

Northeast Site Solutions
Denise Sabo
4 Angela's Way, Burlington CT 06013
203-435-3640
denise@northeastsitesolutions.com

May 18, 2022

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Tower Share Application
34 Rimmon Street, Seymour, CT 06483
Latitude: 41.402222
Longitude: -73.072222
Site #: 876318_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 34 Rimmon Street (a/k/a 38 Rimmon Street), Seymour, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 138-foot level of the existing 150-foot tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by Kimley Horn, dated April 8, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated September 12, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was originally approved by the Town of Seymour; however a copy of the original decision was not available.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Annmarie Dragonis, First Selectwoman and Keith Rosenfeld, Town Planner for the Town of Seymour, as well as the tower owner (Crown Castle) and property owner (Seymour Beacon Falls LLC).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 150-feet and the Dish Wireless LLC antennas will be located at a centerline height of 138-feet.
2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligible.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 1.54% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Seymour. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 138-foot level of the existing 150-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Seymour.

Sincerely,

Denise Sabo

Denise Sabo
Mobile: 203-435-3640
Fax: 413-521-0558
Office: 4 Angela's Way, Burlington CT 06013
Email: denise@northeastsitesolutions.com

Attachments

Cc: Annmarie Drugonis, First Selectwoman
Seymour Town Hall
1 First Street
Seymour, CT 06483

Keith Rosenfeld, Town Planner
Seymour Town Hall
1 First Street
Seymour, CT 06483

Seymour Beacon Falls LLC - Property Owner
220-2F Main Street
Oxford, CT 06478

Crown Castle - Tower Owner

Exhibit A

Original Facility Approval

Exhibit B

Property Card

Town of Seymour, CT

Property Listing Report

Map Block Lot

10-11-27-0

Building # 1

PID 4259

Account

037600

Property Information

Property Location	34 RIMMON ST		
Owner	ZUBRICK JAMES W		
Co-Owner			
Mailing Address	36 RIMMON STREET		
	SEYMOUR	CT	06483
Land Use	1300	Vacant	
Land Class	R		
Zoning Code	R-18		
Census Tract			

Neighborhood	
Acreage	0.39
Utilities	
Lot Setting/Desc	Level
Book / Page	291/6
Additional Info	

Primary Construction Details

Year Built	0
Building Desc.	Vacant
Building Style	UNKNOWN
Building Grade	
Stories	
Occupancy	
Exterior Walls	
Exterior Walls 2	NA
Roof Style	
Roof Cover	
Interior Walls	
Interior Walls 2	NA
Interior Floors 1	
Interior Floors 2	NA

Heating Fuel	
Heating Type	
AC Type	
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	NA
Rec Rm Area	NA
Rec Rm Quality	NA
Bsmt Gar	NA
Fireplaces	NA

(*Industrial / Commercial Details)

Building Use	Vacant
Building Condition	
Sprinkler %	NA
Heat / AC	NA
Frame Type	NA
Baths / Plumbing	NA
Ceiling / Wall	NA
Rooms / Prtns	NA
Wall Height	NA
First Floor Use	NA
Foundation	NA

Photo

Sketch

No Photo Available

Town of Seymour, CT

Property Listing Report

Map Block Lot

10-11-27-0

Building # 1

PID **4259**

Account

037600

Valuation Summary		(Assessed value = 70% of Appraised Value)	Sub Areas		
Item	Appraised	Assessed	Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
Buildings	0	0			
Extras	0	0			
Improvements					
Outbuildings	0	0			
Land	56800	39760			
Total	56800	39760			

Outbuilding and Extra Features

Sales History

Owner of Record	Book/ Page	Sale Date	Sale Price
ZUBRICK JAMES W	291/6	2002-01-09	0
ZUBRICK HELEN & JAMES	108/489		0

Town of Seymour, Connecticut - Assessment Parcel Map
Parcel: 10-11-27-0 Address: 34 RIMMON ST

4.45 AC

6

Approximate Scale: 1 inch = 100 feet

0 60 120 180 Feet

**Map Produced:
November 2021**

Disclaimer:

This map is for informational purposes only.
All information is subject to verification by any user.
The Town of Seymour and its mapping contractors
assume no legal responsibility for the
information contained herein.

Exhibit C

Construction Drawings

DISH Wireless L.L.C. SITE ID:

BOHVN00166A

DISH Wireless L.L.C. SITE ADDRESS:

**34 RIMMON ST
SEYMOUR, CT 06483**

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES

CODE TYPE	CODE
BUILDING	2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS
MECHANICAL	2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
ELECTRICAL	2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

SHEET INDEX

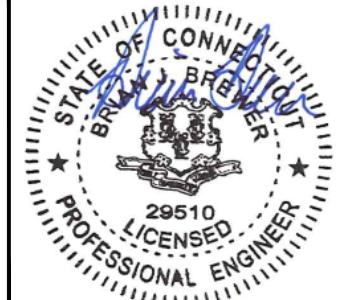
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK	
THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:	
TOWER SCOPE OF WORK:	
<ul style="list-style-type: none"> • REMOVE EXISTING EQUIPMENT @ 137'-0" AGL • INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) • INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT • INSTALL PROPOSED JUMPERS • INSTALL (6) PROPOSED RRUs (2 PER SECTOR) • INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) • INSTALL (1) PROPOSED HYBRID CABLE 	
GROUND SCOPE OF WORK:	
<ul style="list-style-type: none"> • REMOVE EXISTING DEFUNCT EQUIPMENT AND PORTION OF ICE BRIDGE • INSTALL (1) PROPOSED METAL PLATFORM • INSTALL (1) PROPOSED ICE BRIDGE • INSTALL (1) PROPOSED PPC CABINET • INSTALL (1) PROPOSED EQUIPMENT CABINET • INSTALL (1) PROPOSED POWER CONDUIT • INSTALL (1) PROPOSED TELCO CONDUIT • INSTALL (1) PROPOSED TELCO-FIBER BOX • INSTALL (1) PROPOSED GPS UNIT • INSTALL (1) PROPOSED FIBER NID (IF REQUIRED) • DISH Wireless L.L.C. TO UTILIZE EXISTING DEFUNCT METER "03 396 930" & DISCONNECT. 	

GENERAL NOTES	
THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE, NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.	
11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED	

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SITE INFORMATION		PROJECT DIRECTORY	
PROPERTY OWNER:	SEYOUR BEACON FALLS LLC	APPLICANT:	DISH WIRELESS, LLC.
ADDRESS:	220-2F MAIN STREET		5701 SOUTH SANTA FE DRIVE
	OXFORD, CT 06478		LITTLETON, CO 80120
TOWER TYPE:	MONPOLE	TOWER OWNER:	CROWN CASTLE, USA INC.
			2000 CORPORATE DRIVE
			CANONSBURG, PA 15317
			(877) 486-9377
CROWN CASTLE	553383	SITE DESIGNER:	KIMLEY-HORN & ASSOCIATES
APP NUMBER:			3875 EMBASSY PKWY, SUITE 280
COUNTY:	NEW HAVEN		AKRON, OH 44333
LATITUDE (NAD 83):	41° 24' 7.93" N		(216) 505-7771
	41.402203° N		COA #: PEC.0000738
LONGITUDE (NAD 83):	73° 4' 20.16" W		
	73.072267° W		
ZONING JURISDICTION:	CT-CONNECTICUT SITING COUNCIL	SITE ACQUISITION:	CORWIN DIXON
ZONING DISTRICT:	GI2 – GENERAL INDUSTRIAL		CORWIN.DIXON@DISH.COM
PARCEL NUMBER:	10-11-38A-0	CONSTRUCTION MANAGER:	JAVIER SOTO
OCCUPANCY GROUP:	U		JAVIER.SOTO@DISH.COM
CONSTRUCTION TYPE:	II-B	RF ENGINEER:	DIPESH PARIKH
POWER COMPANY:	EVERSOURCE		DIPESH.PARIKH@DISH.COM
TELEPHONE COMPANY:	TBD		
		04/08/22	
		Exp. 01/31/23	


Kimley»Horn		
COA #: PEC.0000738		
421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601		
<p>STATE OF CONNECTICUT BUREAU OF PROFESSIONAL ENGINEERS 29510 LICENSED PROFESSIONAL ENGINEER</p>		
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.		
DRAWN BY:	CHECKED BY:	APPROVED BY:
WJW	MCK	MCK
RFDS REV #: ---		
CONSTRUCTION DOCUMENTS		
SUBMITTALS		
REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT
A&E PROJECT NUMBER KHCLC-16545		
DISH Wireless L.L.C. PROJECT INFORMATION		
BOHVN00166A 34 RIMMON ST SEYMOUR, CT 06483		
SHEET TITLE TITLE SHEET		
SHEET NUMBER T-1		

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

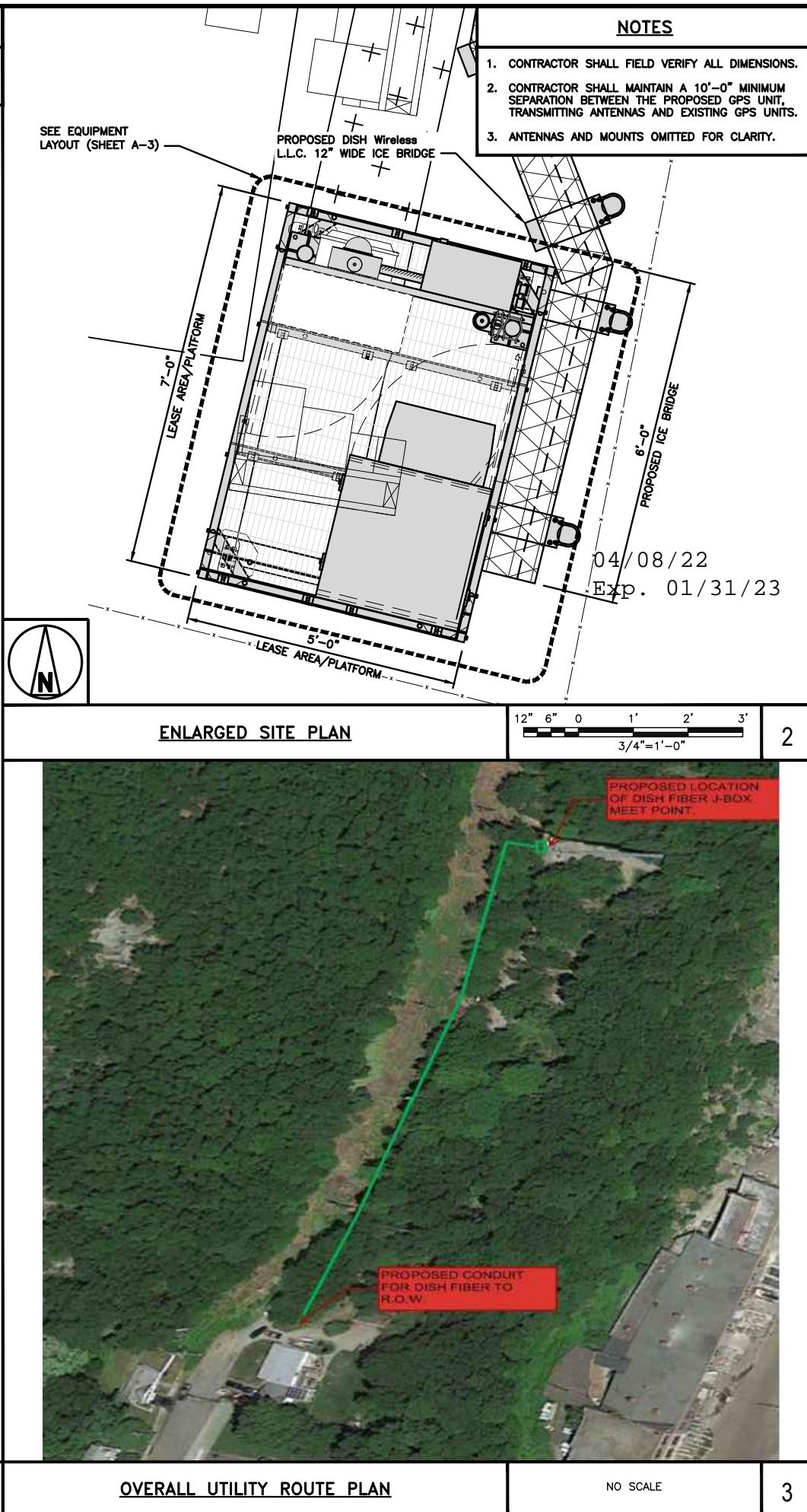
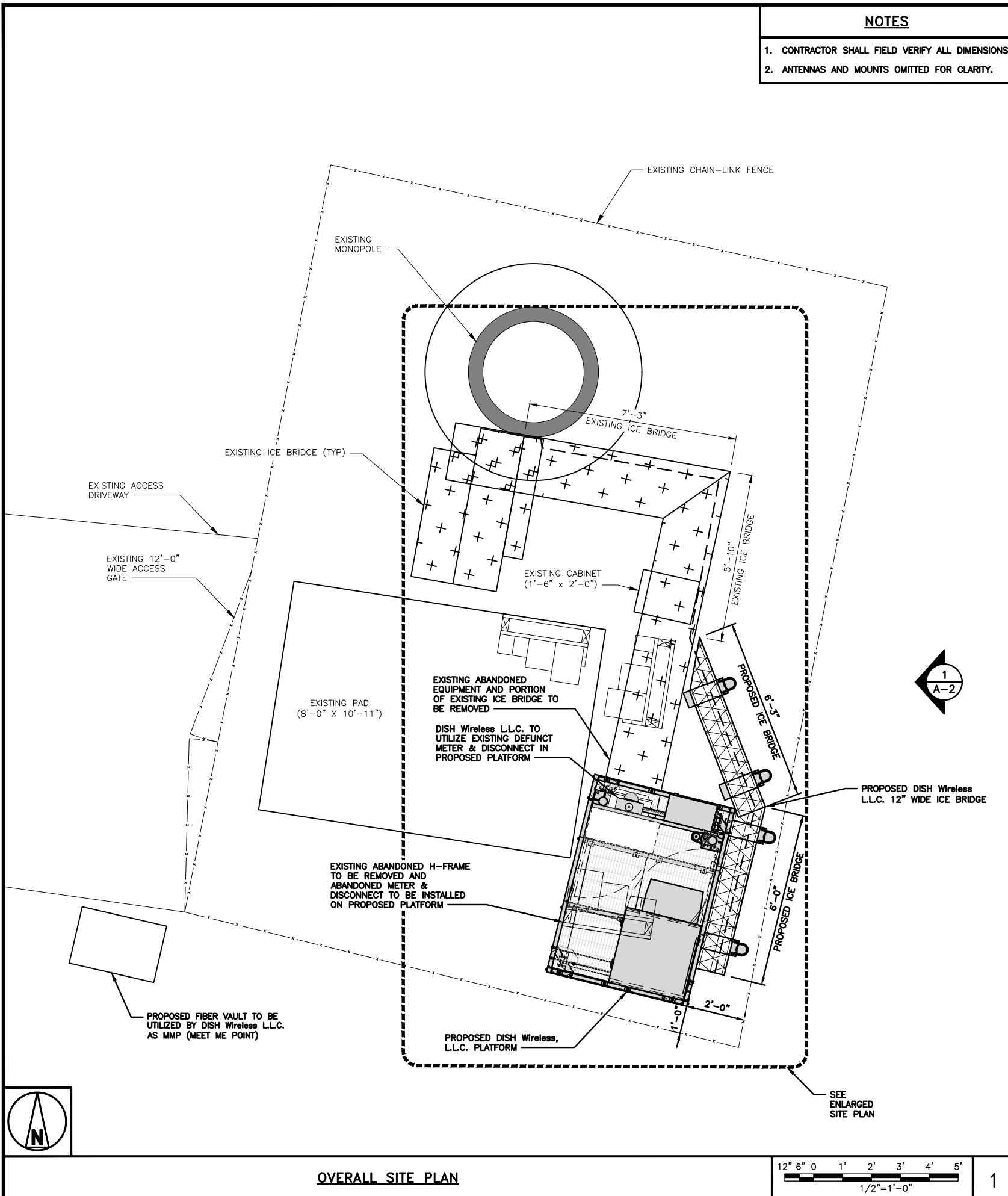
DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #:

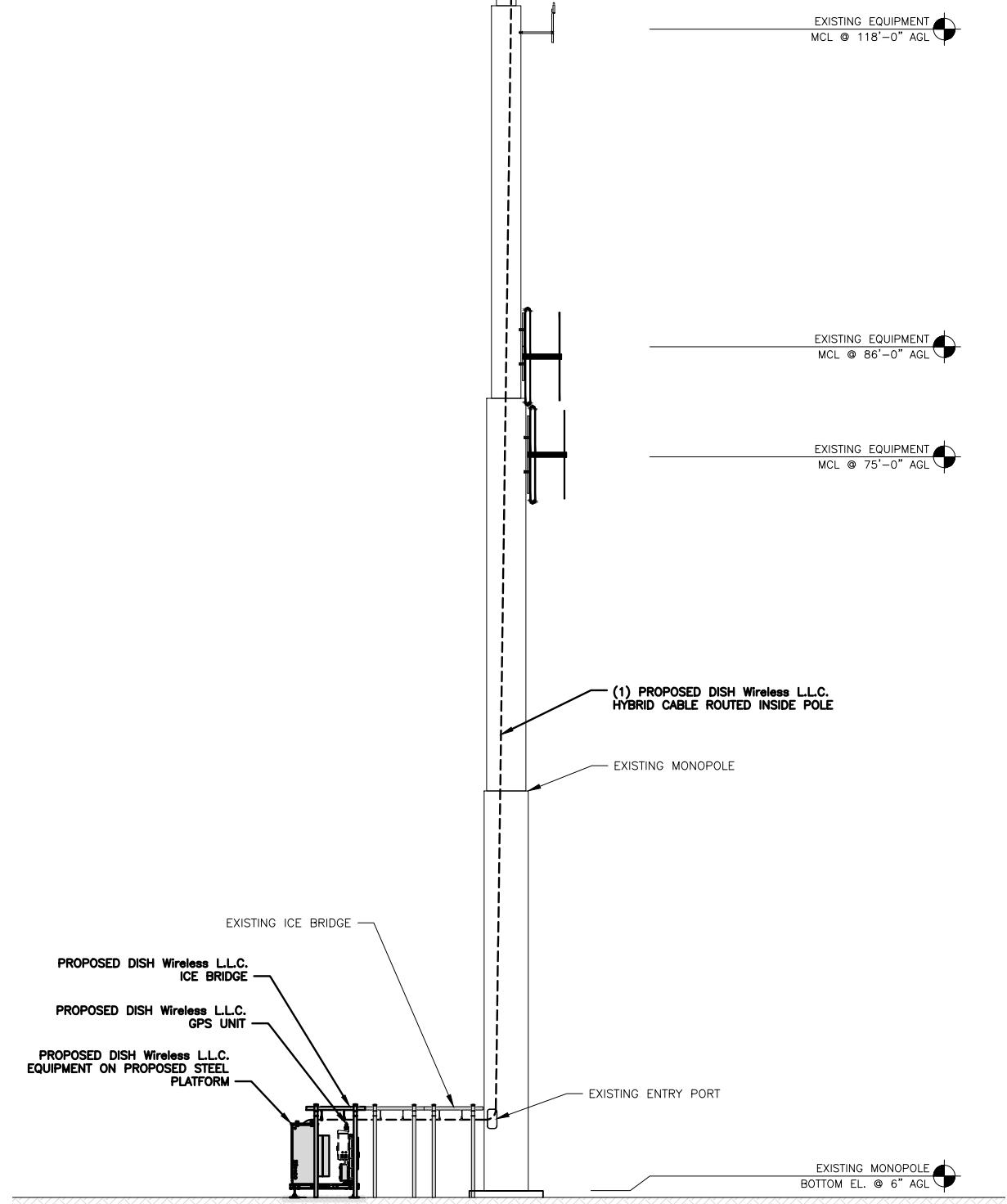
CONSTRUCTION DOCUMENTS

SUBMITTALS

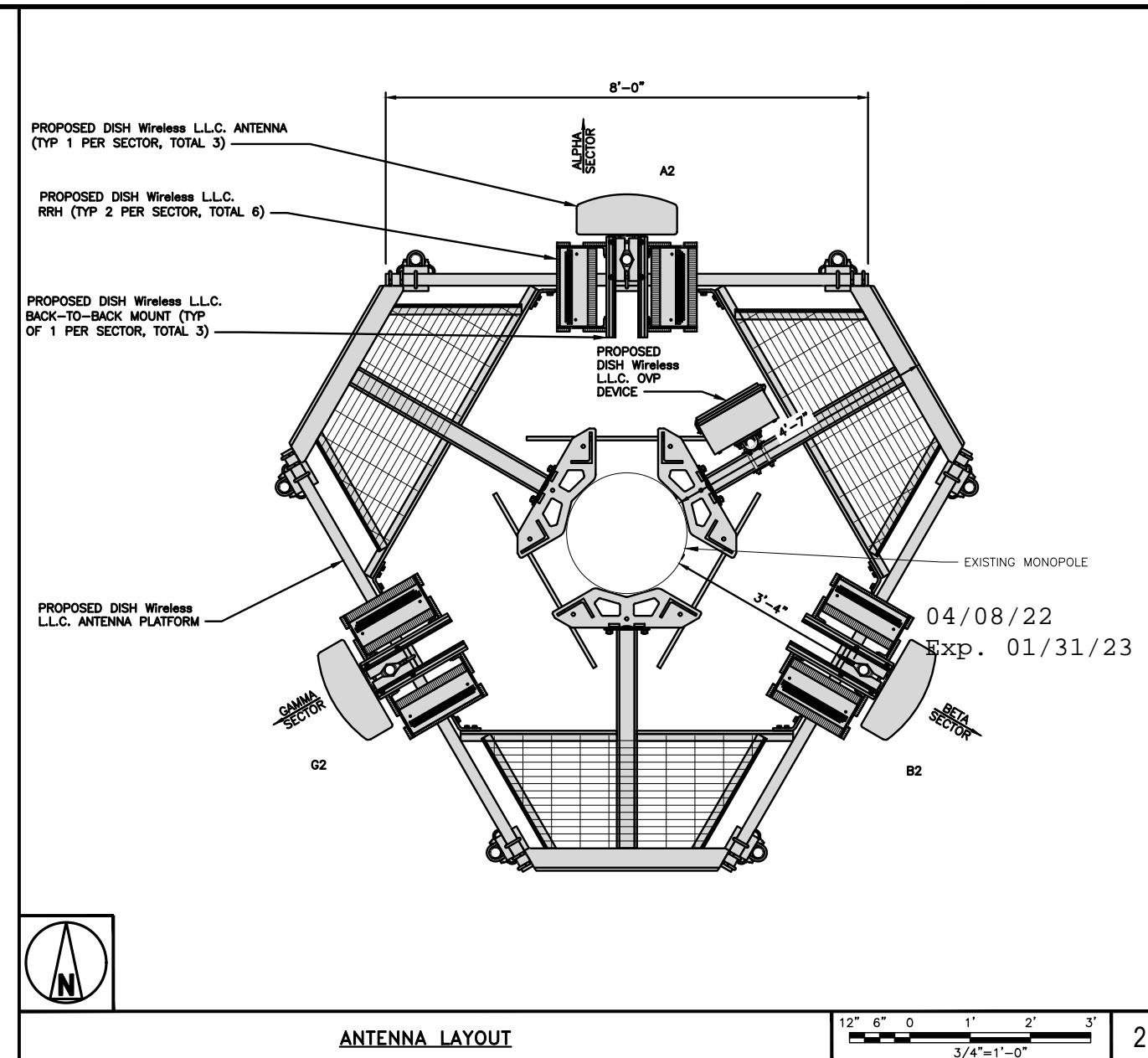
REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT




A&E PROJECT NUMBER
KHCLE-16545

DISH Wireless LLC,
PROJECT INFORMATION
BOHVN00166A
34 RIMMON ST
SEYMOUR, CT 06483


SHEET TITLE
OVERALL AND ENLARGED
SITE PLAN

SHEET NUMBER


A-1

NOTES	
1. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.	
2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.	
3. EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.	
4. REMOVE EXISTING ABANDONED ANTENNAS AND MOUNTS @ 137'-0" AGL.	
KIMLEY-HORN HAS NOT ANALYZED THE PROPOSED ANTENNA MOUNT(S) TO DETERMINE ADEQUATE STRUCTURAL CAPACITY FOR PROPOSED CARRIER LOADING. MOUNT ANALYSIS TO BE DONE BY OTHERS.	

EXISTING TOP OF EQUIPMENT
TOP EL. @ 153'-0" AGL
EXISTING MONOPOLE
TOP EL. @ 149'-6" AGL
EXISTING PANEL ANTENNAS
RAD CENTER @ 148'-0" AGL
EXISTING EQUIPMENT
MCL @ 146'-0" AGL
(3) PROPOSED DISH Wireless L.L.C. ANTENNAS
RAD CENTER @ 138'-0" AGL
REMOVE EXISTING ABANDONED PANEL ANTENNAS
RAD CENTER @ 137'-0" AGL

SECTOR	POSITION	ANTENNA					TRANSMISSION CABLE
		EXISTING OR PROPOSED	MANUFACTURER - MODEL NUMBER	TECHNOLOGY	SIZE (HxW)	AZIMUTH	
ALPHA	A2	PROPOSED	JMA - MX08FR0665-21	5G	72.0" x 20.0"	0°	138'-0"
BETA	B2	PROPOSED	JMA - MX08FR0665-21	5G	72.0" x 20.0"	120°	138'-0"
GAMMA	G2	PROPOSED	JMA - MX08FR0665-21	5G	72.0" x 20.0"	240°	138'-0"

(1) HIGH-CAPACITY HYBRID CABLE (190'-0" LONG)

SECTOR	POSITION	RRH		NOTES
		MANUFACTURER - MODEL NUMBER	TECHNOLOGY	
ALPHA	A2	FUJITSU - TA08025-B604	5G	1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS. 2. ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.
	A2	FUJITSU - TA08025-B605	5G	
BETA	B2	FUJITSU - TA08025-B604	5G	
	B2	FUJITSU - TA08025-B605	5G	
GAMMA	G2	FUJITSU - TA08025-B604	5G	
	G2	FUJITSU - TA08025-B605	5G	

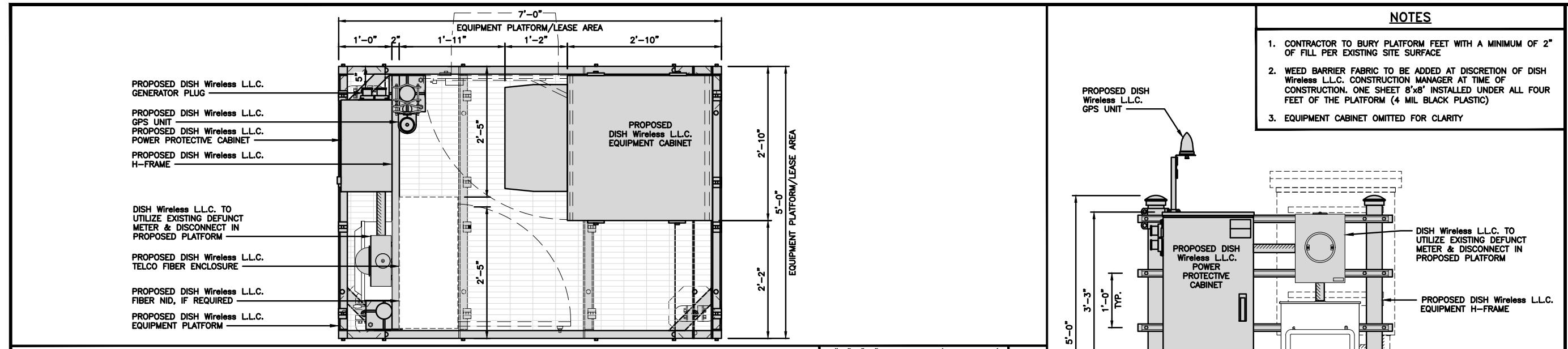
IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

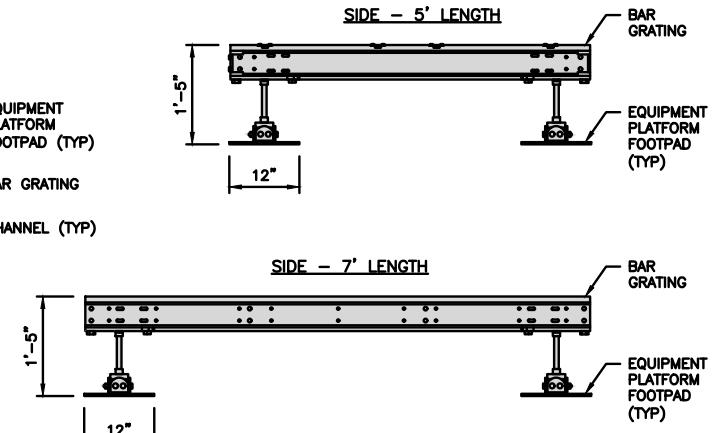
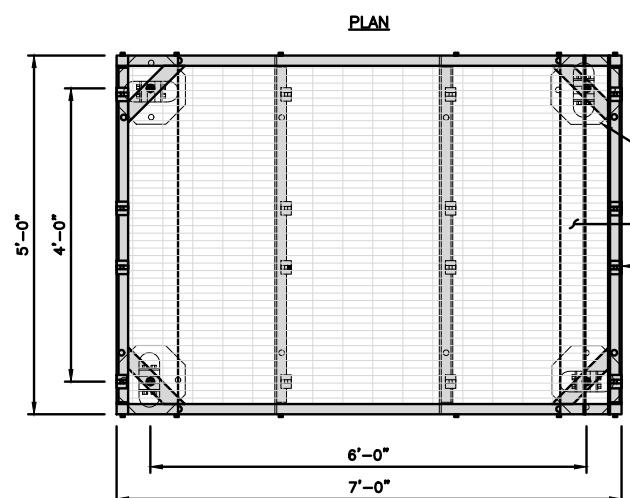

