

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

November 19, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 1218 Cromwell Ave, Rocky Hill CT 06067 Latitude: 41.63791667 Longitude: -72.673333333 Site# 801366 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 1218 Cromwell Ave in Rocky Hill, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 171-foot level of the existing 173-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by NB+C, dated November 9, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated August 22, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Rocky Hill Planning and Zoning Commission, the town no longer has the approval on file. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mayor Lisa J. Marotta, Elected Official for the Town of Rocky Hill, Kim Ricci, Town Planner Development Director, as well as the tower owner (Crown Castle) and property owner (Tabshey Development LLC)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 173-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 171-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 4.68% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole tower in Rocky Hill. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 171-foot level of the existing 173-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing monopole tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Rocky Hill.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Lisa J. Marotta, Mayor Town of Rocky Hill 761 Old Main Street, Rocky Hill CT 06067

Kim Ricci, Town Planner Town of Rocky Hill 761 Old Main Street, Rocky Hill CT 06067

Tabshey Development LLC – Property Owner 1218 Cromwell Avenue, Rocky Hill CT 06067

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

Denise Sabo

From: Denise Sabo

Sent: Thursday, November 4, 2021 4:19 PM **To:** 'David Palmberg'; Victoria Masse; 'Kim Ricci'

Cc: Deborah Chase; 'Kim Ricci'

Subject: RE: 1218 Cromwell Ave, Rocky Hill (Crown/Dish) Request for Original Tower Build Permit

Thank you, David. I appreciate you looking into this matter.

Best regards, Denise

From: David Palmberg <dpalmberg@rockyhillct.gov>

Sent: Thursday, November 4, 2021 4:06 PM

To: Denise Sabo <denise@northeastsitesolutions.com>; Victoria Masse <victoria@northeastsitesolutions.com>; Kim Ricci <kricci@rockyhillct.gov>

Cc: Deborah Chase <deborah@northeastsitesolutions.com>; Kim Ricci <kricci@rockyhillct.gov> **Subject:** RE: 1218 Cromwell Ave, Rocky Hill (Crown/Dish) Request for Original Tower Build Permit

We are unable to locate the original approval other than plans signed by the Chairman of the Planning & Zoning Commission.

David Palmberg
Asst. Town Planner / ZEO
Town of Rocky Hill
761 Old Main Street
Rocky Hill, CT 06067

860-258-7675

From: Denise Sabo <denise@northeastsitesolutions.com>

Sent: Thursday, November 4, 2021 3:38 PM

To: Victoria Masse <victoria@northeastsitesolutions.com>; Kim Ricci <kricci@rockyhillct.gov; David Palmberg dpalmberg@rockyhillct.gov;

Cc: Deborah Chase <deborah@northeastsitesolutions.com>

Subject: RE: 1218 Cromwell Ave, Rocky Hill (Crown/Dish) Request for Original Tower Build Permit

Importance: High

CAUTION: This email originated from outside your organization. Exercise caution when opening attachments or clicking links, especially from unknown senders.

Good afternoon,

We have been trying to reach you regarding the original approval of the cell tower located at 1218 Cromwell Ave, Rocky Hill.

We have to supply a copy to the CT Siting Council when we submit an application. If the approval is no longer available we just need to know. Please advise so we can complete this application.

Let me know if you have any questions.

Thank you, Denise

Denise Sabo

Project Manager

Mobile: 203-435-3640 Fax: 413-521-0558

Email: denise@northeastsitesolutions.com

From: Victoria Masse <victoria@northeastsitesolutions.com>

Sent: Wednesday, November 3, 2021 11:02 AM

To: kricci@rockyhillct.gov; dpalmberg@rockyhillct.gov

Cc: Denise Sabo <denise@northeastsitesolutions.com>; Deborah Chase <deborah@northeastsitesolutions.com>

Subject: 1218 Cromwell Ave, Rocky Hill (Crown/Dish) Request for Original Tower Build Permit

Good Morning Kim,

I just left you a voicemail in regards to the Tower located at 1218 Cromwell Ave.

We are preparing to file for a zoning permit with the Connecticut Siting Council and part of their requirements is that we provide proof of the original tower build that calls out the height of the tower when it was originally constructed.

This original approval is not located on the Siting Council website so we will need a copy of the original permit from your records or a notice stating that you do not have a record of the original tower build.

Attached to this email is the property card for this address.

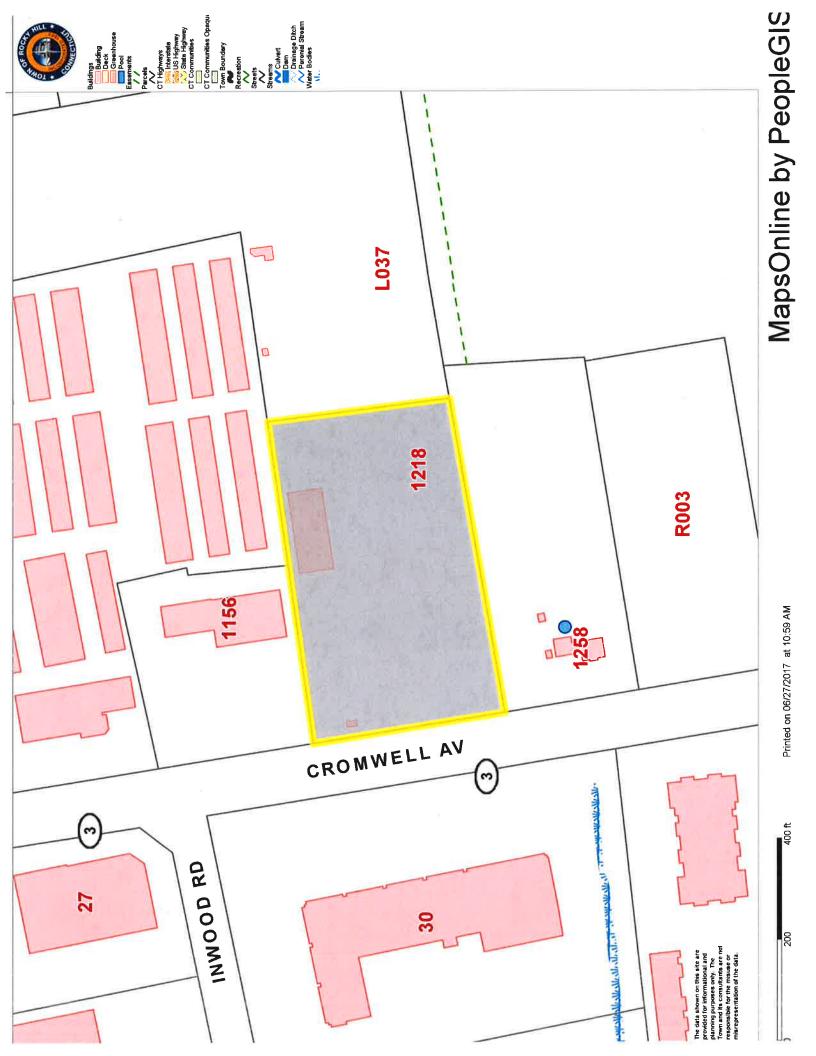
Please feel free to contact me any time to further discuss, I can be reached at 860-306-2326.

Thank you

--

Victoria Masse

Zoning & Permitting Specialist Notary Public


Mobile: 860-306-2326

Office: 420 Main Street Unit 1 Box 2 Sturbridge, MA 01566

Email: victoria@northeastsitesolutions.com

Exhibit B

Property Card

Town of Rocky Hill Property Summary Report

1218 CROMWELL AVENUE

PARCEL ID: 20-016 ACCOUNT NUMBER: 002288

LOCATION: 1218 CROMWELL AVENUE

OWNER NAME: TABSHEY DEVELOPMENT LLC

20-016-001 11/11/2012

OWNER OF RECORD

TABSHEY DEVELOPMENT LLC

1218 CROMWELL AVENUE

ROCKY HILL, CT 06067-3741

IVING AREA: 6925	ZONING:	BP	ACREAGE:	4.85
------------------	---------	----	----------	------

SALES HISTORY					
OWNER BOOK / PAGE SALE DATE SALE PRICE					
TABSHEY DEVELOPMENT LLC	354/ 236	23-Feb-2000	\$0.00		

		CURRENT PARC	EL VALUE		
TOTAL:	\$579,180.00	IMPROVEMENTS:	\$265,230.00	LAND:	\$313,950.00

ASSESSING HISTORY					
FISCAL YEAR	TOTAL VALUE	IMPROVEMENT VALUE	LAND VALUE		
2014	\$579,180.00	\$265,230.00	\$313,950.00		
2013	\$579,180.00	\$265,230.00	\$313,950.00		
2012	\$543,060.00	\$170,310.00	\$372,750.00		
2011	\$543,060.00	\$170,310.00	\$372,750.00		
2010	\$518,000.00	\$145,250.00	\$372,750.00		
2009	\$518,000.00	\$145,250.00	\$372,750.00		
2008	\$697,060.00	\$232,890.00	\$464,170.00		
2007	\$413,560.00	\$138,810.00	\$274,750.00		
2006	\$413,560.00	\$0.00	\$274,750.00		

Town of Rocky Hill Property Summary Report

1218 CROMWELL AVENUE

PARCEL ID:	20-016	ACCOUNT NUMBER:	002288	
LOCATION: 1218 CROMWELL AVENUE				

BUILDING #1

YEAR BUILT	1965	ROOF STRUCTURE	Flat
STYLE	Warehouse	ROOF COVER	Tar + Gravel
MODEL	Ind/Comm	FLOOR COVER 1	Average
GRADE	С	FLOOR COVER 2	
STORIES	1	HEAT FUEL	Gas
OCCUPANCY	Industrial 96	HEAT TYPE	Floor Furnace
EXT WALL 1	Concr/Cinder	AC TYPE	None
EXT WALL 2		BEDROOMS	
INT WALLS 1	Minim/Masonry	FULL BATHS	1
INT WALLS 2		HALF BATHS	
		TOT ROOMS	0

TABSHEY DEVELOPMENT LLC

20-016-001 11/11/2012

EXTRA FEATURES					
DESCRIPTION	CODE	UNITS			
OVHD 14'	OD6	5 UNITS			

OUTBUILDINGS					
DESCRIPTION CODE UNITS					
Cell Building	CBD1	460 UNITS			
Cell Site	CELL	1 UNITS			
Paving Asphalt	PAV1	0x0 (6000 S.F.)			

OWNER NAME:

Exhibit C

Construction Drawings

CISS wireless

DISH Wireless L.L.C. SITE ID:

BOBDL00035A

DISH Wireless L.L.C. SITE ADDRESS:

1218 CROMWELL AVE ROCKY HILL, CT 06067

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

ODE TYPE COD

BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE—LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
ON 1	LEGEND AND ADDREWATIONS
GN-1 GN-2	LEGEND AND ABBREVIATIONS GENERAL NOTES
GN-3	GENERAL NOTES GENERAL NOTES
GN-4	GENERAL NOTES
OIV I	OLIVEIVIL MOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORK:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
- INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE
- INSTALL (3) BACK TO BACK RRU MOUNTS (1 PER SECTOR)
- REMOVE (1) EXISTING ABANDONED MOUNT

GROUND SCOPE OF WORK:

- INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL (1) PROPOSED ICE BRIDGE
- INSTALL (1) PROPOSED PPC CABINET
- INSTALL (1) PROPOSED EQUIPMENT CABINET
- INSTALL (1) PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT
 INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811
UTILITY NOTIFICATION CENTER OF CONNECTICUT
(800) 922-4455
WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SITE INFORMATION

PROPERTY OWNER: KLUBKO STEPHEN + JEAN A
ADDRESS: 1258 CROMWELL AVE

1258 CROMWELL AVE ROCKY HILL, CT 06067

TOWER TYPE: MONOPOLE

TOWER CO SITE ID: 801366

TOWER APP NUMBER: 556647

COUNTY: HARTFORD

LATITUDE (NAD 83): 41° 38′ 16.50″ N 41.63791667 N

General Paving

uba Shack 😩

NO SCALE

SITE LOCATION

PROJECT DIRECTORY

APPLICANT: Dish Wireless L.L.C.
5701 SOUTH SANTA FE DRIVE

TOWER OWNER: CROWN CASTLE USA INC.

2000 CORPORATE DR.

LITTLETON, CO 80120

CANONSBURG, PA 15317 (877) 486-9377

SITE DESIGNER: NB+C ENGINEERING SERVICES

8601 SIX FORKS RD, SUITE 540

RALEIGH, NC 27615 (919) 657-9131

wireless.

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540

RALEIGH, NC 27615

11/09/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	BPC		BRN		TA	
	RFDS REV		#:			

CONSTRUCTION DOCUMENTS

	SUBMITTALS						
REV	DATE	DESCRIPTION					
Α	08/20/2021	ISSUED FOR REVIEW					
0	08/24/2021	ISSUED FOR CONSTRUCTION					
1	11/09/2021	ISSUED FOR CONSTRUCTION					
·	·						
	A&E PROJECT NUMBER						

801366

DISH WIRELESS, LLC. PROJECT INFORMATION

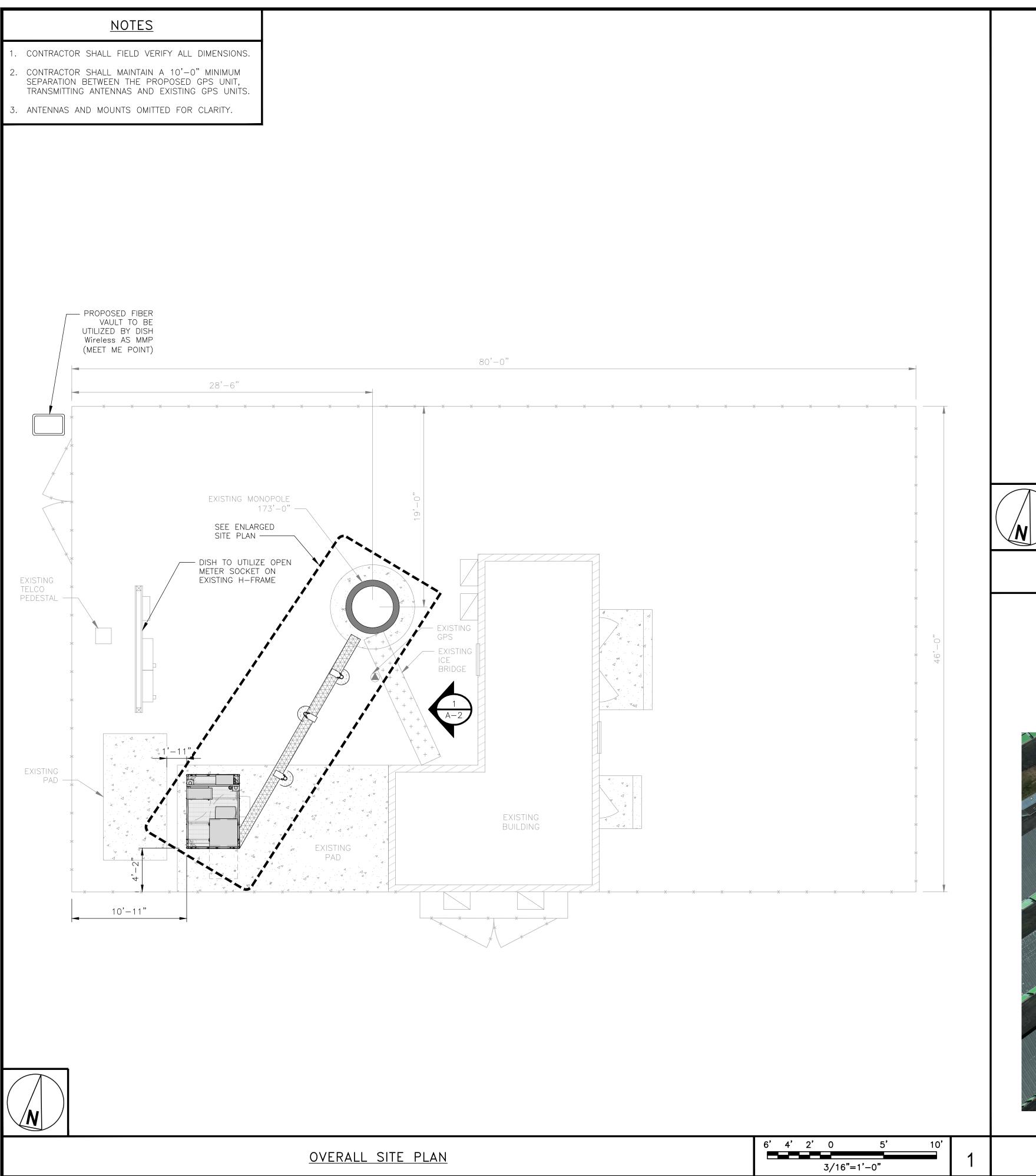
BOBDL00035A 1218 CROMWELL AVE

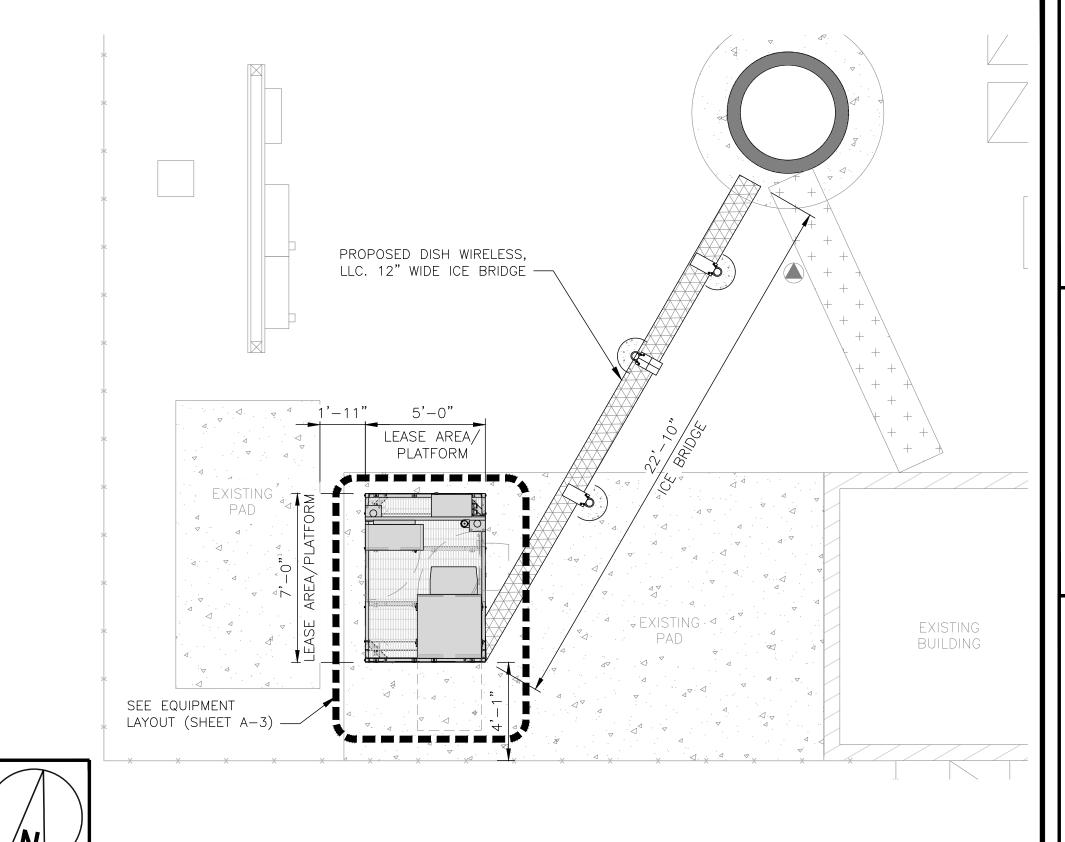
ROCKY HILL, CT 06067

SHEET TITLE

TITLE SHEET

SHEET NUMBER


Man data


T-1

1218 Cromwell Ave, Rocky Hill, CT 06067

Google

1/4"=1'-0"

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

11/09/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
BPC	BRN	TA
REDS REV	# .	

CONSTRUCTION DOCUMENTS

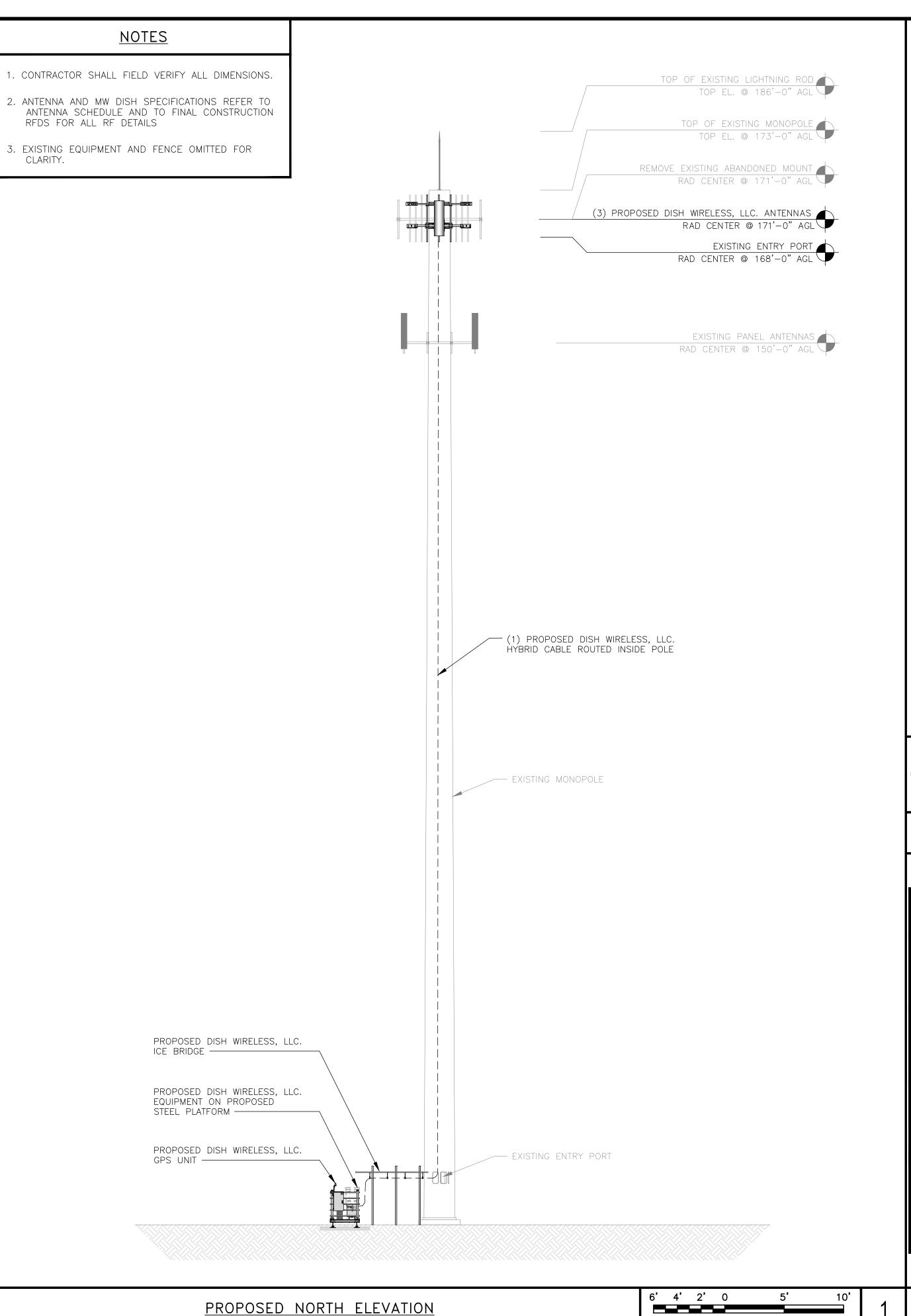
	SUBMITTALS							
REV	DATE	DESCRIPTION						
А	08/20/2021	ISSUED FOR REVIEW						
0	08/24/2021	ISSUED FOR CONSTRUCTION						
1	11/09/2021	ISSUED FOR CONSTRUCTION						
	A&E PROJECT NUMBER							

