

# JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport WRITER'S DIRECT DIAL: (203) 337-4157 E-Mail Address: jkohler@cohenandwolf.com

August 22, 2014

Attorney Melanie Bachman Acting Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

### Re: Notice of Exempt Modification T-Mobile location Site ID CT11126F 231 Kettletown Rd., Southbury, Connecticut

Dear Attorney Bachman:

This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, T-Mobile owns the existing monopole tower and related facility located at 231 Kettletown Rd., Southbury, Connecticut (Latitude: 41.47127232 Longitude: -73.2050978). T-Mobile intends to add three antennas and related equipment at this existing telecommunications facility in Southbury ("Southbury Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the First Selectman, Ed Edelson. The Town of Southbury is also the property owner.

The existing Southbury Facility consists of a 196 foot tall monopole tower.<sup>1</sup> T-Mobile plans to add three antennas at a centerline of 193 feet. (See the plans revised to July 30, 2014 attached hereto as Exhibit A). T-Mobile will also will also replace its equipment cabinet on the existing concrete pad, install 3 RRU's on a H frame, and install coax cable. The existing Southbury Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated August 12, 2014 and attached hereto as Exhibit B.

The planned modifications to the Southbury Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

657 ORANGE CENTER ROAD ORANGE, CT 06477 TEL: (203) 298-4066 FAX: (203) 298-4068

<sup>&</sup>lt;sup>1</sup> While the online docket for the Connecticut Siting Council does not provide a docket or petition number for the approval of this structure, it does reference this structure in connection with requests for orders captioned TS-SPRINT-130-991103 and TS-SCLP-130-991105.



August 22, 2014 Site ID CT11126F Page 2

1. The proposed modification will not increase the height of the tower. T-Mobile's replacement antennas will be installed at a centerline of 193 feet, below T-Mobile antennas already in place at a 195 foot elevation. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.

2. The proposed modifications will not require an extension of the site boundaries. T-Mobile's equipment will be located entirely within the existing compound and equipment pad as shown on Sheet 2 of Exhibit A.

3. The proposed modification to the Southbury Facility will not increase the noise levels at the existing facility by six decibels or more.

4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated August 21, 2014, T-Mobile's operations would add 2.70% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 31.07% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement antennas and equipment at the Southbury Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

Sincerely,

Julie D. Kohler, Esq.

cc: Town of Southbury, First Selectman Ed Edelson Northeast Site Solutions, Sheldon J. Freincle

| T · ·Mob       | T-MOBILE USA, INC.<br>12920 SE 38TH STREET<br>BELLEVUE, WA 98006<br>(425) 378-4000 |             |            |         | <b>2919724</b><br>8/19/2014<br>2000011160 |
|----------------|------------------------------------------------------------------------------------|-------------|------------|---------|-------------------------------------------|
| Invoice Number | Inv. Date                                                                          | Description | Deductions | Voucher | Amount Paid                               |

0.00

1101616595

625.00

8/14/2014 Exempt Mod Filing Fees

CT11126F-1



"0002919724" C43301601C 013-8430"

🏢 THE ORIGINAL DOCUMENT HAS A REFLECTIVE WATERMARK ON THE BACK. 🧱 🛛 👘 HOLD AT AN ANGLE TO VIEW, DO NOT CASH IF MISSING.

# EXHIBIT A







# EXHIBIT B

REVIEWED By JACKIE DONAHUE at 6:48 am, Aug 15, 2014



T-Mobile Towers 12920 SE 38th Street Bellevue, WA 98006 (425) 383-3978



Chris Scheks 520 South Main Street, Suite 2531 Akron, OH 44311 (206) 204-7399 cscheks@gpdgroup.com

GPD# 2014790.88 August 12, 2014

### STRUCTURAL ANALYSIS REPORT

CT11126F

### T-MOBILE DESIGNATION:

Site Name: T-Mobile Project:

**ANALYSIS CRITERIA:** 

Codes:

Site Number:

SOUTHBURY/I-84 X15/BAGL ect: Network Modification

> TIA/EIA-222-F & 2013 CTBC 85-mph fastest-mile with 0" ice 74-mph fastest-mile with 1/2" ice

SITE DATA:

231 Kettleton Rd, Southbury, CT 06488, New Haven County Latitude 41° 28' 16.320" N, Longitude 73° 12' 20.020" W 196' Modified Pirod Monopole

### Mr. Kenny Fann,

GPD is pleased to submit this Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

### **Analysis Results**

| Tower Stress Level with Proposed Equipment: | 92.0% | Pass |
|---------------------------------------------|-------|------|
| Foundation Ratio with Proposed Equipment:   | 73.6% | Pass |

We at GPD appreciate the opportunity of providing our continuing professional services to you and T-Mobile Towers. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

John N. Kabak, P.E. Connecticut #: PEN.0028336



### SUMMARY & RESULTS

The purpose of this analysis was to verify whether the existing modified structure is capable of carrying the proposed loading configuration as specified by T-Mobile to T-Mobile Towers. This report was commissioned by Mr. Kenny Fann of T-Mobile Towers.

Modifications designed by GPD (Project #: 2010293.91, dated 9/14/10) have been considered in this analysis. Modifications included the installation of stiffener plates across flange connections at 20' and 40'.

Modifications designed by GPD (Project #: 2013792.15 Rev 1, dated 10/1/13) have been considered in this analysis. Modifications consisted of reinforcing the pole from 0'-139', adding stiffener plates across the flanges from 20'-120', adding additional anchor rods, and installing a foundation collar with piles to the existing foundation.

The proposed coax shall be installed internal to the monopole in order for the results of this analysis to be valid.

| Member      | Capacity | Results |
|-------------|----------|---------|
| Monopole    | 92.0%    | Pass    |
| Flanges     | 86.8%    | Pass    |
| Anchor Rods | 91.1%    | Pass    |
| Base Plate  | 88.3%    | Pass    |
|             |          |         |
| Foundation  | 73.6%    | Pass    |

### TOWER SUMMARY AND RESULTS

### **ANALYSIS METHOD**

tnxTower (Version 6.1.4.1), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

### **DOCUMENTS PROVIDED**

| Document                      | Remarks                                           | Source   |
|-------------------------------|---------------------------------------------------|----------|
| Structural Analysis Worksheet | CT11126F TMO NET MOD SAW, dated 7/22/2014         | T-Mobile |
| Tower Design                  | PiROD, File #: A-115080, dated 3/26/1999          | T-Mobile |
| Foundation Design             | PiROD, File #: A-115080, dated 3/26/1999          | T-Mobile |
| Geotechnical Report           | Dr. Clarence Welti, dated 10/7/1998               | T-Mobile |
| Modification Drawings         | GPD Project #: 2010293.91, dated 9/14/2010        | GPD      |
| Modification Drawings         | GPD Project #: 2013792.15 Rev. 1, dated 10/1/2013 | GPD      |
| Previous Structural Analysis  | GPD Project #: 2014790.50, dated 4/25/2014        | GPD      |

### ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- 1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
- 2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- 3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
- 4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
- 5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
- 6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
- 7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
- 8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
- 9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
- 10. Loading interpreted from photos is accurate to  $\pm 5'$  AGL, antenna size accurate to  $\pm 3.3$  sf, and coax equal to the number of existing antennas without reserve.
- 11. The locations of the coax are assumed. If the coax layout differs in the field, contact the engineer immediately. See Appendix C for the coax layout
- 12. The proposed coax shall be installed internal to the monopole in order for the results of this analysis to be valid.
- 13. All existing loading was obtained from the most recent structural analysis by GPD (Project #: 2014790.50, dated 4/25/2014) and is assumed to be accurate.
- 14. The proposed loading is taken from the provided Structural Analysis Worksheet titled: CT11126F TMO NET MOD SAW, dated 7/22/2014, and is assumed to be accurate.
- 15. Appurtenance azimuths have not been provided and have been assumed.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

### DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the specified code recommended amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

### APPENDIX A

Tower Analysis Summary Form

### Tower Analysis Summary Form

| General Info                |                           |
|-----------------------------|---------------------------|
| Site Name                   | SOUTHBURY/ I-84 X15/ BAGL |
| Site Number                 | CT11126F                  |
| Proposed Carrier            | T-Mobile                  |
| Date of Analysis            | August 12, 2014           |
| Company Performing Analysis | GPD                       |
|                             |                           |

| Tower Info                      | Description                      | Date      |
|---------------------------------|----------------------------------|-----------|
| Tower Type (G, SST, MP)         | MP                               | -         |
| Tower Height (top of steel AGL) | 196'                             |           |
| Tower Manufacturer              | PIROD                            |           |
| Tower Model                     | n/a                              |           |
| Tower Design                    | PiROD, File #: A-115080          | 3/26/1999 |
| Foundation Design               | PiROD, File #: A-115080          | 3/26/1999 |
| Geotech Report                  | Dr. Clarence Welti               | 10/7/1998 |
| Modification Drawings           | GPD Project #: 2010293.91        | 9/14/2010 |
| Modification Drawings           | GPD Project #: 2013792.15 Rev. 1 | 10/1/2013 |
| Previous Structural Analysis    | GPD Project #: 2014790.50        | 4/25/2014 |
| Caundailan Manulau              | - la                             | 1         |

#### Steel Yield Strength (ksi) Pole Flange Plate Flange Bolts 42 36 A325

| r reingie ciona             | MULD    |
|-----------------------------|---------|
| Base Plate                  | 36      |
| Anchor Rods                 | A354-BD |
| Existing / Reserved Loading |         |

# The information contained in this summary report is not to be used independently from the PE stamped tower analysis.

Ē

#### Design Parameters Design Code Used

| Design Parameters                     |                      |
|---------------------------------------|----------------------|
| Design Gode Used                      | TIA/EIA-222-F        |
|                                       | 2006 IBC & 2013 CTBC |
| Location of Tower (County, State)     | New Haven, CT        |
| Basic Wind Speed (mph)                | 85 (fastest-mile)    |
| ice Thickness (in)                    | 0.5                  |
| Structure Classification (I, II, III) |                      |
| Exposure Category (B, C, D)           |                      |
| Topographic Category (1 to 5)         |                      |

| Analysis Results (% Maximum  | Usage)    |  |
|------------------------------|-----------|--|
| Existing/Reserved + Proposed | Condition |  |
| DWBF (%)                     | 92.0%     |  |
| ower Base (%)                | 91.1%     |  |
| oundation (%)                | 73.6%     |  |
| Cotourseb& noitebours        | Voc       |  |

todifications designed by GPD (Project #: 2010293.91, dated 9/14/10) ha een considered in this analysis. odifications designed by GPD (Project #: 2013792.15, dated 7/29/13) ha en considered in this analysis.

|                  |                      |                    |          | Antenna   |              |                       |         |          | N            | fount                 |          | Transmission Line |        |                                 |
|------------------|----------------------|--------------------|----------|-----------|--------------|-----------------------|---------|----------|--------------|-----------------------|----------|-------------------|--------|---------------------------------|
| Antenna Owner    | Mount<br>Height (ft) | Antenna<br>CL (ft) | Quantity | Туре      | Manufacturer | Model                 | Azimuth | Quantity | Manufacturer | Туре                  | Quantity | Model             | Size   | Attachment<br>Internal/External |
| T-Mobile         | 195                  | 195                | 9        | Panel     | Ericsson     | AIR 21                |         | 1        | Unknown      | LP Platform           | 12       | Unknown           | 1-5/8" | Internal                        |
| T-Mobile         | 195                  | 195                | 2        | Panel     | Ericsson     | AIR 33                |         |          |              | on the same mount     | 1        | Hybrid            | 1-5/8" | Internal                        |
| T-Mobile         | 195                  | 195                | 3        | TMA       | RFS          | ATMAA1412D            |         |          |              | on the same mount     |          |                   |        |                                 |
| T-Mobile         | 195                  | 195                | 1        | DC Box    | Raycap       | DC6-48-60-18-8F       | _       |          |              | on the same mount     | _        |                   |        |                                 |
| AT&T Mobility    | 185                  | 185                | 2        | Panel     | Powerwave    | 7770                  |         | 1        | Unknown      | LP Platform           | 12       | Unknown           | 1-1/4" | Internal                        |
| AT&T Mobility    | 185                  | 185                | 2        | Panel     | KMW          | AM-X-CD-16-65-00T RET |         |          |              | on the same mount     | 2        | DC Gable          | 3/8"   | Internal                        |
| AT&T Mobility    | 185                  | 185                | 4        | Panel     | KMW          | AM-X-CD-17-65-00T-RET |         |          |              | on the same mount     | 1        | Fiber Cable       | 7/16"  | Internal                        |
| AT&T Mobility    | 185                  | 185                | 6        | TMA       | Powerwave    | TT19-08B9111-001      |         |          |              | on the same mount     |          |                   |        |                                 |
| AT&T Mobility    | 185                  | 185                | 6        | Diplexet  | Powerwave    | LGP21901              |         |          |              | on the same mount     |          |                   |        |                                 |
| AT&T Mobility    | 185                  | 185                | 6        | RRU       | Ericsson     | RRUS 11               |         | 1        |              | Flush mounted         |          |                   |        |                                 |
| AT&T Mobility    | 185                  | 185                | 1        | Raycap    | DC Box       | DC6-48-60-18-8F       |         | -        |              | on the same mount     |          |                   |        |                                 |
| Pocket           | 175                  | 175                | 3        | Panel     | RFS          | APXV18-206517S-C      |         |          |              | Flush Mounted         | 6        | ปกหายพุภ          | 1-5/8" | External                        |
| Sprint           | 165                  | 165                | 9        | Panel     | Decibel      | DB980E (90E-M)        |         | 1        | Unknown      | LP Platform           | 12       | Unknown           | 1-5/8* | Internal                        |
| Verizon Wireless | 155                  | 155                | 6        | Panel     | Commiscope   | HBXX 6516DS           | -       |          | Unknown      | LP Platform           | 12       | Unknown           | 1-5/8" | External                        |
| Verizon Wireless | 155                  | 155                | 2        | Panel     | Swedcom      | SLGP2X6014            |         |          |              | on the existing mount | 1        |                   |        |                                 |
| Verizon Wireless | 155                  | 155                | 4        | Panel     | Amphenol     | BXA 70063/4CF         |         |          |              | on the existing mount | -        |                   | 1      |                                 |
| Verizon Wireless | 155                  | 155                | 6        | Diplexers | Amphenol     | DPX 021               |         |          |              | on the existing mount |          |                   |        | -                               |
| Verizon Wireless | 155                  | 155                | 6        | Diplexers | RFS          | FD9R6004/2C-3L        |         |          |              | on the existing mount |          |                   |        |                                 |
| T-Mobile         | 91                   | 91                 | Ú.       | Dish      | Unknown      | 2' MW DIsh            |         | 1        | Unknown      | MW Collar Mount       | 1        | Unknown           | 1-5/8" | Internal                        |
| Sprint           | 75                   | 75                 | ¥.       | Panel     | Pcte1        | TMG-HR-26N GPS        |         | 1        | Linknown     | Pipe Mount            | -        | Linkoown          | 7/8*   | External                        |

Sprint 1/2 1/2 II Prame Prover Processors 1 1 Province on S 1 Province on S 1 Province on S 1 Province Processors Note: T-Mobile's existing/reserved loading configuration shall be replaced by the proposed loading configuration. All other existing/reserved equipment loading shall remain as shown,

#### Proposed Loading Antenna Mount Height (ft) Antenna CL (ft) Attachment Internal/External Internal Internal Manufacturer Antenna Owner Quantity Туре Model Azimuth Quantity Manufa Quantity Model Size Туре Andrew RR90-17-02DP Commscope LNX-6515DS-VTM Ericsson AIR 33 Ericsson KRY112 71 Raycap DC4-48-60-8-20F LP Platform on the same mount on the same mount on the same mount on the same mount anel Unknown Hybrid Unknown 12 -Mobile -Mobile 1-5/8" 1-5/8" Panel Panel TMA DC Box -Mobile -Mobile 195 95 MW Collar Mount Unknown Unknown 1-5/8" Internal

T-Mobile 91 91 1 Dish Unknown 2 NW Dish Note: The proposed coax shall be installed Internal to the monopole in order for the results of this analysis to be valid.

### **APPENDIX B**

tnxTower Output File

| tnxTower                                                        | Job     | CT11126F SOUTHBURY/ I-84 X15/ BAGL | Page<br>1 of 12           |
|-----------------------------------------------------------------|---------|------------------------------------|---------------------------|
| GPD Group<br>520 South Main Street, Suite 2531                  | Project | 2014790.88                         | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client  | T-Mobile Towers                    | Designed by<br>tbeltz     |

## **Tower Input Data**

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard. The following design criteria apply: Tower is located in New Haven County, Connecticut. Basic wind speed of 85 mph. Nominal ice thickness of 0.5000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 74 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 50 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1.333. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

| Description                           | Face<br>or | Allow<br>Shield | Component<br>Type | Placement     | Total<br>Number |          | $C_A A_A$           | Weight |
|---------------------------------------|------------|-----------------|-------------------|---------------|-----------------|----------|---------------------|--------|
|                                       | Leg        |                 |                   | ft            |                 |          | ft <sup>2</sup> /ft | plf    |
| iROD Climbing Rungs                   | C          | No              | CaAa (Out Of      | 196.00 - 8.00 | 1               | No Ice   | 0.05                | 3.80   |
|                                       |            |                 | Face)             |               |                 | 1/2" Ice | 0.13                | 5.44   |
|                                       |            |                 |                   |               |                 | 1" Ice   | 0.20                | 7.08   |
|                                       |            |                 |                   |               |                 | 2" Ice   | 0.36                | 10.36  |
|                                       |            |                 |                   |               |                 | 4" Ice   | 0.67                | 16.92  |
| Safety Line 3/8                       | С          | No              | CaAa (Out Of      | 196.00 - 8.00 | 1               | No Ice   | 0.04                | 0.22   |
|                                       |            |                 | Face)             |               |                 | 1/2" Ice | 0.14                | 0.75   |
|                                       |            |                 | ,                 |               |                 | 1" Ice   | 0.24                | 1.28   |
|                                       |            |                 |                   |               |                 | 2" Ice   | 0.44                | 2.34   |
|                                       |            |                 |                   |               |                 | 4" Ice   | 0.84                | 4.46   |
| LDF7-50A (1-5/8                       | С          | No              | Inside Pole       | 195.00 - 8.00 | 12              | No Ice   | 0.00                | 0.82   |
| FOAM)                                 |            |                 |                   |               |                 | 1/2" Ice | 0.00                | 0.82   |
|                                       |            |                 |                   |               |                 | 1" Ice   | 0.00                | 0.82   |
|                                       |            |                 |                   |               |                 | 2" Ice   | 0.00                | 0.82   |
|                                       |            |                 |                   |               |                 | 4" Ice   | 0.00                | 0.82   |
| 1-5/8" Hybrid Cable                   | С          | No              | Inside Pole       | 195.00 - 8.00 | 1               | No Ice   | 0.00                | 0.82   |
|                                       |            |                 |                   |               |                 | 1/2" Ice | 0.00                | 0.82   |
|                                       |            |                 |                   |               |                 | 1" Ice   | 0.00                | 0.82   |
|                                       |            |                 |                   |               |                 | 2" Ice   | 0.00                | 0.82   |
|                                       |            |                 |                   |               |                 | 4" Ice   | 0.00                | 0.82   |
| LDF6-50A (1-1/4                       | A          | No              | Inside Pole       | 185.00 - 8.00 | 12              | No Ice   | 0.00                | 0.66   |
| FOAM)                                 |            |                 |                   |               |                 | 1/2" Ice | 0.00                | 0.66   |
|                                       |            |                 |                   |               |                 | 1" Ice   | 0.00                | 0.66   |
|                                       |            |                 |                   |               |                 | 2" Ice   | 0.00                | 0.66   |
|                                       |            |                 |                   |               |                 | 4" Ice   | 0.00                | 0.66   |
| 100266(7/16")                         | Α          | No              | Inside Pole       | 185.00 - 8.00 | 1               | No Ice   | 0.00                | 0.08   |
| · · · · · · · · · · · · · · · · · · · |            |                 |                   |               |                 | 1/2" Ice | 0.00                | 0.08   |
|                                       |            |                 |                   |               |                 | 1" Ice   | 0.00                | 0.08   |
|                                       |            |                 |                   |               |                 | 2" Ice   | 0.00                | 0.08   |
|                                       |            |                 |                   |               |                 | 4" Ice   | 0.00                | 0.08   |
| 3/8" DC Cable                         | A          | No              | Inside Pole       | 185.00 - 8.00 | 2               | No Ice   | 0.00                | 0.10   |
|                                       |            |                 |                   |               |                 | 1/2" Ice | 0.00                | 0.10   |
|                                       |            |                 |                   |               |                 | 1" Ice   | 0.00                | 0.10   |
|                                       |            |                 |                   |               |                 | 2" Ice   | 0.00                | 0.10   |

| tnxTower                                                        | Job     | CT11126F SOUTHBURY/ I-84 X15/ BAGL | Page<br>2 of 12           |
|-----------------------------------------------------------------|---------|------------------------------------|---------------------------|
| GPD Group<br>520 South Main Street, Suite 2531                  | Project | 2014790.88                         | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client  | T-Mobile Towers                    | Designed by<br>tbeltz     |

