August 13 ${ }^{\text {th }}, 2018$

Melanie Bachman, Executive Director
Connecticut Siting Council
10 FranklinSquare
New Britain, CT 06051

> RE: Notice of Exempt Modification - Antenna Swap for wireless facility located at 231 KETTLETOWN ROAD, SOUTHBURY, CONNECTICUT - CT03XC016 (lat. $41^{\circ} 28^{\prime} 16.3^{\prime \prime} \mathrm{N}$, long. $\left.73^{\circ} 12^{\prime} 20.0^{\prime \prime} \mathrm{W}\right)$

Dear Ms. Bachman:

Sprint Spectrum, LP ("Sprint") currently maintains wireless telecommunications antennas at the (165 -foot level) on an existing (190-foot Monopole Tower) at the above-referenced address. The property is owned by The Town of Southbury, and the tower is owned by Phoenix Tower International.

Sprint's proposed work involves antenna replacement and tower work. Sprint intends to replace six (6) antennas, and add twelve (12) new RRHs onto the tower. All the proposed work is contained within the existing fenced area. Please refer to the attached drawings for site plans prepared by Infinigy Engineering.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. $\S 16-50 j-72(b)$. In accordance with R.C.S.A. $\S 16-50 j-73$, a copy of this letter is being sent to JEFF MANVILLE, FIRST SELECTMAN and DeLORIS CURTIS, LAND USE ADMINISTRATOR of the Town of Southbury. A copy of this letter is also being sent to Judy Vega the manager for Phoenix Tower International who manages the tower and a letter is already being sent to the Town of Southbury, First Selectman Jeff Manville who owns the land.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b).

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The antennas work is a one-for-one replacement of facility components.
3. The proposed modifications will include the addition of ground base equipment as depicted on the attached drawings; however, the proposed equipment will not require an extension of the site boundaries.
4. The proposed modifications will not increase noise levels at the facility by six decibels or more.
5. The additional ground based equipment will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b).

If you have any questions or require any additional information regarding this request, please do not hesitate to give me a call at (518) 350-4222 or email me to aperkowski@airosmithdevelopment.com

Kind Regards,

Arthur Perkowski
Airosmith Development Inc.
32 Clinton Street
Saratoga Springs, NY 12866
518-306-1711 desk \& fax
518-871-3707 cell
aperkowski@airosmithdevelopment.com

Attachment

CC: JEFF MANVILLE (FIRST SELECTMAN, Southbury, CT)
Judy Vega (Phoenix Tower International)
DeLORIS CURTIS (LAND USE ADMINISTRATOR, Southbury, CT)

231 KETTLETOWN ROAD

```
Location 231 KETTLETOWN ROAD Mblu 35/ 43/ 23/ /
    Acct# 00369500
Assessment $264,210
    PID 4358
```

Owner SOUTHBURY TOWN OF

Appraisal \$377,430

Building Count 1

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2017	\$85,880	\$291,550	\$377,430
Assessment			
Valuation Year	Improvements	Land	Total
2017	\$60,120	\$204,090	\$264,210

Owner of Record

Owner	SOUTHBURY TOWN OF
Co-Owner	
Address	501 MAIN ST SO
	SOUTHBURY, CT 06488

Sale Price	$\$ 0$
Certificate	
Book \& Page	$112 / 334$
Sale Date	$03 / 15 / 1973$
Instrument	25

Instrument 25

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrument	Sale Date
SOUTHBURY TOWN OF	\$0		112/ 334	25	03/15/1973

Building Information

Building 1 : Section 1

Year Built:		
Living Area:	0	
Replacement Cost:	\$0	
Building Percent		
Good:		
Replacement Cost		
Less Depreciation:	\$0	
Building Attributes		
Field		Description
Style		Outbuildings
Model		
Grade:		
Stories		
Occupancy		
Exterior Wall 1		
Exterior Wall 2		
Roof Structure		
Roof Cover		

Interior Wall 1	
Interior Wall 2	
Interior FIr 1	
Interior FIr 2	
Heat Fuel	
Heat Type:	
AC Percent	
Total Bedrooms:	
Full Bthrms:	
Half Baths:	
Extra Fixtures	
Total Rooms:	
Bath Style:	
Kitchen Style:	
Num Kitchens	
Pln FPL:	
Det FPL:	
Gas Fireplace(s)	
\% Attic Fin	
LF Dormer	
Foundation	
Bsmt Gar(s)	
Bsmt \%	
SF FBM	
Fin Bsmt Qual	

Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

Land Use	
Use Code	929
Description	Exempt Comm Vac OB
Zone	R-60
Neighborhood	C200
Alt Land Appr No Category	

Land Line Valuation

Size (Acres) 9.95
Frontage 0
Depth 0
Assessed Value $\$ 204,090$
Appraised Value $\$ 291,550$

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
SHD1	Shed	FR	Frame	180 S.F.	\$1,350	1
SHD1	Shed	FR	Frame	128 S.F.	\$960	1
SHD1	Shed	FR	Frame	208 S.F.	\$1,560	1
SHD1	Shed	FR	Frame	168 S.F.	\$1,260	1
PAV1	Paving	AS	Asphalt	64600 S.F.	\$80,750	1

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2017	\$85,880	\$291,550	\$377,430
2016	\$85,880	\$291,550	\$377,430
2012	\$85,880	\$291,550	\$377,430

Assessment			
Valuation Year	Improvements	Land	Total
2017	\$60,120	\$204,090	\$264,210
2016	\$60,120	\$204,090	\$264,210
2012	\$60,120	\$204,090	\$264,210

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Town of Southbury Connecticut - Assessment Parcel Map

Parcel: 35-43-23
Location: 231 KETTLETOWN ROAD

EBI Consulting
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT03XC016

Southbury- Temp Site
231 Kettletown Road
Southbury, CT 06488
August 1, 2018
EBI Project Number: 6218005247

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	6.36%

EBI Consulting
environmental | engineering | due diligence

August 1, 2018
SPRINT
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495

Emissions Analysis for Site: CT03XC016 - Southbury- Temp Site

EBI Consulting was directed to analyze the proposed SPRINT facility located at $\mathbf{2 3 1}$ Kettletown Road, Southbury, CT, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

General population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 850 MHz Band is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

EBI Consulting

environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at $\mathbf{2 3 1}$ Kettletown Road, Southbury, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 50 Watts per Channel.
3) 5 CDMA channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
4) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

EBI Consulting

environmental | engineering | due diligence
6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
7) For the following calculations, the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antennas used in this modeling are the Commscope NNVV-65B-R4 and the RFS APXVTM14-ALU-I20 for transmission in the $850 \mathrm{MHz}, 1900 \mathrm{MHz}(\mathrm{PCS})$ and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antenna mounting height centerlines of the proposed panel antennas are $\mathbf{1 6 5}$ feet above ground level (AGL) for Sector A, $\mathbf{1 6 5}$ feet above ground level (AGL) for Sector B and $\mathbf{1 6 5}$ feet above ground level (AGL) for Sector C.
10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting

environmental | engineering | due diligence

SPRINT Site Inventory and Power Data by Antenna

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	Commscope NNVV-65B-R4	Make / Model:	Commscope NNVV-65B-R4	Make / Model:	Commscope NNVV-65B-R4
Gain:	12.75 / 15.05 dBd	Gain:	12.75 / 15.05 dBd	Gain:	12.75 / 15.05 dBd
Height (AGL):	165 feet	Height (AGL):	165 feet	Height (AGL):	165 feet
Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) \end{gathered}$
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	280 Watts	Total TX Power(W):	280 Watts	Total TX Power(W):	280 Watts
ERP (W):	7,378.61	ERP (W):	7,378.61	ERP (W):	7,378.61
Antenna A1 MPE\%	1.29 \%	Antenna B1 MPE\%	1.29 \%	Antenna C1 MPE\%	1.29 \%
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	RFS APXVTM14-ALU- I20	Make / Model:	RFS APXVTM14-ALU- I20	Make / Model:	RFS APXVTM14-ALU- I20
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	165 feet	Height (AGL):	165 feet	Height (AGL):	165 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE\%	0.89 \%	Antenna B2 MPE\%	0.89 \%	Antenna C2 MPE\%	0.89 \%

Site Composite MPE\%	
Carrier	MPE \%
SPRINT - Max per sector	$\mathbf{2 . 1 8} \%$
AT\&T	2.03%
MetroPCS	0.24%
Verizon Wireless	1.46%
T-Mobile	0.45%
Site Total MPE \%:	$\mathbf{6 . 3 6} \%$

SPRINT Sector A Total:	2.18%
SPRINT Sector B Total:	2.18%
SPRINT Sector C Total:	2.18%
Site Total:	

EBI Consulting
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (\%)
Sector A:	2.18%
Sector B:	2.18%
Sector C:	2.18%
SPRINT Maximum	2.18%
MPE \% (per sector):	
Site Total:	6.36%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{6 . 3 6 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

PHOENIX TOWER
INTERNATIONAL
Phoenix Tower International 1001 Yamato Road, Suite 105
Boca Raton, FL. 33431
(561) 843-8416

GPD Engineering and Architecture Professional Corporation

Todd Rasey
520 South Main Street, Suite 2531
Akron, OH 44311
(330) 572-2198
trasey@gpdgroup.com

GPD\# 2018791.CT1002.04
May 18, 2018

RIGOROUS STRUCTURAL ANALYSIS REPORT

SITE DESIGNATION:

ANALYSIS CRITERIA:

PTI Site \#:
PTI Site Name:

Sprint Site \#:

Codes:

US-CT-1002
Kettleton

CT03XC016

TIA-222-G, 2012 IBC \& 2016 CSBC
120-mph Ultimate (3-second gust) with 0 " ice 93-mph Nominal (3-second gust) with 0 " ice 50-mph Nominal (3-second gust) with $3 / 4^{\prime \prime}$ ice

231 Kettleton Road, Southbury, CT 6488, New Haven County
 196' Modified PiROD Monopole

Mr. David Rodriguez,
GPD is pleased to submit this Rigorous Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	82.1%	Pass
Foundation Ratio with Proposed Equipment:	65.5%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and Phoenix Tower International. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

Christopher J. Scheks, P.E.
Connecticut \#: 0030026

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by Sprint to Phoenix Tower International. This report was commissioned by Mr. David Rodriguez of Phoenix Tower International.

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3 -second gust wind speed of 120 mph converted to a nominal 3 -second gust wind speed of 93 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception \#5 of Section 1609.1.1. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II were used in this analysis.

Note: In order for the analysis results to be valid for the proposed, existing, and reserved loading in Appendix A, the modifications referenced in the design drawings by GPD (Project \#: 2010293.91, dated 9/14/10 and Project \#: 2013792.15 Rev. A, dated $3 / 11 / 14$) must be installed. Modifications consisted of reinforcing the pole from $0^{\prime}-139^{\prime}$, adding stiffener plates across the flanges from $20^{\prime}-120^{\prime}$, adding additional anchor rods, and installing a foundation collar with piles to the existing foundation.

TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Monopole	77.3%	Pass
Flange Connections	82.1%	Pass
Base Plate	67.2%	Pass
Anchor Rods	64.4%	Pass
Foundation	65.5%	Pass

ANALYSIS METHOD

tnxTower (Version 7.0.7.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendices B \& F. The following table details the information provided to complete this structural analysis. This analysis is based solely on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
Collocation Application	PTI Collocation Application, dated 3/12/2018	PTI
Tower Design	PiROD, File \#: A-115080, dated 3/26/1999	GPD
Foundation Design	PiROD, File \#: A-115080, dated 3/26/1999	GPD
Geotechnical Report	Dr. Clarence Welti, dated 10/7/1998	GPD
Previous Structural Analysis	GPD Project \#: 2016791.1002.01, dated 9/16/2016	GPD
Modification Drawings	GPD Project \#: 2010293.91, dated 9/14/2010	GPD
Modification Drawings	GPD Project \#: 2013792.15 Rev. A, dated 3/11/2014	GPD

ASSUMPTIONS

This rigorous structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
10. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
11. All existing loading was obtained from the provided collocation application, the previous structural analysis by GPD (Project \#: 2017791.CT1002.02, dated 9/15/2017) and site photos and is assumed to be accurate.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

General Info	
Sise Name	Kettleton
Site Number	Us-CT-1002
Proposed Carrier	Sprit
Pate of Analysis	May 18,2018
Company Pertorming Analysis	GPD

The information contained in this summary report is not to be used independently from the PE
stamped tower analysis.

Tower Info	Description	Date
Tower Type (G, SST, MP)	MP	
Tower Height (top of steel AGL)	${ }^{196}$	
Tower Manufacturer	PiROD	
Tower Model	n/a	
Tower Design	PiROD, File \#: A-115080	3/26/1999
Foundation Design	PiROD, File \#: A-115080	3/26/1999
Geotech Report	Dr. Clarence Welti	107/1998
Previous Structural Analysis	GPD Project \#: 2017791. CT1002.02	9/15/2017
Modification Drawings	GPD Project \#: 2010293.91	9/14/2010
Modification Drawings	GPD Project \#: 2013792.15 Rev . A	3/11/2014
Foundation Mapping	n/a	

Design Parameters	
Design Code Used	$\begin{gathered} \text { TIA-222-G } \\ 2012 \text { IBC \& } 2016 \text { CSBC } \end{gathered}$
Location of Tower (County, Staie)	New Haven, CT
Nominal Wind Speed (mph)	93 Nominal (3-sec gust)
lce Thickness (in)	0.75
Risk Category (1, II, III)	1
Exposure Category (B, C, D)	B
Topographic Category (1 to 5)	1

T-Mobile Future Loading Information	
Existing/Proposed Area (in')	11,692
Future Area (n^{2})	10,308
Total Wind Area (in ${ }^{2}$)	22,000
Does T-Mobie's Loading Exceed 22,000 in 2 ?	No
If yes, by how much? (in ${ }^{2}$)	n/a

Steel Yield Strength (ksi) Monopole Shatt 65 Base Plate 50 Anchor Rods 75

Existing / Reserved Loading

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount Height } \\ (\mathrm{ft}) \end{gathered}$	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Siz	$\begin{gathered} \text { Attachment } \\ \text { Int./Ext. } \end{gathered}$
T-Mobile	195	195	3	Panel	Andrew	RR90-17-02DP	110/230/350	1	Unknown	LP Platiorm	${ }^{12}$	Unknown	1-5/8"	Internal
T-Mobile	195	195	3	Panel	Commscope	LNX-6515DS-VTM	110/230/350			on the same mount	1	Hybrid Cables	1-5/8"	Internal
T-Mobile	195	195	3	Panel	Ericsson	AIR 33	110/230/350			on the same mount				
T-Mobile	195	195	3	TMA	Ericsson	KRY 11271				on the same mount				
T-Mobile	195	195	1	Surge	Raycap	DC4-48-60-8-20F				on the same mount				
ATRT	185	185	3	Panel	Powerwave	7770	23/143/263	1	Unknown	LP Platiorm	12	Unknown	1-1/4"	Internal
AT\&T	185	185	2	Panel	KMw	AM-X-CD-16-65-00T RET	23/143			on the same mount	4	DC Power	$34^{\prime \prime}$	Internal
AT\&T	185	185	2	Panel	Quintel	QS66512-3	23/143			on the same mount	2	Fiber Cable	1.496"	Internal
AT\&T	185	185	1	Panel	Powerwave	P65-17-XLH-RR	263			on the same mount				
AT\&T	185	185	1	Panel	clı	TPA-65R-LCUUUU-H8	263			on the same mount				
AT\&T	185	185	3	TMA	Powerwave	TT19-0889111-001				on the same mount				
AT\&T	185	185	6	Diplexer	clı	TPX070821				on the same mount				
AT\&T	185	185	3	RRU	Ericsson	RRUS 11				on the same mount				
AT\&T	185	185	,	RRU	Ericsson	RRUS 12				on the same mount				
AT\&T	185	185	3	RRU	Ericsson	RRUS 32				on the same mount				
AT\&T	185	185	2	Surge	Raycap	DC6-48-60-18-8F				on the same mount				
Pocket	175	175	3	Panel	RFS	APXV18-206517S-C	110/230/350			Flush mounted	6	Unknown	$1-5 / 8^{\prime \prime}$	External
Sprint	165	165	3	Panel	RFS	APXVSPP18-C-A20	340/702260	1	Unknown	LP Platiorm	3	Hybriflex	Unknown	External
Sprint	165	165	3	RRH	Alcatel Lucent	RRH $19004 \times 4565 \mathrm{MHz}$				on the same mount				
Sprint	165	165	3	RRH	Alcatel Lucent	800 MHz RRH				on the same mount				
Verizon Wireless	155	155	3	Panel	Amphenol	BXA-70063/4CF	60/180/300	1	Unknown	LP Platiorm	6	Unknown	1-5/8"	External
Verizon Wireless	155	155	6	Panel	Commscope	ЈАНН-65B-R3B	60/180/300	3	Commscope	BSAMNT SBS-2-2	2	Hybriflex	1-5/8"	External
Verizon Wireless	155	155	1	ovp	RFS	DB-C1-12C-24-AB-0Z				on the same mounts				
Verizon Wireless	155	155	3	RRU	Alcatel Lucent	B66A RRH 4x45				on the same mounts				
Verizon Wireless	155	155	3	RRU	Alcatel Lucent	B25 RRH4x30				on the same mounts				
Verizon Wireless	155	155	3	RRU	Alcatel Lucent	B13 RRH 4×30				on the same mounts				
T-Mobile	91	91	1	Dish	Unknown	2' MW Dish	240			Collar mount	1	Unknown	1-5/8"	Internal
T-Mobile	75	75	1	Panel	ctel	TMG-HR-26N GPS	240			pe	1	Unknown	$718^{\prime \prime}$	External