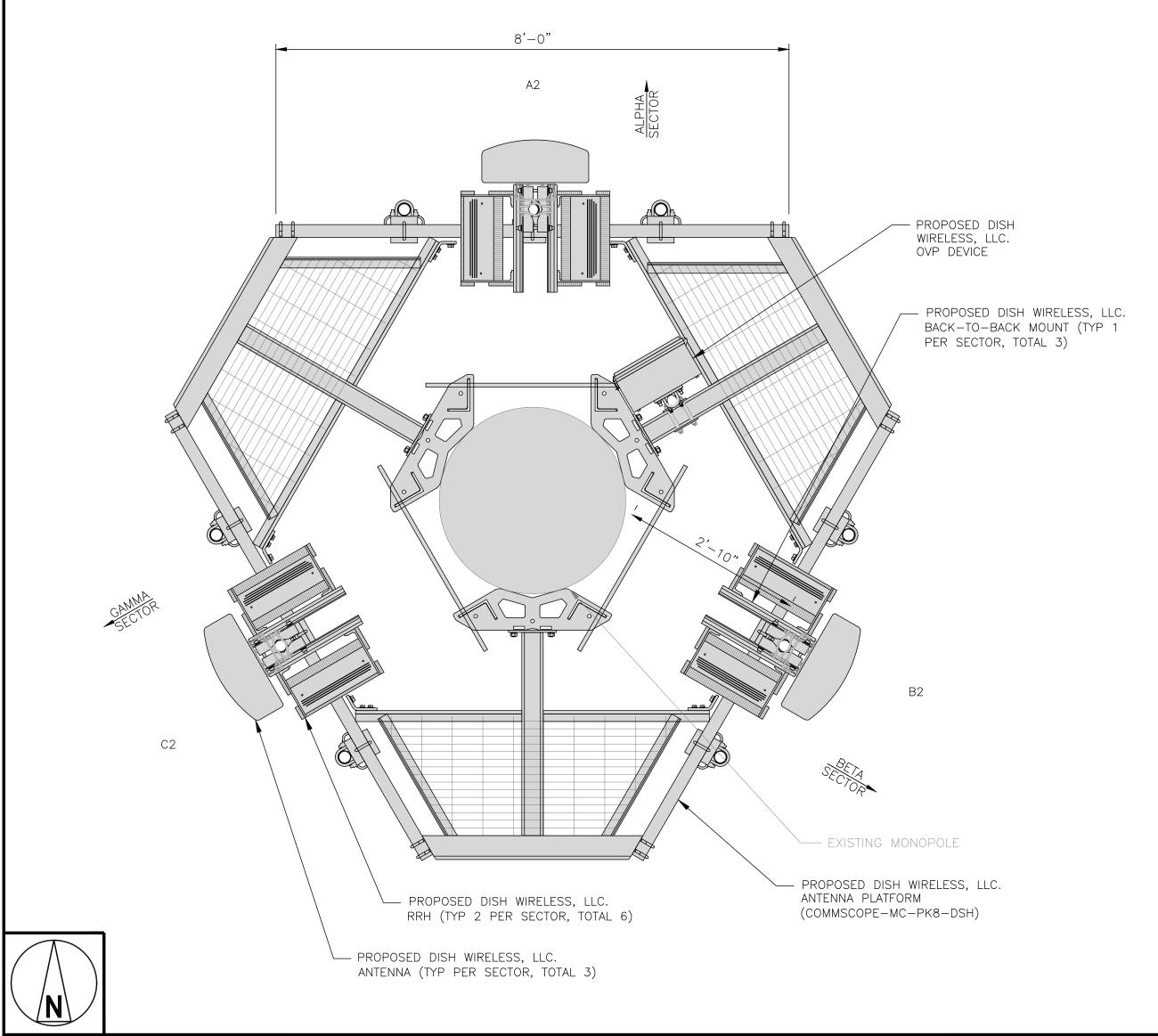
801366

DISH WIRELESS, LLC. PROJECT INFORMATION

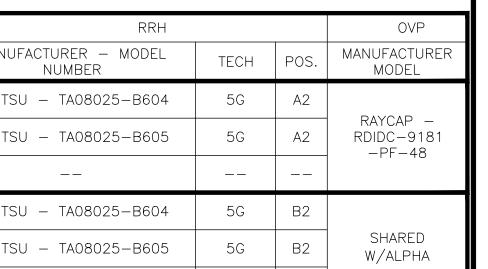
BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067

SHEET TITLE


OVERALL AND ENLARGED SITE PLAN


SHEET NUMBER

A-1


AERIAL VIEW

ENLARGED SITE PLAN

ANTENNA LAYOUT

3/4"=1'-0"

A&E PROJECT NUMBER 801366

wireless...

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

TOTALLY COMMITTED.

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

11/09/2021

KRUPAKARAN KOLANDAIVELU, P.E.

STATE OF CONNECTICUT

PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON,

UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

CONSTRUCTION

DOCUMENTS

SUBMITTALS

DATE DESCRIPTION

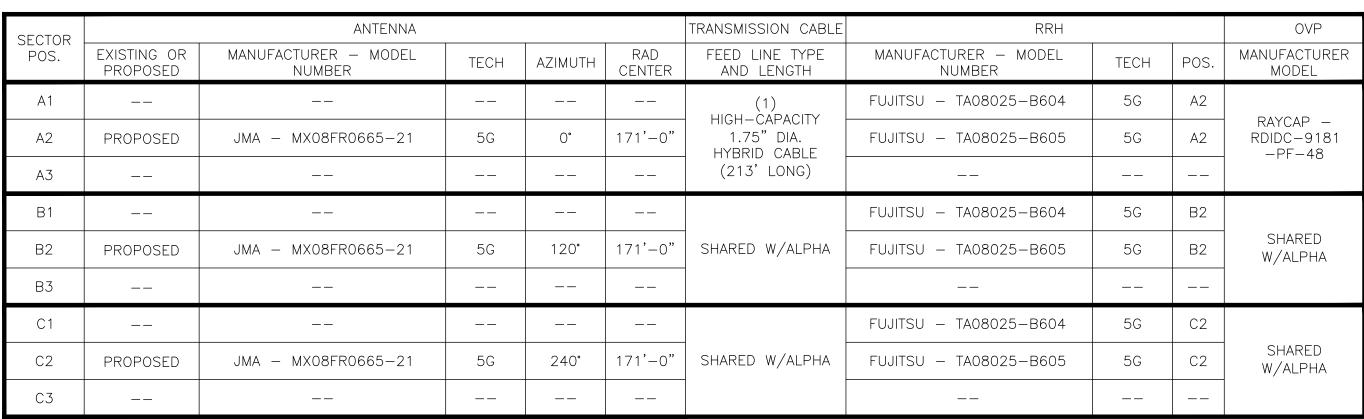
0 08/24/2021 ISSUED FOR CONSTRUCTION

1 11/09/2021 ISSUED FOR CONSTRUCTION

A 08/20/2021 ISSUED FOR REVIEW

RFDS REV #:

DISH WIRELESS, LLC. PROJECT INFORMATION

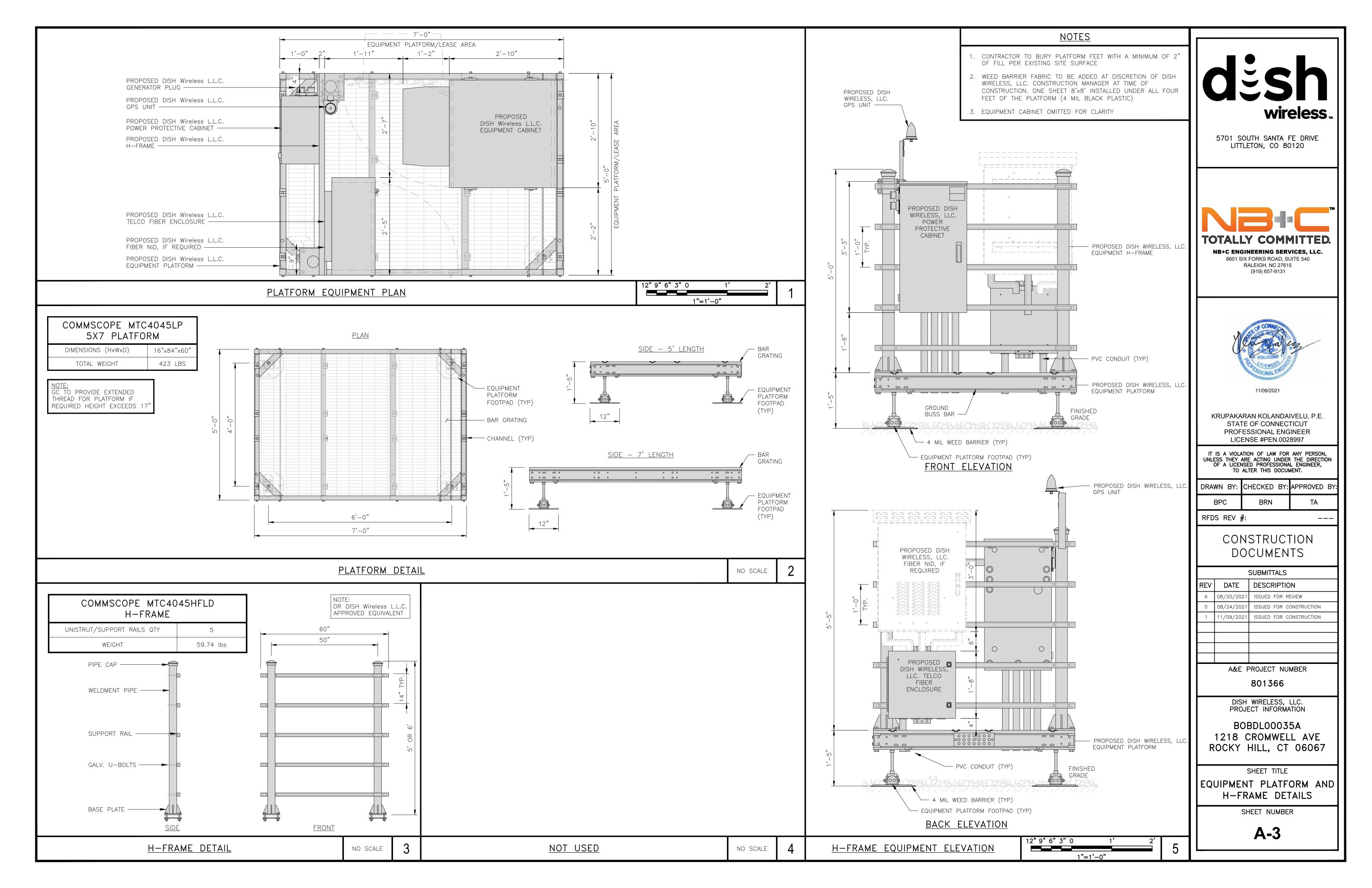

BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067

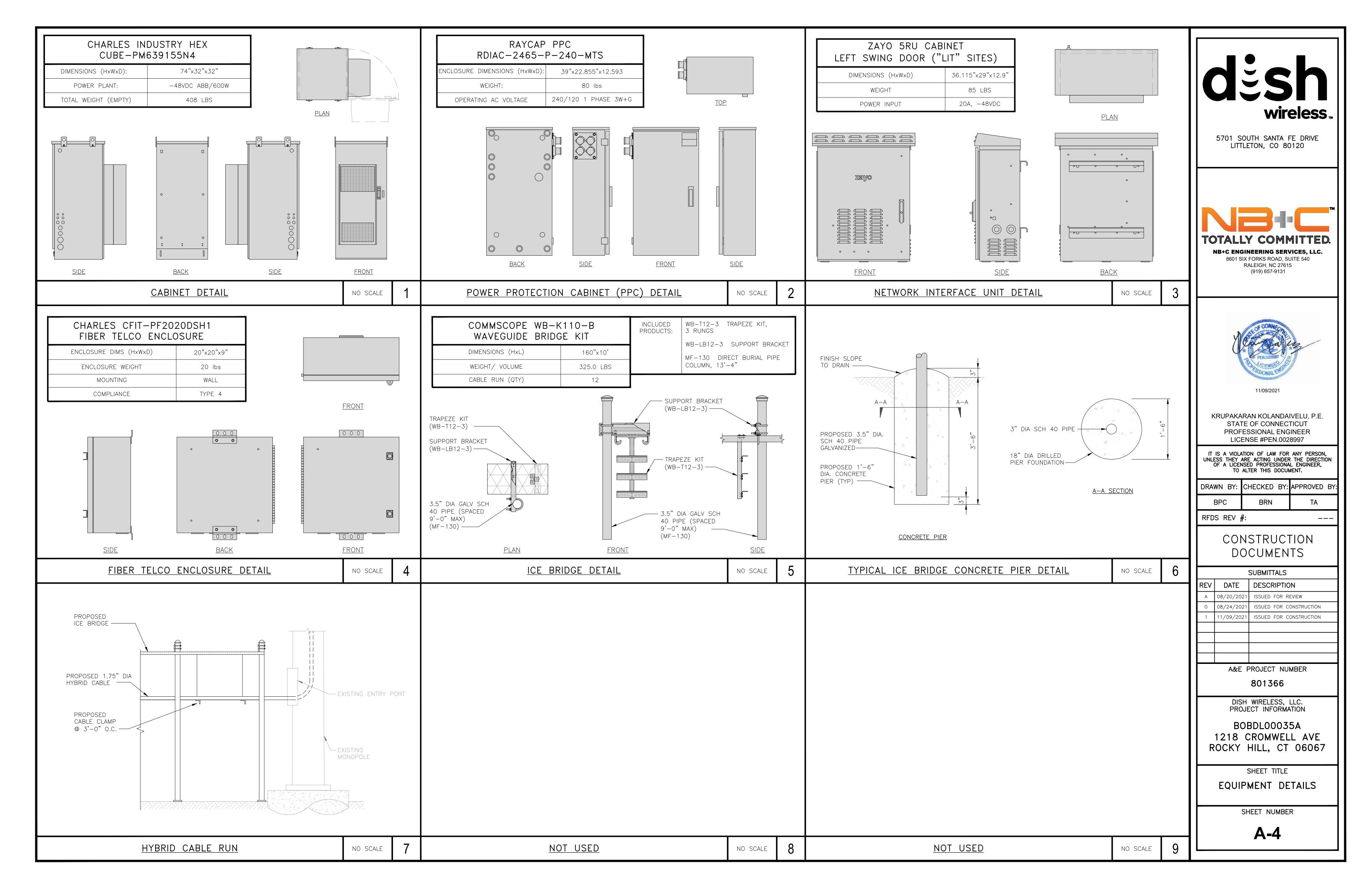
ELEVATION, ANTENNA LAYOUT AND SCHEDULE

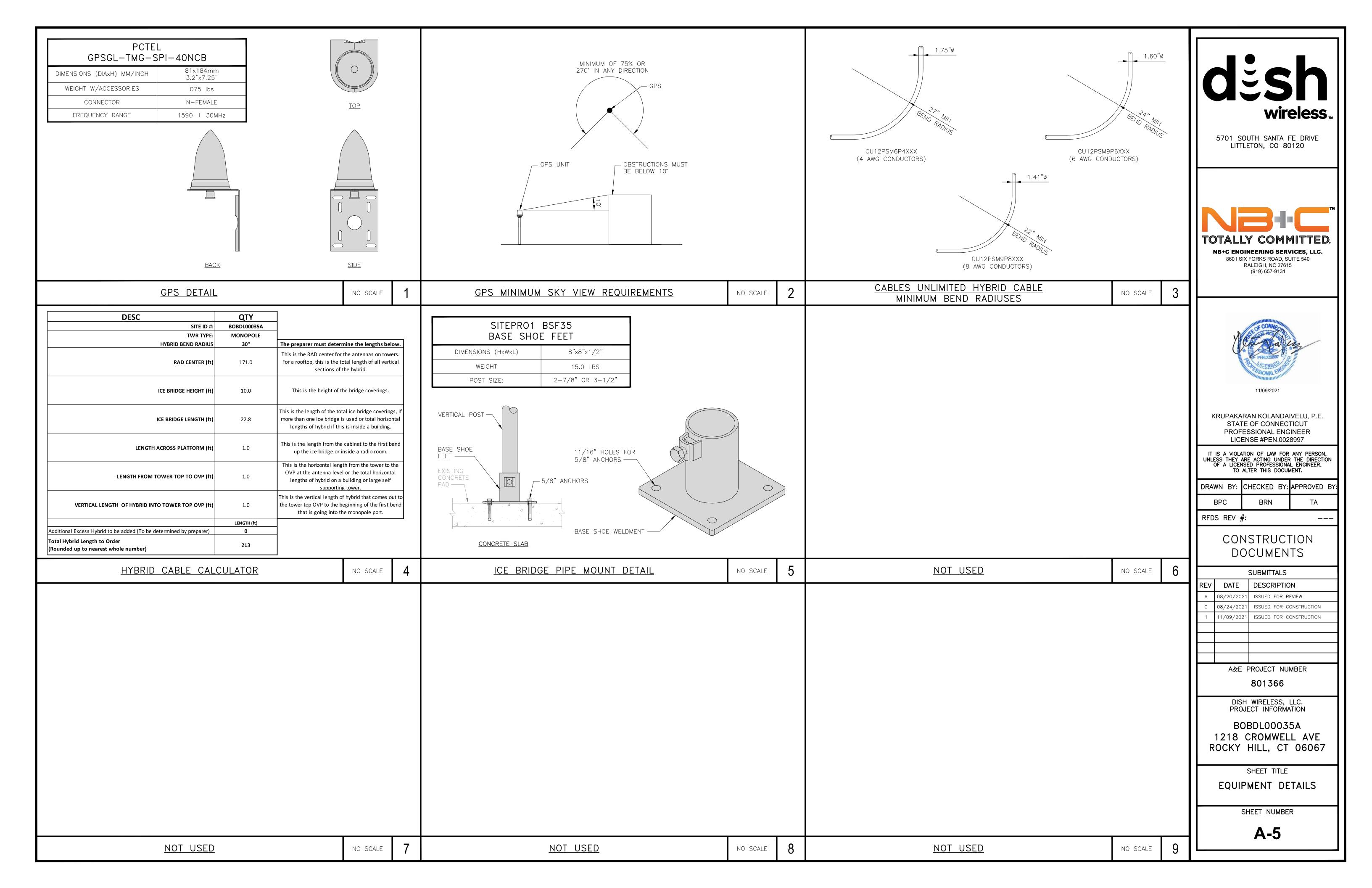
SHEET TITLE

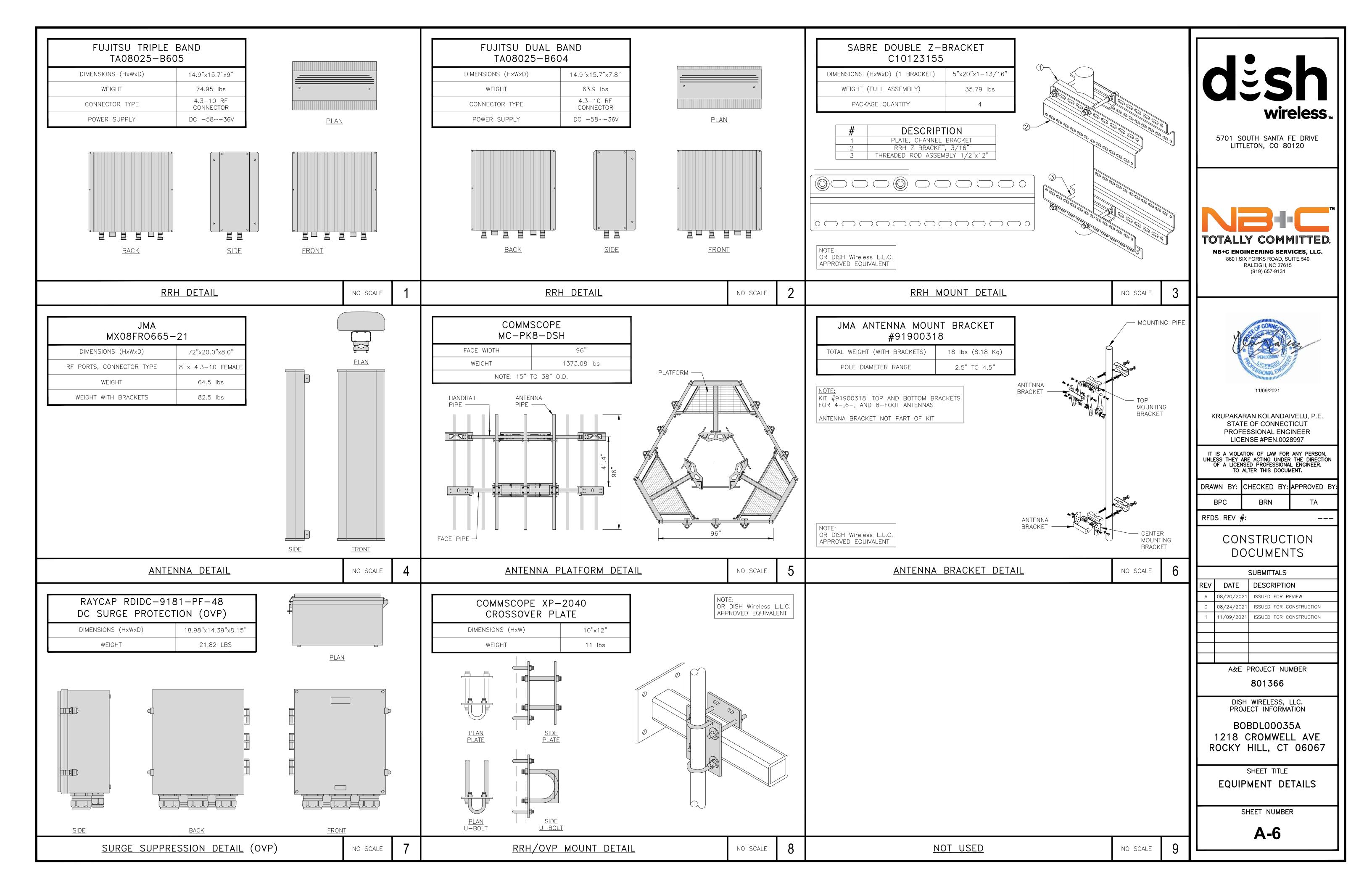
SHEET NUMBER

A-2

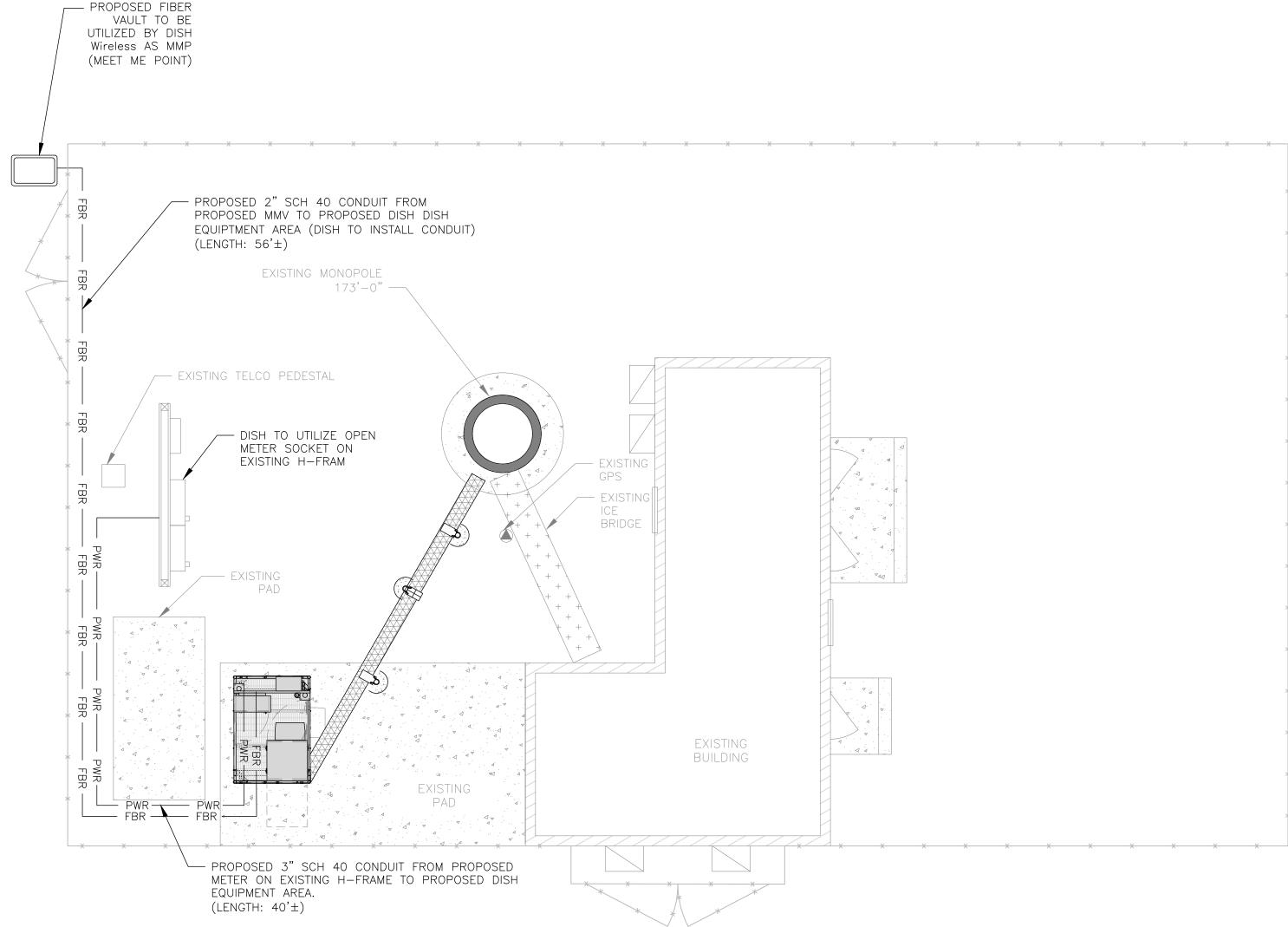

<u>NOTES</u>


3/16"=1'-0"


- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.