| Description           | Face   | Allow<br>Shield | Component<br>Type | Placement     | Total<br>Number |          | $C_A A_A$           | Weight |
|-----------------------|--------|-----------------|-------------------|---------------|-----------------|----------|---------------------|--------|
|                       | Leg    | 0111014         | x)po              | ft            | minioer         |          | ft <sup>2</sup> /ft | plf    |
|                       |        |                 |                   | •             |                 | 4" Ice   | 0.00                | 010    |
| LDF7-50A (1-5/8       | A      | No              | CaAa (Out Of      | 175.00 - 8.00 | 1               | No Ice   | 0.20                | 0.82   |
| FOAM)                 |        | 110             | Face)             | 110.00 0.00   |                 | 1/2" Ice | 0.20                | 2 33   |
| i orinity             |        |                 | 1 400)            |               |                 | 1" Ice   | 0.40                | 4.46   |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.40                | 10.54  |
|                       |        |                 |                   |               |                 | 4" Too   | 1.00                | 20.04  |
| I DE7 504 (1 5/9      | ٨      | NT              | Calle (Dat Of     | 175.00 0.00   | F               | 4 ICC    | 1.00                | 50.04  |
| LDF7-JOA (1-J/8       | A      | INO             | CaAa (Out Of      | 175.00 - 8.00 | 2               | NO ICE   | 0.00                | 0.82   |
| FOAWI)                |        |                 | race)             |               |                 | 1/2 ice  | 0.00                | 2.33   |
|                       |        |                 |                   |               |                 | I" Ice   | 0.00                | 4.46   |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.00                | 10.54  |
|                       |        |                 | 10-10-200         |               |                 | 4" Ice   | 0.00                | 30.04  |
| LDF7-50A (1-5/8       | A      | No              | Inside Pole       | 165.00 - 8.00 | 12              | No Ice   | 0.00                | 0.82   |
| FOAM)                 |        |                 |                   |               |                 | 1/2" Ice | 0.00                | 0.82   |
|                       |        |                 |                   |               |                 | 1" Ice   | 0.00                | 0.82   |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.00                | 0.82   |
|                       |        |                 |                   |               |                 | 4" Ice   | 0.00                | 0.82   |
| LDF7-50A (1-5/8       | в      | No              | CaAa (Out Of      | 155.00 - 8.00 | 2               | No Ice   | 0.20                | 0.82   |
| FOAM)                 |        |                 | Face)             |               |                 | 1/2" Ice | 0.30                | 2.33   |
|                       |        |                 | ,                 |               |                 | 1" Ice   | 0.40                | 4.46   |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.60                | 10.54  |
|                       |        |                 |                   |               |                 | 4" Ice   | 1.00                | 30.04  |
| LDE7-50A (1.5/8       | B      | No              | CaAa (Out Of      | 155.00 8.00   | 10              | No Ico   | 0.00                | 0.97   |
| EDI 7-SOA (1-S/0      | Б      | 140             | Eace)             | 135.00 - 8.00 | 10              | 1/2" Too | 0.00                | 0.02   |
| I'OAWI)               |        |                 | I'due)            |               |                 | 1/2 100  | 0.00                | 2.33   |
|                       |        |                 |                   |               |                 | 1 Ice    | 0.00                | 4.40   |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.00                | 10.54  |
|                       | ~      |                 |                   |               |                 | 4" Ice   | 0.00                | 30.04  |
| LDF7-50A (1-5/8       | С      | No              | Inside Pole       | 91.00 - 8.00  | 1               | No Ice   | 0.00                | 0.82   |
| FOAM)                 |        |                 |                   |               |                 | 1/2" Ice | 0.00                | 0.82   |
|                       |        |                 |                   |               |                 | 1" Ice   | 0.00                | 0.82   |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.00                | 0.82   |
|                       |        |                 |                   |               |                 | 4" Ice   | 0.00                | 0.82   |
| LDF5-50A (7/8 FOAM)   | С      | No              | CaAa (Out Of      | 75.00 - 8.00  | 1               | No Ice   | 0.00                | 0.33   |
|                       |        |                 | Face)             |               |                 | 1/2" Ice | 0.00                | 1.30   |
|                       |        |                 |                   |               |                 | 1" Ice   | 0.00                | 2.88   |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.00                | 7.88   |
|                       |        |                 |                   |               |                 | 4" Tce   | 0.00                | 25.20  |
| 4" x 1-1/4" Mod Plate | А      | No              | CaAa (Out Of      | 22.00 - 18.00 | 2               | No Ice   | 0.00                | 17.01  |
|                       |        | 1,0             | Face)             | 10100         | -               | 1/2" Ice | 0.00                | 18 19  |
|                       |        |                 | 1)                |               |                 | 1" Ice   | 0.00                | 19.71  |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.00                | 23.80  |
|                       |        |                 |                   |               |                 | 4" Ice   | 0.00                | 26.11  |
| A" + 1 1/A" Mod Plata | 'n     | NIC             | Cala (Out Of      | 22.00 10.00   | 2               | H ICC    | 0.00                | 17 01  |
| 4 x 1-1/4 Mou Plate   | D      | INO             | CaAa (Out Oi      | 22.00 - 16.00 | 2               | INO ICE  | 0.00                | 17.01  |
|                       |        |                 | race)             |               |                 | 1/2 ICE  | 0.00                | 18.19  |
|                       |        |                 |                   |               |                 | I lce    | 0.00                | 19./1  |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.00                | 23.80  |
| 111                   | ~      |                 |                   |               |                 | 4" Ice   | 0.00                | 36.11  |
| 4" x 1-1/4" Mod Plate | С      | No              | CaAa (Out Of      | 22.00 - 18.00 | 2               | No Ice   | 0.00                | 17.01  |
|                       |        |                 | Face)             |               |                 | 1/2" Ice | 0.00                | 18.19  |
|                       |        |                 |                   |               |                 | 1" Ice   | 0.00                | 19.71  |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.00                | 23.80  |
|                       |        |                 |                   |               |                 | 4" Ice   | 0.00                | 36.11  |
| 4" x 1-1/4" Mod Plate | A      | No              | CaAa (Out Of      | 42.00 - 38.00 | 2               | No Ice   | 0.00                | 17.01  |
|                       |        |                 | Face)             |               |                 | 1/2" Ice | 0.00                | 18.19  |
|                       |        |                 |                   |               |                 | 1" Ice   | 0.00                | 19.71  |
|                       |        |                 |                   |               |                 | 2" Ice   | 0.00                | 23.80  |
|                       |        |                 |                   |               |                 | 4" Ice   | 0.00                | 36.11  |
| 4" x 1-1/4" Mod Plate | R      | No              | CaAa (Out Of      | 42 00 . 38 00 | 2               | No Ice   | 0.00                | 17.01  |
| T A 1-1/T WOU FIALE   | u<br>u | 110             | Eace)             | 42.00 - 30.00 | 4               | 1/2" 100 | 0.00                | 10.10  |
|                       |        |                 | race)             |               |                 | 112 100  | 0.00                | 10.19  |
|                       |        |                 |                   |               |                 |          | 0.00                | 19./1  |
|                       |        |                 |                   |               |                 | 2 Ice    | 0.00                | 23.80  |
|                       |        |                 |                   |               |                 | 4" Ice   | 0.00                | 36.11  |

| tnxTower                                                        | Job<br>CT1 | 1126F SOUTHBURY/ I-84 X15/ BAGL | Page<br>3 of 12           |
|-----------------------------------------------------------------|------------|---------------------------------|---------------------------|
| <b>GPD Group</b><br>520 South Main Street, Suite 2531           | Project    | 2014790.88                      | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client     | T-Mobile Towers                 | Designed by<br>tbeltz     |

| Description                                                      | Face | Allow<br>Shield | Component<br>Type | Placement     | 1 otal<br>Number |          | $C_A A_A$ | Weight |
|------------------------------------------------------------------|------|-----------------|-------------------|---------------|------------------|----------|-----------|--------|
|                                                                  | Leg  | Smou            | Type              | ft            | runiver          |          | ft²/ft    | plf    |
| 4" x 1-1/4" Mod Plate                                            | C    | No              | CaAa (Out Of      | 42.00 - 38.00 | 2                | No Ice   | 0.00      | 17.01  |
| I AT IN MOUTHIN                                                  | 0    | 110             | Face)             | 12.00 50.00   | ~                | 1/2" Ice | 0.00      | 18 19  |
|                                                                  |      |                 | x 4000)           |               |                  | 1" Ice   | 0.00      | 19.71  |
|                                                                  |      |                 |                   |               |                  | 2" Ice   | 0.00      | 23.80  |
|                                                                  |      |                 |                   |               |                  | 4" Ice   | 0.00      | 36.11  |
| 6" x 1_1/2" Mod Plate                                            | Δ    | No              | CaAa (Out Of      | 24.00 - 16.00 | 2                | No Ice   | 0.00      | 30.63  |
|                                                                  | 11   | 140             | Eace)             | 24.00 - 10.00 | 2                | 1/2" Tee | 0.00      | 32 57  |
|                                                                  |      |                 | 1 400)            |               |                  | 1" Ice   | 0.00      | 34.51  |
|                                                                  |      |                 |                   |               |                  | 2" Ice   | 0.00      | 38.40  |
|                                                                  |      |                 |                   |               |                  | 4" Ice   | 0.00      | 46.18  |
| 5" x 1_1/2" Mod Plate                                            | B    | No              | CaAa (Ont Of      | 24.00 - 16.00 | 2                | No Ice   | 0.00      | 30.63  |
|                                                                  | Ъ    | 140             | Eace)             | 24.00 - 10.00 | 2                | 1/2" Ice | 0.00      | 30.05  |
|                                                                  |      |                 | Tace)             |               |                  | 1" Too   | 0.00      | 24 51  |
|                                                                  |      |                 |                   |               |                  | 2" Ice   | 0.00      | 28 10  |
|                                                                  |      |                 |                   |               |                  | 2 ICC    | 0.00      | 16 19  |
| W at 1/2" Mad Diata                                              | C    | Ma              | Cake (Out Of      | 24.00 16.00   | 2                | 4 ICE    | 0.00      | 40.10  |
| ) x 1-1/2 Mod Plate                                              | C    | INO             | CaAa (Out OI      | 24.00 - 10.00 | 2                | 1/2" Tee | 0.00      | 30.03  |
|                                                                  |      |                 | race)             |               |                  | 1/2 100  | 0.00      | 32.31  |
|                                                                  |      |                 |                   |               |                  | 1 Ice    | 0.00      | 34.31  |
|                                                                  |      |                 |                   |               |                  | ZICE     | 0.00      | 38.40  |
|                                                                  |      | NT              | G + (0 + 0)       | 44.00 26.00   | 2                | 4 ice    | 0.00      | 40.18  |
| 5" x 1-1/2" Mod Plate                                            | A    | NO              | CaAa (Out Or      | 44.00 - 36.00 | 2                | No Ice   | 0.00      | 30.63  |
|                                                                  |      |                 | Face)             |               |                  | 1/2" Ice | 0.00      | 32.57  |
|                                                                  |      |                 |                   |               |                  | 1" Ice   | 0.00      | 34.51  |
|                                                                  |      |                 |                   |               |                  | 2" lce   | 0.00      | 38.40  |
|                                                                  | P    |                 | G ( (0 ) 0 (      | 1100 0100     | 2                | 4" Ice   | 0.00      | 46.18  |
| $5^{"} \times 1-1/2^{"} \operatorname{Mod} \operatorname{Plate}$ | В    | No              | CaAa (Out Of      | 44.00 - 36.00 | 2                | No Ice   | 0.00      | 30.63  |
|                                                                  |      |                 | Face)             |               |                  | 1/2" Ice | 0.00      | 32.57  |
|                                                                  |      |                 |                   |               |                  | 1" Ice   | 0.00      | 34.51  |
|                                                                  |      |                 |                   |               |                  | 2" Ice   | 0.00      | 38.40  |
|                                                                  | -    |                 |                   | 1100 0100     |                  | 4" Ice   | 0.00      | 46.18  |
| 5" x 1-1/2" Mod Plate                                            | С    | No              | CaAa (Out Of      | 44.00 - 36.00 | 2                | No Ice   | 0.00      | 30.63  |
|                                                                  |      |                 | Face)             |               |                  | 1/2" Ice | 0.00      | 32.57  |
|                                                                  |      |                 |                   |               |                  | 1" Ice   | 0.00      | 34.51  |
|                                                                  |      |                 |                   |               |                  | 2" Ice   | 0.00      | 38.40  |
|                                                                  |      |                 |                   |               |                  | 4" Ice   | 0.00      | 46.18  |
| 5" x 1-1/2" Mod Plate                                            | A    | No              | CaAa (Out Of      | 64.00 - 56.00 | 2                | No Ice   | 0.00      | 30.63  |
|                                                                  |      |                 | Face)             |               |                  | 1/2" Ice | 0.00      | 32.57  |
|                                                                  |      |                 |                   |               |                  | 1" Ice   | 0.00      | 34.51  |
|                                                                  |      |                 |                   |               |                  | 2" Ice   | 0.00      | 38.40  |
|                                                                  |      |                 |                   |               |                  | 4" Ice   | 0.00      | 46.18  |
| 5" x 1-1/2" Mod Plate                                            | В    | No              | CaAa (Out Of      | 64.00 - 56.00 | 2                | No Ice   | 0.00      | 30.63  |
|                                                                  |      |                 | Face)             |               |                  | 1/2" Ice | 0.00      | 32.57  |
|                                                                  |      |                 |                   |               |                  | 1" Ice   | 0.00      | 34.51  |
|                                                                  |      |                 |                   |               |                  | 2" Ice   | 0.00      | 38.40  |
|                                                                  |      |                 |                   |               |                  | 4" Ice   | 0.00      | 46.18  |
| 5" x 1-1/2" Mod Plate                                            | С    | No              | CaAa (Out Of      | 64.00 - 56.00 | 2                | No Ice   | 0.00      | 30.63  |
|                                                                  |      |                 | Face)             |               |                  | 1/2" Ice | 0.00      | 32.57  |
|                                                                  |      |                 |                   |               |                  | 1" Ice   | 0.00      | 34.51  |
|                                                                  |      |                 |                   |               |                  | 2" Ice   | 0.00      | 38.40  |
|                                                                  |      |                 |                   |               |                  | 411 T    | 0.00      | 46 19  |

tnxTower

CT11126F SOUTHBURY/ I-84 X15/ BAGL

Page 4 of 12

**GPD Group** 520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-3709

Project

Job

Client

.

2014790.88

**T-Mobile Towers** 

### Date 15:19:59 08/12/14 Designed by tbeltz

| Description           | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | Placement |          | $C_A A_A$<br>Front | $C_A A_A$<br>Side | Weight |
|-----------------------|-------------------|----------------|-------------------------------------|-----------------------|-----------|----------|--------------------|-------------------|--------|
|                       |                   |                | ft<br>ft<br>ft                      | ٥                     | ft        |          | ft <sup>2</sup>    | ft <sup>2</sup>   | K      |
| rod 16.5' LP Platform | С                 | None           | J•                                  | 0.0000                | 195.00    | No Ice   | 20.80              | 20.80             | 1.80   |
|                       |                   |                |                                     |                       |           | 1/2" Ice | 28.10              | 28.10             | 2.07   |
|                       |                   |                |                                     |                       |           | 1" Ice   | 35.40              | 35.40             | 2.33   |
|                       |                   |                |                                     |                       |           | 2" Ice   | 50.00              | 50.00             | 2.86   |
|                       |                   |                |                                     |                       |           | 4" Ice   | 79.20              | 79.20             | 3.93   |
| IR 33 w/ Mount Pipe   | A                 | From           | 3.94                                | -10.0000              | 195.00    | No Ice   | 7.13               | 6.42              | 0.14   |
|                       |                   | Centroid-Le    | -0.69                               |                       |           | 1/2" Ice | 7.93               | 7.65              | 0.20   |
|                       |                   | g              | 0.00                                |                       |           | 1" Ice   | 8.66               | 8.74              | 0.27   |
|                       |                   |                |                                     |                       |           | 2" Ice   | 10.00              | 10.60             | 0.44   |
|                       |                   |                |                                     |                       |           | 4" Ice   | 12.84              | 14.54             | 0.91   |
| AIR 33 w/ Mount Pipe  | В                 | From           | 3.94                                | -10.0000              | 195.00    | No Ice   | 7.13               | 6.42              | 0.14   |
|                       |                   | Centroid-Le    | -0.69                               |                       |           | 1/2" Ice | 7.93               | 7.65              | 0.20   |
|                       |                   | g              | 0.00                                |                       |           | 1" Ice   | 8.66               | 8.74              | 0.27   |
|                       |                   |                |                                     |                       |           | 2" Ice   | 10.00              | 10.60             | 0.44   |
| TD 00 ()              | -                 |                |                                     | 10 0000               | 105 **    | 4" Ice   | 12.84              | 14.54             | 0.91   |
| JR 33 w/ Mount Pipe   | С                 | From           | 3.94                                | -10.0000              | 195.00    | No Ice   | 7.13               | 6.42              | 0.14   |
|                       |                   | Centroid-Le    | -0.69                               |                       |           | 1/2" Ice | 7.93               | 7.65              | 0.20   |
|                       |                   | g              | 0.00                                |                       |           | 1" Ice   | 8.66               | 8.74              | 0.27   |
|                       |                   |                |                                     |                       |           | 2" Ice   | 10.00              | 10.60             | 0.44   |
| 000 17 00DD/ M+       |                   | Treese         | 2.04                                | 10 0000               | 105.00    | 4" Ice   | 12.84              | 14,54             | 0.91   |
| R90-17-02DP W/ Mount  | A                 | From           | 3.94                                | -10.0000              | 195.00    | No Ice   | 4.59               | 3.34              | 0.03   |
| Pipe                  |                   | Centroid-Le    | -0.09                               |                       |           | 1/2" Ice | 5.09               | 4.11              | 0.07   |
|                       |                   | g              | 0.00                                |                       |           | 1 Ice    | 5.38               | 4.81              | 0.12   |
|                       |                   |                |                                     |                       |           | 2 ICe    | 0,39               | 0.23              | 0.22   |
| POR 17 02DP w/ Mount  | B                 | From           | 3.04                                | 10,0000               | 105.00    | 4 ICC    | 0.75<br>A 50       | 3.33              | 0.00   |
| Pine                  | Б                 | Centroid Le    | _0.60                               | -10.0000              | 195.00    | 1/2" Ice | 5.00               | 4 11              | 0.03   |
| 1 ipe                 |                   | a a            | 0.00                                |                       |           | 1" Ice   | 5.58               | 4.11              | 0.07   |
|                       |                   | 5              | 0.00                                |                       |           | 2" Ice   | 6 59               | 6.25              | 0.12   |
|                       |                   |                |                                     |                       |           | 4" Ice   | 8 73               | 933               | 0.56   |
| R90-17-02DP w/ Mount  | C                 | From           | 3.94                                | -10.0000              | 195.00    | No Ice   | 4.59               | 3.34              | 0.03   |
| Pipe                  |                   | Centroid-Le    | -0.69                               | 1010000               | 190100    | 1/2" Ice | 5.09               | 4.11              | 0.07   |
|                       |                   | g              | 0.00                                |                       |           | 1" Ice   | 5.58               | 4.81              | 0.12   |
|                       |                   | 5              |                                     |                       |           | 2" Ice   | 6.59               | 6.25              | 0.22   |
|                       |                   |                |                                     |                       |           | 4" Ice   | 8.73               | 9.33              | 0.56   |
| .NX-6515DS-VTM w/     | Α                 | From           | 3.94                                | -10.0000              | 195.00    | No Ice   | 11.43              | 9.35              | 0.08   |
| mount pipe            |                   | Centroid-Le    | -0.69                               |                       |           | 1/2" Ice | 12.05              | 10.67             | 0.16   |
|                       |                   | g              | 0.00                                |                       |           | 1" Ice   | 12.67              | 11.70             | 0.25   |
|                       |                   |                |                                     |                       |           | 2" Ice   | 14.02              | 13.80             | 0,47   |
|                       |                   |                |                                     |                       |           | 4" Ice   | 17.03              | 18.21             | 1.08   |
| NX-6515DS-VTM w/      | В                 | From           | 3.94                                | -10.0000              | 195.00    | No Ice   | 11.43              | 9.35              | 0.08   |
| mount pipe            |                   | Centroid-Le    | -0.69                               |                       |           | 1/2" Ice | 12.05              | 10.67             | 0.16   |
|                       |                   | g              | 0.00                                |                       |           | 1" Ice   | 12.67              | 11.70             | 0.25   |
|                       |                   |                |                                     |                       |           | 2" Ice   | 14.02              | 13.80             | 0.47   |
|                       | -                 | -              | 251                                 | 10 5                  | 105       | 4" Ice   | 17.03              | 18.21             | 1.08   |
| NX-6515DS-VTM w/      | С                 | From           | 3.94                                | -10.0000              | 195.00    | No Ice   | 11.43              | 9.35              | 0.08   |
| mount pipe            |                   | Centroid-Le    | -0.69                               |                       |           | 1/2" Ice | 12.05              | 10.67             | 0.16   |
|                       |                   | g              | 0.00                                |                       |           | 1" Ice   | 12.67              | 11.70             | 0.25   |
|                       |                   |                |                                     |                       |           | 2" Ice   | 14.02              | 13.80             | 0.47   |
| XDX 110 71            |                   | T              | 2.04                                | 10.0000               | 105.00    | 4" Ice   | 17.03              | 18.21             | 1.08   |
| KRY 112 71            | A                 | From           | 3.94                                | -10,0000              | 195.00    | No Ice   | 0.68               | 0.45              | 0.01   |
|                       |                   | Centroid-Le    | -0.69                               |                       |           | 1/2" Ice | 0.80               | 0.56              | 0.02   |
|                       |                   | g              | 0.00                                |                       |           | 1" Ice   | 0.93               | 0.68              | 0.03   |
|                       |                   |                |                                     |                       |           | Z Ice    | . 1.1.             | 0.94              | 0.04   |

| tnxTower                                                        | Job     | CT11126F SOUTHBURY/ I-84 X15/ BAGL | Page<br>5 of 12           |
|-----------------------------------------------------------------|---------|------------------------------------|---------------------------|
| GPD Group<br>520 South Main Street, Suite 2531                  | Project | 2014790.88                         | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client  | T-Mobile Towers                    | Designed by<br>tbeltz     |