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{array}{\|c\|} \hline \text { Mount Height } \\ (\mathrm{ft}) \end{array}$ (ft)	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int./Ext.
Sprint	165	165	3	Panel	RFS	APXVTM14-ALU-20	340/70/260			on the existing mount	1	Hybriflex	1-1/4"	External
Sprint	165	165	3	Panel	Commscope	NNVV-65B-R4	340/70/260			on the existing mount				
Sprint	165	165	3	RRH	Alcatel Lucent	TD-RRH8x20-25 w/ Solar Shield				on the existing mount				
Sprint	165	165	3	RRH	Alcatel Lucent	RRH2 250.08 (800 MHz)				on the existing mount				

Antenna						Mount			Transmission Line			
Antenna Owner	$\underset{\text { (ft) }}{\text { Mount Height }}$ (f)	Antenna CL (t)	Quantity	Type	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment
T-Mobile	195	195		10,308 in ${ }^{2}$ Rem				on the existing mounts				

APPENDIX B

tnxTower Output

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Job	US-CT-1002 Kettleton	$\begin{aligned} & \text { Page } \quad 1 \text { of } 8 \end{aligned}$
	Project	2018791.CT1002.04	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:38:48 05/18/18 } \end{array}$
	Client	PTI	Designed by mrisley

Tower Input Data

There is a pole section.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in New Haven County, Connecticut.
Basic wind speed of 93 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | Sector | Component
 Type | Placement | Total
 Number | Number
 Per Row | Start/End
 Position | Width or Perimeter
 Diameter
 in | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | |

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Job	US-CT-1002 Kettleton	$\begin{aligned} & \text { Page } 2 \text { of } 8 \end{aligned}$
	Project	2018791.CT1002.04	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:38:48 05/18/18 } \end{array}$
	Client	PTI	Designed by mrisley

| Description | Sector | Component
 Type | Placement | Total
 Number | Number
 Per Row | Start/End
 Position | Width or
 Diameter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | |

Feed Line/Linear Appurtenances - Entered As Area

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& Allow Shield \& Component Type \& \begin{tabular}{l}
Placement \\
\(f t\)
\end{tabular} \& Total Number \& \& \(C_{A} A_{A}\)

$f t^{2} / f t$ \& | Weight |
| :--- |
| klf |

\hline Safety Line 3/8 \& C \& No \& CaAa (Out Of \& 196.00-8.00 \& 1 \& No Ice \& 0.04 \& 0.00

\hline \& \& \& Face) \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.14 \& 0.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.24 \& 0.00

\hline LDF7-50A (1-5/8 \& C \& No \& Inside Pole \& 195.00-8.00 \& 12 \& No Ice \& 0.00 \& 0.00

\hline FOAM) \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 0.00

\hline 1-5/8" Hybrid Cable \& C \& No \& Inside Pole \& 195.00-8.00 \& 1 \& No Ice \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00

\hline LDF6-50A (1-1/4 \& A \& No \& Inside Pole \& 185.00-8.00 \& 12 \& No Ice \& 0.00 \& 0.00

\hline FOAM) \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00

\hline 1.496" Fiber Cable \& A \& No \& Inside Pole \& 185.00-8.00 \& 2 \& No Ice \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.00

\hline 3/4" DC Power Line \& A \& No \& Inside Pole \& 185.00-8.00 \& 4 \& No Ice \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00

\hline LDF7-50A (1-5/8 \& C \& No \& Inside Pole \& 91.00-8.00 \& 1 \& No Ice \& 0.00 \& 0.00

\hline FOAM) \& \& \& \& \& \& 1/2' Ice \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 0.00

\hline
\end{tabular}

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment 0	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
Pirod 16.5' LP Platform	C	None		0.0000	195.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 20.80 \\ & 28.10 \end{aligned}$	$\begin{aligned} & 20.80 \\ & 28.10 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 2.07 \end{aligned}$

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Job	US-CT-1002 Kettleton	Page 3 of 8
	Project	2018791.CT1002.04	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:38:48 05/18/18 } \end{array}$
	Client	PTI	Designed by mrisley

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

K

\hline \multirow{3}{*}{AIR 33 w/ Mount Pipe} \& \multirow{3}{*}{A} \& \multirow[b]{3}{*}{From Centroid-Le} \& \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& 1" Ice \& 35.40 \& 35.40 \& 2.33

\hline \& \& \& 4.00 \& \& \& No Ice \& 6.63 \& 6.31 \& 0.14

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.35 \& 7.48 \& 0.20

\hline \multirow{3}{*}{AIR 33 w/ Mount Pipe} \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1^{\prime \prime}$ Ice \& 8.01 \& 8.50 \& 0.27

\hline \& \& From \& 4.00 \& \& \& No Ice \& 6.63 \& 6.31 \& 0.14

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 7.35 \& 7.48 \& 0.20

\hline \multirow{3}{*}{AIR 33 w/ Mount Pipe} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1^{\prime \prime}$ Ice \& 8.01 \& 8.50 \& 0.27

\hline \& \& From \& 4.00 \& \& \& No Ice \& 6.63 \& 6.31 \& 0.14

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 7.35 \& 7.48 \& 0.20

\hline \multirow{4}{*}{RR90-17-02DP w/ Mount
Pipe} \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1^{\prime \prime}$ Ice \& 8.01 \& 8.50 \& 0.27

\hline \& \& From \& 4.00 \& \& \& No Ice \& 4.59 \& 3.34 \& 0.00

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.09 \& 4.11 \& 0.00

\hline \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1^{\prime \prime}$ Ice \& 5.58 \& 4.81 \& 0.00

\hline \multirow[t]{3}{*}{RR90-17-02DP w/ Mount Pipe} \& \& From \& 4.00 \& \& \& No Ice \& 4.59 \& 3.34 \& 0.00

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.09 \& 4.11 \& 0.00

\hline \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1^{\prime \prime}$ Ice \& 5.58 \& 4.81 \& 0.00

\hline \multirow[t]{3}{*}{RR90-17-02DP w/ Mount Pipe} \& \& From \& 4.00 \& \& \& No Ice \& 4.59 \& 3.34 \& 0.00

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.09 \& 4.11 \& 0.00

\hline \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1{ }^{\prime \prime}$ Ice \& 5.58 \& 4.81 \& 0.00

\hline \multirow[t]{3}{*}{LNX-6515DS-VTM w/ mount pipe} \& \& From \& 4.00 \& \& \& No Ice \& 11.43 \& 9.35 \& 0.08

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 12.05 \& 10.67 \& 0.16

\hline \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1{ }^{\prime \prime}$ Ice \& 12.67 \& 11.70 \& 0.25

\hline \multirow[t]{3}{*}{LNX-6515DS-VTM w/ mount pipe} \& \& From \& 4.00 \& \& \& No Ice \& 11.43 \& 9.35 \& 0.08

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 12.05 \& 10.67 \& 0.16

\hline \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1{ }^{\prime \prime}$ Ice \& 12.67 \& 11.70 \& 0.25

\hline \multirow[t]{3}{*}{LNX-6515DS-VTM w/ mount pipe} \& \& From \& 4.00 \& \& \& No Ice \& 11.43 \& 9.35 \& 0.08

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 12.05 \& 10.67 \& 0.16

\hline \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1^{\prime \prime}$ Ice \& 12.67 \& 11.70 \& 0.25

\hline \multirow[t]{3}{*}{KRY 11271} \& \& From \& 4.00 \& \& \& No Ice \& 0.58 \& 0.40 \& 0.01

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.69 \& 0.49 \& 0.02

\hline \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1{ }^{\prime \prime}$ Ice \& 0.80 \& 0.59 \& 0.03

\hline \multirow[t]{2}{*}{KRY 11271} \& \& From \& 4.00 \& \& \& No Ice \& 0.58 \& 0.40 \& 0.01

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.69 \& 0.49 \& 0.02

\hline \multirow{3}{*}{KRY 11271} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& 1" Ice \& 0.80 \& 0.59 \& 0.03

\hline \& \& From \& 4.00 \& \& \& No Ice \& 0.58 \& 0.40 \& 0.01

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.69 \& 0.49 \& 0.02

\hline \multirow{3}{*}{DC4-48-60-8-20F} \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1^{\prime \prime}$ Ice \& 0.80 \& 0.59 \& 0.03

\hline \& \& From \& 4.00 \& \& \& No Ice \& 1.43 \& 0.59 \& 0.01

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 1.58 \& 0.70 \& 0.02

\hline \multirow{3}{*}{T-Mobile Reserved Loading} \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1^{\prime \prime}$ Ice \& 1.74 \& 0.81 \& 0.03

\hline \& \& From \& 4.00 \& \& \& No Ice \& 47.72 \& 24.42 \& 0.44

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 50.18 \& 26.92 \& 0.62

\hline \multirow{3}{*}{T-Mobile Reserved Loading} \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1{ }^{\prime \prime}$ Ice \& 52.51 \& 29.44 \& 0.83

\hline \& \& From \& 4.00 \& \& \& No Ice \& 47.72 \& 24.42 \& 0.44

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2' Ice \& 50.18 \& 26.92 \& 0.62

\hline \multirow{3}{*}{T-Mobile Reserved Loading} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{-10.0000} \& \multirow{3}{*}{195.00} \& $1{ }^{\prime \prime}$ Ice \& 52.51 \& 29.44 \& 0.83

\hline \& \& From \& 4.00 \& \& \& No Ice \& 47.72 \& 24.42 \& 0.44

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 50.18 \& 26.92 \& 0.62

\hline \multirow{4}{*}{PiROD 13' Low Profile Platform (Monopole)} \& \multirow{3}{*}{C} \& $$
\mathrm{g}
$$ \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{185.00} \& 1" Ice \& 52.51 \& 29.44 \& 0.83

\hline \& \& None \& \& \& \& No Ice \& 15.70 \& 15.70 \& 1.30

\hline \& \& \& \& \& \& 1/2" Ice \& 20.10 \& 20.10 \& 1.76

\hline \& \& \& \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 24.50 \& 24.50 \& 2.23

\hline \multirow[t]{3}{*}{7770.00 w/Mount Pipe} \& \multirow[t]{3}{*}{A} \& \& $$
4.00
$$ \& \& \& No Ice \& 5.51 \& 4.10 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.87 \& 4.73 \& 0.11

\hline \& \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 6.23 \& 5.37 \& 0.16

\hline \multirow[t]{2}{*}{7770.00 w/Mount Pipe} \& \multirow[t]{2}{*}{B} \& From \& 4.00 \& \& \& No Ice \& 5.51 \& 4.10 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.87 \& 4.73 \& 0.11

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Job	US-CT-1002 Kettleton	Page 4 of 8
	Project	2018791.CT1002.04	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:38:48 05/18/18 } \end{array}$
	Client	PTI	Designed by mrisley

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

\hline \multirow{4}{*}{7770.00 w/Mount Pipe} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& 1" Ice \& 6.23 \& 5.37 \& 0.16

\hline \& \& From \& 4.00 \& \& \& No Ice \& 5.51 \& 4.10 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.87 \& 4.73 \& 0.11

\hline \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& 1" Ice \& 6.23 \& 5.37 \& 0.16

\hline \multirow[t]{3}{*}{AM-X-CD-16-65-00T-RET w/ 2" x 54" mount pipe} \& \& From \& 4.00 \& \& \& No Ice \& 8.02 \& 5.67 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 8.48 \& 6.39 \& 0.12

\hline \& \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 8.94 \& 7.12 \& 0.19

\hline \multirow[t]{3}{*}{AM-X-CD-16-65-00T-RET w/ 2" x 54" mount pipe} \& \multirow[t]{2}{*}{B} \& From \& 4.00 \& \& \& No Ice \& 8.02 \& 5.67 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 8.48 \& 6.39 \& 0.12

\hline \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 8.94 \& 7.12 \& 0.19

\hline \multirow[t]{2}{*}{QS66512-3 w/ Mount Pipe} \& \& From \& 4.00 \& \& \& No Ice \& 8.13 \& 8.17 \& 0.13

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 8.59 \& 9.13 \& 0.20

\hline \multirow{3}{*}{QS66512-3 w/ Mount Pipe} \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& 1" Ice \& 9.05 \& 9.96 \& 0.28

\hline \& \& From \& 4.00 \& \& \& No Ice \& 8.13 \& 8.17 \& 0.13

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 8.59 \& 9.13 \& 0.20

\hline \multirow{4}{*}{P65-17-XLH-RR w/ Mount Pipe} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 9.05 \& 9.96 \& 0.28

\hline \& \& From \& 4.00 \& \& \& No Ice \& 11.47 \& 8.70 \& 0.09

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 12.08 \& 10.11 \& 0.17

\hline \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 12.71 \& 11.38 \& 0.26

\hline \multirow[t]{3}{*}{TPA-65R-LCUUUU-H8 w/ Mount Pipe} \& \& From \& 4.00 \& \& \& No Ice \& 13.54 \& 10.96 \& 0.11

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 14.24 \& 12.49 \& 0.22

\hline \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 14.95 \& 14.04 \& 0.33

\hline \multirow[t]{3}{*}{TT19-08BP111-001} \& \& From \& 4.00 \& \& \& No Ice \& 0.55 \& 0.45 \& 0.02

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.65 \& 0.53 \& 0.02

\hline \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 0.75 \& 0.63 \& 0.03

\hline \multirow[t]{2}{*}{TT19-08BP111-001} \& \& From \& 4.00 \& \& \& No Ice \& 0.55 \& 0.45 \& 0.02

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.65 \& 0.53 \& 0.02

\hline \multirow{3}{*}{TT19-08BP111-001} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 0.75 \& 0.63 \& 0.03

\hline \& \& From \& 4.00 \& \& \& No Ice \& 0.55 \& 0.45 \& 0.02

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.65 \& 0.53 \& 0.02

\hline \multirow{3}{*}{(2) TPX-070821} \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 0.75 \& 0.63 \& 0.03

\hline \& \& From \& 4.00 \& \& \& No Ice \& 0.47 \& 0.10 \& 0.01

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.56 \& 0.15 \& 0.01

\hline \multirow{3}{*}{(2) TPX-070821} \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 0.66 \& 0.20 \& 0.02

\hline \& \& From \& 4.00 \& \& \& No Ice \& 0.47 \& 0.10 \& 0.01

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.56 \& 0.15 \& 0.01

\hline \multirow{3}{*}{(2) TPX-070821} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 0.66 \& 0.20 \& 0.02

\hline \& \& From \& 4.00 \& \& \& No Ice \& 0.47 \& 0.10 \& 0.01

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.56 \& 0.15 \& 0.01

\hline \multirow{3}{*}{RRUS 11} \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 0.66 \& 0.20 \& 0.02

\hline \& \& From \& 4.00 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 0.07

\hline \multirow{3}{*}{RRUS 11} \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& 1 " Ice \& 3.21 \& 1.49 \& 0.10