ANTENNA SCHEDULE

NO SCALE



EASEMENT RIGHTS

- CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY. DUE TO UTILITY EASEMENT RIGHTS SPECIFIED IN THE GROUND LEASE, CUSTOMER MAY INSTALL EQUIPMENT WITHIN SPECIFIED UTILITY EASEMENT AREA. "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 REPRESENT PLANNED ROUTING BASED ON BEST AVAILABLE INFORMATION INCLUDING BUT NOT LIMITED TO A SURVEY, EXHIBITS, METES AND BOUNDS OF THE UTILITY EASEMENT, FIELD VERIFICATION, PRIOR PROJECT DOCUMENTATION AND OTHER REAL PROPERTY RIGHTS DOCUMENTS. WHEN INSTALLING THE UTILITIES PLEASE LOCATE AND FOLLOW EXISTING PATH. IF EXISTING PATH IS MATERIALLY INCONSISTENT WITH THE "PWR" AND "FBR" PATH

DEPICTED ON A-1 AND E-1 AND SAID VARIANCE IS NOT NOTED ON CDS, PLEASE NOTIFY CROWN CASTLE REAL ESTATE AS FURTHER COORDINATION MAY BE NEEDED.

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- 1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST—CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

11/09/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	OFFICINED	טו.	APPROVED	BT:
BPC	BRN		TA	

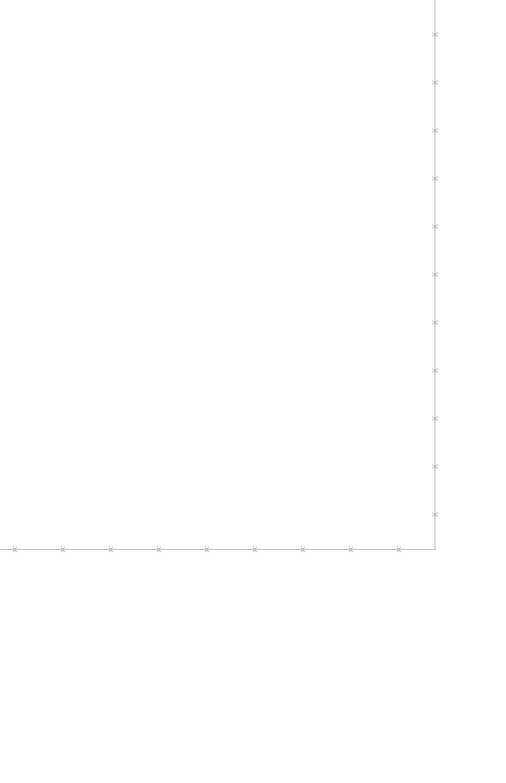
RFDS REV #:

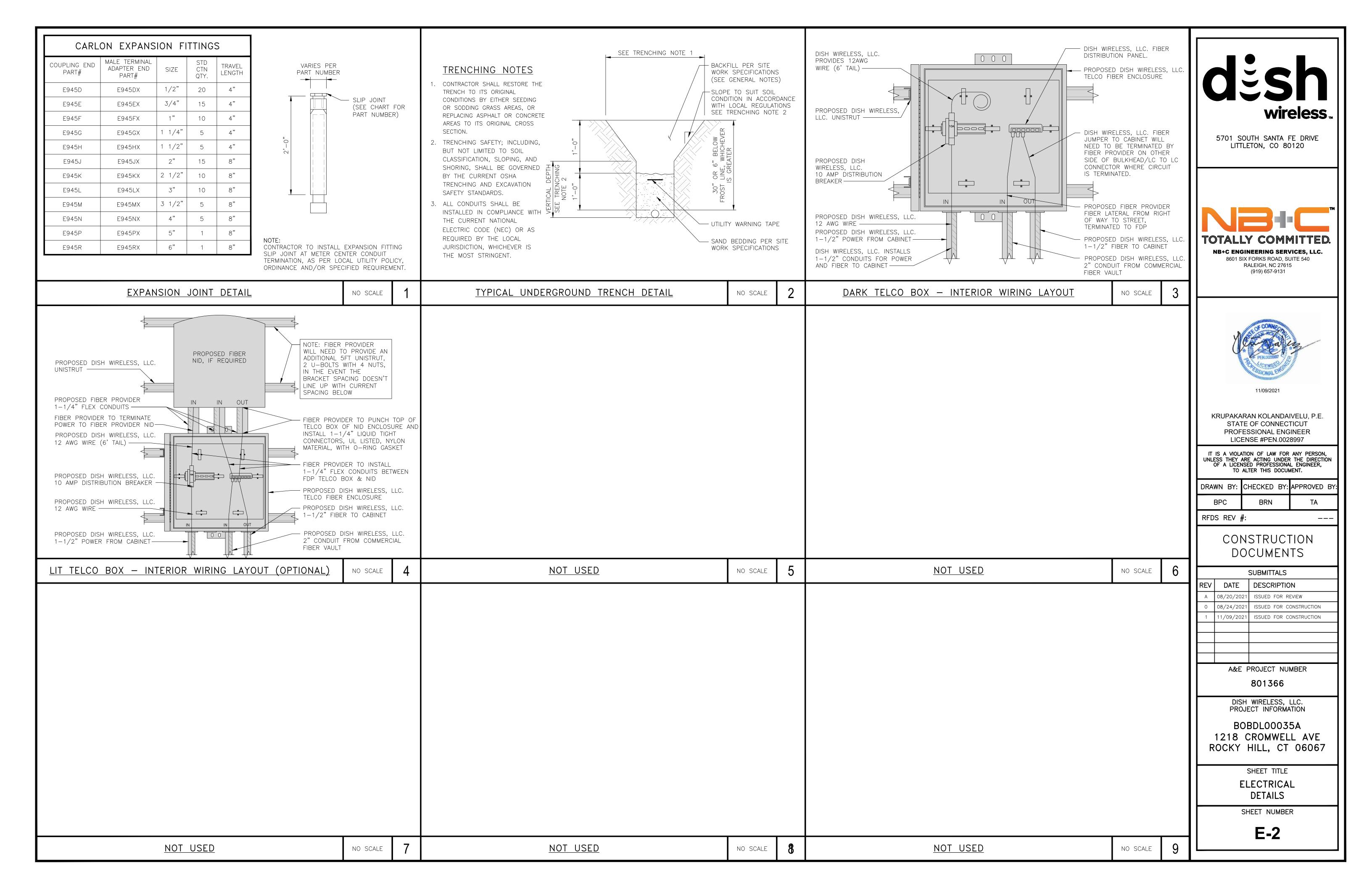
CONSTRUCTION DOCUMENTS

SUBMITTALS										
REV	DATE	DESCRIPTION								
Α	08/20/2021	ISSUED FOR REVIEW								
0	08/24/2021	ISSUED FOR CONSTRUCTION								
1	11/09/2021	ISSUED FOR CONSTRUCTION								
	A&F PROJECT NUMBER									

A&E PROJECT NUMBER 801366

DISH WIRELESS, LLC. PROJECT INFORMATION


BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067


SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

E-1

NOTES

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED SHORT CIRCUIT CALCULATIONS AND THE AIC RATINGS FOR EACH DEVICE IS ADEQUATE TO PROTECT THE EQUIPMENT AND THE ELECTRICAL SYSTEM.

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED VOLTAGE DROP CALCULATIONS AND ALL BRANCH CIRCUIT AND FEEDERS COMPLY WITH THE NEC (LISTED ON T-1) ARTICLE 210.19(A)(1) FPN NO. 4.

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (3 CONDUITS): USING UL1015, CU.

#8 - 0.0552 SQ. IN X 2 = 0.1103 SQ. IN#8 - 0.0131 SQ. IN X 1 = 0.0131 SQ. IN <BARE GROUND

= 0.0633 SQ. IN

= 0.1234 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, NCLUDING GROUND WIRE, AS INDICATED ABOVE.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

= 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

NO SCALE

LICENSE #PEN.0028997 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

11/09/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER

wireless...

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

TOTALLY COMMITTED.

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540

RALEIGH, NC 27615

(919) 657-9131

DRAWN BY: CHECKED BY: APPROVED BY:

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS						
REV	DATE	DESCRIPTION					
Α	08/20/2021	ISSUED FOR REVIEW					
0	08/24/2021	ISSUED FOR CONSTRUCTION					
1	11/09/2021	ISSUED FOR CONSTRUCTION					

A&E PROJECT NUMBER

801366

DISH WIRELESS, LLC. PROJECT INFORMATION

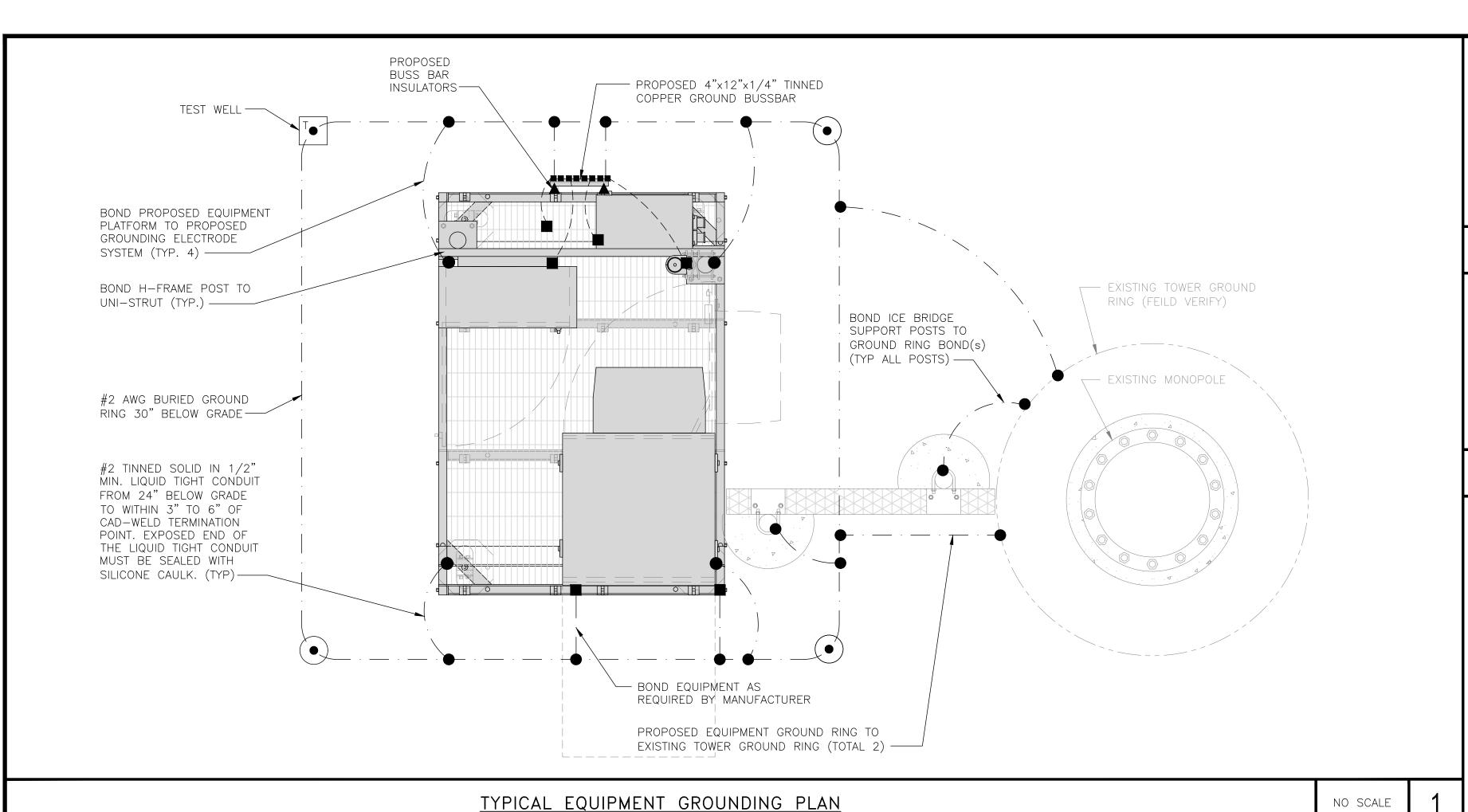
BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067

SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

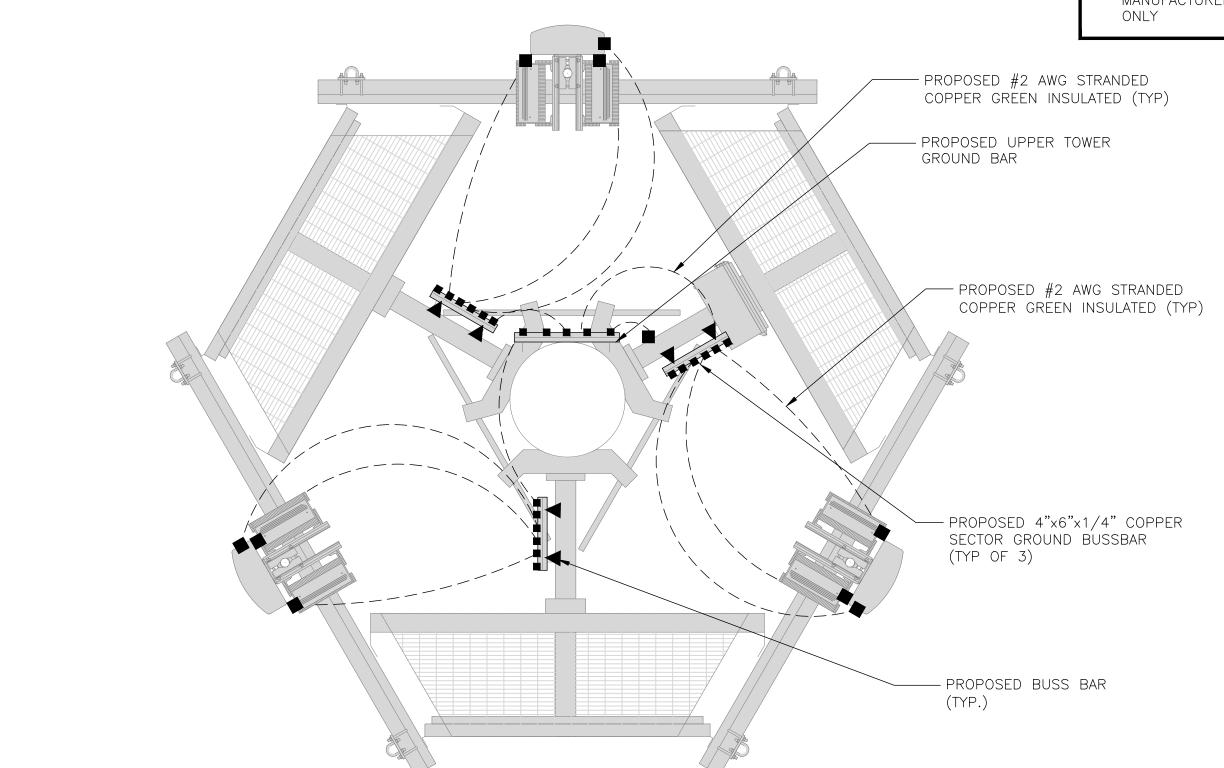
SHEET NUMBER

E-3


PPC ONE-LINE DIAGRAM

(1) 20A, 2P BREAKER - SQUARE D P/N:Q0220 (1) 20A, 1P BREAKER - SQUARE D P/N:Q0120

LOAD SERVED	1	AMPS TTS)	TRIP	CKT #	PHASE		PHASE			CKT #		VOLT AMPS (WATTS)		LOAD SERVED
	L1	L2		<i>π</i>				L1	L2					
PPC GFCI OUTLET	180		15A	1	7	Α	4	2	40A	3840		ENERSYS ALPHA CORDEX		
ENERSYS GFCI OUTLET		180	20A	3	\sim	В	$\langle $	4	40A		3840	RECTIFIERS 1 & 2		
-SPACE-				5	7	Α	4	6	40A	3840		ENERSYS ALPHA CORDEX		
-SPACE-				7	7	В	$\langle $	8	40A		3840	RECTIFIER 3 & 4		
-SPACE-				9		Α	7	10	20A	1920		ENERSYS ALPHA CORDEX		
-SPACE-				11	7	В	\setminus	12	20A		1920	RECTIFIER 5		
-SPACE-				13	\sim	Α		14				-SPACE-		
-SPACE-				15	\sim	В		16				-SPACE-		
-SPACE-				17	\sim	Α	/	18				-SPACE-		
-SPACE-				19	\sim	В		20				-SPACE-		
-SPACE-				21	\sim	Α	7	22				-SPACE-		
-SPACE-				23	\sim	В	ζ	24				-SPACE-		
VOLTAGE AMPS	180	180								9500	9500			
200A MCB, 1φ, 24 SPA	CE, 120,	/240V	L1			L2				•				
MB RATING: 65,000 AIC	,		9680	<u>)</u>	Ĝ	680)	VOL	TAGE AM	PS				
			81			81		AMF	PS					
				8	31			MAX	AMPS					
				10)2			MAX	125%					


PANEL SCHEDULE

NO SCALE

<u>NOTES</u>

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

EXOTHERMIC CONNECTION

MECHANICAL CONNECTION

GROUND BUS BAR

GROUND ROD

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #6 AWG STRANDED & INSULATED

A BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH WIRELESS, LLC. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- (C) INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.
- (D) BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND E GROUND ROD: UL LISTED CUPPER CLAD STEEL, MINIMINION 1/2 DIGINETED BY LIGHT TO THE DEPTH OF RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- (F) CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- (G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING. BOND $^{\prime}$ to ground ring with a #2 awg solid tinned copper conductors with an exothermic weld and INSPECTION SLEEVE.
- (|) <u>Telco ground bar:</u> bond to both cell reference ground bar or exterior ground ring.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- (K) <u>Interior unit bonds:</u> metal frames, cabinets and individual metallic units located with the area OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.
- (L) <u>fence and gate grounding:</u> Metal fences within 7 feet of the exterior ground ring or objects BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- (M) <u>Exterior unit bonds:</u> Metallic objects, external to or mounted to the building, shall be bonded TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- (N) ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- (P) tower top collector buss bar is to be mechanically bonded to proposed antenna mount collar.

REFER TO DISH WIRELESS, LLC. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

11/09/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON. UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
BPC	BRN	TA

RFDS REV #:

CONSTRUCTION DOCUMENTS

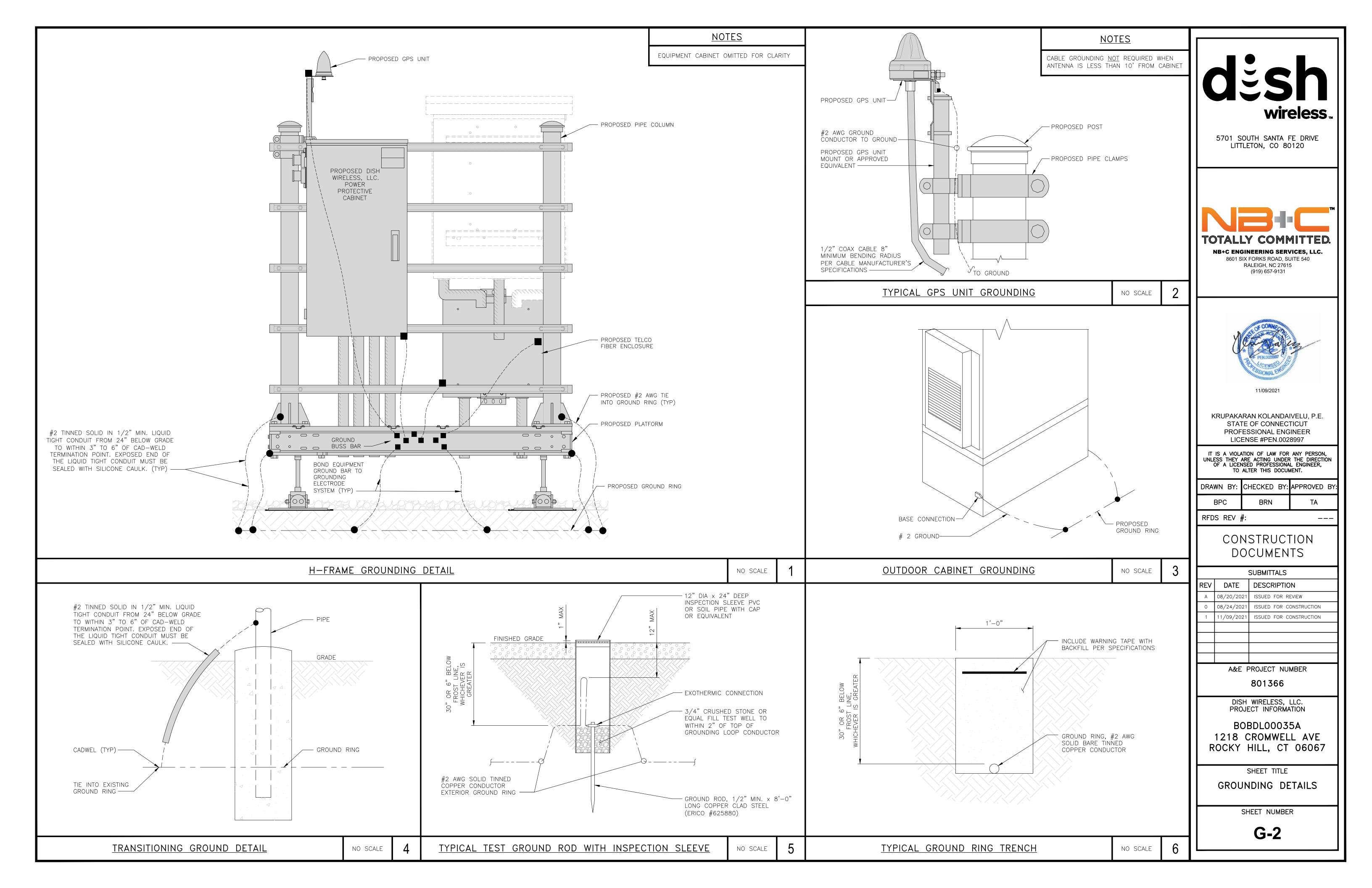
	SUBMITTALS							
REV	DATE	DESCRIPTION						
Α	08/20/2021	ISSUED FOR REVIEW						
0	08/24/2021	ISSUED FOR CONSTRUCTION						
1	11/09/2021	ISSUED FOR CONSTRUCTION						
	A&E PROJECT NUMBER							

