Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

May 25, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 6 Progress Avenue, Seymour, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and related equipment on the ground, near the base of the tower. The tower was approved by the Town of Seymour ("Town") in June of 2000. Cellco's shared use of the tower was approved by the Council in September of 2010. A copy of the Town's approval and Cellco's TS-VER-124-100823 approval are included in Attachment 1.

Cellco now intends to modify its facility by replacing nine (9) existing antennas with three (3) Samsung 64T64RMMU antennas; six (6) MX06FRO660 antennas; removing three (3) existing remote radio heads ("RRHs") and installing six (6) new RRHs on Cellco's existing antenna mounts. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRHs specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Seymour's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. May 25, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. The replacement antennas and RRHs will be installed on Cellco's existing antenna mounts.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas and RRHs will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for the modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and tower base plate can support Cellco's proposed modifications. Modifications to the antenna mounts are required and proposed in this filing. Copies of the SA and MA are included in <u>Attachment 4</u>. Also included in <u>Attachment 4</u> is a separate letter prepared by the consulting engineers responsible for the preparation of the SA and MA verifying that the antenna model described in the SA and MA, respectively, as a nL-Sub6 Antenna or License-Sub6 Antenna, is the Samsung 64T64R model antenna and RRH that will be installed on the tower.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. May 25, 2022 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig BMM-

Enclosures Copy to:

Annmarie Drugonis, Seymour First Selectwoman Keith Rosenfeld, Seymour Town Planner EMAC LLC Aleksey Tyurin

ATTACHMENT 1

Course	ut Bue for Tower	Date 6-20 2000
		2
ing	APPLICATION FOR BU	JILDING PERMIT
ric	13-01-11	Estimated Cost \$ 126,000
avit	N One 1	Foo
Dept	No. 857/	Occupancy Fee \$ 2000
oved	Ch #4502	Occupancy Fee \$ 700
THE BILL DING DEPARTMEN	IT, TOWN OF SEYMOUR, CONN.	Additional Cost \$
indersigned, hereby applies for a	permit to do work according to the fo	
2 PROGRESS AVE	Lot No. /3	Side of Street R Zone 67
est cross street Silventon	e Road	
er of building Emac Commun	pication Colhe Address 5	alivia ST.
	Address 1.7.	
itect Piped inc	Address /5	45 Pidea Daire du Tris
Main Bldg: No ft front overall	No. ft. deep overall	A ros
	s	
	No. of rooms: 1st	
	om Street Line / 90 Dist. fr	
	the Town R 6434 ATT	
as per plans and	Spees an file	
	Sewer Septic Tank	
	Some Copies Internal	
3 4 5 6 7 7	3. 34	
ling Exection of STee/ To	NUER,	Date 6-29- 19 209
	APPLICATION FOR BU	JILDING PERMIT
ibing ing ric	APPLICATION FOR BU	JILDING PERMIT Finduced with
ibing ing ric ires avit	APPLICATION FOR BU NO-PEE POWTH- 13100- parmi	JILDING PERMIT Finduced with
nbing ing ric ires avit Dept. th Dept.	APPLICATION FOR BU NO-PEE PO.W.Th. 18100- parm. No. 858	JILDING PERMIT Fred \$ Compared Fire \$
nbing ing ric ires avit Dept	APPLICATION FOR BU NO-PEE PO.W.Th. 18100- parm. No. 858	JILDING PERMIT Fred \$ Compared Fire \$
nbing ing ric res avit Dept th Dept oved THE BUILDING DEPARTMEN	APPLICATION FOR BU NO-FEE PO.W.Th. BIDG. Parm. No. 8581 PEC # B-01720 IT, TOWN OF SEYMOUR, CONN.	Estimated Cost \$ Formit Fee \$ Occupancy Fee \$ Additional Cost \$
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN undersigned, hereby applies for a	No. 8581 No. 8581 No. 8581 T, TOWN OF SEYMOUR, CONN. permit to do work according to the fo	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN undersigned, hereby applies for a	No. 8581 No. 8581 No. 8581 T, TOWN OF SEYMOUR, CONN. permit to do work according to the fo	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street	No. 8581 No. 8581 No. 8581 T, TOWN OF SEYMOUR, CONN. permit to do work according to the fo	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone Zone Zone Zone Zone Zone Zone Zone
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street	No. 8581 No. 8581 No. 8581 T, TOWN OF SEYMOUR, CONN. permit to do work according to the fo	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone Zone Zone Zone Zone Zone Zone Zone
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street SI/NERMIN er of building Emac Commoder [er North cast Tower	APPLICATION FOR BU No-FEE PO.W.Th. 100-PEE PO.	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone Zone Zone Zone Zone Zone Zone Zone
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street SI/NERMIN er of building Emac Commoder [er North cast Tower	APPLICATION FOR BU No-FEE PO.W.Th. 100-PEE PO.	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone Zone Zone Zone Zone Zone Zone Zone
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street SI/NERMIN er of building Emac Cammo ler North east Tower itect PIRALIA	APPLICATION FOR BU No-FEE PO.W.Th. BIDG. Permi. No. 8581 REC ## B-01726 TT, TOWN OF SEYMOUR, CONN. permit to do work according to the fo Lot No./3 Address / Zo. Address / Zo. Address / Zo.	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone Z Z RIVER RA UNION VILLE CT
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street SAREAMIN of building Emac Common ler North cast Tower itect PIRALIA Main Bldg.: No. ft. front overall	APPLICATION FOR BU No-FEE PO.W.Th. BIOG. pam. No. 858/ No. 858/ PEC II B-01726 IT, TOWN OF SEYMOUR, CONN. permit to do work according to the fo Lot No./3 Address / 56 No. ft. deep overall	Estimated Cost \$ Permit Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone Zone Street R River Rd unionkillo of A Piece DR plymouth in Area
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street SI/NERMIN er of building Emac Commoder for North cast Tower itect PIRALIA Main Bldg.: No. ft. front overall of wings Garage	APPLICATION FOR BU No-FEE PO.W.Th. 100-PEE PO.	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone ZZ Co clivia ST Dephy River Rd union wills of Area No. of stories
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street SILERMIN er of building Emac Commoder North cast tower itect PIROS INC. Main Bldg.: No. ft. front overall of wings Garage truction Stoul & Concrete	APPLICATION FOR BU No-FEE PO.W.Th. BIOG. Parm. No. 858/ No. 858/ T, TOWN OF SEYMOUR, CONN. permit to do work according to the fo Lot No./3 Address / 50 Address / 50 No. ft. deep overall No. of rooms: 1st	Estimated Cost \$ Parmit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone Zone Zone River Rd Union Villa Cot River Rd Union Villa Cot A Fea No. of stories 2nd 3rd
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street SILERMIN er of building Emac Commoder for North cast tower itect PIROS INC. Main Bldg.: No. ft. front overall of wings Garage truction Stool t Concepts of Lot 2:1/ a.c. Dist. front	APPLICATION FOR BU No-FEE PO.W.Th. BIOG. pam. No. 858/ No. 858/ T, TOWN OF SEYMOUR, CONN. permit to do work according to the fo Lot No./3 Address / 50 Address / 50 No. ft. deep overall No. of rooms: 1st om Street Line / 20 Dist. fr	Estimated Cost \$ Parmit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone Zone Company Side Line Street No. of stories 2nd 3rd
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street SILERMIN er of building Emac Commoder for North cast tower itect PIROS INC. Main Bldg.: No. ft. front overall of wings Garage truction Stool t Concepts of Lot 2:1/ a.c. Dist. front	APPLICATION FOR BU No-FEE PO.W.Th. BIOG. pam. No. 858/ No. 858/ T, TOWN OF SEYMOUR, CONN. permit to do work according to the fo Lot No./3 Address / 50 Address / 50 No. ft. deep overall No. of rooms: 1st om Street Line / 20 Dist. fr	Estimated Cost \$ Parmit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone Zone Company Side Line Street No. of stories 2nd 3rd
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street Selection or of building Emac Commoder Vortheast Tower itect Pland in itect Pland in of wings Garage truction Stool & Company of Lot 2 1/1 acc Dist. fro ose of building is Erection Plans & Company of Lot Plans &	APPLICATION FOR BU No-FEE PO.W.Th. 100-PEE PO.	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone T River Rd uniantitie of Area No. of stories Induced with the control of th
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street Selection or of building Emac Commoder Vortheast Tower itect Pland in itect Pland in of wings Garage truction Stool & Company of Lot 2 1/1 acc Dist. fro ose of building is Erection Plans & Company of Lot Plans &	APPLICATION FOR BU No-FEE PO.W.Th. BIDG. Perm. No. 8581 REC ## B-01724 IT, TOWN OF SEYMOUR, CONN. permit to do work according to the fo Lot No./3 Address / 20 Address / 50 No. ft. deep overall No. of families No. of rooms: 1st om Street Line / 90 Dist. fr Af Steel Towar As Person	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone III Area No. of stories Induced with the control of the cont
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street Selection or of building Emac Commoder Vortheast Tower itect Pland in itect Pland in of wings Garage truction Stool & Company of Lot 2 1/1 acc Dist. fro ose of building is Erection Plans & Company of Lot Plans &	APPLICATION FOR BU No-FEE PO.W.Th. 100. permit No. 8581 REC ## B-01720 IT, TOWN OF SEYMOUR, CONN. permit to do work according to the fo Lot No./3 Address / 50 Address / 50 Address / 50 No. ft. deep overall s. No. of families No. of rooms: 1st om Street Line / 90 Dist. fr Spec S on file	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone T River Rd uniantitie of Area No. of stories Induced with the control of th
ibing ing ric ires avit Dept th Dept oved THE BUILDING DEPARTMEN indersigned, hereby applies for a 2 PROGRESS AVC est cross street Selection or of building Emac Commoder Vortheast Tower itect Pland in itect Pland in of wings Garage truction Stool & Company of Lot 2 1/1 acc Dist. fro ose of building is Erection Plans & Company of Lot Plans &	APPLICATION FOR BU No-FEE PO.W.Th. BIDG. Perm. No. 8581 REC ## B-01724 IT, TOWN OF SEYMOUR, CONN. permit to do work according to the fo Lot No./3 Address / 20 Address / 50 No. ft. deep overall No. of families No. of rooms: 1st om Street Line / 90 Dist. fr Af Steel Towar As Person	Estimated Cost \$ Permit* Fee \$ Occupancy Fee \$ Additional Cost \$ Illowing specifications: Side of Street R Zone III Area No. of stories Induced with the control of the cont

SEYMOUR PLANNING AND ZONING COMMISSION

TOWN HAL!.

1 FIRST STREET

SEYMOUR, CONNECTICUT

ZONING PERMIT

TENTERTY IDENTIFICATION	- > -
Address 2 PROGRESS AV	Zone GI-2
Tax Map 1-5 Parcel No 124 Develope	er's Lot No
Hame of Applicant EMAC COMMONICATION Tel	1 No. 735 7733
Construction of Bldgs and six improved on Six plan approved by PtZ 11-4-99 + Plans for Tower on file with Town Engine Construction of Town but Authorized and b.	en.
Attach plot plan prepared at a scale of	f, not more than
shall be prepared using available data an A-2 survey. On File with Prz	117110/36076 562046
2. As Built- A-2 Survey	
Not required to assure zoning c	ompliance
Required before a Certificate o will be authorized.	f Occupancy
SOUL EROSION CONTROL PLAN	•
Not required	
Required. Show on plot plan or at	tach separate plan.
ALTROVALS	•
1. Zoning/Start permit approved. Buildin	ng permit authorized.
Robert forta ASST ZEO: 6-20-	Date
2. Zoning/Development Completion Certificate Based on a review of the zoning/start permit, A-2 survey as required and/or the property, this development conformequiations and a certificate of occur	an inspection of
ZEO	Oate

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950

E-Mail: siting.council@ct.gov Internet: ct.gov/csc

September 24, 2010

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: TS-VER-124-100823 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 6 Progress Avenue, Seymour, Connecticut.

Dear Attorney Baldwin:

At a public meeting held September 23, 2010, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction. Please be advised that the validity of this action shall expire one year from the date of this letter.

The proposed shared use is to be implemented as specified in your letter dated August 23, 2010 and additional correspondence dated August 31, 2010, including the placement of all necessary equipment and shelters within the tower compound.

Thank you for your attention and cooperation.

Very truly yours,

Daniel F. Caruso

Chairman

DFC/CDM/laf

c: The Honorable Paul F. Roy, First Selectman, Town of Seymour James Baldwin, Sr., Zoning Enforcement Office Nown of Seymour EMAC Communications, LLC

CONNECTICUT SITING COUNCIL
Affirmative Action / Equal Opportunity Employer

ATTACHMENT 2

SITE NAME: WOODBRIDGE NORTH CT

6 PROGRESS AVENUE SEYMOUR, CT 06483 TOWN OF SEYMOUR. **NEW HAVEN COUNTY**

APPROVED AS NOTED

DRAWING INDEX

EXISTING ANTENNA PLAN AND SCHEDULE PROPOSED ANTENNA PLAN AND SCHEDULE

ANTENNA DETAILS & PLUMING DIAGRAM

EQUIPMENT SPECIFICATIONS

GROUNDING SCHEMATIC & DETAILS

MODIFICATION DRAWING ATTACHED

DO NOT SCALE DRAWINGS

THESE DRAWINGS ARE FORMATTED TO BE FULL-SIZE AT 22"X34". CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE DESIGNER / ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR MATERIAL ORDERS OR BE RESPONSIBLE FOR THE SAME, CONTRACTOR SHALL USE BEST MANAGEMENT PRACTICE TO PREVENT STORM WATER POLLUTION DURING

APPROVAL BLOCK

TITLE SHEET

ELEVATION

COMPOUND PLAN

SCOPE OF WORK

PMI REQUIREMENTS

CONSTRUCTION MANAGER

SITE ACQUISITION

RF ENGINEER

LESSOR/LESSOR REP

T-1

C-1

C-2

A-3

A-5

G-1

GN-1

TOTALLY COMMITTED.

118 FLANDERS ROAD

FLOOR 3

WESTBOROUGH, MA 01581

WOODBRIDGE NORTH CT 6 PROGRESS AVENUE SEYMOUR, CT 06483 TOWN OF SEYMOUR NEW HAVEN COUNTY

REVISIONS 5/18/22 ANTENNA REVISIONS 3 5/02/22 REVISED PER MA

FINAL CDs

PRELIMINARY CDs

ALN

2 03/02/21

0 12/15/20

DANIEL J. CORNING, P.E.

TITLE SHEET

T-1

SITE INFORMATION

PROJECT CONSISTS OF INSTALLING ADDITIONAL EQUIPMENT AND/OR ANTENNAS TO AN EXISTING WIRELESS TELECOMMUNICATIONS FACILITY. SCOPE OF WORK: 6 PROGRESS AVENUE

SEYMOUR, CT 06483

LATITUDE (NAD 83): LONGITUDE (NAD 83): 41-23-30.25N (41.391735°) 73-03-10.32W (-73.052867°)

> TOWN OF SEYMOUR NEW HAVEN COUNTY

PARCEL NUMBER: 1301.01 / 2

SITE ADDRESS

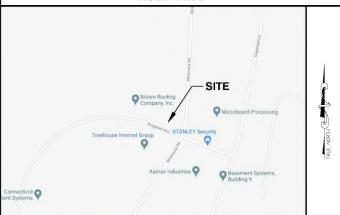
JURISDICTION:

PMI ACCESSED AT

VERIZON LOCATION CODE (PSLC):

PROPERTY OWNER: EDMAC LLC 2702 FOREST VIEW LANE KISSIMMEE, FL 34744

TOWER OWNER EDMAC LLC VZW SITE ID: WOODBRIDGE NORTH CT


STRUCTURE TYPE: SELF-SUPPORT TOWER

CONSTRUCTION TYPE II B

SMART TOOL VENDOR PROJECT PROJECT NUMBER:

USE GROUP:

VICINITY MAP

DIRECTIONS

FROM WALLINGFORD, CT: HEAD NORTH ON US-5 N / N COLONY RD TOWARD NEAL RD. TURN BACK ON US-5 S / N COLONY RD. TAKE RAMP RIGHT FOR CT-15 SOUTH TOWARD NEW HAVEN, AT EXIT 59, TAKE RAMP RIGHT FOR CT-69 TOWARD NEW HAVEN / WOODBRIDGE, TURN LEFT ONTO CT-69 / LITCHFIELD TPKE, TURN LEFT ONTO LANDIN ST, TURN RIGHT ONTO CT-63 / AMITY RD. TURN LEFT ONTO CT-67 / SEYMOUR RD. TURN LEFT ONTO COGWHEEL LN. TURN RIGHT ONTO PROGRESS AVE ARRIVE AT PROGRESS AVE

LEADS TO LATITUDE 41.391735" AND LONGITUDE -73.052867". (FRONT OF BUILDING)

CODE COMPLIANCE

ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOIL OWING CODES

- 2015 INTERNATIONAL BUILDING CODE
- 2017 NATIONAL ELECTRICAL CODE

AMERICAN CONCRETE INSTITUTE

- ANSI/TIA-222-G
- 2015 NATIONAL STANDARD PLUMBING CODE

YES

100765

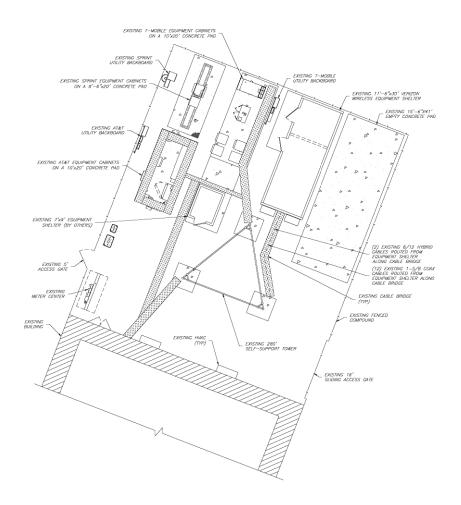
469060

HTTPS://PMI.VZWSMART.COM

- 2009 NFPA 101, LIFE SAFETY CODE

2015 IEC

TELECORDIA GR-1275


VERIZON APPROVED VENDORS * REFER TO CONSTRUCTION DRAWINGS.

CONTRACTOR PMI REQUIREMENTS

*** PMI AND REQUIREMENTS ALSO EMBEDDED IN MOUNT ANALYSIS REPORT

MOUNT REPLACEMENT REQUIRED

- AMERICAN INSTITUTE OF STEEL CONSTRUCTION . ANSI/T 311
- MANUAL OF STEEL CONSTRUCTION 14TH EDITION
- . INSTITUTE FOR ELECTRICAL & ELECTRONICS ENGINEER 81
- . IEEE C2 NATIONAL ELECTRIC SAFETY CODE LATEST EDITION

- THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING A BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 7. ALL STRUCTURAL ELEMENTS SHALL BE HOT DIPPED GALVANIZED STEEL.

GENERAL NOTES

- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES ORDINANCES, LWIS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITIES COMPANY OR OTHER PUBLIC AUTHORITIES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- 3. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONTLOTS, ERRORS OR GMISSIONS PROOF TO THE SESSIONS OF ERRORS IN THE BID COUNTRIS SHALL NOT RELIEVE THE CONTRACTOR FROM RESPONSIBILITY FOR THE OVERALL INTENT OF THESE DRAWNING.
- 4. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED AS A RESULT OF CONSTRUCTION OF THIS FACILITY.

- CONTRACTOR SHALL MAKE A UTILITY "ONE CALL" TO LOCATE ALL UTILITIES PRIOR TO EXCAVATING.
- IF ANY UNDERGROUND UTILITIES OR STRUCTURES EXIST BENEATH THE PROJECT AREA, CONTRACTOR MUST LOCATE IT AND CONTACT THE APPLICANT & THE OWNER'S REPRESENTATIVE.
- OCCUPANCY IS LIMITED TO PERIODIC MAINTENANCE AND INSPECTION BY TECHNICIANS APPROXIMATELY 2 TIMES PER MONTH.
- 11. THIS PLAN IS SUBJECT TO ALL EASEMENTS AND RESTRICTIONS OF
- NO SIGNIFICANT NOISE, SMOKE, DUST, OR ODOR WILL RESULT FROM THIS FACILITY.
- THE FACILITY IS UNMANNED AND NOT INTENDED FOR HUMAN HABITATION (NO HANDICAP ACCESS REQUIRED).
- THE FACILITY IS UNMANNED AND DOES NOT REQUIRE POTABLE WATER OR SANITARY SERVICE.

TOTALLY COMMITTED.

101 APCL LO DRIVE BUTE 300 CHELMSFORD, MA (1624 (679) 000 4000

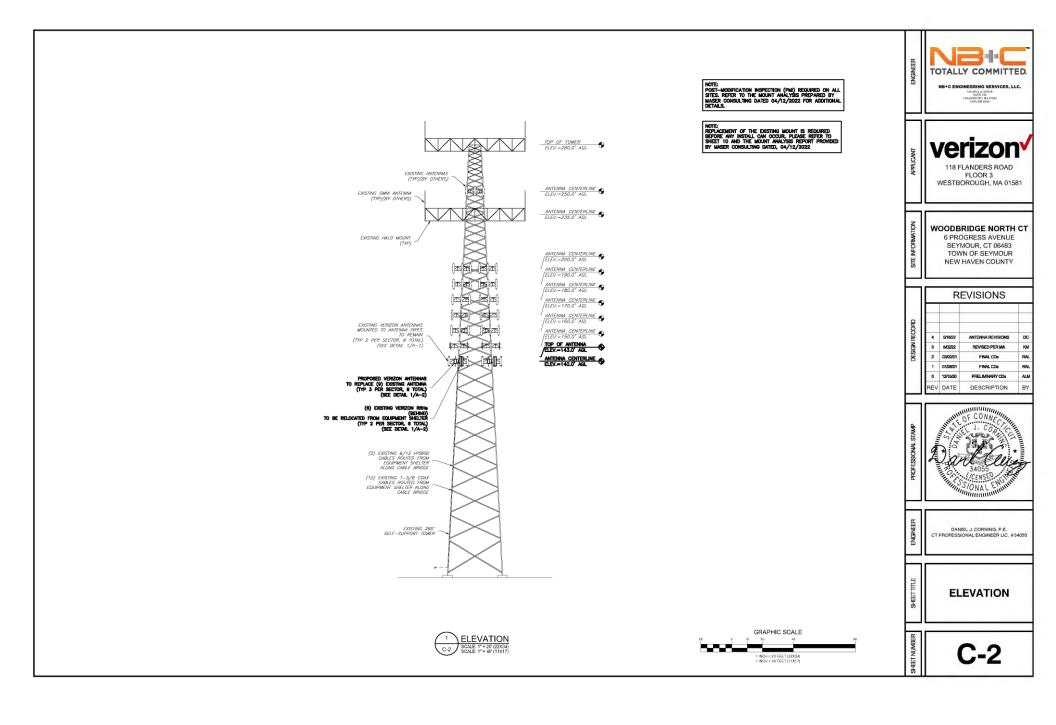
118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581

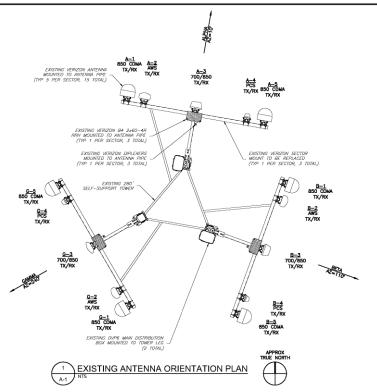
WOODBRIDGE NORTH CT

6 PROGRESS AVENUE SEYMOUR, CT 06483 TOWN OF SEYMOUR NEW HAVEN COUNTY

		RI	EVISIONS	
DESIGN RECORD	4 3	5/16/22	ANTENNA REVISIONS REVISED PER MA	DC
8	2	03/02/21	FINAL COs	RAL
	1	01/28/21	FINAL CDs	RAL
	0	12/15/20	PRELIMINARY CDs	ALM
	REV	DATE	DESCRIPTION	BY

DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC. #34055


COMPOUND PLAN


SHEETITLE

SHEET NUMBER

C-1

	EXISTING ANTENNA & RRH SCHEDULE										
ANTENNA	ANTENNA ANTENNA ANTENNA RAD				RRH QUANTITY	TECHNOLOGY	CABLE SIZE, LENGTH				
POSITION	MANUFACTURER	MODEL	CENTER	AZIMUTH	MECH	ELEC	& MODEL	TECHNOLOGY	& QUANTITY		
A-1	ANTEL	LPA-80063/6CF	140.00"	10*	2.	0.	=	850 CDMA	44) 4 5 60		
A-2	COMMSCOPE	HBXX-6517DS-A2M	140.00"	10*	0*	2.	UHIC B4 RRH 2x60-4R	AWS	(4) 1-5/8" COAX		
A-3	COMMSCOPE	LNX-6514DS	140.00*	10*	2*	4"	B5/B13 RRH — BR04C (IN SHELTER)	700/850			
A-4	AMPHENOL	BXA-171063-12BF	140.00*	10*	0*	2.	B2/B66A RRH - BR049 (IN SHELTER)	PCS	(1) 1.43°¢ HYBRID CABLE		
A-5	ANTEL	LPA-80063/6CF	140.00*	10*	2*	0.	-	850 CDMA	HYDRID CABLE		
B-1	ANTEL	LPA-80063/6CF	140.00'	110	4.	o.	_	850 CDMA			
B-1 B-2	COMMSCOPE	HBXX-6517DS-A2M	140.00	110	0"	2.	UHIC B4 RRH 2x60-4R	AWS	(4) 1-5/8" COAX		
B-3	COMMSCOPE	LNX-6514DS	140.00'	110	4.	4.	B5/B13 RRH - BR04C (IN SHELTER)	700/850	COM		
B-4	AMPHENOL	BXA-171063-12BF	140.00'	110	0*	2"	B2/B66A RRH - BR049 (IN SHELTER)	PC5	(1) 1.43% HYBRID CABLE		
B-5	ANTEL	LPA-80063/6CF	140.00'	110	4"	0*	-	850 CDMA	HYBRID CABLE		
G-1	ANTEI	LPA-80063/6CF	140 00'	240*	2.	0.	_	850 COM4			
G-2	COMMSCOPE	HBXX-6517DS-A2M	140.00	240*	o	5.	UHIC B4 RRH 2x60-4R	AWS	(4) 1-5/8" COAX		
G-3	AMPHENOL	BXA-70063-6BF	140.00"	240°	4*	4"	B5/B13 RRH - BR04C (IN SHELTER)	700/850			
G-4	AMPHENOL	BXA-171063-12BF	140.00"	240*	0*	2.	B2/B66A RRH - BR049 (IN SHELTER)	PCS	SHARED THROUGH		
G-5	ANTEL	LPA-80063/6CF	140.00*	240*	4"	0.	-	850 CDMA	HYBRIFLEX		

TOTALLY COMMITTED.

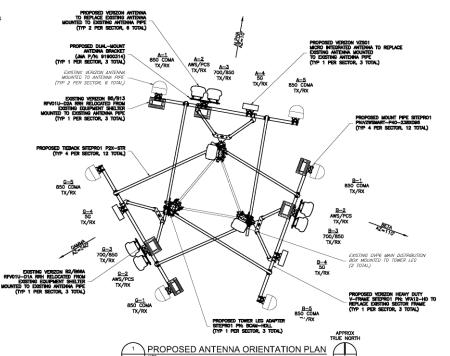
118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581

WOODBRIDGE NORTH CT

6 PROGRESS AVENUE SEYMOUR, CT 06483 TOWN OF SEYMOUR NEW HAVEN COUNTY

		RI	EVISIONS	
DESIGN RECORD	4 3 2 1	5/18/22 5/02/22 03/02/21 01/28/21 12/15/20	ANTENNA REVISIONS REVISED PER MA FINAL COIL FINAL COIL PREJIMINARY COIL	DC KM RAL RAL
	REV	DATE	DESCRIPTION	RY

П	
П	DANIEL J. CORNING, P.E.
П	CT PROFESSIONAL ENGINEER LIC. #340
- 1	A CONTRACTOR OF CONTRACTOR AND ADDRESS OF CO


II	EXISTING
SHEETIME	ANTENNA PLAN
H H	AND
"	SCHEDULE

ı			_	
ı			Λ	
ı		•	-1	_

SHEET NUMBER

GENERAL ANTENNA NOTES

- ALL ANTENNAS TO BE FURNISHED WITH DOWNTILT BRACKETS, CONTRACTOR IS TO COORDINATE AND VERIFY THE PROPOSED DOWNTILTS WITH VERIZON MANAGER PRIOR TO CONSTRUCTION.
- ANTENNA CENTERLINE HEIGHT IS IN REFERENCE TO ELEVATION 0.0'. (EXISTING GRADE)
- 3. CHECK WITH RF ENGINEER FOR LATEST ANTENNA TYPE & AZIMUTH.
- CONTRACTOR SHALL VERIFY ANTENNA TYPE AND AZIMUTH WITH CONSTRUCTION MANAGER PRIOR TO CONSTRUCTION.
- ALL CABLE LENGTHS ARE ESTIMATED AND SHALL BE FIELD VERIFIED BY THE CONTRACTOR.
- COLOR TAPE MARKINGS MUST BE 3/4" WIDE AND UV RESISTANT, SUCH AS SCOTCH 35 VINYL ELECTRICAL COLOR CODING TAPE.
- CONTRACTOR SHALL COORDINATE COLOR CODINGS IN THE FIELD WITH VERIZON REPRESENTATIVE.
- B. PRIOR TO THE INSTALLATION OF THE PROPOSED EQUIPMENT OR MODIFICATION OF THE EXISTING STRUCTURE, A STRUCTURE, ANALYSIS SHALL BE PERFORMED BY THE OWNER'S AGENT TO CERTIFY THAT THE EXISTING/PROPOSED COMMUNICATION STRUCTURE AND COMPONENTS ARE STRUCTURALLY ADEQUATE TO SUPPORT ALL EXISTING AND PROPOSED ANTENNAS, CONALL CABLES AND OTHER APPUREDWAYCES, THE OWNER'S AGENT SHALL FURNISH A CERTIFICATION LETTER SPALLE BY A REGISTERED PROFESSIONAL EXISTING AND PROPAGED IN ACCORDANCE WITH ALL APPLICABLE CODES AND STRUCTURE.

PROPOSED ANTENNA & RRH SCHEDULE									
ANTENNA	ANTENNA	ANTENNA	RAD		DOW	N TILT	RRH QUANTITY		CABLE SIZE,
	MANUFACTURER	MODEL	CENTER	AZIMUTH	месн	ELEC	& MODEL	TECHNOLOGY	LENGTH & QUANTITY
A-1	ANTEL	LPA-80063/6CF	140'	10"	2*	0*	-	850 CDMA	4.5
A-2	JMA WIRELESS	MXO6FRO880-03	140*	10"	σ	r	B2/B66A RRH - BR049	AWS/PCS	(4) 1-5/8" COAX
A-3	JMA WIRELESS	MXO6FRO880-03	140*	10"	σ	6	B5/B13 RRH - BR04C	700/850	
A-4	SAMSUNG	MT6407-77A	140'	10"	σ	3	-	5G	(1) 1.43°ø HYBRID CABLE
A-5	ANTEL	LPA-80063/6CF	140'	10"	2"	0"	-	850 CDMA	HYBRID CABLE
B-1	ANTEL	LPA-80063/6CF	140'	110*	4.	0.	-	850 CDMA	(4) 1-5/8"
B-2	JMA WIRELESS	MX06FR0860-03	140'	110	σ	z	B2/B66A RRH — BR049	AWS/PCS	COAX
B-3	JMA WIRELESS	MX06FR0660-03	140'	110"	σ	8"	B5/B13 RRH - BR04C	700/850	
B-4 SAMSUNG		MT6407-77A	140*	110"	σ	3	-	5G	(1) 1.43°ø HYBRID CABLE
B-5	ANTEL	LPA-80063/6CF	140'	110*	4"	0*	=	850 CDMA	HYBRID CABLE
	I								
G-1	ANTEL	LPA-80063/6CF	140'	240"	4"	0.	-	850 CDMA	(4) 1-5/8"
G-2	JMA WIRELESS	MXO6FRO860-03	140*	240*	ъ	r	B2/B66A RRH — BR049	AWS/PCS	(4) 1-5/8" COAX
G-3	JMA WIRELESS	MX06FR0680-03	140*	240*	σ	ь	B5/B13 RRH - BR04C	700/850	
G-4	SAMSUNG	MT6407-77A	140*	240	ь	5	ı	5G	SHARED THROUGH
G-5	ANTEL	LPA-80063/6CF	140'	240*	4.	0"	-	850 CDMA	HYBRIFLEX

POST—MODIFICATION INSPECTION (PMI) REQUIRED ON ALL STES. REFER TO THE MOUNT ANALYSIS PREPARED BY MASER CONSULTING DATED 04/12/2022 FOR ADDITIONAL DETAILS.

MOTE: REPLACEMENT OF THE EXISTING MOUNT IS REQUIRED BEFORE ANY INSTALL OAN OCCUR, PLEASE REFER TO SHEET TO AND THE MOUNT ANALYSIS REPORTED PROVIDED BY MASTER CONSULTING DATED, 04/12/20XT PROVIDED BY MASTER CONSULTING DATED, 04/12/20XT

verizon

118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581

WOODBRIDGE NORTH CT

6 PROGRESS AVENUE SEYMOUR CT 06483 TOWN OF SEYMOUR NEW HAVEN COUNTY

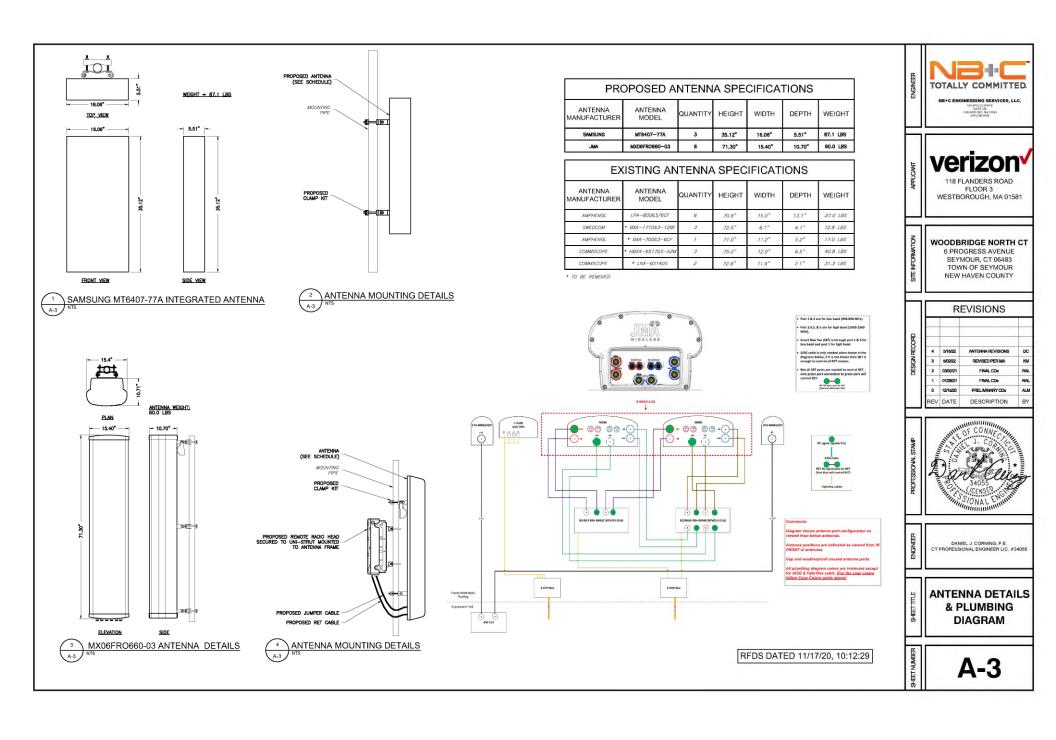
		RE	EVISIONS	
DESIGN RECORD	4 3 2 1 0 REV	5/18/22 5/02/22 03/02/21 01/25/21 12/15/20 DATE	ANTENNA REVISIONS REVISED PER MA FINAL COB FINAL COB PRELIMINARY COB DESCRIPTION	DC KM RAL RAL AUV

DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC. #34055

ENGINEER

PROPOSED **ANTENNA PLAN** & SCHEDULE

SHEET NUMBER


A-2

NOTES:

1. CONTRACTOR TO VERIFY PROPOSED AMENNA INFORMATION IS THE MOST CURRENT DATA AT TIME OF CONSTRUCTION.

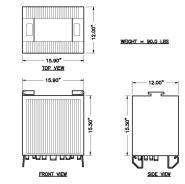
2. CONTRACTOR TO CONFIRM CABLE LENGTHS PRIOR TO CONSTRUCTION.

3. CONTRACTOR TO SEPERIORISE TO BUILD FROM THE LATEST RF SHEET.

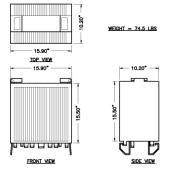
RRH EQUIPMENT SPECIFICATIONS

AHEC ARSCALE DUAL TOWER	l II	MANUFACTURER	MODEL #	LOCATION	QUANTITY	HEIGHT	WIDTH	DEPTH	WEIGHT
NOVIA AHBCC AIRSCALE DUAL TOMER 3 28 74" 15 35" Q 44" 72 8		NOKIA	RRH 4T4R B2/B66g 320W	TOWER (RELOCATED)	3	28.74"	15.35"	9.44*	79.4 LBS
RRH 414R B5/B13 320W (RELOCATED) 5 26.77 15.55 5.77 72.5		NOKIA	RRH 4T4R B5/B13 320W	(RELOCATED)	3	28.74*	15.35*	9.44*	72.8 LBS

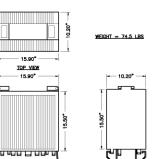
LOCATION QUANTITY HEIGHT WIDTH DEPTH WEIGHT * B4-AWS 2x60-4R TOWER 3 36.6" 10.6" 5.75" 55.0 LBS

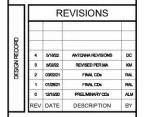

DISTRIBUTION BOX EQUIPMENT SPECIFICATIONS

r									
	EXISTING	MANUFACTURER	MODEL ∲	LOCATION	QUANTITY	HEIGHT	WIDTH	DEPTH	WEIGHT
	EQUIPMENT	RAYCAP	RRFDC-3315-PF-48	TOWER	2	29.00"	15.73"	10.25"	32.0 LBS

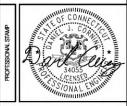

<u>DIPLEXER/COMBINER</u> <u>EQUIPMENT SPECIFICATIONS</u>

EXISTING	MANUFACTURER	MODEL #	LOCATION	QUANTITY	HEIGHT	WIDTH	DEPTH	WEIGHT
	UNKNOWN	* LB/HB DIPLEXER	TOWER	3	-	-	-	-
EQUIPMENT	COMMSCOPE	* CBC721-DF-2X	SHELTER	3	7.7"	6.0*	3.7"	11.5 LBS
	COMMSCOPE	* CHB626-43-2X	SHELTER	3	7.1"	14.6"	3.4"	19.4 LBS


^{*} TO BE REMOVED

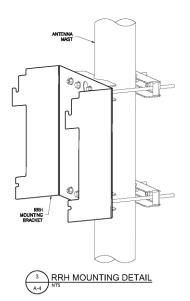


SAMSUNG B5/B13 (REMOTE RADIO HEAD)



TOTALLY COMMITTED.

118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581


WOODBRIDGE NORTH CT 6 PROGRESS AVENUE SEYMOUR, CT 06483 TOWN OF SEYMOUR NEW HAVEN COUNTY

th 1	
9 1	DANIEL J. CORNING, P.E.
ENGINEE	CT PROFESSIONAL ENGINEER LIC. #34055

4	EQUIPMENT
	EQUIPMENT SPECIFICATIONS

A-4

VERIZON WIRELESS CONTRACTOR SCOPE OF WORK

MOP FOR RET INSTALLS

- VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL THE PROPOSED CABLE JUMPER (WITH LC TO LC CONNECTORS) FROM THE PROPOSED FIBER TRAYS TO THE PROPOSED MAIN DISTRIBUTION BOX (BOTTOM).
- VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL ALL MOUNTING HARDWARE AND 1/2" ANTENNA JUMPER CABLES AS REQUIRED DURING CONSTRUCTION.
- VERIZON WIRELESS CONTRACTOR IS TO MAKE ALL ALARM CONNECTIONS TO THE DISTRIBUTION BOXES AND LEAVE A 40' COIL FOR OTHERS TO PUNCH INTO ALARM BLOCK
- VERIZON WIRELESS CONTRACTOR IS TO INSTALL (6) RUNS OF HELIAX 1/1 HYBRID CABLE FROM THE EXISTING MAIN DISTRIBUTION BOXES TO THE REMOTE RADIO HEAD LINITE.
- VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL 1/2" ANTENNA JUMPERS FROM EACH PROPOSED REMOTE RADIO HEAD UNIT (RRH) TO THE PROPOSED ANTENNAS IN ALL SECTORS (36 TOTAL 1/2" ANTENNA JUMPERS).
- VERIZON WIRELESS CONTRACTOR IS TO SEAL ALL DISTRIBUTION BOXES AS REQUIRED DURING CONSTRUCTION.
- VERIZON WIRELESS CONTRACTOR IS TO INSTALL THE PROPOSED REMOTE RADIO HEAD UNITS IN ALL SECTORS ON THE ANTENNA PIPE.
- VERIZON WIRELESS CONTRACTOR IS TO GROUND ALL REMOTE RADIO HEAD UNITS (RRH) TO THE EXISTING GROUND BARS AS REQUIRED DURING CONSTRUCTION.
- VERIZON WIRELESS CONTRACTOR IS TO GROUND ALL PROPOSED ANTENNAS TO THE EXISTING GROUND BARS AS REQUIRED DURING CONSTRUCTION.
- VERIZON WIRELESS CONTRACTOR IS TO COMPLETE THE INSTALLATION OF THE PROPOSED ANTENNAS.
- VERIZON WIRELESS CONTRACTOR IS TO PERFORM THE FOLLOWING OPTICAL SWEEP TESTS; OTDR AND OPTICAL LOSS. RECOMMENDED UNITS — ANRITSU MT9090, JDSU, EXFO FTB—1/FTB—720 OTDR.
- VERIZON WIRELESS CONTRACTOR IS TO PERFORM THE FOLLOWING ANTENNA SYSTEM SWEEP TESTS: SYSTEM VZWR / dB RL.
- VERIZON WIRELESS CONTRACTOR IS TO PROVIDE ALL CLOSE OUT DOCUMENTS AS REQUIRED BY VERIZON WIRELESS.

SAMSUNG RRH

- DUAL RRH B2/B66A RFV01DU—D1A HELIAX 1/1 HYBRID CABLE CABLE MUST BE CONNECTED TO THE LO PRIMARY PORT.
- DUAL RRH B5/B13 RFV01DU-D2A HELIAX 1/1 HYBRID CABLE MUST BE CONNECTED TO THE LO PRIMARY PORT.

INTEGRATED ANTENNA

 VZSO1 1/1 HYBRID CABLE MUST BE CONNECTED TO OPT1 PORT AND (1) EXTRA FIBER CABLE TO THE SECONDARY OPT2 PORT.

ANTENNA CREW

- 1. REVIEW ANTENNA SCHEDULE WITH CELL TECH
- . FOR EACH SECTOR, LAY ANTENNAS OUT ON THE GROUND AS THEY WILL BE INSTALLED ACCORDING TO THE ANTENNA SCHEDULE
- 3. LABELED EACH ANTENNA WITH FACE AND POSITION WITH A SHARPIE (EX:"ALPHA-4")
- LABEL ALL MOTORS WITH SHARPIE WITH BAND AND TECHNOLOGY (EX:"700LTE", "AWSLTE", "PCSLTE", "850VOICE", ETC)
- 5. CONNECT ALL AISG CABLES (INCLUDING JUMPERS THAT WILL BE USED IN FINAL ASSEMBLY) PER THE ANTENNA SCHEDULE
 - A. WHEN DAISY CHAINING IS INEVITABLE, AS A GENERAL RULE...
 - I. KEEP LOW AND HIGH BANDS ON SEPARATE AISG CHAINS AS MUCH AS POSSIBLE
 - II. MINIMIZE AMOUNT OF MOTORS PER CHAIN AS MUCH AS POSSIBLE (MAX IS 6)
 - B. WHEN COMPLETED ALL RET MOTOR PORTS NEED TO BE CONNECTED, INCLUDING THE MOTORS NOT BEING USED YET. THE ONLY UNUSED PORT WILL BE THE LAST IN THE DAISY CHAIN, WHICH NEEDS TO BE CAPPED AND WEATHERPROOFED.
- ON LAPTOP, FILL OUT THE SOFTCOPY OF THE RET DEPLOYMENT FORM AND SAVE IT, REPLACING THE "######" WITH THE 6-DIGIT ENB NUMBER IN THE FILENAME (EX: RET DEPLOYMENT FORM_0981234.XLSX")
- GIVE A SOFTCOPY OF THE RET DEPLOYMENT FORM TO VZW CELL TECH AND GC/CONSULTANT (EITHER BY EMAIL OR USB STICK)
- USING THE SAME LAPTOP WHICH HAS THE RET DEPLOYMENT FORM OPENED, CONNECT THE CONTROL MODULE AND PROVISION EACH MOTOR RESPECTIVELY
- NOTE: CREWS MUST USE SOFTWARE THAT IS SPECIFIC TO THE MOTOR TYPE BEING PROVISIONED (IE- JMA SOFTWARE SHOULD ONLY BE SUED FOR JMA MOTORS)
- A. <u>COPY AND PASTE</u> "RET FRIENDLY NAME" FROM SPREADSHEET (COLUMN A) TO THE "SECTOR ID" FIELD OF EACH MOTOR
- B. POPULATE "SET RET TILT"
- C. POPULATE "MECHANICAL TILT"
- CALIBRATE ALL MOTORS
- 10. DISCONNECT NECESSARY AISG JUMPERS TO TRANSPORT ANTENNAS SAFELY TO ASSEMBLY
- 11. INSTALL ANTENNAS ACCORDING TO THE ANTENNA SCHEDULE, USING THE SHARPIE LABELS AS REFERENCE
- 12. RECONNECT ALL AISG JUMPERS
- 13. BEFORE PLUGGING INTO EACH RRH, CONNECT MAIN AISG CABLE INTO CONTROLLER TO ENSURE ALL MOTORS ARE STILL SEEN IN THE DAISY CHAIN
- 14. PLUG AISG INTO RRH AND NOTIFY VZW TECH OF COMPLETION

<u>VZW TECH</u> (USER HELP GUIDE: \\WIN-VZWNET\NORTHEAST\PAPM_IMPLEMENTATION\SYSTEM PERFORMANCE\USERS\MOSERGA\RET\)

- 15. POWER ON RADIO EQUIPMENT AND RUN ANY NECESSARY WOS
- 16. "DISCOVER" THE RETS
 - A. LOG INTO SAM
 - I. VERIFY RET LICENSE ALLOCATION IN SAM
 - ENBEQUIPMENT>ENB>ACTIVATIONSERVICE>ISAISGALLOWED=CHECKED
 - B. LOG INTO NEM LOCAL
 - I. GO TO TREE VIEW AND HIGHLIGHT RET SUBUNIT
 - II. ENABLE BUS SCAN
 - CONFIGURATION> ENABLE AISG BUS SCAN
 - III. ALLOCATE CONFIG RIGHTS
 - CONFIGURATION>ALLOCATION CONFIGURATION RIGHTS
 - IV. VERIFY CORRECT NUMBER OF RETS ARE DISCOVERED
- 17. "COMMISSION" THE RETS
 - A. LOG INTO NEM LOCAL
 - I. STILL IN TREE VIEW, RIGHT CLICK ON "HW MODULES"
 - II. SELECT "CREATE RET MO"
 - II. RELEASE CONFIG RIGHTS
 - CONFIGURATION>RELEASE CONFIGURATION RIGHTS
 - IV. VERIFY RETSUBUNIT:SECTORNAME, ELECTRICAL TILT, AND MECHANICAL TILT ARE POPULATED
- 18. "PROVISION" THE RETS
 - A. LOG INTO SAM
 - I. OPEN UP THE ENB PROPERTIES AND COMPLETE A FULL RESYNC
 - II. IN THE SEARCH TEXTBOX, SEARCH FOR "RETSUBUNIT"
 - III. VERIFY ALL RETS ARE ACCOUNTED FOR AND "RETSUBUNIT:SECTORNAME", "ANTENNAELECTICALTILT", AND "RETSUBUNIT:MECHANICALTILT" ARE ACCURATE

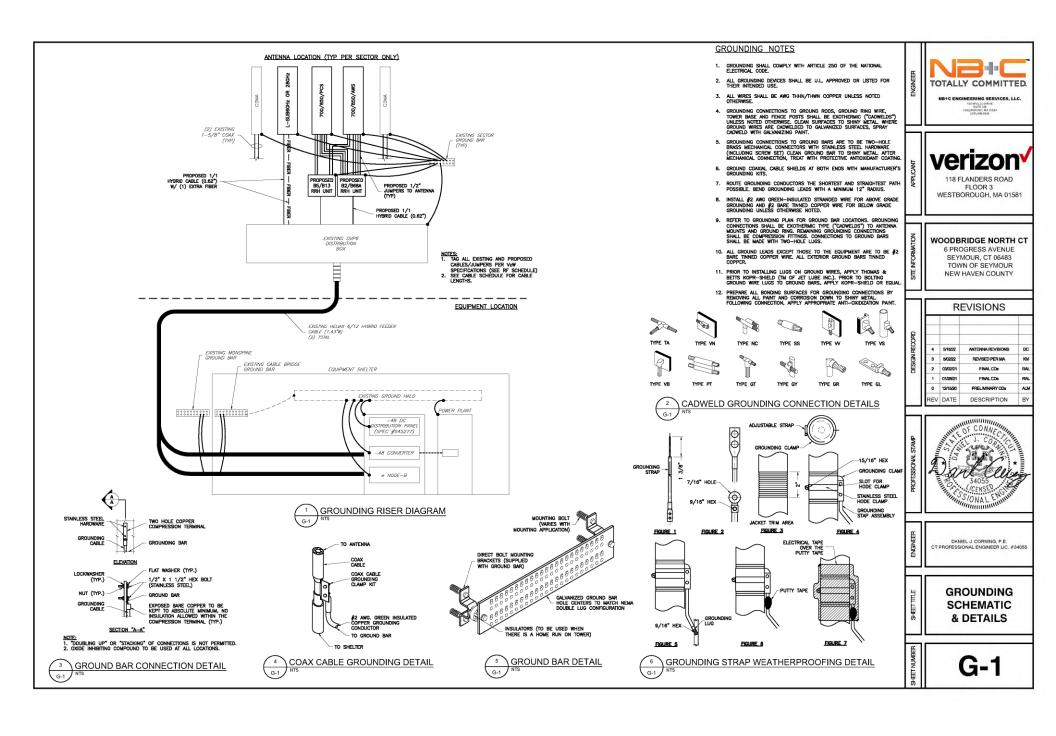
TOTALLY COMMITTED.

NB+C ENGINEERING SERVICES, LLC.

WOODBRIDGE NORTH CT 6 PROGRESS AVENUE

WESTBOROUGH, MA 01581

6 PROGRESS AVENUE SEYMOUR, CT 06483 TOWN OF SEYMOUR NEW HAVEN COUNTY


		RI	EVISIONS	
DESIGN RECORD	4	5/18/22	ANTENNA REVISIONS	DC
ģ	3	5/02/22	REVISED PER MA	юм
E E	2	03/32/21	FINAL COs	RAL
	1	01/25/21	FINAL CDs	RAL
	0	12/15/20	PRELIMINARY CDs	ALM
	REV	DATE	DESCRIPTION	BY

DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC. #3405

SCOPE OF WORK

A-5

POST-MODIFICATION INSPECTION (PMI) REQUIREMENT

- PMI REQUIRED FOR ALL SITES, REFER TO VERIZON NSTD-446 SECTIONS 1.5 AND 2.3 FOR MORE INFORMATION.
- 2. REFER TO THE MOUNT ANALYSIS BY XXX DATED XXX FOR ADDITIONAL DETAILS.
- GENERAL CONTRACTOR SHALL PROVIDE THE BELOW DOCUMENTATION TO THE ENGINEER OF RECORD VIA EMAIL TO <u>VZWMOUNTS@NBCLLC.COM</u>, DROPBOX, OR OTHER FILESHARE METHOD. PROVIDE HIGH RESOLUTION PHOTOS (DO NOT COMPRESS).
- ENGINEER OF RECORD WILL CONDUCT A REVIEW OF THE PROVIDED DOCUMENTS TO PREPARE A PMI REPORT. ENGINEER OF RECORD WILL NOTIFY GENERAL CONTRACTOR IF ANY ADDITIONAL DOCUMENTATION IS REQUIRED TO COMPLETE THE PMI.
- PMI DOCUMENTATION SHALL BE SUFFICIENT TO CONFIRM THE UPGRADE WAS BUILT AS
 DESIGNED, INCLUDING EQUIPMENT CHANGES AND STRUCTURAL MODIFICATIONS, AND IS IN
 ADDITION TO ANY OTHER REQUIRED CLOSEOUT PACKAGE DOCUMENTATION.
- REQUIRED DOCUMENTATION FOR PMI INCLUDES THE FOLLOWING AT A MINIMUM. REFER TO THE MOUNT ANALYSIS FOR POSSIBLE ADDITIONAL INFORMATION. IF STRUCTURAL MODIFICATIONS ARE REQUIRED, REFER TO THE MODIFICATION DRAWINGS FOR POSSIBLE ADDITIONAL REQUIREMENTS.

6A. PROVIDE PRE-AND-POST CONSTRUCTION PHOTOS OF EACH SECTOR FROM THE MOUNT ELEVATION AND THE GROUND. CONTRACTOR IS RESPONSIBLE FOR ENSURING THE PHOTOS PROVIDED PROVIDE POSITIVE CONFIRMATION THAT THE MODIFICATION/UPGRADE WAS COMPLETED IN ACCORDANCE WITH THESE CONSTRUCTION DRAWINGS AND ANY STRUCTURAL/MOUNT MODIFICATION DRAWINGS. CONTRACTOR SHALL RELAY ANY DATA THAT CAN IMPACT THE PERFORMANCE OF THE MOUNT OR MOUNT MODIFICATION, INCLUDING SAFETY ISSUES. PHOTOS SHALL HAVE A DATE/TIME STAMP IN THE PHOTO. REFER TO THE MOUNT ANALYSIS FOR FILE STRUCTURE SCHEDULE OF PHOTOS. PROVIDE PHOTOS OF THE GATE SIGNS AND CARRIER SHELTER TO IDENTIFY THE TOWER OWNER, SITE NAME, SITE NUMBER, ETC.

6B. VERIFICATION OF THE MEMBER CONNECTIONS, BRACING, AND RELEVANT DIMENSIONS.

6C. VERIFICATION OF THE ANTENNA AND OTHER EQUIPMENT CONFIGURATION (PHOTOS OF MODEL NUMBERS/TAGS FOR ALL EQUIPMENT, AS WELL AS THE FEEDLINE CONFIGURATION). TAKE PHOTOS OF THE BACK SIDE OF EACH SECTOR AS WELL AS CLOSE—UPS OF ALL EQUIPMENT. PHOTOS SHOULD CONFIRM THE HORIZONTAL AND VERTICAL POSITIONING OF THE ANTENNAS AND EQUIPMENT AND SHALL HAVE TAPE MEASURES IN THE PHOTOS TO CONFIRM.

6D. FOR TIE—BACKS, STRUTS, MOUNT PIPES, PHOTOS TO CONFIRM THE ANGLES AND LOCATION OF ATTACHMENT POINT AT BOTH ENDS OF MEMBER, AS WELL AS DIMENSIONS, THICKNESS, AND LENGTHS OF THE MEMBERS. REFER TO THE CHECKLIST IN THE MOUNT ANALYSIS FOR ADDITIONAL INFORMATION.

6E. MOUNT ATTACHMENT TO THE SUPPORTING STRUCTURE, INCLUDING ANY KICKERS OR SUPPORTS, OR TIEBACKS.

6F. MATERIALS USED (TYPE, STRENGTH, DIMENSIONS, ETC). PROVIDE BILL OF MATERIALS AND MATERIAL SPEC TO CONFIRM MATERIAL GRADES AND SIZES. PROVIDE DOCUMENTATION FOR GALVANIZATION OF MEMBERS WHETHER HOT-DIPPED OR COLD-GALVANIZED. IF MATERIALS DIFFER FROM THOSE SPECIFIED ON THESE DRAWINGS, PROVIDE DOCUMENTATION THAT THE "EQUIVALENT" MATERIAL HAS THE SAME SPECIFICATIONS.

