

August 29, 2014

David Martin and Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE:

Notice of Exempt Modification 151 Sand Hill Road South Windsor, CT 06074 T-Mobile #: CT11497A N 41° 50' 09.24" W -72° 33' 07.56"

Dear Mr. Martin and Members of the Siting Council:

On behalf of T-Mobile Northeast LLC, SBA Communications is submitting an exempt modification application to the Connecticut Siting council for modification of existing equipment at a tower facility located at 151 Sand Hill Road, South Windsor CT.

The 151 Sand Hill Road facility consists of a 187' MONOPOLE Tower owned and operated by SBA Properties, LLC. In order to accommodate technological changes and enhance system performance in the State of Connecticut, T-Mobile Northeast LLC plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of the municipality in which the affected cell site is located.

T-Mobile Northeast LLC wishes to upgrade their equipment to meet the new standards of 4G technology. The new equipment will allow customers to download files and browse the internet at a high rate of speed while also allowing their phones to be compatible with the latest 4G technology.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site along with the required fee of \$625.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be

significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

- 1. The overall height of the structure will be unaffected.
- 2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound other than the new equipment cabinets.
- 3. The proposed changes will not increase the noise level at the existing facility by six decibels or more.
- 4. The changes in radio frequency power density will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, SBA Communications on behalf of T-Mobile Northeast LLC, respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (508) 251-0720 x 3807 with any questions you may have concerning this matter.

Thank you,

Peter Nute

SBA Communications Corporation 33 Boston Post Road West Suite 320

Marlborough, MA 01752 508-251-0720 x 3807 + T

508-251-1755 + F

Pnute@sbasite.com

T-Mobile Northeast LLC Equipment Modification

151 Sand Hill Road, South Windsor CT Site number CT11497A

Tower Owner:

SBA Properties, LLC

Equipment Configuration:

MONOPOLE Tower

Current and/or approved:

(3) RFS APX16PV-16PVL-C

(3) EMS RR90-17-02DPL2

(6) Andrew ETW200VA12UB

· (12) 1-5/8" Feed Lines

Planned Modifications:

- (3) Ericsson Air 21 B2A/B4P
- (3) Ericsson Air 21 B4A/B2P
- · (3) Ericsson KRY 112 144
- · (12) 1-5/8" Lines
- · (1) 1-5/8" Fiber Line

Structural Information:

The attached structural analysis demonstrates that the tower and foundation will have adequate structural capacity to accommodate the proposed modifications.

Power Density:

The anticipated Maximum Composite contributions from the T-Mobile facility are 4.25% of the allowable FCC established general public limit. The anticipated composite MPE value for this site assuming all carriers present is 61.77% of the allowable FCC established general public limit sampled at the ground level.

Site Composite MPE%		
Carrier	MPE%	
T-Mobile	4.25	
Town	6.87 %	
Sprint	7.60 %	
AT&T	13.10 %	
Clearwire	0.83 %	
Nextel	2.54 %	
Verizon Wireless	26.58 %	
Site Total MPE %:	61.77 %	

August 29, 2014

Matthew B. Galligan Town Manager Town of South Windsor Town Hall 1540 Sullivan Ave. South Windsor, CT 06074

RE: Telecommunications Facility @ 151 Sand Hill Road, South Windsor CT

Dear Mr. Galligan,

In order to accommodate technological changes and enhance system performance in the State of Connecticut, T-Mobile Northeast LLC will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies (R.C.S.A.) Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review T-Mobile's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Sprint's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (508) 251-0720 x 3807.

Thank you,

Peter Nute

SBA Communications Corporation 33 Boston Post Road West Suite 320 Marlborough, MA 01752 508-251-0720 x 3807 + T

508-251-1755 + F

Pnute@sbasite.com

SBA Network Services, LLC

To: CONNECTICUT SITING COUNCIL

129986

Check Number:

2083707

Date:

08/26/2014

Invoice Number

Invoice Date Description

Gross Amount

Taxes Withheld

Net Amount

PRSF08251410

08/27/2014

CSC Fee for CT11497A

\$625.00

\$0.00

\$625.00

\$625.00

\$0.00

\$625.00

SBA Network Services, LLC 5900 Broken Sound Parkway NW Boca Raton, FL 33487-2797 (561) 995-767(Wells Fargo Bank

