Industrial Ave, ite 3 ahwah NJ 07430

DNE: 201.684.0055 K: 201.684.0066

March 25, 2022

Members of the Siting Council Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification 27 Maynard Road, Salem, CT 06420 Latitude: 41.4630305600 Longitude: -72.2465972300 T-Mobile Site#: CT11451G - Anchor

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 82-foot level of the existing 100-foot lattice tower at 27 Maynard Road, Salem, CT. The 100-foot lattice tower and property are owned and operated by Salem Telecom LLC. T-Mobile now intends to remove and replace (3) antennas and add an additional (3) antennas to the 82-foot level of the tower. These antennas will support 5G services.

Planned Modifications:

Tower:

Install New:

- (3) Ericsson AIR 6419 B41 Antennas
- (3) Commscope VV-65A-R1 Antennas
- (3) Radio 4460 B25 B66
- (2) 6x24 Hybrid Cables

<u>To Be Removed:</u> (3) APXV16DWV Antennas (6) RRUS11 All existing coax cables

<u>To Remain:</u> (3) RFS APXVAARR24 Antennas (3) Radio 4449 B12 B71

Ground:

Install (1) 6160 Power Enclosure Install (1) B160 Battery Cabinet Relocate Existing Generator

This facility was approved by the Siting Council for T-Mobile use in TS-T-Mobile-121-160721 dated September 6, 2016. The proposed modification complies with the original approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to First Selectman Ed Chmielewski, Elected Official, and Justin LaFountain, Town Planner, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Eric Breun Transcend Wireless Cell: 201-658-7728 Email: <u>ebreun@transcendwireless.com</u>

Attachments cc: Ed Chmielewski - First Selectman of Salem Justin LaFountain - Town Planner Salem Telecom LLC - Property Owner

1 OF 1			*
EBREUN 658728 HIVAH NJ 07495 HIVAH NJ 07495 ID TO: 1USTIN LAFOUNTAIN 270 HARTFORD ROAD 270 HARTFORD ROAD SALEM CT 06420	CT 063 0-01	UPS GROUND TRACKING #: 12 V25 742 03 9177 0562	BILLING: P/P Reference #1: CT11451G xou.22.03.13 NV45 13.0A 63/2022*

Hello, your package has been delivered.

Delivery Date: Wednesday, 03/23/2022 Delivery Time: 12:35 PM Left At: OFFICE Signed by: EISENBERG

TRANSCEND WIRELESS

Tracking Number:

1ZV257420393944559

ST SELECTMAN ED CHMIELEWSKI) HARTFORD ROAD LEM, CT 06420
5 Ground
LBS
11451G

Hello, your package has been delivered.

Delivery Date: Wednesday, 03/23/2022 Delivery Time: 12:35 PM Left At: OFFICE Signed by: EISENBERG

TRANSCEND WIRELESS

Tracking Number:	1ZV257420391770562
Ship To:	JUSTIN LAFOUNTAIN 270 HARTFORD ROAD SALEM, CT 06420 US
Number of Packages:	1
UPS Service:	UPS Ground
Package Weight:	1.0 LBS
Reference Number:	CT11451G

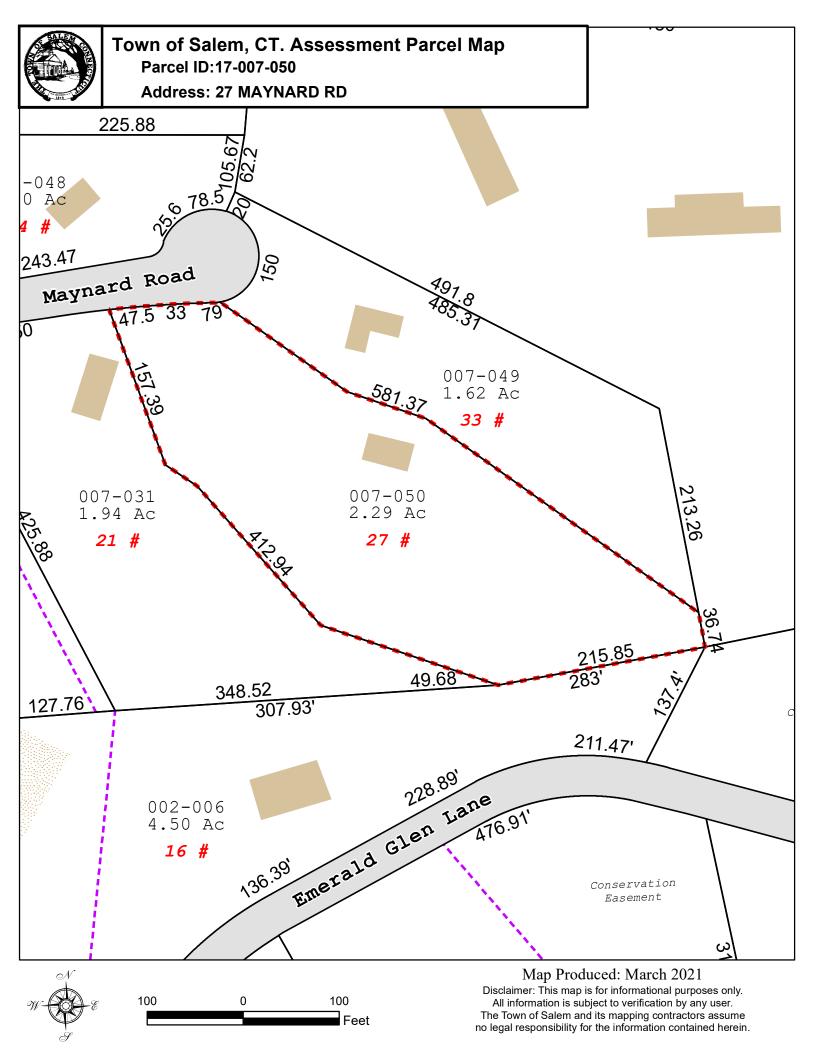
Hello, your package has been delivered.

Delivery Date: Wednesday, 03/23/2022 Delivery Time: 2:11 PM Left At: GARAGE

Experience UPS My Choice® Premium Today

Be in total control of how, when and where your packages are delivered.

Upgrade to Premium Now


Set Delivery Instructions

Manage Preferences

<u>904</u>

TRANSCEND WIRELESS

Tracking Number:	1ZV2574203968679
Ship To:	SALEM TELECOM 226 LAMBTOWN ROAD LEDYARD, CT 06339 US
Number of Packages:	1
UPS Service:	UPS Ground
Package Weight:	1.0 LBS
Reference Number:	CT11451G

Property Listing Report

Map Block Lot

17-007-050

587

Property Information

Property Location	27 MAYNA	RD RD	
Owner	SALEM TE	LECOM LLC	
Co-Owner	na		
Mailing Address	226 LAMB	OWN RD	
Mailing Address	LEDYARD	СТ	06339-0000
Land Use	101	Single Family	
Land Class	R		
Zoning Code	RA		
Census Tract	7151		

1105
2.29
UNKNOWN
UNKNOWN UNKNOWN
0140/0183

Primary Construction Details

2004
Single Family
Cape Cod
C+
1.5
1.00
Vinyl Siding
NA
Gable Or Hip
Asphalt Shingl
Drywall/Sheet
NA
Quarry Tile
Carpet

Heating Fuel	Gas
Heating Type	Forced Air
АС Туре	Heat Pump
Bedrooms	02
Full Bathrooms	2
Half Bathrooms	1
Extra Fixtures	0
Total Rooms	4
Bath Style	Modern
Kitchen Style	Modern
Rec Rm Area	NA
Rec Rm Quality	NA
Bsmt Gar	NA
Fireplaces	NA

Sketch

(*Industrial /	Commercial Details)
Building Use	Residential
Building Condition	G
Sprinkler %	NA
Heat / AC	NA
Frame Type	NA
Baths / Plumbing	NA
Ceiling / Wall	NA
Rooms / Prtns	NA
Wall Height	NA
First Floor Use	NA
Foundation	NA

Report Created On

Property Listing Report

Map Block Lot

17-007-050

587

Item	A	aiaad	A an a a a a d	Sections of Terr		Tining Array (
	Appr	aised	Assessed	Subarea Type	Gross Area (sq ft)	Living Area (sq ft
Buildings	172200		120500	First Floor	681	681
Extras	2200		1500	Attached Garage	624	0
mprovements				Finished Half Story	1305	653
Dutbuildings	2200		1500	First Floor	681	681
Land	280600		196400	Attached Garage	624	0
Гotal	457200		319900	Finished Half Story	1305	653
Outbuilding a	nd Extra F	eatures				
Туре		Descriptio	on			
Shed Frame		120 S.F.				
Generator		1 UNITS				
Gas Fireplace/Ven	t free	1 UNITS				
				Total Area	2610	1334

Owner of Record	Book/ Page	Sale Date	Sale Price
SALEM TELECOM LLC	0140/0183	2002-08-29	0
SPIEGEL JOHN M & NANCY	0066/0240	1990-06-08	75000

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

September 6, 2016

Kyle Richers Real Estate Consultant Transcend Wireless 10 Industrial Avenue, Suite 3 Mahwah, NJ 07430

RE: **TS-T-MOBILE-121-160721** - T-Mobile Northeast LLC request for an order to approve tower sharing at an existing telecommunications facility located at 27 Maynard Road, Salem, Connecticut.

Dear Mr. Richers:

At a public meeting held on September 1, 2016, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures with the following conditions:

- 1. Any deviation from the proposed installation as specified in the original tower share request and supporting materials with the Council shall render this decision invalid;
- 2. Any material changes to the proposed installation as specified in the original tower share request and supporting materials filed with the Council shall require an explicit request for modification to the Council pursuant to Connecticut General Statutes § 16-50aa, including all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65;
- 3. Not less than 45 days after completion of the proposed installation, the Council shall be notified in writing that the installation has been completed;
- 4. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by T-Mobile Northeast LLC shall be removed within 60 days of the date the antenna ceased to function;
- 5. The validity of this action shall expire one year from the date of this letter; and
- 6. The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

This decision is under the exclusive jurisdiction of the Council and applies only to this request for tower sharing dated July 8, 2016. This facility has been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower. Any deviation from the approved tower sharing request is enforceable under the provisions of Connecticut General Statutes § 16-50u.

The proposed shared use is to be implemented as specified in your letter dated July 8, 2016, including the placement of all necessary equipment and shelters within the tower compound.

Please be advised that the validity of this action shall expire one year from the date of this letter.

Thank you for your attention and cooperation.

Very truly yours, UHB

Robert Stein Chairman

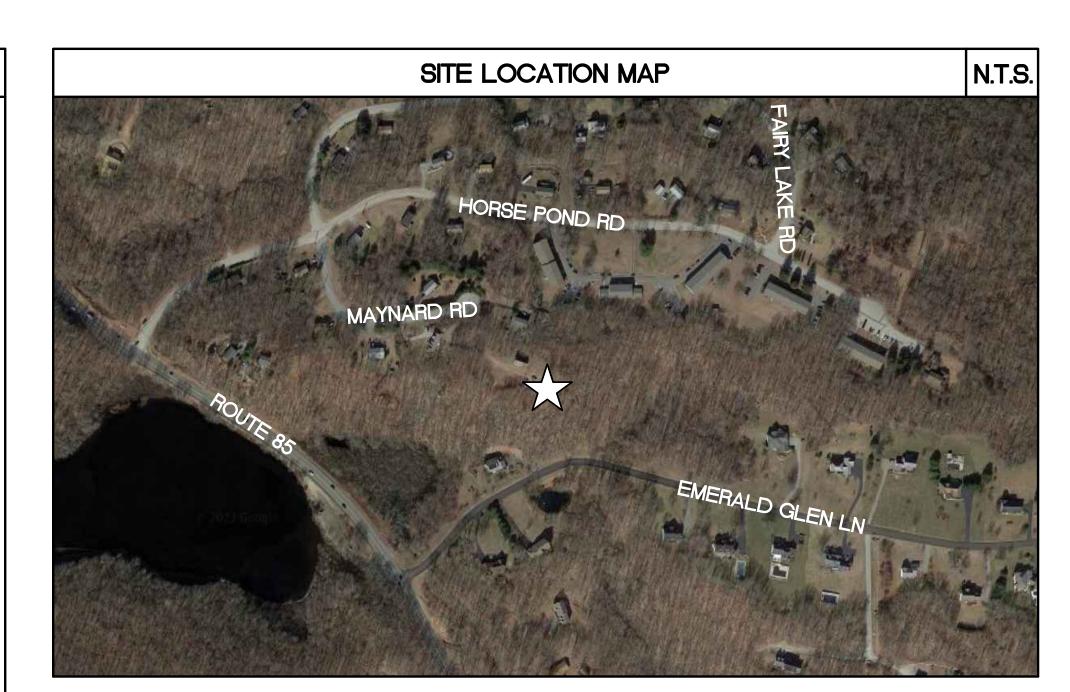
RS/FOC/lm

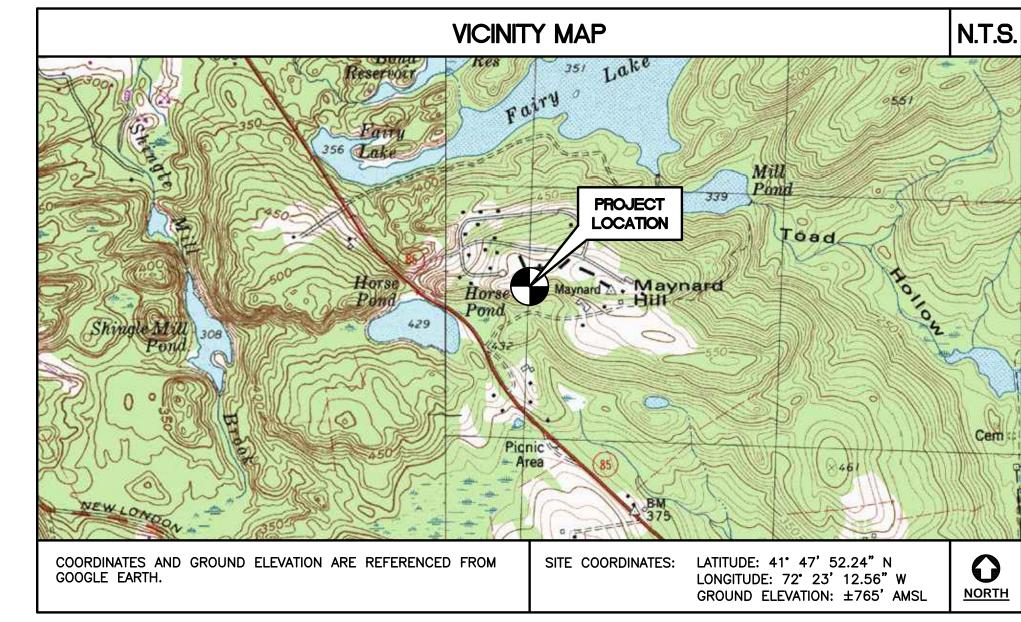
c: The Honorable Kevin T. Lyden, First Selectman, Town of Salem Richard Serra, Town Planner, Town of Salem Salem Telecom LLC

T-MOBILE A/L TEMPLATE (PROVIDED BY RFDS)

67D5998E_1xAIR+10P+1QP

T-MOBILE RAN TEMPLATE (PROVIDED BY RFDS)


67D5D998E MUAC


GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHAL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS. ELEVATIONS AND ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 10. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 11. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 12. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 13. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.

- 14. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES. RULES. OR REGULATIONS BEARING ON THE WORK. THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 15. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 16. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 17. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 18. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 19. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 21. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PRIOR TO THE COMMENCEMENT OF ANY WORK
- 22. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 23. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 24. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 25. THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND CONTRACT DOCUMENTS.
- 26. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS, BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.
- 27. PRIOR TO THE SUBMISSION OF BIDS. THE CONTRACTOR SHALL VISIT THE SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF ENGINEER ON RECORD, PRIOR TO THE COMMENCEMENT OF ANY WORK.

SITE NAME: CT11451G SITE ID: CT11451G 27 MAYNARD RD SALEM, CT 06420

PROJECT SUMMARY PROJE	PROJECT SUMMARY PROJE		GROUND ELEVATION: 765'± AMSL SITE COORDINATES AND GROUND ELEVATION			SITE ID: 27 MAYI	_
PROJECT SUMMARY The PROPOSED SCOPE OF MORY CONSISTS OF A MODERATION TO THE EMSTING THE PROPOSED SCOPE OF MORY CONSISTS OF A MODERATION TO THE EMSTING THE PROPOSED SCOPE OF MORY CONSISTS OF A MODERATION TO THE EMSTING THE MARKED TELESCOMMUNICATION FACULTING MULLIONS THE FOLLOWING: 1. RELACE EDSTING APARIBON - SCOLDT MULLIONS (1) PER SECTOR, TOTAL OF (3) 3. RELACKE EXSTING APARIBON - 1600M-S-E-A20 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE ENSTING APARIBON - 1600M-S-E-A20 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 6. RELOCATE ENSTING APARIBON TO ACCOMMODATE THE PROPOSED (2) CABINETS 8. NSTALL (2) 6024 HYBRID CABLES 9. NSTALL (2) 6024 HYBRID CABLES 9. NSTALL (2) 6024 HYBRID CABLES 9. NSTALL (2) 6024 HYBRID TO ACCOMMODATE THE PROPOSED (2) CABINETS 10. NSTALL COMMISCOPE: W-ESA-R1 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 11. NSTALL COMMISCOPE: W-ESA-R1 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 12. NSTALL T-MOBILE BIOD PATTERY CABINET 13. NSTALL T-MOBILE BIOD PATTERY CABINET 14. NSTALL T-MOBILE BIOD PATTERY CABINET 15. DOMORDANCE DESTING: 125A ORIGUIT BREAKER TO 100A CIRCUIT BREAKER TO SERVE SITE NAME: 27 -MERLAGY TO ACCOMMISSING TO COMPANY AND PRO SAMEAN, CT 06420 SITE NAME: 27 -MERLAGY TO RADIO SOLID BLOWFINDE DUFFERENCE SITE NAME:	PROJECT SUMMARY The PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE ENSTITUG Interview Constructions Facture including the Fallowine: 1 REMOVE EXSTING APACIES 2 REMOVE EXSTING APACIES 3 REMOVE EXSTING APACIES 4 REMOVE EXSTING APACIES 5 REMOVE EXSTING APACIES 6 REMOVE EXSTING APACIES 7 REMOVE EXSTING APACIES 8 REMOVE EXSTING APACIES 9 INSTALL 201600 APACES 9 INSTALL 201600 APAGES 9 INSTALL 201600 APAGES 9 INSTALL 201600 APAGES 9 INSTALL 201600 APAGES 9 INSTALL 2016000 TEAPECONMODATE THE PROPOSED (2) CABINETS 10 INSTALL 2016000 TEAPECONMODATE THE PROPOSED (2) CABINETS 11 INSTALL 2016000 TEAPECONMODATE THE PROPOSED (2) CABINETS 12 INSTALL 20160000 TEAPECONMODATE THE PROPOSED (2) CABINETS 13 INSTALL AND TABE 100 DETERY CABINET 14 INSTALL AND TABE 100 DETERY CABINET 15 DOWNERAGE EXISTING TABACCOMMENT 16 DETERMENT 16 DETERMENT	SITE COORDINATES:	CARLO F. CENTORE, PE (203) 488–0580 EXT. 122 LATITUDE: 41°–47'–52.24" N			_ /	
PROJECT SUMMARY The PROPOSED SCOPE OF MORY CONSISTS OF A MODERATION TO THE EMSTING THE PROPOSED SCOPE OF MORY CONSISTS OF A MODERATION TO THE EMSTING THE PROPOSED SCOPE OF MORY CONSISTS OF A MODERATION TO THE EMSTING THE MARKED TELESCOMMUNICATION FACULTING MULLIONS THE FOLLOWING: 1. RELACE EDSTING APARIBON - SCOLDT MULLIONS (1) PER SECTOR, TOTAL OF (3) 3. RELACKE EXSTING APARIBON - 1600M-S-E-A20 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE ENSTING APARIBON - 1600M-S-E-A20 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 6. RELOCATE ENSTING APARIBON TO ACCOMMODATE THE PROPOSED (2) CABINETS 8. NSTALL (2) 6024 HYBRID CABLES 9. NSTALL (2) 6024 HYBRID CABLES 9. NSTALL (2) 6024 HYBRID CABLES 9. NSTALL (2) 6024 HYBRID TO ACCOMMODATE THE PROPOSED (2) CABINETS 10. NSTALL COMMISCOPE: W-ESA-R1 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 11. NSTALL COMMISCOPE: W-ESA-R1 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 12. NSTALL T-MOBILE BIOD PATTERY CABINET 13. NSTALL T-MOBILE BIOD PATTERY CABINET 14. NSTALL T-MOBILE BIOD PATTERY CABINET 15. DOMORDANCE DESTING: 125A ORIGUIT BREAKER TO 100A CIRCUIT BREAKER TO SERVE SITE NAME: 27 -MERLAGY TO ACCOMMISSING TO COMPANY AND PRO SAMEAN, CT 06420 SITE NAME: 27 -MERLAGY TO RADIO SOLID BLOWFINDE DUFFERENCE SITE NAME:	PROJECT SUMMARY The PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE ENSTITUG Interview Constructions Facture including the Fallowine: 1 REMOVE EXSTING APACIES 2 REMOVE EXSTING APACIES 3 REMOVE EXSTING APACIES 4 REMOVE EXSTING APACIES 5 REMOVE EXSTING APACIES 6 REMOVE EXSTING APACIES 7 REMOVE EXSTING APACIES 8 REMOVE EXSTING APACIES 9 INSTALL 201600 APACES 9 INSTALL 201600 APAGES 9 INSTALL 201600 APAGES 9 INSTALL 201600 APAGES 9 INSTALL 201600 APAGES 9 INSTALL 2016000 TEAPECONMODATE THE PROPOSED (2) CABINETS 10 INSTALL 2016000 TEAPECONMODATE THE PROPOSED (2) CABINETS 11 INSTALL 2016000 TEAPECONMODATE THE PROPOSED (2) CABINETS 12 INSTALL 20160000 TEAPECONMODATE THE PROPOSED (2) CABINETS 13 INSTALL AND TABE 100 DETERY CABINET 14 INSTALL AND TABE 100 DETERY CABINET 15 DOWNERAGE EXISTING TABACCOMMENT 16 DETERMENT 16 DETERMENT	ENGINEER OF RECORD:	CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD ROAD	AST L	11451C	451G	6420 6420
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNIATIONS FACILITY INSLUDING THE FOLLOWING: 1. REMOVE EXISTING APARAMERY-ASA-U-MAGG ANTENNAS (1) PER SECTOR, TOTAL 0 F (3) 2. REMOVE EXISTING APARAMERY-ASA-U-MAGG ANTENNAS (1) PER SECTOR, TOTAL 0 F (3) 3. REMOVE EXISTING APARAMERY-ASA-U-MAGG ANTENNAS (1) PER SECTOR, TOTAL 0 F (3) 6. RELICANTE EXISTING APARAMERY-ASA-U-MAGG ANTENNAS (1) PER SECTOR, TOTAL OF (3) 1. REMOVE EXISTING RADIO 4449 B71Ha12, TVP. (1) PER SECTOR, TOTAL OF (3) 1. INSTALL ERCESSON: AREA19 B41 ANTENNA, TVP. (1) PER SECTOR, TOTAL OF (3) 1. INSTALL ERCESSON: ANDIO 4460 B25+B60, TVP. (1) PER SECTOR, TOTAL OF (3) 1. INSTALL ERCESSON: ANDIO 4460 B25+B60, TVP. (1) PER SECTOR, TOTAL OF (3) 1. INSTALL ERCESSON: ANDIO 4460 B25+B60, TVP. (1) PER SECTOR, TOTAL OF (3) 1. INSTALL ERCESSON: ANDIO 4460 B25+B60, TVP. (1) PER SECTOR, TOTAL OF (3) 1. INSTALL ERCESSON: ANDIO 4460 B25+B60, TVP. (1) PER SECTOR, TOTAL OF (3) 1. INSTALL HOUSE EXISTING CARGUIT BREAKER TO 100A CIRCUIT BREAKER TO SERVE 1. INSTALL HOUSE EXISTING CARGUIT BREAKER TO 100A CIRCUIT BREAKER TO SERVE 1. INSTALL HOUSE EXISTING CARGUIT BREAKER TO 100A CIRCUIT BREAKER TO SERVE 1. INSTALL HOUSE EXISTING CARGUIT BREAKER TO 100A CIRCUIT BREAKER TO SERVE ISTING EDUPER	PROJECT SUMMARY THE PROPOSED SCORE OF WORK CONSISTS OF A MODIFICATION TO THE ENISTING UNNAMED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING APRILOTING CONSISTS OF A MODIFICATION TO THE ENISTING UNNAMED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING APRILOTING CONSISTS OF A MODIFICATION TO THE ENISTING UNNAMED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING APRILOTING CONSISTS OF A MODIFICATION TO THE ENISTING UNNAMED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING APRILOTING APRILOTING CONSTRUCTIONAL OF (3) 2. REMOVE EXISTING APRILOTING APRILOWARE24_43-U-MA20 ANTENNA, Th? (1) PER SECTOR. TOTAL OF (3) 3. RELOCATE EXISTING GENERATIOR ATO ACCOMMODATE THE PROPOSED (2) CABINETS 8. INSTALL ERICSSON: ARBAID BAI ANTENNA, Th? (1) PER SECTOR. TOTAL OF (3) 10. INSTALL ERICSSON: ARBAID BAI ANTENNA, Th? (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: ARBAID BAI ANTENNA, Th? (1) PER SECTOR. TOTAL OF (3) 12. INSTALL T-MOBILE BISO BATTERY CABINET 13. INSTALL T-MOBILE BISO BATTERY CABINET 14. INSTALL RECOSSON: RADIO 4460 B25-B66, TP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL T-MOBILE BISO BATTERY CABINET 13. INSTALL T-MOBILE BISO CONTER ENCLOSURE	CONTACT PERSON:	DAN REID (PROJECT MANAGER) TRANSCEND WIRELESS, LLC				
PROJECT SUMMARY The proposed scope of work consists of a wook consi wook consi wo	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING INMANNEE TEXTING APAYLORW-16DW-5E-E-A20 ANTENNAS (1) PER SECTOR. TOTAL OF (3) I. REMOVE EXISTING CARACESI 2. REMOVE EXISTING RAVIA SAVIGNW-16DW-5E-E-A20 ANTENNAS (1) PER SECTOR. TOTAL OF (3) 3. REMOVE EXISTING RAVIATION TO THE PRISTOR 0. REMOVE EXISTING RAVIATION APAYLORW-16DW-5E-E-A20 ANTENNAS (1) PER SECTOR. TOTAL OF (3) 3. REMOVE EXISTING RAVIATION APAYLORMERT TO ALL OF (3) 4. RELOATE EXISTING RAVIATION ACTOR THE PROPOSED (2) CABINETS 8. RELOATE EXISTING RAVIATION ACADE THE ROPOSED (2) CABINETS 8. INSTALL EXISTING RAVIA 4449 B21-ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL EXISSION: ARGA19 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ENCISSION: ARGA19 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL ENCISSION: ARGA19 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 13. INSTALL ENCISSION: ARGA19 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 13. INSTALL T-MOBILE 6160 BONETER CABINET 14. INSTALL T-MOBILE 6160 BONETER CABINET 14. INSTALL T-MOBILE 6160 BATTER' CABINET 15. INSTALL T-MOBILE 6160 BONETER CABINET 14. INSTALL T-MOBILE 6160 ROMER MICLOSURE 13. INSTALL T-MOBILE 6160 BATTER' CABINET 14. INSTALL T-MOBILE 6160 ROMERE NO SERVE NEW EQUIPHENT.	APPLICANT:	T-MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH				
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMAINED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: I. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING COAX CABLES 3. REMOVE EXISTING COAX CABLES 3. REMOVE EXISTING ROUSI 1 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 4. RELOCATE EXISTING RRUSI 1 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING RANDA 4449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 6. INSTALL (2) 6x24 HYBRID CABLES 9. INSTALL 22 6x24 HYBRID CABLES 9. INSTALL COMMOSOPE: W-664-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL COMMOSOPE: W-664-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: AND 4469 B21+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL T-MOBILE B160 BATTERY CABINET 13. INSTALL T-MOBILE B160 BATTERY CABINET 14. INSTALL T-MOBILE B160 BATTERY CABINET 14. INSTALL NEW 100A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 15. DOWINGRADE EXISTING 125A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 15. DOWINGRADE EXISTING 125A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 15. DOWINGRADE EXISTING 125A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 16. INSTALL T-MOBILE B160 BATTERY CABINET 17. INSTALL T-MOBILE B160 BATTERY CABINET 14. INSTALL NEW 1	PROJECT SUMMARY UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLIDOWICE: IN REMOVE EXISTING COAR SERVERS 12. REMOVE EXISTING COAR SERVERS 13. REMOVE EXISTING RAUGI 11 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 14. REMOVE EXISTING RAUGI 12, TYP. (1) PER SECTOR. TOTAL OF (3) 15. RELOCATE EXISTING RAUGI B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 16. INSTALL (2) 6x24 HIRED CABLES 19. INSTALL 2: COMMORGE EXISTING ENCERTING THE PROPOSED (2) CABINETS 19. INSTALL 2: COMMORGE EXISTING TRADE OF (1) PER SECTOR. TOTAL OF (3) 10. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSION: ARIG419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 13. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 14. INSTALL TENDSSION: ARIG419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 15. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 16. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 17. INSTALL TENDSSION: RADIO 4440 B254-B66, TYP. (1) PER SECTOR. TOTAL OF (3) 18. INSTALL TENDE 1610 DATEEPY CABINET 19. INSTALL TENDE 1610 BATTEPY CABINET 19. INSTALL TENDE 1610 DATEEPY CABINET 19. INSTALL TENDE 125A. CIRCUIT BREAKER T		27 MAYNARD RD		Center	(203) 4 (203) 4 63-2 N Branfo	
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMAINED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: I. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING COAX CABLES 3. REMOVE EXISTING COAX CABLES 3. REMOVE EXISTING ROUSI 1 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 4. RELOCATE EXISTING RRUSI 1 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING RANDA 4449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 6. INSTALL (2) 6x24 HYBRID CABLES 9. INSTALL 22 6x24 HYBRID CABLES 9. INSTALL COMMOSOPE: W-664-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL COMMOSOPE: W-664-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: AND 4469 B21+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL T-MOBILE B160 BATTERY CABINET 13. INSTALL T-MOBILE B160 BATTERY CABINET 14. INSTALL T-MOBILE B160 BATTERY CABINET 14. INSTALL NEW 100A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 15. DOWINGRADE EXISTING 125A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 15. DOWINGRADE EXISTING 125A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 15. DOWINGRADE EXISTING 125A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 16. INSTALL T-MOBILE B160 BATTERY CABINET 17. INSTALL T-MOBILE B160 BATTERY CABINET 14. INSTALL NEW 1	PROJECT SUMMARY UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLIDOWICE: IN REMOVE EXISTING COAR SERVERS 12. REMOVE EXISTING COAR SERVERS 13. REMOVE EXISTING RAUGI 11 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 14. REMOVE EXISTING RAUGI 12, TYP. (1) PER SECTOR. TOTAL OF (3) 15. RELOCATE EXISTING RAUGI B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 16. INSTALL (2) 6x24 HIRED CABLES 19. INSTALL 2: COMMORGE EXISTING ENCERTING THE PROPOSED (2) CABINETS 19. INSTALL 2: COMMORGE EXISTING TRADE OF (1) PER SECTOR. TOTAL OF (3) 10. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSION: ARIG419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 13. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 14. INSTALL TENDSSION: ARIG419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 15. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 16. INSTALL COMMISCIPE: W-BASE-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 17. INSTALL TENDSSION: RADIO 4440 B254-B66, TYP. (1) PER SECTOR. TOTAL OF (3) 18. INSTALL TENDE 1610 DATEEPY CABINET 19. INSTALL TENDE 1610 BATTEPY CABINET 19. INSTALL TENDE 1610 DATEEPY CABINET 19. INSTALL TENDE 125A. CIRCUIT BREAKER T	SITE NAME:			ed on Sc	488-000 488-858 orth Brc rd, CT 0	(
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUMENT. 1. REMOVE EXISTING COAK CABLES 2. REMOVE EXISTING CAX CABLES 3. REMOVE EXISTING RAUSI1 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 3. REMOVE EXISTING RRUS11 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 3. RELOCATE EXISTING RRUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 3. RELOCATE EXISTING RRUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 3. RELOCATE EXISTING RRUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING RRUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 7. RELOCATE EXISTING RRUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 7. RELOCATE EXISTING B419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL ERICSSON: ARIOI 4460 B25HB66, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: RADIO 44460 B25HB66, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL ERICSSON: RADIO 4460 B25HB66, TYP. (1) PER SECTOR. TOTAL OF (3) 13. INSTALL T-MOBILE B160 BATTERY CABINET 13. INSTALL T-MOBILE B160 BATTERY CABINET 14. INSTALL NEW 100A CIRCUIT BREAKER TO SERVE NEW EQUIPMENT. 15. DOWNGRADE EXISTING EXAMINET BREAKER TO SERVE NEW EQUIPMENT. 15. DOWNGRADE EXISTING EXAMINE THE REQUIREMENT.	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMAINED TELECOMMUNICATIONS FACILITY INCLUMENT FOR FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING COAX CABLES 3. REMOVE EXISTING APX160W-160W-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING RRUS11 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 4. REMOVE EXISTING RAUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING ARADARZ4_4_3-U-MA20 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 6. RELOCATE EXISTING ARADARZ4_4_43-U-MA20 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 7. RELOCATE EXISTING ARADARZ4_4_43-U-MA20 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL (2) 60/24 HYBRID CABLES 9. INSTALL (2) 60/24 HYBRID CABLES 9. INSTALL (2) 60/24 HYBRID CABLES 9. INSTALL ERICSSON: RADIO 44460 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL ERICSSON: RADIO 4460 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: RADIO 4460 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL T-MOBILE B160 DATEERY CABINET 13. INSTALL T-MOBILE B160 DATEERY CABINET 14. INSTALL T-MOBILE B160 DATEERY CABINET 15. DOWNGROE EMISTING TEACHER TO SERVE EQUIPMENT. 15. DOWNGROE EMISTING TEACHER TO SERVE REW EQUIPMENT. 15. DOWNGROE EMISTING TEACHIT BRE	PR	OJECT INFORMATION	─		' Fax nford Roc 6405	((!
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMULINCATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING COAX CABLES 3. RELOCATE EXISTING APX16DWV-SE-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. RELOCATE EXISTING APX146BVZ-16DWV-SE-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. RELOCATE EXISTING APX146BVZ-4.3-U-NA20 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING APX146BVZ-4.3-U-NA20 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 6. RELOCATE EXISTING CORPERATOR TO ACCOMMODATE THE PROPOSED (2) CABINETS 8. INSTALL (2) 6x24 HYBRID CABLES 9. INSTALL ERICSSON: AR6419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL ERICSSON: AR6419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: AR6419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL ERICSSON: RADIO 4460 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL T-MOBILE 6160 POWER ENCLOSURE	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING COAX CABLES 3. REMOVE EXISTING RAUGH H& PT (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING APXWARR24_43-U-MA20 ANTENNAS (1) PER SECTOR. TOTAL OF (3) 6. RELOCATE EXISTING APXWARR24_43-U-MA20 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 7. RELOCATE EXISTING COAX CABLES 8. INSTALL (2) 6x24 HYBRID CABLES 9. INSTALL COMMSCOPE: W-65A-RI ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL COMMSCOPE: W-65A-RI ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL COMMSCOPE: W-65A-RI ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: ARDIO 4460 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3) 12. INSTALL COMMSCOPE: W-65A-RI ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 13. INSTALL COMMSCOPE: W-65A-RI ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 14. INSTALL ERICSSON: RADIO 4460 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3) 15. INSTALL COMMSCOPE: W-65A-RI ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 16. INSTALL ERICSSON: RADIO 4460 B25+B66, T	15. DOWNGRADE EXISTING 12	25A CIRCUIT BREAKER TO 100A CIRCUIT BREAKER TO SERVE	enaine		g	Seen Kara
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UMMANNED TELECOMMUNICATIONS FACLITY INCULDUNG THE FOLLOWING: 1. REMOVE EXISTING ADDIS FACTOR TO ACCOMMODATE THE PROPOSED (2) CABINETS 3. RELOCATE EXISTING ADDI 4449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 3. RELOCATE EXISTING ADDI 4449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 6. RELOCATE EXISTING ADDI 4449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 7. RELOCATE EXISTING COMMODATE THE PROPOSED (2) CABINETS 8. INSTALL EXISTING CABLES 9. INSTALL EXISTING ADIO 4440 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: RADIO 4460 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3) <th>PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UMMANNED TELECOMMUNICATIONS FACILITY ROLUDING THE FOLLOWING: 1. REMOVE EXISTING COMMONS FACILITY ROLUDING THE FOLLOWING: 1. REMOVE EXISTING COMA CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING RAVIABR24_43-U-NA20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING RADIO 4449 B71+B12, TYP. (1) PER SECTOR, TOTAL OF (3) 6. RELOCATE EXISTING COMMODATE THE PROPOSED (2) CABINETS 8. INSTALL EXISTING COMMODATE THE PROPOSED (2) CABINETS 8. INSTALL EXISTING COMMODATE THE PROPOSED (2) CABINETS 9. INSTALL ERICSSON: AR6419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL COMMSCOPE: VV-65A-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: RADIO 44460 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3)</th> <td></td> <td></td> <td></td> <td>H</td> <td></td> <td>75410</td>	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UMMANNED TELECOMMUNICATIONS FACILITY ROLUDING THE FOLLOWING: 1. REMOVE EXISTING COMMONS FACILITY ROLUDING THE FOLLOWING: 1. REMOVE EXISTING COMA CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING RAVIABR24_43-U-NA20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING RADIO 4449 B71+B12, TYP. (1) PER SECTOR, TOTAL OF (3) 6. RELOCATE EXISTING COMMODATE THE PROPOSED (2) CABINETS 8. INSTALL EXISTING COMMODATE THE PROPOSED (2) CABINETS 8. INSTALL EXISTING COMMODATE THE PROPOSED (2) CABINETS 9. INSTALL ERICSSON: AR6419 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 10. INSTALL COMMSCOPE: VV-65A-R1 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3) 11. INSTALL ERICSSON: RADIO 44460 B25+B66, TYP. (1) PER SECTOR. TOTAL OF (3)				H		75410
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMAINED TELECOMMUNICATIONS FACILITY INCLUMES THE FOLLOWING: 1. REMOVE EXISTING CARLEDS 2. REMOVE EXISTING APXIGDWV-16DWV-S-E-AZO ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING RAVIEDWV-16DWV-S-E-AZO ANTENNAS (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING RAVIARR24_43-U-INAZO ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 6. RELOCATE EXISTING RADIO 4449 B71+B12, TYP. (1) PER SECTOR, TOTAL OF (3) 7. RELOCATE EXISTING RADIO 4449 B71+B12, TYP. (1) PER SECTOR, TOTAL OF (3) 7. RELOCATE EXISTING RADIO 4449 B71+B12, TYP. (1) PER SECTOR, TOTAL OF (3) 7. RELOCATE EXISTING GENERATOR TO ACCOMMODATE THE PROPOSED (2) CABINETS 8. INSTALL (2) 6x24 HYBRID CABLES 9. INSTALL ERCISSON: AREA19 B41 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3)	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUINGS THE FOLLOWING: 1. REMOVE EXISTING ADALLED INCLUMENT THE FOLLOWING: 2. REMOVE EXISTING APXIEDWU-1EDWU-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING RAVIED MULTICLUMENT THE SECTOR. TOTAL OF (3) 4. REMOVE EXISTING RAVIARR24_43-U-MA20 ANTENNAS (1) PER SECTOR. TOTAL OF (3) 6. RELOCATE EXISTING RADIO 44449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 7. RELOCATE EXISTING RADIO 44449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 7. RELOCATE EXISTING GENERATOR TO ACCOMMODATE THE PROPOSED (2) CABINETS 8. INSTALL (2) 5x24 HYBRID CABLES 9. INSTALL ENCESSON: AREA19 B41 ANTENNA, TYP. (1) PER SECTOR. TOTAL OF (3)						
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING CAX CABLES 3. REMOVE EXISTING APX16DWV-16DWV-5-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING APX16DWV-16DWV-5-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING APX104449 B71+B12, TYP. (1) PER SECTOR, TOTAL OF (3) 6. RELOCATE EXISTING GENERATOR TO ACCOMMODATE THE PROPOSED (2) CABINETS 8. INSTAL (2) 6524 HYBRID CABLES	PRCJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING CAX CABLES 3. REMOVE EXISTING APX16DWV-16DWV-16DWV-5-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING APX16DWV-16DWV-16DWV-5-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING RRUS11 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 6. RELOCATE EXISTING RAUDIO 4449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 7. RELOCATE EXISTING GENERATOR TO ACCOMMODATE THE PROPOSED (2) CABINETS 8. INSTAL (2) 5x24 HYBRID CABLES				ĮOĮ	41 11 11	1.25
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING COAX CABLES 3. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING APX104449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3) 6. RELOCATE EXISTING CALLAGE AUTOMODATE THE PROPOSED (2) CABINETS 8. INSTAL (2) 624 HYBRID CABLES	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 4. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING APXVAAR24_43-U-NA20 ANTENNA, TYP. (1) PER SECTOR, TOTAL OF (3) 6. RELOCATE EXISTING GENERATOR TO ACCOMMODATE THE PROPOSED (2) CABINETS 8. INSTAL (2) 5x24 HYBRID CABLES				bill	· ·	
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 4. REMOVE EXISTING RRUS11 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING RRUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING APX4ARR24_43-U-NA20 ANTENNA, TYP. (1) PER SECTOR.	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 4. REMOVE EXISTING RRUS11 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING RRUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING APX4ARR24_43-U-NA20 ANTENNA, TYP. (1) PER SECTOR.	8. INSTALL (2) 6x24 HYBRII	D CABLES			\sum	P
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNE TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING CAXX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING RRUS11 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 4. REMOVE EXISTING RRUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING APX4ARR24_43-U-NA20 ANTENNA, TYP. (1) PER SECTOR.	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNE TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING CAXX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING RRUS11 B2, TYP. (1) PER SECTOR. TOTAL OF (3) 4. REMOVE EXISTING RRUS11 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING APX4ARR24_43-U-NA20 ANTENNA, TYP. (1) PER SECTOR.			PROFE(in the second	11 Marine	Ann.
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING RRUSI1 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING APX16ARR24_43-U-NA20 ANTENNA, TYP. (1) PER SECTOR.	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 5. RELOCATE EXISTING RRUSI1 B4, TYP. (1) PER SECTOR. TOTAL OF (3) 5. RELOCATE EXISTING APX16ARR24_43-U-NA20 ANTENNA, TYP. (1) PER SECTOR.		0 4449 B71+B12, TYP. (1) PER SECTOR. TOTAL OF (3)	SSIONAL	A A A A A A A A A A A A A A A A A A A		000
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING RRUS11 B2, TYP. (1) PER SECTOR. TOTAL OF (3)	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3) 3. REMOVE EXISTING RRUS11 B2, TYP. (1) PER SECTOR. TOTAL OF (3)	5. RELOCATE EXISTING APXV			ONNE		NALEY
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3)	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: 1. REMOVE EXISTING COAX CABLES 2. REMOVE EXISTING APX16DWV-16DWV-S-E-A20 ANTENNAS (1) PER SECTOR, TOTAL OF (3)				AND STONE	UT AN	Villen ag
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING 1. REMOVE EXISTING COAX CABLES	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING 1. REMOVE EXISTING COAX CABLES	OF (3)					0
PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING	PROJECT SUMMARY THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING					╞┼╢╞	03
		UNMANNED TELECOMMUNICATION	IS FACILITY INCLUDING THE FOLLOWING:				/21/
				┥╽┠┼			
				_ -			ורם
DRAWINGS - ISSUED FOR	DRAWINGS - ISSUED FOR						TJR
DRAWINGS - ISSUED FOR	DRAWINGS - ISSUED FOR						CONSTRI
- ISSUED FOR	- ISSUED FOR						
- ISSUED FOR	- ISSUED FOR						DRAWING
Particular and the second s	Particular and the second s						1
Particular and the second s	Particular and the second s						ISSUED
							FOR

