VIA ELECTRONIC MAIL

May 16, 2024
Jeffrey Barbadora
Permitting Specialist
Crown Castle
1800 West Park Drive
Westborough, MA 01581
Jeff.Barbadora@crowncastle.com
RE: EM-VER-130A-231004 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 1432 Old Waterbury Road, Southbury, Connecticut.

Request for Project Change.

Dear Jeffrey Barbadora:

The Connecticut Siting Council (Council) is in receipt of the correspondence dated May 9, 2024 and the associated Structural Analysis dated October 20, 2023, regarding a project change for the above-referenced exempt modification request acknowledged by the Council on November 13, 2023.

Pursuant to Condition No. 1 of the Council's November 13, 2023 exempt modification approval, the request to increase the number of Kaelus interference mitigation filters to be installed from two to four is hereby approved.

This approval applies only to the project change in the correspondence dated May 8, 2024.
Thank you for your attention and cooperation.
Sincerely,

Melanie A. Bachman
Executive Director
MAB/ANM/laf
c: The Honorable Jeff Manville, First Selectperson, Town of Southbury (selectman@southbury-ct.gov)

From: Barbadora, Jeff < Jeff.Barbadora@crowncastle.com>
Sent: Thursday, May 9, 2024 10:13 AM
To: CSC-DL Siting Council < Siting.Council@ct.gov>
Subject: EM-VER-130A-231004-1432 Old Waterbury Road Southbury CT - 806358
Good morning,
Would the CSC please update the approval for EM-VER-130A-231004 to include a total of 4 filters?
The original SA submitted with the application and dated $8 / 30 / 2023$ stated only 2 filters and should have stated 4 filters.

Please see updated SA stating a total of 4 filters and let me know if you have any questions.

Thanks,

Jeffrey Barbadora
Permitting Specialist
781-970-0053
Crown Castle
1800 W. Park Drive, Suite 250
Westborough, MA 01581

Certificate Of Completion
Certificate Of Completion
Subject: Complete with DocuSign: SOUTHBURY CT_LE_328_20240412.pdf
Source Envelope:
Signatures: 1
Initials: 0
Envelopeld Stamping: Enabled
Time Zone: (UTC-06:00) Central Time (US \& Canada)
tatus: Original
4/12/2024 9:56:21 AM
Signer Events
Maham Barimani
Maham.Barimani@crowncastle.com
Security Level: Email, Account Authentication
(None) (None)
Record Tracking

Holder: Trista Bonomi

ture

Sent: 4/12/2024 9:57:38 AM
Viewed: 4/12/2024 9:58:01 AM Signed: 4/12/2024 9:58:11 AM

Signature Adoption: Pre-selected Style
Using IP Address: 64.213.130.18

Electronic Record and Signature Disclosure:
Not Offered via DocuSign
In Person Signer Events
Editor Delivery Events
Agent Delivery Events
Intermediary Delivery Events
Certified Delivery Events
Carbon Copy Events
Witness Events
Notary Events
Envelope Summary Events
Envelope Sent
Certified Delivered
Signing Complete
Completed
Payment Events

Morrison Hershfield
1455 Lincoln Parkway, Suite 500
Atlanta, GA 30346
(770) 379-8500

Subject:

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Structural Analysis Report

Verizon Wireless Co-Locate
Site Number: 5000386016
Site Name:
BU Number:
Site Name:
JDE Job Number:
Work Order Number:
Order Number:

Southbury CT
806358
NHV 109943107
2103494
2265250
658817 Rev. 0

Morrison Hershfield Project Number: CN12-647R1 / 2300001
1432 Old Waterbury Road, Southbury, New Haven County, CT 06488
Latitude 41° 29' 36.92 ", Longitude -73${ }^{\circ}{ }^{\prime} 54.98^{\prime \prime}$
225.79 Foot - EEI Monopole Tower

Morrison Hershfield is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration
Sufficient Capacity - 59\%
This analysis utilizes an ultimate 3 -second gust wind speed of 116 mph as required by the 2022 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:
G. Lance Cooke, P.E. (CT License No. 28133)

Senior Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC7
4.1) Recommendations
5) APPENDIX A
tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 225.79 ft monopole tower designed by Engineered Endeavors, Inc.
The tower has been modified multiple times in the past to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Service Wind Speed:

TIA-222-H
II
116 mph
B
1
1 in
50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	$\begin{array}{\|c} \text { Feed } \\ \text { Line } \\ \text { Size (in) } \end{array}$
228.0	230.0	2	raycap	RRFDC-3315-PF-48	14	1-5/8
	228.0	6	jma wireless	MX06FRO660-03		
		3	samsung telecommunications	MT6407-77A w/ Mount Pipe		
		3	samsung telecommunications	RF4439D-25A		
		3	samsung telecommunications	RF4440D-13A		
		4	kaelus	BSF0020F3V1		
		3	-	JMA Wireless 91900314 Dual-Mount Antenna Bracket		
		1	-	Platform Mount (LP 101-1)		

Table 2-Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
218.0	218.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-3/4
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
		1	raycap	RDIDC-9181-PF-48		
		1	-	Commscope MC-PK8-DSH		
205.0	207.0	3	commscope	VV-65A-R1_TMO w/ Mount Pipe	3	1-5/8
		3	ericsson	AIR6449 B41 w/ Mount Pipe		
		3	rfs celwave	$\begin{aligned} & \text { APXVAALL24_43-U-NA20_TMO } \\ & \text { w/ Mount Pipe } \end{aligned}$		
		3	ericsson	RADIO 4460 B2/B25 B66_TMO		
		3	ericsson	Radio 4480_TMOV2		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	217688	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	821496	CCISITES
4-TOWER MANUFACTURER DRAWINGS	821494	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	1276594	CCISITES
4-POST-MODIFICATION INSPECTION	1863184	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	4062841	CCISITES
4-POST-MODIFICATION INSPECTION	4062849	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

1) Tower and structures were maintained in accordance with the TIA-222 Standard.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Morrison Hershfield should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	\% Capacity	Pass / Fail
L1	$225.79-197.75$	Pole	TP28.6563x21.5x0.1875	1	-12.03	1002.63	38.0	Pass
L2	$197.75-162.72$	Pole	TP37.0938x27.24x0.375	2	-29.40	2589.87	42.5	Pass
L3	$162.72-120.09$	Pole	TP47.1563x35.0487x0.4375	3	-43.15	3846.79	51.9	Pass
L4	$120.09-78.99$	Pole	TP56.6563x44.6617x0.5	4	-60.52	5287.57	51.2	Pass
L5	$78.99-38.92$	Pole	TP65.7813x53.7418x0.5625	5	-82.53	6910.70	48.0	Pass
L6	$38.92-0$	Pole	TP74.5x62.453x0.5625	6	-113.65	8108.48	51.0	Pass
							Summary	
						Pole (L3)	51.9	Pass
					Rating $=$	51.9	Pass	

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	54.7	Pass
1	Base Plate	0	38.7	Pass
1,2	Base Foundation	0	59.0	Pass

Structure Rating (max from all components) $=$	$59 \% *$

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed
2) Foundation capacity determined by comparing analysis reactions to original design reactions.
3) *Rating per TIA-222-H, Section 15.5.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A572-65	65 ksi	80 ksi				

TOWER DESIGN NOTES

197.8 ft

Tower is located in New Haven County, Connecticut.

2. Tower designed for Exposure B to the TIA-222-H Standard.
. Tower designed for a 116 mph basic wind in accordance with the TIA-222-H Standard.
3. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
5. Tower Risk Category II.
6. Topographic Category 1 with Crest Height of 0.00 ft
7. TOWER RATING: 51.9%

ALL REACTIONS ARE FACTORED

TORQUE 1 kip-ft 50 mph WIND - 1.0000 in ICE

TORQUE 2 kip-ft REACTIONS - 116 mph WIND

	Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501	Pob: CN12-647R1 / 2300001 Project: 806358 / NHV 109943107		
		Client: Crown Castle USA	Drawn by: CKK	App'd:
		Code: TIA-222-H	Date: 10/20/23	Scale: NTS
Consulting Engineers		Path:		Dwg No. E-

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 666.00 ft .
- Basic wind speed of 116 mph .
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft .
- Nominal ice thickness of 1.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of $50^{\circ} \mathrm{F}$.
- Deflections calculated using a wind speed of 60 mph .
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- \quad Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95$, $\mathrm{K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^0]Distribute Leg Loads As Uniform
Assume Legs Pinned
\checkmark Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
Autocalc Torque Arm Areas
Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
\checkmark Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice
Exemption
Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No
Appurtenances
Outside and Inside Corner Radii Are
Known

Tapered Pole Section Geometry

| Section | Elevation | Section
 Length
 ft | Splice
 Length
 ft | Number
 of
 Sides | Top
 Diameter
 in | Bottom
 Diameter
 in | Wall
 Thickness
 in | Bend
 Radius |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | |

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	I $i n^{4}$	r $i n$	C $i n$	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w $i n$	
L1	21.8027	12.6836	727.8616	7.5659	10.9220	66.6418	1456.6810	6.3430	3.4540	18.421
	29.0694	16.9425	1734.8057	10.1064	14.5574	119.1702	3471.8941	8.4728	4.7135	25.139
L2	28.6462	31.9760	2915.6454	9.5371	13.8379	210.6999	5835.1273	15.9911	4.1342	11.025
	37.6081	43.7045	7444.5646	13.0352	18.8436	395.0707	14898.9250	21.8564	5.8685	15.649
L3	36.8448	48.0620	7274.0007	12.2870	17.8048	408.5427	14557.5727	24.0356	5.3986	12.34
	47.8162	64.8748	17889.4123	16.5852	23.9554	746.7807	35802.3639	32.4436	7.5295	17.21
L4	46.9123	70.0846	17268.3561	15.6774	22.6881	761.1185	34559.4344	35.0489	6.9805	13.961
	57.4531	89.1200	35506.5661	19.9355	28.7814	1233.6647	71059.8527	44.5685	9.0915	18.183
L5	56.4288	94.9449	33922.9724	18.8786	27.3008	1242.5625	67890.5816	47.4815	8.4686	15.055
	66.7093	116.4399	62572.6159	23.1527	33.4169	1872.4856	125227.5665	58.2310	10.5875	18.822
L6	65.5688	110.4978	53473.5626	21.9711	31.7261	1685.4739	107017.4870	55.2594	10.0017	17.781
	75.5625	132.0062	91171.9378	26.2478	37.8460	2409.0244	182463.8419	66.0156	12.1220	21.55