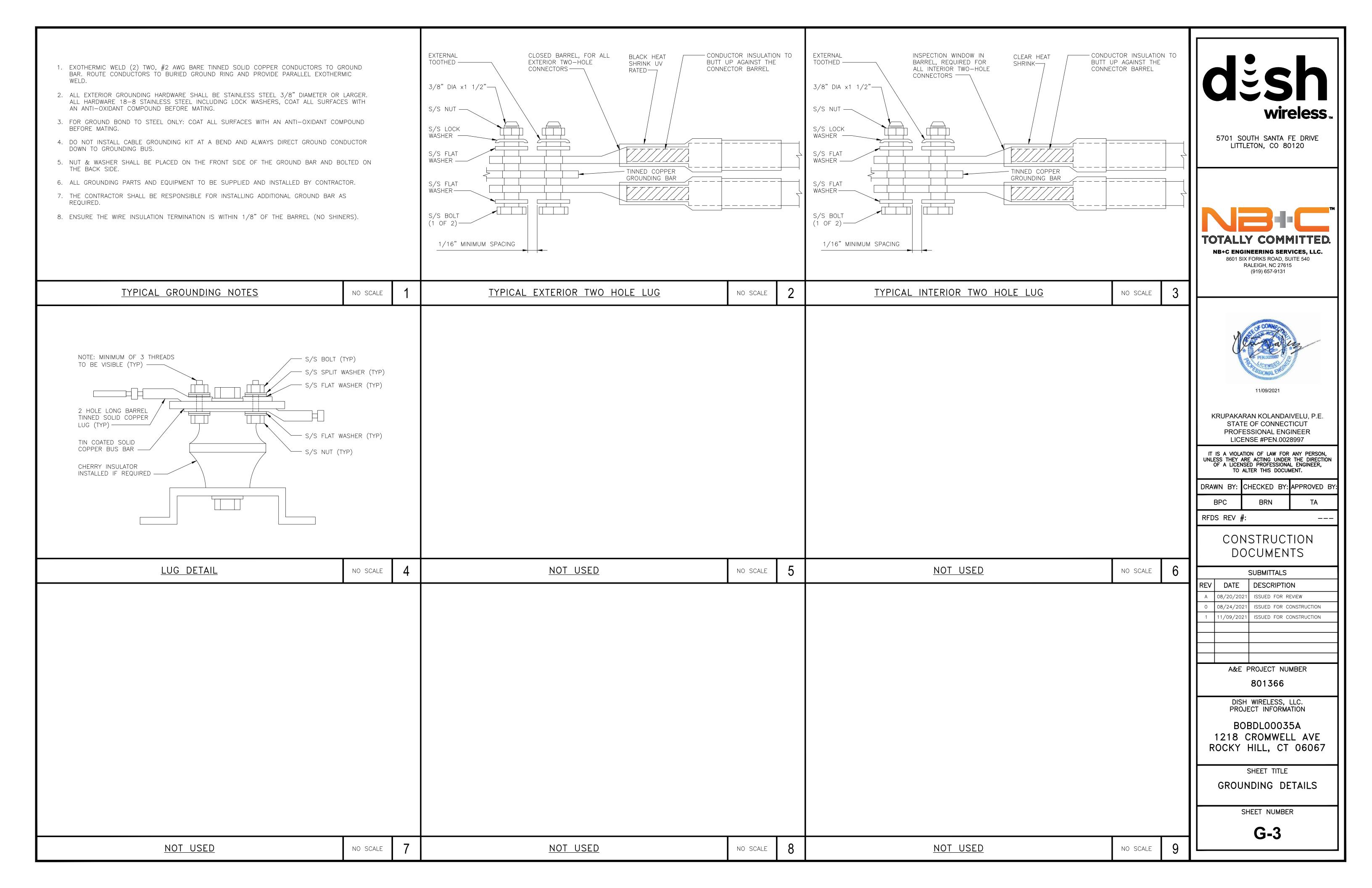
801366

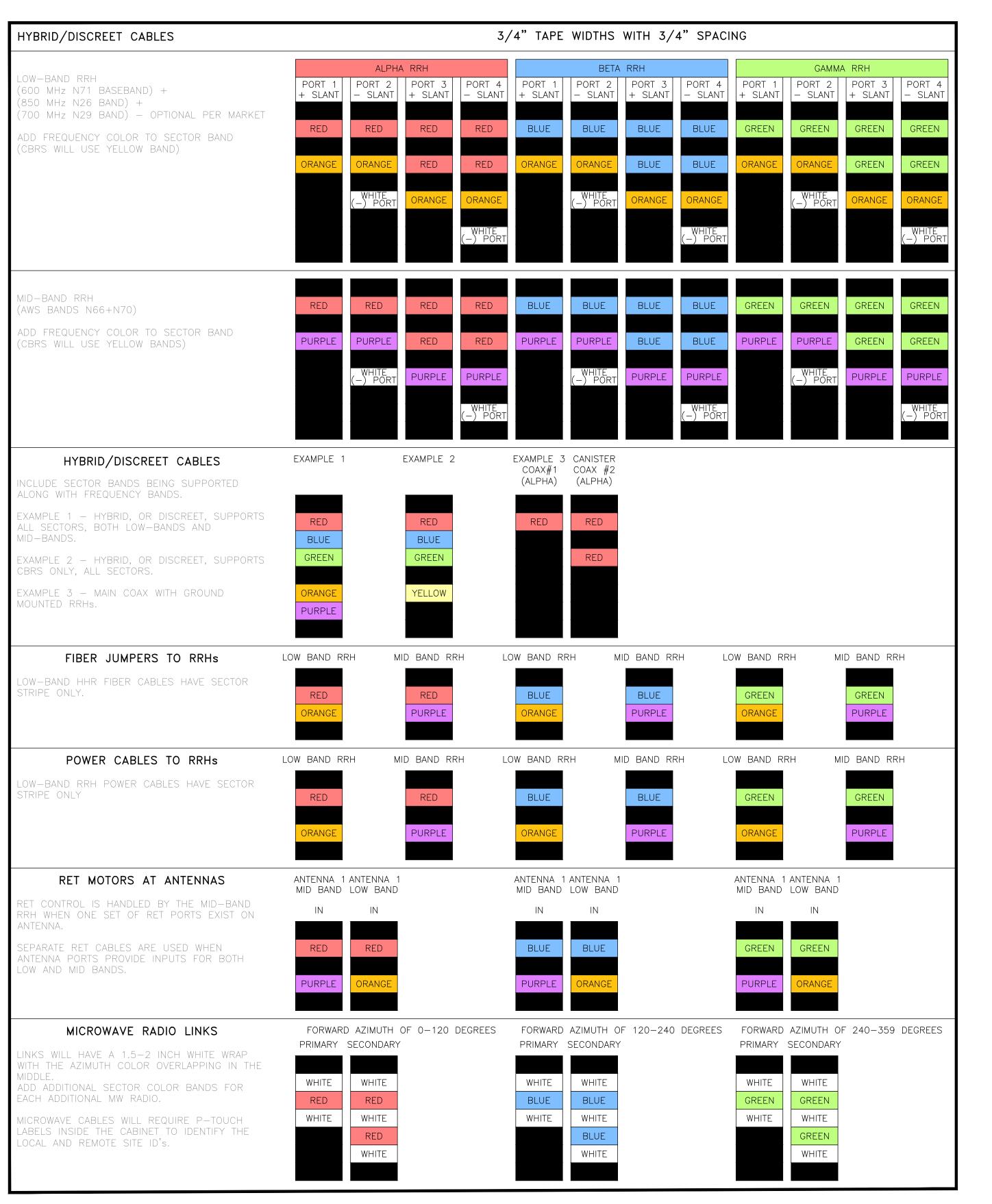
DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067

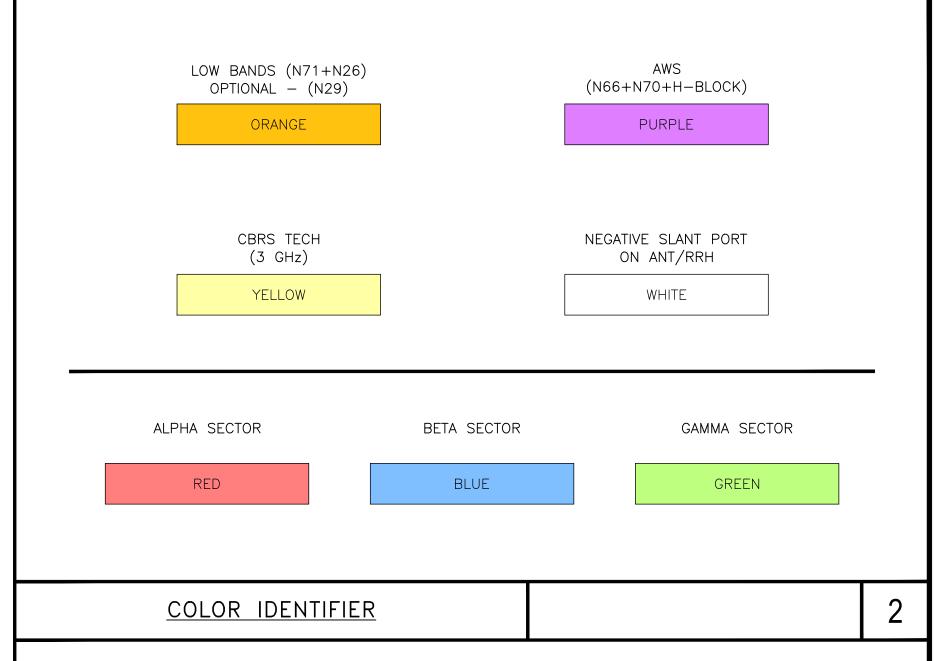
SHEET TITLE GROUNDING PLANS


AND NOTES


SHEET NUMBER


G-1

GROUNDING KEY NOTES


NO SCALE

RF CABLE COLOR CODES

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

RALEIGH, NC 27615

(919) 657-9131

11/09/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
BPC	BRN	TA
RFDS REV ;	#:	

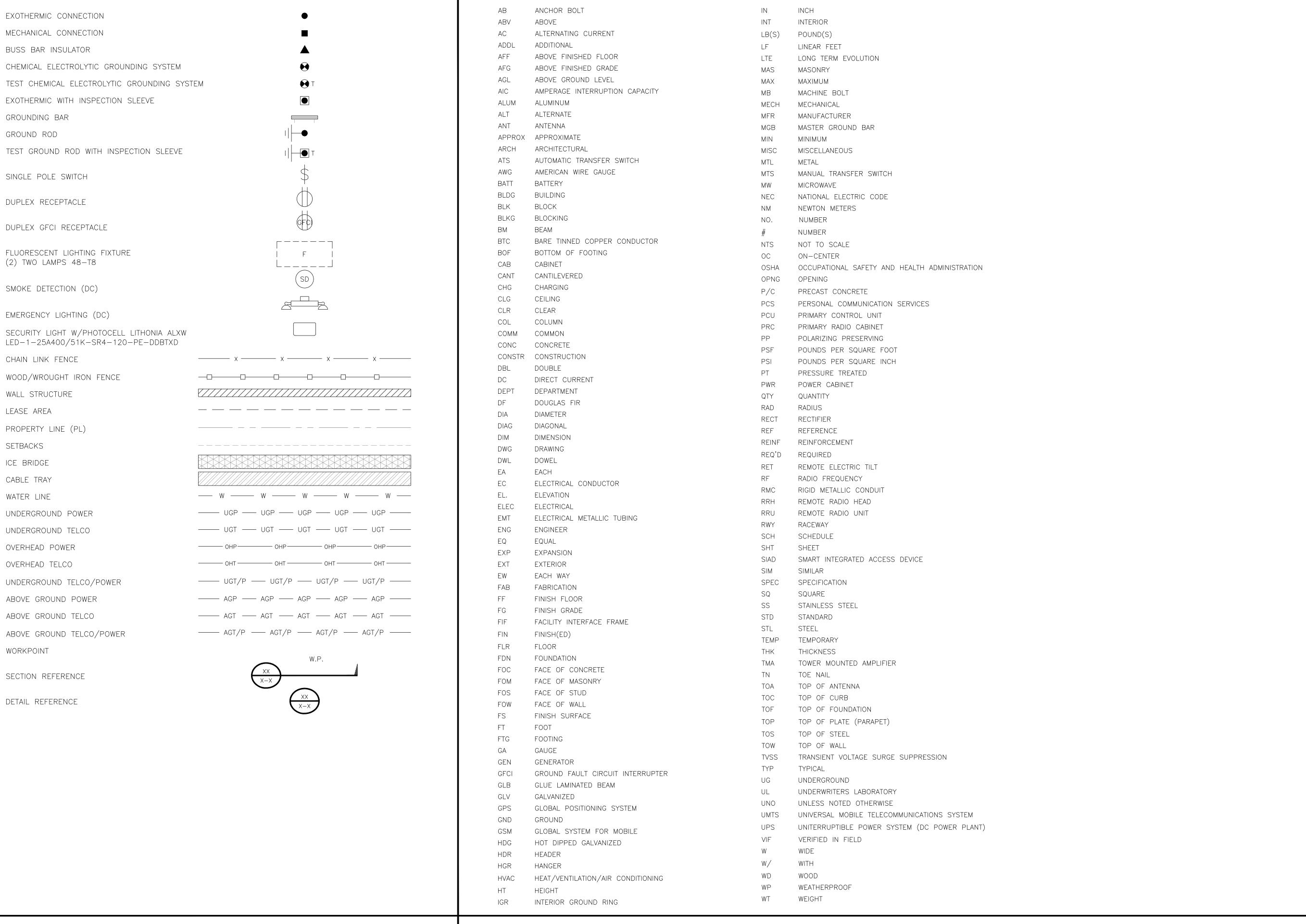
CONSTRUCTION DOCUMENTS

	SUBMITTALS							
REV	DATE	DESCRIPTION						
Α	08/20/2021	ISSUED FOR REVIEW						
0	08/24/2021	ISSUED FOR CONSTRUCTION						
1	11/09/2021	ISSUED FOR CONSTRUCTION						
	A&E F	PROJECT NUMBER						

801366

DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067


SHEET TITLE CABLE COLOR CODES

SHEET NUMBER

RF-1

NOT USED

NOT USED

ABBREVIATIONS

<u>LEGEND</u>

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540

RALEIGH, NC 27615 (919) 657-9131

11/09/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED B	Y: APPROVED BY:
BPC	BRN	TA

RFDS REV #:

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
А	08/20/2021	ISSUED FOR REVIEW
0	08/24/2021	ISSUED FOR CONSTRUCTION
1	11/09/2021	ISSUED FOR CONSTRUCTION
	A&E F	PROJECT NUMBER

A&E PROJECT NUMBER

801366

DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, LLC. AND TOWER OWNER OWNER NOC & THE DISH WIRELESS, LLC. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH WIRELESS, LLC. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, LLC. AND DISH WIRELESS, LLC. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, LLC. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, LLC. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, LLC. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, LLC. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, LLC. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER: DISH WIRELESS, LLC.

TOWER OWNER: TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS, LLC. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

8601 SIX FORKS ROAD, SUITE 540

RALEIGH, NC 27615

11/09/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED	BY:
BPC	BRN	TA	
RFDS REV	#:		

CONSTRUCTION DOCUMENTS

	SUBMITTALS							
REV	DATE	DESCRIPTION						
Α	08/20/2021	ISSUED FOR REVIEW						
0	08/24/2021	ISSUED FOR CONSTRUCTION						
1	11/09/2021	ISSUED FOR CONSTRUCTION						
A&E PROJECT NUMBER								
801366								

DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°f AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- . ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NFC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, LLC. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH WIRELESS, LLC.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

1/09/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:					
BPC	BRN	TA					
RFDS REV ;	RFDS REV #:						

CONSTRUCTION DOCUMENTS

SUBMITTALS						
REV	DATE	DESCRIPTION				
Α	08/20/2021	ISSUED FOR REVIEW				
0	08/24/2021	ISSUED FOR CONSTRUCTION				
1	11/09/2021	ISSUED FOR CONSTRUCTION				
A&E PROJECT NUMBER						

801366

DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDUITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4"
 NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END
 OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

11/09/202

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
BPC		BRN		TA	
RFDS F	REV ;	#:			

CONSTRUCTION DOCUMENTS

	SUBMITTALS							
REV	REV DATE DESCRIPTION							
А	08/20/2021	ISSUED FOR REVIEW						
0	08/24/2021	ISSUED FOR CONSTRUCTION						
1	11/09/2021	ISSUED FOR CONSTRUCTION						
	A&E PROJECT NUMBER							

DISH WIRELESS, LLC. PROJECT INFORMATION

801366

BOBDL00035A 1218 CROMWELL AVE ROCKY HILL, CT 06067

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: August 22, 2021

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 (919) 661-6351

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOBDL00035A Site Name: CT-CCI-T-801366

Crown Castle Designation: BU Number: 801366

Site Name:Rocky Hill 2JDE Job Number:650033Work Order Number:1987186Order Number:556647 Rev. 1

Engineering Firm Designation: TEP Project Number: 217983.589110

Site Data: 1218 Cromwell Ave., Rocky Hill, Hartford County, CT 06067

Latitude 41° 38' 16.50", Longitude -72° 40' 24.20"

173 Foot - Monopole Tower

Tower Engineering Professionals is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity – 47.7%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Gautam Sopal, E.I. / CLT

Respectfully submitted by:

Aaron T. Rucker, P.E.

08/22/2021

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Non-Carrier Equipment To Be Conditionally Removed

Table 3 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 173-ft monopole tower designed by Paul J. Ford and Company.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 125 mph

Exposure Category:CTopographic Factor:1.0Ice Thickness:2.0 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	JMA Wireless	MX08FRO665-21 w/ Mount Pipe		
		3	Fujitsu	TA08025-B604		
171.0	171.0	3	Fujitsu	TA08025-B605	1	1-3/4
		1	Raycap	RDIDC-9181-PF-48		
		1	Tower Mounts	Commscope MC-PK8-DSH		

Table 2 - Non-Carrier Equipment To Be Conditionally Removed

	Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
ĺ	171.0	171.0	1	Tower Mounts	Platform Mount [LP 1201-1]	-	-

Table 3 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)							
		3	Andrew	LNX-8513DS-A1M w/ Mount Pipe									
		6	Commscope	SBNHH-1D65B w/ Mount Pipe									
	152.0	3	Samsung Telecommunication	MT6407-77A w/ Mount Pipe									
450.0	102.0	102.0	10210	.02.0				0	3	Samsung Telecommunication	RFV01U-D1A	6	1-5/8
150.0		3	Samsung Telecommunication	RFV01U-D2A	2	1-1/4							
		2	Commscope	RC2DC-3315-PF-48									
	150.0	1	Tower Mounts	Platform Mount [LP 601-1]									
	150.0	3	Generic	15' x 2.5STD Horizontal Pipe									
		1	Smart	VZWSmart-PLK5 Kicker Kit									

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Reference	Source
Geotechnical Report	639257	CCISites
Tower Foundation Drawings	679665	CCISites
Tower Manufacturer Drawings	639263	CCISites

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 Standard.

3.2) Assumptions

- 1) The tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2, and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (k)	ΦP _{allow} (k)	% Capacity	Pass / Fail
L1	173 - 127	Pole	TP35.568x26x0.25	1	-10.59	1546.89	28.2	Pass
L2	127 - 86.5	Pole	TP43.493x34.132x0.3125	2	-17.74	2561.11	38.5	Pass
L3	86.5 - 42.5	Pole	TP52.02x41.7239x0.375	3	-29.07	3676.97	42.7	Pass
L4	42.5 - 0	Pole	TP60.11x49.918x0.4375	4	-46.94	5089.84	43.9	Pass
							Summary	
						Pole (L4)	43.9	Pass
						RATING =	43.9	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

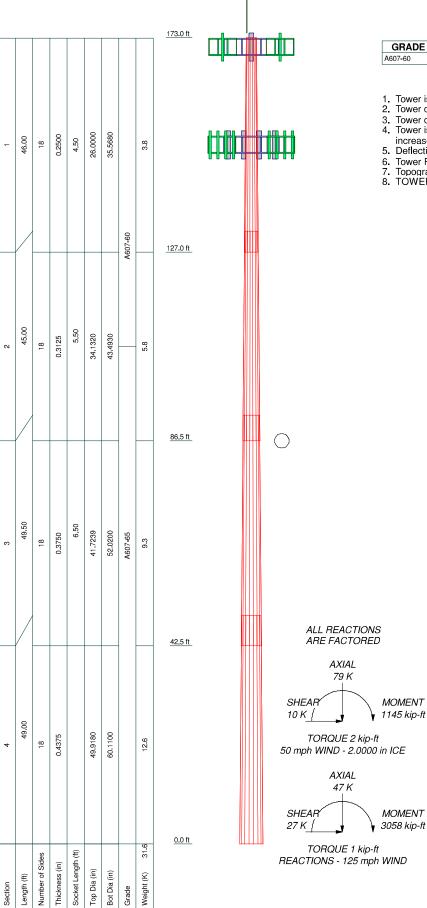
	•			
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Anchor Rods	-	41.9	Pass
1,2	Base Plate	-	33.5	Pass
1,2,3	Base Foundation Structural (Pier and Pad Foundation)	-	27.9	Pass
1,2,3	Base Foundation Soil Interaction (Pier and Pad Foundation)	-	39.6	Pass
1,2,3	Base Foundation Structural (Drilled Pier Foundation)	-	47.7	Pass
1,2,3	Base Foundation Soil Interaction (Drilled Pier Foundation)	-	39.0	Pass

Structure Rating (max from all components) =	47.7%
--	-------

Notes:

- 1) See additional documentation in "Appendix C Additional Calculations" for calculations supporting the % capacity listed.
- 2) Rating per TIA-222-H Section 15.5
- 3) It is unknown whether the foundation is a drilled shaft or pier and pad. Both designs were analyzed and determined to be sufficient.

4.1) Recommendations

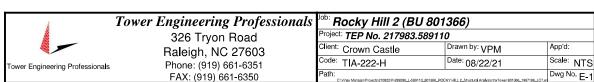

1) The tower and its foundation have sufficient capacity to carry the proposed load configuration. In order for the results of this analysis to be considered valid, the loading modification, as follows, must be completed.

Loading Changes:

a) Removal of the abandoned mounts at the 171-ft level.

No structural modifications are required at this time provided that the above-listed changes are completed.

APPENDIX A TNXTOWER OUTPUT



MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A607-60	60 ksi	75 ksi	A607-65	65 ksi	80 ksi

TOWER DESIGN NOTES

- Tower is located in Hartford County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
- 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 43.9%

4T	Job		Page
tnxTower		Rocky Hill 2 (BU 801366)	1 of 14
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by VPM

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

Tower base elevation above sea level: 148.00 ft.

Basic wind speed of 125 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 2.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.