2083707

061209756

129986

DATE

AMOUNT

Six Hundred Twenty Five Dollars And 00 Cents

08/26/2014 Void After 120 Days \$625.00

Pay to the Order of:

CONNECTICUT SITING COUNCIL ACCOUNTS RECEIVABLE TEN FRANKLIN SQUARE

NEW BRITAIN, CT 06051

Buen Lazarus

" 208 3 70 7 " 1206 1 209 7 5611 20 7 9 9 0 0 4 2 4 5 6 6 II"

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11497A

SBA South Windsor 151 Sand Hill Road South Windsor, CT 06074

August 25, 2014

Site Compliance Summary			
Compliance Status:	COMPLIANT		
Site total MPE% of FCC general public allowable limit:	61.77 %		

August 25, 2014

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11497A – SBA South Windsor

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **151 Sand Hill Road**, **South Windsor**, **CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm2). The general population exposure limit for the 700 MHz Band is 567 μ W/cm2, and the general population exposure limit for the PCS and AWS bands is 1000 μ W/cm2. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **151 Sand Hill Road, South Windsor, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
- 2) **2** UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

- 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antennas used in this modeling are the **Ericsson AIR21 B4A/B2P** for 1900 MHz (PCS) and 2100 MHz (AWS) channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The **Ericsson AIR21 B4A/B2P** has a maximum gain of **15.9 dBd** at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is **160 feet** above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	В	Sector:	C
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	160	Height (AGL):	160	Height (AGL):	160
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	2	Channel Count	2	# PCS Channels:	2
Total TX Power:	120	Total TX Power:	120	# AWS Channels:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A1 MPE%	0.71	Antenna B1 MPE%	0.71	Antenna C1 MPE%	0.71
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	160	Height (AGL):	160	Height (AGL):	160
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power:	120	Total TX Power:	120	Total TX Power:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A2 MPE%	0.71	Antenna B2 MPE%	0.71	Antenna C2 MPE%	0.71

Site Composite MPE%				
Carrier	MPE%			
T-Mobile	4.25			
Town	6.87 %			
Sprint	7.60 %			
AT&T	13.10 %			
Clearwire	0.83 %			
Nextel	2.54 %			
Verizon Wireless	26.58 %			
Site Total MPE %:	61.77 %			

T-Mobile Sector 1 Total:	1.42 %
T-Mobile Sector 2 Total:	1.42 %
T-Mobile Sector 3 Total:	1.42 %
Site Total:	61 77 %

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector 1:	1.42 %
Sector 2:	1.42 %
Sector 3:	1.42 %
T-Mobile Total:	4.25 %
Site Total:	61.77 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **61.77%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803`

FDH Engineering, Inc., 6521 Meridien Drive Raleigh, NC 27616, Ph. 919.755.1012

Structural Analysis for SBA Network Services, Inc.

187' Monopole Tower

SBA Site Name: South Windsor SBA Site ID: CT07824-S-06 T-Mobile Site ID: CT11497A

FDH Project Number 146AN51400

Analysis Results

Tower Components	83.5%	Sufficient
Foundation	85.9%	Sufficient

Prepared By:

Robert Spin

Robert Spivey, El Project Engineer

> FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 (919) 755-1012 info@fdh-inc.com

> > August 20, 2014

Reviewed By:

Bradley R. Newman Senior Project Engineer CT PE License No. 29630

Prepared pursuant to TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures and the 2005 Connecticut Building Code

Document No. ENG-RPT-501S Revision Date: 06/17/11

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
Conclusions	
Recommendations	3
APPURTENANCE LISTING	4
RESULTS	
GENERAL COMMENTS	7
LIMITATIONS	7
APPENDIX	۶

EXECUTIVE SUMMARY

At the request of SBA Network Services, Inc., FDH Engineering, Inc. performed a structural analysis of the monopole located in South Windsor, CT to determine whether the tower is structurally adequate to support both the existing and proposed loads pursuant to the *Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, TIA/EIA-222-F* and the *2005 Connecticut Building Code (CBC)*. Information pertaining to the existing/proposed antenna loading, foundation dimensions, current tower geometry, geotechnical data, and member sizes was obtained from:

Sabre Communications Corporation (Job No. 02-10062 Revision B) Structural Design Report dated November 1, 2001
Sabre Communications Corporation (Job No. 02-10062) Erection Drawings dated November 7, 2001
Clarence Welti Associates, Inc. (Project Name: Nextel Tower @ Police Station) Geotechnical Study dated
September 29, 2000
SBA Network Services, Inc.