6G. MOUNT ORIENTATION/AZIMUTH AND ELEVATION. PROVIDE TAPE DROP PHOTOS OF ANTENNA CENTERLINE(S) AND MOUNT ATTACHMENT POINTS TO THE SUPPORTING STRUCTURE. IF THERE ARE MULTIPLE RAD CENTERS, PROVIDE PHOTOS OF ALL ELEVATIONS.

POST-MODIFICATION INSPECTION (PMI) REQUIREMENT CONT.

6H. VERIFICATION THAT THE INSTALL HAS NOT CAUSED DAMAGE TO OR UNPLANNED OBSTRUCTION OF THE FOLLOWING:

- --- CLIMBING FACILITIES
- --- SAFETY CLIMB IF PRESENT, INCLUDING PHOTOS ABOVE AND BELOW THE MOUNT.
- --- LIGHTING SYSTEM
- OTHER INSTALLED SYSTEMS ON THE STRUCTURE.

--- CONTRACTOR SHALL ENSURE THE SAFETY CLIMB IS SUPPORTED AND NOT ADVERSELY AFFECTED BY THE INSTALLATION OF NEW COMPONENTS. THIS MAY INVOLVE THE INSTALLATION OF WIRE ROPE GUIDES OR OTHER ITEMS TO PROTECT THE WIRE ROPE.

61. OTHER ITEMS DETERMINED BY THE STRUCTURAL ENGINEER TO ENSURE THE MOUNT WILL PERFORM AS DESIGNED. PHOTOS OF RELEVANT MEASUREMENTS, WITH SUFFICIENT DETAILS TO CONFIRM CONNECTION DETAILS, PLACEMENT OF EQUIPMENT, WALL ANCHOR DETAILS, BALLAST QUANTITIES, STRUCTURAL MODIFICATIONS ETC. DIAMETERS AND THICKNESSES OF BOLTS/THREADED RODS/ANGLES/TUBES ETC SHALL HAVE PHOTOS CONFIRMING CALIPER MEASUREMENTS.

--- CONFIRMATION THAT ALL HARDWARE WAS PROPERLY INSTALLED, AND EXISTING HARDWARE WAS INSPECTED FOR ANY ISSUES.

--- FOR BALLAST SLEDS, DOCUMENTATION OF THE WEIGHT OF BALLAST IN EACH SECTOR.
--- FOR WALL ANCHORS, PHOTOS AND MEASUREMENTS OF OUTSIDE AND INSIDE OF CONNECTIONS.
DOCUMENTATION OF ADHESIVE USED, SIZE AND LENGTH OF ANCHORS, EFFECTIVE EMBEDMENT DEPTH OF
THE ANCHORS, GROUTING OF HOLLOW WALLS, SPACING AND EDGE DISTANCE MEASUREMENTS, AND ANY
THROUGH-BOLTS OR BACKING PLATES.

--- FOR STUD WELD CONNECTIONS, DOCUMENTATION TO CONFIRM SURFACE PREPARATION, STUD WELD SIZE, GRADE, LENGTH, AND SPACING.

--- FOR FABRICATED PARTS, SHOP DRAWINGS TO BE APPROVED BY THE ENGINEER OF RECORD PRIOR TO CONSTRUCTION.

- --- FOR WELDED PARTS, CERTIFIED WELD INSPECTION.
- FOR BOLTED PARTS, BOLT INSTALLATION AND TORQUE.
- CONTRACTOR SHALL PROVIDE, IN ADDITION TO THE ABOVE, AS-BUILT CDS WITH REDLINES IDENTIFYING ANY CHANGES. THE AS-BUILTS SHALL THE CONTRACTOR'S NAME, PREPARER'S SIGNATURE, AND DATE.
- IF THE MODIFICATION INSTALLATION WOULD FAIL THE PMI ("FAILED PMI"), THE CONTRACTOR SHALL WORK WITH THE ENGINEER OF RECORD TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:

8A. CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENTAL PMI.

8B. OR, WITH THE EOR'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT/UPGRADE USING THE AS-BUILT CONDITION.

- NOTE: IF LOADING IS DIFFERENT THAN THAT SHOWN IN THESE CONSTRUCTION DRAWINGS OR STRUCTURAL/MOUNT MODIFICATION DRAWINGS, CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY FOR RESOLUTION.
- 10. THE ENGINEERING FIRM PERFORMING AN ANALYSIS SHALL PROVIDE A CONTRACTOR'S PHOTO LOG AND CHECKLIST TO BE COMPLETED BY THE INSTALLING CONTRACTOR. THE CONTRACTOR SHALL THEN PROVIDE POST—INSTALLATION INFORMATION TO THE STRUCTURAL ENGINEER. THE STRUCTURAL ENGINEER SHALL REVIEW THE DOCUMENTS FOR ANY DEFICIENCIES THAT CAN BE DETERMINED FROM THE DESKTOP REVIEW OF THE DATA. THE ENGINEERING FIRM SHALL THEN PROVIDE DOCUMENTATION TO VZW THAT THE SITE IS COMPLETED, AND THE PMI REPORT IS APPROVED.

WESTBOROUGH, MA 01581

WOODBRIDGE NORTH CT 6 PROGRESS AVENUE

6 PROGRESS AVENUE SEYMOUR, CT 06483 TOWN OF SEYMOUR NEW HAVEN COUNTY

		RE	EVISIONS	
DESIGN RECORD	4 3 2 1 0 REV	5/18/22 5/02/22 03/02/21 01/25/21 12/15/20 DATE	ANTENNA REVISIONS REVISED PER MA FINAL COB PRELIMINARY COB DESCRIPTION	DC KM RAL RAL ALM

DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC. #34055

PMI REQUIREMENTS

GN-

MX06FRO660-03

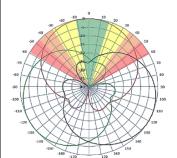
NWAV™ X-Pol Hex-Port Antenna

X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz:

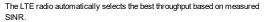
2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz

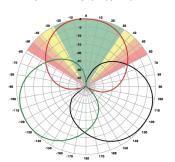
- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage


The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

JMA's FRO antenna pattern minimizes overlap, thereby minimizing interference.

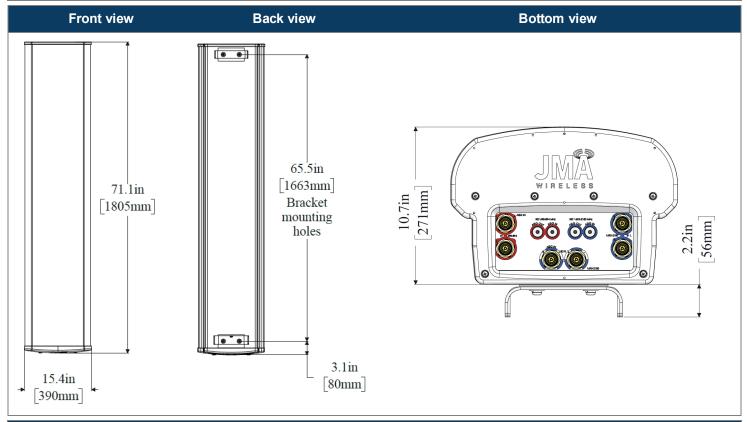

Non-FRO antenna


ntenna Large traditional antenna pattern overlap creates harmful interference.

JMA FRO antenna

LTE throughput	SINR	Speed (bps/Hz)	Speed increase	CQI
Excellent	>18	>4.5	333+%	8-10
Good	15-18	3.3-4.5	277%	6-7
Fair	10-15	2-3.3	160%	4-6
Poor	<10	<2	0%	1-3

Electrical specification (minimum/maximum)	Ports	Ports 1, 2		Ports 3, 4, 5, 6		
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180	
Polarization	± 45°			± 45°		
Average gain over all tilts, dBi	14.4	14.0	17.6	18.0	18.2	
Horizontal beamwidth (HBW), degrees	60.5	53.0	55.0	55.0	55.5	
Front-to-back ratio, co-polar power @180°± 30°, dB	>24	>24.0	>25.0	>25.0	>25.0	
X-Pol discrimination (CPR) at boresight, dB	>15.0	>14.2	>18	>18	>15	
Sector power ratio, percent	<3.5	<3.0	<3.7	<3.8	<3.6	
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0	5.5	5.5	
Electrical downtilt (EDT) range, degrees	2-14	2-14	0-9			
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-16.5	≤-16.0 ≤-16.0 ≤-16.0		≤-16.0	
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25	
Max VSWR / return loss, dB	1.5:1 / -14.0		1.5:1 / -14.0			
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153 -153					
Max input power per any port, watts	300 250					
Total composite power all ports, watts		1500				

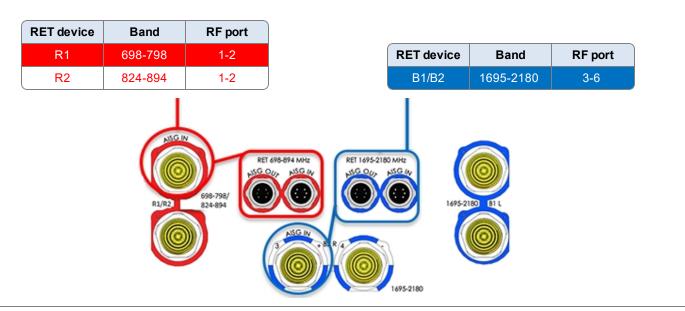

¹ Typical value over frequency and tilt

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	71.3/ 15.4/ 10.7 (1811/ 392/ 273)
Shipping dimensions length/width/height, inches (mm)	82/ 20/ 15 (2083/ 508/ 381)
No. of RF input ports, connector type, and location	6 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	60 (27.0)
Shipping weight, lb (kg)	90 (41.0)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.18)
Range of mechanical up/down tilt	-2° to 14°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	154 (685), 73 (325), 158 (703)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.6

Ordering information				
Antenna model	Description			
MX06FRO660-03 6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT				
Optional accessories				
AISG cables	M/F cables for AISG connections			
PCU-1000 RET controller	Stand-alone controller for RET control and configurations			

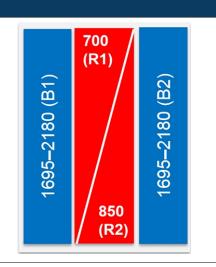

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Remote electrical tilt (RET 1000) information		
RET location	Integrated into antenna	
RET interface connector type	8-pin AISG connector per IEC 60130-9	
RET connector torque	Min 0.5 N⋅m to max 1.0 N⋅m (hand pressure & finger tight)	
RET interface connector quantity	2 pairs of AISG male/female connectors	
RET interface connector location	Bottom of the antenna	
Total no. of internal RETs (low bands)	2	
Total no. of internal RETs (high bands)	1	
RET input operating voltage, vdc	10-30	
RET max power consumption, idle state, W	≤ 2.0	
RET max power consumption, normal operating conditions, W	≤ 13.0	
RET communication protocol	AISG 2.0 / 3GPP	

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

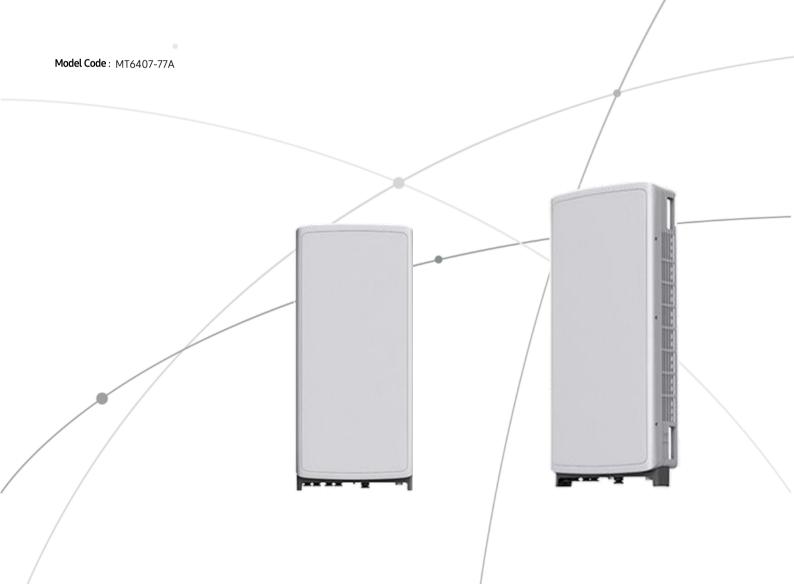


Array topology

3 sets of radiating arrays

R1/R2: 698-894 MHz B1: 1695-2180 MHz B2: 1695-2180 MHz

Band	RF port
1695-2180	3-4
698-894	1-2
1695-2180	5-6

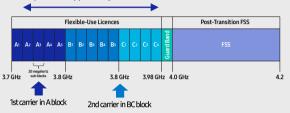


SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..


Points of Differentiation

Wide Bandwidth

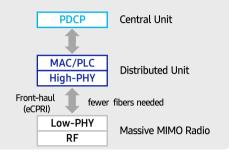
With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

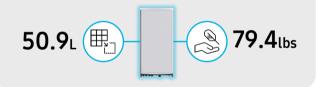
Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..

Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

Dual-Band Radio Unit AWS/PCS (B66/B2)

RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz)

Instantaneous Bandwidth:

70MHz(B66) + 60MHz(B2)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps)

Dimensions: 380 x 380 x 255mm (36.8L)

Weight: 38.3kg

Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

SAMSUNG

Dual-Band Radio Unit 700/850MHz (B13/B5)

RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L)

Weight: 31.9kg Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

ATTACHMENT 3

	General	Power	Density					
Site Name: Wethersfield 3								
Tower Height: Verizon @ 13	Oft							
				CALC. POWER		MAX. PERMISS.	FRACTION	
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	DENS	FREQ.	EXP.	MPE	Total
AT&T-UMTS	2	419	160	850	0.0127	0.5667	0.22%	
AT&T-UMTS	4	487	160	700	0.0295	0.4667	0.63%	
at&t-umts	2	546	160	850	0.0166	0.5667	0.29%	
AT&T-PCS-UMTS	4	917	160	2300	0.0556	1.0000	0.56%	
AT&T-GSM	4	971	160	1900	0.0589	1.0000	0.59%	
AT&T-WCS-LTE	2	341	160	850	0.0103	0.5667	0.18%	
AT&T-PCS-LTE	2	627	160	700	0.0190	0.4667	0.41%	
AT&T-LTE	4	960	160	2100	0.0582	1.0000	0.58%	
T-Mobile	1	584	247	1900	0.0036	1.0000	0.04%	
T-Mobile	2	1556	247	1900	0.0193	1.0000	0.19%	
T-Mobile	2	2334	247	2100	0.0289	1.0000	0.29%	
T-Mobile	2	2524	247	2500	0.0313	1.0000	0.31%	
T-Mobile	2	2524	247	2500	0.0313	1.0000	0.31%	
T-Mobile	2	789	247	600	0.0098	0.4000	0.24%	
T-Mobile	2	433	247	700	0.0054	0.4667	0.11%	
T-Mobile	2	1469	247	1900	0.0182	1.0000	0.18%	
Sprint	3	693	170	1900	0.0278	1.0000	0.28%	
Sprint	1	390	170	850	0.0052	0.5667	0.09%	
Sprint	2	693	170	2500	0.0185	1.0000	0.19%	
Mike Gardella	12	110	280	1980	0.0063	1.0000	0.06%	
Town	12	80	235	155	0.0066	0.2000	0.33%	
VZW 700	4	623	140	0.0046	746	0.4973	0.92%	
VZW CDMA	2	500	140	0.0018	869	0.5793	0.32%	
VZW Cellular	4	623	140	0.0046	880	0.5867	0.78%	
VZW PCS	4	1428	140	0.0105	1,970	1.0000	1.05%	
VZW AWS	4	1530	140	0.0112	2,145	1.0000	1.12%	
VZW CBAND	1	26002	140	0.0477	3,700	1.0000	4.77%	
								15.06%
* Source: Siting Council								

ATTACHMENT 4

Date: May 18, 2022

Andrew Leone Verizon Wireless Construction Manager 118 Flanders Rd, Third Floor Westborough, MA 01581 NB+C Engineering Services 100 Apollo Drive Suite 303 Chelmsford, MA 01824

Subject: Structural Analysis Report

Carrier Designation: Verizon 5G L-Sub6 – Carrier Add

Verizon Site ID: 1126653

Verizon Site Name: Woodbridge North CT

NB+C ES Designation: Project Number: 100765

Site Data: 6 Progress Ave., Seymour, CT 06483, New Haven County

Latitude 41° 23' 29.50", Longitude -73° 03' 12.00"

280.0 Foot - Self Supporting Tower

Dear Mr. Leone,

Network Building + Consulting Engineering Services ("NB+C ES") is pleased to submit this **"Structural Analysis Report"** to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure under the following load case, to be:

Existing + Proposed Equipment
Note: See Table 1 for the proposed final loading.

Sufficient Capacity: 65.4%

The analysis has been performed in accordance with the ANSI/TIA-222-G Structural Standard for Antenna Supporting Structures and Antennas, 2018 Connecticut State Building Code, and local code requirements based upon an ultimate 3-second gust wind speed of 125 mph.

All equipment proposed in this report shall be installed in accordance with the referenced documents for the determined available structural capacity to be effective.

We at **NB+C** Engineering Services appreciate the opportunity of providing our continuing professional services to Verizon. If you have any questions or need further assistance on this or any other projects please give us a call.

NB+C ENGINEERING SERVICES, LLC

Structural Analysis prepared by: Nick Smith, P.E.

Respectfully submitted by:

Krupakaran Kolandaivelu, P.E.

Associate Director, Chief Engineer - Structural CT PE License #PEN.0028997

5/18/2022

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Final Equipment Information

3) ANALYSIS PROCEDURE

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 2 - Tower Section Capacity (Summary)

Table 3 - Foundation Analysis Results

4.1) Recommendations

5) APPENDIX A

tnxTower Output & Additional Calculations

1) INTRODUCTION

This tower is a 280.0 ft self supporting tower located in New Haven County, CT. The tower geometry and existing equipment was based on data available from the structural analysis report by Destek Engineering.

Information **NB+C ES** has received for this analysis includes:

- Previous Structural Analysis Report prepared by Destek Engineering (Job No. 1975056) dated May 28, 2019
- RFDS sheet provided by Verizon dated November 17, 2020
- Mount Analysis Report prepared by Maser Consulting dated April 12, 2022

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-G

Building Code: 2018 Connecticut State Building Code (2015 IBC)

Risk Category:

Wind Speed: 125 mph

Exposure Category:
Topographic Factor:
Ice Thickness:
Ice Wind Speed:
Service Wind Speed:
Seismic Ss:
Seismic S1:

125 mpn
125

Table 1 - Final Equipment Information

Mounting Level (ft)	Center Line Elevation (ft)	Qty	Antenna Manufacturer	Antenna Model		Feed Line Size (in)	Carrier
		1	Decibel	DB420-A		1 5/8	
280.0	280.0	1	Decibel	DB586-XC	4		Unknown
		1	•	22-ft Halo Mount			
		3	Ericsson	AIR32 B66A B2A		1 5/8 6x12 HCS	
		က	RFS	APXVAARR24_43-U-NA20			T-Mobile
250.0	250.0	က	Ericsson	AIR 6488 B41	9		
250.0	250.0	က	Ericsson	Radio 4449 B71/B12	3		
		З	Ericsson	Radio 4415 B25			
		3	-	15-ft T-Frame Sector Mount			
	245.0	1	Decibel	DB420-A		-	Unknown
235.0	235.0	1	Decibel	DB225-2-F] -		
	233.0	1	•	22-ft Halo Mount			
200.0	200.0	9	Decibel	DB980H120E-M	9	1 5/8	Unknown
200.0	200.0	3	=	10-ft T-Frame Sector Mount) 9		
190.0	190.0	9	Decibel	DB980H120E-M	9	1 5/0	Unknown
190.0	190.0	3	=	10-ft T-Frame Sector Mount] 9	1 5/8	Unknown
180.0	180.0	9	Decibel	DB980H120E-M	9	1 5/8	Unknown
100.0	160.0	3	•	10-ft T-Frame Sector Mount	ا ع	1 5/8	Unknown
		3	RFS	APXVSPP18-C-A20			
170.0		3	RFS	APXVTM14-C-120			
	170.0	3	Alcatel Lucent	FD-RRH-2x50-800	3	1 5/8	Unknown
		3	Alcatel Lucent	FD-RRH-4x40-1900] 1	1 1/4 Hybriflex	OHKHOWH
		3	Alcatel Lucent	TD-RRH8x20-25	_		
		3	-	15-ft T-Frame Sector Mount			

Table 1 - Final Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Qty	Antenna Manufacturer	Antenna Model		Feed Line Size (in)	Carrier
		3	Kathrein	800 10121		1 5/8 Fiber DC	Unknown
		3	CCI	HPA65R-BU6A			
		3	Quintel	QS66512-3			
		З	Ericsson	RRUS 11			
		3	Ericsson	RRUS 32	6		
160.0	160.0	3	Ericsson	RRUS 32 B2	6		
160.0	160.0	3	Ericsson	RRUS 4478 B5	2		
		3	Ericsson	RRUS 4478 B14			
		3	Ericsson	RRUS 4426 B66			
		6	Powerwave	LGP21401			
		З	Raycap	DC6-48-60-18-8F			
		З	-	15-ft T-Frame Sector Mount			
150.0	150.0	3	RFS	APXV18-206517S-C	6	1 5/8	Unknown
150.0	150.0	3	-	12.5-ft Sector Mount	O	1 3/6	Ulikilowii
		6	JMA	MX06FRO660-03			
		3	Samsung	MT6407-77A			
140.0		3 Samsung B2/B66A RRF	B2/B66A RRH-BR049 RFV01U-D1A	12	1.5/0		
	140.0	3	Samsung	B5/B13 RRH-BR04C RFV01U-D2A	2 2	1 5/8 6x12	Verizon
		6	Antel	LPA-80063/6CF			
		2	Raycap	RRFDC-3315-PF-48			
		3	-	12-ft T-Frame Sector Mount			

Notes:

3) ANALYSIS PROCEDURE

3.1) Analysis Method

tnxTower (version 8.0.7.5), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in the Appendix A.

3.2) Assumptions

This report is based on the theoretical capacity of the existing tower structure and is not an assessment of the overall suitability of the existing tower structure or its components for any particular use other than specified in this report:

- Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Table 1 and the referenced drawings.
- 4) Tower geometry, existing equipment, and foundation information were obtained from previous structural analysis by Destek Engineering (Job No. 1975056) dated May 28, 2019. If any of this information is inaccurate then the results from analysis are invalid.

This analysis may be affected if any assumptions are not valid or have been made in error. **NB+C Engineering Services** should be notified to determine the effect on the structural integrity of the tower.

¹⁾ Proposed equipment is shown in **bold** print.

4) ANALYSIS RESULTS

<u> Table 2 -</u>	Table 2 - Tower Section Capacity (Summary)								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail	
T 1	280 - 270	Leg	1 3/4	2	-7.89	81.93	9.6	Pass	
T2	270 - 250	Leg	2	41	-26.93	111.48	24.2	Pass	
Т3	250 - 230	Leg	2 1/2	107	-70.35	189.74	37.1	Pass	
T4	230 - 220	Leg	Pirod 105245	171	-77.36	214.86	36.0	Pass	
T5	220 - 200	Leg	Pirod 105218	179	-105.20	300.68	35.0	Pass	
T6	200 - 180	Leg	Pirod 105218	194	-132.58	300.68	44.1	Pass	
T7	180 - 160	Leg	Pirod 105219	215	-168.13	399.87	42.0	Pass	
T8	160 - 140	Leg	Pirod 105220	236	-214.15	512.38	41.8	Pass	
Т9	140 - 120	Leg	Pirod 105220	254	-261.94	512.38	51.1	Pass	
T10	120 - 100	Leg	Pirod 112743	269	-292.10	613.14	47.6	Pass	
T11	100 - 80	Leg	Pirod 112743	278	-339.87	613.14	55.4	Pass	
T12	80 - 60	Leg	Pirod 112744	287	-383.56	741.99	51.7	Pass	
T13	60 - 40	Leg	Pirod 112744	296	-424.45	741.99	57.2	Pass	
T14	40 - 20	Leg	Pirod 112745	306	-468.65	883.14	53.1	Pass	
T15	20 - 0	Leg	Pirod 112740	315	-503.75	883.14	57.0	Pass	
T1	280 - 270	Diagonal	7/8	14	-1.75	7.87	22.2	Pass	
T2	270 - 250	Diagonal	7/8	52	-2.30	7.79	29.5	Pass	
T3	250 - 230	Diagonal	1	116	-5.02	13.51	37.1	Pass	
T4	230 - 220	Diagonal	L2 1/2x2 1/2x3/16	174	-5.48	13.38	40.9 52.7 (b)	Pass	
T5	220 - 200	Diagonal	L3x3x3/16	183	-5.18	17.29	29.9 48.5 (b)	Pass	
Т6	200 - 180	Diagonal	L3x3x3/16	204	-7.67	14.78	51.9 65.4 (b)	Pass	
T7	180 - 160	Diagonal	L3x3x5/16	225	-9.87	19.26	51.2	Pass	
Т8	160 - 140	Diagonal	L3 1/2x3 1/2x5/16	243	-9.91	25.06	39.5 48.3 (b)	Pass	
T9	140 - 120	Diagonal	L3 1/2x3 1/2x5/16	258	-10.98	20.49	53.6 55.6 (b)	Pass	
T10	120 - 100	Diagonal	2L3 1/2x3 1/2x5/16	275	-16.95	52.58	32.2	Pass	
T11	100 - 80	Diagonal	2L3 1/2x3 1/2x5/16	282	-16.78	48.27	34.8	Pass	
T12	80 - 60	Diagonal	2L3 1/2x3 1/2x5/16	291	-16.42	44.30	37.1	Pass	
T13	60 - 40	Diagonal	2L3 1/2x3 1/2x5/16	302	-17.58	40.67	43.2	Pass	
T14	40 - 20	Diagonal	2L3 1/2x3 1/2x5/16	309	-16.05	37.36	43.0	Pass	
T15	20 - 0	Diagonal	2L3 1/2x3 1/2x5/16	320	-20.04	34.37	58.3	Pass	
T1	280 - 270	Horizontal	7/8	32	-0.17	3.91	4.4	Pass	
T2	270 - 250	Horizontal	7/8	98	-0.33	3.94	8.3	Pass	
T3	250 - 230	Horizontal	7/8	162	-0.61	4.01	15.1	Pass	
T1	280 - 270	Top Girt	1	5	-0.71	6.67	10.7	Pass	
T2	270 - 250	Top Girt	1	43	-0.80	6.73	11.8	Pass	
T3	250 - 230	Top Girt	1 1/4	109	-1.46	16.71	8.7	Pass	
T 6	200 - 180	Top Girt	L3x3x3/16	198	-2.71	13.65	19.8 33.4 (b)	Pass	
Т7	180 - 160	Top Girt	L4x4x1/4	219	-4.13	25.75	16.0 32.3 (b)	Pass	
T8	160 - 140	Top Girt	L3 1/2x3 1/2x5/16	240	-3.39	13.88	24.4	Pass	
T1	280 - 270	Bottom Girt	1	9	-0.68	6.67	10.2	Pass	
T2	270 - 250	Bottom Girt	1	45	-0.90	6.73	13.3	Pass	
Т3	250 - 230	Bottom Girt	1 1/4	111	-0.92	16.71	5.5	Pass	
T1	280 - 270	Mid Girt	1	10	0.13	35.34	0.4	Pass	
T2	270 - 250	Mid Girt	1	48	-0.18	6.73	2.7	Pass	
T6	200 - 180	Mid Girt	L3x3x3/16	201	-3.19	10.33	30.8 40.9 (b)	Pass	
T7	180 - 160	Mid Girt	L4x4x1/4	222	-4.32	20.85	20.7 34.2 (b) Summary	Pass	
						Leg (T13)	57.2	Pass	
		 				Diagonal (T6)	65.4	Pass	
						Horizontal (T3)	15.1	Pass	
						Top Girt (T6)	33.4	Pass	
		<u> </u>	1		<u> </u>	T TOP GILL (TO)	JJ.T	1 033	

Page 6

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
						Bottom Girt (T2)	13.3	Pass
						Mid Girt (T6)	40.9	Pass
						Bolt Checks	65.4	Pass
						RATING =	65.4	Pass

Notes:

Table 3 - Foundation Analysis Results

Component	Elevation (ft)	% Capacity	Pass/Fail
Anchor Rods	-	34.8	Pass
Foundation – Soil Interaction	-	57.8	Pass
Foundation - Structural	-	28.8	Pass

Structure Rating (max from all components) =	65.4%
--	-------

4.1) Recommendations

• The tower has sufficient capacity to support the proposed loading configuration. Modifications are not required at this time. The foundation is assumed to be accurate based of a reaction comparison using design results obtained from the previous structural analysis prepared by Destek Engineering (Job No. 1975056) dated May 28, 2019. If foundation design data is unavailable, it is recommended that a subsurface investigation take place in order to obtain a structural capacity for the foundation.

¹⁾ See additional documentation in "Appendix A - tnxTower Output & Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT & ADDITIONAL CALCULATIONS

Section	716	714	T13	TIZ	II.	T10	p	TB	Δ.	9L	175	14 T	£L.	12	F
Legs	Pirod 112740	Pirod 112745	Pirod	Pirod 112744	Pira	Pirod 112743	Pirod	Pirod 105220	Pirod 105219	Pirod 105218	818	Pirod 105245	SR 2 1/2	SR 2	SR 1 3/4
Leg Grade							A5	A572-50							
Diagonals			2L3 1/2x	2L3 1/2x3 1/2x5/16			L3 1/2x5	L3 1/2x3 1/2x5/16	L3x3x5/16	L3x3x3/16	16	٧	SR 1	SR 7/8	
Diagonal Grade						A36								A572-50	
Top Girts				N.A.				L3 1/2x3 1/2x5/16	L4x4x1/4	L3x3x3/16	N.A.		SR 1 1/4	SR 1	
Mid Girts					N.A.				L4x4x1/4	L3x3x3/16		N.A.		SR 1	
Bottom Girts						N.A.				-			SR 1 1/4	SR 1	
Horizontals						N.A.								SR 7/8	
Face Width (ft) 28	38	28		22	8	18	16	12	10	8					S
# Panels @ (ft)			99	6@20					11@10				16@ 2.375	375	4@2.25
Weight (K) 73.0	1.6	88	100	7.9	22	12	4.7	69	4.2	59	22	1.2	139	14	7.0
0.0 H	0.0 R	20.0 ft	40.0 ft	60.0 ft	80 0 ft	100.0 ft	120.0 ft	140.0 ft	160 0 ft	200.0 ft		230.0 ft	250.0 ft		280.0 ft 270.0 ft

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Beacon	280	800 10121 w/ Mount Pipe	160
ightning Rod 5/8x6'	280	HPA65R-BU6Aw/ Mount Pipe	160
0B420-A	280	HPA65R-BU6Aw/ Mount Pipe	160
08586-XC	280	HPA65R-BU6Aw/ Mount Pipe	160
Sector Mount [SM 412-1]	280	QS66512-3 w/ Mount Pipe	160
APXVAARR24 43-U-NA20 w/ Mount Pipe	250	QS66512-3 w/ Mount Pipe	160
APXVAARR24_43-U-NA20 w Mount Pipe	250	QS66512-3 W Mount Pipe	160
APXVAARR24 43-U-NA20 w/ Mount Pipe	250	RRUS 11	160
NR 32 B66A/B2Aw/ Mount Pipe	250	RRUS 11	160
NR 32 B66A/B2Aw/ Mount Pipe	250	RRUS 11	160
NR 32 B66A/B2Aw/ Mount Pipe	250	RRUS 32	160
NR 6468 B41 w/ Mount Pipe	250	RRUS 32	160
VR 6468 B41 w/ Mount Pipe	250	RRUS 32	160
VR 6468 B41 w/ Mount Pipe	250	RRUS 32 B2	160
AADIO 4449 B12/B71	250	RRUS 32 B2	160
	250		
RADIO 4449 B12/B71		RRUS 32 B2	160
RADIO 4449 B12/B71	250	RRUS 4478 B5	160
RADIO 4415 B25	250	RRUS 4478 B5	160
RADIO 4415 B25	250	RRUS 4478 B5	160
ADIO 4415 B25	250	RRUS 4478 B14	160
Sector Mount [SM 408-3]	250	RRUS 4478 B14	160
Sector Mount [SM 412-1]	235	RRUS 4478 B14	160
0B420-A	235	RRUS 4426 B66	160
)B586-XC	235	RRUS 4426 B66	160
3) DB980H120E-M w/ Mount Pipe	200	RRUS 4426 B66	160
3) DB980H120E-M w/ Mount Pipe	200	(2) LGP21401	160
3) DB980H120E-M w/ Mount Pipe	200	(2) LGP21401	160
Sector Mount [SM 405-3]	200	(2) LGP21401	160
3) DB980H120E-M w/ Mount Pipe	190	DC6-48-60-18-8F	160
3) DB980H120E-M w/ Mount Pipe	190	DC6-48-60-18-8F	160
3) DB980H120E-M w/ Mount Pipe	190	DC6-48-60-18-8F	160
Sector Mount [SM 405-3]	190	Sector Mount [SM 408-3]	160
 DB980H120E-M w/ Mount Pipe 	180	APXV18-206517S-C w/ Mount Pipe	150
3) DB980H120E-M w/ Mount Pipe	180	APXV18-206517S-C w/ Mount Pipe	150
3) DB980H120E-M w/ Mount Pipe	180	APXV18-206517S-C w/ Mount Pipe	150
Sector Mount [SM 405-3]	180	Sector Mount [SM 406-3]	150
APXVSPP18-C-A20 w/ Mount Pipe	170	(2) MX06FRO660-03 w/ Mount Pipe	140
APXVSPP18-C-A20 w/ Mount Pipe	170	(2) MX06FRO660-03 w/ Mount Pipe	140
APXVSPP18-C-A20 w/ Mount Pipe	170	(2) MX06FRO660-03 w/ Mount Pipe	140
APXVTM14-C-120 w/ Mount Pipe	170	L-Sub6 Antenna w/ Mount Pipe	140
APXVTM14-C-120 w/ Mount Pipe	170	L-Sub6 Antenna w/ Mount Pipe	140
PXVTM14-C-120 w/ Mount Pipe	170	L-Sub6 Antenna w/ Mount Pipe	140
D-RRH-2x50-800	170	RFV01U-D1A	140
D-RRH-2x60-800	170	BFV01U-D1A	140
D-RRH-2x50-800	170	RFV01U-D1A	140
900MHZ 4X40W RRH	170	RFV01U-D2A	140
900MHZ 4X40W RRH	170	BEV01U-D2A	140
900MHZ 4X40W RRH	170	RFV01U-D2A	140
D-RRH8X20-25	170	(2) LPA-80063/6CF w/ Mount Pipe	140
D-RRH8X20-25	170	(2) LPA-80063/6CF w/ Mount Pipe	140
D-RRH8X20-25	170	(2) LPA-80063/6CF w/ Mount Pipe	140
	170	RxxDC-3315-PF-48	140
Sector Mount [SM 408-3] 300 10121 w/ Mount Pipe	160	RxxDC-3315-PF-48	140
300 10121 w/ Mount Pipe 300 10121 w/ Mount Pipe	160	Sector Mount ISM 406-31	140

	SYMBO	JL LIST	
MARK	SIZE	MARK	SIZE
A	L2 1/2x2 1/2x3/16		

		WAICHIAL	SINCINGIN			
GRADE	Fy	Fu	GRADE	Fy	Fu	
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi	

TOWER DESIGN NOTES

- 1. Tower designed for Exposure B to the TIA-222-G Standard.
 2. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
 3. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 4. Deflections are based upon a 60 mph wind.
 5. Tower Structure Class II.
 6. Topographic Category 1 with Crest Height of 0.00 ft
 7. Antenna elevations shown above are for mount elevations; differences between mount elevations and antennas have been accounted for using vertical options in the program columns in the report.
 8. TOWER RATING: 65.4%

ALL REACTIONS ARE FACTORED MAX. CORNER REACTIONS AT BASE: DOWN: 526 K SHEAR: 55 K UPLIFT: -437 K SHEAR: 47 K AXIAL 309 K SHEAR 3821 kip-ft 25 K TORQUE 13 kip-ft 50 mph WIND - 0.7500 in ICE AXIAL MOMENT

11733 kip-ft 82 K / TORQUE 45 kip-ft REACTIONS - 97 mph WIND

> Network Building + Consulting Woodbridge North CT oject: NB+C ES Project Number 100765 ent: Verizon Drawn by: nsmith 8601 Six Forks Road, Suite 540 Client: Verizon Raleigh. NC 27615 Phone: 919.657.9131 FAX: Scale: NTS Dwg No. E-1 Code: TIA-222-G Date: 12/14/20 nsulting Engineers

Network Building + Consulting

8601 Six Forks Road, Suite 540 Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	1 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 280.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 28.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).

Basic wind speed of 97 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Antenna elevations shown above are for mount elevations; differences between mount elevations and antennas have been accounted for using vertical options in the program columns in the report..

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

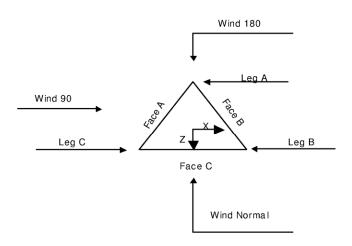
- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz

Use Special Wind Profile

- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component
- √ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs


Use ASCE 10 X-Brace Ly Rules

- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job	Page
Woodbridge North CT	2 of 52
Project	Date
NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Designed by
Verizon	nsmith

Triangular Tower

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database	•	Width	of	Length
					Sections	
	ft			ft		ft
T1	280.00-270.00			5.00	1	10.00
T2	270.00-250.00			5.00	1	20.00
T3	250.00-230.00			5.00	1	20.00
T4	230.00-220.00			5.00	1	10.00
T5	220.00-200.00			6.00	1	20.00
T6	200.00-180.00			8.00	1	20.00
T7	180.00-160.00			10.00	1	20.00
T8	160.00-140.00			12.00	1	20.00
T9	140.00-120.00			14.00	1	20.00
T10	120.00-100.00			16.00	1	20.00
T11	100.00-80.00			18.00	1	20.00
T12	80.00-60.00			20.00	1	20.00
T13	60.00-40.00			22.00	1	20.00
T14	40.00-20.00			24.00	1	20.00
T15	20.00-0.00			26.00	1	20.00

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	3 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	280.00-270.00	2.25	X Brace	No	Steps	5.5000	6.5000
T2	270.00-250.00	2.38	X Brace	No	Steps	5.5000	6.5000
T3	250.00-230.00	2.38	X Brace	No	Steps	5.5000	6.5000
T4	230.00-220.00	10.00	X Brace	No	No	0.0000	0.0000
T5	220.00-200.00	10.00	X Brace	No	No	0.0000	0.0000
T6	200.00-180.00	10.00	X Brace	No	No	0.0000	0.0000
T 7	180.00-160.00	10.00	X Brace	No	No	0.0000	0.0000
T8	160.00-140.00	10.00	X Brace	No	No	0.0000	0.0000
T9	140.00-120.00	10.00	X Brace	No	No	0.0000	0.0000
T10	120.00-100.00	20.00	X Brace	No	No	0.0000	0.0000
T11	100.00-80.00	20.00	X Brace	No	No	0.0000	0.0000
T12	80.00-60.00	20.00	X Brace	No	No	0.0000	0.0000
T13	60.00-40.00	20.00	X Brace	No	No	0.0000	0.0000
T14	40.00-20.00	20.00	X Brace	No	No	0.0000	0.0000
T15	20.00-0.00	20.00	X Brace	No	No	0.0000	0.0000

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Type	Size	Grade	Type	Size	Grade
T1 280.00-270.00	Solid Round	1 3/4	A572-50	Solid Round	7/8	A572-50
			(50 ksi)			(50 ksi)
T2 270.00-250.00	Solid Round	2	A572-50	Solid Round	7/8	A572-50
			(50 ksi)			(50 ksi)
T3 250.00-230.00	Solid Round	2 1/2	A572-50	Solid Round	1	A572-50
			(50 ksi)			(50 ksi)
T4 230.00-220.00	Truss Leg	Pirod 105245	A572-50	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(50 ksi)			(36 ksi)
T5 220.00-200.00	Truss Leg	Pirod 105218	A572-50	Equal Angle	L3x3x3/16	A36
			(50 ksi)			(36 ksi)
T6 200.00-180.00	Truss Leg	Pirod 105218	A572-50	Equal Angle	L3x3x3/16	A36
			(50 ksi)			(36 ksi)
T7 180.00-160.00	Truss Leg	Pirod 105219	A572-50	Equal Angle	L3x3x5/16	A36
			(50 ksi)			(36 ksi)
T8 160.00-140.00	Truss Leg	Pirod 105220	A572-50	Equal Angle	L3 1/2x3 1/2x5/16	A36
			(50 ksi)			(36 ksi)
T9 140.00-120.00	Truss Leg	Pirod 105220	A572-50	Equal Angle	L3 1/2x3 1/2x5/16	A36
			(50 ksi)			(36 ksi)
T10	Truss Leg	Pirod 112743	A572-50	Double Equal	2L3 1/2x3 1/2x5/16	A36
120.00-100.00			(50 ksi)	Angle		(36 ksi)
T11 100.00-80.00	Truss Leg	Pirod 112743	A572-50	Double Equal	2L3 1/2x3 1/2x5/16	A36
			(50 ksi)	Angle		(36 ksi)
T12 80.00-60.00	Truss Leg	Pirod 112744	A572-50	Double Equal	2L3 1/2x3 1/2x5/16	A36
			(50 ksi)	Angle		(36 ksi)
T13 60.00-40.00	Truss Leg	Pirod 112744	A572-50	Double Equal	2L3 1/2x3 1/2x5/16	A36
			(50 ksi)	Angle		(36 ksi)
T14 40.00-20.00	Truss Leg	Pirod 112745	A572-50	Double Equal	2L3 1/2x3 1/2x5/16	A36
			(50 ksi)	Angle		(36 ksi)
T15 20.00-0.00	Truss Leg	Pirod 112740	A572-50	Double Equal	2L3 1/2x3 1/2x5/16	A36
			(50 ksi)	Angle		(36 ksi)

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	4 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Tower Section Geometry (cont'd)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1 280.00-270.00	Solid Round	1	A572-50	Solid Round	1	A572-50
			(50 ksi)			(50 ksi)
T2 270.00-250.00	Solid Round	1	A572-50	Solid Round	1	A572-50
			(50 ksi)			(50 ksi)
T3 250.00-230.00	Solid Round	1 1/4	A572-50	Solid Round	1 1/4	A572-50
			(50 ksi)			(50 ksi)
T6 200.00-180.00	Equal Angle	L3x3x3/16	A36	Solid Round		A36
			(36 ksi)			(36 ksi)
T7 180.00-160.00	Equal Angle	L4x4x1/4	A36	Solid Round		A36
	-		(36 ksi)			(36 ksi)
T8 160.00-140.00	Equal Angle	L3 1/2x3 1/2x5/16	A36	Solid Round		A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T1 280.00-270.00	1	Solid Round	1	A572-50	Solid Round	7/8	A572-50
				(50 ksi)			(50 ksi)
T2 270.00-250.00	1	Solid Round	1	A572-50	Solid Round	7/8	A572-50
				(50 ksi)			(50 ksi)
T3 250.00 230.00	None	Flat Bar		Λ36	Solid Round	7/8	Λ572 50
				(36 ksi)			(50 ksi)
T6 200.00-180.00	1	Equal Angle	L3x3x3/16	A36	Single Angle		A572-50
				(36 ksi)			(50 ksi)
T7 180.00-160.00	1	Equal Angle	L4x4x1/4	A36	Single Angle		A572-50
				(36 ksi)			(50 ksi)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
280.00-270.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
270.00-250.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
250.00-230.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
230.00-220.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
220.00-200.00			(36 ksi)						
Т6	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	5 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	$Adjust.\ Factor \ A_f$	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
200.00-180.00			(36 ksi)						
T7	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
180.00-160.00			(36 ksi)						
T8	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T9	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T10	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T11	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T12	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
80.00-60.00			(36 ksi)	_		_			
T13	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
60.00-40.00			(36 ksi)						
T14	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
40.00-20.00			(36 ksi)						
T15 20.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

						K Fac	ctors1			
Tower Elevation	Calc K	Calc K	Legs	X Brace	K Brace	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Single	Solid Rounds		Diags X	$Diags \ X$	X	X	X	X	X
ft	Angles	Kounas		Y	Y	Y	Y	Y	Y	Y
	Yes	Yes	1			1		1		1
280.00-270.00	ies	ies	1	1	1	1	1	1	1	1
	37	W	4	1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
270.00-250.00				1	1	1	1	1	1	1
T3	Yes	Yes	1	1	1	1	1	1	1	1
250.00-230.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
230.00-220.00				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
220.00-200.00				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	1	1	1
200.00-180.00				1	1	1	1	1	1	1
T7	Yes	Yes	1	1	1	1	1	1	1	1
180.00-160.00				1	1	1	1	1	1	1
T8	Yes	Yes	1	1	1	1	1	1	1	1
160.00-140.00				1	1	1	1	1	1	1
T9	Yes	Yes	1	1	1	1	1	1	1	1
140.00 120.00				1	1	1	1	1	1	1
T10	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T11	Yes	Yes	1	1	1	1	1	1	1	1
100.00-80.00			•	1	1	1	1	1	1	1
T12	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00			-	î	î	î	î	î	î	î
T13	Yes	Yes	1	i	1	1	Î.	1	i	i
60.00-40.00	100	100	•	î	î	î	î	î	î	î
T14	Yes	Yes	1	1	1	1	1	1	1	1

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job	Page
Woodbridge North CT	6 of 52
Project	Date
NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Designed by nsmith

		_				K Fac	ctors ¹			
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
40.00-20.00				1	1	1	1	1	1	1
T15	Yes	Yes	1	1	1	1	1	1	1	1
20.00-0.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

			Truss-Leg	K Factors		
	Trus	s-Legs Used As Leg Me	mbers	Truss	-Legs Used As Inner M	embers
Tower Elevation ft	Leg Panels	X Brace Diagonals	Z Brace Diagonals	Leg Panels	X Brace Diagonals	Z Brace Diagonals
T4 230.00-220.00	1	0.5	0.85	1	0.5	0.85
T5 220.00-200.00	1	0.5	0.85	1	0.5	0.85
T6 200.00-180.00	1	0.5	0.85	1	0.5	0.85
T7 180.00-160.00	1	0.5	0.85	1	0.5	0.85
T8 160.00-140.00	1	0.5	0.85	1	0.5	0.85
T9 140.00-120.00	1	0.5	0.85	1	0.5	0.85
T10 120.00-100.00	1	0.5	0.85	1	0.5	0.85
T11 100.00-80.00	1	0.5	0.85	1	0.5	0.85
T12 80.00-60.00	1	0.5	0.85	1	0.5	0.85
T13 60.00-40.00	1	0.5	0.85	1	0.5	0.85
T14 40.00-20.00	1	0.5	0.85	1	0.5	0.85
T15 20.00-0.00	1	0.5	0.85	1	0.5	0.85

Tower Elevation	Leg		Diagon	al	Top Gi	rt	Bottom	Girt	Mid	Girt	Long Hor	rizontal	Short Ho	rizontal
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
280.00-270.00														

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	7 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Verizon	Designed by nsmith

Tower Elevation ft	Leg		Diagon	al	Top Gi	rt	Botton	Bottom Girt		Mid Girt Long Horizonto		rizontal	Short Horizontal	
,	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T2 270.00-250.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T3 250.00-230.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T4 230.00-220.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 220.00-200.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 200.00-180.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 180.00-160.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 160.00-140.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 140.00-120.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 120.00-100.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 100.00-80.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T12 80.00-60.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T13 60.00-40.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T14 40.00-20.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T15 20.00-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower	Leg	Leg		Diagoi	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Horn	zontal	Short Hori	izontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Sleeve DS	0.6250	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
280.00-270.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Sleeve DS	0.7500	5	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
270.00-250.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	1.0000	6	1.0000	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
250.00-230.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
230.00-220.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
220.00-200.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
Т6	Flange	1.0000	6	1.0000	1	1.0000	1	0.6250	0	1.0000	1	0.6250	0	0.6250	0
200.00-180.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7	Flange	1.2500	6	1.2500	1	1.2500	1	0.6250	0	1.2500	1	0.6250	0	0.6250	0
180.00-160.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
Т8	Flange	1.2500	6	1.2500	1	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	8 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
Т9	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10	Flange	1.2500	12	1.0000	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T11	Flange	1.2500	12	1.0000	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T12	Flange	1.2500	12	1.0000	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
80.00-60.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T13	Flange	1.2500	12	1.0000	2	0.6250	0	0.6250	0	0.6250	0	0.6250	O	0.6250	0
60.00-40.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T14	Flange	1.2500	12	1.0000	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
40.00-20.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T15 20.00-0.00	Flange	0.7500	0	1.0000	2	0.6250	0	0.6250	0	0.6250	0	0.6250	O	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per		Diameter	Perimeter	Weight
	Leg		Torque Calculation		ft	in	(Frac FW)		Row	in	in	in	plf
LDF7-50A (1-5/8 FOAM) ***	С	No	No	Ar (CaAa)	280.00 - 12.00	-12.000 0	0.47	4	2	0.7500	1.9800		0.82
LDF7-50A (1-5/8 FOAM)	Α	No	No	Ar (CaAa)	250.00 - 12.00	-12.000 0	0.45	9	8	0.7500	1.9800		0.82
HCS 6X12 4AWG(1-5/8) ***	С	No	No	Ar (CaAa)	0.00 - 12.00	-8.0000	0.46	3	3	1.6600	1.6600		2.40
LDF7-50A (1-5/8 FOAM) ***	В	No	No	Ar (CaAa)	200.00 - 12.00	-15.000 0	0.45	9	3	0.7500	1.9800		0.82
LDF7-50A (1-5/8 FOAM) ***	С	No	No	Ar (CaAa)	190.00 - 12.00	-12.000 0	0.45	9	5	0.7500	1.9800		0.82
LDF7-50A (1-5/8 FOAM) ***	С	No	No	Ar (CaAa)	180.00 - 12.00	-12.000 0	0.43	9	5	0.7500	1.9800		0.82
LDF7-50A (1-5/8 FOAM)	A	No	No	Ar (CaAa)	170.00 - 12.00	-12.000 0	0.45	3	3	0.7500	1.9800		0.82
HCS 6X12 4AWG(1-5/8) ***	A	No	No	Ar (CaAa)	170.00 - 12.00	0.0000	0.42	1	1	1.6600	1.6600		2.40
LDF7-50A (1-5/8 FOAM)	A	No	No	Ar (CaAa)	160.00 - 12.00	-12.000 0	0.45	6	6	0.7500	1.9800		0.82
Fiber Cable (1/4")	С	No	No	Ar (CaAa)	160.00 - 12.00	-8.0000	0.49	1	1	0.2500	0.2500		0.03
DC Power	С	No	No	Ar (CaAa)	160.00 - 12.00	-8.0000	0.49	1	1	0.8700	0.8700		0.15
LDF7-50A (1-5/8 FOAM) ***	A	No	No	Ar (CaAa)	150.00 - 12.00	-8.0000	0.4	6	2	0.7500	1.9800		0.82
LDF7-50A	В	No	No	Ar (CaAa)	140.00 -	-6.0000	0.45	12	12	0.7500	1.9800		0.82

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	9 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
	Les		Calculation		J.		(1740177)		11011				PG
(1-5/8 FOAM) HCS 6X12 4AWG(1-5/8)	В	No	No	Ar (CaAa)	12.00 140.00 - 12.00	-6.0000	0.46	1	1	1.6600	1.6600		2.40

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation		ft ²	ft^2	In Face	Out Face ft ²	ν
TT 1	ft 200,00,270,00	A .			ft ²		K
T1	280.00-270.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
T A	270 00 250 00	C	0.000	0.000	7.920	0.000	0.03
T2	270.00-250.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	15.840	0.000	0.07
T3	250.00-230.00	A	0.000	0.000	35.640	0.000	0.15
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	15.840	0.000	0.07
T4	230.00-220.00	A	0.000	0.000	17.820	0.000	0.07
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	7.920	0.000	0.03
T5	220.00-200.00	A	0.000	0.000	35.640	0.000	0.15
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	15.840	0.000	0.07
T6	200.00-180.00	A	0.000	0.000	35.640	0.000	0.15
		В	0.000	0.000	35.640	0.000	0.15
		C	0.000	0.000	33.660	0.000	0.14
T7	180.00-160.00	A	0.000	0.000	43.240	0.000	0.20
		В	0.000	0.000	35.640	0.000	0.15
		C	0.000	0.000	87.120	0.000	0.36
T8	160.00-140.00	Α	0.000	0.000	86.480	0.000	0.39
		В	0.000	0.000	35.640	0.000	0.15
		C	0.000	0.000	89.360	0.000	0.36
T9	140.00-120.00	A	0.000	0.000	98.360	0.000	0.44
		В	0.000	0.000	86.480	0.000	0.39
		C	0.000	0.000	89.360	0.000	0.36
T10	120.00-100.00	A	0.000	0.000	98.360	0.000	0.44
		В	0.000	0.000	86.480	0.000	0.39
		C	0.000	0.000	89.360	0.000	0.36
T11	100.00-80.00	A	0.000	0.000	98.360	0.000	0.44
		В	0.000	0.000	86.480	0.000	0.39
		C	0.000	0.000	89.360	0.000	0.36
T12	80.00-60.00	A	0.000	0.000	98.360	0.000	0.44
		В	0.000	0.000	86.480	0.000	0.39
		Č	0.000	0.000	89.360	0.000	0.36
T13	60.00-40.00	A	0.000	0.000	98.360	0.000	0.44
110	30.00 10.00	В	0.000	0.000	86.480	0.000	0.39
		Č	0.000	0.000	89.360	0.000	0.36
T14	40.00-20.00	A	0.000	0.000	98.360	0.000	0.44
117	10.00 20.00	В	0.000	0.000	86.480	0.000	0.39
		C	0.000	0.000	89.360	0.000	0.36
T15	20.00-0.00	A	0.000	0.000	39.344	0.000	0.38
11.0	20.00-0.00	В	0.000	0.000	34.592	0.000	0.16
		C	0.000	0.000	41.720	0.000	0.10

Network Building + Consulting 8601 Six Forks Road, Suite 540 Raleigh. NC 27615 Phone: 919.657.9131

FAX:

Job		Page
	Woodbridge North CT	10 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Mada a	Designed by
	Verizon	nsmith

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C_AA_A In Face	$C_A A_A$ Out Face	Weight
50011011	ft	Leg	in	ft^2	ft^2	ft ²	ft^2	K
T1	280.00-270.00	A	1.854	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		Č		0.000	0.000	14.882	0.000	0.23
T2	270.00-250.00	A	1.844	0.000	0.000	0.000	0.000	0.00
12	270.00 250.00	В	1.011	0.000	0.000	0.000	0.000	0.00
		Č		0.000	0.000	29.691	0.000	0.46
T3	250.00-230.00	A	1.829	0.000	0.000	65.312	0.000	1.07
	200.00 200.00	В	1.02	0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	29.587	0.000	0.46
T4	230.00-220.00	Ā	1.817	0.000	0.000	32.619	0.000	0.53
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	14.752	0.000	0.23
T5	220.00-200.00	A	1.805	0.000	0.000	65.159	0.000	1.06
		В	11000	0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	29.415	0.000	0.46
T6	200.00-180.00	A	1.787	0.000	0.000	65.045	0.000	1.05
	200.00 100.00	В	11.0.	0.000	0.000	38.940	0.000	0.82
		Č		0.000	0.000	52.337	0.000	0.89
T 7	180.00-160.00	Ā	1.767	0.000	0.000	85.467	0.000	1.34
		В		0.000	0.000	38.800	0.000	0.82
		C		0.000	0.000	121.080	0.000	2.18
T8	160.00-140.00	A	1.745	0.000	0.000	172.439	0.000	2.64
	100100 110100	В	277.10	0.000	0.000	38.645	0.000	0.81
		C		0.000	0.000	136.832	0.000	2.36
T9	140.00-120.00	A	1.720	0.000	0.000	188.770	0.000	2.90
		В		0.000	0.000	138.328	0.000	2.35
		C		0.000	0.000	136.125	0.000	2.33
T10	120.00-100.00	A	1.692	0.000	0.000	187.910	0.000	2.86
		В		0.000	0.000	137.851	0.000	2.32
		C		0.000	0.000	135.314	0.000	2.30
T11	100.00-80.00	A	1.658	0.000	0.000	186.895	0.000	2.82
		В		0.000	0.000	137.287	0.000	2.29
		C		0.000	0.000	134.356	0.000	2.26
T12	80.00-60.00	A	1.617	0.000	0.000	185.654	0.000	2.76
		В		0.000	0.000	136.598	0.000	2.24
		C		0.000	0.000	133.185	0.000	2.22
T13	60.00-40.00	Ā	1.564	0.000	0.000	184.043	0.000	2.68
		В		0.000	0.000	135.702	0.000	2.19
		C		0.000	0.000	131.662	0.000	2.16
T14	40.00-20.00	A	1.486	0.000	0.000	181.700	0.000	2.58
	_	В		0.000	0.000	134.399	0.000	2.11
		C		0.000	0.000	129.448	0.000	2.08
T15	20.00-0.00	A	1.331	0.000	0.000	70.825	0.000	0.95
		В		0.000	0.000	52.727	0.000	0.78
		C		0.000	0.000	67.698	0.000	1.03

