

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

VIA ELECTRONIC MAIL

August 23, 2019

Craig A. Russo, P.E. Engineer T-Squared Site Services 2500 Highland Road, Suite 201 Hermitage, PA 16148

RE:

TS-SIGFOX-126-190708 - Sigfox NIP, LLC request for an order to approve tower sharing at an existing telecommunications facility located at 14 Oxford Drive (a/k/a Booth Hill Road), Shelton, Connecticut.

Dear Mr. Russo:

The Connecticut Siting Council (Council) is in receipt of your correspondence of August 20, 2019 submitted in response to the Council's July 15, 2019 notification of an incomplete request for an order to approve tower sharing with regard to the above-referenced matter.

The submission renders the request for an order to approve tower sharing complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

Melanie A. Bachman Executive Director

MAB/IN/emr

Robidoux, Evan

From: Craig A. Russo, P.E. <craig.r@t-sqrd.com>
Sent: Tuesday, August 20, 2019 8:45 AM

To: Robidoux, Evan
Cc: CSC-DL Siting Council

Subject: RE: Council Incomplete Letter for TS-SIGFOX-126-190708-OxfordDr-aka-BoothHillRd-

Shelton

Attachments: CT9081 Siting Council Narrative_08.19.2019.pdf

Good Morning Evan,

I'm sending this email to notify you of our recent resubmission of the above referenced SIGFOX shared use request. I have attached a copy of our submission to this email to serve as your digital copy.

Thank you.

Craig A. Russo, P.E. | Engineer T-Squared Site Services 724.308.7855 (o) | 724.333.0517 (m)

From: Robidoux, Evan

Sent: Monday, July 15, 2019 4:04 PM

To: 'Craig A. Russo, P.E.' **Cc:** CSC-DL Siting Council

Subject: Council Incomplete Letter for TS-SIGFOX-126-190708-OxfordDr-aka-BoothHillRd-Shelton

Please see the attached correspondence.

Evan Robidoux Clerk Typist Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

August 19, 2019

Ms. Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Request of Sigfox NIP LLC for an Order to Approve the Shared Use of an Existing Tower at 14 Oxford Drive/Booth Hill Road, Shelton, CT 06484

Dear Ms. Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, Sigfox NIP LLC ("Sigfox") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by Sigfox of an existing telecommunication tower at 14 Oxford Drive/Booth Hill Road, Shelton, CT 06484(the "Property"). The existing 200-foot self-support tower is owned by American Tower Corp. ("ATC"), the underlying property is also owned by ATC. Sigfox requests that the Council find that the proposed shared use of the ATC tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. A copy of this filing is being mailed to the City of Shelton and ATC.

Background

The existing ATC facility consists of a 200-foot self-support tower located within an approximate 10,000 square foot compound positioned +/- 220-feet west of the end of Oxford Drive. There are existing carrier antennas located at various elevations throughout the tower (see Sheet C-1 of Exhibit 1 for more information). Equipment associated with these antennas is located at various positions within the tower compound.

Sigfox is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. Sigfox and ATC have agreed to the proposed shared use of the 14 Oxford Drive/Booth Hill Road, Shelton, CT 06484 tower pursuant to mutually acceptable terms and conditions. Likewise, Sigfox and ATC have agreed to the proposed installation of equipment cabinets within an existing adjacent utility building located south of the tower within the compound. ATC has authorized Sigfox to apply for all necessary permits and approvals that may be required to share the existing tower. (See the attached Letter of Authorization).

Sigfox proposes to add one (1) omni antenna, one (1) line of coaxial cable; one (1) filter, and one (1) TMA on the existing tower at 135-feet above ground level. They propose to add one (1) equipment cabinet within the adjacent utility building.

- C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." Sigfox respectfully submits that the shared use of the tower satisfies these criteria.
- **A.** <u>Technical Feasibility.</u> The existing ATC tower is structurally capable of supporting Sigfox's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support Sigfox's proposed loading. A copy of the Structural Report has been included in this application.
- **B.** <u>Legal Feasibility</u>. Under C.G.S. § 16-50aa, the Council has been authorized to issue order approving the shared use of an existing tower such as the ATC tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.
- **C.** Environmental Feasibility. The proposed shared use of the ATC tower would have a minimal environmental effect for the following reasons:
 - 1. The proposed installation of one (1) omni antenna, one (1) line of coaxial cable; one (1) filter, and one (1) TMA on the existing tower at 135-feet above ground level, would have no visual impact on the area of the tower. Sigfox's cabinet will be installed within the facility compound. Sigfox's shared use of this tower therefore, does not cause any significant change or alteration in the physical or environmental characteristics of the existing site.
 - 2. Operation of Sigfox's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that Sigfox's proposed facility will operate well within the FCC RF emissions safety standards.
 - 3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the ATC facility other

than periodic maintenance. The proposed shared use of the ATC tower, would, therefore, have a minimal environmental effect, and is environmentally feasible.

- **D.** <u>Economic Feasibility</u>. As previously mentioned, Sigfox has entered into an agreement with ATC for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible. (Please see included authorization.)
- **E.** <u>Public Safety Concerns</u>. As discussed above, the tower is structurally capable of supporting Sigfox's full array of one (1) omni antenna, one (1) line of coaxial cable; one (1) filter, and one (1) TMA and all related equipment. Sigfox is not aware of any public safety concerns relative to the proposed sharing of the existing ATC tower.

Conclusion

For the reasons discussed above, the proposed shared use of the existing Crown Castle tower at 14 Oxford Drive/Booth Hill Road, Shelton, CT 06484 satisfies the criteria state in C.G.S. §16-50aa and advances the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the prosed shared use.

Sincerely,

Craig A. Russo, P.E. Engineer T-Squared Site Services 2500 Highland Road, Suite 201 Hermitage, PA 16148 724.308.7855 craig.r@t-sqrd.com

Attachments:

Exhibit-1: Compound Plan and Elevation Depicting the Planned Changes

Exhibit-2: Structural Modification Report

Exhibit-3: General Power Density Table report (RF Emissions Analysis Report)

Exhibit-4: Letter of Authorization

Exhibit-5: Proof of Mailing to Chief Elected Official

Exhibit-6: Proof of Mailing to Tower Owner/Property Owner

Exhibit-7: Additional Information

Copies to:

Mr. Rick Schultz Planning & Zoning Administrator Shelton City Hall 54 Hill Street – 3rd Floor Shelton, CT 06484

Mr. Jason Hastie Account Project Manager, Vertical Markets/Broadcast Repack American Tower Corporation 10 Presidential Way Woburn, MA 01801

EXHIBIT 1:

Compound Plan and Elevation Depicting the Planned Changes

SITE NUMBER: CT9081

14 OXFORD DRIVE/ BOOTH HILL ROAD SHELTON, CT 06484 **FAIRFIELD COUNTY**

SITE INFORMATION

SCOPE OF WORK:

PROJECT CONSISTS OF INSTALLING THE FOLLOWING:

(1) PROCOM CXL-900-3LW OMNI ANTENNA

- (1) CAVITY FILTER (1) 1/2" COAX CABLE
- (1) RG6 CABLE

(1) EQUIPMENT CABINET FOR BASE STATION

SIGFOX SITE NUMBER: 911 SITE ADDRESS

14 OXFORD DRIVE/ BOOTH HILL ROAD

SHELTON, CT 06484

TOWER OWNER: **ADDRESS**

AMERICAN TOWER CORP

116 HUNTINGTON AVE. 11TH FLOOR BOSTON, MA 02116

OWNER SITE NUMBER:

LATITUDE (NAD 83): 41 2802009 LONGITUDE (NAD 83): -73.185500°

JURISDICTION: FAIRFIELD COUNTY

PARCEL OWNER:

AMERICAN TOWER CORP

ADDRESS: 116 HUNTINGTON AVE. 11TH FLOOR

BOSTON, MA 02116

GROUND ELEVATION:

STRUCTURE HEIGHT:

517' AMSL

STRUCTURE TYPE:

SELF SUPPORT 200' (AGL)

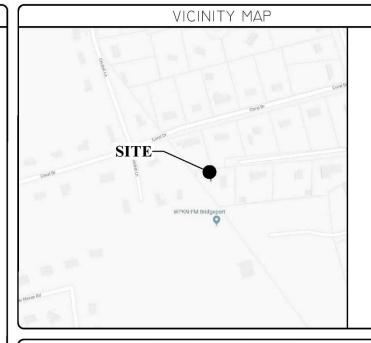
PROJECT TEAM

APPLICANT:

SIGFOX, INC.

545 BOYLSTON STREET, 10TH FLOOR

BOSTON, MA, 02116


PROJECT MANAGEMENT FIRM:

T-SQUARED SITE SERVICES LLC 2500 HIGHLAND ROAD, SUITE 201

HERMITAGE, PA. 16148

ENGINEERING FIRM: T-SQUARED SITE SERVICES, LLC

2500 HIGHLAND ROAD, SUITE 201 HERMITAGE, PA. 16148

CODE COMPLIANCE

ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUCTED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES.

- 2015 INTERNATIONAL BUILDING CODE
- 2017 NATIONAL ELECTRIC CODE
- 2015 INTERNATIONAL ENERGY CONSERVATION CODE
- 2015 INTERNATIONAL EXISTING BUILDING CODE
- 2015 INTERNATIONAL FIRE CODE
- 2015 INTERNATIONAL MECHANICAL CODE
- 2015 INTERNATIONAL RESIDENTIAL CODE

DRAWING INDEX

TITLE SHEET

C-1

G-1

COMPOUND PLAN & ELEVATION

GROUNDING DETAILS

ANTENNA PLAN AND DETAILS

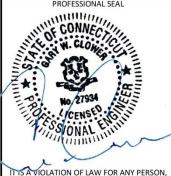
E-1 ELECTRICAL DETAILS

Digitally signed by Gary Clower DN: c=US, st=Pennsylvania, l=Hermitage, o=T-Squared Site Services, cn=Gary Clower, email=gary.c@t-sqrd.com Date: 2019.01.28 14:10:13 -05'00'

DO NOT SCALE DRAWINGS

THESE DRAWINGS ARE FORMATTED TO BE FULL-SIZE AT 11"X17". CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE DESIGNER / ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR MATERIAL ORDERS OR BE RESPONSIBLE FOR THE SAME. CONTRACTOR SHALL USE BEST MANAGEMENT PRACTICE TO PREVENT STORM WATER POLLUTION DURING CONSTRUCTION.

APPROVAL	BL	00


1 May 2000 May 1 May 1 May 2000 May 200	The Commission Photograph (1997)			
PROPERTY OWNER	DATE	APPROVED	APPROVED AS NOTED	DISAPPROVED REVISE
SITE ACQUISITION	DATE			
CONSTRUCTION MANAGER	DATE			
ZONING	DATE			
RF ENGINEER	DATE			

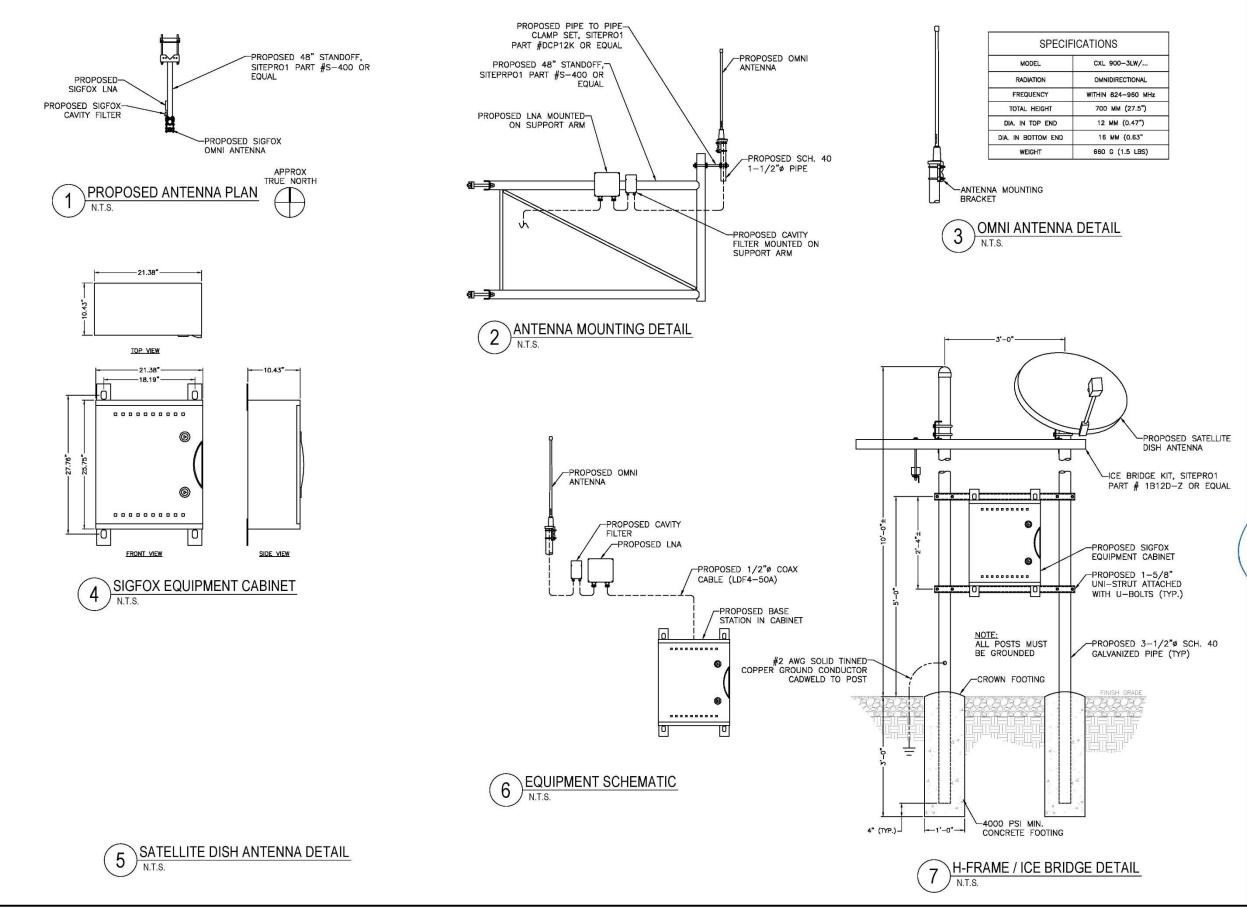
www.t-sqrd.com SHT © 2016 T-SQUARED SITE SERVICES

