

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Internet: ct.gov/csc

September 6, 2007

Steven L. Levine Real Estate Consultant New Cingular Wireless PCS, LLC 500 Enterprise Drive Rocky Hill, CT 06067-3900

RE: EM-CING-003-077-077-115-126-070726 – New Cingular Wireless PCS, LLC notice of intent to modify existing telecommunications facilities located at 36 Janowski Road, Ashford; 239 Middle Turnpike East, Manchester; 575 Hillstown Road, Manchester; 151 Waterbury Road, Prospect; and 14 Booth Hill Road, a/k/a Oxford Drive, Shelton, Connecticut.

Dear Mr. Levine:

At a public meeting held on August 29, 2007, the Connecticut Siting Council (Council) acknowledged your notice to modify these existing telecommunications facilities, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the condition that the Shelton tower be reinforced per page 2 of the structural analysis report dated June 8, 2007 and sealed by Jason Seaverson, P.E. prior to the antenna swap and that the a signed letter from a Professional Engineer be submitted to the Council to certify that the modifications have been properly completed.

The proposed modifications are to be implemented as specified here and in your notice dated July 25, 2007, including the placement of all necessary equipment and shelters within the tower compounds. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to existing facility sites that would not increase tower heights, extend the boundaries of the tower sites, increase noise levels at the tower site boundaries by six decibels, and increase the total radio frequencies electromagnetic radiation power densities measured at the tower site boundaries to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. These facilities have also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on these towers.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to any of these facilities will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65.

Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Very truly yours,

Daniel F. Caruso

Chairman

DFC/MP/cm

c: The Honorable Robert J. Chatfield, Mayor, Town of Prospect
William J. Donovan, Zoning Enforcement Officer, Town of Prospect
The Honorable Mark A. Lauretti, Mayor, City of Shelton
Richard Schultz, Planning Administrator, City of Shelton
The Honorable Ralph H. Fletcher, First Selectman, Town of Ashford
Richard Dziadus, Zoning Enforcement Officer, Town of Ashford
The Honorable Josh M. Howroyd, Mayor, Town of Manchester
Thomas R. O'Marra, Zoning Enforcement Officer, Town of Manchester
Crown Castle International
Estate of Anthony M. Botticello
Capstar Radio Operating Company
American Tower

Perrone, Michael

From:

Levine, Steven [SL3764@att.com]

Sent:

Friday, March 21, 2008 8:21 AM

To:

Perrone, Michael

Subject:

FW: 5542 Engineer Letter for tower Mods -- Shelton - Booth Hill

Attachments: 5542 Engineer Letter.pdf

Mike,

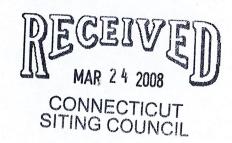
Here's the structural mod certification for Shelton - Booth Hill Road.

Thanks.

AT&T Mobility / New Cingular Wireless PCS, LLC

Steve Levine

500 Enterprise Drive, 3rd Fl., Rocky Hill, CT 06067


Real Estate Consultant

Office 860-513-7636

Mobile 203-556-1655

Fax 860-513-7190

This e-mail, and any attachments, are intended only for use by the addressee(s) named herein and may contain legally privileged and/or confidential information. It is the property of Cingular Wireless. If you are not the intended recipient of this email, you are hereby notified that any dissemination, distribution or copying of this email, any attachments thereto, and any use of the information contained is strictly prohibited. If you have received this email in error, please notify me at (860-513-7636) and permanently delete the original and any copy thereof.

AMERICAN TOWER™

CORPORATION

March 18, 2008

Mr. Mark Appleby AT&T 500 Enterprise Drive Suite 3A Rocky Hill, CT 06467 (860) 513-7536

CONNECTICUT SITING COUNCIL

Re:

STTN-Shelton-Trumbull, CT - ATC Number: 88017

Engineering Number: 40480221 Post-Modification Tower Inspection

Mr. Appleby,

The above tower was subjected to a structural analysis on June 8, 2007 by American Tower Corporation (ATC). The tower structural information was taken from a mapping by Tower Engineering Professionals (TEP #070851, dated May 30, 2007). The results of the analysis showed the diagonals in sections 3&4 as well as horizontals in section 1 to be overstressed. It was recommended that these members be reinforced or replaced. ATC prepared a modification package (Project #40480232, dated July 13, 2007) which instructs these members to be modified with plate reinforcement. These modifications were installed on February 18, 2008. ATC Engineering approves the modification installation as complete and adequate per TIA/EIA-222-F standards.

If you have any questions or require additional information, please call (919) 466-5146.

Michael Deese Project Engineer Raphael Mohamed, P.E. Engineering Manager 3/18/08

Daniel F. Caruso

Chairman

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Internet: ct.gov/csc

August 1, 2007

The Honorable Mark A. Lauretti Mayor City of Shelton 54 Hill Street P. O. Box 364 Shelton, CT 06484

RE: EM-CING-003-077-077-115-126-070726 - New Cingular Wireless PCS, LLC notice of intent to modify existing telecommunications facilities located at 36 Janowski Road, Ashford; 239 Middle Turnpike East, Manchester; 575 Hillstown Road, Manchester; 151 Waterbury Road, Prospect; and 14 Booth Hill Hoad, a/k/a Oxford Drive, Shelton, Connecticut.

Dear Mayor Lauretti:

The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

The Council will consider this item at the next meeting scheduled for August 29, 2007 at 1:30 p.m. in Hearing Room Two, Ten Franklin Square, New Britain, Connecticut.

If you have any questions or comments regarding this proposal, please call me or inform the Council by August 28, 2007.

Thank you for your cooperation and consideration.

alla

Very truly yours,

Executive Director

SDP/cm

Enclosure: Notice of Intent

c: Richard Schultz, Planning Administrator, City of Shelton

New Cingular Wireless PCS, LLC 500 Enterprise Drive Rocky Hill, Connecticut 06067-3900

Phone: (860) 513-7636 Fax: (860) 513-7190

Steven L. Levine

Real Estate Consultant

July 25, 2007

Honorable Daniel F. Caruso, Chairman, and Members of the Connecticut Siting Council Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051

> Re: New Cingular Wireless PCS, LLC notice of intent to modify 5 existing telecommunications facilities located in Ashford, Manchester (2), Prospect, Shelton

Dear Chairman Caruso and Members of the Council:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") capability, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("Cingular") plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of each of the municipalities in which an affected cell site is locate.

UMTS technology offers services to mobile computer and phone users anywhere in the world. Based on the Global System for Mobile (GSM) communication standard, UMTS is the planned worldwide standard for mobile users. UMTS, fully implemented, gives computer and phone users high-speed access to the Internet as they travel. They have the same capabilities even when they roam, through both terrestrial wireless and satellite transmissions.

Attached are summary sheets detailing the planned changes, including power density calculations reflecting the change in the effect of Cingular's operations at each affected site. Also included is documentation of the structural sufficiency of each tower to accommodate the revised antenna configuration.

The changes to the facilities do not constitute modifications as defined in Connecticut General

Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facilities will not be significantly changed or altered. Rather, the planned changes to the facilities fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

- 1. In each instance, the height of the overall structure will be unaffected. Modifications to the existing sites include all or some of the following as necessary to bring each site into conformance with the plan:
 - Replacement of existing panel antennas with new antennas of similar size, shape, and weight, or, installation of additional antennas of similar size, shape, and weight.
 - Installation of small tower mount amplifiers ("TMA's") and/or diplexers to the platform on which the panel antennas are mounted to enhance signal reception.
 - Installation of additional or larger coaxial cables as required.
 - Installation of an additional equipment cabinet in existing shelters, or on existing or enlarged concrete pads.

None of these modifications will extend the height of the tower.

- 2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound other than some enlarged equipment pads as noted in the following attachments.
- 3. The proposed changes will not increase the noise level at the existing facility by six decibels or more.
- 4. Radio frequency power density may increase due to use of one GSM channel for UMTS transmissions. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, Cingular Wireless respectfully submits that the proposed changes at the referenced sites constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (860) 513-7636 with questions concerning this matter. Thank you for your consideration.

Sincerely,

Steven L. Levine

Real Estate Consultant

Attachments

CINGULAR WIRELESS Equipment Modification

36 Janowski Road, Ashford, CT

Site Number 1058

Exempt Modifications 12/8/99 and 8/1/02

Tower Owner/Manager:

Crown Castle

Equipment configuration:

Self-supporting lattice tower

Current and/or approved: Nine CSS DUO1417 antennas @ 140 ft c.l.

Nine runs 7/8 inch coax Six TMA's @ 140 ft

Planned Modifications:

Remove three existing antennas

Install three Powerwave 7770 antennas at 140 ft c.l. Install six additional TMA's and six diplexers @ 140 ft Install three additional runs 7/8 inch coax (total of 12)

Power Density:

Worst-case calculations for existing wireless operations at the site indicate a radio frequency electromagnetic radiation power density, measured at ground level beside the tower, of approximately 16.7 % of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density following proposed modifications would be approximately 20.2 % of the standard.