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER
KHCLE-16545

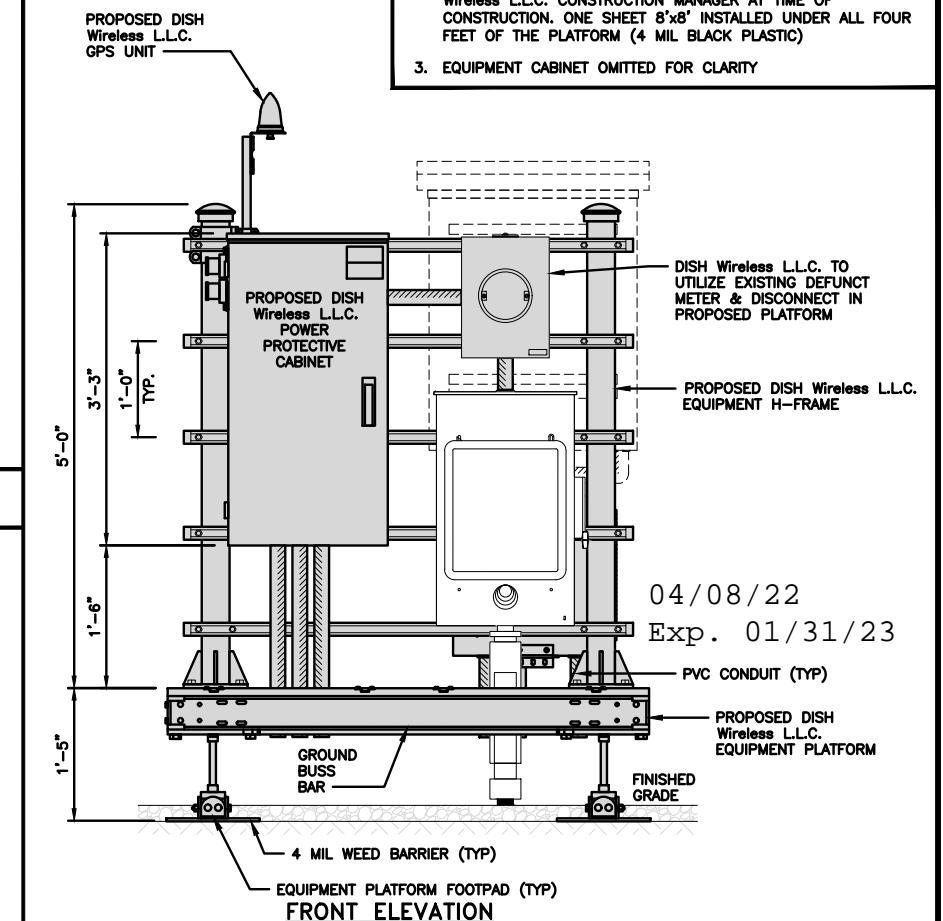
DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00166A
34 RIMMON ST
SEYMORE, CT 06483

SHEET TITLE
ELEVATION, ANTENNA
LAYOUT AND SCHEDULE

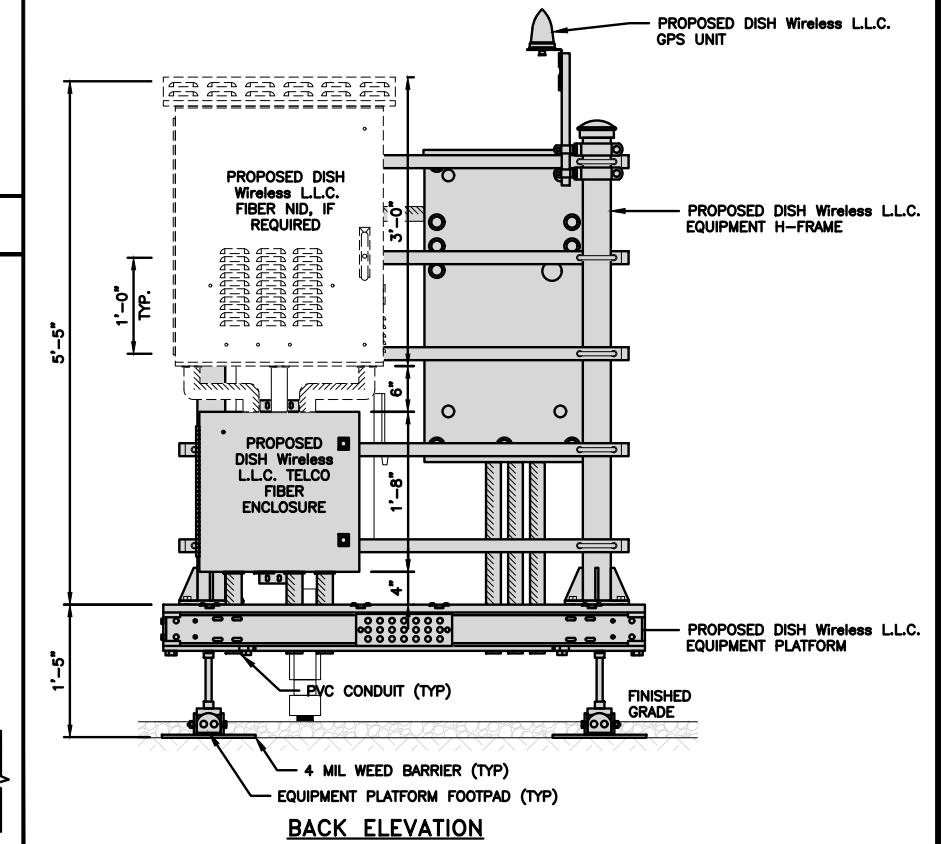
SHEET NUMBER

PLATFORM EQUIPMENT PLAN


12' 9" 6" 3" 0 1' 2'
1"=1'-0"

COMMSCOPE MTC4045LP 5X7 PLATFORM
DIMENSIONS (HxWxD) 16"x84"x60"
TOTAL WEIGHT 423 LBS


NOTE:
1. GC TO PROVIDE EXTENDED THREAD
FOR PLATFORM IF REQUIRED
HEIGHT EXCEEDS 17"
2. PLATFORM TO BE LEVEL WITHIN 1"

NOTES
1. CONTRACTOR TO BURY PLATFORM FEET WITH A MINIMUM OF 2" OF FILL PER EXISTING SITE SURFACE
2. WEED BARRIER FABRIC TO BE ADDED AT DISCRETION OF DISH Wireless LLC. CONSTRUCTION MANAGER AT TIME OF CONSTRUCTION. ONE SHEET 8'x8' INSTALLED UNDER ALL FOUR FEET OF THE PLATFORM (4 MIL BLACK PLASTIC)
3. EQUIPMENT CABINET OMITTED FOR CLARITY

04/08/22
Exp. 01/31/23

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

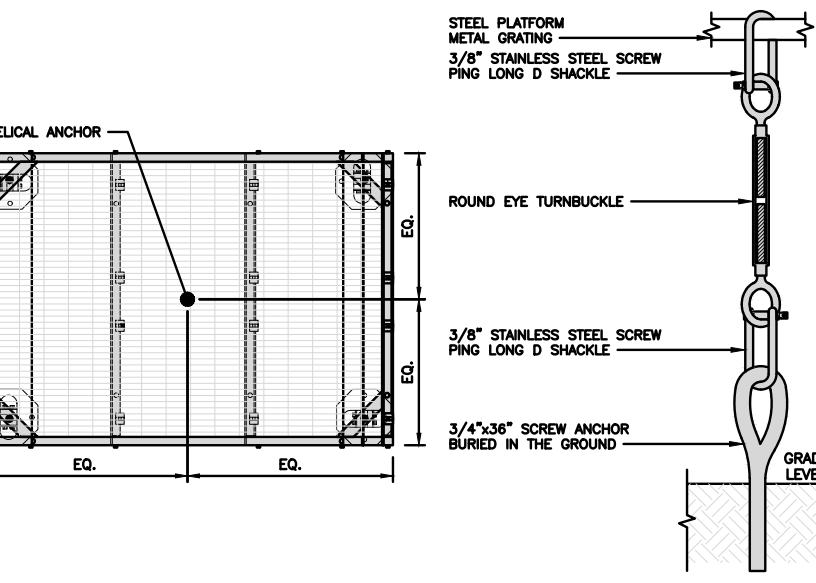
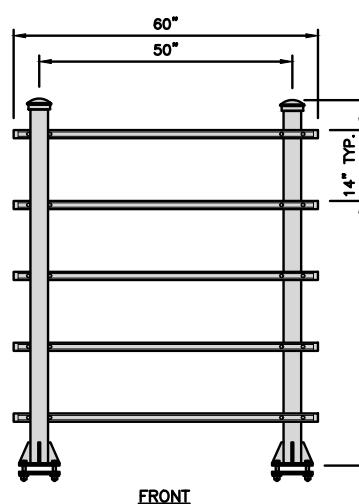
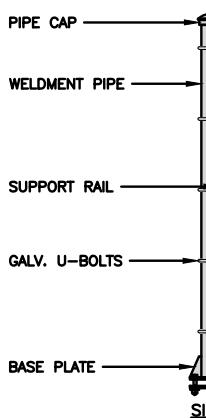
DRAWN BY: MCK
CHECKED BY: MCK
APPROVED BY: MCK

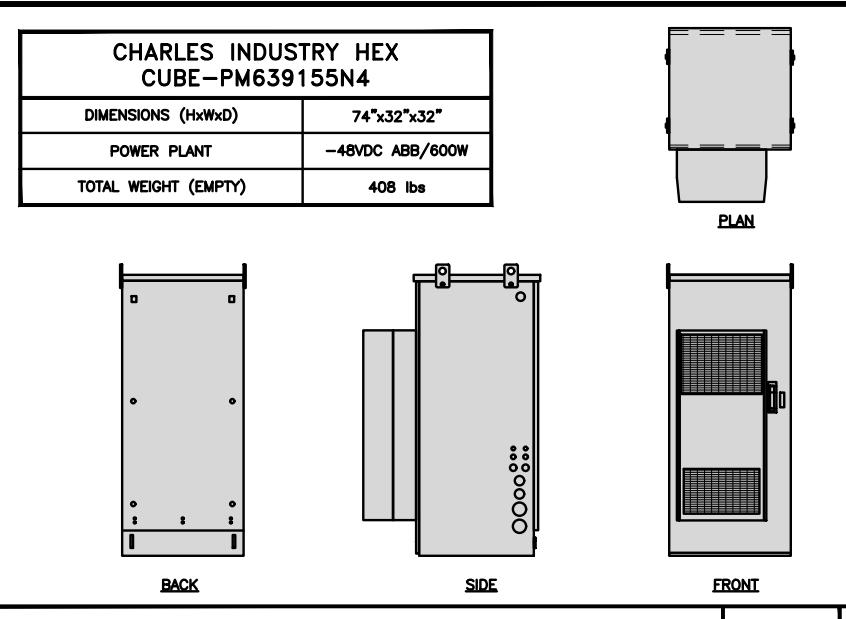
RFDS REV #: ---

CONSTRUCTION DOCUMENTS

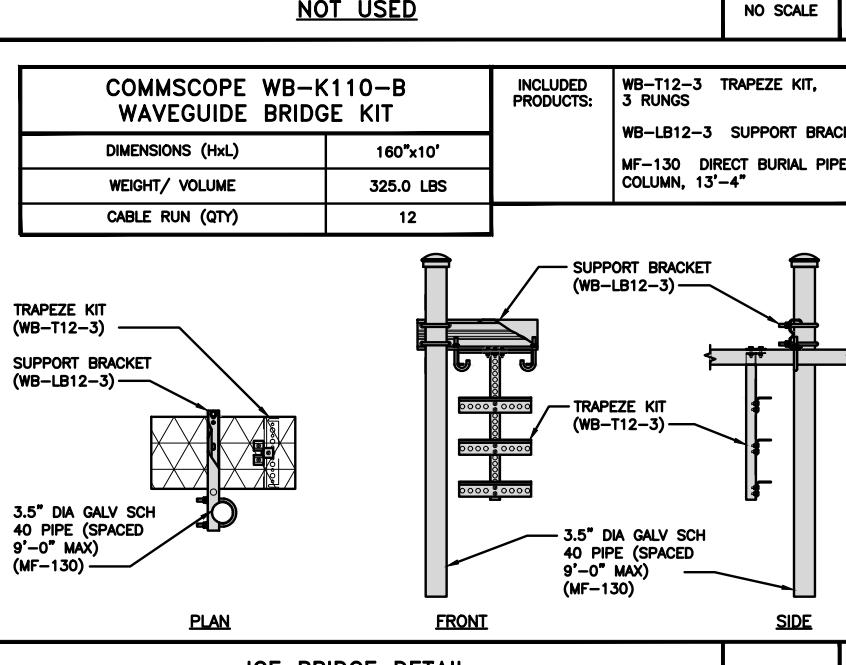
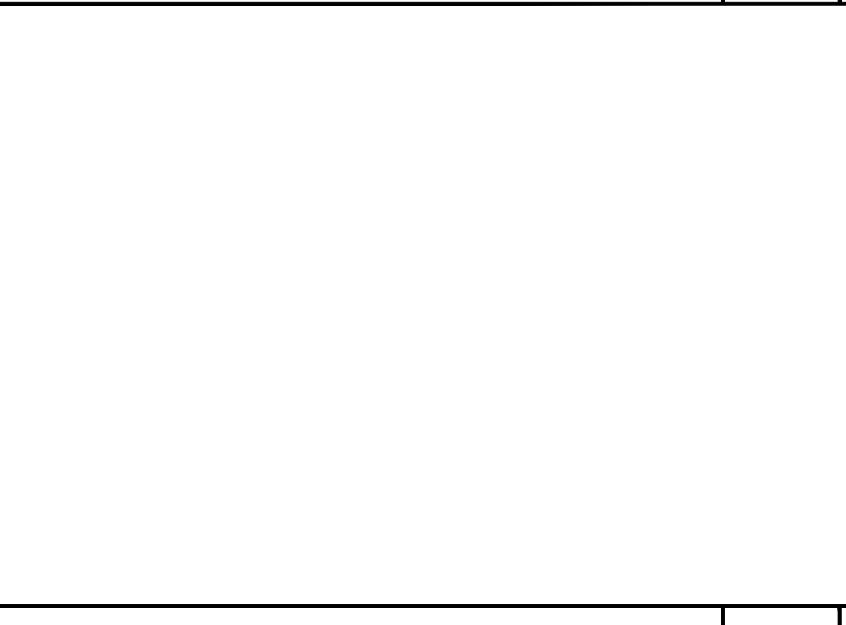
SUBMITTALS		
REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER
KHCLE-16545

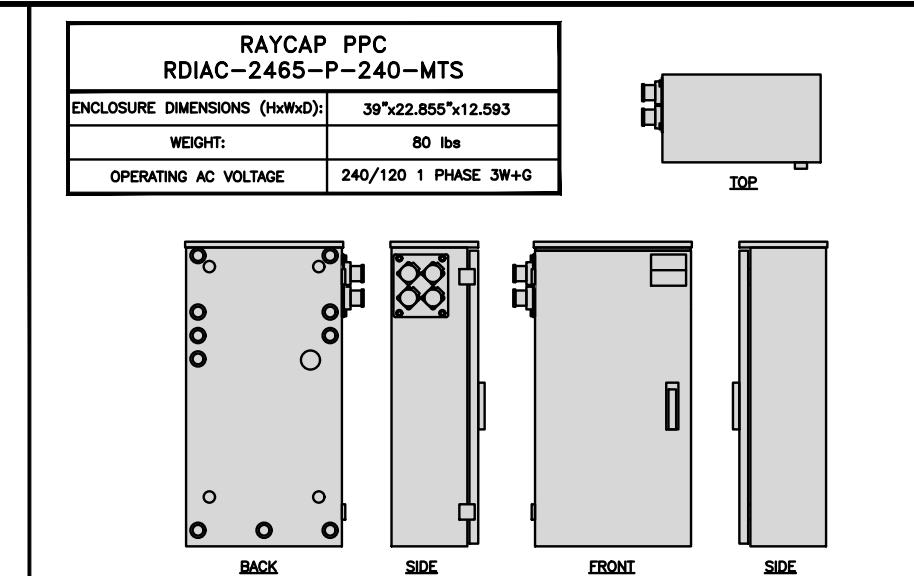



DISH Wireless LLC.
PROJECT INFORMATION
BOHVN00166A
34 RIMMON ST
SEYMOUR, CT 06483

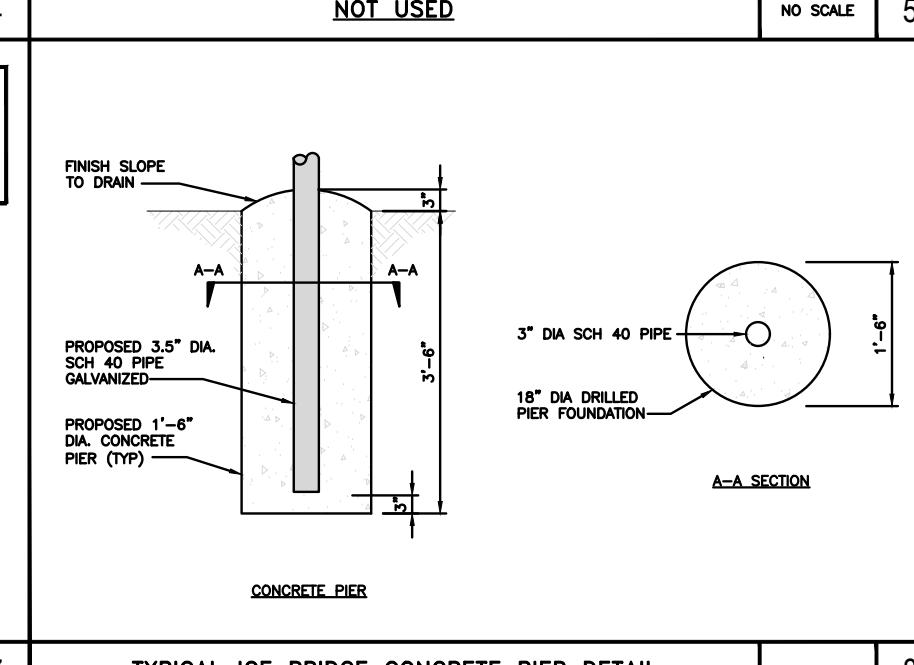
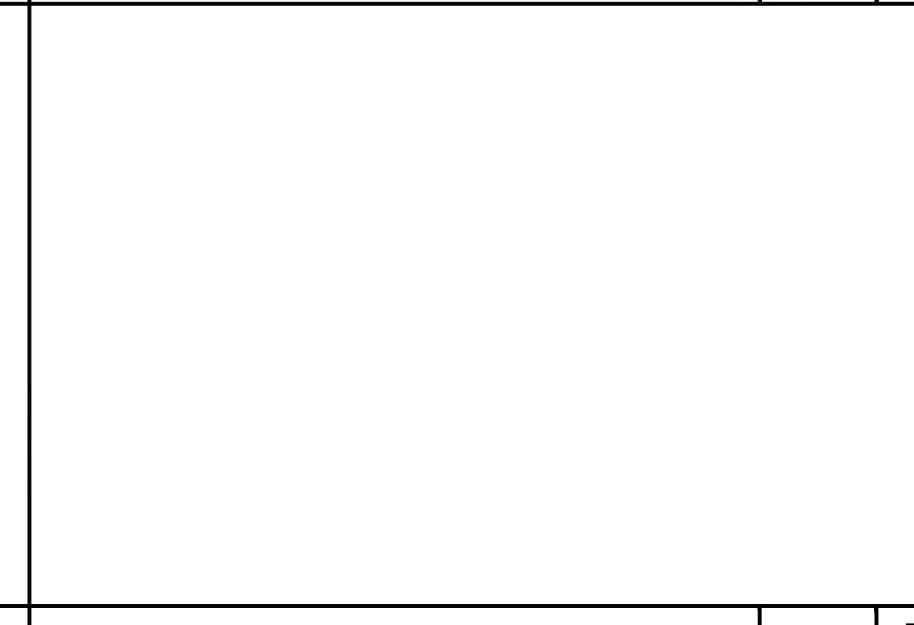

SHEET TITLE
EQUIPMENT PLATFORM AND
H-FRAME DETAILS
SHEET NUMBER

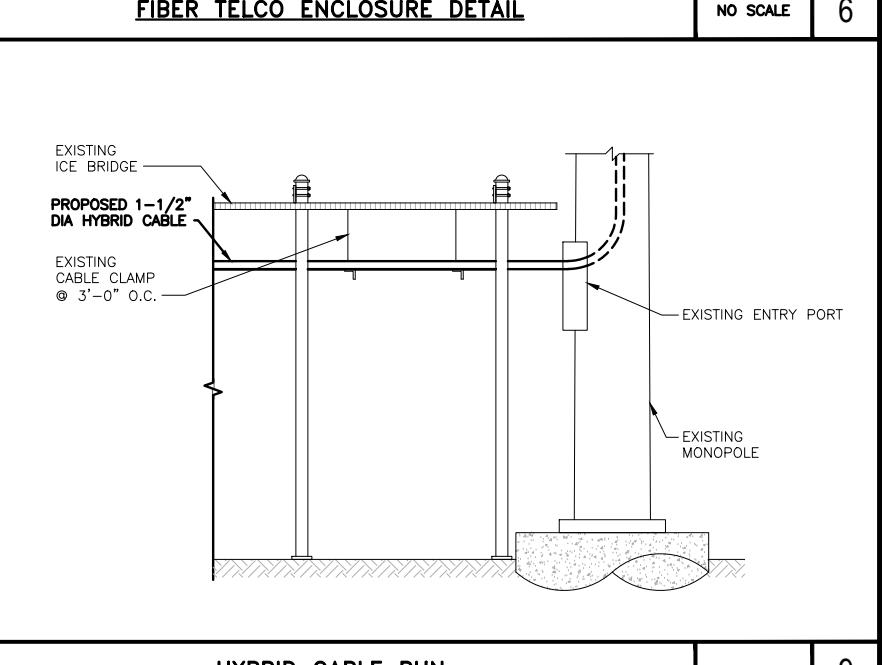
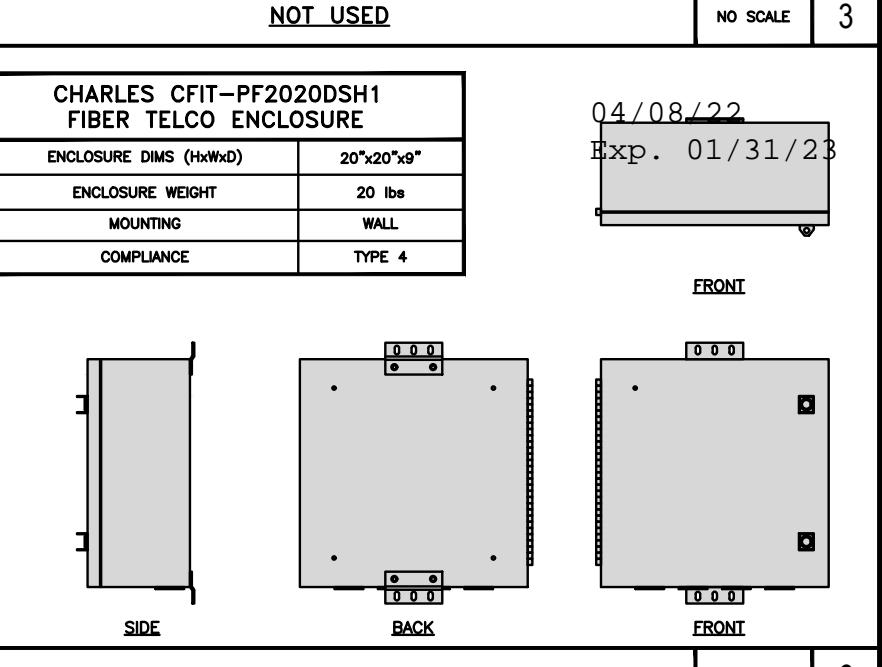
A-3

COMMSCOPE MTC4045HFLD H-FRAME
UNISTRUT/SUPPORT RAILS QTY 5
WEIGHT 59.74 lbs





CABINET DETAIL NO SCALE 1



ICE BRIDGE DETAIL NO SCALE 7

POWER PROTECTION CABINET (PPC) DETAIL NO SCALE 2

TYPICAL ICE BRIDGE CONCRETE PIER DETAIL NO SCALE 8

HYBRID CABLE RUN NO SCALE 9

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

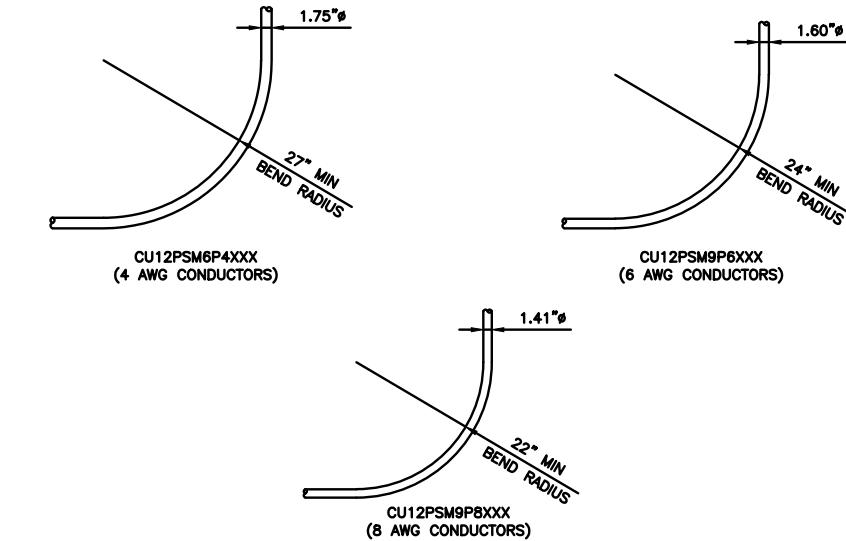
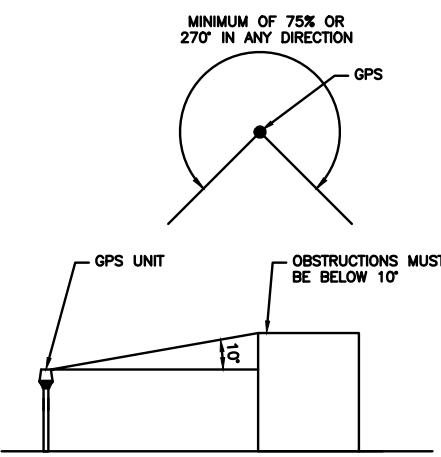
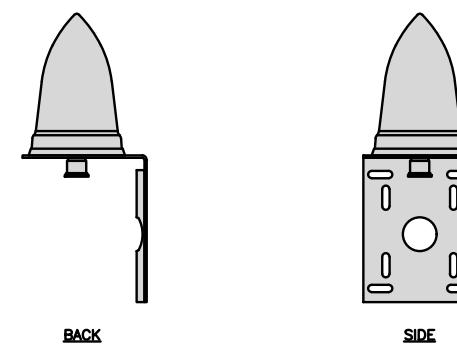
SUBMITTALS

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER

KHCLE-16545

DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00166A
34 RIMMON ST
SEYMORE, CT 06483




SHEET TITLE

EQUIPMENT DETAILS

SHEET NUMBER

A-4

PCTEL GPSGL-TMG-SPI-40NCB	
DIMENSIONS (DIAXH) MM/INCH	81x184mm 3.2"x7.25"
WEIGHT W/ACCESSORIES	075 lbs
CONNECTOR	N-FEMALE
FREQUENCY RANGE	1590 ± 30MHz

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER
KHCLE-16545

DISH Wireless LLC,
PROJECT INFORMATION
BOHVNO00166A
34 RIMMON ST
SEYMORE, CT 06483

SHEET TITLE
EQUIPMENT DETAILS

SHEET NUMBER

A-5

GPS DETAIL

NO SCALE

1

GPS MINIMUM SKY VIEW REQUIREMENTS

NO SCALE

2

CABLES UNLIMITED HYBRID CABLE
MINIMUM BEND RADIUSES

NO SCALE

3

04/08/22
Exp. 01/31/23

NOT USED

NO SCALE

4

NOT USED

NO SCALE

5

NOT USED

NO SCALE

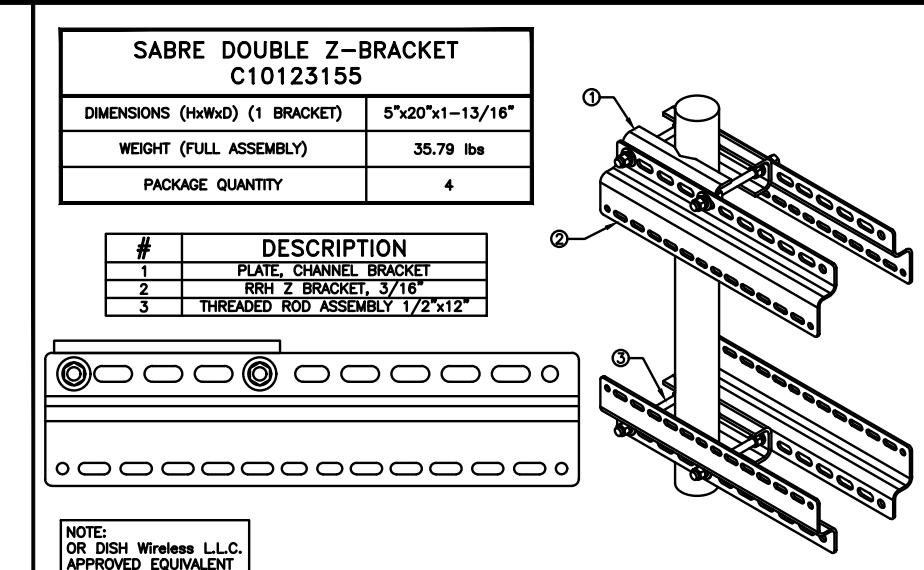
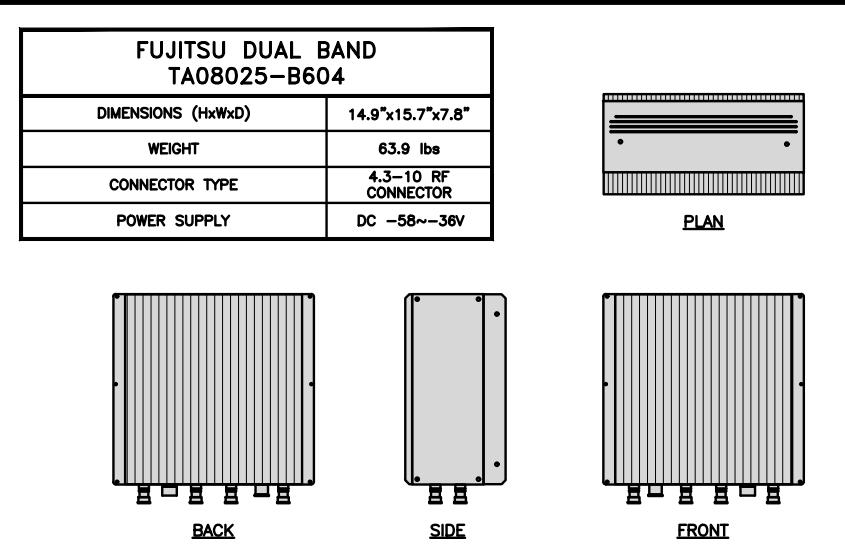
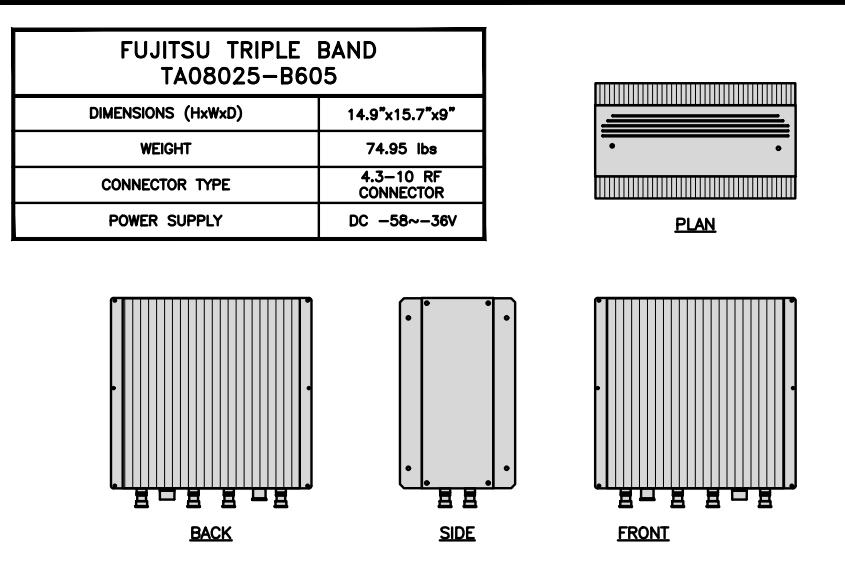
6