\hline \& \& From \& 4.00 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 0.07

\hline \multirow{3}{*}{RRUS 11} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 3.21 \& 1.49 \& 0.10

\hline \& \& From \& 4.00 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 0.07

\hline \multirow{3}{*}{RRUS 12} \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 3.21 \& 1.49 \& 0.10

\hline \& \& From \& 4.00 \& \& \& No Ice \& 3.15 \& 1.29 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 3.36 \& 1.44 \& 0.08

\hline \multirow{3}{*}{RRUS 12} \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 3.59 \& 1.60 \& 0.11

\hline \& \& From \& 4.00 \& \& \& No Ice \& 3.15 \& 1.29 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 3.36 \& 1.44 \& 0.08

\hline \multirow{3}{*}{RRUS 12} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 3.59 \& 1.60 \& 0.11

\hline \& \& From \& 4.00 \& \& \& No Ice \& 3.15 \& 1.29 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 3.36 \& 1.44 \& 0.08

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235 FAX: (555) $555-1235$	Job	US-CT-1002 Kettleton	Page 5 of 8
	Project	2018791.CT1002.04	$\begin{array}{\|l\|} \hline \text { Date } \\ 10: 38: 48 ~ 05 / 18 / 18 \end{array}$
	Client	PTI	Designed by mrisley

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

K

\hline \multirow{3}{*}{RRUS 32} \& \multirow{3}{*}{A} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& 1" Ice \& 3.59 \& 1.60 \& 0.11

\hline \& \& From \& 4.00 \& \& \& No Ice \& 3.31 \& 2.42 \& 0.08

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 3.56 \& 2.64 \& 0.10

\hline \multirow{3}{*}{RRUS 32} \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& 1" Ice \& 3.81 \& 2.86 \& 0.14

\hline \& \& From \& 4.00 \& \& \& No Ice \& 3.31 \& 2.42 \& 0.08

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 3.56 \& 2.64 \& 0.10

\hline \multirow{3}{*}{RRUS 32} \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 3.81 \& 2.86 \& 0.14

\hline \& \& From \& 4.00 \& \& \& No Ice \& 3.31 \& 2.42 \& 0.08

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 3.56 \& 2.64 \& 0.10

\hline \multirow{4}{*}{DC6-48-60-18-8F Surge Suppression Unit} \& \multirow{3}{*}{B} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& 1" Ice \& 3.81 \& 2.86 \& 0.14

\hline \& \& From \& 4.00 \& \& \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 1.46 \& 1.46 \& 0.04

\hline \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{23.0000} \& \multirow{3}{*}{185.00} \& $1{ }^{\prime \prime}$ Ice \& 1.64 \& 1.64 \& 0.06

\hline \multirow[t]{3}{*}{DC6-48-60-18-8F Surge Suppression Unit} \& \& From \& 4.00 \& \& \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 1.46 \& 1.46 \& 0.04

\hline \& \multirow{3}{*}{C} \& g \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{175.00} \& $1{ }^{\prime \prime}$ Ice \& 1.64 \& 1.64 \& 0.06

\hline \multirow[t]{3}{*}{Valmont Light Duty Tri-Bracket (1)} \& \& None \& \& \& \& No Ice \& 1.76 \& 1.76 \& 0.05

\hline \& \& \& \& \& \& 1/2" Ice \& 2.08 \& 2.08 \& 0.07

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{-10.0000} \& \multirow{3}{*}{175.00} \& 1" Ice \& 2.40 \& 2.40 \& 0.09

\hline \multirow[t]{3}{*}{APXV18-206517S-C w/ Mount Pipe} \& \& \& 0.50 \& \& \& No Ice \& 5.17 \& 4.46 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.62 \& 5.39 \& 0.09

\hline \& \& \& 0.00 \& \& \multirow{4}{*}{175.00} \& $1^{\prime \prime}$ Ice \& 6.08 \& 6.20 \& 0.14

\hline \multirow[t]{3}{*}{APXV18-206517S-C w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{-10.0000} \& \& No Ice \& 5.17 \& 4.46 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.62 \& 5.39 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.08 \& 6.20 \& 0.14

\hline \multirow[t]{3}{*}{APXV18-206517S-C w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{-10.0000} \& \multirow[t]{3}{*}{175.00} \& No Ice \& 5.17 \& 4.46 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.62 \& 5.39 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.08 \& 6.20 \& 0.14

\hline \multirow[t]{3}{*}{MTS 12.5' LP Platform} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 14.66 \& 14.66 \& 1.25

\hline \& \& \& \& \& \& 1/2" Ice \& 18.87 \& 18.87 \& 1.48

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 23.08 \& 23.08 \& 1.71

\hline \multirow[t]{3}{*}{APXVTM14-ALU-I20 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \& 4.00 \& \multirow[t]{6}{*}{40.0000
10.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 6.58 \& 4.96 \& 0.08

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 7.03 \& 5.75 \& 0.13

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.47 \& 6.47 \& 0.19

\hline \multirow[t]{3}{*}{APXVTM14-ALU-I20 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& \& 165.00 \& No Ice \& 6.58 \& 4.96 \& 0.08

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 7.03 \& 5.75 \& 0.13

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 7.47 \& 6.47 \& 0.19

\hline \multirow[t]{3}{*}{APXVTM14-ALU-I20 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& \multirow[t]{3}{*}{80.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 6.58 \& 4.96 \& 0.08

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 7.03 \& 5.75 \& 0.13

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 7.47 \& 6.47 \& 0.19

\hline \multirow[t]{3}{*}{NNVV-65B-R4 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 12.27 \& 7.17 \& 0.10

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 12.77 \& 8.13 \& 0.19

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 13.27 \& 8.97 \& 0.28

\hline \multirow[t]{3}{*}{NNVV-65B-R4 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& \multirow[t]{3}{*}{10.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 12.27 \& 7.17 \& 0.10

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 12.77 \& 8.13 \& 0.19

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 13.27 \& 8.97 \& 0.28

\hline \multirow[t]{3}{*}{NNVV-65B-R4 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& \multirow[t]{3}{*}{80.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 12.27 \& 7.17 \& 0.10

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 12.77 \& 8.13 \& 0.19

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 13.27 \& 8.97 \& 0.28

\hline \multirow[t]{3}{*}{RRH 1900 4x 4565 MHz} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 2.29 \& 2.29 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.50 \& 2.50 \& 0.08

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.71 \& 2.71 \& 0.11

\hline \multirow[t]{3}{*}{RRH 1900 4x 4565 MHz} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& \multirow[t]{3}{*}{10.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 2.29 \& 2.29 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.50 \& 2.50 \& 0.08

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.71 \& 2.71 \& 0.11

\hline \multirow[t]{2}{*}{RRH 1900 4x 4565 MHz} \& \multirow[t]{2}{*}{C} \& From \& 4.00 \& \multirow[t]{2}{*}{80.0000} \& \multirow[t]{2}{*}{165.00} \& No Ice \& 2.29 \& 2.29 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2' Ice \& 2.50 \& 2.50 \& 0.08

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235 FAX: (555) $555-1235$	Job	US-CT-1002 Kettleton	Page 6 of 8
	Project	2018791.CT1002.04	$\begin{array}{\|l\|} \hline \text { Date } \\ 10: 38: 48 ~ 05 / 18 / 18 \end{array}$
	Client	PTI	Designed by mrisley

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

K

\hline \multirow{4}{*}{800 MHz RRH} \& \multirow{4}{*}{A} \& ce \& 0.00 \& \& \& 1" Ice \& 2.71 \& 2.71 \& 0.11

\hline \& \& From \& 4.00 \& 40.0000 \& 165.00 \& No Ice \& 1.70 \& 1.28 \& 0.05

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 1.86 \& 1.43 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.03 \& 1.58 \& 0.09

\hline \multirow[t]{3}{*}{800 MHz RRH} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 10.0000 \& 165.00 \& No Ice \& 1.70 \& 1.28 \& 0.05

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 1.86 \& 1.43 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.03 \& 1.58 \& 0.09

\hline \multirow[t]{3}{*}{800 MHz RRH} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 80.0000 \& 165.00 \& No Ice \& 1.70 \& 1.28 \& 0.05

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 1.86 \& 1.43 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.03 \& 1.58 \& 0.09

\hline \multirow[t]{3}{*}{TD-RRH8x20-25 w/ Solar Shield} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 40.0000 \& 165.00 \& No Ice \& 3.70 \& 1.29 \& 0.07

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 0.09

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.20 \& 1.64 \& 0.12

\hline \multirow[t]{3}{*}{TD-RRH8x20-25 w/ Solar Shield} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 10.0000 \& 165.00 \& No Ice \& 3.70 \& 1.29 \& 0.07

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 0.09

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.20 \& 1.64 \& 0.12

\hline \multirow[t]{3}{*}{TD-RRH8x20-25 w/ Solar Shield} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 80.0000 \& 165.00 \& No Ice \& 3.70 \& 1.29 \& 0.07

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 0.09

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.20 \& 1.64 \& 0.12

\hline \multirow[t]{3}{*}{RRH2X50-08 (800 MHz)} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 40.0000 \& 165.00 \& No Ice \& 1.70 \& 1.28 \& 0.05

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 1.86 \& 1.43 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.03 \& 1.58 \& 0.09

\hline \multirow[t]{3}{*}{RRH2X50-08 (800 MHz)} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 10.0000 \& 165.00 \& No Ice \& 1.70 \& 1.28 \& 0.05

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 1.86 \& 1.43 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.03 \& 1.58 \& 0.09

\hline \multirow[t]{3}{*}{RRH2X50-08 (800 MHz)} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 80.0000 \& 165.00 \& No Ice \& 1.70 \& 1.28 \& 0.05

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 1.86 \& 1.43 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& 1" Ice \& 2.03 \& 1.58 \& 0.09

\hline \multirow[t]{3}{*}{PiROD 15' Low Profile Platform (Monopole)} \& \multirow[t]{3}{*}{C} \& None \& \& 0.0000 \& 155.00 \& No Ice \& 17.30 \& 17.30 \& 1.50

\hline \& \& \& \& \& \& 1/2" Ice \& 22.10 \& 22.10 \& 2.03

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 26.90 \& 26.90 \& 2.56

\hline \multirow[t]{3}{*}{(2) JAHH-65B-R3B w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& From \& $$
4.00
$$ \& 0.0000 \& 155.00 \& No Ice \& 9.35 \& 7.65 \& 0.09

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 9.92 \& 8.83 \& 0.16

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 10.46 \& 9.73 \& 0.25

\hline \multirow[t]{3}{*}{(2) JAHH-65B-R3B w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 9.35 \& 7.65 \& 0.09

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 9.92 \& 8.83 \& 0.16

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 10.46 \& 9.73 \& 0.25

\hline \multirow[t]{3}{*}{(2) JAHH-65B-R3B w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 9.35 \& 7.65 \& 0.09

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 9.92 \& 8.83 \& 0.16

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.46 \& 9.73 \& 0.25

\hline \multirow[t]{3}{*}{BXA-70063-4CF-EDIN-6 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 4.95 \& 3.69 \& 0.03

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 5.32 \& 4.29 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 5.71 \& 4.91 \& 0.12

\hline \multirow[t]{3}{*}{BXA-70063-4CF-EDIN-6 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 4.95 \& 3.69 \& 0.03

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 5.32 \& 4.29 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.71 \& 4.91 \& 0.12

\hline \multirow[t]{3}{*}{BXA-70063-4CF-EDIN-6 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 4.95 \& 3.69 \& 0.03

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 5.32 \& 4.29 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.71 \& 4.91 \& 0.12

\hline \multirow[t]{3}{*}{DB-C1-12C-24AB-0Z} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 4.06 \& 3.10 \& 0.03

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2' Ice \& 4.32 \& 3.34 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.58 \& 3.58 \& 0.11

\hline \multirow[t]{3}{*}{B66A RRH4X45} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 2.54 \& 1.61 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.75 \& 1.79 \& 0.08

\hline \& \& ce \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.97 \& 1.98 \& 0.10

\hline \multirow[t]{2}{*}{B66A RRH4X45} \& \multirow[t]{2}{*}{B} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 2.54 \& 1.61 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2' Ice \& 2.75 \& 1.79 \& 0.08

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Job	US-CT-1002 Kettleton	Page 7 of 8
	Project	2018791.CT1002.04	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:38:48 05/18/18 } \end{array}$
	Client	PTI	Designed by mrisley

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

K

\hline \multirow{4}{*}{B66A RRH4X45} \& \multirow{4}{*}{C} \& ce \& 0.00 \& \& \& 1" Ice \& 2.97 \& 1.98 \& 0.10

\hline \& \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 2.54 \& 1.61 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.75 \& 1.79 \& 0.08

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.97 \& 1.98 \& 0.10

\hline \multirow[t]{3}{*}{B25 RRH4X30} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 2.20 \& 1.74 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.39 \& 1.92 \& 0.08

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.59 \& 2.11 \& 0.10

\hline \multirow[t]{3}{*}{B25 RRH4X30} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 2.20 \& 1.74 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.39 \& 1.92 \& 0.08

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.59 \& 2.11 \& 0.10

\hline \multirow[t]{3}{*}{B25 RRH4X30} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 2.20 \& 1.74 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.39 \& 1.92 \& 0.08

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.59 \& 2.11 \& 0.10

\hline \multirow[t]{3}{*}{B13 RRH 4X30} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 2.06 \& 1.32 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.24 \& 1.48 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.43 \& 1.64 \& 0.09

\hline \multirow[t]{3}{*}{B13 RRH 4X30} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 2.06 \& 1.32 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.24 \& 1.48 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.43 \& 1.64 \& 0.09

\hline \multirow[t]{3}{*}{B13 RRH 4X30} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 2.06 \& 1.32 \& 0.06

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 2.24 \& 1.48 \& 0.07

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.43 \& 1.64 \& 0.09

\hline \multirow[t]{3}{*}{BSAMNT SBS-2-2} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 0.00 \& 1.43 \& 0.03

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 1.92 \& 0.04

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 2.29 \& 0.05

\hline \multirow[t]{3}{*}{BSAMNT SBS-2-2} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 0.00 \& 1.43 \& 0.03

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 1.92 \& 0.04

\hline \& \& ce \& 0.00 \& \& \& 1" Ice \& 0.00 \& 2.29 \& 0.05

\hline \multirow[t]{3}{*}{BSAMNT SBS-2-2} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 155.00 \& No Ice \& 0.00 \& 1.43 \& 0.03

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 1.92 \& 0.04

\hline \& \& ce \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 2.29 \& 0.05

\hline \multirow[t]{3}{*}{Pipe Mount 3'x4.5"} \& \multirow[t]{3}{*}{C} \& From Leg \& 0.50 \& 0.0000 \& 91.00 \& No Ice \& 0.90 \& 0.90 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.12 \& 1.12 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.33 \& 1.33 \& 0.05

\hline \multirow[t]{3}{*}{GPS-TMG-HR-26N} \& \multirow[t]{3}{*}{C} \& From Leg \& 0.50 \& 0.0000 \& 75.00 \& No Ice \& 0.13 \& 0.13 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.18 \& 0.18 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.24 \& 0.24 \& 0.01

\hline \multirow[t]{3}{*}{Pipe Mount 3'x4.5"} \& \multirow[t]{3}{*}{C} \& From Leg \& 0.50 \& 0.0000 \& 75.00 \& No Ice \& 0.91 \& 0.91 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.12 \& 1.12 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.33 \& 1.33 \& 0.05

\hline \multirow[t]{3}{*}{Bridge Stiffener (3.25 sq ft)} \& \multirow[t]{3}{*}{A} \& From Leg \& 0.50 \& 0.0000 \& 120.00 \& No Ice \& 3.25 \& 0.74 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.60 \& 1.25 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.94 \& 1.73 \& 0.00

\hline \multirow[t]{3}{*}{Bridge Stiffener (3.25 sq ft)} \& \multirow[t]{3}{*}{B} \& From Leg \& 0.50 \& 0.0000 \& 120.00 \& No Ice \& 3.25 \& 0.74 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.60 \& 1.25 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.94 \& 1.73 \& 0.00