Existing

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *							8.24
Cingular TDMA *	140	880 - 894	16	100	0.0294	0.5867	5.00
Cingular GSM *	140	880 - 894	2	296	0.0109	0.5867	1.85
Cingular GSM *	140	1900 Band	2	427	0.0157	1.0000	1.57
e # . a l'otal # /						1.0000	16.7%

Per CSC Records

Proposed

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *							15.23
Cingular GSM	140	880 - 894	2	296	0.0109	0.5867	1.85
Cingular GSM	140	1900 Band	2	427	0.0157	1.0000	1.57
Cingular UMTS	140	880 - 894	1	500	0.0092	0.5867	1.56
							20.9/

^{*} Per CSC Records

Structural information:

The attached structural analysis demonstrates that the tower and foundation have sufficient structural capacity to accommodate the proposed modifications. (B&T Engineering, dated 7/11/07)

New Cingular Wireless PCS, LLC

500 Enterprise Drive

Rocky Hill, Connecticut 06067-3900

Phone: (860) 513-7636 Fax: (860) 513-7190

Steven L. Levine Real Estate Consultant

July 25, 2007

Honorable Ralph H. Fletcher 1st Selectman, Town of Ashford Town Office Bldg. 5 Town Hall Rd. Ashford, CT 06278-1530

Re: Telecommunications Facility - 36 Janowski Road, Ashford

Dear Mr. Fletcher:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") capability, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("Cingular") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Cingular's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Cingular's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (860) 513-7636 or Mr. Derek Phelps, Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Steven L. Levine

Real Estate Consultant

Enclosure

July 11, 2007

Mr. Ben Goodhart Crown Castle International 9105 Monroe Road, Suite 150 Charlotte, NC 28270 (704) 321-3845

B&T Engineering, Inc. 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630 ctuttle@btengineering.com

Subject:

Structural Analysis Report

Carrier Designation

Cingular Wireless Co-Locate

Carrier Site Number: Carrier Site Name:

1058 Ashford-Janoski Road

Crown Castle Designation

Crown Castle BU Number:

876345

Crown Castle Site Name: Crown Castle JDE Job Number: Sky H**il**l 88839

Engineering Firm Designation

B&T Engineering Project Number:

77921

Site Data

36 Janoski Road, Ashford, CT, Windham County Latitude 41°-57'-7.7", Longitude -72°-11'-43.9"

190 Foot - Self-Support Tower

Dear Mr. Goodhart,

B&T Engineering is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the aforementioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 242898, in accordance with Application 45870, Revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC1: Existing + Reserved + Proposed Equipment

Note: See Table 1 and Table 2 for the proposed and existing/reserved loading.

Sufficient Capacity

The analysis has been performed in accordance with the TIA/EIA-222-F standard based upon a wind speed of 85 mph fastest mile.

All equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at B&T Engineering appreciate the opportunity of providing our continuing professional services to you and Crown Castle International. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted,

Chad E. Tuttle, P.E. President

ENG-FRM-10034, Rev - (3/22/06)

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 – Proposed Antenna and Cable Information

Table 2 - Existing and Reserved Antenna and Cable Information

Table 3 – Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 – Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

RISA Tower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

The subject structure is a 192 foot self-support lattice tower manufactured in 1996 by Rohn.

2) ANALYSIS CRITERIA

Specific code

- TIA/EIA-222-F 85 mph fastest mile wind speed
- Connecticut State Building Code 105 mph 3-second gust

The controlling wind loads for this analysis were derived from TIA/EIA-222-F therefore the tower was analyzed for a fastest mile wind speed of 85 mph with no ice and 74 mph with $\frac{1}{2}$ " of radial ice. The tower was originally designed for a 90 mph fastest mile wind speed with no ice and 78 mph with $\frac{1}{2}$ " of radial ice per the ANSI/EIA-222-E standard.

Table 1 – Proposed Antenna and Cable Information

Če Lie	inter ine v. (ft)	Number of Antennas	Amterina: Manufacturër:	Antenna A Model	Mount	Number of Feed Lines	Fieed : Line Size (in)
		6	CSS	DU01417-8686			Beckselpen Spring Times 18
1	40	3	Powerwave	7770.00	Existing	3	7/8
MANAGE COM	CLUMING SOME NAME.	6	Powerwave	LGP13519 Diplexer		_	,,,

Table 2 - Existing and Reserved Antenna and Cable Information

Center Line Elev. (fi)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount	Number of Feed Lines	Feed Line Size (in)
190#	6 9 (MLA)	Decibel 	DB980H90 6' x 1' Pane l	(3) Sectored Frames	6 9 (MLA)	1 5/8
180	6 (r) 6 (r)	RFS	APL199016-42T2 APL869012-42T0	(3) Sectored Frames	12	1 5/8
170	9	Decibel	DB980H90	(3) Sectored Frames	9	1 5/8
160#	2 1 (MLA) 2	EMS Wireless EMS Wireless 	RR90-17 RR90-1702 TMA	(1) Standoff	4 (MLA)	1 5/8
150 [#]	4 2 (MLA) 2	EMS Wireless EMS Wireless 	RR90-17 RR90-1702 TMA	(2) Standoffs	8 (MLA)	1 5/8
140**	9 (remove) 6	CSS ADC	DU04-8670 800/1900 Full Band Masthead	(3) Sectored Frames	9	7/8

⁽r) - Indicates Reserved

^{*} Refer to Base Level Drawing in Appendix B for Feedline Placement.

^{**} Designated antennas to be removed.

^{*}Analysis performed with Existing+MLA loading for the 160 Ft and 150 Ft levels. For the 190 Ft level, only the MLA loading was used.

Table 3 - Design Antenna and Cable Information

	Number⊧of Antennas	Antenna Manufacturer	Antenna Model	Mount .	Number of Feed Lines	Reed: Line Size (in)
189	12	Decibel	DB980H90E-M	Mounting Frames	12	2 1/4
170	12	Swedcom	ALP9212	Mounting Frames	12	1 5/8
150	12	Swedcom	ALP9212	Mounting Frames	12	1 5/8
80	1		GPS Antenna	12' Gate Boom	1	7/8

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Tower Manufacturer Drawings	Rohn	CCI Doc ID# 1631630	CCIsites
Foundation	Rohn (Foundation & Soils Info)	CCI Doc ID# 1631622	CCIsites
Geotech Report	Information Not Provided		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Antenna Configuration	Configuration Change CheckList	Date: 06/27/07	CCI

3.1) Analysis Method

RISA Tower (version 5.0.2.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various dead, live, wind, and ice load cases. All loads were computed in accordance with the TIA/EIA-222-F or the local building code requirements. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1. Tower and structures were built in accordance with the manufacturer's specifications.
- 2. The tower and structures have been maintained in accordance with the manufacturer's specifications.
- 3. The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4. When applicable, transmission cables are considered to be structural components for calculating wind loads, as allowed by TIA/EIA-222-F.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and B&T Engineering, Inc. should be allowed to review any n ew information to determine its effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Tower Component Stresses vs. Capacity - LC1

ummary: ponent (T10) ponal (T4) Girt (T1)	Section Elevation (ft) 20 - 0 140 - 120	Summary % Capacity 97.3	Pass/Fail Pass
y (T10) onal (T4)	20 - 0	% Capacity	
onal (T4)			Pass
	140 - 120		
Cirt (T1)		94.9	Pass
GIL(11)	. 190 - 180	19.3	Pass
Checks		88.9	Pass
•			
	Floyation	0/ Capacity	Pass/Fail
·	Base	······································	Pass
	Base	76.1	Pass
	: nponent nor Rods Foundation nalysis)	: nponent Elevation nor Rods Base Foundation Base	: nponent Elevation % Capacity nor Rods Base 57.0

*Notes:

2) Capacities up to 105% are considered acceptable based on analysis procedures used.

4.1) Recommendations

N/A

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity listed.

ŧ			4		4	85.6	3 @ 3.33333	5,0	190.0 ft	
7.2	ROHN 2.5 STD		L2x2x3/16		L2x2x3/16		4 @ 5	6.0	70.00	
£	ROHN 3 EH		4			8,54		1.5	160.0 ft	
P.	ROHN 4 EH		L2 1/2x2 1/2x1/4	The state of the s	111111111111111111111111111111111111111	10.61	9 @ 6.66667	1.8	140.0 ft	
žī.	ROHN 5 EH		L3x3x1/4			12.74		2.6	120.0 ft	
T6	ROHN 6 EHS RC	A572-50	L3 1/2x3 1/2x1/4	A36		14.83		2.7	<u>100.0 ft</u>	
					N.A.	16.92			80.0 ft	
7.1	ROHN 6 EH		L4x4x1/4			18.88		8,3	60.0 ft	
T8			L4x4x5/16			21.13	10 @ 10	4.2	40.0 ft	
£7	ROHN 8 EHS							4,4	20,0 ft	
110			L4x4x3/8			23.05		5.0		
Section	Legs	Leg Grade	Diagonals	Diagonal Grade	Top Girls	Face Width (ft) 25.05	# Panels @ (fl)	Weight (K) 27.0	0.0 ft	

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
Lightning Rod	190	(2) TMA (Existing)	150	
(3) 6'x1' Panel)(MLA)	190	(2) TMA (Existing)	150	
(3) 6'x1' Panel (MLA)	190	6' Standoff (Existing)	150	
(3) 6'x1' Panel (MLA)	190	6' Standoff (Existing)	150	
(3) Sectored Frames (Existing)	190	(2) DUO1417-8686 (Proposed)	140	
(2) APL199016-42T2 (Reserved)	180	(2) DUO1417-8686 (Proposed)	140	
(2) APL199016-42T2 (Reserved)	180	(2) DUO1417-8686 (Proposed)	140	
(2) APL199016-42T2 (Reserved)	180	7770.00 (Proposed)	140	
(2) APL869012-42T0 (Reserved)	180	7770.00 (Proposed)	140	
(2) APL869012-42T0 (Reserved)	180	7770.00 (Proposed)	140	
(2) APL869012-42T0 (Reserved)	180	(2) DB 800/1900 FB Masthead	140	
(3) Sectored Frames (Existing)	180	(Existing)	1	
(3) DB980H90 (Existing)	170	(2) DB 800/1900 FB Masthead	140	
(3) DB980H90 (Existing)	170	(Existing)		
(3) DB980H90 (Existing)	170	(2) DB 800/1900 FB Masthead (Existing)	140	
(3) Sectored Frames (Existing)	170			
(3) RR90-17-02DP (Existing+MLA)	160	(2) LGP 13519 Diplexor (Proposed)	140	
(2) TMA (Existing)	160	(2) LGP 13519 Diplexor (Proposed)	140	
6' Standoff (Existing)	160	(2) LGP 13519 Diplexor	140	
(3) RR90-17-02DP (Existing+MLA)	150	(Proposed)	140	
		(3) Sectored Frames (Existing)	140	
(3) RR90-17-02DP (Existing+MLA)	150		······································	