	REVISIONS			
			·	ī
			_	-
FINAL CD		1.28.19	KE	В
PRELIMINARY		01.24.19	JW	A
	DESCRIPTION	DATE	BY	RE

UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

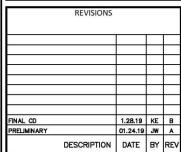
SITE INFORMATION

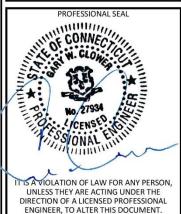

CT9081 14 OXFORD DRIVE/ BOOTH HILL ROAD SHELTON, CT 06484 FAIRFIELD COUNTY


SHEET TITLE

TITLE SHEET

DRAWN BY: JW CHECKED BY: KE DATE: 1/25/19


SCALE: AS NOTED



SITE INFORMATION

CT9081 14 OXFORD DRIVE/ BOOTH HILL ROAD SHELTON, CT 06484 FAIRFIELD COUNTY

SHEET TITLE

ANTENNA PLAN
AND DETAILS

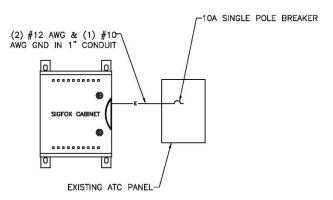
SHEET NUMBER

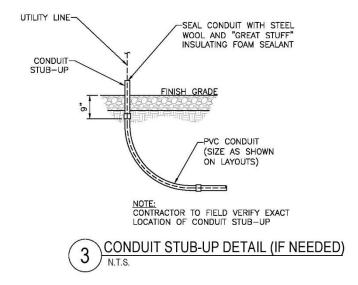
A-1

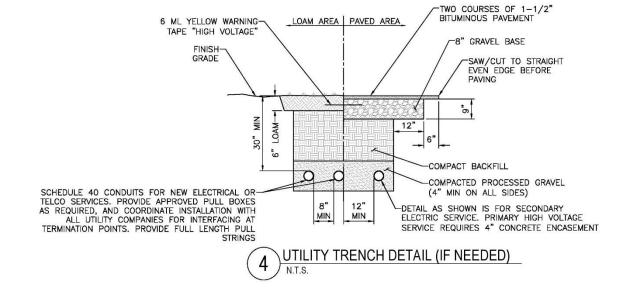
SCALE: AS NOTED
DRAWN BY: JW
CHECKED BY: KE
DATE: 1/25/19

ELECTRICAL NOTES

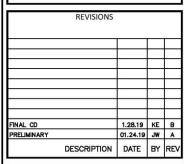
- ALL ELECTRICAL WORK SHALL CONFORM TO THE REQUIREMENTS OF THE NATIONAL ELECTRIC CODE (NEC) AS WELL AS APPLICABLE STATE AND LOCAL CODES.
- ALL ELECTRICAL ITEMS SHALL BE U.L. APPROVED OR LISTED AND PROCURED SPECIFICATION REQUIREMENTS.
- THE ELECTRICAL WORK INCLUDES ALL LABOR AND MATERIAL DESCRIBED BY DRAWINGS AND SPECIFICATION INCLUDING INCIDENTAL WORK TO PROVIDE COMPLETE OPERATING AND APPROVED ELECTRICAL SYSTEM.
- 4. GENERAL CONTRACTOR SHALL PAY FEES FOR PERMITS, AND IS RESPONSIBLE FOR OBTAINING SAID PERMITS AND COORDINATION OF INSPECTIONS
- 5. ELECTRICAL AND TELCO WIRING AT EXPOSED INDOOR LOCATIONS SHALL BE IN ELECTRICAL METALLIC TUBING OR RIGID NONMETALLIC TUBING (RIGID SCHEDULE 40 PVC OR RIGID SCHEDULE 80 PVC FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) (AS PERMITTED BY CODE).
- ELECTRICAL AND TELCO WIRING AT CONCEALED INDOOR LOCATIONS SHALL BE IN ELECTRICAL METALLIC TUBING, ELECTRICAL NONMETALLIC TUBING, OR RIGID NONMETALLIC TUBING (RIGID SCHEDULE 40 PVC AS PERMITTED BY CODE).
- ELECTRICAL AND TELCO WIRING OUTSIDE A BUILDING, ABOVE GRADE AND EXPOSED TO WEATHER SHALL BE IN WATER TIGHT GALVANIZED RIGID STEEL CONDUITS (RGS) AND WHERE REQUIRED IN LIQUID TIGHT FLEXIBLE METAL OR NONMETALLIC CONDUITS.
- BURIED CONDUIT SHALL BE RIGID NONMETALLIC CONDUIT (RIGID SCHEDULE 40 PVC); DIRECT BURIED IN AREAS OF OCCASIONAL LIGHT TRAFFIC, ENCASED IN REINFORCED CONCRETE IN AREAS OF HEAVY TRAFFIC
- LIQUID—TIGHT FLEXIBLE METALLIC CONDUIT SHALL BE USED INDOORS AND OUTDOORS IN AREAS WHERE VIBRATION OCCURS AND FLEXIBILITY IS NEFDED.
- ELECTRICAL WIRING SHALL BE COPPER WITH TYPE THHN, THWN-2, OR THIN INSULATION.

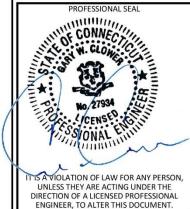

DOL 5				20/240 VOL	_ NAME: N/A 12	INTLL
POLE	AMP	AMP	POLE	LOAD (VA)	LOAD DESCRIPTION	CCT
		10	1	1440	SIGFOX BASE UNIT	1
						3
						5
						7
						9
						11


ELECTRICAL NOTES


ISOLATION OF SIGFOX POWER MUST BE MAINTAINED USING A 10 AMP SINGLE POLE BREAKER, LABELED SIGFOX, BETWEEN POWER SOURCE AND SIGFOX EQUIPMENT.

SUPPLY NEW BREAKER IN EXISTING PANELS AND/OR NEW BREAKERS IN DISCONNECT IF NEEDED.


2 ELECTRICAL ONE-LINE DIAGRAM
N.T.S.



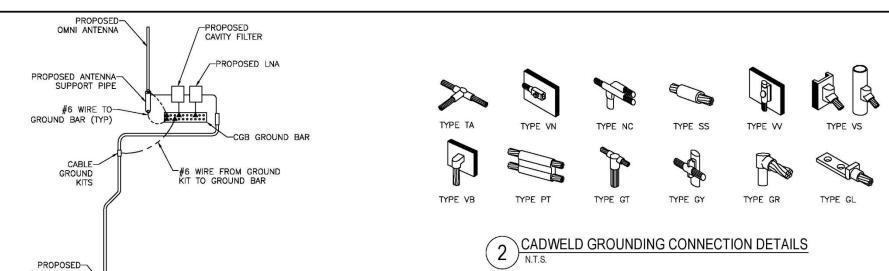
SITE INFORMATION

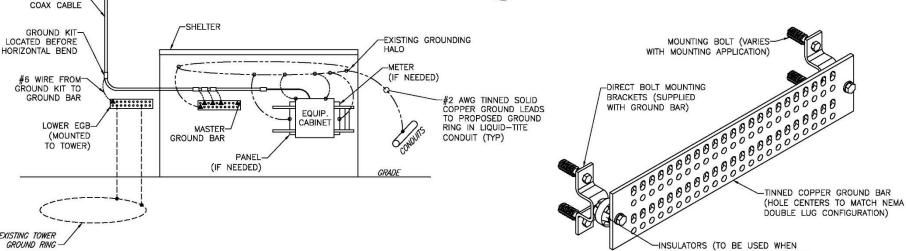
CT9081 14 OXFORD DRIVE/ BOOTH HILL ROAD SHELTON, CT 06484 FAIRFIELD COUNTY

SHEET TITLE

ELECTRICAL DETAILS

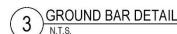
SHEET NUMBER


SCALE: AS NOTED
DRAWN BY: JW
CHECKED BY: KE

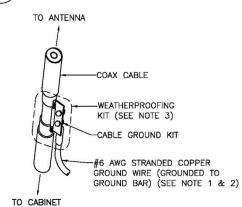

DATE: 1/25/19

GROUNDING NOTES


- GROUNDING SHALL COMPLY WITH BED ART. 250. ADDITIONALLY, GROUNDING, BONDING AND LIGHTING PROTECTION SHALL BE DONE IN ACCORDANCE WITH METRO MOD CELL SITE GROUNDING
- 2. GROUND CABLE SHIELDS MINIMUM AT BOTH ENDS USING MANUFACTURERS CABLE GROUNDING KITS SUPPLIED BY PROJECT
- 3. USE #6 COPPER STRANDED WIRE WITH GREEN COLOR INSULATION FOR ABOVE GRADE GROUNDING (UNLESS OTHERWISE SPECIFIED) AND #2 SOLID TINNED BARE COPPER WIRE FOR BELOW GRADE GROUNDING AS INDICATED ON THE DRAWING
- 4. ALL POWER AND GROUND CONNECTIONS TO BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND NUTS BY HARGER (OR APPROVED EQUAL) RATED FOR OPERATION AT NO LESS THAN 75°C OR CADWELD EXOTHERMIC WELD. DO NOT ALLOW BARE COPPER WIRE TO BE IN CONTACT WITH GALVANIZED STEEL.
- ROUTE GROUNDING CONDUCTORS ALONG THE SHORTEST AND STRAIGHTEST PATH POSSIBLE, EXCEPT AS OTHERWISE INDICATED. GROUNDING LEADS SHOULD NEVER BE BENT AT RIGHT ANGLE. ALWAYS MAKE AT LEAST 12" RADIUS BENDS. #6 WIRE CAN BE BENT AT6" RADIUS WHEN NECESSARY. BOND ANY METAL OBJECTS WITHIN 6 FEET OF PROJECT OWNER EQUIPMENT OR CABINET TO MASTER GROUND BAR OR GROUNDING RING.
- CONNECTIONS TO BE GROUND BARS SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO ALL LOCATIONS.
- 7. APPLY OXIDE INHIBITING COMPOUND TO ALL MECHANICAL GROUND CONNECTIONS.
- 8. CONTRACTOR SHALL PROVIDE AND INSTALL OMNI DIRECTIONAL ELECTRONIC MAKER SYSTEM (EMS) CALLS OVER EACH GROUND ROD AND BONDING POINT BETWEEN EXISTING TOWER/ MONOPOLE GROUNDING RING AND EQUIPMENT GROUNDING RING.
- CONTRACTOR SHALL TEST COMPLETED GROUND SYSTEM AND RECORD RESULTS FOR PROJECT CLOSE-OUT DOCUMENTATION. 5 OHMNS MINIMUM RESISTANCE REQUIRED.
- 10. CONTRACTOR SHALL CONDUCT ANTENNA, CABLE, AND LNA RETURN-LOSS AND DISTANCE-TO-FAULT MEASUREMENTS (SWEEP TESTS) AND RECORD RESULTS FOR PROJECT CLOSE OUT.



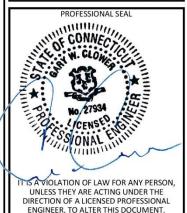
1	GROUNDING RISER DIAGRAM N.T.S.
	N.T.S.


THERE IS A HOME RUN ON TOWER)

DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.

2. GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER

3. WEATHER PROOFING SHALL BE TWO-PART TAPE SUPPLIED WITH KIT. COLD SHRINK SHALL NOT BE USED.



COAXIAL CABLE GROUNDING N.T.S.

REVISIONS					
				1	
FINAL CD		1.28.19	KE	В	
PRELIMINARY		01.24.19	J₩	A	
	DESCRIPTION	DATE	BY	REV	

14 OXFORD DRIVE/ BOOTH HILL ROAD SHELTON, CT 06484 FAIRFIELD COUNTY

SITE INFORMATION

SHEET TITLE

GROUNDING DETAILS

SHEET NUMBER

G-1

SCALE: AS NOTED DRAWN BY: JW CHECKED BY: KE DATE: 12/3/18

NOT USED

NOT USED

N.T.S.

EXHIBIT 2:

Structural Modification Report

Structural Analysis Report

Structure : 200 ft Self Supported Tower

ATC Site Name : SHELTON-TRUMBULL, CT

ATC Site Number : 88017

Engineering Number : OAA746949_C3_01

Proposed Carrier : AT&T MOBILITY

Carrier Site Name : SHELTON BOOTH HILL

Carrier Site Number : CT5542

Site Location : 14 OXFORD DRIVE-BOOTH HILL RD

SHELTON, CT 06484-3455 41.280200, -73.185500

County : Fairfield

Date : March 22, 2019

Max Usage : 94%

Result : Pass

Prepared By: Isaac P. Dodson Structural Engineer III

book P. Dodon

Reviewed By:

Authorized by "EOR" Mar 26 2019 5:11 PM

cosign

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Existing and Reserved Equipment cont	3
Equipment to be Removed	. 3
Proposed Equipment	3
Structure Usages	4
Foundations	4
Standard Conditions	5
Calculations	Attached

Eng. Number OAA746949_C3_01 March 22, 2019 Page 1

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 200 ft self supported tower to reflect the change in loading by AT&T MOBILITY.

Supporting Documents

Tower Drawings TEP Job #070851, dated May 30, 2007	
Foundation Drawing Radio Relay Drawing #MS 10478, dated January 27, 1965	
Geotechnical Report	Radio Relay Drawing #MS 10478, dated January 27, 1965
Modifications	ATC Project #40480232, dated July 13, 2007

Analysis

The tower was analyzed using Power Line System's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	97 mph (3-Second Gust, Vasd) / 125 mph (3-Second Gust, Vult)
Basic Wind Speed w/ Ice: 50 mph (3-Second Gust) w/ 3/4" radial ice concurrent	
Code:	ANSI/TIA-222-G / 2015 IBC / 2018 Connecticut State Building Code
Structure Class:	II
Exposure Category:	В
Topographic Category:	1
Crest Height:	0 ft

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Eng. Number OAA746949_C3_01 March 22, 2019 Page 2

Existing and Reserved Equipment

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
211.0	1	Generic 15' Dipole			
210.0	1	Telewave ANT900D6-9	Platform with Handrails	ith Handraile (2) 1 5/8" Coax	
200.0	1	Andrew DB809K	Platform with Handralis	(2) EW65	
206.0	2	RFS PA6-65AC w/ Radome	1		
191.0	1	Generic 20' Omni			
100.0	1	Sinclair SC479-HF1LDF	1		
190.0	1	Sinclair SC442D-HF1LDF(DXX-I30-G9-NUFP)	1		
189.0	1	Sinclair SC479-HF1LDF			STATE OF CT
187.0	1	Sinclair SC479-HF1LDF		(12) 1 5 (0) 6	STATE OF CT
185.0	1	Generic TTA	Side Arms	(12) 1 5/8" Coax (5) 0.63" (16mm)	
185.0	2	Kathrein Scala AP14-850/105	Side Arms	LDF4-50A	
	2	Generic TTA]	LDF4-30A	
180.0	1	Generic 5' Dipole	1		
	1	Sinclair SC479-HF1LDF	1		
177.0	1	TX RX Systems 101-83B-09-0-03	1		
175.0	2	Sinclair SC479-HF1LDF	1		
168.0	12	Decibel DB844H90E-A	Sector Frame	(15) 1 1/4" Coax	SPRINT NEXTEL
	4	DragonWave Horizon Compact			
162.0	1	DragonWave A-ANT-11G-2-C	Stand-Off	(4) 1/2" Coax	
162.0	1	Andrew Microwaves PX2F-52		(4) 1/2 Coax	CLEARWIRE
	2	DragonWave A-ANT-11G-3-C	Stand-Off		CORPORATION
156.0	3	NextNet BTS-2500	1	(6) 5/16" Coax	
136.0	3	Argus LLPX310R			
	3	Commscope NNVV-65B-R4		(2) 1 1 (4) 11 15 5 5 5 5	
155.0	3	Nokia 2.5G MAA - AAHC(64T64R)	1	(3) 1 1/4" Hybriflex Cable	
155.0	3	Alcatel-Lucent RRH2x50-08	Sector Frame	(1) 1.7" (43.2mm)	SPRINT NEXTEL
	3	Alcatel-Lucent 1900 MHz 4X45 RRH		Hybrid	
148.0	3	Alcatel-Lucent 800 MHz RRH w/ Notch Filter		Tiybria	
	3	Powerwave Allgon 7770.00			
	3	Quintel QS66512-6		(1) 0 2011 00 6	
	3	CCI HPA-65R-BUU-H6		(1) 0.28" RG-6	
	3	Ericsson RRUS 32 B66]	(1) 0.39" Fiber	
144.0	3	Ericsson RRUS 32 (50.8 lbs)	Castar Frama	Trunk	ATOT MODILITY
144.0	3	Ericsson RRUS 11 (Band 12) (55 lb)	Sector Frame	(2) 0.74" 8 AWG 7 (2) 0.78" 8 AWG 6	AT&T MOBILITY
	2	Raycap DC6-48-60-18-8F ("Squid")	1	(6) 1 5/8" Coax	
	6	Powerwave Allgon LGP21401	1	(1) 3" conduit	
	6	Powerwave Allgon 7020.00 Dual Band RET	1	(1) Conduit	
	3	Ericsson RRUS 32 B2	1		

Eng. Number OAA746949_C3_01 March 22, 2019 Page 3

Existing and Reserved Equipment cont.

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
	1	Generic 5" x 3" x 2" Cavity Filter			
135.0	1	Generic Low Noise Amplifier	Side Arm	(1) 1/2" Coax	SIGFOX S.A.
	1	Procom CXL 900-3LW			
124.0	1	RFS PA6-65AC w/ Radome	Side Arm	(1) EW65	STATE OF CT
110.0	1100 1	1 Andrew DB616E-BC Side Arm	Sido Arm	(1) 7/8" Coax	US DEPT OF
110.0	1		Side Ailli		HOMELAND SECURITY
90.0	1	Kathrein Scala 750 10074	Stand-Off	(1) 1 5/8" Coax	LIGADO NETWORKS
30.0	90.0 1	kathrein Scala 750 10074	Stand-On	(1) 1 5/6 COAX	LLC
56.0	1	Generic GPS	Side Arm	(1) 1/2" Coax	SPRINT NEXTEL

Equipment to be Removed

Elev.1 (ft) Qty	Antenna	Mount Type	Lines	Carrier		
No equipment considered as to be removed						

Proposed Equipment

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
144.0	1	Commscope WCS-IMFQ-AMT	Sector Frame	-	AT&T MOBILITY

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Page 4

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Legs	63%	Pass
Diagonals	93%	Pass
Truss Diagonals	94%	Pass
Horizontals	87%	Pass
Truss Horizontals	46%	Pass
Anchor Bolts	43%	Pass

Foundations

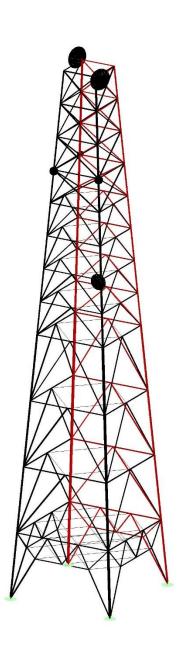
Reaction Component	Analysis Reactions	% of Usage
Uplift (Kips)	185.15	53%
Axial (Kips)	290.49	9%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC


It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

American Tower Corp., Project: "2019.03.22 - ATT - OAA746949" Tower Version 15.30, 4:29:51 PM Friday, March 22, 2019 Undeformed geometry displayed

Project Name: 88017 - Shelton/Trumbull
Project Name: 88017 - Shelton/Trumbull
Project Notes: M.NLZ - ACCUSENTYADIS.03.22 - ATT - CAA746949\2019.03.22 - ATT - CAA746949.tow
Date van: 474146F WR Friday, March 22, 2019
by : Tower Version 15.30
Licensed to : American Tower Corp.

