56 Prospect Street,
P.O. Box 270

Hartford, CT 06103

Kathleen M. Shanley Manager - Transmission Siting Tel: (860) 728-4527

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
 Eversource Site Ridgefield 22N
 Off Prospect Street, Ridgefield, CT 06877
 Latitude: 41-17-00.6 N / Longitude: 73-29.16.3 W

Dear Ms. Bachman:

The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") currently maintains multiple antennas and equipment at various mounting heights on an existing 84foot steel monopole tower located off Prospect Street in Ridgefield. See Attachment A, Parcel Map and Property Card. The tower and property are owned by Eversource. Eversource is seeking the Connecticut Siting Council's authorization for the installation of one 15 -foot 6 -inch tall omni-directional antenna to be mounted at 83 feet above ground level ("AGL") and the removal of two omni-directional antennas, one upright and one inverted. There will be no other changes to the area of the fenced compound, the tower or the existing antennas and other equipment currently mounted on the tower. The antenna will be mounted to the existing tower on a new 4 -foot stand-off mount. See Attachment B, Mount Analysis, dated August 12, 2021. The tower and existing and proposed equipment on the tower are depicted on Attachment C, Construction Drawings, dated August 17, 2021 and Attachment D, Structural Analysis, dated July 29, 2021. The Connecticut Siting Council approved the monopole at this location in Petition No. 1054 in January 2013.

The modification is required to eliminate transmitter induced noise issues from two antennas previously installed as part of Eversource's program to update its obsolete analog voice radio communications system to a modern digital voice communications system (refer to EM-EVER-118200724, dated August 17, 2020). The transmitter issue manifests as passive intermodulation, or PIM, noise located on the receive frequencies, which limits the system level coverage capability of the site.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies ("R.C.S.A.") §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this notice is being delivered to Rudy Marconi, First Selectman for the Town of Ridgefield and Richard Baldelli, Director of Planning \& Zoning
for the Town of Ridgefield via the United States Postal Service or private carrier. Proof of delivery is attached. See Attachment E, Proof of Delivery of Notice.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2):

1. There will be no change to the height of the existing tower.
2. The modifications will not require the extension of the site boundary.
3. The modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the new antenna will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard as shown in the attached Radio Frequency Emissions Report, dated August 18, 2021 (Attachment F - Power Density Report) ${ }^{1}$.
5. The modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Eversource respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2). One original and two copies of this notice and a check in the amount of $\$ 625$ are enclosed.

Communications regarding this Notice of Exempt Modification should be directed to Kathleen Shanley at (860) 728-4527.

By:

Manager - Transmission Siting
cc: Honorable Rudy Marconi, First Selectman, Town of Ridgefield
Richard Baldelli, Director of Planning \& Zoning, Town of Ridgefield

Attachments
A. Parcel Map and Property Card
B. Mount Analysis
C. Construction Drawings
D. Structural Analysis
E. Proof of Delivery of Notice
F. Power Density Report

[^0]ATTACHMENT A - PARCEL MAP AND PROPERTY CARD

ES-286 Ridgefield22N Parcel

2/20/2020 8:34:14 AM
Scale: $1^{\prime \prime=188 '}$
Scale is approximate

The information depicted on this map is for planning purposes only It is not adequate for legal boundary definition, regulatory interpretation, or parcel-level analyses.

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2017.

Ridgefield Connecticut

Ridgefield Town Hall 400 Main Street Ridgefield, CT 06877 Phone: 203.431 .2700
Fax: 203.431 .2722

Information on the Property Records for the Municipality of Ridgefield was last updated on 2/17/2020.

Parcel Information

Location:	SUNSET LA	Property Use:	Vacant Land	Primary Use:	Residential
Unique ID:	F150054	Map Block Lot:	F15-0054	Acres:	2.30
490 Acres:	0.00	Zone:	RAA	Volume /	Page:

Value Information

	Appraised Value	Assessed Value
Land	98,900	69,230
Buildings	0	0
Detached Outbuildings	0	0
Total	98,900	69,230

ATTACHMENT B - MOUNT ANALYSIS

MOUNT EVALUATION LETTER

Site Number:	848
Site Name:	THOMPSON CSP
Site Data:	97 Mountain Hill Road
	Thompson, CT 06255
Latitude:	$41^{\circ} 59^{\prime} 11.76^{\prime \prime}$
Longitude:	$-71^{\circ} 54^{\prime} 49.11^{\prime \prime}$

Black \& Veatch Corporation is pleased to submit this "Mount Evaluation Letter" to determine the structural integrity of antenna mounting system on the above-mentioned site. The purpose of this evaluation is to determine the capacity of the system in supporting the final loading in the attached "Loading Summary".

Based on our evaluation we have determined the proposed antenna mounting system to be:

SUFFICIENT

Structure Rating (max from all components) =
17.2\%

Proposed Mounting System

SitePro 1 (USF-4U) 48" Ultimate Universal Stand-off Frame

This analysis analyzes the worst-case scenario for the proposed USF-4U Stand-off Frame. All levels are deemed sufficient. The proposed mounting system will be capable of supporting the proposed equipment, under the following conditions:

- Contractor shall be responsible for the means and methods of construction.
- Contractor shall inspect the condition of all existing and proposed structural members, all relevant members and connections and report any deficiencies to the engineer prior to installation of any new antennas and other equipment.

The scope of this evaluation pertains only to the proposed antenna mounting system and does not include examination of the loads imparted by the antenna mounting system to the existing tower and its structural components. This document was prepared based on information provided to Black \& Veatch. If existing conditions do not reflect those represented, this analysis is no longer valid.

Please contact Josh Riley in our Overland Park Office
at 913-458-2522 if you have any questions or comments.

Sincerely,
Black \& Veatch Corporation

Prepared By: Shaun Donley Submitted By: Josh Riley, P.E.

TABLE OF CONTENTS

1. LOADING SUMMARY
2. ANALYSIS CRITERIA SUMMARY
3. REFERENCES
4. ASSUMPTIONS
5. RESULTS SUMMARY

APPENDICES

APPENDIX 1: MOUNT ANALYSIS REPORT

APPENDIX 2: RISA PRINTOUTS

APPENDIX 3: ATTACHMENTS

1. LOADING SUMMARY

Appurtenance								
Carrier	Position	Sector	Antenna RAD Center (ft)	Mount Centerline (ft)	Qty	Type	Manufacturer	Model
Eversource	1	-	157	154	1	Omni	Telewave	ANT220F2
Eversource	1	-	134	131	1	Dipole	COMPROD	871F-70-2

This analysis analyzes the worst-case scenario for the proposed USF-4U Stand-off Frame. All levels are deemed sufficient

2. ANALYSIS CRITERIA SUMMARY

ANALYSIS CRITERIA	
STANDARD	TIA-222-H
WIND SPEED	Ultimate of 140 mph
WIND SPEED WITH ICE	50 mph with 2" radial ice thickness
EXPOSURE CATEGORY	B
RISK CATEGORY	III
TOPO CATEGORY	Hill
CREST HEIGHT	110 ft

3. REFERENCES

- American Institute of Steel Construction, AISC 15th Edition
- Telecommunications Industry Association Standard, TIA-222-H \& 2018 Connecticut State Building Code
- Antenna Mount Assembly Drawing (Model: USF-4U) by SitePro 1, dated 02/16/2011

4. ASSUMPTIONS

This analysis may be affected if any assumptions are not valid or have been made in error. Black \& Veatch should be notified to determine the effect on the structural integrity of the antenna mounting system.

- The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- The configuration of antennas, mounts, and other appurtenances are as specified in the Loading Summary and the referenced drawings.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- Sector frame center line: located equidistant between top \& bottom boom; Platform center line: located at the base perimeter of platform, unless otherwise specified.
- Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate
HSS (Rectangular)
Pipe
Connection Bolts

ASTM A36 (GR 36)
ASTM 500 (GR B-46)
ASTM A53 (GR B-35)
ASTM A325

5. RESULTS SUMMARY

Name	Bending Stress Ratio		Shear Stress Ratio	
Arm: HSS3X3X3	12.8%	Pass	2.8%	Pass
Bracing: Pipe 2.0 Std	17.2%	Pass	2.2%	Pass
Mount Pipe: Pipe 3.0 Std	8.7%	Pass	3.8%	Pass

[^1]**Capacity rating per TIA-222-H Section 15.5.

APPENDIX 1:

 MOUNT ANALYSIS REPORTClient: Eversource
Computed By: Shaun Donley
Site Name: THOMPSON CSP (848) Date: 8/16/2021
Verified By: JJ
BLACK \& VEATCH
Title: MOUNT ANALYSIS REPORT

Dead and Live Loads

Maintenance Live Load: $\quad L_{V}=250 \mathrm{lb}$
Installation Live Load: $\quad L_{M}=0 \quad \mathrm{lb}$

Appurtenance Dead Loads	
Name	Weight (lb)
$871 \mathrm{~F}-70-2$	12.5

Client: Eversource
Computed By: Shaun Donley
Site Name: THOMPSON CSP (848)

Client: Eversource
Computed By: Shaun Donley
Site Name: THOMPSON CSP (848)
Date: 8/16/2021

Member Wind Loading

Exposure Category = B
Risk Category = III
Topographic Category = 1
1
Basic Wind Speed, V = 140 mph
Height Above Ground, $z=134$ ft

Equations

$\mathrm{K}_{\mathrm{z}}=2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha}$
$K_{h}=e^{(f \cdot z / H)}$
$K_{z t}=\left[1+K_{c} K_{t} / K_{h}\right]^{2}$
Crest Height, $\mathrm{H}=110 \mathrm{ft} \mathrm{ft}$
Velocity Pressure Coefficient, $\mathrm{K}_{\mathrm{z}}=1.07$
Topographic Factor, $\mathrm{K}_{\mathrm{zt}}=1.09$
Wind Directionality Factor, $K_{d}=0.95$
Shielding Factor, $\mathrm{K}_{\mathrm{a}}=0.90$
Ground Elevation Factor, $\mathrm{K}_{\mathrm{e}}=1.000$
Wind Velocity Pressure, $\mathrm{q}_{\mathrm{z}}=55.61$ psf
Gust Effect Factor, $\mathrm{G}_{\mathrm{h}}=1.00$

TIA-222-H
2.6.5.2
2.6.6.2.1
2.6.11.2

Member Wind Loads					
Name	Depth (ft)	Width (ft)	C_{f}	D_{p} (ft)	F_{M} (lb)
Arm: HSS3X3X3	0.25	0.25	2	0.25	27.80
Bracing: Pipe 2.0 Std	0.20		1.2	0.20	13.21
Mount Pipe: Pipe 3.0 Std	0.29		1.2	0.29	19.46

Client: Eversource
Computed By: Shaun Donley
Site Name: THOMPSON CSP (848)
Date: 8/16/2021
Verified By: JJ
Title: MOUNT ANALYSIS REPORT

Appurtenance Ice Dead Loading

Exposure Category = B
Risk Category = III
Topographic Category = 1
Height Above Ground, $\mathrm{z}=134 \mathrm{ft}$
Crest Height, $\mathrm{H}=110 \mathrm{ft} \mathrm{ft}$
Design Ice Thickness, $\mathrm{T}_{\mathrm{i}}=2.00$ in
Importance Factor, I = 1.15
Topographic Factor, $\mathrm{K}_{\mathrm{zt}}=1.09$
Height Escalation Factor, $\mathrm{K}_{\mathrm{iz}}=1.15$
Factored Ice Thickness, $\mathrm{T}_{\mathrm{iz}}=2.72$ in
$K_{h}=e^{(f \cdot z / H)}$
$K_{z t}=\left[1+K_{c} K_{t} / K_{h}\right]^{2}$
$\mathrm{K}_{\mathrm{i} 2}=(\mathrm{z} / 33)^{\mathrm{u} .1 \mathrm{u}}$
$\mathrm{T}_{\mathrm{iz}}=\mathrm{T}_{\mathrm{i}} 1 \mathrm{~K}_{\mathrm{iz}}\left(\mathrm{K}_{\mathrm{zt}}\right)^{0.5 \mathrm{~s}}$
Equations
$D L_{\text {ice }}=\left[\left(H_{\text {ice }} * D_{\text {ice }} * W_{\text {ice }}\right)-\left(H^{*} W^{*} D\right)\right] * 56 p c f$