SYMBOL LIST

	V 1 111 D C		
MARK	SIZE	MARK	SIZE
Α	L1 3/4x1 3/4x3/16		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50		65 ksi		36 ksi	58 ksi

TOWER DESIGN NOTES

- 1. Tower is located in Windham County, Connecticut.
- 2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- Tower is also designed for a 74 mph basic wind with 0.50 in ice.
- Deflections are based upon a 50 mph wind.
 TOWER RATING: 97.3%

MAX. CORNER REACTIONS AT BASE:

DOWN: 332 K UPLIFT: -252 K SHEAR: 38 K

> AXIAL 80 K

MOMENT SHEAR 6632 kip-ft 60 K

TORQUE 56 kip-ft 74 mph WIND - 0.500 in ICE

AXIAL 50 K MOMENT 6031 kip-ft SHEAR

TORQUE 54 kip-ft REACTIONS - 85 mph WIND

B&T Engineering, Inc. 1717 S. Boulder, Suite 300 Project: 190' ROHN Self-Supporter / App ID 45870, Rev

Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

^{b:} 77921 - Sky Hill, CT (BU# 876345)

Client: Crown Castle International Drawn by: CT App'd: Code: TIA/EIA-222-F Date: 07/12/07 Dwg No. E-1

CINGULAR WIRELESS Equipment Modification

239 Middle Turnpike East, Manchester, CT Site Number 5448 Former AT&T site Exempt Modification 3/25/03

Tower Owner/Manager:

Town of Manchester

Equipment configuration:

Monopole

Current and/or approved:

Three Allgon 7250 antennas @ 144 ft c.l. (approved for 6)

Six runs 1 5/8 inch coax

Three outdoor cabinets on existing pad

Planned Modifications:

Remove existing antennas

Install Three Powerwave 7770 antennas at 144 ft c.l.

Install six TMA's @ 144 ft Remove one outdoor cabinet

Install one new outdoor cabinet for UMTS

Power Density:

Worst-case calculations for existing wireless operations at the site indicate a radio frequency electromagnetic radiation power density, measured at ground level beside the tower, of approximately 28.8 % of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density following proposed modifications would be approximately 28 % of the standard.

Existing

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *							23.56
Cingular GSM *	144	1900 Band	12	250	0.0520	1.0000	5.20
* Per CSC P	and the second section of the second section and the second						2288VA

Per CSC Records

Proposed

Сотрану	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *				444777			23.56
Cingular GSM	144	1900 Band	4	427	0.0296	1.0000	2.96
Cingular UMTS	144	880 - 894	1	500	0.0087	0.5867	1.48
Total						9	# \$28.0%

^{*} Per CSC Records

Structural information:

The attached structural analysis demonstrates that the tower and foundation have adequate structural capacity to accommodate the proposed modifications. (Malouf Engineering Intl, dated 7/18/07)

New Cingular Wireless PCS, LLC

500 Enterprise Drive

Rocky Hill, Connecticut 06067-3900

Phone: (860) 513-7636 Fax: (860) 513-7190

Steven L. Levine Real Estate Consultant

July 25, 2007

Mr. Scott Shanley, General Manager Town of Manchester Town Hall 41 Center St. Manchester, CT 06045-0191

Re: Telecommunications Facility – 239 Middle Turnpike East, Manchester

Dear Mr. Shanley:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") capability, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("Cingular") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Cingular's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Cingular's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (860) 513-7636 or Mr. Derek Phelps, Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Steven L. Levine

Real Estate Consultant

Enclosure

July 18, 2007

RIGOROUS STRUCTURAL ANALYSIS

Structure:	184 ft Monopole	2	Unknown		
Client / Site ID:	Hudson D.G. / AT&T		Manchester Central Site #5448		
Owner / Site ID:	AT&T		54448 Ma	inchester Central #5448	
MEI Project ID:	CT00813M-07V0		ויים מדידים ויים	inchester Central #5448	
Location:	239 Middle Turnpik Manchester, CT 06	ce East	Hartford Co		
		7-3.8 N	LON	72-30-42.1 W	

EXECUTIVE SUMMARY:

Malouf Engineering Int'l (MEI), as requested, has performed a rigorous structural analysis of the above mentioned structure to assess the impact of the changed condition as noted in Table 1.

Based on the stress analysis performed, the existing structure is **in conformance** with the ANSI/TIA **222-F** Standard for the loading considered under the criteria listed and referenced in the report sections.

The installation of the proposed changed condition consisting of replacement of the existing antennas with the new AT&T (3) Aligon LGP 7770 Panels + (6) LGP 21401 TMA's + (2) Ret Units onto existing (3) 4ft Standoff Mounts at Elev. 144 ft + c.l. is structurally acceptable.

MEI appreciates the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or any other projects please contact us.

Respectfully submitted,

MALOUF ENGINEERING INT'L, INC.

Analysis performed by:

Luan Nguyen, PE Project Engineer Reviewed & Approved by:

E. Mark Malouf, PE Connecticut #17715

972-783-2578 ext. 106

TABLE OF CONTENT

1.	INTRODUCTION & SCOPE	4
2.	SOURCE OF DATA	4
	Background Information:	
3,	ANALYSIS CRITERIA	5
	Appurtenances Configuration	5
4.	ANALYSIS PROCEDURE	6
	Analysis Program	6
	Assumptions	6
5.	ANALYSIS RESULTS	7
6.	FINDINGS & RECOMMENDATIONS	8
7.	REPORT DISCLAIMER	9
APF	PENDIX 1 - TOWER DRAWING	10
APF	PENDIX 2 - ANALYSIS PRINTOUT & GRAPHICS	11

1. INTRODUCTION & SCOPE

A rigorous structural analysis was performed by Malouf Engineering Int'l (MEI), as requested and authorized by Derek Creaser, Hudson Design Group on behalf of AT&T, to determine the acceptance of the proposed changed conditions in conformance with the ANSI/TIA-222-F Standard, "Structural Standards for Steel Antenna Towers and Antenna Supporting Structures".

The scope of this independent analysis is to determine the overall stability and the adequacy of structural members, foundations, and member connections, as available and stated. This analysis considers the structure to have been properly installed and maintained with no structural defects. Installation procedures and related loading are not with the scope of this analysis and should be performed and evaluated by a competent person of the erection contractor.

The different report sections detail the applicable information used in this evaluation, relating to the tower data, the appurtenances configuration and the wind and ice loading considered.

2. SOURCE OF DATA

The following information has been used in this evaluation as source data that accurately represent the existing structure and the related appurtenances:

!	Source	Information	Reference	
STRUCTURE	<u> </u>		<u></u>	
Tower	Hudson D. G.	Previous Tower Analysis Report	Bay State Design Job No. 2740.003, dated 01/04/07	
Foundation		Not Available	-	
Material Grade	Not Available from supplied documents – Assumed based on similar structures – refer to Appendix.			
CURRENT APPURTENANC	ES			
	Hudson D. G.	Previous Tower Analysis Report & recent site photos	Bay State Design Job No. 2740.003, dated 01/04/07	
CHANGED CONDITION			1 0 2/ 0 1/ 0 /	
	Hudson D. G.	Cingular RF Data sheet	Issue dated 4/27/07	

Background Information:

Based on available information, the following is known regarding this structure:

DESIGNER / FABRICATOR	Unknown
DESIGN CRITERIA	TIA/EIA 222-F - 80 / 69 Mph + 0" / 1/2" Ice
PRIOR STRUCTURAL MODIFICATIONS	Modified Base plate by adding stiffeners as
	per Bay State Design Job No. 2740.003, dated
	01/04/07. (Only limited info available)

3. ANALYSIS CRITERIA

The structural analysis performed used the following criteria:

CODE / STANDARD	IBC 2003 / A	IBC 2003 / ANSI/TIA-222-F-96 Standard			
LOADING CASES	Full Wind:	80 Mph - with No Radial Ice			
	Iced Case:	69 Mph (fastest-mile) + 1/2" Radial Ice			
	Service:	60 Mph			
STRUCTURE	Structure Cla	ssification: Class II			
CRITERIA		regory: `C' - Topographic Category: 1			

Appurtenances Configuration

The following appurtenances configuration has been considered:

Table 1: Proposed Changed Condition Appurtenances

Elev (ft)	Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Otv	Line size & Location
į	***	3	Allgon LGP 7770 Panels		***	1-5/8" - (I)
144	AT&T	6	LGP 21401 TMA's	(3) 4ft Standoff Mounts	6	[Re-use
		2	Ret Unit			existing)

Table 2: **Current and Reserved/Future Appurtenances**

Elev (ft)	Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Qty	Line size & Location
		1	Omni Whip Ant.	Low Profile Platform		
184		2	4-Elem Dipole Ant.	7	4	7/8" - (I)
		2	8-Element Dipole Ant.			· · · · · · · · · · · · · · · · · · ·
161	T-Mobile	6	RR90-17-02DP Panels	Low Profile Platform	12	1-5/8" - (I)
		6	DB980-F65T4E-M Panels		6	1-5/8" - (I)
154	Sprint-Nextel	6	APVX86-906513-C Panels (New)	Low Profile Platform	9	1-5/8"-(I/E)
124		2	YAGI Antenna			
147		1	Omni Whip Ant.	Low Profile Platform	3	1/2" - (I)
53		1	GPS Antenna	Mount	1	1/2" - (I)

- 1. Please note appurtenances not listed above are to be removed/not present as per data supplied.
- 2. (I) = internal; (E) = External; (FZ) = Within Face Zone & (OFZ) = Outside Face Zone as per TIA-222-G.
- 3. The above antennas, mounts, and lines represent MEI's understanding of the appurtenances configuration. If different than above, the analysis is invalid. Please refer to Appendix 2 for EPA wind areas used in the calculations. Please contact MEI if any discrepancies are found.

