

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

VIA ELECTRONIC MAIL

April 10, 2018

Arthur Perkowski Airosmith Development Inc. 32 Clinton St. Saratoga Springs, NY 12866

RE:

EM-SPRINT-117-180329 - Sprint notice of intent to modify an existing telecommunications facility located at 100 Old Redding Road, Redding, Connecticut.

Dear Mr. Perkowski:

The Connecticut Siting Council (Council) is in receipt of your correspondence received April 10, 2018 submitted in response to the Council's April 9, 2018 notification of an incomplete request for exempt modification with regard to the above-referenced matter.

The submission renders the request for exempt modification complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

Melanie A. Bachman Executive Director

MB/FOC/cg

March 28th, 2018

Melanie Bachman, Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification – Antenna Swap for wireless facility located at 100 OLD REDDING ROAD, REDDING, CT 06896 – CT03XC358 (lat. 41° 17' 13.54" N, long. -73° 26' 17.38" W)

Dear Ms. Bachman:

Sprint Spectrum, LP ("Sprint") currently maintains wireless telecommunications antennas at the (157-foot level) on an existing (182-foot Self-Support tower) at the above-referenced address. The property is owned by James and Michelle Lenes, and the tower is owned by American Tower Corporation.

Sprint's proposed work involves antenna replacement and tower work. Sprint intends to replace three (3) antennas and add six (6) new RRHs onto the tower. All the proposed work is contained within the existing fenced area. Please refer to the attached drawings for site plans prepared by Infinigy Engineering.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to JULIA PEMBERTON, First Selectman and AIMEE PARDEE, Zoning Enforcement Officer of the Town of Redding. A copy of this letter is also being sent to JUSTINE PAUL the manager for AMERICAN TOWER CORPORATION who manages the site and to Mr. Robert J Kaufman who owns the land.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b).

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The antennas work is a one-for-one replacement of facility components.
- 3. The proposed modifications will include the addition of ground base equipment as

depicted on the attached drawings; however, the proposed equipment will not require an extension of the site boundaries.

- 4. The proposed modifications will not increase noise levels at the facility by six decibels or more.
- 5. The additional ground based equipment will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b).

If you have any questions or require any additional information regarding this request, please do not hesitate to give me a call at (518) 350-4222 or email me to aperkowski@airosmithdevelopment.com

Kind Regards,

Arthur Perkowski Airosmith Development Inc. 32 Clinton Street Saratoga Springs, NY 12866 518-306-1711 desk & fax 518-871-3707 cell

aperkowski@airosmithdevelopment.com

Attachment

CC: JULIA PEMBERTON, (First Selectman, ROCKY HILL CT)
JUSTINE PAUL (Manager, AMERICAN TOWER CORPORATION)
AIMEE PARDEE (Zoning Enforcement Officer / ROCKY HILL CT)
Robert J Kaufman (Land Owners)

CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051

Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

April 9, 2018

Arthur Perkowski Airosmith Development, Inc. 32 Clinton Street Saratoga Springs, NY 12866

RE:

EM-SPRINT-117-180329 - Sprint notice of intent to modify an existing telecommunications facility located at 100 Old Redding Road, Redding, Connecticut.

Dear Mr. Perkowski:

The Connecticut Siting Council (Council) received a notice of intent to modify the above-referenced facility on March 29, 2018.

According to Section 16-50j-71 of the Regulations of Connecticut State Agencies, "...any modification, as defined in Section 16-50j-2a of the Regulations of Connecticut State Agencies, to an existing tower site, except as specified in Sections 16-50j-72 and 16-50j-88 of the Regulations of Connecticut State Agencies, may have a substantial adverse environmental effect."

Staff has reviewed this exempt modification request for completeness and has identified the following deficiencies in the filing:

- 1. The property owner appears to be incorrect. Based on the Redding CT GIS Data Portal online geographical information systems, the property hosting the existing tower is located at 100 Old Redding Road and owned by Robert J. Kaufman;
- 2. There is no proof of mailing to the property owner. In accordance with the memorandum issued by the Council dated June 22, 2017, a copy of the exempt modification notice and the attachments are to be physically mailed to the chief elected official of the host municipality and the underlying property owner and proof of such mailing shall be submitted to the Council with the exempt modification request. The Council's June 22, 2017 memorandum is attached for your convenience.; and
- 3. Site plan drawings Title Sheet T-1 under project description "Theses plans are not for construction unless accompanied by a passing structural stability analysis prepared by a licensed structural engineer. Structural analysis must include both tower and mount." There is no mount structural stability analysis provided with the exempt modification filing; therefore, it is unclear whether additional reinforcements would be required for the antenna mount, which would alter the proposed loading on the structure and require an updated structural analysis report.

