

56 Prospect Street, P.O. Box 270 Hartford, CT 06103

Kathleen M. Shanley Manager – Transmission Siting

Tel: (860) 728-4527

July 22, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification

Eversource Site Ridgefield 22N

Off Prospect Street, Ridgefield, CT 06877

Latitude: 41-17-00.6 N / Longitude: 73-29.16.3 W

Dear Ms. Bachman:

The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") currently maintains multiple antennas and equipment at various mounting heights on an existing 84-foot steel monopole tower located off Prospect Street in Ridgefield. See <u>Attachment A</u>, Parcel Map and Property Card. The tower and property are owned by Eversource. Eversource plans to install one 14-foot 3-inch tall omni-directional antenna to be mounted at 82 feet above ground level ("AGL"), one 4-foot 3-inch tall omni-directional antenna to be inverse mounted at 82 feet AGL, and two 7/8-inch diameter coaxial cables. There will be no changes to the area of the fenced compound, the tower or the antennas and equipment currently mounted on the tower. The tower and existing and proposed equipment on the tower are depicted on <u>Attachment B</u>, Construction Drawings, dated March 26, 2020 and <u>Attachment C</u>, Structural Analysis, dated March 26, 2020. The Connecticut Siting Council approved the monopole at this location in Petition No. 1054 in January 2013.

The proposed installation is part of Eversource's program to update the current obsolete analog voice radio communications system to a modern digital voice communications system. The new system will enable the highest level of voice communications under all operating conditions, including during critical emergency and storm restoration activities. The new radio system will also provide for remote control of distribution safety equipment.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2):

- 1. There will be no change to the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard as shown in the attached Radio Frequency Emissions Report, dated April 2, 2020 (Attachment E Power Density Report)¹.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Eversource respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Two copies of this notice and a check in the amount of \$625 are enclosed.

Communications regarding this Notice of Exempt Modification should be directed to Kathleen Shanley at (860) 728-4527.

By:

Kathleen M. Shanley

Manager – Transmission Siting

cc: Honorable Rudy Marconi, First Selectman, Town of Ridgefield Richard Baldelli, Director of Planning & Zoning, Town of Ridgefield

Attachments

A. Parcel Map and Property Card

- B. Construction Drawings
- C. Structural Analysis
- D. Proof of Delivery of Notice
- E. Power Density Report

¹ It should be noted that the number of transmitting antennas accounted for in the Power Density Report accounts for two channels on the 88' centerline antenna. Also, the "Antenna Height" column on Table 1 in the Power Density Report only accounts for the centerline of the Transmit or "TX" antenna centerline.

ES-286 Ridgefield22N Parcel

2/20/2020 8:34:14 AM

Scale: 1"=188'

Scale is approximate

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2017.

Information on the Property Records for the Municipality of Ridgefield was last updated on 2/17/2020.

Parcel Information

Location:	SUNSET LA	Property Use:	Vacant Land	Primary Use:	Residential
Unique ID:	F150054	Map Block Lot:	F15-0054	Acres:	2.30
490 Acres:	0.00	Zone:	RAA	Volume / Page:	0178/0079
Developers Map / Lot:		Census:	2453		

Value Information

	Appraised Value	Assessed Value
Land	98,900	69,230
Buildings	0	0
Detached Outbuildings	0	0
Total	98,900	69,230

Information Published With Permission From The Assessor

RIDGEFIELD 22N 1 PROSPECT STREET RIDGEFIELD, CT 06877

LOCATION MAP

PROJECT SUMMARY

THE GENERAL SCOPE OF WORK CONSISTS OF THE FOLLOWING:

- INSTALL (2) NEW OMNI/WHIP ANTENNAS, (1) AT ELEVATION 97'-0"± AGL AND (1) AT ELEVATION 82'-0"± AGL
- 2. INSTALL (1) NEW RACK WITH DMR EQUIPMENT IN EXISTING SHELTER

GOVERNING CODES

2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS) 2017 NATIONAL ELECTRIC CODE TIA-222-H

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE; NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

SITE INFORMATION

SITE NAME: SITE ID NUMBER: RIDGEFIELD 22N

SITE ADDRESS: 1 PROSPECT STREET RIDGEFIELD, CT 06877

NP:

OT:

LATITUDE: 41' 17' 0.59" N LONGITUDE: 73' 29' 16.27" W

ELEVATION: 75 29 16.

LEVATION: 666 ± AMSL

ACREAGE: 2.3± AC (BOOK: 0178, PAGE: 0079)

CONTACT INFORMATION

APPLICANTS: EVERSOURCE ENERGY 107 SELDEN STREET

107 SELDEN STREET BERLIN, CT 06037

PROPERTY OWNER: EVERSOURCE ENERGY 107 SELDEN STREET BERLIN, CT 06037

EVERSOURCE ENERGY PROJECT MANAGER: NIKOLL PRECI (860) 655-3079 EVERSOURCE ENERGY (800) 286-2000

TELCO PROVIDER: FRONTIER (800) 921-8102

CALL BEFORE YOU DIG:

Kooler Tayern Museum

Bernard's

<u>URCE_ENERGY</u> (800) 922-44 <u>T_MANAGER</u>: PRECI

NO SCALE

DESIGN TYPE

SITE UPGRADE MONOPOLE

DRAWING INDEX		
SHEET NO:	SHEET TITLE	
T-1	TITLE SHEET	
C-1	SITE PLAN	
C-2	TOWER ELEVATION	
G-1	GROUNDING DETAILS	
N-1	NOTES & SPECIFICATIONS	
N-2	NOTES & SPECIFICATIONS	
N-3	NOTES & SPECIFICATIONS	

DO NOT SCALE DRAWINGS

SUBCONTRACTOR SHALL VERIFY ALL PLANS & EXISTING DIMENSIONS & CONDITIONS ON THE JOB SITE & SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME

UNDERGROUND SERVICE ALERT

UTILITIES PROTECTION CENTER, INC.

48 HOURS BEFORE YOU DIG

EVERS=URCE ENERGY

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

ı	PROJECT NO:	403093
ı	DRAWN BY:	TCG
	CHECKED BY:	JR

		`
0	03/26/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RIDGEFIELD 22N 1 PROSPECT STREET RIDGEFIELD, CT 06877

SHEET TITLE

TITLE SHEET

SHEET NUMBE

T-1

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TCG
CHECKED BY:	JR

í			,
ı			
I			
ı			
ı			
I			
ı			
ı			
I	0	03/26/20	ISSUED FOR FILING
ĺ	REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RIDGEFIELD 22N 1 PROSPECT STREET RIDGEFIELD, CT 06877

SHEET TITLE

SITE PLAN

SHEET NUMBER

C-1

TOWER ELEVATION

NO SCALE

EXISTING GRADE

ELEVATION 666'-0"± AMSL

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TCG
CHECKED BY:	JR
-	

0	>	03/26/20	ISSUED FOR FILING
RE	v	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RIDGEFIELD 22N 1 PROSPECT STREET RIDGEFIELD, CT 06877

SHEET TITLE

TOWER ELEVATION

SHEET NUMBER

C-2

<u>NOTE</u>

 NUMBER OF GROUND BARS MAY VARY DEPENDING ON THE TYPE OF TOWER, ANTENNA LOCATION AND CONNECTION ORIENTATION. PROVIDE AS REQUIRED.

ANTENNA CABLE GROUNDING NO SCALE

NOTES

- 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.
- 3. WEATHER PROOFING SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.

CONNECTION OF CABLE GROUND
KIT TO ANTENNA CABLE
NO SCALE

INDOOR OUTDOOR

- ANTENNA CABLES (TYP)

CABLE INSTALLATION WITH WALL FEED THRU ASSEMBLY NO SCALE

ICE BRIDGE AND ANTENNA

CABLE DETAIL

NO SCALE

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TCG
CHECKED BY:	JR

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RIDGEFIELD 22N 1 PROSPECT STREET RIDGEFIELD, CT 06877

SHEET TITLE

GROUNDING DETAILS

SHEET NUMBER

G-1

DESIGN BASIS

1. GOVERNING CODE: 2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS).

GENERAL CONDITIONS

- 1. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO COMPLY WITH ALL APPLICABLE FEDERAL, STATE, AND LOCAL BUILDING CODES, PERMIT CONDITIONS AND SAFETY CODES DURING CONSTRUCTION.
- THE ENGINEER IS NOT: A GUARANTOR OF THE INSTALLING CONTRACTOR'S WORK; RESPONSIBLE FOR SAFETY IN, ON OR ABOUT THE WORK SITE; IN CONTROL OF THE SAFETY OR ADEQUACY OF ANY BUILDING COMPONENT, SCAFFOLDING OR SUPERINTENDING THE WORK.
- THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL PERMITS, INSPECTIONS, TESTING AND CERTIFICATES NEEDED FOR LEGAL OCCUPANCY OF THE FINISHED PROJECT.
- 4. THE CONTRACTOR IS RESPONSIBLE TO REVIEW THIS COMPLETE PLAN SET AND VERIFY THE EXISTING CONDITIONS SHOWN IN THESE PLANS AS THEY RELATE TO THE WORK PRIOR TO SUBMITTING PRICE. SIGNIFICANT DEVIATIONS FROM WHAT IS SHOWN AFFECTING THE WORK SHALL BE REPORTED IMMEDIATELY TO THE CONSTRUCTION MANAGER.
- 5. DETAILS INCLUDED IN THIS PLAN SET ARE TYPICAL AND APPLY TO SIMILAR CONDITIONS.
- 5. EXISTING ELECTRICAL AND MECHANICAL FIXTURES, PIPING, WIRING, AND EQUIPMENT OBSTRUCTING THE WORK SHALL BE REMOVED AND/OR RELOCATED AS DIRECTED BY THE CONSTRUCTION MANAGER. TEMPORARY SERVICE INTERRUPTIONS MUST BE COORDINATED WITH OWNER.
- THE CONTRACTOR SHALL DILIGENTLY PROTECT THE EXISTING BUILDING/SITE CONDITIONS AND THOSE
 OF ANY ADJOINING BUILDING/SITES AND RESTORE ANY DAMAGE CAUSED BY HIS ACTIVITIES TO THE
 PRE-CONSTRUCTION CONDITION.
- B. THE CONTRACTOR SHALL SAFEGUARD AGAINST: CREATING A FIRE HAZARD, AFFECTING TENANT EGRESS OR COMPROMISING BUILDING SITE SECURITY MEASURES.
- 9. THE CONTRACTOR SHALL REMOVE ALL DEBRIS AND CONSTRUCTION WASTE FROM THE SITE EACH DAY. WORK AREAS SHALL BE SWEPT AND MADE CLEAN AT THE END OF EACH WORK DAY.
- THE CONTRACTOR'S HOURS OF WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND ORDINANCES AND BE APPROVED BY OWNER.
- 11. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE CONSTRUCTION MANAGER IF ASBESTOS IS ENCOUNTERED DURING THE EXECUTION OF HIS WORK. THE CONTRACTOR SHALL CEASE ALL ACTIVITIES WHERE THE ASBESTOS MATERIAL IS FOUND UNTIL NOTIFIED BY THE CONSTRUCTION MANAGER TO RESUME OPERATIONS.

THERMAL & MOISTURE PROTECTION

- FIRE-STOP ALL PENETRATIONS FOR ELECTRICAL CONDUITS OR WAVEGUIDE CABLING THROUGH BUILDING WALLS, FLOORS, AND CEILINGS SHALL BE FIRESTOPPED WITH ACCEPTED MATERIALS TO MAINTAIN THE FIRE RATING OF THE EXISTING ASSEMBLY. ALL FILL MATERIAL SHALL BE SHAPED, FITTED, AND PERMANENTLY SECURED IN PLACE. FIRESTOPPING SHALL BE INSTALLED IN ACCORDANCE WITH ASTM E814.
- HILTI CP620 FIRE FOAM OR 3M FIRE BARRIER FILL, VOID OR CAVITY MATERIAL OR ACCEPTED EQUAL SHALL BE APPLIED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS AND ASSOCIATED UNDERWRITERS LABORATORIES (UL) SYSTEM NUMBER.
- 3. FIRESTOPPING SHALL BE APPLIED AS SOON AS PRACTICABLE AFTER PENETRATIONS ARE MADE AND EQUIPMENT INSTALLED.
- 4. FIRESTOPPED PENETRATIONS SHALL BE LEFT EXPOSED AND MADE AVAILABLE FOR INSPECTION BEFORE CONCEALING SUCH PENETRATIONS. FIRESTOPPING MATERIAL CERTIFICATES SHALL BE MADE AVAILABLE AT THE TIME OF INSPECTION.
- 5. ANY BUILDING ROOF PENETRATION AND/OR RESTORATION SHALL BE PERFORMED SO THAT THE ROOF WARRANTY IN PLACE IS NOT COMPROMISED. CONTRACTOR SHALL ARRANGE FOR OWNER'S ROOFING CONTRACTOR TO PERFORM ANY AND ALL ROOFING WORK IF SO REQUIRED BY EXISTING ROOF WARRANTY. OTHERWISE, ROOF SHALL BE MADE WATERTIGHT WITH LIKE CONSTRUCTION AS SOON AS PRACTICABLE AND AT COMPLETION OF CONSTRUCTION.
- 6. ALL PENETRATIONS INTO AND/OR THROUGH BUILDING EXTERIOR WALLS SHALL BE SEALED WITH SILICONF SEALER.
- WHERE CONDUIT AND CABLES PENETRATES FIRE RATED WALLS AND FLOORS, FIRE GROUT ALL
 PENETRATIONS IN ORDER TO MAINTAIN THE FIRE RATING USING A LISTED FIRE SEALING DEVICE OR
 GROUT
- 8. CONTRACTOR TO REMOVE AND RE-INSTALL ALL FIRE PROOFING AS REQUIRED DURING CONSTRUCTION.

<u>SUBMITTALS</u>

- 1. CONTRACTOR TO SUBMIT SHOP DRAWINGS TO ENGINEER FOR REVIEW PRIOR TO FABRICATION.
- 2. CONTRACTOR TO NOTIFY ENGINEER FOR INSPECTION PRIOR TO CLOSING PENETRATIONS.
- CONTRACTORS SHALL VERIEY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE ENGINEER SHALL BE NOTIFIED OF ANY CONDITIONS WHICH PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- ALL STEEL MATERIAL EXPOSED TO WEATHER SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 " ZINC (HOT-DIPPED GALVANIZED) COATINGS" ON IRON AND STEEL PRODUCTS.
- 5. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS FOR REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.

STEEL

MATERIAL:

 WIDE FLANGE:
 ASTM A572, GR 50

 TUBING:
 ASTM A500, GR C

 PIPE:
 ASTM A53, GR B

 BOLTS:
 ASTM A325

GRATING: TYPE GW-2 (1"x3/16" BARS)

MISC. MATERIAL. ASTM ASO

ALL STEEL SHAPES SHALL BE HOT-DIPPED GALVANIZED IN ACCORDANCE WITH ASTM A123 WITH A COATING WEIGHT OF 2 OZ/SF.

- DAMAGED GALVANIZED SURFACES SHALL BE CLEANED WITH A WIRE BRUSH AND PAINTED WITH TWO
 COATS OF COLD ZINC, "CALVANOX", "DRY GALV", "ZINC IT", OR APPROVED EQUIVALENT, IN
 ACCORDANCE WITH MANUFACTURER'S GUIDELINES. TOUCH UP DAMAGED NON GALVANIZED STEEL WITH
 SAME PAINT IN SHOP OR FIELD.
- DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC "MANUAL OF STEEL CONSTRUCTION" 13TH EDITION.
- 4. THE STEEL STRUCTURE IS DESIGNED TO BE SELF—SUPPORTING AND STABLE AFTER COMPLETION. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO INSURE THE SAFETY OF THE BUILDING AND ITS COMPONENT PARTS DURING ERECTION.
- 5. ALL STEEL ELEMENTS SHALL BE INSTALLED PLUMB AND LEVEL
- 6. TOWER MANUFACTURER'S DESIGNS SHALL PREVAIL FOR TOWER.

SITE GENERAL

- CONTRACTOR SHALL FOLLOW CONDITIONS OF ALL APPLICABLE PERMITS AND WORK IN ACCORDANCE WITH OSHA REGULATIONS.
- 2. THESE PLANS DEPICT KNOWN UNDERGROUND STRUCTURES, CONDUITS, AND/OR PIPELINES. THE LOCATIONS FOR THESE ELEMENTS ARE BASED UPON THE VARIOUS RECORD DRAWINGS AVAILABLE. THE CONTRACTOR IS HEREBY ADVISED THAT THESE DRAWINGS MAY NOT ACCURATELY DEPICT AS—BUILT LOCATIONS AND OTHER UNKNOWN STRUCTURES. THE CONTRACTOR SHALL THEREFORE DETERMINE THE EXACT LOCATION OF EXISTING UNDERGROUND ELEMENTS AND EXCAVATE WITH CARE AFTER CALLING MARKOUT SERVICE AT 1-800-272-4480 48 HOURS BEFORE DIGGING, DRILLING OR BLASTING.
- 3. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, AND OTHER UTILITIES WHERE ENCOUNTERED, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION, SHALL BE RELOCATED AS DIRECTED BY ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PIER DRILLING AROUND OR NEAR UTILITIES. CONTRACTOR SHALL HAND DIG UTILITIES AS NEEDED. CONTRACTOR SHALL PROVIDE, BUT IS NOT LIMITED TO, APPROPRIATE A) FALL PROTECTION, B) CONFINED SPACE ENTRY, C) ELECTRICAL SAFETY, AND D) TRENCHING AND EXCAVATION.
- 4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 5. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, OR OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED, AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT THE POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF THE CONSTRUCTION MANAGER.
- 6. CONTRACTOR IS RESPONSIBLE FOR REPAIRING OR REPLACING STRUCTURES OR UTILITIES DAMAGED DURING CONSTRUCTION.
- CONTRACTOR SHALL PROTECT EXISTING PAVED AND GRAVEL SURFACES, CURBS, LANDSCAPE AND STRUCTURES AND RESTORE SITE OR PRE—CONSTRUCTION CONDITION WITH AS GOOD, OR BETTER, MATERIALS. NEW MATERIALS SHALL MATCH EXISTING THICKNESS AND TYPE.
- THE CONTRACTOR SHALL SHORE ALL TRENCH EXCAVATIONS GREATER THAN 5 FEET IN DEPTH OR LESS WHERE SOIL CONDITIONS ARE DEEMED UNSTABLE. ALL SHEETING AND/OR SHORING METHODS SHALL BE DESIGNED BY A PROFESSIONAL ENGINEER.
- 9. THE CONTRACTOR IS RESPONSIBLE FOR MANAGING GROUNDWATER LEVELS IN THE VICINITY OF EXCAVATIONS TO PROTECT ADJACENT PROPERTIES AND NEW WORK, GROUNDWATER SHALL BE DRAINED IN ACCORDANCE WITH LOCAL SEDIMENTATION AND EROSION CONTROL GUIDELINES.

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

	PROJECT NO:	403093
	DRAWN BY:	TCG
l ,	CHECKED BY:	JR

(
0	03/26/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RIDGEFIELD 22N 1 PROSPECT STREET RIDGEFIELD, CT 06877

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-1

ELECTRICAL

- 1. CONTRACTOR SHALL VERIFY EXISTING ELECTRIC SERVICE TYPE AND CAPACITY AND ORDER NEW ELECTRIC SERVICE FROM LOCAL ELECTRIC UTILITY, WHERE APPLICABLE.
- ALL ELECTRICAL WORK SHALL BE IN ACCORDANCE WITH ALL APPLICABLE CODES, AND SHALL BE
 ACCEPTABLE TO ALL AUTHORITIES HAVING JURISDICTION. WHERE A CONFLICT EXISTS BETWEEN CODES,
 PLAN AND SPECIFICATIONS, OR AUTHORITIES HAVING JURISDICTION, THE MORE STRINGENT
 AUTHORITIES SHALL APPLY.
- CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS, INSURANCE, EQUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, ETC, FOR A COMPLETE AND PROPERLY OPERATIVE SYSTEM ENERGIZED THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SPECIFIED HEREIN AND/OR OTHERWISE REQUIRED.
- 4. ALL ELECTRICAL CONDUCTORS SHALL BE 100% COPPER AND SHALL HAVE TYPE THHN INSULATION UNLESS INDICATED OTHERWISE.
- CONDUIT SHALL BE THREADED RIGID GALVANIZED STEEL OR EMT WITH ONLY COMPRESSION TYPE COUPLINGS AND CONNECTORS. ALL MADE UP WRENCH TIGHT.
- ALL BURIED CONDUIT SHALL BE MINIMUM SCH 40 PVC UNLESS NOTED OTHERWISE, OR AS PER LOCAL CODE REQUIREMENTS.
- . PROVIDE FLEXIBLE STEEL CONDUIT OR LIQUID TIGHT FLEXIBLE STEEL CONDUIT TO ALL VIBRATING EQUIPMENT, INCLUDING HVAC UNITS, TRANSFORMERS, MOTORS, ETC, OR WHERE EQUIPMENT IS PLACED UPON A SLAB ON GRADE.
- 8. ALL BRANCH CIRCUITS AND FEEDERS SHALL HAVE A SEPARATE GREEN INSULATED EQUIPMENT GROUNDING CONDUCTOR BONDED TO ALL ENCLOSURES, PULLBOXES, ETC.
- 9. CONDUIT AND CABLE WITHIN CORRIDORS SHALL BE CONCEALED AND EXPOSED ELSEWHERE, UNLESS
- 10. ELECTRICAL MATERIALS INSTALLED ON ROOFTOP SHALL BE LISTED FOR NEMA 3R USE. —AND ALL WIRING WITHIN A VENTILATION DUCT SHALL BE LISTED FOR SUCH USE. IN GENERAL WIRING METHODS WITHIN A DUCT SHALL BE AN MC CABLE WITH SMOOTH OR CORRUGATED METAL JACKET AND HAVE NO OUTER COVERING OVER THE METAL JACKET. INTERLOCKED ARMOR TYPE OF MC CABLE IS NOT ACCEPTABLE FOR THIS APPLICATION. CONTRACTOR CAN ALSO USE TYPE MI CABLE IN THE VENTILATION DUCT PROVIDED IT DOES NOT HAVE ANY OUTER COVERINGS OVER THE METAL EXTERIOR.
- 11. WIRING DEVICES SHALL BE SPECIFICATION GRADE, AND WIRING DEVICE COVER PLATES SHALL BE PLASTIC WITH ENGRAVING AS SPECIFIED.
- 12. GROUNDING SYSTEM RESISTANCE SHALL BE MEASURED, RECORDED, AND DATED USING MEGGER DET14 OR SIMILAR INSTRUMENT. GROUND RESISTANCE SHALL NOT EXCEED 5 OHMS. IF THE RESISTANCE VALUE IS EXCEEDED, NOTIFY CONSTRUCTION MANAGER FOR FURTHER INSTRUCTION.
- 13. COORDINATE WITH BUILDING MANAGEMENT BEFORE PERFORMING ANY WORK INVOLVING EXISTING SYSTEMS OR EQUIPMENT IN ORDER TO DETERMINE THE EFFECT, IF ANY, ON OTHER TENANTS WITHIN THE BUILDING, AND TO DETERMINE THE APPROPRIATE TIME FOR PERFORMING THIS WORK.
- 14. THE CONTRACTOR SHALL BE REQUIRED TO VISIT THE SITE PRIOR TO SUBMITTING BID IN ORDER TO DETERMINE THE EXTENT OF THE EXISTING CONDITIONS.
- 15. ALL CONDUCTOR ENDS SHALL BE TAGGED AND ELECTRICAL EQUIPMENT LABELED WITH ENGRAVED IDENTIFICATION PLATES.
- 16. CONTRACTOR IS RESPONSIBLE FOR ALL CONTROL WIRING AND ALARM TIE-INS.