4. ANALYSIS PROCEDURE

The subject structure is analyzed for feasibility of the installation of the proposed changed condition previously noted. The data records furnished were reviewed and a computer stress analysis was performed in accordance with the TIA-222 Standard provisions and with the agreed scope of work terms and the results of this analysis are reported.

Analysis Program

The computer program used to model the structure is a rigorous Finite Element Analysis program, RISATower (ver. 5.0.2.2), a commercially available program developed by C-Concepts, WI and now maintained by RISA Technologies. The latticed structures members are modeled using beam/truss and cable members and the pole members using tubular beam elements. The structural parameters and geometry of the members are included in the model. The dead and temperature loads and the wind loads are internally calculated by the program for the different wind directions and then applied as external loads on the structure. This existing tower is assumed, for the purpose of this analysis, to have been properly maintained and to be in good condition with no structural defects and with no deterioration to its member capacities. Refer to the related section in this report for a listing of the assumptions made.

<u>Assumptions</u>

This engineering study is based on the theoretical capacity of the members and is not a condition assessment of the structure. This analysis is based on information supplied, and therefore, its results are based on and as accurate as that supplied data. MEI has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural stress analysis:

- This existing tower is assumed, for the purpose of this analysis, to have been properly maintained and to be in good condition with no structural defects and with no deterioration to its member capacities ('as-new' condition).
- The tower member sizes and configuration are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated.
- The appurtenances configuration is as supplied and/or as stated in the report. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- Some assumptions are made regarding antennas and mounts sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type & industry practice.
- The top platform, if applicable, is considered adequate to support the loading. No actual analysis of the platform itself is performed, with the analysis being limited to analyzing the pole and its foundation.
- The soil parameters are as per data supplied or as assumed and stated in the calculations. Refer to
 the Appendix. If no data is available, the foundation system is assumed to support the structure
 with its new reactions.
- All welds and connections are assumed to develop at least the member capacity, unless determined otherwise and explicitly stated in this report. All guy cable assemblies, as applicable, are assumed to develop the rated breaking strength of the wire.
- All prior structural modifications, if any, are assumed to be as per data supplied/available, and to have been properly installed and to be fully effective.

If any of the above assumptions are not valid or have been made in error, this analysis results may be invalided, MEI should be contacted to review any contradictory information to determine its effect.

5. ANALYSIS RESULTS

The results of the structural stress analysis based on data available and with the previous listed criteria, indicated the following:

Table 3: Stress Analysis Results

Member Type	Maximum Stress Ratio	Controlling Location / Component	Pass/Fail	Comment
POLE SHAFT	66.70%	Elev. 166 - 133 ft	Pass	
BASE PLATE	89.1%	Base Plate Stiffeners	Pass	
Anchor Rods	60.9%	Bolt Tensions	Pass	
FOUNDATION	Cannot Determine		Cannot Determine	No Data available – Considered Acceptable based on max. stress

Notes:

- 1. The Maximum Stress Ratio is the percentage that the maximum load in the member is relative to the allowable load as determined by Code requirements.
- 2. Refer to the Appendix 2 for more details on the member loads.
- 3. A maximum stress ratio between 100% to 105% may be considered as *Acceptable* according to industry standard practice.

6. FINDINGS & RECOMMENDATIONS

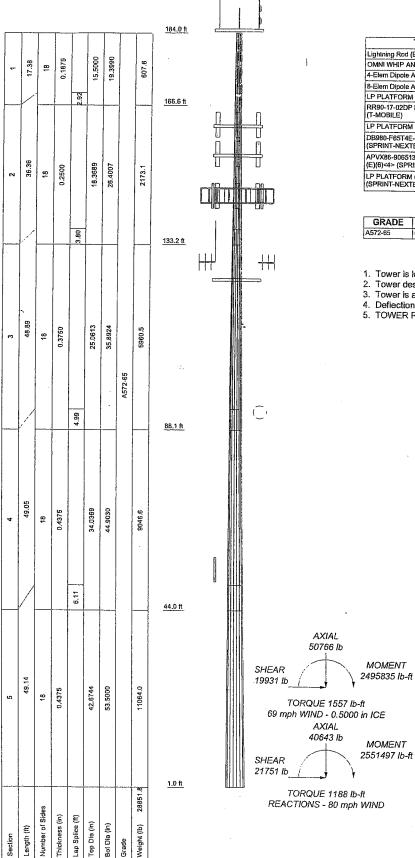
- Based on the rigorous stress analysis results, the subject structure is **rated at 89.1%** of its support capacity (controlling component: Base Plate) with the proposed changed condition considered. Please refer to Table 3 and to Appendix 2 for more details of the analysis results.
- Based on the stress analysis performed, the existing structure is **in conformance** with the ANSI/TIA **222-F** Standard for the loading considered under the criteria listed and referenced in the report sections.
- No data is available on the existing foundation, therefore its actual condition could not be determined. However, based on the maximum stress ratios of the pole, it can be considered as *Acceptable* for the new loading considered.
- The installation of the proposed changed condition consisting of replacement of the existing antennas with the new AT&T (3) Allgon LGP 7770 Panels + (6) LGP 21401 TMA's + (2) Ret Units onto existing (3) 4ft Standoff Mounts at Elev. 144 ft ± c.l. is structurally acceptable.
- This pole has limited additional support capacity for the appurtenances and loading criteria considered. Therefore, no changes to the configuration considered should be made without performing a new proper evaluation.

Rigging and temporary supports required for the erection/modification shall be determined, documented, furnished and installed by the erector/contractor accounting for the loads imposed on the structure due to the proposed construction method.

7. REPORT DISCLAIMER

The engineering services rendered by Malouf Engineering International, Inc. ('MEI') in connection with this Structural Analysis are limited to a computer analysis of the tower structure, size and capacity of its members. MEI does not analyze the fabrication, including welding and connection capacities, except as included in this Report.

The analysis performed and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:


- 1. Proper alignment and plumbness.
- 2. Correct guy tensions, as applicable.
- 3. Correct bolt tightness or slip jacking of sleeved connections.
- 4. No significant deterioration or damage to any structural component.

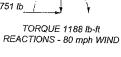
Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-art" engineering and analysis procedures and formulae. Malouf Engineering International, I no. Assumes no obligation to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will Malouf Engineering International, Inc. Have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of Malouf Engineering International, Inc., if any, pursuant to this Report shall be limited to the total funds actually received by Malouf Engineering International, Inc. For preparation of this Report.

Customer has requested Malouf Engineering International, Inc. To prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested Malouf Engineering International, Inc. to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of Malouf Engineering International, Inc., Customer has informed Malouf Engineering International, Inc. that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by Malouf Engineering International, Inc. and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice. Malouf Engineering International, Inc. shall have the right to rely upon the accuracy of the information supplied by the customer and shall not be held responsible for the Customer's misrepresentation or omission of relevant fact whether intentional or otherwise.

Customer hereby agrees and acknowledges that Malouf Engineering International, Inc. shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than Malouf Engineering International, Inc. in connection with the implementation of services including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that Malouf Engineering International, Inc. shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor and that Customer and rigger, erector, or subcontractor will provide Malouf Engineering International, Inc. with a Certificate of Insurance naming Malouf Engineering International, Inc. as additional insured.

APPENDIX 1 - TOWER DRAWING

DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION	
Lightning Rod (E)	185	ALLGON LGP 7770 PANELS	145	
OMNI WHIP ANT (E)(1)<1> (E)	185	(P)(3)<5> (ATI)	1133	
4-Elem Dipole Ant (E)(1)<1> (E)	185	LGP 21401 TMA's (P)(6)<5> (ATI)	145	
8-Elem Dipole Ant (E)(1)<1> (E)	185	RET Unit (P)(2)<5> (AT1)	145	
LP PLATFORM (E)(1)<1> (E)	185	4FT STANDOFF MOUNTS (P)(3)<5>	145	
RR90-17-02DP PANELS (E)(6)<2>	162	(ATI)	ļ	
(T-MOBILE)		YAGI ANTENNA (E)(1)<6> (E)	125	
LP PLATFORM (E)(1)<2> (T-MOBILE)	162	YAGI ANTENNA (E)(1)<6> (E)	125	
DB980-F65T4E-M PANELS (E)(6)<3>	155	OMNI WHIP ANT (E)(1)<6> (E)	125	
(SPRINT-NEXTEL)		LP PLATFORM (E)(1)<6> (E)	125	
APVX86-906513-C PANELS (E)(6)<4> (SPRINT-NEXTEL)	155	GPS ANTENNA MOUNT (E)(1)<7>	54	
LP PLATFORM (E)(1)<3> (SPRINT-NEXTEL)	155		L	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi		·····	<u> </u>

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
- 2. Tower designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- 3. Tower is also designed for a 69 mph basic wind with 0.50 in ice.
- Deflections are based upon a 60 mph wind.
 TOWER RATING: 89.1%

Consulting Engineers

Malouf Engineering Int'l, Inc. 17950 Preston Road; Suite #720

Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

1041 I MAIN , MANCHESTER CENTRAL SITE #3	4 FT MNP, MANCHESTE	R CENTRAL SITE #544
--	---------------------	---------------------

Project. CT00813M-07V0 Client: HUDSON DESIGN GROUP / AT&T Drawn by: LNguyen App'd:

Code: TIA/EIA-222-F Date: 07/18/07 Scale: NTS Palh: C:MEIProjects\07 DATAMNP\CT00813M-07V0\CT00813M-07V0.ea Dwg No. E-1

CINGULAR WIRELESS Equipment Modification

575 Hillstown Road, Manchester, CT Site Number 5321 Former AT&T site Petition 633 approved 7/8/03

Tower Owner/Manager:

Estate of Anthony M. Botticello

Equipment configuration:

Wood Laminate Pole w/ T-Mobile Extension

Current and/or approved: Three Allgon 7250 antennas @ 70 ft c.l.

