10 Industrial Ave, Suite 3 Mahwah NJ 07430

PHONE: 201.684.0055 FAX: 201.684.0066

June 23, 2021

Members of the Siting Council Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification

47 Inwood Road, Rocky Hill, CT 06067

Latitude: 41.63858611 Longitude: -72.67928889

T-Mobile Site#: CTHA859A - Sprint Keep Project

Dear Ms. Bachman:

T-Mobile/Sprint currently maintains six (6) antennas at the 140-foot level of the existing 184-foot Monopole at 47 Inwood Road, Rocky Hill, Connecticut. The 184-foot Monopole is owned and operated by American Tower. The ground space is owned by Merrifield LLC. T-Mobile/Sprint now intends to remove all Sprint equipment including antennas, cables, and ground equipment. T-mobile will be adding nine (9) antennas. The new antennas will be installed at the same 140-foot level. The new antennas support 5G services.

Planned Modifications:

Tower:

Remove

- (6) Sprint Antennas
- (12) Sprint RRHs
- (4) Sprint Hybrid Cables

Install New:

- (3) APX16DWV-16DWV Antennas
- (3) APXVAALL24 43-U-NA20 Antennas
- (3) AIR6449 Antennas
- (3) Ericsson Radio 4449 B71+B85
- (3) Ericsson 4424 B25
- (3) Ericsson Radio 4415 B66A RRU
- (3) 6/24 Hybrid Cables

Ground:

Install New:

- (1) 6160 Cabinet and (1) B160 Battery Cabinet
- (3) BB 6648s
- (1) DUG20
- (1) RBS6601
- (1) PSU 4813

To Be Removed:

All Sprint Ground Equipment

This facility was not originally approved by the Connecticut Siting Council. The Town of Rocky Hill originally approved the tower in 1993. The original approval is included in this package.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to Mayor - Lisa Marotta, Elected Official, and Kim Ricci, Zoning Enforcement Officer, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

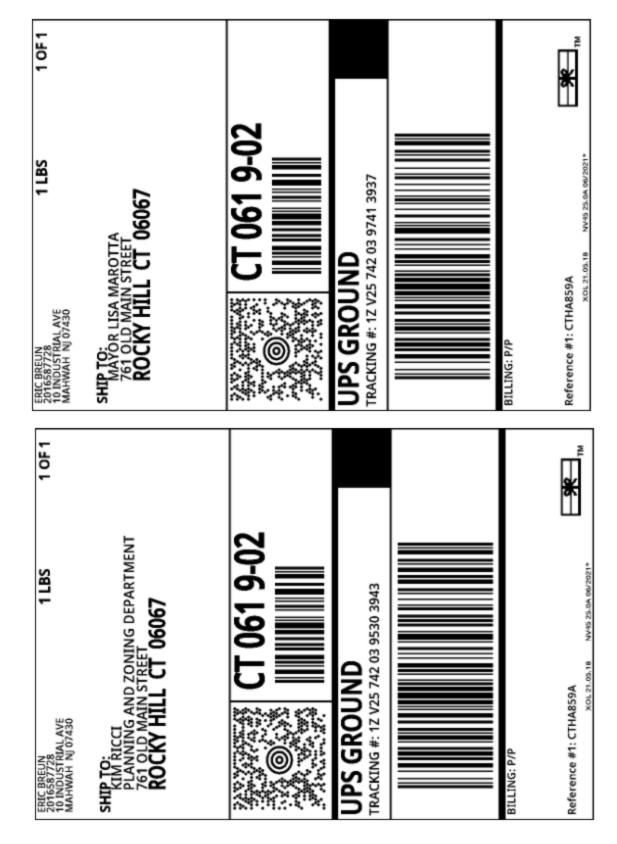
For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

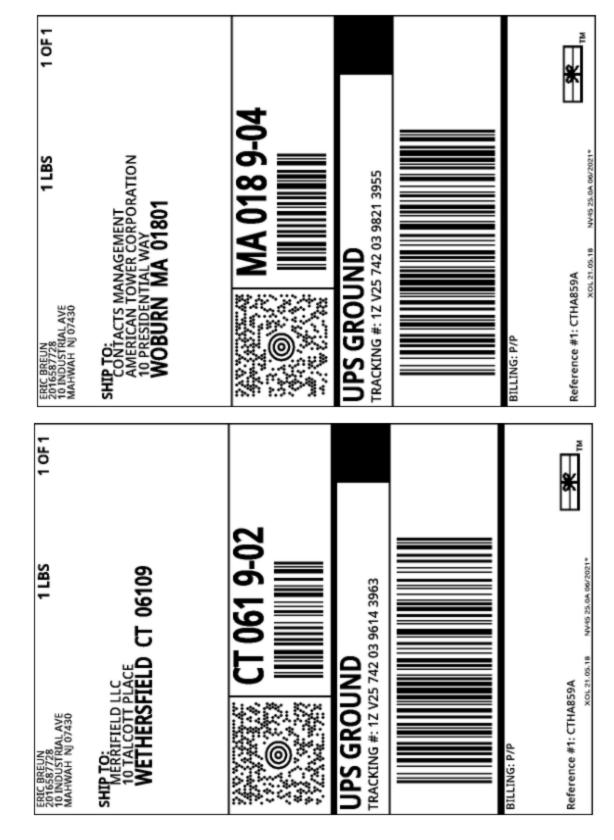
Sincerely,

Eric Breun

Transcend Wireless Cell: 201-658-7728

Email: ebreun@transcendwireless.com


Attachments


cc: Lisa Marotta – as Mayor of the Town of Rocky Hill

Kim Ricci - Zoning Enforcement Officer

American Tower - Tower Owner

Merrifield LLC - Land Owner

699 OLD MAIN STREET • ROCKY HILL, CONNECTICUT 06067 • FAX (203) 563-1738

CERTIFIED

October 27, 1993

Ms. Barbara Bogle Whalen & Company, Inc. 575 Corporate Drive, Suite 402 Mahwah, New Jersey 07430

Site Plan Application, Smart SMR, 47 Inwood Road

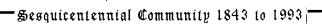
Dear Ms. Bogle,

The Rocky Hill Planning and Zoning Commission at their regular meeting of Monday, October 25, 1993 voted to approve with conditions the aforementioned matter. The conditions of approval are compliance with the Staff Reports.

Please submit two (2) sets of plans, with live seals and signatures, to this office. One set can be mylar, the other is to conform to the requirements enclosed for filing with the Town Clerk. Staff will arrange for the Commission's signature. please submit a bond estimate for any improvements (pavement, erosion controls, etc.).

Upon receipt of the signed plans and a \$10.00 per sheet recording fee, Staff will gladly record the plans with the Town Clerk. Please beware that plans are to be recorded within 90 days of approval.

Should you have any questions on this matter, please do not hesitate to contact this office.


Sincerely,

Kimberley A. Ricol Town Plans

Town Planner

KAR/mn

enclosure

TOWN OF ROCKY HILL INTER-OFFICE

TO:

Planning & Zoning Commission

FROM:

Kimberley A. Ricci, Town Planner

DATE:

October 21, 1993

SUBJECT:

47 Inwood Road - Smart SMR of New York

The following staff comments relate to site plans presented at the 9/27/93 Planning and Zoning Commission meeting:

Town Engineer:

- 1. Note to be on plan: "Remove topsoil before installing gravel road.
- 2. Note: All trees, stumps, brush should be chipped or removed from site.
- 3. Note: Erosion controls are to be installed prior to any clearing and/or excavation.
- 4. Note: The erosion control plan may be modified by the Town of Rocky Hill as field conditions warrant.

Town Planner:

- 1. Signature block for the Commission to be on all sheets.
- Zoning Regulation Bulk Table to be on plan (see attached)
- 3. Outdoor storage will not be allowed on site unless in compliance with Zoning Regulations.
- 4. Individual/firm responsible for installation/maintenance of haybales is to be noted on the plans.
- 5. Note type of construction and height of communications shelter.

6. Note height of tower.

Kimberley A. Ricci

Town Planner

KAR/mn

cc: Barbara Bogle, Smart SMR

TOWN OF ROCKY HILL

Situs: 47 INWOOD ROAD

PARCEL ID: 4145

Class: 300

Card: 1 of 1

Printed: March 5, 2020

CURRENT OWNER MERRIFIELD LLC

10 TALCOTT PLACE

WETHERSFIELD CT 06109

503/959 05/08/2006

GENERAL INFORMATION Living Units Neighborhood I

Alternate ID 004208 Vol / Pg 503/959 Map/Lot 16-296 Zoning ΒP

Class **INDUSTRIAL**

16-296-001 12/09/2012

		Land Information		
Туре		Size Influence Factors	Influence %	Value
Primary	AC	1.0000		200,000

Total Acres: 1

Spot:

Location:

	Α	ssessment Infor	mation					
	Assessed Appraised Cost Income Market Land 140,000 200,000 200,000 200,000 Building 228,830 326,900 326,900 56,400							
	-,	,	/	/	0			
Building Total	228,830 368,830	326,900 526,900	326,900 526,900	56,400 256,400	0			

Value Flag COST APPROACH **Gross Building:**

Manual Override Reason Base Date of Value Effective Date of Value

		Entrance Information	on	
Date	ID	Entry Code	Source	
10/05/12	ST	Measured + 1visit	From Conversion	
02/20/09	ST	Hearing No Change	From Conversion	
08/19/08	ST	Reval Inspection	Owner	

			Permit In	formation	
Date Issued	Number	Price	Purpose		% Complete
05/09/18	2018-459	20,000	CM	Scope Of Work Includes Upgradin	, 0
10/23/17	2018-189	25,000	CM	Empire Telecom For At&T, An Exis	s 0
11/08/16	2017-213	25,000	MS	Swap At&T'S Equipment On Existi	i O
08/15/14	2015-75	27,000	MS	Upgrade And Replace Antennas A	100
04/16/14	2014-356	12,500	CM	Prep And Concrete Pad For New 0	100

	Sales/Ownership History									
Transfer Date	Price Type	Validity	Deed Reference	Deed Type	Grantee					
05/08/06 06/24/98	Improved - L&B Sale Improved - L&B Sale	No Consideration	503/959 346/452	No Consideration	MERRIFIELD LLC MERRIFIELD BEVERLY					

COMMERCIAL PROPERTY RECORD CARD

2019

TOWN OF ROCKY HILL

Situs: 47 INWOOD ROAD

Parcel Id: 4145

Class: 300

Card: 1 of 1

Printed: March 5, 2020

Building Information Year Built/Eff Year 1962 /

Year Built/Eff Year 1902 /
Building # 1
Structure Type Warehouse
Identical Units 1
Total Units 1
Grade C
Covered Parking
Uncovered Parking

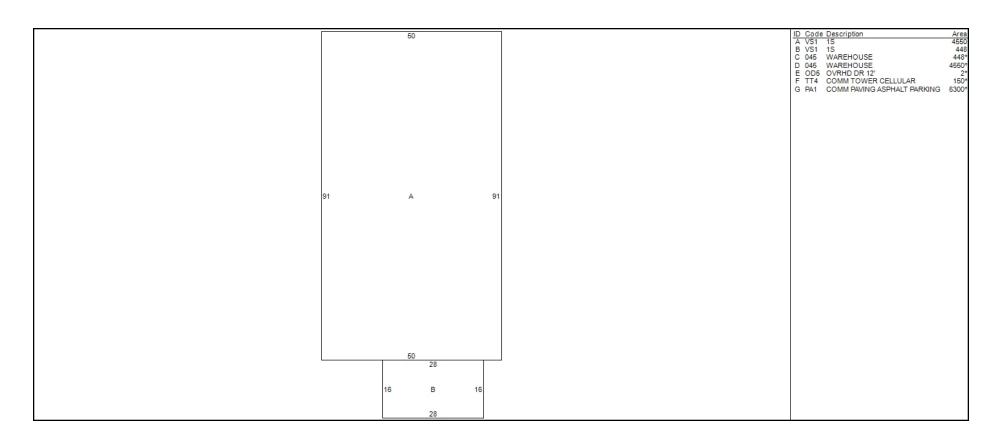
DBĂ

				Building C	Other Features		
Line Type	+/-	Meas1	Meas2 # Stop	s Ident Units	Line Type	+/- Meas1	Meas2 # Stops Ident Units
1 Ovrhd Dr 12'		2	1	1			

	Interior/Exterior Information														
Lir	ne	Level From - To	Int Fin	Area	Perim	Use Type	Wall Height	Ext Walls	Construction	Partitions	Heating	Cooling	Plumbing	Physical	Functional
1		01 01		448	84	Warehouse	16	Concrete BI	Wood Frame/Joist/B	Normal	Hot Air	None	Normal	2	3
2		01 01		4,550	270	Warehouse	16	Concrete BI	Wood Frame/Joist/B	Normal	Hot Air	None	Normal	2	3

		interior/Exterior valuation i	Detail	
Line	Area Use Type	% Good	% Complete	Use Value/RCNLD
1	448 Warehouse	40		22,990
2	4,550 Warehouse	40		111,800

1 1										
	Line	Туре	Yr Blt	Meas1	Meas2	Qty	Area	Grade	Phy Fun	Value
	1	Tower Cell	2005			1	150	С	G	186,000
	2	Asph Pav	1962			1	6,300	С	Р	6,070
Ш										
Ш										
Ш										
Ш										
Ш										
Ш										
Ш										
Ш										
Ш										
Ш										
П										


Outbuilding Data

tyler clt division

COMMERCIAL PROPERTY RECORD CARD 2019

TOWN OF ROCKY HILL

 Situs: 47 INWOOD ROAD
 Parcel Id: 4145
 Class: 300
 Card: 1 of 1
 Printed: March 5, 2020

Addtional Property Photos

COMMERCIAL PROPERTY RECORD CARD 2019

TOWN OF ROCKY HILL

Income Summary (Includes all Building on Parcel) **Total Net Income**

Sub total

Capitalization Rate

Residual Land Value Final Income Value

Total Gross Rent Area Total Gross Building Area 25,640

0.100000

256,400

256,400 4,998

4,998

Card: 1 of 1 Printed: March 5, 2020 Situs: 47 INWOOD ROAD Parcel Id: 4145 Class: 300

	Income Detail (Includes all Buildings on Parcel)															
	Inc Model Mod Description	Units	Net Area	Income Rate	Econ Adjust	Potential Gross Income	Vac Model	Vac Adj	Additional Income		Expense Model %	Expense Adj %	Expense Adj	Other Expenses	Total Expenses	Net Operating Income
07 S	1 Lt Manufacturing	0	4,998	6.00		29,988	5		0	28,489	10			2,849	2,849	25,640

		A	oartment D	etail - Bu	ilding 1 of 1			Building Cost Detail - Buildi	ng 1 of 1
Line	Use Type	Per Bldg	Beds	Baths	Units	Rent	Income		
								Total Gross Building Area	4,998
								Replace, Cost New Less Depr Percent Complete	134,790 100
								Number of Identical Units	1
								Economic Condition Factor Final Building Value	134,790
									·
								Value per SF	26.97

Notes - Building 1 of 1

AMERICAN TOWER®

ATC SITE NAME: MIDDLETOWN CT 3

ATC SITE NUMBER: 302537

T-MOBILE SITE NAME: CTHA859A

T-MOBILE SITE NUMBER: CTHA859A

SITE ADDRESS: 47 INWOOD ROAD

ROCKY HILL, CT 06067

LOCATION MAP

T-MOBILE SPRINT RETAIN ANTENNA AMENDMENT PLAN 67D5998C CONFIGURATION

COMPLIANCE CODE	PROJECT SUMMA	ARY	PROJECT DESCRIPTION		SHEET INDEX			
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE	SITE ADDRESS:		THE PROPOSED PROJECT INCLUDES MODIFYING GROUND BASED AND TOWER MOUNTED EQUIPMENT AS INDICATED PER BELOW:	SHEET NO:	DESCRIPTION:	REV:	DATE:	BY:
FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES. NOTHING IN THESE PLANS IS	47 INWOOD ROAD	_	TOWER WORK: REMOVE (3) APXVSPP18-C-A20 ANTENNA(s), (3) DT465B-2XR	G-001	TITLE SHEET	0	06/02/21	GC
TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.	ROCKY HILL, CT 0606		ANTENNA(s), (3) 800MHZ 2X50W RRH(s), (3) RRH2X50-08 RRH(s), (3)	G-002	GENERAL NOTES	0	06/02/21	GC
2015 INTERNATIONAL BUILDING CODE (IBC)	COUNTY: HARTFORD		4X40W RRH(s), (3) TD-RRH8X20-25 RRH(s), AND (4) 6X12 (1-1/4") HYBRID CABLE(s)	C-101	DETAILED SITE PLAN	0	06/02/21	GC
2. 2017 NATIONAL ELECTRIC CODE (NEC)	GEOGRAPHIC COORDINA LATITUDE: 41.6385861		INSTALL (3) APXVAALL24 43-U-NA20 ANTENNA(s), (3)	C-102	DETAILED GROUND PLAN	0	06/02/21	GC
LOCAL BUILDING CODE CITY/COUNTY ORDINANCES	LONGITUDE: -72.679288		APX16DWV-16DWV-S-E-A20 ANTENNA(s), (3) AIR6449 ANTENNA(s), (3)	C-201	TOWER ELEVATION	0	06/02/21	GC
4. SITINGGIVE SIMANGES	GROUND ELEVATION: 140'		RADIO 4449 B71+B85 RRH(s), (3) RRUS 4415 B66A RRH(s), (3) 4424 B25 RRH(s), AND (3) 6/24 (1-5/8") HYBRID CABLE(s)	C-401	ANTENNA INFORMATION & SCHEDULE	0	06/02/21	GC
			EXISTING PLATFORM MOUNT TO REMAIN	C-501	CONSTRUCTION DETAILS	0	06/02/21	GC
			GROUND WORK:	E-501	GROUNDING DETAILS	0	06/02/21	GC
			REMOVE (2) CABINET(s) AND (1) EQUIPMENT ENCLOSURE INSTALL (1) ENCLOSURE 6160, (1) B160 ENCLOSURE, (3) BB 6648(s),	R-601	SUPPLEMENTAL	0	00/02/21	- GC
	PROJECT TEAM		(1) DUG20, (1) RBS 6601, AND (1) PSU 4813	R-602	SUPPLEMENTAL			
	TROSECTIEA	JI ILAWI	-		-			
	TOWER OWNER:	APPLICANT: T-MOBILE	THE PROPOSED PROJECT DOES NOT INCLUDE ELECTRICAL SCOPE	R-603	SUPPLEMENTAL			
	AMERICAN TOWER 10 PRESIDENTIAL WAY		PROJECT NOTES	R-604	SUPPLEMENTAL			
LITH ITV COMPANIES	MODUDNI MA 04004	WHITNEY JONES TRANSCENDWIRELESS.COM	THE FACILITY IS UNMANNED.					
UTILITY COMPANIES	ENGINEER:		A TECHNICIAN WILL VISIT THE SITE APPROXIMATELY ONCE A MONTH FOR ROUTINE INSPECTION AND MAINTENANCE.					
POWER COMPANY: EVER SOURCE PHONE: (800) 286-2000	KIMLEY-HORN		THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT LAND DISTURBANCE OR EFFECT OF STORM WATER DRAINAGE.					
TELEPHONE COMPANY: FRONTIER COMMUNICATIONS	& ASSOCIATES, INC. 421 FAYETTEVILLE ST, STE 600		NO SANITARY SEWER, POTABLE WATER OR TRASH DISPOSAL IS REQUIRED.					
PHONE: (866) 604-1892	RALEIGH, NC 27601 COA: PEC.0000738		5. HANDICAP ACCESS IS NOT REQUIRED.					
	PROPERTY OWNER:		DDO IFOT LOCATION DIDECTIONS					
<u> </u>	MERRIFIELD LLC		PROJECT LOCATION DIRECTIONS					
CBYD.com	10 TALCOTT PLACE WETHERSFIELD, CT 06109		PROCEED FROM ROCKY HILL, CT HEAD SOUTHWEST ON OLD MAIN ST TOWARD WASHINGTON ST 0.2 MI TURN RIGHT ONTO					
	WETTERONIED, 01 00103		CT-160 / ELM ST, THEN IMMEDIATELY TURN LEFT ONTO CT-99 / MAIN ST 1.4 MI TURN RIGHT ONTO BROOK ST 1.7 MI TURN LEFT					
			ONTO CT-3 / CROMWELL AVE 0.2 MI TURN RIGHT ONTO INWOOD RD 0.1 MI ARRIVE AT INWOOD RD THE LAST INTERSECTION BEFORE YOUR DESTINATION IS CT-3 / CROMWELL AVE 47 INWOOD RD, ROCKY HILL, CT 06067					
								+

421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

L	REV	. DESCRIPTION	BY	DATE
L	A	PRELIM	GC	04/28/21
L	\wedge	ISSUED FOR CONSTRUCTION	WCE	06/02/21
L	$\overline{\Lambda}$			
L				
L	\square			
ı	\perp			

ATC SITE NUMBER:

302537

ATC SITE NAME:

MIDDLETOWN CT 3

T-MOBILE SITE NAME:

CTHA859A

SITE ADDRESS: 47 INWOOD ROAD ROCKY HILL. CT 06067

T··Mobile

ĺ	DATE DRAWN:	06/02/21
l	ATC JOB NO:	13668065
	CUSTOMER ID:	CTHA859A
l	CUSTOMER #:	CTHA859A

TITLE SHEET

SHEET NUMBER

G-001

REVISION:

GENERAL CONSTRUCTION NOTES:

- OWNER FURNISHED MATERIALS, T-MOBILE "THE COMPANY" WILL PROVIDE AND THE CONTRACTOR WILL INSTALL
 - A. BTS EQUIPMENT FRAME (PLATFORM) AND ICEBRIDGE SHELTER (GROUND BUILD/CO-LOCATE ONLY)
 - B. AC/TELCO INTERFACE BOX (PPC)
 - C. ICE BRIDGE (CABLE TRAY WITH COVER) (GROUND BUILD/CO-LOCATE ONLY, GC TO FURNISH AND INSTALL FOR ROOFTOP INSTALLATION)
 - TO FURNISH AND INSTALL FOR ROOF
 D. TOWERS, MONOPOLES
 - E. TOWER LIGHTING
 - F. GENERATORS & LIQUID PROPANE TANK
 - G. ANTENNA STANDARD BRACKETS, FRAMES AND PIPES FOR MOUNTING
 - H. ANTENNAS (INSTALLED BY OTHERS)
 - I. TRANSMISSION LINE
 - J. TRANSMISSION LINE JUMPERS
 - K. TRANSMISSION LINE CONNECTORS WITH WEATHERPROOFING KITS
 - L. TRANSMISSION LINE GROUND KITS
 - M. HANGERS
 - N. HOISTING GRIPS
 - O. BTS EQUIPMENT
- 2. THE CONTRACTOR IS RESPONSIBLE TO PROVIDE ALL OTHER MATERIALS FOR THE COMPLETE INSTALLATION OF THE SITE INCLUDING, BUT NOT LIMITED TO, SUCH MATERIALS AS FENCING, STRUCTURAL STEEL SUPPORTING SUB-FRAME FOR PLATFORM, ROOFING LABOR AND MATERIALS, GROUNDING RINGS, GROUNDING WIRES, COPPER-CLAD OR XIT CHEMICAL GROUND ROD(S), BUSS BARS, TRANSFORMERS AND DISCONNECT SWITCHES WHERE APPLICABLE, TEMPORARY ELECTRICAL POWER, CONDUIT, LANDSCAPING COMPOUND STONE, CRANES, CORE DRILLING, SLEEPERS AND RUBBER MATTING, REBAR, CONCRETE CAISSONS, PADS AND/OR AUGER MOUNTS, MISCELLANEOUS FASTENERS, CABLE TRAYS, NON-STANDARD ANTENNA FRAMES AND ALL OTHER MATERIAL AND LABOR REQUIRED TO COMPLETE THE JOB ACCORDING TO THE DRAWINGS AND SPECIFICATIONS. IT IS THE POSITION OF T-MOBILE TO APPLY FOR PERMITTING AND CONTRACTOR RESPONSIBLE FOR PICKUP AND PAYMENT OF REQUIRED PERMITS.
- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222, AND COMPLY WITH ATC CONSTRUCTION SPECIFICATIONS.
- 4. CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTIFICATION OF UNDERGROUND
- CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- 7. DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS
- DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION
 SAFETY WHICH SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOL IS. FTC.
- 11. CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC. BEFORE COMMENCING WORK.
- 12. INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE T-MOBILE REP PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE T-MOBILE REP PRIOR TO PROCEEDING.
- 13. EACH CONTRACTOR SHALL COOPERATE WITH THE T-MOBILE REP, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- 14. CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE T-MORILE CONSTRUCTION MANAGER
- 15. ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING INSTALLATION LISING A SILICONE SEALANT
- WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET, CONTRACTOR SHALL NOTIFY THE T-MOBILE REP AND ENGINEER OF RECORD IMMEDIATELY.
- 17. CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF EACH DAY.
- CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH AMERICAN TOWER CORPORATION (ATC) AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- CONTRACTOR SHALL FURNISH T-MOBILE AND AMERICAN TOWER CORPORATION (ATC)
 WITH A PDF MARKED UP AS-BUILT SET OF DRAWINGS UPON COMPLETION OF WORK.
- PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH T-MOBILE REP TO DETERMINE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALL ITEMS NOT PROVIDED SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL ALL ITEMS PROVIDED.

- PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH T-MOBILE REP
 TO DETERMINE IF ANY PERMITS WILL BE OBTAINED BY CONTRACTOR. ALL REQUIRED
 PERMITS NOT OBTAINED BY T-MOBILE MUST BE OBTAINED, AND PAID FOR, BY THE
 CONTRACTOR.
- CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH T-MOBILE SPECIFICATIONS AND REQUIREMENTS.
- 24. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO T-MOBILE FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO T-MOBILE SPECIFICATIONS, AND AS SHOWN IN THESE PLANS.
- 26. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- CONTRACTOR SHALL NOTIFY T-MOBILE REP A MINIMUM OF 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING ANY UNDERGROUND UTILITIES, FOUNDATIONS OR SEALING ANY WALL, FLOOR OR ROOF PENETRATIONS FOR ENGINEERING REVIEW AND APPROVAL.
- CONTRACTOR SHALL BE RESPONSIBLE FOR SITE SAFETY INCLUDING COMPLIANCE WITH ALL APPLICABLE OSHA STANDARDS AND RECOMMENDATIONS AND SHALL PROVIDE ALL NECESSARY SAFETY DEVICES INCLUDING PPE AND PPM AND CONSTRUCTION DEVICES SUCH AS WELDING AND FIRE PREVENTION, TEMPORARY SHORING, SCAFFOLDING, TRENCH BOXES/SLOPING, BARRIERS, ETC.
- 29. THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE, ALL EXISTING FACILITIES AND SUCH OF HIS NEW WORK LIABLE TO INJURY DURING THE CONSTRUCTION PERIOD. ANY DAMAGE CAUSED BY NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, OR BY THE ELEMENTS DUE TO NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, EITHER TO THE EXISTING WORK, OR TO HIS WORK OR THE WORK OF ANY OTHER CONTRACTOR, SHALL BE REPAIRED AT HIS EXPENSE TO THE OWNER'S SATISFACTION.
- 30. ALL WORK SHALL BE INSTALLED IN A FIRST CLASS, NEAT AND WORKMANLIKE MANNER BY MECHANICS SKILLED IN THE TRADE INVOLVED. THE QUALITY OF WORKMANSHIP SHALL BE SUBJECT TO THE APPROVAL OF THE T-MOBILE REP. ANY WORK FOUND BY THE T-MOBILE REP TO BE OF INFERIOR QUALITY AND/OR WORKMANSHIP SHALL BE REPLACED AND/OR REWORKED AT CONTRACTOR EXPENSE UNTIL APPROVAL IS ORTAINED.
- 31. IN ORDER TO ESTABLISH STANDARDS OF QUALITY AND PERFORMANCE, ALL TYPES OF MATERIALS LISTED HEREINAFTER BY MANUFACTURER'S NAMES AND/OR MANUFACTURER'S CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS AS SEPCIFIED
- 32. T-MOBILE FURNISHED EQUIPMENT SHALL BE PICKED-UP AT THE T-MOBILE WAREHOUSE, NO LATER THAN 48HR AFTER BEING NOTIFIED INSURED, STORED, UNCRATE, PROTECTED AND INSTALLED BY THE CONTRACTOR WITH ALL APPURTENANCES REQUIRED TO PLACE THE EQUIPMENT IN OPERATION, READY FOR USE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE EQUIPMENT AFTER PICKING IT UP.
- 33. T-MOBILE OR HIS ARCHITECT/ENGINEER RESERVES THE RIGHT TO REJECT ANY EQUIPMENT OR MATERIALS WHICH, IN HIS OWN OPINION ARE NOT IN COMPLIANCE WITH THE CONTRACT DOCUMENTS, EITHER BEFORE OR AFTER INSTALLATION AND THE EQUIPMENT SHALL BE REPLACED WITH EQUIPMENT CONFORMING TO THE REQUIREMENTS OF THE CONTRACT DOCUMENTS BY THE CONTRACTOR AT NO COST TO T-MOBILE OR THEIR ARCHITECT/ENGINEER.

SPECIAL CONSTRUCTION ANTENNA INSTALLATION NOTES:

- WORK INCLUDED:
 - A. ANTENNA AND COAXIAL CABLES ARE FURNISHED BY T-MOBILE UNDER A SEPARATE CONTRACT. THE CONTRACTOR SHALL ASSIST ANTENNA INSTALLATION CONTRACTOR IN TERMS OF COORDINATION AND SITE ACCESS. ERECTION SUBCONTRACTOR SHALL BE RESPONSIBLE FOR THE PROTECTION OF PERSONNEL.
 - B. INSTALL ANTENNA AS INDICATED ON DRAWINGS AND T-MOBILE SPECIFICATIONS.
 - C. INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON DRAWINGS.
 - D. INSTALL FURNISHED GALVANIZED STEEL OR ALUMINUM WAVEGUIDE.
 - E. CONTRACTOR SHALL PROVIDE FOUR (4) SETS OF SWEEP TESTS USING ANRITZU-PACKARD 8713B RF SCALAR NETWORK ANALYZER. SUBMIT FREQUENCY DOMAIN REFLECTOMETER(FDR) TESTS RESULTS TO THE PROJECT MANAGER. SWEEP TESTS SHALL BE AS PER ATTACHED RFS "MINIMUM FIELD TESTING RECOMMENDED FOR ANTENNA AND HELIAX COAXIAL CABLE SYSTEMS" DATED 10/5/93. TESTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING SERVICE AND BE BOUND AND SUBMITTED WITHIN ONE WEEK OF WORK COMPLETION.
 - F. INSTALL COAXIAL CABLES AND TERMINATING BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTIONS BETWEEN THE ANTENNA AND EQUIPMENT PER MANUFACTURER'S REQUIREMENTS. TERMINATE ALL COAXIAL CABLE THREE (3) FEET IN EXCESS OF ENTRY PORT LOCATION UNLESS OTHERWISE STATED.
 - G ANTENNA AND COAXIAL CABLE GROUNDING:
- ALL EXTERIOR #6 GREEN GROUND WIRE "DAISY CHAIN" CONNECTIONS ARE TO BE WEATHER SEALED WITH RFS CONNECTORS/SPLICE WEATHER PROOFING KIT #2221213 OR EQUAL.
- ALL COAXIAL CABLE GROUNDING KITS ARE TO BE INSTALLED ON STRAIGHT RUNS OF COAXIAL CABLE (NOT WITHIN BENDS).

ALL DISCREPANCIES FROM WHAT IS SHOWN ON THESE
CONSTRUCTION DRAWINGS SHALL BE COMMUNICATED TO ATC
ENGINEERING IMMEDIATELY FOR CORRECTION OR RE-DESIGN.
FAILURE TO COMMUNICATE DIRECTLY WITH ATC ENGINEERING OR
ANY CHANGES FROM THE DESIGN CONDUCTED WITHOUT PRIOR
APPROVAL FROM ATC ENGINEERING SHALL BE THE SOLE
RESPONSIBILITY OF THE GENERAL CONTRACTOR.

COA: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

 REV.
 DESCRIPTION
 BY
 DATE

 A
 PRELIM
 GC
 04/28/21

 O
 ISSUED FOR CONSTRUCTION
 WCE
 06/02/21

 A
 —
 —
 —

 A
 —
 —
 —

ATC SITE NUMBER:

302537

ATC SITE NAME:

MIDDLETOWN CT 3

T-MOBILE SITE NAME

CTHA859A

SITE ADDRESS: 47 INWOOD ROAD ROCKY HILL, CT 06067

CONN 29510 CENSEO MINISSIONAL ENGINE

T··Mobile·

 DATE DRAWN:
 06/02/21

 ATC JOB NO:
 13668065

 CUSTOMER ID:
 CTHA859A

 CUSTOMER #:
 CTHA859A

GENERAL NOTES

SHEET NUMBER:

REVISION

G-002

U

SITE PLAN NOTES:

LC

M

PB

PΡ

TRN

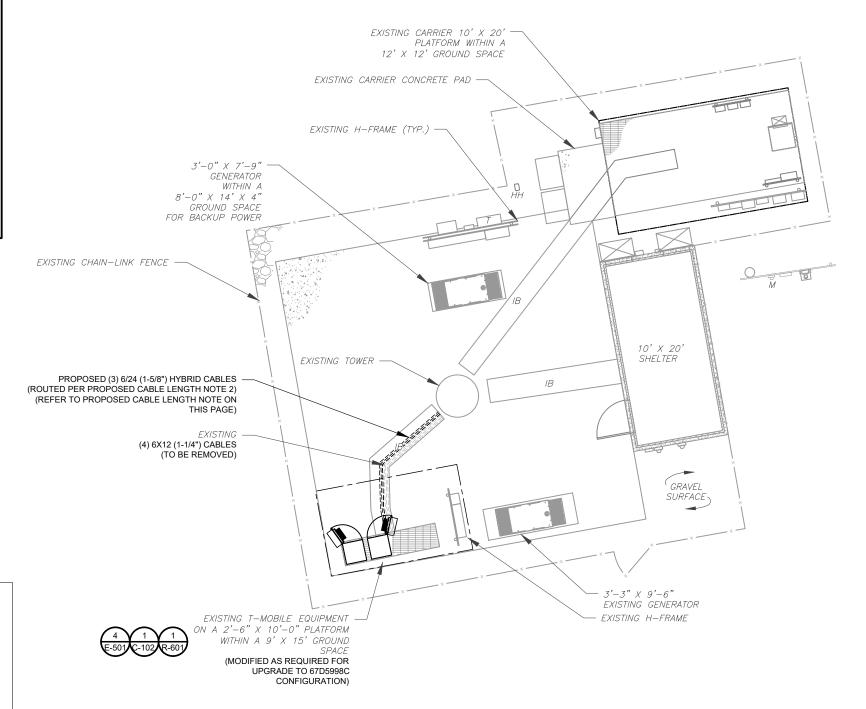
- THIS SITE PLAN REPRESENTS THE BEST PRESENT KNOWLEDGE AVAILABLE TO THE ENGINEER AT THE TIME OF THIS DESIGN. THE CONTRACTOR SHALL VISIT THE SITE PRIOR TO CONSTRUCTION AND VERIFY ALL EXISTING CONDITIONS RELATED TO THE SCOPE OF WORK FOR THIS PROJECT.
- ICE BRIDGE, CABLE LADDER, COAX PORT, AND COAX CABLE ARE SHOWN FOR REFERENCE ONLY, CONTRACTOR SHALL CONFIRM THE EXACT LOCATION OF ALL PROPOSED AND EXISTING EQUIPMENT AND STRUCTURES DEPICTED ON THIS PLAN. BEFORE UTILIZING EXISTING CABLE SUPPORTS, COAX PORTS, INSTALLING NEW PORTS OR ANY OTHER EQUIPMENT, CONTRACTOR SHALL VERIFY ALL ASPECTS OF THE COMPONENTS MEET THE ATC SPECIFICATIONS.
- NO ELECTRICAL SCOPE IS INCLUDED IN THIS PROJECT.

