
TMAs						
Diplexers / Combiners						
Radio	Radio 4480 B71+B85 (At Antenna)	SHARED Radio 4480 B71+B85 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)		
Sector Equipment						

Unconnected Equipment:

Scope of Work:

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

RAN Template: 67E5A998E 6160	A&L Template: 67E5998E_1xAIR+1OP
---------------------------------	-------------------------------------

Sector 2 (Proposed) view from behind						
Coverage Type	A - Outdoor Macro					
Antenna	1			2		
Antenna Model	RFS - APXVAALL24_43-U-NA20 (Octo)			Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO)		
Azimuth	120			120		
M. Tilt	0			0		
Height	171			171		
Ports	P1	P2	P3	P4	P5	P6
Active Tech.	L700 N600	L600 N600	L2100 G1900	L1900 G1900	L2100 G1900	L2500 N2500
Dark Tech.						
Restricted Tech.						
Decomm. Tech.						
E. Tilt	(2)	(2)	(2)	(2)	(2)	(2)
Cables	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)		
TMAs						
Diplexers / Combiners						
Radio	Radio 4480 B71+B85 (At Antenna)	SHARED Radio 4480 B71+B85 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)		
Sector Equipment						
Unconnected Equipment:						
Scope of Work:						

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

RAN Template: 67E5A998E 6160	A&L Template: 67E5998E_1xAIR+1OP
---------------------------------	-------------------------------------

Sector 3 (Proposed) view from behind						
Coverage Type	A - Outdoor Macro					
Antenna	1					
Antenna Model	RFS - APXVAALL24_43-U-NA20 (Octo)					
Azimuth	240					
M. Tilt	0					
Height	171					
Ports	P1	P2	P3	P4	P5	P6
Active Tech.	L700 N600	L700 N600	L2100 G1900	L2100 G1900	L2500 N2500	L2500 N2500
Dark Tech.						
Restricted Tech.						
Decomm. Tech.						
E. Tilt	(2)	(2)	(2)	(2)	(2)	(2)
Cables	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)		
TMAs						
Diplexers / Combiners						
Radio	Radio 4480 B71+B85 (At Antenna)	SHARED Radio 4480 B71+B85 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)		
Sector Equipment						
Unconnected Equipment:						
Scope of Work:						

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

RAN Template: 67E5A998E 6160	A&L Template: 67E5998E_1xAIR+1OP
--	--

Section 7 - Power Systems Equipment

Existing Power Systems Equipment

----- This section is intentionally blank. -----

Proposed Power Systems Equipment

Enclosure	1
Enclosure Type	Enclosure 6160

EBI Consulting

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA830A

157 Hampden Road
Stafford Springs, Connecticut 06076

October 18, 2021

EBI Project Number: 6221006192

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	7.92%

October 18, 2021

T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTHA830A

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **157 Hampden Road in Stafford Springs, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The number of $\mu\text{W}/\text{cm}^2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 $\mu\text{W}/\text{cm}^2$ and 467 $\mu\text{W}/\text{cm}^2$, respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 $\mu\text{W}/\text{cm}^2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 157 Hampden Road in Stafford Springs, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower. For power density calculations, the broadcast footprint of the AIR6449 antenna has been considered. Due to the beamforming nature of this antenna, the actual beam locations vary depending on demand and are narrow in nature. Using the broadcast footprint accounts for the potential location of beams at any given time.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 1 NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.

- 6) 2 LTE channels (AWS Band – 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 7) 1 LTE Traffic channel (LTE 1C and 2C BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 60 Watts.
- 8) 1 LTE Broadcast channel (LTE 1C and 2C BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 20 Watts.
- 9) 1 NR Traffic channel (BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 120 Watts.
- 10) 1 NR Broadcast channel (BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 40 Watts.
- 11) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 12) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 13) The antennas used in this modeling are the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector A, the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector B, the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied

specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 14) The antenna mounting height centerline of the proposed antennas is 171 feet above ground level (AGL).
- 15) Emissions from additional carriers were not included because emissions data for the site location are not available.
- 16) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	RFS APXVAALL24_43-U-NA20	Make / Model:	RFS APXVAALL24_43-U-NA20	Make / Model:	RFS APXVAALL24_43-U-NA20
Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz
Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd / 15.45 dBd / 15.45 dBd / 16.45 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd / 15.45 dBd / 15.45 dBd / 16.45 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd / 15.45 dBd / 15.45 dBd / 16.45 dBd
Height (AGL):	171 feet	Height (AGL):	171 feet	Height (AGL):	171 feet
Channel Count:	13	Channel Count:	13	Channel Count:	13
Total TX Power (W):	560 Watts	Total TX Power (W):	560 Watts	Total TX Power (W):	560 Watts
ERP (W):	17,868.72	ERP (W):	17,868.72	ERP (W):	17,868.72
Antenna A1 MPE %:	3.12%	Antenna B1 MPE %:	3.12%	Antenna C1 MPE %:	3.12%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449
Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz
Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd	Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd	Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd
Height (AGL):	171 feet	Height (AGL):	171 feet	Height (AGL):	171 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts
ERP (W):	36,356.09	ERP (W):	36,356.09	ERP (W):	36,356.09
Antenna A2 MPE %:	4.80%	Antenna B2 MPE %:	4.80%	Antenna C2 MPE %:	4.80%

Site Composite MPE %	
Carrier	MPE %
T-Mobile (Max at Sector A):	7.92%
no additional carriers	N/A
Site Total MPE % :	7.92%

T-Mobile MPE % Per Sector	
T-Mobile Sector A Total:	7.92%
T-Mobile Sector B Total:	7.92%
T-Mobile Sector C Total:	7.92%
Site Total MPE % :	7.92%

