10 Industrial Ave, Suite 3 Mahwah NJ 07430

PHONE: 201.684.0055 FAX: 201.684.0066

October 22, 2021

Members of the Siting Council Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

 RE: Notice of Exempt Modification 157/169 Hampden Road, Stafford Springs, CT 06076 Latitude: 41.595861 Longitude: -72.212016
 T-Mobile Site#: CTHA830A - Sprint Keep Project

Dear Ms. Bachman:

T-Mobile/Sprint currently maintains six (6) antennas at the 171-foot level of the existing 180-foot Guyed Tower at 169 Hampden Road, Stafford Springs, Connecticut. The 180-foot Guyed Tower is owned and operated by Cordless Data Transfer. The ground space is owned by Michael Angelo. T-Mobile now intends to remove all Sprint equipment including antennas, cables, and ground equipment. T-mobile will be adding six (6) antennas. The new antennas will be installed at the same 171-foot level. The new antennas support 5G services.

Planned Modifications:

Tower: <u>Remove</u> (6) Sprint Antennas (12) Sprint RRHs All Sprint Hybrid Cables

Install New: (3) APXVAALL24 43-U-NA20 Antennas (3) AIR6449 Antennas (3) Ericsson Radio 4480 B71+B85 (3) Ericsson 4460 B25+B66 (3) 6/24 Hybrid Cables

Ground: Install New: (1) B160s
 (1) Enclosure 6160
 (1) 10' x 4' Concrete Pad
 (1) 25 KW Diesel Fueled Back-up Generator

<u>To Be Removed:</u> All Sprint Ground Equipment

The earliest Siting Council submission was from May 31, 2011. The original building permit for the tower construction was unavailable but attached is a permit application from June 24, 2011

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to First Selectman - Mary Mitta, Elected Official, and David Perkins, Zoning Enforcement Officer, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.

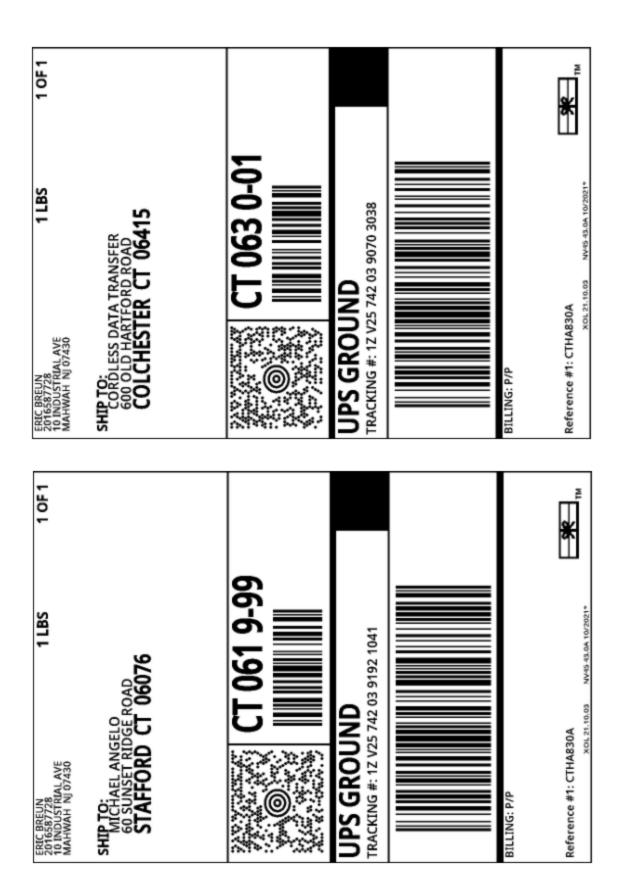
2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading.


For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely, **Eric Breun** Transcend Wireless Cell: 201-658-7728 Email: <u>ebreun@transcendwireless.com</u>

Attachments cc: Mary Mitta - as First Selectman of Stafford David Perkins - Zoning Enforcement Officer Cordless Data Transfer - Tower Owner Michael Angelo - Land Owner

Hello, your package has been delivered.

Delivery Date: Wednesday, 10/20/2021 Delivery Time: 10:36 AM Left At: OFFICE Signed by: DADAULT

TRANSCEND WIRELESS

Tracking Number:	1ZV257420390089024
Ship To:	DAVID PERKINS 1 MAIN STREET STAFFORD, CT 06076 US
Number of Packages:	1
UPS Service:	UPS Ground
Package Weight:	1.0 LBS
Reference Number:	CTHA830A

Hello, your package has been delivered.

Delivery Date: Wednesday, 10/20/2021 Delivery Time: 1:22 PM Left At: MET CUST MAN

Experience UPS My Choice® Premium Today

Be in total control of how, when and where your packages are delivered.

Upgrade to Premium Now

Set Delivery Instructions

Manage Preferences

TRANSCEND WIRELESS

Tracking Number:	1ZV257420391921041
Ship To:	MICHAEL ANGELO 60 SUNSET RIDGE ROAD STAFFORD, CT 06076 US
Number of Packages:	1
UPS Service:	UPS Ground
Package Weight:	1.0 LBS
Reference Number:	CTHA830A

Hello, your package has been delivered.

Delivery Date: Wednesday, 10/20/2021 Delivery Time: 10:36 AM Left At: OFFICE Signed by: DADAULT

TRANSCEND WIRELESS

Tracking Number:	1ZV257420398866081			
Ship To:	MARY MITTA 1 MAIN STREET STAFFORD, CT 06076 US			
Number of Packages:	1			
UPS Service:	UPS Ground			
Package Weight:	1.0 LBS			
Reference Number:	CTHA830A			
Hello, your package has been de Delivery Date: Wednesday, 10/20/202 Delivery Time: 11:31 AM Left At: OTHER-RELEAS				
Experience UPS My Choice Be in total control of how, whe your packages are delivered. Upgrade to Premium Now				
Set Delivery Instructions Manage Preferences				
TRANSCEND WIRELESS				
Tracking Number:	1ZV257420390703038			
Ship To:	CORDLESS DATA TRANSFER 600 OLD HARTFORD ROAD COLCHESTER, CT 06415 US			
Number of Packages:	1			

UPS Ground

1.0 LBS

CTHA830A

Package Weight: Reference Number:

UPS Service:

169 HAMPDEN R	D		Q Sales 🌲 Print	♦ Map It
Location	169 HAMPDEN RD	Mblu	23//60//	
Acct#	00109700	Owner	ANGELO MICHAEL+SHELLY M	
Assessment	\$260,140	Appraisal	\$473,800	
PID	1227	Building Count	1	

lt

Current Value

Appraisal				
Valuation Year Improvements Land Total				
2020	\$115,700	\$358,100	\$473,800	
Assessment				
Valuation Year	Improvements	Land	Total	
2020	\$80,990	\$179,150	\$260,140	

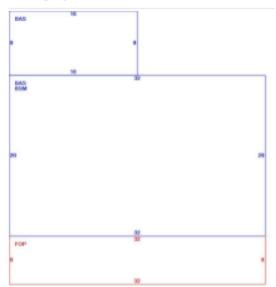
Owner of Record

Owner	ANGELO MICHAEL+SHELLY M	Sale Price	\$0
Co-Owner		Certificate	
Address	60 SUNSET RIDGE	Book & Page	0595/0005
	STAFFORD SPRINGS, CT 08076	Sale Date	09/24/2012
		Instrument	01

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
ANGELO MICHAEL+SHELLY M	\$0		0595/0005	01	09/24/2012
ANGELO MICHAEL	SO		0595/0002	01	09/24/2012
ANGELO MICHAEL J	\$0	1	0326/0545		03/31/1995

Building Information


Building 1 : Section 1

Living Area: Replacement Cost: Building Percent Good: Replacement Cost	1999 768 \$91,3 87 \$79,5	
Bui	lding	Attributes
Field		Description
STYLE		Single Family
MODEL		Comm/Ind
Grade		с
Stories:		1
Occupancy		1.00
Exterior Wall 1		Logs
Exterior Wall 2		
Roof Structure		Gable
Roof Cover		Asph/F Gls/Cmp
Interior Wall 1		Drywall/Sheet
Interior Wall 2		
Interior Floor 1		Average
Interior Floor 2		
Heating Fuel		Gas
Heating Type		Forced Hot Air
AC Type		None
Struct Class		
Bidg Use		SFD - Comm
Total Bedrooms		2
Total Baths		1

Building Photo

1st Floor Use:	
Heat/AC	None
Frame Type	Wood Frame
Baths/Plumbing	Average
Ceiling/Wall	Ceil & Wall
Rooms/Prins	Average
Wall Height	8.00
Num Fixtures	

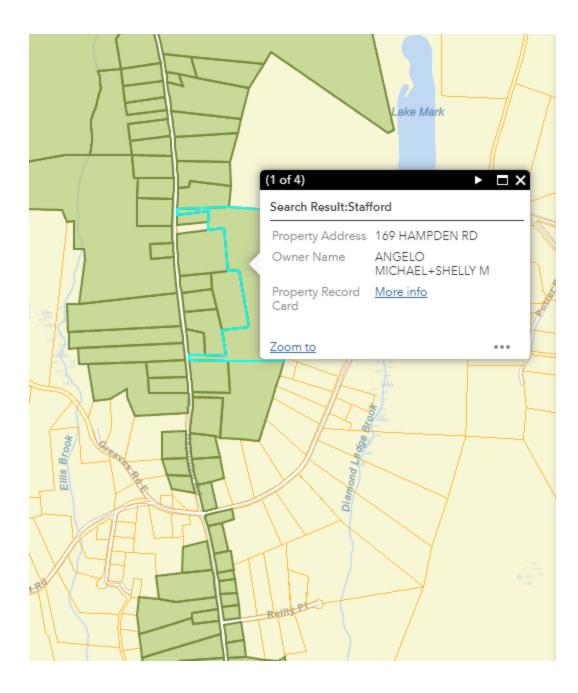
Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
BAS	First Floor	768	768
BSM	Basement	640	0
FOP	Open Porch	192	0
		1,600	768

Extra Features

Extra Features Legen				Legend
Code	Description	Value	Bldg #	
FPL	Com Fireplace	1.00 UNITS	\$1,700	1

Land

Land Use		Land Line Valuation	
Use Code	101C	Size (Acres)	43.54
Description	SFD - Comm 📵	Frontage	
Zone		Depth	
Neighborhood	502	Assessed Value	\$179,150
Alt Land Appr	No	Appraised Value	\$358,100
Category			


Outbuildings

			Outbuildings			Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bidg #
FGR2	Garage w/ Loft			1024.00 S.F.	\$18,600	1
FGR2	Garage w/ Loft			676.00 S.F.	\$12,300	1
FN3	FENCE-6' CHAIN			150.00 L.F.	\$900	1
FCP	Carport			384.00 S.F.	\$2,700	1

Valuation History

	Appraisal		
Valuation Year	Improvements	Land	Total
2019	\$99,100	\$376,400	\$475,500
2018	\$99,100	\$376,400	\$475,500
2017	\$99,100	\$376,400	\$475,500

	Assessment		
Valuation Year	Improvemente	Land	Total
2019	\$69,370	\$176,000	\$245,370
2018	\$69,370	\$176,000	\$245,370
2017	\$69,370	\$176,000	\$245,370

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

May 31, 2011

Mark Hulshart, Principal Hulshart & Associates, LLC 3009 Federal Hill Drive Falls Church, VA 22044

RE: **EM-SPRINT-134-110505** – Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 169 Hampden Road, Stafford, Connecticut.

Dear Mr. Hulshart:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Not less than 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated April 29, 2011. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Linda Roberts

Executive Director

LR/CDM/laf

c: The Honorable Michael P. Krol, First Selectman, Town of Stafford Wendell Avery, Zoning Enforcement Officer, Town of Stafford Michael Angelo

CT33XC553

			9 0 Town o BUILDIN Buildit 1 Main Stre Stafford Spr (860) 684-177	GP ng Offic ect - To ings, C	ERMIT Sial Wh Hall T 06076		"A certificate oj required upon work, alteration Separate perm plumbing, heati	completion or change its arc req	i of new of use." puired for
Date:		Licen	se:	·		Exp	iration Date:		
Esti.nated Cost: \$14,	000	Fee	196.10	Map:	23/060	Lot	: 1	Permit #:	15406
Location of Construct	ion: 169 Hampden R	oad, St	afford CT 06	6075					
30150 Telegraph Contractor's Name &	dress: Sprint c/o B Road, Suite 420, Address: Overland 8400 Ward	Binghar Contrac Parkway	n Farms, MI 4 ting Inc.	18025	64114				
Signature of Applican	t, Homeowner, Agen?	Te	lephone Number		Bui	Iding Offic	cial Signature	ſ	Date
hustin 1	Ala fuel cell	(2)	48) 594-9330 t3) (013-397	3((1)	DC	Malan	and	6-7	-11
Describe Nature of W	ork:	l & stor	rage cabinets	s on 6	' x 9' cor	ncrete p	ad inside exist	ing lease	e area.
ТҮРЕ	FOUNDATI	ONS	ROOF TY	'PE	FOO	TING	FRAMING	SIZE	SPAN
Single Family	Thickness		Gable		Size		Joist		
Two Family	Concrete stab	X	Hip		Stone		2 nd Floor		
			T	1	1	T			· · · · · · · · · · · · · · · · · · ·

Single Family		Thickness		Gable		Size	Joist		11
Two Family		Concrete sla	6 X	Hip		Stone	2 nd Fl	oor	
Apt House		Concrete Block	(S	Gambrel	52	Concrete	Rafter		
Agricultural		Piers		Truss		Drains	Girde	r	
Accessory		Stone		Flat		Depth	Colun	nn	
Office				Roof Pitch	T T		Sill		
Factory		CONSTRU	CTION			CHIMNEYS	Post		
Gas Station		Frame		ROOFING	N/A	Size / Flues	Plate		
Commercial	x	Masonry		Asphalt Shingle		Stone	Stud		
Demolition		I.C.F.		Wood Shingle		Brick			
Other:		Other:		Built-up		Block	Specie	es & Grade	
				Other:	[Factory Built	÷.		
Number of Rooms		EXTERIOR				Fire Place			
Number of Bathrooms		Ctapboard or Wood S	ihingle	Cellar ¹	N/A				
Number of Bedrooms		Vinyl		Whole		Built to Conform	to:	i	
Insulation		Мазопгу		Part		Residential Code	(IRC)		
Ceiling		Other		None		Commercial Cod	: (IBC)		
Walls		ĺ		Slab					
Floors		I		Other		F.M. Approval			
SWIMMING PO	OL:	Above Grou	nd 🗆	In Ground D		Fence D N/A			
Building Official C	Comm	ents / Special Co	onditions						

Work shall not proceed until the inspector has inspected and approved the various stages of construction. Final inspection is required upon completion of work. Permit will become null and void if construction work is not started within six months of the date the permit is issued. Permit grants the right to entry to any official from the building, health, or zoning departments during normal business hours for the purpose of inspection. If signed by other than the owner, applicant attests compliance with CGS20-388B and has authorization by owner to apply for this permit.

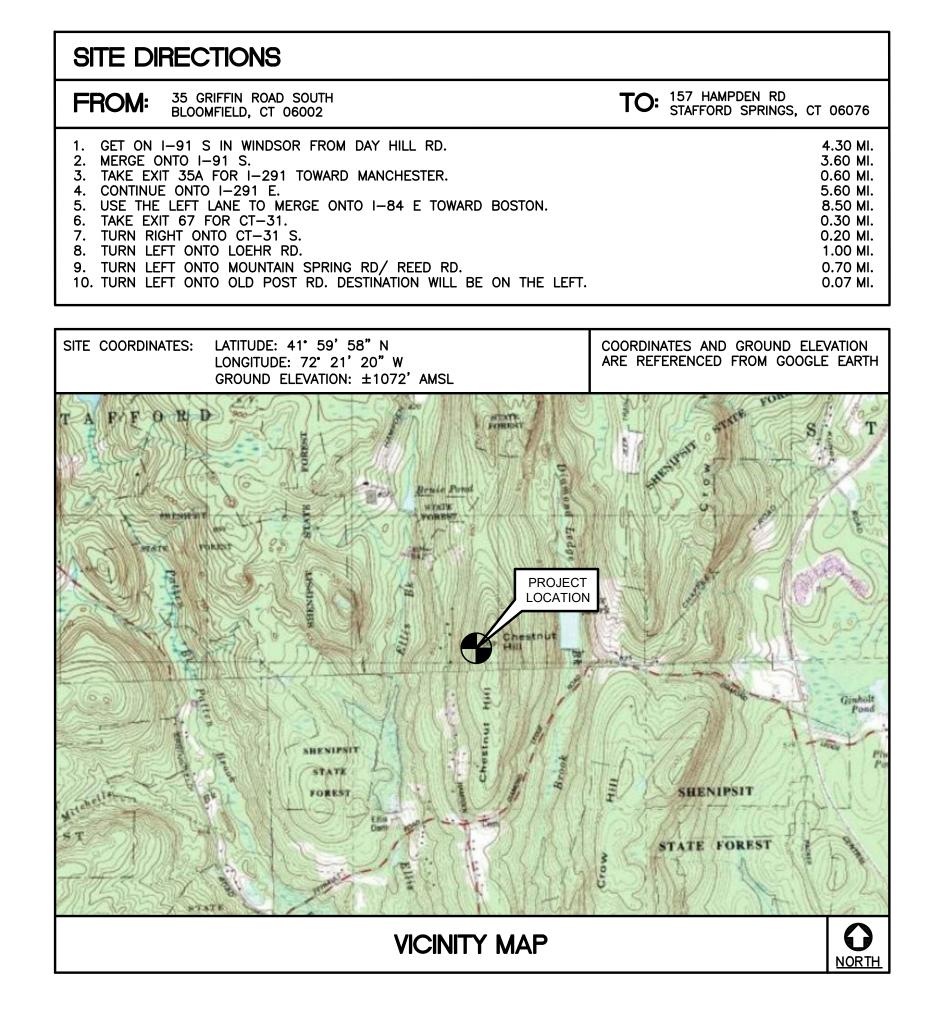
SBP 708 DD Printing

Sprint >> Now part of Flobile SPRINT ID: CT33XC553 SITE ID: CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076

T-MOBILE RAN TEMPLATE (PROVIDED BY RFDS)

67E5A998E 6160

T-MOBILE A+L TEMPLATE (PROVIDED BY RFDS)


67E5998E_1xAIR+10P

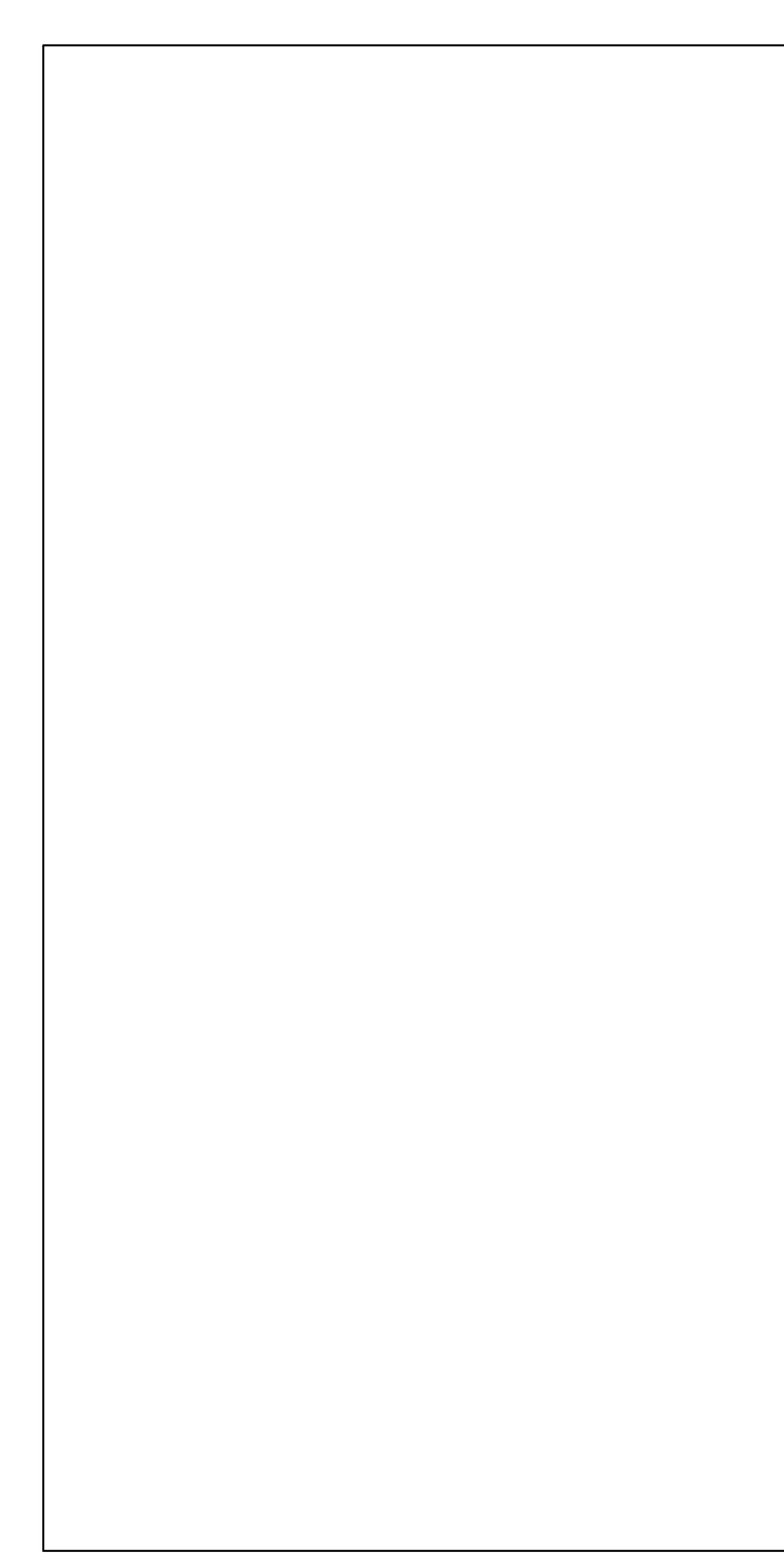
GENERAL NOTES

1.	ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
2.	CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
3.	CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
4.	CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
5.	CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
6.	CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
7.	LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
8.	THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
9.	DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS,

CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.

- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 19. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

	F WORK CONSISTS OF A MODIFICATION TO TELECOMMUNICATIONS FACILITY INCLUDING			
1. REMOVE EXISTING S	SPRINT EQUIPMENT			
2. INSTALL (1) APXVA TOTAL (3)	ALL24_43-U-NA20 ANTENNA PER SECTOR.			
	SON AIR6449 B41 ANTENNA PER SECTOR			
TOTAL (3)	4480 B71+B85 PER SECTOR. TOTAL OF (3)			
	4460 B25+B66 PER SECTOR. TOTAL OF (3)			
6. INSTALL 150A CIRC				
7. REMOVE ALL EXISTI	NG HYBRID, INSTALL (3) 6/24 4AWG HYBRIDS			
8. INSTALL (1) T-MOE	BILE POWER ENCLOSURE 6160			
9. INSTALL (1) T-MOE	BILE BATTERY CABINET B160			
10. INSTALL 25KW DIES	EL FUELED BACK-UP GENERATOR		R SEAL	NUMBER OF THE STREET
	AUTOMATIC TRANSFER SWITCH		ENGINEER	A A A A A
12. INSTALL 10' x 4' (CONCRETE PAD ANTENNA MOUNTS TO NEW ANTENNA FRAMES.			
	ST PER SECTOR FOR POS. 1 ANTENNA,		PROFESSIONAL	THE STATES
TOTAL OF (3)	······································		PRC	Annumennum
15. INSTALL (3) NEW A				T Mobile
				nt isc
PROJECT INFO	RMATION			Sprint > Mon Transcend Wirenses
SPRINT ID:	CT33XC553		sering	Spri
SPRINT ID: SITE ID:	CT33XC553 CTHA830A		engineering	
SPRINT ID:	CT33XC553		× ×	
SPRINT ID: SITE ID:	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T—MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH		× ×	
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT:	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T—MOBILE NORTHEAST, LLC		× ×	
SPRINT ID: SITE ID: SITE ADDRESS:	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002		× ×	Centered on Solutions Spri (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405 Tran
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT:	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD.		× ×	
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON:	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC.			Centered on Solutions (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON:	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE			Centered on Solutions C5553 (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD:	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59'-58" N LONGITUDE: 72°-21'-20" W	DN		Centered on Solutions (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD:	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59'-58" N LONGITUDE: 72°-21'-20" W GROUND ELEVATION: 1072'± AMSL SITE COORDINATES AND GROUND ELEVATION	DN		Centered on Solutions (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: PROJECT COORDINATES:	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59'-58" N LONGITUDE: 72°-21'-20" W GROUND ELEVATION: 1072'± AMSL SITE COORDINATES AND GROUND ELEVATION	ON REV.		ID: CT33XC553 (203) 488-0580 ID: CTHA830A (203) 488-8587 Fax D: CTHA830A (3-2 North Branford Road Branford, CT 06405
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: PROJECT COORDINATES: SHEET INDEX	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59'-58" N LONGITUDE: 72°-21'-20" W GROUND ELEVATION: 1072'± AMSL SITE COORDINATES AND GROUND ELEVATION			Centered on Solutions (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road Branford, CT 06405
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: PROJECT COORDINATES: PROJECT COORDINATES: SHEET INDEX HT. NO. DESCRIPTION T-1 TITLE SHEET	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59'-58" N LONGITUDE: 72°-21'-20" W GROUND ELEVATION: 1072'± AMSL SITE COORDINATES AND GROUND ELEVATION	REV.	MOBILE NORTHEAST LLC	RINT ID: CT33XC553 (203) 488-0580 SITE ID: CTHA830A (203) 488-0580 IST HAMPDEN BD (203) 488-0580
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: PROJECT COORDINATES: PROJECT COORDINATES: SHEET INDEX HT. NO. DESCRIPTION T-1 TITLE SHEET	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59'-58" N LONGITUDE: 72°-21'-20" W GROUND ELEVATION: 1072'± AMSL SITE COORDINATES AND GROUND ELEVATI REFERENCED FROM GOOGLE EARTH.	REV.		ID: CT33XC553 (203) 488-0580 ID: CTHA830A (203) 488-8587 Fax D: CTHA830A (3-2 North Branford Road Branford, CT 06405
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: PROJECT COORDINATES: PROJECT COORDINATES: SHEET INDEX HT. NO. DESCRIPTION T-1 TITLE SHEET N-1 GENERAL NOTES C-1 SITE LOCATION	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59'-58" N LONGITUDE: 72°-21'-20" W GROUND ELEVATION: 1072'± AMSL SITE COORDINATES AND GROUND ELEVATI REFERENCED FROM GOOGLE EARTH.	REV. 0 0	MOBILE NORTHEAST LLC	RINT ID: CT33XC553 (203) 488-0580 SITE ID: CTHA830A (203) 488-0580 IST HAMPDEN BD (203) 488-0580
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: PROJECT COORDINATES: PROJECT COORDINATES: SHEET INDEX HT. NO. DESCRIPTION T-1 TITLE SHEET N-1 GENERAL NOTES C-1 SITE LOCATION	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59°-58″ N LONGITUDE: 72°-21°-20″ W GROUND ELEVATION: 1072°± AMSL SITE COORDINATES AND GROUND ELEVATI REFERENCED FROM GOOGLE EARTH. S AND SPECIFICATIONS PLAN N AND ELEVATION	REV. 0 0 0	MOBILE NORTHEAST LLC	RINT ID: CT33XC553 (203) 488-0580 SITE ID: CTHA830A (203) 488-0580 IST HAMPDEN BD (203) 488-0580
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: PROJECT COORDINATES: PROJECT COORDINATES: SHEET INDEX HT. NO. DESCRIPTION T-1 TITLE SHEET N-1 GENERAL NOTES C-1 SITE LOCATION C-2 COMPOUND PLA	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59°-58″ N LONGITUDE: 72°-21°-20″ W GROUND ELEVATION: 1072°± AMSL SITE COORDINATES AND GROUND ELEVATI REFERENCED FROM GOOGLE EARTH. S AND SPECIFICATIONS PLAN N AND ELEVATION	REV. 0 0 0 0	MOBILE NORTHEAST LLC	RINT ID: CT33XC553 (203) 488-0580 SITE ID: CTHA830A (203) 488-0580 IST HAMPDEN BD (203) 488-0580
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: PROJECT COORDINATES: PROJECT COORDINATES: SHEET INDEX HT. NO. DESCRIPTION T-1 TITLE SHEET N-1 GENERAL NOTES C-1 SITE LOCATION C-2 COMPOUND PLA	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59′-58″ N LONGITUDE: 72°-21′-20″ W GROUND ELEVATION: 1072′± AMSL SITE COORDINATES AND GROUND ELEVATI REFERENCED FROM GOOGLE EARTH. S AND SPECIFICATIONS PLAN IN AND ELEVATION INS S AND ELEVATIONS	REV. 0 0 0 0 0	T-MOBILE NORTHEAST LLC	Centered on Solutions SPRINT ID: CT33XC553 (203) 488-0580 (203) 48
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: ENGINEER OF RECORD: PROJECT COORDINATES: PROJECT COORDINATES: HT. NO. DESCRIPTION T-1 TITLE SHEET N-1 GENERAL NOTES C-1 SITE LOCATION C-2 COMPOUND PLA C-3 EQUIPMENT PLA C-4 ANTENNA PLANS C-5 TYPICAL EQUIPM S-1 STRUCTURAL DI	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41'-59'-58" N LONGITUDE: 72'-21'-20" W GROUND ELEVATION: 1072'± AMSL SITE COORDINATES AND GROUND ELEVATI REFERENCED FROM GOOGLE EARTH. S AND SPECIFICATIONS PLAN IN AND ELEVATION INS S AND ELEVATIONS MENT DETAILS ETAILS	REV. 0 0 0 0 0 0 0 0 0 0 0	T-MOBILE NORTHEAST LLC	Centered on Solutions SPRINT ID: CT33XC553 (203) 488-0580 (203) 48
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: PROJECT COORDINATES: PROJECT COORDINATES: HT. NO. DESCRIPTION T-1 TITLE SHEET N-1 GENERAL NOTES C-1 SITE LOCATION C-2 C-3 EQUIPMENT PLA C-4 ANTENNA PLANS C-5 TYPICAL EQUIPMENT E-1 ELECTRICAL RIS	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41'-59'-58" N LONGITUDE: 72'-21'-20" W GROUND ELEVATION: 1072'± AMSL SITE COORDINATES AND GROUND ELEVATI REFERENCED FROM GOOGLE EARTH. S AND SPECIFICATIONS PLAN IN AND ELEVATION INS S AND ELEVATIONS MENT DETAILS ETAILS ER DIAGRAM AND CONDUIT ROUTING	REV. 0	T-MOBILE NORTHEAST LLC	Centered on Solutions SPRINT ID: CT33XC553 (203) 488-0580 (203) 48
SPRINT ID: SITE ID: SITE ADDRESS: APPLICANT: CONTACT PERSON: ENGINEER OF RECORD: ENGINEER OF RECORD: PROJECT COORDINATES: PROJECT COORDINATES: HT. NO. DESCRIPTION T-1 TITLE SHEET N-1 GENERAL NOTES C-1 SITE LOCATION C-2 COMPOUND PLA C-3 EQUIPMENT PLA C-4 ANTENNA PLANS C-5 TYPICAL EQUIPM S-1 STRUCTURAL DI	CT33XC553 CTHA830A 157 HAMPDEN RD STAFFORD SPRINGS, CT 06076 TMOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 KYLE RICHERS TRANSCEND WIRELESS, (908) 447-4716 CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT 06405 CARLO F. CENTORE, PE (203) 488-0580 EXT. 122 LATITUDE: 41°-59°-58″ N LONGITUDE: 72°-21°-20″ W GROUND ELEVATION: 1072°± AMSL SITE COORDINATES AND GROUND ELEVATI REFERENCED FROM GOOGLE EARTH. S AND SPECIFICATIONS PLAN N AND ELEVATION NS S AND ELEVATIONS MENT DETAILS ETAILS ER DIAGRAM AND CONDUIT ROUTING RICAL DETAILS	REV. 0 0 0 0 0 0 0 0 0 0 0	T-MOBILE NORTHEAST LLC	Contread on Solutions SPRINT ID: CT33XC553 SPRINT ID: CT33XC553 (203) 488-0580 (203) 488-0


TYPICAL ELECTRICAL DETAILS

ELECTRICAL SPECIFICATIONS

E-3

E-4

Sheet No. 1 of 12

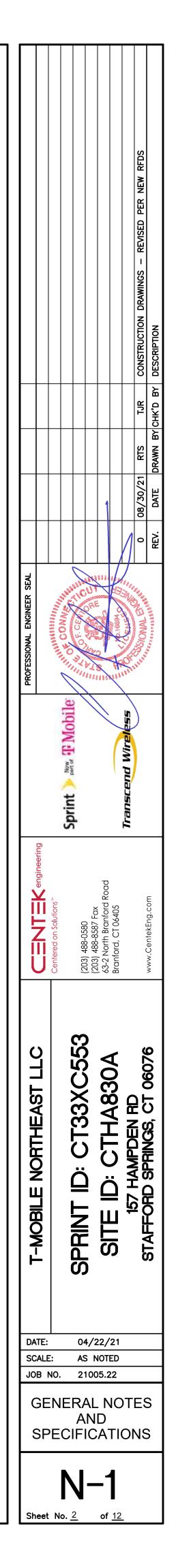
NOTES AND SPECIFICATIONS

DESIGN BASIS:

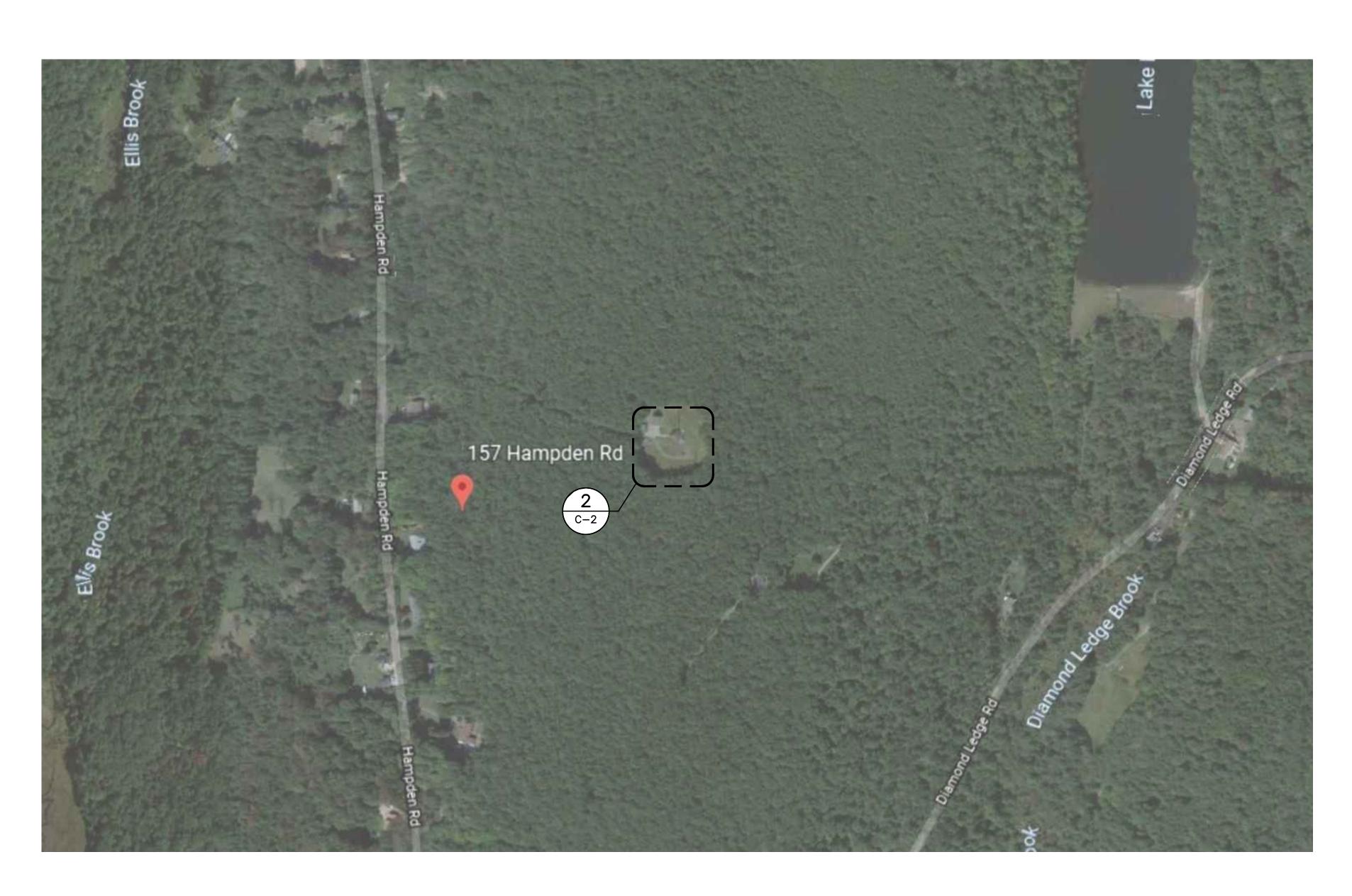
GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

- 1. DESIGN CRITERIA:
- RISK CATEGORY II (BASED ON IBC TABLE 1604.5)
- ULTIMATE DESIGN SPEED (TOWER STRUCTURE): 123 MPH (Vasd) (EXPOSURE B/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

<u>SITE NOTES</u>

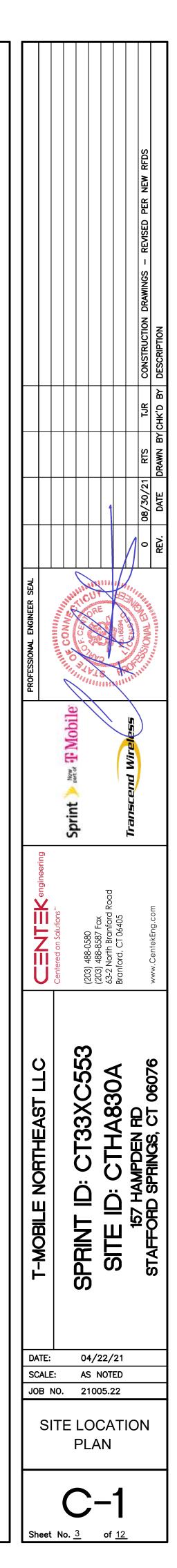

- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

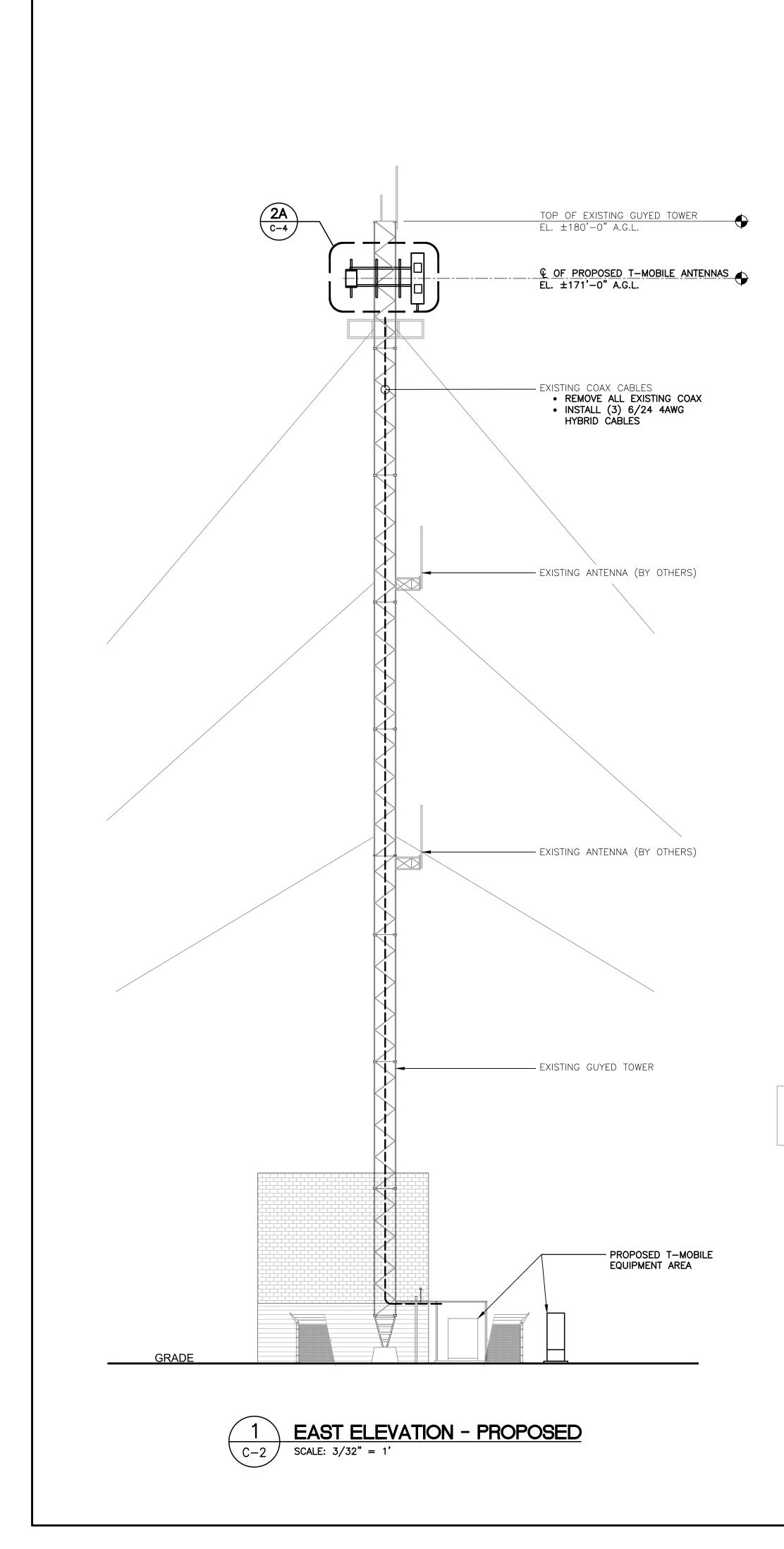
GENERAL NOTES

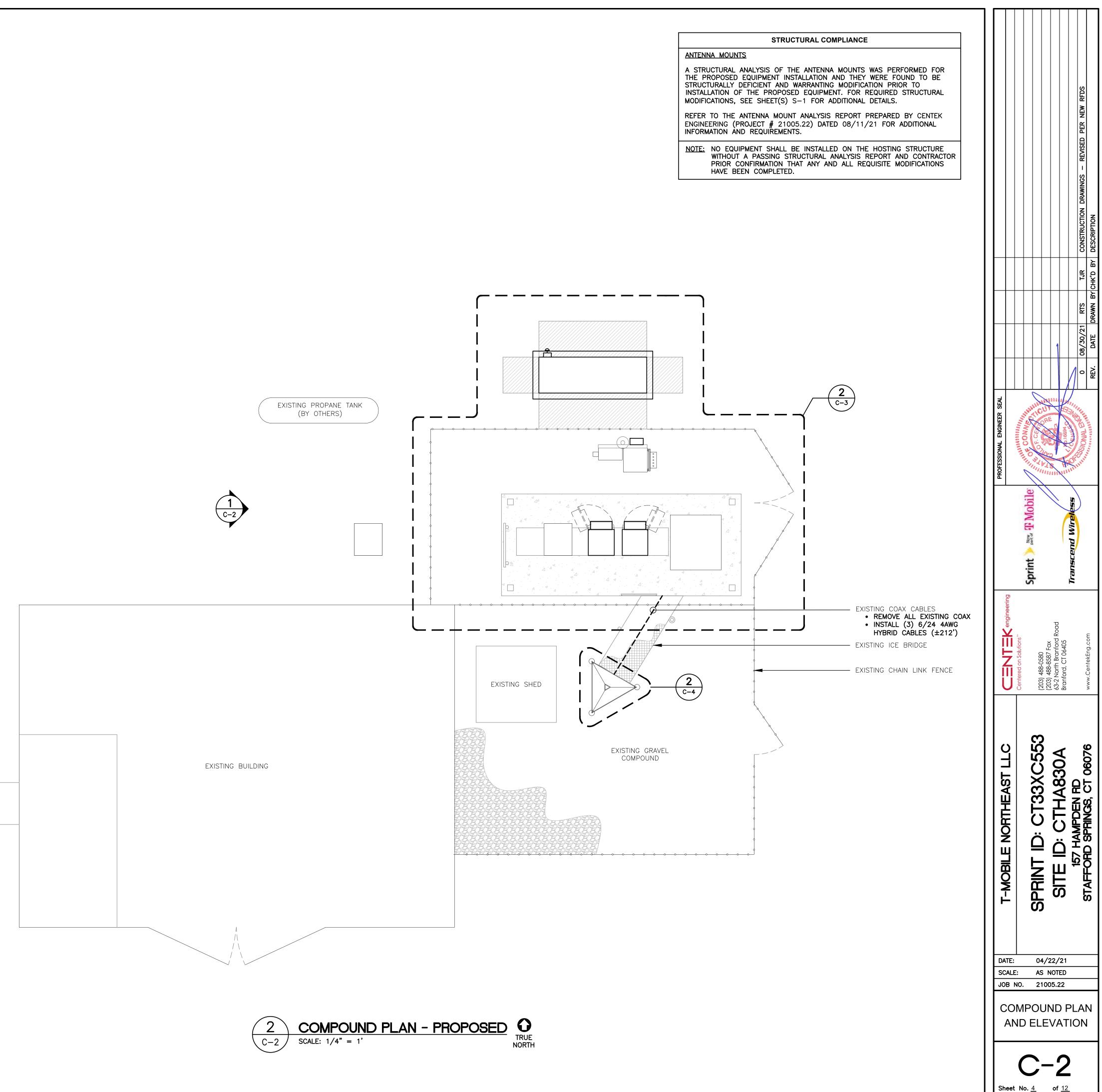

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND IT'S COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 9. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS, ARE TO BE BROUGHT TO THE ATTENTION OF THE SITE OWNER'S CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 18. CONTRACTOR SHALL COMPLY WITH OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 19. THE COUNTY/CITY/TOWN WILL MAKE PERIODIC FIELD OBSERVATION AND INSPECTIONS TO MONITOR THE INSTALLATION, MATERIALS, WORKMANSHIP AND EQUIPMENT INCORPORATED INTO THE PROJECT TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, CONTRACT DOCUMENTS AND APPROVED SHOP DRAWINGS.
- 20. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.