Licensed to : American Tower Corp.

Successfully performed nonlinear analysis

Member check option: AMSI/ITA 222-0-1

Connection rupture check: Not Chucked

Crossing diagnal check: Fixed with Chucked

Included angle check: More

Redundant mahers checked with: Actual Porce

Loads from file: N:L12 - ATC\88017\2019.33.22 - ATT - CAA766949\2019.03.22 - ATT - CAA766949\cis

Maximum element usage is 93.60% for Angle "LD 3X" in load case "W -90"

Foundation Design Forces For All Load Cases:

Note: loads are factored.

Load Case	Foundation Description	Axial Force (kips)	Shear Force (kips)	Moment (ft-k)	Foundation Usage
w o	02	213.17	31.60	5.35	0.00
W O	OX	197.07	29.51	4.64	0.00
w o	CXY	-109.31	28.13	5.99	0.00
W O	OY	-114.43	30.63	6.69	0.00
W 180	OP	-113.05	30.73	6.80	0.00
W 180	OX	-103.27	28.22	6.25	0.00
W 180	CXY	192.91	29.45	4.87	0.00
W 180	OY	209.91	31.31	5.46	0.00
W 45	OP	290.49	41.65	5.40	0.00
W 45	OX	41.00	16.63	6.25	0.00
W 45	OXY	-185.15	39.13	6.01	0.00
W 45	OY	40.16	16.47	6.18	0.00
₩ -45	OP	51.04	17.76	6.76	0.00
W -45	OX	276.13	40.05	5.40	0.00
W -45	OXY	42.55	15.36	5.73	0.00
₩ -45		-183.21	39.67	6.28	0.00
W 90	OP	215.40	31.77	5.39	0.00
W 90	0 X	-117.43	31.00	6.71	0.00
W 90	OXY	-109.24	28.13	5.99	0.00
W 90	OY	197.78	29.62	4.64	0.00
W -90		-115.34	31.00	6.80	0.00
₩ -90	0 X	211.52	31.40	5.49	0.00
W -90	OXY	193.57	29.51	4.84	0.00
W -90		-1.03.25	28.11	6.22	0.00
W 0 Ice	OP	105.52	14.30	1.32	0.00
W 0 Ice	0X	98.27	13.59	1.06	0.00
W 0 Ice	OXY	27.75	2.62	2.39	0.00
W 0 Ice	OY	31.40	2.64	2.66	0.00
W 180 Ice	0P	36.11	3.21	2.76	0.00
W 180 Ice	0 X	33.85	3.11	2.67	0.00
W 180 Ice	OXY	92.49	13.36	0.97	0.00
W 180 Ice	OY	100.49	13.82	1.34	0.00
W 45 Ice	0.8	122.81	16.79	0.56	0.00
W 45 Ice	OX	64.78	8.00	2.14	0.00
W 45 Ice	OXY	10.98	1.44	2.54	0.00
W 45 Ice	OY	64.37	7.96	2.12	0.00
W -45 Ice	OP	70.98	8.79	2.30	0.00
W -45 Ice	0×	115.86	16.09	0.58	0.00
W -45 Ice	CXY	60.24	8.11	1,90	0.00
W -45 Ice	OY	15.86	1.41	2.75	0.00
W 90 Ice	OP	105.93	14.32	1,33	0.00
W 90 Ice	0X	31.12	2.64	2.66	0.00
W 90 Ice		27.79	2.62	2.39	0.00
W 90 Ice	DY	98.10	13.59	1.04	0.00
W -90 Ice	OP	35.66	3.19	2.76	0.00
W -90 Ice	0 X	101.05	13.84	1.36	0.00
W -90 Ice	OXY	92.57	13.37	0.96	0.00

N -90 lce 0X 92.57 13.37 0.96 0.00 N -90 lce 0Y 33.66 3.08 2.65 0.00 Summary of Joint Support Reactions For All Load Cases:

Load Case	Joint Label	Force	Tran. Force (kips)	Vert. Force (kips)		Tran. Moment (ft-k)	Moment	Moment (ft-k)	Wert. Moment (ft-k)	
W 0	OP.	-27,35	-15.83	-213.17	31,60	-1.38	-5.37	5,35	-1.52	0.00
W O	0 X	-25.15	15.44	-197.07	29.51	-0.46	-4.61	4.64	1.45	0.00
W 0	OXY	-26.70	-8.85	109.31	28.13	0.38	-5.98	5.99	1.57	0.00
W 0	0Y	-29.29	8.94	114.43	30.63	-0.29		6.69	-1.49	0.00
W 180	OP	29.48	8.68	113,05	30.73	-0.25	6.79	6.80	1.50	0.00
W 180	0x	26.94	-B.39	103.27	28.22	0.43	6.25	6.26		0.00
W 180	OXY	25.19	15.25	-192.91	29.45	-0.51	4.85	4.87	-1.47	0.00
W 180				-209.91	31.31	-1.43	5.27	5.46		0.00
W 45				-290.49	41.65	3.84	-3.80	5.40	0.00	0.00
W 45	. OX	-12.05	-11.46	-41,00	16.63	5,33		6,25	2,25	0.00
W 45	OXY	-27.74	-27.59	185.15	39,13	4.22	-4.27	6.01	-0.00	0.00
W 45	OY	-11.37	-11.91	-40.16	16.47	3.23		6.18	-2.25	0.00
W -45	OP	-13,41	11.65	-51,04	17.76	-5.71	-3.62	6.76	-2,25	0.00
W -45	0.X	-27.67		-276.13	40.05	-4.19	-3.41	5.40	-0.00	0.00
W -45	OXY	-9.68	11.92	-42.55	15.36	-3.16		5.73	2.27	0.00
W -45	OY	-28.93	27,15	183,21	39.67	-4.15	-4.71	6.28	0.02	0.00
W 90	0P	-15.79	-27.56	-215.40	31.77	5.18	1.46	5.39	1.53	0.00
W 90	0 X	9.13	-29,63	117,43	31.00	6.70	0.27	6.71	1.48	0.00
W 90	OXY	-8.92	-26.68	109,24	28.13	5.97	-0.41	5.99	-1.58	0.00
W 90	0.4	15.59	-25.19	-197.78	29.62	4.61	0.52	4.64	-1.45	0.00
W -90	0.P	8.80	29.73	115,34	31,00	-6.80	0.22	6,80	-1,50	0.00
W -90	.000	-15.31	27.42	-211.52	31.40	-5.28	1.50	5.49	-1.54	0.00
W -90	OXY	15.40	25.17	-193.57	29.51	-4.81	0.58	4.84	1.47	0.00
W -90	OY.	-8.48	26,80	103,25	28,11	-6,20	-0.46	6,22	1,59	0.00
W 0 Ice		-11.32		-105.52	14.30	-1.31	0.11	1.32	-0.31	0.00
W 0 Ice	0X	-10.52	8,60	-98.27	13.59	1.02	0.29	1.06	0.29	0.00
W O Ice	OXY	-0.58	2,55	-27,75	2,62	1,10	-2.12	2.39	0.32	0.00
W 0 Ice	OY	-0.91	-2.48	-31.40	2.64	-1.25	-2.34	2.66	-0.30	0.00
W 180 Ice	0P	0.90	-3.08	-36.11	3.21	-1.20	2.49	2.76	0.32	0.00
N 180 Ice	0x	0.88	2.98	-33.85	3.11	1.16	2.41	2.67	-0.34	0.00
W 180 Ice	OXY	10.48	8.30	-92.49	13.36	0.97	-0.03	0.97	-0.31	0.00
W 180 Ice	0Y	11.14		-100.49	13.82	-1.34	0.02	1.34	0.33	0.00
W 45 Ice	OF	-11.86	-11.88	-122.81	16.79	-0.39	0.40	0.56	0.00	0.00
W 45 Ice	0.X	-7.49	2.81	-64.78	8.00	2.06	0.55	2.14	0.46	0.00
W 45 Ice	OXY	-1.02	-1.01	-10.98	1.44	1.79	-1.80	2.54	-0.00	0.00
W 45 Ice	OY	2.82	-7.44	-64.37	7.96	-0.55	-2.05	2.12	-0.46	0.00
W -45 Ice	OP.	-8.33	-2.80	-70.98	8.79	-2.26	0.43	2.30	-0.47	0.00
W -45 Ice	0x	-11.13	11.62	-115.86	16.09	0.21	0.55	0.58	-0.01	0.00
W -45 Ice	OXY	3.01	7.53	-60.24	8.11	0.38	-1.86	1.90	0.47	0.00
W -45 Ice	0.4	-0.95	1.04	-15.86	1.41	-1.96	-1.93	2.75	0.02	0.00
W 90 Ice	OP	-8.71	-11.37	-105.93	14.32	-0.11	1.33	1.33	0.31	0.00
W 90 Ice	OX	-2.46	-0.96	-31.12	2.64	2.35	1.25	2.66		0.00
W 90 Ice	OXY	2.55	-0.58	-27.79	2.62	2.12	-1.10	2.39	-0.32	0.00
W 90 Ice	0Y	8.62	-10.51	-98.10	13.59	-0.28	-1.00	1.04	-0.29	0.00
N -90 Ice	OP	-3.05	0.94	-35,66	3.19	-2.48	1.20	2.76	-0.32	0.00
W -90 Ice	0X	-8.16	11.18	-101.05	13.84	-0.02	1.36	1.36	-0.33	0.00
W -90 Ice	OXY	8.33	10.46	-92.57	13.37	0.04	-0.96	0.96	0.31	0.00
N -90 Tce	0.Y	2,96	0.85	-33.66	3.08	-2.39	-1.16	2.66	0.34	0.00

Summary of Joint Support Reactions For All Load Cases in Direction of Leg:

Load Case	Support Joint			Force In Leg Dir. (kips)	Residual Shear Perpendicular To Leg (kips)	Horizontal	Horizontal	Horizontal	Long.	Tran. Force	Vert.
W O	OP	1P	L 1P	215.150	12,330	12,365	12,338	0.813	-27.35	-15.83	-213.17
w o	0×	18	L 1X	198.945	11.341	11.377	11.269	-1.561	-25.15	15.44	-197.07
W O	OXY	188	L 1XY	-111,263	18,986	19,039	19,004	1,149	-26.70	-8.85	109.31
w o	CY	17	L 1Y	-116.544	21,195	21.251	21.233	-0.880	-29.29	8.94	114.43
W 180	0P	1.P	L 1P	-115.164	21.478	21.534	-21.522	-0.720	29.48	8.68	113.05
W 180	0×	1.8	L 1X	-105,238	19,644	19,698	-19,667	1,117	26.94	-8.39	103.27
W 180	OXY	1XY	L 1XY	194.797	11.687	11.724	-11,606	-1.664	25.19	15.25	-192.91
W 180	QY	17	L 1Y	211.868	12,468	12,502	-12.487	0.609	27.27	-15.39	-209.91
W 45	CP	1P	L 1P	293.191	12,659	12,722	8.959	9.032	-29.42	-29.49	-290.49
W 45	0×	1 X	L 1X	40.836	17,016	17,020	9.161	14.344	-12.05	-11.46	-41.00
W 45	OXY	1XY	L 1XY	-188.112	20.584	20.685	14.704	14.550	-27.74	-27.59	185.15
W 45	CY	17	L 1Y	40.005	16.851	16,855	14.198	9.084	-11.37	-11.91	-40.16
W -45	0P	1.9	L 1P	50.911	18,128	18.132	9.816	-15.245	-13.41	11.65	-51.04
W -45	. 0 x	1.8	L 1X	278.737	12.506	12.567	8.226	-9.500	-27.67	28.95	-276.13
W -45	OXY	122	L 1XY	42.500	15,504	15,506	12.679	-8.927	-9.68	11.92	-42.55
W -45	OY	17	L 1Y	-186.240	21,335	21,440	16.026	-14,243	-28.93	27.15	183.21
W 90	GP.	IP	L 1P	217.377	12.376	12,410	0.625	12,394	-15.79	-27.56	-215.40
W 90	OX	110	L 1X	-119.566	21,319	21.376	-0.856	21.359	9.13	-29.63	117.43
W 90	OXY	1XY	L 1XY	-111.200	18.969	19.021	1.230	18.982	-8.92	-26.68	109.24
W 90	GY	12	L 1Y	199.663	11.342	11.378	-1.657	11.257	15.59	-25.19	-197.78
W -90	0.9	1.9	L 19	-117.469	21.559	21.615	-0.675	-21.605	8.80	29.73	115.34
W -90	0 X	1.X	L 1X	213.473	12,497	12,530	0.412	-12,524	-15.31	27.42	-211.52

	- 0.0	0.000			405 460		11 600	0.000	44 500		40.00	500 FR
	-90	OXY	1XY	L 1XY		11.635	11.672	-1.764	-11.538	15.40		-193.57
		GY	17		-105.211	19.515	19.569	1.211	-19.531	-8.48	26.80	
	Ice	Q.P	1.P	L 1P	106.407	4.088	4.104	3.892		-11.32		-105.52
W O		OX	IX	L 1X	99.121	3.953	3.970	3.595	-1.683		8.60	-98.27
	Ice	ONY	1XY	L 1XY	27.756	2.602	2.606	2.535	-0.600	-0.58	2.55	-27.75
	Ice	OY	1.8	L 1Y	31.358	3.123	3.129	3.118	0.268	-0.91	-2.48	
W 180		OP	1.9	L 1P	36.083	3.483	3,489	-3.448	0.538	0.90	-3.08	-36.11
W 180		OX	1 X	L 1X	33.831	3.309	3.314	-3.259	-0.601	0.88	2.98	-33.85
W 180		OXY	1XY	L 1XY	93.352	4.328	4.347	-3.965	-1.783	10.48	8.30	-92.49
W 180		OY	1.4	L 1Y	101.352	4.192	4.208	-4.062	1.098	11.14	-8.18	-100.49
₩ 45	Ice	OP	1.P	L 1P	123.869	4.533	4.555	3.210	3.232	-11.86	-11.88	-122.81
₩ 45	Ice	0 X	1.8	L 1X	65.188	3.413	3.414	2.929	1.754	-7.49	2.81	-64.78
₩ 45		UXY	IXY	L 1XY	10.783	2.522	2.534	1.797	1.787	-1.02	-1.01	-10.98
₩ 45	Ice	CY	17	L 1Y	64.770	3.375	3.376	1.711	2.910	2.82	-7.44	-64.37
W -45	Ice	0.5	IP	L IP	71.413	3,988	3.989	3.329	-2,198	-8.33	-2.80	-70.98
W -45	Ice	OX	110	L 1X	116.880	4.535	4.557	2.967	-3.459	-11.13	11.62	-115.86
W -45	Ice	CXY	1XY	L 1XY	60.682	3.511	3.514	1.237	-3.289	3.01	7.53	-60.24
W -45	Ice	OY	1.8	L 1Y	15.646	2,976	2,991	2.068	-2,160	-0.95	1.04	-15.86
W 90	Ice	OP	1P	L 1P	106.817	4.089	4.105	1.250	3.910	-8.71	-11.37	-105.93
W 90	Ice	0X	1X	L 1X	31.069	3.158	3,164	0.269	3,153	-2,46	-0.96	-31.12
₩ 90	Ice	OXY	188	L 1XY	27,793	2,607	2,610	-0.596	2,541	2,55	-0.58	-27,79
W 90	Ice	DY	17	L 1Y	98.959	3.966	3.984	-1.709	3.598	8.62	-10.51	-98.10
W -90	Ice	0.0	19	L 1P	35.635	3.487	3.493	0.537	-3,451	-3.05	0.94	-35.66
W -90	Ice	0x	110	L 1X	101.910	4.181	4.196	1.047	-4.064	-8.16	11.18	-101.05
W -90		OXY	188	L 1XY	93.433	4.321	4.340	-1.809	-3.945	8.33	10.46	
W -90		OY	17	L 1Y	33.638	3,268	3.273	-0.587	-3,220	2.96	0.85	-33,66