T-Mobile Maximum MPE Power Values (Sector A)							
T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu\text{W}/\text{cm}^2$)	Frequency (MHz)	Allowable MPE ($\mu\text{W}/\text{cm}^2$)	Calculated % MPE
T-Mobile 600 MHz LTE	2	591.73	171.0	1.56	600 MHz LTE	400	0.39%
T-Mobile 600 MHz NR	1	1577.94	171.0	2.08	600 MHz NR	400	0.52%
T-Mobile 700 MHz LTE	2	695.22	171.0	1.84	700 MHz LTE	467	0.39%
T-Mobile 1900 MHz GSM	4	1052.26	171.0	5.56	1900 MHz GSM	1000	0.56%
T-Mobile 1900 MHz LTE	2	2104.51	171.0	5.56	1900 MHz LTE	1000	0.56%
T-Mobile 2100 MHz LTE	2	2649.42	171.0	7.00	2100 MHz LTE	1000	0.70%
T-Mobile 2500 MHz LTE IC & 2C Traffic	1	11044.63	171.0	14.58	2500 MHz LTE IC & 2C Traffic	1000	1.46%
T-Mobile 2500 MHz LTE IC & 2C Broadcast	1	1074.06	171.0	1.42	2500 MHz LTE IC & 2C Broadcast	1000	0.14%
T-Mobile 2500 MHz NR Traffic	1	22089.26	171.0	29.17	2500 MHz NR Traffic	1000	2.92%
T-Mobile 2500 MHz NR Broadcast	1	2148.13	171.0	2.84	2500 MHz NR Broadcast	1000	0.28%
						Total:	7.92%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector A:	7.92%
Sector B:	7.92%
Sector C:	7.92%
T-Mobile Maximum MPE % (Sector A):	7.92%
Site Total:	7.92%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **7.92%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Protector™ Series

GENERAC®

Diesel Generator Set

INCLUDES:

- Two Line LCD Multilingual Digital Evolution™ Controller (English/Spanish/French/Portuguese) with external viewing window for easy indication of generator status and breaker position.
- Isochronous Electronic Governor
- Sound Attenuated Aluminum Enclosure
- Smart Battery Charger
- UV/Ozone Resistant Hoses
- $\pm 1\%$ Voltage Regulation
- Integrated Base Tank Provides Up to 40 Hours of Run Time
- 5 Year Limited Warranty*
- UL 2200 / UL142 / ULC S601 Listed
- Meets code requirements for External Vent and Fill

Standby Power Rating

Model RD015 - 15 kW 60 Hz

Model RD020 - 20 kW 60 Hz

Model RD030 - 30 kW 60 Hz

Model RD048 - 48 kW 60 Hz (single phase only)

Model RD050 - 50 kW 60 Hz (three phase only)

*Built in the USA using domestic and foreign parts

Meets EPA Emission Regulations
CA/MA Emissions Compliant

* 5 year warranty applicable to U.S. and Territories/Canada. International warranty is 3 year limited.

FEATURES

- **INNOVATIVE DESIGN & PROTOTYPE TESTING** are key components of GENERAC'S success in "IMPROVING POWER BY DESIGN." But it doesn't stop there. Total commitment to component testing, reliability testing, environmental testing, destruction and life testing, plus testing to applicable CSA, NEMA, EGSA, and other standards, allows you to choose GENERAC POWER SYSTEMS with the confidence that these systems will provide superior performance.
- **TEST CRITERIA:**
 - ✓ PROTOTYPE TESTED
 - ✓ SYSTEM TORSIONAL TESTED
 - ✓ NEMA MG1-22 EVALUATION
 - ✓ MOTOR STARTING ABILITY
- **SOLID-STATE, FREQUENCY COMPENSATED VOLTAGE REGULATION.** This state-of-the-art power maximizing regulation system is standard on all Generac models. It provides optimized FAST RESPONSE to changing load conditions and MAXIMUM MOTOR STARTING CAPABILITY by electronically torque-matching the surge loads to the engine. Digital voltage regulation at $\pm 1\%$.
- **SINGLE SOURCE SERVICE RESPONSE** from Generac's extensive dealer network provides parts and service know-how for the entire unit, from the engine to the smallest electronic component.
- **GENERAC TRANSFER SWITCHES.** Long life and reliability are synonymous with GENERAC POWER SYSTEMS. One reason for this confidence is that the GENERAC product line includes its own transfer systems and controls for total system compatibility.

GENERAC®

15 • 20 • 30 • 48 • 50 kW

application & engineering data

GENERATOR SPECIFICATIONS

Type	Synchronous
Rotor Insulation Class	H (15 & 20 kW) or F (30, 48 & 50 kW)
Stator Insulation Class	H
Telephone Interference Factor (TIF)	<50
Alternator Output Leads 1-Phase	3 wire
Alternator Output Leads 3-Phase	6 wire
Bearings	Single Sealed Cartridge
Coupling	Direct, Flexible Disc
Excitation System	Direct

VOLTAGE REGULATION

Type	Electronic
Sensing	Single Phase
Regulation	± 1%
Features	Adjustable Voltage & Gain

GOVERNOR SPECIFICATIONS

Type	Electronic Isochronous
Steady State Regulation	± 0.25%

ELECTRICAL SYSTEM

Battery Charge Alternator	50 Amp (15 & 20 kW) or 70 Amp (30, 48 & 50 kW)
Smart Battery Charger	2 Amp
Recommended Battery (battery not included)	Group 27F, 700 CCA
System Voltage	12 Volts

GENERATOR FEATURES

Revolving field heavy duty generator
 Directly connected to the engine
 Operating temperature rise 120°C above a 40°C ambient
 Class H insulation is NEMA rated
 Class F insulation is NEMA rated
 All models fully prototype tested

ENCLOSURE FEATURES

Aluminum weather protective enclosure	Ensures protection against mother nature. Electrostatically applied textured epoxy paint for added durability.
Enclosed critical grade muffler	Quiet, critical grade muffler is mounted inside the unit to prevent injuries and maximize sound dampening.
Small, compact, attractive	Makes for an easy, eye appealing installation.
SAE	Sound attenuated enclosure ensures quiet operation.