STRUCTURAL STEEL

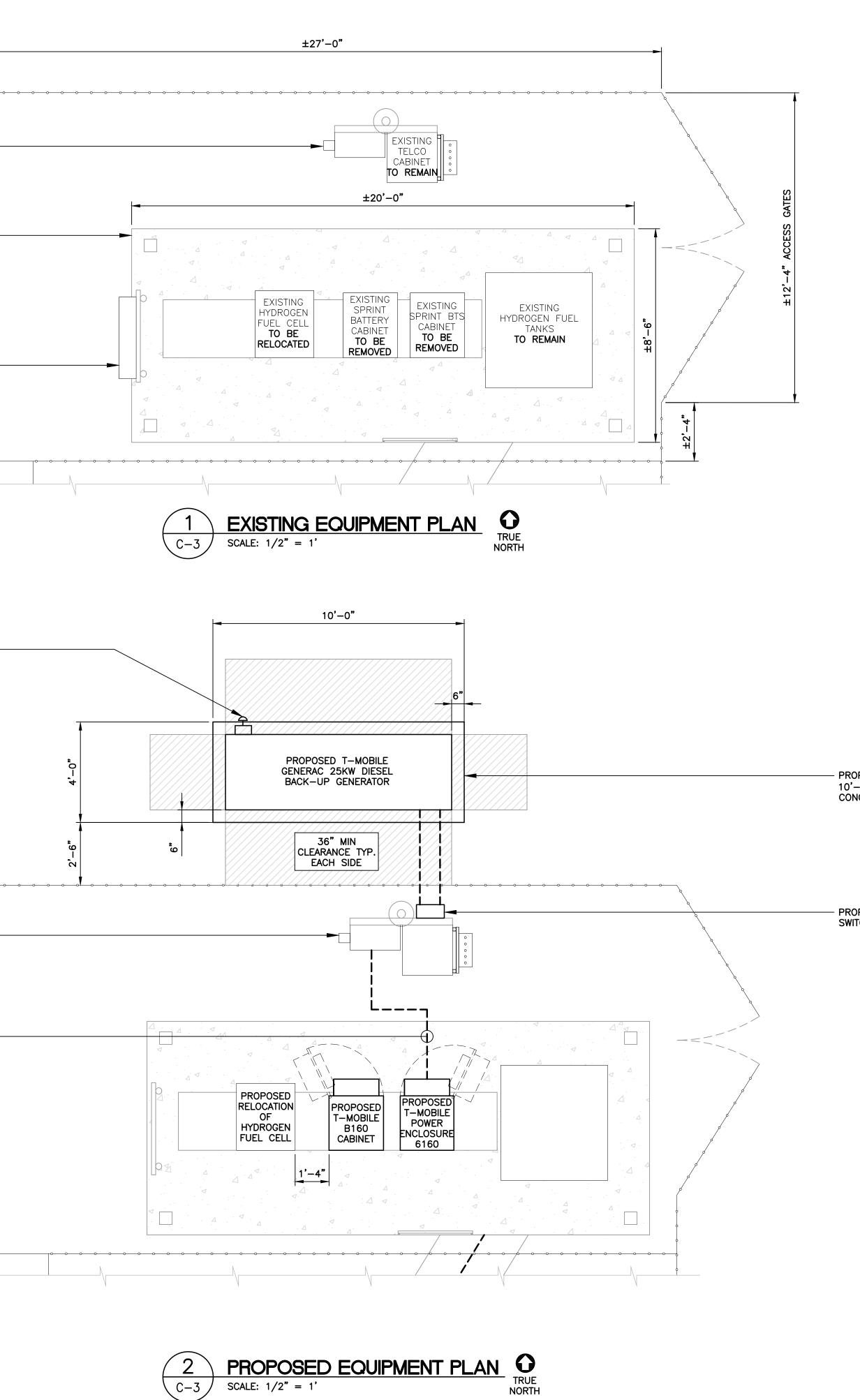
- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
 - A. STRUCTURAL STEEL (W SHAPES) -- ASTM A992 (FY = 50 KSI) B. STRUCTURAL STEEL (OTHER SHAPES) -- ASTM A36 (FY = 36 KSI)
 - C. STRUCTURAL HSS (RECTANGULAR SHAPES)---ASTM A500 GRADE B,
 - (FY = 46 KSI) D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B,
 - (FY = 42 KSI)E. PIPE---ASTM A53 (FY = 35 KSI)
 - F. CONNECTION BOLTS——ASTM A325—N G. U-BOLTS——ASTM A36
 - ANCHOR RODS---ASTM F 1554 WELDING ELECTRODE---ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

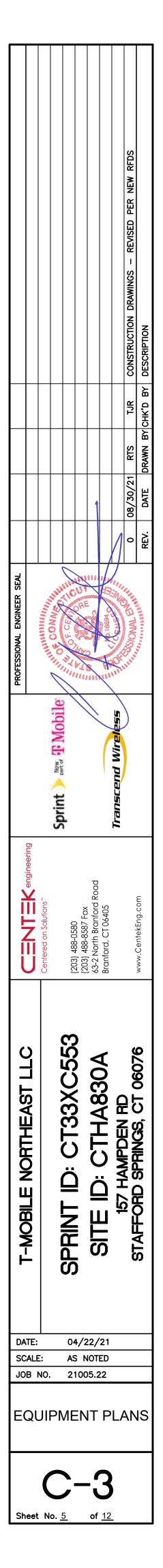

						ANTENNA SCHEDULE		
SECTOR	EXISTING/PROPOSED	ANTENNA	SIZE (INCHES) (L × W × D)	ANTENNA & HEIGHT	AZIMUTH	(E/P) RRU (QTY)	(E/P) TMA (QTY)	(QTY) PROPOSED COAX (LENGTH)
A1	PROPOSED	RFS-APXVAALL24_43-U-NA20	95.9 x 24 x 8.5	171'	0.	(P) RADIO 4480 B71+B85 (1), (P) RADIO 4460 B25+B66 (1)		(1) 6/24 4AWG HYBRID
A2	PROPOSED	ERICSSON-AIR6449 B41	33.1 x 20.6 x 8.6	171'	0.			CÁBLE (±210')
B1	PROPOSED	RFS-APXVAALL24_43-U-NA20	95.9 x 24 x 8.5	171'	120*	(P) RADIO 4480 B71+B85 (1), (P) RADIO 4460 B25+B66 (1)		(1) 6/24 4AWG HYBRID
B2	PROPOSED	ERICSSON-AIR6449 B41	33.1 × 20.6 × 8.6	171'	120*			CÁBLE (±210')
C1	PROPOSED	RFS-APXVAALL24_43-U-NA20	95.9 x 24 x 8.5	171'	240*	(P) RADIO 4480 B71+B85 (1), (P) RADIO 4460 B25+B66 (1)		(1) 6/24 4AWG HYBRID
C2	PROPOSED	ERICSSON-AIR6449 B41	33.1 x 20.6 x 8.6	171'	240'			CABLE (±210')





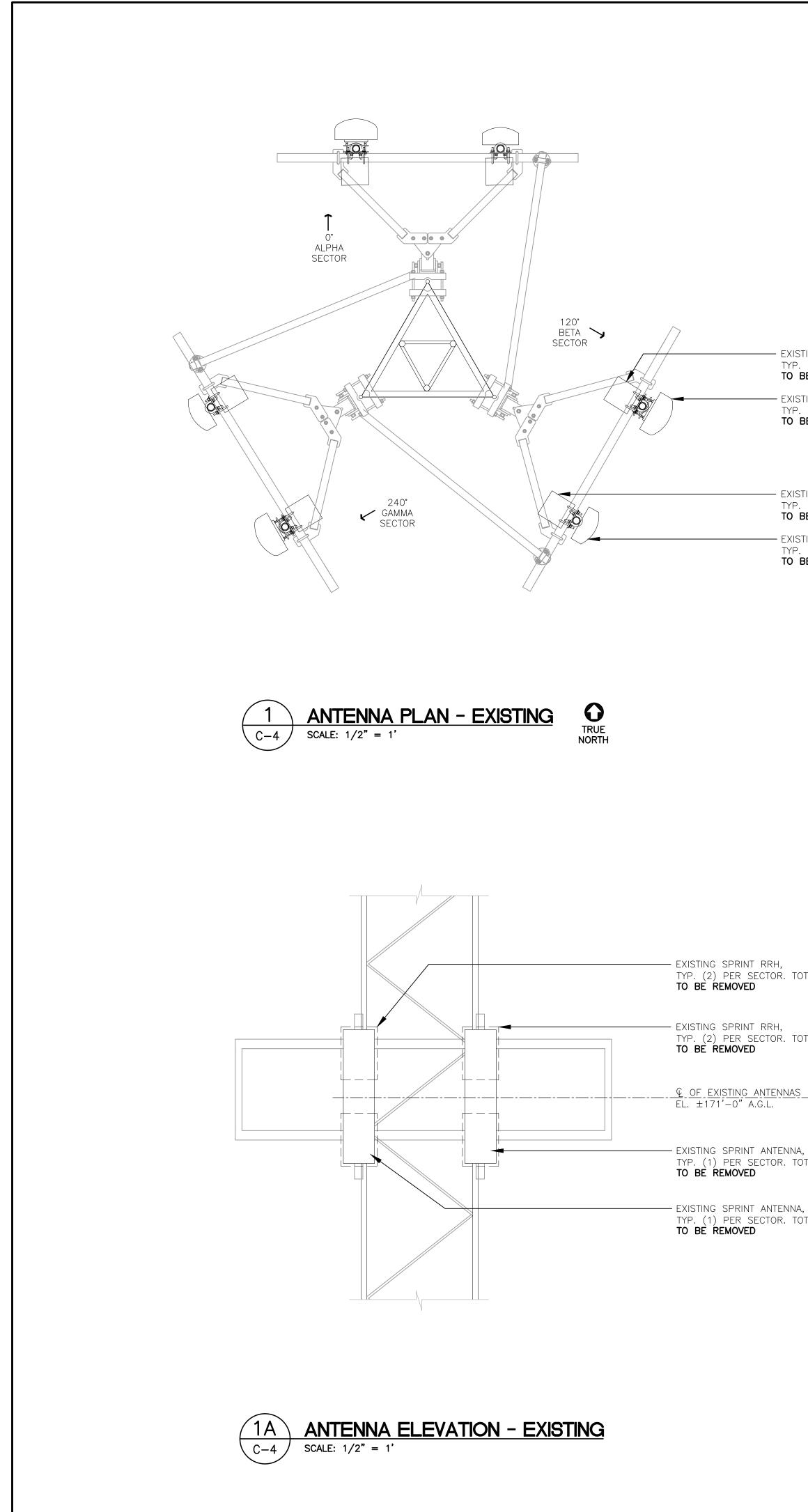
NOTE: ALL COAX LENGTHS TO BE MEASURED AND VERIFIED IN FIELD BEFORE ORDERING





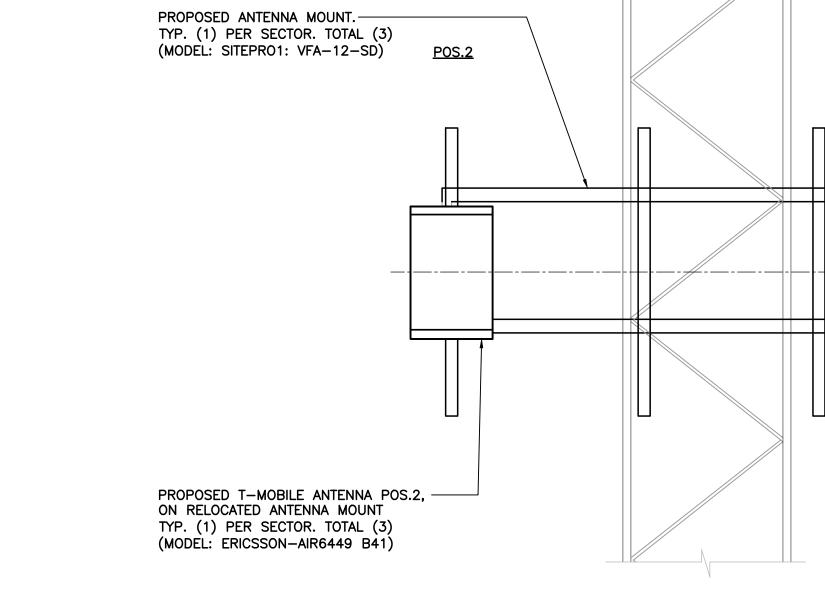
EXISTING CONCRETE PAD -----EXISTING FIBER MANAGEMENT BOX —— TO BE REMOVED EMERGENCY GENERATOR SHUT-OFF SWITCH MOUNTED TO EXTERIOR OF GENERATOR ENCLOSURE, IN LOCATION UNAFFECTED BY DOOR SWINGS, PER 2019 NFPA 110 5.6.5.6.1 EXISTING 200A PPC CABINET • EXISTING 100A CIRCUIT BREAKER TO BE REMOVED • INSTALL (1) 150A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT PROPOSED POWER CONDUIT -

Ν


V

PROPOSED T-MOBILE
 10'-0" x 4'-0"
 CONCRETE GENERATOR PAD

- PROPOSED AUTOMATIC TRANSFER SWITCH

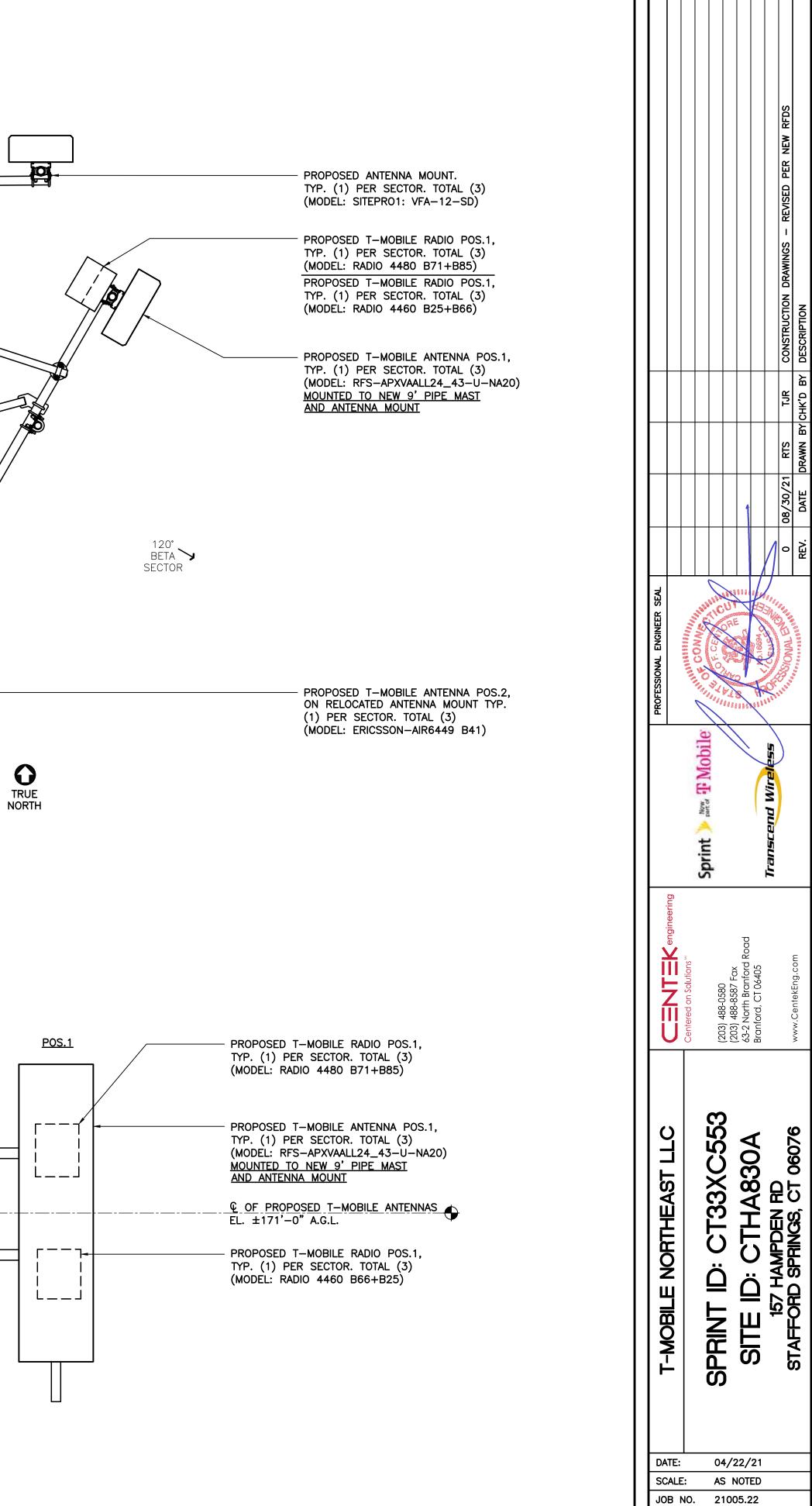

0° ALPHA SECTOR

- EXISTING SPRINT RRH, TYP. (2) PER SECTOR. TOTAL (6), **TO BE REMOVED** - EXISTING SPRINT ANTENNA, TYP. (1) PER SECTOR. TOTAL (3), TO BE REMOVED

EXISTING SPRINT RRH, TYP. (2) PER SECTOR. TOTAL (6), TO BE REMOVED

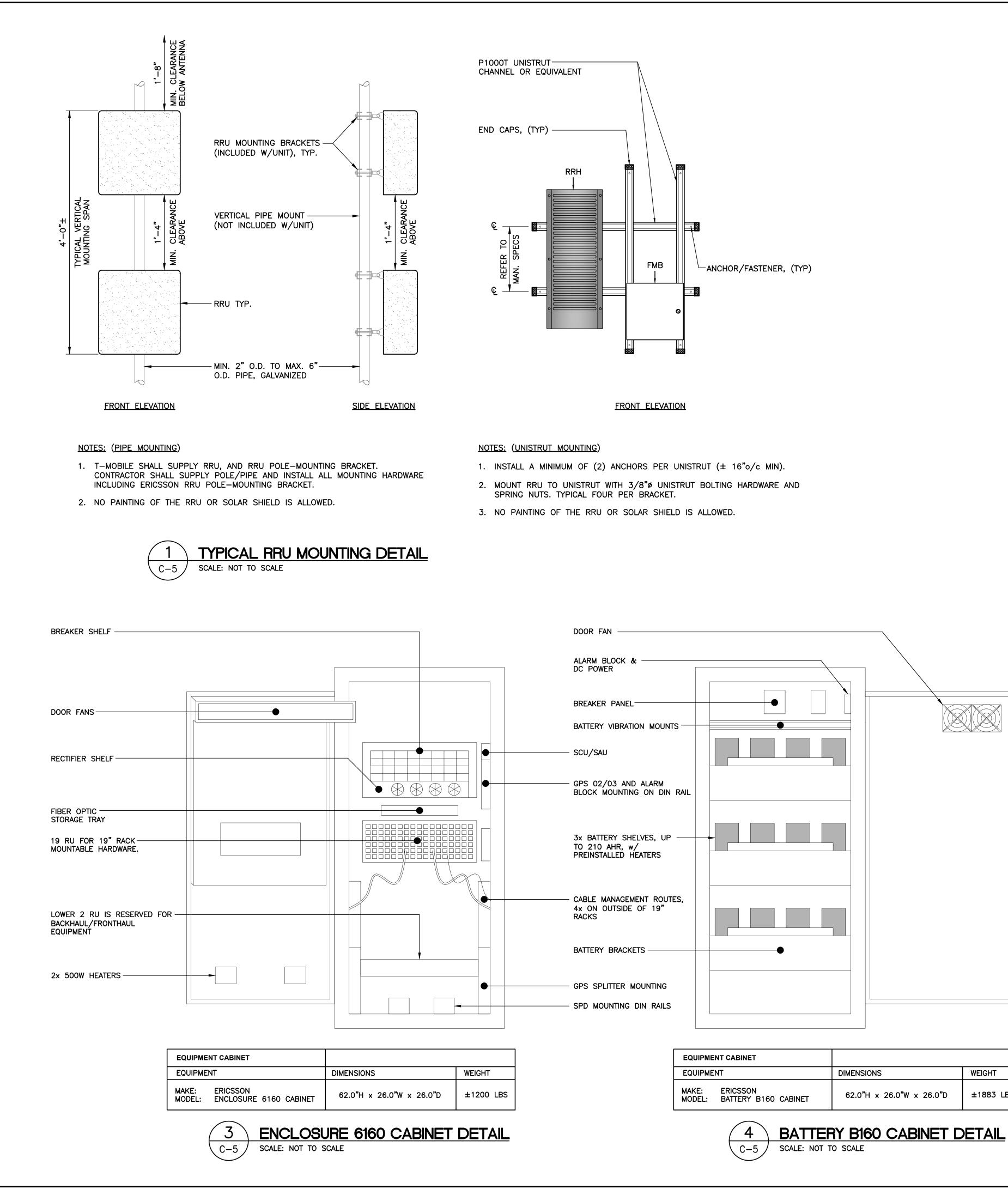
EXISTING SPRINT ANTENNA, TYP. (1) PER SECTOR. TOTAL (3), TO BE REMOVED

_ _ 240° GAMMA SECTOR 10 ANTENNA PLAN - PROPOSED SCALE: 1/2" = 1' 2 C−4 /

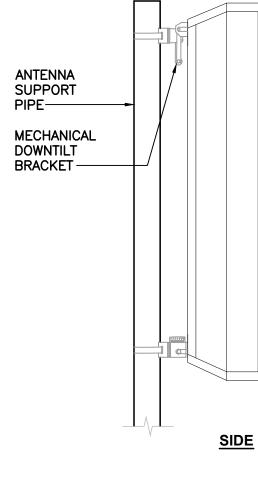

- EXISTING SPRINT RRH, TYP. (2) PER SECTOR. TOTAL (6), **TO BE REMOVED**

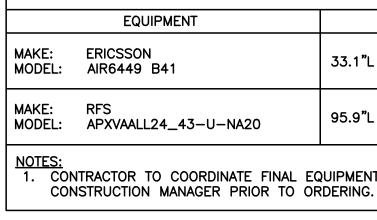
EXISTING SPRINT RRH,
 TYP. (2) PER SECTOR. TOTAL (6),
 TO BE REMOVED

 $\begin{array}{c} \underline{\mathbb{Q}} & \underline{\text{OF}} & \underline{\text{EXISTING}} & \underline{\text{ANTENNAS}} \\ \underline{\text{EL.}} & \pm 171' - 0'' & \underline{\text{A.G.L.}} \end{array}$


- EXISTING SPRINT ANTENNA, TYP. (1) PER SECTOR. TOTAL (3),

TYP. (1) PER SECTOR. TOTAL (3), TO BE REMOVED




__/ Sheet No. <u>6</u>

ANTENNA PLANS AND ELEVATIONS

EQUIPMENT CABINET		
EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: ERICSSON MODEL: BATTERY B160 CABINET	62.0"H x 26.0"W x 26.0"D	±1883 LBS

		RRU (REMOTE RADIO UN	IIT)	
	EQUIPMENT	DIMENSIONS	WEIGHT	CLEARANCES
MAKE: MODEL:	ERICSSON RADIO 4460 B25+B66	19.6"L x 15.7"W x 12.1"D	±109 LBS.	BEHIND ANT.: 8" MIN. BELOW ANT.: 20" MIN. BELOW RRU: 16" MIN.
MAKE: MODEL:	ERICSSON RADIO 4480 B71+B85	21.8"L x 15.7"W x 7.5"D	±84 LBS.	BEHIND ANT.: 8" MIN. BELOW ANT.: 20" MIN. BELOW RRU: 16" MIN.
		NATE FINAL EQUIPMENT MODEL	SELECTION WITH 1	-MOBILE

AIR6449 B41

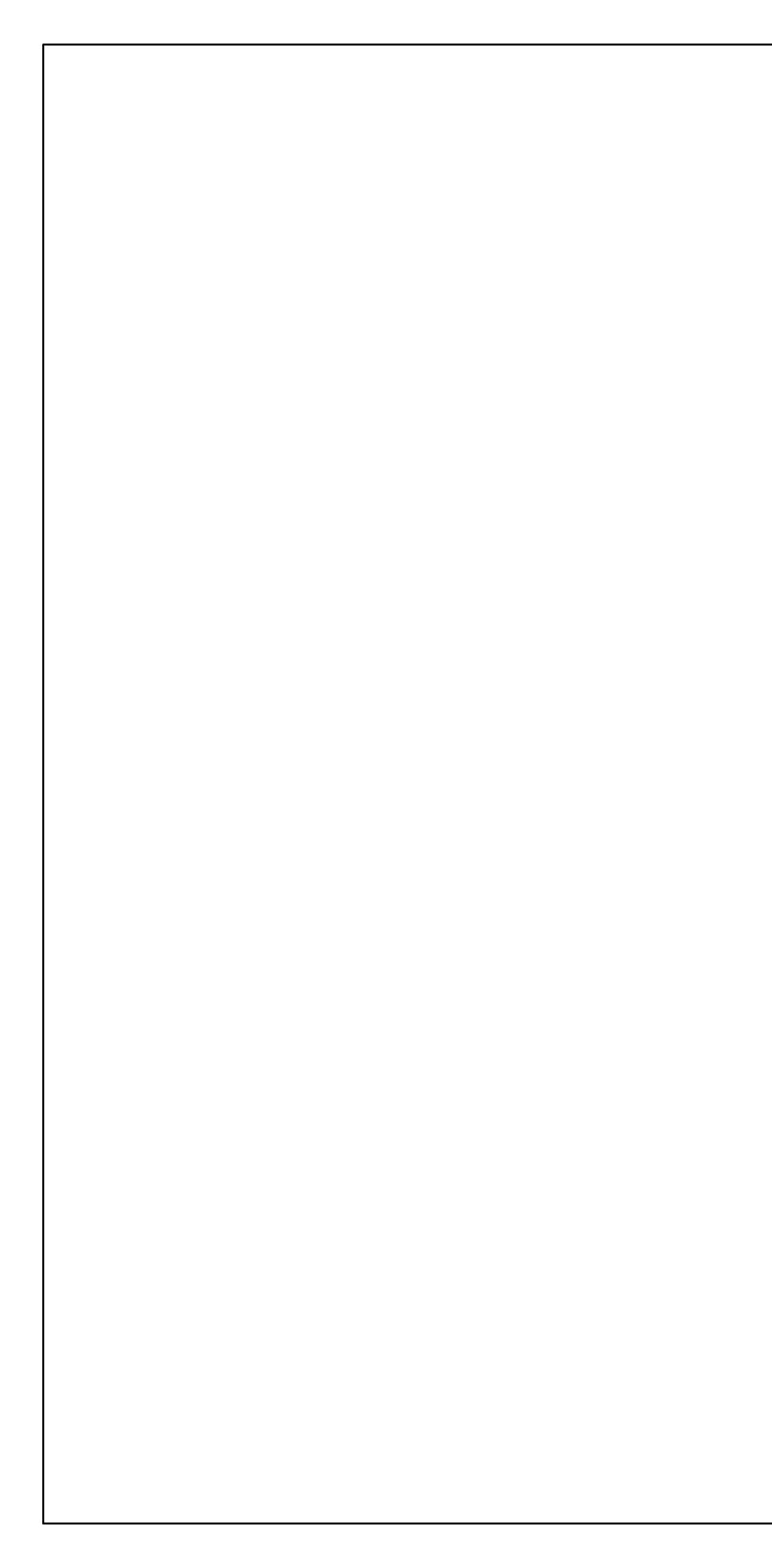
APXVAALL24_43-U-NA20

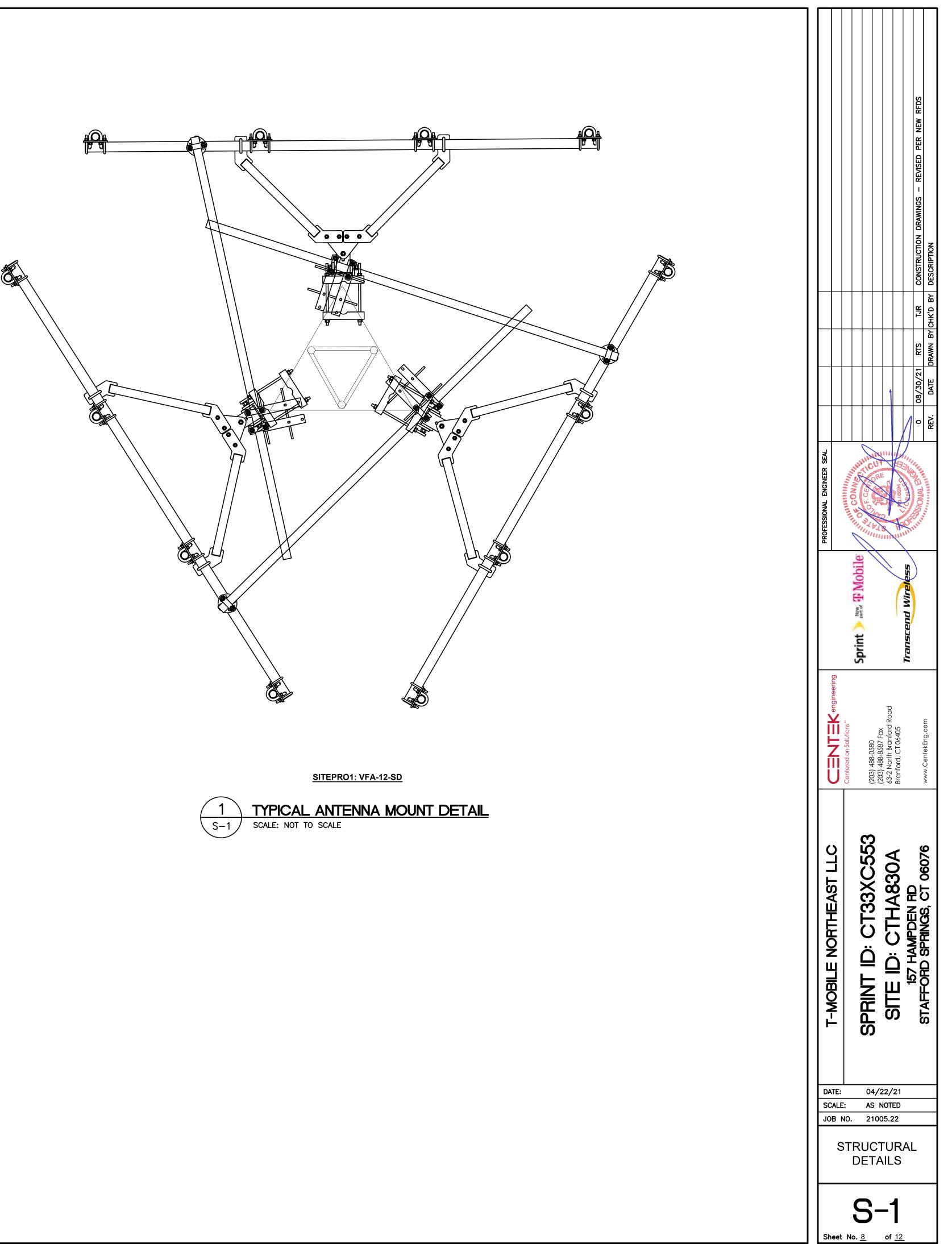
ALPHA	/BETA/GAMMA ANTENNA	
EQUIPMENT	DIMENSIONS	WEIGHT
ERICSSON AIR6449 B41	33.1"L x 20.6"W x 8.6"D	±104 LBS.
RFS APXVAALL24_43-U-NA20	95.9"L x 24.0"W x 8.5"D	±150 LBS.
NTRACTOR TO COORDINATE FINAL EQ	QUIPMENT MODEL SELECTION	WITH T-MOBILE

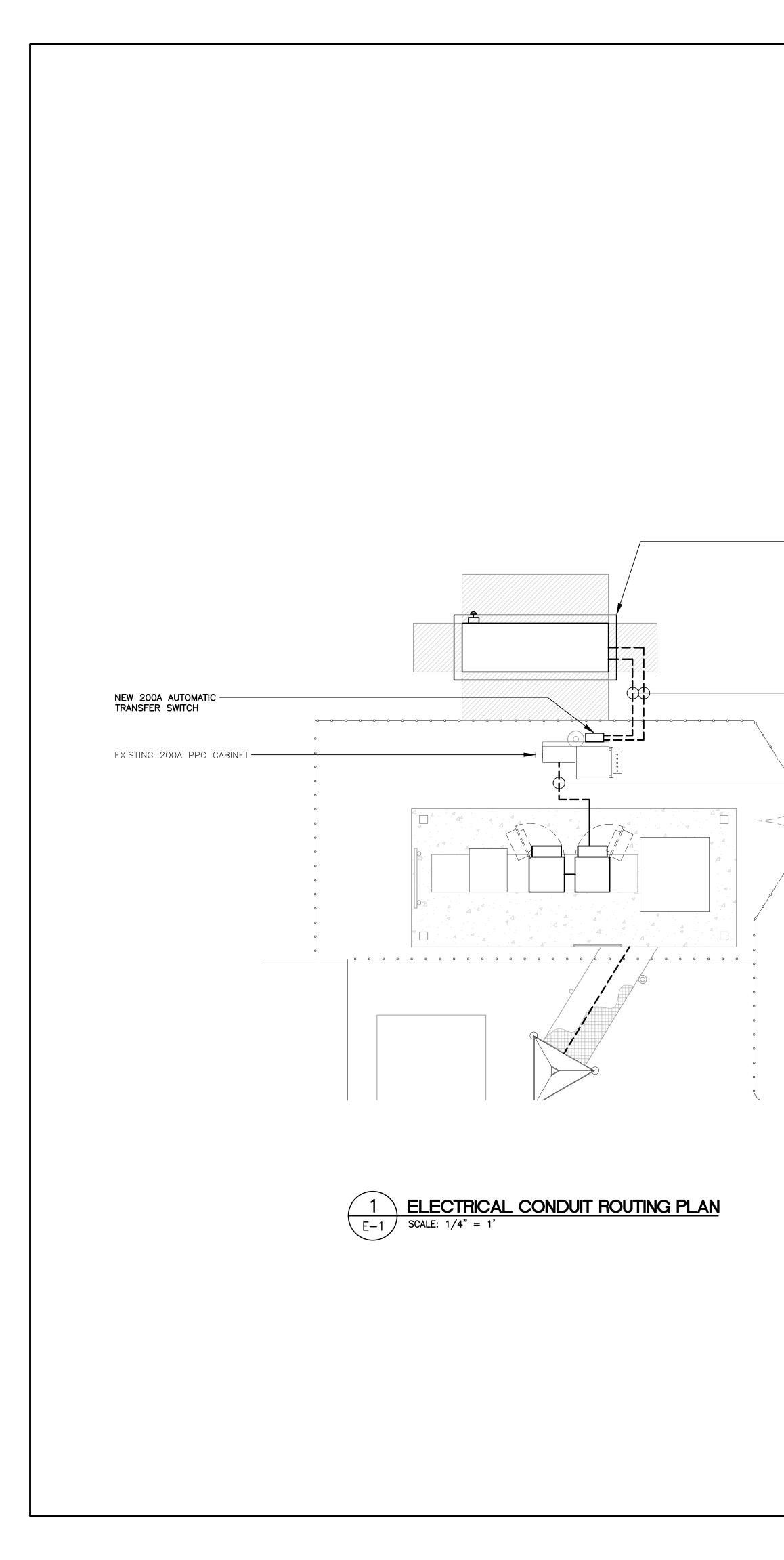
2 C-5/

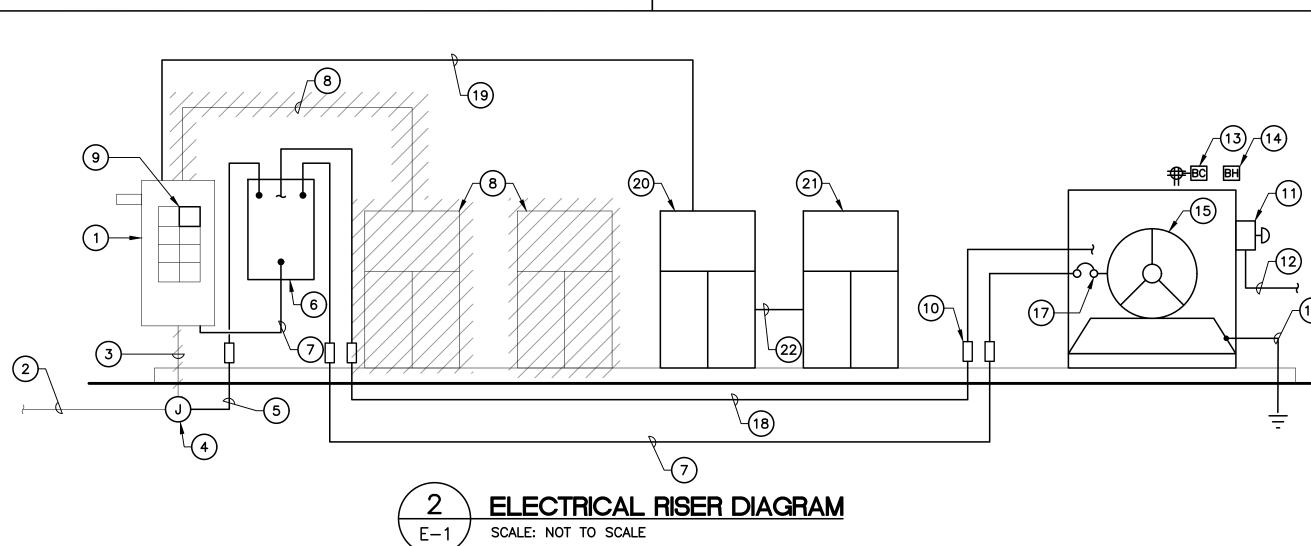
PROPOSED ANTENNA DETAIL

SCALE: NOT TO SCALE


<u>RADIO 4460 B25+B66</u>


<u>RADIO 4480 B71+B85</u>

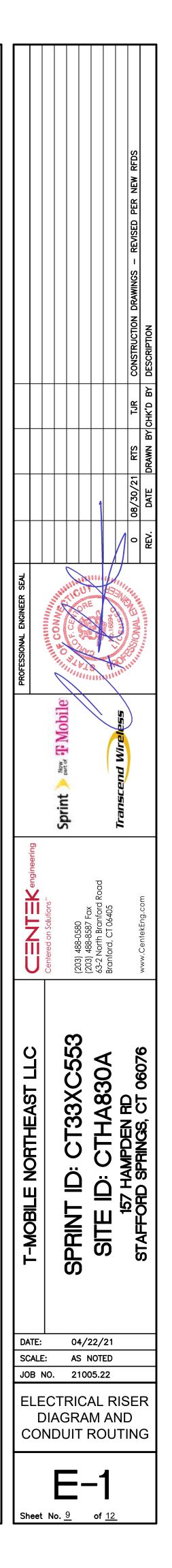

PROPOSED RRU DETAIL SCALE: NOT TO SCALE

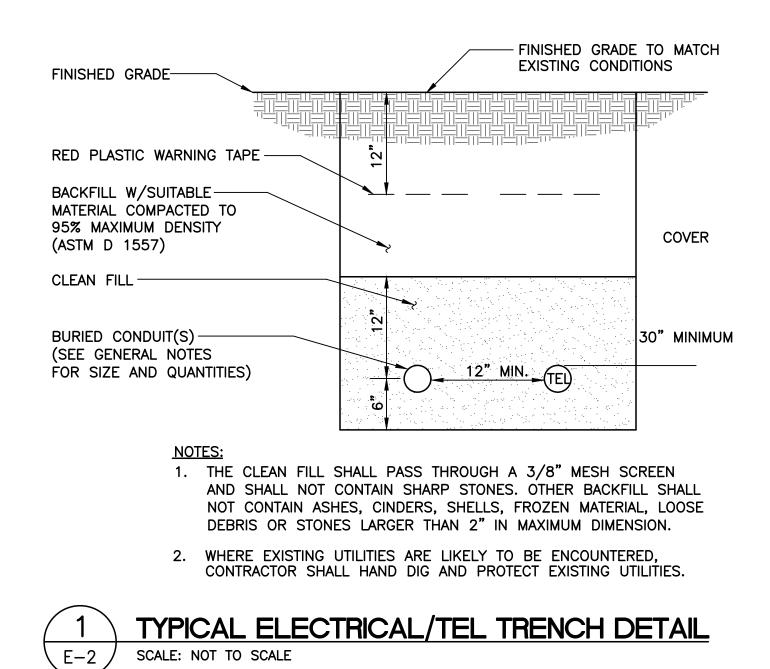

- T-MOBILE GENERAC 25KW DIESEL BACK-UP GENERATOR

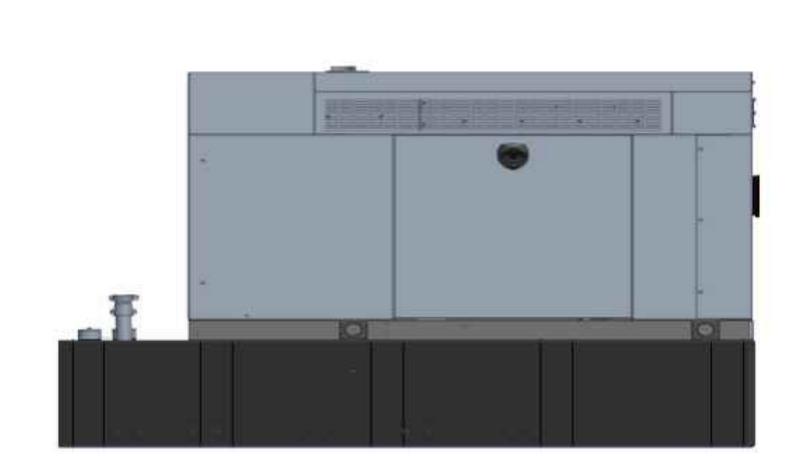
- POWER AND ALARM CONDUITS ROUTED UNDERGROUND

