Transcend Wireless

10 Industrial Ave,

July 8, 2016
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
T-Mobile Northeast LLC - CT11451G
Tower Share Application
27 Maynard Road, Salem, CT 06420
Latitude- 41.46303056
Longitude- -72.24659723
Dear Ms. Bachman,
This letter and attachments are submitted on behalf of T-Mobile Northeast LLC ("T-Mobile"). T-Mobile plans to install antennas and related equipment at the tower site located at 27 Maynard Road in Salem, Connecticut.

T-Mobile will install six (6) 700/1900 MHz antennas and nine (9) RRHs at the 82^{\prime} level of the existing 100 ' lattice tower. One (1) hybrid cable will also be installed. T-Mobile's equipment cabinets will be placed on a 10' X 15' concrete pad within the existing ground facility. Included are plans by Hudson Design Group, dated June 20, 2016, depicting the planned changes and attached as Exhibit A. Also included is a structural analysis prepared by Hudson Design Group, dated July 5, 2016, confirming that the existing tower is structurally capable of supporting the proposed equipment. This is attached as Exhibit B.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of T-Mobile's intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Kevin T. Lyden, First Selectman of the Town of Salem, as well as the tower and property owner, Salem Telecom LLC. Please see the attached letter from Salem Telecom LLC authorizing the proposed shared use of this facility attached as Exhibit C.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the lattice tower is 100^{\prime}; T-Mobile's proposed antennas will be located at a center line height of 82^{\prime}.
2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligee.
4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 17.47%, as evidenced by Exhibit D.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, T-Mobile respectfully that the shared use of this facility satisfies these criteria.
A. Technical Feasibility. The existing lattice tower has been deemed structurally capable of supporting TMobile's proposed loading. The structural analysis is included as Exhibit B.
B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this lattice tower in Salem. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit T-Mobile to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit C, authorizing T-Mobile to file this application for shared use.
C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of T-Mobile equipment at the 82^{\prime} level of the existing 100^{\prime} tower would have an insignificant visual impact on the area around the tower. T-Mobile's ground equipment would be installed within the existing facility compound. T-Mobile's shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit D, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
D. Economic Feasibility. T-Mobile will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist T-Mobile with this tower sharing application.
E. Public Safety Concerns. As discussed above, the lattice tower is structurally capable of supporting TMobile's proposed loading. T-Mobile is not aware of any public safety concerns relative to the proposed sharing of the existing lattice tower. T-Mobile's intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Salem.

Sincerely,

Kyle Richers

Kyle Richers
Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, New Jersey
krichers@transcendwireless.com
908-447-4716

cc: Kevin T. Lyden- First Selectman, Town of Salem Salem Telecom LLC

SITE NUMBER: CT11451G

27 MAYNARD ROAD
SALEM, CT 06420 NEW LONDON COUNTY

APPROVALS	
PROJECT MANAGER	DATE
CONSTRUCTION	DATE
RF ENGINEERING	DATE
ZONING / STEE ACQ.	DATE
OPERATONS	DATE
TOWER OWNER	DATE

DRNNG DRECTONS:

 CIRCLE, TAKE THE 1 ST EXTT ONTO CT-85 S. TURN LEFT ONTO HORSE POND RD. TURN RIGHT ONTO
arrive at 27 maynard road salem, ct 06420.

PROJECT SUMMARY

SCOPE OF WORK:	UNMANNED TELECOMMUNICATIONS FACILTY T-MOBILE EQUIPMENT INSTALLATION
$\begin{aligned} & \text { ZONING JURISDICTION: } \\ & \text { (TOWN OF SALEM) } \end{aligned}$	based on information provided by T-MOBILE, THIS TELECOMMUNICATIONS EQUIPMENT DEPLOYMENT IS AN ELIGIBLE FACILITY UNDER THE TAX RELIEF ACT OF 2012, 47 USC 1455(A), AND IS SUBJECT TO AN EXPEDITED ELIGIBLE FACILITIES REQUEST/REVIEW AND ZONING PRE-EMPTION FOR LOCAL DISCRETIONARY PERMITS (VARIANCE, SPECIAL PERMIT, SITE PLAN REVIEW).
SITE ADDRESS:	27 MAYNARD ROAD SALEM, CT 06420
Lattude:	41. $27^{\prime \prime} 47.00{ }^{\prime \prime} \mathrm{N}$
LONGIUDE:	72. $14^{\prime} 47.75{ }^{\prime \prime} \mathrm{W}$
JURISICTIION:	national, state \& Local cooes or ordinances
current use:	telecommunications facility
PROPOSED USE:	telecommunications faclity
TOWER OWNER:	SALEM TELECOM LLC. ${ }^{2} 26$ LEOARD, CT 06339 PHONE: 860-536-1118

GN-1 GENERAL NOTES
SHET TET

GROUNDING NOTES

THE SUBCONTRACTOR SHALL REVEW AND INSPECT THE EXISTING FACIITY GROUNDING SYSTEM AND LIIHTNING PROTECTION SYSTEM (AS DESIGNED AND
NSTALLED) FOR STRICT COMPLANCE WTH THE NEC (AS ADOPTED BY THE NSTALLED) FOR STRICT COMPLANCE WTH THE NEC (AS ADOPTED BY THE AHU),
THE STIE-SECIFIC (LL, LPI, OR NFPA) LIGHTNG PROTECTON CODE, AND GENERAL
 SUBCONTRACTOR SHALL REPORT
CONTRACTOR FOR RESOUTION.
2. AlL Ground electrode systems (including telecommuncation, radio,

THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO

4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQURED EQUIPMENT GROUND
CONDUCTOR. STRANDED COPPER CONDUCTORS WIH GREEN INSULATION, SIZED IN

5. EACH BTS CABINET FRAME SHALL BE DIRECTIY CONNECTED TO THE MASTER
GROUND BAR WIH GREEN INSULATED SUPLLEMENTAL EQUPMENT GROUND WIRES, G AWG BAR WNTH GREEN INSULATED SUPPLEMENTAL EQUPMENT GROUND WIRES
COPR OR LARGER FRR INDOOR BTS 2 AWG STRANEED
6. Exothermic welds shall be used for all grounoing connections below . APPROVED ANTIOXIIANT COATINGS (IEE. CONDUCTVE GEL OR PASTE) SHALL BE
USED ON ALL COMPRESSION AND
BOLTED GROUND CONNECTIONS.
8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR
BOITED TO GROUND BAR.
9. ALUMNUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED
FOR GROUNDNG CONNECTONS. 10. MISCELANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPP.