TIA-222-H
2.6.6.2.1
2.6.10

Appurtenance Ice Dead Loads					
Name	Height w/ ice (ft)	Width w/ice (ft)	Depth w/ ice (ft)	$\begin{array}{r} \hline \mathrm{V}_{\text {ice }} \\ \left(\mathrm{ft}^{3}\right) \\ \hline \end{array}$	$\mathrm{DL}_{\text {ice }}$ (lb)
871F-70-2	5.95	3.04	0.61	8.82	493.98

Client: Eversource
Computed By: Shaun Donley
Site Name: THOMPSON CSP (848) Date: 8/16/2021

Member Ice Dead Loading

Exposure Category = B
Risk Category = III
$K_{h}=e^{(f \cdot z / H)}$
Topographic Category = 1
Height Above Ground, $\mathrm{z}=134 \mathrm{ft}$
$K_{z t}=\left[1+K_{c} K_{t} / K_{h}\right]^{2}$
Crest Height, $\mathrm{H}=110 \mathrm{ft} \mathrm{ft}$
Design Ice Thickness, $\mathrm{T}_{\mathrm{i}}=2.00$ in
$K_{i z}=(z / 33)^{0.10}$
Importance Factor, I = 1.15
Topographic Factor, $\mathrm{K}_{\mathrm{zt}}=1.09$
Height Escalation Factor, $\mathrm{K}_{\mathrm{iz}}=1.15$
Factored Ice Thickness, $\mathrm{T}_{\mathrm{i}}=2.72$ in
Aiz $=$ pi $^{*} T i z^{*}(\mathrm{Dc}+\mathrm{Tiz})$

TIA-222-H
2.6.6.2.1
2.6.6.2.1
2.6.10
2.6.10
2.6.10

Member Ice Dead Loads						
Name	Depth w/ ice (ft)	Width w/ice (ft)	Dc (ft)	Aiz $\left(\mathrm{ft}^{2}\right)$	DL $_{\text {ice }}(\mathrm{lb} / \mathrm{ft})$	
Arm: HSS3X3X3	0.70	0.70	0.35	0.41	23.18	
Bracing: Pipe 2.0 Std	0.65		0.20	0.30	16.96	
Mount Pipe: Pipe 3.0 Std	0.75		0.29	0.37	20.71	

Client: Eversource
Computed By: Shaun Donley
Site Name: THOMPSON CSP (848)

Appurtenance Ice Wind Loading

Exposure Category = B
Risk Category = III
Topographic Category = 1
Ice Wind Speed, $\mathrm{V}_{\text {ice }}=50 \mathrm{mph}$
Height Above Ground, $\mathrm{z}=134 \mathrm{ft}$
Crest Height, $\mathrm{H}=110 \mathrm{ft} \mathrm{ft}$
Velocity Pressure Coefficient, $\mathrm{K}_{\mathrm{z}}=1.07$ psf
Topographic Factor, $\mathrm{K}_{\mathrm{zt}}=1.09$
Wind Directionality Factor, $K_{d}=0.95$
Shielding Factor, $\mathrm{K}_{\mathrm{a}}=0.90$
Ground Elevation Factory, $\mathrm{K}_{\mathrm{e}}=1.000$ Ice Wind Velocity Pressure, $\mathrm{q}_{\text {z(ice) }}=7.093$

Factored Ice Thickness, $\mathrm{T}_{\mathrm{iz}}=2.72$ in Gust Effect Factor, $\mathrm{G}_{\mathrm{h}}=1$

Equations

$\mathrm{K}_{\mathrm{z}}=2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha}$
$K_{h}=e^{(f \cdot z / H)}$
$K_{z t}=\left[1+K_{c} K_{t} / K_{h}\right]^{2}$
$K_{e}=e^{-u . u v u u s \lll s}$
$\mathrm{q}_{\mathrm{z}}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{e}} \mathrm{K}_{\mathrm{d}} \mathrm{V}^{\perp}$
$F_{A(\text { ice })}=q_{z(\text { ice })} G_{h}(E P A)_{A(\text { (ice })}$
$F_{M(\text { ice })}=q_{z(\text { ice })} G_{h} C_{f} D_{p(\text { ice })}$

TIA-222-H
2.6.5.2
2.6.6.2.1
2.6.11.6
2.6.11.2

Appurtenance Ice Wind Loads

Name	Height w/ Ice (ft)	Width w/ Ice (ft)	Depth $\mathrm{w} /$ Ice (ft)	Normal			Tangential		
				C_{a}	EPA FT2	$\mathrm{F}_{\mathrm{A}}(\mathrm{lb})$	C_{a}	EPA FT2	F_{A} (lb)
871F-70-2	5.95	3.04	0.61	-	17.79	126.15	-	3.32	23.53

Client: Eversource
Computed By: Shaun Donley
Site Name: THOMPSON CSP (848)

Member Ice Wind Loading

Exposure Category = B

Equations

Risk Category = III
Topographic Category = 1
Ice Wind Speed, $\mathrm{V}_{\text {ice }}=50 \mathrm{mph}$
Height Above Ground, $z=134 \mathrm{ft} \quad \mathrm{K}_{\mathrm{zt}}=\left[1+\mathrm{K}_{\mathrm{c}} \mathrm{K}_{\mathrm{t}} / \mathrm{K}_{\mathrm{h}}\right]^{2}$
Crest Height, $\mathrm{H}=110 \mathrm{ft} \mathrm{ft}$
Velocity Pressure Coefficient, $\mathrm{K}_{\mathrm{z}}=1.07$ psf
$\mathrm{K}_{\mathrm{z}}=2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha}$
$K_{h}=e^{(f \cdot z / H)}$
$K_{e}=e^{-u . v u v u s \ll c s}$
Topographic Factor, $\mathrm{K}_{\mathrm{zt}}=1.09$
Wind Directionality Factor, $\mathrm{K}_{\mathrm{d}}=0.95$
$\mathrm{q}_{\mathrm{z}}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{K}_{2 \mathrm{t}} \mathrm{K}_{\mathrm{e}} \mathrm{K}_{\mathrm{d}} \mathrm{V}^{\llcorner }$
Shielding Factor, $\mathrm{K}_{\mathrm{a}}=0.90$
Ground Elevation Factory, $K_{e}=1.000$
$F_{A \text { (ice) }}=q_{z(\text { ice })} G_{h}(E P A)_{A \text { (ice) }}$
Ice Wind Velocity Pressure, $\mathrm{q}_{\mathrm{z} \text { (ice) }}=7.093$
Factored Ice Thickness, $\mathrm{T}_{\mathrm{i} \mathrm{z}}=2.72$ in
$F_{M(\text { ice })}=q_{z(\text { (ice) }} G_{h} C_{f} D_{p(\text { (ice) }}$

TIA-222-H
2.6.5.2
2.6.6.2.1
2.6.11.2 Gust Effect Factor, $\mathrm{G}_{\mathrm{h}}=1$

| Member Ice Wind Loads | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Depth
 $\mathrm{w} / \mathrm{Ice}(\mathrm{ft})$ | Width
 $\mathrm{w} /$ Ice (ft) | C_{f} | $\mathrm{D}_{\text {p(ice) }}$
 (ft) | $\mathrm{F}_{\mathrm{M} \text { (ice) }}$
 $(\mathrm{lb} / \mathrm{ft})$ |
| Arm: HSS3X3X3 | 0.70 | 0.70 | 2 | 0.70 | 9.98 |
| Bracing: Pipe 2.0 Std | 0.65 | | 1.2 | 0.65 | 5.55 |
| Mount Pipe: Pipe 3.0 Std | 0.75 | | 1.2 | 0.75 | 6.35 |
| | | | | | |

APPENDIX 2:

 RISA PRINTOUTS

Black \& Veatch		SK -1
Shaun Donley	THOMPSONCSP USF-4U Model	Aug 16, 2021 at $12: 37$ PM
405025.3022 .2200		405025.3022 .2200 Risa Model.r3d

Black \& Veatch		SK -2
Shaun Donley	THOMPSONCSP USF-4U Model	Aug 16, 2021 at 12:38 PM
405025.3022 .2200		405025.3022 .2200 Risa Model.r3d

Member Code Checks Displayed (Enveloped)
Envelope Only Solution

Black \& Veatch		SK -3
Shaun Donley	THOMPSONCSP USF-4U Model	Aug 16, 2021 at $12: 39$ PM
405025.3022 .2200		405025.3022 .2200 Risa Model.r3d

Member Shear Checks Displayed (Enveloped)
Envelope Only Solution

Black \& Veatch		SK -4
Shaun Donley	THOMPSONCSP USF-4U Model	Aug 16, 2021 at $12: 39$ PM
405025.3022 .2200		405025.3022 .2200 Risa Model.r3d

Loads: BLC 1, DL
Envelope Only Solution

Black \& Veatch		SK -5
Shaun Donley	THOMPSONCSP USF-4U Model	Aug 16, 2021 at $12: 40$ PM
405025.3022 .2200		405025.3022 .2200 Risa Model.r3d

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(lterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	None

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-16
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

Label		E [ksi]	G [ksi]	Nu	Therm (/1E...Density[k/ft		Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	3	. 65	. 49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	3	. 65	49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	3	. 65	. 49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	3	. 65	. 527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	3	. 65	. 527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	3	65	49	35	1.6	60	1.2
7	A1085	29000	11154	3	. 65	. 49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design R... A [in2]		lyy [in4] Izz [in4]		J [in4]
1	Arm	HSS3X3X3	Beam	SquareTube	A53 Gr.B	Typical	1.89	2.46	2.46	4.03
2	Bracing	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	627	627	1.25
3	Mount Pipe	PIPE_3.0	Column	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69

General Material Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]
1	gen Conc3NW	3155	1372	. 15	. 6	. 145
2	gen_Conc4NW	3644	1584	. 15	6	145
3	gen Conc3LW	2085	906	. 15	6	11
4	gen_Conc4LW	2408	1047	. 15	. 6	11
5	gen Alum	10100	4077	. 3	1.29	. 173
6	gen Steel	29000	11154	. 3	. 65	. 49
7	gen Plywood	1800	38	0	. 3	. 035
8	RIGID	$1 \mathrm{e}+6$. 3	0	0

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction		Reaction	
2	N3	Reaction	Reaction	Reaction		Reaction	

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d.	Section/Shape	Type	Design List	Material	Design Ru.
1	M1	N1	N2			Arm	Beam	SquareTube	A53 Gr.B	Typical
2	M2	N3	N4			Arm	Beam	SquareTube	A53 Gr.B	Typical
3	M3	N5	N6			Bracing	Column	Pipe	A53 Gr.B	Typical
4	M4	N7	N8			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
5	M5	N9	N10			RIGID	None	None	RIGID	Typical
6	M6	N12	N13			RIGID	None	None	RIGID	Typical
7	M7	N15	N14			RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat...A	Analysis ...	Inactive	Seismic...
1	M1						Yes				None
2	M2						Yes				None
3	M3						Yes	** NA **			None
4	M4						Yes	** NA **			None
5	M5						Yes	** NA **			None
6	M6						Yes	** NA **			None
7	M7						Yes	** NA **			None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[i..	Lcomp bot[in]L	L-torqu.	Kyy	Kzz	Cb	Function
1	M1	Arm	43.5			Lbyy						Lateral
2	M2	Arm	43.5			Lbyy						Lateral
3	M3	Bracing	36									Lateral
4	M4	Mount Pipe	56.5									Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me...	Surface(P..
1	DL	DL		-1		1				
2	Maintenance LL - LV	LL				1				
3	Installation LL - LM	LL				1				
4	Wind - 0 Deg (X)	WL				1		4		
5	Wind - 30 Deg (X)	WL				1		4		
6	Wind - 60 Deg (X)	WL				1		4		
7	Wind -90 Deq (X)	WL				1		4		
8	Wind - 120 Deg (X)	WL				1		4		
9	Wind - 150 Deg (X)	WL				1		4		
10	Wind - 180 Deg (X)	WL				1		4		
11	Wind - 210 Deg (X)	WL				1		4		
12	Wind - 240 Deg (X)	WL				1		4		
13	Wind - 270 Deg (X)	WL				1		4		
14	Wind - 300 Deg (X)	WL				1		4		
15	Wind - 330 Deg (X)	WL				1		4		
16	Wind - 0 Deg (Z)	WL				1		4		
17	Wind - $30 \mathrm{Deg}(\mathrm{Z})$	WL				1		4		
18	Wind - $60 \operatorname{Deg}(Z)$	WL				1		4		