LEGEND

⊗ GROUNDING TEST WELL AUTOMATIC TRANSFER SWITCH ATS **BOLLARD** CSC CELL SITE CABINET D DISCONNECT ELECTRICAL **FIBER** GEN **GENERATOR** GENERATOR RECEPTACAL HH, V HAND HOLE, VAULT ΙB ICE BRIDGE KENTROX BOX

LIGHTING CONTROL

METER


TELCO.

PULL BOX

POWER POLE

TRANSFORMER

CHAINLINK FENCE

PROPOSED CABLE LENGTH:

- ESTIMATED LENGTH OF PROPOSED CABLE IS <u>179'</u>. ESTIMATED LENGTH OF CABLE WAS PROVIDED BY CUSTOMER OR CALCULATED BY ADDING THE RAD CENTER AND THE DISTANCE FROM THE SHELTER ENTRY PLATE TO THE TOWER (ALONG THE ICE BRIDGE) AND A SAFETY FACTOR MEASUREMENT OF 15% (OF THE TWO PREVIOUS VALUES), CDS DEFER TO GREATEST CABLE LENGTH.
- ROUTE PROPOSED CABLES ALONG SAME PATH AS EXISTING CABLES AND IN ACCORDANCE WITH STRUCTURAL ANALYSIS. IF ADEQUATE SPACE EXISTS, ROUTE CABLES THROUGH ENTRY PORT HOLE, UP INSIDE OF MONOPOLE, AND THROUGH EXIT PORT HOLE. IF ROUTING OUTSIDE THE MONOPOLE, ATTACH CABLES LISING STAND-OFF ADAPTERS MOUNTED TO TOWER USING STAINLESS STEEL BANDING. ADEQUATELY SECURE CABLES USING EITHER APPROPRIATELY SIZED STAINLESS STEEL SNAP-INS OR MOUNTING HARDWARE AND BRACKETS AS SPECIFIED BY CABLE MANUFACTURER.

COA: PEC.0000738 **421 FAYETTEVILLE ST. SUITE 600** RALEIGH, NC 27601

REV	. DESCRIPTION	BY	DATE
A	PRELIM	GC	04/28/21
\triangle	ISSUED FOR CONSTRUCTION	WCE	06/02/21
\triangle			
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:

302537

ATC SITE NAME:

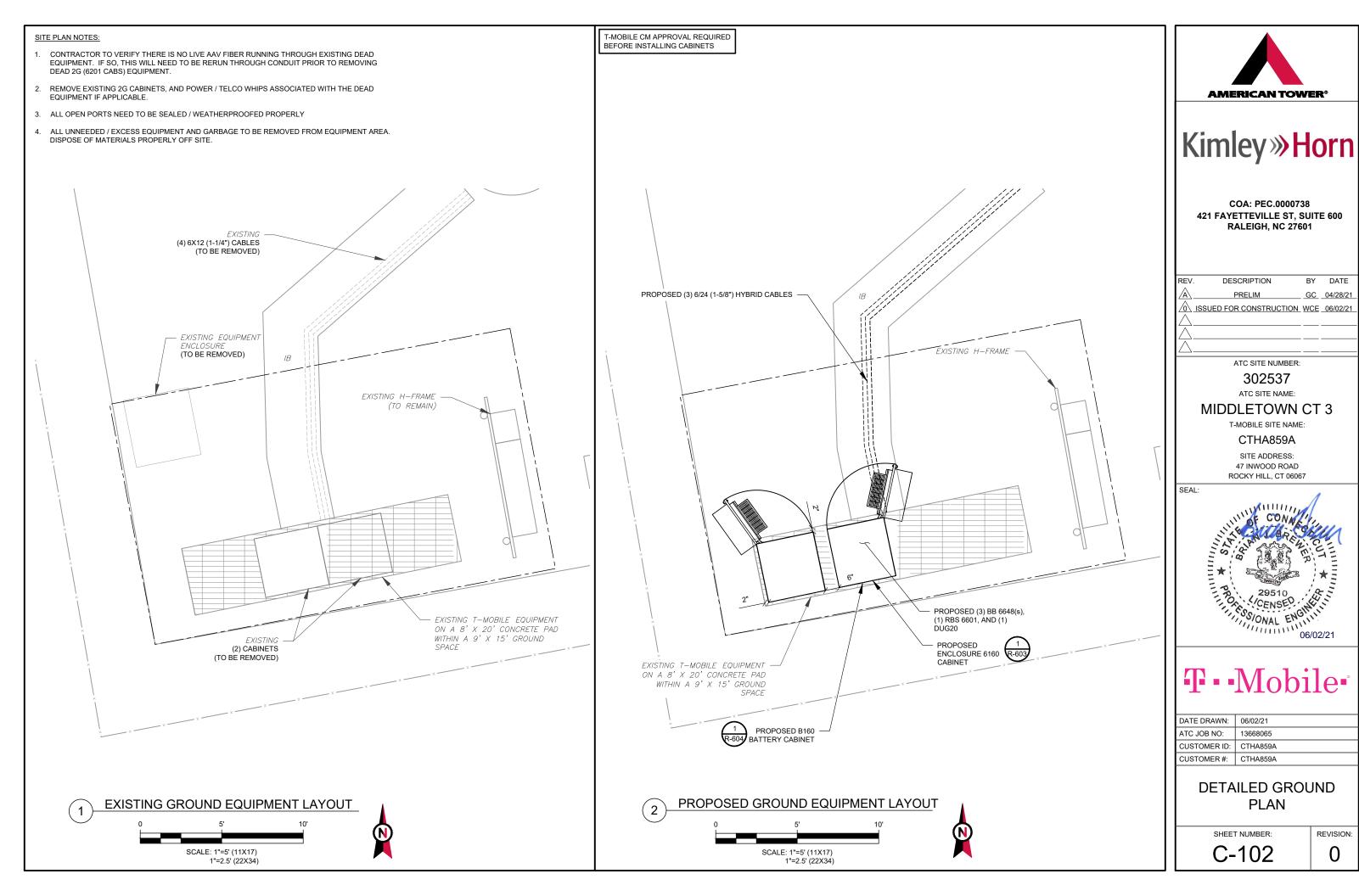
MIDDLETOWN CT 3

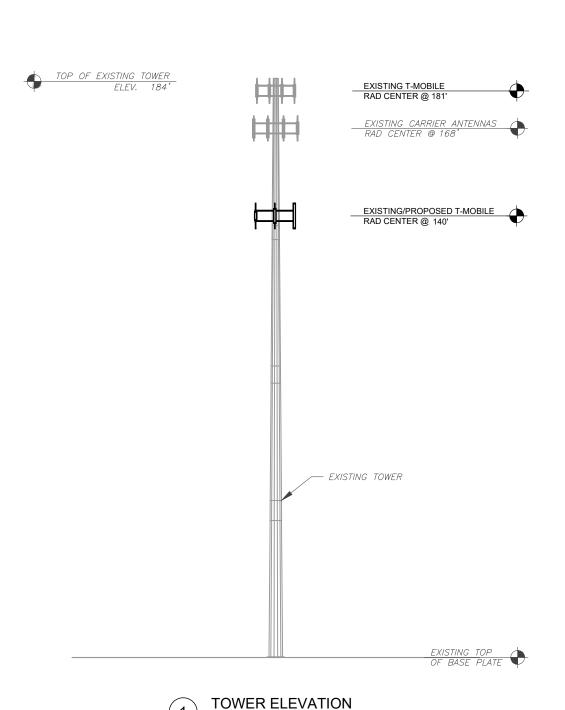
T-MOBILE SITE NAME

CTHA859A

SITE ADDRESS: 47 INWOOD ROAD ROCKY HILL, CT 06067

T··Mobile


DATE DRAWN:	06/02/21
ATC JOB NO:	13668065
CUSTOMER ID:	CTHA859A
CUSTOMER #:	CTHA859A


DETAILED SITE PLAN

SHEET NUMBER:

C-101

REVISION 0

SCALE: N.T.S.

ATC IS ANALYZING THE ANTENNA MOUNT UNDER A SEPARATE PROJECT. CONSTRUCTION IS NOT TO PROCEED UNTIL THE MOUNT ANALYSIS IS COMPLETE AND INDICATES THE ADDITIONAL LOADING DOES NOT OVERSTRESS THE MOUNT.

- TOWER NOTE:

 1. IT IS THE CONTRACTOR'S RESPONSIBILITY TO CONFIRM WITH THE PROJECT MANAGER THAT THEY HAVE THE MOST RECENT VERSION OF THE STRUCTURAL ANALYSIS BEFORE COMMENCING WORK. EXISTING AND PROPOSED TOWER APPURTENANCES, MOUNTS, AND ANTENNAS ARE SHOWN BASED ON THE STRUCTURAL ANALYSIS.
- WHERE APPLICABLE, ALL NEW ANTENNAS, EQUIPMENT, MOUNTS, CABLING, ETC. SHALL BE PAINTED/SOCKED TO MATCH EXISTING EQUIPMENT IN ACCORDANCE WITH FAA, JURISDICTION, AND/OR OTHER LOCAL REQUIREMENTS.
- ROUTE PROPOSED CABLES ALONG SAME PATH AS EXISTING CABLES AND IN ACCORDANCE WITH STRUCTURAL ANALYSIS. IF ADEQUATE SPACE EXISTS, ROUTE CABLES THROUGH ENTRY PORT HOLE, UP INSIDE OF MONOPOLE, AND THROUGH EXIT PORT HOLE. IF ROUTING OUTSIDE THE MONOPOLE, ATTACH CABLES USING STAND-OFF ADAPTERS MOUNTED TO TOWER USING STAINLESS STEEL BANDING. ADEQUATELY SECURE CABLES USING EITHER APPROPRIATELY SIZED STAINLESS STEEL SNAP-INS OR MOUNTING HARDWARE AND BRACKETS AS SPECIFIED BY CABLE MANUFACTURER.
- 4. TOWER ELEVATIONS ARE MEASURED FROM TOP OF BASE PLATE TO MATCH STRUCTURAL ANALYSIS. ELEVATIONS DO NOT REFLECT TRUE ABOVE GROUND LEVEL (A.G.L.)

COA: PEC.0000738 **421 FAYETTEVILLE ST, SUITE 600** RALEIGH, NC 27601

REV	. DESCRIPTION	BY	DATE
A	PRELIM	GC	04/28/21
$ \wedge $	ISSUED FOR CONSTRUCTION	WCE	06/02/21
$\overline{\Lambda}$			
$I \frown$		_	

ATC SITE NUMBER:

302537

ATC SITE NAME:

MIDDLETOWN CT 3

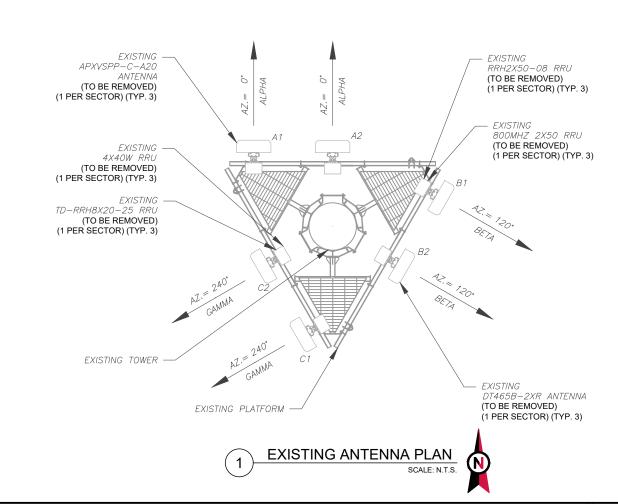
T-MOBILE SITE NAME:

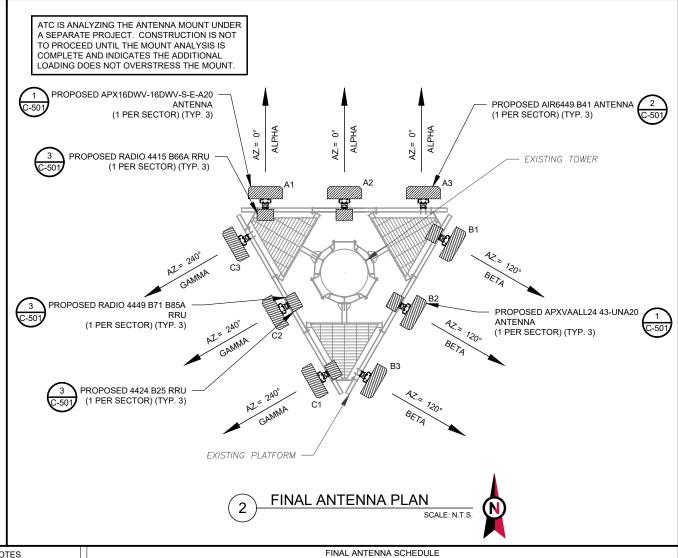
CTHA859A

SITE ADDRESS: 47 INWOOD ROAD ROCKY HILL, CT 06067

29510 29510 CENSED SOONAL ENGINEERS

T··Mobile


DATE DRAWN:	06/02/21
ATC JOB NO:	13668065
CUSTOMER ID:	CTHA859A
CUSTOMER #:	CTHA859A


TOWER ELEVATION

SHEET NUMBER:

REVISION: 0

C-201

	EXISTING ANTENNA SCHEDULE									
LOC	CATION			ANT	ENNA SUMMARY			NON ANTENNA SUMMARY		
SECTOR	RAD	AZ	POS	ANTENNA	BAND	MECH/ELEC D-TILT	STATUS	ADDITIONAL TOWER MOUNTED EQUIPMENT	STATUS	
ALPHA	140'	0*	A1	APXVSPP-C-A20	_	_	RMV	800MHZ 2X50 RRH2X50—08	RMV	
ALPHA	140		A2	DT465B-2XR	_	_	RMV	4X40W TD-RRH8X20-25	RMV	
BETA	140'	120°	B1	APXVSPP-C-A20	_	-	RMV	800MHZ 2X50 RRH2X50—08	RMV	
BEIA	140	120	B2	DT465B-2XR	_	-	RMV	4X40W TD-RRH8X20-25	RMV	<u> </u>
GAMMA	140'	240°	C1	APXVSPP-C-A20	_	_	RMV	800MHZ 2X50 RRH2X50—08	RMV	
GAIVINA	140	240	C2	DT465B-2XR	_	_	RMV	4X40W TD-RRH8X20-25	RMV	

		NOTES
8	1.	CONFIRM WITH T-MOBILE REP FOR APPLICABLE UPDATES/REVISIONS AND MOST RECENT RFDS FOR NSN CONFIGURATION (CONFIG). GC TO CAP ALL UNUSED PORTS. CONFIRM SPACING OF PROPOSED EQUIP DOES NOT CAUSE TOWER CONFLICTS NOR IMPEDE TOWER CLIMBING PEGS.

STATUS ABBREVIATIONS
RMV: TO BE REMOVED RMN: TO REMAIN REL: TO BE RELOCATED ADD: TO BE ADDED

1	LO	LOCATION			ANTE		NON ANTENNA SUMMA	RY		
	SECTOR	RAD	AZ	PO S	ANTENNA	BAND	MECH/ELEC D-TILT	STATUS	ADDITIONAL TOWER MOUNTED EQUIPMENT	STATUS
:				A1	APX16DWV-16DWV-S-E-A20	L2100	0°/2°	ADD	RADIO 4415 B66A	ADD
	ALPHA	140'	0°	A2	APXVAALL24 43-U-NA20	L700, L600, N600	0°/2°	ADD	RADIO 4449 B71+B85 RADIO 4424 B25	ADD
;				А3	AIR6449	L2500, N2500	0°/2°	ADD	-	-
				B1	APX16DWV-16DWV-S-E-A20	L2100	0°/2°	ADD	RADIO 4415 B66A	ADD
7	BETA	140'	120°	B2	APXVAALL24 43-U-NA20	L700, L600, N600	0°/2°	ADD	RADIO 4449 B71+B85 RADIO 4424 B25	ADD
				В3	AIR6449	L2500, N2500	0°/2°	ADD	-	-
				C1	APX16DWV-16DWV-S-E-A20	L2100	0°/2°	ADD	RADIO 4415 B66A	ADD
	GAMMA	140'	240°	C2	APXVAALL24 43-U-NA20	L700, L600, N600	0°/2°	ADD	RADIO 4449 B71+B85 RADIO 4424 B25	ADD
				C3	AIR6449	L2500, N2500	0°/2°	ADD	-	_

CABLE LENGTHS FOR JUMPERS
JUNCTION BOX TO RRU: 15'

UNCTION BOX TO RRU: 15' RRU TO ANTENNA: 10'

EXISTING FIBER DISTRIBUTION/O	VP BOX	EXISTIN	NG CABLING SUMMARY	
MODEL NUMBER	STATUS	COAX	HYBRID	STATUS
_	-	_	(4) 6X12 (1-1/4")	RMV

(2	EQUIPMENT SCHEDULES
(3 /	

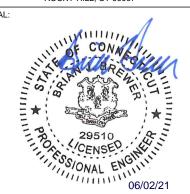
FINAL FIBER DISTRIBUTION / OVP BOX		FINAL	CABLING SUMMARY		Ιħ
MODEL NUMBER	STATUS	COAX	HYBRID	STATUS	H
-	-	-	(3) 6/24 (1-5/8")	ADD	ΙL

COA: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

REV.	DESCRIPTION	BY	DATE
A	PRELIM	GC	04/28/21
\wedge	ISSUED FOR CONSTRUCTION	WCE	06/02/21
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:

302537


ATC SITE NAME:

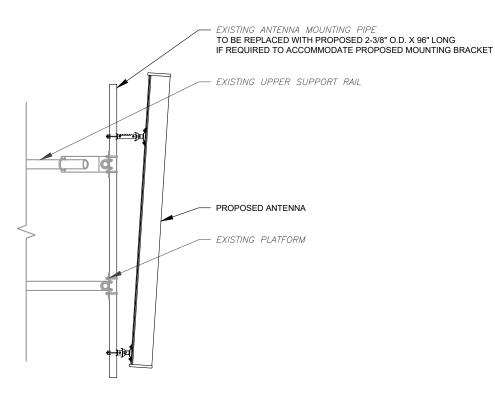
MIDDLETOWN CT 3

T-MOBILE SITE NAME:

CTHA859A

SITE ADDRESS: 47 INWOOD ROAD ROCKY HILL, CT 06067

T·Mobile


DATE DRAWN:	06/02/21
ATC JOB NO:	13668065
CUSTOMER ID:	CTHA859A
CUSTOMER #:	CTHA859A

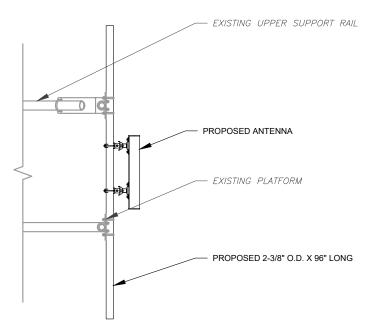
ANTENNA INFORMATION & SCHEDULE

SHEET NUMBER:

0

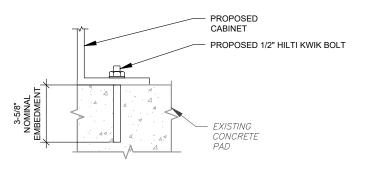
REVISION:

1 PROPOSED ANTENNA MOUNTING DETAIL - TYPICAL


PROPOSED RRU MOUNT LOCATION (OPTION 2)
(MOUNT PER MANUFACTURER'S SPECS)
(ENSURE THAT BRACKET DOES NOT CONFLICT
WITH EXISTING OR PROPOSED EQUIPMENT)

PROPOSED RRU MOUNT LOCATION (OPTION 1)
(MOUNT PER MANUFACTURER'S SPECS)
(ENSURE THAT BRACKET DOES NOT CONFLICT
WITH EXISTING OR PROPOSED EQUIPMENT)

EXISTING PLATFORM


PROPOSED RRU MOUNTING DETAIL - TYPICAL

SCALE: N.T.S.

PROPOSED 5G ANTENNA MOUNTING DETAIL - TYPICAL

SCALE: N.T.S.

NOTE:

INSTALL HILTI KWIK BOLT ANCHORS STRICTLY PER INSTALLATION INSTRUCTIONS INCLUDED WITH PRODUCT OR FOUND ONLINE AT WWW.US.HILTI.COM. PROPER INSTALLATION IS CRITICAL FOR FULL PERFORMANCE.

4 CABINET ATTACHMENT DETAIL

SCALE: NOT TO SCALE

COA: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

REV	. DESCRIPTION	BY	DATE
A	PRELIM	GC	04/28/21
\triangle	ISSUED FOR CONSTRUCTION	WCE	06/02/21
$\overline{\wedge}$			
\triangle			

ATC SITE NUMBER:

302537

ATC SITE NAME:

MIDDLETOWN CT 3

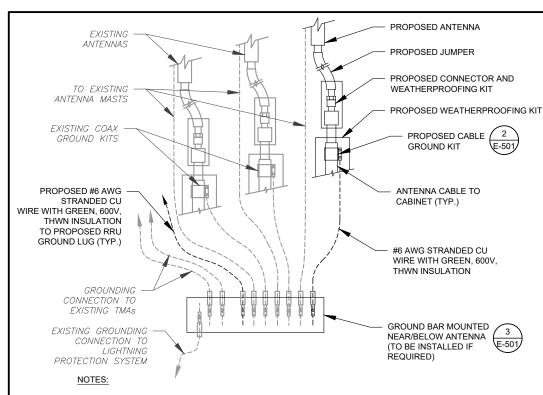
T-MOBILE SITE NAME:

CTHA859A

SITE ADDRESS: 47 INWOOD ROAD ROCKY HILL, CT 06067

CONNECTION OF THE PROPERTY OF

T · · Mobile ·


06/02/21
13668065
CTHA859A
CTHA859A

CONSTRUCTION DETAILS

SHEET NUMBER:

C-501

REVISION

- 1. THIS DETAIL IS INTENDED TO SHOW THE GENERAL GROUNDING REQUIREMENTS. SLIGHT ADJUSTMENTS MAY BE REQUIRED BASED ON EXISTING SITE CONDITIONS. THE CONTRACTOR SHALL MAKE FIELD ADJUSTMENTS AS NEEDED AND INFORM THE CONSTRUCTION MANAGER OF ANY CONFLICTS.
- SITE GROUNDING SHALL COMPLY WITH T-MOBILE GROUNDING STANDARDS, LATEST EDITION, AND COMPLY WITH T-MOBILE GROUNDING CHECKLIST, LATEST VERSION. WHEN NATIONAL AND LOCAL GROUNDING CODES ARE MORE STRINGENT THEY SHALL GOVERN.

TO EQUIPMENT

GROUND WIRE DOWN TO GROUND BAR.

CABLE GROUND KIT CONNECTION DETAIL

GROUND KIT NOTES:

1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT

2. CONTRACTOR SHALL PROVIDE WEATHERPROOFING KIT (ANDREW PART

NUMBER 221213) AND INSTALL/TAPE PER MANUFACTURER'S SPECIFICATIONS.

TO ANTENNA

 \bigcirc

ANTENNA CABLE 2 1/2"Ø MAX

GROUNDING KIT PER CABLE

TO GROUND BAR

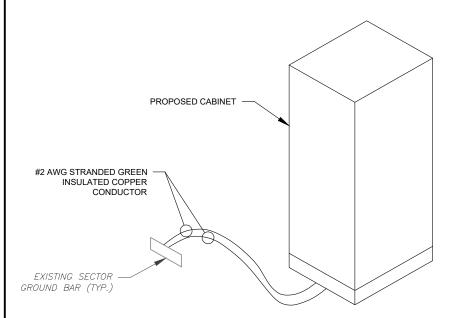
MANUFACTURER'S RECOMMENDATIONS

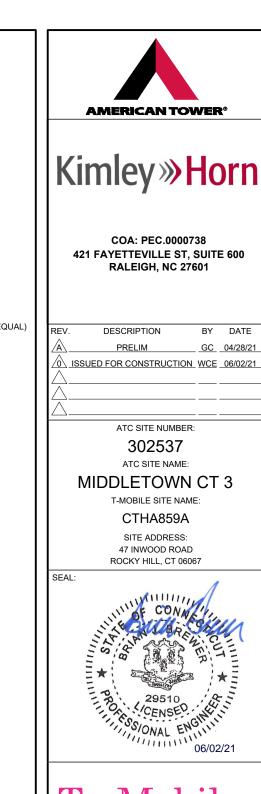
#6 AWG STRANDED COPPER GROUND WIRE (GROUNDED TO GROUND BAR)

(ANDREW OR APPROVED EQUAL)

3/8" X 1-1/2" SS BOLT 3/8" SS LOCK WASHER (EACH SIDE) 1/4" X 4" X 6" GROUND BAR (ERICO P/N: EGBA14406CC OR EQUAL) TWO-HOLE LUG, TO BE USED WITH #2 AWG BCW (LOWER TOWER GROUND BAR ONLY)

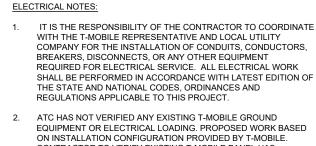
GROUND BAR NOTES:


- GROUND BAR KITS COME WITH ALL HARDWARE, NUTS, BOLTS, WASHERS, ETC. EXCEPT THE STRUCTURAL MOUNTING MEMBER(S).
- 2. GROUND BAR TO BE BONDED DIRECTLY TO TOWER.


- EQUIPMENT OR ELECTRICAL LOADING, PROPOSED WORK BASED ON INSTALLATION CONFIGURATION PROVIDED BY T-MOBILE. CONTRACTOR TO VERIFY EXISTING T-MOBILE PANEL HAS SUFFICIENT SPACE FOR PROPOSED BREAKER. PROPOSED CABLE AND CONDUIT SHALL BE MINIMUM SIZE PER BELOW IN CHART.
- REQUIREMENTS. THE T-MOBILE CONTRACTOR SHOULD REFERENCE DESIGN DOCUMENTS PROVIDED BY T-MOBILE FOR LOCAL JURISDICTION REQUIREMENTS & NEC STANDARDS &

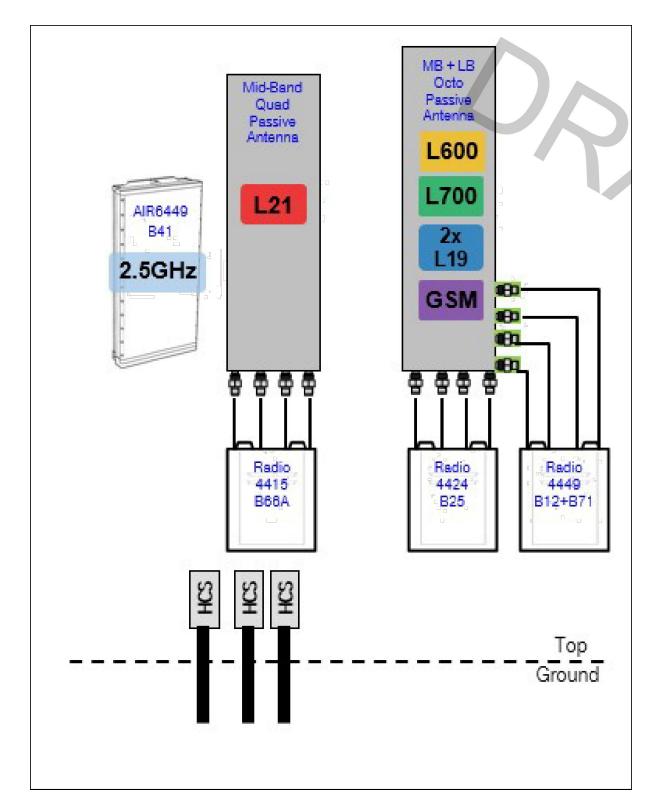
OCPD SIZE	WIRE SIZE	GROUND SIZE	CONDUIT SIZE
80A/2P	2#3 AWG	#8 AWG	1-1/4"
100/2P	2#2 AWG	#8 AWG	1-1/4"
125A/2P	2#1 AWG	#8 AWG	1-1/2"
150A/2P	2#1/0 AWG	#8 AWG	1-1/2"

CABINET GROUNDING DETAIL


DATE DRAWN:	06/02/21
ATC JOB NO:	13668065
CUSTOMER ID:	CTHA859A
CUSTOMER #:	CTHA859A

GROUNDING DETAILS

SHEET NUMBER:

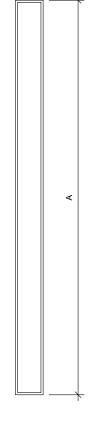

E-501

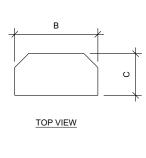
REVISION 0

FOR SPECIFIC CABINET / ANCILLARY EQUIPMENT WIRING THIS CURRENT PROJECT CONFIGURATION, IN ACCORDANCE WITH 4/6/2021 CTHA859A_Sprint Retain_1_draft_2021-04-06 CTHA859A_Sprint Retain_1_draft Print Name: Standard PORs: New Build_Sprint Keep Section 5 - RAN Equipment Existing RAN Equipment -- This section is intentionally blank. ----Proposed RAN Equipment
Template: 67D5A998C 6160 (GSM only) Ancillary Equipment (Ericsson) DUG20 G1900 Hybrid Cable System Ericsson Hybrid Trunk 6/24 4AWG 100m (x 3) ransport System (CSR IXRe V2 (Gen2)) RAN Scope of Work:

1 CABINET CONFIGURATION
SCALE: NOT TO SCALE

ANTENNA CONFIGURATION
SCALE: NOT TO SCALE

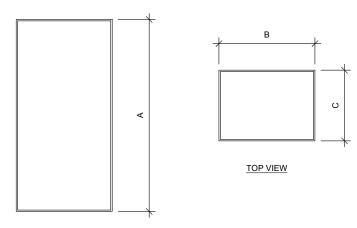

 $\begin{tabular}{ll} \underline{\text{NOTE:}} & \texttt{THIS SHEET CREATED BY OTHERS AND PROVIDED} \\ & \texttt{BY REQUEST OF CUSTOMER WITHOUT EDIT.} \\ \end{tabular}$


SUPPLEMENTAL

SHEET NUMBER:

R-601

REVISION:



FRONT VIEW

1 ANTENNA SPECIFICATIONS FOR ILLUSTRATIVE PURPOSES ONLY - NOT TO SCALE

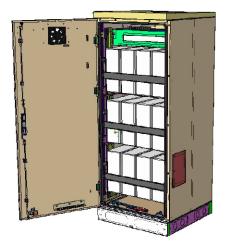
ANTENNA SPECIFICATIONS				
ANTENNA MODEL	А	В	С	WEIGHT (LBS)
APXVAALL24 43-U-NA20	95.9"	24.0"	8.5"	122.8
APX16DWV-16DWVS-E-A20	55.9"	13.3"	3.1"	40.7
AIR6449 B41	33.1"	20.6"	8.6"	104.0

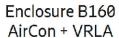
FRONT VIEW

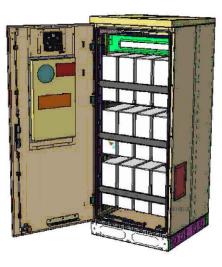
RRU SPECIFICATIONS FOR ILLUSTRATIVE PURPOSES ONLY - NOT TO SCALE

RRU SPECIFICATIONS				
RRU MODEL	Α	В	С	WEIGHT (LBS)
RADIO 4449 B71 B85A	15.0"	13.2"	10.5"	75
RRUS 4415 B66	15.0"	13.2"	5.4"	46
4424 B25	17.1"	14.4"	11.3"	86

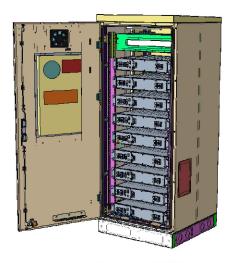
SUPPLEMENTAL


SHEET NUMBER:


REVISION:


R-602

0


Enclosure B160

Enclosure B160 AirCon + Li-Ion

Enclosure B160 Convection Cooling + VRLA

3

PA1 | 2019-02-03 | Ericsson Confidential | Page 1

Enclosure B160

Capacity

— VRLA 12V: 100Ah / 150Ah / 170Ah / 190Ah / 210Ah

Li-Ion: 24U 19" / 23"Sodium-Nickel: 3x FIAMM

Electrical specification

DC Output: -48VDC/200ABattery breakers: 2x 125/2p

Alarms: Door open, Climate failure, MCB Connection

Mechanical specification

— Weight: 134kg

Dimensions:
 63 x 26 x 26 in. (incl. Base frame)

Base frame height: 6 in.

Material: Galvanized steel (180g/m²)
 Color: Powder paint NCS 2002-B

Door: Front accessLocking type: Pad lock / cylinder

Environmental specification

Ingress protection: VRLA/Sodium IP44
 Li-Ion IP55

— Relative humidity: 15-100%

Climate system

Air Conditioner

— Fan type: DC

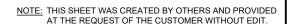
— Cooling capacity: 500W @L35/L35

Convection cooling

Emergency fan

PA1 | 2019-02-03 | Ericsson Confidential | Page 2

SUPPLEMENTAL


SHEET NUMBER:

R-603

} |

REVISION:

0

PSU capacity

Enclosure 6160 AC

The Enclosure 6160 is a multi-purpose site cabinet designed to support a multitude of equipment such as ERS Baseband, Transport, Li-Ion battery and 3PP vendor equipment. It also provides a highly capable power system and battery back-up - all in a streamlined design and minimized footprint to support cost efficient expansion of mobile broadband.

Being an all-in-one enclosure, the Enclosure 6160 is a very fitting choice for all types of sites where the capacity need is large or room for future expansion is needed. It is ideally used for modernizing existing sites or in greenfield scenarios to match both current and future needs.