METAL CONDUT SHALL BE MADE ELECTRICALLY CONTINUOUS WTH LISTED BONDING
FITNNS OR BY BONOING ACROSS THE DISCOTTNUTY WITH 6 AWS COPPER WIRE GROUNING TTPE CONDUIT CLAMPS.
2. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT . OR MORE OF $1 / 2$ IN. OR GREATER ELECTRICALLI CONDUCTVE REINFORCING STEEL CONNECTION USING \#2 AWG SOLD BARE TINED COPPER GROUND WIRE, PER NEC 250.50 ETEPMIC wEldng or driung to tower members.

GENERAL NOTES

FOR tHE pURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS
SHALL APPIY:
CONTRACTOR - TRANSCEND WIRELESS
CONTRACTOR - TRANSCEND WIRELESS
SUECOTTRACTOR
OWNER - T-MOBLILE EERERAL CONTRACTOR (CONSTRUCTION)
2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VSIT

3. AL MATERIALS FURNSHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH
 REGUATIONS, AND LAWFUL ORDERS OF ANY PUBLC AUTHORIIT REGARDING THE
PERFORMANE OF THE WORK. ALL WORK CARRED OU SHALL COMPLY WITH ALL PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY
APLICALE MUCIICAL AND UTLTT COMPNY SECCIFCTONS AND LOC
JURISDCTIONAL CODES, ORDINANCES AND APPLICABLE REGULATINS.
4. DRAwings provided here are not to be scaled and are intended to show
OUTINE ONLY.
5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHNG MATERIALS,
EQUPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL EQUPMENT, APPURTENANCES, AND LABOR NECESS
INSTALLATIONS AS INOICATED ON THE DRAWINGS.

7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUPMENT AND MATERIALS IN ACCORDANCE WTH
STATED OTHERWISE
8. IF THE SPECIIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROP
SPACE FOR APPROVAL BY THE CONTRACTOR.
9. SUBCONTRACTOR SHALL DETERMNE ACTUAL ROUTNG OF CONDUT, POWER AND T1 PLAN DRAWING. SUBCONTRACTOR SHALL UTLIZE EXISTING TRAYS AND/OR SHALL
ADD NEW TRAY AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL UUTNG WTH THE CONTRACTOR.
10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE
SUBCONTRACTTR'S EXPENSE TO THE SATISFACTION OF OWNER.
11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS
SUCH AS COAXAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACLITT. ANIENNAS REMOVED SHALL BE REIURNED TO THE OWNER'S DESIGNATED FACLITTY
LOCATION.
12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
13. ALL CONCRETE REPAR WORK SHALL BE DONE IN ACCORDANCE WTTH AMERICAN
CONCETE INSTITTE (ACI) 301 .

ANV NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED
ANE
SE DOAL BE DONE IN ACCORDANCE WITH ACI 318 COOE REQUREMENTS.
15. ALL STRUCTURAL STEEL WORK SHALL BE DETALED, FABRICATED AND ERECTED IN A 36 (Fy $=36$ ksi) UNLESS OTHERWISE NOTED PIPES SHALL BE ASTM ASB TY

16. CONSTRUCTION SHALL COMPLY WITH SPECLIICATIONS AND "GENERAL CONSTRUCTION
SERVICES FOR CONSTRUCTION OF T-MOBLLE SITES."
7. SUBCONTRACTOR SHALL VERIF ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR
TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTNG CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIIIID. SUBCONTRACTOR SHALL NOTIIF THE
CONRCTTR OF ANY DISCREPANIIES PRIOR TO ORDERING MATERIAL OR PROCEEDIN TH CONSTRUCTION.
18. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION
WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WTH CONTRACCOR.
ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MANTENANCE WINDO ALSO WORK SHOULD BE SCHEDULED FOR AN APPR
USULLY IN LOW TRAFFIC PERIOOS AFER MDNIGT.
19. SINCE THE CELL SITE IS ACTVE, ALL SAEETY PRECAUTIONS MUST BE TAKEN WHEN
 THE WORKERS TO DANGER PERSONAL RF EXPOSURE MONTT
BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.
20. applicable building codes SUBCONTRACTOR'S WORK SHALL COMPLY WIH ALL APPLICABLE NATIONAL, STATE,
AND LOCAL COOES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISOICTION (AHH) FRR THE LOCATION. THE EDTION OF HE AHO ADOPTED CODES AND
STADDARD IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN BULIING CODE: 2003 IBC WTH 2005 CT SUPPLEMENT, $+2009 \& 2013$ CT AMENDMENTS
ELECTRCLAL CODE: REEER TO ELECCTRICAL DRAWNGS
LICHTENING CODE: REFER TO ELECTRICAL DRAWNGS
SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE
FOLLOWING STANDARDS:
AMERICAN CONCRETE INSTITUTE (ACI) 318; BUILING CODE
REQUIREMENTS FOR STRUCTURAL CONCRETE;
american institute of steel construction (AISC)
manual of steel construction, asd, fourteenth edition:
TELECOMMUNCATIONS INDUSTRY ASSOCIATION (TAA) 222-F,
STRUCTURAL STANDARDS FOR STEEL
EQUIPMENT AND ANTENNA SUPPORTING STRUCTURES; REEER
TO ELECTRICAL DRAWINGS FOP SPECIFIC ELLCTRICAL STANDARIS

 TELLCOM LLC PRIOR TC STARTING WORK. SALEM TELECOM LLC TO BE LISTED AS
ADITIONALY INSURED ON ALL CERTFICATES.