GROUNDING

- #6 THWN SHALL BE STRANDED #6 COPPER WITH GREEN THWN INSULATION SUITABLE FOR WET INSTALLATIONS.
- 2. #2 THWN SHALL BE STRANDED #2 COPPER WITH THWN INSULATION SUITABLE FOR WET
- ALL LUGS SHALL BE 2-HOLE, LONG BARREL, TINNED SOLID COPPER UNLESS OTHERWISE SPECIFIED, LUGS SHALL BE THOMAS AND BETTS SERIES 548##BE OR EQUIVALENT (IE #2 THWN - 54856BE, #2 SOLID - 54856BE, AND #6 THWN - 54852BE).
- 4. ALL HARDWARE, BOLTS, NUTS, AND WASHERS SHALL BE 18-8 STAINLESS STEEL. EVERY CONNECTION SHALL BE BOLT-FLAT WASHER-BUSS-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT IN THAT EXACT ORDER. BACK-TO-BACK LUGGING, BOLT-FLAT WASHER-LUG-BUSS-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT, IN THAT EXACT ORDER, IS ACCEPTED WHERE NECESSARY TO CONNECT MANY LUGS TO A BUSS BAR. STACKING OF LUGS, BUSS-LUG-LUG, IS NOT ACCEPTABLE.
- WHERE CONNECTIONS ARE MADE TO STEEL OR DISSIMILAR METALS, A THOMAS AND BETTS DRAGON TOOTH WASHER MODEL DTWXXX SHALL BE USED BETWEEN THE LUG AND THE STEEL, BOLT-FLAT WASHER-STEEL-DRAGON TOOTH WASHER-LUG-FLAT WASHER-BELEVILE WASHER-NUT.
- 6. ALL CONNECTIONS, INTERIOR AND EXTERIOR, SHALL BE MADE WITH THOMAS AND BETTS KPOR-SHIELD. COAT ALL WIRES BEFORE LUGGING AND COAT ALL SURFACES BEFORE CONNECTING.
- 7. THE MINIMUM BEND RADIUS SHALL BE 8 INCHES FOR #6 WIRE AND SMALLER AND 12 INCHES FOR WIRE LARGER THAN #6.
- 8. BOND THE FENCE TO THE GROUND RING AT EACH CORNER, AND AT EACH GATE POST WITH #2 SOLID TINNED WIRE. EXOTHERMIC WELD BOTH ENDS.
- 9. GROUND KITS SHALL BE SOLID COPPER STRAP WITH #6 WIRE 2-HOLE COMPRESSION CRIMPED LUGS AND SHALL BE SEALED ACCORDING TO MANUFACTURER INSTRUCTIONS.
- 10. FERROUS METAL CLIPS WHICH COMPLETELY SURROUND THE GROUNDING CONDUCTOR SHALL BE USED.
- 11. GROUND BARS SHALL BE FURNISHED AND INSTALLED WITH PRE-DRILLED HOLE DIAMETERS AND SPACINGS. GROUND BARS SHALL NEITHER BE FIELD FABRICATED NOR NEW HOLES DRILLED. GROUND LUGS SHALL MATCH THE SPACING ON THE BAR. HARDWARE DIAMETER SHALL BE MINIMUM 3.8 INCH.

ANTENNA & CABLE NOTES

- 1. THE CONTRACTOR SHALL FURNISH AND INSTALL ALL TRANSMISSION CABLES, JUMPERS, CONNECTORS, GROUNDING STRAPS, ANTENNAS, MOUNTS AND HARDWARE. ALL MATERIALS SHALL BE INSPECTED BY THE CONTRACTOR FOR DAMAGE UPON DELIVERY. JUMPERS SHALL BE SUPPLIED AT ANTENNAS AND EQUIPMENT INSIDE SHELTER COORDINATE LENGTH OF JUMP CABLES WITH EVERSOURCE. COORDINATE AND VERIFY ALL OF THE MATERIALS TO BE PROVIDED WITH EVERSOURCE PRIOR TO SUBMITTING BID AND ORDERING MATERIALS.
- AFTER INSTALLATION, THE TRANSMISSION LINE SYSTEM SHALL BE PIM/SWEEP TESTED FOR PROPER INSTALLATION AND DAMAGE WITH ANTENNAS CONNECTED. CONTRACTOR TO OBTAIN LATEST TESTING PROCEDURES FROM EVERSOURCE PRIOR TO BIDDING.
- 3. ANTENNA CABLES SHALL BE COLOR CODED AT THE FOLLOWING LOCATIONS:
 - AT THE ANTENNAS.
 - AT THE WAVEGUIDE ENTRY PLATE ON BOTH SIDES OF THE EQUIPMENT SHELTER WALL.
 - JUMPER CABLES AT THE EQUIPMENT ENTER.
- 4. SYSTEM INSTALLATION:
 - THE CONTRACTOR SHALL INSTALL ALL CABLES AND ANTENNAS TO THE MANUFACTURER'S SPECIFICATIONS. THE CONTRACTOR IS RESPONSIBLE FOR THE PROCUREMENT AND INSTALLATION OF THE FOIL OWING:
 - ALL CONNECTORS, ASSOCIATED CABLE MOUNTING, AND GROUNDING HARDWARE.
 - WALL MOUNTS, STANDOFFS, AND ASSOCIATED HARDWARE.
 - 1/2 INCH HELIAX ANTENNA JUMPERS OF APPROPRIATE LENGTHS.
- 5. MINIMUM BENDING RADIUS FOR COAXIAL CABLES:
 - 7/8 INCH, RMIN = 15 INCHES
 - 1 5/8 INCH, RMIN = 25 INCHES
- 6. CABLE SHALL BE INSTALLED WITH A MINIMUM NUMBER OF BENDS WHERE POSSIBLE. CABLE SHALL NOT BE LEFT UNTERMINATED AND SHALL BE SEALED IMMEDIATELY AFTER BEING INSTALLED.
- 7. ALL CABLE CONNECTIONS OUTSIDE SHALL BE COVERED WITH WATERPROOF SPLICING KIT.
- 8. CONTRACTOR SHALL VERIFY EXACT LENGTH AND DIRECTION OF TRAVEL IN FIELD PRIOR TO CONSTRUCTION.
- 9. CABLE SHALL BE FURNISHED WITHOUT SPLICES AND WITH CONNECTORS AT EACH END.

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

40.309.3

DRAWN BY:	ГСG
CHECKED BY:	JR
	=

PROJECT NO:

0	03/26/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RIDGEFIELD 22N 1 PROSPECT STREET RIDGEFIELD, CT 06877

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-2

SYMBOLS

EXOTHERMIC CONNECTION COMPRESSION CONNECTION 5/8"øx10-'0" COPPER CLAD STEEL GROUND ROD. TEST GROUND ROD WITH INSPECTION SLEEVE GROUNDING CONDUCTOR \bigcirc KEY NOTES CHAINLINK FENCE WOOD FENCE LEASE AREA ICE BRIDGE CABLE TRAY GAS LINE UNDERGROUND – E/T ———— E/T ————— E/T — ELECTRICAL/TELCO UNDERGROUND ELECTRICAL/CONTROL UNDERGROUND ELECTRICAL UNDERGROUND

ABBREVIATIONS

LTE LONG TERM EVOLUTION

PROPERTY LINE (PL)

AC ALTERNATING CURRENT MGB MASTER GROUNDING BAR AIC AMPERAGE INTERRUPTION CAPACITY AUXILIARY NETWORK INTERFACE MICROWAVE ASYNCHRONOUS TRANSFER MODE MANUAL TRANSFER SWITCH ATS AUTOMATIC TRANSFER SWITCH NEC NATIONAL ELECTRICAL CODE AWG AMERICAN WIRE GAUGE ОС ON CENTER ADVANCED WIRELESS SERVICES POLARIZING PRESERVING BATT BATTERY PCU PRIMARY CONTROL UNIT BASEBAND UNIT PROTOCOL DATA UNIT BTC BARE TINNED COPPER CONDUCTOR PWR POWER BASE TRANSCEIVER STATION CLIMATE CONTROL UNIT RET REMOTE ELECTRICAL TILT CCU CDMA CODE DIVISION MULTIPLE ACCESS RIGID METALLIC CONDUIT CHG CHARGING RADIO FREQUENCY CLU CLIMATE UNIT RUC RACK USER COMMISSIONING COMM COMMON RRH REMOTE RADIO HEAD DC DIRECT CURRENT RRU REMOTE RADIO UNIT DIA DIAMETER RWY RACEWAY SMALL FORM-FACTOR PLUGGABLE DWG DRAWING ELECTRICAL CONDUCTOR SMART INTEGRATED ACCESS DEVICE SITE SOLUTIONS CABINET FMT ELECTRICAL METALLIC TUBING SSC FIF FACILITY INTERFACE FRAME 1544KBPS DIGITAL LINE GEN TDMA TIME-DIVISION MULTIPLE ACCESS GENERATOR GLOBAL POSITIONING SYSTEM TOWER MOUNT AMPLIFIER GSM GLOBAL SYSTEM FOR MOBILE TVSS TRANSIENT VOLTAGE SUPPRESSION SYSTEM HVAC HEAT/VENTILATION/AIR CONDITIONING UMTS UNIVERSAL MOBILE TELECOMMUNICATION SYSTEM INTERCONNECTION FRAME UNINTERRUPTIBLE POWER SUPPLY IGR INTERIOR GROUNDING RING (HALO) (DC POWER PLANT)

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TCG
CHECKED BY:	JR

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RIDGEFIELD 22N 1 PROSPECT STREET RIDGEFIELD, CT 06877

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-3

REFERENCE CUTSHEETS

ANT220F6 FIBERGLASS COLLINEAR ANTENNA 6 dBd

The Telewave ANT220F6 is an extremely rugged, mediumgain, fiberglass collinear antenna, designed for operation in all environmental conditions. The antenna is constructed with brass and copper elements, connected at DC ground potential for lightning impulse protection. The ANT220F6 is an excellent choice for wireless PTC systems in urban or rural areas.

All junctions are fully soldered to prevent RF intermodulation, and each antenna is completely protected within a rugged, high-tech radome to ensure survivability in the worst environments. The "Cool Blue" radome provides maximum protection from corrosive gases, ultraviolet radiation, icing, salt spray, acid rain, and wind blown abrasives.

The ANT220F6 includes an ANTC482 dual clamp set for mounting to a 1.5" to 3.5" O.D. support pipe, and a 24" removable RG-213 N-Male jumper. Stand-off and top mounts are also available.

NOTE: THIS ANTENNA IS SHIPPED VIA TRUCK FREIGHT ONLY

ANT220F6 - 221 MHz Vertical Plane Gain = 6.11 dBd

SPECIFICATIONS			
Frequency (continuous)	216-225 MHz	Dimensions (L x base diam.) in.	171 x 2.75
Gain	6 dBd	Tower weight (antenna + clamps)	35 lb.
Power rating (typ.)	500 watts	Shipping weight	50 lb.
Impedance	50 ohms	Wind rating / with 0.5" ice	150 / 125 MPH
VSWR	1.5:1 or less	Maximum exposed area	3.1 ft. ²
Pattern	Omnidirectional	Lateral thrust at 100 MPH	122 lb.
Vertical beamwidth	20°	Bending moment at top clamp	494 ft. lb.
Termination	Recessed N Female 7-16 DIN-F opt.	(100 MPH, 40 PSF flat plate equiv.)	

ANT220F2-I w/DIN CONNECTOR to be used for the inverted antenna.

ANT220F2

FIBERGLASS COLLINEAR ANTENNA 2.5 dBd

The Telewave ANT220F2 is an extremely rugged collinear antenna, with moderate gain and wide vertical beamwidth. This compact antenna produces 2.5 dBd gain, and is designed for operation in all environmental conditions. The antenna is constructed with brass and copper elements, with a path to ground potential for lightning impulse protection. The ANT220F2 is an excellent choice for wireless PTC systems in urban or rural areas.

All junctions are fully soldered to prevent RF intermodulation, and each antenna is completely protected within a rugged, high-tech radome to ensure survivability in the worst environments. The "Cool Blue" radome provides maximum protection from corrosive gases, ultraviolet radiation, icing, salt spray, acid rain, and wind blown abrasives.

The ANT220F2 includes the ANTC485 dual clamp set for mounting to a 1.5" to 3" O.D. support pipe, and a 24" removable RG-213 N-Male jumper.

ANT220F2 - 230 MHz Vertical Plane Gain = 2.58 dBd

(1) ONE SITE PRO 1 P/N DCP12K CLAMP SET REQUIRED.

SPECIFICATIONS			
Frequency (continuous)	195-260 MHz	Dimensions (L x base diam.) in.	51 x 2.75
Gain	2.5 dBd	Tower weight (antenna + clamps)	11 lb.
Power rating (typ.)	500 watts	Shipping weight	14 lb.
Impedance	50 ohms	Wind rating / with 0.5" ice	200 / 150 MPH
VSWR	1.5:1 or less	Maximum exposed area	1.1 ft. ²
Pattern	Omnidirectional	Lateral thrust at 100 MPH	44 lb.
Vertical beamwidth	38°	Bending moment at top clamp	47 ft. lb.
Termination	Recessed N Female 7-16 DIN-F opt.	(100 MPH, 40 PSF flat plate equiv.)	

A TOTAL OF (3) THREE CLAMP SETS REQUIRED.

			PARTS LIST			
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	8	DCP	CLAMP HALF, 1/2" THICK, 8-3/8"		2.40	19.20
2	В	С	5/8" THREADED ROD	D	E	F
3	16	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	2.08
4	16	G58LW	5/8" HDG LOCKWASHER		0.03	0.42
5	16	G58FW	5/8" HDG USS FLATWASHER		0.07	1.13

VARIABLE PARTS TABLE							
ASSEMBLY "A"	QTY "B"	PART "C"	LENGTH "D"	UNIT WT. "E"	NET WT. "F"	TOTAL WEIGHT	
DCP12K	4	G58R-12	12"	1.05	4.18	27.01	
DCP18K	4	G58R-18	18"	1.57	6.27	29.10	

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030°) DRILLED AND GAS CUT HOLES (± 0.030°) - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010°) - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT
INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF
VALMONT INDUSTRIES IS STRUCTLY PROHIBITED.

DESCRIPTION

PIPE TO PIPE CLAMP SET 1-1/2" TO 5" PIPE 1/2" THICK CLAMP

Engineering Support Team: 1-888-753-7446

Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

CPD NO. DRAWN BY KC8 8/21/2012 ENG. APPROVAL PART NO. SEE ASSEMBLY "A"	_
KC8 8/21/2012 SEF ASSEMBLY "A"	
OLE AGGEMBET A	0 }
CLASS SUB DRAWING USAGE CHECKED BY DWG. NO.	TI G
81 01 CUSTOMER CEK 1/22/2013	

Date: March 26, 2020

Black & Veatch Corp. 6800 W. 115th St., Suite 2292 Overland Park, KS 66211 (913) 458-2522

Subject: Structural Analysis Report

Eversource Designation: Site Number: ES-286

Site Name: Ridgefield22N

Engineering Firm Designation: Black & Veatch Corp. Project Number: 403093

Site Data: Off Prospect Street, Ridgefield, Fairfield County, CT

Latitude 41° 17' 0.59", Longitude -73° 29' 16.27"

84 Foot - Monopole Tower

Black & Veatch Corp. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC1: Proposed Equipment Configuration

Sufficient Capacity - 57.8%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Anthony Reyes / Joshua J. Riley

Respectfully submitted by:

Joshua J. Riley, P.E. Professional Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is an 84 ft Monopole tower designed by Valmont in July of 2012.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category: Ш

125 mph ultimate Wind Speed:

Exposure Category: С **Topographic Factor:** 1 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic Ss: 0.229 Seismic S₁: 0.068 **Service Wind Speed:** 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer		Number of Feed Lines	Feed Line Size (in)	Note
	90.0	1	telewave	ANT220F6			
83.0	82.0	1	generic	4'x3" Mount Pipe	2	7/8	1
	80.0	1	telewave	ANT220F2			

Note:

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
	90.0	1	kreco	CO-41A			
83.0	88.0	1	commscope	DB589-Y	2	7/8	1
	83.0	1	tower mounts	Side Arm Mount [4' SO 701-3]			
	74.0	1	celwave	1151-3	1	7/8	2
	74.0	1	kreco	CO-41A			
67.0 73.0 67.0	73.0	1	kreco	CO-41A	2	7/8	1
		1	tower mounts	Side Arm Mount [6' SO 701-3]		770	1

Note:

1) 2) Existing equipment

Existing equipment to be relocated from 83.0ft MCL to empty antenna mount on 67.0ft MCL

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
GEOTECHNICAL REPORTS	Dr. Clarence Welti, P.E., P.C., dated 06/14/2012	-	Eversource
TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Valmont, dated 7/27/2012	-	Eversource

Proposed equipment to be installed on existing relocated antenna's original antenna mount at 83.0ft MCL

Document	Remarks	Reference	Source
TOWER MANUFACTURER DRAWINGS	Valmont, dated 7/27/2012	-	Eversource

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- Tower and structures were built and maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) This analysis was performed under the assumption that all information provided to Black & Veatch is current and correct. This is to include site data, appurtenance loading, tower/foundation details, and geotechnical data.

This analysis may be affected if any assumptions are not valid or have been made in error. Black & Veatch Corp. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Tower Component Stresses vs. Capacity - LC1

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	84 - 34.25	Pole	TP18.145x12.001x0.1875	1	-2.08	639.52	37.1	Pass
L2	34.25 - 0	Pole	TP22x17.3069x0.2188	2	-4.62	928.93	52.8	Pass
							Summary	
						Pole (L2)	52.8	Pass
						RATING =	52.8	Pass

Table 4 - Tower Component Stresses vs. Capacity - LC1

	inpendit eti dece i i	- capacity = c :		
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	48.1	Pass
1	Base Plate	U	22.8	Pass
	Base Foundation		34.4	Pass
1	Base Foundation Soil Interaction	0	47.0	Pass

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity. Rating per TIA-222-H Section 15.5.

Structure Rating (max from all components) =	57.8%
--	-------

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist	Check*
No.		Deflection	Load			
	ft	in	Comb.	٥	٥	
L1	84 - 34.25	10.939	44	1.0208	0.0184	OK
L2	38 - 0	2.56	44	0.5996	0.0046	OK

^{*}Limit State Deformation (TIA-222-H Section 2.8.2)

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist	Combined	Check*
No.		Deflection	Load			Max	
	ft	in	Comb.	0	٥		
L1	84 - 34.25	28.279	44	2.6212	0.048	2.622	OK**
L2	38 - 0	6.647	44	1.5557	0.0119	1.556	OK**

^{*}Up to 0.5 degree is considered acceptable per SUB090 Section 7

¹⁾ Maximum Rotation = 4 Degrees

²⁾ Maximum Deflection = 0.03 * Tower Height = 30 in.

^{**} Deflection approved by Eversource Energy

APPENDIX A TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Side Arm Mount [4' SO 701-1]	83	ANT220F2	83
3' x 2" Pipe Mount	83	3' x 2" Pipe Mount	67
3' x 2" Pipe Mount	83	3' x 2" Pipe Mount	67
3' x 2" Pipe Mount	83	CO-41A	67
DB589-Y	83	CO-41A	67
CO-41A	83	1151-3	67
ANT220F6	83	Side Arm Mount [6' SO 701-1]	67
4'x3" Mount Pipe	83	3' x 2" Pipe Mount	67

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A E 70 G E	CE Iroi	90 kai			

TOWER DESIGN NOTES

- 1. Tower is located in Fairfield County, Connecticut.
- 2. Tower designed for Exposure C to the TIA-222-H Standard.
- 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind.
- Tower Risk Category III.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 52.8%

Black & Veatch Corp.

Overland Park, KS 66211 Phone: FAX:

BLACK & VEATCH 6800 W. 115th St., Suite 2292

Building a world of difference.

^{Job:} ES-286 Ridgefield.	22N	
Project: 403093 (Ridgefield2	2N)	
Client: Eversource	. 111	App'd:
Code: TIA-222-H	Date: 03/10/20	Scale: NTS
Path: C:\Usersiha\(\text{B2311\Desktop\Eversource\(\text{2019.11.11\Ridge\field}\)	d22N/Structural/Rev. H/ES-286 Ridgefield22N Structural Analysi	Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in Fairfield County, Connecticut.
- 2) Tower base elevation above sea level: 666.00 ft.
- 3) Basic wind speed of 125 mph.
- 4) Risk Category III.
- 5) Exposure Category C.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.00 ft.
- 9) Nominal ice thickness of 1.5000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- 15) A non-linear (P-delta) analysis was used.
- 16) Pressures are calculated at each section.
- 17) Stress ratio used in pole design is 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- ✓ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption

Use TIA-222-H Tension Splice

Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	84.00-34.25	49.75	3.75	18	12.0010	18.1450	0.1875	0.7500	A572-65
L2	34.25-0.00	38.00		18	17.3069	22.0000	0.2188	0.8750	(65 ksi) A572-65 (65 ksi)

					Taper	ed Pole	Prop	erties				
Section	Tip Dia.	Area in²	I in ⁴		r in	C	I/C in³	J in⁴	It/Q in²	w in	w/t	_
L1	12.1572 18.3960	7.0305 10.6870	123.96		4.1938 6.3749	6.0965 9.2177	20.3329 47.2349	248.0830 871.3626	3.5159 5.3445	1.782 2.863		
L2	18.0104	11.8645	437.69	998	6.0663	8.7919	49.7845	875.9756	5.9334	2.661	0 12.16	5
	22.3056	15.1230	906.44	+37	7.7323	11.1760	81.1063	1814.0801	7.5629	3.487	<u>′0 15.94</u>	<u> </u>
Tower Elevation	Gus n Ar (per i	ea 7	Gusset hickness	Gus	set Grade A	djust. Factor A _f	Adjust. Factor A _r	Weight M	Stitc	e Angle D h Bolt acing	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing
ft	., ft	,	in				•			onals in	Horizontals in	Redundants in
L1 84.00 34.25	-					1	1	1				
L2 34.25-0.	00					1	1	1				

Feed	d Line	<u>/Linea</u>	r Appu	rtenan	ces -	Enter	ed As	Rou	<u>nd Or</u>	Flat
Description	Sector	Exclude From Toraue	Componen t Type	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete	Perimete r	Weight plf
		Calculation	J 1 · ·	π.			T OSITION	in	in	ρii
miscl	_									
Safety Line 3/8	C	No	Surface Ar (CaAa)	84.00 - 10.00	1	1	0.000 0.010	0.3750		0.22

Description	Face	Allow	Exclude	Componen	Placement	Total Number		$C_A A_A$	Weight
	or Shield Leg	Sriieiu	From Torque Calculation	Type	ft	Namber		ft²/ft	plf
83									
_DF5-50A(7/8)	С	No	No	Inside Pole	83.00 - 0.00	2	No Ice	0.00	0.33
` '							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
66							2" Ice	0.00	0.33
LDF5-50A(7/8)	С	No	No	Inside Pole	67.00 - 0.00	3	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
Proposed							2" Ice	0.00	0.33
LDF5-50A(7/8)	Α	No	No	Inside Pole	82.00 - 0.00	2	No Ice	0.00	0.33
(- /							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
							2" Ice	0.00	0.33

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
n	ft		ft²	ft²	ft ²	ft²	K
L1	84.00-34.25	Α	0.000	0.000	0.000	0.000	0.03
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	1.866	0.000	0.08
L2	34.25-0.00	Α	0.000	0.000	0.000	0.000	0.02
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.909	0.000	0.06

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	84.00-34.25	Α	1.825	0.000	0.000	0.000	0.000	0.03
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	20.025	0.000	0.32
L2	34.25-0.00	Α	1.614	0.000	0.000	0.000	0.000	0.02
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	9.761	0.000	0.18