With a robust design, IP65 compliance and a sealed Heat Exchanger (HEX) climate system the Enclosure 6160 ensures optimal environmental protection of the active equipment - enabling them for a long-lasting service. The complete system is also integrated and verified for the entire Ericsson Radio System and ensures best-in-class service.

The power system offers 31,5kW of power in total and provides 24kW of -48V DC power for both internal and external

The equipment space allows 19U of rack space ensuring well enough capacity for existing need and future expansion.

One of the main advantages of the Enclosure 6160 is its default integration with ENM - allowing for advanced remote monitoring and control such a fault management (alarms), inventory management and performance measurements. The cabinet also provides an open O&M interface for integration to 3PP O&M systems.

Preliminary technical specification for Enclosure 6160 AC CAPACITY Rack space user equipment 19U (19" rack) Hardware capabilities Power and CPRI support for multi-standard remote radios (RRU or AIR) ERS Baseband and Transport units Li-lon batteries 3PP equipment Additional power feed available as option MECHANICAL SPECIFICATION 145 kg (excluding active equipment) Weight 320 lbs (excluding active equipment) 1600 x 650 x 650 mm (incl. Base frame) Dimension (H x W x D) 63 x 26 x 26 in. (incl. Base frame) 150 mm Base frame height 6 in. Mounting position Ground Enclosure material Aluminum Color Power paint NCS 2002-B Door Front access 19" (IEC 60297-3-100) Rack type Locking type Pad lock or Cylinder POWER SYSTEM 3P+N+PE: 346/200-415/240 VAC Input voltage 2P+N+PE: 208/120-220/127 VAC 1P+N+PE: 200-250 VAC Input power <33kW Output load (-48VDC) 24kW Total capacity (-48VDC) 31.5kW AC SPD Class 2/Type 2 DC SPD Class 2/Type 2 **PSU Slots** Optional Service outlet Priority load 8x Circuit Breaker LLVD 1 6x Circuit Breaker LLVD 2 6x Circuit Breaker CB ratings 3A / 5A / 10A / 15A / 20A / 25A / 30A / 40A / 50A / 60A / 80A / 100A Battery Interface 2x Circuit Breaker Battery Circuit Breaker rating 125A 2pol (200A)

3500W

SUPPLEMENTAL

NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED

AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT.

REVISION:

R-604

This report was prepared for American Tower Corporation by

Antenna Mount Analysis Report

ATC Site Name : Middletown CT 3

ATC Asset Number : 302537

Engineering Number : 13668065_C8_01

Mount Elevation : 140 ft

Carrier : Sprint Nextel

Carrier Site Name : CTHA859A

Carrier Site Number : CTHA859A

Site Location : 47 Inwood Road

Rocky Hill, CT 06067-3453

41.63858611, -72.67928889

County : Hartford

Date : May 6, 2021

Max Usage : 100%

Result : Pass

Prepared By: Reviewed By:

Tyler M. Barker, P.E. **Gunjan Donode CLS Engineering PLLC CLS Engineering PLLC**

Table of Contents

Introduction	2
Supporting Documents	2
Analysis	2
Conclusion	2
Antenna Loading	3
Structure Usages	3
Equipment Layout Plan View	4
Equipment Layout Front Elevation View	5
Standard Conditions	6
Calculations	Δttached

Introduction

The proposed equipment is to be mounted to the existing Platform w/ Support Rails. This proposed mounting configuration was analyzed using RISA-3D, a commercially available finite element analysis software package. A selection of input and output from our analysis is attached to the end of this report.

Supporting Documents

Structural Data Site Photos dated August 29, 2018 Spec Sheet for Site Pro 1 RMQP-496-HK Platform Mount	
Previous Analyses Structural Analysis by ATC, Eng. #13668065_C3_02, dated April 27, 2021	
Loading Data	ATC Application, Project #13668065 Sprint RFDS ID CTHA859A, Version 1.00, dated April 06, 2021

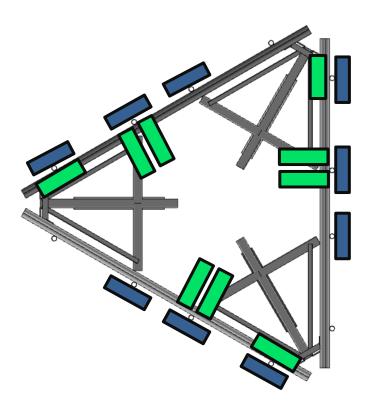
Analysis

Codes	2018 Connecticut State Building Code / TIA-222-H
Basic Wind Speed	118 mph, V _{ult} (3-Second Gust)
Basic Wind Speed w/ Ice	50 mph (3-Second Gust) w/ 1.5" Radial Ice (Escalating)
Exposure Category	В
Topographic Factor Procedure:	Method 2
Feature:	Flat
Crest Height (H):	0 ft
Crest Length (L):	0 ft
Risk Category	II
Maintenance Live Load	L _M : 500 lb
Spectral Response	S _s : 0.20; S ₁ : 0.06; Site Class: D

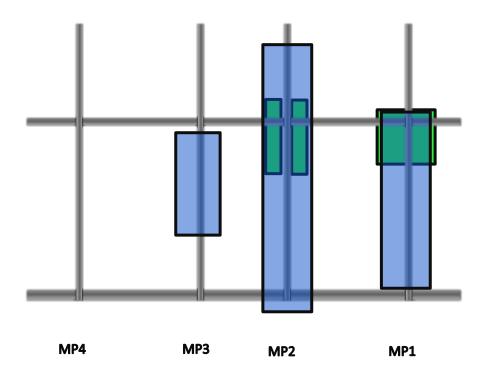
Conclusion

Based on the analysis, the antenna mount meets the requirements per the applicable codes listed above. The mount can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.


Antenna Loading

Elevation (ft)			Antennas					
Mount	Rad.	# Name						
		3	RFS Celwave APXVAALL24_43-U-NA20					
	140.0 140.0	3	RFS Celwave APX16DWV-16DWVS-E-A20					
1400		140.0	140.0	140.0	140.0	3	Ericsson AIR6449 B41	
140.0						140.0	3	Ericsson 4424 B25
		3	Ericsson RADIO 4449 B71/B85A					
		3	Ericsson RRUS 4415 B66					


Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Corner Plates	100%	Pass
Mount Pipes	49%	Pass
Support Rail	46%	Pass
Bracing Members	20%	Pass
Stand-Off Horizontals	17%	Pass
Kicker Kit	14%	Pass
Platform Base	13%	Pass

Equipment Layout Plan View

Equipment Layout Front Elevation View

Standard Conditions

This analysis is inclusive of the antenna supporting frames/mounts and all recorded connections that will support the equipment listed in this report. It considers only the theoretical capacity of structural components and it is not a condition assessment. The validity of the analysis may be dependent on the accuracy of structural information supplied by others. The client is responsible for verifying this information. If any provided information is revised after completion of this analysis, CLS Engineering PLLC should be notified immediately to revise results.

This analysis assumes the following:

- The tower or other superstructure and mounts (if existing) were properly constructed as per the original design and 1. have been properly maintained in accordance with applicable code standards.
- 2. Member sizes and strengths are accurate as supplied or are assumed as stated in the calculations.
- 3. In the absence of sufficient design information, all welds and connections are assumed to develop at least the capacity of the connected member, unless otherwise stated in this analysis.
- 4. All prior structural modifications, if any, are assumed to be correctly installed and fully effective.
- 5. The loading configuration is complete and accurate as supplied and/or as modeled in the previous analysis. All appurtenances are assumed to be properly installed and supported as per manufacturer requirements.
- 6. Some conservative assumptions may be used regarding appurtenances and their projected areas based on careful interpretation of data supplied, previous experience and standard industry practice.

All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of the report. All opinions and conclusions contained herein are subject to revision based upon receipt of new or updated information. All services are provided exercising a level of care and diligence equivalent to the standard of our profession. No warranty or guarantee, either expressed or implied, is offered. All services are confidential in nature and this report will not be released to any other party without the client's consent. The use of this analysis is limited to the expressed purpose for which it was commissioned and it may not be reused, copied or disseminated for any other purpose without consent from CLS Engineering PLLC.

All services were performed, results obtained and recommendations made in accordance with generally accepted engineering principles and practices. CLS Engineering PLLC is not responsible for the conclusions, opinions or recommendations made by others based on the information supplied in this analysis.

It is not possible to have the fully detailed information necessary to perform a complete and thorough analysis of every structural sub-component of an existing structure. The structural analysis by CLS Engineering PLLC verifies the adequacy of the primary members of the structure. CLS Engineering PLLC provides a limited scope of service in that we cannot verify the adequacy of every weld, bolt, gusset, etc.

Wind & Ice Loading								
Nominal Mount Elevation (AGL), z _{mount}	139 ft	Ka	0.90					
Nominal Rad Elevation (AGL), z _{rad}	140 ft	K _d	0.95					
Elevation AMSL (ft)	140 ft	K _e	0.99					
TIA Standard	н	K _z	1.08					
Basic Wind Speed, V _{ult} (bare)	118 mph	K _{zt}	1.00					
Basic Wind Speed, V (ice)	50 mph	K _s	1.00					
Design Ice Thickness, t _i	1 1/2 in	t _{iz}	1.73 in					
Exposure Category	В	G _h	1.00					
Risk Category	II	q _z (bare)	36.5 psf					
Seismic Response Coeff., C _s	0.11	q _z (ice)	6.6 psf					

Live Loadin	g
At Mount Pipes, L _M	500 lb
	1_M1
	1_M2
Joint Labels Considered	1_M3
	1_M4

Member Distributed Loading										
Section Set Label	Section Set Label Shape Label									
Section Set Laber	Shape Laber	Bare	Ice	(lb/ft)						
Offset End Plate	0.5 x 6 Plate	32.89	5.60	12.42						
Offset Side Plate	0.38 X 6 Plate	32.89	5.59	12.25						
Platform Horzontal Pipe	PIPE_3.0	11.51	4.11	11.07						
Offset Tube	HSS4X4X4	21.93	2.34	14.44						
Grating Angle	L2x2x3	10.96	2.19	8.80						
PRK-1245	L2.5x2.5x3	13.70	2.23	10.15						
HRKPlate	0.38 X 6 Plate	32.89	5.59	12.25						
HRKAngle	L2.5x2.5x4	13.70	2.23	10.15						
HRK12-U	PIPE_2.0	7.81	3.45	8.69						
MOUNT_PIPE_2.0	PIPE_2.0	7.81	3.45	8.69						

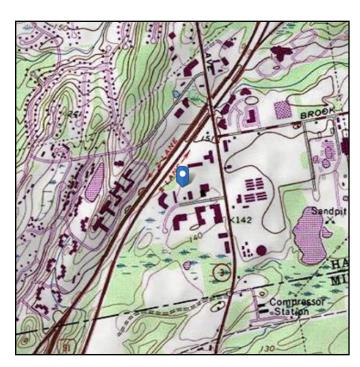
	Appurtenances																													
Appurtenance			Rad Elev.		Area I	Factor	Qty. per Azimu		muth	Total	0°.	0° Joints		120° Joints		240° Joints		Width	Depth	Weight					ft²) EPA _A (Ice) (ft²)		F _A (Bare) (lb)		F _A (Ice) (Ib)	
Model	Status	Offset (°, ひ)	Override (ft)			Side	0°	120°	240°	Qty. Override	1	2	1	2	1	2	(in)	(in)	(in)	(Bare) (lb)	Shape	(lb)	N	Т	N	Т	N	Т	N	Т
APXVAALL24_43-U-NA20							1	1	1	3	1_A2T	1_A2B	2_A2T	2_A2B	3_A2T	3_A2B	95.9	24	8.5	149.9	Generic	387.58	14.67	5.32	17.30	7.64	483.96	175.51	102.50	45.27
APX16DWV-16DWVS-E-A20							1	1	1	3	1_A1T	1_A1B	2_A1T	2_A1B	3_A1T	3_A1B	55.9	13.3	3.15	40.7	Generic	116.26	6.26	1.50	8.31	3.23	206.52	49.48	49.19	19.15
AIR6449 B41							1	1	1	3	1_A3T	1_A3B	2_A3T	2_A3B	3_A3T	3_A3B	33.1	20.6	8.6	104	Flat	135.59	5.68	2.49	7.33	3.75	187.45	82.17	43.44	22.21
RADIO 4449 B71/B85A				V	0.5	0.5	1	1	1	3	1_R2TT		2_R2TT		3_R2TT		14.96	13.19	10.51	74.95	Flat	59.86	0.66	0.82	1.07	1.28	21.61	27.12	6.36	7.57
RRUS 4415 B66					0.5	_	1	1	1	3	1_R1TN		2_R1TN		3_R1TN		14.96	13.19	5.39	44	Flat	53.62	0.82	0.68	1.28	1.36	27.12	22.39	7.57	8.06
4424 B25				•	0.5	0.5	1	1	1	3	1_R2TT		2_R2TT		3_R2TT		17.1	14.4	11.3	86	Flat	85.67	0.81	1.03	1.27	1.53	26.56	33.85	7.50	9.07

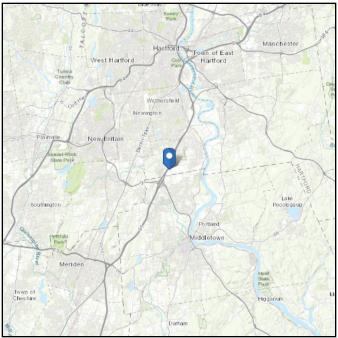
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16


Risk Category: ^Ⅱ


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 139.95 ft (NAVD 88)

Latitude: 41.638586 **Longitude:** -72.679289

Wind

Results:

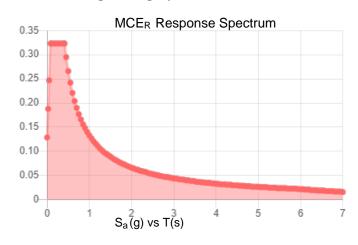
Wind Speed: 118 Vmph
10-year MRI 75 Vmph
25-year MRI 84 Vmph
50-year MRI 90 Vmph
100-year MRI 98 Vmph

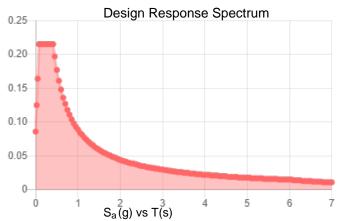
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

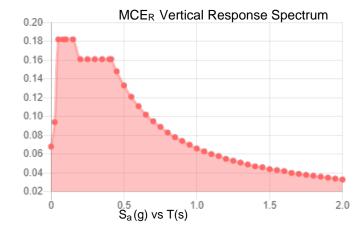
Date Accessed: Thu May 06 2021

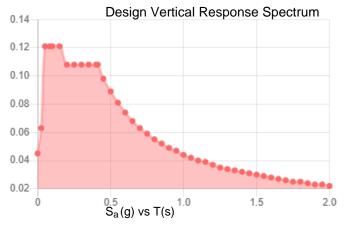
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


S _s :	0.202	S _{D1} :	0.089
S ₁ :	0.055	T _L :	6
F _a :	1.6	PGA:	0.111
F _v :	2.4	PGA _M :	0.175
S _{MS} :	0.323	F _{PGA} :	1.578
S _{M1} :	0.133	l _e :	1
S _{DS} :	0.215	C _v :	0.703

Seismic Design Category B

Data Accessed: Thu May 06 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in

accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 1.50 in.

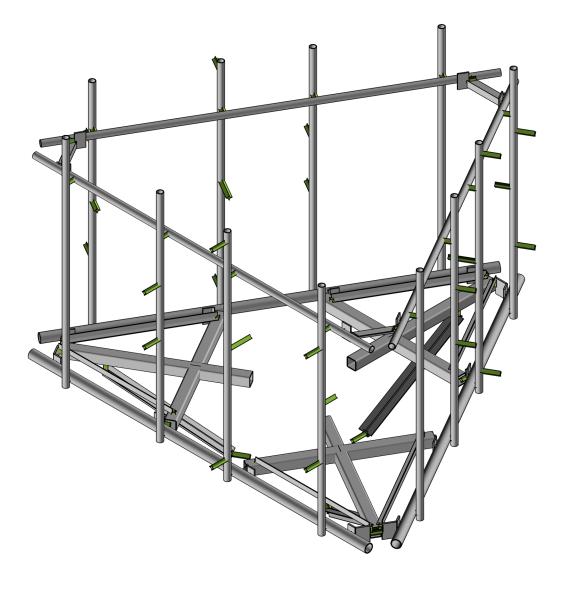
Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Thu May 06 2021

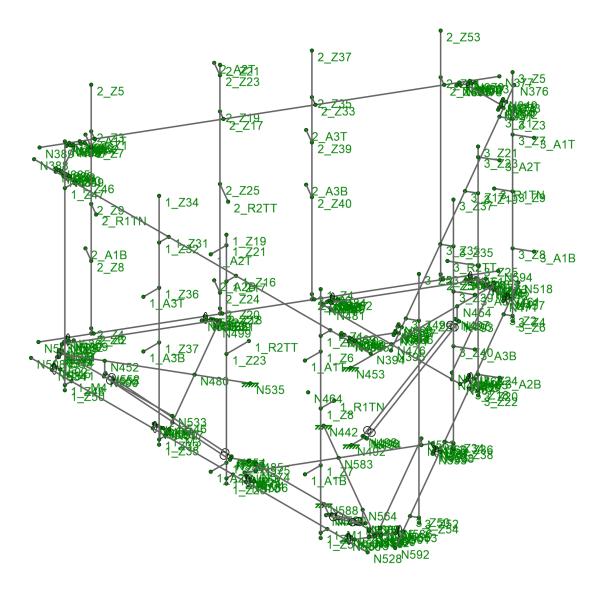
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.


Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

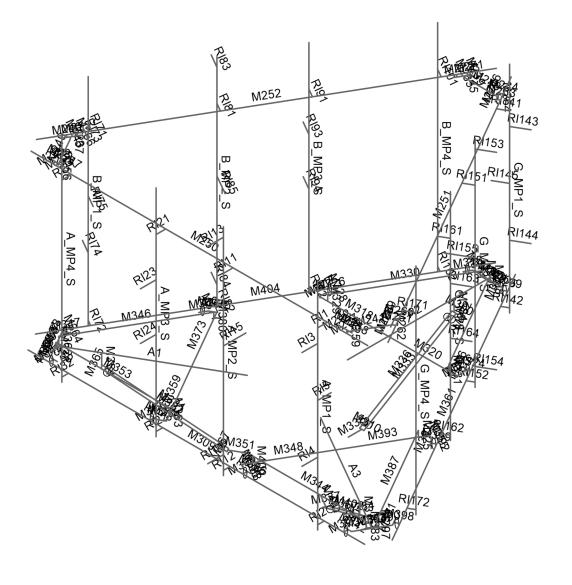
The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

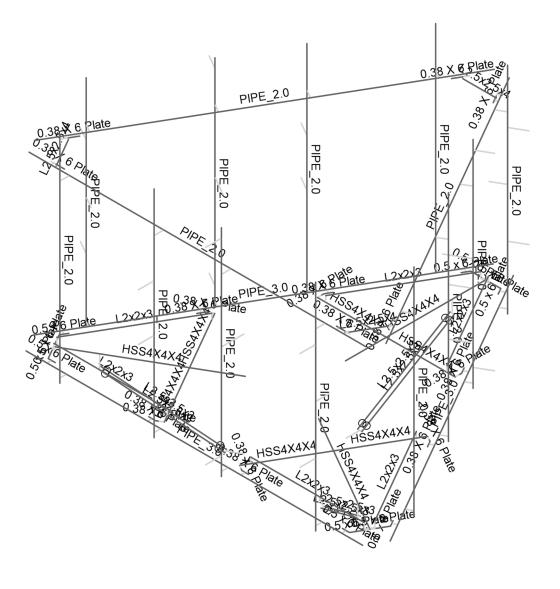
ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

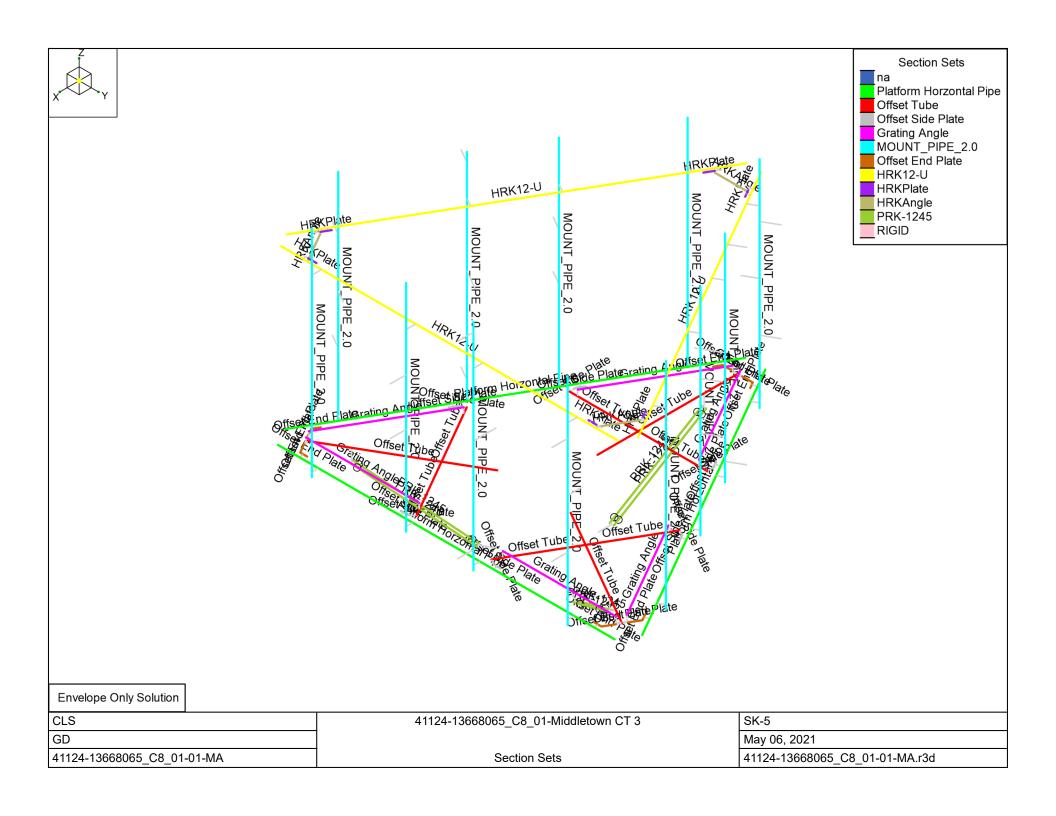
In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

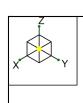


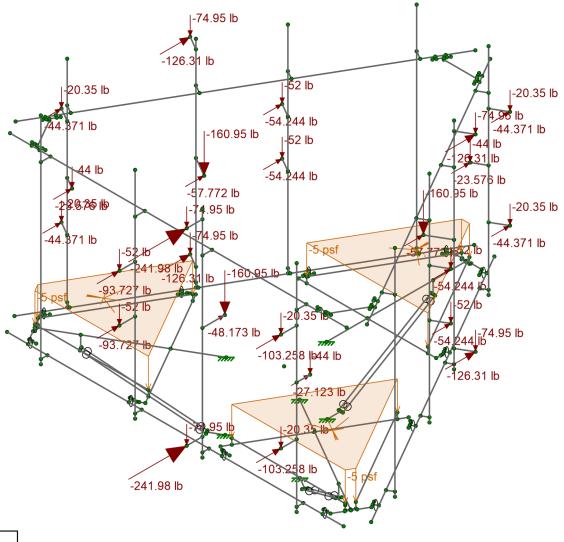
Envelope Only Solution


CLS	41124-13668065_C8_01-Middletown CT 3	SK-1				
GD		May 06, 2021				
41124-13668065_C8_01-01-MA	Rendered	41124-13668065_C8_01-01-MA.r3d				

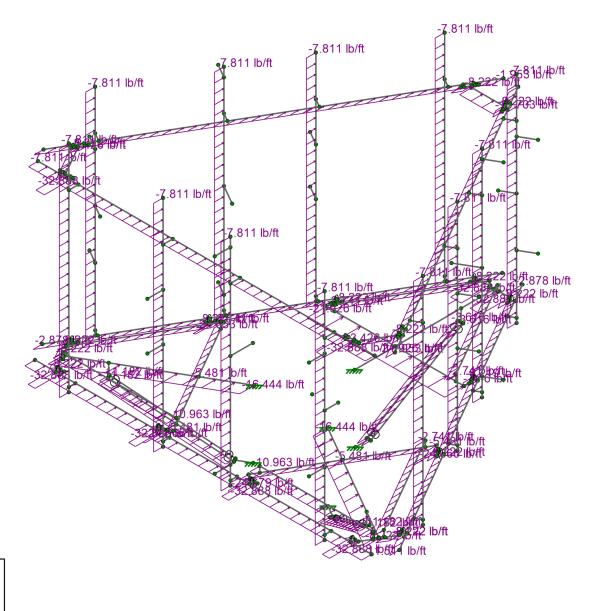

CLS	41124-13668065_C8_01-Middletown CT 3	SK-2
GD		May 06, 2021
41124-13668065_C8_01-01-MA	Joint Labels	41124-13668065_C8_01-01-MA.r3d




CLS	41124-13668065_C8_01-Middletown CT 3	SK-3
GD		May 06, 2021
41124-13668065_C8_01-01-MA	Member Labels	41124-13668065_C8_01-01-MA.r3d

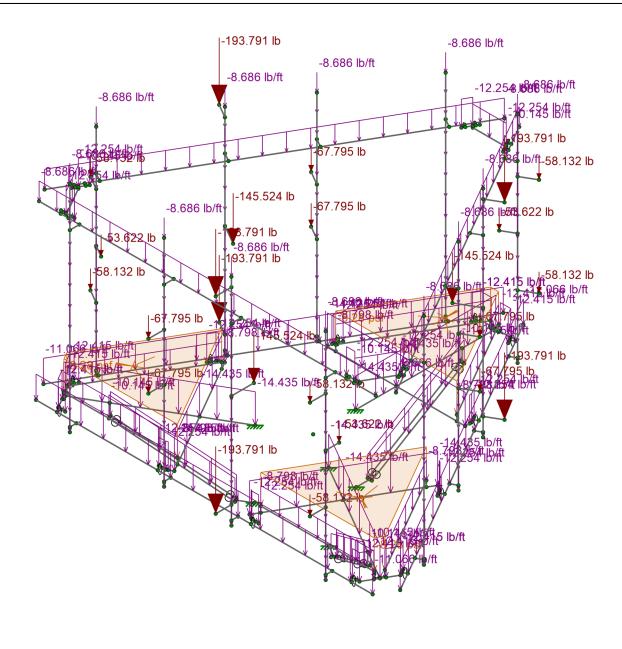


CLS	41124-13668065_C8_01-Middletown CT 3	SK-4
GD		May 06, 2021
41124-13668065_C8_01-01-MA	Member Shapes	41124-13668065_C8_01-01-MA.r3d

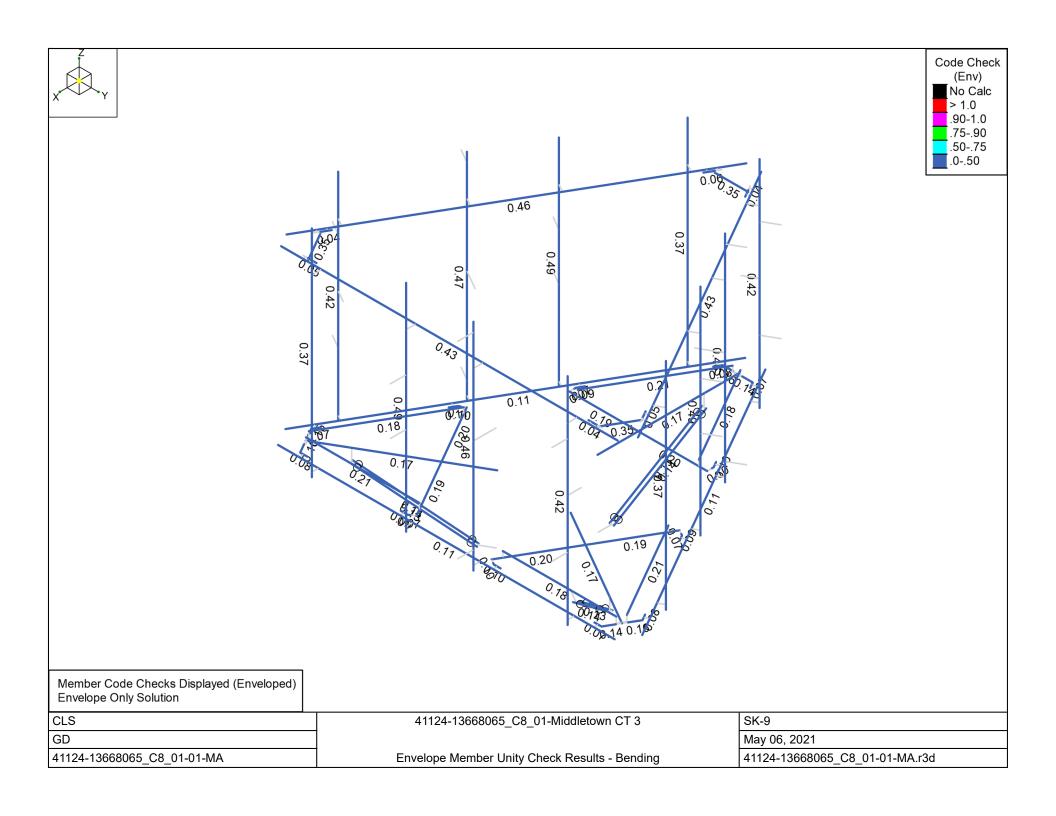


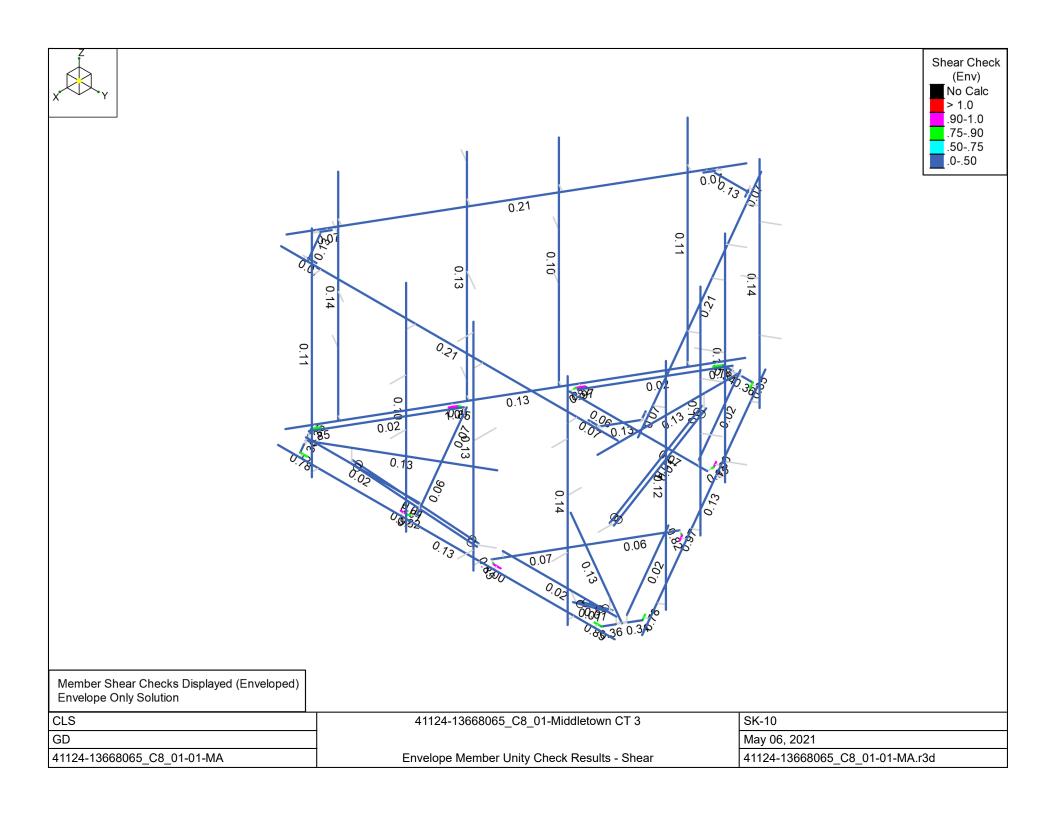
Loads: LC 1, DISPLAY (1.0D + 1.0W_0)

CLS	41124-13668065_C8_01-Middletown CT 3	SK-6
GD		May 06, 2021
41124-13668065_C8_01-01-MA	Joint Loads - Dead and Normal Wind	41124-13668065_C8_01-01-MA.r3d



Loads: BLC 5, Structure Wind 0
Envelope Only Solution


CLS	41124-13668065_C8_01-Middletown CT 3	SK-7
GD		May 06, 2021
41124-13668065_C8_01-01-MA	Distribute Load - Normal Wind	41124-13668065_C8_01-01-MA.r3d



Loads: BLC 2, Ice Dead Envelope Only Solution

CLS	41124-13668065_C8_01-Middletown CT 3	SK-8
GD		May 06, 2021
41124-13668065_C8_01-01-MA	Ice Dead Loads	41124-13668065_C8_01-01-MA.r3d

Company :CLS Designer :GD

Job Number :41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM Checked By : CAR

Basic Load Cases

	Basic Load Cases					
	BLC Description	Category	Z Gravity	Nodal	Distributed	Area(Member)
1	Dead	DL	-1	27		3
2	Ice Dead	RL		27	72	3
3	BLC 1 Transient Area Loads	None			30	
4	BLC 2 Transient Area Loads	None			30	
5	Structure Wind 0°	None			70	
6	Structure Wind 30°	None			114	
7	Structure Wind 45°	None			144	
8	Structure Wind 60°	None			140	
9	Structure Wind 90°	None			57	
10	Structure Wind 120°	None			140	
11	Structure Wind 135°	None			144	
12	Structure Wind 150°	None			114	
13	Structure Wind 180°	None			70	
14	Structure Wind 210°	None			114	
15	Structure Wind 225°	None			144	
16	Structure Wind 240°	None			140	
17	Structure Wind 270°	None			57	
18	Structure Wind 270	None			140	
19	Structure Wind 300 Structure Wind 315°	None			144	
20	Structure Wind 330°	None			114	
21					70	
22	Structure Wind w/ Ice 0° Structure Wind w/ Ice 30°	None None			118	
23	Structure Wind w/ Ice 45°	None			144	
24	Structure Wind w/ Ice 60°	None			140	
25	Structure Wind w/ Ice 90°	None			59	
26	Structure Wind w/ Ice 120°	None			140	
27	Structure Wind w/ Ice 135°	None			144	
28	Structure Wind w/ Ice 150°	None			118	
29	Structure Wind w/ Ice 180°	None			70	
30	Structure Wind w/ Ice 210°	None			118	
31	Structure Wind w/ Ice 225°	None			144	
32	Structure Wind w/ Ice 240°	None		_	140	
33	Structure Wind w/ Ice 270°	None			59	
34	Structure Wind w/ Ice 300°	None			140	
35	Structure Wind w/ Ice 315°	None			144	
36	Structure Wind w/ Ice 330°	None			118	
37	Antenna Wind 0°	None		27		
38	Antenna Wind 30°	None		54		
39	Antenna Wind 45°	None		54		
40	Antenna Wind 60°	None		54		
41	Antenna Wind 90°	None		27		
42	Antenna Wind 120°	None		54		
43	Antenna Wind 135°	None		54		
44	Antenna Wind 150°	None		54		
45	Antenna Wind 180°	None		27		
46	Antenna Wind 210°	None		54		
47	Antenna Wind 225°	None		54		
48	Antenna Wind 240°	None		54		
49	Antenna Wind 270°	None		27		
50	Antenna Wind 300°	None		54		
51	Antenna Wind 315°	None		54		
52	Antenna Wind 330°	None		54		
53	Antenna Wind w/ Ice 0°	None		27		
54	Antenna Wind w/ Ice 30°	None		54		
55	Antenna Wind w/ Ice 45°	None		54		
56	Antenna Wind w/ Ice 60°	None		54		
57	Antenna Wind w/ Ice 90°	None		27		
58	Antenna Wind w/ Ice 120°	None		54		
-		•	•	•		

