Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 10, 2023

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 135 (a/k/a 99) East Street, Southington, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced address (the "Property"). Cellco's facility consists of antennas and remote radio heads attached to a tower. Equipment associated with the facility is located on the ground adjacent to the tower. The tower and Cellco's use of the tower were approved by the Siting Council ("Council") in May of 2015 (Docket No. 455). A copy of the Council's Docket No. 455 Decision and Order is included in Attachment 1.

Cellco's proposed modification involves the installation of four (4) interference mitigation filters ("Filters") on its existing antenna platform and antenna mounting assembly. The specification sheet for the Filter is included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Southington's Town Manager and Land Use Officer. The Town of Southington is the owner of the Property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The Filters will be installed on Cellco's existing antenna platform and antenna mounting assembly.

27978856-v1

Robinson+Cole

Melanie A. Bachman, Esq. October 10, 2023 Page 2

- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of the Filters will not result in a change to radio frequency (RF) emissions from the facility. Therefore, no new RF emissions information is included in this filing.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, foundation, antenna platform and mounting assembly can support Cellco's proposed modifications. A copy of the SA and MA are included in Attachment 3.

A copy of the parcel map and Property owner information is included in <u>Attachment 4</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 5</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Kunie gmu-

Enclosures Copy to:

Mark Sciota, Town Manger Jeremy DeCarli, Director of Planning and Community Development Alex Tyurin, Verizon Wireless

ATTACHMENT 1

DOCKET NO. 455 - Cellco Partnership d/b/a Verizon Wireless	}	Connecticut
application for a Certificate of Environmental Compatibility and	•	
Public Need for the construction, maintenance, and operation of a	}	Siting
telecommunications facility located at Southington Tax Assessor		_
Map/Lot 066053, 99 East Street, Southington, Connecticut.	}	Council
		May 14, 2015

Decision and Order

Pursuant to Connecticut General Statutes §16-50p and the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Cellco Partnership, hereinafter referred to as the Certificate Holder, for a telecommunications facility at the approved site, located at 99 East Street, Southington, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopine at a height of 90 feet (97-feet with faux tree branches) above ground level to provide the proposed wireless services, sufficient to accommodate the antennas of Cellco and the Town of Southington and other entities, both public and private. The height of the tower may be extended after the date of this Decision and Order pursuant to regulations of the Federal Communications Commission.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Southington for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) final site plan(s) for development of the facility to include specifications for the monopine structure, structure foundation, antennas, and equipment compound including, but not limited to, fence with less than two inch mesh, radio equipment, access road, utility line, and emergency backup generator that employ the governing standard in the State of Connecticut for tower design in accordance with the currently adopted International Building Code;
 - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended;
 - c) incorporation of Department of Public Health recommendations per its letter dated February 4, 2015 to protect the aquifer protection area; and
 - d) Spotted Turtle Protection Plan.

- 3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- Upon the establishment of any new federal radio frequency standards applicable to frequencies of this
 facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 7. Any request for extension of the time period referred to in Condition 6 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Southington Any proposed modifications to this Decision and Order shall likewise be so served.
- 8. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Certificate Holder may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period.
- 9. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 10. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 11. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.

Docket No. 355 Decision and Order Page 3

- 12. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 13. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 14. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.
- 15. This Certificate may be surrendered by the Certificate Holder upon written notification and approval by the Council.

We hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed in the Service List, dated December 31, 2014 and notice of issuance published in the Record-Journal.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

ATTACHMENT 2

BSF0020F3V1-1

TWIN BANDSTOP SOOMHZ INTERFERENCE TO BE FILTER

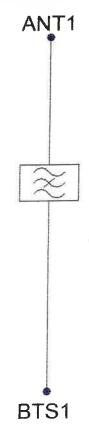
The BSF0020 is ideal for co-located 700, 850 and 900 networks. Utilising a 2,6MHz guardband the BSF0020 provides rejection of the 900 UL band while passing 700/850 UL and DL bands. Capable of being used in an outdoor environment the BSF0020 contains two identical bandstop filters, suitable for 2x2 MIMO configuration, offering excellent insertion loss, group delay and rejection.

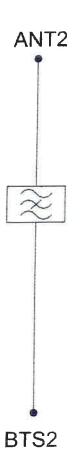
FEATURES

- Passes full 700 and 850 bands
- Low insertion loss
- Rejection of 900MHz uplink
- DC/AISG pass
- Twin unit
- . Dual twin mounting available

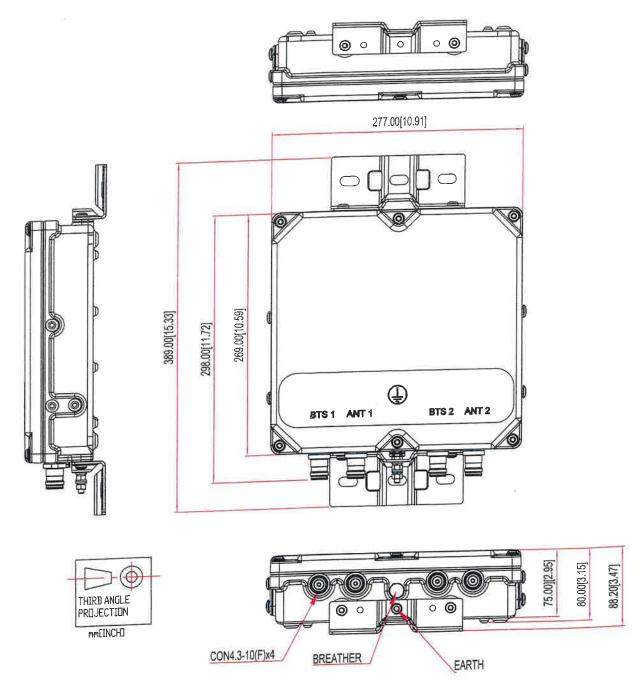
TECHNICAL SPECIFICATIONS

ENGARGE CONTRACTO	year and an interpretation to the	经产品的企业的				
Passband	698 - 849MHz	869 - 891 5MHz				
Insertion loss	0.1dB typical / 0.3dB maximum	0.5dB typical, 1,45dB maximum				
Return loss	24dB typical, 18	3dB minimum				
Maximum input power (Per Port)	100W average	200W average and 66W per 5MHz				
Rejection	53dB minimum @ 8	94.1 - 896.5MHz				
ELECTRICAL						
Impedance	500h					
Intermodulation products	-160dBc maximum in UL Band (assuming 2 -153dBc maximum	20MHz Signal), with 2 x 43dBm carriers with 2 x 43dBm				
DC / AISG						
Passband	0 - 131	/iHz				
Insertion loss	0,3dB ma.	ximum				
Return loss	15dB min	imuna				
Input voitage range	± 33V					
DC current rating	2A continuous, 4A peak					
Compliance	3GPP TS 25.461					
ENVIRONMENTAL						
For further details of environmental c	ompliance, please contact Kaelus					
Temperature range	-20°C to +60°C ! -					
Ingress protection	IP67					
Altitude	2600m 8					
Lightning protection	RF port: ±5kA maximum (8/20us), IEC 61000-4-5 – Unit mu	ist be terminated with some lightning protection circuits				
MTBF	>1,000,000					
Compliance	ETSI EN 300 019 class 4.1H, R	oHS, NEBS GR-487-CORE				
MECHANICAL						
Dimensions H x D x W	269 x 277 x 80mm 10.60 x 10.90 x 3.15ii					
Weight	8.0 kg 17.6 lbs					
Finish	Powder coated, light					
Connectors	RF: 4,3-10					
Mounting	Optional pole/wall bracket supplied with two metal clamps 45-informat	-178mm diameter poles or custom bracket. See orderi ion				




ORDERING INFORMATION

ORDERING INFORMAT	gains (SUNTIVIA	19TORAL PEATURES	COLUMN TO AN
PART NUMBER BSF0020F3V1	TWIN, 2 in / 2 out	DC/AISG PASS NO BRACKET	4.3-10 (F)
55F0020F3V1	TWIN, 2 in / 2 out	DC/AISG PASS	4.3-10 (F)
B\$F0020F3V1-1		DC/AISG PASS	4,3-10 (F)
BSF0020F3V1-2	QUAD, 4 in / 4 out	DC/AIGC AIGC	


ELECTRICAL BLOCK DIAGRAM

MECHANICAL BLOCK DIAGRAM

ATTACHMENT 3

Centered on Solutions™

Structural Analysis Report

90-ft Existing EEI Monopine

Proposed Verizon Equipment Upgrade

Site Ref: Southington East CT

99 East Street Southington, CT

CENTEK Project No. 23032.05

Date: July 31, 2023

Max Stress Ratio = 44.3%

Prepared for:

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- TOWER LOADING
- TOWER CAPACITY
- FOUNDATION AND ANCHORS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- tnxTower INPUT/OUTPUT SUMMARY
- tnxTower DETAILED OUTPUT
- ANCHOR BOLT AND BASEPLATE ANALYSIS
- MathCAD CAISSON FOUNDATION ANALYSIS

SECTION 4 - REFERENCE MATERIAL

FILTER CUT SHEET

TABLE OF CONTENTS TOC-1

<u>Introduction</u>

The purpose of this report is to summarize the results of the non-linear, $P-\Delta$ structural analysis of the equipment upgrade proposed by Verizon on the existing monopole (tower) located in Southington, Connecticut.

The host tower is a 90-ft tall, two-section, eighteen sided, tapered monopole, originally designed and manufactured by Engineered Endeavors; dated April 1, 2015. The tower geometry and structure member sizes were obtained from the aforementioned documents.

Antenna and appurtenance information were obtained from a previous structural analysis report prepared by Centek job no; 21007.35 dated July 12, 2021.

The tower is made up of two (2) tapered vertical sections consisting of A572-65 pole sections. The vertical tower sections are slip joint connected. The diameter of the pole (flat-flat) is 31.0-in at the top and 52.5-in at the base.

Antenna and Appurtenance Summary

The existing, proposed and future loads considered in this analysis consist of the following:

- VERIZON (EXISTING TO REMAIN): <u>Antennas</u>: Six (6) Andrew SBNHH-1D65B panel antennas, three (3) Samsung MT6407-77A panel antennas, three (3) Samsung XXDWMM-12.5-65-8T-CBRS, three (3) Samsung B2/B66A RRH-BR049 remote radio heads. three (3) Samsung B5/B13 RRH-BR04C remote radio heads and two (2) OVP Boxes on a low profile platform with a RAD center elevation of 80-ft above grade. <u>Coax Cables</u>: Two (2) 6x12 Hybrid flex cables running on the inside of the existing tower.
- VERIZON (PROPOSED): <u>Antennas</u>: Four (4) Kaelus BSF0020F3V1-1 filters on a low profile platform with a RAD center elevation of 80-ft above grade.

REPORT SECTION 1-1

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents or reinforcement drawings.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All coax cables to be installed as indicated in this report.

REPORT SECTION 1-2

<u>Analysis</u>

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst case loading condition. The tower is considered as loaded by concentric forces along the tower, and the model assumes that the tower members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed (3-second gust) with no ice and the applicable wind and ice combination to determine stresses in members as per guidelines of TIA-222-H entitled "Structural Standard for Antenna Support Structures and Antennas", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Load and Resistance Factor Design (LRFD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix P of the CSBC¹ and the wind speed data available in the TIA-222-H Standard.

Tower Loading

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA-222-H, gravity loads of the tower structure and its components, and the application of 1.50" radial ice on the tower structure and its components.

Load Cases:

Load Case 1; 120 mph (Ultimate) wind speed w/ no ice plus gravity load – used in calculation of tower

stresses and rotation.

<u>Load Case 2</u>; 50 mph wind speed w/ 1.50" radial ice plus gravity load – used in calculation of tower stresses.

Load Case 3; 60 mph wind speed used for deflection calculation.

[Appendix P of the 2022 CT Building Code]

[Annex B of TIA-222-H]

REPORT SECTION 1-3

¹ The 2021 International Building Code as amended by the 2022 Connecticut State Building Code (CSBC).

Tower Capacity

 Calculated stresses were found to be within allowable limits. This tower was found to be at 27.2% of its total capacity.

Tower Section Elevation		Stress Ratio (percentage of capacity)	Result
Pole Shaft (L2)	48.16'-1.00'	27.2%	PASS

Foundation and Anchors

The existing foundation consists of a one (1) 7-ft square x 3.0-ft tall pier on a 36-ft square x 3.0-ft thick reinforced concrete mat. The existing foundation properties were obtained from the aforementioned design documents. The base of the tower is connected to the foundation by means of (24) 2.25" \varnothing , ASTM A615-75 anchor bolts embedded approximately 5-ft into the concrete foundation structure.

The tower base reactions developed from the governing Load Case were used in the verification of the foundation and its anchors:

Location	Vector	Proposed Reactions
	Shear	31 kips
Base	Compression	35 kips
	Moment	1945 kip-ft

The foundation was found to be within allowable limits.

Foundation	Design Limit	TIA-222-H (FS) ⁽¹⁾	Proposed Loading (FS) ⁽¹⁾	Result
Reinforced Concrete Pad and Pier	OTM ⁽²⁾	1.0	7.5	PASS

Note 1: FS denotes Factor of Safety.

Note 2: OTM denotes Overturning Moment

The anchor bolts and base plate were found to be within allowable limits.

Tower Component	Design Limit (percentage of		Result
Anchor Bolts	Tension	20.3%	PASS
Base Plate	Bending	44.3%	PASS

Conclusion

This analysis shows that the subject tower <u>is adequate</u> to support the proposed modified antenna configuration.

The analysis is based, in part, on the information provided to this office by Verizon. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

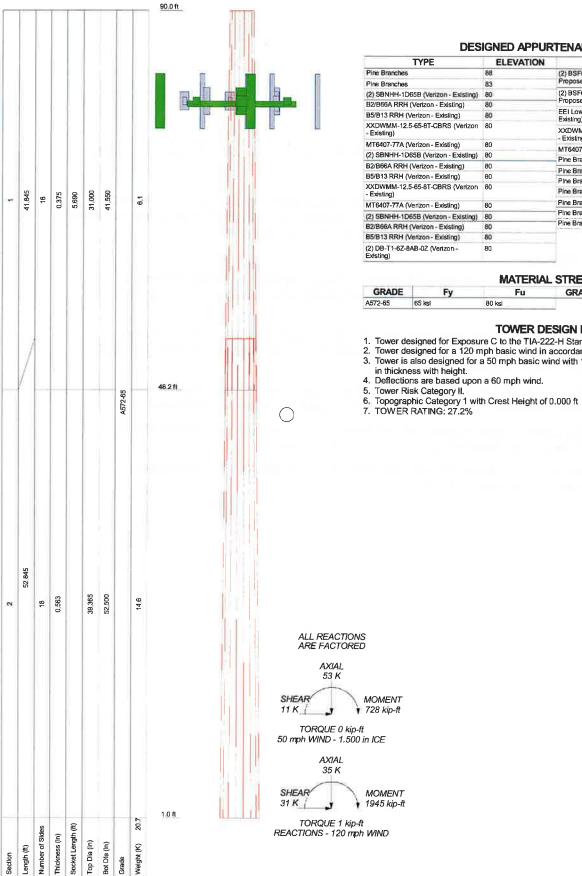
SECTION 1-5

Standard Conditions for Furnishing of Professional Engineering Services on Existing Structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to
 meet any other codes or requirements unless explicitly agreed in writing. If wind and ice
 loads or other relevant parameters are to be different from the minimum values
 recommended by the codes, the client shall specify the exact requirement. In the
 absence of information to the contrary, all work will be performed in accordance with the
 latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance
 with generally accepted engineering principles and practices. Centek Engineering, Inc.
 is not responsible for the conclusions, opinions and recommendations made by others
 based on the information we supply.

REPORT SECTION 2-1


GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

TnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, TnxTower, formerly ERITower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

TnxTower Features:

- TnxTower can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-H standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, guy anchor and stress plots.
- TnxTower contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.

REPORT SECTION 2-2

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Pine Branches	88	(2) BSF0020F3V1-1 (Verizon -	80
Pine Branches	83	Proposed)	1
(2) SBNHH-1D65B (Verizon - Existing)	80	(2) BSF0020F3V1-1 (Verizon -	80
B2/B66A RRH (Verizon - Existing)	80	Proposed)	1100
B5/B13 RRH (Verizon - Existing)	80	EEI Low Profile Platform (Verizon - Existing)	80
XXDWMM-12.5-65-8T-CBRS (Verizon - Existing)	80	XXDWMM-12 5-65-8T-CBRS (Verizon - Existing)	80
MT6407-77A (Verizon - Existing)	80	MT6407-77A (Verlzon - Existing)	80
(2) SBNHH-1D65B (Verizon - Existing)	80	Pine Branches	78
B2/B66A RRH (Verizon - Existing)	80		
B5/B13 RRH (Verizon - Existing)	80	Pine Branches	73
XXDWMM-12.5-65-8T-CBRS (Verizon - Existing)	80	Pine Branches Pine Branches	68
MT6407-77A (Verizon - Existing)	80	Pine Branches	58
(2) SBNHH-1D65B (Verizon - Existing)	80	Pine Branches	53
B2/B66A RRH (Verizon - Existing)	80	Pine Branches	48
B5/B13 RRH (Verizon - Existing)	80		
(2) DB-T1-6Z-8AB-0Z (Verizon - Existing)	80		

MATERIAL STRENGTH

A572 SE	65 kel	DO Irai			
GRADE	Fy	Fu	GRADE	Fy	Fu
and the second s	The same of the sa				

TOWER DESIGN NOTES

- Tower designed for Exposure C to the TIA-222-H Standard.
 Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

23032.05 - Southington East					
roject 90' EEI Monopine - 99 East St., Southington, CT					
lient: Verizon Wireless	Drawn by: TJL	App'd:			
ode: TIA-222-H	Date: 07/31/23	Scale: NTS			
ath;		Dwg No. = 4			

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Јов 23032.05 - Southington East	Page 1 of 20
Project 90' EEI Monopine - 99 East St., Southington, CT	Date 15:21:40 07/31/23
Client Verizon Wireless	Designed by TJL

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 1.000 ft.

Basic wind speed of 120 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.000 ft.

Nominal ice thickness of 1.500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

√ Use Code Safety Factors - Guys

Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

√ Assume Rigid Index Plate
Use Clear Spans For Wind Area
Use Clear Spans For KL/r
Retension Guys To Initial Tension

√ Bypass Mast Stability Checks Use Azimuth Dish Coefficients

√ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination

√ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption
Poles

√ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	

Centek Engineering Inc.
63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
23032.05 - Southington East	2 of 20
Project	Date
90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client Verizon Wireless	Designed by

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	90.000-48.155	41.845	5.690	18	31.000	41.550	0.375	1.500	A572-65
L2	48.155-1.000	52.845		18	39.365	52.500	0.563	2.250	(65 ksi) A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia. in	Area in²	I in*	r in	C in	I/C in³	J in*	It/Q in ²	w in	w/t
LI	31.420	36.451	4319.206	10.872	15.748	274.270	8644.096	18.229	4.796	12.789
	42.133	49.009	10497.272	14.617	21.107	497.327	21008.357	24.509	6.653	17.741
L2	41.322	69.278	13178.335	13.775	19.998	658.995	26374.009	34.645	5.938	10.557
	53.223	92.728	31601.669	18.438	26.670	1184.914	63244.921	46.373	8.250	14.667

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
L1 90.000-48.155				1	1	1			
L2 48.155-1.000				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	2,70	ft	11umoer		ft²/ft	klf
YBRIFLEX 1-5/8"	С	No	Yes	Inside Pole	80.000 - 4.000	2	No Ice	0.000	0.002
Verizon - Existing)							1/2" Ice 1" Ice	0.000 0.000	0.002 0.002
							2" Ice	0.000	0.002

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
	ft		fi ²	ft²	ft²	ft²	K
Ll	90.000-48.155	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.121
L2	48.155-1.000	A	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.168

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405

Phone: (203) 488-0580 FAX: (203) 488-8587

Job	23032.05 - Southington East	Page 3 of 20
Project	90' EEI Monopine - 99 East St., Southington, CT	Date 15:21:40 07/31/23
Client	Verizon Wireless	Designed by

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	$C_A A_A$ In Face	C₄A₄ Out Face	Weight
Section	ft	Leg	in	ft ²	fi²	fr²	fr²	K
L1	90,000-48,155	A	1.613	0.000	0.000	0.000	0.000	0.000
D1	30.000 1055	В	527 620	0.000	0.000	0.000	0.000	0.000
		č		0.000	0.000	0.000	0.000	0.121
L2	48.155-1.000	Ā	1.457	0.000	0.000	0.000	0.000	0.000
LZ	40.133-1.000	В	11.12.	0.000	0.000	0.000	0.000	0.000
		Č		0.000	0.000	0.000	0.000	0.168

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	•	ft		ft²	fi²	K
		г Е.	ft 2 000	0.000	80.000	No Ice	1.539	0.755	0.043
(XDWMM-12.5-65-8T-CBR	Α	From Face	3.000 -4.000	0.000	80.000	1/2" Ice	1.696	0.874	0.055
S			0.000			1" Ice	1.860	1.001	0.069
(Verizon - Existing)			0.000			2" Ice	2.212	1.284	0.106
N 677 (107 77 1		From Face	3.000	0.000	80.000	No Ice	4.709	1.840	0.087
MT6407-77A	Α	FIOM Face	0.000	0.000	00.000	1/2" Ice	4.997	2.063	0.116
(Verizon - Existing)			0.000			1" Ice	5.293	2.292	0.149
			0.000			2" Ice	5.906	2,772	0.228
(2) (DNIIII 1D45D	Α	From Face	3.000	0.000	80.000	No Ice	8.079	5.342	0.042
(2) SBNHH-1D65B	A	Fiom Pace	4.000	0.000	00.000	1/2" Ice	8.535	5.795	0.092
(Verizon - Existing)			0.000			1" Ice	8.998	6.255	0.148
			0.000			2" Ice	9.945	7.199	0.280
B2/B66A RRH	Α	From Face	3.000	0.000	80.000	No Ice	2.537	1.610	0.060
(Verizon - Existing)	А	FIGHT Pace	0.000	0.000	00.000	1/2" Ice	2.750	1.791	0.080
(Venzon - Existing)			0.000			1" Ice	2.970	1.978	0.103
			0.000			2" Ice	3.432	2.374	0.160
B5/B13 RRH	Α	From Face	3.000	0.000	80.000	No Ice	1.865	1.016	0.070
(Verizon - Existing)	^	110m race	0.000	0.000	007000	1/2" Ice	2.035	1.148	0.086
(Verizon - Existing)			0.000			1" Ice	2.212	1.288	0.106
			0.000			2" Ice	2.589	1.589	0.152
XDWMM-12.5-65-8T-CBR	В	From Face	3.000	0.000	80.000	No Ice	1.539	0.755	0.043
S	Ъ	1 IOIII 1 acc	-4.000			1/2" Ice	1.696	0.874	0.055
(Verizon - Existing)			0.000			1" Ice	1.860	1.001	0.069
(VCIIZOII - Existing)			0.000			2" Ice	2.212	1.284	0.106
MT6407-77A	В	From Face	3.000	0.000	80.000	No Ice	4.709	1.840	0.087
(Verizon - Existing)		11011111111	0.000			1/2" Ice	4.997	2.063	0.116
(VCIIZOH - EXISTING)			0.000			1" Ice	5.293	2.292	0.149
			0,,,,,			2" Ice	5.906	2.772	0.228
(2) SBNHH-1D65B	В	From Face	3.000	0.000	80.000	No Ice	8.079	5.342	0.042
(Verizon - Existing)		11011111100	4.000			1/2" Ice	8.535	5.795	0.092
(V GIZOR - LAISTING)			0.000			I" Ice	8.998	6.255	0.148
			0.000			2" Ice	9.945	7.199	0.280
B2/B66A RRH	В	From Face	3.000	0.000	80.000	No Ice	2.537	1.610	0.060
(Verizon - Existing)	_	_1011111100	0.000			1/2" Ice	2.750	1.791	0.080
(+ CITZOH - LAISUNG)			0.000			1" Ice	2.970	1.978	0.103

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	23032.05 - Southington East	4 of 20
Project		Date
	90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client	V . W	Designed by
	Verizon Wireless	T.II

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C₄A₄ Side	Weigh
			Vert						
			ft	٥	ft		ft^2	fi²	K
			_ft ft						-
						2" Ice	3.432	2.374	0.160
B5/B13 RRH	В	From Face	3.000	0.000	80.000	No Ice	1.865	1.016	0.070
(Verizon - Existing)			0.000			1/2" Ice	2.035	1.148	0.086
			0.000			1" Ice	2.212	1.288	0.106
						2" Ice	2.589	1.589	0.152
XDWMM-12.5-65-8T-CBR	C	From Face	3.000	0.000	80.000	No Ice	1.539	0.755	0.043
S			-4.000			1/2" Ice	1.696	0.874	0.055
(Verizon - Existing)			0.000			1" Ice	1.860	1.001	0.069
						2" Ice	2.212	1.284	0.106
MT6407-77A	C	From Face	3.000	0.000	80.000	No Ice	4.709	1.840	0.087
(Verizon - Existing)			0.000			1/2" Ice	4.997	2.063	0.116
			0.000			1" Ice	5.293	2.292	0.149
						2" Ice	5.906	2.772	0.228
(2) SBNHH-1D65B	C	From Face	3.000	0.000	80.000	No Ice	8.079	5.342	0.042
(Verizon - Existing)			4.000			1/2" Ice	8.535	5.795	0.092
			0.000			1" Ice	8.998	6.255	0.148
DO DOCA DDII		F 7	2.000			2" Ice	9.945	7.199	0.280
B2/B66A RRH	C	From Face	3.000	0.000	80.000	No Ice	2.537	1.610	0.060
(Verizon - Existing)			0.000			1/2" Ice	2.750	1.791	0.080
			0.000			1" Ice	2.970	1.978	0.103
D5/B12 DB11	a	P P	2.000	0.000		2" Ice	3.432	2.374	0.160
B5/B13 RRH	C	From Face	3.000	0.000	80.000	No Ice	1.865	1.016	0.070
(Verizon - Existing)			0.000			1/2" Ice	2.035	1.148	0.086
			0.000			1" Ice	2.212	1.288	0.106
(2) DD T1 67 0 AD 07		F - F	2 000	0.000	00.000	2" Ice	2.589	1.589	0.152
(2) DB-T1-6Z-8AB-0Z	Α	From Face	3.000	0.000	80.000	No Ice	4.800	2.000	0.044
(Verizon - Existing)			0.000			1/2" Ice	5.070	2.193	0.080
			0.000			1" Ice	5.348	2.393	0.120
(2) DCE0020E23/1 1		F F.	2.000	0.000	00.000	2" Ice	5.926	2.815	0.213
(2) BSF0020F3V1-1	Α	From Face	3.000	0.000	80.000	No Ice	0.963	0.287	0.020
(Verizon - Proposed)			0.000			1/2" Ice	1.086	0.364	0.027
			0.000			1" Ice	1.217	0.449	0.035
(2) BSF0020F3V1-1	С	From Face	2 000	0.000	00.000	2" Ice	1.500	0.643	0.059
• •	C	riom race	3.000	0.000	80.000	No Ice	0.963	0.287	0.020
(Verizon - Proposed)			0.000			1/2" Ice	1.086	0.364	0.027
			0.000			1" Ice	1.217	0.449	0.035
EEI Low Profile Platform	Α	None		0.000	80.000	2" Ice	1.500 22.500	0.643	0.059
(Verizon - Existing)	Α	TVOILE		0.000	80.000	No Ice 1/2" Ice	28.200	22.500	1.500
(Verizon - Laisung)						1" Ice	33.900	28.200 33.900	2.250 3.000
						2" Ice	45.300		
Pine Branches	С	None		0.000	88.000	No Ice	45.000	45.300 45.000	4.500 0.600
The Blanches	C	TVOIC		0.000	88.000	1/2" Ice	65.000	65.000	0.800
						1" Ice	85.000	85.000	
						2" Ice	125.000	125.000	1.000
Pine Branches	С	None		0.000	83.000	No Ice	45.000	45.000	0.600
Time Branches	Ü	Nobe		0.000	05.000	1/2" Ice	65.000	65.000	0.800
						1" Ice	85.000	85.000	1.000
						2" Ice	125.000	125.000	1.400
Pine Branches	C	None		0.000	78.000	No Ice	45.000	45.000	0.600
	-			0.000	7 0.000	1/2" Ice	65.000	65.000	0.800
						1" Ice	85.000	85.000	1.000
						2" Ice	125.000	125.000	1.400
Pine Branches	C	None		0.000	73.000	No Ice	45.000	45.000	0.600
	_			0.000	,5.500	1/2" Ice	65.000	65.000	0.800
						1" Ice	85.000	85.000	1.000
						2" Ice	125.000	125.000	1.400

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	23032.05 - Southington East	Page 5 of 20
Project 9	90' EEI Monopine - 99 East St., Southington, CT	Date 15:21:40 07/31/23
Client	Verizon Wireless	Designed by

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert fi ft ft	٥	ft		fr²	ft²	K
Pine Branches	С	None		0.000	68.000	No Ice	45.000	45.000	0.600
						1/2" Ice	65.000	65.000	0.800
						1" Ice	85.000	85.000	1.000
						2" Ice	125.000	125.000	1.400
Pine Branches	C	None		0.000	63.000	No Ice	45.000	45.000	0.600
						1/2" Ice	65.000	65.000	0.800
						l" Ice	85.000	85.000	1.000
						2" lce	125.000	125.000	1.400
Pine Branches	C	None		0.000	58.000	No Ice	45.000	45.000	0.600
						1/2" Ice	65.000	65.000	0.800
						1" Ice	85.000	85.000	1.000
						2" Ice	125.000	125.000	1.400
Pine Branches	C	None		0.000	53.000	No Ice	45.000	45.000	0.600
						1/2" Ice	65.000	65.000	0.800
						I" Ice	85.000	85.000	1.000
						2" Ice	125.000	125.000	1.400
Pine Branches	С	None		0.000	48.000	No Ice	45.000	45.000	0.600
						1/2" Ice	65.000	65.000	0.800
						1" Ice	85.000	85.000	1.000
						2" Ice	125.000	125.000	1.400

Tower Pressures - No Ice

 $G_H = 1.100$

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation			_		а				%	In	Out
					С					Face	Face
ft	ft		ksf	_ft²	е	ft ²	ft²	fi ²		fi²	ft²
L1	68.397	1.168	0.041	128.244	Α	0.000	128.244	128.244	100.00	0.000	0.000
90.000-48.155	00.057	2.21			В	0.000	128.244		100.00	0.000	0.000
70.000-10.133					C	0.000	128.244		100.00	0.000	0.000
L2	24.668	0.943	0.033	185.761	A	0.000	185.761	185.761	100,00	0.000	0.000
48.155-1.000		0.545	0.555		В	0.000	185.761		100.00	0.000	0.000
40.133-1.000					c	0.000	185.761		100.00	0.000	0.000

Tower Pressure - With Ice

 $G_H = 1.100$

Section Elevation	z fi	Kz	g _z kst	t _Z	A_G ft^2	F a c e	A _F	A_R ft^2	A_{leg} $\int \!\! i^2$	Leg %	C_AA_A In Face ft^2	C_AA_A Out Face ft^2
L1 90.000-48.155	68.397	1.168	-	1.613	139,496	A B C	0.000 0.000 0.000	139.496 139.496 139.496	139.496	100.00 100.00 100.00	0.000 0.000 0.000	0.000 0.000 0.000

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
23032.05 - Southington East	6 of 20
Project	Date
90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client Verizon Wireless	Designed by

Section	30	Kz	q_z	tz	A_G	F	A_F	A_R	A _{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
1						с					Face	Face
ft	ft		ksf	in	ft²	е	ft ²	fi²	ft ²		ft ²	ft²
L2 48.155-1.000	24.668	0.943	0.006	1.457	198.441	A	0.000	198.441	198.441	100.00	0.000	0.000
						В	0.000	198.441		100.00	0.000	0.000
						С	0.000	198.441		100.00	0.000	0.000

Tower Pressure - Service

 $G_H = 1.100$

Section	3.	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevatioπ					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft ²	e	ft²	ft²	ft²		ft ²	ft²
L1	68.397	1.168	0.009	128.244	Α	0,000	128.244	128.244	100.00	0.000	0.000
90.000-48.155					В	0.000	128.244		100.00	0.000	0.000
					С	0.000	128.244		100.00	0.000	0.000
L2	24.668	0.943	0.007	185.761	Α	0.000	185.761	185.761	100.00	0.000	0.000
48.155-1.000					В	0.000	185.761		100.00	0.000	0.000
					С	0.000	185.761		100.00	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	$A_{\mathcal{E}}$	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			С			kṣf						
ft	K	K	е						ft ²	K	klf	
L1	0.121	6.084	Α	1	0.73	0.041	1	1	128.244	4.201	0.100	С
90.000-48.155			В	1	0.73		1	1	128.244			
			C	1	0.73		1	1	128.244			
L2	0.168	14.566	Α	1	0.73	0.033	1	1	185.761	4.860	0.103	С
48.155-1.000			В	1	0.73		1	1	185.761			
1	1		C	1	0.73		1	1	185.761			
Sum Weight:	0.289	20.650						OTM	398.154	9.061		
									kip-fl			

Tower Forces - No Ice - Wind 45 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а					14				Face
			c			kṣf						
ft	K	K	е						ft²	K	klf	
L1	0.121	6.084	Α	1	0.73	0.041	1	1	128.244	4.201	0.100	С
90.000-48.155			В	1	0.73		1	1	128.244			
		l II	С	1	0.73		1	1	128.244			
L2	0.168	14,566	Α	1	0.73	0.033	1	1	185.761	4.860	0.103	C
48.155-1.000			В	1	0.73		1	1	185.761			
			С	1	0.73		1	1	185.761			
Sum Weight:	0.289	20.650						OTM	398.154	9.061		

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405

Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
1	23032.05 - Southington East	7 of 20
Project		Date
1	90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client	NA ' NAC' I -	Designed by
	Verizon Wireless	l TJL

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
ft	K	K	с е			ksf			_fr²	K	klf	
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf			, ,			
ft	K	K	е						ft²	K	klf	
L1	0.121	6.084	Α	1	0.73	0.041	1	1	128.244	4.201	0.100	C
90.000-48.155			В	1	0.73		1	1	128.244			
			С	1	0.73		1	1	128.244			
L2	0.168	14.566	Α	1	0.73	0.033	1	1	185.761	4.860	0.103	C
48.155-1.000			В	1	0.73		1	1	185.761			
10.100 1.000			c	1	0.73		1	1	185.761			
Sum Weight:	0.289	20.650						OTM	398.154	9.061		
		,							kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
1			c			ksf			_,			
fi	K	K	e						ft²	K	klf	
L1	0.121	6.084	Α	1	0.73	0.041	1	1	128.244	4.201	0.100	C
90.000-48.155			В	1	0.73		1	1	128.244			
			С	1.	0.73		1	1	128.244			
L2	0.168	14.566	Α	1	0.73	0.033	1	1	185.761	4.860	0.103	C
48.155-1.000			В	1	0.73		1	1	185.761			
			С	1	0.73		1	1	185.761			
Sum Weight:	0.289	20.650	2					OTM	398.154	9.061		
Jane Worgan									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			ksf						
ft	K	K	e						ft ²	K	klf	
LI	0.121	9.242	Α	1	1.2	0.007	1	1	139.496	1.304	0.031	C
90.000-48.155			В	1	1.2		1	1	139.496			
			С	1	1.2		1	1	139.496			
L2	0.168	18.645	Α	1	1.2	0.006	1	1.	197.212	1.472	0.031	С
48.155-1.000			В	1	1.2		1	1	197.212			l
10.100			С	1	1.2		1	1	197.212			l

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Ī	Job	Page
	23032.05 - Southington East	8 of 20
ſ	Project	Date
	90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
	Client Verizon Wireless	Designed by
١	Verizon Wireless	∗ TJL

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
ft	K	K	c e			ksf			ft ²	K	klf	
Sum Weight:	0.289	27.886						OTM	122.742 kip-fl	2.776		

Tower Forces - With Ice - Wind 45 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w [,]	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf						
ft	K	K	е						ft ²	K	klf	
L1	0.121	9.242	Α	1	1.2	0.007	1	1	139.496	1.304	0.031	С
90.000-48.155			В	1	1.2		1	1	139.496			
			C	1	1.2		1	1	139.496			
L2	0.168	18.645	A	1	1.2	0.006	1	1	197.212	1.472	0.031	C
48.155-1.000			В	1	1.2		1	1	197.212			
			C	1	1.2		1	1	197.212			
Sum Weight:	0.289	27.886						OTM	122.742	2.776		
									kip-ft			

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	q ₌	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf						
ft	K	K	e						ft²	K	klf	
L1	0.121	9.242	Α	1	1.2	0.007	1	1	139.496	1.304	0.031	С
90.000-48.155			В	1	1.2		1	1	139.496			
	1		C	1	1.2		1	1	139.496			
L2	0.168	18.645	Α	1	1.2	0.006	1	1	197.212	1.472	0.031	C
48.155-1.000			В	1	1.2		1	1	197.212			
			C	1	1.2		1	1	197.212			
Sum Weight:	0.289	27.886						OTM	122.742	2.776		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q _z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c			ksf						1
ft	K	K	e						ft ²	K	klf	
L1	0.121	9.242	Α	1	1.2	0.007	1	1	139.496	1.304	0.031	С
90.000-48.155			В	1	1.2		1	1	139.496			
			C	1	1.2		1	1	139.496			
L2	0.168	18.645	Α	1	1.2	0.006	1	1	197.212	1.472	0.031	C
48.155-1.000			В	1	1.2		1	1	197.212		,	

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	23032.05 - Southington East	9 of 20
Project		Date
	90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client	M. C. and M.C. and	Designed by
	Verizon Wireless	l TJL

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	и	Ctrl. Face
ft	K	K	c e			ksf			ft²	K	klf	
Sum Weight:	0.289	27.886	С	1	1.2		L	OTM	197.212 122.742 kip-fl	2.776		

Tower Forces - Service - Wind Normal To Face

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
	ν	K	c e			ksf			ff²	K	klf	
L1	0.121	6.084	A	1	0.73	0.009	1	1	128.244	0.940	0.022	С
90.000-48.155			В	1	0.73		I.	1	128.244			
			С	1	0.73		1	1	128.244			
L2	0.168	14.566	Α	1	0.73	0.007	1	1	185.761	1.087	0.023	С
48.155-1.000			В	1	0.73		1	1	185.761			
			C	1	0.73		1	1	185.761			
Sum Weight:	0.289	20.650						OTM	89.061 kip-fl	2.027		

Tower Forces - Service - Wind 45 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
Elevation	Weight	Weight	a			ksf						Tale
ft	K	K	c e			Kaj			fi²	K	klf	
L1	0.121	6.084	Α	1	0.73	0.009	1	1	128.244	0.940	0.022	C
90.000-48.155			В	1	0.73		1	1	128.244			
			C	1	0.73		1	1	128.244			
L2	0.168	14.566	Α	1	0.73	0.007	1	1	185.761	1.087	0.023	C
48.155-1.000			В	1	0.73		1	1	185.761			
			C	1	0.73		1	1	185.761			
Sum Weight:	0.289	20.650		1700			55	OTM	89.061	2.027		
									kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			ksf			,			
ft	K	K	e						fi ²	K	klf	
L1	0.121	6.084	Α	1	0.73	0.009	1	1	128.244	0.940	0.022	С
90.000-48.155			В	1	0.73		1	1	128.244			
, 1,0111			С	1	0.73		1	1	128.244			
L2	0.168	14.566	Α	1	0.73	0.007	1	1	185.761	1.087	0.023	С

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	23032.05 - Southington East	10 of 20
Project		Date
90' E	El Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client	N/ : NAI! I	Designed by
	Verizon Wireless	TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а							1		Face
			c			ksf						
ft	K	K	e						_ft²	K	klf	
48.155-1.000			В	1	0.73		1	1	185.761			
			C	1	0.73		1	1	185.761			
Sum Weight:	0.289	20.650						OTM	89.061	2.027		
									kip-ft			

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	e	C_F	q:	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			ksf						
ft	K	K	e						ft ²	K	klf	
L1	0.121	6.084	Α	1.	0.73	0.009	1	1	128.244	0.940	0.022	С
90.000-48.155			В	1	0.73		1	1	128.244			
			C	1	0.73		1	1	128.244			
L2	0.168	14.566	Α	1	0.73	0.007	1	1	185.761	1.087	0.023	С
48.155-1.000	/		В	I.	0.73		1	1	185.761			
			С	1	0.73		1	1	185.761			
Sum Weight:	0.289	20.650						OTM	89.061	2.027		
									kip-ft			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	, ,
		X	Z	Moments, Mx	Moments, Mz	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	20.650					
Bracing Weight	0.000	7 1 1	UF			
Total Member Self-Weight	20.650	William Harris		-0.106	0.487	THE R. L. L.
Total Weight	29.039	4 3 3		-0.106	0.487	
Wind 0 deg - No Ice		-0.112	-30.948	-1919.111	9.337	-0.648
Wind 30 deg - No Ice		15.417	-26.746	-1657,588	-954.474	-0.701
Wind 45 deg - No Ice	-	21.860	-21.804	-1350.790	-1354.613	-0.657
Wind 60 deg - No Ice	THE RESERVE AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO THE PERSON NAMED IN C	26.814	-15.377	-951.945	-1662.404	-0.567
Wind 90 deg - No Ice		31.027	0.112	8.744	-1924.764	-0.280
Wind 120 deg - No Ice		26.926	15.571	967.061	-1671.253	0.081
Wind 135 deg - No Ice	THE RESERVE OF THE PARTY OF THE	22.019	21.963	1363.094	-1367.128	0.260
Wind 150 deg - No Ice		15.611	26.858	1666.227	-969.802	0.421
Wind 180 deg = No Ice		0.112	30.948	1918.900	-8.362	0.648
Wind 210 deg - No Ice	0.000	-15.417	26.746	1657.377	955.449	0.701
Wind 225 deg = No Ice		-21.860	21.804	1350.579	1355.588	0.657
Wind 240 deg - No Ice		-26.814	15.377	951.734	1663.379	0.567
Wind 270 deg = No Ice		-31.027	-0.112	-8.955	1925.738	0.280
Wind 300 deg - No Ice		-26.926	-15.571	-967.272	1672.228	-0.081
Wind 315 deg - No Ice		-22.019	-21.963	-1363.305	1368.103	-0.260
Wind 330 deg - No Ice	10.50	-15.611	-26.858	-1666.438	970.776	-0.421
Member Ice	7.236		14 15			172 1 -41
Total Weight Ice	46.984	Acres de la constitución de la c		-0.569	1.749	P. 1. N.
Wind 0 deg - Ice		-0.022	-11.367	-715.173	3.464	-0.159

Centek Engineering Inc.
63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	23032.05 - Southington East	11 of 20
Project		Date 45:24:40 07/24/22
	90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client	Verizon Wireless	Designed by TJL