Therefore, the exempt modification request is incomplete at this time. The Council recommends that Airosmith Development provide a mount structural stability analysis that is stamped and signed by a professional engineer duly licensed in the State of Connecticut and mail the exempt modification request with the attachments to the underlying property owner and provide proof of such notice to the Council on or before May 7, 2018. If additional time is needed to complete the mount structural stability analysis, notification and/or provide proof to the Council, please submit a written request for an extension of time prior to May 7, 2018.

This notice of incompletion shall have the effect of tolling the Federal Communications Commission (FCC) 60-day timeframe in accordance with Paragraph 217 of the FCC Wireless Infrastructure Report and Order issued on October 21, 2014 (FCC 14-153).

Thank you for your attention to this matter. Should you have any questions, please feel free to contact me at 860-827-2951.

Sincerely,

Melanie Bachman Executive Director

MAB/FC

c: The Honorable Julia Pemberton, First Selectman, Town of Redding Aimee Pardee, M.A., Zoning Enforcement Officer, Town of Redding Robert Kaufman, property owner American Tower Corporation, tower owner

1033 WATERVLIET SHAKER RD, ALBANY, NY 12205

January 18, 2018

Terri Burkholder

Project Manager Airosmith Development tburkholder@asdwireless.com www.airosmithdevelopment.com

RE: Sprint DO Macro Project Mount Analysis

Sprint Site Number:	CT03XC358
Sprint Site Name:	Redding
Site Address:	Old Redding Road, Redding, CT 06896
Building Code:	2012 IBC / 2016 Connecticut State Building Code
Design Standard:	ANSI/TIA-222-G
Result:	Passing
Usage:	69.4%
Note:	Proposed radios to be mounted behind proposed antennas. Tie backs are to be connected to tower legs on both ends of the mount.

Dear Ms. Burkholder:

NAME OF TAXABLE PARTY

At your request, Infinigy Engineering, PLLC has reviewed the existing Sprint tower mounted equipment supports at the above referenced site for adequacy to support the existing and proposed loads for the referenced project. This evaluation is based on a review of the information from the Structural Analysis Report (dated 10/20/17) provided by American Tower Corporation, Photos (dated 12/11/17), Construction Drawings (dated 12/19/17) provided by Infinigy Engineering PLLC and Colo Application (dated 09/14/17) provided by Sprint Nextel.

This evaluation assumes that all structural members are in good condition, have not been altered from the manufacturer's original design, and have been installed per the manufacturer's requirements. Prior to installation of any new appurtenances, the contractor shall inspect the condition of all relevant members and connections and shall tighten all connections. The contractor is responsible for the means and methods of construction and shall notify Infinigy Engineering, PLLC immediately if any field conditions differ from those listed above.

Should there be any questions, please do not hesitate to contact us at (518) 690-0790.

Sincerely,
Joseph R. Johnston, P.E.
VP Structural Engineering/Principal
structural@infinigy.com
Connecticut P.E. License Number: PEN.0029460
KC/BDA

Envelope Only Solution

Infinigy Engineering PLLC	
BA	
526-104	

CT03XC358

Proposed Configuration

Jan 18, 2018 at 5:55 PM

CT03XC358.r3d

Site Name CT03XC358 Client Airosmith Carrier Sprint Engineer BA Date: 1/18/2017

INFINIGY WIND LOAD CALCULATOR 3.0.2

Site Information Inputs:

Adopted Building Code: 2012 IBC Structure Load Standard: TIA-222-G Antenna Load Standard: TIA-222-G Structure Risk Category: 11 Structure Type: **Mount - Sector Number of Sectors:** 3

Structure Shape 1:

Rooftop Inputs: Rooftop Wind Speed-Up?: No

Wind Loading Inputs:

Round

Design Wind Velocity: 93 mph (nominal 3-second gust) Wind Centerline 1 (z₁): 157.0 Side Face Angle (θ): 60 degrees **Exposure Category:** В Topographic Category:

Wir	d with No	lce
q _z (psf)	Gh	F _{ST} (psf)
23.65	1.00	28.38

V	ind with I	ce
q _z (psf)	Gh	F _{ST} (psf)
6.83	1.00	26.51

Ice Loading Inputs:

Is Ice Loading Needed? Yes Ice Wind Velocity: 50 mph (nominal 3-second gust) Base Ice Thickness: 0.75

Appurtenance Name	Elevation (ft)	Total Quantity	Ка	Front Shape	Side Shape	q _z (psf)	EPA (ft²)	Fz (lbs)	Fx (lbs)	Fz(60) (lbs)	Fx(30) (lbs)
Commscope DT465-2XR	157.0	3	1.00	Flat	Flat	23.65	9.10	215.14	141.25	159.72	196.67
RFS APXVSPP18-C-A20	157.0	3	1.00	Flat	Flat	23.65	8.02	189.75	124.93	141.13	173.54
catel lucent 1900MHz RRH 4x45 RR	157.0	3	1.00	Flat	Flat	23.65	2.33	55.12	53.13	53.63	54.62
Alcatel lucent TD-RHH8x20-25	157.0	3	1.00	Flat	Flat	23.65	4.05	95.66	36.24	51.09	80.81
Alcatel lucent 800MHz RRH	157.0	3	1.00	Flat	Flat	23.65	2.13	50.46	59.00	56.87	52.60
Alcatel lucent RRH2x50-08	157.0	3	1.00	Flat	Flat	23.65	1.70	40.22	30.32	32.79	37.74
								V-10			
Lasting to the second s											
and the second of the second o											
	ALCONOMIC STATE OF ACT										
	English Approximately	O'I NASAN KETATA									

Company Designer Job Number Model Name

: Infinigy Engineering PLLC

: BA : 526-104 : CT03XC358 Jan 18, 2018 5:55 PM Checked By:__

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N1	N3			HSS 2.5x2.5x3		SquareTube	A500 Gr.46	Typical
2	M2	N2	N4		1000	HSS 2.5x2.5x3	Beam	SquareTube	A500 Gr.46	Typical
3	M3	N3	N9			RIGID	None	None	RIGID	Typical
4	M4	N4	N10			RIGID	None	None	RIGID	Typical
5	M5	N6	N9			P1.25 Std	Beam	Pipe	A53 Gr B	Typical
6	M6	N5	N9			P1.25 Std	Beam	Pipe	A53 Gr B	Typical
7	M7	N8	N10			P1.25 Std	Beam	Pipe	A53 Gr B	Typical
8	M8	N7	N10			P1.25 Std	Beam	Pipe	A53 Gr B	Typical
9	M9	N13	N11			P1.25 Std	Beam	Pipe	A53 Gr B	Typical
10	M10	N14	N12			P1.25 Std	Beam	Pipe	A53 Gr B	Typical
11	M11	N11	N17			3/4" SR	Beam	None	A36 Gr.36	Typical
12	M12	N17	N15			3/4" SR	Beam	None	A36 Gr.36	Typical
13	M13	N12	N18			3/4" SR	Beam	None	A36 Gr.36	Typical
14	M14	N18	N16		100	3/4" SR	Beam	None	A36 Gr.36	Typical
15	M15	N22	N21			1" SR	Beam	None	A36 Gr.36	Typical
16	M16	N22	N19			1" SR	Beam	None	A36 Gr.36	Typical
17	M17	N20	N19			1" SR	Beam	None	A36 Gr.36	Typical
18	M18	N6	N24	19 To 19 To 19		RIGID	None	None	RIGID	Typical
19	M19	N8	N26			RIGID	None	None	RIGID	Typical
20	M20	N9	N27			RIGID	None	None	RIGID	Typical
21	M21	N10	N28			RIGID	None	None	RIGID	Typical
22	M22	N5	N23			RIGID	None	None	RIGID	Typical
23	M23	N7	N25			RIGID	None	None	RIGID	Typical
24	M24	N33	N30			P2.0 Std	Beam	Pipe	A53 Gr B	Typical
25	M25	N34	N31			P2.0 Std	Beam	Pipe	A53 Gr B	Typical
26	M26	N32	N29			P2.0 Std	Beam	Pipe	A53 Gr B	Typical
27	M27	N35	N41			P1.25 Std	Beam	Pipe	A53 Gr B	Typical
28	M28	N37	N40			P1.25 Std	Beam	Pipe	A53 Gr B	Typical