\hline \multirow[t]{3}{*}{Bridge Stiffener (3.25 sq ft)} \& \multirow[t]{3}{*}{C} \& From Leg \& 0.50 \& 0.0000 \& 120.00 \& No Ice \& 3.25 \& 0.74 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.60 \& 1.25 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.94 \& 1.73 \& 0.00

\hline \multirow[t]{3}{*}{Bridge Stiffener (3.25 sq ft)} \& \multirow[t]{3}{*}{A} \& From Leg \& 0.50 \& 0.0000 \& 100.00 \& No Ice \& 3.25 \& 0.74 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.60 \& 1.25 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.94 \& 1.73 \& 0.00

\hline \multirow[t]{3}{*}{Bridge Stiffener (3.25 sq ft)} \& \multirow[t]{3}{*}{B} \& From Leg \& 0.50 \& 0.0000 \& 100.00 \& No Ice \& 3.25 \& 0.74 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.60 \& 1.25 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.94 \& 1.73 \& 0.00

\hline \multirow[t]{2}{*}{Bridge Stiffener (3.25 sq ft)} \& \multirow[t]{2}{*}{C} \& From Leg \& 0.50 \& 0.0000 \& 100.00 \& No Ice \& 3.25 \& 0.74 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.60 \& 1.25 \& 0.00

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (555) 555-1234 FAX: (555) 555-1235	Job	US-CT-1002 Kettleton	$\begin{aligned} & \text { Page } 8 \text { of } 8 \end{aligned}$
	Project	2018791.CT1002.04	Date 10:38:48 05/18/18
	Client	PTI	Designed by mrisley

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

ft \& \& $C_{A} A_{A}$
Front

$f t^{2}$ \& $C_{A} A_{A}$
Side

$f t^{2}$ \& Weight

\hline \multirow{4}{*}{Bridge Stiffener (3.25 sq ft)} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& 0.00 \& \& \& 1" Ice \& 3.94 \& 1.73 \& 0.00

\hline \& \& \& 0.50 \& 0.0000 \& 80.00 \& No Ice \& 3.25 \& 0.74 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.60 \& 1.25 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.94 \& 1.73 \& 0.00

\hline \multirow[t]{3}{*}{Bridge Stiffener (3.25 sq ft)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& 0.0000 \& 80.00 \& No Ice \& 3.25 \& 0.74 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.60 \& 1.25 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.94 \& 1.73 \& 0.00

\hline \multirow[t]{3}{*}{Bridge Stiffener (3.25 sq ft)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& 0.0000 \& 80.00 \& No Ice \& 3.25 \& 0.74 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.60 \& 1.25 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.94 \& 1.73 \& 0.00

\hline
\end{tabular}

Dishes

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Dish } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert ft	Azimuth Adjustment	$3 d B$ Beam Width 0	Elevation	Outside Diameter ft		Aperture Area $f t^{2}$	Weight
2' MW	C	Paraboloid w/Radome	From	1.00	0.0000		91.00	2.00	No Ice	3.14	0.04
			Leg	0.00					1/2" Ice	3.41	0.07
				0.00					$1{ }^{\prime \prime}$ Ice	3.68	0.10

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature $f t$
195.00	Pirod 16.5' LP Platform	48	18.244	0.8932	0.0022	50186
185.00	PiROD 13' Low Profile Platform (Monopole)	48	16.383	0.8787	0.0023	18658
175.00	Valmont Light Duty Tri-Bracket (1)	48	14.582	0.8423	0.0020	14997
165.00	MTS 12.5' LP Platform	48	12.866	0.7916	0.0018	8941
155.00	PiROD 15' Low Profile Platform (Monopole)	48	11.277	0.7305	0.0013	10309
120.00	Bridge Stiffener (3.25 sq ft)	48	6.739	0.5258	0.0006	12851
100.00	Bridge Stiffener (3.25 sq ft)	48	4.712	0.4375	0.0005	12842
91.00	2' MW	48	3.921	0.4008	0.0004	13241
80.00	Bridge Stiffener (3.25 sq ft)	48	3.055	0.3497	0.0003	13275
75.00	GPS-TMG-HR-26N	48	2.699	0.3307	0.0003	14642

\qquad

Work Order: \qquad
CopystLE
Pole Geometry
Copyright © 2016 Crown Castle

	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	196	1		0	18	18	0.375	n/a	A53-B-42
2	195	15		0	24.00	24	0.375	n/a	A53-B-42
3	180	20		0	30.00	30	0.375	n/a	A53-B-42
4	160	20		0	36.00	36	0.375	n/a	A53-B-42
5	140	20		0	42.00	42	0.375	n/a	A53-B-42
6	120	20		0	48.00	48	0.375	n/a	A53-B-42
7	100	20		0	54.00	54	0.375	n/a	A53-B-42
8	80	20		0	60.00	60	0.375	n/a	A53-B-42
9	60	20		0	60.00	60	0.5	n/a	A53-B-42
10	40	40		0	60.00	60	0.625	n/a	A53-B-42

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Type	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	20	plate	6-1/2"x1-1/2" FP	3	0						120						240					
2	20	40	plate	6-1/2"x1-1/2" FP	3	0						120						240					
3	40	60	plate	6-1/2"x1-1/2" FP	3	0						120						240					
4	60	80	plate	6-1/2"x1-1/2" FP	3	0						120						240					
5	80	100	plate	6-1/2"x1-1/2" FP	3	0						120						240					
6	100	120	plate	6-1/2"x1-1/2" FP	3	0						120						240					
7	120	136	plate	6-1/2"x1-1/2" FP	3	0						120						240					
8																							
9																							
10																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in ${ }^{2}$)	Pole Face to Centroid (in)	Bottom Termination Length (in)	Top Termination Length (in)	L_{u} (in)	Net Area (in ${ }^{2}$)	Bolt Hole Size (in)	Reinforcement
Material										

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
196-195	Pole	TP18x18x0.375	Pole	0.0\%	Pass
195-190	Pole	TP24x24x0.375	Pole	7.3\%	Pass
190-185	Pole	TP24x24x0.375	Pole	14.5\%	Pass
185-180	Pole	TP24x24x0.375	Pole	25.5\%	Pass
180-175	Pole	TP30x30x0.375	Pole	24.2\%	Pass
175-170	Pole	TP30x30x0.375	Pole	32.0\%	Pass
170-165	Pole	TP30x30x0.375	Pole	40.0\%	Pass
165-160	Pole	TP30x30x0.375	Pole	50.2\%	Pass
160-155	Pole	TP36x36x0.375	Pole	42.9\%	Pass
155-150	Pole	TP36x36x0.375	Pole	51.9\%	Pass
150-145	Pole	TP36x36x0.375	Pole	60.8\%	Pass
145-140	Pole	TP36x36x0.375	Pole	69.9\%	Pass
140-136	Pole	TP42x42x0.375	Pole	57.8\%	Pass
136-135.75	Pole + Reinf.	TP42x42x0.6375	Reinf. 7 Tension Rupture	39.2\%	Pass
135.75-130.75	Pole + Reinf.	TP42x42x0.6375	Reinf. 7 Tension Rupture	43.9\%	Pass
130.75-125.75	Pole + Reinf.	TP42x42x0.6375	Reinf. 7 Tension Rupture	48.7\%	Pass
125.75-120.75	Pole + Reinf.	TP42x42x0.6375	Reinf. 7 Tension Rupture	53.6\%	Pass
120.75-120	Pole + Reinf.	TP42x42x0.6375	Reinf. 7 Tension Rupture	54.4\%	Pass
120-119.75	Pole + Reinf.	TP48×48x0.6	Reinf. 6 Tension Rupture	44.0\%	Pass
119.75-114.75	Pole + Reinf.	TP48x48x0.6	Reinf. 6 Tension Rupture	48.1\%	Pass
114.75-109.75	Pole + Reinf.	TP48x48x0.6	Reinf. 6 Tension Rupture	52.3\%	Pass
109.75-104.75	Pole + Reinf.	TP48x48x0.6	Reinf. 6 Tension Rupture	56.5\%	Pass
104.75-100	Pole + Reinf.	TP48x48x0.6	Reinf. 6 Tension Rupture	60.5\%	Pass
100-99.75	Pole + Reinf.	TP54×54x0.5625	Reinf. 5 Tension Rupture	50.1\%	Pass
99.75-94.75	Pole + Reinf.	TP54×54x0.5625	Reinf. 5 Tension Rupture	53.7\%	Pass
94.75-89.75	Pole + Reinf.	TP54×54x0.5625	Reinf. 5 Tension Rupture	57.4\%	Pass
89.75-84.75	Pole + Reinf.	TP54×54x0.5625	Reinf. 5 Tension Rupture	61.1\%	Pass
84.75-80	Pole + Reinf.	TP54x54x0.5625	Reinf. 5 Tension Rupture	64.7\%	Pass
80-79.75	Pole + Reinf.	TP60x60x0.55	Reinf. 4 Tension Rupture	54.4\%	Pass
79.75-74.75	Pole + Reinf.	TP60x60x0.55	Reinf. 4 Tension Rupture	57.7\%	Pass
74.75-69.75	Pole + Reinf.	TP60x60x0.55	Reinf. 4 Tension Rupture	61.0\%	Pass
69.75-64.75	Pole + Reinf.	TP60x60x0.55	Reinf. 4 Tension Rupture	64.4\%	Pass
64.75-60	Pole + Reinf.	TP60x60x0.55	Reinf. 4 Tension Rupture	67.7\%	Pass
60-59.75	Pole + Reinf.	TP60x60x0.675	Reinf. 3 Tension Rupture	55.3\%	Pass
59.75-54.75	Pole + Reinf.	TP60x60x0.675	Reinf. 3 Tension Rupture	58.2\%	Pass
54.75-49.75	Pole + Reinf.	TP60x60x0.675	Reinf. 3 Tension Rupture	61.1\%	Pass
49.75-44.75	Pole + Reinf.	TP60x60x0.675	Reinf. 3 Tension Rupture	64.0\%	Pass
44.75-40	Pole + Reinf.	TP60x60x0.675	Reinf. 3 Tension Rupture	66.8\%	Pass
40-39.75	Pole + Reinf.	TP60x60x0.8	Reinf. 2 Tension Rupture	56.6\%	Pass
39.75-34.75	Pole + Reinf.	TP60x60x0.8	Reinf. 2 Tension Rupture	59.2\%	Pass
34.75-29.75	Pole + Reinf.	TP60x60x0.8	Reinf. 2 Tension Rupture	61.7\%	Pass
29.75-24.75	Pole + Reinf.	TP60x60x0.8	Reinf. 2 Tension Rupture	64.3\%	Pass
24.75-20	Pole + Reinf.	TP60x60x0.8	Reinf. 2 Tension Rupture	66.8\%	Pass
20-19.75	Pole + Reinf.	TP60x60x0.8	Reinf. 1 Tension Rupture	66.9\%	Pass
19.75-14.75	Pole + Reinf.	TP60x60x0.8	Reinf. 1 Tension Rupture	69.5\%	Pass
14.75-9.75	Pole + Reinf.	TP60x60x0.8	Reinf. 1 Tension Rupture	72.2\%	Pass
9.75-4.75	Pole + Reinf.	TP60x60x0.8	Reinf. 1 Tension Rupture	74.8\%	Pass
4.75-0	Pole + Reinf.	TP60x60x0.8	Reinf. 1 Tension Rupture	77.3\%	Pass
				Summary	
			Pole	69.9\%	Pass
			Reinforcement	77.3\%	Pass
			Overall	77.3\%	Pass

Additional Calculations

	Moment of Inertia (in ${ }^{4}$)			Area (in ${ }^{2}$)			\% Capacity							
	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7
196-195	807	n/a	807	20.76	n/a	20.76	0.0\%							
195-190	1942	n/a	1942	27.83	n/a	27.83	7.3\%							
190-185	1942	n/a	1942	27.83	n/a	27.83	14.5\%							
185-180	1942	n/a	1942	27.83	n/a	27.83	25.5\%							
180-175	3829	n/a	3829	34.90	n/a	34.90	24.2\%							
175-170	3829	n/a	3829	34.90	n/a	34.90	32.0\%							
170-165	3829	n/a	3829	34.90	n/a	34.90	40.0\%							
165-160	3829	n/a	3829	34.90	n/a	34.90	50.2\%							
160-155	6659	n/a	6659	41.97	n/a	41.97	42.9\%							
155-150	6659	n/a	6659	41.97	n/a	41.97	51.9\%							
150-145	6659	n/a	6659	41.97	n/a	41.97	60.8\%							
145-140	6659	n/a	6659	41.97	n/a	41.97	69.9\%							
140-136	10622	n/a	10622	49.04	n/a	49.04	57.8\%							
136-135.75	10622	6973	17594	49.04	29.25	78.29	35.0\%							39.2\%
135.75-130.75	10622	6973	17594	49.04	29.25	78.29	39.3\%							43.9\%
130.75-125.75	10622	6973	17594	49.04	29.25	78.29	43.6\%							48.7\%
125.75-120.75	10622	6973	17594	49.04	29.25	78.29	48.0\%							53.6\%
120.75-120	10622	6973	17594	49.04	29.25	78.29	48.6\%							54.4\%
120-119.75	15908	9013	24921	56.11	29.25	85.36	40.1\%						44.0\%	
119.75-114.75	15908	9013	24921	56.11	29.25	85.36	43.8\%						48.1\%	
114.75-109.75	15908	9013	24921	56.11	29.25	85.36	47.6\%						52.3\%	
109.75-104.75	15908	9013	24921	56.11	29.25	85.36	51.4\%						56.5\%	
104.75-100	15908	9013	24921	56.11	29.25	85.36	55.1\%						60.5\%	
100-99.75	22710	11316	34026	63.18	29.25	92.43	46.2\%					50.1\%		
99.75-94.75	22710	11316	34026	63.18	29.25	92.43	49.6\%					53.7\%		
94.75-89.75	22710	11316	34026	63.18	29.25	92.43	53.0\%					57.4\%		
89.75-84.75	22710	11316	34026	63.18	29.25	92.43	56.5\%					61.1\%		
84.75-80	22710	11316	34026	63.18	29.25	92.43	59.8\%					64.7\%		
80-79.75	31217	13883	45100	70.24	29.25	99.49	50.9\%				54.4\%			
79.75-74.75	31217	13883	45100	70.24	29.25	99.49	53.9\%				57.7\%			
74.75-69.75	31217	13883	45100	70.24	29.25	99.49	57.1\%				61.0\%			
69.75-64.75	31217	13883	45100	70.24	29.25	99.49	60.2\%				64.4\%			
64.75-60	31217	13883	45100	70.24	29.25	99.49	63.3\%				67.7\%			
60-59.75	41363	13883	55246	93.46	29.25	122.71	50.4\%			55.3\%				
59.75-54.75	41363	13883	55246	93.46	29.25	122.71	53.0\%			58.2\%				
54.75-49.75	41363	13883	55246	93.46	29.25	122.71	55.6\%			61.1\%				
49.75-44.75	41363	13883	55246	93.46	29.25	122.71	58.3\%			64.0\%				
44.75-40	41363	13883	55246	93.46	29.25	122.71	60.8\%			66.8\%				
40-39.75	51381	13883	65264	116.58	29.25	145.83	50.2\%		56.6\%					
39.75-34.75	51381	13883	65264	116.58	29.25	145.83	52.5\%		59.2\%					
34.75-29.75	51381	13883	65264	116.58	29.25	145.83	54.8\%		61.7\%					
29.75-24.75	51381	13883	65264	116.58	29.25	145.83	57.0\%		64.3\%					
24.75-20	51381	13883	65264	116.58	29.25	145.83	59.3\%		66.8\%					
20-19.75	51381	13883	65264	116.58	29.25	145.83	59.4\%	66.9\%						
19.75-14.75	51381	13883	65264	116.58	29.25	145.83	61.7\%	69.5\%						
14.75-9.75	51381	13883	65264	116.58	29.25	145.83	64.0\%	72.2\%						
9.75-4.75	51381	13883	65264	116.58	29.25	145.83	66.4\%	74.8\%						
4.75-0	51381	13883	65264	116.58	29.25	145.83	68.6\%	77.3\%						

APPENDIX C

Tower Elevation Drawing \& Feedline Plan

Feed Line Distribution Chart
0' - 196'
\qquad
\qquad App Out Face \qquad Truss Leg