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M,	Moments, M ₂	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 30 deg - Ice		5.672	-9.834	-618.577	-354.637	-0.168
Wind 45 deg - Ice		8.033	-8.023	-504.658	-503.145	-0.155
Wind 60 deg - Ice		9.846	-5.665	-356.386	-617.245	-0.131
Wind 90 deg - Ice	1 1000 11 11	11.382	0.022	1.146	-713.993	-0.059
Wind 120 deg - Ice		9.868	5.702	358.219	-618.959	0.028
Wind 135 deg - Ice		8.063	8.053	505.946	-505.570	0.071
Wind 150 deg - Ice	7 (1)	5.710	9.855	619.155	-357.607	0.108
Wind 180 deg - Ice	Contract of	0.022	11.367	714.036	0.035	0.159
Wind 210 deg - Ice	2000 7 100	-5.672	9.834	617.440	358.136	0.168
Wind 225 deg - Ice	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-8.033	8.023	503.521	506.643	0.155
Wind 240 deg - Ice	1000	-9.846	5.665	355.249	620.743	0.131
Wind 270 deg - Ice	1 10 10 10 10	-11.382	-0.022	-2,283	717.492	0.059
Wind 300 deg - Ice		-9.868	-5.702	-359.356	622.458	-0.028
Wind 315 deg - Ice	- N. S.	-8.063	-8.053	-507.083	509.069	-0.071
Wind 330 deg - Ice	The State of the	-5.710	-9.855	-620.292	361.106	-0.108
Total Weight	29.039	- 7 - 2 - 7		-0.106	0.487	DE FEET OF
Wind 0 deg - Service		-0.025	-6.923	-429.357	2.467	-0.145
Wind 30 deg - Service		3.448	-5.983	-370.858	-213.122	-0.157
Wind 45 deg - Service		4.890	-4.877	-302.232	-302.627	-0.147
Wind 60 deg - Service		5.998	-3.440	-213.017	-371.475	-0.127
Wind 90 deg - Service	Total Control	6.940	0.025	1.874	-430.161	-0.063
Wind 120 deg - Service	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.023	3.483	216.234	-373.455	0.018
Wind 135 deg - Service		4,925	4.913	304.821	-305.427	0.058
Wind 150 deg - Service	7 7 - 7	3.492	6.008	372.627	-216.551	0.094
Wind 180 deg - Service	51 1 -2	0.025	6.923	429.146	-1.492	0.145
Wind 210 deg - Service		-3,448	5.983	370.647	214.097	0.157
Wind 225 deg - Service		-4.890	4.877	302.021	303.602	0.147
Wind 240 deg - Service		-5.998	3.440	212.806	372.450	0.127
Wind 270 deg - Service		-6.940	-0.025	-2.085	431.136	0.063
Wind 300 deg - Service	Service Control	-6.023	-3.483	-216.445	374.429	-0.018
Wind 315 deg - Service		4.925	-4.913	-305.032	306.401	-0.058
Wind 330 deg - Service		-3.492	-6.008	-372.838	217.526	-0.094

Load Combinations

Comb.		Description	
No.			
1	Dead Only		
2	1.2 Dead+1.0 Wind 0 deg - No Ice		
3	0.9 Dead+1.0 Wind 0 deg - No Ice		
4	1.2 Dead+1.0 Wind 30 deg - No Ice		
5	0.9 Dead+1.0 Wind 30 deg - No Ice		
6	1.2 Dead+1.0 Wind 45 deg - No Ice		
7	0.9 Dead+1.0 Wind 45 deg - No Ice		
8	1.2 Dead+1.0 Wind 60 deg - No Ice		
9	0.9 Dead+1.0 Wind 60 deg - No Ice		
10	1.2 Dead+1.0 Wind 90 deg - No Ice		
11	0.9 Dead+1.0 Wind 90 deg - No Ice		
12	1.2 Dead+1.0 Wind 120 deg - No Ice		
13	0.9 Dead+1.0 Wind 120 deg - No Ice		
14	1.2 Dead+1.0 Wind 135 deg - No Ice		
15	0.9 Dead+1.0 Wind 135 deg - No Ice		
16	1.2 Dead+1.0 Wind 150 deg - No Ice		
17	0.9 Dead+1.0 Wind 150 deg - No Ice		
18	1.2 Dead+1.0 Wind 180 deg - No Ice		
19	0.9 Dead+1.0 Wind 180 deg - No Ice		

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	23032.05 - Southington East	12 of 20
Project		Date
	90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client		Designed by
l	Verizon Wireless	T.II

Comb.		Description	
No.			
20	1.2 Dead+1.0 Wind 210 deg - No Ice		
21	0.9 Dead+1.0 Wind 210 deg - No Ice		
22	1.2 Dead+1.0 Wind 225 deg - No Ice		
23	0.9 Dead+1.0 Wind 225 deg - No Ice		
24	1.2 Dead+1.0 Wind 240 deg - No Ice		
25	0.9 Dead+1.0 Wind 240 deg - No Ice		
26	1.2 Dead+1.0 Wind 270 deg - No Ice		
27	0.9 Dead+1.0 Wind 270 deg - No Ice		
28	1.2 Dead+1.0 Wind 300 deg - No Ice		
29	0.9 Dead+1.0 Wind 300 deg - No Ice		
30	1.2 Dead+1.0 Wind 315 deg - No Ice		
31	0.9 Dead+1.0 Wind 315 deg - No Ice		
32	1.2 Dead+1.0 Wind 330 deg - No Ice		
33	0.9 Dead+1.0 Wind 330 deg - No Ice		
34	1.2 Dead+1.0 Ice+1.0 Temp		
35	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp		
36	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp		
37	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp		
38	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp		
39	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp		
40	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp		
41	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp		
42	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp		
43	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp		
44	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp		
45	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp		
46	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp		
47	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp		
48	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp		
49	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp		
50	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp		
51	Dead+Wind 0 deg - Service		
52	Dead+Wind 30 deg - Service		
53	Dead+Wind 45 deg - Service		
54	Dead÷Wind 60 deg - Service		
55	Dead+Wind 90 deg - Service		
56	Dead+Wind 120 deg - Service		
57	Dead÷Wind 135 deg - Service		
58	Dead+Wind 150 deg - Service		
59	Dead+Wind 180 deg - Service		
60	Dead÷Wind 210 deg - Service		
61	Dead+Wind 225 deg - Service		
62	Dead+Wind 240 deg - Service		
63	Dead+Wind 270 deg - Service		
64	Dead÷Wind 300 deg - Service		
65	Dead+Wind 315 deg - Service		
66	Dead+Wind 330 deg - Service		

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
L1	90 - 48.155	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	34	-26.772	1.847	0.590
			Max. Mx	26	-14.293	446.771	3.079
			Max. My	2	-14.295	3.538	444.227
			Max. Vy	26	-21.944	446.771	3.079
			Max. Vx	2	-21.864	3.538	444.227

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	23032.05 - Southington East	Page 13 of 20
Project 90' E	EI Monopine - 99 East St., Southington, CT	Date 15:21:40 07/31/23
Client	Verizon Wireless	Designed by TJL

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
	,			Comb.	K	kip-ft	kip-ft
			Max. Torque	21			-0.700
L2	48.155 - 1	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	34	-53.284	1.847	0.590
			Max. Mx	26	-34.835	1939.022	9.044
			Max. My	2	-34.835	9.508	1932.267
			Max. Vy	26	-31.040	1939.022	9.044
			Max. Vx	2	-30.961	9.508	1932.267
			Max. Torque	21			-0.700

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Pole	Max. Vert	48	53.284	9.868	5.702
	Max. H _x	27	26.135	31.027	0.112
	Max. H ₂	2	34.847	0.112	30.948
	Max. Mx	2	1932.267	0.112	30.948
	Max. M _z	10	1937,839	-31.027	-0.112
	Max. Torsion	5	0.700	-15.417	26.746
	Min. Vert	7	26.135	-21.860	21.804
	Min. H _x	10	34.847	-31.027	-0.112
	Min. H _z	18	34.847	-0.112	-30.948
	Min. M _x	18	-1932.010	-0.112	-30.948
	Min. M ₂	26	-1939.022	31.027	0.112
	Min. Torsion	21	-0.700	15.417	-26.746

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear _x K	Shear <u>.</u> K	Overturning Moment, M _x kip-ft	Overturning Moment, M _z kip-fi	Torque kip-ft
1.2 Dead+1.0 Wind 0 deg - No	34.847	-0.112	-30.948	-1932.267	9.508	-0.646
Ice						
0.9 Dead+1.0 Wind 0 deg - No	26.135	-0.112	-30.948	-1928.905	9.342	-0.647
Ice						
1.2 Dead+1.0 Wind 30 deg - No	34.847	15.417	-26.746	-1668.952	-960.902	-0.700
Ice						
0.9 Dead+1.0 Wind 30 deg - No	26.135	15.417	-26.746	-1666.045	-959.396	-0.700
Ice						2
1.2 Dead+1.0 Wind 45 deg - No	34.847	21.860	-21.804	-1360.052	-1363.782	-0.655
Ice						
0.9 Dead+1.0 Wind 45 deg - No	26.135	21.860	-21.804	-1357.678	-1361,581	-0.655
Ice						0.544
1.2 Dead+1.0 Wind 60 deg - No	34.847	26.814	-15.377	-958.476	-1673.681	-0.566
Ice					1 (70 0 1 (0.566
0.9 Dead+1.0 Wind 60 deg - No	26.135	26.814	-15.377	-956.794	-1670.946	-0.566
Ice				0.700	1077 020	0.000
1.2 Dead+1.0 Wind 90 deg - No	34.847	31.027	0.112	8.788	-1937.839	-0.280
Ice			0.110	0.004	1024 (47	0.200
0.9 Dead+1.0 Wind 90 deg - No	26.135	31.027	0.112	8.804	-1934.647	-0.280
Ice						

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	23032.05 - Southington East	14 of 20
Projec	t	Date
	90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client	Verizon Wireless	Designed by TJL

Load Combination	Vertical	Shearx	Shear ₌	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 120 deg -	34.847	26.926	15.571	973.662	-1682.596	0.081
No Ice 0.9 Dead+1.0 Wind 120 deg -	26.135	26.926	15.571	972.015	-1679.843	0.081
No Ice 1.2 Dead+1.0 Wind 135 deg -	34.847	22.019	21.963	1372.404	-1376.390	0.259
No Ice 0.9 Dead+1.0 Wind 135 deg -	26.135	22.019	21.963	1370.070	-1374.165	0.260
No Ice 1.2 Dead+1.0 Wind 150 deg -	34.847	15.611	26.858	1677.610	-976.345	0.420
No Ice 0.9 Dead+1.0 Wind 150 deg -	26.135	15.611	26.858	1674.751	-974.809	0.420
No Ice 1.2 Dead+1.0 Wind 180 deg -	34.847	0.112	30.948	1932.010	-8.325	0.647
No Ice						
0.9 Dead+1.0 Wind 180 deg - No Ice	26.135	0.112	30.948	1928.714	-8.457	0.647
1.2 Dead+1.0 Wind 210 deg - No Ice	34.847	-15.417	26.746	1668.695	962.086	0.700
).9 Dead+1.0 Wind 210 deg - No Ice	26.135	-15.417	26.746	1665.853	960.281	0.700
1.2 Dead+1.0 Wind 225 deg - No Ice	34.847	-21.860	21.804	1359.796	1364.965	0.655
0.9 Dead+1.0 Wind 225 deg - No Ice	26.135	-21.860	21.804	1357.486	1362.466	0.655
.2 Dead+1.0 Wind 240 deg - No Ice	34.847	-26.814	15.377	958.220	1674.865	0.566
9.9 Dead+1.0 Wind 240 deg - No Ice	26.135	-26.814	15.377	956.602	1671.830	0.566
1.2 Dead+1.0 Wind 270 deg - No Ice	34.847	-31.027	-0.112	-9.044	1939.022	0.280
0.9 Dead+1.0 Wind 270 deg - No Ice	26.135	-31.027	-0.112	-8.995	1935.532	0.280
1.2 Dead+1.0 Wind 300 deg - No Ice	34.847	-26.926	-15.571	-973.918	1683.779	-0.081
0.9 Dead+1.0 Wind 300 deg - No Ice	26.135	-26.926	-15.571	-972.207	1680.728	-0.081
1.2 Dead+1.0 Wind 315 deg - No Ice	34.847	-22.019	-21.963	=1372.660	1377.573	-0.259
0.9 Dead+1.0 Wind 315 deg - No Ice	26.135	-22.019	-21.963	-1370.262	1375.050	-0.259
2 Dead+1.0 Wind 330 deg - No Ice	34.847	-15.611	-26.858	-1677.866	977.529	-0.420
0.9 Dead+1.0 Wind 330 deg - No Ice	26.135	-15.611	-26.858	-1674.943	975.694	-0.420
1.2 Dead+1.0 Ice+1.0 Temp	53.284	0.000	0.000	-0.590	1.847	0.000
.2 Dead+1.0 Wind 0 deg+1.0	53.284	-0.022	-11.367	-723.935	3.626	-0.158
1.2 Dead+1.0 Wind 30 deg+1.0 Ce+1.0 Temp	53.284	5.672	-9.834	-626.157	-358.850	-0.166
1.2 Dead+1.0 Wind 45 deg+1.0 (ce÷1.0 Temp	53.284	8.033	-8.023	-510.847	-509.172	-0.153
1.2 Dead+1.0 Wind 60 deg+1.0	53.284	9.846	-5.665	-360.763	-624.666	-0.130
ce+1.0 Temp 2 Dead+1.0 Wind 90 deg+1.0	53.284	11.382	0.022	1.135	-722.598	-0.059
ce+1.0 Temp 1.2 Dead+1.0 Wind 120	53.284	9.868	5.702	362.569	-626.404	0.02
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 135	53.284	8.063	8.053	512.099	-511.630	0.070
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	53.284	5.710	9.855	626.690	-361.860	0.107

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	23032.05 - Southington East	15 of 20
Project		Date
	90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client		Designed by
	Verizon Wireless	TJL

Load	Vertical	Shearx	Shear_	Overturning	Overturning	Torque
Combination				Moment, Mx	Moment, M.	22 22
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 180	53.284	0.022	11.367	722.729	0.150	0.158
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	53.284	-5.672	9.834	624.952	362.625	0.166
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 225	53.284	-8.033	8.023	509.641	512.948	0.153
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	53.284	-9.846	5.665	359.558	628.442	0.130
deg+1.0 Ice+1.0 Temp						0.050
1.2 Dead+1.0 Wind 270	53.284	-11.382	-0.022	-2.341	726,374	0.059
deg+1.0 Ice+1.0 Temp						0.000
1.2 Dead+1.0 Wind 300	53.284	-9.868	-5.702	-363.774	630.180	-0.028
deg+1.0 Ice+1.0 Temp						0.050
1.2 Dead+1.0 Wind 315	53.284	-8.063	-8.053	-513.305	515.406	-0.070
deg+1.0 Ice+1.0 Temp					265.626	0.107
1.2 Dead+1.0 Wind 330	53.284	-5.710	-9.855	-627.896	365.636	-0.107
deg+1.0 Ice+1.0 Temp					0.404	0.145
Dead+Wind 0 deg - Service	29.039	-0.025	-6.923	-431.814	2.484	-0.145
Dead+Wind 30 deg - Service	29.039	3.448	-5.983	-372.980	-214.339	-0.157
Dead+Wind 45 deg - Service	29.039	4.890	-4.877	-303.961	-304.357	-0.147
Dead+Wind 60 deg - Service	29.039	5.998	-3.440	-214.235	-373.599	-0.127
Dead+Wind 90 deg - Service	29.039	6.940	0.025	1.885	-432.621	-0.063
Dead+Wind 120 deg - Service	29.039	6.023	3.483	217.472	-375.591	0.018
Dead+Wind 135 deg - Service	29.039	4.925	4.913	306.565	-307.174	0.058
Dead+Wind 150 deg - Service	29.039	3.492	6.008	374.759	-217.790	0.094
Dead+Wind 180 deg - Service	29.039	0.025	6.923	431.601	-1.500	0.145
Dead÷Wind 210 deg - Service	29.039	-3.448	5.983	372.767	215.324	0.157
Dead+Wind 225 deg - Service	29.039	-4.890	4.877	303.748	305.341	0.147
Dead+Wind 240 deg - Service	29.039	-5.998	3.440	214.022	374.584	0.127
Dead+Wind 270 deg - Service	29.039	-6.940	-0.025	-2.099	433.606	0.063
Dead+Wind 300 deg - Service	29.039	-6.023	-3.483	-217.686	376.576	-0.018
Dead+Wind 315 deg - Service	29.039	-4 .925	-4.913	-306.779	308.158	-0.058
Dead+Wind 330 deg - Service	29.039	-3.492	-6.008	-374.972	218.774	-0.094

Solution Summary

	Sur	n of Applied Forces	5		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Erre
Comb.	K	K	K	K	K	K	
1	0.000	-29.039	0.000	0.000	29.039	0.000	0.0009
2	-0.112	-34.847	-30.948	0.112	34.847	30.948	0.0009
3	-0.112	-26.135	-30.948	0.112	26.135	30.948	0.000
4	15.417	-34.847	-26.746	-15.417	34.847	26.746	0.000
5	15.417	-26.135	-26.746	-15.417	26.135	26.746	0.000
6	21.860	-34.847	-21.804	-21.860	34.847	21.804	0.000
7	21.860	-26.135	-21.804	-21.860	26.135	21.804	0.000
8	26.814	-34.847	-15.377	-26.814	34.847	15.377	0.000
9	26.814	-26.135	-15.377	-26.814	26.135	15.377	0.000
10	31.027	-34.847	0.112	-31.027	34.847	-0.112	0.000
11	31.027	-26.135	0.112	-31.027	26.135	-0.112	0.000
12	26,926	-34.847	15.571	-26.926	34.847	-15.571	0.000
13	26.926	-26.135	15.571	-26.926	26.135	-15.571	0.000
14	22.019	-34-847	21.963	-22.019	34.847	-21.963	0.000
15	22.019	-26.135	21.963	-22.019	26.135	-21.963	0.000
16	15.611	-34.847	26.858	-15.611	34.847	-26.858	0.000
17	15.611	-26.135	26.858	-15.611	26.135	-26.858	0.000
18	0.112	-34.847	30.948	-0.112	34.847	-30.948	0.000
19	0.112	-26.135	30.948	-0.112	26.135	-30.948	0.000
20	-15.417	-34.847	26.746	15.417	34.847	-26.746	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
23032.05 - Southington East	16 of 20
Project	Date
90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client	Designed by
Verizon Wireless	TJL

		n of Applied Force					
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
21	-15.417	-26.135	26.746	15.417	26.135	-26.746	0.000%
22	-21.860	-34.847	21.804	21.860	34.847	-21.804	0.000%
23	-21.860	-26.135	21.804	21.860	26.135	-21.804	0.000%
24	-26.814	-34.847	15.377	26.814	34.847	-15.377	0.000%
25	-26.814	-26.135	15.377	26.814	26.135	-15.377	0.000%
26	-31.027	-34.847	-0.112	31.027	34.847	0.112	0.000%
27	-31.027	-26.135	-0.112	31.027	26.135	0.112	0.000%
28	-26.926	-34.847	-15.571	26.926	34.847	15.571	0.000%
29	-26.926	-26.135	-15.571	26.926	26.135	15.571	0.000%
30	-22.019	-34.847	-21.963	22.019	34.847	21.963	0.000%
31	-22.019	-26.135	-21.963	22.019	26.135	21.963	0.000%
32	-15.611	-34.847	-26.858	15.611	34.847	26.858	0.000%
33	-15.611	-26,135	-26.858	15.611	26.135	26.858	0.000%
34	0.000	-53,284	0.000	0.000	53.284	0.000	0.000%
35	-0.022	-53.284	-11.367	0.022	53.284	11.367	0.000%
36	5.672	-53.284	-9.834	-5.672	53.284	9.834	0.000%
37	8.033	-53.284	-8.023	-8.033	53.284	8.023	0.000%
38	9.846	-53,284	-5.665	-9.846	53.284	5.665	0.000%
39	11.382	-53.284	0.022	-11.382	53.284	-0.022	0.000%
40	9.868	-53.284	5.702	-9.868	53.284	-5.702	0.000%
41	8.063	-53.284	8.053	-8.063	53.284	-8.053	0.000%
42	5.710	-53.284	9.855	-5.710	53.284	-9.855	0.000%
43	0.022	-53.284	11.367	-0.022	53.284	-11.367	0.000%
44	-5.672	-53.284	9.834	5.672	53.284	-9.834	0.000%
45	-8.033	-53.284	8.023	8.033	53.284	-8.023	0.000%
46	-9.846	-53.284	5.665	9.846	53.284	-5.665	0.000%
47	-11.382	-53.284	-0.022	11.382	53.284	0.022	0.000%
48	-9.868	-53.284	-5.702	9.868	53.284	5.702	0.000%
49	-8.063	-53.284	-8.053	8.063	53.284	8.053	0.000%
50	-5.710	-53.284	-9.855	5.710	53.284	9.855	0.000%
51	-0.025	-29.039	-6.923	0.025	29.039	6.923	0.000%
52	3.448	-29.039	-5.983	-3.448	29.039	5.983	0.000%
53	4.890	-29.039	-4.877	-4.890	29.039	4.877	0.000%
54	5.998	-29.039	-3.440	-5.998	29.039	3.440	0.000%
55	6.940	-29.039	0.025	-6.940	29.039	-0.025	0.000%
56	6.023	-29.039	3.483	-6.023	29.039	-3.483	0.000%
57	4.925	-29.039	4.913	-4.925	29.039	-4.913	0.000%
58	3.492	-29.039	6.008	-3.492	29.039	-6.008	0.000%
59	0.025	-29.039	6.923	-0.025	29.039	-6.923	0.000%
60	-3.448	-29.039	5.983	3.448	29.039	-5.983	0.000%
61	-4.890	-29.039	4.877	4.890	29.039	-4 .877	0.000%
62	-5.998	-29.039	3.440	5.998	29.039	-3.440	0.000%
63	-6.940	-29.039	-0.025	6.940	29.039	0.025	0.000%
64	-6.023	-29.039	-3.483	6.023	29.039	3.483	0.000%
65	-4.925	-29.039	-4.913	4.925	29.039	4.913	0.000%
66	-3.492	-29.039	-6.008	3.492	29.039	6.008	0.000%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00000001
3	Yes	4	0.00000001	0.00000001
4	Yes	4	0.00000001	0.00001250
5	Yes	4	0.00000001	0.00000762

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	23032.05 - Southington East	Page 17 of 20
Project	90' EEI Monopine - 99 East St., Southington, CT	Date 15:21:40 07/31/23
Client	Verizon Wireless	Designed by TJL

6	Yes	4	0.00000001	0.00001572
7	Yes	4	0.0000001	0.00000960
8	Yes	4	0.00000001	0.00001458
9	Yes	4	0.0000001	0.00000894
10	Yes	4	0.0000001	0.00000001
11	Yes	4	0.00000001	0.00000001
12	Yes	4	0.00000001	0.00001401
13	Yes	4	0.00000001	0.00000856
	Yes	4	0.00000001	0.00001595
14		4	0.00000001	0.00000973
15	Yes	4	0.00000001	0.00001323
16	Yes	4	0.0000001	0.00001323
17	Yes		0.0000001	0.00000000
18	Yes	4	0.0000001	0.00000001
19	Yes	4		0.00001487
20	Yes	4	0.00000001	****
21	Yes	4	0.00000001	0.00000912
22	Yes	4	0.00000001	0.00001573
23	Yes	4	0.00000001	0.00000960
24	Yes	4	0.00000001	0.00001269
25	Yes	4	0.00000001	0.00000773
26	Yes	4	0.00000001	0.00000001
27	Yes	4	0.00000001	0.00000001
28	Yes	4	0.0000001	0.00001379
29	Yes	4	0.00000001	0.00000841
30	Yes	4	0.0000001	0.00001600
31	Yes	4	0.00000001	0.00000975
32	Yes	4	0.00000001	0.00001467
33	Yes	4	0.00000001	0.00000897
34	Yes	4	0.00000001	0.00000001
	Yes	4	0.00000001	0.00005259
35	Yes	4	0.00000001	0.00005384
36		4	0.00000001	0.00005430
37	Yes	4	0.00000001	0.00005379
38	Yes		0.0000001	0.00005231
39	Yes	4	0.0000001	0.00005394
40	Yes	4		0.00005354
41	Yes	4	0.00000001	0.00005394
42	Yes	4	0.00000001	0.00005394
43	Yes	4	0.00000001	0.00005241
44	Yes	4	0.00000001	
45	Yes	4	0.00000001	0.00005460
46	Yes	4	0.00000001	0.00005417
47	Yes	4	0.00000001	0.00005286
48	Yes	4	0.00000001	0.00005455
49	Yes	4	0.00000001	0.00005504
50	Yes	4	0.00000001	0.00005446
51	Yes	4	0.0000001	0.00000001
52	Yes	4	0.0000001	0.00000001
53	Yes	4	0.00000001	0.00000001
54	Yes	4	0.0000001	0.00000001
55	Yes	4	0.0000001	0.00000001
56	Yes	4	0.00000001	0.0000001
57	Yes	4	0.00000001	0.00000001
58	Yes	4	0.00000001	0.00000001
59	Yes	4	0.0000001	0.00000001
60	Yes	4	0.00000001	0.00000001
	Yes	4	0.00000001	0.00000001
61		4	0.00000001	0.00000001
62	Yes	4	0.0000001	0.00000001
63	Yes	4	0.0000001	0.00000001
64	Yes		0.0000001	0.00000001
65	Yes	4	0.00000001	0.00000001
66	Yes	4	0.0000001	0.00000001

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	23032.05 - Southington East	18 of 20
Pre	oject	Date
	90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Cli	lent Verizon Wireless	Designed by TJL

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	fi	in	Comb.	0	0
L1	90 - 48.155	2.599	64	0.217	0.000
L2	53.845 - 1	1.055	64	0.171	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o o	•	ft
88.000	Pine Branches	64	2.505	0.215	0.000	113193
83.000	Pine Branches	64	2.269	0.211	0.000	80852
80.000	XXDWMM-12.5-65-8T-CBRS	64	2.130	0.208	0.000	56596
78.000	Pine Branches	64	2.038	0.206	0.000	47164
73.000	Pine Branches	64	1.812	0.200	0.000	33292
68.000	Pine Branches	64	1.596	0.194	0.000	25725
63.000	Pine Branches	64	1.391	0.187	0.000	20961
58.000	Pine Branches	64	1.201	0.179	0.000	17690
53.000	Pine Branches	64	1.027	0.169	0.000	16276
48.000	Pine Branches	64	0.872	0.158	0.000	17600

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No		Deflection	Load		
	ft	in	Comb	•	۰
L1	90 - 48.155	11.615	28	0.968	0.002
L2	53.845 - 1	4.718	28	0.764	0.001

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
fi		Load Comb.	in	٥	۰	Curvature ft
88.000	Pine Branches	28	11.193	0.960	0.002	25378
83.000	Pine Branches	28	10.141	0.940	0.001	18127
80.000	XXDWMM-12.5-65-8T-CBRS	28	9.517	0.928	0.001	12689
78.000	Pine Branches	28	9.106	0.919	0.001	10574
73.000	Pine Branches	28	8.099	0.896	0.001	7464
68.000	Pine Branches	28	7.133	0.869	0.001	5767
63.000	Pine Branches	28	6.218	0.837	0.001	4699
58.000	Pine Branches	28	5.368	0.800	0.001	3965
53.000	Pine Branches	28	4.593	0.756	0.001	3648
48.000	Pine Branches	28	3.900	0.705	0.001	3945

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	23032.05 - Southington East	Page 19 of 20
Project	90' EEI Monopine - 99 East St., Southington, CT	Date 15:21:40 07/31/23
Client	Verizon Wireless	Designed by

Compression Checks

Pole Design Data									
Section	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
No.	ft		ft	ft		in ²	K	K	ϕP_u
L1 L2	90 - 48.155 (1) 48.155 - 1 (2)	TP41.55x31x0.375 TP52.5x39.365x0.563	41.845 52.845	0.000 0.000	0.0	47.301 92.728	-14.291 -34.835	2767.110 5424.580	0.005

Pole Bending Design Data								
Section No.	Elevation	Size	M _{ux}	$\phi M_{n_{\lambda}}$	Ratio M _{ux}	M_{uv}	ϕM_{ny}	Ratio Muy
140.	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{ux}}$	kip-ft	kip-ft	ϕM_{ny}
L1 L2	90 - 48.155 (1) 48.155 - 1 (2)	TP41.55x31x0.375 TP52.5x39.365x0.563	448.793 1945.158	2788.858 7336.100	0.161 0.265	0.000 0.000	2788.858 7336.100	0.000

Pole Shear Design Data								
Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V.	Actual T _u	ϕT_n	Ratio T _u
110.	ft		K	K	φ1/μ	kip-ft	kip-ft	ϕT_n
L1	90 - 48.155 (1)	TP41.55x31x0.375	22.022	830.133	0.027	0.081	2889.083	0.000
L2	48.155 - 1 (2)	TP52.5x39.365x0.563	31.118	1627.370	0.019	0.081	7401.991	0.000

Pole Interaction Design Data									
Section No.	Elevation	Ratio P _u	Ratio M _{ist}	Ratio M _{uv}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_m	ϕV_n	ϕT_n	Ratio	Ratio	
L1	90 - 48.155 (1)	0.005	0.161	0.000	0.027	0.000	0.167	1.000	4.8.2
L2	48.155 - 1 (2)	0.006	0.265	0.000	0.019	0.000	0.272	1.000	4.8.2

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
23032.05 - Southington East	20 of 20
Project	Date
90' EEI Monopine - 99 East St., Southington, CT	15:21:40 07/31/23
Client Verizon Wireless	Designed by TJL

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$ otag P_{allow} $ $ K$	% Capacity	Pass Fail
L1	90 - 48.155	Pole	TP41.55x31x0.375	1	-14.291	2767.110	16.7	Pass
L2	48.155 - 1	Pole	TP52.5x39.365x0.563	2	-34.835	5424.580	27.2	Pass
							Summary	
						Pole (L2)	27.2	Pass
						RATING =	27.2	Pass

 $Program\ Version\ 8.1.1.0\ -\ 6/3/2021\ File: J:/Jobs/2303200. WI/05_Southington\ East\ CT/05_Structural/Tower/Backup\ Documentation/tnxTower/90'\ EEI\ Monopine_Southington.eri$

Subject:

Location:

Rev. 0: 7/31/23

Anchor Bolt and Baseplate Analysis

90-FT Monopole Southington, CT

Prepafred by: T.J.L. Checked by: C.F.C.

Job No. 23032.04

(User Input)

Anchor Bolt and Base Plate Analysis:

Input Data:

Tower Reactions:

(Input From tnxTower) $M_{II} := 1945 \cdot \text{ft-kips}$ Overturning Moment =

(Input From thxTower) Shear Force = Shear := 31-kips

(Input From thxTower) R_{II}:= 35·kips Axial Force =

Anchor Bolt Data:

ASTMA615 Grade 75

(User Input) Number of Anc hor Bolts = N := 24

 $D_{BC} \coloneqq 60 \cdot \text{in}$ (User Input) Diameter of Bolt Circle =

(User Input) Bolt Ultimate Strength = F_{II}:= 100⋅ksi

 $F_V := 75 \cdot ksi$ (User Input) Bolt Yield Strength =

E := 29000·ksi (User Input) Bolt Modulus =

(User Input) Diameter of Anchor Bolts = D := 2.25-in

 $n\!:=4.5$ (User Input) Threads per Inch =

l_{ar}:= 2·in (User Input) Top of Concrete to Bot Leveling Nut =

Table 2-1 Addendum 3 Anchor Rod Force Correction Factor = $n_c = 1$

Base Plate Data:

ASTMA572 Grade 50

Outer Pole Diameter =

Plate Yield Strength = F_{vf}:= 50·ksi (User Input)

(User Input) Base Plate Thickness = $t_{TP} \coloneqq 3.0 {\cdot} \text{in}$

D_{OD} := 66∙in Base Plate Diameter = (User Input)

 $D_T := 52.5 \cdot in$ (User Input) $t_T := 0.5625 \cdot in$ Pole Wall Thickness =

 $F_{yp} := 65 \cdot ksi$ (User Input) Pole Design Yield Strength=

Centered on Solutions " www.centekeng.com 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587 Subject:

Location:

Anchor Bolt and Baseplate Analysis

90-FT Monopole Southington, CT

Prepafred by: T.J.L. Checked by: C.F.C. Job No. 23032.04

Rev. 0: 7/31/23

Anchor Bolt Analysis:

$$A_g := \frac{\pi}{4} \cdot D^2 = 3.976 \cdot in^2$$

$$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2 = 3.248 \cdot in^2$$

$$d_{rt} := D - \frac{0.9743 \cdot in}{n} = 2.033 \cdot in$$

$$Z := \frac{d_{rt}^{3}}{6} = 1.401 \cdot in^{3}$$

$$P_{ut} := \frac{n_{c} \cdot \pi \cdot M_{u}}{N \cdot D_{BC}} - \frac{R_{u}}{N} = 49.5 \cdot \text{kips}$$

$$P_{UC} := \frac{n_C \cdot \pi \cdot M_U}{N \cdot D_{BC}} + \frac{R_U}{N} = 52.4 \cdot \text{kips}$$

$$V_u := \frac{Shear}{N} = 1.3 \cdot kips$$

$$\Phi_t := 0.75 \quad \Phi_V := 0.75 \quad \Phi_C := 1.0$$

$$\Phi R_{nt} := \Phi_t \cdot F_u \cdot A_n = 243.576 \cdot k$$

$$\Phi R_{nc} := \Phi_c \cdot F_{v} \cdot A_n = 243.576 \cdot k$$

$$\Phi R_{nv} := \Phi_{v} \cdot 0.5 \cdot F_{u} \cdot A_{g} = 149.103 \cdot k$$

$$\Phi R_{\text{nvc}} := \Phi_{\text{c}} \cdot 0.6 \cdot F_{\text{y}} \cdot \frac{A_{\text{n}}}{2} = 73.073 \cdot k$$

$$\left[\left(\frac{P_{ut}}{\Phi R_{nt}} \right)^2 + \left(\frac{V_u}{\Phi R_{nv}} \right)^2 \right] \cdot 100 = 4.1$$

$$\frac{\mathsf{P}_{\mathsf{ut}}}{\Phi \mathsf{R}_{\mathsf{nt}}} = 0.203$$

$$Condition1 := it \left[\left(\frac{P_{ut}}{\Phi R_{nt}} \right)^2 + \left(\frac{V_u}{\Phi R_{nv}} \right)^2 \le 1.00, "OK", "Overstressed" \right]$$

Condition1 = "OK"

$$\left[\left(\frac{P_{uc}}{\Phi R_{nc}} \right)^2 + \left(\frac{V_u}{\Phi R_{nvc}} \right)^2 \right] \cdot 100 = 4.7$$

Condition2 := if
$$\left(\frac{P_{uc}}{\Phi R_{nc}}\right)^2 + \left(\frac{V_u}{\Phi R_{nvc}}\right)^2 \le 1.00$$
, "OK", "Overstressed"

Condition2 = "OK"

Centered on Solutions * *****centekeng.com 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587

Subject:

Location:

Rev. 0: 7/31/23

Anchor Bolt and Baseplate Analysis

90-FT Monopole Southington, CT

Prepafred by: T.J.L. Checked by: C.F.C.

Job No. 23032.04

Base Plate Analysis:

Strength Resistance Factor for Yieldingdue to Bending =

Strength Resistance Factor for Yieldingdue to Shear =

Outside Fillet Horizontal Leg Dimension =

Effective Pole Outside Diameter =

Effective Base Plate Outside Diameter =

Half-Angle Between Radial Lines Extending from Pole Centerline Through Midpoints Between Adjacent Anch or

Rock =

Angle Defining Limiting Effective Base Plate Width Based on Plate Thickness =

Angle Defining Limiting Effective Base Plate Width Based on Distance Between Anchor Rod Bolt Circle and Effective Pole Outside Diameter =

Governing Angle Defining Effective Base Plate Width Resisting Bending =

Effective MomentArm of Anchor Rod Force =

Effective Base Plate Width Resisting Bending from Transverse Bend Line =

Effective Base Plate Width Resisting Bending from Radial Bend Lines=

Total Effective Base Plate Width Resisting Bending =

Required Base Plate Thickness =

Plate Bending Stress % of Capacity =

Condition2 =

Required Base Plate Thickness =

Plate Bending Stress % of Capacity =

Condition2 =

 $\phi_b := 0.9$

 $\phi_{V} := 1.0$

 $w_1 := 0.25 \cdot in$

 $D_{\alpha} := D_{T} + w_{1} = 52.75 \cdot in$

 $\begin{aligned} \textbf{D}_{Oe} &:= & & & & & & & & & & & & \\ \textbf{D}_{OD} & \text{if} & & & & & & & & & \\ \textbf{D}_{BC} + 6 \cdot t_{TP} & & & & & & & \\ \textbf{O}_{BC} + 6 \cdot t_{TP} & & & & & & & \\ \end{aligned} \quad = 66 \cdot \text{in}$

 $\theta_1 := \frac{\pi}{N} = 0.131$

 $\theta_2 := asin \left(\frac{12 \cdot t_{TP}}{D_{BC}} \right) = 0.644$

 $\theta_3 := a\cos\left(\frac{D_{BC} + D_e}{2 \cdot D_{BC}}\right) = 0.349$

 $\theta := \min(\theta_1, \theta_2, \theta_3) = 0.131$

 $x := 0.5 \cdot (D_{BC} - D_{e}) = 3.625 \cdot in$

 $B_{ef} := D_{BC} \cdot \sin(\theta) = 7.832 \cdot in$

 $B_{er} := (D_{oe} - D_{e}) \cdot sin(\theta) = 1.729 \cdot in$

 $B_{eff} := B_{et} + B_{er} = 9.561 \cdot in$

 $t_{TP.Req} := \sqrt{\frac{4P_{uc} \cdot x}{\phi_b \cdot F_{vf} B_{eff}}} = 1.329 \cdot in$

 $\frac{^{1}\text{TP.Req}}{^{t}\text{TP}} = 44.3 \cdot \%$

Condition3 := if $\frac{t_{TP.Req}}{t_{TP}}$ < 1.00, "Ok", "Overstressed"

Condition3 = "Ok"

 $t_{TP.Req} \coloneqq \frac{\Phi_{b^*} t_T \cdot F_{yp}}{\Phi_{v^*} 0.6 \cdot F_{vf}} = 1.097 \cdot \text{in}$

t_{TP}.Req = 36.6⋅%

 $Condition 4 := if \left(\frac{t_{TP,Req}}{t_{TP}} < 1.00, "Ok", "Overstressed" \right)$

Condition4 = "Ok"

Centered on Solutions 63-2 North Branford Road 8-2 North Branford Road 8-2 North Branford Road 8-2 North Branford, CT 06405 8-2 Nort

Subject:

Location:

Rev. 0: 7/31/23

FOUNDATION ANALYSIS

90-ft EEI Monopine Southington, CT

Prepared by: T.J.L Checked by: C.F.C. Job no. 23032.05

Standard Monopole Foundation:

Input Data:

Tower Data

Overturning Moment =	OM := 1945-ft-kips	(User input)	
Shear Force =	Shear := 31-kip	(User Input)	
Axial Force =	Axial := 35-kip	(User Input)	
Tower Height =	H _t := 90⋅ft	(User Input)	
Footing Data:			
Overall Depth of Footing =	D _f := 6.0⋅ft	(User Input)	
Length of Pier =	L _D := 3.0⋅ft	(User Input)	
Extension of Pier Above Grade =	P L _{paq} := 1.0⋅ft	(User Input)	
Diameter of Pier =	d _p := 7.0⋅ft	(User Input)	
Thickness of Footing =	F T _f := 3.0·ft	(User Input)	
Width of Footing =	W _f := 36.0⋅ft	(User Input)	
Anchor Bolt Data:	·		
Length of Anchor Bolts≃	L _{st} := 72⋅in	(User Input)	
Projection of Anchor Bolts Above Pier =	A _{BP} := 12.0-in	(User Input)	
Anchor Bolt Diameler =	d _{anchor} := 2.25·in	(User Input)	
Base Plate Bolt Circle =	MP := 60·in	(User input)	
Material Properties:			
Concrete Compressive Strength =	f _C := 4000⋅psi	(User Input)	
Steel Reinforcment Yield Strength =	f _y := 60000⋅psi	(User Input)	
Anchor Bolt Yield Strength =	f _{ya} := 75000⋅psi	(User Input)	
Internal Friction Angle of Soil =	$\Phi_{S} \coloneqq 30 \cdot deg$	(User Input)	
Ultimate Soil Bearing Capacity=	$q_U := 4000 \cdot psf$	(User Input)	
Allowable Soil Bearing Capacity=	$q_a := \frac{q_u}{2} = 2000 \cdot psf$	(User Input)	
UnitWeight of Soil =	$\gamma_{\sf soil} \coloneqq 120 \cdot \sf pcf$	(User Input)	
Unit Weight of Concrete =	γ _{conc} := 150-pcf	(User Input)	
Foundation Bouyancy =	Bouyancy := 0	(User Input)	(Yes=1/No=0)
Depth to Neglect=	n:= 0·ft	(User Input)	
Cohesion of Clay Type Soil =	c:= 0-ksf	(User Input)	(Use 0 for Sandy Soil)
Seismic Zone Factor =	Z:= 2	(User Input)	(UBC-1997 Fig 23-2)
Coefficient of Friction Between Concrete =	$\mu := 0.45$	(User Input)	
	The state of the s		

Centered on Solutions 63-2 North Branford Road Branford, CT 06405 F: (203) 488-8587

Subject:

Location:

Rev. 0: 7/31/23

FOUNDATION ANALYSIS

90-ft EEI Monopine Southington, CT

Prepared by: T.J.L Checked by: C.F.C. Job no. 23032.05

Pier Reinforcement:

BS _{pier} := 9	(User Input)	
d _{bpier} := 1.128⋅in	(User Input)	
NB _{pier} := 44	(User Input)	
Cvr _{pier} := 3⋅in	(User Input)	
$\alpha_{\text{pier}} := 1.0$	(User Input)	(ACI-2008 12.2.4)
β _{pier} := 1:0	(User Input)	(ACI-2008 12.2.4)
λ _{pier} := 1.0	(User Input)	(ACI-2008 12.2.4)
$\gamma_{\text{pier}} = 1.0$	(User Input)	(ACI-2008 12.2.4)
d _{Tie} := 0.5⋅in	(User Input)	
BS _{top} := 9	(User Input)	(Top of Pad)
d _{btop} := 1.128 in	(User Input)	(Top of Pad)
NB _{top} := 25	(User Input)	(Top of Pad)
BS _{bot} := 9	(User Input)	(Bottom of Pad)
d _{bbot} := 1.128-in	(User Input)	(Bottom of Pad)
NB _{bot} := 57	(User Input)	(Bottom of Pad)
Cvr _{pad} := 3.0·in	(User Input)	
$\alpha_{pad} := 1.0$	(User Input)	(ACI-2008 12.2.4)
$\beta_{pad} := 1.0$	(User Input)	(ACI-2008 12.2.4)
$\lambda_{pad} := 1.0$	(User Input)	(ACI-2008 12.2.4)
$\gamma_{\text{pad}} = 1.0$	(User Input)	(ACI-2008 12.2.4)
3		
$\pi \cdot d_{\text{bnier}}$!	
	$d_{bpier} := 1.128 \cdot in$ $NB_{pier} := 44$ $Cvr_{pier} := 3 \cdot in$ $\alpha_{pier} := 1.0$ $\beta_{pier} := 1.0$ $\beta_{pier} := 1.0$ $\gamma_{pier} := 1.0$ $\gamma_{pier} := 1.0$ $d_{Tie} := 0.5 \cdot in$ $d_{Die} := 1.128 \cdot$	$d_{bpier} := 1.128 \cdot in \qquad \qquad \text{(User Input)}$ $NB_{pier} := 44 \qquad \qquad \text{(User Input)}$ $Cvr_{pier} := 3 \cdot in \qquad \qquad \text{(User Input)}$ $\alpha_{pier} := 1.0 \qquad \qquad \text{(User Input)}$ $\beta_{pier} := 1.0 \qquad \qquad \text{(User Input)}$ $\gamma_{pier} := 1.0 \qquad \qquad \text{(User Input)}$ $\gamma_{pier} := 1.0 \qquad \qquad \text{(User Input)}$ $d_{Tie} := 0.5 \cdot in \qquad \qquad \text{(User Input)}$ $d_{btop} := 9 \qquad \qquad \text{(User Input)}$ $d_{btop} := 1.128 \cdot in \qquad \qquad \text{(User Input)}$ $NB_{top} := 9 \qquad \qquad \text{(User Input)}$ $d_{bbot} := 9 \qquad \qquad \text{(User Input)}$ $d_{bbot} := 1.128 \cdot in \qquad \qquad \text{(User Input)}$ $NB_{bot} := 57 \qquad \qquad \text{(User Input)}$ $Cvr_{pad} := 3.0 \cdot in \qquad \qquad \text{(User Input)}$ $\alpha_{pad} := 1.0 \qquad \qquad \text{(User Input)}$ $\gamma_{pad} := 1.0 \qquad \qquad \text{(User Input)}$

Calculated Factors:	. 2
Pier Reinforcement Bar Area =	$A_{bpier} := \frac{\pi \cdot d_{bpier}}{4} = 0.999 \cdot in^2$
	. 2
Pad Top Reinforcement Bar Area =	$A_{btop} := \frac{\pi \cdot d_{btop}}{4} = 0.999 \cdot in^2$
Pad Bottom Reinforcement Bar Area =	$A_{bbot} := \frac{\pi \cdot d_{bbot}^2}{4} = 0.999 \cdot in^2$
Coefficient of Lateral Soil Pressure =	$K_{p} \coloneqq \frac{1 + sin\big(\Phi_{S}\big)}{1 - sin\big(\Phi_{S}\big)} = 3$

Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 0: 7/31/23

FOUNDATION ANALYSIS

90-ft EEI Monopine Southington, CT

Prepared by: T.J.L Checked by: C.F.C.