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[K]
1	General				
2	RIGID		8	49	0
3	Total General		8	49	0
4					
5	Hot Rolled Steel				
6	A36 Gr.36	SR0.75	4	172.8	0
7	A36 Gr.36	SR1.0	3	104.8	0
8	A500 Gr.46	HSS2.5x2.5x3	2	51	0
9	A53 Gr B	PIPE 1.25	8	552.1	0
10	A53 Gr B	PIPE 2.0	3	288	0
11	Total HR Steel		20	1168.7	.2

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P.
1	Self Weight	DL		-1			6			
2	Wind Load AZI 000	WLZ					6		1	
3	Wind Load AZI 090	WLX					6			
4	Ice Weight	OL1					6	28		
5	Wind + Ice Load AZI	OL2					6		1	
6	Wind + Ice Load AZI	OL3					6			
7	Service Live 1	LL				2				
8	Seismic Load AZI 000	ELZ								

Company Designer Job Number Model Name

Infinigy Engineering PLLC BA

526-104 CT03XC358 Jan 18, 2018 5:55 PM Checked By:_

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
9	Seismic Load AZI 090	ELX			11.5					
10	BLC 2 Transient Area	None						18		
11	BLC 5 Transient Area	None						18		

Load Combinations

	Description	So	.P	S	BLC	Fact	BLC	C Fact	BLC	Fact	BLC	Fact.	BLC	Fact.	BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact
1	1.4D	Yes	Y		DL	1.4																		- 00
2	1.2D + 1.6W A.	. Yes	Y					. 1.6											1000					
3	1.2D + 1.6W A.	Yes	Y					. 1.386		.8														
4	1.2D + 1.6W A.	Yes	Y			1.2				1.386	6								1.					
5	1.2D + 1.6W A	.Yes	Y		DL				W				250020				100000000000000000000000000000000000000		20-00-018					
6	1.2D + 1.6W A	. Yes	Y		DL			8			6										50000			
7	1.2D + 1.6W A	. Yes	Y		DL			1.3																
8	1.2D + 1.6W A	Yes	Y			12	W	-1.6			6.11							4-1						Sec. V. S
9	1.2D + 1.6W A	Yes	Y					1.3		- 8		2000,000,000	William U.					MES TRATEGIS						2 10 600
10	1.2D + 1.6W A	Yes	Ÿ					8																
11	1.2D + 1.6W A	Yes	Y			1.2		.0		-1.6														
12	1.2D + 1.6W A	Yes	Ÿ		DL			.8															7	
13	1.2D + 1.6W A	Yes	Y					1.386					Military Co.											
14	0.9D + 1.6W A	Yes	V		DL			1.6		0	191							4.5						
15	0.9D + 1.6W A	Yes	V		DL	9	W	1.386	W	.8								2 12 22		100				
	0.9D + 1.6W A				DL	.9	W			1.386							7/0		1				51835	
17	0.9D + 1.6W A	Yes	Y		DL	.9	_	.0	W															
	0.9D + 1.6W A				DL	<u>a</u>	W	8						111									1000	
19	0.9D + 1.6W A	Yes	V		DL			-1.3			556 (b)e1	2.5	MARK TOTAL											
	0.9D + 1.6W A				DL			-1.6		.0	91.09									941				
	0.9D + 1.6W A				DL	.9	W	-1.3	W	Ω				est adult sol	200000	<u> </u>			1000	12				
	0.9D + 1.6W A				DL	.9	W	8	W	-13								e 100					100	
23	0.9D + 1.6W A	Yes	V		DL	.9		0	W	-1.6	686549			SHOULD COM										2000
24	0.9D + 1.6W A	Yes	V		DL	.o	W	Q		-1.3												No. of the		
	0.9D + 1.6W A				DL			1.386		8											42.55			
	1.2D + 1.0Di						OL1		00	0					5 30									
	1.2D + 1.0Di +					1.2			OL2	1														
	1.2D + 1.0Di +					1.2		4	OL 2	.866	013	5					200							
29	1.2D + 1.0Di +	Yes	V			1.2		1	OL2	.5	OL3	966	2000								\$50000			54097443
	1.2D + 1.0Di +					1.2		1	OLZ		OL3	1												
	1.2D + 1.0Di +				DI	1.2	OI 1	1	500000000000000000000000000000000000000	5														
	1.2D + 1.0Di +					1.2				866											7			1000
33	1.2D + 1.0Di +	Yes	V			1.2		1	OL2		OLS	.5	4.55.47	-	-				574.554					
34	1.2D + 1.0Di +	Yes	V			1.2				866	013	5				i de la companya de								
	1.2D + 1.0Di +					1.2				5								200						
	1.2D + 1.0Di +					1.2			OLZ		OL3					30 30 3			0.00					
	1.2D + 1.0Di +					1.2			012	.5									2004					
	1.2D + 1.0Di +						OL1		012	.866	OL3	5	9/3/4			£7729	77.34						7876	
	1.2D + 1.5L +							1.5	M	104	OLO	0	COVERNA			46.175	and the second		0.300.30		2.6200			BOATO 2.8
	1.2D + 1.5L +							1.5			M	052									14.00			
41	1.2D + 1.5L +	Yes	V					1.5				002											-	
	1.2D + 1.5L +				DL	1.2		1.5	v v			104			-		-							
	1.2D + 1.5L +				DL	1.2		1.5	1//	052		.09		-			-	-	-				-	
	1.2D + 1.5L +							1.5				052	577											
	1.2D + 1.5L +							1.5			v V	052					-		-		-		+	
	1.2D + 1.5L +	_						1.5			Λ/	052		-	-		-						-	
	1.2D + 1.5L +							1.5					-		-			-						
	1.2D + 1.5L +					1.2			v v			.104	-	-	-	-			-					
49	1.2D + 1.5L +	Yes	V					1.5	///				-			-	-		-	-	-			
70		, 00			UL	1.2	<u></u>	1.0	ν ν	032	, v	09												