SHEET. NO.	DESCRIPTION	REV.
T-1	TITLE SHEET	0
N-1	NOTES AND SPECIFICATIONS, ANT. SCHEDULE	0
C-1	COMPOUND PLAN, EQUIPMENT PLANS AND ELEVATION	0
C-2	ANTENNA PLANS AND ELEVATIONS	0
C-3	TYPICAL EQUIPMENT DETAILS	0
E-1	ELECTRICAL DIAGRAM AND CONDUIT ROUTING	0
E-2	TYPICAL ELECTRICAL DETAILS	0
E-3	ELECTRICAL SPECIFICATIONS	0

DATE: 02/22/22 SCALE: AS NOTED JOB NO. 22022.01 TITLE SHEET SHEET NO. 1 OF 8

NOTES AND SPECIFICATIONS:

DESIGN BASIS

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

- 1. DESIGN CRITERIA:
- RISK CATEGORY II (BASED ON IBC TABLE 1604.5) •
- NOMINAL DESIGN SPEED: 105 MPH (Vasd) (EXPOSURE B/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

SITE NOTES

- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

GENERAL NOTES

- ANY AFFECTED WORK.
- 3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT
- WORK.
- 6. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONFLICT IS SATISFACTORILY RESOLVED.
- 7. INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- WORK.
- ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- PROJECT.
- CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- CONSTRUCTION MANAGER.

	ANTENNA/APPURTENANCE SCHEDULE								
SECTOR	EXISTING/PROPOSED	ANTENNA	SIZE (INCHES) (L × W × D)	ANTENNA & HEIGHT	AZIMUTH	(E/P) RRU (QTY)	(E/P) TMA (QTY)		
A1	PROPOSED	ERICSSON (AIR 6419 B41)	33 x 16 x 9	82'	30*				
A2	EXISTING	RFS (APXVAARR24_43-U_NA20)	95.9 x 24 x 8.7	82'	30 °	(E) RADIO 4449 B71+B12 (1)			
A3	PROPOSED	COMMSCOPE (VV-65A-R1)	54.7 x 12.1 x 4.6	82'	30°	(P) RADIO 4460 B25+B66 (1)			
		•							
B1	PROPOSED	ERICSSON (AIR 6419 B41)	33 x 16 x 9	82'	150°				
B2	EXISTING	RFS (APXVAARR24_43-U_NA20)	95.9 x 24 x 8.7	82'	150°	(E) RADIO 4449 B71+B12 (1)			
B3	PROPOSED	COMMSCOPE (VV-65A-R1)	54.7 x 12.1 x 4.6	82'	150°	(P) RADIO 4460 B25+B66 (1)			
		·							
C1	PROPOSED	ERICSSON (AIR 6419 B41)	33 x 16 x 9	82'	270 °				
C2	EXISTING	RFS (APXVAARR24_43-U_NA20)	95.9 x 24 x 8.7	82'	270 °	(E) RADIO 4449 B71+B12 (1)			
C3	PROPOSED	COMMSCOPE (VV-65A-R1)	54.7 x 12.1 x 4.6	82'	270 °	(P) RADIO 4460 B25+B66 (1)			

1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.

2. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH

DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.

4. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE, WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.

5. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS. ELEVATIONS AND ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY

CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS, AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE

CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR

8. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE

9. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING,

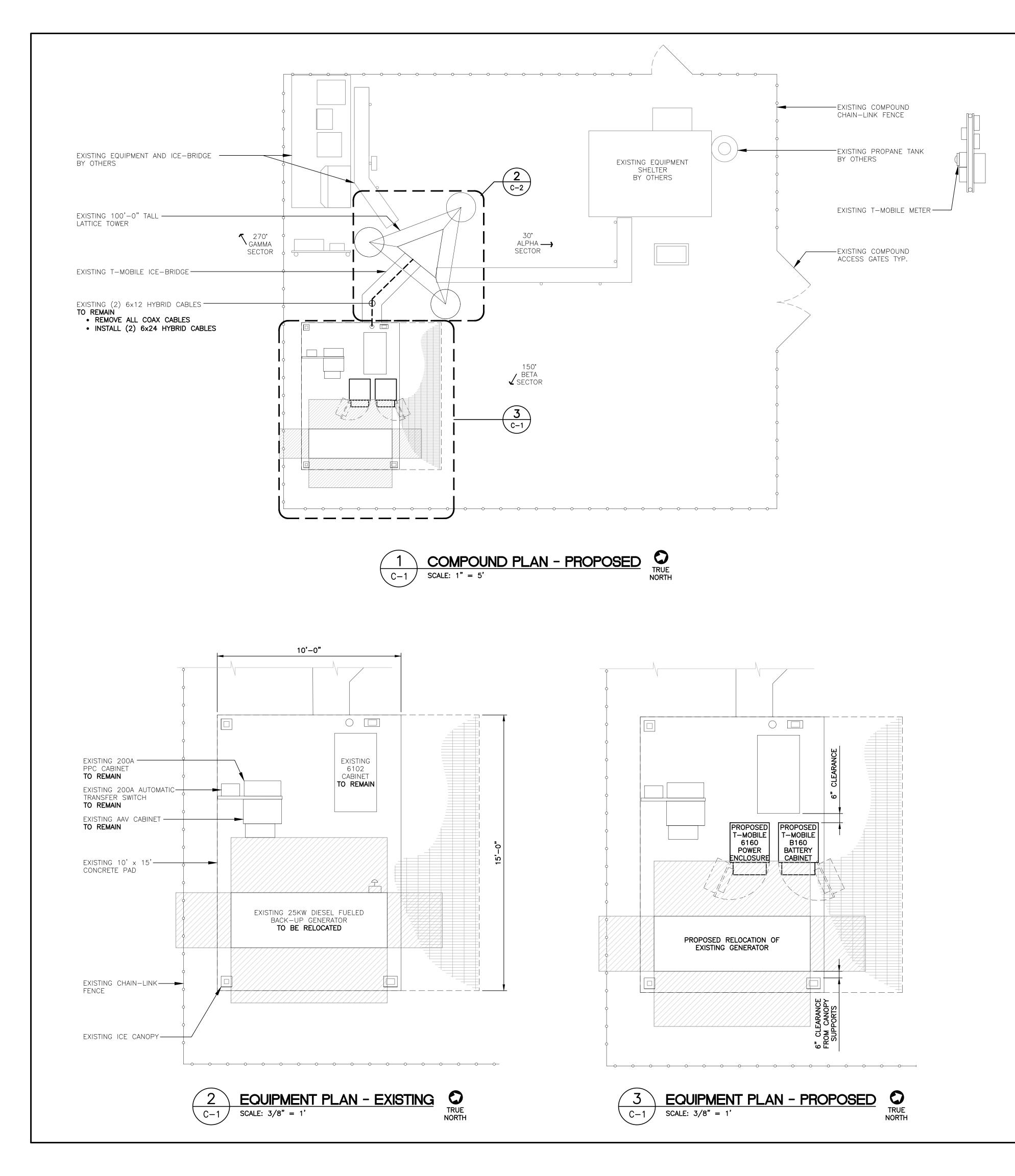
10. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF

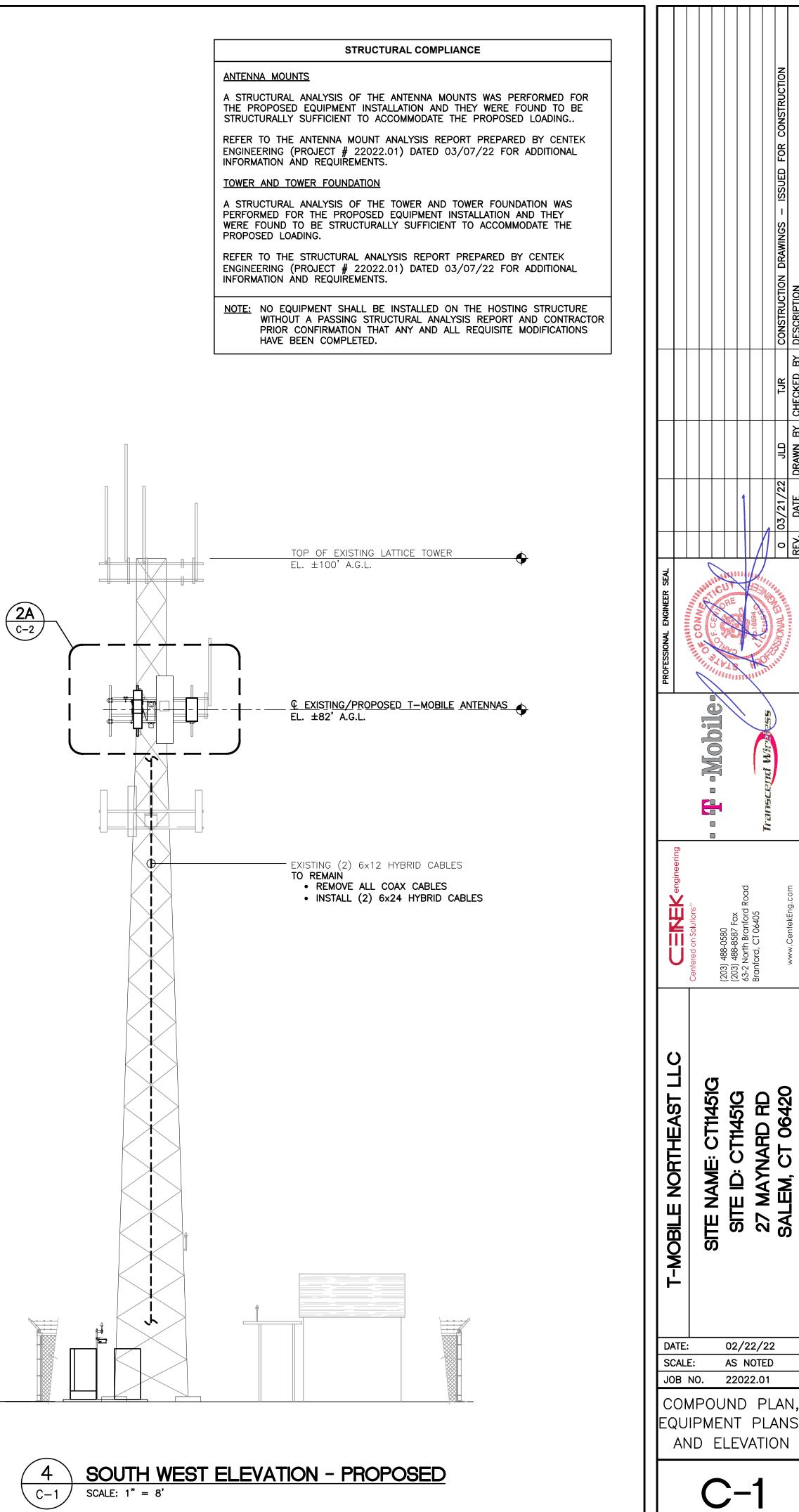
11. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS. SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL

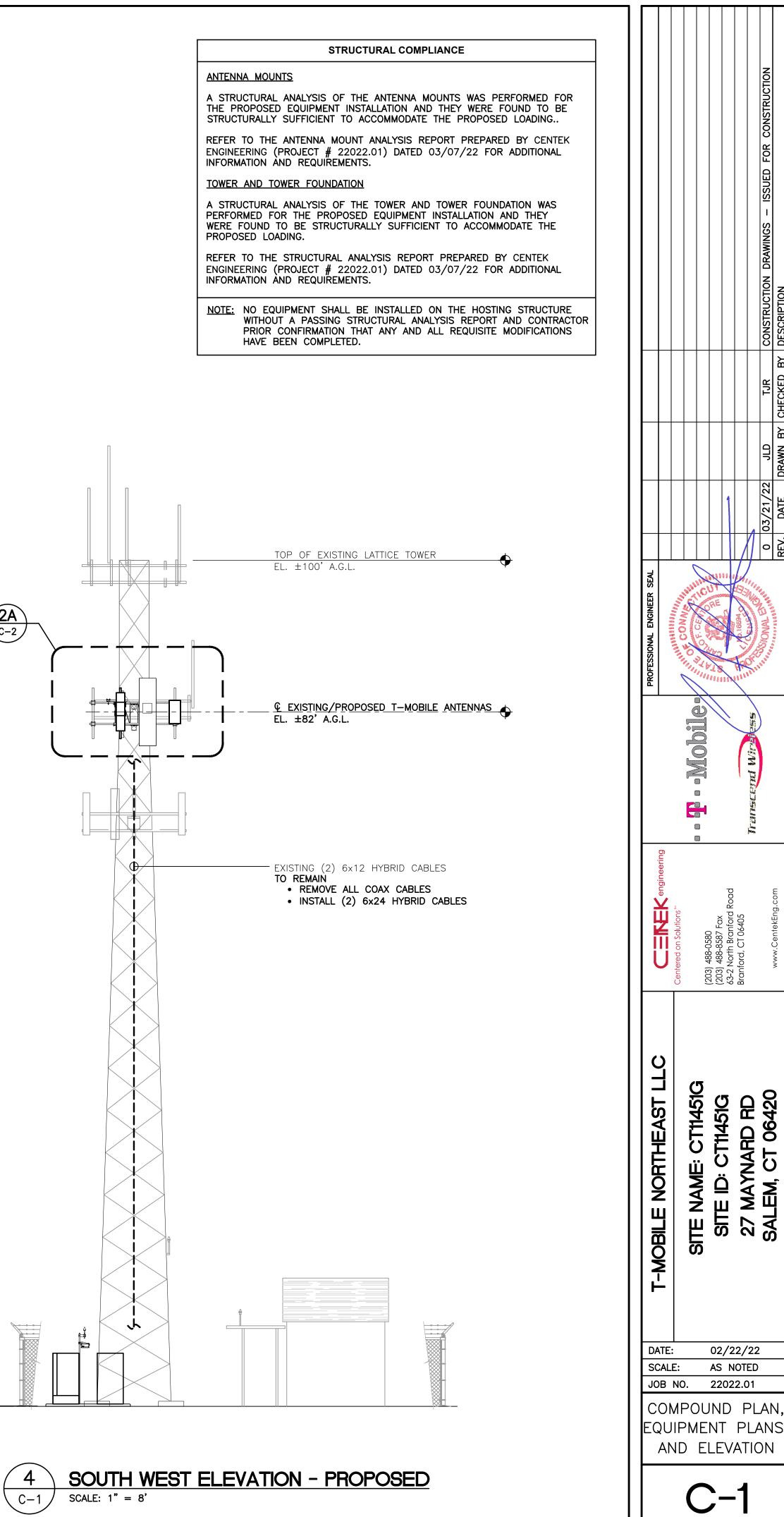
12. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER

13. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR

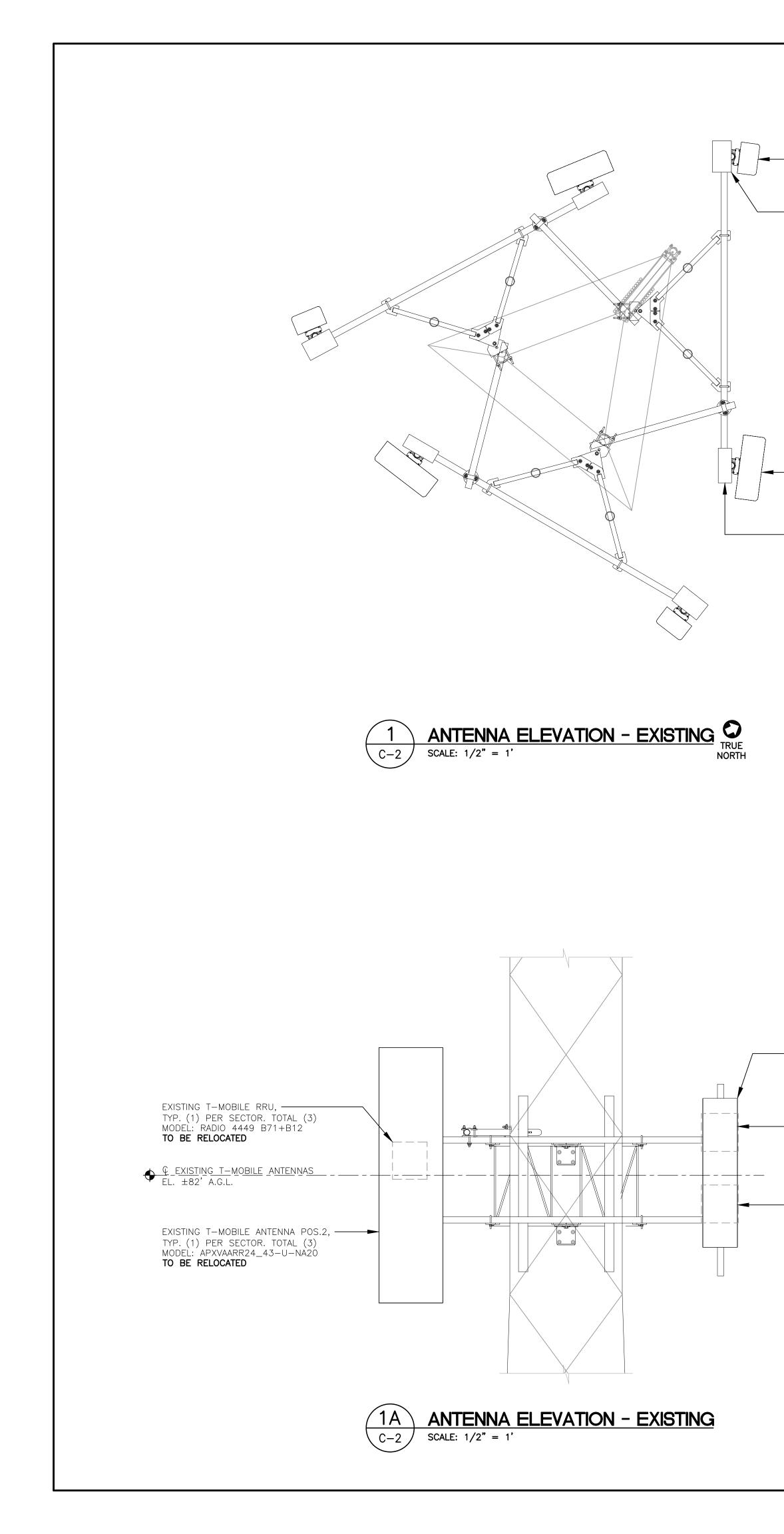
- 14. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 15. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 16. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 17. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 18. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 19. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 21. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND CONFIRMED WITH THE PROJECT MANAGER AND OWNER PRIOR TO THE COMMENCEMENT OF ANY WORK
- 22. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 23. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 24. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 25. THE COUNTY/CITY/TOWN MAY MAKE PERIODIC FIELD INSPECTIONS TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, AND CONTRACT DOCUMENTS.
- 26. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP, EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION, POURING TOWER FOUNDATIONS. BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.
- 27. PRIOR TO THE SUBMISSION OF BIDS, THE CONTRACTOR SHALL VISIT THE SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF ENGINEER ON RECORD, PRIOR TO THE COMMENCEMENT OF ANY WORK.


STRUCTURAL STEEL


- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- A. STRUCTURAL STEEL (W SHAPES) -- ASTM A992 (FY = 50 KSI)
- STRUCTURAL STEEL (OTHER SHAPES) -- ASTM A36 (FY = 36 KSI)
- STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B С. (FY = 46 KSI)
- D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B,
- (FY = 42 KSI)PIPE---ASTM A53 (FY = 35 KSI)
- CONNECTION BOLTS---ASTM A325-N
- U-BOLTS---ASTM A36 ANCHOR RODS---ASTM F 1554
- WELDING ELECTRODE --- ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES. SIZES. CONNECTION ATTACHMENTS. REINFORCING. ANCHORAGE. SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- 3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

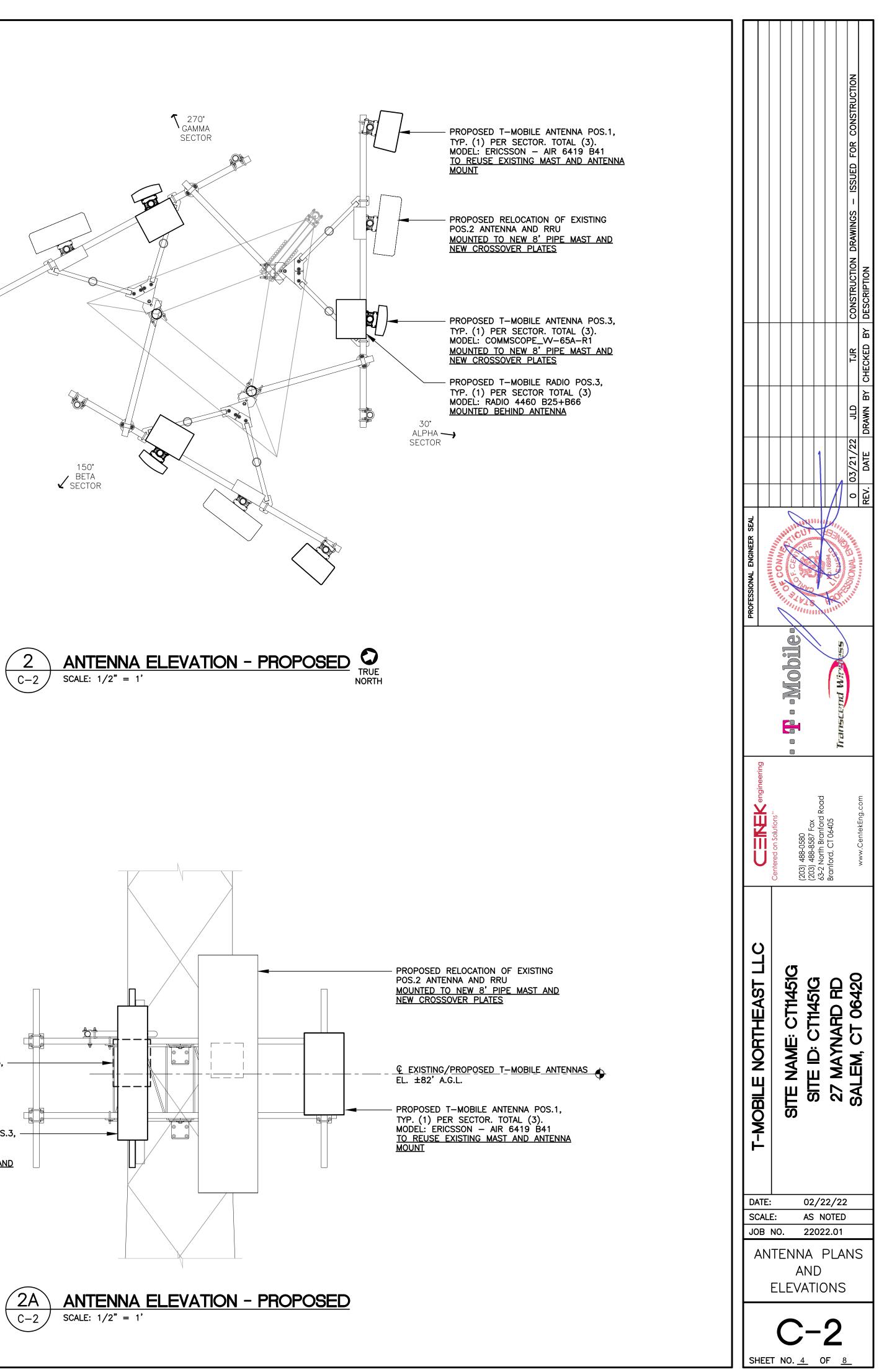

(QTY) PROPOSED HYBRID/COAX
(2) 6x24 HYBRID CABLE

NOTE: ALL HYBRID/COAX LENGTHS TO BE MEASURED AND VERIFIED IN FIELD BEFORE ORDERING


SF	0,	SC			PROFESSIONAL ENGINEER SEAL		
IEE	SF	ATE: CAL			一年後年長期間でやく		
Т	N PE	E:		Centered on Solutions**	2 TIME CONVERSE		
	0 ⁻ Cl).	CITE NAME. CTHARIO		Charles Contraction		
	TE IFI				Et Corrent of		
l	S C	AS		(203) 488-8587 Frix			
0	م AT	2/2 N		63-2 North Branford Road		1	
	AN TC	OT		Branford, CT 06405	E A C No.16694 OF FIL		
8	ID)N	ED	UN UNANIAN 12	Transcend Wireless			
	IS LE		SALEN CT 06420		0 03/21/22	1/22 JLD	TJR CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION
	-			www.CentekEng.com	REV. DA	DATE DRAWN BY	CHECKED BY DESCRIPTION

SHEET NO. <u>3</u> OF <u>8</u>

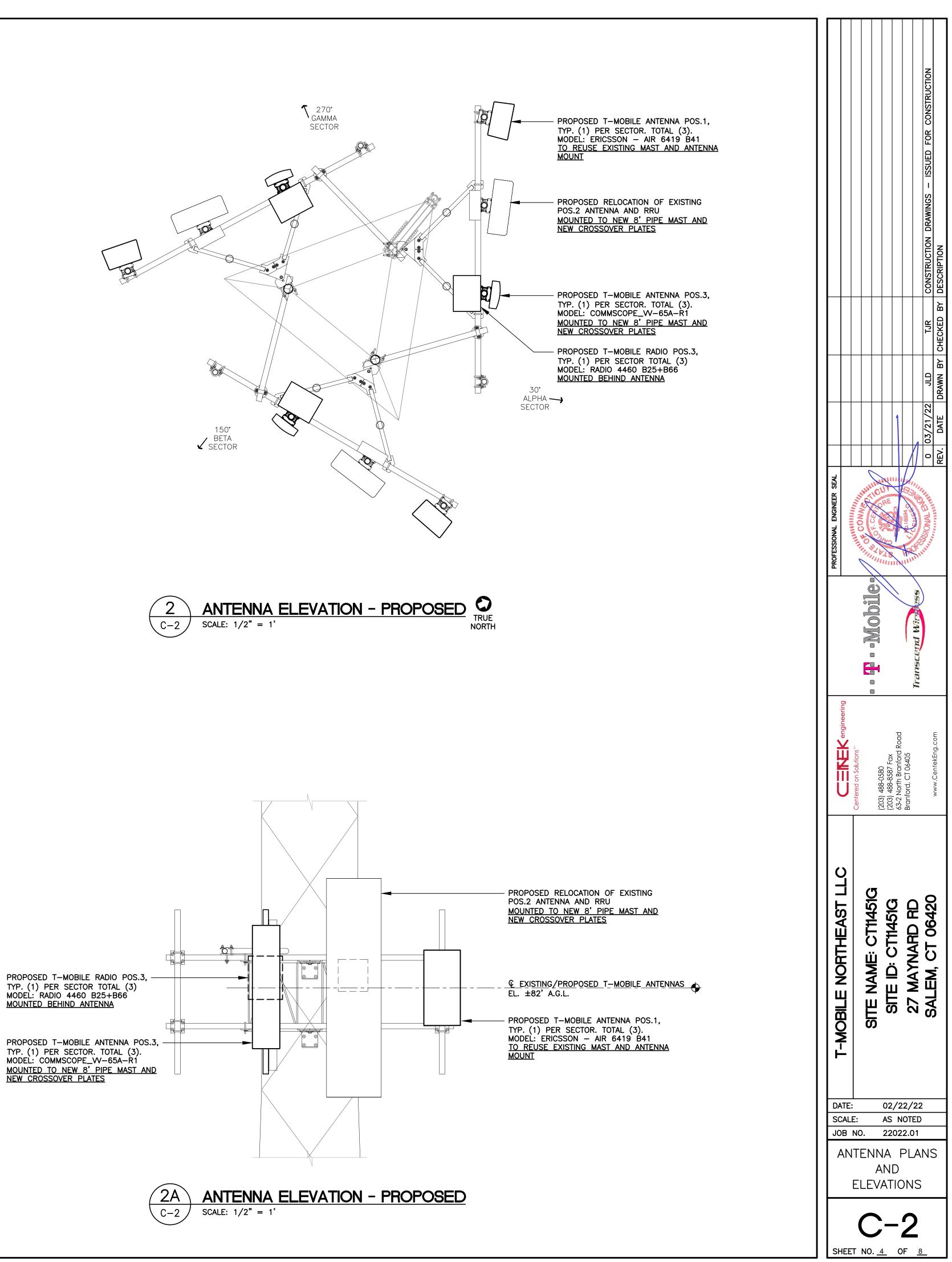
- EXISTING T-MOBILE ANTENNA POS.1, TYP. (1) PER SECTOR. TOTAL (3) MODEL: APX16DWV-16DWV-S-È-A20 TO BE REMOVED