Job no. 23032.05

Stability of Footing:

Adjusted Concrete Unit Weight =

$$\gamma_{c} := if(Bouyancy = 1, \gamma_{conc} - 62.4pcf, \gamma_{conc}) = 150 pcf$$

Adjusted Soil Unit Weight =

$$\gamma_s := if(Bouyancy = 1, \gamma_{soil} - 62.4pcf, \gamma_{soil}) = 120 pcf$$

Passive Pressure =

$$P_{pn} := K_{p} \cdot \gamma_{s} \cdot n + c \cdot 2 \cdot \sqrt{K_{p}} = 0 \cdot ksf$$

$$P_{\text{pt}} := K_{\text{D}} \cdot \gamma_{\text{S}} \cdot \left(D_{\text{f}} - T_{\text{f}}\right) + c \cdot 2 \cdot \sqrt{K_{\text{D}}} = 1.08 \cdot \text{ksf}$$

$$P_{top} := if[n < (D_f - T_f), P_{pt}, P_{pn}] = 1.08 \cdot ksf$$

$$P_{bot} := K_p \cdot \gamma_s \cdot D_f + c \cdot 2 \cdot \sqrt{K_p} = 2.16 \cdot ksf$$

$$P_{ave} := \frac{P_{top} + P_{bot}}{2} = 1.62 \cdot ksf$$

$$T_p := if \left\lceil n < \left(D_f - T_f\right), T_f, \left(D_f - n\right) \right\rceil = 3$$

$$A_{p} := W_{f} \cdot T_{p} = 108$$

Ultimate Shear =

$$S_u := P_{ave} \cdot A_p = 174.96 \cdot kip$$

Weight of Concrete Pad =

$$WT_c := \left[\left(W_f^2 \cdot T_f \right) + d_p^2 L_p \right] \cdot \gamma_c = 605.25 \cdot \text{kip}$$

Weight of Soil Above Footing =

$$WT_{\text{S1}} := \left[\left(W_{\text{f}}^{2} - d_{p}^{2} \right) \cdot \left(\left| L_{p} - L_{pag} - n \right| \right) \right] \cdot \gamma_{\text{S}} = 299.28 \cdot \text{kip}$$

Weight of Soil Wedge at Back Face =

$$WT_{S2} := \left(\frac{D_f^2 \cdot tan(\Phi_S)}{2} \cdot W_f\right) \cdot \gamma_S = 44.895 \cdot kip$$

Weight of Soil Wedge at back face Corners =

$$WT_{S3} := 2 \cdot \left[\left(D_f \right)^3 \cdot \frac{tan(\Phi_S)}{3} \right] \cdot \gamma_S = 9.977 \cdot kips$$

Total Weight =

$$WT_{tot} := WT_c + WT_{s1} + Axial = 939.53 \cdot kip$$

Resisting Weight =

$$WT_R := 0.9 \cdot WT_C + 0.75 \cdot WT_{s1} + 0.75 \cdot Axial = 795.435 \cdot kip$$

Resisting Moment =

$$\mathsf{M}_{f} \coloneqq \left(\mathsf{WT}_{R} \right) \cdot \frac{\mathsf{W}_{f}}{2} + 0.75 \cdot \mathsf{S}_{u} \cdot \frac{\mathsf{T}_{f}}{3} + 0.75 \cdot \left[\left(\mathsf{WT}_{s2} + \mathsf{WT}_{s3} \right) \cdot \left(\mathsf{W}_{f} + \frac{\mathsf{D}_{f} \mathsf{tan} \left(\Phi_{s} \right)}{3} \right) \right] = 15978 \cdot \mathsf{kip} \cdot \mathsf{ft}$$

Overturning Moment =

$$M_{ot} := OM + Shear \cdot (L_D + T_f) = 2131 \cdot kip \cdot ft$$

Factor of SafetyActual =

$$FS := \frac{M_{\Gamma}}{M_{Ot}} = 7.5$$

Factor of Safety Required =

OverTurning_Moment_Check := if(FS ≥ FS_{req}, "Okay", "No Good")

OverTurning_Moment_Check = "Okay"

Centered on Solutions " www.centekeng.com 63-2 North Branford Road Branford, CT 06405

P: (203) 488-0580 F: (203) 488-8587

Subject:

Location:

FOUNDATION ANALYSIS

90-ft EEI Monopine Southington, CT

Prepared by: T.J.L Checked by: C.F.C. Job no. 23032.05

Rev. 0: 7/31/23

Shear Resistance of Pier =

Shear Capacity in Pier:

$$S_p := \frac{P_{ave} \cdot A_p + \mu \cdot WT_{tot}}{FS_{req}} = 597.749 \cdot kips$$

 $Shear_Check := if(S_p > Shear, "Okay", "No Good")$

Shear_Check = "Okay"

Bearing Pressure Caused by Footing:

Area of the Mat =

$$A_{\text{mat}} := W_{\text{f}}^2 = 1.296 \times 10^3$$

Section Modulus of Mat =

$$S := \frac{W_f^3}{6} = 7776 \cdot ft^3$$

Maximum Pressure in Mat =

$$P_{max} := \frac{WT_{tot}}{A_{mat}} + \frac{M_{ot}}{s} = 0.999 \cdot ksf$$

Max_Pressure_Check := if(Pmax < .75·qu, "Okay", "No Good")

Max Pressure_Check = "Okay"

Minimum Pressure in Mat =

$$P_{min} := \frac{WT_{tot}}{A_{mat}} - \frac{M_{ot}}{s} = 0.451 \cdot ksf$$

Min_Pressure_Check = "Okay"

Distance to Resultant of Pressure Distribution =

$$X_p := \frac{P_{max}}{\frac{P_{max} - P_{min}}{W_{\epsilon}}} \cdot \frac{1}{3} = 21.872$$

Distance to Kem =

$$X_k := \frac{W_f}{6} = 6$$

Since Resultant Force is Not in Kem, Area to which Pressure is Applied Must be Reduced.

Eccentricity=

$$e := \frac{M_{ot}}{WT_{tot}} = 2.268$$

Adjusted Soil Pressure =

$$P_a := \frac{2 \cdot WT_{tot}}{3 \cdot W_f \left(\frac{W_f}{2} - e\right)} = 1.106 \cdot ksf$$

$$q_{adj} := if(P_{min} < 0, P_a, P_{max}) = 0.999 \cdot ksf$$

Pressure_Check := if(qadj < 75.qu, "Okay", "No Good")

Pressure_Check = "Okay"

Branford, CT 06405

F: (203) 468-6587

Subject:

Location:

FOUNDATION ANALYSIS

90-ft EEI Monopine Southington, CT

Prepared by: T.J.L Checked by: C.F.C. Job no. 23032.05

Rev. 0: 7/31/23

Concrete Bearing Capacity:

Strength Reduction Factor =

 $\Phi_{\rm C} := 0.65$

(ACI-2008 9.3.2.2)

Bearing Strength Between Pier and Pad =

$$P_b := \Phi_C \cdot 0.85 \cdot f_c \cdot \frac{\pi \cdot d_p^2}{4} = 1.225 \times 10^4 \cdot \text{kips}$$
 (ACH)

Bearing_Check := if(Ph > Axial, "Okay", "No Good")

Bearing_Check = "Okay"

Shear Strength of Concrete:

Beam Shear.

(Critical section located at a distance d from the face of Pier)

(ACI 11.3.1.1)

$$\phi_c := 0.85$$

(ACI 9.3.2.5)

$$d := T_f - Cvr_{pad} - d_{bbot} = 2.656$$

$$d_1 := \frac{W_f}{2} - \frac{d_p}{2}$$

$$d_2 := d_1 - d$$

$$L := \left(\frac{W_f}{2} - e\right) \cdot 3$$

$$Slope := if \left(L > W_f, \frac{P_{max} - P_{min}}{W_f}, \frac{q_{adj}}{L} \right)$$

$$\boldsymbol{V}_{req} \coloneqq \left[\left(\boldsymbol{q}_{adj} - \boldsymbol{Slope} \cdot \boldsymbol{d}_1 \right) + \left(\frac{\boldsymbol{Slope} \cdot \boldsymbol{d}_1}{2} \right) \right] \cdot \boldsymbol{W}_f \cdot \boldsymbol{d}_1$$

$$V_{Avail} \coloneqq \varphi_{C} \cdot 2 \cdot \sqrt{|f_{C} \cdot psi|} \cdot W_{f} \cdot d$$

(ACI-2008 11.2.1.1)

$$Beam_Shear_Check \coloneqq if \Big(V_{req} < V_{Avail}, "Okay", "No Good" \Big)$$

Beam_Shear_Check = "Okay"

Punching Shear:

(Critical Section Located at a distance of d/2 from the face of pier)

(ACI 11.11.1.2)

Critical Perimeter of Punching Shear =

$$b_0 := (d_p + d) \cdot \pi = 30.3$$

Area Included Inside Perimeter =

$$A_{bo} := \frac{\pi \cdot (d_p + d)^2}{4} = 73.2$$

Area Outside of Perimeter =

$$A_{out} := A_{mat} - A_{bo} = 1.2 \times 10^3$$

Centered on Solutions 63-2 North Branford Road Pr. (203) 488-0580 Ft. (203) 488-8587

Subject:

Location:

FOUNDATION ANALYSIS

90-ft EEI Monopine Southington, CT

Prepared by: T.J.L Checked by: C.F.C. Job no. 23032.05

Rev. 0: 7/31/23

Guess Value =

Given

 $v_u := 1ksf$

 $d^2 + d_{p'}d = \frac{WT_{tot}}{\pi \cdot v_{tt}}$

 $v_u := Find(v_u) = 11.7 \cdot ksf$

 $V_{II} := v_{II} \cdot d \cdot W_f = 1.1 \times 10^3 \cdot kips$

Required Shear Strength =

 $V_{reg} := V_{II} = 1.1 \times 10^{3} \cdot kips$

Available Shear Strength =

 $V_{Avail} := \phi_C \cdot 4 \cdot \sqrt{f_C \cdot psi} \cdot b_O \cdot d = 2494.9 \cdot kip$

(ACI-2008 11.11.2.1)

(From "Foundation Analysis

and design", By Joseph Bowles, Eq. 8-9)

Punching_Shear_Check := if(V_{req} < V_{Avail}, "Okay", "No Good")

Punching_Shear_Check = "Okay"

Steel Reinforcement in Pad:

Required Reinforcement for Bending:

Strength Reduction Factor =

 $\phi_m := .90$

(ACI-2008 9.3.2.1)

 $q_b := q_{adj} - d_1 \cdot Slope = 0.778 \cdot ksf$

Maximum Bending at Face of Pier =

 $M_n := \frac{1}{d_{b-1}} \cdot \left[\left(q_{adj} - q_b \right) \cdot \frac{d_1^2}{3} + q_b \cdot \frac{d_1^2}{2} \right] \cdot W_f = 3891.3 \cdot \text{kip-ft}$

$$\beta := \begin{bmatrix} 0.85 & \text{if } 2500 \cdot psi \leq f_C \leq 4000 \cdot psi \\ 0.65 & \text{if } f_C > 8000 \cdot psi \end{bmatrix} = 0.85$$

$$0.85 - \begin{bmatrix} \frac{f_C}{psi} - 4000 \\ 1000 \end{bmatrix} \cdot 0.5 \end{bmatrix} \text{ otherwise }$$

$$R_n := \frac{M_n}{W_f d^2} = 106.4 \cdot psi$$

$$\rho := \frac{0.85 \, f_C}{f_y} \Biggl(1 - \sqrt{1 - \frac{2 \cdot R_n}{0.85 \cdot f_C}} \Biggr) = 0.0018$$

$$\rho_{min} \coloneqq \rho = 0.0018$$

Centered on Solutions ** www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405

Location:

90-ft EEI Monopine Southington, CT

Prepared by: T.J.L Checked by: C.F.C. Job no. 23032.05

Rev. 0: 7/31/23

Required Reinforcement for Temperature and Shrinkage:

$$\rho_{Sh} := \begin{bmatrix} .0018 & \text{if} & f_y \geq 60000 \cdot psi \\ .0020 & \text{otherwise} \end{bmatrix}$$
 (ACI-2008 7.12.2.1)

Check Bottom Bars:

$$\begin{array}{lll} \text{As} := & \rho_{min} \cdot w_f \, \text{d} & \text{if} & \rho_{min} > \frac{\rho_{sh}}{2} & = 24.813 \cdot \text{in}^2 \\ & & & & \\ \rho_{sh} \cdot w_f \, \frac{\text{d}}{2} & \text{otherwise} \end{array}$$

$$As_{prov} := A_{bbot} \cdot NB_{bot} = 57 \cdot in^2$$

Pad_Reinforcement_Bot = "Okay"

Check top Bars:

As :=
$$\rho_{sh} \cdot \left(W_{f} \frac{d}{2} \right) = 12.4 \cdot in^{2}$$

$$As_{prov} := A_{btop} \cdot NB_{top} = 25 \cdot in^2$$

Pad_Reinforcement_Top = "Okay"

Developement Length Pad Reinforcement:

Bar Spacing =

$$\mathsf{B}_{\mathsf{SPad}} \coloneqq \frac{\mathsf{W}_{\mathsf{f}} - 2 \cdot \mathsf{Cvr}_{\mathsf{pad}} - \mathsf{NB}_{\mathsf{bot}} \cdot \mathsf{d}_{\mathsf{bbot}}}{\mathsf{NB}_{\mathsf{bot}} - \mathsf{1}} = 6.46 \cdot \mathsf{in}$$

Spacing or Cover Dimension =

$$c := \text{if} \left(\text{Cvr}_{pad} < \frac{B_{sPad}}{2}, \text{Cvr}_{pad}, \frac{B_{sPad}}{2} \right) = 3 \text{ in}$$

Transverse Reinforcement Index =

$$k_{tr} = 0$$

(ACI-2008 12.2.3)

$$L_{dbt} := \frac{3 \cdot f_y \alpha_{pad} \cdot \beta_{pad} \cdot \gamma_{pad} \cdot \alpha_{pad}}{40 \cdot \sqrt{f_c \cdot psi} \cdot \frac{c + k_{tr}}{d_{bbot}}} \cdot d_{bbot} = 30.2 \cdot in$$

Minimum Development Length =

(ACI-2008 12.2.1)

LdbtCheck := if(Ldbt ≥ Ldbmin, "Use L.dbt", "Use L.dbmin")

Available Length in Pad =

$$L_{Pad} := \frac{W_f}{2} - \frac{d_p}{2} - Cvr_{pad} = 171 \cdot in$$

Lpad_Check := if(Lpad > Ldbt, "Okay", "No Good")

Lpad_Check = "Okay"

Centered on Solutions oww.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 0: 7/31/23

FOUNDATION ANALYSIS

90-ft EEI Monopine Southington, CT

Prepared by: T.J.L Checked by: C.F.C.

Job no. 23032.05

Steel Reinforcement in Pier:

Area of Pier =

$$A_{D} := d_{D}^{2} = 7056 \cdot in^{2}$$

$$A_{smin} := 0.01 \cdot 0.5 \cdot A_{p} = 35,28 \cdot in^{2}$$

(ACI-2008 10.8.4 & 10.9.1)

$$A_{sprov} := NB_{pier} \cdot A_{bpier} = 43.97 \cdot in^2$$

NOTE: Anchor Bolts are not accounted for in reinforcement calculation and will provide additional reinforcement to satisfy minimum requirement of

$$B_{\text{SPier}} := \frac{d_p \cdot \pi}{NB_{\text{pier}}} - d_{\text{bpier}} = 4.87 \cdot \text{in}$$

$$\mathsf{Diam}_{cage} \coloneqq d_p - 2 \cdot \mathsf{Cvr}_{pier} = 78 \cdot \mathsf{in}$$

$$M_p := \left[OM + Shear \cdot \left(L_p + \frac{A_{BP}}{2}\right)\right] = 24642 \cdot in \cdot kips$$

Pier Check evaluated from outside program and results are listed below;

$$\left(\text{D N n P}_{u} \text{ M}_{\text{X}u} \right) \coloneqq \left(\text{d}_{p} \cdot 12 \text{ NB}_{pier} \text{ BS}_{pier} \frac{\text{Axial} \cdot 1.333}{\text{kips}} \cdot \frac{\text{M}_{p}}{\text{in-kips}} \right)$$

$$(D \ N \ n \ P_{U} \ M_{XU}) = (84 \ 44 \ 9 \ 46.7 \ 24642)$$

$$\left(\boldsymbol{\varphi} \boldsymbol{P}_{\boldsymbol{n}} \ \boldsymbol{\varphi} \boldsymbol{M}_{\boldsymbol{X} \boldsymbol{n}} \ \boldsymbol{f}_{\boldsymbol{S} \boldsymbol{p}} \ \boldsymbol{\rho} \right) \coloneqq \left(\boldsymbol{0} \ \boldsymbol{0} \ \boldsymbol{0} \ \boldsymbol{0} \right)$$

$$\left(\Phi P_{n} \Phi M_{xn} f_{sp} \rho\right) := \Phi P'_{n} \left(D, N, n, P_{u}, M_{xu}\right)^{T}$$

$$(\Phi P_n \Phi M_{xn} f_{sp} \rho) = (159.5 84220.2 -60 0)$$

Axial_Load_Check :=
$$if(\phi P_n \ge P_u, "Okay", "No Good")$$

$$Bending_Check := if\Big(\varphi M_{X\Pi} \geq M_{XU}, "Okay", "No Good"\Big)$$

Subject:

Location:

FOUNDATION ANALYSIS

90-ft EEI Monopine Southington, CT

Prepared by: T.J.L Checked by: C.F.C. Job no. 23032.05

Rev. 0: 7/31/23

Development Length Pier Reinforcement:

Available Length in Foundation:

$$L_{pier} := L_p - Cvr_{pier} = 33 \cdot in$$

$$L_{pad} := T_f - Cvr_{pad} = 33 \cdot in$$

Tension:

(ACI-2008 12.2.3)

$$c := if\left(Cvr_{pier} < \frac{B_{sPier}}{2}, Cvr_{pier}, \frac{B_{sPier}}{2}\right) = 2.435 \cdot ln$$

Transverse Reinforcement=

$$k_{tr} := 0$$

(ACI-2008 12.2.3)

$$L_{dbt} \coloneqq \frac{3 \, f_y \alpha_{pier} \cdot \beta_{pier} \cdot \gamma_{pier} \cdot \lambda_{pier}}{40 \cdot \sqrt{f_c \cdot psi} \cdot \left(\frac{c + k_{tr}}{d_{bpier}}\right)} \cdot d_{bpier} = 37.18 \cdot in$$

Minimum Development Length =

Pier reinforcement bars are standard 90 degree hooks and therefore developement in the pad is computed as follows:

$$L_{dh} := \frac{1200 \cdot d_{bpier}}{\sqrt{\frac{f_c}{psi}}} \cdot .7 = 14.982 \cdot in$$
 (ACI 12.2.1)

$$L_{db} := max(L_{dbt}, L_{dbmin})$$

$$\mathsf{L}_{tension_Check} \coloneqq \mathsf{if}\!\!\left(\mathsf{L}_{pier} + \mathsf{L}_{pad} > \mathsf{L}_{dbt}, \text{"Okay"}, \text{"No Good"}\right)$$

Compression:

(ACI-2008 12.3.2)

$$L_{dbc1} \coloneqq \frac{.02 \cdot d_{bpier} \cdot f_y}{\sqrt{f_c \cdot psi}} = 21.402 \cdot in$$

$$L_{\mbox{dbmin}} := 0.0003 \cdot \frac{\mbox{in}^2}{\mbox{lb}} \cdot \left(\mbox{d}_{\mbox{bpier}} \cdot \mbox{f}_y \right) = 20.304 \cdot \mbox{in}$$

$$L_{dbc} := if(L_{dbc1} \ge L_{dbmin}, L_{dbc1}, L_{dbmin}) = 21.402 \cdot in$$

$$\label{eq:compression_Check} \textit{L}_{compression_Check} \coloneqq \textit{if} \Big(\textit{L}_{pier} + \textit{L}_{pad} > \textit{L}_{dbc}, \textit{"Okay"} \,, \textit{"No Good"} \Big)$$

BSF0020F3V1-1

TWIN BANDSTOP 900MHZ INTERFERENCE MITIGATION FILTER

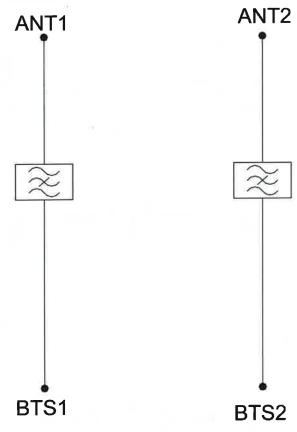
The BSF0020 is ideal for co-located 700, 850 and 900 networks. Utilising a 2.6MHz guardband the BSF0020 provides rejection of the 900 UL band while passing 700/850 UL and DL bands. Capable of being used in an outdoor environment the BSF0020 contains two identical bandstop filters, suitable for 2x2 MIMO configuration, offering excellent insertion loss, group delay and rejection.

FEATURES

- · Passes full 700 and 850 bands
- · Low insertion loss
- Rejection of 900MHz uplink
- DC/AISG pass
- Twin unit
- · Dual twin mounting available

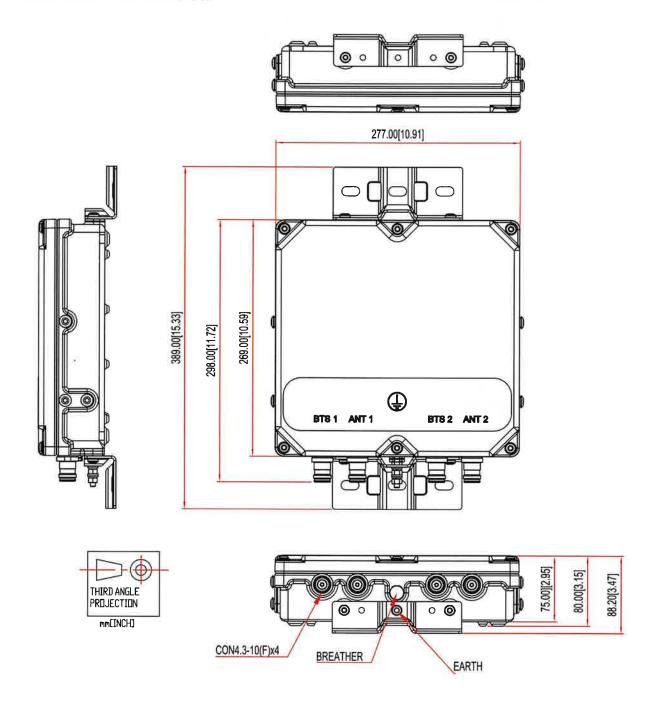
TECHNICAL SPECIFICATIONS

Passband					
	698 - 849MHz	869 - 891.5MHz			
Insertion loss	0.1dB typical / 0.3dB maximum	0.5dB typical, 1.45dB maximum			
Return loss	24dB typical,	18dB minimum			
Maximum input power (Per Port)	100W average	200W average and 66W per 5MHz			
Rejection	53dB minimum @	894.1 - 896.5MHz			
ELECTRICAL					
mpedance	500	Ohms			
Intermodulation products	-160dBc maximum in UL Band (assumin -153dBc maximu	g 20MHz Signal), with 2 x 43dBm carriers m with 2 x 43dBm			
DC / AISG					
Passband	0-1	3MHz			
Insertion loss	0.3dB n	naximum			
Return loss	15dB minimum				
Input voltage range	± 33V				
DC current rating	2A continuous, 4A peak				
Compliance	3GPP TS 25,461				
ENVIRONMENTAL					
For further details of environmental	compliance, please contact Kaelus.				
Temperature range	-20°C to +60°C	-4°F to +140°F			
Ingress protection	IP	267			
Altitude		8530ft			
Lightning protection	RF port: ±5kA maximum (8/20us), IEC 61000-4-5 – Unit	must be terminated with some lightning protection circuits			
MTBF	>1,000,0	000 hours			
Compliance	ETSI EN 300 019 class 4.1H	, RoHS, NEBS GR-487-CORE			
MECHANICAL					
Dimensions H x D x W	269 x 277 x 80mm 10.60 x 10.90 x 3.1	5in (Excluding brackets and connectors)			
Weight	8.0 kg 17.6 l	bs (no bracket)			
Finish	Powder coated, lig	ght grey (RAL7035)			
Connectors		10 (F) x 4			
Mounting	Optional pole/wall bracket supplied with two metal clamps inform	45-178mm diameter poles or custom bracket. See orderination.			



ORDERING INFORMATION

PART NUMBER	CONFIGURATION	CONFIGURATION OPTIONAL FEATURES CON			
BSF0020F3V1	TWIN, 2 in / 2 out	DC/AISG PASS NO BRACKET	4.3-10 (F)		
BSF0020F3V1-1	TWIN, 2 in / 2 out	DC/AISG PASS	4.3-10 (F)		
BSF0020F3V1-2	QUAD, 4 in / 4 out	DC/AISG PASS	4.3-10 (F)		



ELECTRICAL BLOCK DIAGRAM

MECHANICAL BLOCK DIAGRAM

Colliers Engineering & Design CT, PC 2000 Midlantic Drive Suite 100 Mt. Laurel. NJ 08054 856,797,0412 Peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis

SMART Tool Project #: 10207533 Colliers Engineering & Design CT, PC Project #: 23777194

July 24, 2023

Site Information

Site ID:

5000384425-VZW/SOUTHINGTON EAST CT

Site Name:

SOUTHINGTON EAST CT - A

Carrier Name:

Verizon Wireless 99 East Street

Address:

Southington, Connecticut 06489

Hartford County

Latitude:

41.583644°

Longitude:

-72.864686°

Structure Information

Tower Type: Mount Type:

90-Ft Monopole 12.33-Ft Platform

FUZE ID # 17123884

Analysis Results

Platform: 37.5% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report

Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Lauren Luzier

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 2358807, dated June 4, 2021
Mount Mapping Report	Hudson Design Group, LLC., Site ID: 468340, dated May 26, 2021
Previous Mount Analysis Report	Maser Consulting Connecticut Project #: 21777816A, dated June 23, 2021
Filter Add Scope	Provided by Verizon Wireless

Analysis Criteria:

O 100 1 1	A N 10 1 TT 1 A 00 0 1 1
Codes and Standards:	ANSI/TIA-222-H

2022 Connecticut State Building Code (CSBC), Effective October 1, 2022

Wind Parameters: Basic Wind Speed (Ultimate 3-sec. Gust), V_{ULT}: 120 mph

Ice Wind Speed (3-sec. Gust): 50 mph
Design Ice Thickness: 1.00 in
Risk Category: II
Exposure Category: C
Topographic Category: 1
Topographic Feature Considered: N/A

Topographic Method: N/A
Ground Elevation Factor, K_e: 0.993

 Seismic Parameters:
 Ss:
 0.196 g

 S1:
 0.055 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Live Load, Lv: 250 lbs.

Maintenance Live Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mount:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		4	KAelus	KA-6030	Added
		6	Andrew	SBNHH-1D65B	
		3	Samsung	XXDWMM-12.5-65	
81.00	80.00	3	Samsung	MT6407-77A	Retained
02.00		3	Samsung	B2/B66A RRH-BR049	Retailled
		3	Samsung	B5/B13 RRH-BR04C	
		1	Raycap	RVZDC-6627-PF-48	

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Colliers Engineering &
 Design and used in this analysis is current and correct. The existing equipment loading has been applied
 at locations determined from the supplied documentation. Any deviation from the loading locations specified
 in this report shall be communicated to Colliers Engineering & Design to verify deviation will not adversely
 impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate 0

ASTM A36 (Gr. 36)

HSS (Rectangular) 0

ASTM 500 (Gr. B-46)

Pipe 0

ASTM A53 (Gr. B-35)

Threaded Rod

F1554 (Gr. 36)

Bolts

ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design.

Analysis Results:

Component	Utilization %	Pass/Fail
Standoff Horizontal	37.5 %	Pass
Face Horizontal	15.6 %	Pass
Mount Pipe	15.8 %	Pass
Antenna Pipe	24.6 %	Pass
Mount Connection	18.5 %	Pass

Structure Rating – (Controlling Utilization of all Components)	37.5%

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipe	s Excluded	Mount Pipes Included				
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)			
0	12.8	12.8	33.2	33.2 44.6			
0.5	16.1	16.1	44.6				
1	19.3	19.3	56.0	56.0			

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 3 sector(s).
- Ka factors included in (EPA)a calculations

Requirements:

The existing mount is **SUFFICIENT** for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

Contractor shall verify previous project by Maser Consulting Connecticut dated June 23, 2021 has been installed prior to installation of equipment. <u>Escalate any discrepancies to EOR immediately as it may render the results of this analysis invalid and require additional modifications.</u>

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations

Mount Desktop - Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor - Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000384425

SMART Project #: 10207533

Fuze Project ID: 17123884

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present
 or any installed system, SMART Tool vendor to be notified prior to install. Any special photos
 outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- O Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

e ⊕ §	The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
	\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
	OR
	☐ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Special	Instructions / Validation as required from the MA or any other information the contractor
	necessary to share that was identified:
<mark>Issue:</mark>	the second secon
Contra	ctor shall verify previous project by Maser Consulting Connecticut dated June 23, 2021 has been installed prior to attended to the control of equipment. Escalate any discrepancies to EOR immediately as it may render the results of this analysis
installa	and require additional modifications.
Respor	nse:
Special	Instruction Confirmation:
	☐ The contractor has read and acknowledges the above special instructions.
	\square All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.
	☐ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.
	OR
	ON .
	☐ The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.

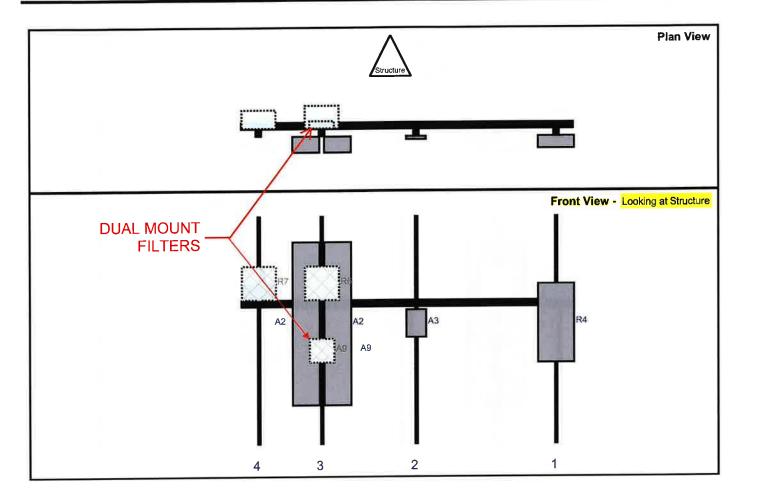
ntractor certifies t	hat the climbing facility / sa	fety climb was not damaged prior to starting w
☐ Yes	□No	
tractor certifies r	o new damage created duri	ing the current installation:
☐ Yes	□No	
tractor to certify	the condition of the safety of	climb and verify no damage when leaving the si
	b in Good Condition	☐ Safety Climb Damaged
tifying Individual:		,
Compa	nv:	
Employee Nar	ne:	
12 marsh 2 mar		
Contact Pho Em		

Structure: 5000384425-VZW - SOUTHINGTON EAST CT - A

Sector: A

Mount Elev:

Structure Type: Monopole


81.00

10207533

7/20/2023

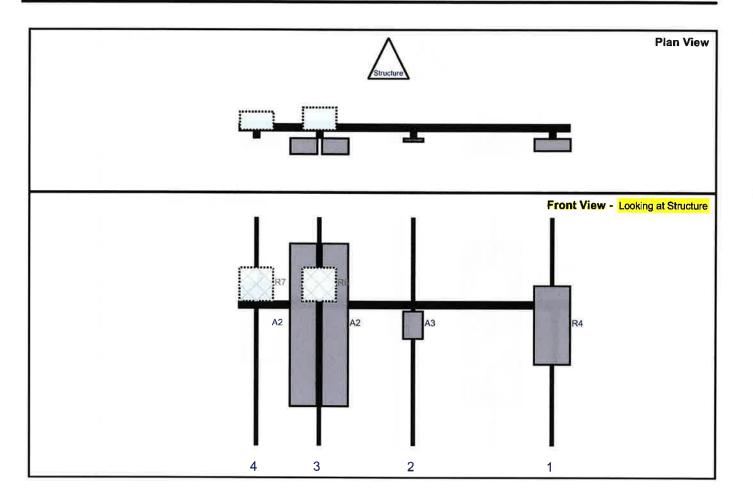
Colliers Engineering & Design

Page: 1

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L	#	Pos V	Pos	Frm T _e	H Off	Status	Validation
R4	MT6407-77A	35.1	16.1	140	1	а	Front	48	0	Retained	
A3	XXDWMM-12.5-65	12.3	8.7	78	2	а	Front	48	0	Retained	
A2	SBNHH-1D65B	72.6	11.9	36	3	а	Front	48	-7	Retained	05/26/2021
A2	SBNHH-1D65B	72.6	11.9	36	3	b	Front	48	7	Retained	05/26/2021
R6	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	36	3	а	Behind	30	0	Retained	
A9	KA-6030	10.6	10.9	36	3	а	Behind	60	0	Added	
A9	KA-6030	10.6	10.9	36	3	b	Behind	60	0	Added	
R7	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	8	4	а	Behind	30	0	Retained	
OVP	RVZDC-6627-PF-48	29.5	16.5		Memb	er			5. E	Retained	

Structure: 5000384425-VZW - SOUTHINGTON EAST CT - A

Sector: **B** 7/20/2023


Structure Type: Monopole

10207533

Colliers Engineering & Design

Mount Elev: 81.00

Page: 2

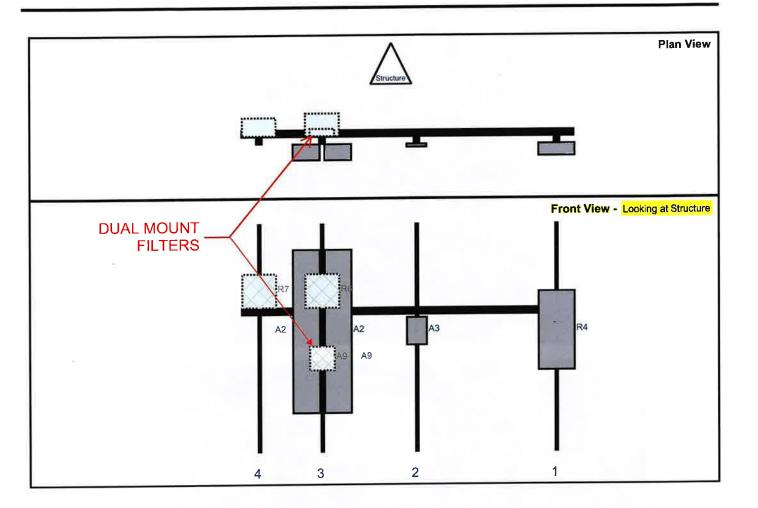
Ref#	Model	Heig			Pipe	Pipe	Ant	C. Ant	Ant	0	.
IXEI#	Nodel	(in)	(in)	Frm L.	#	Pos V	Pos	Frm Tal	H Off	Status	Validation
R4	MT6407-77A	35.1	16.1	140	1	а	Front	48	0	Retained	
A3	XXDWMM-12.5-65	12.3	8.7	78	2	а	Front	48	0	Retained	
A2	SBNHH-1D65B	72.6	11.9	36	3	а	Front	48	-7	Retained	05/26/2021
A2	SBNHH-1D65B	72.6	11.9	36	3	b	Front	48	7	Retained	05/26/2021
R6	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	36	3	а	Behind	30	0	Retained	
R7	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	8	4	а	Behind	30	0	Retained	

Structure: 5000384425-VZW - SOUTHINGTON EAST CT - A

Sector: C

Structure Type: Monopole

81.00


Mount Elev:

10207533

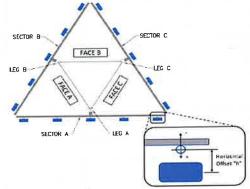
Page: 3

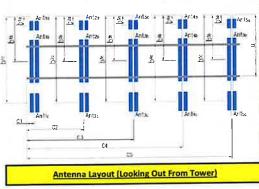
7/20/2023

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Fm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R4	MT6407-77A	35.1	16.1	140	1	а	Front	48	0	Retained	
А3	XXDWMM-12.5-65	12.3	8.7	78	2	а	Front	48	0	Retained	-110
A2	SBNHH-1D65B	72.6	11.9	36	3	а	Front	48	-7	Retained	05/26/2021
A2	SBNHH-1D65B	72.6	11.9	36	3	b	Front	48	7	Retained	05/26/2021
R6	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	36	3	а	Behind	30	0	Retained	
A9	KA-6030	10.6	10.9	36	3	а	Behind	60	0	Added	
A9	KA-6030	10.6	10.9	36	3	b	Behind	60	0	Added	
R7	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	8	4	а	Behind	30	0	Retained	

			V4.0 Updated on 3-31-2021	
	Antenna Mount Mapping For	m (PATENT PENDING)	P	FCC N
Tower Owner:	IVERION WIRELESS	Mapping Date:	5/26/2021	_
Site Name:	SOUTHINGTON EAST CT	Tower Type:	Manapole	_
Site Number or ID:	468340	Tower Height (Ft.):	89.75 81.16	
Mapping Contractor:	HUDSON DESIGN GROUP, LLC.	Mount Elevation (FL):		-

mapping Convector.


This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.


Please insert the sketches of the antenna mount from the "Sketches" tab with dimensions and members here.

		Mount Pip	e Configurat	tion and G	eometries [Unit = Inches]		
Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension	Horizonta Offset "C1 C2, C3, etc
A1	2" STD. PIPE X 102" LONG	39.00	8,00	C1	2" STD, PIPE X 102" LONG	39.00	8.00
A2	2" STD. PIPE X 102" LONG	39.00	70.00	C2	2" STD. PIPE X 102" LONG	39.00	7.00
A3	2" STD. PIPE X 102" LONG	39.00	112.00	C3	2" STD, PIPE X 102" LONG	39.00	112.00
A4	2" STD. PIPE X 102" LONG	39.00	140.00	C4	2" STD. PIPE X 102" LONG	39.00	140.00
A5				C5			
A6	EN THERETON			C6			
B1	2" STD. PIPE X 102" LONG	39.00	8.00	D1			
B2	2" STD. PIPE X 102" LONG	39.00	70.00	D2			
B3	2" STD. PIPE X 102" LONG	39.00	112,00	D3			
B4	2" STD. PIPE X 102" LONG	39.00	140.00	D4			
BS				D5			
B6				D6			
	Distance between bottom	rall and mou	int CL eleva	tion (dim	d). Unit is inches. See 'Mount Elev Ref' to	b for details.	
-	Distance from	top of bott	om support	rail to lov	vest tip of ant./eqpt. of Carrier above. (N	/A if > 10 ft):	
	Distance from	top of botto	m support	rall to high	nest tip of ant./eqpt. of Carrier below. (N	/A if > 10 ft.):	
_		Please ent	er addition	al infomat	ion or comments below.		