NOT USED

NO SCALE

7

NOT USED

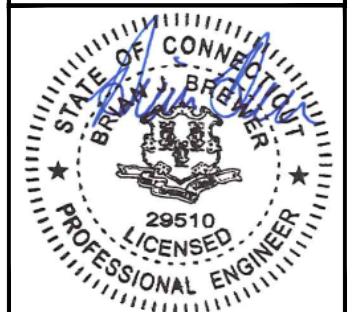



NO SCALE

8

NOT USED

NO SCALE

9



dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

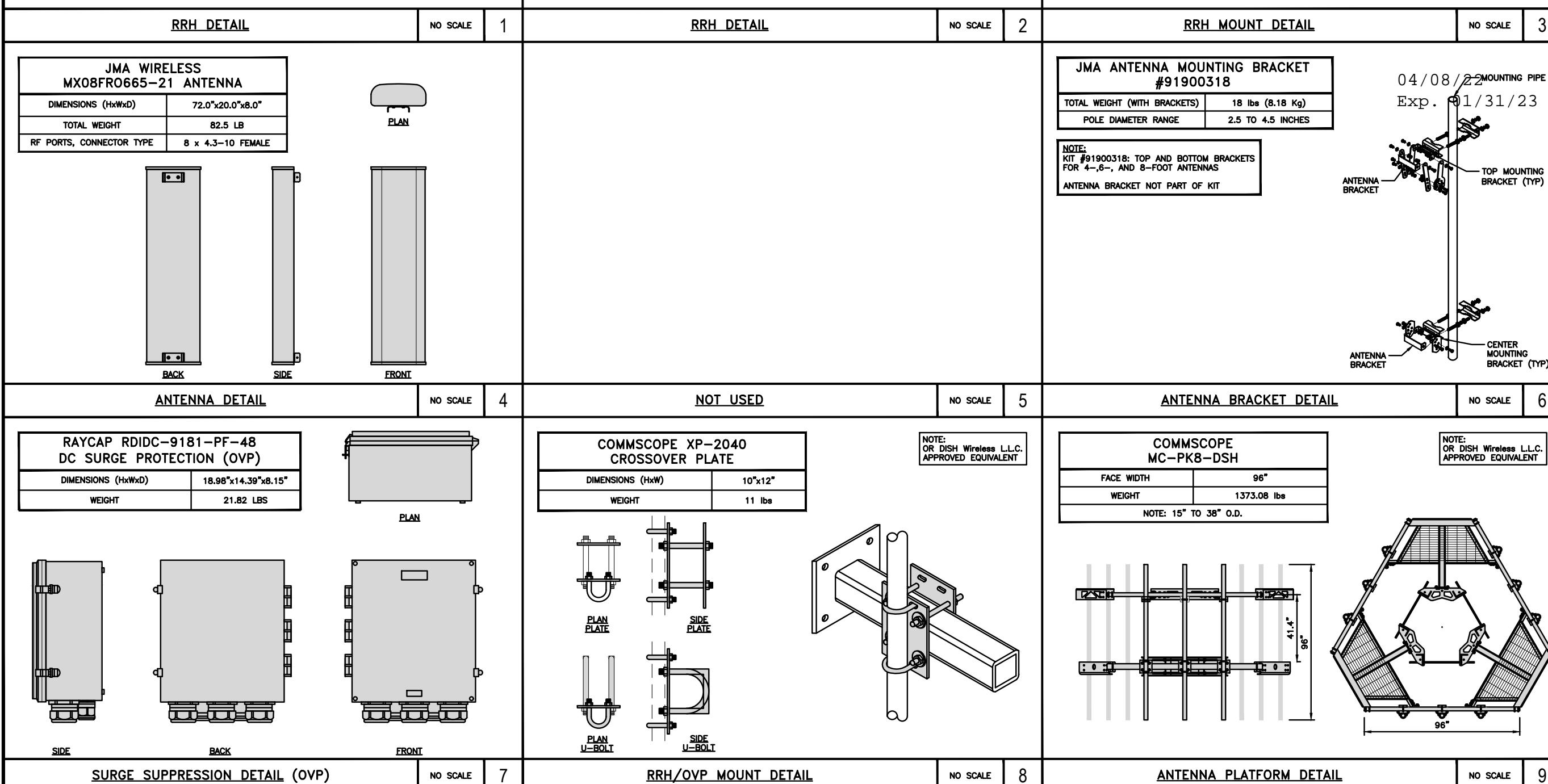
IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

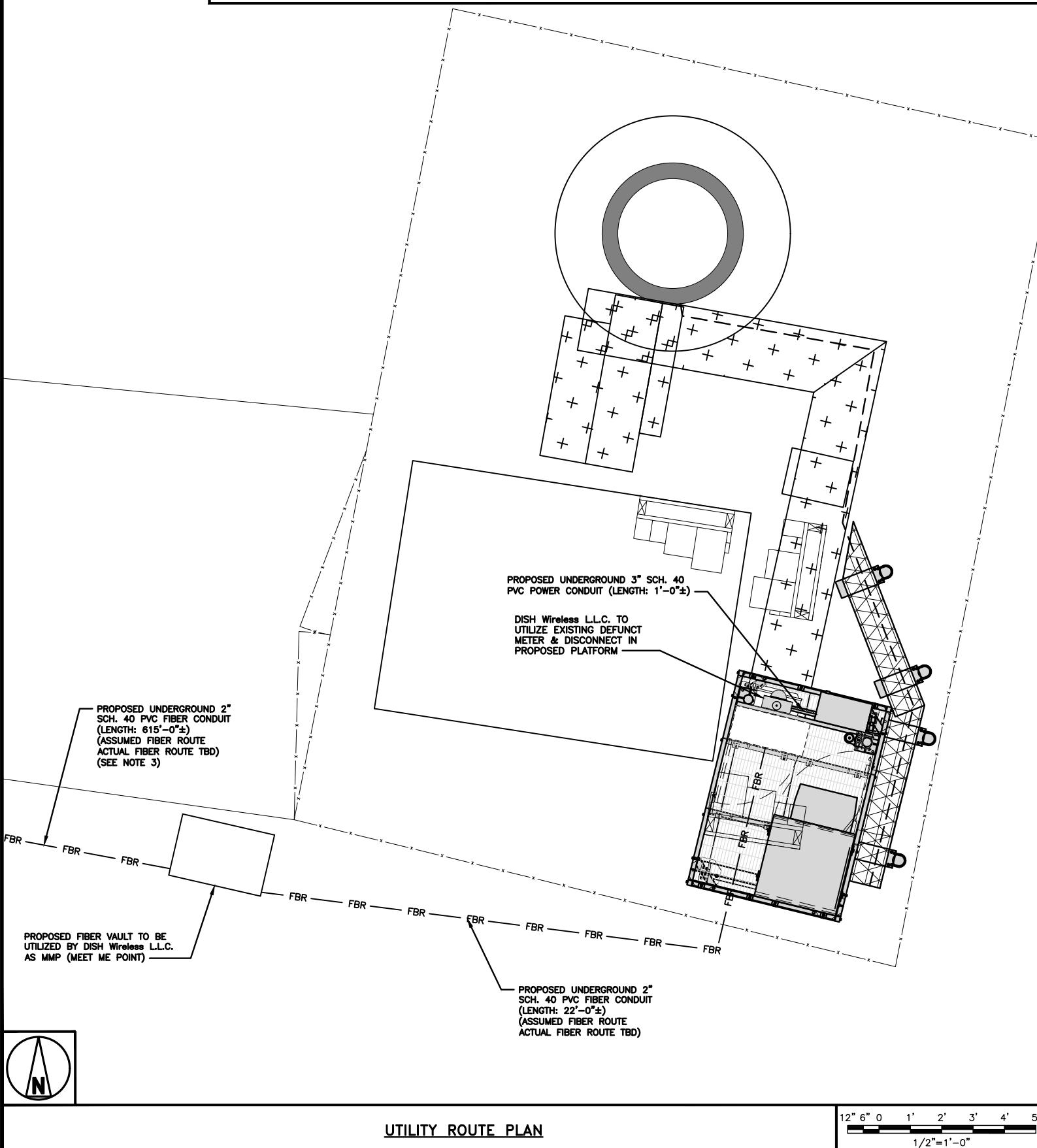
CONSTRUCTION DOCUMENTS

SUBMITTALS		
REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT


A&E PROJECT NUMBER
KHCLE-16545

DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00166A
34 RIMMON ST
SEYMORE, CT 06483

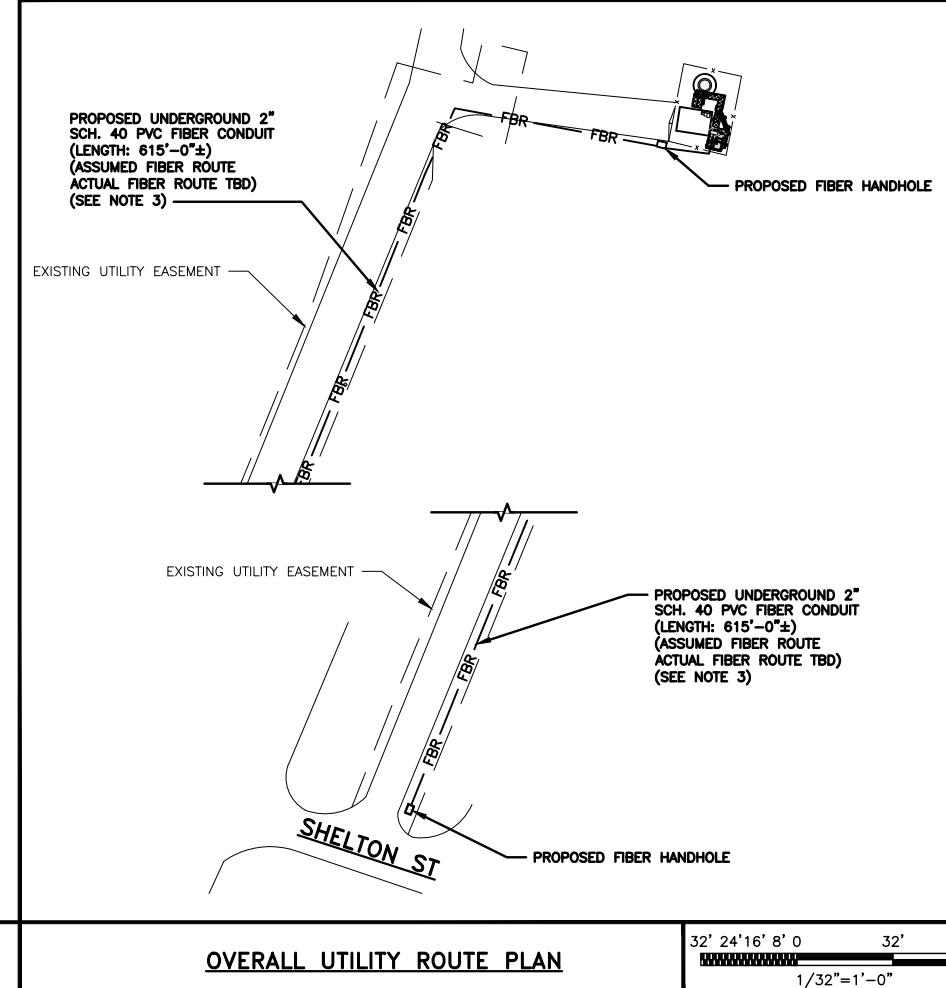
SHEET TITLE
EQUIPMENT DETAILS


SHEET NUMBER

A-6

NOTES

1. CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
2. ANTENNAS AND MOUNTS OMITTED FOR CLARITY.
3. DUE TO UTILITY EASEMENT RIGHTS SPECIFIED IN THE GROUND LEASE, CUSTOMER MAY INSTALL EQUIPMENT WITHIN SPECIFIED UTILITY EASEMENT AREA. "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 REPRESENT PLANNED ROUTING BASED ON BEST AVAILABLE INFORMATION INCLUDING BUT NOT LIMITED TO A SURVEY, EXHIBITS, METES AND BOUNDS OF THE UTILITY EASEMENT, FIELD VERIFICATION, PRIOR PROJECT DOCUMENTATION AND OTHER REAL PROPERTY RIGHTS DOCUMENTS. WHEN INSTALLING THE UTILITIES PLEASE LOCATE AND FOLLOW EXISTING PATH. IF EXISTING PATH IS MATERIALLY INCONSISTENT WITH "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 AND SAID VARIANCE IS NOT NOTED ON CDs, PLEASE NOTIFY TOWER OWNER AS FURTHER COORDINATION MAY BE NEEDED.


DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT 18 / 22
12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS. 01/31/23
13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES

NO SCALE

2

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #:

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

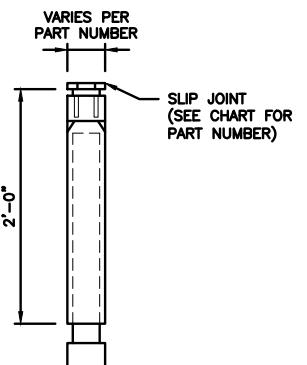
A&E PROJECT NUMBER

KHCLE-16545

DISH Wireless L.L.C. PROJECT INFORMATION

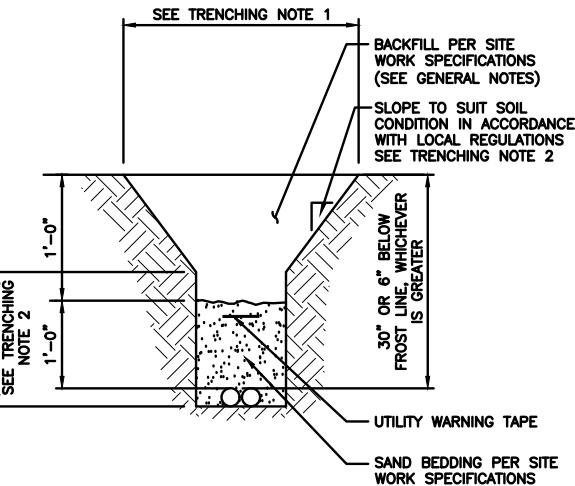
BOHVN00166A
34 RIMMON ST
SEYMOUR, CT 06483

SHEET TITLE


ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

E-1

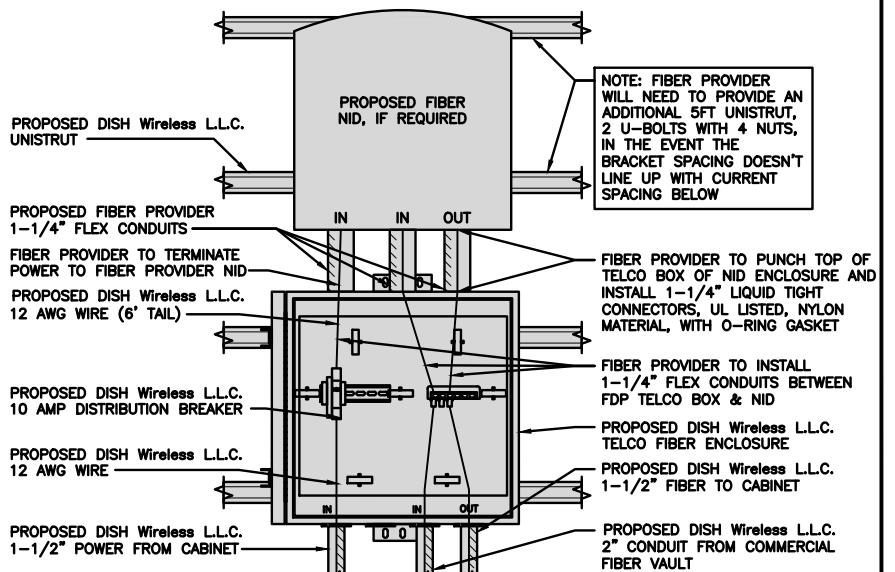

CARLON EXPANSION FITTINGS				
COUPLING END PART#	MALE TERMINAL ADAPTER END PART#	SIZE	STD CTN QTY.	TRAVEL LENGTH
E945D	E945DX	1/2"	20	4"
E945E	E945EX	3/4"	15	4"
E945F	E945FX	1"	10	4"
E945G	E945GX	1 1/4"	5	4"
E945H	E945HX	1 1/2"	5	4"
E945J	E945JX	2"	15	8"
E945K	E945KX	2 1/2"	10	8"
E945L	E945LX	3"	10	8"
E945M	E945MX	3 1/2"	5	8"
E945N	E945NX	4"	5	8"
E945P	E945PX	5"	1	8"
E945R	E945RX	6"	1	8"

NOTE:
CONTRACTOR TO INSTALL EXPANSION FITTING
SLIP JOINT AT METER CENTER CONDUIT
TERMINATION, AS PER LOCAL UTILITY POLICY,
ORDINANCE AND/OR SPECIFIED REQUIREMENT.

TRENCHING NOTES

1. CONTRACTOR SHALL RESTORE THE TRENCH TO ITS ORIGINAL CONDITIONS BY EITHER SEEDING OR SODDING GRASS AREAS, OR REPLACING ASPHALT OR CONCRETE AREAS TO ITS ORIGINAL CROSS SECTION.
2. TRENCHING SAFETY; INCLUDING, BUT NOT LIMITED TO SOIL CLASSIFICATION, SLOPING, AND SHORING, SHALL BE GOVERNED BY THE CURRENT OSHA TRENCHING AND EXCAVATION SAFETY STANDARDS.
3. ALL CONDUITS SHALL BE INSTALLED IN COMPLIANCE WITH THE CURRENT NATIONAL ELECTRIC CODE (NEC) OR AS REQUIRED BY THE LOCAL JURISDICTION, WHICHEVER IS THE MOST STRINGENT.

EXPANSION JOINT DETAIL


NO SCALE 1

TYPICAL UNDERGROUND TRENCH DETAIL

NO SCALE 2

NOT USED

NO SCALE 3

LIT TELCO BOX - INTERIOR WIRING LAYOUT (OPTIONAL)

NO SCALE 4

NOT USED

NO SCALE 5

NOT USED

NO SCALE 6

04/08/22
Exp. 01/31/23

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER
KHCLE-16545

DISH Wireless LLC.
PROJECT INFORMATION
BOHVNO00166A
34 RIMMON ST
SEYMORE, CT 06483

SHEET TITLE
ELECTRICAL DETAILS

SHEET NUMBER

E-2

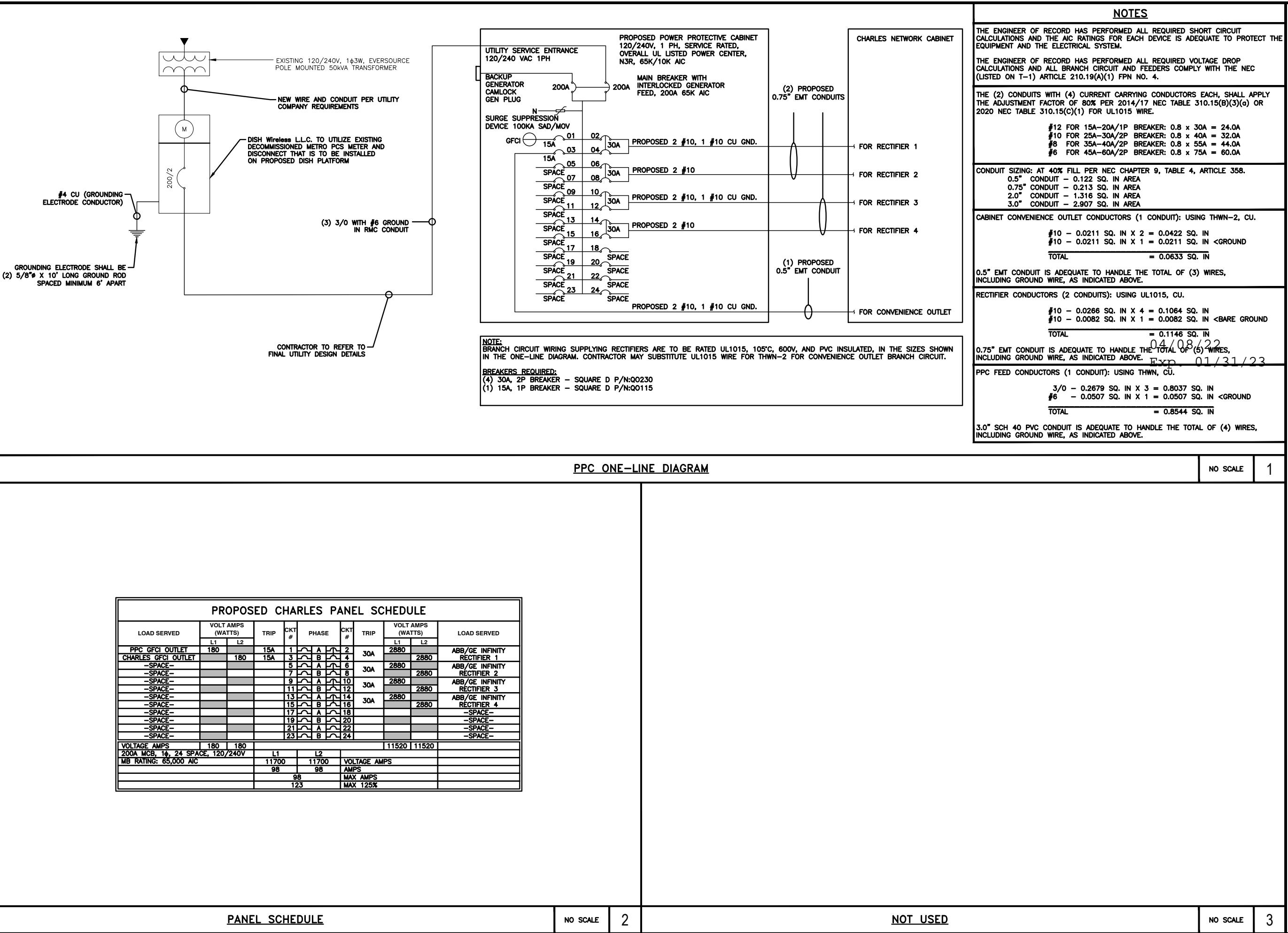
NOT USED

NO SCALE 7

NOT USED

NO SCALE 8

NOT USED

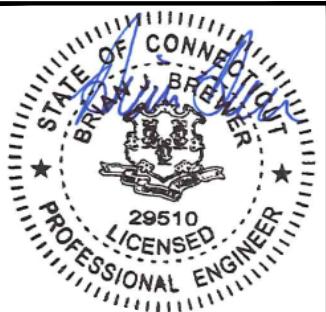

NO SCALE 9

dish
wireless.

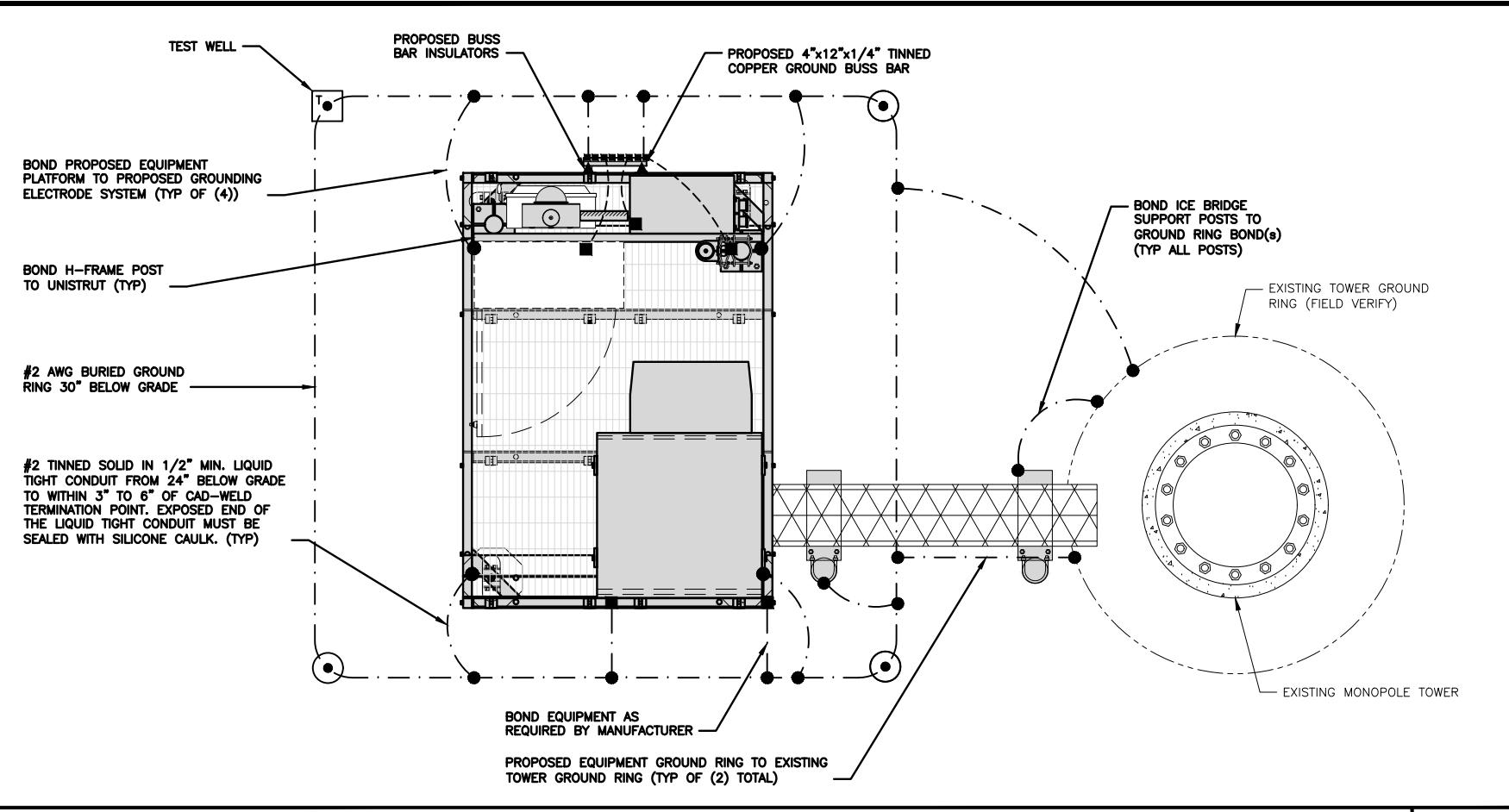
5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

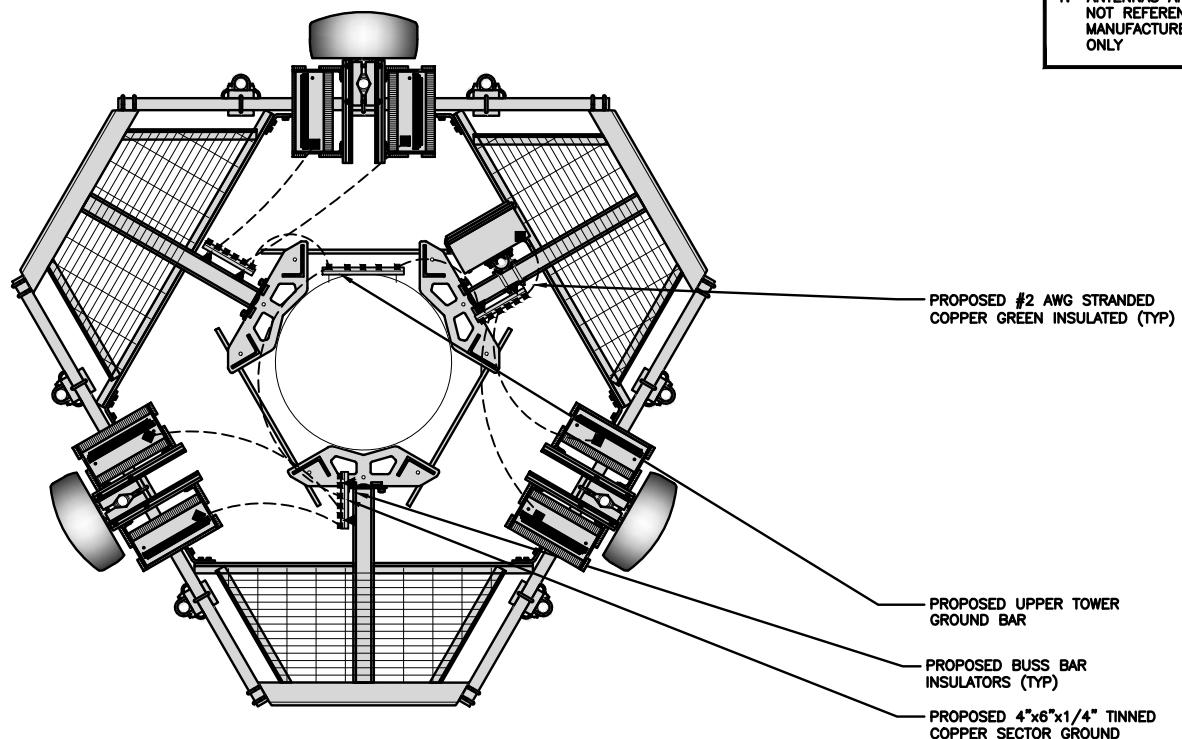
COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601



dish
wireless.