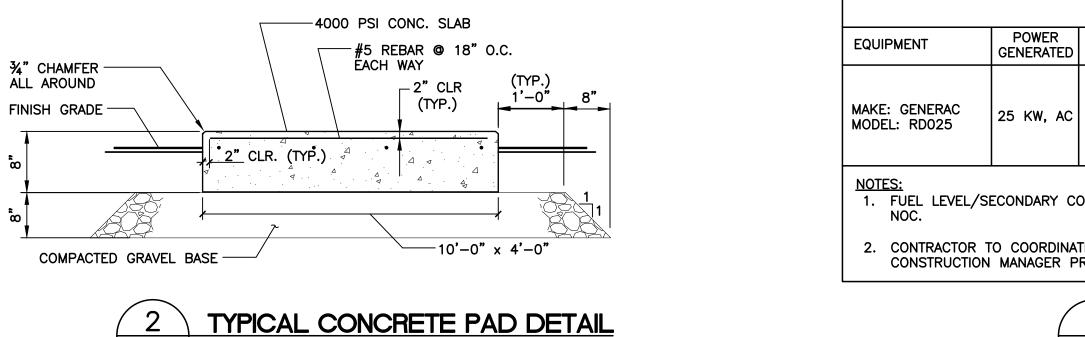
- CONDUIT TO BE ROUTED UNDERGROUND FROM PPC CABINET TO THE EQUIPMENT PAD. REFER TO RISER FOR SIZE AND QUANTITY

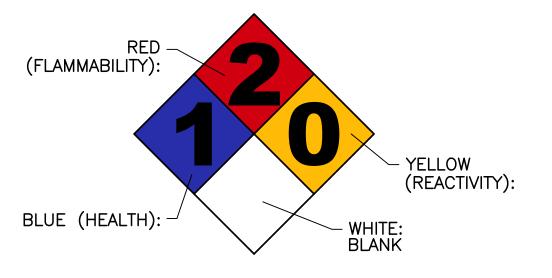
RISER DIAGRAM NOTES


- (1) EXISTING PPC CABINET TO REMAIN.
- 2 EXISTING POWER CONDUIT AND CONDUCTORS PREVIOUSLY SERVING EXISTING PANEL.
- 3 SECTION OF CONDUIT AND CONDUCTORS TO BE REMOVED.
- 4 JUNCTION BOX SIZED PER NEC.
- \bigcirc Extend existing conduits and conductors to new ats.
- (6) NEW 200A, 2 SOURCE AUTOMATIC TRANSFER SWITCH.
- (3) #3/0 AWG, (1) #6 AWG GROUND, 2–1/2" CONDUIT.
- 8 EXISTING CABINETS AND ASSOCIATED CONDUITS, CONDUCTORS AND CIRCUIT BREAKERS
- 9 NEW 150A/2P CIRCUIT BREAKER TO SERVE NEW EQUIPMENT.
- (10) EXPANSION COUPLING TYPICAL.
- 1 REMOTE GENERATOR SHUT OFF SWITCH IN BREAK GLASS ENCLOSURE MOUNTED TO EXTERIOR OF GENERATOR ENCLOSURE PER 2019 NFPA 110 5.6.5.6.1.
- (12) 3/4" CONDUIT AND CONDUCTORS REQUIRED FOR PROPER OPERATION OF EMERGENCY GENERATOR SHUT OFF SWITCH.




RISER DIAGRAM NOTES


(13) GENERATOR BATTERY CHARGER AND CONVENIENCE GFCI OUTLET WIRED TO EXISTING PANEL. OUTLET TO BE MOUNTED IN WEATHERPROOF ENCLOSURE.


- (14) GENERATOR BLOCK HEATER WIRED TO EXISTING PANEL SERVING T-MOBILE EQUIPMENT.
- (15) EMERGENCY BACK UP GENERATOR.
- (16) GENERATOR GROUNDING PER NEC AND MANUFACTURER'S REQUIREMENTS. BOND TO EXISTING GROUNDING SYSTEM. (MINIMUM OF (1) #2 AWG GROUND)
- (17) generator output circuit breaker.
- (18) 1" CONDUIT FOR GENERATOR CONTROL AND SIGNAL WIRING.
- (19) (1) 1/0 AWG, (1) #6 AWG GROUND, 1-1/2" CONDUIT.
- 20 NEW T-MOBILE EQUIPMENT CABINET
- (21) NEW T-MOBILE BATTERY CABINET
- 22 DC CONDUIT AND CONDUCTORS FOR BATTERY CABINET CONNECTION PER MANUFACTURERS SPECIFICATIONS.

_ E−2 ,

SCALE: NOT TO SCALE

 DESCRIPTION: MOUNT ON GENERATOR ACCESS DOOR. CONSULT WITH GENERATOR MANUFACTURER MSDS SHEET FOR BLUE AND RES POSITIONS NOTES: 1) SIGNS EXPOSED TO WEATHER SHOULD BE CHECKED ANNUALLY FOR READABILITY. 2) SIGNS MUST BE UPDATED IF CHEMICAL STORAGE OR HAZARD INFORMATION FOR THE LOCATION CHANGES. 3) THE GC MUST REVIEW WITH LOCAL JURISDICTION WHEN FILLING FOR PERMITS, AS EACH JURISDICTION MAY HAVE DIFFERENT REQUIREMENTS AND COMPLY
2) SIGNS MUST BE UPDATED IF CHEMICAL STORAGE OR HAZARD INFORMATION FOR THE LOCATION CHANGES.
3) THE GC MUST REVIEW WITH LOCAL JURISDICTION WHEN FILLING FOR PERMITS,
WITH POSTING REQUIREMENTS OR DIRECTIVES FROM THE LOCAL JURISDICTION.

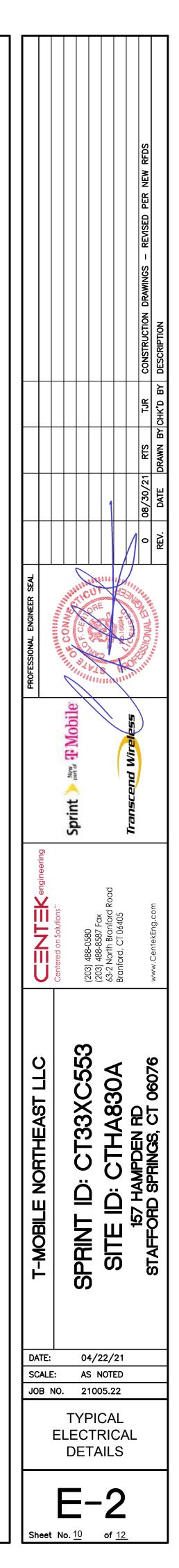
EQUIPMEN

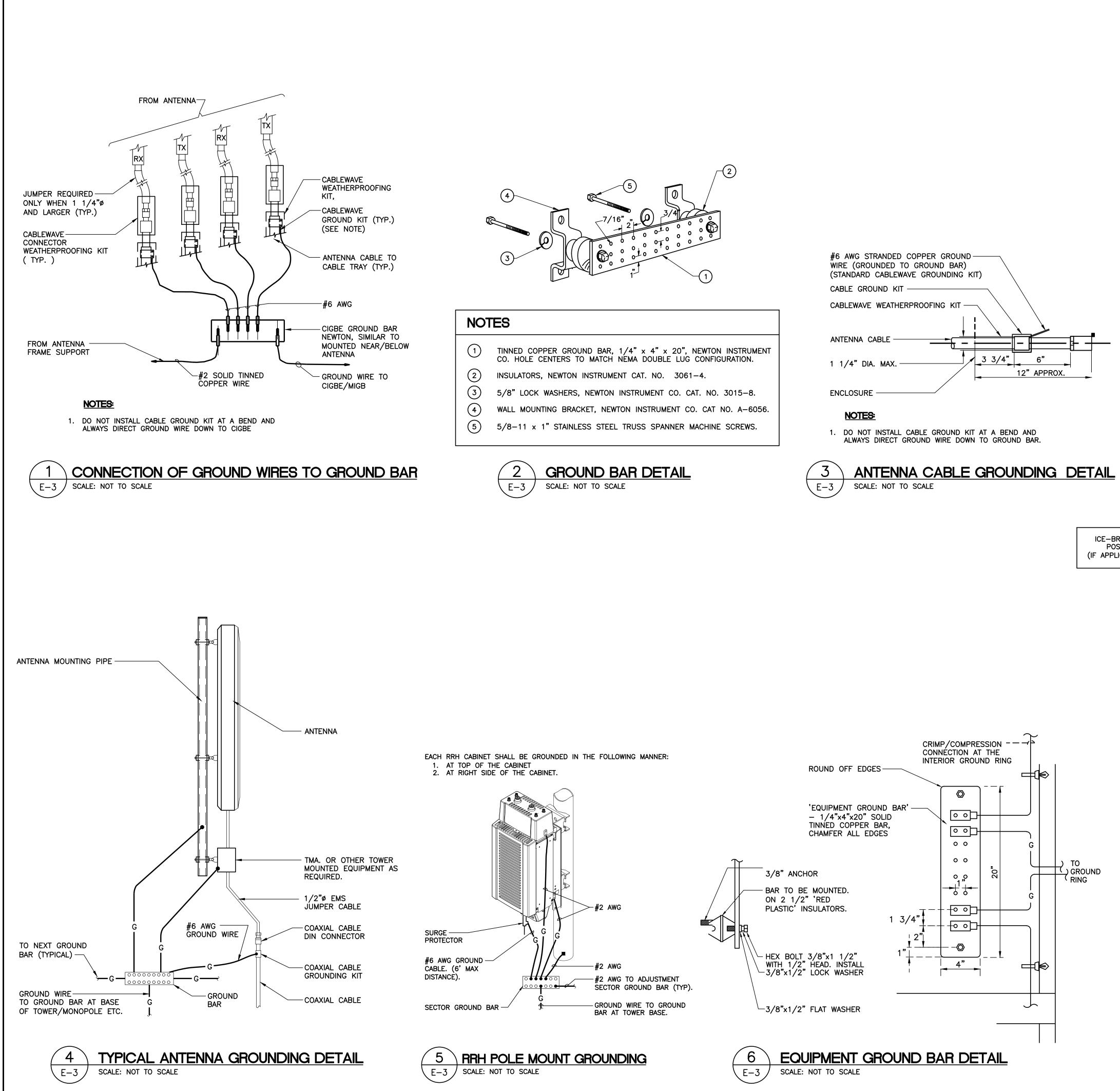
MAKE: GENE MODEL: RXS

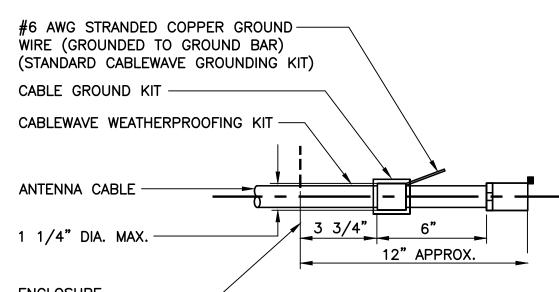
	BACKUP POWER G	ENERATOR		
FUEL	MODEL NUMBER	FUEL TANK SIZE (GAL)	DIMENSIONS	WEIGHT
DIESEL	7192–0	229	103.4"L x 35.0"W x 91.7"H	2123 LBS.

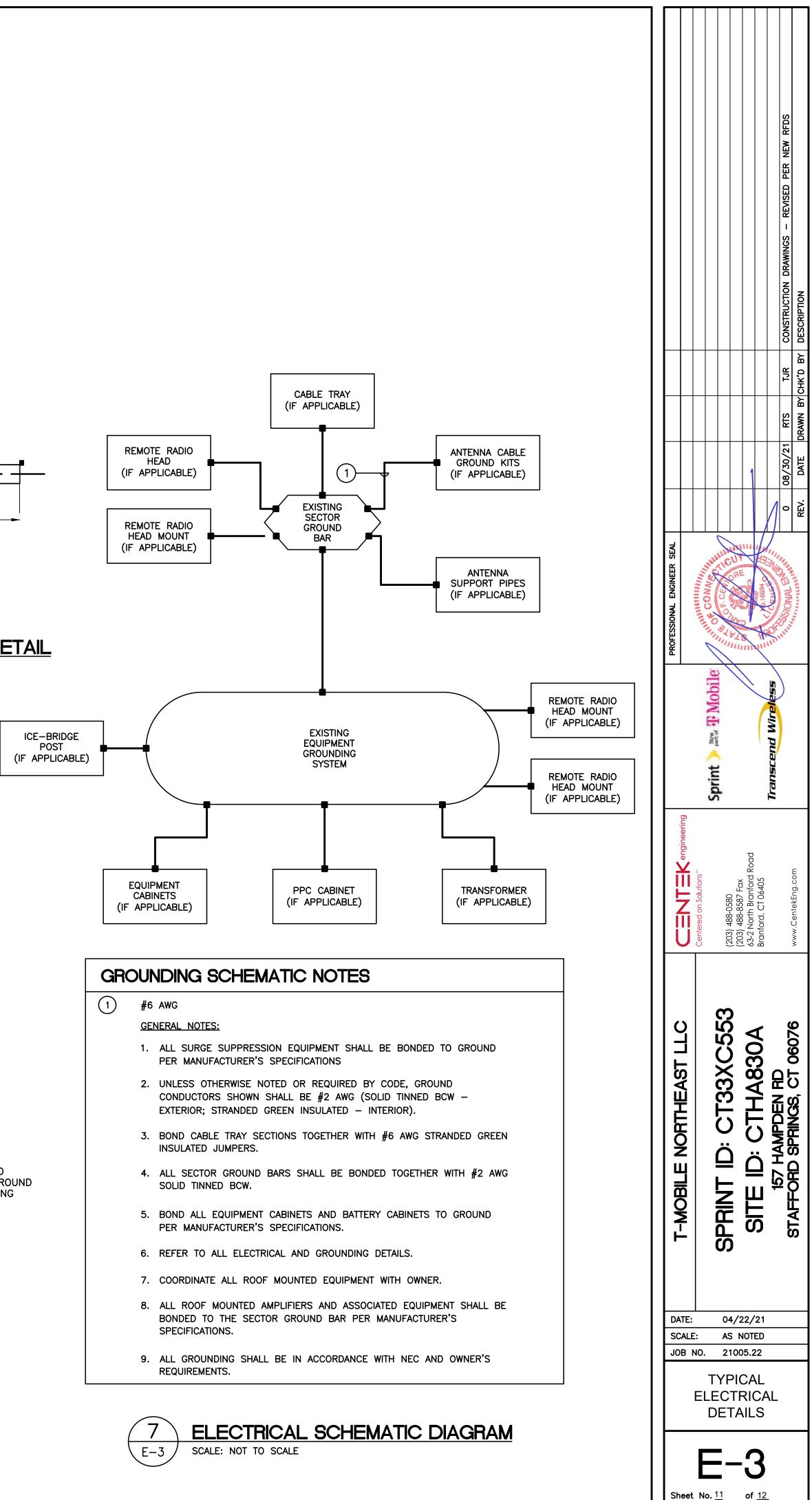
NOTES: 1. FUEL LEVEL/SECONDARY CONTAINMENT SHALL BE ALARMED AND IN COMMUNICATION WITH T-MOBILE'S NOC.

2. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION AND ALL OPTIONAL FEATURES WITH T-MOBILE'S CONSTRUCTION MANAGER PRIOR TO ORDERING.






AUTOMATIC TRANSFER SWITCH							
INT	PHASE	VOLTAGE	ENCLOSURE	AMP	DIMENSIONS		
ENERAC RXSC200A3	1-PHASE	120/240	NEMA-3R	200	17.3"L x 12.5"W		


AUTOMATIC TRANSFER SWITCH DETAIL SCALE: NOT TO SCALE

ELECTRICAL SPECIFICATIONS

SECTION 16010

1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- M. SHOP DRAWINGS:
- 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
- 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- N. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN. OR OMITTED FROM. THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

SECTION 16111

1.01. CONDUITS

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

	<u>CONDU</u>	T SCHEDULE SECTION 16111	
CONDUIT TYPE	NEC REFERENCE	APPLICATION	MIN. BURIAL DEPTH (PER NEC TABLE 300.5) ^{2,3}
ЕМТ	ARTICLE 358	INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS	N/A
RMC, RIGID GALV. STEEL	ARTICLE 344, 300.5, 300.50	ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.	6 INCHES
PVC, SCHEDULE 40	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES
PVC, SCHEDULE 80	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES
LIQUID TIGHT FLEX. METAL	ARTICLE 350	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A
FLEX. METAL	ARTICLE 348	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A
¹ PHYSICAL DAMAGE IS SU	JBJECT TO THE AUTHO	JRITY HAVING JURISDICTION.	
² UNDERGROUND CONDUIT	INSTALLED UNDER RD	ADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HA	ve minimum depth of 24".
3 WHERE SOUTH ROCK PRE		VITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTA	

3 WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2" OF CONCRETE EXTENDING DOWN TO ROCK.

SECTION 16123

- 1.01. CONDUCTORS
- A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:
 - 120/208/240V 277/480V COLOR BLACK COLOR BROWN ORANGE RFD BLUF YELLOW CONTINUOUS WHITE GREY CONTINUOUS GREEN GREEN WITH YELLOW STRIPE
- B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

SECTION 16130

1.01. BOXES

- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

SECTION 16140

- 1.01. WIRING DEVICES
- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
- 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS)
- 2. DUPLEX RECEPTACLE P&S #2095 (GFCI) SPECIFICATION GRADE
- 3. SINGLE POLE SWITCH P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
- 4. DUPLEX RECEPTACLE P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

SECTION 16170

1.01. DISCONNECT SWITCHES

A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

SECTION 16190

- 1.01. SEISMIC RESTRAINT
- A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

SECTION 16195

- 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT
- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

SECTION 16450 1.01. GROUNDING

- GROUNDING SOURCES.

- CORROSION

- RACEWAY(S).

- 1. GROUND BARS

- SPECIFICATIONS.

SECTION 16470

1.01. DISTRIBUTION EQUIPMENT

SECTION 16477

1.01. FUSES

SECTION 16960

REQUIRING WITNESSING.

SECTION 16961

- 1.01. TESTS BY CONTRACTOR

A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT

B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.

C. GROUNDING OF PANELBOARDS:

1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT

2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).

D. EQUIPMENT GROUNDING CONDUCTOR:

1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.

3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME

E. CELLULAR GROUNDING SYSTEM:

CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED). 3. ANTENNA GROUND CONNECTIONS AND PLATES.

F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.

G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S

A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1. LOW PEAK. DUAL ELEMENT. TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.

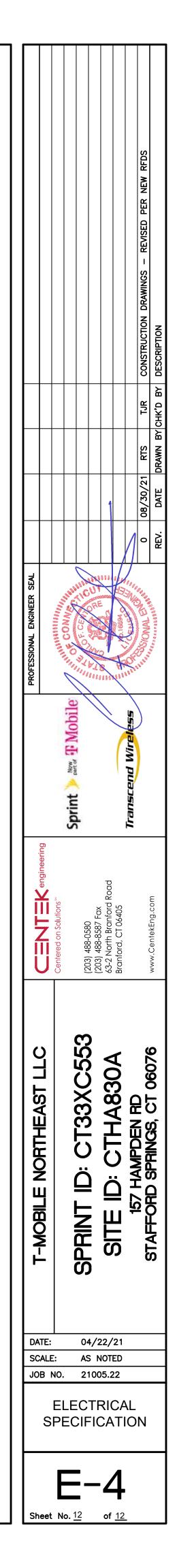
TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.

THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:

1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT

2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.

3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.


B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.

C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER. D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS

A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.

B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE CONNECTED TO THE PANELBOARDS SO THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.

C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.

FRED A. NUDD CORPORATION

1743 ROUTE 104, BOX 577 ONTARIO, NY 14519 (315) 524-2531 FAX (315) 524-4249

www.nuddtowers.com

Mark LeGault Cordless Data Transfer, Inc. 600 Old Hartford Road Colchester, CT 06415 September 6, 2021

Fred A. Nudd Job Number: 121-23082

Location: 169 Hampden Road, Stafford Springs, CT 06076, Tolland County

Subject: Structural Analysis of a 180 ft Guyed Tower

Fred A. Nudd Corporation has completed a structural analysis of an existing 180 ft guyed tower. The tower was originally designed by Rohn Industries, to #80 specifications. The tower analysis was completed considering TIA-222-G design standards, which is the enforced design standard of the 2015 International Building Code, including 2018 Connecticut State Building Code. Tower dimensions have been taken from drawings by Rohn Industries, File Number 32343PH, dated April 17, 1995. Design criteria per each analysis are noted on the following page. The tower is assumed to be in good, undamaged and equivalent to as new condition and has been maintained / inspected per criteria by TIA-222.

The purpose of this analysis is to determine the structure's ability to support new Sprint equipment installed at a rad center of 171 ft above ground level (AGL). The new equipment to be installed, which included antennas, coax, mounts and associated hardware are listed on the following page in the appurtenance loading table.

Results of the analysis indicate the tower will be able to the support the design loads noted in the appurtenance loading table on the following pages when considering the existing and proposed loading. Specific section design loads, capacities and stress ratios are provided on the following pages. Maximum member usage was found to be 93%.

The tower base foundation was analyzed based on dimensions provided by CDT and assumed geotechnical values. The anchors were analyzed by comparing the reactions from this analysis to the original design loads. Based on comparison to the calculated results and comparison to the original design reaction, it is reasonable to expect to expect the foundations have adequate capacity to support the existing and proposed loading noted above.

In conclusion, the tower superstructure can support the existing and proposed equipment noted above. The tower substructure is expected to be able to support this loading as well.

We trust this report satisfies your needs. Please contact us with any questions or concerns regarding this report.

Best Regards,

Fred. A. Nudd Corporation

Code Design Criteria

ANSI/TIA-222-G Windspeed = 97 mph, 3-Second Gust, V_{asd} / 123 mph, 3-Second Gust, V_{ult} Structure Class = II Topographic Category = 1 Exposure = B Radial Ice = 1.0 inch Ice Windspeed = 50 mph, 3-Second Gust S_s < 1.0, thus seismic loading does not need to be considered

Appurtenance Loading – Existing and To Remain on Tower

Height (ft)	Appurtenance	Mount	Coax (in)
180	(1) Station Master Antenna	Leg	(2) 7/8 (1) 1-1/4
179	(1) Decibel DB809	Side Arm	(1) 1-1/4
177	(1) Decibel DB809	Boom	(1) 7/8
163	(1) Celwave PD201	Pipe	(1) 7/8
150		Frame / Boom	
127	(1) Decibel DB420	Side Arm	(1) 7/8
83	(1) Celwave PD201	Pipe	(1) 1/2

• Height measurement taken as distance from top of base foundation to center of appurtenance.

Appurtenance Loading – Final Equipment Configuration For Sprint

Height (ft)	Carrier	Appurtenance	Mount	Coax (in)
171	Sprint	 (3) RFS APXVAALL24_43-U-NA20 (3) Ericsson AIR6449 B41 (3) Ericsson Radio 4460 B25+B86 (3) Ericsson Radio 4480 B71 B85 	(3) V-Frame	(3) 6/24 4AWG Hybrid

• Height measurement taken as distance from top of base foundation to center of appurtenance.

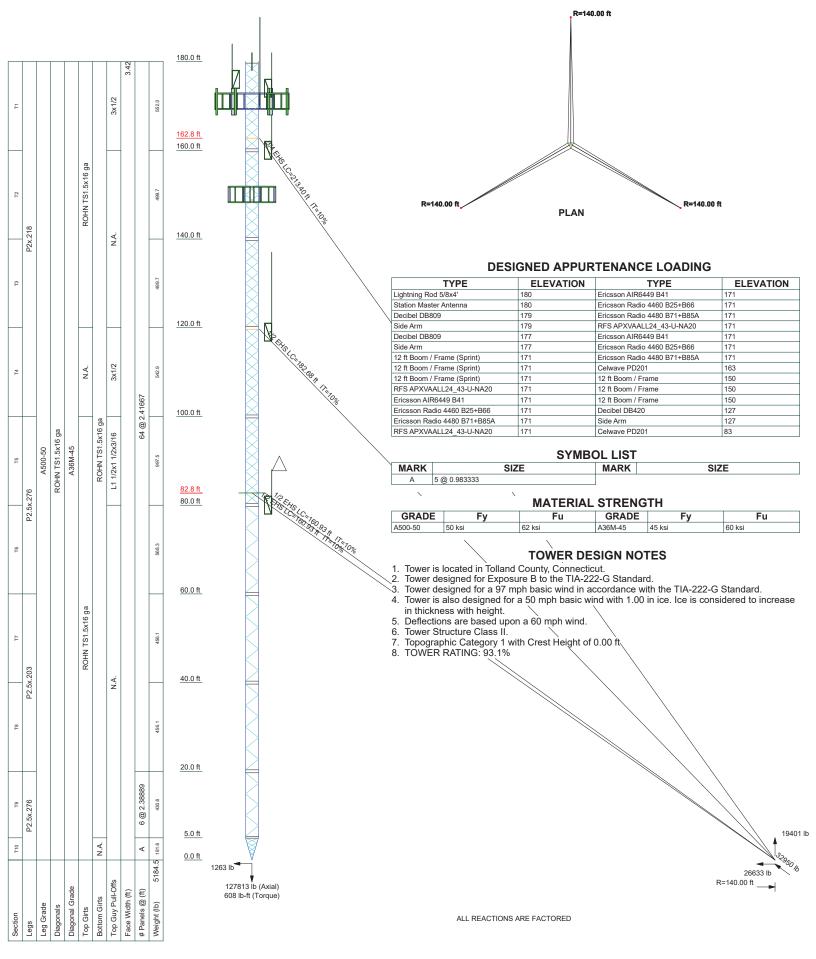
• The proposed coax can be installed on any tower face.

Maximum Member Usage

Member	Percentage
Leg	78
Diagonal	35
Horizontal	93
Guys	50
Splice/Connection Bolts	93

• Percentage equal to or less than 100% denote member stress levels are satisfactory for loading.

• Percentage greater than 100% indicates member strengthening is required.


Foundation Usage

Design Load	Original Design or Calculated Capacity (kips)	Analysis (kips)	Percentage
Base Axial	150.0 (Calculated)	127.8	88
Anchor Uplift	26.8 (Original Design)	19.4	54
Anchor Shear	32.4 (Original Design)	26.6	61

• The anchor percentages are divided by 1.35 to account for unfactored to factored load comparison

• Percentage less than 100% denote foundation is satisfactory for loading

• Percentage greater than 100% indicates foundation analysis is required

	^{Job:} 121-23082		
	Project: 180 ft Rohn #80 - S	tafford Springs CT	
	Client: CDT	Drawn by:	App'd:
Phone:	Code: TIA-222-G	Date: 09/06/21	Scale: NTS
	Path: C'Uterrilinan Latier/Douber/WorkFed Nada Projects 121 (2002) 100 Hander Read	n Starfford Scotings SA for Spoint/DDSA Files/121-20082 Hampdan Road Starfford Analysis For Scot	Dwg No. E-1

tnxTower	Job	121-23082	Page 1 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Tower Input Data

The main tower is a 3x guyed tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

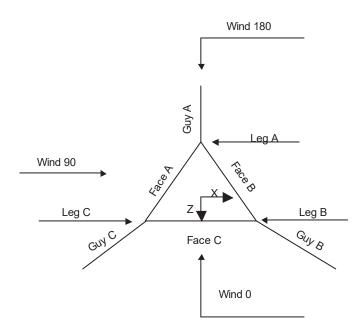
The face width of the tower is 3.42 ft at the top and tapered at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

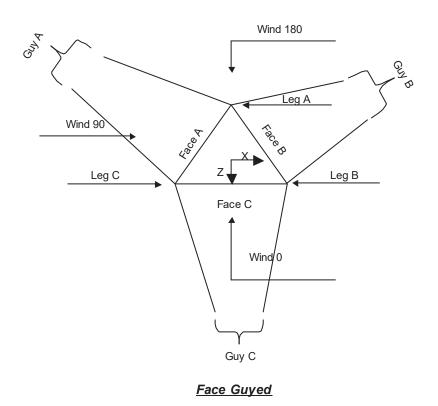
Tower is located in Tolland County, Connecticut.

Basic wind speed of 97 mph. Structure Class II. Exposure Category B. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 1.0000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. Pressures are calculated at each section. Stress ratio used in tower member design is 1. Safety factor used in guy design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.


Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile
- Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section
- $\sqrt{}$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned
- Assume Rigid Index Plate
- Use Clear Spans For Wind Area
- Use Clear Spans For KL/r
- Retension Guys To Initial Tension Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. $\sqrt{}$
- Autocalc Torque Arm Areas Add IBC .6D+W Combination
- Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs


- Use ASCE 10 X-Brace Ly Rules
- Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- $\sqrt{}$ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles
 - Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower	Job	121-23082	Page 2 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Corner & Starmount Guyed Tower

tnxTower	Јо в 121-23082	Page 3 of 48
	Project 180 ft Rohn #80 - Stafford Springs (Date CT 19:45:40 09/06/21
Phone: FAX:	Client CDT	Designed by

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database	-	Width	of	Length
					Sections	-
	ft			ft		ft
T1	180.00-160.00			3.42	1	20.00
T2	160.00-140.00			3.42	1	20.00
Т3	140.00-120.00			3.42	1	20.00
T4	120.00-100.00			3.42	1	20.00
T5	100.00-80.00			3.42	1	20.00
T6	80.00-60.00			3.42	1	20.00
Τ7	60.00-40.00			3.42	1	20.00
T8	40.00-20.00			3.42	1	20.00
Т9	20.00-5.00			3.42	1	15.00
T10	5.00-0.00			3.42	1	5.00

tnxTower	Job	121-23082	Page 4 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Gir	
Section	Elevation	Spacing	Туре	K Brace Horizon		Offset	Offset	
				End				
	ft	ft		Panels		in	in	
T1	180.00-160.00	2.42	CX Brace	No	Yes	4.0000	4.0000	
T2	160.00-140.00	2.42	CX Brace	No	Yes	4.0000	4.0000	
T3	140.00-120.00	2.42	CX Brace	No	Yes	4.0000	4.0000	
T4	120.00-100.00	2.42	CX Brace	No	Yes	4.0000	4.0000	
T5	100.00-80.00	2.42	CX Brace	No	Yes	4.0000	4.0000	
T6	80.00-60.00	2.42	K Brace Left	No	Yes	4.0000	4.0000	
T7	60.00-40.00	2.42	K Brace Left	No	Yes	4.0000	4.0000	
T8	40.00-20.00	2.42	K Brace Left	No	Yes	4.0000	4.0000	
T9	20.00-5.00	2.39	K Brace Left	No	Yes	4.0000	4.0000	
T10	5.00-0.00	0.98	X Brace	No	Yes	1.0000	0.0000	

		Tower	Section G	eometry	r (cont'd)	
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 180.00-160.00	Pipe	P2x.218	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T2 160.00-140.00	Pipe	P2x.218	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T3 140.00-120.00	Pipe	P2x.218	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T4 120.00-100.00	Pipe	P2x.218	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T5 100.00-80.00	Pipe	P2.5x.276	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T6 80.00-60.00	Pipe	P2.5x.276	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T7 60.00-40.00	Pipe	P2.5x.203	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T8 40.00-20.00	Pipe	P2.5x.203	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T9 20.00-5.00	Pipe	P2.5x.276	A500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T10 5.00-0.00	Pipe	P2.5x.276	À500-50 (50 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)

Tower Elevation	Top Girt	Top Girt	Top Girt Grade	Bottom Girt	Bottom Girt	Bottom Girt Grade
ft	Туре	Size	Grade	Туре	Size	Grade
T1 180.00-160.00	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T2 160.00-140.00	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T3 140.00-120.00	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T4 120.00-100.00	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)	Pipe	ROHN TS1.5x16 ga	A36M-45 (45 ksi)
T5 100.00-80.00	Pipe	ROHN TS1.5x16 ga	A36M-45	Pipe	ROHN TS1.5x16 ga	A36M-45

tnxTower	Job	121-23082	Page 5 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
			(45 ksi)			(45 ksi)
T6 80.00-60.00	Pipe	ROHN TS1.5x16 ga	A36M-45	Pipe	ROHN TS1.5x16 ga	A36M-45
			(45 ksi)			(45 ksi)
T7 60.00-40.00	Pipe	ROHN TS1.5x16 ga	A36M-45	Pipe	ROHN TS1.5x16 ga	A36M-45
			(45 ksi)			(45 ksi)
T8 40.00-20.00	Pipe	ROHN TS1.5x16 ga	A36M-45	Pipe	ROHN TS1.5x16 ga	A36M-45
			(45 ksi)			(45 ksi)
T9 20.00-5.00	Pipe	ROHN TS1.5x16 ga	A36M-45	Pipe	ROHN TS1.5x16 ga	A36M-45
			(45 ksi)			(45 ksi)
T10 5.00-0.00	Pipe	ROHN TS1.5x16 ga	A36M-45	Pipe	ROHN TS1.5x16 ga	A36M-45
			(45 ksi)			(45 ksi)

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
180.00-160.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T6 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T7 60.00-40.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T8 40.00-20.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T9 20.00-5.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T10 5.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

	K Factors ¹											
Tower Elevation	Calc K	Calc K	Legs	X Brace	K Brace	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace		
ft	Single Angles	Solid Rounds		Diags X Y	Diags X Y	X Y	X Y	X Y	$X \\ Y$	X Y		
T1 180.00-160.00	No	Yes	1	1	1	1	1	1	1	1 1		
T2 160.00-140.00	No	Yes	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1		

tnxTower	Job	121-23082	Page 6 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	Х	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T3	No	Yes	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T4	No	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T5	No	Yes	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T6	No	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
Τ7	No	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T8	No	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T9 20.00-5.00	No	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1
Г10 5.00-0.00	No	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Elevation ft	Leg		Diagon	al	Top Gi	rt	Bottom	Girt	Mid	Girt	Long Hor	rizontal	Short Ho	rizontal
v	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
180.00-160.00														
T2	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
160.00-140.00														
Т3	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
140.00-120.00														
T4	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
120.00-100.00														
T5	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
100.00-80.00														
T6 80.00-60.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T7 60.00-40.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T8 40.00-20.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T9 20.00-5.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T10 5.00-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75

tnxTower	Job	121-23082	Page 7 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Tower Elevation ft	Reduna Horizoi		Redundant Diagonal		Redund Sub-Diag		Redur Sub-Hor		Redundan	t Vertical	Redundant Hip		Redundo Diago	
<i>J</i> •	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width	-	Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00-160.00														
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00														
Т3	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00														
T4	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 80.00-60.00		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 60.00-40.00		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 40.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 20.00-5.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 5.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower	Leg	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid G	lirt	Long Horn	izontal	Short Hort	izontal
Elevation	Connection														
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
180.00-160.00	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
160.00-140.00	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
120.00-100.00	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 80.00-60.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 60.00-40.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 40.00-20.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 20.00-5.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10 5.00-0.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
	C	A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Guy Data	

tnxTower	Job	121-23082	Page 8 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Guy Elevation	Guy Grade		Guy Size	Initial Tension	%	Guy Modulus	Guy Weight	L_u	Anchor Radius	Anchor Azimuth	Anchor Elevation	End Fitting
Lievation	Oruue		5120	rension		mounnas	weight		Ruutus	A2imuin Adj.	Lievation	Efficiency
ft				lb		ksi	plf	ft	ft	o	ft	%
82.75	EHS	А	1/2	2690.00	10%	21000	0.517	160.79	140.00	0.0000	0.00	100%
		В	1/2	2690.00	10%	21000	0.517	160.79	140.00	0.0000	0.00	100%
		С	1/2	2690.00	10%	21000	0.517	160.79	140.00	0.0000	0.00	100%
162.75	EHS	А	3/4	5830.00	10%	19000	1.155	213.21	140.00	0.0000	0.00	100%
		В	3/4	5830.00	10%	19000	1.155	213.21	140.00	0.0000	0.00	100%
		С	3/4	5830.00	10%	19000	1.155	213.21	140.00	0.0000	0.00	100%
119.667	EHS	А	1/2	2690.00	10%	21000	0.517	182.52	140.00	0.0000	0.00	100%
		В	1/2	2690.00	10%	21000	0.517	182.52	140.00	0.0000	0.00	100%
		С	1/2	2690.00	10%	21000	0.517	182.52	140.00	0.0000	0.00	100%

	Guy Data(cont'd)									
Guy Elevation ft	Mount Type	Torque-Arm Spread ft	Torque-Arm Leg Angle °	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size			
82.75	Torque Arm	7.00	0.0000	Channel	A36 (36 ksi)	Channel	C10x15.3			
162.75 119.667	Strap Strap									

Guy Data (cont'd)

Guy Elevation ft	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap.	Pull-Off Grade	Pull-Off Type	Pull-Off Size
82.75	A572-50 (50 ksi)	Solid Round			No	A36 (36 ksi)	Equal Angle	L1 1/2x1 1/2x3/16
162.75	A572-50 (50 ksi)	Solid Round			No	A36 (36 ksi)	Flat Bar	3x1/2
119.67	A572-50 (50 ksi)	Solid Round			No	A36 (36 ksi)	Flat Bar	3x1/2

	Guy Data (cont'd)											
Guy	Cable	Cable	Cable	Cable	Tower	Tower	Tower	Tower				
Elevation	Weight	Weight	Weight	Weight	Intercept	Intercept	Intercept	Intercept				
	A	В	С	D	A	В	С	D				
ft	lb	lb	lb	lb	ft	ft	ft	ft				
82.75	83.13	83.13	83.13		2.47	2.47	2.47					
					2.7 sec/pulse	2.7 sec/pulse	2.7 sec/pulse					
162.75	246.25	246.25	246.25		4.44	4.44	4.44					
					3.6 sec/pulse	3.6 sec/pulse	3.6 sec/pulse					
119.667	94.37	94.37	94.37		3.17	3.17	3.17					
					3.1 sec/pulse	3.1 sec/pulse	3.1 sec/pulse					

tnxTower	Job	121-23082	Page 9 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Guy Data (cont'd)

			Torque Arm		Pull	l Off	Diagonal	
Guy Elevation ft	Calc K Single Angles	Calc K Solid Rounds	K _x	Ky	K _x	K _y	K _x	Ky
82.75	No	No	1	1	1	1	1	1
162.75	No	No			1	1	1	1
119.667	No	No			1	1	1	1

Guy Data (cont'd)