T-MOBILE NORTHEAST LLC

Transcend Wireless

$\underset{\text { Design Groupuc }}{ }$

SUBMITTALS

CT1 1451 Cl
CT11451G
STE ADORESS:
SALEM, CT 06420
NEW LONDON COUNTV

SHEET TILE

general notes

GN-1

STRUCTURAL ANALYSIS REPORT

For
CT11451G
MAYNARD/SALEM
27 Maynard Road
Salem, CT 06420

Antennas Mounted to the Tower

Prepared for:

Transcend Wireless

Dated: July 5, 2016

Prepared by:

1600 Osgood Street Bldg. 20N Suite 3090
North Andover, MA 01845
(P) 978.557.5553 (F) 978.336.5586
www.hudsondesigngroupllc.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by T-Mobile to conduct a structural evaluation of the 100' self-supporting tower supporting the proposed T-Mobile's antennas located at elevation 82' above the ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of T-Mobile's proposed antennas listed below.

Record drawings of the existing tower prepared by Central Tower Inc., dated September 1, 1999, were available and obtained for our use. The previous structural analysis report prepared by this office, dated October 29, 2012, was used for tower analysis.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing tower and foundation are in conformance with the ANSI/TIA-222-F Standard for the loading considered under the criteria listed in this report. The tower structure is rated at 64.6\%-(Diagonal at Tower Section T2 from EL.60' to EL.80' Controlling).

APPURTENANCES CONFIGURATION:

Tenant	Appurtenances	Elev.	Mount
	Lightning Rod	100^{\prime}	Tower Leg
	15' Dipole	100^{\prime}	Tower Leg
	10' Omni	100^{\prime}	Tower Leg
	(3) 8' Omni	100^{\prime}	T - Frame
T-Mobile	(3) AIR 21 B4A/B2P Antennas	$\mathbf{8 2}^{\prime}$	T - Frame
T-Mobile	(3) LNX-6515DS-A1M Antennas	$\mathbf{8 2}^{\prime}$	T - Frame
T-Mobile	(3) RRUS 11 B2	$\mathbf{8 2}$	T - Frame
T-Mobile	(3) RRUS 11 B12	$\mathbf{8 2}$	T - Frame
AT\&T	(6) Powerwave 7770 Antennas	70^{\prime}	T - Frame
AT\&T	(6) LGP 21400 TMA	70^{\prime}	T - Frame
AT\&T	(6) LGP 21900	70^{\prime}	T - Frame
AT\&T	AM-X-CD-14-65 Antenna	70^{\prime}	T - Frame
AT\&T	P65-17-XLH-RR Antenna	70^{\prime}	T - Frame
AT\&T	AM-X-CD-16-65 Antenna	70^{\prime}	T - Frame
AT\&T	(6) RRUs	70^{\prime}	T - Frame
AT\&T	Surge Arrestor DC6-48-60-18-8F	70^{\prime}	Tower Leg
AT\&T	GPS-TMG-HR-26N	20^{\prime}	Tower Leg

*Proposed T-Mobile Appurfenances shown in Bold.

T-MOBILE EXISTING/PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
T-Mobile	(1) Fiber Cable	82^{\prime}	T-Bracket

*Proposed T-Mobile Coax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Legs	44.5%	$0-20$	PASS	
Diagonals	64.6%	$60-80$	PASS	Controlling
Top Girts	1.9%	$80-100$	PASS	
Bottom Girts	4.9%	$80-100$	PASS	

FOUNDATION ANALYSIS RESULTS SUMMARY:

	Design Reactions $(\mathrm{DL}+\mathbf{W L})$	Base Reactions $(\mathrm{DL}+\mathbf{W L})$	Pass/Fail	Comments
AXIAL	$\mathbf{3 4 . 1} \mathbf{~ k}$	19.2 k	PASS	
SHEAR	$\mathbf{2 9 . 8} \mathbf{k}$	17.3 k	PASS	
MOMENT	$\mathbf{2 1 3 9} \mathrm{ft}-\mathbf{k}$	$1074 \mathrm{ft}-\mathrm{k}$	PASS	

DESIGN CRITERIA:

1. EIA/TIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

City/Town: Salem
County: New London
Wind Load: 85 mph (fastest mile)
105 mph (3 second gust)
Nominal Ice Thickness: 0.5 inch
2. Approximate height above grade to proposed antennas: 82'

*Calculations and referenced documents are attached.

ASSUMPTIONS:

1. The tower dimensions, member sizes and material strength are as indicated in the record drawings of the existing tower prepared by Central Tower Inc., dated September 1, 1999.
2. The existing appurtenances configuration is as stated in this report. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
3. The tower and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
4. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
5. All prior structural modification, if any, are assumed to be as per the data supplied (if available), and installed properly.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas and RRHs be mounted on the proposed T-frame supported by the tower.

ONGOING AND PERIODIC INSPECTION AND MAINTENANCE:

After the Contractor has successfully completed the installation and the work has been accepted, the Owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

Photo 1: Photo illustrating the Tower with Appurtenances shown.

CALCULATIONS

H Hudson Design Group LLC	Pob: CT11451G Salem, CT		
Hudson ${ }_{\text {Pesing }}$ (roupuc 1600 Osgood Street Bldg. 20N Suite 3090	$\text { Project: } 100 \mathrm{ft} \text { Self Supporting Tower }$		
North Andover, MA 01845	Client: T-Mobile	Drawn by: kw	'd:
Phone: (978) 557-5553	Code: TIA/EIA-222-F	Date: 07/05/16	Scale: NTS
FAX: (978) $336-5586$	Path: ${ }_{\text {cw }}$		Dwg No. E-1

Hudson Design Groupuc Hudson Design Group LLC 1600 Osgood Street Bldg. 20 N Suite 3090	Job	CT11451G Salem, CT	$\text { Page } 1 \text { of } 9$
	100 ft Self Supporting Tower		$\begin{aligned} & \text { Date } \\ & \text { 14:43:44 07/05/16 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-Mobile	Designed by kw