The basic design wind speed per the TIA/EIA-222-F standards and the 2005 CBC is 80 mph without ice and 38 mph with 1" radial ice. Ice is considered to increase in thickness with height.

Conclusions

With the existing and proposed antennas from T-Mobile in place at 160 ft, the tower meets the requirements of the *TIA/EIA-222-F* standards and the *2005 CBC* provided the **Recommendations** listed below are satisfied. Furthermore, provided the foundation was designed and constructed to support the original design reactions (see Sabre Communications Corporation Job No. 02-10062 Revision B), the foundation should have the necessary capacity to support the existing and proposed loading. For a more detailed description of the analysis of the tower, see the **Results** section of this report.

Our structural analysis has been performed assuming all information provided to FDH Engineering, Inc. is accurate (i.e., the steel data, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

Recommendations

To ensure the requirements of the *TIA/EIA-222-F* standards and the *2005 CBC* are met with the existing and proposed loading in place, we have the following recommendations:

- 1. The proposed feed lines should be installed inside the pole's shaft.
- 2. RRU/RRH Stipulation: The equipment may be installed in any arrangement as determined by the client.

APPURTENANCE LISTING

The proposed and existing antennas with their corresponding cables/coax lines are shown in **Table 1**. *If the actual layout determined in the field deviates from the layout, FDH Engineering, Inc. should be contacted to perform a revised analysis.*

Table 1 - Appurtenance Loading

Existing Loading:

Antenna	Antenna Mount				
Elevation (ft)	Description	Feed Lines ¹	Carrier	Elevation (ft)	Mount Type
187	(2) Scala MF-900B (2) Telewave ANT900D6-9 (1) Telewave ANT450F6 (2) Decibel DB201	(3) 7/8" (4) 1/2"	Town of South Windsor	187	(1) Low Profile Platform
180	(3) Kathrein 742 213	(6) 1-5/8"	Pocket Communications	180	(1) Collar Mount
170	(3) Powerwave 7770.00 (9) KMW AM-X-CD-16-65-00T-RET (6) CCI DTMABP7819VG12A (6) Ericsson RRUS 11 (12) Kathrein 782 10250 (3) CSS DBC-750 (1) Raycap DC6-48-60-18-8F (3) Andrew ABT-DFDM-ADBH	(12) 1-5/8" (1) 3" Conduit	New Cingular	170	(1) Low Profile Platform
160	(3) RFS APX16PV-16PVL-C (3) EMS RR90-17-02DPL2 (6) Andrew ETW200VA12UB	(12) 1-5/8"	T-Mobile	160	(1) Low Profile Platform
150	(9) Decibel DB844H90E-XY (3) Kathrein 840 10054 (2) Andrew VHLP2.5 (3) Samsung U-RAS Flexible RRH (2) Dragonwave Horizon Duo	(12) 1-5/8" (6) 3/8" (2) 1/2"	Nextel	150	(1) Platform w/ Handrails
140	(3) Antel BXA-185090/8CF-2 (3) Antel BXA-70063/6CF (3) Commscope HBX-6517DS-VTM (3) Commscope LNX-6514DS-VTM (3) Alcatel Lucent RRH2x40-AWS (6) RFS FD9R6004/2C-3L (1) RFS DB-T1-6Z-8AB-0Z (1) Alcatel-Lucent KS24019	(12) 1-5/8" (1) 1/2" (1) 1-5/8" Hybriflex	Verizon	140	(1) Low Profile Platform
130	(3) RFS APXVSPP18-C-A20 (3) RFS APXVTM14-C-I20 (3) Alcatel Lucent TD-RRH8x20-25 (3) Alcatel Lucent 1900MHz RRUs (3) Alcatel Lucent 800MHz RRUs (3) Alcatel Lucent 800MHz Filters (3) RF Filters (4) RFS ACU-A20-N	(3) 1-1/4" (1) 0.7" Fiber	Sprint	130	(1) Low Profile Platform
92	(2) Scala MF-900B (1) Telewave ANT4506-9 (1) Telewave ANT150D3 (1) Telewave ANT450Y10-WR (1) Decibel DB205	(6) 1/2"	Town of South Windsor	92	(1) Low Profile Platform