Six runs 7/8 inch coax

Three outdoor cabinets on existing slab

Planned Modifications:

Remove existing antennas

Install three Powerwave 7770 antennas at 70 ft c.l.

Install six TMA's @ 70 ft

Remove one existing outdoor cabinet

Install one new outdoor cabinet for UMTS

Power Density:

Worst-case calculations for existing wireless operations at the site indicate a radio frequency electromagnetic radiation power density, measured at ground level beside the tower, of approximately 17.0 % of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density following proposed modifications would be approximately 26.3 % of the standard.

Existing

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *							0.70
Cingular GSM *	70	1900 Band	4	250	0.0734	1.0000	9.70
Total ***	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PT-TIPETINE	Marchael and Const	Me casero	0.0704	1.0000	7.34

^{*} Per CSC Records

Proposed .

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *							9.70
Cingular GSM	70	1900 Band	2	702	0.1030	1.0000	10.30
Cingular UMIS	70	880 - 894	1	500	0.0367	0.5867	6.25
Lead							288/6

^{*} Per CSC Records

Structural information:

The attached structural analysis demonstrates that the tower and foundation have adequate structural capacity to accommodate the proposed modifications. (Malouf Engineering Intl, dated 7/19/07)

New Cingular Wireless PCS, LLC 500 Enterprise Drive

Rocky Hill, Connecticut 06067-3900 Phone: (860) 513-7636 Fax: (860) 513-7190

Steven L. Levine Real Estate Consultant

July 25, 2007

Mr. Scott Shanley, General Manager Town of Manchester Town Hall 41 Center St. Manchester, CT 06045-0191

Re: Telecommunications Facility - 575 Hillstown Road, Manchester

Dear Mr. Shanley:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") capability, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("Cingular") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Cingular's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Cingular's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (860) 513-7636 or Mr. Derek Phelps, Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Steven L. Levine

Real Estate Consultant

July 19, 2007

STRUCTURAL ANALYSIS

Structure:		od Pole + Future 10' n (80 ft total height)	E-Lam / Glulam			
Client / Site ID:		O.G. / AT&T	Manch	ester SW Site #5321		
Owner / Site ID:	ID: AT&T			5321 Manchester SW #5321		
MEI Project ID:	CT00817	M-07V0	3321 H	anchester SW #5321		
Location:	575 Hillsto Mancheste	own Road er, CT 06040	Hartford FCC # I	d County N/A		
	LAT	41-44-48.8 N	LON	72-33-50.8 W		

EXECUTIVE SUMMARY:

Malouf Engineering Int'l (MEI), as requested, has performed a structural analysis of the above mentioned structure to assess the impact of the changed condition as noted in Table 1.

Based on the stress analysis performed, the existing structure is in conformance with the IBC 2003 / ASCE 7-02 for the loading considered under the criteria listed and referenced in the report sections.

The installation of the proposed changed condition consisting of replacement of the existing antennas with the new AT&T (3) Aligon LGP 7770 Panels + (6) LGP 21401 TMA's onto existing Standoff Mounts at Elev. 68.5 ft \pm c.l. is structurally acceptable.

MEI appreciates the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or any other projects please contact us.

Respectfully submitted,

MALOUF ENGINEERING INT'L, INC.

Analysis performed by:

Helder Lopez, EIT Project Engineer Reviewed & Approved by:

É. Mark Málouf, PE Connecticut #17715

972-783-2578 ext. 106

mmalouf@maloufengineering.com

TABLE OF CONTENT

1.	INTRODUCTION & SCOPE	4
2.	SOURCE OF DATA	4
	Background Information:	
3.	ANALYSIS CRITERIA	5
	Appurtenances Configuration	5
4.	ANALYSIS PROCEDURE	6
	Analysis Program	6
	Assumptions	6
5.	ANALYSIS RESULTS	
6.	FINDINGS & RECOMMENDATIONS	8
<i>7.</i>	REPORT DISCLAIMER	9
APF	PENDIX 1 - TOWER DRAWING	10
APF	PENDIX 2 - ANALYSIS PRINTOUT	11

1. INTRODUCTION & SCOPE

A structural analysis was performed by Malouf Engineering Int'l (MEI), as requested and authorized by Derek Creaser, Hudson Design Group on behalf of AT&T, to determine the acceptance of the proposed changed conditions in conformance with the IBC-2003 / ASCE 7-02 and local Building Codes.

The scope of this independent analysis is to determine the overall stability and the adequacy of structural members, foundations, and member connections, as available and stated. This analysis considers the structure to have been properly installed and maintained with no structural defects. Installation procedures and related loading are not with the scope of this analysis and should be performed and evaluated by a competent person of the erection contractor.

The different report sections detail the applicable information used in this evaluation, relating to the tower data, the appurtenances configuration and the wind and ice loading considered.

2. SOURCE OF DATA

The following information has been used in this evaluation as source data that accurately represent the existing structure and the related appurtenances:

	Source	Information	Reference
STRUCTURE	<u> </u>		J.,
Tower	Hudson D. G.	Previous Analysis Report	Matthew J. Young Analysis, dated 06/13/06
Foundation		Limited Information per previous analysis	Matthew J. Young Analysis
Material Grade	Matthew J. Young A	nalysis, dated 06/13/06 - refer	to Appendix.
CURRENT APPURTENANC			
	Hudson D. G.	Previous Analysis Report & recent site photos	Matthew J. Young Analysis, dated 06/13/06
CHANGED CONDITION			
	Hudson D. G.	Cingular RF Data sheet	Issue dated 4/27/07

Background Information:

Based on available information, the following is known regarding this structure:

DESIGNER / FABRICATOR	E-Lam
DESIGN CRITERIA	Unknown
PRIOR STRUCTURAL MODIFICATIONS	Added 10ft Extension Pipe to accommodate T-Mobile future loading increasing pole to a total height of 80ft.

3. ANALYSIS CRITERIA

The structural analysis performed used the following criteria:

CODE / STANDARD	IBC 2003 / ASCE 7-02				
LOADING CASES	Full Wind:	100 Mph (3-Sec) - with No Radial Ice			
	Iced Case:	N/A			
	Service:	N/A			
STRUCTURE	Structure Cla	ssification: Class II			
CRITERIA	Exposure Cat	regory: `B' - Topographic Category: 1			

Appurtenances Configuration

The following appurtenances configuration has been considered:

Table 1: Proposed_Changed Condition Appurtenances

Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Otv	Line size & Location
	3	Allgon LGP 7770 Panels			7/8" - (F) *
AT&T	6	LGP 21401 TMA's	(3) Standoff Mounts	6	[Re-use existing]
		Qty 3	Qty Description 3 Allgon LGP 7770 Panels	Qty Description 3 Allgon LGP 7770 Panels AT&T (3) Standoff Mounts	Qty Description Qty 3 Allgon LGP 7770 Panels AT&T (3) Standoff Mounts

Table 2: Current and Reserved/Future Appurtenances

Elev (ft)	Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Oty	Line size &
77.5 T-Mobile	3	APX16PV-16PVL-E Panels Antennas (Future)	(3) 2ft Standoff Pipes on a 10ft Extension Pipe on			
77.5	PHOBIC	6	TMA's	top of existing 70ft pole (Future)	6	7/8" - (F) *

Notes:

- 1. * No more than 2
- 2. Please note appurtenances not listed above are to be removed/not present as per data supplied.
- 3. (I) = internal; (E) = External; (FZ) = Within Face Zone & (OFZ) = Outside Face Zone as per TIA-222-G.
 4. The above antennas, mounts, and lines represent MEI's understanding of the appurtenances
- 4. The above antennas, mounts, and lines represent MEI's understanding of the appurtenances configuration. If different than above, the analysis is invalid. Please refer to Appendix 2 for EPA wind areas used in the calculations. Please contact MEI if any discrepancies are found.

4. ANALYSIS PROCEDURE

The subject structure is analyzed for feasibility of the installation of the proposed changed condition previously noted. The data records furnished were reviewed and a computer stress analysis was performed in accordance with the IBC 2003 / ASCE 7-02 and with the agreed scope of work terms and the results of this analysis are reported.

<u>Assumptions</u>

This engineering study is based on the theoretical capacity of the members and is not a condition assessment of the structure. This analysis is based on information supplied, and therefore, its results are based on and as accurate as that supplied data. MEI has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural stress analysis:

- This existing tower is assumed, for the purpose of this analysis, to have been properly maintained and to be in good condition with no structural defects and with no deterioration to its member capacities ('as-new' condition).
- The tower member sizes and configuration are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated.
- The appurtenances configuration is as supplied and/or as stated in the report. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- Some assumptions are made regarding antennas and mounts sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type & industry practice.
- The platform(s), if applicable, is considered adequate to support the loading. No actual analysis of the platform itself is performed, with the analysis being limited to analyzing the pole and its foundation.
- The soil parameters are as per data supplied or as assumed and stated in the calculations. Refer to the Appendix. If no data is available, the foundation system is assumed to support the structure with its new reactions.
- All prior structural modifications, if any, are assumed to be as per data supplied/available, and to have been properly installed and to be fully effective.