5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn


COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

PROPOSED CHARLES PANEL SCHEDULE								
LOAD SERVED	VOLT AMPS (WATTS)		TRIP	CKT #	PHASE	CKT #	TRIP	VOLT AMPS (WATTS)
	L1	L2						
PPC GFCI OUTLET	180	180	15A	1	A	2	30A	2880
CHARLES GFCI OUTLET	180	180	15A	3	B	4	30A	2880
-SPACE-				5	A	6	30A	2880
-SPACE-				7	B	8	30A	2880
-SPACE-				9	A	10	30A	2880
-SPACE-				11	B	12	30A	2880
-SPACE-				13	A	14	30A	2880
-SPACE-				15	B	16	30A	2880
-SPACE-				17	A	18		
-SPACE-				19	B	20		
-SPACE-				21	A	22		
-SPACE-				23	B	24		
VOLTAGE AMPS	180	180						
200A MCB, 1φ, 24 SPACE, 120/240V	L1	L2						
MB RATING: 65,000 AIC	11700	11700	VOLTAGE AMPS					
	98	98	AMPS					
	98	123	MAX AMPS					
	123	125%	MAX 125%					

GROUNDING LEGEND		
● EXOTHERMIC CONNECTION	■ MECHANICAL CONNECTION	
■ GROUND BUS BAR	— #6 AWG STRANDED & INSULATED	
○ GROUND ROD	— #2 AWG SOLID COPPER TINNED	
▲ BUSS BAR INSULATOR		
GROUNDING KEY NOTES		
<p>1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.</p> <p>2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless LLC. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.</p> <p>3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.</p>		
<p>(A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.</p> <p>(B) TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.</p> <p>(C) INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.</p> <p>(D) BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE BUILDING.</p> <p>(E) GROUND ROD: UL LISTED COPPER CLAD STEEL MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.</p> <p>(F) CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.</p> <p>(G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.</p> <p>(H) EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING. BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.</p> <p>(I) ITELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.</p> <p>(J) FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENT'S METAL FRAMEWORK.</p> <p>(K) INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITHIN THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.</p> <p>(L) FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.</p> <p>(M) EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE</p> <p>(N) ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.</p> <p>(O) DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR</p> <p>(P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR. REFER TO DISH Wireless LLC. GROUNDING NOTES.</p>		
COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601		
<p>STATE OF CONNECTICUT BRIAN BREWER 29510 LICENSED PROFESSIONAL ENGINEER</p>		
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.		
DRAWN BY: MCK CHECKED BY: MCK APPROVED BY: MCK		
RFDS REV #: --		
CONSTRUCTION DOCUMENTS		
SUBMITTALS		
REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT
A&E PROJECT NUMBER KHCLE-16545		
DISH Wireless LLC. PROJECT INFORMATION BOHVN00166A 34 RIMMON ST SEYMOUR, CT 06483		
SHEET TITLE GROUNDING PLANS AND NOTES		
SHEET NUMBER G-1		

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

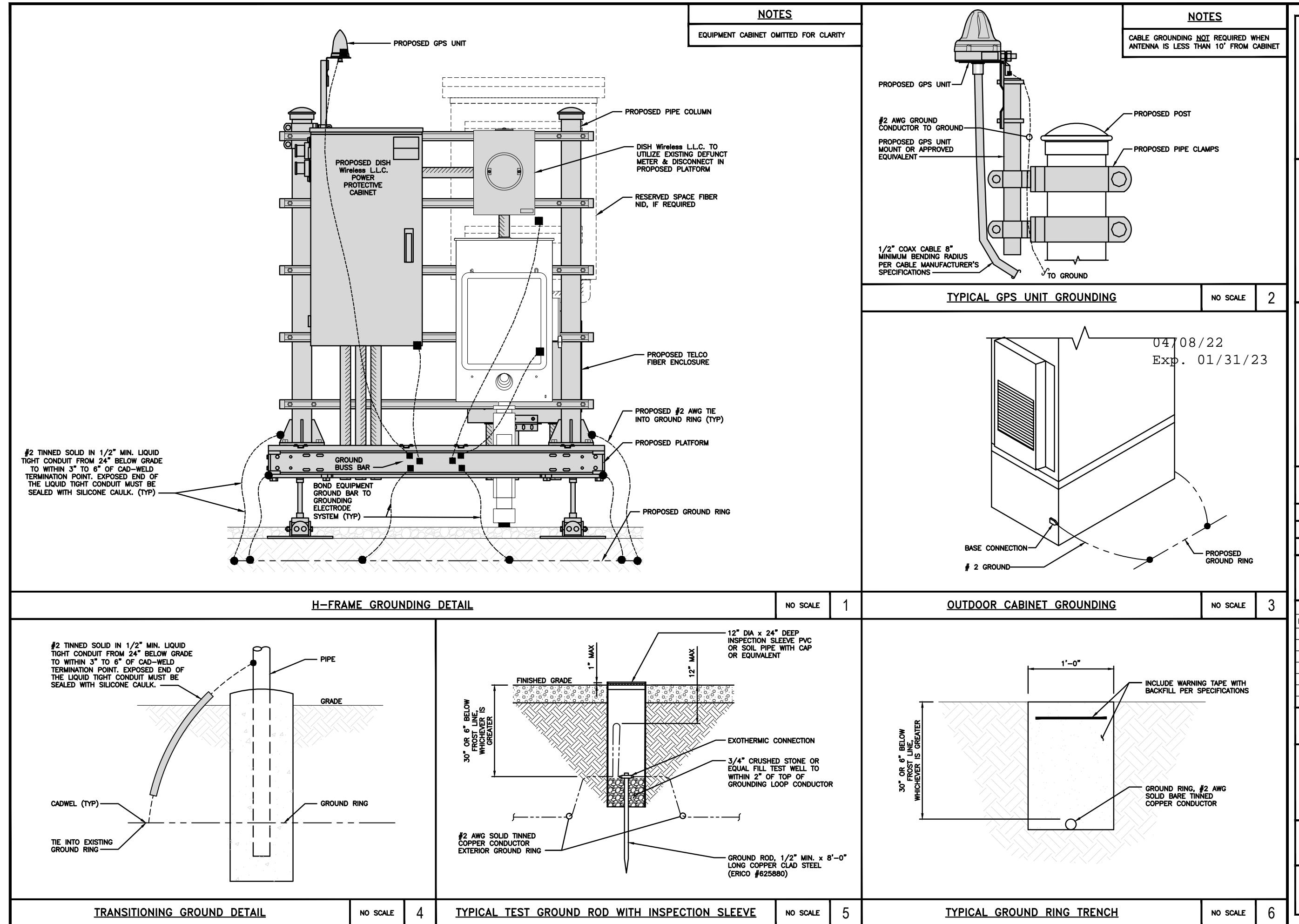
DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #:

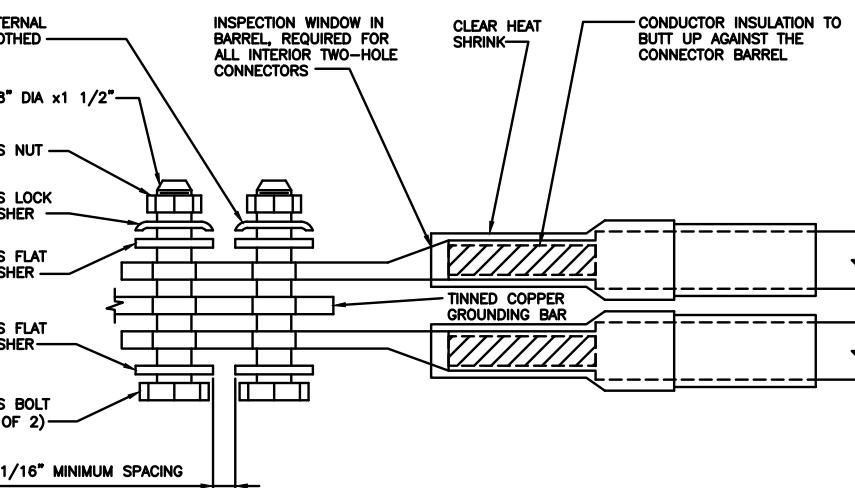
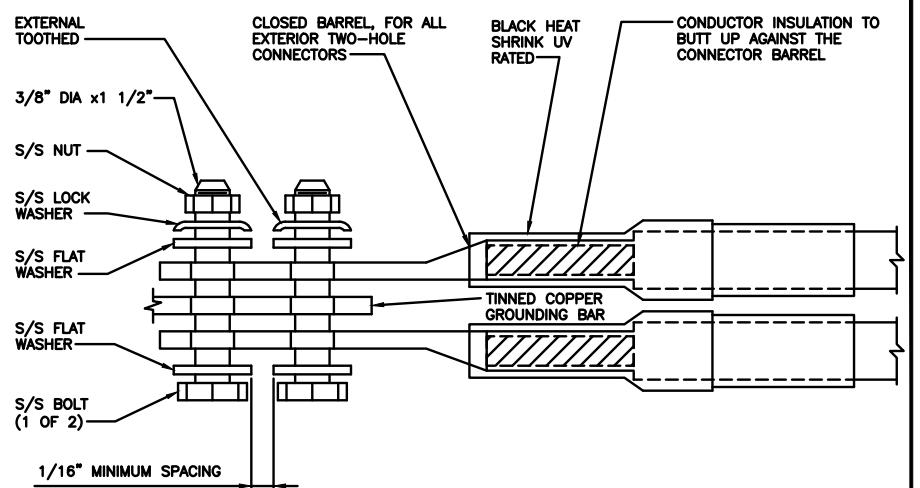
CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT


A&E PROJECT NUMBER
KHCLE-16545

DISH Wireless LLC,
PROJECT INFORMATION
BOHVN00166A
34 RIMMON ST
SEYMOUR, CT 06483



SHEET TITLE
GROUNDING DETAILS

SHEET NUMBER

G-2

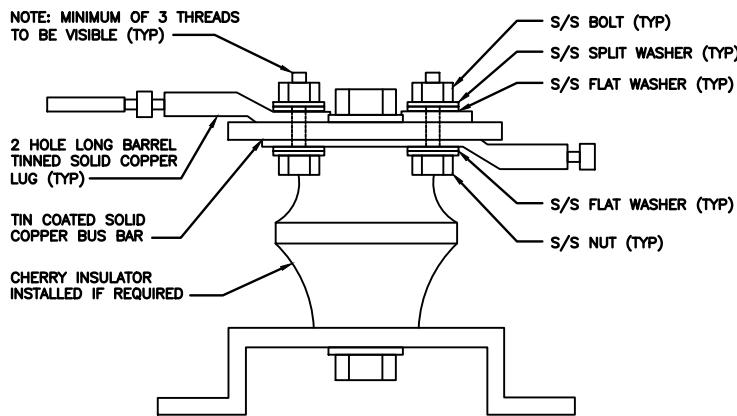
1. EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GROUND BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERMIC WELD.
2. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR LARGER. ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.
3. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.
4. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CONDUCTOR DOWN TO GROUNDING BUS.
5. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOLTED ON THE BACK SIDE.
6. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACTOR.
7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS REQUIRED.
8. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINERS).

TYPICAL GROUNDING NOTES

NO SCALE

1

TYPICAL EXTERIOR TWO HOLE LUG


NO SCALE

2

TYPICAL INTERIOR TWO HOLE LUG

NO SCALE

3

04/08/22
Exp. 01/31/23

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER
KHCLE-16545

DISH Wireless LLC,
PROJECT INFORMATION
BOHVNO0166A
34 RIMMON ST
SEYMOUR, CT 06483

SHEET TITLE
GROUNDING DETAILS

SHEET NUMBER
G-3

LUG DETAIL

NO SCALE

4

NOT USED

NO SCALE

5

NOT USED

NO SCALE

6

NOT USED

NO SCALE

7

NOT USED

NO SCALE

8

NOT USED

NO SCALE

9

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

3/4" TAPE WIDTHS WITH 3/4" SPACING											
HYBRID/DISCREET CABLES											
LOW-BAND RRH (600 MHz N71 BASEBAND) + (850 MHz N26 BAND) + (700 MHz N29 BAND) – OPTIONAL PER MARKET ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BAND)											
ALPHA RRH PORT 1 + SLANT PORT 2 – SLANT PORT 3 + SLANT PORT 4 – SLANT RED ORANGE (-) PORT BETA RRH PORT 1 + SLANT PORT 2 – SLANT PORT 3 + SLANT PORT 4 – SLANT BLUE ORANGE (-) PORT GAMMA RRH PORT 1 + SLANT PORT 2 – SLANT PORT 3 + SLANT PORT 4 – SLANT GREEN ORANGE (-) PORT CBRS TECH (3 GHz) (-) PORT LOW BAND (N71+N26) OPTIONAL – (N29) AWS (N66+N70+H-BLOCK) NEGATIVE SLANT PORT ON ANT/RRH CBRS TECH (3 GHz) CBRS TECH (3 GHz)											
MID-BAND RRH (AWS BANDS N66+N70) ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)											
HYBRID/DISCREET CABLES INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS. EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS. EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS. EXAMPLE 3 – MAIN COAX WITH GROUND MOUNTED RRHs.											
FIBER JUMPERS TO RRHs LOW BAND RRH MID BAND RRH LOW BAND RRH MID BAND RRH LOW BAND RRH MID BAND RRH											
POWER CABLES TO RRHs LOW BAND RRH MID BAND RRH LOW BAND RRH MID BAND RRH LOW BAND RRH MID BAND RRH											
RET MOTORS AT ANTENNAS RET CONTROL IS HANDLED BY THE MID-BAND RRH WHEN ONE SET OF RET PORTS EXIST ON ANTENNA. SEPARATE RET CABLES ARE USED WHEN ANTENNA PORTS PROVIDE INPUTS FOR BOTH LOW AND MID BANDS.											
MICROWAVE RADIO LINKS FORWARD AZIMUTH OF 0–120 DEGREES FORWARD AZIMUTH OF 120–240 DEGREES FORWARD AZIMUTH OF 240–359 DEGREES PRIMARY SECONDARY WHITE RED WHITE WHITE BLUE WHITE WHITE GREEN WHITE WHITE GREEN WHITE											

LOW BANDS (N71+N26) OPTIONAL – (N29)	AWS (N66+N70+H-BLOCK)
ORANGE	PURPLE
CBRS TECH (3 GHz)	WHITE
NEGATIVE SLANT PORT ON ANT/RRH	WHITE
CBRS TECH (3 GHz)	WHITE
ALPHA SECTOR	BETA SECTOR
RED	BLUE
GREEN	
COLOR IDENTIFIER	2

04/08/22
Exp. 01/31/23

Kimley Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

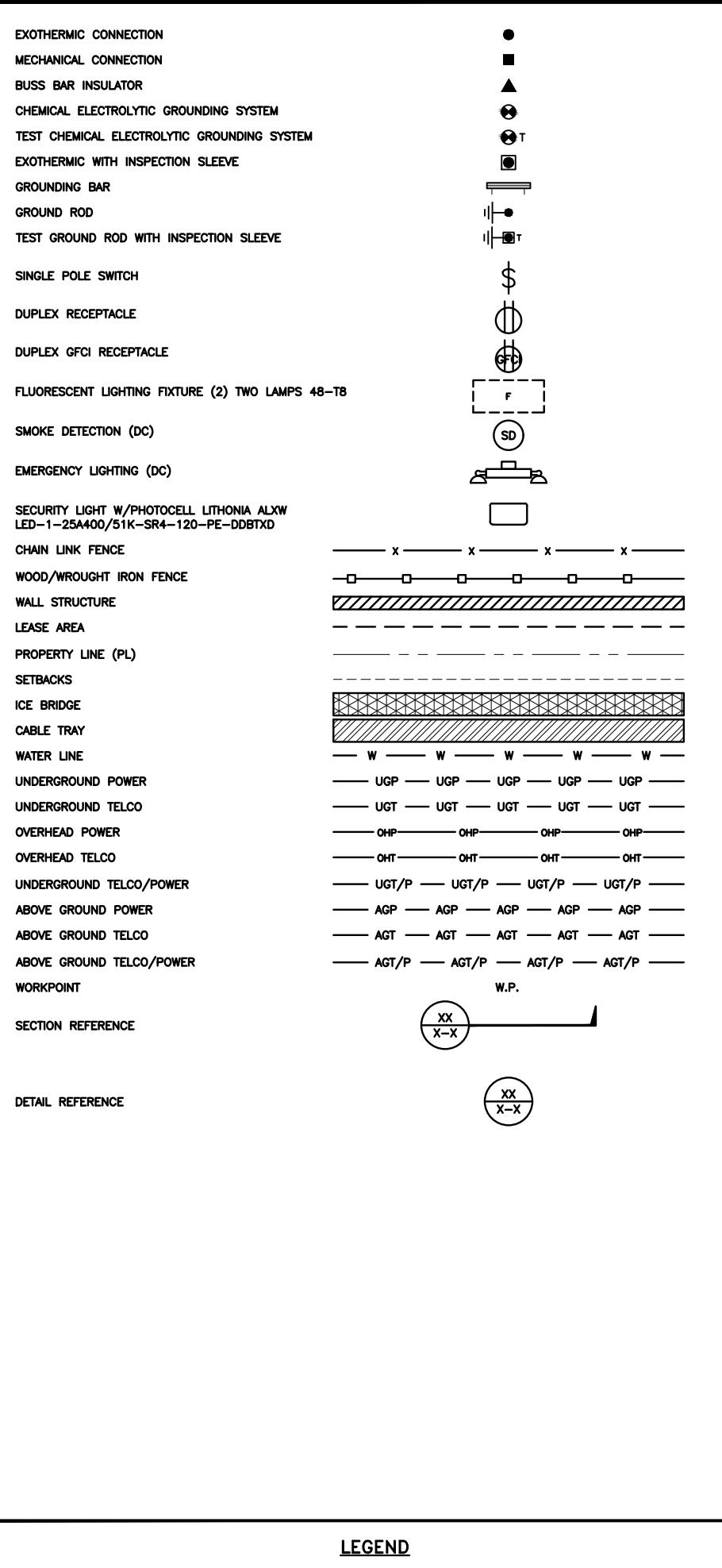
IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS		
REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT


A&E PROJECT NUMBER
KHCLE-16545

DISH Wireless LLC,
PROJECT INFORMATION
BOHVN00166A
34 RIMMON ST
SEYMOUR, CT 06483

SHEET TITLE
RF
CABLE COLOR CODES

SHEET NUMBER

RF-1

AB	ANCHOR BOLT	IN	INCH
ABV	ABOVE	INT	INTERIOR
AC	ALTERNATING CURRENT	LB(S)	POUND(S)
ADDL	ADDITIONAL	LF	LINEAR FEET
AFF	ABOVE FINISHED FLOOR	LTE	LONG TERM EVOLUTION
AFG	ABOVE FINISHED GRADE	MAS	MASONRY
AGL	ABOVE GROUND LEVEL	MAX	MAXIMUM
AIC	AMPERAGE INTERRUPTION CAPACITY	MB	MACHINE BOLT
ALUM	ALUMINUM	MECH	MECHANICAL
ALT	ALTERNATE	MFR	MANUFACTURER
ANT	ANTENNA	MGB	MASTER GROUND BAR
APPROX	APPROXIMATE	MIN	MINIMUM
ARCH	ARCHITECTURAL	MISC	MISCELLANEOUS
ATS	AUTOMATIC TRANSFER SWITCH	MTL	METAL
AWG	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
BATT	BATTERY	MW	MICROWAVE
BLDG	BUILDING	NEC	NATIONAL ELECTRIC CODE
BLK	BLOCK	NM	NEWTON METERS
BLKG	BLOCKING	NO.	NUMBER
BM	BEAM	#	NUMBER
BTC	BARE TINNED COPPER CONDUCTOR	NTS	NOT TO SCALE
BOF	BOTTOM OF FOOTING	OC	ON-CENTER
CAB	CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANT	CANTILEVERED	OPNG	OPENING
CHG	CHARGING	P/C	PRECAST CONCRETE
CLG	CEILING	PCS	PERSONAL COMMUNICATION SERVICES
CLR	CLEAR	PCU	PRIMARY CONTROL UNIT
COL	COLUMN	PRC	PRIMARY RADIO CABINET
COMM	COMMON	PP	POLARIZING PRESERVING
CONC	CONCRETE	PSF	POUNDS PER SQUARE FOOT
CONSTR	CONSTRUCTION	PSI	POUNDS PER SQUARE INCH
DBL	DOUBLE	PT	PRESSURE TREATED
DC	DIRECT CURRENT	PWR	POWER CABINET
DEPT	DEPARTMENT	QTY	QUANTITY
DF	DOUGLAS FIR	RAD	RADIUS
DIA	DIAMETER	RECT	RECTIFIER
DIAG	DIAGONAL	REF	REFERENCE
DIM	DIMENSION	REINF	REINFORCEMENT
DWG	DRAWING	REQ'D	REQUIRED
DWL	DOWEL	RET	REMOTE ELECTRIC TILT
EA	EACH	RF	RADIO FREQUENCY
EC	ELECTRICAL CONDUCTOR	RMC	RIGID METALLIC CONDUIT
EL	ELEVATION	RRH	REMOTE RADIO HEAD
ELEC	ELECTRICAL	RRU	REMOTE RADIO UNIT
EMT	ELECTRICAL METALLIC TUBING	RWY	RACEWAY
ENG	ENGINEER	SCH	SCHEDULE
EQ	EQUAL	SHT	SHEET
EXP	EXPANSION	SIAD	SMART INTEGRATED ACCESS DEVICE
EXT	EXTERIOR	SIM	SIMILAR
EW	EACH WAY	SPEC	SPECIFICATION
FAB	FABRICATION	SQ	SQUARE
FF	FINISH FLOOR	SS	STAINLESS STEEL
FG	FINISH GRADE	STD	STANDARD
FIF	FACILITY INTERFACE FRAME	STL	STEEL
FIN	FINISH(ED)	TEMP	TEMPORARY
FLR	FLOOR	THK	THICKNESS
FDN	FOUNDATION	TMA	TOWER MOUNTED AMPLIFIER
FOC	FACE OF CONCRETE	TN	TOE NAIL
FOM	FACE OF MASONRY	TOA	TOP OF ANTENNA
FOS	FACE OF STUD	TOC	TOP OF CURB
FOW	FACE OF WALL	TOF	TOP OF FOUNDATION
FS	FINISH SURFACE	TOP	TOP OF PLATE (PARAPET)
FT	FOOT	TOS	TOP OF STEEL
FTG	FOOTING	TOW	TOP OF WALL
GA	GAUGE	TVSS	TRANSIENT VOLTAGE SURGE SUPPRESSION
GEN	GENERATOR	TYP	TYPICAL
GFCI	GROUND FAULT CIRCUIT INTERRUPTER	UG	UNDERGROUND
GLB	GLUE LAMINATED BEAM	UL	UNDERWRITERS LABORATORY
GLV	GALVANIZED	UNO	UNLESS NOTED OTHERWISE
GPS	GLOBAL POSITIONING SYSTEM	UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
GND	GROUND	UPS	UNINTERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
GSM	GLOBAL SYSTEM FOR MOBILE	VIF	VERIFIED IN FIELD
HDG	HOT DIPPED GALVANIZED	W	WIDE
HDR	HEADER	W/	WITH
HGR	HANGER	WD	WOOD
HVAC	HEAT/VENTILATION/AIR CONDITIONING	WP	WEATHERPROOF
HT	HEIGHT	WT	WEIGHT
IGR	INTERIOR GROUND RING		

GN-1

ABBREVIATIONS

dish
wireless.
5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #:

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER
KHCLE-16545

DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVNO00166A
34 RIMMON ST
SEYMOUR, CT 06483

SHEET TITLE
LEGEND AND
ABBREVIATIONS

SHEET NUMBER

GN-1

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED – NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.
2. "LOOK UP" – DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:
THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.
3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:
CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION
CARRIER:DISH Wireless L.L.C.
TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

Exp. 01/31/23

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

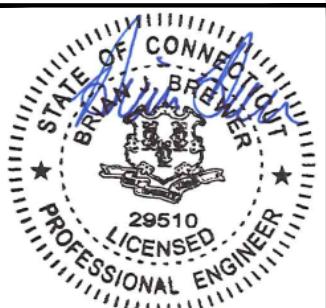
7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.


12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS**SUBMITTALS**

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER
KHCL-E-16545**DISH Wireless L.L.C. PROJECT INFORMATION**BOHVN00166A
34 RIMMON ST
SEYMOUR, CT 06483**SHEET TITLE**
GENERAL NOTES**SHEET NUMBER**

GN-2

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.
- UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'_c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.
- CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (F_y) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:
 #4 BARS AND SMALLER 40 ksi
 #5 BARS AND LARGER 60 ksi
- THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
 - CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
 - CONCRETE EXPOSED TO EARTH OR WEATHER:
 - #6 BARS AND LARGER 2"
 - #5 BARS AND SMALLER 1-1/2"
 - CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
 - SLAB AND WALLS 3/4"
 - BEAMS AND COLUMNS 1-1/2"
- A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- TIE WRAPS ARE NOT ALLOWED.
- ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE).
- RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNTOWARDS (WIREMOLD SPECMATE WIREWAY).
- SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIDIGLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWESTE REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
 WJW MCK MCK

RFDS REV #:

CONSTRUCTION DOCUMENTS

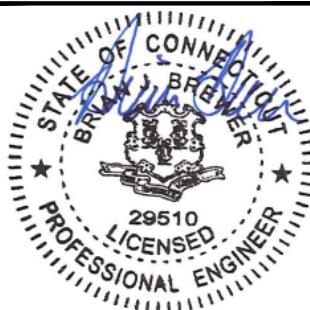
SUBMITTALS

REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER
KHCL-E-16545

DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVNO0166A
34 RIMMON ST
SEYMOUR, CT 06483

SHEET TITLE
GENERAL NOTES


SHEET NUMBER
GN-3

dish
wireless.

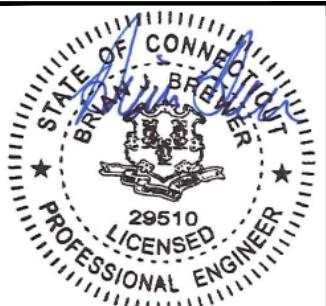
5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.


04/08/22
Exp. 01/31/23

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

**CONSTRUCTION
DOCUMENTS**

SUBMITTALS		
REV	DATE	DESCRIPTION
A	11/09/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION
1	04/07/2022	REVISED PER CLIENT

A&E PROJECT NUMBER
KHCLE-16545

DISH Wireless LLC,
PROJECT INFORMATION
BOHVN00166A
34 RIMMON ST
SEYMOUR, CT 06483

SHEET TITLE
GENERAL NOTES

SHEET NUMBER
GN-4

Exhibit D

Structural Analysis Report

Date: September 11, 2021

Crown Castle
2000 Corporate Drive
Canonsburg, PA 15317
(724) 416-2000

Subject:	Structural Analysis Report		
Carrier Designation:	DISH Network Co-Locate		
	Site Number:	BOHVN00166A	
	Site Name:	CT-CCI-T-876318	
Crown Castle Designation:	BU Number:	876318	
	Site Name:	RIMMON ST.	
	JDE Job Number:	645175	
	Work Order Number:	1966362	
	Order Number:	553383 Rev. 1	
Engineering Firm Designation:	Crown Castle Project Number: 1966362		
Site Data:	34 Rimmon Street, SEYMOUR, NEW HAVEN County, CT Latitude 41° 24' 7.93", Longitude -73° 4' 20.16" 150 Foot - Monopole Tower		

Crown Castle is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity – 41.4%

***The structure has sufficient capacity once the loading changes, described in the Recommendations section of this report, are completed.**

This analysis utilizes an ultimate 3-second gust wind speed of 118 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Brad Sparks

Respectfully submitted by:

Bradley E. Byrom, P.E., S.E.
Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

- Table 1 - Proposed Equipment Configuration
- Table 2 - Non-Carrier Equipment To Be Conditionally Removed
- Table 3 - Other Considered Equipment

3) ANALYSIS PROCEDURE

- Table 4 - Documents Provided
- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

- Table 5 - Section Capacity (Summary)
- Table 6 - Tower Component Stresses vs. Capacity - LC5
- 4.1) Recommendations

5) APPENDIX A

- tnxTower Output

6) APPENDIX B

- Base Level Drawing

7) APPENDIX C

- Additional Calculations

1) INTRODUCTION

This tower is a 150 ft Monopole tower designed by Pittsburg Monopole Division.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	118 mph
Exposure Category:	B
Topographic Factor:	1
Ice Thickness:	1 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
138.0	138.0	3	fujitsu	TA08025-B604	1	1-1/2
		3	fujitsu	TA08025-B605		
		3	jma wireless	MX08FRO665-21 w/ Mount Pipe		
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Non-Carrier Equipment To Be Conditionally Removed

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
137.0	138.0	3	kathrein	742 213	-	-
	137.0	1	tower mounts	Pipe Mount [PM 601-3]		

Table 3 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
148.0	150.0	3	alcatel lucent	TD-RRH8x20-25	4	1-1/4
		9	rfs celwave	ACU-A20-N		
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe		
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe		
	148.0	1	tower mounts	Platform Mount [LP 1001-1]		
146.0	149.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER	-	-
		3	alcatel lucent	TME-800MHZ 2X50W RRH w/ Mount Pipe		
		3	alcatel lucent	TME-PCS 1900MHz 4x45W-65MHz		
	146.0	1	tower mounts	Side Arm Mount [SO 102-3]		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
137.0	137.0	-	-	-	6	1-5/8
118.0	120.0	1	kathrein	OG-860/1920/GPS-A	1	1/2
	118.0	1	tower mounts	Side Arm Mount [SO 701-1]		
86.0	86.0	1	tower mounts	Pipe Mount [PM 601-1]	1	1/2
	85.0	1	decibel	DB225-2-D		
75.0	75.0	1	decibel	DB225-2-D		
		1	tower mounts	Pipe Mount [PM 601-1]		

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	1619384	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	1620580	CCISITES
4-TOWER MANUFACTURER DRAWINGS	1619418	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 3 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

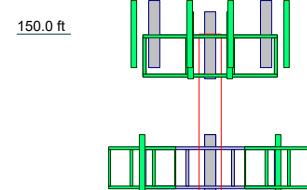
Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	150 - 120	Pole	P24x3/8	1	-12.211	920.561	32.9	Pass
L2	120 - 80	Pole	P36x1/2	2	-22.539	1844.367	34.1	Pass
L3	80 - 40	Pole	P48x1/2	3	-35.903	2452.464	37.7	Pass
L4	40 - 0	Pole	P54x5/8	4	-54.044	3466.312	37.1	Pass
							Summary	
						Pole (L3)	37.7	Pass
						Rating =	37.7	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Flange Bolts	120	36.6	Pass
1	Flange Plates		25.3	Pass
1	Flange Bolts	80	37.2	Pass
1	Flange Plates		22.9	Pass
1	Flange Bolts	40	41.4	Pass
1	Flange Plates		17.0	Pass
1	Anchor Rods	0	39.5	Pass
1	Base Plate		16.3	Pass
1,2	Base Foundation (Compared w/ Design Loads)		37.1	Pass

Structure Rating (max from all components) =	41.4%
---	--------------

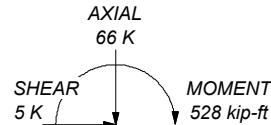

Notes:

- 1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.
- 2) Foundation capacity determined by comparing analysis reactions to original design reactions.