Feed Line Center of Pressure

Section	Elevation	CP	CP-	CP	CP.
Section	Lievation	CP_X	CI Z	Log.	Ice
	ft	in	in	Ice in	Ice in
T1	280 00-270 00	-6.2398	1 2602	-2.4443	0.4937

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

J	Job		Page
		Woodbridge North CT	11 of 52
Г	Project		Date
		NB+C ES Project Number 100765	14:34:37 12/14/20
Γ	Client	Verizon	Designed by nsmith

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T2	270.00-250.00	-6.1506	1.2422	-2.7537	0.5562
T3	250.00-230.00	-1.7591	-9.1172	-1.2806	-4.5295
T4	230.00-220.00	-1.2178	-6.1334	-0.5837	-2.0288
T5	220.00-200.00	-2.0483	-8.3770	-1.4416	-4.2495
T6	200.00-180.00	-2.6014	-4.5192	-1.8042	-2.5968
T7	180.00-160.00	-12.0014	-4.8171	-8.8543	-3.8057
T8	160.00-140.00	-12.5871	-14.3041	-11.7504	-12.5853
T9	140.00-120.00	-7.2632	-8.4908	-6.7832	-7.7235
T10	120.00-100.00	-8.2197	-9.5628	-7.4133	-8.4445
T11	100.00-80.00	-9.1015	-10.6520	-8.1990	-9.3888
T12	80.00-60.00	-9.8464	-11.5836	-8.9130	-10.2721
T13	60.00-40.00	-10.6478	-12.5858	-9.6104	-11.1612
T14	40.00-20.00	-11.2806	-13.3853	-10.2388	-12.0162
T15	20.00-0.00	-9.5027	-7.1254	-10.6677	-5.7677

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	1	LDF7-50A (1-5/8 FOAM)	270.00 -	0.6000	0.4303
1			280.00		
T2	1	LDF7-50A (1-5/8 FOAM)	250.00 -	0.6000	0.4777
			270.00		
T3	1	LDF7-50A (1-5/8 FOAM)	230.00 -	0.6000	0.4795
			250.00	0.5000	0.4505
T3	3	LDF7-50A (1-5/8 FOAM)	230.00 -	0.6000	0.4795
T-4		LDET FOA (1 F/O FOAM)	250.00	0.6000	0.2570
T4	1	LDF7-50A (1-5/8 FOAM)	220.00 - 230.00	0.6000	0.2579
T4	3	LDF7-50A (1-5/8 FOAM)	220.00	0.6000	0.2579
14	3	LDF /-30A (1-3/8 FOAM)	230.00	0.6000	0.2379
T5	1	LDF7-50A (1-5/8 FOAM)	200.00 -	0.6000	0.4038
13	1	LDI 7-30A (1-3/8 FOAM)	220.00	0.0000	0.4030
T5	3	LDF7-50A (1-5/8 FOAM)	200.00 -	0.6000	0.4038
13	J	221 / 3011 (1 3/01 3/11/1)	220.00	0.0000	0.1050
Т6	1	LDF7-50A (1-5/8 FOAM)	180.00 -	0.6000	0.4642
		,	200.00		
T6	3	LDF7-50A (1-5/8 FOAM)	180.00 -	0.6000	0.4642
1			200.00		
T6	6	LDF7-50A (1-5/8 FOAM)	180.00 -	0.6000	0.4642
1			200.00		
T6	8	LDF7-50A (1-5/8 FOAM)	180.00 -	0.6000	0.4642
1			190.00		
T7	1	LDF7-50A (1-5/8 FOAM)	160.00 -	0.6000	0.5206
			180.00		
T7	3	LDF7-50A (1-5/8 FOAM)	160.00 -	0.6000	0.5206
		LDE7 504 (1.5/0.FO.AM)	180.00	0.6000	0.5206
T7	6	LDF7-50A (1-5/8 FOAM)	160.00 -	0.6000	0.5206
T7	8	LDE7 504 (1.5/9 EO AM)	180.00	0.6000	0.5206
1/	8	LDF7-50A (1-5/8 FOAM)	160.00 - 180.00	0.0000	0.5206
T7	10	LDF7-50A (1-5/8 FOAM)	160.00	0.6000	0.5206
''	10	DDI 7-30A (1-3/6 FOAM)	180.00	0.0000	0.5200
T7	12	LDF7-50A (1-5/8 FOAM)	160.00 -	0.6000	0.5206
''	12	221 7-3011 (1-3/01 O/UVI)	170.00		0.5200
•	'		1,0.00		•

Network Building + Consulting 8601 Six Forks Road, Suite 540

Job		Page
	Woodbridge North CT	12 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Беѕсприон	Segment Elev.	No Ice	Ice
T7	13	HCS 6X12 4AWG(1-5/8)	160.00 - 170.00	0.6000	0.5206
Т8	1	LDF7-50A (1-5/8 FOAM)	140.00 - 140.00 - 160.00	0.6000	0.5841
Т8	3	LDF7-50A (1-5/8 FOAM)	140.00 - 160.00	0.6000	0.5841
Т8	6	LDF7-50A (1-5/8 FOAM)	140.00 - 160.00	0.6000	0.5841
Т8	8	LDF7-50A (1-5/8 FOAM)	140.00 - 160.00	0.6000	0.5841
Т8	10	LDF7-50A (1-5/8 FOAM)	140.00 - 160.00	0.6000	0.5841
Т8	12	LDF7-50A (1-5/8 FOAM)	140.00 - 140.00 -	0.6000	0.5841
Т8	13	HCS 6X12 4AWG(1-5/8)	140.00 - 160.00	0.6000	0.5841
Т8	15	LDF7-50A (1-5/8 FOAM)	140.00 - 160.00	0.6000	0.5841
Т8	16	Fiber Cable (1/4")	140.00 - 160.00	0.6000	0.5841
Т8	17	DC Power	140.00 - 160.00	0.6000	0.5841
Т8	19	LDF7-50A (1-5/8 FOAM)	140.00 - 150.00	0.6000	0.5841
Т9	1	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6000
Т9	3	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6000
Т9	6	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6000
Т9	8	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6000
Т9	10	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6000
Т9	12	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6000
Т9	13	HCS 6X12 4AWG(1-5/8)	120.00 - 140.00	0.6000	0.6000
Т9	15	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6000
Т9	16	Fiber Cable (1/4")	120.00 - 140.00	0.6000	0.6000
Т9	17	DC Power	120.00 - 140.00	0.6000	0.6000
Т9	19	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6000
Т9	21	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6000
Т9	22	HCS 6X12 4AWG(1-5/8)	120.00 - 140.00	0.6000	0.6000
T10	1	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000
T10	3	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000
T10	6	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000
T10	8	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000
T10	10	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000
T10	12	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.6000

Network Building + Consulting 8601 Six Forks Road, Suite 540

Job		Page
	Woodbridge North CT	13 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	HCC (V12 /AWC/1 5/0)	Segment Elev.	No Ice	Ice
T10	13	HCS 6X12 4AWG(1-5/8)	100.00 - 120.00	0.6000	0.6000
T10	15	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
		,	120.00		
T10	16	Fiber Cable (1/4")	100.00 -	0.6000	0.6000
TT 1.0		DCD	120.00	0.6000	0.6000
T10	17	DC Power	100.00 - 120.00	0.6000	0.6000
T10	19	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
110		LDI 1-3011 (1-3/01 O/MVI)	120.00	0.0000	0.0000
T10	21	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
			120.00		
T10	22	HCS 6X12 4AWG(1-5/8)	100.00 -	0.6000	0.6000
T11	1	L DE7 504 (1 5/9 E0 4M)	120.00	0.6000	0.6000
T11	1 3	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	80.00 - 100.00 80.00 - 100.00	0.6000 0.6000	0.6000 0.6000
T11	6	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.6000
T11	8	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.6000
T11	10	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.6000
T11	12	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.6000
T11	13	HCS 6X12 4AWG(1-5/8)	80.00 - 100.00	0.6000	0.6000
T11	15	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.6000
T11	16	Fiber Cable (1/4")	80.00 - 100.00	0.6000	0.6000
T11	17	DC Power	80.00 - 100.00	0.6000	0.6000
T11	19	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.6000
T11	21	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.6000
T11	22	HCS 6X12 4AWG(1-5/8)	80.00 - 100.00	0.6000	0.6000
T12	1	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T12	3	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T12	6	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T12	8	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T12	10	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T12	12	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T12	13	HCS 6X12 4AWG(1-5/8)	60.00 - 80.00	0.6000	0.6000
T12	15	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T12	16	Fiber Cable (1/4")	60.00 - 80.00	0.6000	0.6000
T12 T12	17 19	DC Power LDF7-50A (1-5/8 FOAM)	60.00 - 80.00 60.00 - 80.00	0.6000 0.6000	0.6000 0.6000
T12	21	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T12	22	HCS 6X12 4AWG(1-5/8)	60.00 - 80.00	0.6000	0.6000
T13	1	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T13	3	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T13	6	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T13	8	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T13	10	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T13	12	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T13	13	HCS 6X12 4AWG(1-5/8)	40.00 - 60.00	0.6000	0.6000
T13	15	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T13	16	Fiber Cable (1/4")	40.00 - 60.00	0.6000	0.6000
T13	17	DC Power	40.00 - 60.00	0.6000	0.6000
T13	19	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T13	21	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T13	22	HCS 6X12 4AWG(1-5/8)	40.00 - 60.00	0.6000	0.6000
T14	1	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T14	3	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T14	6	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T14	8	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T14 T14	10 12	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	20.00 - 40.00 20.00 - 40.00	0.6000 0.6000	0.6000 0.6000
T14	13	HCS 6X12 4AWG(1-5/8)	20.00 - 40.00	0.6000	0.6000
T14	15	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T14		Fiber Cable (1/4")			0.6000
. 114	10	1 10c1 Cable (1/4)	20.00 - 40.00	0.0000	0.0000

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	14 of 52
Project		Date
NI	B+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	_	Segment Elev.	No Ice	Ice
T14	17	DC Power	20.00 - 40.00	0.6000	0.6000
T14	19	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T14	21	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.6000
T14	22	HCS 6X12 4AWG(1-5/8)	20.00 - 40.00	0.6000	0.6000
T15	1	LDF7-50A (1-5/8 FOAM)	12.00 - 20.00	0.6000	0.6000
T15	3	LDF7-50A (1-5/8 FOAM)	12.00 - 20.00	0.6000	0.6000
T15	4	HCS 6X12 4AWG(1-5/8)	0.00 - 12.00	0.6000	0.6000
T15	6	LDF7-50A (1-5/8 FOAM)	12.00 - 20.00	0.6000	0.6000
T15	8	LDF7-50A (1-5/8 FOAM)	12.00 - 20.00	0.6000	0.6000
T15	10	LDF7-50A (1-5/8 FOAM)	12.00 - 20.00	0.6000	0.6000
T15	12	LDF7-50A (1-5/8 FOAM)	12.00 - 20.00	0.6000	0.6000
T15	13	HCS 6X12 4AWG(1-5/8)	12.00 - 20.00	0.6000	0.6000
T15	15	LDF7-50A (1-5/8 FOAM)	12.00 - 20.00	0.6000	0.6000
T15	16	Fiber Cable (1/4")	12.00 - 20.00	0.6000	0.6000
T15	17	DC Power	12.00 - 20.00	0.6000	0.6000
T15	19	LDF7-50A (1-5/8 FOAM)	12.00 - 20.00	0.6000	0.6000
T15	21	LDF7-50A (1-5/8 FOAM)	12.00 - 20.00	0.6000	0.6000
T15	22	HCS 6X12 4AWG(1-5/8)	12.00 - 20.00	0.6000	0.6000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C_AA_A Side	Weight
			ft ft ft	o	ft		ft ²	ft²	K
Beacon	В	None		0.0000	280.00	No Ice 1/2" Ice 1" Ice	2.70 3.10 3.50	2.70 3.10 3.50	0.05 0.07 0.09
Lightning Rod 5/8x6'	В	None		0.0000	280.00	No Ice 1/2" Ice 1" Ice	0.38 0.99 1.60	0.38 0.99 1.60	0.05 0.05 0.05

DB420-A	В	From Leg	8.00	0.0000	280.00	No Ice	3.33	3.33	0.03
			0.00			1/2" Ice	5.99	5.99	0.04
			0.00			1" Ice	8.66	8.66	0.05
DB586-XC	В	From Leg	8.00	0.0000	280.00	No Ice	1.01	1.01	0.01
			0.00			1/2" Ice	1.28	1.28	0.02
			0.00			1" Ice	1.56	1.56	0.03
Sector Mount [SM 412-1]	C	None		0.0000	280.00	No Ice	70.47	70.47	3.08
						1/2" Ice	100.14	100.14	4.50
***						1" Ice	129.81	129.81	5.92
APXVAARR24_43-U-NA20	Α	From Leg	3.00	0.0000	250.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		J	0.00			1/2" Ice	15.46	7.55	0.31
1			0.00			1" Ice	16.23	8.25	0.46
APXVAARR24_43-U-NA20	В	From Leg	3.00	0.0000	250.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe			0.00			1/2" Ice	15.46	7.55	0.31
1.10.111.11.12			0.00			1" Ice	16.23	8.25	0.46
APXVAARR24_43-U-NA20	C	From Leg	3.00	0.0000	250.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		110111 208	0.00	0,0000		1/2" Ice	15.46	7.55	0.31
" House Lipe			0.00			1" Ice	16.23	8.25	0.46
AIR 32 B66A/B2A w/ Mount	A	From Leg	3.00	0.0000	250.00	No Ice	6.81	6.14	0.15

Network Building + Consulting 8601 Six Forks Road, Suite 540

Job		Page
	Woodbridge North CT	15 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

	C_AA_A Side	C_AA_A Front		Placement	Azimuth Adjustment	Offsets: Horz	Offset Type	Face or	Description
						Lateral Vert		Leg	
2 K	ft ²	ft ²		ft	0	ft			
	J	J		J		ft ft			
	6.99	7.30	1/2" Ice			0.00			Pipe
	7.73	7.76	1" Ice	250.00	0.0000	0.00	Б 1	ъ	A ID 22 DCC A /D2 A / M
	6.14 6.99	6.81 7.30	No Ice 1/2" Ice	250.00	0.0000	3.00 0.00	From Leg	В	AIR 32 B66A/B2A w/ Mount Pipe
	7.73	7.76	1" Ice			0.00			ripe
	6.14	6.81	No Ice	250.00	0.0000	3.00	From Leg	C	AIR 32 B66A/B2A w/ Mount
0.22	6.99	7.30	1/2" Ice			0.00	C		Pipe
	7.73	7.76	1" Ice			0.00			_
	3.61	6.26	No Ice	250.00	0.0000	3.00	From Leg	Α	AIR 6468 B41 w/ Mount Pipe
	4.10	6.65 7.05	1/2" Ice 1" Ice			0.00 0.00			
	4.61 3.61	6.26	No Ice	250.00	0.0000	3.00	From Leg	В	AIR 6468 B41 w/ Mount Pipe
	4.10	6.65	1/2" Ice	250.00	0.0000	0.00	I folii Leg	Ь	And 0400 B41 w/ Would Tipe
	4.61	7.05	1" Ice			0.00			
	3.61	6.26	No Ice	250.00	0.0000	3.00	From Leg	C	AIR 6468 B41 w/ Mount Pipe
	4.10	6.65	1/2" Ice			0.00			
	4.61	7.05	1" Ice			0.00	_		
	1.15	1.64	No Ice	250.00	0.0000	3.00	From Leg	Α	RADIO 4449 B12/B71
	1.29	1.80 1.97	1/2" Ice 1" Ice			0.00			
	1.44 1.15	1.64	No Ice	250.00	0.0000	0.00 3.00	From Leg	В	RADIO 4449 B12/B71
	1.13	1.80	1/2" Ice	250.00	0.0000	0.00	110m Leg	Б	KADIO 4449 B12/B/1
	1.44	1.97	1" Ice			0.00			
	1.15	1.64	No Ice	250.00	0.0000	3.00	From Leg	C	RADIO 4449 B12/B71
9 0.09	1.29	1.80	1/2" Ice			0.00	_		
	1.44	1.97	1" Ice			0.00			
	0.82	1.84	No Ice	250.00	0.0000	3.00	From Leg	A	RADIO 4415 B25
	0.94	2.01	1/2" Ice			0.00			
	1.07 0.82	2.19 1.84	1" Ice No Ice	250.00	0.0000	0.00 3.00	From Leg	В	RADIO 4415 B25
	0.82	2.01	1/2" Ice	250.00	0.0000	0.00	From Leg	ь	KADIO 4413 B23
	1.07	2.19	1" Ice			0.00			
	0.82	1.84	No Ice	250.00	0.0000	3.00	From Leg	C	RADIO 4415 B25
	0.94	2.01	1/2" Ice			0.00	C		
	1.07	2.19	1" Ice			0.00			
	22.45	22.45	No Ice	250.00	0.0000		None	C	Sector Mount [SM 408-3]
	33.50	33.50	1/2" Ice						
55 1.93	44.55	44.55	1" Ice						***
47 3.08	70.47	70.47	No Ice	235.00	0.0000		None	Α	Sector Mount [SM 412-1]
	100.14	100.14	1/2" Ice	233.00	0.0000		rone	7.1	Sector Mount [SM 112 1]
	129.81	129.81	1" Ice						
0.03	3.33	3.33	No Ice	235.00	0.0000	8.00	From Leg	В	DB420-A
	5.99	5.99	1/2" Ice			0.00			
	8.66	8.66							
	1.01			235.00	0.0000		From Leg	Α	DB586-XC
0.03	1.50	1.50	1 100			0.00			***
0.03	3.60	3.99	No Ice	200.00	0.0000	3.00	From Leg	Α	
	4.46	4.45	1/2" Ice			0.00			Mount Pipe
	5.19	4.90	1" Ice			0.00			ı
	3.60	3.99	No Ice	200.00	0.0000	3.00	From Leg	В	(3) DB980H120E-M w/
	4.46	4.45	1/2" Ice			0.00			Mount Pipe
	5.19			200.00	0.0000		Б	C	(2) DD00011120E 34
	3.60			200.00	0.0000		From Leg	C	
6 0.07	4.46	4.45	1/2" Ice			0.00			Mount Pipe
	1.0 1.2 1.5 3.6 4.4 5.1 3.6 4.4 5.1 3.6	1.01 1.28 1.56 3.99 4.45 4.90 3.99	1" Ice No Ice	235.00 200.00 200.00 200.00		0.00 3.00	From Leg From Leg From Leg	A A B C	(3) DB980H120E-M w/ Mount Pipe (3) DB980H120E-M w/

Network Building + Consulting 8601 Six Forks Road, Suite 540

		1_
Job		Page
	Woodbridge North CT	16 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C_AA_A Side	Weight
	Leg		Lateral						
			Vert ft	0	ft		ft²	ft ²	K
			ft ft		jι		Ji	ji	A
			0.00			1" Ice	4.90	5.19	0.11
Sector Mount [SM 405-3]	Α	None		0.0000	200.00	No Ice	18.73	18.73	0.86
						1/2" Ice	27.19	27.19	1.26
						1" Ice	35.65	35.65	1.66
*** (3) DB980H120E-M w/	A	From Leg	3.00	0.0000	190.00	No Ice	3.99	3.60	0.03
Mount Pipe	7.	Trom Leg	0.00	0.0000	170.00	1/2" Ice	4.45	4.46	0.07
Mount i pe			0.00			1" Ice	4.90	5.19	0.11
(3) DB980H120E-M w/	В	From Leg	3.00	0.0000	190.00	No Ice	3.99	3.60	0.03
Mount Pipe			0.00			1/2" Ice	4.45	4.46	0.07
			0.00			1" Ice	4.90	5.19	0.11
(3) DB980H120E-M w/	C	From Leg	3.00	0.0000	190.00	No Ice	3.99	3.60	0.03
Mount Pipe		9	0.00			1/2" Ice	4.45	4.46	0.07
1			0.00			1" Ice	4.90	5.19	0.11
Sector Mount [SM 405-3]	Α	None		0.0000	190.00	No Ice	18.73	18.73	0.86
						1/2" Ice	27.19	27.19	1.26
						1" Ice	35.65	35.65	1.66
*** (3) DB980H120E-M w/	A	From Leg	3.00	0.0000	180.00	No Ice	3.99	3.60	0.03
Mount Pipe	Α	From Leg	0.00	0.0000	180.00	1/2" Ice	4.45	4.46	0.03
Mount Fipe			0.00			1" Ice	4.43	5.19	0.07
(3) DB980H120E-M w/	В	From Leg	3.00	0.0000	180.00	No Ice	3.99	3.60	0.03
Mount Pipe	ь	From Leg	0.00	0.0000	180.00	1/2" Ice	4.45	4.46	0.03
Would Tipe			0.00			1" Ice	4.90	5.19	0.07
(3) DB980H120E-M w/	C	From Leg	3.00	0.0000	180.00	No Ice	3.99	3.60	0.03
Mount Pipe	C	110m Leg	0.00	0.0000	100.00	1/2" Ice	4.45	4.46	0.03
Would Tipe			0.00			1" Ice	4.90	5.19	0.11
Sector Mount [SM 405-3]	Α	None	0.00	0.0000	180.00	No Ice	18.73	18.73	0.86
sector mount (sector)				0.000	100.00	1/2" Ice	27.19	27.19	1.26
						1" Ice	35.65	35.65	1.66
***		Б. Т	2.00	0.0000	170.00	N. 1	4.60	4.01	0.10
APXVSPP18-C-A20 w/	Α	From Leg	3.00	0.0000	170.00	No Ice	4.60	4.01	0.10
Mount Pipe			0.00			1/2" Ice	5.05	4.45	0.16
A DWINGDDIO C. A 20.	ъ	Б. Т	0.00	0.0000	170.00	1" Ice	5.50	4.89	0.23
APXVSPP18-C-A20 w/	В	From Leg	3.00	0.0000	170.00	No Ice	4.60	4.01	0.10
Mount Pipe			0.00			1/2" Ice 1" Ice	5.05 5.50	4.45 4.89	0.16 0.23
APXVSPP18-C-A20 w/	С	From Leg	3.00	0.0000	170.00	No Ice	4.60	4.01	0.23
Mount Pipe	C	110m Leg	0.00	0.0000	170.00	1/2" Ice	5.05	4.45	0.16
Would I lpc			0.00			1" Ice	5.50	4.89	0.10
APXVTM14-C-120 w/	A	From Leg	3.00	0.0000	170.00	No Ice	4.09	2.86	0.23
Mount Pipe	А	110m Leg	0.00	0.0000	170.00	1/2" Ice	4.48	3.23	0.03
Would Tipe			0.00			1" Ice	4.88	3.61	0.19
APXVTM14-C-120 w/	В	From Leg	3.00	0.0000	170.00	No Ice	4.09	2.86	0.08
Mount Pipe	Ь	1 Tom Leg	0.00	0.0000	170.00	1/2" Ice	4.48	3.23	0.13
Would Tipe			0.00			1" Ice	4.88	3.61	0.19
APXVTM14-C-120 w/	C	From Leg	3.00	0.0000	170.00	No Ice	4.09	2.86	0.08
Mount Pipe		r rom Leg	0.00	0.0000	1,0.00	1/2" Ice	4.48	3.23	0.13
· r -			0.00			1" Ice	4.88	3.61	0.19
FD-RRH-2x50-800	Α	From Leg	3.00	0.0000	170.00	No Ice	2.13	2.49	0.06
			0.00			1/2" Ice	2.32	2.68	0.09
			0.00			1" Ice	2.51	2.89	0.12
FD-RRH-2x50-800	В	From Leg	3.00	0.0000	170.00	No Ice	2.13	2.49	0.06
			0.00			1/2" Ice	2.32	2.68	0.09
			0.00			1" Ice	2.51	2.89	0.12
FD-RRH-2x50-800	C	From Leg	3.00	0.0000	170.00	No Ice	2.13	2.49	0.06
		_	0.00			1/2" Ice	2.32	2.68	0.09

Network Building + Consulting 8601 Six Forks Road, Suite 540

Job		Page
	Woodbridge North CT	17 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigh
	Leg	V E -	Lateral Vert	3					
			ft	0	ft		ft^2	ft ²	K
			ft ft						
			0.00			1" Ice	2.51	2.89	0.12
1900MHZ 4X40W RRH	A	From Leg	3.00	0.0000	170.00	No Ice	2.32	2.24	0.06
			0.00			1/2" Ice	2.53	2.44	0.08
1900MHZ 4X40W RRH	В	From Leg	0.00 3.00	0.0000	170.00	1" Ice No Ice	2.74 2.32	2.65 2.24	0.11 0.06
1900WIIZ +A+0 W KKII	ь	110m Leg	0.00	0.0000	170.00	1/2" Ice	2.53	2.44	0.08
			0.00			1" Ice	2.74	2.65	0.11
1900MHZ 4X40W RRH	C	From Leg	3.00	0.0000	170.00	No Ice	2.32	2.24	0.06
			0.00			1/2" Ice	2.53	2.44	0.08
TD DD1101140 45			0.00	0.0000	470.00	1" Ice	2.74	2.65	0.11
TD-RRH8X20-25	A	From Leg	3.00 0.00	0.0000	170.00	No Ice 1/2" Ice	3.70 3.95	1.29 1.46	0.07 0.09
			0.00			1" Ice	4.20	1.64	0.09
TD-RRH8X20-25	В	From Leg	3.00	0.0000	170.00	No Ice	3.70	1.29	0.07
			0.00			1/2" Ice	3.95	1.46	0.09
			0.00			1" Ice	4.20	1.64	0.12
TD-RRH8X20-25	C	From Leg	3.00	0.0000	170.00	No Ice	3.70	1.29	0.07
			0.00			1/2" Ice	3.95	1.46	0.09
Sector Mount [SM 408-3]	С	None	0.00	0.0000	170.00	1" Ice No Ice	4.20 22.45	1.64 22.45	0.12 1.02
Sector Mount [SM 408-3]		None		0.0000	170.00	1/2" Ice	33.50	33.50	1.02
						1" Ice	44.55	44.55	1.93
***						1 100	11.00	11.00	1.70
800 10121 w/ Mount Pipe	A	From Leg	3.00	0.0000	160.00	No Ice	3.60	2.95	0.07
			0.00			1/2" Ice	4.00	3.34	0.11
			0.00			1" Ice	4.42	3.74	0.17
800 10121 w/ Mount Pipe	В	From Leg	3.00	0.0000	160.00	No Ice	3.60	2.95	0.07
			0.00			1/2" Ice 1" Ice	4.00 4.42	3.34 3.74	0.11 0.17
800 10121 w/ Mount Pipe	С	From Leg	3.00	0.0000	160.00	No Ice	3.60	2.95	0.17
ooo totzi w/ wount ripe		Trom Leg	0.00	0.0000	100.00	1/2" Ice	4.00	3.34	0.11
			0.00			1" Ice	4.42	3.74	0.17
HPA65R-BU6A w/ Mount	A	From Leg	3.00	0.0000	160.00	No Ice	5.83	5.00	0.08
Pipe			0.00			1/2" Ice	6.40	5.56	0.14
			0.00	0.0000	4.60.00	1" Ice	6.99	6.13	0.22
HPA65R-BU6A w/ Mount	В	From Leg	3.00	0.0000	160.00	No Ice 1/2" Ice	5.83	5.00	0.08 0.14
Pipe			0.00 0.00			1" Ice	6.40 6.99	5.56 6.13	0.14
HPA65R-BU6A w/ Mount	C	From Leg	3.00	0.0000	160.00	No Ice	5.83	5.00	0.08
Pipe	-		0.00			1/2" Ice	6.40	5.56	0.14
•			0.00			1" Ice	6.99	6.13	0.22
QS66512-3 w/ Mount Pipe	A	From Leg	3.00	0.0000	160.00	No Ice	4.04	4.18	0.13
			0.00			1/2" Ice	4.42	4.57	0.20
OG((510.0 / M + P'	ъ	F	0.00	0.0000	160.00	1" Ice	4.82	4.97	0.28
QS66512-3 w/ Mount Pipe	В	From Leg	3.00 0.00	0.0000	160.00	No Ice 1/2" Ice	4.04 4.42	4.18 4.57	0.13 0.20
			0.00			1" Ice	4.42	4.97	0.20
QS66512-3 w/ Mount Pipe	С	From Leg	3.00	0.0000	160.00	No Ice	4.04	4.18	0.13
	-		0.00			1/2" Ice	4.42	4.57	0.20
			0.00			1" Ice	4.82	4.97	0.28
RRUS 11	Α	From Leg	3.00	0.0000	160.00	No Ice	2.79	1.19	0.05
			0.00			1/2" Ice	3.00	1.34	0.07
DDIIC 11	D	Enoug I	0.00	0.0000	160.00	1" Ice	3.21	1.50	0.10
RRUS 11	В	From Leg	3.00 0.00	0.0000	160.00	No Ice 1/2" Ice	2.79 3.00	1.19 1.34	0.05 0.07
			0.00			172 Ice 1" Ice	3.21	1.50	0.07
RRUS 11	C	From Leg	3.00	0.0000	160.00	No Ice	2.79	1.19	0.10

Network Building + Consulting 8601 Six Forks Road, Suite 540

Job		Page	
Woo	odbridge North CT	18 of 52	
Project		Date	
NB+C ES	Project Number 100765	14:34:37 12/14/2	20
Client		Designed by	
	Verizon	nsmith	

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigi
	Leg	<i>,</i> 1	Lateral Vert	J					
			ft	۰	ft		ft^2	ft^2	K
			ft ft		, ·		y.	J.	
			0.00			1/2" Ice	3.00	1.34	0.07
			0.00			1" Ice	3.21	1.50	0.10
RRUS 32	A	From Leg	3.00	0.0000	160.00	No Ice	2.86	1.78	0.06
			0.00			1/2" Ice	3.08	1.97	0.08
DDIIG 22	ъ	Б. Т	0.00	0.0000	160.00	1" Ice	3.32	2.17	0.10
RRUS 32	В	From Leg	3.00	0.0000	160.00	No Ice	2.86	1.78	0.00
			0.00			1/2" Ice 1" Ice	3.08 3.32	1.97 2.17	0.08
RRUS 32	C	From Leg	3.00	0.0000	160.00	No Ice	2.86	1.78	0.00
KKUS 32	C	110m Leg	0.00	0.0000	100.00	1/2" Ice	3.08	1.78	0.08
			0.00			1" Ice	3.32	2.17	0.10
RRUS 32 B2	A	From Leg	3.00	0.0000	160.00	No Ice	2.73	1.67	0.03
		110111 208	0.00	0.000	100100	1/2" Ice	2.95	1.86	0.0
			0.00			1" Ice	3.18	2.05	0.10
RRUS 32 B2	В	From Leg	3.00	0.0000	160.00	No Ice	2.73	1.67	0.0
		C	0.00			1/2" Ice	2.95	1.86	0.0
			0.00			1" Ice	3.18	2.05	0.1
RRUS 32 B2	C	From Leg	3.00	0.0000	160.00	No Ice	2.73	1.67	0.0
			0.00			1/2" Ice	2.95	1.86	0.0
			0.00			1" Ice	3.18	2.05	0.1
RRUS 4478 B5	A	From Leg	3.00	0.0000	160.00	No Ice	1.84	1.06	0.0
			0.00			1/2" Ice	2.01	1.20	0.0
	_		0.00		4.50.00	1" Ice	2.19	1.34	0.0
RRUS 4478 B5	В	From Leg	3.00	0.0000	160.00	No Ice	1.84	1.06	0.0
			0.00			1/2" Ice	2.01	1.20	0.0
DDIIC 4470 D5	C	F	0.00	0.0000	160.00	1" Ice	2.19	1.34	0.0
RRUS 4478 B5	C	From Leg	3.00 0.00	0.0000	160.00	No Ice 1/2" Ice	1.84 2.01	1.06 1.20	0.0
			0.00			1" Ice	2.19	1.34	0.0
RRUS 4478 B14	A	From Leg	3.00	0.0000	160.00	No Ice	1.84	1.06	0.0
KK05 4476 D14	11	1 Tolli Leg	0.00	0.0000	100.00	1/2" Ice	2.01	1.20	0.0
			0.00			1" Ice	2.19	1.34	0.0
RRUS 4478 B14	В	From Leg	3.00	0.0000	160.00	No Ice	1.84	1.06	0.0
			0.00			1/2" Ice	2.01	1.20	0.0
			0.00			1" Ice	2.19	1.34	0.0
RRUS 4478 B14	C	From Leg	3.00	0.0000	160.00	No Ice	1.84	1.06	0.0
			0.00			1/2" Ice	2.01	1.20	0.0
			0.00			1" Ice	2.19	1.34	0.0
RRUS 4426 B66	A	From Leg	3.00	0.0000	160.00	No Ice	1.64	0.73	0.0
			0.00			1/2" Ice	1.80	0.84	0.0
	_	_	0.00			1" Ice	1.97	0.97	0.0
RRUS 4426 B66	В	From Leg	3.00	0.0000	160.00	No Ice	1.64	0.73	0.0
			0.00			1/2" Ice	1.80	0.84	0.0
DDIIG 4406 D66	C	F	0.00	0.0000	160.00	1" Ice	1.97	0.97	0.0
RRUS 4426 B66	C	From Leg	3.00	0.0000	160.00	No Ice	1.64	0.73	0.0
			0.00			1/2" Ice 1" Ice	1.80 1.97	0.84 0.97	0.00
(2) LGP21401	Α	From Leg	3.00	0.0000	160.00	No Ice	1.10	0.97	0.0
(2) LOI 21701	11	110m Leg	0.00	0.0000	100.00	1/2" Ice	1.24	0.27	0.0
			0.00			1" Ice	1.38	0.35	0.03
(2) LGP21401	В	From Leg	3.00	0.0000	160.00	No Ice	1.10	0.21	0.0
\-/ · · · ·	-		0.00			1/2" Ice	1.24	0.27	0.0
			0.00			1" Ice	1.38	0.35	0.0
(2) LGP21401	C	From Leg	3.00	0.0000	160.00	No Ice	1.10	0.21	0.0
		_	0.00			1/2" Ice	1.24	0.27	0.02
			0.00			1" Ice	1.38	0.35	0.03
DC6-48-60-18-8F	Α	From Leg	3.00	0.0000	160.00	No Ice	1.21	1.21	0.03

Network Building + Consulting 8601 Six Forks Road, Suite 540

Job		Page
	Woodbridge North CT	19 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
	200		Vert ft	o	ft		ft²	ft²	K
			ft ft						
			0.00			1/2" Ice	1.89	1.89	0.05
			0.00			1" Ice	2.11	2.11	0.08
DC6-48-60-18-8F	В	From Leg	3.00	0.0000	160.00	No Ice	1.21	1.21	0.03
		_	0.00			1/2" Ice	1.89	1.89	0.05
			0.00			1" Ice	2.11	2.11	0.08
DC6-48-60-18-8F	C	From Leg	3.00	0.0000	160.00	No Ice	1.21	1.21	0.03
			0.00			1/2" Ice	1.89	1.89	0.05
			0.00			1" Ice	2.11	2.11	0.08
Sector Mount [SM 408-3]	C	None		0.0000	160.00	No Ice	22.45	22.45	1.02
						1/2" Ice	33.50	33.50	1.47
***						1" Ice	44.55	44.55	1.93
APXV18-206517S-C w/	Α	From Leg	3.00	0.0000	150.00	No Ice	3.79	3.16	0.05
Mount Pipe			0.00			1/2" Ice	4.38	3.75	0.09
- r			0.00			1" Ice	4.99	4.35	0.15
APXV18-206517S-C w/	В	From Leg	3.00	0.0000	150.00	No Ice	3.79	3.16	0.05
Mount Pipe		_	0.00			1/2" Ice	4.38	3.75	0.09
			0.00			1" Ice	4.99	4.35	0.15
APXV18-206517S-C w/	C	From Leg	3.00	0.0000	150.00	No Ice	3.79	3.16	0.05
Mount Pipe			0.00			1/2" Ice	4.38	3.75	0.09
			0.00			1" Ice	4.99	4.35	0.15
Sector Mount [SM 406-3]	C	None		0.0000	150.00	No Ice	19.83	19.83	0.92
						1/2" Ice	29.41	29.41	1.33
***						1" Ice	38.99	38.99	1.73
(2) MX06FRO660-03 w/	Α	From Leg	3.00	0.0000	140.00	No Ice	6.54	5.55	0.10
Mount Pipe			0.00			1/2" Ice	7.06	6.05	0.18
			0.00			1" Ice	7.60	6.57	0.28
(2) MX06FRO660-03 w/	В	From Leg	3.00	0.0000	140.00	No Ice	6.54	5.55	0.10
Mount Pipe			0.00			1/2" Ice	7.06	6.05	0.18
			0.00			1" Ice	7.60	6.57	0.28
(2) MX06FRO660-03 w/	C	From Leg	3.00	0.0000	140.00	No Ice	6.54	5.55	0.10
Mount Pipe			0.00			1/2" Ice	7.06	6.05	0.18
			0.00		4.40.00	1" Ice	7.60	6.57	0.28
L-Sub6 Antenna w/ Mount	Α	From Leg	3.00	0.0000	140.00	No Ice	5.43	3.27	0.11
Pipe			0.00			1/2" Ice	5.97	3.99	0.15
L-Sub6 Antenna w/ Mount	В	Enom Loo	0.00 3.00	0.0000	140.00	1" Ice No Ice	6.46 5.43	4.59	0.20
Pipe	ь	From Leg	0.00	0.0000	140.00	1/2" Ice	5.43	3.27 3.99	0.11 0.15
1 ipe			0.00			1" Ice	6.46	4.59	0.20
L-Sub6 Antenna w/ Mount	C	From Leg	3.00	0.0000	140.00	No Ice	5.43	3.27	0.11
Pipe		Trom Leg	0.00	0.0000	1 10.00	1/2" Ice	5.97	3.99	0.15
- 4			0.00			1" Ice	6.46	4.59	0.20
RFV01U-D1A	Α	From Leg	3.00	0.0000	140.00	No Ice	2.05	1.54	0.08
		· ·	0.00			1/2" Ice	2.23	1.70	0.11
			0.00			1" Ice	2.41	1.86	0.13
RFV01U-D1A	В	From Leg	3.00	0.0000	140.00	No Ice	2.05	1.54	0.08
		-	0.00			1/2" Ice	2.23	1.70	0.11
		_	0.00			1" Ice	2.41	1.86	0.13
RFV01U-D1A	C	From Leg	3.00	0.0000	140.00	No Ice	2.05	1.54	0.08
			0.00			1/2" Ice	2.23	1.70	0.11
DEMONIT DAY		г .	0.00	0.0000	1.40.00	1" Ice	2.41	1.86	0.13
RFV01U-D2A	Α	From Leg	3.00	0.0000	140.00	No Ice	2.05	1.29	0.07
			0.00			1/2" Ice	2.23	1.44	0.09
						1 !! T		1.50	0.11
RFV01U-D2A	В	From Leg	0.00 3.00	0.0000	140.00	1" Ice No Ice	2.41 2.05	1.59 1.29	0.11 0.07

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page		
	Woodbridge North CT	20 of 52		
Project		Date		
	NB+C ES Project Number 100765	14:34:37 12/14/20		
Client		Designed by		
	Verizon	nsmith		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$egin{aligned} C_A A_A \ Front \end{aligned}$	C_AA_A Side	Weigh
	Leg		Vert ft ft ft	0	ft		ft²	ft ²	K
			0.00			1" Ice	2.41	1.59	0.11
RFV01U-D2A	C	From Leg	3.00	0.0000	140.00	No Ice	2.05	1.29	0.07
			0.00	0,000	1.0.00	1/2" Ice	2.23	1.44	0.09
			0.00			1" Ice	2.41	1.59	0.11
(2) LPA-80063/6CF w/	Α	From Leg	3.00	0.0000	140.00	No Ice	9.83	10.22	0.05
Mount Pipe			0.00			1/2" Ice	10.40	11.38	0.14
			0.00			1" Ice	10.93	12.27	0.25
(2) LPA-80063/6CF w/	В	From Leg	3.00	0.0000	140.00	No Ice	9.83	10.22	0.05
Mount Pipe		C	0.00			1/2" Ice	10.40	11.38	0.14
			0.00			1" Ice	10.93	12.27	0.25
(2) LPA-80063/6CF w/	C	From Leg	3.00	0.0000	140.00	No Ice	9.83	10.22	0.05
Mount Pipe		_	0.00			1/2" Ice	10.40	11.38	0.14
_			0.00			1" Ice	10.93	12.27	0.25
RxxDC-3315-PF-48	Α	From Leg	3.00	0.0000	140.00	No Ice	2.51	1.65	0.03
		_	0.00			1/2" Ice	2.71	1.82	0.05
			0.00			1" Ice	2.91	1.99	0.08
RxxDC-3315-PF-48	В	From Leg	3.00	0.0000	140.00	No Ice	2.51	1.65	0.03
			0.00			1/2" Ice	2.71	1.82	0.05
			0.00			1" Ice	2.91	1.99	0.08
Sector Mount [SM 406-3]	C	None		0.0000	140.00	No Ice	19.83	19.83	0.92
						1/2" Ice	29.41	29.41	1.33
						1" Ice	38.99	38.99	1.73

Truss-Leg Properties

Section Designation	Area	Area Ice	Self Weight	Ice Weight	Equiv. Diameter	Equiv. Diameter	Leg Area
	in^2	in^2	K	K	in	Ice in	in^2
Pirod 105245	1604.4494	3539.3020	0.68	0.74	11.1420	24.5785	5.3014
Pirod 105218	2263.4687	6700.6084	0.72	1.28	7.8593	23.2660	7.2158
Pirod 105218	2263.4687	6684.7191	0.72	1.26	7.8593	23.2108	7.2158
Pirod 105219	2441.8688	6739.2465	0.90	1.28	8.4787	23.4002	9.4248
Pirod 105220	2578.8005	6791.8153	1.07	1.28	8.9542	23.5827	11.9282
Pirod 105220	2578.8005	6769.8954	1.07	1.25	8.9542	23.5066	11.9282
Pirod 112743	3466.5160	8923.4288	1.61	1.69	12.0365	30.9841	14.7262
Pirod 112743	3466.5160	8898.2322	1.61	1.64	12.0365	30.8966	14.7262
Pirod 112744	3599.5585	8939.3815	1.81	1.60	12.4985	31.0395	17.8187
Pirod 112744	3599.5585	8899.2724	1.81	1.52	12.4985	30.9003	17.8187
Pirod 112745	3789.3331	8912.9018	2.09	1.45	13.1574	30.9476	21.2058
Pirod 112740	3789.3331	8797.0272	2.09	1.23	13.1574	30.5452	21.2058

Tower Pressures - No Ice

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	21 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					c					Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft ²
T1	275.00	1.319	27	51.458	Α	0.000	7.235	2.917	40.31	0.000	0.000
280.00-270.00					В	0.000	7.235		40.31	0.000	0.000
					C	0.000	7.943		36.72	7.920	0.000
T2	260.00	1.298	27	103.333	Α	0.000	14.118	6.667	47.22	0.000	0.000
270.00-250.00					В	0.000	14.118		47.22	0.000	0.000
					C	0.000	16.232		41.07	15.840	0.000
T3	240.00	1.269	26	104.167	Α	0.000	16.405	8.333	50.80	35.640	0.000
250.00-230.00					В	0.000	16.405		50.80	0.000	0.000
					C	0.000	18.850		44.21	15.840	0.000
T4	225.00	1.246	26	66.264	Α	4.235	18.601	18.601	81.45	17.820	0.000
230.00-220.00					В	4.235	18.601		81.45	0.000	0.000
					C	4.235	18.601		81.45	7.920	0.000
T5	210.00	1.222	25	162.945	Α	10.467	26.241	26.241	71.49	35.640	0.000
220.00-200.00					В	10.467	26.241		71.49	0.000	0.000
					C	10.467	26.241		71.49	15.840	0.000
Т6	190.00	1.187	24	202.945	Α	15.714	26.241	26.241	62.55	35.640	0.000
200.00-180.00					В	15.714	26.241		62.55	35.640	0.000
					C	15.714	26.241		62.55	33.660	0.000
T7	170.00	1.15	24	243.362	Α	19.853	28.309	28.309	58.78	43.240	0.000
180.00-160.00					В	19.853	28.309		58.78	35.640	0.000
					C	19.853	28.309		58.78	87.120	0.000
T8	150.00	1.11	23	283.780	Α	20.877	29.897	29.897	58.88	86.480	0.000
160.00-140.00					В	20.877	29.897		58.88	35.640	0.000
					C	20.877	29.897		58.88	89.360	0.000
T9	130.00	1.065	22	323.780	Α	19.635	29.897	29.897	60.36	98.360	0.000
140.00-120.00					В	19.635	29.897		60.36	86.480	0.000
					C	19.635	29.897		60.36	89.360	0.000
T10	110.00	1.016	21	374.209	Α	14.190	40.189	40.189	73.91	98.360	0.000
120.00-100.00					В	14.190	40.189		73.91	86.480	0.000
					C	14.190	40.189		73.91	89.360	0.000
T11	90.00	0.959	20	414.209	Α	14.825	40.189	40.189	73.05	98.360	0.000
100.00-80.00					В	14.825	40.189		73.05	86.480	0.000
					C	14.825	40.189		73.05	89.360	0.000
T12	70.00	0.892	18	454.627	Α	15.712	41.731	41.731	72.65	98.360	0.000
80.00-60.00					В	15.712	41.731		72.65	86.480	0.000
					C	15.712	41.731		72.65	89.360	0.000
T13	50.00	0.811	17	494.627	Α	16.624	41.731	41.731	71.51	98.360	0.000
60.00-40.00					В	16.624	41.731		71.51	86.480	0.000
					C	16.624	41.731		71.51	89.360	0.000
T14	30.00	0.701	14	535.044	A	17.558	43.931	43.931	71.44	98.360	0.000
40.00-20.00			_ ′		В	17.558	43.931		71.44	86.480	0.000
					Ĉ	17.558	43.931		71.44	89.360	0.000
T15 20.00-0.00	10.00	0.7	14	575.044	A	18.514	43.931	43.931	70.35	39.344	0.000
			- '		В	18.514	43.931		70.35	34.592	0.000
					Č	18.514	43.931		70.35	41.720	0.000

Tower Pressure - With Ice

 $G_H = 0.850$

Section Elevation	z	Kz	q_z	t_Z	A_G	F a	A_F	A_R	A_{leg}	Leg %	C_AA_A In	C_AA_A Out
ft	ft		psf	in	ft^2	с е	ft²	ft²	ft ²		Face ft²	Face ft²
280.00-270.	275.00	1.319	7	1.8543	54.549	A B	0.000 0.000			29.27 29.27		

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	22 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Verizon	Designed by
	venzon	nsmith

Section	z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
			c		0.2	C	0.2	0.2	0.2		Face	Face
ft	ft		psf	in	ft ²	e	ft ²	ft ²	ft ²	26.15	ft ²	ft ²
T2	260.00	1.298	7	1.8439	109.480	C A	0.000 0.000	34.785 57.177	18.959	26.15 33.16	14.882 0.000	0.000 0.000
270.00-250.00	200.00	1.298	/	1.0439	109.460	В	0.000	57.177	16.939	33.16	0.000	0.000
270.00-230.00						C	0.000	68.204		27.80	29.691	0.000
Т3	240.00	1.269	7	1.8292	110.264	A	0.000	57.397	20.528	35.77	65.312	0.000
250.00-230.00	240.00	1.207	,	1.0272	110.20+	В	0.000	57.397	20.520	35.77	0.000	0.000
250.00 250.00						C	0.000	70.068		29.30	29.587	0.000
T4	225.00	1.246	7	1.8174	69.297	Ã	4.235	47.190	41.032	79.79	32.619	0.000
230.00-220.00		1.2.0	·	1,017	0,12,1	В	4.235	47.190	11.002	79.79	0.000	0.000
						C	4.235	47.190		79.79	14.752	0.000
T5	210.00	1.222	7	1.8049	168.969	A	10.467	90.277	77.682	77.11	65.159	0.000
220.00-200.00						В	10.467	90.277		77.11	0.000	0.000
						C	10.467	90.277		77.11	29.415	0.000
Т6	190.00	1.187	6	1.7870	208.909	Α	15.714	96.219	77.498	69.24	65.045	0.000
200.00-180.00						В	15.714	96.219		69.24	38.940	0.000
						C	15.714	96.219		69.24	52.337	0.000
T7	170.00	1.15	6	1.7672	249.260	Α	19.853	99.655	78.130	65.38	85.467	0.000
180.00-160.00						В	19.853	99.655		65.38	38.800	0.000
	4.50.00				• • • • • •	C	19.853	99.655		65.38	121.080	0.000
T8	150.00	1.11	6	1.7452	289.604	A	20.877	99.559	78.740	65.38	172.439	0.000
160.00-140.00						В	20.877	99.559		65.38	38.645	0.000
Т9	130.00	1.065	6	1.7204	329.522	C	20.877	99.559 97.789	70.406	65.38	136.832	0.000 0.000
140.00-120.00	130.00	1.065	0	1.7204	329.322	A B	19.635 19.635	97.789	78.486	66.84 66.84	188.770 138.328	0.000
140.00-120.00						C	19.635	97.789		66.84	136.328	0.000
T10	110.00	1.016	6	1.6919	379.856	A	14.190	117.171	103.452	78.75	187.910	0.000
120.00-100.00	110.00	1.010	0	1.0919	319.030	В	14.190	117.171	105.452	78.75	137.851	0.000
120.00-100.00						C	14.190	117.171		78.75	135.314	0.000
T11	90.00	0.959	5	1.6583	419.744	A	14.825	117.209	103.160	78.13	186.895	0.000
100.00-80.00	70.00	0.757		1.0505	417.744	В	14.825	117.209	103.100	78.13	137.287	0.000
100100 00100						Ĉ	14.825	117.209		78.13	134.356	0.000
T12 80.00-60.00	70.00	0.892	5	1.6171	460.024	Ā	15.712	118.156	103.637	77.42	185.654	0.000
						В	15.712	118.156		77.42	136.598	0.000
						C	15.712	118.156		77.42	133.185	0.000
T13 60.00-40.00	50.00	0.811	4	1.5636	499.845	A	16.624	118.026	103.172	76.62	184.043	0.000
						В	16.624	118.026		76.62	135.702	0.000
						C	16.624	118.026		76.62	131.662	0.000
T14 40.00-20.00	30.00	0.701	4	1.4858	540.002	A	17.558	118.238	103.330	76.09	181.700	0.000
	I					В	17.558	118.238		76.09	134.399	0.000
	I					C	17.558	118.238		76.09	129.448	0.000
T15 20.00-0.00	10.00	0.7	4	1.3312	579.487	Α	18.514	116.071	101.987	75.78	70.825	0.000
	I					В	18.514	116.071		75.78	52.727	0.000
						C	18.514	116.071		75.78	67.698	0.000

Tower Pressure - Service

 $G_H = 0.850$

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					с					Face	Face
ft	ft		psf	ft^2	e	ft ²	ft ²	ft^2		ft ²	ft ²
T1	275.00	1.319	10	51.458	Α	0.000	7.235	2.917	40.31	0.000	0.000
280.00-270.00					В	0.000	7.235		40.31	0.000	0.000
					C	0.000	7.943		36.72	7.920	0.000

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	23 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					c					Face	Face
ft	ft		psf	ft ²	e	ft ²	ft ²	ft ²		ft ²	ft^2
T2	260.00	1.298	10	103.333	Α	0.000	14.118	6.667	47.22	0.000	0.000
270.00-250.00					В	0.000	14.118		47.22	0.000	0.000
					C	0.000	16.232		41.07	15.840	0.000
T3	240.00	1.269	10	104.167	Α	0.000	16.405	8.333	50.80	35.640	0.000
250.00-230.00					В	0.000	16.405		50.80	0.000	0.000
					C	0.000	18.850		44.21	15.840	0.000
T4	225.00	1.246	10	66.264	Α	4.235	18.601	18.601	81.45	17.820	0.000
230.00-220.00					В	4.235	18.601		81.45	0.000	0.000
					C	4.235	18.601		81.45	7.920	0.000
T5	210.00	1.222	10	162.945	Α	10.467	26.241	26.241	71.49	35.640	0.000
220.00-200.00					В	10.467	26.241		71.49	0.000	0.000
					C	10.467	26.241		71.49	15.840	0.000
T6	190.00	1.187	9	202.945	Α	15.714	26.241	26.241	62.55	35.640	0.000
200.00-180.00					В	15.714	26.241		62.55	35.640	0.000
					C	15.714	26.241		62.55	33.660	0.000
T7	170.00	1.15	9	243.362	Α	19.853	28.309	28.309	58.78	43.240	0.000
180.00-160.00					В	19.853	28.309		58.78	35.640	0.000
					C	19.853	28.309		58.78	87.120	0.000
T8	150.00	1.11	9	283.780	Α	20.877	29.897	29.897	58.88	86.480	0.000
160.00-140.00					В	20.877	29.897		58.88	35.640	0.000
					C	20.877	29.897		58.88	89.360	0.000
T9	130.00	1.065	8	323.780	Α	19.635	29.897	29.897	60.36	98.360	0.000
140.00-120.00					В	19.635	29.897		60.36	86.480	0.000
					C	19.635	29.897		60.36	89.360	0.000
T10	110.00	1.016	8	374.209	Α	14.190	40.189	40.189	73.91	98.360	0.000
120.00-100.00					В	14.190	40.189		73.91	86.480	0.000
					C	14.190	40.189		73.91	89.360	0.000
T11	90.00	0.959	8	414.209	Α	14.825	40.189	40.189	73.05	98.360	0.000
100.00-80.00					В	14.825	40.189		73.05	86.480	0.000
					C	14.825	40.189		73.05	89.360	0.000
T12	70.00	0.892	7	454.627	Α	15.712	41.731	41.731	72.65	98.360	0.000
80.00-60.00					В	15.712	41.731		72.65	86.480	0.000
					C	15.712	41.731		72.65	89.360	0.000
T13	50.00	0.811	6	494.627	Α	16.624	41.731	41.731	71.51	98.360	0.000
60.00-40.00					В	16.624	41.731		71.51	86.480	0.000
					C	16.624	41.731		71.51	89.360	0.000
T14	30.00	0.701	5	535.044	Α	17.558	43.931	43.931	71.44	98.360	0.000
40.00-20.00					В	17.558	43.931		71.44	86.480	0.000
					C	17.558	43.931		71.44	89.360	0.000
T15 20.00-0.00	10.00	0.7	5	575.044	Α	18.514	43.931	43.931	70.35	39.344	0.000
					В	18.514	43.931		70.35	34.592	0.000
					С	18.514	43.931		70.35	41.720	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.03	0.66	Α	0.141	2.806	27	1	1	4.100	0.37	36.66	C
280.00-270.00			В	0.141	2.806		1	1	4.100			
			C	0.154	2.756		1	1	4.512			
T2	0.07	1.37	Α	0.137	2.821	27	1	1	7.995	0.73	36.60	C
270.00-250.00			В	0.137	2.821		1	1	7.995			
			C	0.157	2.746		1	1	9.225			
T3	0.21	1.91	Α	0.157	2.744	26	1	1	9.323	1.19	59.67	Α
250.00-230.00			В	0.157	2.744		1	1	9.323			