Company Designer Job Number

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me...	Surface(P...
19	Wind - 90 Deg (Z)	WL				1		4		
20	Wind - 120 Deg (Z)	WL				1		4		
21	Wind - 150 Deg (Z)	WL				1		4		
22	Wind - 180 Deg (Z)	WL				1		4		
23	Wind - 210 Deg (Z)	WL				1		4		
24	Wind - 240 Deg (Z)	WL				1		4		
25	Wind - 270 Deg (Z)	WL				1		4		
26	Wind - 300 Deg (Z)	WL				1		4		
27	Wind - 330 Deg (Z)	WL				1		4		
28	Ice DL	DL				1		4		
29	Ice Wind - 0 Deg (X)	WL				1		4		
30	Ice Wind - 30 Deg (X)	WL				1		4		
31	Ice Wind -60 Deg (X)	WL				1		4		
32	Ice Wind - 90 Deg (X)	WL				1		4		
33	Ice Wind - 120 Deg (X)	WL				1		4		
34	Ice Wind - 150 Deg (X)	WL				1		4		
35	Ice Wind - 180 Deg (X)	WL				1		4		
36	Ice Wind - 210 Deg (X)	WL				1		4		
37	Ice Wind - 240 Deg (X)	WL				1		4		
38	Ice Wind - 270 Deg (X)	WL				1		4		
39	Ice Wind - 300 Deg (X)	WL				1		4		
40	Ice Wind - 330 Deg (X)	WL				1		4		
41	Ice Wind - 0 Deg (Z)	WL				1		4		
42	Ice Wind - 30 Deg (Z)	WL				1		4		
43	Ice Wind - 60 Deg (Z)	WL				1		4		
44	Ice Wind - 90 Deg (Z)	WL				1		4		
45	Ice Wind-120 Deg (Z)	WL				1		4		
46	Ice Wind - 150 Deg (Z)	WL				1		4		
47	Ice Wind - 180 Deg (Z)	WL				1		4		
48	Ice Wind-210 Deg (Z)	WL				1		4		
49	Ice Wind - 240 Deg (Z)	WL				1		4		
50	Ice Wind-270 Deg (Z)	WL				1		4		
51	Ice Wind - 300 Deg (Z)	WL				1		4		
52	Ice Wind - 330 Deg (Z)	WL				1		4		

Load Combinations

	Description		P...																				Fa... ${ }^{\text {B }}$	B... Fa...
1	WIND LOAD COMBOS (140 MPH)																							
2	1.2DL + WL (0 DEG)	Yes	Y		1	1.2	4		1	16	1													
3	1.2DL + WL (30 DEG)	Yes	Y		1	1.2	5		1	17	1													
4	1.2DL + WL (60 DEG)	Yes	Y		1	1.2	6		1	18	1													
5	1.2DL + WL (90 DEG)	Yes	Y		1	1.2	7		1	19	1													
6	1.2DL + WL (120 DEG)	Yes	Y		1	1.2	8		1	20	1													
7	1.2DL + WL (150 DEG)	Yes			1	1.2	9		1	21	1													
8	1.2DL + WL (180 DEG)	Yes	Y		1	1.2	10		1	22	1													
9	1.2DL + WL (210 DEG)	Yes	Y		1	1.2	11		1	23	1													
10	1.2DL + WL (240 DEG)	Yes	Y		1	1.2	12		1	24	1													
11	1.2DL + WL (270 DEG)	Yes	Y		1	1.2	13		1	25	1													
12	1.2DL + WL (300 DEG)	Yes	Y		1	1.2	14		1	26	1													
13	1.2DL + WL (330 DEG)	Yes	Y		1	1.2	15		1	27	1													
14																								
15	MOUNT LOAD COMBOS (30 MPH)																							
16	1.4DL	Yes	Y		1	1.4																		
17	1.2DL + 1.5LV	Yes	Y		1	1.2	2		1.5															
18	$1.2 \mathrm{LL}+1.5 \mathrm{LM}+\mathrm{WL}$ (0 DEG)	Yes	Y		1	1.2	3		1.5	4	. 046	16	. 046											

Company

Load Combinations (Continued)

	n	S...P...											...Fa					B... Fa.	B... Fa...
19	1.2DL + 1.5LM + WL (30 DEG)	Yes Y	1	1.2	3	1.5	5			. 046									
20	1.2DL + 1.5LM + WL (60 DEG)	Yes Y	1	1.2	3	1.5	6			. 046									
21	1.2DL + 1.5LM + WL (90 DEG)	Yes Y	1	1.2	3	1.5	7			. 046									
22	1.2DL + 1.5LM + WL (120 DEG)	Yes Y	1	1.2	3	1.5	8		20	. 046									
23	1.2DL + 1.5LM + WL (150 DEG)	Yes Y	1	1.2	3	1.5	9		21	. 046									
24	1.2DL + 1.5LM + WL (180 DEG)	Yes Y	1	1.2	3	1.5	10.		22	. 046									
25	$1.2 \mathrm{DL}+1.5 \mathrm{LM}+\mathrm{WL}$ (210 DEG)	Yes Y	1	1.2	3	1.5	11.	. 046		. 046									
26	1.2DL + 1.5LM + WL (240 DEG)	Yes Y	1	1.2	3	1.5	12.			. 046									
27	1.2DL + 1.5LM + WL (270 DEG)	Yes Y	1	1.2	3	1.5	13.		25	. 046									
28	1.2DL + 1.5LM + WL (300 DEG)	Yes Y	1	1.2	3	1.5	14	. 046	26	. 046									
29	1.2DL + 1.5LM + WL (330 DEG)	Yes Y	1	1.2	3	1.5	15.		27	. 046									
30																			
31	ICE LOAD COMBOS (2", 50 MPH)																		
32	1.2DL + Ice DL + Ice WL (0 DEG)	Yes Y	1	1.2	28	1	29	1	41	1									
33	1.2DL + Ice DL + Ice WL (30 DEG)	Yes Y	1	1.2	28	1	30	1	42	1									
34	1.2DL + Ice DL + Ice WL (60 DEG)	Yes Y	1	1.2	28	1	31	1	43	1									
35	1.2DL + Ice DL + Ice WL (90 DEG)	Yes Y	1	1.2	28	1	32	1	44	1									
36	1.2DL + Ice DL + Ice WL (120 DEG)	Yes Y	1	1.2	28	1	33	1	45	1									
37	1.2DL + Ice DL + Ice WL (150 DEG)	Yes Y	1	1.2	28	1	34	1	46	1									
38	1.2DL + Ice DL + Ice WL (180 DEG)	Yes Y	1	1.2	28	1	35	1	47	1									
39	1.2DL + Ice DL + Ice WL (210 DEG)	Yes Y	1	1.2	28	1	36	1	48	1									
40	1.2DL + Ice DL + Ice WL (240 DEG)	Yes Y	1	1.2	28	1	37	1	49	1									
41	1.2DL + Ice DL + Ice WL (270 DEG)	Yes Y	1	1.2	28	1	38	1	50	1									
42	1.2DL + Ice DL + Ice WL (300 DEG)	Yes Y	1	1.2	28	1	39	1	51	1									
43	1.2DL + Ice DL + Ice WL (330 DEG)	Yes Y	1	1.2	28	1	40	1	52	1									
44																			

Envelope Joint Reactions

Joint			X [lb]	LC Y [lb]		$\mathrm{LC} \quad \mathrm{Z}[\mathrm{lb}]$		LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft] LC	
1	N1	max	288.513	2	310.985	38	297.152	5	0	43	656.451	11	0	43
2		min	-610.651	38	-20.698	2	-297.152	11	0	2	-656.451	5	0	2
3	N3	max	555.139	17	311.915	32	122.811	5	0	43	385.621	11	0	43
4		min	10.189	8	-18.194	8	-122.811	11	0	2	-385.621	5	0	2
5	Totals:	max	482.284	2	580.241	38	419.963	5						
6		min	-482.285	8	123.244	2	-419.963	11						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

MemberM1		Shape	Code Check	Loc[in]	LC Shea...Loc			$\begin{aligned} & \text {. L..phi*Pn.. } \\ & \text { z } 11155265 . . \\ & \hline \end{aligned}$		$\frac{\text { phi*Pn... }}{59535}$	$\frac{. \mathrm{phi}^{*} \mathrm{Mn} \ldots \ldots}{5171.25}$	$\frac{\text { phi*Mn..... Eqn }}{5171.252 . . \mid-1-1 b}$	
		HSS3X3X3	128	0	11	. 028	2.266						
2	M2	HSS3X3X3	100	43.5	17	. 019	0	y 3	255265..	59535	5171.25	5171.252	. $\mathrm{H} 1-1 \mathrm{~b}$
3	M3	PIPE 2.0	172	0	17	. 022	0		928843.	32130	1871.6..	1871.6..2	. $\mathrm{H} 1-1 \mathrm{~b}$
4	M4	PIPE_3.0	. 087	45.906	17	. 038	10...		757908.	65205	5748.75	5748.751	. $\mathrm{H} 1-1 \mathrm{~b}$

APPENDIX 3:

ATTACHMENTS

EVERS=URCE
 ENERGY

ANT220F2DIN FIBERGLASS COLLINEAR ANTENNA

The Telewave ANT220F2 is an extremely rugged collinear antenna, with moderate gain and wide vertical beamwidth. This compact antenna produces 2.5 dBd gain, and is designed for operation in all environmental conditions. The antenna is constructed with brass and copper elements, with a path to ground potential for lightning impulse protection. The ANT220F2 is an excellent choice for wireless PTC systems in urban or rural areas.

All junctions are fully soldered to prevent RF intermodulation, and each antenna is completely protected within a rugged, hightech radome to ensure survivability in the worst environments. The "Cool Blue" radome provides maximum protection from corrosive gases, ultraviolet radiation, icing, salt spray, acid rain, and wind blown abrasives.

The ANT220F2 includes the ANTC485 dual clamp set for mounting to a $1.5^{\prime \prime}$ to $3^{\prime \prime}$ O.D. support pipe, and a $24^{\prime \prime}$ removable RG-213 DIN-Male jumper.

ANT220F2-230 MHz
Vertical Plane
Gain $=2.58 \mathrm{dBd}$

SPECIFICATIONS

| Frequency (continuous) | $195-260 \mathrm{MHz}$ | Dimensions (L x base diam.) in. | 51×2.75 |
| :--- | :--- | :--- | :--- | :--- |
| Gain | 2.5 dBd | Tower weight (antenna + clamps) | 11 lb. |
| Power rating (typ.) | 500 watts | Shipping weight | 14 lb. |
| Impedance | 50 ohms | Wind rating / with 0.5" ice | $200 / 150 \mathrm{MPH}$ |
| VSWR | $1.5: 1$ or less | Maximum exposed area | $1.1 \mathrm{ft} .^{2}$ |
| Pattern | Omnidirectional | Lateral thrust at 100 MPH | 44 lb. |
| Vertical beamwidth | 38° | Bending moment at top clamp | $47 \mathrm{ft} . \mathrm{lb}$. |
| Termination | $7-16$ DIN-F | $(100 \mathrm{MPH}, 40$ PSF flat plate equiv.) | |

220MHz EXPOSED DIPOLES

870 Series 220MHz Exposed Dipoles

The 870 Series 220MHz Exposed Dipoles are available in 1, 2, 4, 8 dipole configurations. All our antennas can be completely customized to your particular applications. Our antennas can be black anodized, adjustable, or fixed, side mount or top mount, and heavy-duty versions are available.