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CPz
				Ice	Ice
	ft	in	in	in	in
L1	84.00-34.25	-0.0031	0.2996	-0.0142	1.3545
L2	34.25-0.00	-0.0022	0.2081	-0.0110	1.0499

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L1	2	Safety Line 3/8		1.0000	1.0000
			84.00		

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
83 Side Arm Mount [4' SO 701-1]	С	None		0.0000	83.00	No Ice 1/2"	1.13 1.52	2.23 3.12	0.09
						Ice 1" Ice 2" Ice	1.91 2.68	4.01 5.80	0.12 0.16
3' x 2" Pipe Mount	Α	From Face	6.00	0.0000	83.00	No Ice	0.58	0.58	0.01

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or Leg	Type	Horz Lateral Vert	Adjustmen t			Front	Side	
			ft ft ft	0	ft		ft²	ft²	K
			0.00			1/2"	0.77	0.77	0.02
			0.00			Ice 1" Ice 2" Ice	0.97 1.39	0.97 1.39	0.02 0.05
3' x 2" Pipe Mount	В	From Face	6.00	0.0000	83.00	No Ice	0.58	0.58	0.01
			0.00			1/2"	0.77	0.77	0.02
			0.00			Ice 1" Ice 2" Ice	0.97 1.39	0.97 1.39	0.02 0.05
3' x 2" Pipe Mount	С	From Face	6.00	0.0000	83.00	No Ice	0.58	0.58	0.01
			0.00			1/2"	0.77	0.77	0.02
			0.00			Ice	0.97	0.97	0.02
						1" Ice 2" Ice	1.39	1.39	0.05
DB589-Y	С	From Face	6.00	0.0000	83.00	No Ice	1.38	1.38	0.01
			0.00			1/2"	2.31	2.31	0.02
			5.00			Ice	3.27	3.27	0.04
						1" Ice 2" Ice	4.81	4.81	0.09
CO-41A	Α	From Face	6.00	0.0000	83.00	No Ice	3.15	3.15	0.01
			0.00			1/2"	4.38	4.38	0.04
			6.00			Ice	5.63	5.63	0.07
****						1" Ice 2" Ice	7.77	7.77	0.15
Relocated to 67 1151-3	С	From Face	6.00	0.0000	67.00	No Ice	4.18	4.18	0.02
			0.00			1/2"	5.73	5.73	0.05
			7.00			Ice	7.30	7.30	0.09
						1" Ice 2" Ice	10.48	10.48	0.20
67									
Side Arm Mount [6' SO	С	None		0.0000	67.00	No Ice	1.70	3.34	0.13
701-1]						1/2"	2.28	4.68	0.16
						Ice 1" Ice	2.86 4.02	6.02 8.70	0.19 0.24
						2" Ice	4.02	0.70	0.24
3' x 2" Pipe Mount	Α	From Face	6.00	0.0000	67.00	No Ice	0.58	0.58	0.01
•			0.00			1/2"	0.77	0.77	0.02
			0.00			Ice	0.97	0.97	0.02
						1" Ice	1.39	1.39	0.05
Ol v. Oll Din a Marriet	Б	Г Г	0.00	0.0000	07.00	2" Ice	0.50	0.50	0.04
3' x 2" Pipe Mount	В	From Face	6.00 0.00	0.0000	67.00	No Ice 1/2"	0.58 0.77	0.58 0.77	0.01 0.02
			0.00			Ice	0.97	0.77	0.02
			0.00			1" Ice	1.39	1.39	0.05
						2" Ice			
3' x 2" Pipe Mount	С	From Face	6.00	0.0000	67.00	No Ice	0.58	0.58	0.01
			0.00			1/2"	0.77	0.77	0.02
			0.00			Ice 1" Ice	0.97 1.39	0.97 1.39	0.02 0.05
						2" Ice	1.55	1.55	0.03
CO-41A	Α	From Face	6.00	0.0000	67.00	No Ice	3.15	3.15	0.01
			0.00			1/2"	4.38	4.38	0.04
			7.00			Ice	5.63	5.63	0.07
						1" Ice 2" Ice	7.77	7.77	0.15
CO-41A	В	From Face	6.00	0.0000	67.00	No Ice	3.15	3.15	0.01
			0.00			1/2"	4.38	4.38	0.04
			6.00			Ice	5.63	5.63	0.07
						1" Ice 2" Ice	7.77	7.77	0.15
Proposed ANT220F6	В	From Leg	4.50	0.0000	83.00	No Ice	3.92	3.92	0.04
AN1 2201 U	ь	i ioni Leg	0.00	0.0000	03.00	1/2"	5.38	5.38	0.04
			7.00			Ice	6.85	6.85	0.10

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weigh
			ft ft ft	۰	ft		ft²	ft²	K
						1" Ice 2" Ice	9.84	9.84	0.21
4'x3" Mount Pipe	В	From Leg	4.00	0.0000	83.00	No Ice	1.09	1.09	0.03
			0.00			1/2"	1.36	1.36	0.04
			-1.00			Ice	1.62	1.62	0.05
						1" Ice 2" Ice	2.16	2.16	0.09
ANT220F2	В	From Leg	4.50	0.0000	83.00	No Ice	1.03	1.03	0.01
		· ·	0.00			1/2"	1.29	1.29	0.02
			-3.00			Ice	1.56	1.56	0.03
						1" Ice	2.13	2.13	0.06
						2" Ice			

Load Combinations

Comb.	Description
No.	·
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21 22	0.9 Dead+1.0 Wind 270 deg - No Ice
23	1.2 Dead+1.0 Wind 300 deg - No Ice 0.9 Dead+1.0 Wind 300 deg - No Ice
23 24	1.2 Dead+1.0 Wind 300 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 lce+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 lce+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service

Comb.	Description
No.	
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		•		Comb.	K	kip-ft	kip-ft
L1	84 - 34.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-5.52	-0.74	-1.54
			Max. Mx	8	-2.08	-106.92	-0.35
			Max. My	14	-2.08	-0.34	-106.95
			Max. Vy	8	3.53	-106.92	-0.35
			Max. Vx	14	3.53	-0.34	-106.95
			Max. Torque	19			1.06
L2	34.25 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-9.79	-0.77	-1.70
			Max. Mx	8	-4.62	-272.39	-0.37
			Max. My	14	-4.62	-0.35	-272.42
			Max. Vý	8	5.14	-272.39	-0.37
			Max. Vx	14	5.14	-0.35	-272.42
			Max. Torque	19			1.05

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, 2 K
Pole	Max. Vert	33	9.79	-0.00	-1.74
	Max. H _x	21	3.47	5.13	-0.00
	Max. H _z	2	4.62	-0.00	5.13
	Max. M _x	2	271.67	-0.00	5.13
	$Max. M_z$	8	272.39	-5.13	-0.00
	Max. Torsion	19	1.05	4.44	-2.57
	Min. Vert	7	3.47	-4.44	2.57
	Min. H _x	8	4.62	-5.13	-0.00
	Min. H _z	14	4.62	-0.00	-5.13
	Min. M _x	14	-272.42	-0.00	-5.13
	Min. M _z	20	-271.70	5.13	-0.00
	Min. Torsion	7	-1.05	-4.44	2.57

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M₂	Torque	
	K	K	K	kip-ft	kip-ft	kip-ft	
Dead Only	3.85	0.00	0.00	0.31	-0.29	0.00	
1.2 Dead+1.0 Wind 0 deg - No Ice	4.62	0.00	-5.13	-271.67	-0.35	0.38	
0.9 Dead+1.0 Wind 0 deg -	3.47	0.00	-5.13	-269.97	-0.26	0.38	

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 30 deg - No Ice	4.62	2.57	-4.44	-235.22	-136.37	0.82
0.9 Dead+1.0 Wind 30 deg -	3.47	2.57	-4.44	-233.76	-135.38	0.83
No Ice 1.2 Dead+1.0 Wind 60 deg -	4.62	4.44	-2.57	-135.65	-235.94	1.05
No Ice 0.9 Dead+1.0 Wind 60 deg -	3.47	4.44	-2.57	-134.85	-234.30	1.05
No Ice 1.2 Dead+1.0 Wind 90 deg -	4.62	5.13	0.00	0.37	-272.39	0.99
No Ice 0.9 Dead+1.0 Wind 90 deg -	3.47	5.13	0.00	0.28	-270.51	1.00
No Ice 1.2 Dead+1.0 Wind 120 deg	4.62	4.44	2.57	136.40	-235.94	0.67
- No Ice 0.9 Dead+1.0 Wind 120 deg	3.47	4.44	2.57	135.40	-234.30	0.67
- No Ice 1.2 Dead+1.0 Wind 150 deg	4.62	2.57	4.44	235.97	-136.37	0.17
- No Ice 0.9 Dead+1.0 Wind 150 deg	3.47	2.57	4.44	234.32	-135.38	0.17
- No Ice 1.2 Dead+1.0 Wind 180 deg	4.62	0.00	5.13	272.42	-0.35	-0.38
- No Ice 0.9 Dead+1.0 Wind 180 deg	3.47	0.00	5.13	270.53	-0.26	-0.38
- No Ice 1.2 Dead+1.0 Wind 210 deg	4.62	-2.57	4.44	235.97	135.68	-0.82
- No Ice 0.9 Dead+1.0 Wind 210 deg	3.47	-2.57	4.44	234.32	134.87	-0.83
- No Ice 1.2 Dead+1.0 Wind 240 deg	4.62	-4.44	2.57	136.40	235.25	-1.05
- No Ice 0.9 Dead+1.0 Wind 240 deg	3.47	-4.44	2.57	135.40	233.79	-1.05
- No Ice 1.2 Dead+1.0 Wind 270 deg	4.62	-5.13	0.00	0.37	271.70	-0.99
- No Ice 0.9 Dead+1.0 Wind 270 deg	3.47	-5.13	0.00	0.28	269.99	-1.00
- No Ice 1.2 Dead+1.0 Wind 300 deg	4.62	-4.44	-2.57	-135.65	235.25	-0.67
- No Ice 0.9 Dead+1.0 Wind 300 deg	3.47	-4.44	-2.57	-134.85	233.79	-0.67
- No Ice 1.2 Dead+1.0 Wind 330 deg	4.62	-2.57	-4.44	-235.22	135.68	-0.17
- No Ice 0.9 Dead+1.0 Wind 330 deg	3.47	-2.57	-4.44	-233.76	134.87	-0.17
- No Ice 1.2 Dead+1.0 Ice+1.0 Temp	9.79	0.00	0.00	1.70	-0.77	0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	9.79	0.00	-1.74	-98.26	-0.77	0.12
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	9.79	0.87	-1.51	-84.86	-50.75	0.32
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	9.79	1.51	-0.87	-48.28	-87.34	0.44
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	9.79	1.74	0.00	1.71	-100.73	0.44
1.2 Dead+1.0 Wind 120	9.79	1.51	0.87	51.69	-87.34	0.32
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	9.79	0.87	1.51	88.28	-50.75	0.12
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	9.79	0.00	1.74	101.67	-0.77	-0.12
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 210	9.79	-0.87	1.51	88.28	49.21	-0.32
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240	9.79	-1.51	0.87	51.69	85.80	-0.44
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270	9.79	-1.74	0.00	1.71	99.20	-0.44
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	9.79	-1.51	-0.87	-48.28	85.80	-0.32
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330	9.79	-0.87	-1.51	-84.86	49.21	-0.12

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead+Wind 0 deg - Service	3.85	0.00	-1.06	-55.58	-0.29	0.08
Dead+Wind 30 deg - Service	3.85	0.53	-0.92	-48.10	-28.24	0.17
Dead+Wind 60 deg - Service	3.85	0.92	-0.53	-27.64	-48.70	0.22
Dead+Wind 90 deg - Service	3.85	1.06	0.00	0.31	-56.19	0.21
Dead+Wind 120 deg - Service	3.85	0.92	0.53	28.26	-48.70	0.14
Dead+Wind 150 deg - Service	3.85	0.53	0.92	48.72	-28.24	0.04
Dead+Wind 180 deg - Service	3.85	0.00	1.06	56.21	-0.29	-0.08
Dead+Wind 210 deg - Service	3.85	-0.53	0.92	48.72	27.66	-0.17
Dead+Wind 240 deg - Service	3.85	-0.92	0.53	28.26	48.12	-0.22
Dead+Wind 270 deg - Service	3.85	-1.06	0.00	0.31	55.61	-0.21
Dead+Wind 300 deg - Service	3.85	-0.92	-0.53	-27.64	48.12	-0.14
Dead+Wind 330 deg - Service	3.85	-0.53	-0.92	-48.10	27.66	-0.04

Solution Summary

	Sum of Applied Forces						
Load	PX	' PY	PZ	PX	PY	PZ	% Error
Comb.	K	Κ	K	K	K	K	
1	0.00	-3.85	0.00	0.00	3.85	0.00	0.000%
2	0.00	-4.62	-5.13	-0.00	4.62	5.13	0.000%
3	0.00	-3.47	-5.13	-0.00	3.47	5.13	0.000%
4	2.57	-4.62	-4.44	-2.57	4.62	4.44	0.000%
5	2.57	-3.47	-4.44	-2.57	3.47	4.44	0.000%
6	4.44	-4.62	-2.57	-4.44	4.62	2.57	0.000%
7	4.44	-3.47	-2.57	-4.44	3.47	2.57	0.000%
8	5.13	-4.62	0.00	-5.13	4.62	-0.00	0.000%
9	5.13	-3.47	0.00	-5.13	3.47	-0.00	0.000%
10	4.44	-4.62	2.57	-4.44	4.62	-2.57	0.000%
11	4.44	-3.47	2.57	-4.44	3.47	-2.57	0.000%
12	2.57	-4.62	4.44	-2.57	4.62	-4.44	0.000%
13	2.57	-3.47	4.44	-2.57	3.47	-4.44	0.000%
14	0.00	-4.62	5.13	-0.00	4.62	-5.13	0.000%
15	0.00	-3.47	5.13	-0.00	3.47	-5.13	0.000%
16	-2.57	-4.62	4.44	2.57	4.62	-4.44	0.000%
17	-2.57	-3.47	4.44	2.57	3.47	-4.44	0.000%
18	-4.44	-4.62	2.57	4.44	4.62	-2.57	0.000%
19	-4.44	-3.47	2.57	4.44	3.47	-2.57	0.000%
20	-5.13	-4.62	0.00	5.13	4.62	-0.00	0.000%
21	-5.13	-3.47	0.00	5.13	3.47	-0.00	0.000%
22	-4.44	-4.62	-2.57	4.44	4.62	2.57	0.000%
23	-4.44	-3.47	-2.57	4.44	3.47	2.57	0.000%
24	-2.57	-4.62	-4.44	2.57	4.62	4.44	0.000%
25	-2.57	-3.47	-4.44	2.57	3.47	4.44	0.000%
26	0.00	-9.79	0.00	-0.00	9.79	-0.00	0.000%
27	0.00	-9.79	-1.74	-0.00	9.79	1.74	0.000%
28	0.87	-9.79	-1.51	-0.87	9.79	1.51	0.000%
29	1.51	-9.79	-0.87	-1.51	9.79	0.87	0.000%
30	1.74	-9.79	0.00	-1.74	9.79	-0.00	0.000%
31	1.51	-9.79	0.87	-1.51	9.79	-0.87	0.000%
32	0.87	-9.79	1.51	-0.87	9.79	-1.51	0.000%
33	0.00	-9.79	1.74	-0.00	9.79	-1.74	0.000%
34	-0.87	-9.79	1.51	0.87	9.79	-1.51	0.000%
35	-1.51	-9.79	0.87	1.51	9.79	-0.87	0.000%
36	-1.74	-9.79	0.00	1.74	9.79	-0.00	0.000%
37	-1.51	-9.79	-0.87	1.51	9.79	0.87	0.000%
38	-0.87	-9.79	-1.51	0.87	9.79	1.51	0.000%
39	0.00	-3.85	-1.06	0.00	3.85	1.06	0.000%
40	0.53	-3.85	-0.92	-0.53	3.85	0.92	0.000%

	Sun	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
41	0.92	-3.85	-0.53	-0.92	3.85	0.53	0.000%
42	1.06	-3.85	0.00	-1.06	3.85	0.00	0.000%
43	0.92	-3.85	0.53	-0.92	3.85	-0.53	0.000%
44	0.53	-3.85	0.92	-0.53	3.85	-0.92	0.000%
45	0.00	-3.85	1.06	0.00	3.85	-1.06	0.000%
46	-0.53	-3.85	0.92	0.53	3.85	-0.92	0.000%
47	-0.92	-3.85	0.53	0.92	3.85	-0.53	0.000%
48	-1.06	-3.85	0.00	1.06	3.85	0.00	0.000%
49	-0.92	-3.85	-0.53	0.92	3.85	0.53	0.000%
50	-0.53	-3.85	-0.92	0.53	3.85	0.92	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.0000001
2	Yes	4	0.0000001	0.00036066
3	Yes	4	0.0000001	0.00021032
4	Yes	5	0.0000001	0.00007528
5	Yes	5	0.0000001	0.00003093
6	Yes	5	0.0000001	0.00005202
7	Yes	5	0.0000001	0.0000001
8	Yes	4	0.0000001	0.00089402
9	Yes	4	0.0000001	0.00052611
10	Yes	5	0.0000001	0.00007258
11	Yes	5	0.0000001	0.00002956
12	Yes	5	0.00000001	0.00005886
13	Yes	5	0.00000001	0.00000001
14	Yes	4	0.00000001	0.00036146
15	Yes	4	0.00000001	0.00021045
16	Yes	5	0.0000001	0.00021043
17	Yes	5	0.00000001	0.000000000001
18	Yes	5	0.0000001	0.00008001
19	Yes	5	0.0000001	0.00003304
20	Yes	4	0.0000001	0.00003304
21		4		
	Yes		0.00000001	0.00052612
22	Yes	5	0.00000001	0.00005311
23	Yes	5	0.0000001	0.00000001
24	Yes	5	0.0000001	0.00006268
25	Yes	5	0.0000001	0.00000001
26	Yes	4	0.0000001	0.00003779
27	Yes	5	0.0000001	0.00008567
28	Yes	5	0.0000001	0.00013913
29	Yes	5	0.0000001	0.00012489
30	Yes	5	0.0000001	0.00010876
31	Yes	5	0.0000001	0.00015051
32	Yes	5	0.0000001	0.00013200
33	Yes	5	0.0000001	0.00009101
34	Yes	5	0.0000001	0.00012660
35	Yes	5	0.0000001	0.00015272
36	Yes	5	0.0000001	0.00010553
37	Yes	5	0.0000001	0.00011843
38	Yes	5	0.0000001	0.00012387
39	Yes	4	0.0000001	0.0000001
40	Yes	4	0.0000001	0.00006612
41	Yes	4	0.0000001	0.00004990
42	Yes	4	0.0000001	0.00005699
43	Yes	4	0.00000001	0.00006005
44	Yes	4	0.00000001	0.00000001
45	Yes	4	0.00000001	0.00000001
46	Yes	4	0.0000001	0.00000001
47	Yes	4	0.0000001	0.00000001
48	Yes	4	0.0000001	0.00007779
49	Yes	4	0.0000001	0.00003380
49	162	4	U.UUUUUUU I	0.0000000

Maximum Tower Deflections - Service Wind								
Section	Elevation	Horz.	Gov.	Tilt	Twist			
No.	ft	Deflection in	Load Comb.	٥	۰			
L1	84 - 34.25	10.939	44	1.0208	0.0184			
L2	38 - 0	2.560	44	0.5996	0.0046			

	Critical Deflections	and Ra	adius of (Survatur	e - Servic	e wind
Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	۰	ft
83.00	Side Arm Mount [4' SO 701-1]	44	10.726	1.0135	0.0180	26942
67.00	1151-3	44	7.381	0.8917	0.0126	7924

Maximum Tower Deflections - Design Wind								
Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist			
740.	ft	in	Comb.	۰	٥			
L1	84 - 34.25	52.537	12	4.8662	0.0889			
L2	38 - 0	12.369	12	2.8953	0.0220			

Critical Deflections and Radius of Curvature - Design Wind								
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of		
		Load				Curvature		
ft		Comb.	in	۰	۰	ft		
83.00	Side Arm Mount [4' SO 701-1]	12	51.514	4.8325	0.0872	5704		
67.00	1151-3	12	35.491	4.2718	0.0607	1676		

Compression Checks

	Pole Design Data									
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio P _u	
	ft		ft	ft		in²	K	K	ΦP_n	
L1	84 - 34.25 (1)	TP18.145x12.001x0.1875	49.75	0.00	0.0	10.411 3	-2.08	609.06	0.003	
L2	34.25 - 0 (2)	TP22x17.3069x0.2188	38.00	0.00	0.0	15.123 0	-4.62	884.70	0.005	

Pole Bending Design Data								
Section No.	Elevation	Size	M _{ux}	φ M _{nx}	Ratio Mux	M _{uy}	ф М _{пу}	Ratio M _{uy}
	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	ϕM_{ny}
L1	84 - 34.25 (1)	TP18.145x12.001x0.1875	107.06	277.48	0.386	0.00	277.48	0.000
L2	34.25 - 0 (2)	TP22x17.3069x0.2188	272.53	496.47	0.549	0.00	496.47	0.000

	Pole Shear Design Data							
Section No.	Elevation	Size	Actual V _u	φV _n	Ratio V _u	Actual T _u	φ <i>T</i> _n	Ratio T _u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	84 - 34.25 (1)	TP18.145x12.001x0.1875	3.53	182.72	0.019	0.67	279.94	0.002
L2	34.25 - 0 (2)	TP22x17.3069x0.2188	5.14	265.41	0.019	0.67	506.26	0.001

Pole Interaction Design Data									
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ <i>M</i> _{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	84 - 34.25 (1)	0.003	0.386	0.000	0.019	0.002	0.390	1.050	4.8.2
L2	34.25 - 0 (2)	0.005	0.549	0.000	0.019	0.001	0.555	1.050	4.8.2

Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	84 - 34.25	Pole	TP18.145x12.001x0.1875	1	-2.08	639.52	37.1	Pass
L2	34.25 - 0	Pole	TP22x17.3069x0.2188	2	-4.62	928.93	52.8	Pass
							Summary	
						Pole (L2)	52.8	Pass
						RATING =	52.8	Pass

APPENDIX B BASE LEVEL DRAWING

RIDGEFIELD 22N

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Site Info							
	ES-074						
	NewMilfordRS						

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
l _{ar} (in)	2.125

Applied Loads	
Moment (kip-ft)	273.00
Axial Force (kips)	5.00
Shear Force (kips)	5.00

22" x 0.21875" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Connection Properties	Analysis Results		
Anchor Rod Data	Anchor Rod Summary	(uı	nits of kips, kip-in)
(6) 1-3/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 27.96" BC	Pu_c = 78.82	φPn_c = 162.36	Stress Rating
	Vu = 0.83	φVn = 73.06	48.1%
Base Plate Data	Mu = 1.15	φMn = 60.29	Pass
32.84" OD x 2.25" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	10.76	(Flexural)
N/A	Allowable Stress (ksi):	45	
	Stress Rating:	22.8%	Pass
Pole Data	-		

version 3.6.1 Analysis Date: 3/10/2020

^{*}TIA-222-H Section 15.5 Applied

Pier and Pad Foundation

ES-286 Ridgefield22N

TIA-222 Revision: H
Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	✓
Block Foundation?:	

Superstructure Analysis Reactions			
Compression, P _{comp} :	5	kips	
Base Shear, Vu_comp:	5	kips	
Moment, M _u :	273	ft-kips	
Tower Height, H:	84	ft	
BP Dist. Above Fdn, bp _{dist} :	6	in	