(All ratings in accordance with BS5514, ISO3046, ISO8528, SAE J1349 and DIN6271)

ENGINE SPECIFICATIONS: 15 & 20 kW

Make	Generac
Model	In-line
Cylinders	4
Displacement (Liters)	2.28
Bore (in./mm)	3.46/88
Stroke (in./mm)	3.70/94
Compression Ratio	21.3:1
Intake Air System	Naturally Aspirated
Cylinder Head Type	Cast Iron OHV
Piston Type	Aluminum
EPA Emissions Compliance	Emergency Stationary

ENGINE SPECIFICATIONS: 30 kW

Make	Generac
Model	In-line
Cylinders	4
Displacement (Liters)	2.4
Bore (in/mm)	3.54/90
Stroke (in/mm)	3.70/94
Compression Ratio	21.3:1
Intake Air System	Turbocharged
Cylinder Head Type	Cast Iron OHV
Piston Type	Aluminum
EPA Emissions Compliance	Emergency Stationary

ENGINE SPECIFICATIONS: 48/50 kW

Make	Generac
Model	In-Line
Cylinders	4
Displacement (Liters)	3.4
Bore in/mm	3.86/98
Stroke in/mm	4.45/113
Compression Ratio	18.5:1
Intake Air System	Turbocharged/Aftercooled
Cylinder Head Type	Cast Iron OHV
Piston Type	Aluminum
EPA Emissions Compliance	Emergency Stationary

WEIGHTS AND DIMENSIONS

	15 kW	20 kW	30 kW	48 kW	50 kW
Weight (lb/kg)	1380/626		1927/874	2197/997	
Dimensions (LxWxH) (in/cm)	81 x 31 x 50/205 x 78 x 128			95 x 35 x 57/242 x 89 x 145	

ENGINE LUBRICATION SYSTEM

Oil Pump Type	Gear
Oil Filter Type	Full flow spin-on canister
Crankcase Capacity (quarts/liters)	6.87/6.5 - 15 & 20 kW 6.8/6.4 - 30 kW 7.4/7 - 48 & 50 kW

ENGINE COOLING SYSTEM

Type	Pressurized radiator - 15 & 20 kW Closed recovery - 30, 48 & 50 kW
Water Pump	Pre-lubed, self-seating
Fan Speed (rpm)	1800 - 15 & 20 kW 2061 - 30 kW 2029 - 48 & 50 kW
Fan Diameter (in/mm)	18.11/460 (15 & 20 kW) 22/559 (30, 48 & 50 kW)
Fan Mode	Pusher

FUEL SYSTEM

Fuel Type	Ultra Low Sulfur Diesel Fuel
Fuel Pump Type	Mechanical Engine Driven Gear
Injector Type	Mechanical
Fuel Supply Line (mm/in)	7.94/0.31 (ID)
Fuel Return Line (mm/in)	7.94/0.31 (ID)
Fuel Specification	ASTM
Fuel Filtering (microns)	5 - 15, 20 & 30 kW 10 - 48 & 50 kW

TANK SPECIFICATIONS

Total Size (gallons/liters)	34/128.7 - 15 & 20 kW 62/234.7 - 30, 48 & 50 kW
Usable Size (gallons/liters)	32/121.1 - 15 & 20 kW 57/215.8 - 30, 48 & 50 kW
Run Time @ 1/2 Load (hrs)	41 - 15 kW 31 - 20 kW 38 - 30 kW 25 - 48 & 50 kW
Listings	UL142 ULC-S601

15 • 20 • 30 • 48 • 50 kW

GENERATOR OUTPUT VOLTAGE/kW - 60 Hz

		kW (Standby)	Amp (Standby)	CB Size
RD015	120/240 V, 1Ø, 1.0 pf	15	62	70
	120/208 V, 3Ø, 0.8 pf	15	52	60
	120/240 V, 3Ø, 0.8 pf	15	45	50
RD020	120/240 V, 1Ø, 1.0 pf	20	83	100
	120/208 V, 3Ø, 0.8 pf	20	69	80
	120/240 V, 3Ø, 0.8 pf	20	60	70
RD030	120/240 V, 1Ø, 1.0 pf	30	125	150
	120/208 V, 3Ø, 0.8 pf	30	104	125
	120/240 V, 3Ø, 0.8 pf	30	90	100
	277/480 V, 3Ø, 0.8 pf	30	45	50
RD048/ RD050	120/240 V, 1Ø, 1.0 pf	48	200	200
	120/208 V, 3Ø, 0.8 pf	50	173	200
	120/240 V, 3Ø, 0.8 pf	50	150	175
	277/480 V, 3Ø, 0.8 pf	50	75	90

SURGE CAPACITY IN AMPS

Voltage Dip @ < .4 pf			
	15%	30%	
RD015	120/240 V, 1Ø	53	129
	120/208 V, 3Ø	37	90
	120/240 V, 3Ø	32	78
RD020	120/240 V, 1Ø	87	211
	120/208 V, 3Ø	59	143
	120/240 V, 3Ø	51	124
RD030	120/240 V, 1Ø	66	168
	120/208 V, 3Ø	59	144
	120/240 V, 3Ø	51	125
	277/480 V, 3Ø	26	64
RD048/ RD050	120/240 V, 1Ø	69	189
	120/208 V, 3Ø	90	218
	120/240 V, 3Ø	78	189
	277/480 V, 3Ø	36	87

ENGINE FUEL CONSUMPTION

		gal/hr	L/hr
RD015	25% of rated load	0.51	1.93
	50% of rated load	0.79	2.99
	75% of rated load	1.14	4.31
	100% of rated load	1.48	5.58
RD020	25% of rated load	0.67	2.6
	50% of rated load	1.05	3.97
	75% of rated load	1.52	5.32
	100% of rated load	1.98	7.48
RD030	25% of rated load	0.92	3.5
	50% of rated load	1.45	5.5
	75% of rated load	1.96	7.4
	100% of rated load	2.74	10.4
RD048/ RD050	25% of rated load	1.35	5.11
	50% of rated load	2.15	8.14
	75% of rated load	3.06	11.58
	100% of rated load	3.98	15.07

15 • 20 • 30 • 48 • 50 kW

ENGINE COOLING

	15 kW	20 kW	30 kW	48/50 kW
Air flow (inlet air including alternator and combustion air in cfm/cmm)	2824/80	2824/80	3038/86	2824/80
System coolant capacity (gal/liters)	2.8/10.6	2.8/10.6	2.8/10.6	2.8/10.6
Heat rejection to coolant (BTU per hr/MJ per hr)	63,535/67	63,535/67	111,000/117.1	135,900/143.4
Maximum operation air temperature on radiator (°C/F)		50/122		
Maximum ambient temperature (°C/F)		50/122		

COMBUSTION REQUIREMENTS

Flow at rated power (cfm/cmm)	84.76/2.4	84.76/2.4	90/2.55	190/5.38
-------------------------------	-----------	-----------	---------	----------

SOUND EMISSIONS

Sound output in dB(A) at 23 ft (7 m) with generator in exercise mode*	65
Sound output in dB(A) at 23 ft (7 m) with generator operating at normal load*	70

*Sound levels are taken from the front of the generator. Sound levels taken from other sides of the generator may be higher depending on installation parameters.