Maximum demand-capacity ratio is: 1.05.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity

Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Leg Bolts Are At Top Of Section Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Distribute Leg Loads As Uniform Assume Legs Pinned

Assume Rigid Index Plate

Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension

- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Page Job *tnxTower* 2 of 14 Rocky Hill 2 (BU 801366) **Project** Date Tower Engineering TEP No. 217983.589110 18:44:56 08/22/21 **Professionals** 326 Tryon Road Raleigh, NC 27603 Client Designed by Phone: (919) 661-6351 FAX: (919) 661-6350 Crown Castle

VPM

			Tape	ered P	ole Se	ction C	eomet	ry	
Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
* 4	ft	ft	ft	Sides	in	in	in	in	1.607.60
L1	173.00-127.00	46.00	4.50	18	26.0000	35.5680	0.2500	1.0000	A607-60 (60 ksi)
L2	127.00-86.50	45.00	5.50	18	34.1320	43.4930	0.3125	1.2500	A607-65 (65 ksi)
L3	86.50-42.50	49.50	6.50	18	41.7239	52.0200	0.3750	1.5000	A607-65
L4	42.50-0.00	49.00		18	49.9180	60.1100	0.4375	1.7500	(65 ksi) A607-65
									(65 ksi)

				Та	pered P	ole Pr	opertie	S			
Section	Tip Dia.	Area in²	I in^4	r in	C in	I/C in³	J in^4	It/Q in ²	w in	w/t	_
L1	26.3625 36.0781	20.4326 28.0248	1711.65	544 9.1412	13.2080 18.0685	129.5922 244.4272	3425.5610 8838.6985	10.2183 14.0151	4.136 5.820		
L2	35.5609 44.1157	33.5447 42.8297	4847.25	558 12.0059	17.3391 22.0944	279.5571 456.6404	9700.8898 20191.7065	16.7755 21.4189	5.457 7.104	72 17.463	3
L3	43.4713 52.7646	49.2155 61.4705			21.1957 26.4262	501.5549 783.8382	21275.6311 41454.9232	24.6124 30.7411	6.683 8.495		
L4	51.9934 60.9698	68.7098 82.8627			25.3583 30.5359	838.1148 1220.7724	42534.3574 74603.7673	34.3614 41.4392	8.015 9.809		
Tower Elevatio	Gus on Are (per f	ea :	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mi	Stitei Spa	e Angle h Bolt Icing gonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft	2	in					_	in	in	in
L1 173.00-127	7.00				1	1	1				
L2 127.00-86					1	1	1				

L3 86.50-42.50 L4 42.50-0.00

Feed Line/Linear Appurtenances - Entered As Round Or Flat											
Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number	Number Per Row	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation	<i>71</i>	ft			in	in	in	plf

Feed Line/Linear Appurtenances - Entered As Area

Page Job tnxTower 3 of 14 Rocky Hill 2 (BU 801366) **Project** Date Tower Engineering TEP No. 217983.589110 18:44:56 08/22/21 **Professionals** 326 Tryon Road Raleigh, NC 27603 Client Designed by Phone: (919) 661-6351 FAX: (919) 661-6350 Crown Castle

VPM

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf
****150****									
Safety Line 3/8	Α	No	No	CaAa (Out	173.00 - 0.00	1	No Ice	0.04	0.22
				Of Face)			1/2" Ice	0.14	0.75
							1" Ice	0.24	1.28
							2" Ice	0.44	2.34
Step Pegs (5/8" SR)	Α	No	No	CaAa (Out	173.00 - 0.00	1	No Ice	0.03	0.49
7-in. w/30" step				Of Face)			1/2" Ice	0.14	1.01
_							1" Ice	0.23	2.07
							2" Ice	0.43	6.09
171									
CU12PSM6P4XXX(C	No	No	Inside Pole	171.00 - 0.00	1	No Ice	0.00	2.72
1-3/4)							1/2" Ice	0.00	2.72
							1" Ice	0.00	2.72
							2" Ice	0.00	2.72
150									
LDF7-50A(1-5/8)	C	No	No	Inside Pole	150.00 - 0.00	6	No Ice	0.00	0.82
, ,							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
RFF-24SM-1206-61	C	No	No	Inside Pole	150.00 - 0.00	2	No Ice	0.00	1.48
8-APE(1-1/4")							1/2" Ice	0.00	1.48
. ,							1" Ice	0.00	1.48
							2" Ice	0.00	1.48

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft ²	ft ²	ft ²	K
L1	173.00-127.00	A	0.000	0.000	0.000	3.335	0.03
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.30
L2	127.00-86.50	A	0.000	0.000	0.000	2.936	0.03
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.43
L3	86.50-42.50	Α	0.000	0.000	0.000	3.190	0.03
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.47
L4	42.50-0.00	A	0.000	0.000	0.000	3.081	0.03
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.45

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft ²	ft^2	ft ²	ft^2	K
L1	173.00-127.00	A	1.977	0.000	0.000	0.000	39.704	0.38
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.30

4T	Job		Page
tnxTower		Rocky Hill 2 (BU 801366)	4 of 14
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by VPM

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C_AA_A In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft^2	ft^2	ft ²	ft^2	K
L2	127.00-86.50	A	1.911	0.000	0.000	0.000	34.957	0.34
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.43
L3	86.50-42.50	Α	1.817	0.000	0.000	0.000	36.820	0.35
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.47
L4	42.50-0.00	Α	1.629	0.000	0.000	0.000	33.969	0.32
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.45

		Fe	ed Line	Center o	f Pressure
Section	Elevation	CP_X	CPz	CP_X	CP _Z
		A	2	Ice	Ice
	ft	in	in	in	in
L1	173.00-127.00	0.0000	-0.6520	0.0000	-3.2503
L2	127.00-86.50	0.0000	-0.6580	0.0000	-3.4843
L3	86.50-42.50	0.0000	-0.6618	0.0000	-3.5571
L4	42.50-0.00	0.0000	-0.6646	0.0000	-3.5465

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

			Di	screte 1	ower L	oads			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft ²	ft^2	K
Lightning Rod 1"x10'	С	From Leg	0.00	0.0000	174.00	No Ice 1/2" Ice	1.00 2.02	1.00 2.02	0.04 0.05
171			5.00			1" Ice 2" Ice	3.05 5.15	3.05 5.15	0.06 0.12
MX08FRO665-21 w/ Mount Pipe	A	From Centroid-Le g	4.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
MX08FRO665-21 w/ Mount Pipe	В	From Centroid-Le g	4.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
MX08FRO665-21 w/ Mount Pipe	С	From Centroid-Le g	4.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
TA08025-B605	A	From Centroid-Le g	4.00 0.00 0.00	0.0000	171.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32	1.13 1.27 1.41	0.07 0.09 0.11

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	Rocky Hill 2 (BU 801366)	5 of 14
Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Client	Crown Castle	Designed by VPM

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K
T. 4.000.005 T. 60.5			4.00	0.0000	171.00	2" Ice	2.71	1.72	0.16
TA08025-B605	В	From Centroid-Le	4.00 0.00	0.0000	171.00	No Ice 1/2" Ice	1.96 2.14	1.13 1.27	0.07 0.09
		g	0.00			1" Ice	2.14	1.41	0.09
		8	0.00			2" Ice	2.71	1.72	0.11
TA08025-B605	C	From	4.00	0.0000	171.00	No Ice	1.96	1.13	0.07
	_	Centroid-Le	0.00		-,	1/2" Ice	2.14	1.27	0.09
		g	0.00			1" Ice	2.32	1.41	0.11
		Ü				2" Ice	2.71	1.72	0.16
TA08025-B604	Α	From	4.00	0.0000	171.00	No Ice	1.96	0.98	0.06
		Centroid-Le	0.00			1/2" Ice	2.14	1.11	0.08
		g	0.00			1" Ice	2.32	1.25	0.10
						2" Ice	2.71	1.55	0.15
TA08025-B604	В	From	4.00	0.0000	171.00	No Ice	1.96	0.98	0.06
		Centroid-Le	0.00			1/2" Ice	2.14	1.11	0.08
		g	0.00			1" Ice	2.32	1.25	0.10
TA08025 D604	С	From	4.00	0.0000	171.00	2" Ice	2.71	1.55	0.15
TA08025-B604	C	Centroid-Le	0.00	0.0000	171.00	No Ice 1/2" Ice	1.96 2.14	0.98 1.11	0.06 0.08
			0.00			1" Ice	2.14	1.11	0.08
		g	0.00			2" Ice	2.32	1.55	0.10
RDIDC-9181-PF-48	Α	From	4.00	0.0000	171.00	No Ice	2.71	1.17	0.13
KDIDC 7101 11 40	11	Centroid-Le	0.00	0.0000	171.00	1/2" Ice	2.19	1.31	0.04
		g	0.00			1" Ice	2.37	1.46	0.06
		8	****			2" Ice	2.76	1.78	0.11
(2) 2.4" Dia x 8-ft Mount Pipe	Α	From	4.00	0.0000	171.00	No Ice	1.90	1.90	0.03
•		Centroid-Le	0.00			1/2" Ice	2.73	2.73	0.04
		g	0.00			1" Ice	3.40	3.40	0.06
						2" Ice	4.40	4.40	0.12
(2) 2.4" Dia x 8-ft Mount Pipe	В	From	4.00	0.0000	171.00	No Ice	1.90	1.90	0.03
		Centroid-Le	0.00			1/2" Ice	2.73	2.73	0.04
		g	0.00			1" Ice	3.40	3.40	0.06
(0) 0 41151 0 6 3 4 51			4.00	0.0000	171.00	2" Ice	4.40	4.40	0.12
(2) 2.4" Dia x 8-ft Mount Pipe	С	From	4.00	0.0000	171.00	No Ice 1/2" Ice	1.90	1.90	0.03
		Centroid-Le	$0.00 \\ 0.00$			172 Ice 1" Ice	2.73 3.40	2.73 3.40	0.04 0.06
		g	0.00			2" Ice	4.40	4.40	0.00
Commscope MC-PK8-DSH	C	None		0.0000	171.00	No Ice	34.24	34.24	1.75
commiscope ivic The Boll	C	Tione		0.0000	171.00	1/2" Ice	62.95	62.95	2.10
						1" Ice	91.66	91.66	2.45
						2" Ice	149.08	149.08	3.15
150		_			4.50.00				
(2) SBNHH-1D65B w/	Α	From	4.00	0.0000	150.00	No Ice	4.09	3.30	0.07
Mount Pipe		Centroid-Le	0.00			1/2" Ice 1" Ice	4.49	3.68	0.13
		g	2.00			2" Ice	4.89	4.07	0.20 0.39
(2) SBNHH-1D65B w/	В	From	4.00	0.0000	150.00	Z Ice No Ice	5.72 4.09	4.87 3.30	0.39
Mount Pipe	Б	Centroid-Le	0.00	0.0000	150.00	1/2" Ice	4.49	3.68	0.07
1.20ditt i ipo		g g	2.00			1" Ice	4.89	4.07	0.13
		0				2" Ice	5.72	4.87	0.39
(2) SBNHH-1D65B w/	C	From	4.00	0.0000	150.00	No Ice	4.09	3.30	0.07
Mount Pipe		Centroid-Le	0.00			1/2" Ice	4.49	3.68	0.13
-		g	2.00			1" Ice	4.89	4.07	0.20
						2" Ice	5.72	4.87	0.39
MT6407-77A w/ Mount Pipe	Α	From	4.00	0.0000	150.00	No Ice	4.91	2.68	0.10
		Centroid-Le	0.00			1/2" Ice	5.26	3.14	0.14
		g	2.00			1" Ice	5.61	3.62	0.18

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	Rocky Hill 2 (BU 801366)	6 of 14
Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Client	Crown Castle	Designed by VPM

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	3		Vert ft ft ft	0	ft		ft²	ft ²	K
						2" Ice	6.36	4.63	0.29
MT6407-77A w/ Mount Pipe	В	From	4.00	0.0000	150.00	No Ice	4.91	2.68	0.10
		Centroid-Le	0.00			1/2" Ice	5.26	3.14	0.14
		g	2.00			1" Ice	5.61	3.62	0.18
						2" Ice	6.36	4.63	0.29
MT6407-77A w/ Mount Pipe	C	From	4.00	0.0000	150.00	No Ice	4.91	2.68	0.10
		Centroid-Le	0.00			1/2" Ice	5.26	3.14	0.14
		g	2.00			1" Ice	5.61	3.62	0.18
						2" Ice	6.36	4.63	0.29
LNX-8513DS-A1M w/	Α	From	4.00	0.0000	150.00	No Ice	4.09	3.30	0.07
Mount Pipe		Centroid-Le	0.00			1/2" Ice	4.49	3.68	0.13
		g	2.00			1" Ice	4.89	4.06	0.20
	_			0.0000	4.50.00	2" Ice	5.71	4.87	0.38
LNX-8513DS-A1M w/	В	From	4.00	0.0000	150.00	No Ice	4.09	3.30	0.07
Mount Pipe		Centroid-Le	0.00			1/2" Ice	4.49	3.68	0.13
		g	2.00			1" Ice	4.89	4.06	0.20
LNIV 0512DC A1M /	C	From	4.00	0.0000	150.00	2" Ice	5.71	4.87	0.38
LNX-8513DS-A1M w/	C		4.00	0.0000	150.00	No Ice	4.09	3.30	0.07
Mount Pipe		Centroid-Le	0.00			1/2" Ice	4.49	3.68	0.13
		g	2.00			1" Ice 2" Ice	4.89 5.71	4.06 4.87	0.20 0.38
RFV01U-D2A	A	From	4.00	0.0000	150.00	No Ice	1.88	1.01	0.38
KI VOI O-DZA	А	Centroid-Le	0.00	0.0000	130.00	1/2" Ice	2.05	1.01	0.07
			2.00			1" Ice	2.03	1.14	0.09
		g	2.00			2" Ice	2.60	1.59	0.11
(2) RFV01U-D2A	В	From	4.00	0.0000	150.00	No Ice	1.88	1.01	0.13
(2) KI V010-D2A	Ь	Centroid-Le	0.00	0.0000	150.00	1/2" Ice	2.05	1.14	0.07
		g	2.00			1" Ice	2.22	1.28	0.03
		5	2.00			2" Ice	2.60	1.59	0.15
RFV01U-D1A	A	From	4.00	0.0000	150.00	No Ice	1.88	1.25	0.08
Ad vote Bin		Centroid-Le	0.00	0.0000	150.00	1/2" Ice	2.05	1.39	0.10
		g g	2.00			1" Ice	2.22	1.54	0.12
		8	2.00			2" Ice	2.60	1.86	0.18
(2) RFV01U-D1A	C	From	4.00	0.0000	150.00	No Ice	1.88	1.25	0.08
(_, :		Centroid-Le	0.00			1/2" Ice	2.05	1.39	0.10
		g	2.00			1" Ice	2.22	1.54	0.12
		C				2" Ice	2.60	1.86	0.18
RC2DC-3315-PF-48	Α	From	4.00	0.0000	150.00	No Ice	3.79	2.51	0.03
		Centroid-Le	0.00			1/2" Ice	4.04	2.72	0.06
		g	0.00			1" Ice	4.30	2.94	0.10
						2" Ice	4.84	3.41	0.18
RC2DC-3315-PF-48	В	From	4.00	0.0000	150.00	No Ice	3.79	2.51	0.03
		Centroid-Le	0.00			1/2" Ice	4.04	2.72	0.06
		g	0.00			1" Ice	4.30	2.94	0.10
						2" Ice	4.84	3.41	0.18
Platform Mount [LP	C	None		0.0000	150.00	No Ice	42.30	42.30	1.62
602-1_KCKR]						1/2" Ice	49.04	49.04	2.38
						1" Ice	55.87	55.87	3.27
						2" Ice	69.85	69.85	5.40

Tower Engineering Professionals

326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	Rocky Hill 2 (BU 801366)	7 of 14
Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Client	Crown Castle	Designed by VPM

Load Combinations

Comb.	Description
No.	2 000. pnon
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33 34	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35 36	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36 37	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
30 39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
40	Dead+Wind 50 deg - Service Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service
	<u>.</u>

Maximu	m Mam	nar 🗕	Arcac

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft

Tower Engineering Professionals

326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	Rocky Hill 2 (BU 801366)	8 of 14
Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Client	Crown Castle	Designed by VPM

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	173 - 127	Pole	Max Tension	1	0.00	0.00	0.00
2.	1,0 12,	1 010	Max. Compression	26	-26.77	-0.37	1.28
			Max. Mx	20	-10.60	343.32	0.85
			Max. My	2	-10.59	0.70	345.57
			Max. Vy	20	-13.25	343.32	0.85
			Max. Vx	2	-13.32	0.70	345.57
			Max. Torque	23			-0.65
L2	127 - 86.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-38.36	-0.37	1.82
			Max. Mx	20	-17.74	951.93	2.28
			Max. My	2	-17.74	2.06	956.95
			Max. Vy	20	-17.60	951.93	2.28
			Max. Vx	2	-17.67	2.06	956.95
			Max. Torque	30			0.91
L3	86.5 - 42.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-55.07	-0.37	2.49
			Max. Mx	20	-29.08	1815.23	3.84
			Max. My	2	-29.07	3.54	1823.27
			Max. Vy	20	-22.51	1815.23	3.84
			Max. Vx	2	-22.58	3.54	1823.27
			Max. Torque	30			1.43
L4	42.5 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-79.21	-0.37	3.35
			Max. Mx	20	-46.94	3045.06	5.59
			Max. My	2	- 46.94	5.19	3056.48
			Max. Vy	20	-27.44	3045.06	5.59
			Max. Vx	2	-27.51	5.19	3056.48
			Max. Torque	30			1.96

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Pole	Max. Vert	27	79.21	0.01	9.67
	Max. H _x	20	46.95	27.42	0.03
	Max. H _z	2	46.95	0.03	27.49
	$Max. M_x$	2	3056.48	0.03	27.49
	Max. M _z	8	3045.00	-27.42	-0.03
	Max. Torsion	30	1.96	-9.66	-0.01
	Min. Vert	19	35.21	23.73	-13.71
	$Min. H_x$	8	46.95	-27.42	-0.03
	Min. H _z	14	46.95	-0.03	- 27.49
	$Min. M_x$	14	-3055.61	-0.03	-27.49
	Min. Mz	20	-3045.06	27.42	0.03
	Min. Torsion	36	-1.96	9.66	0.01

Tower Mast Reaction Summary

Load Combination	Vertical Shear _x S		$Shear_z$	Overturning Overturning Moment, M _x Moment, M _z		Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	39.13	0.00	0.00	-0.35	0.02	0.00

Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	Rocky Hill 2 (BU 801366)	9 of 14
Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Client	Crown Castle	Designed by VPM

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
100 110 110 110 110 110 110 110 110 110	K 16.07	<u>K</u>	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 0 deg - No Ice	46.95	-0.03	-27.49	-3056.48	5.19	0.25
0.9 Dead+1.0 Wind 0 deg - No Ice	35.21	-0.03	-27.49	-3032.70	5.14	0.25
1.2 Dead+1.0 Wind 30 deg - No Ice	46.95	13.68	-23.79	-2644.48	-1518.02	-0.49
0.9 Dead+1.0 Wind 30 deg - No Ice	35.21	13.68	-23.79	-2623.89	-1506.28	-0.49
1.2 Dead+1.0 Wind 60 deg - No Ice	46.95	23.73	-13.71	-1524.00	-2634.47	-1.10
0.9 Dead+1.0 Wind 60 deg - No	35.21	23.73	-13.71	-1512.09	-2614.09	-1.10
1.2 Dead+1.0 Wind 90 deg - No	46.95	27.42	0.03	4.72	-3045.00	-1.41
0.9 Dead+1.0 Wind 90 deg - No Ice	35.21	27.42	0.03	4.79	-3021.45	-1.41
1.2 Dead+1.0 Wind 120 deg - No Ice	46.95	23.76	13.77	1532.06	-2639.62	-1.35
0.9 Dead+1.0 Wind 120 deg - No Ice	35.21	23.76	13.77	1520.30	-2619.19	-1.35
1.2 Dead+1.0 Wind 150 deg - No Ice	46.95	13.74	23.82	2648.76	-1526.94	-0.92
0.9 Dead+1.0 Wind 150 deg - No Ice	35.21	13.74	23.82	2628.35	-1515.13	-0.92
1.2 Dead+1.0 Wind 180 deg - No Ice	46.95	0.03	27.49	3055.61	-5.13	-0.25
0.9 Dead+1.0 Wind 180 deg - No Ice	35.21	0.03	27.49	3032.06	-5.09	-0.25
1.2 Dead+1.0 Wind 210 deg - No Ice	46.95	-13.68	23.79	2643.61	1518.08	0.49
0.9 Dead+1.0 Wind 210 deg - No Ice	35.21	-13.68	23.79	2623.25	1506.33	0.49
1.2 Dead+1.0 Wind 240 deg - No Ice	46.95	-23.73	13.71	1523.13	2634.53	1.10
0.9 Dead+1.0 Wind 240 deg - No Ice	35.21	-23.73	13.71	1511.45	2614.14	1.10
1.2 Dead+1.0 Wind 270 deg - No Ice	46.95	-27.42	-0.03	-5.59	3045.06	1.41
0.9 Dead+1.0 Wind 270 deg - No Ice	35.21	-27.42	-0.03	-5.44	3021.49	1.41
1.2 Dead+1.0 Wind 300 deg - No Ice	46.95	-23.76	-13.77	-1532.93	2639.68	1.35
0.9 Dead+1.0 Wind 300 deg - No Ice	35.21	-23.76	-13.77	-1520.94	2619.24	1.35
1.2 Dead+1.0 Wind 330 deg - No Ice	46.95	-13.74	-23.82	-2649.63	1527.01	0.92
0.9 Dead+1.0 Wind 330 deg - No Ice	35.21	-13.74	-23.82	-2629.00	1515.18	0.92
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0	79.21 79.21	0.00 -0.01	-0.00 -9.67	-3.35 -1144.87	-0.37 0.57	-0.00 0.02
ce+1.0 Temp	79.21	4.82	-8.37	-991.48	-569.15	-0.97
ce+1.0 Temp	79.21	8.36	-4.83	-573.38	-986.48	-1.69
ce+1.0 Temp .2 Dead+1.0 Wind 90 deg+1.0	79.21	9.66	0.01	-2.61	-1139.59	-1.96
ce+1.0 Temp 1.2 Dead+1.0 Wind 120	79.21	8.37	4.84	567.91	-987.45	-1.71
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	79.21	4.83	8.38	985.29	-570.83	-1.00

Tower Engineering

Professionals
326 Tryon Road
Raleigh, NC 27603
Phone: (919) 661-6351
FAX: (919) 661-6350

Job		Page
	Rocky Hill 2 (BU 801366)	10 of 14
Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Client	Crown Castle	Designed by VPM

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 180	79.21	0.01	9.67	1137.71	-1.37	-0.02
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	79.21	-4.82	8.37	984.32	568.35	0.97
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	79.21	-8.36	4.83	566.22	985.67	1.69
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	79.21	-9.66	-0.01	-4.55	1138.78	1.96
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	79.21	-8.37	-4.84	-575.06	986.65	1.71
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	79.21	-4.83	-8.38	-992.45	570.03	1.00
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	39.13	-0.01	-5.96	-660.43	1.14	0.05
Dead+Wind 30 deg - Service	39.13	2.97	-5.16	-571.44	-327.86	-0.11
Dead+Wind 60 deg - Service	39.13	5.15	-2.98	-329.43	-568.99	-0.24
Dead+Wind 90 deg - Service	39.13	5.95	0.01	0.75	-657.67	-0.31
Dead+Wind 120 deg - Service	39.13	5.16	2.99	330.64	-570.11	-0.29
Dead+Wind 150 deg - Service	39.13	2.98	5.17	571.83	-329.78	-0.20
Dead+Wind 180 deg - Service	39.13	0.01	5.96	659.71	-1.09	-0.05
Dead+Wind 210 deg - Service	39.13	-2.97	5.16	570.72	327.91	0.11
Dead+Wind 240 deg - Service	39.13	-5.15	2.98	328.71	569.05	0.24
Dead+Wind 270 deg - Service	39.13	-5.95	-0.01	-1.48	657.72	0.31
Dead+Wind 300 deg - Service	39.13	-5.16	-2.99	-331.36	570.16	0.29
Dead+Wind 330 deg - Service	39.13	-2.98	-5.17	-572.56	329.84	0.20