TOWER IS A MONOPINE MODEL W/ .375" WALL THICKNESS

Tower Face Width at Mount Elev. (ft.):	Tower Leg Size or Pole Shaft Diameter at Mount Elev. (in.):	31
	weld size from the main standoff to the plate bolting into the collar mount.	0.438

	Enter antenn	a model.	If not labe	Mountin [Units are inc	Photos o antenna:					
Ants, Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (Ft.)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz, Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	Photo Number
					Sector A	5				1 30000
Antia	B4 RRH	11.00	6.00	36.00		82.3267	25.00	-7.00		139,14
Ant _{1b}	SBNHH-1D65B	12.00	7.50	73.00		80.2433	50.00	10.00	30.00	71,79
Ant _{1c}										
Ant ₂	B13 RRH4X30	12.00	8.00	21.00		83.2433	14.00	-6.00		173
Ant _{2b}	SBNHH-1D65B	12.00	7.50	73.00		80.2433	50.00	10.00	30.00	79
Ant _{2c}										
Ant _{3a}										
Ant _{3b}	SBNHH-1D658	12.00	7.50	73.00		80.2433	50.00	10.00	30.00	79,13
Ant _{3c}							- 0			
Ant _{da}										
Ant _{4b}	SBNHH-1D65B	12.00	7.50	73.00		80.2433	50.00	10.00	30.00	79,13
Ant _{4c}										
Antsa										
Antsh										
Ant _{5c}										
Ant on Standoff										
Ant on Standoff				H						
Ant on Tower										
Ant on Tower				1 =						

Mount Azimuth (Degree) Tower Leg Azimuth (Degree) for Each Sector for Each Sector						Sector B										
		ctor		for Eas	ch Sector	Ant _{1a}	B4 RRH	11.00	6.00	36.00	82.326	7 25.00	-7.00		138,	
ector A:	30.00	Deg	Leg A:		Deg	Ant _{1b}	SBNHH-1D65B	12.00	7.50	73.00	80.243	3 50.00	10.00	130.00	79,1	
ector 8:	150.00	Deg	Leg B:		Deg	Ant _{1c}								12 /4/		
ector C:	270.00	Deg	Leg C:		Deg	Ant ₂₂	B13 RRH4X30	12.00	8.00	21.00	83.243	3 14.00	-6.00		173,	
ector D:		Deg	Leg D:		Deg	Ant _{2b}	SBNHH-1D65B	12.00	7.50	73.00	80.243	3 50.00	10.00	130.00	79,1	
		_	bing Fac	lity Information		Ant _{2c}										
cation:	225.00	Deg	_	N/A		Ant ₃₂										
imbing		sion Ty	e:	Good condition.		Ant _{3b}	SBNHH-1D65B	12.00	7.50	73.00	80.243	3 50.00	10.00	130.00	79,1	
acility		ccess:		Climbing path was I	unobstructed.	Ant _{3c}				9						
	Cor	ndition:		Good condition.		Ant _{4a}										
						Ant _{4b}	SBNHH-1D65B	12.00	7.50	73.00	80.243	3 50.00	10.00	130.00	79,1	
						Ant _{4c}			District Control							
						Ant _{5a}										
						Antsb		-					_			
						Ant _{Sc}										
					Ant on Standoff	RRFD-3315-PF-48	15.00	10.00	28.00		3.50	9.00		176		
						Ant on		15.00								
						Standoff										
Please insert a photo of the mount centerline measurement here.				surement here.	Ant on Tower				46.7							
						Anton							_		-	
						Tower										
							In a nous				Sector C				_	
						Antia	B4 RRH	11.00	6.00	36.00	82.326	+	-7.00		141	
						Antib	SBNHH-1D65B	12.00	7.50	73.00	80.243	50.00	10.00	280.00	79,	
						Ant _{1c}	D12 DD114V20	12.55	0.00	24.00						
						Ant _{2a}	B13 RRH4X30 SBNHH-1D65B	12.00	8.00 7.50	21.00 73.00	83.243		-6.00	200	140	
						Ant _{2c}	2BINHH-TD92B	12.00	7.50	/3.00	80.243	50.00	10.00	280.00	79	
		500	111			Ant _{3a}										
			1.5	- E.		Ant _{ab}	SBNHH-1D65B	12.00	7.50	73.00	80.243	50.00	10.00	200.00	70	
1		1111	HH			Ant _{3c}	3014HH-1D03B	12.00	7.30	73.00	80.243	50.00	10.00	280.00	79,	
- 1						Ant _{4a}						_				
1,		TIT		7 7 7 10000		Ant _{4b}	SBNHH-1D65B	12.00	7.50	73.00	80.243	50.00	10.00	280.00	79,	
		HH	1)		1	Anta	55.11111 25055	12.00	7.50	75.00	00.243	30.00	10.00	280.00	13,	
	1 0	all I	Min	п	CHARLE FROM NOTIFICATION OF THE STATE OF THE CANADA STATE OF CANADA AND A STATE OF CANADA AND CANADA AND A STATE OF CANADA AND A STA	Ant _{5a}										
See		+++	14		CF ANT / DRY OF GAMES ARMS	Ant _{5b}				-			-		-	
н		111	Ш		1	Ante									_	
Det in	7		'н		PRINCE FROM DOLON MAN PARTON WOULD TO LOOKE THE OF AND VIDO'S OF LANGED MELON 1974 H 197 H1	Ant on	RRFD-3315-PF-48	15.00	40.00	20.00						
		Ш	11	te in passage	18/4 H 17 H	Standoff	KVLD-2313-51-48	15.00	10.00	28.00		3.50	9.00		139	
l _{rt}	i h	ill I	1111	ľ i		Ant on Standoff										
	1 10	111	111			Ant on		1							_	
4		100	+			Tower										
13	ليا	ĮЩ	, ta	l _e		Ant on					-					
		101 148	MAG.			Tower					Sector D				L	
13	Γ*	1	(*)	П		Ant _{1a}		1 1			Jection D					
1	***		4 [Ant _{1b}										
						Ant _{1c}		1 1								
1,1	7	F	7,5			Ant _{2a}				- 4			1			
197			/			Ant _{2b}										
	-	1 6		C3	Miles I like he if fellow	Ant _{2c}										
					DELIANCE FROM THE RESTRICT ENTERED FOR CONTROL AND ALLEY OF CAMPAIN ARCHIT THE AND ALLEY OF CAMPAIN ARCHIT THE ALL	Ant _{3a}					Ee					
			Y D			Ant _{3b}										
e	11.		= 2		+	Ant _{3c}										
Elitin Final	_/ ·		1	700	STANCE FROM THE OF HORSES AND A STANCE OF THE STANCE OF TH	Ant _{4a}										
1,500		K		471212000		Ant _{4b}										
L-1	ra.	1	14	N is to see	01	Ant _{4c}										
4		-	- 1	,		Ant _{5a}										
			JI			Ant _{Sb}										
ابا	-					Ant _{Sc}										
		00	-			Ant on Standoff										
				ord the weld size from		Ant on									_	
				r. See below for refer		Standoff										
11		<u></u>			//	Ant on										
1					\checkmark	Tower Ant on						-				
1	_	-			7	Tower										
1	TO TO	Œ	4 7		$ \sim $											
	D															
				IN.												
				PERMI VE	ILI THE FROM											
				2120001 2120001 800 064	TO PUBLIC FEETING											

	Observed Safety and Structural Issues During the Mount Mapping	
Issue #	Observed Safety and Structural Issues During the Mount Mapping Description of Issue	Photo #
1		
2		fh.r.
3		
4		
5		
6		
7	1385/26, (a	792
8		97.

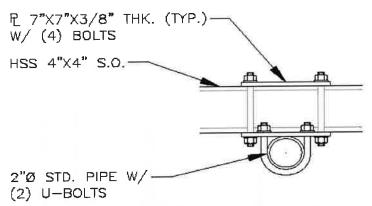
		Observed Obstructions to Tower Lighting System	
the tower lighting system is being obstructed by the carri		ight nested by the antennas), please provide photos and fill in the information below.	Photo #
Description of Obstruction:			
Type of Light:	Photo #	Additional Comments:	
Lighting Technology:	Photo #		
Elevation (AGL) at base of light (FL):	Photo #		
Is a service loop available?	Photo #		
Is beacon installed on an extension?	Photo #		

- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.
- 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
- A Please create air required detail securies of the fillouris and insert remainted an Securies tool.

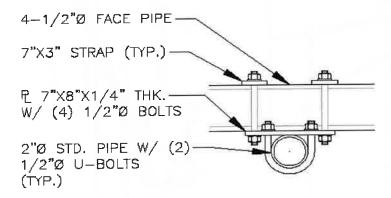
 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.

 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.

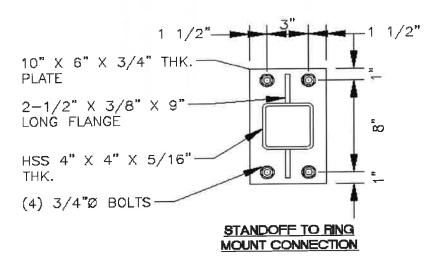
 6. Please measure and report the size and length of all existing antenna mounting pipes.
- 7. Please measure and report the antenna information for all sectors.
- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

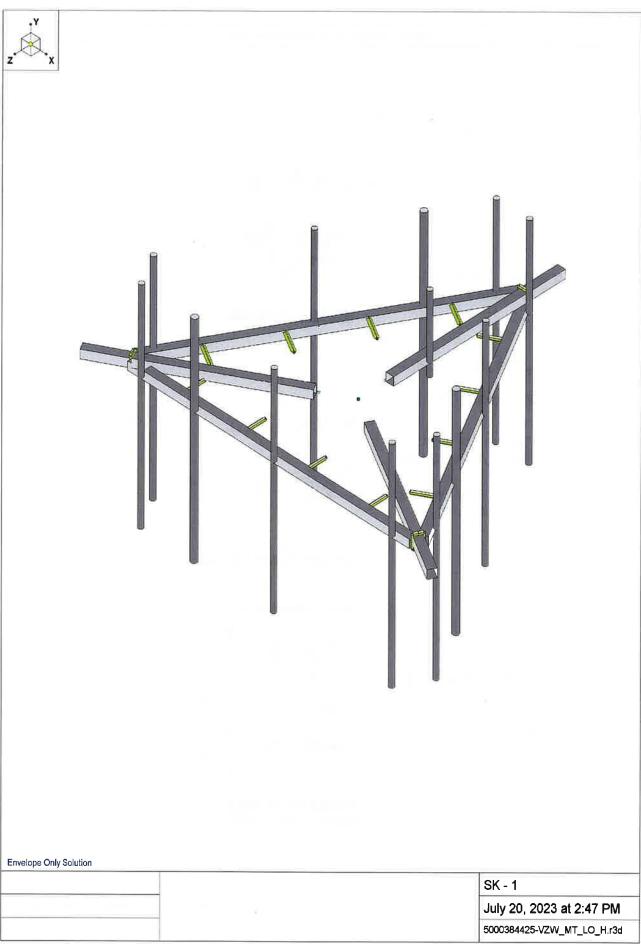

Standard Conditions

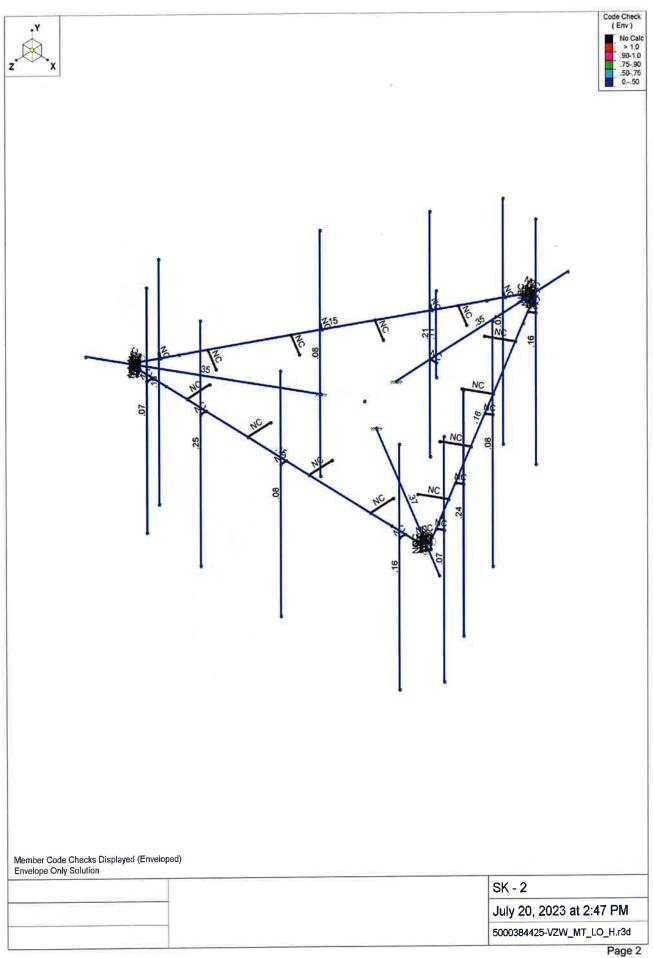
1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

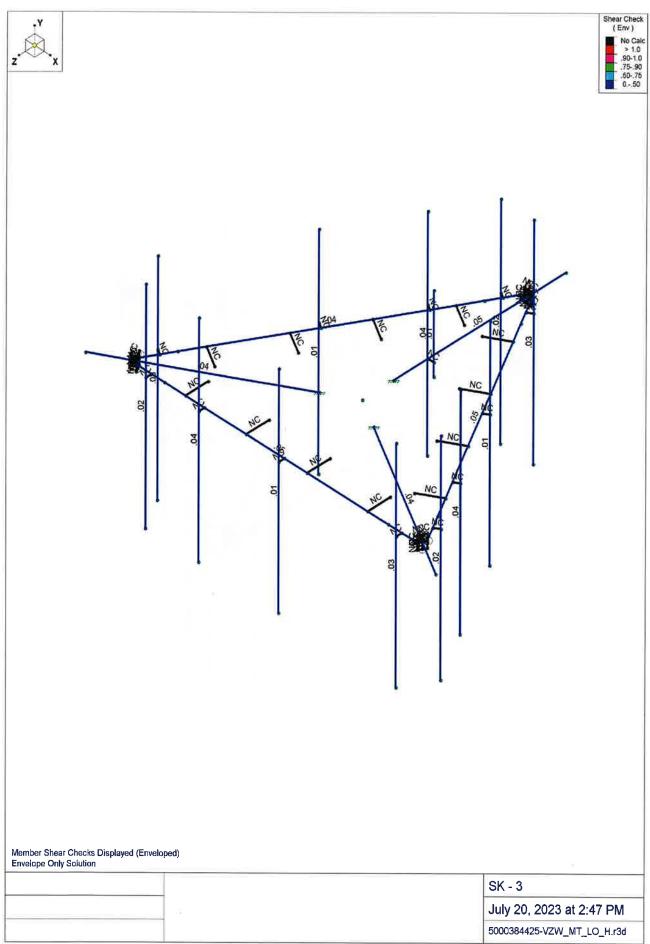

MASER

			V4.0 Updated on 3-31-	2021
	Antenna Mount Mapping For	m (PATENT PENDING)		FCC#
Tower Owner:	VERION WIRELESS	Mapping Date:	5/26/2	021
Site Name:	SOUTHINGTON EAST CT	Tower Type:	Monor	pole
Site Number or ID:	468340	Tower Height (Ft.):	89.7	5
Mapping Contractor:	HUDSON DESIGN GROUP, LLC.	Mount Elevation (Ft.):	81.1	6


his antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, publication, addition or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety equirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements. Please Insert Sketches of the Antenna Mount 05262021 DATE: Project Name: Southington GAS HUDSON Design Group LLC Design By: Page_ 45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845 TE. (978) 557-5553 FAX (978) 336-5586 12'4 "FACE 0" 8" 140" 148-42" SRAUCH 23 TO EMP of FACE BEANCH LIS TO FUD OF FILE ROS (44-107) COLLAR PICS (81-95) 12"x 1/2" (2) 1" T-ROD PLATE 10"X 6" (4) 1/4 "BILTS CROSS PLATES 7" x 8" x 14" 1/2" U.B. 1/2" BUTS TO BOCK PLOTES PILS (121-123,132-135) GRATING PICS (178-188) CORNER CONNECTIONS PICS (111-120, 129-150)




8.0. MOUNT DETAIL



CROSSOVER PLATE DETAIL

Basic Load Cases

,	BLC Description	Category	X Gravity Y Gravity Z	Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Antenna D	None				96			
2	Antenna Di	None				96			
3	Antenna Wo (0 Deg)	None				96			
4	Antenna Wo (30 Deg)	None				96			
5	Antenna Wo (60 Deg)	None				96			
6	Antenna Wo (90 Deg)	None				96		VI	
7	Antenna Wo (120 Deg)	None			_	96			
8	Antenna Wo (150 Deg)	None				96		NI DI BAL	
9	Antenna Wo (180 Deg)	None				96		_	
10	Antenna Wo (210 Deg)	None				96		100000	
11	Antenna Wo (240 Deg)	None				96	-		
12	Antenna Wo (270 Deg)	None			- III	96			
13	Antenna Wo (300 Deg)	None				96			
14	Antenna Wo (330 Deg)	None			-66	96		nu baz	
15	Antenna Wi (0 Deg)	None				96			
16	Antenna Wi (30 Deg)	None				96		Destru	
17	Antenna Wi (60 Deg)	None				96			
18	Antenna Wi (90 Deg)	None			1	96	170.1		
19	Antenna Wi (120 Deg)	None				96			
20	Antenna Wi (150 Deg)	None			200	96	100		
21	Antenna Wi (180 Deg)	None				96			
22	Antenna Wi (210 Deg)	None				96			20
23	Antenna Wi (240 Deg)	None				96			
24	Antenna Wi (270 Deg)	None				96			19
25	Antenna Wi (300 Deg)	None				96			
26	Antenna Wi (330 Deg)	None				96	nouna.	1 1 2	
27	Antenna Wm (0 Deg)	None				96			
28	Antenna Wm (30 Deg)	None				96			
29	Antenna Wm (60 Deg)	None				96			
30	Antenna Wm (90 Deg)	None		20		96			
31	Antenna Wm (120 Deg)	None				96			
32	Antenna Wm (150 Deg)	None				96		11111	
33	Antenna Wm (180 Deg)	None				96			
34	Antenna Wm (210 Deg)	None				96			
35	Antenna Wm (240 Deg)	None				96			
36	Antenna Wm (270 Deg)	None				96			
37	Antenna Wm (300 Deg)	None				96			
38	Antenna Wm (330 Deg)	None				96			
39	Structure D	None	-1					3	
40	Structure Di	None		13 (-)			19	3	
41	Structure Wo (0 Deg)	None					38		
42	Structure Wo (30 Deg)	None					38		
43	Structure Wo (60 Deg)	None					38		
43	Structure Wo (90 Deg)	None					38		
45	Structure Wo (120 Deg)	None					38		
46	Structure Wo (150 Deg)	None					38		
47	Structure Wo (180 Deg)	None					38		
48	Structure Wo (180 Deg)	None			-		38		
	Structure Wo (240 Deg)	None					38		
49	Structure Wo (240 Deg) Structure Wo (270 Deg)	None					38		
50	Structure Wo (270 Deg) Structure Wo (300 Deg)	None					38		
51		None					38		
52	Structure Wo (330 Deg)	None					38		
53	Structure Wi (0 Deg)	None					38		
54	Structure Wi (30 Deg)						38		
55	Structure Wi (60 Deg)	None					1 30		

Basic Load Cases (Continued)

-	BLC Description	Category	X Gravity Y Gravity	Z Gravity	Joint	Point	Distribut.	Area(Me.	Surface(
56	Structure Wi (90 Deg)	None					38		
57	Structure Wi (120 Deg)	None					38		
58	Structure Wi (150 Deg)	None					38		
59	Structure Wi (180 Deg)	None					38		
60	Structure Wi (210 Deg)	None					38		
61	Structure Wi (240 Deg)	None					38		
62	Structure Wi (270 Deg)	None					38		
63	Structure Wi (300 Deg)	None					38		
64	Structure Wi (330 Deg)	None					38		
65	Structure Wm (0 Deg)	None					38		
66	Structure Wm (30 Deg)	None			-1-	1	38		
67	Structure Wm (60 Deg)	None					38		
68	Structure Wm (90 Deg)	None					38	E CAN	
69	Structure Wm (120 Deg)	None					38		
70	Structure Wm (150 Deg)	None					38	1000	
71	Structure Wm (180 Deg)	None					38		
72	Structure Wm (210 Deg)	None					38		
73	Structure Wm (240 Deg)	None					38		
74	Structure Wm (270 Deg)	None				The state of	38		
75	Structure Wm (300 Deg)	None					38		
76	Structure Wm (330 Deg)	None					38		75.0
77	Lm1	None				1			
78	Lm2	None				1			1.00
79	Lv1	None				1			
80	Lv2	None				1		-2-11 (1	7.5
81	Antenna Ev	None				96			
82	Antenna Eh (0 Deg)	None				64	EL W		
83	Antenna Eh (90 Deg)	None				64			
84	Structure Ev	ELY				- 1000	fige 1 fire	3	
85	Structure Eh (0 Deg)	ELZ		03				3	
86	Structure Eh (90 Deg)	ELX	.03					3	100
87	BLC 39 Transient Area Loads	None					24		
88	BLC 40 Transient Area Loads	None				7.	36		
89	BLC 84 Transient Area Loads	None							
90	BLC 85 Transient Area Loads	None					36	nk i	
91	BLC 86 Transient Area Loads	None					36		

Load Combinations

	Description S.		PDelta	SE	3Fa.	, BLC	Fa	BLC	Fa	BLC	Fa.	BLC	Fa.	В	Fa.	В	Fa	В	Fa	В	Fa	В	Fa
1	1.2D+1.0Wo (0 D Y		Y	-	1 1.2		1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Y		Υ		1 1.2	39	1.2	4	1	42	1				-								
3	1.2D+1.0Wo (60 Y		Υ		1 1.2	39	1.2	- 5	1	43	1												
4	1.2D+1.0Wo (90 Y		Υ		1 1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120Y		Y		1 1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150Y		Υ	1	1 1.2	39	1.2	8	1	46	1								- 10				
7	1.2D+1.0Wo (180Y		Υ		1 1.2	39	1.2	9	1	47	1												
8	1.2D+1.0Wo (210Y		Υ		1 1.2	39	1.2	10	1	48	1							15					-1
9	1.2D+1.0Wo (240Y		Υ		1 1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270Y		Υ	1	1 1.2	39	1.2	12	1	50	1						1						
11	1.2D+1.0Wo (300 Y		Υ		1 1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330Y		Υ		1 1.2	39	1.2	14	1	52	1	18					-						
13	1.2D + 1.0Di + 1.0Y		Υ		1 1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Y		Υ	1	1 1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0Y		Y	1	1 1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Y		Υ		1 1.2	39	1.2	2	1	40	1	18	1	56	1						la l		
17	1.2D + 1.0Di + 1.0Y	100	Υ		1 1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Y		Υ		1 1.2	39	1.2	2	1	40	1	20	1	58	1					18			

Load Combinations (Continued)

Loa	d Combinatio	Ins	Continu	ieu)							_			_	_		_		_	_	_	_	_
	Description	S	PDelta	SB	Fa	BLC	Fa	BLC	Fa	BLC	Fa.	BLC	Fa.	В	Fa.	В.,	Fa.	В	Fa	BF	aE	1F	a
19	1.2D + 1.0Di + 1.0		Y		1.2	39	1.2	2	1	40	1	21	1	59	1							\perp	
20	1.2D + 1.0Di + 1.0	Y	Υ	1	1.2	39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0	-	Y		1.2	39	1.2	2	1	40	1	23	_	61									
	1.2D + 1.0Di + 1.0	-	Ÿ		1.2	39	1.2	2	1	40	1	24	1	62		1		-					
22	1.2D + 1.0Di + 1.0	-	Y	_	1.2	39	1.2	2	1	40	1	25	-	63						_	\neg		
23		-					-			40	1	26	1	64							-	+	
	1.2D + 1.0Di + 1.0	_	Y		1.2	39	1.2	2	1			-	_	04							+	+	_
25	1.2D + 1.5Lm1 + .	-	Υ		1.2	39	1.2	77	1.5	27	1	65	1		_					-	\rightarrow	-	
26	1.2D + 1.5Lm1 + .	_	Y		1.2	39	1.2	77	1.5	28	1	66	1		_			15		-	-	+	
27	1.2D + 1.5Lm1 + .	Y	Υ	1	1.2	39	1.2	77	1.5	29	1	67	1		_		_	_		_	\rightarrow	+	_
28	1.2D + 1.5Lm1 + .	Y	Y	1	1.2	39	1.2	77	1.5	30	1	68	1								_	_	
29	1.2D + 1.5Lm1 + .	. Y	Υ		1.2	39	1.2	77	1.5	31	1	69	1								_	_	_
30	1.2D + 1.5Lm1 + .	Y	Υ	1		39	1.2	77	1.5	32	1	70	1										
31	1.2D + 1.5Lm1 + .	_	Y	1		39	1.2	77	1.5	33	1	71	1										
32	1.2D + 1.5Lm1 + .		Ÿ	1		39	1.2	77	1.5	34	1	72	1										
_	1.2D + 1.5Lm1 + .		Y	_	1.2	39	1.2	77	1.5	35	1	73	1			П						\top	
33						39	1.2	77	1.5	36	1	74	1									\top	-
34	1.2D + 1.5Lm1 + .		Y	1			_				_	_	_		-						-	_	7
35	1.2D + 1.5Lm1 + .	-	Y		1.2	39	1.2	77	1.5	37	1	75	1	\vdash	-	Н				-	-	-	
36	1.2D + 1.5Lm1 + .	Y	Υ		-	39	1.2	77	1.5	38	1	76	1					-		-	-+	-	-
37	1.2D + 1.5Lm2 + .		Υ			39_	1.2	78	1.5	27	1	65	1		_	-	_	_		_	_	-	_
38	1.2D + 1.5Lm2 + .	Y	Y	1	1.2	39	1.2	78	1.5	28	1	66	1								_	_	F(1
39	1.2D + 1.5Lm2 + .	Y	Y		1.2	39	1.2	78	1.5	29	1	67	1								_	_	_
40	1.2D + 1.5Lm2 + .	Y	Y	18	1.2	39	1.2	78	1.5	30	1	68	1					21					
41	1.2D + 1.5Lm2 + .		Y			39	1.2	78	1.5	31	1	69	1										
42	1,2D + 1.5Lm2 + .	_	Y			39	1.2	78	1.5	32	1	70	1				-6						
43	1.2D + 1.5Lm2 + .	_	Y			39	1.2	78	1.5	33	1	71	1										
	1.2D + 1.5Lm2 + .	-	Y	1		39	1.2	78	1.5	34	1	72	1										
44		-		_			_	78	1.5	35	1	73	1		_							_	
45	1.2D + 1.5Lm2 + .	-	Y		1.2	39	1.2				_	+	1		-			011			-	\pm	
46	1.2D + 1.5Lm2 + .	\rightarrow	Y	1		39	1.2	78	1.5	36	1	74	_	H	_					-	-	+	
47	1,2D + 1.5Lm2 + .	_	Υ		1.2	39	1.2	78	1.5	37	1	75	1	-		-	-				-	+	
48	1.2D + 1.5Lm2 + .	Y	Y		1.2	39	1.2	78	1.5	38	1	76	1					17	-		-	+	_
49	1.2D + 1.5Lv1	Y	Υ		1.2	39	1.2	79	1.5		_			┖	_					_	_	_	-
50	1.2D + 1.5Lv2	Y	Y		1.2	39	1.2	80	1.5									Eli				4	
51	1.4D	Υ	Υ		1.4	39	1.4																
52	1.2D + 1.0Ev + 1	Y	Υ		1.2	39	1.2	81	1	ELY	1	82	1	83		E	1	E					
53	1,2D + 1.0Ev + 1	_	Y		1.2	39	1.2	81	1	ELY		82	.866	83	.5	E	866	Ε	.5				
54		-	Y		1.2	39	1.2	81	1	ELY	_	82							866				
-	1.2D + 1.0Ev + 1.	-	Y	_	1.2	39	1.2	81	1	ELY	110	82		_	1	-		_	1				
55							_	81	1	ELY	_	82	- 5				- 5		.866			\neg	
56	1.2D + 1.0Ev + 1	_	Y		1.2	39	1.2		_	-		_	8.								-	-	
_57	1.2D + 1.0Ev + 1	-	Y		1.2	39	1.2	81	1	ELY	_	82					-1			-	_	-	
58	1.2D + 1.0Ev + 1.		Y		1.2	39	1.2	81	1	ELY		82		83							-	-	-
59	1.2D + 1.0Ev + 1.		Y		1.2	39	1.2		1	ELY		82									-	-	_
60	1.2D + 1.0Ev + 1.	Y	Υ	1	1.2	39		81	1	ELY		82	5	83	8.	E	5	E	8		-	-	_
61	1.2D + 1.0Ev + 1.	Y	Y		1.2	39	1.2	81	1	ELY	1	82		83					-1		_	_	_
62	1.2D + 1.0Ev + 1.	Y	Υ		1.2	39	1.2	81	1	ELY		82	.5	83	8.	Ε	.5	E.,	8	8			
63	1.2D + 1.0Ev + 1.	Y	Υ		1.2	39	1.2	81	1	ELY				83					5				
64	0.9D - 1.0Ev + 1.0)Y	Y		.9	39	.9		-1	ELY		82	1	83		E.,	1	E				4	
65					.9	39	.9	81	-1	ELY			.866	83	.5	E	866	3E	.5				
	0.9D - 1.0Ev + 1.0			_	9	39	.9	81	-1	ELY	-1	82	5	83	866	šΕ	.5	E.,	.866				
00	0.9D - 1.0Ev + 1.0	V	Y		1 .9	39	.9	81	-1	ELY			1	83	1	Ε		E	1				
							.9	81	-1			82	_ 5	23	.866	SE.	_ 5		.866				
68	The state of the s			_	1 .9	39				ELY		02	- Q	00	5	F	- 8	F	5				-
69		The State of the S			1 .9	39	.9	81	-1				.0.	00	.o	E	4	E			-	+	
_	0.9D - 1.0Ev + 1.0				1 .9	39	.9	81	-1	ELY	-1	82	-1	03	-	-	-1	E	-	-	-	-	-
71		-			1 9	39	.9	81	-1	THE RESERVE TO STATE OF THE PARTY.			0.	03	5	E	8. -	E	5		_	+	
72	0.9D - 1.0Ev + 1.0)Y	Y	1	1 .9	39	.9	81	-1	ELY		_	_						8				
73	0.9D - 1.0Ev + 1.0)Y	Υ		1 .9	39	.9	81	-1	ELY	-1	82		83					-1			_	
	0.9D - 1.0Ev + 1.0				1 .9	39	.9	81	-1	ELY	-1	82	.5	83	8.	Ε	.5	E	8				
75					1 9	39	.9	81	-1	ELY	-1	82	.860	83	5	E	.866	δE	5				
13	1-1	1		1	1.0																		

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N3	Q Q	0	-1.385417	0	
2	N27	Ó	0	-8.885417	0	
3	CP	0	0	0	0	
4	N5	0	0	-7.21875	0	
5	N6	0.166667	0	-7.21875	0	
6	N7	-0.166667	0	-7.21875	0	THE PROPERTY.
7	N8	0	.25	-7.21875	0	
8	N9	0.166667	.25	-7.21875	0	
9	N10	-0.166667	.25	-7.21875	0	
10	N11	0	25	-7.21875	0	
11	N12	0.166667	25	-7.21875	0	
12	N13	-0.166667	25	-7.21875	0	myler every a re-
13	N15	-6.251621	0	3.609375	0	
14	N16	-6.334954	0	3.465037	0	
15	N17	-6.168288	0	3.753713	0	
16	N18	-6.251621	.25	3.609375	0	E-III I LORINE DE L
17	N19	-6.334954	.25	3.465037	0	
18	N20	-6.168288	.25	3.753713	0	mile a rest of the
19	N21	-6.251621	25	3.609375	0	
20	N22	-6.334954	25	3.465037	0	Line Day 11-74
21	N23	-6.168288	25	3.753713	0	
22	N26	6.251621	0	3.609375	0	
23	N27A	6.168288	0	3.753713	0	
24	N28	6.334954	0	3.465037	0	
25	N29	6.251621	.25	3.609375	0	
26	N30	6.168288	.25	3.753713	0	BUT FEET BUT
27	N31	6.334954	.25	3.465037	0	
28	N32	6.251621	25	3.609375	0	
29	N33	6.168288	25	3.753713	0	
30	N34	6.334954	25	3.465037	0	
31	N35	5.501621	0	3.753713	0	
32	N36	5.501621	0	4.003713	0	
33	N37	5.501621	3.25	4.003713	0	
34	N38	5.501621	-5.25	4.003713	0	
35	N39	0.334954	0	3.753713	0	
36	N40	0.334954	0	4.003713	0	
37	N41	0.334954	3.25	4.003713	0	
38	N42	0.334954	-5.25	4.003713	0	POLETICAL IN
39	N43	-3.165046	0	3.753713	0	
40	N44	-3.165046	0	4.003713	0	
41	N45	-3.165046	3.25	4.003713	0	
42	N46	-3.165046	-5.25	4.003713	0	
43	N47	-5.498379	0	3.753713	0	
44	N48	-5.498379	0	4.003713	0	
45	N49	-5.498379	3.25	4.003713	0	
46	N50	-5.498379	-5.25	4.003713	0	
47	N51	.5	0	-6.6414	0	
48	N52	0.716506	0	-6.7664	0	
49	N53	0.716506	3.25	-6.7664	0	
50	N54	0.716506	-5.25	-6.7664	0	
51	N55	3.083333	0	-2.166935	0	
52	N56	3.29984	0	-2.291935	0	
53	N57	3.29984	3.25	-2.291935	0	
54	N58	3.29984	-5.25	-2.291935	0	
55	N59	4.833333	0	0.864154	0	
56	N60	5.04984	0	0.739154	0	A RESIDENCE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NA
57	N61	5.04984	3.25	0.739154	0	
58	N62	5.04984	-5.25	0.739154	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
59	N63	6	0	2.88488	0	
60	N64	6.216506	0	2.75988	0	
61	N65	6.216506	3.25	2.75988	0	
62	N66	6.216506	-5.25	2.75988	0	
63	N67	-6.001621	00	2.887687	0	
64	N68	-6.218127	0	2.762687	0	
65	N69	-6.218127	3.25	2.762687	0	
66	N70	-6.218127	-5.25	2.762687	0	
67	N71	-3.418288	0	-1.586777	0	
68	N72	-3.634794	0	-1.711777	0	
69	N73	-3.634794	3.25	-1.711777	0	
70	N74	-3.634794	-5.25	-1.711777	0	
71	N75	-1.668288	0	-4.617866	0	
72	N76	-1.884794	0	-4.742866	0	
73	N77	-1.884794	3.25	-4.742866	0	
74	N78	-1.884794	-5.25	-4.742866	0	
75	N79	-0.501621	0	-6.638592	0	
76	N80	-0.718127	0	-6.763592	0	
77	N81	-0.718127	3.25	-6.763592	0	
78	N82	-0.718127	-5.25	-6.763592	0	
79	N83	1.333333	0	3.753713	0	
80	N84	-1.333333	0	3.753713	0	I I I I I I I I I I I I I I I I I I I
81	N85	4	0	3.753713	0	
82	N87	1.333333	0	2.753713	0	
83	N88	-1.333333	0	2.753713	00	
84	N89	4	0	2.753713	0	
85	N89A	-4	0	3.753713	0	
86	N90	-4	0	2.753713	0	The same
87	N91	-4.918288	0	3.753713	0	
88	N92	4.918288	0	3.753713	0	
89	N93	2.584144	0	-3.031557	0	
90	N94	3.917477	0	-0.722156	0	
91	N95	1.25081	0	-5.340958	0	
92	N96	1.718118	0	-2.531557	0	
93	N97	3.051452	0	-0.222156	0	
94	N98	0.384785	0	-4.840958	0	
95	N99	5.25081	0	1.587245	0	
96	N100	4.384785	0	2.087245	0	
97	N101	5.709954	0	2.382506	0	
98	N102	0.791667	0	-6.136218	0	
99	N103	-3.917477	0	-0.722156	0	
100	N104	-2.584144	0	-3.031557	0	
101	N105	-5.25081	0	1.587245	0	
102	N106	-3.051452	0	-0.222156	0	
103	N107	-1.718118	0	-2.531557	0	
104	N108	-4.384785	0	2.087245	0	
105	N109	-1.25081	0	-5.340958	0	
106	N110	-0.384785	0	-4.840958	0	
107	N111	-0.791667	0	-6.136218	0	
108	N112	-5.709954	0	2.382506	0	
109	N109A	-1.199806	0	0.692708	0	
110	N110A	-7.694997	0	4.442708	0	
111	N111A	1.199806	0	0.692708	0	
112	N112A	7.694997	0	4.442708	0	
113	N113	0	0	-2.885417	0	
114	N114	.25	0	-2.885417	0	
115	N115	.25	2.5	-2.885417	0	
116	N116	.25	5	-2.885417	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design L	Material	Design	A (in2)	Ivv [in4]	Izz [in4]	J [in4]
1	Face Horizontal	HSS4X4X5	Beam	SquareT	A500 Gr.B Rect	Typical	4.1	9.14	9.14	15.3
2	Standoff Horizontal	HSS4X4X5	Beam	SquareT	A500 Gr.B Rect	Typical	4.1	9.14	9.14	15.3
3	Mount Pipe	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
4	Pipe 2.5	PIPE 2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	Q235	29000	11154	.3	.65	.49	35	1.5	58	1.2

Member Primary Data

1	B A A		J Joint	K Joint	Notatefue.	.Section/Shape	Type	Design List	Material	Design Rules
	M4	N3	N27			Standoff Hori	Beam	SquareTube	A500 Gr.B Rect	Typical
2	M2	N7	N5			RIGID	None	None	RIGID	Typical
3	M3	N6	N5			RIGID	None	None	RIGID	Typical
4	M4A	N10	N8	0 5		RIGID	None	None	RIGID	Typical
5	M5	N9	N8			RIGID	None	None	RIGID	Typical
6	M6	N13	N11			RIGID	None	None	RIGID	Typical
7	M7	N12	N11	- 6		RIGID	None	None	RIGID	Typical
8	M8	N8	N5			RIGID	None	None	RIGID	Typical
9	M9	N11	N5			RIGID	None	None	RIGID	Typical
10	M10	N7	N10	- 1		RIGID	None	None	RIGID	Typical
11	M11	N6	N9			RIGID	None	None	RIGID	Typical
12	M12	N7	N13			RIGID	None	None	RIGID	Typical
13	M13	N6	N12			RIGID	None	None	RIGID	Typical
14	M15	N17	N15			RIGID	None	None	RIGID	Typical
15	M16	N16	N15			RIGID	None	None	RIGID	Typical
16	M17	N20	N18			RIGID	None	None	RIGID	Typical
17	M18	N19	N18			RIGID	None	None	RIGID	Typical
18	M19	N23	N21			RIGID	None	None	RIGID	Typical
19	M20	N22	N21			RIGID	None	None	RIGID	Typical
20	M21	N18	N15			RIGID	None	None	RIGID	Typical
21	M22	N21	N15			RIGID	None	None	RIGID	Typical
22	M23	N17	N20			RIGID	None	None	RIGID	Typical
23	M24	N16	N19			RIGID	None	None	RIGID	Typical
24	M25	N17	N23			RIGID	None	None	RIGID	Typical
25	M26	N16	N22			RIGID	None	None	RIGID	Typical
26	M28	N28	N26		9	RIGID	None	None	RIGID	Typical
27	M29	N27A	N26			RIGID	None	None	RIGID	Typical
28	M30	N31	N29			RIGID	None	None	RIGID	Typical
29	M31	N30	N29			RIGID	None	None	RIGID	Typical
30	M32	N34	N32			RIGID	None	None	RIGID	Typical
31	M33	N33	N32			RIGID	None	None	RIGID	Typical
32	M34	N29	N26			RIGID	None	None	RIGID	Typical
33	M35	N32	N26			RIGID	None	None	RIGID	Typical
34	M36	N28	N31			RIGID	None	None	RIGID	Typical
35	M37	N27A	N30			RIGID	None	None	RIGID	Typical
36	M38	N28	N34			RIGID	None	None	RIGID	Typical
37	M39	N27A	N33			RIGID	None	None	RIGID	Typical

Member Primary Data (Continued)

	Label	1 Joint	J Joint	K Joint	Rotate(de.	Section/Shape	Type	Design List		Design Rules
38	M40	N17	N27A			Face Horizont.			A500 Gr.B Rect	Typical
39	M41	N28	N6			Face Horizont.			A500 Gr.B Rect	Typical
40	M42	N7	N16			Face Horizont.			A500 Gr.B Rect	Typical
41	M43	N36	N35			RIGID	None	None	RIGID	Typical
42	MP1A	N37	N38			Mount Pipe	Column		A53 Gr.B	Typical
43	M45	N40	N39			RIGID	None	None	RIGID	Typical
44	MP2A	N41	N42			Mount Pipe			A53 Gr.B	Typical
45	M47	N44	N43			RIGID	None	None	RIGID	Typical
46	MP3A	N45	N46			Pipe 2.5	Column		A53 Gr.B	Typical
47	M49	N48	N47			RIGID	None	None	RIGID	Typical
48	MP4A	N49	N50			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
49	M51	N52	N51			RIGID	None	None	RIGID	Typical
50	MP1C	N53	N54			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
51	M53	N56	N55			RIGID	None	None	RIGID	Typical
52	MP2C	N57	N58			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
53	M55	N60	N59			RIGID	None	None	RIGID	Typical
54	MP3C	N61	N62			Pipe 2.5	Column	Pipe	A53 Gr.B	Typical
55	M57	N64	N63			RIGID	None	None	RIGID	Typical
56	MP4C	N65	N66			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
57	M59	N68	N67			RIGID	None	None	RIGID	Typical
58	MP1B	N69	N70			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
59	M61	N72	N71			RIGID	None	None	RIGID	Typical
60	MP2B	N73	N74			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
61	M63	N76	N75			RIGID	None	None	RIGID	Typical
62	MP3B	N77	N78			Pipe 2.5	Column	Pipe	A53 Gr.B	Typical
63	M65	N80	N79			RIGID	None	None	RIGID	Typical
64	MP4B	N81	N82			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
65	M67	N84	N88			RIGID	None	None	RIGID	Typical
66	M68	N83	N87			RIGID	None	None	RIGID	Typical
67	M69	N85	N89			RIGID	None	None	RIGID	Typical
68	M70	N89A	N90			RIGID	None	None	RIGID	Typical
69	M71	N94	N97			RIGID	None	None	RIGID	Typical
70	M72	N93	N96			RIGID	None	None	RIGID	Typical
71	M73	N95	N98			RIGID	None	None	RIGID	Typical
72	M74	N99	N100			RIGID	None	None	RIGID	Typical
73	M75	N104	N107			RIGID	None	None	RIGID	Typical
74	M76	N103	N106			RIGID	None	None	RIGID	Typical
75	M77	N105	N108			RIGID	None	None	RIGID	Typical
76	M78	N109	N110			RIGID	None	None	RIGID	Typical
77	M77A	N109A	N110A			Standoff Hori	Beam		A500 Gr.B Rect	Typical
78	M78A	N111A	N112A			Standoff Hori	Beam	SquareTube	A500 Gr.B Rect	
79	M79	N113	N114			RIGID	None	None	RIGID	Typical
80	OVP	N115	N116	1-		Mount Pipe			A53 Gr.B	Typical

Member Advanced Data

	Label	I Release	J Release	1 Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ratio Options	Analysis	Inactive	Seismi
1	M4						Yes		F3		None
2	M2		BenPIN			10	Yes	** NA **			None
3	M3		BenPIN				Yes	** NA **			None
4	M4A						Yes	** NA **			None
5	M5						Yes	** NA **			None
6	M6						Yes	** NA **			None
7	M7						Yes	** NA **			None
8	M8		BenPIN				Yes	** NA **			None
9	M9		BenPIN				Yes	** NA **			None
10	M10		Boill itt				Yes	** NA **			None
11	M11						Yes	** NA **			None

Member Advanced Data (Continued)