Company Designer Job Number

Model Name

: Infinigy Engineering PLLC

BA 526-104 CT03XC358 Jan 18, 2018 5:55 PM Checked By:__

Load Combinations (Continued)

Des	cription So	oP.	. S	BLC	Fact	BLC	Fact	BLC	Fact.	BLC	Fact	BLC	Fact.	BLC	Fact								
50 1.2D+					1.2																		

Envelope Joint Reactions

	Joint	ut.	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	684.378	29	1425.54	27	-225.418	14	Ó	1	0	1	Ō	1
2		min	-322.104	22	261.106	20	-2169.26	33	0	1	0	1	0	1
3	N2	max	88.973	18	594.113	27	2279.661	27	0	1	0	1	0	1
4		min	-603.365	37	78.17	20	-104.381	20	0	1	0	1	0	1
5	N41	max	118.114	9	87.479	9	503.961	15	0	1	0	1	0	1
6		min	-126.557	15	-70.815	15	-495.083	9	0	1	0	1	0	1
7	N40	max	50.918	24	57.398	32	203.388	24	0	1	0	1	0	1
8		min	-45.798	18	-21.797	24	-195.032	6	0	1	0	1	0	1
9	Totals:	max	529.437	17	2075.813	28	1354.034	2						
10		min	-529.438	11	444,425	21	-1354.032	CANADA PROPRIATOR STATE				-		