		Torqi	ıe-Arm		Pull Off				Diagonal			
Guy Elevation ft	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U
82.75	0.7500 A325N	2	0.0000	1	0.0000 A325N	0	0.0000	1	0.6250 A325N	0	0.0000	1
162.75	0.6250 A325N	0	0.0000	0.75	0.0000 A325N	0	0.0000	1	0.6250 A325N	0	0.0000	1
119.667	0.6250 A325N	0	0.0000	0.75	0.0000 A325N	0	0.0000	1	0.6250 A325N	0	0.0000	1

Guy Pressures

Guy Elevation	Guy Location	Ζ	q_z	q _z Ice	Ice Thickness
ft	Locuiton	ft	psf	psf	in
82.75	A	41.38	16	4	2.0457
	В	41.38	16	4	2.0457
	С	41.38	16	4	2.0457
162.75	А	81.38	19	5	2.1889
	В	81.38	19	5	2.1889
	С	81.38	19	5	2.1889
119.667	А	59.83	17	5	2.1226
	В	59.83	17	5	2.1226
	С	59.83	17	5	2.1226

Guy-Mast Forces (Excluding Wind) - No Ice									
Guy	Guy	Chord	Guy Tension	F_x	F_y	Fz	M _x	M _y	Mz
Elevation	Location	Angle	Тор		-				
			Bottom						
ft		0	lb	lb	lb	lb	lb-ft	lb-ft	lb-ft
82.75	•	30.9442	2732.74	-58.96	1435.72	-2324.46	-2901.19	8254.77	-5025.01
62.73	А	30.9442	2732.74 2690.00	-38.90	1455.72	-2324.40	-2901.19	8234.77	-3023.01
	А	30.9442	2732.74	58.96	1435.72	-2324.46	-2901.19	-8254.77	5025.01

tnxTower	Job	121-23082	Page 10 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom lb	F_x	F_y	F_z	M_x	M_y	M_z
ft		0	10	lb	lb	lb	lb-ft	lb-ft	lb-ft
			2690.00						
	В	30.9442	2732.74 2690.00	2042.53	1435.72	1111.17	5802.38	8254.77	0.00
	В	30.9442	2732.74	1983.56	1435.72	1213.30	-2901.19	-8254.77	-5025.0
			2690.00						
	С	30.9442	2732.74 2690.00	-1983.56	1435.72	1213.30	-2901.19	8254.77	5025.0
	С	30.9442	2732.74	-2042.53	1435.72	1111.17	5802.38	-8254.77	0.00
			2690.00						
			Sum:	0.00	8614.30	0.00	-0.00	0.00	0.00
162.75	А	49.6993	6017.80 5830.00	0.00	4640.87	-3830.96	-9163.58	0.00	0.00
	В	49.6993	6017.80	3317.71	4640.87	1915.48	4581.79	0.00	-7935.8
			5830.00						
	С	49.6993	6017.80	-3317.71	4640.87	1915.48	4581.79	-0.00	7935.8
			5830.00						
			Sum:	0.00	13922.62	-0.00	0.00	0.00	0.00
119.667	А	40.9250	2751.81	0.00	1829.52	-2055.57	-3612.45	0.00	0.00
			2690.00						
	В	40.9250	2751.81	1780.17	1829.52	1027.78	1806.22	0.00	-3128.4
			2690.00						
	С	40.9250	2751.81	-1780.17	1829.52	1027.78	1806.22	-0.00	3128.4
			2690.00						
			Sum:	0.00	5488.55	-0.00	0.00	0.00	0.00

Guy-Mast Forces (Excluding Wind) - Ice

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom lb	F_x	F_y	F_z	M_x	M_y	M_z
ft		0	10	lb	lb	lb	lb-ft	lb-ft	lb-ft
82.75	А	30.9442	6764.07 6195.76	-140.46	3882.09	-5537.35	-7844.65	19664.57	-13587.33
	А	30.9442	6764.07 6195.76	140.46	3882.09	-5537.35	-7844.65	-19664.57	13587.33
	В	30.9442	6764.07 6195.76	4865.72	3882.09	2647.03	15689.29	19664.57	0.00
	В	30.9442	6764.07 6195.76	4725.26	3882.09	2890.32	-7844.65	-19664.57	-13587.33
	С	30.9442	6764.07 6195.76	-4725.26	3882.09	2890.32	-7844.65	19664.57	13587.33
	С	30.9442	6764.07 6195.76	-4865.72	3882.09	2647.03	15689.29	-19664.57	0.00
			Sum:	0.00	23292.56	0.00	-0.00	0.00	0.00
162.75	А	49.6993	11880.60 10415.60	0.00	9458.73	-7188.96	-18676.62	0.00	0.00
	В	49.6993	11880.60 10415.60	6225.82	9458.73	3594.48	9338.31	0.00	-16174.43
	С	49.6993	11880.60 10415.60	-6225.82	9458.73	3594.48	9338.31	-0.00	16174.43
			Sum:	0.00	28376.19	-0.00	0.00	0.00	0.00
119.667	А	40.9250	7118.36 6244.19	0.00	5040.37	-5026.50	-9952.40	0.00	0.00

tnxTower	Job 121-23082	Page 11 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client CDT	Designed by

Guy	Guy	Chord	Guy Tension	F_x	F_y	F_z	M_x	M_y	M_z
Elevation	Location	Angle	Top Bottom						
			lb						
ft		0		lb	lb	lb	lb-ft	lb-ft	lb-ft
	В	40.9250	7118.36	4353.08	5040.37	2513.25	4976.20	0.00	-8619.04
			6244.19						
	С	40.9250	7118.36	-4353.08	5040.37	2513.25	4976.20	-0.00	8619.04
			6244.19						
			Sum:	0.00	15121.11	-0.00	0.00	0.00	0.00

Guy-Mast Forces (Excluding Wind) - Service

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom lb	F_x	F_y	F_z	M_x	M_y	M_z
ft		0	lD	lb	lb	lb	lb-ft	lb-ft	lb-ft
82.75	А	30.9442	2732.74 2690.00	-58.96	1435.72	-2324.46	-2901.19	8254.77	-5025.01
	А	30.9442	2732.74 2690.00	58.96	1435.72	-2324.46	-2901.19	-8254.77	5025.01
	В	30.9442	2732.74 2690.00	2042.53	1435.72	1111.17	5802.38	8254.77	0.00
	В	30.9442	2732.74 2690.00	1983.56	1435.72	1213.30	-2901.19	-8254.77	-5025.01
	С	30.9442	2732.74 2690.00	-1983.56	1435.72	1213.30	-2901.19	8254.77	5025.01
	С	30.9442	2732.74 2690.00	-2042.53	1435.72	1111.17	5802.38	-8254.77	0.00
			Sum:	0.00	8614.30	0.00	-0.00	0.00	0.00
162.75	А	49.6993	6017.80 5830.00	0.00	4640.87	-3830.96	-9163.58	0.00	0.00
	В	49.6993	6017.80 5830.00	3317.71	4640.87	1915.48	4581.79	0.00	-7935.89
	С	49.6993	6017.80 5830.00	-3317.71	4640.87	1915.48	4581.79	-0.00	7935.89
			Sum:	0.00	13922.62	-0.00	0.00	0.00	0.00
119.667	А	40.9250	2751.81 2690.00	0.00	1829.52	-2055.57	-3612.45	0.00	0.00
	В	40.9250	2751.81 2690.00	1780.17	1829.52	1027.78	1806.22	0.00	-3128.47
	С	40.9250	2751.81 2690.00	-1780.17	1829.52	1027.78	1806.22	-0.00	3128.47
			Sum:	0.00	5488.55	-0.00	0.00	0.00	0.00

Guy-Tensioning Information

					Temperature At Time Of Tensioning												
				0	F	20	0 F	40) F	6	0 F	80	0 F	10	0 F	12	0 F
Guy		Н	V	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept
Elevation				Tension	-	Tension	-	Tension	-	Tension	-	Tension	-	Tension	-	Tension	-
ft		ft	ft	lb	ft	lb	ft	lb	ft	lb	ft	lb	ft	lb	ft	lb	ft
82.75	A 13	38.02	82.75	3555	1.87	3263	2.04	2975	2.23	2690	2.47	2411	2.75	2140	3.10	1881	3.52
1	B 13	38.02	82.75	3555	1.87	3263	2.04	2975	2.23	2690	2.47	2411	2.75	2140	3.10	1881	3.52
	C 13	38.02	82.75	3555	1.87	3263	2.04	2975	2.23	2690	2.47	2411	2.75	2140	3.10	1881	3.52

tnxTower	Job	121-23082	Page 12 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

					Temperature At Time Of Tensioning												
				0	F	2	0 F	4	0 F	6	0 F	8	0 F	10	0 F	12	20 F
Guy		Н	V	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept
Elevation				Tension	-	Tension	-	Tension	-	Tension	-	Tension	-	Tension	-	Tension	-
ft		ft	ft	lb	ft	lb	ft	lb	ft	lb	ft	lb	ft	lb	ft	lb	ft
162.75	А	138.03	162.75	6822	3.80	6489	3.99	6158	4.20	5830	4.44	5505	4.69	5185	4.98	4869	5.30
	В	138.03	162.75	6822	3.80	6489	3.99	6158	4.20	5830	4.44	5505	4.69	5185	4.98	4869	5.30
	С	138.03	162.75	6822	3.80	6489	3.99	6158	4.20	5830	4.44	5505	4.69	5185	4.98	4869	5.30
119.667	Α	138.03	119.67	3359	2.54	3134	2.72	2911	2.93	2690	3.17	2473	3.44	2260	3.76	2053	4.14
	В	138.03	119.67	3359	2.54	3134	2.72	2911	2.93	2690	3.17	2473	3.44	2260	3.76	2053	4.14
	С	138.03	119.67	3359	2.54	3134	2.72	2911	2.93	2690	3.17	2473	3.44	2260	3.76	2053	4.14

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face		Exclude	Component	Placement	Face	Lateral	#	#	Clear		Perimeter	Weight
	or	Shield	From	Туре	C	Offset	Offset		Per		Diameter		10
	Leg		<i>Torque</i> <i>Calculation</i>		ft	in	(Frac FW)		Row	in	in	in	plf
Feedline Ladder (Af)	С	No	No	Ar (CaAa)	171.50 - 6.00	0.1000	0	1	1	3.0000	3.0000		8.40
Safety Line 3/8	А	No	No	Ar (CaAa)	180.00 - 6.00	0.0000	0	1	1	0.3750	0.3750		0.22
4AWG	С	No	No	Ar (CaAa)	171.00 - 6.00	0.1000	0	3	3	1.5500	1.2500		0.66
1 1/4	В	No	No	Ar (CaAa)	180.00 - 6.00	0.1000	0	1	1	1.5500	1.5500		0.66
7/8	В	No	No	Ar (CaAa)	180.00 - 6.00	0.1000	0	2	2	1.1100	1.1100		0.54
1 1/4	В	No	No	Ar (CaAa)	179.00 - 6.00	0.1000	0	1	1	1.5500	1.5500		0.66
7/8	В	No	No	Ar (CaAa)	177.00 - 6.00	0.1000	0	1	1	1.1100	1.1100		0.54
7/8	В	No	No	Ar (CaAa)	163.00 - 6.00	0.1000	0	1	1	1.1100	1.1100		0.54
7/8	В	No	No	Ar (CaAa)	127.00 - 6.00	0.1000	0	1	1	1.1100	1.1100		0.54
1/2	В	No	No	Ar (CaAa)	83.00 - 6.00	0.1000	0	1	1	0.5800	0.5800		0.25

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
T1	180.00-160.00	А	0.000	0.000	0.750	0.000	4.40
		В	0.000	0.000	12.705	0.000	58.14
		С	0.000	0.000	7.575	0.000	118.38
T2	160.00-140.00	А	0.000	0.000	0.750	0.000	4.40
		В	0.000	0.000	15.080	0.000	69.60
		С	0.000	0.000	13.500	0.000	207.60
T3	140.00-120.00	А	0.000	0.000	0.750	0.000	4.40
		В	0.000	0.000	15.857	0.000	73.38
		С	0.000	0.000	13.500	0.000	207.60
T4	120.00-100.00	А	0.000	0.000	0.750	0.000	4.40
		В	0.000	0.000	17.300	0.000	80.40
		С	0.000	0.000	13.500	0.000	207.60
T5	100.00-80.00	А	0.000	0.000	0.750	0.000	4.40
		В	0.000	0.000	17.474	0.000	81.15

tnxTower	Job 121-23082	Page 13 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client CDT	Designed by

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
		С	0.000	0.000	13.500	0.000	207.60
T6	80.00-60.00	А	0.000	0.000	0.750	0.000	4.40
		В	0.000	0.000	18.460	0.000	85.40
		С	0.000	0.000	13.500	0.000	207.60
T7	60.00-40.00	А	0.000	0.000	0.750	0.000	4.40
		В	0.000	0.000	18.460	0.000	85.40
		С	0.000	0.000	13.500	0.000	207.60
T8	40.00-20.00	А	0.000	0.000	0.750	0.000	4.40
		В	0.000	0.000	18.460	0.000	85.40
		С	0.000	0.000	13.500	0.000	207.60
T9	20.00-5.00	А	0.000	0.000	0.525	0.000	3.08
		В	0.000	0.000	12.922	0.000	59.78
		С	0.000	0.000	9.450	0.000	145.32
T10	5.00-0.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft ²	ft^2	lb
T1	180.00-160.00	А	2.356	0.000	0.000	10.175	0.000	161.65
		В		0.000	0.000	60.891	0.000	988.84
		С		0.000	0.000	26.757	0.000	542.23
T2	160.00-140.00	А	2.327	0.000	0.000	10.058	0.000	158.03
		В		0.000	0.000	72.489	0.000	1188.73
		С		0.000	0.000	47.634	0.000	951.92
T3	140.00-120.00	А	2.294	0.000	0.000	9.926	0.000	153.99
		В		0.000	0.000	75.718	0.000	1234.28
		С		0.000	0.000	47.279	0.000	938.14
T4	120.00-100.00	А	2.256	0.000	0.000	9.774	0.000	149.42
		В		0.000	0.000	82.100	0.000	1331.65
		С		0.000	0.000	46.872	0.000	922.43
T5	100.00-80.00	А	2.211	0.000	0.000	9.594	0.000	144.12
		В		0.000	0.000	82.391	0.000	1315.87
		С		0.000	0.000	46.391	0.000	904.09
T6	80.00-60.00	А	2.156	0.000	0.000	9.375	0.000	137.76
		В		0.000	0.000	89.195	0.000	1394.52
		С		0.000	0.000	45.804	0.000	881.90
T7	60.00-40.00	А	2.085	0.000	0.000	9.089	0.000	129.71
		В		0.000	0.000	86.986	0.000	1326.15
		С		0.000	0.000	45.040	0.000	853.49
T8	40.00-20.00	А	1.981	0.000	0.000	8.674	0.000	118.45
		В		0.000	0.000	83.771	0.000	1229.76
		С		0.000	0.000	43.931	0.000	813.03
T9	20.00-5.00	А	1.815	0.000	0.000	5.607	0.000	71.06
		В		0.000	0.000	55.042	0.000	758.28
		С		0.000	0.000	29.513	0.000	525.36
T10	5.00-0.00	А	1.545	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure

tnxTower	Job 121-23082	Page 14 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client CDT	Designed by

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	180.00-160.00	2.0412	0.2146	1.0873	-0.1960
T2	160.00-140.00	2.2538	1.0865	1.4658	0.2052
Т3	140.00-120.00	2.3486	1.0054	1.5807	0.1577
T4	120.00-100.00	2.4452	0.8398	1.7304	0.0607
T5	100.00-80.00	2.3896	0.7955	1.6353	0.0432
T6	80.00-60.00	2.8228	0.7978	3.3469	-0.1024
Τ7	60.00-40.00	2.8228	0.7978	3.3739	-0.0831
T8	40.00-20.00	2.8228	0.7978	3.4105	-0.0524
Т9	20.00-5.00	2.7009	0.7633	3.2969	0.0033
T10	5.00-0.00	0.0000	0.0000	0.0000	0.0000

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	*	Segment Elev.	No Ice	Ice
T1	1	Feedline Ladder (Af)		0.6000	0.2306
	-		171.50		
T1	2	Safety Line 3/8	160.00 -	0.6000	0.2306
T1	3	4AWG	180.00	0.6000	0.2306
11	3	4AWG	160.00 - 171.00	0.6000	0.2306
T1	4	1 1/4	160.00 -	0.6000	0.2306
		1 1/ 1	180.00	0.0000	0.2500
T1	5	7/8	160.00 -	0.6000	0.2306
			180.00		
T1	6	1 1/4	160.00 -	0.6000	0.2306
			179.00		
T1	7	7/8	160.00 -	0.6000	0.2306
	0	5.0	177.00	0.0000	0.0000
T1	8	7/8	160.00 -	0.6000	0.2306
Т2	1	Feedline Ladder (Af)	163.00 140.00 -	0.6000	0.2622
12	1	Feedine Ladder (AI)	140.00 -	0.0000	0.2022
Т2	2	Safety Line 3/8	140.00 -	0.6000	0.2622
12	-	Survey Ellie 5/6	160.00	0.0000	0.2022
Т2	3	4AWG	140.00 -	0.6000	0.2622
			160.00		
T2	4	1 1/4	140.00 -	0.6000	0.2622
			160.00		
T2	5	7/8	140.00 -	0.6000	0.2622
		1.1/4	160.00	0 (000	0.0(00
T2	6	1 1/4	140.00 - 160.00	0.6000	0.2622
Т2	7	7/8	140.00 -	0.6000	0.2622
12	/	//8	140.00	0.0000	0.2022
Т2	8	7/8		0.6000	0.2622
	-		160.00		
Т3	1	Feedline Ladder (Af)	120.00 -	0.6000	0.2688
			140.00		
Т3	2	Safety Line 3/8		0.6000	0.2688
			140.00	0 (000	0.0.000
Т3	3	4AWG	120.00 -	0.6000	0.2688
Т3	4	1 1/4	140.00	0.6000	0.2688
13	4	1 1/4	120.00 -	0.0000	0.2088

tnxTower	Job	121-23082	Page 15 of 48
	Project 18	30 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
Т3	5	7/8	140.00 120.00 -	0.6000	0.2688
15	5	//8	140.00	0.0000	0.2088
Т3	6	1 1/4	120.00 -	0.6000	0.2688
			140.00		
Т3	7	7/8	120.00 -	0.6000	0.2688
Т3	0	7/9	140.00	0.000	0.2(00
15	8	7/8	120.00 - 140.00	0.6000	0.2688
Т3	9	7/8	120.00 -	0.6000	0.2688
			127.00		
T4	1	Feedline Ladder (Af)	100.00 -	0.6000	0.2712
T4	2	Safety Line 3/8	120.00 100.00 -	0.6000	0.2712
14	2	Safety Liffe 5/6	120.00	0.0000	0.2712
Т4	3	4AWG	100.00 -	0.6000	0.2712
			120.00		
T4	4	1 1/4	100.00 -	0.6000	0.2712
Т4	5	7/8	120.00 100.00 -	0.6000	0.2712
14	5	//0	120.00	0.0000	0.2712
Τ4	6	1 1/4	100.00 -	0.6000	0.2712
			120.00		
T4	7	7/8	100.00 -	0.6000	0.2712
T4	8	7/8	120.00 100.00 -	0.6000	0.2712
17	0	//0	120.00	0.0000	0.2712
Т4	9	7/8	100.00 -	0.6000	0.2712
			120.00		
T5 T5	1	Feedline Ladder (Af) Safety Line 3/8		$0.6000 \\ 0.6000$	0.2579
T5 T5	2 3	Safety Line 5/8 4AWG		0.6000	0.2579 0.2579
T5	4	1 1/4		0.6000	0.2579
Т5	5	7/8		0.6000	0.2579
T5	6		80.00 - 100.00	0.6000	0.2579
T5 T5	7 8	7/8 7/8		$0.6000 \\ 0.6000$	0.2579 0.2579
T5	9	7/8	80.00 - 100.00	0.6000	0.2579
Т5	10	1/2	80.00 - 83.00	0.6000	0.2579
Т6	1	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.4759
T6	2	Safety Line 3/8	60.00 - 80.00	0.6000	0.4759
T6 T6	3 4	4AWG 1 1/4	60.00 - 80.00 60.00 - 80.00	$0.6000 \\ 0.6000$	0.4759 0.4759
T6	5	7/8	60.00 - 80.00	0.6000	0.4759
Т6	6	1 1/4	60.00 - 80.00	0.6000	0.4759
T6	7	7/8	60.00 - 80.00	0.6000	0.4759
T6 T6	8 9	7/8 7/8	60.00 - 80.00	$0.6000 \\ 0.6000$	0.4759
16 T6	10	//8 1/2	60.00 - 80.00 60.00 - 80.00	0.6000	0.4759 0.4759
T7	1	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.4858
Τ7	2	Safety Line 3/8	40.00 - 60.00	0.6000	0.4858
T7	3	4AWG	40.00 - 60.00	0.6000	0.4858
T7 T7	4 5	1 1/4 7/8	40.00 - 60.00 40.00 - 60.00	$0.6000 \\ 0.6000$	$0.4858 \\ 0.4858$
17 T7	5	//8 1 1/4	40.00 - 60.00	0.6000	0.4858
T7	7	7/8	40.00 - 60.00	0.6000	0.4858
T7	8	7/8	40.00 - 60.00	0.6000	0.4858
T7	9	7/8	40.00 - 60.00	0.6000	0.4858
T7 T8	10 1	1/2 Feedline Ladder (Af)	40.00 - 60.00 20.00 - 40.00	$0.6000 \\ 0.6000$	$0.4858 \\ 0.5004$
18 T8	2	Safety Line 3/8	20.00 - 40.00	0.6000	0.5004
T8	3	4AWG			

tnxTower	Job	121-23082	Page 16 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T8	4	1 1/4	20.00 - 40.00	0.6000	0.5004
Т8	5	7/8	20.00 - 40.00	0.6000	0.5004
Т8	6	1 1/4	20.00 - 40.00	0.6000	0.5004
T8	7	7/8	20.00 - 40.00	0.6000	0.5004
Т8	8	7/8	20.00 - 40.00	0.6000	0.5004
T8	9	7/8	20.00 - 40.00	0.6000	0.5004
T8	10	1/2	20.00 - 40.00	0.6000	0.5004
Т9	1	Feedline Ladder (Af)	6.00 - 20.00	0.6000	0.5132
Т9	2	Safety Line 3/8	6.00 - 20.00	0.6000	0.5132
Т9	3	4AWG	6.00 - 20.00	0.6000	0.5132
Т9	4	1 1/4	6.00 - 20.00	0.6000	0.5132
Т9	5	7/8	6.00 - 20.00	0.6000	0.5132
Т9	6	1 1/4	6.00 - 20.00	0.6000	0.5132
Т9	7	7/8	6.00 - 20.00	0.6000	0.5132
Т9	8	7/8	6.00 - 20.00	0.6000	0.5132
Т9	9	7/8	6.00 - 20.00	0.6000	0.5132
Т9	10	1/2	6.00 - 20.00	0.6000	0.5132

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft^2	ft^2	lb
ightning Rod 5/8x4'	С	None	<i>J</i> -	0.0000	180.00	No Ice	0.25	0.25	31.00
						1/2" Ice	0.66	0.66	33.82
						1" Ice	0.97	0.97	39.29
2 ft Boom / Frame	А	From Leg	2.00	0.0000	150.00	No Ice	18.00	9.00	500.00
			0.00			1/2" Ice	22.00	11.00	650.00
			0.00			1" Ice	26.00	13.00	800.00
2 ft Boom / Frame	В	From Leg	2.00	0.0000	150.00	No Ice	18.00	9.00	500.00
			0.00			1/2" Ice	22.00	11.00	650.00
			0.00			1" Ice	26.00	13.00	800.00
2 ft Boom / Frame	С	From Leg	2.00	0.0000	150.00	No Ice	18.00	9.00	500.00
			0.00			1/2" Ice	22.00	11.00	650.00
			0.00			1" Ice	26.00	13.00	800.00
tion Master Antenna	В	From Leg	0.50	0.0000	180.00	No Ice	3.64	3.64	10.20
		0	0.00			1/2" Ice	4.21	4.21	30.00
			0.00			1" Ice	4.78	4.78	50.00
Decibel DB809	С	From Leg	3.00	0.0000	179.00	No Ice	3.68	3.68	27.00
		0	0.00			1/2" Ice	4.93	4.93	60.90
			0.00			1" Ice	6.21	6.21	104.80
Side Arm	С	From Leg	2.00	0.0000	179.00	No Ice	4.97	4.97	70.00
	-		0.00			1/2" Ice	6.12	6.12	130.00
			0.00			1" Ice	7.27	7.27	190.00
Decibel DB809	В	From Leg	3.00	0.0000	177.00	No Ice	3.68	3.68	27.00
2 221001 2 2000	D	110111 205	0.00	0.0000	177.00	1/2" Ice	4.93	4.93	60.90
			0.00			1" Ice	6.21	6.21	104.80
Side Arm	В	From Leg	2.00	0.0000	177.00	No Ice	4.97	4.97	70.00
	P	110111 2005	0.00	0.0000	177.00	1/2" Ice	6.12	6.12	130.00
			0.00			1" Ice	7.27	7.27	190.00
Celwave PD201	В	From Leg	3.00	0.0000	163.00	No Ice	1.18	1.18	4.00

Anna Tanu an	Job		Page
tnxTower		121-23082	17 of 48
	Project		Date
		180 ft Rohn #80 - Stafford Springs CT	19:45:40 09/06/21
Phone:	Client	CDT	Designed by
FAX:		CDT	

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft^2	lb
			ft		·		v	·	
						1/2" Ice	2.09	2.09	16.80
			0.00			1" Ice	3.02	3.02	36.90
Celwave PD201	В	From Leg	3.00	0.0000	83.00	No Ice	1.18	1.18	4.00
			0.00			1/2" Ice	2.09	2.09	16.80
			0.00			1" Ice	3.02	3.02	36.90
Decibel DB420	В	From Leg	3.00	0.0000	127.00	No Ice	5.19	5.19	35.00
			0.00			1/2" Ice	7.19	7.19	83.50
	_		0.00			1" Ice	9.20	9.20	147.80
Side Arm	В	From Leg	2.00	0.0000	127.00	No Ice	4.97	4.97	70.00
			0.00			1/2" Ice	6.12	6.12	130.00
12 G D / F		Г I	0.00	0.0000	171.00	1" Ice	7.27	7.27	190.00
12 ft Boom / Frame	А	From Leg	2.00	0.0000	171.00	No Ice	18.00	9.00	500.00
(Sprint)			$\begin{array}{c} 0.00 \\ 0.00 \end{array}$			1/2" Ice 1" Ice	22.00 26.00	11.00 13.00	650.00 800.00
12 ft Boom / Frame	В	Enom Lag	2.00	0.0000	171.00	No Ice	18.00	9.00	500.00
(Sprint)	D	From Leg	0.00	0.0000	1/1.00	1/2" Ice	22.00	9.00	650.00
(Sprint)			0.00			1" Ice	26.00	13.00	800.00
12 ft Boom / Frame	С	From Leg	2.00	0.0000	171.00	No Ice	18.00	9.00	500.00
(Sprint)	C	110III Leg	0.00	0.0000	171.00	1/2" Ice	22.00	11.00	650.00
(Sprint)			0.00			1" Ice	26.00	13.00	800.00
RFS	А	From Leg	2.00	0.0000	171.00	No Ice	20.00	5.07	149.90
APXVAALL24_43-U-NA20	11	110III Leg	0.00	0.0000	171.00	1/2" Ice	20.88	5.71	262.00
			0.00			1" Ice	21.50	6.33	382.00
Ericsson AIR6449 B41	А	From Leg	2.00	0.0000	171.00	No Ice	5.68	2.49	104.00
		110111 200	0.00	0.0000	1,1100	1/2" Ice	5.95	2.71	143.00
			0.00			1" Ice	6.22	2.93	187.00
Ericsson Radio 4460	А	From Leg	2.00	0.0000	171.00	No Ice	2.56	1.98	109.00
B25+B66		e	0.00			1/2" Ice	2.74	2.14	134.00
			0.00			1" Ice	2.93	2.30	163.00
Ericsson Radio 4480	А	From Leg	2.00	0.0000	171.00	No Ice	2.85	1.38	84.00
B71+B85A			0.00			1/2" Ice	3.04	1.53	106.00
			0.00			1" Ice	3.24	4.69	131.00
RFS	В	From Leg	2.00	0.0000	171.00	No Ice	20.27	5.07	149.90
APXVAALL24_43-U-NA20			0.00			1/2" Ice	20.88	5.71	262.00
			0.00			1" Ice	21.50	6.33	382.00
Ericsson AIR6449 B41	В	From Leg	2.00	0.0000	171.00	No Ice	5.68	2.49	104.00
			0.00			1/2" Ice	5.95	2.71	143.00
			0.00			1" Ice	6.22	2.93	187.00
Ericsson Radio 4460	В	From Leg	2.00	0.0000	171.00	No Ice	2.56	1.98	109.00
B25+B66			0.00			1/2" Ice	2.74	2.14	134.00
	P		0.00	0.0000	151 00	1" Ice	2.93	2.30	163.00
Ericsson Radio 4480	В	From Leg	2.00	0.0000	171.00	No Ice	2.85	1.38	84.00
B71+B85A			0.00			1/2" Ice	3.04	1.53	106.00
DEC	G	F F	0.00	0.0000	171.00	1" Ice	3.24	4.69	131.00
RFS	С	From Leg	2.00	0.0000	171.00	No Ice	20.27	5.07	149.90
APXVAALL24_43-U-NA20			0.00			1/2" Ice	20.88	5.71	262.00
Erioscop AID6440 D41	C	From Log	0.00	0.0000	171.00	1" Ice No Ice	21.50	6.33	382.00
Ericsson AIR6449 B41	С	From Leg	2.00	0.0000	1/1.00	1/2" Ice	5.68 5.95	2.49	104.00
			$\begin{array}{c} 0.00\\ 0.00\end{array}$			1/2" Ice 1" Ice		2.71	143.00
Ericsson Radio 4460	С	From Leg	2.00	0.0000	171.00	No Ice	6.22 2.56	2.93 1.98	187.00 109.00
B25+B66	U	From Leg	0.00	0.0000	1/1.00	1/2" Ice	2.30	2.14	134.00
D23+D00			0.00			1/2 Ice 1" Ice	2.74	2.14	163.00
Ericsson Radio 4480	С	From Leg	2.00	0.0000	171.00	No Ice	2.95	1.38	84.00
LIIUSSUII IXAUIU 4400	U	110m Leg	0.00	0.0000	1/1.00	1/2" Ice	3.04	1.58	106.00
B71+B85A									

tnxTower	Job	121-23082	Page 18 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Tower Pressures - No Id	:e
--------------------------------	----

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg %	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft ²	ft^2	ft^2		ft^2	ft^2
T1	170.00	1.15	24	72.358	А	0.806	16.613	7.917	45.45	0.750	0.000
180.00-160.00					В	0.806	16.613		45.45	12.705	0.000
					С	0.806	16.613		45.45	7.575	0.000
T2	150.00	1.11	23	72.358	А	0.000	16.613	7.917	47.65	0.750	0.000
160.00-140.00					В	0.000	16.613		47.65	15.080	0.000
					С	0.000	16.613		47.65	13.500	0.000
Т3	130.00	1.065	22	72.358	А	0.000	16.613	7.917	47.65	0.750	0.000
140.00-120.00					В	0.000	16.613		47.65	15.857	0.000
					С	0.000	16.613		47.65	13.500	0.000
T4	110.00	1.016	21	72.358	А	0.806	16.210	7.917	46.53	0.750	0.000
120.00-100.00					В	0.806	16.210		46.53	17.300	0.000
					С	0.806	16.210		46.53	13.500	0.000
T5	90.00	0.959	20	73.192	А	0.398	18.167	9.583	51.62	0.750	0.000
100.00-80.00					В	0.398	18.167		51.62	17.474	0.000
					С	0.398	18.167		51.62	13.500	0.000
T6 80.00-60.00	70.00	0.892	18	73.192	А	0.000	14.273	9.583	67.14	0.750	0.000
					В	0.000	14.273		67.14	18.460	0.000
					С	0.000	14.273		67.14	13.500	0.000
T7 60.00-40.00	50.00	0.811	17	73.192	А	0.000	14.273	9.583	67.14	0.750	0.000
					В	0.000	14.273		67.14	18.460	0.000
					С	0.000	14.273		67.14	13.500	0.000
T8 40.00-20.00	30.00	0.701	14	73.192	А	0.000	14.273	9.583	67.14	0.750	0.000
					В	0.000	14.273		67.14	18.460	0.000
					С	0.000	14.273		67.14	13.500	0.000
T9 20.00-5.00	12.50	0.7	14	54.894	Α	0.000	10.892	7.188	65.99	0.525	0.000
					В	0.000	10.892		65.99	12.922	0.000
					С	0.000	10.892		65.99	9.450	0.000
T10 5.00-0.00	2.50	0.7	14	9.816	А	0.000	4.968	2.576	51.85	0.000	0.000
					В	0.000	4.968		51.85	0.000	0.000
					С	0.000	4.968		51.85	0.000	0.000

$G_H = 0.850$

Tower Pressure - With Ice

 $G_H = 0.850$

Section	Ζ	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	170.00	1.15	6	2.3563	80.213	Α	0.806	60.907	23.625	38.28	10.175	0.000
180.00-160.00						В	0.806	60.907		38.28	60.891	0.000
						С	0.806	60.907		38.28	26.757	0.000
T2	150.00	1.11	6	2.3270	80.115	Α	0.000	59.107	23.430	39.64	10.058	0.000
160.00-140.00						В	0.000	59.107		39.64	72.489	0.000
						С	0.000	59.107		39.64	47.634	0.000

tnxTower	Job	121-23082	Page 19 of 48
	Project 180 ft Ro	ohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section	Ζ	Kz	q_z	tz	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
Т3	130.00	1.065	6	2.2939	80.005	А	0.000	58.503	23.209	39.67	9.926	0.000
140.00-120.00						В	0.000	58.503		39.67	75.718	0.000
						С	0.000	58.503		39.67	47.279	0.000
T4	110.00	1.016	6	2.2559	79.878	А	0.806	57.406	22.956	39.44	9.774	0.000
120.00-100.00						В	0.806	57.406		39.44	82.100	0.000
						С	0.806	57.406		39.44	46.872	0.000
T5 100.00-80.00	90.00	0.959	5	2.2111	80.562	А	0.398	59.385	24.324	40.69	9.594	0.000
						В	0.398	59.385		40.69	82.391	0.000
						С	0.398	59.385		40.69	46.391	0.000
T6 80.00-60.00	70.00	0.892	5	2.1562	80.379	А	0.000	42.129	23.958	56.87	9.375	0.000
						В	0.000	42.129		56.87	89.195	0.000
						С	0.000	42.129		56.87	45.804	0.000
T7 60.00-40.00	50.00	0.811	4	2.0849	80.141	А	0.000	41.207	23.482	56.99	9.089	0.000
						В	0.000	41.207		56.99	86.986	0.000
						С	0.000	41.207		56.99	45.040	0.000
T8 40.00-20.00	30.00	0.701	4	1.9810	79.795	А	0.000	39.866	22.790	57.17	8.674	0.000
						В	0.000	39.866		57.17	83.771	0.000
						С	0.000	39.866		57.17	43.931	0.000
T9 20.00-5.00	12.50	0.7	4	1.8150	59.431	А	0.000	28.932	16.262	56.21	5.607	0.000
						В	0.000	28.932		56.21	55.042	0.000
						С	0.000	28.932		56.21	29.513	0.000
T10 5.00-0.00	2.50	0.7	4	1.5452	11.177	А	0.000	12.665	5.345	42.20	0.000	0.000
						В	0.000	12.665		42.20	0.000	0.000
						Ċ	0.000	12.665		42.20	0.000	0.000

Tower Pressure - Service

Section	Ζ	Kz	q_z	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation			1	-	а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	170.00	1.15	9	72.358	Α	0.806	16.613	7.917	45.45	0.750	0.000
180.00-160.00					В	0.806	16.613		45.45	12.705	0.000
					С	0.806	16.613		45.45	7.575	0.000
T2	150.00	1.11	9	72.358	А	0.000	16.613	7.917	47.65	0.750	0.000
160.00-140.00					В	0.000	16.613		47.65	15.080	0.000
					С	0.000	16.613		47.65	13.500	0.000
T3	130.00	1.065	8	72.358	Α	0.000	16.613	7.917	47.65	0.750	0.000
140.00-120.00					В	0.000	16.613		47.65	15.857	0.000
					С	0.000	16.613		47.65	13.500	0.000
T4	110.00	1.016	8	72.358	Α	0.806	16.210	7.917	46.53	0.750	0.000
120.00-100.00					В	0.806	16.210		46.53	17.300	0.000
					С	0.806	16.210		46.53	13.500	0.000
T5	90.00	0.959	8	73.192	А	0.398	18.167	9.583	51.62	0.750	0.000
100.00-80.00					В	0.398	18.167		51.62	17.474	0.000
					С	0.398	18.167		51.62	13.500	0.000
T6 80.00-60.00	70.00	0.892	7	73.192	А	0.000	14.273	9.583	67.14	0.750	0.000
					В	0.000	14.273		67.14	18.460	0.000
					С	0.000	14.273		67.14	13.500	0.000
T7 60.00-40.00	50.00	0.811	6	73.192	А	0.000	14.273	9.583	67.14	0.750	0.000
					В	0.000	14.273		67.14	18.460	0.000
					С	0.000	14.273		67.14	13.500	0.000
T8 40.00-20.00	30.00	0.701	5	73.192	А	0.000	14.273	9.583	67.14	0.750	0.000

 $G_H = 0.850$

tnxTower	Job	121-23082	Page 20 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section	Ζ	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
					В	0.000	14.273		67.14	18.460	0.000
					С	0.000	14.273		67.14	13.500	0.000
T9 20.00-5.00	12.50	0.7	5	54.894	Α	0.000	10.892	7.188	65.99	0.525	0.000
					В	0.000	10.892		65.99	12.922	0.000
					С	0.000	10.892		65.99	9.450	0.000
T10 5.00-0.00	2.50	0.7	5	9.816	А	0.000	4.968	2.576	51.85	0.000	0.000
					В	0.000	4.968		51.85	0.000	0.000
					С	0.000	4.968		51.85	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			1-	-		_			Face
	0	0	С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	180.92	552.04	А	0.241	2.466	24	1	1	10.487	770.03	38.50	С
180.00-160.00			В	0.241	2.466		1	1	10.487			
			С	0.241	2.466		1	1	10.487			
T2	281.60	499.67	А	0.23	2.5	23	1	1	9.640	805.24	40.26	С
160.00-140.00			В	0.23	2.5		1	1	9.640			
			С	0.23	2.5		1	1	9.640			
Т3	285.38	499.67	А	0.23	2.5	22	1	1	9.640	781.62	39.08	С
140.00-120.00			В	0.23	2.5		1	1	9.640			
			С	0.23	2.5		1	1	9.640			
T4	292.40	542.87	А	0.235	2.483	21	1	1	10.232	783.50	39.18	С
120.00-100.00			В	0.235	2.483		1	1	10.232			
			С	0.235	2.483		1	1	10.232			
T5	293.15	676.58	А	0.254	2.427	20	1	1	11.042	764.79	38.24	С
100.00-80.00		TA 320.88	В	0.254	2.427		1	1	11.042			
			С	0.254	2.427		1	1	11.042			
Т6	297.40	568.31	А	0.195	2.613	18	1	1	8.187	637.07	31.85	С
80.00-60.00			В	0.195	2.613		1	1	8.187			
			С	0.195	2.613		1	1	8.187			
Τ7	297.40	456.12	Α	0.195	2.613	17	1	1	8.187	578.68	28.93	С
60.00-40.00			В	0.195	2.613		1	1	8.187			
			С	0.195	2.613		1	1	8.187			
Т8	297.40	456.12	Α	0.195	2.613	14	1	1	8.187	500.09	25.00	С
40.00-20.00			В	0.195	2.613		1	1	8.187			
			С	0.195	2.613		1	1	8.187			
T9 20.00-5.00	208.18	430.56	А	0.198	2.601	14	1	1	6.254	365.55	24.37	С
			В	0.198	2.601		1	1	6.254			
		101	С	0.198	2.601		1	1	6.254			~
T10 5.00-0.00	0.00	181.65	A	0.506	1.892	14	1	1	3.420	78.82	15.76	С
			В	0.506	1.892		1	1	3.420			
a with	2 4 2 2	5104 45	С	0.506	1.892		1	1	3.420	(0(7.10)		
Sum Weight:	2433.83	5184.46								6065.40		

Tower Forces - No Ice - Wind 60 To Face

tnxTower	Job	121-23082	Page 21 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	180.92	552.04	Α	0.241	2.466	24	0.8	1	10.326	762.08	38.10	С
180.00-160.00			В	0.241	2.466		0.8	1	10.326			
			С	0.241	2.466		0.8	1	10.326			
T2	281.60	499.67	Α	0.23	2.5	23	0.8	1	9.640	805.24	40.26	С
160.00-140.00			В	0.23	2.5		0.8	1	9.640			
			С	0.23	2.5		0.8	1	9.640			
Т3	285.38	499.67	Α	0.23	2.5	22	0.8	1	9.640	781.62	39.08	С
140.00-120.00			В	0.23	2.5		0.8	1	9.640			
			С	0.23	2.5		0.8	1	9.640			
T4	292.40	542.87	Α	0.235	2.483	21	0.8	1	10.071	776.43	38.82	С
120.00-100.00			В	0.235	2.483		0.8	1	10.071			
			С	0.235	2.483		0.8	1	10.071			
T5	293.15	676.58	Α	0.254	2.427	20	0.8	1	10.962	761.57	38.08	С
100.00-80.00		TA 320.88	В	0.254	2.427		0.8	1	10.962			
			С	0.254	2.427		0.8	1	10.962			
Т6	297.40	568.31	Α	0.195	2.613	18	0.8	1	8.187	637.07	31.85	С
80.00-60.00			В	0.195	2.613		0.8	1	8.187			
			С	0.195	2.613		0.8	1	8.187			
T7	297.40	456.12	Α	0.195	2.613	17	0.8	1	8.187	578.68	28.93	С
60.00-40.00			В	0.195	2.613		0.8	1	8.187			
			С	0.195	2.613		0.8	1	8.187			
Т8	297.40	456.12	Α	0.195	2.613	14	0.8	1	8.187	500.09	25.00	С
40.00-20.00			В	0.195	2.613		0.8	1	8.187			
			С	0.195	2.613		0.8	1	8.187			
T9 20.00-5.00	208.18	430.56	Α	0.198	2.601	14	0.8	1	6.254	365.55	24.37	С
			В	0.198	2.601		0.8	1	6.254			
			С	0.198	2.601		0.8	1	6.254			
T10 5.00-0.00	0.00	181.65	А	0.506	1.892	14	0.8	1	3.420	78.82	15.76	С
			В	0.506	1.892		0.8	1	3.420			
			С	0.506	1.892		0.8	1	3.420			
Sum Weight:	2433.83	5184.46								6047.16		