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 100.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 5.00 ft at the top and 10.00 ft at the base.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in New London County, Connecticut.
Basic wind speed of 85 mph .
Nominal ice thickness of 0.5000 in.
Ice density of 56 pcf .
A wind speed of 74 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tower Section Geometry

Tower Section	Tower	Assembly	Description	Section Database	Number of
				Section Length	
	$f t$			$f t$	Sections

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	$f t$	$f t$		Panels		in	
T1	$100.00-80.00$	3.21		X Brace	No	No	4.5000
T2	$80.00-60.00$	6.17	X Brace	No	No	9.0000	9.5000
T3	$60.00-40.00$	6.17	X Brace	No	No	9.0000	9.0000
T4	$40.00-20.00$	6.17	X Brace	No	No	9.0000	9.0000
T5	$20.00-0.00$	6.17	X Brace	No	No	9.0000	9.0000

Hudson Design Groupuc Hudson Design Group LLC	Job	CT11451G	Salem, CT	$\text { Page } 2 \text { of } 9$
	Project	100 ft Self Su	orting Tower	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:43:44 07/05/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client			Designed by kw

Tower Elevation $f t$	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 100.00-80.00	Solid Round	$21 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	1	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T2 80.00-60.00	Solid Round	3	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2x2x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T3 60.00-40.00	Solid Round	$31 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2x $2 \times 1 / 4$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 40.00-20.00	Solid Round	$31 / 2$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2x $2 \times 1 / 4$	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T5 20.00-0.00	Solid Round	$33 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2 1/2x2 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Type	Size	Grade	Type	Size	
$f t$						
T1 $100.00-80.00$	Solid Round	1	A 36	Solid Round	1	A36
			$(36 \mathrm{ksi})$		$(36 \mathrm{ksi})$	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | Face
 or
 Leg | Allow
 Shield | Component
 Type | Placement | Total
 Number | Number
 Per Row | Clear
 Spacing
 in | Width or Perimeter
 Diameter
 in | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | | |

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

ft \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

$l b$

\hline Lightning Rod \& A \& None \& \& 0.0000 \& 100.00 \& No Ice \& 0.75 \& 0.75 \& 10.00

\hline \& \& \& \& \& \& 1/2" Ice \& 1.25 \& 1.25 \& 40.00

\hline 15' Dipole \& C \& From Leg \& 0.00 \& 0.0000 \& 100.00 \& No Ice \& 6.00 \& 6.00 \& 40.00

\hline
\end{tabular}

Hudson Hudson Design Group LLC	Job	CT11451G	Salem, CT	Page 3 of 9
	Project	100 ft Self Supporting Tower		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:43:44 07/05/16 } \end{array}$
$\begin{gathered} \text { North Andover, MA } 01845 \\ \text { Phone: (978) 557-5553 } \\ \text { FAX: (978) 336-5586 } \\ \hline \end{gathered}$	T-Mobile			Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline \& \& \& $$
\begin{aligned}
& 0.00 \\
& 7.50
\end{aligned}
$$ \& \& \& 1/2" Ice \& 7.54 \& 7.54 \& 81.87

\hline Omni 3"x10' \& B \& From Leg \& $$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 5.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 3.00 \\
& 4.03
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 3.00 \\
& 4.03
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20.00 \\
& 41.79
\end{aligned}
$$
\]

\hline PiROD 12' T-Frame \& C \& From Face \& $$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 98.50 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline Omni 3"x8' \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 4.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice $1 / 2^{\text {" }}$ Ice \& \[

$$
\begin{aligned}
& 2.40 \\
& 3.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.40 \\
& 3.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 25.00 \\
& 42.51
\end{aligned}
$$
\]

\hline Omni 3"x8' \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 4.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 2.40 \\
& 3.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.40 \\
& 3.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 25.00 \\
& 42.51
\end{aligned}
$$
\]

\hline PiROD 12' T-Frame \& C \& From Face \& \[
$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 98.50 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline Omni 3"x8' \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 4.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 2.40 \\
& 3.19
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 2.40 \\
& 3.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 25.00 \\
& 42.51
\end{aligned}
$$
\]

\hline ********** \& \& \& \& \& \& \& \& \&

\hline PiROD 15' T-Frame (AT\&T - Existing) \& A \& From Leg \& $$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 15.00 \\
& 20.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.00 \\
& 20.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 500.00 \\
& 650.00
\end{aligned}
$$
\]

\hline PiROD 15' T-Frame \& B \& From Leg \& \[
$$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 70.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 15.00 \\
& 20.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.00 \\
& 20.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 500.00 \\
& 650.00
\end{aligned}
$$
\]

\hline PiROD 15' T-Frame \& C \& From Leg \& $$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 15.00 \\
& 20.60
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 15.00 \\
& 20.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 500.00 \\
& 650.00
\end{aligned}
$$
\]

\hline (2) Powerwave $7770 \mathrm{w} / \mathrm{mount}$ pipe \& A \& From Leg \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 70.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 6.02 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.10 \\
& 4.75
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
57.25 \\
103.17
\end{gathered}
$$
\]

\hline (2) Powerwave $7770 \mathrm{w} / \mathrm{mount}$ pipe \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 6.02 \\
& 6.47
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 4.10 \\
& 4.75
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
57.25 \\
103.17
\end{gathered}
$$
\]

\hline (2) Powerwave $7770 \mathrm{w} / \mathrm{mount}$ pipe \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 6.02 \\
& 6.47
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 4.10 \\
& 4.75
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
57.25 \\
103.17
\end{gathered}
$$
\]

\hline (2) Powerwave LGP21900 \& A \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 0.23 \\
& 0.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.12 \\
& 0.17
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.50 \\
& 7.70
\end{aligned}
$$
\]

\hline (2) Powerwave LGP21900 \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 0.23 \\
& 0.30
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.12 \\
& 0.17
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.50 \\
& 7.70
\end{aligned}
$$
\]

\hline (2) Powerwave LGP21900 \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 0.23 \\
& 0.30
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.12 \\
& 0.17
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.50 \\
& 7.70
\end{aligned}
$$
\]