Overturning Moment Summary For All Load Cases:

917 -13155. 885 12847. 257 -9886. 215 -9707. 895 -195. 217 -121.	.187 -86.5 .775 -9.3 .419 135.1 .747 -102.0	35 13157.12 908 12848.06 62 13957.62 11 13481.61 192 13278.33	-0.149 80.448 -79.667	80.577 79.694	186.50 186.50 186.50
.257 -9886. .215 -9707. .895 -195. .217 -121.	775 -9.3 419 135.1 747 -102.0	162 13957.62 11 13481.61	80.448	80.577 79.694	186.50
.215 -9707. 895 -195. 217 -121.	419 135.1 747 -102.0	11 13481.61	-79.667	79,694	186.50
895 -195. 217 -121.	747 -102.0				
217 -121.		92 13278.33	100 000		
				0.007	186.50
		46 12941,78	-109,119	-0.403	186,50
227 -3001.	058 19.3	03 3009.57	0.053	23,327	262,943
906 2552.	810 -18.8	19 2561.67	-0.025	-23.397	262.94
797 -2329.	128 -1.9	34 3281.65	17,529	17.552	262,94
934 -2297.	730 29.0	55 2951.14	-17.391	17,400	262.94
325 -231.	474 -21.8	97 3020.20	23.423	0.000	262.94
312 -217.	597 22.0	29 2588.47	-23,434	-0.073	262.94
9.33	34 -2297. 25 -231.	34 -2297.730 29.0 25 -231.474 -21.6 12 -217.597 22.0	34 -2297.730 29.055 2951.140 25 -231.474 -21.897 3020.200 12 -217.597 22.029 2588.474	34 -2297.730 29.055 2951.140 -17.391 25 -231.474 -21.897 3020.208 23.423 12 -217.597 22.029 2588.474 -23.434	34 -2297.730 29.055 2951.140 -17.391 17.400 25 -231.474 -21.897 3020.208 23.423 0.000 12 -217.597 22.029 2588.474 -23.434 -0.073

Label	Z (ft)		Count			Width	Area	Adjust	Adjust Factor	Load
187.5-200.0				20	13.33				1.1270	
175.0-187.5	187.500	175.000	8		15.09				1.1800	
162.5-175.0	175,000	162.500	8	16	16.85	18.61	221.64	1.2080	1.2080	1.449
150.0-162.5	162.500	150,000	12	24	18.61	20.37	243.65	1.2150	1.2150	1.458
137.5-150.0	150.000	137.500	16	24	20.37	22.13	265.66	1.2180	1.2180	1.462
125.0-137.5	137,500	125,000	16	24	22,13	23.89	287.67	1,2240	1,2240	1,469
112.5-125.0	125.000	112.500			23.89	25.65	309.68	1.2390	1.2390	1.487
100.0-112.5	112.500	100.000	16	24	25.65	27.42	331.68	1.2450	1.2450	1.494
75,00-100.0	100,000	75.000	16	24	27,42	30.94	729,39	1,2770	1.2770	1,532
50.00-75.00	75.000	50.000		24	30.94	34.46	817.42	1.2930	1.2930	1.551
25.00-50.00	50.000	25.000	20	32	34.46	37.98	905.45	1.3350	1.3350	1.602
0.000-25.00	25 000	0.000	28	5.6	17 98	41.50	997 48	1 2150	1 2150	1 459

Group Label		Angle		Steel Strength (ksi)		rol		Comp. Control Member	Comp. Force (kips)	Load Case	L/r Capacity (kips)	Connect. Shear Capacity (kips)	Bearing Capacity (kips)		RLY	RLZ		KL/r	Length Comp. Member (ft)	No.	No. Of Bolts Comp.
Leg Si	ь 8° × 8° × 1.125°	SAE	8X8X1.13	33.0	62.87	Comp	62.87		-255.697	W 45		0.000	0.000	0.333	0.333	0.333	64.41		25.124	1	0
Leg S2	L 8" × 8" × 1"	SAE	BX8X1	33.0	60.54	Comp	60.54	L 2P	-220.750	W 45	364.663	0.000	0.000	0.333	0.333	0.333	64.41	64.42	25,124	1	0
Leg S3	L 8" x 8" x 0.875*	SAE		33.0	56.85	Comp	56.85		-183.305	W 45		0.000		0.333	0.333	0.333			25.124	1	0
Leg S4	L 8" x 8" x 0.75"	SAE	8X8X0.75	33.0	51.53	Comp	51.53	L 4P	-144.030	W 45	279.520	0.000	0.000	0.333	0.333	0.333	63.60	63.60	25.124	1	0
Leg S5	L 6" x 6" x 0.875"	SAE	6X6X0.88	33.0	52.56	Comp	52.56	1. 5P	-124.323	W 45	236.535	0.000	0.000	0.500	0.500	0.500	64.42	64.42	12.562	1	0
Leq S6	L 6" x 6" x 0.875"	SAE	6x6x0.88	33.0	43.56	Comp	43.56	L 6P	-103.046	W 45	236.535	0.000	0.000	0.500	0.500	0.500	64.42	64.42	12.562	1	0
Leg S7	L 6" x 6" x 0.75"	SAE	6X6X0.75	33.0	41.33	Comp	41.33	L 7P	-84,792	W 45	205.175	0.000	0.000	0.500	0.500	0.500	64.42	64.42	12.562	1	0
Leg S8	L 6" x 6" x 0.75"	SAE	6X6X0.75	33.0	32.02	Comp	32.02	1. 8P	-65.691	W 45	205.175	0.000		0.500	0.500	0.500	64.42		12.562	1	0
Leg 39	L 6" x 6" x 0.75"	SAF	6X6X0.75	33.0	30.88	Comp	30.88	L 9P	-63.363	W 45	205.175	0.000	0.000	0.500	0.500	0.500		64.42	12.562	1	0
Leg S10	L 6" x 6" x 0.75"	SAE	6X6X0.75	33.0	21.71	Comp	21.71	L 10P	-44.537	W 45	205.175	0.000	0.000	0.500	0.500	0.500	64.42	64.42	12.562	1	0
Leg S11	L 6" x 6" x 0.5"	SAE	6X6X0.5	33.0	18.79	Comp	18.79	L 11P	-26,351	W 45	140.255	0.000	0.000	0.500	0.500	0.500	63.87	63.87	12.562	1	0
Leg S12	L 6" x 6" x 0.5"	SAF	6X6X0.5	33.0	8.12	Comp	8.12	L 12P	-11.392	W 45	140.255	0.000	0.000	0.500	0.500	0.500	63.87	63.87	12.562	1	0
Diag S1	B/B L3"x3"x0,25"	DAE	3X3X0,25	33.0	71.59	Comp	71.59	D 2X	-28,098	W -90	39,249	0,000	0,000	0.310	0.790	0.310	131.47	127.05	19,277	- 6	0
Diag S2	B/B L2.5*x3*x0.3125*	DAS	3X2,5X0,31	33.0	84.79	Comp	84.79	D 3X	-29,623	W -90	34,937	0.000	0.000	0.310	0,620	0.310	160.23	144.74	31,444	6	0
Diag S3	B/B L2.5"x3"x0.25"	DAS	3X2.5X0.25	33.0	93.32	Comp	93.32	D 5X	-29.614	W -90	31.734	0.000	0.000	0.310	0.620	0.310	156.05	142.17	30.413	- 6	0
Diag S4	B/B L2.5"x3"x0.25"	DAS	3x2,5x0,25	33.0	86,46	Comp	86,46	D 7X	-28,522	W -90	32,989	0,000	0,000	0.310	0.620	0.310	151.11	139,14	29,451	6	0
Dieg S5	B/B L2.5*x2.5*x0.25*	DAE	2.5X2.5X0.25	33.0	88.96	Comp	88.96	D 9X	-18.367	W -90	20.646	0.000	0.000	0.500	1.000	0.500	187.28	161.38	18.572	6	0
Diag S6	B/B L2.5*x2.5*x0.25*	DAE	2.5x2.5x0.25	33.0	78.84	Comp	78.84	D 11X	-17,109	W -90	21.700	0.000	0.000	0.500	1.000	0.500	180.83	157.41	17.932	- 6	0
Diag S7	B/B L2,5*x2,5*x0,25*	DAF	2,5x2,5x0,25	33.0	73.62	Comp	73.62	D 13X	-16,784	W -90	22,798	0,000	0,000	0.500	1,000	0,500	174.59	153.57	17,313	6	0
Diag SS	B/B L2.5*x2.5*x0.25*	DAE	2.5X2.5X0.25	33.0	71.04	Comp	71.04	D 15X	-17.003	W -90	23.935	0.000	0.000	0.500	1.000	0.500	168.59	149.88	16.718	6	0
Diag S9	L 3" x 4" x 0.25"	SAU		33.0	41.38	Tens	0.00	D 18Y	0.000		0.000	0.000	0.000	100.000	100,000	100,000	42714.51	32577.05	23.173	5	0
Diag S10	L 3" x 4" x 0.25"	SAU	4×3×0,25	33.0	34,41	Tens	0.00	D 20Y	0.000		0.000	0.000	0,000	100,000	100,000	100,000	40023.07	30526,18	21,713	. 5	0
Diag S11	L 3.5" x 3.5" x 0.25"	SAF	3.5X3.5X0.25	33.0	25.77	Tens	0.00	D 22Y	0.000		0.001	0.000	0.000	100.000	100.000	100.000	35101.11	26775.65	20.300		0
Diag S12	L 3.5" x 3.5" x 0.25"	SAE	3.5X3.5X0.25	33.0	15.25	Tens	0.00	D 24Y	0.000		0.001	0.000	0.000	100.000	100,000	100,000	32759.97	24991.70	18,946	5	0
Horiz 1	B/B L3"x3"x0.3125"	DAE	3X3X0,31	33.0	87.04	Comp	87.04	H 1P	-37.509	W -90	43.092	0.000	0.000	0.950	0.950	0.950	156.53	142.47	12,660	6	0
Horiz 2	B/B L3.5"x2.5"x0.3125"	DAI	3.5X2.5X0.31		51.96			H 3P	-15.921	W -90	30,639			1.000	1,000	1,000			17.229	6	0
Horiz 3	B/B L3*x2.5*x0.25*	DAL	3X2,5X0,25	33.0	69.89	Comp	69.89	H 5P	-14,891	W -90	21,304	0.000	0.000	1,000	1,000	1,000	196.42	167.00	15,468	- 6	0
Horiz 4	B/B L3*x2.5*x0.25*	DAL	3X2.5X0.25	33.0	53.87	Comp	53.87	H 7P	-13.629	W -90	25.299	0.000	0.000	1.000	1.000	1.000	174.08	153.25	13.708	6	0
Horiz 5	B/B L2.5*x2.5*x0.25*	DAE	2.5X2.5X0.25	33.0	66.47	Comp	66.47	H 9P	-12,469	W -90	18.758	0.000	0.000	1.000	1.000	1,000	200.16	169.30	12.827	6	0
Horiz 6	B/B L2,5*x2,5*x0,25*	DAE	2.5X2.5X0.25	33.0	53,95	Comp	53,95	H 12P	-11,211	W 180	20.781	0,000	0,000	1,000	1,000	1,000	186.43	160.85	11,947	- 6	0
Horiz 7	B/B L3*x2.5*x0.25*	DAI	3X2,5X0,25	33.0	31.60	Comp	31.60	H 13P	-10.563	W -90	33.425	0.000	0.000	1.000	1.000	1.000	140.53	132.62	11.067	6	0
Horiz 8	B/B L3*x2.5*x0.25*	DAL	3X2.5X0.25	33.0	51.98	Comp	51.98	H 15P	-18,928	W -90	36.417	0.000	0.000	1,000	1.000	1.000	129.35	125.75	10.186	6	0
Horiz 9	B/B L3*x2.5*x0.25*	DAL	3X2.5X0.25	33.0	75.92	Comp	75.92	H 17P	-16.028	W -90	21.113	0.000	0.000	0.500	1.000	0.500	197.65	167.75	18.612	- 6	0
Horiz 10	B/B L3"x2.5"x0.25"	DAI			28.00			H 19P	-12.586	W -90	44.957	0.000	0.000	0.500	0.500	0.500	106.99	106.99	16.851	1	0
Horiz 11	L 4" x 3" x 0.3125"	SAU	4X3X0,31	33.0	34.94			H 21P	-8.972	W -90	25,680	0.000	0.000	0.500	0.500	0.500	139.94	135.24	15.091	.5	0
Horiz 12	L 4" x 3" x 0.3125"	SAU	4X3X0.31	33.0	45.85	Comp	45.85	H 23P	-4,597	W -90	10.028	0.000	0.000	1.000	0.500	1.000	247.23	216.99	13.330	5	0
LD 1	B/B L2.5"x2"x0.25"	DAL			47.90		1.07	LD 1X	-0.227	W -90	21.135	0.000		0.970	0.970	0.970			11.465	- 6	0
LD 2	B/B L2.5*x2.5*x0.25*		2.5X2.5X0.25		93.60			LD 3X	-27,130	W -90	28,984			0.970	0.970	0.970			9,638	6	0
LD 3	B/B L3"x3"x0.25"	DAE			66.83			LD SP	-26.286	W -90	39.335			0.970	0.970	0.970			10.481	6	0
LH 1	B/B L2.5"x2.5"x0.25"	DAE	2.5X2.5X0.25		46.40		0.00	LH 2Y	0.000		0.003	0.000		100.000	100.000	100.000		13270.56		5	0
DUM 1	Dummy Bracing Member				0.00		0.00	BR 5XY		W-45	0.324	0.000		1.000	1,000	1,000			21.875	1	0

Group Summary (Tension Portion):