	Label	I Release	I Release	I Offsetfinl	I Offsetfin)	T/C Only	Dhysical	Defl Ratio Options	Analysis	Inactivo	Seismi
12	M12	TICICASC	o itelease	Chisedini	3 Onsethin	I/C Only	Yes	** NA **	Allalysis	Inactive	None
13	M13						Yes	** NA **			None
14	M15		BenPIN				Yes	** NA **			None
15	M16		BenPIN				Yes	** NA **			None
16	M17		DOM: N				Yes	** NA **			None
17	M18						Yes	** NA **			None
18	M19						Yes	** NA **		- N D	None
19	M20						Yes	** NA **			None
20	M21	- 2	BenPIN				Yes	** NA **			None
21	M22		BenPIN				Yes	** NA **			
22	M23		Deni iiv				Yes	** NA **		7.0	None
23	M24						Yes	** NA **			None
24	M25						Yes	** NA **			None
25	M26						Yes	** NA **			None
26	M28		BenPIN					** NA **		The same of the sa	None
27	M29		BenPIN				Yes	** NA **			None
28	M30		Denrin				Yes	** NA **			None
29	M31					-	Yes	** NA **			None
30	M32			1 4			Yes				None
31	M33						Yes	** NA **			None
32	M34		DonDIN				Yes	** NA **			None
33	M35		BenPIN				Yes	** NA **			None
			BenPIN				Yes	** NA **			None
34	M36 M37						Yes	** NA **			None
35		_					Yes	** NA **			None
36	M38						Yes	** NA **			None
37	M39						Yes	** NA **			None
38	M40						Yes				None
39	M41						Yes				None
40	M42						Yes	dd as a dd			None
41	M43						Yes	** NA **			None
42	MP1A						Yes	** NA **		2 (27)	None
43	M45						Yes	** NA **			None
44	MP2A						Yes	** NA **			None
45	M47						Yes	** NA **			None
46	MP3A						Yes	** NA **			None
47	M49						Yes	** NA **			None
48	MP4A						Yes	** NA **			None
49	M51						Yes	** NA **			None
50	MP1C						Yes	** NA **			None
51	M53						Yes	** NA **			None
52	MP2C						Yes	** NA **			None
53	M55						Yes	** NA **			None
54	MP3C				15		Yes	** NA **			None
55	M57						Yes	** NA **			None
56	MP4C						Yes	** NA **	-		None
57	M59						Yes	** NA **			None
58	MP1B						Yes	** NA **			None
59	M61						Yes	** NA **			None
60	MP2B						Yes	** NA **			None
61	M63						Yes	** NA **			None
62	MP3B						Yes	** NA **			None
63	M65						Yes	** NA **			None
64	MP4B		100				Yes	** NA **			None
65	M67						Yes	** NA **			None
66	M68						Yes	** NA **			None
67	M69						Yes	** NA **			None
68	M70						Yes	** NA **			None
69	M71						Yes	** NA **			None
70	M72						Yes	** NA **			None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offsetfin1	T/C Only	Physical	Defl Ratio Options	Analysis	Inactive	Seismi
71	M73	1110.000					Yes	** NA **			None
72	M74						Yes	** NA **			None
73	M75						Yes	** NA **			None
74	M76						Yes	** NA **	101		None
75	M77						Yes	** NA **			None
76	M78						Yes	** NA **			None
77	M77A						Yes				None
78	M78A				F 5		Yes				None
79	M79						Yes	** NA **			None
80	OVP						Yes	** NA **			None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Y	-20	2
2	MP3A	My	017	2
3	MP3A	Mz	-,012	2
4	MP3A	Y	-20	6
5	MP3A	My	017	6
6	MP3A	Mz	012	6
7	MP3B	Y	-20	2
8	MP3B	My	.014	2
9	MP3B	Mz	014	2
10	MP3B	Y	-20	6
11	MP3B	My	.014	6
12	MP3B	Mz	014	6
13	MP3C	Y	-20	2
14	MP3C	My	009	2
15	MP3C	Mz	.018	2
16	MP3C	Υ	-20	6
17	MP3C	My	009	6
18	MP3C	Mz	.018	6
19	MP3A	Y	-20	2
20	MP3A	My	017	2
21	MP3A	Mz	.012	2
22	MP3A	Y	-20	6
23	MP3A	My	017	6
24	MP3A	Mz	.012	6
25	MP3B	Y	-20	2
26	MP3B	My	009	2
27	MP3B	Mz	018	2
28	MP3B	Y	-20	6
29	MP3B	My	009	6
30	MP3B	Mz	018	6
31	MP3C	Y	-20	2
32	MP3C	My	.014	2
33	MP3C	Mz	.014	2
34	MP3C	Y	-20	6
35	MP3C	My	.014	6
36	MP3C	Mz	.014	6
37	MP2A	Y	-4.4	4
38	MP2A	My	001	4
39	MP2A	Mz	0	4
40	MP2B	Y	-4.4	4
41	MP2B	My	.000191	4
42	MP2B	Mz	001	4
43	MP2C	Y	-4.4	4
44	MP2C	My	.000191	4

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
45	MP2C	Mz	.001	4
46	MP1A	Υ	-43.55	3
47	MP1A	My	036	3
48	MP1A	Mz	0	3
49	MP1A	Y	-43.55	5
50	MP1A	My	036	5
51	MP1A	Mz	0	5
52	MP1B	Y	-43.55	3
53	MP1B	My	.006	3
54	MP1B	Mz	036	3
55	MP1B	Y	-43.55	5
56	MP1B	My	.006	5
57	MP1B	Mz	036	5
58	MP1C	Y	-43.55	3
59	MP1C	My	.006	3
60	MP1C	Mz	.036	3
61	MP1C	Y	-43.55	5
62	MP1C	My	.006	5
63	MP1C	Mz	.036	5
64	МРЗА	Y	-84.4	2.5
65	MP3A	My	.042	2.5
66	MP3A	Mz	0	2.5
67	MP3B	Y	-84.4	2.5
68	MP3B	My	021	2.5
69	MP3B	Mz	.037	2.5
70	MP3C	Y	-84.4	2.5
71	MP3C	My.	021	2.5
72	MP3C	Mz	037	2.5
73	MP4A	Y	-70.3	2.5
74	MP4A	My	.035	2.5
75	MP4A	Mz	0	2.5
76	MP4B	Y	-70.3	2.5
77	MP4B	My	018	2.5
78	MP4B	Mz	.03	2.5
79	MP4C	Y	-70.3	2.5
80	MP4C	My	018	2.5
81	MP4C	Mz	03	2.5
82	OVP	Y	-32	1
83	OVP	My	0	1
84	OVP	Mz	Ö	
85	MP3A	Y	-17.6	5
86	MP3A	My	004	5
87	MP3A	Mz	0	5
88	MP3C	Y	-17.6	5
89	MP3C	My	.000764	5
90	MP3C	Mz	.004	5
91	MP3A	Y	-17.6	5
92	MP3A	My	.004	5
93	MP3A	Mz	0	5
94	MP3C	Y	-17.6	5
95	MP3C	My	000764	5
96	MP3C	Mz	004	5

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Y	-57.567	2
2	MP3A	My	048	2
3	MP3A	Mz	034	2

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
4	MP3A	Y	-57.567	6
5	MP3A	My	048	6
6	MP3A	Mz	034	6
7	MP3B	Y	-57.567	2
8	МРЗВ	My	.041	2
9	MP3B	Mz	041	2
10	MP3B	Y	-57.567	6
11	MP3B	My	.041	6
12	MP3B	Mz	041	6
13	MP3C	Y	-57.567	2
14	MP3C	My	025	2
15	MP3C	Mz	.053	2
16	MP3C	Y	-57.567	6
17	MP3C	My	025	6
18	MP3C	Mz	.053	6
19	MP3A	Y	-57.567	2
20	MP3A	My	048	2
21	MP3A	Mz	.034	2
22	MP3A	Y	-57.567	6
23	MP3A	My	048	6
24	MP3A	Mz	.034	6
25	MP3B	Y	-57.567	2
26	MP3B	My	025	2
27	MP3B	Mz	053	2
28	MP3B	Y	-57.567	6
29	MP3B	My	025	6
30	MP3B	Mz	053	6
31	MP3C	Y	-57.567	2
32	MP3C	My	.041	2
33	MP3C	Mz	.041	2
34	MP3C	Y	-57.567	6
35	MP3C	My	.041	6
36	MP3C	Mz	.041	6
37	MP2A	Y	-12.579	4
38	MP2A	My	003	4
39	MP2A	Mz	0	4
40	MP2B	Y	-12.579	4
41	MP2B	My	.000546	4
42	MP2B	Mz	003	4
43	MP2C	Y	-12.579	4
44	MP2C	My	.000546	4
45	MP2C	Mz	.003	4
	MP1A	Y	-33.561	3
46 47	MP1A	My	028	3
	MP1A	Mz	0	3
48	MP1A MP1A	Y	-33.561	5
49		My	028	5
50	MP1A	Mz	020	5
51	MP1A	Y	-33.561	3
52	MP1B		.005	3
53	MP1B	My	028	3
54	MP1B	Mz	-33.561	5
55	MP1B	Y	.005	5
56	MP1B	My	028	5
57	MP1B	Mz		3
58	MP1C	Y	-33.561	3
59	MP1C	My	.005	3
60	MP1C	Mz	.028	
61	MP1C	Y	-33.561	5
62	MP1C	My	.005	5

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP1C	Mz	.028	5
64	MP3A	Y	-42.276	2.5
65	MP3A	My	.021	2.5
66	MP3A	Mz	0	2.5
67	MP3B	Υ	-42.276	2.5
68	MP3B	My	011	2.5
69	MP3B	Mz	.018	2.5
70	MP3C	Y	-42.276	2.5
71	MP3C	My	011	2.5
72	MP3C	Mz	018	2.5
73	MP4A	Y	-38.003	2.5
74	MP4A	My	.019	2.5
75	MP4A	Mz	0	2.5
76	MP4B	Y	-38.003	2.5
77	MP4B	My	01	2.5
78	MP4B	Mz	.016	2.5
79	MP4C	Y	-38.003	2.5
80	MP4C	My	01	2.5
81	MP4C	Mz	016	2.5
82	OVP	Y	-82.926	1
83	OVP	My	0	1
84	OVP	Mz	0	1
85	MP3A	Y	6.6	5
86	MP3A	My	.002	5
87	MP3A	Mz	0	5
88	MP3C	Y	6.6	5
89	MP3C	My	000287	5
90	MP3C	Mz	002	5
91	MP3A	Y	6.6	5
92	MP3A	My	002	5
93	MP3A	Mz	0	5
94	MP3C	Y	6.6	5
95	MP3C	My	.000287	5
96	MP3C	Mz	.002	5

Member Point Loads (BLC 3: Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	2
2	MP3A	Z	-104.378	2
3	MP3A	Mx	.061	2
4	MP3A	X	0	6
5	MP3A	Z	-104.378	6
6	MP3A	Mx	.061	6
7	MP3B	X	0	2
8	MP3B	Z	-46.69	2
9	MP3B	Mx	.034	2
10	MP3B	X	0	6
11	MP3B	Z	-46.69	6
12	MP3B	Mx	.034	6
13	MP3C	X	0	2
14	MP3C	Z	-46.69	2
15	MP3C	Mx	043	2
16	MP3C	X	0	6
17	MP3C	Z	-46.69	6
18	MP3C	Mx	043	6
19	MP3A	X	0	2
20	MP3A	Z	-104.378	2
21	MP3A	Mx	061	2

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

Me	ember Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
22	MP3A	X	0	6
23	MP3A	Z	-104.378	6
24	MP3A	Mx	061	6
25	MP3B	X	0	2
26	MP3B	Z	-46.69	2
27	MP3B	Mx	.043	2
28	MP3B	X	0	<u></u>
29	MP3B	Z	-46.69	6
30	MP3B	Mx	.043	6
31	MP3C	X	0	2
32	MP3C	Z	-46.69	2
33	MP3C	Mx	034	2
34	MP3C	X	0	6
35	MP3C	Z	-46.69	6
36	MP3C	Mx	034	6
37	MP2A	X	0	4
38	MP2A	Z	-33.719	4
39	MP2A	Mx	0	4
10	MP2B	X	0	4
1 0	MP2B	Z	-7.43	4
12	MP2B	Mx	.002	4
43	MP2C	X	0	4
44	MP2C	Z	-7.43	4
45	MP2C	Mx	002	4
	MP1A	X	0	3
16		Z	-74.258	3
17	MP1A	Mx	0	3
48	MP1A	X	0	5
49	MP1A	Ž	-74.258	5
50	MP1A		0	5
51	MP1A	Mx	0	3
52	MP1B	X	-27.042	3
53	MP1B	Z		3
54	MP1B	Mx	.022	5
55	MP1B	X	0	
56	MP1B	Z	-27.042	5
57	MP1B	Mx	.022	5
58	MP1C	X	0	3
59	MP1C	Z	-27.042	3
60	MP1C	Mx	022	3
61	MP1C	X	0	5
62	MP1C	Z	-27.042	5
63	MP1C	Mx	-,022	5
64	MP3A	X	0	2.5
65	MP3A	Z	-58.725	2.5
66	MP3A	Mx	0	2.5
67	MP3B	X	0	2.5
58	MP3B	Z	-44.233	2.5
69	MP3B	Mx	019	2.5
70	MP3C	X	0	2.5
71	MP3C	Z	-44.233	2.5
72	MP3C	Mx	.019	2.5
		Y	0	2.5
73	MP4A	X	-58.725	2.5
74	MP4A		-56.725	2.5
75	MP4A	Mx		2.5
76	MP4B	X	0	2.5
77	MP4B	Z	-38.834	
78	MP4B	Mx	017	2.5
79	MP4C	X	0	2.5
80	MP4C	Z	-38.834	2.5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP4C	Mx	.017	2.5
82	OVP	X	0	1 1
83	OVP	Z	-116.733	1
84	OVP	Mx	0	1
85	MP3A	X	0	5
86	MP3A	Z	-36.371	5
87	MP3A	Mx	0	5
88	MP3C	X	0	5
89	MP3C	Z	-11.796	5
90	MP3C	Mx	003	5
91	MP3A	X	0	5
92	MP3A	Z	-36.371	5
93	MP3A	Mx	0	5
94	MP3C	X	0	5
95	MP3C	Z	-11.796	5
96	MP3C	Mx	.003	5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	44.754	2
2	MP3A	Z	-77.516	2
3	MP3A	Mx	.008	2
4	MP3A	X	44.754	6
5	MP3A	Z	-77.516	6
6	MP3A	Mx	.008	6
7	MP3B	X	25.927	2
8	MP3B	Z	-44.907	2
9	MP3B	Mx	.051	2
10	MP3B	X	25.927	6
11	MP3B	Z	-44.907	6
12	MP3B	Mx	.051	6
13	MP3C	X	34.736	2
14	MP3C	Z	-60.165	2
15	MP3C	Mx	07	2
16	MP3C	X	34.736	6
17	MP3C	Z	-60.165	6
18	MP3C	Mx	07	6
19	MP3A	X	44.754	2
20	MP3A	Z	-77.516	2
21	MP3A	Mx	083	2
22	MP3A	X	44.754	6
23	MP3A	Z	-77.516	6
24	MP3A	Mx	083	6
25	MP3B	. X	25.927	2
26	МР3В	Z	-44.907	2
27	MP3B	Mx	.03	2
28	MP3B	X	25.927	6
29	MP3B	Z	-44.907	6
30	MP3B	Mx	.03	6
31	MP3C	X	34.736	2
32	MP3C	Z	-60.165	2
33	MP3C	Mx	018	2
34	MP3C	X	34.736	6
35	MP3C	Z	-60.165	6
36	MP3C	Mx	018	6
37	MP2A	X	13.471	4
38	MP2A	Z	-23.333	4
39	MP2A	Mx	003	4

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP2B	X	4.892	4
41	MP2B	Z	-8.473 .002	W2011 4 E
42	MP2B	Mx		4
43	MP2C	X	8.906 -15.426	4
44	MP2C	Z		4
45	MP2C	Mx	003	3
46	MP1A	X	31.044	3
47	MP1A	Z	-53.769	3
48	MP1A	Mx	026	5
49	MP1A	X	31.044	5
50	MP1A	Z	-53.769	5
51	MP1A	Mx	026	3
52	MP1B	X	15.634	3
53	MP1B	Z	-27.079	3
54	MP1B	Mx	.024	5
55	MP1B	X	15.634	
56	MP1B	Z	-27.079	5 5
57	MP1B	Mx	.024	3 0
58	MP1C	X	22.844	
59	MP1C	Z	-39.568	3 3
60	MP1C	Mx	029	
61	MP1C	X	22.844	5
62	MP1C	Z	-39.568	5
63	MP1C	Mx	029	5
64	MP3A	X	26.947	2.5 2.5
65	MP3A	Z	-46.674	
66	MP3A	Mx	.013	2.5
67	MP3B	X	19.701	2.5
68	MP3B	Z	-34.123	2.5
69	MP3B	Mx	02	2.5
70	MP3C	X	26.947	2.5
71	MP3C	Z	-46.674	2.5
72	MP3C	Mx	.013	2.5
73	MP4A	X	26.047	2.5
74	MP4A	Z	-45.115	2.5
75	MP4A	Mx	.013	2.5
76	MP4B	X	16.102	2.5
77	MP4B	Z	-27.889	2.5
78	MP4B	Mx	016	2.5
79	MP4C	X	26.047	2.5
80	MP4C	Z	-45.115	2.5
81	MP4C	Mx	.013	2.5
82	OVP	X	51.602	
83	OVP	Z	-89.378	1
84	OVP	Mx	0	
85	MP3A	X	15.018	5
86	MP3A	Z	-26.012	5
87	мР3А	Mx	004	5
88	MP3C	X	10.751	5
89	MP3C	Z	-18.621	5
90	MP3C	Mx	004	5
91	мР3А	X	15.018	5
92	MP3A	Z	-26.012	5
93	MP3A	Mx	.004	5
94	MP3C	X	10.751	5
95	MP3C	Z	-18.621	5
96	MP3C	Mx	.004	5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	51.759	2
2	MP3A	Z	-29.883	2
3	MP3A	Mx	026	2
4	MP3A	X	51.759	6
5	MP3A	Z	-29.883	6
6	MP3A	Mx	026	6
7	MP3B	X	69.11	2
8	MP3B	Z	-39.901	2
9	MP3B	Mx	.078	2
10	MP3B	X	69.11	6
11	MP3B	Z	-39.901	6
12	MP3B	Mx	.078	6
13	MP3C	X	84.368	2
14	MP3C	Z	-48.71	2
15	MP3C	Mx	081	2
16	MP3C	X	84.368	6
17	MP3C	Z	-48.71	6
18	MP3C	Mx	081	6
19	MP3A	X	51.759	2
20	MP3A	Z	-29.883	2
21	MP3A	Mx	061	2
22	МРЗА	X	51.759	6
23	MP3A	Z	-29.883	6
24	MP3A	Mx	061	6 - 6
25	MP3B	X	69.11	2
26	MP3B	Z	-39.901	2
27	MP3B	Mx	.007	2
28	MP3B	X	69.11	6
29	MP3B	Z	-39.901	6
30	MP3B	Mx	.007	6
31	MP3C	X	84.368	2
32	MP3C	Z	-48.71	2
33	MP3C	Mx	.026	2
34	MP3C	X	84.368	6
35	MP3C	Z	-48.71	6
36	MP3C	Mx	.026	6
37	MP2A	X	11.595	4
38	MP2A	Z	-6.695	
39	MP2A	Mx	003	4
40	MP2B	X	19.502	4
41	MP2B	Z	-11.26	
42	MP2B	Mx	.004	4
43	MP2C	X		
44	MP2C	Z	26.456	4
45	MP2C	Mx	-15.274	4
46	MP1A	X	003	4
47	MP1A		32.688	3
48		Z	-18.872	3
48	MP1A	Mx	027	3
	MP1A	X	32.688	5
50 51	MP1A	Z	-18.872	5
	MP1A	Mx	027	5
52	MP1B	X	46.889	3
53	MP1B	Z	-27.071	3
54	MP1B	Mx	.029	3
55	MP1B	X	46.889	5
56	MP1B	Z	-27.071	5
57	MP1B	Mx	.029	5
58	MP1C	X	59.377	3
59	MP1C	Z	-34.282	3

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP1C	Mx	02	3 = 0 =
61	MP1C	X	59.377	5
62	MP1C	Z	-34.282	5
63	MP1C	Mx	02	5
64	MP3A	X	38.307	2.5
65	MP3A	Z	-22.116	2.5
66	MP3A	Mx	.019	2.5
67	MP3B	X	38.307	2.5
68	MP3B	Z	-22.116	2.5
69	MP3B	Mx	019	2.5
70	MP3C	X	50.857	2.5
71	MP3C	Z	-29.362	2.5
72	MP3C	Mx	0	2.5
73	MP4A	X	33.631	2.5
74	MP4A	Z	-19.417	2.5
75	MP4A	Mx	.017	2.5
76	MP4B	X	33.631	2.5
77	MP4B	Z	-19.417	2.5
78	MP4B	Mx	017	2.5
79	MP4C	X	50.857	2.5
80	MP4C	Z	-29.362	2.5
81	MP4C	Mx	0	2.5
82	OVP	X	79.826	5011 1
83	OVP	Z	-46.088	11
84	OVP	Mx	0	Secure 1 10
85	MP3A	X	15.04	5
86	MP3A	Z	-8.683	5
87	MP3A	Mx	004	5
88	MP3C	X	28.931	5
89	MP3C	Z	-16.704	5
90	MP3C	Mx	003	5
91	MP3A	X	15.04	5
92	MP3A	Z	-8.683	5
93	MP3A	Mx	.004	5
94	MP3C	X	28.931	5
95	MP3C	Z	-16.704	5
96	MP3C	Mx	.003	5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	44.896	2
2	MP3A	Z	0	2
3	MP3A	Mx	037	2
4	MP3A	X	44.896	6
5	MP3A	Z	0	6
6	MP3A	Mx	037	6
7	MP3B	X	102.585	2
8	MP3B	Z	0	2
9	MP3B	Mx	.074	2
10	MP3B	X	102.585	6
11	MP3B	Z	0	6
12	MP3B	Mx	.074	6
13	MP3C	X	102.585	2
14	MP3C	Z	0	2
15	MP3C	Mx	044	2
16	MP3C	X	102.585	6
17	MP3C	Z	0	6
18	MP3C	Mx	044	6

Member Point Loads (BLC 6: Antenna Wo (90 Deg)) (Continued)

19	Member Label MP3A	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP3A	X	44.896	2
21	MP3A	Mx	037	2
22	MP3A	X	44.896	2
23	MP3A	Z		6
24	MP3A	Mx	037	6
25	MP3B			6
26	MP3B	X	102.585	2
27	MP3B		0	2
28	MP3B	Mx	044	2
29	MP3B	X	102.585	6
30			0	6
	MP3B	Mx	044	6
31	MP3C	X	102.585	2
33	MP3C	Z	0	2
	MP3C	Mx	.074	2
34	MP3C	X	102.585	6
35	MP3C	Z	0	6
36	MP3C	Mx	.074	6
37	MP2A	X	6.613	4
38	MP2A	Z	0	4
39	MP2A	Mx	002	4
40	MP2B	X	32.902	4
41	MP2B	Z	0	4
42	MP2B	Mx	.001	4
43	MP2C	X	32.902	4
44	MP2C	Z	0	4
45	MP2C	Mx	.001	4
46	MP1A	X	25.574	3
47	MP1A	Z	0	3
48	MP1A	Mx	021	3
49	MP1A	X	25.574	5
50	MP1A	Z	0	5
51	MP1A	Mx	021	5
52	MP1B	X	72.79	3
53	MP1B	Z	0	3
54	MP1B	Mx	.011	3
55	MP1B	X	72.79	5
56	MP1B	Z	0	5
57	MP1B	Mx	.011	5
58	MP1C	X	72.79	3
59	MP1C	Z	0	3
60	MP1C	Mx	.011	3
61	MP1C	X	72.79	5
62	MP1C	Z	0	5
63	MP1C	Mx	.011	5
64	MP3A	X	39.402	2.5
65	MP3A	Z	0	2.5
66	MP3A	Mx	.02	2.5
67	MP3B	X	53.894	2.5
68	MP3B	Z	0	2.5
69	MP3B	Mx	013	2.5
70	MP3C	X	53.894	2.5
71	MP3C	Z	0	2.5
72	MP3C	Mx	013	2.5
73	MP4A	X	32.204	2.5
74	MP4A	Z	0	2.5
75	MP4A	Mx	.016	2.5
76	MP4B	X	52.094	2.5
77	MP4B	Z	0	2.5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP4B	Mx	013	2.5
79	MP4C	X	52.094	2.5
80	MP4C	Z	0	2.5
81	MP4C	Mx	013	2.5
82	OVP	X	94.676	Section 1
83	OVP	Z	0	11
84	OVP	Mx	0	neens 1 nee
85	MP3A	X	11.032	5
86	MP3A	Z	0	5
87	MP3A	Mx	003	5
88	MP3C	X	35.607	5
89	MP3C	Z	0	5
90	MP3C	Mx	.002	5
91	MP3A	X	11.032	5
92	MP3A	Z	0	5
93	MP3A	Mx	.003	5
94	MP3C	X	35.607	5
95	MP3C	Z	0	5
96	MP3C	Mx	002	5

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	51.759	2
2	MP3A	Z	29.883	2
3	MP3A	Mx	061	2
4	MP3A	X	51.759	6
5	MP3A	Z	29.883	6
6	MP3A	Mx	061	6
7	MP3B	X	84.368	2
8	MP3B	Z	48.71	2
9	MP3B	Mx	.026	2
10	MP3B	X	84.368	6
11	MP3B	Z	48.71	6
12	MP3B	Mx	.026	6
13	MP3C	X	69.11	2
14	MP3C	Z	39.901	2
15	MP3C	Mx	.007	2
16	MP3C	X	69.11	6
17	MP3C	Z	39.901	6
18	MP3C	Mx	.007	6
19	MP3A	X	51.759	2
20	MP3A	Z	29.883	2
21	MP3A	Mx	026	2
22	MP3A	X	51.759	6
23	MP3A	Z	29.883	6
24	MP3A	Mx	026	6
25	MP3B	X	84.368	2
26	MP3B	Z	48.71	2
27	MP3B	Mx	081	2
28	MP3B	X	84.368	6
29	MP3B	Z	48.71	6
30	MP3B	Mx	081	6
31	MP3C	X	69.11	2
32	MP3C	Z	39.901	2
33	MP3C	Mx	.078	2
34	MP3C	X	69.11	6
35	MP3C	Z	39.901	6
36	MP3C	Mx	.078	6

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

27	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
37 38	MP2A MP2A	X	11.595	4
39	MP2A	Mx	6.695 003	4
40	MP2B	X	26.456	4
41	MP2B	Z	15.274	
42	MP2B	Mx	003	4
43	MP2C	X	19.502	4
44	MP2C	Z	11.26	4
45	MP2C	Mx	.004	4
46	MP1A	X	32.688	3
47	MP1A	Z	18.872	3
48	MP1A	Mx	027	3
49	MP1A	X	32.688	5
50	MP1A	Z	18.872	5
51	MP1A	Mx	027	5
52	MP1B	X	59.377	3
53	MP1B	Z	34.282	3
54	MP1B	Mx	02	3 3
55	MP1B	X	59.377	5
56	MP1B	Z	34.282	5
57	MP1B	Mx	02	5
58	MP1C	X	46.889	3
59	MP1C	Z	27.071	3
60	MP1C	Mx	.029	3
61	MP1C	X	46.889	5
62	MP1C	Z	27.071	5
63	MP1C	Mx	.029	5
64	MP3A	X	38.307	2.5
65	MP3A	Z	22.116	2.5
66	MP3A	Mx	.019	2.5
67	MP3B	X	50.857	2.5
68	MP3B	Z	29.362	2.5
69	MP3B	Mx	0	2.5
70	MP3C	X	38.307	2.5
71	MP3C	Z	22.116	2.5
72	MP3C	Mx	019	2.5
73	MP4A	X	33.631	2.5
74	MP4A	Z	19.417	2.5
75	MP4A	Mx	.017	2.5
76	MP4B	X	50.857	2.5
77	MP4B	Z	29.362	2.5
78	MP4B	Mx	0	2.5
79	MP4C	X	33.631	2.5
80	MP4C	Z	19.417	2.5
81	MP4C	Mx	017	2.5
82	OVP	X	93.708	2.5
83	OVP	Z	54.102	1
84	OVP	Mx	0	
85	MP3A	X	15.04	5
36	MP3A	Z	8.683	5
37	MP3A	Mx	004	5
38	MP3C	X	22.431	5
89	MP3C	Z	12.951	<u> </u>
90	MP3C	Mx	.004	
91	MP3A	X	15.04	5
92	MP3A	Z	8.683	5 5
93	MP3A			
94	MP3C	Mx X	.004	5 5
	IVIEUC		22.431	0

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
96	MP3C	Mx	004	5

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

Memb	er Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	P3A	X	44.754	2
	P3A	Z	77.516	2
3 MF	P3A	Mx	083	2
4 MF	P3A	X	44.754	6
5 MF	P3A	Z	77.516	6
6 MF	23A	Mx	083	6
	P3B	X	34.736	2
8 MF	P3B	Z	60.165	2
9 MF	P3B	Mx	018	2
10 MF	P3B	X	34.736	6
11 M	P3B	Z	60.165	6
12 MF	P3B	Mx	018	6
	P3C	X	25.927	2
14 MF	P3C	Z	44.907	2
15 Mi	P3C	Mx	.03	2
16 MF	P3C	X	25.927	6
	P3C	Z	44.907	6
18 MI	P3C	Mx	.03	6
19 MI	P3A	X	44.754	2
20 MF	P3A	Z	77.516	2
21 MF	P3A	Mx	.008	2
22 MI	P3A	X	44.754	6
23 MI	P3A	Z	77.516	6
24 MI	P3A	Mx	.008	6
25 MI	23B	X	34.736	2
26 MI	⊃3B	Z	60.165	2
27 MI	P3B	Mx	07	2
28 MI	P3B	X	34.736	6
29 MI	P3B	Z	60.165	6
30 M	P3B	Mx	07	6
31 MI	P3C	X	25.927	2
	P3C	Z	44.907	2
33 MI	P3C	Mx	.051	2
34 MI	P3C	X	25.927	6
35 M	P3C	Z	44.907	6
36 M	P3C	Mx	.051	6
37 M	P2A	X	13.471	4
38 M	P2A	Z	23.333	4
	P2A	Mx	003	4
	P2B	X	8.906	4
41 M	P2B	Z	15.426	4
	P2B	Mx	003	4
43 M	P2C	X	4.892	4
44 M	P2C	Z	8.473	4
	P2C	Mx	.002	4
46 M	P1A	X	31.044	3
47 M	P1A	Z	53.769	3
	P1A	Mx	026	3
	P1A	X	31.044	5
	P1A	Z	53.769	5
	P1A	Mx	026	5
	P1B	X	22.844	3
	P1B	Z	39.568	3
	P1B	Mx	029	3

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	X	22.844	5
			5
			5
	X		3
			3
		.024	3
	X	15.634	5
	Z	27.079	5
		.024	5
		26.947	2.5
MP3A	Z	46.674	2.5
MP3A	Mx	.013	2.5
MP3B	X		2.5
MP3B	Z		2.5
MP3B	Mx		2.5
MP3C			2.5
MP3C	Z	34.123	2.5
MP3C			2.5
			2.5
	7		2.5
			2.5
			2.5
			2.5
			2.5
			2.5
			2.5
			2.5
			1- 1-
			5
	7		5
			5
			5
	7		5
			5
			5
	7		5
			5
			5
			<u>5</u>
	MP3B MP3B MP3B MP3C MP3C	MP1B Z MP1C X MP1C X MP1C Mx MP1C X MP1C X MP1C Mx MP1C Mx MP1C Mx MP1C Mx MP3A X MP3A X MP3A X MP3A X MP3B X MP3B X MP3B X MP3B X MP3B X MP3B X MP3C X MP3C X MP3C X MP4A X MP4B X MP4B X MP4B X MP4B Mx MP4C X MP4C X MP4C Mx MP3A X MP3A X MP3A X <td>MP1B X 22.844 MP1B Z 39.568 MP1C X 15.634 MP1C X 15.634 MP1C X 15.634 MP1C Mx .024 MP1C X 15.634 MP3A X 26.947 MP3A X 26.947 MP3B X 26.947 MP3C X 19.701 MP3C</td>	MP1B X 22.844 MP1B Z 39.568 MP1C X 15.634 MP1C X 15.634 MP1C X 15.634 MP1C Mx .024 MP1C X 15.634 MP3A X 26.947 MP3A X 26.947 MP3B X 26.947 MP3C X 19.701 MP3C

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[jb,k-ft]	Location[ft,%]
1	MP3A	X	0	2
2	MP3A	Z	104.378	2
3	MP3A	Mx	061	2
4	MP3A	X	0	6
5	MP3A	Z	104.378	6
6	MP3A	Mx	061	6
7	MP3B	X	0	2
8	MP3B	Z	46.69	2
9	MP3B	Mx	034	2
10	MP3B	X	0	6
11	MP3B	Z	46.69	6
12	MP3B	Mx	034	6
13	MP3C	X	0	2

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
14	MP3C	Z	46.69 .043	2
15	MP3C	Mx	.043	6
16	MP3C	X	46.69	6
17	MP3C		.043	6
18	MP3C	Mx	.043	2
19	MP3A	X	104.378	2 2
20	MP3A	Z		2
21	MP3A	Mx	.061	6
22	MP3A	X	0	6
23	MP3A	Z	104.378	6
24	MP3A	Mx	.061	
25	MP3B	X	0	2 2
26	MP3B	Z	46.69	
27	MP3B	Mx	043	2
28	MP3B	X	0	6
29	MP3B	Z	46.69	6
30	MP3B	Mx	043	6
31	MP3C	X	0	2
32	MP3C	Z	46.69	2
33	MP3C	Mx	.034	2
34	MP3C	X	0	6
35	MP3C	Z	46.69	6
36	MP3C	Mx	.034	6
37	MP2A	X	0	4
38	MP2A	Z	33.719	4
39	MP2A	Mx	0	4
40	MP2B	X	0	4
41	MP2B	Z	7.43	4
42	MP2B	Mx	002	4
43	MP2C	X	0	4
44	MP2C	Z	7.43	4
45	MP2C	Mx	.002	4
46	MP1A	X	0	3
47	MP1A	Z	74.258	3
48	MP1A	Mx	0	3
49	MP1A	X	0	5
50	MP1A	Z	74.258	5
51	MP1A	Mx	0	5
52	MP1B	X	0	3
53	MP1B	Z	27.042	3
54	MP1B	Mx	022	3
55	MP1B	X	0	5
56	MP1B	Z	27.042	5
57	MP1B	Mx	022	5
	MP1C	X	0	3
58		Z	27.042	3
59	MP1C	Mx	.022	3
60	MP1C	X	0	5
61	MP1C	Ž	27.042	5
62	MP1C	Mx	.022	5
63	MP1C	X	0	2.5
64	MP3A		58.725	2.5
65	MP3A	Z	0	2.5
66	MP3A	Mx	0	2.5
67	MP3B	X		2.5
68	MP3B	Z	44.233	2.5
69	MP3B	Mx	.019	2.5
70	MP3C	X	0	
71	MP3C	Z	44.233	2.5
72	MP3C	Mx	019	2.5

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP4A	X	0	2.5
74	MP4A	Z	58.725	2.5
75	MP4A	Mx	0	2.5
76	MP4B	X	0	2.5
77	MP4B	Z	38.834	2.5
78	MP4B	Mx	.017	2.5
79	MP4C	X	0	2.5
80	MP4C	Z	38.834	2.5
81	MP4C	Mx	017	2.5
82	OVP	X	0	
83	OVP	Z	116.733	1
84	OVP	Mx	0	1
85	MP3A	X	0	5
86	MP3A	Z	36.371	5
87	MP3A	Mx	0	5
88	MP3C	X	0	5
89	MP3C	Z	11.796	5
90	MP3C	Mx	.003	5
91	MP3A	X	0	5
92	MP3A	Z	36.371	5
93	MP3A	Mx	0	5
94	MP3C	X	0	5
95	MP3C	Z	11.796	5
96	MP3C	Mx	003	5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-44.754	2
2	MP3A	Z	77.516	2
3	MP3A	Mx	008	2
4	MP3A	X	-44.754	6
5	MP3A	Z	77.516	6
6	MP3A	Mx	008	6
7	MP3B	X	-25.927	2
8	MP3B	Z	44.907	2
9	MP3B	Mx	051	2
10	MP3B	X	-25.927	6
11	MP3B	Z	44.907	6
12	MP3B	Mx	051	6
13	MP3C	X	-34.736	2
14	MP3C	Z	60.165	2
15	MP3C	Mx	.07	2
16	MP3C	X	-34.736	6
17	MP3C	Z	60.165	6
18	MP3C	Mx	.07	6
19	MP3A	X	-44.754	2
20	MP3A	Z	77.516	2
21	MP3A	Mx	.083	2
22	МР3А	X	-44.754	6
23	МР3А	Z	77.516	6
24	MP3A	Mx	.083	6
25	MP3B	X	-25.927	2
26	MP3B	Z	44.907	2
27	MP3B	Mx	03	2
28	МРЗВ	X	-25.927	6
29	MP3B	Z	44.907	6
30	МР3В	Mx	03	6
31	MP3C	- X	-34.736	2

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
32	MP3C	Z Z	60.165	2
33	MP3C	Mx	.018	2
34	MP3C	X	-34.736	6
35	MP3C	Z	60.165	6
36	MP3C	Mx	.018	4
37	MP2A	X	-13.471 23.333	4
38	MP2A	Z	.003	4
39	MP2A	Mx	-4.892	4
40	MP2B	X	8.473	4
41	MP2B	Z	002	4
42	MP2B	Mx X	-8.906	4
43	MP2C	Z	15.426	4
44	MP2C	Mx	.003	4
45	MP2C	X	-31.044	3
46	MP1A	Z	53.769	3
47	MP1A	Mx	.026	3
48	MP1A	X	-31.044	5
49	MP1A	Z	53.769	5
50	MP1A	Mx	.026	5
51	MP1A	X	-15.634	3
52	MP1B	Z	27.079	3
53	MP1B	Mx	024	3
54	MP1B	X	-15.634	5
55	MP1B	Z	27.079	5
56	MP1B	Mx	024	5
57	MP1B	X	-22.844	3
58	MP1C MP1C	Z	39.568	3
59		Mx	.029	3
60	MP1C MP1C	X	-22.844	5
61	MP1C	Z	39.568	5
62	MP1C	Mx	.029	5
63	MP3A	X	-26.947	2.5
64 65	MP3A	Z	46.674	2.5
66	MP3A	Mx	013	2.5
67	MP3B	X	-19.701	2.5
68	MP3B	Z	34.123	2.5
69	MP3B	Mx	.02	2.5
70	MP3C	X	-26.947	2.5
71	MP3C	Z	46.674	2.5
72	MP3C	Mx	013	2.5
73	MP4A	X	-26.047	2.5
74	MP4A	Z	45.115	2.5
75	MP4A	Mx	013	2.5
76	MP4B	X	-16.102	2.5
77	MP4B	Z	27.889	2.5
78	MP4B	Mx	.016	2.5
79	MP4C	X	-26.047	2.5
80	MP4C	Z	45.115	2.5
81	MP4C	Mx	013	2.5
82	OVP	X	-51.602	1
83	OVP	Z	89.378	11
84	OVP	Mx	0	1
85	MP3A	X	-15.018	5
86	MP3A	Z	26.012	5
87	MP3A	Mx	.004	5
88	MP3C	X	-10.751	5
89	MP3C	Z	18.621	5
90	MP3C	Mx	.004	5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
91	MP3A	X	-15.018	5
92	MP3A	Z	26.012	5
92 93	MP3A	Mx	004	5
94	MP3C	X	-10.751	5
95	MP3C	Z	18.621	5
96	MP3C	Mx	-,004	5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-51.759	2
2	MP3A	Z	29.883	2
3	MP3A	Mx	.026	2
4	MP3A	X	-51.759	6
5	MP3A	Z	29.883	6
6	MP3A	Mx	.026	6
7	MP3B	X	-69.11	2
8	MP3B	Z	39.901	2
9	MP3B	Mx	078	2
10	MP3B	X	-69.11	6
11	MP3B	Z	39.901	6
12	MP3B	Mx	078	6
13	MP3C	X	-84.368	2
14	MP3C	Z	48.71	2
15	MP3C	Mx	.081	2
16	MP3C	X	-84.368	6
17	MP3C	Z	48.71	6
18	MP3C	Mx	.081	6
19	MP3A	X	-51.759	2
20	MP3A	Z	29.883	2
21	MP3A	Mx	.061	2
22	MP3A	X	-51.759	6
23	MP3A	Z	29.883	6
24	MP3A	Mx	.061	6
25	MP3B	X	-69.11	2
26	MP3B	Z	39.901	2
27	MP3B	Mx	007	2
28	MP3B	X	-69.11	6
29	MP3B	Z	39.901	6
30	MP3B	Mx	007	6
31	MP3C	X	-84.368	2
32	MP3C	Z	48.71	2
33	MP3C	Mx	026	2
34	MP3C	X	-84.368	6
35	MP3C	Z	48.71	6
36	MP3C	Mx	026	6
37	MP2A	X	-11.595	4
38	MP2A	Z	6.695	4
39	MP2A	Mx	.003	4
40	MP2B	X	-19.502	4
11	MP2B	Z	11.26	4
12	MP2B	Mx	004	4
13	MP2C	X	-26.456	4
14	MP2C	Z	15.274	4
45	MP2C	Mx	.003	4
46	MP1A	X	-32.688	3
47	MP1A	Z	18.872	3
48	MP1A	Mx	.027	3
49	MP1A	X	-32.688	5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	lember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
50	MP1A	Z	18.872	5
51	MP1A	Mx	.027	5
52	MP1B	X	-46.889	3
53	MP1B	Z	27.071	3
54	MP1B	Mx	029	3
55	MP1B	X	-46.889	5
56	MP1B	Z	27.071	5
57	MP1B	Mx	029	5
58	MP1C	X	-59.377	3
59	MP1C	Z	34.282	3
60	MP1C	Mx	.02	3
61	MP1C	X	-59.377	5
62	MP1C	Z	34.282	5
63	MP1C	Mx	.02	5
64	MP3A	X	-38.307	2.5
65	MP3A	Z	22.116	2.5
66	MP3A	Mx	019	2.5
67	MP3B	X	-38.307	2.5
68	MP3B	Z	22.116	2.5
69	MP3B	Mx	.019	2.5
70	MP3C	X	-50.857	2.5
71	MP3C	Z	29.362	2.5
72	MP3C	Mx	0	2.5
73	MP4A	X	-33.631	2.5
74	MP4A	Z	19.417	2.5
75	MP4A	Mx	017	2.5
76	MP4B	X	-33.631	2.5
77	MP4B	Z	19.417	2.5
78	MP4B	Mx	.017	2.5
79	MP4C	X	-50.857	2.5
80	MP4C	Z	29.362	2.5
81	MP4C	Mx	0	2.5
82	OVP	X	-79.826	iofici
83	OVP	Z	46.088	11
84	OVP	Mx	0	ways 1
85	MP3A	X	-15.04	5
86	MP3A	Z	8.683	5
87	MP3A	Mx	.004	5
88	MP3C	X	-28.931	5
89	MP3C	Z	16.704	5
90	MP3C	Mx	.003	1 9 L
91	MP3A	X	-15.04	5
92	MP3A	Z	8.683	5
93	MP3A	Mx	004	5
94	MP3C	X	-28.931	5
95	MP3C	Z	16.704	5
96	MP3C	Mx	003	5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-44.896	2
2	MP3A	Z	0	2
3	MP3A	Mx	.037	2
4	MP3A	X	-44.896	6
5	MP3A	Z	0	6
6	MP3A	Mx	.037	6
7	MP3B	X	-102.585	2
8	MP3B	Z	0	2