- Each antenna is offered in a $1 / 4,3 / 8$ or $1 / 2$ wave spacing versions.
- The 87XA-70 has external cabling and a field-adjustable pattern.
- The 87XF-70 has internal cabling and fixed dipole-mast spacing.
- Heavy-duty versions are available. Please contact our Technical Support team for consultation.

874F-70-2

ORIGINAL TRANSMIT (TX) ANTENNA, REMOVED AND REPLACED

ANT220F2DIN FIBERGLASS COLLINEAR ANTENNA

The Telewave ANT220F2 is an extremely rugged collinear antenna, with moderate gain and wide vertical beamwidth. This compact antenna produces 2.5 dBd gain, and is designed for operation in all environmental conditions. The antenna is constructed with brass and copper elements, with a path to ground potential for lightning impulse protection. The ANT220F2 is an excellent choice for wireless PTC systems in urban or rural areas.

All junctions are fully soldered to prevent RF intermodulation, and each antenna is completely protected within a rugged, hightech radome to ensure survivability in the worst environments. The "Cool Blue" radome provides maximum protection from corrosive gases, ultraviolet radiation, icing, salt spray, acid rain, and wind blown abrasives.

The ANT220F2 includes the ANTC485 dual clamp set for mounting to a $1.5^{\prime \prime}$ to $3^{\prime \prime}$ O.D. support pipe, and a 24 " removable RG-213 DIN-Male jumper.

ANT220F2-230 MHz
Vertical Plane
Gain $=2.58 \mathrm{dBd}$

SPECIFICATIONS

| Frequency (continuous) | $195-260 \mathrm{MHz}$ | Dimensions (L x base diam.) in. | 51×2.75 |
| :--- | :--- | :--- | :--- | :--- |
| Gain | 2.5 dBd | Tower weight (antenna + clamps) | 11 lb. |
| Power rating (typ.) | 500 watts | Shipping weight | 14 lb. |
| Impedance | 50 ohms | Wind rating / with 0.5" ice | $200 / 150 \mathrm{MPH}$ |
| VSWR | $1.5: 1$ or less | Maximum exposed area | $1.1 \mathrm{ft} .^{2}$ |
| Pattern | Omnidirectional | Lateral thrust at 100 MPH | 44 lb. |
| Vertical beamwidth | 38° | Bending moment at top clamp | $47 \mathrm{ft} . \mathrm{lb}$. |
| Termination | $7-16 ~ D I N-F$ | $(100 \mathrm{MPH}, 40$ PSF flat plate equiv.) | |

DETAIL B

ATTACHMENT C - CONSTRUCTION DRAWINGS

$\frac{\text { ANTENNA CABLE GROUNDING }}{\text { No SCALE }}$

NOTES
Do not install cabie ground kit at a bend and alwars otrect ground
wir doonn to crouno bar.

3. Meater proong shal be tre And part number as suppleo or

CONNECTION OF CABLE GROUND $\frac{\text { KIT TO ANTENNA CABLE }}{\text { No SCALE }}$

CABLE INSTALLATION WITH WALL $\frac{\text { FEED THRU ASSEMBLY }}{\text { No Scale }}$

ICE BRIDGE AD ANT
$\frac{\text { BRIDGE AND ANTENNA }}{\text { CABLE DETAII }}$
no scale

F
BLACK \& VEATCH

RIDGEFIELD 22N 1 PROSPECT STREET RIDGEFIELD, CT 06877

SHEET TITLE
GROUNDING DETAILS -

DESIGN BASIS

GOVEENNG CODE： 2018 CONNECTICUT STATE BuLIING CODE（2015 BBC BaSIS）
GENERAL CONDITIONS

2．THE ENINER IS NOT：A GURANTOR OF THE NSTALING CONTRACTOR＇S WORK，RESPONSIBLE FOR

 IMNEDAAELY TO THE CONSTRUCTION MANAOCR
5．detalls Incluoed in this plan set are trical and aplly to smmar conomions．

8．THE Contractor sthal safeguro Agans dereang a fre hazaro，affecting tenant Egress
9．THE Contractor shall Remove All degri and contruction wate frou the sit each dar．
10．THE CONTRACTOR＇S HOURS OF Work shall be in accordance wit local cooes and

THERMAL \＆MOISTURE PROTECTION

位
3．FRRETTOPRNG SHALL BE APPLED AS SOON AS PRACTCABLE ATER PENetrations ARE MADE AND

6．ALLL Penetrations into ano／or through buliong exterior walls shall．be sealeo with

8．contractor to remove and re－－Install all fire proofing as reaured during
SUBMITTALS
Contractor to submt shop dramngs to enginer for revew prior to fabrcation．
2．Contractor to notiry enaineer for inspection pror to closing penetrations．

 Prooucts．

STEE

2．DAMAGED GAMVMIED SURFACES SHAL BE CIEANED WTH A WRE ERUSH AND PANTED WTH TWO
 SAME PANT IN SHOP OR FELD．
3．Desicn fabracaton and erecion of structural steel shall conform to the aisc＂Manual

5．All steel elements shall be nstalleo plumb and level．
5．All str maracterers desions sum prama ano tevel

SITE GENERAL

CONTractor s．anl foliow conotions of all applicable permits and work in accoroance

 LIMTED TO．APPROPRATE A AAL PR

5．ALL ExSTIN NACTVE SEWER，WAIER，GAS，ELECTRC，FBER OPTC，OR OTHER UTLTIES，WHICH

6．Coniractor is fessonsile for repaling or replacing structures or utlumes damaged

F

BLACK \＆VEATCH

$\begin{array}{\|l\|} \hline \text { PROJECT NO: } \\ \hline \text { DRAWN BY: } \\ \hline \end{array}$	
－	
	Ssion
－a me	cosemem

いい1111，

SOCNSE．

$$
\begin{gathered}
1 / 11111 \\
08 / 17 / 2021
\end{gathered}
$$

ELECTRICAL

AUHORTIES SHALL APPL.

4. ALL ELECTRRCAL Conouctors Shall be 100\% COPPER AND SHALL HAVE TPE THHN INSULATON

6. ALL BURIED ConDut SHALL BE MNMMM SCH 40 PVC UNLESS NOTED OTHERWSE, OR AS PER

9. Conout ano cable witin corrdors shall be concealed and exposed elisewhere, uniess

11. Wirng deyices shal be specificaion grade, ano wring device cover plates shall be

14. THE CONTRACTOR SHALL RE REOURED To USTT THE STE PROR To Subumting bio in order to

Contractor is responsible for all conirol wrng and alarm tie-

GROUNDIN

\#- triwn shall be stranoed \#6 copper with green thwn insuation sutable for wet
2. \#2 thwn shall be strandeo \#t copper with thwn nsulaton sutable for wei
 BETS SERES 548

7. THE MNMUM BEND Radus Shall be 8 INChes for \#6 Wre Ano smaller and 12 INCHES for

10. FERrous METAL cllps which completely surrouno the grounong conouctor shall be

NTENNA \& CABLE NOTES

3. antenna cables shall be color cooed at the followng locations:

AT THE ANEEGGDE ENTTY PPATE ON BOTH SIDES OF THE EQUPMENT SHELIER WALL.

5. MINMUM BENDNG RADUS FOR COAXAL CABLLES
$7 / 8 \mathrm{INCH}, \mathrm{RMN}=15$ NCHES
$15 / 8 \mathrm{NCH}, \mathrm{M}$ NIN $=25$
 All CABLE CONNECTONS OUTSIDE SHALL bE COVERED WTH WATERPROof SPLLING kII
. Contractor shall verfy exact length and directon of travel in fiel prior to
Cige shall be furnished without spluces and with connectops at each eil

F BLACK \& VEATCH

6800 W 1155 H ST, SUTE 2292
OVERRANO PARK, KS 66219
OERLAND PARK, KS 66211
PHONE: (913) 458-3595

PROJECT NO:
 DRAWN BY
 CHECKED
 ECKED BY: TCG

RIDGEFIELD 22N RIDGEFIELD CT 06877

220 MHz Antenna - Omnidirectional, Low-PIM/Hi-PIP, Unity Gain Models - SP2D00P36D-D

Specifications	
Design Type	True Corporate Feed
Frequency Range	217-220 MHz
Passive Intermodulation - PIM ($2 \times 20 \mathrm{~W}$ sources)	$-150 \mathrm{dBc}, 3^{\text {rd }}$ Order
Bandwidth	3 MHz
Gain - dBd (average over BW)	0 dBd
Isolation, min.	40 dB
Configuration	Dual antenna
Beam Tilt (electrical down-tilt)	None (0°)
Vertical Beamwidth (E-Plane)	60°
Impedance -- Ohms	50
VSWR / Return Loss -- dB	1.5 : 1 / 14 dB (min.)
Average Power Rating	500 W (each antenna)
Peak Instantaneous Power	25 kW (each antenna)
Polarization	Vertical
Lightning Protection	Direct Ground
Connector	7/16 DIN female
Equivalent Flat-Plate Area	2.59 sq. ft.
Lateral Wind-load Thrust @ 100 mph	109 lbf .
Wind Speed rating	160 mph (without ice) $136 \mathrm{mph}\left(1 / 22^{\prime \prime}\right.$ radial ice)
Total Length	15.6 feet
Mounting Mast Length	35 inches
Mounting Hardware (Included)	DSH3V4N
Top Sway Brace (Recommended if side mounting antennas)	DSH2H3S (order separately)
Mast O.D.	3.5 inches
Radome color	Horizon Blue
Radome O.D.	3.0 inches
Weight, antenna, and hardware	45 lbs . (approx.)
Shipping Weight	80 lbs . (approx.)
Invertibility	Antennas are physically invertible, but the patterns are optimized for upright mount.

Features and Benefits

Antennas from dbSpectra provide long term, trouble-free service in severe environments!
Design is tested to stringent Peak Instantaneous Power (PIP) levels of 25 KW using dbSpectra's 12-channel P25 PIP test bed. High PIP level is demanded by today's digital systems.
True Corporate Feed Array - provides for excellent gain and pattern consistency across a wider frequency range.
PIM Rated Design - better than -150 dBc .
Sturdy Construction - Heavy-wall fiberglass radome minimizes tip deflection.
Excellent Lightning Protection - heavy internal conductor DC ground.
Radiation Pattern

ANT220F6 DIN FIBERGLASS COLLINEAR ANTENNA 6 dBd

The Telewave ANT220F6 is an extremely rugged, mediumgain, fiberglass collinear antenna, designed for operation in all environmental conditions. The antenna is constructed with brass and copper elements, connected at DC ground potential for lightning impulse protection. The ANT220F6 is an excellent choice for wireless PTC systems in urban or rural areas.

All junctions are fully soldered to prevent RF intermodulation, and each antenna is completely protected within a rugged, hightech radome to ensure survivability in the worst environments. The "Cool Blue" radome provides maximum protection from corrosive gases, ultraviolet radiation, icing, salt spray, acid rain, and wind blown abrasives.