Proposed Carrier Final Loading:

Antenna Elevation (ft)	Description	Feed Lines	Carrier	Mount Elevation (ft)	Mount Type
160	(3) Ericsson Air 21 B2A/B4P (3) Ericsson Air 21 B4A/B2P (3) Ericsson KRY 112 144	(12) 1-5/8" (1) 1-5/8" Fiber	T-Mobile	160	(1) Low Profile Platform

RESULTS

The following yield strength of steel for individual members was used for analysis:

Table 2 - Material Strength

Member Type	Yield Strength
Tower Shaft Sections	65 ksi
Base Plate	60 ksi
Anchor Bolts	75 ksi

Table 3 displays the summary of the ratio (as a percentage) of force in the member to their capacities. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. **Table 4** displays the maximum foundation reactions. **Table 5** displays the maximum antenna rotations at service wind speed (dishes only).

If the assumptions outlined in this report differ from actual field conditions, FDH Engineering, Inc. should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the existing or proposed appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the **Appendix** for detailed modeling information.

Table 3 - Summary of Working Percentage of Structural Components

Section No.	Elevation ft	Component Type	Size	% Capacity*	Pass Fail
L1	187 - 142.75	Pole	TP34.17x24x0.25	41.4	Pass
L2	142.75 - 93.75	Pole	TP44.94x32.6358x0.375	74.1	Pass
L3	93.75 - 46.25	Pole	TP55.12x42.8101x0.4375	83.5	Pass
L4	46.25 - 0	Pole	TP64.88x52.6344x0.5	81.1	Pass
		Anchor Bolts	(26) 2.25" Ø w/ BC = 72"	72.6	Pass
		Base Plate	PL 78" Ø x 2.5" Thk	66.4	Pass

^{*}Capacities include a 1/3 allowable stress increase for wind per TIA/EIA-222-F standards.

Table 4 - Maximum Base Reactions

Base Reactions	Current Analysis (TIA/EIA-222-F)	Original Design (TIA/EIA-222-F)
Axial	66 k	83 k
Shear	43 k	48 k
Moment	5,616 k-ft	6,541 k-ft

Table 5 - Maximum Antenna Rotations at Service Wind Speeds (Dishes Only)

Centerline Elevation (ft)	Antenna	Tilt* (deg)	Twist* (deg)
187	(2) Scala MF-900B	2.0772	0.0031
150	(2) Andrew VHLP2.5	1.8964	0.0022
92	(2) Scala MF-900B	1.1623	0.0009

^{*}Allowable tilt and twist values to be determined by the carrier.

GENERAL COMMENTS

This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Engineering, Inc. should be notified immediately to perform a revised analysis.