Group Label		Angle Type		Steel Strength (ksi)	Usage	rol	Use In Tens.	Control Member	Force (kips)	Load Case	Capacity (kips)	Connect. Shear Capacity (kips)	Connect. Bearing Capacity (kips)	Capacity (kips)	Tens. Member (ft)	Of Bolts Tens.	Holes	Hole Diamete: (in
Leg Sl	L 8" x 8" x 1.125"	SAE	8X8X1.13		62.87		26.54		131.848	W 45	496.880	0.000	0.000		25.124		0.000	
Leg S2	L 8" x 8" x 1"	SAE	BX8X1		60.54		30.57		136.204	W 45	445.499	0.000	0.000		25.124		0.000	
Leg S3	L 8" × 8" × 0.875"	SAE	8X8X0.88	33.0	56.85	Comp	27.77	L 3XY	109,114	W 45	392.930	0.000	0.000	0.000	25,124	0	0.000	
Leg S4	L 8" x 8" x 0.75"	SAE	8X8X0.75		51.53		23.83			W 45	339.767	0.000	0.000		25.124		0.000	
Leg S5	L 6" x 6" x 0.875"		6X6X0.88		52.56			L 5XY	67.449	W 45	288.981	0.000	0.000		12.562		0.000	- 1
Leg 56	L 6" x 6" x 0.875"	SAE	6x6x0.88			Comp		L 6XY	53.738	W 45	288.981	0.000	0.000		12.562		0.000	
Leg S7	L 6" x 6" x 0.75"	SAE	6X6X0.75		41.33		16.00	L 7XY	40.106		250.668	0.000	0.000		12.562		0.000	
Leg S8	L 8" x 8" x 0.75"	SAE	6X6X0.75		32.02		10.70	L 8XY	26.827	W 45	250.668	0.000	0.000		12.562		0.000	
Leg S9	L 6" x 6" x 0.75"	SAE	6X6X0.75	33.0	30.88	Comp	5.99	L 9XY	15.016	W 45	250.668	0.000	0.000		12.562		0.000	
Leg S10	L S" x S" x 0.75"		6X6X0.75		21.71			L 10XY	5.022	W 45	250.668	0.000	0.000		12.562		0.000	
Leg S11	L 6" x 6" x 0.5"	SAE	6X6X0.5			Comp		L 11Y	0.000		170.775	0.000	0.000		12.562		0.000	
Leg S12	L 6" x 6" x 0.5"	SAE	6X6X0.5		8.12			L 12Y	0.000		170.775	0.000	0.000		12.562		0.000	
Diag Sl	B/B L3"x3"x0.25"	DAE	3X3X0.25		71.59		55.02	D 2P	47.062	W -90	85.536	0.000	0.000		19.277		0.000	
Diag S2	B/B L2.5*x3*x0.3125*	DAS	3x2.5x0.31		84.79		27.98	D 3P	26.928	W -90	96,228	0.000	0.000		31.444		0.000	
Diag S3	B/B L2.5"x3"x0.25"	DAS	3X2,5X0,25		93.32		34.75		27.145	W -90	78.111	0.000	0.000		30.413		0.000	
Diag S4	B/B L2.5"x3"x0.25"	DAS	3X2.5X0.25		86.46		34.36		26.840	W -90	78.111	0.000	0.000		29.451		0.000	
Diag S5	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		88.96		23.97	D 9P	16.940	W -90	70.686	0.000	0.000		18.572		0.000	
Diag 56	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		78.84		22.39	D 11P	15.823	W -90	70.686	0.000	0.000		17.932		0.000	
Diag S7	B/B L2.5"x2.5"x0.25"		2.5X2.5X0.25		73.62		22.08	D 13P	15.809	W -90	70.686	0.000	0.000		17.313		0.000	
Diag 58	B/B L2.5*x2.5*x0.25*		2.5X2.5X0.25		71.04		22.29	D 15P	15.756		70.686	0.000	0.000		16.718		0.000	
Diag S9	L 3" x 4" x 0.25"	SAU	4X3X0.25		41.38		41.38	D 18P	20.768	₩ -90	50.193	0.000	0.000		23.173		0.000	-
Diag S10	L 3" x 4" x 0.25"	SAU	4X3X0.25		34.41		34.41	D 20P	17.271	W -90	50.193	0.000	0.000		21.713		0.000	
Diag S11	1 3.5" x 3.5" x 0.25"		3,5X3,5X0,25		25.77		25.77	D 22F	12.936	₩ -90	50.193	0.000	0.000		20.300		0.000	
Diag S12	L 3.5" x 3.5" x 0.25"		3.5%3.5%0.25		15.25		15.25	D 24P	7.655	W -90	50.193	0.000	0.000		18.946		0.000	
Horiz 1	B/B L3*x3*x0.3125*	DAE	3x3x0.31		87.04		16.00	H 1X	16.875	W -90	105.435	0.000	0.000		12.660		0.000	
	B/B L3.5"x2.5"x0.3125"				51.96			H 3D	16.433	W 90	105.435	0.000	0.000		17.229		0.000	
Horiz 3	B/B L3*x2.5*x0.25*	DAL	3X2.5X0.25		69.89		19.06	H 5X		W -90	78.111	0.000	0.000		15.468		0.000	
Horiz 4	B/B L3*x2.5*x0.25*	DAL	3X2.5X0.25		53.87		18.10	H 7P	14.140	W 90	78.111	0.000	0.000		13.708		0.000	
Horiz 5	B/B L2.5"x2.5"x0.25"		2.5%2.5%0.25		66.47		17.78	H 9P	12.570	W 90	70.686	0.000	0.000		12.827		0.000	
Horiz 6	B/B L2.5"x2.5"x0.25"		2.5%2.5%0.25		53.95		16.45	H 11P	11.626	W 90	70.686	0.000	0.000		11.947		0.000	
Horiz 7	B/B L3*x2.5*x0.25*	DAL	3X2.5X0.25		31.60		14.06	H 13P	10.985	W 90	78.111	0.000	0.000		11.067		0.000	
Horiz 8	B/B L3*x2.5*x0.25*	DAL	3%2.5%0.25	33.0	51.98	Comp	2.47	H 15Y	1.929	W 90	78.111	0.000	0.000	0.000	10.186	0	0.000	

*** Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

Element		Eleme	Maximum Usage t	Load Case
Angle	49	LD	92.20	.W O
Angle	44	LD	93.30	W 180
Angle	3P	LD	67.67	W 45
Angle	4P	LD	71.88	W -45
Angle	3P	LD	92.67	W 90
Angle	3X	LD	93.60	W -90
Angle	4P	LD	28.47	W 0 Ice
Angle		LD	29.74	W 180 Ice
Angle	1.P	L	26.94	W 45 Ice
Angle	1X	L	25.23	W -45 Ice
Angle	3P	LD	28.60	W 90 Ice
Angle	3X	LD	29.75	W -90 Ice

*** Weight of structure (lbs):
Weight of Angles Section DIF: 91885.
Weight of Equipment: 1444.
Total: 93329.

*** End of Report

Site #	88017		Г	Engineer:	I. Dodson		Windspeed:	No Ice	97 mph	Ice	50 mph				Taper:	-0.14085		Taper Change:	200	lt.
	Shelton/Trumbul	I. CT		Date:				AT&T Mo		-					FW @ Base:	41.50	ft	FW @ Top:	13.33	
ume	, Trainea		9 6	Dute	,,	_	Curre	1			Drop				g buse.	12.50	nat L	1001	20100	3 (0).
Joint	Symmetry	X Coord.	Y Coord.	Z Coord.	X Disp.	Y Disp.	Z Disp.	X Rot.	Y Rot.	Z Rot.	Sub-Brace					Spr	eadsheet Versio	n Last Updated:	11/12/2014	
Label	Code	(ft)	(ft)	(ft)	Rest.	Rest.	Rest.	Rest.	Rest.	Rest.	(Y or Blank)	# Vert	Drop (ft)	Height (ft)	Type	Count	Z-Elev. (ft)	FW (ft)	# Sub-Brace	1
0	XY-Symmetry	20.75	20.75	0	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed			8.333	25	2	1	0	41.5	3	
1	XY-Symmetry	18.989375	18.989375	25	Free	Free	Free	Free	Free	Free				25	A	2	25	37.97875	2	NOTES
2	XY-Symmetry	17.22875	17.22875	50	Free	Free	Free	Free	Free	Free				25	A	3	50	34.4575	2	Types:
3	XY-Symmetry	15.468125	15.468125	75	Free	Free	Free	Free	Free	Free				25	A	4	75	30.93625	2	1: Built up Horizs. w/ A
4	XY-Symmetry	13.7075	13.7075	100	Free	Free	Free	Free	Free	Free				12.5	A	5	100	27.415	1	2: Built up Horizs. w/ M
5	XY-Symmetry	12.8271875	12.8271875	112.5		Free	Free	Free	Free	Free				12.5	A	6	112.5	25.654375	1	A: Typical A brace
6	XY-Symmetry	11.946875	11.946875		Free	Free	Free	Free	Free	Free				12.5	A	7	125	23.89375	1	X: Typical X brace
7	XY-Symmetry	11.0665625	11.0665625	137.5		Free	Free	Free	Free	Free				12.5	A	8	137.5	22.133125	1	
8	XY-Symmetry	10.18625	10.18625		Free	Free	Free	Free	Free	Free		1		12.5	X	9	150	20.3725	1	Drop: Use only for types 1 & 2
9	XY-Symmetry	9.3059375	9.3059375	162.5		Free	Free	Free	Free	Free		1		12.5	x	10		18.611875	1	
10	XY-Symmetry	8.425625	8.425625		Free	Free	Free	Free	Free	Free		1		12.5	x	11		16.85125	1	# Sections: 12
11	XY-Symmetry	7.5453125	7.5453125	187.5		Free	Free	Free	Free	Free				12.5	X	12	187.5	15.090625	1	
12	XY-Symmetry	6.665	6.665	200	Free	Free	Free	Free	Free	Free						13	200	13.33		
								200	2											
A1	XY-Symmetry	18.989375 6.329791667	6.329791667 18.989375		Free Free	Free	Free	Free	Free	Free										
A2	XY-Symmetry	17.22875	18.989375		Free	Free	Free	Free	Free	Free										
A3	Y-Symmetry	17.226/3	17.22875		Free	Free	Free	Free	Free	Free Free										
A4 A5	X-Symmetry Y-Symmetry	15.468125	17.22873		Free	Free	Free Free	Free Free	Free Free	Free										
A6	X-Symmetry	13.406123	15.468125		Free	Free	Free	Free	Free	Free										
A7	Y-Symmetry	13,7075	13.466123		Free	Free	Free	Free	Free	Free										
A8	X-Symmetry	13.7073	13.7075		Free	Free	Free	Free	Free	Free										
A9	Y-Symmetry	12.8271875	13.7073	112.5		Free	Free	Free	Free	Free										
A10	X-Symmetry	0	12.8271875	112.5		Free	Free	Free	Free	Free										
A11	Y-Symmetry	11.946875	0		Free	Free	Free	Free	Free	Free										
A12	X-Symmetry	0	11.946875		Free	Free	Free	Free	Free	Free										
A13	Y-Symmetry	11.0665625	0	137.5		Free	Free	Free	Free	Free										
A14	X-Symmetry	0	11.0665625	137.5		Free	Free	Free	Free	Free										
A15	Y-Symmetry	10.18625	0		Free	Free	Free	Free	Free	Free										
A16	X-Symmetry	0	10.18625		Free	Free	Free	Free	Free	Free										
H1	XY-Symmetry	19.57622653	11.13633551	16.667	Free	Free	Free	Free	Free	Free										
H2	XY-Symmetry	11.13633551	19.57622653	16.667		Free	Free	Free	Free	Free										
H3	Y-Symmetry	19.57622653	0	16.667	Free	Free	Free	Free	Free	Free										
H4	X-Symmetry	0	19.57622653	16.667	Free	Free	Free	Free	Free	Free										

Legs

Site No.:	88017	
Engineer:	I. Dodson	
Date:	03/22/2019	
Carrier:	AT&T Mobility	

When inputting thickness values, include all decimal places.

Tower Section	Section Elevations	Type of	Diameter or	Thickness [2]	F _Y
#	(ft)	Shape [1]	Length (in)	(in)	(ksi)
1 2 3 4 5 6 7 8 9 10 11 12	0.000-25.00 25.00-50.00 50.00-75.00 75.00-100.0 100.0-112.5 112.5-125.0 125.0-137.5 137.5-150.0 150.0-162.5 162.5-175.0 175.0-187.5 187.5-200.0		8 8 8 6 6 6 6 6 6 6	1.125 1 0.875 0.75 0.875 0.75 0.75 0.75 0.75 0.5 0.5	33 33 33 33 33 33 33 33 33 33 33

Notes:
[1] Type of Leg Shape: \mathbf{R} = Round or \mathbf{P} = Bent Plate or \mathbf{S} = Schifflerized Angle. \mathbf{L} = Even Leg [2] For Solid Round Leg Shapes Thickness Equals Zero.

^[3] Adjust for Bent Plate Leg Shapes.

Diagonals

 Site No.:
 88017

 Engineer:
 I. Dodson

 Date:
 03/22/2019

 Carrier:
 AT&T Mobility

When inputting thickness values, include all decimal places.

Tower	Section	Туре	Diameter [2]	Web	Flange	Thickness	F _y	Is Diag.
Section	Elevations	of	Nacional Action	Length [3]	Length [3]	The same of the same same same same same same same sam		Tension
#		Shape [1]						Only?
	(ft)		(in)	(in)	(in)	(in)	(ksi)	(Y/N)
1	0.000-25.00	2L		3	3	0.25	33	
2	25.00-50.00	2L		2.5	3	0.3125	33	
3	50.00-75.00	2L		2.5	3	0.25	33	
4	75.00-100.0	2L		2.5	3	0.25	33	
5	100.0-112.5	2L		2.5	2.5	0.25	33	
6	112.5-125.0	2L		2.5	2.5	0.25	33	
7	125.0-137.5	2L		2.5	2.5	0.25	33	
8	137.5-150.0	2L		2.5	2.5	0.25	33	
9	150.0-162.5	L		3	4	0.25	33	Υ
10	162.5-175.0	L		3	4	0.25	33	Y
11	175.0-187.5	L		3.5	3.5	0.25	33	Y
12	187.5-200.0	L		3.5	3.5	0.25	33	Y

Notes:

 $[\]overline{\mbox{[1]}} \mbox{Type of Diagonal Shape: } \mbox{\bf R} = \mbox{Round, } \mbox{\bf L} = \mbox{Single-Angle or } \mbox{\bf 2L} = \mbox{Double-Angle.}$

^[2] Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.

 $^{^{[3]}}$ Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Horizontals

Site No.:	88017	
Engineer:	I. Dodson	
Date:	03/22/2019	
Carrier:	AT&T Mobility	

When inputting thickness values, include all decimal places.

-		-	. [2]		-1	-111	-	
Tower Section	Section Elevations	Type of	Diameter [2]	Web Length [3]	Flange Length [3]	Thickness	F _y	
#	Elevations	Shape [1]		Length	Length			
#	(ft)	Shape	(in)	(in)	(in)	(in)	(ksi)	
				100000		Assort.		
1	0.000-25.00	2L		3	3	0.3125	33	
2	25.00-50.00	2L		3.5	2.5	0.3125	33	
3	50.00-75.00	2L		3	2.5	0.25	33	
4	75.00-100.0	2L		3	2.5	0.25	33	
5	100.0-112.5	2L		2.5	2.5	0.25	33	
6	112.5-125.0	2L		2.5	2.5	0.25	33	
7	125.0-137.5	2L		3	2.5	0.25	33	
8 9	137.5-150.0 150.0-162.5	2L 2L		3 3	2.5 2.5	0.25 0.25	33 33	
10	162.5-175.0	2L 2L		3	2.5	0.25	33	
11	175.0-187.5	L		4	3	0.3125	33	
12	187.5-200.0	Ĺ		4	3	0.3125	33	
155,000,000	0.074 0.0450 0.004. 9 0.000	5800						

Notes:

 $^{^{[1]}}$ Type of Horizontal Shape: $\bf R$ = Round, $\bf L$ = Single-Angle, $\bf 2L$ = Double-Angle, $\bf C$ = Channel, $\bf W$ = W Shape

Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.

^[3] Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Built-up Diagonals

Site No.:	88017
Engineer:	I. Dodson
Date:	03/22/2019
Carrier:	AT&T Mobility

When inputting thickness values, include all decimal places. Input diags. from left to center & from base section upward.

Tower Built-up Diag. #	Section Elevations (ft)	Type of Shape ^[1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3] (in)	Thickness (in)	F _v (ksi)
1 2 3	0.000-25.00 0.000-25.00 0.000-25.00	2L 2L 2L		2.5 2.5 3	2 2.5 3	0.25 0.25 0.25	33 33 33

Notes:
[1] Type of Diagonal Shape: **R** = Round, **L** = Single-Angle or **2L** = Double-Angle.

 $^{^{[2]}\}mbox{Applies}$ to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.

 $^{^{\}mbox{\scriptsize [3]}}$ Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Built-up Horizontals

Site No.:	88017	
Engineer:	I. Dodson	
Date:	03/22/2019	
Carrier:	AT&T Mobility	

When inputting thickness values, include all decimal places.

Tower Section #	Section Elevations (ft)	Type of Shape [1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3]	Thickness	F _y	Is Horiz. Tension Only? (Y/N)
1	0.000-25.00	2L		2.5	2.5	0.25	33	Y

Notes:

[1] Type of Horizontal Shape: **R** = Round, **L** = Single-Angle or **2L** = Double-Angle.

[2] Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.