The ANT220F6 includes an ANTC482 dual clamp set for mounting to a $1.5^{\prime \prime}$ to $3.5^{\prime \prime}$ O.D. support pipe, and a $24^{\prime \prime}$ removable RG-213 DIN-Male jumper. Stand-off and top mounts are also available. NOTE: THIS ANTENNA IS SHIPPED VIA TRUCK FREIGHT ONLY

ANT220F6-221 MHz
Vertical Plane
Gain $=6.11 \mathrm{dBd}$

SPECIFICATIONS

Frequency (continuous)	$216-225 \mathrm{MHz}$	Dimensions (L x base diam.) in.	171×2.75
Gain	6 dBd	Tower weight (antenna + clamps)	35 lb.
Power rating (typ.)	500 watts	Shipping weight	50 lb.
Impedance	50 ohms	Wind rating / with 0.5" ice	$150 / 125 \mathrm{MPH}$
VSWR	$1.5: 1$ or less	Maximum exposed area	$3.1 \mathrm{ft} .^{2}$
Pattern	Omnidirectional	Lateral thrust at 100 MPH	122 lb.
Vertical beamwidth	20°	Bending moment at top clamp	$494 \mathrm{ft} . \mathrm{lb}$.
Termination	$7-16$ DIN-F	$(100 \mathrm{MPH}, 40$ PSF flat plate equiv.)	

ANT220F2-I w/DIN CONNECTOR to be used for the inverted antenna.

ANT220F2 FIBERGLASS COLLINEAR ANTENNA

The Telewave ANT220F2 is an extremely rugged collinear antenna, with moderate gain and wide vertical beamwidth. This compact antenna produces 2.5 dBd gain, and is designed for operation in all environmental conditions. The antenna is constructed with brass and copper elements, with a path to ground potential for lightning impulse protection. The ANT220F2 is an excellent choice for wireless PTC systems in urban or rural areas.

All junctions are fully soldered to prevent RF intermodulation, and each antenna is completely protected within a rugged, hightech radome to ensure survivability in the worst environments. The "Cool Blue" radome provides maximum protection from corrosive gases, ultraviolet radiation, icing, salt spray, acid rain, and wind blown abrasives.

The ANT220F2 includes the ANTC485 dual clamp set for mounting to a $1.5^{\prime \prime}$ to $3^{\prime \prime}$ O.D. support pipe, and a $24^{\prime \prime}$ removable RG-213 DIN-Male jumper.

ANT220F2-230 MHz
Vertical Plane
Gain $=2.58 \mathrm{dBd}$

SPECIFICATIONS

| Frequency (continuous) | $195-260 \mathrm{MHz}$ | Dimensions (L x base diam.) in. | 51×2.75 |
| :--- | :--- | :--- | :--- | :--- |
| Gain | 2.5 dBd | Tower weight (antenna + clamps) | 11 lb. |
| Power rating (typ.) | 500 watts | Shipping weight | 14 lb. |
| Impedance | 50 ohms | Wind rating / with 0.5" ice | $200 / 150 \mathrm{MPH}$ |
| VSWR | $1.5: 1$ or less | Maximum exposed area | $1.1 \mathrm{ft}{ }^{2}$ |
| Pattern | Omnidirectional | Lateral thrust at 100 MPH | 44 lb. |
| Vertical beamwidth | 38° | Bending moment at top clamp | $47 \mathrm{ft} . \mathrm{lb}$. |
| Termination | Recessed N Female
 $7-16 ~ D I N-F ~ o p t . ~$ | (100 MPH, 40 PSF flat plate equiv.) | |

ATTACHMENT D - STRUCTURAL ANALYSIS REPORT

Black \& Veatch Corp.
6800 W. 115th St., Suite 2292
Overland Park, KS 66211
(913) 458-2522

Subject:

Eversource Designation:

Engineering Firm Designation:
Site Data:

Structural Analysis Report

Site Number: ES-286
Site Name:
Black \& Veatch Corp. Project Number:

Off Prospect Street, Ridgefield, Fairfield County, CT Latitude $41^{\circ} 17{ }^{\prime} 0.59^{\prime \prime}$, Longitude -73 $29 ' 16.27^{\prime \prime}$
84 Foot - Monopole Tower
Black \& Veatch Corp. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC1: Proposed Equipment Configuration
Sufficient Capacity - 53.4\%
This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Anthony Reyes / Joshua J. Riley
Respectfully submitted by:

Joshua J. Riley, P.E. Professional Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is an 84 ft Monopole tower designed by Valmont in July of 2012.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Seismic Ss:
Seismic S_{1} :
Service Wind Speed:

TIA-222-H
III
125 mph ultimate
C
1
1.5 in

50 mph
0.229
0.068

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Size (in)	Note
	90.67	1	dbspecta	SP2D00P36D-D	2	$7 / 8$	1
	83.0	1	generic	4'x3" Mount Pipe	2		1

Note:

1) Proposed equipment to be installed on existing relocated antenna's original antenna mount at 83.0 ft Mounting Level.

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{array}{\|\|l} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
83.0	90.0	1	kreco	CO-41A	2	7/8	1
	88.0	1	commscope	DB589-Y			
	83.0	1	tower mounts	Side Arm Mount [4' SO 701-3]			
67.0	74.0	1	celwave	1151-3	1	7/8	2
		1	kreco	CO-41A	2	7/8	1
	73.0	1	kreco	CO-41A			
	67.0	1	tower mounts	Side Arm Mount [6' SO 701-3]			

Note:

1) Existing equipment
2) Existing equipment to be relocated from 83.0 ft Mounting Level to empty antenna mount on 67.0 ft Mounting Level.

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
GEOTECHNICAL REPORTS	Dr. Clarence Welti, P.E., P.C., dated 06/14/2012	-	Eversource
TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Valmont, dated 7/27/2012	-	Eversource

Document	Remarks	Reference	Source
TOWER MANUFACTURER DRAWINGS	Valmont, dated $7 / 27 / 2012$	-	Eversource

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built and maintained in accordance with the manufacturer's specifications.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
3) This analysis was performed under the assumption that all information provided to Black \& Veatch is current and correct. This is to include site data, appurtenance loading, tower/foundation details, and geotechnical data.

This analysis may be affected if any assumptions are not valid or have been made in error. Black \& Veatch Corp. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Tower Component Stresses vs. Capacity - LC1

Section No.	Elevation (ft)	Component Type	Size	Critical Element	$\mathbf{P (K)}$	SF*P_allow $\mathbf{(K)}$	\% Capacity	Pass / Fail
L1	$84-34.25$	Pole	TP18.145x12.001×0.1875	1	-2.07	639.52	37.8	Pass
L2	$34.25-0$	Pole	TP22x17.3069x0.2188	2	-4.62	928.93	53.4	Pass
							Summary	
						Pole (L2)	53.4	Pass
						Rating $=$	53.4	Pass

Table 4 - Tower Component Stresses vs. Capacity - LC1

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	52.1	Pass
	Base Plate		22.9	Pass
1	Base Foundation	0	34.7	Pass
	Base Foundation Soil Interaction		47.6	Pass

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity. Rating per TIA-222-H Section 15.5.

Structure Rating (max from all components) = 53.4\%

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist	Check*
No.		Deflection	Load			
	$f t$	in	Comb.	\circ	\circ	
L1	$84-34.25$	11.155	44	1.0486	0.0208	OK
L2	$38-0$	2.598	44	0.6092	0.0051	OK

*Limit State Deformation (TIA-222-H Section 2.8.2)

1) Maximum Rotation $=4$ Degrees
2) Maximum Deflection $=0.03 *$ Tower Height $=30$ in.

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist	Combined	Check *
No.	Deflection	Load			Max		
	$f t$	in	Comb.	\circ	\circ		
L1	$84-34.25$	28.84	44	2.6937	0.0543	2.694	OK $^{* *}$
L2	$38-0$	6.746	44	1.5807	0.0133	1.581	OK $^{* *}$

*Up to 0.5 degree is considered acceptable per SUB090 Section 7
** Deflection approved by Eversource Energy

APPENDIX A

TNXTOWER OUTPUT

TYPE	ELEVATION	TYPE	ELEVATION
Side Arm Mount [4' SO 701-1]	83	3' x 2" Pipe Mount	67
3' x 2" Pipe Mount	83	3' x 2" Pipe Mount	67
3' x 2" Pipe Mount	83	3' x 2" Pipe Mount	67
3' x 2" Pipe Mount	83	CO-41A	67
DB589-Y	83	CO-41A	67
CO-41A	83	1151-3	67
SP2D00P36D-D	83	Side Arm Mount [6' SO 701-1]	67
4'x3" Mount Pipe	83		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A572-65	65 ksi	80 ksi				

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.
2. Tower designed for Exposure C to the TIA-222-H Standard.
3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category III.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 53.4%

TORQUE 1 kip-ft REACTIONS - 125 mph WIND

एob: ES-286 Ridgefield22N
Project: $\mathbf{4 0 5 0 2 5}$ (Ridgefield22N) Client: Eversource Drawn by: Josh Riley Code: TIA-222-H Path:

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

- Tower is located in Fairfield County, Connecticut.
- Tower base elevation above sea level: 666.00 ft .
- Basic wind speed of 125 mph .
- Risk Category III.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft .
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of $50^{\circ} \mathrm{F}$.
- Deflections calculated using a wind speed of 60 mph .
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- \quad Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=1.0, \mathrm{~K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=1.0$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^2]Distribute Leg Loads As Uniform Assume Legs Pinned
\checkmark Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
\checkmark Bypass Mast Stability Checks
\checkmark Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
Autocalc Torque Arm Areas
Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
\checkmark Consider Feed Line Torque Include Angle Block Shear Check
Use TIA-222-H Bracing Resist.
Exemption
Use TIA-222-H Tension Splice
Exemption
Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No
Appurtenances
Outside and Inside Corner Radii Are
Known

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	84.00-34.25	49.75	3.75	18	12.0010	18.1450	0.1875	0.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L2	34.25-0.00	38.00		18	17.3069	22.0000	0.2188	0.8750	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	I $i n^{4}$	r in	C $i n$	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w in	w / t
L1	12.1572	7.0305	123.9600	4.1938	6.0965	20.3329	248.0830	3.5159	1.7822	9.505
	18.3960	10.6870	435.3948	6.3749	9.2177	47.2349	871.3626	5.3445	2.8635	15.272
L2	18.0104	11.8645	437.6998	6.0663	8.7919	49.7845	875.9756	5.9334	2.6610	12.165
	22.3056	15.1230	906.4437	7.7323	11.1760	81.1063	1814.0801	7.5629	3.4870	15.941

Tower					
Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor		Adjust.
:---:					
Factor	\quad	Weight Mult. Double Angle Double Angle Double Angle			
:---:					
ft					

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf
$\begin{gathered} \text { ***miscl*** } \\ \text { Safety Line } 3 / 8 \end{gathered}$	C	No	Surface Ar (CaAa)	$\begin{gathered} 84.00- \\ 10.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.010 \end{aligned}$	0.3750		0.22

Feed Line/Linear Appurtenances - Entered As Area

Feed Line/Linear Appurtenances Section Areas

Tower Sectio n	Tower Elevation $f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face $f t^{2}$	$C_{A} A_{A}$ Out Face $f t^{2}$	Weight
L1	$84.00-34.25$	A	0.000	0.000	0.000	0.000	K
		B	0.000	0.000	0.000	0.000	0.03
		C	0.000	0.000	1.866	0.000	0.08
L 2	$34.25-0.00$	A	0.000	0.000	0.000	0.000	0.02
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.909	0.000	0.06

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio n	Tower Elevation ft	Face or	Ice Thickness in	A_{R}	A_{F}	$C_{A} A_{A}$ In Face $f t^{2}$	$C_{A} A_{A}$ Out Face	Weight
$f t^{2}$								

	Feed Line Center of Pressure				
Section	Elevation	$C P_{x}$	$C P_{z}$	$C P_{x}$	$C P_{z}$
			in	in	in
Lt	$84.00-34.25$	-0.0031	0.2996	-0.0142	1.3545
L2	$34.25-0.00$	-0.0022	0.2081	-0.0112	1.0668