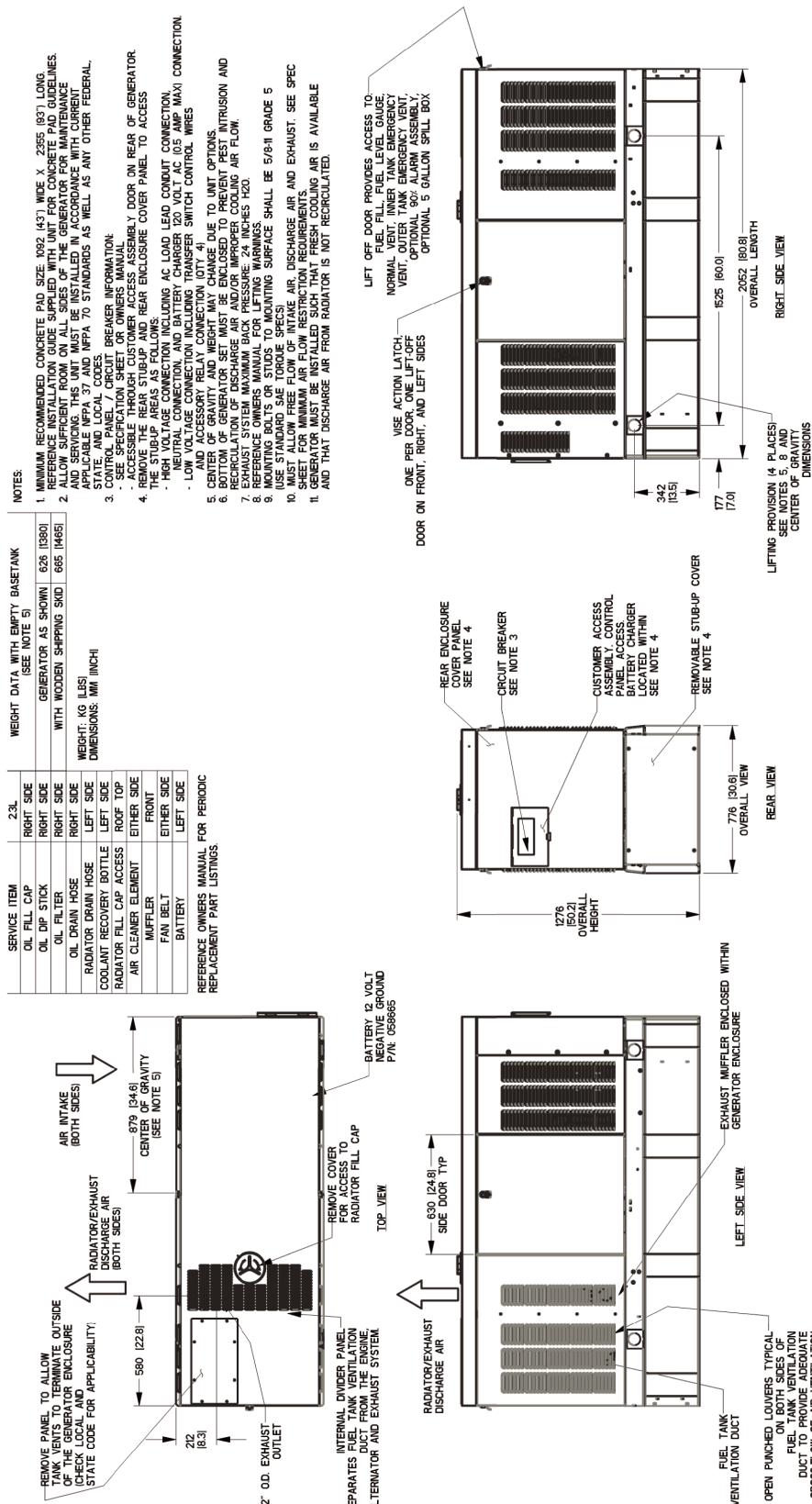
EXHAUST

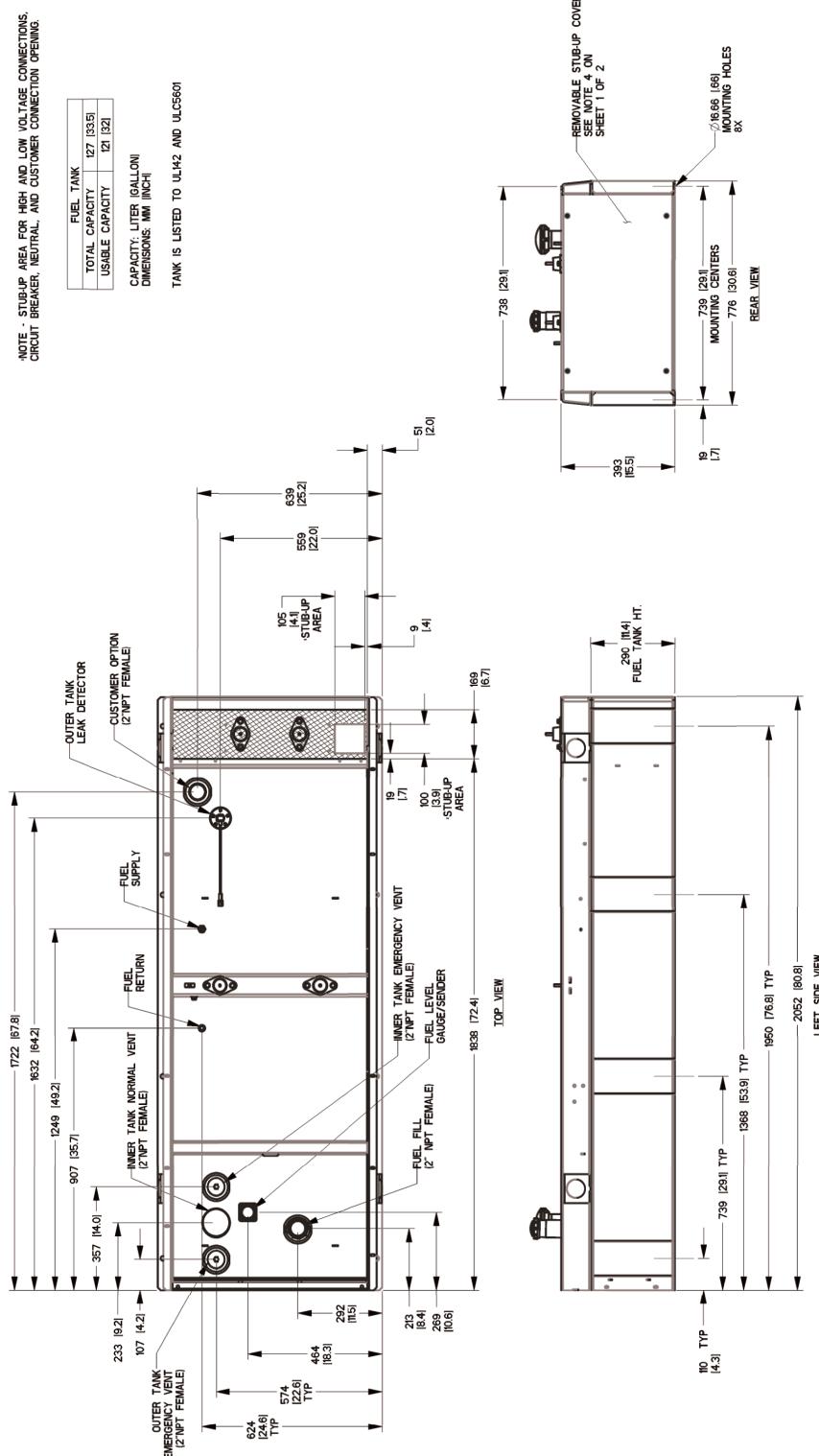
Exhaust flow at rated output (cfm/cmm)	98.88/2.8	98.88/2.8	230/6.51	448/12.7
Exhaust temperature at rated output (°C/F)	604.4/1120	604.4/1120	454.4/850	604.4/1120