Job: US-CT-1002 Kettleton		
Project: 2018791.CT1002.04		
Client: PTI	Drawn by: mrisley	App'd:
Code: TIA-222-G	Date: 05/18/18	Scale: NTS
Path:		Dwg No. E-7

\qquad Flat \qquad App In Face

Client: PTI	Drawn by: mrisley	App'd:
Code: TIA-222-G	Date: 05/18/18	Scale: NTS
Path:		

APPENDIX D

Flange Bolt \& Flange Plate Analysis

Stiffeners ineffective - check plate unstiffened

Stiffeners ineffective - check plate unstiffened

Acceptable Stress Ratio	

Stiffeners ineffective - check plate unstiffened

GPD GROUP
Engineers • Architects • Planners

BOLT AND BRIDGE STIFFENER CALCULATIONS

Moment from TNX (M) =
Axial from TNX (P) =
Inner Bolt Diameter =
Inner Bolt Area $\left(\mathrm{A}_{\text {inner }}\right)=$
Inner Bolt MOI ($\left.\mathrm{l}_{\text {o.inner }}\right)=$
Number Inner Bolts $\left(\mathrm{N}_{\text {inner }}\right)=$

Bridge Stiffener Width =
Bridge Stiffener Thickness =
Bridge Stiffener Unbraced Length =
Bridge Stiffener Area $\left(\mathrm{A}_{\mathrm{p}}\right)$)
Bridge Stiffener MOI (I_{0}) =
Number Bridge Stiffeners (N_{p})

> 1414.50 kip-ft 30.41 kip

1 in
$0.79 \mathrm{in}^{2}$ $0.05 \mathrm{in}^{4}$ 32 6.00 in 1.50 in 12.00 in $9.00 \mathrm{in}^{2}$ $27.00 \mathrm{in}^{4}$ 3
@ 120'

ASIF $=$
nner Bolt Circle $\left(\mathrm{BC}_{\text {inner }}\right)=$
45 in
25.13 in 2
48.2\%
14.66 kips

Axial, Bridge Stiffener $\left(\mathrm{P}^{*} \eta_{\mathrm{p}}\right)=\quad 15.75$ kips

$\mathrm{I}_{\text {inner }}=$	$6363.30 \mathrm{in.}^{4}$
$\mathrm{I}_{\mathrm{pl}}=$	8859.38 in. ${ }^{4}$
$\mathrm{Itot}=$	15222.67 in. ${ }^{4}$
$\mathrm{P}_{\text {u.tinner }}=$	19.2 kips
$\mathrm{P}_{\text {ut.t.pl }}=$	250.7 kips
$\mathrm{P}_{\text {u.c.pl }}=$	261.2 kips
$\varnothing \mathrm{P}_{\text {nt.bolt }}=$	61.85 kips
Bolt Rating $=$	31.1\% OK

$$
\begin{aligned}
& \left(\mathrm{N}_{\text {inner }} * \mathrm{~A}_{\text {inner }} * \mathrm{BC}_{\text {inner }}{ }^{2} / 8+\mathrm{N}_{\text {inner }}{ }^{*} \mathrm{I}_{\text {o.inner }}\right) \\
& \left(\mathrm{N}_{\mathrm{pl}} * \mathrm{~A}_{\mathrm{pl}} * \mathrm{BC}_{\mathrm{pl}}{ }^{2} / 8+\mathrm{N}_{\mathrm{pl}} * \mathrm{I}_{\mathrm{op}}\right) \\
& \left(l_{\text {inner }}+I_{\text {outer }}+I_{\mathrm{p}}\right) \\
& \left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\text {innerl }} / 2\right)^{*} \mathrm{~A}_{\text {inner }}\right) / I_{\text {total }}-\mathrm{P}^{*} \eta_{\text {in }} / \mathrm{N}_{\text {inner }}\right) \\
& \left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\mathrm{p}} / 2\right) * \mathrm{~A}_{\mathrm{p}}\right) / I_{\text {total }}-\mathrm{P}^{*} \mathrm{n}_{\mathrm{p}} / \mathrm{N}_{\mathrm{pl}}\right) \\
& \left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\mathrm{p}} / 2\right) * \mathrm{~A}_{\mathrm{p} \mid}\right) / /_{\text {total }}+\mathrm{P}^{*} \eta_{\mathrm{p} \mid} / \mathrm{N}_{\mathrm{pl}}\right)
\end{aligned}
$$

Bridge Stiffener Check			
f_{y}	$=$	50	ksi
f_{u}	$=$	65	ksi
E	$=$	29000	ksi
K	$=$	0.85	
KL / r	$=23.556$		
$\mathrm{~F}_{\mathrm{e}}$	$=515.82$	ksi	
F_{cr}	$=$	48.01	ksi
$\emptyset \mathrm{P}_{\mathrm{nc}}$	$=388.90$	kips	
$\varnothing \mathrm{P}_{\mathrm{nt}}$	$=438.75$	kips	
Bridge Stiffener Rating	$=$	67.2%	OK

Existing Flange Connection @
US-CT-1002, Kettleton
2018791.CT1002.04

$\begin{aligned} \text { *O.T. } \text { Moment } & = \\ \text { Axial } & = \\ \text { Shear } & = \end{aligned}$	681.79 $\mathrm{k} * \mathrm{ft}$ 30.41 kips 25.96 kips	Acceptable Stress Ratio	105.0\%	
${ }^{*}$ Above reactions have been adjusted due to consideration of modifications. See attached hand calculations for determination of flange bolt forces used in the analysis.				
Flange Bolts		Upper Flange Plate		
		Location = External		
		Plate Strength $\left(F_{y}\right)=$ Plate Tensile $\left(F_{u}\right)=$	36 ksi	
		58 ksi		
		$\begin{aligned} & \text { Plate Tensile }\left(\mathrm{F}_{\mathrm{u}}\right)= \\ & \text { Plate Thickness }=\end{aligned}$	1.25 in	
		Outer Diameter $=$	48.375 in	
		$\phi_{\mathrm{f}}=$	0.9	
		16.16 in		
		wcalc $=$ wmax $=$	25.56 in	
		$w=$	16.16 in	
$\mathrm{F}_{\mathrm{ub}}=120 \mathrm{ksi}$			$\mathrm{Z}=$	$6.31 \mathrm{in}^{3}$
$A_{b}=$	$0.785398 \mathrm{in}^{2}$	$M_{u}=$	89.69 k -in	
$\mathrm{A}_{\mathrm{n}}=$	$0.606 \mathrm{in}^{\text {c }}$		204.468 k-in	
$\phi \mathrm{R}_{\mathrm{nv}}=$	31.81 kips	UP Capacity =	43.9\% OK	
$\phi \mathrm{R}_{\mathrm{nt}}=$	54.54 kips			

UpperStiffeners	
Configuration =	Every Other
Thickness $=$	0.625 in
Width $=$	3 in
Notch $=$	0.5 in
Height $=$	5 in
Stiffener Strength (F_{y}) $=$	36 ksi
Weld Info. Known? = Vertical Weld Size = Horiz. Weld Type =	
	Yes
	0.3125 in
	Fillet
Fillet Size $=$	0.3125 in
Weld Strength =	70 ksi

Stiffeners ineffective - check plate unstiffened

GPD GROUP

Engineers • Architects • Planner

BOLT AND BRIDGE STIFFENER CALCULATIONS

Moment from TNX (M) =
Axial from TNX (P) =
Inner Bolt Diameter =
Inner Bolt Area $\left(\mathrm{A}_{\text {inner }}\right)=$
Inner Bolt MOI ($\left.\mathrm{l}_{\text {o.inner }}\right)=$
Number Inner Bolts ($\mathrm{N}_{\text {inner }}$) =

Bridge Stiffener Width =
Bridge Stiffener Thickness =
Bridge Stiffener Unbraced Length $=$
Bridge Stiffener Area $\left(\mathrm{A}_{\mathrm{pl}}\right)=$
Bridge Stiffener MOI (I_{o}) =
Number Bridge Stiffeners $\left(\mathrm{N}_{\mathrm{p}}\right)$

1957.68 kip-ft 38.46 kip

1 in
$0.79 \mathrm{in}^{2} \quad$ Inner Bolt Circle $\left(\mathrm{BC}_{\text {inner }}\right)=$ 0.05 in 4 33 6.00 in 1.50 in 12.00 in $9.00 \mathrm{in}^{2}$ $27.00 \mathrm{in}^{4}$ 3

ASIF $=$

Total Area $\left(\mathrm{A}_{\text {tot.in }}\right)=$
Percent Total Area $\left(\eta_{\text {in }}\right)=$

Connection Bolt Hole Size $=$
@ 100'

0 in
9 in2
57 in
$27.00 \mathrm{in}^{2}$
51.0\%

Axial, Inner Bolts $\left(\mathrm{P}^{*} \eta_{\text {in }}\right)=$
18.84 kips
Axial, Bridge Stiffener $\left(\mathrm{P}^{*} \eta_{\mathrm{p}}\right)=\quad 19.62$ kips

$\begin{aligned} \mathrm{I}_{\text {inner }} & = \\ \mathrm{I}_{\mathrm{pl}} & = \\ \mathrm{I}_{\mathrm{tot}} & = \end{aligned}$	$\begin{array}{r} 8428.25 \mathrm{in.}^{4}{ }^{4} \\ \frac{11046.38 \mathrm{in} .^{4}}{19474.63 \mathrm{in} .{ }^{4}} \end{array}$	$\begin{aligned} & \left(\mathrm{N}_{\text {inner }} * \mathrm{~A}_{\text {inner }} * \mathrm{BC}_{\text {inner }}^{2} / 8+\mathrm{N}_{\text {inner }}{ }^{*} \mathrm{I}_{\text {o.inner }}\right) \\ & \left(\mathrm{N}_{\mathrm{pl}}{ }^{*} \mathrm{~A}_{\mathrm{pl}} * \mathrm{BC}_{\mathrm{pl}}{ }^{2} / 8+\mathrm{N}_{\mathrm{pl}} * \mathrm{I}_{\mathrm{opl}}\right) \\ & \left(\mathrm{l}_{\text {inner }}+\mathrm{I}_{\text {outer }}+\mathrm{I}_{\mathrm{pl}}\right) \end{aligned}$
$\mathrm{P}_{\text {u.tinner }}=$	23.6 kips	$\left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\text {inner }} / 2\right)^{*} \mathrm{~A}_{\text {inner }}\right) / I_{\text {total }}-\mathrm{P}^{*} \eta_{\text {in }} / \mathrm{N}_{\text {inneer }}\right)$
$\mathrm{P}_{\text {u.t.pl }}=$	302.9 kips	$\left.\left(\mathrm{M}^{*}\left(B C_{p l} / 2\right)^{*} \mathrm{~A}_{\mathrm{pl}}\right) / I_{\text {total }}-\mathrm{P}^{*} \mathrm{n}_{\mathrm{p}} / \mathrm{N}_{\mathrm{pl}}\right)$
$\mathrm{P}_{\text {u.c.pl }}=$	316.0 kips	$\left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\mathrm{pl}} / 2\right)^{*} \mathrm{~A}_{\mathrm{pl}}\right) / / \mathrm{t}_{\text {total }}+\mathrm{P}^{*} \eta_{\mathrm{pl}} / \mathrm{N}_{\mathrm{pl}}\right)$
$\varnothing \mathrm{P}_{\text {nt.bolt }}=$	61.85 kips	
Bolt Rating $=$	38.1\% OK	

Bridge Stiffener Check			
f_{y}	$=$	50	ksi
f_{u}	$=$	65	ksi
E	$=29000$	ksi	
K	$=$	0.85	
KL / r	$=23.556$		
$\mathrm{~F}_{\mathrm{e}}$	$=515.82$	ksi	
F_{cr}	$=48.01$	ksi	
$\emptyset \mathrm{P}_{\mathrm{nc}}$	$=388.90$	kips	
$\varnothing \mathrm{P}_{\mathrm{nt}}$	$=438.75$	kips	
Bridge Stiffener Rating	$=81.2 \%$	OK	

Existing Flange Connection @
US-CT-1002, Kettleton
2018791.CT1002.04

${ }^{* *}$ Stiffeners ineffective - check plate unstiffened**

GPD GROUP
Engineers • Architects • Planner

BOLT AND BRIDGE STIFFENER CALCULATIONS

Moment from TNX (M) =
Axial from TNX (P) =
Inner Bolt Diameter =
Inner Bolt Area $\left(\mathrm{A}_{\text {inner }}\right)=$
Inner Bolt MOI ($\left.\mathrm{I}_{\text {oinner }}\right)=$
Number Inner Bolts ($\mathrm{N}_{\text {inner }}$) =

Bridge Stiffener Width =
Bridge Stiffener Thickness =
Bridge Stiffener Unbraced Length $=$
Bridge Stiffener Area $\left(\mathrm{A}_{\mathrm{p}}\right)=$
Bridge Stiffener MOI (I_{o}) =
Number Bridge Stiffeners (N_{p})

> 2544.68 kip-ft 47.21 kip

1 in
$0.79 \mathrm{in}^{2}$
$0.05 \mathrm{in}^{4}$

48
6.00 in
1.50 in
12.00 in
$9.00 \mathrm{in}^{2}$
$27.00 \mathrm{in}^{4}$
3
@ 80'

ASIF =

Inner Bolt Circle $\left(\mathrm{BC}_{\text {inner }}\right)=$
Total Area $\left(\mathrm{A}_{\text {tot.in }}\right)=$
Percent Total Area $\left(\eta_{\text {in }}\right)=$

Connection Bolt Hole Size $=$
0 in
Net Bridge Stiffener Area ($\mathrm{A}_{\text {e.pp }}$)
9 in
Bridge Stiffener Circle ($\mathrm{BC}_{\mathrm{pl}}$) =
Total Area $\left(\mathrm{A}_{\text {tot.pl }}\right)=$
Percent Total Area $\left(\eta_{\mathrm{p}}\right)=$
27.00 in
41.7\%

57 in
$37.70 \mathrm{in}^{2}$
58.3\%

$\mathrm{l}_{\text {inner }}=$	15312.91 in. ${ }^{4}$
$\mathrm{I}_{\mathrm{pl}}=$	13476.38 in. ${ }^{4}$
$\mathrm{t}_{\text {tot }}=$	28789.28 in. ${ }^{4}$
$\mathrm{P}_{\text {u.t.inner }}=$	23.2 kips
$\mathrm{P}_{\text {u.t.pl }}=$	294.1 kips
$\mathrm{P}_{\text {u.c. } \text { pl }}=$	307.3 kips
$\varnothing \mathrm{P}_{\text {nt.bolt }}=$	61.85 kips
Bolt Rating $=$	37.5\% OK

Axial, Inner Bolts $\left(\mathrm{P}^{*} \eta_{\text {in }}\right)=$
27.51 kips

Axial, Bridge Stiffener $\left(\mathrm{P}^{*} \eta_{\mathrm{p}}\right)=$
19.70 kips

	Bridg	Stiffener	Check
	$\mathrm{f}_{\mathrm{y}}=$	50	ksi
	$\mathrm{f}_{\mathrm{u}}=$	65	ksi
	$\mathrm{E}=$	29000	ksi
	$\mathrm{K}=$	0.85	
	$\mathrm{KL} / \mathrm{r}=$	23.556	
	$\mathrm{F}_{\mathrm{e}}=$	515.82	ksi
	$\mathrm{F}_{\mathrm{cr}}=$	48.01	ksi
	$\emptyset \mathrm{P}_{\mathrm{nc}}=$	388.90	kips
	$\varnothing \mathrm{P}_{\mathrm{nt}}=$	438.75	kips
Bridge Stiffener	ating $=$	79.0\%	OK

Existing Flange Connection @
US-CT-1002, Kettleton
2018791.CT1002.04

$\begin{aligned} * \text { O.T. } \text { Moment } & = \\ \text { Axial } & = \\ \text { Shear } & = \end{aligned}$	1483.55 $\mathrm{k}^{\star} \mathrm{ft}$ 47.21 kips 30.32 kips
*Above reactions have been adjusted due to consideration of m determination of flange bolt forces used in the analysis.	
Flange Bolts	
\# Bolts $=$ Bolt Type $=$ Threads Included? $=$ Bolt Diameter $=$ Bolt Circle $=$ ϕ_{t} $=$ ϕ_{v} $=$	