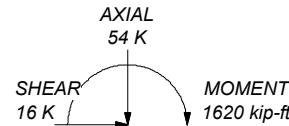
4.1) Recommendations

Once the equipment in Table 2 is removed, the tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A
TNXTOWER OUTPUT


Section	4	3	2	1
Size	P54x58	P48x12	P24x38	
Length (ft)	40.000	40.000	30.000	
Grade				
Weight (K)	14.3	10.2	7.6	2.8

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-35	35 ksi	60 ksi			


TOWER DESIGN NOTES

1. Tower is located in New Haven County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-H Standard.
3. Tower designed for a 118 mph basic wind in accordance with the TIA-222-H Standard.
4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.
7. Topographic Category 1 with Crest Height of 0.000 ft
8. TOWER RATING: 37.7%

ALL REACTIONS
ARE FACORED

TORQUE 0 kip-ft
50 mph WIND - 1.000 in ICE

TORQUE 1 kip-ft
REACTIONS - 118 mph WIND

Crown Castle
2000 Corporate Drive
Canonsburg, PA 15317
The Pathway to Possible

2000 Corporate Drive
Canonsburg, PA 15317
Phone: (724) 416-2000
FAX:

Job: BU# 876318		
Project:		
Client: Crown Castle	Drawn by: BSparks	App'd:
Code: TIA-222-H	Date: 09/11/21	Scale: NTS
Path: C:\Work Area\876318\WO 1966362 - SAIProd\876318.eri		Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 216.000 ft.
- Basic wind speed of 118 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.000 ft.
- Nominal ice thickness of 1.000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.000 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50.000 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs	Distribute Leg Loads As Uniform	Use ASCE 10 X-Brace Ly Rules
Consider Moments - Horizontals	Assume Legs Pinned	Calculate Redundant Bracing Forces
Consider Moments - Diagonals	✓ Assume Rigid Index Plate	Ignore Redundant Members in FEA
Use Moment Magnification	✓ Use Clear Spans For Wind Area	SR Leg Bolts Resist Compression
✓ Use Code Stress Ratios	Use Clear Spans For KL/r	All Leg Panels Have Same Allowable
✓ Use Code Safety Factors - Guys	Retention Guys To Initial Tension	Offset Girt At Foundation
Escalate Ice	✓ Bypass Mast Stability Checks	✓ Consider Feed Line Torque
Always Use Max Kz	✓ Use Azimuth Dish Coefficients	Include Angle Block Shear Check
Use Special Wind Profile	✓ Project Wind Area of Appurt.	Use TIA-222-H Bracing Resist.
Include Bolts In Member Capacity	Autocalc Torque Arm Areas	Exemption
Leg Bolts Are At Top Of Section	Add IBC .6D+W Combination	Use TIA-222-H Tension Splice
Secondary Horizontal Braces Leg	✓ Sort Capacity Reports By Component	Exemption
Use Diamond Inner Bracing (4 Sided)	Triangulate Diamond Inner Bracing	Poles
SR Members Have Cut Ends	Treat Feed Line Bundles As Cylinder	✓ Include Shear-Torsion Interaction
SR Members Are Concentric	Ignore KL/ry For 60 Deg. Angle Legs	Always Use Sub-Critical Flow
		Use Top Mounted Sockets
		Pole Without Linear Attachments
		Pole With Shroud Or No
		Appurtenances
		Outside and Inside Corner Radii Are Known

Pole Section Geometry

Section	Elevation ft	Section Length ft	Pole Size	Pole Grade	Socket Length ft
L1	150.000-120.000	30.000	P24x3/8	A53-B-35 (35 ksi)	
L2	120.000-80.000	40.000	P36x1/2	A53-B-35 (35 ksi)	
L3	80.000-40.000	40.000	P48x1/2	A53-B-35 (35 ksi)	
L4	40.000-0.000	40.000	P54x5/8	A53-B-35 (35 ksi)	

Tower Elevation ft	Gusset Area (per face) ft ²	Gusset Thickness in	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A_r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1 150.000-120.000				1	1	1			
L2 120.000-80.000				1	1	1			
L3 80.000-40.000				1	1	1			
L4 40.000-0.000				1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	Componen t Type	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight klf
*										
Climbing Ladder	A	No	Surface Af (CaAa)	150.000 - 5.000	1	1	0.000 0.000	0.000 0.000	0.000 0.000	0.008

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Componen t Type	Placement ft	Total Number	$C_A A_A$	Weight
							ft^2/ft	klf
HB114-1-0813U4- M5J(1 1/4")	B	No	No	Inside Pole	148.000 - 0.000	3	No Ice 1/2" Ice 1" Ice	0.000 0.000 0.000
HB114-21U3M12- XXXF(1-1/4")	B	No	No	Inside Pole	148.000 - 0.000	1	No Ice 1/2" Ice 1" Ice	0.000 0.000 0.000
CR 50 1873(1- 5/8")	B	No	No	Inside Pole	137.000 - 0.000	6	No Ice 1/2" Ice 1" Ice	0.000 0.000 0.000
LDF4-50A(1/2")	B	No	No	Inside Pole	118.000 - 0.000	1	No Ice 1/2" Ice 1" Ice	0.000 0.000 0.000
LDF4-50A(1/2")	B	No	No	Inside Pole	86.000 - 0.000	1	No Ice 1/2" Ice 1" Ice	0.000 0.000 0.000
CU12PSM9P6XXX (1-1/2)	C	No	No	Inside Pole	138.000 - 0.000	1	No Ice 1/2" Ice	0.000 0.000

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Total Number	$C_A A_A$	Weight
							ft^2/ft	kI
						1" Ice	0.000	0.002

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation ft	Face	A_R ft 2	A_F ft 2	$C_A A_A$ In Face ft 2	$C_A A_A$ Out Face ft 2	Weight
							K
L1	150.000-120.000	A	0.000	0.000	0.001	0.000	0.237
		B	0.000	0.000	0.000	0.000	0.220
		C	0.000	0.000	0.000	0.000	0.042
L2	120.000-80.000	A	0.000	0.000	0.001	0.000	0.316
		B	0.000	0.000	0.000	0.000	0.399
		C	0.000	0.000	0.000	0.000	0.094
L3	80.000-40.000	A	0.000	0.000	0.001	0.000	0.316
		B	0.000	0.000	0.000	0.000	0.404
		C	0.000	0.000	0.000	0.000	0.094
L4	40.000-0.000	A	0.000	0.000	0.001	0.000	0.277
		B	0.000	0.000	0.000	0.000	0.404
		C	0.000	0.000	0.000	0.000	0.094

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation ft	Face or Leg	Ice Thickness in	A_R ft 2	A_F ft 2	$C_A A_A$ In Face ft 2	$C_A A_A$ Out Face ft 2	Weight
								K
L1	150.000-120.000	A	0.979	0.000	0.000	5.872	0.000	0.279
		B	0.000	0.000	0.000	0.000	0.000	0.220
		C	0.000	0.000	0.000	0.000	0.000	0.042
L2	120.000-80.000	A	0.950	0.000	0.000	7.600	0.000	0.369
		B	0.000	0.000	0.000	0.000	0.000	0.399
		C	0.000	0.000	0.000	0.000	0.000	0.094
L3	80.000-40.000	A	0.903	0.000	0.000	7.225	0.000	0.364
		B	0.000	0.000	0.000	0.000	0.000	0.404
		C	0.000	0.000	0.000	0.000	0.000	0.094
L4	40.000-0.000	A	0.808	0.000	0.000	5.660	0.000	0.310
		B	0.000	0.000	0.000	0.000	0.000	0.404
		C	0.000	0.000	0.000	0.000	0.000	0.094

Feed Line Center of Pressure

Section	Elevation ft	CP_x in	CP_z in	CP_x Ice in	CP_z Ice in
L1	150.000-120.000	-0.000	-0.000	-0.729	-0.421
L2	120.000-80.000	-0.000	-0.000	-0.744	-0.430
L3	80.000-40.000	-0.000	-0.000	-0.727	-0.420
L4	40.000-0.000	-0.000	-0.000	-0.580	-0.335

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L1	10	Climbing Ladder	120.00 - 150.00	1.0000	1.0000
L2	10	Climbing Ladder	80.00 - 120.00	1.0000	1.0000
L3	10	Climbing Ladder	40.00 - 80.00	1.0000	1.0000
L4	10	Climbing Ladder	5.00 - 40.00	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculation Method	Effective Width Ratio
L1	10	Climbing Ladder	120.00 - 150.00	Manual	1.0000
L2	10	Climbing Ladder	80.00 - 120.00	Manual	1.0000
L3	10	Climbing Ladder	40.00 - 80.00	Manual	1.0000
L4	10	Climbing Ladder	5.00 - 40.00	Manual	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment °	Placement ft
APXVTM14-C-120 w/ Mount Pipe	A	From Leg	4.000 0.000 2.000	0.000	148.000
APXVTM14-C-120 w/ Mount Pipe	B	From Leg	4.000 0.000 2.000	0.000	148.000
APXVTM14-C-120 w/ Mount Pipe	C	From Leg	4.000 0.000 2.000	0.000	148.000
APXVSPP18-C-A20 w/ Mount Pipe	A	From Leg	4.000 0.000 2.000	0.000	148.000
APXVSPP18-C-A20 w/ Mount Pipe	B	From Leg	4.000 0.000 2.000	0.000	148.000
APXVSPP18-C-A20 w/ Mount Pipe	C	From Leg	4.000 0.000 2.000	0.000	148.000
(3) ACU-A20-N	A	From Leg	4.000 0.000 2.000	0.000	148.000

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment	Placement
(3) ACU-A20-N	B	From Leg	4.000 0.000 2.000	0.000	148.000
(3) ACU-A20-N	C	From Leg	4.000 0.000 2.000	0.000	148.000
TD-RRH8x20-25	A	From Leg	4.000 0.000 2.000	0.000	148.000
TD-RRH8x20-25	B	From Leg	4.000 0.000 2.000	0.000	148.000
TD-RRH8x20-25	C	From Leg	4.000 0.000 2.000	0.000	148.000
6' x 2" Mount Pipe	C	From Leg	4.000 0.000 0.000	0.000	148.000
6' x 2" Mount Pipe	B	From Leg	4.000 0.000 0.000	0.000	148.000
6' x 2" Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	148.000
Platform Mount [LP 1001-1] ****	C	None		0.000	148.000
TME-800MHZ 2X50W RRH w/ Mount Pipe	A	From Leg	1.000 0.000 3.000	0.000	146.000
TME-800MHZ 2X50W RRH w/ Mount Pipe	B	From Leg	1.000 0.000 3.000	0.000	146.000
TME-800MHZ 2X50W RRH w/ Mount Pipe	C	From Leg	1.000 0.000 3.000	0.000	146.000
800 EXTERNAL NOTCH FILTER	A	From Leg	1.000 0.000 3.000	0.000	146.000
800 EXTERNAL NOTCH FILTER	B	From Leg	1.000 0.000 3.000	0.000	146.000
800 EXTERNAL NOTCH FILTER	C	From Leg	1.000 0.000 3.000	0.000	146.000
TME-PCS 1900MHz 4x45W-65MHz	A	From Leg	1.000 0.000 3.000	0.000	146.000
TME-PCS 1900MHz 4x45W-65MHz	B	From Leg	1.000 0.000 3.000	0.000	146.000
TME-PCS 1900MHz 4x45W-65MHz	C	From Leg	1.000 0.000 3.000	0.000	146.000
Side Arm Mount [SO 102-3] *	C	None		0.000	146.000
MX08FRO665-21 w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	138.000
MX08FRO665-21 w/ Mount Pipe	B	From Leg	4.000 0.000 0.000	0.000	138.000
MX08FRO665-21 w/ Mount Pipe	C	From Leg	4.000 0.000 0.000	0.000	138.000
(3) TA08025-B604	A	From Leg	4.000	0.000	138.000

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment °	Placement ft
(2) TA08025-B605	B	From Leg	0.000 0.000 4.000 0.000 0.000	0.000	138.000
TA08025-B605	C	From Leg	4.000 0.000 0.000	0.000	138.000
RDIDC-9181-PF-48	C	From Leg	4.000 0.000 0.000	0.000	138.000
Commscope MC-PK8-DSH (2) 8' x 2" Mount Pipe	C A	None From Leg	0.000 4.000 0.000 0.000 0.000	0.000 0.000	138.000 138.000
(2) 8' x 2" Mount Pipe	B	From Leg	4.000 0.000 0.000	0.000	138.000
(2) 8' x 2" Mount Pipe	C	From Leg	4.000 0.000 0.000	0.000	138.000
*					
OG-860/1920/GPS-A	A	From Leg	3.000 0.000 2.000	0.000	118.000
Side Arm Mount [SO 701-1]	A	From Leg	1.500 0.000 0.000	0.000	118.000
*					
DB225-2-D	B	From Leg	1.000 0.000 -1.000	0.000	86.000
Pipe Mount [PM 601-1]	B	From Leg	0.500 0.000 0.000	0.000	86.000
*					
DB225-2-D	A	From Leg	1.000 0.000 0.000	0.000	75.000
Pipe Mount [PM 601-1]	A	From Leg	0.500 0.000 0.000	0.000	75.000
*					

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice

Comb. No.	Description
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	150 - 120	Pole	Max Tension	8	0.000	0.000	-0.000
			Max. Compression	26	-18.449	0.018	0.719
			Max. Mx	8	-12.213	-176.938	0.615
			Max. My	2	-12.211	-0.072	178.142
			Max. Vy	20	-7.802	176.886	0.524
			Max. Vx	2	-7.839	-0.072	178.142
			Max. Torque	20			-0.103
L2	120 - 80	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-30.615	0.186	1.184
			Max. Mx	20	-22.539	545.155	0.822
			Max. My	2	-22.539	0.051	546.828
			Max. Vy	20	-10.545	545.155	0.822
			Max. Vx	2	-10.550	0.051	546.828
			Max. Torque	20			-0.351
L3	80 - 40	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-46.186	0.926	2.164
			Max. Mx	20	-35.904	1029.880	1.515
			Max. My	2	-35.903	0.617	1031.859
			Max. Vy	20	-13.461	1029.880	1.515
			Max. Vx	2	-13.466	0.617	1031.859
			Max. Torque	22			-0.579

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L4	40 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-66.433	1.638	2.576
			Max. Mx	20	-54.044	1618.029	1.799
			Max. My	2	-54.044	1.171	1619.909
			Max. Vy	20	-15.868	1618.029	1.799
			Max. Vx	2	-15.872	1.171	1619.909
			Max. Torque	22			-0.578

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Pole	Max. Vert	26	66.433	0.000	0.000
	Max. H _x	20	54.047	15.856	-0.002
	Max. H _z	2	54.047	-0.002	15.860
	Max. M _x	2	1619.909	-0.002	15.860
	Max. M _z	8	1614.998	-15.856	0.002
	Max. Torsion	10	0.578	-13.731	-7.928
	Min. Vert	11	40.535	-13.731	-7.928
	Min. H _x	8	54.047	-15.856	0.002
	Min. H _z	14	54.047	0.002	-15.860
	Min. M _x	14	-1615.621	0.002	-15.860
	Min. M _z	20	-1618.029	15.856	-0.002
	Min. Torsion	22	-0.578	13.731	7.928

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear _x K	Shear _z K	Overshielding Moment, M _x kip-ft	Overshielding Moment, M _z kip-ft	Torque kip-ft
Dead Only	45.039	0.000	0.000	-1.729	1.239	0.000
1.2 Dead+1.0 Wind 0 deg -	54.047	0.002	-15.860	-1619.909	1.171	0.233
No Ice						
0.9 Dead+1.0 Wind 0 deg -	40.535	0.002	-15.860	-1609.420	0.789	0.230
No Ice						
1.2 Dead+1.0 Wind 30 deg -	54.047	7.930	-13.737	-1403.342	-807.040	-0.065
No Ice						
0.9 Dead+1.0 Wind 30 deg -	40.535	7.930	-13.737	-1394.184	-802.458	-0.066
No Ice						
1.2 Dead+1.0 Wind 60 deg -	54.047	13.733	-7.932	-811.326	-1398.599	-0.346
No Ice						
0.9 Dead+1.0 Wind 60 deg -	40.535	13.733	-7.932	-805.804	-1390.384	-0.345
No Ice						
1.2 Dead+1.0 Wind 90 deg -	54.047	15.856	-0.002	-2.489	-1614.998	-0.533
No Ice						
0.9 Dead+1.0 Wind 90 deg -	40.535	15.856	-0.002	-1.937	-1605.455	-0.531
No Ice						
1.2 Dead+1.0 Wind 120 deg - No Ice	54.047	13.731	7.928	806.440	-1398.254	-0.578
No Ice						
0.9 Dead+1.0 Wind 120 deg - No Ice	40.535	13.731	7.928	802.022	-1390.042	-0.574
1.2 Dead+1.0 Wind 150 deg - No Ice	54.047	7.926	13.734	1398.710	-806.442	-0.468
No Ice						
0.9 Dead+1.0 Wind 150 deg - No Ice	40.535	7.926	13.734	1390.652	-801.865	-0.464
1.2 Dead+1.0 Wind 180 deg - No Ice	54.047	-0.002	15.860	1615.621	1.861	-0.233
No Ice						
0.9 Dead+1.0 Wind 180 deg - No Ice	40.535	-0.002	15.860	1606.231	1.474	-0.230
1.2 Dead+1.0 Wind 210 deg	54.047	-7.930	13.737	1399.054	810.071	0.065

Load Combination	Vertical	Shear _x	Shear _z	Oversharing Moment, M _x kip-ft	Oversharing Moment, M _z kip-ft	Torque
	K	K	K			kip-ft
- No Ice						
0.9 Dead+1.0 Wind 210 deg	40.535	-7.930	13.737	1390.994	804.721	0.066
- No Ice						
1.2 Dead+1.0 Wind 240 deg	54.047	-13.733	7.932	807.037	1401.630	0.346
- No Ice						
0.9 Dead+1.0 Wind 240 deg	40.535	-13.733	7.932	802.615	1392.646	0.345
- No Ice						
1.2 Dead+1.0 Wind 270 deg	54.047	-15.856	0.002	-1.799	1618.029	0.533
- No Ice						
0.9 Dead+1.0 Wind 270 deg	40.535	-15.856	0.002	-1.252	1607.717	0.531
- No Ice						
1.2 Dead+1.0 Wind 300 deg	54.047	-13.731	-7.928	-810.728	1401.285	0.578
- No Ice						
0.9 Dead+1.0 Wind 300 deg	40.535	-13.731	-7.928	-805.211	1392.304	0.574
- No Ice						
1.2 Dead+1.0 Wind 330 deg	54.047	-7.926	-13.734	-1402.997	809.474	0.468
- No Ice						
0.9 Dead+1.0 Wind 330 deg	40.535	-7.926	-13.734	-1393.841	804.127	0.464
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	66.433	0.000	0.000	-2.576	1.638	0.000
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	66.433	0.000	-5.368	-527.760	1.623	0.093
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	66.433	2.686	-4.649	-457.446	-261.034	-0.006
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	66.433	4.652	-2.684	-265.284	-453.296	-0.103
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	66.433	5.371	-0.000	-2.763	-523.646	-0.172
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	66.433	4.652	2.684	259.775	-453.234	-0.196
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	66.433	2.685	4.649	451.982	-260.927	-0.166
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	66.433	-0.000	5.368	522.358	1.746	-0.093
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	66.433	-2.686	4.649	452.044	264.404	0.006
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	66.433	-4.652	2.684	259.882	456.665	0.103
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	66.433	-5.371	0.000	-2.640	527.016	0.173
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	66.433	-4.652	-2.684	-265.177	456.604	0.196
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	66.433	-2.685	-4.649	-457.385	264.297	0.167
Dead+Wind 0 deg - Service	45.039	0.001	-3.862	-394.128	1.175	0.056
Dead+Wind 30 deg - Service	45.039	1.931	-3.345	-341.605	-194.837	-0.016
Dead+Wind 60 deg - Service	45.039	3.344	-1.932	-198.025	-338.306	-0.084
Dead+Wind 90 deg - Service	45.039	3.861	-0.001	-1.861	-390.789	-0.129
Dead+Wind 120 deg - Service	45.039	3.344	1.931	194.326	-338.222	-0.140
Dead+Wind 150 deg - Service	45.039	1.930	3.344	337.967	-194.692	-0.113
Dead+Wind 180 deg - Service	45.039	-0.001	3.862	390.573	1.343	-0.056
Dead+Wind 210 deg - Service	45.039	-1.931	3.345	338.050	197.355	0.016
Dead+Wind 240 deg - Service	45.039	-3.344	1.932	194.470	340.824	0.084
Dead+Wind 270 deg - Service	45.039	-3.861	0.001	-1.694	393.307	0.130
Dead+Wind 300 deg - Service	45.039	-3.344	-1.931	-197.880	340.740	0.140
Dead+Wind 330 deg - Service	45.039	-1.930	-3.344	-341.521	197.210	0.113

Solution Summary

Load Comb.	Sum of Applied Forces			Sum of Reactions			% Error
	PX K	PY K	PZ K	PX K	PY K	PZ K	
1	0.000	-45.039	0.000	0.000	45.039	0.000	0.000%
2	0.002	-54.047	-15.860	-0.002	54.047	15.860	0.000%
3	0.002	-40.535	-15.860	-0.002	40.535	15.860	0.000%
4	7.930	-54.047	-13.737	-7.930	54.047	13.737	0.000%
5	7.930	-40.535	-13.737	-7.930	40.535	13.737	0.000%
6	13.733	-54.047	-7.932	-13.733	54.047	7.932	0.000%
7	13.733	-40.535	-7.932	-13.733	40.535	7.932	0.000%
8	15.856	-54.047	-0.002	-15.856	54.047	0.002	0.000%
9	15.856	-40.535	-0.002	-15.856	40.535	0.002	0.000%
10	13.731	-54.047	7.928	-13.731	54.047	-7.928	0.000%
11	13.731	-40.535	7.928	-13.731	40.535	-7.928	0.000%
12	7.926	-54.047	13.734	-7.926	54.047	-13.734	0.000%
13	7.926	-40.535	13.734	-7.926	40.535	-13.734	0.000%
14	-0.002	-54.047	15.860	0.002	54.047	-15.860	0.000%
15	-0.002	-40.535	15.860	0.002	40.535	-15.860	0.000%
16	-7.930	-54.047	13.737	7.930	54.047	-13.737	0.000%
17	-7.930	-40.535	13.737	7.930	40.535	-13.737	0.000%
18	-13.733	-54.047	7.932	13.733	54.047	-7.932	0.000%
19	-13.733	-40.535	7.932	13.733	40.535	-7.932	0.000%
20	-15.856	-54.047	0.002	15.856	54.047	-0.002	0.000%
21	-15.856	-40.535	0.002	15.856	40.535	-0.002	0.000%
22	-13.731	-54.047	-7.928	13.731	54.047	7.928	0.000%
23	-13.731	-40.535	-7.928	13.731	40.535	7.928	0.000%
24	-7.926	-54.047	-13.734	7.926	54.047	13.734	0.000%
25	-7.926	-40.535	-13.734	7.926	40.535	13.734	0.000%
26	0.000	-66.433	0.000	0.000	66.433	0.000	0.000%
27	0.000	-66.433	-5.368	-0.000	66.433	5.368	0.000%
28	2.686	-66.433	-4.649	-2.686	66.433	4.649	0.000%
29	4.652	-66.433	-2.684	-4.652	66.433	2.684	0.000%
30	5.371	-66.433	-0.000	-5.371	66.433	0.000	0.000%
31	4.652	-66.433	2.684	-4.652	66.433	-2.684	0.000%
32	2.685	-66.433	4.649	-2.685	66.433	-4.649	0.000%
33	-0.000	-66.433	5.368	0.000	66.433	-5.368	0.000%
34	-2.686	-66.433	4.649	2.686	66.433	-4.649	0.000%
35	-4.652	-66.433	2.684	4.652	66.433	-2.684	0.000%
36	-5.371	-66.433	0.000	5.371	66.433	-0.000	0.000%
37	-4.652	-66.433	-2.684	4.652	66.433	2.684	0.000%
38	-2.685	-66.433	-4.649	2.685	66.433	-4.649	0.000%
39	0.001	-45.039	-3.862	-0.001	45.039	3.862	0.000%
40	1.931	-45.039	-3.345	-1.931	45.039	3.345	0.000%
41	3.344	-45.039	-1.932	-3.344	45.039	1.932	0.000%
42	3.861	-45.039	-0.001	-3.861	45.039	0.001	0.000%
43	3.344	-45.039	1.931	-3.344	45.039	-1.931	0.000%
44	1.930	-45.039	3.344	-1.930	45.039	-3.344	0.000%
45	-0.001	-45.039	3.862	0.001	45.039	-3.862	0.000%
46	-1.931	-45.039	3.345	1.931	45.039	-3.345	0.000%
47	-3.344	-45.039	1.932	3.344	45.039	-1.932	0.000%
48	-3.861	-45.039	0.001	3.861	45.039	-0.001	0.000%
49	-3.344	-45.039	-1.931	3.344	45.039	1.931	0.000%
50	-1.930	-45.039	-3.344	1.930	45.039	3.344	0.000%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00003103
3	Yes	4	0.00000001	0.00001750
4	Yes	4	0.00000001	0.00042446
5	Yes	4	0.00000001	0.00029665
6	Yes	4	0.00000001	0.00044181
7	Yes	4	0.00000001	0.00030916
8	Yes	4	0.00000001	0.00004779
9	Yes	4	0.00000001	0.00003102

10	Yes	4	0.00000001	0.00040787
11	Yes	4	0.00000001	0.00028551
12	Yes	4	0.00000001	0.00043831
13	Yes	4	0.00000001	0.00030735
14	Yes	4	0.00000001	0.00003077
15	Yes	4	0.00000001	0.00001732
16	Yes	4	0.00000001	0.00043097
17	Yes	4	0.00000001	0.00030184
18	Yes	4	0.00000001	0.00041381
19	Yes	4	0.00000001	0.00028953
20	Yes	4	0.00000001	0.00004750
21	Yes	4	0.00000001	0.00003078
22	Yes	4	0.00000001	0.00044788
23	Yes	4	0.00000001	0.00031330
24	Yes	4	0.00000001	0.00041714
25	Yes	4	0.00000001	0.00029121
26	Yes	4	0.00000001	0.00000001
27	Yes	4	0.00000001	0.00051073
28	Yes	4	0.00000001	0.00052382
29	Yes	4	0.00000001	0.00052226
30	Yes	4	0.00000001	0.00050536
31	Yes	4	0.00000001	0.00051698
32	Yes	4	0.00000001	0.00051626
33	Yes	4	0.00000001	0.00050242
34	Yes	4	0.00000001	0.00051787
35	Yes	4	0.00000001	0.00051951
36	Yes	4	0.00000001	0.00050798
37	Yes	4	0.00000001	0.00052456
38	Yes	4	0.00000001	0.00052519
39	Yes	4	0.00000001	0.00000532
40	Yes	4	0.00000001	0.00000918
41	Yes	4	0.00000001	0.00000980
42	Yes	4	0.00000001	0.00000560
43	Yes	4	0.00000001	0.00000876
44	Yes	4	0.00000001	0.00000963
45	Yes	4	0.00000001	0.00000525
46	Yes	4	0.00000001	0.00000935
47	Yes	4	0.00000001	0.00000887
48	Yes	4	0.00000001	0.00000563
49	Yes	4	0.00000001	0.00001010
50	Yes	4	0.00000001	0.00000907

Maximum Tower Deflections - Service Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt °	Twist °
L1	150 - 120	6.273	39	0.391	0.000
L2	120 - 80	3.960	50	0.312	0.000
L3	80 - 40	1.734	50	0.200	0.000
L4	40 - 0	0.440	50	0.098	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft
148.000	APXVTM14-C-120 w/ Mount Pipe	39	6.111	0.386	0.000	93214
146.000	TME-800MHZ 2X50W RRH w/ Mount Pipe	39	5.950	0.381	0.000	93214
138.000	MX08FRO665-21 w/ Mount Pipe	39	5.309	0.360	0.000	38839
118.000	OG-860/1920/GPS-A	50	3.823	0.306	0.000	15921
86.000	DB225-2-D	50	2.005	0.217	0.000	21702

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft
75.000	DB225-2-D	50	1.522	0.187	0.000	22477

Maximum Tower Deflections - Design Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt °	Twist °
L1	150 - 120	25.774	2	1.605	0.001
L2	120 - 80	16.275	2	1.282	0.001
L3	80 - 40	7.124	2	0.824	0.001
L4	40 - 0	1.808	2	0.402	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft
148.000	APXVTM14-C-120 w/ Mount Pipe	2	25.109	1.584	0.001	22815
146.000	TME-800MHZ 2X50W RRH w/ Mount Pipe	2	24.445	1.563	0.001	22815
138.000	MX08FRO665-21 w/ Mount Pipe	2	21.815	1.478	0.001	9506
118.000	OG-860/1920/GPS-A	2	15.712	1.259	0.001	3895
86.000	DB225-2-D	2	8.240	0.891	0.001	5282
75.000	DB225-2-D	2	6.253	0.768	0.001	5464