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	24 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Made an	Designed by
	Verizon	nsmith

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			_						Face
			c			psf						
ft	K	K	e						ft ²	K	plf	
			C	0.181	2.661		1	1	10.771			
T4	0.11	1.23	Α	0.345	2.184	26	1	1	15.657	1.05	104.99	Α
230.00-220.00			В	0.345	2.184		1	1	15.657			
			C	0.345	2.184		1	1	15.657			
T5	0.21	2.70	Α	0.225	2.514	25	1	1	25.670	1.98	98.83	Α
220.00-200.00			В	0.225	2.514		1	1	25.670			
			C	0.225	2.514		1	1	25.670			
T6	0.43	2.95	Α	0.207	2.574	24	1	1	30.821	2.56	128.09	Α
200.00-180.00			В	0.207	2.574		1	1	30.821			
			C	0.207	2.574		1	1	30.821			
T7	0.70	4.20	Α	0.198	2.603	24	1	1	36.106	3.35	167.73	C
180.00-160.00			В	0.198	2.603		1	1	36.106			
			C	0.198	2.603		1	1	36.106			
T8	0.90	4.86	Α	0.179	2.668	23	1	1	37.951	3.72	186.24	C
160.00-140.00			В	0.179	2.668		1	1	37.951			
			C	0.179	2.668		1	1	37.951			
T9	1.20	4.75	Α	0.153	2.761	22	1	1	36.612	3.97	198.35	C
140.00-120.00			В	0.153	2.761		1	1	36.612			
			C	0.153	2.761		1	1	36.612			
T10	1.20	7.08	Α	0.145	2.789	21	1	1	36.980	3.82	190.92	C
120.00-100.00			В	0.145	2.789		1	1	36.980			
			C	0.145	2.789		1	1	36.980			
T11	1.20	7.19	Α	0.133	2.836	20	1	1	37.573	3.66	183.14	C
100.00-80.00			В	0.133	2.836		1	1	37.573			
			C	0.133	2.836		1	1	37.573			
T12	1.20	7.93	Α	0.126	2.86	18	1	1	39.313	3.50	175.03	C
80.00-60.00			В	0.126	2.86		1	1	39.313			
			C	0.126	2.86		1	1	39.313			
T13	1.20	8.05	Α	0.118	2.893	17	1	1	40.204	3.23	161.71	C
60.00-40.00			В	0.118	2.893		1	1	40.204			
			C	0.118	2.893		1	1	40.204			
T14	1.20	9.01	Α	0.115	2.905	14	1	1	42.375	2.88	143.88	C
40.00-20.00			В	0.115	2.905		1	1	42.375			
			C	0.115	2.905		1	1	42.375			
T15	0.57	9.15	Α	0.109	2.93	14	1	1	43.319	2.14	107.00	C
20.00-0.00			В	0.109	2.93		1	1	43.319			
 			C	0.109	2.93		1	1	43.319			
Sum Weight:	10.43	73.02	l					OTM	4624.47	38.16		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.03	0.66	Α	0.141	2.806	27	0.8	1	4.100	0.37	36.66	C
280.00-270.00			В	0.141	2.806		0.8	1	4.100			
			C	0.154	2.756		0.8	1	4.512			
T2	0.07	1.37	Α	0.137	2.821	27	0.8	1	7.995	0.73	36.60	C
270.00-250.00			В	0.137	2.821		0.8	1	7.995			
			C	0.157	2.746		0.8	1	9.225			
T3	0.21	1.91	Α	0.157	2.744	26	0.8	1	9.323	1.19	59.67	В
250.00-230.00			В	0.157	2.744		0.8	1	9.323			

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job	Page
Woodbridge North CT	25 of 52
Project	Date
NB+C ES Project Number 100765	14:34:37 12/14/20
Client Verizon	Designed by nsmith

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e	0.101	2		0.0		ft ²	K	plf	
	0.11		C	0.181	2.661	26	0.8	1	10.771	1.01	100.00	_
T4	0.11	1.23	A	0.345	2.184	26	0.8	1	14.810	1.01	100.98	В
230.00-220.00			В	0.345	2.184		0.8	1	14.810			
TO C	0.01	2.70	C	0.345	2.184	25	0.8	1	14.810	1.06	02.24	_D
T5	0.21	2.70	A	0.225	2.514	25	0.8	1	23.577	1.86	93.24	В
220.00-200.00			В	0.225 0.225	2.514		0.8	1	23.577			
TP.(0.42	2.05	C		2.514 2.574	24	0.8	1	23.577	2 20	110.74	В
T6 200.00-180.00	0.43	2.95	A	0.207 0.207	2.574	24	0.8 0.8	1	27.678 27.678	2.39	119.74	В
200.00-180.00			B C	0.207	2.574		0.8	1	27.678			
T7	0.70	4.20	A	0.207	2.603	24	0.8	1 1	32.135	3.15	157.39	A
180.00-160.00	0.70	4.20	B	0.198	2.603	24	0.8	1	32.135	3.13	137.39	A
180.00-160.00			C	0.198	2.603		0.8	1	32.135			
т8	0.90	4.86	A	0.179	2.668	23	0.8	1	33.776	3.51	175.49	Α
160.00-140.00	0.90	4.60	В	0.179	2.668	23	0.8	1	33.776	3.31	1/3.49	A
100.00-140.00			C	0.179	2.668		0.8	1	33.776			
Т9	1.20	4.75	A	0.179	2.761	22	0.8	1	32.685	3.77	188.30	Α
140.00-120.00	1.20	4.73	В	0.153	2.761	22	0.8	1	32.685	3.77	100.30	A
140.00-120.00			C	0.153	2.761		0.8	1	32.685			
T10	1.20	7.08	A	0.133	2.789	21	0.8	1	34.142	3.68	183.93	Α
120.00-100.00	1.20	7.00	В	0.145	2.789	21	0.8	1	34.142	5.00	105.95	Α.
120.00 100.00			Č	0.145	2.789		0.8	1	34.142			
T11	1.20	7.19	A	0.133	2.836	20	0.8	1	34.608	3.52	176.12	Α
100.00-80.00	1.20	7.17	В	0.133	2.836	20	0.8	î	34.608	3.52	170.12	1
100.00 00.00			C	0.133	2.836		0.8	î	34.608			
T12	1.20	7.93	Ă	0.126	2.86	18	0.8	î	36.171	3.36	168.05	A
80.00-60.00	1.20	7.55	В	0.126	2.86	10	0.8	î	36.171	3.30	100.05	1 **
00,00 00,00			Č	0.126	2.86		0.8	1	36.171			
T13	1.20	8.05	Ā	0.118	2.893	17	0.8	1	36.879	3.10	154.92	Α
60.00-40.00		0.00	В	0.118	2.893		0.8	1	36.879			''
			Ĉ	0.118	2.893		0.8	ī	36.879			
T14	1.20	9.01	A	0.115	2.905	14	0.8	1	38.864	2.75	137.67	Α
40.00-20.00			В	0.115	2.905	- 1	0.8	1	38.864	•		
			C	0.115	2.905		0.8	1	38.864			
T15	0.57	9.15	Ā	0.109	2.93	14	0.8	1	39.616	2.01	100.39	Α
20.00-0.00			В	0.109	2.93		0.8	1	39.616			
			C	0.109	2.93		0.8	1	39.616			
Sum Weight:	10.43	73.02						OTM	4417.02	36.41		
			l						kip-ft			l

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft ²	K	plf	
T1	0.03	0.66	Α	0.141	2.806	27	0.85	1	4.100	0.37	36.66	C
280.00-270.00			В	0.141	2.806		0.85	1	4.100			
			C	0.154	2.756		0.85	1	4.512			
T2	0.07	1.37	Α	0.137	2.821	27	0.85	1	7.995	0.73	36.60	C
270.00-250.00			В	0.137	2.821		0.85	1	7.995			
			C	0.157	2.746		0.85	1	9.225			
T3	0.21	1.91	Α	0.157	2.744	26	0.85	1	9.323	1.26	63.06	C
250.00-230.00			В	0.157	2.744		0.85	1	9.323			

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	26 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Verizon	Designed by nsmith

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft ²	K	plf	
			C	0.181	2.661		0.85	1	10.771			
T4	0.11	1.23	Α	0.345	2.184	26	0.85	1	15.022	1.02	101.98	C
230.00-220.00			В	0.345	2.184		0.85	1	15.022			
			C	0.345	2.184		0.85	1	15.022			
T5	0.21	2.70	Α	0.225	2.514	25	0.85	1	24.100	1.89	94.63	C
220.00-200.00			В	0.225	2.514		0.85	1	24.100			
			C	0.225	2.514		0.85	1	24.100			
T6	0.43	2.95	Α	0.207	2.574	24	0.85	1	28.464	2.50	125.00	В
200.00-180.00			В	0.207	2.574		0.85	1	28.464			
			C	0.207	2.574		0.85	1	28.464			
T7	0.70	4.20	Α	0.198	2.603	24	0.85	1	33.128	3.26	163.07	В
180.00-160.00			В	0.198	2.603		0.85	1	33.128			
			C	0.198	2.603		0.85	1	33.128			
T8	0.90	4.86	Α	0.179	2.668	23	0.85	1	34.819	3.74	187.14	В
160.00-140.00			В	0.179	2.668		0.85	1	34.819			
			C	0.179	2.668		0.85	1	34.819			
T9	1.20	4.75	Α	0.153	2.761	22	0.85	1	33.667	3.89	194.63	C
140.00-120.00			В	0.153	2.761		0.85	1	33.667			
			C	0.153	2.761		0.85	1	33.667			
T10	1.20	7.08	Α	0.145	2.789	21	0.85	1	34.852	3.79	189.32	C
120.00-100.00			В	0.145	2.789		0.85	1	34.852			
			C	0.145	2.789		0.85	1	34.852			
T11	1.20	7.19	Α	0.133	2.836	20	0.85	1	35.349	3.63	181.31	C
100.00-80.00			В	0.133	2.836		0.85	1	35.349			
			C	0.133	2.836		0.85	1	35.349			
T12	1.20	7.93	Α	0.126	2.86	18	0.85	1	36.956	3.46	173.00	C
80.00-60.00			В	0.126	2.86		0.85	1	36.956			
			C	0.126	2.86		0.85	1	36.956			
T13	1.20	8.05	Α	0.118	2.893	17	0.85	1	37.710	3.19	159.52	C
60.00-40.00			В	0.118	2.893		0.85	1	37.710			
			C	0.118	2.893		0.85	1	37.710			
T14	1.20	9.01	Α	0.115	2.905	14	0.85	1	39.741	2.83	141.73	C
40.00-20.00			В	0.115	2.905		0.85	1	39.741			
I			C	0.115	2.905		0.85	1	39.741			
T15	0.57	9.15	Α	0.109	2.93	14	0.85	1	40.542	2.04	101.78	C
20.00-0.00			В	0.109	2.93		0.85	1	40.542			
			C	0.109	2.93		0.85	1	40.542			
Sum Weight:	10.43	73.02						OTM	4567.60	37.60		
									kip-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.23	2.07	Α	0.57	1.826	7	1	1	22.531	0.32	31.87	C
280.00-270.00			В	0.57	1.826		1	1	22.531			
			C	0.638	1.785		1	1	26.722			
T2	0.46	3.99	Α	0.522	1.873	7	1	1	39.868	0.62	30.83	C
270.00-250.00			В	0.522	1.873		1	1	39.868			
			C	0.623	1.792		1	1	51.734			
T3	1.53	4.59	Α	0.521	1.875	7	1	1	39.965	0.71	35.48	C
250.00-230.00			В	0.521	1.875		1	1	39.965			

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job	Page
Woodbridge North CT	27 of 52
Project	Date
NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Designed by nsmith

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft ²	K	plf	
			C	0.635	1.786		1	1	53.723			
T4	0.76	3.15	Α	0.742	1.785	7	1	1	43.951	0.51	51.33	Α
230.00-220.00			В	0.742	1.785		1	1	43.951			
			C	0.742	1.785		1	1	43.951			
T5	1.52	8.50	Α	0.596	1.806	7	1	1	77.397	0.98	48.90	Α
220.00-200.00			В	0.596	1.806		1	1	77.397			
			C	0.596	1.806		1	1	77.397			
Т6	2.76	9.53	Α	0.536	1.858	6	1	1	83.545	1.16	58.25	Α
200.00-180.00			В	0.536	1.858		1	1	83.545			
			C	0.536	1.858		1	1	83.545			
T7	4.33	11.38	Α	0.479	1.928	6	1	1	87.032	1.39	69.53	Α
180.00-160.00			В	0.479	1.928		1	1	87.032			
			C	0.479	1.928		1	1	87.032			
Т8	5.81	12.04	Α	0.416	2.033	6	1	1	84.918	1.70	85.12	Α
160.00-140.00			В	0.416	2.033		1	1	84.918			
			C	0.416	2.033		1	1	84.918			
Т9	7.58	11.55	Α	0.356	2.157	6	1	1	80.113	1.81	90.41	Α
140.00-120.00			В	0.356	2.157		1	1	80.113			
			C	0.356	2.157		1	1	80.113			
T10	7.48	14.99	Α	0.346	2.181	6	1	1	86.193	1.79	89.52	Α
120.00-100.00			В	0.346	2.181		1	1	86.193			
			C	0.346	2.181		1	1	86.193			
T11	7.36	15.02	Α	0.315	2.258	5	1	1	85.571	1.71	85.42	Α
100.00-80.00			В	0.315	2.258		1	1	85.571			
			C	0.315	2.258		1	1	85.571			
T12	7.22	15.69	Α	0.291	2.32	5	1	1	86.154	1.61	80.57	Α
80.00-60.00			В	0.291	2.32		1	1	86.154			
			C	0.291	2.32		1	1	86.154			
T13	7.04	15.60	Α	0.269	2.381	4	1	1	86.259	1.48	73.84	Α
60.00-40.00			В	0.269	2.381		1	1	86.259			
			C	0.269	2.381		1	1	86.259			
T14	6.77	16.32	Α	0.251	2.433	4	1	1	86.770	1.29	64.28	Α
40.00-20.00			В	0.251	2.433		1	1	86.770			
			C	0.251	2.433		1	1	86.770			
T15	2.76	15.58	Α	0.232	2.492	4	1	1	85.936	0.94	47.19	Α
20.00-0.00			В	0.232	2.492		1	1	85.936			
			C	0.232	2.492		1	1	85.936			
Sum Weight:	63.63	159.99	l					OTM	2272.67	18.02		
			İ						kip-ft			

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.23	2.07	Α	0.57	1.826	7	0.8	1	22.531	0.32	31.87	C
280.00-270.00			В	0.57	1.826		0.8	1	22.531			
			C	0.638	1.785		0.8	1	26.722			
T2	0.46	3.99	Α	0.522	1.873	7	0.8	1	39.868	0.62	30.83	C
270.00-250.00			В	0.522	1.873		0.8	1	39.868			
			C	0.623	1.792		0.8	1	51.734			
T3	1.53	4.59	Α	0.521	1.875	7	0.8	1	39.965	0.71	35.48	C
250.00-230.00			В	0.521	1.875		0.8	1	39.965			

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	28 of 52
Project		Date
NE	3+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			_						Face
			c			psf						
ft	K	K	e						ft ²	K	plf	
			C	0.635	1.786		0.8	1	53.723			
T4	0.76	3.15	Α	0.742	1.785	7	0.8	1	43.104	0.50	50.46	В
230.00-220.00			В	0.742	1.785		0.8	1	43.104			
1			C	0.742	1.785		0.8	1	43.104			
T5	1.52	8.50	Α	0.596	1.806	7	0.8	1	75.304	0.96	47.83	В
220.00-200.00			В	0.596	1.806		0.8	1	75.304			
1			C	0.596	1.806		0.8	1	75.304			
T6	2.76	9.53	Α	0.536	1.858	6	0.8	1	80.402	1.13	56.65	В
200.00-180.00			В	0.536	1.858		0.8	1	80.402			
			C	0.536	1.858		0.8	1	80.402			
T7	4.33	11.38	Α	0.479	1.928	6	0.8	1	83.061	1.35	67.49	В
180.00-160.00			В	0.479	1.928		0.8	1	83.061			
			C	0.479	1.928		0.8	1	83.061			
T8	5.81	12.04	Α	0.416	2.033	6	0.8	1	80.743	1.66	82.94	В
160.00-140.00			В	0.416	2.033		0.8	1	80.743			
			C	0.416	2.033		0.8	1	80.743			
Т9	7.58	11.55	Α	0.356	2.157	6	0.8	1	76.186	1.77	88.32	В
140.00-120.00			В	0.356	2.157		0.8	1	76.186			
			C	0.356	2.157		0.8	1	76.186			
T10	7.48	14.99	Α	0.346	2.181	6	0.8	1	83.355	1.76	88.07	В
120.00-100.00			В	0.346	2.181		0.8	1	83.355			
			C	0.346	2.181		0.8	1	83.355			
T11	7.36	15.02	Α	0.315	2.258	5	0.8	1	82.606	1.68	83.93	В
100.00-80.00			В	0.315	2.258		0.8	1	82.606			
			C	0.315	2.258		0.8	1	82.606			
T12	7.22	15.69	Α	0.291	2.32	5	0.8	1	83.011	1.58	79.06	В
80.00-60.00			В	0.291	2.32		0.8	1	83.011			
			C	0.291	2.32		0.8	1	83.011			
T13	7.04	15.60	Α	0.269	2.381	4	0.8	1	82.934	1.45	72.35	В
60.00-40.00			В	0.269	2.381		0.8	1	82.934			
			C	0.269	2.381		0.8	1	82.934			
T14	6.77	16.32	Α	0.251	2.433	4	0.8	1	83.259	1.26	62.90	В
40.00-20.00			В	0.251	2.433		0.8	1	83.259			
			C	0.251	2.433		0.8	1	83.259			
T15	2.76	15.58	Α	0.232	2.492	4	0.8	1	82.233	0.91	45.69	В
20.00-0.00			В	0.232	2.492		0.8	1	82.233			
			C	0.232	2.492		0.8	1	82.233			
Sum Weight:	63.63	159.99	l					OTM	2230.67	17.65		
1									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.23	2.07	Α	0.57	1.826	7	0.85	1	22.531	0.32	31.87	C
280.00-270.00			В	0.57	1.826		0.85	1	22.531			
			C	0.638	1.785		0.85	1	26.722			
T2	0.46	3.99	Α	0.522	1.873	7	0.85	1	39.868	0.62	30.83	C
270.00-250.00			В	0.522	1.873		0.85	1	39.868			
			C	0.623	1.792		0.85	1	51.734			
T3	1.53	4.59	Α	0.521	1.875	7	0.85	1	39.965	0.77	38.36	C
250.00-230.00			В	0.521	1.875		0.85	1	39.965			

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	29 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft ²	K	plf	
			C	0.635	1.786		0.85	1	53.723			
T4	0.76	3.15	Α	0.742	1.785	7	0.85	1	43.316	0.50	49.91	С
230.00-220.00			В	0.742	1.785		0.85	1	43.316			
			C	0.742	1.785		0.85	1	43.316			
T5	1.52	8.50	Α	0.596	1.806	7	0.85	1	75.827	0.94	46.93	C
220.00-200.00			В	0.596	1.806		0.85	1	75.827			
			C	0.596	1.806		0.85	1	75.827			
Т6	2.76	9.53	Α	0.536	1.858	6	0.85	1	81.188	1.13	56.39	В
200.00-180.00			В	0.536	1.858		0.85	1	81.188			
			C	0.536	1.858		0.85	1	81.188			
T7	4.33	11.38	Α	0.479	1.928	6	0.85	1	84.054	1.38	69.18	В
180.00-160.00			В	0.479	1.928		0.85	1	84.054			
			C	0.479	1.928		0.85	1	84.054			
Т8	5.81	12.04	Α	0.416	2.033	6	0.85	1	81.786	1.67	83.36	В
160.00-140.00			В	0.416	2.033		0.85	1	81.786			
			C	0.416	2.033		0.85	1	81.786			
Т9	7.58	11.55	Α	0.356	2.157	6	0.85	1	77.168	1.80	89.85	C
140.00-120.00			В	0.356	2.157		0.85	1	77.168			
			C	0.356	2.157		0.85	1	77.168			
T10	7.48	14.99	Α	0.346	2.181	6	0.85	1	84.064	1.79	89.39	C
120.00-100.00			В	0.346	2.181		0.85	1	84.064			
			C	0.346	2.181		0.85	1	84.064			
T11	7.36	15.02	Α	0.315	2.258	5	0.85	1	83.347	1.70	85.21	C
100.00-80.00			В	0.315	2.258		0.85	1	83.347			
			C	0.315	2.258		0.85	1	83.347			
T12	7.22	15.69	Α	0.291	2.32	5	0.85	1	83.797	1.61	80.28	C
80.00-60.00			В	0.291	2.32		0.85	1	83.797			
			C	0.291	2.32		0.85	1	83.797			
T13	7.04	15.60	Α	0.269	2.381	4	0.85	1	83.765	1.47	73.49	C
60.00-40.00			В	0.269	2.381		0.85	1	83.765			
			C	0.269	2.381		0.85	1	83.765			
T14	6.77	16.32	Α	0.251	2.433	4	0.85	1	84.137	1.28	63.91	C
40.00-20.00			В	0.251	2.433		0.85	1	84.137			
			C	0.251	2.433		0.85	1	84.137			
T15	2.76	15.58	Α	0.232	2.492	4	0.85	1	83.159	0.92	46.09	C
20.00-0.00			В	0.232	2.492		0.85	1	83.159			
			C	0.232	2.492		0.85	1	83.159			
Sum Weight:	63.63	159.99						OTM	2258.26	17.88		l
			l	1					kip-ft			

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.03	0.66	Α	0.141	2.806	10	1	1	4.100	0.14	14.03	C
280.00-270.00			В	0.141	2.806		1	1	4.100			
			C	0.154	2.756		1	1	4.512			
T2	0.07	1.37	Α	0.137	2.821	10	1	1	7.995	0.28	14.00	C
270.00-250.00			В	0.137	2.821		1	1	7.995			
			C	0.157	2.746		1	1	9.225			
T3	0.21	1.91	Α	0.157	2.744	10	1	1	9.323	0.46	22.83	Α
250.00-230.00			В	0.157	2.744		1	1	9.323			

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	30 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Verizon	Designed by nsmith

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
			C	0.181	2.661		1	1	10.771			
T4	0.11	1.23	Α	0.345	2.184	10	1	1	15.657	0.40	40.17	A
230.00-220.00			В	0.345	2.184		1	1	15.657			
			C	0.345	2.184		1	1	15.657			
T5	0.21	2.70	Α	0.225	2.514	10	1	1	25.670	0.76	37.81	Α
220.00-200.00			В	0.225	2.514		1	1	25.670			
			C	0.225	2.514		1	1	25.670			
T6	0.43	2.95	Α	0.207	2.574	9	1	1	30.821	0.98	49.01	Α
200.00-180.00			В	0.207	2.574		1	1	30.821			
			C	0.207	2.574		1	1	30.821			
T7	0.70	4.20	Α	0.198	2.603	9	1	1	36.106	1.28	64.18	C
180.00-160.00			В	0.198	2.603		1	1	36.106			
			C	0.198	2.603		1	1	36.106			
T8	0.90	4.86	Α	0.179	2.668	9	1	1	37.951	1.43	71.26	C
160.00-140.00			В	0.179	2.668		1	1	37.951			
			C	0.179	2.668		1	1	37.951			
T9	1.20	4.75	Α	0.153	2.761	8	1	1	36.612	1.52	75.89	C
140.00-120.00			В	0.153	2.761		1	1	36.612			
			C	0.153	2.761		1	1	36.612			
T10	1.20	7.08	Α	0.145	2.789	8	1	1	36.980	1.46	73.05	C
120.00-100.00			В	0.145	2.789		1	1	36.980			
			C	0.145	2.789		1	1	36.980			
T11	1.20	7.19	Α	0.133	2.836	8	1	1	37.573	1.40	70.07	C
100.00-80.00			В	0.133	2.836		1	1	37.573			
			C	0.133	2.836		1	1	37.573			
T12	1.20	7.93	Α	0.126	2.86	7	1	1	39.313	1.34	66.97	C
80.00-60.00			В	0.126	2.86		1	1	39.313			
			C	0.126	2.86		1	1	39.313			
T13	1.20	8.05	Α	0.118	2.893	6	1	1	40.204	1.24	61.87	C
60.00-40.00			В	0.118	2.893		1	1	40.204			
			C	0.118	2.893		1	1	40.204			
T14	1.20	9.01	Α	0.115	2.905	5	1	1	42.375	1.10	55.05	C
40.00-20.00			В	0.115	2.905		1	1	42.375			1
			C	0.115	2.905		1	1	42.375			
T15	0.57	9.15	Α	0.109	2.93	5	1	1	43.319	0.82	40.94	C
20.00-0.00			В	0.109	2.93		1	1	43.319			
			С	0.109	2.93		1	1	43.319			
Sum Weight:	10.43	73.02						OTM	1769.38	14.60		
<i>3</i>			İ						kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft ²	K	plf	
T1	0.03	0.66	Α	0.141	2.806	10	0.8	1	4.100	0.14	14.03	C
280.00-270.00			В	0.141	2.806		0.8	1	4.100			
			C	0.154	2.756		0.8	1	4.512			
T2	0.07	1.37	Α	0.137	2.821	10	0.8	1	7.995	0.28	14.00	C
270.00-250.00			В	0.137	2.821		0.8	1	7.995			
			C	0.157	2.746		0.8	1	9.225			
T3	0.21	1.91	Α	0.157	2.744	10	0.8	1	9.323	0.46	22.83	В
250.00-230.00			В	0.157	2.744		0.8	1	9.323			

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	31 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а			c						Face
ft	K	K	с е			psf			ft ²	K	plf	
<i>,</i> .		11	C	0.181	2.661		0.8	1	10.771	**	Py	
T4	0.11	1.23	A	0.345	2.184	10	0.8	î	14.810	0.39	38.63	В
230.00-220.00	0.11	1.20	В	0.345	2.184	10	0.8	1	14.810	0.07	50.05	
250.00 220.00			Č	0.345	2.184		0.8	î	14.810			
T5	0.21	2.70	Ā	0.225	2.514	10	0.8	1	23.577	0.71	35.67	В
220.00-200.00	0.21		В	0.225	2.514	10	0.8	ı î	23.577	01,1	00101	_
			C	0.225	2.514		0.8	1	23.577			
Т6	0.43	2.95	A	0.207	2.574	9	0.8	1	27.678	0.92	45.81	В
200.00-180.00	01.10	2.50	В	0.207	2.574		0.8	ı î	27.678	0.52	,,,,,,	_
			C	0.207	2.574		0.8	1	27.678			
T7	0.70	4.20	Ã	0.198	2.603	9	0.8	1	32.135	1.20	60.22	Α
180.00-160.00			В	0.198	2.603		0.8	1	32.135			
			C	0.198	2.603		0.8	1	32.135			
Т8	0.90	4.86	A	0.179	2.668	9	0.8	1	33.776	1.34	67.14	Α
160.00-140.00			В	0.179	2.668		0.8	1	33.776			
			C	0.179	2.668		0.8	1	33.776			
Т9	1.20	4.75	Α	0.153	2.761	8	0.8	1	32.685	1.44	72.05	Α
140.00-120.00			В	0.153	2.761		0.8	1	32.685			
			С	0.153	2.761		0.8	1	32.685			
T10	1.20	7.08	Α	0.145	2.789	8	0.8	1	34.142	1.41	70.37	Α
120.00-100.00			В	0.145	2.789	_	0.8	1	34.142			
1			C	0.145	2.789		0.8	1	34.142			
T11	1.20	7.19	Α	0.133	2.836	8	0.8	1	34.608	1.35	67.39	Α
100.00-80.00			В	0.133	2.836		0.8	1	34.608			
			C	0.133	2.836		0.8	1	34.608			
T12	1.20	7.93	Α	0.126	2.86	7	0.8	1	36.171	1.29	64.30	Α
80.00-60.00			В	0.126	2.86		0.8	1	36.171			
1			C	0.126	2.86		0.8	1	36.171			
T13	1.20	8.05	Α	0.118	2.893	6	0.8	1	36.879	1.19	59.28	Α
60.00-40.00			В	0.118	2.893		0.8	1	36.879			
1			C	0.118	2.893		0.8	1	36.879			
T14	1.20	9.01	Α	0.115	2.905	5	0.8	1	38.864	1.05	52.67	Α
40.00-20.00			В	0.115	2.905		0.8	1	38.864			
			C	0.115	2.905		0.8	1	38.864			
T15	0.57	9.15	Α	0.109	2.93	5	0.8	1	39.616	0.77	38.41	Α
20.00-0.00			В	0.109	2.93		0.8	1	39.616			
			C	0.109	2.93		0.8	1	39.616			
Sum Weight:	10.43	73.02						OTM	1690.01	13.93		
									kip-ft			

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	e						ft^2	K	plf	
T1	0.03	0.66	Α	0.141	2.806	10	0.85	1	4.100	0.14	14.03	C
280.00-270.00			В	0.141	2.806		0.85	1	4.100			
			C	0.154	2.756		0.85	1	4.512			
T2	0.07	1.37	Α	0.137	2.821	10	0.85	1	7.995	0.28	14.00	C
270.00-250.00			В	0.137	2.821		0.85	1	7.995			
			C	0.157	2.746		0.85	1	9.225			
T3	0.21	1.91	Α	0.157	2.744	10	0.85	1	9.323	0.48	24.13	C
250.00-230.00			В	0.157	2.744		0.85	1	9.323			

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job	Page
Woodbridge North	CT 32 of 52
Project	Date
NB+C ES Project Number	er 100765 14:34:37 12/14/20
Client	Designed by nsmith

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft ²	K	plf	
			C	0.181	2.661		0.85	1	10.771			
T4	0.11	1.23	Α	0.345	2.184	10	0.85	1	15.022	0.39	39.02	С
230.00-220.00			В	0.345	2.184		0.85	1	15.022			
			C	0.345	2.184		0.85	1	15.022			_
T5	0.21	2.70	A	0.225	2.514	10	0.85	1	24.100	0.72	36.21	C
220.00-200.00			В	0.225	2.514		0.85	1	24.100			
			C	0.225	2.514		0.85	1	24.100			
Т6	0.43	2.95	Α	0.207	2.574	9	0.85	1	28.464	0.96	47.83	В
200.00-180.00			В	0.207	2.574		0.85	1	28.464			
			C	0.207	2.574		0.85	1	28.464			_
T7	0.70	4.20	Α	0.198	2.603	9	0.85	1	33.128	1.25	62.39	В
180.00-160.00			В	0.198	2.603		0.85	1	33.128			
			C	0.198	2.603		0.85	1	33.128			
Т8	0.90	4.86	A	0.179	2.668	9	0.85	1	34.819	1.43	71.60	В
160.00-140.00			В	0.179	2.668		0.85	1	34.819			
			C	0.179	2.668		0.85	1	34.819			
Т9	1.20	4.75	Α	0.153	2.761	8	0.85	1	33.667	1.49	74.47	C
140.00-120.00			В	0.153	2.761		0.85	1	33.667			
			C	0.153	2.761		0.85	1	33.667			
T10	1.20	7.08	A	0.145	2.789	8	0.85	1	34.852	1.45	72.44	С
120.00-100.00			В	0.145	2.789		0.85	1	34.852			
	4.00	= 10	C	0.145	2.789		0.85	1	34.852	4.00		
T11	1.20	7.19	A	0.133	2.836	8	0.85	1	35.349	1.39	69.37	C
100.00-80.00			В	0.133	2.836		0.85	1	35.349			
			C	0.133	2.836	_	0.85	1	35.349			_
T12	1.20	7.93	A	0.126	2.86	7	0.85	1	36.956	1.32	66.19	С
80.00-60.00			В	0.126	2.86		0.85	1	36.956			
			C	0.126	2.86	_	0.85	1	36.956			_
T13	1.20	8.05	A	0.118	2.893	6	0.85	1	37.710	1.22	61.04	С
60.00-40.00			В	0.118	2.893		0.85	1	37.710			
			C	0.118	2.893		0.85	1	37.710			
T14	1.20	9.01	A	0.115	2.905	5	0.85	1	39.741	1.08	54.23	C
40.00-20.00			В	0.115	2.905		0.85	1	39.741			
			C	0.115	2.905		0.85	1	39.741			_
T15	0.57	9.15	A	0.109	2.93	5	0.85	1	40.542	0.78	38.94	C
20.00-0.00			В	0.109	2.93		0.85	1	40.542			
			C	0.109	2.93		0.85	1	40.542			
Sum Weight:	10.43	73.02						OTM	1747.62	14.39		
			l						kip-ft			

Force Totals

Load Case	Vertical Forces K	Sum of Forces X K	Sum of Forces Z K	Sum of Overturning Moments, M_x kip-ft	Sum of Overturning Moments, M _z kip-ft	Sum of Torques kip-ft
Leg Weight Bracing Weight Total Member Self-Weight	49.47 23.55 73.02			-4.66	1.24	
Total Weight	104.93			-4.66	1.24	
Wind 0 deg - No Ice Wind 30 deg - No Ice Wind 60 deg - No Ice Wind 90 deg - No Ice		-0.01 24.30 41.97 50.54	-24.23	-5968.06 -3456.75	-3440.81 -5977.95	3.41 -0.39

Network Building + Consulting 8601 Six Forks Road, Suite 540

01 Six Forks Road, Suite 5 Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	33 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
	Verizon	nsmith

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	, ,
		X	Z	Moments, M_r	Moments, M.	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 120 deg - No Ice		44.23	25.54	3632.95	-6297.69	-25.19
Wind 150 deg - No Ice		25.27	43.76	6253.43	-3611.86	7.95
Wind 180 deg - No Ice		0.01	49.57	7030.13	0.45	24.99
Wind 210 deg - No Ice		-24.23	41.97	5925.47	3424.09	-3.41
Wind 240 deg - No Ice		-43.36	25.04	3531.94	6126.81	0.39
Wind 270 deg - No Ice		-50.38	-0.01	-5.45	7149.04	28.27
Wind 300 deg - No Ice		-42.71	-24.67	-3538.54	6120.52	25.19
Wind 330 deg - No Ice		-25.27	-43.76	-6262.74	3614.35	-7.95
Member Ice	86.97					
Total Weight Ice	288.31			-44.74	17.18	
Wind 0 deg - Ice		-0.00	-24.64	-3747.91	17.42	-8.75
Wind 30 deg - Ice		12.11	-20.98	-3193.53	-1800.50	0.86
Wind 60 deg - Ice		21.19	-12.23	-1875.51	-3153.80	2.70
Wind 90 deg - Ice		25.05	0.00	-44.50	-3727.02	-10.43
Wind 120 deg - Ice		21.82	12.60	1826.88	-3224.07	-13.23
Wind 150 deg - Ice		12.29	21.29	3137.95	-1820.34	1.77
Wind 180 deg - Ice		0.00	24.01	3547.64	16.95	8.75
Wind 210 deg - Ice		-11.97	20.74	3044.48	1800.47	-0.86
Wind 240 deg - Ice		-21.27	12.28	1772.64	3164.97	-2.70
Wind 270 deg - Ice		-24.77	-0.00	-44.97	3692.60	10.43
Wind 300 deg - Ice		-21.50	-12.42	-1895.35	3222.06	13.23
Wind 330 deg - Ice		-12.29	-21.29	-3227.42	1854.71	-1.77
Total Weight	104.93			-4.66	1.24	
Wind 0 deg - Service		-0.00	-19.69	-2785.51	-0.70	-9.56
Wind 30 deg - Service		9.30	-16.11	-2281.51	-1317.98	1.30
Wind 60 deg - Service		16.06	-9.27	-1320.65	-2288.72	-0.15
Wind 90 deg - Service		19.34	0.00	0.46	-2750.54	-10.82
Wind 120 deg - Service		16.92	9.77	1391.95	-2411.06	-9.64
Wind 150 deg - Service		9.67	16.74	2394.58	-1383.43	
Wind 180 deg - Service		0.00	18.96	2691.76	-1.31	9.56
Wind 210 deg - Service		-9.27	16.06	2269.10	1308.61	-1.30
Wind 240 deg - Service		-16.59	9.58	1353.31	2342.71	0.15
Wind 270 deg - Service		-19.28	-0.00	-0.14	2733.83	
Wind 300 deg - Service		-16.34	-9.44	-1351.95	2340.30	
Wind 330 deg - Service		-9.67	-16.74	-2394.26	1381.41	-3.04

Load Combinations

Comb.	Description
No.	-
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice

Network Building + Consulting 8601 Six Forks Road, Suite 540

001 Six Forks Road, Suite Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page	
	Woodbridge North CT	34 of 52	
Project		Date	
	NB+C ES Project Number 100765	14:34:37 12/14/20	
Client		Designed by	
Verizon		nsmith	

Comb.	Description			
No.				
17	0.9 Dead+1.6 Wind 210 deg - No Ice			
18	1.2 Dead+1.6 Wind 240 deg - No Ice			
19	0.9 Dead+1.6 Wind 240 deg - No Ice			
20	1.2 Dead+1.6 Wind 270 deg - No Ice			
21	0.9 Dead+1.6 Wind 270 deg - No Ice			
22	1.2 Dead+1.6 Wind 300 deg - No Ice			
23	0.9 Dead+1.6 Wind 300 deg - No Ice			
24	1.2 Dead+1.6 Wind 330 deg - No Ice			
25	0.9 Dead+1.6 Wind 330 deg - No Ice			
26	1.2 Dead+1.0 Ice+1.0 Temp			
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp			
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp			
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp			
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp			
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp			
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp			
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp			
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp			
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp			
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp			
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp			
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp			
39	Dead+Wind 0 deg - Service			
40	Dead+Wind 30 deg - Service			
41	Dead+Wind 60 deg - Service			
42	Dead+Wind 90 deg - Service			
43	Dead+Wind 120 deg - Service			
44	Dead+Wind 150 deg - Service			
45	Dead+Wind 180 deg - Service			
46	Dead+Wind 210 deg - Service			
47	Dead+Wind 240 deg - Service			
48	Dead+Wind 270 deg - Service			
49	Dead+Wind 300 deg - Service			
50	Dead+Wind 330 deg - Service			

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	K	kip-ft	kip-ft
T1	280 - 270	Leg	Max Tension	7	6.25	0.47	-0.20
			Max. Compression	10	-9.03	-0.16	-0.09
			Max. Mx	8	-8.07	0.52	-0.01
			Max. My	2	-1.39	-0.04	0.53
			Max. Vy	8	1.30	-0.18	-0.01
			Max. Vx	2	-1.29	0.02	0.19
		Diagonal	Max Tension	8	1.70	0.00	0.00
			Max. Compression	8	-1.75	0.00	0.00
			Max. Mx	33	0.77	-0.01	0.00
			Max. My	6	-1.41	-0.00	0.00
			Max. Vy	32	0.01	-0.01	-0.00
			Max. Vx	6	0.00	0.00	0.00
		Horizontal	Max Tension	14	0.26	0.00	0.00
			Max. Compression	3	-0.17	0.00	0.00
			Max. Mx	26	0.13	0.03	0.00
			Max. My	35	0.17	0.00	0.00
			Max. Vy	26	-0.02	0.00	0.00
			Max. Vx	35	-0.00	0.00	0.00
		Top Girt	Max Tension	18	0.70	0.00	0.00

Network Building + Consulting 8601 Six Forks Road, Suite 540

1 Six Forks Road, Suite 34 Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page		
	Woodbridge North CT	35 of 52		
Project		Date		
	NB+C ES Project Number 100765	14:34:37 12/14/20		
Client		Designed by		
	Verizon	nsmith		

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
	J	7.1		Comb.	K	kip-ft	kip-ft
			Max. Compression	6	-0.71	0.00	0.00
			Max. Mx	26	-0.03	0.03	0.00
			Max. My	28	-0.03	0.00	-0.00
			Max. Vy	26	-0.02	0.00	0.00
			Max. Vx	28	0.00	0.00	0.00
		Bottom Girt	Max Tension	14	0.71	0.00	0.00
			Max. Compression	10	-0.68	0.00	0.00
			Max. Mx	26	0.04	0.03	0.00
			Max. My	28	0.04	0.00	-0.00
			Max. Vy	26	-0.02	0.00	0.00
		Mid Girt	Max. Vx	28 33	0.00	0.00	0.00
		Mid Girt	Max Tension		0.13	0.00	0.00
			Max. Compression	3	-0.01	0.00 0.03	0.00
			Max. Mx	26 28	0.01	0.03	0.00
			Max. My Max. Vy	26	0.01 -0.02	0.00	-0.00 0.00
			Max. Vx	28	0.02	0.00	0.00
T2	270 - 250	Log	Max Tension	20 7	24.83	0.62	-0.31
12	270 - 230	Leg	Max. Compression	2	-28.59	0.01	0.30
			Max. Mx	8	-9.24	-0.78	-0.00
			Max. My	2	-8.88	0.08	0.78
			Max. Vy	8	1.80	-0.28	-0.04
			Max. Vx	2	-1.86	0.01	0.30
		Diagonal	Max Tension	8	2.25	0.00	0.00
		Diagonai	Max. Compression	8	-2.30	0.00	0.00
			Max. Mx	34	0.82	-0.01	-0.00
			Max. My	6	-1.70	-0.00	0.00
			Max. Vy	34	0.01	-0.01	-0.00
			Max. Vx	6	0.00	0.00	0.00
		Horizontal	Max Tension	14	0.42	0.00	0.00
		11011110111111	Max. Compression	3	-0.33	0.00	0.00
			Max. Mx	26	0.16	0.03	0.00
			Max. My	22	-0.13	0.00	-0.00
			Max. Vy	26	-0.02	0.00	0.00
			Max. Vx	22	0.00	0.00	0.00
		Top Girt	Max Tension	10	0.79	0.00	0.00
		•	Max. Compression	6	-0.80	0.00	0.00
			Max. Mx	26	-0.01	0.03	0.00
			Max. My	28	-0.02	0.00	-0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	28	-0.00	0.00	0.00
		Bottom Girt	Max Tension	14	0.92	0.00	0.00
			Max. Compression	3	-0.90	0.00	0.00
			Max. Mx	26	0.05	0.03	0.00
			Max. My	22	-0.37	0.00	-0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	22	0.00	0.00	0.00
		Mid Girt	Max Tension	14	0.27	0.00	0.00
			Max. Compression	3	-0.18	0.00	0.00
			Max. Mx	26	0.04	0.03	0.00
			Max. My	10	0.06	0.00	0.00
			Max. Vy	26	0.02	0.00	0.00
		_	Max. Vx	10	0.00	0.00	0.00
T3	250 - 230	Leg	Max Tension	7	64.38	0.39	-0.19
			Max. Compression	2	-73.97	0.06	2.68
			Max. Mx	8	-65.52	-2.33	-0.71
			Max. My	2	-73.97	0.06	2.68
			Max. Vy	8	5.03	-2.33	-0.71
			Max. Vx	2	-5.71	0.06	2.68
		Diagonal	Max Tension	24	4.94	0.00	0.00
			Max. Compression	12	-5.02	0.00	0.00

tnxTower

Network Building + Consulting 8601 Six Forks Road, Suite 540

Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	36 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client	Verizon	Designed by
venzon		nsmith

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	J.	-71		Comb.	K	kip-ft	kip-ft
			Max. Mx	27	1.85	-0.01	0.00
			Max. My	8	-3.95	-0.00	0.00
			Max. Vy	27	0.02	-0.01	0.00
			Max. Vx	8	0.00	0.00	0.00
		Horizontal	Max Tension	14	0.74	0.00	0.00
			Max. Compression	3	-0.61	0.00	0.00
			Max. Mx	26	0.28	0.03	0.00
			Max. My	8	0.07	0.00	-0.00
			Max. Vy	26	-0.02	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
		Top Girt	Max Tension	10	1.47	0.00	0.00
			Max. Compression	6	-1.46	0.00	0.00
			Max. Mx	26	0.02	0.04	0.00
			Max. My	10	-0.73	0.00	0.00
			Max. Vy	26	-0.03	0.00	0.00
		Bottom Girt	Max. Vx Max Tension	10 14	-0.00 1.03	0.00	0.00
		Bottom Gift	Max. Compression	3	-0.92	0.00	0.00
			Max. Mx	26	0.08	0.04	0.00
			Max. My	8	0.03	0.00	-0.00
			Max. Vy	26	-0.03	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
T4	230 - 220	Leg	Max Tension	7	68.24	-2.54	-0.04
		6	Max. Compression	2	-77.36	3.74	-0.04
			Max. Mx	6	67.10	-4.19	-0.04
			Max. My	8	-5.30	-0.23	6.37
			Max. Vy	6	0.33	-4.19	-0.04
			Max. Vx	8	-0.72	-0.23	6.37
		Diagonal	Max Tension	23	4.82	0.05	-0.01
			Max. Compression	10	-5.48	0.00	0.00
			Max. Mx	6	4.18	0.05	0.00
			Max. My	24	-4.72	-0.04	-0.02
			Max. Vy	29	0.03	0.05	-0.01
			Max. Vx	29	0.00	0.00	0.00
T5	220 - 200	Leg	Max Tension	23	93.03	-3.58	-0.03
			Max. Compression	10	-105.20	4.61	0.03
			Max. Mx	10	-105.20	4.61	0.03
			Max. My	8	-6.30	-0.23	6.37
			Max. Vy	10	-0.24	4.61	0.03
		D:1	Max. Vx	8	0.49	-0.07	5.19
		Diagonal	Max Tension	24 10	4.93	0.00 0.00	0.00 0.00
			Max. Compression Max. Mx	27	-5.18 0.50	0.09	-0.01
			Max. My	28	0.93	0.09	-0.01
			Max. Vy	30	0.05	0.08	0.02
			Max. Vx	29	0.00	0.00	0.01
T6	200 - 180	Leg	Max Tension	23	116.71	-3.20	-0.01
10	200 100	Les	Max. Compression	10	-132.58	4.95	0.11
			Max. Mx	10	-132.58	4.95	0.11
			Max. My	8	-7.50	-0.10	4.31
			Max. Vy	6	-0.79	-4.28	0.01
			Max. Vx	8	0.67	-0.10	4.31
		Diagonal	Max Tension	23	6.65	0.00	0.00
		-	Max. Compression	10	-7.67	0.00	0.00
			Max. Mx	29	0.93	0.09	-0.01
			Max. My	34	-1.11	0.06	0.01
			Max. Vy	29	0.06	0.09	-0.01
			Max. Vx	27	0.00	0.00	0.00
		Top Girt	Max Tension	22	3.40	0.00	0.00
			Max. Compression	11	-2.71	0.00	0.00
			Max. Mx	26	1.01	-0.14	0.00

tnxTower

Network Building + Consulting 8601 Six Forks Road, Suite 540

1 Six Forks Roda, Suite 34 Raleigh. NC 27615 Phone: 919.657.9131 FAX:

	Job		Page
		Woodbridge North CT	37 of 52
	Project		Date
		NB+C ES Project Number 100765	14:34:37 12/14/20
	Client	Varian	Designed by
	Verizon		nsmith

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	J	**		Comb.	K	kip-ft	kip-ft
			Max. My	37	0.36	0.00	0.00
			Max. Vy	26	0.07	0.00	0.00
			Max. Vx	37	0.00	0.00	0.00
		Mid Girt	Max Tension	22	4.16	0.00	0.00
			Max. Compression	11	-3.19	0.00	0.00
			Max. Mx	26	1.43	-0.18	0.00
			Max. My	37	0.67	0.00	0.01
			Max. Vy	26	0.08	0.00	0.00
			Max. Vx	37	-0.00	0.00	0.00
T7	180 - 160	Leg	Max Tension	23	146.36	-3.34	0.02
			Max. Compression	10	-168.13	5.10	0.04
			Max. Mx	10	-168.13	5.10	0.04
			Max. My	8	-9.91	-0.12	4.36
			Max. Vy	22	-0.82	-4.79	-0.11
			Max. Vx	24	1.00	-0.12	4.33
		Diagonal	Max Tension	23	8.51	0.00	0.00
			Max. Compression	10	-9.87	0.00	0.00
			Max. Mx	29	1.07	0.13	-0.02
			Max. My	37	-2.96	0.09	-0.02
			Max. Vy	29	0.08	0.13	-0.02
			Max. Vx	31	-0.00	0.00	0.00
		Top Girt	Max Tension	22	5.31	0.00	0.00
			Max. Compression	11	-4.13	0.00	0.00
			Max. Mx	26	1.81	-0.30	0.00
			Max. My	37	0.85	0.00	0.01
			Max. Vy	26	0.12	0.00	0.00
			Max. Vx	37	0.00	0.00	0.00
		Mid Girt	Max Tension	22	5.62	0.00	0.00
			Max. Compression	11	-4.32	0.00	0.00
			Max. Mx	26	2.05	-0.36	0.00
			Max. My	37	1.07	0.00	0.01
			Max. Vy	26	0.13	0.00	0.00
			Max. Vx	37	0.00	0.00	0.00
T8	160 - 140	Leg	Max Tension	23	182.78	-3.53	-0.03
			Max. Compression	10	-214.15	4.14	0.02
			Max. Mx	10	-189.52	5.10	0.04
			Max. My	8	-14.57	-0.25	6.17
			Max. Vy	6	-1.23	-4.56	0.03
			Max. Vx	20	-0.76	0.19	-2.51
		Diagonal	Max Tension	12	9.92	0.00	0.00
		-	Max. Compression	12	-9.91	0.00	0.00
			Max. Mx	27	2.91	0.20	0.02
			Max. My	37	-2.68	0.11	-0.03
			Max. Vy	37	0.10	0.18	-0.03
			Max. Vx	37	0.01	0.00	0.00
		Top Girt	Max Tension	22	4.37	0.00	0.00
		•	Max. Compression	11	-3.39	0.00	0.00
			Max. Mx	26	1.56	-0.41	0.00
			Max. My	37	0.81	0.00	0.01
			Max. Vy	26	-0.14	0.00	0.00
			Max. Vx	37	-0.00	0.00	0.00
T9	140 - 120	Leg	Max Tension	23	222.74	-4.11	0.00
			Max. Compression	10	-261.94	9.45	0.26
			Max. Mx	10	-261.94	9.45	0.26
			Max. My	8	-20.04	0.08	8.97
			Max. Vy	14	-1.44	-4.08	-0.06
			Max. Vx	8	1.64	-0.07	3.97
		Diagonal	Max Tension	13	11.41	0.00	0.00
		<i>6</i>	Max. Compression	12	-11.91	0.00	0.00
			Max. Mx	27	3.57	0.22	0.02

tnxTower

Network Building + Consulting 8601 Six Forks Road, Suite 540

1 Six Forks Roda, Suite 5 Raleigh. NC 27615 Phone: 919.657.9131 FAX:

Job		Page
	Woodbridge North CT	38 of 52
Project		Date
	NB+C ES Project Number 100765	14:34:37 12/14/20
Client		Designed by
Verizon		nsmith

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
			M V	Comb.	<u>K</u>	kip-ft	kip-ft
			Max. Vy	37	0.11	0.22	-0.03
T10	120 - 100	Lag	Max. Vx Max Tension	37 23	0.01 249.21	0.00 -9.07	0.00 -0.26
110	120 - 100	Leg	Max. Compression	10	-292.10	9.34	0.20
			Max. Mx	22	-292.10 243.17	-11.12	-0.23
			Max. My	24	-22.19	-11.12	17.13
			Max. Vy	22	0.49	-11.12	-0.23
			Max. Vx	8	-0.83	-1.05	17.10
		Diagonal	Max Tension	15	15.50	0.00	0.00
		Diagonai	Max. Compression	2	-16.95	0.00	0.00
			Max. Mx	37	3.06	-0.57	0.08
			Max. My	37	-4.59	-0.40	0.11
			Max. Vy	37	-0.20	-0.57	0.08
			Max. Vx	37	-0.02	0.00	0.00
T11	100 - 80	Leg	Max Tension	23	288.84	-10.83	-0.23
		-	Max. Compression	10	-339.87	13.66	0.21
			Max. Mx	10	-339.87	13.66	0.21
			Max. My	24	-24.08	-1.04	17.13
			Max. Vy	10	-0.51	13.66	0.21
			Max. Vx	8	0.87	-1.05	17.10
		Diagonal	Max Tension	12	16.15	0.00	0.00
			Max. Compression	12	-16.78	0.00	0.00
			Max. Mx	37	4.08	-0.65	0.10
			Max. My	37	4.08	-0.65	0.10
			Max. Vy	37	-0.22	-0.65	-0.10
		_	Max. Vx	37	0.01	0.00	0.00
T12	80 - 60	Leg	Max Tension	23	324.75	-12.15	-0.21
			Max. Compression	10	-383.56	9.78	0.18
			Max. Mx	10	-381.36	13.66	0.21
			Max. My	24	-29.54	-1.20	15.37
			Max. Vy Max. Vx	33 8	-0.48 -0.77	-5.24 -1.20	-0.06 15.36
		Diagonal	Max Tension	12	15.86	0.00	0.00
		Diagonai	Max. Compression	12	-16.42	0.00	0.00
			Max. Mx	37	2.65	-0.74	0.00
			Max. My	31	-0.86	-0.60	-0.11
			Max. Vy	37	-0.24	-0.74	0.11
			Max. Vx	31	-0.24	0.00	0.00
T13	60 - 40	Leg	Max Tension	23	358.32	-11.41	-0.19
110	00 10	200	Max. Compression	10	-424.45	14.20	0.16
			Max. Mx	10	-424.45	14.20	0.16
			Max. My	24	-30.70	-1.20	15.37
			Max. Vy	33	0.82	-12.31	-0.04
			Max. Vx	8	0.84	-1.20	15.36
		Diagonal	Max Tension	13	16.17	0.00	0.00
			Max. Compression	2	-17.58	0.00	0.00
			Max. Mx	37	4.91	-0.80	0.11
			Max. My	37	4.91	-0.80	0.11
			Max. Vy	37	-0.25	-0.80	-0.11
			Max. Vx	37	0.01	0.00	0.00
T14	40 - 20	Leg	Max Tension	23	392.91	-12.12	-0.17
			Max. Compression	2	-468.65	10.01	0.10
			Max. Mx	10	-466.04	14.20	0.16
			Max. My	24	-37.63	-1.76	23.38
			Max. Vy	33	-1.15	-12.31	-0.04
		D ' '	Max. Vx	8	-1.20	-1.76	23.28
		Diagonal	Max Tension	2	16.73	0.00	0.00
			Max. Compression	12	-16.05	0.00	0.00

ERROR: syntaxerror
OFFENDING COMMAND: %ztokenexec_continue

STACK:

-filestream-

Self Support Anchor Rod Capacity

Analysis Considerations				
TIA-222 Revision	G			
Grout Considered:	Yes			
Eta Factor, η	0.55			

Applied Loads							
	Comp.	Uplift					
Axial Force (kips)	526.00	437.00					
Shear Force (kips)	55.00	47.00					

Considered Eccentricity	
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000

^{*}Anchor Rod Eccentricity Applied

Connection Properties	Analysis Results			
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)	
(6) 2" ø bolts (A687 N; Fy=105 ksi, Fu=125 ksi)	Pu_t = 72.83	φPn_t = 250	Stress Rating	
I _{ar} (in): 3.5	Vu = 7.83	φVn = n/a	34.8%	
	Mu = n/a	φMn = n/a	Pass	

Analysis Date: 12/14/2020

SST Unit Base Foundation

TIA-222 Revision: G

Top & Bot. Pad Rein. Different?:	
Tower Centroid Offset?:	
Block Foundation?:	

Superstructure Analysis Reactions					
Global Moment, M:	11733	ft-kips			
Global Axial, P:	126	kips			
Global Shear, V:	82	kips			
Leg Compression, P _{comp} :	526	kips			
Leg Comp. Shear, V _{u_comp} :	55	kips			
Leg Uplift, Puplift:	437	kips			
Leg Uplift. Shear, V u_uplift:	47	kips			
Tower Height, H :	280	ft			
Base Face Width, BW :	28	ft			
BP Dist. Above Fdn, bp _{dist} :		in			

Foundation Analysis Checks					
Capacity	Demand	Rating	Check		
534.06	82.00	15.4%	Pass		
7.50	2.05	27.3%	Pass		
21227.83	12266.00	57.8%	Pass		
3284.13	178.75	5.4%	Pass		
1790.24	152.75	8.5%	Pass		
9815.13	540.63	5.5%	Pass		
13519.41	1909.22	14.1%	Pass		
1485.15	296.40	20.0%	Pass		
0.190	0.055	28.8%	Pass		
	Capacity 534.06 7.50 21227.83 3284.13 1790.24 9815.13 13519.41 1485.15	Capacity Demand 534.06 82.00 7.50 2.05 21227.83 12266.00 3284.13 178.75 1790.24 152.75 9815.13 540.63 13519.41 1909.22 1485.15 296.40	Capacity Demand Rating 534.06 82.00 15.4% 7.50 2.05 27.3% 21227.83 12266.00 57.8% 3284.13 178.75 5.4% 1790.24 152.75 8.5% 9815.13 540.63 5.5% 13519.41 1909.22 14.1% 1485.15 296.40 20.0%		

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier:	5.0	ft
Ext. Above Grade, E:	0.50	ft
Pier Rebar Size, Sc:	9	
Pier Rebar Quantity, mc:	23	
Pier Tie/Spiral Size, St:	4	
Pier Tie/Spiral Quantity, mt:		
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Soil Rating:	57.8%
Structural Rating:	28.8%

Pad Properties			
Depth, D :	6.00	ft	
Pad Width, W :	38.50	ft	
Pad Thickness, T:	3.25	ft	
Pad Rebar Size (Bottom), Sp:	11		
Pad Rebar Quantity (Bottom), mp:	60		
Pad Clear Cover, cc _{pad} :	3	in	

Material Properties			
Rebar Grade, Fy :	60	ksi	
Concrete Compressive Strength, F'c:	4	ksi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties		
Total Soil Unit Weight, γ :	120	pcf
Ultimate Gross Bearing, Qult:	10.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $arphi$:	30	degrees
SPT Blow Count, N blows:		
Base Friction, μ :	0.45	
Neglected Depth, N:	3.3	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	None	ft

<-- Toggle between Gross and Net

Maser Consulting Connecticut 2000 Midlantic Drive Suite 100 Mt. Laurel, NJ 08054 (215)962-5934 peter.albano@colliersengineering.com

New/Replacement Antenna Mount Analysis Report and PMI Requirements

Mount Analysis-R

SMART Tool Project #: 10143537 Maser Consulting Connecticut Project #: 20777396A

April 12, 2022

Site Information Site ID: 469060-VZW / Woodbridge North CT

Site Name: Woodbridge North CT
Carrier Name: Verizon Wireless
Address: 6 Progress Ave

Seymour, Connecticut 06483

New Haven County

Latitude: 41.391528° Longitude: -73.053333°

<u>Structure Information</u>

Tower Type: 250-Ft Self Support

Mount Type: 12.50-Ft Sector Frame

FUZE ID # 16244103

Analysis Results

Sector Frame: 47.3% Pass w/ Mount Replacement*

(3 VFA12-HD)

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report
Available & Submitted via portal at https://pmi.vzwsmart.com
For additional questions and support, please reach out to:
pmisupport@colliersengineering.com

Report Prepared By: Garrett Smith

Executive Summary:

The objective of this report is to determine the capacity of the proposed antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. The proposed mount was assumed to be installed properly to the existing tower per the manufacturer's instructions. Maser Consulting Connecticut cannot verify that the proposed mount will fit properly and is not liable for any fit-up issues during installation.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 1126653, dated November 17, 2020
Mount Specification	Site Pro 1, P/N: VFA12-HD
Mount Specification	Site Pro 1, P/N: BCAM-HDLL
Previous Mount Analysis Report	Maser Consulting Connecticut, Project #: 20777396A, dated December 3, 2020

Analysis Criteria:

Codes and	Standards:	ANSI/TIA-222-H

Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), Vult:	118 mpn
	Ice Wind Speed (3-sec. Gust):	50 mph
	Design les Thislerses	4 00 :

Design Ice Thickness:

Risk Category:

Exposure Category:

Topographic Category:

Topographic Feature Considered:

Topographic Method:

Ground Elevation Factor, Ke:

1.00 in

II

B

N/A

N/A

1.00 in

II

B

N/A

1.00 in

II

B

N/A

1.00 in

II

B

N/A

0.983

Seismic Parameters: S_S : 0.20 g S_1 : 0.05 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Live Load, Lv: 250 lbs. Maintenance Live Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		6	JMA Wireless	MX06FRO660-03	
		3	Samsung	nL-Sub 6 Antenna	Added
140.00	140.00 140.00		Samsung	B2/B66A RRH-BR049	Audeu
140.00	140.00	3	Samsung	B5/B13 RRH-BR04C	
		6	Antel	LPA-80063/6CF	Retained
		1	Raycap	RHSDC-3315-PF-48*	Retained

^{*} Equipment is flush mounted directly to the Self Support. It is not mounted on the sector frame mounts and is not included in this mount analysis.