^[3] Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

								Carner:	
Description	From	То	Quantity	Shape	Width or	Perimeter	Unit	Part of Face	Include in
	100000				Diameter	1.0000000	Weight	Solidity Ratio	Wind Load
	(ft)	(ft)			(in)	(in)	(lb/ft)	(Yes/No)	(Yes/No)
1 Ladder	0	200	1	Flat	2	8.0	6	Yes	Yes
2 OTHER	10	200	1	Round	0.63	2.0	0.15	Yes	Yes
3 STATE OF CT	10	200	1	Round	1.98	6.2	0.82	Yes	Yes
4 STATE OF CT	10	200	1	Round	1.98	6.2	0.82	Yes	Yes
5 STATE OF CT	10	200	2	Round	2.01	6.3	0.57	Yes	Yes
6 STATE OF CT	10	182	1	Flat	4.8375	25.8	4.1	Yes	Yes
7 STATE OF CT	10	182	1	Flat	2.30625	12.3	0.75	Yes	Yes
8 STATE OF CT	10	182	1	Flat	3.72	19.8	3.28	Yes	Yes
9 SPRINT NEXTEL	10	169	1	Flat	14.55	47.0	9.45	Yes	Yes
10 CLEARWIRE	10	158	1	Round	2.52	5.8	0.6	No	No
11 CLEARWIRE	10	158	1	Round	1.86	4.1	0.3	No	No
12 SPRINT NEXTEL	10	155	3	Round	1.54	4.8	1	Yes	Yes
13 SPRINT NEXTEL	10	155	1	Round	1.7	5.3	1.78	No	No
14 CLEARWIRE	10	150	1	Round	2.38	14.3	7.3	Yes	Yes
15 AT&T MOBILITY	10	145	6	Round	1.98	6.2	0.82	Yes	Yes
16 AT&T MOBILITY	10	145	2	Round	0.78	2.5	0.59	Yes	Yes
18 AT&T MOBILITY	10	145	2	Round	3.5	11.0	7.58	Yes	Yes
20 AT&T MOBILITY	10	145	1	Round	0.39	1.2	0.17	Yes	Yes
21 STATE OF CT	10	127	2	Round	2.01	6.3	0.57	Yes	Yes
22 US DEPT OF HS	10	101	1	Round	1.09	4.4	0.33	Yes	Yes
23 LIGADO	10	82	1	Round	1.98	7.9	0.82	Yes	Yes
24 SPRINT NEXTEL	10	56	1	Round	0.63	2.0	0.15	Yes	Yes
25 SIGFOX	10	135	1	Round	0.63	2.0	0.15	Yes	Yes
35 Waveguide	10	176	1	Flat	2	8.0	6	Yes	Yes
36 Waveguide	10	165	1	Flat	2	8.0	6	Yes	Yes
37 Waveguide	10	155	1	Flat	2	8.0	6	Yes	Yes
38 Waveguide	10	143	1	Flat	2	8.0	6	Yes	Yes

Site No.: 88017
Engineer: I. Dodson
Date: 03/22/19
Carrier: AT&T Mobility

	f					K _e	0.9	Kt	2						
Description	From	То	Quantity	Face #	Coax Width	Coax Shape	% Exposed	Spacing	Shape	Block Width	Block Depth	Perimeter	Unit	In Face Zone	Include in
				(1-4, A		(Block / Flat /			(Round/Flat)				Weight		Wind Load
	(ft)	(ft)		D)	(in)	Ind)		(in)		(# coax)	(# coax)	(in)	(lb/ft)	(Yes/No)	(Yes/No)
Ladder	0	200	1	A	2.00	Flat	100		Flat	1	1	8.0	6	Yes	Yes
OTHER	10	200	1	В	0.63	Ind	100		Round	1	1	2.0	0.15	Yes	Yes
STATE OF CT	10	200	1	В	1.98	Ind	100		Round	1	1	6.2	0.82	Yes	Yes
STATE OF CT	10	200	1	В	1.98	Ind	100		Round	1	1	6.2	0.82	Yes	Yes
STATE OF CT	10	200	2	В	2.01	Ind	100		Round	2	1	6.3	0.57	Yes	Yes
STATE OF CT	10	182	5	В	1.98	Block	50	1	Flat	3	2	25.8	4.1	Yes	Yes
STATE OF CT	10	182	5	В	0.63	Block	50	1	Flat	3	2	12.3	0.75	Yes	Yes
STATE OF CT	10	182	4	В	1.98	Block	50	1	Flat	2	2	19.8	3.28	Yes	Yes
SPRINT NEXTEL	10	169	15	3	1.55	Block	50	1	Flat	8	2	47.0	9.45	Yes	Yes
CLEARWIRE	10	158	4	2	0.63	Ind	0		Round	1	4	5.8	0.6	No	No
CLEARWIRE	10	158	6	2	0.31	Ind	0		Round	1	6	4.1	0.3	No	No
SPRINT NEXTEL	10	155	3	3	1.54	Ind	100		Round	3	1	4.8	1	Yes	Yes
SPRINT NEXTEL	10	155	1	3	1.70	Ind	0		Round	1	1	5.3	1.78	No	No
CLEARWIRE	10	150	2	2	2.38	Ind	100		Round	2	1	7.5	3.65	Yes	Yes
AT&T MOBILITY	10	145	6	С	1.98	Ind	100		Round	6	1	6.2	0.82	Yes	Yes
AT&T MOBILITY	10	145	2	С	0.78	Ind	100		Round	2	1	2.5	0.59	Yes	Yes
														No	No
AT&T MOBILITY	10	145	2	С	3.50	Ind	100		Round	2	1	11.0	7.58	Yes	Yes
													***************************************	No	No
AT&T MOBILITY	10	145	1	C	0.39	Ind	100		Round	1	1	1.2	0.17	Yes	Yes
STATE OF CT	10	127	2	В	2.01	Ind	100		Round	2	1	6.3	0.57	Yes	Yes
US DEPT OF HS	10	101	1	4	1.09	Ind	100		Round	1	1	3.4	0.33	Yes	Yes
LIGADO	10	82	1	2	1.98	Ind	100		Round	1	1	6.2	0.82	Yes	Yes
SPRINT NEXTEL	10	56	1	3	0.63	Ind	100		Round	1	1	2.0	0.15	Yes	Yes
SIGFOX	10	135	1	1	0.63	Ind	100		Round	1	1	2.0	0.15	Yes	Yes
														No	No
***************************************														No	No
														No	No
														No	No
***************************************													***************************************	No	No
***************************************	***************************************													No	No
														No	No
														No	No
														No	
Waynayida	10	176	1	Δ	2.00	Flat	100		Flat	1	1	8.0	6	Yes	No Yes
Waveguide Waveguide	10	165	1	A 2	2.00	Flat	100		Flat	1	1	8.0	6	Yes	Yes
Waveguide	10	155	1	2	2.00	Flat	100		Flat	1	1	8.0	6	Yes	Yes
Waveguide	10	143	1	D	2.00	Flat	100		Flat	1	1	8.0	6	Yes	Yes
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
														No	No
								1						No	No
· · · · · · · · · · · · · · · · · · ·															

Dishes

Dish Types					
S	Standard				
R	Standard w/ Radome				
H.	High Performance				
G	Grid				

Dish	Dish Elevation	Dish Dia.	Dish Angle	Dish Type	Joint	Equipme
Number	(ft)	(ft)	(deg)		Orientation	Staus
1	200	8	68	R	XY	
2	200	8	240	R	P	
3	158	2	343.6664	н	XY	
4	158	2	126.6024	S	XY	
5	158	3	212.6351	н	Р	
6	158	3	212.6351	н	х	
7	127	6	182	R	Р	
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28 29						
30						
31						
31						
33						
34						
35						
35						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
49						

Equipment Label	Attach Label	Equipment Property Set	EIA Antenna Orientation Angle (deg)
'RAD 1 @ 200'	12XY	8 ft RAD Dish	68
' RAD 2 @ 200'	12P	8 ft RAD Dish	240
' HP 3 @ 158'	9XY	2 ft HP Dish	343.6664
STD 4 @ 158'	9XY	2 ft STD Dish	126.6024
HP 5 @ 158'	9P	3 ft HP Dish	212.6351
' HP 6 @ 158'	9X	3 ft HP Dish	212.6351
'RAD 7 @ 127'	6P	6 ft RAD Dish	182

Site No.: Engineer: Date: Carrier: 88017 I. Dodson 03/22/19 AT&T Mobility

	Joint Orien	tation	
x	, o,	Y	
90°	3		
10		D	

Tower Height:	200	ft
Gh:	0.85	1
Wind Speed:	97	mph, Vasc
Ice Wind Speed:	50	
Ice Density:	56	
Tower Type:	5	T

Ice Thick:	0.5	in
Topographic Category (1-4):	1	
Exposure Category (B-D):	В	
Structure Class (1-3):	2	
Height of Crest (H) if Topo Cat. >1:	0	ft
Load Factor; Wind:	1.6	
Load Factor; Dead:	1.2	

Site No.:	88017	Т
Engineer:	I. Dodson	Т
Date:	03/22/2019	
Carrier:	AT&T Mobility	

No.	Carrier	Elevation	Quantity	# of		Manufacturer	Model	Height	Width	Depth	Weight	Flat/Round	Reduction	C _A A _c	Weight	Ka
1		(ft) 200	1	Azimuths 1				(in) 0.001	(in) 0.001	(in) 0.001	(lbs/ea) 0.001	(F/R)	1.000	(ft²)	(k)	1
2		200 200	1	4			Platform w/ HR	0.001	0.001	0.001	0.001	F	1.000	80.00	9.00	1
.2		200	1 4	4			Mounting Frames	0.001	0.001	0.001	0.001	,	1.000 1.000	20.00	0.20	1
3		187.5 187.5	1	1			- Access Platform	0.001	0.001	0.001	0.001	F	1.000	45.00	5,00	1
4		175	1	1			Access Placionni	0.001	0.001	0.001	0.001	F	1.000	45.00	5.00	1
5		175 112.5	1	4			Catwalk	0.001	0.001	0.001	0.001	F	1.000	70.00	8.00	1
		112.5	1	3			Catwalk	0.001	0.001	0.001	0.001		1.000	70.00	8.00	1
6		100 100	1	1			- Rest Platform	0.001	0.001	0.001	0.001	F	1.000	15.00	0.50	1
7		75	1	1				0.001	0.001	0.001	0.001	F	1.000			1
8		75 50	1 1	3			Catwalk	0.001	0.001	0.001	0.001	F	1.000	70.00	8.00	1
		50	1	1			Rest Platform						1.000	15.00	0.50	1
9	STATE OF CT STATE OF CT	200	1	1		Generic	20' Omni	240	3	3	55	R	1.000 0.001	0.00	0.00	1 1
10	OTHER	212	1	1		Generic		0.001	0.001	0.001	0.001	F	1.000			1
11	OTHER OTHER	212 210	1	1		Generic	5' Yagi	0.001	0.001	0.001	0.001	F	1.000	7.29	0.02	1
12	OTHER	210 210	1	1		T-1	5° Yagi	0.001	0.001	0.001	0.001	F	1.000	7.29	0.02	1
12	STATE OF CT STATE OF CT	210	1	1		Telewave	ANT900D6-9	0.001	0.001	0.001	0.001	-	1.000	0.98	0.01	1
13	STATE OF CT STATE OF CT	205 205	1	1		Sinclair	SC442D-HF1LDF(DXX-I30-G9-NUFP)	251.5	5	5	79	R	1.000 0.001	0.00	0.00	1
14	STATE OF CT	190	1	1		Sinclair	SC479-HF1LDF	172.5	3.5	3.5	34	R	1.000			1
15	STATE OF CT STATE OF CT	190 189	2	2		Sinclair	Side Arm SC479-HF1LDF	172.5	3.5	3.5	34	R	1.000	6.30	0.15	1
	STATE OF CT	189	1	1			Flat Sector Frames						1.000	17.90	0.40	1
16	STATE OF CT STATE OF CT	187 187	1	1		Sinclair	SC479-HF1LDF	172.5	3.5	3.5	34	R	1.000 0.001	0.00	0.00	1
17	STATE OF CT	185	1	1		Generic	TTA	12	12	6	10	F	1.000			1
18	STATE OF CT STATE OF CT	185 185	1 2	2		Kathrein Scala	AP14-850/105	101.5	10	4	26.8	F	1.000	0.00	0.00	1
	STATE OF CT STATE OF CT	185	1	1				42			10		0.001	0.00	0.00	1
19	STATE OF CT	182 182	2 1	2		Generic	TTA	12	12	6	10	F	1.000 0.001	0.00	0.00	1
20	STATE OF CT STATE OF CT	180 180	2	2		Generic	TTA	12	12	6	10	F	1.000 0.001	0.00	0.00	1
21	STATE OF CT	180	1	1		Generic		0.001	0.001	0.001	0.001	R	1.000	0.00	0.00	1
22	STATE OF CT STATE OF CT	180 180	1	1		Sinclair	5' Dipole SC479-HF1LDF	172.5	3.5	3,5	34	R	1.000	1.75	0.02	1
978.	STATE OF CT	180	1	1									0.001	0.00	0.00	1
23	STATE OF CT STATE OF CT	177 177	1	1		TX RX Systems	101-838-09-0-03	120	3.6	3.6	45	R	1.000 0.001	0.00	0.00	1
24	STATE OF CT	175	2	2		Sinclair	SC479-HF1LDF	172.5	3.5	3.5	34	R	1.000			1
25	STATE OF CT SPRINT NEXTEL	175 169	1 12	3		Dedbel	DB844H90E-A	48	6	8.5	10	F	0.001 0.861	0.00	0.00	0.8
1800	SPRINT NEXTEL	169	3 4	3			Flat Sector Frames						0.750	17.90	0.40	0.75
26	CLEARWIRE CORPORATION CLEARWIRE CORPORATION	158 158	3	3		DragonWave	Horizon Compact Flat Sector Frames	4.7	9.3	9.3	10.6	F	0.929 0.750	17.90	0.40	0.8 0.75
27	CLEARWIRE CORPORATION CLEARWIRE CORPORATION	156 156	3	3		NextNet	BTS-2500	19.3	11.3	5.1	35	F	0.763 0.001	0.00	0.00	0.8
28	CLEARWIRE CORPORATION	156	3	3		Argus	LLPX310R	42	11.8	4.5	28.6	F	0.726			0.8
29	CLEARWIRE CORPORATION SPRINT NEXTEL	156 155	1 3	1 3	Proposed	Alcatel-Lucent	- RRH2x50-08	15.7	13	9.8	52.9	F	0.001	0.00	0.00	0.8
	SPRINT NEXTEL	155	3	3	11000000		Flat Sector Frames						0.750	17.90	0.40	0.75
30	SPRINT NEXTEL SPRINT NEXTEL	155 155	3 1	3 1		Alcatel-Lucent	1900 MHz 4X45 RRH	25.1	11.1	10.7	60	F	0.945 0.001	0.00	0.00	0.8
31	SPRINT NEXTEL	155	3	3		Alcatel-Lucent	800 MHz RRH w/ Notch Filter	19.7	13	15.2	61.8	F	0.867			0.8
32	SPRINT NEXTEL SPRINT NEXTEL	155 155	3	3	Proposed	Nokia	2.5G MAA - AAHC(64T64R)	25.6	19.7	9.6	103.6	F	0.001 0.784	0.00	0.00	0.8
33	SPRINT NEXTEL SIGFOX S.A.	155 135	1 1	1	Description	Para	- CXL 900-3LW	27.6	0.6	0.6	1.5	R	0.001 1.000	0.00	0.00	1 0.001
33	SIGFOX S.A.	135	1	1	Proposed	Procom	Side Arm	27.6	0.6	0.6	1.5	K	1.000	6.30	0.15	1
34	SPRINT NEXTEL SPRINT NEXTEL	155 155	3	3	Proposed	Commscope	NNVV-658-R4	72	19.6	7.8	77.4	F	0.734	0.00	0.00	0.8
35	CLEARWIRE CORPORATION	150	1	1		Generic	18" x 12" Junction Box	18	12	8	15	F	1.000			1
36	CLEARWIRE CORPORATION AT&T MOBILITY	150 144	1 9	1 3		Powerwave Allgon	7020.00 Dual Band RET	4.9	8.3	2.4	2.2	F	0.001 0.669	0.00	0.00	0.8
5000	AT&T MOBILITY	144	3	3			Round Sector Frames						0.750	14.40	0.30	0.75
37	AT&T MOBILITY AT&T MOBILITY	144 144	6	3 1		Powerwave Allgon Commscope	LGP21401 WCS-IMFQ-AMT	14.4	9.2	2.6	14.1	F	0.665	0.99	0.03	0.8
38	AT&T MOBILITY	144 144	3 1	3		Raycap	DC6-48-60-18-8F ("Squid")	24	11	11	31.8	R	0.938	0.00	0.00	0.8
39	AT&T MOBILITY AT&T MOBILITY	144	3	3		Ericsson	RRUS 11 (Band 12) (55 lb)	17.8	17	7.2	55	F	0.001 0.747			0.8
40	AT&T MOBILITY AT&T MOBILITY	144 144	1 3	1 3		Ericsson	- RRUS 32 (50.8 lbs)	26.7	12.1	6.7	50.8	F	0.001 0.823	0.00	0.00	1 0.8
450	AT&T MOBILITY	144	1	1									0.001	0.00	0.00	1
41	AT&T MOBILITY AT&T MOBILITY	144 144	3	3		Ericsson	RRUS 32 B2	27.2	12.1	7	53	F	0.837	0.00	0.00	0.8
42	AT&T MOBILITY	144	3	3		Ericsson	RRUS 32 B66	27.2	12.1	7	53	F	0.837			0.8
43	AT&T MOBILITY AT&T MOBILITY	144 144	1 3	3		Powerwave Aligon	7770.00	55	11	5	35	F	0.001 0.766	0.00	0.00	0.8
532	AT&T MOBILITY	144	1	1		0.00		-			,		0.001	0.00	0.00	1
44	AT&T MOBILITY AT&T MOBILITY	144 144	3 1	3 1		Quintel	QS66512-6	72	12	9.6	111	F	0.918 0.001	0.00	0.00	0.8
45	AT&T MOBILITY AT&T MOBILITY	144	3	3		ссі	HPA-65R-BUU-H6	72	14.8	9	51	F	0.834 0.001	0.00	0.00	0.8
46	US DEPT OF HOMELAND SECURITY	111	1	1		Andrew	DB616E-BC	231	3.5	3,5	51	R	1.000		0.00	1
47	US DEPT OF HOMELAND SECURITY LIGADO NETWORKS LLC	101 86	1	1		Kathrein Scala	- 750 10074	104.3	2	2	17.6	R	0.001 1.000	0.00	0.00	1
	LIGADO NETWORKS LLC	82	1	1			Side Arm						1.000	6.30	0.15	1
48	SPRINT NEXTEL SPRINT NEXTEL	56 56	1	1	Proposed	Generic	GPS Stand-Off	12	9	6	10	F	1.000	2.50	0.08	1 1
49	SIGFOX S.A.	135	1	1	Proposed	Generic	5" x 3" x 2" Cavity Filter	5.3	3.2	1.9	1.5	F	1.000			1
50	SIGFOX S.A. SIGFOX S.A.	135 135	1	1	Proposed	Generic	Low Noise Amplifier	5	4	2	2	F	0.001 1.000	0.00	0.00	1 1
550	SIGFOX S.A.	135	1	1			-		100	-			0.001	0.00	0.00	1

