

445 Hamilton Avenue, 14th Floor White Plains, New York 10601 T 914 761 1300 F 914 761 5372 cuddyfeder.com

Lucia Chiocchio lchiocchio@cuddyfeder.com

3/26/20

VIA ELECTRONIC MAIL

Members of the Connecticut Siting Council Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051

Re: Tower Sharing Request by New Cingular Wireless PCS, LLC (AT&T)

Premises: 435 Mill Street, Southington, CT 06489

Dear Members of the Connecticut Siting Council:

Pursuant to Connecticut General Statutes (C.G.S.) § 16-50aa, New Cingular Wireless PCS, LLC ("AT&T" or "the Applicant") hereby requests an order from the Connecticut Siting Council (the "Council") to approve the proposed shared use of a communications tower and associated compound at the parcel identified as 435 Mill Street in the Town of Southington (the "Southington Facility"). The tower owner is the Town of Southington (the "Town"). AT&T and the Town have agreed to share the use of the Southington Facility as detailed below. Additionally, annexed here as **Attachment 5** is the Letter of Authorization between the Applicant and the Town authorizing the Applicant to prepare and file this tower share request for the AT&T's use of the Southington Facility.

The Southington Facility

The Southington Facility consists of an approximately one-hundred and twenty (120) foot lattice tower (the "Tower") and associated equipment. The Tower and compound are located on an approximately 2.8-acre parcel owned by the Town of Southington. The Town of Southington Planning and Zoning Commission granted the Southington Water Department's site plan and special permit approval for the Tower by letters dated August 27, 2018 and August 28, 2018 which are enclosed as **Attachment 6**. The Tower was approved in conjunction with the approval of new water tank which will replace the two existing water tanks. The two existing water tanks currently house AT&T's equipment as well as equipment owned by the Town and T-Mobile. The Tower was proposed in addition to the new water tank in order to provide a more robust platform for the Town's own antennas and to accommodate the collocation of the wireless carriers' equipment.

3/26/20 Page 2

AT&T's Wireless Facility

As depicted on the enclosed plans annexed hereto as **Attachment 1** prepared by Hudson Design Group, LLC last updated March 10, 2020, AT&T proposes to install 9 antennas, 6 remote radiohead units, and 3 surge arrestors on a proposed sector frame mount system at an approximately 98-foot centerline height on the Tower. AT&T currently maintains equipment shelters on a concrete pad within the fenced equipment compound for its facility on the water tank. AT&T proposes to use the same equipment shelters and will install a new 10' tall cable bridge between the Tower and the equipment shelter. AT&T will also install new equipment within the existing equipment shelter, including a new power plant.

Connecticut General Statutes § 16-50aa provides that, upon written request for shared use approval, an order approving such use shall be issued "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns." (C.G.S. § 16-50aa(c)(1)). Upon approval of such shared use, it is exclusive, and no local zoning or land use approvals are required. (C.G.S. § 16-50a). Shared use of the Southington Facility satisfies the approval criteria set forth in C.G.S. § 16-50aa as follows:

- A. <u>Technical Feasibility:</u> As evidenced in the Structural Analysis Report prepared by Hudson Design Group, LLC dated March 12, 2020 annexed hereto as **Attachment 2** and the Mount Analysis prepared by Hudson Design Group, LLC last revised March 10, 2020 annexed hereto as **Attachment 3**, AT&T confirmed that the Tower is designed to support the addition of AT&T's antennas and tower mounted equipment in addition to the existing loading. The proposed shared use of this Tower is therefore technically feasible.
- B. <u>Legal Feasibility:</u> Pursuant to C.G.S. § 16-50aa, the Council is authorized to issue an order approving shared use of the existing Southington Facility. (C.G.S. § 16-50aa(c)(1)). Under the authority vested in the Council by C.G.S. § 16-50aa, an order by the Council approving the shared use of a Tower would permit the Applicant to obtain a building permit for the proposed installation.
- C. <u>Environmental Feasibility:</u> The proposed shared use would have a minimal environmental effect, for the following reasons:
 - 1. AT&T's proposed installation would have a *de minimis* visual impact and would not cause any significant change or alteration in the physical or environmental characteristics of the facility;

3/26/20 Page 3

- 2. The installation by AT&T will not increase the height of the Tower;
- 3. The proposed installation will not increase the noise levels at the site boundaries by six decibels or more;
- 4. Operation of AT&T's antennas at this site will not exceed the total radio frequency electromagnetic radiation power density level adopted by the FCC and Connecticut Department of Health. AT&T's proposed antenna installation along with the existing wireless carriers' facilities is calculated to be within 6.73% of FCC Standards for General Public/Uncontrolled Maximum Permissible Exposure (MPE). Please see the cumulative assessment of RF power density prepared by the SAI Group dated February 6, 2020 annexed hereto as **Attachment 4**; and
- 5. The proposed shared use would not require water or sanitary facilities or discharges into any waterbodies. The installation will not generate traffic other than periodic maintenance visits.
- D. <u>Economic Feasibility:</u> The Applicant and the Tower owner entered into a mutual agreement to share use of the Southington Facility on terms agreeable to both parties. The proposed tower sharing is therefore economically feasible.
- E. <u>Public Safety:</u> As stated above and evidenced in attachments hereto the Tower is structurally capable of supporting AT&T's installation and emissions are well within the maximum permitted by the FCC and the Connecticut Department of Health. Further, the addition of AT&T's telecommunications service in the Southington area through shared use of the Southington Facility is expected to enhance the safety and welfare of local residents and travelers through the area resulting in an improvement to public safety in this area of the State.

Notice of Tower Share Filing

Pursuant to the August 2013 Tower Share Filing Guide and the Exempt Modifications/Tower Share Filing Memorandum dated June 22, 2017, copies of AT&T's tower share filing request were sent to the property owner, which is the Town of Southington, by email to the chief elected official of the Town of Southington and the Southington Planning and Zoning Department. Copies of the cover letter and certification of delivery by email are included in **Attachment** 7.

3/26/20 Page 4

Conclusion

As explained above, the proposed shared use of the Southington Facility satisfies the criteria set forth in C.G.S. §16-50aa and advances the General Assembly's and the Council's goal of preventing the proliferation of towers in the State of Connecticut. AT&T therefore requests the Siting Council issue an order approving the proposed shared use of the Southington Facility.

Very truly yours,

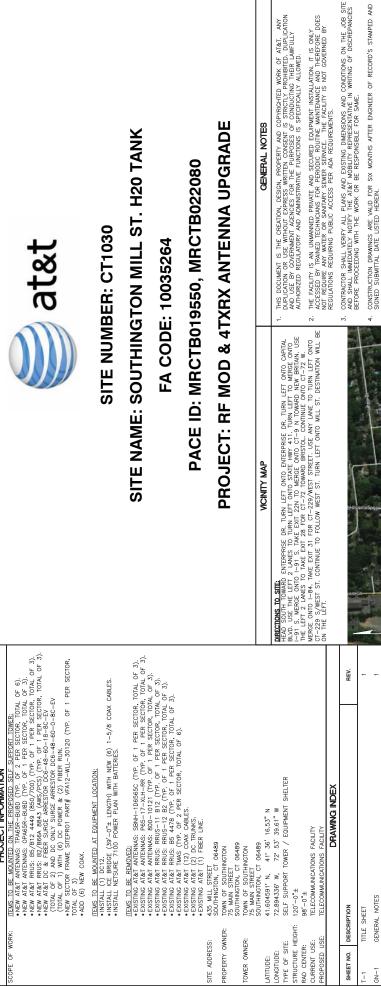
Lucia Chiocchio

Attachments

Melanie Bachman, Executive Director cc:

acia Chrocchio

Christopher Palmieri, Town Council Chairman, Town of Southington;


CPalmieri@southington.org

Mark J. Sciota, Town Manager, Town of Southington; sciotam@southington.org Rob Phillips, Planning Director, Town of Southington; rphillips@southington.org

AT&T Daniel Patrick, Esq.

Julie Durkin

ATTACHMENT 1

ANTENNA LAYOUTS & ELEVATION

A-3 A-1 A-2 A-4 A-5

DETAILS DETAILS

COMPOUND PLAN EQUIPMENT PLAN GENERAL NOTES

GN-1

RF PLUMBING DIAGRAM

GROUNDING DETAILS STRUCTURAL NOTES

SN-1

UNDERGROUND SERVICE ALERT BEFORE YOU DIG CALL TOLL FREE 1-800-922

OR CALL 811

CALL

TEL: (978) 557-FAX: (978) 336-

SITE NUMBER: CT1030 SITE NAME: SOUTHINGTON MILL ST. H20 TANK 435 MILL STREET SOUTHINGTON, CT 06489 HARTFORD COUNTY

at&t	500 ENTERPRISE DRIVE, SUITE 3A
400	200

_	1 03	0 03	A 12	ON	SCALE:
ĺ	10+0	מומו		ENTERPRISE DRIVE, SUITE 3A	ROCKY HILL, CT 06067

03/10/20 ISSUED FOR CONSTRUCTION	REVIEW	REVIEW	REVISIONS	DESIGNED BY: AT
ş	ĕ	FOR		
ISSUED	ISSUED	ISSNED		NWO
03/10/20	0 03/06/20 ISSUED FOR REVIEW	A 12/27/19 ISSUED FOR REVIEW	DATE	SCALE: AS SHOWN
-	0	٧	NO.	SCAL
			3A	

>	ž	,	J/	S	2
7	_	1		S	3
2	НЬС	HdQ.	HJQ	CHK APP'D	
2	유	£	ΑT	K	ӄ
	μ	ð	SF	ĕ	ä
8					DRAWN BY: SF
	NC			REVISIONS	: AT
	03/10/20 ISSUED FOR CONSTRUCTION	REVIEW	REVIEW	REVIS	DESIGNED BY:
	FOR	FOR	FOR		Г
	ISSUED	ISSUED	ISSUED		NWO
	03/10/20	03/06/20 ISSUED FOR REVIEW	12/27/19 ISSUED FOR REVIEW	DATE	CALE: AS SHOWN
	Ť	Ť		o.	18

AT	TITLE	RF MOD & 4TXRX	DRAW	
wind	11/	RF MC	STE NUMBER	CT1030
11 Ma	No.24178	SKCENS STATE	CSSO.	CONTRACTOR CONTRACTOR

min	11/	RF MOD &	SITE NUMBER	OT1020
AT&T	TITLE SHEET	RF MOD & 4TXRX ANTENNA UPGRADE	DRAWING NUMBER	F
		JPGRADE		

GROUNDING NOTES

- THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM, AS DESIDEDAD AND ULCHTNING PROTECTION SYSTEM (AS DESIDEDAD AND INSTALLED) FOR SHETCH COMPLANCE WITH THE ROCK (AS ADOPTED BY THE ANJ). THE STIE—SPECIFIC (U.L. IP), OR NETA) UGHTING PROTECTION CODE, AND GENERAL COMPLANCE WITH TELCORDIA AND THI, GROUNDING STANDARDS, THE SUBCONTRACTOR SHALL REPORT ANY VOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AVORNE GESS) SHALL BE BURDOBED TOGETHER, AT OR BELOW GRADE, BY THYO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 里 THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER EEE: 1100 AND 81 STANDARDS) FOR NEW GROUND ELECTRODE SYSTEMS. SUBCONTRACTOR SHALL PERNISH AND INSTALL SUPPLIABILIAL GROUND ELECTRODES AS INEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- METAL PACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND SOUNDINGS. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BIS SEQUIPMENT.
- EACH BTS CABINIT FRAME SHALL BE DIRECTIV CONNECTED TO THE MASTER GROUND BAR WITH GREIN INSULATED SUPPLEARINAL EQUIPMENT GROUND WIRES, \$\frac{1}{4}\$ AMG STRANDED COPPER OF LARGER FOR NOTDOOR BTS.
 - EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON COMPRESSION AND BOLTED GROUND CONNECTIONS.
 - ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO GROUND BAR.
- ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 0.
- MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OF BY BOUNDING TYPE CONDUIT CLAMPS.

 GROUNDING TYPE CONDUIT CLAMPS.
- ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/12 IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED THE GROUND RING USING AN EXCHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEE 259.50

GENERAL NOTES

- FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:
 - CONTRACTOR SAI SUBCONTRACTOR GENERAL CONTRACTOR (CONSTRUCTION) OWNER AT&T MOBILITY
- PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL. RITE TO FAMILHARZE WITH THE EXESTING CONDITIONS AND TO CONFRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.
- ALL MATERALS. FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE COODS. REGULATIONS, AND ORDINANCES. SUBGOOMERCING SHALL ISSUE ALL ISSUE ALL ISSUE ALL LANS. ORDINANCES. HULES. REGULATIONS, AND LAND ORDINANCES. HULES. REGULATIONS, AND LOSENS OF ANY PUBLIC ALTHORNY REPROHANCES. PERFORMANCE OF THE WORK. ALL WORK SCREEN OF SHALL COMPLY WITH ALL PARLICABLE MINICIPAL AND UTILITY RECULATIONS. AND LOCAL UNRISDICTIONAL CODES, ORDINANCES AND APPLICABLE REQULATIONS.
 - DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED C THE DRAWINGS. ć.
- Ä "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED ICONTRACTOR, ITEMS FOR INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE SUBCONTRACTOR. 9
- THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR SHALL PROPOSE. œ
- SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND TI CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DEAVING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS, AND/OR SHALL AD NEW TRAYS, AND NEW TRAYS AND
- THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES, ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 11. SUBCONTRACTOR SHALL LEGALIY AND PROPERTY DISPOSE OF ALL SCRAP MATERIALS SUCH AS CONAUL CABLES AND OTHER TIBLYS REMOVED FROM THE ENSTING FAQUITY. ANTENINAS REMOVED SHALLE BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION
- ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.

- 14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE ARR—ENTRANED AND SHALL HAVE 4000 PSI STREAGH AT 78 DAYS. ALL CONCRETE WORK SHALL BE DONE IN ACCORDANCE WITH Act 318 CODE REQUIREMENTS.
- 15. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED. FARRICATED AND ERECTED IN ACCORDANCE WITH ASC SPECIFICATIONS, ALL STRUCTURAL STEEL SHALL BE ASTA A36 (F); 36 kel). UNLESS OTHERWISE WOTED, PRES SHALL BE ASTA, A53 TIPE E (F); 36 kel). ALL STEEL EXPOSED TO WATHER SHALL BE HOT IPPED GAWNINZED. DOUGU UP ALL SCRÄCHES AND OTHER MARKS IN THE FILD AFTER STEEL IS ERECTED USING A COMPANIBLE ZING FIGH PAIN.
- CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T SITES."
- 17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMENDING ANY WORK, ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWNINGS WIZE BE VERIFELD. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO GROENING MATERIAL, OR PROCEEDING WITH CONSTRUCTION.
- THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SOCKONFRACTOR SHALL NOT DISTRICT HE EXISTING MORALL OFFERATION. ATAY WORK ON EXISTING EQUIPMENT MUST BE COOPOINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SHEDLIED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERODIS AFTER MIDNICHT. <u>6</u>
- SINCE THE CELL SITE ASTIVE, ALL SAFETY PRESCULTIONS MUST BE TAKEN WEREN WORKING AROUND HIGH LEFELS OF ELECTROMAGNETIC RADATION. EXULIMENT SHOULD BE SHUTDOWN PRENOR TO PERFONMENT NIN WORK THAT COULD EXPOSE THE WORKERS TO DANGER. SECOND, THE RESCOND, THE RESCOURT OF ANY DANGEROUS EXPOSURE LIFE LATESUAR MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS. 9.
- 20. APPLICABLE BUILDING CODES: SUBCONTRACTOR'S WORK SHALL
- SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL, SOCIES AS ADOPTED BY THE LOCAL AUTHORITY HANNO JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.

BUILDING CODE: IBC 2015 WITH 2018 CT STATE BUILDING CODE AMENDMENTS ELECTRICAL CODE: 2017 NATIONAL ELECTRICAL CODE (NFPA 70-2017)

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING STANDARDS:

AMBERICAN CONCRETE INSTITUTE (ACI) 318; BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE:

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION, ASD, FOURTEENTH EDITION;

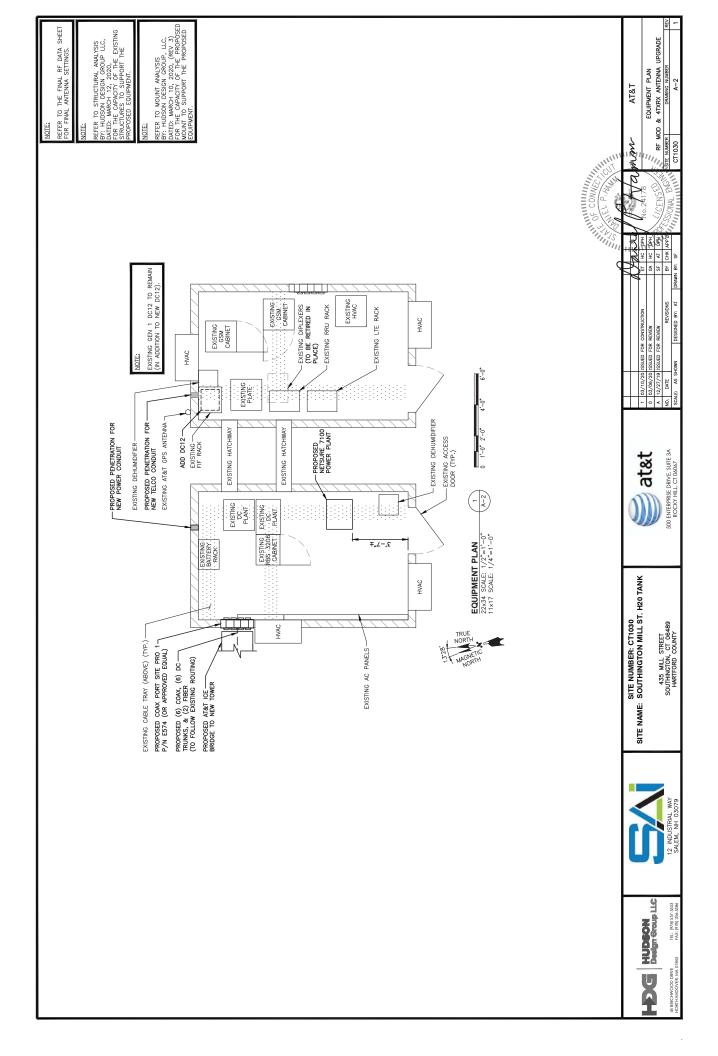
TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-H, STRUCTURAL STANDARDS FOR STEEL

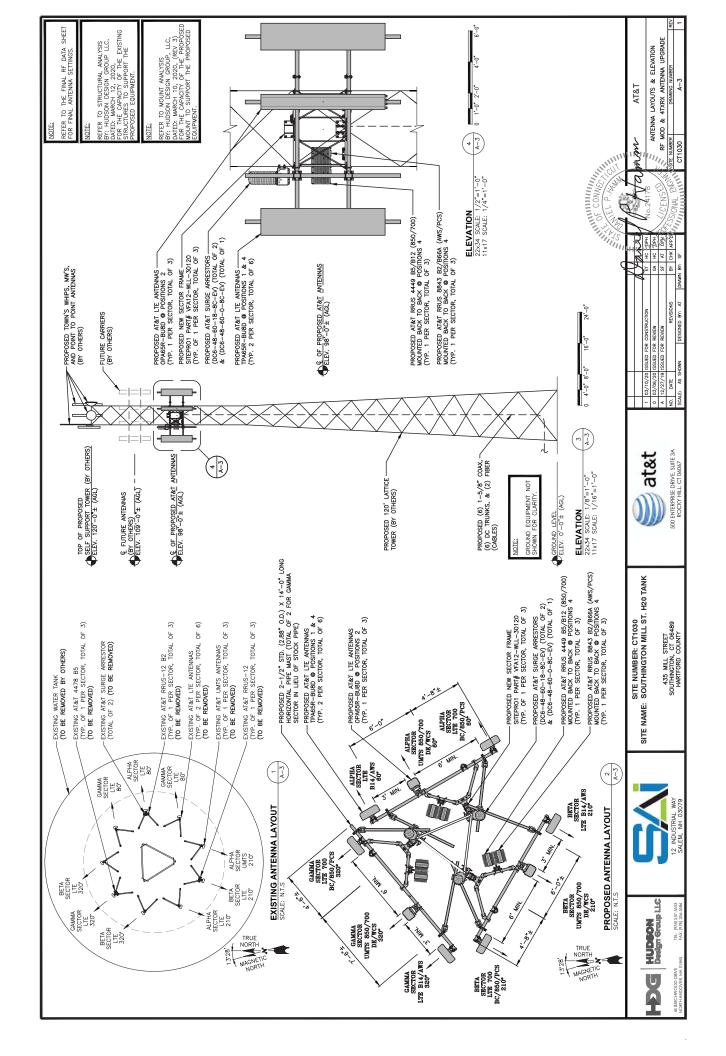
FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING METHODS OF CONSTRUCTIVE REQUIREMENTS. THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN, WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFO REQUIREMENT SHALL GOVERN.