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf

Safety Line 3/8"	A	No	Surface Ar (CaAa)	$\begin{gathered} 225.79- \\ 0.00 \end{gathered}$	1	1	$\begin{aligned} & 0.250 \\ & 0.250 \end{aligned}$	0.3750		0.22
Step Pegs	A	No	Surface Ar (CaAa)	$\begin{gathered} 225.79- \\ 0.00 \end{gathered}$	1	1	$\begin{aligned} & 0.200 \\ & 0.300 \end{aligned}$	0.3500		0.45
HB158-1-08U8-	C	No	Surface Ar	225.79 -	2	2	0.206	1.9800		1.30

tnxTower Report - version 8.1.1.0

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf
$\underset{* * *}{\text { S8J18(1-5/8) }}$			(CaAa)	0.00			0.270			
$\begin{gathered} \text { CU12PSM6P4XXX(1- } \\ 3 / 4) \end{gathered}$	A	No	Surface Ar (CaAa)	$\begin{gathered} 218.00- \\ 0.00 \end{gathered}$	1	1	$\begin{aligned} & -0.170 \\ & -0.170 \end{aligned}$	1.7500		2.72
LDF6-50A(1-1/4)	A	No	Surface Ar (CaAa)	$\begin{gathered} 196.00- \\ 0.00 \end{gathered}$	3	3	$\begin{aligned} & -0.270 \\ & -0.190 \end{aligned}$	1.5500		0.60

LDF7-50A(1-5/8)	C	No	Surface Ar (CaAa)	$\begin{gathered} 185.00- \\ 0.00 \end{gathered}$	6	6	$\begin{aligned} & 0.270 \\ & 0.480 \end{aligned}$	1.9800		0.82
LDF4-50A(1/2)	C	No	Surface Ar (CaAa)	$\begin{gathered} 185.00- \\ 0.00 \end{gathered}$	1	1	$\begin{aligned} & 0.490 \\ & 0.490 \end{aligned}$	0.6250		0.15
LDF4-5** ${ }_{\text {*** }}(1 / 2)$	A	No	Surface Ar (CaAa)	$\begin{gathered} 72.00- \\ 0.00 \end{gathered}$	1	1	$\begin{aligned} & -0.150 \\ & -0.150 \end{aligned}$	0.6250		0.15
FP ${ }^{* * *}{ }^{\text {"x }} 1{ }^{\text {c }}$	A	No	Surface Af (CaAa)	$\begin{gathered} 134.00- \\ 124.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	20.41
FP 6"x1"	B	No	Surface Af (CaAa)	$\begin{gathered} 134.00- \\ 124.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	20.41
FP 6"x1" $* * *$	C	No	Surface Af (CaAa)	$\begin{gathered} 134.00- \\ 124.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	6.0000	14.0000	20.41

Feed Line/Linear Appurtenances - Entered As Area									
Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
LDF7-50A(1-5/8)	C	No	No	Inside Pole	225.79-0.00	12	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.82 \\ & 0.82 \end{aligned}$
$\begin{aligned} & \text { HB158-21U6S24- } \\ & \text { xxM_TMO(1-5/8) } \\ & * * * \end{aligned}$	B	No	No	Inside Pole	205.00-0.00	3	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & 2.50 \end{aligned}$
LDF6-50A(1-1/4)	A	No	No	Inside Pole	196.00-0.00	9	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.60 \\ & 0.60 \end{aligned}$
$\begin{gathered} \text { FB-L98B-034- } \\ \text { XXX(3/8) } \end{gathered}$	A	No	No	Inside Pole	196.00-0.00	2	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.06 \\ & 0.06 \end{aligned}$
WR-VG82STBRDA(5/8)	A	No	No	Inside Pole	196.00-0.00	2	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.31 \\ & 0.31 \\ & 0.31 \end{aligned}$
WR-VG82STBRDA(5/8)	A	No	No	Inside Pole	196.00-0.00	4	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.31 \\ & 0.31 \\ & 0.31 \end{aligned}$
CONDUIT(2)	A	No	No	Inside Pole	196.00-0.00	2	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 2.80 \\ & 2.80 \\ & 2.80 \end{aligned}$
$\begin{gathered} * * * \\ \text { HB114-1-0813U4- } \\ \text { M5J(1-1/4) } \end{gathered}$	B	No	No	Inside Pole	172.00-0.00	3	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 1.20 \\ & 1.20 \end{aligned}$
$\begin{gathered} \text { HB114-21U3M12- } \\ \text { XXXF(1-1/4) } \end{gathered}$	B	No	No	Inside Pole	172.00-0.00	1	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.22 \\ & 1.22 \end{aligned}$

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
n
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)

$f t^{2}$ \& AF
$f t^{2}$ \& $C_{A} A_{A}$

In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{225.79-197.75} \& A \& 0.000 \& 0.000 \& 5.577 \& 0.000 \& 0.07

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.05

\hline \& \& C \& 0.000 \& 0.000 \& 11.104 \& 0.000 \& 0.35

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{197.75-162.72} \& A \& 0.000 \& 0.000 \& 24.145 \& 0.000 \& 0.61

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.31

\hline \& \& C \& 0.000 \& 0.000 \& 41.733 \& 0.000 \& 0.55

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{162.72-120.09} \& A \& 0.000 \& 0.000 \& 39.495 \& 0.000 \& 0.98

\hline \& \& B \& 0.000 \& 0.000 \& 9.121 \& 0.000 \& 0.73

\hline \& \& C \& 0.000 \& 0.000 \& 79.312 \& 0.000 \& 0.95

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{120.09-78.99} \& A \& 0.000 \& 0.000 \& 29.284 \& 0.000 \& 0.75

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.51

\hline \& \& C \& 0.000 \& 0.000 \& 67.671 \& 0.000 \& 0.72

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{78.99-38.92} \& A \& 0.000 \& 0.000 \& 30.617 \& 0.000 \& 0.73

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.49

\hline \& \& C \& 0.000 \& 0.000 \& 65.975 \& 0.000 \& 0.70

\hline \multirow[t]{3}{*}{L6} \& \multirow[t]{3}{*}{38.92-0.00} \& A \& 0.000 \& 0.000 \& 30.163 \& 0.000 \& 0.71

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.48

\hline \& \& C \& 0.000 \& 0.000 \& 64.082 \& 0.000 \& 0.68

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With								
Tower	Tower	Face	Ice	A_{R}	A_{F}	$C_{A} A_{A}$	$C_{A} A_{A}$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft^{2}	ft^{2}	ft^{2}	ft^{2}	K
L1	225.79-197.75	A	1.023	0.000	0.000	21.199	0.000	0.24
		B		0.000	0.000	0.000	0.000	0.05
		C		0.000	0.000	21.053	0.000	0.51
L2	197.75-162.72	A	1.007	0.000	0.000	58.036	0.000	1.06
		B		0.000	0.000	0.000	0.000	0.31
		C		0.000	0.000	71.040	0.000	1.09
L3	162.72-120.09	A	0.983	0.000	0.000	82.030	0.000	1.59
		B		0.000	0.000	10.215	0.000	0.80
		C		0.000	0.000	127.334	0.000	1.90
L4	120.09-78.99	A	0.949	0.000	0.000	68.391	0.000	1.25
		B		0.000	0.000	0.000	0.000	0.51
		C		0.000	0.000	112.218	0.000	1.55
L5	78.99-38.92	A	0.901	0.000	0.000	73.870	0.000	1.26
		B		0.000	0.000	0.000	0.000	0.49
		C		0.000	0.000	108.457	0.000	1.48
L6	38.92-0.00	A	0.804	0.000	0.000	71.495	0.000	1.20
		B		0.000	0.000	0.000	0.000	0.48
		C		0.000	0.000	104.032	0.000	1.39

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{z}$	$C P_{X}$ $I c e$	$C P_{z}$ Ice in
	ft	in	in	in	in
	L1	$225.79-197.75$	-2.2201	1.6869	-2.4549
L2	$197.75-162.72$	-6.3492	3.6493	-5.5704	2.6258
L3	$162.72-120.09$	-6.8540	4.3548	-6.3985	3.0210
L4	$120.09-78.99$	-8.4479	5.3613	-7.6251	3.6130
L5	$78.99-38.92$	-9.1685	5.5982	-8.6025	3.7498
L6	$38.92-0.00$	-9.6507	5.8461	-9.1595	3.9812