Pier Properties		
Pier Shape:		
Pier Diameter, dpier :	4.5	ft
Ext. Above Grade, E :	0.5	ft
Pier Rebar Size, Sc :	9	
Pier Rebar Quantity, mc :	12	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt:	7	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	6	in

Pad Properties		
Depth, D :	5.5	ft
Pad Width, W :	12	ft
Pad Thickness, T :	2	ft
Pad Rebar Size (Top), Sp top:	4	
Pad Top Rebar Quantity (Top), mp top:	9	
Pad Rebar Size (Bottom), Sp:	6	
Pad Rebar Quantity (Bottom), mp:	11	
Pad Clear Cover, cc_{pad}:	3	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δ c :	150	pcf

Soil Properties		
Total Soil Unit Weight, γ :	125	pcf
Ultimate Gross Bearing, Qult:	8.000	ksf
Cohesion, Cu :		ksf
Friction Angle, $oldsymbol{arphi}$:	34	degrees
SPT Blow Count, N _{blows} :		
Base Friction, μ :	0.6	
Neglected Depth, N:	3.50	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	N/A	ft

Foundation Analysis Checks Capacity Demand Rating* Check Lateral (Sliding) (kips) 81.56 5.8% 5.00 **Pass** Bearing Pressure (ksf) 6.00 1.71 28.4% Pass Overturning (kip*ft) 650.56 305.50 47.0% Pass Pier Flexure (Comp.) (kip*ft) 1147.94 293.00 24.3% Pass Pier Compression (kip) 7592.08 16.45 0.2% **Pass** Pad Flexure (kip*ft) 80.97 18.2% 424.27 **Pass** Pad Shear - 1-way (kips) 235.14 25.18 10.2% Pass Pad Shear - 2-way (Comp) (ksi) 0.164 0.013 7.4% **Pass** Flexural 2-way (Comp) (kip*ft) 487.12 175.80 34.4% Pass

> *Rating per TIA-222-H Section 15.5

Soil Rating*:	47.0%
Structural Rating*:	34.4%

<--Toggle between Gross and Net

TIA-222- H	ACI: 2014

11A-222- H	PHYSICAL PARAMETERS			
Pier Height Above Water Table:	$h_{pier_above} = (MIN(gw,D-T) + E)$	h _{pier_above} =	4	ft
Pier Height Below Water Table:	$h_{pier_below} = ((D-T) - MIN(gw_iD-T))$	h _{pier_below} =	0	ft
-				
Buoyant Weight of Pier:	$W_{pier} = \frac{(\pi/4) * (dpier^2) * hpier_above * \delta c / 1000 + (\pi/4) * (dpier^2) * hpier_below * (\delta c-62.4) / 1000}{(\delta c-62.4) / 1000}$	W _{pier} =	9.54	kips
Pad Height Above Water Table:	$h_{pad_above} = IF(gw \le D-T, 0, IF(gw > D, T, T-(D-gw)))$	h _{pad_above} =	2	ft
Pad Height Below Water Table:	$h_{pad_below} = (T-IF(gw <= D-T, 0, IF(gw > D, T, T-(D-gw))))$	h _{pad_below} =	0	ft
Buoyant Weight of Pad:	W _{pad} = (W^2) * hpad_above * ōc / 1000 + (W^2) * hpad_below * (ōc-62.4) / 1000	W _{pad} =	43.20	kips
Concrete weight:	W _c = V * δc	W _c =	52.7	kips
Soil weight:	$W_s = (D - T) * (W^2 - (dpier^2 / 4 * \pi)) * \gamma$	$W_s =$	56.0	kips
EIA/TIA-222 Load Factor:	LF = 1	LF =	1.00	
Soil Depth from Top of Pad to Mid. Layer (Cohesionless Soil):	H _{cohesionless} = T / 2	H _{cohesionless} =	1.00	ft
Soil Depth from Grade to Mid. Layer (Silty Soil):	H _{silhy} = (D-T)+T/2	H _{silty} =	4.50	ft
	LATERAL RESISTANCE			
Total Nominal Pp Resistance:	P _{o total} = Pp_pier *Ap_pier + Pp_pad * Ap_pad	P _{p_total} =	47.75	kips
Factored Total Weight for Compression:	Pfactored comp = ϕ D * (Wc + Ws + Pcomp / 1.2)	P _{factored_comp} =	101.66	kips
Nominal Base Friction Resistance (Comp):	R _{s comp} = P * μ	R _{s_comp} =	60.99	kips
Lateral Resistance (Comp):	Va_comp = \$\Psi * (Pp_total + Rs_comp)	Va_comp =	81.56	kips
Check Va_comp =	81.56 kips >= Vu_comp = 5.00 kips	RATING:	6.13%	ОК
	PIER REINFORCEMENT			
Pier Cross-Sectional Area:	Pier / Column Compression $A_1 = dpier^2 2 * \pi/4$	A ₁ =	2290.22	in²
Support Area (2H:1V Slope):	$A_2 = (MIN(W, dpier + 4 * T))^{2*} (\pi/4)$	A ₂ =	16286.02	in²
Compressive Resistance (H/D < 3):	ΦP _{n1} = 0.65*0.85 * F'c * A1 * MIN(√(A2/A1),2)	ΦP _{n1} =	7592.08	kips
Rebar:	$s_{_pier} = 9$ $d_{b_pier} = 1.128$ in $m_{_pier} = 12$ $A_{b_pier} = 1$ in 2			·
Provided area of steel:	A _{s_pier} = Ab_pier * m_pier	A _{s_pier} =	12.00	in ²
Compressive Resistance (H/D >= 3):	$\Phi P_{n2} = 0.65 * 0.8 * (0.85 * (F/c) * (A_1 - As_pier) + ((Fy) * As_pier))$	ΦP _{n2} =	3395.32	kips
	H/D = (D - T + E) / dpier	H/D =	0.89	
Utilized Compressive Resistance:	$\Phi P_n = Pn1$	ΦP _n =	7592.08	kips
Applied Compressive Force:	P _u = Pcomp + 1.2 * Wpier	P _u =	16.45	kips
Check $\Phi P_n =$	7592.08 kips >= P _u = 16.45 kips	RATING:	0.22%	ок
	Pier Flexure			
Cross-sectional area:	$A_g = dpier^2 * \pi / 4$	A _g =	2290.22	in ²
Min. area of steel (pier):	A _{smin_pier} = Ag * 0.005	A _{smin_pier} =	11.45	in ²
Cage Diameter:	d _o = dpier - 2 * cc - 2 * tie - d _b	d _o =	39.87	in
Check A _{s_pier} =	12.00 in ² >= $A_{\text{smin_pier}} = 11.45$ in ²			ОК
Applied Moment to DSMC (Compression):	$M_{u_comp} = (D - T + E) * Vu + Mu$	M _{u_comp} =	293.00	ft-kips
Pier Moment Capacity (Compression):	ΦM _{n_comp} = from DSMC	ΦM _{n_comp} =	1147.94	ft-kips
	293.00 ft-kips >= ΦM _{n_comp} = 1147.94 ft-kips	RATING:	25.52%	OK
	PAD REINFORCEMENT			

Elastic Bearing Pressure for Soil Checks

Pier Shape: Pier Shape	Circular	Pier Shape:	Circular		
	Two-Way Shear (Compression)				
Check $\phi V_{n1} = 235.14$ kips	>= V _{u1} = 25.18 kips	RATING:	10.71%		OK
Applied Shear (1.2*D LC): V _{u1_12} =	sqs_1.2 * MIN(L'_1.2,d") * (W / 2 - dpier / 2 - dc) * W	V _{u1_1.2} =	23.56	kips	
Applied Shear (0.9*D LC): V _{u1_0.9} =	sqs_0.9 * MIN(L'_0.9,d") * (W / 2 - dpier / 2 - dc) * W	V _{u1_0.9} =	25.18	kips	
	Total: 16.68 22.24				
	ve Water Table: 2 0.150 6.78 9.05 vw Water Table: 0 0.088 0.00 0.00 (0				
Soil Bel	ve Water Table: 3.5 0.125 9.89 13.19 www.deter Table: 0 0.063 0.00 0.00 With Table: 0 0.063 0.00 0.00				
Resisting Weight above Critical Section:	(0.9*D LC) (1.2*D LC)				
	Weight (kin) Weight (kin)				
	φshear *V _{n1}	φV _{n1} =	235.14	kips	
Shear Reduction Factor:		φ _{shear} =	0.75	• -	
	2 * W * √(Fc*1000) * dc	V _{n1} =	313.52	kips	
	IF(L' > W, (Ppos - Pneg) / W, qu / L')	sqs_0.8 =	0.18	kcf	
- · · · · · · · · · · · · · · · · · · ·	IF(L' > W, (Ppos - Pneg) / W, qu / L')	sqs_0.9 =	0.21	kcf	
	(W / 2 - ec_0.9) * 3 (W / 2 - ec_1.2) * 3	L' _0.9 = L' _1.2 =	8.98 11.24	ft ft	
Face:			0.00		
Distance from Edge of Pad to dc from Column d" =	d' - d _c / 12	d" =	2.09	ft	
Distance from Edge of Pad to Column Face:	W / 2 - dpier / 2	d' =	3.8	ft	
Effective depth: d _c =	T - cc - 1.5 * db	d _c =	19.9	in	
Rebar: \$ pad * m pad *					
	One-Way Shear				
Maximum Pressure (1.2*D LC): q _{u1_1,2} =	IF(Pneg ≥ 0, Ppos , Padj)	q _{u_st_1.2} =	2.01	ksf	
Maximum Pressure (0.9*D LC): q _{u1_0.9} =	IF(Pneg ≥ 0, Ppos , Padj)	q _{u_st_0.9} =	1.89	ksf	
Adjusted Pressure (1.2*D LC): Padj_1.2 =	2*1.2*Pbearing/(3*W*(W/2-ec_0.9))	P _{adj_1.2} =	2.01	ksf	
	2*0.9*Pbearing/(3*W*(W/2-ec_0.9))	P _{adj_0.9} =	1.89	ksf	
Negative Pressure (1.2*D LC): Pneg_1.2 =	stress resultant is NOT within the kern. Bearing area has been adjusted below. 1.2*Pbearing / Area - Mo / S stress resultant is NOT within the kern. Bearing area has been adjusted below.	P _{neg_st_1.2} =	-0.12	ksf	
	0.9*Pbearing / Area - Mo / S	P _{neg_st_0.9} =	-0.35	ksf	
Positive Pressure (1.2*D LC): Ppos_1.2 =	1.2*Pbearing / Area + Mo / S	P _{pos_st_1.2} =	2.00	ksf	
Positive Pressure 0.9*D LC): Ppos_0.9 =	0.9*Pbearing / Area + Mo / S	P _{pos_st_0.9} =	1.77	ksf	
Elastic Section Modulus: S =	W ³ / 6	S =	288.00	ft³	
Load Eccentricity (1.2*D LC): ec_1.2 =	Mo / 1.2*Pbearing	ec_1.2 =	2.25	ft	L/6 <
Load Eccentricity (0.9*D LC): ec_0.9 =	Mo / 0.9*Pbearing	ec_0.9 =	3.01	ft	L/6 <

Two-Way Shear (Compression)									
Pier Shape:	Pier Shape: Circular	Pier Shape:	Circular						
Pier Diameter:	$d_{pier1} = d_{pier} * 12 in / ft$	d _{pier1} =	54.00	in					
Equivalent Square Pier Diameter:	$d_{pier_sq} = \sqrt{\pi / 2} * dpier$	$d_{pier_sq} =$	47.86	in					
Avg. Effective Depth for Punching Shear:	d_{c_2} = T - cc_{pad} - AVERAGE(0.5 * d_{b_pad} , 1.5 * d_{b_pad})	$d_{c_2} =$	20.25	in					
Area of Concrete in Shear:	$A_c = ((dpier1 + dc_2)*PI())*dc_2$	A _c =	4723.58	in ²					
Eq. Square Area of Concrete in Shear:	$A_{c_sq} = (4*(dpier_sq+dc_2))*dc_2$	$A_{c_sq} =$	5516.61	in ²					
Factor of transfer of Moment:	$Y_f = 1/(1+(2/3)*\sqrt{(dpier1/dpier1)})$	Y _f =	0.60						
Factor of transfer of eccentricity of Shear:	$Y_v = 1 - Y_f$	$Y_v =$	0.40						
Moment applied at base of Pier:	$M_v = M_{u_comp} * 12 in / ft$	M _v =	3516.00	kip*in					

Polar Moment of Inertia at assumed Critical Section:	$J_{c_{-1}} = \frac{(dc_{-2}(dpier1+dc_{-2})^3)/6 + ((dpier1+dc_{-2})^*(dc_{-2}^3))/6 + (dc_{-2}(dpier1+dc_{-2})^*(dpier1+dc_{-2})^2)/2}{(dc_{-2}(dpier1+dc_{-2})^*(dpier1+dc_{-2})^2)/2}$	J _{c_1} =	5628915.12	in ⁴	
Eq. Square Polar Moment of Inertia at assumed Critical Section:	$J_{c_sq} = \frac{(dc_2*(dpier_sq+dc_2)^3)/6 + ((dpier_sq+dc_2)*(dc_2^3))/6 + (dc_2*(dpier_sq+dc_2)^*(dpier_sq+dc_2)^2)/2}{(dc_2*(dpier_sq+dc_2)^*(dpier_sq+dc_2)^2)/2}$	$J_{c_sq} =$	4359017.90	in ⁴	
Net Bearing Resistance at front of Pier (1.2*D LC):	$q_{u_AB_1.2} = \begin{tabular}{l} MAX((qu_st_1.2 - sqs_1.2^*(W/2 - (dpier1/12 + dc_2/12)/2) - \\ 1.2^*(Wpad+Ws)/Area)/144,0) \end{tabular}$	q _{u_AB_1.2} =	0.00	ksi	
Net Bearing Resistance at rear of Pier (1.2*D LC):	$q_{u_CD_1.2} = \frac{\text{MAX}((qu_st_1.2 - sqs_1.2^*(W/2 + (dpier1/12 + dc_2/12)/2) - 1.2^*(Wpad+Ws)/Area)/144,0)}{1.2^*(Wpad+Ws)/Area)/144,0)}$	q _{u_CD_1.2} =	0.00	ksi	
Net Bearing Resistance at front of Pier_sq (1.2*D LC):	$ q_{u_AB_1.2_sq} = \frac{\text{MAX}((qu_st_1.2 - sqs_1.2^*(W/2 - (dpier_sq/12 + MIN(dc_2, (T^*12)^*3)/12)/2) - q_{u_AB_1.2_sq}}{1.2^*(Wpad+Ws)/Area)/144,0)} $	q _{u_AB_1.2_sq} =	0.00	ksi	
Net Bearing Resistance at rear of Pier_sq (1.2*D LC):	$q_{u_CD_1.2_sq} = \frac{\text{MAX((qu_st_1.2 - sqs_1.2^*(W/2 + (dpier_sq/12 + dc_2/12)/2) - }}{1.2^*(Wpad+Ws)/Area)/144,0)}$	q _{u_CD_1.2_sq} =	0.00	ksi	
Applied Shear Force (1.2*D LC):	$V_{u_{1.2}} = 1.2$ *Wpier + 1.2 * IF(OR(\$B\$1="G",\$B\$1="H"), Pcomp / 1.2, Pcomp)	V _{u_1.2} =	16.45	kip	
Controlling Shear Stress (1.2*D LC):	$\begin{aligned} & \text{MAX}(0,\text{IF}(L \setminus 0.9 <= \text{W/2} + \text{dpier/2} + (\text{dc}_2/12)/2, 0, \text{Vu}_0.9/\text{Ac} + (\text{Yv * Mv * } \text{Vu}_{1.2_\text{controlling}} = (\text{dpier1} + \text{dc}_2)/2) / \text{Jc}_1 + \text{MIN}(\text{qu}_A\text{B}_0.9,\text{qu}_C\text{D}_0.9))) \end{aligned}$	V _{u_1.2_controlling} =	0.013	ksi	
Eq. Sq. Controlling Shear Stress (1.2*D LC):	$v_{u_1.2_controlling_sq} = \frac{\text{MAX}(0, \text{Vu}_1.2/\text{Ac_sq} + (\text{Yv}*\text{Mv}*(\text{dpier_sq} + \text{dc}_2)/2) / \text{Jc_sq} - \text{MIN}(\text{qu}_\text{AB}_1.2_\text{sq}, \text{qu}_\text{CD}_1.2_\text{sq}))}$	V _{u_1.2_controlling_sq} =	0.014	ksi	
Shear Stress Capacity:	$\Phi v_n = \phi s * 4 * (\sqrt{F'}c^*1000) / 1000$	$\Phi v_n =$	0.164	ksi	
Check $\Phi v_n =$	0.164 ksi $\rightarrow=$ $v_{u_demand} =$ 0.013 ksi	RATING:	7.76%		OK
	Two-Way Shear (Compression, Flexural Component) [BOTTOM REINFORCEMEN]	ŋ			
Effective Pad Width:	$b_{pad} = MIN(dpier+3*T,W)$	b_pad =	10.5	ft	
Bar Spacing:	B _{s_pad} = Bs_pad (see design checks below)	B _{s_pad} =	13.73	in	
Fraction of Bars in Effective Width:	m_effective = IF(b_pad=W,mp,12*b_pad/Bs_pad)	m_effective =	9.18		
Area of Steel in Effective Width:	$A_{s_effective} = \mbox{VLOOKUP(Sp,ReflA2:C12,3,0)*m_effective} \label{eq:As_effective}$	A _{s_effective} =	4.04	in²	
Depth of Equivalent Rectangular Stress Block:	a_effective = A _{s_effective} * Fy / (0.85 * F'c * b_siab*12)	a_effective =	0.75	in	
	$\beta_{pad}=\beta_{pad}$ (see design checks below)	β_{pad} =	0.85		
Distance from Top to Nuetral Axis:	C_effective = a_effective / βραd	C_effective =	0.89		
Effective depth:	dc = dc (see One-Way Shear check above)	dc =	19.875	in	
Modulus of Elasticity of Steel:	E _s = 29000 ksi	E _s =	29000	ksi	
Strain in Steel:	$\epsilon_{s_effective} = 0.003 * (dc-c) / c$	$\epsilon_{s_effective}$ =	0.06419	in/in	
Compression-Controlled Strain Limit::	$\varepsilon_{\rm c} = F_{\rm y}/E_{\rm s}$	ε _c =	0.00207	in/in	
Tension-Controlled Strain Limit::	ε_{t} = 0.005	ϵ_t =	0.00500	in/in	
Flexure Strength Reduction Factor:	$\phi flex\{effective} = IF(\epsilon_S >= \epsilon t, 0.9, IF(\epsilon_S <= \epsilon_C, 0.65, 0.65 + (0.9 - 0.65)^*((\epsilon_S - \epsilon_C)/(\epsilon t - \epsilon_C))))$	φflex_ _{effective} =	0.9		
Nominal Flexural Strength:	$M_{n_effective} = A_{s_effective} * (F_y) * (dc - a_{effective} / 2) * (1/12)$	M _{n_effective} =	393.79	ft-kips	
Design Flexural Strength:	$\phi M_{n_effective} = \phi flex_effective * Mn_effective$	$\phi M_{n_effective} =$	354.41	ft-kips	
	Two-Way Shear (Compression, Flexural Component) [TOP REINFORCEMENT]				
Bar Spacing:	B _{s_pad_top} = (W*12 - 2 * ccpad - VLOOKUP(sptop,Refl\$A\$2:\$C\$12,2,0)) / (mptop - 1)	B _{s_pad_top} =	17.19	in	
Fraction of Bars in Effective Width:	m_effective_top = IF(b_pad=W,mptop,12*b_pad/Bs_pad_top)	m_ _{effective_top} =	7.33		
Area of Steel in Effective Width:	A _{s_effective_top} = VLOOKUP(sptop,Ref!\$A\$2:\$C\$12,3,0)*m_effective_top	A _{s_effective_top} =	1.47	in²	
Depth of Equivalent Rectangular Stress Block:	a_effective_top = A _{s_effective_top} * Fy / (0.85 * F'c * b_stab*12)	a_effective_top =	0.27	in	
Distance from Top to Nuetral Axis:	$c_{effective_top} = a_{effective_top} / \beta_{pad}$	C_effective_top =	0.32		
Effective depth:	d_{c_top} = T *12 - ccpad - 1.5 * VLOOKUP(sptop,Reff\$A\$2:\$C\$12,2,0)	$d_{c_top} =$	20.25	in	
Strain in Steel:	$\epsilon_{s_effective_top}$ = 0.003 * (dc_top - c_effective_top) / c_effective_top	$\epsilon_{s_effective_top}$ =	0.18560	in/in	
Flexure Strength Reduction Factor:	$\phi \text{flex}_\text{effective_top} = - \text{IF}(\epsilon s_\text{top} > = \epsilon t, 0.9, \text{IF}(\epsilon s_\text{top} < = \epsilon c, 0.65, 0.65 + (0.9 - 0.65)^*((\epsilon s_\text{top} - \epsilon c)/(\epsilon t - \epsilon c)))))$	φflex_ _{effective_top} =	0.9		
Nominal Flexural Strength:	$M_{n_effective_top} = A_{s_effective_top} * (F_y) * (dc_top - a_effective_top / 2) * (1/12)$	$M_{n_effective_top} =$	147.45	ft-kips	
Design Flexural Strength:	$\phi M_{n_effective_top} = \phi flex_effective * Mn_effective$	$\phi M_{n_effective_top} \! = \!$	132.70	ft-kips	
Applied Moment:	$Yf^*M_{u_comp} = Yf^*M_{u_comp}$	$Yf*M_{u_comp} =$	175.8	ft-kips	
Check $\phi M_{n_effective} =$	487.12 ksi >= Yf*M _{u_comp} = 175.80 ksi	RATING:	36.09%		OK

Pad Flexure (Net Bearing Pressure)

	β_{pad} =	IF(F'c <= 4, 0.8	F(F'c <= 4, 0.85, IF(F'c >= 8, 0.65, 0.85 - (F'c - 4) * 0.05))					0.85	
Provided Steel:	A _{s_pad} =	A _{b_pad} * m _{_pad}					A _{s_pad} =	4.84	in ²
Depth of Equivalent Rectangular Stress Block:	a =	A _{s_pad} * Fy / (0.8	85 * F'c * W)				a =	0.79	in
Distance from Top to Nuetral Axis:	c =	a / β _{pad}					c =	0.93	in
Modulus of Elasticity of Steel:	E _s =	29000 ksi					E _s =	29000	ksi
Strain in Steel:	$\epsilon_{\rm s}$ =	0.003 * (dc-c) /	С				$\epsilon_{\rm s}$ =	0.06108	in/in
Compression-Controlled Strain Limit::	$\epsilon_{\rm c}$ =	F _y / E _s					$\epsilon_{\rm c}$ =	0.00207	in/in
Tension-Controlled Strain Limit::	$\epsilon_{\rm t}$ =	0.005					ϵ_{t} =	0.00500	in/in
Flexure Strength Reduction Factor:	φflex =	IF(εs>=εt,0.9,IF	$F(\epsilon s) = \epsilon t, 0.9, F(\epsilon s) < \epsilon c, 0.65, 0.65 + (0.9 - 0.65)^*((\epsilon s - \epsilon c)/(\epsilon t - \epsilon c))))$ $\phi flex = 0.05$						
Nominal Flexural Strength:	M _n =	As_pad * (F _y) * (0	$s_{pad} * (F_y) * (dc - a / 2) * (1/12)$ $M_n =$					471.41	ft-kips
Design Flexural Strength:	$\phi M_n =$	φflex * Mn	ϕM_n ϕM_n					424.27	ft-kips
Bearing Press. at Crit. Section (0.9*D LC):	qmid_0.9 =	qu_st_0.9 - sqs	u_st_0.9 - sqs_0.9 * d' qm					1.10	ksf
Bearing Press. at Crit. Section (1.2*D LC):	qmid_1.2 =	qu_st_1.2 - sqs	_1.2 * d'				qmid_1.2 =	1.34	ksf
Resisting Weight above Critical Section:			Thickness (ft)	Unit Weight (kcf)	Weight (kip) (0.9*D LC)	Weight (kip) (1.2*D LC)	Moment Arm (ft)	Resisting Moment (ft-kips) (0.9*D LC)	Resisting Moment (ft- kips) (1.2*D LC)
		e Water Table:	3.5	0.125	17.72	23.63	1.875	33.22	44.296875
		w Water Table: e Water Table:	0	0.063 0.150	0.00 12.15	0.00 16.20	1.875 1.875	0.00 22.78	30.375
		v Water Table:	0	0.088	0.00	0.00	1.875	0.00	0
	2010	Total:		2,000	29.87	39.83	7.070	56.00	74.67
Factored Bending Moment (0.9*D LC):	Mu_pad_0.9 =	((0.5*(qu_0.9-qr (0.5*Wg_0.9*(d'	mid_0.9))*(d\^2) \^2)))*W	*(2/3)+(0.5*qmid_0	.9*(d\^2))-		Mu_pad_0.9 =	80.97	ft-kips
Factored Bending Moment (1.2*D LC):	Mu_pad_1.2 =	$ 1.2 = \frac{((0.5^*(qu_1.2-qmid_1.2))^*(d^2)^*(2/3)+(0.5^*qmid_1.2^*(d^2))-(0.5^*Wg_1.2^*(d^2)))^*W}{(0.5^*Wg_1.2^*(d^2)))^*W} $ N					Mu_pad_1.2 =	76.07	ft-kips