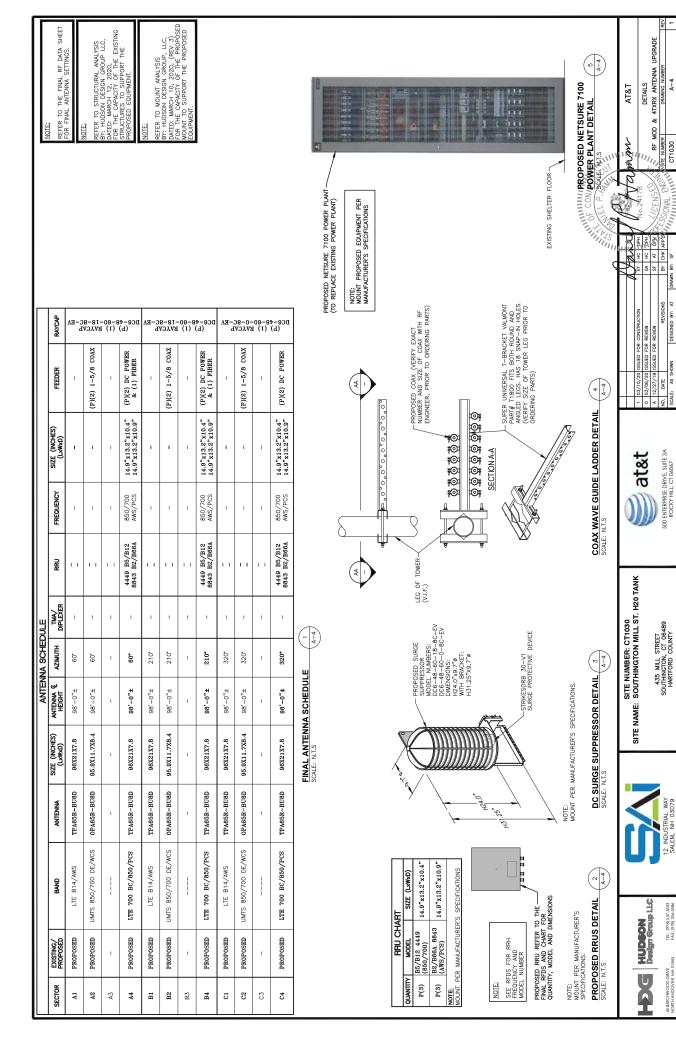
			ABBREVIATIONS		
AGL	ABOVE GRADE LEVEL	8	EQUAL	REQ	REQUIRED
AWG	AMERICAN WIRE GAUGE	9	GENERAL CONTRACTOR	RF	RADIO FREQUENCY
BBU	BATTERY BACKUP UNIT	GRC	GALVANIZED RIGID CONDUIT	TBD	TO BE DETERMINED
BTCW	BARE TINNED SOLID COPPER WIRE	MGB	MASTER GROUND BAR	TBR	TO BE REMOVED
BGR	BURIED GROUND RING	Z	MINIMUM	TBRR	TO BE REMOVED AND REPLACED
BTS	BASE TRANSCEIVER STATION	۵	PROPOSED	F	TYPICAL
ш	EXISTING	NTS	NOT HOUSDALE	9n	UNDER GROUND
EGB	EQUIPMENT GROUND BAR	g,	GADDATION CENTER LINE	¥	VERIFY IN FIELD
EGR	EQUIPMENT GROUND RING	REF			
			mem of +		AT&T

HUDBON Besign Group LLC
1

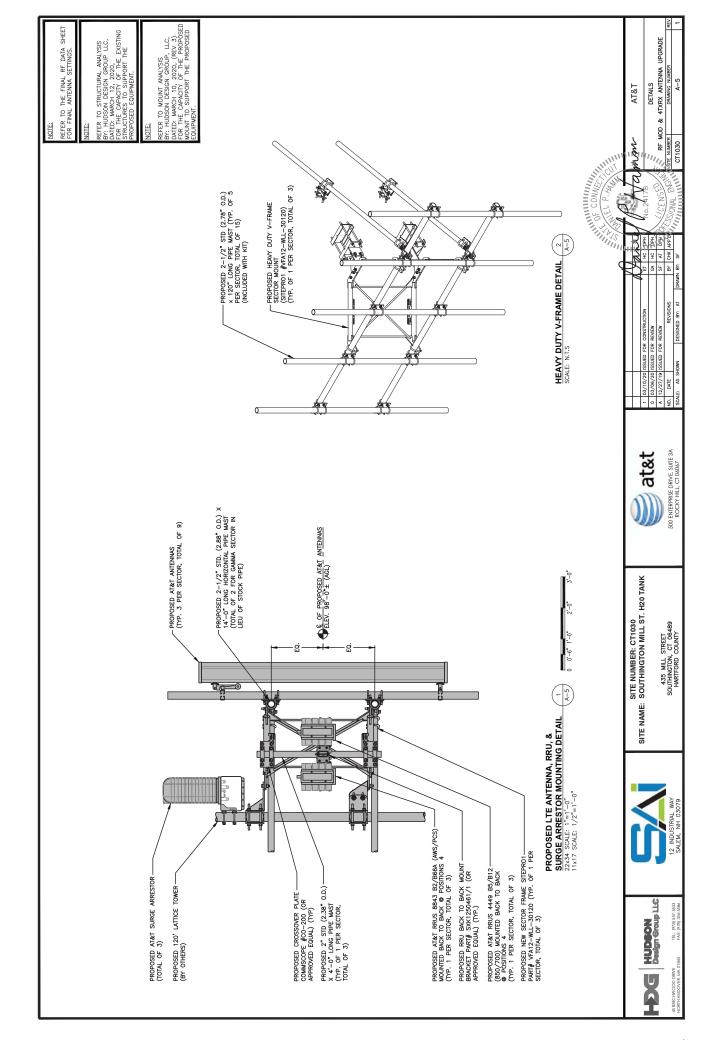
SITE NUMBER: CT1030 SITE NAME: SOUTHINGTON MILL ST. H20 TANK 435 MILL STREET SOUTHINGTON, CT 06489 HARTFORD COUNTY


at&t 500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067


	HC DPH	HdQ D	AT DIPUT	CHK APP'D	10
	ti.	SA HC	SF /	BY CI	DRAWN BY: SF
1					DRAWN
	03/10/20 ISSUED FOR CONSTRUCTION	0 03/06/20 ISSUED FOR REVIEW	A 12/27/19 ISSUED FOR REVIEW	REVISIONS	DESIGNED BY: AT
	ISSUED F	ISSUED F	ISSUED F		NWO
	03/10/20	03/06/20	12/27/19	DATE	SCALE: AS SHOWN
	-	0	٧	o.	SCAL


	\ <	3			2/2/	3
TRUCTION	ᄪ	유	Hdd	/ No.24178	11,	
"	ð	SA HC	H ₀		11/	GENERAL NOTES
"	SF	ΑT	Hud	S//CFNS/X	KF MC	RF MOD & 4TXRX ANTENNA UF
REVISIONS	A		CHK APP'D	CSS/ONIN FIGURE	SITE NUMBER	DRAWING NUMBER
NED BY: AT DRAI	DRAWN BY: SF	ļά	Γ	THE STATE OF	CT10.30	SN-1

UPGRADE



CT1030

DESIGNED BY:

TEL: (978) 557-5553 FAX: (978) 336-5586

- 1. DESIGN REQUIREMENTS ARE PER STATE BUILDING CODE AND APPLICABLE SUPPLEMENTS. INTERNATIONAL BUILDING CODE, EMATHA—222—4 STRUCTURAL STANDARDS FOR STELL ANTENNA, TOWERS AND ANTENNA SUPPORTING STRUCTURES. STELL ANTENNA, TOWERS AND ANTENNA SUPPORTING STRUCTURES. SHALLER STRUCTURES AND STRUCTURES. AND STRUCTURES SHALL RE REPORTED TO THE ATTENTION OF THE CONSTRUCTION ANALOGE AND EMERICAN INSTITUTE OF STRUCTURAL ASTELL SHALL CONFORM TO THE AMERICAN INSTITUTE OF STRUCTURAL STEEL SHALL CONFORM TO THE AMERICAN INSTITUTE OF STRUCTURAL STEEL STRUCTURAL STEEL STRUCTURAL STEEL FOR BUILDINGS. STRUCTURAL STEEL SHALL CONFORM TO ASTM A992 (Fy—50 Ms))

- NOICHED.

 5. STEEL PIEC SHALL CONFORM TO ASTM ASOD "COLD-FORMED WEIDED & FARMERS ACRONG YEEL STRUCTURAL UNDING", GADAG B. OR ASTM AS3 PIPE STEEL BLOCK AND HOT-DIPPED ZING—COATED WEIDED AND STRAMESS TYPE E OF STEEL INDICATED ARE NOWING. ACCOUNTING FOR STRUCTURAL CONNECTION BOLLS SHALL BE HOHS STREAMED PLAN HARDENED DING—COATED WEIDED AND STREAMERS THE BLOCK AND HOT-DIPPED ZING—COATED WEIDED AND STREAMERS SHALL BE JAY" DIA UON.

 7. ALL STEEL WATERALS SHALL BE JAY" DIA UON.

 8. ALD CONFORM THA STATA A13 Z TING—COATING (HOT-DIP) ON RICH PANIN STEEL HARDWARE; ALL BEDIES SHEED STREAMEN SHALL BE CALVANIZED DIA ACCORDANCE WITH ASTM A13 Z TING—(HOT-DIP) CALVANIZED IN ACCORDANCE WITH ASTM A13 Z TING—COATING (HOT-DIP) ON RICH AND STEEL HARDWARE; UNITES OTHERWISE NOTE.

 8. ALL STEEL WATERALS SHALL BE GALVANIZED OFFER PREAD STEEL HARDWARE; UNITES OTHERWISE NOTE.

 9. FIELD WEIDS, SICHL HOLES; AND WEIDS AND ALL DAMAGED CALVANIZED SURFACES. SHALL BE FERPARED WITH AN ORGANIC ZING REPARR PANIN SHALL HARDWARE; UNITES OTHERWISE OFFER SHALL BE FERPARED WITH AN ORGANIC ZING REPARR PANIN SHALL HARDWARE; UNITES OTHERWISE OFFER SHALL BE CALVANIZED SURFACES. SHALL BE REPARRED WITH AN ORGANIC ZING REPARR PANIN SHALL HARW SHALL HARW SHALL WAS STANDED SHALL SHALL
 - 6.
- - 12.

- - 19.

SPECIAL INSPECTIONS (REFERENCE IBC CHAPTER 17)

GENERAL: WHERE APPLICATION IS MADE FOR CONSTRUCTION, THE OWNER OR THE REGISTEED DESIGN PROFESSIONAL IN RESPONSED CHARGE APPROVED AGRICLES OF PERFORM INSPECTIONS DIGHTS. ADMING DOCUMER'S AGENT SHALL BARDON ONE OR MORE MAPECTION AGRICLES TO PERFORM INSPECTIONS DIGHTS CONTINUED ON THE TYPES OF WORK LISTED IN THE INSPECTION OFFICIALS MADOR.

THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE AND ENGINEERS OF RECORD INVOLVED IN THE DESIGN OF THE PROLUCE THE PROLUCE AND THEIR PERSONNEL ARE PERMITED TO ACT AS THE APPROVED AGENCY AND THEIR PERSONNEL ARE PERMITED TO ACT AS THE SPECIAL INSPECTOR FOR THE WORK DESIGNED BY THEM, PROVIDED THOSE PERSONNEL MEET THE QUALIFICATION REQUIREMENTS.

STATEMENT OF SPECIAL INSPECTIONS. THE APPLICANT SHALL SUBMIT A STATEMENT OF SPECIAL INSPECTIONS PREPARED OBTINE REDISTRED DESIDENT IN REPONSIBLE CHARGE IN ACCORDANCE WITH SECTION 107.1 AS A CONDITION FOR ISSUANCE. THIS STATEMENT SHALL BE IN ACCORDANCE WITH SECTION 1705.

REPORT REQUIREMENTS SPECIAL INSPECTORS SHALL KEEP RECORDS OF INSPECTIONS. THE SPECIAL INSPECTOR SHALL INCLUDING OFFICIAL AND TO THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE REPORTS STALL INICIDATE HAT WORK INSPECTED WAS OR WAS NOT COMPLETED IN CONFIDENCE TO APPROVED CONSTRUCTION DOCUMENTS SHALL BE REVOLDED TO THE MINICIDATE ATTENTION OF THE CONTRACTOR THE CONTRACTOR TO THE CONTRACTOR TO APPROVED TO THE MINICIDATE SHALL BE RESIDENT THE DISCREPANCES SHALL BE BROUGHT TO THE MINICIDATE OFFICIAL SHALL BE SECURIFIED THE DISCREPANCES SHALL BE SECURIFIED TO THE ATTENTION OF THE GUIDANCES SHALL BE SECURIFIED TO THE ATTENTION OF THE GUIDANCES SHALL BE SECURIFIED THE DISCREPANCES SHALL BE SECURIFIED THE DISCREPANCES SHALL BE SHALL

NOTES:

- 1. ALL CONNECTIONS TO BE SHOP WELDED & FIELD BOLTED
 2. SOURCE 3/4 AN AZZÁ-A BOLTED
 2. SOURCE ALFA AN AZZÁ-A FOLTA, UNILESSO SHIFANEN EN ONTERNARE MOTINE
 3. SHOP DARWING ENGINEER REVIEW & APPROVAL REQUIRED BRICHE
 4. VERREACTION CE DESTINGS HOOF OF DATESTATION IS RECURRED PRIOR TO
 11 TO AFRONCE EXISTING CONDITIONS IN SECURINGE PRIOR TO
 12 AFRONCE EXISTING CONDITIONS IN ROBERT TO MANE TOWARD
 5. CENTRALLY LOCATION OF THE FORTH ALTHORY SUPPORT COLUMNS.
 6. EXISTING BRICK MASONEY COLUMNS/SERAING TO BE
 CENTRALLY COLUMNS/SERAING TO BE
 ENGINEER OF RECORD AND ATTORN SUPPORT POINTS.
 ENGINEER OF RECORD OF STIELL PLATFORM SUPPORT POINTS.
- NOTES:
- 1. RECURED FOR ANY NEW, SEAP FABROATED FRP OR STEEL.

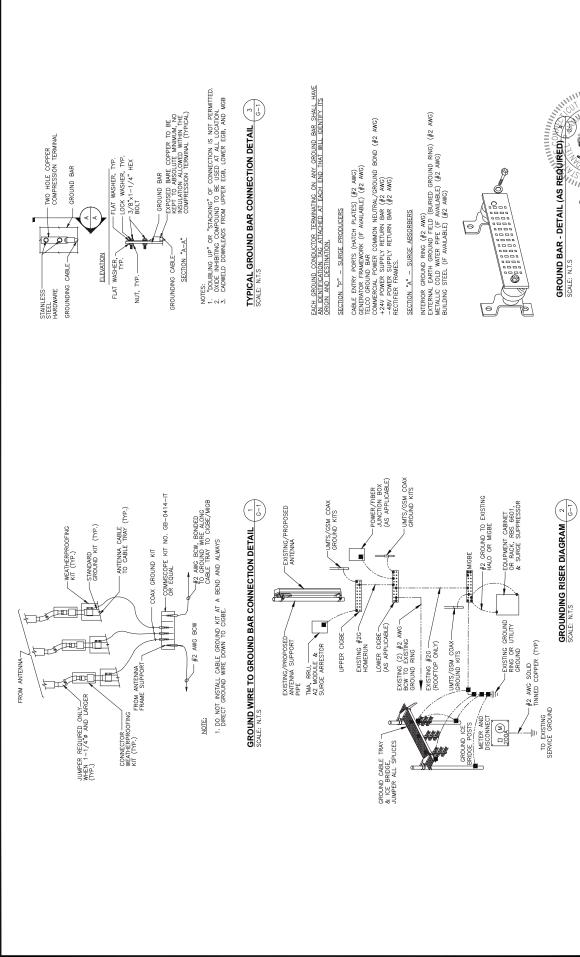
 RECURIED FOR HAND STEARCH STORY OF THE STEEL SECURIED IN THE STEARCH STEEL SECURIED IN THE STEARCH STEEL SECURIED IN THE STEARCH STEARCH

CONSTRUCTION/INSTALLATION	BEFORE CONSTRUCTION
CONSTRUCTION/INSTALLATION	
E SE	REPORT ITEM
REQUIRED	ENGINEER OF RECORD APPROVED SHOP DRAWINGS 1
REQUIRED	MATERIAL SPECIFICATIONS REPORT 2
N/A	FABRICATOR NDE INSPECTION
REQUIRED	PACKING SLIPS 3
ADDITIONAL TESTING AND INSPECTIONS:	:ctions:
DURING CC	DURING CONSTRUCTION
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM
REQUIRED	STEEL INSPECTIONS
N/A	HIGH STRENGTH BOLT INSPECTIONS
N/A	HIGH WIND ZONE INSPECTIONS 4
REQUIRED	FOUNDATION INSPECTIONS
REQUIRED	CONCRETE COMP. STRENGTH, SLUMP TESTS AND PLACEMENT
REQUIRED	POST INSTALLED ANCHOR VERIFICATION 5
N/A	GROUT VERIFICATION
N/A	CERTIFIED WELD INSPECTION
N/A	EARTHWORK: LIFT AND DENSITY
N/A	ON SITE COLD GALVANIZING VERIFICATION
N/A	GUY WIRE TENSION REPORT
ADDITIONAL TESTING AND INSPECTIONS:	cctions:
AFTER CO	CONSTRUCTION
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM
REQUIRED	MODIFICATION INSPECTOR REDLINE OR RECORD DRAWINGS ⁶
N/A	POST INSTALLED ANCHOR PULL-OUT TESTING
REQUIRED	PHOTOGRAPHS
ADDITIONAL TESTING AND INSPE	INSPECTIONS:

TBL: (978) 557-5 FAX: (978) 336-5

SITE NUMBER: CT1030
SITE NAME: SOUTHINGTON MILL ST. H20 TANK 435 MILL STREET SOUTHINGTON, CT 06489 HARTFORD COUNTY

at&t 500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067


5	š	,	Σ)	Š	3
7	_	2	\ &	S.	5
ころう	HdQ	HdQ.	HJQ	CHK APP'D	
Ź	皇	유	ΑT	K	٦
Ŋ	Į.	3	SF	ĕ	ä
\					DRAWN BY: SF
	03/10/20 ISSUED FOR CONSTRUCTION	OR REVIEW	OR REVIEW	REVISIONS	DESIGNED BY: AT
	ISSUED FC	ISSUED FC	ISSUED FC		OWN
	03/10/20	0 03/06/20 ISSUED FOR REVIEW	A 12/27/19 ISSUED FOR REVIEW	DATE	SCALE: AS SHOWN
	-	0	4	ō.	SCAL

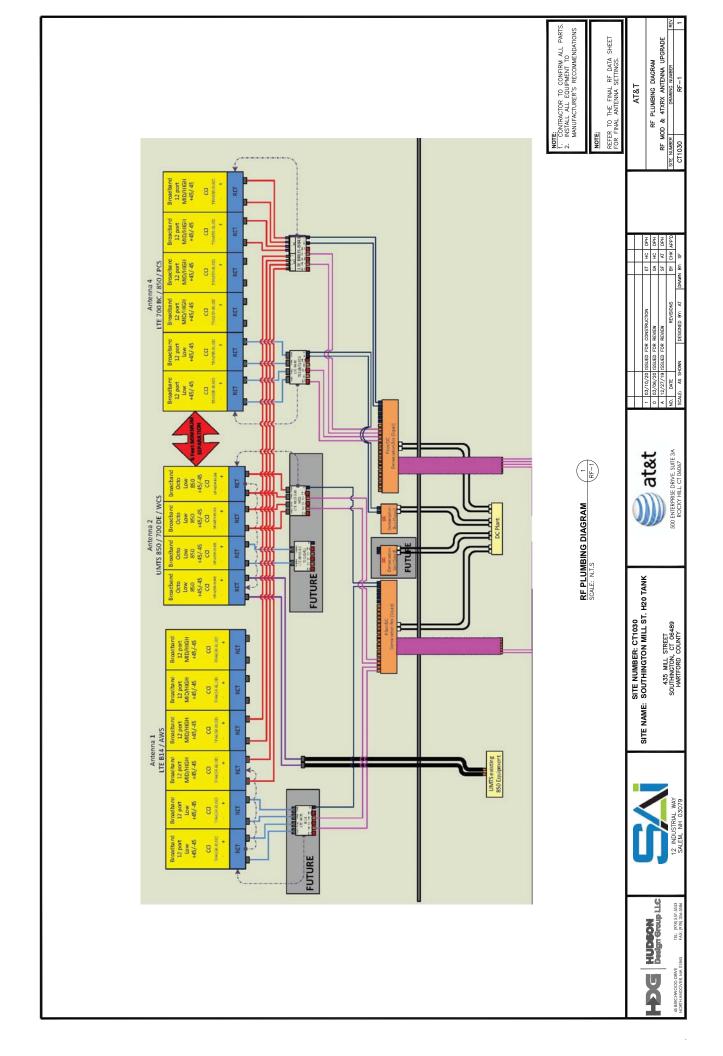
- Salar		V No.24178	\(\frac{\chi}{\chi}\)	S//CFNS/3/	SS/ONIN FAC	
	3	Hdd	PH.	Huo	BY CHK APP'D	
	Z	유	유	ΑT	CHK	'n
\langle	×	<u>,</u>	3	SF	è	8
	V		Г			DRAWN BY: SF
		03/10/20 ISSUED FOR CONSTRUCTION	REVIEW	REVIEW	REVISIONS	DESIGNED BY: AT
		SSUED FOR	SSUED FOR	SSUED FOR		NWC
		03/10/20	03/06/20 ISSUED FOR REVIEW	12/27/19 ISSUED FOR REVIEW	DATE	E: AS SHOWN

RF MOD & 4TXRX ANTENNA UPGRADE STRUCTURAL NOTES AT&T

SITE NUMBER Mary

STATE PANCY No.

SITE NUMBER: CT1030 SITE NAME: SOUTHINGTON MILL ST. H20 TANK


HOBON Design Group LLC

TEL: (978) 557-5553 FAX: (978) 336-5586

435 MILL STREET SOUTHINGTON, CT 06489 HARTFORD COUNTY

GROUNDING DETAILS
GROUNDING DETAILS
FF MOD & 4TXRX ANTENNA UPGRADE
SITE NUMBER
DRAWING NUMBER

man

ATTACHMENT 2

STRUCTURAL ANALYSIS REPORT

For

SITE NUMBER: CT1030

SITE NAME: SOUTHINGTON MILL ST. H20 TANK

FA CODE: 10035264

435 MILL STREET SOUTHINGTON, CT 06489

Prepared for:

Dated: March 12, 2020

Prepared by:

45 Beechwood Drive North Andover, MA 01845 (P) 978.557.5553 (F) 978.336.5586 www.hudsondesigngrouplic.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by AT&T to conduct a structural evaluation of the 120' self-supporting tower supporting the proposed AT&T's antennas located at elevation 98' above the ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of AT&T's proposed antennas listed below.

Record drawings of the existing tower prepared by Valmont Structures, dated December 12, 2019, were available and obtained for our use.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing tower and foundation **are in conformance** with the ANSI/TIA-222-H Standard for the loadings considered under the criteria listed in this report. The tower structure is rated at **53.9%** - (Legs at Tower Section T5 from EL.20' to EL.40' Controlling).

APPURTENANCES CONFIGURATION:

Tenant	Appurtenances	Elev.	Mount
	(2) BA4040-67-DIN	120'	Tower Leg
	(1) DB404-B	120'	Tower Leg
	(1) G5R	120'	Tower Leg
	(3) PTP	120'	Tower Leg
	(2) VHLP800-11	120'	Tower Leg
AT&T	(6) TPA65R-BU8D Antennas	98'	VFA12 - WLL - 30120
AT&T	(3) OPA65R-BU8D Antennas	98'	VFA12 - WLL - 30120
AT&T	(3) 4449 B5/B12	98'	VFA12 - WLL - 30120
AT&T	(3) 8843 B2/B66A	98'	VFA12 - WLL - 30120
AT&T	(2) DC6-48-60-18-8C-EV	98'	Tower Leg
AT&T	(1) DC6-48-60-0-8C-EV	98'	Tower Leg

^{*}Proposed AT&T Appurtenances shown in Bold.