Company :CLS Designer :GD

Job Number :41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM Checked By : CAR

Basic Load Cases (Continued)

	BLC Description	Category	Z Gravity	Nodal	Distributed	Area(Member)
59	Antenna Wind w/ Ice 135°	None		54		
60	Antenna Wind w/ Ice 150°	None		54		
61	Antenna Wind w/ Ice 180°	None		27		
62	Antenna Wind w/ Ice 210°	None		54		
63	Antenna Wind w/ Ice 225°	None		54		
64	Antenna Wind w/ Ice 240°	None		54		
65	Antenna Wind w/ Ice 270°	None		27		
66	Antenna Wind w/ Ice 300°	None		54		
67	Antenna Wind w/ Ice 315°	None		54		
68	Antenna Wind w/ Ice 330°	None		54		
69	Seismic X	ELX		27	72	
70	Seismic Y	ELY		27	72	
71	Seismic Z	ELZ		27	72	
72	Maintenance Live 500 (1)	OL1		1		
73	Maintenance Live 500 (2)	OL2		1		
74	Maintenance Live 500 (3)	OL3		1		
75	Maintenance Live 500 (4)	OL4		1		

Load Combinations

	Load Combinations										
	Description	Solve	_ PDelta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	_ Factor
1	DISPLAY (1.0D + 1.0W_0°)	Yes	Y	DL	1	37	1				
2	1.4D	Yes	Y	DL	1.4						
3	1.2D + 1.0W_0°	Yes	Y	DL	1.2	5	1	37	1		
4	1.2D + 1.0W_30°	Yes	Υ	DL	1.2	6	1	38	1		
5	1.2D + 1.0W_45°	Yes	Υ	DL	1.2	7	1	39	1		
6	1.2D + 1.0W_60°	Yes	Υ	DL	1.2	8	1	40	1		
7	1.2D + 1.0W_90°	Yes	Υ	DL	1.2	9	1	41	1		
8	1.2D + 1.0W_120°	Yes	Υ	DL	1.2	10	1	42	1		
9	1.2D + 1.0W_135°	Yes	Υ	DL	1.2	11	1	43	1		
10	1.2D + 1.0W_150°	Yes	Υ	DL	1.2	12	_ 1	44	1		
11	1.2D + 1.0W_180°	Yes	Υ	DL	1.2	13	-1	45	-1		
12	1.2D + 1.0W_210°	Yes	Υ	DL	1.2	14	-1	46	-1		
13	1.2D + 1.0W_225°	Yes	Υ	DL	1.2	15	-1	47	-1		
14	1.2D + 1.0W_240°	Yes	Υ	DL	1.2	16	-1	48	-1		
15	1.2D + 1.0W_270°	Yes	Υ	DL	1.2	17	-1	49	-1		
16	1.2D + 1.0W_300°	Yes	Y	DL	1.2	18	-1	50	-1		
17	1.2D + 1.0W_315°	Yes	Υ	DL	1.2	19	-1	51	-1		
18	1.2D + 1.0W_330°	Yes	Υ	DL	1.2	20	-1	52	-1		
19	1.2D + 1.0Di + 1.0Wi_0°	Yes	Y	DL	1.2	21	1	53	1	RL	1
20	1.2D + 1.0Di + 1.0Wi_30°	Yes	Υ	DL	1.2	22	1	54	1	RL	1
21	1.2D + 1.0Di + 1.0Wi_45°	Yes	Υ	DL	1.2	23	1	55	1	RL	1
22	1.2D + 1.0Di + 1.0Wi_60°	Yes	Υ	DL	1.2	24	1	56	1	RL	1
23	1.2D + 1.0Di + 1.0Wi_90°	Yes	Υ	DL	1.2	25	1	57	1	RL	1
24	1.2D + 1.0Di + 1.0Wi_120°	Yes	Υ	DL	1.2	26	1	58	1	RL	1
25	1.2D + 1.0Di + 1.0Wi_135°	Yes	Υ	DL	1.2	27	_ 1	59	1	RL	1
26	1.2D + 1.0Di + 1.0Wi_150°	Yes	Υ	DL	1.2	28	1	60	1	RL	1
27	1.2D + 1.0Di + 1.0Wi_180°	Yes	Υ	DL	1.2	29	-1	61	-1	RL	1
28	1.2D + 1.0Di + 1.0Wi_210°	Yes	Υ	DL	1.2	30	-1	62	-1	RL	1
29	1.2D + 1.0Di + 1.0Wi_225°	Yes	Υ	DL	1.2	31	-1	63	-1	RL	1
30	1.2D + 1.0Di + 1.0Wi_240°	Yes	Υ	DL	1.2	32	-1	64	-1	RL	1
31	1.2D + 1.0Di + 1.0Wi_270°	Yes	Υ	DL	1.2	33	-1	65	-1	RL	1
32	1.2D + 1.0Di + 1.0Wi_300°	Yes	Υ	DL	1.2	34	-1	66	-1	RL	1
33	1.2D + 1.0Di + 1.0Wi_315°	Yes	Υ	DL	1.2	35	-1	67	-1	RL	1
34	1.2D + 1.0Di + 1.0Wi_330°	Yes	Υ	DL	1.2	36	-1	68	-1	RL	1
35	1.2D + 1.0Ev + 1.0Eh_0°	Yes	Υ	DL	1.243	ELX	-1	ELY			
36	1.2D + 1.0Ev + 1.0Eh_30°	Yes	Υ	DL	1.243	ELX	-0.866	ELY	0.5		
37	1.2D + 1.0Ev + 1.0Eh_45°	Yes	Υ	DL	1.243	ELX	-0.707	ELY	0.707		
38	1.2D + 1.0Ev + 1.0Eh_60°	Yes	Υ	DL	1.243	ELX	-0.5	ELY	0.866		

Company :CLS Designer :GD

Job Number:41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM Checked By : CAR

Load Combinations (Continued)

Load Combinations (Continued)											
	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
39	1.2D + 1.0Ev + 1.0Eh 90°	Yes	Υ	DL	1.243	ELX		ELY	1		
40	1.2D + 1.0Ev + 1.0Eh 120°	Yes	Y	DL	1.243	ELX	0.5	ELY	0.866		
41	1.2D + 1.0Ev + 1.0Eh 135°	Yes	Y	DL	1.243	ELX	0.707	ELY	0.707		
42	1.2D + 1.0Ev + 1.0Eh 150°	Yes	Y	DL	1.243	ELX	0.866	ELY	0.5		
43	1.2D + 1.0Ev + 1.0Eh 180°	Yes	Y	DL	1.243	ELX	1	ELY	0.5		
			Y						0.5		
44	1.2D + 1.0Ev + 1.0Eh_210°	Yes		DL	1.243	ELX	0.866	ELY	-0.5		
45	1.2D + 1.0Ev + 1.0Eh_225°	Yes	Y	DL	1.243	ELX	0.707	ELY	-0.707		
46	1.2D + 1.0Ev + 1.0Eh_240°	Yes	Y	DL	1.243	ELX	0.5	ELY	-0.866		
47	1.2D + 1.0Ev + 1.0Eh_270°	Yes	Υ	DL	1.243	ELX		ELY	-1		
48	1.2D + 1.0Ev + 1.0Eh_300°	Yes	Υ	DL	1.243	ELX	-0.5	ELY	-0.866		
49	1.2D + 1.0Ev + 1.0Eh 315°	Yes	Y	DL	1.243	ELX	-0.707	ELY	-0.707		
50	1.2D + 1.0Ev + 1.0Eh 330°	Yes	Υ	DL	1.243	ELX	-0.866	ELY	-0.5		
51	0.9D - 1.0Ev + 1.0Eh 0°	Yes	Υ	DL	0.857	ELX	-1	ELY			
52	0.9D - 1.0Ev + 1.0Eh 30°	Yes	Y	DL	0.857	ELX	-0.866	ELY	0.5		
53	0.9D - 1.0Ev + 1.0Eh 45°	Yes	Y	DL	0.857	ELX	-0.707	ELY	0.707		
	_	Yes	Y	DL				ELY	0.866		
54	0.9D - 1.0Ev + 1.0Eh_60°		Y		0.857	ELX	-0.5				
55	0.9D - 1.0Ev + 1.0Eh_90°	Yes		DL	0.857	ELX	0.5	ELY	1		
56	0.9D - 1.0Ev + 1.0Eh_120°	Yes	Y	DL	0.857	ELX	0.5	ELY	0.866		
57	0.9D - 1.0Ev + 1.0Eh_135°	Yes	Υ	DL	0.857	ELX	0.707	ELY	0.707		
58	0.9D - 1.0Ev + 1.0Eh_150°	Yes	Y	DL	0.857	ELX	0.866	ELY	0.5		
59	0.9D - 1.0Ev + 1.0Eh_180°	Yes	Y	DL	0.857	ELX	1	ELY			
60	0.9D - 1.0Ev + 1.0Eh 210°	Yes	Υ	DL	0.857	ELX	0.866	ELY	-0.5		
61	0.9D - 1.0Ev + 1.0Eh 225°	Yes	Υ	DL	0.857	ELX	0.707	ELY	-0.707		
62	0.9D - 1.0Ev + 1.0Eh 240°	Yes	Y	DL	0.857	ELX	0.5	ELY	-0.866		
63	0.9D - 1.0Ev + 1.0Eh 270°	Yes	Y	DL	0.857	ELX	0.0	ELY	-1		
64	0.9D - 1.0Ev + 1.0Eh 300°	Yes	Y	DL	0.857	ELX	-0.5	ELY	-0.866		
65	0.9D - 1.0Ev + 1.0Eh 315°	Yes	Y	DL	0.857	ELX	-0.707	ELY	-0.707		
			Y								
66	0.9D - 1.0Ev + 1.0Eh_330°	Yes		DL	0.857	ELX	-0.866	ELY	-0.5	014	4.5
67	1.2D + 1.5Lm_1 + 1.0Wm_0°	Yes	Y	DL	1.2	5	0.068	37	0.068	OL1	1.5
68	1.2D + 1.5Lm_1 + 1.0Wm_30°	Yes	Υ	DL	1.2	6	0.068	38	0.068	OL1	1.5
69	1.2D + 1.5Lm_1 + 1.0Wm_45°	Yes	Υ	DL	1.2	7	0.068	39	0.068	OL1	1.5
70	1.2D + 1.5Lm_1 + 1.0Wm_60°	Yes	Y	DL	1.2	8	0.068	40	0.068	OL1	1.5
71	1.2D + 1.5Lm_1 + 1.0Wm_90°	Yes	Υ	DL	1.2	9	0.068	41	0.068	OL1	1.5
72	1.2D + 1.5Lm 1 + 1.0Wm 120°	Yes	Υ	DL	1.2	10	0.068	42	0.068	OL1	1.5
73	1.2D + 1.5Lm 1 + 1.0Wm 135°	Yes	Υ	DL	1.2	11	0.068	43	0.068	OL1	1.5
74	1.2D + 1.5Lm 1 + 1.0Wm 150°	Yes	Υ	DL	1.2	12	0.068	44	0.068	OL1	1.5
75	1.2D + 1.5Lm 1 + 1.0Wm 180°	Yes	Y	DL	1.2	13	-0.068	45	-0.068	OL1	1.5
76	1.2D + 1.5Lm 1 + 1.0Wm 210°	Yes	Y	DL	1.2	14	-0.068	46	-0.068	OL1	1.5
77	1.2D + 1.5Lm 1 + 1.0Wm 225°	Yes	Y	DL	1.2	15	-0.068	47	-0.068	OL1	1.5
			Y								
78	1.2D + 1.5Lm_1 + 1.0Wm_240°	Yes		DL	1.2	16	-0.068	48	-0.068	OL1	1.5
79	1.2D + 1.5Lm_1 + 1.0Wm_270°	Yes	Y	DL	1.2	17	-0.068	49	-0.068	OL1	1.5
80	1.2D + 1.5Lm_1 + 1.0Wm_300°	Yes	Υ	DL	1.2	18	-0.068	50	-0.068	OL1	1.5
81	1.2D + 1.5Lm_1 + 1.0Wm_315°	Yes	Y	DL	1.2	19	-0.068	51	-0.068	OL1	1.5
82	1.2D + 1.5Lm_1 + 1.0Wm_330°	Yes	Υ	DL	1.2	20	-0.068	52	-0.068	OL1	1.5
83	1.2D + 1.5Lm_2 + 1.0Wm_0°	Yes	Y	DL	1.2	5	0.068	37	0.068	OL2	1.5
84	1.2D + 1.5Lm_2 + 1.0Wm_30°	Yes	Υ	DL	1.2	6	0.068	38	0.068	OL2	1.5
85	1.2D + 1.5Lm_2 + 1.0Wm_45°	Yes	Υ	DL	1.2	7	0.068	39	0.068	OL2	1.5
86	1.2D + 1.5Lm 2 + 1.0Wm 60°	Yes	Υ	DL	1.2	8	0.068	40	0.068	OL2	1.5
87	1.2D + 1.5Lm_2 + 1.0Wm_90°	Yes	Y	DL	1.2	9	0.068	41	0.068	OL2	1.5
88	1.2D + 1.5Lm 2 + 1.0Wm 120°	Yes	Y	DL	1.2	10	0.068	42	0.068	OL2	1.5
89	1.2D + 1.5Lm 2 + 1.0Wm 135°	Yes	Y	DL	1.2	11	0.068	43	0.068	OL2	1.5
	1.2D + 1.5Lm 2 + 1.0Wm 150°		_								
90		Yes	Y	DL	1.2	12	0.068	44	0.068	OL2	1.5
91	1.2D + 1.5Lm_2 + 1.0Wm_180°	Yes	Y	DL	1.2	13	-0.068	45	-0.068	OL2	1.5
92	1.2D + 1.5Lm 2 + 1.0Wm 210°	Yes	Y	DL	1.2	14	-0.068	46	-0.068	OL2	1.5
93	1.2D + 1.5Lm_2 + 1.0Wm_225°	Yes	Υ	DL	1.2	15	-0.068	47	-0.068	OL2	1.5
94	1.2D + 1.5Lm_2 + 1.0Wm_240°	Yes	Y	DL	1.2	16	-0.068	48	-0.068	OL2	1.5
95	1.2D + 1.5Lm_2 + 1.0Wm_270°	Yes	Υ	DL	1.2	17	-0.068	49	-0.068	OL2	1.5
96	1.2D + 1.5Lm 2 + 1.0Wm 300°	Yes	Υ	DL	1.2	18	-0.068	50	-0.068	OL2	1.5

Company :CLS Designer :GD

Job Number:41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM

Checked By : CAR

Load Combinations (Continued)

Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
97 1.2D + 1.5Lm_2 + 1.0Wm_315°	Yes	Υ	DL	1.2	19	-0.068	51	-0.068	OL2	1.5
98 1.2D + 1.5Lm_2 + 1.0Wm_330°	Yes	Υ	DL	1.2	20	-0.068	52	-0.068	OL2	1.5
99 1.2D + 1.5Lm_3 + 1.0Wm_0°	Yes	Υ	DL	1.2	5	0.068	37	0.068	OL3	1.5
100 1.2D + 1.5Lm_3 + 1.0Wm_30°	Yes	Υ	DL	1.2	6	0.068	38	0.068	OL3	1.5
101 1.2D + 1.5Lm_3 + 1.0Wm_45°	Yes	Υ	DL	1.2	7	0.068	39	0.068	OL3	1.5
102 1.2D + 1.5Lm_3 + 1.0Wm_60°	Yes	Υ	DL	1.2	8	0.068	40	0.068	OL3	1.5
103 1.2D + 1.5Lm_3 + 1.0Wm_90°	Yes	Υ	DL	1.2	9	0.068	41	0.068	OL3	1.5
104 1.2D + 1.5Lm_3 + 1.0Wm_120°	Yes	Υ	DL	1.2	10	0.068	42	0.068	OL3	1.5
105 1.2D + 1.5Lm_3 + 1.0Wm_135°	Yes	Υ	DL	1.2	11	0.068	43	0.068	OL3	1.5
106 1.2D + 1.5Lm_3 + 1.0Wm_150°	Yes	Y	DL	1.2	12	0.068	44	0.068	OL3	1.5
107 1.2D + 1.5Lm_3 + 1.0Wm_180°	Yes	Υ	DL	1.2	13	-0.068	45	-0.068	OL3	1.5
108 1.2D + 1.5Lm_3 + 1.0Wm_210°	Yes	Y	DL	1.2	14	-0.068	46	-0.068	OL3	1.5
109 1.2D + 1.5Lm_3 + 1.0Wm_225°	Yes	Υ	DL	1.2	15	-0.068	47	-0.068	OL3	1.5
110 1.2D + 1.5Lm_3 + 1.0Wm_240°	Yes	Υ	DL	1.2	16	-0.068	48	-0.068	OL3	1.5
111 1.2D + 1.5Lm_3 + 1.0Wm_270°	Yes	Υ	DL	1.2	17	-0.068	49	-0.068	OL3	1.5
112 1.2D + 1.5Lm_3 + 1.0Wm_300°	Yes	Υ	DL	1.2	18	-0.068	50	-0.068	OL3	1.5
113 1.2D + 1.5Lm_3 + 1.0Wm_315°	Yes	Υ	DL	1.2	19	-0.068	51	-0.068	OL3	1.5
114 1.2D + 1.5Lm_3 + 1.0Wm_330°	Yes	Υ	DL	1.2	20	-0.068	52	-0.068	OL3	1.5
115 1.2D + 1.5Lm_4 + 1.0Wm_0°	Yes	Υ	DL	1.2	5	0.068	37	0.068	OL4	1.5
116 1.2D + 1.5Lm_4 + 1.0Wm_30°	Yes	Υ	DL	1.2	6	0.068	38	0.068	OL4	1.5
117 1.2D + 1.5Lm_4 + 1.0Wm_45°	Yes	Υ	DL	1.2	7	0.068	39	0.068	OL4	1.5
118 1.2D + 1.5Lm_4 + 1.0Wm_60°	Yes	Υ	DL	1.2	8	0.068	40	0.068	OL4	1.5
119 1.2D + 1.5Lm_4 + 1.0Wm_90°	Yes	Υ	DL	1.2	9	0.068	41	0.068	OL4	1.5
120 1.2D + 1.5Lm 4 + 1.0Wm 120°	Yes	Υ	DL	1.2	10	0.068	42	0.068	OL4	1.5
121 1.2D + 1.5Lm_4 + 1.0Wm_135°	Yes	Υ	DL	1.2	11	0.068	43	0.068	OL4	1.5
122 1.2D + 1.5Lm 4 + 1.0Wm 150°	Yes	Υ	DL	1.2	12	0.068	44	0.068	OL4	1.5
123 1.2D + 1.5Lm_4 + 1.0Wm_180°	Yes	Υ	DL	1.2	13	-0.068	45	-0.068	OL4	1.5
124 1.2D + 1.5Lm 4 + 1.0Wm 210°	Yes	Υ	DL	1.2	14	-0.068	46	-0.068	OL4	1.5
125 1.2D + 1.5Lm_4 + 1.0Wm_225°	Yes	Υ	DL	1.2	15	-0.068	47	-0.068	OL4	1.5
126 1.2D + 1.5Lm_4 + 1.0Wm_240°	Yes	Υ	DL	1.2	16	-0.068	48	-0.068	OL4	1.5
127 1.2D + 1.5Lm 4 + 1.0Wm 270°	Yes	Υ	DL	1.2	17	-0.068	49	-0.068	OL4	1.5
128 1.2D + 1.5Lm_4 + 1.0Wm_300°	Yes	Υ	DL	1.2	18	-0.068	50	-0.068	OL4	1.5
129 1.2D + 1.5Lm 4 + 1.0Wm 315°	Yes	Υ	DL	1.2	19	-0.068	51	-0.068	OL4	1.5
130 1.2D + 1.5Lm_4 + 1.0Wm_330°	Yes	Υ	DL	1.2	20	-0.068	52	-0.068	OL4	1.5

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
3	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rule	Area [in²]	lyy [in⁴]	Izz [in⁴]	J [in⁴]
1	Platform Horzontal Pipe	PIPE_3.0	Beam Pipe		A53 Gr.B	Typical	2.07	2.85	2.85	5.69
2	Offset Tube	HSS4X4X4	Beam	SquareTube	A36 Gr.36	Typical	3.37	7.8	7.8	12.8
3	Offset Side Plate	0.38 X 6 Plate	Beam	RECT	A36 Gr.36	Typical	2.28	0.027	6.84	0.105
4	Grating Angle	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	0.722	0.271	0.271	0.009
5	MOUNT_PIPE_2.0	PIPE_2.0	None	None	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
6	Offset End Plate	0.5 x 6 Plate	Beam	RECT	A36 Gr.36	Typical	3	0.063	9	0.237
7	HRK12-U	PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
8	HRKPlate	0.38 X 6 Plate	Beam	RECT	A36 Gr.36	Typical	2.28	0.027	6.84	0.105
9	HRKAngle	L2.5x2.5x4	Beam	Single Angle	A36 Gr.36	Typical	1.19	0.692	0.692	0.026
10	PRK-1245	L2.5x2.5x3	Beam	Single Angle	A36 Gr.36	Typical	0.901	0.535	0.535	0.011

Company :CLS Designer :GD

Job Number :41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM

Checked By : CAR

Hot Rolled Steel Design Parameters

	Label	Shape	Length [in]	Lb z-z [in]	Function
1	M305	Offset End Plate	4.688	LD Z-Z [III]	Lateral
2	M306	Offset Side Plate	3		Lateral
3	M309	Platform Horzontal Pipe	149.998	42	Lateral
4	A2	Offset Tube	62.5	12	Lateral
5	M313	Offset End Plate	3.122		Lateral
6	M314	Offset End Plate	4.688		Lateral
7	M315	Offset End Plate	3.122		Lateral
8	M316	Offset Side Plate	0.875		Lateral
9	M317	Offset Side Plate	0.875		Lateral
10	M318	Offset Tube	30.688		Lateral
11	M320	Offset Tube	30.687		Lateral
12	M326	Offset Side Plate	3		Lateral
13	M330	Grating Angle	50.542		Lateral
14	M332	Grating Angle	50.542		Lateral
15	M333	PRK-1245	47.94		Lateral
16	M336	PRK-1245	47.94		Lateral
17	M342	Offset End Plate	3.122		Lateral
18	M344	Grating Angle	50.542		Lateral
19	A1	Offset Tube	62.5		Lateral
20	M346	Grating Angle	50.542		Lateral
21	M347	Offset End Plate	3.122		Lateral
22	M348	Offset Tube	30.687		Lateral
23	M350	Offset End Plate	3.122		Lateral
24	M353	Grating Angle	50.542		Lateral
25	M357	PRK-1245	47.94		Lateral
26	M358	Offset End Plate	4.688		Lateral
27	M359	Offset Tube	30.688		Lateral
28	M360	Offset Side Plate	3	40	Lateral
29 30	M361	Platform Horzontal Pipe	149.998	42	Lateral
31	M368 M369	Offset End Plate Offset Side Plate	4.688 0.875		Lateral
32	M371	Offset Side Plate Offset Side Plate	0.875		Lateral Lateral
33	M373	Offset Tube	30.687		Lateral
34	M378	Offset Side Plate	30.007		Lateral
35	M381	PRK-1245	47.94		Lateral
36	M382	PRK-1245	47.94		Lateral
37	M385	Offset End Plate	4.688		Lateral
38	M386	Offset Side Plate	3		Lateral
39	M387	Grating Angle	50.542		Lateral
40	M388	Offset Side Plate	0.875		Lateral
41	A3	Offset Tube	62.5		Lateral
42	M390	Offset End Plate	4.688		Lateral
43	M391	Offset End Plate	3.122		Lateral
44	M392	Offset Side Plate	0.875		Lateral
45	M393	Offset Tube	30.688		Lateral
46	M397	Offset Side Plate	3		Lateral
47	M402	PRK-1245	47.94		Lateral
48	M404	Platform Horzontal Pipe	149.998	42	Lateral
49	M238	HRKPlate	3.711		Lateral
50	M241	HRKAngle	14.902		Lateral
51	M247	HRKPlate	3.711		Lateral
52	M248	HRKAngle	14.902		Lateral
53	M249	HRKAngle	14.902		Lateral
54	M250	HRK12-U	150	42	Lateral
55	M251	HRK12-U	150	42	Lateral
56	M252	HRK12-U	150	42	Lateral
57	M269	HRKPlate	3.711		Lateral
58	M270	HRKPlate	3.711		Lateral

Company :CLS Designer :GD

Job Number :41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM Checked By : CAR

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length [in]	Lb z-z [in]	Function
59	M272	HRKPlate	3.711		Lateral
60	M273	HRKPlate	3.711		Lateral
61	A_MP1_S	MOUNT_PIPE_2.0	96		Lateral
62	A_MP2_S	MOUNT_PIPE_2.0	96		Lateral
63	A_MP3_S	MOUNT_PIPE_2.0	96		Lateral
64	A_MP4_S	MOUNT_PIPE_2.0	96		Lateral
65	B_MP1_S	MOUNT_PIPE_2.0	96		Lateral
66	B_MP2_S	MOUNT_PIPE_2.0	96		Lateral
67	B_MP3_S	MOUNT_PIPE_2.0	96		Lateral
68	B_MP4_S	MOUNT_PIPE_2.0	96		Lateral
69	G_MP1_S	MOUNT_PIPE_2.0	96		Lateral
70	G_MP2_S	MOUNT_PIPE_2.0	96		Lateral
71	G_MP3_S	MOUNT_PIPE_2.0	96		Lateral
72	G_MP4_S	MOUNT_PIPE_2.0	96		Lateral

Member Advanced Data

	Label	l Release	J Release	Physical	Deflection Ratio Options	Seismic DR
1	M297			Yes	** NA **	None
2	M298			Yes	** NA **	None
3	M299		000X00	Yes	** NA **	None
4	M300			Yes	** NA **	None
5	M302			Yes	** NA **	None
6	M305			Yes		None
7	M306			Yes		None
8	M308			Yes	** NA **	None
9	M309			Yes	Default	None
10	M310			Yes	** NA **	None
11	M311			Yes	** NA **	None
12	A2			Yes	Default	None
13	M313			Yes		None
14	M314			Yes		None
15	M315			Yes		None
16	M316			Yes		None
17	M317			Yes		None
18	M318			Yes		None
19	M319			Yes	** NA **	None
20	M320			Yes		None
21	M321			Yes	** NA **	None
22	M322			Yes	** NA **	None
23	M323			Yes	** NA **	None
24	M324		000X00	Yes	** NA **	None
25	M325			Yes	** NA **	None
26	M326			Yes		None
27	M327		000X00	Yes	** NA **	None
28	M328		000X00	Yes	** NA **	None
29	M329			Yes	** NA **	None
30	M330			Yes		None
31	M331			Yes	** NA **	None
32	M332			Yes		None
33	M333	BenPIN	BenPIN	Yes		None
34	M334			Yes	** NA **	None
35	M335			Yes	** NA **	None
36	M336	BenPIN	BenPIN	Yes		None
37	M337			Yes	** NA **	None
38	M338			Yes	** NA **	None
39	M339		000X00	Yes	** NA **	None
40	M340		000X00	Yes	** NA **	None
41	M341		000X00	Yes	** NA **	None
						,

Company Designer :CLS :GD

Job Number:41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM Checked By: CAR

Member Advanced Data (Continued)

	l abal		J Release	Dhysical	Deflection Ratio Options	Seismic DR
42	Label M342	I Release	J Release	Physical Yes	Defiection Ratio Options	None
43	M343			Yes	** NA **	None
44	M344			Yes	14/1	None
45	A1			Yes	Default	None
46	M346			Yes	Dordan	None
47	M347			Yes		None
48	M348			Yes		None
49	M350			Yes		None
50	M351			Yes	** NA **	None
51	M353			Yes		None
52	M354			Yes	** NA **	None
53	M355			Yes	** NA **	None
54	M357	BenPIN	BenPIN	Yes		None
55	M358			Yes		None
56	M359			Yes		None
57	M360			Yes		None
58	M361			Yes	Default	None
59	M362			Yes	** NA **	None
60	M363			Yes	** NA **	None
61	M364		000X00	Yes	** NA **	None
62	M365			Yes	** NA **	None
63	M366			Yes	** NA **	None
64	M367			Yes	** NA **	None
65	M368			Yes		None
66	M369			Yes		None
67	M371			Yes		None
68	M373			Yes		None
69	M374			Yes	** NA **	None
70	M375			Yes	** NA **	None
71	M377		000X00	Yes	** NA **	None
72	M378			Yes	<u> </u>	None
73	M380			Yes	** NA **	None
74	M381	BenPIN	BenPIN	Yes		None
75	M382	BenPIN	BenPIN	Yes	44.818.44	None
76	M383			Yes	** NA **	None
77	M384			Yes	** NA **	None
78	M385			Yes Yes		None
79 80	M386 M387			Yes		None None
81	M388			Yes		
82	A3			Yes	Default	None None
83	M390			Yes	Delault	None
84	M391			Yes		None
85	M392			Yes		None
86	M393			Yes		None
87	M394			Yes	** NA **	None
88	M395			Yes	** NA **	None
89	M396		000X00	Yes	** NA **	None
90	M397		000/00	Yes	14/1	None
91	M398		000X00	Yes	** NA **	None
92	M399		000X00	Yes	** NA **	None
93	M400		333,033	Yes	** NA **	None
94	M401			Yes	** NA **	None
95	M402	BenPIN	BenPIN	Yes		None
96	M404	Dom IIV	20111 114	Yes	Default	None
97	M238			Yes		None
98	M239			Yes	** NA **	None
99	M240			Yes	** NA **	None

Company :CLS Designer :GD

Job Number :41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM

Checked By : CAR

Member Advanced Data (Continued)

	Label	l Release	J Release	Physical	Deflection Ratio Options	Seismic DR
100	M241			Yes	•	None
101	M242			Yes	** NA **	None
102	M243			Yes	** NA **	None
103	M244			Yes	** NA **	None
104	M245			Yes	** NA **	None
105	M246			Yes	** NA **	None
106	M247			Yes		None
107	M248			Yes		None
108	M249			Yes		None
109	M250			Yes		None
110	M251			Yes		None
111	M252			Yes		None
112	M253		_	Yes	** NA **	None
113	M254			Yes	** NA **	None
114	M255			Yes	** NA **	None
115	M256			Yes	** NA **	None
116	M257			Yes	** NA **	None
117	M258			Yes	** NA **	None
118	M259			Yes	** NA **	None
119	M260			Yes	** NA **	None
120	M261			Yes	** NA **	None
121	M262			Yes	** NA **	None
122	M263			Yes	** NA **	None
123	M264			Yes	** NA **	None
124	M265			Yes	** NA **	None
125	M266			Yes	** NA **	None
126	M267		_	Yes	** NA **	None
127	M268			Yes	** NA **	None
128	M269		_	Yes		None
129	M270			Yes		None
130	M271		_	Yes	** NA **	None
131	M272			Yes		None
132	M273			Yes	did N. I. A. did	None
133	RI2			Yes	** NA **	None
134	RI1			Yes	** NA **	None
135	A_MP1_S			Yes	** NA **	None
136	RI3			Yes	** NA **	None
137	RI4			Yes	** NA **	None
138	RI5			Yes	** NA **	None
139	RI12			Yes	** NA **	None
140	RI11			Yes	** NA **	None
141	A_MP2_S			Yes	** NA **	None
142	RI13			Yes	** NA **	None
143	RI14			Yes	** NA **	None
144	RI15			Yes	** NA **	None
145	RI22			Yes	** NA **	None
146	RI21			Yes	** NA **	None
147	A_MP3_S			Yes	** NA **	None
148	RI23			Yes	** NA **	None
149	RI24			Yes	** NA **	None
150	RI32			Yes	** NA **	None
151	RI31			Yes	** NA **	None
152	A_MP4_S			Yes	** NA **	None
153	RI72			Yes	** NA **	None
154	RI71			Yes	** NA **	None
155	B_MP1_S			Yes	** NA **	None
156	RI73			Yes	** NA **	None
157	RI74			Yes	** NA **	None

Company :CLS Designer :GD

Job Number :41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM Checked By : CAR

Member Advanced Data (Continued)

	Label	l Release	J Release	Physical	Deflection Ratio Options	Seismic DR
158	RI75			Yes	** NA **	None
159	RI82			Yes	** NA **	None
160	RI81			Yes	** NA **	None
161	B MP2 S			Yes	** NA **	None
162	RI83			Yes	** NA **	None
163	RI84			Yes	** NA **	None
164	RI85			Yes	** NA **	None
165	RI92			Yes	** NA **	None
166	RI91			Yes	** NA **	None
167	B MP3 S			Yes	** NA **	None
168	RI93			Yes	** NA **	None
169	RI94			Yes	** NA **	None
170	RI102			Yes	** NA **	None
171	RI101			Yes	** NA **	None
172	B MP4 S			Yes	** NA **	None
173	RI142			Yes	** NA **	None
174	RI141			Yes	** NA **	None
175	G MP1 S			Yes	** NA **	None
176	RI143			Yes	** NA **	None
177	RI144			Yes	** NA **	None
178	RI145			Yes	** NA **	None
179	RI152			Yes	** NA **	None
180	RI151			Yes	** NA **	None
181	G MP2 S			Yes	** NA **	None
182	RI153			Yes	** NA **	None
183	RI154			Yes	** NA **	None
184	RI155			Yes	** NA **	None
185	RI162			Yes	** NA **	None
186	RI161			Yes	** NA **	None
187	G_MP3_S			Yes	** NA **	None
188	RI163			Yes	** NA **	None
189	RI164			Yes	** NA **	None
190	RI172			Yes	** NA **	None
191	RI171			Yes	** NA **	None
192	G_MP4_S			Yes	** NA **	None