Solution Summary

	Sui	n of Applied Force	s		Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-39.13	0.00	0.00	39.13	0.00	0.000%
2	-0.03	-46.95	-27.49	0.03	46.95	27.49	0.000%
3	-0.03	-35.21	-27.49	0.03	35.21	27.49	0.000%
4	13.68	-46.95	-23.79	-13.68	46.95	23.79	0.000%
5	13.68	-35.21	-23.79	-13.68	35.21	23.79	0.000%
6	23.73	-46.95	-13.71	-23.73	46.95	13.71	0.000%
7	23.73	-35.21	-13.71	-23.73	35.21	13.71	0.000%
8	27.42	-46.95	0.03	-27.42	46.95	-0.03	0.000%
9	27.42	-35.21	0.03	-27.42	35.21	-0.03	0.000%
10	23.76	-46.95	13.77	-23.76	46.95	-13.77	0.000%
11	23.76	-35.21	13.77	-23.76	35.21	-13.77	0.000%
12	13.74	-46.95	23.82	-13.74	46.95	-23.82	0.000%
13	13.74	-35.21	23.82	-13.74	35.21	-23.82	0.000%
14	0.03	-46.95	27.49	-0.03	46.95	-27.49	0.000%
15	0.03	-35.21	27.49	-0.03	35.21	-27.49	0.000%
16	-13.68	-46.95	23.79	13.68	46.95	-23.79	0.000%
17	-13.68	-35.21	23.79	13.68	35.21	-23.79	0.000%
18	-23.73	-46.95	13.71	23.73	46.95	-13.71	0.000%
19	-23.73	-35.21	13.71	23.73	35.21	-13.71	0.000%
20	-27.42	-46.95	-0.03	27.42	46.95	0.03	0.000%
21	- 27.42	-35.21	-0.03	27.42	35.21	0.03	0.000%
22	-23.76	-46.95	-13.77	23.76	46.95	13.77	0.000%
23	-23.76	-35.21	-13.77	23.76	35.21	13.77	0.000%
24	-13.74	-46.95	-23.82	13.74	46.95	23.82	0.000%
25	-13.74	-35.21	-23.82	13.74	35.21	23.82	0.000%
26	0.00	-79.21	0.00	-0.00	79.21	0.00	0.000%
27	-0.01	-79.21	-9.67	0.01	79.21	9.67	0.000%
28	4.82	- 79.21	-8.37	-4.82	79.21	8.37	0.000%

4Tours	Job	Page
tnxTower	Rocky Hill 2 (BU 801366)	11 of 14
Tower Engineering Professionals 326 Tryon Road	Project TEP No. 217983.589110	Date 18:44:56 08/22/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client Crown Castle	Designed by VPM

	Sui	m of Applied Forces	5		Sum of Reaction	LS.	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
29	8.36	-79.21	-4.83	-8.36	79.21	4.83	0.000%
30	9.66	-79.21	0.01	-9.66	79.21	-0.01	0.000%
31	8.37	-79.21	4.84	-8.37	79.21	-4.84	0.000%
32	4.83	-79.21	8.38	-4.83	79.21	-8.38	0.000%
33	0.01	-79.21	9.67	-0.01	79.21	-9.67	0.000%
34	-4.82	-79.21	8.37	4.82	79.21	-8.37	0.000%
35	-8.36	-79.21	4.83	8.36	79.21	-4.83	0.000%
36	-9.66	-79.21	-0.01	9.66	79.21	0.01	0.000%
37	-8.37	-79.21	-4.84	8.37	79.21	4.84	0.000%
38	-4.83	-79.21	-8.38	4.83	79.21	8.38	0.000%
39	-0.01	-39.13	-5.96	0.01	39.13	5.96	0.000%
40	2.97	-39.13	-5.16	-2.97	39.13	5.16	0.000%
41	5.15	-39.13	-2.98	-5.15	39.13	2.98	0.000%
42	5.95	-39.13	0.01	-5.95	39.13	-0.01	0.000%
43	5.16	-39.13	2.99	-5.16	39.13	-2.99	0.000%
44	2.98	-39.13	5.17	-2.98	39.13	-5.17	0.000%
45	0.01	-39.13	5.96	-0.01	39.13	-5.96	0.000%
46	-2.97	-39.13	5.16	2.97	39.13	-5.16	0.000%
47	-5.15	-39.13	2.98	5.15	39.13	-2.98	0.000%
48	-5.95	-39.13	-0.01	5.95	39.13	0.01	0.000%
49	-5.16	-39.13	-2.99	5.16	39.13	2.99	0.000%
50	-2.98	-39.13	-5.17	2.98	39.13	5.17	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00010873
3	Yes	4	0.00000001	0.00005355
4	Yes	5	0.00000001	0.00021646
5	Yes	5	0.00000001	0.00010129
6	Yes	5	0.00000001	0.00022165
7	Yes	5	0.00000001	0.00010392
8	Yes	4	0.00000001	0.00026727
9	Yes	4	0.00000001	0.00016997
10	Yes	5	0.00000001	0.00021433
11	Yes	5	0.00000001	0.00010015
12	Yes	5	0.00000001	0.00022400
13	Yes	5	0.00000001	0.00010493
14	Yes	4	0.00000001	0.00013835
15	Yes	4	0.00000001	0.00007755
16	Yes	5	0.00000001	0.00021925
17	Yes	5	0.00000001	0.00010270
18	Yes	5	0.00000001	0.00021353
19	Yes	5	0.00000001	0.00009990
20	Yes	4	0.00000001	0.00031459
21	Yes	4	0.00000001	0.00020161
22	Yes	5	0.00000001	0.00022534
23	Yes	5	0.00000001	0.00010560
24	Yes	5	0.00000001	0.00021620
25	Yes	5	0.00000001	0.00010100
26	Yes	4	0.00000001	0.00000609
27	Yes	5	0.00000001	0.00025690
28	Yes	5	0.00000001	0.00032479
29	Yes	5	0.00000001	0.00033100

fra ve	Towar	Job			Page
Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350			Rocky Hill	12 of 14	
		Project			Date
			TEP No. 2	217983.589110	18:44:56 08/22/
		Client	Cro	Designed by VPM	
30	Yes	5	0.00000001	0.00025743	
31	Yes	5	0.00000001	0.00032155	
32	Yes	5	0.00000001	0.00032689	
33	Yes	5	0.00000001	0.00025465	
34	Yes	5	0.0000001	0.00032533	
35	Yes	5	0.00000001	0.00032019	
36	Yes	5	0.00000001	0.00025709	
37	Yes	5	0.00000001	0.00033145	
38	Yes	5	0.00000001	0.00032507	
39	Yes	4	0.00000001	0.00001700	
40	Yes	4	0.00000001	0.00007326	
41	Yes	4	0.0000001	0.00007939	
42	Yes	4	0.00000001	0.00002142	
43	Yes	4	0.00000001	0.00007052	
44	Yes	4	0.00000001	0.00008012	
45	Yes	4	0.00000001	0.00001709	
46	Yes	4	0.00000001	0.00007619	
47	Yes	4	0.00000001	0.00007074	
48	Yes	4	0.00000001	0.00002177	
49	Yes	4	0.00000001	0.00008219	

Maximum	Tower	Deflections -	Service	Wind
IVIAXIIIIUIII	iowei	Dellections .	· Sei vice	willa

0.00007190

0.00000001

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	173 - 127	15.915	50	0.7828	0.0011
L2	131.5 - 86.5	9.390	50	0.6809	0.0007
L3	92 - 42.5	4.539	50	0.4709	0.0004
L4	49 - 0	1.282	50	0.2377	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
174.00	Lightning Rod 1"x10'	50	15.915	0.7828	0.0011	99263
171.00	MX08FRO665-21 w/ Mount Pipe	50	15.586	0.7795	0.0011	99263
150.00	(2) SBNHH-1D65B w/ Mount Pipe	50	12.188	0.7386	0.0009	21579

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	173 - 127	73.690	24	3.6269	0.0051
L2	131.5 - 86.5	43.485	24	3.1556	0.0035
L3	92 - 42.5	21.024	24	2.1820	0.0022
L4	49 - 0	5.938	24	1.1008	0.0010

4T	Job		Page
tnxTower		Rocky Hill 2 (BU 801366)	13 of 14
Tower Engineering Professionals 326 Tryon Road	Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client	Crown Castle	Designed by VPM

	Critical Deflection	ns and	Radius	of Curvat	ture - Des	ign Wind
Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	۰	ft
174.00	Lightning Rod 1"x10'	24	73.690	3.6269	0.0051	21594
171.00	MX08FRO665-21 w/ Mount Pipe	24	72.170	3.6113	0.0050	21594
150.00	(2) SBNHH-1D65B w/ Mount Pipe	24	56.439	3.4223	0.0041	4692

Compression Checks

	Pole Design Data								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	173 - 127 (1)	TP35.568x26x0.25	46.00	0.00	0.0	27.2821	-10.59	1473.23	0.007
L2	127 - 86.5 (2)	TP43.493x34.132x0.3125	45.00	0.00	0.0	41.6948	-17.74	2439.15	0.007
L3	86.5 - 42.5 (3)	TP52.02x41.7239x0.375	49.50	0.00	0.0	59.8612	-29.07	3501.88	0.008
L4	42.5 - 0 (4)	TP60.11x49.918x0.4375	49.00	0.00	0.0	82.8627	-46.94	4847.47	0.010

			ole Ben					
Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	ϕM_{ny}
L1	173 - 127 (1)	TP35.568x26x0.25	345.61	1200.03	0.288	0.00	1200.03	0.000
L2	127 - 86.5 (2)	TP43.493x34.132x0.3125	957.49	2413.78	0.397	0.00	2413.78	0.000
L3	86.5 - 42.5 (3)	TP52.02x41.7239x0.375	1824.34	4150.68	0.440	0.00	4150.68	0.000
L4	42.5 - 0 (4)	TP60.11x49.918x0.4375	3058.15	6774.75	0.451	0.00	6774.75	0.000

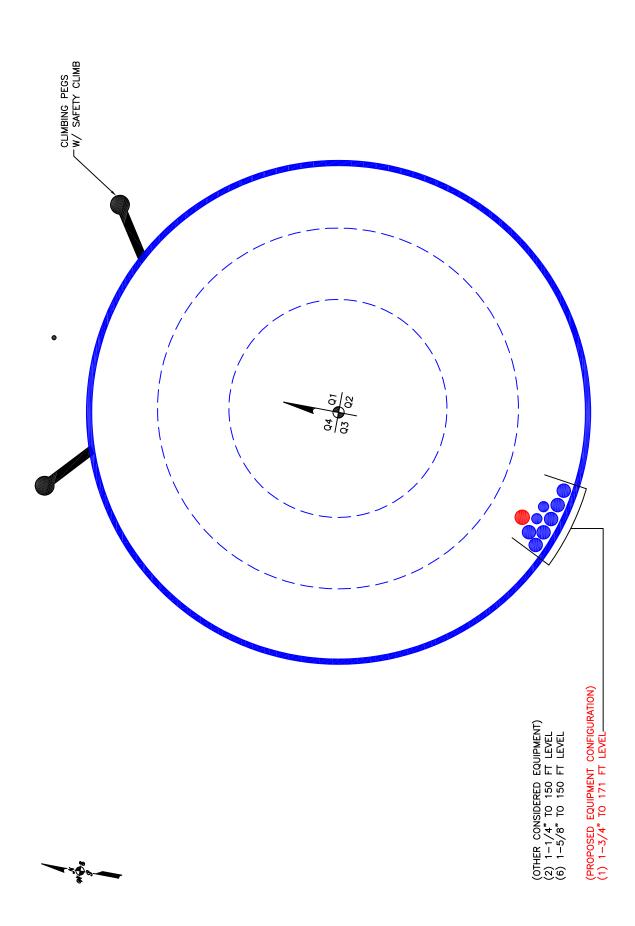
		ŀ	ole Sh	ear Des	ign Da	ıta		
Section No.	Elevation	Size	Actual V_u	ϕV_n	Ratio V_u	Actual T _u	ϕT_n	Ratio T _u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	173 - 127 (1)	TP35.568x26x0.25	13.33	441.97	0.030	0.52	1330.78	0.000
L2	127 - 86.5 (2)	TP43.493x34.132x0.3125	17.68	731.74	0.024	0.63	2693.79	0.000
L3	86.5 - 42.5 (3)	TP52.02x41.7239x0.375	22.59	1050.56	0.022	0.77	4627.12	0.000
L4	42.5 - 0 (4)	TP60.11x49.918x0.4375	27.52	1454.24	0.019	0.92	7599.60	0.000
1.4	42.3 - 0 (4)	11 00.11347.91080.4373	21.32	1434.24	0.019	0.92	1399.00	

Tower Engineering Professionals

326 Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Job		Page
	Rocky Hill 2 (BU 801366)	14 of 14
Project	TEP No. 217983.589110	Date 18:44:56 08/22/21
Client	Crown Castle	Designed by VPM

Pole Interaction Design Data


Section No.	Elevation	Ratio P_u	Ratio M_{ux}	$Ratio \ M_{uv}$	$Ratio\ V_u$	$Ratio \ T_u$	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	173 - 127 (1)	0.007	0.288	0.000	0.030	0.000	0.296	1.050	4.8.2
L2	127 - 86.5 (2)	0.007	0.397	0.000	0.024	0.000	0.405	1.050	4.8.2
L3	86.5 - 42.5 (3)	0.008	0.440	0.000	0.022	0.000	0.448	1.050	4.8.2
L4	42.5 - 0 (4)	0.010	0.451	0.000	0.019	0.000	0.461	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$^{\phi P_{allow}}_{K}$	% Capacity	Pass Fail
L1	173 - 127	Pole	TP35.568x26x0.25	1	-10.59	1546.89	28.2	Pass
L2	127 - 86.5	Pole	TP43.493x34.132x0.3125	2	-17.74	2561.11	38.5	Pass
L3	86.5 - 42.5	Pole	TP52.02x41.7239x0.375	3	-29.07	3676.97	42.7	Pass
L4	42.5 - 0	Pole	TP60.11x49.918x0.4375	4	-46.94	5089.84	43.9	Pass
							Summary	
						Pole (L4)	43.9	Pass
						RATING =	43.9	Pass

Program Version 8.1.1.0

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 147.94 ft (NAVD 88)

Risk Category: || Latitude: 41.637917

Soil Class: D - Stiff Soil Longitude: -72.673389

Wind

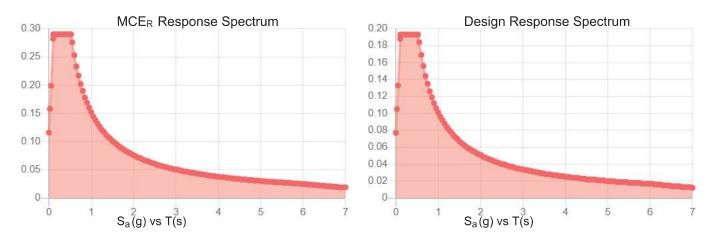
Results:

Wind Speed: 124 Vmph 125 mph as per Jurisdiction Requirement

10-year MRI 77 Vmph 25-year MRI 87 Vmph 50-year MRI 93 Vmph 100-year MRI 101 Vmph

Date Socressed: ASCE/8297202,1Fig. 26.5-1A and Figs. CC-1—CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.181	S _{DS} :	0.193	
S_1 :	0.063	S_{D1} :	0.101	
F _a :	1.6	T_L :	6	
F _v :	2.4	PGA:	0.092	
S_{MS} :	0.29	PGA _M :	0.147	
S _{M1} :	0.152	F _{PGA} :	1.6	
		l _a :	1	

Seismic Design Category B

Data Accessed: Thu Apr 29 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Thu Apr 29 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

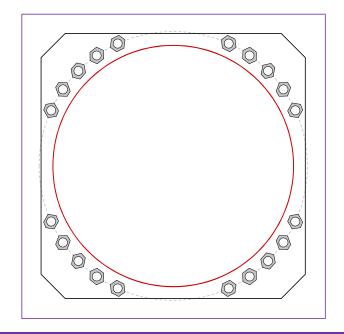
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Monopole Base Plate Connection



Site Info	
BU#	801366
Site Name	Rocky Hill 2
Order #	556647 Rev. 1

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	1

Applied Loads			
Moment (kip-ft)	3058.15		
Axial Force (kips)	46.94		
Shear Force (kips)	27.52		

^{*}TIA-222-H Section 15.5 Applied

Connection Properties Analysis Results Anchor Rod Summary Anchor Rod Data (units of kips, kip-in) (20) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 67" BC φPn_t = 243.75 Pu_t = 107.15 **Stress Rating** Anchor Spacing: 6 in Vu = 1.38 φVn = 149.1 41.9% 66" W x 3" Plate (A572-55; Fy=55 ksi, Fu=70 ksi); Clip: 6 in Stiffener Data N/A

60.11" x 0.4375" 18-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	17.4	(Flexural)
Allowable Stress (ksi):	49.5	
Stress Rating:	33.5%	Pass

CCIplate - Version 4.1.2 Analysis Date: 8/22/2021

Pier and Pad Foundation

BU # : 801366
Site Name: Rocky Hill 2
App. Number: 556647 Rev. 1

TIA-222 Revision: Tower Type:

Н	
Monopole	

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions			
Compression, P _{comp} :	46.95	kips	
Base Shear, Vu_comp:	27.5	kips	
Moment, M _u :	3058.15	ft-kips	
Tower Height, H :	173	ft	
BP Dist. Above Fdn, bp _{dist} :	3.25	in	

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier :	8	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc :	11	
Pier Rebar Quantity, mc :	40	
Pier Tie/Spiral Size, St :	5	
Pier Tie/Spiral Quantity, mt :	10	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

Pad Properties			
Depth, D :	8	ft	
Pad Width, W ₁:	26	ft	
Pad Thickness, T :	3.5	ft	
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	11		
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	31		
Pad Clear Cover, cc _{pad} :	3	in	

Material Properties				
Rebar Grade, Fy :	60	ksi		
Concrete Compressive Strength, F'c:	3	ksi		
Dry Concrete Density, δ c :	150	pcf		

Soil Properties				
Total Soil Unit Weight, γ :	120	pcf		
Ultimate Gross Bearing, Qult:	9.000	ksf		
Cohesion, Cu :	0.000	ksf		
Friction Angle, $oldsymbol{arphi}$:	33	degrees		
SPT Blow Count, N _{blows} :	24			
Base Friction, μ :				
Neglected Depth, N:	4.00	ft		
Foundation Bearing on Rock?	No			
Groundwater Depth, gw :	10	ft		

Foundation Analysis Checks					
	Capacity	Demand	Rating*	Check	
Lateral (Sliding) (kips)	388.71	27.50	6.7%	Pass	
Bearing Pressure (ksf)	6.75	2.15	30.4%	Pass	
Overturning (kip*ft)	8325.76	3299.35	39.6%	Pass	
Pier Flexure (Comp.) (kip*ft)	10917.65	3195.65	27.9%	Pass	
Pier Compression (kip)	23994.73	92.19	0.4%	Pass	
Pad Flexure (kip*ft)	7630.08	1005.18	12.5%	Pass	
Pad Shear - 1-way (kips)	945.49	147.58	14.9%	Pass	
Pad Shear - 2-way (Comp) (ksi)	0.164	0.023	13.1%	Pass	
Flexural 2-way (Comp) (kip*ft)	10768.44	1917.39	17.0%	Pass	

*Rating per TIA-222-H Section 15.5

Structural Rating*:	27.9%
Soil Rating*:	39.6%

<--Toggle between Gross and Net

Drilled Pier Foundation

CASTLE

Additional Longitudinal Rebar

Apply TIA-222-H Section 15.5: Check Limitation

Input Effective Depths (else Actual):

Shear Design Options
Check Shear along Depth of Pier:
Utilize Shear-Friction Methodology:
Override Critical Depth:

BU#: 801366
Site Name: Rocky Hill 2
Order Number: 556647 Rev. 1
TIA-222 Revison: H
Tower Type: Monopole

	Uplift				
Applied Loads	Comp.	3058,15	46.95	27.5	
Applie		Moment (kip-ft)	Axial Force (kips)	Shear Force (kips)	

Rebar 2, Fy Override (ksi)

3 ksi 60 ksi 40 ksi

	Soil Lateral Check	Compression	Uplift
	$D_{v=0}$ (ft from TOC)	6.38	1
	Soil Safety Factor	3,25	ı
	Max Moment (kip-ft)	3211.87	ı
	Rating*	39.0%	-
	Soil Vertical Check	Compression	Uplift
Rebar 3, Fy	Skin Friction (kips)	431.71	1
(ksi)	End Bearing (kips)	226.19	1
	Weight of Concrete (kips)	184.80	1
	Total Capacity (kips)	657.91	1
	(kips)	231.75	1
r Options	Rating*	33.5%	-
	Reinforced Concrete Flexure	Compression	Uplift
ole Inputs	Critical Depth (ft from TOC)	6.35	1
r Inputs	Critical Moment (kip-ft)	3211.86	ı
	Critical Moment Capacity	6924.85	ı
	Rating*	44.2%	-
	Reinforced Concrete Shear	Compression	Uplift
	Critical Depth (ft from TOC)	17.66	-
	Critical Shear (kip)	340.94	1
	Critical Shear Capacity	681.25	1
	Rating*	47.7%	•

47.7%	39.0%	
Structural Foundation Rating*	Soil Interaction Rating*	*Rating per TIA-222-H Section 15.5

Rebar & Pier Opt **Embedded Pole In** Belled Pier Inpu
 Plet Section .

 From 0.5' above grade to 27' below grade

 Pier Diameter
 8 ft

 Rebar Quantity
 24

 Rebar Size
 11

 Cover to Ties
 4 in

 Tie Size
 5

 Tie Sbacing
 18 in
 0.5 ft Pier Design Data Ext. Above Grade Pier Section 1 Concrete Strength, fc: Rebar Strength, Fy: Tie Yield Strength, Fyt: Rebar Size
Clear Cover to Ties
Tie Size
Tie Spacing Depth

Soli Prolife	# of Layers 5	
	pth 10	
	roundwater Dept	

	<i>,</i> ,	<i>,</i> ,	<i>,</i> ,	<i>,</i> ,	_
Soil Type	Cohesionless	24 Cohesionless	Cohesionless	10 Cohesionless	Cohesive
Jlt. Gross Bearing SPT Blow Capacity Count (ksf)		54	15	10	
Ult. Gross Bearing (Capacity (ksf)					9
Ultimate Skin Friction Uplift Override (ksf)	00'0				
Calculated Ultimate Skin Ultimate Skin Friction Comp Friction Uplift Override (ksf)	00'0				
Calculated Calculated Ultimate Skin Ultimate Skin Ultimate Skin Friction Comp riction Comp (ksf) (ksf) (ksf)	000'0	096 0	1.354	1.048	0.550
Calculated Ultimate Skin Friction Comp (ksf)	000'0	096'0	1.354	1.048	0.550
Angle of Friction (degrees)	0	33	33	32	0
Cohesion (ksf)	0	0	0	0	1
Y _{concrete} (pcf)	150	150	978	978	87.6
Y _{soil} (pcf)	120	120	09	09	55
Thickness (ft)	4	9	3.5	10	3.5
Bottom (ft)	4	10	13.5	23.5	26
Top (ft)	0	4	10	13.5	23.5
Layer	1	2	3	4	5

Exhibit E

Mount Analysis

Date: September 15, 2021

Kimley-Horn and Associates, Inc. 421 Fayetteville Street, Suite 600 Raleigh, NC 27601 (919) 677-2000 CrownMounts@kimley-horn.com

Subject: Mount Analysis - Conditional Passing Report

Carrier Designation: DISH Network Equipment Change-Out

Carrier Site Number: BOBDL00035A Carrier Site Name: CT-CCI-T-801366

Crown Castle Designation: BU Number: 801366

Site Name: ROCKY HILL 2

JDE Job Number: 650033

Order Number: 556647, Rev. 1

Engineering Firm Designation: Kimley-Horn Project Number: 019558056

Site Data: 1218 Cromwell Ave, Rocky Hill, Hartford County, CT 06067

Latitude 41° 38' 16.50" Longitude -72° 40' 24.20"

Structure Information: Tower Height & Type: 176 ft Monopole

Mount Elevation: 171 ft

Mount Type: 8 ft Platform w/ Support Rails

Kimley-Horn is pleased to submit this "Mount Analysis - Conditional Passing Report" to determine the structural integrity of DISH Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform w/ Support Rails

Sufficient

* See Section 4.1 for loading and structural modifications required for the mount to support the loading listed in Table 1.

This analysis utilizes an ultimate 3-second gust wind speed of 124 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Saja Alkhafaji, E.I.

Respectfully Submitted by:

Kyle Freehart, P.E.

Lic. #PEN.0034906, Exp. 01/31/2022 Kimley-Horn and Associates, Inc. COA #PEC.0000738

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

September 15, 2021 CCI BU No. 801366 Page 3

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556647, Rev. 1

1) INTRODUCTION

The mounting configuration consists of a proposed 8 ft Platform w/ Support Rails designed by CommScope.