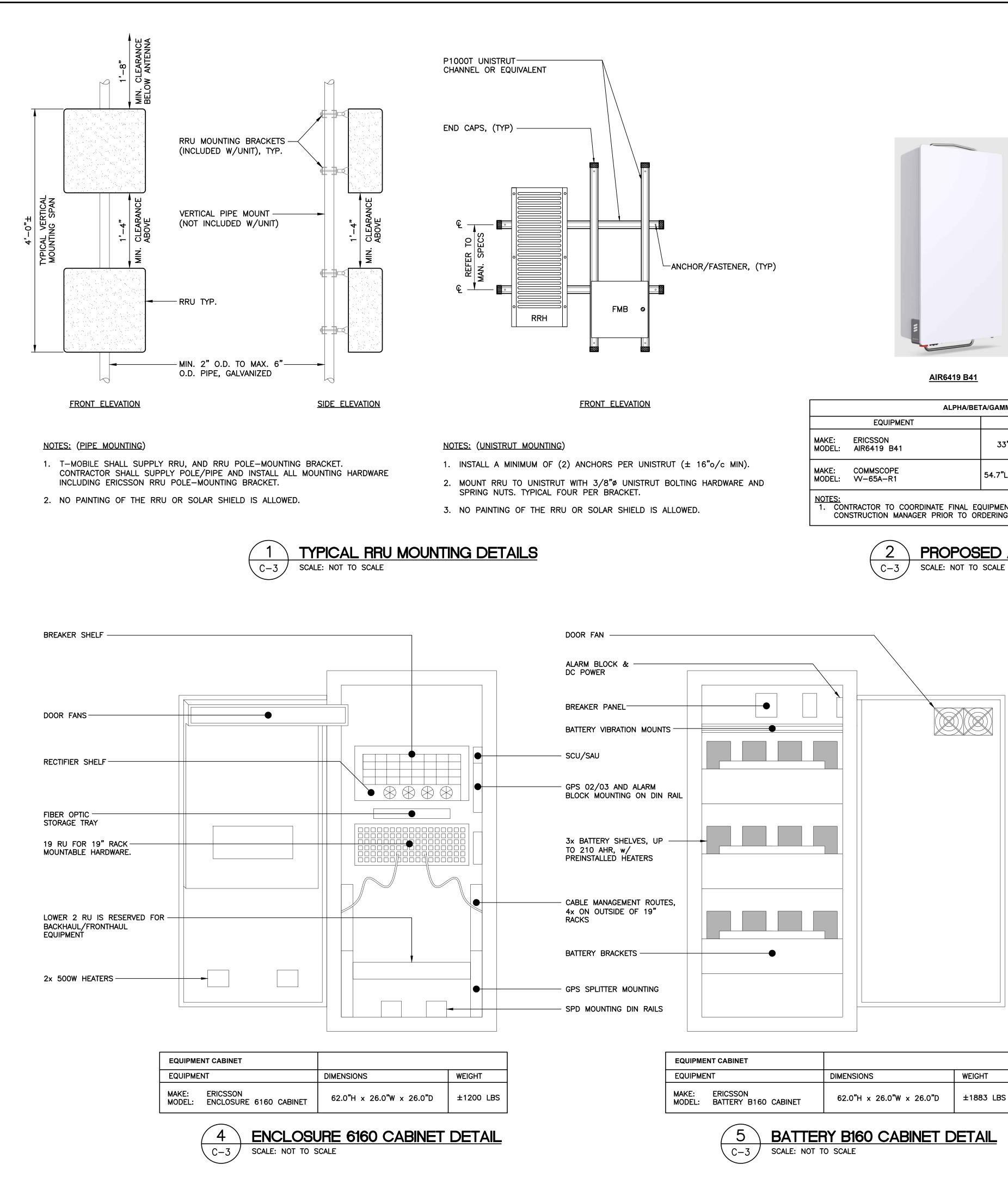

- EXISTING T-MOBILE RRU, TYP. (1) PER SECTOR. TOTAL (3) MODEL: RRUS11 B2 TO BE REMOVED

EXISTING T-MOBILE RRU, TYP. (1) PER SECTOR. TOTAL (3) MODEL: RRUS11 B4 TO BE REMOVED

- EXISTING T-MOBILE ANTENNA POS.2, TYP. (1) PER SECTOR. TOTAL (3) MODEL: APXVAARR24_43-U-NA20 TO BE RELOCATED

- EXISTING T-MOBILE RRU, TYP. (1) PER SECTOR. TOTAL (3) MODEL: RADIO 4449 B71+B12 TO BE RELOCATED


Hoff 150° BETA SECTOR



- EXISTING T-MOBILE ANTENNA POS.1, TYP. (1) PER SECTOR. TOTAL (3) MODEL: APX16DWV-16DWV-S-E-A20 TO BE REMOVED

- EXISTING T-MOBILE RRU, TYP. (1) PER SECTOR. TOTAL (3) MODEL: RRUS11 B2 TO BE REMOVED

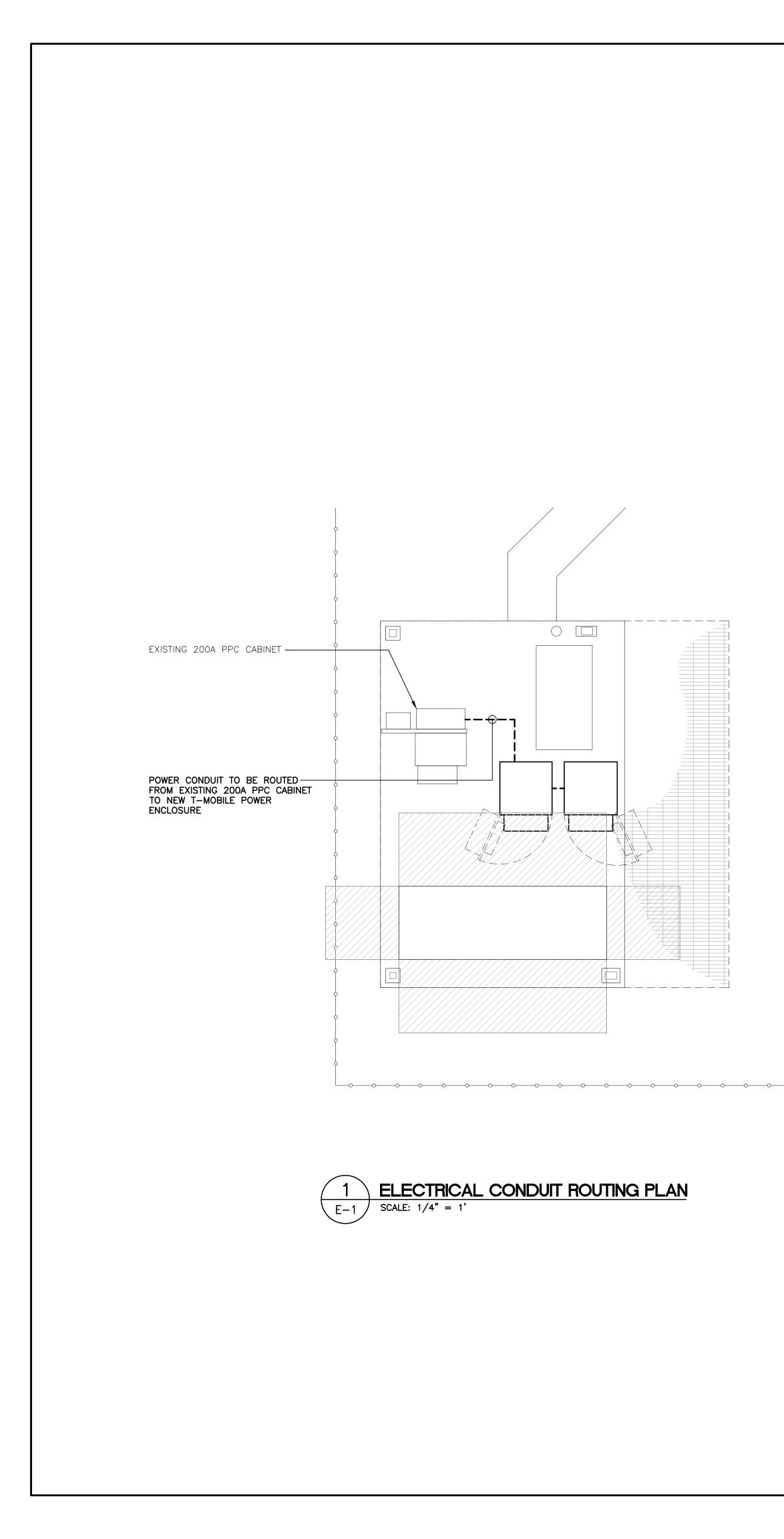
- EXISTING T-MOBILE RRU, TYP. (1) PER SECTOR. TOTAL (3) MODEL: RRUS11 B4 TO BE REMOVED

<u>VV-65A-R1</u>

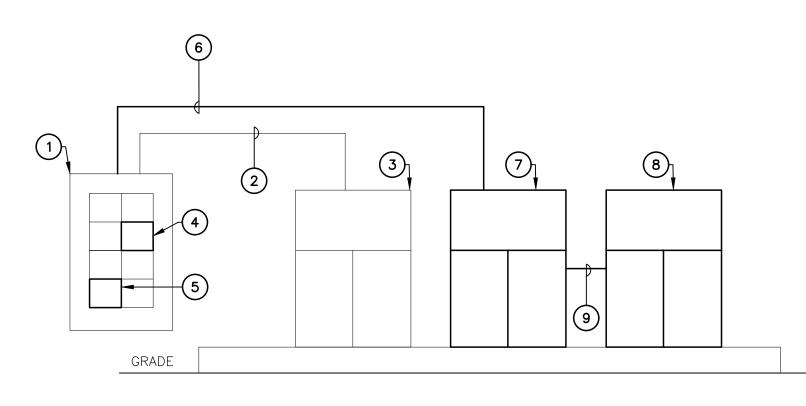
	ALPHA/BETA/GAMMA ANTENNA					
	EQUIPMENT	DIMENSIONS	WEIGHT			
MAKE: MODEL:	ERICSSON AIR6419 B41	33"L x 16"W x 9"D	±41 LBS.			
MAKE: MODEL:	COMMSCOPE VV-65A-R1	54.7"L x 12.08"W x 4.6"D	±23 LBS.			
	ITRACTOR TO COORDINATE FINAL EC ISTRUCTION MANAGER PRIOR TO OF		WITH T-MOBILE			

PROPOSED ANTENNA DETAIL

EQUIPMENT CABINET		
EQUIPMENT	DIMENSIONS	WEIGHT
MAKE: ERICSSON MODEL: BATTERY B160 CABINET	62.0"H x 26.0"W x 26.0"D	±1883 LBS

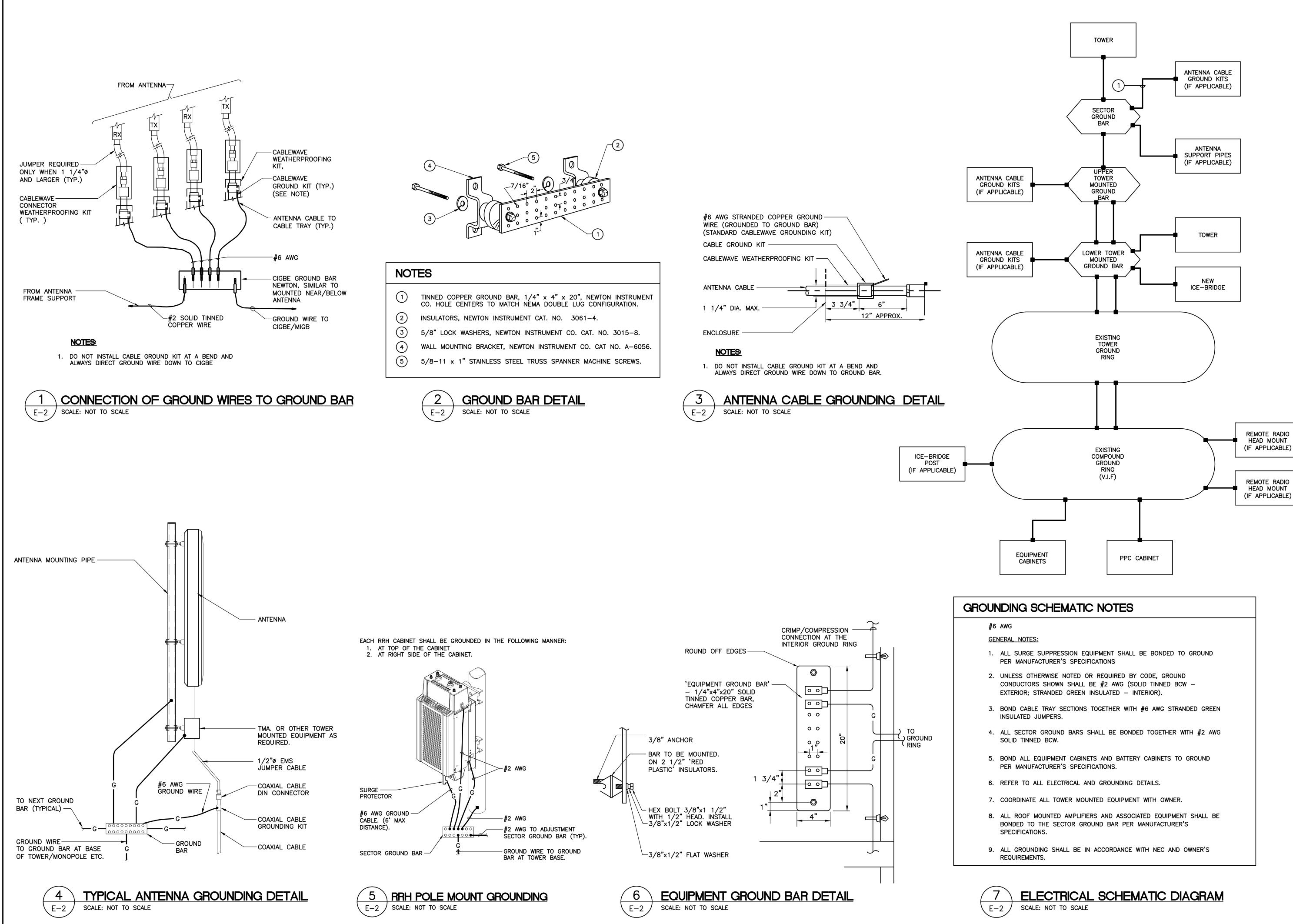

RADIO 4460 B25+B66

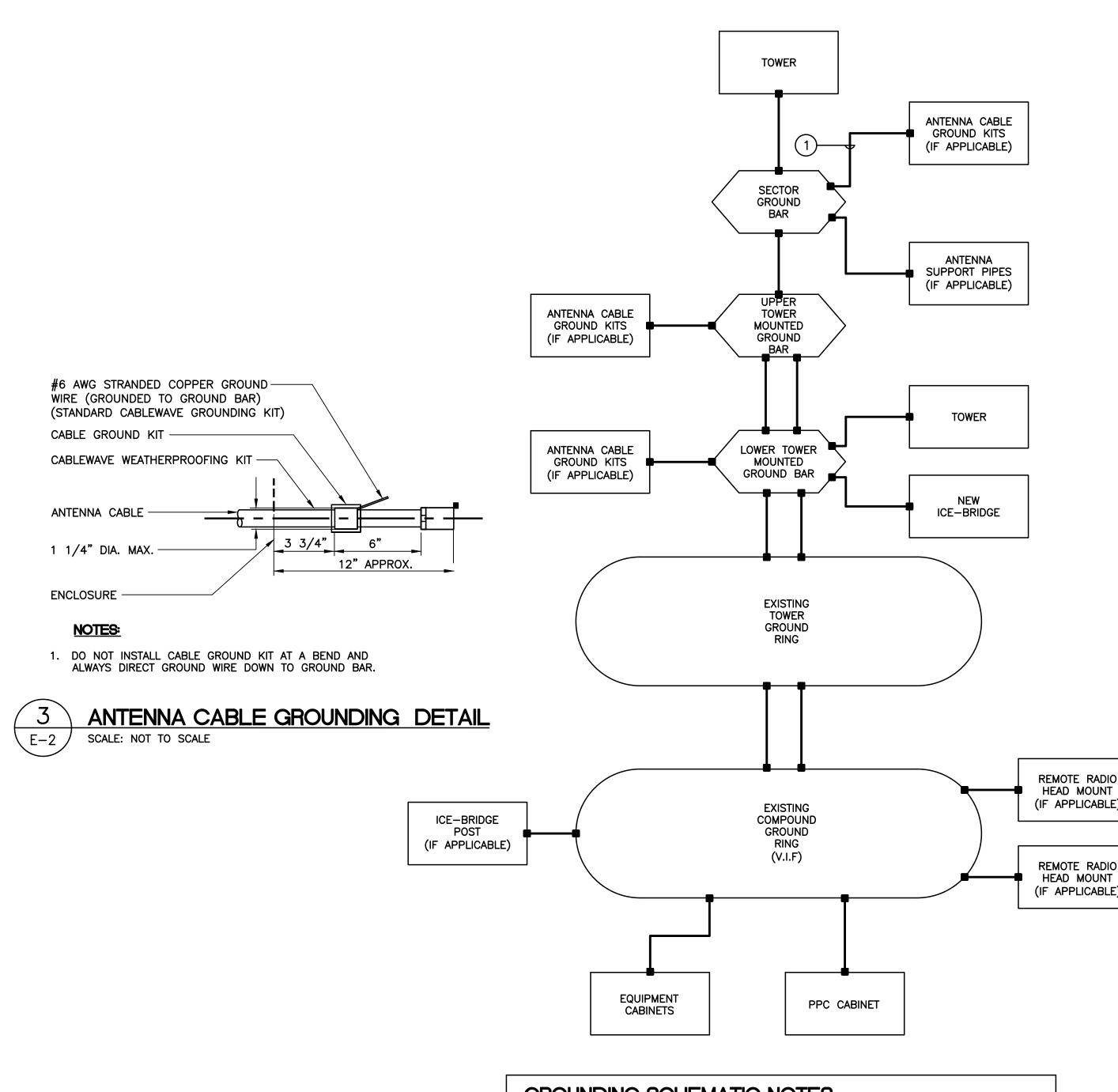
		RRU (REMOTE RADIO UN	IIT)	
E	QUIPMENT	DIMENSIONS	WEIGHT	CLEARANCES
MODEL:	ERICSSON RADIO 4460 B25+B66	19.6"L x 15.7"W x 12.1"D	±109 LBS.	BEHIND ANT.: 8" MIN. BELOW ANT.: 20" MIN. BELOW RRU: 16" MIN.
		NATE FINAL EQUIPMENT MODEL PRIOR TO ORDERING.	SELECTION WITH T	-MOBILE


PROPOSED RRU DETAIL SCALE: NOT TO SCALE

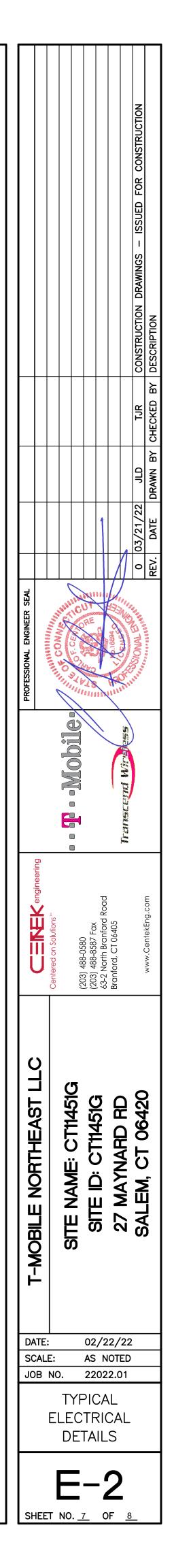
-Mobile Cone March (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Branford, CT 06405 T-MOBILE NORTHEAST LLC SITE NAME: CT11451G SITE ID: CT11451G 27 MAYNARD RD SALEM, CT 06420 DATE: 02/22/22 SCALE: AS NOTED JOB NO. 22022.01 TYPICAL EQUIPMENT DETAILS C-3SHEET NO. <u>5</u> OF <u>8</u>

RISER DIAGRAM NOTES





4 EXISTING 125A/2P CIRCUIT BREAKER SERVING EXISTING EQUIPMENT CABINET TO BE REMOVED AND REPLACED WITH NEW 100A/2P CIRCUIT BREAKER. COORDINATE CABINET DOWNGRADE WITH CONSTRUCTION MANAGER.


PROFESSIONAL ENGINEER SEAL	Centered on Solutions ^{**}	0	(203) 488-8587 Eox	63-2 North Branford Road	Transcend Wirvess	0 ONALEY MANY	www.centekeng.com REV. DATE DATE DATE DATE DATE DATE DATE DATE
						SALEN CT 06420	

ELECTRICAL SPECIFICATIONS

SECTION 16010

1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- M. SHOP DRAWINGS:
- 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
- 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- N. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN. OR OMITTED FROM. THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

SECTION 16111

1.01. CONDUITS

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

		T SCHEDULE SECTION 16111	
CONDUIT TYPE	NEC REFERENCE	APPLICATION	MIN. BURIAL DEPTH (PER NEC TABLE 300.5) ^{2,3}
EMT	ARTICLE 358	INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS	N/A
RMC, RIGID GALV. STEEL	ARTICLE 344, 300.5, 300.50	ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.	6 INCHES
PVC, SCHEDULE 40	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES
PVC, SCHEDULE 80	ARTICLE 352, 300.5, 300.50	INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. ¹	18 INCHES
LIQUID TIGHT FLEX. METAL	ARTICLE 350	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A
FLEX. METAL	ARTICLE 348	SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.	N/A
¹ PHYSICAL DAMAGE IS SU	IBJECT TO THE AUTHE	JRITY HAVING JURISDICTION.	

² UNDERGROUND CONDUIT INSTALLED UNDER ROADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HAVE MINIMUM DEPTH OF 24". WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2" OF CONCRETE EXTENDING DOWN TO ROCK.

SECTION 16123

- 1.01. CONDUCTORS
- A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:
 - 120/208/240V 277/480V COLOR BLACK COLOR BROWN ORANGE RFD BLUF YELLOW CONTINUOUS WHITE GREY CONTINUOUS GREEN GREEN WITH YELLOW STRIPE
- B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

SECTION 16130

1.01. BOXES

- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

SECTION 16140

- 1.01. WIRING DEVICES
- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
- 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS)
- 2. DUPLEX RECEPTACLE P&S #2095 (GFCI) SPECIFICATION GRADE
- 3. SINGLE POLE SWITCH P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
- 4. DUPLEX RECEPTACLE P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

SECTION 16170

1.01. DISCONNECT SWITCHES

A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

SECTION 16190

- 1.01. SEISMIC RESTRAINT
- A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

SECTION 16195

- 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT
- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

SECTION 16450 1.01. GROUNDING

- GROUNDING SOURCES.

- CORROSION

- RACEWAY(S).

- 1. GROUND BARS

- SPECIFICATIONS.

SECTION 16470

1.01. DISTRIBUTION EQUIPMENT

SECTION 16477

1.01. FUSES

SECTION 16960

REQUIRING WITNESSING.

SECTION 16961

- 1.01. TESTS BY CONTRACTOR

A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT

B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.

C. GROUNDING OF PANELBOARDS:

1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT

2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).

D. EQUIPMENT GROUNDING CONDUCTOR:

1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.

3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME

E. CELLULAR GROUNDING SYSTEM:

CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED). 3. ANTENNA GROUND CONNECTIONS AND PLATES.

F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.

G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S

A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHOR CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.

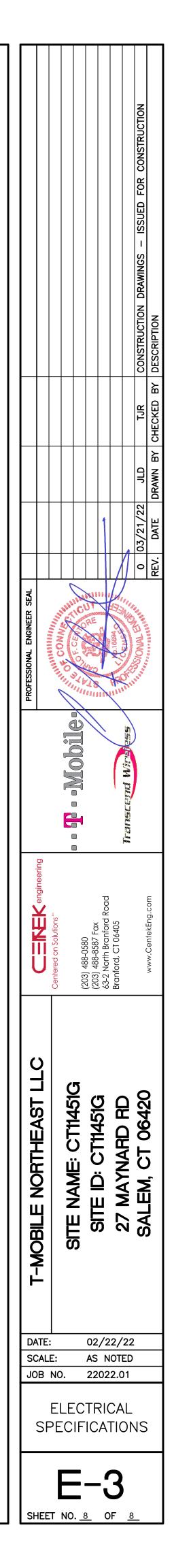
TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.

THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:

1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT

2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.

3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.


B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.

C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER. D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS

A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.

B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE CONNECTED TO THE PANELBOARDS SO THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.

C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.

Centered on Solutions[™]

Structural Analysis Report

100' Existing Lattice Tower

Proposed T-Mobile Antenna Upgrade

Site Ref: CT11451G

27 Maynard Road Salem, CT

CENTEK Project No. 22022.01

Date: March 07, 2022

Max Stress Ratio = 90.6%

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002 CENTEK Engineering, Inc. Structural Analysis Report T-Mobile | CT11451G March 07, 2022

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS
- ANTENNA AND APPURTENANCE SUMMARY
- ANALYSIS
- DESIGN LOADING
- REFERENCE STANDARDS
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 – CALCULATIONS

- tnxTower INPUT/OUTPUT SUMMARY
- tnxTower FEED LINE PLAN
- tnxTower FEED LINE DISTRIBUTION
- tnxTower DETAILED OUTPUT
- FOUNDATION ANALYSIS

SECTION 4 – REFERENCE MATERIALS (not included in this report)

- RF DATA SHEET RF
- Infinigy Engineering Structural Analysis Report, Job No. 1106-A0001-B, dated September 6, 2019.
- Infinigy Engineering CD's, Project No. 499-006, dated October 10, 2019.
- Hudson Design Group Structural Analysis Report, Job No. CT1451G, dated May 21, 2019.

<u>Introduction</u>

The purpose of this report is to summarize the results of the non-linear, $P-\Delta$ structural analysis of the antenna modification proposed by T-Mobile on the existing lattice tower located in Salem, Connecticut.

The host tower is a 100-ft, three-legged, lattice tower. The tower geometry, structure member sizes and foundation information were taken from a previous structural report prepared by Infinigy Engineering job no. 1106-A0001-B dated September 6, 2019.

Antenna and appurtenance inventory were taken from the aforementioned Infinigy Engineering structural report, a structural report prepared by Hudson Design Group job no. CT11451G dated May 21, 2019, a T-Mobile RF data sheet, and the Antenna Mount Analysis performed by Centek Engineering project no. 19027.19 dated April 30, 2019.

The tower consists of five (5) tapered vertical sections consisting of steel pipe legs conforming to ASTM A572 Gr. 50 and lateral bracing conforming to ASTM A36. The vertical tower sections are connected by bolted flange plates with the diagonal and horizontal bracing to pipe legs consisting of bolted connections. The width of the tower face is 5-ft at the top and 10-ft at the base.

<u>Antenna and Appurtenance Summary</u>

The existing tower supports several communication antennas. The existing and proposed loads considered in the analysis consist of the following:

Height	Quantity	Appurtenance	Mount Type	Coax & Lines
	1	Lightning Rod	-	-
	1	15' Dipole Whip Antenna	Leg	(1) 7/8"
±100 ft.	1	10' Whip Antenna	Leg	(1) 7/8"
	1	8' Omni-directional Whip Antenna	Face	(1) 7/8"
	1	8' Omni-directional Whip Antenna	Face	(1) 7/8"
±82 ft.	1	8' Omni-directional Whip Antenna	Face	(1) 7/8"

Carrier: UNKNOWN (Existing)

Carrier: AT&T (Existing)

Height	Quantity	Appurtenance	Mount Type	Coax & Lines
	2	CCI DMP65R-BU4DA Antennas		
	2	CCI DMP65R-BU6DA Antennas	Les Merude d	(2) Fiber
	2	CCI DMP65R-BU4DA Antennas		
±72 ft.	3	Powerwave 7770 Antennas	Leg Mounted Sector Frames	(6) DC
	3	Ericsson Radio 8843 B2/B66A		(0) 20
	3	Ericsson Radio 4449 B5/B12		
	3	Ericsson RRUS 4478 B14		

	6	Powerwave LGP21401 TMA		
-	3	Raycap DC6-48-60-18-8F	Leg Mounted	

Carrier: T-Mobile (To Be Removed)

Height	Quantity	Appurtenance	Mount Type	Coax & Lines
	3	RFS APX16DWV-16DWV Antennas		
±82 ft.	3	Ericsson RRUS11 B2	Leg Mounted Sector Frames	N.A.
	3	Ericsson RRUS11 B4		

Carrier: T-Mobile (To Remain)

Height	Quantity	Appurtenance	Mount Type	Coax & Lines
±82 ft.	3	RFS APXVAARR24_43-U Antennas	Leg Mounted	(2) 6X12 Hybrid
202 10	3	Ericsson Radio 4449 B71+B12	Sector Frames	Cables

Carrier: T-Mobile (Proposed)

Height	Quantity	Appurtenance	Mount Type	Coax & Lines
	3	Ericsson Air 6419 B41		
±82 ft.	3		Leg Mounted Sector Frames	(2) 6x24 Hybrid Cables
	3	Ericsson Radio 4460 B25+B66		

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All coax cables should be routed as specified in section 3 of this report.

<u>Analysis</u>

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst-case loading condition. The tower is considered as loaded by concentric forces along the tower, and the model assumes that the tower members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed (3-second gust) with no ice and the applicable wind and ice combination to determine stresses in members as per guidelines of TIA-222-G-2005 entitled "Structural Standard for Antenna Support Structures and Antennas", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Load and Resistance Factor Design (LRFD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix N of the CSBC¹ and the wind speed data available in the TIA-222-G-2005 Standard.

<u>Tower Loading</u>

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA-222-G-2005, gravity loads of the tower structure and its components, and the application of 0.75" radial ice on the tower structure and its components.

Basic Wind Speed:	<i>Salem</i> ; V _{asd} = 108 mph (Nominal)	[Appendix N of the 2018 CT Building Code]
Load Cases 1:	108 mph wind speed w/ no ice plus gravity load – used in calculation of tower stresses and rotation.	[Appendix N of the 2016 CT Building Code]
Load Cases 2:	50 mph wind speed w/ 0.75" radial ice plus gravity load – used in calculation of tower stresses.	[Annex B of TIA-222-G-2005]

¹ The 2015 International Building Code as amended by the 2018 Connecticut State Building Code (CSBC).

CENTEK Engineering, Inc. Structural Analysis Report T-Mobile | CT11451G March 02, 2022

<u>Tower Capacity</u>

• Calculated stresses were found to be within allowable limits. This tower was found to be at **90.6%** of its total capacity.

Tower Section	Elevation	Stress Ratio (percentage of capacity)	Result
Leg (T5)	0'-0"-20'-0"	81.6%	PASS
Diagonal (T5)	0'-0"-20'-0"	90.6%	PASS
Bolt Checks (T5)	0'-0"-20'-0"	90.6%	PASS

Foundation and Anchors

The existing foundation consists of three (3) 3-ft \emptyset x 4-ft long reinforced concrete piers on a 21ft square x 2.5-ft thick reinforced concrete pad bearing directly on existing sub grade. The subgrade conditions used in the analysis of the existing foundation were obtained from the aforementioned structural report prepared by Infinigy Engineering. Tower legs are connected to the foundation by means of (6) 1" \emptyset , ASTM A36 anchor bolts per leg, embedded into the concrete foundation structure.

• The tower reactions developed from the governing Load Case 1 were used in the verification of the foundation:

Reactions	Vector	Proposed Base Reactions
	Shear	27 kips
Base	Compression	23 kips
	Moment	1509 kip-ft
	Shear	15 kips
Leg	Uplift	165 kips
	Compression	182 kips

• The anchor bolts were found to be within allowable limits.

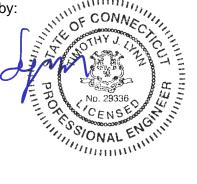
Tower Component	Design Limit	Stress Ratio (percentage of capacity)	Result
Anchor Bolts	Tension	81.6%	PASS

• The foundation was found to be within allowable limits.

Foundation	Design Limit	TIA-222-G Section 9.4 FS ⁽¹⁾	Proposed Loading (FS) ⁽¹⁾	Result
Reinforced Concrete Mat	OM ⁽²⁾	1.0	2.17	PASS

Note 1: FS denotes Factor of Safety Note 2: OM denotes Overturning Moment.

<u>Conclusion</u>


This analysis shows that the subject tower **is adequate** to support the proposed modified antenna configuration.

The analysis is based, in part, on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

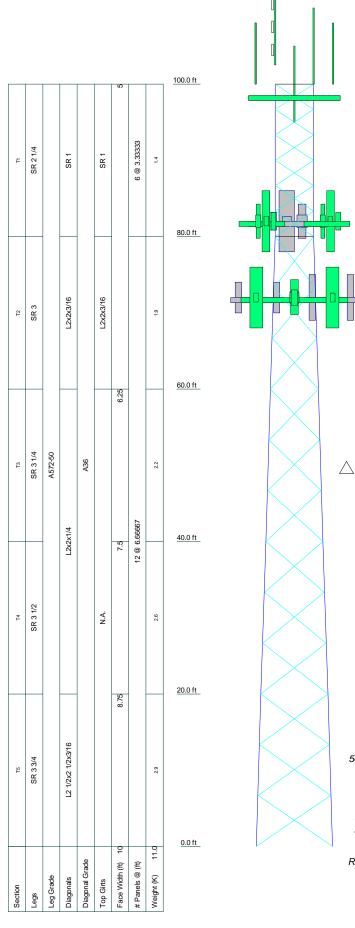
Timothy J. Lynn, PE Structural Engineer

Prepared by:

Pablo Perez-Gomez Engineer

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:


- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

<u>GENERAL DESCRIPTION OF STRUCTURAL</u> <u>ANALYSIS PROGRAM</u>

TnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, TnxTower, formerly ERITower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

TnxTower Features:

- TnxTower can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-G (2005) standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD 9th Edition or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, guy anchor and stress plots.
- TnxTower contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.

DESIGNED APPURTENANCE LOADING

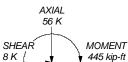
TYPE	ELEVATION	TYPE	ELEVATION
10-ft Lighting Rod	100	4460 B25+B66 (T-Mobile)	82
15-ft Single Dipole	100	(2) LGP21401 TMA (ATI)	72
10' x 3" Dia Omni	100	(2) LGP21401 TMA (AT <u>T</u>)	72
8' x 3" Dia Omni	100	(2) LGP21401 TMA (AT <u>T</u>)	72
8' x 3" Dia Omni	100	DC6-48-60-18-8F Surge Arrestor (ATI)	72
8' x 3" Dia Omni	100	DC6-48-60-18-8F Surge Arrestor (ATI)	72
PiROD 12' T-Frame	98.5	DC6-48-60-18-8F Surge Arrestor (ATI)	72
PiROD 12' T-Frame	98.5	PiROD 15' T-Frame (ATI)	72
PiROD 12' T-Frame (T-Mobile)	82	PiROD 15' T-Frame (AT <u>T</u>)	72
PiROD 12' T-Frame (T-Mobile)	82	PiROD 15' T-Frame (AT <u>T</u>)	72
PiROD 12' T-Frame (T-Mobile)	82	7770.00 w/ mount pipe (ATI)	72
AIR6419 (T-Mobile)	82	7770.00 w/ mount pipe (ATT)	72
AIR6419 (T-Mobile)	82	7770.00 w/ mount pipe (AT <u>T</u>)	72
AIR6419 (T-Mobile)	82	(2) DMP65R-BU4D (AT <u>T</u>)	72
APXVAARR24_43-U-NA20 (T-Mobile)	82	(2) DMP65R-BU6D (AT <u>T</u>)	72
APXVAARR24_43-U-NA20 (T-Mobile)	82	(2) DMP65R-BU8DA (ATI)	72
APXVAARR24_43-U-NA20 (T-Mobile)	82	8843 B2/B66A (AT <u>T</u>)	72
VV-65A-R1 (T-Mobile)	82	8843 B2/B66A (AT <u>T</u>)	72
VV-65A-R1 (T-Mobile)	82	8843 B2/B66A (AT <u>T</u>)	72
VV-65A-R1 (T-Mobile)	82	4449 B5/B12 (ATI)	72
4449 B12,B71 (T-Mobile)	82	4449 B5/B12 (ATI)	72
4449 B12,B71 (T-Mobile)	82	4449 B5/B12 (ATI)	72
4449 B12,B71 (T-Mobile)	82	4478 B14 (AT <u>T</u>)	72
4460 B25+B66 (T-Mobile)	82	4478 B14 (AT <u>T</u>)	72
4460 B25+B66 (T-Mobile)	82	4478 B14 (AT <u>I</u>)	72

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

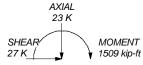
TOWER DESIGN NOTES

- Tower designed for Exposure B to the TIA-222-G Standard.
 Tower designed for a 108 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 60 mph wind.