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N442	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N453	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N485	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N492	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
5	N535	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
6	N588	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Envelope Node Reactions

	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N453	max	4320.418	3	1211.654	15	1462.852	19	931.3	7	1737.154	19	1432.957	7
2		min	-2675.234	11	-1216.99	7	416.734	59	-730.649	15	483.267	59	-1448.522	15
3	N442	max	1356.326	16	2306.717	16	1462.851	24	1457.98	21	296.665	4	1432.718	12
4		min	-2183.996	8	-3728.566	8	416.73	64	135.2	13	-1302.954	28	-1448.283	4
5	N535	max	1319.539	6	3755.697	14	1462.851	30	-193.048	9	450.821	18	1432.836	18
6		min	-2137.073	14	-2327.975	6	416.732	54	-1737.662	33	-1066.656	106	-1448.403	10
7	N492	max	897.006	11	54.477	15	1883.501	19	65.453	7	941.751	19	134.393	7
8		min	-3051.14	19	-54.58	7	-530.96	11	-58.63	15	-265.48	11	-123.316	15
9	N588	max	1525.266	24	2642.703	24	1883.585	24	810.649	24	129.006	16	134.372	12
10		min	-448.732	16	-777.147	16	-531.193	16	-232.203	16	-479.5	24	-123.294	4

Company :CLS Designer :GD

Job Number:41124-13668065_C8_01-01-MA

Model Name:41124-13668065_C8_01-Middletown CT 3

5/6/2021 4:01:55 PM

Checked By: CAR

Envelope Node Reactions (Continued)

Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC	
11	N485	max	1526.031	30	777.209	6	1883.605	30	227.833	6	136.59	6	134.377	18
12		min	-448.676	6	-2642.299	30	-531.209	6	-820.593	30	-462.296	30	-123.3	10
13	Totals:	max	3965.306	3	3965.855	15	8871.326	25						
14		min	-3965.307	11	-3965.852	7	2512.682	66						

Envelope AISC 15th (360-16): LRFD Steel Code Checks

				0.00	or code cir	00/10					
	Member	Shape	Code Chec	kLoc[in]Lo	Shear Che	ckLoc[in]	DirLCphi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]phi*Mn z-z [lb-ft	
1	M360	0.38 X 6 Plate	0.108	1.5	1.004	3	y 1671020.258	73872	584.82	9234	3 H1-1b
2	M306	0.38 X 6 Plate	0.103	1.5 1	1.004	3	y 6 71020.258	73872	584.82	9234	3 H1-1b
3	M386	0.38 X 6 Plate	0.103	1.5 4	1.004	3	y 11 71020.258	73872	584.82	9234	3 H1-1b
4	M326	0.38 X 6 Plate	0.09	1.5 7	0.971	3	y 1671019.885	73872	584.82	9234	3 H1-1b
5	M397	0.38 X 6 Plate	0.09	1.5 12	0.971	3	y 6 71019.885	73872	584.82	9234	3 H1-1b
6	M378	0.38 X 6 Plate	0.09	1.5 18	0.97	3	y 11 71019.885	73872	584.82	9234	3 H1-1b
7	M347	0.5 x 6 Plate	0.074	0 4		0	y 1694834.571	97200	1012.5	12150	3 H1-1b
8		0.5 x 6 Plate	0.074	0 10		0	y 6 94834.571	97200	1012.5	12150	3 H1-1b
9		0.5 x 6 Plate	0.074	0 1		0	y 1194834.571	97200	1012.5	12150	3 H1-1b
10		0.38 X 6 Plate		0.875 10		0.875		73872	584.82	9234	1.034H1-1b
11		0.38 X 6 Plate		0.875 6			y 1473624.978	73872	584.82	9234	1.034H1-1b
12		0.38 X 6 Plate		0.875 1			y 3 73624.978	73872	584.82	9234	1.034H1-1b
13		0.38 X 6 Plate		0.875 10			y 8 73624.978	73872	584.82	9234	1.033H1-1b
14		0.38 X 6 Plate		0.875 5			y 1473624.978		584.82	9234	1.026H1-1b
15		0.38 X 6 Plate		0.875 1		0.875		73872	584.82	9234	1.033H1-1b
16		0.5 x 6 Plate	0.078	0.07.0 1		0.070	y 1694834.571	97200	1012.5	12150	3 H1-1b
17		0.5 x 6 Plate	0.078	0 1		0	y 6 94834.571	97200	1012.5	12150	3 H1-1b
18		0.5 x 6 Plate	0.078	0 7		0	y 1194834.571	97200	1012.5	12150	3 H1-1b
19		0.5 x 6 Plate	0.145	0 1		0	y 1691950.093	97200	1012.5	12150	1.213H1-1b
20	M305	0.5 x 6 Plate	0.145	0 3		0	y 6 91950.093	97200	1012.5	12150	1.185H1-1b
21		0.5 x 6 Plate	0.145	0 8		0	y 1191950.093	97200	1012.5	12150	1.185H1-1b
22	M314	0.5 x 6 Plate	0.145	4.688 3			y 1691950.093	97200	1012.5	12150	1.167H1-1b
23	M390	0.5 x 6 Plate	0.157	4.688 9		4.688		97200	1012.5	12150	1.194H1-1b
24		0.5 x 6 Plate	0.157	4.688 14			y 11 91950.093		1012.5	12150	1.167H1-1b
25	M252	PIPE 2.0	0.155	11.842 5		15.789		32130	1871.625	1871.625	3 H1-1a
		PIPE_2.0		11.842 1		15.789		32130			
26 27	M251 M250		0.429			15.789			1871.625	1871.625	3 H1-1a 3 H1-1a
		PIPE_2.0	0.429	11.8421				32130	1871.625	1871.625	2.094H1-1b
-	G_MP1_S A MP1 S		0.417	93.474 3		93.474		32130	1871.625	1871.625	2.078H1-1b
29	B MP1 S		0.417	93.474 8		93.474		32130	1871.625	1871.625	
-		_	0.42	93.47413		93.474		32130	1871.625	1871.625	1.954H1-1b
31	M404	PIPE_3.0	0.108	19.737 3		11.842		65205	5748.75	5748.75	2.527H1-1b 2.527H1-1b
32	M361	PIPE_3.0	0.108	19.737 8		11.842		65205	5748.75	5748.75	
33	M309	PIPE_3.0	0.11	59.218		11.842		65205	5748.75	5748.75	2.239H1-1b
34			0.463	93.474 8		93.474		32130	1871.625	1871.625	1.957H1-1b
35	M248	L2.5x2.5x4	0.351	14.902 4			z 15 36663.9	38556	1113.554	2537.388	1.5 H2-1
36	M249	L2.5x2.5x4	0.351	14.9021		14.902		38556	1113.554	2537.388	1.5 H2-1
37	M241	L2.5x2.5x4	0.351	14.90210		14.902		38556	1113.554	2537.388	1.5 H2-1
38			0.469	93.4741		93.474		32130	1871.625	1871.625	2.071H1-1b
_	G_MP2_S		0.463	93.474 3		93.474		32130	1871.625	1871.625	1.869H1-1b
40	A2	HSS4X4X4	0.174	0 3		0	z 7 99905.429	109188	12663	12663	2.922H1-1b
41	A1	HSS4X4X4	0.174	0 20		0	z 1899905.429	109188	12663	12663	2.922H1-1b
		HSS4X4X4		0 20	0.128		z 1299905.429		12663	12663	2.922H1-1b
		PIPE_2.0	0.372	93.4741		93.474			1871.625		1.708H1-1b
		PIPE_2.0	0.373	93.474 5		93.474			1871.625		1.926H1-1b
		PIPE_2.0	0.372	93.47410		93.474			1871.625		1.808H1-1b
		PIPE 2.0	0.492	93.4741		93.474			1871.625		1.714H1-1b
		PIPE_2.0	0.492	93.47410		93.474			1871.625	1871.625	1.921H1-1b
		PIPE_2.0	0.492	93.474 6		93.474			1871.625		2.265H1-1b
		0.38 X 6 Plate	_	0 5		0	y 7 69552.723		584.82	9234	1.632H1-1b
		0.38 X 6 Plate		0 1			y 1269552.723		584.82	9234	1.636H1-1b
51	M247	0.38 X 6 Plate	0.053	0 10	0.073	0	y 18 69552.723	73872	584.82	9234	1.636H1-1b

:CLS Company Designer :GD Job Number:41124-13668065_C8_01-01-MA 5/6/2021 4:01:55 PM

Checked By: CAR

Envelope AISC 15th (360-16): LRFD Steel Code Checks (Continued)

Model Name:41124-13668065_C8_01-Middletown CT 3

	Member	Shape 0	Code Checl	kLoc[in]LCSI	hear Chec	kLoc[in]Di	LC	phi*Pnc [lb]	ohi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft	[] Cb	Eqn
52	M270	0.38 X 6 Plate	0.044	2.344 15	0.07	0 y	15	69552.723	73872	584.82	9234	1.651	H1-1b
53	M273	0.38 X 6 Plate	0.044	2.344 10	0.07	0 y	10	69552.723	73872	584.82	9234	1.651	H1-1b
54	M238	0.38 X 6 Plate	0.044	2.344 4	0.07	0 y	4	69552.723	73872	584.82	9234	1.651	H1-1b
55	M373	HSS4X4X4	0.202	0 31	0.066	0 y	30	106874.166	109188	12663	12663	1.63	H1-1b
56	M348	HSS4X4X4	0.203	0 25	0.066	0 y	24	106874.166	109188	12663	12663	1.639	H1-1b
57	M320	HSS4X4X4	0.202	0 20	0.066	0 y	19	106874.166	109188	12663	12663	1.63	H1-1b
58	M359	HSS4X4X4	0.192	30.68829	0.063	30.688 y	30	106874.106	109188	12663	12663		H1-1b
59	M393	HSS4X4X4	0.191	30.68824	0.063	30.688 y	24	106874.106	109188	12663	12663	1.69	H1-1b
60	M318	HSS4X4X4	0.191	30.68819	0.063		-	106874.106	109188	12663	12663	1.69	H1-1b
61	M353	L2x2x3	0.212	50.54232	0.018			9618.888	23392.8	557.717	1137.587	1.5	H2-1
62	M330	L2x2x3	0.212	50.54222	0.018	50.542 y	22	9618.888	23392.8	557.717	1137.587	1.5	H2-1
63	M387	L2x2x3	0.212	50.54227	0.018	50.542 y	27	9618.888	23392.8	557.717	1137.587	1.5	H2-1
64	M344	L2x2x3	0.178	50.54222	0.016	50.542 z	21	9618.956	23392.8	557.717	1137.588	1.5	H2-1
65	M332	L2x2x3	0.178	50.54232	0.016	50.542 z	32	9618.956	23392.8	557.717	1137.588	1.5	H2-1
66	M346	L2x2x3	0.178	50.54227	0.016	50.542 z	27	9618.956	23392.8	557.717	1137.588	1.5	H2-1
67	M333	L2.5x2.5x3	0.143	23.9721	0.008	47.94 z	7	17342.093	29192.4	872.574	1713.748	1.137	H2-1
68	M336	L2.5x2.5x3	0.126	23.9733	0.008	47.94 y	7	17342.093	29192.4	872.574	1713.748	1.137	H2-1
69	M381	L2.5x2.5x3	0.142	23.9731	0.008	47.94 z	18	17342.093	29192.4	872.574	1713.748	1.137	H2-1
70	M382	L2.5x2.5x3	0.126	23.9729	0.008	47.94 y	18	17342.093	29192.4	872.574	1713.748	1.137	H2-1
71	M357	L2.5x2.5x3	0.142	23.97 26	0.008	47.94 z	12	17342.093	29192.4	872.574	1713.748	1.137	H2-1
72	M402	L2.5x2.5x3	0.125	23.97 23	0.008	47.94 y	12	17342.093	29192.4	872.574	1713.748	1.137	H2-1

Structural Analysis Report

Structure : 185 ft Monopole

ATC Site Name : Middletown CT 3, CT

ATC Asset Number : 302537

Engineering Number : 13668065_C3_02

Proposed Carrier : SPRINT NEXTEL

Carrier Site Name : CTHA859A

Carrier Site Number : CTHA859A

Site Location : 47 Inwood Road

Rocky Hill, CT 06067-3453

41.638600,-72.679300

County : Hartford

Date : April 27, 2021

Max Usage : 76%

Result : Pass

Prepared By: Reviewed By:

Christopher Jolly Structural Engineer III

Authorized by "EOR" 27 Apr 2021 09:08:08

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Equipment to be Removed	. 2
Proposed Equipment	2
Structure Usages	3
Foundations	3
Deflection, Twist, and Sway	. 3
Standard Conditions	4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 185 ft monopole to reflect the change in loading by SPRINT NEXTEL.

Supporting Documents

Tower Drawings Valmont Drawing #DC1646Z, dated November 2, 1993			
Foundation Drawing H. Edmund Bergeron Civil Engineers Project #93127, dated December 21, 1993			
Geotechnical Report Materials Testing Inc File #99 GT 93, dated December 2, 1993			
Modifications ATC Project #51430332, dated December 12, 2012			

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	118 mph (3-Second Gust)		
Basic Wind Speed w/ Ice: 50 mph (3-Second Gust) w/ 1"1/2 radial ice concurrent			
Code: ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code			
Exposure Category:	В		
Risk Category:			
Topographic Factor Procedure:	Method 1		
Topographic Category:	1		
Crest Height (H):	0 ft		
Spectral Response:	$Ss = 0.20, S_1 = 0.05$		
Site Class:	D - Stiff Soil		

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
	4	Decibel DB844H90E-XY			
181.0	4 Decibel 844G90VTA-SX F		Platform with Handrails	(12) 1 5/8" Coax	SPRINT NEXTEL
	4	Decibel 844G65VTZASX			
	3	Ericsson RRUS 4478 B14			
	3	CCI OPA65R-BU6D]		
	3 Ericsson RRUS 4449 B5, B12				
	3	Ericsson RRUS 32 B30	Platform with Handrails	(3) 0.39" (10mm) Fiber Trunk (6) 0.78" (19.7mm) 8 AWG 6 (6) 1 5/8" Coax (3) 2" conduit	AT&T MOBILITY
	3	Ericsson RRUS 32 B66			
168.0	3	Powerwave Allgon 7770.00			
100.0	3	Quintel QS66512-2			
	3 1 2 Rayca	CCI DMP65R-BU6DA			
		Raycap DC6-48-60-0-8F]		
		Raycap DC6-48-60-18-8F (23.5" Height)			
	6	Powerwave Allgon LGP21401			
	3	Ericsson RRUS E2 B29			

Equipment to be Removed

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
146.0	3	Alcatel-Lucent 800 MHz 2X50W RRH w/ Filter			
	3	Commscope DT465B-2XR			
	3	Alcatel-Lucent TD-RRH8x20-25 w/ Solar Shield		(4) 1 1/4" Hybriflex	SPRINT NEXTEL
140.0	3	RFS APXVSPP18-C-A20	-	Cable	SPRINT NEXTEL
	3	Alcatel-Lucent RRH2x50-08			
	3	Alcatel-Lucent 4x40W RRH (88 lb)			

Proposed Equipment

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
	3	Ericsson Radio 4449 B71 B85A			
	3	Ericsson RRUS 4415 B66		/2\ 1 E/9" Hybrifley CDDINT I	
140.0	3	Ericsson 4424 B25	Platform with Handrails		SPRINT NEXTEL
140.0	3	Ericsson Air6449 B41	Plationiii With Handrans		SPRINTINEATEL
	3	RFS APX16DWV-16DWVS-E-A20			
	3	RFS APXVAALL24 43-U-NA20			

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed coax inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	55%	Pass
Shaft	76%	Pass
Base Plate	14%	Pass
Reinforcement	60%	Pass

Foundations

Reaction Component	Original Design Reactions	Factored Design Reactions*	Analysis Reactions	% of Design	
Moment (Kips-Ft)	3,821.4	5,158.9	3,669.6	71%	
Shear (Kips)	32.1	29.2	67%		
* The design reactions are factored by 1.35 per ANSI/TIA-222-H, Sec. 15.6.2					

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

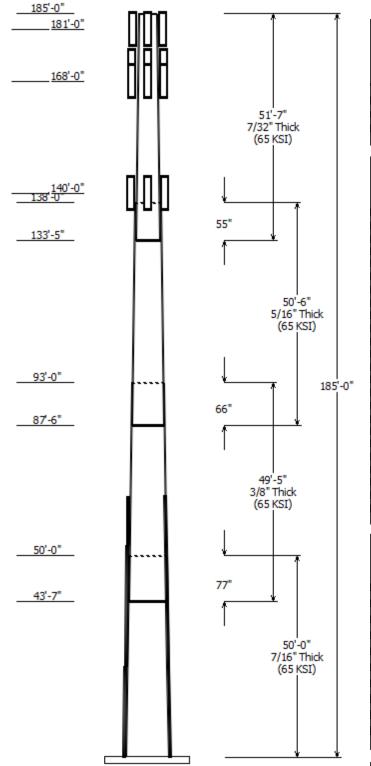
Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
	Ericsson Radio 4449 B71 B85A			1.408
	Ericsson RRUS 4415 B66		1.497	
140.0	Ericsson 4424 B25	SPRINT NEXTEL		
140.0	Ericsson Air6449 B41	SPRINT NEXTEL		
	RFS APX16DWV-16DWVS-E-A20			
	RFS APXVAALL24 43-U-NA20			

^{*}Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-H

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC


It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Job Information

Client: SPRINT NEXTEL

Pole: 302537 Code: ANSI/TIA-222-H

Location : Middletown CT 3, CT

Description: 185 ft Valmont pole - Model Colonia Shape: 12 Sides Exposure: B

Height: 185.00 (ft) Topo Method: Method 1

Base Elev (ft): 0.00 Topographic Category: 1

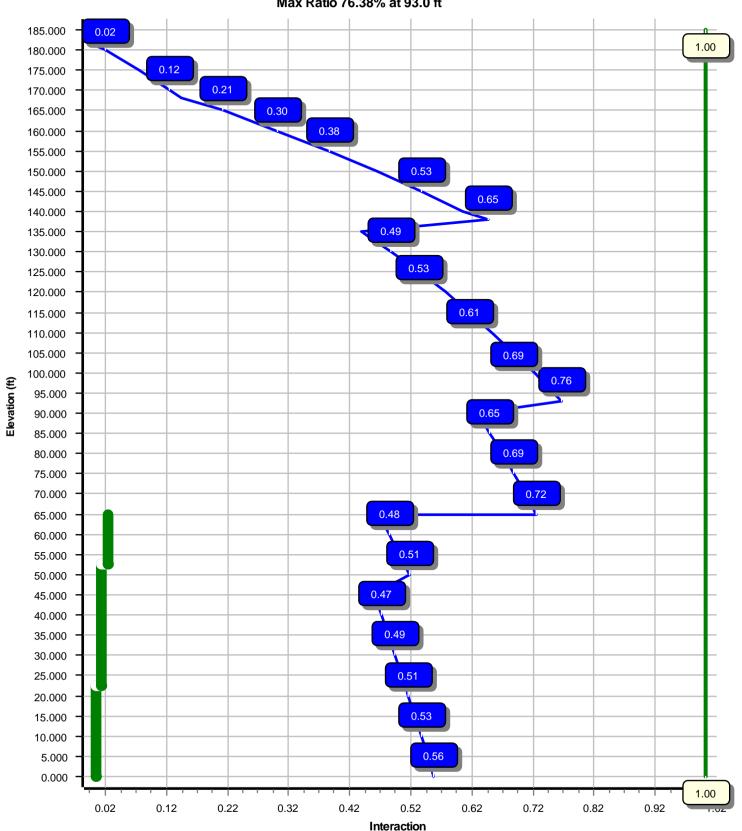
Taper: 0.188013in/ft)

	Sections Properties							
Shaft	Length		eter (in) ss Flats	Thick	Joint	Overlap Length		Steel Grade
Section	(ft)	Тор	Bottom	(in)	Туре	(in)	Shape	(ksi)
1	50.000	42.59	52.00	0.438		0.000	12 Sides	65
2	49.417	35.26	44.55	0.375	Slip Joint	77.000	12 Sides	65
3	50.500	27.42	36.92	0.313	Slip Joint	66.000	12 Sides	65
4	51.583	19.03	28.72	0.219	Slip Joint	55.000	12 Sides	65

Discrete Appurtenance					
Attach	Force				
Elev (ft)	Elev (ft)	Qty	Description		
181.000	181.000	4	Decibel 844G65VTZASX		
181.000	181.000	4	Decibel DB844H90E-XY		
181.000	181.000	4	Decibel 844G90VTA-SX		
181.000	181.000	1	Generic Heavy Platform with		
168.000	168.000	3	CCI OPA65R-BU6D		
168.000	168.000	3	CCI DMP65R-BU6DA		
168.000	169.000	3	Quintel QS66512-2		
168.000	169.000	3	Powerwave Allgon 7770.00		
168.000	169.000	3	Ericsson RRUS 32 B66		
168.000	168.000	3	Ericsson RRUS 32 B30		
168.000	168.000	3	Ericsson RRUS 4449 B5, B12		
168.000	168.000	3	Ericsson RRUS E2 B29		
168.000	168.000	3	Ericsson RRUS 4478 B14		
168.000	169.000	1	Raycap DC6-48-60-0-8F		
168.000	168.000	2	Raycap DC6-48-60-18-8F (23.5"		
168.000	169.000	6	Powerwave Allgon LGP21401		
168.000	168.000	1	Generic Round Platform with		
140.000	140.000	3	RFS APXVAALL24 43-U-NA20		
140.000	140.000	3	RFS APX16DWV-16DWVS-E-A20		
140.000	140.000	3	Ericsson Air6449 B41		
140.000	140.000	3	Ericsson 4424 B25		
140.000	140.000	3	Ericsson RRUS 4415 B66		
140.000	140.000	3	Ericsson Radio 4449 B71 B85A		
140.000	140.000	1	Generic Round Platform with		

	Linear Appurtenance					
Elev	(ft)		Exposed			
From	То	Description	To Wind			
0.000	73.600	#20 w/ Angle	No			
0.000	73.600	#20 w/ Angle	No			
0.000	73.600	#20 w/ Angle	No			
0.000	73.600	#20 w/ Angle	No			
0.000	140.0	1 5/8" Hybriflex	No			
0.000	168.0	0.39" (10mm)	Yes			
0.000	168.0	0.78" (19.7mm) 8	Yes			
0.000	168.0	1 5/8" Coax	Yes			
0.000	168.0	2" conduit	Yes			
0.000	181.0	1 5/8" Coax	No			

Load Cases


185'-0" 181'-0" 168'-0"	51'-7" 7/32" Thick (65 KSI)
140'-0" 138'-0 133'-5"	55"
93'-0" 87'-6"	 50'-6" 5/16" Thick (65 KSI) 185'-0"
50'-0" 43'-7"	49'-5" 3/8" Thick (65 KSI) 77"
ſ	50'-0" 7/16" Thick (65 KSI)

1.2D + 1.0W 118 mph with No Ice
0.9D + 1.0W 118 mph with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi 50 mph with 1.50 in Radial Ice
1.2D + 1.0Ev + 1.0Eh Seismic
0.9D - 1.0Ev + 1.0Eh Seismic (Reduced DL)
1.0D + 1.0W Serviceability 60 mph

Reactions											
Moment (kip-ft)	Shear (kip)	Axial (kip)									
3669.61	29.16	61.53									
3605.71	29.14	46.14									
999.95	7.38	94.80									
312.60	2.01	61.52									
305.33	2.00	42.41									
840.46	6.74	51.30									
	Moment (kip-ft) 3669.61 3605.71 999.95 312.60 305.33	Moment (kip-ft) Shear (kip) 3669.61 29.16 3605.71 29.14 999.95 7.38 312.60 2.01 305.33 2.00	Moment (kip-ft) (kip) (kip) 3669.61 29.16 61.53 3605.71 29.14 46.14 999.95 7.38 94.80 312.60 2.01 61.52 305.33 2.00 42.41								

Dish Deflections										
Load Case	Attach Elev (ft)	Deflection (in)	Rotation (deg)							
	0.00	0.000	0.000							

Load Case : 1.2D + 1.0W Max Ratio 76.38% at 93.0 ft

Site Name: Middletown CT 3, CT Engineering Number: 13668065

Customer: SPRINT NEXTEL

Kd (non-service):

4/27/2021 9:04:05 AM

0.99

Analysis Parameters

Location: Hartford County, CT Height (ft): 185 Code: ANSI/TIA-222-H Base Diameter (in): 52.00 Shape: 12 Sides Top Diameter (in): 19.03 Pole Type: Taper Taper (in/ft): 0.188 Valmont Pole Manfacturer: Rotation (deg): 0.00

Ice & Wind Parameters

Ke:

В Design Wind Speed Without Ice: 118 mph Exposure Category: Design Wind Speed With Ice: Risk Category: Ш 50 mph Topographic Factor Procedure: Method 1 Operational Wind Speed: 60 mph Topographic Category: Design Ice Thickness: 1.50 in Crest Height: 0 ft HMSL: 139.00 ft

Seismic Parameters

Analysis Method: Equivalent Lateral Force Method

0.95

Site Class: D - Stiff Soil

Period Based on Rayleigh Method (sec): 3.22

T_I (sec): 6 0.030 p: 1.3 Cs: C S Max: S_s: 0.202 S₁: 0.055 0.030 C _s Min: 0.030 F_a: 1.600 F_{v} : 2.400

 S_{ds} : 0.215 S_{d1} : 0.088

Load Cases

1.2D + 1.0W 118 mph with No Ice

0.9D + 1.0W 118 mph with No Ice (Reduced DL) 1.2D + 1.0Di + 1.0Wi 50 mph with 1.50 in Radial Ice

1.2D + 1.0Ev + 1.0Eh Seismic

0.9D - 1.0Ev + 1.0Eh Seismic (Reduced DL) 1.0D + 1.0W Serviceability 60 mph

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:05 AM

Customer: SPRINT NEXTEL

Sha	ıft Sec	tion F	Prop	oertie			Bottom						Top						
	Slip							Bottom								ор —			
	Length				Joint	Weight	Dia	Elev	Area	lx	W/t	D/t	Dia	Elev	Area	lx	W/t	D/t	Taper (in/ft)
Info	(11)	(in)	(ksi)	туре	Len (in)	(lb)	(in)	(ft)	(in ²)	(in ⁴)	Ratio	Ratio	(in)	(ft)	(in ²)	(in 4)	Ratio	Ratio	(In/ft)
1-12	50.000	0.4375	65		0.00	11,232	52.00	0.00	72.64	24650.3	29.17	118.86	42.59	50.00	59.40	13476.5	23.41	97.37	0.188013
2-12	49.417	0.3750	65	Slip	77.00	8,028	44.55	43.58	53.35	13291.4	29.16	118.82	35.26	93.00	42.13	6545.8	22.52	94.04	0.188013
3-12	50.500	0.3125	65	Slip	66.00	5,510	36.92	87.50	36.84	6302.8	28.98	118.16	27.42	138.00	27.29	2560.9	20.84	87.77	0.188013
4-12	51.583	0.2188	65	Slip	55.00	2,925	28.72	133.42	20.08	2083.3	32.51	131.33	19.03	185.00	13.25	598.5	20.63	86.99	0.188013
	Shaft Weight 27,695					27,695													

Discrete Appurtenance Properties

Attach Elev		Oto	I/ o	Vert Ecc	Weight		Drientation			rientation
(ft)	Description	Qty	Ka	(ft)	(lb)	(sf)	Factor	(lb)	(sf)	Factor
181.00	Decibel 844G90VTA-SX	4	0.75	0.000	11.50	3.615	0.67	105.01	5.522	0.67
181.00	Decibel DB844H90E-XY	4	0.75	0.000	14.00	3.615	0.67	127.26	3.940	0.67
181.00	Decibel 844G65VTZASX	4	0.75	0.000	16.00	5.310		175.53	6.333	0.67
181.00	Generic Heavy Platform with	1	1.00	0.000	3,750.00	59.800	1.00	6,496.73	86.591	1.00
168.00	Powerwave Allgon LGP21401	6	0.75	1.000	14.10	1.104	0.50	39.36	1.827	0.50
168.00	Raycap DC6-48-60-18-8F (23.5"	2	0.75	0.000	20.00	1.260	1.00	73.31	1.927	1.00
168.00	Raycap DC6-48-60-0-8F	1	0.75	1.000	32.80	1.360	1.00	91.66	2.032	1.00
168.00	Ericsson RRUS 4478 B14	3	0.75	0.000	59.90	1.842		115.89	2.750	
168.00	Ericsson RRUS 4449 B5, B12	3	0.75	0.000	71.00	1.969	0.50	136.26	2.913	0.50
168.00	Ericsson RRUS 32 B30	3	0.75	0.000	60.00	2.743	0.67	134.49	3.927	0.67
168.00	Ericsson RRUS 32 B66	3	0.75	1.000	53.00	2.743	0.50	127.47	3.927	0.50
168.00	Ericsson RRUS E2 B29	3	0.75	0.000	60.00	3.145	0.62	141.90	4.319	0.62
168.00	Powerwave Allgon 7770.00	3	0.75	1.000	35.00	5.508	0.65	171.92	6.577	0.65
168.00	Quintel QS66512-2	3	0.75	1.000	111.00	8.133	0.67	312.78	10.956	0.67
168.00	CCI DMP65R-BU6DA	3	0.75	0.000	79.40	12.709	0.63	340.24	15.533	0.63
168.00	CCI OPA65R-BU6D	3	0.75	0.000	63.20	12.871	0.63	327.84	15.704	0.63
168.00	Generic Round Platform with	1	1.00	0.000	2,500.00	27.200	1.00	4,140.08	51.951	1.00
140.00	Ericsson Radio 4449 B71 B85A	3	0.75	0.000	75.00	1.650	0.50	134.81	2.495	0.50
140.00	Ericsson RRUS 4415 B66	3	0.75	0.000	46.00	1.650	0.50	89.05	2.495	0.50
140.00	Ericsson 4424 B25	3	0.75	0.000	86.00	2.052	0.67	158.51	2.990	0.67
140.00	Ericsson Air6449 B41	3	0.75	0.000	104.00	5.682	0.63	239.53	7.261	0.63
140.00	RFS APX16DWV-16DWVS-E-A20	3	0.75	0.000	40.70	6.586	0.60	156.87	8.740	0.60
140.00	RFS APXVAALL24 43-U-NA20	3	0.75	0.000	122.80	20.243	0.63	510.14	23.931	0.63
140.00	Generic Round Platform with	1	1.00	0.000	2,500.00	27.200	1.00	4,110.74	51.509	1.00
Totals	Num Loadings:24	69			12,274.40			26,146.27		

Linear Appurtenance Properties Load Case Azimuth (deg) :

Elev From (ft)		Qty	y Description	Coax Dia (in)	Coax Wt (lb/ft) F	lat	Max Coax / Row	Dist Between Rows (in)	Dist Between Cols (in)			То	sed d Carrier
0.0	0 181.00) 12	1 5/8" Coax	1.98	0.82	N	0	0.00	0.00	0	0.00	N	SPRINT NEXTEL
0.0	0 168.00) 3	0.39" (10mm) Fiber	0.39	0.06	Ν	3	0.50	0.50	15	0.50	Υ	AT&T MOBILITY
0.0	0 168.00) 6	0.78" (19.7mm) 8 AWG	0.78	0.59	Ν	6	0.50	0.50	22	0.50	Υ	AT&T MOBILITY
0.0	0 168.00) 6	1 5/8" Coax	1.98	0.82	Ν	6	0.50	0.50	0	0.50	Υ	AT&T MOBILITY
0.0	0 168.00	3	2" conduit	2.38	3.65	Ν	3	0.50	0.50	30	0.50	Υ	AT&T MOBILITY
0.0	0 140.00	3	1 5/8" Hybriflex	1.98	1.30	Ν	0	0.00	0.00	0	0.00	N	SPRINT NEXTEL
0.0	0 73.60) 1	#20 w/ Angle Brackets	4.00	4.68	Ν	0	0.00	0.00	90	0.00	Ν	
0.0	0 73.60) 1	#20 w/ Angle Brackets	4.00	4.68	Ν	0	0.00	0.00	270	0.00	Ν	
0.0	0 73.60) 1	#20 w/ Angle Brackets	4.00	4.68	Ν	0	0.00	0.00	0	0.00	Ν	
0.0	0 73.60) 1	#20 w/ Angle Brackets	4.00	4.68	Ν	0	0.00	0.00	180	0.00	Ν	

Site Name: Middletown CT 3, CT Engineering Number:13668065

Customer: SPRINT NEXTEL

4/27/2021 9:04:05 AM

Additional Steel

Elev	Elev	Intermediate Connections											
From	To			Fy	Offset		Spacing	Len					
(ft)	(ft)	Qty	Description	(ksi)	(in)	Description	(in)	(in)	Connectors	Continuation?			
0.00	22.50	4	SOL #20 All Thread	80	2.19	6" Angle Bracket	30.0	3.31	5/8" A36 U-Bolt	No			
22.50	52.50	4	SOL #20 All Thread	80	2.19	6" Angle Bracket	30.0	3.31	5/8" A36 U-Bolt	Yes			
52.50	65.00	4	SOL #20 All Thread	80	2.19	6" Angle Bracket	30.0	3.31	5/8" A36 U-Bolt	Yes			

 $^{\odot}$ 2007 - 2021 by ATC IP LLC. All rights reserved.