\hline (2) Powerwave TMA LGP21400 \& A \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline (2) Powerwave TMA LGP21400 \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline (2) Powerwave TMA LGP21400 \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline
\end{tabular}

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20 N Suite 3090	Job	CT11451G	Salem, CT	$\begin{aligned} & \text { Page } \\ & \\ & 4 \text { of } 9 \end{aligned}$
	Project	100 ft Self Supporting Tower		Date 14:43:44 07/05/16
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client			Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline ********** \& \& \& \& \& \& \& \& \&

\hline $$
\begin{gathered}
\text { KMW } \\
\text { AM-X-CD-14-65-00T-RET } \\
\text { w/mount pipe }
\end{gathered}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$
\] \& 0.0000 \& 70.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 5.74 \\
& 6.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.02 \\
& 4.63
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 54.65 \\
& 99.88
\end{aligned}
$$
\]

\hline Powerwave P65-17-XLH-RR w/mount pipe \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 11.75 \\
& 12.47
\end{aligned}
$$ \& \[

$$
\begin{gathered}
9.39 \\
10.90
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 122.11 \\
& 212.11
\end{aligned}
$$
\]

\hline $$
\begin{gathered}
\text { KMW } \\
\text { AM-X-CD-16-65-00T-RET } \\
\text { w/mount pipe }
\end{gathered}
$$ \& C \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$
\] \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 8.50 \\
& 9.15
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 6.30 \\
& 7.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.05 \\
139.04
\end{gathered}
$$
\]

\hline (2) Ericsson RRU \& A \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 2.07 \\
& 2.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.08 \\
& 1.23
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44.00 \\
& 58.64
\end{aligned}
$$
\]

\hline (2) Ericsson RRU \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 2.07 \\
& 2.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.08 \\
& 1.23
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44.00 \\
& 58.64
\end{aligned}
$$
\]

\hline (2) Ericsson RRU \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 70.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 2.07 \\
& 2.26
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.08 \\
& 1.23
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44.00 \\
& 58.64
\end{aligned}
$$
\]

\hline Surge Arrestor (DC6-48-60-18-8F) \& B \& From Leg \& \[
$$
\begin{aligned}
& 0.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 70.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 1.27 \\
& 1.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.27 \\
& 1.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20.00 \\
& 35.12
\end{aligned}
$$
\]

\hline PCTEL GPS-TMG-HR-26N \& A \& From Leg \& $$
\begin{aligned}
& 0.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 20.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 0.09 \\
& 0.14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.09 \\
& 0.14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.00 \\
& 2.39
\end{aligned}
$$
\]

\hline *********** \& \& \& \& \& \& \& \& \&

\hline | PiROD 12' T-Frame |
| :--- |
| (T-Mobile - Proposed) | \& A \& From Leg \& \[

$$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 82.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline PiROD 12' T-Frame \& B \& From Leg \& $$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 82.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline PiROD 12' T-Frame \& C \& From Leg \& $$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 82.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline ERICSSON AIR 21 B4A B2P w/ Mount Pipe \& A \& From Leg \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 82.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 6.92 \\
& 7.48
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.75 \\
& 6.66
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 112.30 \\
& 170.21
\end{aligned}
$$
\]

\hline ERICSSON AIR 21 B4A B2P w/ Mount Pipe \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 82.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 6.92 \\
& 7.48
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.75 \\
& 6.66
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 112.30 \\
& 170.21
\end{aligned}
$$
\]

\hline ERICSSON AIR 21 B4A B2P w/ Mount Pipe \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 82.00 \& No Ice $1 / 2^{\text {" Ice }}$ \& \[

$$
\begin{aligned}
& 6.92 \\
& 7.48
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.75 \\
& 6.66
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 112.30 \\
& 170.21
\end{aligned}
$$
\]

\hline LNX-6515DS-A1M w/ Mount Pipe \& A \& From Leg \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 82.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 11.68 \\
& 12.40
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
9.84 \\
11.37
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
83.27 \\
172.93
\end{gathered}
$$
\]

\hline LNX-6515DS-A1M w/ Mount Pipe \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 82.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 11.68 \\
& 12.40
\end{aligned}
$$ \& \[

$$
\begin{gathered}
9.84 \\
11.37
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
83.27 \\
172.93
\end{gathered}
$$
\]

\hline LNX-6515DS-A1M w/ Mount Pipe \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 82.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 11.68 \\
& 12.40
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
9.84 \\
11.37
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
83.27 \\
172.93
\end{gathered}
$$
\]

\hline RRUS 11 \& A \& From Leg \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 82.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 3.25 \\
& 3.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.37 \\
& 1.55
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.50
\end{aligned}
$$
\]

\hline RRUS 11 \& B \& From Leg \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline
\end{tabular}

Hudson Hudson Design Group LLC	Job	CT11451G	Salem, CT	Page 5 of 9
	Project	100 ft Self Supporting Tower		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:43:44 07/05/16 } \end{array}$
$\begin{gathered} \text { North Andover, MA } 01845 \\ \text { Phone: (978) 557-5553 } \\ \text { FAX: (978) 336-5586 } \end{gathered}$	T-Mobile			Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement
\[
f t
\] \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Side \\
\(f t^{2}\)
\end{tabular} \& Weight

$l b$

\hline \& \& \& $$
\begin{aligned}
& 0.00 \\
& 0.00
\end{aligned}
$$ \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 71.50

\hline RRUS 11 \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 82.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 3.25 \\
& 3.49
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.37 \\
& 1.55
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.50
\end{aligned}
$$
\]

\hline RRUS 11 B12 \& A \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 82.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 3.31 \\
& 3.55
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.36 \\
& 1.54
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline RRUS 11 B12 \& B \& From Leg \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 82.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 3.31 \\
& 3.55
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.36 \\
& 1.54
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline RRUS 11 B12

$* * * * * * * * * * *$ \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 82.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 3.31 \\
& 3.55
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.36 \\
& 1.54
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline
\end{tabular}