| Description              | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |          | $C_A A_A$<br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight |
|--------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|----------|--------------------|---------------------------------------|--------|
|                          |                   |                | ft<br>ft<br>ft              | o                     | ft        |          | ft <sup>2</sup>    | ft <sup>2</sup>                       | K      |
|                          |                   |                |                             |                       |           | 4" Ice   | 1.90               | 1.57                                  | 0.11   |
| KRY 112 71               | В                 | From           | 3.94                        | -10.0000              | 195.00    | No Ice   | 0.68               | 0.45                                  | 0.01   |
|                          |                   | Centroid-Le    | -0.69                       |                       |           | 1/2" Ice | 0.80               | 0.56                                  | 0.02   |
|                          |                   | g              | 0.00                        |                       |           | 1" lce   | 0.93               | 0.68                                  | 0.03   |
|                          |                   |                |                             |                       |           | 2" lce   | 1.22               | 0.94                                  | 0.04   |
|                          | a                 | -              |                             | 10.0000               | 105.00    | 4" lce   | 1.90               | 1.57                                  | 0.11   |
| KRY 112 /1               | С                 | From           | 3.94                        | -10.0000              | 195.00    | No Ice   | 0.68               | 0.45                                  | 0.01   |
|                          |                   | Centroid-Le    | -0.69                       |                       |           | 1/2" Ice | 0.80               | 0.56                                  | 0.02   |
|                          |                   | g              | 0.00                        |                       |           | 1" ice   | 0.93               | 0.68                                  | 0.03   |
|                          |                   |                |                             |                       |           | 2" ICe   | 1.22               | 0.94                                  | 0.04   |
| DC4 49 60 9 20E          | ٨                 | Farmer         | 2.04                        | 10,0000               | 105.00    | 4 Ice    | 1.90               | 1.57                                  | 0.11   |
| DC4-48-60-8-20F          | A                 | From           | 3.94                        | -10.0000              | 195.00    | INO ICE  | 1.07               | 0.69                                  | 0.01   |
|                          |                   | Centroid-Le    | -0.09                       |                       |           | 1/2" Ice | 1.85               | 0.81                                  | 0.02   |
|                          |                   | B              | 0.00                        |                       |           | 1 ICe    | 2.03               | 1.93                                  | 0.03   |
|                          |                   |                |                             |                       |           | 2 ICE    | 2.42               | 1.24                                  | 0.07   |
| DiPOD 13' Low Profile    | C                 | None           |                             | 0.0000                | 185.00    | 4 ICC    | 15 70              | 1.54                                  | 1.30   |
| Platform (Monopolo)      | C                 | INOLIC         |                             | 0.0000                | 105.00    | 1/2" Ico | 20.10              | 20.10                                 | 1.50   |
| Tiationin (Wonopole)     |                   |                |                             |                       |           | 1" Ice   | 24.50              | 24.50                                 | 2.73   |
|                          |                   |                |                             |                       |           | 2" Ice   | 33 30              | 33 30                                 | 3.16   |
|                          |                   |                |                             |                       |           | 4" Ice   | 50.90              | 50.90                                 | 5.02   |
| 7770 00 w/ 6' Mount Pipe | Δ                 | From           | 3 76                        | -20.0000              | 185.00    | No Ice   | 6.22               | 4 35                                  | 0.06   |
| 770.00 W 0 Would Tipe    | 11                | Centroid-Le    | -1 37                       | 20.0000               | 105.00    | 1/2" Ice | 6.77               | 5 20                                  | 0.11   |
|                          |                   | o              | 0.00                        |                       |           | 1" Ice   | 7.30               | 5.92                                  | 0.16   |
|                          |                   | Б              | 0100                        |                       |           | 2" Ice   | 8.38               | 7.41                                  | 0.30   |
|                          |                   |                |                             |                       |           | 4" Ice   | 10.69              | 10.76                                 | 0.68   |
| 7770.00 w/ 6' Mount Pipe | В                 | From           | 3.76                        | -20.0000              | 185.00    | No Ice   | 6.22               | 4.35                                  | 0.06   |
|                          | ~                 | Centroid-Le    | -1.37                       | 2010000               |           | 1/2" Ice | 6.77               | 5.20                                  | 0.11   |
|                          |                   | g              | 0.00                        |                       |           | 1" Ice   | 7.30               | 5.92                                  | 0.16   |
|                          |                   | D              |                             |                       |           | 2" Ice   | 8.38               | 7.41                                  | 0.30   |
|                          |                   |                |                             |                       |           | 4" Ice   | 10.69              | 10.76                                 | 0.68   |
| 7770.00 w/ 6' Mount Pipe | C                 | From           | 3.76                        | -20.0000              | 185.00    | No Ice   | 6.22               | 4.35                                  | 0.06   |
|                          |                   | Centroid-Le    | -1.37                       |                       |           | 1/2" Ice | 6.77               | 5.20                                  | 0.11   |
|                          |                   | g              | 0.00                        |                       |           | 1" Ice   | 7.30               | 5.92                                  | 0.16   |
|                          |                   |                |                             |                       |           | 2" Ice   | 8.38               | 7.41                                  | 0.30   |
|                          |                   |                |                             |                       |           | 4" Ice   | 10.69              | 10.76                                 | 0.68   |
| M-X-CD-16-65-00T-RET     | Α                 | From           | 3.76                        | -20.0000              | 185.00    | No Ice   | 8.26               | 5.67                                  | 0.06   |
| w/ 2" x 54" mount pipe   |                   | Centroid-Le    | -1.37                       |                       |           | 1/2" Ice | 8.81               | 6.39                                  | 0.12   |
|                          |                   | g              | 0.00                        |                       |           | 1" Ice   | 9.36               | 7.12                                  | 0.19   |
|                          |                   |                |                             |                       |           | 2" Ice   | 10.50              | 8.65                                  | 0.35   |
|                          |                   |                |                             |                       |           | 4" Ice   | 12.88              | 12.02                                 | 0.78   |
| M-X-CD-16-65-00T-RET     | В                 | From           | 3.76                        | -20.0000              | 185.00    | No Ice   | 8.26               | 5.67                                  | 0.06   |
| w/ 2" x 54" mount pipe   |                   | Centroid-Le    | -1.37                       |                       |           | 1/2" Ice | 8.81               | 6.39                                  | 0.12   |
|                          |                   | g              | 0.00                        |                       |           | 1" Ice   | 9.36               | 7.12                                  | 0.19   |
|                          |                   |                |                             |                       |           | 2" lce   | 10.50              | 8.65                                  | 0.35   |
| WY OD 17 CF OOT DET      | C                 | En             | 0.74                        | 00.0000               | 105 00    | 4" Ice   | 12.88              | 12.02                                 | 0.78   |
| MI-A-CD-17-05-001-KET    | C                 | From           | 3./0                        | -20.0000              | 182.00    | NO ICE   | 11.51              | 9.10                                  | 0.11   |
| w/ Mount Pipe            |                   | Centroid-Le    | -1.3/                       |                       |           | 1/2 ICC  | 11.93              | 11.52                                 | 0.19   |
|                          |                   | 5              | 0.00                        |                       |           | 1 ICE    | 12.33              | 12.00                                 | 0.29   |
|                          |                   |                |                             |                       |           | 2 ICe    | 15.00              | 12.80                                 | 1 1 2  |
| (2) 7710 0000111 001     | A                 | Enom           | 276                         | 20.0000               | 195.00    | 4 ICE    | 10.68              | 10.41                                 | 1.13   |
| (2) III7-00DFIII-001     | A                 | Centroid Lo    | -1 37                       | -20,0000              | 103.00    | 1/2" Top | 0.04               | 0.52                                  | 0.02   |
|                          |                   | Centrold-Le    | -1.57                       |                       |           | 112 100  | 0.70               | 0.02                                  | 0.02   |
|                          |                   | g              | 0.00                        |                       |           | 2" Tee   | 1.14               | 0.74                                  | 0.05   |
|                          |                   |                |                             |                       |           | 2 100    | 1.14               | 0.99                                  | 0.05   |
|                          |                   |                |                             |                       |           | 4" Ico   | 1 72               | 1 50                                  | 0.12   |

| tnxTower                                                                                                                 | Job     | T11126E SOUTHBURY/ L84 X15/ BAGI | Page<br>6 of 12           |
|--------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|---------------------------|
| <b>GPD Group</b><br>520 South Main Street, Suite 2531<br>Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Project | 2014790.88                       | Date<br>15:19:59 08/12/14 |
|                                                                                                                          | Client  | T-Mobile Towers                  | Designed by<br>tbeltz     |

| Description           | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |          | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weig |
|-----------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|----------|----------------------------------------|---------------------------------------|------|
|                       |                   |                | Vert<br>ft<br>ft<br>ft      | o                     | ft        | $ft^2$   |                                        | ft <sup>2</sup>                       | K    |
| ,                     |                   | Centroid-Le    | -1.37                       |                       |           | 1/2" Ice | 0.76                                   | 0.62                                  | 0.02 |
|                       |                   | g              | 0.00                        |                       |           | 1" Ice   | 0.88                                   | 0.74                                  | 0.03 |
|                       |                   |                |                             |                       |           | 2" Ice   | 1.14                                   | 0.99                                  | 0.05 |
|                       |                   |                |                             |                       |           | 4" Ice   | 1.78                                   | 1.59                                  | 0.12 |
| (2) TT19-08BP111-001  | С                 | From           | 3.76                        | -20.0000              | 185.00    | No Ice   | 0.64                                   | 0.52                                  | 0.02 |
|                       |                   | Centroid-Le    | -1.37                       |                       |           | 1/2" Ice | 0.76                                   | 0.62                                  | 0.02 |
|                       |                   | g              | 0.00                        |                       |           | 1" Ice   | 0.88                                   | 0.74                                  | 0.03 |
|                       |                   |                |                             |                       |           | 2" Ice   | 1.14                                   | 0.99                                  | 0.05 |
|                       |                   |                |                             | 1000 TO 1000          | 100100000 | 4" Ice   | 1.78                                   | 1.59                                  | 0.12 |
| (2) LGP21901          | A                 | From           | 3.76                        | -20.0000              | 185.00    | No Ice   | 0.27                                   | 0.18                                  | 0.01 |
|                       |                   | Centroid-Le    | -1.37                       |                       |           | 1/2" Ice | 0.34                                   | 0.25                                  | 0.01 |
|                       |                   | g              | 0.00                        |                       |           | 1" Ice   | 0.43                                   | 0.32                                  | 0.01 |
|                       |                   |                |                             |                       |           | 2" Ice   | 0.62                                   | 0.49                                  | 0.02 |
| (2) 1 (3) 2 (4)       | D                 | 17             | 2.74                        | 20.0000               | 105.00    | 4" lce   | 1.10                                   | 0.94                                  | 0.07 |
| (2) LGP21901          | В                 | From           | 3.76                        | -20.0000              | 185.00    | No Ice   | 0.27                                   | 0.18                                  | 0.01 |
|                       |                   | Centroid-Le    | -1.37                       |                       |           | 1/2" Ice | 0.34                                   | 0.25                                  | 0.01 |
|                       |                   | g              | 0.00                        |                       |           | I" Ice   | 0.43                                   | 0.32                                  | 0.01 |
|                       |                   |                |                             |                       |           | 2" Ice   | 0.62                                   | 0.49                                  | 0.02 |
| (2) I (1001001        | 0                 | 17             | 2.74                        | 00.0000               | 105.00    | 4" Ice   | 1.10                                   | 0.94                                  | 0.07 |
| (2) LGP21901          | C                 | From           | 3.70                        | -20.0000              | 185.00    | No Ice   | 0.27                                   | 0.18                                  | 0.01 |
|                       |                   | Centrold-Le    | -1.37                       |                       |           | 1/2" Ice | 0.34                                   | 0.25                                  | 0.01 |
|                       |                   | g              | 0.00                        |                       |           | 1 Ice    | 0.43                                   | 0.32                                  | 0.01 |
|                       |                   |                |                             |                       |           | 2 Ice    | 0.62                                   | 0.49                                  | 0.02 |
| () PDIE 11            | ٨                 | Exam           | 276                         | 20,0000               | 195.00    | 4 Ice    | 1.10                                   | 0.94                                  | 0.07 |
| (2) KR03-11           | A                 | Controid Lo    | 1.27                        | -20.0000              | 185.00    | 1/2" Los | 3.23                                   | 1.57                                  | 0.05 |
|                       |                   | Centrold-Le    | -1.57                       |                       |           | 1/2 Ice  | 3.49                                   | 1.55                                  | 0.07 |
|                       |                   | g              | 0.00                        |                       |           | 2" Ice   | 3.74                                   | 1.74                                  | 0.09 |
|                       |                   |                |                             |                       |           | 2 ICe    | 4.27                                   | 2.14                                  | 0.15 |
| (2) PRUS_11           | R                 | From           | 376                         | 20.0000               | 185.00    | 4 ICe    | 2.45                                   | 1.27                                  | 0.51 |
| (2) 11005-11          | D                 | Centroid-Le    | -1.37                       | -20.0000              | 185.00    | 1/2" Ice | 3.40                                   | 1.57                                  | 0.05 |
|                       |                   | o o            | 0.00                        |                       |           | 1" Ice   | 3.74                                   | 1.55                                  | 0.07 |
|                       |                   | 5              | 0.00                        |                       |           | 2" Ice   | 4.27                                   | 2 14                                  | 0.09 |
|                       |                   |                |                             |                       |           | 4" Ice   | 5.43                                   | 3.04                                  | 0.15 |
| (2) RRUS-11           | С                 | From           | 3.76                        | -2.0 0000             | 185.00    | No Ice   | 3 25                                   | 1.37                                  | 0.01 |
| (1) 11100 11          | 0                 | Centroid-Le    | -1.37                       | 20.0000               | 105.00    | 1/2" Ice | 3 49                                   | 1.55                                  | 0.05 |
|                       |                   | g              | 0.00                        |                       |           | 1" Ice   | 3 74                                   | 1 74                                  | 0.09 |
|                       |                   | в              | 0.00                        |                       |           | 2" Ice   | 4.27                                   | 2.14                                  | 0.15 |
|                       |                   |                |                             |                       |           | 4" Ice   | 5.43                                   | 3.04                                  | 0.31 |
| DC6-48-60-18-8F Surge | С                 | From           | 3.76                        | -20.0000              | 185.00    | No Ice   | 1.47                                   | 1.47                                  | 0.02 |
| Suppression Unit      |                   | Centroid-Le    | -1.37                       |                       |           | 1/2" Ice | 1.67                                   | 1.67                                  | 0.04 |
|                       |                   | g              | 0.00                        |                       |           | 1" Ice   | 1.88                                   | 1.88                                  | 0.06 |
|                       |                   | 0              |                             |                       |           | 2" Ice   | 2.33                                   | 2.33                                  | 0.11 |
|                       |                   |                |                             |                       |           | 4" Ice   | 3.38                                   | 3.38                                  | 0.24 |
| Valmont Light Duty    | С                 | None           |                             | 0.0000                | 175.00    | No Ice   | 1.76                                   | 1.76                                  | 0.05 |
| Tri-Bracket (1)       |                   |                |                             |                       |           | 1/2" Ice | 2.08                                   | 2.08                                  | 0.07 |
|                       |                   |                |                             |                       |           | 1" Ice   | 2.40                                   | 2.40                                  | 0.09 |
|                       |                   |                |                             |                       |           | 2" Ice   | 3.04                                   | 3.04                                  | 0.12 |
|                       |                   |                |                             |                       |           | 4" Ice   | 4.32                                   | 4.32                                  | 0.18 |
| APXV18-206517S-C w/   | А                 | From Leg       | 0.50                        | -10.0000              | 175.00    | No Ice   | 5.17                                   | 4.46                                  | 0.05 |
| Mount Pipe            |                   |                | 0.00                        |                       |           | 1/2" Ice | 5.62                                   | 5.39                                  | 0.09 |
|                       |                   |                | 0.00                        |                       |           | 1" Ice   | 6.08                                   | 6.20                                  | 0.14 |
|                       |                   |                |                             |                       |           | 2" Ice   | 7.02                                   | 7.87                                  | 0.26 |
|                       |                   |                |                             |                       |           | 4" Ice   | 9.12                                   | 11.40                                 | 0.64 |
| APXV18-206517S-C w/   | В                 | From Leg       | 0.50                        | -10.0000              | 175.00    | No Ice   | 5.17                                   | 4.46                                  | 0.05 |
| Mount Pipe            |                   |                | 0.00                        |                       |           | 1/2" Ice | 5.62                                   | 5.39                                  | 0.09 |
|                       |                   |                | 0.00                        |                       |           | 1" Tee   | 6.08                                   | 6.20                                  | 0.14 |

| tnxTower                                                        | Job     | T11126F SOUTHBURY/ I-84 X15/ BAGL | Page<br>7 of 12           |
|-----------------------------------------------------------------|---------|-----------------------------------|---------------------------|
| GPD Group<br>520 South Main Street, Suite 2531                  | Project | 2014790.88                        | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client  | T-Mobile Towers                   | Designed by<br>tbeltz     |

| Description            | or<br>Leg | Ujjset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |           | $C_A A_A$<br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight |
|------------------------|-----------|----------------|-----------------------------|-----------------------|-----------|-----------|--------------------|---------------------------------------|--------|
|                        |           |                | ft<br>ft<br>ft<br>ft        | o                     | ft        |           | $ft^2$             | ft <sup>2</sup>                       | K      |
|                        |           |                |                             |                       |           | 2" Ice    | 7.02               | 7.87                                  | 0.26   |
|                        |           |                |                             |                       |           | 4" Ice    | 9.12               | 11.40                                 | 0.64   |
| APXV18-206517S-C w/    | С         | From Leg       | 0.50                        | -10.0000              | 175.00    | No Ice    | 5.17               | 4.46                                  | 0.05   |
| Mount Pipe             |           |                | 0.00                        |                       |           | 1/2" Ice  | 5.62               | 5.39                                  | 0.09   |
|                        |           |                | 0.00                        |                       |           | 1" Ice    | 6.08               | 6.20                                  | 0.14   |
|                        |           |                |                             |                       |           | Z" Ice    | 7.02               | 1.8/                                  | 0.26   |
| MTS 12 5' I P Platform | C         | None           |                             | 0.0000                | 165.00    | 4 ICC     | 9.12               | 11.40                                 | 1.04   |
| WIG 12.5 LI Hatform    | C         | NOLL           |                             | 0.0000                | 105.00    | 1/2" Tee  | 18.87              | 18.87                                 | 1.25   |
|                        |           |                |                             |                       |           | 1" Ice    | 23.08              | 23.08                                 | 1.40   |
|                        |           |                |                             |                       |           | 2" Ice    | 31.50              | 31.50                                 | 2.18   |
|                        |           |                |                             |                       |           | 4" Ice    | 48.34              | 48.34                                 | 3.10   |
| (3) DB980E (90E-M) w/  | А         | From           | 3.94                        | -10.0000              | 165.00    | No Ice    | 4.04               | 3.62                                  | 0.03   |
| Mount Pipe             |           | Centroid-Fa    | -0.69                       |                       | 100100    | 1/2" Ice  | 4.50               | 4.48                                  | 0.07   |
| 1                      |           | ce             | 0.00                        |                       |           | 1" Ice    | 4.95               | 5.22                                  | 0.11   |
|                        |           |                |                             |                       |           | 2" Ice    | 5.87               | 6.74                                  | 0.22   |
|                        |           |                |                             |                       |           | 4" Ice    | 8.05               | 10.00                                 | 0.55   |
| (3) DB980E (90E-M) w/  | в         | From           | 3.94                        | -10.0000              | 165.00    | No Ice    | 4.04               | 3.62                                  | 0.03   |
| Mount Pipe             |           | Centroid-Fa    | -0.69                       |                       |           | 1/2" Ice  | 4.50               | 4.48                                  | 0.07   |
|                        |           | ce             | 0.00                        |                       |           | 1" Ice    | 4.95               | 5.22                                  | 0.11   |
|                        |           |                |                             |                       |           | 2" Ice    | 5.87               | 6.74                                  | 0.22   |
|                        |           |                |                             |                       |           | 4" Ice    | 8.05               | 10.00                                 | 0.55   |
| (3) DB980E (90E-M) w/  | С         | From           | 3.94                        | -10.0000              | 165.00    | No Ice    | 4.04               | 3.62                                  | 0.03   |
| Mount Pipe             |           | Centroid-Fa    | -0.69                       |                       |           | 1/2" Ice  | 4.50               | 4.48                                  | 0.07   |
|                        |           | ce             | 0.00                        |                       |           | 1" Ice    | 4.95               | 5.22                                  | 0.11   |
|                        |           |                |                             |                       |           | 2" Ice    | 5.87               | 6.74                                  | 0.22   |
| DIDOD 1511 and Desfie  | C         | Mana           |                             | 0.0000                | 155.00    | 4" Ice    | 8.05               | 10.00                                 | 0.55   |
| Platform (Monopole)    | C         | None           |                             | 0.0000                | 155.00    | 1/2" Too  | 17.30              | 17.50                                 | 1.50   |
| Platform (Monopole)    |           |                |                             |                       |           | 1" Too    | 22.10              | 22.10                                 | 2.05   |
|                        |           |                |                             |                       |           | 2" Ice    | 36.50              | 36 50                                 | 3.62   |
|                        |           |                |                             |                       |           | 4" Ice    | 55.70              | 55 70                                 | 5.74   |
| 2) HBXX-6516DS w/Mount | А         | From           | 4.00                        | 0.0000                | 155.00    | No Ice    | 6.24               | 4.59                                  | 0.05   |
| Pipe                   |           | Centroid-Fa    | 0.00                        | 010000                | 100700    | 1/2" Ice  | 6.74               | 5.31                                  | 0.10   |
| T. T.                  |           | ce             | 0.00                        |                       |           | 1" Ice    | 7.24               | 6.02                                  | 0.16   |
|                        |           |                |                             |                       |           | 2" Ice    | 8.27               | 7.53                                  | 0.29   |
|                        |           |                |                             |                       |           | 4" Ice    | 10.46              | 10.75                                 | 0.68   |
| 2) HBXX-6516DS w/Mount | в         | From           | 4.00                        | 0.0000                | 155.00    | No Ice    | 6.24               | 4.59                                  | 0.05   |
| Pipe                   |           | Centroid-Fa    | 0.00                        |                       |           | 1/2" Ice  | 6.74               | 5.31                                  | 0.10   |
|                        |           | ce             | 0.00                        |                       |           | 1" Ice    | 7.24               | 6.02                                  | 0.16   |
|                        |           |                |                             |                       |           | 2" Ice    | 8.27               | 7.53                                  | 0.29   |
|                        |           |                |                             |                       |           | 4" Ice    | 10.46              | 10.75                                 | 0.68   |
| 2) HBXX-6516DS w/Mount | В         | From           | 4.00                        | 0.0000                | 155.00    | No Ice    | 6.24               | 4.59                                  | 0.05   |
| Pipe                   |           | Centroid-Fa    | 0.00                        |                       |           | 1/2" Ice  | 6.74               | 5.31                                  | 0.10   |
|                        |           | ce             | 0.00                        |                       |           | I" Ice    | 7.24               | 6.02                                  | 0.16   |
|                        |           |                |                             |                       |           | 2" Ice    | 8.27               | 7.53                                  | 0.29   |
| DVA 70062 ACE EDDI 6   | a         | E              | 4.00                        | 0.0000                | 155.00    | 4" Ice    | 10.46              | 10.75                                 | 0.68   |
| W/ Mount Ping          | C         | Centroid Ec    | 4.00                        | 0.0000                | 155.00    | 1/0" Too  | 5.40               | 3.09                                  | 0.03   |
| w/ Mount Pipe          |           | Centrola-Fa    | 0.00                        |                       |           | 1/2 ICe   | 5.84               | 4.29                                  | 0.07   |
|                        |           | 00             | 0.00                        |                       |           | 2" Ice    | 7.24               | 6.26                                  | 0.12   |
|                        |           |                |                             |                       |           | 4" Tee    | 9.26               | 0.20                                  | 0.23   |
| BXA-70063-4CE-EDIN 6   | C         | From           | 4.00                        | 0.0000                | 155.00    | No Ice    | 5.40               | 3.60                                  | 0.00   |
| w/ Mount Pipe          | 0         | Centroid-Fa    | 0.00                        | 0.0000                | 100.00    | 1/2" Tee  | 5.84               | 4.20                                  | 0.05   |
| m mount ripo           |           | CP.            | 0.00                        |                       |           | 1" Ice    | 6 30               | 4.01                                  | 0.12   |
|                        |           |                | 0.00                        |                       |           | 2" Ioo    | 7.24               | 6.26                                  | 0.22   |
|                        |           |                |                             |                       |           | Z. 16.173 | 1.1.++             | 0.711                                 | 1      |

| tnxTower                                                        | Job     | CT11126F SOUTHBURY/ I-84 X15/ BAGL | Page<br>8 of 12           |
|-----------------------------------------------------------------|---------|------------------------------------|---------------------------|
| GPD Group<br>520 South Main Street, Suite 2531                  | Project | 2014790.88                         | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client  | T-Mobile Towers                    | Designed by<br>tbeltz     |