Any proposed antennas not currently installed should be mounted such that the centerline of the antennas does not exceed 6 inches vertically from the center of the antenna mounts.

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.

7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate
 HSS (Rectangular)
 Pipe
 Threaded Rod
 Bolts
 ASTM A36 (Gr. 36)
 ASTM 500 (Gr. B-46)
 ASTM A53 (Gr. B-35)
 F1554 (Gr. 36)
 ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail
Tieback	38.6%	Pass
Standoff Vertical	6.1%	Pass
Antenna Pipe	40.3%	Pass
Standoff Diagonal	8.6%	Pass
Standoff Plate	47.3%	Pass
Standoff Horizontal	19.1%	Pass
Face Horizontal	26.7%	Pass
Connection Check	16.0%	Pass

Structure Rating – (Controlling Utilization of all Components)	47.3%
--	-------

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipe	s Excluded	Mount Pipe	es Included
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	14.5	12.4	23.6	21.5
0.5	22.8	20.3	35.8	33.3
1	30.5	27.7	47.3	44.5

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector(s).
- Ka factors included in (EPA)a calculations

Requirements:

The proposed antenna mounts are **SUFFICIENT** for the final loading configuration (attachment 2) upon completion of the mount replacement (attachment 3) and requirements below.

Contractor shall remove existing mounts and all associated hardware. Contractor shall wire brush clean all damaged mount members and protect with two (2) coats of cold galvanization (zinga or zinc kote).

Contractor shall install new mount such that mount centerline matches desired antenna centerline.

Contractor shall install the proposed mount such that mount azimuth matches the desired equipment azimuths listed in the referenced RFDS.

Contractor to attach mount to tower leg using tower leg adapter (Site Pro 1 Part #: BCAM-HDLL)

Install (4) mount pipes (Part #: VZWSMART-P40-238X096) in each sector. Space at 48" (C-C) and 3" from edge of the mount. Ensure the mount pipes extend 68" above the bottom face horizontal. Contractor shall attach mount pipes to face horizontals using crossover plates (VZWSMART – MSK1).

Contractor shall replace tiebacks in proposed mount with (12) new 96" P2X-STR pipes. Contractor to connect (2) pipes using a 36" long P3 STD sleeve pipe. Pipe to be bolted with a min. of (2) 5/8" dia. A325N bolts at each end. Install tiebacks on top face horizontal members, 39" from each end of the face horizontals on all sectors. Connect other end of tiebacks to adjacent tower legs. tieback shall extend no more than 12" beyond the tower leg. Contractor shall trim as required and protect cut end with two (2) coats of cold galvanization (Zinga or Zinc Kote).

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Manufacturer Drawings
- 4. Existing Mount Photos
- 5. Analysis Calculations

Mount Desktop - Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – New Mount Passing MA

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com
For additional questions and support, please reach out to pmisupport@colliersengineering.com

PSLC #: 469060

SMART Project #: 10143537

Fuze Project ID: 16244103

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped.
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

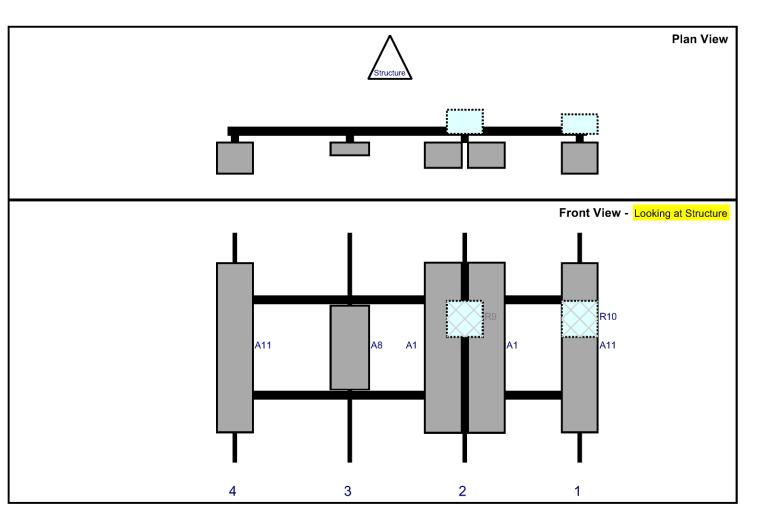
Photo Requirements:

- Photos taken at ground level
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation of mounts. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed mount; pictures shall also include connection hardware (Ubolts, bolts, nuts, all-threaded rods, etc.)
- o Photos showing the installed mount elevation.

Antenna & Equipment Placement and Geometry Confirmation:

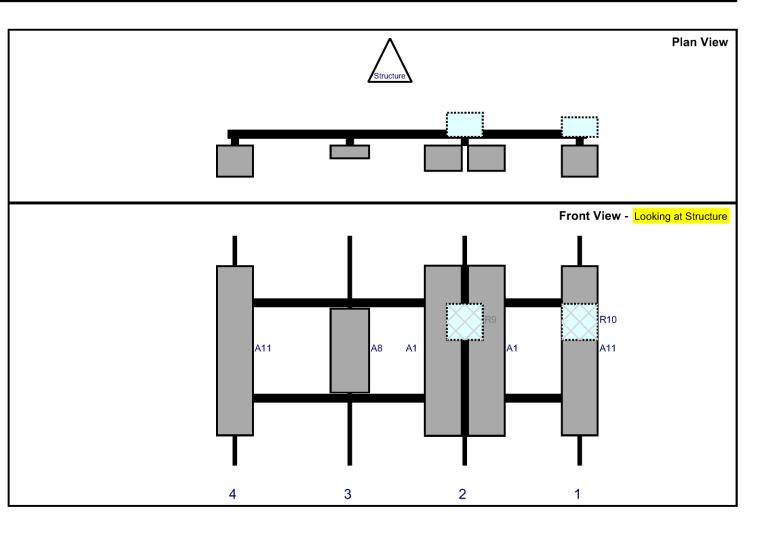
 The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
OR
\Box The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Special Instructions / Validation as required from the MA or any other information the contractor
deems necessary to share that was identified:
<mark>Issue:</mark>
Contractor shall remove existing mounts and all associated hardware. Contractor shall wire brush clean all damaged mount members and protect with two (2) coats of cold galvanization (zinga or zinc kote).
Contractor shall install new mount such that mount centerline matches desired antenna centerline.
Contractor shall install the proposed mount such that mount azimuth matches the desired equipment azimuths listed in the referenced RFDS.
Contractor to attach mount to tower leg using tower leg adapter (Site Pro 1 Part #: BCAM-HDLL)
Install (4) mount pipes (Part #: VZWSMART-P40-238X096) in each sector. Space at 48" (C-C) and 3" from edge of the mount. Ensure the mount pipes extend 68" above the bottom face horizontal. Contractor shall attach mount pipes to face horizontals using crossover plates (VZWSMART – MSK1).
Contractor shall replace tiebacks in proposed mount with (12) new 96" P2X-STR pipes. Contractor to connect (2) pipes using a 36" long P3 STD sleeve pipe. Pipe to be bolted with a min. of (2) 5/8" dia. A325N bolts at each end. Install tiebacks on top face horizontal members, 39" from each end of the face horizontals on all sectors. Connect other end of tiebacks to adjacent tower legs. tieback shall extend no more than 12" beyond the tower leg. Contractor shall trim as required and protect cut end with two (2) coats of cold galvanization (Zinga or Zinc Kote).
Response:


Special Instruction (<u>Confirmation:</u>
\Box The contra	actor has read and acknowledges the above special instructions.
Contractor certifies	that the climbing facility / safety climb was not damaged prior to starting work:
☐ Yes	□ No
Contractor certifies	no new damage created during the current installation:
☐ Yes	□ No
Contractor to certif	y the condition of the safety climb and verify no damage when leaving the site:
□ Safety Clir	mb in Good Condition
Comments:	
New Mount Certific	<mark>cation:</mark>
\square The contra	actor certifies that the New Mount installed is as specified in the Passing Mount Analysis. actor notes that the New Mount installed is not as specified and engineering approval was he New Mount installed.
Certifying Individua	<mark>li:</mark>
Comp	pany:
Employee Na Contact Ph	

Sector: **A** 4/11/2022

Structure Type: Self Support 10143537

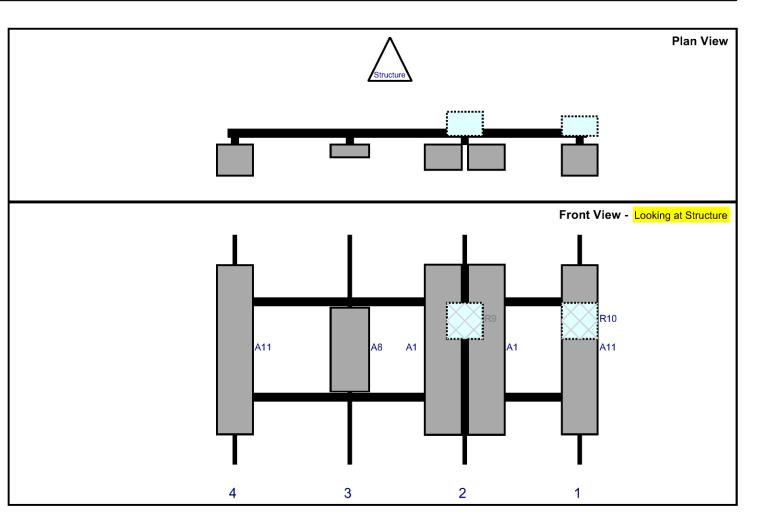
Mount Elev: 140.00 Page: 1


		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A11	LPA-80063/6CF	70.9	15	147	1	а	Front	48	0	Retained	11/13/2020
R10	B5/B13 RRH-BR04C	15	15	147	1	а	Behind	36	0	Added	
A1	MX06FRO660-03	71.3	15.4	99	2	а	Front	48	9	Added	
A1	MX06FRO660-03	71.3	15.4	99	2	b	Front	48	-9	Added	
R9	B2/B66A RRH-BR049	15	15	99	2	а	Behind	36	0	Added	
A8	nL-Sub 6 Antenna	35.1	16.1	51	3	а	Front	48	0	Added	
A11	LPA-80063/6CF	70.9	15	3	4	а	Front	48	0	Retained	11/13/2020

В 4/11/2022 Sector:

Structure Type: Self Support 10143537

Mount Elev: 140.00 Page: 2

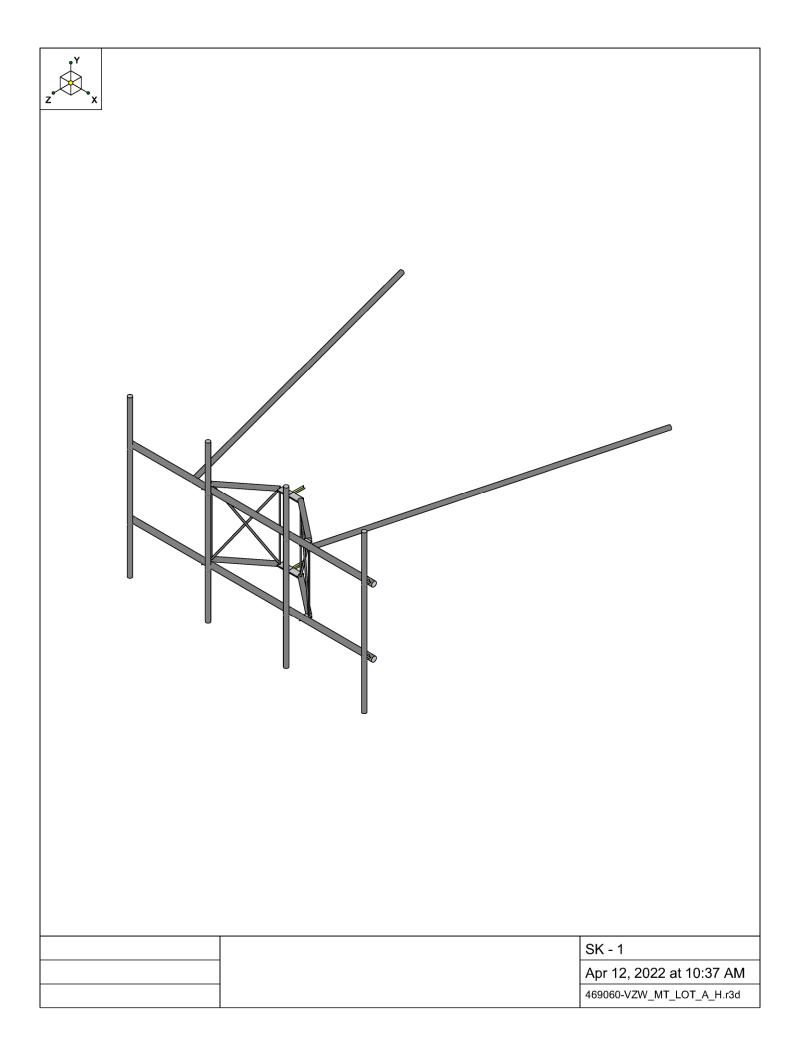

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A11	LPA-80063/6CF	70.9	15	147	1	а	Front	48	0	Retained	11/13/2020
R10	B5/B13 RRH-BR04C	15	15	147	1	а	Behind	36	0	Added	
A1	MX06FRO660-03	71.3	15.4	99	2	а	Front	48	-9	Added	
A1	MX06FRO660-03	71.3	15.4	99	2	b	Front	48	9	Added	
R9	B2/B66A RRH-BR049	15	15	99	2	а	Behind	36	0	Added	
A8	nL-Sub 6 Antenna	35.1	16.1	51	3	а	Front	48	0	Added	
A11	LPA-80063/6CF	70.9	15	3	4	а	Front	48	0	Retained	11/13/2020

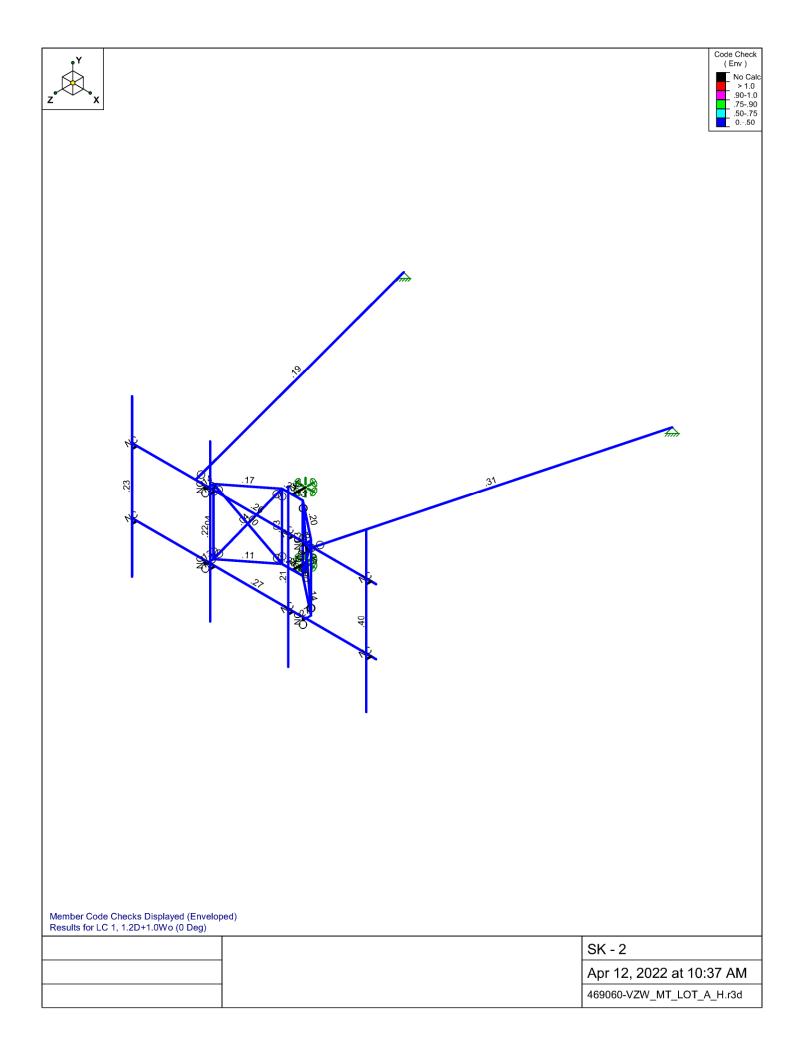
Sector: **C** 4/11/2022

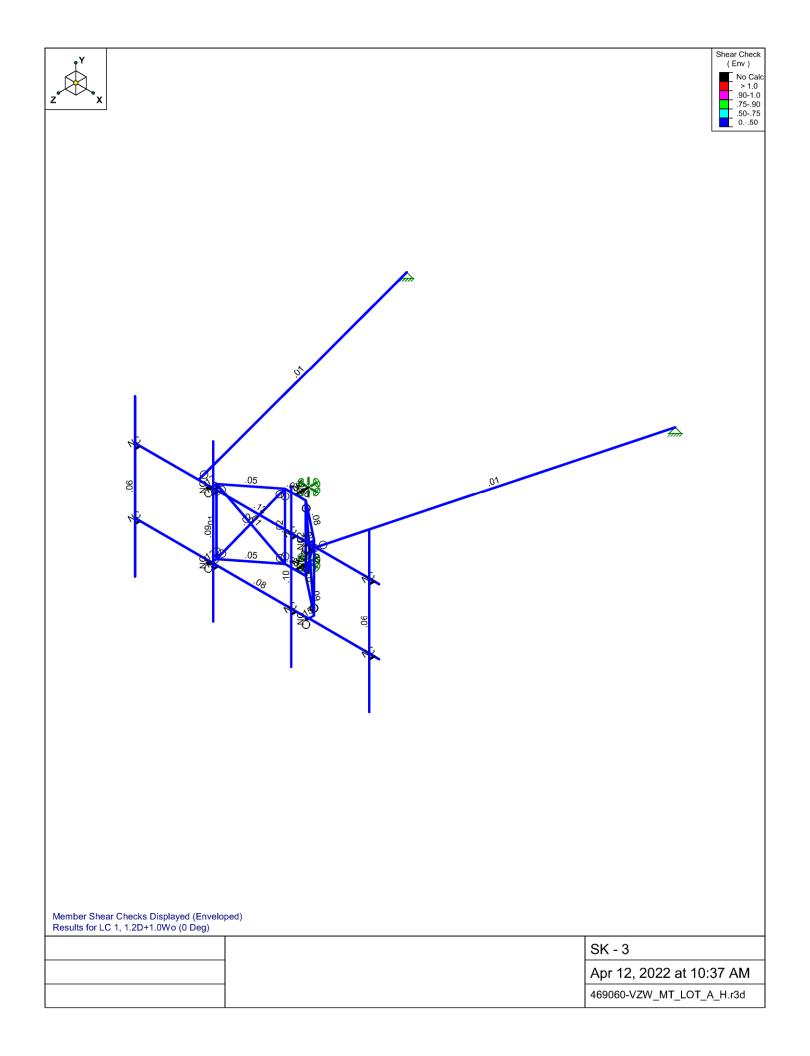
Structure Type: Self Support 10143537

Mount Elev: 140.00 Page: 3

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A11	LPA-80063/6CF	70.9	15	147	1	а	Front	48	0	Retained	11/13/2020
R10	B5/B13 RRH-BR04C	15	15	147	1	а	Behind	36	0	Added	
A1	MX06FRO660-03	71.3	15.4	99	2	а	Front	48	9	Added	
A1	MX06FRO660-03	71.3	15.4	99	2	b	Front	48	-9	Added	
R9	B2/B66A RRH-BR049	15	15	99	2	а	Behind	36	0	Added	
A8	nL-Sub 6 Antenna	35.1	16.1	51	3	а	Front	48	0	Added	
A11	LPA-80063/6CF	70.9	15	3	4	а	Front	48	0	Retained	11/13/2020


		l		PARTS LIST			
	ITEM	ΔŢ	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT
	-	2	X-VFAW	SUPPORT ARM		71.41	142.81
	2	-	X-HDCAMTBW	CLAMP WELDMENT FOR BCAM-HD		33.86	33.86
	3	-	X-MHTPHD	MULTI-HOLE TAPER PLATE WELDMENT		36.24	36.24
	4	2	X-VFAPL4	VFA-HD PIVOT PLATE	12 in	15.88	31.77
	2	2	X-LCBP4	BENT BACKING PLATE	13 in	19.00	38.01
(9	-	X-HDCAMSS	ANGLE ADJUSTMENT WELDMENT FOR BCAM-HD		16.39	16.39
	^	4	X-SPTB	SLIDING PIPE TIE BACK PLATE	5 1/2 in	5.87	23.49
\	8	-	X-HDCAMSP	POSITIONING PLATE WELDMENT FOR BCAM-HD		2.58	2.58
\	6	4	X-TBCA	TIE BACK CLIP ANGLE		2.01	8.02
\	10	8	SCX2	CROSSOVER PLATE	7 in	4.80	38.37
//	7	4	MCP	CLAMP HALF 1/2" THICK, 11-5/8" LONG	12 1/16 in	3.59	14.37
	12	8	DCP	1/2" THICK, 5-3/4" CNTER TO CENTER CLAMP HALF	8 1/8 in	2.36	18.90
	13	2	P2126	2-3/8" X 126" (2" SCH. 40) GALVANIZED PIPE	126 in	40.75	81.50
.//	41	2	P30150	2-7/8" X 150" (2-1/2" SCH. 40) GALVANIZED PIPE	150 in	76.94	153.87
	15	4	A34212	3/4" x 2-1/2" UNC HEX BOLT (A325)	2 1/2 in	0.48	1.92
	16	4	G34FW	3/4" HDG USS FLATWASHER		90.0	0.24
	11	4	G34LW	3/4" HDG LOCKWASHER		0.04	0.17
	18	4	G34NUT	3/4" HDG HEAVY 2H HEX NUT		0.21	0.85
	19	8	G58R-18	5/8"×18" THREADED ROD (HDG.)	18 in	0.40	3.19
	20	4	G58R-12	5/8" x 12" THREADED ROD (HDG.)		1.05	4.18
	21	4	G58R-8	5/8" x 8" THREADED ROD (HDG.)		0.70	2.79
	22	4	X-UB5300	5/8" X 3" X 5-1/4" X 2-1/2" U-BOLT (HDG.)		1.15	4.60
	23		X-UB5258	5/8" X 2-5/8" X 4-1/2" X 2" U-BOLT (HDG.)		1.00	8.00
	54	2	G5807	5/8" x 7" HDG HEX BOLT GR5 FULL THREAD	7 in	02.0	1.41
	52	-	65806	5/8" x 6" HDG HEX BOLT GR5 FULL THREAD	6 in	0.62	0.62
	56		G5804	5/8" x 4" HDG HEX BOLT GR5		0.44	3.55
	27	4	G5802	5/8" x 2" HDG HEX BOLT GR5		0.27	1.08
	28	8	A582114	5/8" x 2-1/4" HDG A325 HEX BOLT	2 1/4 in	0.31	2.50
	53	25	G58FW	5/8" HDG USS FLATWASHER	1/8 in	20.0	1.76
	30	99	G58LW	5/8" HDG LOCKWASHER		0.03	1.72
	34	11	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	9.22
	32	32	X-UB1300	1/2" X 3" X 5" X 2" GALV U-BOLT		0.74	23.64
	33	16	X-UB1212	1/2" X 2" X 3" X 1-1/4" U-BOLT (HDG.)		09:0	9.56
	34	64	G12FW	1/2" HDG USS FLATWASHER	3/32 in	0.03	2.18
	32	64	G12LW	1/2" HDG LOCKWASHER	1/8 in	10.0	0.89
	36	64	G12NUT	1/2" HDG HEAVY 2H HEX NUT		20.0	4.58
3						TOTAL WT. #	738.06
! 							


^	BMC 12/13/2017	CUSTOMER	1 02		INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITH VALMONT INDUSTRIES IS STRICTLY PROMIBITED.				REVISION HISTORY	
	CHECKED BY	DRAWING USAGE	ASS SUB		PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INF	DATE	ВУ	CPD	:V DESCRIPTION OF REVISIONS	REV
	-	0ER 1123/2017		\neg	Г	2/2/2017	CEK		CHANGED TIE-BACK FRONT CONNECTION	۷
		CEK 4/25/2017	<i>i</i>	5	Į	7/31/201	CEK		CHANGED TIE-BACK BACK CONNECTION	8
PART NO.		DRAWN BY	ON Co	Ö	4	12///21	2		OF DATE OF THE LEG CONNECTION TO B-CAM CONNECTION	כ
	$\overline{ bigcel{}}$			_	BEN		į		TOTAL CONTROL OF THE	1
A valmont Con				es:	S	6/29/201	CEK		UPDATED BCAM VERSION 1 TO BCAM VERSION 2	۵
	ARMS	WITH TWO STIFF		s	DRILLED AND GAS CUT HOLES (# 0.030") - NO CONI					
PRO	MBLY	12' 6" HEAVY D V-FRAME ASSEI		ú	TOLERANCES ON DIMENSIONS, UNLESS OTHERWIS SAWED, SHEARED AND GAS CUT EDGES (# 0.030")					
المسلمة			DESCRIPTIC	_	TOLERANCE NOTES					
	FRE Engineering Support To Suppor	ARMS ARMS A valmont \$\sqrt{\pi}\$ A valmont \$\sqrt{\pi}\$ A valmont \$\sqrt{\pi}\$ A valmont \$\sqrt{\pi}\$ BNC. APPROVAL CHECKED BY BMC 12/13/2017	Y DUTY SEMBLY IFF ARMS A valmont ♥ œ A valmont ♥	Y DUTY SEMBLY FF ARMS A valmont 🕶 A valmont To a valmon	12'6" HEAVY DUTY	TOLERANCE NOTES TOLERANCE NOTES TOLERANCE SOUTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (# 0.0007). SAWED, SHEARED AND GAS CUT EDGES (# 0.0007). SAWED, SHEARED AND GAS CUT EDGES (# 0.0007). V-FRAME ASSEMBLY V-FR	TOLERANCE NOTES TOLERANCE NOTES	TOLERANCE NOTES TOLERANCE NOTES	TOLERANCE NOTES TOLERANCE SOUTHER SOTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (# 0.0007) TOLERANCE SHEARED AND GAS CUT EDGES (# 0.0007) SAWED, SHEARED AND GAS CUT EDGES (# 0.0007) NOTE TO CHARLED AND GAS CUT EDGES (# 0.0007) NOTE TO CHARLED AND GAS CUT EDGES (# 0.0007) NOTE TO CHARLED AND GAS CUT EDGES (# 0.0007) NOTE TO CHARLED AND GAS CUT EDGES (# 0.0007) NOTE TO CHARLED AND GAS CUT EDGES (# 0.0007) NOTE TO CHARLED AND GAS CUT EDGES (# 0.0007) A valimont (# 0.0007) CPD NO. CPD	TOLERANCE NO TES TOLERANCE ON DIMENSIONS, UNILESS OTHERWISE NOTED ARE 12 °° HEAVY DUTY 12 °° HEAVY D


PAGE 1 OF 5

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None			·		36		,	,
2	Antenna Di	None					36			
3	Antenna Wo (0 Deg)	None					36			
4	Antenna Wo (30 Deg)	None					36			
5	Antenna Wo (60 Deg)	None					36			
6	Antenna Wo (90 Deg)	None					36			
7	Antenna Wo (120 Deg)	None					36			
8	Antenna Wo (150 Deg)	None					36			
9	Antenna Wo (180 Deg)	None					36			
10	Antenna Wo (210 Deg)	None					36			
11	Antenna Wo (240 Deg)	None					36			
12	Antenna Wo (270 Deg)	None					36			
13	Antenna Wo (300 Deg)	None					36			
14	Antenna Wo (330 Deg)	None					36			
15	Antenna Wi (0 Deg)	None					36			
16	Antenna Wi (30 Deg)	None					36			
17	Antenna Wi (60 Deg)	None					36			
18	Antenna Wi (90 Deg)	None					36			
19	Antenna Wi (120 Deg)	None					36			
20	Antenna Wi (150 Deg)	None					36			
21	Antenna Wi (180 Deg)	None					36			
22	Antenna Wi (210 Deg)	None					36			
23	Antenna Wi (240 Deg)	None					36			
24	Antenna Wi (270 Deg)	None					36			
25	Antenna Wi (300 Deg)	None					36			
26	Antenna Wi (330 Deg)	None					36			
27	Antenna Wm (0 Deg)	None					36			
28	Antenna Wm (30 Deg)	None					36			
29	Antenna Wm (60 Deg)	None					36			
30	Antenna Wm (90 Deg)	None					36			
31	Antenna Wm (120 Deg)	None					36			
32	Antenna Wm (150 Deg)	None					36			
33	Antenna Wm (180 Deg)	None					36			
34	Antenna Wm (210 Deg)	None					36			
	Antenna Wm (240 Deg)	None					36			
	Antenna Wm (270 Deg)	None					36			
	Antenna Wm (300 Deg)	None					36			
	Antenna Wm (330 Deg)	None					36			
39	Structure D	None		-1						
40	Structure Di	None						28		
41	Structure Wo (0 Deg)	None						56		
42	Structure Wo (30 Deg)	None						56		
43	Structure Wo (60 Deg)							56		
44	Structure Wo (90 Deg)	None						56		
45	Structure Wo (120 D	None						56		
46	Structure Wo (150 D	None						56		
47	Structure Wo (180 D	None						56		
48	Structure Wo (210 D	None						56		
49	Structure Wo (240 D	None						56		
50	Structure Wo (270 D	None						56		
51	Structure Wo (300 D	None						56		
52	Structure Wo (330 D	None						56		
53	Structure Wi (0 Deg)	None						56		
54	Structure Wi (30 Deg)	None						56		
55	Structure Wi (60 Deg)	None						56		
56	Structure Wi (90 Deg)	None						56		

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
57	Structure Wi (120 De	None	_	·	·			56	,	,
58	Structure Wi (150 De	None						56		
59	Structure Wi (180 De	None						56		
60	Structure Wi (210 De	None						56		
61	Structure Wi (240 De	None						56		
62	Structure Wi (270 De	None						56		
63	Structure Wi (300 De	None						56		
64	Structure Wi (330 De	None						56		
65	Structure Wm (0 Deg)	None						56		
66	Structure Wm (30 De	None						56		
67	Structure Wm (60 De	None						56		
68	Structure Wm (90 De	None						56		
69	Structure Wm (120 D	None						56		
70	Structure Wm (150 D	None						56		
71	Structure Wm (180 D	None						56		
72	Structure Wm (210 D	None						56		
73	Structure Wm (240 D	None						56		
74	Structure Wm (270 D	None						56		
75	Structure Wm (300 D	None						56		
76	Structure Wm (330 D	None						56		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					36			
82	Antenna Eh (0 Deg)	None					24			
83	Antenna Eh (90 Deg)	None					24			
84	Structure Ev	ELY		043						
85	Structure Eh (0 Deg)	ELZ			107					
86	Structure Eh (90 Deg)	ELX	.107							

Load Combinations

	Description	S	PDelta	S	В	.Fa	.B	. Fa	.B	Fa.	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	1.2D+1.0Wo (0 Deg)	Yes	Υ		1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)	Yes	Υ		1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)	Yes	Υ		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Υ		1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 Deg)	Yes	Υ		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)	Yes	Υ		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)	Yes	Υ		1	1.2	39	1.2	9	1	47	1											$oxed{oxed}$	oxdot
8	1.2D+1.0Wo (210 Deg)	Yes	Υ		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (240 Deg)	Yes	Υ		1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 Deg)	Yes	Υ		1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (300 Deg)	Yes	Υ		1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)	Yes	Υ		1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi (0 Deg)	Yes	Υ		1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi (30 Deg)	Yes	Υ		1	1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0Wi (60 Deg)	-	Υ		1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Wi (90 Deg)		Υ		1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0Wi (120 Deg	_	Υ		1	1.2	39	1.2	2	1	40	1	19	1	57	1							$oxed{oxed}$	$oxed{}$
18	1.2D + 1.0Di + 1.0Wi (150 Deg)Yes	Υ		1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi (180 Deg		Υ		1	1.2	39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0Wi (210 Deg)Yes	Υ		1	1.2	39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0Wi (240 Deg	/	Υ		1	1.2	39	1.2	2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.0Wi (270 Deg)Yes	Υ		1	1.2	39	1.2	2	1	40	1	24	1	62	1								

Load Combinations (Continued)

	Description	S	PDelta	S	. B	Fa	.B	. Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
23	1.2D + 1.0Di + 1.0Wi (300 Deg)		Υ					1.2			40		25		63	1								
24	1.2D + 1.0Di + 1.0Wi (330 Deg)	Yes	Υ		1	1.2	39	1.2	2	1	40	1	26		64	1								
25	1.2D + 1.5Lm1 + 1.0Wm (0 D	Yes	Υ	Т	1			1.2				1	65											
26	1.2D + 1.5Lm1 + 1.0Wm (30	Yes	Υ		1	1.2	39	1.2	77	1.5	28		66											
27	1.2D + 1.5Lm1 + 1.0Wm (60	_	Y	Т				1.2					67	1										
28	1.2D + 1.5Lm1 + 1.0Wm (90	-	Y					1.2					68	_										
29	1.2D + 1.5Lm1 + 1.0Wm (120	-	Y	Т				1.2				1	69											
30	1.2D + 1.5Lm1 + 1.0Wm (150	Yes	Y					1.2				1	70	1										
31	1.2D + 1.5Lm1 + 1.0Wm (180	-	Ϋ́	Т	1			1.2					71	1										
	1.2D + 1.5Lm1 + 1.0Wm (210	-	Y			1 2	39	1.2	77	1.5	34	1	72	1										
33	1.2D + 1.5Lm1 + 1.0Wm (240	_	Ÿ					1.2					73	1										
34	1.2D + 1.5Lm1 + 1.0Wm (270	-	Ÿ		1			1.2					74											
35	1.2D + 1.5Lm1 + 1.0Wm (300		Ÿ		1			1.2				1	75	1										
36	1.2D + 1.5Lm1 + 1.0Wm (330		Ÿ		1			1.2				_	76	_										
37	1.2D + 1.5Lm2 + 1.0Wm (0 D		Ÿ			1.2	30	1.2	78	1.5	27	1	65											
38	1.2D + 1.5Lm2 + 1.0Wm (30	-	Ý		1			1.2				_	66											
39	1.2D + 1.5Lm2 + 1.0Wm (60	-	Ÿ		1			1.2					67	1										
40	1.2D + 1.5Lm2 + 1.0Wm (90	-	Y		_			1.2					68	1										
41	1.2D + 1.5Lm2 + 1.0Wm (120	-	Ÿ	+	1			1.2				1	69											
	1.2D + 1.5Lm2 + 1.0Wm (150	-	Ϋ́			1.2	30	1.2	78	1.5	32		70	1										
43	1.2D + 1.5Lm2 + 1.0Wm (180		Y					1.2					71	1										
44	1.2D + 1.5Lm2 + 1.0Wm (210	-	Y		1			1.2					72	1										
45	1.2D + 1.5Lm2 + 1.0Wm (240	_	Y		1			1.2					73	1										
46	1.2D + 1.5Lm2 + 1.0Wm (270	-	Y		1			1.2					74											
47	1.2D + 1.5Lm2 + 1.0Wm (300	_	Y	+	1			1.2					75											
48	1.2D + 1.5Lm2 + 1.0Wm (330	-	Y					1.2					76											
	,	Yes	Y		1								70											
49 50	1.2D + 1.5Lv1 1.2D + 1.5Lv2	Yes	Y		<u> </u>			1.2																
		Yes	<u> </u>	+				1.2		1.5														
51	1.4D 1.2D + 1.0Ev + 1.0Eh (0 Deg)	-	<u> </u>		1					4	E	4	00	1	02		E	1	E					
52				+				1.2				1	82		83					_				
53	1.2D + 1.0Ev + 1.0Eh (30 Deg)	-	<u>Y</u>					1.2		_	E	1		.866				.866						
54	1.2D + 1.0Ev + 1.0Eh (60 Deg) 1.2D + 1.0Ev + 1.0Eh (90 Deg)	-	<u>Y</u>	+	1			1.2			E	1		.5					E					
<u>55</u>		-	<u>Y</u>		1			1.2		_	E	1	82	-	83		E	_	_	1				
56	1.2D + 1.0Ev + 1.0Eh (120 De		<u>Y</u>		1			1.2			E	1		5										
57	1.2D + 1.0Ev + 1.0Eh (150 De	-	<u>Y</u>					1.2		_		1		8		.5		8		.5				
58	1.2D + 1.0Ev + 1.0Eh (180 De	_	<u>Y</u>		1			1.2			E	1	82	-1		_	E		E	_				
59	1.2D + 1.0Ev + 1.0Eh (210 De	-	<u>Y</u>		1			1.2			E	1		8					E	5				
60	1.2D + 1.0Ev + 1.0Eh (240 De	-	Y		1			1.2			E	1		5				5						
61	1.2D + 1.0Ev + 1.0Eh (270 De	-	<u>Y</u>		1			1.2			E	1	82		83	-1		-	E					
62	1.2D + 1.0Ev + 1.0Eh (300 De		Y					1.2			E	1	82	.5	83	ö	E	.5						
63	1.2D + 1.0Ev + 1.0Eh (330 De		Y					1.2						.866						5				
64	0.9D - 1.0Ev + 1.0Eh (0 Deg)		<u>Y</u>		1			.9					82		83		E		E	_				
65	0.9D - 1.0Ev + 1.0Eh (30 Deg)	-	<u>Y</u>		1			.9			E			.866										
66	0.9D - 1.0Ev + 1.0Eh (60 Deg)		<u>Y</u>		1			.9			E			.5				.5		.866				
67	0.9D - 1.0Ev + 1.0Eh (90 Deg)	-	<u>Y</u>		1			.9			E	-1	82		83		E	_	E	1				
68	0.9D - 1.0Ev + 1.0Eh (120 Deg)		Y		1			.9			E			5										
	0.9D - 1.0Ev + 1.0Eh (150 Deg)	\rightarrow	<u>Y</u>		1	.9		.9			E			8						.5				
	0.9D - 1.0Ev + 1.0Eh (180 Deg)		Υ		1		39	.9	81	-1	E	-1	82	-1	83		E		E					
	0.9D - 1.0Ev + 1.0Eh (210 Deg)		Y		1	.9		.9			E			8										
			Y		1	.9		.9						5				5						
73	0.9D - 1.0Ev + 1.0Eh (270 Deg)	-	Y		1	.9		.9			E	-1	82				E		E					
74	0.9D - 1.0Ev + 1.0Eh (300 Deg)				1	.9		.9			E			.5						8				
75	0.9D - 1.0Ev + 1.0Eh (330 Deg)	Yes	Y		1	.9	39	.9	81	-1	E	-1	82	.866	83	5	E	.866	E	5				

Joint Coordinates and Temperatures

1 N1 3.416667 0.145833 0.083333 0 2 N2 9.98333 0.145833 0 3 N3 3.416667 3.479167 8.083333 0 4 N4 9.908333 3.479167 8.083333 0 5 N5 8.833333 0.145833 8.083333 0 6 N6 8.833333 0.145833 8.083333 0 7 N7 4.833333 0.145833 8.083333 0 9 N9 -0.833333 0.145833 8.083333 0 10 N10 -0.833333 0.145833 8.083333 0 11 N11 3.166667 0.145833 8.083333 0 12 N12 3.166667 0.145833 8.083333 0 13 N13 -8.833333 0.145833 8.083333 0 14 N14 -8.833333 0.145833 8.333333 0 15 N		Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
3 N3 3.476667 3.479167 8.083333 0 5 N5 -8.633333 0.145833 8.083333 0 6 N6 -8.833333 0.145833 8.083333 0 7 N7 -4.833333 0.145833 8.083333 0 8 N8 -4.833333 0.145833 8.083333 0 9 N9 -0.833333 0.145833 8.083333 0 10 N10 -0.833333 0.145833 8.083333 0 11 N11 3.166667 0.145833 8.083333 0 12 N12 3.166667 3.479167 8.083333 0 13 N13 -8.833333 3.479167 8.083333 0 14 M14 -8.8333333 3.479167 8.0833333 0 15 N15 -4.8333333 3.479167 8.0333333 0 15 N15 -4.8333333 3.479167 8.0333333 0	1	N1	3.416667	0.145833	8.083333	0	
4 N4 -9.083333 0.145833 0 5 N5 -8.833333 0.145833 0.083333 0 7 N7 -4.833333 0.145833 0 0 8 N8 -4.833333 0.145833 0.083333 0 0 9 N9 -0.833333 0.145833 0.0833333 0 0 10 N10 -0.833333 3.479167 8.083333 0 1 11 N11 3.166667 3.479167 8.083333 0 1 12 N12 3.166667 3.479167 8.083333 0 1 13 N13 -8.833333 0.145833 8.083333 0 1 14 N14 -8.833333 0.145833 8.333333 0 1 15 N15 -4.8333333 0.145833 8.333333 0 1 16 N16 -4.8333333 0.145833 8.333333 0 1 <t< td=""><td>2</td><td>N2</td><td>-9.083333</td><td>0.145833</td><td>8.083333</td><td>0</td><td></td></t<>	2	N2	-9.083333	0.145833	8.083333	0	
6 N6 -8.833333 0.146833 0.083333 0 7 N7 -4.8333333 0.146833 8.083333 0 8 N8 -4.833333 0.146833 8.083333 0 9 N9 -0.833333 0.145833 8.083333 0 10 N10 -0.833333 0.145833 8.083333 0 11 N11 3.166667 0.145833 8.083333 0 12 N12 3.166667 3.479167 8.083333 0 13 N13 -8.833333 0.145833 8.333333 0 14 N14 -8.833333 3.149167 8.083333 0 15 N15 -4.833333 3.149167 8.3333333 0 15 N15 -4.833333 3.149167 8.333333 0 16 N16 -4.833333 3.149167 8.333333 0 17 N17 -0.833333 3.149167 8.333333 0 <td>3</td> <td>N3</td> <td>3.416667</td> <td>3.479167</td> <td>8.083333</td> <td>0</td> <td></td>	3	N3	3.416667	3.479167	8.083333	0	
6 N6 -8.833333 3.479167 8.083333 0 7 N7 4.833333 0.145833 8.083333 0 8 N8 4.833333 0.145833 8.083333 0 9 N9 -0.833333 0.145833 8.083333 0 10 N10 -0.833333 0.145833 8.083333 0 11 N11 3.166667 0.145833 8.083333 0 12 N12 3.166667 0.145833 8.083333 0 13 N13 -8.833333 3.479167 8.083333 0 13 N13 -8.833333 3.479167 8.333333 0 15 N15 -4.833333 3.479167 8.333333 0 16 N16 -4.833333 3.479167 8.333333 0 17 N17 -0.833333 0.145833 8.333333 0 17 N17 -0.8333333 0.145833 8.333333 0	4	N4	-9.083333	3.479167	8.083333	0	
6 N6 -8.833333 3.479167 8.083333 0 7 N7 -4.833333 0.148833 8.083333 0 8 N8 -4.833333 0.145833 8.083333 0 9 N9 -0.833333 0.145833 8.083333 0 10 N10 -0.833333 0.145833 8.083333 0 11 N11 3.166667 0.145833 8.083333 0 12 N12 3.166667 0.145833 8.083333 0 13 N13 -8.333333 0.145833 8.333333 0 13 N13 -8.333333 0.145833 8.333333 0 15 N15 -4.8333333 3.479167 8.333333 0 16 N16 -4.8333333 0.145833 8.333333 0 17 N17 -0.8333333 0.145833 8.333333 0 17 N17 0.4333333 0.145833 8.333333 0 <td>5</td> <td>N5</td> <td>-8.833333</td> <td>0.145833</td> <td>8.083333</td> <td>0</td> <td></td>	5	N5	-8.833333	0.145833	8.083333	0	
7 N7 4.833333 0.145833 0.083333 0 9 N9 -0.833333 0.145833 8.083333 0 10 N10 -0.833333 0.145833 8.083333 0 11 N11 3.166667 0.145833 8.083333 0 12 N12 3.16667 0.145833 8.083333 0 13 N13 -8.833333 0.145833 8.333333 0 14 N14 -8.833333 3.145833 8.333333 0 15 N15 -4.833333 0.145833 8.333333 0 16 N16 -4.833333 3.149167 8.333333 0 17 N17 -0.833333 3.149167 8.333333 0 18 N18 -0.833333 3.149167 8.333333 0 19 N19 3.166667 0.145833 8.333333 0 20 N20 3.166667 0.145833 8.333333 0	6	N6	-8.833333			0	
8 N8 -4.833333 3.479167 8.083333 0 9 N9 -0.833333 0.1458333 0 0 10 N10 -0.833333 0.145833 8.083333 0 11 N11 3.166667 0.145833 8.083333 0 12 N12 3.166667 0.145833 8.083333 0 13 N13 -8.833333 0.145833 8.333333 0 14 N14 -8.833333 0.145833 8.333333 0 15 N15 -4.833333 3.479167 8.333333 0 16 N16 -4.833333 3.479167 8.333333 0 17 N17 -0.833333 3.479167 8.333333 0 18 N18 -0.833333 3.479167 8.333333 0 19 N19 3.166667 0.145833 8.333333 0 20 N20 3.166667 0.145833 8.333333 0		N7				0	
9							
10							
11							
12							
13							
14 N14 -8.833333 3.479167 8.333333 0 16 N16 -4.833333 0.145833 8.333333 0 17 N17 -0.833333 0.145833 8.333333 0 18 N18 -0.833333 0.145833 8.333333 0 19 N19 3.166667 0.145833 8.333333 0 20 N20 3.166667 0.145833 8.333333 0 21 N21 -5.333333 0 8.083333 0 21 N21 -5.333333 3.0 8.083333 0 22 N22 -5.333333 3.0 8.083333 0 23 N23 -0.333333 3.333333 0 8.083333 0 24 N24 -0.333333 3.333333 0 8.083333 0 25 N25 -5.333333 3.333333 3.0 7.661458 0 26 N26 -5.333333 3.333333							
15 N15 4.833333 0.145633 8.333333 0 16 N16 4.833333 3.479167 8.333333 0 17 N17 -0.833333 0.145833 8.333333 0 18 N18 -0.833333 3.479167 8.333333 0 20 N20 3.166667 0.145833 8.333333 0 21 N21 -5.333333 0 0 8.833333 0 21 N21 -5.333333 0 0 8.833333 0 22 N22 -5.333333 3 8.083333 0 23 N23 -0.333333 3.333333 0 8.083333 0 24 N24 -0.333333 3.333333 0 8.083333 0 25 N25 -5.333333 3.333333 7.661458 0 0 26 N26 -5.333333 3.333333 7.661458 0 0 27 N27							
16 N16 -4.833333 3.479167 8.333333 0 17 N17 -0.833333 0.145833 8.333333 0 18 N18 -0.833333 0.145833 8.3333333 0 19 N19 3.166667 0.145833 8.333333 0 20 N20 3.166667 3.479167 8.333333 0 21 N21 -5.333333 0 8.083333 0 21 N21 -5.333333 0 8.083333 0 22 N22 -5.333333 3 0 8.083333 0 23 N23 -0.333333 3 0 8.083333 0 24 N24 -0.3333333 3 3.083333 0 0 25 N25 -5.333333 3 3.7661458 0 0 27 N27 -0.333333 3.333333 7.661458 0 0 28 N28 -0.333333 3.333							
17							
18 N18 -0.833333 3.479167 8.333333 0 19 N19 3.166667 0.145833 8.333333 0 20 N20 3.166667 3.479167 8.333333 0 21 N21 -5.333333 0 8.083333 0 22 N22 -5.333333 3.33333 0 8.083333 0 23 N23 -0.333333 3.333333 0 8.083333 0 24 N24 -0.3333333 3.333333 0 8.083333 0 25 N25 -5.333333 3.333333 7.661458 0 0 26 N26 -5.3333333 3.333333 7.661458 0 0 27 N27 -0.3333333 3.333333 7.661458 0 0 28 N28 -0.3333333 3.333333 7.661458 0 0 29 N29 -2.8333333 3.3333333 7.61458 0 0							
19 N19 3.166667 0.145833 8.333333 0 20 N20 3.166667 3.479167 8.333333 0 21 N21 -5.333333 0 8.083333 0 22 N22 -5.333333 3.333333 0 8.083333 0 24 N24 -0.333333 3.333333 0 8.083333 0 25 N25 -5.333333 0 7.661458 0 0 26 N26 -5.333333 3.33333 7.661458 0 0 27 N27 -0.333333 3.333333 7.661458 0 0 28 N28 -0.333333 3.333333 7.661458 0 0 29 N29 -2.833333 3.333333 7.661458 0 0 29 N29 -2.8333333 3.333333 6.119792 0 0 30 N30 -2.8333333 3.3333333 6.119792 0 0							
20 N20 3.166667 3.479167 8.333333 0 21 N21 -5.333333 0 8.083333 0 22 N22 -5.333333 3.333333 0 8.083333 0 23 N23 -0.333333 0 8.083333 0 0 24 N24 -0.333333 3.333333 0 7.661488 0 25 N25 -5.333333 3.333333 7.661488 0 0 26 N26 -5.333333 3.333333 7.661488 0 0 27 N27 -0.333333 3.333333 7.661488 0 0 28 N28 -0.333333 3.333333 7.661458 0 0 29 N29 -2.833333 3.333333 6.119792 0 0 30 N30 -2.833333 3.333333 6.119792 0 0 31 N31 -3.364583 0 6.119792 0 <							
21 N21 -5.333333 0 8.083333 0 22 N22 -5.333333 3.333333 8.083333 0 24 N24 -0.333333 3.3333333 8.083333 0 25 N25 -5.333333 0 7.661458 0 26 N26 -5.333333 3.333333 7.661458 0 27 N27 -0.333333 3.333333 7.661458 0 28 N28 -0.333333 3.333333 7.661458 0 29 N29 -2.833333 0 7.661458 0 30 N30 -2.833333 3.333333 6.119792 0 31 N31 -3.364583 0 6.119792 0 32 N32 -3.364583 3.333333 6.119792 0 34 N34 -2.302083 3.333333 6.119792 0 34 N34 -2.302083 3.333333 6.119792 0							
22 N22 -5.33333 3.333333 8.083333 0 24 N24 -0.333333 3.333333 0 8.083333 0 25 N25 -5.333333 0 7.661458 0 0 26 N26 -5.333333 3.333333 7.661458 0 0 27 N27 -0.333333 3.333333 7.661458 0 0 28 N28 -0.333333 3.333333 7.661458 0 0 29 N29 -2.833333 0 6.119792 0 0 0 30 N30 -2.833333 0 6.119792 0 0 0 119792 0 0 31 N31 -3.364583 0 6.119792 0 0 33 18.33333 6.119792 0 0 34 N34 -2.302083 0 6.119792 0 0 34 N34 -2.302083 3.3333333 6.119792 0 0							
23 N23 -0.333333 0 8.083333 0 24 N24 -0.333333 3.333333 0 7.661458 0 26 N26 -5.333333 3.333333 7.661458 0 27 N27 -0.333333 3.333333 7.661458 0 28 N28 -0.333333 3.333333 7.661458 0 29 N29 -2.833333 0 6.119792 0 30 N30 -2.833333 0 6.119792 0 31 N31 -3.64583 0 6.119792 0 32 N32 -3.364583 0 6.119792 0 33 N33 -2.302083 0 6.119792 0 34 N34 -2.302083 3.333333 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.8333333 3.58125 8.333333 0							
24 N24 -0.333333 3.333333 8.083333 0 25 N25 -5.3333333 0 7.661458 0 26 N26 -5.333333 3.033333 7.661458 0 27 N27 -0.333333 3.333333 7.661458 0 28 N28 -0.333333 3.333333 7.661458 0 29 N29 -2.833333 0 6.119792 0 30 N30 -2.833333 3.333333 6.119792 0 31 N31 -3.364583 0 6.119792 0 32 N32 -3.364583 0 6.119792 0 33 N33 -2.302083 0 6.119792 0 34 N34 -2.302083 3.333333 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.8333333 3.333333 5.453125 0 37							
25 N25 -5.333333 0 7.661458 0 26 N26 -5.333333 3.33333 7.661458 0 27 N27 -0.333333 0 7.661458 0 28 N28 -0.333333 3.333333 7.661458 0 29 N29 -2.833333 0 6.119792 0 30 N30 -2.833333 0 6.119792 0 31 N31 -3.364583 0 6.119792 0 32 N32 -3.364583 3.333333 6.119792 0 34 N34 -2.302083 0 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N35 -2.833333 0 5.453125 0 37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 40 N42							
26 N26 -5.333333 3.333333 7.661458 0 27 N27 -0.3333333 0 7.661458 0 28 N28 -0.333333 3.333333 7.661458 0 29 N29 -2.833333 3.333333 6.119792 0 30 N30 -2.833333 3.333333 6.119792 0 31 N31 -3.364583 0 6.119792 0 32 N32 -3.364583 3.333333 6.119792 0 33 N33 -2.302083 0 6.119792 0 34 N34 -2.302083 3.33333 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.833333 3.333333 5.453125 0 37 N39 -8.8333333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0							
27 N27 -0.333333 0 7.661458 0 28 N28 -0.333333 3.333333 7.661458 0 29 N29 -2.833333 0 6.119792 0 30 N30 -2.833333 3.333333 6.119792 0 31 N31 -3.364583 0 6.119792 0 32 N32 -3.364583 0 6.119792 0 33 N33 -2.302083 0 6.119792 0 34 N34 -2.302083 3.333333 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.833333 3.333333 5.453125 0 37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 <t< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td></t<>				•			
28 N28 -0.333333 3.333333 7.661458 0 29 N29 -2.833333 0 6.119792 0 30 N30 -2.833333 3.333333 6.119792 0 31 N31 -3.364583 0 6.119792 0 32 N32 -3.364583 3.333333 6.119792 0 34 N34 -2.302083 0 6.119792 0 34 N34 -2.302083 3.333333 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.833333 3.333333 5.455125 0 37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
29 N29 -2.833333 0 6.119792 0 30 N30 -2.833333 3.333333 6.119792 0 31 N31 -3.364583 0 6.119792 0 32 N32 -3.364583 3.333333 6.119792 0 33 N33 -2.302083 0 6.119792 0 34 N34 -2.302083 0 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.833333 3.333333 5.453125 0 37 N39 -8.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 44							
30							
31 N31 -3.364583 0 6.119792 0 32 N32 -3.364583 3.333333 6.119792 0 33 N33 -2.302083 0 6.119792 0 34 N34 -2.302083 3.333333 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.833333 5.8125 8.333333 0 37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 45 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
32 N32 -3.364583 3.333333 6.119792 0 34 N34 -2.302083 0 6.119792 0 34 N34 -2.302083 3.333333 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.833333 3.333333 5.455125 0 37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 <							
33 N33 -2.302083 0 6.119792 0 34 N34 -2.302083 3.333333 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.833333 3.333333 5.453125 0 37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
34 N34 -2.302083 3.333333 6.119792 0 35 N35 -2.833333 0 5.453125 0 36 N36 -2.833333 3.333333 5.453125 0 37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.333333 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
35 N35 -2.833333 0 5.453125 0 36 N36 -2.833333 3.333333 5.453125 0 37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.33333 0 45 N58 -5.333333 3.333333 0 46 N76 -2.927083 0 6.119792 0 48 N78 -2.739583							
36 N36 -2.833333 3.333333 5.453125 0 37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.333333 0 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50							
37 N39 -8.833333 5.8125 8.333333 0 38 N40 -4.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.8333333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.333333 0 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 49							
38 N40 -4.833333 5.8125 8.333333 0 39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.333333 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81							
39 N41 -0.833333 5.8125 8.333333 0 40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.333333 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82							
40 N42 3.166667 5.8125 8.333333 0 41 N43 -8.833333 -2.1875 8.333333 0 42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.333333 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83							
41 N43 -8.833333 -2.1875 8.3333333 0 42 N44 -4.833333 -2.1875 8.3333333 0 43 N45 -0.833333 -2.1875 8.3333333 0 44 N46 3.166667 -2.1875 8.3333333 0 45 N58 -5.333333 3.3333333 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.3333333 6.119792 0 53 N83<							
42 N44 -4.833333 -2.1875 8.333333 0 43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.333333 7.708333 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.3333333 0.145833 8.083333 0							
43 N45 -0.833333 -2.1875 8.333333 0 44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.333333 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0							
44 N46 3.166667 -2.1875 8.333333 0 45 N58 -5.333333 3.333333 7.708333 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0							
45 N58 -5.333333 3.333333 7.708333 0 46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0							
46 N76 -2.927083 0 6.119792 0 47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0							
47 N77 -3.229167 0 6.119792 0 48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0				3.333333			
48 N78 -2.739583 0 6.119792 0 49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0						0	
49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0				0			
49 N79 -2.4375 0 6.119792 0 50 N80 -2.927083 3.333333 6.119792 0 51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0			-2.739583	0	6.119792		
51 N81 -3.229167 3.333333 6.119792 0 52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0				•			
52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0							
52 N82 -2.739583 3.333333 6.119792 0 53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0	51	N81	-3.229167	3.333333	6.119792	0	
53 N83 -2.4375 3.333333 6.119792 0 54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0							
54 N58A -2.833333 3.479167 8.083333 0 55 N59 -5.333333 0.145833 8.083333 0			-2.4375				
55 N59 -5.333333 0.145833 8.083333 0							
56 N60 -5.333333 3.479167 8.083333 0							