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L1	2	Safety Line 3/8"	$\begin{array}{r} \hline 197.75- \\ 225.79 \end{array}$	1.0000	1.0000
L1	3	Step Pegs	$\begin{array}{r} 197.75- \\ 225.79 \end{array}$	1.0000	1.0000
L1	6	HB158-1-08U8-S8J18(1-	$\begin{array}{r} 197.75- \\ 225.79 \end{array}$	1.0000	1.0000
L1	8	CU12PSM6P4XXX(1-3/4)	$\begin{array}{r} 197.75- \\ 218.00 \end{array}$	1.0000	1.0000
L2	2	Safety Line 3/8"	$\begin{array}{r} 162.72- \\ 197.75 \end{array}$	1.0000	1.0000
L2	3	Step Pegs	$\begin{array}{r} 162.72- \\ 197.75 \end{array}$	1.0000	1.0000
L2	6	$\begin{array}{r} \text { HB158-1-08U8-S8J18(1- } \\ 5 / 8) \end{array}$	$\begin{array}{r} 162.72- \\ 197.75 \end{array}$	1.0000	1.0000
L2	8	CU12PSM6P4XXX(1-3/4)	$\begin{array}{r} 162.72- \\ 197.75 \end{array}$	1.0000	1.0000
L2	16	LDF6-50A(1-1/4)	$\begin{array}{r} 162.72- \\ 196.00 \end{array}$	1.0000	1.0000
L2	22	LDF7-50A(1-5/8)	$\begin{array}{r} 162.72- \\ 185.00 \end{array}$	1.0000	1.0000
L2	23	LDF4-50A(1/2)	$\begin{array}{r} 162.72- \\ 185.00 \end{array}$	1.0000	1.0000
L3	2	Safety Line 3/8"	$\begin{array}{r} 120.09- \\ 162.72 \end{array}$	1.0000	1.0000
L3	3	Step Pegs	$\begin{array}{r} 120.09- \\ 162.72 \end{array}$	1.0000	1.0000
L3	6	$\begin{array}{r} \text { HB158-1-08U8-S8J18(1-1 } \\ \hline \end{array}$	$\begin{array}{r} 120.09- \\ 162.72 \end{array}$	1.0000	1.0000
L3	8	CU12PSM6P4XXX(1-3/4)	$\begin{array}{r} 120.09- \\ 162.72 \end{array}$	1.0000	1.0000
L3	16	LDF6-50A(1-1/4)	$\begin{array}{r} 120.09- \\ 162.72 \end{array}$	1.0000	1.0000
L3	22	LDF7-50A(1-5/8)	$\begin{array}{r} 120.09- \\ 162.72 \end{array}$	1.0000	1.0000
L3	23	LDF4-50A(1/2)	$\begin{array}{r} 120.09- \\ 162.72 \end{array}$	1.0000	1.0000
L3	30	FP 6"x1"	$\begin{array}{r} 124.00- \\ 134.00 \end{array}$	1.0000	1.0000
L3	31	FP 6"x1"	$\begin{array}{r} 124.00- \\ 134.00 \end{array}$	1.0000	1.0000
L3	32	FP 6"x1"	$\begin{array}{r} 124.00- \\ 134.00 \end{array}$	1.0000	1.0000
L4	2	Safety Line 3/8"	$\begin{aligned} & 78.99- \\ & 120.09 \end{aligned}$	1.0000	1.0000
L4	3	Step Pegs	$\begin{aligned} & 78.99- \\ & 120.09 \end{aligned}$	1.0000	1.0000
L4	6	$\begin{array}{r} \text { HB158-1-08U8-S8J18(1- } \\ 5 / 8) \end{array}$	$\begin{aligned} & 78.99- \\ & 120.09 \end{aligned}$	1.0000	1.0000
L4	8	CU12PSM6P4XXX(1-3/4)	$\begin{aligned} & 78.99- \\ & 120.09 \end{aligned}$	1.0000	1.0000
L4	16	LDF6-50A(1-1/4)	$\begin{aligned} & 78.99- \\ & 120.09 \end{aligned}$	1.0000	1.0000
L4	22	LDF7-50A(1-5/8)	$\begin{aligned} & 78.99- \\ & 120.09 \end{aligned}$	1.0000	1.0000
L4	23	LDF4-50A(1/2)	$\begin{aligned} & 78.99- \\ & 120.09 \end{aligned}$	1.0000	1.0000
L5	2	Safety Line 3/8"	$\begin{array}{r} 38.92- \\ 78.99 \end{array}$	1.0000	1.0000
L5	3	Step Pegs	$\begin{array}{r} 38.92- \\ 78.99 \end{array}$	1.0000	1.0000
L5	6	$\begin{array}{r} \text { HB158-1-08U8-S8J18(1- } \\ 5 / 8) \end{array}$	$\begin{array}{r} 38.92- \\ 78.99 \end{array}$	1.0000	1.0000
L5	8	CU12PSM6P4XXX(1-3/4)	$38.92-$	1.0000	1.0000
L5	16	LDF6-50A(1-1/4)	$\begin{array}{r} 38.92- \\ 78.99 \end{array}$	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L5	22	LDF7-50A(1-5/8)	$38.92-$ 78.99	1.0000	1.0000
L5	23	LDF4-50A(1/2)	$38.92-$ 78.99	1.0000	1.0000
L5	28	LDF4-50A(1/2)	$38.92-$ 72.00	1.0000	1.0000
L6	2	Safety Line 3/8"	0.00-38.92	1.0000	1.0000
L6	3	Step Pegs	0.00-38.92	1.0000	1.0000
L6	,	HB158-1-08U8-S8J18(15/8)	0.00-38.92	1.0000	1.0000
L6	8	CU12PSM6P4XXX(1-3/4)	0.00-38.92	1.0000	1.0000
L6	16	LDF6-50A(1-1/4)	0.00-38.92	1.0000	1.0000
L6	22	LDF7-50A(1-5/8)	0.00-38.92	1.0000	1.0000
L6	23	LDF4-50A(1/2)	0.00-38.92	1.0000	1.0000
L6	28	LDF4-50A(1/2)	0.00-38.92	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
	30	FP 6"x1"	$\begin{array}{r} 124.00- \\ 134.00 \end{array}$	Auto	0.0000
L3	31	FP 6"x1"	$\begin{array}{r} 124.00- \\ 134.00 \end{array}$	Auto	0.0000
L3	32	FP 6"x1"	$\begin{array}{r} 124.00- \\ 13400 \end{array}$	Auto	0.0000

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustment \& Placement

ft \& \& \begin{tabular}{l}
$C_{A} A_{A}$ Front

ft ${ }^{2}$

 \&

$C_{A} A_{A}$ Side

$f t^{2}$
\end{tabular} \& Weight

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{Lighting Rod 5/8' $\times 5$ '} \& C \& From Leg \& 2.00 \& 0.0000 \& 226.00 \& No Ice \& 0.31 \& 0.31 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.83 \& 0.83 \& 0.03

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.32 \& 1.32 \& 0.04

\hline \multirow[t]{3}{*}{Flash Beacon Lighting} \& B \& From Leg \& 2.00 \& 0.0000 \& 226.00 \& No Ice \& 2.70 \& 2.70 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.10 \& 3.10 \& 0.07

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.50 \& 3.50 \& 0.09

\hline \multirow[t]{3}{*}{Side Light} \& A \& From Leg \& 1.00 \& 0.0000 \& 113.00 \& No Ice \& 0.29 \& 0.29 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.44 \& 0.44 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 0.54 \& 0.54 \& 0.02

\hline \multirow[t]{3}{*}{Side Light} \& B \& From Leg \& 1.00 \& 0.0000 \& 113.00 \& No Ice \& 0.29 \& 0.29 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.44 \& 0.44 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.54 \& 0.54 \& 0.02

\hline \multirow[t]{3}{*}{Side Light} \& C \& From Leg \& 1.00 \& 0.0000 \& 113.00 \& No Ice \& 0.29 \& 0.29 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.44 \& 0.44 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.54 \& 0.54 \& 0.02

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRFDC-3315-PF-48} \& B \& From Leg \& 4.00 \& 0.0000 \& 228.00 \& No Ice \& 3.79 \& 2.51 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.04 \& 2.73 \& 0.06

\hline \& \& \& 2.00 \& \& \& 1 " Ice \& 4.30 \& 2.95 \& 0.10

\hline \multirow[t]{3}{*}{RRFDC-3315-PF-48} \& C \& From Leg \& 4.00 \& 0.0000 \& 228.00 \& No Ice \& 3.79 \& 2.51 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.04 \& 2.73 \& 0.06

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.30 \& 2.95 \& 0.10

\hline \multirow[t]{2}{*}{4' x 2" Pipe Mount} \& A \& From Leg \& 4.00 \& 0.0000 \& 228.00 \& No Ice \& 0.79 \& 0.79 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.03 \& 1.03 \& 0.04

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustment \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$

Side

ft^{2} \& Weight

\hline \multirow{4}{*}{4' x 2" Pipe Mount} \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{3}{*}{228.00} \& 1" Ice \& 1.28 \& 1.28 \& 0.04

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.79 \& 0.79 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.03 \& 1.03 \& 0.04

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \& \multirow{3}{*}{228.00} \& $1{ }^{\prime \prime}$ Ice \& 1.28 \& 1.28 \& 0.04

\hline \multirow[t]{3}{*}{4' x 2" Pipe Mount} \& \& \& 4.00 \& \multirow[t]{2}{*}{0.0000} \& \& No Ice \& 0.79 \& 0.79 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.03 \& 1.03 \& 0.04

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{228.00} \& $1{ }^{\prime \prime}$ Ice \& 1.28 \& 1.28 \& 0.04

\hline \multirow[t]{3}{*}{2' x 2" Pipe Mount} \& \& \& 4.00 \& \& \& No Ice \& 0.02 \& 0.02 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.05 \& 0.05 \& 0.01

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{228.00} \& $1{ }^{1 \prime}$ Ice \& 0.09 \& 0.09 \& 0.01

\hline \multirow[t]{3}{*}{2' x 2" Pipe Mount} \& \& \& 4.00 \& \& \& No Ice \& 0.02 \& 0.02 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.05 \& 0.05 \& 0.01

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{228.00} \& $1{ }^{1 \prime}$ Ice \& 0.09 \& 0.09 \& 0.01

\hline \multirow[t]{3}{*}{2' x 2" Pipe Mount} \& \& \& 4.00 \& \& \& No Ice \& 0.02 \& 0.02 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.05 \& 0.05 \& 0.01

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{228.00} \& 1" Ice \& 0.09 \& 0.09 \& 0.01

\hline \multirow[t]{3}{*}{Transition Ladder} \& \& \& 2.00 \& \& \& No Ice \& 6.00 \& 6.00 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.00 \& 8.00 \& 0.24

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{None} \& -2.00 \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{228.00} \& 1 " Ice \& 10.00 \& 10.00 \& 0.32

\hline \multirow[t]{3}{*}{Platform Mount (LP 101-1)} \& \& \& \& \& \& No Ice \& 35.83 \& 35.83 \& 1.50

\hline \& \& \& \& \& \& $$
1 / 2 \text { " Ice }
$$ \& 40.98 \& 40.98 \& 2.32

\hline \& \& \& \& \& \& 1" Ice \& 46.57 \& 46.57 \& 3.26

\hline * \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) MX06FRO660-03} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 6.81 \& 4.67 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.37 \& 5.19 \& 0.15

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.93 \& 5.73 \& 0.22

\hline \multirow[t]{3}{*}{(2) MX06FRO660-03} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 6.81 \& 4.67 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.37 \& 5.19 \& 0.15

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.93 \& 5.73 \& 0.22

\hline \multirow[t]{3}{*}{(2) MX06FRO660-03} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 6.81 \& 4.67 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.37 \& 5.19 \& 0.15