Engineering Number: 13668065 Site Name: Middletown CT 3, CT 4/27/2021 9:04:05 AM

Code: ANSI/TIA-222-H

Site Number: 302537

Customer:	SPRINT	NEXTEL

Segn	nent Properties	(Max Len: 5.	ft)								
Seg T	ор	Flat							Addit	ional Re	einforcing
Elev		Thick Dia	Area	lx	W/t			Z Weight		lx	Weight
(ft)	Description	(in) (in)	(in²)	(in ⁴)	Ratio	Ratio (ksi) (ii	n³) (i	in³) (lb)	(in²)	(in ⁴)	(lb)
0.00		0.4375 52.000		24,650.3	29.17	118.86 72.9 91		0.0 0.0	19.64	8,518	0.0
5.00		0.4375 51.060		23,326.5	28.59	116.71 73.5 88		0.0 1,224.6	19.64	8,249	334.0
10.00 15.00		0.4375 50.120 0.4375 49.180		22,050.9 20,822.7	28.02 27.44	114.56 74.2 84 112.41 74.8 81		0.0 1,202.1 0.0 1,179.5	19.64 19.64	7,983 7,723	334.0 334.0
20.00		0.4375 48.240		19,641.0	26.87	110.26 75.4 78		0.0 1,177.0	19.64	7,723	334.0
22.50	Reinf. Top Reinf	0.4375 47.770		19,067.3	26.58	109.19 75.7 77		0.0 570.1	19.64	7,339	167.0
25.00		0.4375 47.300		18,504.9	26.29	108.11 76.0 75		0.0 564.4	19.64	7,214	167.0
30.00		0.4375 46.360	64.693	17,413.5	25.71	105.96 76.7 72	25.6	0.0 1,111.9	19.64	6,966	334.0
35.00		0.4375 45.420		16,365.8	25.14	103.82 77.3 69		0.0 1,089.4	19.64	6,722	334.0
40.00	D-1 C11 2	0.4375 44.479		15,361.0	24.56	101.67 77.9 66	57.2	0.0 1,066.9	19.64	6,483	334.0
43.58 45.00	Bot - Section 2	0.4375 43.806 0.4375 43.539		14,666.8 14,398.2	24.15 23.99	100.13 78.4 64 99.52 78.6 63		0.0 750.7 0.0 550.0	19.64 19.64	6,314 6,435	239.4 94.6
50.00	Top - Section 1	0.3750 43.349		12,232.1	28.29	115.60 73.9 54		0.0 1,914.3	19.64	6,201	334.0
52.50	Reinf. Top Reinf	0.3750 42.879		11,835.1	27.96	114.34 74.2 53		0.0 439.0	19.64	6,086	167.0
55.00		0.3750 42.409		11,446.8	27.62	113.09 74.6 52		0.0 434.2	19.64	5,971	167.0
60.00		0.3750 41.469	49.621	10,695.8	26.95	110.58 75.3 49	98.3	0.0 853.9	19.64	5,746	334.0
65.00	Reinf. Top	0.3750 40.529	48.486	9,978.5	26.28	108.08 76.1 47		0.0 834.6	19.64	5,525	334.0
70.00		0.3750 39.589	47.351	9,293.9	25.61	105.57 76.8 45		0.0 815.3			
75.00 80.00		0.3750 38.649 0.3750 37.709	46.216 45.081	8,641.4 8,020.2	24.94 24.26	103.06 77.5 43 100.56 78.3 41		0.0 796.0 0.0 776.7			
85.00		0.3750 37.769	43.946	7,429.5	23.59	98.05 79.0 39		0.0 757.3			
87.50	Bot - Section 3	0.3750 36.299	43.378	7,145.3	23.26	96.80 79.3 38		0.0 371.5			
90.00		0.3750 35.829	42.810	6,868.5	22.92	95.54 79.7 37	70.3	0.0 677.9			
93.00	Top - Section 2	0.3125 35.890	35.800	5,783.7	28.09	114.85 74.1 31		0.0 802.0			
95.00		0.3125 35.514	35.421	5,602.3	27.77	113.64 74.4 30		0.0 242.3			
100.0		0.3125 34.574	34.475	5,165.3	26.97	110.64 75.3 28		0.0 594.6			
105.0 110.0		0.3125 33.634 0.3125 32.694	33.529 32.583	4,751.7 4,360.8	26.16 25.35	107.63 76.2 27 104.62 77.1 25		0.0 578.5 0.0 562.4			
115.0		0.3125 32.074	31.637	3,991.9	24.55	104.02 77.1 23		0.0 546.3			
120.0		0.3125 30.813	30.692	3,644.4	23.74	98.60 78.8 22		0.0 530.2			
125.0		0.3125 29.873	29.746	3,317.7	22.94	95.59 79.7 21		0.0 514.1			
130.0		0.3125 28.933	28.800	3,011.2	22.13	92.59 80.6 20		0.0 498.0			
133.4	Bot - Section 4	0.3125 28.291	28.153	2,812.9	21.58	90.53 81.2 19		0.0 331.1			
135.0	Ton Section 2	0.3125 27.993 0.2188 27.867	27.854	2,724.1	21.32	89.58 81.5 18 127.39 70.4 13		0.0 258.4 0.0 482.3			
138.0 140.0	Top - Section 3	0.2188 27.491	19.474 19.210	1,900.1 1,823.6	31.45 30.99	125.67 70.9 12		0.0 482.3 0.0 131.6			
145.0		0.2188 26.551	18.547	1,641.5	29.84	121.37 72.2 11		0.0 321.2			
150.0		0.2188 25.610	17.885	1,471.9	28.69	117.08 73.4 11	11.0	0.0 309.9			
155.0		0.2188 24.670	17.223	1,314.4	27.54	112.78 74.7 10		0.0 298.7			
160.0		0.2188 23.730	16.561	1,168.5	26.39			0.0 287.4			
165.0		0.2188 22.790	15.899	1,033.9	25.24			0.0 276.1			
168.0 170.0		0.2188 22.226 0.2188 21.850	15.502 15.237	958.3 910.0	24.55 24.09			0.0 160.3 0.0 104.6			
175.0		0.2188 20.910	14.575	796.5	22.93			0.0 253.6			
180.0		0.2188 19.970	13.912	692.8	21.78	91.29 81.0		0.0 242.3			
181.0		0.2188 19.782	13.780	673.2	21.55	90.43 81.2 6	65.7	0.0 47.1			
185.0		0.2188 19.030	13.250	598.5	20.63	86.99 81.9 6	60.8	0.0 184.0			
								27,694.6			4,342.0

Site Name: Middletown CT 3, CT Engineering Number:13668065

Customer: SPRINT NEXTEL

118 mph with No Ice

28 Iterations

4/27/2021 9:04:05 AM

Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00

<u>Load Case:</u> 1.2D + 1.0W

Applied Segment Forces Summary

		Shaft Forces Discrete Forces				Forces		Linear Fo	Sum of Forces				
Seg			Dead	-	Torsion	Moment	Dead	•	Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX		MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
	Description												
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		273.9	0.0					0.0	0.0	273.9	0.0	0.0	0.0
5.00		542.9	1,469.5					0.0	713.1	542.9	2,182.6	0.0	0.0
10.00		532.9	1,442.5					0.0	713.1	532.9	2,155.6	0.0	0.0
15.00		522.9	1,415.4					0.0	713.1	522.9	2,128.5	0.0	0.0
20.00		386.5	1,388.4					0.0	713.1	386.5	2,101.5	0.0	0.0
22.50	Reinf. Top Reinf	253.9	684.1					0.0	356.5	253.9	1,040.6	0.0	0.0
25.00		375.3	677.3					0.0	356.5	375.3	1,033.9	0.0	0.0
30.00		498.7	1,334.3					0.0	713.1	498.7	2,047.4	0.0	0.0
35.00		504.7	1,307.3					0.0	713.1	504.7	2,020.4	0.0	0.0
40.00		439.9	1,280.3					0.0	713.1	439.9	1,993.4	0.0	0.0
43.58	Bot - Section 2	259.9	900.9					0.0	511.1	259.9	1,411.9	0.0	0.0
45.00		340.7	660.0					0.0	202.0	340.7	862.0	0.0	0.0
50.00	Top - Section 1	399.5	2,297.2					0.0	713.1	399.5	3,010.3	0.0	0.0
52.50	Reinf. Top Reinf	267.7	526.8					0.0	356.5	267.7	883.4	0.0	0.0
55.00		402.7	521.0					0.0	356.5	402.7	877.6	0.0	0.0
60.00		537.7	1,024.7					0.0	713.1	537.7	1,737.8	0.0	0.0
65.00	Reinf. Top	537.7	1,001.5					0.0	713.1	537.7	1,714.6	0.0	0.0
70.00		536.5	978.3					0.0	312.3	536.5	1,290.6	0.0	0.0
75.00		534.2	955.2					0.0	280.9	534.2	1,236.0	0.0	0.0
80.00		530.9	932.0					0.0	200.0	530.9	1,132.0	0.0	0.0
85.00		396.0	908.8					0.0	200.0	396.0	1,108.8	0.0	0.0
87.50	Bot - Section 3	264.5	445.8					0.0	100.0	264.5	545.8	0.0	0.0
90.00	T 0 11 0	291.8	813.5					0.0	100.0	291.8	913.4	0.0	0.0
93.00	Top - Section 2	264.1	962.4					0.0	120.0	264.1	1,082.4	0.0	0.0
95.00		366.4	290.8					0.0	80.0	366.4	370.7	0.0	0.0
100.00		518.8	713.5					0.0	200.0	518.8	913.5	0.0	0.0
105.00		511.8	694.2					0.0	200.0	511.8	894.2	0.0	0.0
110.00		504.2	674.9					0.0	200.0	504.2	874.9	0.0	0.0
115.00		495.9	655.6					0.0	200.0	495.9	855.6	0.0	0.0
120.00		487.2	636.3					0.0	200.0	487.2	836.3	0.0	0.0
125.00		477.8	617.0					0.0	200.0	477.8	816.9	0.0	0.0
130.00	Bot - Section 4	395.3	597.6					0.0	200.0	395.3	797.6	0.0	0.0
133.42	DOL - SECTION 4	232.6	397.3					0.0	136.7	232.6	534.0	0.0	0.0
135.00	Ton Coation 2	212.4	310.1					0.0	63.3	212.4	373.5	0.0	0.0
138.00 140.00	Top - Section 3 Appurtenance(s)	229.8 315.6	578.8	2 211 E	0.0	0.0	4 700 0	0.0	120.0	229.8	698.8	0.0	0.0
145.00	Appulteriance(s)	443.1	157.9 385.4	3,211.5	0.0	0.0	4,708.2	0.0 0.0	80.0 176.6	3,527.1 443.1	4,946.1 562.0	0.0 0.0	0.0 0.0
			371.9					0.0	176.6	431.6		0.0	0.0
150.00 155.00		431.6 419.6	371.9					0.0	176.6		548.5 535.0		
160.00		419.6	344.9					0.0	176.6	419.6 407.3	521.5	0.0	0.0 0.0
165.00		317.8	331.4					0.0	176.6	317.8	507.9	0.0	0.0
	Appurtenance(s)			4 44 4 0	0.0	1 1 4 4 0	E 221 0						
168.00 170.00	Apparteriance(3)	194.1 264.4	192.3 125.5	4,464.9	0.0	1,144.9	5,321.9	0.0 0.0	105.9 23.6	4,659.0 264.4	5,620.2 149.1	0.0	0.0 0.0
175.00		368.2	304.3					0.0	59.0	368.2	363.4	0.0	0.0
180.00		216.0	290.8					0.0	59.0	216.0	349.8	0.0	0.0
181.00	Appurtenance(s)	159.2	56.5	3,688.6	0.0	0.0	4,699.2	0.0	11.8	3,847.8	4,767.5	0.0	0.0
185.00		123.9	220.7	5,000.0	0.0	0.0	7,077.2	0.0	0.0	123.9	220.7	0.0	0.0
103.00		123.7	220.7					0.0	0.0	143.7	220.1	0.0	0.0

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:08 AM

Customer: SPRINT NEXTEL

Load Case: 1.2D + 1.0W

Gust Response Factor :1.10

Dead Load Factor :1.20

Wind Load Factor :1.00

Totals: 29,353.6 61,568.3 0.00 0.00

Code: ANSI/TIA-222-H © 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:08 AM

Customer: SPRINT NEXTEL

<u>Load Case:</u> 1.2D + 1.0W 118 mph with No Ice 28 Iterations

Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00

Calculated Forces

Site Number: 302537

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	t phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect I (in)	Rotation (deg)	Ratio
0.00	-61.53	-29.16	0.00	-3,669.61	0.00	3,669.61	4,765.98 1	274 81	6 200 72	5 007 21	0.00	0.00	0.555
5.00	-59.27	-28.78		-3,523.79	0.00	3,523.79	4,719.39 1				0.08	-0.15	0.545
10.00	-57.04	-28.39		-3,379.90	0.00	3,379.90	4,671.31 1				0.33	-0.31	0.535
15.00	-54.84	-28.01	0.00	-3,237.94	0.00	3,237.94	4,621.73 1	,205.08	5,541.16	4,587.84	0.74	-0.47	0.525
20.00	-52.68	-27.71	0.00	-3,097.92	0.00	3,097.92	4,570.65 1				1.31	-0.62	0.514
22.50	-51.61	-27.52		-3,028.65	0.00	3,028.65	4,544.55 1				1.66	-0.70	0.509
22.50	-51.61	-27.52		-3,028.65	0.00	3,028.65	4,544.55 1				1.66	-0.70	0.509
25.00	-50.52	-27.23	0.00	-2,959.86	0.00	2,959.86	4,518.07 1				2.05	-0.79	0.503
30.00	-48.40	-26.84		-2,823.70	0.00	2,823.70	4,464.00 1				2.96	-0.95	0.492
35.00	-46.32	-26.43	0.00	-2,689.50	0.00	2,689.50	4,408.43 1				4.04	-1.11 1.27	0.481
40.00 43.58	-44.27 -42.83	-26.05 -25.82	0.00	-2,557.36 -2,464.00	0.00	2,557.36 2,464.00	4,351.36 1 4,309.55 1				5.28 6.28	-1.27 -1.38	0.470 0.461
45.00	-42.03	-25.54		-2,404.00	0.00	2,404.00	4,292.80 1				6.70	-1.43	0.454
50.00	-38.88	-25.14		-2,427.42	0.00	2,427.42	3,449.19		3,691.93		8.28	-1.43	0.434
52.50	-37.97	-24.91	0.00	-2,236.88	0.00	2,236.88	3,428.39		3,611.63		9.14	-1.68	0.506
52.50	-37.97	-24.91	0.00	-2,236.88	0.00	2,236.88	3,428.39		3,611.63		9.14	-1.68	0.506
55.00	-37.04	-24.56		-2,174.61	0.00	2,174.61	3,407.21		3,532.22		10.04	-1.76	0.499
60.00	-35.25	-24.07	0.00	-2,051.81	0.00	2,051.81	3,363.73		3,376.04		11.98	-1.94	0.482
65.00	-33.49	-23.58	0.00	-1,931.44	0.00	1,931.44	3,318.75	850.93	3,223.39	2,712.97	14.10	-2.11	0.466
65.00	-33.49	-23.58	0.00	-1,931.44	0.00	1,931.44	3,318.75	850.93	3,223.39	2,712.97	14.10	-2.11	0.723
70.00	-32.13	-23.11	0.00	-1,813.56	0.00	1,813.56	3,272.27	831.01	3,074.28	2,611.78	16.40	-2.28	0.705
75.00	-30.81	-22.67	0.00	-1,697.99	0.00	1,697.99	3,224.30		2,928.69		18.93	-2.55	0.687
80.00	-29.60	-22.23	0.00	-1,584.62	0.00	1,584.62	3,174.83		2,786.64		21.74	-2.82	0.667
85.00	-28.44	-21.88	0.00	-1,473.47	0.00	1,473.47	3,123.86		2,648.12		24.84	-3.09	0.647
87.50	-27.85	-21.65	0.00	-1,418.77	0.00	1,418.77	3,097.81		2,580.17		26.49	-3.23	0.637
90.00	-26.90	-21.38	0.00	-1,364.64	0.00	1,364.64	3,071.40		2,513.13		28.22	-3.37	0.626
93.00	-25.79	-21.11	0.00	-1,300.49	0.00	1,300.49	2,386.65		2,108.62		30.39	-3.53	0.764
95.00 100.00	-25.36 -24.38	-20.82 -20.37	0.00	-1,258.27 -1,154.18	0.00	1,258.27 1,154.18	2,372.63 2,336.55		2,064.30 1,955.55		31.89 35.87	-3.64 -3.95	0.751 0.720
105.00	-23.42	-19.92		-1,154.16	0.00	1,052.33	2,298.97		1,849.74		40.16	-3.75 -4.25	0.720
110.00	-22.48	-19.47	0.00	-952.74	0.00	952.74	2,259.89		1,746.88		44.77	-4.55	0.651
115.00	-21.57	-19.01	0.00	-855.41	0.00	855.41	2,219.31		1,646.95		49.70	-4.85	0.613
120.00	-20.69	-18.56		-760.35	0.00	760.35	2,177.24		1,549.97		54.92	-5.14	0.574
125.00	-19.84	-18.10		-667.57	0.00	667.57	2,133.67		1,455.93		60.45	-5.42	0.531
130.00	-19.01	-17.70	0.00	-577.06	0.00	577.06	2,088.60		1,364.84		66.25	-5.68	0.485
133.42	-18.47	-17.46	0.00	-516.57	0.00	516.57	2,056.94	494.09	1,304.27	1,169.49	70.38	-5.86	0.452
135.00	-18.08	-17.25	0.00	-488.94	0.00	488.94		488.83	1,276.68	1,148.53	72.33	-5.94	0.436
138.00	-17.38	-16.98		-437.20	0.00	437.20	1,234.05	341.78	891.35	695.59	76.10	-6.08	0.645
140.00	-12.79	-12.99		-403.24	0.00	403.24	1,225.96	337.13	867.28	681.55	78.67	-6.18	0.604
145.00	-12.22	-12.54		-338.31	0.00	338.31	1,204.66	325.51	808.54	646.44	85.28	-6.47	0.535
150.00	-11.67	-12.10		-275.58	0.00	275.58	1,181.87	313.89	751.85	611.39	92.19	-6.73	0.462
155.00	-11.15	-11.67		-215.06	0.00	215.06	1,157.58	302.27	697.23	576.46	99.35	-6.97	0.384
160.00	-10.65	-11.23	0.00	-156.73	0.00	156.73	1,131.80	290.65	644.66	541.76	106.74	-7.17	0.300

Site Name: Middletown CT 3, CT Engineering Number:13668065 4/27/2021 9:04:08 AM

Customer: SPRINT NEXTEL

Load (Case: 1	.2D + 1.0V	V		118	mph with	No Ice					28 Itera	ations
Dea	d Load	Factor :1. Factor :1. Factor :1.	20										
165.00	-10.16	-10.87	0.00	-100.57	0.00	100.57	1,104.51	279.02	594.16	507.37	114.32	-7.33	0.209
168.00	-5.18	-5.54	0.00	-66.81	0.00	66.81	1,087.43	272.05	564.84	486.92	118.94	-7.40	0.142
170.00	-5.06	-5.26	0.00	-55.74	0.00	55.74	1,075.73	267.40	545.71	473.37	122.04	-7.43	0.123
175.00	-4.74	-4.85	0.00	-29.45	0.00	29.45	1,045.46	255.78	499.33	439.85	129.84	-7.50	0.072
180.00	-4.42	-4.59	0.00	-5.20	0.00	5.20	1,013.69	244.16	455.00	406.91	137.69	-7.53	0.017
181.00	-0.20	-0.15	0.00	-0.61	0.00	0.61	1,007.15	241.84	446.38	400.39	139.27	-7.53	0.002
185.00	0.00	-0.12	0.00	0.00	0.00	0.00	976.67	232.54	412.74	373.18	145.56	-7.53	0.000

Site Name: Middletown CT 3, CT Engineering Number:13668065

Customer: SPRINT NEXTEL

118 mph with No Ice (Reduced DL)

27 Iterations

4/27/2021 9:04:08 AM

Gust Response Factor :1.10 Dead Load Factor :0.90 Wind Load Factor :1.00

Load Case: 0.9D + 1.0W

Applied Segment Forces Summary

		Shaft F	orces		Discrete	Forces		Linear Fo	orces		Sum of	Forces	
Seg			Dead	-	Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX		MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
	Description		(lb)	(lb)	(lb-ft)	(lb-ft)							
(ft)	Description	(lb)	(ID)	(ui)	(ID-II)	(10-11)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		273.9	0.0					0.0	0.0	273.9	0.0	0.0	0.0
5.00		542.9	1,102.1					0.0	534.8	542.9	1,637.0	0.0	0.0
10.00		532.9	1,081.9					0.0	534.8	532.9	1,616.7	0.0	0.0
15.00		522.9	1,061.6					0.0	534.8	522.9	1,596.4	0.0	0.0
20.00		386.5	1,041.3					0.0	534.8	386.5	1,576.1	0.0	0.0
22.50	Reinf. Top Reinf	253.9	513.0					0.0	267.4	253.9	780.5	0.0	0.0
25.00		375.3	508.0					0.0	267.4	375.3	775.4	0.0	0.0
30.00		498.7	1,000.7					0.0	534.8	498.7	1,535.6	0.0	0.0
35.00		504.7	980.5					0.0	534.8	504.7	1,515.3	0.0	0.0
40.00		439.9	960.2					0.0	534.8	439.9	1,495.0	0.0	0.0
43.58	Bot - Section 2	259.9	675.7					0.0	383.3	259.9	1,059.0	0.0	0.0
45.00		340.7	495.0					0.0	151.5	340.7	646.5	0.0	0.0
50.00	Top - Section 1	399.5	1,722.9					0.0	534.8	399.5	2,257.7	0.0	0.0
52.50	Reinf. Top Reinf	267.7	395.1					0.0	267.4	267.7	662.5	0.0	0.0
55.00		402.7	390.8					0.0	267.4	402.7	658.2	0.0	0.0
60.00		537.7	768.5					0.0	534.8	537.7	1,303.3	0.0	0.0
65.00	Reinf. Top	537.7	751.1					0.0	534.8	537.7	1,286.0	0.0	0.0
70.00		536.5	733.8					0.0	234.2	536.5	968.0	0.0	0.0
75.00		534.2	716.4					0.0	210.6	534.2	927.0	0.0	0.0
80.00		530.9	699.0					0.0	150.0	530.9	849.0	0.0	0.0
85.00		396.0	681.6					0.0	150.0	396.0	831.6	0.0	0.0
87.50	Bot - Section 3	264.5	334.3					0.0	75.0	264.5	409.3	0.0	0.0
90.00	T C	291.8	610.1					0.0	75.0	291.8	685.1	0.0	0.0
93.00	Top - Section 2	264.1	721.8					0.0	90.0	264.1	811.8	0.0	0.0
95.00		366.4	218.1					0.0	60.0	366.4	278.1	0.0	0.0
100.00		518.8	535.1					0.0	150.0	518.8	685.1	0.0	0.0
105.00		511.8	520.7					0.0	150.0	511.8	670.6	0.0	0.0
110.00		504.2	506.2					0.0	150.0	504.2	656.2	0.0	0.0
115.00		495.9	491.7					0.0	150.0	495.9	641.7	0.0	0.0
120.00		487.2	477.2					0.0 0.0	150.0 150.0	487.2 477.8	627.2	0.0	0.0 0.0
125.00 130.00		477.8 395.3	462.7 448.2						150.0	395.3	612.7 598.2		
130.00	Bot - Section 4	395.3 232.6	298.0					0.0 0.0	102.5	232.6	400.5	0.0	0.0 0.0
135.42	Dot - Section 4							0.0		232.0	280.1		
138.00	Top - Section 3	212.4 229.8	232.6 434.1					0.0	47.5 90.0	212.4	524.1	0.0	0.0 0.0
140.00	Appurtenance(s)	315.6	118.5	3,211.5	0.0	0.0	3,531.1	0.0	60.0	3,527.1	3,709.6	0.0	0.0
145.00	Apparteriariee(3)	443.1	289.1	3,211.3	0.0	0.0	3,331.1	0.0	132.4	443.1	421.5	0.0	0.0
150.00		431.6	278.9					0.0	132.4	431.6	411.4	0.0	0.0
155.00		419.6	268.8					0.0	132.4	419.6	401.2	0.0	0.0
160.00		407.3	258.7					0.0	132.4	407.3	391.1	0.0	0.0
165.00		317.8	248.5					0.0	132.4	317.8	381.0	0.0	0.0
168.00	Appurtenance(s)	194.1	144.2	4,464.9	0.0	1,144.9	3,991.4	0.0	79.5	4,659.0	4,215.1	0.0	0.0
170.00	rippur teriai ree(3)	264.4	94.1	4,404.9	0.0	1,144.9	3,771.4	0.0	17.7	264.4	111.8	0.0	0.0
175.00		368.2	228.2					0.0	44.3	368.2	272.5	0.0	0.0
180.00		216.0	218.1					0.0	44.3	216.0	262.4	0.0	0.0
181.00	Appurtenance(s)	159.2	42.4	3,688.6	0.0	0.0	3,524.4	0.0	8.9	3,847.8	3,575.7	0.0	0.0
185.00	11	123.9	165.6	5,555.0	0.0	0.0	5,5 <u>2</u> 1.7	0.0	0.0	123.9	165.6	0.0	0.0
100.00		120.7	100.0					0.0	0.0	120.7	100.0	0.0	0.0

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:11 AM

Customer: SPRINT NEXTEL

Load Case: 0.9D + 1.0W

Gust Response Factor :1.10
Dead Load Factor :0.90
Wind Load Factor :1.00

118 mph with No Ice (Reduced DL)

27 Iterations

Totals: 29,353.6 46,176.2 0.00 0.00

 $^{\mbox{\scriptsize 0}}$ 2007 - 2021 by ATC IP LLC. All rights reserved.

27 Iterations

Code: ANSI/TIA-222-H Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:11 AM

Customer: SPRINT NEXTEL

Load Case: 0.9D + 1.0W 118 mph with No Ice (Reduced DL)

Gust Response Factor: 1.10 Dead Load Factor: 0.90 Wind Load Factor: 1.00

Calculated Forces

Site Number: 302537

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	P	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
		•	•			•			•	•			
0.00	-46.14	-29.14		-3,605.71		3,605.71			6,200.72		0.00	0.00	0.543
5.00	-44.42	-28.71	0.00	-3,460.00		3,460.00			5,976.75		0.08	-0.15	0.533
10.00	-42.73	-28.29	0.00	-3,316.44		3,316.44			5,756.90		0.32	-0.30	0.523
15.00	-41.07	-27.87	0.00	-3,174.99		3,174.99			5,541.16		0.72	-0.46	0.512
20.00	-39.44	-27.55		-3,035.66		3,035.66			5,329.55		1.29	-0.61	0.502
22.50	-38.62	-27.34		-2,966.80		2,966.80			5,225.29		1.63	-0.69	0.496
22.50	-38.62	-27.34		-2,966.80		2,966.80			5,225.29		1.63	-0.69	0.496
25.00	-37.80	-27.03	0.00	-2,898.46		2,898.46			5,122.06		2.01	-0.77	0.491
30.00	-36.20	-26.61	0.00	-2,763.32		2,763.32			4,918.68		2.90	-0.93	0.480
35.00	-34.62	-26.17	0.00	-2,630.29		2,630.29			4,719.43		3.96	-1.08	0.469
40.00	-33.07	-25.78	0.00	-2,499.45		2,499.45			4,524.29		5.18	-1.24	0.457
43.58	-31.98	-25.54	0.00	-2,407.07		2,407.07			4,386.98		6.16	-1.36	0.449
45.00	-31.30	-25.24	0.00	-2,370.89		2,370.89			4,333.28		6.57	-1.40	0.441
50.00	-29.00	-24.84	0.00	-2,244.70	0.00	2,244.70			3,691.93	3,019.48	8.12	-1.56	0.500
52.50	-28.31	-24.60	0.00	-2,182.60	0.00	2,182.60	3,428.39	900.74	3,611.63	2,968.15	8.96	-1.64	0.492
52.50	-28.31	-24.60	0.00	-2,182.60		2,182.60	3,428.39	900.74	3,611.63	2,968.15	8.96	-1.64	0.492
55.00	-27.61	-24.24	0.00	-2,121.11	0.00	2,121.11	3,407.21	890.77	3,532.22	2,916.91	9.84	-1.73	0.484
60.00	-26.26	-23.73	0.00	-1,999.93	0.00	1,999.93	3,363.73	870.85	3,376.04	2,814.72	11.74	-1.89	0.469
65.00	-24.92	-23.23	0.00	-1,881.26	0.00	1,881.26	3,318.75	850.93	3,223.39	2,712.97	13.81	-2.06	0.452
65.00	-24.92	-23.23	0.00	-1,881.26		1,881.26			3,223.39	2,712.97	13.81	-2.06	0.702
70.00	-23.89	-22.74	0.00	-1,765.13	0.00	1,765.13	3,272.27	831.01	3,074.28	2,611.78	16.06	-2.23	0.684
75.00	-22.88	-22.28	0.00	-1,651.42	0.00	1,651.42	3,224.30	811.09	2,928.69	2,511.21	18.53	-2.49	0.665
80.00	-21.96	-21.81	0.00	-1,540.04	0.00	1,540.04	3,174.83	791.17	2,786.64	2,411.36	21.28	-2.75	0.646
85.00	-21.08	-21.44	0.00	-1,431.01	0.00	1,431.01	3,123.86	771.24	2,648.12	2,312.31	24.31	-3.02	0.626
87.50	-20.63	-21.21	0.00	-1,377.39	0.00	1,377.39	3,097.81	761.28	2,580.17	2,263.11	25.92	-3.15	0.616
90.00	-19.91	-20.93	0.00	-1,324.39	0.00	1,324.39	3,071.40	751.32	2,513.13	2,214.15	27.61	-3.29	0.605
93.00	-19.07	-20.66	0.00	-1,261.60	0.00	1,261.60	2,386.65	628.28	2,108.62	1,729.58	29.72	-3.45	0.738
95.00	-18.74	-20.34	0.00	-1,220.28	0.00	1,220.28	2,372.63	621.64	2,064.30	1,701.09	31.19	-3.55	0.726
100.00	-17.99	-19.88	0.00	-1,118.56	0.00	1,118.56	2,336.55	605.04	1,955.55	1,630.09	35.07	-3.85	0.695
105.00	-17.25	-19.41	0.00	-1,019.18	0.00	1,019.18	2,298.97	588.44	1,849.74	1,559.47	39.26	-4.15	0.662
110.00	-16.54	-18.94	0.00	-922.15	0.00	922.15	2,259.89	571.84	1,746.88	1,489.31	43.75	-4.44	0.628
115.00	-15.85	-18.47	0.00	-827.46	0.00	827.46	2,219.31	555.24	1,646.95	1,419.70	48.55	-4.72	0.591
120.00	-15.18	-18.01	0.00	-735.11	0.00	735.11	2,177.24	538.64	1,549.97	1,350.73	53.63	-5.00	0.552
125.00	-14.53	-17.54	0.00	-645.08	0.00	645.08	2,133.67	522.03	1,455.93	1,282.49	59.01	-5.27	0.511
130.00	-13.91	-17.14	0.00	-557.37	0.00	557.37			1,364.84		64.66	-5.53	0.467
133.42	-13.50	-16.90	0.00	-498.79	0.00	498.79			1,304.27		68.67	-5.70	0.434
135.00	-13.21	-16.69	0.00	-472.04		472.04	2,042.04	488.83	1,276.68	1,148.53	70.57	-5.78	0.419
138.00	-12.68	-16.43		-421.97		421.97			891.35		74.24	-5.92	0.619
140.00	-9.32	-12.57		-389.11	0.00	389.11			867.28	681.55	76.73	-6.01	0.580
145.00	-8.89	-12.12		-326.27		326.27			808.54	646.44	83.16	-6.28	0.513
150.00	-8.48	-11.69		-265.65	0.00	265.65			751.85	611.39	89.87	-6.54	0.443
155.00	-8.09	-11.25	0.00	-207.22		207.22			697.23	576.46	96.83	-6.77	0.368
160.00	-7.71	-10.82		-150.96		150.96			644.66			-6.96	0.287
					2.30		.,		2 30				

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:11 AM

Customer: SPRINT NEXTEL

Load C	ase: 0	.9D + 1.0V	V		118	mph with	No Ice (Reduce	ed DL)				27 Itera	ations
Dead	d Load	Factor :1. Factor :0. Factor :1.	90										
165.00	-7.36	-10.48	0.00	-96.83	0.00	96.83	1,104.51	279.02	594.16	507.37	111.37	-7.11	0.199
168.00	-3.75	-5.33	0.00	-64.26	0.00	64.26	1,087.43	272.05	564.84	486.92	115.86	-7.18	0.136
170.00	-3.67	-5.06	0.00	-53.60	0.00	53.60	1,075.73	267.40	545.71	473.37	118.86	-7.22	0.117
175.00	-3.44	-4.66	0.00	-28.30	0.00	28.30	1,045.46	255.78	499.33	439.85	126.44	-7.28	0.068
180.00	-3.21	-4.42	0.00	-4.99	0.00	4.99	1,013.69	244.16	455.00	406.91	134.06	-7.31	0.016
181.00	-0.15	-0.14	0.00	-0.58	0.00	0.58	1,007.15	241.84	446.38	400.39	135.59	-7.31	0.002
185.00	0.00	-0.12	0.00	0.00	0.00	0.00	976.67	232.54	412.74	373.18	141.70	-7.31	0.000

Site Name: Middletown CT 3, CT Engineering Number:13668065 4/27/2021 9:04:11 AM

Customer: SPRINT NEXTEL

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph with 1.50 in Radial Ice 27 Iterations

Dead Load Factor :1.20 Ice Importance Factor :1.00

Wind Load Factor : 1.00

Applied Segment Forces Summary

	<u> </u>	Shaft F		Discret	e Forces		Linear Fo	orces		Sum of	f Forces		
Seg			Dead		Torsion	Moment	Dead	•	Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX		MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		64.8	0.0					0.0	0.0	64.8	0.0	0.0	0.0
5.00		128.8	1,861.5					0.0	868.1	128.8	2,729.6	0.0	0.0
10.00		127.0	1,873.2					0.0	884.5	127.0	2,757.7	0.0	
15.00		125.0	1,861.0					0.0	893.0	125.0	2,754.0	0.0	
20.00		92.6	1,841.0					0.0	898.9	92.6	2,739.9	0.0	
22.50	Reinf. Top Reinf	61.0	912.7					0.0	451.2	61.0	1,363.9	0.0	
25.00		90.2	906.4					0.0	452.2	90.2	1,358.6	0.0	
30.00		120.1	1,790.5					0.0	907.2	120.1	2,697.7	0.0	
35.00		121.8	1,762.3					0.0	910.4	121.8	2,672.7	0.0	
40.00	D 1 0 11 0	106.4	1,732.7					0.0	913.3	106.4	2,646.0	0.0	
43.58	Bot - Section 2	62.9	1,224.0					0.0	656.1	62.9	1,880.1	0.0	
45.00		82.5	789.9					0.0	259.7	82.5	1,049.6	0.0	
50.00	Top - Section 1	96.9	2,749.5					0.0	918.0	96.9	3,667.5	0.0	
52.50	Reinf. Top Reinf	65.0	752.4					0.0	459.8	65.0	1,212.2	0.0	
55.00		98.0	745.3					0.0	460.3	98.0	1,205.6	0.0	
60.00	Doinf Ton	131.0	1,466.7					0.0	922.0	131.0	2,388.6	0.0	
65.00	Reinf. Top	131.3	1,437.6					0.0	923.8	131.3	2,361.3	0.0	
70.00 75.00		131.3 131.0	1,408.1					0.0	524.6 494.7	131.3 131.0	1,932.7	0.0	
			1,378.2					0.0			1,872.9	0.0	
80.00		130.5	1,348.0					0.0	415.3	130.5	1,763.3	0.0	
85.00 87.50	Bot - Section 3	97.5 65.2	1,317.5 648.6					0.0 0.0	416.7 208.9	97.5 65.2	1,734.2 857.5	0.0 0.0	
90.00	DOL - SECTION 3	72.0	1,017.7					0.0	200.9	72.0	1,226.8	0.0	
93.00	Top - Section 2	65.2	1,204.6					0.0	251.4	65.2	1,456.0	0.0	
95.00	10p 000110112	90.7	451.1					0.0	167.8	90.7	618.9	0.0	
100.00		128.7	1.105.6					0.0	420.4	128.7	1,526.1	0.0	
105.00		127.3	1,103.0					0.0	421.5	120.7	1,499.7	0.0	
110.00		125.8	1,050.5					0.0	422.6	125.8	1,473.1	0.0	
115.00		124.1	1,022.6					0.0	423.7	124.1	1,446.3	0.0	
120.00		122.3	994.6					0.0	424.7	122.3	1,419.3	0.0	
125.00		120.4	966.4					0.0	425.7	120.4	1,392.1	0.0	
130.00		99.9	938.1					0.0	426.6	99.9	1,364.7	0.0	0.0
133.42	Bot - Section 4	58.9	625.9					0.0	292.1	58.9	918.0	0.0	
135.00		53.9	416.7					0.0	135.4	53.9	552.2	0.0	
138.00	Top - Section 3	58.4	777.4					0.0	257.0	58.4	1,034.4	0.0	0.0
140.00	Appurtenance(s)	80.4	288.9	851.7	0.0	0.0	8,177.0	0.0	171.4	932.1	8,637.3	0.0	0.0
145.00		113.2	703.1					0.0	405.8	113.2	1,109.0	0.0	0.0
150.00		110.8	680.2					0.0	406.7	110.8	1,086.8	0.0	0.0
155.00		108.2	657.1					0.0	407.5	108.2	1,064.5	0.0	0.0
160.00		105.6	633.9					0.0	408.2	105.6	1,042.1	0.0	0.0
165.00		82.7	610.6					0.0	409.0	82.7	1,019.6	0.0	
168.00	Appurtenance(s)	50.7	356.5	1,172.1	0.0	276.5	10,191.4	0.0	245.8		10,793.6	0.0	
170.00		69.5	233.4					0.0	23.6		257.0	0.0	
175.00		97.2	563.8					0.0	59.0		622.8	0.0	
180.00		57.3	540.3					0.0	59.0		599.3	0.0	
181.00	Appurtenance(s)	46.4	106.1	922.0	0.0	0.0	8,472.3	0.0	11.8		8,590.2	0.0	
185.00		37.0	412.3					0.0	0.0	37.0	412.3	0.0	0.0