5. Tower Structure Class II.

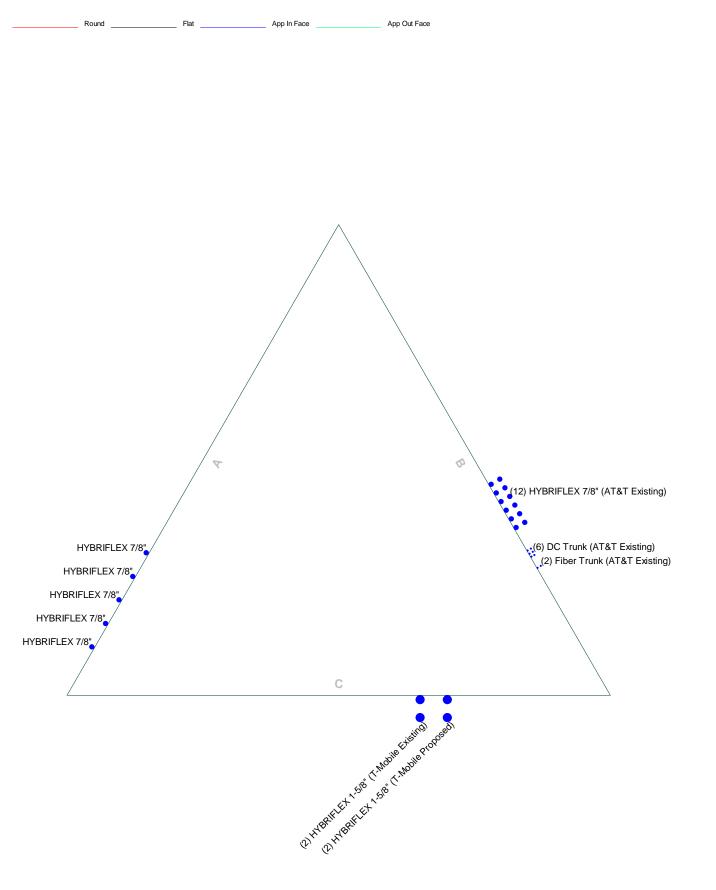
- Topographic Category 3 with Crest Height of 160.00 ft
 TOWER RATING: 90.6%

ALL REACTIONS ARE FACTORED


MAX. CORNER REACTIONS AT BASE: DOWN: 182 K SHEAR: 15 K

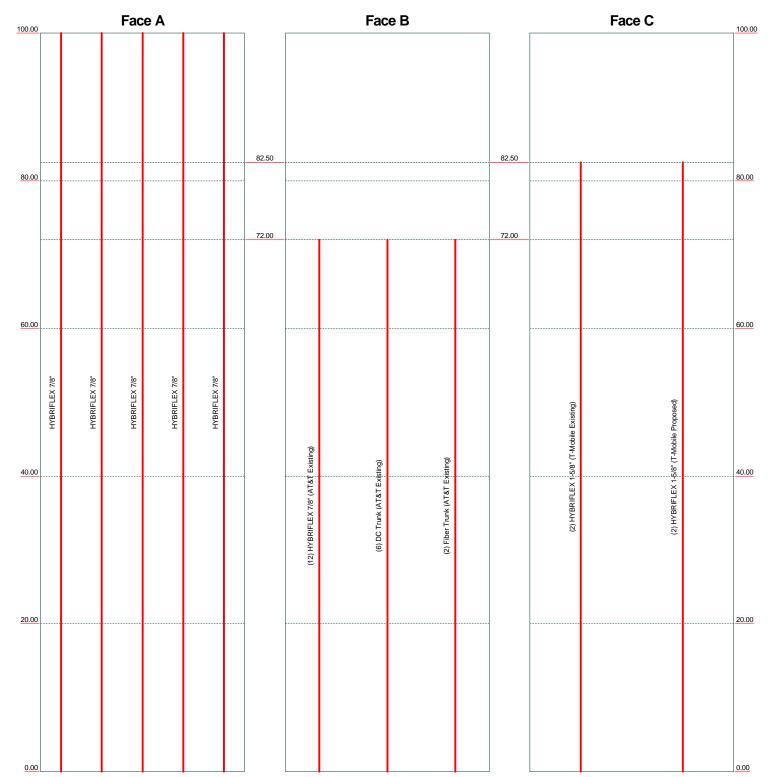
UPLIFT: -165 K SHEAR: 14 K

TORQUE 4 kip-ft


50 mph WIND - 0.7500 in ICE

TORQUE 11 kip-ft REACTIONS - 108 mph WIND

Centek Engineering Inc.	^{Job:} 21022.01 - CT1	1451G	
63-2 North Branford Rd.	Project: 100' Lattice Towe	r - 27 Maynard Rd., S	Salem, CT
	^{Client:} T-Mobile	Drawn by: TJL	App'd:
Phone: (203) 488-0580	^{Code:} TIA-222-G	Date: 03/07/22	Scale: NTS
FAX: (203) 488-8587	Path: JUdb#2202200.WI01_CT11452G05_Structura/02_D	Design)CALCS(Tower Analysis:100-ft Rohn Lattice Tower.et	Dwg No. E-1


Feed Line Plan

Centek Engineering Inc.			
63-2 North Branford Rd.	Project: 100' Lattice Towe	r - 27 Maynard Rd., S	Salem, CT
	^{Client:} T-Mobile	Drawn by: TJL	App'd:
Phone: (203) 488-0580	^{Code:} TIA-222-G	Date: 03/07/22	Scale: NTS
FAX: (203) 488-8587	Path: J:Jobei2202200.WI01_CT11452GI05_Structural/02_E	Design)CALCS(Tower Analysis:100-ft Rohn Lattice Tower.e	Dwg No. E-7

Feed Line Distribution Chart 0' - 100'

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Centek Engineering Inc.	^{Job:} 2	21022.01 - CT1	1451G	
63-2 North Branford Rd.	Projec	tt 100' Lattice Towe	r - 27 Maynard Rd., S	Salem, CT
Branford, CT 06405	Client	T-Mobile	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code:	TIA-222-G	Date: 03/07/22	Scale: NTS
FAX: (203) 488-8587	Path:	3. Jobs 2202200. WI01 CT11452G/05 Structural/02 D	Design)CALCS(Tower Analysis:100-ft Rohn Lattice Tower.et	Dwg No. E-7

Elevation (ft)

Round

An an Transmorth	Job	Page
tnxTower	21022.01 - CT11451G	1 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 100.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 10.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

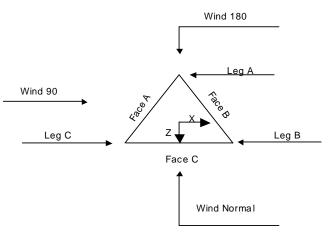
Basic wind speed of 108 mph.

Structure Class II. Exposure Category B. Topographic Category 3. Crest Height 160.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- ✓ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
- ✓ SR Members Have Cut Ends SR Members Are Concentric


Distribute Leg Loads As Uniform

- Assume Legs Pinned √ Assume Rigid Index Plate
- $\sqrt{4}$ Assume Rigid Index Plate $\sqrt{4}$ Use Clear Spans For Wind Area
- $\sqrt{\text{Use Clear Spans For KL/r}}$
- Retension Guys To Initial Tension Bypass Mast Stability Checks √ Use Azimuth Dish Coefficients
- $\sqrt{}$ Project Wind Area of Appurt.
- Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces
- Ignore Redundant Members in FEA
- $\sqrt{\text{SR}}$ Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower	Јо в 21022.01 - СТ11451G	Page 2 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

<u>Triangular Tower</u>

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	100.00-80.00			5.00	1	20.00
T2	80.00-60.00			5.00	1	20.00
Т3	60.00-40.00			6.25	1	20.00
T4	40.00-20.00			7.50	1	20.00
T5	20.00-0.00			8.75	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	100.00-80.00	3.33	X Brace	No	No	0.0000	0.0000
T2	80.00-60.00	6.67	X Brace	No	No	0.0000	0.0000
T3	60.00-40.00	6.67	X Brace	No	No	0.0000	0.0000
T4	40.00-20.00	6.67	X Brace	No	No	0.0000	0.0000
T5	20.00-0.00	6.67	X Brace	No	No	0.0000	0.0000

tnxTower	Job 21022.01 - СТ11451G	Page 3 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 100.00-80.00	Solid Round	2 1/4	A572-50	Solid Round	1	A36
			(50 ksi)			(36 ksi)
T2 80.00-60.00	Solid Round	3	A572-50	Single Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T3 60.00-40.00	Solid Round	3 1/4	A572-50	Single Angle	L2x2x1/4	A36
			(50 ksi)			(36 ksi)
T4 40.00-20.00	Solid Round	3 1/2	A572-50	Single Angle	L2x2x1/4	A36
			(50 ksi)	0 0		(36 ksi)
T5 20.00-0.00	Solid Round	3 3/4	A572-50	Single Angle	L2 1/2x2 1/2x3/16	A36
			(50 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Type	Size	Grade
ft						
T1 100.00-80.00	Solid Round	1	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)
T2 80.00-60.00	Single Angle	L2x2x3/16	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
<i>ft</i> T1 100.00-80.00	Single Angle		A36	Single Angle	L2x2x1/8	A36
11 100.00-00.00	Single Angle		(36 ksi)	Single Angle	E2A2A1/0	(36 ksi)
T2 80.00-60.00	Single Angle		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T3 60.00-40.00	Single Angle		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T4 40.00-20.00	Single Angle		A36	Single Angle	L2x2x1/8	A36
			(36 ksi)			(36 ksi)
T5 20.00-0.00	Single Angle		A36	Single Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)

	Tower Section Geometry (cont'd)													
Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt					
	(per face)			,	A_r		Spacing	Spacing	Spacing					
	2						Diagonals	Horizontals	Redundants					
ft	ft^2	in					in	in	in					
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000					

tnxTower	Job	21022.01 - CT11451G	Page 4 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project	100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	T-Mobile	Designed by TJL

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
Lievanon	(per face)	Interness		11	A _r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
100.00-80.00			(36 ksi)						
T2 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T3 60.00-40.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T4 40.00-20.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T5 20.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

			K Factors ¹									
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner		
Elevation	Κ	Κ		Brace	Brace	Diags			Horiz.	Brace		
	Single	Solid		Diags	Diags							
	Angles	Rounds		X	X	X	X	X	X	X		
ft				Y	Y	Y	Y	Y	Y	Y		
T1	Yes	Yes	1	1	1	1	1	1	1	1		
00.00-80.00				1	1	1	1	1	1	1		
T2	Yes	Yes	1	1	1	1	1	1	1	1		
80.00-60.00				1	1	1	1	1	1	1		
Т3	Yes	Yes	1	1	1	1	1	1	1	1		
60.00-40.00				1	1	1	1	1	1	1		
T4	Yes	Yes	1	1	1	1	1	1	1	1		
40.00-20.00				1	1	1	1	1	1	1		
5 20.00-0.00	Yes	Yes	1	1	1	1	1	1	1	1		
				1	1	1	1	1	1	1		

 $\frac{1}{1}$ $\frac{1}$

Tower Section Geometry (cont'd)

Tower Elevation	Leg		Diagon	al	al Top G		Bottom Girt		Mid	Mid Girt		Long Horizontal		Short Horizontal	
ft															
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U	
	Deduct		Deduct		Deduct		Width		Width		Width		Width		
	in		in		in		Deduct		Deduct		Deduct		Deduct		
							in		in		in		in		
T1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75	
100.00-80.00															
T2 80.00-60.00	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
T3 60.00-40.00	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
Г4 40.00-20.00	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
T5 20.00-0.00	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1	0.0000	1	0.0000	1	

Cente 63-2 B Pho F_{ℓ}

tnxTower	Job 21022.01 - СТ11451G	Page 5 of 31
tek Engineering Inc. 3-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Tower	Redundant				Redundant				Redundant Vertical		Redundant Hip		Redundant Hip	
Elevation	Horizo	ntal	Diago	nal	Sub-Diag	zonal	Sub-Horizontal							onal
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T2 80.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 60.00-40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 40.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 20.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower	Leg Leg		Diagonal		ıal	Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
Elevation	Connection Turns														
ft	Type	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in	110.	in	10.	in	110.	in	110.	in	110.	in	110.	in	140.
	D 1		4		0		0		0		0		0		
T1	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 80.00-60.00	Flange	1.0000	6	0.6250	1	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 60.00-40.00	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	Ū.	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 40.00-20.00	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	Ū.	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 20.00-0.00	Flange	1.1250	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	C	A36		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
· · · · · · · · · · · · · · · · · · ·	or	Shield	From	Type		Offset	Offset		Per		Diameter		
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
			Calculation										
HYBRIFLEX 7/8"	А	No	No	Ar (CaAa)	100.00 - 0.00	0.0000	-0.4	1	1	0.8750	1.0900		0.53
HYBRIFLEX 7/8"	А	No	No	Ar (CaAa)	100.00 - 0.00	0.0000	-0.35	1	1	0.8750	1.0900		0.53
HYBRIFLEX 7/8"	А	No	No	Ar (CaAa)	100.00 - 0.00	0.0000	-0.3	1	1	0.8750	1.0900		0.53
HYBRIFLEX 7/8"	А	No	No	Ar (CaAa)	100.00 - 0.00	0.0000	-0.25	1	1	0.8750	1.0900		0.53
HYBRIFLEX 7/8"	А	No	No	Ar (CaAa)	100.00 - 0.00	0.0000	-0.2	1	1	0.8750	1.0900		0.53
HYBRIFLEX 1-5/8'' (T-Mobile Existing)	С	No	No	Ar (CaAa)	82.50 - 0.00	0.0000	-0.15	2	1	1.9800	1.9800		1.90
HYBRIFLEX 7/8" (AT&T	В	No	No	Ar (CaAa)	72.00 - 0.00	0.0000	0.1	12	6	1.1100	1.0900		0.53

tran	Job		Page
tnxTower		21022.01 - CT11451G	6 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project	100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	T-Mobile	Designed by TJL

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation		ft	in	(Frac FW)		Row	in	in	in	plf
Existing)													
DC Trunk (AT&T	В	No	No	Ar (CaAa)	72.00 - 0.00	0.0000	0.2	6	3	0.4000	0.4000		0.11
Existing)													
Fiber Trunk (AT&T	В	No	No	Ar (CaAa)	72.00 - 0.00	0.0000	0.23	2	1	0.4000	0.4000		1.00
Existing)	C	N	N		00.50 0.00	0.0000	0.0	2	1	1 0000	1 0000		1.00
HYBRIFLEX 1-5/8"	С	No	No	Ar (CaAa)	82.50 - 0.00	0.0000	-0.2	2	1	1.9800	1.9800		1.90
(T-Mobile Proposed)													

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
T1	100.00-80.00	А	0.000	0.000	10.900	0.000	0.05
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	1.980	0.000	0.02
T2	80.00-60.00	А	0.000	0.000	10.900	0.000	0.05
		В	0.000	0.000	19.536	0.000	0.11
		С	0.000	0.000	15.840	0.000	0.15
T3	60.00-40.00	А	0.000	0.000	10.900	0.000	0.05
		В	0.000	0.000	32.560	0.000	0.18
		С	0.000	0.000	15.840	0.000	0.15
T4	40.00-20.00	А	0.000	0.000	10.900	0.000	0.05
		В	0.000	0.000	32.560	0.000	0.18
		С	0.000	0.000	15.840	0.000	0.15
T5	20.00-0.00	А	0.000	0.000	10.900	0.000	0.05
		В	0.000	0.000	32.560	0.000	0.18
		С	0.000	0.000	15.840	0.000	0.15

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	Κ
T1	100.00-80.00	А	1.834	0.000	0.000	47.583	0.000	0.71
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	6.966	0.000	0.10
T2	80.00-60.00	А	1.836	0.000	0.000	47.621	0.000	0.71
		В		0.000	0.000	46.587	0.000	0.77
		С		0.000	0.000	55.754	0.000	0.84
T3	60.00-40.00	А	1.833	0.000	0.000	47.569	0.000	0.71
		В		0.000	0.000	77.592	0.000	1.29
		С		0.000	0.000	55.718	0.000	0.84
T4	40.00-20.00	А	1.812	0.000	0.000	47.140	0.000	0.70
		В		0.000	0.000	77.148	0.000	1.28
		С		0.000	0.000	55.424	0.000	0.82
T5	20.00-0.00	А	1.702	0.000	0.000	44.947	0.000	0.63
		В		0.000	0.000	74.881	0.000	1.20
		С		0.000	0.000	53.925	0.000	0.76

tnxTower

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21022.01 - CT11451G	7 of 31
Project	100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Client	T-Mobile	Designed by TJL

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	100.00-80.00	-4.9659	2.2759	-6.4944	2.7258
T2	80.00-60.00	2.9910	3.4394	1.7447	5.8535
Т3	60.00-40.00	5.6452	3.1818	4.5064	5.9977
T4	40.00-20.00	6.2818	3.5493	5.1109	6.7626
T5	20.00-0.00	6.3860	3.6476	5.5990	7.2563

			Shieldi	ing i au	
Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	2	HYBRIFLEX 7/8"	80.00 - 100.00	0.6000	0.5576
T1	3	HYBRIFLEX 7/8"	80.00 - 100.00	0.6000	0.5576
T1	4	HYBRIFLEX 7/8"	80.00 - 100.00	0.6000	0.5576
T1	5	HYBRIFLEX 7/8"	80.00 - 100.00	0.6000	0.5576
T1	6	HYBRIFLEX 7/8"	80.00 - 100.00	0.6000	0.5576
T1	7	HYBRIFLEX 1-5/8"	80.00 - 82.50	0.6000	0.5576
T1	11	HYBRIFLEX 1-5/8"	80.00 - 82.50	0.6000	0.5576
T2	2	HYBRIFLEX 7/8"	60.00 - 80.00	0.6000	0.6000
T2	3	HYBRIFLEX 7/8"	60.00 - 80.00	0.6000	0.6000
Т2	4	HYBRIFLEX 7/8"	60.00 - 80.00	0.6000	0.6000
Т2	5	HYBRIFLEX 7/8"	60.00 - 80.00	0.6000	0.6000
Т2	6	HYBRIFLEX 7/8"	60.00 - 80.00	0.6000	0.6000
T2	7	HYBRIFLEX 1-5/8"	60.00 - 80.00	0.6000	0.6000
T2	8	HYBRIFLEX 7/8"	60.00 - 72.00	0.6000	0.6000
T2	9	DC Trunk	60.00 - 72.00	0.6000	0.6000
T2	10	Fiber Trunk	60.00 - 72.00	0.6000	0.6000
T2	11	HYBRIFLEX 1-5/8"	60.00 - 80.00	0.6000	0.6000
Т3	2	HYBRIFLEX 7/8"	40.00 - 60.00	0.6000	0.6000
Т3	3	HYBRIFLEX 7/8"	40.00 - 60.00	0.6000	0.6000
Т3	4	HYBRIFLEX 7/8"	40.00 - 60.00	0.6000	0.6000
Т3	5	HYBRIFLEX 7/8"	40.00 - 60.00	0.6000	0.6000
Т3	6	HYBRIFLEX 7/8"	40.00 - 60.00	0.6000	0.6000
Т3	7	HYBRIFLEX 1-5/8"	40.00 - 60.00	0.6000	0.6000
Т3	8	HYBRIFLEX 7/8"	40.00 - 60.00	0.6000	0.6000
Т3	9	DC Trunk	40.00 - 60.00	0.6000	0.6000
Т3	10	Fiber Trunk	40.00 - 60.00	0.6000	0.6000
Т3	11	HYBRIFLEX 1-5/8"	40.00 - 60.00	0.6000	0.6000
T4	2	HYBRIFLEX 7/8"	20.00 - 40.00	0.6000	0.6000
T4	3	HYBRIFLEX 7/8"	20.00 - 40.00	0.6000	0.6000
T4	4	HYBRIFLEX 7/8"	20.00 - 40.00	0.6000	0.6000
T4	5	HYBRIFLEX 7/8"	20.00 - 40.00	0.6000	0.6000
T4	6	HYBRIFLEX 7/8"	20.00 - 40.00	0.6000	0.6000
T4	7	HYBRIFLEX 1-5/8"	20.00 - 40.00	0.6000	0.6000
T4	8	HYBRIFLEX 7/8"	20.00 - 40.00	0.6000	0.6000
T4	9	DC Trunk	20.00 - 40.00	0.6000	0.6000
T4	10	Fiber Trunk	20.00 - 40.00	0.6000	0.6000
T4	11	HYBRIFLEX 1-5/8"	20.00 - 40.00	0.6000	0.6000
T5	2	HYBRIFLEX 7/8"	0.00 - 20.00	0.6000	0.6000

Shielding Factor Ka

Cente 63-Ρŀ 1

tran Tony or	Job		Page
tnxTower		21022.01 - CT11451G	8 of 31
ntek Engineering Inc.	Project		Date
63-2 North Branford Rd.		100' Lattice Tower - 27 Maynard Rd., Salem, CT	10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	T-Mobile	Designed by TJL

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T5	3	HYBRIFLEX 7/8"	0.00 - 20.00	0.6000	0.6000
T5	4	HYBRIFLEX 7/8"	0.00 - 20.00	0.6000	0.6000
T5	5	HYBRIFLEX 7/8"	0.00 - 20.00	0.6000	0.6000
T5	6	HYBRIFLEX 7/8"	0.00 - 20.00	0.6000	0.6000
T5	7	HYBRIFLEX 1-5/8"	0.00 - 20.00	0.6000	0.6000
T5	8	HYBRIFLEX 7/8"	0.00 - 20.00	0.6000	0.6000
T5	9	DC Trunk	0.00 - 20.00	0.6000	0.6000
T5	10	Fiber Trunk	0.00 - 20.00	0.6000	0.6000
T5	11	HYBRIFLEX 1-5/8"	0.00 - 20.00	0.6000	0.6000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	o	ft		ft ²	ft^2	Κ
10-ft Lighting Rod	А	None	Ji	0.0000	100.00	No Ice	1.00	1.00	0.04
						1/2" Ice	2.02	2.02	0.05
						1" Ice	3.05	3.05	0.06
15-ft Single Dipole	С	From Leg	0.00	0.0000	100.00	No Ice	3.00	3.00	0.04
5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		0	0.00			1/2" Ice	6.00	6.00	0.06
			7.50			1" Ice	9.00	9.00	0.08
10' x 3" Dia Omni	В	From Leg	0.00	0.0000	100.00	No Ice	3.00	3.00	0.03
		U	0.00			1/2" Ice	4.03	4.03	0.05
			5.00			1" Ice	5.03	5.03	0.08
PiROD 12' T-Frame	С	From Face	1.50	0.0000	98.50	No Ice	12.20	12.20	0.36
			0.00			1/2" Ice	17.60	17.60	0.49
			0.00			1" Ice	23.00	23.00	0.62
8' x 3" Dia Omni	В	From Leg	3.00	0.0000	100.00	No Ice	2.40	2.40	0.03
		U	0.00			1/2" Ice	3.19	3.19	0.04
			4.00			1" Ice	3.67	3.67	0.07
8' x 3" Dia Omni	С	From Leg	3.00	0.0000	100.00	No Ice	2.40	2.40	0.03
		U	0.00			1/2" Ice	3.19	3.19	0.04
			4.00			1" Ice	3.67	3.67	0.07
PiROD 12' T-Frame	С	From Face	0.00	0.0000	98.50	No Ice	12.20	12.20	0.36
			0.00			1/2" Ice	17.60	17.60	0.49
			0.00			1" Ice	23.00	23.00	0.62
8' x 3" Dia Omni	С	From Leg	3.00	0.0000	100.00	No Ice	2.40	2.40	0.03
		C	0.00			1/2" Ice	3.19	3.19	0.04
			4.00			1" Ice	3.67	3.67	0.07
PiROD 15' T-Frame	А	From Face	4.00	0.0000	72.00	No Ice	15.00	15.00	0.50
(AT&T)			0.00			1/2" Ice	20.60	20.60	0.65
			0.00			1" Ice	26.20	26.20	0.80
PiROD 15' T-Frame	В	From Face	4.00	0.0000	72.00	No Ice	15.00	15.00	0.50
(AT&T)			0.00			1/2" Ice	20.60	20.60	0.65
. ,			0.00			1" Ice	26.20	26.20	0.80
PiROD 15' T-Frame	С	From Face	4.00	0.0000	72.00	No Ice	15.00	15.00	0.50
(AT&T)			0.00			1/2" Ice	20.60	20.60	0.65
			0.00			1" Ice	26.20	26.20	0.80
7770.00 w/ mount pipe	А	From Face	4.00	0.0000	72.00	No Ice	5.62	4.26	0.06
(AT&T)			0.00			1/2" Ice	6.00	4.91	0.11
			0.00			1" Ice	6.40	5.57	0.17

tnxTower

Job

21022.01 - CT11451G

Page 9 of 31

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Project		Date
•		100' Lattice Tower - 27 Maynard Rd., Salem, CT	10:23:41 03/07/22
	Client	T-Mobile	Designed by TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral						
			Vert	0	C		c.2	c.2	V
			ft ft	Ŭ	ft		ft^2	ft^2	K
			ft						
7770.00 w/ mount pipe	В	From Face	4.00	0.0000	72.00	No Ice	5.62	4.26	0.06
(AT&T)			0.00			1/2" Ice	6.00	4.91	0.11
			0.00			1" Ice	6.40	5.57	0.17
7770.00 w/ mount pipe	С	From Face	4.00	0.0000	72.00	No Ice	5.62	4.26	0.06
(AT&T)			$0.00 \\ 0.00$			1/2" Ice 1" Ice	6.00 6.40	4.91 5.57	0.11 0.17
(2) DMP65R-BU4D	А	From Face	4.00	0.0000	72.00	No Ice	8.00	3.57	0.17
(2) DNI 05R-B04D (AT&T)	А	From Face	4.00	0.0000	72.00	1/2" Ice	8.38	3.81	0.07
(mar)			0.00			172 Ice	8.77	4.12	0.12
(2) DMP65R-BU6D	В	From Face	4.00	0.0000	72.00	No Ice	12.71	5.62	0.10
(AT&T)			0.00			1/2" Ice	13.21	6.07	0.17
			0.00			1" Ice	13.71	6.53	0.25
(2) DMP65R-BU8DA	С	From Face	4.00	0.0000	72.00	No Ice	17.87	8.12	0.12
(AT&T)			0.00			1/2" Ice	18.50	8.72	0.22
			0.00			1" Ice	19.14	9.32	0.32
8843 B2/B66A	А	From Face	4.00	0.0000	72.00	No Ice	1.64	1.35	0.07
(AT&T)			0.00			1/2" Ice	1.80	1.50	0.09
	D		0.00	0.0000	72.00	1" Ice	1.97	1.65	0.11
8843 B2/B66A	В	From Face	4.00	0.0000	72.00	No Ice	1.64	1.35	0.07
(AT&T)			$0.00 \\ 0.00$			1/2" Ice 1" Ice	1.80 1.97	1.50 1.65	0.09 0.11
8843 B2/B66A	С	From Face	4.00	0.0000	72.00	No Ice	1.64	1.05	0.11
(AT&T)	C	110III Face	4.00	0.0000	72.00	1/2" Ice	1.80	1.50	0.07
(mar)			0.00			172 Ice	1.97	1.65	0.05
4449 B5/B12	А	From Face	4.00	0.0000	72.00	No Ice	1.97	1.41	0.07
(AT&T)			0.00			1/2" Ice	2.14	1.56	0.09
			0.00			1" Ice	2.33	1.73	0.11
4449 B5/B12	В	From Face	4.00	0.0000	72.00	No Ice	1.97	1.41	0.07
(AT&T)			0.00			1/2" Ice	2.14	1.56	0.09
			0.00			1" Ice	2.33	1.73	0.11
4449 B5/B12	С	From Face	4.00	0.0000	72.00	No Ice	1.97	1.41	0.07
(AT&T)			0.00			1/2" Ice	2.14	1.56	0.09
1450 D14			0.00	0.0000	72.00	1" Ice	2.33	1.73	0.11
4478 B14	А	From Face	4.00	0.0000	72.00	No Ice	1.84	1.06	0.06
(AT&T)			$0.00 \\ 0.00$			1/2" Ice 1" Ice	2.01 2.19	1.20 1.34	0.08 0.09
4478 B14	В	From Face	4.00	0.0000	72.00	No Ice	1.84	1.06	0.09
(AT&T)	Б	From Face	4.00	0.0000	72.00	1/2" Ice	2.01	1.20	0.00
(mar)			0.00			1" Ice	2.19	1.34	0.09
4478 B14	С	From Face	4.00	0.0000	72.00	No Ice	1.84	1.06	0.06
(AT&T)			0.00			1/2" Ice	2.01	1.20	0.08
			0.00			1" Ice	2.19	1.34	0.09
(2) LGP21401 TMA	А	From Face	4.00	0.0000	72.00	No Ice	0.82	0.35	0.02
(AT&T)			0.00			1/2" Ice	0.94	0.44	0.02
			0.00			1" Ice	1.06	0.54	0.03
(2) LGP21401 TMA	В	From Face	4.00	0.0000	72.00	No Ice	0.82	0.35	0.02
(AT&T)			0.00			1/2" Ice	0.94	0.44	0.02
	C	F F	0.00	0.0000	72.00	1" Ice	1.06	0.54	0.03
(2) LGP21401 TMA (AT&T)	С	From Face	$4.00 \\ 0.00$	0.0000	72.00	No Ice 1/2'' Ice	0.82 0.94	0.35	0.02
(A1&1)			0.00			1/2" Ice 1" Ice	0.94 1.06	0.44 0.54	0.02 0.03
DC6-48-60-18-8F Surge	А	From Face	4.00	0.0000	72.00	No Ice	1.00	1.91	0.03
Arrestor	п	1 Iom I acc	4.00	0.0000	72.00	1/2" Ice	2.10	2.10	0.02
(AT&T)			0.00			1/2 Ice	2.10	2.10	0.04
DC6-48-60-18-8F Surge	В	From Face	4.00	0.0000	72.00	No Ice	1.91	1.91	0.00
Arrestor	-		0.00			1/2" Ice	2.10	2.10	0.04
(AT&T)			0.00			1" Ice	2.29	2.29	0.06

tnxTower

Job

21022 01 - CT11/51G

Page 10 of 31

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

		21022.01 - CT11451G	10 OF 31
Ī	Project		Date
		100' Lattice Tower - 27 Maynard Rd., Salem, CT	10:23:41 03/07/22
	Client	T-Mobile	Designed by TJL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh
			Vert	0	c		c.2	c2	
			ft ft	Ū.	ft		ft ²	ft^2	K
			ft						
DC6-48-60-18-8F Surge	С	From Face	4.00	0.0000	72.00	No Ice	1.91	1.91	0.02
Arrestor			0.00			1/2" Ice	2.10	2.10	0.04
(AT&T)		Ensue Las	0.00	0.0000	82.00	1" Ice	2.29	2.29	0.06
PiROD 12' T-Frame	А	From Leg	2.00 0.00	0.0000	82.00	No Ice 1/2" Ice	12.20 17.60	12.20	0.36
(T-Mobile)			0.00			1/2 Ice 1" Ice	23.00	17.60 23.00	0.49 0.62
PiROD 12' T-Frame	В	From Leg	2.00	0.0000	82.00	No Ice	12.20	12.20	0.02
(T-Mobile)	Б	110III Leg	0.00	0.0000	82.00	1/2" Ice	17.60	17.60	0.30
(1 Moone)			0.00			1/2 Ice	23.00	23.00	0.62
PiROD 12' T-Frame	С	From Leg	2.00	0.0000	82.00	No Ice	12.20	12.20	0.36
(T-Mobile)	C	110III Leg	0.00	0.0000	02.00	1/2" Ice	17.60	17.60	0.49
(0.00			1" Ice	23.00	23.00	0.62
AIR6419	А	From Leg	2.00	0.0000	82.00	No Ice	3.66	1.66	0.07
(T-Mobile)		U	-3.00			1/2" Ice	3.91	1.85	0.09
			0.00			1" Ice	4.16	2.05	0.12
AIR6419	В	From Leg	2.00	0.0000	82.00	No Ice	3.66	1.66	0.07
(T-Mobile)		-	-3.00			1/2" Ice	3.91	1.85	0.09
			0.00			1" Ice	4.16	2.05	0.12
AIR6419	С	From Leg	2.00	0.0000	82.00	No Ice	3.66	1.66	0.07
(T-Mobile)			-3.00			1/2" Ice	3.91	1.85	0.09
			0.00			1" Ice	4.16	2.05	0.12
PXVAARR24_43-U-NA20	А	From Leg	2.00	0.0000	82.00	No Ice	20.24	10.79	0.16
(T-Mobile)			-1.00			1/2" Ice	20.89	12.21	0.29
			0.00			1" Ice	21.55	13.49	0.44
PXVAARR24_43-U-NA20	В	From Leg	2.00	0.0000	82.00	No Ice	20.24	10.79	0.16
(T-Mobile)			-1.00			1/2" Ice	20.89	12.21	0.29
DVUA ADDOA 42 LINIA 20	C	Ensue Las	0.00	0.0000	82.00	1" Ice	21.55	13.49	0.44
PXVAARR24_43-U-NA20	С	From Leg	2.00 -1.00	0.0000	82.00	No Ice 1/2'' Ice	20.24 20.89	10.79 12.21	0.16 0.29
(T-Mobile)			-1.00 0.00			1/2 Ice 1" Ice	20.89	12.21	0.29
VV-65A-R1	А	From Leg	2.00	0.0000	82.00	No Ice	5.93	2.76	0.44
(T-Mobile)	A	FIOIII Leg	1.00	0.0000	82.00	1/2" Ice	6.29	3.10	0.03
(1-1000110)			0.00			1/2 Icc 1" Ice	6.66	3.45	0.10
VV-65A-R1	В	From Leg	2.00	0.0000	82.00	No Ice	5.93	2.76	0.03
(T-Mobile)	Б	110m Leg	1.00	0.0000	02.00	1/2" Ice	6.29	3.10	0.05
(1 1100110)			0.00			1" Ice	6.66	3.45	0.10
VV-65A-R1	С	From Leg	2.00	0.0000	82.00	No Ice	5.93	2.76	0.03
(T-Mobile)	-		1.00			1/2" Ice	6.29	3.10	0.06
			0.00			1" Ice	6.66	3.45	0.10
4449 B12,B71	А	From Leg	2.00	0.0000	82.00	No Ice	1.65	1.16	0.08
(T-Mobile)		U	-1.00			1/2" Ice	1.81	1.29	0.10
			0.00			1" Ice	1.98	1.44	0.11
4449 B12,B71	В	From Leg	2.00	0.0000	82.00	No Ice	1.65	1.16	0.08
(T-Mobile)			-1.00			1/2" Ice	1.81	1.29	0.10
			0.00			1" Ice	1.98	1.44	0.11
4449 B12,B71	С	From Leg	2.00	0.0000	82.00	No Ice	1.65	1.16	0.08
(T-Mobile)			-1.00			1/2" Ice	1.81	1.29	0.10
			0.00			1" Ice	1.98	1.44	0.11
4460 B25+B66	А	From Leg	2.00	0.0000	82.00	No Ice	2.56	1.98	0.11
(T-Mobile)			1.00			1/2" Ice	2.76	2.16	0.13
	_	_	0.00			1" Ice	2.97	2.34	0.16
4460 B25+B66	В	From Leg	2.00	0.0000	82.00	No Ice	2.56	1.98	0.11
(T-Mobile)			1.00			1/2" Ice	2.76	2.16	0.13
	~	- ·	0.00	0.0007	C2 C2	1" Ice	2.97	2.34	0.16
4460 B25+B66	С	From Leg	2.00	0.0000	82.00	No Ice	2.56	1.98	0.11
(T-Mobile)			1.00			1/2" Ice	2.76	2.16	0.13
			0.00			1" Ice	2.97	2.34	0.16

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21022.01 - CT11451G	11 of 31
Project		Date
	100' Lattice Tower - 27 Maynard Rd., Salem, CT	10:23:41 03/07/22
Client	TMakila	Designed by
	T-Mobile	TJL

Tower Pressures - No Ice

$G_H = 0.850$

Section	z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	90.00	0.959	32	103.750	Α	0.000	13.685	7.500	54.80	10.900	0.000
100.00-80.00					В	0.000	13.685		54.80	0.000	0.000
					С	0.000	13.685		54.80	1.980	0.000
T2 80.00-60.00	70.00	0.892	33	117.502	Α	9.130	10.007	10.007	52.29	10.900	0.000
					В	9.130	10.007		52.29	19.536	0.000
					С	9.130	10.007		52.29	15.840	0.000
T3 60.00-40.00	50.00	0.811	32	142.919	Α	9.202	10.840	10.840	54.09	10.900	0.000
					В	9.202	10.840		54.09	32.560	0.000
					С	9.202	10.840		54.09	15.840	0.000
T4 40.00-20.00	30.00	0.701	31	168.336	Α	10.135	11.674	11.674	53.53	10.900	0.000
					В	10.135	11.674		53.53	32.560	0.000
					С	10.135	11.674		53.53	15.840	0.000
T5 20.00-0.00	10.00	0.7	36	193.753	Α	13.903	12.508	12.508	47.36	10.900	0.000
					В	13.903	12.508		47.36	32.560	0.000
					С	13.903	12.508		47.36	15.840	0.000

Tower Pressure - With Ice

$G_H = 0.850$

Section	z	Kz	q_z	tz	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1 100.00-80.00	90.00	0.959	7	1.8341	109.864	Α	0.000	48.601	19.728	40.59	47.583	0.000
						В	0.000	48.601		40.59	0.000	0.000
						С	0.000	48.601		40.59	6.966	0.000
T2 80.00-60.00	70.00	0.892	7	1.8360	123.626	Α	9.130	39.019	22.255	46.22	47.621	0.000
						В	9.130	39.019		46.22	46.587	0.000
						С	9.130	39.019		46.22	55.754	0.000
T3 60.00-40.00	50.00	0.811	7	1.8334	149.034	А	9.202	39.943	23.071	46.94	47.569	0.000
						В	9.202	39.943		46.94	77.592	0.000
						С	9.202	39.943		46.94	55.718	0.000
T4 40.00-20.00	30.00	0.701	7	1.8120	174.379	Α	10.135	42.127	23.762	45.47	47.140	0.000
						В	10.135	42.127		45.47	77.148	0.000
						С	10.135	42.127		45.47	55.424	0.000
T5 20.00-0.00	10.00	0.7	8	1.7023	199.430	А	13.903	42.798	23.864	42.09	44.947	0.000
						В	13.903	42.798		42.09	74.881	0.000
						С	13.903	42.798		42.09	53.925	0.000

Tower Pressure - Service

tn.