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.93 \& 5.73 \& 0.22

\hline \multirow[t]{3}{*}{MT6407-77A w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 5.94 \& 3.10 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.47 \& 3.55 \& 0.13

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.02 \& 4.02 \& 0.18

\hline \multirow[t]{3}{*}{MT6407-77A w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 5.94 \& 3.10 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.47 \& 3.55 \& 0.13

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.02 \& 4.02 \& 0.18

\hline \multirow[t]{3}{*}{MT6407-77A w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 5.94 \& 3.10 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.47 \& 3.55 \& 0.13

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.02 \& 4.02 \& 0.18

\hline \multirow[t]{3}{*}{(2) BSF0020F3V1} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 0.96 \& 0.29 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.09 \& 0.36 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.22 \& 0.45 \& 0.03

\hline \multirow[t]{3}{*}{(2) BSF0020F3V1} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No lce \& 0.96 \& 0.29 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.09 \& 0.36 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.22 \& 0.45 \& 0.03

\hline \multirow[t]{3}{*}{RF4439D-25A} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 1.87 \& 1.25 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.03 \& 1.39 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.21 \& 1.54 \& 0.11

\hline \multirow[t]{3}{*}{RF4439D-25A} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 1.87 \& 1.25 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.03 \& 1.39 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.21 \& 1.54 \& 0.11

\hline \multirow[t]{3}{*}{RF4439D-25A} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 1.87 \& 1.25 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.03 \& 1.39 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.21 \& 1.54 \& 0.11

\hline \multirow[t]{3}{*}{RF4440D-13A} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 1.87 \& 1.13 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.03 \& 1.27 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.21 \& 1.41 \& 0.11

\hline \multirow[t]{3}{*}{RF4440D-13A} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 1.87 \& 1.13 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.03 \& 1.27 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.21 \& 1.41 \& 0.11

\hline \multirow[t]{3}{*}{RF4440D-13A} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 1.87 \& 1.13 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.03 \& 1.27 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.21 \& 1.41 \& 0.11

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustment \& Placement

ft \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline JMA Wireless 91900314 \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 2.30 \& 2.30 \& 0.07

\hline \multirow[t]{2}{*}{Dual-Mount Antenna Bracket} \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.13 \& 3.13 \& 0.10

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.62 \& 3.62 \& 0.13

\hline JMA Wireless 91900314 \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 2.30 \& 2.30 \& 0.07

\hline \multirow[t]{2}{*}{Dual-Mount Antenna Bracket} \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.13 \& 3.13 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.62 \& 3.62 \& 0.13

\hline JMA Wireless 91900314 \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{228.00} \& No Ice \& 2.30 \& 2.30 \& 0.07

\hline \multirow[t]{2}{*}{Dual-Mount Antenna Bracket} \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.13 \& 3.13 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.62 \& 3.62 \& 0.13

\hline \multirow[t]{3}{*}{MX08FRO665-21 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 8.01 \& 4.23 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.52 \& 4.69 \& 0.19

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.04 \& 5.16 \& 0.29

\hline \multirow[t]{3}{*}{MX08FRO665-21 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 8.01 \& 4.23 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.52 \& 4.69 \& 0.19

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 9.04 \& 5.16 \& 0.29

\hline \multirow[t]{3}{*}{MX08FRO665-21 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 8.01 \& 4.23 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.52 \& 4.69 \& 0.19

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 9.04 \& 5.16 \& 0.29

\hline \multirow[t]{3}{*}{TA08025-B604} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 1.96 \& 0.98 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.11 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 2.32 \& 1.25 \& 0.10

\hline \multirow[t]{3}{*}{TA08025-B604} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 1.96 \& 0.98 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.11 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.32 \& 1.25 \& 0.10

\hline \multirow[t]{3}{*}{TA08025-B604} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 1.96 \& 0.98 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.11 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.32 \& 1.25 \& 0.10

\hline \multirow[t]{3}{*}{TA08025-B605} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 1.96 \& 1.13 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.27 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 2.32 \& 1.41 \& 0.11

\hline \multirow[t]{3}{*}{TA08025-B605} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 1.96 \& 1.13 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.27 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1 ' Ice \& 2.32 \& 1.41 \& 0.11

\hline \multirow[t]{3}{*}{TA08025-B605} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 1.96 \& 1.13 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.27 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.32 \& 1.41 \& 0.11

\hline \multirow[t]{3}{*}{RDIDC-9181-PF-48} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 2.01 \& 1.17 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.19 \& 1.31 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.37 \& 1.46 \& 0.06

\hline \multirow[t]{3}{*}{6' x 2" Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.29 \& 2.29 \& 0.05

\hline \multirow[t]{3}{*}{(2) 8' x 2" Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& \& 1.90 \& 1.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.40 \& 3.40 \& 0.06

\hline \multirow[t]{3}{*}{(2) 8' x 2" Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 1.90 \& 1.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.40 \& 3.40 \& 0.06

\hline \multirow[t]{3}{*}{(2) 8' x 2" Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 1.90 \& 1.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.40 \& 3.40 \& 0.06

\hline \multirow[t]{3}{*}{Commscope MC-PK8-DSH} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{218.00} \& No Ice \& 34.24 \& 34.24 \& 1.75

\hline \& \& \& \& \& \& 1/2" Ice \& 62.95 \& 62.95 \& 2.10

\hline \& \& \& \& \& \& 1 " Ice \& 91.66 \& 91.66 \& 2.45

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Transition Ladder} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& 0.0000 \& 205.00 \& No Ice \& 6.00 \& 6.00 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.00 \& 8.00 \& 0.24

\hline \& \& \& -2.00 \& \& \& 1" Ice \& 10.00 \& 10.00 \& 0.32

\hline \multirow[t]{3}{*}{Platform Mount [LP 712-1]} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{205.00} \& No Ice \& 24.56 \& 24.56 \& 1.34

\hline \& \& \& \& \& \& 1/2" Ice \& 27.92 \& 27.92 \& 1.91

\hline \& \& \& \& \& \& 1" Ice \& 31.27 \& 31.27 \& 2.55

\hline * \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{VV-65A-R1_TMO w/ Mount Pipe} \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& $$
4.00
$$ \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{205.00} \& No Ice \& 4.46 \& 2.69 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.91 \& 3.10 \& 0.10

\hline
\end{tabular}

tnxTower Report - version 8.1.1.0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustment \& Placement

ft \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline \multirow{4}{*}{VV-65A-R1_TMO w/ Mount Pipe} \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 2.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{205.00} \& 1" Ice \& 5.36 \& 3.52 \& 0.15

\hline \& \& \& 4.00 \& \& \& No Ice \& 4.46 \& 2.69 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.91 \& 3.10 \& 0.10

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 2.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{205.00} \& $1{ }^{1 /}$ Ice \& 5.36 \& 3.52 \& 0.15

\hline \multirow[t]{3}{*}{VV-65A-R1_TMO w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 4.46 \& 2.69 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.91 \& 3.10 \& 0.10

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 2.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{205.00} \& $1{ }^{1 /}$ Ice \& 5.36 \& 3.52 \& 0.15

\hline \multirow[t]{3}{*}{AIR6449 B41 w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 5.18 \& 2.72 \& 0.12

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.59 \& 3.05 \& 0.16

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 2.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{205.00} \& 1" Ice \& 6.01 \& 3.39 \& 0.22

\hline \multirow[t]{3}{*}{AIR6449 B41 w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 5.18 \& 2.72 \& 0.12

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.59 \& 3.05 \& 0.16

\hline \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& 2.00 \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{205.00} \& $1{ }^{1 \prime}$ Ice \& 6.01 \& 3.39 \& 0.22

\hline \multirow[t]{3}{*}{AIR6449 B41 w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 5.18 \& 2.72 \& 0.12

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.59 \& 3.05 \& 0.16

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 /}$ Ice \& 6.01 \& 3.39 \& 0.22

\hline \multirow[t]{3}{*}{APXVAALL24 43-UNA20_TMO w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{205.00} \& No Ice \& 14.69 \& 6.87 \& 0.18

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 15.46 \& 7.55 \& 0.31

\hline \& \& \& 2.00 \& \& \& 1" Ice \& 16.23 \& 8.25 \& 0.45

\hline \multirow[t]{3}{*}{APXVAALL24_43-UNA20_TMO w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{205.00} \& No Ice \& 14.69 \& 6.87 \& 0.18

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 15.46 \& 7.55 \& 0.31

\hline \& \& \& 2.00 \& \& \& 1" Ice \& 16.23 \& 8.25 \& 0.45

\hline \multirow[t]{3}{*}{APXVAALL24_43-UNA20_TMO w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{205.00} \& No Ice \& 14.69 \& 6.87 \& 0.18

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 15.46 \& 7.55 \& 0.31

\hline \& \& \& 2.00 \& \& \& 1" Ice \& 16.23 \& 8.25 \& 0.45

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { RADIO } 4460 \text { B2/B25 } \\
\text { B66_TMO }
\end{gathered}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{205.00} \& No Ice \& 2.14 \& 1.69 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.32 \& 1.85 \& 0.13

\hline \& \& \& 2.00 \& \& \& 1 " Ice \& 2.51 \& 2.02 \& 0.16

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { RADIO } 4460 \text { B2/B25 } \\
\text { B66_TMO }
\end{gathered}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{205.00} \& No Ice \& 2.14 \& 1.69 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.32 \& 1.85 \& 0.13

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.51 \& 2.02 \& 0.16

\hline \multirow[t]{3}{*}{RADIO 4460 B2/B25 B66_TMO} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{205.00} \& No Ice \& 2.14 \& 1.69 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.32 \& 1.85 \& 0.13

\hline \& \& \& 2.00 \& \& \& 1 " Ice \& 2.51 \& 2.02 \& 0.16

\hline \multirow[t]{3}{*}{Radio 4480_TMOV2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{205.00} \& No Ice \& 2.88 \& 1.40 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.09 \& 1.56 \& 0.10

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.31 \& 1.73 \& 0.13

\hline \multirow[t]{3}{*}{Radio 4480_TMOV2} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{205.00} \& No Ice \& 2.88 \& 1.40 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.09 \& 1.56 \& 0.10