PIER DESIGN CHECKS

80.97

ft-kips

 $M_{u_pad} =$

RATING: 19.09% OK

 $\phi M_n = 424.27$ ft-kips

Check

	Vertical Rebar Development Length									
Reinforcement location:	$\alpha_{\rm c}$ = $$ if space under bar > 12", 1.3, else use 1.0 $$	$\alpha_{\rm c}$ =	1.3							
Epoxy coating:	$\beta_{\rm c}$ = for non- epoxy coated, use 1.0	$\beta_c =$	1.0							
Max term:	$\alpha \beta_c$ = product of a x β not to exceed 1.7	$\alpha \beta_c =$	1.3							
Reinforcement size:	$\gamma_{\rm c}$ = $$ if bar size is 6 or less, 0.8, else use 1.0 $$	$\gamma_{\rm c}$ =	1							
Light weight concrete:	$\lambda_c = 1.0$	λ _c =	1.0							
Spacing/cover:	$c_{_{\mathcal{C}}}$ = use smaller of half of bar spacing or concrete cover	c_c =	5.2	in						
Transverse bars:	$k_{tr.e} = 0$ in (per simplification)	k_{tr_c} =	0	in						
Max term:	$c_c' = MIN(2.5, (c_c + ktr_c) / db_c)$	c _c ' =	2.500							
Excess reinforcement:	$R_c = Ast_c / As_c$	R _c =	0.95							
Development (tensile):	$L_{dl_c} = \; (3 / 40) * (Fy*1000 / \sqrt{(F'c*1000)}) * \alpha \beta_c * \gamma_c * \lambda_c * R_c * db_c / c_c'$	L _{dt} '_c =	45.99	in						
Minimum length:	L _{d_min} = 12 inches	L _{d_min} =	12.0	in						
Development length:	$L_{d_c} = MAX(Ld_min, Ldt_c)$	L _{dt_c} =	45.99	in						
Development (comp.):	$L_{dc'_c} = 0.02 * db_c * Fy*1000 / \sqrt{(F'c*1000)}$	L _{dc} '_c =	24.71	in						

	$L_{dc}"_{c} = 0.0003 * db_{c} * Fy*1000$	L _{dc"_c} =	20.30	in
Development length:	L _{dc_c} = MAX(8, Ldc'_c, Ldc"_c)	$L_{dc_c} =$	24.71	in
Length available in pier:	L _{vc} = D-T+E-cc	L _{vc} =	42.0	in

					Vertical Rep	bar Hook End	aing							
	Bar size & clear cover:		$\alpha_{\rm h}$ = =j	=if bar <= 11, and	i cc >= 2.5", use	0.7, else use	a 1.0				$\alpha_{\rm h}$ =	0.7		
	Epoxy coating:		$\beta_h = f$	for non- epoxy co	pated, use 1.0						β_h =	1.0		
	Light weight concrete:		λ _h = 1.	1.0							$\lambda_h =$	1.0		
	Development (hook):		L _{dh} ' = 0	0.02 * αh * βh * λl	\h * Fy*1000 / √(,F'c*1000) * d	db_c				L _{dh} ' =	17.3	in	
	Minimum length:		L _{dh_min} = t	the larger of: 8 * d	d _b or 6 in						L _{dh_min} =	9.0	in	
	Development length:		L _{dh} = N	MAX(Ldh_min, L	∟dh')						L _{dh} =	17.3	in	
Check	\mathbf{L}_{vp} =	21.00	in	>=	L _{dh} =	17.30	in							OK
	Hook tail length:		L _{h_tail} = 12	12 * db beyond the	ie bend radius						L _{h_tail} =	19.2	in	
	Length available in pad:		$L_{h_pad} = (1)$	(W - dpier) / 2 + c	ccpier - ccpad						L _{h_pad} =	48	in	
Check	$\mathbf{L}_{\text{h_pad}} =$	48.00	in	>=	$\mathbf{L}_{\mathrm{dh_tail}}$ =	19.18	in							OK
					Pie	ier Ties								
	Minimum size: [ACI 7.10.5.1]		s_t_min =I	=IF(s_c <= 10, 3, 4	4)						s_t_min =	3		
	z factor:		z_seismic = 0.	0.5 if the SDC is A	A, B, or C, else 1	1.0					z_seismic =	0.5		
	Tie parameters:		$s_{\underline{t}} = 4$ $m_{\underline{t}} = 7$					$d_{b_t} = A_{b_t} =$	0.5 0.2	in in²				
	Allowable tie spacing per vertical rebar:		B _{s_t_max1} = 8	8 / z * db_c							B _{s_t_max1} =	18.048	in	
	per tie size:		B _{s t max2} = 2								B _{s_t_max2} =	24	in	

Check	m_t = 7.00	>=	$\mathbf{m}_{\underline{t}_min}$ =	5.00				OK
	Minimum required ties:	m_t_min = (D - T + E) / Bs_t_n		m_t_min =	5.00			
	Maximum tie spacing:	B _{s_t_max} = MIN(Bs_t_max1, E	$B_{s_t_max} =$	18	in			
	per seismic zone:	$B_{s_t_max4} = 12"$ in active seismi	c zones, else 18	,	$B_{s_t_max4} =$	18	in	
	per pier diameter:	$B_{s_{t_{max3}}} = di / (4 * z^2)$			B _{s_t_max3} =	54	in	

PAD DESIGN CHECKS

Bar Separation										
	Bar separation:	B _{s_pa}	_{id} = (W - 2 * cc - d	b) / (m - 1)			$B_{s_pad} =$	13.73	in	
Check	18"	>= B _{s_p} =	13.73	in	>=	2"				ОК
				Pad Dev	elopment Length					
	Reinforcement location:	α	p = if space under	bar > 12", 1.3, e	else use 1.0		α_{p} =	1.3		
	Epoxy coating:	β	p = for non- epoxy	coated, use 1.0			β_{p} =	1.0		
	Max term:	αβ	$_{p}$ = product of α x	β not to exceed	1.7		$\alpha \beta_{p}$ =	1.3		
	Reinforcement size:	γ	p = if bar size is 6	or less, 0.8, else	e use 1.0		γ_{p} =	0.8		
	Light weight concrete:	λ	_{hp} = 1.0				λ_p =	1.0		
	Spacing/cover:	C	p= use smaller of	half of bar spaci	ing or concrete cov	rer	C _p =	3.38	in	
	Transverse bars:	k _{tr_}	p = 0 in (simplifi	cation)			$\mathbf{k}_{\mathrm{tr}_p}$ =	0	in	
	Max term:	C	' = MIN(2.5, (c +	ktr) / db)			c _p ' =	2.500		
	Required moment ($\varphi t = 0.9$):	M	_{nr} = Mu_pad / φfle	х			M _{nr} =	90.0	ft-kips	
	Steel estimate:	A _{st_i}	_' = Mn / (φt * Fy *	dc)			A _{st_p} ' =	1.006	in ²	
		а	p = Ast' * Fy / (β *	F'c * W)			a _p =	0.16	in	
	Required steel:	A _{st_p_}	$_{st} = M_{nr} / (Fy * (dc$	- ap / 2))			$A_{st_p_st} =$	0.909	in ²	
	Excess reinforcement:	R	k _p = Ast_p / As_p				$R_p =$	1.29		
	Development (tensile):	L	= (3 / 40) * (Fy*	1000 / √(F'c*1000	0)) * αβ * γ * λ * R *	* db / c'	L _d =	32.95	in	
	Minimum length:	L _{d_m}	in = 12 inches				L _{d_min} =	12.0	in	
	Development length:	L	_{lp} = MAX(Ld_min	, Ldp')			$L_{dp} =$	32.95	in	
	Length available in pad:	L _{ps}	ad = W / 2 - dpier / 3	2 - ccpad			L _{pad} =	42.00	in	
Check	L _{pad} =	42.00 in	>=	\mathbf{L}_{dp} =	32.95	in				ОК

Moment Capacity of Drilled Concrete Shaft (Caisson) for TIA Rev F, G, or H

Note: Shaft assumed to have ties, not spiral, transverse reinforcing

Site Data

ES-286 Ridgefield22N

Loads Already Factored						
For M (WL):	1.00					
For P (DL):	1.00					

Pier Properties							
Concrete:		_					
Pier Diameter =	4.5	ft					
Concrete Area =	2290.2	in ²					
Reinforcement:		_					
Clear Cover to Tie =	6.00	in					
Horiz. Tie Bar Size=	4						
Vert. Cage Diameter =	3.32	ft					
Vert. Cage Diameter =	39.87	in					
Vertical Bar Size =	9						
Bar Diameter =	1.13	in					
Bar Area =	1	in ²					
Number of Bars =	12						
As Total=	12	in ²					
A s/ Aconc, Rho:	0.0052	0.52%					

ACI 10.5, ACI 21.10.4, and IBC 1810. Min As for Flexural, Tension Controlled, Shafts:

> (3)*(Sqrt(f'c)/Fy: 0.0027 200 / Fy: 0.0033

Minimum Rho Check:

Assumed Min. Rho: 0.50%
Provided Rho: 0.52% OK

Ref. Shaft Max Axial Capacities, φ Max(Pn or Tn):							
Max Pu = (φ=0.65) Pn. Pn							
per ACI 318 (10-2)	3395.32	kips					
at Mu=(φ=0.65)Mn=	1278.88	ft-kips					
Max Tu, (φ=0.9) Tn =	648	kips					
at Mu=φ=(0.90)Mn=	0.00	ft-kips					

Maximum Shaft Superimposed Forces										
TIA Revision:	Н									
Max. Factored Shaft Mu:	293	ft-kips (* Note)								
Max. Factored Shaft Pu:	5	kips								
Max Axial Force Type:	Comp.									

(*) Note: Max Shaft Superimposed Moment does not necessarily equal to the shaft top reaction moment

Load Factor	Shaft Factored Loads						
1.00	Mu:	293	ft-kips				
1.00	Pu:	5	kips				

Material Properties										
Concrete Comp. strength, f'c =	3000	psi								
Reinforcement yield strength, Fy =	60	ksi								
Reinforcing Modulus of Elasticity, E =	29000	ksi								
Reinforcement yield strain =	0.00207									
Limiting compressive strain =	0.003									
ACI 318 Code										
Select Analysis ACI Code=	2014									

Results:

Governing Orientation Case: 1

Dist. From Edge to Neutral Axis: 9.29 in

Extreme Steel Strain, et: 0.0119

ct > 0.0050, Tension Controlled

Reduction Factor,φ: **0.900**

Output Note: Negative Pu=Tension

For Axial Compression, ϕ Pn = Pu: 4.50 kips Drilled Shaft Moment Capacity, ϕ Mn: 1147.94 ft-kips Drilled Shaft Superimposed Mu: 293.00 ft-kips

(Mu/φMn, Drilled Shaft Flexure CSR: 25.5%

Maximum Allowable Moment of a Circular Pier Pu: 5 kips (from Results Tab) Axial Force type: Comp. (from Results Tab) For Internal Calculations: Axial Load (Negative for Compression) = -5.00 kips Case 1: Single Bar Near the Extreme Fiber Case 2: (2) Equidistant Bars Near the Extreme Fiber Mu Case 3: = Case 1, but Pu set at Max Axial Compression per ACI 318 (10-2) and phi=0.65. General Sketch (Variables) for both cases Neutral Axis Distance from extreme edge to neutral axis, h = 48.80 in Equivalent compression zone factor = 0.85 Distance from extreme edge to equivalent compression zone factor, a = 41.48 in Distance from centroid to neutral axis = -21.80 in Compression Zone Compression Zone Compression Zone Compression Zone Area of steel in compression zone, Asc = 10.00 in² Angle from centroid of pier to intersection of equivalent compression zone and edge of pier = 4 dequivalent compression. Asc = 200,28 45.10 deg Area of concrete in compression. Asc = 200,28 in² sc 200,28 in² Forto in concrete = 0.85 * fc* Asc, Ec = 533.67 kips 533.67 kips Total reinforcement forces, Fis = -528.7 kips 528.75 kips Compression Zone Area of steel in compression zone, Asc = 9.00 in² Angle from centroid of pier to intersection of equivalent compression; and end end of pier = 12.243 deg Area of concrete in compression, Acc = 1887.78 in² Foce in concrete = 0.85 *1c* Acc. Fc 4813.33 kps Total entionnement forces, Fs = 490.74 kps <-- 1/2 of total angle <-- 1/2 of total angle <-- 1/2 of total angle Area of concrete in compression, Acc = 207.45 Force in concrete = 0.85 * f c * Acc, Fc = 529.01 Total reinforcement forces, Fs = -524.01 <-- φ Not Involved = Concrete Pn <-- φ Not Involved = Total Steel Pn <-- φ Not Involved = Concrete Pn <-- φ Not Involved = Total Steel Pn 529.01 kips -524.01 kips <-- φ Not Involved = Concrete Pn <-- φ Not Involved = Total Steel Pn Case 1, φ= 0.900 Axial (comp=negative), Pu = -5.00 kips Case 2, φ= Axial (comp=negative), Pu = 0.900 -5.00 φ= 0.65 Magnified, Max Axial Comp, Pn, per ACI 318 (10-2)/(φ=0.65)= -5223.57 kips <-- Pu <-- Pu <-- (Pn per ACI 10-2)/di Balance Force in concrete, Fs+Fu = -4813.83 kips Shaft Comp. Capacity, (¢=0.65)Pn= 3395.32 kips Balance Force in concrete, Fs+Fu = 533.67 kjps Shaft Comp. Capacity, ϕ Pn= 4.50 kips <- ϕ Pn=Pu Balance Force in concrete, Fs+Fu = -529.01 Shaft Comp. Capacity, &Pn= 4.50 kips kips <--φ Pn=Pu <-- a Pn=Pu Sum of the axial forces in the shaft = 0.00 kins OK Sum of the axial forces in concrete in the shaft= 0.00 kips OK Sum of the axial forces in the shaft = 0.00 kins OK | Maximum Moment | First moment of the concrete | see an compression about the centod = see an compression and centrod of pier = | 1800.98 | inkips | 1800.98 | inkip Maximum Moment First moment of the concrete area in compression about the centoid = 7889.38 in³ Distance between centroid of concrete in compression and centroid of pier = 4.18 in Moment of concrete in compression = 20117.91 in kips Total reinforcement moment = 3492.12 in kips Nominal Moment steength of Dritled Shall Mn = 28910.03 in kips Moment Capacity of Dritled Shall Mn = 28910.03 in kips Moment Capacity of Dritled Shall Mn = 51546.52 in kips Maximum Moment First moment of the concrete area in compression about the centoid = 4662.73 in³ Distance between centroid of concrete in compression and centroid of pier = 22.28 in Moment of concrete in compression = 11889.95 in-kips Total reinforcement moment = 3513.44 in-kips Nominal Moment strength of Drilled Shaft Mn = 15403.40 in-kips Moment Capacity of Drilled Shaft, 4Mn = 13863.06 in-kips 990.8294 ft-kips 292.7869 ft-kips 983.4154 ft-kips 1676.493 ft-kips 292.0699 ft-kips 291,0097 ft-kips 1147.937 ft-kips 1278.877 ft-kips 1155.255 ft-kips Case 1, φMn = 1155.25 ft-kips Case 2, φMn = 1147.94 ft-kips Case 3, at Pmax, (φ=0.65)Mn = 1278.88 ft-kips phi, φ= 0.900 Shaft φ*Mn= 1147.94 ft-kips Distance from Edge of Shaft to N.A.= 9.29 in Shaft Beta= 0.85

Individual Bars

Bar	Angle from first bar	Distance to center of shaft	Distance to neutral axis	Distance to equivalent comp. zone	Strain	Area of steel in compressi on	Stress	Axial force	Mome
#	(deg)	(in)	(in)	(in)	Outum	(in^2)	(ksi)	(kips)	(in-kips
1	0.00	19.94	2.28	0.88	0.00073	1.00	21.21	18.66	372.0
2	30.00	17.27	-0.39	-1.79	-0.00013	0.00	-3.66	-3.66	-63.27
3	60.00	9.97	-7.69	-9.09	-0.00247	0.00	-60.00	-60.00	-598.0
4	90.00	0.00	-17.66	-19.06	-0.00567	0.00	-60.00	-60.00	0.00
5	120.00	-9.97	-27.63	-29.03	-0.00887	0.00	-60.00	-60.00	598.0
6	150.00	-17.27	-34.92	-36.32	-0.01122	0.00	-60.00	-60.00	1035.9
7	180.00	-19.94	-37.59	-39.00	-0.01207	0.00	-60.00	-60.00	1196.1
8	210.00	-17.27	-34.92	-36.32	-0.01122	0.00	-60.00	-60.00	1035.9
9	240.00	-9.97	-27.63	-29.03	-0.00887	0.00	-60.00	-60.00	598.0
10	270.00	0.00	-17.66	-19.06	-0.00567	0.00	-60.00	-60.00	0.00
11	300.00	9.97	-7.69	-9.09	-0.00247	0.00	-60.00	-60.00	-598.0
12	330.00	17.27	-0.39	-1.79	-0.00013	0.00	-3.66	-3.66	-63.2
12	330.00	17.27	-0.39				-3.66		
				Min>	-0.01207	1.00		-528.67	3513

Maximum Tensile Strain= -0.01195 <------

Shaft Tension Cap., qTn= (q=0.9)*(Total As)(Fy)= 648.00 kips
Shaft Max Comp. (q=0.85)(0.80)(0.85*fc*(Ag-Ast)+Ast*Fy)= 3395.32 kips

Angle from first bar (deg) 15.00	of shaft (in)	Distance to neutral axis	to equivalent comp. zone		Area of steel in compressi			
first bar (deg)	to center of shaft (in)	neutral axis	comp.					
first bar (deg)	of shaft (in)	neutral axis			compressi			
(deg)	(in)		7000					
				Strain	on	Stress	Axial force	Moment
15.00		(in)	(in)		(in^2)	(ksi)	(kips)	(in-kips)
	19.26	1.54	0.15	0.00050	1.00	14.45	11.90	229.09
45.00	14.10	-3.62	-5.01	-0.00117	0.00	-33.90	-33.90	-477.88
75.00	5.16	-12.56	-13.95	-0.00406	0.00	-60.00	-60.00	-309.59
105.00	-5.16	-22.87	-24.27	-0.00739	0.00	-60.00	-60.00	309.59
135.00	-14.10	-31.81	-33.20	-0.01028	0.00	-60.00	-60.00	845.81
165.00	-19.26	-36.97	-38.36	-0.01195	0.00	-60.00	-60.00	1155.40
195.00	-19.26	-36.97	-38.36	-0.01195	0.00	-60.00	-60.00	1155.40
225.00	-14.10	-31.81	-33.20	-0.01028	0.00	-60.00	-60.00	845.81
255.00	-5.16	-22.87	-24.27	-0.00739	0.00	-60.00	-60.00	309.59
285.00	5.16	-12.56	-13.95	-0.00406	0.00	-60.00	-60.00	-309.59
315.00	14.10	-3.62	-5.01	-0.00117	0.00	-33.90	-33.90	-477.88
345.00	19.26	1.54	0.15	0.00050	1.00	14.45	11.90	229.09
			Min>	-0.01195	2.00		-524.01	3504.84
	45.00 75.00 105.00 135.00 165.00 195.00 225.00 255.00 285.00 315.00	45.00 14.10 75.00 5.16 105.00 -5.16 135.00 -14.10 165.00 -19.26 195.00 -19.26 225.00 -14.10 255.00 -5.16 285.00 5.16 315.00 14.10	45.00	4500 14,10 3.62 5.01	4500 14.10 3.62 5.01 0.00117 7500 5.16 -12.56 -13.95 0.00406 10500 -5.16 -22.87 24.27 0.00739 15500 14.10 -31.81 -3.20 0.01026 15500 14.10 -31.81 -3.20 0.01028 15500 14.10 -31.81 -3.20 0.01028 15500 14.20 -36.97 3.83.9 0.01195 15500 14.20 -36.97 3.83.9 0.01195 22500 14.10 -31.81 -3.20 0.01028 22500 -5.16 -2.287 2.427 0.00739 28500 5.16 -2.287 2.427 0.00739 31500 14.10 -3.82 -5.01 0.00173 345.00 19.26 15.4 0.15 0.00059	4500 14.10 3.62 5.01 0.00117 0.00 17500 5.16 -12.56 1.19.56 0.0016 0.00 19500 0.516 -12.56 1.19.56 0.0016 0.00 19500 0.516 2227 2427 0.00739 0.00 19500 1.516 0.227 2427 0.00739 0.00 19500 1.926 38.57 3.83.50 0.01195 0.00 19500 1.926 38.57 3.83.56 0.01195 0.00 22500 14.10 3181 3.320 0.01028 0.00 22500 14.10 3181 3.320 0.01028 0.00 22500 5.16 22.27 2427 0.00739 0.00 22500 5.16 1.256 1.357 0.0006 0.00 38.50 1.50 1.50 1.50 1.355 0.0006 0.00 38.50 1.50 1.50 1.50 1.355 0.0006 0.00 38.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1	45.00	4500 14.10 3.82 5.01 -0.00117 0.00 -33.90 33.90 7500 5.16 -12.86 -13.95 -0.00146 0.00 -60.00 -60.00 195.00 -5.16 -12.87 -24.27 -0.00739 0.00 -60.00 -60.00 155.00 -14.10 -31.81 -33.20 -0.01028 0.00 -60.00