	Tower Forces - No Ice - Wind 90 To Face											
Continu	444	Salf	F	0	C_F	~	D	D	4	F		Ctul
Section Elevation	Add Weight	Self Weight	r a	е	C_F	q_z	D_F	D_R	A_E	Г	W	Ctrl. Face
Lievation	weigni	weigni	c c			psf						ruce
ft	lb	lb	e			psj			ft^2	lb	plf	
T1	180.92	552.04	А	0.241	2.466	24	0.85	1	10.366	764.07	38.20	С
180.00-160.00			В	0.241	2.466		0.85	1	10.366			
			С	0.241	2.466		0.85	1	10.366			
T2	281.60	499.67	А	0.23	2.5	23	0.85	1	9.640	805.24	40.26	С
160.00-140.00			В	0.23	2.5		0.85	1	9.640			
			С	0.23	2.5		0.85	1	9.640			
T3	285.38	499.67	Α	0.23	2.5	22	0.85	1	9.640	781.62	39.08	С
140.00-120.00			В	0.23	2.5		0.85	1	9.640			
			С	0.23	2.5		0.85	1	9.640			
T4	292.40	542.87	А	0.235	2.483	21	0.85	1	10.111	778.20	38.91	С
120.00-100.00			В	0.235	2.483		0.85	1	10.111			
			С	0.235	2.483		0.85	1	10.111			
T5	293.15	676.58	Α	0.254	2.427	20	0.85	1	10.982	762.37	38.12	С
100.00-80.00		TA 320.88	В	0.254	2.427		0.85	1	10.982			
			С	0.254	2.427		0.85	1	10.982			
T6	297.40	568.31	А	0.195	2.613	18	0.85	1	8.187	637.07	31.85	С

tnxTower	Job	121-23082	Page 22 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
80.00-60.00			В	0.195	2.613		0.85	1	8.187			
			С	0.195	2.613		0.85	1	8.187			
T7	297.40	456.12	Α	0.195	2.613	17	0.85	1	8.187	578.68	28.93	С
60.00-40.00			В	0.195	2.613		0.85	1	8.187			
			С	0.195	2.613		0.85	1	8.187			
Т8	297.40	456.12	Α	0.195	2.613	14	0.85	1	8.187	500.09	25.00	С
40.00-20.00			В	0.195	2.613		0.85	1	8.187			
			С	0.195	2.613		0.85	1	8.187			
T9 20.00-5.00	208.18	430.56	Α	0.198	2.601	14	0.85	1	6.254	365.55	24.37	С
			В	0.198	2.601		0.85	1	6.254			
			С	0.198	2.601		0.85	1	6.254			
T10 5.00-0.00	0.00	181.65	Α	0.506	1.892	14	0.85	1	3.420	78.82	15.76	С
			В	0.506	1.892		0.85	1	3.420			
			С	0.506	1.892		0.85	1	3.420			
Sum Weight:	2433.83	5184.46								6051.72		

Tower Forces - With Ice - Wind Normal To Face
--

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	1692.72	3987.87	Α	0.769	1.797	6	1	1	53.310	629.26	31.46	С
180.00-160.00			В	0.769	1.797		1	1	53.310			
			С	0.769	1.797		1	1	53.310			
T2	2298.67	3711.87	Α	0.738	1.783	6	1	1	49.558	628.55	31.43	С
160.00-140.00			В	0.738	1.783		1	1	49.558			
			С	0.738	1.783		1	1	49.558			
Т3	2326.41	3640.14	А	0.731	1.781	6	1	1	48.771	603.81	30.19	С
140.00-120.00			В	0.731	1.781		1	1	48.771			
			С	0.731	1.781		1	1	48.771			
T4	2403.51	3645.41	А	0.729	1.781	6	1	1	48.557	582.70	29.13	С
120.00-100.00			В	0.729	1.781		1	1	48.557			
			С	0.729	1.781		1	1	48.557			
Т5	2364.07	3841.79	А	0.742	1.785	5	1	1	50.377	556.88	27.84	С
100.00-80.00		TA	В	0.742	1.785	-	1	1	50.377			
		1032.51	С	0.742	1.785		1	1	50.377			
Т6	2414.17	2529.17	А	0.524	1.871	5	1	1	29.420	510.64	25.53	С
80.00-60.00			В	0.524	1.871		1	1	29.420			
			С	0.524	1.871		1	1	29.420			
Τ7	2309.35	2319.20	Α	0.514	1.882	4	1	1	28.547	458.41	22.92	С
60.00-40.00			В	0.514	1.882		1	1	28.547			
			С	0.514	1.882		1	1	28.547			
Т8	2161.24	2180.93	Ā	0.5	1.901	4	1	1	27.300	389.15	19.46	С
40.00-20.00			В	0.5	1.901	-	1	1	27.300			_
			C	0.5	1.901		1	1	27.300			
T9 20.00-5.00	1354.71	1601.34	A	0.487	1.918	4	1	1	19.615	271.52	18.10	С
			В	0.487	1.918	-	1	1	19.615			_
			Č	0.487	1.918		1	1	19.615			
T10 5.00-0.00	0.00	689.01	Ă	1	2.1	4	1	1	12.665	75.97*	15.19	С
	0.00	000.01	B	1	2.1		1	1	12.665	, , ,	10.17	Ĩ
			C	1	2.1		1	1	12.665			
Sum Weight:	19324.86	29179.25		1	*2.1A _g		1	1	12.005	4706.88		
Sam weight.	17524.00	27117.23			limit					+700.00		

tnxTower	Job	121-23082	Page 23 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

	Tower Forces - With Ice - Wind 60 To Face											
					-		_	-		_		
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			c						Face
6			С			psf			c 2		10	
ft	lb	lb	е						ft^2	lb	plf	
T1	1692.72	3987.87	Α	0.769	1.797	6	0.8	1	53.149	627.72	31.39	С
180.00-160.00			В	0.769	1.797		0.8	1	53.149			
			С	0.769	1.797		0.8	1	53.149			
T2	2298.67	3711.87	A	0.738	1.783	6	0.8	1	49.558	628.55	31.43	С
160.00-140.00			В	0.738	1.783		0.8	1	49.558			
			С	0.738	1.783		0.8	1	49.558			
Т3	2326.41	3640.14	Α	0.731	1.781	6	0.8	1	48.771	603.81	30.19	С
140.00-120.00			В	0.731	1.781		0.8	1	48.771			
			С	0.731	1.781		0.8	1	48.771			
T4	2403.51	3645.41	Α	0.729	1.781	6	0.8	1	48.396	581.35	29.07	С
120.00-100.00			В	0.729	1.781		0.8	1	48.396			
			С	0.729	1.781		0.8	1	48.396			
T5	2364.07	3841.79	Α	0.742	1.785	5	0.8	1	50.298	556.25	27.81	С
100.00-80.00		TA	В	0.742	1.785		0.8	1	50.298			
		1032.51	С	0.742	1.785		0.8	1	50.298			
Т6	2414.17	2529.17	Α	0.524	1.871	5	0.8	1	29.420	510.64	25.53	С
80.00-60.00			В	0.524	1.871		0.8	1	29.420			
			С	0.524	1.871		0.8	1	29.420			
Τ7	2309.35	2319.20	Α	0.514	1.882	4	0.8	1	28.547	458.41	22.92	С
60.00-40.00			В	0.514	1.882		0.8	1	28.547			
			С	0.514	1.882		0.8	1	28.547			
Т8	2161.24	2180.93	Α	0.5	1.901	4	0.8	1	27.300	389.15	19.46	С
40.00-20.00			В	0.5	1.901		0.8	1	27.300			
			С	0.5	1.901		0.8	1	27.300			
T9 20.00-5.00	1354.71	1601.34	Α	0.487	1.918	4	0.8	1	19.615	271.52	18.10	С
			В	0.487	1.918		0.8	1	19.615			
			С	0.487	1.918		0.8	1	19.615			
T10 5.00-0.00	0.00	689.01	Α	1	2.1	4	0.8	1	12.665	75.97^{*}	15.19	С
			В	1	2.1		0.8	1	12.665			
			С	1	2.1		0.8	1	12.665			
Sum Weight:	19324.86	29179.25			*2.1A _g					4703.37		
					limit							

	Tower Forces - With Ice - Wind 90 To Face											
~ .		G 10	п		~		5	2				<i>a i</i>
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а			C						Face
C.	11	77	С			psf			c.2	11	10	
ft	lb	lb	е						ft^2	lb	plf	
T1	1692.72	3987.87	Α	0.769	1.797	6	0.85	1	53.190	628.11	31.41	С
180.00-160.00			В	0.769	1.797		0.85	1	53.190			
			С	0.769	1.797		0.85	1	53.190			
T2	2298.67	3711.87	Α	0.738	1.783	6	0.85	1	49.558	628.55	31.43	С
160.00-140.00			В	0.738	1.783		0.85	1	49.558			
			С	0.738	1.783		0.85	1	49.558			
Т3	2326.41	3640.14	А	0.731	1.781	6	0.85	1	48.771	603.81	30.19	С

tnxTower	Job	121-23082	Page 24 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
140.00-120.00			В	0.731	1.781		0.85	1	48.771			
			С	0.731	1.781		0.85	1	48.771			
T4	2403.51	3645.41	Α	0.729	1.781	6	0.85	1	48.436	581.69	29.08	С
120.00-100.00			В	0.729	1.781		0.85	1	48.436			
			С	0.729	1.781		0.85	1	48.436			
T5	2364.07	3841.79	Α	0.742	1.785	5	0.85	1	50.317	556.41	27.82	С
100.00-80.00		TA	В	0.742	1.785		0.85	1	50.317			
		1032.51	С	0.742	1.785		0.85	1	50.317			
T6	2414.17	2529.17	А	0.524	1.871	5	0.85	1	29.420	510.64	25.53	С
80.00-60.00			В	0.524	1.871		0.85	1	29.420			
			С	0.524	1.871		0.85	1	29.420			
Τ7	2309.35	2319.20	А	0.514	1.882	4	0.85	1	28.547	458.41	22.92	С
60.00-40.00			В	0.514	1.882		0.85	1	28.547			
			С	0.514	1.882		0.85	1	28.547			
Т8	2161.24	2180.93	А	0.5	1.901	4	0.85	1	27.300	389.15	19.46	С
40.00-20.00			В	0.5	1.901		0.85	1	27.300			
			С	0.5	1.901		0.85	1	27.300			
T9 20.00-5.00	1354.71	1601.34	Α	0.487	1.918	4	0.85	1	19.615	271.52	18.10	С
			В	0.487	1.918		0.85	1	19.615			
			С	0.487	1.918		0.85	1	19.615	*		
T10 5.00-0.00	0.00	689.01	Α	1	2.1	4	0.85	1	12.665	75.97^{*}	15.19	С
			В	1	2.1		0.85	1	12.665			
			С	1	2.1		0.85	1	12.665			
Sum Weight:	19324.86	29179.25			*2.1A _g					4704.25		
					limit							

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	180.92	552.04	Α	0.241	2.466	9	1	1	10.487	294.62	14.73	С
180.00-160.00			В	0.241	2.466		1	1	10.487			
			С	0.241	2.466		1	1	10.487			
T2	281.60	499.67	А	0.23	2.5	9	1	1	9.640	308.10	15.40	С
160.00-140.00			В	0.23	2.5		1	1	9.640			
			С	0.23	2.5		1	1	9.640			
T3	285.38	499.67	А	0.23	2.5	8	1	1	9.640	299.06	14.95	С
140.00-120.00			В	0.23	2.5		1	1	9.640			
			С	0.23	2.5		1	1	9.640			
T4	292.40	542.87	А	0.235	2.483	8	1	1	10.232	299.78	14.99	С
120.00-100.00			В	0.235	2.483		1	1	10.232			
			С	0.235	2.483		1	1	10.232			
T5	293.15	676.58	А	0.254	2.427	8	1	1	11.042	292.62	14.63	С
100.00-80.00		TA 320.88	В	0.254	2.427		1	1	11.042			
			С	0.254	2.427		1	1	11.042			
Т6	297.40	568.31	А	0.195	2.613	7	1	1	8.187	243.75	12.19	С
80.00-60.00			В	0.195	2.613		1	1	8.187			
			С	0.195	2.613		1	1	8.187			
Τ7	297.40	456.12	А	0.195	2.613	6	1	1	8.187	221.41	11.07	С
60.00-40.00			В	0.195	2.613		1	1	8.187			
			С	0.195	2.613		1	1	8.187			
Т8	297.40	456.12	А	0.195	2.613	5	1	1	8.187	191.34	9.57	С

tnxTower	Job	121-23082	Page 25 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
40.00-20.00			В	0.195	2.613		1	1	8.187			
			С	0.195	2.613		1	1	8.187			
T9 20.00-5.00	208.18	430.56	Α	0.198	2.601	5	1	1	6.254	139.86	9.32	С
			В	0.198	2.601		1	1	6.254			
			С	0.198	2.601		1	1	6.254			
T10 5.00-0.00	0.00	181.65	Α	0.506	1.892	5	1	1	3.420	30.16	6.03	С
			В	0.506	1.892		1	1	3.420			
			С	0.506	1.892		1	1	3.420			
Sum Weight:	2433.83	5184.46								2320.70		

	Tower Forces - Service - Wind 60 To Face									To Face	e	
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			1-			_			Face
	0	0	с			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	180.92	552.04	А	0.241	2.466	9	0.8	1	10.326	291.58	14.58	С
180.00-160.00			В	0.241	2.466		0.8	1	10.326			
			С	0.241	2.466		0.8	1	10.326			
T2	281.60	499.67	А	0.23	2.5	9	0.8	1	9.640	308.10	15.40	С
160.00-140.00			В	0.23	2.5		0.8	1	9.640			
			С	0.23	2.5		0.8	1	9.640			
Т3	285.38	499.67	А	0.23	2.5	8	0.8	1	9.640	299.06	14.95	С
140.00-120.00			В	0.23	2.5		0.8	1	9.640		-	
			С	0.23	2.5		0.8	1	9.640			
T4	292.40	542.87	А	0.235	2.483	8	0.8	1	10.071	297.07	14.85	С
120.00-100.00			В	0.235	2.483		0.8	1	10.071			
			С	0.235	2.483		0.8	1	10.071			
Т5	293.15	676.58	А	0.254	2.427	8	0.8	1	10.962	291.38	14.57	С
100.00-80.00		TA 320.88	В	0.254	2.427		0.8	1	10.962	_,		-
			С	0.254	2.427		0.8	1	10.962			
Т6	297.40	568.31	Ā	0.195	2.613	7	0.8	1	8.187	243.75	12.19	С
80.00-60.00			В	0.195	2.613		0.8	1	8.187		-	
			C	0.195	2.613		0.8	1	8.187			
Τ7	297.40	456.12	А	0.195	2.613	6	0.8	1	8.187	221.41	11.07	С
60.00-40.00			В	0.195	2.613	Ť	0.8	1	8.187			-
			C	0.195	2.613		0.8	1	8.187			
Т8	297.40	456.12	Ă	0.195	2.613	5	0.8	1	8.187	191.34	9.57	С
40.00-20.00			В	0.195	2.613	-	0.8	1	8.187		'	
			C	0.195	2.613		0.8	1	8.187			
T9 20.00-5.00	208.18	430.56	Ă	0.198	2.601	5	0.8	1	6.254	139.86	9.32	С
			В	0.198	2.601	5	0.8	1	6.254			-
			C	0.198	2.601		0.8	1	6.254			
T10 5.00-0.00	0.00	181.65	Ă	0.506	1.892	5	0.8	1	3.420	30.16	6.03	С
	0.00	101.05	B	0.506	1.892	5	0.8	1	3.420	20.10	0.00	5
			C	0.506	1.892		0.8	1	3.420			
Sum Weight:	2433.83	5184.46	-					-		2313.72		

Tower Forces - Service - Wind 90 To Face

tnxTower	Job	121-23082	Page 26 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	180.92	552.04	Α	0.241	2.466	9	0.85	1	10.366	292.34	14.62	С
180.00-160.00			В	0.241	2.466		0.85	1	10.366			
			С	0.241	2.466		0.85	1	10.366			
T2	281.60	499.67	Α	0.23	2.5	9	0.85	1	9.640	308.10	15.40	С
160.00-140.00			В	0.23	2.5		0.85	1	9.640			
			С	0.23	2.5		0.85	1	9.640			
Т3	285.38	499.67	Α	0.23	2.5	8	0.85	1	9.640	299.06	14.95	С
140.00-120.00			В	0.23	2.5		0.85	1	9.640			
			С	0.23	2.5		0.85	1	9.640			
T4	292.40	542.87	Α	0.235	2.483	8	0.85	1	10.111	297.75	14.89	С
120.00-100.00			В	0.235	2.483		0.85	1	10.111			
			С	0.235	2.483		0.85	1	10.111			
T5	293.15	676.58	Α	0.254	2.427	8	0.85	1	10.982	291.69	14.58	С
100.00-80.00		TA 320.88	В	0.254	2.427		0.85	1	10.982			
			С	0.254	2.427		0.85	1	10.982			
Т6	297.40	568.31	Α	0.195	2.613	7	0.85	1	8.187	243.75	12.19	С
80.00-60.00			В	0.195	2.613		0.85	1	8.187			
			С	0.195	2.613		0.85	1	8.187			
T7	297.40	456.12	Α	0.195	2.613	6	0.85	1	8.187	221.41	11.07	С
60.00-40.00			В	0.195	2.613		0.85	1	8.187			
			С	0.195	2.613		0.85	1	8.187			
T8	297.40	456.12	Α	0.195	2.613	5	0.85	1	8.187	191.34	9.57	С
40.00-20.00			В	0.195	2.613		0.85	1	8.187			
			С	0.195	2.613		0.85	1	8.187			
T9 20.00-5.00	208.18	430.56	Α	0.198	2.601	5	0.85	1	6.254	139.86	9.32	С
			В	0.198	2.601		0.85	1	6.254			
			С	0.198	2.601		0.85	1	6.254			
T10 5.00-0.00	0.00	181.65	Α	0.506	1.892	5	0.85	1	3.420	30.16	6.03	С
			В	0.506	1.892		0.85	1	3.420			
			С	0.506	1.892		0.85	1	3.420			
Sum Weight:	2433.83	5184.46								2315.46		

Force Totals (Does not include forces on guys)

Load	Vertical	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	
		Х	Ζ	
	lb	lb	lb	lb-ft
Leg Weight	3291.20			
Bracing Weight	1893.26			
Total Member Self-Weight	5184.46			
Guy Weight	1520.64			
Total Weight	13827.83			
Wind 0 deg - No Ice		0.00	-9176.89	2299.71
Wind 30 deg - No Ice		4581.61	-7935.58	2883.23
Wind 60 deg - No Ice		7931.63	-4579.33	2694.19
Wind 90 deg - No Ice		9163.22	0.00	1783.25
Wind 120 deg - No Ice		7947.42	4588.45	394.49
Wind 150 deg - No Ice		4581.61	7935.58	-1099.98
Wind 180 deg - No Ice		0.00	9158.66	-2299.71
Wind 210 deg - No Ice		-4581.61	7935.58	
Wind 240 deg - No Ice		-7947.42	4588.45	
Wind 270 deg - No Ice		-9163.22	0.00	-1783.25

tnxTower	Job	121-23082	Page 27 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Load	Vertical	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	<i>v</i> 1
		Х	Ζ	
	lb	lb	lb	lb-ft
Wind 300 deg - No Ice		-7931.63	-4579.33	-394.49
Wind 330 deg - No Ice		-4581.61	-7935.58	1099.98
Member Ice	23994.80			
Guy Ice	14889.73			
Total Weight Ice	79026.47			
Wind 0 deg - Ice		0.00	-6549.42	1659.20
Wind 30 deg - Ice		3273.39	-5669.68	1919.06
Wind 60 deg - Ice		5668.92	-3272.95	1664.71
Wind 90 deg - Ice		6546.78	0.00	964.30
Wind 120 deg - Ice		5671.96	3274.71	5.50
Wind 150 deg - Ice		3273.39	5669.68	-954.76
Wind 180 deg - Ice		0.00	6545.90	-1659.20
Wind 210 deg - Ice		-3273.39	5669.68	-1919.06
Wind 240 deg - Ice		-5671.96	3274.71	-1664.71
Wind 270 deg - Ice		-6546.78	0.00	-964.30
Wind 300 deg - Ice		-5668.92	-3272.95	-5.50
Wind 330 deg - Ice		-3273.39	-5669.68	954.76
Total Weight	13827.83			
Wind 0 deg - Service		0.00	-3511.19	879.90
Wind 30 deg - Service		1752.98	-3036.25	1103.16
Wind 60 deg - Service		3034.74	-1752.11	1030.83
Wind 90 deg - Service		3505.96	0.00	682.29
Wind 120 deg - Service		3040.78	1755.60	150.94
Wind 150 deg - Service		1752.98	3036.25	-420.87
Wind 180 deg - Service		0.00	3504.22	-879.90
Wind 210 deg - Service		-1752.98	3036.25	-1103.16
Wind 240 deg - Service		-3040.78	1755.60	-1030.83
Wind 270 deg - Service		-3505.96	0.00	-682.29
Wind 300 deg - Service		-3034.74	-1752.11	-150.94
Wind 330 deg - Service		-1752.98	-3036.25	420.87

Load Combinations

<i>a</i> 1	v.	· · · · · · · · · · · · · · · · · · ·
Comb.	Descri	ption
No.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy	
3	1.2D+1.6W (pattern 1) 0 deg - No Ice+1.0 Guy	
4	1.2D+1.6W (pattern 2) 0 deg - No Ice+1.0 Guy	
5	1.2D+1.6W (pattern 3) 0 deg - No Ice+1.0 Guy	
6	1.2D+1.6W (pattern 4) 0 deg - No Ice+1.0 Guy	
7	1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy	
8	1.2D+1.6W (pattern 1) 30 deg - No Ice+1.0 Guy	
9	1.2D+1.6W (pattern 2) 30 deg - No Ice+1.0 Guy	
10	1.2D+1.6W (pattern 3) 30 deg - No Ice+1.0 Guy	
11	1.2D+1.6W (pattern 4) 30 deg - No Ice+1.0 Guy	
12	1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy	
13	1.2D+1.6W (pattern 1) 60 deg - No Ice+1.0 Guy	
14	1.2D+1.6W (pattern 2) 60 deg - No Ice+1.0 Guy	
15	1.2D+1.6W (pattern 3) 60 deg - No Ice+1.0 Guy	
16	1.2D+1.6W (pattern 4) 60 deg - No Ice+1.0 Guy	
17	1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy	
18	1.2D+1.6W (pattern 1) 90 deg - No Ice+1.0 Guy	
19	1.2D+1.6W (pattern 2) 90 deg - No Ice+1.0 Guy	

1	tran Tonnon	Job		Page
	tnxTower		121-23082	28 of 48
		Project		Date
			180 ft Rohn #80 - Stafford Springs CT	19:45:40 09/06/21
		Client		Designed by
	Phone:		CDT	
	FAX:			

Comb.	Description
No.	
20	1.2D+1.6W (pattern 3) 90 deg - No Ice+1.0 Guy
21	1.2D+1.6W (pattern 4) 90 deg - No Ice+1.0 Guy
22	1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy
23	1.2D+1.6W (pattern 1) 120 deg - No Ice+1.0 Guy
24	1.2D+1.6W (pattern 2) 120 deg - No Ice+1.0 Guy
25	1.2D+1.6W (pattern 3) 120 deg - No Ice+1.0 Guy
26	1.2D+1.6W (pattern 4) 120 deg - No Ice+1.0 Guy
27	1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy
28	1.2D+1.6W (pattern 1) 150 deg - No Ice+1.0 Guy
29	1.2D+1.6W (pattern 2) 150 deg - No Ice+1.0 Guy
30	1.2D+1.6W (pattern 3) 150 deg - No Ice+1.0 Guy
31	1.2D+1.6W (pattern 4) 150 deg - No Ice+1.0 Guy 1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy
32	1.2 Dead+1.6 W ind 180 deg - No Ice+1.0 Guy 1.2D+1.6W (pattern 1) 180 deg - No Ice+1.0 Guy
33 34	1.2D+1.6W (pattern 2) 180 deg - No Ice+1.0 Guy
35	1.2D+1.6W (pattern 3) 180 deg - No Ice+1.0 Guy
36	1.2D+1.6W (pattern 4) 180 deg - No Ice+1.0 Guy
37	1.2 Dead+1.6 Wind 210 deg - No Ice+1.0 Guy
38	1.2D+1.6W (pattern 1) 210 deg - No Ice+1.0 Guy
39	1.2D+1.6W (pattern 2) 210 deg - No Ice+1.0 Guy
40	1.2D+1.6W (pattern 3) 210 deg - No Ice+1.0 Guy
41	1.2D+1.6W (pattern 4) 210 deg - No Ice+1.0 Guy
42	1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy
43	1.2D+1.6W (pattern 1) 240 deg - No Ice+1.0 Guy
44	1.2D+1.6W (pattern 2) 240 deg - No Ice+1.0 Guy
45	1.2D+1.6W (pattern 3) 240 deg - No Ice+1.0 Guy
46	1.2D+1.6W (pattern 4) 240 deg - No Ice+1.0 Guy
47	1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy
48	1.2D+1.6W (pattern 1) 270 deg - No Ice+1.0 Guy
49	1.2D+1.6W (pattern 2) 270 deg - No Ice+1.0 Guy
50	1.2D+1.6W (pattern 3) 270 deg - No Ice+1.0 Guy
51	1.2D+1.6W (pattern 4) 270 deg - No Ice+1.0 Guy
52	1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy
53	1.2D+1.6W (pattern 1) 300 deg - No Ice+1.0 Guy
54 55	1.2D+1.6W (pattern 2) 300 deg - No Ice+1.0 Guy 1.2D+1.6W (pattern 3) 300 deg - No Ice+1.0 Guy
55 56	1.2D+1.6W (pattern 4) 300 deg - No Ice+1.0 Guy
57	1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy
58	1.2D+1.6W (pattern 1) 330 deg - No Ice+1.0 Guy
59	1.2D+1.6W (pattern 2) 330 deg - No Ice+1.0 Guy
60	1.2D+1.6W (pattern 3) 330 deg - No Ice+1.0 Guy
61	1.2D+1.6W (pattern 4) 330 deg - No Ice+1.0 Guy
62	1.2 Dead+1.0 Ice+1.0 Temp+Guy
63	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
64	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy
65	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
66	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
67	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy
68	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy
69	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
70	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy
71	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy
72	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
73	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy
74 75	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy
75 76	Dead+Wind 0 deg - Service+Guy
76 77	Dead+Wind 30 deg - Service+Guy
77 78	Dead+Wind 60 deg - Service+Guy
78 79	Dead+Wind 90 deg - Service+Guy
79 80	Dead+Wind 120 deg - Service+Guy Dead+Wind 150 deg - Service+Guy
80 81	Dead+Wind 150 deg - Service+Guy

tnxTower	Job	121-23082	Page 29 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Comb.	Description
No.	
82	Dead+Wind 210 deg - Service+Guy
83	Dead+Wind 240 deg - Service+Guy
84	Dead+Wind 270 deg - Service+Guy
85	Dead+Wind 300 deg - Service+Guy
86	Dead+Wind 330 deg - Service+Guy

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
Mast	Max. Vert	67	127812.69	-372.44	-236.95
	Max. H _x	50	46621.27	1244.32	26.36
	Max. H _z	5	45775.39	3.46	1260.56
	Max. M _x	1	0.00	2.83	7.68
	Max. M _z	1	0.00	2.83	7.68
	Max. Torsion	37	568.04	533.52	-979.26
	Min. Vert	1	40311.38	2.83	7.68
	Min. H _x	20	46641.77	-1235.38	26.14
	Min. Hz	35	46951.51	5.65	-1244.73
	Min. M _x	1	0.00	2.83	7.68
	Min. Mz	1	0.00	2.83	7.68
	Min. Torsion	7	-607.59	-587.97	963.13
Guy C @ 140 ft	Max. Vert	42	-1606.75	-1918.91	1116.87
Elev 0 ft					
Azimuth 240 deg					
e	Max. H _x	42	-1606.75	-1918.91	1116.87
	Max. Hz	65	-19400.68	-23066.76	13312.58
	Min. Vert	65	-19400.68	-23066.76	13312.58
	Min. H _x	65	-19400.68	-23066.76	13312.58
	Min. H _z	42	-1606.75	-1918.91	1116.87
Guy B @ 140 ft Elev 0 ft	Max. Vert	22	-1603.72	1920.09	1109.92
Azimuth 120 deg					
-	Max. H _x	73	-19279.91	23004.32	13281.15
	Max. H _z	73	-19279.91	23004.32	13281.15
	Min. Vert	73	-19279.91	23004.32	13281.15
	Min. H _x	22	-1603.72	1920.09	1109.92
	Min. H _z	22	-1603.72	1920.09	1109.92
Guy A @ 140 ft Elev 0 ft	Max. Vert	2	-1603.67	6.51	-2212.55
Azimuth 0 deg					
	Max. H _x	72	-15290.17	674.57	-21684.68
	Max. H _z	2	-1603.67	6.51	-2212.55
	Min. Vert	69	-19396.42	-4.41	-26610.21
	Min. H _x	66	-15309.16	-675.25	-21698.91
	Min. Hz	69	-19396.42	-4.41	-26610.21

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead Only	40311.38	-2.83	-7.68	0.00	0.00	14.84
1.2 Dead+1.6 Wind 0 deg - No	47413.57	-3.64	-1118.03	0.00	0.00	510.01

tnxTower	Job	121-23082	Page 30 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Ice+1.0 Guy 1.2D+1.6W (pattern 1) 0 deg - No Ice+1.0 Guy	47578.39	-3.43	-441.21	0.00	0.00	506.18
1.2D+1.6W (pattern 2) 0 deg - No Ice+1.0 Guy	47109.41	-3.20	-1147.07	0.00	0.00	502.51
1.2D+1.6W (pattern 3) 0 deg - No Ice+1.0 Guy	45775.39	-3.46	-1260.56	0.00	0.00	476.40
1.2D+1.6W (pattern 4) 0 deg - No Ice+1.0 Guy	44687.58	-3.86	-1235.96	0.00	0.00	509.02
1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy	47810.71	587.97	-963.13	0.00	0.00	607.59
1.2D+1.6W (pattern 1) 30 deg - No Ice+1.0 Guy	47836.19	253.58	-375.44	0.00	0.00	592.92
1.2D+1.6W (pattern 2) 30 deg - No Ice+1.0 Guy	47509.62	595.49	-982.41	0.00	0.00	591.36
1.2D+1.6W (pattern 3) 30 deg - No Ice+1.0 Guy	46607.73	630.22	-1077.76	0.00	0.00	566.45
1.2D+1.6W (pattern 4) 30 deg - No Ice+1.0 Guy	45937.89	600.91	-1051.13	0.00	0.00	593.12
1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy	47566.08	999.65	-591.35	0.00	0.00	508.26
1.2D+1.6W (pattern 1) 60 deg - No Ice+1.0 Guy	47481.56	416.50	-254.65	0.00	0.00	499.98
1.2D+1.6W (pattern 2) 60 deg - No Ice+1.0 Guy	47316.84	1011.95	-598.01	0.00	0.00	496.05
1.2D+1.6W (pattern 3) 60 deg - No Ice+1.0 Guy	46948.89	1081.53	-638.00	0.00	0.00	469.91
1.2D+1.6W (pattern 4) 60 deg - No Ice+1.0 Guy	46671.52	1037.29	-612.68	0.00	0.00	474.86
1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy	47857.22	1114.53	-47.82	0.00	0.00	256.64
1.2D+1.6W (pattern 1) 90 deg - No Ice+1.0 Guy	47890.11	438.16	-51.46	0.00	0.00	255.29
1.2D+1.6W (pattern 2) 90 deg - No Ice+1.0 Guy	47561.06	1134.78	-43.56	0.00	0.00	250.28
1.2D+1.6W (pattern 3) 90 deg - No Ice+1.0 Guy	46641.77	1235.38	-26.14	0.00	0.00	232.88
1.2D+1.6W (pattern 4) 90 deg - No Ice+1.0 Guy	45938.21	1198.42	-14.69	0.00	0.00	217.98
1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy	47485.60	953.47	543.81	0.00	0.00	-13.11
1.2D+1.6W (pattern 1) 120 deg No Ice+1.0 Guy	47655.86	367.57	205.43	0.00	0.00	-14.01
1.2D+1.6W (pattern 2) 120 deg No Ice+1.0 Guy	47182.76	978.94	558.59	0.00	0.00	-13.80
1.2D+1.6W (pattern 3) 120 deg No Ice+1.0 Guy	45833.89	1077.47	615.42	0.00	0.00	-13.56
1.2D+1.6W (pattern 4) 120 deg No Ice+1.0 Guy	44698.81	1056.97	603.43	0.00	0.00	-41.12
1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy	47850.32	521.79	978.71	0.00	0.00	-268.59
1.2D+1.6W (pattern 1) 150 deg No Ice+1.0 Guy	47883.97	180.65	394.75	0.00	0.00	-269.86
1.2D+1.6W (pattern 2) 150 deg No Ice+1.0 Guy	47555.00	535.55	994.27	0.00	0.00	-264.66
1.2D+1.6W (pattern 3) 150 deg No Ice+1.0 Guy	46637.01	601.01	1072.63	0.00	0.00	-246.12
1.2D+1.6W (pattern 4) 150 deg • No Ice+1.0 Guy	45937.73	592.38	1034.75	0.00	0.00	-282.28
1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy	47569.17	-6.08	1150.46	0.00	0.00	-496.64

A	Job		Page	
tnxTower		121-23082	31 of 48	
	Project		Date	
		180 ft Rohn #80 - Stafford Springs CT	19:45:40 09/06/21	
D.	Client		Designed by	
Phone: FAX:		CDT		

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M_z	Torque
1 0D + 1 (W/ (<u>lb</u>	lb	lb	lb-ft	lb-ft	lb-ft
1.2D+1.6W (pattern 1) 180 deg - No Ice+1.0 Guy	47485.54	-5.85	477.09	0.00	0.00	-489.77
- No Ice+1.0 Guy 1.2D+1.6W (pattern 2) 180 deg - No Ice+1.0 Guy	47320.64	-5.77	1164.45	0.00	0.00	-485.75
1.2D+1.6W (pattern 3) 180 deg - No Ice+1.0 Guy	46951.51	-5.65	1244.73	0.00	0.00	-459.02
1.2D+1.6W (pattern 4) 180 deg - No Ice+1.0 Guy	46675.42	-6.02	1193.82	0.00	0.00	-494.99
1.2 Dead+1.6 Wind 210 deg - No Ice+1.0 Guy	47845.36	-533.52	979.26	0.00	0.00	-568.04
1.2D+1.6W (pattern 1) 210 deg - No Ice+1.0 Guy	47872.13	-191.56	396.01	0.00	0.00	-553.36
1.2D+1.6W (pattern 2) 210 deg - No Ice+1.0 Guy	47545.40	-546.39	995.40	0.00	0.00	-552.02
1.2D+1.6W (pattern 3) 210 deg - No Ice+1.0 Guy	46634.04	-611.89	1073.30	0.00	0.00	-527.87
1.2D+1.6W (pattern 4) 210 deg - No Ice+1.0 Guy	45951.86	-603.71	1034.73	0.00	0.00	-555.20
1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy	47464.39	-963.23	544.12	0.00	0.00	-438.58
1.2D+1.6W (pattern 1) 240 deg - No Ice+1.0 Guy	47628.98	-376.76	206.19	0.00	0.00	-433.72
1.2D+1.6W (pattern 2) 240 deg - No Ice+1.0 Guy	47158.54	-988.11	559.09	0.00	0.00	-430.71
1.2D+1.6W (pattern 3) 240 deg - No Ice+1.0 Guy	45816.17	-1086.73	615.67	0.00	0.00	-406.51
1.2D+1.6W (pattern 4) 240 deg - No Ice+1.0 Guy	44703.77	-1066.11	603.14	0.00	0.00	-412.74
1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy	47831.18	-1123.52	-48.00	0.00	0.00	-217.46
1.2D+1.6W (pattern 1) 270 deg - No Ice+1.0 Guy	47862.93	-447.09	-51.37	0.00	0.00	-215.94
1.2D+1.6W (pattern 2) 270 deg - No Ice+1.0 Guy	47535.11	-1143.69	-43.78	0.00	0.00	-211.16
1.2D+1.6W (pattern 3) 270 deg - No Ice+1.0 Guy	46621.27	-1244.32	-26.36	0.00	0.00	-194.54
1.2D+1.6W (pattern 4) 270 deg - No Ice+1.0 Guy	45928.10	-1207.04	-15.11	0.00	0.00	-180.38
1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy	47539.01	-1008.29	-590.32	0.00	0.00	46.84
1.2D+1.6W (pattern 1) 300 deg - No Ice+1.0 Guy	47454.71	-425.35	-253.57	0.00	0.00	48.28
1.2D+1.6W (pattern 2) 300 deg - No Ice+1.0 Guy	47291.48	-1020.47	-597.28	0.00	0.00	48.19
1.2D+1.6W (pattern 3) 300 deg - No Ice+1.0 Guy	46927.75	-1090.02	-637.39	0.00	0.00	47.01
1.2D+1.6W (pattern 4) 300 deg - No Ice+1.0 Guy	46651.02	-1045.95	-611.73	0.00	0.00	77.47
1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy	47790.83	-596.38	-961.20	0.00	0.00	307.89
1.2D+1.6W (pattern 1) 330 deg - No Ice+1.0 Guy	47821.65	-261.48	-373.60	0.00	0.00	309.16
1.2D+1.6W (pattern 2) 330 deg - No Ice+1.0 Guy	47494.50	-602.96	-980.89	0.00	0.00	303.74
1.2D+1.6W (pattern 3) 330 deg - No Ice+1.0 Guy	46590.96	-638.12	-1076.43	0.00	0.00	284.39
1.2D+1.6W (pattern 4) 330 deg - No Ice+1.0 Guy	45913.99	-609.65	-1049.41	0.00	0.00	319.86
1.2 Dead+1.0 Ice+1.0 Temp+Guy	126383.73	-47.09	-4.80	0.00	0.00	48.49
1.2 Dead+1.0 Wind 0 deg+1.0	127752.64	-51.25	-499.95	0.00	0.00	346.27

tnxTower	Job	121-23082	Page 32 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	lb	lb	lb	Moment, M _x lb-ft	Moment, M_z lb-ft	lb-ft
Ice+1.0 Temp+1.0 Guy	10	10	10	10-ji	10-j1	10-j1
1.2 Dead+1.0 Wind 30 deg+1.0	127306.44	183.17	-436.39	0.00	0.00	368.31
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 60 deg+1.0	126904.46	363.43	-248.71	0.00	0.00	263.91
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 90 deg+1.0	127341.30	435.02	1.39	0.00	0.00	102.57
Ice+1.0 Temp+1.0 Guy	107010 (0	272.11	226.05	0.00	0.00	22.55
1.2 Dead+1.0 Wind 120	127812.69	372.44	236.95	0.00	0.00	-32.55
deg+1.0 Ice+1.0 Temp+1.0 Guy 1.2 Dead+1.0 Wind 150	127341.45	199.63	408.68	0.00	0.00	-145.88
deg+1.0 Ice+1.0 Temp+1.0 Guy	12/341.43	199.03	408.08	0.00	0.00	-145.00
1.2 Dead+1.0 Wind 180	126905.73	-52.93	471.58	0.00	0.00	-248.05
deg+1.0 Ice+1.0 Temp+1.0 Guy	120905.75	52.75	471.50	0.00	0.00	240.05
1.2 Dead+1.0 Wind 210	127309.79	-305.49	409.08	0.00	0.00	-270.40
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 240	127757.07	-477.53	237.66	0.00	0.00	-166.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 270	127283.92	-538.99	2.42	0.00	0.00	-4.10
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 300	126859.72	-466.30	-247.84	0.00	0.00	130.43
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 330	127280.79	-285.81	-435.68	0.00	0.00	243.95
deg+1.0 Ice+1.0 Temp+1.0 Guy	10100 51	2.20		0.00	0.00	121.01
Dead+Wind 0 deg -	40482.51	-3.30	-298.33	0.00	0.00	131.91
Service+Guy	10115 (9	140.40	250.00	0.00	0.00	147.01
Dead+Wind 30 deg - Service+Guy	40445.68	140.40	-259.06	0.00	0.00	147.91
Dead+Wind 60 deg -	40413.59	246.30	-152.00	0.00	0.00	123.64
Service+Guy	40415.59	240.50	-152.00	0.00	0.00	125.04
Dead+Wind 90 deg -	40444.98	285.99	-6.76	0.00	0.00	70.98
Service+Guy	10111100	200000	0170	0100	0100	, 01, 0
Dead+Wind 120 deg -	40482.00	248.02	137.35	0.00	0.00	9.10
Service+Guy						
Dead+Wind 150 deg -	40444.90	142.15	242.25	0.00	0.00	-51.07
Service+Guy						
Dead+Wind 180 deg -	40413.55	-3.50	280.44	0.00	0.00	-97.99
Service+Guy						
Dead+Wind 210 deg -	40445.84	-149.13	242.15	0.00	0.00	-114.24
Service+Guy	10100.05	254.04	107.05	0.00	0.00	00.07
Dead+Wind 240 deg - Service+Guy	40482.85	-254.94	137.25	0.00	0.00	-90.27
Dead+Wind 270 deg -	40444.90	-292.85	-6.94	0.00	0.00	-37.39
Service+Guy	40444.90	-292.03	-0.94	0.00	0.00	-37.39
Dead+Wind 300 deg -	40412.59	-253.06	-152.18	0.00	0.00	25.19
Service+Guy	10112.57	200.00	152.10	0.00	0.00	20.17
Dead+Wind 330 deg -	40444.65	-147.14	-259.14	0.00	0.00	84.81
Service+Guy						