| Description                     | Face<br>or<br>Leg | Offset<br>Type      | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | Placement |                    | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|---------------------------------|-------------------|---------------------|-------------------------------------|-----------------------|-----------|--------------------|----------------------------------------|---------------------------------------|----------------------|
|                                 |                   |                     | ft<br>ft<br>ft                      | ٥                     | ft        |                    | ft <sup>2</sup>                        | $ft^2$                                | K                    |
| (2) SLCP2x6014 w/ Mount<br>Pipe | С                 | From<br>Centroid-Fa | 4.00<br>0.00                        | 0.0000                | 155.00    | No Ice<br>1/2" Ice | 7.21<br>7.65                           | 6.66<br>7.35                          | 0.04<br>0.10         |
|                                 |                   | ce                  | 0.00                                |                       |           | 1" Ice<br>2" Ice   | 8.10<br>9.02                           | 8.06<br>9.52                          | 0.17<br>0.33<br>0.76 |
| (2) FD9R6004/2C-3L              | А                 | From                | 4.00                                | 0.0000                | 155.00    | No Ice             | 0.37                                   | 0.08                                  | 0.00                 |
|                                 |                   | Centroid-Fa         | 0.00                                |                       |           | 1/2" Ice           | 0.45                                   | 0.14                                  | 0.01                 |
|                                 |                   | ce                  | 0.00                                |                       |           | 1" Ice             | 0.54                                   | 0.20                                  | 0.01                 |
|                                 |                   |                     |                                     |                       |           | 2" Ice             | 0.75                                   | 0.34                                  | 0.02                 |
| (2) ED0R6004/2C 31              | D                 | From                | 4.00                                | 0.0000                | 155.00    | 4" Ice             | 1.28                                   | 0.74                                  | 0.06                 |
| (2) FD9R0004/2C-3L              | D                 | Centroid-Ea         | 4.00                                | 0.0000                | 155.00    | 1/2" Ice           | 0.37                                   | 0.08                                  | 0.00                 |
|                                 |                   | centrola-r a        | 0.00                                |                       |           | 1" Ice             | 0.54                                   | 0.20                                  | 0.01                 |
|                                 |                   |                     |                                     |                       |           | 2" Ice             | 0.75                                   | 0.34                                  | 0.02                 |
|                                 |                   |                     |                                     |                       |           | 4" Ice             | 1.28                                   | 0.74                                  | 0.06                 |
| (2) FD9R6004/2C-3L              | С                 | From                | 4.00                                | 0.0000                | 155.00    | No Ice             | 0.37                                   | 0.08                                  | 0.00                 |
|                                 |                   | Centroid-Fa         | 0.00                                |                       |           | 1/2" Ice           | 0.45                                   | 0.14                                  | 0.01                 |
|                                 |                   | ce                  | 0.00                                |                       |           | 1" Ice             | 0.54                                   | 0.20                                  | 0.01                 |
|                                 |                   |                     |                                     |                       |           | 2" Ice             | 1.29                                   | 0.34                                  | 0.02                 |
| (2) DPX 021 Dipleyer            | Δ                 | From                | 4.00                                | 0.0000                | 155.00    | A ICE              | 0.41                                   | 0.74                                  | 0.00                 |
| (2) DI N 021 Dipiexei           | 11                | Centroid-Fa         | 0.00                                | 0.0000                | 155.00    | 1/2" Ice           | 0.50                                   | 0.24                                  | 0.01                 |
|                                 |                   | ce                  | 0.00                                |                       |           | 1" Ice             | 0.59                                   | 0.31                                  | 0.02                 |
|                                 |                   |                     |                                     |                       |           | 2" Ice             | 0.81                                   | 0.48                                  | 0.03                 |
|                                 |                   |                     |                                     |                       |           | 4" Ice             | 1.36                                   | 0.92                                  | 0.08                 |
| (2) DPX 021 Diplexer            | В                 | From                | 4.00                                | 0.0000                | 155.00    | No Ice             | 0.41                                   | 0.17                                  | 0.01                 |
|                                 |                   | Centroid-Fa         | 0.00                                |                       |           | 1/2" Ice           | 0.50                                   | 0.24                                  | 0.01                 |
|                                 |                   | ce                  | 0.00                                |                       |           | 1" Ice             | 0.59                                   | 0.31                                  | 0.02                 |
|                                 |                   |                     |                                     |                       |           | 2" Ice             | 0.81                                   | 0.48                                  | 0.03                 |
| (2) DPX 021 Diplexer            | С                 | From                | 4.00                                | 0.0000                | 155.00    | 4 ICE              | 0.41                                   | 0.92                                  | 0.08                 |
| (2) DIT OLI DIDIONI             | C                 | Centroid-Fa         | 0.00                                | 0.0000                | 155.00    | 1/2" Ice           | 0.50                                   | 0.24                                  | 0.01                 |
|                                 |                   | ce                  | 0.00                                |                       |           | 1" Ice             | 0.59                                   | 0.31                                  | 0.02                 |
|                                 |                   |                     |                                     |                       |           | 2" Ice             | 0.81                                   | 0.48                                  | 0.03                 |
|                                 |                   |                     |                                     |                       |           | 4" Ice             | 1.36                                   | 0.92                                  | 0.08                 |
| Pipe Mount 3'x4.5"              | С                 | From Leg            | 0.50                                | 0.0000                | 91.00     | No Ice             | 0.93                                   | 0.93                                  | 0.03                 |
|                                 |                   |                     | 0.00                                |                       |           | 1/2" Ice           | 1.13                                   | 1.13                                  | 0.04                 |
|                                 |                   |                     | 0.00                                |                       |           | 1" Ice             | 1.37                                   | 1.37                                  | 0.05                 |
|                                 |                   |                     |                                     |                       |           | 2 ICe              | 3.06                                   | 3.06                                  | 0.09                 |
| GPS-TMG-HR-26N                  | С                 | From Leg            | 0.50                                | 0.0000                | 75.00     | No Ice             | 0.16                                   | 0.16                                  | 0.00                 |
|                                 | 0                 | TION DOB            | 0.00                                | 0.0000                | 15.00     | 1/2" Ice           | 0.21                                   | 0.21                                  | 0.00                 |
|                                 |                   |                     | 0.00                                |                       |           | 1" Ice             | 0.28                                   | 0.28                                  | 0.01                 |
|                                 |                   |                     |                                     |                       |           | 2" Ice             | 0.44                                   | 0.44                                  | 0.01                 |
|                                 |                   |                     |                                     |                       | 1.00      | 4" Ice             | 0.86                                   | 0.86                                  | 0.05                 |
| Pipe Mount 3'x4.5"              | С                 | From Leg            | 0.50                                | 0.0000                | 75.00     | No Ice             | 0.93                                   | 0.93                                  | 0.03                 |
|                                 |                   |                     | 0.00                                |                       |           | 1/2" Ice           | 1.13                                   | 1.13                                  | 0.04                 |
|                                 |                   |                     | 0.00                                |                       |           | 1" Ice             | 1.37                                   | 1.37                                  | 0.05                 |
|                                 |                   |                     |                                     |                       |           | 4" Ice             | 3.06                                   | 3.06                                  | 0.09                 |
| Bridge Stiffener (3.25 sq ft)   | А                 | From Leg            | 0.50                                | 0.0000                | 120.00    | No Ice             | 3.25                                   | 0.74                                  | 0.13                 |
|                                 |                   |                     | 0.00                                |                       |           | 1/2" Ice           | 3.60                                   | 1.25                                  | 0.15                 |
|                                 |                   |                     | 0.00                                |                       |           | 1" Ice             | 3.94                                   | 1.73                                  | 0.17                 |
|                                 |                   |                     |                                     |                       |           | 2" Ice             | 4.72                                   | 2.39                                  | 0.22                 |
|                                 | 5.0               | - 8                 | 002                                 |                       |           | 4" Ice             | 6.47                                   | 3.81                                  | 0.37                 |
| Bridge Stiffener (3.25 sq ft)   | В                 | From Leg            | 0.50                                | 0.0000                | 120.00    | No Ice             | 3.25                                   | 0.74                                  | 0.13                 |
|                                 |                   |                     | 0.00                                |                       |           | 1/2" Ice           | 3.60                                   | 1.25                                  | 0.15                 |

| tnxTower                                                        | Job     | CT11126F SOUTHBURY/ I-84 X15/ BAGL | Page<br>9 of 12           |
|-----------------------------------------------------------------|---------|------------------------------------|---------------------------|
| GPD Group<br>520 South Main Street, Suite 2531                  | Project | 2014790.88                         | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client  | T-Mobile Towers                    | Designed by<br>tbeltz     |

| Description                           | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | Placement |                  | $C_A A_A$<br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight    |
|---------------------------------------|-------------------|----------------|-------------------------------------|-----------------------|-----------|------------------|--------------------|---------------------------------------|-----------|
|                                       |                   |                | ft<br>ft<br>ft                      | o                     | ft        |                  | ft <sup>2</sup>    | ft <sup>2</sup>                       | K         |
|                                       |                   |                | 0.00                                |                       |           | 1" Ice<br>2" Ice | 3.94<br>4.72       | 1.73<br>2.39                          | 0.17 0.22 |
|                                       |                   |                |                                     |                       |           | 4" Ice           | 6.47               | 3.81                                  | 0.37      |
| Bridge Stiffener (3.25 sq ft)         | C                 | From Leg       | 0.50                                | 0.0000                | 120.00    | No Ice           | 3.25               | 0.74                                  | 0.13      |
|                                       |                   | U              | 0.00                                |                       |           | 1/2" Ice         | 3.60               | 1.25                                  | 0.15      |
|                                       |                   |                | 0.00                                |                       |           | 1" Ice           | 3.94               | 1.73                                  | 0.17      |
|                                       |                   |                |                                     |                       |           | 2" Ice           | 4.72               | 2.39                                  | 0.22      |
|                                       |                   |                |                                     |                       |           | 4" Ice           | 6.47               | 3.81                                  | 0.37      |
| Bridge Stiffener (3.25 sq ft)         | A                 | From Leg       | 0.50                                | 0.0000                | 100.00    | No Ice           | 3.25               | 0.74                                  | 0.13      |
|                                       |                   | U.             | 0.00                                |                       |           | 1/2" Ice         | 3.60               | 1.25                                  | 0.15      |
|                                       |                   |                | 0.00                                |                       |           | 1" Ice           | 3.94               | 1.73                                  | 0.17      |
|                                       |                   |                |                                     |                       |           | 2" Ice           | 4.72               | 2.39                                  | 0.22      |
|                                       |                   |                |                                     |                       |           | 4" Ice           | 6.47               | 3.81                                  | 0.37      |
| Bridge Stiffener (3.25 sq ft)         | В                 | From Leg       | 0.50                                | 0.0000                | 100.00    | No Ice           | 3.25               | 0.74                                  | 0.13      |
| · · · · · · · · · · · · · · · · · · · |                   |                | 0.00                                |                       |           | 1/2" Ice         | 3.60               | 1.25                                  | 0.15      |
|                                       |                   |                | 0.00                                |                       |           | 1" Ice           | 3.94               | 1.73                                  | 0.17      |
|                                       |                   |                |                                     |                       |           | 2" Ice           | 4.72               | 2.39                                  | 0.22      |
|                                       |                   |                |                                     |                       |           | 4" Ice           | 6.47               | 3.81                                  | 0.37      |
| Bridge Stiffener (3.25 sq ft)         | С                 | From Leg       | 0.50                                | 0.0000                | 100.00    | No Ice           | 3.25               | 0.74                                  | 0.13      |
|                                       |                   |                | 0.00                                |                       |           | 1/2" Ice         | 3.60               | 1.25                                  | 0.15      |
|                                       |                   |                | 0.00                                |                       |           | 1" Ice           | 3.94               | 1.73                                  | 0.17      |
|                                       |                   |                |                                     |                       |           | 2" Ice           | 4.72               | 2.39                                  | 0.22      |
|                                       |                   |                |                                     |                       |           | 4" Ice           | 6.47               | 3.81                                  | 0.37      |
| Bridge Stiffener (3.25 sq ft)         | Α                 | From Leg       | 0.50                                | 0.0000                | 80.00     | No Ice           | 3.25               | 0.74                                  | 0.13      |
|                                       |                   |                | 0.00                                |                       |           | 1/2" Ice         | 3.60               | 1.25                                  | 0.15      |
|                                       |                   |                | 0.00                                |                       |           | 1" Ice           | 3.94               | 1.73                                  | 0.17      |
|                                       |                   |                |                                     |                       |           | 2" Ice           | 4.72               | 2.39                                  | 0.22      |
|                                       |                   |                |                                     |                       |           | 4" Ice           | 6.47               | 3.81                                  | 0.37      |
| Bridge Stiffener (3.25 sq ft)         | В                 | From Leg       | 0.50                                | 0.0000                | 80.00     | No Ice           | 3.25               | 0.74                                  | 0.13      |
|                                       |                   |                | 0.00                                |                       |           | 1/2" Ice         | 3.60               | 1.25                                  | 0.15      |
|                                       |                   |                | 0.00                                |                       |           | 1" Ice           | 3.94               | 1.73                                  | 0.17      |
|                                       |                   |                |                                     |                       |           | 2" Ice           | 4.72               | 2.39                                  | 0.22      |
|                                       |                   |                |                                     |                       |           | 4" Ice           | 6.47               | 3.81                                  | 0.37      |
| ridge Stiffener (3.25 sq ft)          | С                 | From Leg       | 0.50                                | 0.0000                | 80.00     | No Ice           | 3.25               | 0.74                                  | 0.13      |
|                                       |                   | 5              | 0.00                                |                       |           | 1/2" Ice         | 3.60               | 1.25                                  | 0.15      |
|                                       |                   |                | 0.00                                |                       |           | 1" Ice           | 3.94               | 1.73                                  | 0.17      |
|                                       |                   |                |                                     |                       |           | 2" Ice           | 4.72               | 2.39                                  | 0.22      |
|                                       |                   |                |                                     |                       |           | 4" Ice           | 6 47               | 3.81                                  | 0.37      |

| Dishes      |                   |                |                |                                     |                       |                       |           |                     |          |                  |        |
|-------------|-------------------|----------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|----------|------------------|--------|
| Description | Face<br>or<br>Leg | Dish<br>Type   | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |          | Aperture<br>Area | Weight |
|             |                   |                |                | ft                                  | 0                     | 0                     | ft        | ft                  |          | $ft^2$           | K      |
| 2' MW       | С                 | Paraboloid w/o | From           | 1.00                                | 0.0000                |                       | 91.00     | 2.00                | No Ice   | 3.14             | 0.04   |
|             |                   | Radome         | Leg            | 0.00                                |                       |                       |           |                     | 1/2" Ice | 3.41             | 0.07   |
|             |                   |                |                | 0.00                                |                       |                       |           |                     | 1" Ice   | 3.68             | 0.10   |
|             |                   |                |                |                                     |                       |                       |           |                     | 2" Ice   | 4.21             | 0.17   |
|             |                   |                |                |                                     |                       |                       |           |                     | 4" Ice   | 5.28             | 0.35   |

| tnxTower                                                        | Job     | CT11126F SOUTHBURY/ I-84 X15/ BAGL | Page<br>10 of 12          |
|-----------------------------------------------------------------|---------|------------------------------------|---------------------------|
| GPD Group<br>520 South Main Street, Suite 2531                  | Project | 2014790.88                         | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client  | T-Mobile Towers                    | Designed by<br>tbeltz     |

# Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance                              | Gov.  | Deflection | Tilt   | Twist  | Radius of Curvature |
|-----------|-------------------------------------------|-------|------------|--------|--------|---------------------|
|           |                                           | Load  |            |        |        | ft                  |
| ft        |                                           | Comb. | in         | 0      | o      |                     |
| 195.00    | Pirod 16.5' LP Platform                   | 33    | 24.634     | 1.1353 | 0.0035 | 53709               |
| 185.00    | PiROD 13' Low Profile Platform (Monopole) | 33    | 22.266     | 1.1200 | 0.0034 | 22664               |
| 175.00    | Valmont Light Duty Tri-Bracket (1)        | 33    | 19.950     | 1.0827 | 0.0033 | 12866               |
| 165.00    | MTS 12.5' LP Platform                     | 33    | 17.727     | 1.0286 | 0.0031 | 9779                |
| 155.00    | PiROD 15' Low Profile Platform (Monopole) | 33    | 15.627     | 0.9585 | 0.0027 | 7871                |
| 120.00    | Bridge Stiffener (3.25 sq ft)             | 33    | 9.497      | 0.7233 | 0.0013 | 10202               |
| 100.00    | Bridge Stiffener (3.25 sq ft)             | 33    | 6.692      | 0.6094 | 0.0010 | 9887                |
| 91.00     | 2' MW                                     | 33    | 5.587      | 0.5571 | 0.0008 | 9958                |
| 80.00     | Bridge Stiffener (3.25 sq ft)             | 28    | 4.369      | 0.4942 | 0.0007 | 10048               |
| 75.00     | GPS-TMG-HR-26N                            | 28    | 3.863      | 0.4658 | 0.0006 | 9974                |

# **Compression Checks**

# Pole Design Data

| Section<br>No. | Elevation     | Size               | L     | $L_{u}$ | Kl/r | $F_a$  | Α               | Actual<br>P | Allow.<br>Pa | Ratio<br>P |
|----------------|---------------|--------------------|-------|---------|------|--------|-----------------|-------------|--------------|------------|
|                | ft            |                    | ft    | ft      |      | ksi    | in <sup>2</sup> | K           | K            | $P_a$      |
| L1             | 196 - 195 (1) | P18x3/8            | 1.00  | 0.00    | 0.0  | 25.200 | 20.7640         | -0.09       | 523.25       | 0.000      |
| L2             | 195 - 180 (2) | P24x3/8            | 15.00 | 0.00    | 0.0  | 25.200 | 27.8325         | -5.99       | 701.38       | 0.009      |
| L3             | 180 - 160 (3) | P30x3/8            | 20.00 | 0.00    | 0.0  | 25.075 | 34.9011         | -10.47      | 875.15       | 0.012      |
| L4             | 160 - 140 (4) | P36x3/8            | 20.00 | 0.00    | 0.0  | 23.696 | 41.9697         | -16.14      | 994.51       | 0.016      |
| L5             | 140 - 136 (5) | P42x3/8            | 4.00  | 0.00    | 0.0  | 22.711 | 49.0383         | -17.01      | 1113.69      | 0.015      |
| L6             | 136 - 120 (6) | P42x3/8 [0.63241]  | 16.00 | 0.00    | 0.0  | 20.646 | 82.1881         | -22.06      | 1696.86      | 0.013      |
| L7             | 120 - 100 (7) | P48x3/8 [0.595266] | 20.00 | 0.00    | 0.0  | 22.139 | 88.6508         | -29.25      | 1962.64      | 0.015      |
| L8             | 100 - 80 (8)  | P54x3/8 [0.567552] | 20.00 | 0.00    | 0.0  | 22.089 | 95.2710         | -37.04      | 2104.40      | 0.018      |
| L9             | 80 - 60 (9)   | P60x3/8 [0.546065] | 20.00 | 0.00    | 0.0  | 21.436 | 101.9940        | -46.05      | 2186.31      | 0.021      |
| L10            | 60 - 40 (10)  | P60x1/2 [0.673218] | 20.00 | 0.00    | 0.0  | 22.903 | 125.4750        | -57.22      | 2873.70      | 0.020      |
| L11            | 40 - 20 (11)  | P60x5/8 [0.800428] | 20.00 | 0.00    | 0.0  | 21.542 | 148.8640        | -70.20      | 3206.79      | 0.022      |
| L12            | 20 - 0(12)    | P60x5/8 [0.800428] | 20.00 | 0.00    | 0.0  | 21.542 | 148.8640        | -81.92      | 3206.79      | 0.026      |

# Pole Bending Design Data

| Section | Elevation     | Size               | Actual  | Actual   | Allow.   | Ratio    | Actual | Actual   | Allow.   | Ratio |
|---------|---------------|--------------------|---------|----------|----------|----------|--------|----------|----------|-------|
| No.     |               |                    | $M_x$   | $f_{bx}$ | $F_{bx}$ | $f_{bx}$ | $M_y$  | $f_{by}$ | $F_{by}$ | fby   |
|         | ft            |                    | kip-ft  | ksi      | ksi      | Fbx      | kip-ft | ksi      | ksi      | Fby   |
| L1      | 196 - 195 (1) | P18x3/8            | 0.03    | 0.004    | 27.720   | 0.000    | 0.00   | 0.000    | 27.720   | 0.000 |
| L2      | 195 - 180 (2) | P24x3/8            | 99.32   | 7.363    | 27.720   | 0.266    | 0.00   | 0.000    | 27.720   | 0.000 |
| L3      | 180 - 160 (3) | P30x3/8            | 338.48  | 15.910   | 25.075   | 0.635    | 0.00   | 0.000    | 25.075   | 0.000 |
| L4      | 160 - 140 (4) | P36x3/8            | 725.70  | 23.540   | 23.696   | 0.993    | 0.00   | 0.000    | 23.696   | 0.000 |
| L5      | 140 - 136 (5) | P42x3/8            | 813.08  | 19.291   | 22.711   | 0.849    | 0.00   | 0.000    | 22.711   | 0.000 |
| L6      | 136 - 120 (6) | P42x3/8 [0.63241]  | 1183.93 | 16.966   | 22.711   | 0.747    | 0.00   | 0.000    | 22.711   | 0.000 |
| L7      | 120 - 100 (7) | P48x3/8 [0.595266] | 1702.13 | 19.683   | 24.353   | 0.808    | 0.00   | 0.000    | 24.353   | 0.000 |
| L8      | 100 - 80 (8)  | P54x3/8 [0.567552] | 2282.62 | 21.749   | 22.089   | 0.985    | 0.00   | 0.000    | 22.089   | 0.000 |
| L9      | 80 - 60 (9)   | P60x3/8 [0.546065] | 2925.56 | 23.368   | 21.436   | 1.090    | 0.00   | 0.000    | 21.436   | 0.000 |
| L10     | 60 - 40 (10)  | P60x1/2 [0.673218] | 3622.11 | 23.618   | 22.903   | 1.031    | 0.00   | 0.000    | 22.903   | 0.000 |
| L11     | 40 - 20 (11)  | P60x5/8 [0.800428] | 4363.15 | 24.082   | 23.696   | 1.016    | 0.00   | 0.000    | 23.696   | 0.000 |
| L12     | 20 - 0 (12)   | P60x5/8 [0.800428] | 5140.27 | 28.371   | 23.696   | 1.197    | 0.00   | 0.000    | 23.696   | 0.000 |
|         |               |                    |         |          |          |          |        |          |          |       |

| tnxTower                                                        | Job     | CT11126F SOUTHBURY/ I-84 X15/ BAGL | Page<br>11 of 12          |
|-----------------------------------------------------------------|---------|------------------------------------|---------------------------|
| GPD Group<br>520 South Main Street, Suite 2531                  | Project | 2014790.88                         | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client  | T-Mobile Towers                    | Designed by<br>tbeltz     |