Tension \& Shear (TIA-222-G-1, Section 4.9.6)

Prying Action Check
N/A, top flange thickness > tc

Lower Stiffeners	
Configuration =	Every Bolt
Thickness	0.625 in
Width $=$	2 in
Notch $=$	0.5 in
Height $=$	3.5 in
Stiffener Strength (F_{y}) $=$	36 ksi
Weld Info. Known? =	Yes
Vertical Weld Size =	0.3125 in
Horiz. Weld Type =	Fillet
Fillet Size =	0.3125 in
Weld Strength =	70 ksi
Stiffener Vertical Force =	9.98 kips
Vert. Weld Capacity =	32.5\% kips
Horiz. Weld Capacity =	52.2\% kips
Stiffener Capacity =	49.2\% kips
Controlling Capacity =	52.2\% OK

Welds Control

GPD GROUP
Engineers • Architects • Planner

BOLT AND BRIDGE STIFFENER CALCULATIONS

Moment from TNX (M) =
Axial from TNX (P) =
Inner Bolt Diameter =
Inner Bolt Area $\left(\mathrm{A}_{\text {inner }}\right)=$
Inner Bolt MOI ($\left.\mathrm{l}_{\text {o.inner }}\right)=$
Number Inner Bolts ($\mathrm{N}_{\text {inner }}$) =

Outer Bolt Diameter =
Outer Bolt Area $\left(\mathrm{A}_{\text {outer }}\right)=$
Outer Bolt MOI $\left(\mathrm{l}_{\text {o.outer }}\right)=$
Number Outer Bolts $\left(\mathrm{N}_{\text {outer }}\right)=$
Bridge Stiffener Width =
Bridge Stiffener Thickness =
Bridge Stiffener Unbraced Length $=$
Bridge Stiffener Area $\left(\mathrm{A}_{\mathrm{p}}\right)=$
Bridge Stiffener MOI (I_{o}) =
Number Bridge Stiffeners (N_{pl})
6.00 in

> 3175.27 kip-ft 57.40 kip
1.25 in
$1.23 \mathrm{in}^{2} \quad$ Inner Bolt Circle $\left(\mathrm{BC}_{\text {inner }}\right)=$
Total Area $\left(\mathrm{A}_{\text {tot.in }}\right)=$
Percent Total Area $\left(\eta_{\text {in }}\right)=$

Outer Bolt Circle $\left(\mathrm{BC}_{\text {outer }}\right)=$
53 in
39.27 in 2
29.6%
$39.27 \mathrm{in}^{2}$
$1.23 \mathrm{in}^{2}$
0.12 in 4

32

Total Area $\left(\mathrm{A}_{\text {tot.out }}\right)=$
Percent Total Area $\left(\eta_{\text {out }}\right)=$
29.6\%

ASIF =
1.00 Axial, Inner Bolts $\left(\mathrm{P}^{*} \eta_{\text {in }}\right)=$

Axial, Outer Bolts $\left(\mathrm{P}^{*} \eta_{\text {out }}\right)=\quad 17.01$ kips
1.50 in Connection Bolt Hole Size $=1.21875$ in
30.00 in \quad Net Bridge Stiffener Area $\left(\mathrm{A}_{\text {e.pl }}\right) 7.17188$ in $9.00 \mathrm{in}^{2} \quad$ Bridge Stiffener Circle $\left(B C_{\mathrm{p}}\right)=\quad 63$ in
$27.00 \mathrm{in}^{4} \quad$ Total Area $\left(\mathrm{A}_{\text {tot.pl }}\right)=\quad 54.00 \mathrm{in}^{2}$
$6 \quad$ Percent Total Area $\left(\eta_{\mathrm{p}}\right)=\quad 40.7 \%$
@ 60'

Axial, Bridge Stiffener $\left(\mathrm{P}^{*} \eta_{\mathrm{pl}}\right)=\quad 23.39$ kips

$\mathrm{l}_{\text {inner }}=$	10847.24 in. ${ }^{4}$
$\mathrm{I}_{\text {outer }}=$	13792.48 in. ${ }^{4}$
$\mathrm{I}_{\mathrm{pl}}=$	26952.75 in. ${ }^{4}$
$\mathrm{I}_{\text {tot }}=$	$51592.47 \mathrm{in}.{ }^{4}$
$\mathrm{P}_{\text {u.t.inner }}=$	20.8 kips
$\mathrm{P}_{\text {u.t.outer }}=$	23.5 kips
$\mathrm{P}_{\text {u.t.pl }}=$	205.5 kips
$\mathrm{P}_{\text {u.c.pl }}=$	213.3 kips
$\varnothing \mathrm{P}_{\text {nt. } \text { bolt }}=$	96.64 kips
Bolt Rating $=$	24.3\% OK

$$
\begin{aligned}
& \left(\mathrm{N}_{\text {inner }} * \mathrm{~A}_{\text {inner }} * \mathrm{BC}_{\text {inner }} / 8+\mathrm{N}_{\text {inner }} * \mathrm{I}_{\text {o. inner }}\right) \\
& \left(\mathrm{N}_{\text {outer }} * \mathrm{~A}_{\text {outer }} * \mathrm{BC}_{\text {outer }}{ }^{2} / 8+\mathrm{N}_{\text {outer }}{ }^{*} \mathrm{I}_{\text {o.outer }}\right) \\
& \left(\mathrm{N}_{\mathrm{pl}}{ }^{*} \mathrm{~A}_{\mathrm{pl}} * \mathrm{BC}_{\mathrm{pl}}{ }^{2} / 8+\mathrm{N}_{\mathrm{pl}}{ }^{*} \mathrm{I}_{\text {opl }}\right) \\
& \left(I_{\text {inner }}+I_{\text {outer }}+I_{\text {pl }}\right) \\
& \left(\mathrm{M}^{*}\left(\mathrm{BC}_{\text {inner }} / 2\right) * \mathrm{~A}_{\text {inner }} / / \mathrm{I}_{\text {total }}-\mathrm{P} * \eta_{\text {in }} / \mathrm{N}_{\text {inner }}\right) \\
& \left(\mathrm{M}^{*}\left(\mathrm{BC}_{\text {outer }} / 2\right) * \mathrm{~A}_{\text {outer }} / / I_{\text {total }}-\mathrm{P}^{*} \eta_{\text {out }} / \mathrm{N}_{\text {outer }}\right) \\
& \left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\mathrm{p}} / 2\right)^{*} \mathrm{~A}_{\mathrm{p}}\right) / I_{\text {total }}-\mathrm{P}^{*} \eta_{\mathrm{p}} / \mathrm{N}_{\mathrm{p}}\right) \\
& \left.\left(M^{*}\left(B C_{p l} / 2\right) * A_{p l}\right) / I_{\text {total }}+P^{*} \eta_{p l} / N_{p l}\right)
\end{aligned}
$$

Existing Flange Connection @
US-CT-1002, Kettleton
2018791.CT1002.04

Tension \& Shear (TIA-222-G-1, Section 4.9.6)

$\mathrm{F}_{\mathrm{ub}}=$	105	ksi
$\mathrm{A}_{\mathrm{b}}=$	2.405282	in^{2}
$\mathrm{A}_{\mathrm{n}}=$	1.9	in ${ }^{\text {- }}$
$\phi \mathrm{R}_{\mathrm{nv}}=$	85.24	kips
$\phi \mathrm{R}_{\mathrm{nt}}=$	149.63	kips
justed)=	149.61	kips
$\mathrm{V}_{\mathrm{ub}}=$	1.01	kips
$\mathrm{T}_{\mathrm{ub}}=$	30.22	kips

Prying Action Check
N/A for stiffened flange

GPD GROUP
Engineers • Architects • Planners

BOLT AND BRIDGE STIFFENER CALCULATIONS

Moment from TNX (M) =
Axial from TNX $(\mathrm{P})=$
Inner Bolt Diameter =
Inner Bolt Area $\left(\mathrm{A}_{\text {inner }}\right)=$
Inner Bolt MOI ($\left.\mathrm{I}_{\text {oinner }}\right)=$
Number Inner Bolts ($\mathrm{N}_{\text {inner }}$) =

Outer Bolt Diameter =
Outer Bolt Area $\left(\mathrm{A}_{\text {outer }}\right)=$
Outer Bolt MOI $\left(\mathrm{l}_{\text {o.outer }}\right)=$
Number Outer Bolts $\left(\mathrm{N}_{\text {outer }}\right)=$
Bridge Stiffener Width =
Bridge Stiffener Thickness =
Bridge Stiffener Unbraced Length $=$
Bridge Stiffener Area $\left(\mathrm{A}_{\mathrm{p}}\right)=$
Bridge Stiffener MOI (I_{o}) =
Number Bridge Stiffeners (N_{pl})

> 3841.71 kip-ft 70.61 kip
1.25 in
$1.23 \mathrm{in}^{2} \quad$ Inner Bolt Circle $\left(\mathrm{BC}_{\text {inner }}\right)=$
$0.12 \mathrm{in}^{4}$
32
1.25 in
$1.23 \mathrm{in}^{2}$
0.12 in 4

32
ASIF $=$

Total Area $\left(\mathrm{A}_{\text {tot.in }}\right)=$
Percent Total Area $\left(\eta_{\text {in }}\right)=$

Outer Bolt Circle $\left(\mathrm{BC}_{\text {outer }}\right)=$
@ 40'
53 in
$39.27 \mathrm{in}^{2}$
29.6%

Axial, Outer Bolts $\left(\mathrm{P}^{*} \eta_{\text {out }}\right)=$
20.92 kips
1.50 in Connection Bolt Hole Size $=\quad 1.18$ in 30.00 in $9.00 \mathrm{in}^{2}$
$27.00 \mathrm{in}^{4}$
6

Net Bridge Stiffener Area ($\mathrm{A}_{\text {epl }}$) Bridge Stiffener Circle ($\left.B C_{p l}\right)=$ Total Area $\left(\mathrm{A}_{\text {tot.pl }}\right)=$ Percent Total Area $\left(\eta_{\mathrm{pl}}\right)=$
7.23 in

63 in
$54.00 \mathrm{in}^{2}$
40.7\%

Axial, Bridge Stiffener $\left(\mathrm{P}^{*} \eta_{\mathrm{pl}}\right)=\quad 28.77$ kips

$$
\begin{aligned}
& \left(\mathrm{N}_{\text {inner }} * \mathrm{~A}_{\text {inner }} * \mathrm{BC}_{\text {inner }} / 8+\mathrm{N}_{\text {inner }}{ }^{*} \mathrm{I}_{\text {o.inner }}\right) \\
& \left(\mathrm{N}_{\text {outer }} * \mathrm{~A}_{\text {outer }} * \mathrm{BC}_{\text {outer }}{ }^{2} / 8+\mathrm{N}_{\text {outer }}{ }^{*} \mathrm{I}_{\text {o.outer }}\right) \\
& \left(\mathrm{N}_{\mathrm{pl}}{ }^{*} \mathrm{~A}_{\mathrm{pl}} * \mathrm{BC}_{\mathrm{pl}}{ }^{2} / 8+\mathrm{N}_{\mathrm{pl}}{ }^{*} \mathrm{I}_{\text {opl }}\right) \\
& \left(I_{\text {inner }}+I_{\text {outer }}+I_{\text {pl }}\right) \\
& \left(\mathrm{M}^{*}\left(\mathrm{BC}_{\text {inner }} / 2\right) * \mathrm{~A}_{\text {inner }} / / \mathrm{I}_{\text {total }}-\mathrm{P} * \eta_{\text {in }} / \mathrm{N}_{\text {inner }}\right) \\
& \left(\mathrm{M}^{*}\left(\mathrm{BC}_{\text {outer }} / 2\right)^{*} \mathrm{~A}_{\text {outer }} / / I_{\text {total }}-\mathrm{P}^{*} \eta_{\text {out }} / \mathrm{N}_{\text {outer }}\right. \\
& \left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\mathrm{p}} / 2\right)^{*} \mathrm{~A}_{\mathrm{p}}\right) / I_{\text {total }}-\mathrm{P}^{*} \eta_{\mathrm{p}} / \mathrm{N}_{\mathrm{p}}\right) \\
& \left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\mathrm{pl}} / 2\right)^{*} \mathrm{~A}_{\mathrm{pl}}\right) / / \mathrm{t}_{\text {otal }}+\mathrm{P}^{*} \eta_{\mathrm{pl}} / \mathrm{N}_{\mathrm{pl}}\right)
\end{aligned}
$$

Bridge Stiffener Check			
f_{y}	$=$	50	ksi
f_{u}	$=$	65	ksi
E	$=$	29000	ksi
K	$=$	0.85	
KL / r	$=$	58.890	
$\mathrm{~F}_{\mathrm{e}}$	$=$	82.53	ksi
F_{cr}	$=$	38.80	ksi
$\emptyset \mathrm{P}_{\mathrm{nc}}$	$=$	314.29	kips
$\varnothing \mathrm{P}_{\mathrm{nt}}$	$=$	352.46	kips
Bridge Stiffener Rating	$=$	82.1%	OK

Existing Flange Connection @
US-CT-1002, Kettleton
2018791.CT1002.04

O.T. Moment $=$ Axial = Shear =	1137.15 $\mathrm{k}^{} \mathrm{ft}$ 70.61 kips 34.11 kips
${ }^{*}$ Above reactions have been adjusted due to consideration of determination of flange bolt forces used in the analysis.	
Flange Bolts	
\# Bolts = Bolt Type = Threads Included? = Bolt Diameter $=$ Bolt Circle $=$ $\phi_{\mathrm{t}}=$ $\phi_{v}=$	

Tension \& Shear (TIA-222-G-1, Section 4.9.6)

$\mathrm{F}_{\mathrm{ub}}=$	105	ksi
$\mathrm{A}_{\mathrm{b}}=$	2.405282	in^{2}
$\mathrm{A}_{\mathrm{n}}=$	1.9	i^{2}
$\phi \mathrm{R}_{\mathrm{nv}}=$	85.24	kips
$\phi \mathrm{R}_{\mathrm{nt}}=$	149.63	kips
justed)=	149.61	kips
$\mathrm{V}_{\mathrm{ub}}=$	1.07	kips
$\mathrm{T}_{\text {ub }}=$	31.89	kips

Prying Action Check
N/A for stiffened flange

GPD GROUP
Project \#: 2018791.CT1002.03
Engineers • Architects • Planners

BOLT AND BRIDGE STIFFENER CALCULATIONS

Moment from TNX $(M)=$
Axial from TNX $(P)=$
Inner Bolt Diameter =
Inner Bolt Area $\left(\mathrm{A}_{\text {inner }}\right)=$
nner Bolt $\mathrm{MOI}\left(\mathrm{I}_{\text {oinner }}\right)=$
Number Inner Bolts $\left(\mathrm{N}_{\text {inner }}\right)=$

Outer Bolt Diameter =
Outer Bolt Area $\left(\mathrm{A}_{\text {outer }}\right)=$
Outer Bolt MOI ($\left.\mathrm{I}_{\text {oouter }}\right)=$
Number Outer Bolts $\left(\mathrm{N}_{\text {outere }}\right)=$

Bridge Stiffener Width =
Bridge Stiffener Thickness =
Bridge Stiffener Unbraced Length =
Bridge Stiffener Area $\left(\mathrm{A}_{\mathrm{p}}\right)=$
Bridge Stiffener MOI (I_{o}) =
Number Bridge Stiffeners (N_{p})
Bridge Stiffener Width =
Bridge Stiffener Thickness =
Bridge Stiffener Unbraced Length =
Bridge Stiffener Area $\left(\mathrm{A}_{\mathrm{pl}}\right)=$
Bridge Stiffener MOI $\left(\mathrm{I}_{0}\right)=$
Number Bridge Stiffeners $\left(\mathrm{N}_{\mathrm{p}}\right)$
.25
$1.23 \mathrm{in}^{2}$ 0.12 in 4 32
6.00 in
1.50 in
1.50 in
$30.00 \mathrm{in}^{9.00} \mathrm{in}^{2}$
$27.00 \mathrm{in}^{4}$
6
4.00 in
1.25 in
12.00 in
$5.00 \mathrm{in}^{2}$ $6.67 \mathrm{in}^{4}$ 6.67 in 4
6
4537.26 kip-ft \quad ASIF $=$ 85.99 kip
1.25 in
$1.23 \mathrm{in}^{2}$
0.12 in 4