TC

et > 0.0050. Tension Controlled

Individual	В

				Distance					
				to		Area of			
	Angle	Distance	Distance	equivalent		steel in			
	from first	to center	to neutral	comp.		compressi			
Bar	bar	of shaft	axis	zone	Strain	on	Stress	Axial force	Momen
#	(deg)	(in)	(in)	(in)		(in^2)	(ksi)	(kips)	(in-kips
1	0.00	19.94	41.74	34.42	0.00257	1.00	60.00	57.45	1145.3
2	30.00	17.27	39.07	31.75	0.00240	1.00	60.00	57.45	991.88
3	60.00	9.97	31.77	24.45	0.00195	1.00	56.64	54.09	539.13
4	90.00	0.00	21.80	14.48	0.00134	1.00	38.87	36.32	0.00
5	120.00	-9.97	11.83	4.51	0.00073	1.00	21.10	18.55	-184.8
6	150.00	-17.27	4.54	-2.78	0.00028	0.00	8.09	8.09	-139.6
7	180.00	-19.94	1.86	-5.46	0.00011	0.00	3.32	3.32	-66.28
8	210.00	-17.27	4.54	-2.78	0.00028	0.00	8.09	8.09	-139.6
9	240.00	-9.97	11.83	4.51	0.00073	1.00	21.10	18.55	-184.8
10	270.00	0.00	21.80	14.48	0.00134	1.00	38.87	36.32	0.00
11	300.00	9.97	31.77	24.45	0.00195	1.00	56.64	54.09	539.13
12	330.00	17.27	39.07	31.75	0.00240	1.00	60.00	57.45	991.88
	•								
				Min>	0.00011	9.00		409.74	3492.1

0.00

Unfactored Resisting Moment of Wedges (0.9*D LC):

Factored Resisting Moment of Wedges (0.9*D LC):

0.00

0.00

0.00

0.00

Soil Wedge Wt (kip)

 $M_{R_wedges_0.9} = 0.00$

kip*ft

 $\Phi M_{R \text{ wedges } 0.9} = 0.00$

 $M_{R_wedges_0.9}$ = Total Moment Arm * Soil Wedge Wt

 $\Phi M_{R \text{ wedges } 0.9} = 0.75 \text{*MR wedges } 0.9$

Soil					_					
	Volume (ft³)	Soil Weight (kips)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)						
(2) End Prisms (above Water Table)	0.00	0.00	12.00	0.00						
(2) End Prisms (below	0.00	0.00	0.00	0.00						
Water Table) (2) Partial Sides	0.00	0.00	12.00	0.00						
(above Water Table) (2) Partial Sides	0.00	0.00	12.00	0.00	1					
(1) Rear (above Water	0.00	0.00	12.79	0.00	Eccentricity relative to W/2:					
Table) (1) Rear (below Water					Total Moment Arm (ft) =	0.00				
Table)	0.00	0.00	0.00	0.00	Soil Wedge Wt (kip)=	0.00				
Unfactored Resisting			l .	•	Total Moment Arm * Soil Wee		м =	0.00	kip*ft	
						uge vvi	M _{R_wedges_1.2} =			
Factored Resisting	g Moment of VI	/edges (1.2*D LC):		ΦM _{R_wedges_1.2} =	0.75*MR_wedges_1.2		ΦM _{R_wedges_1.2} =	0.00	kip*ft	
				Soil Shear	Strength (Cohesive Soil)					
Soil Shear Strength (Co				Unfactored Resisting	1					
Plane Rear	Area (ft²) 0.00	Resistance (kip)	Moment Arm (ft) 12.00	Moment (kip*ft) 0.00	Eccentricity relative to W/2: Total Moment					
(2) Partial Sides	0.00	0.00	12.00	0.00	Arm (ft) = Soil Shear Strength (kip)=	0.00				
	Mamont of Cal						м -	0.00	lein#f8	
Unfactored Resisting I					Total Moment Arm * Soil She		M _{R_shear_0.9} =	0.00	kip*ft	
Factored Resisting I				$\Phi M_{R_shear_0.9} =$	0.75 * (Total Moment Arm * 5	Soil Shear Strength)	$\Phi M_{R_shear_0.9} =$	0.00	kip*ft	
Soil Shear Strength (Co			Manage	Unfactored Resisting	1					
Plane	Area (ft²) 0.00	Resistance (kip)	Moment Arm (ft) 12.00	Moment (kip*ft) 0.00	Eccentricity relative to W/2: Total Moment					
(2) Partial Sides	0.00	0.00	12.00	0.00 0.00 0.00	Arm (ft) = Soil Shear Strength (kip)=	0.00				
Total	Mamaritan		<u> </u>				M	0.00	M-+*	
Unfactored Resisting I					Total Moment Arm * Soil She		M _{R_shear_1.2} =	0.00	kip*ft	
Factored Resisting I	Moment of Soil	Shear (1.2*D LC):		$\Phi M_{R_shear_1.2} =$	0.75 * (Total Moment Arm * S	Soil Shear Strength)	$\Phi M_{R_shear_1.2} =$	0.00	kip*ft	
			DETERMIN	E MOMENT THAT WOUL	D CAUSE 100% OVERTURNIN	G (ORTHOGONAL)				
Comp	oressive Load for	Bearing (0.9*D LC):		P_100 =	P_0.9D+0.9*(Ws+Wc)+0.75*	Wwedges_100	P_100 =	115.53	kip	
Prelim	ninary Factored	Overturning Moment:		pre_M _{overturning_100} =	(W/2-(P_100/ΦQult)/(2*W))*(P_100) pre	_Moverturning_100 =	600.49	kip*ft	
Preli	iminary I oad Ec	centricity (0.9*D LC):		pre ec 100 =	pre_M _{overturning 100} / P ₁₀₀		pre ec 100 =	5.20	ft	
		Iteration (0.9*D LC):		_	goal seek		ec ₁₀₀ =	5.17	Trt.	L/4 < e <=
[Goar Seek] L				_						D4 / 6 /=
	Non-Bearin	g Length (0.9*D LC):		NBL_100 =	2*ec_100		NBL_100 =	10.34	ft	
Total Factored Resi		due to Pp and Soil Shear (0.9*D LC):		ΦM _{Resisting_100} =	ΦM _{R_Pp} + SUM(ΦM _{R_wedges_10}	₀₀ ,ΦM _{R_shear_100})	ΦM _{Resisting_100} =	50.07	kip*ft	
					V + (D-F-1- (10)					
	Mome	nt Created by Shear:			V _u * (D+E+bp _{dist} /12)		M _{shear} =	32.50	kip*ft	
Adjusted	Overturning N	Ioment (0.9*D LC):		M _{overturning_100} =	$M_{u_max_100}$ - ΦM_{R_Pp}		M _{overturning_100} =	647.09	kip*ft	
Total Resis	stance to Over	turning (0.9*D LC):		$\Phi M_{Resisting_qu_100} =$	${\sf P}_{_100}{}^{\star}{\sf ec}_{_100} + \ \Phi{\sf M}_{\sf Resisting}{}_{_100}$	¢	M _{Resisting_qu_100} =	647.09	kip*ft	
[Goal Seek] Mon	ment Compariso	n Iteration (0.9D LC):		ΔM_ ₁₀₀ =	M _{overturning} - ΦM _{Resisting_qu_100}		ΔM_ ₁₀₀ =	0.00	ft	
Maximum Applied M	foment from Sup	erstructure Analysis:		M _{u max 100} =	pre_Moverturning_100 + ΦMResisti	ing 100	M _{u_max_100} =	650.56	kip*ft	
Check		Mu_max_100 =	650.56	kip*ft		305.50 kip*ft	RATING:			ОК
oo.k						ooo.oo mp n		46 96%		
Soil Wadges (Cohesion	lace Sail\ (A 9	*D I C)						46.96%		
		*D LC) Soil Weight (kips)	Moment Arm (ft)	Unfactored Resisting]			46.96%		
Soil (2) End Prisms (above			Moment Arm (ft)	Unfactored Resisting Moment (kip*ft) 20.95				46.96%		
Soil (2) End Prisms (above Water Table) (2) End Prisms (below	Volume (ft³)	Soil Weight (kips)		Moment (kip*ft)				46.96%		
Soil (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) Partial Sides	Volume (ft³) 13.00	Soil Weight (kips)	12.89	Moment (kip*ft) 20.95				46.96%		
Soil (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (2) Partial Sides	Volume (ft³) 13.00 0.00 85.40	1.63 0.00 10.67	12.89 0.00 6.83	Moment (kip*ft) 20.95 0.00 72.93				46.96%		
(2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (2) Partial Sides (below Water Table)	Volume (ft³) 13.00 0.00 85.40 0.00	1.63 0.00 10.67 0.00	12.89 0.00 6.83 6.83	Moment (kip*ft) 20.95 0.00 72.93 0.00	Wedge Eccentricity relative to	o W/2:		46.96%		
Soil (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) Parfial Sides (above Water Table) (2) Parfial Sides (below Water Table) (1) Rear (above Water (above Water Table) (1) Rear (above Water Table)	Volume (ft³) 13.00 0.00 85.40 0.00 49.58	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20	12.89 0.00 6.83 6.83 12.79	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24	Wedge Eccentricity relative to Total Moment Am (ft) =	o W//2: 3.36		46.96%		
Soil (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) (1) Rear (below Water Table) (1) Rear (below Water Table)	Volume (ft³) 13.00 0.00 85.40 0.00 49.58 0.00	1.63 0.00 10.67 0.00	12.89 0.00 6.83 6.83	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00	Total Moment Arm (ft) =			46.96%		
Soil (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) (1) Rear (below Water Table) (1) Rear (below Water Table) Table) Total	Volume (ft³) 13.00 0.00 85.40 0.00 49.58 0.00 147.98	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50	12.89 0.00 6.83 6.83 12.79	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12	Total Moment Arm (ft) = Soil Wedge Wt (kip)=	3.36	М		kin*6	
Soil (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) (1) Rear (above Water Table) (1) Rear (below Water Table) Unfactored Resisting	Volume (ft³) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9°D LC):	12.89 0.00 6.83 6.83 12.79	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} =	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wed	3.36 18.50	$M_{R_wedges_100} =$	62.14	kip*ft	
Soll (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (above Water Table) (1) Rear (abore Water Table) (1) Rear (above Water Table) (1) Rear (above Water Table) Unfactored Resisting	Volume (ft³) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC):	12.89 0.00 6.83 6.83 12.79	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} =	Total Moment Arm (ft) = Soil Wedge Wt (kip)=	3.36 18.50	$M_{R_wedges_100} = \Phi M_{R_wedges_100} =$		kip*ft kip*ft	
(2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) Farth Fable) (2) Partial Sides (above Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) (1) Rear (below Water Table) (1) Rear (below Water Table) (2) Fable (2) Fable (2) Fable (2) Fable (3) Fabl	Volume (ft³) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W g Moment of W othesive Soil) (v	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): 2.9*P LC):	12.89 0.00 6.83 6.83 12.79	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} =	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wet 0.75*MR_wedges_100	3.36 18.50		62.14		
(2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) (1) Rear (above Water Table) (1) Rear (above Water Table) Unfactored Resisting Factored Resisting Soil Shear Strength (Co	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W g Moment of W helsive Soil) (Area (ft*)	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): 0.9*D LC): 0.9*D LC)	12.89 0.00 6.83 6.83 12.79 0.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} =	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wed 0.75*MR_wedges_100 Wedge Eccentricity relative to	3.36 18.50 dge Wt		62.14		
(2) End Prisms (above Water Table) (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) (2) Partial Sides (above Water Table) (3) Rear (below Water Table) (4) Rear (below Water Table) (5) Rear (below Water Table) (6) Plane (7) Plane (8) Rear Strength (Copyright (C	Volume (ft³) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W g Moment of W othesive Soil) (v	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): /edges (0.9*D LC): 0.9*D LC) Resistance (kip) 0.00 0.00	12.89 0.00 6.83 6.83 12.79	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = Unfactored Resisting Moment (kip*ft) 0.00 0.00	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wet 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) =	3.36 18.50 dge Wt		62.14		
(2) End Prisms (above Water Table) (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) (2) Rear (above Water Table) (3) Rear (above Water Table) (4) Rear (above Water Table) (5) Rear (above Water Table) (5) Rear (above Water Table) (6) Rear (above Water Table) (7) Rear (above Water Table) (8) Rear (above Water Table) (9) Rear (above Water Table)	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W ohesive Soil) (Area (ft*) 0.00 0.00	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): /edges (0.9*D LC): 0.9*D LC) Resistance (kip) 0.00 0.00	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = 0.00 Moment (kip*ft) 0.00 0.00	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wet 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Soil Shear Strength (kip)=	3.36 18.50 dge Wt 0 W/2: 0.00	ΦM _{R_wedges_100} =	62.14 46.60	kip*ft	
(2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) (1) Rear (above Water Table) (1) Rear (above Water Table) Unfactored Resisting Factored Resisting (2) Partial Sides Rear (2) Partial Sides Total Unfactored Resisting (3)	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W area (ft*) 0.00 0.00 Moment of Soli	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): 0.9*D LC) Resistance (kip) 0.00 0.00 Shear (0.9*D LC):	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = 0.00 0.00 0.00 M _{R_shear_100} =	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wed 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Soil Shear Strength (kip)= Total Moment Arm * Soil Shear Strength (sip)=	3.36 18.50 dge Wt 0.00/2: 0.00 0.00	$\Phi M_{R_wedges_100} =$ $M_{R_shear_100} =$	62.14 46.60	kip*ft	
(2) End Prisms (above Water Table) (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (above Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) (2) Rear (above Water Table) (3) Rear (above Water Table) (4) Rear (above Water Table) (5) Rear (above Water Table) (5) Rear (above Water Table) (6) Rear (above Water Table) (7) Rear (above Water Table) (8) Rear (above Water Table)	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W area (ft*) 0.00 0.00 Moment of Soli	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): 0.9*D LC) Resistance (kip) 0.00 0.00 Shear (0.9*D LC):	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = 0.00 0.00 0.00 M _{R_shear_100} =	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wet 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Soil Shear Strength (kip)=	3.36 18.50 dge Wt 0.00/2: 0.00 0.00	ΦM _{R_wedges_100} =	62.14 46.60	kip*ft	
Soil (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) End Prisms (below Water Table) (2) Partial Sides above Water Table) (2) Partial Sides (below Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) Total Unfactored Resisting Factored Resisting Rear (2) Partial Sides Total Unfactored Resisting I	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W area (ft*) 0.00 0.00 Moment of Soli	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): 0.9*D LC) Resistance (kip) 0.00 0.00 Shear (0.9*D LC):	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = 0.00 0.00 0.00 M _{R_shear_100} = ΦM _{R_shear_100} =	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wed 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Soil Shear Strength (kip)= Total Moment Arm * Soil Shear Strength (sip)=	3.36 18.50 dge Wt 0 W/2: 0.00 0.00 aar Strength Soil Shear Strength)	$\Phi M_{R_wedges_100} =$ $M_{R_shear_100} =$	62.14 46.60	kip*ft	
Soil Soil 2) End Prisms (above Water Table) 2) End Prisms (below Water Table) 2) End Prisms (below Water Table) 2) Partial Sides above Water Table) 2) Partial Sides below Water Table) 1) Rear (above Water Table) 2) Pattal Sides Soil Shear Strength (CoPlane Resisting (Dear Strength (CoP	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W Moment of Soil Moment of Soil	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): /edges (0.9*D LC): Sessistance (kip) 0.00 0.00 Shear (0.9*D LC):	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = ΦM _{R_wedges_100} = ΦM _{R_wedges_100} = ΦM _{R_wedges_100} = PASSIVE PRESSURE R	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wed 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Soil Shear Strength (kip)= Total Moment Arm * Soil She 0.75 * (Total Moment Arm * Soil She	3.36 18.50 dge Wt 0 W/2: 0.00 0.00 aar Strength Soil Shear Strength)	$\Phi M_{R_wedges_100} =$ $M_{R_shear_100} =$ $\Phi M_{R_shear_100} =$	62.14 46.60 0.00 0.00	kip*ft kip*ft kip*ft	
Soil Soil 2) End Prisms (above Water Table) 2) End Prisms (below Water Table) 2) End Prisms (below Water Table) 2) Partial Sides above Water Table) 2) Partial Sides below Water Table) 1) Rear (above Water Table) 2) Pattal Sides Soil Shear Strength (CoPlane Resisting (Dear Strength (CoP	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W area (ft*) 0.00 Moment of Soil Moment of Soil	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): /edges (0.9*D LC): Specification (kip) 0.00 0.00 Shear (0.9*D LC): Shear (0.9*D LC):	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = ΦM _{R_whear_100} = ΦM _{R_shear_100} = ΦM _{R_shear_100} = FOrce _{pier} = Force _{pier}	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wed 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Total Moment Arm * Soil She 0.75 * (Total Moment Arm * Soil She MIN(Vu.Sum(Pp!M2:M7))	3.36 18.50 dge Wt 0 W/2: 0.00 0.00 aar Strength Soil Shear Strength)	$\Phi M_{R_wedges_100} =$ $M_{R_shear_100} =$ $\Phi M_{R_shear_100} =$ Force pier =	62.14 46.60	kip*ft kip*ft kip*ft	
Soil Soil 2) End Prisms (above Water Table) 2) End Prisms (below Water Table) 2) End Prisms (below Water Table) 2) Partial Sides above Water Table) 2) Partial Sides below Water Table) 1) Rear (above Water Table) 2) Pattal Sides Soil Shear Strength (CoPlane Resisting (Dear Strength (CoP	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W area (ft*) 0.00 Moment of Soil Moment of Soil	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): /edges (0.9*D LC): Sessistance (kip) 0.00 0.00 Shear (0.9*D LC):	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = ΦM _{R_whear_100} = ΦM _{R_shear_100} = ΦM _{R_shear_100} = FOrce _{pier} = Force _{pier}	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wed 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Soil Shear Strength (kip)= Total Moment Arm * Soil She 0.75 * (Total Moment Arm * Soil She	3.36 18.50 dge Wt 0 W/2: 0.00 0.00 aar Strength Soil Shear Strength)	$\Phi M_{R_wedges_100} =$ $M_{R_shear_100} =$ $\Phi M_{R_shear_100} =$	62.14 46.60 0.00 0.00	kip*ft kip*ft kip*ft	
Soil Soil 2) End Prisms (above Water Table) 2) End Prisms (below Water Table) 2) End Prisms (below Water Table) 2) Partial Sides above Water Table) 2) Partial Sides below Water Table) 1) Rear (above Water Table) 2) Pattal Sides Soil Shear Strength (CoPlane Resisting (Dear Strength (CoP	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W othesive Soil) (0.00 0.00 Moment of Soil Force of Moment of Mome	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): /edges (0.9*D LC): Specification (kip) 0.00 0.00 Shear (0.9*D LC): Shear (0.9*D LC):	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = Unfactored Resisting Moment (kip*ft) 0.00 0.00 M _{R_shear_100} = ΦM _{R_shear_100} = PASSIVE PRESSURE R ForCe _{pie} = M _{mm_pie} =	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wet 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Soil Shear Strength (kip)= Total Moment Arm * Soil She 0.75 * (Total Moment Arm * S ESISTANGE (DIAGONAL DIRE MIN(Vu,Sum(PpIM2:M7)) D-T-PpIO2 + T	3.36 18.50 dge Wt 0 W/2: 0.00 0.00 aar Strength Soil Shear Strength)	$\Phi M_{R_wedges_100} =$ $M_{R_shear_100} =$ $\Phi M_{R_shear_100} =$ Force pier =	62.14 46.60	kip*ft kip*ft kip*ft	
Soil (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) End Prisms (below Water Table) (2) Partial Sides above Water Table) (2) Partial Sides (below Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) Total Unfactored Resisting Factored Resisting Rear (2) Partial Sides Total Unfactored Resisting I	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W area (ft*) 0.00 0.00 Moment of Soil Force of Moment Force of Moment	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): /edges (0.9*D LC): /edges (0.9*D LC): Shear (0.9*D LC): Shear (0.9*D LC): f Pp Applied on Pier: nt Arm of Pp on Pier:	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 M _{R_wedges_100} = ΦM _{R_wedges_100} = Unfactored Resisting Moment (kip*ft) 0.00 0.00 M _{R_shear_100} = ΦM _{R_shear_100} = PASSIVE PRESSURE R ForCe _{pie} = M _{mm_pie} =	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wet 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Soil Shear Stength (kip)= Total Moment Arm * Soil Shea 0.75 * (Total Moment Arm * Soil Shea MIN(Vu.Sum(Pp!M2:M7)) D-T-PpIO2 + T MIN(Vu.Forcepier, SUM(Pp!M4:M7))	3.36 18.50 dge Wt 0 W/2: 0.00 0.00 ear Strength Soil Shear Strength)	ΦM _{R_wedges_100} = M _{R_shear_100} = ΦM _{R_shear_100} = Force _{pier} = M _{arm_pier} =	62.14 46.90	kip*ft kip*ft kip*ft	
Soil (2) End Prisms (above Water Table) (2) End Prisms (below Water Table) (2) End Prisms (below Water Table) (2) Partial Sides above Water Table) (2) Partial Sides (below Water Table) (2) Partial Sides (below Water Table) (1) Rear (above Water Table) Total Unfactored Resisting Factored Resisting Rear (2) Partial Sides Total Unfactored Resisting I	Volume (ft*) 13.00 0.00 85.40 0.00 49.58 0.00 147.98 g Moment of W g Moment of W obsesive Soil) (Area (ft*) 0.00 0.00 Moment of Soil Force of Moment of Soil Moment of Momen	Soil Weight (kips) 1.63 0.00 10.67 0.00 6.20 0.00 18.50 /edges (0.9*D LC): 0.9*D LC): 0.9*D LC): Shear (0.9*D LC): Shear (0.9*D LC): f Pp Applied on Plet: Int Arm of Pp on Pad: Int Arm of Pp on Pad:	12.89 0.00 6.83 6.83 12.79 0.00 Moment Arm (ft) 12.00	Moment (kip*ft) 20.95 0.00 72.93 0.00 79.24 0.00 173.12 MR_wedges_100 = ΦMR_wedges_100 0.00 0.00 MR_shear_100 = ΦMR_shear_100 = Force_pier = Marm_pier = Force_pad_dia = Marm_pier =	Total Moment Arm (ft) = Soil Wedge Wt (kip)= Total Moment Arm * Soil Wet 0.75*MR_wedges_100 Wedge Eccentricity relative to Total Moment Arm (ft) = Soil Shear Stength (kip)= Total Moment Arm * Soil Shea 0.75 * (Total Moment Arm * Soil Shea MIN(Vu.Sum(Pp!M2:M7)) D-T-PpIO2 + T MIN(Vu.Forcepier, SUM(Pp!M4:M7))	3.36 18.50 dge Wt 0 W/2: 0.00 0.00 arr Strength Soil Shear Strength) CTION)	$\Phi M_{R_wedges_100} =$ $M_{R_shear_100} =$ $\Phi M_{R_shear_100} =$ $Force_{pier} =$ $M_{arm_pier} =$ $Force_{pad_dia} =$	62.14 46.60 0.00 0.00 5.50 5.00	kip*ft kip*ft kip*ft kip	