Centek 63-2 N Brat Phone FAX

ıxTower	Job 21022.01 - СТ11451G	Page 12 of 31
k Engineering Inc. 2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
ranford, CT 06405 one: (203) 488-0580 AX: (203) 488-8587	Client T-Mobile	Designed by TJL

 $G_H = 0.850$

Section	z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	90.00	0.959	10	103.750	Α	0.000	13.685	7.500	54.80	10.900	0.000
100.00-80.00					В	0.000	13.685		54.80	0.000	0.000
					С	0.000	13.685		54.80	1.980	0.000
T2 80.00-60.00	70.00	0.892	10	117.502	Α	9.130	10.007	10.007	52.29	10.900	0.000
					В	9.130	10.007		52.29	19.536	0.000
					С	9.130	10.007		52.29	15.840	0.000
T3 60.00-40.00	50.00	0.811	10	142.919	Α	9.202	10.840	10.840	54.09	10.900	0.000
					В	9.202	10.840		54.09	32.560	0.000
					С	9.202	10.840		54.09	15.840	0.000
T4 40.00-20.00	30.00	0.701	10	168.336	Α	10.135	11.674	11.674	53.53	10.900	0.000
					В	10.135	11.674		53.53	32.560	0.000
					С	10.135	11.674		53.53	15.840	0.000
T5 20.00-0.00	10.00	0.7	11	193.753	Α	13.903	12.508	12.508	47.36	10.900	0.000
					В	13.903	12.508		47.36	32.560	0.000
					С	13.903	12.508		47.36	15.840	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	K	K	е						ft^2	K	plf	
T1	0.07	1.43	Α	0.132	2.839	32	1	1	7.745	0.82	41.00	С
100.00-80.00			В	0.132	2.839		1	1	7.745			
			С	0.132	2.839		1	1	7.745			
T2	0.31	1.86	Α	0.163	2.725	33	1	1	14.824	1.89	94.30	С
80.00-60.00			В	0.163	2.725		1	1	14.824			
			С	0.163	2.725		1	1	14.824			
T3	0.39	2.25	Α	0.14	2.808	32	1	1	15.290	2.16	108.19	C
60.00-40.00			В	0.14	2.808		1	1	15.290			
			С	0.14	2.808		1	1	15.290			
T4	0.39	2.57	Α	0.13	2.848	31	1	1	16.568	2.21	110.28	C
40.00-20.00			В	0.13	2.848		1	1	16.568			
			С	0.13	2.848		1	1	16.568			
T5 20.00-0.00	0.39	2.89	Α	0.136	2.823	36	1	1	20.496	2.85	142.44	C
			В	0.136	2.823		1	1	20.496			
			С	0.136	2.823		1	1	20.496			
Sum Weight:	1.54	11.00						OTM	408.67	9.92		
-									kip-ft			

			Το	wer Fo	orce	s - N	o Ice	- W	ind 45	To Face	•	
C (C .1/	F		C		D	D	4	E		Cul
Section	Add	Self	r	е	C_F	q_z	D_F	D_R	A_E	r	w	Ctrl.
Elevation	Weight	Weight	а			c						Face
c	V	V	С			psf			c2		10	
ft	K	K	е						ft~	K	plf	
T1	0.07	1.43	Α	0.132	2.839	32	0.825	1	7.745	0.82	41.00	С
100.00-80.00			В	0.132	2.839		0.825	1	7.745			

Centek 63-2 Bra Phon FAX

nxTower	Jов 21022.01 - СТ11451G	Page 13 of 31
k Engineering Inc. 2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
ranford, CT 06405 one: (203) 488-0580 AX: (203) 488-8587	Client T-Mobile	Designed by TJL

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
			С	0.132	2.839		0.825	1	7.745			
T2	0.31	1.86	Α	0.163	2.725	33	0.825	1	13.226	1.77	88.28	С
80.00-60.00			В	0.163	2.725		0.825	1	13.226			
			С	0.163	2.725		0.825	1	13.226			
Т3	0.39	2.25	Α	0.14	2.808	32	0.825	1	13.679	2.04	101.96	С
60.00-40.00			В	0.14	2.808		0.825	1	13.679			
			С	0.14	2.808		0.825	1	13.679			
T4	0.39	2.57	Α	0.13	2.848	31	0.825	1	14.794	2.07	103.55	С
40.00-20.00			В	0.13	2.848		0.825	1	14.794			
			С	0.13	2.848		0.825	1	14.794			
T5 20.00-0.00	0.39	2.89	Α	0.136	2.823	36	0.825	1	18.063	2.64	131.97	С
			В	0.136	2.823		0.825	1	18.063			
			С	0.136	2.823		0.825	1	18.063			
Sum Weight:	1.54	11.00						OTM	387.87	9.34		
, , , , , , , , , , , , , , , , , , ,									kip-ft			

	Tower Forces - No Ice - Wind 60 To Face												
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.	
Elevation	Weight	Weight	a	c	Cr	92	D_T	DK	T_{L}	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Face	
	Ũ	0	с			psf							
ft	K	K	е						ft^2	Κ	plf		
T1	0.07	1.43	А	0.132	2.839	32	0.8	1	7.745	0.82	41.00	С	
100.00-80.00			В	0.132	2.839		0.8	1	7.745				
			С	0.132	2.839		0.8	1	7.745				
T2	0.31	1.86	Α	0.163	2.725	33	0.8	1	12.998	1.75	87.42	С	
80.00-60.00			В	0.163	2.725		0.8	1	12.998				
			C	0.163	2.725		0.8	1	12.998			~	
T3	0.39	2.25	A	0.14	2.808	32	0.8	1	13.449	2.02	101.07	С	
60.00-40.00			B	0.14	2.808		0.8	1	13.449				
Т4	0.39	2.57	C	0.14	2.808	31	0.8	1	13.449	2.05	102.59	С	
40.00-20.00	0.39	2.57	A B	0.13 0.13	2.848 2.848	51	0.8 0.8	1 1	14.541 14.541	2.05	102.59	C	
40.00-20.00			ь С	0.13	2.848		0.8	1	14.541				
T5 20.00-0.00	0.39	2.89	A	0.13	2.848	36	0.8	1	17.715	2.61	130.48	С	
10 20.00 0.00	0.57	2.07	B	0.136	2.823	50	0.8	1	17.715	2.01	150.10	C	
			Č	0.136	2.823		0.8	1	17.715				
Sum Weight:	1.54	11.00	-					OTM	384.90	9.25			
ε									kip-ft				

	Tower Forces - No Ice - Wind 90 To Face													
C t	Section Add Self F e C_F q_{τ} D_F D_R A_E F w Ctrl.													
		5	F	е	C_F	q_z	D_F	D_R	A_E	F	w			
Elevation	Weight	Weight	а									Face		
			С			psf								
ft	Κ	Κ	е						ft^2	Κ	plf			
T1	0.07	1.43	А	0.132	2.839	32	0.85	1	7.745	0.82	41.00	С		
100.00-80.00			В	0.132	2.839		0.85	1	7.745					
			С	0.132	2.839		0.85	1	7.745					

Centek 63-2 Bra Phon FAX

ıxTower	Job	Page
ix I Ower	21022.01 - CT11451G	14 of 31
k Engineering Inc.	Project	Date
2 North Branford Rd.	100' Lattice Tower - 27 Maynard Rd., Salem, CT	10:23:41 03/07/22
ranford, CT 06405 one: (203) 488-0580 AX: (203) 488-8587	Client T-Mobile	Designed by TJL

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
T2	0.31	1.86	Α	0.163	2.725	33	0.85	1	13.454	1.78	89.14	С
80.00-60.00			В	0.163	2.725		0.85	1	13.454			
			С	0.163	2.725		0.85	1	13.454			
Т3	0.39	2.25	Α	0.14	2.808	32	0.85	1	13.910	2.06	102.85	С
60.00-40.00			В	0.14	2.808		0.85	1	13.910			
			С	0.14	2.808		0.85	1	13.910			
T4	0.39	2.57	Α	0.13	2.848	31	0.85	1	15.047	2.09	104.51	С
40.00-20.00			В	0.13	2.848		0.85	1	15.047			
			С	0.13	2.848		0.85	1	15.047			
T5 20.00-0.00	0.39	2.89	Α	0.136	2.823	36	0.85	1	18.410	2.67	133.47	С
			В	0.136	2.823		0.85	1	18.410			
			С	0.136	2.823		0.85	1	18.410			
Sum Weight:	1.54	11.00						OTM	390.84	9.42		
Ũ									kip-ft			

Tower Forces - With Ice - Wind Normal To Face														
a i		G 16	г		6		n	D		F		<i>a</i> .1		
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.		
Elevation	Weight	Weight	а			c						Face		
C.	V	17	С			psf			ft^2	TZ.	10			
ft	K	K	е						5	K	plf	~		
T1	0.81	3.45	Α	0.442	1.986	7	1	1	31.862	0.55	27.71	С		
100.00-80.00			В	0.442	1.986		1	1	31.862					
			С	0.442	1.986		1	1	31.862					
T2	2.32	4.31	Α	0.389	2.085	7	1	1	33.780	0.95	47.57	С		
80.00-60.00			В	0.389	2.085		1	1	33.780					
			С	0.389	2.085		1	1	33.780					
Т3	2.83	4.73	Α	0.33	2.22	7	1	1	33.518	1.08	54.03	С		
60.00-40.00			В	0.33	2.22		1	1	33.518					
			С	0.33	2.22		1	1	33.518					
T4	2.79	5.22	А	0.3	2.297	7	1	1	35.362	1.08	53.99	С		
40.00-20.00			В	0.3	2.297		1	1	35.362					
			Ċ	0.3	2.297		1	1	35.362					
T5 20.00-0.00	2.60	5.83	Ă	0.284	2.339	8	1	1	39.334	1.28	64.12	С		
10 20.00 0.00	2.00	5.05	B	0.284	2.339	0	1	1	39.334	1.20	01112	0		
			C	0.284	2.339		1	1	39.334					
Sum Weight:	11.36	23.54	Ũ	0.204	2.557		1	OTM	215.72	4.95				
Sum weight.	11.50	25.54						OTM	kip-ft	4.95				

	Tower Forces - With Ice - Wind 45 To Face												
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.	
Elevation	Weight	Weight	а									Face	
			с			psf							
ft	K	K	е						ft^2	K	plf		
T1	0.81	3.45	Α	0.442	1.986	7	0.825	1	31.862	0.55	27.71	С	
100.00-80.00			В	0.442	1.986		0.825	1	31.862				
			С	0.442	1.986		0.825	1	31.862				
T2	2.32	4.31	Α	0.389	2.085	7	0.825	1	32.183	0.93	46.59	С	

Centek 63-2 Br Pho FA

nxTower	Јов 21022.01 - СТ11451G	Page 15 of 31
t ek Engineering Inc. -2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 hone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
80.00-60.00			В	0.389	2.085		0.825	1	32.183			
			С	0.389	2.085		0.825	1	32.183			
T3	2.83	4.73	Α	0.33	2.22	7	0.825	1	31.907	1.06	52.97	С
60.00-40.00			В	0.33	2.22		0.825	1	31.907			
			С	0.33	2.22		0.825	1	31.907			
T4	2.79	5.22	Α	0.3	2.297	7	0.825	1	33.588	1.06	52.83	С
40.00-20.00			В	0.3	2.297		0.825	1	33.588			
			С	0.3	2.297		0.825	1	33.588			
T5 20.00-0.00	2.60	5.83	Α	0.284	2.339	8	0.825	1	36.901	1.25	62.27	С
			В	0.284	2.339		0.825	1	36.901			
			С	0.284	2.339		0.825	1	36.901			
Sum Weight:	11.36	23.54						OTM	212.21	4.85		
									kip-ft			

	Tower Forces - With Ice - Wind 60 To Face											
Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
ft	K	K	с е			psf			ft^2	K	plf	
T1	0.81	3.45	А	0.442	1.986	7	0.8	1	31.862	0.55	27.71	С
100.00-80.00			В	0.442	1.986		0.8	1	31.862			
			С	0.442	1.986		0.8	1	31.862			
T2	2.32	4.31	Α	0.389	2.085	7	0.8	1	31.954	0.93	46.44	С
80.00-60.00			В	0.389	2.085		0.8	1	31.954			
			С	0.389	2.085		0.8	1	31.954			
T3	2.83	4.73	А	0.33	2.22	7	0.8	1	31.677	1.06	52.82	С
60.00-40.00			В	0.33	2.22		0.8	1	31.677			
			С	0.33	2.22		0.8	1	31.677			
T4	2.79	5.22	Α	0.3	2.297	7	0.8	1	33.335	1.05	52.66	С
40.00-20.00			В	0.3	2.297		0.8	1	33.335			
			С	0.3	2.297		0.8	1	33.335			
T5 20.00-0.00	2.60	5.83	Α	0.284	2.339	8	0.8	1	36.553	1.24	62.00	С
			В	0.284	2.339		0.8	1	36.553			
			С	0.284	2.339		0.8	1	36.553			
Sum Weight:	11.36	23.54						OTM	211.71	4.83		
									kip-ft			

	Tower Forces - With Ice - Wind 90 To Face											
Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a	c	C _r		D_F	D_{K}	TIE .	1		Face
ft	K	K	с е			psf			ft^2	Κ	plf	
T1	0.81	3.45	Α	0.442	1.986	7	0.85	1	31.862	0.55	27.71	С
100.00-80.00			В	0.442	1.986		0.85	1	31.862			
			С	0.442	1.986		0.85	1	31.862			
T2	2.32	4.31	Α	0.389	2.085	7	0.85	1	32.411	0.93	46.73	С
80.00-60.00			В	0.389	2.085		0.85	1	32.411			

tnxT

Centek Eng 63-2 North Branford, Phone: (20 FAX: (203

Tower	Job 21022.01 - СТ11451G	Page 16 of 31
g ineering Inc. h Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
rd, CT 06405 203) 488-0580 03) 488-8587	Client T-Mobile	Designed by TJL

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
			С	0.389	2.085		0.85	1	32.411			
T3	2.83	4.73	Α	0.33	2.22	7	0.85	1	32.137	1.06	53.12	С
60.00-40.00			В	0.33	2.22		0.85	1	32.137			
			С	0.33	2.22		0.85	1	32.137			
T4	2.79	5.22	Α	0.3	2.297	7	0.85	1	33.842	1.06	52.99	С
40.00-20.00			В	0.3	2.297		0.85	1	33.842			
			С	0.3	2.297		0.85	1	33.842			
T5 20.00-0.00	2.60	5.83	Α	0.284	2.339	8	0.85	1	37.248	1.25	62.53	С
			В	0.284	2.339		0.85	1	37.248			
			С	0.284	2.339		0.85	1	37.248			
Sum Weight:	11.36	23.54						OTM	212.71	4.86		
									kip-ft			

		Τον	ver	Force	es - S	Serv	ice -	Win	d Norm	nal To Fa	ace	
		G 14	-		~		-	-				<u> </u>
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
<i>a</i>			С			psf			a ²		10	
ft	K	K	е						ft^2	K	plf	
T1	0.07	1.43	А	0.132	2.839	10	1	1	7.745	0.25	12.65	С
100.00-80.00			В	0.132	2.839		1	1	7.745			
			С	0.132	2.839		1	1	7.745			
T2	0.31	1.86	Α	0.163	2.725	10	1	1	14.824	0.58	29.11	С
80.00-60.00			В	0.163	2.725		1	1	14.824			
			С	0.163	2.725		1	1	14.824			
T3	0.39	2.25	Α	0.14	2.808	10	1	1	15.345	0.67	33.46	С
60.00-40.00			В	0.14	2.808		1	1	15.345			
			С	0.14	2.808		1	1	15.345			
T4	0.39	2.57	Α	0.13	2.848	10	1	1	16.740	0.68	34.24	С
40.00-20.00			В	0.13	2.848		1	1	16.740			
			С	0.13	2.848		1	1	16.740			
T5 20.00-0.00	0.39	2.89	Α	0.136	2.823	11	1	1	20.986	0.89	44.61	С
			В	0.136	2.823		1	1	20.986			
			С	0.136	2.823		1	1	20.986			
Sum Weight:	1.54	11.00						OTM	126.45	3.08		
Ũ									kip-ft			

	Tower Forces - Service - Wind 45 To Face											
Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl. Face
ft	K	K	с е			psf			ft^2	K	plf	
T1 100.00-80.00	0.07	1.43	A B	0.132 0.132	2.839 2.839	10	0.825 0.825	1 1	7.745 7.745	0.25	12.65	С
T2	0.31	1.86	C A	0.132 0.163	2.839 2.725	10	0.825 0.825	1 1	7.745 13.226	0.54	27.25	С
80.00-60.00			B C	0.163 0.163	2.725 2.725		0.825 0.825	1 1	13.226 13.226			

Centek 63-2 Br Pho FAL

nxTower	Јо в 21022.01 - СТ11451G	Page 17 of 31
ek Engineering Inc. -2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 none: (203) 488-0580 AX: (203) 488-8587	Client T-Mobile	Designed by TJL

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
T3	0.39	2.25	Α	0.14	2.808	10	0.825	1	13.734	0.63	31.53	С
60.00-40.00			В	0.14	2.808		0.825	1	13.734			
			С	0.14	2.808		0.825	1	13.734			
T4	0.39	2.57	Α	0.13	2.848	10	0.825	1	14.967	0.64	32.16	С
40.00-20.00			В	0.13	2.848		0.825	1	14.967			
			С	0.13	2.848		0.825	1	14.967			
T5 20.00-0.00	0.39	2.89	Α	0.136	2.823	11	0.825	1	18.553	0.83	41.38	С
			В	0.136	2.823		0.825	1	18.553			
			С	0.136	2.823		0.825	1	18.553			
Sum Weight:	1.54	11.00						OTM	120.03	2.90		
									kip-ft			

	Tower Forces - Service - Wind 60 To Face											
Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
ft	K	K	с е			psf			ft^2	K	plf	1 000
T1	0.07	1.43	Α	0.132	2.839	10	0.8	1	7.745	0.25	12.65	С
100.00-80.00			B	0.132	2.839		0.8	1	7.745			
т.)	0.21	1.96	C	0.132	2.839	10	0.8	1	7.745	0.54	26.09	C
T2 80.00-60.00	0.31	1.86	A B	0.163 0.163	2.725 2.725	10	0.8 0.8	1	12.998	0.54	26.98	С
80.00-00.00			ь С	0.163	2.725		0.8	1	12.998 12.998			
Т3	0.39	2.25	A	0.103	2.723	10	0.8	1	12.998	0.63	31.26	С
60.00-40.00	0.57	2.25	B	0.14	2.808	10	0.8	1	13.504	0.05	51.20	C
			C	0.14	2.808		0.8	1	13.504			
T4	0.39	2.57	A	0.13	2.848	10	0.8	1	14.713	0.64	31.87	С
40.00-20.00			В	0.13	2.848		0.8	1	14.713			
			С	0.13	2.848		0.8	1	14.713			
T5 20.00-0.00	0.39	2.89	А	0.136	2.823	11	0.8	1	18.206	0.82	40.92	С
			В	0.136	2.823		0.8	1	18.206			
			С	0.136	2.823		0.8	1	18.206			
Sum Weight:	1.54	11.00						OTM	119.11	2.87		
									kip-ft			

	Tower Forces - Service - Wind 90 To Face											
Section	Add	Self	F	е	C_{F}	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а		- 1	1.	1	K	L			Face
ft	K	K	с е			psf			ft^2	K	plf	
T1	0.07	1.43	Α	0.132	2.839	10	0.85	1	7.745	0.25	12.65	С
100.00-80.00			В	0.132	2.839		0.85	1	7.745			
			С	0.132	2.839		0.85	1	7.745			
T2	0.31	1.86	Α	0.163	2.725	10	0.85	1	13.454	0.55	27.51	С
80.00-60.00			В	0.163	2.725		0.85	1	13.454			
			С	0.163	2.725		0.85	1	13.454			
Т3	0.39	2.25	Α	0.14	2.808	10	0.85	1	13.964	0.64	31.81	С

tnxT (

Centek Engi 63-2 North E Branford, Phone: (202 FAX: (203)

Power	Job	Page
ower	21022.01 - CT11451G	18 of 31
gineering Inc.	Project	Date
Branford Rd.	100' Lattice Tower - 27 Maynard Rd., Salem, CT	10:23:41 03/07/22
4, CT 06405 03) 488-0580 03) 488-8587	Client T-Mobile	Designed by TJL

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	K	K	е						ft^2	K	plf	
60.00-40.00			В	0.14	2.808		0.85	1	13.964			
			С	0.14	2.808		0.85	1	13.964			
T4	0.39	2.57	Α	0.13	2.848	10	0.85	1	15.220	0.65	32.46	С
40.00-20.00			В	0.13	2.848		0.85	1	15.220			
			С	0.13	2.848		0.85	1	15.220			
T5 20.00-0.00	0.39	2.89	Α	0.136	2.823	11	0.85	1	18.901	0.84	41.84	С
			В	0.136	2.823		0.85	1	18.901			
			С	0.136	2.823		0.85	1	18.901			
Sum Weight:	1.54	11.00						OTM	120.95	2.93		
									kip-ft			

Force Totals							
Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torque.	
Loaa Case	Forces	Sum of Forces	Sum of Forces	Sum of Overturning	Sum of Overturning	sum of Torque.	
Case	rorces	X	Z	Moments, M_x	Moments, M ₂		
	K	K K	L K	kip-ft	kip-ft	kip-ft	
Leg Weight	8.17			1 5	1.5	1.5	
Bracing Weight	2.83						
Total Member Self-Weight	11.00			3.87	-1.84		
Total Weight	18.93			3.87	-1.84		
Wind 0 deg - No Ice		0.05	-16.58	-939.50	-5.43	3.9	
Wind 30 deg - No Ice		7.99	-13.95	-799.47	-461.42	6.3	
Wind 45 deg - No Ice		11.22	-11.34	-651.03	-647.82	6.9	
Wind 60 deg - No Ice		13.65	-8.00	-459.04	-789.12	7.0	
Wind 90 deg - No Ice		15.90	-0.05	0.29	-914.78	5.8	
Wind 120 deg - No Ice		14.18	8.25	472.45	-806.12	3.0	
Wind 135 deg - No Ice		11.39	11.51	662.10	-651.15	1.3	
Wind 150 deg - No Ice		7.91	13.90	803.63	-455.20	-0.5	
Wind 180 deg - No Ice		-0.05	15.91	923.48	1.75	-3.9	
Wind 210 deg - No Ice		-7.99	13.95	807.22	457.74	-6.3	
Wind 225 deg - No Ice		-11.22	11.34	658.77	644.15	-6.9	
Wind 240 deg - No Ice		-14.23	8.33	478.67	806.03	-7.0	
Wind 270 deg - No Ice		-15.90	0.05	7.46	911.11	-5.8	
Wind 300 deg - No Ice		-13.60	-7.91	-452.82	781.86	-3.0	
Wind 315 deg - No Ice		-11.15	-11.27	-645.95	639.07	-1.3	
Wind 330 deg - No Ice		-7.91	-13.90	-795.88	451.53	0.5	
Member Ice	12.54	7.91	15.90	75.00	451.55	0.5	
Total Weight Ice	52.42			16.74	-6.90		
Wind 0 deg - Ice	52.42	0.01	-7.52	-410.57	-0.90	1.1	
Wind 30 deg - Ice		3.71	-6.44	-351.09	-218.36	2.9	
Wind 45 deg - Ice		5.23	-5.25	-283.45	-305.22	3.6	
Wind 60 deg - Ice		6.38	-3.23	-285.45	-305.22	4.0	
Wind 90 deg - Ice		0.38 7.39	-0.01	-195.55	-428.55	3.9	
Wind 120 deg - Ice		6.47	3.75	229.76	-428.33	2.8	
Wind 120 deg - Ice Wind 135 deg - Ice		5.25	5.28	317.31	-374.30	1.9	
Wind 155 deg - Ice Wind 150 deg - Ice		3.69	5.28 6.43	383.82	-217.09	0.9	
Wind 150 deg - Ice Wind 180 deg - Ice		-0.01	6.43 7.40	383.82 440.03	-217.09 -6.16	-1.1	
Wind 180 deg - Ice Wind 210 deg - Ice		-0.01 -3.71	7.40 6.44	440.03 384.56	-0.16 204.57	-1.1	
		-3.71 -5.23		384.56 316.92	204.57 291.42	-2.9	
Wind 225 deg - Ice			5.25				
Wind 240 deg - Ice		-6.48	3.77	231.02	361.24	-4.0	
Wind 270 deg - Ice		-7.39	0.01	17.47	414.76		
Wind 300 deg - Ice		-6.37	-3.69	-194.28	357.04	-2.8	
Wind 315 deg - Ice		-5.21	-5.24	-282.42	290.39	-1.9	

tn.

Centek 63-21 Brat Phone FAX

Tana	Job	Page
ixTower	21022.01 - CT11451G	19 of 31
k Engineering Inc.	Project	Date
2 North Branford Rd.	100' Lattice Tower - 27 Maynard Rd., Salem, CT	10:23:41 03/07/22
ranford, CT 06405 one: (203) 488-0580 AX: (203) 488-8587	Client T-Mobile	Designed by TJL

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, M_x	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Wind 330 deg - Ice		-3.69	-6.43	-350.35	203.30	-0.96
Total Weight	18.93			3.87	-1.84	
Wind 0 deg - Service		0.02	-5.14	-289.15	-1.22	1.21
Wind 30 deg - Service		2.48	-4.32	-245.88	-142.12	1.95
Wind 45 deg - Service		3.48	-3.51	-200.02	-199.72	2.13
Wind 60 deg - Service		4.23	-2.48	-140.70	-243.38	2.16
Wind 90 deg - Service		4.93	-0.02	1.23	-282.20	1.80
Wind 120 deg - Service		4.39	2.55	147.12	-248.62	0.95
Wind 135 deg - Service		3.53	3.57	205.72	-200.74	0.41
Wind 150 deg - Service		2.45	4.30	249.45	-140.20	-0.15
Wind 180 deg - Service		-0.02	4.93	286.48	1.00	-1.21
Wind 210 deg - Service		-2.48	4.32	250.56	141.89	-1.95
Wind 225 deg - Service		-3.48	3.51	204.69	199.49	-2.13
Wind 240 deg - Service		-4.41	2.58	149.04	249.50	-2.16
Wind 270 deg - Service		-4.93	0.02	3.44	281.98	-1.80
Wind 300 deg - Service		-4.21	-2.45	-138.78	242.04	-0.95
Wind 315 deg - Service		-3.45	-3.49	-198.45	197.92	-0.41
Wind 330 deg - Service		-2.45	-4.30	-244.78	139.97	0.15

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 45 deg - No Ice	
7	0.9 Dead+1.6 Wind 45 deg - No Ice	
8	1.2 Dead+1.6 Wind 60 deg - No Ice	
9	0.9 Dead+1.6 Wind 60 deg - No Ice	
10	1.2 Dead+1.6 Wind 90 deg - No Ice	
11	0.9 Dead+1.6 Wind 90 deg - No Ice	
12	1.2 Dead+1.6 Wind 120 deg - No Ice	
13	0.9 Dead+1.6 Wind 120 deg - No Ice	
14	1.2 Dead+1.6 Wind 135 deg - No Ice	
15	0.9 Dead+1.6 Wind 135 deg - No Ice	
16	1.2 Dead+1.6 Wind 150 deg - No Ice	
17	0.9 Dead+1.6 Wind 150 deg - No Ice	
18	1.2 Dead+1.6 Wind 180 deg - No Ice	
19	0.9 Dead+1.6 Wind 180 deg - No Ice	
20	1.2 Dead+1.6 Wind 210 deg - No Ice	
21	0.9 Dead+1.6 Wind 210 deg - No Ice	
22	1.2 Dead+1.6 Wind 225 deg - No Ice	
23	0.9 Dead+1.6 Wind 225 deg - No Ice	
24	1.2 Dead+1.6 Wind 240 deg - No Ice	
25	0.9 Dead+1.6 Wind 240 deg - No Ice	
26	1.2 Dead+1.6 Wind 270 deg - No Ice	
27	0.9 Dead+1.6 Wind 270 deg - No Ice	
28	1.2 Dead+1.6 Wind 300 deg - No Ice	
29	0.9 Dead+1.6 Wind 300 deg - No Ice	
30	1.2 Dead+1.6 Wind 315 deg - No Ice	
31	0.9 Dead+1.6 Wind 315 deg - No Ice	
32	1.2 Dead+1.6 Wind 330 deg - No Ice	
33	0.9 Dead+1.6 Wind 330 deg - No Ice	

4 T	Job	Page
tnxTower	21022.01 - CT11451G	20 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Comb.	Description
No.	-
34	1.2 Dead+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
39	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
40	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
41	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp
42	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
43	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
44	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
45	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp
46	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
47	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
48	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
49	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp
50	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
51	Dead+Wind 0 deg - Service
52	Dead+Wind 30 deg - Service
53	Dead+Wind 45 deg - Service
54	Dead+Wind 60 deg - Service
55	Dead+Wind 90 deg - Service
56	Dead+Wind 120 deg - Service
57	Dead+Wind 135 deg - Service
58	Dead+Wind 150 deg - Service
59	Dead+Wind 180 deg - Service
60	Dead+Wind 210 deg - Service
61	Dead+Wind 225 deg - Service
62	Dead+Wind 240 deg - Service
63	Dead+Wind 270 deg - Service
64	Dead+Wind 300 deg - Service
65	Dead+Wind 315 deg - Service
66	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
110.	ji	Type		Comb.	Κ	kip-ft	kip-ft
T1	100 - 80	Leg	Max Tension	19	10.26	0.00	-0.42
		0	Max. Compression	24	-12.74	0.20	-0.11
			Max. Mx	10	-0.30	0.76	-0.00
			Max. My	2	4.05	-0.04	-0.76
		Max. Vy	10	-0.87	-0.40	0.03	
			Max. Vx	18	-0.88	0.00	-0.42
		Diagonal	Max Tension	26	2.71	0.00	0.00
			Max. Compression	10	-2.75	0.00	0.00
			Max. Mx	47	0.85	-0.01	-0.00
			Max. My	10	-2.73	-0.00	0.00
			Max. Vy	47	0.02	-0.01	-0.00
			Max. Vx	10	-0.00	-0.00	0.00
		Top Girt	Max Tension	3	0.03	0.00	0.00
		-	Max. Compression	38	-0.06	0.00	0.00
			Max. Mx	34	-0.03	0.03	0.00
			Max. My	10	-0.01	0.00	0.00
			Max. Vy	34	0.02	0.00	0.00
			Max. Vx	10	-0.00	0.00	0.00
T2	80 - 60	Leg	Max Tension	19	42.59	-0.47	0.02
		•	Max. Compression	24	-49.23	0.04	0.02

Job

Project

Client

21022.01 - CT11451G

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

100' Lattice Tower - 27 Maynard Rd., Salem, CT

T-Mobile

Designed by TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	5			Comb.	Κ	kip-ft	kip-ft
			Max. Mx	18	27.48	1.18	0.03
			Max. My	4	-2.49	-0.04	1.32
			Max. Vy	18	-1.45	-0.74	0.03
			Max. Vx	20	1.52	-0.02	0.69
		Diagonal	Max Tension	26	6.77	0.00	0.00
		Diugonui	Max. Compression	10	-6.82	0.00	0.00
			Max. Mx	40	1.04	0.03	-0.00
			Max. My	10	-6.39	0.00	-0.01
			Max. Vy	43	0.03	0.03	-0.00
			Max. Vx	10	0.00	0.00	0.00
		Top Girt	Max Tension	18	0.49	0.00	0.00
		Top Ont	Max. Compression	3	-0.46	0.00	0.00
			Max. Mx	34	0.02	-0.04	0.00
			Max. My	40	0.02	0.00	0.00
			•	40 34	0.07	0.00	0.00
			Max. Vy Max. Vx	40	-0.00	0.00	0.00
T 2	60 40	Las					
Т3	60 - 40	Leg	Max Tension	19	84.47	-0.13	0.02
			Max. Compression	24	-93.33	0.17	0.02
			Max. Mx	3	-92.02	0.17	-0.02
			Max. My	20	-5.41	-0.01	0.18
			Max. Vy	28	0.07	-0.16	-0.00
			Max. Vx	4	0.10	-0.00	-0.18
		Diagonal	Max Tension	26	6.50	0.00	0.00
			Max. Compression	26	-6.55	0.00	0.00
			Max. Mx	40	1.04	0.03	-0.00
			Max. My	10	-6.48	-0.00	-0.01
			Max. Vy	43	0.03	0.03	0.00
			Max. Vx	10	0.00	0.00	0.00
T4	40 - 20	Leg	Max Tension	19	122.56	-0.19	0.02
			Max. Compression	2	-134.68	0.17	-0.02
			Max. Mx	46	-52.14	0.34	0.01
			Max. My	20	-7.26	-0.02	0.31
			Max. Vy	48	-0.10	-0.26	0.00
			Max. Vx	20	-0.10	-0.02	0.31
		Diagonal	Max Tension	26	6.52	0.00	0.00
			Max. Compression	26	-6.60	0.00	0.00
			Max. Mx	43	1.10	0.05	0.00
			Max. My	8	-5.77	0.00	-0.01
			Max. Vy	43	0.04	0.05	0.00
			Max. Vx	38	0.00	0.00	0.00
T5	20 - 0	Leg	Max Tension	19	158.82	-0.24	0.03
			Max. Compression	2	-174.82	-0.00	0.00
			Max. Mx	43	29.30	-0.51	0.01
			Max. My	20	-8.23	-0.03	0.54
			Max. Vy	48	-0.15	-0.50	0.00
			Max. Vx	20	0.18	-0.03	0.54
		Diagonal	Max Tension	26	7.10	0.00	0.00
		J	Max. Compression	26	-7.26	0.00	0.00
			Max. Mx	43	0.87	0.07	0.00
			Max. My	10	-6.85	-0.00	-0.01
			Max. Vy	43	0.05	0.07	0.00
			Max. Vx	10	0.00	0.00	0.00