AT&T EXISTING/PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
AT&T	(6) 1 5/8" Cables	98'	Tower Leg B
AT&T	(6) DC Power Cables	98'	Tower Leg B
AT&T	(2) Fiber Cables	98'	Tower Leg B

^{*}Proposed AT&T Coax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Legs	53.9 %	20 – 40	PASS	Controlling
Diagonals	43.3 %	80 – 100	PASS	
Horizontal	24.8 %	80 – 100	PASS	
Top Girt	5.0 %	100 – 120	PASS	
Bottom Girt	8.6 %	100 – 120	PASS	
Mid Girt	5.2 %	80 – 100	PASS	

FOUNDATION ANALYSIS RESULTS SUMMARY:

	Design Reactions	Base Reactions	Pass/Fail	Comments
AXIAL	40.9 k	24.3 k	PASS	
SHEAR	37.1 k	21.6 k	PASS	
MOMENT	2799 ft-k	1595 ft-k	PASS	
COMP./LEG	270.7 k	161.3 k	PASS	
TENSION/LEG	244.4 k	145.7 k	PASS	

DESIGN CRITERIA:

 EIA/TIA-222-H Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

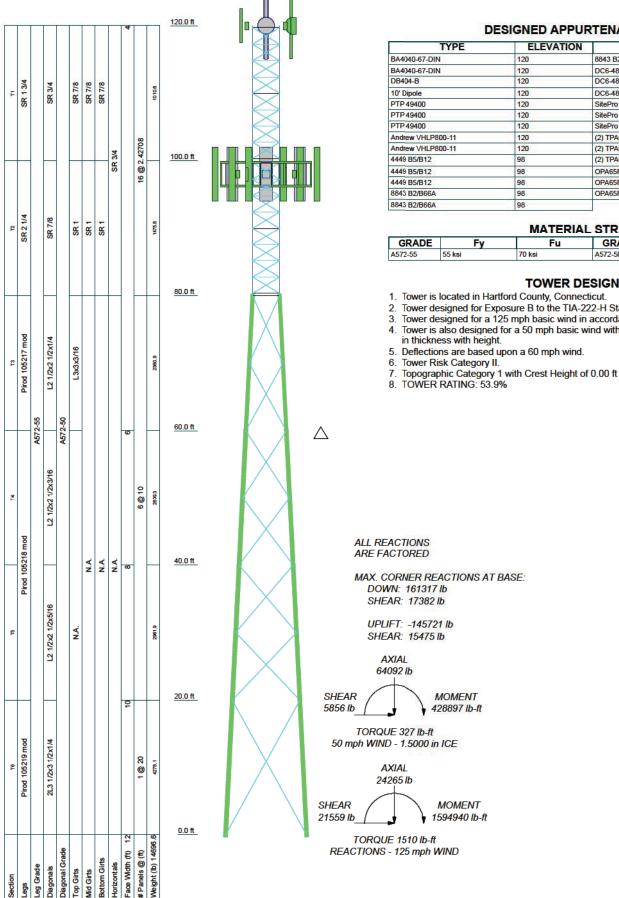
2. Connecticut State Building Code

County: Hartford
City/Town: Southington
Wind Load: 125 mph
Structural Class: II
Exposure Category: B
Topographic Category: 1
Crest Height: 0 ft

Crest Height: 0 ft. Ice Thickness: 1.5 inch

3. Approximate height above grade to proposed antennas: 98'

ASSUMPTIONS:


- 1. The tower dimensions, member sizes and material strength are as indicated in the record drawings of the existing tower prepared by Valmont Structures, dated December 12, 2019.
- 2. The appurtenances configuration is as stated in this report. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 3. The tower and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 4. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
- 5. All prior structural modification, if any, are assumed to be as per the data supplied (if available), and installed properly.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas and RRHs be mounted on the proposed T-frame supported by the tower; the proposed surge arrestors be mounted on the tower leg.

CALCULATIONS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
BA4040-67-DIN	120	8843 B2/B66A	98
BA4040-67-DIN	120	DC6-48-60-18-8C-EV	98
DB404-B	120	DC6-48-60-18-8C-EV	98
10' Dipole	120	DC6-48-60-0-8C-EV	98
PTP 49400	120	SitePro VFA12 (ATI - proposed)	98
PTP 49400	120	SitePro VFA12	98
PTP 49400	120	SitePro VFA12	98
Andrew VHLP800-11	120	(2) TPA65R-BU8D w/mount pipe	98
Andrew VHLP800-11	120	(2) TPA65R-BU8D w/mount pipe	98
4449 B5/B12	98	(2) TPA65R-BU8D w/mount pipe	98
4449 B5/B12	98	OPA65R-BU8D w/mount pipe	98
4449 B5/B12	98	OPA65R-BU8D w/mount pipe	98
8843 B2/B66A	98	OPA65R-BU8D w/mount pipe	98
8843 B2/B66A	98		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-55	55 ksi	70 ksi	A572-50	50 ksi	65 ksi

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
- 2. Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase
- 5. Deflections are based upon a 60 mph wind.

CT1030 Hudson Design Group LLC Project: 120 ft Self Supporting Tower 45 Beechwood Drive Client: AT&T Drawn by: kw App'd: North Andover, MA 01845 Code: TIA-222-H Date: 03/12/20 Scale: NTS Phone: (P) 978.557.5553 Dwg No. E-1 FAX: (F) 978.336.5586

THY	014101
UIUAI	ower

Hudson Design Group LLC 45 Beechwood Drive North Andover, MA 01845

North Andover, MA 01845 Phone: (P) 978.557.5553 FAX: (F) 978.336.5586

Job		Page
	CT1030	1 of 8
Project		Date
	120 ft Self Supporting Tower	10:12:55 03/12/20
Client	100000	Designed by
	AT&T	kw

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 120.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 4.00 ft at the top and 12.00 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

Tower base elevation above sea level: 312.00 ft.

Basic wind speed of 125 mph.

Risk Category II.

Exposure Category B.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.5000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number	Section Length
Section	Lievation	Dutabase		mun	of Sections	Lengin
	ft			ft		ft
T1	120.00-100.00			4.00	1	20.00
T2	100.00-80.00			4.00	1	20.00
T3	80.00-60.00			4.00	1	20.00
T4	60.00-40.00			6.00	1	20.00
T5	40.00-20.00			8.00	1	20.00
T6	20.00-0.00			10.00	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	120.00-100.00	2.43	X Brace	No	Yes	3.5000	3.5000
T2	100.00-80.00	2.43	X Brace	No	Yes	3.5000	3.5000
T3	80.00-60.00	10.00	X Brace	No	No	0.0000	0.0000
T4	60.00-40.00	10.00	X Brace	No	No	0.0000	0.0000

tuv	01410TA
	ower
CI CO LA	

Hudson Design Group LLC 45 Beechwood Drive North Andover, MA 01845 Phone: (P) 978.557.5553 FAX: (F) 978.336.5586

Job		Page
	CT1030	2 of 8
Project		Date
	120 ft Self Supporting Tower	10:12:55 03/12/20
Client		Designed by
	AT&T	kw

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels Panels		in	in
T5	40.00-20.00	10.00	X Brace	No	No	0.0000	0.0000
T6	20.00-0.00	20.00	X Brace	No	No	0.0000	0.0000

	Tower Section Geometry (cont'd)									
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade				
T1 120.00-100.00	Solid Round	1 3/4	A572-55 (55 ksi)	Solid Round	3/4	A572-50 (50 ksi)				
T2 100.00-80.00	Solid Round	2 1/4	A572-55 (55 ksi)	Solid Round	7/8	A572-50 (50 ksi)				
T3 80.00-60.00	Truss Leg	Pirod 105217 mod	A572-55 (55 ksi)	Equal Angle	L2 1/2x2 1/2x1/4	A572-50 (50 ksi)				
T4 60.00-40.00	Truss Leg	Pirod 105218 mod	A572-55 (55 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	A572-50 (50 ksi)				
T5 40.00-20.00	Truss Leg	Pirod 105218 mod	A572-55 (55 ksi)	Equal Angle	L2 1/2x2 1/2x5/16	A572-50 (50 ksi)				
T6 20.00-0.00	Truss Leg	Pirod 105219 mod	A572-55 (55 ksi)	Double Equal Angle	2L3 1/2x3 1/2x1/4	A572-50 (50 ksi)				

	Tower Section Geometry (cont'd)								
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade			
T1 120.00-100.00	Solid Round	7/8	A572-50 (50 ksi)	Solid Round	7/8	A572-50 (50 ksi)			
T2 100.00-80.00	Solid Round	1	A572-50 (50 ksi)	Solid Round	1	A572-50 (50 ksi)			
T3 80.00-60.00	Equal Angle	L3x3x3/16	A572-50 (50 ksi)	Solid Round		A572-50 (50 ksi)			

Tower Section Geometry (cont'd)							
Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
ft	Girts						
T1 120.00-100.00	1	Solid Round	7/8	A572-50 (50 ksi)	Solid Round	3/4	A572-50 (50 ksi)
T2 100.00-80.00	1	Solid Round	1	A572-50 (50 ksi)	Solid Round	3/4	A572-50 (50 ksi)

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Hudson Design Group LLC 45 Beechwood Drive

North Andover, MA 01845 Phone: (P) 978.557.5553 FAX: (F) 978.336.5586

Job		Page
	CT1030	3 of 8
Project		Date
	120 ft Self Supporting Tower	10:12:55 03/12/20
Client	300/45 - PH/000-101	Designed by
	AT&T	kw

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number	Number Per Row	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation		ft			in	in	in	plf
1 5/8 (AT&T - proposed)	A	No	Yes	Ar (CaAa)	98.00 - 6.00	6	6	1.9800	1.9800		1.04
WR-VG122ST-BRD A	A	No	Yes	Ar (CaAa)	98.00 - 6.00	6	6	0.0000	0.4000		0.25
FB-L98B-002 ******	A	No	Yes	Ar (CaAa)	98.00 - 6.00	2	2	0.0000	0.4000		0.25
7/8	C	No	Yes	Ar (CaAa)	120.00 - 6.00	18	9	1.1100	1.1100		0.54

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C₄A₄ Side	Weight
			ft ft ft	0	ft		ft²	ft²	lb
SitePro VFA12 (AT&T - proposed)	A	From Leg	2.00 0.00 0.00	0.0000	98.00	No Ice 1/2" Ice 1" Ice	15.40 21.30 27.20	14.00 20.81 27.62	558.00 741.00 924.00
SitePro VFA12	В	From Leg	2.00 0.00 0.00	0.0000	98.00	2" Ice No Ice 1/2" Ice 1" Ice	39.00 15.40 21.30 27.20	41.24 14.00 20.81 27.62	1290.00 558.00 741.00 924.00
SitePro VFA12	С	From Leg	2.00 0.00 0.00	0.0000	98.00	2" Ice No Ice 1/2" Ice 1" Ice	39.00 15.40 21.30 27.20	41.24 14.00 20.81 27.62	1290.00 558.00 741.00 924.00
(2) TPA65R-BU8D w/mount pipe	A	From Leg	3.50 0.00 0.00	0.0000	98.00	2" Ice No Ice 1/2" Ice 1" Ice	39.00 18.16 18.89 19.61	41.24 10.71 12.24 13.58	1290.00 139.21 264.73 401.95
(2) TPA65R-BU8D w/mount pipe	В	From Leg	3.50 0.00 0.00	0.0000	98.00	2" Ice No Ice 1/2" Ice 1" Ice	21.04 18.16 18.89 19.61	15.92 10.71 12.24 13.58	708.65 139.21 264.73 401.95
(2) TPA65R-BU8D w/mount pipe	C	From Leg	3.50 0.00 0.00	0.0000	98.00	2" Ice No Ice 1/2" Ice 1" Ice	21.04 18.16 18.89 19.61	15.92 10.71 12.24 13.58	708.65 139.21 264.73 401.95
OPA65R-BU8D w/mount pipe	A	From Leg	3.50 0.00 0.00	0.0000	98.00	2" Ice No Ice 1/2" Ice 1" Ice	21.04 18.38 19.11 19.84	15.92 10.79 12.31 13.66	708.65 132.11 259.03 397.67
OPA65R-BU8D w/mount pipe	В	From Leg	3.50 0.00 0.00	0.0000	98.00	2" Ice No Ice 1/2" Ice 1" Ice	21.26 18.38 19.11 19.84	16.00 10.79 12.31 13.66	707.30 132.11 259.03 397.67
OPA65R-BU8D w/mount pipe	C	From Leg	3.50 0.00 0.00	0.0000	98.00	2" Ice No Ice 1/2" Ice 1" Ice	21.26 18.38 19.11 19.84	16.00 10.79 12.31 13.66	707.30 132.11 259.03 397.67
4449 B5/B12	A	From Leg	2.50 0.00 0.00	0.0000	98.00	2" Ice No Ice 1/2" Ice 1" Ice	21.26 1.64 1.80 1.97	16.00 1.29 1.44 1.59	707.30 74.00 91.12 110.94

Hudson Design Group LLC
45 Beechwood Drive
North Andover MA 01845

North Andover, MA 01845 Phone: (P) 978.557.5553 FAX: (F) 978.336.5586

Job		Page
	CT1030	4 of 8
Project		Date
	120 ft Self Supporting Tower	10:12:55 03/12/20
Client		Designed by
	AT&T	kw

Description	or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C_4A_A Side	Weig
	Leg		Vert						
			ft ft	0	ft		ft²	ft²	lb
			ft	_					
						2" Ice	2.32	1.91	159.4
4449 B5/B12	В	From Leg	2.50	0.0000	98.00	No Ice	1.64	1.29	74.0
			0.00			1/2" Ice	1.80	1.44	91.1
			0.00			1" Ice 2" Ice	1.97 2.32	1.59 1.91	110.9 159.4
4449 B5/B12	C	From Leg	2.50	0.0000	98.00	No Ice	1.64	1.29	74.0
THO DOIDIE		110m Lkg	0.00	0.0000	20.00	1/2" Ice	1.80	1.44	91.1
			0.00			1" Ice	1.97	1.59	110.9
						2" Ice	2.32	1.91	159.
8843 B2/B66A	Α	From Leg	2.50	0.0000	98.00	No Ice	1.64	1.35	74.0
			0.00			1/2" Ice	1.80	1.50	91.6
			0.00			1" Ice	1.97	1.65	111.9
						2" Ice	2.32	1.99	161.
8843 B2/B66A	В	From Leg	2.50	0.0000	98.00	No Ice	1.64	1.35	74.0
			0.00			1/2" Ice	1.80	1.50	91.6
			0.00			1" Ice	1.97	1.65	111.
0042 D2/D66A	C	Enom I ac	2.50	0.0000	00.00	2" Ice	2.32	1.99	161.
8843 B2/B66A	C	From Leg	2.50 0.00	0.0000	98.00	No Ice 1/2" Ice	1.64 1.80	1.35 1.50	74.0 91.6
			0.00			1" Ice	1.97	1.65	111.9
			0.00			2" Ice	2.32	1.99	161.
DC6-48-60-18-8C-EV	Α	From Leg	1.00	0.0000	98.00	No Ice	0.81	0.81	33.0
		8	0.00			1/2" Ice	1.30	1.30	48.3
			0.00			1" Ice	1.48	1.48	66.1
						2" Ice	1.86	1.86	109.
DC6-48-60-18-8C-EV	В	From Leg	1.00	0.0000	98.00	No Ice	0.81	0.81	33.0
			0.00			1/2" Ice	1.30	1.30	48.3
			0.00			1" Ice	1.48	1.48	66.1
	_					2" Ice	1.86	1.86	109.
DC6-48-60-0-8C-EV	C	From Leg	1.00	0.0000	98.00	No Ice	0.81	0.81	33.0
			0.00			1/2" Ice	1.30	1.30	48.3
			0.00			1" Ice 2" Ice	1.48 1.86	1.48 1.86	66.1 109.2
******						z ice	1.00	1.60	109
BA4040-67-DIN	Α	From Leg	2.00	0.0000	120.00	No Ice	12.78	4.92	18.0
			0.00			1/2" Ice	13.51	6.04	72.9
			0.00			1" Ice	14.25	7.18	136.
						2" Ice	15.75	8.91	290.
BA4040-67-DIN	В	From Leg	2.00	0.0000	120.00	No Ice	12.78	4.92	18.0
			0.00			1/2" Ice	13.51	6.04	72.9
			0.00			1" Ice	14.25	7.18	136.
	_					2" Ice	15.75	8.91	290.
DB404-B	C	From Leg	2.00	0.0000	120.00	No Ice	5.65	2.29	14.0
			0.00			1/2" Ice	6.03	2.65	42.6
			0.00			1" Ice 2" Ice	6.42	3.02	76.2
10' Dipole	Α	From Leg	2.00	0.0000	120.00	No Ice	7.21 3.69	3.79 3.69	158. 25.0
To Dipole	A	From Leg	0.00	0.0000	120.00	1/2" Ice	4.97	4.97	53.1
			0.00			1" Ice	5.57	5.57	87.9
			0.00			2" Ice	6.81	6.81	178.
PTP 49400	Α	From Leg	1.00	0.0000	120.00	No Ice	1.75	0.48	12.1
			0.00			1/2" Ice	1.92	0.58	23.5
			0.00			1" Ice	2.09	0.69	37.2
						2" Ice	2.46	0.92	72.5
PTP 49400	В	From Leg	1.00	0.0000	120.00	No Ice	1.75	0.48	12.1
			0.00			1/2" Ice	1.92	0.58	23.5
						1" Ice	2.09	0.69	37.2

Hudson Design Group LLC 45 Beechwood Drive North Andover, MA 01845 Phone: (P) 978.557.5553 FAX: (F) 978.336.5586

Job		Page
	CT1030	5 of 8
Project	120 ft Self Supporting Tower	Date 10:12:55 03/12/20
Client	AT&T	Designed by kw

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh
			Vert ft ft	0	ft		ft²	ft²	lb
						2" Ice	2.46	0.92	72.51
PTP 49400	C	From Leg	1.00	0.0000	120.00	No Ice	1.75	0.48	12.10
			0.00			1/2" Ice	1.92	0.58	23.53
			0.00			1" Ice	2.09	0.69	37.28
						2" Ice	2.46	0.92	72.51

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	lb
Andrew VHLP800-11	Α	Paraboloid	From	1.00	0.0000		120.00	2.50	No Ice	6.00	49.00
		w/Shroud (HP)	Leg	0.00					1/2" Ice	6.40	77.00
				0.00					1" Ice	6.80	105.00
									2" Ice	7.60	161.00
Andrew VHLP800-11	В	Paraboloid	From	1.00	0.0000		120.00	2.50	No Ice	6.00	49.00
		w/Shroud (HP)	Leg	0.00					1/2" Ice	6.40	77.00
				0.00					1" Ice	6.80	105.00
									2" Ice	7.60	161.00

Tower Mast Reaction Summary

Load	Vertical	Shear _x	Shear _z	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	lb	lb	<u>lb</u>	lb-ft	lb-ft	lb-ft
Dead Only	20220.61	0.00	-0.00	-197.43	-155.36	0.00
1.2 Dead+1.0 Wind 0 deg - No	24264.74	-113.36	-21558.82	-1592401.87	13477.82	1007.48
Ice						
0.9 Dead+1.0 Wind 0 deg - No	18198.55	-113.36	-21558.82	-1590818.31	13507.50	1006.83
Ice						
1.2 Dead+1.0 Wind 30 deg - No	24264.74	9933.91	-17283.45	-1302396.59	-746610.84	513.98
Ice						
0.9 Dead+1.0 Wind 30 deg - No	18198.55	9933.90	-17283.45	1301073.92	745839.14	513.79
Ice						
1.2 Dead+1.0 Wind 60 deg - No	24264.74	15589.71	-9000.72	-681360.71	-1179920.87	-411.01
Ice						
0.9 Dead+1.0 Wind 60 deg - No	18198.55	15589.71	-9000.72	-680637.08	-1178724.27	-410.68
Ice						
1.2 Dead+1.0 Wind 90 deg - No	24264.74	17373.28	38.71	4419.85	-1310201.22	-1220.56
Ice						
0.9 Dead+1.0 Wind 90 deg - No	18198.55	17373.28	38.71	4473.40	-1308886.25	-1219.94
Ice						
1.2 Dead+1.0 Wind 120 deg -	24264.74	16493.46	9653.39	721495.83	-1222941.71	-1418.33
No Ice						
0.9 Dead+1.0 Wind 120 deg -	18198.55	16493.46	9653.39	720857.92	-1221720.46	-1417.41
No Ice						
1.2 Dead+1.0 Wind 150 deg -	24264.74	10749.79	18646.41	1381741.18	-796180.15	-1389.05
No Ice						

Hudson Design Group LLC 45 Beechwood Drive

North Andover, MA 01845 Phone: (P) 978.557.5553 FAX: (F) 978.336.5586

Job		Page
	CT1030	6 of 8
Project		Date
	120 ft Self Supporting Tower	10:12:55 03/12/20
Client		Designed by
	AT&T	kw

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
0.9 Dead+1.0 Wind 150 deg -	18198.55	10749.79	18646.41	1380474.60	-795371.83	-1388.14
No Ice						
1.2 Dead+1.0 Wind 180 deg -	24264.74	70.85	21145.24	1578877.66	-8741.38	-1099.14
No Ice	10100.55	70.05	24445.24	1577412.64	0.602.02	1000 50
0.9 Dead+1.0 Wind 180 deg -	18198.55	70.85	21145.24	1577413.64	-8683.03	-1098.50
No Ice 1.2 Dead+1.0 Wind 210 deg -	24264.74	-9910.53	17348.30	1309751.74	743396.21	-530.14
No Ice	24204.74	-9910.33	17346.30	1309/31.74	743390.21	-550.14
0.9 Dead+1.0 Wind 210 deg -	18198.55	-9910.54	17348.30	1308537.19	742726.40	-529.93
No Ice						
1.2 Dead+1.0 Wind 240 deg -	24264.74	-15994.64	9234.51	690658.60	1196486.94	411.04
No Ice						
0.9 Dead+1.0 Wind 240 deg -	18198.55	-15994.64	9234.51	690050.95	1195377.51	410.70
No Ice	24264.74	-17417.76	-91.37	11270 55	1315189.56	1236.58
1.2 Dead+1.0 Wind 270 deg - No Ice	24264.74	-1/41/./0	-91.57	-11270.55	1313169.30	1230.36
0.9 Dead+1.0 Wind 270 deg -	18198.55	-17417.76	-91.37	-11196.90	1313962.43	1235.83
No Ice				222000	202002110	2220.02
1.2 Dead+1.0 Wind 300 deg -	24264.74	-16156.53	-9409.79	-711024.24	1213818.32	1509.97
No Ice						
0.9 Dead+1.0 Wind 300 deg -	18198.55	-16156.52	-9409.79	-710271.83	1212688.55	1509.05
No Ice	24264.74	10772 27	10522.00	1200570.00	70064636	1200.01
1.2 Dead+1.0 Wind 330 deg -	24264.74	-10773.37	-18632.80	-1380578.20	798646.26	1389.04
No Ice 0.9 Dead+1.0 Wind 330 deg -	18198.55	-10773.37	-18632.80	-1379195.72	797925.00	1388 14
No Ice	10190.55	-10773.37	-10032.00	-13/9193.72	191925.00	1300.14
1.2 Dead+1.0 Ice+1.0 Temp	64092.32	0.00	-0.00	-1176.98	-866.64	0.03
1.2 Dead+1.0 Wind 0 deg+1.0	64092.32	-22.26	-5856.05	-428892.88	1829.39	192.88
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	64092.32	2738.51	-4758.44	-352762.24	-202787.91	75.37
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	64092.32	4453.34	-2571.13	-191312.86	-330162.64	-117.09
Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0	64092.32	5142.71	7.60	-278.07	-377170.96	-276.79
Ice+1.0 Temp	04072.32	3142.71	7.00	-276.07	-5//1/0.50	-270.79
1.2 Dead+1.0 Wind 120	64092.32	4759.44	2773.57	200428.55	-344695.31	-309.13
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	64092.32	2902.79	5033.12	364935.12	-211894.94	-289.84
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	64092.32	13.92	5809.29	425262.61	-2577.71	-210.91
deg+1.0 Ice+1.0 Temp	64000 30	2722.02	4771 10	251010.05	200461 52	70.56
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	64092.32	-2733.92	4771.18	351910.05	200461.52	-78.56
1.2 Dead+1.0 Wind 240	64092.32	-4503.01	2599.81	190165.31	330577.67	116.53
deg+1.0 Ice+1.0 Temp	0.002.02	1505.01	2000.01	170105.51	330377.07	110.55
1.2 Dead+1.0 Wind 270	64092.32	-5151.45	-17.95	-3390.38	376470.47	279.99
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	64092.32	-4723.12	-2742.96	-201341.42	342377.69	327.09
deg+1.0 Ice+1.0 Temp	64000 00	2007.42	5020.45	267012.56	212626 44	200.04
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	64092.32	-2907.42	-5030.45	-367013.56	210696.44	289.84
Dead+Wind 0 deg - Service	20220.61	-26.12	-4967.16	-366807.71	2990.74	232.18
Dead+Wind 30 deg - Service	20220.61	2288.77	-3982.11	-300027.46	-172020.53	114.88
Dead+Wind 60 deg - Service	20220.61	3591.87	-2073.77	-157027.92	-271792.10	-95.01
Dead+Wind 90 deg - Service	20220.61	4002.80	8.92	878.51	-301783.47	-279.57
Dead+Wind 120 deg - Service	20220.61	3800.09	2224.14	165986.06	-281703.12	-326.79
Dead+Wind 150 deg - Service	20220.61	2476.75	4296.13	318009.18	-183439.61	-323.97
Dead+Wind 180 deg - Service	20220.61	16.32	4871.86	363398.14	-2124.28	-253.22
Dead+Wind 210 deg - Service	20220.61	-2283.39	3997.05	301429.46	171060.03	-118.57
Dead+Wind 240 deg - Service	20220.61	-3685.17	2127.63	158884.60	275384.51	94.54
Dead+Wind 270 deg - Service	20220.61	-4013.05	-21.05	-2733.16	302704.77	283.30