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice
L1	2	Safety Line 3/8	$34.25-$ 84.00	1.0000	1.0000
L2	2	Safety Line 3/8	$10.00-$ 34.25	1.0000	1.0000

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
\(\circ\)
\end{tabular} \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

\hline \multicolumn{10}{|l|}{***83***}

\hline \multirow[t]{4}{*}{Side Arm Mount [4' SO 701-1]} \& C \& None \& \& 0.0000 \& 83.00 \& No Ice \& 1.13 \& 2.23 \& 0.09

\hline \& \& \& \& \& \& 1/2" \& 1.52 \& 3.12 \& 0.11

\hline \& \& \& \& \& \& Ice \& 1.91 \& 4.01 \& 0.12

\hline \& \& \& \& \& \& | 1" Ice |
| :--- |
| 2" Ice | \& 2.68 \& 5.80 \& 0.16

\hline \multirow[t]{4}{*}{3' x 2" Pipe Mount} \& A \& From Face \& 6.00 \& 0.0000 \& 83.00 \& No Ice \& 0.58 \& 0.58 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.77 \& 0.77 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 0.97 \& 0.97 \& 0.02

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& 2 " \text { Ice }
\end{aligned}
$$ \& 1.39 \& 1.39 \& 0.05

\hline \multirow[t]{5}{*}{3' x 2" Pipe Mount} \& B \& From Face \& 6.00 \& 0.0000 \& 83.00 \& No Ice \& 0.58 \& 0.58 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.77 \& 0.77 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 0.97 \& 0.97 \& 0.02

\hline \& \& \& \& \& \& 1 ' Ice \& 1.39 \& 1.39 \& 0.05

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{3' x 2" Pipe Mount} \& C \& From Face \& 6.00 \& 0.0000 \& 83.00 \& No Ice \& 0.58 \& 0.58 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.77 \& 0.77 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 0.97 \& 0.97 \& 0.02

\hline \& \& \& \& \& \& 1 ' Ice \& 1.39 \& 1.39 \& 0.05

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{DB589-Y} \& C \& From Face \& 6.00 \& 0.0000 \& 83.00 \& No Ice \& 1.38 \& 1.38 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.31 \& 2.31 \& 0.02

\hline \& \& \& 5.00 \& \& \& Ice \& 3.27 \& 3.27 \& 0.04

\hline \& \& \& \& \& \& 1 ' Ice \& 4.81 \& 4.81 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{CO-41A} \& A \& From Face \& 6.00 \& 0.0000 \& 83.00 \& No Ice \& 3.15 \& 3.15 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.38 \& 4.38 \& 0.04

\hline \& \& \& 6.00 \& \& \& Ice \& 5.63 \& 5.63 \& 0.07

\hline \& \& \& \& \& \& 1 " Ice \& 7.77 \& 7.77 \& 0.15

\hline \& \& \& \& \& \& 2 ' Ice \& \& \&

\hline \multicolumn{10}{|l|}{***Relocated to 67*** 0}

\hline \multirow[t]{5}{*}{1151-3} \& C \& From Face \& 6.00 \& 0.0000 \& 67.00 \& No Ice \& \& 4.18 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 5.73 \& 5.73 \& 0.05

\hline \& \& \& 7.00 \& \& \& Ice \& 7.30 \& 7.30 \& 0.09

\hline \& \& \& \& \& \& 1 " Ice \& 10.48 \& 10.48 \& 0.20

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multicolumn{10}{|l|}{}

\hline \multirow[t]{5}{*}{Side Arm Mount [6' SO 701-1]} \& C \& None \& \& 0.0000 \& 67.00 \& \& \& $$
3.34
$$ \&

\hline \& \& \& \& \& \& 1/2" \& $$
2.28
$$ \& \[

4.68

\] \& \[

0.16
\]

\hline \& \& \& \& \& \& Ice \& 2.86 \& 6.02 \& 0.19

\hline \& \& \& \& \& \& 1" Ice \& 4.02 \& 8.70 \& 0.24

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{3' x 2" Pipe Mount} \& A \& From Face \& \& 0.0000 \& 67.00 \& \& 0.58 \& 0.58 \& $$
0.01
$$

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime}
$$ \& 0.77 \& 0.77 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 0.97 \& 0.97 \& 0.02

\hline \& \& \& \& \& \& 1 " Ice \& 1.39 \& 1.39 \& 0.05

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{3' x 2" Pipe Mount} \& B \& From Face \& \& 0.0000 \& 67.00 \& No Ice \& 0.58 \& 0.58 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.77 \& 0.77 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 0.97 \& 0.97 \& 0.02

\hline \& \& \& \& \& \& 1" Ice \& 1.39 \& 1.39 \& 0.05

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{3' x 2" Pipe Mount} \& C \& From Face \& \& 0.0000 \& 67.00 \& No Ice \& 0.58 \& 0.58 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.77 \& 0.77 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 0.97 \& 0.97 \& 0.02

\hline \& \& \& \& \& \& 1" Ice \& 1.39 \& 1.39 \& 0.05

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{CO-41A} \& A \& From Face \& \& 0.0000 \& 67.00 \& No Ice \& 3.15 \& 3.15 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.38 \& 4.38 \& 0.04

\hline \& \& \& 7.00 \& \& \& Ice \& 5.63 \& 5.63 \& 0.07

\hline \& \& \& \& \& \& 1 " Ice \& 7.77 \& 7.77 \& 0.15

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{2}{*}{CO-41A} \& B \& From Face \& 6.00 \& 0.0000 \& 67.00 \& No Ice \& 3.15 \& 3.15 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.38 \& 4.38 \& 0.04

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& C \({ }_{\text {A }} A_{A}\)
Side \& Weight

K

\hline \& \& \& 6.00 \& \& \& Ice \& 5.63 \& 5.63 \& 0.07

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& 2 " \text { Ice }
\end{aligned}
$$ \& 7.77 \& 7.77 \& 0.15

\hline \multicolumn{10}{|l|}{*Proposed*}

\hline \multirow[t]{5}{*}{SP2D00P36D-D} \& B \& From Leg \& 4.50 \& 0.0000 \& 83.00 \& No Ice \& 5.36 \& 5.36 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 7.06 \& 7.06 \& 0.08

\hline \& \& \& 7.67 \& \& \& Ice \& 8.67 \& 8.67 \& 0.13

\hline \& \& \& \& \& \& 1 " Ice \& 11.95 \& 11.95 \& 0.26

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{4'x3" Mount Pipe} \& B \& From Leg \& 4.00 \& 0.0000 \& 83.00 \& No Ice \& 1.09 \& 1.09 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.36 \& 1.36 \& 0.04

\hline \& \& \& 1.00 \& \& \& Ice \& 1.62 \& 1.62 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 2.16 \& 2.16 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multicolumn{10}{|l|}{***}

\hline *** \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0 \mathrm{Ice+1.0}$ Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp

Comb.		Description
No.		
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	84-34.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-5.51	-0.71	-1.51
			Max. Mx	8	-2.07	-108.95	-0.35
			Max. My	14	-2.07	-0.33	-108.97
			Max. Vy	8	3.55	-108.95	-0.35
			Max. Vx	14	3.55	-0.33	-108.97
			Max. Torque	19			1.15
L2	34.25-0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-9.78	-0.73	-1.68
			Max. Mx	8	-4.62	-275.32	-0.37
			Max. My	14	-4.62	-0.34	-275.35
			Max. Vy	8	5.16	-275.32	-0.37
			Max. Vx	14	5.16	-0.34	-275.35
			Max. Torque	19			1.15

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, X } \\ K \end{gathered}$	Horizontal, Z K
Pole	Max. Vert	33	9.78	-0.00	-1.73
	Max. H_{x}	21	3.47	5.15	-0.00
	Max. H_{z}	2	4.62	-0.00	5.15
	Max. M_{x}	2	274.60	-0.00	5.15
	Max. Mz	8	275.32	-5.15	-0.00
	Max. Torsion	19	1.15	4.46	-2.58
	Min. Vert	7	3.47	-4.46	2.58
	Min. H_{x}	8	4.62	-5.15	-0.00
	Min. H_{z}	14	4.62	-0.00	-5.15
	Min. M_{x}	14	-275.35	-0.00	-5.15
	Min. M_{z}	20	-274.63	5.15	-0.00
	Min. Torsion	7	-1.15	-4.46	2.58

Tower Mast Reaction Summary

| Load
 Combination | Vertical | Shear $_{x}$ | Shear $_{z}$ | Overturning
 Moment, M_{x}
 kip-ft | Overturning
 Moment, M_{z} | Torque |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | K | K | K | K | 0.31 | kip-ft |

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	$\begin{gathered} \hline \text { Torque } \\ \text { kip-ft } \\ \hline \end{gathered}$
0.9 Dead+1.0 Wind 0 deg -	3.47	0.00	-5.15	-272.87	-0.26	0.48
No Ice						
1.2 Dead+1.0 Wind 30 deg No Ice	4.62	2.58	-4.46	-237.76	-137.83	0.93
0.9 Dead+1.0 Wind 30 deg -	3.47	2.58	-4.46	-236.28	-136.83	0.94
1.2 Dead+1.0 Wind 60 deg No Ice	4.62	4.46	-2.58	-137.11	-238.48	1.15
0.9 Dead+1.0 Wind 60 deg No Ice	3.47	4.46	-2.58	-136.30	-236.81	1.15
1.2 Dead+1.0 Wind 90 deg No Ice	4.62	5.15	0.00	0.37	-275.32	1.05
0.9 Dead+1.0 Wind 90 deg - No Ice	3.47	5.15	0.00	0.28	-273.41	1.05
1.2 Dead+1.0 Wind 120 deg - No Ice	4.62	4.46	2.58	137.86	-238.48	0.67
0.9 Dead+1.0 Wind 120 deg - No Ice	3.47	4.46	2.58	136.85	-236.81	0.67
1.2 Dead+1.0 Wind 150 deg - No Ice	4.62	2.58	4.46	238.51	-137.83	0.12
0.9 Dead+1.0 Wind 150 deg - No Ice	3.47	2.58	4.46	236.84	-136.83	0.11
1.2 Dead+1.0 Wind 180 deg - No Ice	4.62	0.00	5.15	275.35	-0.34	-0.47
0.9 Dead+1.0 Wind 180 deg - No Ice	3.47	0.00	5.15	273.43	-0.26	-0.48
1.2 Dead+1.0 Wind 210 deg - No Ice	4.62	-2.58	4.46	238.51	137.14	-0.93
0.9 Dead+1.0 Wind 210 deg - No Ice	3.47	-2.58	4.46	236.83	136.32	-0.94
1.2 Dead+1.0 Wind 240 deg - No Ice	4.62	-4.46	2.58	137.86	237.79	-1.15
0.9 Dead+1.0 Wind 240 deg - No Ice	3.47	-4.46	2.58	136.85	236.30	-1.15
1.2 Dead+1.0 Wind 270 deg - No Ice	4.62	-5.15	0.00	0.37	274.63	-1.05
0.9 Dead+1.0 Wind 270 deg - No Ice	3.47	-5.15	0.00	0.28	272.90	-1.05
1.2 Dead+1.0 Wind 300 deg - No Ice	4.62	-4.46	-2.58	-137.11	237.79	-0.67
0.9 Dead+1.0 Wind 300 deg - No Ice	3.47	-4.46	-2.58	-136.30	236.30	-0.67
1.2 Dead+1.0 Wind 330 deg - No Ice	4.62	-2.58	-4.46	-237.76	137.14	-0.12
0.9 Dead+1.0 Wind 330 deg - No Ice	3.47	-2.58	-4.46	-236.28	136.32	-0.11
1.2 Dead+1.0 Ice+1.0 Temp	9.78	0.00	0.00	1.68	-0.73	0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	9.78	0.00	-1.73	-98.49	-0.73	0.12
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	9.78	0.87	-1.50	-85.07	-50.82	0.33
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	9.78	1.50	-0.87	-48.40	-87.48	0.44
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	9.78	1.73	0.00	1.68	-100.91	0.44
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	9.78	1.50	0.87	51.77	-87.48	0.33
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	9.78	0.87	1.50	88.44	-50.82	0.12
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	9.78	0.00	1.73	101.86	-0.73	-0.12
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	9.78	-0.87	1.50	88.44	49.36	-0.33
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	9.78	-1.50	0.87	51.77	86.03	-0.44
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	9.78	-1.73	0.00	1.68	99.45	-0.44
1.2 Dead+1.0 Wind 300	9.78	-1.50	-0.87	-48.40	86.03	-0.32