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:13 AM

Customer: SPRINT NEXTEL

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph with 1.50 in Radial Ice 27 Iterations

Dead Load Factor: 1.20 Ice Importance Factor: 1.00

Wind Load Factor : 1.00

Totals: 7,413.12 94,807.6 0.00 0.00

Site Name: Middletown CT 3, CT Engineering Number:13668065 4/27/2021 9:04:13 AM

Customer: SPRINT NEXTEL

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph with 1.50 in Radial Ice 27 Iterations

Dead Load Factor :1.20 Ice Importance Factor :1.00

Wind Load Factor : 1.00

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
	•	-	, , ,	•	•	•				•	. ,		
0.00	-94.80 -92.07	-7.38 -7.32	0.00	-999.95 -963.04	0.00	999.95 963.04			6,200.72		0.00 0.02	0.00 -0.04	0.164
5.00 10.00	-92.07 -89.31	-7.32 -7.26	0.00	-963.04 -926.43	0.00	963.04 926.43			5,976.75 5,756.90		0.02	-0.04 -0.08	0.162 0.159
15.00	-86.55	-7.20	0.00	-890.14	0.00	890.14			5,730.90		0.09	-0.08	0.156
20.00	-83.80	-7.17	0.00	-854.18	0.00	854.18			5,329.55		0.26	-0.13	0.153
22.50	-82.44	-7.14 -7.11	0.00	-836.32	0.00	836.32			5,225.29		0.36	-0.17 -0.19	0.153
22.50	-82.44	-7.11	0.00	-836.32	0.00	836.32			5,225.29		0.45	-0.19	0.152
25.00	-81.08	-7.06	0.00	-818.55	0.00	818.55			5,122.06		0.56	-0.22	0.152
30.00	-78.37	-6.99	0.00	-783.25	0.00	783.25			4,918.68		0.81	-0.26	0.148
35.00	-75.70	-6.91	0.00	-748.30	0.00	748.30			4,719.43		1.11	-0.30	0.145
40.00	-73.05	-6.84	0.00	-713.74	0.00	713.74			4,524.29		1.45	-0.35	0.142
43.58	-71.16	-6.80	0.00	-689.22	0.00	689.22			4,386.98		1.73	-0.38	0.139
45.00	-70.11	-6.74	0.00	-679.59	0.00	679.59			4,333.28		1.84	-0.40	0.137
50.00	-66.44	-6.66	0.00	-645.88	0.00	645.88	3,449.19		3,691.93		2.28	-0.44	0.156
52.50	-65.23	-6.61	0.00	-629.24	0.00	629.24	3,428.39	900.74	3,611.63	2,968.15	2.52	-0.46	0.154
52.50	-65.23	-6.61	0.00	-629.24	0.00	629.24	3,428.39		3,611.63		2.52	-0.46	0.154
55.00	-64.02	-6.54	0.00	-612.71	0.00	612.71	3,407.21		3,532.22		2.77	-0.49	0.152
60.00	-61.62	-6.44	0.00	-580.00	0.00	580.00	3,363.73	870.85	3,376.04	2,814.72	3.30	-0.54	0.147
65.00	-59.26	-6.34	0.00	-547.78	0.00	547.78	3,318.75	850.93	3,223.39	2,712.97	3.89	-0.59	0.143
65.00	-59.26	-6.34	0.00	-547.78	0.00	547.78	3,318.75	850.93	3,223.39	2,712.97	3.89	-0.59	0.220
70.00	-57.32	-6.25	0.00	-516.09	0.00	516.09	3,272.27	831.01	3,074.28	2,611.78	4.53	-0.63	0.215
75.00	-55.44	-6.17	0.00	-484.83	0.00	484.83	3,224.30	811.09	2,928.69	2,511.21	5.24	-0.71	0.210
80.00	-53.67	-6.09	0.00	-453.97	0.00	453.97	3,174.83		2,786.64		6.02	-0.79	0.205
85.00	-51.93	-6.02	0.00	-423.52	0.00	423.52	3,123.86		2,648.12		6.89	-0.87	0.200
87.50	-51.07	-5.98	0.00	-408.47	0.00	408.47	3,097.81		2,580.17		7.36	-0.91	0.197
90.00	-49.84	-5.93	0.00	-393.52	0.00	393.52	3,071.40		2,513.13		7.84	-0.95	0.194
93.00	-48.38	-5.87	0.00	-375.75	0.00	375.75	2,386.65		2,108.62		8.45	-0.99	0.238
95.00	-47.76	-5.82	0.00	-364.01	0.00	364.01	2,372.63		2,064.30		8.87	-1.03	0.234
100.00	-46.23	-5.73	0.00	-334.92	0.00	334.92	2,336.55		1,955.55		10.00	-1.11	0.225
105.00	-44.72	-5.64	0.00	-306.26	0.00	306.26	2,298.97		1,849.74		11.21	-1.20	0.216
110.00	-43.24	-5.55	0.00	-278.05	0.00	278.05	2,259.89		1,746.88		12.52	-1.29	0.206
115.00	-41.79	-5.46	0.00	-250.29	0.00	250.29	2,219.31		1,646.95		13.92	-1.38	0.195
120.00	-40.37	-5.36	0.00	-223.01	0.00	223.01	2,177.24		1,549.97	•	15.40	-1.46	0.184
125.00	-38.97	-5.25	0.00	-196.23	0.00	196.23	2,133.67		1,455.93		16.98	-1.54	0.171
130.00	-37.61	-5.16	0.00	-169.96 -152.33	0.00	169.96	2,088.60		1,364.84		18.64	-1.62	0.158
133.42	-36.69	-5.10	0.00		0.00	152.33			1,304.27		19.82	-1.67	0.148
135.00	-36.13	-5.05	0.00	-144.26	0.00	144.26	2,042.04		1,276.68		20.38	-1.70 1.74	0.143
138.00 140.00	-35.10 -26.49	-4.98 -3.81	0.00	-129.11 -119.15	0.00	129.11 119.15	1,234.05 1,225.96		891.35 867.28	695.59 681.55	21.46 22.19	-1.74 -1.77	0.214 0.197
145.00	-25.38	-3.70	0.00	-119.13	0.00	100.09	1,223.96		808.54		24.09	-1.77 -1.85	0.197
145.00	-25.38 -24.29	-3.70	0.00	-81.59	0.00	81.59	1,204.66		751.85	646.44 611.39	24.0 9 26.07	-1.85 -1.93	0.176
155.00	-24.29	-3.47	0.00	-63.67	0.00	63.67	1,157.58		697.23	576.46	28.13	-1.93	0.134
160.00	-23.23 -22.19	-3.47	0.00	-46.34	0.00	46.34	1,131.80		644.66	541.76	30.26	-2.00 -2.06	0.131
100.00	۷۷.۱/	3.34	0.00	70.34	0.00	70.04	1,131.00	270.00	074.00	J-1.70	30.20	2.00	0.103

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:13 AM

Customer: SPRINT NEXTEL

Load (Load Case: 1.2D + 1.0Di + 1.0W				50 ı	mph with 1.5	0 in Radial Id	e				27 Itera	ations
Dea	Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00 165.00 -21.17 -3.24 0.00				ad Load	Factor :1.00				Ice Imp	oortance	Factor	:1.00
165.00	-21.17	-3.24	0.00	-29.61	0.00	29.61	1,104.51	279.02	594.16	507.37	32.45	-2.11	0.078
168.00	-10.43	-1.62	0.00	-19.63	0.00	19.63	1,087.43	272.05	564.84	486.92	33.78	-2.13	0.050
170.00	-10.17	-1.54	0.00	-16.39	0.00	16.39	1,075.73	267.40	545.71	473.37	34.67	-2.14	0.044
175.00	-9.55	-1.42	0.00	-8.68	0.00	8.68	1,045.46	255.78	499.33	439.85	36.92	-2.16	0.029
180.00	-8.96	-1.35	0.00	-1.56	0.00	1.56	1,013.69	244.16	455.00	406.91	39.19	-2.17	0.013
181.00	-0.41	-0.05	0.00	-0.21	0.00	0.21	1,007.15	241.84	446.38	400.39	39.64	-2.17	0.001
185.00	0.00	-0.04	0.00	0.00	0.00	976.67	232.54	412.74	373.18	41.46	-2.17	0.000	

Site Name: Middletown CT 3, CT Engineering Number:13668065

Customer: SPRINT NEXTEL

Serviceability 60 mph

26 Iterations

4/27/2021 9:04:13 AM

Gust Response Factor :1.10 Dead Load Factor :1.00 Wind Load Factor :1.00

<u>Load Case:</u> 1.0D + 1.0W

Applied Segment Forces Summary

		Shaft F	orces		Discret	e Forces		Linear Fo	orces		Sum of	Forces	
Seg			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX		Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)			(lb)	(lb)	(lb)		
(11)	Description	(10)	(ID)	(ID)	(10-11)	(ID-II)	(lb)	(lb)	(ID)	(ui)	(ui)	(lb-ft)	(lb)
0.00		63.4	0.0					0.0	0.0	63.4	0.0	0.0	0.0
5.00		125.6	1,224.6					0.0	594.2	125.6	1,818.8	0.0	0.0
10.00		123.3	1,202.1					0.0	594.2	123.3	1,796.3	0.0	0.0
15.00		121.0	1,179.5					0.0	594.2	121.0	1,773.8	0.0	0.0
20.00		89.4	1,157.0					0.0	594.2	89.4	1,751.3	0.0	0.0
22.50	Reinf. Top Reinf	58.7	570.1					0.0	297.1	58.7	867.2	0.0	0.0
25.00		86.8	564.4					0.0	297.1	86.8	861.5	0.0	0.0
30.00		115.4	1,111.9					0.0	594.2	115.4	1,706.2	0.0	0.0
35.00		116.7	1,089.4					0.0	594.2	116.7	1,683.7	0.0	0.0
40.00		101.8	1,066.9					0.0	594.2	101.8	1,661.1	0.0	0.0
43.58	Bot - Section 2	60.1	750.7					0.0	425.9	60.1	1,176.6	0.0	0.0
45.00		78.8	550.0					0.0	168.4	78.8	718.4	0.0	0.0
50.00	Top - Section 1	92.4	1,914.3					0.0	594.2	92.4	2,508.6	0.0	0.0
52.50	Reinf. Top Reinf	61.9	439.0					0.0	297.1	61.9	736.1	0.0	0.0
55.00		93.2	434.2					0.0	297.1	93.2	731.3	0.0	0.0
60.00	D T	124.4	853.9					0.0	594.2	124.4	1,448.2	0.0	0.0
65.00	Reinf. Top	124.4	834.6					0.0	594.2	124.4	1,428.8	0.0	0.0
70.00		124.1	815.3					0.0	260.2	124.1	1,075.5	0.0	0.0
75.00		123.6	796.0					0.0	234.0	123.6	1,030.0	0.0	0.0
80.00		122.8	776.7					0.0	166.6	122.8	943.3	0.0	0.0
85.00	D 1 0 11 0	91.6	757.3					0.0	166.6	91.6	924.0	0.0	0.0
87.50	Bot - Section 3	61.2	371.5					0.0	83.3	61.2	454.8	0.0	0.0
90.00	Top - Section 2	67.5	677.9					0.0	83.3	67.5	761.2	0.0	0.0
93.00	rop - Section 2	61.1	802.0					0.0	100.0	61.1	902.0	0.0	0.0
95.00		84.8	242.3					0.0	66.6	84.8	309.0	0.0	0.0
100.00		120.0	594.6					0.0	166.6	120.0	761.3	0.0	0.0
105.00		118.4	578.5					0.0 0.0	166.6 166.6	118.4	745.2	0.0	0.0
110.00 115.00		116.6	562.4 546.3					0.0		116.6	729.1		0.0
120.00		114.7 112.7	530.2					0.0	166.6 166.6	114.7 112.7	713.0 696.9	0.0 0.0	0.0 0.0
125.00		110.5	514.1					0.0	166.6	110.5	680.8	0.0	0.0
130.00		91.4	498.0					0.0	166.6	91.4	664.7	0.0	0.0
133.42	Bot - Section 4	53.8	331.1					0.0	113.9	53.8	445.0	0.0	0.0
135.42	Bot Gootlon i	49.1	258.4					0.0	52.8	49.1	311.2	0.0	0.0
138.00	Top - Section 3	53.2	482.3					0.0	100.0	53.2	582.3	0.0	0.0
140.00	Appurtenance(s)	73.0	131.6	742.9	0.0	0.0	3,923.5		66.6	815.9	4,121.8	0.0	0.0
145.00		102.5	321.2	772.7	0.0	0.0	5,725.5	0.0	147.1	102.5	468.3	0.0	0.0
150.00		99.8	309.9					0.0	147.1	99.8	457.1	0.0	0.0
155.00		97.1	298.7					0.0	147.1	97.1	445.8	0.0	0.0
160.00		94.2	287.4					0.0	147.1	94.2	434.5	0.0	0.0
165.00		73.5	276.1					0.0	147.1	73.5	423.3	0.0	0.0
168.00	Appurtenance(s)	44.9	160.3	1,032.9	0.0	264.8	4,434.9		88.3	1,077.8	4,683.5	0.0	0.0
170.00	11	61.2	104.6	1,002.7	0.0	201.0	1,107.7	0.0	19.7	61.2	124.3	0.0	0.0
175.00		85.2	253.6					0.0	49.2	85.2	302.8	0.0	0.0
180.00		50.0	242.3					0.0	49.2	50.0	291.5	0.0	0.0
181.00	Appurtenance(s)	36.8	47.1	853.3	0.0	0.0	3,916.0		9.8	890.1	3,973.0	0.0	0.0
185.00	·	28.7	184.0					0.0	0.0	28.7	184.0	0.0	0.0

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:16 AM

Customer: SPRINT NEXTEL

Load Case: 1.0D + 1.0W

Gust Response Factor :1.10
Dead Load Factor :1.00
Wind Load Factor :1.00

Totals: 6,790.40 51,306.9 0.00 0.00

Code: ANSI/TIA-222-H © 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Name: Middletown CT 3, CT Engineering Number:13668065 4/27/2021 9:04:16 AM

Customer: SPRINT NEXTEL

<u>Load Case:</u> 1.0D + 1.0W Serviceability 60 mph 26 Iterations

Gust Response Factor :1.10 Dead Load Factor :1.00 Wind Load Factor :1.00

Calculated Forces

Site Number: 302537

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi phi Pn Vn (kips) (kips)	phi phi Tn Mn (ft-kips) (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
		•	•	•		•					
0.00	-51.30	-6.74		-840.46		840.46	4,765.98 1,274.81 6		0.00	0.00	0.133
5.00	-49.48	-6.65	0.00	-806.75		806.75	4,719.39 1,251.57 5		0.02	-0.04	0.131
10.00	-47.68	-6.55	0.00	-773.52		773.52	4,671.31 1,228.33 5		0.08	-0.07	0.128
15.00	-45.90	-6.46	0.00	-740.76		740.76	4,621.73 1,205.08 5		0.17	-0.11	0.126
20.00	-44.15	-6.38	0.00	-708.47		708.47	4,570.65 1,181.84 5		0.30	-0.14	0.123
22.50	-43.28	-6.34		-692.51	0.00	692.51	4,544.55 1,170.22 5		0.38	-0.16	0.122
22.50	-43.28	-6.34		-692.51	0.00	692.51	4,544.55 1,170.22 5		0.38	-0.16	0.122
25.00	-42.42	-6.27	0.00	-676.67	0.00	676.67	4,518.07 1,158.60 5		0.47	-0.18	0.120
30.00	-40.71	-6.17	0.00	-645.33	0.00	645.33	4,464.00 1,135.36 4		0.68	-0.22	0.117
35.00	-39.02	-6.07	0.00	-614.46		614.46	4,408.43 1,112.12 4		0.92	-0.25	0.115
40.00	-37.36	-5.99	0.00	-584.09		584.09	4,351.36 1,088.87 4		1.21	-0.29	0.112
43.58	-36.18	-5.93	0.00	-562.64		562.64	4,309.55 1,072.22 4		1.44	-0.32	0.110
45.00	-35.46	-5.86	0.00	-554.24		554.24	4,292.80 1,065.63 4		1.53	-0.33	0.108
50.00	-32.95	-5.77	0.00	-524.92		524.92		3,691.93 3,019.48	1.89	-0.36	0.122
52.50	-32.21	-5.72		-510.50		510.50		3,611.63 2,968.15	2.09	-0.38	0.120
52.50	-32.21	-5.72		-510.50		510.50		3,611.63 2,968.15	2.09	-0.38	0.120
55.00	-31.48	-5.63	0.00	-496.21	0.00	496.21		3,532.22 2,916.91	2.30	-0.40	0.118
60.00	-30.02	-5.52		-468.04		468.04		3,376.04 2,814.72	2.74	-0.44	0.115
65.00 65.00	-28.59 -28.59	-5.40 -5.40		-440.44 -440.44		440.44 440.44	•	3,223.39 2,712.97 3,223.39 2,712.97	3.22 3.22	-0.48 -0.48	0.111 0.171
70.00	-26.59 -27.51	-5.40	0.00	-440.44		440.44		3,223.39 2,712.97 3,074.28 2,611.78	3.75	-0.46 -0.52	0.171
75.00	-27.51	-5.19	0.00	-386.96		386.96		2,928.69 2,511.21	4.33	-0.52 -0.58	0.167
80.00	-25.53	-5.19	0.00	-361.02		361.02		2,786.64 2,411.36	4.33 4.97	-0.56 -0.64	0.162
85.00	-23.53 -24.61	-5.00		-335.60		335.60		2,648.12 2,312.31		-0.64 -0.71	0.158
85.00 87.50	-24.61 -24.15	-5.00 -4.95	0.00	-335.60		323.10		2,580.17 2,263.11	5.68 6.06	-0.71 -0.74	0.153
90.00	-24.13	-4.88	0.00	-323.10		310.73		2,513.13 2,214.15	6.45	-0.74 -0.77	0.131
93.00	-23.37	-4.82	0.00	-296.08		296.08		2,108.62 1,729.58	6.95	-0.77	0.140
95.00	-22.17	-4.75	0.00	-286.44		286.44		2,064.30 1,701.09	7.29	-0.83	0.178
100.00	-22.17	-4.75	0.00	-262.68		262.68		,955.55 1,630.09	8.20	-0.83	0.170
105.00	-20.66	-4.54	0.00	-239.45		239.45		,849.74 1,559.47	9.18	-0.97	0.173
110.00	-19.92	-4.43	0.00	-216.75		216.75		,746.88 1,489.31	10.23	-1.04	0.154
115.00	-19.21	-4.33	0.00	-194.57		194.57		,646.95 1,419.70	11.35	-1.11	0.146
120.00	-18.51	-4.22	0.00	-172.93		174.97		,549.97 1,350.73	12.55	-1.17	0.137
125.00	-17.83	-4.12		-172.73	0.00	151.81		,455.93 1,282.49	13.81	-1.17	0.137
130.00	-17.16	-4.03	0.00	-131.22	0.00	131.22		,364.84 1,215.06	15.13	-1.30	0.127
133.42	-16.71	-3.97		-117.46	0.00	117.46		,304.27 1,169.49	16.08	-1.34	0.109
135.00	-16.40	-3.92		-111.18		111.18		,276.68 1,148.53	16.52	-1.35	0.105
138.00	-15.82	-3.86		-99.41	0.00	99.41	1,234.05 341.78	891.35 695.59	17.38	-1.39	0.156
140.00	-11.72	-2.96		-91.69		91.69	1,225.96 337.13	867.28 681.55	17.97	-1.41	0.144
145.00	-11.25	-2.85	0.00	-76.91	0.00	76.91	1,204.66 325.51	808.54 646.44	19.48	-1.47	0.128
150.00	-10.79	-2.75	0.00	-62.64		62.64	1,181.87 313.89	751.85 611.39	21.06	-1.53	0.120
155.00	-10.35	-2.65	0.00	-48.88	0.00	48.88	1,157.58 302.27	697.23 576.46	22.69	-1.59	0.094
160.00	-9.91	-2.55		-35.62		35.62	1,131.80 290.65	644.66 541.76	24.38	-1.63	0.075
			3.00	30.32	5.50	20.02	., 2,0.00		55		

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:16 AM

Customer: SPRINT NEXTEL

Load C	Case: 1.	0D + 1.0V	V		Ser	viceability	60 mph					26 Itera	ations
Dea	d ['] Load I	Factor :1. Factor :1. Factor :1.	00										
165.00	-9.49	-2.47	0.00	-22.85	0.00	22.85	1,104.51	279.02	594.16	507.37	26.11	-1.67	0.054
168.00	-4.84	-1.26	0.00	-15.17	0.00	15.17	1,087.43	272.05	564.84	486.92	27.17	-1.69	0.036
170.00	-4.72	-1.19	0.00	-12.66	0.00	12.66	1,075.73	267.40	545.71	473.37	27.87	-1.69	0.031
175.00	-4.42	-1.10	0.00	-6.68	0.00	6.68	1,045.46	255.78	499.33	439.85	29.66	-1.71	0.019
180.00	-4.13	-1.04	0.00	-1.18	0.00	1.18	1,013.69	244.16	455.00	406.91	31.45	-1.72	0.007
181.00	-0.18	-0.03	0.00	-0.14	0.00	0.14	1,007.15	241.84	446.38	400.39	31.81	-1.72	0.001
										33.25	-1.72	0.000	

Code: ANSI/TIA-222-H © 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:16 AM

Customer: SPRINT NEXTEL

Site Number: 302537

Equivalent Lateral Forces Method Analysis

Spectral Response Acceleration for Short Period (S $_{ m s}$):	0.20
Spectral Response Acceleration at 1.0 Second Period (S $_1$):	0.05
Long-Period Transition Period (T L):	6
Importance Factor (I _E):	1.00
Site Coefficient F a:	1.60
Site Coefficient F _v :	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S $_{ m ds}$):	0.22
Design Spectral Response Acceleration at 1.0 Second Period (S d1):	0.09
Seismic Response Coefficient (C s):	0.03
Upper Limit C _s	0.03
Lower Limit C _s	0.03
Period based on Rayleigh Method (sec):	3.22
Redundancy Factor (p):	1.30
Seismic Force Distribution Exponent (k):	2.00
Total Unfactored Dead Load:	51.31 k
Seismic Base Shear (E):	2.00 k

Load Case 1.2D + 1.0Ev + 1.0Eh

Seismic

	Height Above Base	Weight	W _z		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(Ib-ft)	C _{vx}	(lb)	(lb)
46	183.00	184	6,160	0.011	21	229
45	180.50	57	1,856	0.003	6	71
44	177.50	292	9,185	0.016	32	362
43	172.50	303	9,010	0.015	31	376
42	169.00	124	3,549	0.006	12	154
41	166.50	249	6,891	0.012	24	309
40	162.50	423	11,177	0.019	38	526
39	157.50	435	10,780	0.019	37	540
38	152.50	446	10,368	0.018	36	554
37	147.50	457	9,944	0.017	34	568
36	142.50	468	9,510	0.016	33	582
35	139.00	198	3,831	0.007	13	246
34	136.50	582	10,850	0.019	37	724
33	134.21	311	5,605	0.010	19	387
32	131.71	445	7,719	0.013	27	553
31	127.50	665	10,805	0.019	37	826
30	122.50	681	10,216	0.018	35	846
29	117.50	697	9,621	0.017	33	866
28	112.50	713	9,024	0.015	31	886
27	107.50	729	8,425	0.014	29	906
26	102.50	745	7,829	0.013	27	926
25	97.50	761	7,237	0.012	25	946
24	94.00	309	2,730	0.005	9	384
23	91.50	902	7,552	0.013	26	1,121
22	88.75	761	5,996	0.010	21	946

Site Number: 302537		Co	ode: ANSI/TIA-222	2-H © 2007	- 2021 by ATC IP LLC. All	rights reserved.
Site Name: Middletown CT 3, CT		Engineering Num	ber:13668065		4/27/202	1 9:04:16 AM
Customer: SPRINT NEXTEL						
21	86.25	455	3,383	0.006	12	565
20	82.50	924	6,289	0.011	22	1,149
19 18	77.50 72.50	943 1,030	5,666	0.010 0.009	19 19	1,173 1,280
17	67.50	1,076	5,414 4,900	0.009	17	1,337
16	62.50	1,429	5,581	0.010	19	1,776
15	57.50	1,448	4,788	0.008	16	1,800
14	53.75	731	2,113	0.004	7	909
13 12	51.25 47.50	736 2,509	1,934 5,660	0.003 0.010	7 19	915 3,118
11	44.29	718	1,409	0.002	5	893
10	41.79	1,177	2,055	0.004	7	1,463
9	37.50	1,661	2,336	0.004	8	2,065
8	32.50	1,684	1,778	0.003	6	2,093
7 6	27.50 23.75	1,706 862	1,290 486	0.002 0.001	4 2	2,121 1,071
5	21.25	867	392	0.001	1	1,078
4	17.50	1,751	536	0.001	2	2,177
3	12.50	1,774	277	0.000	1	2,205
2	7.50	1,796	101	0.000	0	2,233
Decibel 844G90VTA-SX	2.50 181.00	1,819 46	11 1,507	0.000 0.003	0 5	2,261 57
Decibel DB844H90E-XY	181.00	56	1,835	0.003	6	70
Decibel 844G65VTZASX	181.00	64	2,097	0.004	7	80
Generic Heavy Platfo	181.00	3,750	122,854	0.211	422	4,662
Powerwave Allgon LGP	168.00	85	2,388	0.004	8	105
Raycap DC6-48-60-18- Raycap DC6-48-60-0-8	168.00 168.00	40 33	1,129 926	0.002 0.002	4 3	50 41
Ericsson RRUS 4478 B	168.00	180	5,072	0.002	17	223
Ericsson RRUS 4449 B	168.00	213	6,012	0.010	21	265
Ericsson RRUS 32 B30	168.00	180	5,080	0.009	17	224
Ericsson RRUS 32 B66	168.00	159	4,488	0.008	15 17	198
Ericsson RRUS E2 B29 Powerwave Allgon 777	168.00 168.00	180 105	5,080 2,964	0.009 0.005	10	224 131
Quintel QS66512-2	168.00	333	9,399	0.016	32	414
CCI DMP65R-BU6DA	168.00	238	6,723	0.012	23	296
CCI OPA65R-BU6D	168.00	190	5,351	0.009	18	236
Generic Round Platfo	168.00	2,500	70,560	0.121	242	3,108
Ericsson Radio 4449 Ericsson RRUS 4415 B	140.00 140.00	225 138	4,410 2,705	0.008 0.005	15 9	280 172
Ericsson 4424 B25	140.00	258	5,057	0.009	17	321
Ericsson Air6449 B41	140.00	312	6,115	0.010	21	388
RFS APX16DWV-16DWVS-	140.00	122	2,393	0.004	8	152
RFS APXVAALL24 43-U- Generic Round Platfo	140.00 140.00	368 2,500	7,221	0.012 0.084	25 168	458 3,108
Generic Round Flatto	140.00	51,307	49,000 582,635	1.000	2,001	63,779
Load Case O.O. 1 OEv. 1 OEb		Seismic (Redu		1.000	_,	00,177
<u>Load Case</u> <u>0.9D - 1.0Ev + 1.0Eh</u>	Height	Seisinic (Reduc	CEU DL)			
	Above				Horizontal	Vertical
	Base	Weight	W_z		Force	Force
Segment	(ft)	(lb)	(lb-ft)	C _{vx}	(lb)	(lb)
46	183.00	184	6,160	0.011	21	158
45	180.50	57	1,856	0.003	6	49
44	177.50 172.50	292 303	9,185	0.016	32 31	250 259
43 42	172.50 169.00	303 124	9,010 3,549	0.015 0.006	31 12	259 106
41	166.50	249	6,891	0.012	24	213
40	162.50	423	11,177	0.019	38	363
39	157.50	435	10,780	0.019	37	372
38 37	152.50 147.50	446 457	10,368	0.018 0.017	36 34	382 392
57	177.30	457	9,944	0.017	J4	372

Code: ANSI/TIA-222-H © 2007 - 2021 by ATC IP LLC. All rights reserved.