LIMITATIONS

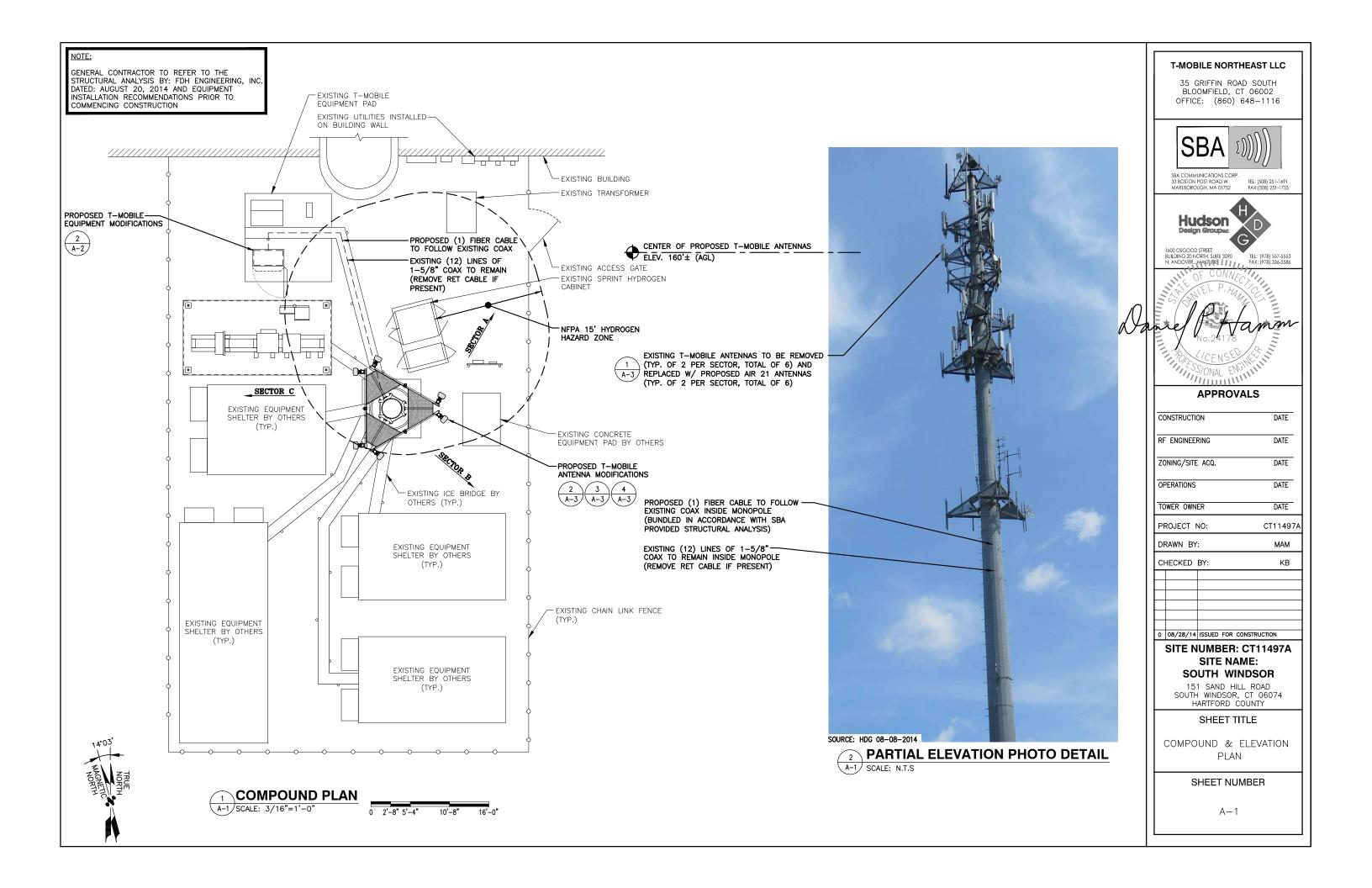
All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Engineering, Inc.