tnxTower Report - version 8.1.1.0

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	9.78	-0.87	-1.50	-85.07	49.36	-0.12
Dead+Wind 0 deg - Service	3.85	0.00	-1.06	-56.30	-0.29	0.10
Dead+Wind 30 deg - Service	3.85	0.53	-0.92	-48.71	-28.60	0.20
Dead+Wind 60 deg - Service	3.85	0.92	-0.53	-27.99	-49.32	0.24
Dead+Wind 90 deg - Service	3.85	1.06	0.00	0.31	-56.90	0.22
Dead+Wind 120 deg -	3.85	0.92	0.53	28.62	-49.32	0.14
Service						
Dead+Wind 150 deg -	3.85	0.53	0.92	49.34	-28.60	0.02
Service						
Dead+Wind 180 deg -	3.85	0.00	1.06	56.93	-0.29	-0.10
Service						
Dead+Wind 210 deg -	3.85	-0.53	0.92	49.34	28.02	-0.20
Service						
Dead+Wind 240 deg -	3.85	-0.92	0.53	28.62	48.74	-0.24
Service						
Dead+Wind 270 deg -	3.85	-1.06	0.00	0.31	56.32	-0.22
Service						
Dead+Wind 300 deg -	3.85	-0.92	-0.53	-27.99	48.74	-0.14
Service						
Dead+Wind 330 deg -	3.85	-0.53	-0.92	-48.71	28.02	-0.02
Service						

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	$P Z$	$P X$	PY	$P Z$	
Comb.	K	K	K	K	K	K	
1	0.00	-3.85	0.00	0.00	3.85	0.00	0.000\%
2	0.00	-4.62	-5.15	-0.00	4.62	5.15	0.000\%
3	0.00	-3.47	-5.15	-0.00	3.47	5.15	0.000\%
4	2.58	-4.62	-4.46	-2.58	4.62	4.46	0.000\%
5	2.58	-3.47	-4.46	-2.58	3.47	4.46	0.000\%
6	4.46	-4.62	-2.58	-4.46	4.62	2.58	0.000\%
7	4.46	-3.47	-2.58	-4.46	3.47	2.58	0.000\%
8	5.15	-4.62	0.00	-5.15	4.62	-0.00	0.000\%
9	5.15	-3.47	0.00	-5.15	3.47	-0.00	0.000\%
10	4.46	-4.62	2.58	-4.46	4.62	-2.58	0.000\%
11	4.46	-3.47	2.58	-4.46	3.47	-2.58	0.000\%
12	2.58	-4.62	4.46	-2.58	4.62	-4.46	0.000\%
13	2.58	-3.47	4.46	-2.58	3.47	-4.46	0.000\%
14	0.00	-4.62	5.15	-0.00	4.62	-5.15	0.000\%
15	0.00	-3.47	5.15	-0.00	3.47	-5.15	0.000\%
16	-2.58	-4.62	4.46	2.58	4.62	-4.46	0.000\%
17	-2.58	-3.47	4.46	2.58	3.47	-4.46	0.000\%
18	-4.46	-4.62	2.58	4.46	4.62	-2.58	0.000\%
19	-4.46	-3.47	2.58	4.46	3.47	-2.58	0.000\%
20	-5.15	-4.62	0.00	5.15	4.62	-0.00	0.000\%
21	-5.15	-3.47	0.00	5.15	3.47	-0.00	0.000\%
22	-4.46	-4.62	-2.58	4.46	4.62	2.58	0.000\%
23	-4.46	-3.47	-2.58	4.46	3.47	2.58	0.000\%
24	-2.58	-4.62	-4.46	2.58	4.62	4.46	0.000\%
25	-2.58	-3.47	-4.46	2.58	3.47	4.46	0.000\%
26	0.00	-9.78	0.00	-0.00	9.78	-0.00	0.000\%
27	0.00	-9.78	-1.73	-0.00	9.78	1.73	0.000\%
28	0.87	-9.78	-1.50	-0.87	9.78	1.50	0.000\%
29	1.50	-9.78	-0.87	-1.50	9.78	0.87	0.000\%
30	1.73	-9.78	0.00	-1.73	9.78	-0.00	0.000\%
31	1.50	-9.78	0.87	-1.50	9.78	-0.87	0.000\%
32	0.87	-9.78	1.50	-0.87	9.78	-1.50	0.000\%
33	0.00	-9.78	1.73	-0.00	9.78	-1.73	0.000\%
34	-0.87	-9.78	1.50	0.87	9.78	-1.50	0.000\%
35	-1.50	-9.78	0.87	1.50	9.78	-0.87	0.000\%
36	-1.73	-9.78	0.00	1.73	9.78	-0.00	0.000\%
37	-1.50	-9.78	-0.87	1.50	9.78	0.87	0.000\%
38	-0.87	-9.78	-1.50	0.87	9.78	1.50	0.000\%

tnxTower Report - version 8.1.1.0

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	$P Z$	$P X$	PY	$P Z$	
Comb.	K	K	K	K	K	K	
39	0.00	-3.85	-1.06	0.00	3.85	1.06	0.000\%
40	0.53	-3.85	-0.92	-0.53	3.85	0.92	0.000\%
41	0.92	-3.85	-0.53	-0.92	3.85	0.53	0.000\%
42	1.06	-3.85	0.00	-1.06	3.85	0.00	0.000\%
43	0.92	-3.85	0.53	-0.92	3.85	-0.53	0.000\%
44	0.53	-3.85	0.92	-0.53	3.85	-0.92	0.000\%
45	0.00	-3.85	1.06	0.00	3.85	-1.06	0.000\%
46	-0.53	-3.85	0.92	0.53	3.85	-0.92	0.000\%
47	-0.92	-3.85	0.53	0.92	3.85	-0.53	0.000\%
48	-1.06	-3.85	0.00	1.06	3.85	0.00	0.000\%
49	-0.92	-3.85	-0.53	0.92	3.85	0.53	0.000\%
50	-0.53	-3.85	-0.92	0.53	3.85	0.92	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00045030
3	Yes	4	0.00000001	0.00026285
4	Yes	5	0.00000001	0.00007940
5	Yes	5	0.00000001	0.0003247
6	Yes	5	0.00000001	0.00005347
7	Yes	5	0.00000001	0.00000001
8	Yes	4	0.00000001	0.00094922
9	Yes	4	0.00000001	0.00055649
10	Yes	5	0.00000001	0.00007431
11	Yes	5	0.00000001	0.0003003
12	Yes	5	0.00000001	0.00006135
13	Yes	5	0.00000001	0.00000001
14	Yes	4	0.00000001	0.00045117
15	Yes	4	0.00000001	0.00026295
16	Yes	5	0.00000001	0.0005374
17	Yes	5	0.00000001	0.00000001
18	Yes	5	0.00000001	0.00008390
19	Yes	5	0.00000001	0.00003446
20	Yes	4	0.00000001	0.00094807
21	Yes	4	0.00000001	0.00055664
22	Yes	5	0.00000001	0.0005475
23	Yes	5	0.00000001	0.00000001
24	Yes	5	0.00000001	0.00006353
25	Yes	5	0.00000001	0.00000001
26	Yes	4	0.00000001	0.00003689
27	Yes	5	0.00000001	0.0008590
28	Yes	5	0.00000001	0.00014014
29	Yes	5	0.00000001	0.00012552
30	Yes	5	0.00000001	0.00010894
31	Yes	5	0.00000001	0.00015104
32	Yes	5	0.00000001	0.00003248
33	Yes	5	0.00000001	0.0009114
34	Yes	5	0.00000001	0.00012732
35	Yes	5	0.00000001	0.00015389
36	Yes	5	0.00000001	0.00010589
37	Yes	5	0.00000001	0.00001911
38	Yes	5	0.00000001	0.00012464
39	Yes	4	0.00000001	0.00000001
40	Yes	4	0.00000001	0.00007604
41	Yes	4	0.00000001	0.00005715
42	Yes	4	0.00000001	0.00006222
43	Yes	4	0.00000001	0.0006224
44	Yes	4	0.00000001	0.00000001
45	Yes	4	0.00000001	0.00000001
46	Yes	4	0.00000001	0.00000001
47	Yes	4	0.00000001	0.00008699
48	Yes	4	0.00000001	0.00006095
		5		

49	Yes	4	0.00000001	0.00000001
50	Yes	4	0.00000001	0.00000001

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz. Deflection No.	in	Gov. Load	Tilt

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
83.00	Side Arm Mount [4' SO 701-1]	44	10.936	1.0408	0.0204	26287
67.00	1151-3	44	7.520	0.9122	0.0142	7731

	Maximum Tower Defiections - Design Mind				
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	Deflection	Load	\circ	\circ	
	ft	in	Comb.	${ }^{\circ}$	0.0982
L1	$84-34.25$	53.438	12	4.9853	0.0240
L2	$38-0$	12.525	12	2.9349	

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft 8	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
83.00	Side Arm Mount [4' SO 701-1]	12	52.395	4.9496	0.0963	5584
67.00	1151-3	12	36.068	4.3587	0.0668	1640

Compression Checks

Pole Design Data									
Section No.		Size			Kl/r	A		ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		$f t$	ft		$i n^{2}$	K	K	ϕP_{n}
L1	84-34.25 (1)	TP18.145×12.001x0.1875	49.75	0.00	0.0	$\begin{gathered} 10.411 \\ 3 \end{gathered}$	-2.07	609.06	0.003
L2	34.25-0 (2)	TP22x17.3069x0.2188	38.00	0.00	0.0	$\begin{gathered} 15.123 \\ 0 \end{gathered}$	-4.62	884.70	0.005

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$ kip-ft	$\phi M_{n x}$	$\begin{aligned} & \text { Ratio } \\ & M_{u x} \\ & \hline \end{aligned}$	$M_{u y}$ kip-ft	$\phi M_{n y}$ kip-ft	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$
L1	84-34.25 (1)	TP18.145×12.001×0.1875	109.09	277.48	¢ $M_{n x}$ 0.393	0.00	kip-ft	$\phi M_{n y}$ 0.000
L2	34.25-0 (2)	TP $22 \times 17.3069 \times 0.2188$	275.46	496.47	0.555	0.00	496.47	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \end{gathered}$
$f t$			K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	84-34.25 (1)	TP18.145x12.001x0.1875	3.55	182.72	0.019	0.67	279.94	0.002
L2	34.25-0 (2)	TP22x17.3069x0.2188	5.16	265.41	0.019	0.67	506.26	0.001

Pole Interaction Design Data

Section No.	Elevation	Ratio P_{u}	$\begin{aligned} & \text { Ratio } \\ & M_{u x} \end{aligned}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ V_{u} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
ft		ϕP_{n}	${ }_{\phi} M_{n \times}$	${ }_{\phi} M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	84-34.25 (1)	0.003	0.393	0.000	0.019	0.002	0.397	1.050	4.8.2
L2	34.25-0 (2)	0.005	0.555	0.000	0.019	0.001	0.560	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \varnothing P_{\text {allow }} \\ K \end{gathered}$	$\%$ Capacity	$\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$
L1	84-34.25	Pole	TP18.145x12.001x0.1875	1	-2.07	639.52	37.8	Pass
L2	34.25-0	Pole	TP22x17.3069x0.2188	2	-4.62	928.93	53.4	Pass
						Pole (L2) RATING =	$\begin{gathered} \text { Summary } \\ 53.4 \\ 53.4 \end{gathered}$	Pass Pass