If any of the above assumptions are not valid or have been made in error, this analysis results may be invalided, MEI should be contacted to review any contradictory information to determine its effect.

5. ANALYSIS RESULTS

The results of the structural stress analysis based on data available and with the previous listed criteria, indicated the following:

Table 3: Stress Analysis Results

Member Type	Maximum Stress Ratio	Controlling Location / Component	Pass/Fail	Comment
POLE MAST	45.7%	Elev. 0 ft	Pass	
FOUNDATION	62.5%	Embedment length	Pass	

Notes:

- 1. The Maximum Stress Ratio is the percentage that the maximum load in the member is relative to the allowable load as determined by Code requirements.
- 2. Refer to the Appendix 2 for more details on the member loads.
- 3. A maximum stress ratio between 100% to 105% may be considered as *Acceptable* according to industry standard practice.

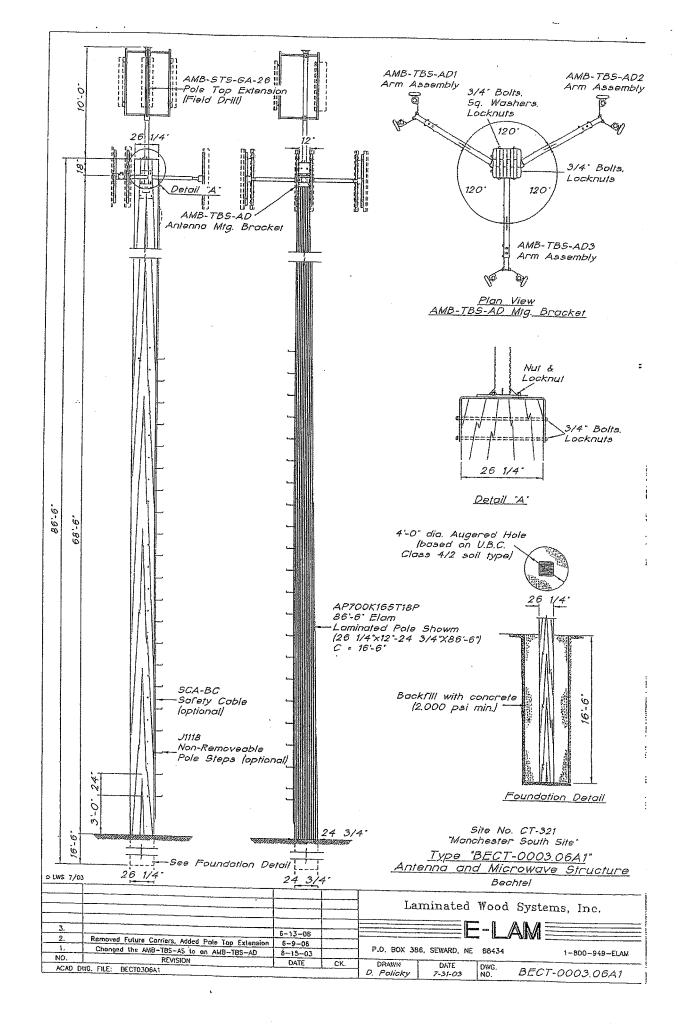
6. FINDINGS & RECOMMENDATIONS

- Based on the rigorous stress analysis results, the subject structure is **rated at 62.5%** of its support capacity (controlling component: Foundation) with the proposed changed condition considered. Please refer to Table 3 and to Appendix 2 for more details of the analysis results.
- Based on the stress analysis performed, the existing structure is **in conformance** with the IBC 2003 / ASCE 7-02 for the loading considered under the criteria listed and referenced in the report sections.
- The installation of the proposed changed condition consisting of replacement of the existing antennas with the new AT&T (3) Allgon LGP 7770 Panels + (6) LGP 21401 TMA's onto existing Standoff Mounts at Elev. 68.5 ft + c.l. is structurally acceptable.
- This pole has limited additional support capacity for the appurtenances and loading criteria considered. Therefore, no changes to the configuration considered should be made without performing a new proper evaluation.

Rigging and temporary supports required for the erection/modification shall be determined, documented, furnished and installed by the erector/contractor accounting for the loads imposed on the structure due to the proposed construction method.

7. REPORT DISCLAIMER

The engineering services rendered by Malouf Engineering International, Inc. ('MEI') in connection with this Structural Analysis are limited to a computer analysis of the tower structure, size and capacity of its members. MEI does not analyze the fabrication, including welding and connection capacities, except as included in this Report.


The analysis performed and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:

- 1. Proper alignment and plumbness.
- 2. Correct guy tensions, as applicable.
- 3. Correct bolt tightness or slip jacking of sleeved connections.
- 4. No significant deterioration or damage to any structural component.

Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-art" engineering and analysis procedures and formulae. Malouf Engineering International, I nc. Assumes no obligation to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will Malouf Engineering International, Inc. Have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of Malouf Engineering International, Inc., if any, pursuant to this Report shall be limited to the total funds actually received by Malouf Engineering International, Inc. For preparation of this Report.

Customer has requested Malouf Engineering International, Inc. To prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested Malouf Engineering International, Inc. to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of Malouf Engineering International, Inc., Customer has informed Malouf Engineering International, Inc. that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by Malouf Engineering International, Inc. and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice. Malouf Engineering International, Inc. shall have the right to rely upon the accuracy of the information supplied by the customer and shall not be held responsible for the Customer's misrepresentation or omission of relevant fact whether intentional or otherwise.

Customer hereby agrees and acknowledges that Malouf Engineering International, Inc. shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than Malouf Engineering International, Inc. in connection with the implementation of services including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that Malouf Engineering International, Inc. shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor and that Customer and rigger, erector, or subcontractor will provide Malouf Engineering International, Inc. with a Certificate of Insurance naming Malouf Engineering International, Inc. as additional insured.

CINGULAR WIRELESS Equipment Modification

151 Waterbury Rd, Prospect, CT

Site Number 5626 Former AT&T site

Exempt Modification 10/7/02

Tower Owner/Manager:

Capstar Radio Operating Company

Equipment configuration:

Guyed Lattice Tower

Current and/or approved:

Three Allgon 7250 antennas @ 140 ft c.l. (approved for 6)

Six runs 1 1/4 inch coax

Planned Modifications:

Remove all existing antennas

Install three Powerwave 7770 antennas @ 140 ft c.l.

Install six TMA's @ 140 ft c.l.

Install two additional outdoor cabinets

Power Density:

Worst-case calculations for existing wireless operations at the site indicate a radio frequency electromagnetic radiation power density, measured at ground level beside the tower, of approximately 4.7 % of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density following proposed modifications would be approximately 7.4 %.

Existing

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *				THE RESERVE			2.98
Cingular GSM **	148	1900 Band	2	250	0.0082	1.0000	0.82
Cingular GSM *	140	1900 Band	2	250	0.0092	1.0000	0.92
Total 5							47%

^{*} Per CSC records. ** Space under lease, but equipment not installed.

Proposed

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *							2.98
Cingular GSM	140	1900 Band	3	520	0.0286	1.0000	2.86
Cingular UMTS	140	880 - 894	1	500	0.0092	0.5867	1.56
a foulers							

^{*} Per CSC records.

Structural information:

The attached structural analysis demonstrates that the tower and foundation have adequate structural capacity to accommodate the proposed modifications. (Malouf Engineering Intl, dated 7/19/07)

New Cingular Wireless PCS, LLC 500 Enterprise Drive

Rocky Hill, Connecticut 06067-3900

Phone: (860) 513-7636 Fax: (860) 513-7190

Steven L. Levine Real Estate Consultant

July 25, 2007

Honorable Robert J. Chatfield Mayor, Town of Prospect Town Office Building 36 Center Street Prospect, Connecticut 06712

Re: Telecommunications Facility – 151 Waterbury Road, Prospect

Dear Mayor Chatfield:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") capability, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("Cingular") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Cingular's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Cingular's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (860) 513-7636 or Mr. Derek Phelps, Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Steven L. Levine Real Estate Consultant

Enclosure

July 19, 2007

RIGOROUS STRUCTURAL ANALYSIS

Structure:	195 ft Guyed	Stainless	
Client / Site ID:	Hudson D.G. / AT&T		North Site #5626
Owner / Site ID:	AT&T		spect North #5626
MEI Project ID:	CT00814G-07V0	1 3020 1103	pect North #3626
Location:	151 Waterbury Road Prospect, CT 06712	New Haver FCC # N/A	
	LAT 41-31-22.1	N LON	72-59-52.1 W

EXECUTIVE SUMMARY:

Malouf Engineering Int'l (MEI), as requested, has performed a rigorous structural analysis of the above mentioned structure to assess the impact of the changed condition as noted in Table 1.

Based on the stress analysis performed, the existing structure is **in conformance** with the ANSI/TIA **222-F** Standard for the loading considered under the criteria listed and referenced in the report sections.

The installation of the proposed changed condition consisting of replacement of the existing antennas with the new AT&T (3) Aligon LGP 7770 Panels + (6) LGP 21401 TMA's + (2) RCU/RET Units onto existing (3) Flush Mounts at Elev. 140 ft \pm c.l. is structurally acceptable.

MEI appreciates the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or any other projects please contact us.

Respectfully submitted,

MALOUF ENGINEERING INT'L, INC.