ENGINE PARAMETERS

Rated Synchronous RPM	1800			
HP at rated kW	26.4	33.5	49	85

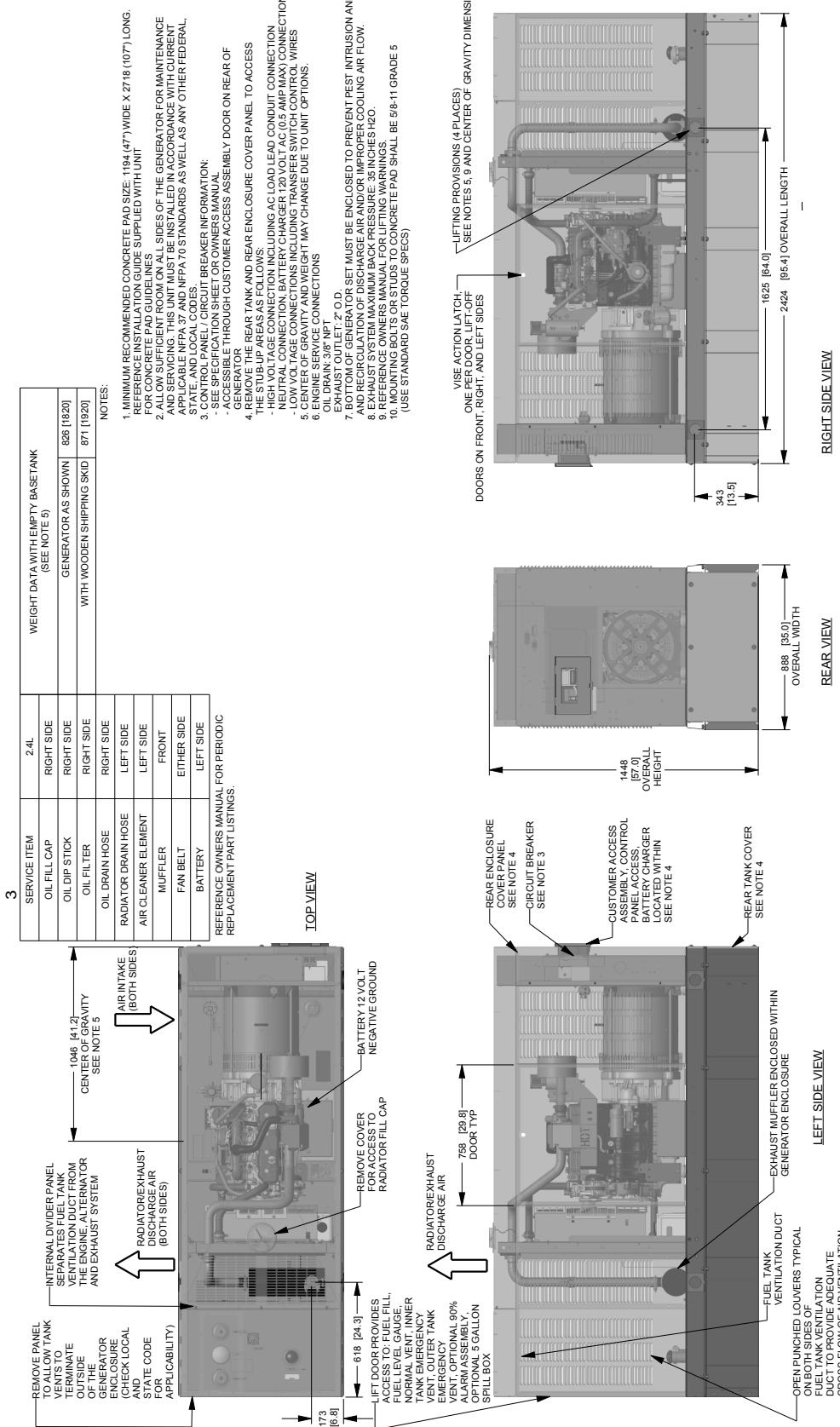
POWER ADJUSTMENT FOR AMBIENT CONDITIONS

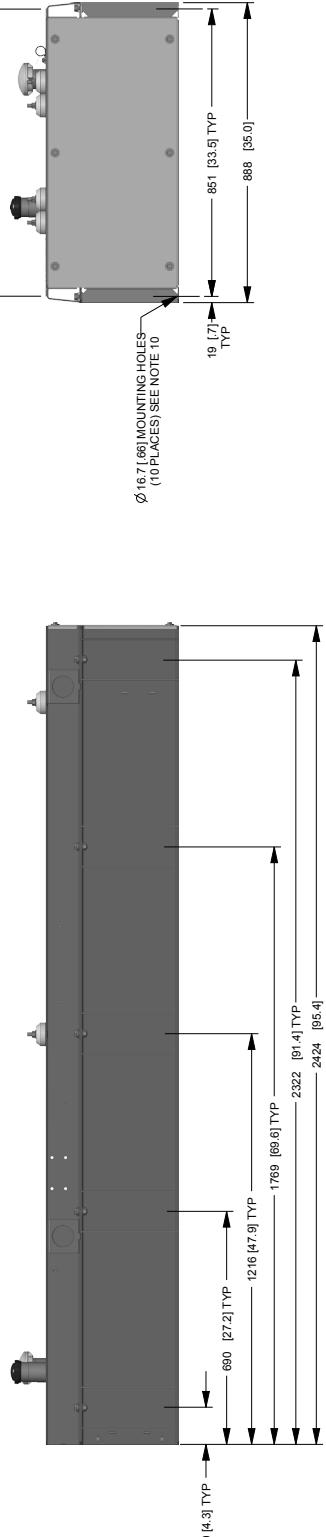
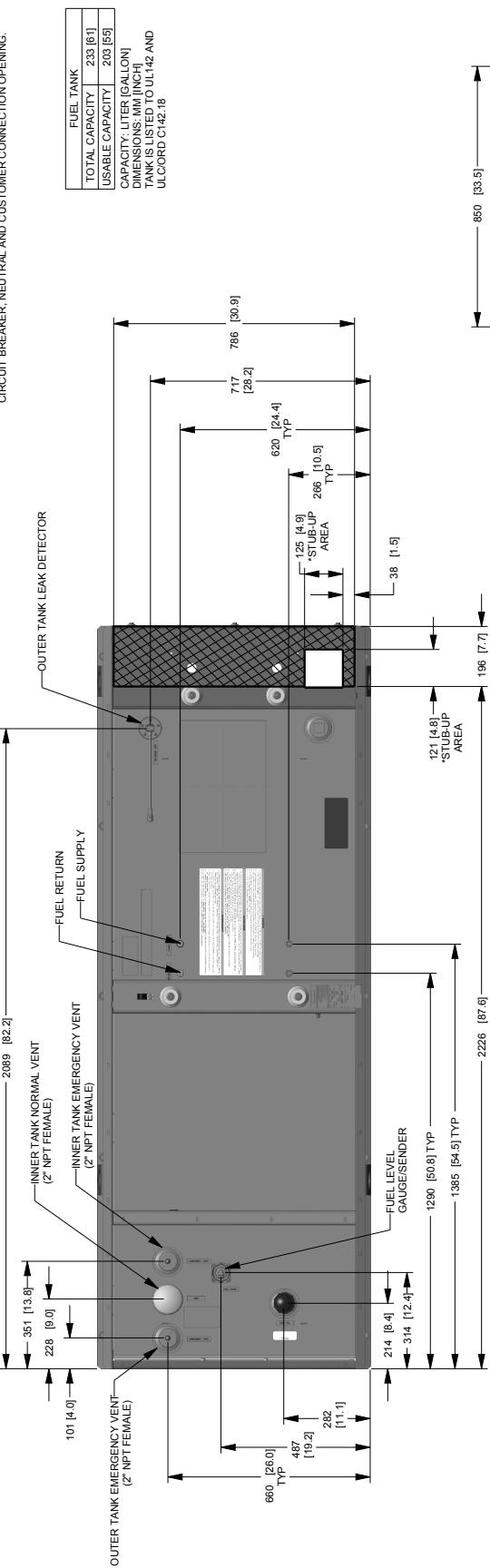

Temperature Deration	3% for every 5 °C above 25 °C or 1.7% for every 5 °F above 77 °F
Altitude Deration (15, 30, 48 & 50 kW)	1% for every 100 m above 915 m or 3% for every 1000 ft above 3000 ft
Altitude Deration (20 kW)	1% for every 100 m above 305 m or 3% for every 1000 ft above 1000 ft