32

Inner Bolt Circle $\left(\mathrm{BC}_{\text {inner }}\right)=$	47 in
Total Area $\left(\mathrm{A}_{\text {tot.in }}\right)=$	$39.27 \mathrm{in}^{2}$
Percent Total Area $\left(\eta_{\text {in }}\right)=$	24.2%

39.27 in 2

Axial, Inner Bolts $\left(\mathrm{P}^{*} \eta_{\text {in }}\right)=$
20.78 kips

Outer Bolt Circle $\left(\mathrm{BC}_{\text {outer }}\right)=$
Total Area $\left(\mathrm{A}_{\text {tot.out }}\right)=$
Percent Total Area $\left(\eta_{\text {out }}\right)=$

53 in
$39.27 \mathrm{in}^{2}$
24.2%

$\mathrm{l}_{\text {inner }}=$	$10847.24 \mathrm{in}^{4}$
$\mathrm{I}_{\text {outer }}=$	13792.48 in. ${ }^{4}$
$\mathrm{I}_{\mathrm{pl}}=$	25073.30 in. ${ }^{4}$
$\mathrm{I}_{\mathrm{pl}}=$	13822.71 in. ${ }^{4}$
$\mathrm{I}_{\text {tot }}=$	63535.73 in. ${ }^{4}$
$\mathrm{P}_{\text {ut.inner }}=$	24.1 kips
$\mathrm{P}_{\text {u.t.outer }}=$	27.2 kips
$\mathrm{P}_{\text {u.t.pl }}=$	229.5 kip
$\mathrm{P}_{\text {u.c.pl }}=$	239.0 kip
$\mathrm{P}_{\text {u.t.pl }}=$	127.2 kip
$\mathrm{P}_{\text {u.c.pl }}=$	132.5 kips
$\varnothing \mathrm{P}_{\text {nt. bolt }}=$	96.64 kips
Bolt Rating $=$	28.2\% OK

$$
\begin{aligned}
& \left(\mathrm{N}_{\text {inner }} * \mathrm{~A}_{\text {inner }} * \mathrm{BC}_{\text {inner }}^{2} / 8+\mathrm{N}_{\text {inner }} * \mathrm{I}_{\text {o.inner }}\right) \\
& \left(N_{\text {outer }} * A_{\text {outer }} * B_{\text {outer }}{ }^{2} / 8+N_{\text {outer }} * I_{\text {o.outer }}\right) \\
& \mathrm{N}_{\mathrm{pl}}{ }^{*} \mathrm{~A}_{\mathrm{pl}} * \mathrm{BC}_{\mathrm{pl}}{ }^{2} / 8+\mathrm{N}_{\mathrm{pl}}{ }^{*} \mathrm{l}_{\mathrm{opl}} \\
& \left(\mathrm{~N}_{\mathrm{pl}} * \mathrm{~A}_{\mathrm{pl}} * \mathrm{BC}_{\mathrm{pl}}{ }^{2} / 8+\mathrm{N}_{\mathrm{pl}} * \mathrm{I}_{\mathrm{opp}}\right) \\
& \left(l_{\text {inner }}+I_{\text {outer }}+I_{p l}\right) \\
& \left(\mathrm{M}^{*}\left(\mathrm{BC}_{\text {inner }} / 2\right)^{*} \mathrm{~A}_{\text {innere }} / I_{\text {total }}-\mathrm{P}^{*} \mathrm{n}_{\text {in }} / \mathrm{N}_{\text {inner }}\right) \\
& \left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\text {outer }} / 2\right){ }^{*} \mathrm{~A}_{\text {outer }}\right) / /_{\text {total }}-\mathrm{P}^{*} \eta_{\text {out }} / \mathrm{N}_{\text {outer }}\right) \\
& \left.\left(\mathrm{M}^{*}\left(B C_{\mathrm{p}} / 2\right)^{*} A_{\mathrm{pl}}\right) / I_{\text {total }}-\mathrm{P}^{*} \eta_{\mathrm{pl}} / \mathrm{N}_{\mathrm{pl}}\right) \\
& \left.\left(M^{*}\left(B C_{p l} / 2\right)^{*} A_{p l}\right) / I_{\text {total }}+P^{*} \eta_{p l} / N_{p l}\right) \\
& \left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\mathrm{pl}} / 2\right)^{*} \mathrm{~A}_{\mathrm{pl}}\right) / /_{\text {total }}-\mathrm{P}^{*} \eta_{\mathrm{pl}} / \mathrm{N}_{\mathrm{pl}}\right) \\
& \left.\left(M^{*}\left(B C_{p l} / 2\right)^{*} A_{p l}\right) / I_{\text {total }}+P^{*} \eta_{p l} / N_{p l}\right)
\end{aligned}
$$

Bridge Stiffener Check			
f_{y}	$=$	50	ksi
f_{u}	$=$	65	ksi
$\mathrm{E}=$	29000	ksi	
K	$=$	0.85	
$\mathrm{KL} / \mathrm{r}=$	58.890		
$\mathrm{~F}_{\mathrm{e}}$	$=$	82.53	ksi
F_{cr}	$=$	38.80	ksi
$\emptyset \mathrm{P}_{\mathrm{nc}}$	$=$	314.29	kips
$\varnothing \mathrm{P}_{\mathrm{nt}}$	$=$	349.63	kips
Bridge Stiffener Rating	$=$	76.1%	OK

Connection Bolt Hole Size =	1.21875 in		
Net Bridge Stiffener Area ($\mathrm{A}_{\text {e.pl }}$) $=$	7.17188 in		
Bridge Stiffener Circle ($\left.\mathrm{BC}_{\mathrm{pl}}\right)=$	60.75 in		
Total Area $\left(\mathrm{A}_{\text {tot.pl }}\right)=$	$54.00 \mathrm{in}^{2}$		
Percent Total Area $\left(\eta_{\mathrm{pl}}\right)=$	33.2\%	Axial, Bridge Stiffener $\left(\mathrm{P}^{*} \eta_{\mathrm{p}}\right)=$	28.57 kips
Connection Bolt Hole Size $=$	1.21875 in		
Net Bridge Stiffener Area ($\mathrm{A}_{\text {e.pl }}$) $=$	3.47656 in		
Bridge Stiffener Circle ($\left.\mathrm{BC}_{\mathrm{pl}}\right)=$	60.625 in		
Total Area ($\mathrm{A}_{\text {tot.pl }}$) $=$	$30.00 \mathrm{in}^{2}$		
Percent Total Area $\left(\eta_{\mathrm{pl}}\right)=$	18.5\%	Axial, Bridge Stiffener $\left(\mathrm{P}^{*} \eta_{\mathrm{p}}\right)=$	15.87 kips

2018791.CT1002.04
GPD GROUP

Tension \& Shear (TIA-222-G-1, Section 4.9.6)

$\mathrm{F}_{\mathrm{ub}}=$	105	ksi
$\mathrm{A}_{\mathrm{b}}=$	2.405282	in^{2}
$\mathrm{A}_{\mathrm{n}}=$	1.9	in ${ }^{\text {- }}$
$\phi \mathrm{R}_{\mathrm{nv}}=$	85.24	kips
$\phi \mathrm{R}_{\mathrm{nt}}=$	149.63	kips
justed)=	149.61	kips
$\mathrm{V}_{\mathrm{ub}}=$	1.11	kips
$\mathrm{T}_{\mathrm{ub}}=$	30.23	kips

Prying Action Check
N/A for stiffened flange

US-CT-1002, Kettleton

APPENDIX E

Anchor Rod \& Base Plate Analysis

Anchor Rod Interaction, TIA-222-G US-CT-1002, Kettleton 2018791.CT1002.04

tnx Reactions	
Overturning Moment=	5254.63 k*ft
Axial Force $=$	99.90 k
Shear Force $=$	36.33 k

Existing Anchor Rods	
Number of Rods =	52
Rod Circle $=$	67 in
Rod Diameter =	1.25 in
Est. Dist. b/w ea. Rod $=$	in
Plate Type =	Round
Plate Diameter $=$	69.75 in

Pole		
Pole Diameter $=$	60	in
Number of Sides $=$	Round	
Thickness $=$	0.625	in

First Added Anchor Rods	
Number of Rods	$=12$
Rod Circle	
	74.00
in	
Rod Diameter $=$	1.25
in	
Anchor Rod Grade $=$	F1554 GR 105

Second Added Anchor Rods	
Number of Rods = Rod Circle $=$ Rod Diameter $=$ Anchor Rod Grade =	$f_{\text {in }}$

Rod Number	Initial Angle
1	0
2	30
3	60
4	90
5	120
6	150
7	180
8	210
9	240
10	270
11	300
12	330

First Added Anchor Rods		
Max Rod Compression $=$	62.38	k
фRnt $=$	96.90	k
Anchor Rod Capacity $=$		

Reactions in Existing Rods	
Overturning Moment=	$4100.38 \mathrm{k}^{*} \mathrm{ft}$
Axial Force $=$	99.90 k
Shear Force =	36.33 k
Centroid Offset $=$	0.00 in

Anchor Rod and Base Plate Stresses, TIA-222-G-1

US-CT-1002, Kettleton
2018791.CT1002.04

GPD GROUP

Overturning Moment = Axial Force = Shear Force = Centroid Offset =	$4100.38 \mathrm{k}^{} \mathrm{ft}$
	99.90 k
	36.33 k
	in

Acceptable Stress	
Ratio $=105.0 \%$	

*Above reactions have been adjusted due to consideration of modifications. See attached hand calculations for determination of anchor rod forces used in the analysis below.

Anchor Rods(Section 4.9.9, TIA-222-G-1)		
Number of Rods =	52	ksi
$\phi=$	0.8	
Rod Ultimate Strength $\left(\mathrm{F}_{\mathrm{u}}\right)=$	150	
Base Plate Detail Type* $=$	d	
Rod Circle =	67	in
Rod Diameter =	1.25	in
Net Tensile Area $=$	0.97	i^{2}
Max Tension on Rod =	54.56	kips
Max Compression on Rod =	58.40	kips
$\mathrm{P}_{\mathrm{u}}=$	58.40	kips
$\mathrm{V}_{\mathrm{u}}=$	0.70	kips
$\eta=$	0.50	
$\mathrm{P}_{\mathrm{u}}+\mathrm{V}_{\mathrm{u}} / \eta=$	59.80	
$\varphi \mathrm{R}_{\mathrm{nt}}=$	116.28	kips
Anchor Rod Capacity =	51.4\%	OK

*This analysis assumes the clear distance from the top of the concrete to the bottom of the leveling nut is less than the diameter of the anchor rod. Notify GPD Group immediately if existing field conditions do not meet this assumption.

APPENDIX F

Foundation Analysis

Pile Analysis

US-CT-1002, Kettleton
2018791.CT1002.04

M	$5254.63 \mathrm{k}-\mathrm{ft}$	Pile Ultimate Capacities	
P	99.90 k	Existing	
V	36.33 k	Compression	150 k
M tot	$5454.445 \mathrm{k}-\mathrm{ft}$	Tension	100 k
M tot 45	$3856.875 \mathrm{k}-\mathrm{ft}$		
d	5.5 ft	$\underline{\text { Modification }}$	
h	46 ft	Compression	100 k
Vconc	$11638 \mathrm{ft}^{3}$	Tension	100 k
wconc	1745.7 k		

Pile Capacities		Reinforcement Capacity	
Existing		Mu	14723.62 k -ft
Compression	39.6\%	a	4.262575 in
Tension	51.3\%	d	60.885 in
		Phi Mn	22473.3 k-ft
Modification			
Compression	65.6\%	Capacity	65.5\%
Tension	51.3\%		

SECTION 01 100-SCOPE OF WORK
PART 1 - GENERAL

Relate pociuers
A. THE REQUREMENTS OF THIS SECTON APPLY TO ALL SECTONS IN THIS
B. SpRIN -STANDARD CONSTRUCTON DETALS FOR WIRELESS STISS" ARE INCLUDED IN

natonaly recognzed
CODES AND STANDAROS

1. GR-63-CORE NEES REQUIREMENTS: PHYSICAL PROTECTON
2. GR-78-CORE EENRRC REQUREMENS FOR THE PHYIICAL DESIION AND
MANUFACTURE OF TEIECOMMUNCATONS EQUPMENT.
3. GR-1089 CORE, ELECTROMAGNETC COMPATBUTY AND ELECTRICAL SAFETY

AMERICAN SOCIETY FOR TESTNG OF MAIERALS (ASTM)
4. INSTTUUE of Electronic and electrical enginers (iEEE)
5. AMERICAN CONCREIE INSTITIE (ACI)
6. AMERICAN WRE PRODUCERS ASSOCATON (AWPA)

CONCRETE RENFORCING StEEL INSTIUTE (CRSS)
10. AMERRCAN ASSOCITION OF STAIE HIGHWAY AND TRANSPORTATION OFFCCLLLS
11. Portand cement associaton (paca)
2. NATONAL CONCRETE MASONRY ASSOCIATON (NCMA)
3. bRICK NNDUSTRY ASSOCIATON (日A)
4. American weloing societ (aws)
15. NATIONLL ROOFNG CONTRACTORS ASSOCLATON (NRCA)
16. SHEET METAL AND AR CONDITONNG CONTractors' NATINAL ASSOCLITON
17. DOOR AND HARDWARE INSTIUTE (DHI)
18. OCCUPATINAL SARETY AND HEALTH ACT (OSHA)
19. APPUCABE BULING CODES INCLUDNG UNHFORM BUIDING CODE, SOUTHER 1.5 Definmons:
A. WORK: THE SUM OF TASKS AND RESPONSIBUITIES IDENTFIED IN THE CONTRACT
B. COMPANY: SPRINT CORPORATION
c. ENGINERS STNOMMOUS WIH ARCHITECT \&NEINER AND AAEE. THE DESIGN
D. Contractor: constructon contractor: Constructon yevora; indmoual or
E. THIRD PARTY YENDOR OR AGENCY: A YENOR OR AGEVCY ENGAGE SEPARATELY

F. OFCI: OWNER FURNSHED, CONTRACTOR INSTALLED EQUIPMENT.
G. CONSTRUCTON MANAGER-AL PRONECTS RELAIED COMMUNICATON TO ROW

 PROOUCTION OF "AS-BUULT TRAWHNGS.
 CONSTRUCTION MANAGER OF ANV VARRATONS PRIOR TO PROCEEDING WTH THE
WORR.
c. DIMENIONS SHOWN ARE TO RNIS SURRACES UNLESS NOTED OTHERUSE
 PROCEEDING WTH THE WORK.

. 15 USE of electronic prouect management Ststems:
PART 2 - PRODUCTS (NOT USED)
part 3 - EXECUTION

3.4 DIMENSIONS YERIFY DIMENSIONS INDICATED ON DPAWMGS WIA FRED DIMENSIONS
BEFORE FABRICATON OR ORDERING OF MATERRLS. DO NOT SCALE DRAWINGS.

ARCHITECT AND ENGIEER. SECTION 01200 -

1.2 RELATED DOCUMENTS:
A. THE RECOUREMENS OF THIS SECTION APPLY TO ALL SECTONS IN THIS
e. SpRIN "STANDARD CONSTRUCTON DTAALS FOR WIRELESS STES" ARE INCLUDED in PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 REGEIPT OF MATERIAL AND EQUIPMENT:
A. A CoMPM FURNSHHED MATERML AND EQUPMENT IS IDENTFIED ON THE RF DATA
a. THE CONTRACTOR IS REEPONSILE. FOR SPRINT PROVOED MATERAL AND

ACCEPT DELUERIES AS SHIPPED AND TAKE RECEIPT.
2. VERIF COMPLIteness ano conotion of all deliveries.
3. TARE RESPONSIDUUT FOR EOUUPMEN AND PROMDE INSURANCE PROTECTON
4. RECORD ANY DFEETS OR DAMGGES AND WTHIN TWENY-FOUR HOURS ATIER
5. PROVDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING.