2) ANALYSIS CRITERIA

Building Code: 2018 Connecticut State Building Code

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 124 mph

Exposure Category: С **Topographic Factor at Base:** 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 2 in Wind Speed with Ice: 50 mph Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 – Proposed Equipment Configuration

Elev	ation (ft)			Mount / Modification	
Mount	Centerline	#	Manufacturer	Model	Details
		3	Fujitsu	TA08025-B604	Draw and Off Diations w/
171	171	3	Fujitsu	TA08025-B605	Proposed 8 ft Platform w/
17.1	171	3	Jma wireless	MX08FRO665-21	Support Rails designed byCommScope
		1	Raycap	RDIDC-9181-PF-48	Commiscope

September 15, 2021 CCI BU No. 801366 Page 4

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556647, Rev. 1

3) ANALYSIS PROCEDURE

Table 2 – Documents Provided

Document	Remarks	Reference	Source
Photo	-	11/14/2019	CCISites
Mount Drawing	Commscope	MC-PK8-DSH	On File

3.1) Analysis Method

RISA-3D (version 17.02.00), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A proprietary tool internally developed by Kimley-Horn was used to calculate wind loading on all appurtenances, dishes and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Mount Analysis (Revision D).

3.2) Assumptions

- 1) The antenna mounting system (including any considered modifications) was properly fabricated, installed and maintained in good condition in accordance with its original design, TIA standards, and/or manufacturer specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the provided reference information.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members that could not be verified at this time.
- 5) Any referenced prior structural modifications to the tower mounting system are assumed to be installed as shown per available data unless noted otherwise.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate ASTM A36 (Gr. 36) HSS (Rectangular) ASTM A36 (Gr. 36) Pipe ASTM A53 (Gr. B-35) Connection Bolts ASTM A325

ASTM A36 (Gr. 36) Threaded Rods

This analysis may be affected if any assumptions are not valid or have been made in error. Kimley-Horn should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1, 2	Connections	-		44%	Pass
1, 2	Cross Arm	M62A		35%	Pass
1, 2	Stand Off Horizontals	M12		31%	Pass
1, 2	Corner Plates	M15	171	24%	Pass
1, 2	Mount Pipes	MP6		18%	Pass
1, 2	Platform Base	M48		12%	Pass
1, 2	Support Rails	M51		11%	Pass

Structure Rating (max from all components) =	44%
--	-----

Notes:

4.1) Recommendations

The mounting configuration will have sufficient capacity to carry the referenced loading once the following modifications are completed:

Install proposed Commscope MC-PK8-DSH platform.

No additional modifications are required at this time provided that the above-listed changes are completed.

¹⁾ See additional documentation in Appendix C and Appendix D for calculations supporting the % capacity consumed.

²⁾ Rating per TIA-222-H, Section 15.5.

September 15, 2021 CCI BU No. 801366 Page 6

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556647, Rev. 1

APPENDIX A WIRE FRAME AND RENDERED MODELS

	_	
i	₹	۱
ì	Ĉ	
	_	
- 1	_	J
•	α	3
-	~	
1	\	
	_	
,	ė	۲
(v	١,
ì	٦	
	÷	
1	_	1
	Ų	
!	٦.	
ı	_	J
•	α	
	◁	
	ī	
1	_	
(~	3
1	ī	
	7	ŀ
	٦	
1	_	١
	_	
•	J	
	χ	
	ά	
(X X	
	X	
	X	
	XX-XX	
	XX-XX	
	XX-XX	
0000	XX-XX	
0000	XX-XX	
000000	XX - X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
0000	XX-XXX	
000000	XX-XX	
000000	22-22-22	
00000	22-XX	
	22-23-35	
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
	22-X-30-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
	22-53-C32-C32-323-323-323-323-323-323-323-32	
	22 - 23 22 3C	
	Valora) (181) (1813 A S	
	22-23	
	- PV-PC-PC - () () () () () () () () () (
	- Luvelone). (18,10,18,3-88	
	2	
	22 - X. Y. J. (). (). (). (). Y XX	
	XX-XX(1X(1X(1X(1X(1X(1X(1X(1X(1X(1X(1X(1X(1	
	3. Sign Frydord () () () () () () () () () (
-		
	XX-XXII TUVA ODA 1	

September 15, 2021 CCI BU No. 801366 Page 7

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556647, Rev. 1

APPENDIX B SOFTWARE INPUT CALCULATIONS

General Criteria		
TIA Standard	Н	
IBC Edition	2015	
Structure Class	-	
Risk Category	II	

Site-Specific Criteria		
Exposure Category	С	
Topographic Factor, K _{zt}	1.00	
Structure Base Elev. (AMSL), z _s (ft)	147.94	
Ground Effect Factor, K _e	0.99	

Mount & Structure Criteria		
Mount Elevation (AGL) (ft) 171.00		
Structure Height (ft) 176.00		176.00
Structure Type Monopole		onopole

Constants	
Wind Direction Probability Factor, $\mathbf{K}_{\mathbf{d}}$	0.95
Gust Effect Factor, Gh	1
Shielding Factor, K _a (antenna)	0.9
Shielding Factor, K. (mount)	0.9

Wind Summary									
Basic Wind Speed w/o Ice, V (mph)	124.00								
Velocity Pressure Coeff., K _z	1.42								
Velocity Pressure, q _z (w/o Ice) (psf)	52.70								

Ice Load Summary								
Basic Wind Speed w/ Ice, V _i (mph)	50.00							
Design Ice Thick. (ASCE 7-10) , t _i (in)	1							
Velocity Pressure, qz (w/ Ice) (psf)	8.57							
Escalated Ice Thick. @ Mount, tiz (in)	2.36							

Seismic Load Summary	
Spectral Response (Short Periods), S _s	-
Spectral Response (1-Sec. Period), S ₁	-
Site Class	-
Seismic Design Category	-
Seismic Risk Category	-

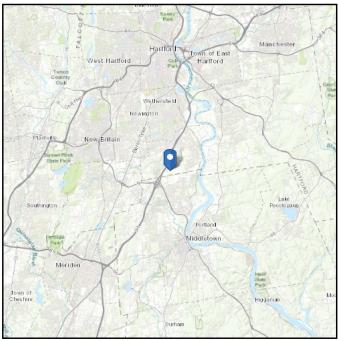
Snow Load Summary							
Ground Snow Load, pg (psf)							
Snow Load on Flat Roofs, pf (psf)	-						

Date	September 14, 2021
Client	Crown Castle
Site #	801366
Site Name	ROCKY HILL 2
Project#	19558056

	Qty	Shape	Dim	onoiono	(in)	187-1-1-4	Joint Labels							EPA (ft²)		Wind Force, F _A (lb)				
Antenna Name			Dimensions (in)			Weight (Ib)	Joint Labels							EPA (IL)		No Ice		With Ice		
			Ι	W	D	(ID)	Alp	Alpha		Beta		Gamma		lta	Front	Side	Front	Side	Front	Side
MX08FRO665-21	3	Flat	72	20	8	64,5	A1B	A1T	B1B	B1T	G1B	G1T			7,99	3,23	379,12	153,05	79,73	38,99
TA08025-B604	3	Flat	15,8	15	7,9	63,9	A1R		B1R		G1R				0,52	1,96	24,5	93,13	8,28	25,88
TA08025-B605	3	Flat	15,8	15	9,1	75	A1R2		B1R2		G1R2				0,59	1,96	28,17	93,13	9,05	25,88
RDIDC-9181-PF-48	1	Flat	16,6	14,6	8,5	21,9	RA						_		2,01	1,17	95,43	55,41	26,38	18,02

Address:

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 147.94 ft (NAVD 88)

Risk Category: || Latitude: 41.637917

Soil Class: D - Stiff Soil Longitude: -72.673389

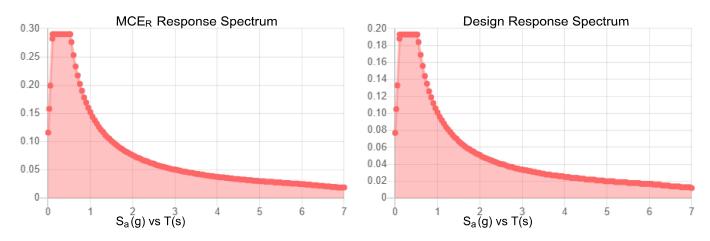
Wind

Results:

Wind Speed: 124 Vmph
10-year MRI 77 Vmph
25-year MRI 87 Vmph
50-year MRI 93 Vmph
100-year MRI 101 Vmph

Date Somessed: MS6:E/SEI 3-202 Fig. 26.5-1A and Figs. CC-1—CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.181	$S_{ extsf{DS}}$:	0.193	
S_1 :	0.063	S_{D1} :	0.101	
F _a :	1.6	T_L :	6	
F _v :	2.4	PGA:	0.092	
S _{MS} :	0.29	PGA _M :	0.147	
S _{M1} :	0.152	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Mon Sep 13 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Sep 13 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

September 15, 2021 CCI BU No. 801366 Page 8

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556647, Rev. 1

APPENDIX C SOFTWARE ANALYSIS OUTPUT

Designer : SSA Job Number : 019558056 Model Name : 801366 Sept 14, 2021 2:02 PM Checked By: ZAM

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[k/ft	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 G r.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	A913 Gr.65	29000	11154	.3	.65	.49	65	1.1	80	1.1
9	A500 GR.C	29000	11154	.3	.65	.49	46	1.6	60	1.2
10	A529 Gr. 50	29000	11154	.3	.65	.49	50	1.1	65	1.1
11	A1011-33Ksi	29000	11154	.3	.65	.49	33	1.5	58	1.2
12	A1011 36 Ksi	29000	11154	.3	.65	.49	36	1.5	58	1.2
13	A1018 50 Ksi	29000	11154	.3	.65	.49	50	1.5	65	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Ru	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	6.5"x0.37" Plate	PL6.5x0.375	Beam	None	A 1011 36 Ksi	Typical	2.438	.029	8.582	.11
2	6"x0.37" Plate	Plate 6x.37	Beam	None	A 1011 36 Ksi	Typical	2.22	.025	6.66	.097
3	L 2"x2"x1/4"	L2x2x4	Beam	None	A529 Gr. 50	Typical	.944	.346	.346	.021
4	Face Pipes(3.5x.16)	Pipe3.5x0.165	Beam	None	A500 GR.C	Typical	1.729	2.409	2.409	4.819
5	Antenna Pipes	Pipe 2.875x0.12	Beam	None	A500 GR.C	Typical	1.039	.987	.987	1.975
6	Channel(3.38x2.06)	C3.38x2.06x0	Beam	None	A 1011 36 Ksi	Typical	1.75	.715	3.026	.034
7	Square Tubing	HSS4X4X6	Beam	None	A500 GR.C	Typical	4.78	10.3	10.3	17.5
8	Handrail Connector	L6.6x4.46x0.25	Beam	None	A 1011 36 Ksi	Typical	2.703	4.759	12.473	.055
9	Handrail	PIPE_2.0	Beam	None	A500 GR.C	Typical	1.02	.627	.627	1.25
10	Mount Pipe	PIPE_2.0	Beam	None	A53 Gr.B	Typical	1.02	.627	.627	1.25

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]Lcomp bot[in]L-to	orqu K	yy Kzz	Cb	Function
1	M2	Square Tubi	47		•	Lbyy				Lateral
2	М3	L 2"x2"x1/4"	27.295			Lbyy				Lateral
3	M4	L 2"x2"x1/4"	27.295			Lbyy				Lateral
4	M5	6.5"x0.37" P	. 42			Lbyy				Lateral
5	M7	S quare Tubi	47			Lbyy				Lateral
6	M8	L 2"x2"x1/4"	27.295			Lbyy				Lateral
7	M9	L 2"x2"x1/4"	27.295			Lbyy				Lateral
8	M10	6.5"x0.37" P	. 42			Lbyy				Lateral
9	M12	S quare Tubi	47			Lbyy				Lateral
10	M13	L 2"x2"x1/4"	27.295			Lbyy				Lateral
11	M14	L 2"x2"x1/4"	27.295			Lbyy				Lateral
12	M15	6.5"x0.37" P	. 42			Lbyy				Lateral
13	M18	Face Pipes(96			Lbyy				Lateral
14	MP9	Antenna Pip	96			Lbyy				Lateral
15	MP7	Antenna Pip	96			Lbyy				Lateral
16	M25	Handrail	96			Lbyy				Lateral
17	M28	Handrail Co	42			Lbyy				Lateral
18	M29	Handrail Co	42			Lbyy				Lateral
19	M30	Handrail Co	42			Lbyy				Lateral

Designer : SSA Job Number : 019558056 Model Name : 801366 Sept 14, 2021 2:02 PM Checked By: ZAM

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu	. Куу	Kzz	Cb	Function
20	M61A	Channel(3.3	33			Lbyy						Lateral
21	M63A	Channel(3.3	33			Lbyy						Lateral
22	M60A	Channel(3.3	33			Lbyy						Lateral
23	M61B	Channel(3.3	33			Lbyy						Lateral
24	M62A	Channel(3.3	33			Lbyy						Lateral
25	M63B	Channel(3.3	33			Lbyy						Lateral
26	M75	PL 2.375x0.5	1.5									Lateral
27	MP8	Antenna Pip	96			Lbyy						Lateral
28	M48	Face Pipes(96			Lbyy						Lateral
29	MP3	Antenna Pip	96			Lbyy						Lateral
30	MP1	Antenna Pip	96			Lbyy						Lateral
31	M51	Handrail	96			Lbyy						Lateral
32	M62	Face Pipes(96			Lbyy						Lateral
33	MP6	Antenna Pip	96			Lbyy						Lateral
34	MP4	Antenna Pip	96			Lbyy						Lateral
35	M65A	Handrail	96			Lbyy						Lateral
36	MP2	Antenna Pip	96			Lbyy						Lateral
37	MP5	Antenna Pip	96			Lbyy						Lateral
38	M101	Mount Pipe	36			Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	P oint	DistributedArea (Me	.Surface(
1	Dead	DL			-1	13			
2	Dead of Ice	RL				13		38	
4	Structure Wind (0)	None						76	
5	Structure Wind (30)	None						76	
6	Structure Wind (45)	None						76	
7	Structure Wind (60)	None						76	
8	Structure Wind (90)	None						76	
9	Structure Wind (120)	None						76	
10	Structure Wind (135)	None						76	
11	Structure Wind (150)	None						76	
12	Structure Wind w/ Ice (0)	None						76	
13	Structure Wind w/ Ice (30)	None						76	
14	Structure Wind w/ Ice (45)	None						76	
15	Structure Wind w/ Ice (60)	None						76	
16	Structure Wind w/ Ice (90)	None						76	
17	S truc ture Wind w/ Ice (120)	None						76	
18	S truc ture Wind w/ Ice (135)	None						76	
19	S truc ture Wind w/ Ice (150)	None						76	
20	Antenna Wind (0)	None				26			
21	Antenna Wind (30)	None				26			
22	Antenna Wind (45)	None				26			
23	Antenna Wind (60)	None				26			
24	Antenna Wind (90)	None				26			
25	Antenna Wind (120)	None				26			
26	Antenna Wind (135)	None				26			
27	Antenna Wind (150)	None				26			
28	Antenna Wind w/ Ice (0)	None				26			
29	Antenna Wind w/ Ice (30)	None				26			

Designer : SSA Job Number : 019558056 Model Name : 801366 Sept 14, 2021 2:02 PM Checked By: ZAM

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	P oint	Distributed	dArea (Me	Surface(
30	Antenna Wind w/ Ice (45)	None				26				
31	Antenna Wind w/ Ice (60)	None				26				
32	Antenna Wind w/ Ice (90)	None				26				
33	Antenna W ind w/ lce (120)	None				26				
34	Antenna W ind w/ lce (135)	None				26				
35	Antenna W ind w/ lce (150)	None				26				
36	Maintenance Live Lm (1)	OL1				1				
41	Maintenance Live Lv (1)	OL6					1			

Load Combinations

	Des cription	Sc	oP	SRSSE	3LC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
1	Summary: 1.0D + 1.	.Y e	es Y		DL	1	20	1																
2	1.4D	Υe	es Y		DL	1.4																		
3	1.2D + 1.0W(0)	Υe	es Y		DL	1.2	4	1	20	1														
4	1.2D + 1.0W(30)	Υe	es Y		DL	1.2	5	1	21	1														
5	1.2D + 1.0W(45)	Υe	es Y		DL	1.2	6	1	22	1														
6	1.2D + 1.0W(60)	Υe	es Y		DL	1.2	7	1	23	1														
7	1.2D + 1.0W(90)				DL	1.2	8	1	24	1														
8	1.2D + 1.0W(120)				DL	1.2	9	1	25	1														
9	1.2D + 1.0W(135)				DL	1.2		1	26	1														
10	1.2D + 1.0W(150)				DL	1.2	11	1	27	1														
11	1.2D + 1.0W(180)				DL	1.2	4	-1	20															
12	1.2D + 1.0W(210)	Ye			DL	1.2	5	-1	21	-1														
13	\ /	Υe	<u> </u>		DL	1.2	6	-1	22	-1														
14	1.2D + 1.0W(240)				DL	1.2	7	-1	23	-1														
15	1.2D + 1.0W(270)				DL	1.2	8	-1	24	-1														
16			es Y		DL	1.2	9	-1	25															
17	1.2D + 1.0W(315)	_	_		DL	1.2		-1	26															
18			es Y		DL	1.2		-1	27	-1														
19	1.2D + 1.0Di + 1.0	_			DL	1.2		1	12	1	28	1												
20	1.2D + 1.0Di + 1.0				DL	1.2		1	13	1	29	1												
21	1.2D + 1.0Di + 1.0				DL			1	14	1	30	1												
22	1.2D + 1.0Di + 1.0				DL	1.2		1	15		31	1												
23	1.2D + 1.0Di + 1.0				DL	1.2		1	16		32	1												
24	1.2D + 1.0Di + 1.0	_	_		DL	1.2		1	17	1	33	1												
25	1.2D + 1.0Di + 1.0				DL			1	18		34	1												
26	1.2D + 1.0Di + 1.0				DL	1.2	RL	1	19		35	1												
27	1.2D + 1.0Di + 1.0				DL		RL	1	12	-1	28													
28	1.2D + 1.0Di + 1.0				DL	1.2		1	13	_	39													
29	1.2D + 1.0Di + 1.0			-	DL	1.2		1	14		30	-1												
30	1.2D + 1.0Di + 1.0				DL	1.2		1	15		31	-1												
31	1.2D + 1.0Di + 1.0				DL	1.2		1	16	-1	32	-1												
32	1.2D + 1.0Di + 1.0				DL	1.2	RL	1	17	-1	33	-1												
33	1.2D + 1.0Di + 1.0				DL	1.2		1	18		34	-1												
34	1.2D + 1.0Di + 1.0				DL	1.2		1	19		35													
35	1.2D + 1.5Lm(1) +				DL	1.2	4			.059														
36	1.2D + 1.5Lm(1) +		_		DL	1.2		.059		.059														
37	1.2D + 1.5Lm(1) +				DL	1.2	6			.059														
38	1.2D + 1.5Lm(1) +				DL	1.2	7			.059														
39	1.2D + 1.5Lm(1) +	.Υ ϵ	es Y		DL	1.2	8	.059	24	.059	OL1	1.5												

Designer : SSA Job Number : 019558056 Model Name : 801366 Sept 14, 2021 2:02 PM Checked By: ZAM

Load Combinations (Continued)

	Des cription	SoP	SRSSBLC Fac.	BLC Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLCI	ac	BLC	Fac	BLC	Fac	BLC	Fac
40	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	9 .05	9 25	.059	OL1	1.5												
41	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	10 .05	9 26	.059	OL1	1.5												
42	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	11 .05	9 27	.059	OL1	1.5												
43	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	40	9 20	059	OL1	1.5												
44	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	50	9 21	059	OL1	1.5												
45	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	60	9 22	059	OL1	1.5												
46	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	70	9 23	059	OL1	1.5												
47	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	80	9 24	059	OL1	1.5												
48	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	90	9 25	059	OL1	1.5												
49	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2																	
50	1.2D + 1.5Lm(1)	+Yes Y	DL 1.2	110	9 27	059	OL1	1.5												
51	1.2D + 1.5Lv(1) +	- 1Yes Y	DL 1.2	4 .05	9 20	.059	OL6	1.5												
52	1.2D + 1.5Lv(1) +		DL 1.2	5 .05	9 21	.059	OL6	1.5												
53	1.2D + 1.5Lv(1) +	- 1Yes Y	DL 1.2	6 .05	9 22	.059	OL6	1.5												
54			DL 1.2	7 .05	9 23	.059	OL6	1.5												
55	1.2D + 1.5Lv(1) +	- 1 <mark>.Yes Y</mark>	DL 1.2	8 .05	9 24	.059	OL6	1.5												
56	1.2D + 1.5Lv(1) +		DL 1.2			.059														
57	1.2D + 1.5Lv(1) +		DL 1.2																	
58	1.2D + 1.5Lv(1) +	- 1Yes Y	DL 1.2	11 .05	9 27	.059	OL6	1.5												
59	1.2D + 1.5Lv(1) +		DL 1.2																	
60	1.2D + 1.5Lv(1) +		DL 1.2																	
61	1.2D + 1.5Lv(1) +	- 1Yes Y		60																
62	1.2D + 1.5Lv(1) +		DL 1.2																	
63	1.2D + 1.5Lv(1) +		DL 1.2																	
64	1.2D + 1.5Lv(1) +		DL 1.2																	
65	1.2D + 1.5Lv(1) +		DL 1.2																	
66	1.2D + 1.5Lv(1) +	- 1Yes Y	DL 1.2	110	9 27	059	OL6	1.5												

Envelope Joint Reactions

	Joint		X [b]	LC	Y [b]	LC	Z [l b]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	P24	max	1340.35	18	1098.987	16	2418.858	30	249	6	.095	6	2.617	18
2		min	-1341.296	10	-1100.744	8	219.334	6	-6.31	30	-2.885	46	-2.606	10
3	P13	max	783.376	3	1572.063	15	2363.247	19	1.054	31	6.566	19	2.565	7
4		min	-792.842	11	-1572.446	7	209.609	11	.12	8	.162	11	-2.553	15
5	P1	max	1566.027	3	1008.054	15	2479.894	24	5.058	24	207	16	2.543	12
6		min	-1556.816	11	-1004.733	7	238.496	16	046	16	-3.988	24	-2.55	4
7	Totals:	max	3660.578	3	3621.736	15	6919.712	30						
8		min	-3660.568	11	-3621.721	7	1638.84	1						

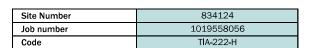
Envelope AISC 15th (360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear Che	Lo	Dir	LC	phi*Pnc[l b]	phi*Pnt[lb]	phi*Mn y-y	.phi*Mn z	. Cb	Eqn
1	M62A	C3.38x2.0	.368	0	29	.070	28	у	21	47760.074	56700	2.203	5.752	1.637	H1-1b
2	M61A	C3.38x2.0	.352	0	24	.067	28	у	31	47760.074	56700	2.203	5.752	1.64	H1-1b
3	M60A	C3.38x2.0	.351	0	19	.068	28	у	26	47760.074	56700	2.203	5.752	1.636	H1-1b
4	M12	HSS4X4X6	.329	47	32	.097	23	у	27	184705.362	197892	22.046	22.046	2.038	H1-1b
5	M7	HSS4X4X6	.322	47	22	.100	23	У	32	184705.361	197892	22.046	22.046	2.045	H1-1b
6	M2	HSS4X4X6	.311	47	27	.098	40	у	23	184705.362	197892	22.046	22.046	2.096	H1-1b
7	M63A	C3.38x2.0	.307	0	25	.048	0	у	34	47760.074	56700	2.203	5.752	1.655	H1-1b
8	M63B	C3.38x2.0	.297	0	31	.046	0	у	23	47760.074	56700	2.203	5.752	1.655	H1-1b

Designer : SSA Job Number : 019558056 Model Name : 801366 Sept 14, 2021 2:02 PM Checked By: ZAM

Envelope AISC 15th (360-16): LRFD Steel Code Checks (Continued)