APPENDIX B

BASE LEVEL DRAWING

RIDGEFIELD 22N

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
$\mathrm{I}_{\mathrm{ar}}(\mathrm{in})$	2.125

Applied Loads	
Moment (kip-ft)	275.47
Axial Force (kips)	
Shear Force (kips)	4.62

*TIA-222-H Section 15.5 Applied
*TIA-222-H Section 15.5 Applied

Connection Properties

Analysis Results

Anchor Rod Data
(6) 1-3/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 27.96" BC

Base Plate Data
$32.84^{\prime \prime}$ OD x 2.25" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data
N/A

Pole Data
22" x 0.21875" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Anchor Rod Summary		(units of kips, kip-in)
$\mathrm{Pu} \mathrm{t}=77.93$	$\phi \mathrm{Pn} \mathrm{t}=142.5$	Stress Rating
$\mathrm{Vu}=0.86$	$\phi \mathrm{Vn}=90.2$	$\mathbf{5 2 . 1 \%}$
$\mathrm{Mu}=1.19$	$\phi \mathrm{Mn}=60.29$	Pass
Base Plate Summary		(Flexural)
Max Stress (ksi):	10.84	
Allowable Stress (ksi):	45	Pass
Stress Rating:	$\mathbf{2 2 . 9 \%}$	

Pier and Pad Foundation

ES-286
Ridgefield22N
Tower Type:

H
Monopole

Top \& Bot. Pad Rein. Different?:	$\boxed{ }$
Block Foundation?:	\square
Rectangular Pad?:	\square

Superstructure Analysis Reactions			
Compression, $\mathbf{P}_{\text {comp }}:$	4.62	kips	
Base Shear, Vu_comp:	5.15	kips	
Moment, $\mathbf{M}_{\mathbf{u}}:$	275.47	ft -kips	
Tower Height, $\mathbf{H}:$	84	ft	
BP Dist. Above Fdn, $\mathbf{b p}_{\text {dist }}:$	6	in	

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier:	4.5	ft	
Ext. Above Grade, E:	0.5	ft	
Pier Rebar Size, Sc:	9		
Pier Rebar Quantity, mc:	12		
Pier Tie/Spiral Size, St:	4		
Pier Tie/Spiral Quantity, mt:	7		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, $\mathbf{c c}$ pier:	6	in	

Foundation Analysis Checks				
	Capacity	Demand	Rating *	Check
Lateral (Sliding) (kips)	81.43	5.15	$\mathbf{6 . 0} \%$	Pass
Bearing Pressure (ksf)	6.00	1.71	$\mathbf{2 8 . 5} \%$	Pass
Overturning (kip*ft)	648.41	308.95	$\mathbf{4 7 . 6} \%$	Pass
Pier Flexure (Comp.) (kip*t)	1147.42	296.07	$\mathbf{2 4 . 6 \%}$	Pass
Pier Compression (kip)	7592.08	16.07	$\mathbf{0 . 2 \%}$	Pass
Pad Flexure (kip*f)	424.27	82.23	$\mathbf{1 8 . 5} \%$	Pass
Pad Shear - 1-way (kips)	235.14	25.59	$\mathbf{1 0 . 4 \%}$	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.013	$\mathbf{7 . 4 \%}$	Pass
Flexural 2-way (Comp) (kip*ft)	487.12	177.64	$\mathbf{3 4 . 7 \%}$	Pass

*Rating per TIA-222-H Section 15.5

Structural Rating $:$	34.7%
Soil Rating $:$	47.6%

Pad Properties			
Depth, D:	5.5	ft	
Pad Width, $\mathbf{W}_{\mathbf{1}}:$	12	ft	
Pad Thickness, T:	2	ft	
Pad Rebar Size (Top dir.2), $\mathbf{S p}_{\text {top } 2}:$	4		
Pad Rebar Quantity (Top dir. 2), $\mathbf{m p}_{\text {top2 }}:$	9		
Pad Rebar Size (Bottom dir. 2), $\mathbf{S p}_{\mathbf{2}}:$	6		
Pad Rebar Quantity (Bottom dir. 2), $\mathbf{m p}_{\mathbf{2}}:$	11		
Pad Clear Cover, $\mathbf{c c}_{\text {pad }}:$	3	in	

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties				
Total Soil Unit Weight, $\gamma:$	125	pcf		
Ultimate Gross Bearing, Qult:	8.000	ksf		
Cohesion, $\mathbf{C u}:$		ksf		
Friction Angle, $\varphi:$	34	degrees		
SPT Blow Count, $\mathbf{N}_{\text {blows }}:$				
Base Friction, $\mu:$	0.6			
Neglected Depth, $\mathbf{N}:$	3.50	ft		
Foundation Bearing on Rock?	No			
Groundwater Depth, gw:	N / A	ft		

ATTACHMENT E - PROOF OF DELIVERY OF NOTICE

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

ATTACHMENT F - POWER DENSITY REPORT

Calculated Radio Frequency Emissions Report EVERS=URCE ENERGY

ES-286
Off Prospect Street
Ridgefield, CT 06877

Table of Contents

1. Introduction. 1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits 1
3. Power Density Calculation Methods 2
4. Calculated \% MPE Results 3
5. Conclusion 4
6. Statement of Certification 4
Attachment A: References 5
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE) 6
Attachment C: Eversource Antenna Data Sheets and Electrical Patterns 8
List of Tables
Table 1: Proposed Facility \% MPE 3
Table 2: FCC Limits for Maximum Permissible Exposure (MPE) 6
List of Figures
Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE) 7

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the existing Eversource installation located off Prospect Street in Ridgefield, CT.

Eversource has recently installed one omnidirectional antenna for both transmit and receive purposes as part of its 220 MHz communications system. The original proposal consisted of two omnidirectional antennas - separate transmit and receive antennas. This report provides an updated analysis based on the current installation as reflected in the update site plans ${ }^{1}$.

This report considers the existing antenna configuration as provided by Eversource along with power density information of the other existing antennas to calculate the overall \% MPE (Maximum Permissible Exposure) of the facility at ground level.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz . The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter ($\mathrm{mW} / \mathrm{cm}^{2}$). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

[^3]
3. Power Density Calculation Methods

The power density calculation results were generated using the following formula as outlined in FCC bulletin OET 65, and Connecticut Siting Council recommendations:

$$
\text { Power Density }=\left(\frac{1.6^{2} \times 1.64 \times \mathrm{ERP}}{4 \pi \times R^{2}}\right) X \text { Off Beam Loss }
$$

Where:
EIRP $=$ Effective Isotropic Radiated Power $=1.64 \times$ ERP
$\mathrm{R}=$ Radial Distance $=\sqrt{\left(H^{2}+V^{2}\right)}$
$\mathrm{H}=$ Horizontal Distance from antenna
$\mathrm{V}=$ Vertical Distance from radiation center of antenna
Ground reflection factor of 1.6
Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and full power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. As a result, the calculated power density and corresponding $\%$ MPE levels reported below are much higher than the actual levels will be from the final installation.

4. Calculated \% MPE Results

Table 1 below outlines the power density information for the site. The new Eversource omnidirectional antenna has a vertical beamwidth of 60°; therefore, the majority of the RF power is focused out towards the horizon. Please refer to Attachment C for the vertical pattern of the recently installed 220 MHz Eversource antenna. Likewise, the other transmit antennas exhibit similar directionality of varying vertical beamwidths. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the facility. The calculated results in Table 1 include a nominal 10 dB off-beam pattern loss to account for the lower relative gain below the antennas. Any inactive or receive-only antennas are not listed in the table, as they are irrelevant in terms of the \% MPE calculations.

Carrier	Antenna Height (Feet)	Operating Frequency (MHz)	Number of Trans.	ERP Per Transmitter (Watts)	Power Density $\left(\mathbf{m w} / \mathbf{c m}^{2}\right)$	Limit	\%MPE
CL\&P	85	37.74	1	100	0.0006	0.2000	0.29%
CL\&P	70	44	1	100	0.0009	0.2000	0.44%
CL\&P	70	48	1	100	0.0009	0.2000	0.44%
CL\&P	85	450	1	251	0.0014	0.3000	0.48%
CL\&P	85	937	2	240	100	0.0028	0.6247
Eversource	90	44.34	1	240	0.44%		
Eversource	88	936.6375	1	240	0.0005	0.2000	0.25%
Eversource	88	938.45	1	100	0.0013	0.6244	0.21%
Eversource	74	37.74	1	10013	0.6256	0.21%	
Eversource	74	451.675	1	124	0.0008	0.2000	0.39%
Eversource	73	217	4		0.0020	0.3011	0.65%
Eversource	95.3			0.0008	0.2000	0.40%	

Table 1: Proposed Facility \% MPE ${ }^{23}$

The CT Siting Council power density database reflects entries for pre-existing Eversource (f.k.a. CL\&P) antennas. These entries are shown as grey in the table above and should be replaced by the unshaded entries, which are based upon updated operating parameters provided by Eversource as part of this project. The blue entry reflects the parameters of the recently installed Eversource antenna. Therefore, the total \% MPE calculated is based upon only the unshaded and blue entries.

[^4]${ }^{3}$ The antenna heights listed for Eversource are in reference to the Black \& Veatch Structural Analysis Report dated 07/29/2021.

5. Conclusion

The above analysis concludes that RF exposure at ground level with the new Eversource 220 MHz antenna installation will be below the maximum power density limits as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods discussed herein, the highest expected percent of Maximum Permissible Exposure at ground level from the existing installation is $\mathbf{3 . 2 2 \%}$ of the FCC General Population/Uncontrolled limit.

As noted previously, the calculated \% MPE levels are more conservative (higher) than the actual measured levels will be from the installation.

6. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, IEEE Std. C95.1, and IEEE Std. C95.3.

Kerth cellante

Report Prepared By: Keith Vellante
Director - RF Services
C Squared Systems, LLC

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering \& Technology
IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, $100 \mathrm{kHz}-300 \mathrm{GHz}$ IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure ${ }^{4}$

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (E) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$\left(900 / \mathrm{f}^{2}\right)^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$	-	-	$\mathrm{f} / 300$	6
$1500-100,000$	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure ${ }^{5}$

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (E) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	-	-	$\mathrm{f} / 1500$	1.0
$1500-100,000$	-	-		30
$\mathrm{f}=$ frequency in $\mathrm{MHz} *$ Plane-wave equivalent power density				

Table 2: FCC Limits for Maximum Permissible Exposure (MPE)

[^5]

Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Eversource Antenna Data Sheets and Electrical Patterns

217 MHz	
Manufacturer:	dbSpectra
Model \#:	SP2D00P36D-D
Frequency Band:	$217-220 \mathrm{MHz}$
Gain:	0 dBd
Vertical Beamwidth:	60°
Horizontal Beamwidth:	360°
Polarization:	Vertical
Length:	15.6°

[^0]: ${ }^{1}$ It should be noted that the number of transmitting antennas accounted for in the Power Density Report accounts for two channels on the 88 ' centerline antenna. Also, the "Antenna Height" column on Table 1 in the Power Density Report reflects the centerline of the Transmit or "TX" antenna centerline.

[^1]: *Von Mises SR = (Max Von Mises Value From RISA-3D)/(0.9*Fy)

[^2]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals Use Moment Magnification
 \checkmark Use Code Stress Ratios
 \checkmark Use Code Safety Factors - Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

[^3]: ${ }^{1}$ Stamped Black \& Veatch site drawings dated 8/13/2021 (Rev. 1).

[^4]: ${ }^{2}$ Please note that $\%$ MPE values listed are rounded to two decimal points and the total $\%$ MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not identically match the total value reflected in the table.

[^5]: ${ }^{4}$ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure
 ${ }^{5}$ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