\hline \& \& \& 2.00 \& \& \& 1" Ice \& 3.31 \& 1.73 \& 0.13

\hline \multirow[t]{3}{*}{Radio 4480_TMOV2} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{205.00} \& No Ice \& 2.88 \& 1.40 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.09 \& 1.56 \& 0.10

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.31 \& 1.73 \& 0.13

\hline \multirow[t]{3}{*}{Site Pro 1 HRK12-HD Handrail Kit} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{205.00} \& \& 6.36 \& 6.36 \& 0.41

\hline \& \& \& \& \& \& 1/2" Ice \& 8.52 \& 8.52 \& 0.55

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 10.62 \& 10.62 \& 0.69

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{OPA-65R-LCUU-H6 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 196.00 \& No Ice \& 9.19 \& 6.21 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.94 \& 6.93 \& 0.18

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 10.71 \& 7.66 \& 0.26

\hline \multirow[t]{3}{*}{OPA-65R-LCUU-H6 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 196.00 \& No Ice \& 9.19 \& 6.21 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.94 \& 6.93 \& 0.18

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 10.71 \& 7.66 \& 0.26

\hline \multirow[t]{3}{*}{OPA-65R-LCUU-H6 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 196.00 \& No Ice \& 9.19 \& 6.21 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.94 \& 6.93 \& 0.18

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 10.71 \& 7.66 \& 0.26

\hline \multirow[t]{3}{*}{OPA65R-BU6D w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 196.00 \& No Ice \& 12.25 \& 6.05 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 13.00 \& 6.71 \& 0.18

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 13.76 \& 7.39 \& 0.27

\hline \multirow[t]{3}{*}{OPA65R-BU6D w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 12.25 \& 6.05 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 13.00 \& 6.71 \& 0.18

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 13.76 \& 7.39 \& 0.27

\hline \multirow[t]{3}{*}{OPA65R-BU6D w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 12.25 \& 6.05 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 13.00 \& 6.71 \& 0.18

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 13.76 \& 7.39 \& 0.27

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustment \& Placement

ft \& \& $C_{A} A_{A}$ Front

\[
\mathrm{ft}^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline \multirow[t]{3}{*}{80010121 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 3.60 \& 2.95 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.00 \& 3.34 \& 0.11

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.42 \& 3.74 \& 0.17

\hline \multirow[t]{3}{*}{80010121 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 3.60 \& 2.95 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.00 \& 3.34 \& 0.11

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.42 \& 3.74 \& 0.17

\hline \multirow[t]{3}{*}{80010121 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 3.60 \& 2.95 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.00 \& 3.34 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.42 \& 3.74 \& 0.17

\hline \multirow[t]{3}{*}{80010798 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 7.79 \& 4.90 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.40 \& 5.47 \& 0.19

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 9.02 \& 6.06 \& 0.27

\hline \multirow[t]{3}{*}{80010798 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 7.79 \& 4.90 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.40 \& 5.47 \& 0.19

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.02 \& 6.06 \& 0.27

\hline \multirow[t]{3}{*}{80010798 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 7.79 \& 4.90 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.40 \& 5.47 \& 0.19

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.02 \& 6.06 \& 0.27

\hline \multirow[t]{3}{*}{RRUS 11 B12} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.83 \& 1.18 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.04 \& 1.33 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.26 \& 1.48 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 11 B12} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.83 \& 1.18 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.04 \& 1.33 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.26 \& 1.48 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 11 B12} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.83 \& 1.18 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.04 \& 1.33 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.26 \& 1.48 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 32 B2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 32 B2} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 32 B2} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 32 B30} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 32 B30} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 32 B30} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1 ' Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 4426 B66} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 1.64 \& 0.73 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.80 \& 0.84 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.97 \& 0.97 \& 0.08

\hline \multirow[t]{3}{*}{RRUS 4426 B66} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 1.64 \& 0.73 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.80 \& 0.84 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.97 \& 0.97 \& 0.08

\hline \multirow[t]{3}{*}{RRUS 4426 B66} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 1.64 \& 0.73 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.80 \& 0.84 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.97 \& 0.97 \& 0.08

\hline \multirow[t]{3}{*}{RRUS 4478 B14_CCIV2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.02 \& 1.25 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.20 \& 1.40 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 2.39 \& 1.55 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 4478 B14_CCIV2} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.02 \& 1.25 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.20 \& 1.40 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 2.39 \& 1.55 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 4478 B14_CCIV2} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 2.02 \& 1.25 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.20 \& 1.40 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 2.39 \& 1.55 \& 0.10

\hline \multirow[t]{2}{*}{DTMABP7819VG12A} \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 4.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{$$
196.00
$$} \& No Ice \& 0.98 \& 0.34 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.10 \& 0.42 \& 0.03

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
\mathrm{ft}^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

K

\hline \multirow{4}{*}{DTMABP7819VG12A} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{196.00} \& $1{ }^{1 /}$ Ice \& 1.23 \& 0.51 \& 0.04

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.98 \& 0.34 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.10 \& 0.42 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.23 \& 0.51 \& 0.04

\hline \multirow[t]{3}{*}{DTMABP7819VG12A} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{2}{*}{196.00} \& No Ice \& 0.98 \& 0.34 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.10 \& 0.42 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.23 \& 0.51 \& 0.04

\hline \multirow[t]{3}{*}{DBC0061F1V51-2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 0.43 \& 0.41 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.51 \& 0.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.61 \& 0.59 \& 0.04

\hline \multirow[t]{3}{*}{DBC0061F1V51-2} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 0.43 \& 0.41 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.51 \& 0.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.61 \& 0.59 \& 0.04

\hline \multirow[t]{3}{*}{DBC0061F1V51-2} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 0.43 \& 0.41 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.51 \& 0.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.61 \& 0.59 \& 0.04

\hline \multirow[t]{3}{*}{(2) 86010025} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 0.14 \& 0.12 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.20 \& 0.17 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.26 \& 0.23 \& 0.01

\hline \multirow[t]{3}{*}{(2) 86010025} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 0.14 \& 0.12 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.20 \& 0.17 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.26 \& 0.23 \& 0.01

\hline \multirow[t]{3}{*}{(2) 86010025} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 0.14 \& 0.12 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.20 \& 0.17 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.26 \& 0.23 \& 0.01

\hline \multirow[t]{3}{*}{DC6-48-60-18-8F} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.46 \& 1.46 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.64 \& 1.64 \& 0.06

\hline \multirow[t]{3}{*}{DC6-48-60-18-8F} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.46 \& 1.46 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1 1' Ice \& 1.64 \& 1.64 \& 0.06

\hline \multirow[t]{3}{*}{DC6-48-60-18-8F} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.46 \& 1.46 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.64 \& 1.64 \& 0.06

\hline \multirow[t]{3}{*}{Sector Mount [SM 504-3]} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{196.00} \& No Ice \& 31.05 \& 31.05 \& 1.71

\hline \& \& \& \& \& \& 1/2" Ice \& 43.83 \& 43.83 \& 2.33

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 56.44 \& 56.44 \& 3.14

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{978QNB120E-M w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 185.00 \& No Ice \& 7.83 \& 5.15 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.28 \& 5.92 \& 0.12

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.74 \& 6.61 \& 0.19

\hline \multirow[t]{3}{*}{978QNB120E-M w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 7.83 \& 5.15 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.28 \& 5.92 \& 0.12

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.74 \& 6.61 \& 0.19

\hline \multirow[t]{3}{*}{978QNB120E-M w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 7.83 \& 5.15 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.28 \& 5.92 \& 0.12

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.74 \& 6.61 \& 0.19

\hline \multirow[t]{3}{*}{(2) FV90-16-02DP w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 4.47 \& 2.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.08 \& 3.50 \& 0.07

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 5.70 \& 4.10 \& 0.11

\hline \multirow[t]{3}{*}{(2) FV90-16-02DP w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 4.47 \& 2.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.08 \& 3.50 \& 0.07

\hline \& \& \& 2.00 \& \& \& 1" Ice \& 5.70 \& 4.10 \& 0.11

\hline \multirow[t]{3}{*}{(2) FV90-16-02DP w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 4.47 \& 2.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.08 \& 3.50 \& 0.07

\hline \& \& \& 2.00 \& \& \& 1" Ice \& 5.70 \& 4.10 \& 0.11

\hline \multirow[t]{3}{*}{APXV18-206517S-C w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 185.00 \& No Ice \& 3.79 \& 3.16 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.38 \& 3.75 \& 0.09

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.99 \& 4.35 \& 0.15

\hline \multirow[t]{3}{*}{APXV18-206517S-C w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 185.00 \& \& 3.79 \& 3.16 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.38 \& 3.75 \& 0.09

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.99 \& 4.35 \& 0.15

\hline \multirow[t]{3}{*}{APXV18-206517S-C w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 3.79 \& 3.16 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.38 \& 3.75 \& 0.09

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 /}$ Ice \& 4.99 \& 4.35 \& 0.15

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \multirow[t]{3}{*}{CS72993.07} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 1.23 \& 0.39 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.36 \& 0.48 \& 0.03

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.51 \& 0.59 \& 0.04

\hline \multirow[t]{3}{*}{CS72993.07} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 1.23 \& 0.39 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.36 \& 0.48 \& 0.03

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.51 \& 0.59 \& 0.04

\hline \multirow[t]{3}{*}{CS72993.07} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 1.23 \& 0.39 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.36 \& 0.48 \& 0.03

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.51 \& 0.59 \& 0.04

\hline \multirow[t]{3}{*}{Transition Ladder} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 6.00 \& 6.00 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.00 \& 8.00 \& 0.24

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.00 \& 10.00 \& 0.32

\hline \multirow[t]{3}{*}{Platform Mount [LP 712-1]} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{185.00} \& No Ice \& 24.56 \& 24.56 \& 1.34

\hline \& \& \& \& \& \& 1/2" Ice \& 27.92 \& 27.92 \& 1.91

\hline \& \& \& \& \& \& 1" Ice \& 31.27 \& 31.27 \& 2.55

\hline ****** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$1900 \mathrm{MHz} \mathrm{RRH}(65 \mathrm{MHz})$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 2.31 \& 2.38 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.52 \& 2.58 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.73 \& 2.79 \& 0.11