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+Ice+Temp	
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+Ice+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind 180 deg+Ice+Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg+Ice+Temp	
26	Dead+Wind 330 deg+Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	

Comb.		Description
No.	Dead+Wind 210 deg - Service	
34	Dead+Wind 240 deg - Service	
35	Dead+Wind 270 deg - Service	
36	Dead+Wind 300 deg - Service	
37	Desid	
38	Dead+Wind 330 deg - Service	

		Maximum Reactions			
Location	Condition	Gov. Load Comb	Vertical $l b$	Horizontal, X $l b$	Horizontal, Z $l b$
Leg C	Max. Vert	10	130289.81	8528.66	-4776.11
	Max. H_{x}	10	130289.81	8528.66	-4776.11
	Max. H_{z}	3	-98876.55	-6574.46	4762.43
	Min. Vert	4	-114431.66	-8121.97	4530.00
	Min. H_{x}	4	-114431.66	-8121.97	4530.00
	Min. H_{z}	10	130289.81	8528.66	-4776.11
Leg B	Max. Vert	6	130408.37	-8504.88	-4819.68
	Max. H_{x}	12	-114313.20	8096.89	4570.72
	Max. H_{z}	13	-98758.02	6532.46	4836.34
	Min. Vert	12	-114313.20	8096.89	4570.72
	Min. H_{x}	6	130408.37	-8504.88	-4819.68
	Min. H_{z}	6	130408.37	-8504.88	-4819.68
Leg A	Max. Vert	2	129996.97	49.63	9771.27
	Max. H_{x}	11	6157.48	1601.27	254.53
	Max. H_{z}	2	129996.97	49.63	9771.27
	Min. Vert		-114723.69	-47.79	-9302.05
	Min. H_{x}		6157.48	-1599.79	254.50
	Min. H_{z}	8	-114723.69	-47.79	-9302.05

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear $_{x}$ lb	Shear $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	19177.77	0.00	-0.00	2022.02	-591.47	0.00
Dead+Wind 0 deg - No Ice	19177.78	0.00	-17265.58	-1070445.26	-593.12	887.85
Dead+Wind 30 deg - No Ice	19177.77	8390.94	-14533.51	-910132.59	-527226.13	1809.92
Dead+Wind 60 deg - No Ice	19177.76	14393.87	-8310.30	-521402.96	-907210.32	2331.93
Dead+Wind 90 deg - No Ice	19177.77	16781.85	-0.01	2036.10	-1053869.69	2205.78
Dead+Wind 120 deg - No Ice	19177.78	14952.43	8632.79	538267.57	-929388.80	1390.02
Dead+Wind 150 deg - No Ice	19177.77	8390.92	14533.52	914187.42	-527237.74	377.87
Dead+Wind 180 deg - No Ice	19177.76	-0.00	16620.61	1048897.77	-594.13	-806.29
Dead+Wind 210 deg - No Ice	19177.77	-8390.92	14533.52	914188.36	526050.14	-1809.88
Dead+Wind 240 deg - No Ice	19177.78	-14952.43	8632.80	538268.49	928202.66	-2277.75
Dead+Wind 270 deg - No Ice	19177.77	-16781.85	-0.01	2036.11	1052684.57	-2205.78
Dead+Wind 300 deg - No Ice	19177.76	-14393.87	-8310.30	-521403.86	906025.19	-1525.53
Dead+Wind 330 deg - No Ice	19177.77	-8390.94	-14533.51	-910133.51	526040.29	-377.91
Dead+Ice+Temp	25895.99	-0.00	-0.00	1573.09	-1446.19	0.00
Dead+Wind 0 deg+Ice+Temp	25896.00	0.00	-16201.99	-1021094.83	-1448.59	-76.34
Dead+Wind 30 deg+Ice+Temp	25895.99	7916.37	-13711.57	-871543.57	-505544.82	1028.84
Dead+Wind 60 deg+Ice+Temp	25895.99	13604.96	-7854.83	-500097.46	-870395.73	1896.09
Dead+Wind 90 deg+Ice+Temp	25895.99	15832.75	0.00	1593.31	-1009655.04	2227.82
Dead+Wind 120 deg+Ice+Temp	25896.00	14031.33	8101.00	512926.27	-887123.62	1909.04

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20 N Suite 3090	Job	CT11451G	Salem, CT	Page 7 of 9
	100 ft Self Supporting Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:43:44 07/05/16 } \end{array}$
$\begin{gathered} \text { North Andover, MA 01845 } \\ \text { Phone: (978) 557-5553 } \\ \text { FAX: (978) 336-5586 } \end{gathered}$	T-Mobile			Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load Combination \& Vertical

$l b$ \& Shear
x
lb \& Shear 2

$l b$ \& Overturning Moment, M_{x} $l b-f t$ \& Overturning Moment, M_{z} $l b-f t$ \& | Torque |
| :--- |
| $l b-f t$ |

\hline Dead+Wind 150 deg+Ice+Temp \& 25895.99 \& 7916.38 \& 13711.56 \& 874708.44 \& -505560.45 \& 1183.40

\hline Dead+Wind 180 deg+Ice+Temp \& 25895.99 \& 0.00 \& 15709.65 \& 1004953.55 \& -1451.33 \& 93.57

\hline Dead+Wind 210 deg+Ice+Temp \& 25895.99 \& -7916.38 \& 13711.56 \& 874708.80 \& 502658.41 \& -1028.80

\hline Dead+Wind 240 deg+Ice+Temp \& 25896.00 \& -14031.33 \& 8101.00 \& 512926.55 \& 884223.09 \& -1832.71

\hline Dead+Wind 270 deg+Ice+Temp \& 25895.99 \& -15832.75 \& 0.00 \& 1593.13 \& 1006756.13 \& -2227.82

\hline Dead+Wind $300 \mathrm{deg}+$ Ice+Temp \& 25895.99 \& -13604.96 \& -7854.83 \& -500098.06 \& 867497.93 \& -1989.66

\hline Dead+Wind 330 deg+Ice+Temp \& 25895.99 \& -7916.37 \& -13711.57 \& -871544.10 \& 502647.52 \& -1183.46