# Pole Shear Design Data

| Section | Elevation     | Size               | Actual | Actual    | Allow. | Ratio   | Actual | Actual | Allow.   | Ratio           |
|---------|---------------|--------------------|--------|-----------|--------|---------|--------|--------|----------|-----------------|
| No.     |               |                    | V      | $f_{\nu}$ | $F_v$  | $f_{v}$ | Т      | fut    | $F_{vt}$ | $f_{vt}$        |
|         | ft            |                    | K      | ksi       | ksi    | $F_{r}$ | kip-ft | ksi    | ksi      | F <sub>vt</sub> |
| L1      | 196 - 195 (1) | P18x3/8            | 0.05   | 0.005     | 16.800 | 0.000   | 0.00   | 0.000  | 16.800   | 0.000           |
| L2      | 195 - 180 (2) | P24x3/8            | 9.80   | 0.704     | 16.800 | 0.042   | 0.69   | 0.025  | 16.800   | 0.002           |
| L3      | 180 - 160 (3) | P30x3/8            | 14.95  | 0.857     | 16.800 | 0.051   | 0.70   | 0.016  | 15.644   | 0.001           |
| L4      | 160 - 140 (4) | P36x3/8            | 21.58  | 1.028     | 16.800 | 0.061   | 0.90   | 0.015  | 11.901   | 0.001           |
| L5      | 140 - 136 (5) | P42x3/8            | 22.11  | 0.902     | 16.800 | 0.054   | 0.92   | 0.011  | 9.619    | 0.001           |
| L6      | 136 - 120 (6) | P42x3/8 [0.63241]  | 24.24  | 0.590     | 13.764 | 0.043   | 0.97   | 0.007  | 13.764   | 0.001           |
| L7      | 120 - 100 (7) | P48x3/8 [0.595266] | 27.28  | 0.615     | 14.759 | 0.042   | 1.05   | 0.006  | 14.759   | 0.000           |
| L8      | 100 - 80 (8)  | P54x3/8 [0.567552] | 30.46  | 0.639     | 15.131 | 0.042   | 0.80   | 0.004  | 12.136   | 0.000           |
| L9      | 80 - 60 (9)   | P60x3/8 [0.546065] | 33.60  | 0.659     | 15.411 | 0.043   | 2.68   | 0.011  | 10.686   | 0.001           |
| L10     | 60 - 40 (10)  | P60x1/2 [0.673218] | 36.03  | 0.574     | 15.475 | 0.037   | 2.75   | 0.009  | 13.882   | 0.001           |
| L11     | 40 - 20 (11)  | P60x5/8 [0.800428] | 38.05  | 0.511     | 14.361 | 0.036   | 2.82   | 0.008  | 14.361   | 0.001           |
| L12     | 20 - 0 (12)   | P60x5/8 [0.800428] | 39.65  | 0.533     | 14.361 | 0.037   | 2.85   | 0.008  | 14.361   | 0.001           |

# Pole Interaction Design Data

| Section | Elevation     | Ratio           | Ratio                | Ratio                | Ratio             | Ratio                   | Comb.        | Allow.       | Criteria |
|---------|---------------|-----------------|----------------------|----------------------|-------------------|-------------------------|--------------|--------------|----------|
| NO.     | ft            | $\frac{r}{P_a}$ | $\frac{Jbx}{F_{hr}}$ | $\frac{Jby}{F_{hy}}$ | $\frac{J_v}{F_v}$ | $\frac{J_{vt}}{F_{vt}}$ | Siless Railo | Siress Kallo |          |
| L1      | 196 - 195 (1) | 0.000           | 0.000                | 0.000                | 0.000             | 0.000                   | 0.000        | 1.333        | H1-3+VT  |
| L2      | 195 - 180 (2) | 0.009           | 0.266                | 0.000                | 0.042             | 0.002                   | 0.276        | 1.333        | H1-3+VT  |
| L3      | 180 - 160 (3) | 0.012           | 0.635                | 0.000                | 0.051             | 0.001                   | 0.649        | 1.333        | H1-3+VT  |
| L4      | 160 - 140 (4) | 0.016           | 0.993                | 0.000                | 0.061             | 0.001                   | 1.014        | 1.333        | HI-3+VT  |
| L5      | 140 - 136 (5) | 0.015           | 0.849                | 0.000                | 0.054             | 0.001                   | 0.868        | 1.333        | H1-3+VT  |
| L6      | 136 - 120 (6) | 0.013           | 0.747                | 0.000                | 0.043             | 0.001                   | 0.762        | 1.333        | H1-3+VT  |
| L7      | 120 - 100 (7) | 0.015           | 0.808                | 0.000                | 0.042             | 0.000                   | 0.825        | 1,333        | H1-3+VT  |
| L8      | 100 - 80 (8)  | 0.018           | 0.985                | 0.000                | 0.042             | 0.000                   | 1 004        | 1.333        | H1-3+VT  |
| L9      | 80 - 60 (9)   | 0.021           | 1.090                | 0.000                | 0.043             | 0.001                   | 1 113        | 1,333        | H1_3_VT  |
| L10     | 60 - 40 (10)  | 0.020           | 1.031                | 0.000                | 0.037             | 0.001                   | 1.053        | 1.333        | H1-3+VT  |
| L11     | 40 - 20 (11)  | 0.022           | 1.016                | 0.000                | 0.036             | 0.001                   | 1.039        | 1.333        | H1_3_VT  |
| L12     | 20 - 0 (12)   | 0.026           | 1.197                | 0.000                | 0.037             | 0.001                   | 1.224        | 1.333        | H1-3+VT  |

| tnxTower                                                        | Job     | CT11126F SOUTHBURY/ I-84 X15/ BAGL | Page 12 of 12             |
|-----------------------------------------------------------------|---------|------------------------------------|---------------------------|
| GPD Group<br>520 South Main Street, Suite 2531                  | Project | 2014790.88                         | Date<br>15:19:59 08/12/14 |
| Akron, OH 44311<br>Phone: (330) 572-2100<br>FAX: (330) 572-3709 | Client  | T-Mobile Towers                    | Designed by<br>tbeltz     |

# Section Capacity Table

| Section<br>No. | Elevation<br>ft | Component<br>Type | Size               | Critical<br>Element | P<br>K | $SF^*P_{allow} \ K$ | %<br>Capacity | Pass<br>Fail |
|----------------|-----------------|-------------------|--------------------|---------------------|--------|---------------------|---------------|--------------|
| L1             | 196 - 195       | Pole              | P18x3/8            | 1                   | -0.09  | 697.49              | 0.0           | Pass         |
| L2             | 195 - 180       | Pole              | P24x3/8            | 2                   | -5.99  | 934.94              | 20.7          | Pass         |
| L3             | 180 - 160       | Pole              | P30x3/8            | 3                   | -10.47 | 1166.57             | 48.7          | Pass         |
| LA             | 160 - 140       | Pole              | P36x3/8            | 4                   | -16.14 | 1325.68             | 76.0          | Pass         |
| L5             | 140 - 136       | Pole              | P42x3/8            | 5                   | -17.01 | *                   | 64.9*         | Pass         |
| L6             | 136 - 120       | Pole              | P42x3/8 [0.63241]  | 6                   | -22.06 | *                   | 57.5*         | Pass         |
| L7             | 120 - 100       | Pole              | P48x3/8 [0.595266] | 7                   | -29.25 | *                   | 68.9*         | Pass         |
| L8             | 100 - 80        | Pole              | P54x3/8 [0.567552] | 8                   | -37.04 | *                   | 78.1*         | Pass         |
| L9             | 80 - 60         | Pole              | P60x3/8 [0.546065] | 9                   | -46.05 | *                   | 85.8*         | Pass         |
| L10            | 60 - 40         | Pole              | P60x1/2 [0.673218] | 10                  | -57.22 | *                   | 81.3*         | Pass         |
| L11            | 40 - 20         | Pole              | P60x5/8 [0.800428] | 11                  | -70.20 | *                   | 78.1*         | Pass         |
| L12            | 20 - 0          | Pole              | P60x5/8 [0.800428] | 12                  | -81.92 | *                   | 92.0*         | Pass         |
|                |                 |                   |                    |                     |        | Summary             | ELC:          | Proposed     |
|                |                 |                   |                    |                     |        | Pole (L12)          | 92.0*         | Pass         |
|                |                 |                   |                    |                     |        | Rating =            | 92.0*         | Pass         |

\*See next page for reinforcement calculations.

|           | _         |           | Reinforcement  | L         |            |          |               |          |         | R       | elnforcemen | 11.2       |         |          |         |            |         | Re         | Inforcemen | 13       |          |              | 1          |                       |       |           |         |
|-----------|-----------|-----------|----------------|-----------|------------|----------|---------------|----------|---------|---------|-------------|------------|---------|----------|---------|------------|---------|------------|------------|----------|----------|--------------|------------|-----------------------|-------|-----------|---------|
| Bottom    | Тор       | QTY       | Type           | Position  | Gap        | Ten/Comp | 1             | Bottom   | Top     | QTY     | Туре        | Position   | Gap     | Ten/Comp |         | Battom     | Тор     | QTY        | Турс       | Position | бар      | Ten/Comp     | 1          |                       |       |           |         |
| 0         | 136       | 3         | PL1.5x6.5+18   | F         | Ð          | T&C      | 1 1           |          |         |         |             | P          | 0       | T&C      |         | D          |         |            |            |          | 0        | T&C          |            |                       |       |           |         |
|           |           |           |                | F         | D          | T&C      |               |          |         |         |             |            | 0       | T&C      |         | 1          |         |            |            |          | 0        | T&C          |            |                       |       |           |         |
|           |           |           |                | F         | D          | T&C      |               |          |         |         |             | F          |         | T&C      |         |            |         |            |            |          | a        | TAC          |            |                       |       |           |         |
|           |           |           |                | F         | ٥          | TAC      |               |          |         |         |             | E          | 0       | T&C      |         | í          |         |            |            |          | 0        | T&C          | 1          |                       |       |           |         |
|           |           |           |                | F         | Ð          | T&C      |               |          |         |         |             | P          | 0       | T&C      |         |            |         |            |            |          | 0        | T&C          |            |                       |       |           |         |
|           |           |           |                | F         | o          | T&C      |               |          |         |         |             | P          | D       | T&C      |         |            |         |            |            |          | 0        | T&C          |            |                       |       |           |         |
|           |           |           |                | 1.1       | G          | T&C      |               |          |         |         |             | <b>F</b> . | 0       | T&C      |         |            |         |            |            |          | 0        | T&C          |            |                       |       |           |         |
|           |           |           |                | 1         | 0          | TAC      |               |          |         |         |             | - K.S.     | D       | T&C      |         |            |         |            |            |          | 0        | TAC          |            |                       |       |           |         |
|           | _         |           |                |           | 0          | T&C      | 1             |          | _       |         |             | P          | 0       | T&C      |         |            |         |            |            | 1        | 0        | TEC          |            |                       |       |           |         |
|           | -         | _         |                | Odelaal   | Reinforced |          |               |          | -       |         |             |            |         |          | Contral |            |         |            |            |          |          | Furtheritant |            | F                     |       | D-44-     |         |
| Bottom    | Ton       | Original  | Orladeal Vield | Liltimate | Shaft      | Refol 1  |               | Relp 1   | Relat 2 | Datef 2 | Nain 2      | Halof 2    | Dalaf 3 | Bala 2   | Cleare  |            | Faction |            |            | Yes      | Baldam   | Fland        | Faulantant | Equivalent<br>M-teleb | 10    | Bottom    |         |
| Elevation | Elevation | Thickness | Stress         | Stress    | Capacity   | QTY      | Reinf. 1 Type | Capacity | QTY     | Type    | Capacity    | QTY        | Type    | Capacity | Ratio   | Top Height | Length  | Lap Splice | # of Sides | Diameter | Diameter | Thickness    | Shaft Py   | Mult                  | Fallu | P Fallure | Failure |
| 195.0000  | 196.0000  | 0.3750    | 42             | 57        | 0.0%       |          |               |          |         |         |             |            |         |          | 0.0%    | 196.0000   | 1.0000  | 0.0000     | Round      | 18,0000  | 18.0000  | 0.3750       | 42.0       | 1.00                  |       |           |         |
| 180.0000  | 195.0000  | 0.3750    | 42             | 57        | 20.7%      |          |               |          |         |         |             |            |         | 1        | 20.7%   | 195.0000   | 15.0000 | 0,0000     | Round      | 24,0000  | 24,0000  | 0.3750       | 42.0       | 1.00                  | i .   |           |         |
| 160.0000  | 160.0000  | 0.3750    | 42             | 57        | 48.6%      |          |               |          |         |         |             |            |         |          | 48.6%   | 180.0000   | 20,0000 | 0.0000     | Round      | 30.0000  | 30.0000  | 0.3750       | 42.0       | 1.00                  | - F   |           |         |
| 140.0000  | 160.0000  | 0.3750    | 42             | \$7       | 75.9%      |          |               |          |         |         |             |            |         |          | 75.9%   | 160.0000   | 20.0000 | 0.0000     | Round      | 36,0000  | 36.0000  | 0.3750       | 42.0       | 1.00                  |       |           |         |
| 136.0000  | 140.0000  | 0.3750    | 42             | <b>S7</b> | 64.9%      |          |               |          |         |         |             |            |         |          | 64.9%   | 140.0000   | 4.0000  | 0.0000     | Round      | 42,0000  | 42.0000  | 0,3750       | 42.0       | 1.00                  | 5     |           |         |
| 120.0000  | 136.0000  | 0.3750    | 42             | 57        | 57.5%      | 3        | PL1.5x6.5-18  | 50.5%    |         |         |             |            |         |          | 57.5%   | 136.0000   | 16.0000 | 0.0000     | Round      | 42.0000  | 42,0000  | 0.6324       | 34.4       | 0.95                  | 6     |           |         |
| 100.0000  | 120,0000  | 0.3750    | 42             | 57        | 68.9%      | 3        | PL1.5x8.5-18  | 58.3%    |         |         |             |            |         |          | 68.9%   | 120.0000   | 20,0000 | 0.0000     | Round      | 48.0000  | 48.0000  | 0.5953       | 36.9       | 0,96                  | 7     |           |         |
| 80.0000   | 100.0000  | 0.3750    | 42             | 57        | 78.1%      | 3        | PL1.5x6.5-18  | 64.2%    |         |         |             |            |         |          | 78.1%   | 100,0000   | 20.0000 | 0.0000     | Round      | 54.0000  | 54.0000  | 0,5676       | 37.8       | 0.97                  | 8     |           |         |
| 60.0000   | 80.0000   | 0.3750    | 42             | 57        | 85.8%      | 3        | PL1.5x6.5-18  | 68.8%    |         |         |             |            |         |          | 85.8%   | 80.0000    | 20.0000 | 0.0000     | Round      | 60.0000  | 60.0000  | 0.5461       | 38.5       | D.98                  | 9     |           |         |
| 40.0000   | 60.0000   | 0.5000    | 42             | 57        | 81.3%      | 3        | PL1.5x6.5-18  | 69.6%    |         |         |             |            |         |          | 81.3%   | 60.0000    | 20.0000 | 0.0000     | Round      | 60.0000  | 60.0000  | 0.6732       | 38.7       | 0.98                  | 10    |           |         |
| 20.0000   | 40.0000   | 0.6250    | 42             | 57        | 78.1%      | 3        | FL1.5x6.5-18  | 70.9%    |         |         |             |            |         |          | 78.1%   | 40.0000    | 20.0000 | 0.0000     | Round      | 60.0000  | 60.0000  | 0.8004       | 35.9       | 0.98                  | 11    |           |         |
| 0.0000    | 20,0000   | 0.6250    | 42             | 57        | 92.0%      | 3        | PL1,5v6.5-18  | 83.6%    |         |         |             |            |         |          | 92.0%   | 20.0000    | 20.0000 | 0.0000     | Round      | 60.0000  | 60.0000  | 0.8004       | 35.9       | 0.98                  | 12    |           |         |

## APPENDIX C

Tower Elevation Drawing



| TYPE                              | ELEVATION | TYPE                                      | ELEVATION |
|-----------------------------------|-----------|-------------------------------------------|-----------|
| Pirod 16.5' LP Platform           | 195       | APXV18-206517S-C w/ Mount Pipe            | 175       |
| AIR 33 w/ Mount Pipe              | 195       | APXV18-206517S-C w/ Mount Pipe            | 175       |
| AIR 33 w/ Mount Pipe              | 195       | APXV18-206517S-C w/ Mount Pipe            | 175       |
| AIR 33 w/ Mount Pipe              | 195       | MTS 12.5' LP Platform                     | 165       |
| RR90-17-02DP w/ Mount Pipe        | 195       | (3) DB980E (90E-M) w/ Mount Pipe          | 165       |
| RR90-17-02DP w/ Mount Pipe        | 195       | (3) DB980E (90E-M) w/ Mount Pipe          | 165       |
| RR90-17-02DP w/ Mount Pipe        | 195       | (3) DB980E (90E-M) w/ Mount Pipe          | 165       |
| LNX-6515DS-VTM w/ mount pipe      | 195       | PiROD 15' Low Profile Platform            | 155       |
| LNX-6515DS-VTM w/ mount pipe      | 195       | (Monopole)                                |           |
| LNX-6515DS-VTM w/ mount pipe      | 195       | (2) HBXX-6516DS w/Mount Pipe              | 155       |
| KRY 112 71                        | 195       | (2) HBXX-6516DS w/Mount Pipe              | 155       |
| KRY 112 71                        | 195       | (2) HBXX-6516DS w/Mount Pipe              | 155       |
| KRY 112 71                        | 195       | (2) BXA-70063-4CF-EDIN-6 w/ Mount         | 155       |
| DC4-48-60-8-20F                   | 195       | - Pipe                                    |           |
| PiROD 13' Low Profile Platform    | 185       | (2) BXA-70063-4CF-EDIN-6 w/ Mount<br>Pipe | 155       |
| 7770.00 w/ 6' Mount Pipe          | 185       | (2) SLCP2x6014 w/ Mount Pipe              | 155       |
| 7770.00 w/ 6' Mount Pipe          | 185       | (2) FD9R6004/2C-3L                        | 155       |
| 7770.00 w/ 6' Mount Pipe          | 185       | (2) FD9R6004/2C-3L                        | 155       |
| AM-X-CD-16-65-00T-BET w/ 2" x 54" | 185       | (2) FD9R6004/2C-3L                        | 155       |
| mount pipe                        | 100       | (2) DPX 021 Diplexer                      | 155       |
| AM-X-CD-16-65-00T-RET w/ 2" x 54" | 185       | (2) DPX 021 Diplexer                      | 155       |
| mount pipe                        |           | (2) DPX 021 Diplexer                      | 155       |
| AM-X-CD-17-65-00T-RET w/ Mount    | 185       | Bridge Stiffener (3.25 sq ft)             | 120       |
| Ріре                              |           | Bridge Stiffener (3.25 sq ft)             | 120       |
| (2) TT19-08BP111-001              | 185       | Bridge Stiffener (3.25 sq ft)             | 120       |
| (2) TT19-08BP111-001              | 185       | Bridge Stiffener (3.25 sq ft)             | 100       |
| (2) TT19-08BP111-001              | 185       | Bridge Stiffener (3.25 sq ft)             | 100       |
| (2) LGP21901                      | 185       | Bridge Stiffener (3.25 sq ft)             | 100       |
| (2) LGP21901                      | 185       | Pipe Mount 3'x4.5"                        | 91        |
| (2) LGP21901                      | 185       | 2' MW                                     | 91        |
| (2) RRUS-11                       | 185       | Bridge Stiffener (3.25 sq ft)             | 80        |
| (2) RRUS-11                       | 185       | Bridge Stiffener (3.25 sq ft)             | 80        |
| (2) RRUS-11                       | 185       | Bridge Stiffener (3.25 sq ft)             | 80        |
| DC6-48-60-18-8F Surge Suppression | 185       | Pine Mount 3'x4 5"                        | 75        |
| late .                            |           | i ibo incuit o k no                       | 1.0       |

### MATERIAL STRENGTH

| GRADE        | Fy     | Fu     | GRADE        | Fy     | Fu     |
|--------------|--------|--------|--------------|--------|--------|
| A53-B-42     | 42 ksi | 63 ksi | 38.526976ksi | 39 ksi | 54 ksi |
| 34.410173ksi | 34 ksi | 49 ksi | 38.686907ksi | 39 ksi | 54 ksi |
| 36.898421ksi | 37 ksi | 52 ksi | 35.902778ksi | 36 ksi | 51 ksi |
| 37.826923ksi | 38 ksi | 53 ksi |              |        |        |

### **TOWER DESIGN NOTES**

Tower is located in New Haven County, Connecticut.
 Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 74 mph basic wind with 0.50 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 50 mph wind.