\hline \multirow[t]{3}{*}{$1900 \mathrm{MHz} \mathrm{RRH}(65 \mathrm{MHz})$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 2.31 \& 2.38 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.52 \& 2.58 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.73 \& 2.79 \& 0.11

\hline \multirow[t]{3}{*}{1900MHz RRH (65MHz)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 2.31 \& 2.38 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.52 \& 2.58 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.73 \& 2.79 \& 0.11

\hline \multirow[t]{3}{*}{800MHZ RRH} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 2.13 \& 1.77 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.32 \& 1.95 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.51 \& 2.13 \& 0.10

\hline \multirow[t]{3}{*}{800MHZ RRH} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 2.13 \& 1.77 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.32 \& 1.95 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.51 \& 2.13 \& 0.10

\hline \multirow[t]{3}{*}{800MHZ RRH} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 2.13 \& 1.77 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.32 \& 1.95 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.51 \& 2.13 \& 0.10

\hline \multirow[t]{3}{*}{800 EXTERNAL NOTCH FILTER} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& \& 0.66 \& 0.32 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.76 \& 0.40 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.87 \& 0.48 \& 0.02

\hline \multirow[t]{3}{*}{800 EXTERNAL NOTCH FILTER} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 0.66 \& 0.32 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.76 \& 0.40 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.87 \& 0.48 \& 0.02

\hline \multirow[t]{3}{*}{800 EXTERNAL NOTCH FILTER} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 0.66 \& 0.32 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.76 \& 0.40 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 0.87 \& 0.48 \& 0.02

\hline \multirow[t]{3}{*}{(3) ACU-A20-N} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 0.07 \& 0.12 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.10 \& 0.16 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.15 \& 0.21 \& 0.00

\hline \multirow[t]{3}{*}{(3) ACU-A20-N} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 0.07 \& 0.12 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.10 \& 0.16 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 0.15 \& 0.21 \& 0.00

\hline \multirow[t]{3}{*}{(3) ACU-A20-N} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& \& 0.07 \& 0.12 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.10 \& 0.16 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 0.15 \& 0.21 \& 0.00

\hline \multirow[t]{3}{*}{6' x 2" Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.29 \& 2.29 \& 0.05

\hline \multirow[t]{3}{*}{6' x 2" Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.29 \& 2.29 \& 0.05

\hline \multirow[t]{3}{*}{6' x 2" Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.29 \& 2.29 \& 0.05

\hline \multirow[t]{3}{*}{Side Arm Mount [SO 102-3]} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{173.00} \& No Ice \& 3.60 \& 3.60 \& 0.07

\hline \& \& \& \& \& \& 1/2" Ice \& 4.18 \& 4.18 \& 0.11

\hline \& \& \& \& \& \& $1{ }^{1 /}$ Ice \& 4.75 \& 4.75 \& 0.14

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustment \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \multirow[t]{3}{*}{APXVTM14-C-120 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 4.09 \& 2.86 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.48 \& 3.23 \& 0.13

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.88 \& 3.61 \& 0.19

\hline \multirow[t]{3}{*}{APXVTM14-C-120 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 4.09 \& 2.86 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.48 \& 3.23 \& 0.13

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.88 \& 3.61 \& 0.19

\hline \multirow[t]{3}{*}{APXVTM14-C-120 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 4.09 \& 2.86 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.48 \& 3.23 \& 0.13

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 4.88 \& 3.61 \& 0.19

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 4.60 \& 4.01 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.05 \& 4.45 \& 0.16

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 /}$ Ice \& 5.50 \& 4.89 \& 0.23

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 4.60 \& 4.01 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.05 \& 4.45 \& 0.16

\hline \& \& \& 1.00 \& \& \& 1 " Ice \& 5.50 \& 4.89 \& 0.23

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 4.60 \& 4.01 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.05 \& 4.45 \& 0.16

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 5.50 \& 4.89 \& 0.23

\hline \multirow[t]{3}{*}{TD-RRH8x20-25} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 3.70 \& 1.29 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 0.09

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 /}$ Ice \& 4.20 \& 1.64 \& 0.12

\hline \multirow[t]{3}{*}{TD-RRH8x20-25} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 3.70 \& 1.29 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 0.09

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 4.20 \& 1.64 \& 0.12

\hline \multirow[t]{3}{*}{TD-RRH8x20-25} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 3.70 \& 1.29 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 0.09

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 /}$ Ice \& 4.20 \& 1.64 \& 0.12

\hline \multirow[t]{3}{*}{8' x 2" Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& \& 1.90 \& 1.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.40 \& 3.40 \& 0.06

\hline \multirow[t]{3}{*}{8' x 2" Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 1.90 \& 1.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.40 \& 3.40 \& 0.06

\hline \multirow[t]{3}{*}{8' x 2" Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& \& 1.90 \& 1.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 3.40 \& 3.40 \& 0.06

\hline \multirow[t]{3}{*}{Platform Mount [LP 1201-1]} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{172.00} \& No Ice \& 18.38 \& 18.38 \& 2.10

\hline \& \& \& \& \& \& 1/2" Ice \& 22.11 \& 22.11 \& 2.65

\hline \& \& \& \& \& \& 1" Ice \& 25.87 \& 25.87 \& 3.26

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{GPS_A} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 6.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{72.00} \& No Ice \& 0.26 \& 0.26 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.32 \& 0.32 \& 0.00

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 /}$ Ice \& 0.39 \& 0.39 \& 0.01

\hline \multirow[t]{3}{*}{Side Arm Mount [SO 702-1]} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 3.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{72.00} \& \& 0.62 \& 1.49 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.74 \& 2.07 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.89 \& 2.54 \& 0.06

\hline *** \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice

Comb. No.	Description
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

	Maximum Member Forces						
Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	$\begin{gathered} 225.79- \\ 197.75 \end{gathered}$	Pole	Max Tension	45	0.00	-0.00	0.00
			Max. Compression	26	-23.63	1.72	-1.48
			Max. Mx	20	-12.04	228.96	0.07
			Max. My	14	-12.04	0.10	-228.50
			Max. Vy	20	-14.30	228.96	0.07
			Max. Vx	14	14.30	0.10	-228.50
			Max. Torque	22			1.46
L2	$\begin{gathered} 197.75- \\ 162.72 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-53.70	3.76	-2.95
			Max. Mx	20	-29.41	984.59	0.41
			Max. My	14	-29.41	0.03	-983.91
			Max. Vy	20	-28.55	984.59	0.41
			Max. Vx	14	28.56	0.03	-983.91
			Max. Torque	25			2.14
L3	$\begin{gathered} 162.72- \\ 120.09 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-70.82	5.32	-4.74
			Max. Mx	20	-43.15	2244.56	0.99
			Max. My	14	-43.15	-0.58	-2244.00

	Maximum Reactions				
Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Pole	Max. Vert	36	153.53	12.42	0.01
	Max. H_{x}	20	113.67	42.87	0.02
	Max. Hz_{z}	2	113.67	0.02	42.85
	Max. M_{x}	2	7048.80	0.02	42.85
	Max. Mz	8	7050.14	-42.87	-0.02
	Max. Torsion	25	1.97	21.46	37.12
	Min. Vert	5	85.25	-21.41	37.09
	Min. H_{x}	8	113.67	-42.87	-0.02
	Min. H_{z}	14	113.67	-0.02	-42.85
	Min. M_{x}	14	-7056.09	-0.02	-42.85
	Min. M_{z}	20	-7058.25	42.87	0.02
	Min. Torsion	13	-1.95	-21.46	-37.12

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	94.72	0.00	0.00	2.86	3.17	-0.00
1.2 Dead+1.0 Wind 0 deg -	113.67	-0.02	-42.85	-7048.80	10.05	-1.57
No Ice						
0.9 Dead+1.0 Wind 0 deg -	85.25	-0.02	-42.85	-6937.31	8.85	-1.57
No Ice						
1.2 Dead+1.0 Wind 30 deg -	113.67	21.41	-37.09	-6100.98	-3517.86	-0.74
No Ice						
0.9 Dead+1.0 Wind 30 deg -	85.25	21.41	-37.09	-6004.60	-3462.80	-0.75
No Ice						
1.2 Dead+1.0 Wind 60 deg -	113.67	37.11	-21.40	-3517.40	-6102.08	0.27
No Ice						