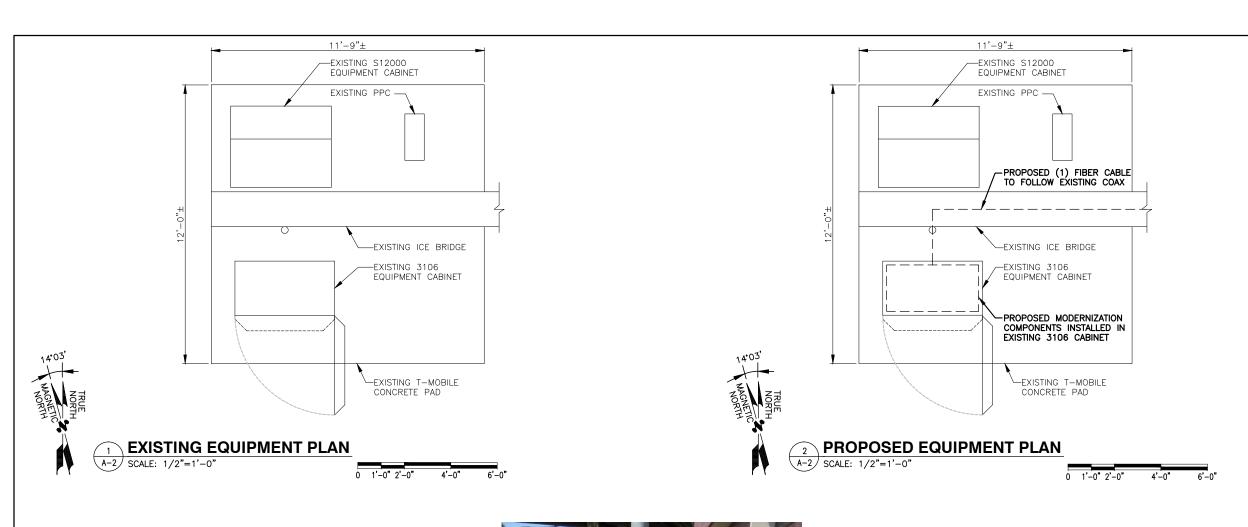
APPENDIX

Section	4		м	2		-	
Length (ft)	53.25		53.50	53.50		44.25	
Number of Sides	18		18	81		18	
Thickness (in)	0.5000		0.4375	0.3750		0.2500	
Socket Length (ft)			7.00	00:09		4.50	
Top Dia (in)	52.6344		42.8101	32.6358		24.0000	
Bot Dia (in)	64.8800		55.1200	44.9400		34.1700	
Grade			. ४	A572-65			
Weight (K) 40.8	16.8		12.3	8.3		3.4	
TORQUE 2 kip-ft REACTIONS - 80 mph WIND	AXIAL 96 K SHEAR 12 K TORQUE 1 kip-ft 38 mph WIND - 1.0000 in ICE AXIAL 66 K SHEAR 43 K TORQUE 2 kip-ft	46.3 ft		93.8 ft	142.8 ft		187.0 ft

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod	187	Andrew VHLP2.5 Dish	150
(2) DB201-A	187	Andrew VHLP2.5 Dish	150
(2) ANT900D6-9	187	BXA-185090-8CF w/Mount Pipe	140
ANT450F6 Omni	187	BXA-70063/6CF w/ Mount Pipe	140
(4) Empty Mount Pipe	187	BXA-70063/6CF w/ Mount Pipe	140
(4) Empty Mount Pipe		•	140
., .,	187	BXA-70063/6CF w/ Mount Pipe	140
(4) Empty Mount Pipe	187	HBX-6517DS-VTM w/ Mount Pipe	
Low Profile Platform	187	HBX-6517DS-VTM w/ Mount Pipe	140
(2) Scala MF-900B Dishes	187	HBX-6517DS-VTM w/ Mount Pipe	140
742 213 w/Mount Pipe	180	LNX-6514DS-VTM w/ Mount Pipe	140
742 213 w/Mount Pipe	180	LNX-6514DS-VTM w/ Mount Pipe	140
Collar Mount	180	LNX-6514DS-VTM w/ Mount Pipe	140
742 213 w/Mount Pipe	180	RRH2X40-AWS	140
7770.00 w/Mount Pipe	170	RRH2X40-AWS	140
7770.00 w/Mount Pipe	170	RRH2X40-AWS	140
(3) AM-X-CD-16-65-00T-RET w/ Mount Pipe	170	(2) FD9R6004/2C-3L Diplexer	140
(3) AM-X-CD-16-65-00T-RET w/ Mount Pipe	170	(2) FD9R6004/2C-3L Diplexer	140
(3) AM-X-CD-16-65-00T-RET w/ Mount Pipe	170	(2) FD9R6004/2C-3L Diplexer	140
(2) DTMABP7819VG12A TMA	170	DB-T1-6Z-8AB-0Z	140
(2) DTMABP7819VG12A TMA	170	KS24019-L112A	140
(2) DTMABP7819VG12A TMA	170	Low Profile Platform	140
(2) RRUS 11	170	BXA-185090-8CF w/Mount Pipe	140
(2) RRUS 11	170	BXA-185090-8CF w/Mount Pipe	140
(2) RRUS 11	170	APXVTM14-C-I20 w/ Mount Pipe	130
(4) 782 10250 Combiner	170	APXVTM14-C-I20 w/ Mount Pipe	130
(4) 782 10250 Combiner	170	APXVTM14-C-I20 w/ Mount Pipe	130
(4) 782 10250 Combiner	170	APXVSPP18-C-A20 w/Mount Pipe	130
DBC-750 Diplexer	170	APXVSPP18-C-A20 w/Mount Pipe	130
DBC-750 Diplexer	170	APXVSPP18-C-A20 w/Mount Pipe	130
DBC-750 Diplexer	170	TD-RRH8x20-25	130
DC6-48-60-18-8F Surge Arrestor	170	TD-RRH8x20-25	130
Low Profile Platform	170	TD-RRH8x20-25	130
7770.00 w/Mount Pipe	170	RF Filter	130
AIR 21 B2A/B4P w/Mount Pipe	160	RF Filter	130
AIR 21 B2A/B4P w/Mount Pipe	160	RF Filter	130
AIR 21 B4A/B2P w/Mount Pipe	160	RRU-ALU 1900MHZ	130
AIR 21 B4A/B2P w/Mount Pipe	160	RRU-ALU 1900MHZ	130
AIR 21 B4A/B2P w/Mount Pipe	160	RRU-ALU 1900MHZ	130
Empty Mount Pipe	160	RRU-ALU 800MHZ	130
Empty Mount Pipe	160	RRU-ALU 800MHZ	130
Empty Mount Pipe	160	RRU-ALU 800MHZ	130
KRY 112 144	160	Filter- ALU 800MHZ	130
KRY 112 144	160	Filter- ALU 800MHZ	130
KRY 112 144	160	Filter- ALU 800MHZ	130
Low Profile Platform	160	(2) ACU-A20-N RET	130
AIR 21 B2A/B4P w/Mount Pipe	160	ACU-A20-N RET	130
(3) DB844H90E-XY w/Mount Pipe	150	ACU-A20-N RET	130
(3) DB844H90E-XY w/Mount Pipe	150	Low Profile Platform	130
840 10054 w/Mount Pipe	150	ANT450Y10-WR	92
840 10054 w/Mount Pipe	150	(4) Empty Mount Pipe	92
840 10054 w/Mount Pipe	150	(4) Empty Mount Pipe	92
U-RAS Flexible RRH Radio	150	(4) Empty Mount Pipe	92
U-RAS Flexible RRH Radio	150	Low Profile Platform	92
U-RAS Flexible RRH Radio	150	DB205-A	92
HORIZON DUO	150	ANT4506-9	92
HORIZON DUO	150	ANT150D3	92
Platform w/ Handrails	150	(2) Scala MF-900B Dishes	92
(3) DB844H90E-XY w/Mount Pipe	150	.,	