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
57	N61	-0.333333	0.145833	8.083333	0	
58	N62	-0.333333	3.479167	8.083333	0	
59	N59A	-5.833333	3.479167	8.083333	0	
60	N60A	0.166667	3.479167	8.083333	0	
61	N63	-9.708333	3.479167	-6.454724	0	
62	N64	4.041667	3.479167	-6.454724	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	Iyy [in4]	Izz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Face Horizontal	PIPE 2.5	Beam	Pipe	Q235	Typical	1.61	1.45	1.45	2.89
3	Standoff Horizontal	PIPE 2.0	Beam	Pipe	Q235	Typical	1.02	.627	.627	1.25
4	Standoff Diagonal	SR 0.75	Beam	BAR	Q235	Typical	.442	.016	.016	.031
5	Tieback	PIPE 2.0X	Beam	Pipe	Q235	Typical	1.4	.827	.827	1.65
6	Standoff Vertical	SR 0.625	Beam	BAR	Q235	Typical	.307	.007	.007	.015
7	Standoff Plate	PL5/8X3.5	Beam	BAR	Q235	Typical	2.188	.071	2.233	.253
8	tower pipe	PIPE 3.0	Column	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3
7	Q235	29000	11154	.3	.65	.49	35	1.5	58	1.2

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	FACE	N2	N1		, ,,	Face Horizontal	Beam	Pipe	Q235	Typical
2	M2	N4	N3			Face Horizontal	Beam	Pipe	Q235	Typical
3	M3	N5	N13			RIGID	None	None	RIGID	Typical
4	M4	N6	N14			RIGID	None	None	RIGID	Typical
5	M5	N8	N16			RIGID	None	None	RIGID	Typical
6	M6	N7	N15			RIGID	None	None	RIGID	Typical
7	M9	N10	N18			RIGID	None	None	RIGID	Typical
8	LIVE1	N9	N17			RIGID	None	None	RIGID	Typical
9	M11	N12	N20			RIGID	None	None	RIGID	Typical
10	LIVE2	N11	N19			RIGID	None	None	RIGID	Typical
11	M13	N22	N26		90	Standoff Plate	Beam	BAR	Q235	Typical
12	M14	N21	N25		90	Standoff Plate	Beam	BAR	Q235	Typical
13	M15	N23	N27		90	Standoff Plate	Beam	BAR	Q235	Typical
14	M16	N24	N28		90	Standoff Plate	Beam	BAR	Q235	Typical
15	M17	N26	N32			Standoff Horiz	Beam	Pipe	Q235	Typical
16	M18	N25	N31			Standoff Horiz	Beam	Pipe	Q235	Typical
17	M19	N27	N33			Standoff Horiz	Beam	Pipe	Q235	Typical
18	M20	N28	N34			Standoff Horiz	Beam	Pipe	Q235	Typical
19	M21	N32	N30		90	Standoff Plate	Beam	BÀR	Q235	Typical
20	M22	N34	N30		90	Standoff Plate	Beam	BAR	Q235	Typical
21	M23	N31	N29		90	Standoff Plate	Beam	BAR	Q235	Typical
22	M24	N33	N29		90	Standoff Plate	Beam	BAR	Q235	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
23	M25	N31	N26		, ,	Standoff Diago	Beam	BĂR	Q235	Typical
24	M26	N32	N25			Standoff Diago	Beam	BAR	Q235	Typical
25	M27	N33	N28			Standoff Diago	Beam	BAR	Q235	Typical
26	M28	N27	N34			Standoff Diago	Beam	BAR	Q235	Typical
27	M29	N29	N35			RIGID	None	None	RIGID	Typical
28	M30	N30	N36			RIGID	None	None	RIGID	Typical
29	MP4A	N39	N43			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
30	MP3A	N40	N44			Antenna Pipe	Beam	Pipe	A53 Gr. B	
31	MP2A	N41	N45			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
32	MP1A	N42	N46			Antenna Pipe	Beam	Pipe	A53 Gr. B	
33	M44	N25	N26			Standoff Vertical	Beam	BÁR	Q235	Typical
34	M45	N31	N32			Standoff Vertical	Beam	BAR	Q235	Typical
35	M46	N33	N34			Standoff Vertical	Beam	BAR	Q235	Typical
36	M47	N27	N28			Standoff Vertical	Beam	BAR	Q235	Typical
37	M47B	N22	N60			RIGID	None	None	RIGID	Typical
38	M48A	N21	N59			RIGID	None	None	RIGID	Typical
39	M49A	N24	N62			RIGID	None	None	RIGID	Typical
40	M50A	N23	N61			RIGID	None	None	RIGID	Typical
41	M51A	N30	N36			RIGID	None	None	RIGID	Typical
42	M52A	N29	N35			RIGID	None	None	RIGID	Typical
43	M43	N59A	N63			Tieback	Beam	Pipe	Q235	Typical
44	M44A	N60A	N64			Tieback	Beam	Pipe	Q235	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
1	FACE			ì	,	•	Yes		•		None
2	M2						Yes				None
3	М3						Yes	** NA **			None
4	M4						Yes	** NA **			None
5	M5						Yes	** NA **			None
6	M6						Yes	** NA **			None
7	M9						Yes	** NA **			None
8	LIVE1						Yes	** NA **			None
9	M11						Yes	** NA **			None
10	LIVE2						Yes	** NA **			None
11	M13						Yes	Default			None
12	M14						Yes	Default			None
13	M15						Yes				None
14	M16						Yes				None
15	M17						Yes	Default			None
16	M18						Yes				None
17	M19						Yes				None
18	M20						Yes	Default			None
19	M21						Yes	Default			None
20	M22						Yes				None
21	M23						Yes				None
22	M24						Yes				None
23	M25	BenPIN	BenPIN			Euler Buc	Yes	Default			None
24	M26	BenPIN	BenPIN			Euler Buc	Yes	Default			None
25	M27	BenPIN	BenPIN			Euler Buc	Yes				None
26	M28	BenPIN	BenPIN			Euler Buc	Yes				None
27	M29						Yes	** NA **		Inactive	None
28	M30						Yes	** NA **		Inactive	None
29	MP4A						Yes				None
30	MP3A						Yes				None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	.Analysis	Inactive	Seismic
31	MP2A						Yes		·		None
32	MP1A						Yes				None
33	M44	BenPIN	BenPIN				Yes				None
34	M45	BenPIN	BenPIN				Yes				None
35	M46	BenPIN	BenPIN				Yes				None
36	M47	BenPIN	BenPIN				Yes	Default			None
37	M47B		00000				Yes	** NA **			None
38	M48A		00000				Yes	** NA **			None
39	M49A		00000				Yes	** NA **			None
40	M50A		000000				Yes	** NA **			None
41	M51A						Yes	** NA **			None
42	M52A			·			Yes	** NA **			None
43	M43	BenPIN		•			Yes	Default			None
44	M44A	BenPIN					Yes	Default			None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Υ	-23	2
2	MP2A	My	011	2
3	MP2A	Mz	.017	2
4	MP2A	Υ	-23	6
5	MP2A	My	011	6
6	MP2A	Mz	.017	6
7	MP2A	Υ	-23	2
8	MP2A	My	011	2
9	MP2A	Mz	017	2
10	MP2A	Υ	-23	6
11	MP2A	My	011	6
12	MP2A	Mz	017	6
13	MP3A	Υ	-43.55	3
14	MP3A	My	022	3
15	MP3A	Mz	0	3
16	MP3A	Υ	-43.55	5
17	MP3A	My	022	5
18	MP3A	Mz	0	5
19	MP2A	Υ	-84.4	3
20	MP2A	My	.042	3
21	MP2A	Mz	0	3
22	MP1A	Υ	-70.3	3
23	MP1A	My	.035	3
24	MP1A	Mz	0	3
25	MP1A	Υ	-13.5	2
26	MP1A	My	007	2
27	MP1A	Mz	0	2
28	MP1A	Υ	-13.5	6
29	MP1A	My	007	6
30	MP1A	Mz	0	6
31	MP4A	Υ	-13.5	2
32	MP4A	My	007	2
33	MP4A	Mz	0	2
34	MP4A	Υ	-13.5	6
35	MP4A	My	007	6
36	MP4A	Mz	0	6

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Υ	-82.579	2
2	MP2A	My	041	2
3	MP2A	Mz	.062	2
4	MP2A	Υ	-82.579	6
5	MP2A	My	041	6
6	MP2A	Mz	.062	6
7	MP2A	Υ	-82.579	2
8	MP2A	My	041	2
9	MP2A	Mz	062	2
10	MP2A	Υ	-82.579	6
11	MP2A	My	041	6
12	MP2A	Mz	062	6
13	MP3A	Υ	-35.664	3
14	MP3A	My	018	3
15	MP3A	Mz	0	3
16	MP3A	Υ	-35.664	5
17	MP3A	My	018	5
18	MP3A	Mz	0	5
19	MP2A	Υ	-44.965	3
20	MP2A	My	.022	3
21	MP2A	Mz	0	3
22	MP1A	Υ	-40.438	3
23	MP1A	My	.02	3
24	MP1A	Mz	0	3
25	MP1A	Υ	-88.795	2
26	MP1A	My	044	2
27	MP1A	Mz	0	2
28	MP1A	Υ	-88.795	6
29	MP1A	My	044	6
30	MP1A	Mz	0	6
31	MP4A	Υ	-88.795	2
32	MP4A	My	044	2
33	MP4A	Mz	0	2
34	MP4A	Υ	-88.795	6
35	MP4A	My	044	6
36	MP4A	Mz	0	6

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2
2	MP2A	Z	-160.848	2
3	MP2A	Mx	121	2
4	MP2A	Х	0	6
5	MP2A	Z	-160.848	6
6	MP2A	Mx	121	6
7	MP2A	X	0	2
8	MP2A	Z	-160.848	2
9	MP2A	Mx	.121	2
10	MP2A	X	0	6
11	MP2A	Z	-160.848	6
12	MP2A	Mx	.121	6
13	MP3A	X	0	3
14	MP3A	Z	-76.594	3
15	MP3A	Mx	0	3
16	MP3A	X	0	5
17	MP3A	Z	-76.594	5

Member Point Loads (BLC 3: Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP3A	Mx	0	5
19	MP2A	X	0	3
20	MP2A	Z	-50.52	3
21	MP2A	Mx	0	3
22	MP1A	X	0	3
23	MP1A	Z	-50.52	3
24	MP1A	Mx	0	3
25	MP1A	X	0	2
26	MP1A	Z	-156.448	2
27	MP1A	Mx	0	2
28	MP1A	X	0	6
29	MP1A	Z	-156.448	6
30	MP1A	Mx	0	6
31	MP4A	X	0	2
32	MP4A	Z	-156.448	2
33	MP4A	Mx	0	2
34	MP4A	X	Ō	6
35	MP4A	Z	-156.448	6
36	MP4A	Mx	0	6

Member Point Loads (BLC 4: Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	75.266	2
2	MP2A	Z	-130.364	2
3	MP2A	Mx	135	2
4	MP2A	X	75.266	6
5	MP2A	Z	-130.364	6
6	MP2A	Mx	135	6
7	MP2A	X	75.266	2
8	MP2A	Z	-130.364	2
9	MP2A	Mx	.06	2
10	MP2A	Χ	75.266	6
11	MP2A	Z	-130.364	6
12	MP2A	Mx	.06	6
13	MP3A	X	32.471	3
14	MP3A	Z	-56.242	3
15	MP3A	Mx	016	3
16	MP3A	Χ	32.471	5
17	MP3A	Z	-56.242	5
18	MP3A	Mx	016	5
19	MP2A	Χ	23.182	3
20	MP2A	Z	-40.152	3
21	MP2A	Mx	.012	3
22	MP1A	Χ	22.408	3
23	MP1A	Z	-38.812	3
24	MP1A	Mx	.011	3
25	MP1A	X	76.135	2
26	MP1A	Z	-131.87	2
27	MP1A	Mx	038	2
28	MP1A	Χ	76.135	6
29	MP1A	Z	-131.87	6
30	MP1A	Mx	038	6
31	MP4A	Χ	76.135	2
32	MP4A	Z	-131.87	2
33	MP4A	Mx	038	2
34	MP4A	X	76.135	6

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP4A	Z	-131.87	6
36	MP4A	Mx	038	6

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	112.497	2
2	MP2A	Z	-64.95	2
3	MP2A	Mx	105	2
4	MP2A	X	112.497	6
5	MP2A	Z	-64.95	6
6	MP2A	Mx	105	6
7	MP2A	X	112.497	2
8	MP2A	Z	-64.95	2
9	MP2A	Mx	008	2
10	MP2A	Χ	112.497	6
11	MP2A	Z	-64.95	6
12	MP2A	Mx	008	6
13	MP3A	X	36.06	3
14	MP3A	Z	-20.819	3
15	MP3A	Mx	018	3
16	MP3A	Χ	36.06	5
17	MP3A	Z	-20.819	5
18	MP3A	Mx	018	5
19	MP2A	Χ	32.955	3
20	MP2A	Z	-19.026	3
21	MP2A	Mx	.016	3
22	MP1A	X	28.932	3
23	MP1A	Z	-16.704	3
24	MP1A	Mx	.014	3
25	MP1A	X	124.635	2
26	MP1A	Z	-71.958	2
27	MP1A	Mx	062	2
28	MP1A	Χ	124.635	6
29	MP1A	Z	-71.958	6
30	MP1A	Mx	062	6
31	MP4A	Χ	124.635	2
32	MP4A	Z	-71.958	2
33	MP4A	Mx	062	2
34	MP4A	X	124.635	6
35	MP4A	Z	-71.958	6
36	MP4A	Mx	062	6

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	119.584	2
2	MP2A	Z	0	2
3	MP2A	Mx	06	2
4	MP2A	X	119.584	6
5	MP2A	Z	0	6
6	MP2A	Mx	06	6
7	MP2A	X	119.584	2
8	MP2A	Z	0	2
9	MP2A	Mx	06	2
10	MP2A	X	119.584	6
11	MP2A	Z	0	6
12	MP2A	Mx	06	6

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	X	29.986	3
14	MP3A	Ζ	0	3
15	MP3A	Mx	015	3
16	MP3A	X	29.986	5
17	MP3A	Ζ	0	5
18	MP3A	Mx	015	5
19	MP2A	X	33.897	3
20	MP2A	Z	0	3
21	MP2A	Mx	.017	3
22	MP1A	X	27.704	3
23	MP1A	Z	0	3
24	MP1A	Mx	.014	3
25	MP1A	X	139.739	2
26	MP1A	Z	0	2
27	MP1A	Mx	07	2
28	MP1A	X	139.739	6
29	MP1A	Z	0	6
30	MP1A	Mx	07	6
31	MP4A	X	139.739	2
32	MP4A	Z	0	2
33	MP4A	Mx	07	2
34	MP4A	X	139.739	6
35	MP4A	Z	0	6
36	MP4A	Mx	07	6

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	112.497	2
2	MP2A	Z	64.95	2
3	MP2A	Mx	008	2
4	MP2A	X	112.497	6
5	MP2A	Z	64.95	6
6	MP2A	Mx	008	6
7	MP2A	X	112.497	2
8	MP2A	Z	64.95	2
9	MP2A	Mx	105	2
10	MP2A	X	112.497	6
11	MP2A	Z	64.95	6
12	MP2A	Mx	105	6
13	MP3A	X	36.06	3
14	MP3A	Z	20.819	3
15	MP3A	Mx	018	3
16	MP3A	X	36.06	5
17	MP3A	Z	20.819	5
18	MP3A	Mx	018	5
19	MP2A	X	32.955	3
20	MP2A	Z	19.026	3
21	MP2A	Mx	.016	3
22	MP1A	X	28.932	3
23	MP1A	Z	16.704	3
24	MP1A	Mx	.014	3
25	MP1A	X	124.635	2
26	MP1A	Z	71.958	2
27	MP1A	Mx	062	2
28	MP1A	X	124.635	6
29	MP1A	Z	71.958	6

Member Point Loads (BLC 7: Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
30	MP1A	Mx	062	6
31	MP4A	X	124.635	2
32	MP4A	Z	71.958	2
33	MP4A	Mx	062	2
34	MP4A	X	124.635	6
35	MP4A	Z	71.958	6
36	MP4A	Mx	062	6

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	75.266	2
2	MP2A	Ζ	130.364	2
3	MP2A	Mx	.06	2
4	MP2A	X	75.266	6
5	MP2A	Ζ	130.364	6
6	MP2A	Mx	.06	6
7	MP2A	Χ	75.266	2
8	MP2A	Ζ	130.364	2
9	MP2A	Mx	135	2
10	MP2A	X	75.266	6
11	MP2A	Ζ	130.364	6
12	MP2A	Mx	135	6
13	MP3A	Χ	32.471	3
14	MP3A	Ζ	56.242	3
15	MP3A	Mx	016	3
16	MP3A	Χ	32.471	5
17	MP3A	Ζ	56.242	5
18	MP3A	Mx	016	5
19	MP2A	X	23.182	3
20	MP2A	Ζ	40.152	3
21	MP2A	Mx	.012	3
22	MP1A	X	22.408	3
23	MP1A	Ζ	38.812	3
24	MP1A	Mx	.011	3
25	MP1A	Χ	76.135	2
26	MP1A	Z	131.87	2
27	MP1A	Mx	038	2
28	MP1A	Χ	76.135	6
29	MP1A	Ζ	131.87	6
30	MP1A	Mx	038	6
31	MP4A	Χ	76.135	2
32	MP4A	Z	131.87	2
33	MP4A	Mx	038	2
34	MP4A	Χ	76.135	6
35	MP4A	Ζ	131.87	6
36	MP4A	Mx	038	6

Member Point Loads (BLC 9: Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2
2	MP2A	Z	160.848	2
3	MP2A	Mx	.121	2
4	MP2A	X	0	6
5	MP2A	Z	160.848	6
6	MP2A	Mx	.121	6
7	MP2A	X	0	2

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8	MP2A	Z	160.848	2
9	MP2A	Mx	121	2
10	MP2A	X	0	6
11	MP2A	Z	160.848	6
12	MP2A	Mx	121	6
13	MP3A	X	0	3
14	MP3A	Z	76.594	3
15	MP3A	Mx	0	3
16	MP3A	X	0	5
17	MP3A	Z	76.594	5
18	MP3A	Mx	0	5
19	MP2A	X	0	3
20	MP2A	Z	50.52	3
21	MP2A	Mx	0	3
22	MP1A	X	0	3
23	MP1A	Z	50.52	3
24	MP1A	Mx	0	3
25	MP1A	X	0	2
26	MP1A	Z	156.448	2
27	MP1A	Mx	0	2
28	MP1A	X	0	6
29	MP1A	Z	156.448	6
30	MP1A	Mx	0	6
31	MP4A	X	0	2
32	MP4A	Z	156.448	2
33	MP4A	Mx	0	2
34	MP4A	X	0	6
35	MP4A	Z	156.448	6
36	MP4A	Mx	0	6

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-75.266	2
2	MP2A	Z	130.364	2
3	MP2A	Mx	.135	2
4	MP2A	X	-75.266	6
5	MP2A	Z	130.364	6
6	MP2A	Mx	.135	6
7	MP2A	X	-75.266	2
8	MP2A	Z	130.364	2
9	MP2A	Mx	06	2
10	MP2A	X	-75.266	6
11	MP2A	Z	130.364	6
12	MP2A	Mx	06	6
13	MP3A	X	-32.471	3
14	MP3A	Z	56.242	3
15	MP3A	Mx	.016	3
16	MP3A	X	-32.471	5
17	MP3A	Z	56.242	5
18	MP3A	Mx	.016	5
19	MP2A	X	-23.182	3
20	MP2A	Z	40.152	3
21	MP2A	Mx	012	3
22	MP1A	X	-22.408	3
23	MP1A	Z	38.812	3
24	MP1A	Mx	011	3

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP1A	X	-76.135	2
26	MP1A	Z	131.87	2
27	MP1A	Mx	.038	2
28	MP1A	X	-76.135	6
29	MP1A	Z	131.87	6
30	MP1A	Mx	.038	6
31	MP4A	X	-76.135	2
32	MP4A	Z	131.87	2
33	MP4A	Mx	.038	2
34	MP4A	X	-76.135	6
35	MP4A	Z	131.87	6
36	MP4A	Mx	.038	6

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Χ	-112.497	2
2	MP2A	Ζ	64.95	2
3	MP2A	Mx	.105	2
4	MP2A	X	-112.497	6
5	MP2A	Ζ	64.95	6
6	MP2A	Mx	.105	6
7	MP2A	Χ	-112.497	2
8	MP2A	Z	64.95	2
9	MP2A	Mx	.008	2
10	MP2A	X	-112.497	6
11	MP2A	Z	64.95	6
12	MP2A	Mx	.008	6
13	MP3A	X	-36.06	3
14	MP3A	Z	20.819	3
15	MP3A	Mx	.018	3
16	MP3A	X	-36.06	5
17	MP3A	Z	20.819	5
18	MP3A	Mx	.018	5
19	MP2A	X	-32.955	3
20	MP2A	Z	19.026	3
21	MP2A	Mx	016	3
22	MP1A	X	-28.932	3
23	MP1A	Ζ	16.704	3
24	MP1A	Mx	014	3
25	MP1A	Χ	-124.635	2
26	MP1A	Z	71.958	2
27	MP1A	Mx	.062	2
28	MP1A	Χ	-124.635	6
29	MP1A	Z	71.958	6
30	MP1A	Mx	.062	6
31	MP4A	Χ	-124.635	2
32	MP4A	Z	71.958	2
33	MP4A	Mx	.062	2
34	MP4A	Χ	-124.635	6
35	MP4A	Z	71.958	6
36	MP4A	Mx	.062	6

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-119.584	2
2	MP2A	Z	0	2

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP2A	Mx	.06	2
4	MP2A	X	-119.584	6
5	MP2A	Z	0	6
6	MP2A	Mx	.06	6
7	MP2A	X	-119.584	2
8	MP2A	Z	0	2
9	MP2A	Mx	.06	2
10	MP2A	X	-119.584	6
11	MP2A	Z	0	6
12	MP2A	Mx	.06	6
13	MP3A	Χ	-29.986	3
14	MP3A	Z	0	3
15	MP3A	Mx	.015	3
16	MP3A	X	-29.986	5
17	MP3A	Z	0	5
18	MP3A	Mx	.015	5
19	MP2A	X	-33.897	3
20	MP2A	Z	0	3
21	MP2A	Mx	017	3
22	MP1A	X	-27.704	3
23	MP1A	Z	0	3
24	MP1A	Mx	014	3
25	MP1A	X	-139.739	2
26	MP1A	Z	0	2
27	MP1A	Mx	.07	2
28	MP1A	X	-139.739	6
29	MP1A	Z	0	6
30	MP1A	Mx	.07	6
31	MP4A	X	-139.739	2
32	MP4A	Z	0	2
33	MP4A	Mx	.07	2
34	MP4A	Χ	-139.739	6
35	MP4A	Z	0	6
36	MP4A	Mx	.07	6

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-112.497	2
2	MP2A	Z	-64.95	2
3	MP2A	Mx	.008	2
4	MP2A	Χ	-112.497	6
5	MP2A	Z	-64.95	6
6	MP2A	Mx	.008	6
7	MP2A	X	-112.497	2
8	MP2A	Z	-64.95	2
9	MP2A	Mx	.105	2
10	MP2A	X	-112.497	6
11	MP2A	Z	-64.95	6
12	MP2A	Mx	.105	6
13	MP3A	X	-36.06	3
14	MP3A	Z	-20.819	3
15	MP3A	Mx	.018	3
16	MP3A	X	-36.06	5
17	MP3A	Z	-20.819	5
18	MP3A	Mx	.018	5
19	MP2A	X	-32.955	3

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP2A	Z	-19.026	3
21	MP2A	Mx	016	3
22	MP1A	X	-28.932	3
23	MP1A	Z	-16.704	3
24	MP1A	Mx	014	3
25	MP1A	X	-124.635	2
26	MP1A	Z	-71.958	2
27	MP1A	Mx	.062	2
28	MP1A	X	-124.635	6
29	MP1A	Z	-71.958	6
30	MP1A	Mx	.062	6
31	MP4A	X	-124.635	2
32	MP4A	Z	-71.958	2
33	MP4A	Mx	.062	2
34	MP4A	X	-124.635	6
35	MP4A	Z	-71.958	6
36	MP4A	Mx	.062	6

Member Point Loads (BLC 14: Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-75.266	2
2	MP2A	Z	-130.364	2
3	MP2A	Mx	06	2
4	MP2A	Χ	-75.266	6
5	MP2A	Z	-130.364	6
6	MP2A	Mx	06	6
7	MP2A	Χ	-75.266	2
8	MP2A	Z	-130.364	2
9	MP2A	Mx	.135	2
10	MP2A	Χ	-75.266	6
11	MP2A	Ζ	-130.364	6
12	MP2A	Mx	.135	6
13	MP3A	X	-32.471	3
14	MP3A	Z	-56.242	3
15	MP3A	Mx	.016	3
16	MP3A	Χ	-32.471	5
17	MP3A	Z	-56.242	5
18	MP3A	Mx	.016	5
19	MP2A	Χ	-23.182	3
20	MP2A	Z	-40.152	3
21	MP2A	Mx	012	3
22	MP1A	Χ	-22.408	3
23	MP1A	Ζ	-38.812	3
24	MP1A	Mx	011	3
25	MP1A	Χ	-76.135	2
26	MP1A	Z	-131.87	2
27	MP1A	Mx	.038	2
28	MP1A	Χ	-76.135	6
29	MP1A	Z	-131.87	6
30	MP1A	Mx	.038	6
31	MP4A	Χ	-76.135	2
32	MP4A	Z	-131.87	2
33	MP4A	Mx	.038	2
34	MP4A	X	-76.135	6
35	MP4A	Z	-131.87	6
36	MP4A	Mx	.038	6

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2
2	MP2A	Z	-31.495	2
3	MP2A	Mx	024	2
4	MP2A	X	0	6
5	MP2A	Z	-31.495	6
6	MP2A	Mx	024	6
7	MP2A	X	0	2
8	MP2A	Z	-31.495	2
9	MP2A	Mx	.024	2
10	MP2A	Χ	0	6
11	MP2A	Z	-31.495	6
12	MP2A	Mx	.024	6
13	MP3A	X	0	3
14	MP3A	Z	-15.538	3
15	MP3A	Mx	0	3
16	MP3A	X	0	5
17	MP3A	Z	-15.538	5
18	MP3A	Mx	0	5
19	MP2A	X	0	3
20	MP2A	Z	-13.097	3
21	MP2A	Mx	0	3
22	MP1A	X	0	3
23	MP1A	Z	-13.097	3
24	MP1A	Mx	0	3
25	MP1A	X	0	2
26	MP1A	Z	-30.651	2
27	MP1A	Mx	0	2
28	MP1A	Χ	0	6
29	MP1A	Z	-30.651	6
30	MP1A	Mx	0	6
31	MP4A	X	0	2
32	MP4A	Z	-30.651	2
33	MP4A	Mx	0	2
34	MP4A	X	0	6
35	MP4A	Z	-30.651	6
36	MP4A	Mx	0	6

Member Point Loads (BLC 16: Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	14.789	2
2	MP2A	Z	-25.615	2
3	MP2A	Mx	027	2
4	MP2A	X	14.789	6
5	MP2A	Z	-25.615	6
6	MP2A	Mx	027	6
7	MP2A	X	14.789	2
8	MP2A	Z	-25.615	2
9	MP2A	Mx	.012	2
10	MP2A	X	14.789	6
11	MP2A	Z	-25.615	6
12	MP2A	Mx	.012	6
13	MP3A	X	6.654	3
14	MP3A	Z	-11.525	3
15	MP3A	Mx	003	3
16	MP3A	X	6.654	5
17	MP3A	Z	-11.525	5

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP3A	Mx	003	5
19	MP2A	X	6.05	3
20	MP2A	Z	-10.479	3
21	MP2A	Mx	.003	3
22	MP1A	X	5.861	3
23	MP1A	Z	-10.151	3
24	MP1A	Mx	.003	3
25	MP1A	X	14.941	2
26	MP1A	Z	-25.878	2
27	MP1A	Mx	007	2
28	MP1A	X	14.941	6
29	MP1A	Z	-25.878	6
30	MP1A	Mx	007	6
31	MP4A	X	14.941	2
32	MP4A	Z	-25.878	2
33	MP4A	Mx	007	2
34	MP4A	X	14.941	6
35	MP4A	Z	-25.878	6
36	MP4A	Mx	007	6

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	22.295	2
2	MP2A	Z	-12.872	2
3	MP2A	Mx	021	2
4	MP2A	Χ	22.295	6
5	MP2A	Z	-12.872	6
6	MP2A	Mx	021	6
7	MP2A	Χ	22.295	2
8	MP2A	Z	-12.872	2
9	MP2A	Mx	001	2
10	MP2A	Χ	22.295	6
11	MP2A	Z	-12.872	6
12	MP2A	Mx	001	6
13	MP3A	Χ	7.664	3
14	MP3A	Z	-4.425	3
15	MP3A	Mx	004	3
16	MP3A	X	7.664	5
17	MP3A	Z	-4.425	5
18	MP3A	Mx	004	5
19	MP2A	Χ	8.753	3
20	MP2A	Z	-5.053	3
21	MP2A	Mx	.004	3
22	MP1A	X	7.769	3
23	MP1A	Z	-4.485	3
24	MP1A	Mx	.004	3
25	MP1A	Х	24.546	2
26	MP1A	Z	-14.172	2
27	MP1A	Mx	012	2
28	MP1A	Χ	24.546	6
29	MP1A	Z	-14.172	6
30	MP1A	Mx	012	6
31	MP4A	Χ	24.546	2
32	MP4A	Z	-14.172	2
33	MP4A	Mx	012	2
34	MP4A	X	24.546	6

Member Point Loads (BLC 17: Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP4A	Z	-14.172	6
36	MP4A	Mx	012	6

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Χ	23.827	2
2	MP2A	Z	0	2
3	MP2A	Mx	012	2
4	MP2A	X	23.827	6
5	MP2A	Z	0	6
6	MP2A	Mx	012	6
7	MP2A	X	23.827	2
8	MP2A	Z	0	2
9	MP2A	Mx	012	2
10	MP2A	X	23.827	6
11	MP2A	Z	0	6
12	MP2A	Mx	012	6
13	MP3A	X	6.619	3
14	MP3A	Z	0	3
15	MP3A	Mx	003	3
16	MP3A	Χ	6.619	5
17	MP3A	Z	0	5
18	MP3A	Mx	003	5
19	MP2A	Χ	9.11	3
20	MP2A	Z	0	3
21	MP2A	Mx	.005	3
22	MP1A	Χ	7.596	3
23	MP1A	Z	0	3
24	MP1A	Mx	.004	3
25	MP1A	X	27.574	2
26	MP1A	Z	0	2
27	MP1A	Mx	014	2
28	MP1A	X	27.574	6
29	MP1A	Z	0	6
30	MP1A	Mx	014	6
31	MP4A	X	27.574	2
32	MP4A	Z	0	2
33	MP4A	Mx	014	2
34	MP4A	Χ	27.574	6
35	MP4A	Z	0	6
36	MP4A	Mx	014	6

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	22.295	2
2	MP2A	Z	12.872	2
3	MP2A	Mx	001	2
4	MP2A	X	22.295	6
5	MP2A	Z	12.872	6
6	MP2A	Mx	001	6
7	MP2A	X	22.295	2
8	MP2A	Z	12.872	2
9	MP2A	Mx	021	2
10	MP2A	X	22.295	6
11	MP2A	Z	12.872	6
12	MP2A	Mx	021	6

Member Point Loads (BLC 19: Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	X	7.664	3
14	MP3A	Z	4.425	3
15	MP3A	Mx	004	3
16	MP3A	X	7.664	5
17	MP3A	Z	4.425	5
18	MP3A	Mx	004	5
19	MP2A	X	8.753	3
20	MP2A	Z	5.053	3
21	MP2A	Mx	.004	3
22	MP1A	X	7.769	3
23	MP1A	Z	4.485	3
24	MP1A	Mx	.004	3
25	MP1A	X	24.546	2
26	MP1A	Z	14.172	2
27	MP1A	Mx	012	2
28	MP1A	X	24.546	6
29	MP1A	Z	14.172	6
30	MP1A	Mx	012	6
31	MP4A	X	24.546	2
32	MP4A	Z	14.172	2
33	MP4A	Mx	012	2
34	MP4A	X	24.546	6
35	MP4A	Z	14.172	6
36	MP4A	Mx	012	6

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	14.789	2
2	MP2A	Z	25.615	2
3	MP2A	Mx	.012	2
4	MP2A	X	14.789	6
5	MP2A	Z	25.615	6
6	MP2A	Mx	.012	6
7	MP2A	X	14.789	2
8	MP2A	Z	25.615	2
9	MP2A	Mx	027	2
10	MP2A	X	14.789	6
11	MP2A	Z	25.615	6
12	MP2A	Mx	027	6
13	MP3A	X	6.654	3
14	MP3A	Z	11.525	3
15	MP3A	Mx	003	3
16	MP3A	X	6.654	5
17	MP3A	Z	11.525	5
18	MP3A	Mx	003	5
19	MP2A	X	6.05	3
20	MP2A	Z	10.479	3
21	MP2A	Mx	.003	3
22	MP1A	X	5.861	3
23	MP1A	Z	10.151	3
24	MP1A	Mx	.003	3
25	MP1A	X	14.941	2
26	MP1A	Z	25.878	2
27	MP1A	Mx	007	2
28	MP1A	X	14.941	6
29	MP1A	Z	25.878	6

Member Point Loads (BLC 20: Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
30	MP1A	Mx	007	6
31	MP4A	X	14.941	2
32	MP4A	Z	25.878	2
33	MP4A	Mx	007	2
34	MP4A	X	14.941	6
35	MP4A	Z	25.878	6
36	MP4A	Mx	007	6

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2
2	MP2A	Z	31.495	2
3	MP2A	Mx	.024	2
4	MP2A	X	0	6
5	MP2A	Z	31.495	6
6	MP2A	Mx	.024	6
7	MP2A	X	0	2
8	MP2A	Z	31.495	2
9	MP2A	Mx	024	2
10	MP2A	X	0	6
11	MP2A	Z	31.495	6
12	MP2A	Mx	024	6
13	MP3A	Χ	0	3
14	MP3A	Z	15.538	3
15	MP3A	Mx	0	3
16	MP3A	X	0	5
17	MP3A	Z	15.538	5
18	MP3A	Mx	0	5
19	MP2A	X	0	3
20	MP2A	Z	13.097	3
21	MP2A	Mx	0	3
22	MP1A	X	0	3
23	MP1A	Z	13.097	3
24	MP1A	Mx	0	3
25	MP1A	X	0	2
26	MP1A	Z	30.651	2
27	MP1A	Mx	0	2
28	MP1A	X	0	6
29	MP1A	Z	30.651	6
30	MP1A	Mx	0	6
31	MP4A	X	0	2
32	MP4A	Z	30.651	2
33	MP4A	Mx	0	2
34	MP4A	X	0	6
35	MP4A	Z	30.651	6
36	MP4A	Mx	0	6

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Χ	-14.789	2
2	MP2A	Z	25.615	2
3	MP2A	Mx	.027	2
4	MP2A	X	-14.789	6
5	MP2A	Z	25.615	6
6	MP2A	Mx	.027	6
7	MP2A	Χ	-14.789	2

Member Point Loads (BLC 22: Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8	MP2A	Z	25.615	2
9	MP2A	Mx	012	2
10	MP2A	X	-14.789	6
11	MP2A	Z	25.615	6
12	MP2A	Mx	012	6
13	MP3A	X	-6.654	3
14	MP3A	Z	11.525	3
15	MP3A	Mx	.003	3
16	MP3A	X	-6.654	5
17	MP3A	Z	11.525	5
18	MP3A	Mx	.003	5
19	MP2A	X	-6.05	3
20	MP2A	Z	10.479	3
21	MP2A	Mx	003	3
22	MP1A	Χ	-5.861	3
23	MP1A	Z	10.151	3
24	MP1A	Mx	003	3
25	MP1A	X	-14.941	2
26	MP1A	Z	25.878	2
27	MP1A	Mx	.007	2
28	MP1A	X	-14.941	6
29	MP1A	Z	25.878	6
30	MP1A	Mx	.007	6
31	MP4A	X	-14.941	2
32	MP4A	Z	25.878	2
33	MP4A	Mx	.007	2
34	MP4A	X	-14.941	6
35	MP4A	Z	25.878	6
36	MP4A	Mx	.007	6

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-22.295	2
2	MP2A	Z	12.872	2
3	MP2A	Mx	.021	2
4	MP2A	Χ	-22.295	6
5	MP2A	Z	12.872	6
6	MP2A	Mx	.021	6
7	MP2A	Χ	-22.295	2
8	MP2A	Z	12.872	2
9	MP2A	Mx	.001	2
10	MP2A	X	-22.295	6
11	MP2A	Z	12.872	6
12	MP2A	Mx	.001	6
13	MP3A	X	-7.664	3
14	MP3A	Z	4.425	3
15	MP3A	Mx	.004	3
16	MP3A	X	-7.664	5
17	MP3A	Z	4.425	5
18	MP3A	Mx	.004	5
19	MP2A	X	-8.753	3
20	MP2A	Z	5.053	3
21	MP2A	Mx	004	3
22	MP1A	X	-7.769	3
23	MP1A	Z	4.485	3
24	MP1A	Mx	004	3

Member Point Loads (BLC 23: Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP1A	X	-24.546	2
26	MP1A	Z	14.172	2
27	MP1A	Mx	.012	2
28	MP1A	X	-24.546	6
29	MP1A	Z	14.172	6
30	MP1A	Mx	.012	6
31	MP4A	X	-24.546	2
32	MP4A	Z	14.172	2
33	MP4A	Mx	.012	2
34	MP4A	X	-24.546	6
35	MP4A	Z	14.172	6
36	MP4A	Mx	.012	6

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-23.827	2
2	MP2A	Ζ	0	2
3	MP2A	Mx	.012	2
4	MP2A	X	-23.827	6
5	MP2A	Ζ	0	6
6	MP2A	Mx	.012	6
7	MP2A	X	-23.827	2
8	MP2A	Z	0	2
9	MP2A	Mx	.012	2
10	MP2A	X	-23.827	6
11	MP2A	Ζ	0	6
12	MP2A	Mx	.012	6
13	MP3A	X	-6.619	3
14	MP3A	Z	0	3
15	MP3A	Mx	.003	3
16	MP3A	X	-6.619	5
17	MP3A	Z	0	5
18	MP3A	Mx	.003	5
19	MP2A	X	-9.11	3
20	MP2A	Z	0	3
21	MP2A	Mx	005	3
22	MP1A	X	-7.596	3
23	MP1A	Z	0	3
24	MP1A	Mx	004	3
25	MP1A	Χ	-27.574	2
26	MP1A	Z	0	2
27	MP1A	Mx	.014	2
28	MP1A	X	-27.574	6
29	MP1A	Z	0	6
30	MP1A	Mx	.014	6
31	MP4A	X	-27.574	2
32	MP4A	Z	0	2
33	MP4A	Mx	.014	2
34	MP4A	Χ	-27.574	6
35	MP4A	Z	0	6
36	MP4A	Mx	.014	6

Member Point Loads (BLC 25: Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Χ	-22.295	2
2	MP2A	Z	-12.872	2

Member Point Loads (BLC 25: Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP2A	Mx	.001	2
4	MP2A	X	-22.295	6
5	MP2A	Z	-12.872	6
6	MP2A	Mx	.001	6
7	MP2A	X	-22.295	2
8	MP2A	Z	-12.872	2
9	MP2A	Mx	.021	2
10	MP2A	X	-22.295	6
11	MP2A	Z	-12.872	6
12	MP2A	Mx	.021	6
13	MP3A	X	-7.664	3
14	MP3A	Z	-4.425	3
15	MP3A	Mx	.004	3
16	MP3A	Х	-7.664	5
17	MP3A	Z	-4.425	5
18	MP3A	Mx	.004	5
19	MP2A	X	-8.753	3
20	MP2A	Z	-5.053	3
21	MP2A	Mx	004	3
22	MP1A	X	-7.769	3
23	MP1A	Z	-4.485	3
24	MP1A	Mx	004	3
25	MP1A	X	-24.546	2
26	MP1A	Z	-14.172	2
27	MP1A	Mx	.012	2
28	MP1A	X	-24.546	6
29	MP1A	Z	-14.172	6
30	MP1A	Mx	.012	6
31	MP4A	X	-24.546	2
32	MP4A	Z	-14.172	2
33	MP4A	Mx	.012	2
34	MP4A	Χ	-24.546	6
35	MP4A	Z	-14.172	6
36	MP4A	Mx	.012	6

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-14.789	2
2	MP2A	Z	-25.615	2
3	MP2A	Mx	012	2
4	MP2A	X	-14.789	6
5	MP2A	Z	-25.615	6
6	MP2A	Mx	012	6
7	MP2A	X	-14.789	2
8	MP2A	Z	-25.615	2
9	MP2A	Mx	.027	2
10	MP2A	X	-14.789	6
11	MP2A	Z	-25.615	6
12	MP2A	Mx	.027	6
13	MP3A	X	-6.654	3
14	MP3A	Z	-11.525	3
15	MP3A	Mx	.003	3
16	MP3A	X	-6.654	5
17	MP3A	Z	-11.525	5
18	MP3A	Mx	.003	5
19	MP2A	X	-6.05	3

Member Point Loads (BLC 26: Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP2A	Z	-10.479	3
21	MP2A	Mx	003	3
22	MP1A	X	-5.861	3
23	MP1A	Z	-10.151	3
24	MP1A	Mx	003	3
25	MP1A	X	-14.941	2
26	MP1A	Z	-25.878	2
27	MP1A	Mx	.007	2
28	MP1A	X	-14.941	6
29	MP1A	Z	-25.878	6
30	MP1A	Mx	.007	6
31	MP4A	X	-14.941	2
32	MP4A	Z	-25.878	2
33	MP4A	Mx	.007	2
34	MP4A	X	-14.941	6
35	MP4A	Z	-25.878	6
36	MP4A	Mx	.007	6

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2
2	MP2A	Z	-10.397	2
3	MP2A	Mx	008	2
4	MP2A	Χ	0	6
5	MP2A	Z	-10.397	6
6	MP2A	Mx	008	6
7	MP2A	Χ	0	2
8	MP2A	Z	-10.397	2
9	MP2A	Mx	.008	2
10	MP2A	Χ	0	6
11	MP2A	Z	-10.397	6
12	MP2A	Mx	.008	6
13	MP3A	Χ	0	3
14	MP3A	Z	-4.951	3
15	MP3A	Mx	0	3
16	MP3A	Χ	0	5
17	MP3A	Z	-4.951	5
18	MP3A	Mx	0	5
19	MP2A	Χ	0	3
20	MP2A	Z	-3.265	3
21	MP2A	Mx	0	3
22	MP1A	Χ	0	3
23	MP1A	Z	-3.265	3
24	MP1A	Mx	0	3
25	MP1A	Χ	0	2
26	MP1A	Z	-10.112	2
27	MP1A	Mx	0	2
28	MP1A	Χ	0	6
29	MP1A	Z	-10.112	6
30	MP1A	Mx	0	6
31	MP4A	Χ	0	2
32	MP4A	Z	-10.112	2
33	MP4A	Mx	0	2
34	MP4A	Χ	0	6
35	MP4A	Z	-10.112	6
36	MP4A	Mx	0	6

Member Point Loads (BLC 28: Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	4.865	2
2	MP2A	Z	-8.426	2
3	MP2A	Mx	009	2
4	MP2A	X	4.865	6
5	MP2A	Z	-8.426	6
6	MP2A	Mx	009	6
7	MP2A	X	4.865	2
8	MP2A	Z	-8.426	2
9	MP2A	Mx	.004	2
10	MP2A	X	4.865	6
11	MP2A	Z	-8.426	6
12	MP2A	Mx	.004	6
13	MP3A	X	2.099	3
14	MP3A	Z	-3.635	3
15	MP3A	Mx	001	3
16	MP3A	X	2.099	5
17	MP3A	Z	-3.635	5
18	MP3A	Mx	001	5
19	MP2A	X	1.498	3
20	MP2A	Z	-2.595	3
21	MP2A	Mx	.000749	3
22	MP1A	X	1.448	3
23	MP1A	Z	-2.509	3
24	MP1A	Mx	.000724	3
25	MP1A	X	4.921	2
26	MP1A	Z	-8.524	2
27	MP1A	Mx	002	2
28	MP1A	X	4.921	6
29	MP1A	Z	-8.524	6
30	MP1A	Mx	002	6
31	MP4A	X	4.921	2
32	MP4A	Z	-8.524	2
33	MP4A	Mx	002	2
34	MP4A	X	4.921	6
35	MP4A	Z	-8.524	6
36	MP4A	Mx	002	6

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	7.271	2
2	MP2A	Z	-4.198	2
3	MP2A	Mx	007	2
4	MP2A	X	7.271	6
5	MP2A	Z	-4.198	6
6	MP2A	Mx	007	6
7	MP2A	X	7.271	2
8	MP2A	Z	-4.198	2
9	MP2A	Mx	000487	2
10	MP2A	X	7.271	6
11	MP2A	Z	-4.198	6
12	MP2A	Mx	000487	6
13	MP3A	X	2.331	3
14	MP3A	Z	-1.346	3
15	MP3A	Mx	001	3
16	MP3A	X	2.331	5
17	MP3A	Z	-1.346	5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP3A	Mx	001	5
19	MP2A	X	2.13	3
20	MP2A	Z	-1.23	3
21	MP2A	Mx	.001	3
22	MP1A	X	1.87	3
23	MP1A	Z	-1.08	3
24	MP1A	Mx	.000935	3
25	MP1A	X	8.056	2
26	MP1A	Z	-4.651	2
27	MP1A	Mx	004	2
28	MP1A	X	8.056	6
29	MP1A	Z	-4.651	6
30	MP1A	Mx	004	6
31	MP4A	X	8.056	2
32	MP4A	Z	-4.651	2
33	MP4A	Mx	004	2
34	MP4A	X	8.056	6
35	MP4A	Z	-4.651	6
36	MP4A	Mx	004	6

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	7.729	2
2	MP2A	Z	0	2
3	MP2A	Mx	004	2
4	MP2A	X	7.729	6
5	MP2A	Z	0	6
6	MP2A	Mx	004	6
7	MP2A	X	7.729	2
8	MP2A	Z	0	2
9	MP2A	Mx	004	2
10	MP2A	X	7.729	6
11	MP2A	Z	0	6
12	MP2A	Mx	004	6
13	MP3A	Χ	1.938	3
14	MP3A	Z	0	3
15	MP3A	Mx	000969	3
16	MP3A	Χ	1.938	5
17	MP3A	Z	0	5
18	MP3A	Mx	000969	5
19	MP2A	Χ	2.191	3
20	MP2A	Z	0	3
21	MP2A	Mx	.001	3
22	MP1A	X	1.791	3
23	MP1A	Z	0	3
24	MP1A	Mx	.000895	3
25	MP1A	Χ	9.032	2
26	MP1A	Z	0	2
27	MP1A	Mx	005	2
28	MP1A	Χ	9.032	6
29	MP1A	Z	0	6
30	MP1A	Mx	005	6
31	MP4A	X	9.032	2
32	MP4A	Z	0	2
33	MP4A	Mx	005	2
34	MP4A	Χ	9.032	6

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP4A	Z	0	6
36	MP4A	Mx	- 005	6

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	7.271	2
2	MP2A	Z	4.198	2
3	MP2A	Mx	000487	2
4	MP2A	X	7.271	6
5	MP2A	Z	4.198	6
6	MP2A	Mx	000487	6
7	MP2A	X	7.271	2
8	MP2A	Z	4.198	2
9	MP2A	Mx	007	2
10	MP2A	X	7.271	6
11	MP2A	Z	4.198	6
12	MP2A	Mx	007	6
13	MP3A	X	2.331	3
14	MP3A	Z	1.346	3
15	MP3A	Mx	001	3
16	MP3A	X	2.331	5
17	MP3A	Z	1.346	5
18	MP3A	Mx	001	5
19	MP2A	X	2.13	3
20	MP2A	Z	1.23	3
21	MP2A	Mx	.001	3
22	MP1A	X	1.87	3
23	MP1A	Z	1.08	3
24	MP1A	Mx	.000935	3
25	MP1A	X	8.056	2
26	MP1A	Z	4.651	2
27	MP1A	Mx	004	2
28	MP1A	X	8.056	6
29	MP1A	Z	4.651	6
30	MP1A	Mx	004	6
31	MP4A	X	8.056	2
32	MP4A	Z	4.651	2
33	MP4A	Mx	004	2
34	MP4A	X	8.056	6
35	MP4A	Z	4.651	6
36	MP4A	Mx	004	6

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	4.865	2
2	MP2A	Z	8.426	2
3	MP2A	Mx	.004	2
4	MP2A	X	4.865	6
5	MP2A	Z	8.426	6
6	MP2A	Mx	.004	6
7	MP2A	X	4.865	2
8	MP2A	Z	8.426	2
9	MP2A	Mx	009	2
10	MP2A	X	4.865	6
11	MP2A	Z	8.426	6
12	MP2A	Mx	009	6

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	X	2.099	3
14	MP3A	Z	3.635	3
15	MP3A	Mx	001	3
16	MP3A	X	2.099	5
17	MP3A	Z	3.635	5
18	MP3A	Mx	001	5
19	MP2A	X	1.498	3
20	MP2A	Z	2.595	3
21	MP2A	Mx	.000749	3
22	MP1A	X	1.448	3
23	MP1A	Z	2.509	3
24	MP1A	Mx	.000724	3
25	MP1A	X	4.921	2
26	MP1A	Z	8.524	2
27	MP1A	Mx	002	2
28	MP1A	X	4.921	6
29	MP1A	Z	8.524	6
30	MP1A	Mx	002	6
31	MP4A	X	4.921	2
32	MP4A	Z	8.524	2
33	MP4A	Mx	002	2
34	MP4A	X	4.921	6
35	MP4A	Z	8.524	6
36	MP4A	Mx	002	6

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Χ	0	2
2	MP2A	Z	10.397	2
3	MP2A	Mx	.008	2
4	MP2A	Χ	0	6
5	MP2A	Z	10.397	6
6	MP2A	Mx	.008	6
7	MP2A	X	0	2
8	MP2A	Z	10.397	2
9	MP2A	Mx	008	2
10	MP2A	X	0	6
11	MP2A	Z	10.397	6
12	MP2A	Mx	008	6
13	MP3A	X	0	3
14	MP3A	Z	4.951	3
15	MP3A	Mx	0	3
16	MP3A	X	0	5
17	MP3A	Z	4.951	5
18	MP3A	Mx	0	5
19	MP2A	X	0	3
20	MP2A	Z	3.265	3
21	MP2A	Mx	0	3
22	MP1A	X	0	3
23	MP1A	Z	3.265	3
24	MP1A	Mx	0	3
25	MP1A	X	0	2
26	MP1A	Z	10.112	2
27	MP1A	Mx	0	2
28	MP1A	X	0	6
29	MP1A	Z	10.112	6