Hudson Design Group LLC 45 Beechwood Drive North Andover, MA 01845

North Andover, MA 01845 Phone: (P) 978.557.5553 FAX: (F) 978.336.5586

Job		Page
	CT1030	7 of 8
Project		Date
	120 ft Self Supporting Tower	10:12:55 03/12/20
Client	What the December	Designed by
	AT&T	kw

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead+Wind 300 deg - Service	20220.61	-3722.46	-2168.01	-163857.07	279372.12	347.82
Dead+Wind 330 deg - Service	20220.61	-2482.18	-4293.00	-318030.72	183778.30	323.97

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	0
T1	120 - 100	2.395	50	0.1805	0.0294
T2	100 - 80	1.641	50	0.1703	0.0174
T3	80 - 60	0.962	50	0.1308	0.0092
T4	60 - 40	0.498	50	0.0834	0.0034
T5	40 - 20	0.203	50	0.0511	0.0011
T6	20 - 0	0.040	50	0.0203	0.0003

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	0	ft
120.00	Andrew VHLP800-11	50	2.395	0.1805	0.0294	444607
98.00	SitePro VFA12	50	1.567	0.1677	0.0164	70548

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$ oldsymbol{\emptyset} P_{allow} $	%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
T1	120 - 100	Leg	1 3/4	3	-13006.30	83362.50	15.6	Pass
T2	100 - 80	Leg	2 1/4	81	-68527.70	158641.00	43.2	Pass
T3	80 - 60	Leg	Pirod 105217 mod	159	-91733.60	233885.00	39.2	Pass
T4	60 - 40	Leg	Pirod 105218 mod	177	-115901.00	328216.00	35.3	Pass
T5	40 - 20	Leg	Pirod 105218 mod	190	-122960.00	328216.00	53.9	Pass
T6	20 - 0	Leg	Pirod 105219 mod	207	-142761.00	385152.00	37.1	Pass
T1	120 - 100	Diagonal	3/4	16	-1556.10	5920.60	26.3	Pass
T2	100 - 80	Diagonal	7/8	93	-4825.83	11155.80	43.3	Pass
T3	80 - 60	Diagonal	L2 1/2x2 1/2x1/4	165	-5184.12	21163.90	24.5	Pass
T4	60 - 40	Diagonal	L2 1/2x2 1/2x3/16	180	-3837.99	12900.20	29.8	Pass
T5	40 - 20	Diagonal	L2 1/2x2 1/2x5/16	198	-4555.26	16246.80	28.0	Pass
T6	20 - 0	Diagonal	2L3 1/2x3 1/2x1/4	212	-11218.50	61226.70	18.3	Pass
T1	120 - 100	Horizontal	3/4	28	-152.57	3347.61	4.6	Pass
T2	100 - 80	Horizontal	3/4	97	-847.97	3421.18	24.8	Pass
T1	120 - 100	Top Girt	7/8	4	-308.19	6201.87	5.0	Pass
T2	100 - 80	Top Girt	1	82	-415.69	10812.60	3.8	Pass
T3	80 - 60	Top Girt	L3x3x3/16	160	-992.43	29513.20	3.4	Pass
T1	120 - 100	Bottom Girt	7/8	7	-534.75	6201.87	8.6	Pass
T2	100 - 80	Bottom Girt	1	85	-435.49	10812.60	4.0	Pass
T1	120 - 100	Mid Girt	7/8	10	-85.60	6201.87	1.4	Pass
T2	100 - 80	Mid Girt	1	88	-559.42	10812.60	5.2	Pass
							Summary	

Hudson Design Group LLC 45 Beechwood Drive

North Andover, MA 01845 Phone: (P) 978.557.5553 FAX: (F) 978.336.5586

Job		Page
	CT1030	8 of 8
Project		Date
	120 ft Self Supporting Tower	10:12:55 03/12/20
Client		Designed by
	AT&T	kw

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb		% Capacity	Pass Fail
2001200						Leg (T5)	53.9	Pass
						Diagonal (T2)	43.3	Pass
						Horizontal (T2)	24.8	Pass
						Top Girt (T1)	5.0	Pass
						Bottom Girt (T1)	8.6	Pass
						Mid Girt (T2)	5.2	Pass
						RATING =	53.9	Pass

ATTACHMENT 3

May 30, 2019 July 30, 2019 (Rev. 1) February 6, 2020 (Rev. 2) March 10, 2020 (Rev. 3)

SAI Communications 12 Industrial Way Salem NH, 03079

RE: Site Number:

CT1030 (NSB) FA Number: 10035264 PACE Number: MRCTB022080 PT Number: 2051A09FYH

Site Name:

SOUTHINGTON MILL ST H20 TANK

Site Address:

Southington, CT 06489

435 Mill Street

To Whom It May Concern:

Hudson Design Group LLC (HDG) has been authorized by SAI Communications to perform a mount analysis on the proposed AT&T antenna/RRH mounts to determine their capability of supporting the following additional loading:

- (6) TPA65R-BU8D Antenna (96.0"x20.7"x7.7"- Wt. = 88 lbs. /each)
- (3) OPA65R-BU8B Antenna (95.9"x11.7"x8.4"- Wt. = 69 lbs. /each)
- (3) 4449 B5/B12 RRH's (17.9"x13.2"x9.5" Wt. = 73 lbs. /each)
- (3) 8843 B2/B66A RRH's (14.9"x13.2"x10.9" Wt. = 72 lbs. /each)
- (3) Squid Surge Arrestor (24.0"x9.7" Φ Wt. = 33 lbs. /each)

Mount fabrication drawings prepared by SitePro1 P/N VFA12-WLL-30120, dated May 3, 2018 were used to perform this analysis.

^{*}Proposed equipment shown in bold

Mount Analysis Methods:

- This analysis was conducted in accordance with EIA/TIA-222-H, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, the International Building Code 2015 with 2018 Connecticut State Building Code, and AT&T Mount Technical Directive R13.
- HDG considers this mount to be asymmetrical and has applied wind loads in 30 degree increments all around the mount. Per TIA-222-H and Appendix N of the Connecticut State Building Code, the max basic wind speed for this site is equal to 125 mph with a max basic wind speed with ice of 50 mph and a max ice thickness of 1.5 in. An escalated ice thickness of 1.67 in was used for this analysis.
- HDG considers this site to be exposure category B; tower is located in an urban/suburban or wooded area with numerous closely spaced obstructions.
- HDG considers this site to be topographic category 1; tower is located on flat terrain or the bottom
 of a hill or ridge.
- The mount has been analyzed with load combinations consisting of 250 lbs live load using a service wind speed of 30 mph wind on the worst case antenna. Analysis performed on each antenna pipe to determine worst case location; worst case location was antenna position 4.
- The mount has been analyzed with load combinations consisting of a 250 lbs live load in a worst case location on the mount.

Based on our evaluation, we have determined that the <u>New SitePro1 VFA12-WLL-30120</u> mounts <u>ARE CAPABLE</u> of supporting the proposed installation. HDG recommends the following:

- Distance from end of face pipe to the center of the standoff to not exceed 4'-8". (typ. of 1 per sector, total of 3).
- Stiff-arm to be installed 6'-0" away from the center of the standoff. (typ. of 1 per Alpha and Beta sector).
- Stiff-arm to be installed 7'-6" away from the center of the standoff. (typ. of 1 per Gamma sector).
- Install new 2-1/2" std. (2.88" O. D.) x 14'-0" horizontal steel pipe mast secured to proposed mount face. (typ. of 2 per Gamma Sector).

	Component	Controlling Load Case	Stress Ratio	Pass/Fail
New Mount Rating Alpha and Beta Sector	96	LC30	68%	PASS
New Mount Rating Gamma Sector	96	LC30	88%	PASS

Reference Documents:

Fabrication drawings prepared by SitePro1 P/N VFA12- WLL-30120, dated May 3, 2018.

This determination was based on the following limitations and assumptions:

- 1. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 4. The proposed mount will be adequately secured to the tower structure per the mount manufacturer's specifications.
- 5. All components pertaining to AT&T's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
- 6. HDG performed a localized analysis on the mount itself and not on the supporting tower structure.

Please feel free to contact our office should you have any questions.

Respectfully Submitted, Hudson Design Group LLC

heland Cll

Michael Cabral Vice President Daniel P. Hamm, PE Principal

Wind & Ice Calculations Date:

2/7/2020

Project Name: SOUTHINGTON MILL ST H20 TANK

Project No.:

CT1030

Designed By: RL

Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Z _g	α	K _{zmin}	K _c
В	1200 ft	7.0	0.70	0.9
С	900 ft	9.5	0.85	1.0
D	700 ft	11.5	1.03	1.1

2.6.6.2 Topographic Factor:

Table 2-5

 $K_{zt} = [1 + (K_c K_t/K_h)]^2$

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2.0
4	0.72	1.5

 $K_h=e^{(f*z/H)}$

2.6.10 Design Ice Thickness

Date:

2/7/2020

Project Name: SOUTHINGTON MILL ST H20 TANK

Project No.:

CT1030

Designed By: RL Checked By: MSC

2.6.9 Gust Effect Factor

2.6.9.1 Self Supporting Lattice Structures

G_h = 1.0 Latticed Structures > 600 ft

G_h = 0.85 Latticed Structures 450 ft or less

 $G_h = 0.85 + 0.15 [h/150 - 3.0]$

h= ht. of structure

h=

120

G_h= 0.85

2.6.9.2 Guyed Masts

G_h= 0.85

2.6.9.3 Pole Structures

G_h= 1.1

2.6.9 Appurtenances

G_h= 1.0

2.6.9.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

G_h=

1.35

Gh=

1.00

2.6.11.2 Design Wind Force on Appurtenances

F= qz*Gh*(EPA)A

 $q_z = 0.00256*K_z*K_{zt}*K_s*K_e*K_d*V_{max}^{2}$

 $K_z =$ 0.983 (from 2.6.5.2)

 $K_{zt} =$

1.0 (from 2.6.6.2.1)

0.85 (from Table 2-2)

 $K_s =$

 $K_d =$

1.0 (from 2.6.7)

33.02

1.90

0.99 (from 2.6.8)

5.28 q_{z (ice)}=

q_{z (30)}=

qz=

125 mph (Ultimate Wind Speed)

 $V_{\text{max}} =$ $V_{\text{max (ice)}} =$

50 mph

V₃₀=

30 mph

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances	0.95
Tubular pole structures supporting antennas enclosed within a cylindrical shroud	1.00

Project Name: SOUTHINGTON MILL ST H20 TANK

Project No.: CT1030

Designed By: RL Checked By: MSC

Determine Ca:

Table 2-9

	Fo	rce Coefficients (Ca) for Ap	purtenances		
	Mambar Trena	Aspect Ratio ≤ 2.5	Aspect Ratio = 7	Aspect Ratio ≥ 25	
	Member Type	Ca	Ca	Ca	
	Flat	1.2	1.4	2.0	
Squar	e/Rectangular HSS	$1.2 - 2.8(r_s) \ge 0.85$	$1.4 - 4.0(r_s) \ge 0.90$	$2.0 - 6.0(r_s) \ge 1.2$	
Round	C < 39	0.7	0.8	1.2	
	(Subcritical)	0.7	0.0	1.2	
	39 ≤ C ≤ 78	0.485	0.00.415		
	(Transitional)	4.14/(C ^{0,485})	3.66/(C ^{0.415})	46.8/(C ^{-1.0})	
	C > 78	0.5			
	(Supercritical)	0.5	0.6	0.6	

Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction

(Aspect ratio is independent of the spacing between support points of a linear appurtenance,

Note: Linear interpolation may be used for aspect ratios other than those shown,

Ice Thickness =	1.67	in	Angle =	0 (deg)		Equival	ent Angle =	180 (deg)	
Appurtenances	<u>Height</u>	Width	<u>Depth</u>	Flat Area	Aspect Ratio	<u>Ca</u>	Force (lbs)	Force (lbs) (w/ lce)	Force (lbs) (30 mph)
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	4.64	1.30	590	114	34
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	8.20	1.44	371	79	21
4449 B5/B12 RRH 4449 B5/B12 RRH (Side)	17.9 17.9	9.5 13.2	13.2 9.5	1.18 1.64	1.88 1.36	1.20 1.20	47 65	12 15	3 4
8843 B2/B66A RRH 8843 B2/B66A RRH (Side)	14.9 14.9	10.9 13.2	13.2 10.9	1.13 1.37	1.37 1.13	1.20 1.20	45 54	11 13	3
Surge Arrestor	24.0	9.7	9.7	1.62	2.47	0.70	37	9	2
PL 3-1/2x5/8	3.5	0.6	200	0.02	5.60	1.20	1		
PL 11-1/4x5/8	11.3	0.5		0.04	22.50	1.20	2		
5/8" Round Bar	0.6	12.0	v	0.05	0.05	1.20	2		
3/4" Round Bar	0.8	12.0		0.06	0.06	1.20	2		
2" Pipe	2.4	12.0	30	0.20	0.20	1.20	8		
2-1/2" Pipe	2.9	12.0	3	0.24	0.24	1.20	9		

Project Name: SOUTHINGTON MILL ST H20 TANK

Project No.: CT1030

Designed By: RL Checked By: MSC

				١.	VIND LOADS							
Angle = 30	(deg)		Ice Thick	ness =	1.67	in.			Equiva	lent Angle =	210	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	Height	Width	Depth	Flat Area	Flat Area	Aspect	Aspect	Ca (normal)	Ca	Force (lbs)	Force (lbs	Force (lbs)
				(normal)	(side)	Ratio	Ratio		(side)	(normal)	(side)	(angle)
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1,30	1.58	590	268	510
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	5.59	8.20	11.42	1.44	1.55	371	286	349
4449 B5/B12 RRH	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	47	65	51
4449 B5/B12 RRH (Side)	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1,20	65	47	60
8843 B2/B66A RRH	14.9	10.9	15.2	1.13	1.37	1,37	1.13	1.20	1,20	45	54	47
8843 B2/B66A RRH (Side)	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	54	45	52
WIND LOADS WITH ICE:												
TPA65R-BU8D Antenna	99.3	24.0	11.0	16.59	7.62	4.13	8,99	1.27	1.47	112	59	98
OPA65R-BU8B Antenna	99.2	15.0	11.7	10.37	8.09	6.60	8.45	1.38	1.45	76	62	72
4449 B5/B12 RRH	21.2	12.8	16.5	1.90	2.44	1,65	1.28	1.20	1.20	12	15	13
4449 B5/B12 RRH (Side)	21.2	16.5	12.8	2.44	1.90	1.28	1.65	1.20	1.20	15	12	15
8843 82/866A RRH	18.2	14.2	16.5	1.80	2.10	1.28	1.10	1.20	1.20	11	13	12
8843 B2/B66A RRH (Side)	18.2	16.5	14.2	2.10	1.80	1.10	1.28	1,20	1.20	13	11	13
WIND LOADS AT 30 MPH:												
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	34	15	29
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	5,59	8.20	11.42	1.44	1.55	21	16	20
4449 85/B12 RRH	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	3	4	3
4449 B5/B12 RRH (Side)	17.9	13.2	9.5	1.64	1.18	1,36	1.88	1.20	1.20	.4	3	3
8843 B2/B66A RRH	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1,20	1.20	3	3	3
8843 B2/B66A RRH (Side)	14.9	13.2	10.9	1.37	1.13	1.13	1,37	1.20	1.20	3	3	3

Project Name: SOUTHINGTON MILL ST H20 TANK

Project No.: CT1030

Designed By: RL Checked By: MSC

Angle = 60	(deg)	Į.	Ice Thick	ness =	1.67	in.		I	Equiva	lent Angle =	240	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	Width	Depth	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs (angle)
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	590	268	349
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	5.59	8.20	11.42	1.44	1.55	371	286	307
4449 B5/B12 RRH	17.9	9.5	13.2	1.18	1.64	1,88	1.36	1.20	1.20	47	65	60
4449 B5/B12 RRH (Side)	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	65	47	51
8843 B2/B66A RRH	14.9	10.9	13.2	1,13	1.37	1.37	1.13	1.20	1.20	45	54	52
8843 B2/B66A RRH (Side)	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	54	45	47
WIND LOADS WITH ICE:												
TPA65R-BU8D Antenna	99.3	24.0	11.0	16.59	7.62	4.13	8.99	1.27	1.47	112	59	72
OPA65R-BU8B Antenna	99.2	15.0	11.7	10.37	8.09	6.60	8.45	1.38	1.45	76	62	65
4449 B5/B12 RRH	21.2	12.8	16.5	1.90	2.44	1.65	1.28	1.20	1.20	12	15	15
4449 B5/B12 RRH (Side)	21.2	16.5	12.8	2,44	1.90	1.28	1,65	1.20	1.20	15	12	13
8843 B2/B66A RRH	18.2	14.2	16.5	1.80	2.10	1.28	1.10	1.20	1.20	11	13	13
8843 B2/B66A RRH (Side)	18.2	16.5	14.2	2.10	1.80	1.10	1.28	1,20	1.20	13	11	12
WIND LOADS AT 30 MPH:												
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	34	15	20
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	5.59	8.20	11.42	1.44	1.55	21	16	18
4449 B5/B12 RRH	17.9	9,5	13.2	1.18	1.64	1,88	1.36	1.20	1.20	3	4	3
4449 B5/B12 RRH (Side)	17.9	13.2	9.5	1,64	1.18	1.36	1.88	1.20	1.20	4	3	3
8843 B2/B66A RRH	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1.20	1.20	3	3	3
3843 B2/B66A RRH (Side)	14.9	19.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	3	3	3

Project Name: SOUTHINGTON MILL ST H20 TANK Project No.: CT1030

Designed By: RL Checked By: MSC

Angle = 90	(deg)	ŀ	Ice Thick	ness =	1.67	in.		l	Equiva	lent Angle =	270	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	Height	Width	Depth	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs (angle)
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	590	268	268
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	5.59	8.20	11.42	1.44	1.55	371	286	286
4449 B5/B12 RRH	17.9	9.5	13,2	1.18	1.64	1.88	1.36	1.20	1.20	47	65	65
4449 B5/B12 RRH (Side)	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	65	47	47
8843 B2/B66A RRH	14.9	10.9	13,2	1.13	1.37	1.37	1.13	1.20	1.20	45	54	54
8843 B2/B66A RRH (Side)	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	54	45	45
WIND LOADS WITH ICE:												
TPA6SR-BU8D Antenna	99.3	24.0	11.0	16.59	7.62	4.13	8.99	1.27	1.47	112	59	59
OPA65R-BU8B Antenna	99.2	15.0	11.7	10.37	8.09	6.60	8.45	1.38	1.45	76	62	62
4449 B5/B12 RRH	21.2	12.8	16.5	1.90	2.44	1.65	1,28	1.20	1.20	12	15	15
4449 B5/B12 RRH (Side)	21.2	16.5	12.8	2,44	1.90	1.28	1.65	1,20	1.20	15	12	12
8843 B2/B66A RRH	18.2	14.2	16.5	1.80	2.10	1.28	1.10	1.20	1.20	11	13	13
8843 B2/B66A RRH (Side)	18.2	16.5	14.2	2.10	1.80	1.10	1.28	1.20	1.20	13	11	11
WIND LOADS AT 30 MPH:												
TPA65R-BU8D Antenna	96,0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	34	15	15
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	5.59	8.20	11.42	1.44	1.55	21	16	16
4449 B5/B12 RRH	17.9	9.5	13.2	1.18	1.64	1.88	1:36	1.20	1.20	3	4	4
4449 B5/B12 RRH (Side)	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	4	3	3
8843 B2/B66A RRH	14.9	10.9	13.2	1.13	1.37	1.37	1,13	1.20	1-20	3	3	3
8843 B2/B66A RRH (Side)	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1,20	1.20	3	3	3

Project Name: SOUTHINGTON MILL ST H20 TANK

Project No.: CT1030

Designed By: RL Checked By: MSC

					IND LOADS	a a a a a a a a a a a a a a a a a a a						
Angle = 120	(deg)	l	Ice Thick	ness =	1.67	in.		1	Equiva	lent Angle =	300	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	Height	Width	<u>Depth</u>	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (ibs (side)	Force (lbs)
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	590	268	349
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	5.59	8.20	11.42	1.44	1.55	371	286	307
4449 B5/B12 RRH 4449 B5/B12 RRH (Side)	17.9 17.9	9.5 13.2	13.2 9.5	1.18 1.64	1.64 1.18	1.88 1.36	1.36 1.88	1.20 1.20	1.20 1.20	47 65	65 47	60 51
8843 B2/B66A RRH 8843 B2/B66A RRH (Side)	14.9 14.9	10.9 13.2	13.2 10.9	1.13 1.37	1.37	1.37 1.13	1.13 1:37	1,20 1.20	1.20 1.20	45 54	54 45	52 47
WIND LOADS WITH ICE:												
TPA65R-BU8D Antenna	99.3	24.0	11.0	16.59	7.62	4.13	8.99	1.27	1.47	112	59	72
OPA65R-BU8B Antenna	99.2	15.0	11.7	10.37	8.09	6.60	8.45	1,38	1.45	76	62	65
4449 B5/B12 RRH 4449 B5/B12 RRH (Side)	21.2 21.2	12.8 16.5	16.5 12.8	1.90 2.44	2.44 1.90	1.65 1.28	1.28 1.65	1.20 1.20	1.20 1.20	12 15	15 12	15 13
8843 B2/B66A RRH 8843 B2/B66A RRH (Side)	18.2 18.2	14.2 16.5	16.5 14.2	1.80 2.10	2.10 1.80	1.28 1.10	1.10 1.28	1.20 1.20	1.20 1,20	11 13	13 11	13 12
WIND LOADS AT 30 MPH:												
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12,47	1.30	1.58	34	15	20
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	5.59	8.20	11.42	1.44	1.55	21	16	18
1449 B5/B12 RRH 1449 B5/B12 RRH (Side)	17.9 17.9	9.5 13.2	13.2 9.5	1.18 1.64	1.64 1.18	1.88 1.36	1.36 1.88	1,20 1.20	1.20 1.20	3 4	4	3
3843 B2/B66A RRH	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1,20	1.20	3	3	3

Project Name: SOUTHINGTON MILL ST H20 TANK
Project No.: CT1030
Designed By: RL Checked By: MSC

				· W	IND LOADS							
Angle = 150	(deg)		Ice Thick	ness =	1.67	in.	į	1	Equiva	lent Angle =	330	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	Width	Depth	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs)
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12,47	1.30	1.58	590	268	510
OPA65R-BU8B Antenna	95.9	11.7	8.4	7.79	5.59	8.20	11.42	1,44	1.55	371	286	349
4449 B5/B12 RRH	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	47	65	51
4449 B5/B12 RRH (Side)	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	65	47	60
8843 B2/B66A RRH 8843 B2/B66A RRH (Side)	14.9 14.9	10.9 13.2	13.2	1.13	1.37	1.37 1.13	1.13 1.37	1.20 1.20	1.20 1.20	45 54	54 45	47 52
WIND LOADS WITH ICE:												
TPA65R-BU8D Antenna	99.3	24.0	11.0	16.59	7.62	4,13	8.99	1.27	1.47	112	59	98
OPA65R-BU8B Antenna	99.2	15.0	11.7	10.37	8.09	6.60	8.45	1.38	1.45	76	62	72
4449 B5/B12 RRH 4449 B5/B12 RRH (Side)	21.2 21.2	12.8 16.5	16.5 12.8	1.90 2.44	2,44 1.90	1.65 1.28	1.28 1.65	1.20 1.20	1.20 1.20	12 15	15 12	13 15
8843 B2/B66A RRH 8843 B2/B66A RRH (Side)	18.2 18.2	14.2 16.5	16.5 14.2	1.80 2.10	2.10 1.80	1.28 1.10	1.10 1.28	1.20 1.20	1.20 1.20	11 13	13 11	12 13
WIND LOADS AT 30 MPH:												
TPA65R-BU8D Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1,58	34	15	29
OPA65R-BU8B Antenna	95.9	11.7	8,4	7.79	5.59	8.20	11.42	1.44	1.55	21	16	20
1449 B5/B12 RRH	17.9	9.5	13.2		32.50							
1449 B5/B12 RRH (Side)	17.9	13.2	9.5	1.18	1.64	1.88 1.36	1.36 1.88	1.20 1.20	1.20 1.20	4	3	3
3843 B2/B66A RRH	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1.20	1.20	3	3	3
8843 B2/B66A RRH (Side)	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	3	3	3

Date: 2/7/2020

Project Name: SOUTHINGTON MILL ST H20 TANK

Project No.:

CT1030

Designed By: RL Checked By: MSC

ICE WEIGHT CALCULATIONS

Thickness of ice:

1.67 in.