AXIAL 99 K

TORQUE 3 kip-ft

AXIAL

82 K

TORQUE 4 kip-ft

40 K |

MOMENT

4675 kip-ft

MOMENT

5140 kip-ft

|                      | GPD Group                         | Job: CT11126F SOUTH                                         | BURY/ I-84 X15/ BAGL                                                    |             |
|----------------------|-----------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|-------------|
| 10.                  | 520 South Main Street, Suite 2531 | Project: 2014790.88                                         |                                                                         |             |
|                      | Akron, OH 44311                   | Client: T-Mobile Towers                                     | Drawn by: tbeltz                                                        | App'd:      |
| Consulting Engineers | Phone: (330) 572-2100             | Code: TIA/EIA-222-F                                         | Date: 08/12/14                                                          | Scale: NTS  |
| 5 5                  | FAX: (330) 572-3709               | Path:<br>VANEY23 godge.com/DATA220111MTxCT11125E1(7 2014750 | 55 CT (1125F 1)//Employeenng/Aero Calculations/Waylon PI/SA/CT 11125F 1 | Dwg No. E-1 |



80

### APPENDIX D

Flange Plate Analysis



Existing Flange Connection @ 180' CT11126F SOUTHBURY/I-84 X15/ BAGL 2014790.88





Acceptable Stress Ratio = 100.0%





#### \*\*Stiffeners ineffective - check plate unstiffened\*\*

.



|                       |          | -    |
|-----------------------|----------|------|
| Lower Flange          | Plate    |      |
| Location =            | Internal |      |
| Plate Strength (Fy) = | 36       | ksi  |
| Plate Thickness =     | 1.25     | in   |
| Hole Diameter =       | 24.25    | in   |
| Pole Inner Diameter = | 29.25    | in   |
| 0 =                   | 1.13     | in   |
| W =                   | 4.59     | in   |
| S =                   | 1.20     | in^3 |
| f <sub>b</sub> =      | 8.30     | ksi  |
| F <sub>b</sub> =      | 36       | ksi  |
| LP Capacity =         | 23.1%    | ок   |
|                       |          |      |

\*\*Stiffeners ineffective - check plate unstiffened\*\*



Existing Flange Connection @ 160' CT11126F SOUTHBURY/I-84 X15/ BAGL 2014790.88

Acceptable Stress Ratio

Plate Strength (Fy) =

Plate Thickness

Outer Diameter

Upper Flange Plate

Location =

wcalc

wmax

w

S

f<sub>b</sub> :

F<sub>b</sub> =

UP Capacity =

100.0%

Externa

36 ksi

1.25 in

36.375 in

13.75 in

21.04 in

13.75 in

3.58 in<sup>3</sup>

19.20 ksi

53.3% OK

36 ksi





UpperStiffeners Configuration = Every Other Thickness 0.625 in Width = 3 in Notch 0.5 in Height : 5 in Stiffener Strength (F<sub>v</sub>) = 36 ksi Weld Info. Known? = Yes Vertical Weld Size : 0.3125 in Horiz. Weld Type = Fillet Fillet Size = 0.3125 in Weld Strength = 70 ksi

\*\*Stiffeners ineffective - check plate unstiffened\*\*



| 1 | Lower Flange          | Plate    |      |
|---|-----------------------|----------|------|
|   | Location =            | Internal |      |
|   | Plate Strength (Fy) = | 36       | ksi  |
|   | Plate Thickness =     | 1.25     | in   |
|   | Hole Diameter =       | 27.375   | in   |
|   | Pole Inner Diameter = | 35.25    | in   |
|   | e =                   | 1.13     | in   |
|   | w =                   | 4.61     | in   |
| 1 | S =                   | 1.20     | in^3 |
| 1 | f <sub>b</sub> =      | 19.43    | ksi  |
|   | F <sub>b</sub> =      | 36       | ksi  |
|   | LP Capacity =         | 54.0%    | OK   |
|   |                       |          |      |

\*\*Stiffeners ineffective - check plate unstiffened\*\*



Existing Flange Connection @ 140' CT11126F SOUTHBURY/I-84 X15/ BAGL 2014790.88





Acceptable Stress Ratio = 100.0%





#### \*\*Stiffeners ineffective - check plate unstiffened\*\*



| Lower Flange          | Plate    |      |
|-----------------------|----------|------|
| Location =            | Internal |      |
| Plate Strength (Fy) = | 36       | ksi  |
| Plate Thickness =     | 1.25     | in   |
| Hole Diameter =       | 33.375   | in   |
| Pole Inner Diameter = | 41.25    | lin  |
| e =                   | 1.13     | in   |
| W =                   | 4.63     | lin  |
| S =                   | 1.21     | in^3 |
| f <sub>b</sub> =      | 30.11    | ksi  |
| F <sub>b</sub> =      | 36       | ksi  |
| LP Capacity =         | 83.6%    | OK   |
|                       |          |      |

\*\*Stiffeners ineffective - check plate unstiffened\*\*



Existing Flange Connection @ 120' CT11126F SOUTHBURY/I-84 X15/ BAGL 2014790.88



Acceptable Stress Ratio 100.0% Upper Flange Plate Location = External Plate Strength (Fy) = 36 ksi Plate Thickness 1.25 in Outer Diameter 48.375 in wcalc 16.16 in wmax 25.56 in 16.16 in w S = 4.21 in<sup>3</sup> f<sub>b</sub> : 15.58 ksi F<sub>b</sub> = 36 ksi UP Capacity = 43.3% OK



UpperStiffeners

\*\*Stiffeners ineffective - check plate unstiffened\*\*

| Lower Stiffene            | rs          |     |
|---------------------------|-------------|-----|
| Configuration =           | Every Other |     |
| Thickness =               | 0.625       | in  |
| Width =                   | 2           | in  |
| Notch =                   | 0.5         | in  |
| Height =                  | 3.5         | in  |
| Stiffener Strength (Fy) = | 36          | ksi |
|                           |             | -   |
| Weld Info. Known? =       | Yes         |     |
| Vertical Weld Size =      | 0.3125      | in  |
| Horiz, Weld Type =        | Fillet      |     |
|                           |             |     |
|                           |             |     |
| Filiet Size =             | 0.3125      | in  |
| Weld Strength =           | 70          | ksi |

|   | Lower Flange          | Plate    |      |
|---|-----------------------|----------|------|
|   | Location =            | Internal |      |
| 0 | Plate Strength (Fy) = | 36       | ksi  |
|   | Plate Thickness =     | 1.25     | in   |
|   | Hole Diameter =       | 39.375   | in   |
|   | Pole Inner Diameter = | 47.25    | in   |
|   | e =                   | 1.13     | in   |
|   | W =                   | 4.64     | in   |
|   | S =                   | 1.21     | in^3 |
|   | f <sub>b</sub> =      | 16.11    | ksi  |
| d | F <sub>b</sub> =      | 36       | ksi  |
|   | LP Capacity =         | 44.8%    | OK   |

\*\*Stilfeners ineffective - check plate unstiffened\*\*

### 520 South Main Street • Suite 2531 • Akron, Ohio 44311• PHONE 330-572-2100 • FAX 330-572-2101

| GPD GROUP<br>Days Puty Streams & Busivery, Jac                                                                                                                                                                | GPD GR<br>Engineers • Archite                                                        | COUP Project #:<br>ects • Planners Sheet No_1_(                                                                                                                                                                                                                                                                                                                                                                          | 2014790.88<br>Df <u>1</u>                               | Calculated By:<br>Checked By:                                                                                         | TTB Date:<br>TR Date:                                                                          | 8/12/2014<br>8/12/2014 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------|
| BOLT AND BRIDGE STIFFENER CALC                                                                                                                                                                                | JLATIONS                                                                             | @ 120'                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                       |                                                                                                |                        |
| Moment from TNX (M) = $Axial from TNX (P) =$                                                                                                                                                                  | 1183.93 kip-ft<br>17.01 kip                                                          | ASIF = 1.33                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                       |                                                                                                |                        |
| Inner Bolt Diameter =<br>Inner Bolt Area $(A_{inner})$ =<br>Inner Bolt MOI $(I_{o,inner})$ =<br>Number Inner Bolts $(N_{inner})$ =                                                                            | 1 in<br>0.79 in <sup>2</sup><br>0.05 in <sup>4</sup><br>32                           | Inner Bolt Circle (BC <sub>inner</sub> ) =<br>Total Area (A <sub>tot.in</sub> ) =<br>Percent Total Area ( $\eta_{in}$ ) =                                                                                                                                                                                                                                                                                                | 45 in<br>25.13 in <sup>2</sup><br>48.2%                 | Axiai, Inner Bolts (P*11) =                                                                                           | 8.20 kips                                                                                      |                        |
| Bridge Stiffener Width =<br>Bridge Stiffener Thickness =<br>Bridge Stiffener Unbraced Length =<br>Bridge Stiffener Area $(A_{pl}) =$<br>Bridge Stiffener MOI $(I_0) =$<br>Number Bridge Stiffeners $(N_{pl})$ | 6.00 in<br>1.50 in<br>12.00 in<br>9.00 in <sup>2</sup><br>27.00 in <sup>4</sup><br>3 | Connection Bolt Hole Size –<br>Net Bridge Stiffener Area ( $A_{e,pl}$ ) =<br>Bridge Stiffener Circle (BC <sub>pl</sub> ) =<br>Total Area ( $A_{tot,pl}$ ) =<br>Percent Total Area ( $\eta_{pl}$ ) =                                                                                                                                                                                                                      | 0 in<br>9 in<br>51 in<br>27.00 in <sup>2</sup><br>51.8% | Axial, Bridge Stiffener (P*η <sub>p</sub> ) =                                                                         | 8.81 kips                                                                                      |                        |
|                                                                                                                                                                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | Bridg                                                                                                                 | e Stiffener Check                                                                              |                        |
| $l_{inner} = 6363.30$ $l_{pl} = 8859.34$ $l_{tot} = 15222.62$ $P_{u.t.inner} = 16.2$ $P_{u.t.pl} = 2111.2$ $P_{u.c.pl} = 217.7$ $P_{u.t.pl} = 217.7$                                                          | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                 | $\begin{split} &\inf_{inner} {}^{*}BC_{inner} {}^{2}/8 + N_{inner} {}^{*}I_{o,inner}) \\ &iBC_{pl} {}^{2}/8 + N_{pl} {}^{*}I_{o,pl}) \\ &\inf_{outer} + I_{pl}) \\ &\inf_{ner} {}^{2}/2 {}^{*}A_{inner} {}^{l}/I_{total} - P {}^{*}\eta_{ir}/N_{inner}) \\ &\frac{1}{2} {}^{*}A_{pl} {}^{l}/I_{total} - P {}^{*}\eta_{pr}/N_{pl}) \\ &\frac{1}{2} {}^{*}A_{pl} {}^{l}/I_{total} + P {}^{*}\eta_{pr}/N_{pl}) \end{split}$ |                                                         | $f_{y} = f_{u} = f_{u} = E = K = K = K I / r = F_{e} = F_{cr} = P_{nc} / \Omega = P \cdot / O = P \cdot / O = F_{cr}$ | 50 ksi<br>65 ksi<br>29000 ksi<br>0.85<br>515.82 ksi<br>48.01 ksi<br>258.75 kips<br>269.46 kips |                        |
| Bolt Rating = $37.1\%$                                                                                                                                                                                        | OK                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | Bridge Stiffener Rating =                                                                                             | 62.9% OK                                                                                       |                        |



Existing Flange Connection @ 100' CT11126F SOUTHBURY/I-84 X15/ BAGL 2014790.88

Acceptable Stress Ratio

Plate Strength (Fy) =

Plate Thickness

Outer Diameter :

Upper Flange Plate Location = Exte

wcalc

wmax :

w

S

f<sub>b</sub> :

F<sub>b</sub> =

UP Capacity =

100.0%

External

36 ksi

54.375 in

17.23 in

25.70 in

17.23 in

4,49 in<sup>3</sup>

19.60 ksi

54.4% OK

36 ksi

in



|   | S           | UpperStiffene             |
|---|-------------|---------------------------|
|   | Every Other | Configuration =           |
| i | 0.625       | Thickness =               |
| i | 3           | Width ==                  |
| i | 0.5         | Notch =                   |
| i | 5           | Height =                  |
| ł | 36          | Stiffener Strength (Fy) = |
|   | Yes         | Weld Info. Known? =       |
| 1 | 0.3125      | Vertical Weld Size =      |
|   | Fillet      | Horiz. Weld Type =        |
|   |             |                           |
| i | 0.3125      | Fillet Size =             |
| ł | 70          | Weld Strength =           |

#### \*\*Stiffeners ineffective - check plate unstiffened\*\*



| Lower Flange Plate    |          |      |  |  |  |  |
|-----------------------|----------|------|--|--|--|--|
| Location =            | Internal |      |  |  |  |  |
| Plate Strength (Fy) = | 36       | ksi  |  |  |  |  |
| Plate Thickness =     | 1.25     | in   |  |  |  |  |
| Hole Diameter =       | 45.375   | in   |  |  |  |  |
| Pole Inner Diameter = | 53.25    | in   |  |  |  |  |
| e =                   | 1.13     | in   |  |  |  |  |
| W =                   | 4.65     | in   |  |  |  |  |
| S =                   | 1.21     | in^3 |  |  |  |  |
| f <sub>b</sub> =      | 20.36    | ksi  |  |  |  |  |
| F <sub>b</sub> =      | 36       | ksi  |  |  |  |  |
| LP Capacity =         | 56.6%    | OK   |  |  |  |  |
|                       |          |      |  |  |  |  |

\*\*Stiffeners ineffective - check plate unstiffened\*\*

### 520 South Main Street • Suite 2531 • Akron, Ohio 44311 • PHONE 330-572-2100 • FAX 330-572-2101

| GPD GROUP<br>Gave, Fyle, Schweise, Davis & Derlivere, Inc.                                                                                                                                                      | GPD G<br>Engineers • Archi                                                           | ROUP Project #:<br>tects • Planners Sheet No_1_                                                                                                                                                              | 2014790.88<br>Of <u>1</u>                               | Calculated By:<br>Checked By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTB<br>TR                           | Date:<br>Date:     | 8/12/2014<br>8/12/2014 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|------------------------|
| BOLT AND BRIDGE STIFFENER CALCU                                                                                                                                                                                 | JLATIONS                                                                             | @ 100'                                                                                                                                                                                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                    |                        |
| Moment from TNX (M) =<br>Axial from TNX (P) =                                                                                                                                                                   | 1702.13 kip-ft<br>22.06 kip                                                          | ASIF = 1.33                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                    |                        |
| $\begin{array}{l} \mbox{Inner Bolt Diameter} = \\ \mbox{Inner Bolt Area (A_{inner})} = \\ \mbox{Inner Bolt MOI (}_{0,inner}) = \\ \mbox{Number Inner Bolts (N_{inner})} = \end{array}$                          | 1 in<br>0.79 in <sup>2</sup><br>0.05 in <sup>4</sup><br>33                           | Inner Bolt Circle (BC <sub>inner</sub> ) =<br>Total Area (A <sub>tot.in</sub> ) =<br>Percent Total Area (η <sub>in</sub> ) =                                                                                 | 51 in<br>25.92 in <sup>2</sup><br>49.0%                 | Axial, Inner Bolts (P*ŋ <sub>in</sub> ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.80                               | kips               |                        |
| Bridge Stiffener Width =<br>Bridge Stiffener Thickness =<br>Bridge Stiffener Unbraced Length =<br>Bridge Stiffener Area $(A_{pl}) =$<br>Bridge Stiffener MOI $(I_{p}) =$<br>Number Bridge Stiffeners $(N_{pl})$ | 6.00 in<br>1.50 in<br>12.00 in<br>9.00 in <sup>2</sup><br>27.00 in <sup>4</sup><br>3 | Connection Bolt Hole Size =<br>Net Bridge Stiffener Area (A <sub>e,p</sub> )<br>Bridge Stiffener Circle (BC <sub>p</sub> ) =<br>Total Area (A <sub>tot,p</sub> ) =<br>Percent Total Area (η <sub>p</sub> ) = | 0 in<br>9 in<br>57 in<br>27.00 in <sup>2</sup><br>51.0% | Axial, Bridge Stiffener (P*ŋ <sub>pl</sub> ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.26                               | kips               |                        |
| l. = 8428.25                                                                                                                                                                                                    | in <sup>4</sup> (N. *                                                                | а. *BC. <sup>2</sup> /8±N. *I. )                                                                                                                                                                             |                                                         | Bridg<br>f <sub>y</sub> =<br>f. =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Stiffener (<br>50<br>65           | Check<br>ksi       |                        |
| $I_{pl} = 11046.38$<br>$I_{tot} = 19474.63$                                                                                                                                                                     | in. <sup>4</sup> $(N_{pl}*A_p$<br>in. <sup>4</sup> $(I_{inner} +$                    | $[*BC_{pl}^{2/8} + N_{pl}^{*I} I_{o,pl}]$ $I_{outer} + I_{pl}]$                                                                                                                                              |                                                         | E =<br>K =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29000<br>0.85                       | ksi                |                        |
| $P_{u,t,inner} = 20.7$ $P_{u,t,pl} = 265.7$ $P_{u,c,pl} = 272.8$                                                                                                                                                | kips (M*(BC<br>kips (M*(BC<br>kips (M*(BC                                            | $\begin{array}{l} _{inner}/2)^*A_{inner}/I_{total}-P^*\eta_{ir}/N_{inner})\\ _{p}/2)^*A_{p})/I_{total}-P^*\eta_{p}/N_{pl})\\ _{p}/2)^*A_{p})/I_{total}+P^*\eta_{p}/N_{pl})\end{array}$                       |                                                         | $F_{e} = F_{er} = F_$ | 23.556<br>515.82<br>48.01<br>258.75 | ksi<br>ksi<br>kips |                        |
| $P_{nt.bolt} / (\Omega \times ASIF) = \frac{43.91}{80 \text{ lt Rating}} = \frac{47.1\%}{1000}$                                                                                                                 | kips<br>OK                                                                           |                                                                                                                                                                                                              |                                                         | P <sub>nt</sub> / Ω =<br>Bridge Stiffener Rating =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 269.46<br>79.1%                     | kips<br>OK         |                        |



Existing Flange Connection @ 80' CT11126F SOUTHBURY/I-84 X15/ BAGL 2014790.88

Acceptable Stress Ratio

Plate Strength (Fy) =

Plate Thickness :

Outer Diameter

**Upper Flange Plate** 

b =

Le =

F<sub>b</sub> =

Lower Flange Plate

b

Le =

f<sub>b</sub> =

F<sub>h</sub>:

Location =

Plate Strength (Fy)

Plate Thickness

Hole Diameter =

LP Capacity =

UP Capacity =

Location =

100.0%

Externa

36 ksi

1.25 in

60.375 in

3.11 in

3.00 in

18.02 ksi

50.0% OK

Interna

36 ksi

1.25 in 51.375 in

3.11 in

2.00 in

21.51 ksi

36 ksi

59.8% OK

36 ksi

UpperStiffeners

Every Bol

0.625 in

0.5 in

36 ksi

Yes

0.3125 in

Fillet

0.3125 in

19.5% OK

Every Bolt

0.625 in

2 in 0.5 in

3.5 in

Yes 0.3125 in

Fillet

0.3125 in

70 ksi

8.19 kips

30.0% kips

49.8% OK

Welds Control

49.8% kips 45.4% kips

36 ksi

70 ksi 12.66 kips 31.3% kips 46.1% kips 49.5% kips

in

in

Configuration =

Thickness

Width =

Notch :

Height :

Stiffener Strength (Fy) =

Weld Info. Known? =

Vertical Weld Size :

Horiz. Weld Type =

Fillet Size =

Weld Strength =

Stiffener Vertical Force

Vert. Weld Capacity = Horiz. Weld Capacity =

Controlling Capacity =

Stiffener Strength (Fy) =

Weld info, Known? -

Vertical Weld Size :

Horiz. Weld Type =

Fillet Size =

Weid Strength =

Stiffener Vertical Force =

Vert. Weld Capacity

Horiz. Weld Capacity = Stiffener Capacity =

Controlling Capacity =

Stiffener Capacity =

Lower Stiffeners

Configuration =

Thickness :

Width

Notch = Height =



### 520 South Main Street • Suite 2531 • Akron, Ohio 44311 • PHONE 330-572-2100 • FAX 330-572-2101

| GPD GROUP<br>Glass Puls, Schemer, Barra & Delferen, Inc.                                                                                                                                                      | GPD G<br>Engineers • Arch                                                                                                                                                                                      | ROUP<br>itects • Planners S                                                                                                                                                                                                                                                                                            | Project #: 2<br>Sheet No <u>1</u> C                                                                                                                                  | 2014790.88<br>Df <u>1</u>                               | Calculated By:<br>Checked By:                                                                                                | TTB<br>TR                                                                       | Date:<br>Date:                                   | 8/12/2014<br>8/12/2014 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|------------------------|
| BOLT AND BRIDGE STIFFENER CALC                                                                                                                                                                                | CULATIONS                                                                                                                                                                                                      | @ 80'                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                         |                                                                                                                              |                                                                                 |                                                  |                        |
| Moment from TNX (M) = $Axial$ from TNX (P) =                                                                                                                                                                  | 2282.62 kip-ft<br>29.25 kip                                                                                                                                                                                    | ASIF =                                                                                                                                                                                                                                                                                                                 | 1.33                                                                                                                                                                 |                                                         |                                                                                                                              |                                                                                 |                                                  |                        |
| Inner Bolt Diameter =<br>Inner Bolt Area ( $A_{inner}$ ) =<br>Inner Bolt MOI ( $I_{o,inner}$ ) =<br>Number Inner Bolts ( $N_{inner}$ ) =                                                                      | 1 in<br>0.79 in <sup>2</sup><br>0.05 in <sup>4</sup><br>48                                                                                                                                                     | Inner Bolt Circle<br>Total Area (A <sub>tot.in</sub><br>Percent Total Are                                                                                                                                                                                                                                              | $e(BC_{inner}) =$<br>$h_{n} =$<br>$rea(\eta_{in}) =$                                                                                                                 | 57 in<br>37.70 in <sup>2</sup><br>58.3%                 | Axial, Inner Bolts (P*ŋ <sub>in</sub> ) =                                                                                    | 17.04                                                                           | kips                                             |                        |
| Bridge Stiffener Width =<br>Bridge Stiffener Thickness =<br>Bridge Stiffener Unbraced Length =<br>Bridge Stiffener Area $(A_{pl}) =$<br>Bridge Stiffener MOI $(I_o) =$<br>Number Bridge Stiffeners $(N_{pl})$ | 6.00 in<br>1.50 in<br>12.00 in<br>9.00 in <sup>2</sup><br>27.00 in <sup>4</sup><br>3                                                                                                                           | Connection Bolt<br>Net Bridge Stiffe<br>Bridge Stiffener (<br>Total Area (A <sub>tot.pl</sub><br>Percent Total Are                                                                                                                                                                                                     | t Hole Size =<br>ener Area $(A_{e,pl})$<br>Circle $(BC_{pl}) =$<br>$_{l}) =$<br>ea $(\eta_{pl}) =$                                                                   | 0 in<br>9 in<br>63 in<br>27.00 in <sup>2</sup><br>41.7% | Axial, Bridge Stiffener (P*η <sub>p</sub> ) =                                                                                | 12.21                                                                           | kips                                             |                        |
| $I_{inner} = 15312.9$ $I_{pl} = 13476.3$ $I_{tot} = 28789.2$ $P_{ut.inner} = 20$ $P_{ut.pl} = 265$ $P_{u.c.pl} = 273$ $P_{u.c.pl} = 273$                                                                      | P1 in. <sup>4</sup> $(N_{inner} + A_i)^4$ 18 in. <sup>4</sup> $(N_{pl} + A_i)^4$ 18 in. <sup>4</sup> $(l_{inner} + A_i)^4$ 19 kips $(M^* (BC) + BC)^4$ 17 kips $(M^* (BC) + BC)^4$ 18 kips $(M^* (BC) + BC)^4$ | $\begin{split} &A_{inner}^{*}BC_{inner}^{2}/8+N_{il}^{*}BC_{pl}^{2}/8+N_{pl}^{*}I_{0,pl}^{}\\ &I_{outer}^{*}+I_{pl}^{}\\ &I_{outer}^{*}/2)^{*}A_{inner}^{}/I_{total}^{}-p_{r}^{*}\eta_{r}^{}\\ &I_{pl}^{*}/2)^{*}A_{pl}^{}/I_{total}^{}-P^{*}\eta_{r}^{}\\ &P_{pl}^{*}/2)^{*}A_{pl}^{}/I_{total}^{}+P^{*} \end{split}$ | l <sub>inner</sub> *l <sub>o.inner</sub> )<br>)<br>P*η <sub>in</sub> /N <sub>inner</sub> )<br><sub>pl</sub> /N <sub>pl</sub> )<br>η <sub>pl</sub> /N <sub>pl</sub> ) |                                                         | Bridgy<br>$f_y =$<br>$f_u =$<br>E =<br>K =<br>K L/r =<br>$F_e =$<br>$F_{cr} =$<br>$P_{rc} / \Omega =$<br>$P_{cr} / \Omega =$ | e Stiffener<br>50<br>65<br>29000<br>0.85<br>23.556<br>515.82<br>48.01<br>258.75 | Check<br>ksi<br>ksi<br>ksi<br>ksi<br>ksi<br>kips |                        |
| $P_{ntbolt} / (\Omega X ASIF) = 46.0$<br>Bolt Rating = 45.5%                                                                                                                                                  | OK                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                         | $P_{nt} / \Omega =$<br>Bridge Stiffener Rating =                                                                             | 269.46<br>79.4%                                                                 | Kips<br>OK                                       |                        |