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
30	MP1A	Mx	0	6
31	MP4A	X	0	2
32	MP4A	Z	10.112	2
33	MP4A	Mx	0	2
34	MP4A	X	0	6
35	MP4A	Z	10.112	6
36	MP4A	Mx	0	6

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-4.865	2
2	MP2A	Z	8.426	2
3	MP2A	Mx	.009	2
4	MP2A	X	-4.865	6
5	MP2A	Z	8.426	6
6	MP2A	Mx	.009	6
7	MP2A	Χ	-4.865	2
8	MP2A	Z	8.426	2
9	MP2A	Mx	004	2
10	MP2A	X	-4.865	6
11	MP2A	Z	8.426	6
12	MP2A	Mx	004	6
13	MP3A	X	-2.099	3
14	MP3A	Z	3.635	3
15	MP3A	Mx	.001	3
16	MP3A	X	-2.099	5
17	MP3A	Z	3.635	5
18	MP3A	Mx	.001	5
19	MP2A	X	-1.498	3
20	MP2A	Z	2.595	3
21	MP2A	Mx	000749	3
22	MP1A	X	-1.448	3
23	MP1A	Z	2.509	3
24	MP1A	Mx	000724	3
25	MP1A	X	-4.921	2
26	MP1A	Z	8.524	2
27	MP1A	Mx	.002	2
28	MP1A	X	-4.921	6
29	MP1A	Z	8.524	6
30	MP1A	Mx	.002	6
31	MP4A	X	-4.921	2
32	MP4A	Z	8.524	2
33	MP4A	Mx	.002	2
34	MP4A	X	-4.921	6
35	MP4A	Z	8.524	6
36	MP4A	Mx	.002	6

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-7.271	2
2	MP2A	Z	4.198	2
3	MP2A	Mx	.007	2
4	MP2A	X	-7.271	6
5	MP2A	Z	4.198	6
6	MP2A	Mx	.007	6
7	MP2A	X	-7.271	2

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8	MP2A	Z	4.198	2
9	MP2A	Mx	.000487	2
10	MP2A	X	-7.271	6
11	MP2A	Z	4.198	6
12	MP2A	Mx	.000487	6
13	MP3A	X	-2.331	3
14	MP3A	Z	1.346	3
15	MP3A	Mx	.001	3
16	MP3A	X	-2.331	5
17	MP3A	Z	1.346	5
18	MP3A	Mx	.001	5
19	MP2A	X	-2.13	3
20	MP2A	Z	1.23	3
21	MP2A	Mx	001	3
22	MP1A	X	-1.87	3
23	MP1A	Z	1.08	3
24	MP1A	Mx	000935	3
25	MP1A	X	-8.056	2
26	MP1A	Z	4.651	2
27	MP1A	Mx	.004	2
28	MP1A	X	-8.056	6
29	MP1A	Z	4.651	6
30	MP1A	Mx	.004	6
31	MP4A	X	-8.056	2
32	MP4A	Z	4.651	2
33	MP4A	Mx	.004	2
34	MP4A	X	-8.056	6
35	MP4A	Z	4.651	6
36	MP4A	Mx	.004	6

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-7.729	2
2	MP2A	Z	0	2
3	MP2A	Mx	.004	2
4	MP2A	X	-7.729	6
5	MP2A	Z	0	6
6	MP2A	Mx	.004	6
7	MP2A	X	-7.729	2
8	MP2A	Z	0	2
9	MP2A	Mx	.004	2
10	MP2A	X	-7.729	6
11	MP2A	Z	0	6
12	MP2A	Mx	.004	6
13	MP3A	X	-1.938	3
14	MP3A	Z	0	3
15	MP3A	Mx	.000969	3
16	MP3A	X	-1.938	5
17	MP3A	Z	0	5
18	MP3A	Mx	.000969	5
19	MP2A	X	-2.191	3
20	MP2A	Z	0	3
21	MP2A	Mx	001	3
22	MP1A	X	-1.791	3
23	MP1A	Z	0	3
24	MP1A	Mx	000895	3

Member Point Loads (BLC 36: Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP1A	X	-9.032	2
26	MP1A	Z	0	2
27	MP1A	Mx	.005	2
28	MP1A	X	-9.032	6
29	MP1A	Z	0	6
30	MP1A	Mx	.005	6
31	MP4A	X	-9.032	2
32	MP4A	Z	0	2
33	MP4A	Mx	.005	2
34	MP4A	X	-9.032	6
35	MP4A	Z	0	6
36	MP4A	Mx	.005	6

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-7.271	2
2	MP2A	Z	-4.198	2
3	MP2A	Mx	.000487	2
4	MP2A	X	-7.271	6
5	MP2A	Z	-4.198	6
6	MP2A	Mx	.000487	6
7	MP2A	Χ	-7.271	2
8	MP2A	Z	-4.198	2
9	MP2A	Mx	.007	2
10	MP2A	X	-7.271	6
11	MP2A	Z	-4.198	6
12	MP2A	Mx	.007	6
13	MP3A	X	-2.331	3
14	MP3A	Z	-1.346	3
15	MP3A	Mx	.001	3
16	MP3A	X	-2.331	5
17	MP3A	Z	-1.346	5
18	MP3A	Mx	.001	5
19	MP2A	X	-2.13	3
20	MP2A	Z	-1.23	3
21	MP2A	Mx	001	3
22	MP1A	X	-1.87	3
23	MP1A	Z	-1.08	3
24	MP1A	Mx	000935	3
25	MP1A	X	-8.056	2
26	MP1A	Z	-4.651	2
27	MP1A	Mx	.004	2
28	MP1A	X	-8.056	6
29	MP1A	Z	-4.651	6
30	MP1A	Mx	.004	6
31	MP4A	X	-8.056	2
32	MP4A	Z	-4.651	2
33	MP4A	Mx	.004	2
34	MP4A	X	-8.056	6
35	MP4A	Z	-4.651	6
36	MP4A	Mx	.004	6

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-4.865	2
2	MP2A	Z	-8.426	2

Member Point Loads (BLC 38: Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP2A	Mx	004	2
4	MP2A	X	-4.865	6
5	MP2A	Z	-8.426	6
6	MP2A	Mx	004	6
7	MP2A	X	-4.865	2
8	MP2A	Z	-8.426	2
9	MP2A	Mx	.009	2
10	MP2A	X	-4.865	6
11	MP2A	Z	-8.426	6
12	MP2A	Mx	.009	6
13	MP3A	X	-2.099	3
14	MP3A	Z	-3.635	3
15	MP3A	Mx	.001	3
16	MP3A	X	-2.099	5
17	MP3A	Z	-3.635	5
18	MP3A	Mx	.001	5
19	MP2A	X	-1.498	3
20	MP2A	Z	-2.595	3
21	MP2A	Mx	000749	3
22	MP1A	Χ	-1.448	3
23	MP1A	Z	-2.509	3
24	MP1A	Mx	000724	3
25	MP1A	X	-4.921	2
26	MP1A	Z	-8.524	2
27	MP1A	Mx	.002	2
28	MP1A	Х	-4.921	6
29	MP1A	Z	-8.524	6
30	MP1A	Mx	.002	6
31	MP4A	Х	-4.921	2
32	MP4A	Z	-8.524	2
33	MP4A	Mx	.002	2
34	MP4A	X	-4.921	6
35	MP4A	Z	-8.524	6
36	MP4A	Mx	.002	6

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	LIVE1	Υ	-500	0

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	LIVE2	Υ	-500	0

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	FACE	Υ	-250	0

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	FACE	Υ	-250	%50

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Υ	981	2

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
2	MP2A	My	000491	2
3	MP2A	Mz	.000736	2
4	MP2A	Υ	981	6
5	MP2A	My	000491	6
6	MP2A	Mz	.000736	6
7	MP2A	Υ	981	2
8	MP2A	My	000491	2
9	MP2A	Mz	000736	2
10	MP2A	Υ	981	6
11	MP2A	My	000491	6
12	MP2A	Mz	000736	6
13	MP3A	Υ	-1.858	3
14	MP3A	My	000929	3
15	MP3A	Mz	0	3
16	MP3A	Υ	-1.858	5
17	MP3A	My	000929	5
18	MP3A	Mz	0	5
19	MP2A	Υ	-3.601	3
20	MP2A	My	.002	3
21	MP2A	Mz	0	3
22	MP1A	Υ	-2.999	3
23	MP1A	My	.002	3
24	MP1A	Mz	0	3
25	MP1A	Υ	576	2
26	MP1A	My	000288	2
27	MP1A	Mz	0	2
28	MP1A	Υ	576	6
29	MP1A	My	000288	6
30	MP1A	Mz	0	6
31	MP4A	Υ	576	2
32	MP4A	My	000288	2
33	MP4A	Mž	0	2
34	MP4A	Υ	576	6
35	MP4A	My	000288	6
36	MP4A	Mz	0	6

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Z	-2.453	2
2	MP2A	Mx	002	2
3	MP2A	Z	-2.453	6
4	MP2A	Mx	002	6
5	MP2A	Z	-2.453	2
6	MP2A	Mx	.002	2
7	MP2A	Z	-2.453	6
8	MP2A	Mx	.002	6
9	MP3A	Z	-4.645	3
10	MP3A	Mx	0	3
11	MP3A	Z	-4.645	5
12	MP3A	Mx	0	5
13	MP2A	Z	-9.003	3
14	MP2A	Mx	0	3
15	MP1A	Z	-7.499	3
16	MP1A	Mx	0	3
17	MP1A	Z	-1.44	2
18	MP1A	Mx	0	2

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
19	MP1A	Z	-1.44	6
20	MP1A	Mx	0	6
21	MP4A	Z	-1.44	2
22	MP4A	Mx	0	2
23	MP4A	Z	-1.44	6
24	MP4A	Mx	0	6

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	DOI TOTAL LOUGO (DLO GO			
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	2.453	2
2	MP2A	Mx	001	2
3	MP2A	X	2.453	6
4	MP2A	Mx	001	6
5	MP2A	X	2.453	2
6	MP2A	Mx	001	2
7	MP2A	X	2.453	6
8	MP2A	Mx	001	6
9	MP3A	Χ	4.645	3
10	MP3A	Mx	002	3
11	MP3A	Χ	4.645	5
12	MP3A	Mx	002	5
13	MP2A	Χ	9.003	3
14	MP2A	Mx	.005	3
15	MP1A	X	7.499	3
16	MP1A	Mx	.004	3
17	MP1A	Χ	1.44	2
18	MP1A	Mx	00072	2
19	MP1A	Χ	1.44	6
20	MP1A	Mx	00072	6
21	MP4A	Х	1.44	2
22	MP4A	Mx	00072	2
23	MP4A	Х	1.44	6
24	MP4A	Mx	00072	6

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	Υ	-5.69	-5.69	0	%100
2	M2	Υ	-5.69	-5.69	0	%100
3	M13	Υ	-6.65	-6.65	0	%100
4	M14	Υ	-6.65	-6.65	0	%100
5	M15	Υ	-6.65	-6.65	0	%100
6	M16	Υ	-6.65	-6.65	0	%100
7	M17	Υ	-4.984	-4.984	0	%100
8	M18	Υ	-4.984	-4.984	0	%100
9	M19	Υ	-4.984	-4.984	0	%100
10	M20	Υ	-4.984	-4.984	0	%100
11	M21	Υ	-6.65	-6.65	0	%100
12	M22	Υ	-6.65	-6.65	0	%100
13	M23	Υ	-6.65	-6.65	0	%100
14	M24	Υ	-6.65	-6.65	0	%100
15	M25	Υ	-2.69	-2.69	0	%100
16	M26	Υ	-2.69	-2.69	0	%100
17	M27	Υ	-2.69	-2.69	0	%100
18	M28	Υ	-2.69	-2.69	0	%100
19	MP4A	Υ	-4.984	-4.984	0	%100

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
20	MP3A	Υ	-4.984	-4.984	0	%100
21	MP2A	Υ	-4.984	-4.984	0	%100
22	MP1A	Υ	-4.984	-4.984	0	%100
23	M44	Υ	-2.513	-2.513	0	%100
24	M45	Υ	-2.513	-2.513	0	%100
25	M46	Υ	-2.513	-2.513	0	%100
26	M47	Υ	-2.513	-2.513	0	%100
27	M43	Υ	-4.984	-4.984	0	%100
28	M44A	Υ	-4.984	-4.984	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	Ö	0	0	%100
2	FACE	Z	-9.371	-9.371	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-9.371	-9.371	0	%100
5	M13	X	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	Х	0	0	0	%100
12	M16	Z	0	0	0	%100
13	M17	X	0	0	0	%100
14	M17	Z	-3.7	-3.7	0	%100
15	M18	Х	0	0	0	%100
16	M18	Z	-3.7	-3.7	0	%100
17	M19	Х	0	0	0	%100
18	M19	Z	-3.7	-3.7	0	%100
19	M20	Х	0	0	0	%100
20	M20	Z	-3.7	-3.7	0	%100
21	M21	Х	0	0	0	%100
22	M21	Z	-2.037	-2.037	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	-2.037	-2.037	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	-2.037	-2.037	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	-2.037	-2.037	0	%100
29	M25	Х	0	0	0	%100
30	M25	Z	-2.11	-2.11	0	%100
31	M26	Х	0	0	0	%100
32	M26	Z	-2.11	-2.11	0	%100
33	M27	Х	0	0	0	%100
34	M27	Z	-2.11	-2.11	0	%100
35	M28	Х	0	0	0	%100
36	M28	Z	-2.11	-2.11	0	%100
37	MP4A	Х	0	0	0	%100
38	MP4A	Z	-7.741	-7.741	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	-7.741	-7.741	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	-7.741	-7.741	Ō	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	-7.741	-7.741	0	%100

Member Distributed Loads (BLC 41: Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
45	M44	X	Ö	0	0	%100
46	M44	Z	-2.037	-2.037	0	%100
47	M45	X	0	0	0	%100
48	M45	Z	-2.037	-2.037	0	%100
49	M46	X	0	0	0	%100
50	M46	Z	-2.037	-2.037	0	%100
51	M47	X	0	0	0	%100
52	M47	Z	-2.037	-2.037	0	%100
53	M43	X	0	0	0	%100
54	M43	Z	513	513	0	%100
55	M44A	X	0	0	0	%100
56	M44A	Z	513	513	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	3.514	3.514	0	%100
2	FACE	Z	-6.086	-6.086	0	%100
3	M2	X	3.514	3.514	0	%100
4	M2	Z	-6.086	-6.086	0	%100
5	M13	X	.255	.255	0	%100
6	M13	Z	441	441	0	%100
7	M14	X	.255	.255	0	%100
8	M14	Z	441	441	0	%100
9	M15	X	.255	.255	0	%100
10	M15	Z	441	441	0	%100
11	M16	X	.255	.255	0	%100
12	M16	Z	441	441	0	%100
13	M17	X	.416	.416	0	%100
14	M17	Z	721	721	0	%100
15	M18	X	.416	.416	0	%100
16	M18	Z	721	721	0	%100
17	M19	X	2.925	2.925	0	%100
18	M19	Z	-5.067	-5.067	0	%100
19	M20	X	2.925	2.925	0	%100
20	M20	Z	-5.067	-5.067	0	%100
21	M21	X	.764	.764	0	%100
22	M21	Z	-1.323	-1.323	0	%100
23	M22	X	.764	.764	0	%100
24	M22	Z	-1.323	-1.323	0	%100
25	M23	X	.764	.764	0	%100
26	M23	Z	-1.323	-1.323	0	%100
27	M24	X	.764	.764	0	%100
28	M24	Z	-1.323	-1.323	0	%100
29	M25	X	.844	.844	0	%100
30	M25	Z	-1.461	-1.461	0	%100
31	M26	X	.844	.844	0	%100
32	M26	Z	-1.461	-1.461	0	%100
33	M27	X	1.214	1.214	0	%100
34	M27	Z	-2.102	-2.102	0	%100
35	M28	X	1.214	1.214	0	%100
36	M28	Z	-2.102	-2.102	0	%100
37	MP4A	X	3.87	3.87	0	%100
38	MP4A	Z	-6.704	-6.704	0	%100
39	MP3A	X	3.87	3.87	0	%100
40	MP3A	Z	-6.704	-6.704	0	%100
41	MP2A	X	3.87	3.87	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
42	MP2A	Z	-6.704	-6.704	0	%100
43	MP1A	X	3.87	3.87	0	%100
44	MP1A	Z	-6.704	-6.704	0	%100
45	M44	X	1.019	1.019	0	%100
46	M44	Z	-1.764	-1.764	0	%100
47	M45	X	1.019	1.019	0	%100
48	M45	Z	-1.764	-1.764	0	%100
49	M46	X	1.019	1.019	0	%100
50	M46	Z	-1.764	-1.764	0	%100
51	M47	X	1.019	1.019	0	%100
52	M47	Z	-1.764	-1.764	0	%100
53	M43	X	1.93	1.93	0	%100
54	M43	Z	-3.343	-3.343	0	%100
55	M44A	X	.262	.262	0	%100
56	M44A	Z	453	453	0	%100

Member Distributed Loads (BLC 43: Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	2.029	2.029	0	%100
2	FACE	Z	-1.171	-1.171	0	%100
3	M2	X	2.029	2.029	0	%100
4	M2	Z	-1.171	-1.171	0	%100
5	M13	X	1.323	1.323	0	%100
6	M13	Z	764	764	0	%100
7	M14	X	1.323	1.323	0	%100
8	M14	Z	764	764	0	%100
9	M15	X	1.323	1.323	0	%100
10	M15	Z	764	764	0	%100
11	M16	X	1.323	1.323	0	%100
12	M16	Z	764	764	0	%100
13	M17	X	.102	.102	0	%100
14	M17	Z	059	059	0	%100
15	M18	Х	.102	.102	0	%100
16	M18	Z	059	059	0	%100
17	M19	X	4.447	4.447	0	%100
18	M19	Z	-2.568	-2.568	0	%100
19	M20	X	4.447	4.447	0	%100
20	M20	Z	-2.568	-2.568	0	%100
21	M21	X	.441	.441	0	%100
22	M21	Z	255	255	0	%100
23	M22	Х	.441	.441	0	%100
24	M22	Z	255	255	0	%100
25	M23	X	.441	.441	0	%100
26	M23	Z	255	255	0	%100
27	M24	X	.441	.441	0	%100
28	M24	Z	255	255	0	%100
29	M25	X	1.37	1.37	0	%100
30	M25	Z	791	791	0	%100
31	M26	X	1.37	1.37	0	%100
32	M26	Z	791	791	0	%100
33	M27	X	2.011	2.011	0	%100
34	M27	Z	-1.161	-1.161	0	%100
35	M28	X	2.011	2.011	0	%100
36	M28	Z	-1.161	-1.161	0	%100
37	MP4A	X	6.704	6.704	0	%100
38	MP4A	Z	-3.87	-3.87	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
39	MP3A	X	6.704	6.704	0	%100
40	MP3A	Z	-3.87	-3.87	0	%100
41	MP2A	X	6.704	6.704	0	%100
42	MP2A	Z	-3.87	-3.87	0	%100
43	MP1A	X	6.704	6.704	0	%100
44	MP1A	Z	-3.87	-3.87	0	%100
45	M44	X	1.764	1.764	0	%100
46	M44	Z	-1.019	-1.019	0	%100
47	M45	X	1.764	1.764	0	%100
48	M45	Z	-1.019	-1.019	0	%100
49	M46	X	1.764	1.764	0	%100
50	M46	Z	-1.019	-1.019	0	%100
51	M47	X	1.764	1.764	0	%100
52	M47	Z	-1.019	-1.019	0	%100
53	M43	X	6.25	6.25	0	%100
54	M43	Z	-3.609	-3.609	0	%100
55	M44A	X	3.361	3.361	0	%100
56	M44A	Z	-1.94	-1.94	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	0	0	0	%100
2	FACE	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	X	2.037	2.037	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	2.037	2.037	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	2.037	2.037	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	2.037	2.037	0	%100
12	M16	Z	0	0	0	%100
13	M17	X	2.269	2.269	0	%100
14	M17	Z	0	0	0	%100
15	M18	X	2.269	2.269	0	%100
16	M18	Z	0	0	0	%100
17	M19	Х	2.269	2.269	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	2.269	2.269	0	%100
20	M20	Z	0	0	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	0	0	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	1.899	1.899	0	%100
30	M25	Z	0	0	0	%100
31	M26	Х	1.899	1.899	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	1.899	1.899	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	1.899	1.899	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
36	M28	Z	0	0	0	%100
37	MP4A	X	7.741	7.741	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	7.741	7.741	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	7.741	7.741	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	7.741	7.741	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	X	2.037	2.037	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	2.037	2.037	0	%100
48	M45	Z	0	0	0	%100
49	M46	X	2.037	2.037	0	%100
50	M46	Z	0	0	0	%100
51	M47	X	2.037	2.037	0	%100
52	M47	Z	0	0	0	%100
53	M43	X	7.227	7.227	0	%100
54	M43	Z	0	0	0	%100
55	M44A	X	7.227	7.227	0	%100
56	M44A	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	2.029	2.029	0	%100
2	FACE	Z	1.171	1.171	0	%100
3	M2	X	2.029	2.029	0	%100
4	M2	Z	1.171	1.171	0	%100
5	M13	Х	1.323	1.323	0	%100
6	M13	Z	.764	.764	0	%100
7	M14	X	1.323	1.323	0	%100
8	M14	Z	.764	.764	0	%100
9	M15	X	1.323	1.323	0	%100
10	M15	Z	.764	.764	0	%100
11	M16	Х	1.323	1.323	0	%100
12	M16	Z	.764	.764	0	%100
13	M17	X	4.447	4.447	0	%100
14	M17	Z	2.568	2.568	0	%100
15	M18	Х	4.447	4.447	0	%100
16	M18	Z	2.568	2.568	0	%100
17	M19	Х	.102	.102	0	%100
18	M19	Z	.059	.059	0	%100
19	M20	Х	.102	.102	0	%100
20	M20	Z	.059	.059	0	%100
21	M21	Х	.441	.441	0	%100
22	M21	Z	.255	.255	0	%100
23	M22	X	.441	.441	0	%100
24	M22	Z	.255	.255	0	%100
25	M23	X	.441	.441	0	%100
26	M23	Z	.255	.255	0	%100
27	M24	X	.441	.441	0	%100
28	M24	Z	.255	.255	0	%100
29	M25	Х	2.011	2.011	0	%100
30	M25	Z	1.161	1.161	0	%100
31	M26	Х	2.011	2.011	0	%100
32	M26	Z	1.161	1.161	0	%100

Member Distributed Loads (BLC 45: Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
33	M27	X	1.37	1.37	0	%100
34	M27	Z	.791	.791	0	%100
35	M28	X	1.37	1.37	0	%100
36	M28	Z	.791	.791	0	%100
37	MP4A	X	6.704	6.704	0	%100
38	MP4A	Z	3.87	3.87	0	%100
39	MP3A	X	6.704	6.704	0	%100
40	MP3A	Z	3.87	3.87	0	%100
41	MP2A	X	6.704	6.704	0	%100
42	MP2A	Z	3.87	3.87	0	%100
43	MP1A	X	6.704	6.704	0	%100
44	MP1A	Z	3.87	3.87	0	%100
45	M44	X	1.764	1.764	0	%100
46	M44	Z	1.019	1.019	0	%100
47	M45	X	1.764	1.764	0	%100
48	M45	Z	1.019	1.019	0	%100
49	M46	X	1.764	1.764	0	%100
50	M46	Z	1.019	1.019	0	%100
51	M47	X	1.764	1.764	0	%100
52	M47	Z	1.019	1.019	0	%100
53	M43	X	3.361	3.361	0	%100
54	M43	Z	1.94	1.94	0	%100
55	M44A	X	6.25	6.25	0	%100
56	M44A	Z	3.609	3.609	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	3.514	3.514	0	%100
2	FACE	Z	6.086	6.086	0	%100
3	M2	X	3.514	3.514	0	%100
4	M2	Z	6.086	6.086	0	%100
5	M13	X	.255	.255	0	%100
6	M13	Z	.441	.441	0	%100
7	M14	X	.255	.255	0	%100
8	M14	Z	.441	.441	0	%100
9	M15	X	.255	.255	0	%100
10	M15	Z	.441	.441	0	%100
11	M16	X	.255	.255	0	%100
12	M16	Z	.441	.441	0	%100
13	M17	X	2.925	2.925	0	%100
14	M17	Z	5.067	5.067	0	%100
15	M18	X	2.925	2.925	0	%100
16	M18	Z	5.067	5.067	0	%100
17	M19	X	.416	.416	0	%100
18	M19	Z	.721	.721	0	%100
19	M20	X	.416	.416	0	%100
20	M20	Z	.721	.721	0	%100
21	M21	X	.764	.764	0	%100
22	M21	Z	1.323	1.323	0	%100
23	M22	X	.764	.764	0	%100
24	M22	Z	1.323	1.323	0	%100
25	M23	X	.764	.764	0	%100
26	M23	Z	1.323	1.323	0	%100
27	M24	X	.764	.764	0	%100
28	M24	Z	1.323	1.323	0	%100
29	M25	X	1.214	1.214	0	%100

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
30	M25	Z	2.102	2.102	0	%100
31	M26	X	1.214	1.214	0	%100
32	M26	Z	2.102	2.102	0	%100
33	M27	Х	.844	.844	0	%100
34	M27	Z	1.461	1.461	0	%100
35	M28	X	.844	.844	0	%100
36	M28	Z	1.461	1.461	0	%100
37	MP4A	X	3.87	3.87	0	%100
38	MP4A	Z	6.704	6.704	0	%100
39	MP3A	X	3.87	3.87	0	%100
40	MP3A	Z	6.704	6.704	0	%100
41	MP2A	X	3.87	3.87	0	%100
42	MP2A	Z	6.704	6.704	0	%100
43	MP1A	Х	3.87	3.87	0	%100
44	MP1A	Z	6.704	6.704	0	%100
45	M44	X	1.019	1.019	0	%100
46	M44	Z	1.764	1.764	0	%100
47	M45	X	1.019	1.019	0	%100
48	M45	Z	1.764	1.764	0	%100
49	M46	X	1.019	1.019	0	%100
50	M46	Z	1.764	1.764	0	%100
51	M47	X	1.019	1.019	0	%100
52	M47	Z	1.764	1.764	0	%100
53	M43	X	.262	.262	0	%100
54	M43	Z	.453	.453	0	%100
55	M44A	X	1.93	1.93	0	%100
56	M44A	Z	3.343	3.343	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	0	0	0	%100
2	FACE	Z	9.371	9.371	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	9.371	9.371	0	%100
5	M13	X	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	0	0	0	%100
12	M16	Z	0	0	0	%100
13	M17	X	0	0	0	%100
14	M17	Z	3.7	3.7	0	%100
15	M18	X	0	0	0	%100
16	M18	Z	3.7	3.7	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	3.7	3.7	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	3.7	3.7	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	2.037	2.037	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	2.037	2.037	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	2.037	2.037	0	%100

Member Distributed Loads (BLC 47: Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
27	M24	X	0	0	0	%100
28	M24	Z	2.037	2.037	0	%100
29	M25	X	0	0	0	%100
30	M25	Z	2.11	2.11	0	%100
31	M26	X	0	0	0	%100
32	M26	Z	2.11	2.11	0	%100
33	M27	X	0	0	0	%100
34	M27	Z	2.11	2.11	0	%100
35	M28	X	0	0	0	%100
36	M28	Z	2.11	2.11	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	7.741	7.741	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	7.741	7.741	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	7.741	7.741	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	7.741	7.741	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	2.037	2.037	0	%100
47	M45	X	0	0	0	%100
48	M45	Z	2.037	2.037	0	%100
49	M46	X	0	0	0	%100
50	M46	Z	2.037	2.037	0	%100
51	M47	X	0	0	0	%100
52	M47	Z	2.037	2.037	0	%100
53	M43	X	0	0	0	%100
54	M43	Z	.513	.513	0	%100
55	M44A	X	0	0	0	%100
56	M44A	Z	.513	.513	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	-3.514	-3.514	0	%100
2	FACE	Z	6.086	6.086	0	%100
3	M2	X	-3.514	-3.514	0	%100
4	M2	Z	6.086	6.086	0	%100
5	M13	X	255	255	0	%100
6	M13	Z	.441	.441	0	%100
7	M14	X	255	255	0	%100
8	M14	Z	.441	.441	0	%100
9	M15	X	255	255	0	%100
10	M15	Z	.441	.441	0	%100
11	M16	X	255	255	0	%100
12	M16	Z	.441	.441	0	%100
13	M17	X	416	416	0	%100
14	M17	Z	.721	.721	0	%100
15	M18	Χ	416	416	0	%100
16	M18	Z	.721	.721	0	%100
17	M19	X	-2.925	-2.925	0	%100
18	M19	Z	5.067	5.067	0	%100
19	M20	X	-2.925	-2.925	0	%100
20	M20	Z	5.067	5.067	0	%100
21	M21	X	764	764	0	%100
22	M21	Z	1.323	1.323	0	%100
23	M22	Χ	764	764	0	%100

Member Distributed Loads (BLC 48: Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
24	M22	Z	1.323	1.323	0	%100
25	M23	X	764	764	0	%100
26	M23	Z	1.323	1.323	0	%100
27	M24	X	764	764	0	%100
28	M24	Z	1.323	1.323	0	%100
29	M25	X	844	844	0	%100
30	M25	Z	1.461	1.461	0	%100
31	M26	X	844	844	0	%100
32	M26	Z	1.461	1.461	0	%100
33	M27	X	-1.214	-1.214	0	%100
34	M27	Z	2.102	2.102	0	%100
35	M28	Х	-1.214	-1.214	0	%100
36	M28	Z	2.102	2.102	0	%100
37	MP4A	Х	-3.87	-3.87	0	%100
38	MP4A	Z	6.704	6.704	0	%100
39	MP3A	X	-3.87	-3.87	0	%100
40	MP3A	Z	6.704	6.704	0	%100
41	MP2A	X	-3.87	-3.87	0	%100
42	MP2A	Z	6.704	6.704	0	%100
43	MP1A	X	-3.87	-3.87	0	%100
44	MP1A	Z	6.704	6.704	0	%100
45	M44	X	-1.019	-1.019	0	%100
46	M44	Z	1.764	1.764	0	%100
47	M45	X	-1.019	-1.019	0	%100
48	M45	Z	1.764	1.764	0	%100
49	M46	X	-1.019	-1.019	0	%100
50	M46	Z	1.764	1.764	0	%100
51	M47	X	-1.019	-1.019	0	%100
52	M47	Z	1.764	1.764	0	%100
53	M43	X	-1.93	-1.93	0	%100
54	M43	Z	3.343	3.343	0	%100
55	M44A	Х	262	262	0	%100
56	M44A	Z	.453	.453	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	-2.029	-2.029	0	%100
2	FACE	Z	1.171	1.171	0	%100
3	M2	X	-2.029	-2.029	0	%100
4	M2	Z	1.171	1.171	0	%100
5	M13	X	-1.323	-1.323	0	%100
6	M13	Z	.764	.764	0	%100
7	M14	X	-1.323	-1.323	0	%100
8	M14	Z	.764	.764	0	%100
9	M15	X	-1.323	-1.323	0	%100
10	M15	Z	.764	.764	0	%100
11	M16	X	-1.323	-1.323	0	%100
12	M16	Z	.764	.764	0	%100
13	M17	X	102	102	0	%100
14	M17	Z	.059	.059	0	%100
15	M18	X	102	102	0	%100
16	M18	Z	.059	.059	0	%100
17	M19	X	-4.447	-4.447	0	%100
18	M19	Z	2.568	2.568	0	%100
19	M20	X	-4.447	-4.447	0	%100
20	M20	Z	2.568	2.568	0	%100

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
21	M21	X	441	- 441	0	%100
22	M21	Z	.255	.255	0	%100
23	M22	X	441	441	0	%100
24	M22	Z	.255	.255	0	%100
25	M23	X	441	441	0	%100
26	M23	Z	.255	.255	0	%100
27	M24	X	441	441	0	%100
28	M24	Z	.255	.255	0	%100
29	M25	X	-1.37	-1.37	0	%100
30	M25	Z	.791	.791	0	%100
31	M26	X	-1.37	-1.37	0	%100
32	M26	Z	.791	.791	0	%100
33	M27	X	-2.011	-2.011	0	%100
34	M27	Z	1.161	1.161	0	%100
35	M28	X	-2.011	-2.011	0	%100
36	M28	Z	1.161	1.161	0	%100
37	MP4A	X	-6.704	-6.704	0	%100
38	MP4A	Z	3.87	3.87	0	%100
39	MP3A	X	-6.704	-6.704	0	%100
40	MP3A	Z	3.87	3.87	0	%100
41	MP2A	X	-6.704	-6.704	0	%100
42	MP2A	Z	3.87	3.87	0	%100
43	MP1A	X	-6.704	-6.704	0	%100
44	MP1A	Z	3.87	3.87	0	%100
45	M44	X	-1.764	-1.764	0	%100
46	M44	Z	1.019	1.019	0	%100
47	M45	X	-1.764	-1.764	0	%100
48	M45	Z	1.019	1.019	0	%100
49	M46	X	-1.764	-1.764	0	%100
50	M46	Z	1.019	1.019	0	%100
51	M47	Х	-1.764	-1.764	0	%100
52	M47	Z	1.019	1.019	0	%100
53	M43	X	-6.25	-6.25	0	%100
54	M43	Z	3.609	3.609	0	%100
55	M44A	Х	-3.361	-3.361	0	%100
56	M44A	Z	1.94	1.94	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	Ô	0	0	%100
2	FACE	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	X	-2.037	-2.037	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	-2.037	-2.037	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	-2.037	-2.037	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	-2.037	-2.037	0	%100
12	M16	Z	0	0	0	%100
13	M17	X	-2.269	-2.269	0	%100
14	M17	Z	0	0	0	%100
15	M18	X	-2.269	-2.269	0	%100
16	M18	Z	0	0	0	%100
17	M19	X	-2.269	-2.269	0	%100

Member Distributed Loads (BLC 50: Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
18	M19	Z	0	0	0	%100
19	M20	X	-2.269	-2.269	0	%100
20	M20	Z	0	0	0	%100
21	M21	Х	0	0	0	%100
22	M21	Z	0	0	0	%100
23	M22	Х	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	Х	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	-1.899	-1.899	0	%100
30	M25	Z	0	0	0	%100
31	M26	X	-1.899	-1.899	0	%100
32	M26	Ž	0	0	Ö	%100
33	M27	X	-1.899	-1.899	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	-1.899	-1.899	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	X	-7.741	-7.741	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	-7.741	-7.741	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	-7.741	-7.741	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	-7.741	-7.741	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	X	-2.037	-2.037	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	-2.037	-2.037	0	%100
48	M45	Z	0	0	0	%100
49	M46	X	-2.037	-2.037	0	%100
50	M46	Ž	0	0	Ö	%100
51	M47	X	-2.037	-2.037	0	%100
52	M47	Z	0	0	Ö	%100
53	M43	X	-7.227	-7.227	Ö	%100
54	M43	Z	0	0	Ö	%100
55	M44A	X	-7.227	-7.227	0	%100 %100
56	M44A	Ž	0	0	Ö	%100

Member Distributed Loads (BLC 51: Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	-2.029	-2.029	0	%100
2	FACE	Z	-1.171	-1.171	0	%100
3	M2	X	-2.029	-2.029	0	%100
4	M2	Z	-1.171	-1.171	0	%100
5	M13	X	-1.323	-1.323	0	%100
6	M13	Z	764	764	0	%100
7	M14	X	-1.323	-1.323	0	%100
8	M14	Z	764	764	0	%100
9	M15	X	-1.323	-1.323	0	%100
10	M15	Z	764	764	0	%100
11	M16	X	-1.323	-1.323	0	%100
12	M16	Z	764	764	0	%100
13	M17	X	-4.447	-4.447	0	%100
14	M17	Z	-2.568	-2.568	0	%100

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
15	M18	Х	-4.447	-4.447	0	%100
16	M18	Z	-2.568	-2.568	0	%100
17	M19	Х	102	102	0	%100
18	M19	Z	059	059	0	%100
19	M20	X	102	102	0	%100
20	M20	Z	059	059	0	%100
21	M21	Х	441	441	0	%100
22	M21	Z	255	255	0	%100
23	M22	X	441	441	0	%100
24	M22	Z	255	255	0	%100
25	M23	X	441	441	0	%100
26	M23	Z	255	255	0	%100
27	M24	Х	441	441	0	%100
28	M24	Z	255	255	0	%100
29	M25	X	-2.011	-2.011	0	%100
30	M25	Z	-1.161	-1.161	0	%100
31	M26	X	-2.011	-2.011	0	%100
32	M26	Z	-1.161	-1.161	0	%100
33	M27	X	-1.37	-1.37	0	%100
34	M27	Z	791	791	0	%100
35	M28	Х	-1.37	-1.37	0	%100
36	M28	Z	791	791	0	%100
37	MP4A	X	-6.704	-6.704	0	%100
38	MP4A	Z	-3.87	-3.87	0	%100
39	MP3A	X	-6.704	-6.704	0	%100
40	MP3A	Z	-3.87	-3.87	0	%100
41	MP2A	X	-6.704	-6.704	0	%100
42	MP2A	Z	-3.87	-3.87	0	%100
43	MP1A	X	-6.704	-6.704	0	%100
44	MP1A	Z	-3.87	-3.87	0	%100
45	M44	X	-1.764	-1.764	0	%100
46	M44	Z	-1.019	-1.019	0	%100
47	M45	X	-1.764	-1.764	0	%100
48	M45	Z	-1.019	-1.019	0	%100
49	M46	X	-1.764	-1.764	0	%100
50	M46	Z	-1.019	-1.019	0	%100
51	M47	Х	-1.764	-1.764	0	%100
52	M47	Z	-1.019	-1.019	0	%100
53	M43	X	-3.361	-3.361	0	%100
54	M43	Z	-1.94	-1.94	0	%100
55	M44A	X	-6.25	-6.25	0	%100
56	M44A	Z	-3.609	-3.609	0	%100

Member Distributed Loads (BLC 52: Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	-3.514	-3.514	0	%100
2	FACE	Z	-6.086	-6.086	0	%100
3	M2	X	-3.514	-3.514	0	%100
4	M2	Z	-6.086	-6.086	0	%100
5	M13	X	255	255	0	%100
6	M13	Z	441	441	0	%100
7	M14	X	255	255	0	%100
8	M14	Z	441	441	0	%100
9	M15	X	255	255	0	%100
10	M15	Z	441	441	0	%100
11	M16	X	255	255	0	%100

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
12	M16	Z	441	441	0	%100
13	M17	X	-2.925	-2.925	0	%100
14	M17	Z	-5.067	-5.067	0	%100
15	M18	X	-2.925	-2.925	0	%100
16	M18	Z	-5.067	-5.067	0	%100
17	M19	X	416	416	0	%100
18	M19	Z	721	721	0	%100
19	M20	X	416	416	0	%100
20	M20	Ž	721	721	Ö	%100
21	M21	X	764	764	0	%100
22	M21	Z	-1.323	-1.323	Ö	%100
23	M22	X	764	764	0	%100
24	M22	Z	-1.323	-1.323	0	%100 %100
25	M23	X	764	764	0	%100 %100
26	M23	Z	-1.323	-1.323	Ö	%100 %100
27	M24	X	764	764	0	%100 %100
28	M24	Z	-1.323	-1.323	Ů Ů	%100 %100
29	M25	X	-1.214	-1.214	0	%100 %100
30	M25	Z	-2.102	-2.102	Ö	%100 %100
31	M26	X	-1.214	-1.214	0	%100 %100
32	M26	Z	-2.102	-2.102	0	%100 %100
33	M27	X	844	844	0	%100 %100
34	M27	Z	-1.461	-1.461	Ö	%100 %100
35	M28	X	844	844	0	%100 %100
36	M28	Z	-1.461	-1.461	Ö	%100 %100
37	MP4A	X	-3.87	-3.87	0	%100 %100
38	MP4A	Z	-6.704	-6.704	Ů 0	%100 %100
39	MP3A	X	-3.87	-3.87	0	%100 %100
40	MP3A	Z	-6.704	-6.704	0	%100 %100
41	MP2A	X	-3.87	-3.87	0	%100 %100
42	MP2A	Z	-6.704	-6.704	0	%100 %100
43	MP1A	X	-3.87	-3.87	0	%100 %100
44	MP1A	Z	-6.704	-6.704	0	%100 %100
45	M44	X	-1.019	-1.019	0	%100 %100
46	M44	Z	-1.764	-1.764	0	%100 %100
47	M45	X	-1.019	-1.019	0	%100 %100
48	M45	Z	-1.764	-1.764	0	%100 %100
49	M46	X	-1.019	-1.019	0	%100 %100
50	M46	Z	-1.764	-1.764	0	%100 %100
51	M47	X	-1.019	-1.019	0	%100 %100
52	M47	Z	-1.764	-1.764	0	%100 %100
53	M43	X	262	262	0	%100 %100
54	M43	Z	453	453	0	%100 %100
55	M44A	X	-1.93	-1.433 -1.93	0	%100 %100
56	M44A	Z	-3.343	-3.343	0	%100 %100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft.%]	End Location[ft.%]
1	FACE	X	Ŏ	0	0	%100
2	FACE	Z	-3.035	-3.035	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-3.035	-3.035	0	%100
5	M13	X	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	0	0	0	%100
8	M14	Z	0	0	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	0	0	0	%100
12	M16	Z	0	0	0	%100
13	M17	X	Ö	0	0	%100
14	M17	Z	-1.316	-1.316	0	%100
15	M18	X	0	0	0	%100
16	M18	Z	-1.316	-1.316	Ö	%100
17	M19	X	0	0	0	%100
18	M19	Z	-1.316	-1.316	0	%100
19	M20	X	0	0	0	%100 %100
20	M20	Z	-1.316	-1.316	0	%100 %100
21	M21	X	0	0	0	%100 %100
22	M21	Z	-1.161	-1.161	0	%100 %100
23	M22	X	0	0	0	%100 %100
24	M22	Z	-1.161	-1.161	0	%100 %100
25	M23	X	0	0	0	%100 %100
26	M23	Z	-1.161	-1.161	0	%100 %100
27	M24	X	0	0	0	%100 %100
28	M24	Z	-1.161	-1.161	0	%100 %100
29	M25	X	0	0	0	%100 %100
30	M25	Z	-1.473	-1.473	0	%100 %100
31	M26	X	0	0	0	%100 %100
32	M26	Z	-1.473	-1.473	0	%100 %100
33	M27	X	0	0	0	%100 %100
34	M27	Z	-1.473	-1.473	0	%100 %100
35	M28	X	0	0	0	%100 %100
36	M28	Z	-1.473	-1.473	0	%100 %100
37	MP4A	X	0	0	0	%100 %100
38	MP4A	Z	-2.742	-2.742	0	%100 %100
			-2.742	- <u>2.742</u> 0	0	
39	MP3A MP3A	X Z	-2.742	-2.742	0	%100 %100
40			0	0		
41	MP2A MP2A	X Z	-2.742	-2.742	0	%100 %100
43	MP1A	X	0	0	0	%100 %100
44	MP1A	Z	-2.742	-2.742	0	%100 %100
45	M44	X Z	0	0	0	%100 %100
46	M44		-1.526	-1.526	0	%100 %100
47	M45	X	0	0	0	%100
48	M45	Z	-1.526	-1.526	0	%100 %100
49	M46	X	0	0	0	%100
50	M46	Z	-1.526	-1.526	0	%100
51	M47	X	0	0	0	%100
52	M47	Z	-1.526	-1.526	0	%100
53	M43	X	0	0	0	%100
54	M43	Z	182	182	0	%100
55	M44A	X	0	0	0	%100
56	M44A	Z	182	182	0	%100

Member Distributed Loads (BLC 54: Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	1.138	1.138	0	%100
2	FACE	Z	-1.971	-1.971	0	%100
3	M2	X	1.138	1.138	0	%100
4	M2	Z	-1.971	-1.971	0	%100
5	M13	X	.144	.144	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
6	M13	Z	25	25	0	%100
7	M14	X	.144	.144	0	%100
8	M14	Z	25	25	0	%100
9	M15	X	.144	.144	0	%100
10	M15	Z	25	25	0	%100
11	M16	Х	.144	.144	0	%100
12	M16	Z	25	25	0	%100
13	M17	X	.148	.148	0	%100
14	M17	Z	257	257	0	%100
15	M18	Х	.148	.148	0	%100
16	M18	Z	257	257	0	%100
17	M19	X	1.041	1.041	0	%100
18	M19	Z	-1.802	-1.802	0	%100
19	M20	X	1.041	1.041	0	%100
20	M20	Ž	-1.802	-1.802	Ö	%100
21	M21	X	.435	.435	0	%100
22	M21	Z	754	754	Ö	%100
23	M22	X	.435	.435	0	%100
24	M22	Z	754	754	0	%100
25	M23	X	.435	.435	0	%100 %100
26	M23	Z	754	754	0	%100
27	M24	X	.435	.435	0	%100 %100
28	M24	Z	754	754	0	%100 %100
29	M25	X	.589	.589	0	%100 %100
30	M25	Z	-1.02	-1.02	0	%100 %100
31	M26	X	.589	.589	0	%100 %100
32	M26	Z	-1.02	-1.02	0	%100 %100
33	M27	X	.847	.847	0	%100 %100
34	M27	Z	-1.468	-1.468	0	%100 %100
35	M28	X	.847	.847	0	%100 %100
36	M28	Z	-1.468	-1.468	0	%100 %100
37	MP4A	X	1.371	1.371	0	%100 %100
38	MP4A	Z	-2.375	-2.375	0	%100 %100
39	MP3A	X	1.371	1.371	0	%100 %100
40	MP3A	Z	-2.375	-2.375	0	%100 %100
41	MP2A	X	1.371	1.371	0	%100 %100
42	MP2A	Z	-2.375	-2.375	0	%100 %100
43	MP1A	X	1.371	1.371	0	%100 %100
44	MP1A	Z	-2.375	-2.375	0	%100 %100
45	M44	X	.763	.763	0	%100 %100
46	M44	Z	-1.321	-1.321	0	%100 %100
47	M45	X	.763	.763	0	%100 %100
48	M45	Z	-1.321	-1.321	0	%100 %100
49	M46	X	.763	.763	0	%100 %100
50	M46	Z	-1.321	-1.321	0	%100 %100
51	M47	\ \ \ \ \ \ \	.763	.763	0	%100 %100
52	M47	X Z	-1.321	-1.321	0	%100 %100
53	M43	X	.684	.684	0	%100 %100
54	M43 M43	Z	-1.184	084 -1.184	0	%100 %100
55	M44A		.093	.093		%100 %100
56	M44A M44A	X Z	161	161	0	%100 %100
JU	IVI ~~		101	101		/0 1 0 0

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

_		Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
	1	FACE	X	.657	.657	0	%100
	2	FACE	Z	379	379	0	%100

Member Distributed Loads (BLC 55: Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft %]
3	M2	X	.657	.657	0	%100
4	M2	Z	379	379	Ö	%100
5	M13	X	.75	.75	0	%100
6	M13	Z	433	433	0	%100
7	M14	X	.75	.75	0	%100
8	M14	Z	433	433	0	%100
9	M15	X	.75	.75	0	%100
10	M15	Z	433	433	Ö	%100
11	M16	X	.75	.75	0	%100
12	M16	Z	433	433	Ö	%100
13	M17	X	.036	.036	0	%100
14	M17	Z	021	021	Ö	%100
15	M18	X	.036	.036	0	%100
16	M18	Z	021	021	Ö	%100
17	M19	X	1.582	1.582	0	%100
18	M19	Z	913	913	0	%100
19	M20	X	1.582	1.582	0	%100
20	M20	Z	913	913	0	%100
21	M21	X	.251	.251	0	%100
22	M21	Z	145	145	0	%100
23	M22	X	.251	.251	0	%100
24	M22	Z	145	145	0	%100
25	M23	X	.251	.251	0	%100
26	M23	Z	145	145	0	%100
27	M24	X	.251	.251	0	%100
28	M24	Z	145	145	0	%100
29	M25	X	.956	.956	0	%100
30	M25	Z	552	552	0	%100
31	M26	X	.956	.956	0	%100
32	M26	Z	552	552	0	%100
33	M27	X	1.404	1.404	0	%100
34	M27	Z	811	811	0	%100
35	M28	X	1.404	1.404	0	%100
36	M28	Z	811	811	0	%100
37	MP4A	X	2.375	2.375	0	%100
38	MP4A	Z	-1.371	-1.371	0	%100
39	MP3A	X	2.375	2.375	0	%100
40	MP3A	Z	-1.371	-1.371	0	%100
41	MP2A	X	2.375	2.375	0	%100
42	MP2A	Z	-1.371	-1.371	0	%100
43	MP1A	X	2.375	2.375	0	%100
44	MP1A	Z	-1.371	-1.371	0	%100
45	M44	X	1.321	1.321	0	%100
46	M44	Z	763	763	0	%100
47	M45	X	1.321	1.321	0	%100
48	M45	Z	763	763	0	%100
49	M46	X	1.321	1.321	0	%100
50	M46	Z	763	763	0	%100
51	M47	X Z	1.321	1.321	0	%100
52	M47	Z	763	763	0	%100
53	M43	X	2.214	2.214	0	%100
54	M43	Z	-1.278	-1.278	0	%100
55	M44A	X	1.191	1.191	0	%100
56	M44A	Z	687	687	0	%100

Member Distributed Loads (BLC 56: Structure Wi (90 Deg))

Momber Label Direction Start Magnitudell End Magnitudellb/ft E kcfl Start Location ft %1 End Location ft %1

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft.%]
1	FACE	X	0	0	0	%100
2	FACE	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	X	1.155	1.155	Ö	%100
6	M13	Z	0	0	0	%100
7	M14	X	1.155	1.155	0	%100
8	M14	Z	0	0	Ö	%100
9	M15	X	1.155	1.155	0	%100
10	M15	Z	0	0	0	%100 %100
11	M16	X	1.155	1.155	0	%100 %100
12	M16	Z	0	0	0	%100 %100
13	M17	X	.807	.807	0	%100 %100
14	M17	Z	0	0	0	%100 %100
15	M18	X	.807	.807	0	%100 %100
16	M18	Z	0	0	0	%100 %100
17	M19	X	.807	.807	0	%100 %100
18	M19	Z	0	0	0	%100 %100
19	M20	X	.807	.807	0	%100 %100
20	M20	Z	0	0	0	%100 %100
21	M21	X	0	0	0	%100 %100
22	M21	Z	0	0	0	
23	M22		0		0	%100 %100
	M22	X Z	0	0	0	
24						%100 %100
25	M23	X Z	0	0	0	%100
26	M23		0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	1.326	1.326	0	%100
30	M25	Z	0	0	0	%100
31	M26	X	1.326	1.326	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	1.326	1.326	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	1.326	1.326	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	X	2.742	2.742	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	2.742	2.742	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	2.742	2.742	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	2.742	2.742	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	X	1.526	1.526	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	1.526	1.526	0	%100
48	M45	Z	0	0	0	%100
49	M46	X Z	1.526	1.526	0	%100
50	M46	Z	0	0	0	%100
51	M47	X	1.526	1.526	0	%100
52	M47	Z	0	0	0	%100
53	M43	X	2.56	2.56	0	%100
54	M43	Z	0	0	0	%100
55	M44A	X	2.56	2.56	0	%100
56	M44A	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft.%]
1	FACE	X	.657	.657	0	%100
2	FACE	Z	.379	.379	0	%100
3	M2	X	.657	.657	0	%100
4	M2	Z	.379	.379	0	%100
5	M13	X	.75	.75	0	%100
6	M13	Z	.433	.433	0	%100
7	M14	X	.75	.75	0	%100 %100
8	M14	Z	.433	.433	Ŏ	%100
9	M15	X	.75	.75	0	%100
10	M15	Ž	.433	.433	Ö	%100 %100
11	M16	X	.75	.75	0	%100 %100
12	M16	Z	.433	.433	Ö	%100
13	M17	X	1.582	1.582	0	%100
14	M17	Z	.913	.913	0	%100 %100
15	M18	X	1.582	1.582	0	%100 %100
16	M18	Ž	.913	.913	0	%100
17	M19	X	.036	.036	0	%100 %100
18	M19	Z	.021	.021	Ö	%100
19	M20	X	.036	.036	0	%100 %100
20	M20	Z	.021	.021	0	%100 %100
21	M21	X	.251	.251	0	%100 %100
22	M21	Z	.145	.145	0	%100 %100
23	M22	X	.251	.251	0	%100 %100
24	M22	Z	.145	.145	Ö	%100 %100
25	M23	X	.251	.251	0	%100 %100
26	M23	Z	.145	.145	0	%100 %100
27	M24	X	.251	.251	0	%100 %100
28	M24	Z	.145	.145	0	%100 %100
29	M25	X	1.404	1.404	0	%100 %100
30	M25	Z	.811	.811	0	%100 %100
31	M26	X	1.404	1.404	0	%100 %100
32	M26	Z	.811	.811	0	%100
33	M27	X	.956	.956	0	%100
34	M27	Ž	.552	.552	Ö	%100
35	M28	X	.956	.956	0	%100
36	M28	Ž	.552	.552	Ö	%100
37	MP4A	X	2.375	2.375	0	%100
38	MP4A	Ž	1.371	1.371	0	%100
39	MP3A	X	2.375	2.375	0	%100
40	MP3A	Z	1.371	1.371	0	%100
41	MP2A	X	2.375	2.375	Ö	%100
42	MP2A	Ž	1.371	1.371	Ö	%100
43	MP1A	X	2.375	2.375	0	%100
44	MP1A	Ž	1.371	1.371	Ö	%100
45	M44	X	1.321	1.321	0	%100
46	M44	Z	.763	.763	Ŏ	%100
47	M45	X	1.321	1.321	0	%100
48	M45	Z	.763	.763	0	%100 %100
49	M46		1.321	1.321	0	%100
50	M46	X Z	.763	.763	Ö	%100
51	M47	X	1.321	1.321	0	%100 %100
52	M47	Z	.763	.763	0	%100
53	M43	X	1.191	1.191	0	%100
54	M43	Z	.687	.687	Ŏ	%100
55	M44A	X	2.214	2.214	0	%100 %100
56	M44A	X Z	1.278	1.278	Ö	%100
56	M44A		1.278	1.278	U	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	1.138	1.138	0	%100
2	FACE	Z	1.971	1.971	0	%100
3	M2	X	1.138	1.138	0	%100
4	M2	Z	1.971	1.971	0	%100
5	M13	X	.144	.144	0	%100
6	M13	Z	.25	.25	0	%100
7	M14	X	.144	.144	0	%100
8	M14	Z	.25	.25	0	%100
9	M15	X	.144	.144	0	%100
10	M15	Z	.25	.25	0	%100
11	M16	X	.144	.144	0	%100
12	M16	Z	.25	.25	Ö	%100
13	M17	X	1.041	1.041	0	%100 %100
14	M17	Z	1.802	1.802	0	%100 %100
15	M18	X	1.041	1.041	0	%100 %100
16	M18	Z	1.802	1.802	0	%100 %100
17	M19	X	.148	.148	0	%100 %100
18	M19	Z	.257	.257	0	%100 %100
19	M20	X	.148	.148	0	%100 %100
20	M20	Z	.257	.148	0	%100 %100
						%100 %100
21	M21	X	.435	.435	0	
22	M21	Z	.754	.754	0	%100
23	M22	X Z	.435	.435	0	%100
24	M22		.754	.754	0	%100
25	M23	X	.435	.435	0	%100
26	M23	Z	.754	.754	0	%100
27	M24	X	.435	.435	0	%100
28	M24	Z	.754	.754	0	%100
29	M25	X	.847	.847	0	%100
30	M25	Z	1.468	1.468	0	%100
31	M26	X	.847	.847	0	%100
32	M26	Z	1.468	1.468	0	%100
33	M27	X	.589	.589	0	%100
34	M27	Z	1.02	1.02	0	%100
35	M28	X	.589	.589	0	%100
36	M28	Z	1.02	1.02	0	%100
37	MP4A	X	1.371	1.371	0	%100
38	MP4A	Z	2.375	2.375	0	%100
39	MP3A	X	1.371	1.371	0	%100
40	MP3A	Z	2.375	2.375	0	%100
41	MP2A	X	1.371	1.371	0	%100
42	MP2A	Z	2.375	2.375	0	%100
43	MP1A	X Z	1.371	1.371	0	%100
44	MP1A		2.375	2.375	0	%100
45	M44	X	.763	.763	0	%100
46	M44	Z	1.321	1.321	0	%100
47	M45	X	.763	.763	0	%100
48	M45	Z	1.321	1.321	Ö	%100
49	M46	X	.763	.763	0	%100
50	M46	Z	1.321	1.321	Ö	%100
51	M47	X	.763	.763	0	%100
52	M47	Z	1.321	1.321	0	%100 %100
53	M43	X	.093	.093	0	%100 %100
54	M43	Z	.161	.161	0	%100 %100
55	M44A	X	.684	.684	0	%100 %100
56	M44A M44A	Z	1.184	1.184	0	%100 %100
JU	IVITTA		1.104	1.104	U	/0100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft %]
1	FACE	X	0	0	0	%100
2	FACE	Ž	3.035	3.035	Ö	%100
3	M2	X	0	0	0	%100
4	M2	Ž	3.035	3.035	Ö	%100
5	M13	X	0	0	0	%100 %100
6	M13	Z	Ö	0	Ö	%100
7	M14	X	Ō	0	0	%100
8	M14	Z	Ö	0	Ö	%100
9	M15	X	0	0	0	%100
10	M15	Ž	Ö	0	Ö	%100 %100
11	M16	X	0	0	0	%100 %100
12	M16	Z	Ö	0	Ö	%100
13	M17	X	Ö	0	0	%100
14	M17	Ž	1.316	1.316	Ö	%100
15	M18	X	0	0	0	%100
16	M18	Ž	1.316	1.316	Ö	%100
17	M19	X	0	0	0	%100
18	M19	Ž	1.316	1.316	Ö	%100
19	M20	X	0	0	0	%100
20	M20	Ž	1.316	1.316	Ö	%100
21	M21	X	0	0	0	%100 %100
22	M21	Z	1.161	1.161	0	%100 %100
23	M22	X	0	0	0	%100 %100
24	M22	Ž	1.161	1.161	Ö	%100
25	M23	X	0	0	0	%100
26	M23	Z	1.161	1.161	Ö	%100
27	M24	X	0	0	0	%100
28	M24	Z	1.161	1.161	Ö	%100
29	M25	X	0	0	0	%100 %100
30	M25	Ž	1.473	1.473	Ö	%100
31	M26	X	0	0	0	%100
32	M26	Ž	1.473	1.473	0	%100
33	M27	X	0	0	0	%100
34	M27	Z	1.473	1.473	0	%100
35	M28	X	0	0	0	%100
36	M28	Z	1.473	1.473	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	2.742	2.742	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	2.742	2.742	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	2.742	2.742	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	2.742	2.742	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	1.526	1.526	0	%100
47	M45	X	0	0	0	%100
48	M45	Z	1.526	1.526	0	%100
49	M46	X Z	0	0	0	%100
50	M46	Z	1.526	1.526	0	%100
51	M47	X	0	0	0	%100
52	M47	Z	1.526	1.526	0	%100
53	M43	X	0	0	0	%100
54	M43	Z	.182	.182	0	%100
55	M44A	X	0	0	0	%100
56	M44A	Z	.182	.182	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft %]
1	FACE	X	-1.138	-1.138	0	%100
2	FACE	Ž	1.971	1.971	Ö	%100
3	M2	X	-1.138	-1.138	0	%100
4	M2	Ž	1.971	1.971	Ö	%100
5	M13	X	144	144	0	%100 %100
6	M13	Z	.25	.25	Ö	%100
7	M14	X	144	144	0	%100
8	M14	Z	.25	.25	Ö	%100
9	M15	X	144	144	0	%100
10	M15	Ž	.25	.25	Ŏ	%100
11	M16	X	144	144	0	%100 %100
12	M16	Z	.25	.25	Ŏ	%100
13	M17	X	148	148	0	%100
14	M17	Ž	.257	.257	Ŏ	%100
15	M18	X	148	148	0	%100 %100
16	M18	Ž	.257	.257	Ö	%100
17	M19	X	-1.041	-1.041	0	%100
18	M19	Ž	1.802	1.802	Ö	%100
19	M20	X	-1.041	-1.041	0	%100
20	M20	Ž	1.802	1.802	Ŏ	%100
21	M21	X	435	435	0	%100 %100
22	M21	Z	.754	.754	0	%100 %100
23	M22	X	435	435	0	%100
24	M22	Ž	.754	.754	Ö	%100
25	M23	X	435	435	0	%100
26	M23	Ž	.754	.754	Ŏ	%100
27	M24	X	435	435	0	%100
28	M24	Ž	.754	.754	Ö	%100
29	M25	X	589	589	0	%100
30	M25	Z	1.02	1.02	0	%100
31	M26	X	589	589	0	%100
32	M26	Z	1.02	1.02	0	%100
33	M27	Х	847	847	0	%100
34	M27	Z	1.468	1.468	0	%100
35	M28	X	847	847	0	%100
36	M28	Z	1.468	1.468	0	%100
37	MP4A	X	-1.371	-1.371	0	%100
38	MP4A	Z	2.375	2.375	0	%100
39	MP3A	X	-1.371	-1.371	0	%100
40	MP3A	Z	2.375	2.375	0	%100
41	MP2A	X	-1.371	-1.371	0	%100
42	MP2A	Z	2.375	2.375	0	%100
43	MP1A	X	-1.371	-1.371	0	%100
44	MP1A	Z	2.375	2.375	0	%100
45	M44	X	763	763	0	%100
46	M44	Z	1.321	1.321	0	%100
47	M45	X	763	763	0	%100
48	M45	Z	1.321	1.321	0	%100
49	M46	X Z	763	763	0	%100
50	M46	Z	1.321	1.321	0	%100
51	M47	Χ	763	763	0	%100
52	M47	Z	1.321	1.321	0	%100
53	M43	X	684	684	0	%100
54	M43	Z	1.184	1.184	0	%100
55	M44A	X Z	093	093	0	%100
56	M44A	Z	.161	.161	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