Compression Checks

Pole Design Data

Section No.	Elevation ft	Size	L ft	L _u ft	Kl/r	A in ²	P _u K	ϕP _n K	Ratio P _u ϕP _n
L1	150 - 120 (1)	P24x3/8	30.000	0.000	0.0	27.833	-12.211	876.725	0.014
L2	120 - 80 (2)	P36x1/2	40.000	0.000	0.0	55.763	-22.539	1756.540	0.013
L3	80 - 40 (3)	P48x1/2	40.000	0.000	0.0	74.613	-35.903	2335.680	0.015
L4	40 - 0 (4)	P54x5/8	40.000	0.000	0.0	104.80	-54.044	3301.250	0.016
						2			

Pole Bending Design Data

Section No.	Elevation ft	Size	M _{ux} kip-ft	ϕM _{nx} kip-ft	Ratio M _{ux} ϕM _{nx}	M _{uy} kip-ft	ϕM _{ny} kip-ft	Ratio M _{uy} ϕM _{ny}
L1	150 - 120 (1)	P24x3/8	178.143	538.742	0.331	0.000	538.742	0.000
L2	120 - 80 (2)	P36x1/2	546.828	1586.550	0.345	0.000	1586.550	0.000
L3	80 - 40 (3)	P48x1/2	1031.858	2713.100	0.380	0.000	2713.100	0.000
L4	40 - 0 (4)	P54x5/8	1619.908	4349.317	0.372	0.000	4349.317	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_u	ϕV_n	Ratio $\frac{V_u}{V_n}$	Actual T_u	ϕT_n	Ratio $\frac{T_u}{T_n}$
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	150 - 120 (1)	P24x3/8	7.839	263.018	0.030	0.014	546.307	0.000
L2	120 - 80 (2)	P36x1/2	10.550	526.963	0.020	0.233	1644.708	0.000
L3	80 - 40 (3)	P48x1/2	13.466	705.091	0.019	0.233	2717.992	0.000
L4	40 - 0 (4)	P54x5/8	15.872	990.375	0.016	0.233	4647.475	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_u	Ratio M_{ux}	Ratio M_{uy}	Ratio V_u	Ratio T_u	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n			
L1	150 - 120 (1)	0.014	0.331	0.000	0.030	0.000	0.345	1.050	4.8.2
L2	120 - 80 (2)	0.013	0.345	0.000	0.020	0.000	0.358	1.050	4.8.2
L3	80 - 40 (3)	0.015	0.380	0.000	0.019	0.000	0.396	1.050	4.8.2
L4	40 - 0 (4)	0.016	0.372	0.000	0.016	0.000	0.389	1.050	4.8.2

Section Capacity Table

Section No.	Elevation	Component Type	Size	Critical Element	P	ϕP_{allow}	% Capacity	Pass Fail
	ft				K	K		
L1	150 - 120	Pole	P24x3/8	1	-12.211	920.561	32.9	Pass
L2	120 - 80	Pole	P36x1/2	2	-22.539	1844.367	34.1	Pass
L3	80 - 40	Pole	P48x1/2	3	-35.903	2452.464	37.7	Pass
L4	40 - 0	Pole	P54x5/8	4	-54.044	3466.312	37.1	Pass
						Summary		
						Pole (L3)	37.7	Pass
						RATING =	37.7	Pass

APPENDIX B

BASE LEVEL DRAWING

(OTHER CONSIDERED EQUIPMENT)
(1) 1/2" TO 75 FT, 86 FT LEVEL

(OTHER CONSIDERED EQUIPMENT)
(6) 1-5/8" TO 137 FT LEVEL

(PROPOSED EQUIPMENT CONFIGURATION)
(1) 1-1/2" TO 138 FT LEVEL

(OTHER CONSIDERED EQUIPMENT)
(1) 1/2" TO 118 FT LEVEL
(4) 1-1/4" TO 148 FT LEVEL

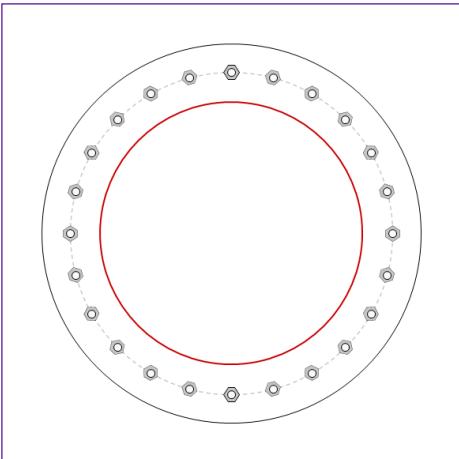
CLIMBING PEGS
W/ SAFETY CLIMB

01
02
03
04

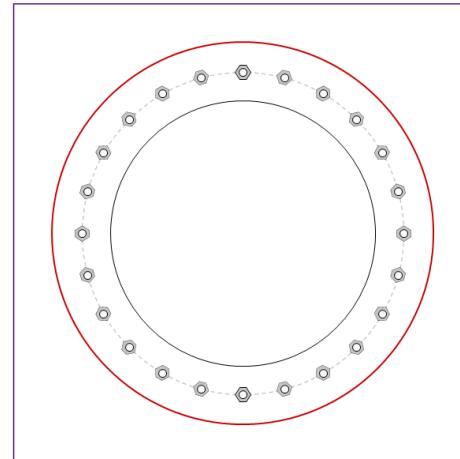
APPENDIX C
ADDITIONAL CALCULATIONS

Monopole Flange Plate Connection

Elevation = 120 ft.



BU #	876318
Site Name	RIMMON ST.
Order #	553383 - Rev. 1
TIA-222 Revision	H


Applied Loads	
Moment (kip-ft)	178.14
Axial Force (kips)	12.21
Shear Force (kips)	7.84

*TIA-222-H Section 15.5 Applied

Top Plate - External

Bottom Plate - Internal

Connection Properties

Bolt Data

(24) 3/4" ϕ bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 29.5" BC

Top Plate Data

34.75" OD x 1.875" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Plate Data

24.25" ID x 1.875" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Bottom Stiffener Data

N/A

Top Pole Data

24" x 0.375" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Pole Data

36" x 0.5" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Analysis Results

Bolt Capacity

Max Load (kips)	11.57
Allowable (kips)	30.06
Stress Rating:	36.6% Pass

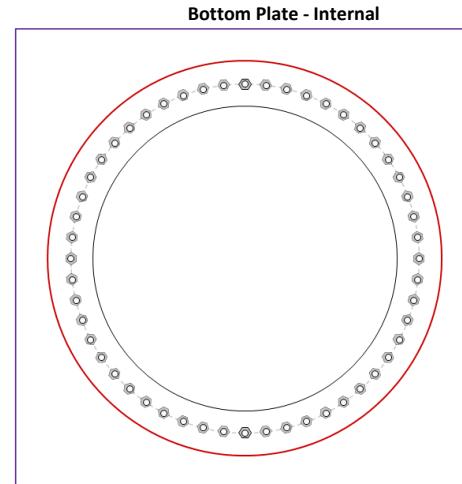
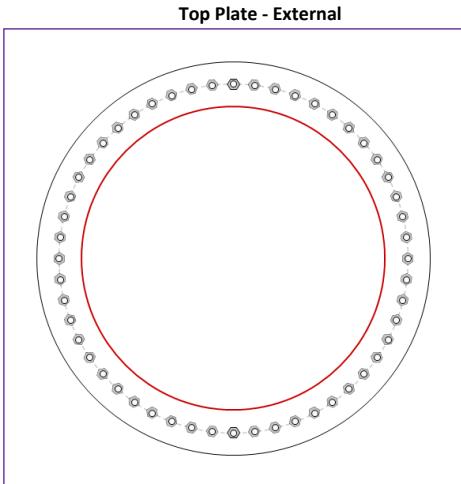
Top Plate Capacity

Max Stress (ksi):	7.05	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	20.7%	Pass
Tension Side Stress Rating:	10.4%	Pass

Bottom Plate Capacity

Max Stress (ksi):	8.59	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	25.3%	Pass
Tension Side Stress Rating:	N/A	

Monopole Flange Plate Connection



Elevation = 80 ft.

BU #	876318
Site Name	RIMMON ST.
Order #	553383 - Rev. 1
TIA-222 Revision	H

Applied Loads	
Moment (kip-ft)	546.83
Axial Force (kips)	22.54
Shear Force (kips)	10.55

*TIA-222-H Section 15.5 Applied

Connection Properties

Bolt Data

(52) 3/4" \varnothing bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 41.5" BC

Top Plate Data

46.75" OD x 2.5" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Plate Data

36.25" ID x 2.5" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Bottom Stiffener Data

N/A

Top Pole Data

36" x 0.5" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Pole Data

48" x 0.5" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Analysis Results

Bolt Capacity

Max Load (kips)	11.73
Allowable (kips)	30.06
Stress Rating:	37.2% Pass

Top Plate Capacity

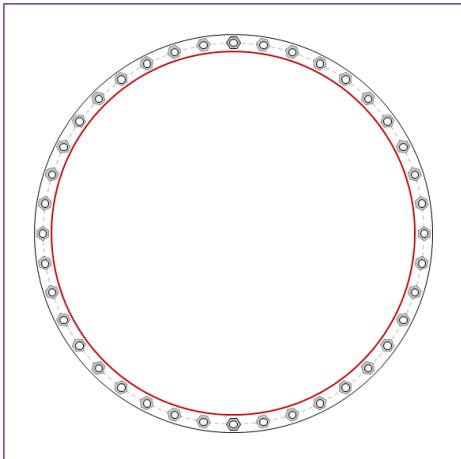
Max Stress (ksi):	6.00	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	17.6%	Pass
Tension Side Stress Rating:	9.2%	Pass

Bottom Plate Capacity

Max Stress (ksi):	7.81	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	22.9%	Pass
Tension Side Stress Rating:	N/A	

Monopole Flange Plate Connection

Elevation = 40 ft.



BU #	876318
Site Name	RIMMON ST.
Order #	553383 - Rev. 1
TIA-222 Revision	H


Applied Loads	
Moment (kip-ft)	1031.86
Axial Force (kips)	35.90
Shear Force (kips)	13.47

*TIA-222-H Section 15.5 Applied

Top Plate - External

Bottom Plate - Internal

Connection Properties

Bolt Data

(40) 1" ϕ bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 50.375" BC

Top Plate Data

52.5" OD x 2.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Plate Data

48.25" ID x 2.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Bottom Stiffener Data

N/A

Top Pole Data

48" x 0.5" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Pole Data

54" x 0.625" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Analysis Results

Bolt Capacity

Max Load (kips)	23.68
Allowable (kips)	54.54
Stress Rating:	41.4% Pass

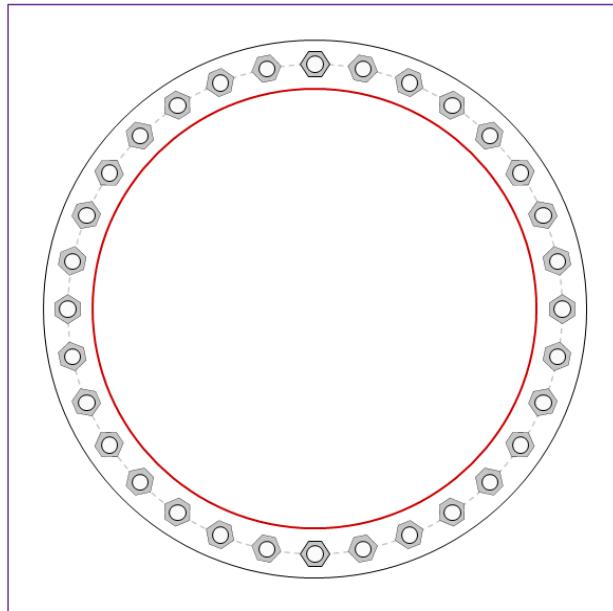
Top Plate Capacity

Max Stress (ksi):	4.17	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	12.3%	Pass
Tension Side Stress Rating:	3.6%	Pass

Bottom Plate Capacity

Max Stress (ksi):	5.77	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	17.0%	Pass
Tension Side Stress Rating:	N/A	

Monopole Base Plate Connection



Site Info	
BU #	876318
Site Name	RIMMON ST.
Order #	553383 - Rev. 1

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	Yes
l_{ar} (in)	0

Applied Loads	
Moment (kip-ft)	1619.91
Axial Force (kips)	54.04
Shear Force (kips)	15.87

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(32) 2" ϕ bolts (A36 N; $F_y=36$ ksi, $F_u=58$ ksi) on 60" BC

Base Plate Data

66" OD x 3.25" Plate (A36; $F_y=36$ ksi, $F_u=58$ ksi)

Stiffener Data

N/A

Pole Data

54" x 0.625" round pole (A53-B-35; $F_y=35$ ksi, $F_u=60$ ksi)

Analysis Results

Anchor Rod Summary

(units of kips, kip-in)		
$P_u_c = 42.17$	$\phi P_n_c = 101.79$	Stress Rating
$V_u = 0.5$	$\phi V_n = 45.8$	39.5%
$M_u = n/a$	$\phi M_n = n/a$	Pass

Base Plate Summary

Max Stress (ksi):	5.55	(Flexural)
Allowable Stress (ksi):	32.4	
Stress Rating:	16.3%	Pass

Monopole Base Reaction Comparison Test

BU # :	876318
Site Name:	RIMMON ST.
Order Number:	553383 - Rev. 1
Design TIA:	TIA-222-F
Current TIA:	TIA-222-H
Component:	Monopole Base
Reference Doc ID:	1619418

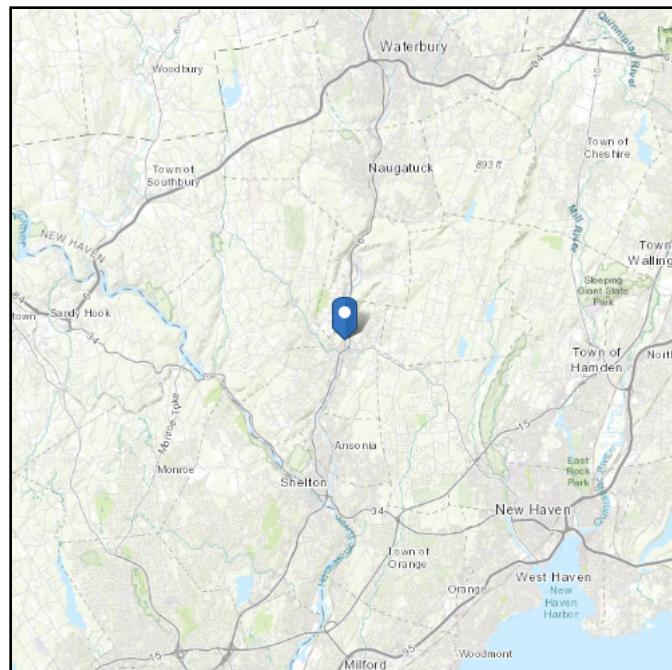
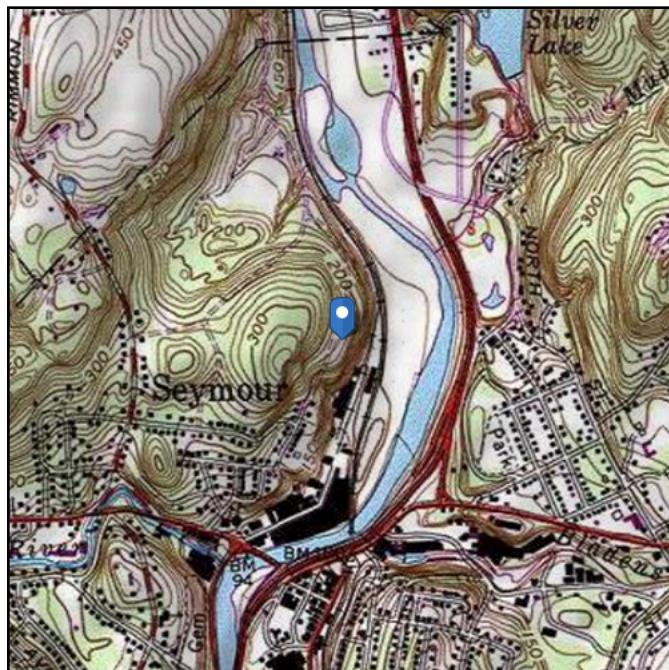
TIA-222-F Compared To TIA-222-H

MONOPOLE BASE FOUNDATION REACTION COMPARISON

REACTIONS	DESIGN REACTIONS	*MODIFIED DESIGN REACTIONS	CURRENT REACTIONS	% CAPACITY
MOMENT (kip-ft)	3080.0	4158.0	1620.0	37.1%
SHEAR (kips)	30.0	40.5	16.0	37.6%

Design loads from: CCIsites Doc #1619418

Although the shear capacity is at 37.6%, the moment reaction is the governing criteria for a monopole drilled pier foundation. Therefore, the overall capacity for this foundation is 37.1%.



*Design loads were multiplied by 1.35 for comparison as allowed by TIA-222-H, Section 15.6.

ASCE 7 Hazards Report

Address:
No Address at This Location

Standard: ASCE/SEI 7-16
Risk Category: II
Soil Class: D - Default (see Section 11.4.3)

Elevation: 216.33 ft (NAVD 88)
Latitude: 41.402203
Longitude: -73.072267

Wind

Results:

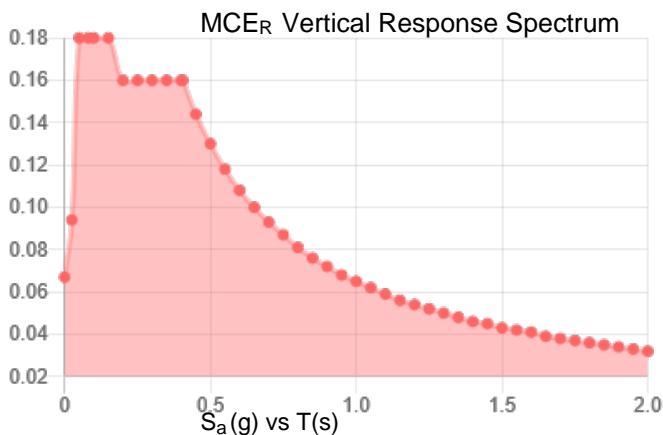
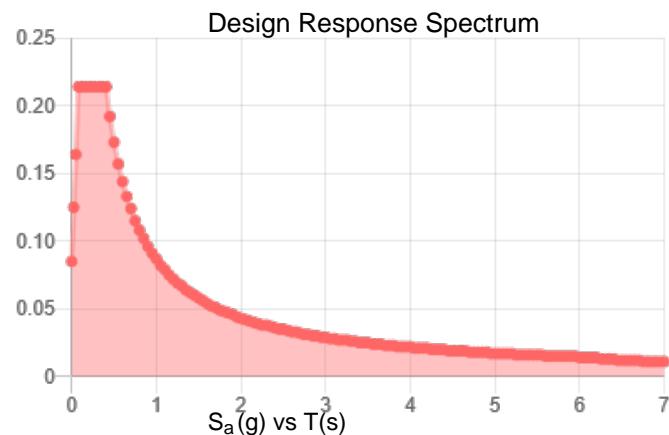
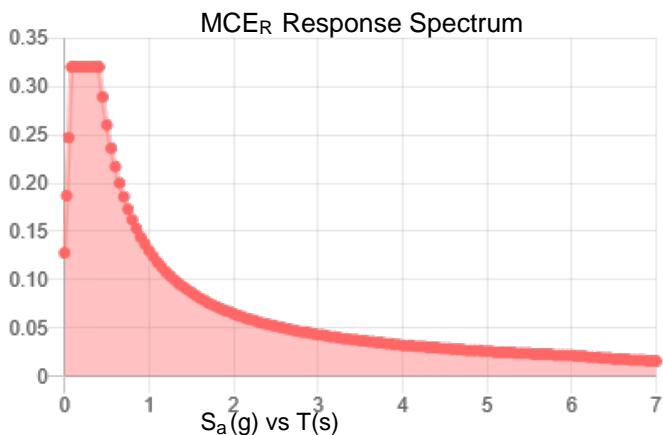
Wind Speed:	118 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	90 Vmph
100-year MRI	97 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Sat Sep 11 2021

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.




Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

S_s :	0.2	S_{D1} :	0.087
S_1 :	0.054	T_L :	6
F_a :	1.6	PGA :	0.112
F_v :	2.4	PGA_M :	0.176
S_{MS} :	0.32	F_{PGA} :	1.576
S_{M1} :	0.13	I_e :	1
S_{DS} :	0.214	C_v :	0.7

Seismic Design Category B

Data Accessed:

Sat Sep 11 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Sat Sep 11 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: September 14, 2021

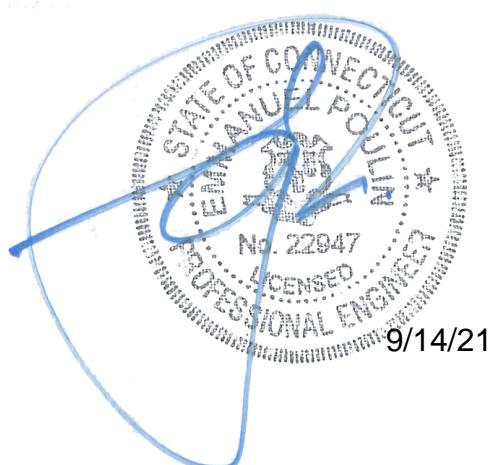
Jacob Montoya
Crown Castle
2055 S. Stearman Drive
Chandler, AZ 85286
(480) 298-9641

INFINIGY
FROM ZERO TO INFINIGY
the solutions are endless
Infinigy Engineering, PLLC
1033 Watervliet Shaker Road
Albany, NY 12205
518-690-0790
structural@infinigy.com

Subject:	Mount Analysis Report	
Carrier Designation:	Dish Network 5G	
	Carrier Site Number:	BOHVN00166A
	Carrier Site Name:	CT-CCI-T-876318
Crown Castle Designation:	Crown Castle BU Number:	876318
	Crown Castle Site Name:	RIMMON ST.
	Crown Castle JDE Job Number:	645175
	Crown Castle Order Number:	553383 Rev. 1
Engineering Firm Designation:	Infinigy Engineering, PLLC Report Designation: 1039-Z0001-B	
Site Data:	34 Rimmon Street, Seymour, New Haven County, CT, 06483 Latitude 41°24'7.93", Longitude -73°4'20.16"	
Structure Information:	Tower Height & Type:	150.0 ft Monopole
	Mount Elevation:	138.0 ft
	Mount Type:	8.0 ft Platform

Dear Jacob Montoya,

Infinigy Engineering, PLLC is pleased to submit this "**Mount Analysis Report**" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.


The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform	Sufficient - 34.5%
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.	

This analysis has been performed in accordance with the 2015 International Building Code based upon an ultimate 3-second gust wind speed of 118 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Andrew Gloriani, E.I.T.

Respectfully Submitted by:
Emmanuel Poulin, P.E.
518-690-0790
structural@infinigy.com
CT PE License No. 22947

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	118 mph
Exposure Category:	B
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Seismic S_s:	0.193
Seismic S₁:	0.064
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
138.0	138.0	3	JMA Wireless	MX08FRO665-21	8.0 ft Platform [MC-PK8-DSH]
		3	Fujitsu	TA08025-B604	
		3	Fujitsu	TA08025-B605	
		1	Raycap	RDIDC-9181-PF-48	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553383 Rev. 1	CCI Sites
Mount Manufacturer Drawings	Commscope	Document No. MC-PK8-DSH	Infinigy

3.1) Analysis Method

RISA-3D (Version 19.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

Infinigy Mount Analysis Tool V2.1.6, a tool internally developed by Infinigy, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM A500 (GR B-46)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy Engineering, PLLC should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

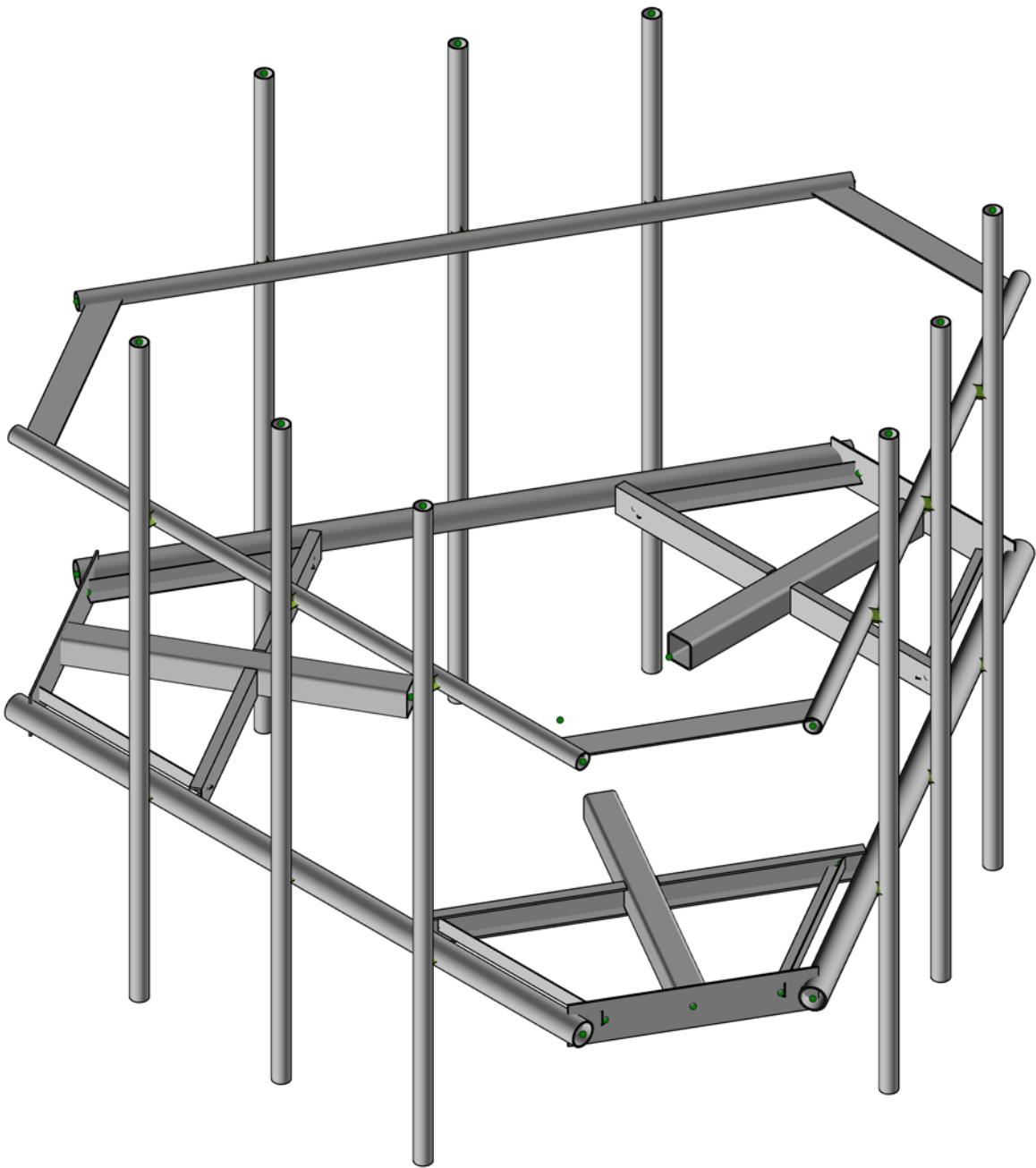
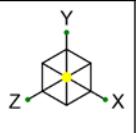
Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1, 2	Mount Pipe(s)	MP1	138.0	34.5	Pass
	Horizontal(s)	MH3		8.9	Pass
	Standoff(s)	MS3		22.4	Pass
	Handrail(s)	MR1		13.1	Pass
	Support Channel(s)	M53		31.4	Pass
	Mount Connection(s)	-		17.9	Pass

Structure Rating (max from all components) =	34.5%
---	--------------

Notes:

- 1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.
- 2) See additional documentation in "Appendix D - Additional Calculations" for detailed mount connection calculations.