CONTROLLER FEATURES

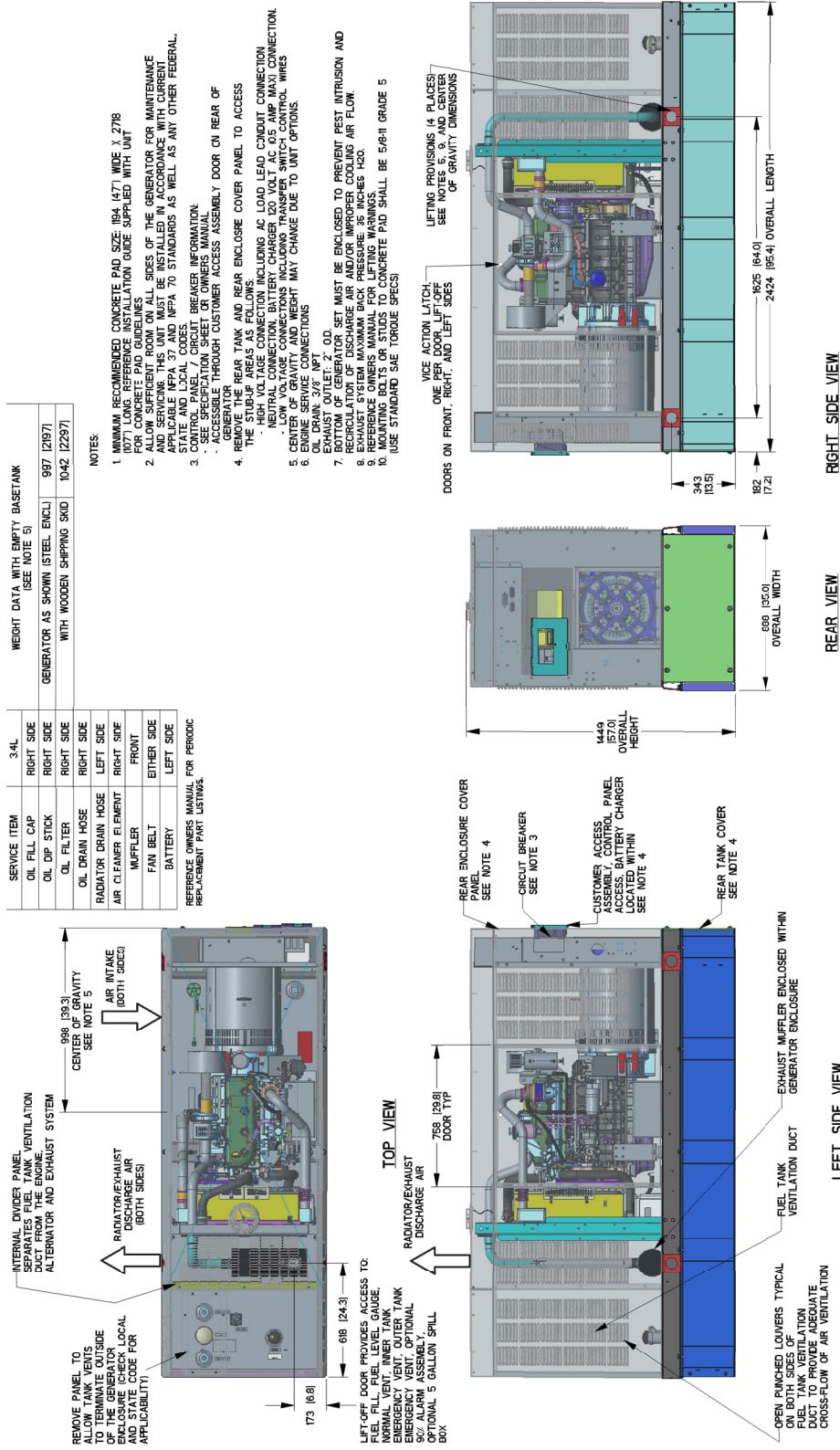
2-Line Plain Text Multilingual LCD Display	Simple user interface for ease of operation.
Mode Buttons: Auto	Automatic Start on Utility failure. Programmable 7 day exerciser.
Manual	Start with starter control, unit stays on. If utility fails, transfer to load takes place.
Off	Stops unit. Power is removed. Control and charger still operate.
Ready to Run/Maintenance Messages	Standard
Engine Run Hours Indication	Standard
Programmable start delay between 2-1500 seconds	Standard (programmable by dealer only)
Utility Voltage Loss/Return to Utility Adjustable	From 140-171 V/190-216 V
Future Set Capable Exerciser/Exercise Set Error Warning	Standard
Run/Alarm/Maintenance Logs	50 Events Each
Engine Start Sequence	Cyclic cranking: 16 sec on, 7 rest (90 sec maximum duration).
Starter Lock-out	Starter cannot re-engage until 5 sec after engine has stopped.
Smart Battery Charger	Standard
Charger Fault/Missing AC Warning	Standard
Low Battery/Battery Problem Protection and Battery Condition Indication	Standard
Automatic Voltage Regulation with Over and Under Voltage Protection	Standard
Under-Frequency/Overload/Stepper Overcurrent Protection	Standard
Safety Fused/Fuse Problem Protection	Standard
Automatic Low Oil Pressure/High Oil Temperature Shutdown	Standard
Overcrank/Overspeed (@ 72 Hz)/RPM Sense Loss Shutdown	Standard
High Engine Temperature Shutdown	Standard
Internal Fault/Incorrect Wiring Protection	Standard
Common External Fault Capability	Standard
Field Upgradable Firmware	Standard