Density of ice:

56 pcf

TPA65R-BU8D Antenna

Weight of ice based on total radial SF area:

Height (in):

96.0

Width (in):

20.7

Depth (in):

7.7

Total weight of ice on object:

388 lbs

Weight of object:

88.0 lbs

Combined weight of ice and object:

476 lbs

4449 B5/B12 RRH

Weight of ice based on total radial SF area:

Height (in):

17.9

Width (in):

13.2

Depth (in):

9.5

71.0 lbs

Total weight of ice on object:

55 lbs

Weight of object:

Combined weight of ice and object:

126 lbs

Squid Surge Arrestor

Weight of ice based on total radial SF area:

Depth (in):

24.0 9.7

Diameter(in):

Total weight of ice on object:

46 lbs

79 lbs

Weight of object:

33 lbs

PL 3-1/2x5/8

Weight of ice based on total radial SF area:

Combined weight of ice and object:

Height (in):

3.5

Width (in):

0.625

Per foot weight of ice on object:

11 plf

5/8" Round Bar

Per foot weight of ice:

diameter (in):

0.625

Per foot weight of ice on object:

5 plf

OPA65R-BU8B Antenna

Weight of ice based on total radial SF area:

Height (in):

Width (in):

11.7

Depth (in):

8.4

Total weight of ice on object:

262 lbs

Weight of object:

69.0 lbs

Combined weight of ice and object:

331 lbs

8843 B2/B66A RRH

Weight of ice based on total radial SF area:

Height (in):

14.9

Width (in):

13.2

Depth (in):

10.9

Total weight of ice on object:

48 lbs

Weight of object:

72.0 lbs

Combined weight of ice and object:

120 lbs

PL 11-1/4x5/8

Weight of ice based on total radial SF area:

Height (in):

11.25

Width (in):

0.625

Per foot weight of ice on object:

26 plf

3/4" Round Bar

Per foot weight of ice:

diameter (in):

0.75

Per foot weight of ice on object:

5 plf

2-1/2" pipe

Per foot weight of ice:

diameter (in):

2.88

Per foot weight of ice on object:

9 plf

2" pipe

Per foot weight of ice:

diameter (in):

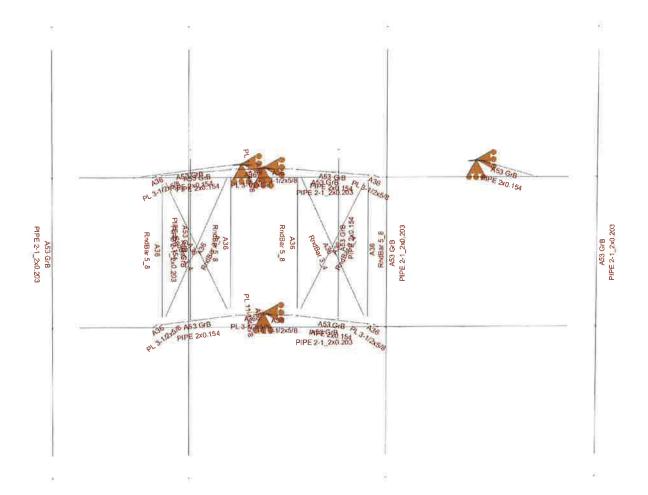
2.38

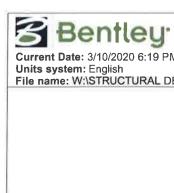
Per foot weight of ice on object:

8 plf

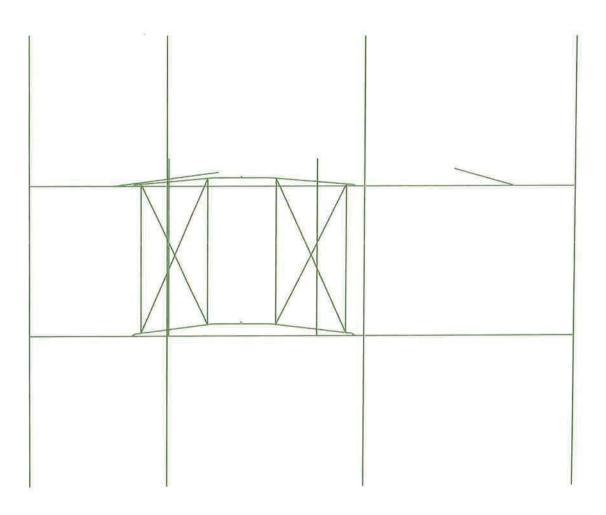
New Mount
Alpha and Beta Calculations

Current Date: 3/10/2020 6:48 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Alpha and Beta Sector)(Rev. 3).re

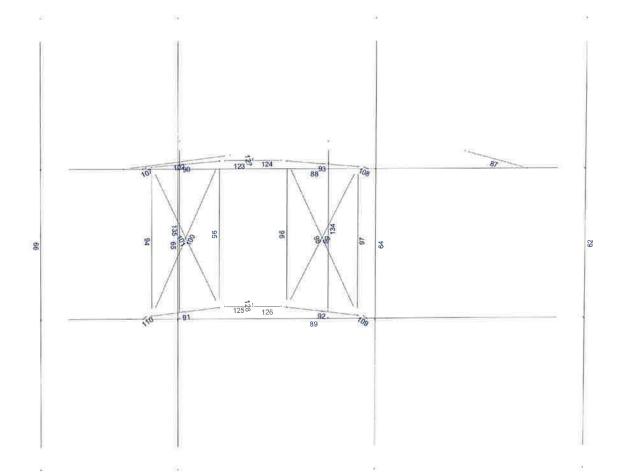

Distance from end of face pipe to center of standoff to not exceed 4'-8". Stiff-arm to be installed 6'-0" away from the center of the standoff. (typ. of 1 per Alpha and Beta sector). 4'-8" min. 6'-0" min



Current Date: 3/10/2020 6:19 PM


Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Alpha and Beta Sector

Current Date: 3/10/2020 6:19 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Alpha and Beta Sector)



Current Date: 3/10/2020 6:19 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Alpha and Beta Sector

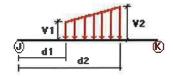
Current Date: 3/10/2020 6:19 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Alpha and Beta

Sector)(Rev. 3).retx

Load data

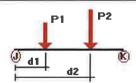

GLOSSARY

Comb Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category	
D	Dead Load	No	DL	
Wo	Wind Load (NO ICE)	No	WIND	
W30	WL 30deg	No	WIND	
W60	WL 60deg	No	WIND	
W90	WL 90deg	No	WIND	
W120	WL 120deg	No	WIND	
W150	WL 150deg	No	WIND	
Di	Ice Load	No	LL	
WI0	WL ICE 0deg	No	WIND	
WI30	WL ICE 30deg	No	WIND	
W160	WL ICE 60deg	No	WIND	27
WI90	WL ICE 90deg	No	WIND	
WI120	WL ICE 120deg	No	WIND	
WI150	WL ICE 150deg	No	WIND	
WL0	WL 30 mph 0deg	No	WIND	
WL30	WL 30 mph 30deg	n No	WIND	
WL60	WL 30 mph 60deg	No	WIND	
WL90	WL 30 mph 90deg	No	WIND	
WL120	WL 30 mph 120deg	No	WIND	
WL150	WL 30 mph 150deg	No	WIND	
LL1	250 lb Live Load Center of Mount	No	LL	
LL2	250 lb Live Load Right End of Mount	No	LL	
LL3	250 lb Live Load Left End of Mount	No	LL	
_La1	250 lb Live Load Antenna 1	No	LL	
La2	250 lb Live Load Antenna 2	No	LL	
_La3	250 lb Live Load Antenna 3	No	LL	

Distributed force on members


Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft]	Dist1 [ft]	%	Dist2 [ft]	%
Wo	64	z	-0.009	-0.009	0.00	No	100.00	Yes
	65	Z	-0.009	-0.009	0.00	No	100.00	Yes
	94	Z	-0.002	-0.002	0.00	No	100.00	Yes
	95	Z	-0.002	-0.002	0.00	No	100.00	Yes
	96	Z	-0.002	-0.002	0.00	No	100.00	Yes
	97	Z	-0.002	-0.002	0.00	No	100.00	Yes
	98	Z	-0.002	-0.002	0.00	No	100.00	Yes
	99	Z	-0.002	-0.002	0.00	No	100.00	Yes
	100	Z	-0.002	-0.002	0.00	No	100.00	Yes
	101	z	-0.002	-0.002	0.00	No	100.00	Yes
	134	Z	-0.008	-0.008	0.00	No	100.00	Yes
	135	Z	-0.008	-0.008	0.00	No	100.00	Yes
	88	Z	-0.009	-0.009	0.00	No	100.00	Yes
	89	z	-0.009	-0.009	0.00	No	100.00	Yes
	87	Z	-0.008	-0.008	0.00	No	100.00	Yes
	108	Z	-0.001	-0.001	0.00	No	100.00	Yes
	109	Z	-0.001	-0.001	0.00	No	100.00	Yes
	92	Z	-0.008	-0.008	0.00	No	100.00	Yes
	93	Z	-0.008	-0.008	0.00	No	100.00	Yes
	91	z	-0.008	-0.008	0.00	No	100.00	Yes
	90	Z	-0.008	-0.008	0.00	No	100.00	Yes
	102	Z	-0.008	-0.008	0.00	No	100.00	Yes
	123	z	-0.001	-0.001	0.00	No	100.00	Yes
	125	z	-0.001	-0.001	0.00	No	100.00	Yes
	124	Z	-0.001	-0.001	0.00	No	100.00	Yes
	127	Z	-0.002	-0.002	0.00	No	100.00	Yes
	126	Z	-0.001	-0.001	0.00	No	100.00	Yes
	110	z	-0.001	-0.001	0.00	No	100.00	Yes
	107 128	z	-0.001	-0.001	0.00	No No	100.00	Yes
MOO		Z	-0.002	-0.002	0.00		100.00	Yes
W30	62 64	z	-0.009 -0.009	-0.009 -0.009	0.00 0.00	No No	100.00 100.00	Yes
	65	z z	-0.009	-0.009	0.00	No	100.00	Yes Yes
	66	Z		-0.009	0.00	No	100.00	Yes
	94		-0.009 -0.002	-0.009	0.00	No	100.00	Yes
	95	Z	-0.002	-0.002	0.00	No	100.00	Yes
	96	z z	-0.002	-0.002	0.00	No	100.00	Yes
	97	Z	-0.002	-0.002	0.00	No	100.00	Yes
	98		-0.002	-0.002	0.00	No	100.00	Yes
	99	Z	-0.002	-0.002	0.00	No	100.00	Yes
	100	z z	-0.002	-0.002	0.00	No	100.00	Yes
	100	Z	-0.002	-0.002	0.00	No	100.00	Yes
	134	Z	-0.002	-0.002	0.00	No	100.00	Yes
	135	Z	-0.008	-0.008	0.00	No	100.00	Yes
	88	z	-0.009	-0.009	0.00	No	100.00	Yes
	89	z	-0.009	-0.009	0.00	No	100.00	Yes
	87	Z	-0.008	-0.008	0.00	No	100.00	Yes
	108	Z	-0.000	-0.001	0.00	No	100.00	Yes
	109	Z	-0.001	-0.001	0.00	No	100.00	Yes
	103	z	-0.008	-0.008	0.00	No	100.00	Yes
	123	z	-0.000	-0.001	0.00	No	100.00	Yes
	125	z	-0.001	-0.001	0.00	No	100.00	Yes
	124	z	-0.001	-0.001	0.00	No	100.00	Yes
	127	z	-0.001	-0.001	0.00	No	100.00	Yes
	126	Z	-0.002	-0.002	0.00	No	100.00	Yes
	110	z	-0.001	-0.001	0.00	No	100.00	Yes
	107	z	-0.001	-0.001	0.00	No	100.00	Yes
	128	z	-0.001	-0.001	0.00	No	100.00	Yes
W60	62	×	-0.002	-0.002	0.00	No	100.00	Yes
,,,,,	64	×	-0.009	-0.009	0.00	No	100.00	Yes
	U T	^	-0.008	-0.008	0.00	110	100.00	168

	65	x	-0.009	-0.009	0.00	No	100.00	Yes
	66	×	-0.009	-0.009	0.00	No	100.00	Yes
	94	×	-0.002	-0.002	0.00	No	100.00	Yes
	95	×	-0.002	-0.002	0.00	No	100.00	Yes
	96	×	-0.002	-0.002	0.00	No	100.00	Yes
	97	×	-0.002	-0.002	0.00	No	100.00	Yes
	98	×	-0.002	-0.002	0.00	No	100.00	Yes
	99	×	-0.002	-0.002	0.00	No	100.00	Yes
	100	x	-0.002	-0.002	0.00	No	100.00	Yes
	101	×	-0.002	-0.002	0.00	No	100.00	Yes
	134	×	-0.008	-0.008	0.00	No	100.00	Yes
	135	×	-0.008	-0.008	0.00	No	100.00	Yes
	88	×	-0.009	-0.009	0.00	No	100.00	Yes
	89	×	-0.009	-0.009	0.00	No	100.00	Yes
	87	×	-0.008	-0.008	0.00	No	100.00	Yes
	108	×	-0.001	-0.001	0.00	No	100.00	Yes
	109	×	-0.001	-0.001	0.00	No	100.00	Yes
	102	×	-0.008	-0.008	0.00	No	100.00	Yes
	123	×	-0.001	-0.001	0.00	No	100.00	Yes
	125	×	-0.001	-0.001	0.00	No	100.00	Yes
	124	×	-0.001	-0.001	0.00	No	100.00	Yes
	127	×	-0.002	-0.002	0.00	No	100.00	Yes
	126	×	-0.001	-0.001	0.00	No	100.00	Yes
	110	×	-0.001	-0.001	0.00	No	100.00	Yes
	107	×	-0.001	-0.001	0.00	No	100.00	Yes
	128	×	-0.002	-0.002	0.00	No	100.00	Yes
W90	62	×	-0.009	-0.009	0.00	No	100.00	Yes
	64	×	-0.009	-0.009	0.00	No	100.00	Yes
	65	×	-0.009	-0.009	0.00	No	100.00	Yes
	66	x	-0.009	-0.009	0.00	No	100.00	Yes
	94	×	-0.002	-0.002	0.00	No	100.00	Yes
	95	×	-0.002	-0.002	0.00	No	100.00	Yes
	96	×	-0.002	-0.002	0.00	No	100.00	Yes
	97	x	-0.002	-0.002	0.00	No	100.00	Yes
	98	×	-0.002	-0.002	0.00	No	100.00	Yes
	99	×	-0.002	-0.002	0.00	No	100.00	Yes
	100	×	-0.002	-0.002	0.00	No	100.00	Yes
	101	×	-0.002	-0.002	0.00	No	100.00	Yes
	134	×	-0.008	-0.008	0.00	No	100.00	Yes
	135	×	-0.008	-0.008	0.00	No	100.00	Yes
	87	×	-0.008	-0.008	0.00	No	100.00	Yes
	108	×	-0.001	-0.001	0.00	No	100.00	Yes
	109	×	-0.001	-0.001	0.00	No	100.00	Yes
	102	×	-0.008	-0.008	0.00	No	100.00	Yes
	127	×	-0.002	-0.002	0.00	No	100.00	Yes
	110	×	-0.001	-0.001	0.00	No	100.00	Yes
	107	×	-0.001	-0.001	0.00	No	100.00	Yes
	128	X	-0.002	-0.002	0.00	No	100.00	Yes
W120	62	×	-0.009	-0.009	0.00	No	100.00	Yes
	64	×	-0.009	-0.009	0.00	No	100.00	Yes
	65	×	-0.009	-0.009	0.00	No	100.00	Yes
	66	X	-0.009	-0.009	0.00	No	100.00	Yes
	94	X	-0.002	-0.002	0.00	No	100.00	Yes
	95	×	-0.002	-0.002	0.00	No	100.00	Yes
	96	×	-0.002	-0.002	0.00	No	100.00	Yes
	97	х	-0.002	-0.002	0.00	No	100.00	Yes
	98	x	-0.002	-0.002	0.00	No	100.00	Yes
	99	×	-0.002	-0.002	0.00	No	100.00	Yes
	100	×	-0.002	-0.002	0.00	No	100.00	Yes
	101	x	-0.002	-0.002	0.00	No	100.00	Yes

	134	×	-0.008	-0.008	0.00	No	100.00	Yes
	135	×	-0.008	-0.008	0.00	No	100.00	Yes
	88	x	-0.009	-0.009	0.00	No	100.00	Yes
	89	×	-0.009	-0.009	0.00	No	100.00	Yes
	87	×	-0.008	-0.008	0.00	No	100.00	Yes
	108	x	-0.001	-0.001	0.00	No	100.00	Yes
	109	×	-0.001	-0.001	0.00	No	100.00	Yes
	102	×	-0.008	-0.008	0.00	No	100.00	Yes
	123	×	-0.001	-0.001	0.00	No	100.00	Yes
	125	×	-0.001	-0.001	0.00	No	100.00	Yes
	124	×	-0.001	-0.001	0.00	No	100.00	Yes
	127	×	-0.002	-0.002	0.00	No	100.00	Yes
	126	×	-0.001	-0.001	0.00	No	100.00	Yes
	110	×	-0.001	-0.001	0.00	No	100.00	Yes
	107	X	-0.001	-0.001	0.00	No	100.00	Yes
	128	x	-0.002	-0.002	0.00	No	100.00	Yes
W150	62	Z	0.009	0.009	0.00	No	100.00	Yes
	64	Z	0.009	0.009	0.00	No	100.00	Yes
	65	Z	0.009	0.009	0.00	No	100.00	Yes
	66	Z	0.009	0.009	0.00	No	100.00	Yes
	94	Z	0.002	0.002	0.00	No	100.00	Yes
	95	z	0.002	0.002	0.00	No	100.00	Yes
	96	Z	0.002	0.002	0.00	No	100.00	Yes
	97	Z	0.002	0.002	0.00	No	100.00	Yes
	98	Z	0.002	0.002	0.00	No	100.00	Yes
	99	Z	0.002	0.002	0.00	No	100.00 100.00	Yes
	100 101	z	0.002 0.002	0.002 0.002	0.00	No No	100.00	Yes Yes
	134	z	0.002	0.002	0.00	No	100.00	Yes
	135	z	0.008	0.008	0.00	No	100.00	Yes
	88	Z	0.008	0.009	0.00	No	100.00	Yes
	89	z z	0.009	0.009	0.00	No	100.00	Yes
	87		0.009	0.008	0.00	No	100.00	Yes
	108	z z	0.001	0.003	0.00	No	100.00	Yes
	109	Z	0.001	0.001	0.00	No	100.00	Yes
	103	Z	0.008	0.008	0.00	No	100.00	Yes
	123	Z	0.001	0.001	0.00	No	100.00	Yes
	125	Z	0.001	0.001	0.00	No	100.00	Yes
	124	z	0.001	0.001	0.00	No	100.00	Yes
	127	z	0.002	0.002	0.00	No	100.00	Yes
	126	z	0.001	0.001	0.00	No	100.00	Yes
	110	z	0.001	0.001	0.00	No	100.00	Yes
	107	z	0.001	0.001	0.00	No	100.00	Yes
	128	z	0.002	0.002	0.00	No	100.00	Yes
Di	62	У	-0.009	-0.009	0.00	No	100.00	Yes
	64	ý	-0.009	-0.009	0.00	No	100.00	Yes
	65	ý	-0.009	-0.009	0.00	No	100.00	Yes
	66	ý	-0.009	-0.009	0.00	No	100.00	Yes
	94	ý	-0.005	-0.005	0.00	No	100.00	Yes
	95	y	-0.005	-0.005	0.00	No	100.00	Yes
	96	ý	-0.005	-0.005	0.00	No	100.00	Yes
	97	у	-0.005	-0.005	0.00	No	100.00	Yes
	98	y	-0.005	-0.005	0.00	No	100.00	Yes
	99	ý	-0.005	-0.005	0.00	No	100.00	Yes
	100	ý	-0.005	-0.005	0.00	No	100.00	Yes
	101	ý	-0.005	-0.005	0.00	No	100.00	Yes
	134	y	-0.008	-0.008	0.00	No	100.00	Yes
	135	ý	-0.008	-0.008	0.00	No	100.00	Yes
	88	У	-0.009	-0.009	0.00	No	100.00	Yes
	89	y y	-0.009	-0.009	0.00	No	100.00	Yes