1110111	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft.%]
1	FACE	X	657	657	0	%100
2	FACE	Z	.379	.379	0	%100
3	M2	X	657	657	0	%100
4	M2	Z	.379	.379	0	%100
5	M13	X	75	75	0	%100
6	M13	Z	.433	.433	0	%100
7	M14	X	75	75	0	%100
8	M14	Ž	.433	.433	0	%100
9	M15	X	75	75	0	%100
10	M15	Z	.433	.433	0	%100
11	M16	X	75	75	0	%100
12	M16	Ž	.433	.433	Ö	%100
13	M17	X	036	036	0	%100
14	M17	Z	.021	.021	Ö	%100
15	M18	X	036	036	0	%100
16	M18	Z	.021	.021	Ö	%100
17	M19	X	-1.582	-1.582	0	%100
18	M19	Z	.913	.913	Ö	%100
19	M20	X	-1.582	-1.582	0	%100
20	M20	Z	.913	.913	Ŏ	%100
21	M21	X	251	251	0	%100
22	M21	Z	.145	.145	0	%100 %100
23	M22	X	251	251	0	%100 %100
24	M22	Z	.145	.145	Ö	%100
25	M23	X	251	251	0	%100 %100
26	M23	Z	.145	.145	Ö	%100
27	M24	X	251	251	0	%100 %100
28	M24	Z	.145	.145	0	%100 %100
29	M25	X	956	956	0	%100 %100
30	M25	Z	.552	.552	0	%100 %100
31	M26	X	956	956	0	%100 %100
32	M26	Z	.552	.552	0	%100 %100
33	M27	X	-1.404	-1.404	0	%100
34	M27	Z	.811	.811	0	%100 %100
35	M28	X	-1.404	-1.404	0	%100
36	M28	Z	.811	.811	Ö	%100
37	MP4A	X	-2.375	-2.375	0	%100
38	MP4A	Z	1.371	1.371	Ö	%100
39	MP3A	X	-2.375	-2.375	0	%100
40	MP3A	Z	1.371	1.371	0	%100
41	MP2A	X	-2.375	-2.375	Ö	%100 %100
42	MP2A	Z	1.371	1.371	0	%100 %100
43	MP1A	X	-2.375	-2.375	0	%100
44	MP1A	Z	1.371	1.371	Ö	%100
45	M44	X	-1.321	-1.321	0	%100
46	M44	Z	.763	.763	Ö	%100
47	M45	X	-1.321	-1.321	0	%100
48	M45	Z	.763	.763	0	%100 %100
49	M46		-1.321	-1.321	0	%100 %100
50	M46	X Z	.763	.763	Ö	%100
51	M47	X	-1.321	-1.321	0	%100 %100
52	M47	Z	.763	.763	0	%100
53	M43	X	-2.214	-2.214	0	%100 %100
54	M43	Z	1.278	1.278	0	%100 %100
55	M44A	X	-1.191	-1.191	0	%100 %100
56	M44A	X Z	.687	.687	Ö	%100
	IVITTA		.001	.001	U	70100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	Ŏ Î	0	0	%100
2	FACE	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	Х	-1.155	-1.155	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	-1.155	-1.155	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	-1.155	-1.155	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	-1.155	-1.155	0	%100
12	M16	Ž	0	0	0	%100
13	M17	X	807	807	0	%100 %100
14	M17	Z	0	0	0	%100 %100
15	M18	X	807	807	0	%100 %100
16	M18	Z	0	0	0	%100
17	M19	X	807	807	0	%100 %100
18	M19	Z	0	0	0	%100 %100
19	M20	X	807	807	0	%100 %100
20	M20	Z	0	0	0	%100 %100
21	M21	X	0	0	0	%100 %100
22	M21	Z	0	0	0	%100 %100
23	M22	X	0	0	0	%100 %100
24	M22	Z	0	0	0	%100 %100
25			0			
	M23	X		0	0	%100
26	M23	Z	0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	-1.326	-1.326	0	%100
30	M25	Z	0	0	0	%100
31	M26	X	-1.326	-1.326	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	-1.326	-1.326	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	-1.326	-1.326	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	X	-2.742	-2.742	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	-2.742	-2.742	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	-2.742	-2.742	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	-2.742	-2.742	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	X	-1.526	-1.526	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	-1.526	-1.526	0	%100
48	M45	Z	0	0	0	%100
49	M46	X	-1.526	-1.526	0	%100
50	M46	Z	0	0	0	%100
51	M47	X	-1.526	-1.526	0	%100
52	M47	Z	0	0	0	%100
53	M43	X	-2.56	-2.56	0	%100
54	M43	Z	0	0	0	%100
55	M44A	X	-2.56	-2.56	0	%100
56	M44A	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft %]
1	FACE	X	657	657	0	%100
2	FACE	Ž	379	379	0	%100
3	M2	X	657	657	0	%100
4	M2	Ž	379	379	0	%100
5	M13	X	75	75	0	%100
6	M13	Z	433	433	0	%100
7	M14	X	75	75	0	%100 %100
8	M14	Z	433	433	0	%100
9	M15	X	75	75	0	%100
10	M15	Ž	433	433	Ö	%100 %100
11	M16	X	75	75	0	%100 %100
12	M16	Z	433	433	Ö	%100
13	M17	X	-1.582	-1.582	0	%100
14	M17	Z	913	913	0	%100 %100
15	M18	X	-1.582	-1.582	0	%100
16	M18	Ž	913	913	0	%100
17	M19	X	036	036	0	%100 %100
18	M19	Z	021	021	0	%100 %100
19	M20	X	036	036	0	%100 %100
20	M20	Ž	021	021	Ö	%100
21	M21	X	251	251	0	%100 %100
22	M21	Z	145	145	0	%100 %100
23	M22	X	251	251	0	%100
24	M22	Ž	145	145	Ö	%100
25	M23	X	251	251	0	%100
26	M23	Ž	145	145	Ö	%100
27	M24	X	251	251	0	%100
28	M24	Ž	145	145	Ö	%100
29	M25	X	-1.404	-1.404	0	%100
30	M25	Z	811	811	0	%100
31	M26	X	-1.404	-1.404	0	%100
32	M26	Z	811	811	0	%100
33	M27	X	956	956	0	%100
34	M27	Z	552	552	0	%100
35	M28	Х	956	956	0	%100
36	M28	Z	552	552	0	%100
37	MP4A	Х	-2.375	-2.375	0	%100
38	MP4A	Z	-1.371	-1.371	0	%100
39	MP3A	X	-2.375	-2.375	0	%100
40	MP3A	Z	-1.371	-1.371	0	%100
41	MP2A	X	-2.375	-2.375	0	%100
42	MP2A	Z	-1.371	-1.371	0	%100
43	MP1A	X	-2.375	-2.375	0	%100
44	MP1A	Z	-1.371	-1.371	0	%100
45	M44	X	-1.321	-1.321	0	%100
46	M44	Z	763	763	0	%100
47	M45	X	-1.321	-1.321	0	%100
48	M45	Z	763	763	0	%100
49	M46	X Z	-1.321	-1.321	0	%100
50	M46	Z	763	763	0	%100
51	M47	X	-1.321	-1.321	0	%100
52	M47	Z	763	763	0	%100
53	M43	X	-1.191	-1.191	0	%100
54	M43	Z	687	687	0	%100
55	M44A	X Z	-2.214	-2.214	0	%100
56	M44A	Z	-1.278	-1.278	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label		Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft %]
1	FACE	X	-1.138	-1.138	0	%100
2	FACE	Z	-1.971	-1.971	Ö	%100
3	M2	X	-1.138	-1.138	0	%100
4	M2	Z	-1.971	-1.971	Ö	%100
5	M13	X	144	144	0	%100 %100
6	M13	Z	25	25	Ö	%100
7	M14	X	144	144	0	%100
8	M14	Z	25	25	Ŏ	%100
9	M15	X	144	144	0	%100
10	M15	Z	25	25	Ŏ	%100
11	M16	X	144	144	0	%100 %100
12	M16	Z	25	25	Ŏ	%100
13	M17	X	-1.041	-1.041	0	%100
14	M17	Z	-1.802	-1.802	Ŏ	%100
15	M18	X	-1.041	-1.041	0	%100
16	M18	Z	-1.802	-1.802	Ö	%100
17	M19	X	148	148	0	%100
18	M19	Ž	257	257	Ŏ	%100
19	M20	X	148	148	0	%100
20	M20	Z	257	257	Ŏ	%100
21	M21	X	435	435	0	%100 %100
22	M21	Z	754	754	0	%100 %100
23	M22	X	435	435	0	%100
24	M22	Ž	754	754	Ö	%100
25	M23	X	435	435	0	%100
26	M23	Ž	754	754	Ŏ	%100
27	M24	X	435	435	0	%100
28	M24	Ž	754	754	Ŏ	%100
29	M25	X	847	847	0	%100
30	M25	Z	-1.468	-1.468	0	%100
31	M26	X	847	847	0	%100
32	M26	Z	-1.468	-1.468	0	%100
33	M27	X	589	589	0	%100
34	M27	Z	-1.02	-1.02	0	%100
35	M28	X	589	589	0	%100
36	M28	Z	-1.02	-1.02	0	%100
37	MP4A	X	-1.371	-1.371	0	%100
38	MP4A	Z	-2.375	-2.375	0	%100
39	MP3A	X	-1.371	-1.371	0	%100
40	MP3A	Z	-2.375	-2.375	0	%100
41	MP2A	X	-1.371	-1.371	0	%100
42	MP2A	Z	-2.375	-2.375	0	%100
43	MP1A	X	-1.371	-1.371	0	%100
44	MP1A	Z	-2.375	-2.375	0	%100
45	M44	X	763	763	0	%100
46	M44	Z	-1.321	-1.321	0	%100
47	M45	X	763	763	0	%100
48	M45	Z	-1.321	-1.321	0	%100
49	M46	X Z	763	763	0	%100
50	M46	Z	-1.321	-1.321	0	%100
51	M47	X	763	763	0	%100
52	M47	Z	-1.321	-1.321	0	%100
53	M43	X	093	093	0	%100
54	M43	Z	161	161	0	%100
55	M44A	X Z	684	684	0	%100
56	M44A	Ζ	-1.184	-1.184	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft.%]
1	FACE	X	0	0	0	%100
2	FACE	Z	606	606	Ö	%100
3	M2	X	0	0	0	%100
4	M2	Z	606	606	Ö	%100
5	M13	X	0	0	0	%100 %100
6	M13	Z	Ö	0	0	%100
7	M14	X	Ö	0	0	%100
8	M14	Z	Ö	0	Ö	%100
9	M15	X	Ö	0	0	%100
10	M15	Z	Ö	0	Ö	%100
11	M16	X	0	0	0	%100 %100
12	M16	Z	Ö	0	Ö	%100
13	M17	X	Ö	0	0	%100
14	M17	Z	239	239	0	%100 %100
15	M18	X	0	0	0	%100
16	M18	Z	239	239	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	239	239	Ö	%100
19	M20	X	0	0	0	%100
20	M20	Z	239	239	Ö	%100
21	M21	X	0	0	0	%100 %100
22	M21	Z	132	132	0	%100 %100
23	M22	X	0	0	0	%100
24	M22	Ž	132	132	Ö	%100
25	M23	X	0	0	0	%100
26	M23	Z	132	132	Ö	%100
27	M24	X	0	0	0	%100
28	M24	Z	132	132	Ö	%100
29	M25	X	0	0	0	%100 %100
30	M25	Z	136	136	Ö	%100
31	M26	X	0	0	0	%100
32	M26	Ž	136	136	0	%100
33	M27	X	0	0	0	%100
34	M27	Z	136	136	0	%100
35	M28	X	0	0	0	%100
36	M28	Z	136	136	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	5	5	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	5	5	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	5	5	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	5	5	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	132	132	0	%100
47	M45	X	0	0	0	%100
48	M45	Z	132	132	0	%100
49	M46		0	0	0	%100
50	M46	X Z	132	132	0	%100
51	M47	X	0	0	0	%100
52	M47	Z	132	132	0	%100
53	M43	X	0	0	0	%100
54	M43	Z	033	033	0	%100
55	M44A	X	0	0	0	%100
56	M44A	Z	033	033	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	.227	.227	0	%100
2	FACE	Z	393	393	0	%100
3	M2	X	.227	.227	0	%100
4	M2	Z	393	393	0	%100
5	M13	X	.016	.016	0	%100
6	M13	Z	029	029	0	%100
7	M14	X	.016	.016	0	%100
8	M14	Z	029	029	0	%100
9	M15	X	.016	.016	0	%100
10	M15	Z	029	029	0	%100
11	M16	X	.016	.016	0	%100
12	M16	Z	029	029	0	%100
13	M17	X	.027	.027	0	%100
14	M17	Z	047	047	0	%100
15	M18	X	.027	.027	0	%100
16	M18	Z	047	047	0	%100
17	M19	X	.189	.189	0	%100
18	M19	Z	328	328	Ö	%100
19	M20	X	.189	.189	0	%100
20	M20	Z	328	328	Ö	%100
21	M21	X	.049	.049	0	%100
22	M21	Z	086	086	0	%100
23	M22	X	.049	.049	0	%100
24	M22	Z	086	086	0	%100
25	M23	X	.049	.049	0	%100
26	M23	Z	086	086	0	%100
27	M24	X	.049	.049	0	%100
28	M24	Z	086	086	Ö	%100
29	M25	X	.055	.055	0	%100
30	M25	Z	094	094	Ö	%100
31	M26	X	.055	.055	0	%100
32	M26	Z	094	094	0	%100
33	M27	X	.078	.078	0	%100
34	M27	Z	136	136	0	%100
35	M28	X	.078	.078	0	%100
36	M28	Z	136	136	0	%100
37	MP4A	X	.25	.25	0	%100
38	MP4A	Z	433	433	0	%100
39	MP3A	X	.25	.25	0	%100
40	MP3A	Z	433	433	0	%100
41	MP2A	X	.25	.25	0	%100
42	MP2A	Z	433	433	0	%100
43	MP1A	X	.25	.25	0	%100
44	MP1A	X Z	433	433	0	%100
45	M44	X	.066	.066	0	%100
46	M44	Z	114	114	0	%100
47	M45	X	.066	.066	0	%100
48	M45	Z	114	114	0	%100
49	M46	X	.066	.066	0	%100
50	M46	Z	114	114	0	%100
51	M47	X	.066	.066	0	%100
52	M47	Z	114	114	0	%100
53	M43	X	.125	.125	0	%100
54	M43	Z	216	216	0	%100
55	M44A	X	.017	.017	0	%100
56	M44A	Z	029	029	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft.%]
1	FACE	X	.131	.131	0	%100
2	FACE	Z	076	076	0	%100
3	M2	X	.131	.131	0	%100
4	M2	Z	076	076	0	%100
5	M13	X	.086	.086	0	%100
6	M13	Ž	049	049	Ö	%100
7	M14	X	.086	.086	0	%100
8	M14	Ž	049	049	Ö	%100
9	M15	X	.086	.086	0	%100
10	M15	Z	049	049	0	%100
11	M16	X	.086	.086	0	%100
12	M16	Z	049	049	0	%100
13	M17	X	.007	.007	0	%100
14	M17	Ž	004	004	0	%100
15	M18	X	.007	.007	0	%100
16	M18	Z	004	004	0	%100
17	M19	X	.287	.287	0	%100
18	M19	Ž	166	166	0	%100
19	M20	X	.287	.287	0	%100
20	M20	Z	166	166	0	%100
21	M21	X	.029	.029	0	%100
22	M21	Ž	016	016	0	%100
23	M22	X	.029	.029	Ō	%100
24	M22	Z	016	016	0	%100
25	M23	X	.029	.029	0	%100
26	M23	Z	016	016	0	%100
27	M24	X	.029	.029	0	%100
28	M24	Ž	016	016	0	%100
29	M25	X	.089	.089	0	%100
30	M25	Z	051	051	0	%100
31	M26	X	.089	.089	0	%100
32	M26	Z	051	051	0	%100
33	M27	Х	.13	.13	0	%100
34	M27	Z	075	075	0	%100
35	M28	X	.13	.13	0	%100
36	M28	Z	075	075	0	%100
37	MP4A	X	.433	.433	0	%100
38	MP4A	Z	25	25	0	%100
39	MP3A	X	.433	.433	0	%100
40	MP3A	Z	25	25	0	%100
41	MP2A	X	.433	.433	0	%100
42	MP2A	Z	25	25	0	%100
43	MP1A	X	.433	.433	0	%100
44	MP1A	Z	25	25	0	%100
45	M44	X	.114	.114	0	%100
46	M44	Z	066	066	0	%100
47	M45	X	.114	.114	0	%100
48	M45	Z	066	066	0	%100
49	M46	X Z	.114	.114	0	%100
50	M46	Z	066	066	0	%100
51	M47	X	.114	.114	0	%100
52	M47	Z	066	066	0	%100
53	M43	X	.404	.404	0	%100
54	M43	Z	233	233	0	%100
55	M44A	X Z	.217	.217	0	%100
56	M44A	Z	125	125	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft %]
1	FACE	X	0	0	0	%100
2	FACE	Z	Ö	0	Ö	%100
3	M2	X	Ö	0	0	%100
4	M2	Z	0	0	Ö	%100
5	M13	X	.132	.132	0	%100 %100
6	M13	Z	0	0	Ŏ	%100
7	M14	X	.132	.132	0	%100
8	M14	Z	0	0	Ö	%100
9	M15	X	.132	.132	0	%100
10	M15	Z	0	0	Ŏ	%100
11	M16	X	.132	.132	0	%100 %100
12	M16	Z	0	0	Ŏ	%100
13	M17	X	.147	.147	0	%100
14	M17	Z	0	0	0	%100 %100
15	M18	X	.147	.147	0	%100
16	M18	Z	0	0	Ö	%100
17	M19	X	.147	.147	0	%100
18	M19	Ž	0	0	Ö	%100
19	M20	X	.147	.147	0	%100
20	M20	Z	0	0	Ŏ	%100
21	M21	X	0	0	0	%100 %100
22	M21	Z	0	0	0	%100 %100
23	M22	X	0	0	0	%100
24	M22	Ž	Ö	0	Ö	%100
25	M23	X	0	0	0	%100
26	M23	Ž	Ö	0	Ö	%100
27	M24	X	Ö	0	0	%100
28	M24	Ž	Ö	0	Ö	%100
29	M25	X	.123	.123	0	%100
30	M25	Z	0	0	0	%100
31	M26	X	.123	.123	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	.123	.123	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	.123	.123	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	X	.5	.5	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	.5	.5	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	.5	.5	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	.5	.5	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	X	.132	.132	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	.132	.132	0	%100
48	M45	Z	0	0	0	%100
49	M46	X Z	.132	.132	0	%100
50	M46	Z	0	0	0	%100
51	M47	X	.132	.132	0	%100
52	M47	Z	0	0	0	%100
53	M43	X	.467	.467	0	%100
54	M43	Z	0	0	0	%100
55	M44A	X	.467	.467	0	%100
56	M44A	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft.%]
1	FACE	X	.131	.131	0	%100
2	FACE	Z	.076	.076	0	%100
3	M2	X	.131	.131	0	%100
4	M2	Ž	.076	.076	0	%100
5	M13	X	.086	.086	0	%100
6	M13	Z	.049	.049	0	%100
7	M14	X	.086	.086	0	%100
8	M14	Z	.049	.049	Ŏ	%100
9	M15	X	.086	.086	0	%100
10	M15	Z	.049	.049	0	%100 %100
11	M16	X	.086	.086	0	%100 %100
12	M16	Z	.049	.049	0	%100 %100
13	M17	X	.287	.287	0	%100 %100
14	M17	Z	.166	.166	0	%100 %100
15	M18	X	.287	.287	0	%100 %100
16	M18	Z	.166	.166	0	%100 %100
17	M19	X	.007	.007	0	%100 %100
18	M19	Z	.004	.004	0	%100 %100
19	M20	X	.007	.007	0	%100 %100
20	M20	Z	.004	.004	0	%100 %100
21	M21	X	.029	.029	0	%100 %100
22	M21	Z	.016	.016	0	%100 %100
23	M22	X	.029	.029	0	%100 %100
24	M22	Z	.016	.016	0	%100 %100
25	M23	X	.029	.029	0	%100 %100
26	M23	Z	.016	.016	0	%100 %100
27	M24	X	.029	.029	0	%100 %100
28	M24	Z	.016	.016	0	%100 %100
29	M25	X	.13	.13	0	%100 %100
30	M25	Z	.075	.075	0	%100 %100
31	M26	X	.13	.13	0	%100 %100
32	M26	Z	.075	.075	0	%100 %100
33	M27	X	.089	.089	0	%100 %100
34	M27	Z	.051	.051	0	%100 %100
35	M28	X	.089	.089	0	%100 %100
36	M28	Z	.051	.051	0	%100 %100
37	MP4A	X	.433	.433	0	%100 %100
38	MP4A	Z	.25	.25	0	%100 %100
39	MP3A	X	.433	.433	0	%100 %100
40	MP3A	Z	.25	.455	0	%100 %100
41	MP2A	X	.433	.433	0	%100 %100
42	MP2A	Z	.25	.25	0	%100 %100
43	MP1A	X	.433	.433	0	%100 %100
44	MP1A	Z	.25	.25	0	%100 %100
45	M44	X	.114	.114	0	%100 %100
46	M44	Z	.066	.066	0	%100 %100
47	M45	X	.114	.114	0	%100 %100
48	M45	Z	.066	.066	0	%100 %100
49	M46		.114	.114	0	%100 %100
50	M46	X Z	.066	.066	0	%100 %100
51	M47	X	.114	.114	0	%100 %100
52	M47	Z	.066	.066	0	%100 %100
53	M43	X	.217	.217	0	%100 %100
54	M43	Z	.125	.125	0	%100 %100
55	M44A	Y	.404	.404	0	%100 %100
56	M44A M44A	X Z	.233	.233	0	%100 %100
50	1V14474	_	.200	.200		/6 100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft.%]
1	FACE	X	.227	.227	0	%100
2	FACE	Z	.393	.393	0	%100
3	M2	X	.227	.227	0	%100
4	M2	Ž	.393	.393	0	%100
5	M13	X	.016	.016	0	%100
6	M13	Ž	.029	.029	Ö	%100
7	M14	X	.016	.016	0	%100
8	M14	Z	.029	.029	0	%100
9	M15	X	.016	.016	0	%100
10	M15	Z	.029	.029	0	%100
11	M16	X	.016	.016	0	%100
12	M16	Z	.029	.029	0	%100
13	M17	X	.189	.189	0	%100
14	M17	Ž	.328	.328	Ō	%100
15	M18	X	.189	.189	Ō	%100
16	M18	Ž	.328	.328	0	%100
17	M19	X	.027	.027	0	%100
18	M19	Z	.047	.047	0	%100
19	M20	X	.027	.027	0	%100
20	M20	Z	.047	.047	0	%100
21	M21	X	.049	.049	0	%100
22	M21	Ž	.086	.086	0	%100
23	M22	X	.049	.049	0	%100
24	M22	Z	.086	.086	0	%100
25	M23	X	.049	.049	0	%100
26	M23	Z	.086	.086	0	%100
27	M24	X	.049	.049	0	%100
28	M24	Z	.086	.086	0	%100
29	M25	X	.078	.078	0	%100
30	M25	Z	.136	.136	0	%100
31	M26	X	.078	.078	0	%100
32	M26	Z	.136	.136	0	%100
33	M27	Х	.055	.055	0	%100
34	M27	Z	.094	.094	0	%100
35	M28	X	.055	.055	0	%100
36	M28	Z	.094	.094	0	%100
37	MP4A	X	.25	.25	0	%100
38	MP4A	Z	.433	.433	0	%100
39	MP3A	X	.25	.25	0	%100
40	MP3A	Z	.433	.433	0	%100
41	MP2A	X	.25	.25	0	%100
42	MP2A	Z	.433	.433	0	%100
43	MP1A	X	.25	.25	0	%100
44	MP1A	Z	.433	.433	0	%100
45	M44	X	.066	.066	0	%100
46	M44	Z	.114	.114	0	%100
47	M45	X	.066	.066	0	%100
48	M45	Z	.114	.114	0	%100
49	M46	X Z	.066	.066	0	%100
50	M46	Z	.114	.114	0	%100
51	M47	Χ	.066	.066	0	%100
52	M47	Z	.114	.114	0	%100
53	M43	X	.017	.017	0	%100
54	M43	Z	.029	.029	0	%100
55	M44A	X Z	.125	.125	0	%100
56	M44A	Z	.216	.216	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

1110111	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft.%]
1	FACE	X	0	0	0	%100
2	FACE	Z	.606	.606	Ö	%100
3	M2	X	0	0	0	%100
4	M2	Z	.606	.606	Ö	%100
5	M13	X	0	0	0	%100 %100
6	M13	Z	Ö	0	Ů Ů	%100
7	M14	X	0	0	0	%100
8	M14	Ž	Ö	0	0	%100
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100 %100
11	M16	X	0	0	0	%100 %100
12	M16	Z	Ö	0	0	%100 %100
13	M17	X	0	0	0	%100 %100
14	M17	Z	.239	.239	0	%100 %100
15	M18	X	0	0	0	%100 %100
16	M18	Z	.239	.239	0	%100 %100
17	M19	X	0	0	0	%100 %100
18	M19	Z	.239	.239	0	%100 %100
19	M20	X	0	0	0	%100 %100
20	M20	Z	.239	.239	0	%100 %100
21	M21	X	0	0	0	%100 %100
22	M21	Z	.132	.132	0	%100 %100
23	M22	X	0	0	0	%100 %100
24	M22	Z	.132	.132	0	%100 %100
25	M23	X	0	0	0	%100 %100
26	M23	Z	.132	.132	0	%100 %100
27	M24	X	0	0	0	%100 %100
28	M24	Z	.132	.132	0	%100 %100
29	M25	X	0	0	0	%100 %100
30	M25	Z	.136	.136	0	%100 %100
31	M26	X	0	0	0	%100 %100
32	M26	Z	.136	.136	0	%100 %100
33	M27	X	0	0	0	%100 %100
34	M27	Z	.136	.136	0	%100 %100
35	M28	X	0	0	0	%100 %100
36	M28	Z	.136	.136	0	%100 %100
37	MP4A	X	0	0	0	%100 %100
38	MP4A	Z	.5	.5	0	%100 %100
39	MP3A	X	0	0	0	%100 %100
40	MP3A	Z	.5	.5	0	%100 %100
41	MP2A	X	0	0	0	%100 %100
42	MP2A	Z	.5	.5	0	%100 %100
43	MP1A	X	0	0	0	%100 %100
44	MP1A	Z	.5	.5	0	%100 %100
45	M44	X	0	0	0	%100 %100
46	M44	Z	.132	.132	Ů Ů	%100
47	M45	X	0	0	0	%100 %100
48	M45	Z	.132	.132	0	%100 %100
49	M46		0	0	0	%100 %100
50	M46	X Z	.132	.132	0	%100 %100
51	M47	X	0	0	0	%100 %100
52	M47	Z	.132	.132	0	%100 %100
53	M43	X	0	0	0	%100 %100
54	M43	Z	.033	.033	0	%100 %100
55	M44A	X	0	0	0	%100 %100
56	M44A	Z	.033	.033	0	%100 %100
U	IVITT/ \	_	.000	.000		70100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label		Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft.%]
1	FACE	X	227	227	0	%100
2	FACE	Z	.393	.393	0	%100
3	M2	X	227	227	0	%100
4	M2	Z	.393	.393	0	%100
5	M13	X	016	016	0	%100
6	M13	Z	.029	.029	0	%100
7	M14	X	016	016	0	%100
8	M14	Z	.029	.029	0	%100
9	M15	X	016	016	0	%100
10	M15	Z	.029	.029	0	%100
11	M16	X	016	016	0	%100
12	M16	Ž	.029	.029	Ö	%100
13	M17	X	027	027	0	%100
14	M17	Z	.047	.047	Ŏ	%100
15	M18	X	027	027	0	%100
16	M18	Z	.047	.047	Ö	%100
17	M19	X	189	189	0	%100
18	M19	Z	.328	.328	Ö	%100
19	M20	X	189	189	0	%100
20	M20	Z	.328	.328	Ŏ	%100
21	M21	X	049	049	0	%100 %100
22	M21	Z	.086	.086	0	%100
23	M22	X	049	049	0	%100 %100
24	M22	Z	.086	.086	Ö	%100
25	M23	X	049	049	0	%100
26	M23	Z	.086	.086	0	%100
27	M24	X	049	049	0	%100 %100
28	M24	Z	.086	.086	0	%100
29	M25	X	055	055	0	%100 %100
30	M25	Z	.094	.094	0	%100 %100
31	M26	X	055	055	0	%100 %100
32	M26	Z	.094	.094	0	%100 %100
33	M27	X	078	078	0	%100 %100
34	M27	Z	.136	.136	0	%100
35	M28	X	078	078	0	%100 %100
36	M28	Z	.136	.136	0	%100
37	MP4A	X	25	25	0	%100
38	MP4A	Z	.433	.433	0	%100 %100
39	MP3A	X	25	25	0	%100
40	MP3A	Z	.433	.433	0	%100 %100
41	MP2A	X	25	25	0	%100 %100
42	MP2A	Z	.433	.433	0	%100
43	MP1A	X	25	25	0	%100
44	MP1A	Z	.433	.433	0	%100 %100
45	M44	X	066	066	0	%100 %100
46	M44	Z	.114	.114	0	%100 %100
47	M45	X	066	066	0	%100 %100
48	M45	Z	.114	.114	0	%100 %100
49	M46		066	066	0	%100 %100
50	M46	X Z	.114	.114	0	%100 %100
51	M47	X	066	066	0	%100 %100
52	M47	Z	.114	.114	0	%100 %100
53	M43	X	125	125	0	%100 %100
54	M43	Z	.216	.216	0	%100 %100
55	M44A	X	017	017	0	%100 %100
56	M44A	X Z	.029	.029	0	%100 %100
JU	IVITTA		.023	.020	U	70100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[I	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	131	- 131	0	%100
2	FACE	Z	.076	.076	0	%100
3	M2	X	131	131	0	%100
4	M2	Z	.076	.076	0	%100
5	M13	Х	086	086	0	%100
6	M13	Z	.049	.049	0	%100
7	M14	Х	086	086	0	%100
8	M14	Z	.049	.049	0	%100
9	M15	X	086	086	0	%100
10	M15	Z	.049	.049	0	%100
11	M16	X	086	086	0	%100
12	M16	Z	.049	.049	0	%100
13	M17	X	007	007	0	%100
14	M17	Z	.004	.004	Ů Ů	%100
15	M18	X	007	007	0	%100
16	M18	Z	.004	.004	0	%100
17	M19	X	287	287	0	%100 %100
18	M19	Z	.166	.166	0	%100 %100
19	M20	X	287	287	0	%100 %100
20	M20	Z	.166	.166	0	%100 %100
21	M21	X	029	029	0	%100 %100
22	M21	Z	.016	.016	0	%100 %100
23	M22	X	029	029	0	%100 %100
24	M22	Z	.016	.016	0	%100 %100
25	M23	X	029	029	0	%100 %100
26	M23	Z	.016	.016	0	%100 %100
27	M24	X	029	029	0	%100 %100
28	M24	Z	.016	.016	0	%100 %100
29	M25	X	089	089	0	%100 %100
30	M25	Z	.051	.051	0	%100 %100
31	M26	X	089	089	0	%100 %100
32	M26	Z	.051	.051	0	%100 %100
33	M27	X	13	13	0	%100 %100
34	M27	Z	.075	.075	0	%100 %100
35	M28	X	13	13	0	%100 %100
36	M28	Z	.075	.075	0	%100 %100
37	MP4A		433	433	0	%100 %100
38	MP4A	X Z	.25	433 .25	0	%100 %100
39 40	MP3A	X Z	433 .25	433 .25	0	%100 %100
41	MP3A MP2A		433	<u>.25</u> 433		%100 %100
42	MP2A MP2A	Z	433	433 .25	0	%100 %100
42	MP1A	<u> </u>	433	25 433	0	%100 %100
43	MP1A MP1A	X Z	433	433 .25	0	
	MP1A M44	X			0	%100 %100
45		7	114	114		%100 %100
46	M44	Z	.066	.066	0	%100 %100
47	M45	X	114	114	0	%100 %100
48	M45	Z	.066	.066	0	%100 %100
49	M46	X Z	114	114	0	%100 %100
50	M46		.066	.066	0	%100 %100
51	M47	X	114	114	0	%100
52	M47	Z	.066	.066	0	%100 %100
53	M43	X	404	404	0	%100
54	M43	Z	.233	.233	0	%100
55	M44A	X	217	217	0	%100
56	M44A	Z	.125	.125	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label		Start Magnitude[l		Start Location[ft,%]	End Location[ft %]
1	FACE	X	0	0	0	%100
2	FACE	Z	Ö	0	Ö	%100
3	M2	X	Ö	0	0	%100
4	M2	Z	Ö	0	0	%100
5	M13	X	132	132	0	%100 %100
6	M13	Z	0	0	0	%100 %100
7	M14	X	132	132	0	%100 %100
8	M14	Z	0	0	Ů Ů	%100
9	M15	X	132	132	0	%100
10	M15	Z	0	0	0	%100 %100
11	M16	X	132	132	0	%100 %100
12	M16	Z	0	0	0	%100 %100
13	M17	X	147	147	0	%100 %100
14	M17	Z	0	0	0	%100 %100
15	M18	X	147	147	0	%100 %100
16	M18	Z	0	0	0	%100 %100
17	M19	X	147	147	0	%100 %100
18	M19	Z	0	0	0	%100 %100
19	M20	X	147	147	0	%100 %100
20	M20	Z	0	0	0	%100 %100
21	M21	X	0	0	0	%100 %100
22	M21	Z	0	0	0	%100 %100
23	M22	X	0	0	0	%100 %100
24	M22	Z	0	0	0	%100 %100
25	M23	X	0	0	0	%100 %100
26	M23	Z	0	0	0	%100 %100
27	M24	X	0	0	0	%100 %100
28	M24	Z	0	0	0	%100 %100
29	M25	X	123	123	0	%100 %100
30	M25	Z	0	0	0	%100 %100
31	M26	X	123	123	0	%100 %100
32	M26	Z	0	0	0	%100 %100
33	M27	X	123	123	0	%100 %100
34	M27	Z	0	0	0	%100 %100
35	M28	X	123	123	0	%100 %100
36	M28	Z	0	0	0	%100 %100
37	MP4A	X	5	5	0	%100 %100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	5	5	0	%100
40	MP3A	Z	0	0	0	%100 %100
41	MP2A	X	5	5	0	%100 %100
42	MP2A	Z	0	0	0	%100 %100
43	MP1A	X	5	5	0	%100
44	MP1A	Z	0	0	Ö	%100
45	M44	X	132	132	0	%100 %100
46	M44	Z	0	0	Ů Ů	%100
47	M45	X	132	132	0	%100 %100
48	M45	Z	0	0	0	%100 %100
49	M46		132	132	0	%100 %100
50	M46	X Z	0	0	0	%100 %100
51	M47	X	132	132	0	%100 %100
52	M47	Z	0	0	0	%100 %100
53	M43	X	467	467	0	%100 %100
54	M43	Z	0	0	0	%100 %100
55	M44A	X	467	467	0	%100 %100
56	M44A	Z	0	0	0	%100 %100
50	IVITTA		U	U	U	70 100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	131	131	0	%100
2	FACE	Z	076	076	0	%100
3	M2	X	131	131	0	%100
4	M2	Z	076	076	0	%100
5	M13	X	086	086	0	%100
6	M13	Z	049	049	0	%100
7	M14	X	086	086	0	%100
8	M14	Z	049	049	0	%100
9	M15	X	086	086	0	%100
10	M15	Z	049	049	Ö	%100
11	M16	X	086	086	0	%100
12	M16	Z	049	049	0	%100
13	M17	X	287	287	0	%100 %100
14	M17	Z	166	166	0	%100 %100
15	M18	X	287	287	0	%100 %100
16	M18	Z	166	166	0	%100 %100
17	M19	X	007	007	0	%100 %100
18	M19	Z	004	004	0	%100 %100
19	M20	X	007	004	0	%100 %100
20	M20	Z	007	007	0	%100 %100
						%100 %100
21	M21	X	029	029	0	
22	M21	Z	016	<u>016</u>	0	%100
23	M22	X	029	029	0	%100
24	M22	Z	016	016	0	%100
25	M23	X	029	029	0	%100
26	M23	Z	016	016	0	%100
27	M24	X	029	029	0	%100
28	M24	Z	016	016	0	%100
29	M25	X	13	13	0	%100
30	M25	Z	075	075	0	%100
31	M26	X	13	13	0	%100
32	M26	Z	075	075	0	%100
33	M27	X	089	089	0	%100
34	M27	Z	051	051	0	%100
35	M28	X	089	089	0	%100
36	M28	Z	051	051	0	%100
37	MP4A	X	433	433	0	%100
38	MP4A	Z	25	25	0	%100
39	MP3A	X	433	433	0	%100
40	MP3A	Z	25	25	0	%100
41	MP2A	X	433	433	0	%100
42	MP2A	Z	25	25	0	%100
43	MP1A	X Z	433	433	0	%100
44	MP1A		25	25	0	%100
45	M44	X	114	114	0	%100
46	M44	Z	066	066	0	%100
47	M45	X	114	114	0	%100
48	M45	Z	066	066	Ö	%100
49	M46	X	114	114	0	%100
50	M46	Z	066	066	Ö	%100
51	M47	X	114	114	0	%100
52	M47	Z	066	066	0	%100 %100
53	M43	X	217	217	0	%100 %100
54	M43	Z	125	125	Ů 0	%100 %100
55	M44A	X	404	125 404	0	%100 %100
56	M44A	Z	233	233	0	%100 %100
50	IVI+4/A		233	200	U	/0 100

Member Distributed Loads (BLC 76: Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[l	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	FACE	X	227	227	0	%100
2	FACE	Z	393	393	0	%100
3	M2	X	227	227	0	%100
4	M2	Z	393	393	0	%100
5	M13	Х	016	016	0	%100
6	M13	Z	029	029	0	%100
7	M14	X	016	016	0	%100
8	M14	Z	029	029	0	%100
9	M15	X	016	016	0	%100
10	M15	Z	029	029	0	%100
11	M16	X	016	016	0	%100
12	M16	Z	029	029	0	%100
13	M17	X	189	189	0	%100
14	M17	Z	328	328	0	%100
15	M18	X	189	189	0	%100 %100
16	M18	Z	328	328	0	%100 %100
17	M19	X	027	027	0	%100 %100
18	M19	Z	047	047	0	%100 %100
19	M20	X	027	027	0	%100 %100
20	M20	Z	047	047	0	%100 %100
21	M21	X	049	047	0	%100 %100
22	M21	Z	086	086	0	%100 %100
23	M22	X	049	049	0	%100 %100
24	M22	Z	086	049	0	%100 %100
25	M23	X	049	066 049	0	%100 %100
		Z			0	
26	M23		086	086		%100
27	M24	X	049	049	0	%100
28	M24	Z	086	086	0	%100
29	M25	X	078	078	0	%100
30	M25	Z	136	136	0	%100
31	M26	X	078	078	0	%100
32	M26	Z	136	136	0	%100
33	M27	X	055	055	0	%100
34	M27	Z	094	094	0	%100
35	M28	X	055	055	0	%100
36	M28	Z	094	094	0	%100
37	MP4A	X	25	25	0	%100
38	MP4A	Z	433	433	0	%100
39	MP3A	X	25	25	0	%100
40	MP3A	Z	433	433	0	%100
41	MP2A	X	25	25	0	%100
42	MP2A	Z	433	433	0	%100
43	MP1A	X Z	25	25	0	%100
44	MP1A		433	433	0	%100
45	M44	X	066	066	0	%100
46	M44	Z	114	114	0	%100
47	M45	X	066	066	0	%100
48	M45	Z	114	114	0	%100
49	M46	X	066	066	0	%100
50	M46	Z	114	114	0	%100
51	M47	X	066	066	0	%100
52	M47	Z	114	114	0	%100
53	M43	X	017	017	0	%100
54	M43	Z	029	029	0	%100
55	M44A	X	125	125	0	%100
56	M44A	Z	216	216	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		No	Data to Print			

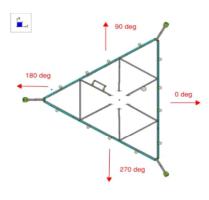
Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N35	max	1427.222	46	1186.15	13	1744.88	13	232	70	0	75	.305	45
2		min	-434.864	49	344.254	70	-438.371	7	829	13	0	1	088	49
3	N36	max	440.071	10	1182.809	19	503.978	7	234	64	0	75	.299	45
4		min	-1428.879	40	346.239	64	-1457.417	1	809	19	0	1	085	49
5	N63	max	279.195	12	80.575	18	1043.625	12	0	75	0	75	0	75
6		min	-307.537	6	30.725	74	-1149.655	6	0	1	0	1	0	1
7	N64	max	407.522	8	80.665	20	1418.566	2	0	75	0	75	0	75
8		min	-379.094	2	30.724	65	-1524.708	8	0	1	0	1	0	1
9	Totals:	max	1708.998	10	2504.975	21	2124.503	1						
10		min	-1708.997	4	755.524	66	-2124.507	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear Ch	Loc[ft]	Dir	LC	phi*Pncphi*Pnt [phi*Mn y	phi*Mn z.	.Cb Eqn
1	M24	PL5/8X3.5	.476	.531	47	.084	.437	У	1	67591.76 68906.25	.897	5.024	1H1-1b
2	M22	PL5/8X3.5	.454	.531	48	.059	.443	У	39	67591.76 68906.25	.897	5.024	1H1-1b
3	MP1A	PIPE 2.0	.404	2.333	41	.059	2.333		4	14916.0 32130	1.872	1.872	4H1-1b
4	M44A	PIPE 2.0X	.312	7.523	2	.006	15.046		22	5731.424 44100	2.531	2.531	1H1-1a
5	M15	PL5/8X3.5	.271	0	45	.148	0	У	1	66184.77 68906.25	.897	5.024	1H1-1b
6	FACE	PIPE 2.5	.268	8.724	47	.081	8.854		44	14558.7 50715	3.596	3.596	2H1-1b
7	M2	PIPE 2.5	.263	9.245	8	.119	9.245		8	14558.7 50715	3.596	3.596	2H1-1b
8	M23	PL5/8X3.5	.242	.531	14	.065	.531	У	1	67591.76 68906.25	.897	5.024	1H1-1b
9	M16	PL5/8X3.5	.228	0	45	.190	.422	У	2	66184.77 68906.25	.897	5.024	1H1-1b
10	MP4A	PIPE 2.0	.227	5.667	49	.058	2.333		10	14916.0 32130	1.872	1.872	4H1-1b
11	M21	PL5/8X3.5	.227	.531	49	.052	0	У	12	67591.76 68906.25	.897	5.024	1H1-1b
12	MP3A	PIPE 2.0	.219	2.333	9	.090	2.333		11	14916.0 32130	1.872	1.872	4H1-1b
13	MP2A	PIPE 2.0	.206	2.333	3	.105	5.667		8	14916.0 32130	1.872	1.872	4H1-1b
14	M20	PIPE 2.0	.199	0	2	.079	0		21	31128.25 32130	1.872	1.872	2H1-1b
15	M43	PIPE 2.0X	.188	15.046	12	.006	15.046		22	5731.425 44100	2.531	2.531	1H1-1b*
16	M17	PIPE 2.0	.170	0	12	.054	0		17	31128.25 32130	1.872	1.872	2H1-1b
17	M19	PIPE 2.0	.144	0	1	.087	0		48	31128.25 32130	1.872	1.872	1H1-1b
18	M13	PL5/8X3.5	.138	.422	12	.166	.374	У	6	66184.77 68906.25	.897	5.024	1H1-1b
19	M14	PL5/8X3.5	.130	0	49	.115	.422	У	2	66184.77 68906.25	.897	5.024	1H1-1b
20	M18	PIPE 2.0	.112	0	2	.055	0		14	31128.25 32130	1.872	1.872	1H1-1b
21	M28	SR 0.75	.087	4.167	45	.020	0		47	2863.854 13916.2	.174	.174	1H1-1b*
22	M47	SR 0.625	.063	0	2	.012	0		11	2158.31 9664.079	.101	.101	1H1-1b*
23	M26	SR 0.75	.045	0	49	.017	4.167		3	2863.854 13916.2	.174	.174	1H1-1b*
24	M44	SR 0.625	.040	1.667	11	.014	0		8	2158.31 9664.079	.101	.101	1H1-1b
25	M46	SR 0.625	.035	1.667	6	.024	0		9	2158.31 9664.079	.101	.101	1H1-1b
26	M45	SR 0.625	.033	1.667	10	.023	0		10	2158.31 9664.079	.101	.101	1H1-1b
27	M25	SR 0.75	.003	4.167	45	.011	0		4	2863.854 13916.2	.174	.174	1H1-1b*
28	M27	SR_0.75	.000	0	75	.017	0		45	2863.854 13916.2	.174	.174	1 _{H1-1a}

Client:	Verizon Wireless	Date:	4/12/2022
Site Name:	CHARLESTON		
PSLC #:	141185		
Fuze ID#:	16475894	Page:	1


Version 1.0

I. Mount-to-Tower Connection Check

Custom Orientation Required

Yes

Nodes	Orientation
(labeled per Risa)	(per graphic of typical platform)
N36	0
N35	0

Tower Connection Bolt Checks

Bolt Orientation

Bolt Quantity per Reaction:

 d_x (in) (Delta X of typ. bolt config. sketch):

 d_{γ} (in) (Delta Y of typ. bolt config. sketch) :

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips):

Required Shear Strength / bolt (kips):

Tensile Capacity / bolt (kips):

Shear Capacity / bolt (kips):

Bolt Overall Utilization:

Parallel	

4
9.5
3.5
A307
0.625
1.7
0.3
10.4
6.2
16.0%

		dx		
,	0		_ ©	
W2				φ Δο
,	©			
		WI		

DX

Tower Connection Baseplate Checks

No

Maser Consulting Connecticut

Subject TIA-222-H Adoption and Wind Speed Usage

<u>Site Information</u> Site ID: 469060-VZW / Woodbridge North CT

Site Name: Woodbridge North CT Carrier Name: Verizon Wireless

Address: 6 Progress Ave Seymour, Connecticut 06483

New Haven County

Latitude: 41.391528° Longitude: -73.053333°

<u>Structure Information</u> Tower Type: 250-Ft Self Support

Mount Type: 12.50-Ft Sector Frame

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. The TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this tower site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Dejian Xu, PE

Technical Specialist

March 29, 2021

Mr. Andrew Leone Verizon Wireless 20 Alexander Dr. Wallingford, CT 06492

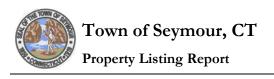
Re: Verizon Wireless antenna Model Clarification for CT Siting Council

Dear Mr. Leone,

This letter is intended to clarify and confirm the antenna naming convention used by Verizon Wireless as a part of an antenna upgrade project on numerous wireless facilities.

The antenna naming convention "Licensed Sub-6, L-Sub6, nL-Sub6, VZS01" and any other slight variants refer to the 64T64RMMU antenna manufactured by Samsung Electronics. These names are interchangeable and are used in various documents, including but not limited to the "Antenna Mount Analysis".

If you have any questions or comments, or require additional information, please do not hesitate to contact me.


Very truly vours,
MASER CONSLITTING CONNECTICUT

Petros Foukalasense Connectica, Professional Engineer

License Number: 92577

ATTACHMENT 5

Map Block Lot

1-05-12N-0

Building #

PID

43

Account

015124

Property Information

Property Location	6 PROGRESS AVE			
Owner	EDMAC LL	С		
Co-Owner				
Mailing Address	2702 FOREST VIEW LANE			
	KISSIMME	E	FL	34744
Land Use	4330	RAD/TV	TR	
Land Class	ı			
Zoning Code	GI-2			
Census Tract				

Neighborhood	D
Acreage	2.15
Utilities	
Lot Setting/Desc	Level
Book / Page	285/679
Additional Info	

Photo

Sketch

Primary Construction Details

J	
Year Built	2001
Building Desc.	RAD/TV TR
Building Style	Com Garage
Building Grade	Average
Stories	1
Occupancy	1.00
Exterior Walls	Concr/Cinder
Exterior Walls 2	NA
Roof Style	Flat
Roof Cover	Rolled Compos
Interior Walls	Minim/Masonry
Interior Walls 2	NA
Interior Floors 1	Precast Concr
Interior Floors 2	NA

Heating Fuel	Gas
Heating Type	Hot Air-no Duc
AC Type	Central
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	
Bath Style	NA
Kitchen Style	NA
Rec Rm Area	NA
Rec Rm Quality	NA
Bsmt Gar	NA
Fireplaces	NA

(*Industrial / Commercial Details)

(11144511141)	Gommercian Details)
Building Use	Comm/Ind
Building Condition	A
Sprinkler %	NA
Heat / AC	Heat /AC Split
Frame Type	Masonry
Baths / Plumbing	None
Ceiling / Wall	None
Rooms / Prtns	Light
Wall Height	16.00
First Floor Use	4330
Foundation	NA

Report Created On

4/19/2021

Map Block Lot 1-05-12N-0

Building #

PID

A

43

Account **015124**

Valuation Sum	nary (As	ssessed value = 70	0% of Appraised Value)	Sub Areas			
Item	Appr	aised	Assessed	Subarea Tyj	pe	Gross Area (sq ft)	Living Area (sq f
Buildings	61100		42770	First Floor		2470	2470
Extras	0		0	Slab		2470	0
Improvements							
Outbuildings	7000		4900				
Land	163200		114240				
Γotal	231300		161910				
Outbuilding an	nd Extra F	eatures					
Type Descri		Description	on				
Paving Asph.		7000 S.F.					
Fence 8 Ft		215 L.F.					
				Total Area		4940	2470
Sales History							
Owner of Record				Book/ Page	Sale Date	e Date Sale Price	
EDMAC LLC				285/679	2001-09-25	5 0	
MACCONNIE EDWA	RD H			269/272	2000-06-28	3 0	
EMAC COMMUNICATIONS CO INC				266/50	2000-02-11	110000	

ATTACHMENT 6

lame and Address of Sender	TOTAL NO. of Pieces Listed by Sender of Pieces Received at Post Office	Affix Stamp Here			
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving employee)	Postmark with Date of Receipt. neopost 05/25/2022 US POSTAGE \$002.99 ZIP 06103 041L 12203937			
USPS® Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage Fee S	pecial Handling Parcel Airlift		
	Annmarie Drugonis, First Selectwoman Town of Seymour 1 First Street Seymour, CT 06483 Keith Rosenfeld, Town Planner Town of Seymour 1 First Street Seymour, CT 06483 EMAC LLC Attn: Edward MacConnie 2702 Forest View Lane Kissimmee, FL 34744	MAY 25 2022 G			
			0		