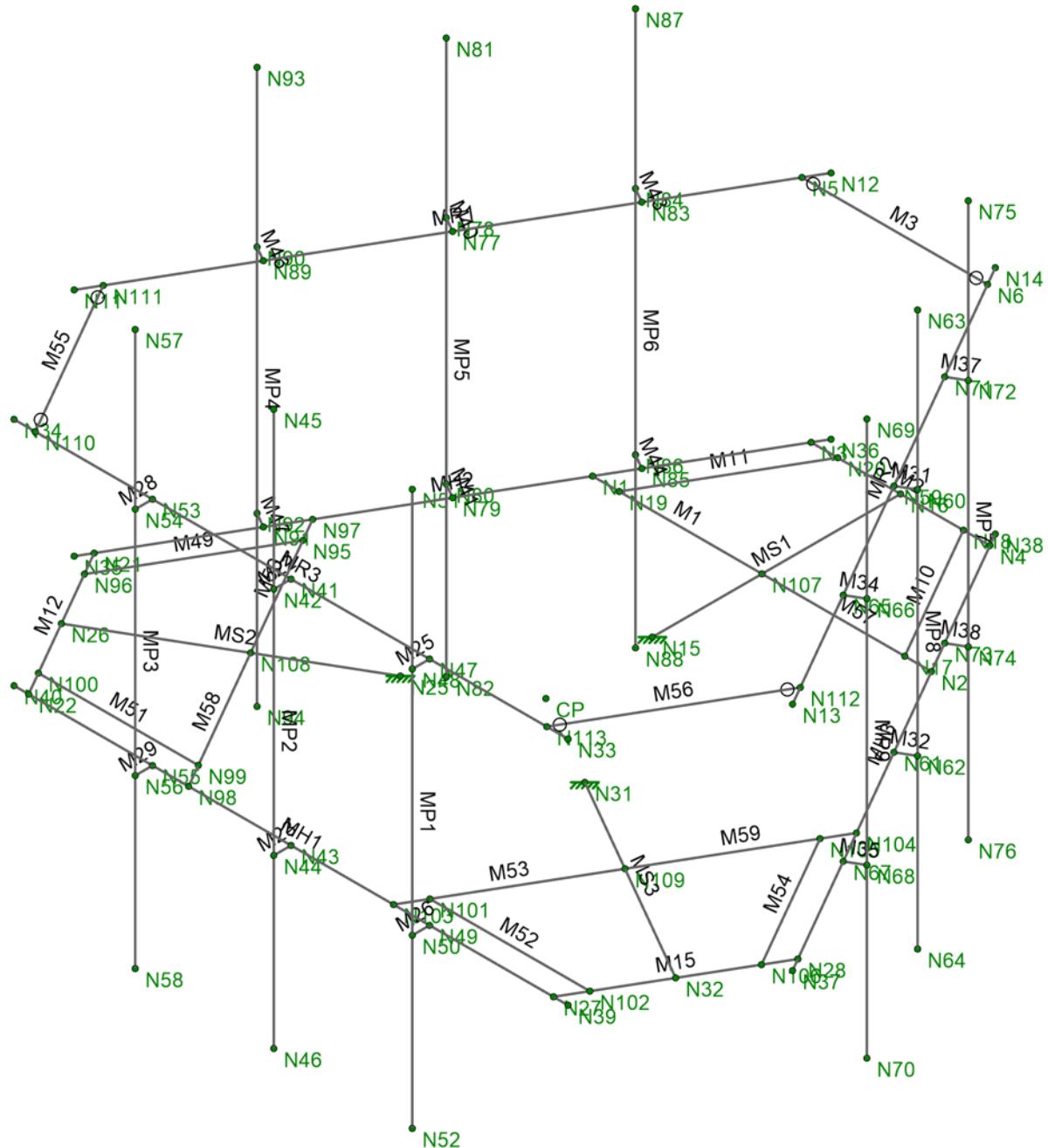
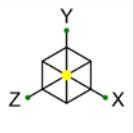


4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope MC-PK8-DSH.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A
WIRE FRAME AND RENDERED MODELS



Infinigy Engineering, PLLC
AG
1039-Z0001-B

876318

Render

Sep 14, 2021

876318_loaded.r3d

APPENDIX B
SOFTWARE INPUT CALCULATIONS

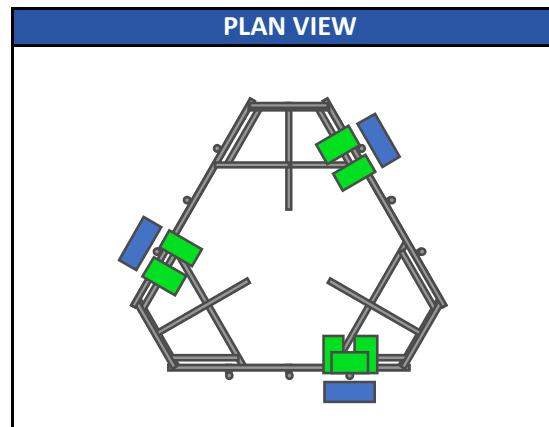
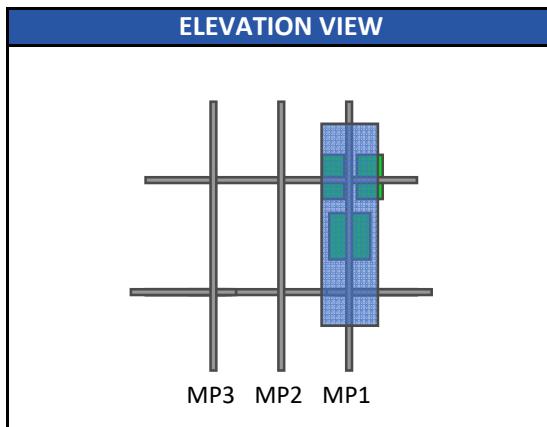
Program Inputs

PROJECT INFORMATION		
Client:	Crown Castle	
Carrier:	DISH Network	
Engineer:	Andrew Gloriani	

CODE STANDARDS		
Building Code:	2015 IBC	
TIA Standard:	TIA-222-H	
ASCE Standard:	ASCE 7-10	

Infinigy Load Calculator V2.1.6

SITE INFORMATION		
Risk Category:	II	
Exposure Category:	B	
Topo Factor Procedure:	Method 1, Category 1	
Site Class:	D - Stiff Soil (Assumed)	
Ground Elevation:	216.33	ft *Rev H

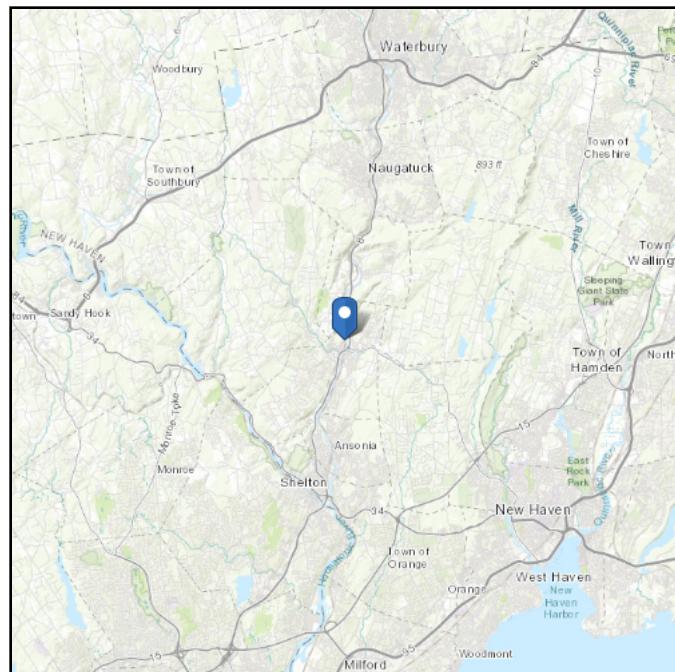
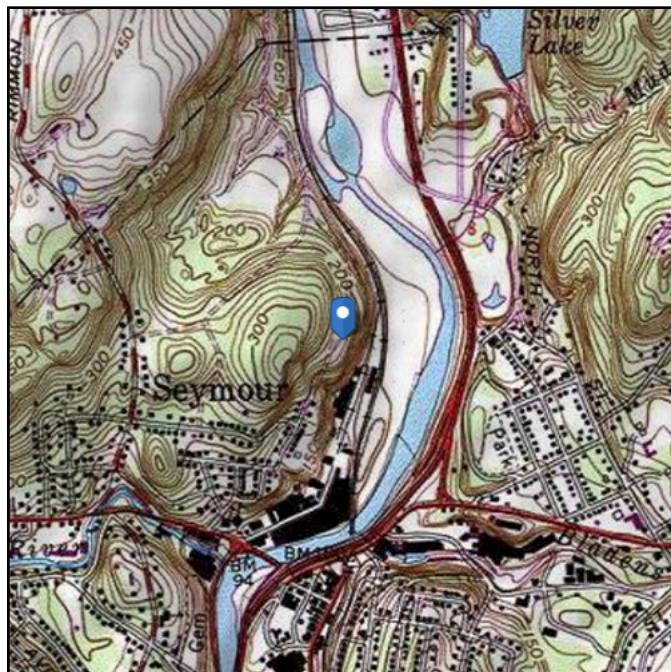


WIND AND ICE DATA		
Ultimate Wind (V_{ult}):	118	mph
Design Wind (V):	N/A	mph
Ice Wind (V_{ice}):	50	mph
Base Ice Thickness (t_i):	1.5	in
Flat Pressure:	72.808	psf
Round Pressure:	43.685	psf
Ice Wind Pressure:	7.843	psf

SEISMIC DATA		
Short-Period Accel. (S_s):	0.193	g
1-Second Accel. (S_1):	0.064	g
Short-Period Design (S_{DS}):	0.206	
1-Second Design (S_{D1}):	0.102	
Short-Period Coeff. (F_a):	1.600	
1-Second Coeff. (F_v):	2.400	
Amplification Factor (A_s):	3.000	
Response Mod. Coeff. (R):	2.000	

TOPOGRAPHIC DATA		
Topo Feature:	N/A	
Slope Distance:	N/A	ft
Crest Distance:	N/A	ft
Crest Height:	N/A	ft

FACTORS		
Directionality Fact. (K_d):	0.950	
Ground Ele. Factor (K_e):	0.992	*Rev H Only
Rooftop Speed-Up (K_s):	1.000	*Rev H Only
Topographic Factor (K_{zt}):	1.000	
Gust Effect Factor (G_h):	1.000	

Program Inputs



Infinigy Load Calculator V2.1.6

ASCE 7 Hazards Report

Address:
No Address at This Location

Standard: ASCE/SEI 7-10
Risk Category: II
Soil Class: D - Stiff Soil

Elevation: 216.33 ft (NAVD 88)
Latitude: 41.402203
Longitude: -73.072267

Wind

Results:

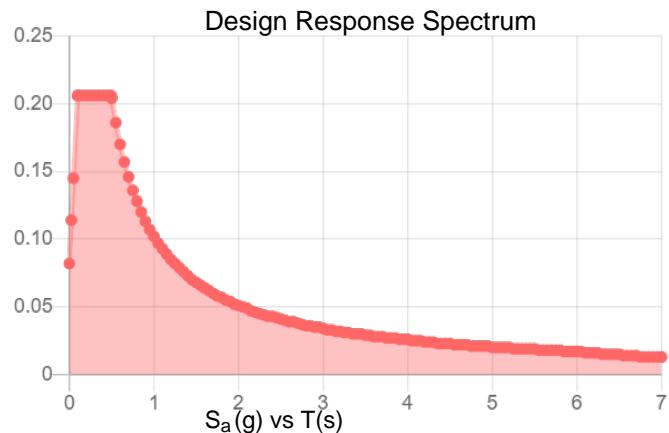
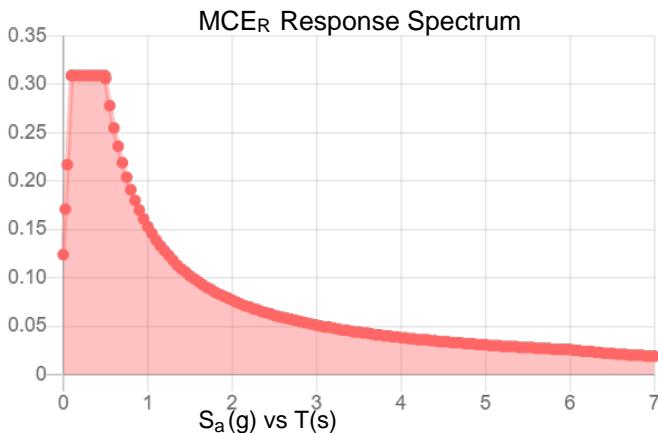
Wind Speed:	118 Vmph per the State of Connecticut allowing ASCE 7-16 wind speed values
10-year MRI	76 Vmph
25-year MRI	86 Vmph
50-year MRI	92 Vmph
100-year MRI	99 Vmph

Data Sources:

ASCE/SEI 7-10 Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.



Seismic

Site Soil Class: D - Stiff Soil

Results:

S_s :	0.193	S_{DS} :	0.206
S_1 :	0.064	S_{D1} :	0.102
F_a :	1.6	T_L :	6
F_v :	2.4	PGA :	0.102
S_{MS} :	0.309	PGA _M :	0.162
S_{M1} :	0.153	F_{PGA} :	1.597
		I_e :	1

Seismic Design Category B

Data Accessed:

Mon Sep 13 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Sep 13 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C
SOFTWARE ANALYSIS OUTPUT

Member Primary Data

Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
1	M1	N1	N107	180	Standoff Support	Beam	Channel	A36 Gr.36
2	M2	N3	N4		Corner Plate	Beam	RECT	A36 Gr.36
3	M3	N5	N6	90	Handrail Plate	Beam	RECT	A36 Gr.36
4	MR1	N11	N12		Handrail	Beam	Pipe	A53 Gr.B
5	MR2	N13	N14		Handrail	Beam	Pipe	A53 Gr.B
6	MS1	N15	N16		Standoff	Beam	Tube	A500 Gr.B RECT
7	M10	N17	N18	270	Grating Angle	Beam	Single Angle	A36 Gr.36
8	M11	N19	N20		Grating Angle	Beam	Single Angle	A36 Gr.36
9	M12	N21	N22		Corner Plate	Beam	RECT	A36 Gr.36
10	MS2	N25	N26		Standoff	Beam	Tube	A500 Gr.B RECT
11	M15	N27	N28		Corner Plate	Beam	RECT	A36 Gr.36
12	MS3	N31	N32		Standoff	Beam	Tube	A500 Gr.B RECT
13	MR3	N33	N34		Handrail	Beam	Pipe	A53 Gr.B
14	MH2	N35	N36		Horizontal	Beam	Pipe	A53 Gr.B
15	MH3	N37	N38		Horizontal	Beam	Pipe	A53 Gr.B
16	MH1	N39	N40		Horizontal	Beam	Pipe	A53 Gr.B
17	M22	N41	N42		RIGID	None	None	RIGID
18	M23	N43	N44		RIGID	None	None	RIGID
19	MP2	N45	N46		Mount Pipe	Column	Pipe	A53 Gr.B
20	M25	N47	N48		RIGID	None	None	RIGID
21	M26	N49	N50		RIGID	None	None	RIGID
22	MP1	N51	N52		Mount Pipe	Column	Pipe	A53 Gr.B
23	M28	N53	N54		RIGID	None	None	RIGID
24	M29	N55	N56		RIGID	None	None	RIGID
25	MP3	N57	N58		Mount Pipe	Column	Pipe	A53 Gr.B
26	M31	N59	N60		RIGID	None	None	RIGID
27	M32	N61	N62		RIGID	None	None	RIGID
28	MP8	N63	N64		Mount Pipe	Column	Pipe	A53 Gr.B
29	M34	N65	N66		RIGID	None	None	RIGID
30	M35	N67	N68		RIGID	None	None	RIGID
31	MP9	N69	N70		Mount Pipe	Column	Pipe	A53 Gr.B
32	M37	N71	N72		RIGID	None	None	RIGID
33	M38	N73	N74		RIGID	None	None	RIGID
34	MP7	N75	N76		Mount Pipe	Column	Pipe	A53 Gr.B
35	M40	N77	N78		RIGID	None	None	RIGID
36	M41	N79	N80		RIGID	None	None	RIGID
37	MP5	N81	N82		Mount Pipe	Column	Pipe	A53 Gr.B
38	M43	N83	N84		RIGID	None	None	RIGID
39	M44	N85	N86		RIGID	None	None	RIGID
40	MP6	N87	N88		Mount Pipe	Column	Pipe	A53 Gr.B
41	M46	N89	N90		RIGID	None	None	RIGID
42	M47	N91	N92		RIGID	None	None	RIGID
43	MP4	N93	N94		Mount Pipe	Column	Pipe	A53 Gr.B
44	M49	N95	N96	270	Grating Angle	Beam	Single Angle	A36 Gr.36
45	M50	N97	N108		Standoff Support	Beam	Channel	A36 Gr.36
46	M51	N99	N100		Grating Angle	Beam	Single Angle	A36 Gr.36

Member Primary Data (Continued)

Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
47	M52	N101	N102	270	Grating Angle	Beam	Single Angle	A36 Gr.36
48	M53	N103	N109		Standoff Support	Beam	Channel	A36 Gr.36
49	M54	N105	N106		Grating Angle	Beam	Single Angle	A36 Gr.36
50	M55	N110	N111	90	Handrail Plate	Beam	RECT	A36 Gr.36
51	M56	N112	N113	90	Handrail Plate	Beam	RECT	A36 Gr.36
52	M57	N107	N2	180	Standoff Support	Beam	Channel	A36 Gr.36
53	M58	N108	N98		Standoff Support	Beam	Channel	A36 Gr.36
54	M59	N109	N104		Standoff Support	Beam	Channel	A36 Gr.36

Material Take-Off

Material	Size	Pieces	Length[in]	Weight[LB]
1 General Members				
2 RIGID		18	54	0
3 Total General		18	54	0
4				
5 Hot Rolled Steel				
6 A36 Gr.36	4x0.25	3	96.5	27.354
7 A36 Gr.36	6x0.25	3	93	39.557
8 A36 Gr.36	C4X4.5	6	153.6	58.379
9 A36 Gr.36	L2x2x2	6	166.3	23.151
10 A500 Gr.B RECT	HSS4X4X4	3	125.2	128.729
11 A53 Gr.B	PIPE_2.0	12	1152	333.2
12 A53 Gr.B	PIPE_3.0	3	288	169.05
13 Total HR Steel		36	2074.6	779.42

Basic Load Cases

BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed Area(Member)
1 Self Weight	DL		-1			20	
2 Wind Load AZI 0	WLZ					40	
3 Wind Load AZI 30	None					40	
4 Wind Load AZI 60	None					40	
5 Wind Load AZI 90	WLX					40	
6 Wind Load AZI 120	None					40	
7 Wind Load AZI 150	None					40	
8 Wind Load AZI 180	None					40	
9 Wind Load AZI 210	None					40	
10 Wind Load AZI 240	None					40	
11 Wind Load AZI 270	None					40	
12 Wind Load AZI 300	None					40	
13 Wind Load AZI 330	None					40	
14 Distr. Wind Load Z	WLZ						54
15 Distr. Wind Load X	WLX						54
16 Ice Weight	OL1				20	54	3
17 Ice Wind Load AZI 0	OL2				40		

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed Area(Member)
18	Ice Wind Load AZI 30	None					40	
19	Ice Wind Load AZI 60	None					40	
20	Ice Wind Load AZI 90	OL3					40	
21	Ice Wind Load AZI 120	None					40	
22	Ice Wind Load AZI 150	None					40	
23	Ice Wind Load AZI 180	None					40	
24	Ice Wind Load AZI 210	None					40	
25	Ice Wind Load AZI 240	None					40	
26	Ice Wind Load AZI 270	None					40	
27	Ice Wind Load AZI 300	None					40	
28	Ice Wind Load AZI 330	None					40	
29	Distr. Ice Wind Load Z	OL2					54	
30	Distr. Ice Wind Load X	OL3					54	
31	Seismic Load Z	ELZ			-0.309		20	
32	Seismic Load X	ELX	-0.309				20	
33	Service Live Loads	LL				1		
34	Maintenance Load 1	LL				1		
35	Maintenance Load 2	LL				1		
36	Maintenance Load 3	LL				1		
37	Maintenance Load 4	LL				1		
38	Maintenance Load 5	LL				1		
39	Maintenance Load 6	LL				1		
40	Maintenance Load 7	LL				1		
41	Maintenance Load 8	LL				1		
42	Maintenance Load 9	LL				1		
43	BLC 1 Transient Area Loads	None					18	
44	BLC 16 Transient Area Loads	None					18	

Load Combinations

	Description	Solve	P-Delta	BLC Factor					
1	1.4DL	Yes	Y	1	1.4				
2	1.2DL + 1WL AZI 0	Yes	Y	1	1.2	2	1	14	1 15
3	1.2DL + 1WL AZI 30	Yes	Y	1	1.2	3	1	14	0.866 15 0.5
4	1.2DL + 1WL AZI 60	Yes	Y	1	1.2	4	1	14	0.5 15 0.866
5	1.2DL + 1WL AZI 90	Yes	Y	1	1.2	5	1	14	15 1
6	1.2DL + 1WL AZI 120	Yes	Y	1	1.2	6	1	14	-0.5 15 0.866
7	1.2DL + 1WL AZI 150	Yes	Y	1	1.2	7	1	14	-0.866 15 0.5
8	1.2DL + 1WL AZI 180	Yes	Y	1	1.2	8	1	14	-1 15
9	1.2DL + 1WL AZI 210	Yes	Y	1	1.2	9	1	14	-0.866 15 -0.5
10	1.2DL + 1WL AZI 240	Yes	Y	1	1.2	10	1	14	-0.5 15 -0.866
11	1.2DL + 1WL AZI 270	Yes	Y	1	1.2	11	1	14	15 -1
12	1.2DL + 1WL AZI 300	Yes	Y	1	1.2	12	1	14	0.5 15 -0.866
13	1.2DL + 1WL AZI 330	Yes	Y	1	1.2	13	1	14	0.866 15 -0.5
14	0.9DL + 1WL AZI 0	Yes	Y	1	0.9	2	1	14	1 15
15	0.9DL + 1WL AZI 30	Yes	Y	1	0.9	3	1	14	0.866 15 0.5
16	0.9DL + 1WL AZI 60	Yes	Y	1	0.9	4	1	14	0.5 15 0.866

Load Combinations (Continued)

	Description	Solve	P-Delta	BLCFactor							
17	0.9DL + 1WL AZI 90	Yes	Y	1	0.9	5	1	14	15	1	
18	0.9DL + 1WL AZI 120	Yes	Y	1	0.9	6	1	14	-0.5	15	0.866
19	0.9DL + 1WL AZI 150	Yes	Y	1	0.9	7	1	14	-0.866	15	0.5
20	0.9DL + 1WL AZI 180	Yes	Y	1	0.9	8	1	14	-1	15	
21	0.9DL + 1WL AZI 210	Yes	Y	1	0.9	9	1	14	-0.866	15	-0.5
22	0.9DL + 1WL AZI 240	Yes	Y	1	0.9	10	1	14	-0.5	15	-0.866
23	0.9DL + 1WL AZI 270	Yes	Y	1	0.9	11	1	14	15	-1	
24	0.9DL + 1WL AZI 300	Yes	Y	1	0.9	12	1	14	0.5	15	-0.866
25	0.9DL + 1WL AZI 330	Yes	Y	1	0.9	13	1	14	0.866	15	-0.5
26	1.2D + 1.0Di	Yes	Y	1	1.2	16	1				
27	1.2D + 1.0Di +1.0Wi AZI 0	Yes	Y	1	1.2	16	1	17	1	29	1
28	1.2D + 1.0Di +1.0Wi AZI 30	Yes	Y	1	1.2	16	1	18	1	29	0.866
29	1.2D + 1.0Di +1.0Wi AZI 60	Yes	Y	1	1.2	16	1	19	1	29	0.5
30	1.2D + 1.0Di +1.0Wi AZI 90	Yes	Y	1	1.2	16	1	20	1	29	30
31	1.2D + 1.0Di +1.0Wi AZI 120	Yes	Y	1	1.2	16	1	21	1	29	-0.5
32	1.2D + 1.0Di +1.0Wi AZI 150	Yes	Y	1	1.2	16	1	22	1	29	-0.866
33	1.2D + 1.0Di +1.0Wi AZI 180	Yes	Y	1	1.2	16	1	23	1	29	-1
34	1.2D + 1.0Di +1.0Wi AZI 210	Yes	Y	1	1.2	16	1	24	1	29	-0.866
35	1.2D + 1.0Di +1.0Wi AZI 240	Yes	Y	1	1.2	16	1	25	1	29	-0.5
36	1.2D + 1.0Di +1.0Wi AZI 270	Yes	Y	1	1.2	16	1	26	1	29	30
37	1.2D + 1.0Di +1.0Wi AZI 300	Yes	Y	1	1.2	16	1	27	1	29	0.5
38	1.2D + 1.0Di +1.0Wi AZI 330	Yes	Y	1	1.2	16	1	28	1	29	0.866
39	(1.2 + 0.2Sds)DL + 1.0E AZI 0	Yes	Y	1	1.241	31	1	32			
40	(1.2 + 0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	1.241	31	0.866	32	0.5		
41	(1.2 + 0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	1.241	31	0.5	32	0.866		
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	1.241	31		32	1		
43	(1.2 + 0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	1.241	31	-0.5	32	0.866		
44	(1.2 + 0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	1.241	31	-0.866	32	0.5		
45	(1.2 + 0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	1.241	31	-1	32			
46	(1.2 + 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	1.241	31	-0.866	32	-0.5		
47	(1.2 + 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	1.241	31	-0.5	32	-0.866		
48	(1.2 + 0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	1.241	31		32	-1		
49	(1.2 + 0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	1.241	31	0.5	32	-0.866		
50	(1.2 + 0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	1.241	31	0.866	32	-0.5		
51	(0.9 - 0.2Sds)DL + 1.0E AZI 0	Yes	Y	1	0.859	31	1	32			
52	(0.9 - 0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	0.859	31	0.866	32	0.5		
53	(0.9 - 0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	0.859	31	0.5	32	0.866		
54	(0.9 - 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	0.859	31		32	1		
55	(0.9 - 0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	0.859	31	-0.5	32	0.866		
56	(0.9 - 0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	0.859	31	-0.866	32	0.5		
57	(0.9 - 0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	0.859	31	-1	32			
58	(0.9 - 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	0.859	31	-0.866	32	-0.5		
59	(0.9 - 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	0.859	31	-0.5	32	-0.866		
60	(0.9 - 0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	0.859	31		32	-1		
61	(0.9 - 0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	0.859	31	0.5	32	-0.866		
62	(0.9 - 0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	0.859	31	0.866	32	-0.5		

Load Combinations (Continued)

	Description	Solve	P-Delta	BLCFactor									
63	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 0	Yes	Y	1	1	2	0.259	14	0.259	15	33	1.5	
64	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 30	Yes	Y	1	1	3	0.259	14	0.224	15	0.129	33	1.5
65	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 60	Yes	Y	1	1	4	0.259	14	0.129	15	0.224	33	1.5
66	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 90	Yes	Y	1	1	5	0.259	14		15	0.259	33	1.5
67	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 120	Yes	Y	1	1	6	0.259	14	-0.129	15	0.224	33	1.5
68	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 150	Yes	Y	1	1	7	0.259	14	-0.224	15	0.129	33	1.5
69	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 180	Yes	Y	1	1	8	0.259	14	-0.259	15		33	1.5
70	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 210	Yes	Y	1	1	9	0.259	14	-0.224	15	-0.129	33	1.5
71	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 240	Yes	Y	1	1	10	0.259	14	-0.129	15	-0.224	33	1.5
72	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 270	Yes	Y	1	1	11	0.259	14		15	-0.259	33	1.5
73	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 300	Yes	Y	1	1	12	0.259	14	0.129	15	-0.224	33	1.5
74	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 330	Yes	Y	1	1	13	0.259	14	0.224	15	-0.129	33	1.5
75	1.2DL + 1.5LL	Yes	Y	1	1.2	33	1.5						
76	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	34	1.5	2	0.065	14	0.065	15	
77	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 30	Yes	Y	1	1.2	34	1.5	3	0.065	14	0.056	15	0.032
78	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	34	1.5	4	0.065	14	0.032	15	0.056
79	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	34	1.5	5	0.065	14		15	0.065
80	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 120	Yes	Y	1	1.2	34	1.5	6	0.065	14	-0.032	15	0.056
81	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	34	1.5	7	0.065	14	-0.056	15	0.032
82	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	34	1.5	8	0.065	14	-0.065	15	
83	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 210	Yes	Y	1	1.2	34	1.5	9	0.065	14	-0.056	15	-0.032
84	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	34	1.5	10	0.065	14	-0.032	15	-0.056
85	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	34	1.5	11	0.065	14		15	-0.065
86	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 300	Yes	Y	1	1.2	34	1.5	12	0.065	14	0.032	15	-0.056
87	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 330	Yes	Y	1	1.2	34	1.5	13	0.065	14	0.056	15	-0.032
88	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	35	1.5	2	0.065	14	0.065	15	
89	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 30	Yes	Y	1	1.2	35	1.5	3	0.065	14	0.056	15	0.032
90	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	35	1.5	4	0.065	14	0.032	15	0.056
91	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	35	1.5	5	0.065	14		15	0.065
92	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 120	Yes	Y	1	1.2	35	1.5	6	0.065	14	-0.032	15	0.056
93	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	35	1.5	7	0.065	14	-0.056	15	0.032
94	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	35	1.5	8	0.065	14	-0.065	15	
95	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 210	Yes	Y	1	1.2	35	1.5	9	0.065	14	-0.056	15	-0.032
96	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	35	1.5	10	0.065	14	-0.032	15	-0.056
97	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	35	1.5	11	0.065	14		15	-0.065
98	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 300	Yes	Y	1	1.2	35	1.5	12	0.065	14	0.032	15	-0.056
99	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 330	Yes	Y	1	1.2	35	1.5	13	0.065	14	0.056	15	-0.032
100	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	36	1.5	2	0.065	14	0.065	15	
101	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 30	Yes	Y	1	1.2	36	1.5	3	0.065	14	0.056	15	0.032
102	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	36	1.5	4	0.065	14	0.032	15	0.056
103	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	36	1.5	5	0.065	14		15	0.065
104	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 120	Yes	Y	1	1.2	36	1.5	6	0.065	14	-0.032	15	0.056
105	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	36	1.5	7	0.065	14	-0.056	15	0.032
106	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	36	1.5	8	0.065	14	-0.065	15	
107	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 210	Yes	Y	1	1.2	36	1.5	9	0.065	14	-0.056	15	-0.032
108	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	36	1.5	10	0.065	14	-0.032	15	-0.056

Load Combinations (Continued)

	Description	Solve	P-Delta	BLCFactor								
109	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	36	1.5	11	0.065	14		15 -0.065
110	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 300	Yes	Y	1	1.2	36	1.5	12	0.065	14	0.032	15 -0.056
111	1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 330	Yes	Y	1	1.2	36	1.5	13	0.065	14	0.056	15 -0.032
112	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	37	1.5	2	0.065	14	0.065	15
113	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 30	Yes	Y	1	1.2	37	1.5	3	0.065	14	0.056	15 0.032
114	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	37	1.5	4	0.065	14	0.032	15 0.056
115	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	37	1.5	5	0.065	14		15 0.065
116	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 120	Yes	Y	1	1.2	37	1.5	6	0.065	14	-0.032	15 0.056
117	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	37	1.5	7	0.065	14	-0.056	15 0.032
118	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	37	1.5	8	0.065	14	-0.065	15
119	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 210	Yes	Y	1	1.2	37	1.5	9	0.065	14	-0.056	15 -0.032
120	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	37	1.5	10	0.065	14	-0.032	15 -0.056
121	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	37	1.5	11	0.065	14		15 -0.065
122	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 300	Yes	Y	1	1.2	37	1.5	12	0.065	14	0.032	15 -0.056
123	1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 330	Yes	Y	1	1.2	37	1.5	13	0.065	14	0.056	15 -0.032
124	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	38	1.5	2	0.065	14	0.065	15
125	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 30	Yes	Y	1	1.2	38	1.5	3	0.065	14	0.056	15 0.032
126	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	38	1.5	4	0.065	14	0.032	15 0.056
127	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	38	1.5	5	0.065	14		15 0.065
128	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 120	Yes	Y	1	1.2	38	1.5	6	0.065	14	-0.032	15 0.056
129	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	38	1.5	7	0.065	14	-0.056	15 0.032
130	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	38	1.5	8	0.065	14	-0.065	15
131	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 210	Yes	Y	1	1.2	38	1.5	9	0.065	14	-0.056	15 -0.032
132	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	38	1.5	10	0.065	14	-0.032	15 -0.056
133	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	38	1.5	11	0.065	14		15 -0.065
134	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 300	Yes	Y	1	1.2	38	1.5	12	0.065	14	0.032	15 -0.056
135	1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 330	Yes	Y	1	1.2	38	1.5	13	0.065	14	0.056	15 -0.032
136	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	39	1.5	2	0.065	14	0.065	15
137	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 30	Yes	Y	1	1.2	39	1.5	3	0.065	14	0.056	15 0.032
138	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	39	1.5	4	0.065	14	0.032	15 0.056
139	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	39	1.5	5	0.065	14		15 0.065
140	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 120	Yes	Y	1	1.2	39	1.5	6	0.065	14	-0.032	15 0.056
141	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	39	1.5	7	0.065	14	-0.056	15 0.032
142	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	39	1.5	8	0.065	14	-0.065	15
143	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 210	Yes	Y	1	1.2	39	1.5	9	0.065	14	-0.056	15 -0.032
144	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	39	1.5	10	0.065	14	-0.032	15 -0.056
145	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	39	1.5	11	0.065	14		15 -0.065
146	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 300	Yes	Y	1	1.2	39	1.5	12	0.065	14	0.032	15 -0.056
147	1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 330	Yes	Y	1	1.2	39	1.5	13	0.065	14	0.056	15 -0.032
148	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	40	1.5	2	0.065	14	0.065	15
149	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 30	Yes	Y	1	1.2	40	1.5	3	0.065	14	0.056	15 0.032
150	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	40	1.5	4	0.065	14	0.032	15 0.056
151	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	40	1.5	5	0.065	14		15 0.065
152	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 120	Yes	Y	1	1.2	40	1.5	6	0.065	14	-0.032	15 0.056
153	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	40	1.5	7	0.065	14	-0.056	15 0.032
154	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	40	1.5	8	0.065	14	-0.065	15