Existing Flange Connection @ 60' CT11126F SOUTHBURY/I-84 X15/ BAGL 2014790.88 (FLANGE PLATES ANALYSIS ONLY)



520 South Main Street • Suite 2531 • Akron, Ohio 44311• PHONE 330-572-2100 • FAX 330-572-2101

| GPD GROUP,<br>Gran F. Hr. Schoner, Barn B Belterer, Joc                                                                                                                                                                                                                                                          | GPD G<br>Engineers • Archi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ROUP<br>tects • Planners S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project #: 20<br>iheet No <u>1</u> Of                                                                                                                                                                  | 14790.88<br>                                                    | Ca<br>Cł                                                                                                            | alculated By:<br>necked By:                                                                  | TTB                                            | Date:<br>Date:      | 8/12/2014<br>8/12/2014 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|------------------------|
| BOLT AND BRIDGE STIFFENER C                                                                                                                                                                                                                                                                                      | ALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | @ 60'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                                                 |                                                                                                                     |                                                                                              |                                                |                     |                        |
| Moment from TNX ( $M$ ) =<br>Axial from TNX ( $P$ ) =                                                                                                                                                                                                                                                            | 2925.56 kip-ft<br>37.04 kip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASIF =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.33                                                                                                                                                                                                   |                                                                 |                                                                                                                     |                                                                                              |                                                |                     |                        |
| Inner Bolt Diameter =<br>Inner Bolt Area ( $A_{inner}$ ) =<br>Inner Bolt MOI ( $I_{o,inner}$ ) =<br>Number Inner Bolts ( $N_{inner}$ ) =                                                                                                                                                                         | 1.25 in<br>1.23 in <sup>2</sup><br>0.12 in <sup>4</sup><br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inner Bolt Circle<br>Total Area (A <sub>tot.ir</sub><br>Percent Total Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $e (BC_{innet}) =$<br>$h_{n}^{b} =$<br>rea ( $\eta_{in}$ ) =                                                                                                                                           | 47 in<br>39.27 in <sup>2</sup><br>29.6%                         | Axial, Inner Bolts                                                                                                  | $(P*\eta_{in}) =$                                                                            | 10.9                                           | <mark>7</mark> kips |                        |
| Outer Bolt Diameter =<br>Outer Bolt Area (A <sub>outer</sub> ) =<br>Outer Bolt MOI (I <sub>o,outer</sub> ) =<br>Number Outer Bolts (N <sub>outer</sub> ) =                                                                                                                                                       | 1.25 in<br>1.23 in <sup>2</sup><br>0.12 in <sup>4</sup><br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Outer Bolt Circl<br>Total Area (A <sub>toto</sub><br>Percent Total Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $e (BC_{outer}) =$<br>ut) =<br>$vea (\eta_{out}) =$                                                                                                                                                    | 53 in<br>39.27 in <sup>2</sup><br>29.6%                         | Axial, Outer Bolts                                                                                                  | (P*ŋ <sub>out</sub> ) =                                                                      | 10.9                                           | <mark>7</mark> kips |                        |
| Bridge Stiffener Width =<br>Bridge Stiffener Thickness =<br>Bridge Stiffener Unbraced Length =<br>Bridge Stiffener Area $(A_{pl})$ =<br>Bridge Stiffener MOI $(I_{pl})$ =<br>Number Bridge Stiffeners $(N_{pl})$                                                                                                 | 6.00 in<br>1.50 in<br>9.00 in<br>27.00 in <sup>4</sup><br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Connection Bolt<br>Net Bridge Stiffe<br>Bridge Stiffener<br>Total Area (A <sub>tot.p</sub><br>Percent Total Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t Hole Size = 1.<br>ener Area $(A_{e,pl})$ 7.<br>Circle $(BC_{pl})$ =<br>$\mu$ =<br>ea $(\eta_{pl})$ =                                                                                                 | 21875 in<br>17188 in<br>63 in<br>54.00 in <sup>2</sup><br>40.7% | Axial, Bridge Stiffe                                                                                                | ner (P* <b>n</b> o) =                                                                        | 15.0                                           | 9 kips              |                        |
| $\begin{array}{c} l_{inner} = & 1084\\ l_{outer} = & 1375\\ l_{pl} = & 2695\\ l_{tot} = & 5155\\ \end{array}$ $\begin{array}{c} P_{ut.tinner} = \\ P_{ut.touter} = \\ P_{ut.cpl} = & 1\\ P_{u.c.pl} = & 1\\ P_{u.c.pl} = & 1\\ \end{array}$ $\begin{array}{c} P_{u.c.pl} = & 1\\ P_{u.c.pl} = & 1\\ \end{array}$ | $7.24$ in. <sup>4</sup> $(N_{inner}^*, N_{inter}^*, N_{inte$ | $\begin{array}{l} & A_{inner} * BC_{inner}^{2}/8 + N \\ & A_{outer} * BC_{outer}^{2}/8 + N \\ & * BC_{pl}^{2}/8 + N_{pl} * I_{o,pl} \\ & I_{outer} + I_{pl} \\ & I_{outer} + I_{pl} \\ & I_{outer} / 2) * A_{outer} / I_{total} - \\ & O_{total} - P^{*}\eta \\ & O_{total} - P^{*}\eta \\ & O_{total} / O_{total} - O_{total} - O_{total} - O_{total} \\ & O_{total} / O_{total} - O_{total} - O_{total} \\ & O_{total} - O_{total} - O_{total} \\ & O_{total} - O_{total} - O_{total} \\ & O_{total} - O_{total} - O_{total} - O_{total} \\ & O_{$ | linner <sup>*1</sup> o.inner)<br>  <sub>outer</sub> *1 <sub>o.outer</sub> )<br>P*η <sub>in</sub> /N <sub>inner</sub> )<br>P*η <sub>out</sub> /N <sub>outer</sub> )<br><sub>p</sub> //N <sub>pl</sub> ) |                                                                 | Bridy<br>$f_y =$<br>$f_u =$<br>E =<br>KL/r =<br>$F_e =$<br>$F_{er} =$<br>$P_{nc} / \Omega =$<br>$P_{nt} / \Omega =$ | ge Stiffener Ch<br>50<br>65<br>29000<br>0.85<br>58.890<br>82.53<br>38.80<br>209.11<br>233.09 | eck<br>ksi<br>ksi<br>ksi<br>ksi<br>ksi<br>kips |                     |                        |
| Bolt Rating = 15.4%                                                                                                                                                                                                                                                                                              | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        | Bridge S                                                        | itiffener Rating =                                                                                                  | 70.1%                                                                                        | OK                                             |                     |                        |



Existing Flange Connection @ 40' CT11126F SOUTHBURY/I-84 X15/ BAGL 2014790.88 (FLANGE PLATES ANALYSIS ONLY)



| GPD Flance | Plate | Stress | (Rev F) | - V1.08 |
|------------|-------|--------|---------|---------|
|            |       |        |         |         |

| UpperStiffene              | rs           |      |
|----------------------------|--------------|------|
| Configuration =            | Every Bolt   |      |
| Thickness =                | 0.625        | in   |
| Width =                    | 7            | in   |
| Notch =                    | 0.5          | in   |
| Height =                   | 10           | in   |
| Stiffener Strength (Fy) =  | 36           | ksi  |
|                            |              |      |
| Weld Info. Known? =        | No           |      |
|                            |              |      |
|                            |              |      |
|                            |              |      |
|                            |              |      |
|                            |              |      |
|                            |              |      |
| Stiffener Vertical Force = | 26.69        | kips |
| Vert. Weld Capacity =      | Not Verified | kips |
| Horiz. Weld Capacity =     | Not Verified | kips |
| Stiffener Capacity =       | 54.8%        | kips |
| Controlling Capacity =     | 54.8%        | OK   |





Lower Flange Plate

100.0%

Interna

36 ksi

1.25 in

43 in

4.28 in

7.00 in

21.88 ksi

36 ksi

60.8% OK

Upper Flange Plate

b

Le =

fh

UP Capacity =

F<sub>b</sub> =

Location =

Plate Strength (Fy) =

Plate Thickness

Hole Diameter

### 520 South Main Street • Suite 2531 • Akron, Ohio 44311• PHONE 330-572-2100 • FAX 330-572-2101

| GPD GROUP<br>Glave, Fult, Schomer, Duris & Dellaven, Inc.                                                                                                                                                             | GPD G<br>Engineers • Archit                                                                                     | ROUP Project #:<br>tects • Planners Sheet No1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2014790.88<br>Df <u>1</u>                                     | Ca<br>Cł                                      | llculated By:<br>necked By: | TTB Date:<br>TR Date: | 8/12/2014<br>8/12/2014 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|-----------------------------|-----------------------|------------------------|
| BOLT AND BRIDGE STIFFENER CALCU                                                                                                                                                                                       | JLATIONS                                                                                                        | @ 40'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |                                               |                             |                       |                        |
| Moment from TNX (M) = $Axial$ from TNX (P) =                                                                                                                                                                          | 3622.11 kip-ft<br>46.05 kip                                                                                     | ASIF = 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                               |                             |                       |                        |
| Inner Bolt Diameter $=$<br>Inner Bolt Area (A <sub>inner</sub> ) $=$<br>Inner Bolt MOI (I <sub>o.inner</sub> ) $=$<br>Number Inner Bolts (N <sub>inner</sub> ) $=$                                                    | 1.25 in<br>1.23 in <sup>2</sup><br>0.12 in <sup>4</sup><br>32                                                   | Inner Bolt Circle (BC <sub>inner</sub> ) =<br>Total Area (A <sub>tot.in</sub> ) =<br>Percent Total Area (η <sub>in</sub> ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47 in<br>39.27 in <sup>2</sup><br>29.6%                       | Axial, Inner Bolts (                          | (P*η <sub>in</sub> ) =      | 13.64 kips            |                        |
| Outer Bolt Diameter =<br>Outer Bolt Area $(A_{outer}) =$<br>Outer Bolt MOI $(I_{o.outer}) =$<br>Number Outer Bolts $(N_{outer}) =$                                                                                    | 1.25 in<br>1.23 in <sup>2</sup><br>0.12 in <sup>4</sup><br>32                                                   | Outer Bolt Circle (BC <sub>outer</sub> ) =<br>Total Area (A <sub>tot.out</sub> ) =<br>Percent Total Area (η <sub>out</sub> ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53 in<br>39.27 in <sup>2</sup><br>29.6%                       | Axial, Outer Bolts                            | $(P*\eta_{out}) =$          | 13.64 kips            |                        |
| Bridge Stiffener Width –<br>Bridge Stiffener Thickness –<br>Bridge Stiffener Unbraced Length =<br>Bridge Stiffener Area $(A_{pl}) =$<br>Bridge Stiffener MOI $(l_0) =$<br>Number Bridge Stiffeners (N <sub>pl</sub> ) | 6.00 in<br>1.50 in<br>30.00 in<br>9.00 in <sup>2</sup><br>27.00 in <sup>4</sup><br>6                            | Connection Bolt Hole Size –<br>Net Bridge Stiffener Area $(A_{c,pl})$<br>Bridge Stiffener Circle $(BC_{pl}) =$<br>Total Area $(A_{tot,pl}) =$<br>Percent Total Area $(\eta_{nl}) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.18 in<br>7.23 in<br>63 in<br>54.00 in <sup>2</sup><br>40.7% | Axial, Bridge Stiffe                          | :ner (P*η <sub>p</sub> ) =  | 18.76 kips            |                        |
| $l_{inner} = 10847.24$<br>$l_{outer} = 13792.44$                                                                                                                                                                      | + in. <sup>4</sup> (N <sub>inner</sub> */                                                                       | Anner $BC_{inner}^{2/8} + N_{inner}^{*1} = 1_{o.inner}^{o.inner}$<br>Aouter $BC_{outer}^{2/8} + N_{outer}^{*1} = 1_{o.outer}^{o.inner}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               | Bridg<br>f <sub>y</sub> =                     | ge Stiffener Ch<br>50       | leck<br>ksi           |                        |
| $I_{pl} = 26952.75$<br>$I_{tot} = 51592.47$                                                                                                                                                                           | $p_{in.}^{*}$ ( $N_{pl}^{*}A_{pl}$<br>7 in. <sup>4</sup> ( $I_{inner}$ +                                        | ${}^{*}BC_{pl}/8 + N_{pl}*I_{0,pl}$ $I_{outer} + I_{pl}$ $(2)*4 \qquad )/l = P*p_{el}/N_{el}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               | $r_u = E = K = K = K = K = K = K = K = K = K$ | 65<br>29000<br>0.85         | ksi                   |                        |
| $P_{u.t.outer} = 25.2$ $P_{u.t.outer} = 27.0$ $P_{u.t.pl} = 235.2$ $P_{u.c.pl} = 242.0$                                                                                                                               | kips     (M*(BC)       kips     (M*(BC)       kips     (M*(BC)       kips     (M*(BC)       (M*(BC)     (M*(BC) | $\begin{array}{l} & (\operatorname{Ninner}^{\prime\prime}\operatorname{Voilal}^{\prime} = \operatorname{Vin}^{\prime}\operatorname{Voilal}^{\prime} \\ & (\operatorname{Ninner}^{\prime\prime})^{\prime}\operatorname{I_{total}}^{\prime} = \operatorname{P*}_{Nout}^{\ast}\operatorname{Nouter}^{\prime} \\ & (\operatorname{P*}_{Nouter})^{\prime}\operatorname{I_{total}}^{\prime} = \operatorname{P*}_{Np}^{\prime}\operatorname{Npl} \\ & (\operatorname{P*}_{Npl})^{\prime}\operatorname{I_{total}}^{\prime} = \operatorname{P*}_{Npl}^{\ast}\operatorname{Npl} \\ & (\operatorname{P*}_{Npl})^{\prime}\operatorname{Npl} \\ & (\operatorname{P*}_{$ |                                                               | $F_e = F_{cr} = P_{nc} / \Omega =$            | 82.53<br>38.80<br>209.11    | ksi<br>ksi<br>kips    |                        |
| $P_{\text{ntbolt}} / (\Omega \times \text{ASIF}) = \frac{72.15}{80 \text{ lt Rating}} = 37.4\%$                                                                                                                       | kips<br>OK                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bridge                                                        | $P_{nt} / \Omega =$<br>Stiffener Rating =     | 234.98<br>86.8%             | kips<br>OK            |                        |



Existing Flange Connection @ 20' CT11126F SOUTHBURY/I-84 X15/ BAGL 2014790.88 (FLANGE PLATES ANALYSIS ONLY)



520 South Main Street • Suite 2531 • Akron, Ohio 44311 • PHONE 330-572-2100 • FAX 330-572-2101

| GPD GP<br>Char, free, Echandra, Bar           |                          | GPE<br>Engineers •               | O GROUP<br>Architects • Planners                                     | Project #<br>Sheet No <u>1</u> Of_                        | : 2014790.88<br>1     | C                    | alculated By:<br>hecked By: | TTB Date:<br>TR Date: | 8/12/201-<br>8/12/201- |
|-----------------------------------------------|--------------------------|----------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|----------------------|-----------------------------|-----------------------|------------------------|
| BOLT AND BRIDGE STIF                          | FFENER CALCUL            | ATIONS                           | @ 20'                                                                |                                                           |                       |                      |                             |                       |                        |
| Moment from TNX (M) =<br>Axial from TNX (P) = |                          | 4363.15 kip<br>57.22 kip         | ft ASIF –                                                            | 1.33                                                      | C.                    |                      |                             |                       |                        |
| Inner Bolt Diameter -                         |                          | 1.25 in                          |                                                                      |                                                           |                       |                      |                             |                       |                        |
| Inner Bolt Area (Ainner) =                    |                          | 1.23 in <sup>2</sup>             | Inner Bolt C                                                         | ircle (BC <sub>inner</sub> ) =                            | 47 in                 |                      |                             |                       |                        |
| Inner Bolt MOI (In inner) =                   |                          | 0.12 in <sup>4</sup>             | Total Area (                                                         | Atotin) ==                                                | 39.27 in <sup>2</sup> |                      |                             |                       |                        |
| Number Inner Bolts (N <sub>inne</sub>         | er) —                    | 32                               | Percent Tota                                                         | Area (η <sub>in</sub> ) =                                 | 24.2%                 | Axial, Inner Bolts   | (P*ŋ <sub>in</sub> ) =      | 13.82 kips            |                        |
| Outer Bolt Diameter –                         |                          | 1.25 in                          |                                                                      |                                                           |                       |                      |                             |                       |                        |
| Outer Bolt Area (Annter) =                    |                          | 1.23 in <sup>2</sup>             | Outer Bolt C                                                         | lircle (BC <sub>outer</sub> ) =                           | 53 in                 |                      |                             |                       |                        |
| Outer Bolt MOI (In outer) =                   |                          | 0.12 in <sup>4</sup>             | Total Area (                                                         | totout) =                                                 | 39.27 jn <sup>2</sup> |                      |                             |                       |                        |
| Number Outer Bolts (Nou                       | ner) —                   | 32                               | Percent Tota                                                         | Area (nout) -                                             | 24.2%                 | Axial, Outer Bolts   | $(P^*\eta_{out}) =$         | 13.82 kips            |                        |
|                                               |                          | ( 00 in                          |                                                                      |                                                           |                       |                      |                             |                       |                        |
| Bridge Stiffener Thickness                    | E mi                     | 1.50 in                          | Connection                                                           | Bolt Hole Size -                                          | 1 21875 in            |                      |                             |                       |                        |
| Bridge Stiffener Unbracer                     | length =                 | 30.00 in                         | Net Bridge S                                                         | tiffener Area (A) =                                       | 7.17188 in            |                      |                             |                       |                        |
| Bridge Stiffener Area (A.i)                   | =                        | 9.00 in <sup>2</sup>             | Bridge Stiffe                                                        | ner Circle (BC) =                                         | 60.75 in              |                      |                             |                       |                        |
| Bridge Stiffener MOI (L)                      | -                        | 27.00 in <sup>4</sup>            | Total Area (                                                         | (, , , ) =                                                | 54 00 in <sup>2</sup> |                      |                             |                       |                        |
| Number Bridge Stiffeners                      | (N <sub>pl</sub> )       | 6                                | Percent Tota                                                         | Area (npl) =                                              | 33.2%                 | Axial, Bridge Stiffe | ener ( $P^*\eta_{pl}$ ) =   | 19.01 kips            |                        |
|                                               |                          |                                  |                                                                      |                                                           |                       |                      |                             |                       |                        |
| Bridge Stiffener Width =                      |                          | 4.00 in                          | Constitution                                                         | n-h U.J. Cim                                              | 1 31075 -             |                      |                             |                       |                        |
| Bridge Stiffener I nickness                   | 5 =                      | 1.25 In                          | Lonnection                                                           | Bolt Hole Size =                                          | 1.218/5 in            |                      |                             |                       |                        |
| Bridge Stiffener Area (A.)                    | a cengtri =              | 12.00 III                        | Deideo Stiffo                                                        | nor Circle ( $RC$ )                                       | 5.47656 in            |                      |                             |                       |                        |
| Bridge Stiffener MOI (L)                      | -                        | 5.00 m                           | Total Area (                                                         | her circle (bcp) =                                        | 30.00 1.2             |                      |                             |                       |                        |
| Number Bridge Stiffeners                      | =<br>; (N <sub>n</sub> ) | 6.07 m                           | Percent Tota                                                         | Area (n <sub>al</sub> ) =                                 | 18.5%                 | Axial, Bridge Stiffe | ener (P*n,) =               | 10.56 kips            |                        |
|                                               | <b>р</b> и               |                                  |                                                                      | e e po                                                    |                       |                      |                             |                       |                        |
| l <sub>inner</sub> =                          | 10847.24                 | in.4 (N <sub>in</sub>            | ner*Ainner*BCinner <sup>2</sup> /8                                   | + Ninner*Io, inner)                                       |                       | Brid                 | ge Stiffener Ch             | neck                  |                        |
| I <sub>outer</sub> =                          | 13792.48                 | in.4 (No                         | nter*Aouter*BCouter <sup>2</sup> /8                                  | + Nouter*Io.outer)                                        |                       | f <sub>y</sub> =     | 50                          | ksi                   |                        |
| I <sub>pl</sub> –                             | 25073.30                 | in. <sup>4</sup> (N <sub>n</sub> | *A <sub>pl</sub> *BC <sub>pl</sub> <sup>2</sup> /8+N <sub>pl</sub> * | l <sub>o.pl</sub> )                                       |                       | f <sub>u</sub> =     | 65                          | ksi                   |                        |
| I <sub>pt</sub> =                             | 13822,71                 | in.4 (Na                         | *An1*BCn12/8+Nn1*                                                    | (lo.ol)                                                   |                       | E                    | 29000                       | ksi                   |                        |
| I <sub>tot</sub> =                            | 63535.73                 | in.4 (linn                       | er + louter + lpl)                                                   |                                                           |                       | К –                  | 0.85                        |                       |                        |
|                                               |                          |                                  |                                                                      |                                                           |                       | KL/r =               | 58.890                      |                       |                        |
| P <sub>u.t.inner</sub> =                      | 23.3                     | kips (M*                         | (BCinner/2)*Ainner)/It                                               | <sub>otal</sub> - P*n <sub>in</sub> /N <sub>inner</sub> ) |                       | F <sub>e</sub> -     | 82.53                       | ksi                   |                        |
| Pu.t.outer =                                  | 26.4                     | kips (M*                         | (BCouter/2)*Aouter)/It                                               | otal - P*nout/Nouter)                                     |                       | $F_{ct} =$           | 38.80                       | ksi                   |                        |
| P <sub>u.t.pl</sub> =                         | 222.1                    | kips (M*                         | (BC <sub>pl</sub> /2)*A <sub>pl</sub> )/I <sub>total</sub> -         | P*n <sub>pl</sub> /N <sub>pl</sub> )                      |                       | $P_{nc} / \Omega =$  | 209.11                      | kips                  |                        |
| P <sub>u.c.pl</sub> -                         | 228.4                    | kips (M*                         | (BCpl/2)*Apl)/Itotal +                                               | - P*η <sub>pl</sub> /N <sub>pl</sub> )                    |                       | $P_{nt} / \Omega =$  | 233.09                      | kips                  |                        |
| P <sub>u.t.pl</sub> =                         | 123,1                    | kips (M*                         | (BCpl/2)*Apl)/Itotal -                                               | P*ŋ <sub>pi</sub> /N <sub>pi</sub> )                      | Bridge                | Stiffener Rating -   | 81.9%                       | OK                    |                        |
| Pu.c.pl =                                     | 126.7                    | kips (M*                         | (BCpl/2)*Apl)/Itotal +                                               | - P*η <sub>pl</sub> /N <sub>pl</sub> )                    |                       |                      |                             |                       |                        |
| P <sub>ntbolt</sub> / (Ω x ASIF) =            | 72.15                    | kips                             |                                                                      |                                                           |                       |                      |                             |                       |                        |
| Bolt Rating -                                 | 36.5%                    | OK                               |                                                                      |                                                           |                       |                      |                             |                       |                        |