Engineering Number: 13668065 4/27/2021 9:04:16 AM

36	142.50	468	9,510	0.016	33	401
35	139.00	198	3,831	0.007	13	170
34	136.50	582	10,850	0.019	37	499
33	134.21	311	5,605	0.010	19	267
32	131.71	445	7,719	0.013	27	381
31	127.50	665	10,805	0.019	37	570
30	122.50	681	10,216	0.018	35	583
29 28	117.50 112.50	697	9,621	0.017	33 31	597
28 27	107.50	713 729	9,024 8,425	0.015 0.014	29	611 625
26	102.50	745	7,829	0.013	27	639
25 25	97.50	761	7,237	0.012	25	652
24	94.00	309	2,730	0.005	9	265
23	91.50	902	7,552	0.013	26	773
22	88.75	761	5,996	0.010	21	652
21	86.25	455	3,383	0.006	12	390
20	82.50	924	6,289	0.011	22	792
19	77.50	943	5,666	0.010	19	808
18	72.50	1,030	5,414	0.009	19	883
17	67.50	1,076	4,900	0.008	17	922
16 15	62.50	1,429	5,581	0.010	19	1,224
15 14	57.50 53.75	1,448	4,788	0.008	16 7	1,241
13	53.75 51.25	731 736	2,113 1,934	0.004 0.003	7	627 631
12	47.50	2,509	5,660	0.003	19	2,150
11	44.29	718	1,409	0.002	5	616
10	41.79	1,177	2,055	0.004	7	1,008
9	37.50	1,661	2,336	0.004	8	1,423
8	32.50	1,684	1,778	0.003	6	1,443
7	27.50	1,706	1,290	0.002	4	1,462
6	23.75	862	486	0.001	2	738
5	21.25	867	392	0.001	1	743
4	17.50	1,751	536	0.001	2	1,501
3	12.50	1,774	277	0.000	1	1,520
2	7.50	1,796	101	0.000	0	1,539
। Decibel 844G90VTA-SX	2.50 181.00	1,819 46	11	0.000	0 5	1,559 39
Decibel DB844H90E-XY	181.00	56	1,507	0.003 0.003	6	48
Decibel 844G65VTZASX	181.00	64	1,835 2,097	0.003	7	55
Generic Heavy Platfo	181.00	3,750	122,854	0.211	422	3,213
Powerwave Allgon LGP	168.00	85	2,388	0.004	8	72
Raycap DC6-48-60-18-	168.00	40	1,129	0.002	4	34
Raycap DC6-48-60-0-8	168.00	33	926	0.002	3	28
Ericsson RRUS 4478 B	168.00	180	5,072	0.009	17	154
Ericsson RRUS 4449 B	168.00	213	6,012	0.010	21	183
Ericsson RRUS 32 B30	168.00	180	5,080	0.009	17	154
Ericsson RRUS 32 B66	168.00	159	4,488	0.008	15	136
Ericsson RRUS E2 B29	168.00	180	5,080	0.009	17	154
Powerwave Allgon 777	168.00	105	2,964	0.005	10	90
Quintel QS66512-2	168.00	333	9,399	0.016	32	285
CCI DMP65R-BU6DA	168.00	238	6,723	0.012	23	204
CCI OPA65R-BU6D Generic Round Platfo	168.00 168.00	190 2 500	5,351	0.009 0.121	18 242	162 2,142
Generic Round Platfo Ericsson Radio 4449		2,500 225	70,560	0.121	242 15	193
Ericsson Radio 4449 Ericsson RRUS 4415 B	140.00 140.00	138	4,410	0.008	9	193
Ericsson 4424 B25	140.00	258	2,705 5,057	0.005	9 17	221
Ericsson 4424 B25 Ericsson Air6449 B41	140.00	312	6,115	0.009	21	267
RFS APX16DWV-16DWVS-	140.00	122	2,393	0.004	8	105
RFS APXVAALL24 43-U-	140.00	368	7,221	0.012	25	316
			1,221			
Generic Round Platfo	140.00	2,500	49,000	0.084	168	2,142

Site Number: 302537

Site Name: Middletown CT 3, CT

Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:16 AM

Customer: SPRINT NEXTEL

 $^{\mbox{\scriptsize 0}}$ 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Number: 302537 Code: ANSI/TIA-222-H Site Name: Middletown CT 3, CT Engineering Number: 13668065 4/27/2021 9:04:16 AM

Customer: SPRINT NEXTEL

<u>Load Case</u> 1.2D + 1.0Ev + 1.0Eh

Seismic

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)		Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX	Resultant Moment (ft-kips)	Pn Vn Tn Mn De	otal eflect Rotation in) (deg)	Ratio
(11)	(KIPS)	(kips)	(IT-KIPS)	•	(II-KIPS)	•		in) (deg)	Katio
	-61.52	-2.01	0.00	-312.60	0.00	312.60		0.00 0.00	0.057
	-59.28	-2.02	0.00	-302.56		302.56	4,719.39 1,251.57 5,976.75 4,867.10	0.01 -0.01	0.056
	-57.08	-2.03	0.00	-292.46	0.00	292.46	4,671.31 1,228.33 5,756.90 4,727.29	0.03 -0.03	0.055
	-54.90	-2.04	0.00	-282.30		282.30	4,621.73 1,205.08 5,541.16 4,587.84	0.06 -0.04	0.054
	-53.82	-2.05	0.00	-272.09	0.00	272.09	4,570.65 1,181.84 5,329.55 4,448.85	0.11 -0.05	0.053
	-52.75	-2.05	0.00	-266.97	0.00	266.97	4,544.55 1,170.22 5,225.29 4,379.56	0.14 -0.06	0.053
	-52.75	-2.05	0.00	-266.97	0.00	266.97		0.14 -0.06	0.053
	-50.63	-2.06	0.00	-261.83	0.00	261.83	· · · · · · · · · · · · · · · · · · ·	0.18 -0.07	0.052
	-48.54	-2.06	0.00	-251.55	0.00	251.55	4,464.00 1,135.36 4,918.68 4,172.60	0.26 -0.08	0.051
	-46.47	-2.06	0.00	-241.26	0.00	241.26		0.35 -0.10	0.050
	-45.01	-2.06	0.00	-230.96		230.96	4,351.36 1,088.87 4,524.29 3,899.22	0.46 -0.11	0.050
	-44.12	-2.06	0.00	-223.58		223.58		0.55 -0.12	0.049
	-41.00	-2.04	0.00	-220.66	0.00	220.66	4,292.80 1,065.63 4,333.28 3,763.83	0.58 -0.13	0.048
	-40.08	-2.04	0.00	-210.46	0.00	210.46	3,449.19 910.70 3,691.93 3,019.48	0.72 -0.14	0.055
	-39.17	-2.03	0.00	-205.37	0.00	205.37	3,428.39 900.74 3,611.63 2,968.15	0.80 -0.15	0.054
	-39.17	-2.03	0.00	-205.37	0.00	205.37	3,428.39 900.74 3,611.63 2,968.15	0.80 -0.15	0.054
	-37.37	-2.02	0.00	-200.28	0.00	200.28	3,407.21 890.77 3,532.22 2,916.91	0.88 -0.16	0.053
	-35.59	-2.01	0.00	-190.18	0.00	190.18	3,363.73 870.85 3,376.04 2,814.72	1.05 -0.17	0.052
	-34.26	-2.00	0.00	-180.14	0.00	180.14	3,318.75 850.93 3,223.39 2,712.97	1.24 -0.19	0.050
	-34.26	-2.00	0.00	-180.14	0.00	180.14	3,318.75 850.93 3,223.39 2,712.97	1.24 -0.19	0.077
	-32.98	-1.98	0.00	-170.17	0.00	170.17	3,272.27 831.01 3,074.28 2,611.78	1.45 -0.20	0.075
	-31.80	-1.97	0.00	-160.25	0.00	160.25	3,224.30 811.09 2,928.69 2,511.21	1.67 -0.23	0.074
	-30.65	-1.96	0.00	-150.38	0.00	150.38	3,174.83 791.17 2,786.64 2,411.36	1.93 -0.26	0.072
	-30.09	-1.96	0.00	-140.57	0.00	140.57	3,123.86 771.24 2,648.12 2,312.31	2.21 -0.28	0.070
	-29.14	-1.94	0.00	-135.67	0.00	135.67	3,097.81 761.28 2,580.17 2,263.11	2.36 -0.29	0.069
	-28.02 -27.63	-1.91	0.00	-130.83	0.00	130.83 125.08	3,071.40 751.32 2,513.13 2,214.15 2,386.65 628.28 2,108.62 1,729.58	2.52 -0.31 2.72 -0.32	0.068 0.084
		-1.91		-125.08					
	-26.69	-1.89	0.00	-121.26	0.00	121.26	2,372.63 621.64 2,064.30 1,701.09 2,336.55 605.04 1,955.55 1,630.09	2.86 -0.33	0.083
	25.76	-1.87 -1.85	0.00	-111.82 -102.48		111.82 102.48		3.22 -0.36 3.62 -0.39	0.080 0.077
	-24.85 -23.97	-1.82	0.00	-102.46	0.00	93.24	2,298.97 588.44 1,849.74 1,559.47 2,259.89 571.84 1,746.88 1,489.31	4.05 -0.42	0.077
) -23.47	-1.79	0.00	-84.13	0.00	84.13	2,219.31 555.24 1,646.95 1,419.70	4.50 -0.45	0.073
) -23.10	-1.79	0.00	-04.13 -75.16	0.00	75.16	2,177.24 538.64 1,549.97 1,350.73	4.99 -0.48	0.076
) -22.23	-1.73	0.00	-66.35	0.00	66.35	2,177.24 536.64 1,349.97 1,330.73 2,133.67 522.03 1,455.93 1,282.49	5.51 -0.51	0.062
) -21.43	-1.73	0.00	-57.71	0.00	57.71	2,088.60 505.43 1,364.84 1,215.06	6.06 -0.53	0.062
	2 -20.49	-1.69	0.00	-51.88	0.00	51.88		6.44 -0.55	0.057
	19.76	-1.65	0.00	-49.21	0.00	49.21		6.63 -0.56	0.054
) -19.52	-1.64	0.00	-44.27		44.27		6.99 -0.57	0.033
	14.06	-1.29	0.00	-41.00		41.00	•	7.23 -0.58	0.073
	13.49	-1.25	0.00	-34.56		34.56		7.86 -0.61	0.072
	1 -13.49	-1.23	0.00	-28.28	0.00	28.28		8.51 -0.64	0.055
	12.94	-1.22	0.00	-20.20 -22.19		20.20		9.20 -0.67	0.037
) -12.40	-1.14	0.00	-16.29	0.00	16.29		9.91 -0.69	0.044
) -11.56	-1.14	0.00	-10.29		10.29		0.63 -0.70	0.041
168.00		-0.60	0.00	-7.24		7.24		1.08 -0.71	0.031
170.00		-0.57	0.00	-6.03		6.03		1.38 -0.71	0.020
175.00		-0.53	0.00	-3.19		3.19		2.13 -0.72	0.012
175.00	, 3.10	0.00	0.00	-3,17	0.00	5.17	1,010.70 200.70 477.00 407.00 1	2.10 -0.72	0.012

Site Number: 302537 Site Name: Middletown CT 3, CT Customer: SPRINT NEXTEL			Code: ANSI/TIA-222-H Engineering Number:13668065			© 2007 - 2021 by ATC IP LLC. All rights reserved. 4/27/2021 9:04:16 AM							
180.00	-5.09	-0.53	0.00	-0.53	0.00	0.53	1,013.69	244.16	455.00	406.91	12.89	-0.72	0.006
181.00	0.00	0.00	0.00	0.00	0.00	0.00	1,007.15	241.84	446.38	400.39	13.04	-0.72	0.000
185.00	0.00	0.00	0.00	0.00	0.00	0.00	976.67	232.54	412.74	373.18	13.64	-0.72	0.000

 $^{\mbox{\scriptsize 0}}$ 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Number: 302537 Code: ANSI/TIA-222-H Engineering Number: 13668065 Site Name: Middletown CT 3, CT 4/27/2021 9:04:16 AM

Customer: SPRINT NEXTEL

<u>Load Case</u> <u>0.9D - 1.0Ev + 1.0Eh</u>

Seismic (Reduced DL)

Calculated Forces

Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY	Mu MZ	Mu MX	Resultant Moment	phi phi phi Total Pn Vn Tn Mn Deflect Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips) (kips) (ft-kips) (ft-kips) (in) (deg) R	atio
0.00	-42.41	-2.00	0.00	-305.33	0.00	305.33	4,765.98 1,274.81 6,200.72 5,007.21 0.00 0.00 0	.052
	-40.87	-2.01	0.00	-295.31	0.00	295.31		.052
	-39.35	-2.02	0.00	-285.24	0.00	285.24		.051
15.00	-37.85	-2.03	0.00	-275.13	0.00	275.13		.050
20.00	-37.10	-2.03	0.00	-264.99	0.00	264.99	4,570.65 1,181.84 5,329.55 4,448.85 0.11 -0.05 0	.049
22.50	-36.36	-2.03	0.00	-259.91	0.00	259.91	4,544.55 1,170.22 5,225.29 4,379.56	.049
22.50	-36.36	-2.03	0.00	-259.91	0.00	259.91	4,544.55 1,170.22 5,225.29 4,379.56	.049
	-34.90	-2.03	0.00	-254.83	0.00	254.83		.048
	-33.46	-2.03	0.00	-244.66	0.00	244.66	4,464.00 1,135.36 4,918.68 4,172.60 0.25 -0.08 0	.048
	-32.03	-2.03	0.00	-234.48	0.00	234.48	4,408.43 1,112.12 4,719.43 4,035.51 0.34 -0.09 0	.047
	-31.02	-2.03	0.00	-224.32		224.32		.046
	-30.41	-2.03	0.00	-217.05	0.00	217.05		.045
	-28.26	-2.01	0.00	-214.18	0.00	214.18		.044
50.00	-27.63	-2.01	0.00	-204.14	0.00	204.14	3,449.19 910.70 3,691.93 3,019.48 0.71 -0.14 0	.051
	-27.00	-2.00	0.00	-199.12		199.12		.050
	-27.00	-2.00	0.00	-199.12		199.12		.050
	-25.76	-1.99	0.00	-194.12		194.12		.049
	-24.53	-1.97	0.00	-184.19	0.00	184.19		.048
	-23.61	-1.96	0.00	-174.35	0.00	174.35		.046
	-23.61	-1.96	0.00	-174.35	0.00	174.35		.071
	-22.73	-1.94	0.00	-164.56	0.00	164.56		.070
	-21.92	-1.93	0.00	-154.85	0.00	154.85		.068
	-21.13	-1.91	0.00	-145.20		145.20		.067
	-20.74	-1.91	0.00	-135.63	0.00	135.63		.065
	-20.09	-1.89	0.00	-130.86	0.00	130.86		.064
	-19.31	-1.86	0.00	-126.14	0.00	126.14		.063
	-19.05	-1.86	0.00	-120.55	0.00	120.55		.078
	-18.39	-1.83	0.00	-116.83	0.00	116.83		.076
	-17.75	-1.81	0.00	-107.66	0.00	107.66		.074
	-17.13	-1.79	0.00	-98.60		98.60		.071
	-16.52	-1.76	0.00	-89.66		89.66		.068
	-15.92	-1.73	0.00	-80.85	0.00	80.85		.064
	-15.34	-1.70	0.00	-72.20		72.20		.061
	-14.77	-1.66	0.00	-63.70	0.00	63.70		.057
	-14.38 -14.12	-1.64 -1.62	0.00	-55.38 -49.78	0.00	55.38 49.78		.052 .049
	-14.12	-1.52	0.00	-49.76 -47.22		49.76 47.22		.049
	-13.62	-1.57		-47.22		47.22		.048
140.00		-1.37	0.00	-42.47		39.33		.066
145.00						33.14		.059
150.00		-1.21 -1.17	0.00	-33.14	0.00	27.11		.059
150.00		-1.17	0.00	-27.11 -21.26	0.00	27.11		.052 .044
160.00		-1.13	0.00	-15.61	0.00	15.61		.036
165.00		-1.09	0.00	-10.15	0.00	10.15		.036
168.00		-0.58	0.00	-6.95		6.95		.027
170.00		-0.55	0.00	-5.79		5.79		.016
175.00		-0.51	0.00	-3.06		3.06		.010
175.00	5.50	0.01	3.00	3.00	0.00	3.00	1,515.10 255.70 177.55 457.55 11.75 -0.70 0	.510

Site Nar	Site Number: 302537 Code: ANSI/TIA-222-H Site Name: Middletown CT 3, CT Engineering Number: 13668065 Customer: SPRINT NEXTEL			222-H	© 2007 - 2	021 by AT0		All rights 021 9:04					
180.00	-3.51	-0.50	0.00	-0.50	0.00	0.50	1,013.69	244.16	455.00	406.91	12.46	-0.70	0.005
181.00	0.00	0.00	0.00	0.00	0.00	0.00	1,007.15	241.84	446.38	400.39	12.61	-0.70	0.000
185.00	0.00	0.00	0.00	0.00	0.00	0.00	976.67	232.54	412.74	373.18	13.19	-0.70	0.000

Site Name: Middletown CT 3, CT Engineering Number:13668065

4/27/2021 9:04:16 AM

Customer: SPRINT NEXTEL

Analysis Summary

			- Rea	actions 🗕			Max	(Usage
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	Elev (ft)	Interaction Ratio
1.2D + 1.0W	29.16	0.00	61.53	0.00	0.00	3669.61	93.00	0.76
0.9D + 1.0W	29.14	0.00	46.14	0.00	0.00	3605.71	93.00	0.74
1.2D + 1.0Di + 1.0Wi	7.38	0.00	94.80	0.00	0.00	999.95	93.00	0.24
1.2D + 1.0Ev + 1.0Eh	2.01	0.00	61.52	0.00	0.00	312.60	93.00	0.08
0.9D - 1.0Ev + 1.0Eh	2.00	0.00	42.41	0.00	0.00	305.33	93.00	0.08
1.0D + 1.0W	6.74	0.00	51.30	0.00	0.00	840.46	93.00	0.18

Site Name: Middletown CT 3, CT

Engineering Number: 13668065

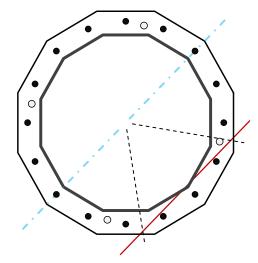
4/27/2021 9:04:16 AM

Customer: SPRINT NEXTEL

<u>Additio</u>	onal S	Steel Summary	Inte	rmediate (Connecto	rs—	
Elev	Elev			Shear	Shear		Max Member ——
From	To		VQ/I	Applied	phiVn		Pu phiPn
(ft)	(ft)	Member	(lb/in)	(kips)	(kips)	Ratio	(kip) (kip) Ratio
0.00	22.50	(4) SOL-#20 All Thread Bar	139.8	4.2	16.8	0.249	195.2 330.5 0.591
22.50	52.50	(4) SOL-#20 All Thread Bar	169.8	5.1	16.8	0.303	187.6 330.5 0.568
52.50	65.00	(4) SOL-#20 All Thread Bar	177.0	5.3	16.8	0.316	185.6 330.5 0.562

				— Upper	Termir	nation—			L ower	Termin	ation —	—
Elev	Elev			Со	nnecto	rs			Cor	nnector	S	
From	To		MQ/I	phiVn	Num	Num		MQ/I	phiVn	Num	Num	
(ft)	(ft)	Member	(kips)	(kips)	Reqd	Actual	Ratio	(kips)	(kips)	Reqd	Actual	Ratio
0.00	22.50	(4) SOL-#20 All Thread Bar	0.0	12.0	0	0	0.000	0.0	12.0	0	0	0.000
22.50	52.50	(4) SOL-#20 All Thread Bar	0.0	12.0	0	0	0.000	0.0	12.0	0	0	0.000
52.50	65.00	(4) SOL-#20 All Thread Bar	174.0	12.0	15	24	0.604	0.0	12.0	0	0	0.000

Base Plate & Anchor Rod Analysis


Pole Dim	ensions	
Number of Sides	12	-
Diameter	52	in
Thickness	7/16	in
Orientation Offset	15	0

Base Reactions								
Moment, Mu	3669.6	k-ft						
Axial, Pu	61.5	k						
Shear, Vu	29.2	k						
Neutral Axis	225	0						

Report Capacities								
Component	Capacity	Result						
Base Plate	14%	Pass						
Anchor Rods	55%	Pass						
Dwyidag	43%	Pass						

Base Plate						
Number of Sides	12	-				
Diameter, ø	66.34	in				
Thickness	2 3/4	in				
Grade	A87	1-60				
Yield Strength, Fy	60	ksi				
Tensile Strength, Fu	75	ksi				
Clip	N/A	in				
Orientation Offset	15	0				
Anchor Rod Detail	С	η=0.55				
Clear Distance	N/A	in				
Applied Moment, Mu	576.1	k				
Bending Stress, φMn	4007.0	k				

Original Anchor Rods						
Arrangement	Radial	-				
Quantity	16	-				
Diameter, ø	2 1/4	in				
Bolt Circle	60.34	in				
Grade	A615-75					
Yield Strength, Fy	75	ksi				
Tensile Strength, Fu	100	ksi				
Spacing	11.8 in					
Orientation Offset		0				
Applied Force, Pu	141.8	k				
Anchor Rods, φPn	259.8	k				

Dywidag Reinforcement						
Quantity	4	-				
Bar Size	#20	in				
Diameter, ø	2.5	in				
Bracket Type	Angle	-				
Circle	58.88	in				
Orientation Offset	79	0				
Applied Force, Pu	170.0	k				
Dywidag Bar, φPn	392.7	k				

Calculations for Monopole Base Plate & Anchor Rod Analysis

Reaction Distribution

Desetion	Shear	Moment	Factor	
Reaction	Vu	Mu	ractor	
-	k	k-ft	-	
Base Forces	29.2	2687.0	0.73	
Anchor Rod Forces	29.2	2687.0	0.73	
Additional Bolt (Grp1) Forces	0.0	0.0	0.00	
Additional Bolt (Grp2) Forces	0.0	0.0	0.00	
Dywidag Forces	0.0	982.6	0.27	
Stiffener Forces	0.0	0.0	0.00	

Geometric Properties

Section	Gross Area	Net Area	Individual Inertia	Threads per Inch	Moment of Inertia
-	in ²	in ²	in ⁴	#	in ⁴
Pole	70.0631	5.8386	0.3741		23289.02
Bolt	3.9761	3.2477	0.8393	4.5	21837.52
Bolt1	0.0000	0.0000	0.0000	0	0.00
Bolt2	0.0000	0.0000	0.0000	0	0.00
Dywidag	4.9087	4.9087	1.9175		8516.61
Stiffener	0.0000	0.0000	0.0000		0.00

Base Plate		
Shape	12	-
Width, W	66.34	in
Thickness, t	2.75	in
Yield Strength, Fy	60	ksi
Tensile Strength, Fu	75	ksi
Base Plate Chord	41.195	in
Detail Type	С	-
Detail Factor	0.55	-
Clear Distance	N/A	-

Anchor Rods		
Anchor Rod Quantity, N	16	-
Rod Diameter, d	2.25	in
Bolt Circle, BC	60.34	in
Yield Strength, Fy	75	ksi
Tensile Strength, Fu	100	ksi
Applied Axial, Pu	141.8	k
Applied Shear, Vu	0.9	k
Compressive Capacity, φPn	259.8	k
Tensile Capacity, φRnt	0.546	ОК
Interaction Capacity	0.552	ОК

External Base Plate					
Chord Length AA	41.569	in			
Additional AA	5.500	in			
Section Modulus, Z	88.990	in ³			
Applied Moment, Mu	576.1	k-ft			
Bending Capacity, φMn	4805.4	k-ft			
Capacity, Mu/φMn	0.120	ОК			
Chord Length AB	39.726	in			
Additional AB	5.500	in			
Section Modulus, Z	85.505	in ³			
Applied Moment, Mu	274.5	k-ft			
Bending Capacity, φMn	4617.3	k-ft			
Capacity, Mu/φMn	0.059	OK			
Bend Line Length	39.248	in			
Additional Bend Line	0.000	in			
Section Modulus, Z	74.203	in ³			
Applied Moment, Mu	576.1	k-ft			
Bending Capacity, φMn	4007.0	k-ft			
Capacity, Mu/φMn	0.144	OK			

Internal Base Plate							
0.000	in						
0.000	in ³						
0.000	in						
0.0	k-ft						
0.0	k-ft						
	0.000 0.000 0.000 0.0						

Dywidag Reinforcement						
Dywidag Quantity, N	4	-				
Dywidag Diameter, d	2.5	in				
Bolt Circle, BC	58.88	in				
Yield Strength, Fy	80	ksi				
Tensile Strength, Fu	100	ksi				
Applied Axial, Pu	170.0	k				
Compressive Capacity, φPn	392.7	k				
Capacity, Pu/φPn	0.433	ОК				

A&L Template: 67D5998C_1xAIR+1QP+1OP (GSM only) **RAN Template:** 67D5A998C 6160 (GSM only)

CTHA859A_Sprint Retain_1_draft

Print Name: Standard PORs: New Build_Sprint Keep

Section 1 - Site Information

Site ID: CTHA859A Status: Draft

Sector Count: 3

Version: 1 Project Type: Sprint Retain
Approved: Not Approved

Approved By: Not Approved Last Modified: 3/30/2021 10:38:01 AM Last Modified By: ANKIT.JAISWAL20@T-Mobile.com

RAN Template: 67D5A998C 6160 (GSM only)

Antenna Count: 9

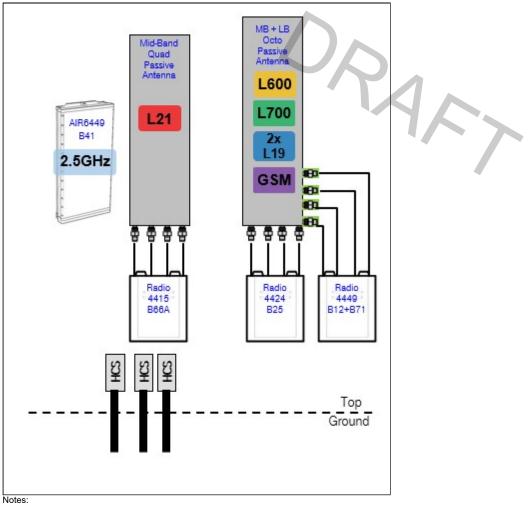
Site Type: Structure Non Building
Plan Year: 2021
Market: CONNECTICUT CT
Vendor: Ericsson
Landlord: Not Specified

Site Name: CTHA859A

Site Class: Monopole

Latitude: 41.63858611 Longitude: -72.67928888 Address: 47 Inwood Rd City, State: Rocky Hill, CT Region: NORTHEAST

AL Template: 67D5998C_1xAIR+1QP+1OP (GSM only)


Coax Line Count: 0 TMA Count: 0 RRU Count: 9

Section 2 - Existing Template Images

---- This section is intentionally blank. ----

Section 3 - Proposed Template Images

67D5A998C_1xAIR+1xQP+1xOP.jpg

Section 4 - Siteplan Images

----- This section is intentionally blank. -----

 RAN Template:
 A&L Template:

 67D5A998C 6160 (GSM only)
 67D5998C_1xAIR+1QP+1OP (GSM only)

CTHA859A_Sprint Retain_1_draft

Print Name: Standard PORs: New Build_Sprint Keep Section 5 - RAN Equipment **Existing RAN Equipment** ---- This section is intentionally blank. -----**Proposed RAN Equipment** Template: 67D5A998C 6160 (GSM only) **Enclosure** 3 4 1 2 **Enclosure Type** Enclosure 6160 (B160) (RBS 6601) (Ancillary Equipment (Ericsson) **Baseband** BB 6648 BB 6648 BB 6648 DUG20 L2100 G1900 L2500 L700 N2500 L1900 L600 N600 **Hybrid Cable** (PSU 4813) System Ericsson Hybrid Trunk 6/24 4AWG 100m (x 3) **Transport System** (CSR IXRe V2 (Gen2)) **RAN Scope of Work:**

RAN Template: 67D5A998C 6160 (GSM only) **A&L Template:** 67D5998C_1xAIR+1QP+1OP (GSM only)

CTHA859A_Sprint Retain_1_draft

Print Name: Standard PORs: New Build_Sprint Keep

Section 6 - A&L Equipment

Existing Template: Custom
Proposed Template: 67D5998C_1xAIR+1QP+1OP (GSM only)

Sector 1 (Proposed) view from behind									
Coverage Type	verage Type A - Outdoor Macro								
Antenna	1		2			3	В		
Antenna Model	RFS - APX16DWV-16DW	/V-S-E-A20 (Quad)	RFS - APX	VAALL24_43-	U-NA20 (Octo		Ericsson - AIR6449 B41 Massive MIMO)	(Active Antenna -	
Azimuth	0		0				0		
M. Tilt									
Height	140		140				140		
Ports	P1	P2	P3	P4	P5	P6	P7	P8	
Active Tech.	L2100	L2100	L700 L600 N600	L700 L600 N600	(L1900) (G1900)	(L1900) (G1900)	L2500 N2500	L2500 N2500	
Dark Tech.									
Restricted Tech.									
Decomm. Tech.									
E. Tilt	2	2	2		2		2	2	
Cables	Coax Jumper (x4)	SHARED Coax Jumper (x4)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)			
TMAs									
Diplexers / Combiners									
Radio	Radio 4415 B66A (At Antenna)	SHARED Radio 4415 B66A (At Antenna)	Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)	Radio 4424 B25 (At Antenn a)	SHARED Radio 4424 B25 (At Antenn a)			
Sector Equipment									
Unconnected Equip	ment:								
Scope of Work:									
*A dashed border indi	icates shared equipment. A	ny connected equipment is	denoted with	the SHARED	keyword.				

A&L Template: 67D5998C_1xAIR+1QP+1OP (GSM only) **RAN Template:** 67D5A998C 6160 (GSM only)

CTHA859A_Sprint Retain_1_draft

Print Name: Standard PORs: New Build_Sprint Keep

		Sector	2 (Propos	ed) view f	rom behin	d			
Coverage Type	A - Outdoor Macro								
Antenna	1 2 3							3	
Antenna Model	RFS - APX16DWV-16DW	VV-S-E-A20 (Quad)	RFS - APX	VAALL24_43-	-U-NA20 (Octo))	Ericsson - AIR6449 B41 Massive MIMO)	(Active Antenna -	
Azimuth	120		120				120		
M. Tilt									
Height	140		140				140		
Ports	P1	P2	P3	P4	P5	P6	P7	P8	
Active Tech.	L2100	L2100	L700 L600 N600	L700 L600 N600	(L1900) (G1900)	(L1900) (G1900)	L2500 (N2500)	L2500 N2500	
Dark Tech.									
Restricted Tech.									
Decomm. Tech.									
E. Tilt	2	2	2		2		2	2	
Cables	Coax Jumper (x4)	SHARED Coax Jumper (x4)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)			
TMAs									
Diplexers / Combiners									
Radio	Radio 4415 B66A (At I Antenna)	SHARED Radio 4415 B66A (At Antenna)	Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)	Radio 4424 B25 (At Antenn a)	SHARED Radio 4424 B25 (At Antenn a)			
Sector Equipment									
Unconnected Equip	ment:								
Scope of Work:									
*A dashed border ind	icates shared equipment. A	ny connected equipment is	denoted with	the SHARED	keyword.				

RAN Template: 67D5A998C 6160 (GSM only) A&L Template: 67D5998C_1xAIR+1QP+1OP (GSM only) CTHA859A_Sprint Retain_1_draft

Print Name: Standard PORs: New Build_Sprint Keep

Sector 3 (Proposed) view from behind								
Coverage Type	ype A - Outdoor Macro							
Antenna	1		2				3	
Antenna Model	RFS - APX16DWV-16DWV-S-E-A20 (Quad)		(RFS - APXVAALL24_43-U-NA20 (Octo)				Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO)	
Azimuth	240		(240)				(240)	
M. Tilt								
Height	140		140				140	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech.	L2100	(L2100)	L700 L600 N600	L700 L600 N600	(L1900) (G1900)	(L1900) (G1900)	L2500 N2500	L2500 N2500
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	2	2	2		2		2	2
Cables	Coax Jumper (x4)	SHARED Coax Jumper (x4)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)	Coax Jumper (x2)		
TMAs								
Diplexers / Combiners								
Radio	Radio 4415 B66A (At I Antenna)	SHARED Radio 4415 B66A (At Antenna)	Radio 4449 B71+B8 5 (At Antenn a)	SHARED Radio 4449 B71+B8 5 (At Antenn a)	Radio 4424 B25 (At Antenn a)	SHARED Radio 4424 B25 (At Antenn a)		
Sector Equipment Sector								
Unconnected Equipment:								
Scope of Work:								
*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.								

RAN Template: 67D5A998C 6160 (GSM only) A&L Template: 67D5998C_1xAIR+1QP+1OP (GSM only)

CTHA859A_Sprint Retain_1_draft

Print Name: Standard

PORs: New Build_Sprint Keep
Section 7 - Power Systems Equipment
Existing Power Systems Equipment
This section is intentionally blank
Proposed Power Systems Equipment

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA859A

47 Inwood Road Rocky Hill, Connecticut 06067

June 17, 2021

EBI Project Number: 6221002962

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	15.80%			

June 17, 2021

T-Mobile Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTHA859A

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **47 Inwood Road** in **Rocky Hill, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 47 Inwood Road in Rocky Hill, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower. For power density calculations, the broadcast footprint of the AlR6449 antenna has been considered. Due to the beamforming nature of this antenna, the actual beam locations vary depending on demand and are narrow in nature. Using the broadcast footprint accounts for the potential location of beams at any given time.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.

- 6) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 7) I LTE Traffic channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 60 Watts.
- 8) I LTE Broadcast channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 20 Watts.
- 9) I NR Traffic channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of I20 Watts.
- 10) I NR Broadcast channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 40 Watts.
- 11) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 12) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 13) The antennas used in this modeling are the RFS APX16DWV-16DWV-S-E-A20 for the 2100 MHz channel(s), the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector A, the RFS APX16DWV-16DWV-S-E-A20 for the 2100 MHz channel(s), the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector B, the RFS APX16DWV-16DWV-S-E-A20 for the 2100 MHz channel(s), the RFS APXVAALL24_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated

transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 14) The antenna mounting height centerline of the proposed antennas is 140 feet above ground level (AGL).
- 15) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 16) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	RFS APX16DWV-	Make / Model:	RFS APX16DWV-	Make / Model:	RFS APX16DWV-
Make / Model.	I6DWV-S-E-A20	Make / Model.	I6DWV-S-E-A20	Make / Model.	16DWV-S-E-A20
Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	I40 feet	Height (AGL):	I40 feet	Height (AGL):	I 40 feet
Channel Count:	2	Channel Count:	2	Channel Count:	2
Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts
ERP (W):	4,668.54	ERP (W):	4,668.54	ERP (W):	4,668.54
Antenna A1 MPE %:	0.93%	Antenna B1 MPE %:	0.93%	Antenna C1 MPE %:	0.93%
Antenna #:	2	Antenna #:	2	Antenna #:	2
	RFS		RFS		RFS
Make / Model:	APXVAALL24_43-U-	Make / Model:	APXVAALL24_43-U-	Make / Model:	APXVAALL24_43-U-
	NA20		NA20		NA20
F D I	600 MHz / 600 MHz	- D -	600 MHz / 600 MHz	. D. I	600 MHz / 600 MHz
Frequency Bands:	/ 700 MHz / 1900 MHz / 1900 MHz	Frequency Bands:	/ 700 MHz / 1900 MHz / 1900 MHz	Frequency Bands:	/ 700 MHz / 1900 MHz / 1900 MHz
	12.95 dBd / 12.95		12.95 dBd / 12.95		12.95 dBd / 12.95
	dBd / 13.65 dBd /		dBd / 13.65 dBd /	Gain:	dBd / 13.65 dBd /
Gain:	15.45 dBd / 15.45	Gain:	15.45 dBd / 15.45		15.45 dBd / 15.45
	dBd		dBd		dBd
Height (AGL):	I 40 feet	Height (AGL):	I40 feet	Height (AGL):	I 40 feet
Channel Count:	П	Channel Count:	П	Channel Count:	П
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	12,569.87	ERP (W):	12,569.87	ERP (W):	12,569.87
Antenna A2 MPE %:	3.66%	Antenna B2 MPE %:	3.66%	Antenna C2 MPE %:	3.66%
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449
	2500 MHz / 2500		2500 MHz / 2500		2500 MHz / 2500
Frequency Bands:	MHz / 2500 MHz /	Frequency Bands:	MHz / 2500 MHz /	Frequency Bands:	MHz / 2500 MHz /
	2500 MHz		2500 MHz		2500 MHz
Gain:	22.65 dBd / 17.3 dBd /	Gain:	22.65 dBd / 17.3 dBd /	Gain:	22.65 dBd / 17.3 dBd /
	22.65 dBd / 17.3 dBd		22.65 dBd / 17.3 dBd		22.65 dBd / 17.3 dBd
Height (AGL):	I40 feet	Height (AGL):	140 feet	Height (AGL):	I40 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts
ERP (W):	36,356.09	ERP (W):	36,356.09	ERP (W):	36,356.09
Antenna A3 MPE %:	7.28%	Antenna B3 MPE %:	7.28%	Antenna C3 MPE %:	7.28%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
T-Mobile (Max at Sector A):	11.88%				
Nextel	0.79%				
AT&T	3.13%				
Site Total MPE % :	15.80%				

T-Mobile MPE % Per Sector						
T-Mobile Sector A Total:	11.88%					
T-Mobile Sector B Total:	11.88%					
T-Mobile Sector C Total:	11.88%					
Site Total MPE %: 15.80%						

T-Mobile Maximum MPE Power Values (Sector A)							
T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
T-Mobile 2100 MHz LTE	2	2334.27	140.0	9.35	2100 MHz LTE	1000	0.93%
T-Mobile 600 MHz LTE	2	591.73	140.0	2.37	600 MHz LTE	400	0.59%
T-Mobile 600 MHz NR	I	1577.94	140.0	3.16	600 MHz NR	400	0.79%
T-Mobile 700 MHz LTE	2	695.22	140.0	2.78	700 MHz LTE	467	0.60%
T-Mobile 1900 MHz GSM	4	1052.26	140.0	8.43	1900 MHz GSM	1000	0.84%
T-Mobile 1900 MHz LTE	2	2104.51	140.0	8.43	1900 MHz LTE	1000	0.84%
T-Mobile 2500 MHz LTE IC & 2C Traffic	I	11044.63	140.0	22.11	2500 MHz LTE IC & 2C Traffic	1000	2.21%
T-Mobile 2500 MHz LTE IC & 2C Broadcast	1	1074.06	140.0	2.15	2500 MHz LTE IC & 2C Broadcast	1000	0.22%
T-Mobile 2500 MHz NR Traffic	I	22089.26	140.0	44.23	2500 MHz NR Traffic	1000	4.42%
T-Mobile 2500 MHz NR Broadcast	I	2148.13	140.0	4.30	2500 MHz NR Broadcast	1000	0.43%
						Total:	11.88%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)					
Sector A:	11.88%					
Sector B:	11.88%					
Sector C:	11.88%					
T-Mobile Maximum MPE % (Sector A):	11.88%					
Site Total:	15.80%					
Site Compliance Status:	COMPLIANT					

The anticipated composite MPE value for this site assuming all carriers present is **I 5.80**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.