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear	Loc[in]	Dir	LC	phi*Pnc	.phi*Pnt	" nM*ind	.phi*Mn .	.Cb Eqn
1	M5	PIPE_1.25	.694	66	5	.118	0			12125	19687.5		.801	2 H1-1b
2	M7	PIPE_1.25	.641	66	11	.118	0		2	12125	19687.5	.801	.801	2H1-1b
3	M6	PIPE_1.25	.615	66	4	.118	66		41	12125	19687.5	.801	.801	4H1-1b
4	M17	SR1.0	.583	0	28	.202	0		28	17271	25446	.424	.424	2H1-1b
5	M8	PIPE_1.25	.573	66	11	.125	66		49	12125	19687.5	.801	.801	3H1-1b
6	M11	SR0.75	.464	0	28	.062	0		11	2910.977	14313	.179	.179	2H1-1a
7	M25	PIPE 2.0	.385	32	28	.330	32		28	14916	32130	1.872	1.872	4 H3-6
8	M16	SR1.0	.368	0	28	.113	0		29	14893	25446	.424	.424	2H1-1b
9	M2	HSS2.5x2	.318	22.844	37	.155	23.109	V	29	60652	63756	4.554	4.554	2H1-1b
10	M13	SR0.75	.315	53.413	48	.064	53.413		5	2910.977	14313	.179	.179	2H1-1a
11	M1	HSS2.5x2	.295	22.844	29	.156	23.109	V	28	60652	63756	4.554	4.554	2H1-1b
12	M24	PIPE 2.0	.242	48	9	.042	48		28	14916	32130	1.872	1.872	2H1-1b
13	M15	SR1.0	.231	33	28	.136	0		28	17271	25446	.424	.424	2H1-1b
14	M12	SR0.75	.186	0	28	.028	33		47	7186.991	14313	.179	.179	2H1-1b
15	M27	PIPE_1.25	.156	55.521	28	.008	111.042		27	3371.162	19687.5	.801	.801	1H1-1b
16	M28	PIPE_1.25	.145	55.521	38	.008	0		27	3371.162	19687.5	.801	.801	1H1-1b
17	M9	PIPE_1.25	.082	33	39	.081	0		28	18174	19687.5	.801	.801	2H1-1b
18	M26	PIPE 2.0	.074	32	43	.025	48		49	14916	32130	1.872	1.872	4H1-1b
19	M10	PIPE_1.25	.073	33	50	.062	33		49	18174	19687.5	.801	.801	2H1-1b
20	M14	SR0.75	.073	0	48	.064	33		28	7186.991	14313	.179	.179	2H1-1b

Feet 1,980

100 OLD REDDING RD

Location 100 OLD REDDING RD

Mblu 35/ / 46/ /

Acct# 00300300

Owner KAUFMAN ROBERT J

Assessment \$801,200

Appraisal \$2,881,800

PID 2924

Building Count 3

Current Value

\$801,200	\$328,200	\$473,000	2017
Total	Land	Improvements	Valuation Year
		Assessment	
\$2,881,800	\$2,206,000	\$675,800	2017
Total	Land	Improvements	Valuation Year
		Appraisal	

Owner of Record

Owner KAUFMAN ROBERT J

Co-Owner

Address 41 PADANARAM RD

DANBURY, CT 06810

Sale Price \$0 Certificate 2

Book & Page 117/510

Sale Date 06/15/1983

Instrument

Ownership History

		Ownership History	listory		
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
KAUFMAN ROBERT J	\$0	2	117/ 510	×	06/15/1983
KAUFMAN ROBERT J	\$0	H	115/ 739	×	12/28/1982
KAUFMAN MARION C	\$0	ω	72/ 621	×	05/13/1966

Building Information

Building 1: Section 1

Living Area:	Year Built:
2,354	1940

Replacement Cost: \$331,800

Building Percent 78

Good:

Replacement Cost

Less Depreciation: \$258,800

T-0-1-0-1	
Building Attributes	ttributes
Field	Description
Style	Colonial
Model	Residential
Grade:	В
Stories	2 Stories
Occupancy	1
Exterior Wall 1	Clapboard
Exterior Wall 2	

Building Photo

(http://images.vgsi.com/photos/ReddingCTPhotos//\00\00\68/79

Replacement Cost: 76 \$82,790

Good: **Building Percent**

Replacement Cost

Less Depreciation:

\$62,900

Building Attributes: Bldg 2 of 3

Dallall & Acci it	oures - bidy 2 of 5
Field	Description
Style	Studio/Hm Office
Model	Residential
Grade:	0
Stories	01
Occupancy	01
Exterior Wall 1	Wood
Exterior Wall 2	
Roof Structure	Gable
Roof Cover	Wood Shingle
Interior Wall 1	Drywall
Interior Wall 2	
Interior Flr 1	Hardwood
Interior Flr 2	
Heat Fuel	Gas
Heat Type:	Hot Water
AC Type:	None
Total Bedrooms	00
Full Bathrooms	0
Half Bathrooms	1