No.	Elevation	C _A A _c	C _A A _c (loe)	Force	Force (Ice)	Weight	Weight (Ice)	60 Azi	Force	F (Ice)	Height	Sum of Forces (No I
1	(ft) 200	(ft ²) 0.00	(ft²) 0.01	(lb) 0.000	(Ib) 0.054	(Ib) 0	(Ib) 0	Mult. 1.00	mean 0.00	mean 0.03	Flag	60 Azi. 180 Azi.
	200	80.00	108.00	2683.480	601.601	10800	14040	1.00	1475.91	330.88	0.0000010	2683.480129
2	200	0.00	0.01 108.00	0.000 2683.480	0.054 601.601	0 960	0 1248	1.00	0.00 1475.91	0.03 330.88	0.0000020 1.5050000	5366.960258
3	187.5	0.00	0.01	0.000	0.053	0	0	1.00	0.00	0.03	1.5050010	0.000000000
4	187.5 175	45.00 0.00	60.75 0.01	1481.879 0.000	332.218 0.052	6000	7800 0	1.00	815.03 0.00	182.72 0.03	1.5053333 1.5053343	1481.878864
	175	70.00	94.50	2260.150	506.696	9600	12480	1.00	1243.08	278.68	1.5057143	2260.150239
5	112.5 112.5	70.00	0.01 94.50	0.000 1992.108	0.046 446.605	0 9600	0 12480	1.00	0.00	0.03 245.63	1.5057153 1.5088889	1992.10797
6	100	0.00	0.01	0.000	0.045	0	0	1.00	0.00	0.02	1.5088899	
7	100 75	0.00	20.25	412.754 0.000	92.534 0.041	600	780	1.00	0.00	50.89 0.02	1.5100000 1.5100010	412.7538053
100	75	70.00	94.50	1774.194	397.751	9600	12480	1.00	975.81	218.76	1.5133333	1774.193912
8	50 50	0.00 15.00	0.01 20.25	0.000 338.597	0.037 75.909	600	0 780	1.00	0.00 186.23	0.02 41.75	1.5133343	338.5965398
9	200	6.00	8.03	201.261	44.749	66	270	1.00	110.69	24.61	1.5200010	
10	200 212	0.00	0.00	0.000	0.000	1 0	0	1.00	0.00	0.00	1.5050000 1.5050010	201.2610432
10	212	7.29	9.84	248.637	55.741	24	31	1.00	136.75	30.66	1.5047170	248.637238
11	210 210	0.00	0.01 9.84	0.000 247.965	0.055 55.590	0 24	0	1.00	0.00 136.38	0.03	1.5047180 1.5047180	247.9647865
12	210	0.00	0.01	0.000	0.055	0	0	1.00	0.00	0.03	1.5047180	247.9647865
0.0000	210	0.98	1.32	33.334	7.473	13	17	1.00	18.33	4.11	1.5047619	281.2988733
13	205 205	0.00	12.63	353.997 0.000	70.824 0.000	95 1	419 2	1.00	194.70 0.00	38.95 0.00	1.5047629 1.5048780	353.9966461
14	190	5.03	6.51	166.310	35.715	41	203	1.00	91.47	19.64	1.5048790	
15	190 189	12.60 5.03	17.01 6.51	416.499 166.060	93.374 35.661	360 41	468 203	1.00	229.07 91.33	51.36 19.61	1.5052632 1.5052642	582.8097599
	189	17.90	24.17	590.802	132.450	480	624	1.00	324.94	72.85	1.5052910	756.861898
16	187 187	5.03 0.00	6.51 0.00	165.556 0.000	35.553 0.000	41 1	203	1.00	91.06 0.00	19.55 0.00	1.5052920 1.5053476	165.555968
17	185	1.20	1.64	39.366	8.951	12	40	1.00	21.65	4.92	1.5053486	103.535908
10	185	0.00	0.00	0.000	0.000	1	2	1.00	0.00	0.00	1.5054054	39.36554006
18	185 185	21.22 0.00	23.13	695.993 0.000	126.025 0.000	64 1	253 2	1.00	382.80 0.00	69.31 0.00	1.5054064 1.5054054	735.3582204
19	182	2.40	3.29	78.364	17.818	24	54	1.00	43.10	9.80	1.5054064	
20	182 180	0.00 2.40	0.00 3.29	0.000 78.117	0.000 17.762	1 24	2 54	1.00	0.00 42.96	9.77	1.5054945 1.5054955	78.36413787
	180	0.00	0.00	0.000	0.000	1	2	1.00	0.00	0.00	1.5055556	78.11712488
21	180 180	0.00 1.75	0.01 2.36	0.000 56.960	0.030 12.770	0 18	0 23	1.00	0.00 31.33	7.02	1.5055566 1.5055556	135.0775049
22	180	5.03	6.51	163.761	35.168	41	202	1.00	90.07	19.34	1.5055566	133.0773049
22	180	0.00	0.00	0.000	0.000	1	2 174	1.00	0.00	0.00	1.5055556	298.8386294
23	177 177	3.60 0.00	4.64 0.00	116.614 0.000	24.951 0.000	54 1	2	1.00	64.14 0.00	0.00	1.5055566 1.5056497	116.6143384
24	175	10.06	13.01	324.897	69.771	82	251	1.00	178.69	38.37	1.5056507	
25	175 169	0.00 32.80	0.00 37.42	0.000 1048.538	0.000 198.664	1 144	2 253	1.00	0.00 576.70	0.00	1.5057143 1.5057153	324.8966291
10000	169	40.28	54.37	965.622	216.480	1440	1872	1.00	531.09	119.06	1.5059172	2014.159901
26	158 158	1.26 40.28	1.70 54.37	39.598 947.231	8.832 212.357	51 1440	71 1872	1.00	21.78 520.98	4.86 116.80	1.5059182	986.8285523
27	156	3.33	4.45	104.022	23.073	126	189	1.00	57.21	12.69	1.5063301	900.0203323
20	156	0.00	0.00	0.000	0.000	1	2	1.00	0.00	0.00	1.5064103	104.0219096
28	156 156	7.48	9.32 0.00	233.647 0.000	48.375 0.000	103	206	1.00	128.51 0.00	26.61 0.00	1.5064113 1.5064103	337.6691067
29	155	3.84	5.13	119.636	26.551	190	268	1.00	65.80	14.60	1.5064113	
30	155 155	40.28 5.92	54.37 6.96	942.057 184.612	211.197 36.050	1440 216	1872 319	1.00	518.13 101.54	116.16 19.83	1.5064516 1.5064526	1061.693097
1000	155	0.00	0.00	0.000	0.000	1	2	1.00	0.00	0.00	1.5064516	1246.304829
31	155 155	0.00	6.78 0.00	188.824 0.000	35.116 0.000	222	326 2	1.00	0.00	19.31 0.00	1.5064526 1.5064516	1435.12843
32	155	7.91	10.08	246.705	52.185	373	532	1.00	135.69	28.70	1.5064526	
33	155 135	0.00	0.00	0.000	0.000	1 2	2 10	1.00	0.00	0.00	1.5064516 1.5064526	1681.833918
	135	6.30	8.51	188.877	42,344	180	234	1.00	103.88	23.29	1.5074074	188.8809283
34	155 155	21.63	25.77	674.440 0.000	133.442	279 1	563 2	1.00	370.94 0.00	73.39 0.00	1.5074084	674.4397243
35	150	1.80	2.40	55.614	12.321	18	61	1.00	30.59	6.78	1.5064526	074.4337243
36	150 144	0.00 1.63	0.00 2.57	0.000 49.830	0.000	1 24	2 35	1.00	0.00 27.41	0.00	1.5066667 1.5066677	55.61402928
30	144	32.40	43.74	49.830 742.083	13.025 166.365	1080	35 1404	1.00	408.15	7.16 91.50	1.5069444	791.9125789
37	144	3.52	4.87	107.593	24.716	102	144	1.00	59.18	13.59	1.5069454	011 E096690
38	144 144	0.50 3.30	0.67 3.75	12.093 100.777	2.711 19.018	35 114	46 194	1.00	6.65 55.43	1.49 10.46	1.5069444 1.5069454	911.5986689
	144	0.00	0.00	0.000	0.000	1	2	1.00	0.00	0.00	1.5069444	1012.375413
39	144 144	4.52 0.00	5.90 0.00	138.070 0.000	29.915	198	287	1.00	75.94 0.00	0.00	1.5069454 1.5069444	1150.445649
40	144	5.32	6.97	162.396	35.339	183	276	1.00	89.32	19.44	1.5069454	
41	144 144	0.00 5.51	0.00 7.22	0.000 168.344	0.000 36.609	1 191	2 287	1.00	0.00 92.59	0.00 20.13	1.5069444 1.5069454	1312.841247
3000	144	0.00	0.00	0.000	0.000	1	2	1.00	0.00	0.00	1.5069444	1481.185215
42	144 144	5.51 0.00	7.22 0.00	168.344	36.609 0.000	191	287	1.00	92.59	20.13	1.5069454 1.5069444	1649.529183
43	144	10.12	12.01	309.173	60.895	126	254	1.00	170.05	33.49	1.5069454	
44	144 144	0.00	0.00	0.000	0.000	1	2 648	1.00	0.00 300.99	0.00	1.5069444	1958.702218
44	144 144	17.92 0.00	20.33 0.00	547.248 0.000	103.092 0.000	400	648 2	1.00	0.00	56.70 0.00	1.5069454 1.5069444	2505.950344
45	144	19.33	22.44	590.287	113.817	184	409	1.00	324.66	62.60	1.5069454	
46	144 111	6.74	0.00 8.70	0.000 191.006	0.000 40.959	1 61	2 267	1.00	0.00 105.05	0.00 22.53	1.5069444 1.5069454	3096.237251
	101	0.00	0.00	0.000	0.000	1	2	1.00	0.00	0.00	1.5099010	191.0064751
47	86 82	1.74 6.30	2.63 8.51	45.816 163.801	11.522 36.722	21 180	80 234	1.00	25.20 90.09	6.34	1.5099020 1.5121951	209.6168074
48	56	0.90	1.26	20.984	4.894	12	33	1.00	11.54	2.69	1.5121961	
49	56 135	2.50	3.38 0.26	58.290 4.237	13.068	90	117	1.00	32.06 2.33	7.19 0.70	1.5178571	79.27430907
	135	0.14	0.00	4.237 0.000	1.281 0.000	2 1	6	1.00	0.00	0.00	1.5178581 1.5074074	4.237265927
4.5										1000000		
50	135 135	0.17	0.29	4.997	1.452	2	7 2	1.00	2.75 0.00	0.80	1.5074084	9.23403641

Foundation

Design Loads (Factored)

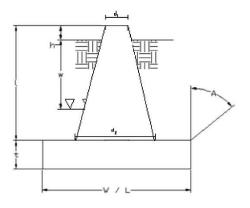
Compression/Leg:	290.49
Uplift/Leg:	185.15
Shear/Leg	41.65

Face W	3.50	ft							
Face Width	7.00	ft							
	7.00	ft							
Height of Pede	0.50	ft							
	Width of Pad (W):								
	Length o	of Pad (L):	16.00	ft					
	Thickness	of Pad (t):	2.50	ft					
1	epth (w):	99.00	ft						
Ur	Concrete:	150.0	pcf						
Unit Weight of So	120.0	pcf							
Unit Weight of So	57.6	pcf							
Fric	30	0							
Ultimate Compre	Pressure:	16000	psf						
	Ultimate Skir	n Friction:	500	psf					
Volume Pier (Total):	200.08	ft ³							
Volume Pad (Total):	640.00	ft ³							
Volume Soil (Total):	2346.93	ft ³							
Volume Pier (Buoyant):	Volume Pier (Buoyant): 0.00 ft ³								
Volume Pad (Buoyant):									
Volume Soil (Buoyant):									
Weight Pier:									
Weight Pad:									
Weight Soil:	281.63	k							
Uplift Skin Friction:	60.00	k							

Uplift Check

φs Uplift Resistance (k)	Ratio	Result
350.73	0.53	OK

Axial Check


	φs Axial Resistance (k)	Ratio	Result
Γ	3072.00	0.09	ОК

Anchor Bolt Check

Bolt Diameter (in)	2.25
# of Bolts	4
Steel Grade	A36
Steel Fy	36
Steel Fu	58
Detail Type	С

Usage Ratio	Result
0.43	ОК

Site No.:	88017	
Engineer:	I. Dodson	
Date:	03/22/19	
Carrier:	AT&T Mobility	

EXHIBIT 3:

General Power Density Table report (RF Emissions Analysis Report)

RF EMISSIONS COMPLIANCE REPORT

T-Squared Site Services on behalf of Sigfox S.A.

ATC Site Name: Shelton-Trumbull
Sigfox S.A. Site Name: CT9081_ATC_88017
Sigfox S.A. Site #: CT9081
14 OXFORD DRIVE/ BOOTH HILL ROAD
SHELTON, CT
2/11/2019

Report Status:

Sigfox S.A. Is Compliant

H2DC PLLC CT CoA#: 0001714

Prepared By:

Sitesafe, LLC

Engineering Statement in Re: Electromagnetic Energy Analysis T-Squared Site Services SHELTON, CT

My signature on the cover of this document indicates:

That I, Michael A McGuire, am currently and actively licensed to provide (in this state/jurisdiction as indicated within the professional electrical engineering seal on the cover of this document) professional electrical engineering services, as an employee of Hurricane Hill Development Company, PLLC, a duly authorized/registered engineering firm (in this state, as applicable) on behalf of SiteSafe, LLC; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by T-Squared Site Services (See attached Site Summary and Carrier documents), and that Sigfox S.A.'s installations involve communications equipment, antennas and associated technical equipment at a location referred to as the "Shelton-Trumbull" ("the site"); and

That Sigfox S.A. proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by Sigfox S.A. and shown on the worksheet, and that worst-case 100% duty cycle have been assumed; and

That in addition to the emitters specified in the worksheet, there are additional collocated point-to-point microwave facilities on this structure and, the antennas used are highly directional oriented at angles at or just below the horizontal and, that the energy present at ground level is typically so low as to be considered insignificant and have not been included in this analysis; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radio-frequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio-frequency radiation must utilize the standards set by the FCC, which is the Federal Agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," defined as situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and (2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of Sigfox S.A.'s operating frequency as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed Sigfox S.A. operation is no more than 0.001% of the maximum in any accessible area on the ground and

That it is understood per FCC Guidelines and OET65 Appendix A, that regardless of the existent radio-frequency environment, only those licenses whose contributions exceed five percent of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any non-compliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 2.52% of the maximum in any accessible area up to two meters above the ground per OET-65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET-65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier and frequency range indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding Radio Frequency Safety.

In summary, it is stated here that the proposed operation at the site would not result in exposure of the Public to excessive levels of radio-frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307 and that Sigfox S.A.'s proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals, and approved contractor personnel trained in radio-frequency safety; and that the instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower, or in the immediate proximity of the antennas.