Maximum Reactions

Cent 63 P_{i}

tnxTower	Job	01000 01 07444540	Page 22 of 31
		21022.01 - CT11451G	22 01 31
ntek Engineering Inc. 63-2 North Branford Rd.	Project	100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	T-Mobile	Designed by TJL

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	Κ	Κ	Κ
		Comb.			
Leg C	Max. Vert	24	181.22	13.57	-7.11
	Max. H _x	24	181.22	13.57	-7.11
	Max. Hz	7	-158.48	-12.03	6.95
	Min. Vert	9	-163.36	-12.70	6.59
	Min. H _x	9	-163.36	-12.70	6.59
	Min. Hz	22	171.93	12.42	-7.17
Leg B	Max. Vert	12	180.51	-13.33	-7.38
	Max. H _x	29	-161.88	12.45	6.86
	Max. Hz	31	-156.87	11.69	7.35
	Min. Vert	29	-161.88	12.45	6.86
	Min. H _x	12	180.51	-13.33	-7.38
	Min. H _z	14	173.21	-12.32	-7.71
Leg A	Max. Vert	2	181.81	0.35	15.38
	Max. H _x	27	4.61	1.89	0.18
	Max. Hz	2	181.81	0.35	15.38
	Min. Vert	19	-164.98	-0.36	-14.39
	Min. H _x	13	-81.48	-1.91	-7.32
	Min. Hz	19	-164.98	-0.36	-14.39

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
Dead Only	18.93	0.00	0.00	3.87	-1.84	0.00
1.2 Dead+1.6 Wind 0 deg - No	22.72	0.08	-26.53	-1508.91	-7.98	6.30
Ice						
0.9 Dead+1.6 Wind 0 deg - No	17.04	0.08	-26.53	-1509.03	-7.42	6.30
Ice						
1.2 Dead+1.6 Wind 30 deg - No	22.72	12.79	-22.31	-1284.25	-739.60	10.12
Ice	1= 0.4	10 50		1001 50	======	10.10
0.9 Dead+1.6 Wind 30 deg - No	17.04	12.79	-22.31	-1284.52	-738.53	10.12
	22.72	17.05	10.15	1046.00	1020 (0	11.00
1.2 Dead+1.6 Wind 45 deg - No	22.72	17.95	-18.15	-1046.08	-1038.68	11.06
Ice 0.9 Dead+1.6 Wind 45 deg - No	17.04	17.95	-18.15	-1046.51	-1037.40	11.05
Ice	17.04	17.95	-10.15	-1040.31	-1037.40	11.05
1.2 Dead+1.6 Wind 60 deg - No	22.72	21.84	-12.79	-738.04	-1265.38	11.23
Ice	22.72	21.01	12.19	750.01	1205.50	11.25
0.9 Dead+1.6 Wind 60 deg - No	17.04	21.84	-12.79	-738.69	-1263.94	11.23
Ice						
1.2 Dead+1.6 Wind 90 deg - No	22.72	25.44	-0.08	-1.08	-1466.99	9.33
Ice						
0.9 Dead+1.6 Wind 90 deg - No	17.04	25.44	-0.08	-2.25	-1465.41	9.32
Ice						
1.2 Dead+1.6 Wind 120 deg -	22.72	22.69	13.19	756.47	-1292.61	4.93
No Ice	1= 0.4		10.10		100111	
0.9 Dead+1.6 Wind 120 deg -	17.04	22.69	13.19	754.78	-1291.16	4.93
No Ice	22.72	10.00	10.40	10.00 75	10.42.00	0.14
1.2 Dead+1.6 Wind 135 deg -	22.72	18.22	18.42	1060.75	-1043.99	2.14
No Ice	17.04	18.22	18.42	1058.85	-1042.71	2.14
0.9 Dead+1.6 Wind 135 deg - No Ice	17.04	18.22	16.42	1058.85	-1042.71	2.14
1.2 Dead+1.6 Wind 150 deg -	22.72	12.65	22.23	1287.83	-729.61	-0.79
No Ice	22.12	12.05	22.23	1207.05	-127.01	-0.79
0.9 Dead+1.6 Wind 150 deg -	17.04	12.65	22.23	1285.77	-728.55	-0.79
No Ice	17.04	12.00	22.23	1200.11	, 20.55	5.77

tnxTower

Centek Engineering In 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job		Page
		21022.01 - CT11451G	23 of 31
Inc. 1.	Project	100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
)	Client	T-Mobile	Designed by TJL

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M_z	Torque
12D-11(W/m11001-	<u>K</u>	<u>K</u>	<u>K</u>	kip-ft	kip-ft	kip-ft
1.2 Dead+1.6 Wind 180 deg - No Ice	22.72	-0.08	25.45	1480.13	3.54	-6.30
0.9 Dead+1.6 Wind 180 deg - No Ice	17.04	-0.08	25.45	1477.93	4.09	-6.30
1.2 Dead+1.6 Wind 210 deg - No Ice	22.72	-12.79	22.31	1293.59	735.15	-10.12
0.9 Dead+1.6 Wind 210 deg - No Ice	17.04	-12.79	22.31	1291.53	735.19	-10.12
1.2 Dead+1.6 Wind 225 deg - No Ice	22.72	-17.95	18.15	1055.43	1034.23	-11.05
0.9 Dead+1.6 Wind 225 deg - No Ice	17.04	-17.95	18.15	1053.53	1034.07	-11.05
1.2 Dead+1.6 Wind 240 deg - No Ice	22.72	-22.77	13.33	766.45	1293.95	-11.23
0.9 Dead+1.6 Wind 240 deg - No Ice	17.04	-22.77	13.33	764.75	1293.60	-11.23
1.2 Dead+1.6 Wind 270 deg - No Ice	22.72	-25.44	0.08	10.44	1462.56	-9.33
0.9 Dead+1.6 Wind 270 deg - No Ice	17.04	-25.44	0.08	9.26	1462.10	-9.32
1.2 Dead+1.6 Wind 300 deg - No Ice	22.72	-21.76	-12.66	-728.07	1255.19	-4.93
0.9 Dead+1.6 Wind 300 deg - No Ice	17.04	-21.76	-12.66	-728.73	1254.87	-4.93
1.2 Dead+1.6 Wind 315 deg - No Ice	22.72	-17.84	-18.03	-1037.94	1026.10	-2.14
0.9 Dead+1.6 Wind 315 deg - No Ice	17.04	-17.84	-18.03	-1038.38	1025.94	-2.14
1.2 Dead+1.6 Wind 330 deg - No Ice	22.72	-12.65	-22.23	-1278.49	725.19	0.79
0.9 Dead+1.6 Wind 330 deg - No Ice	17.04	-12.65	-22.23	-1278.77	725.24	0.79
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	56.21 56.21	0.00 0.01	0.00 -7.52	17.64 -412.50	-7.30 -8.03	0.00 1.17
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	56.21	3.71	-6.44	-352.62	-220.18	3.00
1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp	56.21	5.23	-5.25	-284.55	-307.62	3.63
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	56.21	6.38	-3.71	-196.04	-374.42	4.02
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	56.21	7.39	-0.01	16.93	-431.78	3.96
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	56.21	6.47	3.75	232.10	-377.16	2.84
1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp	56.21	5.25	5.28	320.24	-308.00	1.97
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	56.21	3.69	6.43	387.21	-218.90	0.97
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	56.21	-0.01	7.40	443.80	-6.56	-1.17
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	56.21	-3.71	6.44	387.94	205.58	-3.00
1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp	56.21	-5.23	5.25	319.86	293.03	-3.63
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	56.21	-6.48	3.77	233.38	363.31	-4.02
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	56.21	-7.39	0.01	18.40	417.19	-3.96
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	56.21	-6.37	-3.69	-194.76	359.09	-2.84

Centek 63-2 N Bra Phone FAX

ıxTower	Јов 21022.01 - СТ11451G	Page 24 of 31
k Engineering Inc. 2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
ranford, CT 06405 one: (203) 488-0580 XX: (203) 488-8587	Client T-Mobile	Designed by TJL

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 315	56.21	-5.21	-5.24	-283.51	291.98	-1.97
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	56.21	-3.69	-6.43	-351.88	204.31	-0.97
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	18.93	0.02	-5.14	-288.27	-2.95	1.22
Dead+Wind 30 deg - Service	18.93	2.48	-4.32	-244.91	-144.18	1.95
Dead+Wind 45 deg - Service	18.93	3.48	-3.51	-198.94	-201.91	2.13
Dead+Wind 60 deg - Service	18.93	4.23	-2.48	-139.48	-245.67	2.17
Dead+Wind 90 deg - Service	18.93	4.93	-0.02	2.78	-284.58	1.80
Dead+Wind 120 deg - Service	18.93	4.39	2.55	149.00	-250.92	0.95
Dead+Wind 135 deg - Service	18.93	3.53	3.57	207.74	-202.94	0.41
Dead+Wind 150 deg - Service	18.93	2.45	4.30	251.57	-142.25	-0.15
Dead+Wind 180 deg - Service	18.93	-0.02	4.93	288.69	-0.73	-1.22
Dead+Wind 210 deg - Service	18.93	-2.48	4.32	252.68	140.49	-1.95
Dead+Wind 225 deg - Service	18.93	-3.48	3.51	206.71	198.22	-2.13
Dead+Wind 240 deg - Service	18.93	-4.41	2.58	150.93	248.35	-2.17
Dead+Wind 270 deg - Service	18.93	-4.93	0.02	5.00	280.90	-1.80
Dead+Wind 300 deg - Service	18.93	-4.21	-2.45	-137.55	240.88	-0.95
Dead+Wind 315 deg - Service	18.93	-3.45	-3.49	-197.37	196.66	-0.41
Dead+Wind 330 deg - Service	18.93	-2.45	-4.30	-243.80	138.57	0.15

Solution Summary

	Sur	n of Applied Force	s		Sum of Reaction	is	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	Κ	Κ	Κ	Κ	Κ	Κ	
1	0.00	-18.93	0.00	0.00	18.93	0.00	0.000%
2	0.08	-22.72	-26.53	-0.08	22.72	26.53	0.000%
3	0.08	-17.04	-26.53	-0.08	17.04	26.53	0.000%
4	12.79	-22.72	-22.31	-12.79	22.72	22.31	0.000%
5	12.79	-17.04	-22.31	-12.79	17.04	22.31	0.000%
6	17.95	-22.72	-18.15	-17.95	22.72	18.15	0.000%
7	17.95	-17.04	-18.15	-17.95	17.04	18.15	0.000%
8	21.84	-22.72	-12.79	-21.84	22.72	12.79	0.000%
9	21.84	-17.04	-12.79	-21.84	17.04	12.79	0.000%
10	25.44	-22.72	-0.08	-25.44	22.72	0.08	0.000%
11	25.44	-17.04	-0.08	-25.44	17.04	0.08	0.000%
12	22.69	-22.72	13.19	-22.69	22.72	-13.19	0.000%
13	22.69	-17.04	13.19	-22.69	17.04	-13.19	0.000%
14	18.22	-22.72	18.42	-18.22	22.72	-18.42	0.000%
15	18.22	-17.04	18.42	-18.22	17.04	-18.42	0.000%
16	12.65	-22.72	22.23	-12.65	22.72	-22.23	0.000%
17	12.65	-17.04	22.23	-12.65	17.04	-22.23	0.000%
18	-0.08	-22.72	25.45	0.08	22.72	-25.45	0.000%
19	-0.08	-17.04	25.45	0.08	17.04	-25.45	0.000%
20	-12.79	-22.72	22.31	12.79	22.72	-22.31	0.000%
21	-12.79	-17.04	22.31	12.79	17.04	-22.31	0.000%
22	-17.95	-22.72	18.15	17.95	22.72	-18.15	0.000%
23	-17.95	-17.04	18.15	17.95	17.04	-18.15	0.000%
24	-22.77	-22.72	13.33	22.77	22.72	-13.33	0.000%
25	-22.77	-17.04	13.33	22.77	17.04	-13.33	0.000%
26	-25.44	-22.72	0.08	25.44	22.72	-0.08	0.000%
27	-25.44	-17.04	0.08	25.44	17.04	-0.08	0.000%
28	-21.76	-22.72	-12.66	21.76	22.72	12.66	0.000%
29	-21.76	-17.04	-12.66	21.76	17.04	12.66	0.000%
30	-17.84	-22.72	-18.03	17.84	22.72	18.03	0.000%
31	-17.84	-17.04	-18.03	17.84	17.04	18.03	0.000%
32	-12.65	-22.72	-22.23	12.65	22.72	22.23	0.000%

Job

Project

Client

21022.01 - CT11451G

Page 25 of 31 Date 10:23:41 03/07/22

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

100' Lattice Tower - 27 Maynard Rd., Salem, CT

Designed by TJL

	Sui	m of Applied Force.	5		Sum of Reaction	s.	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	Κ	Κ	K	Κ	K	
33	-12.65	-17.04	-22.23	12.65	17.04	22.23	0.000%
34	0.00	-56.21	0.00	0.00	56.21	0.00	0.000%
35	0.01	-56.21	-7.52	-0.01	56.21	7.52	0.000%
36	3.71	-56.21	-6.44	-3.71	56.21	6.44	0.000%
37	5.23	-56.21	-5.25	-5.23	56.21	5.25	0.000%
38	6.38	-56.21	-3.71	-6.38	56.21	3.71	0.000%
39	7.39	-56.21	-0.01	-7.39	56.21	0.01	0.000%
40	6.47	-56.21	3.75	-6.47	56.21	-3.75	0.000%
41	5.25	-56.21	5.28	-5.25	56.21	-5.28	0.000%
42	3.69	-56.21	6.43	-3.69	56.21	-6.43	0.000%
43	-0.01	-56.21	7.40	0.01	56.21	-7.40	0.000%
44	-3.71	-56.21	6.44	3.71	56.21	-6.44	0.000%
45	-5.23	-56.21	5.25	5.23	56.21	-5.25	0.000%
46	-6.48	-56.21	3.77	6.48	56.21	-3.77	0.000%
47	-7.39	-56.21	0.01	7.39	56.21	-0.01	0.000%
48	-6.37	-56.21	-3.69	6.37	56.21	3.69	0.000%
49	-5.21	-56.21	-5.24	5.21	56.21	5.24	0.000%
50	-3.69	-56.21	-6.43	3.69	56.21	6.43	0.000%
51	0.02	-18.93	-5.14	-0.02	18.93	5.14	0.000%
52	2.48	-18.93	-4.32	-2.48	18.93	4.32	0.000%
53	3.48	-18.93	-3.51	-3.48	18.93	3.51	0.000%
54	4.23	-18.93	-2.48	-4.23	18.93	2.48	0.000%
55	4.93	-18.93	-0.02	-4.93	18.93	0.02	0.000%
56	4.39	-18.93	2.55	-4.39	18.93	-2.55	0.000%
57	3.53	-18.93	3.57	-3.53	18.93	-3.57	0.000%
58	2.45	-18.93	4.30	-2.45	18.93	-4.30	0.000%
59	-0.02	-18.93	4.93	0.02	18.93	-4.93	0.000%
60	-2.48	-18.93	4.32	2.48	18.93	-4.32	0.000%
61	-3.48	-18.93	3.51	3.48	18.93	-3.51	0.000%
62	-4.41	-18.93	2.58	4.41	18.93	-2.58	0.000%
63	-4.93	-18.93	0.02	4.93	18.93	-0.02	0.000%
64	-4.21	-18.93	-2.45	4.21	18.93	2.45	0.000%
65	-3.45	-18.93	-3.49	3.45	18.93	3.49	0.000%
66	-2.45	-18.93	-4.30	2.45	18.93	4.30	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00000001
3	Yes	4	0.00000001	0.00000001
4	Yes	4	0.00000001	0.00000168
5	Yes	4	0.00000001	0.00000163
6	Yes	4	0.00000001	0.00000183
7	Yes	4	0.00000001	0.00000172
8	Yes	4	0.00000001	0.00000182
9	Yes	4	0.00000001	0.00000169
10	Yes	4	0.00000001	0.00000001
11	Yes	4	0.00000001	0.00000001
12	Yes	4	0.00000001	0.00000001
13	Yes	4	0.00000001	0.00000001
14	Yes	4	0.00000001	0.00000001
15	Yes	4	0.00000001	0.00000001
16	Yes	4	0.00000001	0.00000160
17	Yes	4	0.00000001	0.00000001

tny	Tower	Job			Page			
UICA	10//01		21022.07	1 - CT11451G	26 of 31			
Centek H	Engineering Inc.	Project			Date			
	orth Branford Rd.	10	0' Lattice Tower - 2	27 Maynard Rd., Salem, CT	10:23:41 03/07/22			
	ford, CT 06405	Client			Designed by			
	(203) 488-0580 (203) 488-8587		Т	-Mobile	TJL			
	(203) 400 0307							
18	Yes	4	0.0000001	0.00000182				
19	Yes	4	0.00000001	0.00000168				
20	Yes	4	0.00000001	0.00000171				
21	Yes	4	0.00000001	0.00000165				
22	Yes	4 4	0.00000001	0.00000001				
23 24	Yes Yes	4	0.00000001 0.00000001	0.00000001 0.00000001				
24 25	Yes	4	0.00000001	0.00000001				
26	Yes	4	0.00000001	0.00000001				
20	Yes	4	0.00000001	0.00000001				
28	Yes	4	0.00000001	0.00000174				
29	Yes	4	0.00000001	0.00000001				
30	Yes	4	0.00000001	0.00000172				
31	Yes	4	0.00000001	0.00000001				
32	Yes	4	0.00000001	0.00000001				
33	Yes	4	0.00000001	0.00000001				
34	Yes	4	0.00000001	0.00000001				
35	Yes	4	0.00000001	0.00000001				
36	Yes	4	0.00000001	0.00000001				
37	Yes	4	0.00000001	0.0000001				
38	Yes	4	0.00000001	0.00000001				
39	Yes	4	0.00000001	0.00000001				
40	Yes	4	0.00000001	0.00000001				
41	Yes	4	0.00000001	0.00000001				
42 43	Yes Yes	4 4	0.00000001 0.00000001	0.00000001 0.00000001				
43	Yes	4	0.00000001	0.00000001				
44 45	Yes	4	0.00000001	0.00000001				
45	Yes	4	0.00000001	0.00000001				
40	Yes	4	0.00000001	0.00000001				
48	Yes	4	0.00000001	0.00000001				
49	Yes	4	0.00000001	0.00000001				
50	Yes	4	0.00000001	0.00000001				
51	Yes	4	0.00000001	0.00000001				
52	Yes	4	0.00000001	0.00000001				
53	Yes	4	0.00000001	0.00000001				
54	Yes	4	0.00000001	0.00000001				
55	Yes	4	0.00000001	0.00000001				
56	Yes	4	0.00000001	0.00000001				
57	Yes	4	0.00000001	0.00000001				
58	Yes	4	0.00000001	0.00000001				
59	Yes	4	0.00000001	0.00000001				
60	Yes	4	0.00000001	0.00000001				
61	Yes	4	0.00000001	0.00000001				
62	Yes	4	0.00000001	0.0000001				
63	Yes	4	0.00000001	0.00000001				
64	Yes	4	0.00000001	0.00000001 0.00000001				
65 66	Yes	4	0.00000001	0.00000001				
66	Yes	4	0.00000001	0.0000001				

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
110.	ft	in	Comb.	0	0
T1	100 - 80	0.978	59	0.0691	0.0339
T2	80 - 60	0.692	56	0.0641	0.0265
T3	60 - 40	0.419	56	0.0545	0.0163
T4	40 - 20	0.204	56	0.0378	0.0102
T5	20 - 0	0.064	62	0.0190	0.0050

taxTowar	Job	Page
tnxTower	21022.01 - CT11451G	27 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
100.00	10-ft Lighting Rod	59	0.978	0.0691	0.0339	Inf
98.50	PiROD 12' T-Frame	59	0.956	0.0688	0.0334	Inf
82.00	PiROD 12' T-Frame	59	0.720	0.0648	0.0275	358791
72.00	PiROD 15' T-Frame	56	0.579	0.0611	0.0222	166347

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	100 - 80	5.001	24	0.3445	0.1757
T2	80 - 60	3.567	3	0.3249	0.1377
Т3	60 - 40	2.166	3	0.2790	0.0845
T4	40 - 20	1.058	2	0.1949	0.0531
T5	20 - 0	0.330	2	0.0980	0.0261

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
100.00	10-ft Lighting Rod	24	5.001	0.3445	0.1757	369681
98.50	PiROD 12' T-Frame	24	4.894	0.3433	0.1734	369681
82.00	PiROD 12' T-Frame	3	3.711	0.3276	0.1426	112864
72.00	PiROD 15' T-Frame	3	2.989	0.3110	0.1150	37408

	Bolt Design Data									
Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
T1	100	Leg	A325N	0.7500	4	2.56	29.82	0.086 🖌	1	Bolt Tension
T2	80	Leg	A325N	1.0000	6	7.10	53.01	0.134 🖌	1	Bolt Tension
		Diagonal	A325N	0.6250	1	6.77	7.83	0.865 🖌	1	Member Bearing
		Top Girt	A325N	0.6250	1	0.85	7.83	0.109 🖌	1	Member Bearing

tnxTower	Јов 21022.01 - CT11451G	Page 28 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load Allowable	Allowable Ratio	Criteria
T3	60	Leg	A325N	1.0000	6	14.08	53.01	0.266 🖌	1	Bolt Tension
		Diagonal	A325N	0.6250	1	6.50	10.44	0.623 🖌	1	Member Bearing
T4	40	Leg	A325N	1.0000	6	20.43	53.01	0.385 🖌	1	Bolt Tension
		Diagonal	A325N	0.6250	1	6.52	10.44	0.624 🖌	1	Member Bearing
T5	20	Leg	A36	1.1250	6	26.47	32.43	0.816 🖌	1	Bolt Tension
		Diagonal	A325N	0.6250	1	7.10	7.83	0.906 🗸	1	Member Bearing

Compression Checks

	Leg Design Data (Compression)								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P _u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	Κ	ϕP_n
T1	100 - 80	2 1/4	20.00	3.33	71.1 K=1.00	3.9761	-12.74	123.62	0.103 ¹
T2	80 - 60	3	20.01	6.67	106.7 K=1.00	7.0686	-49.23	138.29	0.356 ¹
Т3	60 - 40	3 1/4	20.01	6.67	98.5 K=1.00	8.2958	-93.33	183.58	0.508 1
T4	40 - 20	3 1/2	20.01	6.67	91.5 K=1.00	9.6211	-134.68	234.78	0.574 ¹
T5	20 - 0	3 3/4	20.01	6.67	85.4 K=1.00	11.0447	-174.82	291.63	0.599 ¹

¹ $P_u / \phi P_n$ controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	Κ	Κ	ϕP_n
T1	100 - 80	1	6.01	2.89	124.9 K=0.90	0.7854	-2.75	11.19	0.246 1
Т2	80 - 60	L2x2x3/16	9.00	4.35	132.4 K=1.00	0.7150	-6.82	9.20	0.741 1
Т3	60 - 40	L2x2x1/4	9.88	4.78	146.6 K=1.00	0.9380	-6.51	9.85	0.661 ¹
T4	40 - 20	L2x2x1/4	10.84	5.25	161.0 K=1.00	0.9380	-6.60	8.18	0.808 1
T5	20 - 0	L2 1/2x2 1/2x3/16	11.85	5.74	139.2	0.9020	-7.26	10.52	0.690 1

Anna Taon an	Job	Page
tnxTower	21022.01 - CT11451G	29 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio
100.	ft		ft	ft		in ²	Κ	Κ	$\frac{P_u}{\phi P_n}$
					K=1.00				~

¹ $P_u / \phi P_n$ controls

	Top Girt Design Data (Compression)								
Section No.	Elevation	Size	L	Lu	Kl/r	Α	P _u	ϕP_n	Ratio Pu
	ft		ft	ft		in^2	Κ	Κ	ϕP_n
T1	100 - 80	1	5.00	4.81	161.7 K=0.70	0.7854	-0.06	6.79	0.009 1
Т2	80 - 60	L2x2x3/16	5.00	4.51	137.4 K=1.00	0.7150	-0.85	8.56	0.100 1

¹ $P_u / \phi P_n$ controls

Tension Checks

			Leg Des	sign E	Data (Tensio	n)		
Section No.	Elevation	Size	L	L _u	Kl/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in^2	K	K	ϕP_n
T1	100 - 80	2 1/4	20.00	3.33	71.1	3.9761	10.26	178.92	0.057 1
T2	80 - 60	3	20.01	6.67	106.7	7.0686	42.59	318.09	0.134 1
T3	60 - 40	3 1/4	20.01	6.67	98.5	8.2958	84.47	373.31	0.226 ¹
T4	40 - 20	3 1/2	20.01	6.67	91.5	9.6211	122.56	432.95	0.283 1
T5	20 - 0	3 3/4	20.01	6.67	85.4	11.0447	158.82	497.01	0.320 1

¹ $P_u / \phi P_n$ controls

Diagonal Design Data (Tension)									
Section No.	Elevation	Size	L	L _u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	Κ	Κ	ϕP_n
T1	100 - 80	1	6.01	2.89	138.8	0.7854	2.71	25.45	0.107 1

tnxTower	Jоb 21022.01 - СТ11451G	Page 30 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, C	Date 2T 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Section	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_n}$
									1
T2	80 - 60	L2x2x3/16	9.00	4.35	86.9	0.7150	6.77	23.17	0.292
Т3	60 - 40	L2x2x1/4	9.28	4.49	90.8	0.9380	6.50	30.39	0.214^{-1}
T4	40 - 20	L2x2x1/4	10.84	5.25	105.7	0.9380	6.52	30.39	0.215 1
	10 20		10.01	5.25	105.7	0.9500	0.02	50.57	V.215
Т5	20 - 0	L2 1/2x2 1/2x3/16	11.85	5.74	90.4	0.9020	7.10	29.22	0.243 1

¹ $P_u / \phi P_n$ controls

Top Girt Design Data (Tension)

Section	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_n}$
T1	100 - 80	1	5.00	4.81	231.0	0.7854	0.03	25.45	0.001 1
T2	80 - 60	L2x2x3/16	5.00	4.51	92.4	0.4308	0.85	18.74	0.046 1

¹ $P_u / \phi P_n$ controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
No.	ft	Type		Element	Κ	Κ	Capacity	Fail
T1	100 - 80	Leg	2 1/4	1	-12.74	123.62	10.3	Pass
T2	80 - 60	Leg	3	43	-49.23	138.29	35.6	Pass
T3	60 - 40	Leg	3 1/4	67	-93.33	183.58	50.8	Pass
T4	40 - 20	Leg	3 1/2	90	-134.68	234.78	57.4	Pass
T5	20 - 0	Leg	3 3/4	111	-174.82	291.63	59.9	Pass
							81.6 (b)	
T1	100 - 80	Diagonal	1	8	-2.75	11.19	24.6	Pass
T2	80 - 60	Diagonal	L2x2x3/16	50	-6.82	9.20	74.1	Pass
		-					86.5 (b)	
T3	60 - 40	Diagonal	L2x2x1/4	70	-6.51	9.85	66.1	Pass
T4	40 - 20	Diagonal	L2x2x1/4	91	-6.60	8.18	80.8	Pass
T5	20 - 0	Diagonal	L2 1/2x2 1/2x3/16	112	-7.26	10.52	69.0	Pass
		-					90.6 (b)	
T1	100 - 80	Top Girt	1	5	-0.06	6.79	0.9	Pass
T2	80 - 60	Top Girt	L2x2x3/16	48	-0.85	8.56	10.0	Pass
		-					10.9 (b)	
							Summary	
						Leg (T5)	81.6	Pass
						Diagonal (T5)	90.6	Pass
						Top Girt	10.9	Pass

tnxTower	Job 21022.01 - CT11451G	Page 31 of 31
Centek Engineering Inc. 63-2 North Branford Rd.	Project 100' Lattice Tower - 27 Maynard Rd., Salem, CT	Date 10:23:41 03/07/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client T-Mobile	Designed by TJL

Section	Elevation	Component	Size	Critical	Р	ϕP_{allow}	%	Pass
No.	ft	Type		Element	Κ	K	Capacity	Fail
						(T2)		
						Bolt Checks	90.6	Pass
						RATING =	90.6	Pass

Program Version 8.1.1.0 - 6/3/2021 File:J:/Jobs/2202200.WI/01_CT11452G/05_Structural/02_Design/CALCS/Tower Analysis/100-ft Rohn Lattice Tower.eri

Subject: Location: Rev. 0: 03/07/22 Foundation Analysis

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

Pier and Mat Foundation Analysis:

Input Data:		
Tower Data		
Overturning Moment =	$OM \!\coloneqq\! 1509 \boldsymbol{\cdot} ft \boldsymbol{\cdot} kips$	(User Input from tnxTower)
Shear Force =	$S_t\!\coloneqq\!27\boldsymbol{\cdot}kip$	(User Input from tnxTower)
Axial Force =	$WT_t \! \coloneqq \! 23 \ kip$	(User Input from tnxTower)
Max Compression Force =	$C_t\!\coloneqq\!182\boldsymbol{\cdot}kip$	(User Input from tnxTower)
Max Uplift Force =	$U_t\!\coloneqq\!165{\boldsymbol{\cdot}} kip$	(User Input from tnxTower)
Tower Height =	$H_t\!\coloneqq\!100\boldsymbol{\cdot} ft$	(User Input)
Tower Width =	$W_t {\coloneqq} 10 \boldsymbol{\cdot} ft$	(User Input)
Tower Position on Foundation (1=offset, 2=centered) =	$Pos_t \coloneqq 2$	(User Input)
Footing Data:		
Overall Depth of Footing =	$D_f \coloneqq 6.0 \cdot ft$	(User Input)
Length of Pier =	$L_p\!\coloneqq\!4.0\boldsymbol{\cdot}ft$	(User Input)
Extension of Pier Above Grade =	$L_{pag}\!\coloneqq\!0.5\boldsymbol{\cdot}\!ft$	(User Input)
Diameter of Pier =	$d_p\!\coloneqq\!3.0\boldsymbol{\cdot}ft$	(User Input)
Thickness of Footing =	$T_f\!\coloneqq\!2.5\boldsymbol{\cdot}ft$	(User Input)
Width of Footing =	$W_f\!\coloneqq\!21.0\boldsymbol{\cdot}\!ft$	(User Input)
Material Properties:		
Concrete Compressive Strength =	$f_c\!\coloneqq\!3000\boldsymbol{\cdot} psi$	(User Input)
Steel Reinforcement Yield Strength =	$f_y\!\coloneqq\!60000 \boldsymbol{\cdot} psi$	(User Input)
Internal Friction Angle of Soil =	$\varPhi_s\!\coloneqq\!28\boldsymbol{\cdot} deg$	(User Input)
Allowable Soil Bearing Capacity =	$q_s\!\coloneqq\!5000\boldsymbol{\cdot} ps\!f$	(User Input)
Unit Weight of Soil =	$\gamma_{soil}\!\coloneqq\!115\boldsymbol{\cdot}pcf$	(User Input)

 $\gamma_{conc} \! \coloneqq \! 150 \boldsymbol{\cdot} pcf$

Bouyancy := 0

 $n \coloneqq 0 \cdot ft$

 $c \coloneqq 0 \cdot ksf$

 $Z\!\coloneqq\!2$

 $\mu = 0.45$

(User Input)

(User Input)

(User Input)

(User Input)

(User Input)

(User Input)

(Yes=1 / No=0)

(Use 0 for Sandy Soil)

(UBC-1997 Fig 23-2)

Unit Weight of Concrete =

Foundation Buoyancy =

Seismic Zone Factor =

Cohesion of Clay Type Soil =

Coefficient of Friction Between Concrete =

Depth to Neglect =

63-2 North Branford Road Branford, CT 06405 Subject:

Location:

Rev. 0: 03/07/22

Load Factor =

Foundation Analysis

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

Calculated Factors:

Coefficient of Lateral Soil Pressure =

P: (203) 488-0580

F: (203) 488-8587

$$\begin{split} K_p \! \coloneqq \! \frac{1 + \sin\left(\varPhi_s\right)}{1 - \sin\left(\varPhi_s\right)} \! = \! 2.77 \\ LF \! \coloneqq \! 1 \end{split}$$

Stability of Footing:

Adjusted Concrete Unit Weight =	$\gamma_{c} \coloneqq \mathbf{if} \left(Bouyancy = 1 , \gamma_{conc} - 62.4 \cdot pcf , \gamma_{conc} \right) = 150 \ pcf$
Adjusted Soil Unit Weight =	$\gamma_{s} \coloneqq \mathbf{if} \left(Bouyancy = 1 \ , \gamma_{soil} - 62.4 \cdot pcf \ , \gamma_{soil} \right) = 115 \ pcf$
Passive Pressure =	$P_{pn}\!\coloneqq\!K_{p}\boldsymbol{\cdot}\boldsymbol{\gamma}_{s}\boldsymbol{\cdot}\boldsymbol{n}+c\boldsymbol{\cdot}\boldsymbol{2}\boldsymbol{\cdot}\sqrt{K_{p}}=0\ ksf$
	$P_{pt} \coloneqq K_p \boldsymbol{\cdot} \gamma_s \boldsymbol{\cdot} \left(D_f - T_f \right) + c \boldsymbol{\cdot} 2 \boldsymbol{\cdot} \sqrt{K_p} = 1.115 \ ksf$
	$P_{top} \coloneqq \mathbf{if} \left(n < \left(D_{f} - T_{f} \right), P_{pt}, P_{pn} \right) = 1.115 \ ksf$
	$P_{bot} \coloneqq K_p \cdot \gamma_s \cdot D_f + c \cdot 2 \cdot \sqrt{K_p} = 1.911 \ ksf$
	$P_{ave} \coloneqq \frac{P_{top} + P_{bot}}{2} = 1.513 \ ksf$
	$T_{p}\!\coloneqq\!$
	$A_{p} \! \coloneqq \! W_{f} \! \bullet \! T_{p} \! = \! 52.5 \; ft^{2}$
Ultimate Shear =	$S_u \!\coloneqq\! P_{ave} \!\cdot\! A_p \!=\! 79.433 \ kip$
Weight of Concrete =	$WT_c \coloneqq \left(\left(W_f^2 \cdot T_f \right) + \left(3 \right) \cdot \left(\frac{d_p^2 \cdot \pi}{4} \cdot L_p \right) \right) \cdot \gamma_c = 178.098 \ kip$
Weight of Soil Above Footing =	$WT_{s1} \! \coloneqq \! \left(\! \left(\! W_{f}^{2} - \! \left(3 \right) \! \cdot \! \left(\! \frac{{d_{p}}^{2} \cdot \pi}{4} \! \right) \! \right) \! \cdot \left(\! \left L_{p} \! - \! L_{pag} \! - \! n \right \! \right) \! \right) \! \cdot \! \gamma_{s} \! = \! 168.97 \; kip$
Weight of Soil Wedge at Back Face =	$WT_{s2} \coloneqq \left(\frac{\left(D_{f} - n \right)^{2} \cdot \tan\left(\Phi_{s} \right)}{2} \cdot W_{f} \right) \cdot \gamma_{s} = 23.113 \ kip$
	Foundation has undercut toe per Fred A. Nudd dwg 96-4992-1
Tower Offset =	$X_{t1} \coloneqq \left(\frac{W_f}{2} - \frac{\left(W_t \cdot \cos\left(30 \cdot deg\right)\right)}{2}\right) X_{t2} \coloneqq \frac{W_f}{2} - \frac{\left(W_t \cdot \cos\left(30 \cdot deg\right)\right)}{3}$
	$X_t \coloneqq \mathbf{if} \left(Pos_t = 1, X_{t1}, X_{t2} \right) = 7.613$
	$X_{off1} \coloneqq \frac{W_f}{2} - \left(\frac{\left(W_t \cdot \cos\left(30 \cdot deg\right)\right)}{3} + X_t\right) = 0 \qquad X_{off2} \coloneqq 0$
	$X_{off} \coloneqq \mathbf{if} \left(Pos_t = 1, X_{off1}, X_{off2} \right) \qquad \qquad X_{off} = 0 \ ft$

 $WT_{tot}\!\coloneqq\!0.9 \bullet WT_c\!+\!0.75 \bullet WT_{s1}\!=\!287\ kip$

Total Weight =

Centered on Solutions²⁴ 63-2 North Branford Road Branford, CT 06405 P: (203) 488-0580 F: (203) 488-8587 F: (203) 488-8587 Subject: Location:

Rev. 0: 03/07/22

Foundation Analysis

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

Resisting Moment =

$$M_r \coloneqq \left(WT_{tot}\right) \cdot \frac{W_f}{2} + 0.9 \cdot WT_t \cdot \left(\frac{W_f}{2} - X_{off}\right) + 0.75 \cdot \left(S_u \cdot \frac{T_p}{3}\right) + 0.75 \cdot WT_{s2} \cdot \left(W_f + \frac{\left(D_f - n\right) \cdot \tan\left(\varPhi_s\right)}{3}\right) = 3663 \ kip \cdot ft$$

Overturning Moment =

Factor of Safety Actual =

$$FS \coloneqq \frac{M_r}{M_{ot}} = 2.17$$

Factor of Safety Required =

$$\begin{split} FS_{req} &\coloneqq 1 \\ OverTurning_Moment_Check \coloneqq \mathbf{if} \left(FS \geq FS_{req} \,, \text{``Okay''} \,, \text{``No Good''} \right) \end{split}$$

OverTurning_Moment_Check = "Okay"

 $M_{ot} := OM + S_t \cdot (L_p + T_f) = 1684.5 \ kip \cdot ft$

Shear Capacity in Pier:

Shear Resistance of Pier =

$$\begin{split} S_p \coloneqq & \frac{P_{ave} \cdot A_p + \mu \cdot WT_{tot}}{FS_{req}} = 208.59 \ kips \\ Shear_Check \coloneqq & \text{if} \left(S_p > S_t, \text{``Okay''}, \text{``No Good''}\right) \end{split}$$

Shear_Check = "Okay"

 $A_{mat} := W_f^2 = 441$

Bearing Pressure Caused by Footing:

Total Load = Area of the Mat =

Minimum Pressure in

$$\begin{split} S &\coloneqq \frac{{W_f}^3}{6} \!=\! 1543.5 \; ft^3 \\ P_{max} \!\coloneqq\! \frac{Load_{tot}}{A_{mat}} \!+\! \frac{M_{ot}}{S} \!=\! 1.931 \; ksf \end{split}$$

 $Load_{tot} := WT_c + WT_{s1} + WT_t = 370 \ kip$

 $Max_Pressure_Check \coloneqq if (P_{max} < 0.75 \cdot q_s, "Okay", "No Good")$

Max_Pressure_Check = "Okay"

$$\text{Mat} = P_{min} \coloneqq \frac{Load_{tot}}{A_{mat}} - \frac{M_{ot}}{S} = -0.252 \ ksf$$

 $Min_Pressure_Check := if((P_{min} \ge 0) \cdot (P_{min} < 0.75 \cdot q_s), "Okay", "No Good")$

Min_Pressure_Check = "No Good"

Distance to Resultant of Pressure Distribution =

$$X_p \coloneqq \frac{P_{max}}{\frac{P_{max} - P_{min}}{W_f}} \cdot \frac{1}{3} = 6.191$$

Distance to Kern =

 $X_k \coloneqq \frac{W_f}{6} = 3.5$ Since Resultant Force is Not in Kern, Area to which Pressure is Applied Must be Reduced.