tnxTower Report - version 8.1.1.0

Load Combination	Vertical K	Shear K K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
0.9 Dead+1.0 Wind 60 deg -	85.25	37.11	-21.40	-3462.23	-6005.81	0.27
No Ice						
1.2 Dead+1.0 Wind 90 deg -	113.67	42.87	0.02	9.63	-7050.14	1.21
No Ice						
0.9 Dead+1.0 Wind 90 deg -	85.25	42.87	0.02	8.55	-6938.74	1.21
No Ice						
1.2 Dead+1.0 Wind 120 deg	113.67	37.14	21.44	3535.05	-6108.05	1.82
- No Ice						
0.9 Dead+1.0 Wind 120 deg	85.25	37.14	21.44	3477.75	-6011.66	1.82
- No Ice						
1.2 Dead+1.0 Wind 150 deg	113.67	21.46	37.12	6114.23	-3528.24	1.95
- No Ice						
0.9 Dead+1.0 Wind 150 deg	85.25	21.46	37.12	6015.81	-3472.98	1.95
- No Ice						
1.2 Dead+1.0 Wind 180 deg	113.67	0.02	42.85	7056.09	-1.95	1.56
- No Ice						
0.9 Dead+1.0 Wind 180 deg	85.25	0.02	42.85	6942.67	-2.91	1.56
- No Ice						
1.2 Dead+1.0 Wind 210 deg	113.67	-21.41	37.09	6108.27	3525.97	0.75
- No Ice						
0.9 Dead+1.0 Wind 210 deg	85.25	-21.41	37.09	6009.96	3468.75	0.76
- No Ice						
1.2 Dead+1.0 Wind 240 deg	113.67	-37.11	21.40	3524.68	6110.20	-0.25
- No Ice						
0.9 Dead+1.0 Wind 240 deg	85.25	-37.11	21.40	3467.59	6011.76	-0.25
- No Ice						
1.2 Dead+1.0 Wind 270 deg	113.67	-42.87	-0.02	-2.36	7058.25	-1.20
- No Ice						
0.9 Dead+1.0 Wind 270 deg	85.25	-42.87	-0.02	-3.21	6944.70	-1.20
- No Ice						
1.2 Dead+1.0 Wind 300 deg	113.67	-37.14	-21.44	-3527.78	6116.15	-1.83
- No Ice						
0.9 Dead+1.0 Wind 300 deg	85.25	-37.14	-21.44	-3472.41	6017.61	-1.83
- No Ice						
1.2 Dead+1.0 Wind 330 deg	113.67	-21.46	-37.12	-6106.95	3536.33	-1.97
- No Ice						
0.9 Dead+1.0 Wind 330 deg	85.25	-21.46	-37.12	-6010.46	3478.92	-1.97
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	153.53	-0.00	0.00	10.64	10.82	-0.00
1.2 Dead+1.0 Wind 0	153.53	-0.01	-12.42	-2061.02	12.52	-0.53
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	153.53	6.21	-10.75	-1782.75	-1023.91	-0.28
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	153.53	10.76	-6.20	-1023.86	-1783.00	0.05
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	153.53	12.42	0.01	12.33	-2061.33	0.36
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	153.53	10.76	6.21	1048.15	-1784.33	0.57
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	153.53	6.22	10.75	1806.07	-1026.23	0.63
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	153.53	0.01	12.42	2082.99	9.84	0.53
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	153.53	-6.21	10.75	1804.73	1046.28	0.28
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	153.53	-10.76	6.20	1045.83	1805.36	-0.05
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	153.53	-12.42	-0.01	9.65	2083.69	-0.36
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	153.53	-10.76	-6.21	-1026.17	1806.70	-0.57
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	153.53	-6.22	-10.75	-1784.09	1048.60	-0.64
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	94.72	-0.01	-10.80	-1758.15	4.85	-0.40
Dead+Wind 30 deg - Service	94.72	5.40	-9.35	-1521.47	-876.16	-0.19
Dead+Wind 60 deg - Service	94.72	9.36	-5.39	-876.28	-1521.51	0.07
Dead+Wind 90 deg - Service	94.72	10.81	0.01	4.51	-1758.25	0.31
Dead+Wind 120 deg -	94.72	9.36	5.41	884.90	-1523.00	0.47

Service

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead+Wind 150 deg -	94.72	5.41	9.36	1528.99	-878.75	0.50
Service						
Dead+Wind 180 deg -	94.72	0.01	10.80	1764.18	1.86	0.40
Service						
Dead+Wind 210 deg -	94.72	-5.40	9.35	1527.50	882.87	0.19
Service						
Dead+Wind 240 deg -	94.72	-9.36	5.39	882.31	1528.22	-0.07
Service						
Dead+Wind 270 deg -	94.72	-10.81	-0.01	1.52	1764.95	-0.31
Service						
Dead+Wind 300 deg -	94.72	-9.36	-5.41	-878.87	1529.71	-0.47
Service						
Dead+Wind 330 deg -	94.72	-5.41	-9.36	-1522.96	885.46	-0.50
Service						

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	PZ	$P X$	PY	PZ	
Comb.	K	K	K	K	K	K	
1	0.00	-94.72	0.00	0.00	94.72	0.00	0.000\%
2	-0.02	-113.67	-42.85	0.02	113.67	42.85	0.000\%
3	-0.02	-85.25	-42.85	0.02	85.25	42.85	0.000\%
4	21.41	-113.67	-37.09	-21.41	113.67	37.09	0.000\%
5	21.41	-85.25	-37.09	-21.41	85.25	37.09	0.000\%
6	37.11	-113.67	-21.40	-37.11	113.67	21.40	0.000\%
7	37.11	-85.25	-21.40	-37.11	85.25	21.40	0.000\%
8	42.87	-113.67	0.02	-42.87	113.67	-0.02	0.000\%
9	42.87	-85.25	0.02	-42.87	85.25	-0.02	0.000\%
10	37.14	-113.67	21.44	-37.14	113.67	-21.44	0.000\%
11	37.14	-85.25	21.44	-37.14	85.25	-21.44	0.000\%
12	21.46	-113.67	37.12	-21.46	113.67	-37.12	0.000\%
13	21.46	-85.25	37.12	-21.46	85.25	-37.12	0.000\%
14	0.02	-113.67	42.85	-0.02	113.67	-42.85	0.000\%
15	0.02	-85.25	42.85	-0.02	85.25	-42.85	0.000\%
16	-21.41	-113.67	37.09	21.41	113.67	-37.09	0.000\%
17	-21.41	-85.25	37.09	21.41	85.25	-37.09	0.000\%
18	-37.11	-113.67	21.40	37.11	113.67	-21.40	0.000\%
19	-37.11	-85.25	21.40	37.11	85.25	-21.40	0.000\%
20	-42.87	-113.67	-0.02	42.87	113.67	0.02	0.000\%
21	-42.87	-85.25	-0.02	42.87	85.25	0.02	0.000\%
22	-37.14	-113.67	-21.44	37.14	113.67	21.44	0.000\%
23	-37.14	-85.25	-21.44	37.14	85.25	21.44	0.000\%
24	-21.46	-113.67	-37.12	21.46	113.67	37.12	0.000\%
25	-21.46	-85.25	-37.12	21.46	85.25	37.12	0.000\%
26	0.00	-153.53	0.00	0.00	153.53	-0.00	0.000\%
27	-0.01	-153.53	-12.42	0.01	153.53	12.42	0.000\%
28	6.21	-153.53	-10.75	-6.21	153.53	10.75	0.000\%
29	10.76	-153.53	-6.20	-10.76	153.53	6.20	0.000\%
30	12.42	-153.53	0.01	-12.42	153.53	-0.01	0.000\%
31	10.76	-153.53	6.21	-10.76	153.53	-6.21	0.000\%
32	6.22	-153.53	10.75	-6.22	153.53	-10.75	0.000\%
33	0.01	-153.53	12.42	-0.01	153.53	-12.42	0.000\%
34	-6.21	-153.53	10.75	6.21	153.53	-10.75	0.000\%
35	-10.76	-153.53	6.20	10.76	153.53	-6.20	0.000\%
36	-12.42	-153.53	-0.01	12.42	153.53	0.01	0.000\%
37	-10.76	-153.53	-6.21	10.76	153.53	6.21	0.000\%
38	-6.22	-153.53	-10.75	6.22	153.53	10.75	0.000\%
39	-0.01	-94.72	-10.80	0.01	94.72	10.80	0.000\%
40	5.40	-94.72	-9.35	-5.40	94.72	9.35	0.000\%
41	9.36	-94.72	-5.39	-9.36	94.72	5.39	0.000\%
42	10.81	-94.72	0.01	-10.81	94.72	-0.01	0.000\%
43	9.36	-94.72	5.41	-9.36	94.72	-5.41	0.000\%
44	5.41	-94.72	9.36	-5.41	94.72	-9.36	0.000\%
45	0.01	-94.72	10.80	-0.01	94.72	-10.80	0.000\%
46	-5.40	-94.72	9.35	5.40	94.72	-9.35	0.000\%

tnxTower Report - version 8.1.1.0

	Sum of Applied Forces				Sum of Reactions			
Load	$P X$	$P Y$	K	P	P	$P Y$	$P Z$	

Non-Linear Convergence Results

Load	Converged?	Number of Cycles	Displacement	Force
Combination		4	0.00000001	Tolerance
1	Yes	5	0.00000001	
2	Yes	5	0.00000001	0.00016363
3	Yes	6	0.00000001	0.00037299
4	Yes	6	0.00000001	0.00012981
5	Yes	6	0.00000001	0.00037302
6	Yes	6	0.00000001	0.00012985
7	Yes	5	0.00000001	0.00016361
8	Yes	5	0.00000001	0.00007927
9	Yes	6	0.00000001	0.00038538
10	Yes	6	0.00000001	0.00013432
11	Yes	6	0.00000001	0.00037077
12	Yes	6	0.00000001	0.00012864
13	Yes	5	0.00000001	0.00013953
14	Yes	5	0.00000001	0.00006740
15	Yes	5	0.00000001	0.00037909
16	Yes	Yes	5	0.00000001

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
	ft	$225.79-197.75$	36.737	48	${ }^{2}$

Critical Deflections and Radius of Curvature - Service Wind

$\left.\begin{array}{ccccccc}\hline \text { Elevation } & \text { Appurtenance } & \begin{array}{c}\text { Gov. } \\ \text { Load }\end{array} & \text { Deflection } & \text { Tilt } & \begin{array}{c}\text { Twist }\end{array} \\ \text { ft } & & \text { Comb. } & \text { in } & \text { Radius of } \\ \text { Curvature } \\ \text { ft }\end{array}\right]$

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	o

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt 。	Twist 。	Radius of Curvature ft
228.00	RRFDC-3315-PF-48	20	147.016	6.5388	0.0174	8606
226.00	Lighting Rod 5/8' $\times 5^{\prime}$	20	147.016	6.5388	0.0174	8606
218.00	MX08FRO665-21 w/ Mount Pipe	20	136.529	6.3641	0.0145	5523
205.00	Transition Ladder	20	119.393	6.0515	0.0103	2070
196.00	OPA-65R-LCUU-H6 w/ Mount Pipe	20	108.068	5.8043	0.0083	1752
185.00	978QNB120E-M w/ Mount Pipe	20	94.993	5.4633	0.0066	1681
173.00	1900MHz RRH (65MHz)	20	81.728	5.0510	0.0054	1610
172.00	APXVTM14-C-120 w/ Mount Pipe	20	80.671	5.0150	0.0053	1604
113.00	Side Light	22	31.918	2.8257	0.0017	1723
72.00	GPS_A	22	12.454	1.6339	0.0008	2102