3.2 DEINERBBLES:
A. COMPETEE SHIIPPING AND RECEIPT DOCUMENATION IN ACCORDANCE WITH COMPANY
B. IF APPLCABLE, COMPLEEIELOST/STOLEN/DMAGEED DOCUMETATON REPORTAS AS
c. UPLOAD DOCUMENTATON IITO SPRRN SII MANGGMEN STSTEM (SMS) AND/OR SECTION 01300 - CELL SITE CONSTRUCTION CO
 1.2 RELATED DOCUMENTS:
A. THE REDOUREMENTS OF THIS SECTON APPLY TO AL SECTIONS IN THIS
B. SPRRN "STANDORD CONSTRUCTON DEERALS FOR WIRELESS STES" ARE INCLUDED IN 1.3 Notce to Proceed
A. NO WORK SHAL COMMENCE PRIOR TO COMPAN'S WRITEN NOTCE TO PROCEED
ANO THE ISSUNCE OF NTE WORK ORDER.

PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 functonal reaurements:
A. THE ACTMIIES DESCRIEED IN THIS PARAGRAPH REPRESEN MNMMUM ACTIONS AND

-. SUBMI SPECIIRC DOCUMENATON AS INOICARD HEREIN, AND OBTAN REQURED
c. mavage and conduct all fel constructon servie related activies

INFINIGY8
ERO TO INFINIGY

231 KETTLETOWN ROAD SOUTHBURY, CT 06488

SPRINT SPECIFICATIONS

CONTINUE FROM SP-1

1. Perform any required str emtronmenal migation
2. PREPARE GROUND STSES: PRODDE DE-GRRBING: AND ROUGH AND FNAL
3. MANAGE AND CONDUGT AL ACTVMES For INSTALATON OF UTIUTES
4. $\operatorname{INSTAUL}$ UNDERGROUND FACLINES NCLUDING UNDERGROUND POWER AND
COMNUNICATONS CONOUTS, ANO UNDERGROUND GROUNDNG SYSEM.
5. INSTAL ABOVE GROUND GROUNONG SYSTEMS.
6. Provid new hava installations and moditcations.
7. Install "H-frames", cabinets and shelters as inoicatien.
B. INSTAL ROADS, ACCESS WAYS, CURES AND DRANS AS INICATED.
a. Accomplish required modifcation of existng faclumies.
a. PRovid antenna support structure foundatons.
8. Provide slabs and equipment platrorms.
9. INSTAL CORRERS. 13. perform inspection and materil testing as required hereinatier. 14. CONDUCT StIE resistance to earth testing as reouireo hereinatier 15. INSTAL fXED Generator sets and other standeb power solumins.
10. INSTAL TOWERS ANENNA SUPPORT STRUCURES AND PLATFORMS ON

11. PERFORM, DOCUMENT, AND Close out any constructon control
12. PEERORM ANIENNAL AND COAX SWEEP TESTNG AND MAKE ANY AND ALL

2 GENERAL REQUIREMENT FOR CIML CONSTRucTION:
 TACIIIES, AND SURPLLS MUS MAERALS.
b. EOUPMEN ROOMS SHALL AT AL TMMES EE MANTANED "BROOM CIEAN" ANO
c. CONTRactor Shal take al reasonable precautons to discover ano
13. IN TE EVENT CONTRCTOR ENCOUNERS ANY HAZARDOUS CONOMON WHICH

14. CONTRACTOR AGRES TO USE CARE WHIE ON THE STE AND SHAL NOT TAK

D. CONTRACTOR'S ACTMTIES SHAL EE RESTRLITED TO THE PROUECT LMITS. SHOLLD

conduct testing as reoulred herein.
3.3 delveralles
A. CONTRACTOR SHALL REMEW, APPROVE, AND SUBMT TO SRRINT SHOP DRAWINGS,
e. PROVDE DOCUMENAAON INCLUDING, BUT NOT LIMIED TO. THE FOLLOWING.
DOCCMMENATON SHAL EE FORWARDED IN ORGGNAL FORMAT AND/OR UPLOADED Documen
INTO SMS.

[^0]4. ELECTRICAL SERVCE COMPLETON DATE (POPULATE FELD IN SMS AND/OR
5. LINES AND ANTENNA NSTTAL DATE (POPULATE REL IN SMS AND/OR
6. POWER INSTALL DATE (POPULATE FELD IN SMS AND/OR FORWARD
NOTFCCAOON).
7. TELCO REAOY DATE (POPULATE FELD IN SMS AND/OR FORWARD
8. PPC (OR SHELIER) INSTALL DATE (POPULATE FELD IN SMS AND/OR FORWARD
NOIFCATON).
9. TOWER CONSTRUCTON START DATE (POPULATE FELD IN SMS AND/OR
10. TOWER CONSTRUCTON COMPLLTE DATE (POPULATE FELD IN SMS AND/OR
11. sTS AND RADIO EQUPMENT DELEERED AT STE DATE (POPULATE REL IN
SMS ANDOR
12. NETWORK OPEERATONS HANDOFF CHECKUST (HOC WALK) COMPLETE (UPLLAD
13. CIML CONSTTUCCTON COMPLETE DATE (POPULATE FEL IN SMS AND/OR
14. Stie construction progress photos unloaded into sms.

SECTION 01400 - SUBMITTALS \& TESTS

1.2 RELATEO DOCUMENTS:
A. THE RROUREMENTS OF THIS SECTION APPLY TO AL SECTONS IN THIS
e. SpRiN ' STANARDD CONSTRUCTION DEAALS FOR WIIRELESS STES ARE INCLUDED iN 1.3 SUBMITALS:
A. THE WORK IN AL ASPECTS SHAL COMPLY WITH THE CONSTRUCTON DRAWINGS
b. suemit the following to company representative for approval.

1. CONCRERE MXX-DESIINS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND
CONCREIE FAVING.
2. Concrete break tests as specirid herein.
3. SPECLLL FNISHES FOR INIEROR SPACES, IF ANY.
4. AL EOLUPMEN AND MATERLLS SO IDENTFED ON THE CONSTRUCTION 5. Chemical grounoing design
D. ALIERNATES: AT THE COMPAN'S REOUEST, ANY ALIERNATVES TO THE MATERALS

1.4 TEsTS AND INSPECTONS:
A. THE CONTRCCTOR SHAL EE RESPPNSILEE FOR AL CONSTRUCTON TESTS,
B. CONTRACTOR SHALL ACCOMPLSH TESTNG INCLUOING BUT NOT LMTED TO THE
5. COOX SWEEPS AND FIBER TESTS PER TS-0200 REV 4 ANIENNA LINE
6. AGL AZIMUTH AND DOWNLT USING EIECTRONLC COMMERCCAL
7. CONRACTOR SHAL BE RESPONSILLE FOR ANY AND AL CORRETTONS TO ANY
c. REOQRED CLLOSEOUT DOCUMENATON INCLUDES, but IS NOT UMITED TO THE

8. SCANABE EARCODE P POOTOGRAPHS OF TOWER TOP AND INACCESSIBLE
9. ALL AVALABIE JURISOICTONAL INFORmaton
10. pdf scan of redunes produced in fied
11. ELECTRONC AS-BUIT DRAWINGS NAUTOCAD AND PDF FORMATS, ANY FEL

Sprint

6. LEN WAVERS

. final pamment applcaton
.. required final construction photos

- CONTTRUCTION AND COMMISSIONING CHECKLST COMPLLEE WTH No DEFCIENT

10. AL POST NTP TASKS INCLUDNG DOCUMENT UPLLOADS COMPLIETED IN STIERRA
1.5 COMMISSIONING: PERFORM ALL COMMISSIONNG AS REQUIRED ey APPLCABLE
1.6 NITEGRATON: PeEFForm all integraton actumtes as required by applcaale

Part 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 REQUIREMENTS FOR TESTNG:
A. THIRD PARTY TESTNG Agencr

2. THE THR PART TESNG AGENY IS TO QE FAMLAR WTH THE APUCABLE
3. EXPERENCE IN SOIS, CONCREE MASONRY, AGGREGATE, AND ASPHALT
4. EXPERENCE IN SOLSS, CONCRETL MASONRY AGGEEGATE, AND ASPHALT
3.2 REQUIRED TESTS
A. CONTRACTOR SHALL ACCOMPUSH TESTNG INCLUDING BUT NOT UMITED TO THE
5. CONCRERE CMUNDER PREAK IESTS FOR THE TOWER AND ANCHOR
6. ASPHAT ROADMY COMPACIED THICKNESS, SURFACE SMOOTHNESS, AND
7. RELD OUALTY CONTROL TESTNG AS SPECIFED IN SECTION: PORTLAND CEMENT
8. TESTNG REQUIEED UNDER SECTON: AGGREGATE BASE FOR ACCESS ROADS,
9. Structural gackrll compaction tests for the tower foundaton.
10. SIIE RESSITANCE TO EARTH TESTNG PER EXHIII: CEL SITE GROUNDING
11. AITENNA AND COAX SWEEP TESTS PER EXHI日T: ANTENNA TRANSMISSION UNE
12. GROUNDING AT ANTENNA MASTS FOR GPS AND ANTENNAS
13. ALL Other tests reouireo by company or jurisolcton.

3 Required INSPECTONS
A. SCHEOULE INSPECTONS WTH COMPANY REPRESENATIVE.
B. CONDUCT INSPECTONS INCLUDING 日UT NOT LMTED TO THE FOLOWING:

4. PRE- AND POST-CONSTRUCTION ROOftop AND STRUCTURAL INSPECTONS ON
5. TOWER ERECTON SECTON STACKING AND PLATORK ATAACHMENT DOCUMENED
6. ANENNA AZIMUTH, DOWN TLT AND PER SUNUGHT TOOL SUNSIGHT

INFINIGY\&
FROM ZERO TO INFINIGY

Ww. In in trico
AIROSMITH

STE NAME: \longrightarrow
SOUTHBURY- TEMP
SITE

CT03XC016

231 KETTLETOWN ROAD SOUTHBURY, CT 06488

SPRINT SPECIFICATIONS
SP-2

CONTINUE FROM SP-2

7. VEERICGCTIN OOCUMENTED WITH THE ATIENNA CHECKUST REPORT, BY A\&E,
8. ANAL INSPECTON CHEGKLUT AND HANDOFF WALK (HOC.) SIENED FORM
9. copar sweep and rier testing documents submited va sms for rf
10. SCAN-AAEE EARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIIELE
11. All AVALABLE JURISDCTCTONAL INFORMATON
12. PDF SCAN OF REDLNES PRODUCED IN FEL
c. THE COTRACTOR SHAL QE RESPONSILLE FOR ANY AND AL CORRECTONS TO
D. CONSTRUCTON INSPECTONS AND CORRECTTE MEASURES SHAL EE DOCUMENTLD
 AND DE LABELEO WTH THE STE CASCADE NUMEER, STIE NAME, DESCRPITION, AEMD

A. THE FOLOOWING TEST AND INSPECTION REPORTS SHALL be provoed as
13. CONCRETE MX AND CYINDER break reports.
14. STRUCTURAL BACKFLL COMPACTION REPORTS.
15. STE RESISTANCE TO EARTH TEST.
16. ANIENNA AZIMUTH AND DOWN TLT VERIICATION
17. TOWER ERECTON INSPECTONS AND MEAUREMENT DOCUMENING TOWER COAX CABLE SWEEP TESTS PER COMPAN'S 'ANTENNA LINE ACGEPTANCE
B. REQURED CLOSEOUT DOCUMENTATON INCLUDES THE FOLOWING:

18. CONDUTS, CONOUCTORS AND GROUNOING: PHOTOGRAPHS SHOWNG TPTICAL SPACING:
19. CoNcrere forms and reinforcing concret forming at tower and

20. $\frac{T}{5}$

21. ROOF TOPS: PRE-CONSTRUCTON AND POST-CONSTRUCTON VSUAL INSPECTON

22. STE LAYOUT- PHOTOOGRPHS OF THE OVERLL COMPOUND, INCLUDING
23. RNSHED UTUUES CLOSE-UP PHOTOGQAHS OF THE PPC DREGER PANEL:

24. ANY AND ALL SUBMITALS EY THE JURISOICTION OR COMPANY.

SECTION 01 400-SUBMITIALS \& TESTS

1.2 RELAED DOCUMENS:
A. THE REQUIREMENTS OF THIS SECTON APPLY TO ALL SECTIONS IN THIS
B. SPRIT "STANARD CONSTIUCTIN DDRALLS FOR WIRELSSS STES' ARE INCLUDED in

PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 WEEKLY REPorts:

 ANO PAMMENT. 2 PROIECT CONEERENCE CALS:
 REQURED
RILSTONE
NEEESSARY.
3.3 PRONECT TRACKing in Sms:
A. CONTRACTOR SHAL PROMDE SCHEDULE UPDATES AND PROJECTONS IN THE SMS
3.4 ADDITONAL REPORTING:
A. ADOMONAL OR ALIERNAE REDORTNG REQUREMENS MAY BE ADDED TO THE
3.5 PROECT PHOTOGRAPHS:

1. ISHELTER AND TOWER OVERVEw.
2. TOWER ROUNDATON(S) - FORMS AND STEEL BeFore POUR (EACH ANCHOR
3. TOWER FOUNDATON(S) POUR WITH MBRATOR IN USE (EACH ANCHOR ON
4. TOWER STEEL AS BEING INSTALED INTO HOLE (SHOW ANCHOR STEEL on
5. Photos of tower secton stacking.
6. CONCRETE TESTNG / SAMPles.
7. PLACING of ANCHOR Bolts in tower foundaton.
8. BUILDING/WATER TANK FROM ROAD FOR TENANT MMPROVEMENTS OR COMMENTS. 9. SHELIER FOUNDATION--FORMS AND STEEL BEFORE POURING.
9. SHELTER FOUNDATON POUR WTH VBRATOR IN USE.
10. COAX CABLE ENIRY INTO SHELTER.
11. PLATORM MECHANICAL CONNECTIONS to TOWER/MONOPOLE.
12. ROORTOP PRE AND POST CONSTRUCTON PHOTOS TO INCLUDE PENEIRATONS
13. PHoros of tower top coax une color coding and color coding at
14. Photos of all appropriate company or regulatory signage.
15. PHOTOS OF EOUIPMENT BOLT DOWN INSIDE SHELTER.
16. Power An TELCO EITRANCE TO COMPAN ENCLOSURE AND POWER AND
17. ELECTRICAL RRENCH(S) WTH ELLETTRICAL / CONDUT BEFORE BACKFL
18. ELECTRICAL TRENCH(S) WTH FOLL-AACKED TAPE BEFORE FURTHER baCKFL 20. TELCO TRENCH WTH TELEPHONE / CONOUT BEFORE BACKFLL
19. TELCO TRENCH WTH FOL-EACKED TAPE BEFORE FURTHER EACKFLL.
20. SHELTITR GROUND-RIN RRENCC WITH GROUND-WIRE BEFORE BACKFLL (SHOW

21. FENCE GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFLL (SHOW
22. AL GTS GROUND CONNECTONS.
23. all ground test weus
24. antenna ground bar and equipment ground bar
25. AdDITONAL GROUNDING POINTS on towers above 200:
26. HNAC UNITS INCLUDING CONDENSERS ON SPLT STSTEMS.
27. GPS ANTENNAS.
28. CABLE TRAY AND/OR WAVEGUIDE BRIDGE.
29. DOGHOUSE/CABLE EXT FROM ROOF.
30. EACH SECTOR OF ANTENMS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND
ONE FROM BEHIND SHOWNG THE PROUCCTED COVERAGE AREA 34. master bus aar.
31. TELCO BOARD AND NU.
32. ELECTRICAL DISTRIBUTION WALL.
33. CABLE ENTRY WTH SURGE SUPPRESSION.
34. ENTRANCE TO EQUIPMENT ROOM.
35. COAX WEATHERPROORNG-TOP AND BotTOM OF TOWER.
36. coax grounding -top and bottom of tower.
37. ANIENNA AND MAST GROUNING.
38. LaNosCAPING - WHERE APPLCABLE.

SOUTHBURY- TEMP
SITE
CT03XC016

231 KETTLETOWN ROAD SOUTHBURY, CT 06488

SPRINT SPECIFICATIONS
SPRINT SPECIFICATIONS

[^0]: . AL CORRESPONDENCE AND PRELMINARY CONSTRUCTION REPORTS
 PROUECT PROGRESS REPORTS.
 3. CML CONstrucmon start date (populate fel in sms ano/or formard