\hline Dead+Wind 0 deg - Service \& 19177.77 \& 0.00 \& -5974.29 \& -369068.28 \& -592.52 \& 307.21

\hline Dead+Wind 30 deg - Service \& 19177.77 \& 2903.45 \& -5028.92 \& -313597.88 \& -182819.82 \& 627.47

\hline Dead+Wind 60 deg - Service \& 19177.77 \& 4980.60 \& -2875.55 \& -179089.91 \& -314303.80 \& 807.03

\hline Dead+Wind 90 deg - Service \& 19177.77 \& 5806.90 \& -0.00 \& 2031.92 \& -365049.84 \& 762.06

\hline Dead+Wind 120 deg - Service \& 19177.77 \& 5173.89 \& 2987.15 \& 187579.89 \& -321975.20 \& 481.04

\hline Dead+Wind 150 deg - Service \& 19177.77 \& 2903.45 \& 5028.92 \& 317657.52 \& -182822.71 \& 131.97

\hline Dead+Wind 180 deg - Service \& 19177.77 \& 0.00 \& 5751.10 \& 364271.48 \& -592.85 \& -279.08

\hline Dead+Wind 210 deg - Service \& 19177.77 \& -2903.45 \& 5028.92 \& 317657.60 \& 181637.11 \& -627.47

\hline Dead+Wind 240 deg - Service \& 19177.77 \& -5173.89 \& 2987.15 \& 187580.00 \& 320789.84 \& -788.24

\hline Dead+Wind 270 deg - Service \& 19177.77 \& -5806.90 \& -0.00 \& 2031.92 \& 363864.72 \& -762.06

\hline Dead+Wind 300 deg - Service \& 19177.77 \& -4980.60 \& -2875.55 \& -179090.00 \& 313118.80 \& -527.95

\hline Dead+Wind 330 deg - Service \& 19177.77 \& -2903.45 \& -5028.92 \& -313597.98 \& 181634.84 \& -131.96

\hline
\end{tabular}

Solution Summary

Load Comb.	Sum of Applied Forces			Sum of Reactions			\% Error
	PX	PY	PZ	PX	PY	PZ	
	$l b$	lb					
1	0.00	-19177.77	-0.00	0.00	19177.77	0.00	0.000\%
2	0.00	-19177.77	-17265.71	-0.00	19177.78	17265.58	0.000\%
3	8390.97	-19177.77	-14533.58	-8390.94	19177.77	14533.51	0.000\%
4	14393.93	-19177.77	-8310.34	-14393.87	19177.76	8310.30	0.000\%
5	16781.93	-19177.77	-0.00	-16781.85	19177.77	0.01	0.000\%
6	14952.54	-19177.77	8632.85	-14952.43	19177.78	-8632.79	0.000\%
7	8390.97	-19177.77	14533.58	-8390.92	19177.77	-14533.52	0.000\%
8	0.00	-19177.77	16620.68	0.00	19177.76	-16620.61	0.000\%
9	-8390.97	-19177.77	14533.58	8390.92	19177.77	-14533.52	0.000\%
10	-14952.54	-19177.77	8632.85	14952.43	19177.78	-8632.80	0.000\%
11	-16781.93	-19177.77	-0.00	16781.85	19177.77	0.01	0.000\%
12	-14393.93	-19177.77	-8310.34	14393.87	19177.76	8310.30	0.000\%
13	-8390.97	-19177.77	-14533.58	8390.94	19177.77	14533.51	0.000\%
14	0.00	-25895.99	-0.00	0.00	25895.99	0.00	0.000\%
15	-0.00	-25895.99	-16202.06	-0.00	25896.00	16201.99	0.000\%
16	7916.40	-25895.99	-13711.61	-7916.37	25895.99	13711.57	0.000\%
17	13605.02	-25895.99	-7854.86	-13604.96	25895.99	7854.83	0.000\%
18	15832.81	-25895.99	-0.00	-15832.75	25895.99	-0.00	0.000\%
19	14031.39	-25895.99	8101.03	-14031.33	25896.00	-8101.00	0.000\%
20	7916.40	-25895.99	13711.61	-7916.38	25895.99	-13711.56	0.000\%
21	0.00	-25895.99	15709.72	-0.00	25895.99	-15709.65	0.000\%
22	-7916.40	-25895.99	13711.61	7916.38	25895.99	-13711.56	0.000\%
23	-14031.39	-25895.99	8101.03	14031.33	25896.00	-8101.00	0.000\%
24	-15832.81	-25895.99	-0.00	15832.75	25895.99	-0.00	0.000\%
25	-13605.02	-25895.99	-7854.86	13604.96	25895.99	7854.83	0.000\%
26	-7916.40	-25895.99	-13711.61	7916.37	25895.99	13711.57	0.000\%
27	0.00	-19177.77	-5974.29	-0.00	19177.77	5974.29	0.000\%
28	2903.45	-19177.77	-5028.92	-2903.45	19177.77	5028.92	0.000\%
29	4980.60	-19177.77	-2875.55	-4980.60	19177.77	2875.55	0.000\%
30	5806.90	-19177.77	-0.00	-5806.90	19177.77	0.00	0.000\%
31	5173.89	-19177.77	2987.15	-5173.89	19177.77	-2987.15	0.000\%
32	2903.45	-19177.77	5028.92	-2903.45	19177.77	-5028.92	0.000\%

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CT11451G	Salem, CT	$\text { Page } 8 \text { of } 9$
	100 ft Self Supporting Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:43:44 07/05/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	T-Mobile			Designed by kw

	Sum of Applied Forces				Sum of Reactions			
Load	$P X$	$P Y$	$P Z$	$P X$	$C Y$	$P Z$	\% Error	
Comb.	$l b$							
33	-0.00	-19177.77	5751.10	-0.00	19177.77	-5751.10	0.000%	
34	-2903.45	-19177.77	5028.92	2903.45	19177.77	-5028.92	0.000%	
35	-5173.89	-19177.77	2987.15	5173.89	19177.77	-2987.15	0.000%	
36	-5806.90	-19177.77	-0.00	5806.90	19177.77	0.00	0.000%	
37	-4980.60	-1917777	-2875.55	4980.60	19177.77	2875.55	0.000%	
38	-2903.45	-19177.77	-5028.92	2903.45	19177.77	5028.92	0.000%	