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		ft	ft		$i n^{2}$	K	K	ϕP_{n}
L1	$\begin{gathered} 225.79- \\ 197.75(1) \end{gathered}$	TP28.6563x21.5x0.1875	28.04	0.00	0.0	$\begin{gathered} 16.322 \\ 8 \end{gathered}$	-12.03	954.88	0.013
L2	$\begin{gathered} 197.75- \\ 162.72 \text { (2) } \end{gathered}$	TP37.0938x27.24×0.375	39.11	0.00	0.0	$\begin{gathered} 42.163 \\ 1 \end{gathered}$	-29.40	2466.54	0.012
L3	$\begin{gathered} 162.72- \\ 120.09(3) \end{gathered}$	TP47.1563×35.0487×0.43 75	47.77	0.00	0.0	$\begin{gathered} 62.625 \\ 8 \end{gathered}$	-43.15	3663.61	0.012
L4	$\begin{aligned} & 120.09- \\ & 78.99(4) \end{aligned}$	TP56.6563x44.6617x0.5	47.49	0.00	0.0	$\begin{gathered} 86.081 \\ 7 \end{gathered}$	-60.52	5035.78	0.012
L5	$78.99-38.92$ (5)	TP65.7813×53.7418×0.56 25	47.65	0.00	0.0	$\begin{gathered} 112.50 \\ 60 \end{gathered}$	-82.53	6581.62	0.013
L6	38.92-0 (6)	TP74.5x62.453x0.5625	47.64	0.00	0.0	$\begin{gathered} 132.00 \\ 60 \end{gathered}$	-113.65	7722.36	0.015

Pole Bending Design Data

Section No.	Elevation ft	Size	$M_{u x}$	$\phi M_{n x}$ kip-ft	Ratio $M_{u x}$	$M_{u y}$ kip-ft	$\phi M_{n y}$ kip-ft	Ratio $M_{u y}$
					$\phi M_{n x}$	kip-it	kip-ft	$\phi M_{n y}$
L1	$\begin{gathered} 225.79- \\ 197.75(1) \end{gathered}$	TP28.6563x21.5x0.1875	229.00	596.72	0.384	0.00	596.72	0.000
L2	$\begin{gathered} 197.75- \\ 162.72(2) \end{gathered}$	TP37.0938x27.24x0.375	985.04	2275.65	0.433	0.00	2275.65	0.000
L3	$\begin{gathered} 162.72- \\ 120.09(3) \end{gathered}$	TP47.1563×35.0487×0.43 75	2245.69	4220.43	0.532	0.00	4220.43	0.000
L4	$\begin{gathered} 120.09- \\ 78.99(4) \end{gathered}$	TP56.6563x44.6617x0.5	3612.66	6884.04	0.525	0.00	6884.04	0.000
L5	$\begin{gathered} 78.99-38.92 \\ (5) \end{gathered}$	TP65.7813×53.7418×0.56 25	5089.73	10359.42	0.491	0.00	10359.42	0.000
L6	38.92-0 (6)	TP74.5x62.453x0.5625	7060.63	13554.17	0.521	0.00	13554.17	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	Ratio T_{u}
ft			K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	$\begin{gathered} 225.79- \\ 197.75(1) \end{gathered}$	TP28.6563x21.5x0.1875	14.32	286.46	0.050	1.46	688.08	0.002
L2	$\begin{gathered} 197.75- \\ 162.72(2) \end{gathered}$	TP37.0938x27.24x0.375	28.58	739.96	0.039	2.11	2295.53	0.001
L3	$\begin{gathered} 162.72- \\ 120.09(3) \end{gathered}$	TP47.1563×35.0487×0.43 75	32.31	1099.08	0.029	2.11	4340.89	0.000
L4	$\begin{aligned} & 120.09- \\ & 78.99(4) \end{aligned}$	TP56.6563x44.6617x0.5	36.07	1510.73	0.024	2.10	7176.32	0.000
L5	$\begin{gathered} 78.99-38.92 \\ (5) \end{gathered}$	TP65.7813×53.7418×0.56 25	39.60	1974.49	0.020	1.83	10896.33	0.000
L6	38.92-0 (6)	TP74.5x62.453x0.5625	42.93	2316.71	0.019	1.83	15000.83	0.000

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio }^{\prime} \\ V_{u} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	${ }_{\phi} M_{n \times}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	$\begin{gathered} 225.79- \\ 197.75(1) \end{gathered}$	0.013	0.384	0.000	0.050	0.002	0.399	1.050	4.8.2
L2	$\begin{array}{r} 197.75- \\ 162.72 \text { (2) } \end{array}$	0.012	0.433	0.000	0.039	0.001	0.446	1.050	4.8.2
L3	$\begin{aligned} & 162.72- \\ & 120.09 \text { (3) } \end{aligned}$	0.012	0.532	0.000	0.029	0.000	0.545	1.050	4.8.2
L4	$\begin{aligned} & 120.09- \\ & 78.99(4) \end{aligned}$	0.012	0.525	0.000	0.024	0.000	0.537	1.050	4.8.2
L5	$\begin{gathered} 78.99-38.92 \\ (5) \end{gathered}$	0.013	0.491	0.000	0.020	0.000	0.504	1.050	4.8.2
L6	38.92-0 (6)	0.015	0.521	0.000	0.019	0.000	0.536	1.050	4.8.2

Section Capacity Table

Section No.	$\begin{aligned} & \text { Elevation } \\ & \mathrm{ft} \end{aligned}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \varnothing P_{\text {allow }} \\ K \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Capacity } \end{gathered}$	$\begin{gathered} \hline \text { Pass } \\ \text { Fail } \end{gathered}$
L1	225.79-197.75	Pole	TP28.6563x21.5×0.1875	1	-12.03	1002.63	38.0	Pass
L2	197.75-162.72	Pole	TP37.0938×27.24×0.375	2	-29.40	2589.87	42.5	Pass
L3	162.72-120.09	Pole	TP47.1563x35.0487x0.4375	3	-43.15	3846.79	51.9	Pass
L4	120.09-78.99	Pole	TP56.6563×44.6617x0.5	4	-60.52	5287.57	51.2	Pass
L5	78.99-38.92	Pole	TP65.7813×53.7418×0.5625	5	-82.53	6910.70	48.0	Pass
L6	38.92-0	Pole	TP74.5x62.453x0.5625	6	-113.65	8108.48	51.0	Pass
							Summary	
						Pole (L3)	51.9	Pass
						RATING =	51.9	Pass

APPENDIX B

BASE LEVEL DRAWING

BUSINESS UNT: 806358 TOWER ID: C_BASEEVEL

APPENDIX C

ADDITIONAL CALCULATIONS

Site Info	
BU \#	806358
Site Name	NHV 109 943107
Order \#	658817 Rev. 0

Connection Properties

Analysis Results

Anchor Rod Data
(28) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 84" BC

Base Plate Data
90" OD x 2.5" Plate (A871-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data
(28) 18"H x 6"W x 1"T, Notch: 1"
plate: $\mathrm{Fy}=\mathbf{5 0} \mathrm{ksi}$; weld: $\mathrm{Fy}=\mathbf{7 0}$ ksi
horiz. weld: $0.5^{\prime \prime}$ groove, $45^{\circ} \mathrm{dbl}$ bevel, $0.5^{\prime \prime}$ fillet vert. weld: 0.5 " fillet

Pole Data
74.5 " x 0.5625" 18 -sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Anchor Rod Summary		(units of kips, kip-in)
$\mathrm{Pu} \mathrm{t}=139.99$	$\phi P n _\mathrm{t}=243.75$	Stress Rating
$\mathrm{Vu}=1.53$	$\phi V n=149.1$	54.7%
$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi M \mathrm{n}=\mathrm{n} / \mathrm{a}$	Pass

Base Plate Summary		
Max Stress (ksi):	19.46	(Roark's Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	$\mathbf{3 4 . 3 \%}$	Pass

Stiffener Summary

Horizontal Weld:	$\mathbf{3 8 . 5 \%}$	Pass
Vertical Weld:	$\mathbf{2 4 . 5 \%}$	Pass
Plate Flexure+Shear:	8.5%	Pass
Plate Tension+Shear:	$\mathbf{3 8 . 7 \%}$	Pass
Plate Compression:	$\mathbf{3 8 . 1 \%}$	Pass
Pole Summary		
Punching Shear:	$\mathbf{6 . 0 \%}$	Pass

Job No.	CN12-647R1
Project No.	2300001
BU\#:	806358
Site Name:	NHV 109 943107
App\#:	658817 Rev. 0
Date:	$10 / 20 / 2023$

$$
\xrightarrow[\text { MORRISON HERSHFIELD }]{\text { DPI }}
$$

Foundation Reaction Comparison - Rev. H						
Reactions	Original Design Reactions	Modified Design Reactions1	Current Analysis Reactions	\% Capacity*	Pass / Fail	
MOMENT (kip-ft)	8439.1	11392.8	7060.6	59.0%	Pass	
SHEAR (kips)	50.8	68.6	42.9	59.6%	Pass	

Although the shear capacity is at 60.6%, the moment reaction is the governing criteria for a monopole drilled pier foundation. Therefore, the overall capacity for this foundation is 59%.

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16 Latitude: 41.493589
Risk Category: II
Soil Class: D-Default (see Section 11.4.3)

Longitude: -73.165272
Elevation: 665.9111476346153 ft (NAVD 88)

Wind

Results:

Wind Speed	116 Vmph
10 -year MRI	75 Vmph
25 -year MRI	84 Vmph
50 -year MRI	90 Vmph
100 -year MRI	97 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2 Fri Oct 202023

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

D - Default (see Section 11.4.3)

Site Soil Class:

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.197	$\mathrm{~S}_{\mathrm{D} 1}:$	0.087
$\mathrm{~S}_{1}:$	0.054	$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{~F}_{\mathrm{a}}:$	1.6	$\mathrm{PGA}:$	0.109
$\mathrm{~F}_{\mathrm{V}}:$	2.4	$\mathrm{PGA}_{\mathrm{M}}:$	0.173
$\mathrm{~S}_{\mathrm{MS}}:$	0.315	$\mathrm{~F}_{\mathrm{PGA}}:$	1.581
$\mathrm{~S}_{\mathrm{M} 1}:$	0.13	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.21	$\mathrm{C}_{\mathrm{V}}:$	0.7

Seismic Design Category: B

Data Accessed:
Fri Oct 202023
Date Source:
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed
Data Source:
Date Accessed:
1.00 in.

15 F
50 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Fri Oct 202023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

[^0]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals Use Moment Magnification
 $\sqrt{ }$ Use Code Stress Ratios
 $\sqrt{ }$ Use Code Safety Factors - Guys
 Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