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

9	Member Label MP3B	Direction	Magnitude[lb,k-ft]	Location[ft,%]
10	MP3B	Mx X	074 -102.585	2
11	MP3B	Z		6
12	MP3B		0	6
13	MP3C	Mx	074	6
		X	-102.585	2
14	MP3C	Z	0	2
15	MP3C	Mx	.044	2
16	MP3C	X	-102.585	6
17	MP3C	Z	0	6
18	MP3C	Mx	.044	6
19	MP3A	X	-44.896	2
20	MP3A	Z	0	2
21	MP3A	Mx	.037	2
22	MP3A	X	-44.896	6
23	MP3A	Z	0	6
24	MP3A	Mx	.037	6
25	MP3B	X	-102.585	2
26	MP3B	Z	0	2
27	MP3B	Mx	.044	2
28	MP3B	X	-102.585	6
29	MP3B	Z	0	6
30	MP3B	Mx	.044	6
31	MP3C	X	-102.585	
32	MP3C			2
33		Z	0	2
	MP3C	Mx	074	2
34	MP3C	X	-102.585	6
35	MP3C	Z	0	6
36	MP3C	Mx	074	6
37	MP2A	X	-6.613	4
38	MP2A	Z	0	4
39	MP2A	Mx	.002	4
40	MP2B	X	-32.902	4
41	MP2B	Z	0	4
42	MP2B	Mx	001	4
43	MP2C	X	-32.902	4
44	MP2C	Z	0	4
45	MP2C	Mx	001	4
46	MP1A	X	-25.574	3
47	MP1A	Z	0	3
48	MP1A	Mx	.021	3
49	MP1A	X	-25.574	5
50	MP1A	Ž	0	5
51	MP1A	Mx	.021	
52	MP1B	X	-72.79	5
53	MP1B	Z		
54	MP1B		0	3
		Mx	011	3
55	MP1B	X	-72.79	5
56	MP1B	Z	0	5
57	MP1B	Mx	011	5
58	MP1C	X	-72.79	3
59	MP1C	Z	0	3
60	MP1C	Mx	011	3
61	MP1C	X	-72.79	5
62	MP1C	Z	0	5
63	MP1C	Mx	011	5
64	MP3A	X	-39.402	2.5
65	MP3A	Z	0	2.5
66	MP3A	Mx	02	2.5
67	MP3B	X	-53.894	2.5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
68	MP3B	Z	0	2.5
69	MP3B	Mx	.013	2.5
70	MP3C	X	-53.894	2.5
71	MP3C	Z	0	2.5
72	MP3C	Mx	.013	2.5
73	MP4A	X	-32.204	2.5
74	MP4A	Z	0	2.5
75	MP4A	Mx	016	2.5
76	MP4B	X	-52.094	2.5
77	MP4B	Z	0	2.5
78	MP4B	Mx	.013	2.5
79	MP4C	X	-52.094	2.5
80	MP4C	Z	0	2.5
81	MP4C	Mx	.013	2.5
82	OVP	X	-94.676	0 1 00
83	OVP	Z	0	1
84	OVP	Mx	0	1
85	MP3A	X	-11.032	5
86	MP3A	Z	0	5
87	MP3A	Mx	.003	5
88	MP3C	X	-35.607	5
89	MP3C	Z	0	5
90	MP3C	Mx	002	5
91	MP3A	X	-11.032	5
92	MP3A	Z	0	5 5
93	MP3A	Mx	003	5
94	MP3C	X	-35.607	5
95	MP3C	Z	0	5
96	MP3C	Mx	.002	5

Member Point Loads (BLC 13: Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-51.759	2
2	MP3A	Z	-29.883	2
3	MP3A	Mx	.061	2
4	MP3A	X	-51.759	6
5	MP3A	Z	-29.883	6
6	MP3A	Mx	.061	6
7	MP3B	X	-84.368	2
8	MP3B	Z	-48.71	2
9	MP3B	Mx	026	2
10	MP3B	X	-84.368	6
11	MP3B	Z	-48.71	6
12	MP3B	Mx	026	6
13	MP3C	X	-69.11	2
14	MP3C	Z	-39.901	2
15	MP3C	Mx	007	2
16	MP3C	X	-69.11	6
17	MP3C	Z	-39.901	6
18	MP3C	Mx	007	6
19	MP3A	X	-51.759	2
20	MP3A	Z	-29.883	2
21	MP3A	Mx	.026	2
22	MP3A	X	-51.759	6
23	MP3A	Z	-29.883	6
24	MP3A	Mx	.026	6
25	MP3B	X	-84.368	2
26	MP3B	Z	-48.71	2

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

27	Member Label MP3B	Direction	Magnitude[lb,k-ft]	Location[ft,%]
28	MP3B	Mx X	.081	2
29	MP3B	Z	-84.368	6
30	MP3B	Mx	-48.71 .081	6
31	MP3C	X	-69.11	2
32	MP3C	Z	-39.901	2
33	MP3C	Mx		2
34	MP3C	X	078	2
35	MP3C	Z	-69.11	6
36	MP3C		-39.901	6
37	MP2A	Mx	078	6
38	MP2A	X	-11.595	4
39	MP2A	Z	-6.695	4
40		Mx	.003	4
41	MP2B	X	-26.456	4
42	MP2B	Z	-15.274	4
	MP2B	Mx	.003	4
43	MP2C	X	-19.502	4
44	MP2C	Z	-11.26	4
45	MP2C	Mx	004	4
46	MP1A	X	-32.688	3
47	MP1A	Z	-18.872	3
48	MP1A	Mx	.027	3
49	MP1A	X	-32.688	5
50	MP1A	Z	-18.872	5
51	MP1A	Mx	.027	5
52	MP1B	X	-59.377	3
53	MP1B	Z	-34.282	3
54	MP1B	Mx	.02	3
55	MP1B	X	-59.377	5
56	MP1B	Z	-34.282	5
57	MP1B	Mx	.02	5
58	MP1C	X	-46.889	3
59	MP1C	Z	-27.071	3
60	MP1C	Mx	029	3
61	MP1C	X	-46.889	5
62	MP1C	Z	-27.071	5
63	MP1C	Mx	029	5
64	MP3A	X	-38.307	2.5
65	MP3A	Z	-22.116	2.5
66	MP3A	Mx	019	2.5
67	MP3B	X	-50.857	2.5
68	MP3B	Z	-29.362	2.5
69	MP3B	Mx	0	2.5
70	MP3C	X	-38.307	2.5
71	MP3C	Z	-22.116	2.5
72	MP3C	Mx	.019	2.5
73	MP4A	X	-33.631	2.5
74	MP4A	Z	-19.417	2.5
75	MP4A	Mx	017	2.5
76	MP4B	X	-50.857	2.5
77	MP4B	Z	-29.362	2.5
78	MP4B	Mx	0	2.5
79	MP4C	X	-33.631	2.5
80	MP4C	Z	-19.417	2.5
81	MP4C	Mx	.017	2.5
82	OVP	X	-93.708	1
83	OVP	Z	-54.102	1
84	OVP	Mx	0	1
85	MP3A	X	-15.04	5

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP3A	Z	-8.683	5
87	MP3A	Mx	.004	5
88	MP3C	X	-22.431	5
89	MP3C	Z	-12.951	5
90	MP3C	Mx	004	5
91	MP3A	X	-15.04	5
92	MP3A	Z	-8.683	5
93	MP3A	Mx	004	5
94	MP3C	X	-22.431	5
95	MP3C	Z	-12.951	5
96	MP3C	Mx	.004	5

Member Point Loads (BLC 14: Antenna Wo (330 Deg))

N	lember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-44.754	2
2	MP3A	Z	-77.516	2
3	MP3A	Mx	.083	2
4	MP3A	X	-44.754	6
5	MP3A	Z	-77.516	6
6	MP3A	Mx	.083	6
7	MP3B	X	-34.736	2
8	MP3B	Z	-60.165	2
9	MP3B	Mx	.018	2
10	MP3B	X	-34.736	6
11	MP3B	Z	-60.165	6
12	MP3B	Mx	.018	6
13	MP3C	X	-25.927	2
14	MP3C	Z	-44.907	2
15	MP3C	Mx	03	2
16	MP3C	X	-25.927	6
17	MP3C	Z	-44.907	6
18	MP3C	Mx	03	6
19	MP3A	X	-44.754	2
20	MP3A	Z	-77.516	2
21	MP3A	Mx	008	2
22	MP3A	X	-44.754	6
23	MP3A	Z	-77.516	6
24	MP3A	Mx	008	6
25	MP3B	X	-34.736	2
26	MP3B	Z	-60.165	2
27	MP3B	Mx	.07	2
28	МРЗВ	X	-34.736	6
29	MP3B	Z	-60.165	6
30	MP3B	Mx	.07	6
31	MP3C	X	-25.927	2
32	MP3C	Z	-44.907	2
33	MP3C	Mx	051	2
34	MP3C	X	-25.927	6
35	MP3C	Z	-44.907	6
36	MP3C	Mx	051	6
37	MP2A	X	-13.471	4
38	MP2A	Z	-23.333	4
39	MP2A	Mx	.003	4
40	MP2B	X	-8.906	4
41	MP2B	Z	-15.426	4
42	MP2B	Mx	.003	4
43	MP2C	X	-4.892	4
44	MP2C	Z	-8.473	4

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

45	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
45	MP2C	Mx	002	4
46	MP1A	X	-31.044	3
47	MP1A	Z	-53.769	3
48	MP1A	Mx	.026	3
49	MP1A	X	-31.044	5
50	MP1A	Z	-53.769	5
51	MP1A	Mx	.026	5
52	MP1B	X	-22.844	3
53	MP1B	Z	-39.568	3
54	MP1B	Mx	.029	3
55 50	MP1B	X	-22.844	5
56	MP1B	Z	-39.568	5
57	MP1B	Mx	.029	5
58	MP1C	X	-15.634	3
59	MP1C	Z	-27.079	3
60	MP1C	Mx	024	3
61	MP1C	X	-15.634	5
62	MP1C	Z	-27.079	5
63	MP1C	Mx	024	5
64	MP3A	X	-26.947	2.5
35	MP3A	Z	-46.674	2.5
66	MP3A	Mx	013	2.5
67	MP3B	X	-26.947	2.5
68	MP3B	Z	-46.674	2.5
39	MP3B	Mx	013	2.5
70	MP3C	X	-19.701	2.5
71	MP3C	Z	-34.123	2.5
72	MP3C	Mx	.02	2.5
73	MP4A	X	-26.047	2.5
74	MP4A	Z	-45.115	2.5
75	MP4A	Mx	013	2.5
76	MP4B	X	-26.047	2.5
77	MP4B	Z	-45.115	2.5
78	MP4B	Mx	013	2.5
79	MP4C	X	-16.102	2.5
30	MP4C	Z	-27.889	2.5
81	MP4C	Mx	.016	2.5
32	OVP	X	-59.617	1
33	OVP	Z	-103.259	1
34	OVP	Mx	0	
85	MP3A	X	-15.018	5
36	MP3A	Z	-26.012	5
37	MP3A	Mx	.004	5
38	MP3C	X	-6.998	5
39	MP3C	Z	-12.121	5
90	MP3C	Mx	003	5
91	MP3A	X	-15.018	5
92	MP3A	Z	-26.012	5
93	MP3A	Mx	004	5
94	MP3C	X	-6.998	5
95	MP3C	Z	-12.121	5
96	MP3C	Mx	.003	5

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP3A	X	0	2
2	MP3A	Z	-29.443	2
3	MP3A	Mx	.017	2

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
4	MP3A	X	0	6
5	MP3A	Z	-29.443	6
6	MP3A	Mx	.017	6
7	MP3B	X	0	2
8	MP3B	Z	-20.54	2
9	MP3B	Mx	.015	2
10	MP3B	X	0	6 m
11	MP3B	Z	-20.54	6
12	MP3B	Mx	.015	6
13	MP3C	X	0	2
14	MP3C	Z	-20.54	2
15	MP3C	Mx	019	2
16	MP3C	X	0	6
17	MP3C	Z	-20.54	6
18	MP3C	Mx	019	6
19	MP3A	X	0	2
20	MP3A	Z	-29.443	2
	MP3A	Mx	017	2
21	MP3A	X	0	6
22	MP3A MP3A	Z	-29.443	6
23	MP3A	Mx	017	6
24		X	0	2
25	MP3B	Z	-20.54	2
26	MP3B	Mx	.019	2
27	MP3B		0	6
28	MP3B	X	-20.54	6
29	MP3B	Z		6
30	MP3B	Mx	.019	2
31	MP3C	X	0	
32	MP3C	Z	-20.54	2
33	MP3C	Mx	015	2
34	MP3C	X	0	6
35	MP3C	Z	-20.54	6
36	MP3C	Mx	015	6
37	MP2A	X	0	4
38	MP2A	Z	-7.488	4
39	MP2A	Mx	0	4
40	MP2B	X	0	4
41	MP2B	Z	-2.324	4
42	MP2B	Mx	.000572	4
43	MP2C	X	0	4
44	MP2C	Z	-2.324	4
45	MP2C	Mx	000572	4
46	MP1A	X	0	3
47	MP1A	Z	-17.355	3
48	MP1A	Mx	0	3
49	MP1A	X	0	5
50	MP1A	Z	-17.355	5
	MP1A	Mx	0	5
51		X	0	3
52	MP1B	Z	-7.661	3
53	MP1B		.006	3
54	MP1B	Mx	0	5
55	MP1B	X		5
56	MP1B	Z	-7.661	5
57	MP1B	Mx	.006	3
58	MP1C	X	0	
59	MP1C	Z	-7.661	3
60	MP1C	Mx	006	3
61	MP1C	X	0	5
62	MP1C	Z	-7.661	5

Member Point Loads (BLC 15: Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP1C	Mx	006	5
64	MP3A	X	0	2.5
65	MP3A	Z	-14.585	2.5
66	MP3A	Mx	0	2.5
67	MP3B	X	0	2.5
68	MP3B	Z	-11.239	2.5
69	MP3B	Mx	005	2.5
70	MP3C	X	0	2.5
71	MP3C	Z	-11.239	2.5
72	MP3C	Mx	.005	2.5
73	MP4A	X	0	2.5
74	MP4A	Z	-14.585	2.5
75	MP4A	Mx	0	2.5
76	MP4B	X	0	2.5
77	MP4B	Z	-9.968	2.5
78	MP4B	Mx	004	2.5
79	MP4C	X	0	2.5
80	MP4C	Z	-9.968	2.5
81	MP4C	Mx	.004	2.5
82	OVP	X	0	1
83	OVP	Z	-29.282	1
84	OVP	Mx	0	1
85	MP3A	X	0	5
86	MP3A	Z	-7.99	5
87	MP3A	Mx	0	5
88	MP3C	X	0	5
89	MP3C	Z	-3.129	5
90	MP3C	Mx	00077	5
91	MP3A	X	0	5
92	MP3A	Z	-7.99	5
93	MP3A	Mx	0	5
94	MP3C	X	0	5
95	MP3C	Z	-3.129	5
96	MP3C	Mx	.00077	5

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	13.574	2
2	MP3A	Z	-23.511	2
3	MP3A	Mx	.002	2
4	MP3A	X	13.574	6
5	MP3A	Z	-23.511	6
6	MP3A	Mx	.002	6
7	MP3B	X	10.669	2
8	MP3B	Z	-18.479	2
9	MP3B	Mx	.021	2
10	MP3B	X	10.669	6
11	MP3B	Z	-18.479	6
12	MP3B	Mx	.021	6
13	MP3C	X	12.028	2
14	MP3C	Z	-20.833	2
15	MP3C	Mx	024	2
16	MP3C	X	12.028	6
17	MP3C	Z	-20.833	6
18	MP3C	Mx	024	6
19	MP3A	X	13.574	2
20	MP3A	Z	-23.511	2
21	MP3A	Mx	025	2

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
22	MP3A	X	13.574 -23.511	6
23	MP3A	Z	025	6
24	MP3A	Mx	10.669	2
25	MP3B	X	-18.479	2
26	MP3B		.012	2
27	MP3B	Mx	10.669	6
28	MP3B	X	-18.479	6
29	MP3B	Mx	.012	6
30	MP3B	X	12.028	2
31	MP3C	Z	-20.833	2
32	MP3C	Mx	006	2
33	MP3C	X	12.028	6 111
34	MP3C	Z	-20.833	6
35	MP3C	Mx	006	6 6
36	MP3C	X	3.078	4
37	MP2A	Z	-5.332	4
38	MP2A	Mx	00077	4
39	MP2A	X	1.393	4
40	MP2B	Z	-2.413	4
41	MP2B	Mx	.000655	4
42	MP2B	X	2.182	4
43	MP2C	Ž	-3.779	4
44	MP2C	Mx	000836	4
45	MP2C	X	7.428	3
46	MP1A	Z	-12.866	3
47	MP1A MP1A	Mx	006	3
48		X	7.428	5
49	MP1A	Z	-12.866	5
50	MP1A	Mx	006	5
51	MP1A	X	4.264	3
52	MP1B MP1B	Z	-7.386	3
53	MP1B	Mx	.007	3
54	MP1B	X	4.264	5
55	MP1B	Z	-7.386	5
56	MP1B	Mx	.007	5
57	MP1C	X	5.745	3
58	MP1C MP1C	Z	-9.95	3
59	MP1C	Mx	007	3
60		X	5.745	5
61 62	MP1C MP1C	Z	-9.95	5
	MP1C	Mx	007	5
63	MP3A	X	6.735	2.5
64 65	MP3A	Z	-11.665	2.5
66	MP3A	Mx	.003	2.5
67	MP3B	X	5.062	2.5
68	MP3B	Z	-8.768	2.5
69	MP3B	Mx	005	2.5
70	MP3C	X	6.735	2.5
71	MP3C	Z	-11.665	2.5
72	MP3C	Mx	.003	2.5
73	MP4A	X	6.523	2.5
74	MP4A	Z	-11.298	2.5
75	MP4A	Mx	.003	2.5
76	MP4B	X	4.214	2.5
77	MP4B	Z	-7.3	2.5
78	MP4B	Mx	004	2.5
79	MP4C	X	6.523	2.5
80	MP4C	Z	-11.298	2.5

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[b,k-ft]	Location[ft,%]
81	MP4C	Mx	.003	2.5
82	OVP	X	13.095	1
83	OVP	Z	-22.682	11
84	OVP	Mx	0	1
85	MP3A	X	3.369	5
86	MP3A	Z	-5.835	5
87	MP3A	Mx	000842	5
88	MP3C	X	2.524	5
89	MP3C	Z	-4.372	5
90	MP3C	Mx	000967	5
91	MP3A	X	3.369	5
92	MP3A	Z	-5,835	5
93	MP3A	Mx	.000842	5
94	MP3C	X	2.524	5
95	MP3C	Z	-4.372	5
96	MP3C	Mx	.000967	5

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	19.536	2
2	MP3A	Z	-11.279	2
3	MP3A	Mx	01	2
4	MP3A	X	19.536	6
5	MP3A	Z	-11.279	6
6	MP3A	Mx	01	6
7	MP3B	X	22.214	2
8	MP3B	X	-12.825	2
9	MP3B	Mx	.025	2
10	MP3B	X	22.214	6
11	MP3B	Z	-12.825	6
12	MP3B	Mx	.025	6
13	MP3C	X	24.569	2
14	MP3C	Z	-14.185	2
15	MP3C	Mx	024	2
16	MP3C	X	24.569	6
17	MP3C	Z	-14.185	6
18	MP3C	Mx	024	6
19	МР3А	X	19.536	2
20	MP3A	X	-11.279	2
21	MP3A	Mx	023	2
22	MP3A	X	19.536	6
23	MP3A	Z	-11.279	6
24	MP3A	Mx	023	6
25	MP3B	X	22.214	2
26	MP3B	Z	-12.825	2
27	MP3B	Mx	.002	2
28	MP3B	X	22.214	6
29	MP3B	Z	-12.825	6
30	MP3B	Mx	.002	6
31	MP3C	X	24.569	2
32	MP3C	Z	-14.185	2
33	MP3C	Mx	.007	2
34	MP3C	X	24.569	6
35	MP3C	Z	-14.185	6
36	MP3C	Mx	.007	6
37	MP2A	X	3.026	4
38	MP2A	Z	-1.747	4
39	MP2A	Mx	000756	4

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP2B	X	4.579	4
41	MP2B	Z	-2.644	4
42	MP2B	Mx	.00085	4
43	MP2C	X	5.945	4
44	MP2C	Z	-3.432	4
45	MP2C	Mx	000587	4
46	MP1A	X	8.538	3
47	MP1A	Z	-4.929	3
48	MP1A	Mx	007	3
49	MP1A	X	8.538	5
50	MP1A	Z	-4.929	5
51	MP1A	Mx	007	5
52	MP1B	X	11.453	3
53	MP1B	Z	-6.613	3
54	MP1B	Mx	.007	3
55	MP1B	X	11.453	5
56	MP1B	Z	-6.613	5
57	MP1B	Mx	.007	5
58	MP1C	X	14.017	3
59	MP1C	Z	-8.093	3
60	MP1C	Mx	005	3
61	MP1C	X	14.017	5
62	MP1C	Z	-8.093	5
63	MP1C	Mx	005	5
64	MP3A	X	9.733	2.5
65	MP3A	Z	-5.62	2.5
66	MP3A	Mx	.005	2.5
67	MP3B	X	9.733	2.5
68	мР3В	Z	-5.62	2.5
69	MP3B	Mx	005	2.5
70	MP3C	X	12.631	2.5
71	MP3C	Z	-7.292	2.5
72	MP3C	Mx	0	2.5
73	MP4A	X	8.632	2.5
74	MP4A	Z	-4.984	2.5
75	MP4A	Mx	.004	2.5
76	MP4B	X	8.632	2.5
77	MP4B	Z	-4.984	2.5
78	MP4B	Mx	004	2.5
79	MP4C	X	12.631	2.5
80	MP4C	Z	-7.292	2.5
81	MP4C	Mx	0	2.5
82	OVP	X	20.499	1
83	OVP	Z	-11.835	1
84	OVP	Mx	0	1
85	MP3A	X	3.664	5
86	MP3A	Z	-2.115	5
87	MP3A	Mx	000916	5
88	MP3C	X	6.412	5
89	MP3C	Z	-3.702	5
90	MP3C	Mx	000633	5
91	MP3A	X	3.664	5
92	MP3A	Z	-2.115	5
93	MP3A	Mx	.000916	5
94	MP3C	X	6.412	5
95	MP3C	Z	-3.702	5
96	MP3C	Mx	.000633	5

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

4	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	20.264	2
2	MP3A	Z	0	2
3	MP3A	Mx	017	2
4 5	MP3A	X	20.264	6
	MP3A	Z	0	6
7	MP3A	Mx	017	6
	MP3B	X	29.166	2
9	MP3B	Z	0	2
10	MP3B	Mx	.021	2
11	MP3B	X	29.166	6
12	MP3B	Z	0	6
13	MP3B	Mx	.021	6
14	MP3C	X	29.166	2
15	MP3C	Z	0	2
	MP3C	Mx	013	2
16	MP3C	X	29.166	6
7	MP3C	Z	0	6
8	MP3C	Mx	013	6
9	MP3A	X	20.264	2
20	MP3A	Z	0	2
21	MP3A	Mx	017	2
22	MP3A	X	20.264	6
23	MP3A	Z	0	6
24	MP3A	Mx	017	6
25	MP3B	X	29.166	2
26	MP3B	Z	0	2
27	MP3B	Mx	013	2
28	MP3B	X	29.166	6
29	MP3B	Z	0	6
30	MP3B	Mx	013	6
31	MP3C	X	29.166	2
32	MP3C	Z	0	2
33	MP3C	Mx	.021	2
34	MP3C	X	29.166	6
35	MP3C	Z	0	6
36	MP3C	Mx	.021	6
37	MP2A	X	2.163	4
88	MP2A	Z	0	4
19	MP2A	Mx	000541	4
0	MP2B	X	7.327	4
1	MP2B	Z	0	44
2	MP2B	Mx	.000318	4
3	MP2C	X	7.327	4
4	MP2C	Z	0	4 4
.5	MP2C	Mx	.000318	4
6	MP1A	X	7.36	3
7	MP1A	Z	0	3
8	MP1A	Mx	006	3
.9	MP1A	X	7.36	5
0	MP1A	Z	0	714 5 7
1	MP1A	Mx	006	5
2	MP1B	X	17.054	3
3	MP1B	Z	0	3
4	MP1B	Mx	.002	3
55	MP1B	X	17.054	5
6	MP1B	Z	0	5
7	MP1B	Mx	.002	5
8	MP1C	X	17.054	3
9	MP1C	Z	0	3

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

Me	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP1C	Mx	.002	3
61	MP1C	X	17.054	5
62	MP1C	Z	0	1400 5 I
63	MP1C	Mx	.002	5
64	MP3A	X	10.124	2.5
65	MP3A	Z	0	2.5
66	MP3A	Mx	.005	2.5
67	MP3B	X	13.47	2.5
68	MP3B	Z	0	2.5
69	MP3B	Mx	003	2.5
70	MP3C	X	13.47	2.5
71	MP3C	Z	0	2.5
72	MP3C	Mx	003	2.5
73	MP4A	X	8.429	2.5
74	MP4A	Z	0	2.5
75	MP4A	Mx	.004	2.5
76	MP4B	X	13.046	2.5
77	MP4B	Z	0	2.5
78	MP4B	Mx	003	2.5
79	MP4C	X	13.046	2.5
80	MP4C	Z Z	0	2.5
81	MP4C	Mx	003	2.5
82	OVP	X	24.242	1
83	OVP	Z	0	1
84	OVP	Mx	0	
85	MP3A	X	2.978	5
86	MP3A	Z	0	5
87	MP3A	Mx	000744	5
88	MP3C	X	7.839	A19U 5
89	MP3C	Z	0	5
90	MP3C	Mx	.00034	5
91	MP3A	X	2.978	5
92	MP3A	Z	0	5
93	MP3A	Mx	.000744	5
94	MP3C	X	7.839	5
95	MP3C	Z	0	5
96	MP3C	Mx	00034	5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	19.536	2
2	MP3A	Z	11.279	2
3	MP3A	Mx	023	2
4	MP3A	X	19.536	6
5	MP3A	Z	11.279	6
6	MP3A	Mx	023	6
7	MP3B	X	24.569	2
8	MP3B	Z	14.185	2
9	MP3B	Mx	.007	2
10	MP3B	X	24.569	6
11	MP3B	Z	14.185	6
12	MP3B	Mx	.007	6
13	MP3C	X	22.214	2
14	MP3C	Z	12.825	2
15	MP3C	Mx	.002	2
16	MP3C	X	22.214	6
17	MP3C	Z	12.825	6
18	MP3C	Mx	.002	6

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
19	MP3A	X	19.536	2
20	MP3A		11.279	2
21	MP3A	Mx	01	2
22	MP3A	X	19.536	6
23	MP3A	Z	11.279	6
24	MP3A	Mx	01	6
25	MP3B	X	24.569	2
26	MP3B	Z	14.185	2
27	MP3B	Mx	024	2
28	MP3B	X	24.569	6
29	MP3B	Z	14.185	6
30	MP3B	Mx	024	6
31	MP3C	X	22.214	2
32	MP3C	Z	12.825	2
33	MP3C	Mx	.025	2
34	MP3C	X	22.214	6
35	MP3C	Z	12.825	6
36	MP3C	Mx	.025	6
37	MP2A	X	3.026	4
38	MP2A	Z	1.747	4
39	MP2A	Mx	000756	4
40	MP2B	X	5.945	4
41	MP2B	Z	3.432	4
42	MP2B	Mx	000587	4
43	MP2C	X	4.579	4
44	MP2C	Z	2.644	4
45	MP2C	Mx	.00085	4
46	MP1A	X	8.538	3
47	MP1A	Z	4.929	3
48	MP1A	Mx	007	3
49	MP1A	X	8.538	5
50	MP1A	Z	4.929	5
51	MP1A	Mx	007	5
52	MP1B	X	14.017	3
53	MP1B	Z	8.093	3
54	MP1B	Mx	005	3
55	MP1B	X	14.017	5
56	MP1B	Z	8.093	5
57	MP1B	Mx	005	5
58	MP1C	X	11.453	3
59	MP1C	Z	6.613	3
30	MP1C	Mx	.007	3
61	MP1C	X	11.453	5
32	MP1C	Z	6.613	5
63	MP1C	Mx	.007	5
64	MP3A	X	9.733	2.5
65	MP3A	Z	5.62	2.5
36	MP3A	Mx	.005	2.5
37	MP3B	X	12.631	2.5
68	MP3B	Z	7.292	2.5
39	MP3B	Mx	0	2.5
70	MP3C	X	9.733	2.5
71	MP3C	Z	5.62	2.5
72	MP3C	Mx	005	2.5
73	MP4A	X	8.632	2.5
74	MP4A	Ž	4.984	2.5
75	MP4A	Mx	.004	2.5
76	MP4B	X	12.631	2.5
77	MP4B	Z	7.292	2.5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP4B	Mx	0	2.5
79	MP4C	X	8.632	2.5
80	MP4C	Z	4.984	2.5
81	MP4C	Mx	004	2.5
82	OVP	X	23.671	
83	OVP	Z	13.667	1
84	OVP	Mx	0	Kingal 1
85	MP3A	X	3.664	5
86	MP3A	Z	2.115	5 11
87	MP3A	Mx	000916	5
88	MP3C	X	5.126	5
89	MP3C	Z	2.96	5
90	MP3C	Mx	.000951	5
91	MP3A	X	3.664	5
92	MP3A	Z	2.115	5
93	MP3A	Mx	.000916	5
94	MP3C	X	5.126	5
95	MP3C	Z	2.96	5
96	MP3C	Mx	000951	5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	13.574	2
2	MP3A	Z	23.511	2
3	MP3A	Mx	025	2
4	MP3A	X	13.574	6
5	MP3A	Z	23.511	6
6	MP3A	Mx	025	6
7	MP3B	X	12.028	2
8	MP3B	Z	20.833	2
9	MP3B	Mx	006	2
10	MP3B	X	12.028	6
11	MP3B	Z	20.833	6
12	MP3B	Mx	006	6
13	MP3C	X	10.669	2
14	MP3C	Z	18.479	2
15	MP3C	Mx	.012	2
16	MP3C	X	10.669	6
17	MP3C	Z	18.479	6
18	MP3C	Mx	.012	6
19	MP3A	X	13.574	2
20	MP3A	Z	23.511	2
21	MP3A	Mx	.002	2
22	MP3A	X	13.574	6
23	MP3A	Z	23.511	6
24	MP3A	Mx	.002	6
25	MP3B	X	12.028	2
26	MP3B	Z	20.833	2
27	MP3B	Mx	024	2
28	MP3B	X	12.028	6
29	MP3B	Z	20.833	6
30	MP3B	Mx	024	6
31	MP3C	X	10.669	2
32	MP3C	Z	18.479	2
33	MP3C	Mx	.021	2
34	MP3C	X	10.669	6
35	MP3C	Z	18.479	6
36	MP3C	Mx	.021	6

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
37	MP2A	X	3.078	4
38	MP2A	Z	5.332	4
39	MP2A	Mx	00077	4
40	MP2B	X	2.182	4
41	MP2B	Z	3.779	4
42	MP2B	Mx	000836	4
43	MP2C	X	1.393	4
14	MP2C	Z	2.413	4
45	MP2C	Mx	.000655	4
46	MP1A	X	7.428	3
17	MP1A	Z	12.866	3
48	MP1A	Mx	006	3
49	MP1A	X	7.428	5
50	MP1A	Z	12.866	5
51	MP1A	Mx	006	5
52	MP1B	X	5.745	3
53	MP1B	Z	9.95	3
54	MP1B	Mx	007	3
55	MP1B		5.745	5
56	MP1B	X	9.95	5
57	MP1B	Mx	007	5
58	MP1C	X	4.264	3
59	MP1C	Z	7.386	3
60	MP1C	Mx	.007	3
31	MP1C	X	4.264	5
52	MP1C	Z	7.386	5
33	MP1C	Mx	.007	5
64	MP3A	X	6.735	2.5
65	MP3A	Z	11.665	
36	MP3A	Mx		2.5
67	MP3B	X	.003 6.735	2.5
68	MP3B	Z		2.5
59 59	MP3B		11.665	2.5
70	MP3C	Mx	.003	2.5
71	MP3C	X	5.062	2.5
72			8.768	2.5
73	MP3C	Mx	005	2.5
74	MP4A	X	6.523	2.5
	MP4A	Z	11.298	2.5
75	MP4A	Mx	.003	2.5
76 77	MP4B	X	6.523	2.5
77	MP4B	Z	11.298	2.5
78	MP4B	Mx	.003	2.5
79	MP4C	X	4.214	2.5
30	MP4C	Z	7.3	2.5
31	MP4C	Mx	004	2.5
32	OVP	X	14.926	11
33	OVP	Z	25.853	1
34	OVP	Mx	0	1
35	MP3A	X	3.369	5
36	MP3A	Z	5.835	5
37	MP3A	Mx	000842	5
38	MP3C	X	1.782	5
39	MP3C	Z	3.087	5
90	MP3C	Mx	.000837	5
91	MP3A	X	3.369	5
92	MP3A	Z	5.835	5
93	MP3A	Mx	.000842	5
94	MP3C	X	1.782	5
95	MP3C	Z	3.087	5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
96	MP3C	Mx	000837	5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

М	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	2
2	MP3A	Z	29.443	2
3	MP3A	Mx	017	2
4	MP3A	X	0	6
5	MP3A	Z	29.443	6
6	MP3A	Mx	017	6
7	MP3B	X	0	2
В	MP3B	Z	20.54	2
9	MP3B	Mx	015	2
0	MP3B	X	0	6
1	MP3B	Z	20.54	6
2	MP3B	Mx	015	6
3	MP3C	X	0	2
4	MP3C	Z	20.54	2
5	MP3C	Mx	.019	2
6	MP3C	X	0	6
7	MP3C	Z	20.54	6
8	MP3C	Mx	.019	6
9	MP3A	X	0	2
20	MP3A	Z	29.443	2
21	MP3A	Mx	.017	2
22	MP3A	X	0	6
23	MP3A	Z	29.443	6
24	MP3A	Mx	.017	6
25	MP3B	X	0	2
26	MP3B	Z	20.54	2
27	MP3B	Mx	019	2
28	MP3B	X	0	6
29	МРЗВ	Z	20.54	6
30	MP3B	Mx	019	6
31	MP3C	X	0	2
32	MP3C	Z	20.54	2
33	MP3C	Mx	.015	2
34	MP3C	X	0	6
35	MP3C	Z	20.54	6
36	MP3C	Mx	.015	6
37	MP2A	X	0	4
38	MP2A	Z	7.488	4
39	MP2A	Mx	0	4
10	MP2B	X	0	1 4 Land 4 Land 19 Land
11	MP2B	Z	2.324	4
12	MP2B	Mx	000572	4
13	MP2C	X	0	4
14	MP2C	Z	2.324	4
45	MP2C	Mx	.000572	4
16	MP1A	X	0	3
1 7	MP1A	Z	17.355	3
48	MP1A	Mx	0	3
49	MP1A	X	0	5
50	MP1A	Ž	17.355	5
51	MP1A	Mx	0	5
52	MP1B	X	0	3
53	MP1B	Z	7.661	3
54	MP1B	Mx	006	3

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
55	MP1B	X	0	5
56	MP1B	Z	7.661	5
57	MP1B	Mx	006	5
58	MP1C	X	0	3
59	MP1C	Z	7.661	3
60	MP1C	Mx	.006	3
61	MP1C	X	0	5
62	MP1C	Z	7.661	5
63	MP1C	Mx	.006	5
64	MP3A	X	0	2.5
65	MP3A	Z	14.585	2.5
66	MP3A	Mx	0	2.5
67	MP3B	X	0	2.5
68	MP3B	Z	11.239	2.5
69	MP3B	Mx	.005	2.5
70	MP3C	X	0	2.5
71	MP3C	Z	11.239	2.5
72	MP3C	Mx	005	2.5
73	MP4A	X	0	2.5
74	MP4A	Z	14.585	2.5
75	MP4A	Mx	0	2.5
76	MP4B	X	0	2.5
77	MP4B	Z	9.968	2.5
78	MP4B	Mx	.004	2.5
79	MP4C	X	0	2.5
80	MP4C	Z	9.968	2.5
81	MP4C	Mx	004	2.5
32	OVP	X	0	1
83	OVP	Z	29.282	1
84	OVP	Mx	0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
35	MP3A	X	0	5
36	MP3A	Z	7.99	5
37	МРЗА	Mx	0	5
38	MP3C	X	Ö	5
39	MP3C	Z	3.129	5
90	MP3C	Mx	.00077	5
91	MP3A	X	0	5
92	MP3A	Z	7.99	5
93	MP3A	Mx	0	5
94	MP3C	X	0	5
95	MP3C	Z	3.129	5
96	MP3C	Mx	00077	5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-13.574	2
2	MP3A	Z	23.511	2
3	MP3A	Mx	002	2
4	MP3A	X	-13.574	6
5	MP3A	Z	23.511	6
6	MP3A	Mx	002	6
7	MP3B	X	-10.669	2
8	MP3B	Z	18.479	2
9	MP3B	Mx	021	2
10	MP3B	X	-10.669	6
11	MP3B	Z	18.479	6
12	MP3B	Mx	021	6
13	MP3C	X	-12.028	2

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

14	MP3C			2
		Z	20.833	2 2
15	MP3C	Mx	.024	6
16	MP3C	X	-12.028	6
17	MP3C	Z	20.833	6
18	MP3C	Mx	.024	2
19	MP3A	X	-13.574	2
20	MP3A	Z	23.511	
21	MP3A	Mx	.025	2
22	MP3A	X	-13.574	6
23	MP3A	Z	23.511	6
24	MP3A	Mx	.025	6
25	MP3B	X	-10.669	2
26	MP3B	Z	18.479	2
27	MP3B	Mx	012	2
28	MP3B	X	-10.669	6
29	MP3B	Z	18.479	6
30	MP3B	Mx	012	6
31	MP3C	X	-12.028	2
32	MP3C	Z	20.833	2
33	MP3C	Mx	.006	2
34	MP3C	X	-12.028	6
35	MP3C	Z	20.833	6
36	MP3C	Mx	.006	6
37	MP2A	X	-3.078	4
38	MP2A	Z	5.332	4
39	MP2A	Mx	.00077	-4
	MP2B	X	-1.393	4
40	MP2B	Z	2.413	4
41		Mx	000655	4
42	MP2B	X	-2.182	4
43	MP2C	Z	3.779	4
44	MP2C	Mx	.000836	4
45	MP2C	X	-7.428	3
46	MP1A	Z	12.866	3
47	MP1A		.006	3
48	MP1A	Mx	-7.428	5
49	MP1A	X	12.866	5
50	MP1A	Z		5
51	MP1A	Mx	.006	3
52	MP1B	X	-4.264	3
53	MP1B	Z	7.386	
54	MP1B	Mx	007	3
55	MP1B	X	-4.264	5
56	MP1B	Z	7.386	5
57	MP1B	Mx	007	5
58	MP1C	X	-5.745	3
59	MP1C	Z	9.95	3
60	MP1C	Mx	.007	3
61	MP1C	X	-5.745	5
62	MP1C	Z	9.95	5
63	MP1C	Mx	.007	5
64	MP3A	X	-6.735	2.5
65	MP3A	Z	11.665	2.5
66	MP3A	Mx	003	2.5
67	MP3B	X	-5.062	2.5
68	MP3B	Z	8.768	2.5
	MP3B	Mx	.005	2.5
69	MP3C	X	-6.735	2.5
70 71	MP3C	Z	11.665	2.5
	IVIE.)(003	2.5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP4A	X	-6.523	2.5
74	MP4A	Z	11.298	2.5
75	MP4A	Mx	003	2.5
76	MP4B	X	-4.214	2.5
77	MP4B	Z	7.3	2.5
78	MP4B	Mx	.004	2.5
79	MP4C	X	-6.523	2.5
80	MP4C	Z	11.298	2.5
81	MP4C	Mx	003	2.5
82	OVP	X	-13.095	1
83	OVP	Z	22.682	1
84	OVP	Mx	0	
85	MP3A	X	-3.369	5
86	MP3A	Z	5.835	5
87	МР3А	Mx	.000842	5
88	MP3C	X	-2.524	5 12
89	MP3C	Z	4.372	5
90	MP3C	Mx	.000967	5
91	MP3A	X	-3.369	5
92	MP3A	Z	5.835	5
93	MP3A	Mx	000842	5
94	MP3C	X	-2.524	5
95	MP3C	Z	4.372	5
96	MP3C	Mx	000967	5 1/2

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-19.536	2
2	MP3A	Z	11.279	2
3	MP3A	Mx	.01	2
4	MP3A	X	-19.536	6
5	MP3A	Z	11.279	6
6	MP3A	Mx	.01	6
7	MP3B	X	-22.214	2
8	MP3B	Z	12.825	2
9	MP3B	Mx	025	2
10	MP3B	X	-22.214	6
11	MP3B	Z	12.825	6
12	MP3B	Mx	025	6
13	MP3C	X	-24.569	2
14	MP3C	Z	14.185	2
15	MP3C	Mx	.024	2
16	MP3C	X	-24.569	6
17	MP3C	Z	14.185	6
18	MP3C	Mx	.024	6
19	MP3A	X	-19.536	2
20	MP3A	Z	11.279	2
21	MP3A	Mx	.023	2
22	MP3A	X	-19.536	6
23	MP3A	Z	11.279	6
24	MP3A	Mx	.023	6
25	MP3B	X	-22.214	2
26	MP3B	Z	12.825	2
27	MP3B	Mx	002	2
28	MP3B	X	-22.214	6
29	МР3В	Z	12.825	6
30	MP3B	Mx	002	6
31	MP3C	X	-24.569	2

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
32	MP3C	Z	14.185	2
33	MP3C	Mx	007	2
34	MP3C	X	-24.569	6
35	MP3C	Z	14.185	6
36	MP3C	Mx	007	6
37	MP2A	X	-3.026	4
38	MP2A	Z	1.747	4
39	MP2A	Mx	.000756	4
40	MP2B	X	-4.579	4
41	MP2B	Z	2.644	4
42	MP2B	Mx	00085	4
43	MP2C	X	-5.945	4
44	MP2C	Z	3.432	4
45	MP2C	Mx	.000587	4
46	MP1A	X	-8.538	3
47	MP1A	Z	4.929	3
48	MP1A	Mx	.007	3
49	MP1A	X	-8.538	5
50	MP1A	Z	4.929	5
51	MP1A	Mx	.007	5
52	MP1B	X	-11.453	3
53	MP1B	Z	6.613	3
54	MP1B	Mx	007	3
55	MP1B	X	-11.453	5
	MP1B	Z	6.613	-5
56	MP1B	Mx	007	5
57		X	-14.017	3
58	MP1C	Z	8.093	3
59	MP1C	Mx	.005	3
60	MP1C		-14.017	5
61	MP1C	X	8.093	5
62	MP1C	Z	.005	5
63	MP1C	Mx	-9.733	2.5
64	MP3A	X		2.5
65	MP3A	Z	5.62	2.5
66	MP3A	Mx	005	2.5
67	MP3B	X	-9.733	
68	MP3B	Z	5.62	2.5
69	MP3B	Mx	.005	2.5
70	MP3C	X	-12.631	2.5
71	MP3C	Z	7.292	2.5
72	MP3C	Mx	0	2.5
73	MP4A	X	-8.632	2.5
74	MP4A	Z	4.984	2.5
75	MP4A	Mx	004	2.5
76	MP4B	X	-8.632	2.5
77	MP4B	Z	4.984	2.5
78	MP4B	Mx	.004	2.5
79	MP4C	X	-12.631	2.5
80	MP4C	Z	7.292	2.5
81	MP4C	Mx	0	2.5
82	OVP	X	-20.499	0.000
	OVP	Z	11.835	1
83	OVP	Mx	0	
84		X	-3.664	5
85	MP3A	Z	2.115	5
86	MP3A		.000916	5
87	MP3A	Mx	-6.412	5
88	MP3C	X	3.702	5
89	MP3C			5
90	MP3C	Mx	.000633	J