Analysis performed by:

Luan Nguyen, PE Project Engineer Reviewed & Approved by:

E. Mark Malouf, PÉ Connecticut #17715

972-783-2578 ext. 106

mmalouf@maloufengineering.com

TABLE OF CONTENT

1.	INTRODUCTION & SCOPE	4
2.	SOURCE OF DATA	4
	Background Information:	
3.	ANALYSIS CRITERIA	5
	Appurtenances Configuration	
4.	ANALYSIS PROCEDURE	6
	Analysis Program	
	Assumptions	6
5.	ANALYSIS RESULTS	7
6.	FINDINGS & RECOMMENDATIONS	8
7 .	REPORT DISCLAIMER	9
APF	PENDIX 1 - TOWER DRAWING	10
APF	PENDIX 2 - ANALYSIS PRINTOUT & GRAPHICS	11

1. INTRODUCTION & SCOPE

A rigorous structural analysis was performed by Malouf Engineering Int'l (MEI), as requested and authorized by Derek Creaser, Hudson Design Group on behalf of AT&T, to determine the acceptance of the proposed changed conditions in conformance with the ANSI/TIA-222-F Standard, "Structural Standards for Steel Antenna Towers and Antenna Supporting Structures".

The scope of this independent analysis is to determine the overall stability and the adequacy of structural members, foundations, and member connections, as available and stated. This analysis considers the structure to have been properly installed and maintained with no structural defects. Installation procedures and related loading are not with the scope of this analysis and should be performed and evaluated by a competent person of the erection contractor.

The different report sections detail the applicable information used in this evaluation, relating to the tower data, the appurtenances configuration and the wind and ice loading considered.

2. SOURCE OF DATA

The following information has been used in this evaluation as source data that accurately represent the existing structure and the related appurtenances:

	Source	Information	Reference
STRUCTURE		<u> </u>	Pr
Tower	Hudson D. G.	Previous Tower Analysis Report	Walker Eng. Job No. DTC-001R2; 0509- 0503R2, dated 09/22/05
Foundation	Hudson D. G.	Previous Analysis Report, which only referenced the original reactions.	Walker Eng. Job No. DTC-001R2; 0509- 0503R2, dated 09/22/05
Material Grade	Not Available from supp structures – refer to App	lied documents – Assumed pendix.	based on similar
CURRENT APPURTENANCE			
	Hudson D. G.	Previous Tower Analysis Report & recent site photos	Walker Eng. Job No. DTC-001R2; 0509- 0503R2,
CHANGED CONDITION			
	Hudson D. G.	Cingular RF Data sheet	Issue dated 4/24/07

Background Information:

Based on available information, the following is known regarding this structure:

DESIGNER / FABRICATOR	Stainless
DESIGN CRITERIA	TIA/EIA 222-F - 85 / 39 Mph + 0" / 3/4" Ice
PRIOR STRUCTURAL MODIFICATIONS	None Known

3. ANALYSIS CRITERIA

The structural analysis performed used the following criteria:

CODE / STANDARD	IBC 2003 / A	IBC 2003 / ANSI/TIA-222-F-96 Standard				
LOADING CASES	Full Wind:	85 Mph (fastest-mile) - with No Radial Ice				
•	Iced Case:	50 Mph (fastest-mile) + 3/4" Radial Ice				
	Service:	60 Mph				
STRUCTURE	Structure Cla	ssification: Class II				
CRITERIA	Exposure Cat	egory: `C' - Topographic Category: 1				

Appurtenances Configuration

The following appurtenances configuration has been considered:

Table 1: Proposed Changed Condition Appurtenances

Elev (ft)	Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Oty	Line size &
		3	Aligon LGP 7770 Panels			1 1/4" - FZ
140	AT&T	6	LGP 21401 TMA's	(3) Flush Mounts	6	[Re-use
		3	RET/RCU Unit (1 exist)			existing]

Table 2: Current and Reserved/Future Appurtenances

Elev (ft)	Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Qty	Line size & Location
159					1	1 5/8" - FZ
	Ì	3	Allgon 7250 Panels (Fut)			
148	AT&T	6	LGP 21401 TMA's (Future)	(3) Flush Mounts	6	1 1/4" - FZ
		3	RET/RCU Unit (Future)	7		_,
130	T-MOBILE	18	DR65-19-XXDPQ Panels	(3) T-Frame Mounts	18	1 5/8" - FZ
92					2	7/8" – FZ
83		1	Broken Dipole	Mount	$\frac{1}{1}$	1/2" - FZ

Notes:

- 1. Please note appurtenances not listed above are to be removed/not present as per data supplied.
- 2. (I) = internal; (E) = External; (FZ) = Within Face Zone & (OFZ) = Outside Face Zone as per TIA-222-G.
- 3. The above antennas, mounts, and lines represent MEI's understanding of the appurtenances configuration. If different than above, the analysis is invalid. Please refer to Appendix 2 for EPA wind areas used in the calculations. Please contact MEI if any discrepancies are found.

4. ANALYSIS PROCEDURE

The subject structure is analyzed for feasibility of the installation of the proposed changed condition previously noted. The data records furnished were reviewed and a computer stress analysis was performed in accordance with the TIA-222 Standard provisions and with the agreed scope of work terms and the results of this analysis are reported.

Analysis Program

The computer program used to model the structure is a rigorous Finite Element Analysis program, RISATower (ver. 5.0.2.2), a commercially available program developed by C-Concepts, WI and now maintained by RISA Technologies. The latticed structures members are modeled using beam/truss and cable members and the pole members using tubular beam elements. The structural parameters and geometry of the members are included in the model. The dead and temperature loads and the wind loads are internally calculated by the program for the different wind directions and then applied as external loads on the structure. This existing tower is assumed, for the purpose of this analysis, to have been properly maintained and to be in good condition with no structural defects and with no deterioration to its member capacities. Refer to the related section in this report for a listing of the assumptions made.

Assumptions

This engineering study is based on the theoretical capacity of the members and is not a condition assessment of the structure. This analysis is based on information supplied, and therefore, its results are based on and as accurate as that supplied data. MEI has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural stress analysis:

- This existing tower is assumed, for the purpose of this analysis, to have been properly maintained
 and to be in good condition with no structural defects and with no deterioration to its member
 capacities ('as-new' condition).
- The tower member sizes and configuration are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated.
- The appurtenances configuration is as supplied and/or as stated in the report. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- Some assumptions are made regarding antennas and mounts sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type & industry practice.
- The top platform, if applicable, is considered adequate to support the loading. No actual analysis of the platform itself is performed, with the analysis being limited to analyzing the pole and its foundation.
- The soil parameters are as per data supplied or as assumed and stated in the calculations. Refer to the Appendix. If no data is available, the foundation system is assumed to support the structure with its new reactions.
- All welds and connections are assumed to develop at least the member capacity, unless determined
 otherwise and explicitly stated in this report. All guy cable assemblies, as applicable, are assumed
 to develop the rated breaking strength of the wire.
- All prior structural modifications, if any, are assumed to be as per data supplied/available, and to have been properly installed and to be fully effective.

If any of the above assumptions are not valid or have been made in error, this analysis results may be invalided, MEI should be contacted to review any contradictory information to determine its effect.

5. ANALYSIS RESULTS

The results of the structural stress analysis based on data available and with the previous listed criteria, indicated the following:

Table 3: Stress Analysis Results

Member Type	Maximum Stress Ratio	Controlling Location / Component	Pass/Fail	Comment
Gυγ	93.00%	Elev. 87.4583 ft	Pass	
L EG	71.80%	Elev. 25 – 0 ft	Pass	
DIAGONALS	42.70%	Elev. 150 – 125 ft	Pass	
GIRTS	43.60%	Elev. 25 – 0 ft	Pass	
Base Foundation	100.0%	Compression Force	Pass	Reactions Comparison Only.
GUY ANCHORS	85.4%	Shear Force	Pass	Reactions Comparison Only.

^{1.} The Maximum Stress Ratio is the percentage that the maximum load in the member is relative to the allowable load as determined by Code requirements.

^{2.} Refer to the Appendix 2 for more details on the member loads.

^{3.} A maximum stress ratio between 100% to 105% may be considered as Acceptable according to industry standard practice.

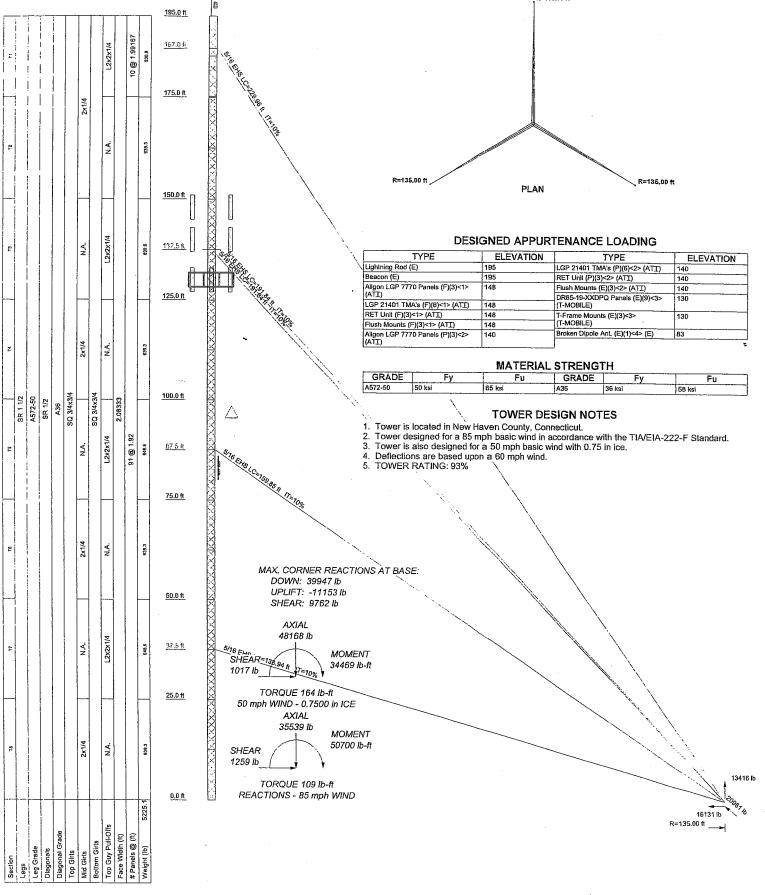
6. FINDINGS & RECOMMENDATIONS

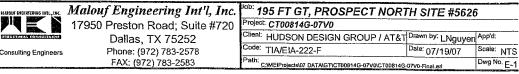
- Based on the rigorous stress analysis results, the subject structure is **rated at 93.0%** of its support capacity (controlling component: Guy Wire) with the proposed changed condition considered. Please refer to Table 3 and to Appendix 2 for more details of the analysis results.
- Based on the stress analysis performed, the existing structure is **in conformance** with the ANSI/TIA **222-F** Standard for the loading considered under the criteria listed and referenced in the report sections.
- The installation of the proposed changed condition consisting of replacement of the existing antennas with the new AT&T (3) Allgon LGP 7770 Panels + (6) LGP 21401 TMA's + (2) RCU/RET Units onto existing (3) Flush Mounts at Elev. 140 ft ± c.l. is structurally acceptable.
- This tower is near its maximum support capacity for the appurtenances and loading criteria considered. Therefore, no changes to the configuration considered should be made without performing a new proper evaluation.