Solution Summary

	Sı	um of Applied Force.	\$		S		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	0.00	-13827.69	0.00	3.31	13816.34	6.81	0.099%
2	-0.00	-16414.60	-16528.82	-0.01	16414.33	16521.12	0.033%
3	-0.00	-16414.60	-14973.46	-0.01	16414.33	14966.09	0.033%
4	-0.00	-16414.60	-15227.90	-0.01	16414.33	15220.11	0.035%
5	-0.00	-16414.60	-14829.26	-0.02	16414.35	14820.72	0.039%

AT	Job		Page
tnxTower		121-23082	33 of 48
	Project		Date
		180 ft Rohn #80 - Stafford Springs CT	19:45:40 09/06/21
	Client		Designed by
Phone: FAX:		CDT	

Logd		Sum of Applied Forces PX PY PZ			Sum of Reactions		
Load		PY lb	PZ lb	PX	PY lb	PZ	% Error
Comb.	<u>lb</u>			lb		<i>lb</i>	0.0710/
6	-0.00	-16414.60	-14534.27	-0.06	16414.40	14518.74	0.071%
7	8251.08	-16289.13	-14291.29	-8252.05	16288.88	14282.57	0.038%
8	7473.40	-16289.13	-12944.31	-7474.31	16288.88	12936.08	0.037%
9	7603.40	-16289.13	-13169.47	-7604.41	16288.87	13160.49	0.041%
10	7401.30	-16289.13	-12819.43	-7402.46	16288.91	12809.59	0.045%
11	7255.95	-16289.13	-12567.67	-7256.41	16288.93	12552.41	0.070%
12	14289.10	-16163.65	-8249.82	-14273.11	16163.34	8241.58	0.078%
13	12942.13	-16163.65	-7472.14	-12929.70	16163.37	7465.87	0.063%
14	13168.89	-16163.65	-7603.06	-13154.33	16163.37	7595.61	0.074%
15	12817.24	-16163.65	-7400.04	-12799.31	16163.36	7390.45	0.093%
16	12566.73	-16163.65	-7255.40	-12547.33	16163.37	7244.66	0.102%
17	16502.16	-16289.13	0.00	-16494.77	16288.87	5.35	0.039%
18	14946.80	-16289.13	0.00	-14939.84	16288.87	5.04	0.039%
19	15206.80	-16289.13	0.00	-15199.97	16288.89	4.97	0.038%
20	14802.60	-16289.13	0.00	-14795.09	16288.92	5.54	0.042%
21	14511.90	-16289.13	0.00	-14500.03	16288.93	7.43	0.064%
22	14314.38	-16414.60	8264.41	-14307.49	16414.32	-8260.44	0.034%
23	12967.40	-16414.60	7486.73	-12960.81	16414.32	-7482.93	0.034%
24	13187.75	-16414.60	7613.95	-13180.75	16414.32	-7609.91	0.036%
25	12842.51	-16414.60	7414.63	-12835.50	16414.36	-7410.59	0.037%
26	12587.04	-16414.60	7267.13	-12574.69	16414.41	-7260.01	0.065%
20	8251.08	-16289.13	14291.29	-8242.73	16288.87	-14287.58	0.039%
28	7473.40	-16289.13	12944.31	-7465.53	16288.87	-12940.81	0.039%
29	7603.40	-16289.13	13169.47	-7595.66	16288.89	-13166.06	0.038%
30	7401.30	-16289.13	12819.43	-7392.74	16288.92	-12815.72	0.038%
30	7255.95	-16289.13	12567.67	-7243.59	16288.92		0.042%
31	0.00	-16163.65		0.38		-12561.14	0.064%
			16499.64		16163.34	-16481.63	
33	0.00	-16163.65	14944.28	0.32	16163.37	-14930.35	0.063%
34	0.00	-16163.65	15206.13	0.36	16163.36	-15189.76	0.074%
35	0.00	-16163.65	14800.08	0.30	16163.35	-14779.73	0.093%
36	0.00	-16163.65	14510.81	0.19	16163.37	-14488.61	0.102%
37	-8251.08	-16289.13	14291.29	8242.87	16288.88	-14287.68	0.039%
38	-7473.40	-16289.13	12944.31	7465.66	16288.87	-12940.90	0.038%
39	-7603.40	-16289.13	13169.47	7595.81	16288.89	-13166.16	0.037%
40	-7401.30	-16289.13	12819.43	7391.94	16288.90	-12815.39	0.046%
41	-7255.95	-16289.13	12567.67	7243.74	16288.94	-12561.28	0.063%
42	-14314.38	-16414.60	8264.41	14307.59	16414.33	-8260.51	0.034%
43	-12967.40	-16414.60	7486.73	12960.91	16414.33	-7483.00	0.034%
44	-13187.75	-16414.60	7613.95	13180.87	16414.32	-7610.00	0.035%
45	-12842.51	-16414.60	7414.63	12834.88	16414.34	-7410.25	0.040%
46	-12587.04	-16414.60	7267.13	12574.85	16414.41	-7260.15	0.064%
47	-16502.16	-16289.13	-0.00	16494.89	16288.87	5.27	0.039%
48	-14946.80	-16289.13	-0.00	14939.95	16288.87	4.97	0.038%
49	-15206.80	-16289.13	-0.00	15200.09	16288.89	4.89	0.037%
50	-14802.60	-16289.13	-0.00	14794.36	16288.90	6.06	0.046%
51	-14511.90	-16289.13	-0.00	14500.20	16288.94	7.31	0.063%
52	-14289.10	-16163.65	-8249.82	14273.36	16163.34	8241.28	0.078%
53	-12942.13	-16163.65	-7472.14	12927.93	16163.33	7464.53	0.073%
54	-13168.89	-16163.65	-7603.06	13154.57	16163.37	7595.33	0.073%
55	-12817.24	-16163.65	-7400.04	12799.53	16163.36	7390.23	0.073%
56	-12566.73	-16163.65	-7255.40	12547.49	16163.38	7390.23	0.092%
50 57	-12506.75 -8251.08	-16289.13	-14291.29	8252.01	16288.88	14282.53	0.102%
58	-7473.40	-16289.13	-12944.31	7474.28	16288.88	12936.06	0.038%
59	-7603.40	-16289.13	-13169.47	7604.38	16288.87	13160.45	0.041%
60	-7401.30	-16289.13	-12819.43	7402.42	16288.91	12809.54	0.045%
61	-7255.95	-16289.13	-12567.67	7256.32	16288.92	12552.42	0.070%
62	-0.00	-81486.45	0.00	4.49	81486.43	0.37	0.006%
63	-0.00	-81664.64	-9039.36	-0.10	81664.55	9026.00	0.016%
64	4514.80	-81486.45	-7819.86	-4511.74	81486.36	7805.18	0.018%
65	7825.27	-81308.26	-4517.92	-7809.37	81308.14	4509.59	0.022%
66	9029.60	-81486.45	0.00	-9017.61	81486.37	4.47	0.016%

tnxTower	Job	121-23082	Page 34 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

	Sui	n of Applied Forces	7				
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
67	7828.31	-81664.64	4519.68	-7817.32	81664.54	-4513.36	0.015%
68	4514.80	-81486.45	7819.86	-4504.88	81486.37	-7811.76	0.016%
69	0.00	-81308.26	9035.84	0.83	81308.15	-9017.98	0.022%
70	-4514.80	-81486.45	7819.86	4503.66	81486.36	-7809.91	0.018%
71	-7828.31	-81664.64	4519.68	7816.72	81664.55	-4513.11	0.016%
72	-9029.60	-81486.45	-0.00	9015.12	81486.36	4.64	0.019%
73	-7825.27	-81308.26	-4517.92	7809.71	81308.15	4508.86	0.022%
74	-4514.80	-81486.45	-7819.86	4511.62	81486.36	7804.94	0.019%
75	0.00	-13857.69	-3952.58	0.01	13857.68	3924.98	0.192%
76	1973.10	-13827.69	-3417.52	-1958.28	13827.66	3393.84	0.194%
77	3416.99	-13797.68	-1972.80	-3392.04	13797.64	1958.47	0.200%
78	3946.21	-13827.69	0.00	-3918.20	13827.66	-0.89	0.195%
79	3423.04	-13857.69	1976.29	-3399.02	13857.68	-1962.39	0.193%
80	1973.10	-13827.69	3417.52	-1959.91	13827.66	-3392.77	0.195%
81	-0.00	-13797.68	3945.60	0.03	13797.64	-3916.76	0.201%
82	-1973.10	-13827.69	3417.52	1959.97	13827.66	-3392.76	0.195%
83	-3423.04	-13857.69	1976.29	3399.08	13857.68	-1962.39	0.192%
84	-3946.21	-13827.69	-0.00	3918.25	13827.66	-0.88	0.195%
85	-3416.99	-13797.68	-1972.80	3392.07	13797.64	1958.49	0.200%
86	-1973.10	-13827.69	-3417.52	1958.30	13827.66	3393.84	0.194%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	75	0.00000001	0.00000000
2	Yes	199	0.00000001	0.00007812
3	Yes	200	0.00000001	0.00007862
4	Yes	196	0.00000001	0.00008039
5	Yes	186	0.00000001	0.00008461
6	Yes	168	0.00000001	0.00007071
7	Yes	192	0.00000001	0.00007800
8	Yes	193	0.00000001	0.00007905
9	Yes	190	0.00000001	0.00008198
10	Yes	182	0.00000001	0.00007938
11	Yes	171	0.00000001	0.00006733
12	Yes	165	0.00000001	0.00006930
13	Yes	166	0.00000001	0.00007569
14	Yes	165	0.00000001	0.00006823
15	Yes	163	0.00000001	0.00006937
16	Yes	162	0.00000001	0.00007875
17	Yes	192	0.00000001	0.00008150
18	Yes	193	0.00000001	0.00008232
19	Yes	191	0.00000001	0.00007788
20	Yes	183	0.00000001	0.00007681
21	Yes	172	0.00000001	0.00006717
22	Yes	199	0.00000001	0.00008056
23	Yes	200	0.00000001	0.00008094
24	Yes	196	0.00000001	0.00008308
25	Yes	187	0.00000001	0.00008135
26	Yes	169	0.00000001	0.00007060
27	Yes	192	0.00000001	0.00008153
28	Yes	193	0.00000001	0.00008243
29	Yes	191	0.00000001	0.00007785
30	Yes	183	0.00000001	0.00007672
31	Yes	172	0.00000001	0.00006679

	Job			Page
tnxTower		12 ⁻	1-23082	35 of 48
	Project			Date
		180 ft Rohn #80	- Stafford Springs CT	19:45:40 09/06/21
	Client		1 0	Designed by
Phone:			CDT	Designed by
FAX:				
32 Yes	165	0.00000001	0.00006931	
33 Yes 34 Yes	166	0.00000001 0.00000001	0.00007595 0.00006839	
34 1es 35 Yes	165 163	0.00000001	0.00006930	
36 Yes	162	0.00000001	0.00007842	
37 Yes	192	0.00000001	0.00007970	
38 Yes	193	0.00000001	0.00008068	
39 Yes	191	0.00000001	0.00007615	
40 Yes	182	0.00000001	0.00008173	
41 Yes	172	0.00000001	0.00006363	
42 Yes	199	0.00000001	0.00007925	
43 Yes	200	0.00000001	0.00007967	
44 Yes	196	0.00000001	0.00008163	
45 Yes 46 Yes	186 169	0.00000001 0.00000001	0.00008710 0.00006731	
40 1 es 47 Yes	192	0.00000001	0.00008009	
48 Yes	192	0.00000001	0.00008105	
49 Yes	191	0.00000001	0.00007657	
50 Yes	182	0.00000001	0.00008254	
51 Yes	172	0.00000001	0.00006524	
52 Yes	165	0.00000001	0.00006868	
53 Yes	165	0.00000001	0.00008465	
54 Yes	165	0.00000001	0.00006769	
55 Yes	163	0.00000001	0.00006892	
56 Yes 57 Yes	162 192	0.00000001 0.00000001	0.00007844 0.00007861	
57 1 es 58 Yes	192	0.00000001	0.00007959	
59 Yes	190	0.00000001	0.00008263	
60 Yes	182	0.00000001	0.00008023	
61 Yes	171	0.00000001	0.00006903	
62 Yes	136	0.00000001	0.00005606	
63 Yes	185	0.00000001	0.00001714	
64 Yes	181	0.00000001	0.00001743	
65 Yes	176	0.00000001	0.00002342	
66 Yes	183	0.00000001	0.00002069	
67 Yes 68 Yes	186 183	0.00000001 0.00000001	0.00002111 0.00002033	
68 Yes 69 Yes	183	0.00000001	0.00002033	
70 Yes	181	0.00000001	0.00001772	
70 Tes 71 Yes	185	0.00000001	0.00001780	
72 Yes	181	0.00000001	0.00001956	
73 Yes	176	0.00000001	0.00002269	
74 Yes	181	0.00000001	0.00001889	
75 Yes	146	0.00000001	0.00009151	
76 Yes	146	0.00000001	0.00009215	
77 Yes	146	0.00000001	0.00009419 0.00009163	
78 Yes 79 Yes	146 146	0.00000001 0.00000001	0.00009163 0.00009042	
79 Yes 80 Yes	146 146	0.00000001	0.00009042	
81 Yes	146	0.00000001	0.00009373	
82 Yes	146	0.00000001	0.00009055	
83 Yes	146	0.00000001	0.00009101	
84 Yes	146	0.00000001	0.00009239	
85 Yes	146	0.00000001	0.00009459	
<u>86 Yes</u>	146	0.00000001	0.00009263	

Maximum Tower Deflections - Service Wind

tnxTower	Job	121-23082	Page 36 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	180 - 160	1.346	81	0.0851	0.2214
T2	160 - 140	1.001	81	0.0679	0.2035
Т3	140 - 120	0.750	77	0.0585	0.1830
T4	120 - 100	0.522	85	0.0447	0.1488
T5	100 - 80	0.381	85	0.0240	0.0968
T6	80 - 60	0.315	85	0.0045	0.0510
T7	60 - 40	0.340	85	0.0016	0.0576
T8	40 - 20	0.321	85	0.0170	0.0560
Т9	20 - 5	0.199	85	0.0394	0.0471
T10	5 - 0	0.051	85	0.0471	0.0266

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
180.00	Lightning Rod 5/8x4'	81	1.346	0.0851	0.2214	128053
179.00	Decibel DB809	81	1.328	0.0842	0.2204	128053
177.00	Decibel DB809	81	1.291	0.0822	0.2183	128053
171.00	12 ft Boom / Frame	81	1.182	0.0766	0.2122	71141
163.00	Celwave PD201	81	1.047	0.0699	0.2059	37932
162.75	Guy	81	1.043	0.0698	0.2057	37491
150.00	12 ft Boom / Frame	81	0.868	0.0628	0.1944	87174
127.00	Decibel DB420	77	0.596	0.0505	0.1628	67311
119.67	Guy	85	0.519	0.0444	0.1481	39316
83.00	Celwave PD201	85	0.319	0.0068	0.0546	37599
82.75	Guy	85	0.318	0.0066	0.0542	37361

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	180 - 160	8.059	23	0.5411	0.9292
T2	160 - 140	5.924	23	0.4743	0.8489
Т3	140 - 120	4.171	23	0.4157	0.7707
T4	120 - 100	2.697	17	0.3199	0.6354
Т5	100 - 80	1.932	56	0.2029	0.4268
T6	80 - 60	1.620	56	0.1084	0.2448
Τ7	60 - 40	1.675	56	0.0537	0.2587
T8	40 - 20	1.526	56	0.0897	0.2375
Т9	20 - 5	0.928	56	0.1871	0.1851
T10	5 - 0	0.237	56	0.2200	0.1116

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft

tnxTower	Job	121-23082	Page 37 of 48
	Project 180 ft	Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
180.00	Lightning Rod 5/8x4'	23	8.059	0.5411	0.9292	29656
179.00	Decibel DB809	23	7.947	0.5376	0.9250	29656
177.00	Decibel DB809	23	7.724	0.5304	0.9165	29656
171.00	12 ft Boom / Frame	23	7.063	0.5093	0.8911	16476
163.00	Celwave PD201	23	6.221	0.4832	0.8585	8769
162.75	Guy	23	6.196	0.4824	0.8577	8660
150.00	12 ft Boom / Frame	23	5.016	0.4475	0.8142	10909
127.00	Decibel DB420	18	3.155	0.3552	0.6915	8519
119.67	Guy	17	2.678	0.3181	0.6325	5825
83.00	Celwave PD201	56	1.640	0.1204	0.2596	7444
82.75	Guy	56	1.638	0.1193	0.2581	7412

Bolt Design Data

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt	Allowable Load per Bolt	Ratio Load Allowable	Allowable Ratio	Criteria
	Ji				Dons	lb	lb	Allowable		
T1	180	Leg	A325N	0.7500	4	13.47	29820.60	0.000 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	1	2081.29	5904.86	0.352 🖌	1	Member Bearing
		Top Girt	A325N	0.5000	1	16.26	5904.86	0.003 🖌	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	361.29	3967.20	0.091 🖌	1	Member Bearing
T2	160	Leg	A325N	0.7500	4	1400.53	29820.60	0.047 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1158.32	6681.60	0.173 🖌	1	Member Bearing
		Top Girt	A325N	0.5000	1	423.30	5904.86	0.072 🖌	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	310.95	3967.20	0.078	1	Member Bearing
Т3	140	Leg	A325N	0.7500	4	1487.80	29820.60	0.050 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1693.12	6681.60	0.253 🖌	1	Member Bearing
		Top Girt	A325N	0.5000	1	423.71	5904.86	0.072 🖌	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	423.71	3967.20	0.107 🖌	1	Member Bearing
T4	120	Leg	A325N	0.7500	4	2039.62	29820.60	0.068 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	1	987.43	6681.60	0.148 🖌	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	525.41	3967.20	0.132 🖌	1	Member Bearing
T5	100	Leg	A325N	0.7500	4	2529.02	29820.60	0.085 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1740.35	6681.60	0.260 🖌	1	Member Bearing
		Top Girt	A325N	0.5000	1	712.34	5904.86	0.121 🖌	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	712.34	3967.20	0.180 🖌	1	Member Bearing
		Torque Arm Top@82.75	A325N	0.7500	2	2120.69	16077.60	0.132 🖌	1	Member Bearing
T6	80	Leg	A325N	0.7500	4	3428.39	29820.60	0.115 🖌	1	Bolt Tension
		Diagonal	A325N	0.5000	1	2038.00	5904.86	0.345 🖌	1	Member Bearing
		Top Girt	A325N	0.5000	1	856.57	5904.86	0.145	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	712.58	3967.20	0.180	1	Member Bearing
T7	60	Leg	A325N	0.7500	4	3357.28	29820.60	0.113	1	Bolt Tension

tnxTower	Job	121-23082	Page 38 of 48
	Project 1	80 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt lb	per Bolt lb	Allowable		
		Diagonal	A325N	0.5000	1	1243.24	6681.60	0.186 🖌	1	Member Bearing
		Top Girt	A325N	0.5000	1	775.11	5904.86	0.131	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	775.11	3967.20	0.195 🖌	1	Member Bearing
Т8	40	Leg	A325N	0.7500	4	3730.23	29820.60	0.125	1	Bolt Tension
		Diagonal	A325N	0.5000	1	684.62	6681.60	0.102	1	Member Bearing
		Top Girt	A325N	0.5000	1	790.25	5904.86	0.134	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	790.25	3967.20	0.199	1	Member Bearing
Т9	20	Leg	A325N	0.7500	4	3778.39	29820.60	0.127	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1137.47	5904.86	0.127	1	Member Bearing
		Top Girt	A325N	0.5000	1	785.32	5904.86	0.133	1	Member Bearing
		Bottom Girt	A325N	0.5000	1	3694.05	3967.20	0.931	1	Member Bearing
T10	5	Leg	A325N	0.7500	4	3568.69	29820.60	0.120	1	Bolt Tension
		Diagonal	A325N	0.5000	1	1671.62	5904.86	0.283	1	Member Bearing
		Top Girt	A325N	0.5000	1	4009.92	5904.86	0.283	1	Member Bearing

Guy Design Data

Section No.	Elevation	Size	Initial Tension	Breaking Load	$\begin{array}{c} Actual \\ T_u \end{array}$	Allowable ϕT_n	Required S.F.	Actual S.F.
	ft		lb	lb	lb	lb		
T1	162.75 (A) (462)	3/4 EHS	5830.00	58299.91	14593.30	34980.00	1.000	2.397 🗸
	162.75 (B) (461)	3/4 EHS	5830.00	58299.91	14533.50	34980.00	1.000	2.407 🖌
	162.75 (C) (460)	3/4 EHS	5830.00	58299.91	14561.50	34980.00	1.000	2.402 🖌
T4	119.67 (A) (465)	1/2 EHS	2690.00	26900.04	7962.06	16140.00	1.000	2.027 🖌
	119.67 (B) (464)	1/2 EHS	2690.00	26900.04	7983.52	16140.00	1.000	2.022 🗸
	119.67 (C) (463)	1/2 EHS	2690.00	26900.04	7988.98	16140.00	1.000	2.020 🖌
Т5	82.75 (A) (453)	1/2 EHS	2690.00	26900.04	7468.01	16140.00	1.000	2.161 🗸
	82.75 (A) (454)	1/2 EHS	2690.00	26900.04	7341.44	16140.00	1.000	2.198 🖌
	82.75 (B) (449)	1/2 EHS	2690.00	26900.04	7466.01	16140.00	1.000	2.162 🗸
	82.75 (B) (450)	1/2 EHS	2690.00	26900.04	7457.48	16140.00	1.000	2.164
	82.75 (C) (442)	1/2 EHS	2690.00	26900.04	7360.56	16140.00	1.000	2.193 🗸
	82.75 (C) (443)	1/2 EHS	2690.00	26900.04	7480.48	16140.00	1.000	2.158

tnxTower	Job	121-23082	Page 39 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Compression Checks

			Leg D	esigi	Dala		ihiess			
Section No.	Elevation	Size	L	L_u	Kl/r	A	Mast Stability	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	Index	lb	lb	ϕP_n
T1	180 - 160	P2x.218	20.00	2.42	37.8 K=1.00	1.4773	1.00	-16794.20	59870.70	0.281
T2	160 - 140	P2x.218	20.00	2.42	37.8 K=1.00	1.4773	1.00	-17952.60	59870.70	0.300 1
Т3	140 - 120	P2x.218	20.00	2.42	37.8 K=1.00	1.4773	1.00	-24463.00	59870.70	0.409 1
T4	120 - 100	P2x.218	20.00	2.42	37.8 K=1.00	1.4773	1.00	-30334.60	59870.70	0.507 1
T5	100 - 80	P2.5x.276	20.00	2.42	31.4 K=1.00	2.2535	1.00	-41127.00	94363.10	0.436 1
T6	80 - 60	P2.5x.276	20.00	2.42	62.8 K=2.00	2.2535	1.00	-41140.60	76028.20	0.541 1
Τ7	60 - 40	P2.5x.203	20.00	2.42	61.2 K=2.00	1.7040	1.00	-44751.00	58302.40	0.768 1
Т8	40 - 20	P2.5x.203	20.00	2.42	61.2 K=2.00	1.7040	1.00	-45625.30	58302.40	0.783 1
Т9	20 - 5	P2.5x.276	15.00	2.39	62.0 K=2.00	2.2535	1.00	-45340.60	76530.40	0.592 1
T10	5 - 0	P2.5x.276	5.38	1.06	13.7 K=1.00	2.2535	0.78	-47135.30	78031.70	0.604 1

		Diagor	nal Des	sign I	Data (O	Comp	ression)	
Section No.	Elevation	Size	L	L _u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	ROHN TS1.5x16 ga	4.19	3.95	92.8 K=1.00	0.2627	-1998.96	6038.67	0.331 1
T2	160 - 140	ROHN TS1.5x16 ga	4.19	3.95	92.8 K=1.00	0.2627	-1158.32	6038.67	0.192 1
Т3	140 - 120	ROHN TS1.5x16 ga	4.19	3.95	92.8 K=1.00	0.2627	-1693.12	6038.67	0.280 1
T4	120 - 100	ROHN TS1.5x16 ga	4.19	3.95	92.8 K=1.00	0.2627	-987.43	6038.67	0.164 1
Т5	100 - 80	ROHN TS1.5x16 ga	4.19	3.89	91.6 K=1.00	0.2627	-1740.35	6127.23	0.284 1
Т6	80 - 60	ROHN TS1.5x16 ga	4.19	3.89	91.6 K=1.00	0.2627	-2156.65	6127.23	0.352 1
Τ7	60 - 40	ROHN TS1.5x16 ga	4.19	3.89	91.6 K=1.00	0.2627	-1243.24	6127.23	0.203 1
Т8	40 - 20	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	-684.62	6127.23	0.112 ⁻¹

tnxTower	Job	121-23082	Page 40 of 48
	Project	121-23002	Date
		180 ft Rohn #80 - Stafford Springs CT	19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
					K=1.00				~
Т9	20 - 5	ROHN TS1.5x16 ga	4.17	3.88	91.2 K=1.00	0.2627	-1101.96	6153.03	0.179 1
T10	5 - 0	ROHN TS1.5x16 ga	1.42	0.78	18.4 K=1.00	0.2627	-1043.10	10407.00	0.100 1

¹ P_u / ϕP_n controls

		Top Gi	irt Des	ign C	Data (C	compr	ession)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-18.00	7292.66	0.002 1
T2	160 - 140	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-310.95	7292.66	0.043 1
T3	140 - 120	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-423.71	7292.66	0.058 1
T5	100 - 80	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-712.34	7363.82	0.097 1
T6	80 - 60	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-712.58	7363.82	0.097 1
Τ7	60 - 40	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-775.11	7363.82	0.105 1
Т8	40 - 20	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-790.25	7363.82	0.107 1
Т9	20 - 5	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-785.32	7363.82	0.107 1
T10	5 - 0	ROHN TS1.5x16 ga	3.36	3.12	73.5 K=1.00	0.2627	-861.14	7460.76	0.115 1

	Bottom Girt Design Data (Compression)										
Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	ϕP_n	Ratio P _u		
	ft		ft	ft		in ²	lb	lb	ϕP_n		
T1	180 - 160	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-290.88	7292.66	0.040 1		
T2	160 - 140	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-310.95	7292.66	0.043		
Т3	140 - 120	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-423.71	7292.66	0.058 1		
T4	120 - 100	ROHN TS1.5x16 ga	3.42	3.22	75.8 K=1.00	0.2627	-525.41	7292.66	0.072 1		

tnxTower	Job 121-23082	Page 41 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client CDT	Designed by

Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
Т5	100 - 80	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-712.34	7363.82	0.097 1
Т6	80 - 60	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-712.58	7363.82	0.097 ¹
Τ7	60 - 40	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-775.11	7363.82	0.105 1
Т8	40 - 20	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-790.25	7363.82	0.107 1
Т9	20 - 5	ROHN TS1.5x16 ga	3.42	3.18	74.8 K=1.00	0.2627	-785.32	7363.82	0.107 1

¹ $P_u / \phi P_n$ controls

Top Guy Pull-Off Design Data (Compression)										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in ²	lb	lb	ϕP_n	
T5	100 - 80	L1 1/2x1 1/2x3/16	3.42	3.18	130.1 K=1.00	0.5273	-1761.99	7008.98	0.251 1	

¹ P_u / ϕP_n controls

		Top Guy	y Pull-O	ff Bend	ing De	esign E	Data	
Section	Elevation	Size	M _{ux}	φ <i>M_{nx}</i>	Ratio	M _{uy}	φ <i>M_{ny}</i>	Ratio
No.	ft		lb-ft	lb-ft	$\frac{M_{ux}}{\phi M_{nx}}$	lb-ft	lb-ft	$\frac{M_{uy}}{\phi M_{ny}}$
T5	100 - 80	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000

Top Guy Pull-Off Interaction Design Data

Section No.	Elevation	Size	Ratio P_u	Ratio M _{ux}	Ratio M _{uy}	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
T5	100 - 80	L1 1/2x1 1/2x3/16	0.251	0.000	0.000	0.251 1	1.000	4.8.1 🖌

tnxTower	Job	121-23082	Page 42 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Torque-Arm Top Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T5	100 - 80 (444)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-361.84	122682.00	0.003
T5	100 - 80 (445)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-363.40	122682.00	0.003
T5	100 - 80 (451)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-618.69	122682.00	0.005
T5	100 - 80 (452)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-840.71	122682.00	0.007
T5	100 - 80 (455)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-595.66	122682.00	0.005
T5	100 - 80 (456)	C10x15.3	3.50	3.38	56.9 K=1.00	4.4900	-830.32	122682.00	0.007

Torque-Arm Top Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		lb-ft	lb-ft	ϕM_{nx}	lb-ft	lb-ft	ϕM_{ny}
T5	100 - 80 (444)	C10x15.3	-8692.92	41799.58	0.208	0.00	4698.00	0.000
T5	100 - 80 (445)	C10x15.3	-8648.58	41799.58	0.207	-0.00	4698.00	0.000
T5	100 - 80 (451)	C10x15.3	-8633.33	41799.58	0.207	0.00	4698.00	0.000
T5	100 - 80 (452)	C10x15.3	-8553.83	41799.58	0.205	0.00	4698.00	0.000
T5	100 - 80 (455)	C10x15.3	-8619.25	41799.58	0.206	-0.00	4698.00	0.000
T5	100 - 80 (456)	C10x15.3	-8584.00	41799.58	0.205	-0.00	4698.00	0.000

Torque-Arm Top Interaction Design Data

lection	Elevation	Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.			P_u	M_{ux}	M_{uy}	Stress	Stress	
	ft		ϕP_n	ϕM_{nx}	ϕM_{nv}	Ratio	Ratio	
Т5	100 - 80 (444)	C10x15.3	0.003	0.208	0.000	0.209	1.000	4.8.1 🖌
T5	100 - 80 (445)	C10x15.3	0.003	0.207	0.000	0.208	1.000	4.8.1 🖌
T5	100 - 80 (451)	C10x15.3	0.005	0.207	0.000	0.209	1.000	4.8.1 🖌
T5	100 - 80 (452)	C10x15.3	0.007	0.205	0.000	0.208	1.000	4.8.1 🖌
T5	100 - 80 (455)	C10x15.3	0.005	0.206	0.000	0.209	1.000	4.8.1 🖌
T5	100 - 80 (456)	C10x15.3	0.007	0.205	0.000	0.209	1.000	4.8.1 🖌

tnxTower	Job	121-23082	Page 43 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	P2x.218	20.00	2.42	37.8	1.4773	10812.30	66476.60	0.163
T2	160 - 140	P2x.218	20.00	2.42	37.8	1.4773	1285.53	66476.60	0.019
Т3	140 - 120	P2x.218	20.00	2.42	37.8	1.4773	1602.97	66476.60	0.024
T4	120 - 100	P2x.218	20.00	2.42	37.8	1.4773	1602.21	66476.60	0.024
T5	100 - 80	P2.5x.276	20.00	2.42	31.4	2.2535	1954.27	101409.00	0.019

¹ $P_u / \phi P_n$ controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T1	180 - 160	ROHN TS1.5x16 ga	4.19	3.95	92.8	0.2627	2081.29	10641.40	0.196
T2	160 - 140	ROHN TS1.5x16 ga	4.19	3.95	92.8	0.2627	1016.06	10641.40	0.095
Т3	140 - 120	ROHN TS1.5x16 ga	4.19	3.95	92.8	0.2627	1417.73	10641.40	0.133
T4	120 - 100	ROHN TS1.5x16 ga	4.19	3.95	92.8	0.2627	852.99	10641.40	0.080
T5	100 - 80	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	1199.61	10641.40	0.113
T6	80 - 60	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	2038.00	10641.40	0.192
Τ7	60 - 40	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	1089.11	10641.40	0.102
Т8	40 - 20	ROHN TS1.5x16 ga	4.19	3.89	91.6	0.2627	590.03	10641.40	0.055
Т9	20 - 5	ROHN TS1.5x16 ga	4.17	3.88	91.2	0.2627	1137.47	10641.40	0.107
T10	5 - 0	ROHN TS1.5x16 ga	3.19	1.61	37.8	0.2627	1671.62	10641.40	0.157

tnxTower	Job 121-23082	Page 44 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client CDT	Designed by

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	16.26	10641.40	0.002 1
T2	160 - 140	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	423.30	10641.40	0.040 1
Т3	140 - 120	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	423.71	10641.40	0.040 1
T5	100 - 80	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	712.34	10641.40	0.067 1
T6	80 - 60	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	856.57	10641.40	0.080 1
Τ7	60 - 40	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	775.11	10641.40	0.073 1
T8	40 - 20	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	790.25	10641.40	0.074 1
Т9	20 - 5	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	785.32	10641.40	0.074 1
T10	5 - 0	ROHN TS1.5x16 ga	3.36	3.12	73.5	0.2627	4009.92	10641.40	0.377 1

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	361.29	10641.40	0.034 1
T2	160 - 140	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	310.95	10641.40	0.029 1
Т3	140 - 120	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	423.71	10641.40	0.040 1
T4	120 - 100	ROHN TS1.5x16 ga	3.42	3.22	75.8	0.2627	525.41	10641.40	0.049 1
Т5	100 - 80	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	712.34	10641.40	0.067 1
T6	80 - 60	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	712.58	10641.40	0.067 1
Τ7	60 - 40	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	775.11	10641.40	0.073 1
T8	40 - 20	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	790.25	10641.40	0.074 1
Т9	20 - 5	ROHN TS1.5x16 ga	3.42	3.18	74.8	0.2627	3694.05	10641.40	0.347 1

tnxTower	Job	121-23082	Page 45 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Top Guy Pull-Off Design Data (Tension)

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.								•	P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	180 - 160	3x1/2	3.42	3.22	267.9	1.5000	4661.73	48600.00	0.096 1
T4	120 - 100	3x1/2	3.42	3.22	267.9	1.5000	3447.08	48600.00	0.071^{-1}
T5	100 - 80	L1 1/2x1 1/2x3/16	3.42	3.18	83.6	0.5273	2641.60	17085.90	0.155 ¹
15	100 - 80	L1 1/2x1 1/2x3/16	3.42	3.18	83.6	0.5273	2641.60	17085.90	

¹ P_u / ϕP_n controls

		Top Guy	y Pull-O	ff Bend	ing De	esign [Data	
Section No.	Elevation	Size	M _{ux}	φ <i>M_{nx}</i>	Ratio M _{ux}	Muy	ϕM_{ny}	Ratio M _{uy}
	ft		lb-ft	lb-ft	$\frac{M_{ux}}{\phi M_{nx}}$	lb-ft	lb-ft	ϕM_{ny}
T1	180 - 160	3x1/2	0.00	3037.50	0.000	0.00	506.25	0.000
T4	120 - 100	3x1/2	0.00	3037.50	0.000	0.00	506.25	0.000
T5	100 - 80	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000

Top Guy Pull-Off Interaction Design Data

Section No.	Elevation	Size	Ratio P_u	Ratio M_{ux}	Ratio M_{uy}	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_n	ϕM_{nx}	ϕM_{nv}	Ratio	Ratio	
T1	180 - 160	3x1/2	0.096	0.000	0.000	0.096 1	1.000	4.8.1 🖌
T4	120 - 100	3x1/2	0.071	0.000	0.000	0.071 1	1.000	4.8.1 🖌
Т5	100 - 80	L1 1/2x1 1/2x3/16	0.155	0.000	0.000	0.155 1	1.000	4.8.1 🖌

¹ P_u / ϕP_n controls

Torque-Arm Top Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T5	100 - 80 (444)	C10x15.3	3.50	3.38	56.9	4.4900	2399.53	145476.00	0.016
T5	100 - 80 (445)	C10x15.3	3.50	3.38	56.9	4.4900	2426.68	145476.00	0.017
T5	100 - 80 (451)	C10x15.3	3.50	3.38	56.9	4.4900	2390.75	145476.00	0.016
T5	100 - 80 (452)	C10x15.3	3.50	3.38	56.9	4.4900	2291.52	145476.00	0.016
T5	100 - 80 (455)	C10x15.3	3.50	3.38	56.9	4.4900	2386.61	145476.00	0.016
T5	100 - 80 (456)	C10x15.3	3.50	3.38	56.9	4.4900	2289.71	145476.00	0.016

tnxTower	Јов 121-23082		Page 46 of 48
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Torque-Arm Top Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M	M_{uy}	ϕM_{ny}	Ratio M
100.	ft		lb-ft	lb-ft	$\frac{M_{ux}}{\phi M_{nx}}$	lb-ft	lb-ft	M_{uy} ϕM_{ny}
T5	100 - 80 (444)	C10x15.3	-14881.75	41799.58	0.356	0.00	4698.00	0.000
T5	100 - 80 (445)	C10x15.3	-14800.83	41799.58	0.354	-0.00	4698.00	0.000
T5	100 - 80 (451)	C10x15.3	-14927.50	41799.58	0.357	0.00	4698.00	0.000
T5	100 - 80 (452)	C10x15.3	-14793.08	41799.58	0.354	0.00	4698.00	0.000
T5	100 - 80 (455)	C10x15.3	-14892.92	41799.58	0.356	-0.00	4698.00	0.000
T5	100 - 80 (456)	C10x15.3	-14804.50	41799.58	0.354	-0.00	4698.00	0.000

Torque-Arm Top Interaction Design Data

lection No.	Elevation	Size	Ratio P_u	Ratio M_{ux}	Ratio M_{uy}	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_n	ϕM_{nx}	ϕM_{nv}	Ratio	Ratio	
Т5	100 - 80 (444)	C10x15.3	0.016	0.356	0.000	0.364	1.000	4.8.1 🖌
T5	100 - 80 (445)	C10x15.3	0.017	0.354	0.000	0.362	1.000	4.8.1 🖌
T5	100 - 80 (451)	C10x15.3	0.016	0.357	0.000	0.365	1.000	4.8.1 🖌
T5	100 - 80 (452)	C10x15.3	0.016	0.354	0.000	0.362	1.000	4.8.1 🖌
T5	100 - 80 (455)	C10x15.3	0.016	0.356	0.000	0.364	1.000	4.8.1 🖌
T5	100 - 80 (456)	C10x15.3	0.016	0.354	0.000	0.362	1.000	4.8.1 🖌

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
T1	180 - 160	Leg	P2x.218	2	-16794.20	59870.70	28.1	Pass
		Diagonal	ROHN TS1.5x16 ga	29	-1998.96	6038.67	33.1	Pass
		-	_				35.2 (b)	
		Top Girt	ROHN TS1.5x16 ga	5	-18.00	7292.66	0.4	Pass
		Bottom Girt	ROHN TS1.5x16 ga	7	-290.88	7292.66	4.0	Pass
							9.1 (b)	
		Guy A@162.75	3/4	462	14593.30	34980.00	41.7	Pass
		Guy B@162.75	3/4	461	14533.50	34980.00	41.5	Pass
		Guy C@162.75	3/4	460	14561.50	34980.00	41.6	Pass
		Top Guy	3x1/2	457	4661.73	48600.00	9.6	Pass
		Pull-Off@162.75						
T2	160 - 140	Leg	P2x.218	59	-17952.60	59870.70	30.0	Pass
		Diagonal	ROHN TS1.5x16 ga	113	-1158.32	6038.67	19.2	Pass
		Top Girt	ROHN TS1.5x16 ga	61	-310.95	7292.66	4.3	Pass
			_				7.2 (b)	
		Bottom Girt	ROHN TS1.5x16 ga	64	-310.95	7292.66	4.3	Pass

tnxTower	Job 121-23082	Page 47 of 48
	Project 180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	Designed by

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{ arnothing P_{allow}}_{lb}$	% Capacity	Pass Fail
110.	5						7.8 (b)	
Т3	140 - 120	Lag	P2x.218	116	-24463.00	50970 70	40.9	Pass
13	140 - 120	Leg				59870.70		
		Diagonal	ROHN TS1.5x16 ga	124	-1693.12	6038.67	28.0	Pass
		Top Girt	ROHN TS1.5x16 ga	118	-423.71	7292.66	5.8 7.2 (b)	Pass
		Bottom Girt	ROHN TS1.5x16 ga	121	-423.71	7292.66	5.8 10.7 (b)	Pass
T 4	120 100	*	D2 210	1.72	20224 (0	50070 70		D
T4	120 - 100	Leg	P2x.218	173	-30334.60	59870.70	50.7	Pass
		Diagonal	ROHN TS1.5x16 ga	181	-987.43	6038.67	16.4	Pass
		Bottom Girt	ROHN TS1.5x16 ga	178	-525.41	7292.66	7.2 13.2 (b)	Pass
		Guy A@119.667	1/2	465	7962.06	16140.00	49.3	Pass
		Guy B@119.667	1/2	464	7983.52	16140.00	49.5	Pass
		Guy C@119.667	1/2	463	7988.98	16140.00	49.5	Pass
		Top Guy Pull-Off@119.667	3x1/2	175	3447.08	48600.00	7.1	Pass
T5	100 - 80	Leg	P2.5x.276	230	-41127.00	94363.10	43.6	Pass
		Diagonal	ROHN TS1.5x16 ga	240	-1740.35	6127.23	28.4	Pass
		Top Girt	ROHN TS1.5x16 ga	232	-712.34	7363.82	9.7 12.1 (b)	Pass
		Bottom Girt	ROHN TS1.5x16 ga	235	-712.34	7363.82	9.7	Pass
			1/2	1.50	= 4 < 0, 0, 1	1 < 1 40 00	18.0 (b)	
		Guy A@82.75	1/2	453	7468.01	16140.00	46.3	Pass
		Guy B@82.75	1/2	449	7466.01	16140.00	46.3	Pass
		Guy C@82.75	1/2	443	7480.48	16140.00	46.3	Pass
		Top Guy Pull-Off@82.75	L1 1/2x1 1/2x3/16	447	-1761.99	7008.98	25.1	Pass
		Torque Arm Top@82.75	C10x15.3	451	2390.75	145476.00	36.5	Pass
T6	80 - 60		P2.5x.276	287	-41140.60	76028.20	54.1	Pass
10	80 - 60	Leg						
		Diagonal	ROHN TS1.5x16 ga	317	-2156.65	6127.23	35.2	Pass
		Top Girt	ROHN TS1.5x16 ga	289	-712.58	7363.82	9.7 14.5 (b)	Pass
		Bottom Girt	ROHN TS1.5x16 ga	292	-712.58	7363.82	9.7 18.0 (b)	Pass
Τ7	60 - 40	Lag	D2 5 202	320	-44751.00	58202 40		Daga
1 /	00 - 40	Leg	P2.5x.203			58302.40	76.8	Pass
		Diagonal	ROHN TS1.5x16 ga	350	-1243.24	6127.23	20.3	Pass
		Top Girt	ROHN TS1.5x16 ga	322	-775.11	7363.82	10.5 13.1 (b)	Pass
		Bottom Girt	ROHN TS1.5x16 ga	325	-775.11	7363.82	10.5 19.5 (b)	Pass
Т8	40 - 20	Leg	P2.5x.203	353	-45625.30	58302.40	78.3	Pass
10	40 - 20	•						
		Diagonal	ROHN TS1.5x16 ga	362	-684.62	6127.23	11.2	Pass
		Top Girt	ROHN TS1.5x16 ga	355	-790.25	7363.82	10.7 13.4 (b)	Pass
		Bottom Girt	ROHN TS1.5x16 ga	358	-790.25	7363.82	10.7 19.9 (b)	Pass
Т9	20 - 5	Leg	P2.5x.276	386	-45340.60	76530.40	59.2	Pass
.,		Diagonal	ROHN TS1.5x16 ga	395	-1101.96	6153.03	17.9	Pass
		Top Girt	ROHN TS1.5x16 ga	388	-785.32	7363.82	19.3 (b) 10.7	Pass
		Bottom Girt	ROHN TS1.5x16 ga	392	3694.05	10641.40	13.3 (b) 34.7	Pass
T10	5 0		-				93.1 (b)	
T10	5 - 0	Leg Diagonal	P2.5x.276 ROHN TS1.5x16 ga	413 439	-47135.30 1671.62	78031.70 10641.40	60.4 15.7	Pass Pass
		Top Girt	ROHN TS1.5x16 ga	416	4009.92	10641.40	28.3 (b) 37.7 67.9 (b)	Pass
						Leg (T8)	Summary 78.3	Pass

tnxTower	Job	121-23082	Page 48 of 48
	Ducient		
	Project	180 ft Rohn #80 - Stafford Springs CT	Date 19:45:40 09/06/21
Phone: FAX:	Client	CDT	Designed by

Section	Elevation	Component	Size	Critical	P		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
						Diagonal	35.2	Pass
						(T1)		
						Top Girt	67.9	Pass
						(T10)		
						Bottom Girt	93.1	Pass
						(T9)		
						Guy A (T4)	49.3	Pass
						Guy B (T4)	49.5	Pass
						Guy C (T4)	49.5	Pass
						Top Guy	25.1	Pass
						Pull-Off		
						(T5)		
						Torque Arm	36.5	Pass
						Top (T5)		
						Bolt Checks	93.1	Pass
						RATING =	93.1	Pass

Site Name:	Hampden Road
Client:	CDT
Job Number:	121-23082
Date:	9/6/2021

Design Base Loads (Factored) per TIA-222-G

Moment (M _u):	0.0	k-ft
Shear/Leg (V _u):	1.3	k
Compression/Leg (P _u):	127.8	k
Uplift/Leg (T _u):	0.0	k
Diameter of Prismatic Portion of Pier (d):	1.0	ft
Depth to Base of Foundation:	4.0	ft
Pier Height Above Ground (h):	1.7	ft
Length / Width of Pad (w):	5.0	ft
Thickness of Pad (t):	4.0	ft
Depth Below Ground Surface to Water Table (w):	20.0	ft
Unit Weight of Concrete:	150.0	pcf
Unit Weight of Water:	62.4	pcf
Unit Weight of Soil Above Water Table:	120.0	pcf
Unit Weight of Soil Below Water Table:	65.0	pcf
Friction Angle of Uplift from Top of Pad:	30	Degrees
Friction Angle of Uplift from Base of Pad:	30	Degrees
Uplift Angle Started at Top or Base of Pad (T/B):	т	
Ultimate Skin Friction:	0	psf
Ultimate Compressive Bearing Pressure:	10000	psf
Capacity Increase (Due to Transient Loads):	1.00	
Bearing Strength Reduction Factor (ϕ_s):	0.60	
Uplift Strength Reduction Factor (ϕ_s):	0.75	
Bearing Strength Reduction Factor (ϕ_s):	0.60	

Axial Capacities

Nominal Uplift Capacity per Leg ($\phi_s T_n$):	11.4 k
Nominal Compressive Capacity per Leg ($\phi_s P_n$):	150.0 k
P _u :	131.6 k
$T_u/\phi_s T_n$:	0.00 Result: OK
$P_u/\phi_s P_n$:	0.88 Result: OK

Centered on Solutions"

Structural Analysis Report

Antenna Mount Analysis

T-Mobile Site #: CTHA830A

157 Hampden Road Stafford Springs, CT

Centek Project No. 21005.22

Date: May 4, 2021

Rev 1: August 11, 2021

Max Stress Ratio = 70.8%

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

CENTEK Engineering, Inc. Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CTHA830A Stafford Springs, CT Rev 1 ~ August 11, 2021

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 – REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

• RF DATA SHEET, DATED 07/20/2021

August 11, 2021

Mr. Kyle Richers Transcend Wireless 10 Industrial Ave., Suite 3 Mahwah, NJ 07430

Re: Structural Letter ~ Antenna Mount T-Mobile – Site Ref: CTHA830A 157 Hampden Road Stafford Springs, CT 06076

Centek Project No. 21005.22

Dear Mr. Richers,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the proposed mount, consisting of three (3) V-frame sector mounts (SitePro P/N: VFA12) to support the proposed equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G Structural Standards for Steel Antenna Towers and Supporting Structures.