Eccentricity =
$$e \coloneqq \frac{M_{ot}}{Load_{tot}} = 4.552$$

P: (203) 488-0580

F: (203) 488-8587

Centered on Solutions" www.centekeng.com 63-2 North Branford Road Branford, CT 06405

Subject:

Location:

Rev. 0: 03/07/22

Foundation Analysis

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

Adjusted Soil Pressure =

$$P_a \coloneqq \frac{2 \cdot Load_{tot}}{3 \cdot W_f \cdot \left(\frac{W_f}{2} - e\right)} = 1.975 \ ksf$$

$$q_{adj} := \mathbf{if} \left(P_{min} < 0, P_a, P_{max} \right) = 1.975 \ ksf$$

 $Pressure_Check \coloneqq if(q_{adj} < 0.75 \cdot q_s, "Okay", "No Good")$ $Pressure_Check = "Okay"$

Concrete Bearing Capacity:

Strength Reduction Factor =

(ACI-2008 9.3.2.2)

Bearing Strength Between Pier and Pad =

 $P_{b} \coloneqq \Phi_{c} \cdot 0.85 \cdot f_{c} \cdot \frac{\pi \cdot d_{p}^{2}}{4} = (1.687 \cdot 10^{3}) \ kips$ (ACI-2008 10.14) $Bearing_Check := if(P_b > LF \cdot C_t, "Okay", "No Good")$

 $Bearing_Check = "Okay"$

 $\Phi_c \coloneqq 0.65$

Subject:

F: (203) 488-8587

Location:

Rev. 0: 03/07/22

Foundation Analysis

Salem, CT

F: (203) 488-8587

Centered on Solutions¹⁴ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405

Subject:

Location:

Rev. 0: 03/07/22

Foundation Analysis

Salem, CT

Subject:

F: (203) 488-8587

Location:

Rev. 0: 03/07/22

Foundation Analysis

Salem, CT

Subject:

F: (203) 488-8587

Location:

Rev. 0: 03/07/22

Foundation Analysis

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

(

Subject:

F: (203) 488-8587

Location:

Rev. 0: 03/07/22

Foundation Analysis

Salem, CT

F: (203) 488-8587

Subject:

Location:

Rev. 0: 03/07/22

Foundation Analysis

Salem, CT

Centered on Solutions[™]

Structural Analysis Report

Antenna Mount Analysis

Proposed T-Mobile Antenna Upgrade

Site Ref: CT11451G

27 Maynard Road Salem, CT

CENTEK Project No. 22022.01

Date: March 7, 2022

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002 CENTEK Engineering, Inc. Structural Analysis Report T-Mobile | CT11451G March 07, 2022

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS
- ANTENNA AND APPURTENANCE SUMMARY
- ANALYSIS
- DESIGN LOADING
- REFERENCE STANDARDS
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 – CALCULATIONS

- WIND LOAD CALCULATION
- RISA 3D OUTPUT REPORT

<u>SECTION 4 – REFERENCE MATERIAL</u> (not included in this report)

- RF DATA SHEET
- STRUCTURAL ANALYSIS REPORT PREPARED BY CENTEK ENGINEERING, JOB NO. 19027.19, DATED APRIL 30, 2019.
- CONSTRUCTION DOCUMENTS PREPARED HUDSON DESIGN GROUP, JOB NO. CT11451G, DATED JUNE 20, 2016.

<u>Introduction</u>

This structural analysis report (SAR) was prepared to address the structural viability of installing T-Mobile's proposed antenna configuration attached to the existing V-Frame sector mounts (SitePro P/N: VFA10-U). The antenna mounts are attached to the legs of a 100-ft self supporting, 3-legged, host lattice tower located at 27 maynard Road, Salem, Connecticut.

The antenna mount assembly consists of four pipe masts, the V-Frame sector Mount and a stiff arm for stability of the antenna mount assembly. This structural analysis report variffies the adequacy of aforementioned antenna mount assembly only.

The antenna mount assembly geometry and member information were gathered through a site visit to investigate the current conditions, performed by Centek personnel on 02/18/2022, and a structural analysis report prepared by Centek Engineering, Job No. 19027.19, dated May 17, 2016. Proposed/existing antenna and appurtenance information was taken from an RF data sheet dated 01/18/2022 provided by T-Mobile.

Primary Assumptions Used in the Analysis

- The host structure's theoretical capacity not including any assessment of the condition of the host structure.
- The existing elevated steel antenna frames carry the horizontal and vertical loads due to the weight of equipment, and wind and transfers into host structure.
- Structure is in plumb condition.
- Loading for equipment and enclosure as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All members are assumed to be as observed during roof framing mapping.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.

<u>Antenna and Equipment Summary</u>

Location	Appurtenance / Equipment	Rad Center Elevation (AGL)	Mount Type
Per Sector	 (1) Ericsson Air 6419 B41 Antenna (1) Commscope VV-65A-R1 Antenna (1) RFS APXVAARR24_43-U_NA20 Antenna (1) Ericsson 4460 B25+B66 Radio (1) 4449 B71+B12 Radio 	82-ft	V-Frame sector mounts attached to host lattice tower legs

Equipment – Indicates existing equipment to be relocated. Equipment – Indicates proposed equipment to be installed.

<u>Analysis</u>

The antenna frames were analyzed using a comprehensive computer program titled Risa3D. The program examines the antenna mounts considering the worst-case code prescribed loading condition. The structures were considered to be loaded by concentric forces, and the model assumes that the members are subjected to bending, axial, and shear forces.

<u>Design Loading</u>

Loading was determined per the requirements of the 2006 ANSI TIA-222-G, 2015 International Building Code amended by the 2018 CSBC and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Basic Wind Speed:	V _{asd} = 105 mph	Appendix N of the 2018 CT State Building Code		
Basic Wind Speed w/ Ice:	$V_i = 50 \text{ mph}$	Annex B of TIA-222-G		
Risk Category:	11	2015 IBC; Table 1604.05		
Exposure Category:	Surface Roughness C	ASCE 7-10; Section 26.7.2		
Dead Load	Equipment and framing self- weight	Identified within SAR design calculations		

Reference Standards

2015 International Building Code:

1. AISC 360-10, Specification for Structural Steel Buildings.

Results

Member stresses and design reactions were calculated utilizing the structural analysis software RISA 3D.

The antenna mounting assembly and impacted host building components were found to be structurally acceptable as presented in the following table:

Sector	Component	Stress Ratio (percentage of capacity)	Result
All Sectors	Pipe 2.0 STD (Proposed Antenna Mast)	86%	PASS
	Pipe 2.0 STD (Existing V-Frame Horizontal)	50%	PASS
	Pipe 1.25 STD (Existing V-Frame Horizontal)	45%	PASS
	5/8" Solid Rod (Existing V-Frame Diagonal)	89%	PASS

Conclusion

This analysis shows that the proposed subject antenna mount assemblies **STRUCTURALLY ADEQUETE** to support the proposed T-Mobile modified antenna configuration.

The analysis is based, in part, on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

100000 C

Respectfully Submitted by:

AMAMMIN IN CONNA SSIONAL

Carlo F. Centore, PE Principle ~ Structural Engineer

Prepared by:

Pablo Perez-Gomez Engineer

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Subject:

2022

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

	eusjeet.
	Location:
Centered on Solutionswww.centekeng.com63-2 North Branford RoadP: (203) 488-0580Branford, CT 06405F: (203) 488-8587	Rev. 0: 03/02/20
Development of Design Heights, Exposure and Velocity Pressures P	<u>e Coefficients.</u> Per TIA-222-G
Wind Speeds	
Basic Wind Speed	$V \coloneqq 105$ mph
Basic Wind Speed with Ice	$V_i \coloneqq 50 \qquad mph$
Input	
Structure Type =	$Structure_Type \coloneqq Lat$
Structure Category =	
Exposure Category =	$Exp \coloneqq C$
Structure Height =	$h \coloneqq 100$
Height to Center of Antennas =	
Radial Ice Thickness =	$t_i := 0.75$
Radial Ice Density =	
Topograpic Factor =	$K_{zt} \coloneqq 1.0$
	$K_a := 1.0$
Gust Response Factor =	$G_{H} = 1.2$
Output	
Wind Direction Probability Factor =	$\begin{split} K_{d} \coloneqq \left\ \begin{array}{c} \text{if } Structure_Type \\ \left\ \begin{array}{c} 0.95 \\ \text{if } Structure_Type \\ \\ \left\ \begin{array}{c} 0.85 \end{array} \right. \end{split} \right. \end{split}$
Importance Factors =	$I_{Wind} \coloneqq \left\ \begin{array}{c} \text{if } SC = 1 \\ \left\ \begin{array}{c} 0.87 \\ 0.87 \\ \text{if } SC = 2 \\ \left\ \begin{array}{c} 1.00 \\ 1.15 \\ 1.15 \end{array} \right\ \right\ $
	$\begin{split} I_{Wind_w_Ice} \coloneqq & \begin{array}{ c c } \text{if } SC = 1 \\ & & \\ 0 \\ & \\ \text{if } SC = 2 \\ & \\ 1.00 \\ & \\ \text{if } SC = 3 \\ & \\ 1.00 \\ \end{array} \end{split}$
$K_{iz} \! := \! \left(\! \frac{z}{33} \right)^{0.1} \! = \! 1.095$	$I_{ice} := \left \begin{array}{c} \text{if } SC = 1 \\ \left\ \begin{array}{c} 0 \\ \text{if } SC = 2 \\ \left\ \begin{array}{c} 1.00 \\ \text{if } SC = 3 \\ \left\ \begin{array}{c} 1.25 \end{array} \right \end{array} \right = 1$

5	mph	(User Input - 2018 CSBC Appendix N)
)	mph	(User Input per Annex B of TIA-222-G)
ure_Typ	$e \coloneqq Lattice$	(User Input)
Ι		(User Input)
C		(User Input)
)	ft	(User Input)
	ft	(User Input)
5	in	(User Input per Annex B of TIA-222-G)
6.00	pcf	(User Input)
.0		(User Input)
0		(User Input)
.2		(User Input)
0.95	ure_Type = Pole = 0.85 ure_Type = Lattice	(Per Table 2-2 of TIA-222-G) (Per Table 2-3 of TIA-222-G)
if	- 2 - 3	

Velocity Pressure Coefficient Antennas =

Velocity Pressure w/o Ice Antennas = Velocity Pressure with Ice Antennas =

 $t_{iz} \coloneqq 2.0 \cdot t_i \cdot I_{ice} \cdot K_{iz} \cdot {K_{zt}}^{0.35} = 1.643$ $Kz \coloneqq 2.01 \cdot \left(\left(\frac{z}{zg} \right) \right)^{\alpha} = 1.214$ $qz := 0.00256 \cdot K_d \cdot Kz \cdot V^2 \cdot I_{Wind} = 29.12$ psf $qz_{ice} \coloneqq 0.00256 \cdot K_d \cdot Kz \cdot V_i^2 \cdot I_{Wind} = 6.603 \text{ psf}$

Loads on Equipment

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

Centered on Solutions⁵⁵ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 F:(2

-1

Branford, CT 06405

Subject:

Location:

Rev. 0: 03/02/2022

P: (203) 4 F: (203) 4		: 03/02/2022			o No. 22022.01
<u>Developr</u>	nent of Wind & Ice Load on Antennas				
	<u>Antenna Data:</u>				
	Antenna Model =	RFS APXVAARI	R24_43-U-N/	420	
	Antenna Shape =	Flat		(User Input)	
	Antenna Height =	$L_{ant} \coloneqq 95.9$	in	(User Input)	
	Antenna Width =	$W_{ant} \coloneqq 19.7$	in	(User Input)	
	Antenna Thickness =	$T_{ant} \coloneqq 8.7$	in	(User Input)	
	Antenna Weight =	$WT_{ant} \coloneqq 133.4$	lbs	(User Input)	
	Number of Antennas =	$N_{ant}\coloneqq 1$		(User Input)	
	Antenna Aspect Ratio =	$Ar_{ant} \coloneqq \frac{L_{ant}}{W_{ant}} = 4.$	9		
	Antenna Force Coefficient =	$Ca_{ant} = 1.31$			
	Wind Load (without ice)				
	Surface Area for One Antenna =	$SA_{antF} \coloneqq \frac{L_{ant} \cdot W_{o}}{144}$	$\frac{ant}{2} = 13.1$		sf
	Total Antenna Wind Force Front =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca$	$h_{ant} \cdot K_a \cdot SA_{ant}$	$_{F} = 598$	<mark>lbs</mark>
	Surface Area for One Antenna =	$SA_{antS} \coloneqq \frac{L_{ant} \cdot T_{ant}}{144}$	$\frac{nt}{2} = 5.8$		sf
	Total Antenna Wind Force Side =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca$	$a_{ant} \cdot K_a \cdot SA_{ant}$	s = 264	<mark>lbs</mark>
	Wind Load (with ice)				
	Surface Area for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant}\right)}{\left(L_{ant}\right)}$	$+2 \cdot t_{iz} ight) \cdot (W_{ar})$ 144	$\frac{1}{1} + 2 \cdot t_{iz} = 15$.8 sf
1	Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot$	$Ca_{ant} \cdot K_a \cdot SA$	$_{ICEantF} = 164$	<mark>lbs</mark>
	Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} \coloneqq \frac{\left(L_{ant}\right)}{\left(L_{ant}\right)}$	$\frac{+2 \cdot t_{iz} \cdot \left(T_{ant}\right)}{144}$	$\frac{t+2 \cdot t_{iz}}{2} = 8.3$	sf
	Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot$	$Ca_{ant} \cdot K_a \cdot SA$	$_{ICEantS} = 85$	lbs
	Gravity Load (without ice)				
	Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 133$	5		lbs
	Gravity Loads (ice only)				
	Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \bullet W_{ant} \bullet$	$\cdot T_{ant} = 2 \cdot 10^4$		cu in
	Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \boldsymbol{\cdot} t_i \right.$	$\left(w_{ant}+2\cdot \right) \cdot \left(W_{ant}+$	t_{iz}) • $(T_{ant} + 2 \cdot$	$t_{iz}) - V_{ant} = 1 \cdot 10^4$
	Weight of Ice on Each Antenna =	$W_{ICEant} \coloneqq \frac{V_{ice}}{1728}$.	Id = 353		cu in Ibs
	Weight of Ice on All Antennas =	1728 $W_{ICEant} \cdot N_{ant} = 35$			_
	weight of the off All Allterillas -	$\mathbf{v} \text{ ICEant } \mathbf{v} \text{ ant } = 3$			lbs

Centered on Solutions⁵⁵ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 0: 03/02/2022

Loads on Equipment

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

			000110	. 22022.01
Development of Wind & Ice Load on Antennas				
<u>Antenna Data:</u> Antenna Model =	Ericsson AIR6419 B	41		
Antenna Shape =	Flat		(User Input)	
Antenna Height =	$L_{ant} \coloneqq 33$	in	(User Input)	
Antenna Width =	$W_{ant} \coloneqq 16$	in	(User Input)	
Antenna Thickness =	$T_{ant} \coloneqq 3.15$	in	(User Input)	
Antenna Weight =	$WT_{ant} \coloneqq 41$	lbs	(User Input)	
Number of Antennas =	$N_{ant} \coloneqq 1$		(User Input)	
Antenna Aspect Ratio =	$Ar_{ant} \coloneqq \frac{L_{ant}}{W_{ant}} = 2.1$			
Antenna Force Coefficient =	$Ca_{ant} = 1.2$			
Wind Load (without ice)				
Surface Area for One Antenna =	$SA_{antF} \coloneqq \frac{L_{ant} \cdot W_{ant}}{144} =$	3.7		sf
Total Antenna Wind Force Front =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_{ant} \cdot$	$K_a \cdot SA_{and}$	$_{tF} = 154$	<mark>lbs</mark>
Surface Area for One Antenna =	$SA_{antS} \coloneqq \frac{L_{ant} \cdot T_{ant}}{144} =$	0.7		sf
Total Antenna Wind Force Side =	144 $F_{ant} \coloneqq qz \cdot G_H \cdot Ca_{ant} \cdot$		$_{ts} = 30$	lbs
Wind Load (with ice)	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant} + 2 \cdot I_{ant} +$	t_{iz}) • (W_a	$t_{int} + 2 \cdot t_{iz}$. 6
Surface Area for One Antenna w/ Ice =		144		sf
Total Antenna Wind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant}$	$M_{at} \cdot K_a \cdot SA$	$A_{ICEantF} = 46$	<mark>lbs</mark>
Surface Area for One Antenna w/ Ice =	$SA_{ICEantS} \coloneqq \underbrace{\left(L_{ant} + 2 \cdot I_{ant} +$	$\left(t_{iz} \right) \cdot \left(T_{an} \right)$	$\frac{1}{2 \cdot t_{iz}} = 1.6$	sf
Total Antenna Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{ant}$	$_{nt} \cdot K_a \cdot SA$	$A_{ICEantS} = 15$	<mark>lbs</mark>
Gravity Load (without ice)				
Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 41$			lle e
Gravity Loads (ice only)				lbs
Volume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \boldsymbol{\cdot} W_{ant} \boldsymbol{\cdot} T_{ant}$	t = 1663		cu in
Volume of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \boldsymbol{\cdot} t_{iz} \right) \boldsymbol{\cdot} \left($	$W_{ant} + 2$.	$(t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz})$	$-V_{ant} = 2841$
	V_{iaa}			cu in
Weight of Ice on Each Antenna =	$W_{ICEant} \coloneqq \frac{V_{ice}}{1728} \cdot Id =$	92		lbs
Weight of Ice on All Antennas =	$W_{ICEant} \cdot N_{ant} = 92$			<mark>lbs</mark>

Centered on Solutions⁵⁰ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405

F:(20

Subject:

Location:

Loads on Equipment

<mark>lbs</mark>

cu in

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

F: (203) 488-8587	Nev. 0. 0.	510212022			. 22022.01
Development of Wind	<u>& Ice Load on Antennas</u> <u>Antenna Data:</u> Antenna Model =	Commscope VV-65A	-P1		
			-111		
	Antenna Shape =	Flat		(User Input)	
	Antenna Height =	$L_{ant} \coloneqq 54.7$	in	(User Input)	
	Antenna Width =	$W_{ant} \coloneqq 12.08$	in	(User Input)	
	Antenna Thickness =	$T_{\mathit{ant}} \coloneqq 4.6$	in	(User Input)	
	Antenna Weight =	$WT_{ant} \coloneqq 23$	lbs	(User Input)	
	Number of Antennas =	$N_{ant} \coloneqq 1$		(User Input)	
	Antenna Aspect Ratio =	$Ar_{ant} \coloneqq \frac{L_{ant}}{W_{ant}} = 4.5$			
An	tenna Force Coefficient =	$Ca_{ant} = 1.29$			
Wi	nd Load (without ice)				
Surfac	e Area for One Antenna =	$SA_{antF} \coloneqq \frac{L_{ant} \cdot W_{ant}}{144} =$	4.6		sf
Total Ant	enna Wind Force Front =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_{ant} \cdot I$	$K_a \cdot SA_{ant}$	F = 207	<mark>lbs</mark>
Surfac	e Area for One Antenna =	$SA_{antS} \coloneqq \frac{L_{ant} \cdot T_{ant}}{144} = 1$	1.7		sf
Total Ar	tenna Wind Force Side =	$F_{ant} \coloneqq qz \cdot G_H \cdot Ca_{ant} \cdot I$	$K_a \cdot SA_{ant}$	s = 79	<mark>lbs</mark>
	Wind Load (with ice)				
Surface Area	for One Antenna w/ Ice =	$SA_{ICEantF} \coloneqq \frac{\left(L_{ant} + 2 \cdot I_{ant} +$	$\left(\frac{t_{iz}}{144}\right) \cdot \left(W_{as}\right)$	$\frac{1}{nt} + 2 \cdot t_{iz} = 6.2$	sf
Total Antenna V	Vind Force w/ Ice Front =	$Fi_{ant} \coloneqq qz_{ice} \boldsymbol{\cdot} G_H \boldsymbol{\cdot} Ca_{an}$	$t \cdot K_a \cdot SA$	$_{ICEantF} = 63$	<mark>lbs</mark>
Surface Area	for One Antenna w/ Ice =	$SA_{ICEantS} := \frac{\left(L_{ant} + 2 \cdot \right)}{\left(L_{ant} + 2 \cdot \right)}$	$\frac{t_{iz} \cdot (T_{an})}{144}$	$\frac{t+2 \cdot t_{iz}}{2} = 3.2$	sf
Total Antenna	Wind Force w/ Ice Side =	$Fi_{ant} \coloneqq qz_{ice} \cdot G_H \cdot Ca_{an}$	$t \cdot K_a \cdot SA$	$C_{ICEantS} = 32$	<mark>lbs</mark>
Grav	ity Load (without ice)				
	Weight of All Antennas =	$WT_{ant} \cdot N_{ant} = 23$			lbs
Gra	avity Loads (ice only)				
V	olume of Each Antenna =	$V_{ant} \coloneqq L_{ant} \boldsymbol{\cdot} W_{ant} \boldsymbol{\cdot} T_{ant}$	= 3040		cu in
Volume	of Ice on Each Antenna =	$V_{ice} \coloneqq \left(L_{ant} + 2 \cdot t_{iz} \right) \cdot \left(\mathbf{V}_{ice} \right) \cdot \left(\mathbf{V}_{i$	$W_{ant} + 2 \cdot$	t_{iz}) • $(T_{ant} + 2 \cdot t_{iz}) -$	
Weight	of Ice on Each Antenna =	$W_{ICEant} \coloneqq \frac{V_{ice}}{1728} \cdot Id =$	129		cu ir Ibs

Weight of Ice on All Antennas = $W_{\textit{ICEant}} \boldsymbol{\cdot} N_{ant} = 129$ engineering

Subject:

Location:

Rev. 0: 03/02/2022

Loads on Equipment

sf

lbs

sf

lbs

lbs

Salem, CT

Prepared by: PPG Checked by: TJL Job No. 22022.01

Centered on Solutions™ 63-2 North Branford Road Branford, CT 06405

www.centekeng.com P: (203) 488-0580 F: (203) 488-8587

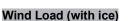
Development of Wind & Ice Load on RRUS's			
RRUS Data:			
RRUS Model =	Ericsson 4449 B71+E	812	
RRUS Shape =	Flat		(User Input)
RRUS Height =	$L_{RRUS} \coloneqq 14.9$	in	(User Input)
RRUS Width =	$W_{RRUS} \coloneqq 13.2$	in	(User Input)
RRUS Thickness =	$T_{\textit{RRUS}} \coloneqq 10.4$	in	(User Input)
RRUS Weight =	$WT_{RRUS} \coloneqq 74$	lbs	(User Input)
Number of RRUS's =	$N_{RRUS}\coloneqq 1$		
RRUS Aspect Ratio =	$Ar_{RRUS} \coloneqq \frac{L_{RRUS}}{W_{RRUS}} = 1$.1	
RRUS Force Coefficient =	$Ca_{RRUS} = 1.2$		
Wind Load (without ice)			

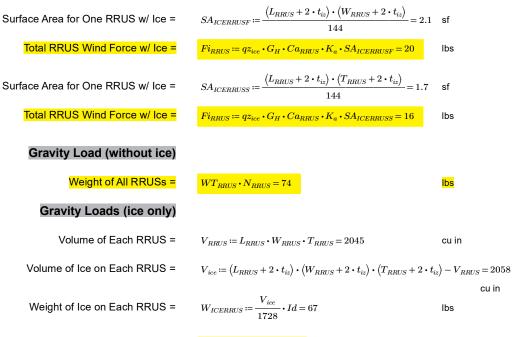
 $S\!A_{RRUSF}\!\coloneqq\!\frac{L_{RRUS}\!\cdot\!W_{RRUS}}{144}\!=\!1.4$

 $SA_{RRUSS} \coloneqq \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.1$

 $F_{RRUS} \coloneqq qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 57$

 $F_{RRUS} \coloneqq qz \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{RRUS} \boldsymbol{\cdot} K_{a} \boldsymbol{\cdot} SA_{RRUSS} = 45$


Wind L


Surface Area for One RRUS =

Total RRUS Wind Force =

Surface Area for One RRUS =

Total RRUS Wind Force =

 $W_{ICERRUS} \cdot N_{RRUS} = 67$

Weight of Ice on All RRUSs =

< engineering

Subject:

Location:

Rev. 0: 03/02/2022

Loads on Equipment

sf

lbs

sf

lbs

Salem, CT

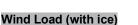
Prepared by: PPG Checked by: TJL Job No. 22022.01

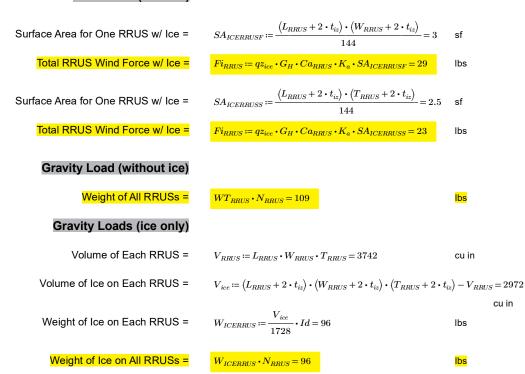
Centered on Solutions™ 63-2 North Branford Road Branford, CT 06405

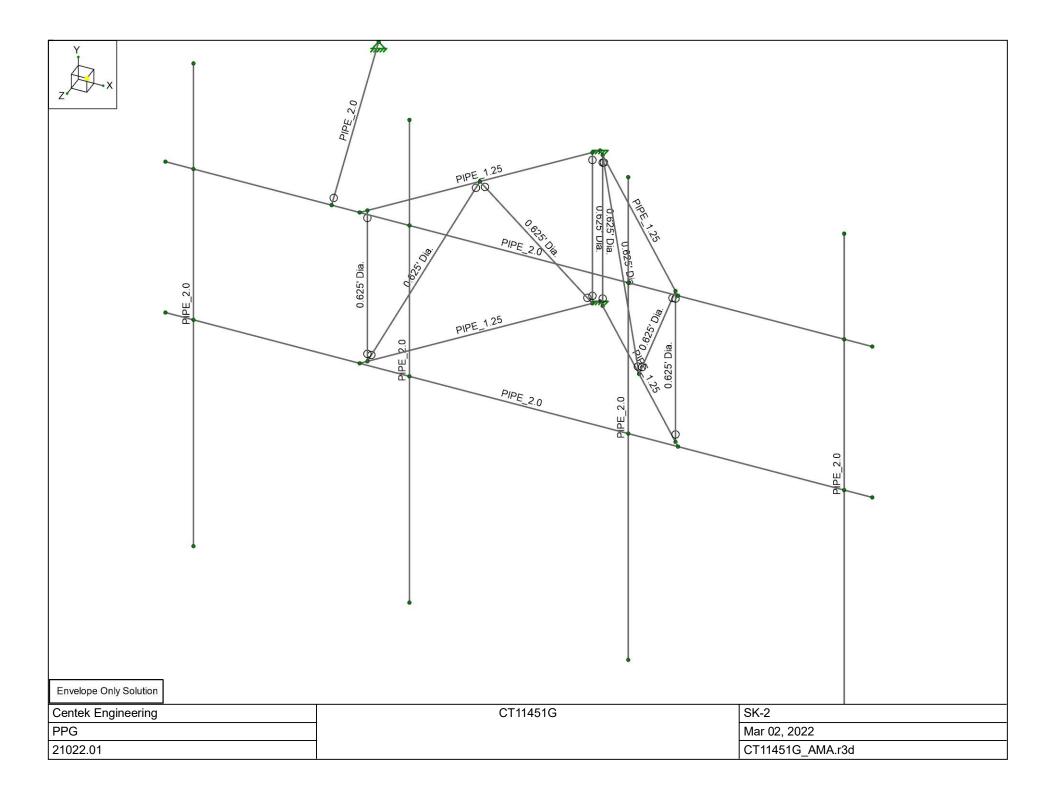
www.centekeng.com P: (203) 488-0580 F: (203) 488-8587

Development of Wind & Ice Load on RRUS's			
RRUS Data:			
RRUS Model =	Ericsson 4460 B25+	-B66	
RRUS Shape =	Flat		(User Input)
RRUS Height =	$L_{RRUS} \coloneqq 19.7$	in	(User Input)
RRUS Width =	$W_{RRUS}\!\coloneqq\!15.7$	in	(User Input)
RRUS Thickness =	$T_{RRUS}\!\coloneqq\!12.1$	in	(User Input)
RRUS Weight =	$WT_{RRUS} \coloneqq 109$	lbs	(User Input)
Number of RRUS's =	$N_{RRUS}\coloneqq 1$		
RRUS Aspect Ratio =	$Ar_{RRUS}\!\coloneqq\!\frac{L_{RRUS}}{W_{RRUS}}\!=\!$	1.3	
RRUS Force Coefficient =	$Ca_{RRUS} = 1.2$		
Wind Load (without ice)			
Surface Area for One RRUS =	$SA_{RRUSF} \coloneqq \frac{L_{RRUS} \cdot W_{F}}{144}$	$\frac{RUS}{m} = 2$	2.1

 $F_{RRUS} \coloneqq qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 90$


 $F_{RRUS} \coloneqq qz \boldsymbol{\cdot} G_{H} \boldsymbol{\cdot} Ca_{RRUS} \boldsymbol{\cdot} K_{a} \boldsymbol{\cdot} SA_{RRUSS} = 69$


 $SA_{RRUSS} \coloneqq \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.7$


Total RRUS Wind Force =

Surface Area for One RRUS =

Total RRUS Wind Force =

Nodes

	Label	X [in]	Y [in]	Z [in]	Temp [deg F]	Detach From Dia
1	N1	-13.5	4.998	-2.		
2	N2	-71.5	4.998	30		
3	N3	14.875	4.998	30		
4	N4	-13.5	34.998	-2.		
5	N5	-71.5	34.998	30		
6	N6	14.875	34.998	30		
7	N7	-71.5	-40.002	30		
8	N8	44.5	-40.002	30		
9	N9	-71.5	55.998	30		
10	N10	44.5	55.998	30		
11	N12	-76.5	4.998	30		
12	N13	-76.5	34.998	30		
13	N14	49.5	4.998	30		
14	N15	49.5	34.998	30		
15	N22	0.6875	4.998	14.		
16	N23	-12.587748	4.998	-0.971204		
17	N24	-12.587748	34.998	-0.971204		×
18	N25	13.962748	4.998	28.971204		
19	N26	13.962748	34.998	28.971204		
20	N27	-41.875	4.998	30		
21	N28	-41.875	34.998	30		
22	N29	-27.6875	34.998	14.		
23	N31	-14.412252	4.998	-0.971204	1	
24	N32	-14.412252	34.998	-0.971204		
25	N33	-40.962748	4.998	28.971204		
26	N34	-40.962748	34.998	28.971204		
27	N35	44.5	34.998	30		
28	N36	44.5	4.998	30		
29	N37	-33.	4.998	30		
30	N38	-33.	34.998	30		
31	N39	-33.	-40.002	30		
32	N40	-33.	55.998	30		
33	N45	-46.875	34.998	30		
34	N46	-58.875	34.998	-15		
35	N41	6.	-40.002	30		
36	N42	6.	55.998	30		
37	N43	6.	34.998	30		
38	N44	6.	4.998	30		

Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N4	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N23						
4	N24						
5	N31						
6	N32						
7	N46	Reaction	Reaction	Reaction			

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. C	Density [k	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
3	A992	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	0.3	0.65	0.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	0.3	0.65	0.49	46	1.2	58	1.1
6	A53 Grad	29000	11154	0.3	0.65	0.49	35	1.5	58	1.2

General Section Sets

	Label	Shape	Туре	Material	Area [in ²]	lyy [in⁴]	lzz [in⁴]	J [in⁴]
1	GEN1A	RE4X4	Beam	gen_Conc3NW	16	21.333	21.333	31.573
2	RIGID		None	RIGID	1e+06	1e+06	1e+06	1e+06

Hot Rolled Member Properties

	Label	Shape	Length [in]	Lb y-y [in]	Lb z-z [in]	Lcomp t	Lcomp	L-Torqu	К у-у	K z-z	Cb	Function
1	M1	(E) Ante	96			Lbyy						Lateral
2	M2	(E) Ante	96			Lbyy						Lateral
3	M3	(E) Pipe	42.768			Lbyy						Lateral
4	M4	(E) Pipe	42.768			Lbyy						Lateral
5	M6	(E) Hori	126			Lbyy						Lateral
6	M7	(E) Hori	126			Lbyy						Lateral
7	M9	(E) SR5/8	30			Lbyy						Lateral
8	M10	(E) SR5/8	36.061			Lbyy						Lateral
9	M11	(E) SR5/8	36.061			Lbyy						Lateral
10	M12	(E) SR5/8	30			Lbyy						Lateral
11	M13	(E) Pipe	42.768			Lbyy						Lateral
12	M14	(E) Pipe	42.768			Lbyy						Lateral
13	M15	(E) SR5/8	30			Lbyy						Lateral
14	M16	(E) SR5/8	36.061			Lbyy						Lateral
15	M17	(E) SR5/8	36.061			Lbyy						Lateral
16	M18	(E) SR5/8	30			Lbyy						Lateral
17	M19	(E) Ante	96			Lbyy						Lateral
18	M21	(E) Hori	46.573			Lbyy						Lateral
19	M20	(E) Ante	96			Lbyy						Lateral