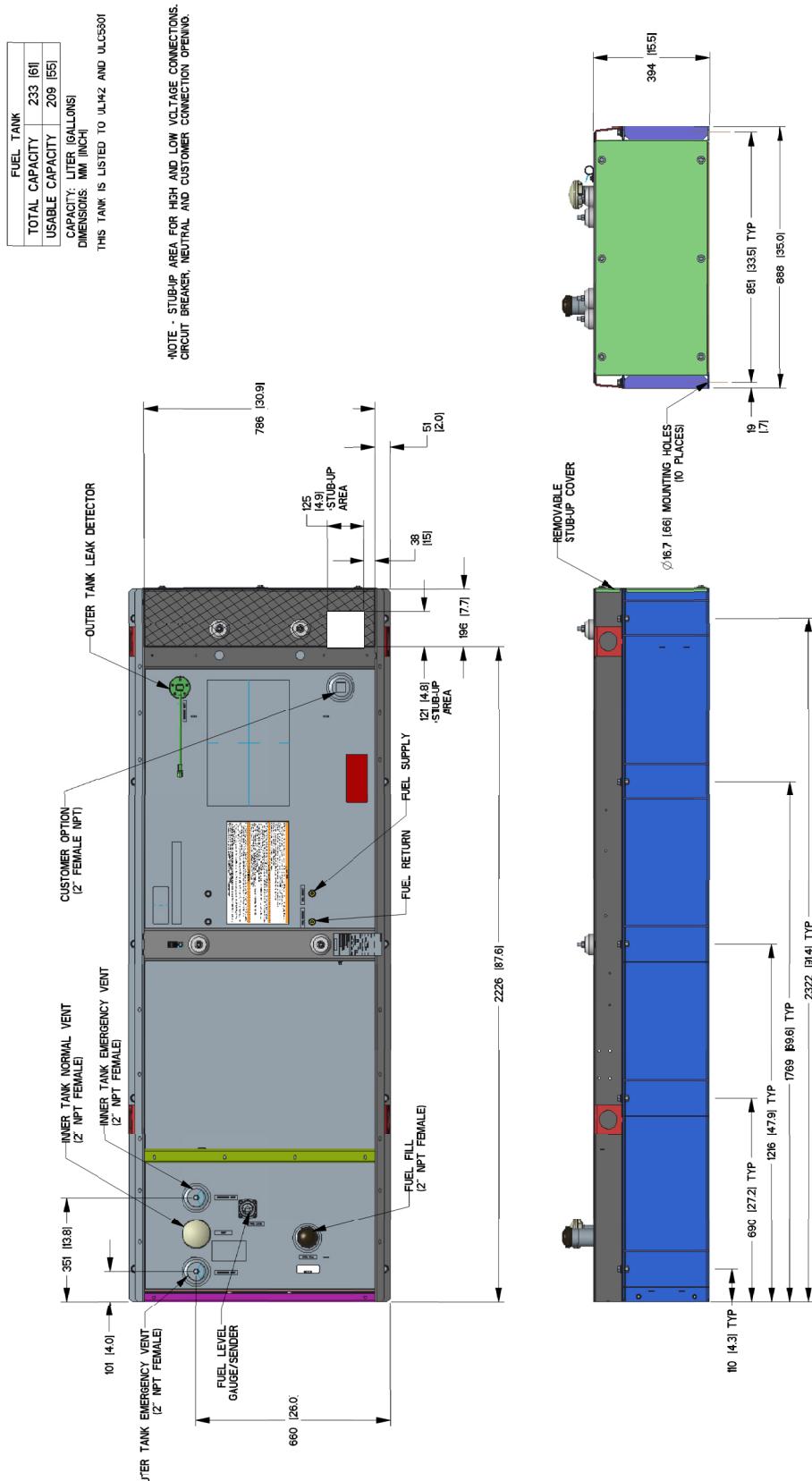
15 & 20 kW


Drawing #0K7025-C (1 of 2)



30 kW

Drawing #0K7002-C (1 of 2)


30 kW


*NOTE- STUB-UP AREA FOR HIGH AND LOW VOLTAGE CONNECTIONS, CIRCUIT BREAKER, NEUTRAL AND CUSTOMER CONNECTION OPENING.

48 & 50 kW

Drawing #0K6968-C (1 of 2)

15 • 20 • 30 • 48 • 50 kW

available accessories

Model #	Product	Description
G006463-4	Mobile Link™	Generac's Mobile Link allows you to check the status of your generator from anywhere that you have access to an Internet connection from a PC or with any smart device. You will even be notified when a change in the generator's status occurs via e-mail or text message. Note: Harness Adapter Kit required. Available in the U.S. only.
G006478-0	Harness Adapter Kit	The Harness Adapter Kit is required to make liquid-cooled units compatible with Mobile Link™.
G006502-0	Spill Box	The 5-gallon spill box screws into the existing fuel fill port of the base tank. It captures and contains fuel if over fueling or spilling occurs during the fill process.
G006504-0	90% Fuel Level Alarm	The 90% fuel level alarm alerts the fuel fill operator when the tank reaches a 90% fill level by sounding an audible alarm and triggering an LED warning light.
G006505-0 - 15 & 20 kW G006506-0 - 30, 48 & 50 kW	Tank Risers	Tank risers are required in some municipalities to help avoid potential base tank corrosion caused by mounting on rough surfaces.
G006507-0	Fuel Fill Drop Tube	A powder coat painted, steel fuel fill drop tube is required in some municipalities to prevent sparking due to static electricity buildup, which can be caused by the fuel dropping into the tank from the fill area. Using a drop tube also results in submerged filling, which increases the fuel delivery flow rate and reduces vapors, foam and potential tank evaporation.
G006513-0 - 15 & 20 kW G006517-0 - 30 kW G006516-0 - 48 & 50 kW	Stainless Steel Fuel Lines	Some municipalities require the use of stainless steel fuel lines instead of the standard hoses provided with the diesel generator products. These stainless steel lines are fire resistant for additional safety.
G006510-0	E-Stop	E-stop allows for immediate fuel shutoff and generator shutdown in the event of an emergency.
006511-0	Spill Box Drainback Kit	The spill box drainback kit allows fuel that was captured in the 5-gallon spill box to be drained directly back into the fuel tank to avoid vapors.
G006588-1	Vent Extension Support Kit	The vent extension support kit consists of two aluminum plates with the appropriate pipe cutouts to secure the vent extension pipes coming through the top of the generator enclosure. It helps to minimize stress on the NPT fittings integrated on the tank and also helps protect against pests.
G006512-0	Lockable Fuel Cap	The cast iron, lockable fuel cap provides the ability to lock the fuel system to prevent unwanted fuel tampering or fuel siphoning.
G006572-0 - 15 & 20 kW G006571-0 - 30 kW G006570-0 - 48 & 50 kW	Maintenance Kits	The Protector Maintenance Kits offer all the hardware necessary to perform complete maintenance on Generac Protector generators.
G006560-0 - 15 & 20 kW G006559-0 - 30 kW G006558-0 - 48 & 50 kW	Cold Weather Kits	Recommended for generators installed in regions where the temperature regularly falls below 32 °F (0 °C). The Cold Weather Kits consist of a block heater with all necessary mounting hardware and a battery warmer with a thermostat built into the battery wrap.
G005704-0	Paint Kit	If the generator enclosure is scratched or damaged, it is important to touch-up the paint to protect from future corrosion. The paint kit includes the necessary paint to properly maintain or touch-up a generator enclosure.
G006664-0	Local Wireless Remote	Completely wireless and battery powered, Generac's wireless remote monitor provides you with instant status information without ever leaving the house.
G006665-0	Wireless Remote Extension Harness	Recommended for use with the Wireless Remote on units up to 60 kW, required for use on units 70 kW or greater.
G006873-0	Smart Management Module (50 Amps)	Manage large loads by utilizing up to 8 individual Smart Management modules. These devices are installed directly in line with existing appliance wiring for easy installation.