87	у	-0.008	-0.008	0.00	No	100.00	Yes
108	у	-0.005	-0.005	0.00	No	100.00	Yes
109	у	-0.005	-0.005	0.00	No	100.00	Yes
92	у	-0.008	-0.008	0.00	No	100.00	Yes
93	У	-0.008	-0.008	0.00	No	100.00	Yes
91	у	-0.008	-0.008	0.00	No	100.00	Yes
90	У	-0.008	-0.008	0.00	No	100.00	Yes
102	у	-0.008	-0.008	0.00	No	100.00	Yes
123	у	-0.005	-0.005	0.00	No	100.00	Yes
125	у	-0.005	-0.005	0.00	No	100.00	Yes
124	у	-0.005	-0.005	0.00	No	100.00	Yes
127	у	-0.011	-0.011	0.00	No	100.00	Yes
126	у	-0.005	-0.005	0.00	No	100.00	Yes
110	у	-0.005	-0.005	0.00	No	100.00	Yes
107	У	-0.005	-0.005	0.00	No	100.00	Yes
128	у	-0.011	-0.011	0.00	No	100.00	Yes
					uuuessanaan	nawawana manaka	HOROGODOS

Concentrated forces on members

Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft]	%
D	62	у	-0.044	1.50	No
		у	-0.044	8.50	No
	66	У	-0.044	1.50	No
		У	-0.044	8.50	No
	134	У	-0.072	2.50	No
		У	-0.071	2.50	No
	135	у	-0.033	2.50	No
Wo	62	Z	-0.296	1.50	No
		Z	-0.296	8.50	No
	66	Z	-0.296	1.50	No
		Z	-0.296	8.50	No
	134	Z	-0.065	2.50	No
		Z	-0.054	2.50	No
	135	Z	-0.037	2.50	No
W30	62	3	-0.255	1.50	No
		3	-0.255	8.50	No
	66	3	-0.255	1.50	No
		3	-0.255	8.50	No
	134	3	-0.06	2.50	No
	135	3	-0.037	1.50	No
W60	62	3	-0.175	1.50	No
		3	-0.175	8.50	No
	66	3	-0.175	1.50	No
		3	-0.175	8.50	No
	134	3	-0.051	2.50	No
	135	3	-0.037	2.50	No
W90	62	Х	-0.135	1.50	No
		Х	-0.135	8.50	No
	66	х	-0.135	1.50	No

		×	-0.135	8.50	No
	134	x	-0.047	2.50	No
	135	×	-0.037	2.50	No
W120	62	2	-0.175	1.50	No
VV 120	02	2	-0.175	8.50	No
	66	2	-0.175	1.50	No
	00	2	-0.175	8.50	No
	134	2	-0.051	2.50	No
	135	2	-0.037	2.50	No
W150	62	2	-0.255	1.50	No
VV 150	02	2	-0.255	8.50	No
	66	2	-0.255	1.50	No
	00	2	-0.255	8.50	No
	134	2	-0.06	2.50	No
	135	2	-0.037	2.50	No
Di	62	у	-0.194	1.50	No
	02	У	-0.194	8.50	No
	66		-0.194	1.50	No
	00	У	-0.194	8.50	No
	134	У	-0.048	2.50	No
	134	У	-0.055	2.50	No
	135	У	-0.046	2.50	No
WI0	62	У	-0.057	1.50	No
VVIO	02	Z		8.50	No
	66	Z	-0.057		No
	00	z	-0.057	1.50 8.50	No
	124	z	-0.057		No
	134	Z	-0.015	2.50	
	135	z	-0.013 -0.009	2.50 2.50	No No
14/120		Z			
WI30	62	3	-0.05	1.50	No
	00	3	-0.05	8.50	No
	66	3	-0.05	1.50	No
	404	3	-0.05	8.50	No
	134	3	-0.015	2.50	No
14/100	135	3	-0.009	2.50	No
WI60	62	3	-0.037	1.50	No
	00	3	-0.037	8.50	No
	66	3	-0.037	1.50	No
	404	3	-0.037	8.50	No
	134	3	-0.013	2.50	No
14/100	135	3	-0.009	2.50	No
WI90	62	×	-0.03	1.50	No
	00	×	-0.03	8.50	No
	66	×	-0.03	1.50	No
	424	×	-0.03	8.50	No
	134	×	-0.012	2.50	No
14/14/00	135	×	-0.009	2.50	No
WI120	62	2	-0.037	1.50	No
	00	2	-0.037	8.50	No
	66	2	-0.037	1.50	No
	404	2	-0.037	8.50	No
	134	2	-0.013	2.50	No
14/1450	135	2	-0.009	2.50	No
WI150	62	2 2 2 2	-0.05	1.50	No
		2	-0.05	8.50	No
	66	2	-0.05	1.50	No
	40.	2	-0.05	8.50	No
	134	2	-0.015	2.50	No
	135	2	-0.009	2.50	No
WL0	62	Z	-0.017	1.50	No

LLa3	66	У	-0.25	5.00	No
LLa1	62	У	-0.25	5.00	No
LL3	88	У	-0.25	0.00	Yes
LL2	88	У	-0.25	100.00	Yes
LL1	88	У	-0.25	50.00	Yes
	135	2	-0.002	2.50	No
	134	2	-0.003	2.50	No
		2	-0.015	8.50	No
	66	2	-0.015	1.50	No
		2	-0.015	8.50	No
WL150	62	2	-0.015	1.50	No
	135	2	-0.002	2.50	No
	134	2	-0.003	2.50	No
		2	-0.011	8.50	No
	66	2	-0.011	1.50	No
		2	-0.011	8.50	No
WL120	62	2	-0.011	1.50	No
	135	X	-0.002	2.50	No
	134	Х	-0.003	2.50	No
		х	-0.008	8.50	No
	66	х	-0.008	1.50	No
		х	-0.008	8.50	No
WL90	62	X	-0.008	1.50	No
	135	3	-0.002	2.50	No
	134	3	-0.003	2.50	No
		3	-0.011	8.50	No
	66	3	-0.011	1.50	No
		3	-0.011	8.50	No
WL60	62	3	-0.011	1.50	No
	135	3	-0.002	2.50	No
	134	3	-0.003	2.50	No
	00	3	-0.015	8.50	No
	66	3	-0.015	1.50	No
***	OL.	3	-0.015	8.50	No
WL30	62	3	-0.015	1.50	No
	135	z	-0.002	2.50	No
	104	Z	-0.003	2.50	No
	134	Z	-0.004	2.50	No
	00	z	-0.017	8.50	No
	66	z	-0.017	1.50	No
		z	-0.017	8.50	No

Self weight multipliers for load conditions

		· ·	Self weigl	nt multiplie	er
Condition	Description	Comb.	MultX	MultY	MultZ
D	Dead Load	No			
Wo	Wind Load (NO ICE)	No	0.00	0.00	0.00
W30	WL 30deg	No	0.00	0.00	0.00
W60	WL 60deg	No	0.00	0.00	0.00
W90	WL 90deg	No	0.00	0.00	0.00
W120	WL 120deg	No	0.00	0.00	0.00
W150	WL 150deg	No	0.00	0.00	0.00
Di	Ice Load	No	0.00	0.00	0.00
WIO	WL ICE 0deg	No	0.00	0.00	0.00

WI30	WL ICE 30deg	No	0.00	0.00	0.00
WI60	WL ICE 60deg	No	0.00	0.00	0.00
WI90	WL ICE 90deg	No	0.00	0.00	0.00
WI120	WL ICE 120deg	No	0.00	0.00	0.00
WI150	WL ICE 150deg	No	0.00	0.00	0.00
WL0	WL 30 mph 0deg	No	0.00	0.00	0.00
WL30	WL 30 mph 30deg	No	0.00	0.00	0.00
WL60	WL 30 mph 60deg	No	0.00	0.00	0.00
WL90	WL 30 mph 90deg	No	0.00	0.00	0.00
WL120	WL 30 mph 120deg	No	0.00	0.00	0.00
WL150	WL 30 mph 150deg	No	0.00	0.00	0.00
LL1	250 lb Live Load Center of Mount	No	0.00	0.00	0.00
LL2	250 lb Live Load Right End of Mount	No	0.00	0.00	0.00
LL3	250 lb Live Load Left End of Mount	No	0.00	0.00	0.00
LLa1	250 lb Live Load Antenna 1	No	0.00	0.00	0.00
LLa2	250 lb Live Load Antenna 2	No	0.00	0.00	0.00
LLa3	250 lb Live Load Antenna 3	No	0.00	0.00	0.00
Parting companies and design			665050000000000	100000000000000000000000000000000000000	90000000000

Earthquake (Dynamic analysis only)

Condition	a/g	Ang.	Damp.	
		[Deg]	[%]	
D	0.00	0.00	0.00	
Wo	0.00	0.00	0.00	
W30	0.00	0.00	0.00	
W60	0.00	0.00	0.00	
W90	0.00	0.00	0.00	
W120	0.00	0.00	0.00	
W150	0.00	0.00	0.00	
Di	0.00	0.00	0.00	
WI0	0.00	0.00	0.00	
WI30	0.00	0.00	0.00	
WI60	0.00	0.00	0.00	
WI90	0.00	0.00	0.00	
WI120	0.00	0.00	0.00	
WI150	0.00	0.00	0.00	
WL0	0.00	0.00	0.00	
WL30	0.00	0.00	0.00	
WL60	0.00	0.00	0.00	
WL90	0.00	0.00	0.00	
WL120	0.00	0.00	0.00	
WL150	0.00	0.00	0.00	
LL1	0.00	0.00	0.00	
LL2	0.00	0.00	0.00	
LL3	0.00	0.00	0.00	
LLa1	0.00	0.00	0.00	
LLa2	0.00	0.00	0.00	
LLa3	0.00	0.00	0.00	

Current Date: 3/10/2020 6:55 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Alpha and Beta

Sector)(Rev. 3).retx

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design:

LC1=1.2D+Wo

LC2=1.2D+W30

LC3=1,2D+W60

LC4=1,2D+W90

LC5=1.2D+W120

LC6=1.2D+W150 LC7=1.2D-Wo

LC8=1.2D-W30

LC9=1.2D-W60

LC10=1.2D-W90

LC11=1.2D-W120

LC12=1.2D-W150

LC13=0.9D+Wo

LC14=0.9D+W30

LC15=0.9D+W60

LC16=0.9D+W90

LC17=0.9D+W120

LC18=0.9D+W150

LC19=0.9D-Wo

LC20=0.9D-W30

LC21=0.9D-W60

LC22=0.9D-W90

LC23=0.9D-W120

LC24=0.9D-W150

LC25=1.2D+Di+WI0

LC26=1.2D+Di+WI30

LC27=1,2D+Di+WI60

LC28=1.2D+Di+WI90

LC29=1.2D+Di+WI120

LC30=1.2D+Di+WI150

LC31=1.2D+Di-WI0

LC32=1.2D+Di-WI30

LC33=1.2D+Di-WI60

LC34=1.2D+Di-WI90

LC35=1.2D+Di-WI120

LC36=1.2D+Di-WI150

LC38=1.2D+1.5LL1 LC39=1,2D+1.5LL2

LC40=1.2D+1.5LL3

LC41=1:2D+WL0+1.5LLa1

LC42=1.2D+WL30+1.5LLa1

LC43=1.2D+WL60+1.5LLa1

LC44=1.2D+WL90+1.5LLa1

LC45=1.2D+WL120+1.5LLa1

LC46=1.2D+WL150+1.5LLa1 LC47=1.2D-WL0+1.5LLa1

LC48=1.2D-WL30+1.5LLa1

LC49=1.2D-WL60+1.5LLa1

LC50=1.2D-WL90+1.5LLa1

LC51=1.2D-WL120+1.5LLa1

LC52=1.2D-WL150+1.5LLa1 LC53=1.2D+WL0+1.5LLa2

LC54=1.2D+WL30+1.5LLa2 LC55=1.2D+WL60+1.5LLa2 LC56=1.2D+WL90+1.5LLa2 LC57=1.2D+WL120+1.5LLa2 LC58=1,2D+WL150+1.5LLa2 LC59=1.2D-WL0+1,5LLa2 LC60=1.2D-WL30+1.5LLa2 LC61=1.2D-WL60+1.5LLa2 LC62=1.2D-WL90+1.5LLa2 LC63=1.2D-WL120+1.5LLa2 LC64=1.2D-WL150+1.5LLa2 LC65=1.2D+WL0+1.5LLa3 LC66=1.2D+WL30+1.5LLa3 LC67=1.2D+WL60+1.5LLa3 LC68=1.2D+WL90+1.5LLa3 LC69=1.2D+WL120+1.5LLa3 LC70=1.2D+WL150+1.5LLa3 LC71=1.2D-WL0+1.5LLa3 LC72=1.2D-WL30+1.5LLa3 LC73=1.2D-WL60+1.5LLa3 LC74=1.2D-WL90+1.5LLa3 LC75=1,2D-WL120+1.5LLa3 LC76=1.2D-WL150+1.5LLa3

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	PIPE 2-1_2x0.203	62	LC36 at 33.33%	0.39	OK	Eq. H1-1b
		64	LC36 at 33.33%	0.24	OK	Eq. H1-1b
		65	LC26 at 33.33%	0.17	OK	Eq. H1-1b
		66	LC7 at 66.67%	0.32	OK	Eq. H1-1b
		88	LC36 at 61.61%	0.42	OK	Eq. H1-1b
		89	LC25 at 61.25%	0.53	ок	Eq. H1-1b
	PIPE 2x0.154	87	LC13 at 100.00%	0.11	OK	Eq. H1-1b
		90	LC9 at 93.75%	0.23	, OK	Eq. H1-1b
		91	LC25 at 93.75%	0.17	OK	Eq. H1-1b
		92	LC26 at 93.75%	0.32	OK	Eq. H1-1b
		93	LC32 at 93,75%	0.38	OK	Eq. H1-1b
		102	LC8 at 100.00%	0.44	ок	Eq. H1-1b
		134	LC32 at 12.50%	0.16	OK	Eq. H1-1b
		135	LC40 at 12.50%	0.08	OK	Eq. H1-1b
	PL 11-1/4x5/8	127	LC26 at 100.00%	0.33	ok	Eq. H1-1b
		128	LC31 at 100.00%	0.24	OK	Eq. H1-1b
	PL 3-1/2x5/8	107	LC9 at 100.00%	0,42	OK	Eq. H1-1b
		108	LC25 at 100.00%	0.35	OK	Eq. H1-1b
		109	LC30 at 100.00%	0.44	OK	Eq. H1-1b
		110	LC65 at 100.00%	0.25	OK	Eq. H1-1b
		123	LC9 at 100,00%	0.58	OK	Eq. H1-1b
		124	LC26 at 0.00%	0.67	ок	Eq. H1-1b
		125	LC36 at 100.00%	0.34	OK	Eq. H1-1b
		126	LC26 at 0.00%	0.65	OK	Eq. H1-1b
	RndBar 3_4	98	LC31 at 0.00%	0.25	OK	Eq. H1-1b
		99	LC26 at 0.00%	0.26	ок	Eq. H1-1b
		100	LC31 at 0.00%	0.13	ОК	Eq. H1-1b
		101	LC76 at 100.00%	0.12	OK	Eq. H1-1b
	RndBar 5_8	94	LC36 at 87.50%	0.41	 ОК	Eq. H1-1a
	-	95	LC40 at 87.50%	0.37	OK	Eq. H1-1a
		96	LC30 at 87.50%	0.68	ок	Eq. H1-1a
		97	LC26 at 87.50%	0.65	OK	Eq. H1-1a

Current Date: 3/10/2020 6:20 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Alpha and Beta

Sector)(Rev. 3).retx

Geometry data

GLOSSARY	
Cb22, Cb33	: Moment gradient coefficients
Cm22, Cm33	Coefficients applied to bending term in interaction formula
d0	Tapered member section depth at J end of member
DJX	Rigid end offset distance measured from J node in axis X
DJY	ः Rigid end offset distance measured from J node in axis Y
DJZ	Rigid end offset distance measured from J node in axis Z
DKX	∄ Rigid end offset distance measured from K node in axis X
DKY	∄ Rigid end offset distance measured from K node in axis Y
DKZ	Rigid end offset distance measured from K node in axis Z
dL	: Tapered member section depth at K end of member
lg factor	: Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	Effective length factor about axis 2
K33	Effective length factor about axis 3
L22	Member length for calculation of axial capacity
L33	: Member length for calculation of axial capacity
LB pos	Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	⊕ Rotation about X
RY	Rotation about Y
RZ	Rotation about Z
TO	1 = Tension only member 0 = Normal member
TX	: Translation in X

Nodes

ΤZ

Node	Х	Υ	Z	Rigid Floor
NACES INCOMEDIATION DE LA COME	[ft]	[ft]	[ft]	v=taxaaauuussatatautu
175	-0.50	0.00	-1.00	0
142	0.00	0.00	0.00	0
144	0.00	-3.3333	0.00	0
157	5.00	0.00	-2.00	0

Restraints

Node	TX	TY	TZ	RX	RY	RZ
175	1	1			0	
142	1	1	1	1	0	1
144	1	1	1	1	0	1
157	1	1	1	0	0	0

Translation in Y

Translation in Z

Members

Member	NJ	NK	Description	Section	Material	d0 [in]	dL [in]	lg factor
62	153	152		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
64	189	188		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
65	177	176		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
66	155	154		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
94	166	167		RndBar 5_8	A36	0.00	0.00	0.00
95	168	169		RndBar 5_8	A36	0.00	0.00	0.00
96	170	171		RndBar 5_8	A36	0.00	0.00	0.00
97	172	173		RndBar 5_8	A36	0.00	0.00	0.00
98	170	173		RndBar 3_4	A36	0.00	0.00	0.00
99	171	172		RndBar 3_4	A36	0.00	0.00	0.00
100	167	168		RndBar 3_4	A36	0.00	0.00	0.00
101	166	169		RndBar 3_4	A36	0.00	0.00	0.00
134	218	220		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
135	224	225		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
88	158	159		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
89	160	161		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
87	156	157		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
108	165	185		PL 3-1/2x5/8	A36	0.00	0.00	0.00
109	164	186		PL 3-1/2x5/8	A36	0.00	0.00	0.00
92	164	146		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
93	165	147		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
91	163	145		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
90	162	143		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
102	174	175		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
123	143	208		PL 3-1/2x5/8	A36	0.00	0.00	0.00
125	145	209		PL 3-1/2x5/8	A36	0.00	0.00	0.00
124	208	147		PL 3-1/2x5/8	A36	0.00	0.00	0.00
127	208	142		PL 11-1/4x5/8	A36	11.25	9.25	0.00
126	209	146		PL 3-1/2x5/8	A36	0.00	0.00	0.00
110	163	187		PL 3-1/2x5/8	A36	0.00	0.00	0.00
107	162	184		PL 3-1/2x5/8	A36	0.00	0.00	0.00
128	209	144		PL 11-1/4x5/8	A36	11.25	9.25	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ	~~
62	315.00	0	0.00	0.00	0.00	********
64	315.00	0	0.00	0.00	0.00	
65	315.00	0	0.00	0.00	0.00	
66	315.00	0	0.00	0.00	0.00	
94	0.00	2	0.00	0.00	1.00	
95	0.00	2	0.00	0.00	1.00	
96	0.00	2	0.00	0.00	1.00	
97	0.00	2	0.00	0.00	1.00	
134	315.00	0	0.00	0.00	0.00	
135	315.00	0	0.00	0.00	0.00	
108	90.00	0	0.00	0.00	0.00	
109	90.00	0	0.00	0.00	0.00	
123	90.00	0	0.00	0.00	0.00	
125	90.00	0	0.00	0.00	0.00	
124	90.00	0	0.00	0.00	0.00	
127	90.00	0	0.00	0.00	0.00	
126	90.00	0	0.00	0.00	0.00	
110	90.00	0	0.00	0.00	0.00	
107	90.00	0	0.00	0.00	0.00	

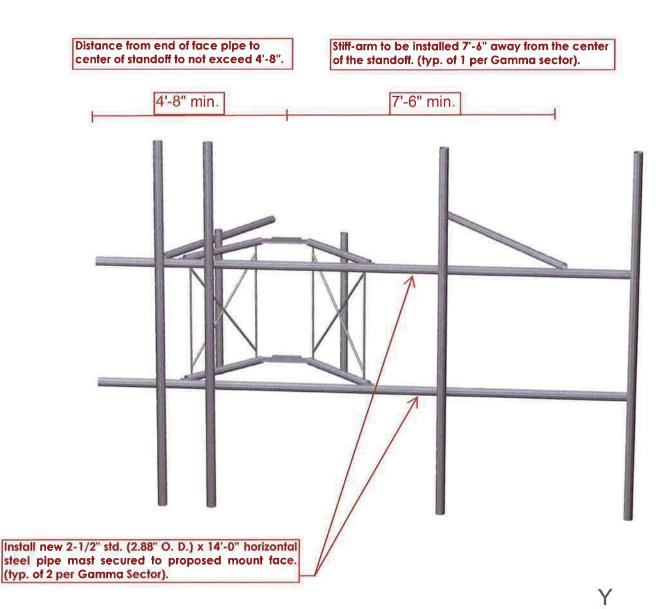
128 90.00 0 0.00 0.00 0.00

Rigid end offsets

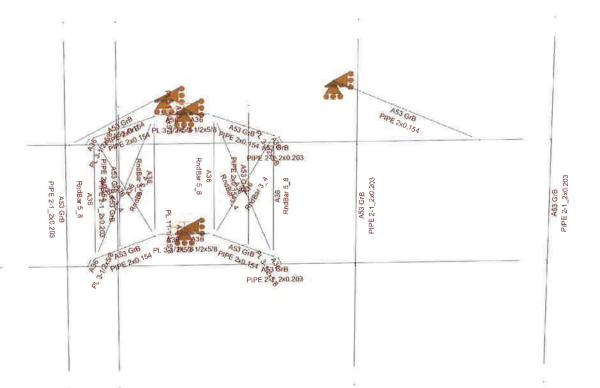
Member	DJX [in]	DJY [in]	DJZ [in]	DKX [in]	DKY [in]	DKZ [in]	
98	0.00	-3.50	0.00	0.00	3.50	0.00	
99	0.00	3.50	0.00	0.00	-3.50	0.00	
100	0.00	3.50	0.00	0.00	-3.50	0.00	
101	0.00	-3.50	0.00	0.00	3.50	0.00	
127	0.00	-0.625	0.00	0.00	-0.625	0.00	
128	0.00	-0.625	0.00	0.00	-0.625	0.00	

Hinges

		Node-J			Node-K						
Member	M33	M22	V3	V2	M33	M22	V3	V2	TOR	AXL	Axial rigidity
99	0	0	0	0	0	0	0	0	0	0	Tension only
101	0	0	0	0	0	0	0	0	0	0	Tension only
87	1	1	0	0	0	0	0	0	0	0	Full
108	1	1	0	0	0	0	0	0	0	0	Full
109	1	1	0	0	0	0	0	0	0	0	Full
102	1	1	0	0	0	0	0	0	0	0	Full
110	1	1	0	0	0	0	0	0	0	0	Full
107	1	1	0	0	0	0	0	0	0	0	Full

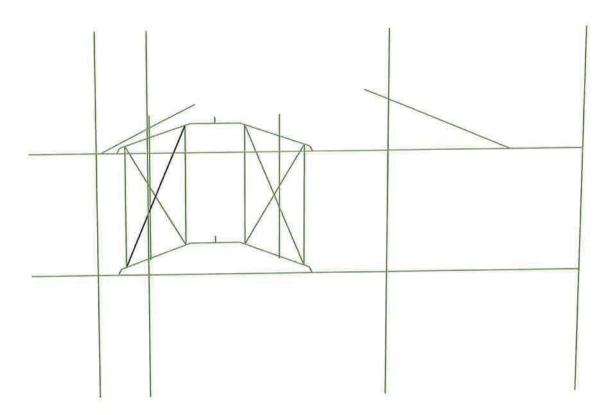


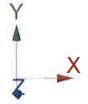
New Mount Gamma Calculations


Current Date: 3/10/2020 6:42 PM

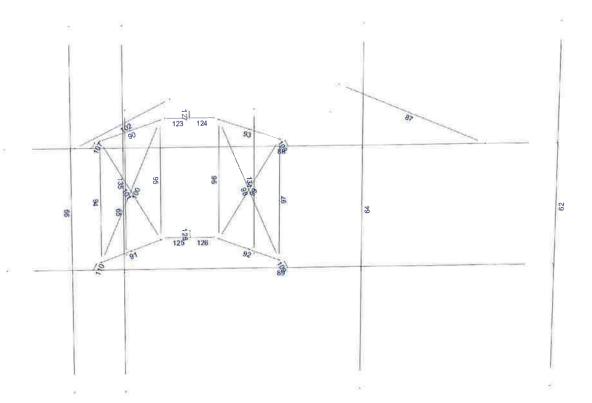
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Gamma Sector)(Rev. 3).retx

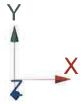
Current Date: 3/10/2020 6:09 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Gamma Sector)(Rev.