Rigging and temporary supports required for the erection/modification shall be determined, documented, furnished and installed by the erector/contractor accounting for the loads imposed on the structure due to the proposed construction method.

7. REPORT DISCLAIMER

The engineering services rendered by Malouf Engineering International, Inc. ('MEI') in connection with this Structural Analysis are limited to a computer analysis of the tower structure, size and capacity of its members. MEI does not analyze the fabrication, including welding and connection capacities, except as included in this Report.


The analysis performed and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:


- Proper alignment and plumbness.
- 2. Correct guy tensions, as applicable.
- 3. Correct bolt tightness or slip jacking of sleeved connections.
- 4. No significant deterioration or damage to any structural component.

Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-art" engineering and analysis procedures and formulae. Malouf Engineering International, I nc. Assumes no obligation to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will Malouf Engineering International, Inc. Have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of Malouf Engineering International, Inc., if any, pursuant to this Report shall be limited to the total funds actually received by Malouf Engineering International, Inc. For preparation of this Report.

Customer has requested Malouf Engineering International, Inc. To prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested Malouf Engineering International, Inc. to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of Malouf Engineering International, Inc., Customer has informed Malouf Engineering International, Inc. that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by Malouf Engineering International, Inc. and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice. Malouf Engineering International, Inc. shall have the right to rely upon the accuracy of the information supplied by the customer and shall not be held responsible for the Customer's misrepresentation or omission of relevant fact whether intentional or otherwise.

Customer hereby agrees and acknowledges that Malouf Engineering International, Inc. shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than Malouf Engineering International, Inc. in connection with the implementation of services including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that Malouf Engineering International, Inc. shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor and that Customer and rigger, erector, or subcontractor will provide Malouf Engineering International, Inc. with a Certificate of Insurance naming Malouf Engineering International, Inc. as additional insured.

R#135.00 ft

CINGULAR WIRELESS **Equipment Modification**

14 Booth Hill Rd (a/k/a Oxford Dr), Shelton Site Number 5542 Former AT&T Cell Site Exempt Mod. approved 8/15/02

Tower Owner/Manager:

American Tower

Equipment configuration:

Lattice Tower

Current and/or approved: Three Allgon 7250 Panel Antennas @ 144 ft c.l. (6 approved)

Six runs 1 5/8 inch coax (six runs 1 ½ inch coax approved)

Planned Modifications:

Remove all three existing antennas

Install three Powerwave 7770 antennas @ 144 ft c.l.

Install six TMA's @ 144 ft

Remove one existing outdoor cabinet from existing pad Install one new outdoor equipment cabinet for UMTS

Power Density:

Calculations for Cingular's current operations at the site indicate a radio frequency electromagnetic radiation power density, measured at the tower base, of approximately 14.0 % of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density for Cingular's planned operations would be approximately 15.2 % of the standard.

Existing

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *	Section of the						12.23
Cingular GSM *	144	1900 Band	4	250	0.0173	1.0000	1.73
Total							14.0%

^{*} Per CSC records.

Proposed

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *							12.23
Cingular GSM	144	1900 Band	2	427	0.0148	1.0000	1.48
Cingular UMTS	144	880 - 894	1	500	0.0087	0.5867	1.48
or a digital charge							152%

^{*} Per CSC records.

Structural information:

The attached structural analysis demonstrates that the foundation has adequate structural capacity to accommodate the proposed modifications, but that the tower itself would be overstressed. The analysis, however, presents a list of structural improvements that would eliminate the overstress condition. Cingular will have the tower strengthened per these recommendations prior to performing the proposed UMTS modifications. We respectfully request, therefore, that the Council give conditional approval for the proposed modifications.

New Cingular Wireless PCS, LLC

500 Enterprise Drive

Rocky Hill, Connecticut 06067-3900

Phone: (860) 513-7636 Fax: (860) 513-7190

Steven L. Levine Real Estate Consultant

July 25, 2007

Honorable Mark A. Lauretti, Mayor Town of Shelton Town Hall, 54 Hill Street Shelton, CT 06484-0364

Re: Telecommunications Facility – 14 Booth Hill Road, Shelton

Dear Mayor Lauretti:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") capability, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("Cingular") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Cingular's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Cingular's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (860) 513-7636 or Mr. Derek Phelps, Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Steven L. Levine

Real Estate Consultant

Enclosure

Structural Analysis Report

Structure

200 ft AT&T TAG Tower

ATC Site Name

Shelton/Trumbull, CT

ATC Site Number

88017

Proposed Carrier

Cingular

Carrier Site Name

Shelton / Booth Hill

Carrier Site Number : 5542

County

: Fairfield

Eng. Number

: 40480221

Date

June 8, 2007

Usage

: 117 %

Submitted by: Michael Deese, E.I. Design Engineer

American Tower Engineering Services 400 Regency Forest Drive

Cary, NC 27518 Phone: 919-468-0112

Introduction

The purpose of this report is to summarize results of the structural analysis performed on the 200 ft. AT&T TAG Tower located at 14 Oxford Dr, Shelton, CT 06484, Fairfield County (ATC site #88017). Tower geometry, member sizes, and foundation information was based on a mapping by Tower Engineering Professionals (TEP #070851, dated May 30, 2007).

Analysis

The tower was analyzed using Power Line Systems, Inc., Software. The analysis assumes that the tower is in good, undamaged, and non-corroded condition.

Basic Wind Speed:

90 mph (Fastest Mile) / 110 mph (3-Second Gust)

Radial Ice:

77.9 mph (Fastest Mile) w/ ½" ice

Code:

TIA/EIA-222-F / 2003 International Building Code

Antenna Loads

The following antenna loads were used in the tower analysis.

Existing Antennas

Elev. (ft)	Qty	Antennas	Mount	Coax	Carrier	
214.5	1	8' Dipole		(1) 1 5/8"		
209.5	1	14' Whip	Platform w/ Handrails	(1) 1 5/8"	State of CT	
206.5	2	8' Dish w/ Radome	•	(2) EW65		
200.0	-		Platform w/ Handrails	-	<u> </u>	
183.5	2	Scala AP14-850/150N	Standoff	(2) 1 5/8"	State of CT	
3	8' Omni	Side Arm	(3) 1 5/8"			
168.0	12	Decibel DB844H90E-XY	Sector Frame	(15) 1 5/8"	Nextel	
155.0	9	Dapa 58000	Pipe	(9) 1 5/8"	Sprint	
125.5	1	8' Dish w/ Radome	Dish	(1) EW65	State of CT	
112.5	-	-	Platform w/ Handrails	-	-	
75.0	-	-	Platform w/ Handrails	-	-	
55.0	1	GPS Unit	Pipe	(1) 1/2"	Sprint	

Proposed Antennas

Elev. (ft)	Qty	Antennas	Mount	Coax	Carrier
144.0	6	Powerwave 7770	D:	(12) 1 5/8"	G: 1
174.0	6 Powerwave LGP-21401	Pipe	N/A	Cingular	

Double stack proposed coax in a 6-on-6 configuration in same location as existing.

Results

The maximum structure usage is: 117 %

Leg Forces	Original Design Reactions	Current Analysis Reactions	% Of Design
Uplift (Kips)	N/A	146.7	N/A
Axial (Kips)	N/A	194.1	N/A
Shear (Kips)	N/A	32.4	N/A

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Conclusion

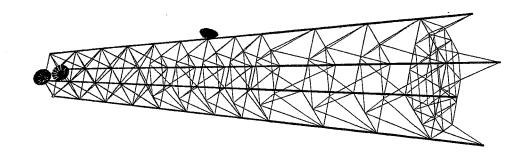
Based on the analysis results, the structure does not meet the requirements per TIA/EIA-222-F and 2003 International Building Code standards.

The tower and foundation can support the existing and proposed equipment after the modifications listed below are completed:

- Replace or reinforce 2L 3" x 2.5" x 1/4" diagonals in section 3
- Replace or reinforce 2L 3" x 2.5" x 1/4" diagonals in section 4
- Replace or reinforce 2L 3" x 3" x 5/16" horizontals in section 1

If you have any questions or require additional information, please call 919-466-5146.

Standard Conditions


All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:

- Information supplied by the client regarding the structure itself, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from drawings in the possession of American Tower Corporation, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to ATC Engineering Services and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated; and we, therefore, assume that their capacity has not significantly changed from the "as new" condition.

All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/EIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. ATC Engineering Services is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

American Tower Corp., Project: "88017 - shelton_trumbull, ct" Tower Version 8.10, 11:15:21 AM Thursday, June 14, 2007 Undeformed geometry displayed

N-\