Load Combinations (Continued)

	Description	Solve	P-Delta	BLCFactor							
155	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 210	Yes	Y	1	1.2	40	1.5	9	0.065	14	-0.056
156	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	40	1.5	10	0.065	14	-0.032
157	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	40	1.5	11	0.065	14	-0.065
158	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 300	Yes	Y	1	1.2	40	1.5	12	0.065	14	0.032
159	1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 330	Yes	Y	1	1.2	40	1.5	13	0.065	14	0.056
160	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	41	1.5	2	0.065	14	0.065
161	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 30	Yes	Y	1	1.2	41	1.5	3	0.065	14	0.056
162	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	41	1.5	4	0.065	14	0.032
163	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	41	1.5	5	0.065	14	0.065
164	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 120	Yes	Y	1	1.2	41	1.5	6	0.065	14	-0.032
165	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	41	1.5	7	0.065	14	-0.056
166	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	41	1.5	8	0.065	14	-0.065
167	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 210	Yes	Y	1	1.2	41	1.5	9	0.065	14	-0.056
168	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	41	1.5	10	0.065	14	-0.032
169	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	41	1.5	11	0.065	14	-0.065
170	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 300	Yes	Y	1	1.2	41	1.5	12	0.065	14	0.032
171	1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 330	Yes	Y	1	1.2	41	1.5	13	0.065	14	0.056
172	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	42	1.5	2	0.065	14	0.065
173	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 30	Yes	Y	1	1.2	42	1.5	3	0.065	14	0.056
174	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	42	1.5	4	0.065	14	0.032
175	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	42	1.5	5	0.065	14	0.065
176	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 120	Yes	Y	1	1.2	42	1.5	6	0.065	14	-0.032
177	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	42	1.5	7	0.065	14	-0.056
178	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	42	1.5	8	0.065	14	-0.065
179	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 210	Yes	Y	1	1.2	42	1.5	9	0.065	14	-0.056
180	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	42	1.5	10	0.065	14	-0.032
181	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	42	1.5	11	0.065	14	-0.065
182	1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 300	Yes	Y	1	1.2	42	1.5	12	0.065	14	0.032

Envelope Node Reactions

	Node Label	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC	
1	N15	max	1153.065	5	1722.645	27	356.447	14	3220.247	27	1535.732	11	879.31	146
2		min	-1153.07	23	-97.03	20	-359.673	8	-428.918	20	-1533.859	17	-664.79	164
3	N31	max	539.475	6	1844.837	35	1066.283	13	355.881	15	1509.881	7	2756.488	35
4		min	-537.394	24	-60.351	16	-1065.651	19	-2086.481	34	-1507.953	25	-304.064	16
5	N25	max	700.717	16	1777.207	31	966.627	3	270.007	25	1464.965	3	368.64	23
6		min	-703.098	10	-71.846	24	-966.014	9	-1824.468	105	-1463.404	21	-2940.785	31
7	Totals:	max	2156.42	17	4924.189	29	2241.989	14						
8		min	-2156.426	11	1285.349	59	-2241.989	20						

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

Member	Shape	Code	Check	Loc[in]	LC	Shear	Check	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft]	Cb	Eqn
1	MP1	PIPE_2.0	0.345	65.684	2	0.05	65.684	11	14916.096	32130	1871.625	1871.625	3	H1-1b		
2	MP4	PIPE_2.0	0.315	65.684	10	0.049	65.684	7	14916.096	32130	1871.625	1871.625	1.896	H1-1b		

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)

Member	Shape	Code	Check Loc [in]	LC	Shear Check Loc [in]		Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft]	Cb	Eqn
					6	9								
3	MP7	PIPE_2.0	0.315	65.684	6	0.048	65.684	3	14916.096	32130	1871.625	1871.625	1.801	H1-1b
4	M53	C4X4.5	0.314	25.606	9	0.095	2.695	y 95	36462.434	43416	1093.41	5535	1.394	H1-1b
5	M15	6x0.25	0.302	15.5	9	0.038	15.5	y 95	1836.566	48600	253.125	2754.715	1.323	H1-1b
6	M50	C4X4.5	0.301	25.606	5	0.093	2.695	y 175	36462.434	43416	1093.41	5535	1.418	H1-1b
7	M57	C4X4.5	0.298	0	13	0.093	22.911	y 147	36462.434	43416	1093.41	5535	1.386	H1-1b
8	M2	6x0.25	0.291	15.5	13	0.037	15.5	y 147	1836.566	48600	253.125	2726.687	1.309	H1-1b
9	M12	6x0.25	0.284	15.5	5	0.037	15.5	y 175	1836.566	48600	253.125	2747.938	1.319	H1-1b
10	MP9	PIPE_2.0	0.273	65.684	7	0.074	65.684	8	14916.096	32130	1871.625	1871.625	2.418	H1-1b
11	M58	C4X4.5	0.272	0	31	0.128	22.911	y 29	36462.434	43416	1093.41	5535	1.697	H1-1b
12	MP3	PIPE_2.0	0.271	65.684	3	0.071	65.684	5	14916.096	32130	1871.625	1871.625	3	H1-1b
13	MP6	PIPE_2.0	0.271	65.684	11	0.069	65.684	13	14916.096	32130	1871.625	1871.625	2.659	H1-1b
14	M59	C4X4.5	0.269	0	35	0.13	22.911	y 33	36462.434	43416	1093.41	5535	1.738	H1-1b
15	MP2	PIPE_2.0	0.26	65.684	2	0.059	65.684	7	14916.096	32130	1871.625	1871.625	3	H1-1b
16	M1	C4X4.5	0.258	25.606	27	0.118	2.695	y 37	36462.434	43416	1093.41	5535	1.756	H1-1b
17	MP8	PIPE_2.0	0.25	65.684	6	0.059	65.684	9	14916.096	32130	1871.625	1871.625	2.397	H1-1b
18	MP5	PIPE_2.0	0.249	65.684	10	0.058	65.684	13	14916.096	32130	1871.625	1871.625	2.515	H1-1b
19	MS3	HSS4X4X4	0.224	0	33	0.099	0	y 94	132218.494	139518	16180.5	16180.5	2.585	H1-1b
20	MS2	HSS4X4X4	0.212	0	29	0.095	0	y 174	132218.494	139518	16180.5	16180.5	2.617	H1-1b
21	MS1	HSS4X4X4	0.195	0	37	0.099	0	y 146	133409.052	139518	16180.5	16180.5	2.513	H1-1b
22	MR1	PIPE_2.0	0.131	25.263	5	0.086	48	3	14916.096	32130	1871.625	1871.625	1.838	H1-1b
23	MR3	PIPE_2.0	0.131	25.263	9	0.085	48	7	14916.096	32130	1871.625	1871.625	1.777	H1-1b
24	MR2	PIPE_2.0	0.128	70.737	2	0.086	48	11	14916.096	32130	1871.625	1871.625	1.595	H1-1b
25	MH3	PIPE_3.0	0.089	27.789	8	0.107	27.789	8	46290.523	65205	5748.75	5748.75	2.249	H1-1b
26	MH1	PIPE_3.0	0.085	68.211	4	0.103	68.211	4	46290.523	65205	5748.75	5748.75	1.769	H1-1b
27	MH2	PIPE_3.0	0.083	68.211	12	0.1	68.211	12	46290.523	65205	5748.75	5748.75	1.69	H1-1b
28	M52	L2x2x2	0.081	0	9	0.006	27.713	y 9	11286.78	15908.4	402.563	821.791	1.5	H2-1
29	M49	L2x2x2	0.075	0	5	0.005	27.713	y 5	11286.78	15908.4	402.563	821.791	1.5	H2-1
30	M10	L2x2x2	0.074	0	13	0.005	27.713	y 13	11286.78	15908.4	402.563	821.791	1.5	H2-1
31	M51	L2x2x2	0.047	0	13	0.008	0	y 30	11286.78	15908.4	402.563	821.791	1.5	H2-1
32	M54	L2x2x2	0.046	0	5	0.008	0	y 34	11286.78	15908.4	402.563	821.791	1.5	H2-1
33	M11	L2x2x2	0.046	0	15	0.007	0	y 38	11286.78	15908.4	402.563	821.791	1.5	H2-1
34	M56	4x0.25	0.042	16.077	34	0.04	32.155	y 8	32074.159	32400	168.75	2700	1	H1-1b
35	M55	4x0.25	0.042	16.077	30	0.039	32.155	y 4	32074.159	32400	168.75	2700	1	H1-1b
36	M3	4x0.25	0.042	16.077	38	0.038	32.155	y 12	32074.159	32400	168.75	2700	1	H1-1b

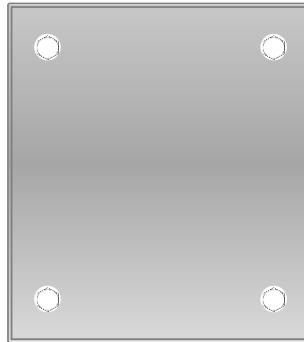
APPENDIX D

ADDITIONAL CALCULATIONS

Bolt Calculation Tool, V1.5.1

PROJECT DATA	
Site Name:	RIMMON ST.
Site Number:	876318
Connection Description:	Standoff to Collar

MAXIMUM BOLT LOADS		
Bolt Tension:	3634.27	lbs
Bolt Shear:	900.18	lbs


WORST CASE BOLT LOADS ¹		
Bolt Tension:	3634.27	lbs
Bolt Shear:	371.97	lbs

BOLT PROPERTIES		
Bolt Type:	Bolt	-
Bolt Diameter:	0.625	in
Bolt Grade:	A325	-
# of Bolts:	4	-
Threads Excluded?	No	-

¹ Worst case bolt loads correspond to Load combination #33 on member MS3 in RISA-3D, which causes the maximum demand on the bolts.

Member Information	
I nodes of MS1, MS2, MS3	

BOLT CHECK	
Tensile Strength	20340.15
Shear Strength	13805.83
Max Tensile Usage	17.9%
Max Shear Usage	6.5%
Interaction Check (Worst Case)	0.03
Result	Pass

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 876318

BOHVN00166A
34 Rimmon Street
Seymour, Connecticut 06483

May 17, 2022

EBI Project Number: 6222003251

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	1.54%

May 17, 2022

Attn: Dish Wireless

Emissions Analysis for Site: 876318 - BOHVN00166A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **34 Rimmon Street in Seymour, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The number of $\mu\text{W}/\text{cm}^2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 $\mu\text{W}/\text{cm}^2$ and 467 $\mu\text{W}/\text{cm}^2$, respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 $\mu\text{W}/\text{cm}^2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 34 Rimmon Street in Seymour, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 138 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665-2I	Make / Model:	JMA MX08FRO665-2I	Make / Model:	JMA MX08FRO665-2I
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd
Height (AGL):	138 feet	Height (AGL):	138 feet	Height (AGL):	138 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts
ERP (W):	1,424.17	ERP (W):	1,424.17	ERP (W):	1,424.17
Antenna A1 MPE %:	0.43%	Antenna B1 MPE %:	0.43%	Antenna C1 MPE %:	0.43%

Site Composite MPE %	
Carrier	MPE %
Dish Wireless (Max at Sector A):	0.43%
Metro PCS	0.39%
Sprint	0.72%
Site Total MPE % :	1.54%

Dish Wireless MPE % Per Sector	
Dish Wireless Sector A Total:	0.43%
Dish Wireless Sector B Total:	0.43%
Dish Wireless Sector C Total:	0.43%
Site Total MPE % :	1.54%

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu\text{W}/\text{cm}^2$)	Frequency (MHz)	Allowable MPE ($\mu\text{W}/\text{cm}^2$)	Calculated % MPE
Dish Wireless 600 MHz n71	4	110.82	138.0	0.91	600 MHz n71	400	0.23%
Dish Wireless 1900 MHz n70	4	245.22	138.0	2.02	1900 MHz n70	1000	0.20%
						Total:	0.43%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	0.43%
Sector B:	0.43%
Sector C:	0.43%
Dish Wireless Maximum MPE % (Sector A):	0.43%
Site Total:	1.54%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **1.54%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320
West Henrietta, NY 14586

Phone: (585) 445-5896
Fax: (724) 416-4461
www.crowncastle.com

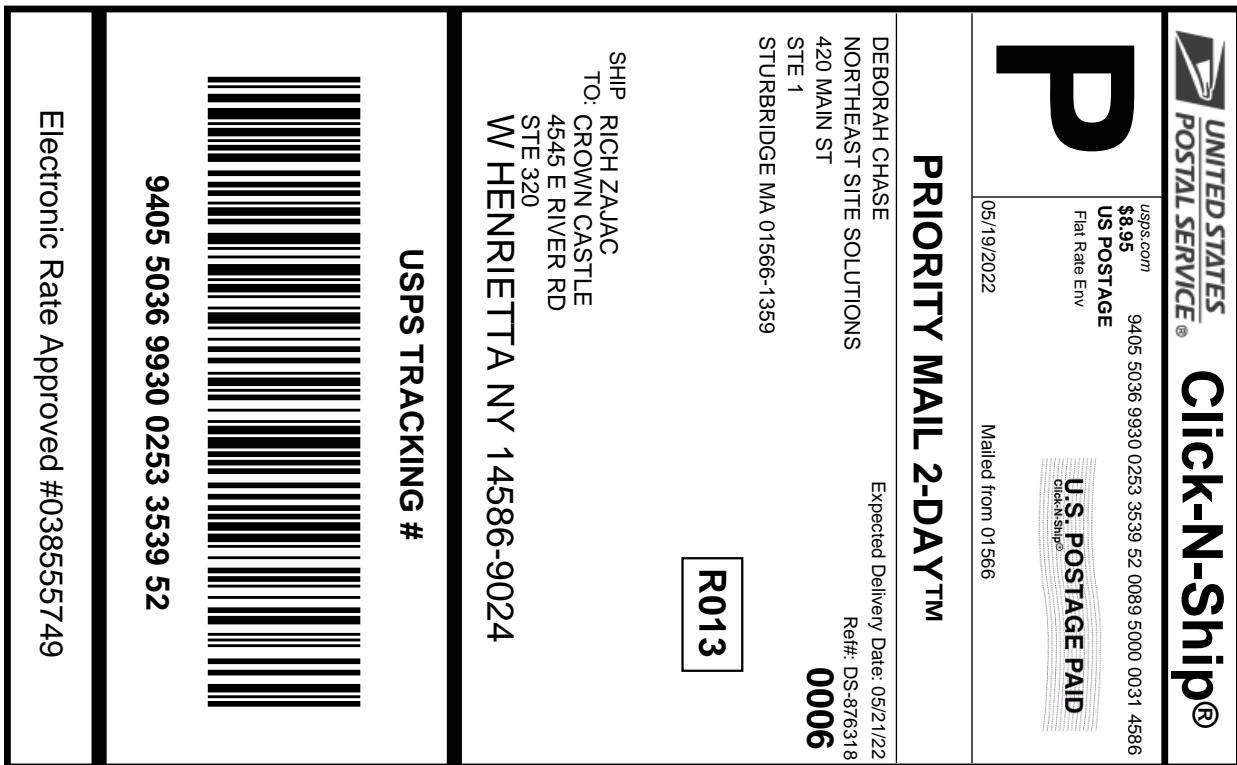
Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: Tower Share Application
Crown Castle telecommunications site at:
34 RIMMON STREET, SEYMOUR, CT 06483

GLOBAL SIGNAL ACQUISITIONS III LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:


Crown Site ID/Name: **876318/RIMMON ST.**
Customer Site ID: **BOHVN00166A/CT-CCI-T-876318**
Site Address: **34 Rimmon Street, SEYMOUR, CT 06483**

Crown Castle

By: Date: **5/17/2022**
Richard Zajac
Site Acquisition Specialist

Exhibit H

Recipient Mailings

—X— *Cut on dotted line.*

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #:
9405 5036 9930 0253 3539 52

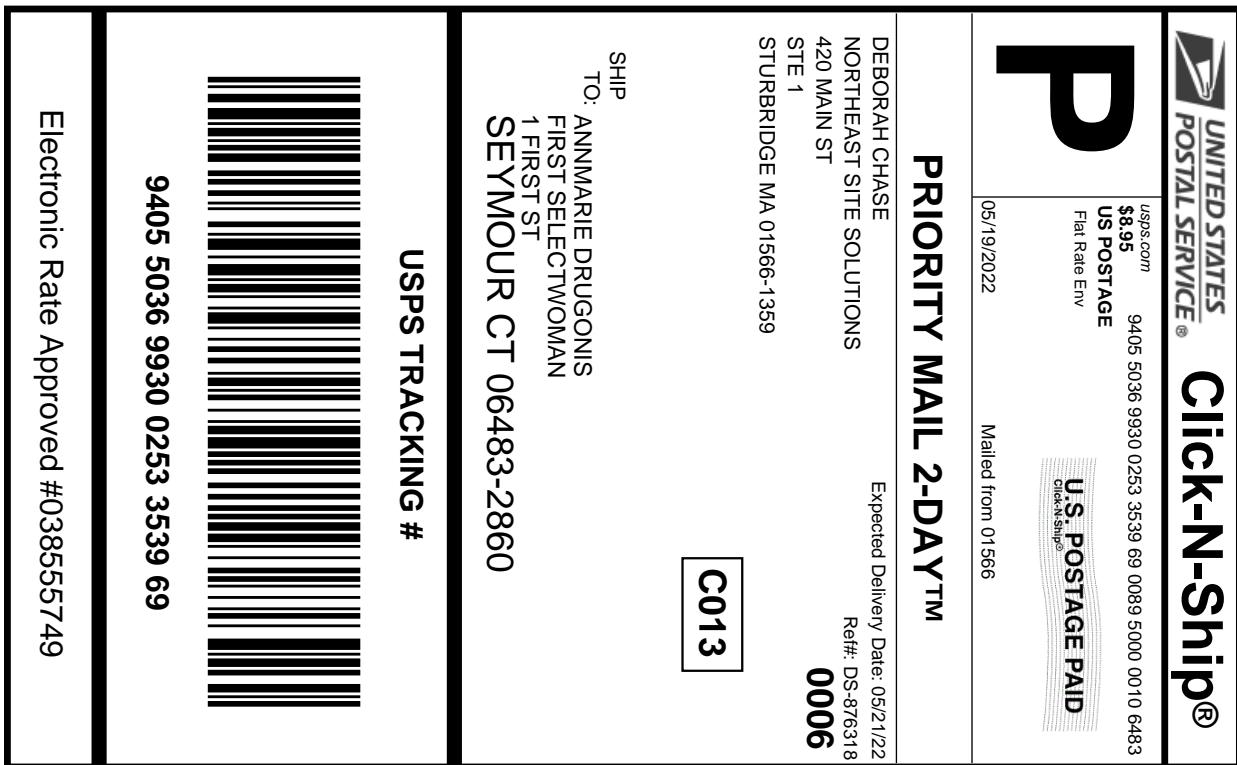
Trans. #:	563885507	Priority Mail® Postage:	\$8.95
Print Date:	05/19/2022	Total:	\$8.95
Ship Date:	05/19/2022		
Expected			
Delivery Date:	05/21/2022		

From: DEBORAH CHASE
NORTHEAST SITE SOLUTIONS
420 MAIN ST
STE 1
STURBRIDGE MA 01566-1359
Ref#: DS-876318

To: RICH ZAJAC
CROWN CASTLE
4545 E RIVER RD
STE 320
W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.




Thank you for shipping with the United States Postal Service!

Check the status of your shipment on the USPS Tracking® page at usps.com

Electronic Rate Approved #0385555749

9405 5036 9930 0253 3539 52

Cut on dotted line.

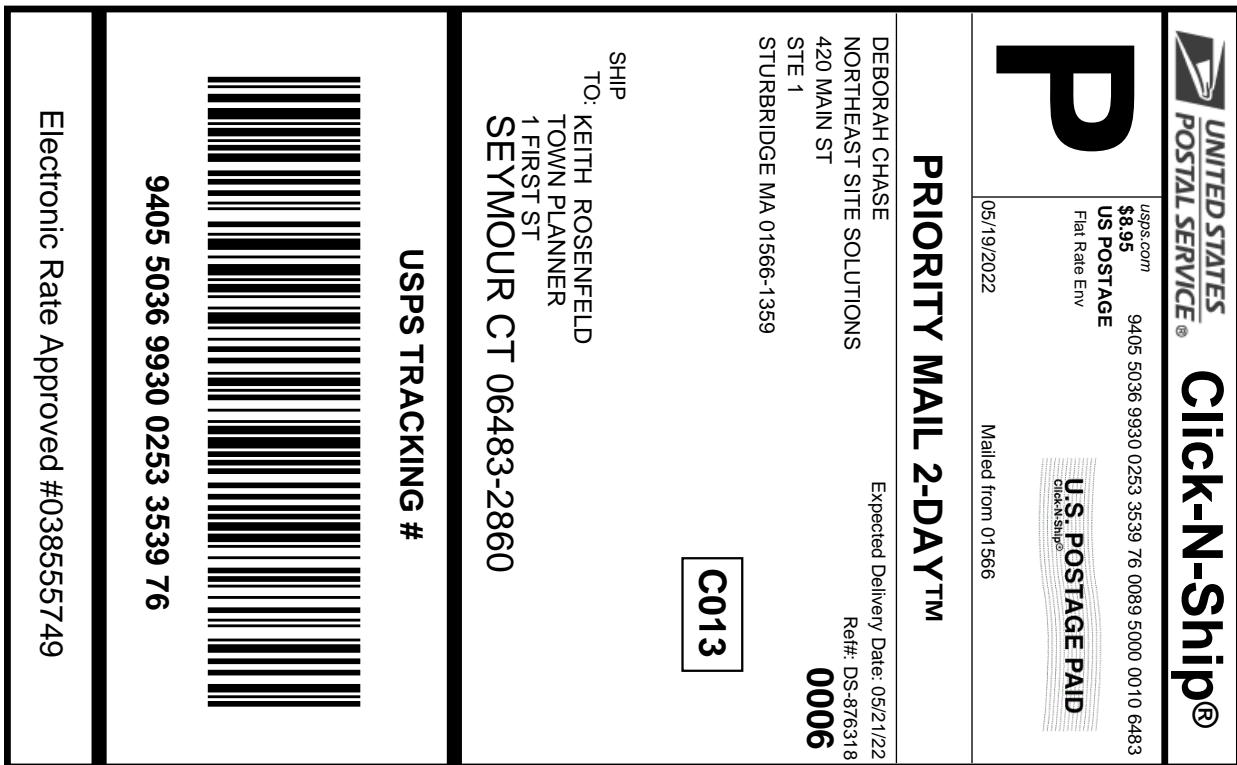
Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Thank you for shipping with the United States Postal Service!

Check the status of your shipment on the USPS Tracking® page at usps.com

Click-N-Ship® Label Record


USPS TRACKING #:
9405 5036 9930 0253 3539 69

Trans. #:	563885507	Priority Mail® Postage:	\$8.95
Print Date:	05/19/2022	Total:	\$8.95
Ship Date:	05/19/2022		
Expected			
Delivery Date:	05/21/2022		

From: DEBORAH CHASE
NORTHEAST SITE SOLUTIONS
420 MAIN ST
STE 1
STURBRIDGE MA 01566-1359

To: ANNMARIE DRUGONIS
FIRST SELECTWOMAN
1 FIRST ST
SEYMOUR CT 06483-2860

Ref#: DS-876318

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

—X— *Cut on dotted line.*

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #:
9405 5036 9930 0253 3539 76

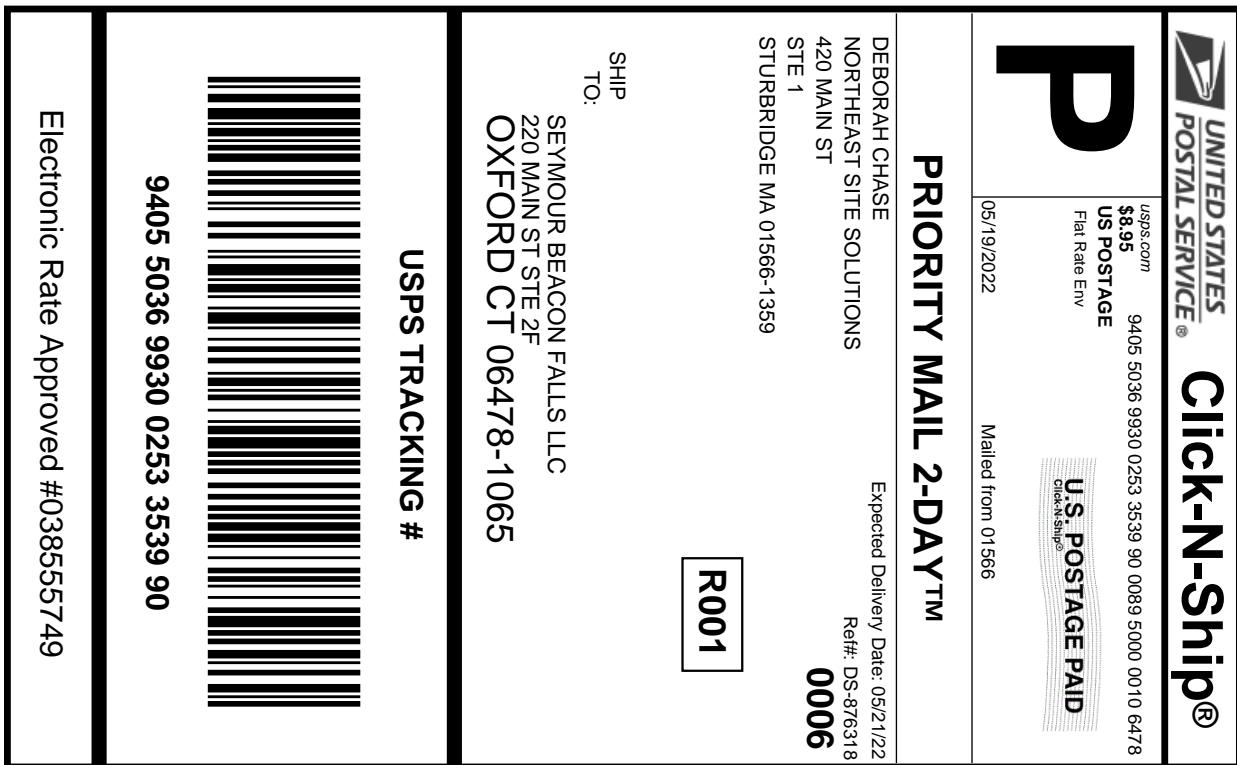
Trans. #:	563885507	Priority Mail® Postage:	\$8.95
Print Date:	05/19/2022	Total:	\$8.95
Ship Date:	05/19/2022		
Expected			
Delivery Date:	05/21/2022		

From: DEBORAH CHASE
NORTHEAST SITE SOLUTIONS
420 MAIN ST
STE 1
STURBRIDGE MA 01566-1359

To: KEITH ROSENFELD
TOWN PLANNER
1 FIRST ST
SEYMOUR CT 06483-2860

Ref#: DS-876318

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.



Thank you for shipping with the United States Postal Service!

Check the status of your shipment on the USPS Tracking® page at usps.com

Electronic Rate Approved #0385555749

9405 5036 9930 0253 3539 76

—X— *Cut on dotted line.*

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #:
9405 5036 9930 0253 3539 90

Trans. #:	563885507	Priority Mail® Postage:	\$8.95
Print Date:	05/19/2022	Total:	\$8.95
Ship Date:	05/19/2022		
Expected			
Delivery Date:	05/21/2022		

From: DEBORAH CHASE
NORTHEAST SITE SOLUTIONS
420 MAIN ST
STE 1
STURBRIDGE MA 01566-1359

To: SEYMOUR BEACON FALLS LLC
220 MAIN ST STE 2F
OXFORD CT 06478-1065

Ref#: DS-876318

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Thank you for shipping with the United States Postal Service!

Check the status of your shipment on the USPS Tracking® page at usps.com

Electronic Rate Approved #0385555749

876318 CrownDul

FARMINGTON
210 MAIN ST
FARMINGTON, CT 06032-9998
(800) 275-8777

05/20/2022 08:44 AM

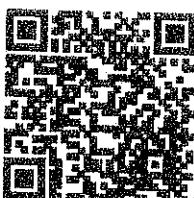
Product	Qty	Unit	Price
		Price	

Prepaid Mail 1 \$0.00
West Henrietta, NY 14586
Weight: 0 lb 2.00 oz
Acceptance Date:
Fri 05/20/2022
Tracking #:
9405 5036 9930 0253 3539 52

Prepaid Mail 1 \$0.00
Seymour, CT 06483
Weight: 0 lb 9.00 oz
Acceptance Date:
Fri 05/20/2022
Tracking #:
9405 5036 9930 0253 3539 76

Prepaid Mail 1 \$0.00
Oxford, CT 06478
Weight: 0 lb 9.10 oz
Acceptance Date:
Fri 05/20/2022
Tracking #:
9405 5036 9930 0253 3539 90

Prepaid Mail 1 \$0.00
Seymour, CT 06483
Weight: 0 lb 9.00 oz
Acceptance Date:
Fri 05/20/2022
Tracking #:
9405 5036 9930 0253 3539 69


Grand Total: \$0.00

Every household in the U.S. is now
eligible to receive a second set
of 4 free test kits.
Go to www.covidtests.gov

Preview your Mail
Track your Packages
Sign up for FREE @
<https://informeddelivery.usps.com>

All sales final on stamps and postage.
Refunds for guaranteed services only.
Thank you for your business.

Tell us about your experience.
Go to: <https://postalexperience.com/Pos>
or scan this code with your mobile device,