The loads considered in this analysis consist of the following:

T-Mobile:

<u>V-Frames</u>: Three (3) Ericsson AIR6449 panel antennas, three (3) RFS APXVAALL24_43-U-NA20 panel antennas, three (3) Ericsson 4480 remote radio heads and three (3) Ericsson 4460 remote radio heads mounted on three (3) V-Frames with a RAD center elevation of 171-ft +/- AGL.

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 97 mph for Stafford as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.

Based on our review of the installation, it is our opinion that the subject antenna mount has sufficient capacity to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by: Timothy J. Lynn, PE SIONAL Structural Engineer

Prepared by:

Fernando J. Palacios Engineer

CENTEK Engineering, Inc.

Structural Analysis – Mount Analysis T-Mobile Site Ref. ~ CTHA830A Stafford Springs, CT Rev 1 ~ August 11, 2021

Section 2 - Calculations

Centered on Sol 63-2 North Branford Ro Branford, CT 06405

Subject:

Location:

Stafford Springs, CT

Prepared by: F.J.P.. Checked by: T.J.L. Job No. 21005.22

Solutions [™] <u>www.centekeng.com</u>			
rd Road P: (203) 488-0580 5 F: (203) 488-8587	Rev. (): 08/04/2021	Prepared by: F.J.P Chee Job No. 21005.22
Development of Design Heights, Exposur and Velocity Pressures			
Wind Speeds			
Basic Wind Speed	V := 97	mph	(User Input - 2018 CSBC Appendix N)
Basic Wind Speed with Ice	$V_i := 50$	mph	(User Input per Annex B of TIA-222-G)
Input			
Structure Type =	Structure_T	ype ≔ Lattice	(User Input)
Structure Category =	SC := II		(User Input)
Exposure Category =	Exp := C		(User Input)
Structure Height =	h ≔ 180	ft	(User Input)
Height to Center of Antennas =	z := 171	ft	(User Input)
Radial Ice Thickness =	$t_i := 1.00$	in	(User Input per Annex B of TIA-222-G)
Radial Ice Density =	Id := 56.00	pcf	(User Input)
Topographic Factor =	$K_{zt} := 1.0$		(User Input)
	$K_a \coloneqq 1.0$		(User Input)
Gust Response Factor =	G _H = 1.12		(User Input)
Output			
Wind Direction Probability Factor =	$\begin{split} K_{d} \coloneqq \left \begin{array}{c} \text{if } Structure_Type = Pole \\ & 0.95 \\ & \text{if } Structure_Type = Lattice \\ & 0.85 \end{array} \right = 0 \end{split}$		(Per Table 2-2 of TIA-222-G)
Importance Factors =	11	.1	(Per Table 2-3 of TIA-222-G)
	I _{Wind} := if SC 0. f SC 1. if SC 1. 1. 1. .		
		C = 1 = 1 C = 1	
$K_{1z} := \left(\frac{z}{33}\right)^{0.1} = 1.179$	I ice := if SC = 0 if SC = 1.00 if SC = 1.25	- 2 - 3 - 5	
Velocity Pressure Coefficient Antennas =	$t_{iz} \coloneqq 2.0 \cdot t_i \cdot$	$\mathbf{k}_{iz} \cdot \mathbf{K}_{zt}^{0.35} = 2.358$	

Velocity Pressure w/o Ice Antennas = Velocity Pressure with Ice Antennas = $Kz := 2.01 \cdot \left(\left(\frac{z}{zg} \right) \right)^{\alpha} = 1.417$

 $qz \coloneqq 0.00256 \cdot K_d \cdot Kz \cdot V^2 \cdot I_{Wind} = 29$

 $qz_{ice} \coloneqq 0.00256 \cdot K_d \cdot Kz \cdot V_i^2 \cdot I_{Wind} = 8$

psf

psf

Centered on Solutions⁵⁰ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 0: 08/04/2021

Stafford Springs, CT

Prepared by: F.J.P.. Checked by: T.J.L. Job No. 21005.22

Development of Wind & Ice Load on Antennas

Antenna Data:			
Antenna Model =	RFS APXVAALL24_	43-U-N/	420
Antenna Shape =	Flat		(User Input)
Antenna Height =	L _{ant} := 95.9	in	(User Input)
Antenna Width =	W _{ant} := 24.0	in	(User Input)
Antenna Thickness =	$T_{ant} \coloneqq 8.5$	in	(User Input)
Antenna Weight =	WT _{ant} := 150	lbs	(User Input)
Number of Antennas =	$N_{ant} \coloneqq 1$		(User Input)
Antenna Aspect Ratio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.0$		
Antenna Force Coefficient =	$Ca_{ant} = 1.27$		

Wind Load (without ice)

Surface Area for One Antenna =	$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 16$	sf
Total Antenna Wind Force Front =	$F_{ant} \coloneqq qz \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{ant} \boldsymbol{\cdot} K_{a} \boldsymbol{\cdot} SA_{antF} = 658$	<mark>lbs</mark>
Surface Area for One Antenna =	$SA_{antS} \coloneqq \frac{L_{ant} \cdot T_{ant}}{144} = 5.7$	sf
Total Antenna Wind Force Side =	$F_{ant} \coloneqq qz \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot SA_{antS} = 233$	<mark>lbs</mark>
Wind Load (with ice)		

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 20.1$	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 219$	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 9.2$	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 101$	<mark>lbs</mark>
Gravity Load (without ice) Weight of All Antennas =	WT _{ant} • N _{ant} = 150	lbs
Gravity Loads (ice only)		
Volume of Each Antenna =	$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2 \cdot 10^4$	cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right) - $	$V_{ant} = 2 \cdot 10^4$
Weight of Ice on Each Antenna =	$W_{ICEant} \coloneqq \frac{V_{ice}}{1728} \cdot Id = 603$	cu in Ibs
Weight of Ice on All Antennas =	W _{ICEant} • N _{ant} = 603	<mark>lbs</mark>

63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Rev. 0: 08/04/2021

Stafford Springs, CT

lbs

Prepared by: F.J.P.. Checked by: T.J.L. Job No. 21005.22

Development	of Wind & Ice	Load on Antennas
--------------------	---------------	------------------

Antenna Data:			
Antenna Model =	Ericsson - AIR6449 E	341	
Antenna Shape =	Flat		(User Input)
Antenna Height =	L _{ant} ≔ 33.1	in	(User Input)
Antenna Width =	W _{ant} := 20.5	in	(User Input)
Antenna Thickness =	$T_{ant} \coloneqq 8.3$	in	(User Input)
Antenna Weight =	$WT_{ant} \coloneqq 103$	lbs	(User Input)
Number of Antennas =	N _{ant} := 1		(User Input)
Antenna Aspect Ratio =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 1.6$		
Antenna Force Coefficient =	Ca _{ant} = 1.2		

Wind Load (without ice)

Surface Area for One Antenna =

Total Antenna Wind Force Front =

Surface Area for One Antenna =

$SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 4.7$	sf
$F_{ant} \coloneqq qz \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot SA_{antF} = 184$	lbs
$SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} = 1.9$	sf

 $\mathsf{F}_{\mathsf{ant}} \coloneqq \mathsf{qz} \cdot \mathsf{G}_{\mathsf{H}} \cdot \mathsf{Ca}_{\mathsf{ant}} \cdot \mathsf{K}_{\mathsf{a}} \cdot \mathsf{SA}_{\mathsf{antS}} = 74$

Total Antenna Wind Force Side =

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right)}{144} = 6.6$	sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot SA_{ICEantF} = 69$	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right)}{144} = 3.4$	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 35$	<mark>lbs</mark>
Gravity Load (without ice)		
Weight of All Antennas =	WT _{ant} • N _{ant} = 103	lba

weight of All Antennas =	$WI_{ant} \cdot N_{ant} = 103$	lbs
Gravity Loads (ice only) Volume of Each Antenna =	$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 5632$	cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \cdot t_{iz}\right) \cdot \left(W_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant} + 2 \cdot t_{iz}\right) \cdot \left(T_{ant}$	t_{iz}) - $V_{ant} = 6778$
Weight of Ice on Each Antenna =	$W_{ICEant} := \frac{V_{ice}}{1728} \cdot 1d = 220$	cu in Ibs
Weight of Ice on All Antennas =	W _{ICEant} • N _{ant} = 220	<mark>lbs</mark>

Tota

Centered on Solutions⁵⁰ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Rev. 0: 08/04/2021

Stafford Springs, CT

Prepared by: F.J.P.. Checked by: T.J.L. Job No. 21005.22

= 4045

Development of Wind & Ice Load on RRUS's

RRUS Data:

RRUS Model =	Ericsson 4480 B71+	B85	
RRUS Shape =	Flat		(User Input)
RRUS Height =	L _{RRUS} := 21.8	in	(User Input)
RRUS Width =	W _{RRUS} ≔ 15.7	in	(User Input)
RRUS Thickness =	T _{RRUS} := 7.5	in	(User Input)
RRUS Weight =	$WT_{RRUS} \coloneqq 84$	lbs	(User Input)
Number of RRUS's =	N _{RRUS} := 1		
RRUS Aspect Ratio =	$Ar_{RRUS} \coloneqq \frac{L_{RRUS}}{W_{RRUS}} = 7$	1.4	
RRUS Force Coefficient =	Ca _{RRUS} = 1.2		

Wind Load (without ice)

Surface Area for One RRUS =	$SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.4$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSF} = 93$	lbs
Surface Area for One RRUS =	$SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.1$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSS} = 44$	lbs

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} \coloneqq \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 3.8$	sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSF} = 39$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} \coloneqq \frac{\left(L_{RRUS} + 2 \cdot t_{1z}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{1z}\right)}{144} = 2.2$	sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{ICERRUSS} = 23$	lbs
Gravity Load (without ice)		
Weight of All RRUSs =	WT _{RRUS} • N _{RRUS} = 84	lbs
Gravity Loads (ice only)		
Volume of Each RRUS =	$V_{RRUS} \coloneqq L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 2567$	cu in
Volume of Ice on Each RRUS =	$V_{ice} \coloneqq \left(L_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz} \right)$	
Weight of Ice on Each RRUS =	$W_{ICERRUS} \coloneqq \frac{V_{Ice}}{1728} \cdot Id = 131$	cu in Ibs
Weight of Ice on All RRUSs =	W _{ICERRUS} • N _{RRUS} = 131	lbs

Centered on Solutions⁵⁰ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 63-2 North Branford Road Branford, CT 06405

F: (203) 488-8587

Subject:

Rev. 0: 08/04/2021

Stafford Springs, CT

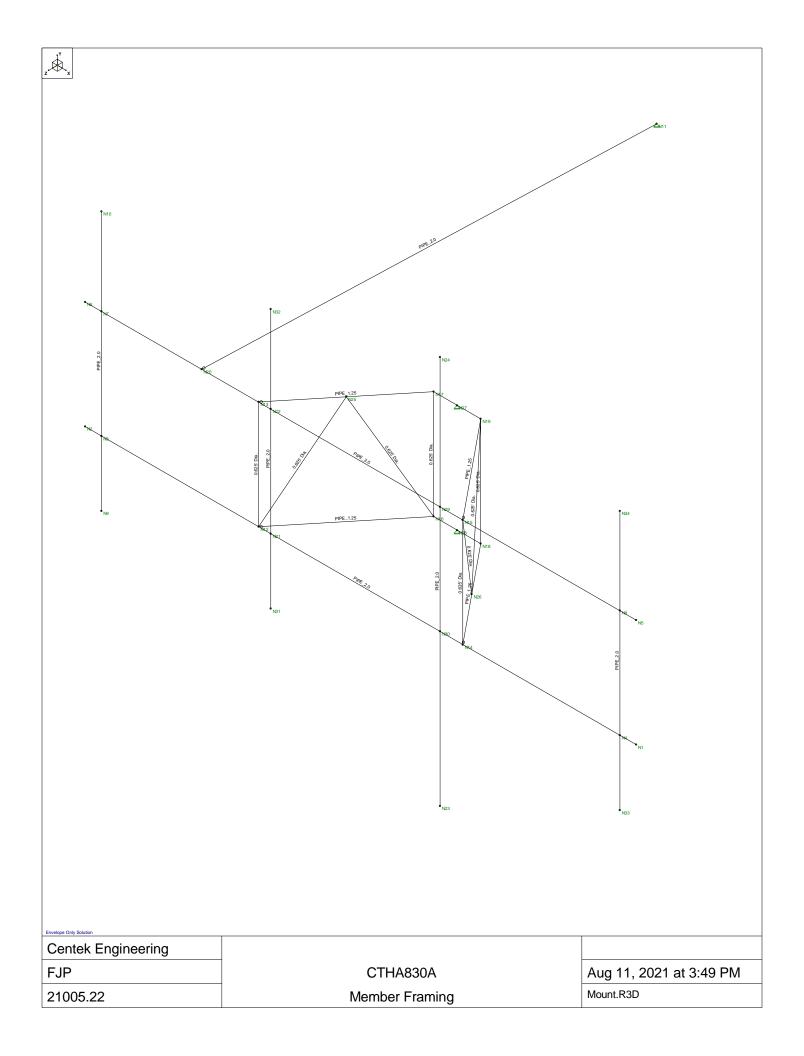
Prepared by: F.J.P.. Checked by: T.J.L. Job No. 21005.22

Development of Wind & Ice Load on RRUS's

RRUS Data:

RRUS Model =	Ericsson 4460 B25+	B66	
RRUS Shape =	Flat		(User Input)
RRUS Height =	L _{RRUS} := 19.6	in	(User Input)
RRUS Width =	W _{RRUS} := 15.7	in	(User Input)
RRUS Thickness =	T _{RRUS} := 12.1	in	(User Input)
RRUS Weight =	$WT_{RRUS} \coloneqq 109$	lbs	(User Input)
Number of RRUS's =	N _{RRUS} := 1		
RRUS Aspect Ratio =	$Ar_{RRUS} \coloneqq \frac{L_{RRUS}}{W_{RRUS}} = 7$	1.2	
RRUS Force Coefficient =	$Ca_{RRUS} = 1.2$		

Wind Load (without ice)


Surface Area

Surface Area

rface Area for One RRUS =	$SA_{RRUSF} \coloneqq \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.1$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSF} = 83$	lbs
rface Area for One RRUS =	$SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.6$	sf
Total RRUS Wind Force =	$F_{RRUS} \coloneqq qz \cdot G_{H} \cdot Ca_{RRUS} \cdot K_{a} \cdot SA_{RRUSS} = 64$	lbs

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSF} \coloneqq \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 3.4$	sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ICE} \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{RRUS} \boldsymbol{\cdot} K_{a} \boldsymbol{\cdot} SA_{ICERRUSF} = 36$	lbs
Surface Area for One RRUS w/ Ice =	$SA_{ICERRUSS} := \frac{\left(L_{RRUS} + 2 \cdot t_{iz}\right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz}\right)}{144} = 2.8$	sf
Total RRUS Wind Force w/ Ice =	$Fi_{RRUS} \coloneqq qz_{ice} \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{RRUS} \boldsymbol{\cdot} K_{a} \boldsymbol{\cdot} SA_{ICERRUSS} = 29$	lbs
Gravity Load (without ice)		
Weight of All RRUSs =	WT _{RRUS} • N _{RRUS} = 109	lbs
Gravity Loads (ice only)		
Volume of Each RRUS =	$V_{RRUS} \coloneqq L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 3723$	cu in
Volume of Ice on Each RRUS =	$V_{ice} \coloneqq \left(L_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(W_{RRUS} + 2 \cdot t_{iz} \right) \cdot \left(T_{RRUS} + 2 \cdot t_{iz} \right)$,
Weight of Ice on Each RRUS =	$W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot Id = 150$	cu in Ibs
Weight of Ice on All RRUSs =	W _{ICERRUS} • N _{RRUS} = 150	lbs

fţ`cVUŁAcXY`GYH]b[g

Öã•] æੰ ÁÛ^&cãį }• ÁĮ ¦ÁT ^{ à^¦ÁÔæå&•	ÍÁ
Tæ¢ÁQ,c^¦}æ¦ÁÙ^&cąį}•Áį¦ÁT^{{ à^¦ÁÔæ}&•	JÏÁ
Ql&lĭå^ÁÛ@læl4Ö^~{[¦{æaã[}}Ñ	Ϋ́∧∙
Ql&l^æ•^Ápæajaj*ÁÔæjæ&ãĉÁ[¦ÁYā]åÑ	Ϋ́∧∙
Ql&,ĭå^ÁYæj]āj*Ñ	Ϋ́∧∙
V¦æ}∙ÁŠ[æåÁÓc;}ÁQ;c^\•^&cā}*ÁY[[åÁYæ Ñ	Ϋ́∧∙
Œ!^棊[æåÁT^•@ÁÇJâœD	FII
T^¦*^Á⁄[^¦æ}&^Á@;D	ÈG
ÚËÖ^ cæ405;æf•ãrÁ/[^¦æ;}&^	€Ě€Ã
Ω,&,ĭå^ÁÚËÖ^ œeÁ[¦ÁYæ‡ ●Ñ	Ϋ́^●
Œ ([{ æaã&æa ^ Á@{^}¦æa^ ÁÛcã} ^•• Á[¦Á⁄æ • Ñ	Ϋ́∧∙
Tæ¢ÁQt\¦æaãį}●Á{¦ÁYæ‡ÁÛcã}^●●	Н
Õ¦æçãĉÁ038&^ ^¦æaāį}ÅÇdÐ^&âCD	HOÈG
Yæ ÁT^∙@ÁÜã^ÁÇã;D	FG
Ôã*^}•[ĭ qā[} ÁÔ[} ç^¦*^} &^ Á/[HÁQF ÉÔÉD	1
X^¦ca8æ¢Á0f¢ã	Ϋ́
Õ∥[àæ‡ÁT^{{à^¦ÁU¦ã^}}cææã[}ÁÚ æ}^	ÝZ
Úcæa8AÛ[ç^¦	Ù]æ•^ÁŒ&∧ ^¦æ^å
Ö^}æ{ a&ÁÙ[ç^¦	038&^ ^¦æe^åÂÛ[ç^¦
P[ÓÂÜ[^åÂĴơ^^ ÂÔ[å^	OEDÙÔÆTIc@ÇH΀ËF€DK&SÜØÖ
CEâbĕ•cÂĴcã~}^••Ň	Ÿ^∙ Ç@ \¦æäç¯^D
ÜQÜQEÔ[}}^&&aąį}ÁÔ[å^	OEDÙÔÁFI cQĩHÎ ∰ EÐMÁDEÙÖ
Ô[åÁØ[¦{ ^åÂÙơ^ ÁÔ[å^	ŒÛŒÛF€€ÊF€KÆŒÛÖ
Y [[åÅÔ[å^	OFY ÔÁÞÖÙÉFGKÁÐEÙŐ

Y [[å ÁÔ[å^	OEY ŐÁPÖÜÉFGKÁDEÚŐ
Y[[åÁV^{]^¦æcĭ¦^	ŁÄF€€Ø
Ô[}&\^&\@[å^	QÊÇÂHFÎ ÊFF
Tæ[}¦^ÂÔ[_å^	ŒÔŒŰ H€ËFFKÆŒŬŐ
OĘ~{āj~{ÁÔ[å^	OEDÁOEÖT FÉF€HÁQEÙÖÁÉÁÓĭ ąååj*
Ùæa∄ ^••ÂJơ^^ ÂÔ[å^	OEDÛÔÁFI c@ÇHÎ €ËF€DKAQEÙÔ
ŒãĎ∙oÂĴcã~}^••Ñ	Ÿ^∙Ç@\¦æãç^D

Þ`{ à^¦Áį,~ÂĴ@?æÅÜ^*ąį}∙	1
Ü^* ā[} ÁŪ] æ&ā] * Á0, & \^ (^) ơ (5), D	1
Óãæe¢ãæ‡ÁÔ[`{}ÁT^cQĮå	Ò¢æ\$cÁQ;c^*¦æaāį}
Úæl{ ^ÁO^œÁZæskq[¦ÁQÚ ÔOED	ÊÍ
Ô[}&\^&\ÂJd^•• ÂÔ [&\	Ü^&ca)* * æ
W•^ÁÔ¦æ&∖^åÁÙ^&œį[}•Ñ	Ϋ́^∙
W•^ÁÔ¦æ&∖^åÂÛ^&aąį}•ÂÛ æàÑ	Þ[
ÓæåÁØlæ{ā}*Á∕æ}}ã*•Ñ	Þ[
W}ĭ•^åÁØ[¦&^ÁYæł}āj*•Ñ	Ϋ́^∙
Tā; ÁFÁÓæi ÁÖãæ; ÉÁÚ] æ&ā; *Ñ	Þ[
Ô[}&\^&\ÂÜ^àæłÂÜ^c	ÜÒӌܴÙÒV´ŒÙVTŒÊFÍ
T ą, Áà ÁÙơ^^ Á[¦ÁÔ[˘ { }	F
Tæ¢ÁÃÁÛ&^ Á[¦ÁÔ[゙{}	Ì

fł, `cVUŁAcXY` GYłłjb[gź7 cbłjbi YX

Ù^ãa{ ã&4Ô[å^	ŒÙÔÒÄËF€
Ù^ã { ã& ÁÔæ•^ÁÔ ^çæaãį }ÁĢdD	Þ[🕉 e^¦^å
ŒáåÁÓæ•^ÁY^ãť@Ŵ	Ÿ∧∙
ÔđÝ	È€G
Ô¢Ź	È€G
VÄ∕ÄÇ^&D	Þ[🕉 e^¦^å
VÁZÁÇI^&D	Þ[🕉 🖓 🖒 å
ÜÁ	Н
ÜÆ	Н
ÔcĐ¢] ÈÝ	ËÍ
ÔcÁÒ¢] ĔZ	ĔÍ
ÙÖF	F
ÙÖÙ	F
ÙF	F
VŠÁĢ^&D	Í
Üã∖ÁÔæ	CÁN HÁQQ
Ö¦ão ÁÔæc	U @%¦
U{ÁZ	F
U{ Â	F
ÔåÁZ	F
ÔåÁÝ	F
ÜQÁZ	F
Ü@Ŕ	F

<chFc``YX`GhYY`DfcdYfh]Yg

	Šæà^	ÒAX̃•ãa	ÕÂŽ•ãã	Þĭ	V@∾¦{Áçen∋ÈÈ	ÈÖ^}∙ãĉŽĐcâHá	Ÿð∿ åŽ∙ãá	Ü^	ØŽ∙ãa	Üc
F	OEHÎ ÁÕ¦ÈHÎ	GJ€€€	FFFÍ I	ÈH	ÊÍ	ÈJ	HÎ	FĚ	ÎÌ	FÈG
G	OÉÍGÃզ̀	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	Í€	FÈ	ÎÌ	FÈG
Н	ŒJG	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	Í€	FÈ	ÍÌ	FÈG
	OÉL€€ÃÕ¦ÈLG	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	١G	FÈH	ÎÌ	FÈF
Í	OÉL€€ÃÕ¦ÈLÎ	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	ΙÎ	FÈG	ÎÌ	FÈF
Î	OÉ HÃÕ¦æå∧ÁÓ	GJ€€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	HÍ	FĚ	ÍÌ	FÈG

<chiFc``YX`GhYY`GYWFjcb`GYhg

	Šæà^	Ù@aa]^ V^]^	Ö^∙ã}}ÁŠãa:o		Ö^• ã} ÁÜ≚ÈÈ	È052Ã)Gá	Q^ÁŽajlá	Q:ÁŽájlá	RÁŽájlá
F	OEjc^}}æÁTæec	ÚQÚÒ´GÈ€ Ô[゙{ }		ŒÍHÃÕ¦æå⊞		FÈ€G	ÊĠ	ÊĠ	FÈGÍ
G	GÄÄÚ∄ji∧	ÚQÚÒ´GÈ€ Ó^æ;	09	Œ HÃÕ¦æå∰		FÈ€G	ÊĠ	ÊĠ	FÈGÍ
Н	FÄÁÚÃ, ^	ÚQÚÒ´FÈ€ Ó^æ{	09	Œ HÃÕ¦æå∰	·	ÈÎJ	ÈÈÌ H	È€ÌH	ÈÎÎ
1	Učdãt*^¦íFÈGÍÄÁÚ2]^	ÚÓUÒ´FÈĞÍ Ó^æ{	Úą ^	ŒÍHÃÕ¦æå⊞	· jang	ÊŒ	ÈÌI	ÈÌI	ÈĤÌ
Í	Ùœàãã ^¦	ÚQÚÒ´GÈ€ Ó^æ	Úą ^	ŒÍHÃÕ¦æå⊞	V^]ã&æ	FÈ€G	ÊĠ	ÊĠ	FÈGÍ
Î	É GÍ ÄÓæ	€ĒĽGÍQŐãæÈ Ô[`{}	ÓŒÜ	ŒHÎÃÕ¦ÈHÎ	V^] ã&æ	ÈH€Ï	È€€Ï	Ì€€Ï	Ì€FÍ

< chiFc``YX'GhYY'8 Yg][b`DUfUa YhYfg

	Šæè^	Ù@#}^	Š^}* c@Žcć	Šà^^Žaá	Šà::Žcá	Š&[{]Ág[]ŽĤ	ĔŠ&[{]Áa[cŽ⊞	ŠËq¦`⊞	È S^^	S::	Ôà	Ø″}&ca∰E
F	TF	GÄÁÚ ĝi ^	FŒÏÍ	Ù^*{ ^}c	Ù^*{ ^}c	Šà^^			GÈE	GÈE		Šæe^¦æ⊧
G	ΤG	GÄÁÚ ĝi ^	FŒÏÍ	Ù^*{ ^}c	Ù^*{ ^}c	Šà^^			GÈE	GÈE		Šæc^¦æ⊧
Н	TH	Ùcæàããã^¦	F€ÈÈÎ			Šà^^			F	F		Šæe^¦æ⊧
	TI	Učdã*^¦́ È	≢GÈÈÌ	Ù^*{ ^}c	Ù^*{ ^}c	Šà^^			È	È		Šæe^¦æ

< chiFc``YX`GhYY`8 Yg][b`DUfUa YhYfg`f7 cbh]bi YXŁ

	Šæè^	Ù@aa]^ Š^}*o	ØŽeá Šà^^Žeá	Šà::Žcá	Š&[{]Á[]ŽÊ]]]] [] [] [] [] [] [] []] []] []] []] []	¦ĭ⊞ S^^	S::	Ôà	Ø″}&ca∰
Í	ΤÍ	Uĭdã*^¦íⅲ GÈ			Šà^^		È	È		Šææ^¦æ¢
Î	ΤÎ	Uĭdãt*∧¦í⊞ GÈÈ			Šà^^		È	È		Šææ^¦æ¢
Ï	ΤÏ	Uĭdãt*∧¦í⊞ GÈÈ					È	È		Šæe^¦æ⊧
Ì	ТÌ	ÉÉGÍÄÁÓæl GÉÉ					ÊÍ	ÊÍ		Šæc^¦æ⊧
J	ТJ	ÉÉGÍÄÁÓæl GÉÉ					ÊÍ	ÊÍ		Šæe^¦æ⊧
F€	TF€	ĒĖGÍÄÄÓæ∲ GÈÈÌ	Í				ÊÍ	ÊÍ		Šæc^¦æ⊧
FF	T FF	ÉÉGÍÄÁÓæ¦ GÈÈÌ	Í				ÊÍ	ÊÍ		Šæe^¦æ⊧
FG	T FG	ÉÉGÍÄÁÓæel GÈÈÌ					ÊÍ	ÊÍ		Šæc^¦æ⊧
FH	T FH	ĒĖGÍÄÄÓæ¦ GÈÈÌ					ÊÍ	ÊÍ		Šæe^¦æ⊧
FI	T FI	ÉÉGÍÄÁÓæl GÉÉ					ÊÍ	ÊÍ		Šæc^¦æ⊧
FÍ	T FÍ	ÉÉGÍÄÁÓæl GÉÉ					ÊÍ	ÊÍ		Šæe^¦æ⊧
FÎ	T FÎ	05;c^}}æ∕nr⊞≣ ĵ	Ù^*{ ^}c	: Ù^*{ ^}c	Šà^^		GÈ	GÈ		Šæc^¦æ⊧
FΪ	ΤFΪ	05;c^}}æ4T⊞È J	Ù^*{ ^} c	Ù^*{ ^}c	Šà^^ Šà^^		GÈE	GÈ		Šæe^¦æ⊧
FÌ	TG€	05;c^}}æÁTÈËË ĵ	Ù^*{ ^}c	Ù^*{ ^}c	Šà^^		GÈ	GÈ		Šæe^¦æ⊧
FJ	TGF	05;c^}}æ∳T⊞≣ ĵ	Ù^*{ ^}c	Ù^*{ ^}c	Šà^^		GÈ	GÈ		Šæc^¦æ⊧

A Ya VYf Df]a Ufm8 UfU

	Šæè^∣	OÁR[ậic	RÁR[ã}c	SÁR[ậ]c	Ü[cæ¢ Q∰	Ù^&ca[}}Đù@æ}^	V^]^	Ö^∙ã}}ÁŠã	c.Tæc∿¦ãæ¢Ö^∙ã}}Á⊞È
F	TF	ÞG	ÞF			GÄÁÚð[^	Ó^æ	Úą ^	ŒĹHÃÕ¦ÈÈÈV^]ã&æe∳
G	TG	ÞÎ	ÞÍ			GÄÁÚ ąľ ^	Ó^æ	Úą ^	ŒHÃÕ¦ÈÈÈV^]ã&aa
Н	TH	ÞŒ	ÞFF			Ùœàậã^¦	Ó^æ	Úą ^	ŒÍHÃÕ¦ÈÈÈV^]ã&æ
	TI	ÞFH	ÞFÏ			Učda**** FĚGÁÄÁÚa].^	Ó^æ	Úą ^	ŒHÃÕ¦ÈÈV^]ã&æ
Í	ТÍ	ÞFG	ÞĤ			Uĭdãt*^¦íFÈGÍÄÁÚa[^	Ó^æ	Úą ^	0∄ HÁÕ¦ ऄ॓॓ ♥ 1 38-24
Î	ΤÎ	ÞFI	ÞŔ			Učla**^¦´FÈGÍÄÁÚa[^	Ó^æ	Úą ^	ŒHÃÕ¦₩ĖV^]ã&aa
Ï	ТΪ	ÞFÍ	ÞFJ			Uĭdãr*^¦íFÈGÍÄÄÚa]^	Ó^æ	Úą ^	ŒÍHÃÕ¦ÈÈÈV^]ã&æ
ì	ΤÌ	ÞFH	ÞFG			Ê GÍ ÄÓæ	Ô[˘ ⅲ		ŒĤ ÃÕ¦₩ËV^]ã&æ
J	ТJ	ÞFÍ	ÞFI			Ê GÍ ÄÓæ	Ô[˘ ⅲ	ÓŒÜ	ŒĤ ÃÕ¦ÈËV^]ã&æ
F€	TF€	ÞFG	ÞĠ			É GÍ ÄÓæ	Ô[ĭ ⅲ	ÓŒÜ	ŒĤ ÃÕ¦ÈÈV^]ã&æ
FF	T FF	ÞÚ	ÞĤ			Ê GÍ ÄÓæ	Ô[˘ ⅲ		ŒĤ ÃÕ¦ÈËV^]ã&æ
FG	T FG	ÞFJ	ÞĜ			Ê GÍ ÄÓæ	Ô[ĭ ⅲ	ÓŒÜ	ŒĤ ÃÕ¦₩ĖV^]ã&æ
FH	T FH	ÞĜ	ÞŔ			È GÍ ÄÓæ	Ô[ĭ ⅲ	ÓŒÜ	ŒĤ ÃÕ¦ÈËV^]ã&æ
FI	T FI	ÞFJ	ÞŔ			É GÍ ÄÓæ	Ô[ĭ ⅲ	ÓŒÜ	ŒĤ ÃÕ¦₩ËV^]ã&æ
FÍ	T FÍ	ÞFÏ	ÞĤ			Ê GÍ ÄÓæ	Ô[ĭ ⅲ	ÓŒÜ	0⊞Ĥ ÁÕ¦ \```E```\``] ã&æ
FÎ	T FÎ	ÞF€	ÞJ			OE;c^}}æÁTæec	Ô[ĭ ⅲ	Úą ^	ŒHÃÕ¦₩ĖV^]ã&aa
FΪ	T FÏ	ÞG	ÞGH			OEjc^}}æÁTæec	Ô[ĭ ⅲ	Úą ^	ŒHÃÕ¦ÈÈÈV^]ã&aa
FÌ	T FÌ	ÞFÏ	ÞFJ			ÜÕÖ	Þ[}^	Þ[}^	ÜÕÕÖ V^] ã & æ
FJ	T FJ	ÞFÎ	ÞŔ			ÜÕÖ	Þ[}^	Þ[}^	ÜÕÕÖ V^]ã&æ
G€	TG€	ÞHG	ÞĦ			OEjc^}}æÁTæec	Ô[[™] ⅲ	Úą ^	ŒHÃÕ¦ÈÈÈV^]ã&aa
GF	TGF	ÞΗ	ÞН			OEjc^}}æÁTæec	Ô[ĭ ⅲ	Úą ^	ŒHÃÕ¦ÈÈÈV^]ã&æ

>c]bh7ccfX]bUhYg'UbX'HYa dYfUh fYg

	Šæà^	ÝÆcá	ΫÆά	ZÄEcá	V^{] ÁŽZÁá	Ö^cæ&@kØ[{ ÄÖãæ]@æ*{
F	ÞF	FœÌHÏ Í	Ě	GÈGH€GÍJ	€	
G	ÞG	Ш. Ш.	Ě	GÈGH€GÍJ	€	
Н	ÞH	€	Ě	GÈGH€GÍJ	€	
	ÞI	FG	Ě	GÈGH€GÍJ	€	
Í	ÞÍ	FŒÌHÏÍ	Н	GÈGH€GÍJ	€	
Î	ÞÎ	Ш.	Н	GÈGH€GÍJ	€	
Ï	ÞÏ	€	H	GÈGH€GÍJ	€	

>c]bh7ccfX]bUhYg'UbX'HYadYfUhifYg'ff/cbh]biYXŁ

	Šæè^	ÝÆcá	ΫÆά	ZÄŽecá	V^{] Ä¥Z2á	Ö^cæ&@AZI[{ ÄÖãæ]@æ*{
Ì	ÞÌ	FG	Н	GÈGH€GÍJ	€	
J	ÞJ	€	Ë	GÈGH€GÍJ	€	
F€	ÞF€	€	Í	GÈGH€GÍJ	€	
FF	ÞFF	GÊÏ	Н	ËÈIJÏIF	€	
FG	ÞFG	HÈÈHÍGÍÌ	Ě	GÈGH€GÍJ	€	
FH	ÞFH	HÈÈHÍGÍÌ	Н	GÈGH€GÍJ	€	
FI	ÞFI	ÌÈHÎIÏIG	Ě	GÈGH€GÍJ	€	
FÍ	ÞFÍ	ÌÈHÎIÏIG	Н	GÈGH€GÍJ	€	
FÎ	ÞĤ	ÍÈÍÏFI	Ě	ˀȀ€€€H	€	
FΪ	ÞFÏ	ÍÈÍÏFI	Н	ˀȀ€€€H	€	
FÌ	ÞFÌ	ÎĚĽIGGÌÎ	Ě	€È€€€€€H	€	
FJ	ÞFJ	ÎĚĽIGGÌÎ	Н	€È€€€€€H	€	
G€	ÞŒ	GÈHFÌHHH	Н	GÈGH€GÍJ	€	
GF	ÞŒ	HÈFÎÎÎÏ	Ě	GÈGH€GÍJ	€	
GG	ÞŒ	HÈFÎÎÎÏ	Н	GÈGH€GÍJ	€	
GH	ÞGH	ÏÈH₩₩	ËH	GÈGH€GÍJ	€	
G	ÞG	ÏÈH₩₩	Î	GÈGH€GÍJ	€	
GÍ	ÞĠ	IĚIÎIÌÎ	Н	FÈFÍ FÔ	€	
Ĝ	ÞĜ	ÏÈÍHÍFI	Ě	FÈFÍ FHF	€	
Ğ	ÞĠ	ÎÈ	Н	Ë€È	€	
Ĝ	ÞĠ	ÎÈ	Ě	Ë€È	€	
GJ	ÞGJ	ÏÈH₩H	Н	GÈGH€GÍJ	€	
H€	ÞH€	ÏÈH₩H	Ě	GÈGH€GÍJ	€	
HF	ÞHF	HÈFÎÎÎÏ	Ë	GÈGH€GÍJ	€	
HG	ÞHG	HÈFÎÎÎÏ	Í	GÈGH€GÍJ	€	
HH	ÞĦ	FG	Ë	GÈGH€GÍJ	€	
Н	ÞH	FG	Í	GÈGH€GÍJ	€	