Current Date: 3/10/2020 6:10 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Gamma Sector)(Rev.





Current Date: 3/10/2020 6:10 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Gamma Sector)(Rev.

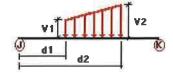
Current Date: 3/10/2020 5:26 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Gamma

Sector)(Rev. 3).retx

Load data

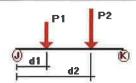

GLOSSARY

Comb Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category
D	Dead Load	No	DL
Wo	Wind Load (NO ICE)	No	WIND
W30	WL 30deg	No	WIND
W60	WL 60deg	No	WIND
W90	WL 90deg	No	WIND
W120	WL 120deg	No	WIND
W150	WL 150deg	No	WIND
Di	Ice Load	No	LL
WI0	WL ICE 0deg	No	WIND
WI30	WL ICE 30deg	No	WIND
W160	WL ICE 60deg	No	WIND
WI90	WL ICE 90deg	No	WIND
VI120	WL ICE 120deg	No	WIND
∕ VI150	WL ICE 150deg	No	WIND
VL0	WL 30 mph 0deg	No	WIND
WL30	WL 30 mph 30deg	No	WIND
WL60	WL 30 mph 60deg	No	WIND
WL90	WL 30 mph 90deg	No	WIND
WL120	WL 30 mph 120deg	No	WIND
WL150	WL 30 mph 150deg	No	WIND
_L1	250 lb Live Load Center of Mount	No	LL
LL2	250 lb Live Load Right End of Mount	No	LL
LL3	250 lb Live Load Left End of Mount	No	LL
LLa1	250 lb Live Load Antenna 1	No	LL
LLa2	250 lb Live Load Antenna 2	No	LL
_La3	250 lb Live Load Antenna 3	No	LL

Distributed force on members


Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft]	Dist1 [ft]	%	Dist2 [ft]	%
Wo	64	z	-0.009	-0.009	0.00	No	100.00	Yes
	65	Z	-0.009	-0.009	0.00	No	100.00	Yes
	94	Z	-0.002	-0.002	0.00	No	100.00	Yes
	95	Z	-0.002	-0.002	0.00	No	100.00	Yes
	96	Z	-0.002	-0.002	0.00	No	100.00	Yes
	97	Z	-0.002	-0.002	0.00	No	100.00	Yes
	98	Z	-0.002	-0.002	0.00	No	100.00	Yes
	99	Z	-0.002	-0.002	0.00	No	100.00	Yes
	100	z	-0.002	-0.002	0.00	No	100.00	Yes
	101	Z	-0.002	-0.002	0.00	No	100.00	Yes
	134	Z	-0.008	-0.008	0.00	No	100.00	Yes
	135	Z -	-0.008	-0.008	0.00	No	100.00	Yes
	102	z	-0.008	-0.008	0.00	No	100.00	Yes
	87 124	z	-0.008	-0.008	0.00	No	100.00	Yes
		z	-0.001	-0.001	0.00	No	100.00	Yes
	126	Z	-0.001	-0.001	0.00	No	100.00 100.00	Yes
	123	z	-0.001	-0.001 -0.001	0.00	No	100.00	Yes
	125	z	-0.001		0.00	No		Yes
	127	z	-0.002	-0.002 -0.002	0.00	No	100.00	Yes
	128 91	z z	-0.002 -0.008	-0.002	0.00	No No	100.00 100.00	Yes Yes
	90	z			0.00	No		Yes
	93		-0.008 -0.008	-0.008 -0.008	0.00	No	100.00 100.00	Yes
	92	z z	-0.008	-0.008	0.00	No	100.00	Yes
	88	z	-0.009	-0.009	0.00	No	100.00	Yes
	89	z	-0.009	-0.009	0.00	No	100.00	Yes
	108	z	-0.003	-0.009	0.00	No	100.00	Yes
	109	Z	-0.001	-0.001	0.00	No	100.00	Yes
	110	z	-0.001	-0.001	0.00	No	100.00	Yes
	107	z	-0.001	-0.001	0.00	No	100.00	Yes
W30	62	z	-0.009	-0.009	0.00	No	100.00	Yes
**50	64	Z	-0.009	-0.009	0.00	No	100.00	Yes
	65	Z	-0.009	-0.009	0.00	No	100.00	Yes
	66	z	-0.009	-0.009	0.00	No	100.00	Yes
	94	z	-0.002	-0.002	0.00	No	100.00	Yes
	95	z	-0.002	-0.002	0.00	No	100.00	Yes
	96	z	-0.002	-0.002	0.00	No	100.00	Yes
	97	z	-0.002	-0.002	0.00	No	100.00	Yes
	98	z	-0.002	-0.002	0.00	No	100.00	Yes
	99	z	-0.002	-0.002	0.00	No	100.00	Yes
	100	z	-0.002	-0.002	0.00	No	100.00	Yes
	101	z	-0.002	-0.002	0.00	No	100.00	Yes
	134	z	-0.008	-0.008	0.00	No	100.00	Yes
	135	z	-0.008	-0.008	0.00	No	100.00	Yes
	102	z	-0.008	-0.008	0.00	No	100.00	Yes
	87	z	-0.008	-0.008	0.00	No	100.00	Yes
	124	z	-0.001	-0.001	0.00	No	100.00	Yes
	126	z	-0.001	-0.001	0.00	No	100.00	Yes
	123	Z	-0.001	-0.001	0.00	No	100.00	Yes
	125	z	-0.001	-0.001	0.00	No	100.00	Yes
	127	z	-0.002	-0.002	0.00	No	100.00	Yes
	128	z	-0.002	-0.002	0.00	No	100.00	Yes
	88	z	-0.009	-0.009	0.00	No	100.00	Yes
	89	z	-0.009	-0.009	0.00	No	100.00	Yes
	108	z	-0.001	-0.001	0.00	No	100.00	Yes
	109	z	-0.001	-0.001	0.00	No	100.00	Yes
	110	z	-0.001	-0.001	0.00	No	100.00	Yes
	107	Z	-0.001	-0.001	0.00	No	100.00	Yes
V60	62	x	-0.009	-0.009	0.00	No	100.00	Yes
1100								

	65	×	-0.009	-0.009	0.00	No	100.00	Yes
	66	×	-0.009	-0.009	0.00	No	100.00	Yes
	94	×	-0.002	-0.002	0.00	No	100.00	Yes
	95	×	-0.002	-0.002	0.00	No	100.00	Yes
	96	×	-0.002	-0.002	0.00	No	100.00	Yes
	97	×	-0.002	-0.002	0.00	No	100.00	Yes
	98	×	-0.002	-0.002	0.00	No	100.00	Yes
	99	×	-0.002	-0.002	0.00	No	100.00	Yes
	100	×	-0.002	-0.002	0.00	No	100.00	Yes
	101		-0.002	-0.002	0.00	No	100.00	Yes
		×					100.00	
	134	×	-0.008	-0.008	0.00	No		Yes
	135	×	-0.008	-0.008	0.00	No	100.00	Yes
	102	×	-0.008	-0.008	0.00	No	100.00	Yes
	87	×	-0.008	-0.008	0.00	No	100.00	Yes
	124	×	-0.001	-0.001	0.00	No	100.00	Yes
	126	x	-0.001	-0.001	0.00	No	100.00	Yes
	123	×	-0.001	-0.001	0.00	No	100.00	Yes
	125	×	-0.001	-0.001	0.00	No	100.00	Yes
	127	×	-0.002	-0.002	0.00	No	100.00	Yes
	128	x	-0.002	-0.002	0.00	No	100.00	Yes
	88	×	-0.009	-0.009	0.00	No	100.00	Yes
	89	×	-0.009	-0.009	0.00	No	100.00	Yes
	108	x	-0.001	-0.001	0.00	No	100.00	Yes
	109	x	-0.001	-0.001	0.00	No	100.00	Yes
	110	×	-0.001	-0.001	0.00	No	100.00	Yes
	107	×	-0.001	-0.001	0.00	No	100.00	Yes
W90	62	×	-0.009	-0.009	0.00	No	100.00	Yes
	64	×	-0.009	-0.009	0.00	No	100.00	Yes
	65	x	-0.009	-0.009	0.00	No	100.00	Yes
	66	x	-0.009	-0.009	0.00	No	100.00	Yes
	94	×	-0.002	-0.002	0.00	No	100.00	Yes
	95	x	-0.002	-0.002	0.00	No	100.00	Yes
	96	×	-0.002	-0.002	0.00	No	100.00	Yes
	97	×	-0.002	-0.002	0.00	No	100.00	Yes
	98		-0.002	-0.002	0.00	No	100.00	Yes
	99	x	-0.002	-0.002	0.00	No	100.00	Yes
		x						
	100	×	-0.002	-0.002	0.00	No	100.00	Yes
	101	×	-0.002	-0.002	0.00	No	100.00	Yes
	134	×	-0.008	-0.008	0.00	No	100.00	Yes
	135	X	-0.008	-0.008	0.00	No	100.00	Yes
	102	X	-0.008	-0.008	0.00	No	100.00	Yes
	87	×	-0.008	-0.008	0.00	No	100.00	Yes
	127	×	-0.002	-0.002	0.00	No	100.00	Yes
	128	×	-0.002	-0.002	0.00	No	100.00	Yes
	108	x	-0.001	-0.001	0.00	No	100.00	Yes
	109	x	-0.001	-0.001	0.00	No	100.00	Yes
	110	×	-0.001	-0.001	0.00	No	100.00	Yes
	107	×	-0.001	-0.001	0.00	No	100.00	Yes
W120	62	x	-0.009	-0.009	0.00	No	100.00	Yes
	64	×	-0.009	-0.009	0.00	No	100.00	Yes
	65	×	-0.009	-0.009	0.00	No	100.00	Yes
	66	×	-0.009	-0.009	0.00	No	100.00	Yes
	94	x	-0.002	-0.002	0.00	No	100.00	Yes
	95	x	-0.002	-0.002	0.00	No	100.00	Yes
	96	x	-0.002	-0.002	0.00	No	100.00	Yes
	97	×	-0.002	-0.002	0.00	No	100.00	Yes
	98	×	-0.002	-0.002	0.00	No	100.00	Yes
	99	×	-0.002	-0.002	0.00	No	100.00	Yes
	100		-0.002	-0.002	0.00	No	100.00	Yes
		×						
	101	×	-0.002	-0.002	0.00	No	100.00	Yes

	134	×	-0.008	-0.008	0.00	No	100.00	Yes
	135	×	-0.008	-0.008	0.00	No	100.00	Yes
	102	x	-0.008	-0.008	0.00	No	100.00	Yes
	87	×	-0.008	-0.008	0.00	No	100.00	Yes
	124	×	-0.001	-0.001	0.00	No	100.00	Yes
	126		-0.001	-0.001	0.00	No	100.00	Yes
	123	×	-0.001	-0.001	0.00	No	100.00	Yes
		X			0.00			
	125	×	-0.001	-0.001	0.00	No	100.00	Yes
	127	×	-0.002	-0.002		No	100.00	Yes
	128	x	-0.002	-0.002	0.00	No	100.00	Yes
	88	×	-0.009	-0.009	0.00	No	100.00	Yes
	89	x	-0.009	-0.009	0.00	No	100.00	Yes
	108	×	-0.001	-0.001	0.00	No	100.00	Yes
	109	×	-0.001	-0.001	0.00	No	100.00	Yes
	110	x	-0.001	-0.001	0.00	No	100.00	Yes
	107	X	-0.001	-0.001	0.00	No	100.00	Yes
W150	62	Z	0.009	0.009	0.00	No	100.00	Yes
	64	Z	0.009	0.009	0.00	No	100.00	Yes
	65	z	0.009	0.009	0.00	No	100.00	Yes
	66	Z	0.009	0.009	0.00	No	100.00	Yes
	94	Z	0.002	0.002	0.00	No	100.00	Yes
	95	z	0.002	0.002	0.00	No	100.00	Yes
	96	z	0.002	0.002	0.00	No	100.00	Yes
	97	z	0.002	0.002	0.00	No	100.00	Yes
	98	z	0.002	0.002	0.00	No	100.00	Yes
	99	z	0.002	0.002	0.00	No	100.00	Yes
	100	z	0.002	0.002	0.00	No	100.00	Yes
	101	z	0.002	0.002	0.00	No	100.00	Yes
	134	z	0.008	0.008	0.00	No	100.00	Yes
	135	z	0.008	0.008	0.00	No	100.00	Yes
	102	z	0.008	0.008	0.00	No	100.00	Yes
	87	z	0.008	0.008	0.00	No	100.00	Yes
	124	z	0.001	0.001	0.00	No	100.00	Yes
	126	z	0.001	0.001	0.00	No	100.00	Yes
	123		0.001	0.001	0.00	No	100.00	
		Z						Yes
	125	z	0.001	0.001	0.00	No	100.00	Yes
	127	Z	0.002	0.002	0.00	No	100.00	Yes
	128	Z	0.002	0.002	0.00	No	100.00	Yes
	88	Z	0.009	0.009	0.00	No	100.00	Yes
	89	Z	0.009	0.009	0.00	No	100.00	Yes
	108	Z	0.001	0.001	0.00	No	100.00	Yes
	109	Z	0.001	0.001	0.00	No	100.00	Yes
	110	Z	0.001	0.001	0.00	No	100.00	Yes
	107	Z	0.001	0.001	0.00	No	100.00	Yes
Di	62	У	-0.009	-0.009	0.00	No	100.00	Yes
	64	У	-0.009	-0.009	0.00	No	100.00	Yes
	65	У	-0.009	-0.009	0.00	No	100.00	Yes
	66	У	-0.009	-0.009	0.00	No	100.00	Yes
	94	у	-0.005	-0.005	0.00	No	100.00	Yes
	95	у	-0.005	-0.005	0.00	No	100.00	Yes
	96	У	-0.005	-0.005	0.00	No	100.00	Yes
	97	ý	-0.005	-0.005	0.00	No	100.00	Yes
	98	y	-0.005	-0.005	0.00	No	100.00	Yes
	99		-0.005	-0.005	0.00	No	100.00	Yes
	100	У	-0.005	-0.005	0.00	No	100.00	Yes
	101	У	-0.005	-0.005	0.00	No	100.00	Yes
	134	У		-0.008	0.00	No	100.00	Yes
		У	-0.008					
	135	У	-0.008	-0.008	0.00	No	100.00	Yes
	102	У	-0.008	-0.008	0.00	No	100.00	Yes
	87	У	-0.008	-0.008	0.00	No	100.00	Yes

124	У	-0.005	-0.005	0.00	No	100.00	Yes
126	У	-0.005	-0.005	0.00	No	100.00	Yes
123	У	-0.005	-0.005	0.00	No	100.00	Yes
125	У	-0.005	-0.005	0.00	No	100.00	Yes
127	У	-0.011	-0.011	0.00	No	100.00	Yes
128	У	-0.011	-0.011	0.00	No	100.00	Yes
91	У	-0.008	-0.008	0.00	No	100.00	Yes
90	У	-0.008	-0.008	0.00	No	100.00	Yes
93	У	-0.008	-0.008	0.00	No	100.00	Yes
92	У	-0.008	-0.008	0.00	No	100.00	Yes
88	У	-0.009	-0.009	0.00	No	100.00	Yes
89	у	-0.009	-0.009	0.00	No	100.00	Yes
108	У	-0.005	-0.005	0.00	No	100.00	Yes
109	У	-0.005	-0.005	0.00	No	100.00	Yes
110	У	-0.005	-0.005	0.00	No	100.00	Yes
107	У	-0.005	-0.005	0.00	No	100.00	Yes

Concentrated forces on members

Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft]	%
D	62	У	-0.044	1.50	No
		у	-0.044	8.50	No
	66	У	-0.044	1.50	No
		У	-0.044	8.50	No
	134	у	-0.072	2.50	No
		у	-0.071	2.50	No
	135	у	-0.033	2.50	No
Wo	62	Z	-0.296	1.50	No
		Z	-0.296	8.50	No
	66	Z	-0.296	1.50	No
		Z	-0.296	8.50	No
	134	z	-0.065	2.50	No
		Z	-0.054	2.50	No
	135	Z	-0.037	2.50	No
W30	62	3	-0.255	1.50	No
		3	-0.255	8.50	No
	66	3	-0.255	1.50	No
		3	-0.255	8.50	No
	134	3	-0.06	2.50	No
	135	3	-0.037	1.50	No
W60	62	3	-0.175	1.50	No
		3	-0.175	8.50	No
	66	3	-0.175	1.50	No
		3	-0.175	8.50	No
	134	3	-0.051	2.50	No
	135	3	-0.037	2.50	No
W90	62	X	-0.135	1.50	No
		х	-0.135	8.50	No
	66	х	-0.135	1.50	No

		×	-0.135	8.50	No
	134	x	-0.047	2.50	No
	135		-0.037	2.50	No
14/400		×			
W120	62	2	-0.175	1.50	No
		2	-0.175	8.50	No
	66	2	-0.175	1.50	No
		2	-0.175	8.50	No
	134	2	-0.051	2.50	No
	135	2	-0.037	2.50	No
\M150		2	-0.255	1.50	No
W150	62				
		2	-0.255	8.50	No
	66		-0.255	1.50	No
		2	-0.255	8.50	No
	134	2	-0.06	2.50	No
	135	2	-0.037	2.50	No
Di	62	у	-0.194	1.50	No
<u> </u>	02		-0.194	8.50	No
	00	У			
	66	У	-0.194	1.50	No
		У	-0.194	8.50	No
	134	У	-0.048	2.50	No
		у	-0.055	2.50	No
	135	У	-0.046	2.50	No
WI0	62	z	-0.057	1.50	No
VVIO	02			8.50	No
	00	Z	-0.057		
	66	Z	-0.057	1.50	No
		z	-0.057	8.50	No
	134	Z	-0.015	2.50	No
		Z	-0.013	2.50	No
	135	z	-0.009	2.50	No
WI30	62	3	-0.05	1.50	No
*******	02	3	-0.05	8.50	No
	00				
	66	3	-0.05	1.50	No
		3	-0.05	8.50	No
	134	3	-0.015	2.50	No
	135	3	-0.009	2.50	No
WI60	62	3	-0.037	1.50	No
		3	-0.037	8.50	No
	66	3	-0.037	1.50	No
	00	3	-0.037	8.50	No
	404				
	134	3	-0.013	2.50	No
	135	3	-0.009	2.50	No
WI90	62	x	-0.03	1.50	No
		×	-0.03	8.50	No
	66	×	-0.03	1.50	No
		×	-0.03	8.50	No
	134			2.50	No
		X	-0.012		
	135	×	-0.009	2.50	No
WI120	62	2	-0.037	1.50	No
		2	-0.037	8.50	No
	66	2	-0.037	1.50	No
		2	-0.037	8.50	No
	134	2	-0.013	2.50	No
		2			
14/14/50	135	4	-0.009	2.50	No
WI150	62	2	-0.05	1.50	No
		2	-0.05	8.50	No
	66	2	-0.05	1.50	No
		2	-0.05	8.50	No
	134	2	-0.015	2.50	No
	135	2	-0.009	2.50	No
MLO					
WL0	62	Z	-0.017	1.50	No

LLa3	66	У	-0.25	5.00	No
LLa1	62	У	-0.25	5.00	No
LL3	88	У	-0.25	0.00	Yes
LL2	88	У	-0.25	100.00	Yes
LL1	88	У	-0.25	50.00	Yes
	135	2	-0.002	2.50	No
	134	2	-0.003	2.50	No
		2	-0.015	8.50	No
	66	2	-0.015	1.50	No
		2	-0.015	8.50	No
WL150	62	2	-0.015	1.50	No
	135	2	-0.002	2.50	No
	134	2	-0.003	2.50	No
		2	-0.011	8.50	No
	66	2	-0.011	1.50	No
		2	-0.011	8.50	No
WL120	62	2	-0.011	1.50	No
	135	X	-0.002	2.50	No
	134	х	-0.003	2.50	No
		X	-0.008	8.50	No
	66	X	-0.008	1.50	No
	-	X	-0.008	8.50	No
WL90	62	X	-0.008	1.50	No
	135	3	-0.002	2.50	No
	134	3	-0.003	2.50	No
		3	-0.011	8.50	No
	66	3	-0.011	1.50	No
******	-	3	-0.011	8.50	No
WL60	62	3	-0.011	1.50	No
	135	3	-0.003	2.50	No
	134	3	-0.013	2.50	No
	00	3	-0.015 -0.015	8.50	No
	66	3	-0.015	1.50	No
WL30	62	3	-0.015 -0.015	1.50 8.50	No No
VA/I 20	135	z 3	-0.002	2.50	No
	125	z -	-0.003	2.50	No No
	134	Z	-0.004	2.50	No
	404	Z	-0.017	8.50	No
	66	Z	-0.017	1.50	No
		Z	-0.017	8.50	No

Self weight multipliers for load conditions

		Self weight multiplier					
Condition	Description	Comb.	MultX	MultY	MultZ		
D	Dead Load	No	0.00	-1.00	0.00		
Wo	Wind Load (NO ICE)	No	0.00	0.00	0.00		
W30	WL 30deg	No	0.00	0.00	0.00		
W60	WL 60deg	No	0.00	0.00	0.00		
W90	WL 90deg	No	0.00	0.00	0.00		
W120	WL 120deg	No	0.00	0.00	0.00		
W150	WL 150deg	No	0.00	0.00	0.00		
Di	Ice Load	No	0.00	0.00	0.00		
WIO	WL ICE 0deg	No	0.00	0.00	0.00		

WI30	WL ICE 30deg	No	0.00	0.00	0.00
WI60	WL ICE 60deg	No	0.00	0.00	0.00
WI90	WL ICE 90deg	No	0.00	0.00	0.00
WI120	WL ICE 120deg	No	0.00	0.00	0.00
WI150	WL ICE 150deg	No	0.00	0.00	0.00
WLO	WL 30 mph 0deg	No	0.00	0.00	0.00
WL30	WL 30 mph 30deg	No	0.00	0.00	0.00
WL60	WL 30 mph 60deg	No	0.00	0.00	0.00
WL90	WL 30 mph 90deg	No	0.00	0.00	0.00
WL120	WL 30 mph 120deg	No	0.00	0.00	0.00
WL150	WL 30 mph 150deg	No	0.00	0.00	0.00
LL1	250 lb Live Load Center of Mount	No	0.00	0.00	0.00
LL2	250 lb Live Load Right End of Mount	No	0.00	0.00	0.00
LL3	250 lb Live Load Left End of Mount	No	0.00	0.00	0.00
LLa1	250 lb Live Load Antenna 1	No	0.00	0.00	0.00
LLa2	250 lb Live Load Antenna 2	No	0.00	0.00	0.00
LLa3	250 lb Live Load Antenna 3	No	0.00	0.00	0.00
	***************************************			***********	**********