Part Section Part												
Description Social Color	Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)			M/2*CODT/2\					
Description Colon	(2) Rear	0.00	0.00	12.73		Total Moment		٦				
Comparison Com		0.00		7.37		Arm (ft) =						
Pectored Resisting Moment of Soil Sheer (P.P.) LC)	Total		0.00		0.00	Soil Shear Strength (k	ip)= 0.00					
Solid Blacks Strongth Collection Solid 17 D LC	Unfactored Resisting	g Moment of So	il Shear (0.9*D LC):		M _{R_shear_0.9} =	Total Moment Arm * So	il Shear Streng	th	$M_{R_shear_0.9_dia} =$	0.00	kip*ft	
Pales					$\Phi M_{R_shear_0.9} =$	0.75 * (Total Moment A	rm * Soil Shear	Strength)	$\Phi M_{R_shear_0.9_dia} =$	0.00	kip*ft	
The content Principal		Cohesive Soil)	(1.2*D LC)		Unfastered Desisting	1						
	Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)	Moment (kip*ft)	Eccentricity relative to	N/2*SQRT(2):					
Compressive Load of the Binaries (2 FD LC)							0.00					
Compression Lose for Season (1.270 LC)		0.00		7.42		Soil Shear Strength (k	ip)= 0.00	-				
### DETERMINE HOMENT THAT WOULD CAUSE 100% OVERTURNING (DAGONA) Painting	Unfactored Resisting	g Moment of So	il Shear (1.2*D LC):		M _{R_shear_1.2} =			th	M _{R_shear_1.2_dia} =	0.00	kip*ft	
Compressive Load for Resing (iii 9 D LC):	Factored Resisting	g Moment of So	il Shear (1.2*D LC):		ΦM _{R_shear_1.2} =	0.75 * (Total Moment A	rm * Soil Shear	Strength)	ΦM _{R_shear_1.2_dia} =	0.00	kip*ft	
Preliminary Factored Overfurning Moment pre_Mountaining_10_as = 50.00_ass(SORT(2))**(VM-Preliminary Load Excentricity (9 PP LC) Preliminary Load Excentr				DETERM	INE MOMENT THAT WO	ULD CAUSE 100% OVER	TURNING (DIAG	ONAL)				
President control President Presiden	Con	mpressive Load fo	or Bearing (0.9*D LC):		P_100_dia =	P_0.9D+0.9*(Ws+Wc)+	0.75*Wwedges	_100_dia	P_100_dia =	118.60	kip	
	Prel	liminary Factored	Overturning Moment:		pre_M _{overturning_100_dia} =	(P_100_dia/(SQRT(2)) SQRT(P_100_dia/ΦQu	*(W- lt))		pre_M _{overturning_100_dia} =	633.50	kip*ft	
Non-Bearing Length (9 9"D LC)	Pri	eliminary Load E	ccentricity (0.9*D LC):		pre_ec_ _{100_dia} =	pre_M _{overturning_100_dia} / P	bearing_0.9		pre_ec_ _{100_dia} =	5.34	ft	
Total Factored Resisting Moment due to Pp and Soil Wedges / Shear (18-70 LC): Moment Created by Shear (18-70 LC): Moment Created by Shear (18-70 LC): Moment Created by Shear (18-70 LC): Moment (18-70 LC): Mom	[Goal Seek]	Load Eccentricit	y Iteration (0.9*D LC):		ec_ _{100_dia} =	goal seek			ec_ _{100_dia} =	5.31	ft	(L/4)*SQRT(2)/2 < e <= (L/2)*SQRT(2)
Wedges (Shear (16 9°) LC):					NBL_ _{100_dia} =	SQRT(2)*ec_100_dia			NBL_ _{100_dia} =	7.51	ft	
Adjusted Overturning Mament (0.9°D LC):	Total Factored Re				ΦM _{Resisting_100_dia} =	ΦM _{R_Pp_dia} + SUM(ΦM _P	_wedges_100_dia,ΦI	M _{R_shear_100_dia})	ΦM _{Resisting_100_dia} =	34.58	kip*ft	
Total Resistance to Overturning (0.9°D LC):		Mom	ent Created by Shear:		M _{shear} =	V _u * (D+E+bp _{dist} /12)			M _{shear} =	32.50	kip*ft	
Maximum Applied Moment from Superstructure Analysis: Mu_max_100_dia = 668.09 kip*ft >= Mu = 306.50 kip*ft			,								kip*ft	
Check Mu_max_100_dia = 668.09 kip*t >											ft	
Soil Wodges (Cohesionless Soil) (0.9°D LC)		Moment from Su		668.09							•	OK
Soil Volume (R*) Soil Weight (kips) Moment Arm (R) Unfactored Resisting Moment (kip*ft)												
C2 End Prisms (above 13.00 1.63 8.49 13.79					Unfactored Resisting	1						
Water Table 13.00 1.6.3 6.49 13.79		Volume (ft³)	Soil Weight (kips)	Moment Arm (ft)								
(2) End Prisms (below 0.00		13.00	1.63	8.49	13.79							
Water Table	(2) End Prisms (below	0.00	0.00	0.00	0.00	1						
(1) End Prisms (below Water Table)	(1) End Prism (above	6.50		17.81	14.47	-						
(above Water Table) 0.2.07 7.76 5.41 41.99	(1) End Prisms (below Water Table)	0.00	0.00	0.00	0.00							
Colon Water Table 0.00	(above Water Table)	62.07	7.76	5.41	41.99							
(2) Rear (above Water 99.15 12.39 13.15 162.92 Total Moment Table		0.00	0.00	0.00	0.00	Eccentricity relative to	W/2*SQRT(2):	_				
(2) Rear (below Water 0.00 0.00 0.00 0.00 0.00 0.00 Arm (ft) = 1.64 Table Total 180.73 22.59 233.18 Soil Wedge Wt (kip) = 22.59 Unfactored Resisting Moment of Wedges (0.9*D LC): MR_wedges_100_dia = Total Moment Arm * Soil Wedge Wt MR_wedges_100_dia = 41.48 kip*ft Factored Resisting Moment of Wedges (0.9*D LC): ΦMR_wedges_100_dia = 0.75*MR_wedges_100_dia ΦMR_wedges_100_dia = 31.11 kip*ft Soil Shear Strength (Cohesive Soil) (0.9*D LC) Plane Area (ft*) Resistance (kip) Moment Arm (ft) Unfactored Resisting Moment (kip*ft) Moment (kip*ft) Moment (kip*ft) (2) Rear 0.00 0.00 12.73 0.00 Total Moment 0.00 Arm (ft) = 0.00 Arm (ft) = 0.00 Arm (ft) = 0.00 Arm (ft) = 0.00 (2) Partial Sides 0.00 0.00 5.83 0.00 Arm (ft) = 0.00 (3) (4	(2) Rear (above Water	99.15	12.39	13.15	162.92	Total Moment		1				
Total 180.73 22.59 233.18 Soil Wedge Wt (kip) = 22.59 Unfactored Resisting Moment of Wedges (0.9°D LC): MR_wedges_100_dia = Total Moment Arm * Soil Wedge Wt MR_wedges_100_dia = 41.48 kip*ft Factored Resisting Moment of Wedges (0.9°D LC): ΦMR_wedges_100_dia = 0.75°MR_wedges_100_dia ΦMR_wedges_100_dia = 31.11 kip*ft Soil Shear Strength (Cohesive Soil) (0.9°D LC) Plane Area (ft*) Resistance (kip) Moment Arm (ft) Unfactored Resisting Moment (kip*ft) Eccentricity relative to W2*SQRT(2): (2) Rear	(2) Rear (below Water	0.00	0.00	0.00	0.00	Arm (ft) =	1.84					
Unfactored Resisting Moment of Wedges (0.9°D LC): M _{R_wedges_100_dia} = Total Moment Arm * Soil Wedge Wt M _{R_wedges_100_dia} = 41.48 kip*ft Factored Resisting Moment of Wedges (0.9°D LC): ΦM _{R_wedges_100_dia} = 0.75*MR_wedges_100_dia ΦM _{R_wedges_100_dia} = 31.11 kip*ft Soil Shear Strength (Cohesive Soil) (0.9°D LC) Plane Area (ft²) Resistance (kip) Moment Arm (ft) Unfactored Resisting Moment (kip*ft) Eccentricity relative to W/2*SQRT(2): (2) Rear 0.00 0.00 12.73 0.00 Total Moment 0.00 Log Partial Sides 0.00 0.00 5.83 0.00 Arm (ft) = 0.00				 	233.18	Soil Wedge Wt (kip)	= 22.59	+				
Soil Shear Strength (Cohesive Soil) (0.9*D LC) Plane	Unfactored Resisti	ing Moment of V	Vedges (0.9*D LC):		M _{R_wedges_100_dia} =	Total Moment Arm * Sc	il Wedge Wt	_				
Plane Area (ft²) Resistance (kip) Moment Arm (ft) Unfactored Resisting Moment (kip²ft) Eccentricity relative to W/2*SQRT(2):					ΨIVIR_wedges_100_dia =	0.75 WIK_WedgeS_100	_uia		ΨIVIR_wedges_100_dia =	31.11	кірії	
(2) Rear 0.00 0.00 12.73 0.00 Total Moment (xip tr) Eccentricity relative to W2*SUR1(2): (2) Partial Sides 0.00 0.00 5.83 0.00 Arm (t) =				Moment Arm (ft)		ו						
(2) Partial Sides 0.00 0.00 5.83 0.00 Arm (ft) = 0.00		, ,	1 17			Eccentricity relative to		7				
Total 0.00 Soil Shear Strength (kip)= 0.00	(2) Partial Sides		0.00		0.00	Arm (ft) =						
							ip)= 0.00	J				

 $M_{R_shear_100_dia}$ = Total Moment Arm * Soil Shear Strength

 $\Phi M_{R_shear_100_dia} = 0.75 * (Total Moment Arm * Soil Shear Strength)$

 $M_{R_shear_100_dia} = 0.00 kip*ft$

 $\Phi M_{R_shear_100_dia} = \qquad 0.00 \qquad kip^*ft$

Unfactored Resisting Moment of Soil Shear (0.9*D LC):

Factored Resisting Moment of Soil Shear (0.9*D LC):

 $\Phi M_{R_wedges_0.9_e} = 0.75*MR_wedges_0.9_e$

Unfactored Resisting Moment (kip*ft) ΦM_{R_wedges_0.9_e} =

0.00

Factored Resisting Moment of Wedges (0.9*D LC):

nless Soil) (1.2*D LC)

Soil Weight (kips) Moment Arm (ft)

Volume (ft³)

Soil Wedges (Cohes

(2) End Prisms (above Water Table)	0.00	0.00	12.00	0.00	1						
(2) End Prisms (below Water Table)	0.00	0.00	0.00	0.00							
(2) Partial Sides (above Water Table)	0.00	0.00	12.00	0.00							
(2) Partial Sides (below Water Table)	0.00	0.00	12.00	0.00	Eccentricity relative to W/2:						
(1) Rear (above Water Table)	0.00	0.00	12.79	0.00	Total Moment						
(1) Rear (below Water Table)	0.00	0.00	0.00	0.00	Arm (ft) =	0.00					
Total	0.00	0.00		0.00	Soil Wedge Wt (kip)=	0.00					
Unfactored Res	sisting Moment	of Wedges (1.2*D LC):		M _{R_wedges_1.2_e} =	Total Moment Arm * Soil Wedge	Wt		M _{R_wedges_1.2_e} =	0.00	kip*ft	
Factored Res	sisting Moment o	of Wedges (1.2*D LC):		ΦM _{R wedges 1.2 e} =	0.75*MR_wedges_1.2_e			ΦM _{R_wedges_1.2_e} =	0.00	kip*ft	
					Strength (Cohesive Soil)						
Soil Shear Strength (C	Cohesive Soil)	(0.9*D LC)									
Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)	Eccentricity relative to W/2:						
Rear (2) Partial Sides	0.00	0.00	12.00 12.00	0.00	Total Moment Arm (ft) =	0.00					
Total	0.00	0.00	12.00	0.00	Soil Shear Strength (kip)=	0.00					
Unfactored Resis	ting Moment of	Soil Shear (0.9*D LC):		M _{R_shear_0.9_e} =	Total Moment Arm * Soil Shear S	Strength		$M_{R_shear_0.9_e} =$	0.00	kip*ft	
Factored Resis	ting Moment of	Soil Shear (0.9*D LC):		ΦM _{R_shear_0.9_e} =	0.75 * (Total Moment Arm * Soil S	Shear Stren	gth)	ΦM _{R_shear_0.9_e} =	0.00	kip*ft	
Soil Shear Strength (C	Cohesive Soil)	(1.2*D LC)			_						
Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)	Eccentricity relative to W/2:						
Rear (2) Partial Sides	0.00	0.00	12.00 12.00	0.00	Total Moment Arm (ft) =	0.00					
Total		0.00	I .	0.00	Soil Shear Strength (kip)=	0.00					
Unfactored Resis	ting Moment of	Soil Shear (1.2*D LC):		M _{R_shear_1.2_e} =	Total Moment Arm * Soil Shear S	Strength		$M_{R_shear_1.2_e} =$	0.00	kip*ft	
Factored Resis	ting Moment of	Soil Shear (1.2*D LC):		ΦM _{R_shear_1.2_e} =	0.75 * (Total Moment Arm * Soil S	Shear Stren	gth)	$\Phi M_{R_shear_1.2_e} =$	0.00	kip*ft	
			DETERMI	IE MOMENT THAT WOUL	LD CAUSE 100% OVERTURNING (O	RTHOGONA	L)				
(Compressive Loa	d for Bearing (0.9*D LC):		P_100_e =	P_0.9D+0.9*(Ws+Wc)+0.75*Ww	edges_100_	_e	P_100_e =	112.94	kip	
F	Preliminary Factor	ed Overturning Moment:			P_100_e * (W/2 - ((2/3) * P_100_			e_M _{overturning_100_e} =	559.52	kip*ft	
	-	Eccentricity (0.9*D LC):			pre_M _{overturning_100} /P_ ₁₀₀	., .	,	pre_ec_ _{100_e} =	4.95	ft	
								_		_	
[Goal Se	eek] Load Eccentri	icity Iteration (0.9*D LC):		ec_ _{100_e} =	goal seek			ec_ _{100_e} =	4.33	ft	L/6 < e <= L
	Non-Be	aring Length (0.9*D LC):		NBL_ _{100_e} =	W-(W/2-ec_100_e)*3			NBL_ _{100_e} =	6.99	ft	
Total Factored	l Resisting Mom Weda	ent due to Pp and Soil es / Shear (0.9*D LC):		ΦM _{Resisting_100_e} =	ΦM _{R_Pp} + SUM(ΦM _{R_wedges_100} ,ΦN	M _{R_shear_100})		ΦM _{Resisting_100_e} =	56.98	kip*ft	
					V */D:F:h- //0)				00.50	11.40	
		oment Created by Shear:			V _u * (D+E+bp _{dist} /12)			M _{shear_e} =	32.50	kip*ft	
Adju	usted Overturnin	ig Moment (0.9*D LC):		M _{overturning_100_e} =	M _{u_max_100} - ΦM _{R_Pp}			M _{overturning_100_e} =	613.02	kip*ft	
Total	Resistance to C	verturning (0.9*D LC):		ΦM _{Resisting_qu_100_e} =	P_100*ec_100 + ΦM _{Resisting_100}		4	M _{Resisting_qu_100_e} =	545.93	kip*ft	
[Goal Seek] Moment Compa	rison Iteration (0.9D LC):		ΔM _{_100_e} =	Moverturning - Φ MResisting_qu_100			ΔM_ _{100_e} =	67.10	ft	
Maximum Appli	ied Moment from	Superstructure Analysis:		M _{u_max_100_e} =	pre_Moverturning_100 + ΦMResisting_10	00		M _{u_max_100_e} =	616.50	kip*ft	
Soil Wedges (Cohesio	onless Soil) (0.	9*D LC)			_						
Soil	Volume (ft³)	Soil Weight (kips)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)							
(2) End Prisms (above Water Table)	13.00	1.63	12.89	20.95	1						
(2) End Prisms (below Water Table)	0.00	0.00	0.00	0.00	1						
(2) Partial Sides (above Water Table)	57.74	7.22	8.51	61.39							
(2) Partial Sides (below Water Table)	0.00	0.00	8.51	0.00	Eccentricity relative to W/2:						
(1) Rear (above Water Table)	49.58	6.20	12.79	79.24	Total Moment						
(1) Rear (below Water Table)	0.00	0.00	0.00	0.00	Arm (ft) =	4.74					
Total	120.32	15.04	<u> </u>	161.58	Soil Wedge Wt (kip)=	15.04					
Unfactored Res	sisting Moment	of Wedges (0.9*D LC):		M _{R_wedges_100_e} =	Total Moment Arm * Soil Wedge	Wt		M _{R_wedges_100_e} =	71.34	kip*ft	
Factored Res	sisting Moment	of Wedges (0.9*D LC):		ΦM _{R_wedges_100_e} =	0.75*MR_wedges_100_e			ΦM _{R_wedges_100_e} =	53.50	kip*ft	
Soil Shear Strength (0	Cohesive Soil)	(0.9*D LC)			_						
Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)	Eccentricity relative to W/2:		_				
Rear (2) Partial Sides	0.00	0.00	12.00 8.51	0.00	Total Moment Arm (ft) =	0.00					
Total		0.00		0.00	Soil Shear Strength (kip)=	0.00					
Unfactored Resis	ting Moment of	Soil Shear (0.9*D LC):		M _{R_shear_100_e} =	Total Moment Arm * Soil Shear S	Strength		M _{R_shear_100_e} =	0.00	kip*ft	
Factored Resis	ting Moment of	Soil Shear (0.9*D LC):		ΦM _{R_shear_100_e} =	0.75 * (Total Moment Arm * Soil S	Shear Stren	gth)	ΦM _{R_shear_100_e} =	0.00	kip*ft	
					ESISTANCE (DIAGONAL DIRECTIO	N)					
	For	ce of Pp Applied on Pier:		Force _{pier} =	MIN(Vu,Sum(Pp!M2:M7))			Force _{pier} =	0.00	kip	
	Мо	ment Arm of Pp on Pier:		M _{arm_pier} =	D-T-Pp!O2 + T			M _{arm_pier} =	5.50	ft	
				Force _{pad_dia} =	MIN(Vu-Force _{pier} ,SUM(Pp!M8:M1	(3))*(T*W*S	QRT(2))/(T*W))	Force _{pad_dia} =	5.00	kip	
	For	ce of Pp Applied on Pad:									
		ce of Pp Applied on Pad: oment Arm of Pp on Pad:		M _{arm pad} =	D-Pp!O8			M _{arm nad} =	0.93	ft	
Upfactored Mos	Мо	oment Arm of Pp on Pad:		_				M _{arm_pad} =			
	Mo ment Resistance o	oment Arm of Pp on Pad:		M _{R_Pp} =	Force _{pier} *M _{arm_pier} +Force _{pad} *M _{arm_}	pad		M _{R_Pp} =	4.63	kip*ft	
	Mo ment Resistance o	oment Arm of Pp on Pad:		_	Force _{pier} *M _{arm_pier} +Force _{pad} *M _{arm_}	pad					
	Mo ment Resistance o	oment Arm of Pp on Pad:		$M_{R_Pp} = \Phi M_{R_Pp_dia} = \Phi M_{R_Pp_$	Force _{pier} *M _{arm_pier} +Force _{pad} *M _{arm_}		ON)	M _{R_Pp} =	4.63	kip*ft	
Factored Mor.	Mc ment Resistance o ment Resistance o	oment Arm of Pp on Pad:		$M_{R_{_{_{}}Pp}}$ = $\Phi M_{R_{_{_{_{}}Pp}}dia}$ =	$\begin{aligned} & Force_{pier}{}^*M_{arm_pier}{}^*Force_{pad}{}^*M_{arm_j} \\ & \Phi_s{}^*M_{R_Pp} \end{aligned}$	AL DIRECTIO		M _{R_Pp} =	4.63	kip*ft	
Factored Mon	Moment Resistance of the ment Resistance of t	oment Arm of Pp on Pad: due to Passive Pressure: due to Passive Pressure:	PLASTIC E	M _{R_Pp} = Φ M _{R_Pp_dia} = DEARING PRESSURE & C P _{bearing_0.9_dia_e} =	Force pie*Mamm_pie*Force pad*Mamm_J Φs*MR_Pp	AL DIRECTION DE L'ALL DIRECTION	bearing_dia_e	$M_{R_{-}Pp}$ = $\Phi M_{R_{-}Pp_dia}$ =	4.63 3.47	kip*ft kip*ft	

Non-Bearing Length (0.9*D LC):	$NBL_{0.9_dia_e} = 0$	NBL_0.9_dia_e =	0.00 ft								
Non-Bearing Length (1.2*D LC):	NBL_1.2_dia_e = 0	NBL_1.2_dia_e =	0.00 ft								
Non-Bearing Length (0.9*D LC):	$NBL_{0.9_dia_e_2} = 0$	NBL_0.9_dia_e_2 =	0.00 ft								
Non-Bearing Length (1.2*D LC):	NBL_1.2_dia_e_2 = 0	NBL_1.2_dia_e_2 =	0.00 ft								
Total Factored Resisting Moment due to Pp and Soil Wedges / Shear (0.9*D LC):	$\Phi M_{Resisting_0.9_dia_e} = \Phi M_{R_Pp_dia} + SUM(\Phi M_e)$	$R_{\text{wedges}_0.9_\text{dia_e}}$, $\Phi M_{R_\text{shear}_0.9_\text{dia_e}}$) $\Phi M_{\text{Resisting}_0.9_\text{dia_e}}$ =	3.47 kip*ft								
Total Factored Resisting Moment due to Pp and Soil Wedges / Shear (1.2*D LC):	$\Phi M_{Resisting_1.2_dia_e} = \Phi M_{R_Pp_dia} + SUM(\Phi M_e)$	$I_{R_wedges_1.2_dia_e)}$, $\Phi M_{R_shear_1.2_dia_e}$) $\Phi M_{Resisting_1.2_dia_e} =$	3.47 kip*ft								
Adjusted Overturning Moment (0.9*D LC):	$M_{overturning_0.9_dia_e} = M_{overturning} - \Phi M_{Resisting_0}$	0.9_dia_e Moverturning_0.9_dia_e =	302.03 kip*ft								
Adjusted Overturning Moment (1.2*D LC):	$M_{overturning_1.2_dia_e} = M_{overturning} - \Phi M_{Resisting_1}$	1.2_dia_e M _{overturning_1.2_dia_e} =	302.03 kip*ft								
Total Resistance to Overturning (0.9*D LC):	$\Phi M_{Resisting_qu_0.9_dia_e} = P_{bearing_0.9_dia_e} * ec_{_0.9_e}$	_dia + Φ M _{Resisting_0.9_dia_e} Φ M _{Resisting_qu_0.9_dia_e} =	3.47 kip*ft								
Total Resistance to Overturning (1.2*D LC):	$\Phi M_{Resisting_qu_1.2_dia_e} = P_{bearing_1.2_dia_e}^{\bullet} e c_{_1.2_e_}$	$_{dia}$ + $\Phi M_{Resisting_1.2_dia_e}$ $\Phi M_{Resisting_qu_1.2_dia_e}$ =	3.47 kip*ft								
[Goal Seek] Moment Comparison Iteration (0.9D LC):	$\Delta M_{\underline{0.9_dia_e}} = M_{overturning} \cdot \Phi M_{Resisting_qu}$	u_0.9_dia_e ΔM_0.9_dia_e =	302.03 kip*ft								
[Goal Seek] Moment Comparison Iteration (1.2D LC):	$\Delta M_{1.2_dia_e} = M_{overturning} \Phi M_{Resisting_qu}$	u_12_dia_e ΔM_12_dia_e =	302.03 kip*ft								
	Bearing Pressures										
Diagonal Bearing Pressure (0.9*D LC):	q _{u_dia_0.9_e} = Pbearing_0.9_dia_e/A	area + Moverturning_0.9_dia_e/S_dia q _{u_dia_0.9_e} =	2.19 ksf								
Diagonal Bearing Pressure (1.2*D LC):	$q_{u_dia_1.2_e} = Pbearing_1.2_dia_e/A$	area + Moverturning_1.2_dia_e/S_dia q _{u_dia_1.2_e} =	2.42 ksf								
Ultimate Gross Bearing Pressure:	$Q_{ut} = Qult$	$Q_{ult} =$	8.00 ksf								
Factored Ultimate Gross Bearing Pressure:	ΦQuit = φs * Quit	Qa =	6.00 ksf								
Check	6.00 ksf >=	q_u = 2.42 ksf RATING:	40.41% OK								
	Soil Wedges (Cohesionless Soil)										

 Soil (above pad) Height:
 soilht = D-T
 soilht = Soil (above pad & under water table) Height:
 soilht_gw = MIN(soilht-gw,D-T)
 soilht_gw = 0.00
 ft