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
91	MP3A	X	-3.664	5
92	MP3A	Z	2,115	5
93	MP3A	Mx	000916	5
94	MP3C	X	-6.412	5
95	MP3C	Z	3.702	5
96	MP3C	Mx	000633	5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-20.264	2
2	MP3A	Z	0	2
3	MP3A	Mx	.017	2
4	MP3A	X	-20.264	6
5	MP3A	Z	0	6
6	MP3A	Mx	.017	6
7	MP3B	X	-29.166	2
8	MP3B	Z	0	2
9	MP3B	Mx	021	2
10	MP3B	X	-29.166	6
11	MP3B	Z	0	6
12	MP3B	Mx	021	6
13	MP3C	X	-29.166	2
14	MP3C	Z	0	2
15	MP3C	Mx	.013	2
16	MP3C	X	-29.166	6
17	MP3C	Z	0	6
18	MP3C	Mx	.013	6
9	MP3A	X	-20.264	2
20	MP3A	Z	0	2
21	MP3A	Mx	.017	2
22	MP3A	X	-20.264	6
23	MP3A	Z	0	6
24	MP3A	Mx	.017	6
25	MP3B	X	-29.166	2
26	MP3B	Z	0	2
27	MP3B	Mx	.013	2
28	MP3B	X	-29.166	6
29	MP3B	Z	0	6
30	MP3B	Mx	.013	6
31	MP3C	X	-29.166	2
32	MP3C	Z	0	2
33	MP3C	Mx	021	2
34	MP3C	X	-29.166	6
35	MP3C	Z	0	6
36	MP3C	Mx	021	6
37	MP2A	X	-2.163	4
88	MP2A	Z	0	4
39	MP2A	Mx	.000541	4
10	MP2B	X	-7.327	4
11	MP2B	Z	0	4
2	MP2B	Mx	000318	4
13	MP2C	X	-7.327	4
14	MP2C	Z	0	4
15	MP2C	Mx	000318	4
16	MP1A	X	-7.36	3
17	MP1A	Z	0	3
18	MP1A	Mx	.006	3
19	MP1A	X	-7.36	5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
50	MP1A	Z	0	5
51	MP1A	Mx	.006	5
52	MP1B	X	-17.054	3
53	MP1B	Z	0	3
54	MP1B	Mx	002	3
55	MP1B	X	-17.054	5
56	MP1B	Z	0	5
57	MP1B	Mx	002	5
58	MP1C	X	-17.054	3
59	MP1C	Z	0	3
60	MP1C	Mx	002	3
61	MP1C	X	-17.054	5
62	MP1C	Z	0	5 5
63	MP1C	Mx	002	2.5
64	MP3A	X	-10.124	2.5
65	MP3A	Z	0	2.5
66	MP3A	Mx	005	
67	MP3B	X	-13.47	2.5 2.5
68	MP3B	Z Z	0	2.5
69	MP3B	Mx	.003	2.5
70	MP3C	X	-13.47	2.5
71	MP3C	Z	0	2.5
72	MP3C	Mx	.003	2.5
73	MP4A	X	-8.429	2.5
74	MP4A	Z	0	2.5
75	MP4A	Mx	004	2.5
76	MP4B	X	-13.046	2.5
77	MP4B	Z	0	2.5
78	MP4B	Mx	.003	2.5
79	MP4C	X	-13.046	2.5
80	MP4C	Z	0	2.5
81	MP4C	Mx	.003	2.5
82	OVP	X	-24.242	1
83	OVP	Z	0	
84	OVP	Mx	-2.978	5
85	MP3A	X	-2.978	5
86	MP3A	Z	.000744	5
87	MP3A	Mx		5 5
88	MP3C	X	-7.839 0	5
89	MP3C	Z	00034	5
90	MP3C	Mx	00034	5
91	MP3A	X		5
92	MP3A	Z	000744	5
93	MP3A	Mx	000744	5
94	MP3C	X	-7.839	5
95	MP3C	Z	0	5
96	MP3C	Mx	.00034	J

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	MP3A	X	-19.536	2
2	MP3A	Z	-11.279	2
2	MP3A	Mx	.023	2
4	MP3A	X	-19.536	6
5	MP3A	7	-11.279	6
6	MP3A	Mx	.023	6
7	MP3B	X	-24.569	2
8	MP3B	Z	-14.185	2

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP3B	Mx	007	2
10	MP3B	X	-24.569	6
11	MP3B	Z	-14.185	6
12	MP3B	Mx	007	6
13	MP3C	X	-22.214	2
14	MP3C	Z	-12.825	2
15	MP3C	Mx	002	2
16	MP3C	X	-22.214	6
17	MP3C	Z	-12.825	6
18	MP3C	Mx	002	6
19	MP3A	X	-19.536	2
20	MP3A	Z	-11.279	2
21	MP3A	Mx	.01	2
22	MP3A	X	-19.536	6
23	MP3A	Z	-11.279	6
24	MP3A	Mx	.01	6
25	MP3B	X	-24.569	2
26	MP3B	Z	-14.185	2
27	MP3B	Mx	.024	2
28	MP3B	X	-24.569	6
29	МРЗВ	Z	-14.185	6
30	MP3B	Mx	.024	6
31	MP3C	X	-22.214	2
32	MP3C	Z	-12.825	2
33	MP3C	Mx	025	2
34	MP3C	X	-22.214	
35	MP3C	Z		6
36	MP3C	Mx	-12.825	6
37	MP2A	X	025	6
38	MP2A	Z	-3.026	4
39	MP2A	Mx	-1.747	4
40	MP2B		.000756	4
41	MP2B	X	-5.945	4
12	MP2B		-3.432	4
13	MP2C	Mx	.000587	4
14		X	-4.579	4
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MP2C	Z	-2.644	4
	MP2C	Mx	00085	4
16	MP1A	X	-8.538	3
17	MP1A	Z	-4.929	3
18	MP1A	Mx	.007	3
19	MP1A	X	-8.538	5
50	MP1A	Z	-4.929	5
51	MP1A	Mx	.007	5
52	MP1B	X	-14.017	3
53	MP1B	Z	-8.093	3
54	MP1B	Mx	.005	3
55	MP1B	X	-14.017	5
6	MP1B	Z	-8.093	5
7	MP1B	Mx	.005	5
8	MP1C	X	-11.453	3
9	MP1C	Z	-6.613	3
0	MP1C	Mx	007	3
31	MP1C	X	-11.453	5
2	MP1C	Z	-6.613	5
3	MP1C	Mx	007	5
64	MP3A	X	-9.733	2.5
55	MP3A	Z	-5.62	2.5
66	MP3A	Mx	005	2.5
67	MP3B	X	-12.631	Z.Ü

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP3B	Z	-7.292	2.5
69	MP3B	Mx	0	2.5
70	MP3C	X	-9.733	2.5
71	MP3C	Z	-5.62	2.5
72	MP3C	Mx	.005	2.5
73	MP4A	X	-8.632	2.5
74	MP4A	Z	-4.984	2.5
75	MP4A	Mx	004	2.5
76	MP4B	X	-12.631	2.5
77	MP4B	Z	-7.292	2.5
78	MP4B	Mx	0	2.5
79	MP4C	X	-8.632	2.5
80	MP4C	Z	-4.984	2.5
81	MP4C	Mx	.004	2.5
82	OVP	X	-23.671	1
83	OVP	Z	-13.667	1
84	OVP	Mx	0	ESW 1
85	MP3A	X	-3.664	5
86	MP3A	Z	-2.115	5
87	MP3A	Mx	.000916	5
88	MP3C	X	-5.126	5
89	MP3C	Z	-2.96	5
90	MP3C	Mx	000951	5
91	MP3A	X	-3.664	5
92	MP3A	Z	-2.115	5
93	MP3A	Mx	000916	5
94	MP3C	X	-5.126	5
95	MP3C	Z	-2.96	5
96	MP3C	Mx	.000951	5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-13.574	2
2	MP3A	Z	-23.511	2
3	MP3A	Mx	.025	2
4	MP3A	X	-13.574	6
5	MP3A	Z	-23.511	6
6	MP3A	Mx	.025	6
7	MP3B	X	-12.028	2
8	MP3B	Z	-20.833	2
9	MP3B	Mx	.006	2
10	MP3B	X	-12.028	6
11	MP3B	Z	-20.833	6
12	MP3B	Mx	.006	6
13	MP3C	X	-10.669	2
14	MP3C	Z	-18.479	2
15	MP3C	Mx	012	2
16	MP3C	X	-10.669	6
17	MP3C	Z	-18.479	6
18	MP3C	Mx	012	6
19	MP3A	X	-13.574	2
20	MP3A	Z	-23.511	2
21	MP3A	Mx	002	2
22	MP3A	X	-13.574	6
23	MP3A	Z	-23.511	6
24	MP3A	Mx	002	6
25	MP3B	X	-12.028	2
26	MP3B	Z	-20.833	2

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

27	Member Label MP3B	Direction Mx	Magnitude[lb,k-ft] .024	Location[ft,%]
28	MP3B	X	-12.028	6
29	MP3B	Z	-20.833	6
30	MP3B	Mx	.024	6
31	MP3C	X	-10.669	2
32	MP3C	Z	-18.479	
33	MP3C			2
34	MP3C	Mx	021	2
35		X	-10.669	6
	MP3C	Z	-18.479	6
36	MP3C	Mx	021	6
37	MP2A	X	-3.078	4
38	MP2A	Z	-5.332	4
39	MP2A	Mx	.00077	4
40	MP2B	X	-2.182	4
41	MP2B	Z	-3.779	4
42	MP2B	Mx	.000836	4
43	MP2C	X	-1.393	4
44	MP2C	Z	-2.413	4
45	MP2C	Mx	000655	4
46	MP1A	X	-7.428	3
47	MP1A	Z	-12.866	3
48	MP1A	Mx	.006	3
49	MP1A	X	-7.428	
50	MP1A	Z		5
51	MP1A		-12.866	5
52		Mx	.006	5
	MP1B	X	-5.745	3
53	MP1B	Z	-9.95	3
54	MP1B	Mx	.007	3
55	MP1B	X	-5.745	5
56	MP1B	Z	-9.95	5
57	MP1B	Mx	2007	5
58	MP1C	X	-4.264	3
59	MP1C	Z	-7.386	3
60	MP1C	Mx	007	3
61	MP1C	X	-4.264	5
62	MP1C	Z	-7.386	5
63	MP1C	Mx	007	5
64	MP3A	X	-6.735	2.5
65	MP3A	Z	-11.665	2.5
66	MP3A	Mx	003	2.5
67	MP3B	X	-6.735	2.5
68	MP3B	Z	-11.665	
69	MP3B	Mx		2.5
70	MP3C		003	2.5
71		X	-5.062	2.5
	MP3C	Z	-8.768	2.5
72	MP3C	Mx	.005	2.5
73	MP4A	X	-6.523	2.5
74	MP4A	Z	-11.298	2.5
75	MP4A	Mx	003	2.5
76	MP4B	X	-6.523	2.5
77	MP4B	Z	-11.298	2.5
78	MP4B	Mx	003	2.5
79	MP4C	X	-4.214	2.5
80	MP4C	Z	-7.3	2.5
81	MP4C	Mx	.004	2.5
82	OVP	X	-14.926	1
83	OVP	Z	-25.853	1
84	OVP	Mx	0	
85	MP3A	X	-3.369	5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP3A	Z	-5.835	5
87	MP3A	Mx	.000842	5
88	MP3C	X	-1.782	5
89	MP3C	Z	-3.087	5
90	MP3C	Mx	000837	5
91	MP3A	X	-3.369	5
92	MP3A	Z	-5.835	5
93	MP3A	Mx	000842	5
94	MP3C	X	-1.782	5
95	MP3C	Z	-3.087	5
96	MP3C	Mx	.000837	5

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

Memi	ber Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 M	IP3A	X	0	2
2 M	IP3A	Z	-6.524	2
3 M	IP3A	Mx	.004	2
4 M	IP3A	X	0	6
	IP3A	Z	-6.524	6
	IP3A	Mx	.004	6
	IP3B	X	0	2
8 N	IP3B	Z	-2.918	2
	IP3B	Mx	.002	2
	IP3B	X	0	6
	IP3B	Z	-2.918	6
	IP3B	Mx	.002	6
13 N	IP3C	X	0	2
14 N	IP3C	Z	-2.918	2
15 N	IP3C	Mx	003	2
16 N	IP3C	X	0	6
17 N	IP3C	Z	-2.918	6
18 N	IP3C	Mx	003	6
19 V	IP3A	X	0	2
20 N	1P3A	Z	-6.524	2
21 N	1P3A	Mx	004	2
22 N	IP3A	X	0	6
	1P3A	Z	-6.524	6
24 N	1P3A	Mx	004	6
25 N	1P3B	X	0	2
26 N	1P3B	Z	-2.918	2
27 N	1P3B	Mx	.003	2
	1P3B	X	0	6
29 N	1P3B	Z	-2.918	6
	1P3B	Mx	.003	6
	1P3C	X	0	2
32 N	1P3C	Z	-2.918	2
	1P3C	Mx	002	2
34 N	MP3C	X	0	6
35 N	1P3C	Z	-2.918	6
	1P3C	Mx	002	6
	1P2A	X	0	4
	1P2A	Z	-2.107	4
39 N	1P2A	Mx	0	4
	1P2B	X	0	4
	1P2B	Z	464	4
	IP2B	Mx	.000114	4
	1P2C	X	0	4
	1P2C	Z	464	4

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
45	MP2C	Mx	000114	4
46	MP1A	X	0	3
47	MP1A	Z	-4.641	3
48	MP1A	Mx	0	3
49	MP1A	X	0	5
50	MP1A	Z	-4.641	5
51	MP1A	Mx	0	5
52	MP1B	X	0	3
53	MP1B	Z	-1.69	3
54	MP1B	Mx	.001	3
55	MP1B	X	0	5
56	MP1B	Z	-1.69	5
57	MP1B	Mx	.001	5
58	MP1C	X	0	3
59	MP1C	Z	-1.69	3
60	MP1C	Mx	001	3
61	MP1C	X	0	5
62	MP1C	Z	-1.69	5
63	MP1C	Mx	001	5
64	MP3A	X	0	2.5
65	MP3A	Z	-3.67	2.5
66	MP3A	Mx	0	2.5
67	MP3B	X	0	2.5
68	MP3B	Z	-2.765	2.5
69	MP3B	Mx	001	2.5
70	MP3C	X	0	2.5
71	MP3C	Z	-2.765	2.5
72	MP3C	Mx	.001	2.5
73	MP4A	X	0	2.5
74	MP4A	Z	-3.67	2.5
75	MP4A	Mx	0	2.5
76	MP4B	X	0	2.5
77	MP4B	Z	-2.427	2.5
78	MP4B	Mx	001	2.5
79	MP4C	X	0	2.5
80	MP4C	Z	-2.427	2.5
81	MP4C	Mx	.001	2.5
82	OVP	X	0	1
83	OVP	Z	-7.296	1
84	OVP	Mx	0	
85	MP3A	X	0	5
86	MP3A	Z	-2.273	5
87	MP3A	Mx	0	
88	MP3C	X	0	5 5
89	MP3C	Z	737	5
90	MP3C	Mx	000181	5
91	MP3A	X	0	5
92	MP3A	Z	-2.273	5
93	MP3A	Mx	0	5
94	MP3C	X	0	5
95	MP3C	Z	737	5
96	MP3C	Mx	.000181	5
-		1717	.000101	V

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	2.797	2
2	MP3A	Z	-4.845	2
3	MP3A	Mx	.000495	2

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4	MP3A	X	2.797	6
5	MP3A	Z	-4.845	6
6	MP3A	Mx	.000495	6 2
7	MP3B	X	1.62	
8	MP3B	Z	-2.807	2
9	MP3B	Mx	.003	2
10	MP3B	X	1.62	6
11	MP3B	Z	-2.807	6
12	MP3B	Mx	.003	6
13	MP3C	X	2.171	2
14	MP3C	Z	-3.76	2
15	MP3C	Mx	004	2
16	MP3C	X X	2.171	6
17	MP3C	Z	-3.76	6
18	MP3C	Mx	004	6 21
19	MP3A	X	2.797	2
20	MP3A	Z	-4.845	2
21	MP3A	Mx	005	2
22	MP3A	X	2.797	6 16
23	MP3A	Z	-4.845	6
24	MP3A	Mx	005	6
25	MP3B	X	1.62	2
26	MP3B	Z	-2.807	2
27	MP3B	Mx	.002	2
28	MP3B	X	1.62	6
29	MP3B	Z	-2.807	6
30	MP3B	Mx	.002	6
31	MP3C	X	2.171	2
32	MP3C	Z	-3.76	2
33	MP3C	Mx	001	2
34	MP3C	X	2.171	6
35	MP3C	Z	-3.76	6
36	MP3C	Mx	001	6
37	MP2A	X	.842	4
38	MP2A	Z	-1.458	4
39	MP2A	Mx	00021	4
40	MP2B	X	.306	4
41	MP2B	Z	53	4
	MP2B	Mx	.000144	4
42	MP2C	X	.557	4
43	MP2C	Z	964	4
44	MP2C	Mx	000213	4
45		X	1.94	3
46	MP1A MP1A	Z	-3.361	3
47		Mx	002	3
48	MP1A	X	1.94	5
49	MP1A	Z	-3.361	5
50	MP1A	Mx	002	5
51	MP1A	X	.977	3
52	MP1B	Z	-1.692	3
53	MP1B	Mx	.002	3
54	MP1B		.977	5
55	MP1B	X	-1.692	5
56	MP1B	Z		5
57	MP1B	Mx	.002	3
58	MP1C	X	1.428	3
59	MP1C	Z	-2.473	3
60	MP1C	Mx	002	5
61	MP1C	X	1.428	5
62	MP1C	Z	-2.473	0

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP1C	Mx	002	5
64	МР3А	X	1.684	2.5
65	MP3A	Z	-2.917	2.5
66	MP3A	Mx	.000842	2.5
67	MP3B	X	1.231	2.5
68	MP3B	Z	-2.133	2.5
69	MP3B	Mx	001	2.5
70	MP3C	X	1.684	2.5
71	MP3C	Z	-2.917	2.5
72	MP3C	Mx	.000842	2.5
73	MP4A	X	1.628	2.5
74	MP4A	Z	-2.82	2.5
75	MP4A	Mx	.000814	2.5
76	MP4B	X	1.006	2.5
77	MP4B	Z	-1.743	2.5
78	MP4B	Mx	001	2.5
79	MP4C	X	1.628	2.5
80	MP4C	Z	-2.82	2.5
81	MP4C	Mx	.000814	2.5
82	OVP	X	3.225	1
83	OVP	Z	-5.586	1
84	OVP	Mx	0	1
85	MP3A	X	.939	5
86	MP3A	Z	-1.626	5 114
87	MP3A	Mx	000235	5
88	MP3C	X	.672	5
89	MP3C	Z	-1.164	5
90	MP3C	Mx	000257	5
91	MP3A	X	.939	5
92	MP3A	Z	-1.626	5
93	MP3A	Mx	.000235	5
94	MP3C	X	.672	5
95	MP3C	Z	-1.164	5
96	MP3C	Mx	.000257	5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	3.235	2
2	MP3A	Z	-1.868	2
3	MP3A	Mx	002	2
4	MP3A	X	3.235	6
5	MP3A	Z	-1.868	6
6	MP3A	Mx	002	6
7	MP3B	X	4.319	2
8	MP3B	Z	-2.494	2
9	MP3B	Mx	.005	2
10	MP3B	X	4.319	6
11	MP3B	Z	-2.494	6
12	MP3B	Mx	.005	6
13	MP3C	X	5.273	2
14	MP3C	Z	-3.044	2
15	MP3C	Mx	005	2
16	MP3C	X	5.273	6
17	MP3C	Z	-3.044	6
18	MP3C	Mx	005	6
19	MP3A	X	3.235	2
20	MP3A	Z	-1.868	2
21	MP3A	Mx	004	2

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

M	lember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
22	MP3A	X	3.235	6
23	MP3A	Z	-1.868	6
24	MP3A	Mx	004	6
25	MP3B	X	4.319	2 2
26	MP3B	Z	-2.494	2
27	MP3B	Mx	.000443	6
28	MP3B	X	4.319	6
29	MP3B	Z	-2.494 .000443	6
30	MP3B	Mx	5.273	2
31	MP3C	X Z	-3.044	2 2
32	MP3C		.002	2
33	MP3C	Mx	5.273	6
34	MP3C	X	-3.044	6
35	MP3C		-3.044	6
36	MP3C	Mx	.725	4
37	MP2A	X	418	4
38	MP2A	Z	000181	4
39	MP2A	Mx	1.219	4
40	MP2B	X	704	4
41	MP2B		.000226	4
42	MP2B	Mx	1.653	4
43	MP2C	X	955	4
44	MP2C	Z	000163	4
45	MP2C	Mx	2.043	3
46	MP1A	X	-1.18	3
47	MP1A		002	3
48	MP1A	Mx	2.043	5
49	MP1A	X	-1.18	5
50	MP1A		002	5
51	MP1A	Mx	2.931	3
52	MP1B	X	-1.692	3
53	MP1B	Mx	.002	3
54	MP1B	X	2.931	5
55	MP1B	Z	-1.692	5
56	MP1B	Mx	.002	5
57	MP1B	X	3.711	3
58	MP1C	Z	-2.143	3
59	MP1C	Mx	001	3
60	MP1C MP1C	X	3.711	5
61	MP1C	Z	-2.143	5
62	MP1C	Mx	001	5
63	MP3A	X	2.394	2.5
64	MP3A	Z	-1.382	2.5
65 66	MP3A	Mx	.001	2.5
	MP3B	X	2.394	2.5
67 68	MP3B	Z	-1.382	2.5
	MP3B	Mx	001	2.5
69 70	MP3C	X	3.179	2.5
	MP3C	Z	-1.835	2.5
71 72	MP3C	Mx	0	2.5
73	MP4A	X	2.102	2.5
	MP4A	Ž	-1.214	2.5
74	MP4A	Mx	.001	2.5
75	MP4B	X	2.102	2.5
76	MP4B	Z	-1.214	2.5
77		Mx	001	2.5
78	MP4B MP4C	X	3.179	2.5
79	MP4C	Z	-1.835	2.5
80	IVII 40		A)5000294425 \/Z\M/ MT I O	

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
81	MP4C	Mx	0	2.5
82	OVP	X	4.989	1
83	OVP	Z	-2.88	1
84	OVP	Mx	0	1
85	MP3A	X	.94	5
86	MP3A	Z	543	5
87	MP3A	Mx	000235	5
88	MP3C	X	1.808	5
89	MP3C	Z	-1.044	5
90	MP3C	Mx	000179	5
91	MP3A	X	.94	5
92	MP3A	Z	543	5
93	MP3A	Mx	.000235	5
94	MP3C	X	1.808	5
95	MP3C	Z	-1.044	5
96	MP3C	Mx	.000179	5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	2.806	2
2	MP3A	Z	0	2
3	MP3A	Mx	002	2
4	MP3A	X	2.806	6
5	MP3A	Z	0	6
6	MP3A	Mx	002	6
7	MP3B	X	6.412	2
8	MP3B	Z	0	2
9	MP3B	Mx	.005	2
10	MP3B	X	6.412	6
11	MP3B	Z	0	6
12	MP3B	Mx	.005	6
13	MP3C	X	6.412	2
14	MP3C	Z	0	2
15	MP3C	Mx	003	2
16	MP3C	X	6.412	6
17	MP3C	Z	0	6
18	MP3C	Mx	003	6
19	MP3A	X	2.806	2
20	MP3A	Z	0	2
21	MP3A	Mx	002	2
22	MP3A	X	2.806	6
23	MP3A	Z	0	6
24	MP3A	Mx	002	6
25	MP3B	X	6.412	2
26	MP3B	Z	0	2
27	MP3B	Mx	003	2
28	MP3B		6.412	6
29	MP3B	X	0	6
30	MP3B	Mx	003	6
31	MP3C	X	6.412	2
32	MP3C	Z	0	2
33	MP3C	Mx	.005	2
34	MP3C	X	6.412	6
35	MP3C	Z	0	6
36	MP3C	Mx	.005	6
37	MP2A	X	.413	4
38	MP2A	Z	.413	4
39	MP2A	Mx	000103	4

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

N	lember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP2B	X	2.056	4
41	MP2B	Z	0	4
42	MP2B	Mx	8.9e-5	4
43	MP2C	X	2.056	4
44	MP2C	Z	0	4
45	MP2C	Mx	8.9e-5	4
46	MP1A	X	1.598	3
47	MP1A	Z	0	3
48	MP1A	Mx	001	3
49	MP1A	X	1.598	5
50	MP1A	Z	0	5
51	MP1A	Mx	001	5
52	MP1B	X	4.549	3
53	MP1B	Z	0	3
54	MP1B	Mx	.000658	3
55	MP1B	X	4.549	5
56	MP1B	Z	0	5
57	MP1B	Mx	.000658	5
58	MP1C	X	4.549	3
59	MP1C	Z	0	3
60	MP1C	Mx	.000658	3
61	MP1C	X	4.549	5
62	MP1C	Z	0	5
63	MP1C	Mx	.000658	5
64	MP3A	X	2.463	2.5
65	MP3A	Z	0	2.5
66	MP3A	Mx	.001	2.5
67	MP3B	X	3.368	2.5
68	MP3B	Z	0	2.5
69	MP3B	Mx	000842	2.5
70	MP3C	X	3.368	2.5
71	MP3C	Z	0	2.5
72	MP3C	Mx	000842	2.5
73	MP4A	X	2.013	2.5
74	MP4A	Z	0	2.5
75	MP4A	Mx	.001	2.5
76	MP4B	X	3.256	2.5
77	MP4B	Z	0	2.5
78	MP4B	Mx	000814	2.5
79	MP4C	X	3.256	2.5
80	MP4C	Z	0	2.5
81	MP4C	Mx	000814	2.5
82	OVP	X	5.917	1
83	OVP	Z	0	1
84	OVP	Mx	0	1
85	MP3A	X	.689	5
86	MP3A	Z	0	5
87	MP3A	Mx	000172	5
	MP3C	X	2.225	5
88	MP3C	Z	0	5
89	MP3C	Mx	9.7e-5	5
90			.689	5
91	MP3A	X	0	5
92	MP3A	Mx	.000172	5
93	MP3A	X	2.225	5
94	MP3C	Z	0	5
95 96	MP3C	Mx	-9.7e-5	5

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
2	MP3A MP3A	X Z	3.235	2
3	MP3A		1.868	2
4	MP3A	Mx X	004 3.235	2
5	MP3A	Z	1.868	6
6	MP3A	Mx	004	6
7	MP3B	X	5.273	
8	MP3B	Z	3.044	2 2
9	MP3B	Mx	.002	
10	MP3B	X	5.273	2 6
11	MP3B	Z	3.044	6
12	MP3B	Mx	.002	6
13	MP3C	X	4.319	2
14	MP3C	Z	2.494	2
15	MP3C	Mx	.000443	2
16	MP3C	X	4.319	6
17	MP3C	Z	2.494	
18	MP3C			6
19	MP3A	Mx X	.000443	6
20	MP3A	Z	3.235 1.868	2 2
21	MP3A	Mx		
22	MP3A	X	002 3.235	2
23	MP3A	Z		6
24	MP3A		1.868	6
25	MP3B	Mx	002	6
26	MP3B	X	5.273	2
27	MP3B		3.044	2
28	MP3B	Mx	005	2
29	MP3B	X	5.273	6
30			3.044	6
31	MP3B	Mx	005	6
32	MP3C MP3C	X	4.319	2
33	MP3C		2.494	2
34	MP3C	Mx	.005	2
35	MP3C	X	4.319	6
36	MP3C		2.494	6
37	MP2A	Mx	.005	6
38	MP2A	X Z	.725	4
39	MP2A MP2A		.418	4
40	MP2B	Mx	000181	4
41		X	1.653	4
42	MP2B MP2B	Z	.955	4
43	MP2C	Mx X	000163	4
44	MP2C	Z	1.219	4
45	MP2C		.704	4
46	MP1A	Mx	.000226	4
46	MP1A	X Z	2.043	3
48	MP1A		1.18	3
48		Mx	002	3
50	MP1A MP1A	X	2.043	5
51			1.18	5
52	MP1A	Mx	002	5
53	MP1B MP1B	X	3.711	3
54	MP1B	Z	2.143	3
	MP1B	Mx	001	3
55	MP1B	X	3.711	5
56	MP1B	Z	2.143	5
57	MP1B	Mx	001	5
58	MP1C	X	2.931	3
59	MP1C	Z	1.692	3

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
60	MP1C	Mx	.002	3
61	MP1C	X	2.931	5
62	MP1C	Z	1.692	5
63	MP1C	Mx	.002	5
64	MP3A	X	2.394	2.5
65	MP3A	Z	1.382	2.5
66	MP3A	Mx	.001	2.5
67	MP3B	X	3.179	2.5
68	MP3B	Z	1.835	2.5
69	MP3B	Mx	0	2.5
70	MP3C	X	2.394	2.5
71	MP3C	Z	1.382	2.5
72	MP3C	Mx	001	2.5
73	MP4A	X	2.102	2.5
74	MP4A	Z	1.214	2.5
75	MP4A	Mx	.001	2.5
76	MP4B	X	3.179	2.5
77	MP4B	Z	1.835	2.5
78	MP4B	Mx	0	2.5
79	MP4C	X	2.102	2.5
80	MP4C	Z	1.214	2.5
81	MP4C	Mx	001	2.5
82	OVP	X	5.857	
83	OVP	Z	3.381	11
84	OVP	Mx	0	1 196
85	MP3A	X	.94	5
86	MP3A	Z	.543	5
87	MP3A	Mx	000235	5
88	MP3C	X	1.402	5
89	MP3C	Z	.809	5
90	MP3C	Mx	.00026	5 4
91	MP3A	X	.94	5
92	MP3A	Z	.543	5
93	MP3A	Mx	.000235	5
94	MP3C	X	1.402	5
95	MP3C	Z	.809	5
96	MP3C	Mx	00026	5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	2.797	2
2	MP3A	Z	4.845	2
3	MP3A	Mx	005	2
4	MP3A	X	2.797	6
5	MP3A	Z	4.845	6
6	MP3A	Mx	005	6
7	MP3B	X	2.171	2
8	MP3B	Z	3.76	2
9	MP3B	Mx	001	2
10	MP3B	X	2.171	6
11	MP3B	Z	3.76	6
12	MP3B	Mx	001	6
13	MP3C	X	1.62	2
14	MP3C	Z	2.807	2
15	MP3C	Mx	.002	2
16	MP3C	X	1.62	6
17	MP3C	Z	2.807	6
18	MP3C	Mx	.002	6

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

19	Member Label MP3A	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP3A	X	2.797	2
21	MP3A	Mx	4.845	2
22	MP3A	X	.000495	2
23	MP3A	Z	4.845	6
24	MP3A	Mx	.000495	6
25	MP3B	X	2.171	
26	MP3B	Z	3.76	2 2
27	MP3B	Mx	004	
28	MP3B	X	2.171	2
29	MP3B	Z	3.76	6
30	MP3B	Mx	004	6
31	MP3C	X	1.62	2
32	MP3C	Z	2.807	
33	MP3C	Mx	.003	2
34	MP3C	X	1.62	2
35	MP3C	Z		6
36	MP3C	Mx	2.807	6
37	MP2A	X	.842	6
38	MP2A	Z	1.458	4
39	MP2A	Mx		4
40	MP2B	X	00021 .557	4
41	MP2B	Z	.964	4
42	MP2B	Mx		4
43	MP2C	X	000213	4
44	MP2C	Z	.306	4
45	MP2C	Mx	.000144	4
46	MP1A	X		4
47	MP1A	Z	1.94	3
48	MP1A		3.361	3
49	MP1A	Mx	002	3
50	MP1A	X	1.94	5
51	MP1A		3.361	5
52	MP1B	Mx	002	5
53	MP1B	X	1.428	3
54	MP1B		2.473	3
55	MP1B	Mx	002	3
56	MP1B	X	1.428	5
57	MP1B	Z	2.473	5
58	MP1C	Mx	002	5
59	MP1C	X	.977	3
30	MP1C	Z	1.692	3
50	MP1C	Mx	.002	3
62	MP1C	X	.977	5
63	MP1C		1.692	5
54	MP3A	Mx	.002	5
65	MP3A	X Z	1.684	2.5
36	MP3A		2.917	2.5
57	MP3B	Mx	.000842	2.5
58	MP3B	X	1.684	2.5
59	MP3B		2.917	2.5
70		Mx	.000842	2.5
71	MP3C	X	1.231	2.5
72	MP3C	Z	2.133	2.5
	MP3C	Mx	001	2.5
73 74	MP4A	X	1.628	2.5
	MP4A	Z	2.82	2.5
75	MP4A	Mx	.000814	2.5
76	MP4B	X	1.628	2.5
77	MP4B	Z	2.82	2.5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP4B	Mx	.000814	2.5
79	MP4C	X	1.006	2.5
80	MP4C	Z	1.743	2.5
81	MP4C	Mx	001	2.5
82	OVP	X	3.726	
83	OVP	Z	6.454	11
84	OVP	Mx	0	1
85	MP3A	X	.939	5
86	MP3A	Z	1.626	5
87	MP3A	Mx	000235	5
88	MP3C	X	.437	5
89	MP3C	Z	.758	5
90	MP3C	Mx	.000206	5
91	MP3A	X	.939	5
92	MP3A	Z	1.626	5
93	MP3A	Mx	.000235	5
94	MP3C	X	.437	5
95	MP3C	Z	.758	5
96	MP3C	Mx	000206	5

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	0	2
2	MP3A	Z	6.524	2
3	MP3A	Mx	004	2
4	MP3A	X	0	6
5	MP3A	Z	6.524	6
6	MP3A	Mx	004	6
7	MP3B	X	0	2
8	MP3B	Z	2.918	2
9	MP3B	Mx	002	2
10	MP3B	X	0	6
11	MP3B	Z	2.918	6
12	MP3B	Mx	002	6
13	MP3C	X	0	2
14	MP3C	Z	2.918	2
15	MP3C	Mx	.003	2
16	MP3C	X	0	6
17	MP3C	Z	2.918	6
18	MP3C	Mx	.003	6
19	MP3A	X	0	2
20	MP3A	Z	6.524	2
21	MP3A	Mx	.004	2
22	MP3A	X	0	6
23	MP3A	Z	6.524	6
24	MP3A	Mx	.004	6
25	MP3B	X	0	2
26	MP3B	Z	2.918	2
27	MP3B	Mx	003	2
28	MP3B	X	0	6
29	MP3B	Z	2.918	6
30	MP3B	Mx	003	6
31	MP3C	X	0	2
32	MP3C	Z	2.918	2
33	MP3C	Mx	.002	2
34	MP3C	X	0	6
35	MP3C	Z	2.918	6
36	MP3C	Mx	.002	6

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

37	ion[ft.%]
MP2B	
40	4
41 MP2B Z .464 4 42 MP2B Mx .000114 4 43 MP2C X 0 0 4 44 MP2C Z .464 4 4 45 MP2C Mx .000114 4 4 46 MP1A X 0 0 3 47 MP1A Z 4.641 3 3 49 MP1A X 0 5 5 50 MP1A X 0 5 5 51 MP1A X 0 5 5 51 MP1A X 0 5 5 52 MP1B X 0 3 3 54 4 MP1B X 0 3 5 4 MP1B X 0 5 5 5 MP1B X 0 5 5 5 MP1B	
Max Move	
43	
44 MP2C Z .464 4 45 MP2C MX .000114 4 46 MP1A X 0 3 47 MP1A X 0 3 48 MP1A X 0 5 50 MP1A X 0 5 50 MP1A X 0 5 51 MP1A X 0 5 51 MP1B X 0 3 52 MP1B X 0 3 53 MP1B X 0 5 54 MP1B X 0 5 54 MP1B X 0 5 55 MP1B X 0 5 56 MP1B X 0 5 57 MP1B Mx -001 5 58 MP1C X 0 3 60<	
45 MP2C Mx .000114 4 46 MP1A X 0 3 47 MP1A Z 4.641 3 48 MP1A Mx 0 3 49 MP1A X 0 5 50 MP1A Z 4.641 5 50 MP1A X 0 5 51 MP1A Mx 0 5 51 MP1B X 0 3 52 MP1B X 0 3 53 MP1B X 0 3 54 MP1B X 0 5 55 MP1B X 0 5 56 MP1B X 0 5 56 MP1B X 0 3 55 MP1B Mx -001 5 56 MP1B X 0 3	
46 MP1A X 0 3 47 MP1A Z 4.641 3 48 MP1A Mx 0 3 49 MP1A Mx 0 5 50 MP1A Z 4.641 5 50 MP1A Mx 0 5 51 MP1B Mx 0 3 52 MP1B X 0 3 53 MP1B Z 1.69 3 54 MP1B X 0 5 54 MP1B X 0 5 54 MP1B X 0 5 55 MP1B X 0 5 56 MP1B X 0 5 57 MP1B Mx -001 5 58 MP1C X 0 3 60 MP1C Mx 001 3	
47 MP1A Z 4.641 3 48 MP1A Mx 0 3 49 MP1A X 0 5 50 MP1A X 0 5 50 MP1A X 0 5 51 MP1A Mx 0 5 51 MP1B X 0 3 52 MP1B X 0 3 53 MP1B X 001 3 54 MP1B Mx -001 3 55 MP1B X 0 5 56 MP1B X 001 3 57 MP1B Mx -001 5 58 MP1C X 0 3 60 MP1C X 0 3 61 MP1C X 0 5 62 MP1C X 0 2.5 <	
48 MP1A Mx 0 3 49 MP1A X 0 5 50 MP1A Z 4,641 5 51 MP1A Mx 0 5 51 MP1B X 0 3 52 MP1B X 0 3 53 MP1B X 0 3 54 MP1B X 0 5 54 MP1B X 0 5 56 MP1B X 0 5 56 MP1B X 0 3 57 MP1B Mx -001 5 58 MP1C X 0 3 60 MP1C X 0 3 60 MP1C Mx 0 5 62 MP1C X 0 2.5 63 MP1C Mx 0 2.5 6	
49 MP1A X 0 5 50 MP1A Z 4,641 5 51 MP1B Mx 0 3 52 MP1B X 0 3 53 MP1B Z 1,69 3 54 MP1B Mx -001 3 55 MP1B X 0 5 56 MP1B X 0 5 56 MP1B X 0 3 57 MP1B Mx -001 5 58 MP1C X 0 3 59 MP1C X 0 3 60 MP1C Mx .001 3 61 MP1C X 0 5 62 MP1C X 0 5 63 MP1C Mx .001 5 64 MP3A X 0 2.5	
50 MP1A Z 4.641 5 51 MP1A Mx 0 5 52 MP1B X 0 3 53 MP1B Z 1.69 3 54 MP1B Mx 001 3 55 MP1B X 0 5 56 MP1B X 0.01 5 56 MP1B X 0.01 5 56 MP1B X 0.01 5 57 MP1B Mx 001 5 58 MP1C X 0 3 60 MP1C X 0 3 60 MP1C Mx .001 3 61 MP1C X 0 5 62 MP1C X 0 2.5 63 MP1C Mx .001 5 64 MP3A X 0 2.5	
51 MP1A Mx 0 5 52 MP1B X 0 3 53 MP1B Z 1.69 3 54 MP1B X 0 5 54 MP1B X 0 5 55 MP1B X 0 5 56 MP1B X 0 3 56 MP1B Mx -001 5 58 MP1C X 0 3 60 MP1C X 0 3 60 MP1C X 0 5 62 MP1C X 0 2.5 63 MP1C Mx .001 5 64 MP3A X 0 2.5 6	
52 MP1B X 0 3 53 MP1B Z 1.69 3 54 MP1B Mx 001 3 55 MP1B X 0 5 56 MP1B X 0 0 5 57 MP1B Mx 001 5 5 58 MP1C X 0 0 3 3 60 3 0 3 3 60 MP1C X 0 0 3 3 60 MP1C Mx .001 3 3 60 MP1C Mx .001 3 3 60 MP1C X 0 5 60 MP1C X 0 5 60 MP1C X 0 5 6 62 MP1C X 0 2.5 6 63 MP1C Mx .001 5 6 64 MP3A X 0 2.5	
53 MP1B Z 1.69 3 54 MP1B Mx 001 3 55 MP1B X 0 5 56 MP1B X 0 5 56 MP1B X 0 5 57 MP1B Mx 001 5 58 MP1C X 0 3 59 MP1C X 0 3 60 MP1C Mx .001 3 60 MP1C Mx .001 3 61 MP1C X 0 5 62 MP1C X 0 5 63 MP1C Mx .001 5 64 MP3A X 0 2.5 65 MP3A X 0 2.5 66 MP3A X 0 2.5 67 MP3B X 0 2.5 <	5
54 MP1B Mx -,001 3 55 MP1B X 0 5 56 MP1B Z 1,699 5 57 MP1B Mx -,001 5 58 MP1C X 0 3 59 MP1C Z 1,69 3 60 MP1C Mx ,001 3 61 MP1C X 0 5 62 MP1C X 0 5 63 MP1C Mx ,001 5 64 MP3A X 0 2.5 65 MP3A X 0 2.5 66 MP3A X 0 2.5 67 MP3B X 0 2.5 68 MP3B X 0 2.5 69 MP3B X 0 2.5 70 MP3B X 0 2.5	
55 MP1B X 0 5 56 MP1B Z 1.69 5 57 MP1B Mx -001 5 58 MP1C X 0 3 59 MP1C X 0 3 60 MP1C Mx .001 3 61 MP1C X 0 5 62 MP1C X 0 5 63 MP1C Mx .001 5 63 MP1C Mx .001 5 64 MP3A X 0 2.5 65 MP3A X 0 2.5 66 MP3A X 0 2.5 67 MP3B X 0 2.5 68 MP3B X 0 2.5 69 MP3B MX .001 2.5 70 MP3C X 0 2.5	3
56 MP1B Z 1,69 5 57 MP1B Mx -,001 5 58 MP1C X 0 3 59 MP1C Z 1,69 3 60 MP1C Mx ,001 3 61 MP1C X 0 5 62 MP1C X 0 5 63 MP1C Mx ,001 5 64 MP3A X 0 2.5 64 MP3A X 0 2.5 65 MP3A X 0 2.5 66 MP3A X 0 2.5 67 MP3B X 0 2.5 68 MP3B X 0 2.5 69 MP3B Mx ,001 2.5 70 MP3C X 0 2.5 72 MP3C X 0 2.5 <td></td>	
57 MP1B Mx 001 5 58 MP1C X 0 3 59 MP1C Z 1.69 3 60 MP1C Mx .001 3 61 MP1C X 0 5 62 MP1C X 0 5 63 MP1C Mx .001 5 64 MP3A X 0 2.5 65 MP3A X 0 2.5 66 MP3A X 0 2.5 66 MP3A X 0 2.5 67 MP3B X 0 2.5 68 MP3B X 0 2.5 69 MP3B Mx .001 2.5 70 MP3C X 0 2.5 71 MP3C X 0 2.5 72 MP3C Mx 001 2.5	
58 MP1C X 0 3 59 MP1C Z 1.69 3 60 MP1C Mx .001 3 61 MP1C X 0 5 62 MP1C Z 1.69 5 63 MP1C Mx .001 5 64 MP3A X 0 2.5 65 MP3A X 0 2.5 66 MP3A X 0 2.5 67 MP3B X 0 2.5 68 MP3B X 0 2.5 69 MP3B X 0 2.5 69 MP3B Mx .001 2.5 70 MP3B Mx .001 2.5 71 MP3C X 0 2.5 72 MP3G Mx 001 2.5 73 MP4A X 0 2.5	
59 MP1C Z 1.69 3 60 MP1C Mx .001 3 61 MP1C X 0 5 62 MP1C Z 1.69 5 63 MP1C Mx .001 5 64 MP3A X 0 2.5 65 MP3A X 0 2.5 66 MP3A Mx 0 2.5 67 MP3B X 0 2.5 68 MP3B X 0 2.5 69 MP3B X 0 2.5 69 MP3B Mx .001 2.5 70 MP3C X 0 2.5 71 MP3C X 0 2.5 72 MP3C Mx -001 2.5 72 MP3C Mx -001 2.5 74 MP4A X 0 2.5 <td></td>	
60 MP1C Mx .001 3 61 MP1C X 0 5 62 MP1C Z 1.68 5 63 MP1C Mx .001 5 64 MP3A X 0 2.5 65 MP3A X 0 2.5 66 MP3A Mx 0 2.5 67 MP3B X 0 2.5 68 MP3B X 0 2.5 69 MP3B Mx .001 2.5 70 MP3B Mx .001 2.5 71 MP3C X 0 2.5 72 MP3B Mx .001 2.5 72 MP3C X 0 2.5 72 MP3C X 0 2.5 72 MP3C Mx 001 2.5 75 MP4A X 0 2.	
61 MP1C X 0 5 62 MP1C Z 1.69 5 63 MP1C Mx .001 5 64 MP3A X 0 2.5 65 MP3A Z 3.67 2.5 66 MP3A Mx 0 2.5 67 MP3B X 0 2.5 68 MP3B X 0 2.5 69 MP3B X 0 2.5 70 MP3B Mx .001 2.5 71 MP3B X 0 2.5 72 MP3B Mx .001 2.5 72 MP3C X 0 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 75 MP4A X 0 2.5 75 MP4B X 0 2.5 </td <td>3</td>	3
62 MP1C Z 1.69 5 63 MP1C Mx .001 5 64 MP3A X 0 2.5 65 MP3A Z 3.67 2.5 66 MP3A Mx 0 2.5 67 MP3B X 0 2.5 68 MP3B Z 2.765 2.5 69 MP3B Mx .001 2.5 70 MP3B Mx .001 2.5 71 MP3C X 0 2.5 72 MP3C Mx 001 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A X 0 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 78 MP4B X 0	3
63 MP1C Mx .001 5 64 MP3A X 0 2.5 65 MP3A Z 3.67 2.5 66 MP3A Mx 0 2.5 67 MP3B X 0 2.5 68 MP3B Z 2.765 2.5 69 MP3B Mx .001 2.5 70 MP3C X 0 2.5 71 MP3C X 0 2.5 71 MP3C Mx 001 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A X 0 2.5 75 MP4A X 0 2.5 76 MP4B X 0 2.5 78 MP4B X 0 2.5 78 MP4B Mx .001	
64 MP3A X 0 2.5 65 MP3A Z 3.67 2.5 66 MP3A Mx 0 2.5 67 MP3B X 0 2.5 68 MP3B X 0 2.5 69 MP3B Mx .001 2.5 70 MP3C X 0 2.5 71 MP3C X 0 2.5 71 MP3C X 0 2.5 72 MP3C Mx 001 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A X 0 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 79 MP4B X 0 2.5 80 MP4C X 0 2.5<	
65 MP3A Z 3.67 2.5 66 MP3A Mx 0 2.5 67 MP3B X 0 2.5 68 MP3B Z 2.765 2.5 69 MP3B Mx .001 2.5 70 MP3C X 0 2.5 71 MP3C Z 2.765 2.5 72 MP3C Mx 001 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A X 0 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 78 MP4B X 0 2.5 79 MP4C X 0 2.5 80 MP4C X 0 2.5 81 MP4C Mx 001	
66 MP3A Mx 0 2.5 67 MP3B X 0 2.5 68 MP3B Z 2.765 2.5 69 MP3B Mx .001 2.5 70 MP3C X 0 2.5 71 MP3C Z 2.765 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A X 0 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B X 0 2.5 79 MP4C X 0 2.5 80 MP4C X 0 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 <td< td=""><td></td></td<>	
67 MP3B X 0 2.5 68 MP3B Z 2.765 2.5 69 MP3B Mx .001 2.5 70 MP3C X 0 2.5 71 MP3C Z 2.765 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A X 0 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B X 0 2.5 78 MP4B Mx .001 2.5 80 MP4C X 0 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP X 0 1 84 OVP Mx 0 1<	
68 MP3B Z 2.765 2.5 69 MP3B Mx .001 2.5 70 MP3C X 0 2.5 71 MP3C Z 2.765 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A X 0 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B X 0 2.5 78 MP4B Mx .001 2.5 80 MP4C X 0 2.5 81 MP4C X 0 1 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
69 MP3B Mx .001 2.5 70 MP3C X 0 2.5 71 MP3C Z 2.765 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A Z 3.67 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B X 0 2.5 78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C X 0 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	5
70 MP3C X 0 2.5 71 MP3C Z 2.765 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A Z 3.67 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B X 0 2.5 78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C X 0 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
71 MP3C Z 2.765 2.5 72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A Z 3.67 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B Z 2.427 2.5 78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C X 0 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
72 MP3C Mx 001 2.5 73 MP4A X 0 2.5 74 MP4A Z 3.67 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B Z 2.427 2.5 78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C X 0 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
73 MP4A X 0 2.5 74 MP4A Z 3.67 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B Z 2.427 2.5 78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C X 0 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
74 MP4A Z 3.67 2.5 75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B Z 2.427 2.5 78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C Z 2.427 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
75 MP4A Mx 0 2.5 76 MP4B X 0 2.5 77 MP4B Z 2.427 2.5 78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C Z 2.427 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
76 MP4B X 0 2.5 77 MP4B Z 2.427 2.5 78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C Z 2.427 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
77 MP4B Z 2.427 2.5 78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C Z 2.427 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
78 MP4B Mx .001 2.5 79 MP4C X 0 2.5 80 MP4C Z 2.427 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
79 MP4C X 0 2.5 80 MP4C Z 2.427 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
80 MP4C Z 2.427 2.5 81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
81 MP4C Mx 001 2.5 82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
82 OVP X 0 1 83 OVP Z 7.296 1 84 OVP Mx 0 1	
83 OVP Z 7.296 1 84 OVP Mx 0 1	
84 OVP Mx 0 1	
85 MP3A X 0 5	
86 MP3A Z 2.273 5	5
87 MP3A Mx 0 5	
88 MP3C X 0 5	5
89 MP3C Z .737 5	5
90 MP3C Mx .000181 5	
91 MP3A X 0 5	5
92 MP3A Z 2.273 5	5
93 MP3A Mx 0 5	5
94 MP3C X 0 5	
95 MP3C Z .737 5	