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	ont	o
100.00	Lightning Rod	31	1.354	0.0858	0.0443	313841
98.50	PiROD 12' T-Frame	31	1.327	0.0854	0.0437	313841
82.00	PiROD 12' T-Frame	31	1.029	0.0801	0.0351	90413
70.00	PiROD 15' T-Frame	31	0.798	0.0750	0.0250	166654
20.00	PCTEL GPS-TMG-HR-26N	31	0.102	0.0239	0.0031	38914

Section Capacity Table

$\left.\begin{array}{ccccccccc}\hline \begin{array}{c}\text { Section } \\ \text { No. }\end{array} & \begin{array}{c}\text { Elevation } \\ f t\end{array} & \begin{array}{c}\text { Component } \\ \text { Type }\end{array} & \text { Size } & \begin{array}{c}\text { Critical } \\ \text { Element }\end{array} & \begin{array}{c}P \\ l b\end{array} & \begin{array}{c}\text { SF }\end{array} \text { *Pallow } \\ \text { lb }\end{array} \quad \begin{array}{c}\% \\ \text { Capacity }\end{array} \begin{array}{c}\text { Pass } \\ \text { Fail }\end{array}\right]$

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20 N Suite 3090	Job	CT11451G	Salem, CT	$\text { Page } \quad 9 \text { of } 9$
	Project	100 ft Self Supporting Tower		Date 14:43:44 07/05/16
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client			Designed by kw

| Section | Elevation | Component |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | $f t$ | Type |

Transcend Wireless

SUITE 3
Манwah N.J 07430
Phone: 201.684.0055
FAX: 201.684.0066

Letter of Authorization

Site: Self-Support Tower at 27 Maynard Road, Salem, CT 06420

Owner: Salem Telecom LLC
Lessee: T-Mobile Northeast LLC

I, John Spigel of Salem Telecom LLC, owner of the tower facility located at the address identified above (the "Tower Facility), do hereby authorize T-Mobile Northeast LLC, its successors and assigns, and/or its agent, (collectively, the "Lessee") to act as Salem Telecom LLC's non-exclusive agent for the sole purpose of filing and consummating any landuse or building permit applications) as may be required by the applicable permitting authorities for Lessee's telecommunications' installations.

We understand that this application may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by Lessee only of conditions related to Lessee's installation and any such conditions of approval or modifications will be Lessee's sole responsibility.

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11451G
Maynard/Salem
27 Maynard Road
Salem, CT 06420
May 15, 2016
EBI Project Number: 6216002332

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{1 7 . 4 7} \%$

May 15, 2016

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11451G - Maynard/Salem

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{2 7}$ Maynard Road, Salem, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limit for the 700 MHz Band is approximately 467 $\mu \mathrm{W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 27 Maynard Road, Salem, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 LTE channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
2) 4 UMTS channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
environmental | engineering | due diligence
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of $\mathbf{1 5 . 9} \mathbf{~ d B d}$ at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6} \mathbf{~ d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antenna mounting height centerline of the proposed antennas is $\mathbf{8 2}$ feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.
environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{aligned} & \text { Ericsson AIR21 } \\ & \text { B4A/B2P } \end{aligned}$	Make / Model:	$\begin{aligned} & \text { Ericsson AIR21 } \\ & \text { B4A/B2P } \end{aligned}$	Make / Model:	$\begin{aligned} & \text { Ericsson AIR21 } \\ & \text { B4A/B2P } \end{aligned}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	82	Height (AGL):	82	Height (AGL):	82
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) \text { / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Channel Count	6	Channel Count	6
Total TX Power(W):	240	Total TX Power(W):	240	Total TX Power(W):	240
ERP (W):	9,337.08	ERP (W):	9,337.08	ERP (W):	9,337.08
Antenna A1 MPE\%	5.81	Antenna B1 MPE\%	5.81	Antenna C1 MPE\%	5.81
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{aligned} & \text { Commscope LNX- } \\ & \text { 6515DS-VTM } \end{aligned}$	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ \text { 6515DS-VTM } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ \text { 6515DS-VTM } \end{gathered}$
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	82	Height (AGL):	82	Height (AGL):	82
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power(W):	30	Total TX Power(W):	30	Total TX Power(W):	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A2 MPE\%	1.15	Antenna B2 MPE\%	1.15	Antenna C2 MPE\%	1.15

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile (Per Sector Max)	$\mathbf{6 . 9 6} \%$
AT\&T	8.39%
Antenna System 2	0.21%
Antenna System 3	0.21%
Antenna System 4	0.21%
Antenna System 5	0.14%
Antenna System 6	0.13%
Antenna System 7	0.30%
Antenna System 8	0.91%
Site Total MPE \%:	$\mathbf{1 7 . 4 7} \%$

T-Mobile Sector 1 Total:	6.96%
T-Mobile Sector 2 Total:	6.96%
T-Mobile Sector 3 Total:	6.96%
Site Total:	

T-Mobile_per sector	$\#$ Channels	Watts ERP (Per Channel)	Height $($ feet $)$	Total Power Density $\left(\mu W / \mathrm{cm}^{2}\right)$	Frequency (MHz)	Allowable MPE $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Calculated \% MPE
T-Mobile 1900 MHz (PCS) UMTS	4	1167.14	82	2.91	1900	1000	2.91%
T-Mobile 2100 MHz (AWS) LTE	2	2334.27	82	2.91	2100	1000	2.91%
T-Mobile 700 MHz LTE	1	865.21	82	1.15	700	467	1.15%

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	6.96%
Sector 2:	6.96%
Sector 3:	6.96%
T-Mobile Per Sector	
Maximum:	6.96%
Site Total:	17.47%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 7 . 4 7 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