MATERIAL STRENGTH


	WAI LINAL OTILIOTTI							
GRADE	Fy	Fu	GRADE	Fy	Fu			
A572-65	65 ksi	80 ksi						

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
 2. Tower designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 3. Tower is also designed for a 38 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
 4. Deflections are based upon a 50 mph wind.
 5. TOWER RATING: 83.5%

EXISTING 3106

EQUIPMENT CABINET

NOTE:

GENERAL CONTRACTOR TO REFER TO THE STRUCTURAL ANALYSIS BY: FDH ENGINEERING, INC DATED: AUGUST 20, 2014 AND EQUIPMENT INSTALLATION RECOMMENDATIONS PRIOR TO COMMENCING CONSTRUCTION

T-MOBILE NORTHEAST LLC

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 OFFICE: (860) 648-1116

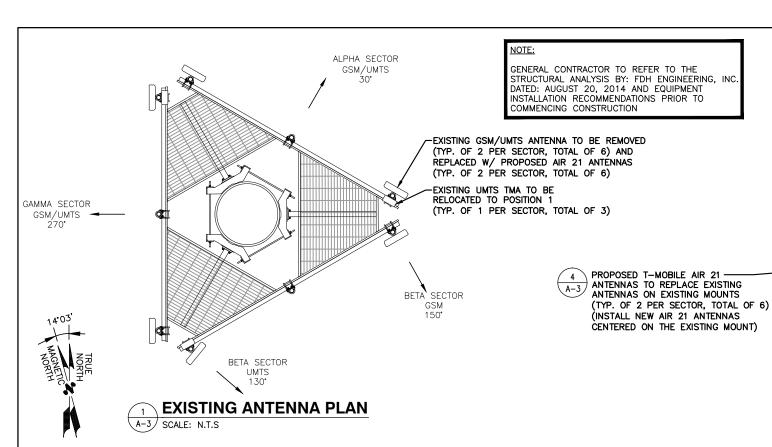
SBA COMMUNICATIONS CORP. 33 BOSTON POST ROAD W MARLBOROUGH, MA 01752

APPROVALS

CC	ONSTRUCTION	NC			DATE
RF	ENGINEE	RING			DATE
ZC	ONING/SITE	ACQ.			DATE
OF	PERATIONS				DATE
TC	WER OWN	ER			DATE
PROJECT NO:				CT11497	
DRAWN BY:				MAM	
CI	HECKED	BY:			KB
0	08/28/14	ISSUED	FOR	CONSTRU	JCTION

SITE NUMBER: CT11497A SITE NAME: **SOUTH WINDSOR**

151 SAND HILL ROAD SOUTH WINDSOR, CT 06074 HARTFORD COUNTY


SHEET TITLE

EXISTING & PROPOSED EQUIPMENT PLANS

SHEET NUMBER

A-2

SEXISTING EQUIPMENT PHOTO DETAIL A-2 SCALE: N.T.S

PROPOSED ANTENNA PHOTO DETAIL

SCALE: N.T.S.