Member Point Loads (BLC 2 : Dead Load)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M20	Y	-0.074	48	Active
2	M20	Y	-0.067	6	Active
3	M20	Y	-0.067	90	Active
4	M2	Y	-0.022	63	Active
5	M2	Y	-0.022	33	Active
6	M19	Y	-0.012	70	Active
7	M19	Y	-0.012	26	Active
8	M19	Y	-0.109	48	Active

Member Point Loads (BLC 3 : Ice Load)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M20	Y	-0.177	90	Active
2	M20	Y	-0.067	48	Active
3	M20	Y	-0.177	6	Active
4	M2	Y	-0.046	33	Active
5	M2	Y	-0.046	63	Active
6	M19	Y	-0.065	26	Active
7	M19	Y	-0.065	70	Active
8	M19	Y	-0.096	48	Active

Member Point Loads (BLC 4 : Wind with Ice X)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M20	Х	0.016	48	Active
2	M20	Х	0.043	6	Active
3	M20	Х	0.043	90	Active
4	M2	Х	0.008	63	Active
5	M2	Х	0.008	33	Active
6	M19	Х	0.016	70	Active
7	M19	Х	0.016	26	Active

Member Point Loads (BLC 4 : Wind with Ice X) (Continued)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
8	M19	Х	0.023	48	Active

Member Point Loads (BLC 5 : Wind X)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M20	Х	0.132	6	Active
2	M20	X	0.045	48	Active
3	M20	Х	0.132	90	Active
4	M2	Х	0.015	33	Active
5	M2	X	0.015	63	Active
6	M19	Х	0.04	26	Active
7	M19	Х	0.04	70	Active
8	M19	Х	0.069	48	Active

Member Point Loads (BLC 6 : Wind with Ice Z)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M20	Z	0.02	48	Active
2	M20	Z	0.082	6	Active
3	M20	Z	0.082	90	Active
4	M2	Z	0.023	63	Active
5	M2	Z	0.023	33	Active
6	M19	Z	0.032	70	Active
7	M19	Z	0.032	26	Active
8	M19	Z	0.029	48	Active

Member Point Loads (BLC 7 : Wind Z)

5	Member Label	Direction	Magnitude [k, k-ft]	Location [(in, %)]	Inactive [(k, k-ft), (in,
1	M20	Z	0.299	6	Active
2	M20	Z	0.057	48	Active
3	M20	Z	0.299	90	Active
4	M2	Z	0.077	33	Active
5	M2	Z	0.077	63	Active
6	M19	Z	0.104	26	Active
7	M19	Z	0.104	70	Active
8	M19	Z	0.09	48	Active

Member Distributed Loads (BLC 4 : Wind with Ice X)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
1	M3	Х	0.0009	0.0009	0	%100	Active
2	M4	Х	0.0009	0.0009	0	%100	Active
3	M13	Х	0.0009	0.0009	0	%100	Active
4	M14	Х	0.0009	0.0009	0	%100	Active
5	M9	Х	0.0003	0.0003	0	%100	Active
6	M10	Х	0.0003	0.0003	0	%100	Active
7	M11	Х	0.0003	0.0003	0	%100	Active
8	M12	Х	0.0003	0.0003	0	%100	Active
9	M15	Х	0.0003	0.0003	0	%100	Active
10	M16	Х	0.0003	0.0003	0	%100	Active
11	M17	Х	0.0003	0.0003	0	%100	Active
12	M18	Х	0.0003	0.0003	0	%100	Active
13	M20	Х	0.001	0.001	0	%100	Active
14	M2	Х	0.001	0.001	0	%100	Active
15	M19	Х	0.001	0.001	0	%100	Active
16	M1	Х	0.001	0.001	0	%100	Active
17	M21	Х	0.001	0.001	0	%100	Active

Member Distributed Loads (BLC 5 : Wind X)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
1	M3	Х	0.004	0.004	0	%100	Active
2	M4	Х	0.004	0.004	0	%100	Active
3	M13	Х	0.004	0.004	0	%100	Active
4	M14	Х	0.004	0.004	0	%100	Active
5	M9	Х	0.002	0.002	0	%100	Active
6	M10	Х	0.002	0.002	0	%100	Active
7	M11	Х	0.002	0.002	0	%100	Active
8	M12	Х	0.002	0.002	0	%100	Active
9	M15	Х	0.002	0.002	0	%100	Active
10	M16	Х	0.002	0.002	0	%100	Active
11	M17	Х	0.002	0.002	0	%100	Active
12	M18	Х	0.002	0.002	0	%100	Active
13	M20	Х	0.006	0.006	0	%100	Active
14	M2	Х	0.006	0.006	0	%100	Active
15	M19	Х	0.006	0.006	0	%100	Active
16	M1	Х	0.006	0.006	0	%100	Active
17	M21	Х	0.006	0.006	0	%100	Active

Member Distributed Loads (BLC 6 : Wind with Ice Z)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
1	M6	Z	0.001	0.001	0	%100	Active
2	M7	Z	0.001	0.001	0	%100	Active
3	M3	Z	0.0009	0.0009	0	%100	Active
4	M4	Z	0.0009	0.0009	0	%100	Active
5	M13	Z	0.0009	0.0009	0	%100	Active
6	M14	Z	0.0009	0.0009	0	%100	Active
7	M9	Z	0.0003	0.0003	0	%100	Active
8	M10	Z	0.0003	0.0003	0	%100	Active
9	M11	Z	0.0003	0.0003	0	%100	Active
10	M12	Z	0.0003	0.0003	0	%100	Active
11	M15	Z	0.0003	0.0003	0	%100	Active
12	M16	Z	0.0003	0.0003	0	%100	Active
13	M17	Z	0.0003	0.0003	0	%100	Active
14	M18	Z	0.0003	0.0003	0	%100	Active
15	M2	Z	0.001	0.001	0	30	Active
16	M2	Z	0.001	0.001	66	96	Active
17	M20	Z	0.001	0.001	90	96	Active
18	M20	Z	0.001	0.001	0	6	Active
19	M19	Z	0.001	0.001	0	26	Active
20	M19	Z	0.001	0.001	70	96	Active
21	M1	Z	0.001	0.001	0	%100	Active
22	M21	Z	0.001	0.001	0	%100	Active

Member Distributed Loads (BLC 7 : Wind Z)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
1	M6	Z	0.006	0.006	0	%100	Active
2	M7	Z	0.006	0.006	0	%100	Active
3	M3	Z	0.004	0.004	0	%100	Active
4	M4	Z	0.004	0.004	0	%100	Active
5	M13	Z	0.004	0.004	0	%100	Active
6	M14	Z	0.004	0.004	0	%100	Active
7	M9	Z	0.002	0.002	0	%100	Active
8	M10	Z	0.002	0.002	0	%100	Active
9	M11	Z	0.002	0.002	0	%100	Active
10	M12	Z	0.002	0.002	0	%100	Active
11	M15	Z	0.002	0.002	0	%100	Active
12	M16	Z	0.002	0.002	0	%100	Active

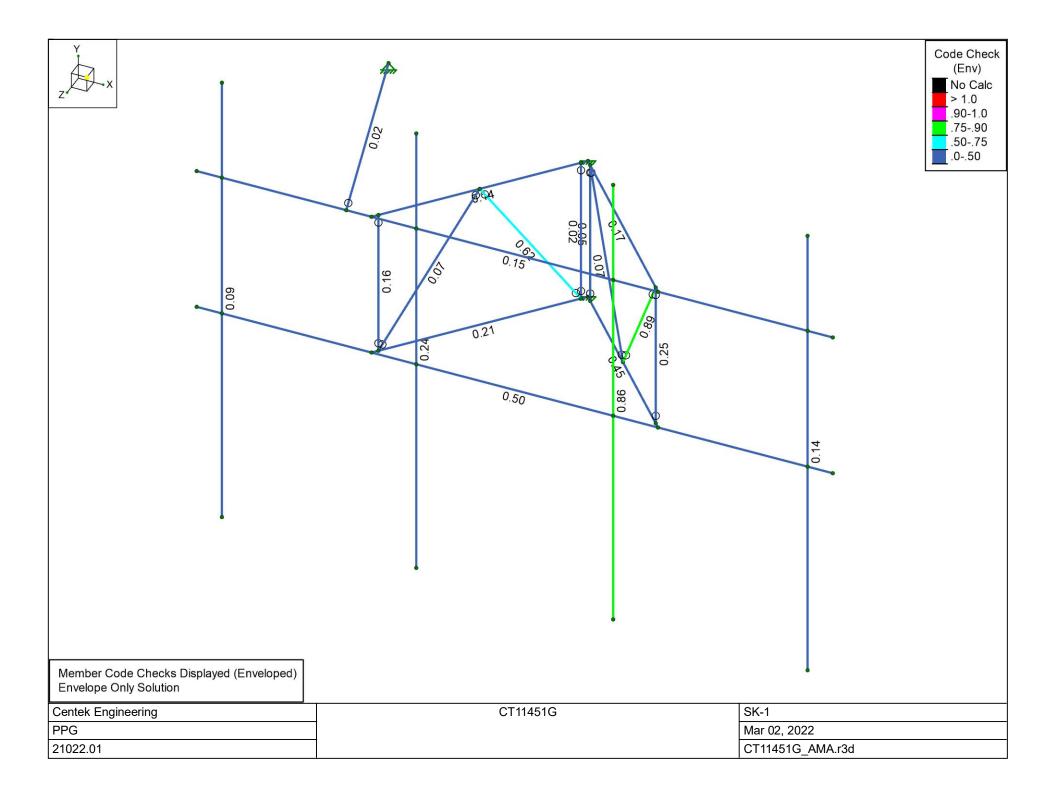
Member Distributed Loads (BLC 7 : Wind Z) (Continued)

	Member Label	Direction	Start Magnitud	End Magnitude	Start Location [End Location [(Inactive [(k, k-f
13	M17	Z	0.002	0.002	0	%100	Active
14	M18	Z	0.002	0.002	0	%100	Active
15	M20	Z	0.006	0.006	0	6	Active
16	M2	Z	0.006	0.006	66	%100	Active
17	M2	Z	0.006	0.006	0	30	Active
18	M20	Z	0.006	0.006	90	96	Active
19	M19	Z	0.006	0.006	70	96	Active
20	M19	Z	0.006	0.006	0	26	Active
21	M1	Z	0.006	0.006	0	%100	Active
22	M21	Z	0.006	0.006	0	%100	Active

Basic Load Cases

	BLC Desc	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Me	Surface(P
1	Self Weight	DĹ		-1						
2	Dead Load	None					8			
3	Ice Load	None					8			
4	Wind with	None					8	17		
5	Wind X	None					8	17		
6	Wind with	None					8	22		
7	Wind Z	None					8	22		

Load Combinations


	De	. So	PD	SR	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa
1	1.2	. Yes	Y		1	1.2	2	1.2	5	1.6														
2	0.9.	. Yes	Y		1	0.9	2	0.9	5	1.6														
3	1.2.	. Yes	Y		1	1.2	2	1.2	3	1	4	1												
4	1.2	. Yes	Y		1	1.2	2	1.2	7	1.6														
5	0.9.	. Yes	Y		1	0.9	2	0.9	7	1.6														
6	1.2	. Yes	Y		1	1.2	2	1.2	3	1	6	1												

Node Reactions

	Node		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	0.434	6	0.623	3	1.49	3	0.029	5	0.111	4	0.004	5
2		min	-0.895	2	0.012	5	-1.351	5	-0.078	3	-0.196	2	-0.07	1
3	N4	max	-0.136	2	0.963	6	0.274	2	-0.007	2	0.012	4	0.063	6
4		min	-0.458	6	0.043	2	-1.644	4	-0.099	6	-0.056	1	-0.038	2
5	N46	max	0.133	5	0.008	1	0.481	5	0	6	0	6	0	6
6		min	-0.24	1	0.006	5	-0.829	1	0	1	0	1	0	1
7	Totals:	max	0	6	1.501	6	0	2						
8		min	-1.27	1	0.571	2	-2.33	4						

Material Take-Off

	Material	Size	Pieces	Length [in]	Weight [k]
1	Hot Rolled Steel				
2	A36 Gr.36	0.625' Dia.	8	264.2	0.023
3	A53 Grade B	PIPE_1.25	4	171.1	0.03
4	A53 Grade B	PIPE_2.0	7	682.6	0.197
5	Total HR Steel		19	1117.9	0.251

Centered on Solutionswww.centekeng.com63-2 North Branford RoadP: (203) 488-0580Branford, CT 06405F: (203) 488-8587

Subject:

Location:

Date: 03/02/2022

Connection to Lattice Tower

Salem, CT

Prepared by: PPG; Checked by: CFC Job No. 22022.01

<u>Antenna</u>	Mast	to Silo	Connection:

1/2" Dia. X 6-1/2" Long Grade 5 Hex Thru Bolt		
Number of Bolts =	$N \coloneqq 2$	(User Input)
Spacing Between Bolts=	$S \coloneqq 6$ in	(User Input)
Design Tension Strength =	$\varPhi F_{nt} \coloneqq 17.7 \ \pmb{kip}$	(User Input)
Design Shear Strength=	$\Phi F_{nv} \coloneqq 10.3 \ \textit{kip}$	(User Input)

Design Reactions:	Node 1 - Envelope	
Force X =	$Shear_x \coloneqq 0.895 \cdot kip$	(User Input)
Force Y=	$Vertical \coloneqq 0.623 \ \textit{kip}$	(User Input)
Force Z=	$Shear_z \coloneqq 1.49 \cdot kip$	(User Input)
Moment X=	$M_X\coloneqq 0.078\boldsymbol{\cdot kip\cdot ft}$	(User Input)
Moment Y=	$M_Y \coloneqq 0.196 \cdot kip \cdot ft$	(User Input)
Moment Z=	$M_Z \coloneqq 0.07 \ \pmb{kip} \cdot \pmb{ft}$	(User Input)

Anchor Check:

Max Tension Force =	$T_{Max} \coloneqq \frac{Shear_z}{N} + \frac{M_Y + M_X}{S \cdot \underline{N}} = 1.29 \ \textit{kip}$
	~ 2

Max Shear Force =	$V_{Max} \coloneqq \frac{Shear_x + Vertical}{N} + \frac{M_Z}{S \cdot \frac{N}{2}} = 0.9 \ \textit{kip}$
Condition 1 =	$Condition1 \coloneqq \mathbf{if} \left(\frac{T_{Max}}{\varPhi F_{nt}} \leq 1.00 \text{ , "OK" , "NG"} \right) = "OK"$
Condition 2 =	$Condition 2 \coloneqq \mathbf{if} \left(\frac{V_{Max}}{\varPhi F_{nv}} \leq 1.00 \text{ , "OK" , "NG"} \right) = \text{"OK"}$
Condition 3 =	$Condition 3 \coloneqq \mathbf{if} \left(\frac{T_{Max}}{\varPhi F_{nt}} + \frac{V_{Max}}{\varPhi F_{nv}} \le 1.0 \text{, "OK", "NG"} \right) = \text{"OK"}$
% of Capacity =	$\max\left(\frac{T_{Max}}{\Phi E}, \frac{V_{Max}}{\Phi E}, \left(\frac{T_{Max}}{\Phi E}\right) + \left(\frac{V_{Max}}{\Phi E}\right)\right) = 16.03\%$

 ΦF_{nt} , ΦF_{nv}

 ΦF_{nt}

 ΦF_{nv}

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11451G

27 Maynard Road Salem, Connecticut 06420

March 23, 2022

EBI Project Number: 6222002091

Site Comp	liance Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	56.01%

environmental | engineering | due diligence

March 23, 2022

T-Mobile Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTI1451G

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **27 Maynard Road** in **Salem, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

environmental | engineering | due diligence

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 27 Maynard Road in Salem, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 2 UMTS channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 6) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.

- 7) I LTE Traffic channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 60 Watts.
- 8) I LTE Broadcast channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 20 Watts.
- 9) I NR Traffic channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of I20 Watts.
- 10) I NR Broadcast channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 40 Watts.
- 11) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 12) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 13) The antennas used in this modeling are the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz / 2500 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector A, the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz / 2500 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz channel(s), the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 600 MHz / 700 MHz channel(s), the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector B, the Ericsson AIR 6419 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 2500 MHz / 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 2500 MHz / 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the 600 MHz / 2500 MHz / 2100 MHz channel(s), the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Commscope VV-65A-RI for the 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all

calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 14) The antenna mounting height centerline of the proposed antennas is 82 feet above ground level (AGL).
- 15) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 16) All calculations were done with respect to uncontrolled / general population threshold limits.

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	Ericsson AIR 6419	Make / Model:	Ericsson AIR 6419	Make / Model:	Ericsson AIR 6419
Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz	Frequency Bands:	2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz
Gain:	22.05 dBd / 17.3 dBd / 22.05 dBd / 17.3 dBd	Gain:	22.05 dBd / 17.3 dBd / 22.05 dBd / 17.3 dBd	Gain:	22.05 dBd / 17.3 dBd / 22.05 dBd / 17.3 dBd
Height (AGL):	82 feet	Height (AGL):	82 feet	Height (AGL):	82 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	240.00 Watts	Total TX Power (W):	240.00 Watts	Total TX Power (W):	240.00 Watts
ERP (VV):	32,080.61	ERP (VV):	32,080.61	ERP (VV):	32,080.61
Antenna AI MPE %:	19.97%	Antenna BI MPE %:	19.97%	Antenna CI MPE %:	19.97%
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20	Make / Model:	RFS APXVAARR24_43-U- NA20
Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz	Frequency Bands:	600 MHz / 600 MHz / 700 MHz
Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 12.95 dBd / 13.35 dBd
Height (AGL):	82 feet	Height (AGL):	82 feet	Height (AGL):	82 feet
Channel Count:	5	Channel Count:	5	Channel Count:	5
Total TX Power (W):	200.00 Watts	Total TX Power (W):	200.00 Watts	Total TX Power (W):	200.00 Watts
ERP (VV):	4,059.02	ERP (VV):	4,059.02	ERP (VV):	4,059.02
Antenna A2 MPE %:	6.03%	Antenna B2 MPE %:	6.03%	Antenna C2 MPE %:	6.03%
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Commscope VV-65A- R1	Make / Model:	Commscope VV-65A- RI	Make / Model:	Commscope VV-65A- R I
Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz	Frequency Bands:	1900 MHz / 1900 MHz / 2100 MHz
Gain:	15.55 dBd / 15.55 dBd / 16.05 dBd	Gain:	15.55 dBd / 15.55 dBd / 16.05 dBd	Gain:	15.55 dBd / 15.55 dBd / 16.05 dBd
Height (AGL):	82 feet	Height (AGL):	82 feet	Height (AGL):	82 feet
Channel Count:	6	Channel Count:	6	Channel Count:	6
Total TX Power (W):	300.00 Watts	Total TX Power (W):	300.00 Watts	Total TX Power (W):	300.00 Watts
ERP (VV):	11,293.20	ERP (VV):	11,293.20	ERP (VV):	11,293.20
Antenna A3 MPE %:	7.03%	Antenna B3 MPE %:	7.03%	Antenna C3 MPE %:	7.03%

environmental | engineering | due diligence

Site Composite MPE	%
Carrier	MPE %
T-Mobile (Max at Sector A):	33.02%
AT&T	20.88%
Antenna Systems 2-8	2.11%
Site Total MPE % :	56.01%

T-Mobile MPE % F	er Sector
T-Mobile Sector A Total:	33.02%
T-Mobile Sector B Total:	33.02%
T-Mobile Sector C Total:	33.02%
Site Total MPE % :	56.01%

T-Mobile Maximum MPE Power Values (Sector A) Watts ERP T-Mobile Frequency Band / Total Power # Height Frequency Allowable MPE Calculated % MPE Technology (Per Density Channels (MHz) (µW/cm²) (feet) (Sector A) Channel) (µW/cm²) 2500 MHz LTE IC & 2C T-Mobile 2500 MHz LTE IC & 2C I 9619.47 82.0 59.87 1000 5.99% Traffic Traffic T-Mobile 2500 MHz LTE IC & 2C 2500 MHz LTE IC & 2C I 1074.06 82.0 6.69 1000 0.67% Broadcast Broadcast T-Mobile 2500 MHz NR Traffic 19238.94 82.0 119.75 2500 MHz NR Traffic 1000 11.97% Т 2500 MHz NR T-Mobile 2500 MHz NR Broadcast 2148.13 82.0 13.37 1000 1.34% Т Broadcast 2 82.0 7.37 600 MHz LTE 1.84% T-Mobile 600 MHz LTE 591.73 400 T-Mobile 600 MHz NR L 1577.94 82.0 9.82 600 MHz NR 400 2.46% 2 T-Mobile 700 MHz LTE 648.82 82.0 8.08 700 MHz LTE 467 1.73% T-Mobile 1900 MHz UMTS 2 1076.77 82.0 13.40 1900 MHz UMTS 1000 1.34% T-Mobile 1900 MHz LTE 2 2153.53 82.0 26.81 1900 MHz LTE 1000 2.68% T-Mobile 2100 MHz LTE 2 2416.30 82.0 30.08 2100 MHz LTE 1000 3.01% Total: 33.02%

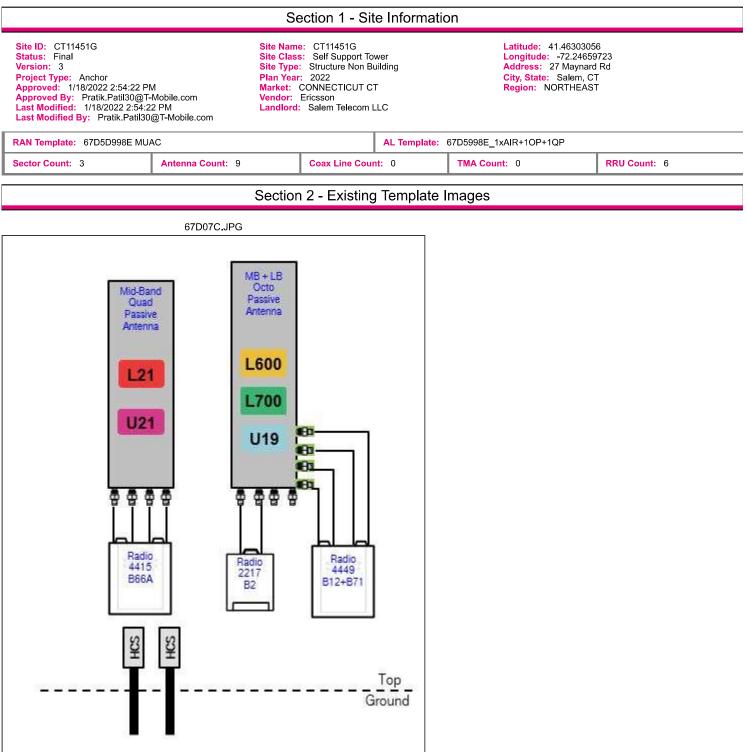
• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

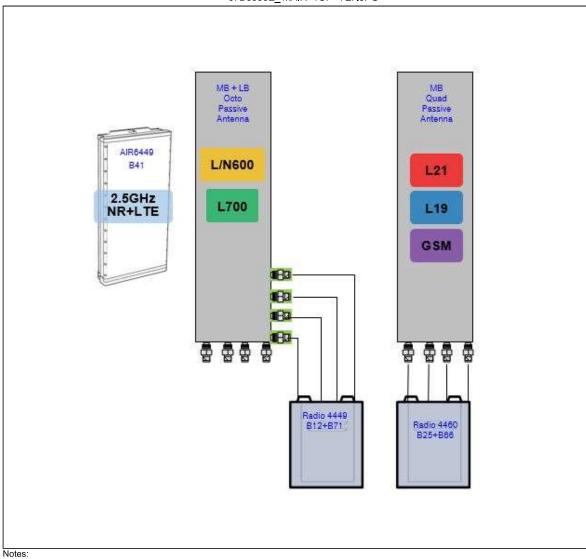
The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector A:	33.02%
Sector B:	33.02%
Sector C:	33.02%
T-Mobile Maximum	33.02%
MPE % (Sector A):	33.02%
Site Total:	56.01%
Site Compliance Status:	COMPLIANT


The anticipated composite MPE value for this site assuming all carriers present is **56.01%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

3/14/22, 12:02 PM



Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Notes:

Section 3 - Proposed Template Images

67D5998E_1xAIR+10P+1QPJPG

Section 4 - Siteplan Images

----- This section is intentionally blank. -----

CT11451G_Anchor_3

RAN Template:A&L Template:67D5D998E MUAC67D5998E_1xAIR+1OP+1QP

Section 5 - RAN Equipment

-	
	Existing RAN Equipment
	Template: 67D07C 6102 MUAC
Enclosure	1
Enclosure Type	(RBS 6102 MU AC)
Baseband	DUW30 BB 6630 BB 6630 L700 L2100 L600 N600
Hybrid Cable System	Ericsson 6x12 HCS *Select Length & AWG* (x 2)

		Proposed RAN Equip	ment	
		Template: 67D5D998E M	IUAC	
Enclosure	1	2	3	4
Enclosure Type	Ancillary Equipment (Ericsson)	RBS 6102 MU AC	Enclosure 6160 AC V1	B160
Baseband		DUW30 U1900 L700 L600 N600 BB 6630 L2100 L1900	RP 6651 N2500 RP 6651 L2500	
Hybrid Cable System		Ericsson 6x12 HCS *Select Length & AWG* (x 2)	PSU 4813 vR4A (Kit) Ericsson Hybrid Trunk 6/24 4AWG 100m (x 2)	
Transport System			CSR IXRe V2 (Gen2)	

RAN Scope of Work:

Remove and return all cabinet radios from existing base station cabinet.

Add (1) Enclosure 6160.

Add (1) iXRe Router to new Enclosure 6160.

Add (1) RP 6651 for L2500 to new Enclosure 6160.

Add (1) RP 6651 for N2500 to new Enclosure 6160.

Add (1) PSU4813 Voltage Booster to new Enclosure 6160.

Add (1) Battery Cabinet B160.

Existing : (2) 6x12

Remove all Coax

Add (2) 6X24 HCS terminating at the Enclosure 6160 and Connect DC for the AIR6449 B41 to the PSU4813 Voltage Booster.

CT11451G_Anchor_3

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

 RAN Template:
 A&L Template:

 67D5D998E MUAC
 67D5998E_1xAIR+10P+1QP

Section 6 - A&L Equipment

CT11451G_Anchor_3_2022-03-14

Existing Template: 67D07C_1QP+1OP Proposed Template: 67D5998E_1xAIR+1OP+1QP

		Sector 1 (Existing) view fr	om behind			
Coverage Type	A - Outdoor Macro					
Antenna		1		2	2	
Antenna Model	RFS - APX16DWV-16DWV-S-E-A20 (0	Quad)	RFS - APXVAARF	R24_43-U-NA20 (Oct	0)	
Azimuth	30		30			
M. Tilt	0		0			
Height	82		82			
Ports	P1	P2	P3	P4	P5	P6
Active Tech.	(U1900)	(L2100)	L700 L600 N600	L700 L600 N600		
Dark Tech.						
Restricted Tech.						
Decomm. Tech.						
E. Tilt	2	2	2	2		
Cables			Coax Jumper (x2)	Coax Jumper (x2)		
TMAs						
Diplexers / Combiners						
Radio	RRUS11 B2 (At Antenna)	RRUS11 B4 (At Antenna)	Radio 4449 B71+B85 (At Antenna)	SHARED Radio 4449 B71+B85 (At Antenna)		
Sector Equipment						
Unconnected Equip	oment:					
Swap (1) LB Dual a Swap (1) RRUS11 I	intenna with (1) LB/MB Octa 8' antenna. B12 with (1) Radio 4449.					

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

3/14/22, 12:02 PM

CT11451G_Anchor_3

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Sector 1 (Proposed) view from behind Coverage Type A - Outdoor Macro Antenna 1 2 3 Antenna Model AIR 6419 B41 (Active Antenna - Massive MIMO) RFS - APXVAARR24_43-U-NA20 (Octo) Commscope_VV-65A-R1 (Quad) Azimuth (30) (30) (30) M. Tilt 0 0 0 Height 82 82 82) Ports **P1 P2 P5 P6 P7 P8 P**3 **P4** Active Tech. N2500 L2500 N2500 L2500 L700 L700 (L2100) (L1900) (L2100) (L1900) (U1900) (L600) (L600) (U1900) N600 N600 Dark Tech. **Restricted Tech.** Decomm. Tech. E. Tilt 2 2 2 (2) 2 (2) Cables Fiber Jumper (x2) Fiber Jumper (x2) Coax Coax Coax Jumper (x2) Coax Jumper (x2) Jumper Jumper Fiber Jumper Fiber Jumper (x2) (x2) Fiber Fiber Jumper Jumper TMAs Diplexers / Combiners Radio Radio SHARED Radio 4460 B25+B66 SHARED 4449 Radio (At Antenna) Radio 4460 B25+B66 B71+B8 4449 (At Antenna) B71+B8 5 (At Antenn 5 (At a) Antenn a) **Sector Equipment Unconnected Equipment:** Scope of Work: There will be Three antennae per sector. Remove all TMAs. Remove all Coaxial Lines. Remove RRUS11 B2 and RRUS11 B4 from Position 1. Replace APX16DWV from Position 1 with (1) AIR 6419 for L2500 and N2500. Install (1) mid-band Quad VV-65A-R1 in Position 3. Add (1) Radio 4460 B25+B66 for L2100, L1900 (Both carriers), and U1900 to Position 3 at antenna. Ensure RET control is enabled for all technology layers according to the Design Documents *A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

RAN Template:	A&L Template:
67D5D998Ė MUAC	67D5998E_1xAIR+10P+1QP

CT11451G_Anchor_3

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Sector 2 (Existing) view from behind **Coverage Type** A - Outdoor Macro Antenna 1 2 Antenna Model RFS - APX16DWV-16DWV-S-E-A20 (Quad) RFS - APXVAARR24_43-U-NA20 (Octo) Azimuth 150 150 M. Tilt 0 0 Height 82 (82) Ports **P1 P2 P**3 **P4 P5 P6** Active Tech. U1900 (L2100) L700 L600 (L700) (L600) (N600) (N600) Dark Tech. **Restricted Tech.** Decomm. Tech. E, Tilt 2 2 2 (2) Cables Coax Jumper Coax Jumper (x2) (x2) TMAs Diplexers / Combiners Radio RRUS11 B2 (At Antenna) RRUS11 B4 (At Antenna) Radio 4449 SHARED B71+B85 (At Radio 4449 Antenna) B71+B85 (At Antenna) Sector Equipment **Unconnected Equipment:** Scope of Work: Swap (1) LB Dual antenna with (1) LB/MB Octa 8' antenna. Swap (1) RRUS11 B12 with (1) Radio 4449.

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

3/14/22, 12:02 PM

67D5D998E MUAC 67D5998E_1xAIR+1OP+1QP

CT11451G_Anchor_3

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

		Sector	2 (Propos	ed) view fr	om behin	d		
Coverage Type	A - Outdoor Macro							
Antenna		2				3		
Antenna Model	AIR 6419 B41 (Active Antenna - Massive MIMO)		RFS - APXVAARR24_43-U-NA20 (Octo)				Commscope_VV-65A-R1 (Quad)	
Azimuth	(150)		150				150	
M. Tilt	0		0				0	
Height	82		82				82	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech.	(N2500) (L2500)	N2500 (L2500)	L700 L600 N600	L700 L600 N600			(L2100) (L1900) (U1900)	L2100 L1900 U1900
Dark Tech.	1							
Restricted Tech.								
Decomm. Tech.								
E. Tilt	2	2	2	2			2	2
Cables	Fiber Jumper (x2)	Fiber Jumper (x2)	Coax Jumper (x2) Fiber Jumper	Coax Jumper (x2) Fiber Jumper			Coax Jumper (x2) Fiber Jumper	Coax Jumper (x2) Fiber Jumper
TMAs								
Diplexers / Combiners								
Radio			Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)			Radio 4460 B25+B66 (At Antenna)	SHARED Radio 4460 B25+B66 (At Antenna)
Sector Equipment								
Unconnected Equip	oment:							
Scope of Work:								
There will be Three antennae per sector. Remove all TMAs. Remove all Coaxial Lines. Remove RRUS11 B2 and RRUS11 B4 from Position 1. Replace APX16DWV from Position 1 with (1) AIR 6419 for L2500 and N2500. Install (1) mid-band Quad VV-65A-R1 in Position 3 . Add (1) Radio 4460 B25+B66 for L2100, L1900 (Both carriers), and U1900 to Position 3 at antenna. Ensure RET control is enabled for all technology layers according to the Design Documents								

RAN Template:	A&L Template:				
67D5D998Ė MUAC	67D5998E_1xAIR+10P+1QP				

CT11451G_Anchor_3

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Sector 3 (Existing) view from behind **Coverage Type** A - Outdoor Macro Antenna 1 2 Antenna Model RFS - APX16DWV-16DWV-S-E-A20 (Quad) RFS - APXVAARR24_43-U-NA20 (Octo) Azimuth (270) (270) M. Tilt 0 0 Height 82 (82) Ports **P1 P2 P**3 **P4 P5 P6** Active Tech. U1900 (L2100) L700 L600 (L700) (L600) (N600) (N600) Dark Tech. **Restricted Tech.** Decomm. Tech. E. Tilt 2 2 2 (2) Cables Coax Jumper Coax Jumper (x2) (x2) TMAs Diplexers / Combiners Radio RRUS11 B2 (At Antenna) RRUS11 B4 (At Antenna) Radio 4449 SHARED B71+B85 (At Radio 4449 Antenna) B71+B85 (At Antenna) Sector Equipment **Unconnected Equipment:** Scope of Work: Swap (1) LB Dual antenna with (1) LB/MB Octa 8' antenna. Swap (1) RRUS11 B12 with (1) Radio 4449.

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

3/14/22, 12:02 PM

CT11451G_Anchor_3

Print Name: Preliminary (RFDS_For_Scoping) PORs: Anchor_Phase 3

Sector 3 (Proposed) view from behind Coverage Type A - Outdoor Macro Antenna 1 2 3 Antenna Model AIR 6419 B41 (Active Antenna - Massive MIMO) RFS - APXVAARR24_43-U-NA20 (Octo) Commscope_VV-65A-R1 (Quad) Azimuth 270 270 (270) M. Tilt 0 0 0 Height 82 82 (82) Ports **P1 P2 P5 P6 P7 P8 P**3 **P4** Active Tech. N2500 L2500 N2500 L2500 L700 L700 (L2100) (L1900) (L2100) (L1900) (U1900) (L600) (L600) (U1900) N600 N600 Dark Tech. **Restricted Tech.** Decomm. Tech. E. Tilt 2 2 2 (2) 2 (2) Cables Fiber Jumper (x2) Fiber Jumper (x2) Coax Coax Coax Jumper (x2) Coax Jumper (x2) Jumper Jumper Fiber Jumper Fiber Jumper (x2) (x2) Fiber Fiber Jumper Jumper TMAs Diplexers / Combiners Radio Radio SHARED Radio 4460 B25+B66 SHARED 4449 Radio (At Antenna) Radio 4460 B25+B66 B71+B8 4449 (At Antenna) B71+B8 5 (At Antenn 5 (At a) Antenn a) **Sector Equipment Unconnected Equipment:** Scope of Work: There will be Three antennae per sector. Remove all TMAs. Remove all Coaxial Lines. Remove RRUS11 B2 and RRUS11 B4 from Position 1. Replace APX16DWV from Position 1 with (1) AIR 6419 for L2500 and N2500. Install (1) mid-band Quad VV-65A-R1 in Position 3. Add (1) Radio 4460 B25+B66 for L2100, L1900 (Both carriers), and U1900 to Position 3 at antenna.

Ensure RET control is enabled for all technology layers according to the Design Documents

*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

RAN Template:A&L Template:67D5D998E MUAC67D5998E_1xAIR+10P+1QP

Section 7 - Power Systems Equipment

Existing Power Systems Equipment	
This section is intentionally blank	

	Proposed Power Systems Equipment		
Enclosure	1		
Enclosure Type	Enclosure 6160 AC V1		