Building Photo

(http://images.vgsi.com/photos/ReddingCTPhotos//\00\00\68/80

Building Layout

	Fin Bsmt Qual
	Fin Bsmt Area
	Whirlpool Tubs
ω	Fireplaces
Average	Kitchen Style:
Above Average	Bath Style:
8	Total Rooms
1	Total Xtra Fixtrs
1	Half Bathrooms
1	Full Bathrooms
4 Bedrooms	Total Bedrooms
None	AC Type:
Forced Air	Heat Type:
Gas	Heat Fuel
	Interior Flr 2
Hardwood	Interior Flr 1
	Interior Wall 2
Drywall	Interior Wall 1
Wood Shingle	Roof Cover
Gable	Roof Structure

Building 2 : Section 1

Year Built: Living Area:

1975 465

Building Layout

	Building Sub-Areas (sq ft)	qft)	<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	1,198	1,198
FUS	Finished Upper Story	1,156	1,156
BSM	Basement Area	1,170	0
FOP	Framed Open Porch	364	0
PTS	Patio - Stone	621	0
		4,509	2,354

Bsmt Garages	Fin Bsmt Qual	Fin Bsmt Area	Whirlpool Tubs	Fireplaces	Kitchen Style:	Bath Style:	Total Rooms	Total Xtra Fixtrs
					Average	Average	2	

Building 3: Section 1

<	ear
iving Area:	r Built:
0	20
	2000

Replacement Cost: \$338,148

Good: **Building Percent** 90

Replacement Cost

Less Depreciation: \$304,300

Building Attrib	Building Attributes : Bldg 3 of 3
Field	Description
STYLE	Barn
MODEL	Ind/Comm
Grade	CD .
Stories	2
Occupancy	1
Exterior Wall 1	Cedar

PTC BSM BAS Code Patio - Concrete Basement Area First Floor Description Gross Area 1,122 465 465 192 Living Area

465

0

0

465

Building Photo

(http://images.vgsi.com/photos/ReddingCTPhotos//\00\00\68/81

Extra Features

	% Comn Wall
10	Wall Height
Average	Rooms/Prtns
None	Ceiling/Walls
Average	Baths/Plumbing
Wood Frame	Frame Type
None	Heat/AC
	1st Floor Use:
2	Half Bths
0	Full Bths
0	Bedrooms
Farm Buildings	Bldg Use
None	AC Type
Forced Air	Heating Type
Oil	Heating Fuel
	Interior Floor 2
Minimum/Plywd	Interior Floor 1
Minimum	Interior Wall 2
Wall Board	Interior Wall 1
Wood Shingle	Roof Cover
Gambrel	Roof Structure
	Exterior Wall 2

Building Layout

0	8,656		
0	8,656	Barn Area	BRN
Living Area	Gross Area	Description	Code
Legend	(sq ft)	Building Sub-Areas (sq ft)	

Land

Land Use

Land Line Valuation

Description **Use Code** R-2 Single Family Res 101

Neighborhood 100 Zone

Alt Land Appr N_O

> Size (Acres) 134.66

Depth Frontage

Assessed Value \$328,200

Appraised Value \$2,206,000

Category

	Special Land		
Land Use Code	Land Use Description	Units	Unit Type
800	Open Space	122	AC

Outbuildings

			Outbuildings			<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
WDK	Wood Deck			264 S.F.	\$2,900	2
GAR1	Garage	FR	Frame	575 S.F.	\$2,700	Ľ
SPL1	InGround Pool	CRH	Heatd/Concrt	1080 S.F.	\$37,100	H
PAT1	Patio	ST	Stone	432 S.F.	\$3,900	1

Valuation History

	Appraisal		
Valuation Year	Improvements	Land	Total
2016	\$667,600	\$2,927,300	\$3,594,900
2015	\$667,600	\$2,927,300	\$3,594,900
2014	\$667,600	\$2,927,300	\$3,594,900

	Assessment		
Valuation Year	Improvements	Land	Total
2016	\$467,300	\$447,900	\$915,200
2015	\$467,300	\$447,900	\$915,200
2014	\$467,300	\$447,900	\$915,200

(c) 2016 Vision Government Solutions, Inc. All rights reserved.