 Soil Wedge Projection at Grade:
 Wedge $_{proj}$ = TAN($_{0}$ *PI()'180)*soilht
 Wedge $_{proj,gw}$ = 0.00
 ft

 Soil Wedge Projection at Water Table:
 Wedge $_{_{proj,gw}}$ = TAN($_{0}$ *PI()'180)*(soilht_gw)
 Wedge $_{_{proj,gw}}$ = 0.00
 ft

1 Load Resistance Utilization F

Soil Wedges (Cohesionless Soil) (0.9*D LC)

Soil	Volume (ft³)	Soil Weight (kips)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)		
(2) End Prisms (above Water Table)	0.00	0.00	0.00	0.00		
(2) End Prisms (below Water Table)	0.00	0.00	0.00	0.00		
(1) End Prism (above Water Table)	0.00	0.00	0.00	0.00		
(1) End Prisms (below Water Table)	0.00	0.00	0.00	0.00		
(2) Rear Sides (above Water Table)	0.00	0.00	0.00	0.00		
(2) Rear Sides (below Water Table)	0.00	0.00	0.00	0.00	Eccentricity relative to W/2*SQR1	(2):
(2) Partial Sides (above Water Table)	0.00	0.00	0.00	0.00	Total Moment	0.00
(2) Partial Sides (below Water Table)	0.00	0.00	0.00	0.00	Arm (ft) =	0.00
Total	0.00	0.00		0.00	Soil Wedge Wt (kip)=	0.00

 Unfactored Resisting Mament of Wedges (0.9*D LC):
 MR_wedges_0.9 = Total Moment Arm * Soil Wedge Wt
 MR_geograp. 0.9_dia_e
 0.00
 kip*ft

 Factored Resisting Mament of Wedges (0.9*D LC):
 ΦMR_wedges_0.9 = 0.75*MR_wedges_0.9_dia_e
 ΦMR_wedges_0.9_dia_e
 0.00
 kip*ft

Soil Wedges (Cohesionless Soil) (1.2*D LC)

Son weages (Conesid	111633 0011) (1.2	D EO)			-	
Soil	Volume (ft³)	Soil Weight (kips)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)		
(2) End Prisms (above Water Table)	0.00	0.00	0.00	0.00		
(2) End Prisms (below Water Table)	0.00	0.00	0.00	0.00		
(1) End Prism (above Water Table)	0.00	0.00	0.00	0.00		
(1) End Prisms (below Water Table)	0.00	0.00	0.00	0.00		
(2) Partial Sides (above Water Table)	0.00	0.00	0.00	0.00		
(2) Partial Sides (below Water Table)	0.00	0.00	0.00	0.00	Eccentricity relative to W/2*SQR	Γ(2):
(2) Rear (above Water Table)	0.00	0.00	0.00	0.00	Total Moment	0.00
(2) Rear (below Water Table)	0.00	0.00	0.00	0.00	Arm (ft) =	0.00
Total	0.00	0.00		0.00	Soil Wedge Wt (kip)=	0.00

27 Particul States 0.00 0.00 4.40 0.00	Factored Res	sisting Moment o	of Wedges (1.2*D LC):		ΦM _{R_wedges_1.2} =	0.75*MR_wedges_1.2_dia_e		ΦM _{R_wedges_1.2_dia_e} =	0.00	kip*ft
Process Annex The Section Continue C	Soil She					Strength (Cohesive Soil)				
Part Section Part Section Part Section Part Section Part Section Part Section Se	oil Shear Strength (C	Cohesive Soil)	(0.9*D LC)			_				
	Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)			Γ(2):			
	2) Rear 2) Partial Sides				0.00		0.00			
Set Sheet Recording Number of Set Sheet (1970 LC)	Total					Soil Shear Strength (kip)=	0.00			
Part	Unfactored Resis	ting Moment of	Soil Shear (0.9*D LC):		M _{R_shear_0.9} =	Total Moment Arm * Soil Shear S	trength	M _{R_shear_0.9_dia_e} =	0.00	kip*ft
Part	Factored Resis	ting Moment of	Soil Shear (0.9*D LC):		ΦM _{R shear 0.9} =	0.75 * (Total Moment Arm * Soil S	Shear Strength)	ΦM _{R shear 0.9 dia e} =	0.00	kip*ft
Part										
				Moment Arm (ft)		Econotricity relative to W/2*SOR	F/9)-			
	2) Rear				0.00	Total Moment				
Patiented Resisting Manner of Soil Sheer (1 2*0 LC):	2) Partial Sides otal	0.00		8.49						
Package Pack	Unfactored Resis	tina Moment of	Soil Shear (1.2*D LC):		Mo share 12 =	: Total Moment Arm * Soil Shear S	trength	Mp share 12 dia a =	0.00	kip*ft
Compressive Load for Reservey (0.9°D LC): P										
Compressive Load for Seasing (in PD LC)	Factored Resis	ting Moment of	Soil Shear (1.2°D LC):					ΦMR_shear_1.2_dia_e ≡	0.00	kip*ft
Pelliminary Factored Coretaming Manaest Pre-Minimary Factored Coretaming Manaest Pre-Minimary Load Eccentricly (ii PD LC) Pre-Minimary Load Eccentricly (ii PD LC) Re-Sc. ma, m.y. = prile Minimary Load Eccentricly (ii PD LC) Stope of Bearing Pressure in Disposal Direction (ii PD LC) Stope of Bearing Pressure in Disposal Direction (ii PD LC) Stope of Bearing Pressure in Disposal Direction (ii PD LC) Stope of Bearing Pressure in Disposal Direction (ii PD LC) Stope of Bearing Pressure in Disposal Direction (ii PD LC) Stope of Bearing Pressure in Disposal Direction (ii PD LC) Stope of Bearing Pressure in Disposal Direction (ii PD LC) Stope of Bearing Pressure in Disposal Direction (ii PD LC) Note of Bearing Pressure in Disposal Direction (ii PD LC) Note of Bearing Pressure in Disposal Direction (ii PD LC) Note of Bearing Pressure in Disposal Direction (ii PD LC) Note of Bearing Pressure in Disposal Direction (ii PD LC) Note of Bearing Minimary (ii				DETERM	MINE MOMENT THAT WO	ULD CAUSE 100% OVERTURNING	(DIAGONAL)			
### Perimany Load Eccentricity (9.070 LC):	(Compressive Load	d for Bearing (0.9*D LC):		P_100_dia_e =	P_0.9D+0.9*(Ws+Wc)+0.75*Www	edges_100_dia_e	P_100_dia_e =	106.83	kip
Preliminary Load Eccentricly (9 070 LC); Strate, compared by the Eccentricly (9 070 LC); Strate, compared by the Eccentricly (9 070 LC); Stopp Jung, page D_3*(loag, page, 3), page D_3*(l		Preliminary Factor	ed Overturning Moment:		nre M	P_100_dia_e*(W*SQRT(2) -		nre M	516.00	kin*ff
Stope of Bearing Pressure in Diagonal Direction (9 PTO LC)	r	y r actor	Svortaming Worlden.		overturning_100_dia_e =	SQRT(6*P_100_dia_e/(2*ФQult)))/2	overturning_100_dia_e =	310.08	ap it
Stope of Bearing Pressure Solution (if bearing area is - Amach) (1970 LC): stope		Preliminary Load	Eccentricity (0.9*D LC):		pre_ec_ _{100_da_e} =	pre_M _{overturning_100_dia_e} /P _{_100_dia_e}		pre_ec_ _{100_dia_e} =	4.83	ft
Stope of Bearing Pressure in Diagonal Direction (0 PPD LC): Stope	[Goal Se	ek] Load Eccentri	icity Iteration (0.9*D LC):		ec_ _{100_da_e} =	goal seek		ec_ _{100_dia_e} =	3.41	ft
Dispose Disp					elone =	D 3*/a //W/2*SOPT/2)	*D 3)/	_	2.02	#/#
Wordge 1		_			310p6_100_dia_e =	- D_3 (4max_dia_0.9_e/(W/2 3Q/(1/2)	.0_3))	310PC_100_dia_e =	2.02	1010
Distance to Centroid from Center of Foundation (tit)	Diagonal Bearing Pres	ssure Solution (if I			Wedge 1					
Distance to Centroid from Center of Foundation (ft) 1-129 3-39 2-44				Volume (ft³):			İ			
Non-Searing Length (0.9°D LC) NBL 100, 58, 2, 2 0 0.00 ft Total Factored Resisting Moment due to Pp and Soil Wedges (5 Page (0.9°D LC) Children Moment Ceased by Shear: Moment (0.9°D LC) Moment		Distance to	Centroid from Center							
Total Factored Resisting Moment due to Pp and Soil Wedges (Shees (9 970 LC): Moment Created by Sheer: Major V. (10+E+bparl 12)		Non-Be	aring Length (0.9*D LC):		NBL_ _{100_dia_e} =	MAX((W/2*SQRT(2)-D_3)*SQRT	(2),0)	NBL_ _{100_dia_e} =	5.89	ft
Total Factored Resisting Moment due to Pp and Soil Wedges (Sheer (ii 97) LC): Moment Created by Shear: Moment Created by Shear: Moment Created by Shear: Moment (iii) PD LC): Moverhaming (iii) PD LC): Move		Non-Be	aring Length (0.9*D LC):		NBL 100 dia e 2 =	0		NBL 100 dia e 2 =	0.00	ft
Wedges / Shear (0.9 °D LC): Moment created by Shear: W _{amaz,x} = V _x * (0.F±°D pad / 12) M _{amaz,x} = 3.2.50 kip¹ ft	Total Factored	l Resisting Mom	ent due to Pn and Soil							
Adjusted Overturning Moment (0.9*D LC):	rotal ractored				ΦM _{Resisting_100_dia_e} =	· ΦM _{R_Pp_dia} + SUM(ΦM _{R_wedges_100}	_dia [,] ΦM _{R_shear_100_dia})	ΦM _{Resisting_100_dia_e} =	40.26	kip*ft
Total Resistance to Overturning (0.9*D LC): OMM_{treasure_100_ata_e} = P_{100_ata_e} e^{-1_{100_ata_e} e} + OMM_{treasure_110_ata_e} e OMM_{treasure_110_at		Мо	oment Created by Shear:		M _{shear_e} =	V _u * (D+E+bp _{dist} /12)		M _{shear_e} =	32.50	kip*ft
Total Resistance to Overturning (0.9*D LC): OMM_{treasure_100_ata_e} = P_{100_ata_e} e^{-1_{100_ata_e} e} + OMM_{treasure_110_ata_e} e OMM_{treasure_110_at	Adiu	ısted Overturnin	a Moment (0.9*D LC):		Moverturnion 100 dia e =	Mu may 100 dia - ФMp Ro dia		Movement 100 dia e	552.88	kip*ft
Maximum Applied Moment from Superstructure Analysis: Mu_max_100_da_e = pre_Moventuming_100_dia + 0MResisting_100_dia Mu_max_100_da_e = 556.35 kip*ft	Total Resistance to Overturning (0.9°D LC):			ΨIVIResisting_qu_100_dia_e =	P_100_dia_e eC_100_dia_e + WiWResistin	g_100_dia_e	_	404.87	кір-ті	
Soil Wedges (Cohesionless Soil) (0.9*D LC)	[Goal Seek] Moment Comparison Iteration (0.9D LC):			$\Delta M_{100_dia_e} =$	Moverturning - Φ MResisting_qu_100_dia		$\Delta M_{100_dia_e} =$	148.01	kip*ft	
Soil Volume (ft*) Soil Weight (kips) Moment Arm (ft) Unfactored Resisting Moment (kip*) Moment (ki	Maximum Applied Moment from Superstructure Analysis:				M _{u_max_100_dia_e} =	pre_Moverturning_100_dia + ΦMResistin	g_100_dia	$M_{u_max_100_dia_e} =$	556.35	kip*ft
Soil Volume (ft*) Soil Weight (kips) Moment Arm (ft) Unfactored Resisting Moment (kip*) Moment (ki										
Soil Volume (ft*) Soil Weight (kips) Moment Arm (ft) Unfactored Resisting Moment (kip*) Moment (ki	Soil Wedges (Cohesia	onless Soil) (0.9	9*D LC)							
2) End Prisms (above 0.00				Moment Arm (ft)		1				
Value Table Value Valu	2) End Prisms (above					1				
Total Prism (above 0.50	2) End Prisms (below	1		†		-				
Valer Table 0.30		1		†		-				
Valet Table 0.00	Vater Table)	1		†		-				
Valer Table 48.65 6.08 15.31 93.09	Vater Table)	0.00	0.00	0.00	0.00					
Valer Table 0.00	Vater Table)	48.65	6.08	15.31	93.09]				
2) Partial Sides 0.00 0.00 0.00 0.00 0.00 Total Moment 7.12	2) Rear Sides (below Vater Table)	0.00	0.00	0.00	0.00	Eccentricity relative to W/2*SQR1	Γ(2):			
2) Partial Sides 0.00 0.	2) Partial Sides	0.00	0.00	0.00	0.00					
Delicon Water Lable Soil Wedge Wt (kip) = 6.89 107.56 Soil Wedge Wt (kip) = 6.89	2) Partial Sides	0.00	0.00	0.00	0.00		7.12			
Factored Resisting Moment of Wedges (0.9*D LC): $\Phi M_{R_{_wedges_100_dia_e}} = 0.75*MR_{_wedges_100_dia_e} = 0.75*MR_{_wedges_100_dia_e} = 0.75*MR_{_wedges_100_dia_e} = 36.79 \text{ kip*ft}$ Soil Shear Strength (Cohesive Soil) (0.9*D LC) Plane Area (ft*) Resistance (kip) Moment Arm (ft) Moment (kip*ft)	fotal					Soil Wedge Wt (kip)=	6.89			
Factored Resisting Moment of Wedges (0.9*D LC): $\Phi M_{R_{_wedges_100_dia_e}} = 0.75*MR_{_wedges_100_dia_e} = 0.75*MR_{_wedges_100_dia_e} = 0.75*MR_{_wedges_100_dia_e} = 36.79 \text{ kip*ft}$ Soil Shear Strength (Cohesive Soil) (0.9*D LC) Plane Area (ft*) Resistance (kip) Moment Arm (ft) Moment (kip*ft)	Unfactored Res	sisting Moment o	of Wedges (0.9*D LC):		M _{R wedges 100 dia e} =	Total Moment Arm * Soil Wedge	Wt	M _{R wedges 100 dia e} =	49.06	kip*ft
Soil Shear Strength (Cohesive Soil) (0.9*D LC) Plane										
Plane										
Partial Part				Managed &(5)	Unfactored Resisting	1				
2) Partial Sides 0.00 0.00 8.49 0.00 Arm (ft) = 0.00 otal 0.00 Soil Shear Strength (kip) = 0.00					Moment (kip*ft)					
	2) Partial Sides		0.00		0.00	Arm (ft) =				
Unfactored Resisting Moment of Soil Shear (0.9*D LC): $M_{R_a hear_100_da_e} = Total Moment Arm * Soil Shear Strength M_{R_a hear_100_da_e} = 0.00 kip*ft$		l		1						
					414			***		

 $\Phi M_{R_shear_100_dia_e} = 0.75 * (Total Moment Arm * Soil Shear Strength)$

 $M_{R_wedges_1.2}$ = Total Moment Arm * Soil Wedge Wt

Unfactored Resisting Moment of Wedges (1.2*D LC):

Factored Resisting Moment of Soil Shear (0.9*D LC):

 $M_{R_wedges_1.2_dia_e} = 0.00 kip*ft$

 $\Phi M_{R_shear_100_dia_e} = 0.00 \qquad kip*ft$

Ref: CT587100 ES RIDG Date: 23Jul20 Dep: BL GRAPHICS

Wgt: 0.80 LBS

SHIPPING: SPECIAL: HANDLING:

0.00 TOTAL:

0.00 0.00 0.00 0.00

DV:

Svcs: PRIORITY OVERNIGHT TRCK: 1714 2090 7100

ORIGIN ID:RSPA (800) 301-3077 BL GRAPHICS BL GRAPHICS 355 RESEARCH PARKWAY

SHIP DATE: 23JUL20 ACTWGT: 0.80 LB MAN CAD: 0765627/CAFE3311

BILL THIRD PARTY

MERIDEN, CT 06450 UNITED STATES US

CONNECTICUT SITING COUNCIL 10 FRANKLIN SQUARE

NEW BRITAIN CT 06051

REF: C1587100 ES RIDGEFIELD

DEPT: BL GRAPHICS

FedEx Express

TRK# 1714 2090 7100

FRI - 24 JUL 10:30A PRIORITY OVERNIGHT

00 BDLA

06051 cT-US BDL

Ref: CT587100 ES RIDG Date: 23Jul20 IDG Date: 23Jul20 Wgt: 0.80 LBS Dep: BL GRAPHICS

SHIPPING: SPECIAL: HANDLING: 0.00 TOTAL:

0.00 0.00 0.00

Svcs: PRIORITY OVERNIGHT TRCK: 1714 2090 7085

ORIGIN ID:RSPA (800) 301-3077 BL GRAPHICS BL GRAPHICS 355 RESEARCH PARKWAY

SHIP DATE: 23JUL20 ACTWGT: 0.80 LB CAD: 0765627/CAFE3311

BILL THIRD PARTY

MERIDEN, CT 06450 UNITED STATES US

10 HONORABLE RUDY MARCONI, FIRST SELEC

TOWN OF RIDGEFIELD 400 MAIN STREET

RIDGEFIELD CT 06877

REF: C1587100 ES RIDGEFIELD

DEPT: BL GRAPHICS

FedEx

TRK# 1714 2090 7085

FRI - 24 JUL 10:30A **PRIORITY OVERNIGHT**

EG WODA

06877 cT-us SWF

Ref: CT587100 ES RIDG Date: 23Jul20 Dep: BL GRAPHICS

Wgt: 0.80 LBS

SHIPPING: SPECIAL: HANDLING:

0.00 TOTAL:

0.00 0.00 0.00

DV:

Svos: PRIORITY OVERNIGHT TRCK: 1714 2090 7096

ORIGIN ID:RSPA (800) 301-3077 BL GRAPHICS BL GRAPHICS 355 RESEARCH PARKWAY

SHIP DATE: 23JUL20 ACTWGT: 0.80 LB MAN CAD: 0765627/CAFE3311

BILL THIRD PARTY

MERIDEN, CT 06450 UNITED STATES US

RICHARD BALDELLI, DIRECTOR OF PLANN TOWN OF RIDGEFIELD **400 MAIN STREET**

RIDGEFIELD CT 06877

REF: C1587100 ES RIDGEFIELD

DEPT: BL GRAPHICS

FedEx Express

TRK# 1714 2090 7096

FRI - 24 JUL 10:30A PRIORITY OVERNIGHT

EG WODA

06877 cT-US SWF

281 # 185 H 28 H 28 H 21 J B 20

ATTACHMENT E - POWER DENSITY REPORT

Calculated Radio Frequency Emissions Report

ES-286

Off Prospect Street

Ridgefield, CT 06877

Table of Contents

1. Introduction
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits
3. Power Density Calculation Methods
4. Calculated % MPE Results
5. Conclusion
6. Statement of Certification
Attachment A: References
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)
Attachment C: Eversource Antenna Data Sheets and Electrical Patterns
List of Tables
Table 1: Proposed Facility % MPE
Table 2: FCC Limits for Maximum Permissible Exposure (MPE)
List of Figures
Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed Eversource installation to be located off Prospect Street in Ridgefield, CT.

Eversource is proposing to install two omnidirectional antennas as part of its 220 MHz communications system – one transmit antenna and one receive antenna.

This report considers the planned antenna configuration as provided by Eversource along with power density information of the existing antennas to calculate the overall % MPE (Maximum Permissible Exposure) of the proposed facility at ground level.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

3. Power Density Calculation Methods

The power density calculation results were generated using the following formula as outlined in FCC bulletin OET 65, and Connecticut Siting Council recommendations:

Power Density =
$$\left(\frac{1.6^2 \times 1.64 \times ERP}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power = 1.64 x ERP

R = Radial Distance = $\sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna

V = Vertical Distance from radiation center of antenna

Ground reflection factor of 1.6

Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and full power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. As a result, the calculated power density and corresponding % MPE levels reported below are much higher than the actual levels will be from the final installation.

4. Calculated % MPE Results

Table 1 below outlines the power density information for the site. The proposed Eversource omnidirectional antenna has a vertical beamwidth of 38°; therefore, the majority of the RF power is focused out towards the horizon. Please refer to Attachment C for the vertical pattern of the proposed Eversource antenna. Likewise, the other transmit antennas exhibit similar directionality of varying vertical beamwidths. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the facility. The calculated results in Table 1 include a nominal 10 dB off-beam pattern loss to account for the lower relative gain below the antennas. Any inactive or receive-only antennas are not listed in the table, as they are irrelevant in terms of the % MPE calculations.

Carrier	Antenna Height (Feet)	Operating Frequency (MHz)	_ , , , , , , , , , , , , , , , , , , ,	ERP Per Transmitter (Watts)	Power Density (mw/cm²)	Limit	%MPE
CL&P	85	37.74	1	100	0.0006	0.2000	0.29%
CL&P	70	44	1	100	0.0009	0.2000	0.44%
CL&P	70	48	1	100	0.0009	0.2000	0.44%
CL&P	85	450	1	251	0.0014	0.3000	0.48%
CL&P	85	937	2	240	0.0028	0.6247	0.44%
Eversource	90	44.34	1	100	0.0005	0.2000	0.25%
Eversource	88	936.6375	1	240	0.0013	0.6244	0.21%
Eversource	88	938.45	1	240	0.0013	0.6256	0.21%
Eversource	74	37.74	1	100	0.0008	0.2000	0.39%
Eversource	74	451.675	1	251	0.0020	0.3011	0.65%
Eversource	73	48.34	1	100	0.0008	0.2000	0.40%
Eversource	80	217	4	124	0.0033	0.2000	1.63%
						Total	3.73%

Table 1: Proposed Facility % MPE 12

The CT Siting Council power density database reflects entries for existing Eversource (f.k.a. CL&P) antennas. These entries are shown as grey in the table above and should be replaced by the unshaded entries, which are based upon updated operating parameters provided by Eversource as part of this project. The blue entry reflects the parameters of the proposed Eversource antenna. Therefore, the total % MPE calculated is based upon only the unshaded and blue entries.

_

¹Please note that % MPE values listed are rounded to two decimal points and the total % MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not identically match the total value reflected in the table.

² The antenna heights listed for Eversource are in reference to the Black & Veatch Structural Analysis Report dated 03/26/2020.

5. Conclusion

The above analysis concludes that RF exposure at ground level with the proposed antenna installation will be below the maximum power density limits as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods discussed herein, the highest expected percent of Maximum Permissible Exposure at ground level with the proposed installation is 3.73% of the FCC General Population/Uncontrolled limit.

As noted previously, the calculated % MPE levels are more conservative (higher) than the actual levels will be from the finished installation.

6. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, IEEE Std. C95.1, and IEEE Std. C95.3.

Report Prepared By: Sokol Andoni

RF Engineer

C Squared Systems, LLC

Reviewed/Approved By: Keith Vellante

Director – RF Services C Squared Systems, LLC

Keith Willande

April 2, 2020

Date

April 2, 2020

Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

<u>IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz</u> IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure³

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure⁴

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz * Plane-wave equivalent power density

Table 2: FCC Limits for Maximum Permissible Exposure (MPE)

ES-286 6 April 2, 2020

³ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure

⁴ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Eversource Antenna Data Sheets and Electrical Patterns

217 MHz					
Manufacturer:	Telewave				
Model #:	ANT220F2				
Frequency Band:	195-260 MHz				
Gain:	2.5 dBd				
Vertical Beamwidth:	38°				
Horizontal Beamwidth:	360°				
Polarization:	Vertical				
Length:	51"				