## APPENDIX E

Anchor Rod & Base Plate Analysis



### Anchor Rod and Base Plate Stresses CT11126F SOUTHBURY/ I-84 X15/ BAGL 2014790.88



\*Above reactions have been adjusted due to consideration of modifications. See attached hand calculations for determination of anchor rod forces used in the analysis below.

| Anchor Rods                  |       |                 |  |  |  |
|------------------------------|-------|-----------------|--|--|--|
| Number of Rods =             | 52    | 1               |  |  |  |
| Type =                       | Bolt  |                 |  |  |  |
| Rod Ultimate Strength (Fu) = | 150   | ksi             |  |  |  |
| ASIF =                       | 1.333 |                 |  |  |  |
| Rod Circle =                 | 67    | in              |  |  |  |
| Rod Diameter =               | 1.25  | in              |  |  |  |
| Area =                       | 1.23  | in <sup>2</sup> |  |  |  |
| Max Tension on Rod =         | 54.16 | kips            |  |  |  |
| Max Compression on Rod =     | 56.35 | kips            |  |  |  |
| Allow. Rod Force =           | 80.99 | kips            |  |  |  |
| Anchor Rod Capacity =        | 66.9% | OK              |  |  |  |

| Stiffeners                   |           |      |
|------------------------------|-----------|------|
| Configuration ==             | Every Rod |      |
| Thickness =                  | 0.625     | in   |
| Width =                      | 4.5       | in   |
| Notch =                      | 0.5       | in   |
| Height =                     | 8         | in   |
| Stiffener Strength $(F_v) =$ | 36        | ksi  |
|                              |           |      |
| Weld Info. Known? =          | Yes       |      |
| Vertical Weld Size =         | 0.375     | in   |
| Horiz. Weld Type =           | Fillet    |      |
|                              |           |      |
|                              |           |      |
| Fillet Size =                | 0.375     | in   |
| Weld Strength =              | 70        | ksi  |
| Stiffener Vertical Force =   | 33.15     | kips |
| Vert. Weld Capacity =        | 39.6%     | kips |
| Horiz. Weld Capacity =       | 61.6%     | kips |
| Stiffener Capacity =         | 80.3%     | kips |
| Controlling Capacity =       | 80.3%     | OK   |

GPD Round Base Plate Stress (Rev F) - V1.07

| e                     |          |     |
|-----------------------|----------|-----|
| Base Pla              | te       |     |
| Location =            | External |     |
| Plate Strength (Fy) = | 36       | ksi |
| Outside Diameter =    | 69.75    | in  |
| Plate Thickness =     | 1.25     | in  |
|                       |          |     |
| b =                   | 3.42     | in  |
| Le =                  | 4.50     | in  |
|                       |          |     |
| fb =                  | 31.79    | ksi |
| Fb =                  | 36       | ksi |
| BP Capacity =         | 88.3%    | OK  |

100.0%

Acceptable Stress Ratio

| Pole                  |       |     |  |  |  |  |  |
|-----------------------|-------|-----|--|--|--|--|--|
| Pole Diameter =       | 60    | in  |  |  |  |  |  |
| Number of Sides =     | Round |     |  |  |  |  |  |
| Thickness =           | 0.625 | in  |  |  |  |  |  |
| Pole Yield Strength = | 42    | ksi |  |  |  |  |  |

520 South Main Street • Suite 2531 • Akron, Ohio 44311• PHONE 330-572-2100 • FAX 330-572-2101

| GPD GROUPs                                   | GPD GROUP                         | Project #: 2014790.88 | Calculated By: | TTB | Date: | 8/12/2 |
|----------------------------------------------|-----------------------------------|-----------------------|----------------|-----|-------|--------|
| GLUG, Fyle, Stitzmer, Burns & DelKnein, Jrc. | Engineers • Architects • Planners | Sheet No1Of1          | Checked By:    | TR  | Date: | 8/12/2 |

### MODIFIED ANCHOR ROD CALCULATIONS

\_

| Moment from RISA (M) =              | - 51          | 40.27 kip-ft         | Code                            | TIA/EIA-222-F                |                       |                                          |            |
|-------------------------------------|---------------|----------------------|---------------------------------|------------------------------|-----------------------|------------------------------------------|------------|
| Axial from RISA (P) = $\frac{1}{2}$ |               | 70.20 kip            | ASIF =                          | 1.33                         | 1009                  |                                          |            |
| Shear from RISA $(v) =$             |               | 29.02 kib            | Allowable Stre                  | SS Ralio =                   | 100 %                 |                                          |            |
| Inner Bolt Diameter =               |               | 1.25 in              |                                 |                              |                       |                                          |            |
| Number Inner Bolts (Ninr            | ner) =        | 52                   | Inner Bolt Circ                 | le (BC <sub>inner</sub> ) =  | 67 in                 |                                          |            |
| Inner Bolt Area (Ainner) =          |               | 0.97 in <sup>2</sup> | Total Area (Ato                 | <sub>t.in</sub> ) =          | 50.39 in <sup>2</sup> | Axial, Inner Bolts ( $P^*\eta_{in}$ ) =  | 57.04 kips |
| Inner Bolt MOI (Ioinner) =          |               | 0.12 in <sup>4</sup> | Percent Total /                 | Area $(\eta_{in}) =$         | 81.3%                 |                                          |            |
|                                     |               |                      |                                 |                              |                       |                                          |            |
| Outer Bolt Diameter =               |               | 1.25 in              |                                 |                              |                       |                                          |            |
| Number Outer Bolts (Not             | uter) =       | 12                   | Outer Bolt Cire                 | cle (BC <sub>outer</sub> ) = | 74 in                 |                                          |            |
| Outer Bolt Area (Aouter) =          |               | 0.97 in <sup>2</sup> | Total Area (A <sub>to</sub>     | t.out) =                     | 11.63 in <sup>2</sup> | Axial, Outer Bolts ( $P^*\eta_{out}$ ) = | 13.16 kips |
| Outer Bolt MOI (Io.outer) =         | -             | 0.12 in <sup>4</sup> | Percent Total /                 | Area $(\eta_{out}) =$        | 18.8%                 |                                          |            |
|                                     |               |                      |                                 |                              |                       |                                          |            |
| l <sub>inner</sub> =                | 28280.20 in.4 | (Ninner*/            | inner*BCinner <sup>2</sup> /8+  | Ninner*Io.inner)             |                       |                                          |            |
| l <sub>outer</sub> =                | 7960.80 in.4  | (Nouter*/            | vouter*BCouter <sup>2</sup> /8+ | Nouter*10.outer)             |                       |                                          |            |
| l <sub>tot</sub> =                  | 36241.00 in.4 | (Iinner +            | l <sub>outer</sub> )            |                              |                       |                                          |            |
|                                     |               |                      |                                 |                              |                       |                                          |            |
| $F_{inner} =$                       | 56.35 kips    | (M*(BC               | nner/2)*Ainner)/Itota           | $+ P^*\eta_{in}/N_{inner}$   |                       |                                          |            |
| F <sub>outer</sub> =                | 62.12 kips    | (M*(BC,              | outer/2)*Aouter)/Itota          | $+ P*\eta_{out}/N_{outer})$  |                       |                                          |            |
|                                     |               |                      |                                 |                              |                       |                                          |            |
| Rnt.outer / $\Omega =$              | 68.2 kips     | i (1/3 * A           | SIF * Fu * Agros                | s)                           |                       |                                          |            |
|                                     |               |                      |                                 |                              |                       |                                          |            |

Modified Anchor Rod Rating % = 91.1% OK

## APPENDIX F

Foundation Analysis

# Pile Analysis

# CT11126F SOUTHBURY/I-84 X15/BAGL

2014790.88

| M          | 5140.27  | k-ft            |                | Pile Ultimate Capacities |                   |           |        |        |  |
|------------|----------|-----------------|----------------|--------------------------|-------------------|-----------|--------|--------|--|
| Ρ          | 145.20   | k               |                | Existing                 |                   |           |        |        |  |
| V          | 39.65    | k               |                | Compressio               | Compression 150 k |           |        |        |  |
| M tot      | 5358.345 | k-ft            |                | Tension                  |                   | 100 k     |        |        |  |
| M tot 45   | 3788.922 | k-ft            |                |                          |                   |           |        |        |  |
| d          | 5.5      | ft              |                | Modificatio              | n                 |           |        |        |  |
| h          | 46       | ft              |                | Compressio               | Compression 100 k |           |        |        |  |
| Vconc      | 11638    | ft <sup>3</sup> |                | Tension                  |                   | 100 k     |        |        |  |
| wconc      | 1745.7   | k               |                |                          |                   |           |        |        |  |
|            |          |                 |                |                          |                   |           |        |        |  |
| Wequip     | 75       | k               | (weight of the | equipment above tl       | he pad)           |           |        |        |  |
|            |          |                 |                |                          |                   |           |        |        |  |
| n existing | 24       |                 |                |                          |                   |           |        |        |  |
| n mod      | 48       |                 |                |                          |                   |           |        |        |  |
|            |          |                 |                | Total force              | on piles          |           |        |        |  |
|            |          |                 |                | Х                        |                   |           | 45     |        |  |
|            | n        | x (ft)          | y (ft)         | Pc (k)                   | Pt (k)            | Mu (k-ft) | Pc (k) | Pt (k) |  |
| Existing   | 4        | 0               | 0              | 26.26                    | 26.26             | 0.00      | 26.26  | 26.26  |  |
|            | 10       | 6               | 6              | 28.28                    | 24.25             | 848.30    | 29.11  | 23.41  |  |
|            | 10       | 12              | 12             | 30.29                    | 22.23             | 1817.46   | 31.96  | 20.57  |  |
|            | 24       |                 |                |                          |                   |           |        |        |  |
|            |          |                 |                |                          |                   |           |        |        |  |
| Mod        | 2        | 0               | 0              | 26.26                    | 26.26             | 0.00      | 26.26  | 26.26  |  |
|            | 4        | 3.5             | 3.5            | 27.44                    | 25.09             | 192.06    | 27.92  | 24.60  |  |
|            | 4        | 7               | 7              | 28.61                    | 23.91             | 400.58    | 29.59  | 22.94  |  |
|            | 4        | 10.5            | 10.5           | 29.79                    | 22.74             | 625.54    | 31.25  | 21.28  |  |
|            | 4        | 14              | 14             | 30.96                    | 21.56             | 866.95    | 32.91  | 19.62  |  |
|            | 4        | 17.5            | 17.5           | 32.14                    | 20.39             | 1124.81   | 34.57  | 17.95  |  |
|            | 26       | 21              | 21             | 33.31                    | 19.21             | 9094.32   | 36.23  | 16.29  |  |
|            | 48       |                 |                |                          |                   |           |        |        |  |
|            |          |                 |                |                          |                   |           |        |        |  |

| <b>Pile Capacities</b> | Pile Capacities |       |  |  |  |
|------------------------|-----------------|-------|--|--|--|
| Existing               |                 | Mu    |  |  |  |
| Compression            | 40.4%           | а     |  |  |  |
| Tension                | 52.5%           | d     |  |  |  |
|                        |                 | Phi f |  |  |  |
| <b>Modification</b>    |                 |       |  |  |  |
| Compression            | 66.6%           | Capa  |  |  |  |
| Tension                | 52.5%           |       |  |  |  |
| Tension                | 52.5%           |       |  |  |  |

| Reinforcer | ment Capacity |
|------------|---------------|
| Mu         | 19461.03 k-ft |
| а          | 4.262575 in   |
| d          | 60.885 in     |
| Phi Mn     | 26439.17 k-ft |
| Capacity   | 73.6%         |

|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Network                             | Moderni              | zation RFDS              | v3.0                                  |                  | ·· T ·· Mobile-       |
|--------------------|----------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------|--------------------------|---------------------------------------|------------------|-----------------------|
| Site II            | D (                              | CT11126E        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | Latitu               | de                       |                                       |                  |                       |
| Site N             | lame                             | 51111201        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | Long<br>Site 1       | tude<br>vpe Struct       | ured- Non Building                    |                  |                       |
| Addre              | ess 2                            | 31 Kettleton Ro | d, Southbury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | Site C               | lass Mono                | pole                                  |                  |                       |
| Marke              | ət (                             | onnecticut      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | Land                 | ord I-mor                | blie                                  |                  |                       |
| C                  | onfiguration                     | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | Mark                 | 4 DE                     | Ap                                    | provals          |                       |
| 7                  | 010                              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | Mark                 | at Development           |                                       |                  |                       |
| 1                  | <b>U4G</b>                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | IPEDS                | Pavision                 | · · · · · · · · · · · · · · · · · · · |                  | Data 07/14/2014       |
|                    |                                  | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | RFDS                 | Final                    |                                       |                  | Date 07/14/2014       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                      |                          |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | Site Info            | rmation                  |                                       |                  |                       |
|                    |                                  | Existing        | g Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                      |                          | Propos                                | ed Configuration |                       |
|                    | 1<br>GSM                         | 2               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                   | Cabinet #            | 1<br>GSM/UMTS/LTE        | 2                                     | 3                | 4                     |
|                    | \$8000                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | Cabinet type         | 6102                     |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | CBU<br>DUW30         |                          |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | DUL20                |                          |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | DUG20<br>DU\$31      | 1                        |                                       |                  |                       |
|                    | 3                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | RBS6601              |                          |                                       |                  |                       |
|                    | 3                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | RU22 B4              | -                        |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | RUS01 B2<br>RUS01 B4 | 6                        |                                       |                  |                       |
|                    |                                  | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | 1000104              |                          |                                       |                  |                       |
|                    |                                  |                 | Relocate cabinet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments<br>Swap cabinet for Ericss | on 6102              |                          |                                       |                  |                       |
|                    |                                  |                 | Add cabinet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                      |                          |                                       |                  |                       |
|                    |                                  | X               | Swap cabinet<br>Remove cabinet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                      |                          |                                       |                  |                       |
|                    |                                  |                 | Make cabinet dark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                      |                          |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                      |                          |                                       |                  |                       |
| -                  |                                  |                 | and the second sec |                                     | ALPHA - Sc           | ope of Work              |                                       | and the second   | and the second second |
|                    | Add now mount                    |                 | Add DDI I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Add I TE 700 passing at             | tonno Add oney       | dd BBUC on ground Add    | amort Piece T                         |                  |                       |
| X                  | Relocate antenn                  | a X             | Swap existing RRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Add LTE 700 passive al              | itenna, Add coax /   | Add RRUS OF ground, Add  | Silidit Did5-1                        |                  |                       |
| X                  | Add antenna<br>Swan antenna      |                 | Remove RRU<br>Consolidate coax cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                      |                          |                                       |                  |                       |
| $\square$          | Remove antenn                    | a x             | Add coax cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                      |                          |                                       |                  |                       |
| H                  | Add TMA<br>Swap TMA              |                 | Add liber cables<br>Add hybrid combiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                   |                      |                          |                                       |                  |                       |
|                    | Remove TMA                       |                 | Add filter combiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                      |                          |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                      |                          |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | BETA - Sco           | pe of Work               |                                       |                  |                       |
| x                  | Add new mount                    | x               | Add RRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Add LTE 700 passive an              | tenna. Add coax.     | dd RRUS on ground. Add   | smart Bias-T                          |                  |                       |
| x                  | Add antenna                      | ia              | Remove RRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                      |                          |                                       |                  |                       |
| $\square$          | Swap antenna                     |                 | Consolidate coax cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                      |                          |                                       |                  |                       |
|                    | Add TMA                          |                 | Add fiber cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                      |                          |                                       |                  |                       |
| H                  | Swap TMA<br>Remove TMA           |                 | Add hybrid combiner<br>Add filter combiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                      |                          |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                      |                          |                                       | -                |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | GAMMA - Sc           | ope of Work              |                                       |                  |                       |
|                    | Add new mount                    |                 | Add RRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Add LTF 700 passive or              | tenna, Add coay      | dd RRUS on around Add    | smart Bias-T                          |                  |                       |
| ^                  | Relocate antenn                  | a               | Swap existing RRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nad circ rov passive di             | norma, muu ovax. /   | aa riiroo on grouna. Add | onan Dias-1                           |                  |                       |
| x                  | Add antenna<br>Swap antenna      | $\square$       | Remove RRU<br>Consolidate coax cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                      |                          |                                       |                  |                       |
|                    | Remove antenna                   | a X             | Add coax cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                      |                          |                                       |                  |                       |
| $\square$          | Add TMA<br>Swap TMA              |                 | Add fiber cables<br>Add hybrid combiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                      |                          |                                       |                  |                       |
|                    | Remove TMA                       |                 | Add filter combiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                      |                          |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                      | no of Mork               |                                       |                  |                       |
|                    |                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | DELTA - SCO          | ре от могк               |                                       |                  |                       |
|                    | Add new mount<br>Relocate antenn | <u> </u>        | Add RRU<br>Swap existing RPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                      |                          |                                       |                  |                       |
| $\square$          | Add antenna                      | •  -            | Remove RRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                      |                          |                                       |                  |                       |
| $\square$          | Swap antenna<br>Remove antenna   | , P             | Consolidate coax cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]                                   |                      |                          |                                       |                  |                       |
|                    | Add TMA                          |                 | Add fiber cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                      |                          |                                       |                  |                       |
| $\left  - \right $ | Swap TMA<br>Remove TMA           |                 | Add hybrid combiner<br>Add filter combiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                      |                          |                                       |                  |                       |
|                    |                                  | hannel          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                      |                          |                                       |                  |                       |



# EXHIBIT C



# RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

**T-Mobile Existing Facility** 

Site ID: CT11126F

Southbury Recycling Facility 231 Kettletown Road Southbury, CT 06488

August 21, 2014

| Site Compliance    | e Summary |
|--------------------|-----------|
| Compliance Status: | COMPLIANT |
| Site total MPE% of |           |
| FCC general public | 31.07 %   |
| allowable limit:   |           |



August 21, 2014

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11126F - Southbury Recycling Facility

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **231 Kettletown Road**, **Southbury**, **CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm2). The number of  $\mu$ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm2). The general population exposure limit for the 700 MHz Band is 567  $\mu$ W/cm2, and the general population exposure limit for the PCS and AWS bands is 1000  $\mu$ W/cm2. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.



<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potential for exposure and can exercise control over the potential for exposure and can exercise control over the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

## CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **231 Kettletown Road, Southbury, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
- 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
- 5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.



- 6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antennas used in this modeling are the Ericsson RR90\_17\_02DP for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-A1M for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson RR90\_17\_02DP has a maximum gain of 14.4 dBd at its main lobe. The Commscope LNX-6515DS-A1M has a maximum gain of 15.5 dBd at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antenna mounting height centerlines of the proposed antennas are 195 feet above ground level (AGL) for the Andrew RR90\_17\_02DP and 193 feet above ground level (AGL) for the Commscope LNX-6515DS-A1M.
- Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.



### **T-Mobile Site Inventory and Power Data**

| Sector:         | A                                 | Sector:         | В                                 | Sector:         | С                                 |
|-----------------|-----------------------------------|-----------------|-----------------------------------|-----------------|-----------------------------------|
| Antenna #:      | 1                                 | Antenna #:      | 1                                 | Antenna #:      | 1                                 |
| Make / Model:   | Andrew<br>RR90_17_02DP            | Make / Model:   | Andrew<br>RR90_17_02DP            | Make / Model:   | Andrew<br>RR90_17_02DP            |
| Gain:           | 14.4 dBd                          | Gain:           | 14.4 dBd                          | Gain:           | 14.4 dBd                          |
| Height (AGL):   | 195                               | Height (AGL):   | 195                               | Height (AGL):   | 195                               |
| Frequency Bands | 1900 MHz(PCS) /<br>2100 MHz (AWS) | Frequency Bands | 1900 MHz(PCS) /<br>2100 MHz (AWS) | Frequency Bands | 1900 MHz(PCS) /<br>2100 MHz (AWS) |
| Channel Count   | 6                                 | Channel Count   | 6                                 | # PCS Channels: | 6                                 |
| Total TX Power: | 90                                | Total TX Power: | 90                                | # AWS Channels: | 90                                |
| ERP (W):        | 3,505.81                          | ERP (W):        | 3,505.81                          | ERP (W):        | 3,505.81                          |
| Antenna A1 MPE% | 0.67                              | Antenna B1 MPE% | 0.67                              | Antenna C1 MPE% | 0.67                              |
| Antenna #:      | 2                                 | Antenna #:      | 2                                 | Antenna #:      | 2                                 |
| Make / Model:   | Commscope LNX-<br>6515DS-A1M      | Make / Model:   | Commscope LNX-<br>6515DS-A1M      | Make / Model:   | Commscope LNX-<br>6515DS-A1M      |
| Gain:           | 15.5 dBd                          | Gain:           | 15.5 dBd                          | Gain:           | 15.5 dBd                          |
| Height (AGL):   | 195                               | Height (AGL):   | 195                               | Height (AGL):   | 195                               |
| Frequency Bands | 700 Mhz                           | Frequency Bands | 700 Mhz                           | Frequency Bands | 700 Mhz                           |
| Channel Count   | 1                                 | Channel Count   | 1                                 | Channel Count   | 1                                 |
| Total TX Power: | 30                                | Total TX Power: | 30                                | Total TX Power: | 30                                |
| ERP (W):        | 470.23                            | ERP (W):        | 470.23                            | ERP (W):        | 470.23                            |
| Antenna A2 MPE% | 0.23                              | Antenna B2 MPE% | 0.23                              | Antenna C2 MPE% | 0.23                              |

| Site Composite MPE% |         |  |  |  |
|---------------------|---------|--|--|--|
| Carrier             | MPE%    |  |  |  |
| T-Mobile            | 2.70    |  |  |  |
| AT&T                | 10.04 % |  |  |  |
| Verizon Wireless    | 13.49 % |  |  |  |
| Sprint              | 4.84 %  |  |  |  |
| Site Total MPE %:   | 31.07 % |  |  |  |

| T-Mobile Sector 1 Total: | 0.90 %  |  |
|--------------------------|---------|--|
| T-Mobile Sector 2 Total: | 0.90 %  |  |
| T-Mobile Sector 3 Total: | 0.90 %  |  |
|                          |         |  |
| Site Total:              | 31.07 % |  |

Tel: (781) 273.2500



### Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

| T-Mobile Sector         | Power Density Value (%) |
|-------------------------|-------------------------|
| Sector 1:               | 0.90 %                  |
| Sector 2:               | 0.90 %                  |
| Sector 3 :              | 0.90 %                  |
| T-Mobile Total:         | 2.70 %                  |
| Site Total:             | 31.07 %                 |
| Site Compliance Status: | COMPLIANT               |

The anticipated composite MPE value for this site assuming all carriers present is 31.07% of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan **RF Engineering Director** 

**EBI Consulting** 21 B Street Burlington, MA 01803

Tel: (781) 273.2500

Fax: (781) 273.3311