T-Squared Site Services Shelton-Trumbull Site Summary

Carrier	Area Maximum Percentage MPE
AT&T Mobility, LLC	0.34 %
AT&T Mobility, LLC	0.33 %
AT&T Mobility, LLC	0.254 %
AT&T Mobility, LLC	0.356 %
AT&T Mobility, LLC	0.424 %
Ligado Networks	0.019 %
Sigfox S.A. (Proposed)	0.001 %
Sprint	0.164 %
Sprint	0.164 %
Sprint	0.061 %
Sprint	0.062 %
Sprint	0.095 %
Sprint (Decommissioned)	0 %
State of Connecticut	0.07 %
State of Connecticut	0.022 %
State of Connecticut	0.007 %
State of Connecticut	0.089 %
US Department of Homeland S	0.062 %
Composite Site MPE:	2.52 %

 $\begin{tabular}{lllll} \textbf{Frequency:} & 2300 & MHz \\ \textbf{Maximum Permissible Exposure (MPE):} & 1000 & $\mu \text{W/cm}^2$ \\ \textbf{Maximum power density at ground level:} & 3.40255 & $\mu \text{W/cm}^2$ \\ \textbf{Highest percentage of Maximum Permissible Exposure:} & 0.34025 & $\%$ \\ \end{tabular}$

				On A	Axis	Are	ea	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
CCI Antennas	HPA-65R-BUU-H6	145	0	2831	2.713212	0.271321	3.368889	0.336889
CCI Antennas	HPA-65R-BUU-H6	145	120	2831	2.737939	0.273794	3.368888	0.336889
CCI Antennas	HPA-65R-BUU-H6	145	240	2831	2.713212	0.271321	3.368887	0.336889

				is the second	On A	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Quintel	QS66512-6	145	0	4788	1.874687	0.187469	3.215151	0.321515
Quintel	QS66512-6	145	120	4788	1.874687	0.187469	3.215151	0.321515
Quintel	QS66512-6	145	240	4788	1.900707	0.190071	3.215151	0.321515

					On A	Axis	Are	ea
Antenna Make Mode	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Quintel	QS66512-6	145	0	4170	1.361293	0.136129	2.38829	0.238829
Quintel	QS66512-6	145	120	4170	1.36164	0.136164	2.38829	0.238829
Quintel	QS66512-6	145	240	4170	1.361293	0.136129	2.38829	0.238829

	Height Orientation ERP		On A	Axis	Area			
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Quintel	QS66512-6	145	0	2239	1.212824	0.246844	1.732303	0.352572
Quintel	QS66512-6	145	120	2239	1.212825	0.246844	1.732303	0.352572
Quintel	QS66512-6	145	240	2239	1.211916	0.246659	1.732303	0.352572

					On A	xis	Are	a
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Powerwave	7770_00	145	0	1094	0.496121	0.087551	0.774999	0.136765
CCI Antennas	HPA-65R-BUU-H6	145	0	2350	1.093691	0.193004	1.694139	0.298966
Powerwave	7770_00	145	120	1094	0.496754	0.087662	0.774999	0.136765
CCI Antennas	HPA-65R-BUU-H6	145	120	2350	1.09723	0.193629	1.694139	0.298966
Powerwave	7770_00	145	240	1094	0.496121	0.087551	0.774999	0.136765
CCI Antennas	HPA-65R-BUU-H6	145	240	2350	1.098264	0.193811	1.694139	0.298966

Ligado Networks Shelton-Trumbull Carrier Summary

					On A	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Kathrein-Scala	750_10074	86	0	100	0.190252	0.019025	0.190252	0.019025

Sigfox S.A. (Proposed) Shelton-Trumbull Carrier Summary

 Frequency:
 905.2
 MHz

 Maximum Permissible Exposure (MPE):
 603.47
 μW/cm²2

 Maximum power density at ground level:
 0.00306
 μW/cm²2

 Highest percentage of Maximum Permissible Exposure:
 0.00051
 %

					On A	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Procom	CXL 900-3LW	135	0	1.22	0.003064	0.000508	0.003064	0.000508

					On A	On Axis		ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
RFS	APXVSPP18-C-A20	150	0	3804	0.818674	0.081867	1.518306	0.151831
RFS	APXVSPP18-C-A20	150	120	3804	0.818674	0.081867	1.518306	0.151831
RFS	APXVSPP18-C-A20	150	240	3804	0.818674	0.081867	1.518306	0.151831

					On A	On Axis		ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
RFS	APXVSPP18-C-A20	150	0	3804	0.818674	0.081867	1.518306	0.151831
RFS	APXVSPP18-C-A20	150	120	3804	0.818674	0.081867	1.518306	0.151831
RFS	APXVSPP18-C-A20	150	240	3804	0.818674	0.081867	1.518306	0.151831

			On <i>I</i>	Axis	Are	ea		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
RFS	APXVSPP18-C-A20	150	0	1084	0.343791	0.059343	0.353184	0.060964
RFS	APXVSPP18-C-A20	150	120	1084	0.344919	0.059537	0.353184	0.060964
RFS	APXVSPP18-C-A20	150	240	1084	0.343791	0.059343	0.353184	0.060964

					On <i>I</i>	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
RFS	APXVSPP18-C-A20	150	0	1084	0.343791	0.059824	0.353184	0.061459
RFS	APXVSPP18-C-A20	150	120	1084	0.344919	0.060021	0.353184	0.061459
RFS	APXVSPP18-C-A20	150	240	1084	0.343791	0.059824	0.353184	0.061459

				On Axis		Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
ARGUS	LLPX310R	156	0	1542	0.48895	0.048895	0.894322	0.089432
ARGUS	LLPX310R	156	120	1542	0.48895	0.048895	0.894322	0.089432
ARGUS	LLPX310R	156	240	1542	0.492703	0.04927	0.894322	0.089432

Sprint (Decommissioned) Shelton-Trumbull Carrier Summary

					On A	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
ANDREW	DB844H90E-XY	169	0	0	0	0	0	0
ANDREW	DB844H90E-XY	169	120	0	0	0	0	0
ANDREW	DB844H90E-XY	169	240	0	0	0	0	0

					On Axis		Are	a
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Generic	Omni	186	0	100	0.21135	0.07045	0.21135	0.07045

					On /	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
SINCLAIR	SC442-HF1LDF	190	0	100	0.084559	0.016472	0.084559	0.016472
SINCLAIR	SC479-HF1LDF	189	0	100	0.028996	0.005649	0.028996	0.005649

 Frequency:
 850
 MHz

 Maximum Permissible Exposure (MPE):
 566.67
 μW/cm²2

 Maximum power density at ground level:
 0.03769
 μW/cm²2

 Highest percentage of Maximum Permissible Exposure:
 0.00665
 %

				e.	On Axis		Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
ANDREW	DB809	206	0	100	0.037689	0.006651	0.037689	0.006651

					On A	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
Generic	Omni	211	0	100	0.097649	0.048824	0.097649	0.048824
Generic	Omni	191	0	100	0.098139	0.04907	0.098139	0.04907

US Department of Homeland S Shelton-Trumbull Carrier Summary

				w -	On Axis		Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE
ANDREW	DB616E-BC	111	0	100	0.124815	0.062407	0.124815	0.062407

EXHIBIT 4:

Letter of Authorization

LETTER OF AUTHORIZATION

SITE NO: See Site List Below

SITE NAME: See Site List Below

ADDRESS: See Site List Below

I, Margaret Robinson, Senior Counsel, US Tower Division on behalf of American Tower*, owner of the tower facility located at the address identified below (the "Tower Facilities"), do hereby authorize SIGFOX NIP LLC dba SIGFOX S.A., its successors and assigns, to act as American Tower's non-exclusive agent for the purpose of filing and securing any zoning, land-use, building permit and/or electrical permit application(s) and approvals of the applicable jurisdiction for and to conduct the construction of the installation of antennas and related telecommunications equipment on the Tower Facility located at the above address. This installation shall not affect adjoining lands and will occur only within the area leased by American Tower.

American Tower understands that the application may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by American Tower of conditions related to American Tower's installation. Any such conditions of approval or modifications will not be effective unless approved in writing by American Tower.

The above authorization does not permit SIGFOX NIP LLC dba SIGFOX S.A to modify or alter any existing permit(s) and/or zoning or land-use conditions or impose any additional conditions unrelated to American Tower's installation of telecommunications equipment without the prior written approval of American Tower.

Sites Authorized (continued on the next page):

CT9000	ATC 302469
CT9001	ATC 88018
CT9081	ATC 88017
CT9122	ATC 88008
CT9123	ATC 88011
CT9184	ATC 88010

Asset Number	Site Name	Site Address	Site City	Site State	Site Zip
302469	Bridgeport CT 2	1069 Connecticut Avenue	Bridgeport	Connecticut	06607-1226
88018	STAMFORD (KATOONA)	168 Catoona Lane	Stamford	Connecticut	06902-4573
88017	SHELTON- TRUMBULL	14 OXFORD DRIVE/BOOTH HILL RD	SHELTON	Connecticut	06484-3455
88008	BETHANY CT	93 Old Amity Road	Bethany	Connecticut	06524-3400
88011	EAST KILLINGLY NORTH	1375 North Road	Killingly	Connecticut	06241-1404
88010	DURHAM CT	373 CHAMBERLAIN HILL RD	Higganum	Connecticut	06441-4062

Signature:

Margaret Robinson, Senior Counsel

US Tower Division

NOTARY BLOCK

COMMONWEALTH OF MASSACHUSETTS County of Middlesex

This instrument was acknowledged before me by Margaret Robinson, Senior Counsel of American Tower (Tower Facility owner), personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument and acknowledged to me that he/she executed the same.

WITNESS my hand and official seal, this 18th day of June, 2019.

NOTA

MELISSA ANN METZLER
Notary Public
Commonwealth of Massachusetts
My Commission Expires March 14, 2025

Notary Public _

My Commission Expires: March 14, 2028

^{*} American Tower as used herein is defined as American Tower Corporations and any of its affiliates or subsidiaries.

EXHIBIT 5:

Proof of Mailing to Chief Elected Official

8/19/2019

FedEx Ship Manager - Print Your Label(s)

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
 2. Fold the printed page along the horizontal line.
 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

8/19/2019

FedEx Ship Manager - Print Your Label(s)

Fedex Shipment Receipt

Address Information

Ship to: Ship from:

Mark A. Lauretti, Mayor T-Squared Site Services, LLC

City of Shelton 54 Hill Street

2500 Highland Rd

Suite 201

SHELTON, CT Hermitage, PA

06484 16148 US US

(203) 924-1555 7243087855

Shipment Information:

Tracking no.: 776015556378 Ship date: 08/19/2019

Estimated shipping charges: 8.65 USD

Package Information

Pricing option: FedEx One Rate Service type: FedEx Express Saver Package type: FedEx Envelope

Number of packages: 1

Total weight:

Declared Value: 0.00 USD

Special Services:

Pickup/Drop-off: Drop off package at FedEx location

Billing Information:

Bill transportation to: My Account - 350-350

Your reference: P.O. no.: Invoice no.: Department no.:

Thank you for shipping online with FedEx ShipManager at fedex.com.

Please Note

Fedix will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value pay an additional chirage, document your actual loss and file a timely claim. Limitations found in the current Fedix Service Guide apply. Your right to recover from Fedix for any loss, including intrinsic value of the package, is isos of sales, noncome interest, profit, attorney's less, costs, and other forms of damage whether direct, incidental, consequential, or special is simited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for stems of entracetionary value is \$100, e.g., jeweity, precious metals, negotiable instruments and other items istated in our Service Guide. Written claims must be filed within strict time limits, Consult the applicable Fedix Service Guide for details.

The estimated shapping charge may be different than the actual charges for your alignment. Differences may occur based on actual weight, dimensions, and other factors. Consult the applicable Fedix Service Guide for details.

EXHIBIT 6:

Proof of Mailing to Tower Owner/Property Owner

7/2/2019

FedEx Ship Manager - Print Your Label(s)

After printing this label:

- Use the 'Print' button on this page to print your label to your laser or inkjet printer.
 Fold the printed page along the horizontal line.
- Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including infinise value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g., jewelry, preclous metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

7/2/2019

FedEx Ship Manager - Print Your Label(s)

Fed Shipment Receipt

Address Information

Ship to: Ship from:

Mr. Jason Hastie T-Squared Site Services, LLC

American Tower Corp.

10 Presidential Way 2500 Highland Rd

Suite 201

WOBURN, MA Hermitage, PA

01801 16148 US US

781-926-7485 7243087855

Shipment Information:

Tracking no.: 775621996459 Ship date: 07/02/2019

Estimated shipping charges: 19.70 USD

Package Information

Pricing option: FedEx One Rate Service type: FedEx Express Saver Package type: FedEx Large Box

Number of packages: 1

Total weight:

Declared Value: 0.00 USD

Special Services:

Pickup/Drop-off: Drop off package at FedEx location

Billing Information:

Bill transportation to: My Account - 350-350

Your reference: P.O. no.: Invoice no.: Department no.:

Thank you for shipping online with FedEx ShipManager at fedex.com.

Please Note

FIGEX will not be responsible for any claim is excess of \$100 per podrage, whether the result of lose, domage, delay, non-delivery, mixed sixery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Umitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other toms of damage whether dends, incidental, consequential, as special is limited to the greater of still or the salestored declared value. Recovery cannot exceed exclude documented less. Meaning mix the salestored responsible from a special is limited or the greater of still or the salestored constant value is \$1000, que, jewelly, produces metals, registable instruments and other items listed in our Service Guide. Written claims must be filed within strict time limits; Coreall the applicable FedEx Service Quide for data is.

The estimated deliberation are may be defined without than the actual charges for your unipment. Distinctions are supported and other factors. Consult the applicable FedEx Service Guide for data's.

EXHIBIT 7:

Additional Information

Craig A. Russo, P.E.

From: Max Houston <max.houston.external@sigfox.com>

Sent: Tuesday, August 13, 2019 8:57 AM

To: Craig A. Russo, P.E.

Cc: mark.t@t-sqrd.com; 'Kevin Exley'; Natalie Kenady

Subject: RE: CT9081

Hi Craig,

SIGFOX does not have a backup power option for any of the sites - no battery back up.

Max Houston Construction Manager SIGFOX, Inc. 850-543-8341

max.houston.external@sigfox.com

From: Craig A. Russo, P.E. <craig.r@t-sqrd.com> Sent: Tuesday, August 13, 2019 7:52 AM

To: Max Houston <max.houston.external@sigfox.com>

Cc: mark.t@t-sqrd.com; 'Kevin Exley' <kevin.e@t-sqrd.com>

Subject: RE: CT9081

Good Morning Max,

One more question about this site. The Siting Council is asking if SIGFOX's equipment cabinet will include a battery backup and if not, what are the back-up options for the facility?

Thanks, Max!

Craig A. Russo, P.E. | Engineer T-Squared Site Services 724.308.7855 (o) | 724.333.0517 (m)

From: Max Houston < max.houston.external@sigfox.com>

Sent: Wednesday, August 7, 2019 10:40 AM To: Craig A. Russo, P.E. < craig.r@t-sqrd.com

Cc: mark.t@t-sqrd.com; 'Kevin Exley' <kevin.e@t-sqrd.com>

Subject: Re: CT9081

Craig,

Receive only!

Max Houston
Construction Manager
SIGFOX, Inc.
max.houston.external@sigfox.com
850-543-8341

----- Original message ------

From: "Craig A. Russo, P.E." < craig.r@t-sqrd.com>

Date: 8/7/19 9:28 AM (GMT-06:00)

To: Max Houston < max.houston.external@sigfox.com > Cc: mark.t@t-sqrd.com, 'Kevin Exley' < kevin.e@t-sqrd.com >

Subject: CT9081

Good Moring Max,

We received review comments back from the Connecticut State Siting Council regarding the above referenced site. One comment states.

 It is unclear if the proposed satellite dish to be mounted on the H-Frame at grade is a receive only antenna or both transmit and receive. If the antenna transmits signal, the RF Emissions Compliance Report would require updating.

Can you provide any clarification on this? Is the dish set to receive only or set to receive and transmit?

Thanks!

Craig A. Russo, P.E. | Engineer T-Squared Site Services 2500 Highland Road, Suite 201 Hermitage, PA 16148 724.308.7855 (o) | 724.333.0517 (m)

This email may contain confidential or privileged material. Use or disclosure of it by anyone other than the recipient is unauthorized. If you are not an intended recipient, please delete this email.

T-SQUARED SITE SERVICES