Earthquake (Dynamic analysis only)

Condition	a/g	Ang. [Deg]	Damp. [%]
D	0.00	0.00	0.00
Wo	0.00	0.00	0.00
W30	0.00	0.00	0.00
W60	0.00	0.00	0.00
W90	0.00	0.00	0.00
W120	0.00	0.00	0.00
W150	0.00	0.00	0.00
Di	0.00	0.00	0.00
WI0	0.00	0.00	0.00
WI30	0.00	0.00	0.00
WI60	0.00	0.00	0.00
WI90	0.00	0.00	0.00
WI120	0.00	0.00	0.00
WI150	0.00	0.00	0.00
WL0	0.00	0.00	0.00
WL30	0.00	0.00	0.00
WL60	0.00	0.00	0.00
WL90	0.00	0.00	0.00
WL120	0.00	0.00	0.00
WL150	0.00	0.00	0.00
LL1	0.00	0.00	0.00
LL2	0.00	0.00	0.00
LL3	0.00	0.00	0.00
LLa1	0.00	0.00	0.00
LLa2	0.00	0.00	0.00
LLa3	0.00	0.00	0.00

Current Date: 3/10/2020 6:58 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Gamma

Sector)(Rev. 3).retx

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design:

LC1=1.2D+Wo

LC2=1.2D+W30

LC3=1.2D+W60

LC4=1.2D+W90

LC5=1.2D+W120

LOG 4.0D -14/450

LC6=1.2D+W150

LC7=1.2D-Wo

LC8=1.2D-W30

LC9=1.2D-W60

LC10=1.2D-W90 LC11=1.2D-W120

LC12=1.2D-W150

LC13=0.9D+Wo

LC14=0.9D+W30

LC15=0.9D+W60

LC16=0.9D+W90

LC17=0.9D+W120

LC18=0.9D+W150

LC19=0.9D-Wo

LC20=0.9D-W30

LC21=0.9D-W60

LC22=0.9D-W90

LC23=0.9D-W120

LC24=0.9D-W150

LC25=1.2D+Di+WI0

LC26=1.2D+Di+WI30

LC27=1.2D+Di+WI60

LC28=1.2D+Di+WI90

LC29=1.2D+Di+WI120

LC30=1.2D+Di+WI150

LC31=1.2D+Di-WI0

LC32=1.2D+Di-WI30

LC33=1.2D+Di-WI60

LC34=1.2D+Di-WI90

LC35=1.2D+Di-WI120

LC36=1.2D+Di-WI150

LC38=1.2D+1.5LL1

LC39=1.2D+1.5LL2

LC40=1.2D+1.5LL3

LC41=1.2D+WL0+1.5LLa1

LC42=1.2D+WL30+1.5LLa1

LC43=1.2D+WL60+1.5LLa1

LC44=1.2D+WL90+1.5LLa1

LC45=1.2D+WL120+1.5LLa1 LC46=1.2D+WL150+1.5LLa1

LC47=1.2D-WL0+1.5LLa1

LC48=1.2D-WL30+1.5LLa1

LC49=1.2D-WL60+1.5LLa1

LC50=1.2D-WL90+1.5LLa1

LC51=1.2D-WL120+1.5LLa1

LC52=1.2D-WL150+1.5LLa1

LC53=1.2D+WL0+1.5LLa2

LC54=1.2D+WL30+1.5LLa2 LC55=1.2D+WL60+1.5LLa2 LC56=1.2D+WL90+1.5LLa2 LC57=1.2D+WL120+1.5LLa2 LC58=1.2D+WL150+1.5LLa2 LC59=1.2D-WL0+1.5LLa2 LC60=1.2D-WL30+1.5LLa2 LC61=1.2D-WL60+1.5LLa2 LC62=1.2D-WL90+1.5LLa2 LC63=1.2D-WL120+1.5LLa2 LC64=1.2D-WL150+1.5LLa2 LC65=1.2D+WL0+1.5LLa3 LC66=1.2D+WL30+1.5LLa3 LC67=1.2D+WL60+1.5LLa3 LC68=1.2D+WL90+1.5LLa3 LC69=1.2D+WL120+1.5LLa3 LC70=1.2D+WL150+1.5LLa3 LC71=1.2D-WL0+1.5LLa3 LC72=1.2D-WL30+1.5LLa3 LC73=1.2D-WL60+1.5LLa3 LC74=1.2D-WL90+1.5LLa3 LC75=1.2D-WL120+1.5LLa3 LC76=1.2D-WL150+1.5LLa3

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
***********************	PIPE 2-1_2x0.203	62	LC36 at 33.33%	0.48	OK	Eq. H1-1b
	573	64	LC36 at 33.33%	0.45	OK	Eq. H1-1b
		65	LC30 at 33.33%	0.21	OK	Eq. H1-1b
		66	LC7 at 66.67%	0.32	OK	Eq. H1-1b
		88	LC7 at 86.72%	0.50	OK	Eq. H1-1b
		89	LC26 at 52.08%	0.69	ок	Eq. H1-1b
	PIPE 2x0.154	87	LC13 at 100.00%	0.18	OK	Eq. H1-1b
		90	LC10 at 93.75%	0.23	OK	Eq. H1-1b
		91	LC40 at 93.75%	0.13	OK	Eq. H1-1b
		92	LC26 at 93.75%	0.41	OK	Eq. H1-1b
		93	LC36 at 93.75%	0.47	OK	Eq. H1-1b
		102	LC10 at 100.00%	0.38	OK	Eq. H1-1b
		134	LC32 at 12.50%	0.20	OK	Eq. H1-1b
		135	LC30 at 12.50%	0.07	OK	Eq. H3-1
	PL 11-1/4x5/8	127	LC26 at 100.00%	0.33	OK	Eq. H1-1b
		128	LC31 at 100.00%	0.25	OK	Eq. H1-1b
	PL 3-1/2x5/8	107	LC12 at 100.00%	0.51	OK	Eq. H1-1b
		108	LC26 at 100.00%	0.50	OK	Eq. H1-1b
		109	LC26 at 100.00%	0.57	OK	Eq. H1-1b
		110	LC7 at 100.00%	0.24	OK	Eq. H1-1b
		123	LC10 at 100.00%	0.55	OK	Eq. H1-1b
		124	LC26 at 0.00%	0.83	OK	Eq. H1-1b
		125	LC40 at 100.00%	0.27	OK	Eq. H1-1b
		126	LC26 at 0.00%	0.84	ок	Eq. H1-1b
	RndBar 3_4	98	LC30 at 0.00%	0.41	ОК	Eq. H1-1a
		99	LC26 at 0.00%	0.34	OK	Eq. H1-1b
		100	LC30 at 46.88%	0.10	With warnings	Eq. H1-1b
		101	LC40 at 100.00%	0.10	ок	Eq. H1-1b
	RndBar 5_8	94	LC12 at 50.00%	0.48	OK	Eq. H1-1a
	(-	95	LC40 at 87.50%	0.31	OK	Eq. H1-1a
		96	LC30 at 87.50%	0.88	OK	Eq. H1-1a
		97	LC30 at 87.50%	0.84	OK	Eq. H1-1a

Page2

Current Date: 3/10/2020 5:26 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1030\Rev. 3\CT1030 (Gamma

Sector)(Rev. 3).retx

Geometry data

GLOSSARY	
Cb22, Cb33	: Moment gradient coefficients
Cm22, Cm33	: Coefficients applied to bending term in interaction formula
d0	Tapered member section depth at J end of member
DJX	: Rigid end offset distance measured from J node in axis X
DJY	Rigid end offset distance measured from J node in axis Y
DJZ	: Rigid end offset distance measured from J node in axis Z
DKX	∄ Rigid end offset distance measured from K node in axis X
DKY	Rigid end offset distance measured from K node in axis Y
DKZ	Rigid end offset distance measured from K node in axis Z
dL	: Tapered member section depth at K end of member
Ig factor	: Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	: Effective length factor about axis 2
K33	: Effective length factor about axis 3
L22	্ব Member length for calculation of axial capacity
L33	: Member length for calculation of axial capacity
LB pos	Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	: Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	ः Rotation about X
RY	Rotation about Y
RZ	Rotation about Z
TO	: 1 = Tension only member 0 = Normal member
TX	្ត Translation in X
TY	: Translation in Y
TZ	Translation in Z

Nodes

Node	x	Υ	z	Rigid Floor
4445453 DE 1844 SA 834	[ft]	[ft]	[ft]	
144	0.00	-3.3333	0.00	0
142	0.00	0.00	0.00	0
175	-0.50	0.00	-1.00	0
157	4.00	0.00	-2.00	0

Restraints

Node	TX	TY	TZ	RX	RY	RZ
144	 1	4	1	1	0	1
142	1	1	1	1	0	1
175	1	1	1	0	0	0
157	1	1	1	0	0	0

Members

Member	NJ	NK	Description	Section	Material	d0 [in]	dL [in]	lg factor
62	153	152		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
64	189	188		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
65	177	176		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
66	155	154		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
94	166	167		RndBar 5_8	A36	0.00	0.00	0.00
95	168	169		RndBar 5_8	A36	0.00	0.00	0.00
96	170	171		RndBar 5_8	A36	0.00	0.00	0.00
97	172	173		RndBar 5_8	A36	0.00	0.00	0.00
98	170	173		RndBar 3_4	A36	0.00	0.00	0.00
99	171	172		RndBar 3_4	A36	0.00	0.00	0.00
100	167	168		RndBar 3_4	A36	0.00	0.00	0.00
101	166	169		RndBar 3_4	A36	0.00	0.00	0.00
134	218	220		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
135	224	225		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
102	174	175		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
87	156	157		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
124	208	147		PL 3-1/2x5/8	A36	0.00	0.00	0.00
126	209	146		PL 3-1/2x5/8	A36	0.00	0.00	0.00
123	143	208		PL 3-1/2x5/8	A36	0.00	0.00	0.00
125	145	209		PL 3-1/2x5/8	A36	0.00	0.00	0.00
127	208	142		PL 11-1/4x5/8	A36	11.25	9.25	0.00
128	209	144		PL 11-1/4x5/8	A36	11.25	9.25	0.00
91	163	145		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
90	162	143		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
93	165	147		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
92	164	146		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
88	226	159		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
89	227	161		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
108	165	185		PL 3-1/2x5/8	A36	0.00	0.00	0.00
109	164	186		PL 3-1/2x5/8	A36	0.00	0.00	0.00
110	163	187		PL 3-1/2x5/8	A36	0.00	0.00	0.00
107	162	184		PL 3-1/2x5/8	A36	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ	
62	315.00	0	0.00	0.00	0.00	
64	315.00	0	0.00	0.00	0.00	
65	315.00	0	0.00	0.00	0.00	
66	315.00	0	0.00	0.00	0.00	
94	0.00	2	0.00	0.00	1.00	
95	0.00	2	0.00	0.00	1.00	
96	0.00	2	0.00	0.00	1.00	
97	0.00	2	0.00	0.00	1.00	
134	315.00	0	0.00	0.00	0.00	
135	315.00	0	0.00	0.00	0.00	
124	90.00	0	0.00	0.00	0.00	
126	90.00	0	0.00	0.00	0.00	
123	90.00	0	0.00	0.00	0.00	
125	90.00	0	0.00	0.00	0.00	
127	90.00	0	0.00	0.00	0.00	
128	90.00	0	0.00	0.00	0.00	
108	90.00	0	0.00	0.00	0.00	
109	90.00	0	0.00	0.00	0.00	
110	90.00	0	0.00	0.00	0.00	

107 90.00 0 0.00 0.00 0.00

Rigid end offsets

Member	DJX [in]	DJY [in]	DJZ [in]	DKX [in]	DKY [in]	DKZ [in]	
98	0.00	-3.50	0.00	0.00	3.50	0.00	
99	0.00	3.50	0.00	0.00	-3.50	0.00	
100	0.00	3.50	0.00	0.00	-3.50	0.00	
101	0.00	-3.50	0.00	0.00	3.50	0.00	
127	0.00	-0.625	0.00	0.00	-0.625	0.00	
128	0.00	-0.625	0.00	0.00	-0.625	0.00	

Hinges

Member	Node-J				Node-K						
	M33	M22	V3	V2	M33	M22	V3	V2	TOR	AXL	Axial rigidity
99	0	0	0	0	0	0	0	0	0	0	Tension only
101	0	0	0	0	0	0	0	0	0	0	Tension only
102	1	1	0	0	0	0	0	0	0	0	Full
87	1	1	0	0	0	0	0	0	0	0	Full
108	1	1	0	0	0	0	0	0	0	0	Full
109	1	1	0	0	0	0	0	0	0	0	Full
110	1	1	0	0	0	0	0	0	0	0	Full
107	1	1	0	0	0	0	0	0	0	0	Full

Sanket Joshi SAI Group 12 Industrial Way Salem, NH 03079 sjoshi@saigrp.com

March 12, 2020

Connecticut Siting Council

Subject: AT&T Wireless, CT1030 – Southington, CT

Dear Connecticut Siting Council:

At the request of AT&T Wireless, SAI Group has performed an assessment of the RF Power Density at the proposed site located at 435 Mill Street, Southington, CT.

AT&T's calculations were done in compliance with FCC OET Bulletin 65 and incorporating an additional 10 dB Off-Beam Pattern Adjustment which results in a number that is 10 percent of the standard "Worst-Case" calculation. This report provides an FCC compliance assessment based on an analysis that all transmitters are simultaneously operating at full power and pointing directly at the ground.

Power Density formula:

$$S = \frac{2.56 * 1.64 * ERP * 0.1}{4 * \pi * R^2}$$

Transmission Mode	Antenna Centerline AGL (ft)	Frequency (MHz)	Number of Channels	Effective Radiated Power per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	% MPE (Uncontrolled/ General Public)
AT&T UMTS	98	850	1	1,211	0.0045	0.5667	0.80%
AT&T LTE	98	770	1	1,603	0.0060	0.5133	1.17%
AT&T LTE	98	850	1	1,641	0.0061	0.5667	1.08%
AT&T LTE	98	1930	2	2,483	0.0186	1	1.86%
Others							1.82%
Total							6.73%

Conclusion: AT&T's proposed antenna installation along with other carriers is calculated to be within 6.73% of FCC Standard for General Public/Uncontrolled Maximum Permissible Exposure (MPE).

Sincerely,

Sanket Y Joshi

Colore 134

SAI Group

Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Letter of Authorization

Applicant:

AT&T Mobility

Site Address: 435 Mill Street, Southington, CT 06489

To Whom it May Concern:

AT&T Mobility is seeking to install an antenna facility at the above referenced location. As the owner of the tower, permission is hereby granted to AT&T Mobility and its agents for the purpose of consummating any applications necessary to gain the required land use approvals or permits on the abovereferenced structure from the CT Siting Council and/or Town of Southington.

Any fees or charges associated with all applications or permits and any conditions placed on the Applicant shall be the responsibility of AT&T Mobility, its subsidiaries and agents.

Sincerely,

Name: William M. Casarella

By: William M. Casaulla

Title: Sperintendent Hereunto Duly Authorized

PLANNING AND ZONING DEPARTMENT

JOHN WEICHSEL MUNICIPAL CENTER - 196 NORTH MAIN STREET SOUTHINGTON, CONNECTICUT 06489

Phone: (860)276-6248 / Fax: (860)628-3511

August 27, 2018

Southington Water Department 605 West Queen Street PO Box 111 Southington, CT 06489

RE: Site plan application – 435 and 471 (rear) Mill Street (SPR #1760)

Dear Sir:

Please be advised that on August 21, 2018, the Southington Planning and Zoning Commission voted to approve your site plan application to construct a new 65 ft tall water storage tank and a 120' tall communications tower. The Commission also granted a waiver of the communications tower fall radius.

Please submit six sets of revised plans addressing Engineering comments prior to bidding. Building and zoning permits and a preconstruction meeting will also be required. Please note that this approval is good for a period of five (5) years, which will expire on August 21, 2023. You can request a five year extension prior to the expiration date if the work has not been completed.

Respectfully

Robert A. Phillips, AICP

Director of Planning and Community Development

cc:

Engineering Dept.

Building Dept. Assessor's Dept.

PLANNING AND ZONING DEPARTMENT

JOHN WEICHSEL MUNICIPAL CENTER – 196 NORTH MAIN STREET SOUTHINGTON, CONNECTICUT 06489

Phone: (860)276-6248 / Fax: (860)628-3511

August 28, 2018

Southington Water Department 605 West Queen Street PO Box 111 Southington, CT 06489

RE: Special Permit Approval – 435 and 471 (rear) Mill Street (SPU #605)

Dear Sir:

On August 21, 2018, the Planning and Zoning Commission voted to approve your Special Permit Application to construct a new 65-ft water storage tank and a 120-ft tall communications tower on properties located at 435 and 471 (rear) Mill Street.

The special permit use becomes effective upon the filing of the approved special permit use plan with the Town Planner's office and the filing of this original approval letter in the office of the Town Clerk, pursuant to Section 8-3d of the General Statutes of Connecticut. Such plan shall be certified by the Planning and Zoning Commission prior to filing. An approved special permit use not put into effect within one year becomes null and void. A single one year extension may be granted before the approval's first anniversary date (Section 8-03.3).

Respectfully.

Robert A. Phillips, AICP

Director of Planning and Community Development

cc: Town Engineer Building Dept.

Town Assessor

445 Hamilton Avenue, 14th Floor White Plains, New York 10601 T 914 761 1300 F 914 761 5372 cuddyfeder.com

Lucia Chiocchio lchiocchio@cuddyfeder.com

3/26/20

VIA ELECTRONIC MAIL RPHILLIPS@SOUTHINGTON.ORG

Rob Phillips Planning Director Town of Southington Town Hall 75 Main Street P.O. Box 152 Southington, CT 06489

Re: Tower Sharing Request by New Cingular Wireless PCS, LLC

Premises: 435 Mill Street, Southington, CT 06489

Dear Mr. Phillips:

We are writing to you on behalf of our client New Cingular Wireless PCS, LLC ("AT&T") with respect to the above referenced request to the Connecticut Siting Council ("Council") for shared use approval to allow AT&T to install its wireless communications equipment on the existing communications tower and at the associated compound owned by the Town of Southington and located at 435 Mill Street. AT&T proposes to install 9 antennas, 6 remote radiohead units, and 3 surge arrestors on a proposed sector frame mount system at an approximately 98-foot centerline height on the Tower. AT&T currently maintains equipment shelters on a concrete pad within the fenced equipment compound for its facility on the water tank. AT&T proposes to use the same equipment shelters and will install a new 10' tall cable bridge between the tower and the equipment shelter. AT&T will also install new equipment within the existing equipment shelter, including a new power plant.

Enclosed herein is a copy of the submission made to the Council requesting approval of the tower share which includes information regarding the technical, legal, environmental, and economic feasibility of AT&T's proposed installation.

Should you have any questions please feel free to contact me at the address above or the Council at 860.827.2935.

Very truly yours,

ucia Chrocchio

Lucia Chiocchio Enclosure

WESTCHESTER | NEW YORK CITY | HUDSON VALLEY | CONNECTICUT

445 Hamilton Avenue, 14th Floor White Plains, New York 10601 T 914 761 1300 F 914 761 5372 cuddyfeder.com

Lucia Chiocchio lchiocchio@cuddyfeder.com

3/26/20

VIA ELECTRONIC MAIL SCIOTAM@SOUTHINGTON.ORG

Mark J. Sciota Town Manager Town of Southington Town Hall 75 Main Street P.O. Box 152 Southington, CT 06489

Re: Tower Sharing Request by New Cingular Wireless PCS, LLC

Premises: 435 Mill Street, Southington, CT 06489

Dear Mr. Sciota:

We are writing to you on behalf of our client New Cingular Wireless PCS, LLC ("AT&T") with respect to the above referenced request to the Connecticut Siting Council ("Council") for shared use approval to allow AT&T to install its wireless communications equipment on the existing communications tower and at the associated compound owned by the Town of Southington and located at 435 Mill Street. AT&T proposes to install 9 antennas, 6 remote radiohead units, and 3 surge arrestors on a proposed sector frame mount system at an approximately 98-foot centerline height on the Tower. AT&T currently maintains equipment shelters on a concrete pad within the fenced equipment compound for its facility on the water tank. AT&T proposes to use the same equipment shelters and will install a new 10' tall cable bridge between the tower and the equipment shelter. AT&T will also install new equipment within the existing equipment shelter, including a new power plant.

Enclosed herein is a copy of the submission made to the Council requesting approval of the tower share which includes information regarding the technical, legal, environmental, and economic feasibility of AT&T's proposed installation.

Should you have any questions please feel free to contact me at the address above or the Council at 860.827.2935.

Very truly yours,

ucia Chrocchio

Lucia Chiocchio Enclosure

WESTCHESTER | NEW YORK CITY | HUDSON VALLEY | CONNECTICUT

445 Hamilton Avenue, 14th Floor White Plains, New York 10601 T 914 761 1300 F 914 761 5372 cuddyfeder.com

Lucia Chiocchio lchiocchio@cuddyfeder.com

3/26/20

VIA ELECTRONIC MAIL CPALMIERI@SOUTHINGTON.ORG

Chairman Christopher Palmieri Town Council Town of Southington Town Hall 75 Main Street P.O. Box 152 Southington, CT 06489

Re: Tower Sharing Request by New Cingular Wireless PCS, LLC

Premises: 435 Mill Street, Southington, CT 06489

Dear Chairman Palmieri:

We are writing to you on behalf of our client New Cingular Wireless PCS, LLC ("AT&T") with respect to the above referenced request to the Connecticut Siting Council ("Council") for shared use approval to allow AT&T to install its wireless communications equipment on the existing communications tower and at the associated compound owned by the Town of Southington and located at 435 Mill Street. AT&T proposes to install 9 antennas, 6 remote radiohead units, and 3 surge arrestors on a proposed sector frame mount system at an approximately 98-foot centerline height on the Tower. AT&T currently maintains equipment shelters on a concrete pad within the fenced equipment compound for its facility on the water tank. AT&T proposes to use the same equipment shelters and will install a new 10' tall cable bridge between the tower and the equipment shelter. AT&T will also install new equipment within the existing equipment shelter, including a new power plant.

Enclosed herein is a copy of the submission made to the Council requesting approval of the tower share which includes information regarding the technical, legal, environmental, and economic feasibility of AT&T's proposed installation.

Should you have any questions please feel free to contact me at the address above or the Council at 860.827.2935.

Very truly yours,

ucia Chrocchio

Lucia Chiocchio Enclosure

WESTCHESTER | NEW YORK CITY | HUDSON VALLEY | CONNECTICUT

CERTIFICATION

I hereby certify that on the 26th day of March 2020, a copy of AT&T's Tower Share Request to the Connecticut Siting Council was sent by electronic mail to the chief elected official and the planning and zoning department of the municipality in which the facility is located as well as by email to the property owner and tower/facility owner.

Dated: March 26, 2020

Cuddy & Feder LLP 445 Hamilton Ave, 14th Floor White Plains, NY 10601 Attorneys for: New Cingular Wireless PCS, LLC (AT&T)

Lucia Chrocchio