PROPOSED T—MOBILE AIR 21 ANTENNAS TO REPLACE EXISTING ANTENNAS ON EXISTING MOUNTS (TYP. OF 2 PER SECTOR, TOTAL OF 6) ALPHA SECTOR GSM/UMTS/LTE 270' EXISTING UMTS TMA TO REMAIN IN POSITION 1 (TYP. OF 1 PER SECTOR, TOTAL OF 3)

PROPOSED ANTENNA PLAN

A-3 SCALE: N.T.S

BETA SECTOR GSM/UMTS/LTE 130°

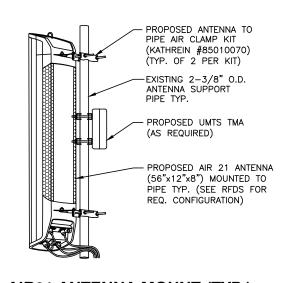
NOTE:

SETTINGS.

REFER TO THE FINAL RF DATA

SHEET FOR FINAL ANTENNA

NOTE:


GENERAL CONTRACTOR TO REFER

TO THE STRUCTURAL ANALYSIS BY

FDH ENGINEERING, INC. AND EQUIPMENT INSTALLATION

RECOMMENDATIONS PRIOR TO COMMENCING CONSTRUCTION

	EXISTING	ANTENNA SCHEDUL	<u>.E</u>
SECTOR	<u>MAKE</u>	MODEL#	SIZE (INCHES)
ALPHA:	EMS RFS	RR90-17-02DP APX16DWV_16DWVS-A20	
BETA:	EMS RFS	RR90-17-02DP APX16DWV_16DWVS-A20	
GAMMA:	EMS RFS	RR90-17-02DP APX16DWV_16DWVS-A20	
	PROPOSED	ANTENNA SCHEDU	<u>ILE</u>
SECTOR	<u>MAKE</u>	MODEL#	SIZE (INCHES)
ALPHA:	ERICSSON ERICSSON	AIR21 B2A/B4P AIR21 B4A/B2P	56x12x8 56x12x8
BETA:	ERICSSON ERICSSON	AIR21 B2A/B4P AIR21 B4A/B2P	56x12x8 56x12x8
GAMMA:	ERICSSON ERICSSON	AIR21 B2A/B4P AIR21 B4A/B2P	56x12x8 56x12x8

4 AIR21 ANTENNA MOUNT (TYP.)
SCALE: N.T.S.

T-MOBILE NORTHEAST LLC

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 OFFICE: (860) 648-1116

SBA COMMUNICATIONS CORP.
33 BOSTON POST ROAD W TEL: [508] 251-1691
MARLBOROUGH, MA 01752 FAX: [508] 251-1755

1600 OSGOOD STREET BUILDING 20 NORTH, SUITE 3090 N, ANDOVER, MA(0) 84.

TEL: (978) 557-5553 FAX: (978) 336-5586

APPROVALS

l						
	C	ONSTRUCTION	ON		DATE	-
	RF	ENGINEE	RING		DATE	_
	Z	ONING/SITE	ACQ.		DATE	-
	OI	OPERATIONS			DATE	-
	TOWER OWNER				DATE	_
	Р	PROJECT NO: DRAWN BY: CHECKED BY:			CT1149	7A
	D				МАМ	
	С				КВ	
	-					
l						
l	0	08/28/14	ISSUED	FOR	CONSTRUCTION	

SITE NUMBER: CT11497A SITE NAME: SOUTH WINDSOR

151 SAND HILL ROAD SOUTH WINDSOR, CT 06074 HARTFORD COUNTY

SHEET TITLE

ANTENNA PLAN & DETAILS

SHEET NUMBER

A-3