	Member	r Shape	Code Check	Loc[in]	LC	Shear Che.	.Lo	Dir	LC	phi*Pnc[l b]	phi*Pnt [lb]	phi*Mn y-y	.phi*Mn z	Cb	Eqn
9	M61B	C3.38x2.0	.293	0	20	.048	0	У	29	47760.074	56700	2.203	5.752	1.663	H1-1b
10	M10	PL6.5x0.375	.254	21	3	.162	36	У	31	3658.14	78975	.617	8.194	1.458	H1-1b
11	M15	PL6.5x0.375	.245	21	14	.114	21	У	29	3658.14	78975	.617	8.165	1.453	H1-1b
12	M5	PL6.5x0.375	.238	21	9	.131	36	У	19	3658.14	78975	.617	8.03	1.429	H1-1b
13	M8	L2x2x4	.236	0	4	.015	0	У	12	29527.563	42480	.96	2.19	2.236	H2-1
14	M13	L2x2x4	.224	0	15	.014	0	У	7	29527.562	42480	.96	2.19	2.251	H2-1
15	M75	PL 2.375x	.220	1.5	3	.308	0	У	22	38256.871	38475	.401	1.904	1.665	H1-1b
16	M3	L2x2x4	.218	0	10	.014	0	У	17	29527.563	42480	.96	2.19	2.243	H2-1
17	MP6	Pipe 2.875	.191	42.442	9	.062	42		8	22398.073	42998.495	3.144	3.144	2.069	H1-1b
18	MP9	Pipe 2.875	.182	42.442	4	.092	42		3	22398.073	42998.495	3.144	3.144	1.766	H1-1b
19	MP3	Pipe 2.875	.179	42.442	7	.071	42		15	22398.073	42998.495	3.144	3.144	1.96	H1-1b
20	MP8	Pipe 2.875	.170	42.442	4	.052	42		12	22398.073	42998.495	3.144	3.144	2.017	H1-1b
21	MP2	Pipe 2.875	.163	42.442	15	.055	42		7	22398.073	42998.495	3.144	3.144	1.947	H1-1b
22	M14	L2x2x4	.162	0	5	.027	0	Z	21	29527.563	42480	.96	2.19	2.266	H2-1
23	MP5	Pipe 2.875	.156	42.442	10	.060	42		18	22398.073	42998.495	3.144	3.144	1.997	H1-1b
24	M4	L2x2x4	.153	0	16	.026	0	Z	32	29527.562	42480	.96	2.19	2.245	H2-1
25	MP4	Pipe 2.875	.151	42.442	18	.056	42		11	22398.073	42998.495	3.144	3.144	2.109	H1-1b
26	M9	L2x2x4	.143	0	11	.027	27	у	31	29527.563	42480	.96	2.19	2.237	H2-1
27	MP1	Pipe 2.875	.142	42.442	7	.060	42		8	22398.073	42998.495	3.144	3.144	1.972	H1-1b
28	MP7	Pipe 2.875	.136	42.442	12	.063	42		14	22398.073	42998.495	3.144	3.144	1.938	H1-1b
29	M62	Pipe3.5x0	.130	31.326	3	.047	92		33	45873.009	71580.6	6.338	6.338	2.088	H1-1b
30	M48	Pipe3.5x0	.130	31.326	8	.041	92		22	45873.009	71580.6	6.338	6.338	2.356	H1-1b
31	M18	Pipe3.5x0	.130	31.326	14	.043	92		27	45873.009	71580.6	6.338	6.338	1.743	H1-1b
32	M25	PIPE 2.0	.120	6.063	12	.046	92		8	15369,683	42228	2.46	2.46	1.731	H1-1b
33	M65A	PIPE 2.0	.118	6.063	18	.050	5		3	15369.683	42228	2.46	2.46	1.784	H1-1b
34	M51	PIPE 2.0	.116	6.063	7	.047	5		8	15369.683	42228	2.46	2.46	1.688	H1-1b
35	M29	L6.6x4.46x	.109	41.779	18	.014	0	У	27	51170.949	87561	2.465	7.125	1.136	H2-1
36	M30	L6.6x4.46x	.098	41.779	7	.013	42	Z	16	51170.949	87561	2.465	7.125	1.136	H2-1
37	M28	L6.6x4.46x	.095	41.779	12	.013	0	У	23	51170.949	87561	2.465	7.125	1.136	H2-1
38	M101	PIPE_2.0	.064	18	3	.033	18		10	28843.414	32130	1.872	1.872	1.648	H1-1b


September 15, 2021 CCI BU No. 801366 Page 9

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556647, Rev. 1

APPENDIX D ADDITIONAL CALCULATIONS

Square/Rectangular Flange Connection

TIA-222-H

REACTIONS		
Moment, Mu (kip-ft)	6.738	About λ
Axial, Pu (kips) - Negative for tension	-0.220	
Shear, Vu (kips)	2.418	

BOLT CONFIGURATION	
Bolt Quantity, n _b	4
Bolt Diameter, d _b (in)	0.625
Bolt Grade	A325
Width between bolts, s (in)	7.00

PLATE CONFIGURATION	
Plate Grade	A572-50
Thickness of plate, t (in)	0.750
Width of plate, w (in)	9.00

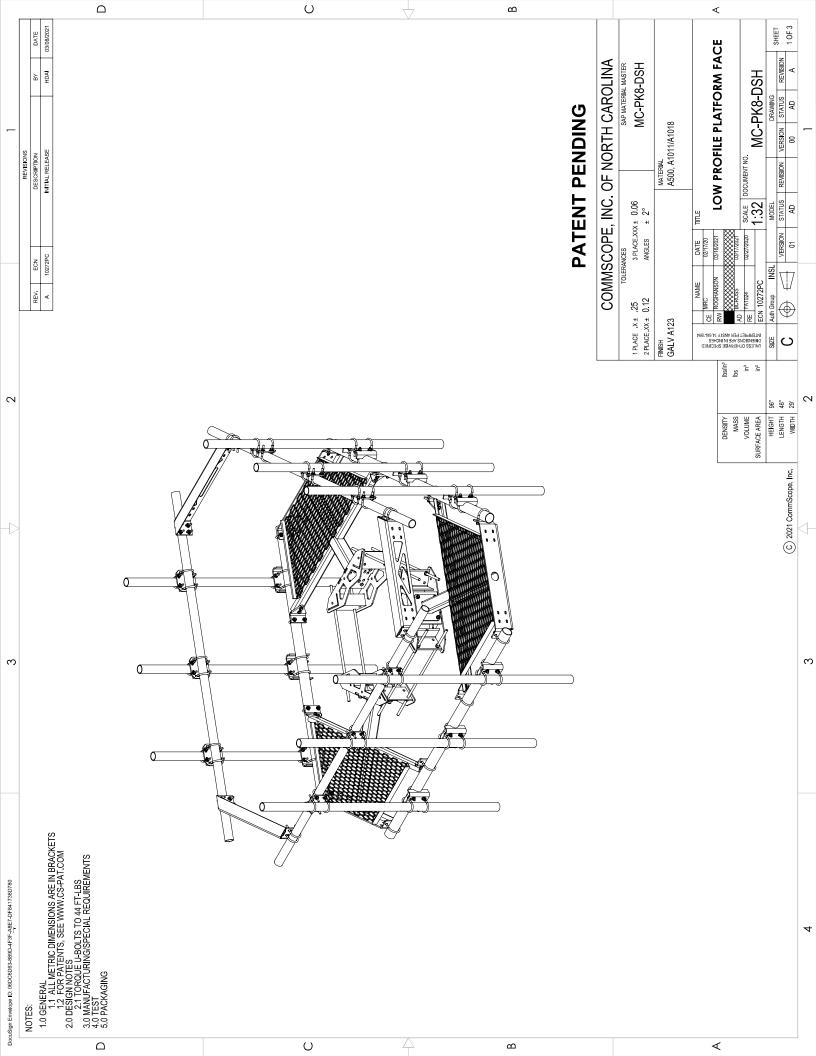
SUPPORT ARM CONFIGURATION	
Member Shape	Square
Member Grade	A500-46
Thickness of Member, t (in)	0.375
Width of member, w (in)	4.000

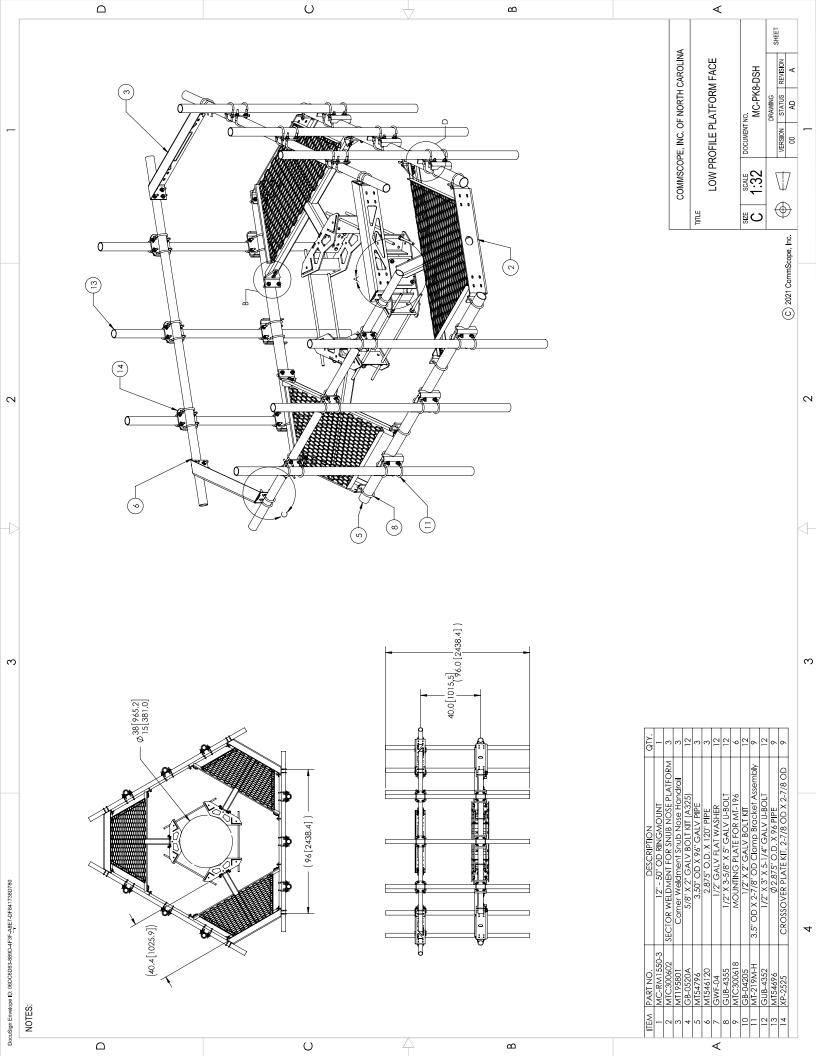
Stiffeners present?	130
---------------------	-----

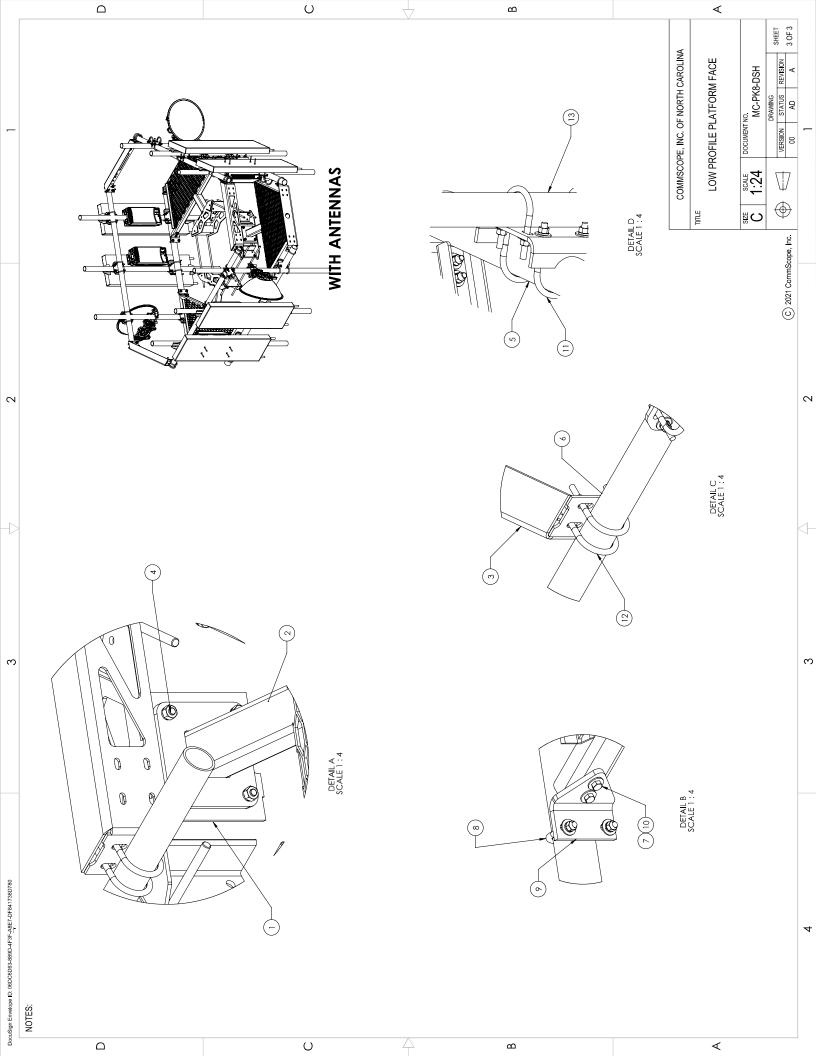
Member/Node Under Consideration	P24
Controlling Load Combination	30

	Normalize usages	per TIA-222-H, Sec. 15.5
--	------------------	--------------------------

BOLT USAGE	
Maximum Tension in Bolt, Tub (kip)	8,223
Nominal Tensile Strength, φRnt (kip)	20.340
Tensile Usage (Section 4.9.6.1)	40%


PLATE USAGE	
Ultimate flexural load in plate, Mu (kip-in)	13.097
Factored flexural capacity, φMn (kip-in)	28.430
Flexural Usage	46%


SUPPORT ARM USAGE	
Ultimate flexural load in member, Mu (kip-ft)	6.738
Factored flexural capacity, φMn (kip-ft)	25.592
Flexural Usage	26%


September 15, 2021 CCI BU No. 801366 Page 10

8 ft Platform w/ Support Rails Mount Analysis - Conditional Passing Order 556647, Rev. 1

APPENDIX E SUPPLEMENTAL DRAWINGS

Certificate Of Completion

Envelope Id: 06DC6D63889D4F3FA8E7DF841738D780 Status: Completed

Subject: Please DocuSign: 801366_556647_Rev.1_Conditional_DISH Network_171ft_MM.DD.2021_signed.pdf

Source Envelope:

Document Pages: 25 Signatures: 1 **Envelope Originator:** Initials: 0 Certificate Pages: 1 Manuel JaraPerez AutoNav: Enabled 401 Fayetteville St.

Suite 600

Envelopeld Stamping: Enabled Time Zone: (UTC-05:00) Eastern Time (US & Canada) Raleigh, NC 27601

Manuel.JaraPerez@kimley-horn.com

IP Address: 208.127.231.172

Sent: 9/15/2021 5:36:10 PM

Viewed: 9/15/2021 5:41:37 PM

Signed: 9/15/2021 5:41:40 PM

Record Tracking

Status: Original Holder: Manuel JaraPerez Location: DocuSign

Manuel.JaraPerez@kimley-horn.com 9/15/2021 5:29:19 PM

Signer Events Timestamp Signature

Kyle Freehart Kyle Freehart kyle.freehart@kimley-horn.com

D8BEE252A3804C1... Kimley-Horn

Security Level: Email, Account Authentication Signature Adoption: Pre-selected Style (None)

Using IP Address: 208.127.231.172

Electronic Record and Signature Disclosure:

Not Offered via DocuSign

Payment Events	Status	Timestamps
Completed	Security Checked	9/15/2021 5:41:40 PM
Signing Complete	Security Checked	9/15/2021 5:41:40 PM
Certified Delivered	Security Checked	9/15/2021 5:41:37 PM
Envelope Sent	Hashed/Encrypted	9/15/2021 5:36:11 PM
Envelope Summary Events	Status	Timestamps
Notary Events	Signature	Timestamp
Witness Events	Signature	Timestamp
Carbon Copy Events	Status	Timestamp
Certified Delivery Events	Status	Timestamp
Intermediary Delivery Events	Status	Timestamp
Agent Delivery Events	Status	Timestamp
Editor Delivery Events	Status	Timestamp
In Person Signer Events	Signature	Timestamp

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBDL00035A

801366 1218 Cromwell Avenue Rocky Hill, Connecticut 06067

October 5, 2021

EBI Project Number: 6221005705

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	4.68%

October 5, 2021

Dish Wireless

Emissions Analysis for Site: BOBDL00035A - 801366

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 1218 Cromwell Avenue in Rocky Hill, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 1218 Cromwell Avenue in Rocky Hill, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) A conservative roof attenuation factor of 10 dB, in which a radiofrequency signal is reduced by a factor of 10 due to intervening roof building materials, was also included. For purposes of this analysis, it is assumed that the roof building material is comprised of a poured concrete and steel underlayment with a rubber fabric roof membrane.
- 6) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 171 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	I7I feet	Height (AGL):	I7I feet	Height (AGL):	171 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.51	ERP (W):	3,065.51	ERP (W):	3,065.51
Antenna A1 MPE %:	0.58%	Antenna BI MPE %:	0.58%	Antenna C1 MPE %:	0.58%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	0.58%			
Verizon	3.96%			
Metricom	0.14%			
Site Total MPE % :	4.68%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	0.58%			
Dish Wireless Sector B Total:	0.58%			
Dish Wireless Sector C Total:	0.58%			
Site Total MPE % :	4.68%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	171.0	1.18	600 MHz n71	400	0.30%
Dish Wireless 1900 MHz n70	4	542.70	171.0	2.87	1900 MHz n70	1000	0.29%
						Total:	0.58%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	0.58%		
Sector B:	0.58%		
Sector C:	0.58%		
Dish Wireless			
Maximum MPE %	0.58%		
(Sector A):			
Site Total:	4.68%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **4.68**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

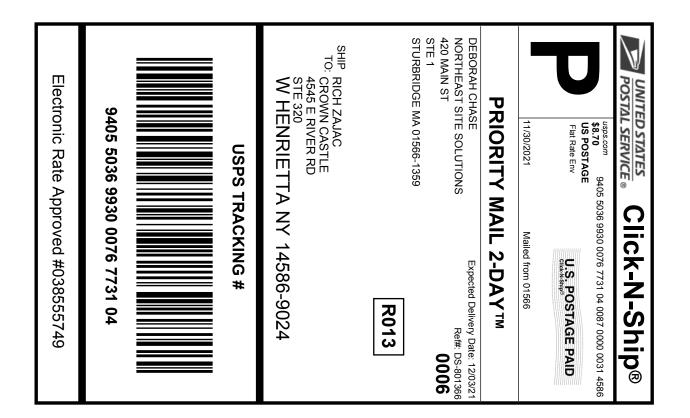
Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 1218 CROMWELL AVE, ROCKY HILL, CT 06067


CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 801366/ROCKY HILL 2 Customer Site ID: BOBDL00035A/CT-CCI-T-801366 Site Address: 1218 Cromwell Ave, Rocky Hill, CT 06067

Crown	Castle		
Ву:	Richard Zajac Site Acquisition Specialist	Date:	10/15/2021

Exhibit:

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0076 7731 04

549524137 11/30/2021 Trans. #: Print Date: Ship Date: 11/30/2021 12/03/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

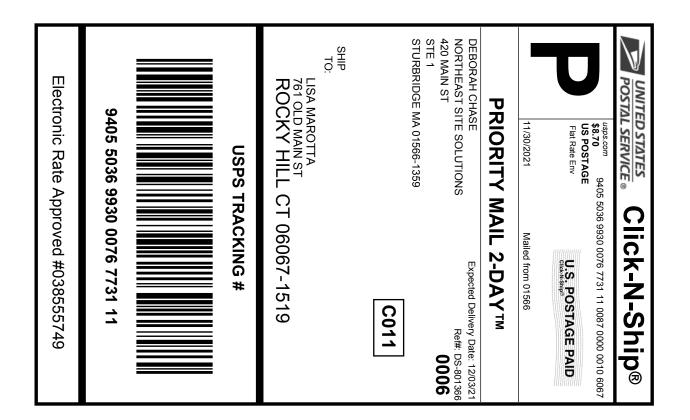
Ref#: DS-801366 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC CROWN CASTLE

4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0076 7731 11

549524137 11/30/2021 Trans. #: Print Date: Ship Date: 11/30/2021 12/03/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

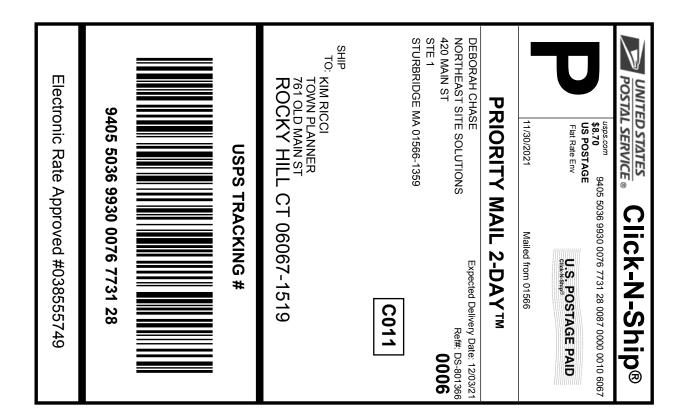
Ref#: DS-801366

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

LISA MAROTTA

761 OLD MAIN ST

ROCKY HILL CT 06067-1519

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0076 7731 28

549524137 11/30/2021 Trans. #: Print Date: Ship Date: 11/30/2021 12/03/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

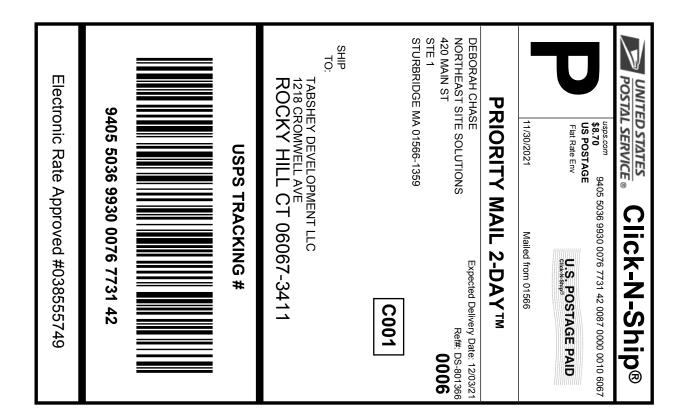
Ref#: DS-801366

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

KIM RICCI

TOWN PLANNER 761 OLD MAIN ST

ROCKY HILL CT 06067-1519

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0076 7731 42

549524137 11/30/2021 Trans. #: Print Date: Ship Date: 11/30/2021 12/03/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

Ref#: DS-801366

From: DEBORAH CHASE NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

TABSHEY DEVELOPMENT LLC

1218 CROMWELL AVE ROCKY HILL CT 06067-3411

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

801366

GREENDALE 290 W BOYLSTON ST WORCESTER, MA 01606-2378 (800)275-8777

WORCESTER, MA 01606-2378 (800)275-8777					
01/28/2022			12	:42 PM	
	Qty	Unit Price		Price	
Prepaid Mail West Henrietta, Weight: 0 lb 2 Acceptance Date Fri 01/28/20 Tracking #: 9405 5036 9	: 022			\$0.00	
Prepaid Mail Rocky Hill, CT Weight: 0 lb 1 Acceptance Date Fri 01/28/2 Tracking #: 9405 5036 9	06067 4.20 o : 022		11	\$0.00	
Prepaid Mail Rocky Hill, CT Weight: O lb 1 Acceptance Date Fri 01/28/2 Tracking #: 9405 5036 9	06067 4.10 c : :022		42	\$0.00	
Prepaid Mail Rcoky Hill, CT Weight: O lb 1 Acceptance Date Fri Ol/28/2 Tracking #: 9405 5036 S	14.10 (e: 2022		. 28	\$0.00	
Grand Total:	the state and specials and	the tree was also also like the		\$0.00	