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
96	MP3C	Mx	000181	5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-2.797	2
2	MP3A	Z	4.845	2
3	MP3A	Mx	000495	2
4	MP3A	X	-2.797	6
5	MP3A	Z	4.845	6
6	MP3A	Mx	000495	6
7	MP3B	X	-1.62	2
В	MP3B	Z	2.807	2
9	MP3B	Mx	003	2
0	MP3B	X	-1.62	6
1	MP3B	Z	2.807	6
2	MP3B	Mx	003	6
3	MP3C	X	-2.171	2
4	MP3C	Z	3.76	2
5	MP3C	Mx	.004	2
6	MP3C	X	-2.171	6
7	MP3C	Z	3.76	6
8	MP3C	Mx	.004	6
9	MP3A	X	-2.797	2
20	MP3A	Z	4.845	2
1	MP3A	Mx	.005	2
22	MP3A	X	-2.797	6
23	MP3A	Z	4.845	6
24	MP3A	Mx	.005	6
25	MP3B	X	-1.62	2
26	MP3B	Z	2.807	2
27	MP3B	Mx	002	2
28	MP3B	X	-1.62	6
29	MP3B	Z	2.807	6
30	MP3B	Mx	002	6
31	MP3C	X	-2.171	2
32	MP3C	Z	3.76	2
33	MP3C	Mx	.001	2
34	MP3C	X	-2.171	6
35	MP3C	Z	3.76	6
36	MP3C	Mx	.001	6
37	MP2A	X	842	4
38	MP2A	Z	1.458	4
39	MP2A	Mx	.00021	4
10	MP2B	X	306	4
11	MP2B	Z	.53	4
12	MP2B	Mx	000144	4
13	MP2C	X	557	4
14	MP2C	Z	.964	4
15	MP2C	Mx	.000213	4
16	MP1A	X	-1.94	3
17	MP1A	Z	3.361	3
18	MP1A	Mx	.002	3
19	MP1A	X	-1.94	5
50	MP1A	Z	3.361	5
51	MP1A	Mx	.002	5
52	MP1B	X	977	3
53	MP1B	Z	1.692	3
54	MP1B	Mx	002	3

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

MP1B MP1B MP1B MP1C	Direction X Z	Magnitude[lb,k-ft] 977	Location[ft,%] 5
MP1B			
		1.692	5
MD1C	Mx	002	5
	X	-1.428	3
MP1C	Z	2.473	3
MP1C	Mx	.002	3
MP1C	X	-1.428	5
MP1C	Z	2.473	5
MP1C	Mx		5
MP3A	X		2.5
MP3A	Z		2.5
MP3A			2.5
MP3B			2.5
MP3B	Z		2.5
			2.5
			2.5
	7		2.5
			2.5
			2.5
	7		2.5
			2.5
			2.5
			2.5
			2.5
			2.5
			2.5
			2.5
			1
			1
			5
			5
			5
			5
	7		5
			5
			5
	7		5
			5
			5
			5
			5
	MP1C MP1C MP1C MP3A MP3A MP3A MP3B	MP1C X MP1C Z MP1C Mx MP3A X MP3A X MP3A Mx MP3B X MP3B X MP3B Mx MP3B Mx MP3B Mx MP3C X MP3C X MP3C Mx MP4A X MP4A X MP4A Mx MP4B X MP4B X MP4B X MP4C X MP4C X MP4C Mx OVP X OVP X <tr< td=""><td>MP1C X -1.428 MP1C Z 2.473 MP1C Mx .002 MP3A X -1.684 MP3A X -1.684 MP3A Mx 000842 MP3B X -1.231 MP3B X -1.231 MP3B X -1.684 MP3B Mx .001 MP3B Mx .001 MP3C X -1.684 MP3C X -1.684 MP3C X -1.684 MP3C Mx -000842 MP4A X -1.628 MP4A X -1.628 MP4A X -1.006 MP4B X -1.006 MP4B X -1.628 MP4B X -1.628 MP4C X -1.628 MP4C X -1.628 MP4C Mx -0.00814 OVP</td></tr<>	MP1C X -1.428 MP1C Z 2.473 MP1C Mx .002 MP3A X -1.684 MP3A X -1.684 MP3A Mx 000842 MP3B X -1.231 MP3B X -1.231 MP3B X -1.684 MP3B Mx .001 MP3B Mx .001 MP3C X -1.684 MP3C X -1.684 MP3C X -1.684 MP3C Mx -000842 MP4A X -1.628 MP4A X -1.628 MP4A X -1.006 MP4B X -1.006 MP4B X -1.628 MP4B X -1.628 MP4C X -1.628 MP4C X -1.628 MP4C Mx -0.00814 OVP

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-3.235	2
2	MP3A	Z	1.868	2
3	MP3A	Mx	.002	2
4	MP3A	X	-3.235	6
5	MP3A	Z	1.868	6
6	MP3A	Mx	.002	6
7	MP3B	X	-4.319	2
8	MP3B	Z	2.494	2
9	MP3B	Mx	005	2
10	MP3B	X	-4.319	6
11	MP3B	Z	2.494	6
12	MP3B	Mx	005	6
13	MP3C	X	-5.273	2

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

Wellber	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
14	MP3C	10 Z	3.044	2
15	MP3C	Mx	.005	2
16	MP3C	X	-5.273	6
17	MP3C	Z	3.044	6
18	MP3C	Mx	.005	6
19	MP3A	X	-3.235	2
20	МРЗА	Z	1.868	2
21	мрза	Mx	.004	2
22	MP3A	X	-3.235	10-114 6 PA
23	MP3A	Z	1.868	6
24	MP3A	Mx	.004	6
25	MP3B	X	-4.319	2
26	MP3B	Z	2.494	2
27	MP3B	Mx	000443	2
28	MP3B	X	-4.319	6
29	MP3B	Z	2.494	6
30	MP3B	Mx	000443	6
31	MP3C	X	-5.273	2
32	MP3C	Z	3.044	2
33	MP3C	Mx	002	2
34	MP3C	X	-5.273	6
35	MP3C	Z	3.044	6
36	MP3C	Mx	002	6
37	MP2A	X	725	4
38	MP2A	Z	.418	4
39	MP2A	Mx	.000181	4
40	MP2B	X	-1.219	4
41	MP2B	Z	.704	4
42	MP2B	Mx	000226	4
	MP2C	X	-1.653	4
43	MP2C	Z	.955	4
44	MP2C	Mx	.000163	4
45	MP1A	X	-2.043	3
46		Z	1.18	3
47	MP1A	Mx	.002	3
48	MP1A	X	-2.043	5
49	MP1A	Z	1.18	5
50	MP1A	Mx	.002	5
51	MP1A	X	-2.931	3
52	MP1B	Z	1.692	3
53	MP1B		002	3
54	MP1B	Mx	-2.931	5
55	MP1B	X	1.692	5
56	MP1B	Z	002	5
57	MP1B	Mx	002	3
	MP1C	X		3
59	MP1C	Z	2.143	3
60	MP1C	Mx	.001	5
61	MP1C	X	-3.711) F
62	MP1C		2.143	5
63	MP1C	Mx	.001	5
64	MP3A	X	-2.394	2.5
65	мР3А	Z	1.382	2.5
66	MP3A	Mx	001	2.5
67	МР3В	X	-2.394	2.5
68	MP3B	Z	1.382	2.5
69	MP3B	Mx	.001	2.5
70	MP3C	X	-3.179	2.5
71	MP3C	Z	1.835	2.5
72	MP3C	Mx	0	2.5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP4A	X	-2.102	2.5
74	MP4A	Z	1.214	2.5
75	MP4A	Mx	001	2.5
76	MP4B	X	-2.102	2.5
77	MP4B	Z	1.214	2.5
78	MP4B	Mx	.001	2.5
79	MP4C	X	-3.179	2.5
80	MP4C	Z	1.835	2.5
81	MP4C	Mx	0	2.5
82	OVP	X	-4.989	151-1
83	OVP	Z	2.88	1
84	OVP	Mx	0	1
85	MP3A	X	94	5
86	MP3A	Z	.543	5
87	MP3A	Mx	.000235	5
88	MP3C	X	-1.808	5
89	MP3C	Z	1.044	5
90	MP3C	Mx	.000179	5
91	MP3A	X	94	5
92	MP3A	Z	.543	5
93	MP3A	Mx	000235	5
94	MP3C	X	-1.808	5
95	MP3C	Z	1.044	5
96	MP3C	Mx	000179	5

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-2.806	2
2	MP3A	Z	0	2
3	MP3A	Mx	.002	2
4	MP3A	X	-2.806	6
5	MP3A	Z	0	6
6	MP3A	Mx	.002	6
7	MP3B	X	-6.412	2
8	MP3B	Z	0	2
9	MP3B	Mx	005	2
10	MP3B	X	-6.412	6
11	MP3B	Z	0	6
12	MP3B	Mx	005	6
13	MP3C	X	-6.412	2
14	MP3C	Z	0	2
15	MP3C	Mx	.003	2
16	MP3C	X	-6.412	6
17	MP3C	Z	0	6
18	MP3C	Mx	.003	6
19	MP3A	X	-2.806	2
20	MP3A	Z	0	2
21	MP3A	Mx	.002	2
22	MP3A	X	-2.806	6
23	MP3A	Z	0	6
24	MP3A	Mx	.002	6
25	MP3B	X	-6.412	2
26	MP3B	Z	0	2
27	MP3B	Mx	.003	2
28	MP3B	X	-6.412	6
29	MP3B	Z	0	6
30	MP3B	Mx	.003	6
31	MP3C	X	-6.412	2

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
32	MP3C	Z	0	2 2
33	MP3C	Mx	005	
34	MP3C	X	-6.412	6 6
35	MP3C	Z	0	6
36	MP3C	Mx	005	6
37	MP2A	X	413	4
38	MP2A	Z	0	4
39	MP2A	Mx	.000103	4
40	MP2B	X	-2.056	4
41	MP2B	Z	0	4
42	MP2B	Mx	-8.9e-5	4
43	MP2C	X	-2.056	4
44	MP2C	Z	0	4
45	MP2C	Mx	-8.9e-5	4
46	MP1A	X	-1.598	3
47	MP1A	Z	0	3
48	MP1A	Mx	.001	3
49	MP1A	X	-1.598	5
50	MP1A	Z	0	5
51	MP1A	Mx	.001	5
52	MP1B	X	-4.549	3
53	MP1B	Z	0	3
54	MP1B	Mx	000658	3
55	MP1B	X	-4.549	5
56	MP1B	Z	0	5
57	MP1B	Mx	000658	5
	MP1C	X	-4.549	3
58	MP1C	Z	0	3
59	MP1C	Mx	000658	3
60		X	-4.549	5
61	MP1C	Z	0	5
62	MP1C	Mx	000658	5
63	MP1C	X	-2.463	2.5
64	MP3A	Z	0	2.5
65	MP3A		001	2.5
66	MP3A	Mx	-3.368	2.5
67	MP3B	X	-5.306	2.5
68	MP3B	Z	.000842	2.5
69	MP3B	Mx		2.5
70	MP3C	X	-3.368	2.5
71	MP3C	Z	0	2.5
72	MP3C	Mx	.000842	
73	MP4A	X	-2.013	2.5
74	MP4A	Z	0	2.5
75	MP4A	Mx	001	2.5
76	MP4B	X	-3.256	2.5
77	MP4B	Z	0	2.5
78	MP4B	Mx	.000814	2.5
79	MP4C	X	-3.256	2.5
80	MP4C	Z	0	2.5
81	MP4C	Mx	.000814	2.5
82	OVP	X	-5.917	1
83	OVP	Z	0	11
84	OVP	Mx	0	
85	MP3A	X	-,689	5
86	MP3A	Z	0	5
87	MP3A	Mx	.000172	5
88	MP3C	X	-2.225	5
89	MP3C	Z	0	5
90	MP3C	Mx	-9.7e-5	5

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
91	MP3A	X	689	5
92	MP3A	Z	0	5
93	MP3A	Mx	000172	5
94	MP3C	X	-2.225	5
95	MP3C	Z	0	5
96	MP3C	Mx	9.7e-5	5

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-3.235	2
2	MP3A	Z	-1.868	2
3	MP3A	Mx	.004	2
4	MP3A	X	-3.235	6
5	MP3A	Z	-1.868	6
6	MP3A	Mx	.004	6
7	MP3B	X	-5.273	2
8	MP3B	Z	-3.044	2
9	MP3B	Mx	002	2
10	MP3B	X	-5.273	6
11	MP3B	Z	-3.044	6
12	MP3B	Mx	002	6
13	MP3C	X	-4.319	2
14	MP3C	Z	-2.494	2
15	MP3C	Mx	000443	2
16	MP3C	X	-4.319	6
17	MP3C	Z	-2.494	6
18	MP3C	Mx	000443	6
19	MP3A	X	-3.235	2
20	MP3A	Z	-1.868	2
21	MP3A	Mx	.002	2
22	MP3A	X	-3.235	6
23	MP3A	Z	-1.868	6
24	MP3A	Mx	.002	6
25	MP3B	X	-5.273	2
26	MP3B	Z	-3.044	2
27	MP3B	Mx	.005	2
28	MP3B	X	-5.273	6
29	МР3В	Z	-3.044	6
30	MP3B	Mx	.005	6
31	MP3C	X	-4.319	2
32	MP3C	Z	-2.494	2
33	MP3C	Mx	005	2
34	MP3C	X	-4.319	6
35	MP3C	Z	-2.494	6
36	MP3C	Mx	005	6
37	MP2A	X	725	4
38	MP2A	Z	418	4
39	MP2A	Mx	.000181	4
40	MP2B	X	-1.653	4
41	MP2B	Z	955	4
42	MP2B	Mx	.000163	4
43	MP2C	X	-1.219	4
14	MP2C	Z	704	4
45	MP2C	Mx	000226	4
46	MP1A	X	-2.043	3
47	MP1A	Z	-1.18	3
48	MP1A	Mx	.002	3
49	MP1A	X	-2.043	5

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	mber Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]
	MP1A	Z	-1.18	5
	MP1A	Mx	.002	5 3
	MP1B	X	-3.711	
	MP1B	Z	-2.143	3
	MP1B	Mx	.001	5
	MP1B	X	-3.711	
	MP1B	Z	-2.143	5
	MP1B	Mx	.001	5
	MP1C	X	-2.931	3
	MP1C	Z	-1.692	3
	MP1C	Mx	002	5
	MP1C	X	-2.931	
	MP1C	Z Z	-1.692	5
	MP1C	Mx	002	5
	MP3A	X	-2.394	2.5 2.5
	MP3A	Z	-1.382	∠.5 2.5
	MP3A	Mx	001	2.5
	MP3B	X	-3.179	2.5
	MP3B	Z	-1.835	2.5
	MP3B	Mx	0	2.5 2.5
	MP3C	X	-2.394	
71	MP3C	Z	-1.382	2.5 2.5
72	MP3C	Mx	.001	
73	MP4A	X	-2.102	2.5 2.5
74	MP4A	Z	-1.214	
75	MP4A	Mx	001	2.5
76	MP4B	X	-3.179	2.5
	MP4B	Z	-1.835	2.5
78	MP4B	Mx	0	2.5
	MP4C	X	-2.102	2.5
30	MP4C	Z	-1.214	2.5
81	MP4C	Mx	.001	2.5
82	OVP	X	-5.857	
83	OVP	Z	-3.381	1
84	OVP	Mx	0	1 1
85	MP3A	X	94	5
86	MP3A	Z	543	5
87	MP3A	Mx	.000235	5
B8	MP3C	X	-1.402	5
89	MP3C	Z	809	5
90	MP3C	Mx	00026	5 5
91	MP3A	X	94	5
92	MP3A	Z	543	5
93	MP3A	Mx	000235	5
94	MP3C	X	-1.402	5
95	MP3C	Z	809	5
96	MP3C	Mx	.00026	5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-2.797	2
2	MP3A	Z	-4.845	2
3	MP3A	Mx	.005	2
4	MP3A	X	-2.797	6
5	MP3A	Z	-4.845	6
6	MP3A	Mx	.005	6
7	MP3B	X	-2.171	2
8	MP3B	Z	-3.76	2

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP3B	Mx	.001	2
10	MP3B	X	-2.171	6
11	MP3B	Z	-3.76	6
12	MP3B	Mx	.001	6
13	MP3C	X	-1.62	2
14	MP3C	Z	-2.807	2
15	MP3C	Mx	002	2
16	MP3C	X	-1.62	6
17	MP3C	Z	-2.807	6
18	MP3C	Mx	002	6
19	MP3A	X	-2.797	2
20	MP3A	Z	-4.845	2
21	MP3A	Mx	000495	2
22	MP3A	X	-2.797	6
23	MP3A	Z	-4.845	6
24	MP3A	Mx	000495	6
25	MP3B	X	-2.171	2
26	MP3B	Z	-3.76	2
27	MP3B	Mx	.004	2
28	MP3B	X	-2.171	6
29	MP3B	Z	-3.76	6
30	MP3B	Mx	.004	6
31	MP3C	X	-1.62	2
32	MP3C	Z	-2.807	2
33	MP3C	Mx	003	2
34	MP3C	X	-1.62	6
35	MP3C	Z	-2.807	6
36	MP3C	Mx	003	6
37	MP2A	X	842	4
38	MP2A	Z	-1.458	4
39	MP2A	Mx	.00021	4
40	MP2B	X	557	4
41	MP2B	Z	964	4
12	MP2B	Mx	.000213	4
43	MP2C	X	306	4
14	MP2C	Z	53	4
15	MP2C	Mx	000144	4
16	MP1A	X	-1.94	3
ŀ7	MP1A	Z	-3.361	3
18	MP1A	Mx	.002	3
19	MP1A	X	-1.94	5
50	MP1A	Z	-3.361	5
51	MP1A	Mx	.002	5
52	MP1B	X	-1.428	3
53	MP1B	Z	-2.473	3
54	MP1B	Mx	.002	3
55	MP1B	X	-1.428	5
6	MP1B	Z	-2.473	5
57	MP1B	Mx	.002	5
58	MP1C	X	977	3
59	MP1C	Z	-1.692	3
60	MP1C	Mx	002	3
61	MP1C	X	977	5
52	MP1C	Z	-1.692	5
33	MP1C	Mx	002	5
34	MP3A	X	-1.684	2.5
35	MP3A	Z	-2.917	2.5
66	MP3A	Mx	000842	2.5
57	MP3B	X	-1.684	2.5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP3B	Z	-2.917	2.5
69	MP3B	Mx	000842	2.5
70	MP3C	X	-1.231	2.5
71	MP3C	Z	-2.133	2.5
72	MP3C	Mx	.001	2.5
73	MP4A	X	-1.628	2.5
74	MP4A	Z	-2.82	2.5
75	MP4A	Mx	000814	2.5
76	MP4B	X	-1.628	2.5
77	MP4B	Z	-2.82	2.5
78	MP4B	Mx	000814	2.5
79	MP4C	X	-1.006	2.5
80	MP4C	Z	-1.743	2.5
81	MP4C	Mx	.001	2.5
82	OVP	X	-3.726	A Design To Table
83	OVP	Z	-6.454	1
84	OVP	Mx	0	movement 1
85	MP3A	X	939	5
86	MP3A	Z	-1.626	5
87	MP3A	Mx	.000235	5
88	MP3C	X	437	5
89	MP3C	Z	758	5
90	MP3C	Mx	000206	5
91	MP3A	X	939	5
92	MP3A	Z	-1.626	5
93	MP3A	Mx	000235	5
94	MP3C	X	437	5
95	MP3C	Z	758	5
96	MP3C	Mx	.000206	5 10

Member Point Loads (BLC 77: Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M47	Y	-500	%100

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	M40	Y	-500	%95

Member Point Loads (BLC 79 : Lv1)

	Necest in William V	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	Member Label M40	Y	-250	0

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M40	Y	-250	%50

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Y	0	2
2	MP3A	My	0	2
3	MP3A	Mz	0	2
4	MP3A	Υ	0	6
5	MP3A	My	0	6
6	МРЗА	Mz	0	6
7	MP3B	Y	0	2
8	MP3B	My	0	2

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

9	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
10	MP3B	Mz	0	2
11	MP3B	Y	0	6
12	MP3B MP3B	My	0	6
13	MP3C	Mz Y	0	6
14	MP3C		0	2
15	MP3C	My	0	2
16	MP3C	Mz Y	0	2
17	MP3C		0	6
18	MP3C	My	0	6
19	MP3A	Mz Y	0	6
20	MP3A		0	2
21	MP3A	My	0	2
22	MP3A	Mz Y	0	2
23	MP3A		0	6
24	MP3A	My	0	6
25	MP3B	Mz Y	0	6
26	MP3B		0	2
27	MP3B	My	0	2
28	MP3B	Mz Y	0	2
29	MP3B		0	6
30	MP3B	My	0	6
31	MP3C	Mz Y	0	6
32	MP3C		0	2
33	MP3C	My	0	2
34	MP3C	Mz Y	0	2
35	MP3C MP3C		0	6
36		My	0	6
37	MP3C MP2A	Mz Y	0	6
38	MP2A		0	4
39		My	0	4
40	MP2A MP2B	Mz Y	0	4
41	MP2B		0	4
42	MP2B	My	0	4
43	MP2C	Mz Y	0	4
44	MP2C		0	4
45	MP2C	My	0	4
46	MP1A	Mz Y	0	4
47	MP1A		0	3
48	MP1A	My	0	3
49	MP1A	Mz Y	0	3
50	MP1A	My	0	5
51	MP1A	Mz	0	5
52	MP1B	Y	0	5
53	MP1B	My	0	3
54	MP1B	Mz	0	3
55	MP1B	Y	0	3
56	MP1B	My	0	5
57	MP1B	Mz	0	5
58	MP1C	Y	0	5 3
59	MP1C	My	0	3
60	MP1C	Mz	0	3
61	MP1C	Y	0	5
62	MP1C	My	0	5
63	MP1C	Mz	0	5
64	MP3A	Y	0	2.5
65	MP3A	My	0	2.5 2.5
66	MP3A	Mz	0	2.5
67	MP3B	Y	0	2.5

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP3B	My	0	2.5
69	MP3B	Mz	0	2.5
70	MP3C	Y	0	2.5
71	MP3C	My	0	2.5
72	MP3C	Mz	0	2.5
73	MP4A	Y	0	2.5
74	MP4A	My	0	2.5
75	MP4A	Mz	0	2.5
76	MP4B	Υ	0	2.5
77	MP4B	Му	0	2.5
78	MP4B	Mz	0	2.5
79	MP4C	Y	0	2.5
80	MP4C	My	0	2.5
81	MP4C	Mz	0	2.5
82	OVP	Y	0	1
83	OVP	My	0	11
84	OVP	Mz	0	1
85	MP3A	Y	0	5
86	MP3A	My	0	5
87	MP3A	Mz	0	5
88	MP3C	Y	0	5
89	MP3C	My	0	5
90	MP3C	Mz	0	5
91	MP3A	Υ	0	5
92	MP3A	My	0	5
93	MP3A	Mz	0	5
94	MP3C	Υ	0	5
95	MP3C	My	0	5
96	MP3C	Mz	0	5

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]					
1	MP3A	Z	6	2					
2	MP3A	Mx	.00035	2					
3	MP3A	Z	6	6					
4	MP3A	Mx	.00035	6					
5	MP3B	Z	6	2					
6	MP3B	Mx	.000432	2					
7	MP3B	Z	6	6					
8	MP3B	Mx	.000432	6					
9	MP3C	Z	6	2					
10	MP3C	Mx	000553	2					
11	MP3C	Z	-16	6					
12	MP3C	Mx	000553	6					
13	MP3A	Z	6	2					
14	MP3A	Mx	00035	2					
15	MP3A	Z	6	6					
16							MP3A	Mx	00035
17	MP3B	Z	6	2					
18	MP3B	Mx	.000553	2					
19	MP3B	Z	6	6					
20	MP3B	Mx	.000553	6					
21	MP3C	Z	6	2					
22	MP3C	Mx	000432	2					
23	MP3C	Z	6	6					
24	MP3C	Mx	000432	6					
25	MP2A	Z	132	4					
26	MP2A	Mx	0	4					

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
27	MP2B	Z	132	4
28	MP2B	Mx	3.2e-5	4
29	MP2C	Z	132	4
30	MP2C	Mx	-3.2e-5	4
31	MP1A	Z	-1.306	3
32	MP1A	Mx	0	3
33	MP1A	Z	-1.306	5
34	MP1A	Mx	0	5
35	MP1B	Z	-1.306	3
36	MP1B	Mx	.001	3
37	MP1B	Z	-1.306	5
38	MP1B	Mx	.001	5
39	MP1C	Z	-1.306	3
40	MP1C	Mx	001	3
41	MP1C	Z	-1.306	5
42	MP1C	Mx	001	5
43	MP3A	Z	-2.532	2.5
44	MP3A	Mx	0	2.5
45	MP3B	Z	-2.532	2.5
46	MP3B	Mx	001	2.5
47	MP3C	Z	-2.532	2.5
48	MP3C	Mx	.001	2.5
49	MP4A	Z	-2.109	2.5
50	MP4A	Mx	0	2.5
51	MP4B	Z	-2.109	2.5
52	MP4B	Mx	000913	2.5
53	MP4C	Z	-2.109	2.5
54	MP4C	Mx	.000913	2.5
55	OVP	Z	96	1
56	OVP	Mx	0	
57	MP3A	Z	528	5
58	MP3A	Mx	526	5
59	MP3C	Z	528	5
60	MP3C	Mx	00013	5
61	MP3A	Z	528	5
62	MP3A	Mx	526	5
63	MP3C	Z	528	
				5
64	MP3C	Mx	.00013	5

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP3A	X	.6	2
2	MP3A	Mx	0005	2
3	MP3A	X	.6	6
4	MP3A	Mx	0005	6
5	MP3B	X	.6	2
6	MP3B	Mx	.000432	2
7	MP3B	X	.6	6
8	MP3B	Mx	.000432	6
9	MP3C	X	.6	2
10	MP3C	Mx	000258	2
11	MP3C	X	.6	6
12	MP3C	Mx	000258	6
13	MP3A	X	.6	2
14	MP3A	Mx	0005	2
15	МРЗА	X	.6	6
16	MP3A	Mx	0005	6
17	MP3B	X	.6	2

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP3B	Mx	000258	2
19	МР3В	X	.6	6
20	MP3B	Mx	000258	6
21	MP3C	X	.6	2
22	MP3C	Mx	.000432	2
23	MP3C	X	.6	6
24	MP3C	Mx	.000432	6
25	MP2A	X	.132	4
26	MP2A	Mx	-3.3e-5	4
27	MP2B	X	.132	4
28	MP2B	Mx	6e-6	4
29	MP2C	X	.132	4
30	MP2C	Mx	6e-6	4
31	MP1A	X	1.306	3
32	MP1A	Mx	001	3
33	MP1A	X	1.306	5
34	MP1A	Mx	001	5
35	MP1B	X	1.306	3
36	MP1B	Mx	.000189	3
37	MP1B	_ X	1.306	5
38	MP1B	Mx	.000189	5
39	MP1C	X	1.306	3
40	MP1C	Mx	.000189	3
41	MP1C	X	1.306	5
42	MP1C	Mx	.000189	5
43	MP3A	X	2.532	2.5
44	MP3A	Mx	.001	2.5
45	MP3B	X	2.532	2.5
46	MP3B	Mx	000633	2.5
47	MP3C	X	2.532	2.5
48	MP3C	Mx	000633	2.5
49	MP4A	X	2.109	2.5
50	MP4A	Mx	.001	2.5
51	MP4B	X	2.109	2.5
52	MP4B	Mx	000527	2.5
53	MP4C	X	2.109	2.5
54	MP4C	Mx	000527	2.5
55	OVP	X	.96	1
56	OVP	Mx	0	1
57	MP3A	X	.528	5
58	MP3A	Mx	000132	5
59	MP3C	X	.528	5
60	MP3C	Mx	2.3e-5	5
61	MP3A	X	.528	5
62	MP3A	Mx	.000132	5
63	MP3C	X	.528	5
64	MP3C	Mx	-2.3e-5	5

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N3	max	631,101	10	2013.358	19	1655.528	1	6.609	19	1.448	4	.177	4
2	110	min	-631.131	4	784.561	64	-1654.641	7	2.591	64	-1.448	10	151	10
3	N109A	max	1460.479	9	1934.872	15	883.638	3	-1.304	9	1.194_	12	-2.259	9
4	1110071	min	-1459.722	3	781.192	72	-884.157	9	-3.373	15	-1.194	6	-5.842	15
5	N111A	max	1504.625	11	1946.845	23	831.528	11	-1.337	5	1.181	8	6.239	47
6	I I I I I	min	-1505.324	5	795.885	68	-832.177	5	-3.602	47	-1.18	2	2.316	5
7	Totals:	max	3337.504	10	5686.702	14	3043.934	1						

Envelope Joint Reactions (Continued)

Joi	nt	X [lb]	LC	Y [lb]	LC	Z [lb]	LC MX [k-ft] L	C MY [k-ft]	LC MZ [k-ft] LC
8	min	-3337.506	4	2367.643	71	-3043.94	7		

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	Shear Check	Lo		phi*P	.phi*P	.phi*M	M*ind	Ean
1	M78A	HSS4X4	.375	0	45	.043	0	V					H1-1b
2	M77A	HSS4X4	.353	0	13	.043	0	V	151329	169740	19.285	19.285	H1-1b
3	M4	HSS4X4	.350	0	17	.049	0	y '	171329	169740	19.285	19.285	H1-1b
4	MP3A	PIPE_2.5	.246	3.2	1	.043	3.2		8 2807	50715	3.596	3.596	H1-1b
5	MP3C	PIPE_2.5	.242	3.2	10	.045	3.2						H1-1b
6	MP3B	PIPE 2.5	.208	3.2	4	.041	3.2		9 2807				H1-1b
7	MP1A	PIPE_2.0	.158	3.2	1	.027	3.2		6 1351				H1-1b
8	MP1C	PIPE_2.0	.156	3.2	10	.028	3.2						H1-1b
9	MP1B	PIPE_2.0	.156	3.2	4	.028	3.2						H1-1b
10	M41	HSS4X4	.156	0	15	.045	0						H1-1b
11	M40	HSS4X4	.154	0	19	.046	0	z	1 8761	169740	19.285	19.285	H1-1b
12	M42	HSS4X4	.151	0	23	.041	12	v	68761	169740	19.285	19.285	H1-1b
13	OVP	PIPE_2.0	.109	2.5	12	.014	2.5		22884	32130	1.872	1.872	H1-1b
14	MP2A	PIPE_2.0	.080	3.2	1	.010	3.2						1 H1-1b
15	MP2B	PIPE_2.0	.079	3.2	4	.010	3.2						H1-1b
16	MP2C	PIPE_2.0	.079	3.2	10	.010	3.2						H1-1b
17	MP4B	PIPE_2.0	.072	3.1	5	.017	3.1						H1-1b
18	MP4C	PIPE_2.0	.072	3.1	9	.017	3.1						H1-1b
19	MP4A	PIPE_2.0	.072	3.1	1	.017	3.1						H1-1b

Client:	Verizon	Date:	7/24/2023
Site Name:	SOUTHINGTON EAST CT - A		
MDG #:	5000384425		
Fuze ID #:	17123884	Page:	1
			Version 1.01

I. Mount-to-Tower Connection Check

Custom Orientation Required

Tower Connection Bolt Checks

Bolt Orientation

Bolt Quantity per Reaction: d_x (in) (Delta X of typ. bolt config. sketch):

 d_x (iii) (Delta Y of typ. bolt config. sketch): Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips):

Required Shear Strength / bolt (kips):

Tensile Capacity / bolt (kips): Shear Capacity / bolt (kips):

Bolt Overall Utilization:

Tower Connection Baseplate Checks

Connecting Standoff Member Shape:

Weld Stiffener Configuration:

Plate Width, D_x (in):

Plate Height, D_y (in):

W1(in):

W2 (in):

Member Thickness (in):

Stiffener location a₁ (in):

Stiffener location b₁ (in):

Stiffener location a₂ (in):

Stiffener location b₂ (in):

F_v (ksi, plate):

Plate Thickness (in):

Length of Yield Line, L_y (in):

Bolt Eccentricity, e (in):

M_u (kip-in):

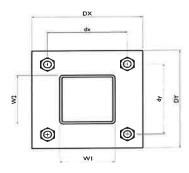
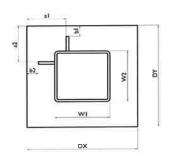

Phi $*M_n$ (kip-in):

Plate Bending Utilization:

		_	_
No			
140			


Yes

Parallel
4
3
8
A325N
0.75
5.5
0.5
29.8
17.9
18.5%

Yes	

Rect Tube
Has Stiffeners
6
10
4
4
0.3125
3
0.5
5
1.5
36
0.75
4.63
0.00
0.00
21.09
Sufficient

VzWSMART Tool® Vendor

Client:	Verizon	Date:	7/24/2023
Site Name:	SOUTHINGTON EAST CT - A		
PSLC#:	5000384425		
Fuze ID #:	17123884	Page:	2

Version 1.01

Tower Connection Weld Checks

Weld Shape:

Weld Stiffener Configuration:

Stiffener Notch Present?

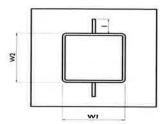
Stiffener Length, I (in): Stiffener Spacing/Width, s (in): Weld Size (1/16 in):

W1 (in):

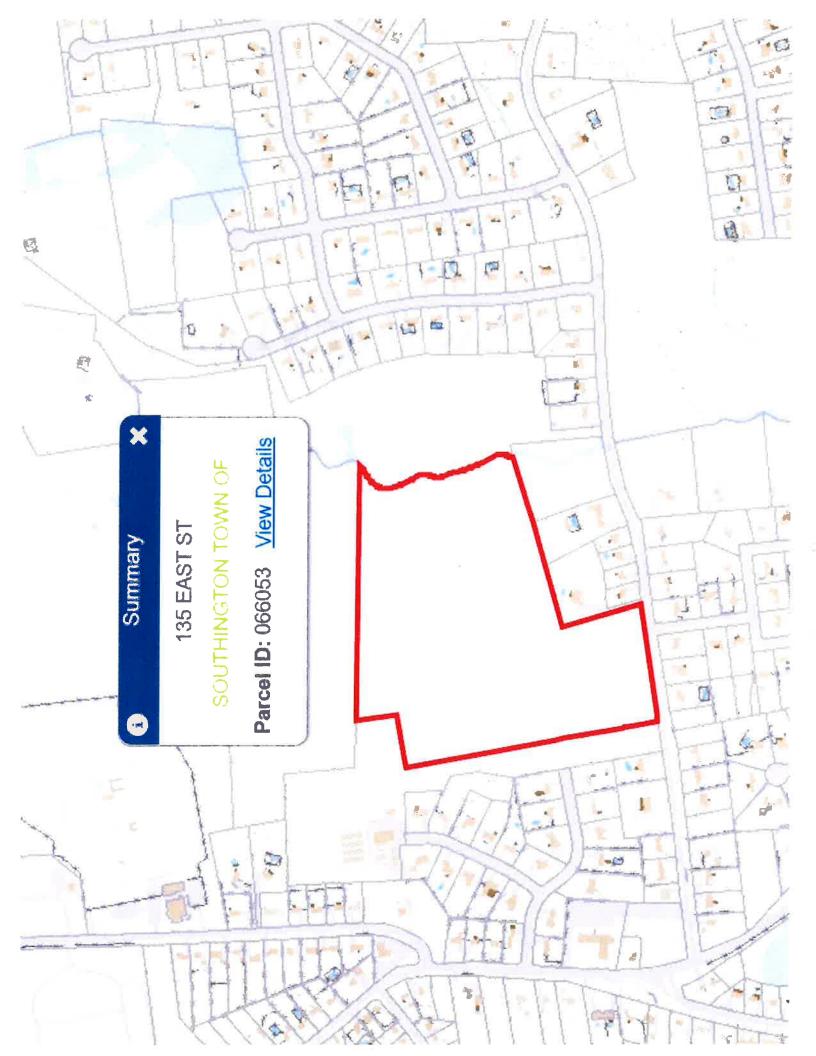
W2 (in):

Weld Total Length (in): $Z_x (in^3/in)$: $Z_y (in^3/in)$: $J_p (in^4/in)$:

c_x (in)


c_y (in)

Required combined strength (kip/in):


Weld Capacity (kip/in): Weld Utilization:

Yes		

Rectangle
(1) Stiffener on top/bottom
No
2.5
7
4
4
26.00
45.96
21.33
196.17
4.5
4.5
1.27
9.74
13.1%

ATTACHMENT 4

OVISION

Search

Street Listing

Sales Search

Feedback

Back

Home

O Map It

Print

Q Sales

135 EAST ST

Location 135 EAST ST

Mblu 066/7053/7

SOUTHINGTON TOWN OF Owner

Appraisal \$632,570

\$442,800

Assessment

1482

Acct

5182

PID

Building Count

Current Value

	Appraisai		
Valuation Year	Improvements	Land	Total
2020	S	\$632.570	\$632.570
	Assessment	And the state of t	
Valuation Year	Improvements	Land	Total
2020	0\$	\$442.800	\$442,800

Owner of Record

SOUTHINGTON TOWN OF Owner

75 MAIN ST Co-Owner Address

SOUTHINGTON, CT 06489

04 Book & Page Certificate Sale Price

01/29/2004 0950/0192 Sale Date

29 Instrument

ATTACHMENT 5

Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO. TOTAL NO. of Pieces Listed by Sender of Pieces Received at Post Office TM	Office M Postmark with Date of Receipt.	
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Rostmaster, per (name of receiving employee)	neopost ²⁷ 10/10/2023 US POST	neopost*/ 10/10/2023 US POSTAGE \$003.199
			ZIP 06103 041L12203937
USPS® Tracking Number	Address (Name Street City State and ZIP Code TM)	Postage	Special Handling Parcel Airlift
בוווו-אפרוור ותפונווופו	Mark Sciota, Town Manger		
	Town of Southington		
	Southington, CT 06489		COUSESTA
۲,	Town of Southington		061
	Municipal Center 196 North Main Street		770
c	Southington, CT 06489		ike.
·			The state of the s
			USPS
4.			
5.			
9			
		T	
20 Earn 3665 January 2017 (Pane 1 of 1) DON 75) DSN 7530-17-000-5540		See Reverse for Instructions