>c]bhi6cibXUfm7cbX]hjcbg

	R[ậ, c/Šæà∧	ÝÄŽHÐjá	ΫÄΣីĐājá	ZÃŽĐÃjá	ÝÁÜ[dĚŽËeĐæåá	ŸÁÜ[dĚŽËe£Dæåá	ZÁÜ[dĚŽË-¢Đæåá
F	ÞFF	Ü^æ&cā[}	Ü^æ&cā[}	Ü^æ&cā[}			
G	ÞĤ						
Η	ÞFÏ						
	ÞĤ						
Í	ÞFJ						
Î	ÞĠ	Ü^æ&cāj}	Ü^æ&cãi}	Ü^æ&cā[}			
Ï	ÞĠ	Ü^æ&cāi}	Ü^æ&cāi}	Ü^æ&cāi}			
Ì	ÞŒ						
J	ÞŒ						
F€	ÞGJ						
FF	ÞH€						

A Ya VYf Dc]bh@UXg f6 @ & 8 YUX @UXŁ

	T^{à^¦ÁŠææà^	Öãi^&cã∦}	Tæt}ãčå^ŽÈËcá ⊞ÉEÍG	Š[&æaa]}ŽebÃá
F	T FÎ	Ϋ́		Ě
G	T FÎ	Ϋ́	ĒÉ G	Н
Н	ΤFΪ	Ϋ́	i i i i i i i i i i i i i i i i i i i	Ě
1	ΤFΪ	Ϋ́	ÉÉÉ Í	ΪĚ
Í	ΤFΪ	Ϋ́	ËÈF€J	Н

A Ya VYf Dc]bh@UXg f6 @ & 8 YUX @UXLff cbljbi YXL

	T^{à^¦ÁŠææà^∣	Öãi^&cã∦}	Tæ*}ãĉå^ŽÊËcá	Š[8ææ‡]}ŽebÃá
Î	T FÏ	Ϋ́		Î

A Ya VYf Dc]bh@cUXg f6 @r '' . = WY @cUXL

	T^{à^¦ÁŠææà^∣	Öãi^&cã∦}	Tæ*}ãĩå^ŽÈËcá ∰⊟F	Š[& accā] } Žebà á
F	T FÎ	Ϋ́	ËF	Ě
G	T FÎ	Ϋ́	ËF	Н
Н	ΤFΪ	Ϋ́	ËÈH€G	Ě
	ΤFΪ	Ϋ́	ËĤ€G	ΪĚ
Í	ΤFΪ	Ϋ́	Ē	Н
Î	ΤFΪ	Ϋ́	ËFHF	Î

A Ya VYf Dc]bh@cUXg f6 @r (. K jbX k jh =WrLŁ

	T^{à^¦ÁŠææà^	Öãi^&cãįį}	Tæ*}ãĩ å^ŽÊËcá	Š[& acti] } ŽoĐÃá
F	T FÎ	Ý	ÈEFÌ	Ě
G	T FÎ	Ý	È€FÌ	Н
Н	ΤFΪ	Ý	È F	Ě
1	ΤFΪ	Ý	È F	ΪĚ
Í	ΤFΪ	Ý	Ì€GJ	Н
Î	ΤFΪ	Ý	Ì€GH	Î

A Ya VYf Dc]bh@cUXg f6 @) . K]bX LŁ

	T^{à^¦ÁŠææà^∣	Öãi^&cãįį}	Tæ*}ãã å^ŽÊËcá	Š[& æta]} ŽeĐÃá
F	T FÎ	Ý	È	Ě
G	T FÎ	Ý	ÈEHÏ	Н
Н	ΤFΪ	Ý	ÈFÏ	Ě
	ΤFΪ	Ý	ÈFÏ	ΪĚ
Í	ΤFΪ	Ý	EÎ I	Н
Î	ΤFΪ	Ý	È	Î

A Ya VYf Dc]bh@cUXg f6 @7 * . K]bX k]h =/W NL

	T^{à^¦ÁŠææà^	Öãå^&cã∦}	Tæt}ããå^ŽÊËcá	ŠĮ & aecajį } ŽaĐÃá
F	T FÎ	Z	ÈEHÍ	Ě
G	T FÎ	Z	È€HÍ	Н
Н	ΤFΪ	Z	ÈF	Ě
	T FÏ	Z	ÈF	ΪĚ
Í	ΤFΪ	Z	È Î	Н
Î	T FÏ	Z	È I	Î

A Ya VYf Dc]bh@cUXg f6 @7 + . K]bX NL

	T^{à^¦ÁŠææà^	Öåi^&ca∦i}	Tæ*}ãĉå^ŽÊËœá	Š[8eea]}ŽebÃá
F	T FÎ	Z	ÈEJG	Ě
G	T FÎ	Z	ÈEJG	Н
Н	ΤFΪ	Z	ÈHGJ	Ě
	ΤFΪ	Z	ÈHGJ	ΪĚ
Í	ΤFΪ	Z	È H	Н
Î	T FÏ	Z	È	Î

A Ya VYf 8 jghf jVi hYX @ UXg f6 @ (. K jbX k jh, =W/LŁ

	T^{à^¦ÁŠæaà^∣	Öãi^&cã[}	ÙcæloÁTæt*}ãĉå^ŽĐeÊ2Ê∙-á	Ò}åÁTæt}ãčå^ŽĐœÊĐÊ∙-á	ÙcæloÁŠ[&æeā]}ŽeÉÃá	Ò}åÆŠ[&ææã[}ŽdÉÄá
F	T FÎ	Ý	Ì€€H	Ì€€H	€	€
G	ΤFΪ	Ý	Ì€€H	Ì€€H	€	€
Н	ТÍ	Ý	Ì€€H	Ì€€H	€	€
	ΤI	Ý	Ì€€H	È€€H	€	€
Í	ТΪ	Ý	Ì€€H	Ì€€H	€	€
Î	ΤÎ	Ý	Ì€€H	Ì€€H	€	€
Ï	ТН	Ý	Ì€€H	Ì€€H	€	€
Ì	TG€	Ý	Ì€€H	Ì€€H	€	€
J	TGF	Ý	Ì€€H	Ì€€H	€	€

A Ya VYf 8]ghf]Vi hYX @ UXg f6 @ ') '. 'K]bX'LŁ

	T^{ à^¦ÁŠæà^∣	Öãå^&cã∦}	ÙcæbcÁTæt*}ãĉå^ŽðBeÊ2É€∙-á	Ò}åÁTætੋ}ãčå^ŽiĐaÊ2Ê∙-á	Ùcæ¦cÁŠ[&æe‡]}ŽeÉÃá	Ò}åÆŠ[&ææã[}ŽdÉÃá
F	ΤFÎ	Ý	Ì€€J	Ì€€J	€	€
G	ΤFΪ	Ý	Ì€€J	Ì€€J	€	€
Н	ΤÍ	Ý	Ì€€J	Ì€€J	€	€
	TI	Ý	Ì€€J	Ì€€J	€	€
Í	ТΪ	Ý	Ì€€J	Ì€€J	€	€
Î	ΤÎ	Ý	Ì€€J	Ì€€J	€	€
Ï	TH	Ý	Ì€€J	Ì€€J	€	€
Ì	TG€	Ý	Ì€€J	È€€J	€	€
J	TGF	Ý	Ì€€J	È€€J	€	€

A Ya VYf 8]ghf] Vi hYX @ UXg f6 @ '* . K]bX k]h. = W NL

	T^{à^¦ÁŠææà^∣	Öãå^&cãį}	Ùcæ¦cÁTæ*}ãĩå^ŽĐeÊĐÊ∙~á	Ò}åÁTæt}ãčå^ŽĐdÊ2Ê∙-á	ÙcæloÁŠ[&æeā[}ŽeÉÃá	Ò}åÄĞ[&ææā[}ŽcdÉÄá
F	TG	Z	Ì€€H	Ì€€H	€	€
G	TF	Z	Ì€€H	Ì€€H	€	€
Н	ΤÌ	Z	Ì€€H	Ì€€H	€	€
	TI	Z	Ì€€H	Ì€€H	€	€
Í	ΤÍ	Z	Ì€€H	Ì€€H	€	€
Î	T FÍ	Z	Ì€€H	Ì€€H	€	€
Ï	ΤÏ	Z	Ì€€H	Ì€€H	€	€
Ì	ΤÎ	Z	Ì€€H	Ì€€H	€	€
J	T FI	Z	Ì€€H	Ì€€H	€	€
F€	ТJ	Z	Ì€€H	Ì€€H	€	€
FF	T FG	Z	Ì€€H	Ì€€H	€	€
FG	T FH	Z	Ì€€H	Ì€€H	€	€
FH	T FF	Z	Ì€€H	Ì€€H	€	€
FI	TF€	Z	Ì€€H	Ì€€H	€	€
FÍ	TG€	Z	Ì€€H	Ì€€H	€	€
FÎ	TGF	Z	Ì€€H	Ì€€H	€	€

A Ya VYf '8]glf]Vi hYX @ UXg 'f6 @ '+'. 'K]bX 'NL

	T^{ à^¦ÁŠææà∧	Öãå^&cã[}	ÙcæłoÁTæ*}ãčå^ŽĐe£ĐÊ€•~á	Ò}åÁTæ*}ãčå^ŽĐœÊ2Ê∙~á	Ùcælo∕ç[&æaqā[}ŽeÉÃá	Ò}åÆĞ[&æasã[}ŽdÊÃá
F	ΤG	Z	Ì€€J	Ì€€J	€	€
G	TF	Z	Ì€€J	Ì€€J	€	€
Н	ΤÌ	Z	Ì€€J	Ì€€J	€	€
	TI	Z	Ì€€J	Ì€€J	€	€
Í	Τĺ	Z	Ì€€J	Ì€€J	€	€
Î	T FÍ	Z	È€€J	È€€J	€	€

A Ya VYf 8]ghf]Vi hYX @ UXg f6 @ +. K]bX NL f7 c bh]bi YXL

	T^{à^¦∕Šæà^∣	Öãå^&cãį}}	ÙcælcÁTæt*}ãĉå^ŽðBeÊ2Ê∙-á	Ò}åÁTæt}ãčå^ŽĐœÊĐÊ∙-á	ÙcæloÁŠ[&æe‡]}ŽeÉÃá	Ò}åÆĞ[&ææã[}ŽcdÉÄá
Ï	ΤÏ	Z	Ì€€J	Ì€€J	€	€
Ì	ΤÎ	Z	Ì€€J	Ì€€J	€	€
J	T FI	Z	Ì€€J	È€€J	€	€
F€	ТJ	Z	Ì€€J	È€€J	€	€
FF	T FG	Z	Ì€€J	È€€J	€	€
FG	T FH	Z	Ì€€J	Ì€€J	€	€
FH	T FF	Z	Ì€€J	Ì€€J	€	€
FI	T F€	Z	Ì€€J	Ì€€J	€	€
FÍ	TG€	Z	Ì€€J	È€€J	€	€
FÎ	TGF	Z	È€€J	È€€J	€	€

6 Ug]W@ UX 7 UgYg

	ÓŠÔÁÖ^∙&¦ậ[cā[}	Ôæc^*[¦^	ÝÁÕ¦æçãcî	ŸÁÕ¦æçãcî	ZÁÕ¦æçãĉ	RÈÈÈ	Ú[ậc	Öã⊧dâaĭÈÉ	₩ ₩ ₩	Ù`¦æ&∧ÈÈÈ
F	Ù^ -ÁY ^∄@c	ÖŠ		Ë						
G	Ö^æåÁŠ[æå	Þ[}^					Î			
Н	C&^ÁŠ[æå	Þ[}^					Î			
	YājåÁjãc@ÁQ3∧ÁÝ	Þ[}^					Î	J		
Í	Υ āļ åΑΎ	Þ[}^					Î	J		
Î	YājåÁ,ãc@ÁQ3∧ÁZ	Þ[}^					Î	FÎ		
Ï	Y ðj å ÁZ	Þ[}^					Î	FÎ		

@UX'7 ca V]bUhjcbg

	Ö^∙&¦ājcāj} Ù[ç^ ÚÖ^∣œe	e ÈÈÓÈ	ÊØæĤ	ÓŠÔ	Øæ	ÓÈÈ	Øæ	ÈÓÌÌÌÌ	Øæ	ÓÈ	Øæ	ÓÈÈ	Øæ	ÓÌÌÌ	Øæ	ÈÓÈÈ	Øæ	ÈÓÌÌÌ	EØæ∰	ÉÓÈÈ	Øæ
	FÈGÖÆÆFËY ÁÇÝËãã^&caÈĘŸ		F	FÈG	G	FÈG	Í	FÊ														
	€ÐÖÆÆFĒYÁÇÝËåå^&dæĔŸ		F	È	G	È	Í	FÊ														
	FÈGÖÆÆFÈEÖÆÆFÈEY æÇÈÈÈŸ		F	FÈG	G	FÈG	Н	F		F												
	FÈGÖÆÆFE YÁÇZËåã^&ca EŸ		F	FÈG	G	FÈG	Ï	FÊ														
	€ÐÖÆÆTÈYÁÇZËåã^&cãÈÈŸ⁄		F	È	G	È	Ï	FÊ														
Î	FÈGÖÆÆFÈEÖÆÆFÈEY æGEPY	• Ÿ	F	FÈG	G	FÈG	Η	F	Î	F												

9bjYcdY>c]bhFYU**Wj**cbg

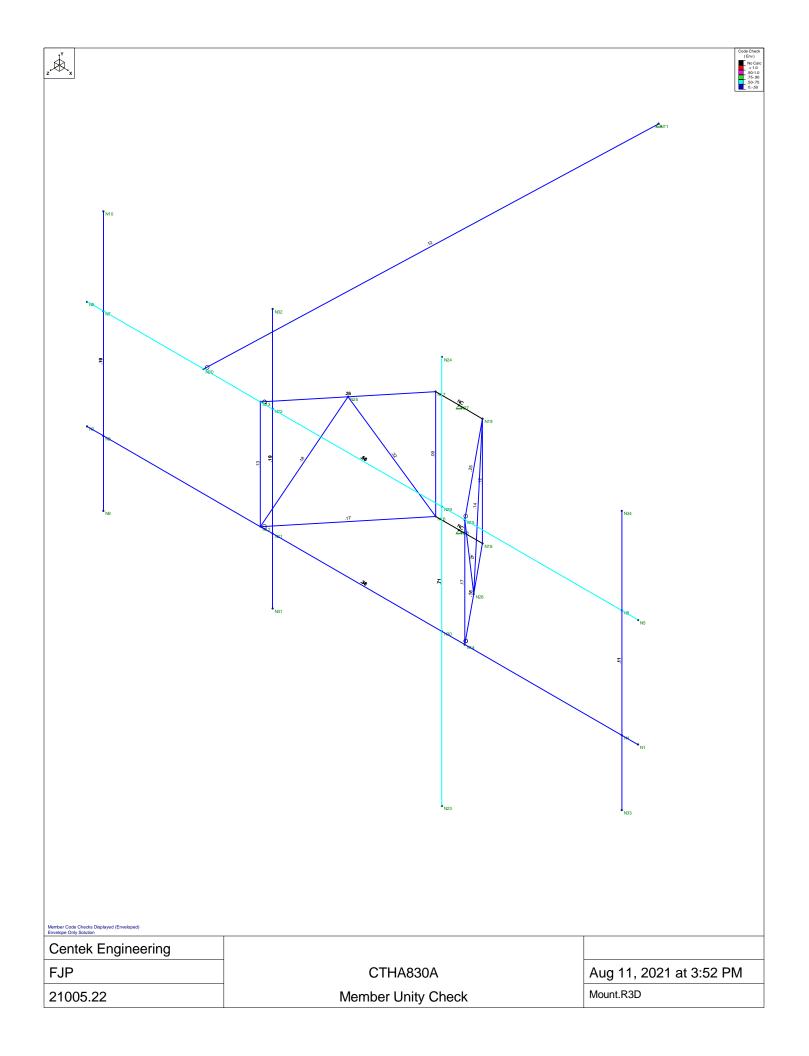
	RĮą̃ic		ÝÄŽá	ŠÔ	ΫÁΣťá	ŠÔ	ZÁŽÍÁ	ŠÔ	ΤÝÃŽËcá	ŠÔ	ΤΫÁϪĔcá	ŠÔ	TZÁŽË-cá	ŠÔ
F	ÞFF	{ 28¢	Ë€€G	Î	Ì€GF	F	ÈGÏG	1	€	Î	€	Î	€	Î
G		{ ā }	ÊEEIÌ	G	Ì€FÎ	Í	ËÏIÌ	F	€	F	€	F	€	F
Н	ÞĠ	{ 26¢	Ì€HÏ	-	FÈÎ	Î	ÈF	G	€	Î	€	Î	€	Î
1		{ ā	ËÈFÏ	G	ÈÌÎ	G	ËGËĚÏJ		€	F	€	F	€	F
Í	ÞĠ	{ 38¢	ÌL€	Î	ÈlÍ	Н	FË€G	Н	€	Î	€	Î	€	Î
Î		{ ā	ΞĔ€Ι	F	ÈÍ F	Í	ËĬFÌ	Í	€	F	€	F	€	F
Ï	V[cæ∳K	{ 28¢	€	Î	FÈÍJ	Î	€	F						
Ì		{ ₫	ËÈĤÍ	F	ÊΙ	G	ËGËLIÍ							

9bjY`cdY`>c]bh8]gd`UWYa Ybhg

	RĮą̃c		ÝÃÃgiá	ŠÔ	ΫÁğājá	ŠÔ	ZÄŽajá	ŠÔ	Ý ÁÜ[cæaā]} Á À È È ŠÔ	ŸÁÜ[cæcā[}Á2ÊÈĚŠÔ	ZÁÜ[cæqā]}ÁŽ100
F	ÞF	{ 28¢	ÈÌÍ	F	ΪΕΕΕΗ	Н	ÈÍÍ	Í	FÐÍÏ^ËH H	ÌÈÏÏ^ËH F	FÈFIH^ËHH
G		{ ā	É⊞JÌ	Í	Ë	Í	Ë€Ì	F	ËGÈHFHYËH Í	ËFĒLÎÍ^ËGÍ	ËËÍJ^Ë Í
Н	ÞG	{ 28¢	ÈÌÍ	F	ËEIÏ	Í	ÈHFÎ		ÌËEË, AËH Í	FĚFÏ^ËG I	GËLJ∧ËH H

9bjYcdY>c]bh8]gd`UWYa Ybhg`fl7cbh]bi YXŁ

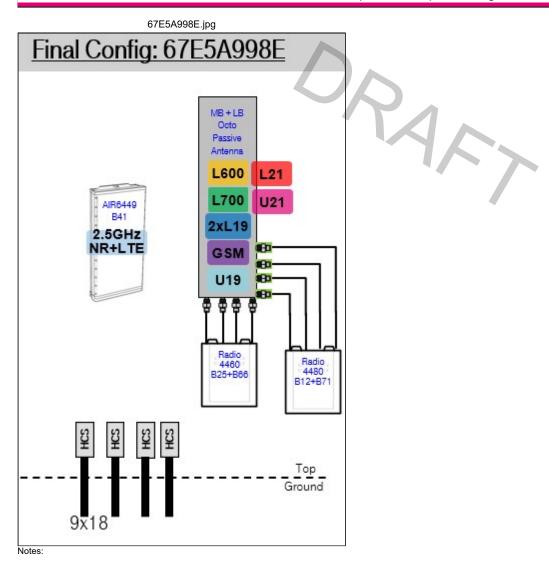
								čê	× /	
	RĮĝic	(3	ÝÃãjá	ŠÔ Í	<u> </u>	ŠÔ	ZÃŽajá Třeci	ŚÔ	Ý ÁÜ[cæaā]} Á2000	
Í	БЦ	{ a	<u>⊞</u> EÌí	+	JÍ	H		G	ËËÈHÍÎ∧ËH F ÎËE€I∧ËH Í	
Î	ÞH	{ æ¢		F						
7		{ a	<u> </u>		<u> </u>	Н	Ê€€G	G		
	ÞI	{ æ¢		F	<u>iiiee</u> ì	Н	ÈÌ	<u> </u>		
		{ a	<u> </u>		ÊEGÌ		ËÎÎ	F		
J	ÞÍ	{ æ¢		G	<u> </u>	H				JÈEÏÍ ^ËH F FÈEGG^ËH H
F€	L Î	{ a				Í	ËÎG	F	FÈHIÎ ^ËH G	ËFÊJF^ËG Í ËLÊ€G^Ë Í
FF	ÞÎ	{ æ¢		G			<u>Ě</u> ÎÏ			FÈFÏ^ËG I GĚGH/ËH H
FG	- ï	{ a			<u> </u>	H	<u> </u>	G		
FH	ÞÏ	{ æ¢		G						
FI	- ì	{ a				Н	ËËÏF	G		
FÍ	ÞÌ	{ æ¢		G	Ê€€Ì	Н	ÈÏÌ			
FÎ		{ a			ÊEGÌ		ËGF	F		
FÏ	ÞJ	{ æ¢	<u>È</u> EFÏ	F			<u>È</u> GJ			FĚFĨ∧ËG I GÈEÍ∧ËH H
FÌ	L 50	{ ā			<u> </u>	H	È€JG	G		
FJ	ÞF€	{ æ¢		G			<u>Ĕ</u> Ġ		FÈ€ÍI^ËG Í	
G€		{ ā	<u> </u>		<u> </u>	H	<u> </u>	F		
GF	ÞFF	{ æ¢	€		€		€			
GG	- FO	{ a	€ (F	€ È	F	€	F	<u>FÈ€J^ËH G</u>	
GH	ÞFG	{ æ¢		F	È€FH	Н	ÈÏ G	F		
G		{ a	<u> </u>		<u> </u>		ÊGF			
GÍ	ÞFH	{ 26¢		G	<u>É</u> EFG	Н	ÊG	G	HÈGF^ËH Í	
Ĝ		{ a	<u> </u>		Ê€€Î		ÊÊJ	ļ.	ËFĚH^ËH F	
Ğ	ÞFl	{ 28¢		F	Ë€€Ï		ÊFI			
GÌ		{ a	<u> </u>		<u> </u>	H	<u> </u>	F	ËËJG^ËH Í	
GJ	ÞFÍ	{ æ¢		G	Ê€€Ï		<u>Ē</u> JJ			
H€	^	{ a	Ϊ			H	ÊÊÊĞ	G	FÈEJG^ËH G	
HF	ÞĤ	{ 28¢	€		È€€J		È€GG	F	Í ÈGGH^Ë F	
HG		{ a	€	F	Ë€€H	F	Ê			
HH	ÞFÏ	{ 26¢	€		<u>É</u> FF		€	F		
H		{ a	€	F	Ë€€G	G	<u> </u>		ËGËGËÍ ^ËE G	
HÍ	ÞFÌ	{ 26¢	€		È€H	F	<u>È</u>		Í ÈGGH^Ë F	
HÎ		{ a	€	F	Ê€€J		<u>iff€GG</u>	F		
HÏ	ÞFJ	{ 28¢	€		È€€G	G	È€IH			
HÌ		{ a	€	F	<u> <u>H</u>EFF</u>		€	F		
HJ	ÞŒ	{ 28¢		G		G	<u>È€</u> €J	G	<u>ÍÈ€+∧Ë⊣</u> Í	FĚ HY ËG I Í ÈGÎ ^ËH H
١€	. ~	{ a			<u> </u>		Ê€€Ì		ËGË GG^ËH F	
IF	ÞŒ	{ æ¢		F	<u>É</u> FÎ	H	<u>Ē</u> ĪF	F		
IG	L C	{ a			<u>iiiee</u> l					
IH	ÞGG	{ æ¢		G	<u>È</u> €FÏ	Н	<u>È</u> HÌ	G		
	E G I	{ a			<u> </u>		<u>iit≎€î</u>			
	ÞGH	{ æ¢		F	Ë€€Ï		<u><u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> </u>		FÉHGHYËH H	
<u> </u>	1.0	{ a	ÊC€Í		<u> </u>	H		F		
ΙÏ	ÞG	{ æ¢		G	Ë€€Ï		<u> </u>			
		{ a			<u> </u>	H		G		
IJ	ÞĠ	{ 26¢	<u>È</u>	G	Ê€F	Н	<u>È</u>	F		
Í€		{ a			€		<u> </u>	ļ		
ÍF	ÞĜ	{ 26¢		F	Ê€€Î		<u>È</u> HÍ		FÈHEINËH H	ÏÈHÌGAËH F FÈÈFJAË F
ÍG		{ a	ÊEF€H		Ë€GÎ	H		F		
ĺΗ	ÞĞ	{ 26¢	€		€		€			
ÍI		{ a	€	F	€	F	€	F	ËGËGË Í ^ËI G	
ÍÍ	ÞĠ	{ æ¢	€		€		€		ÍÈGGH^ÉË∣F	HÈHĤ^ËH F IËËǴ^Ë F
						(#.			Ͷ ͻ ϷϥΪã α(⊔Ϧͻ	


Úæ*^Å

9bjY`cdY`>c]bh8]gd`UWYaYbhg`f17cbh]biYXŁ

RĮą̃c		ÝÃÃjá	ŠÔ	ΫÁឨ)á	ŠÔ	ZÄŽajá	ŠÔ	Ý ÁÜ [cæeā]} Á À ÉÉŠÔ	ŸÁÜ[cæqā]}Á2000 ZÁÜ[cæqā]}Á2000 Š
ÍÎ	{ 3}	€	F	€	F	€	F	ËHÈ€ÍI∧ËÍÍÍ	ËËIÍ^ËHÍ ËFÈHG^ËHÎ
ÍÏ ÞGJ	{ 28¢	ÈÍÌ	G	ËEEÏ	Í	ÈG		JÐÍI^ËH I	ÌÈÌÍ^ËH G ÎÈÌJI^Ë Î
ÍÌ	{ a	ËÈÌΪ		ÉEÉÍF	Η	Ë€ËG	G	FÈEÏH^ËHG	ËFÈFIH^ËG Í ËIÈHÍ^Ë G
ÍJ ÞH€	{ 28¢	ÈÌÍ	F	ËEEÏ	Í	ÈHÌ	Í	FÈHIJ^ËH H	JÈEIÌ∧ËH F FÈE∋€Í∧ËH F
΀	{ a	ÉÈLI	Í	ÉEÉÍF	Н	ËÊFFI	F	ËLÈÌI^ËH Í	ËFÈTAËG Í ËFÈGGAË Í
ÎF ÞHF	{ æ¢	ÈJÍ	F	È€FÏ	Н	ÈIJ	F	ËFÈFF^ËH Í	FÈFÏH^ËHÎÌÈÈ€G^ËEH
ÎG	{ a	ËÈJÏ	Í	Ë€€I		Ë⊞JÎ	Í	ËFÈGÌI^ËH H	IËIÌ^Ë GËFÈÏF^Ë Í
ÎH ÞHG	{ 38¢	ÈIÎ	G	Ì€FÏ	Н	ÈF	G	HÈGHÌ^ËH Í	HÈHIAËH I FÈFRAËH H
ÎI	{ a	ËÊFJF	1	Ë€€I		ËFHF		ËFÈGÎI^ËH F	ËGËLÍJ^ËH G ÏÈĒJÌ^ËL Í
ÎÍ ÞH	{ 38¢	ÈG	F	Ë€€Ì	Н	ЪGН	Í	FÐÍÏ^ËH H	ÌÈÏÏ^ËH F FÈÈÎ^ËH H
ÎÎ	{ a	Ê€€Ê	Í	Ë€GÌ		₩JÍ	F	ËGÈHUHMËH Í	ËFËLÎÍ^ËGÍ ËËLÎ^Ë Í
ÎÏ ÞH	{ 28¢	ÈIJ	G	Ë€€Ì	Н	ÈΗÌ		GĚÌH^ËHI	JÈEÏÍ^ËH F JÈÈH°Ë H
ÎÌ	{ a	ËΪÌ		Ë€GJ		⊞ìì	G	FÈHIÎ^ËH G	ËFËJ^ËG Í ËLĚJJ^Ë Í

9bjYcdY5=G7'% h fl*\$!%\$L'@F:8'GhYY'7cXY7\YWg


	T∧⊞Ù	Q QÊÊ)[å^Æ)∰	Ĕğ⊞≣	ŠÔ	Ù@æ∰	šį &∰È Öå	ŠÔ]@3EÚ}&AŽá]@3EÚ}oÁĨčá]@3ET}ÁÈÉ	ˇ@aET}ÈÈÈ	ÈÔà	Ò~}
F	ΤFÚ	DÓÈÈ	ÈĤI	IÈHÈÈ	Í	ÈÌ€	ÌÈÈ		FI ÈĞÏ	HGÈFH	FÈÏG	FÈÏG	GĚÏÌ	PFËFà
G	ΤGÚ	DÓÈÈ	ĚÎF	нÌ		ÈEFG	ÌÈĖ		GJÈFÍ	HGÈFH	FÈÏG	FÈÏG	GÈÈ	PFËFà
Н	ΤΗÚ	DÓÈÈ	ÈFÍ	ÍÈ€ÈÈÈÈ	F	Ì€€Ì	€	F	JÈÌF	HGÈFH	FÈÏG	FÈÏG	FÈFHÎ	PFËFà
	TΙ Ú	DÓÈÈ	ÈGÎH	GÈÌÌ	G	ÈÎI	GÊÌÌ	Н	FJÈ€II	FJËÌÌ	È€F	È€F	FÈJJ	PFËFà
Í	ΤĺÚ	DÓÈÈ	ÈÏF	GÈÌÌ	F	ÈEIÌ	GÊÌÌ	Н	fî Èghî	FJËÌÌ	È€F	È€F	FĚG	PFËFà
Î	ΤÎÚ	DÓÈÈ	ÈÎÍ	GÈÌÌ	F	Ȁ̀	FÈI	Í	FJÈ€II	FJËÌÌ	È€F	È€F	GÈUÏ	PFËFà
Ï	ΤÏÚ	DÓÈÈ	ÈGÍÍ	GÈÌÌ	G	ÈÈÌI	GÊÌÌ		fî Èghî	FJËÌÌ	È€F	È€F	FËÌG	PFËFà
Ì	TÌ €	ÊÈ	ÈEHG	€		Ì€GÎ	€	F	IÈHÏÌ	JÈI	È€	È€	GÈĜÎ	PFËFà
J	TJ€		ÈΪF	€		Ì€€Î	GĚ	Î	IÈHÏÌ	JÈI	È€	È€	GÈGÍH	PFËFà
F€	TF€€		ÈÌG	€		È€IG	€		HÈHF	JÈI	È€	È€	GĚJH	PFËFà
FF	T FF €	ĒĦ	ÈHGF	GÈÈÈÈ		Ì€FÌ	€	G	HÈHF	JÈI	È€	È€	GËFF	PFËFæ
FG	TFG€		ÈĤ	GÈÈÈÈ		È€HG	€	F	HÈHF	JÈI	È€	È€	GÈÉÍJ	P FËFà
FH		ÊÈ	ÈG	GÈÈÈÈ	Î	Ì€€Ì	GÊÊ		HÈHF	JÈI	È€	È€	GËĽÍG	PFËFæ
FI		ÊÈ	ÈFÏ	€		È€GF	€	Н	IÈHÏÌ	JÈI	È€	È€	GÈGÎÍ	P FËFà
FÍ	TFÍ€	ĒĦ	ÌL€	€		Ì€GF	€	Н	IÈHÏÌ	JÈI	È€	È€	GÈGÎÍ	PFËFà
FÎ	ΤFÎÚ	DÓÈÈ	ÈÌÎ	ΙĚ	Î	Ϊ	HÈEÈÈÈ		G-È€ÌÌ	HGÈFH	FÈÏG	FÈÏG	GÈ€€Ì	PFËFà
FΪ	ΤFΪÚ	DÓÈÈ	Ë€Ì	Н		ÈËÏ€	ÍĚĖ	Í	FJÈJÎ I	HCÈFH	FÈÏG	FÈÏG	Í	PFËFà
FÌ	TG€Ú	DÓ	ÈÌÏ	G		È	G	F	GÎÈ€€Í	HGÈFH	FÈÏG	FÈÏG	Í	PFËFà
FJ	ΤGFÚ	DÓ	È€Í	G	Í	È€€J	G	Í	GÎÈ€€Í	HGÈFH	FÈÏG	FÈÏG	GÈ€I	PFËFà

		Section 1 - Site Inform	ation	
Site ID: CTHA830A Status: Draft Version: 1 Project Type: Sprint Retain Approved: Not Approved Approved By: Not Approve Last Modified: 7/9/2021 4: Last Modified By: Michael	ed 16:47 PM	Site Name: CTHA830A Site Class: Monopole Site Type: Structure Non Building Plan Year: 2021 Market: CONNECTICUT CT Vendor: Ericsson Landlord: Not Specified	Latitude: 41.99961 Longitude: -72.35 Address: 157 Han City, State: Staffor Region: NORTHE/	560000 npden Rd d Springs, CT
RAN Template: 67E5A998E	6160	AL Templa	ate: 67E5998E_1xAIR+10P	
Sector Count: 3	Antenna Count: 6	Coax Line Count: 0	TMA Count: 0	RRU Count: 6
		Section 2 - Existing Templa	te Images	

----- This section is intentionally blank. -----

Section 3 - Proposed Template Images

Section 4 - Siteplan Images

----- This section is intentionally blank. -----

DRAFT

CTHA830A_Sprint Retain_1_draft

Print Name: Standard (2) PORs: New Build_Sprint Keep

Section 5 - RAN Equipment

Existing RAN Equipment

----- This section is intentionally blank. -----

		Proposed RAN	Equipment			
		Template: 67E5/	A998E 6160			
Enclosure	1		2		3	
Enclosure Type	Enclosure 6160	(RBS 6601)		B160		
Baseband	BB 6648 BB 6648 BB 6648 L700 L2500 L2100 L600 N2500 L1900	DUG20 G1900				
Transport System	CSR IXRe V2 (Gen2)					
Functionality Groups	Ericsson Hybrid Trunk 6/24 4AWG *Select Length* (x 3)					
RAN Scope of Work	с.					
CT33XC553 Existing & planned Existing 200A servi	azimuth: 0 / 120 / 240 ce					

SA @ 66%

Antenna - omni to be researched - Fire Dept possible

Generator needed - space is available

CTHA830A_Sprint Retain_1_draft

Print Name: Standard (2) PORs: New Build_Sprint Keep

Section 6 - A&L Equipment

Existing Template: Custom Proposed Template: 67E5998E_1xAIR+1OP

Sector 1 (Proposed) view from behind							
Coverage Type	A - Outdoor Macro						
Antenna	1				2		
Antenna Model	RFS - APXVAALL	24_43-U-NA20 (Octo			Ericsson - AIR6449 B41 (Active Anten	na - Massive MIMO)	
Azimuth	0				0		
M. Tilt	0				0		
Height	171				(171)		
Ports	P1	P2	P3	P4	P5	P6	
Active Tech.	L700 L600 N600	L700 L600 N600	L2100 L1900 G1900	L2100 L1900 G1900	(L2500) (N2500)	(L2500) (N2500)	
Dark Tech.							
Restricted Tech.							
Decomm. Tech.							
E. Tilt	2	2	2	2	2	2	
Cables	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)			
TMAs							
Diplexers / Combiners							
Radio	Radio 4480 B71+B85 (At Antenna)	SHARED Radio 4480 B71+B85 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)			
Sector Equipment							
Unconnected Equip	Unconnected Equipment:						
Scope of Work:							
*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword							

RAN Template: A&L Template: 67E5A998E 6160 67E5998E_1xAIR+10P

CTHA830A_Sprint Retain_1_draft

PORs: New Build_Sprint Keep Sector 2 (Proposed) view from behind **Coverage Type** A - Outdoor Macro Antenna 1 2 Antenna Model (RFS - APXVAALL24_43-U-NA20 (Octo)) (Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO)) Azimuth (120) (120) M. Tilt 0 0 Height (171) (171) **P1** Ports **P4 P5 P6 P2 P3** Active Tech. (L700) (L600) (L700) (L600) (L2100) (L1900) (L2100) (L1900) (L2500) (N2500) (L2500) (N2500) (N600) (N600) G1900 (G1900) Dark Tech. **Restricted Tech.** Decomm. Tech. E. Tilt 2 2 2 2 (2) (2) Cables Coax Jumper Coax Jumper Coax Jumper Coax Jumper (x2) (x2) (x2) (x2) TMAs Diplexers / Combiners Radio Radio 4480 Radio 4460 SHARED SHARED Radio 4460 B71+B85 (At Radio 4480 B25+B66 (At B71+B85 (At B25+B66 (At Antenna) Antenna) Antenna) Antenna) Sector Equipment **Unconnected Equipment:**

Scope of Work:

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

RAN Template: A&L Template: 67E5A998E 6160 67E5998E_1xAIR+10P

CTHA830A_Sprint Retain_1_draft

Sector 3 (Proposed) view from behind

Coverage Type	A - Outdoor Macro						
Antenna	1				2		
Antenna Model	(RFS - APXVAALL24_43-U-NA20 (Octo))				Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO)		
Azimuth	240				(240)		
M. Tilt	0				0		
Height	(171)				(171)		
Ports	P1	P2	P3	P4	P5	P6	
Active Tech.	L700 L600 N600	L700 L600 N600	L2100 L1900 G1900	L2100 L1900 G1900	L2500 N2500	(L2500) (N2500)	
Dark Tech.							
Restricted Tech.							
Decomm. Tech.							
E. Tilt	2	2	2	2	2	2	
Cables	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)			
TMAs							
Diplexers / Combiners							
Radio	Radio 4480 B71+B85 (At Antenna)	SHARED Radio 4480 B71+B85 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)			
Sector Equipment							
Unconnected Equip	ment:						
O a ser a Children la							
Scope of Work:							

RAN Template: 67E5A998E 6160

A&L Template: 67E5998E_1xAIR+1OP	CTHA830A_Sprint Retain_1_draft
-------------------------------------	--------------------------------

	Section 7 - Power Systems Equipment				
	Existing Power Systems Equipment				
	This section is intentionally blank				
	Proposed Power Systems Equipment				
Enclosure					
Enclosure Type	Enclosure 6160				

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA830A

157 Hampden Road Stafford Springs, Connecticut 06076

October 18, 2021

EBI Project Number: 6221006192

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	7.92 %			

October 18, 2021

T-Mobile Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTHA830A

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **157 Hampden Road** in **Stafford Springs, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 157 Hampden Road in Stafford Springs, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower. For power density calculations, the broadcast footprint of the AlR6449 antenna has been considered. Due to the beamforming nature of this antenna, the actual beam locations vary depending on demand and are narrow in nature. Using the broadcast footprint accounts for the potential location of beams at any given time.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.

- 6) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 7) I LTE Traffic channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 60 Watts.
- 8) I LTE Broadcast channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 20 Watts.
- 9) I NR Traffic channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of I20 Watts.
- 10) I NR Broadcast channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 40 Watts.
- 11) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 12) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 13) The antennas used in this modeling are the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 640 for the 2500 MHz / 200 MZ / 200 MH

specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 14) The antenna mounting height centerline of the proposed antennas is 171 feet above ground level (AGL).
- 15) Emissions from additional carriers were not included because emissions data for the site location are not available.
- 16) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	RFS APXVAALL24_43- U-NA20	Make / Model:	RFS APXVAALL24_43- U-NA20	Make / Model:	RFS APXVAALL24_43- U-NA20
Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz
Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd / 15.45 dBd / 15.45 dBd / 16.45 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd / 15.45 dBd / 15.45 dBd / 16.45 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.65 dBd / 15.45 dBd / 15.45 dBd / 16.45 dBd
Height (AGL):	171 feet	Height (AGL):	171 feet	Height (AGL):	171 feet
Channel Count:	13	Channel Count:	13	Channel Count:	13
Total TX Power (W):	560 Watts	Total TX Power (W):	560 Watts	Total TX Power (W):	560 Watts
ERP (VV):	17,868.72	ERP (VV):	17,868.72	ERP (VV):	17,868.72
Antenna AI MPE %:	3.12%	Antenna BI MPE %:	3.12%	Antenna CI MPE %:	3.12%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449
Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz
Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd	Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd	Gain:	22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd
Height (AGL):	171 feet	Height (AGL):	171 feet	Height (AGL):	171 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts
ERP (VV):	36,356.09	ERP (VV):	36,356.09	ERP (W):	36,356.09
Antenna A2 MPE %:	4.80%	Antenna B2 MPE %:	4.80%	Antenna C2 MPE %:	4.80%

Site Composite MPE %					
Carrier	MPE %				
T-Mobile (Max at Sector A):	7.92%				
no additional carriers	N/A				
Site Total MPE % :	7.92%				

T-Mobile MPE % Per Sector						
T-Mobile Sector A Total:	7.92%					
T-Mobile Sector B Total:	7.92%					
T-Mobile Sector C Total:	7.92%					
Site Total MPE % :	7.92%					

T-Mobile Maximum MPE Power Values (Sector A)							
T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
T-Mobile 600 MHz LTE	2	591.73	171.0	1.56	600 MHz LTE	400	0.39%
T-Mobile 600 MHz NR	I	1577.94	171.0	2.08	600 MHz NR	400	0.52%
T-Mobile 700 MHz LTE	2	695.22	171.0	1.84	700 MHz LTE	467	0.39%
T-Mobile 1900 MHz GSM	4	1052.26	171.0	5.56	1900 MHz GSM	1000	0.56%
T-Mobile 1900 MHz LTE	2	2104.51	171.0	5.56	1900 MHz LTE	1000	0.56%
T-Mobile 2100 MHz LTE	2	2649.42	171.0	7.00	2100 MHz LTE	1000	0.70%
T-Mobile 2500 MHz LTE IC & 2C Traffic	I	11044.63	171.0	14.58	2500 MHz LTE IC & 2C Traffic	1000	1.46%
T-Mobile 2500 MHz LTE IC & 2C Broadcast	I	1074.06	171.0	1.42	2500 MHz LTE IC & 2C Broadcast	1000	0.14%
T-Mobile 2500 MHz NR Traffic	I	22089.26	171.0	29.17	2500 MHz NR Traffic	1000	2.92%
T-Mobile 2500 MHz NR Broadcast	I	2148.13	171.0	2.84	2500 MHz NR Broadcast	1000	0.28%
						Total:	7.92%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector A:	7. 9 2%
Sector B:	7.92%
Sector C:	7.92%
T-Mobile Maximum MPE % (Sector A):	7.92%
Site Total:	7.92%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **7.92%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.